
new/exception_lists/packaging 1

**
 28039 Fri May 30 18:31:07 2014
new/exception_lists/packaging
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 # Copyright 2012 OmniTI Computer Consulting, Inc. All rights reserved.
26 #

28 #
29 # Exception List for validate_pkg
30 #

32 #
33 # The following entries are built in the /proto area
34 # but not included in any packages - this is intentional.
35 #
36 usr/include/auth_list.h
37 usr/include/bsm/audit_door_infc.h
38 usr/include/bsm/audit_private.h
39 usr/include/bsm/devalloc.h
40 usr/include/getxby_door.h
41 usr/include/passwdutil.h
42 usr/include/priv_utils.h
43 usr/include/rpcsvc/daemon_utils.h
44 usr/include/rpcsvc/svc_dg_priv.h
45 usr/include/security/pam_impl.h
46 usr/include/sys/clock_impl.h
47 usr/include/sys/ieeefp.h
48 usr/include/sys/winlockio.h
49 usr/include/scsi/plugins/ses/vendor/sun_impl.h
50 #
51 # Private/Internal libraries of the Cryptographic Framework.
52 #
53 lib/libkcfd.so
54 lib/llib-lelfsign
55 lib/llib-lelfsign.ln
56 lib/llib-lkcfd
57 lib/llib-lkcfd.ln
58 usr/include/libelfsign.h
59 usr/lib/llib-lsoftcrypto
60 usr/lib/llib-lsoftcrypto.ln
61 usr/lib/amd64/llib-lsoftcrypto.ln i386

new/exception_lists/packaging 2

62 usr/lib/sparcv9/llib-lsoftcrypto.ln sparc

64 #
65 # The following files are used by the DHCP service, the
66 # standalone’s DHCP implementation, and the kernel (nfs_dlboot).
67 # They contain interfaces which are currently private.
68 #
69 usr/include/dhcp_svc_confkey.h
70 usr/include/dhcp_svc_confopt.h
71 usr/include/dhcp_svc_private.h
72 usr/include/dhcp_symbol.h
73 usr/include/sys/sunos_dhcp_class.h
74 usr/lib/libdhcpsvc.so
75 usr/lib/llib-ldhcpsvc
76 usr/lib/llib-ldhcpsvc.ln
77 #
78 # Private MAC driver header files
79 #
80 usr/include/inet/iptun.h
81 usr/include/sys/aggr_impl.h
82 usr/include/sys/aggr.h
83 usr/include/sys/dld_impl.h
84 usr/include/sys/dld_ioc.h
85 usr/include/sys/dls_impl.h
86 usr/include/sys/dls.h
87 usr/include/sys/mac_client_impl.h
88 usr/include/sys/mac_client.h
89 usr/include/sys/mac_flow_impl.h
90 usr/include/sys/mac_impl.h
91 usr/include/sys/mac_soft_ring.h
92 usr/include/sys/mac_stat.h
93 #
94 # Private GLDv3 userland libraries and headers
95 #
96 usr/include/libdladm_impl.h
97 usr/include/libdlaggr.h
98 usr/include/libdlether.h
99 usr/include/libdlflow_impl.h
100 usr/include/libdlflow.h
101 usr/include/libdliptun.h
102 usr/include/libdlmgmt.h
103 usr/include/libdlsim.h
104 usr/include/libdlstat.h
105 usr/include/libdlvnic.h
106 usr/include/libdlwlan_impl.h
107 usr/include/libdlwlan.h
108 #
109 # Virtual Network Interface Card (VNIC)
110 #
111 usr/include/sys/vnic.h
112 usr/include/sys/vnic_impl.h
113 #
114 # Private libipadm lint library and header files
115 #
116 usr/include/ipadm_ipmgmt.h
117 usr/include/ipadm_ndpd.h
118 usr/include/libipadm.h
119 lib/llib-lipadm
120 lib/llib-lipadm.ln
121 lib/libipadm.so
122 #
123 # Private libsocket header file
124 #
125 usr/include/libsocket_priv.h
126 #
127 # IKE and IPsec support library exceptions. The IKE support

new/exception_lists/packaging 3

128 # library contains exclusively private interfaces, as does
129 # libipsecutil. My apologies for the glut of header files here.
130 #
131 usr/include/errfp.h
132 usr/include/ikedoor.h
133 usr/include/ipsec_util.h
134 usr/lib/libike.so
135 usr/lib/amd64/libike.so i386
136 usr/lib/sparcv9/libike.so sparc
137 usr/lib/libipsecutil.so
138 usr/lib/amd64/libipsecutil.so i386
139 usr/lib/sparcv9/libipsecutil.so sparc
140 usr/lib/llib-like
141 usr/lib/llib-like.ln
142 usr/lib/amd64/llib-like.ln i386
143 usr/lib/sparcv9/llib-like.ln sparc
144 usr/lib/llib-lipsecutil
145 usr/lib/llib-lipsecutil.ln
146 usr/lib/amd64/llib-lipsecutil.ln i386
147 usr/lib/sparcv9/llib-lipsecutil.ln sparc
148 #
149 usr/include/inet/ip_impl.h
150 usr/include/inet/ip_ndp.h
151 usr/include/inet/ip2mac_impl.h
152 usr/include/inet/ip2mac.h
153 usr/include/inet/rawip_impl.h
154 usr/include/inet/tcp_impl.h
155 usr/include/inet/udp_impl.h
156 usr/include/libmail.h
157 usr/include/libnwam_priv.h
158 usr/include/protocols/ripngd.h
159 usr/include/s_string.h
160 usr/include/sys/logindmux_impl.h
161 usr/include/sys/vgareg.h
162 #
163 # Some IPsec headers can’t be shipped lest we hit export controls...
164 #
165 usr/include/inet/ipsec_impl.h
166 usr/include/inet/ipsec_info.h
167 usr/include/inet/ipsecah.h
168 usr/include/inet/ipsecesp.h
169 usr/include/inet/keysock.h
170 usr/include/inet/sadb.h
171 usr/include/sys/sha1_consts.h
172 usr/include/sys/sha2_consts.h
173 #
174 #
175 # Filtering out directories not shipped
176 #
177 usr/4lib i386
178 #
179 # These files contain definitions shared privately between the kernel
180 # and libc. There is no reason for them to be part of a package that
181 # a customer should ever see. They are installed in the proto area by
182 # the uts build because libc and and other components, like truss, are
183 # dependent upon their contents and should not have their own copies.
184 #
185 usr/include/sys/libc_kernel.h
186 usr/include/sys/synch32.h
187 #
188 # These files are installed in the proto area by the build of libproc for
189 # the benefit of the builds of cmd/truss, cmd/gcore and cmd/ptools, which
190 # use libproc as their common process-control library. These are not
191 # interfaces for customer use, so the files are excluded from packaging.
192 #
193 lib/llib-lproc

new/exception_lists/packaging 4

194 lib/llib-lproc.ln
195 lib/amd64/llib-lproc.ln i386
196 lib/sparcv9/llib-lproc.ln sparc
197 usr/include/libproc.h
198 #
199 # Private interfaces for libdisasm
200 #
201 usr/include/libdisasm.h
202 usr/lib/llib-ldisasm
203 usr/lib/llib-ldisasm.ln
204 usr/lib/amd64/llib-ldisasm.ln i386
205 usr/lib/sparcv9/llib-ldisasm.ln sparc
206 #
207 # Private interfaces for libraidcfg
208 #
209 usr/include/raidcfg_spi.h
210 usr/include/raidcfg.h
211 usr/lib/libraidcfg.so
212 usr/lib/amd64/libraidcfg.so i386
213 usr/lib/sparcv9/libraidcfg.so sparc
214 usr/lib/llib-lraidcfg
215 usr/lib/llib-lraidcfg.ln
216 usr/lib/amd64/llib-lraidcfg.ln i386
217 usr/lib/sparcv9/llib-lraidcfg.ln sparc
218 #
219 # This file is used for private communication between mdb, drv/kmdb, and
220 # misc/kmdb. The interfaces described herein are not intended for customer
221 # use, and are thus excluded from packaging.
222 #
223 usr/include/sys/kmdb.h
224 #
225 # These files are installed in the proto area by the build of libdhcpagent
226 # and libdhcputil for the benefit of DHCP-related networking commands such
227 # as dhcpagent, dhcpinfo, ifconfig, and netstat. These are not interfaces
228 # for customer use, so the files are excluded from packaging.
229 #
230 lib/libdhcpagent.so
231 lib/libdhcputil.so
232 lib/amd64/libdhcputil.so i386
233 lib/sparcv9/libdhcputil.so sparc
234 lib/llib-ldhcpagent
235 lib/llib-ldhcpagent.ln
236 lib/llib-ldhcputil
237 lib/llib-ldhcputil.ln
238 lib/amd64/llib-ldhcputil.ln i386
239 lib/sparcv9/llib-ldhcputil.ln sparc
240 usr/include/dhcp_hostconf.h
241 usr/include/dhcp_impl.h
242 usr/include/dhcp_inittab.h
243 usr/include/dhcp_stable.h
244 usr/include/dhcp_symbol_common.h
245 usr/include/dhcpagent_ipc.h
246 usr/include/dhcpagent_util.h
247 usr/include/dhcpmsg.h
248 usr/lib/libdhcpagent.so
249 usr/lib/libdhcputil.so
250 usr/lib/amd64/libdhcputil.so i386
251 usr/lib/sparcv9/libdhcputil.so sparc
252 usr/lib/llib-ldhcpagent
253 usr/lib/llib-ldhcpagent.ln
254 usr/lib/llib-ldhcputil
255 usr/lib/llib-ldhcputil.ln
256 usr/lib/amd64/llib-ldhcputil.ln i386
257 usr/lib/sparcv9/llib-ldhcputil.ln sparc
258 #
259 # These files are installed in the proto area by the build of libinstzones

new/exception_lists/packaging 5

260 # and libpkg
261 #
262 usr/lib/llib-linstzones
263 usr/lib/llib-linstzones.ln
264 usr/lib/amd64/llib-linstzones.ln i386
265 usr/lib/sparcv9/llib-linstzones.ln sparc
266 usr/lib/llib-lpkg
267 usr/lib/llib-lpkg.ln
268 #
269 # Don’t ship header files private to libipmp and in.mpathd
270 #
271 usr/include/ipmp_query_impl.h
272 #
273 # These files are installed in the proto area by the build of libinetsvc,
274 # an inetd-specific library shared by inetd, inetadm and inetconv. Only
275 # the shared object is shipped.
276 #
277 usr/include/inetsvc.h
278 usr/lib/libinetsvc.so
279 usr/lib/llib-linetsvc
280 usr/lib/llib-linetsvc.ln
281 #
282 # These files are installed in the proto area by the build of libinetutil,
283 # a general purpose library for the benefit of internet utilities. Only
284 # the shared object is shipped.
285 #
286 lib/libinetutil.so
287 lib/amd64/libinetutil.so i386
288 lib/sparcv9/libinetutil.so sparc
289 lib/llib-linetutil
290 lib/llib-linetutil.ln
291 lib/amd64/llib-linetutil.ln i386
292 lib/sparcv9/llib-linetutil.ln sparc
293 usr/include/libinetutil.h
294 usr/include/netinet/inetutil.h
295 usr/include/ofmt.h
296 usr/lib/libinetutil.so
297 usr/lib/amd64/libinetutil.so i386
298 usr/lib/sparcv9/libinetutil.so sparc
299 usr/lib/llib-linetutil
300 usr/lib/llib-linetutil.ln
301 usr/lib/amd64/llib-linetutil.ln i386
302 usr/lib/sparcv9/llib-linetutil.ln sparc
303 #
304 # Miscellaneous kernel interfaces or kernel<->user interfaces that are
305 # consolidation private and we do not want to export at this time.
306 #
307 usr/include/sys/cryptmod.h
308 usr/include/sys/dumpadm.h
309 usr/include/sys/ontrap.h
310 usr/include/sys/sysmsg_impl.h
311 usr/include/sys/vlan.h
312 #
313 # These files are installed in the proto area so lvm can use
314 # them during the build process.
315 #
316 lib/llib-lmeta
317 lib/llib-lmeta.ln
318 usr/include/sdssc.h
319 usr/lib/llib-lmeta
320 usr/lib/llib-lmeta.ln
321 #
322 # non-public pci header
323 #
324 usr/include/sys/pci_impl.h
325 usr/include/sys/pci_tools.h

new/exception_lists/packaging 6

326 #
327 # Exception list for RCM project, included by librcm and rcm_daemon
328 #
329 usr/include/librcm_event.h
330 usr/include/librcm_impl.h
331 #
332 # MDB deliverables that are not yet public
333 #
334 usr/lib/mdb/proc/mdb_test.so
335 usr/lib/mdb/proc/sparcv9/mdb_test.so sparc
336 #
337 # SNCA project exception list
338 #
339 usr/include/inet/kssl/kssl.h
340 usr/include/inet/kssl/ksslimpl.h
341 usr/include/inet/kssl/ksslproto.h
342 usr/include/inet/nca
343 #
344 # these are "removed" from the source product build because the only
345 # packages that currently deliver them are removed.
346 # they really should’t be in here.
347 #
348 etc/sfw
349 #
350 # Entries for the libmech_krb5 symlink, which has been included
351 # for build purposes only, not delivered to customers.
352 #
353 usr/lib/gss/libmech_krb5.so
354 usr/lib/amd64/gss/libmech_krb5.so i386
355 usr/lib/sparcv9/gss/libmech_krb5.so sparc
356 usr/lib/libmech_krb5.so
357 usr/lib/amd64/libmech_krb5.so i386
358 usr/lib/sparcv9/libmech_krb5.so sparc
359 #
360 # Entries for headers from efcode project which user does not need to see
361 #
362 usr/platform/sun4u/include/sys/fc_plat.h sparc
363 usr/platform/sun4u/include/sys/fcode.h sparc
364 #
365 # Private net80211 headers
366 #
367 usr/include/sys/net80211_crypto.h
368 usr/include/sys/net80211_ht.h
369 usr/include/sys/net80211_proto.h
370 usr/include/sys/net80211.h
371 #
372 usr/include/net/wpa.h
373 #
374 # PPPoE files not delivered to customers.
375 #
376 usr/include/net/pppoe.h
377 usr/include/net/sppptun.h
378 #
379 # Simnet
380 #
381 usr/include/net/simnet.h
382 #
383 # Bridging internal data structures
384 #
385 usr/include/net/bridge_impl.h
386 #
387 # User<->kernel interface used by cfgadm/USB only
388 #
389 usr/include/sys/usb/hubd/hubd_impl.h
390 #
391 # User<->kernel interface used by cfgadm/SATA only

new/exception_lists/packaging 7

392 #
393 usr/include/sys/sata/sata_cfgadm.h i386
394 #
395 # Private ucred kernel header
396 #
397 usr/include/sys/ucred.h
398 #
399 # Private and/or platform-specific smf(5) files
400 #
401 lib/librestart.so
402 lib/llib-lrestart
403 lib/llib-lrestart.ln
404 lib/amd64/llib-lrestart.ln i386
405 lib/sparcv9/llib-lrestart.ln sparc
406 usr/include/libcontract_priv.h
407 usr/include/librestart_priv.h
408 usr/include/librestart.h
409 usr/lib/librestart.so
410 usr/lib/sparcv9/librestart.so sparc
411 lib/svc/manifest/platform/sun4u i386
412 lib/svc/manifest/platform/sun4v i386
413 var/svc/manifest/platform/sun4u i386
414 var/svc/manifest/platform/sun4v i386
415 etc/svc/profile/platform_sun4v.xml i386
416 etc/svc/profile/platform_SUNW,SPARC-Enterprise.xml i386
417 etc/svc/profile/platform_SUNW,Sun-Fire-15000.xml i386
418 etc/svc/profile/platform_SUNW,Sun-Fire-880.xml i386
419 etc/svc/profile/platform_SUNW,Sun-Fire-V890.xml i386
420 etc/svc/profile/platform_SUNW,Sun-Fire.xml i386
421 etc/svc/profile/platform_SUNW,Ultra-Enterprise-10000.xml i386
422 etc/svc/profile/platform_SUNW,UltraSPARC-IIe-NetraCT-40.xml i386
423 etc/svc/profile/platform_SUNW,UltraSPARC-IIe-NetraCT-60.xml i386
424 etc/svc/profile/platform_SUNW,UltraSPARC-IIi-Netract.xml i386
425 #
426 # Private libuutil files
427 #
428 lib/libuutil.so
429 lib/llib-luutil
430 lib/llib-luutil.ln
431 lib/sparcv9/llib-luutil.ln sparc
432 usr/include/libuutil_impl.h
433 usr/lib/libuutil.so
434 usr/lib/sparcv9/libuutil.so sparc
435 #
436 # Private Multidata file.
437 #
438 usr/include/sys/multidata_impl.h
439 #
440 # The following files are used by wanboot.
441 # They contain interfaces which are currently private.
442 #
443 usr/include/sys/wanboot_impl.h
444 usr/include/wanboot
445 usr/include/wanbootutil.h
446 #
447 # Even though all the objects built under usr/src/stand are later glommed
448 # together into a couple of second-stage boot loaders, we dump the static
449 # archives and lint libraries into $(ROOT)/stand for intermediate use
450 # (e.g., for lint, linking the second-stage boot loaders, ...). Since
451 # these are merely intermediate objects, they do not need to be packaged.
452 #
453 stand sparc
454 #
455 # Private KCF header files
456 #
457 usr/include/sys/crypto/elfsign.h

new/exception_lists/packaging 8

458 usr/include/sys/crypto/impl.h
459 usr/include/sys/crypto/ops_impl.h
460 usr/include/sys/crypto/sched_impl.h
461 #
462 # The following files are installed in the proto area
463 # by the build of libavl (AVL Tree Interface Library).
464 # libavl contains interfaces which are all private interfaces.
465 #
466 lib/libavl.so
467 lib/amd64/libavl.so i386
468 lib/sparcv9/libavl.so sparc
469 lib/llib-lavl
470 lib/llib-lavl.ln
471 lib/amd64/llib-lavl.ln i386
472 lib/sparcv9/llib-lavl.ln sparc
473 usr/lib/libavl.so
474 usr/lib/amd64/libavl.so i386
475 usr/lib/sparcv9/libavl.so sparc
476 usr/lib/llib-lavl
477 usr/lib/llib-lavl.ln
478 usr/lib/amd64/llib-lavl.ln i386
479 usr/lib/sparcv9/llib-lavl.ln sparc
480 #
481 # The following files are installed in the proto area
482 # by the build of libcmdutils (Command Utilities Library).
483 # libcmdutils contains interfaces which are all private interfaces.
484 #
485 lib/libcmdutils.so
486 lib/amd64/libcmdutils.so i386
487 lib/sparcv9/libcmdutils.so sparc
488 lib/llib-lcmdutils
489 lib/llib-lcmdutils.ln
490 lib/amd64/llib-lcmdutils.ln i386
491 lib/sparcv9/llib-lcmdutils.ln sparc
492 usr/include/libcmdutils.h
493 usr/lib/libcmdutils.so
494 usr/lib/amd64/libcmdutils.so i386
495 usr/lib/sparcv9/libcmdutils.so sparc
496 usr/lib/llib-lcmdutils
497 usr/lib/llib-lcmdutils.ln
498 usr/lib/amd64/llib-lcmdutils.ln i386
499 usr/lib/sparcv9/llib-lcmdutils.ln sparc
500 #
501 # Private interfaces in libsec
502 #
503 usr/include/aclutils.h
504 #
505 # USB skeleton driver stays in sync with the rest of USB but doesn’t ship.
506 #
507 kernel/drv/usbskel i386
508 kernel/drv/amd64/usbskel i386
509 kernel/drv/sparcv9/usbskel sparc
510 kernel/drv/usbskel.conf
511 #
512 # Consolidation and Sun private libdevid interfaces
513 # Public libdevid interfaces provided by devid.h
514 #
515 usr/include/sys/libdevid.h
516 #
517 # The following files are installed in the proto area by the build of
518 # libprtdiag. libprtdiag contains interfaces which are all private.
519 # Only the shared object is shipped.
520 #
521 usr/platform/sun4u/lib/llib-lprtdiag sparc
522 usr/platform/sun4u/lib/llib-lprtdiag.ln sparc
523 usr/platform/sun4v/lib/llib-lprtdiag.ln sparc

new/exception_lists/packaging 9

524 #
525 # The following files are installed in the proto area by the build of
526 # mdesc driver in sun4v. These header files are used on in the build
527 # and do not need to be shipped to customers.
528 #
529 usr/include/sys/mdesc.h sparc
530 usr/include/sys/mdesc_impl.h sparc
531 usr/platform/sun4v/include/sys/mach_descrip.h sparc
532 #
533 # The following files are installed in the proto area by the build of
534 # libpcp. libpcp contains interfaces which are all private.
535 # Only the shared object is shipped.
536 #
537 usr/platform/sun4v/lib/llib-lpcp.ln sparc
538 usr/platform/SUNW,Netra-CP3060/lib/llib-lpcp.ln sparc
539 usr/platform/SUNW,Netra-CP3260/lib/llib-lpcp.ln sparc
540 usr/platform/SUNW,Netra-T5220/lib/llib-lpcp.ln sparc
541 usr/platform/SUNW,Netra-T5440/lib/llib-lpcp.ln sparc
542 usr/platform/SUNW,SPARC-Enterprise-T5120/lib/llib-lpcp.ln sparc
543 usr/platform/SUNW,Sun-Blade-T6300/lib/llib-lpcp.ln sparc
544 usr/platform/SUNW,Sun-Blade-T6320/lib/llib-lpcp.ln sparc
545 usr/platform/SUNW,Sun-Fire-T200/lib/llib-lpcp.ln sparc
546 usr/platform/SUNW,T5140/lib/llib-lpcp.ln sparc
547 usr/platform/SUNW,USBRDT-5240/lib/llib-lpcp.ln sparc
548 #
549 # ZFS internal tools and lint libraries
550 #
551 usr/lib/llib-lzfs_jni
552 usr/lib/llib-lzfs_jni.ln
553 usr/lib/amd64/llib-lzfs_jni.ln i386
554 usr/lib/sparcv9/llib-lzfs_jni.ln sparc
555 usr/lib/llib-lzpool
556 usr/lib/llib-lzpool.ln i386
557 usr/lib/amd64/llib-lzpool.ln i386
558 usr/lib/sparcv9/llib-lzpool.ln sparc
559 #
560 # ZFS JNI headers
561 #
562 usr/include/libzfs_jni_dataset.h
563 usr/include/libzfs_jni_disk.h
564 usr/include/libzfs_jni_diskmgt.h
565 usr/include/libzfs_jni_ipool.h
566 usr/include/libzfs_jni_main.h
567 usr/include/libzfs_jni_pool.h
568 usr/include/libzfs_jni_property.h
569 usr/include/libzfs_jni_util.h
570 #
571 # These files are installed in the proto area for Solaris scsi_vhci driver
572 # (for MPAPI support) and should not be shipped
573 #
574 usr/include/sys/scsi/adapters/mpapi_impl.h
575 usr/include/sys/scsi/adapters/mpapi_scsi_vhci.h
576 #
577 # This library is installed in the proto area by the build of libdisasm, and is
578 # only used when building the KMDB disasm module.
579 #
580 usr/lib/libstanddisasm.so
581 usr/lib/amd64/libstanddisasm.so i386
582 usr/lib/sparcv9/libstanddisasm.so sparc
583 #
584 # TSol: tsol doesn’t ship lint source, and tsnet isn’t for customers at all.
585 #
586 lib/libtsnet.so
587 usr/lib/llib-ltsnet
588 usr/lib/llib-ltsol
589 #

new/exception_lists/packaging 10

590 # nss interfaces shared between libnsl and other ON libraries.
591 #
592 usr/include/nss.h
593 #
594 # AT&T AST (ksh93) files which are currently needed only to build OS/Net
595 # (msgcc&co.)
596 # libast
597 usr/lib/libast.so
598 usr/lib/amd64/libast.so i386
599 usr/lib/sparcv9/libast.so sparc
600 usr/lib/llib-last
601 usr/lib/llib-last.ln
602 usr/lib/amd64/llib-last.ln i386
603 usr/lib/sparcv9/llib-last.ln sparc
604 # libcmd
605 usr/lib/llib-lcmd
606 usr/lib/llib-lcmd.ln
607 usr/lib/amd64/llib-lcmd.ln i386
608 usr/lib/sparcv9/llib-lcmd.ln sparc
609 # libdll
610 usr/lib/libdll.so
611 usr/lib/amd64/libdll.so i386
612 usr/lib/sparcv9/libdll.so sparc
613 usr/lib/llib-ldll
614 usr/lib/llib-ldll.ln
615 usr/lib/amd64/llib-ldll.ln i386
616 usr/lib/sparcv9/llib-ldll.ln sparc
617 # libpp (a helper library needed by AST’s msgcc)
618 usr/lib/libpp.so
619 usr/lib/llib-lpp
620 usr/lib/llib-lpp.ln
621 usr/lib/locale/C/LC_MESSAGES/libpp
622 # libshell
623 usr/lib/libshell.so
624 usr/lib/amd64/libshell.so i386
625 usr/lib/sparcv9/libshell.so sparc
626 usr/lib/llib-lshell
627 usr/lib/llib-lshell.ln
628 usr/lib/amd64/llib-lshell.ln i386
629 usr/lib/sparcv9/llib-lshell.ln sparc
630 # libsum
631 usr/lib/libsum.so
632 usr/lib/amd64/libsum.so i386
633 usr/lib/sparcv9/libsum.so sparc
634 usr/lib/llib-lsum
635 usr/lib/llib-lsum.ln
636 usr/lib/amd64/llib-lsum.ln i386
637 usr/lib/sparcv9/llib-lsum.ln sparc
638 #
639 # This file is used in ON to build DSCP clients. It is not for customers.
640 #
641 usr/include/libdscp.h sparc
642 #
643 # These files are used by the iSCSI Target and the iSCSI Initiator
644 #
645 usr/include/sys/iscsi_protocol.h
646 usr/include/sys/iscsi_authclient.h
647 usr/include/sys/iscsi_authclientglue.h
648 #
649 # These files are used by the COMSTAR iSCSI target port provider
650 #
651 usr/include/sys/idm
652 usr/include/sys/iscsit/chap.h
653 usr/include/sys/iscsit/iscsi_if.h
654 usr/include/sys/iscsit/isns_protocol.h
655 usr/include/sys/iscsit/radius_packet.h

new/exception_lists/packaging 11

656 usr/include/sys/iscsit/radius_protocol.h
657 #
658 # libshare is private and the 64-bit sharemgr is not delivered.
659 #
660 usr/lib/libshare.so
661 usr/lib/amd64/libshare.so i386
662 usr/lib/sparcv9/libshare.so sparc
663 usr/lib/fs/autofs/libshare_autofs.so
664 usr/lib/fs/autofs/amd64/libshare_autofs.so i386
665 usr/lib/fs/autofs/sparcv9/libshare_autofs.so sparc
666 usr/lib/fs/nfs/libshare_nfs.so
667 usr/lib/fs/nfs/amd64/libshare_nfs.so i386
668 usr/lib/fs/nfs/sparcv9/libshare_nfs.so sparc
669 usr/lib/fs/smb/libshare_smb.so
670 usr/lib/fs/smb/amd64/libshare_smb.so i386
671 usr/lib/fs/smb/sparcv9/libshare_smb.so sparc
672 usr/lib/fs/smbfs/libshare_smbfs.so
673 usr/lib/fs/smbfs/amd64/libshare_smbfs.so i386
674 usr/lib/fs/smbfs/sparcv9/libshare_smbfs.so sparc
675 usr/include/libshare_impl.h
676 usr/include/scfutil.h
677 #
678 # These files are installed in the proto area by the build of libpri for
679 # the benefit of the builds of FMA libldom, Zeus, picld plugins, and/or
680 # other libpri consumers. However, the libpri interfaces are private to
681 # Sun (Consolidation Private) and not intended for customer use. So these
682 # files (the symlink and the lint library) are excluded from packaging.
683 #
684 usr/lib/libpri.so sparc
685 usr/lib/llib-lpri sparc
686 usr/lib/llib-lpri.ln sparc
687 usr/lib/sparcv9/libpri.so sparc
688 usr/lib/sparcv9/llib-lpri.ln sparc
689 #
690 # These files are installed in the proto area by the build of libds for
691 # the benefit of the builds of sun4v IO FMA and/or other libds
692 # consumers. However, the libds interfaces are private to Sun
693 # (Consolidation Private) and not intended for customer use. So these
694 # files (the symlink and the lint library) are excluded from packaging.
695 #
696 usr/lib/libds.so sparc
697 usr/lib/sparcv9/libds.so sparc
698 usr/lib/llib-lds sparc
699 usr/lib/llib-lds.ln sparc
700 usr/lib/sparcv9/llib-lds.ln sparc
701 usr/lib/libdscfg.so
702 usr/lib/llib-ldscfg.ln
703 usr/platform/sun4v/include/sys/libds.h sparc
704 usr/platform/sun4v/include/sys/vlds.h sparc
705 #
706 # Private/Internal u8_textprep header file. Do not ship.
707 #
708 usr/include/sys/u8_textprep_data.h
709 #
710 # SQLite is private, used by SMF (svc.configd), idmapd and libsmb.
711 #
712 usr/include/sqlite
713 usr/lib/libsqlite-native.o
714 usr/lib/libsqlite.o
715 usr/lib/llib-lsqlite.ln
716 usr/lib/smbsrv/libsqlite.so
717 #
718 # Private/Internal kiconv header files. Do not ship.
719 #
720 usr/include/sys/kiconv_big5_utf8.h
721 usr/include/sys/kiconv_cck_common.h

new/exception_lists/packaging 12

722 usr/include/sys/kiconv_cp950hkscs_utf8.h
723 usr/include/sys/kiconv_emea1.h
724 usr/include/sys/kiconv_emea2.h
725 usr/include/sys/kiconv_euckr_utf8.h
726 usr/include/sys/kiconv_euctw_utf8.h
727 usr/include/sys/kiconv_gb18030_utf8.h
728 usr/include/sys/kiconv_gb2312_utf8.h
729 usr/include/sys/kiconv_hkscs_utf8.h
730 usr/include/sys/kiconv_ja_jis_to_unicode.h
731 usr/include/sys/kiconv_ja_unicode_to_jis.h
732 usr/include/sys/kiconv_ja.h
733 usr/include/sys/kiconv_ko.h
734 usr/include/sys/kiconv_latin1.h
735 usr/include/sys/kiconv_sc.h
736 usr/include/sys/kiconv_tc.h
737 usr/include/sys/kiconv_uhc_utf8.h
738 usr/include/sys/kiconv_utf8_big5.h
739 usr/include/sys/kiconv_utf8_cp950hkscs.h
740 usr/include/sys/kiconv_utf8_euckr.h
741 usr/include/sys/kiconv_utf8_euctw.h
742 usr/include/sys/kiconv_utf8_gb18030.h
743 usr/include/sys/kiconv_utf8_gb2312.h
744 usr/include/sys/kiconv_utf8_hkscs.h
745 usr/include/sys/kiconv_utf8_uhc.h
746 #
747 # At this time, the ttydefs.cleanup file is only useful on sun4u systems
748 #
749 etc/flash/postdeployment/ttydefs.cleanup i386
750 #
751 # This header file is shared only between the power commands and
752 # ppm/srn modules # and should not be in any package
753 #
754 usr/include/sys/srn.h
755 #
756 # Private/Internal header files of smbsrv. Do not ship.
757 #
758 usr/include/smb
759 usr/include/smbsrv
760 #
761 # Private/Internal dtrace scripts of smbsrv. Do not ship.
762 #
763 usr/lib/smbsrv/dtrace
764 #
765 # Private/Internal (lint) libraries of smbsrv. Do not ship.
766 #
767 usr/lib/reparse/llib-lreparse_smb
768 usr/lib/reparse/llib-lreparse_smb.ln
769 usr/lib/smbsrv/llib-lmlrpc
770 usr/lib/smbsrv/llib-lmlrpc.ln
771 usr/lib/smbsrv/llib-lmlsvc
772 usr/lib/smbsrv/llib-lmlsvc.ln
773 usr/lib/smbsrv/llib-lsmb
774 usr/lib/smbsrv/llib-lsmb.ln
775 usr/lib/smbsrv/llib-lsmbns
776 usr/lib/smbsrv/llib-lsmbns.ln
777 #
778 #
779 # Private/Internal 64-bit libraries of smbsrv. Do not ship.
780 #
781 usr/lib/smbsrv/amd64 i386
782 usr/lib/smbsrv/sparcv9 sparc

784 usr/lib/reparse/amd64/libreparse_smb.so i386
785 usr/lib/reparse/amd64/libreparse_smb.so.1 i386
786 usr/lib/reparse/amd64/llib-lreparse_smb.ln i386
787 usr/lib/reparse/sparcv9/libreparse_smb.so sparc

new/exception_lists/packaging 13

788 usr/lib/reparse/sparcv9/libreparse_smb.so.1 sparc
789 usr/lib/reparse/sparcv9/llib-lreparse_smb.ln sparc
790 #
791 # Private dirent, extended to include flags, for use by SMB server
792 #
793 usr/include/sys/extdirent.h
794 #
795 # Private header files for vscan service
796 #
797 usr/include/libvscan.h
798 usr/include/sys/vscan.h
799 #
800 # libvscan is private
801 #
802 usr/lib/vscan/llib-lvscan
803 usr/lib/vscan/llib-lvscan.ln
804 #
805 # i86hvm is not a full platform. It is just a home for paravirtualized
806 # drivers. There is no usr/ component to this sub-platform, but the
807 # directory is created in the proto area to keep other tools happy.
808 #
809 usr/platform/i86hvm i386
810 #
811 # Private sdcard framework headers
812 #
813 usr/include/sys/sdcard
814 #
815 # libsmbfs is private
816 #
817 usr/include/netsmb
818 usr/lib/libsmbfs.so
819 usr/lib/amd64/libsmbfs.so i386
820 usr/lib/sparcv9/libsmbfs.so sparc
821 usr/lib/llib-lsmbfs
822 usr/lib/llib-lsmbfs.ln
823 usr/lib/amd64/llib-lsmbfs.ln i386
824 usr/lib/sparcv9/llib-lsmbfs.ln sparc
825 #
826 # demo & test program for smbfs (private) ACL support
827 #
828 usr/lib/fs/smbfs/chacl
829 usr/lib/fs/smbfs/lsacl
830 usr/lib/fs/smbfs/testnp
831 #
832 # FC related files
833 kernel/kmdb/fcip i386
834 kernel/kmdb/amd64/fcip i386
835 kernel/kmdb/sparcv9/fcip sparc
836 kernel/kmdb/fcp i386
837 kernel/kmdb/amd64/fcp i386
838 kernel/kmdb/sparcv9/fcp sparc
839 kernel/kmdb/fctl i386
840 kernel/kmdb/amd64/fctl i386
841 kernel/kmdb/sparcv9/fctl sparc
842 kernel/kmdb/qlc i386
843 kernel/kmdb/amd64/qlc i386
844 kernel/kmdb/sparcv9/qlc sparc
845 lib/llib-la5k sparc
846 lib/llib-la5k.ln sparc
847 lib/sparcv9/llib-la5k.ln sparc
848 lib/llib-lg_fc sparc
849 lib/llib-lg_fc.ln sparc
850 lib/sparcv9/llib-lg_fc.ln sparc
851 usr/include/a_state.h sparc
852 usr/include/a5k.h sparc
853 usr/include/exec.h sparc

new/exception_lists/packaging 14

854 usr/include/g_scsi.h sparc
855 usr/include/g_state.h sparc
856 usr/include/gfc.h sparc
857 usr/include/l_common.h sparc
858 usr/include/l_error.h sparc
859 usr/include/rom.h sparc
860 usr/include/stgcom.h sparc
861 usr/include/sys/fibre-channel
862 usr/lib/llib-lHBAAPI
863 usr/lib/llib-lHBAAPI.ln
864 usr/lib/amd64/llib-lHBAAPI.ln i386
865 usr/lib/sparcv9/llib-lHBAAPI.ln sparc
866 #
867 usr/bin/dscfgcli
868 usr/bin/sd_diag
869 usr/bin/sd_stats
870 usr/include/nsctl.h
871 usr/include/sys/ncall
872 usr/include/sys/nsc_ddi.h
873 usr/include/sys/nsc_thread.h
874 usr/include/sys/nsctl
875 usr/include/sys/nskernd.h
876 usr/include/sys/unistat
877 usr/lib/libnsctl.so
878 usr/lib/librdc.so
879 usr/lib/libunistat.so
880 usr/lib/llib-lnsctl.ln
881 usr/lib/llib-lrdc.ln
882 usr/lib/llib-lunistat.ln
883 #
884 # These files are used by the iSCSI initiator only.
885 # No reason to ship them.
886 #
887 usr/include/sys/scsi/adapters/iscsi_door.h
888 usr/include/sys/scsi/adapters/iscsi_if.h
889 #
890 # sbd ioctl hdr
891 #
892 usr/include/sys/stmf_sbd_ioctl.h
893 #
894 # proxy port provider interface
895 #
896 usr/include/sys/pppt_ic_if.h
897 usr/include/sys/pppt_ioctl.h
898 #
899 # proxy daemon lint library
900 #
901 usr/lib/llib-lstmfproxy
902 usr/lib/llib-lstmfproxy.ln
903 usr/lib/amd64/llib-lstmfproxy.ln i386
904 usr/lib/sparcv9/llib-lstmfproxy.ln sparc
905 #
906 # portable object file and dictionary used by libfmd_msg test
907 #
908 usr/lib/fm/dict/TEST.dict
909 usr/lib/locale/C/LC_MESSAGES/TEST.mo
910 usr/lib/locale/C/LC_MESSAGES/TEST.po
911 #
912 # Private idmap RPC protocol
913 #
914 usr/include/rpcsvc/idmap_prot.h
915 usr/include/rpcsvc/idmap_prot.x
916 #
917 # Private idmap directory API
918 #
919 usr/include/directory.h

new/exception_lists/packaging 15

920 #
921 # librstp is private for bridging
922 #
923 usr/include/stp_bpdu.h
924 usr/include/stp_in.h
925 usr/include/stp_vectors.h
926 usr/lib/librstp.so
927 usr/lib/llib-lrstp
928 usr/lib/llib-lrstp.ln
929 #
930 # Private nvfru API
931 #
932 usr/include/nvfru.h
933 #
934 # vrrp
935 #
936 usr/include/libvrrpadm.h
937 usr/lib/libvrrpadm.so
938 usr/lib/amd64/libvrrpadm.so i386
939 usr/lib/sparcv9/libvrrpadm.so sparc
940 usr/lib/llib-lvrrpadm
941 usr/lib/llib-lvrrpadm.ln
942 usr/lib/amd64/llib-lvrrpadm.ln i386
943 usr/lib/sparcv9/llib-lvrrpadm.ln sparc
944 #
945 # This is only used during the -t tools build
946 #
947 opt/onbld/bin/i386/elfsign i386
948 opt/onbld/bin/sparc/elfsign sparc

950 #
951 # Private libdwarf
952 #
953 opt/onbld/lib/i386/libdwarf.so i386
954 opt/onbld/lib/sparc/libdwarf.so sparc

956 #
957 # Private socket filter API
958 #
959 usr/include/sys/sockfilter.h
960 #
961 # We don’t actually validate license action payloads, and the license
962 # staging area is provided as a separate basedir for package
963 # publication. The net result is that everything therein should be
964 # ignored for packaging validation.
965 #
966 licenses
967 #
968 # Libbe is private
969 #
970 usr/include/libbe_priv.h
971 #
972 # ipmi is at present only useful on i386, but for historical reasons is
973 # delivered on SPARC and used by the build.
974 #
975 usr/include/sys/ipmi.h sparc

977 #
978 # libsaveargs is private
979 #
980 usr/include/saveargs.h i386
981 usr/lib/amd64/libsaveargs.so i386
982 usr/lib/amd64/libstandsaveargs.so i386
983 usr/lib/amd64/llib-lsaveargs.ln i386

985 #

new/exception_lists/packaging 16

986 # libpcidb is private
987 #
988 usr/include/pcidb.h
989 usr/lib/amd64/libpcidb.so i386
990 usr/lib/amd64/llib-lpcidb.ln i386
991 usr/lib/sparcv9/libpcidb.so sparc
992 usr/lib/sparcv9/llib-lpcidb.ln sparc
993 usr/lib/libpcidb.so
994 usr/lib/llib-lpcidb
995 usr/lib/llib-lpcidb.ln

997 #
998 # Private OpenSSL library
999 #

1000 usr/include/openssl
1001 usr/lib/amd64/libsunw_crypto.so i386
1002 usr/lib/amd64/libsunw_ssl.so i386
1003 usr/lib/libsunw_crypto.so
1004 usr/lib/libsunw_ssl.so

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/p12split/Makefile 1

**
 1273 Fri May 30 18:31:08 2014
new/usr/src/cmd/cmd-inet/usr.lib/wanboot/p12split/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #

25 include ../Makefile.com

27 PROG= p12split
28 LDLIBS += -lwanboot -linetutil -lwanbootutil
29 CPPFLAGS += -I$(CMNCRYPTDIR)

31 # libcrypto has no lint library, so we can only include this while building
32 $(PROG) := LDLIBS += -lsunw_crypto

34 LINTFLAGS += -erroff=E_NAME_USED_NOT_DEF2

36 all: $(PROG)

38 install: all $(ROOTCMD)

40 clean:

42 lint: lint_PROG

44 include ../../../../Makefile.targ

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/p12split/p12split.c 1

**
 15471 Fri May 30 18:31:08 2014
new/usr/src/cmd/cmd-inet/usr.lib/wanboot/p12split/p12split.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2002-2003 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #include <stdio.h>
28 #include <libintl.h>
29 #include <locale.h>
30 #include <sys/types.h>
31 #include <sys/stat.h>
32 #include <sys/wanboot_impl.h>
33 #include <unistd.h>
34 #include <string.h>
35 #include <libinetutil.h>
36 #include <wanbootutil.h>

38 #include <openssl/crypto.h>
39 #include <openssl/buffer.h>
40 #include <openssl/bio.h>
41 #include <openssl/err.h>
42 #include <openssl/x509.h>
43 #include <openssl/x509v3.h>
44 #include <openssl/pkcs12.h>
45 #include <openssl/evp.h>
46 #include <p12aux.h>

48 static boolean_t verbose = B_FALSE; /* When nonzero, do in verbose mode */

50 /* The following match/cert values require PKCS12 */
51 static int matchty; /* Type of matching do to on input */
52 static char *k_matchval; /* localkeyid value to match */
53 static uint_t k_len; /* length of k_matchval */

55 #define IO_KEYFILE 1 /* Have a separate key file or data */
56 #define IO_CERTFILE 2 /* Have a separate cert file or data */
57 #define IO_TRUSTFILE 4 /* Have a separate trustanchor file */

59 static char *input = NULL; /* Consolidated input file */
60 static char *key_out = NULL; /* Key file to be output */
61 static char *cert_out = NULL; /* Cert file to be output */

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/p12split/p12split.c 2

62 static char *trust_out = NULL; /* Trust anchor file to be output */
63 static uint_t outfiles; /* What files are there for output */
64 static char *progname;

66 /* Returns from time_check */
67 typedef enum {
68 CHK_TIME_OK = 0, /* Cert in effect and not expired */
69 CHK_TIME_BEFORE_BAD, /* not_before field is invalid */
70 CHK_TIME_AFTER_BAD, /* not_after field is invalid */
71 CHK_TIME_IS_BEFORE, /* Cert not yet in force */
72 CHK_TIME_HAS_EXPIRED /* Cert has expired */
73 } time_errs_t;

75 static int parse_keyid(const char *);
76 static int do_certs(void);
77 static int read_files(STACK_OF(X509) **, X509 **, EVP_PKEY **);
78 static void check_certs(STACK_OF(X509) *, X509 **);
79 static time_errs_t time_check_print(X509 *);
80 static time_errs_t time_check(X509 *);
81 static int write_files(STACK_OF(X509) *, X509 *, EVP_PKEY *);
82 static int get_ifile(char *, char *, EVP_PKEY **, X509 **, STACK_OF(X509) **);
83 static int do_ofile(char *, EVP_PKEY *, X509 *, STACK_OF(X509) *);
84 static void usage(void);
85 static const char *cryptoerr(void);

87 int
88 main(int argc, char **argv)
89 {
90 int i;

92 /*
93 * Do the necessary magic for localization support.
94 */
95 (void) setlocale(LC_ALL, "");
96 #if !defined(TEXT_DOMAIN)
97 #define TEXT_DOMAIN "SYS_TEST"
98 #endif
99 (void) textdomain(TEXT_DOMAIN);

101 progname = strrchr(argv[0], ’/’);
102 if (progname != NULL)
103 progname++;
104 else
105 progname = argv[0];

107 wbku_errinit(progname);

109 matchty = DO_FIRST_PAIR;
110 while ((i = getopt(argc, argv, "vc:i:k:l:t:")) != -1) {
111 switch (i) {
112 case ’v’:
113 verbose = B_TRUE;
114 break;

116 case ’l’:
117 if (parse_keyid(optarg) < 0)
118 return (EXIT_FAILURE);
119 matchty = DO_FIND_KEYID;
120 break;

122 case ’c’:
123 cert_out = optarg;
124 outfiles |= IO_CERTFILE;
125 break;

127 case ’k’:

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/p12split/p12split.c 3

128 key_out = optarg;
129 outfiles |= IO_KEYFILE;
130 break;

132 case ’t’:
133 trust_out = optarg;
134 outfiles |= IO_TRUSTFILE;
135 break;

137 case ’i’:
138 input = optarg;
139 break;

141 default:
142 usage();
143 }
144 }

146 if (input == NULL) {
147 wbku_printerr("no input file specified\n");
148 usage();
149 }

151 /*
152 * Need output files.
153 */
154 if (outfiles == 0) {
155 wbku_printerr("at least one output file must be specified\n");
156 usage();
157 }

159 if (do_certs() < 0)
160 return (EXIT_FAILURE);

162 return (EXIT_SUCCESS);
163 }

165 static int
166 parse_keyid(const char *keystr)
167 {
168 const char *rp;
169 char *wp;
170 char *nkeystr;
171 uint_t nkeystrlen;

173 /*
174 * In the worst case, we’ll need one additional character in our
175 * output string -- e.g. "A\0" -> "0A\0"
176 */
177 nkeystrlen = strlen(keystr) + 2;
178 k_len = (nkeystrlen + 1) / 2;
179 nkeystr = malloc(nkeystrlen);
180 k_matchval = malloc(k_len);
181 if (nkeystr == NULL || k_matchval == NULL) {
182 free(nkeystr);
183 free(k_matchval);
184 wbku_printerr("cannot allocate keyid");
185 return (-1);
186 }

188 /*
189 * For convenience, we allow the user to put spaces between each digit
190 * when entering it on the command line. As a result, we need to
191 * process it into a format that hexascii_to_octet() can handle. Note
192 * that we’re careful to map strings like "AA B CC D" to "AA0BCC0D".
193 */

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/p12split/p12split.c 4

194 for (rp = keystr, wp = nkeystr; *rp != ’\0’; rp++) {
195 if (*rp == ’ ’)
196 continue;

198 if (rp[1] == ’ ’ || rp[1] == ’\0’) {
199 *wp++ = ’0’; /* one character sequence; prepend 0 */
200 *wp++ = *rp;
201 } else {
202 *wp++ = *rp++;
203 *wp++ = *rp;
204 }
205 }
206 *wp = ’\0’;

208 if (hexascii_to_octet(nkeystr, wp - nkeystr, k_matchval, &k_len) != 0) {
209 free(nkeystr);
210 free(k_matchval);
211 wbku_printerr("invalid keyid ‘%s’\n", keystr);
212 return (-1);
213 }

215 free(nkeystr);
216 return (0);
217 }

219 static int
220 do_certs(void)
221 {
222 char *bufp;
223 STACK_OF(X509) *ta_in = NULL;
224 EVP_PKEY *pkey_in = NULL;
225 X509 *xcert_in = NULL;

227 sunw_crypto_init();

229 if (read_files(&ta_in, &xcert_in, &pkey_in) < 0)
230 return (-1);

232 if (verbose) {
233 if (xcert_in != NULL) {
234 (void) printf(gettext("\nMain cert:\n"));

236 /*
237 * sunw_subject_attrs() returns a pointer to
238 * memory allocated on our behalf. The same
239 * behavior is exhibited by sunw_issuer_attrs().
240 */
241 bufp = sunw_subject_attrs(xcert_in, NULL, 0);
242 if (bufp != NULL) {
243 (void) printf(gettext(" Subject: %s\n"),
244 bufp);
245 OPENSSL_free(bufp);
246 }

248 bufp = sunw_issuer_attrs(xcert_in, NULL, 0);
249 if (bufp != NULL) {
250 (void) printf(gettext(" Issuer: %s\n"), bufp);
251 OPENSSL_free(bufp);
252 }

254 (void) sunw_print_times(stdout, PRNT_BOTH, NULL,
255 xcert_in);
256 }

258 if (ta_in != NULL) {
259 X509 *x;

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/p12split/p12split.c 5

260 int i;

262 for (i = 0; i < sk_X509_num(ta_in); i++) {
263 x = sk_X509_value(ta_in, i);
264 (void) printf(
265 gettext("\nTrust Anchor cert %d:\n"), i);

267 /*
268 * sunw_subject_attrs() returns a pointer to
269 * memory allocated on our behalf. We get the
270 * same behavior from sunw_issuer_attrs().
271 */
272 bufp = sunw_subject_attrs(x, NULL, 0);
273 if (bufp != NULL) {
274 (void) printf(
275 gettext(" Subject: %s\n"), bufp);
276 OPENSSL_free(bufp);
277 }

279 bufp = sunw_issuer_attrs(x, NULL, 0);
280 if (bufp != NULL) {
281 (void) printf(
282 gettext(" Issuer: %s\n"), bufp);
283 OPENSSL_free(bufp);
284 }

286 (void) sunw_print_times(stdout, PRNT_BOTH,
287 NULL, x);
288 }
289 }
290 }

292 check_certs(ta_in, &xcert_in);
293 if (xcert_in != NULL && pkey_in != NULL) {
294 if (sunw_check_keys(xcert_in, pkey_in) == 0) {
295 wbku_printerr("warning: key and certificate do "
296 "not match\n");
297 }
298 }

300 return (write_files(ta_in, xcert_in, pkey_in));
301 }

303 static int
304 read_files(STACK_OF(X509) **t_in, X509 **c_in, EVP_PKEY **k_in)
305 {
306 char *i_pass;

308 i_pass = getpassphrase(gettext("Enter key password: "));

310 if (get_ifile(input, i_pass, k_in, c_in, t_in) < 0)
311 return (-1);

313 /*
314 * If we are only interested in getting a trust anchor, and if there
315 * is no trust anchor but is a regular cert, use it instead. Do this
316 * to handle the insanity with openssl, which requires a matching cert
317 * and key in order to write a PKCS12 file.
318 */
319 if (outfiles == IO_TRUSTFILE) {
320 if (c_in != NULL && *c_in != NULL && t_in != NULL) {
321 if (*t_in == NULL) {
322 if ((*t_in = sk_X509_new_null()) == NULL) {
323 wbku_printerr("out of memory\n");
324 return (-1);
325 }

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/p12split/p12split.c 6

326 }

328 if (sk_X509_num(*t_in) == 0) {
329 if (sk_X509_push(*t_in, *c_in) == 0) {
330 wbku_printerr("out of memory\n");
331 return (-1);
332 }
333 *c_in = NULL;
334 }
335 }
336 }

338 if ((outfiles & IO_KEYFILE) && *k_in == NULL) {
339 wbku_printerr("no matching key found\n");
340 return (-1);
341 }
342 if ((outfiles & IO_CERTFILE) && *c_in == NULL) {
343 wbku_printerr("no matching certificate found\n");
344 return (-1);
345 }
346 if ((outfiles & IO_TRUSTFILE) && *t_in == NULL) {
347 wbku_printerr("no matching trust anchor found\n");
348 return (-1);
349 }

351 return (0);
352 }

354 static void
355 check_certs(STACK_OF(X509) *ta_in, X509 **c_in)
356 {
357 X509 *curr;
358 time_errs_t ret;
359 int i;
360 int del_expired = (outfiles != 0);

362 if (c_in != NULL && *c_in != NULL) {
363 ret = time_check_print(*c_in);
364 if ((ret != CHK_TIME_OK && ret != CHK_TIME_IS_BEFORE) &&
365 del_expired) {
366 (void) fprintf(stderr, gettext(" Removing cert\n"));
367 X509_free(*c_in);
368 *c_in = NULL;
369 }
370 }

372 if (ta_in == NULL)
373 return;

375 for (i = 0; i < sk_X509_num(ta_in);) {
376 curr = sk_X509_value(ta_in, i);
377 ret = time_check_print(curr);
378 if ((ret != CHK_TIME_OK && ret != CHK_TIME_IS_BEFORE) &&
379 del_expired) {
380 (void) fprintf(stderr, gettext(" Removing cert\n"));
381 curr = sk_X509_delete(ta_in, i);
382 X509_free(curr);
383 continue;
384 }
385 i++;
386 }
387 }

389 static time_errs_t
390 time_check_print(X509 *cert)
391 {

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/p12split/p12split.c 7

392 char buf[256];
393 int ret;

395 ret = time_check(cert);
396 if (ret == CHK_TIME_OK)
397 return (CHK_TIME_OK);

399 (void) fprintf(stderr, gettext(" Subject: %s"),
400 sunw_subject_attrs(cert, buf, sizeof (buf)));
401 (void) fprintf(stderr, gettext(" Issuer: %s"),
402 sunw_issuer_attrs(cert, buf, sizeof (buf)));

404 switch (ret) {
405 case CHK_TIME_BEFORE_BAD:
406 (void) fprintf(stderr,
407 gettext("\n Invalid cert ’not before’ field\n"));
408 break;

410 case CHK_TIME_AFTER_BAD:
411 (void) fprintf(stderr,
412 gettext("\n Invalid cert ’not after’ field\n"));
413 break;

415 case CHK_TIME_HAS_EXPIRED:
416 (void) sunw_print_times(stderr, PRNT_NOT_AFTER,
417 gettext("\n Cert has expired\n"), cert);
418 break;

420 case CHK_TIME_IS_BEFORE:
421 (void) sunw_print_times(stderr, PRNT_NOT_BEFORE,
422 gettext("\n Warning: cert not yet valid\n"), cert);
423 break;

425 default:
426 break;
427 }

429 return (ret);
430 }

432 static time_errs_t
433 time_check(X509 *cert)
434 {
435 int i;

437 i = X509_cmp_time(X509_get_notBefore(cert), NULL);
438 if (i == 0)
439 return (CHK_TIME_BEFORE_BAD);
440 if (i > 0)
441 return (CHK_TIME_IS_BEFORE);
442 /* After ’not before’ time */

444 i = X509_cmp_time(X509_get_notAfter(cert), NULL);
445 if (i == 0)
446 return (CHK_TIME_AFTER_BAD);
447 if (i < 0)
448 return (CHK_TIME_HAS_EXPIRED);
449 return (CHK_TIME_OK);
450 }

452 static int
453 write_files(STACK_OF(X509) *t_out, X509 *c_out, EVP_PKEY *k_out)
454 {
455 if (key_out != NULL) {
456 if (verbose)
457 (void) printf(gettext("%s: writing key\n"), progname);

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/p12split/p12split.c 8

458 if (do_ofile(key_out, k_out, NULL, NULL) < 0)
459 return (-1);
460 }

462 if (cert_out != NULL) {
463 if (verbose)
464 (void) printf(gettext("%s: writing cert\n"), progname);
465 if (do_ofile(cert_out, NULL, c_out, NULL) < 0)
466 return (-1);
467 }

469 if (trust_out != NULL) {
470 if (verbose)
471 (void) printf(gettext("%s: writing trust\n"),
472 progname);
473 if (do_ofile(trust_out, NULL, NULL, t_out) < 0)
474 return (-1);
475 }

477 return (0);
478 }

480 static int
481 get_ifile(char *name, char *pass, EVP_PKEY **tmp_k, X509 **tmp_c,
482 STACK_OF(X509) **tmp_t)
483 {
484 PKCS12 *p12;
485 FILE *fp;
486 int ret;
487 struct stat sbuf;

489 if (stat(name, &sbuf) == 0 && !S_ISREG(sbuf.st_mode)) {
490 wbku_printerr("%s is not a regular file\n", name);
491 return (-1);
492 }

494 if ((fp = fopen(name, "r")) == NULL) {
495 wbku_printerr("cannot open input file %s", name);
496 return (-1);
497 }

499 p12 = d2i_PKCS12_fp(fp, NULL);
500 if (p12 == NULL) {
501 wbku_printerr("cannot read file %s: %s\n", name, cryptoerr());
502 (void) fclose(fp);
503 return (-1);
504 }
505 (void) fclose(fp);

507 ret = sunw_PKCS12_parse(p12, pass, matchty, k_matchval, k_len,
508 NULL, tmp_k, tmp_c, tmp_t);
509 if (ret <= 0) {
510 if (ret == 0)
511 wbku_printerr("cannot find matching cert and key\n");
512 else
513 wbku_printerr("cannot parse %s: %s\n", name,
514 cryptoerr());
515 PKCS12_free(p12);
516 return (-1);
517 }
518 return (0);
519 }

521 static int
522 do_ofile(char *name, EVP_PKEY *pkey, X509 *cert, STACK_OF(X509) *ta)
523 {

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/p12split/p12split.c 9

524 STACK_OF(EVP_PKEY) *klist = NULL;
525 STACK_OF(X509) *clist = NULL;
526 PKCS12 *p12 = NULL;
527 int ret = 0;
528 FILE *fp;
529 struct stat sbuf;

531 if (stat(name, &sbuf) == 0 && !S_ISREG(sbuf.st_mode)) {
532 wbku_printerr("%s is not a regular file\n", name);
533 return (-1);
534 }

536 if ((fp = fopen(name, "w")) == NULL) {
537 wbku_printerr("cannot open output file %s", name);
538 return (-1);
539 }

541 if ((clist = sk_X509_new_null()) == NULL ||
542 (klist = sk_EVP_PKEY_new_null()) == NULL) {
543 wbku_printerr("out of memory\n");
544 ret = -1;
545 goto cleanup;
546 }

548 if (cert != NULL && sk_X509_push(clist, cert) == 0) {
549 wbku_printerr("out of memory\n");
550 ret = -1;
551 goto cleanup;
552 }

554 if (pkey != NULL && sk_EVP_PKEY_push(klist, pkey) == 0) {
555 wbku_printerr("out of memory\n");
556 ret = -1;
557 goto cleanup;
558 }

560 p12 = sunw_PKCS12_create(WANBOOT_PASSPHRASE, klist, clist, ta);
561 if (p12 == NULL) {
562 wbku_printerr("cannot create %s: %s\n", name, cryptoerr());
563 ret = -1;
564 goto cleanup;
565 }

567 if (i2d_PKCS12_fp(fp, p12) == 0) {
568 wbku_printerr("cannot write %s: %s\n", name, cryptoerr());
569 ret = -1;
570 goto cleanup;
571 }

573 cleanup:
574 (void) fclose(fp);
575 if (p12 != NULL)
576 PKCS12_free(p12);
577 /*
578 * Put the cert and pkey off of the stack so that they won’t
579 * be freed two times. (If they get left in the stack then
580 * they will be freed with the stack.)
581 */
582 if (clist != NULL) {
583 if (cert != NULL && sk_X509_num(clist) == 1) {
584 (void) sk_X509_delete(clist, 0);
585 }
586 sk_X509_pop_free(clist, X509_free);
587 }
588 if (klist != NULL) {
589 if (pkey != NULL && sk_EVP_PKEY_num(klist) == 1) {

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/p12split/p12split.c 10

590 (void) sk_EVP_PKEY_delete(klist, 0);
591 }
592 sk_EVP_PKEY_pop_free(klist, sunw_evp_pkey_free);
593 }

595 return (ret);
596 }

598 static void
599 usage(void)
600 {
601 (void) fprintf(stderr,
602 gettext("usage:\n"
603 " %s -i <file> -c <file> -k <file> -t <file> [-l <keyid> -v]\n"
604 "\n"),
605 progname);
606 (void) fprintf(stderr,
607 gettext(" where:\n"
608 " -i - input file to be split into component parts and put in\n"
609 " files given by -c, -k and -t\n"
610 " -c - output file for the client certificate\n"
611 " -k - output file for the client private key\n"
612 " -t - output file for the remaining certificates (assumed\n"
613 " to be trust anchors)\n"
614 "\n Files are assumed to be pkcs12-format files.\n\n"
615 " -v - verbose\n"
616 " -l - value of ’localkeyid’ attribute in client cert and\n"
617 " private key to be selected from the input file.\n\n"));
618 exit(EXIT_FAILURE);
619 }

621 /*
622 * Return a pointer to a static buffer that contains a listing of crypto
623 * errors. We presume that the user doesn’t want more than 8KB of error
624 * messages :-)
625 */
626 static const char *
627 cryptoerr(void)
628 {
629 static char errbuf[8192];
630 ulong_t err;
631 const char *pfile;
632 int line;
633 unsigned int nerr = 0;

635 errbuf[0] = ’\0’;
636 while ((err = ERR_get_error_line(&pfile, &line)) != 0) {
637 if (++nerr > 1)
638 (void) strlcat(errbuf, "\n\t", sizeof (errbuf));

640 if (err == (ulong_t)-1) {
641 (void) strlcat(errbuf, strerror(errno),
642 sizeof (errbuf));
643 break;
644 }
645 (void) strlcat(errbuf, ERR_reason_error_string(err),
646 sizeof (errbuf));
647 }

649 return (errbuf);
650 }

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/Makefile 1

**
 1284 Fri May 30 18:31:08 2014
new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #

25 include ../Makefile.com

27 PROG = wanboot-cgi
28 LDLIBS += -lgen -lnsl -lwanbootutil -lnvpair -lwanboot
29 CPPFLAGS += -I$(CMNCRYPTDIR)

31 # libcrypto has no lint library, so we can only include this while building
32 $(PROG) := LDLIBS += -lsunw_crypto

34 LINTFLAGS += -erroff=E_NAME_USED_NOT_DEF2

36 all: $(PROG)

38 install: all $(ROOTCMD)

40 clean:

42 lint: lint_PROG

44 include ../../../../Makefile.targ

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 1

**
 45017 Fri May 30 18:31:08 2014
new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2012 Milan Jurik. All rights reserved.
24 */

26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <strings.h>
29 #include <string.h>
30 #include <libgen.h>
31 #include <unistd.h>
32 #include <fcntl.h>
33 #include <errno.h>
34 #include <netdb.h>
35 #include <libnvpair.h>
36 #include <sys/types.h>
37 #include <sys/wait.h>
38 #include <sys/stat.h>
39 #include <sys/param.h>
40 #include <sys/sysmacros.h>
41 #include <sys/mman.h>
42 #include <sys/socket.h>
43 #include <sys/utsname.h>
44 #include <sys/wanboot_impl.h>
45 #include <netinet/in.h>
46 #include <arpa/inet.h>

48 #include <openssl/crypto.h>
49 #include <openssl/x509.h>
50 #include <openssl/x509v3.h>
51 #include <openssl/pem.h>
52 #include <openssl/pkcs12.h>
53 #include <openssl/evp.h>
54 #include <openssl/err.h>

56 #include <p12aux.h>

58 #include <parseURL.h>
59 /*
60 * These can be replaced with wanbootutil.h once the openssl interfaces
61 * are moved to libwanboot.

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 2

62 */
63 #include <wanboot/key_util.h>
64 #include <wanboot/key_xdr.h>
65 #include <hmac_sha1.h>

67 #include <netboot_paths.h>
68 #include <wanboot_conf.h>

70 /*
71 * Exit status:
72 */
73 #define WBCGI_STATUS_OK 0
74 #define WBCGI_STATUS_ERR 1

76 #define WBCGI_FILE_EXISTS(file, statbuf) \
77 (stat(file, &statbuf) == 0 && S_ISREG(statbuf.st_mode))

79 #define WBCGI_DIR_EXISTS(dir, statbuf) \
80 (stat(dir, &statbuf) == 0 && S_ISDIR(statbuf.st_mode))

82 #define WBCGI_HMAC_PATH "/usr/lib/inet/wanboot/hmac"
83 #define WBCGI_ENCR_PATH "/usr/lib/inet/wanboot/encr"
84 #define WBCGI_KEYMGMT_PATH "/usr/lib/inet/wanboot/keymgmt"
85 #define WBCGI_MKISOFS_PATH "/bin/mkisofs"

87 #define WBCGI_DEV_URANDOM "/dev/urandom"

89 #define WBCGI_CONTENT_TYPE "Content-Type: "
90 #define WBCGI_CONTENT_LENGTH "Content-Length: "
91 #define WBCGI_WANBOOT_BNDTXT "WANBoot_Part_Boundary"
92 #define WBCGI_CRNL "\r\n"

94 #define WBCGI_CNSTR "CN="
95 #define WBCGI_CNSTR_LEN (sizeof (WBCGI_CNSTR) - 1)
96 #define WBCGI_NAMESEP ",/\n\r"

98 #define WBCGI_MAXBUF 256

100 /*
101 * Possible return values from netboot_ftw():
102 */
103 #define WBCGI_FTW_CBOK 2 /* CB terminated walk OK */
104 #define WBCGI_FTW_CBCONT 1 /* CB wants walk should continue */
105 #define WBCGI_FTW_DONE 0 /* Walk terminated without CBERR/CBOK */
106 #define WBCGI_FTW_CBERR -1 /* CB terminated walk with err */

108 /*
109 * getsubopt() is used to map one of the contents[] keywords
110 * to one of these types
111 */
112 #define WBCGI_CONTENT_ERROR -1
113 #define WBCGI_CONTENT_BOOTFILE 0
114 #define WBCGI_CONTENT_BOOTFS 1
115 #define WBCGI_CONTENT_ROOTFS 2

117 static char *contents[] =
118 { "bootfile", "bootfs", "rootfs", NULL };

120 /*
121 * getsubopt() is used to parse the query string for
122 * the keywords defined by queryopts[]
123 */
124 #define WBCGI_QUERYOPT_CONTENT 0
125 #define WBCGI_QUERYOPT_NET 1
126 #define WBCGI_QUERYOPT_CID 2
127 #define WBCGI_QUERYOPT_NONCE 3

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 3

129 static char *queryopts[] =
130 { "CONTENT", "IP", "CID", "NONCE", NULL };

132 static bc_handle_t bc_handle;

135 static char *
136 status_msg(int status)
137 {
138 char *msg;

140 switch (status) {
141 case 400:
142 msg = "Bad Request";
143 break;
144 case 403:
145 msg = "Forbidden";
146 break;
147 case 500:
148 msg = "Internal Server Error";
149 break;
150 default:
151 msg = "Unknown status";
152 break;
153 }

155 return (msg);
156 }

158 static void
159 print_status(int status, const char *spec_msg)
160 {
161 if (spec_msg == NULL) {
162 spec_msg = "";
163 }

165 (void) fprintf(stdout, "Status: %d %s %s%s", status,
166 status_msg(status), spec_msg, WBCGI_CRNL);
167 }

169 static char *
170 make_path(const char *root, const char *suffix)
171 {
172 char path[MAXPATHLEN];
173 char *ptr = NULL;
174 int chars;

176 if ((chars = snprintf(path, sizeof (path),
177 "%s/%s", root, suffix)) < 0 || chars > sizeof (path) ||
178 (ptr = strdup(path)) == NULL) {
179 print_status(500, "(error making path)");
180 }

182 return (ptr);
183 }

185 static void
186 free_path(char **pathp)
187 {
188 if (*pathp != NULL) {
189 free(*pathp);
190 *pathp = NULL;
191 }
192 }

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 4

194 static char *
195 gen_tmppath(const char *prefix, const char *net, const char *cid)
196 {
197 pid_t pid;
198 time_t secs;
199 int chars;
200 char path[MAXPATHLEN];
201 char *ptr = NULL;

203 if ((pid = getpid()) < 0 || (secs = time(NULL)) < 0 ||
204 (chars = snprintf(path, sizeof (path), "/tmp/%s_%s_%s_%ld_%ld",
205 prefix, net, cid, pid, secs)) < 0 || chars > sizeof (path) ||
206 (ptr = strdup(path)) == NULL) {
207 print_status(500, "(error creating temporary filename)");
208 }

210 return (ptr);
211 }

213 /*
214 * File I/O stuff:
215 */
216 static boolean_t
217 write_buffer(int fd, const void *buffer, size_t buflen)
218 {
219 size_t nwritten;
220 ssize_t nbytes;
221 const char *buf = buffer;

223 for (nwritten = 0; nwritten < buflen; nwritten += nbytes) {
224 nbytes = write(fd, &buf[nwritten], buflen - nwritten);
225 if (nbytes <= 0) {
226 return (B_FALSE);
227 }
228 }

230 return (B_TRUE);
231 }

233 static boolean_t
234 write_file(int ofd, const char *filename, size_t size)
235 {
236 boolean_t ret = B_TRUE;
237 int ifd;
238 char buf[1024];
239 size_t rlen;
240 ssize_t wlen;

242 if ((ifd = open(filename, O_RDONLY)) < 0) {
243 return (B_FALSE);
244 }

246 for (; size != 0; size -= wlen) {
247 rlen = (size < sizeof (buf)) ? size : sizeof (buf);

249 if ((wlen = read(ifd, buf, rlen)) < 0 ||
250 !write_buffer(ofd, buf, wlen)) {
251 ret = B_FALSE;
252 break;
253 }
254 }
255 (void) close(ifd);

257 return (ret);
258 }

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 5

260 static boolean_t
261 copy_file(const char *src, const char *dest)
262 {
263 boolean_t ret = B_FALSE;
264 char message[WBCGI_MAXBUF];
265 const size_t chunksize = 16 * PAGESIZE;
266 size_t validsize;
267 size_t nwritten = 0;
268 size_t nbytes = 0;
269 off_t roff;
270 int mflags = MAP_PRIVATE;
271 char *buf = NULL;
272 struct stat st;
273 int rfd = -1;
274 int wfd = -1;
275 int chars;

277 if ((rfd = open(src, O_RDONLY)) < 0 ||
278 (wfd = open(dest, O_CREAT|O_EXCL|O_RDWR, S_IRUSR|S_IWUSR)) < 0 ||
279 fstat(rfd, &st) == -1) {
280 goto cleanup;
281 }

283 for (nbytes = st.st_size, roff = 0; nwritten < nbytes;
284 nwritten += validsize, roff += validsize) {
285 buf = mmap(buf, chunksize, PROT_READ, mflags, rfd, roff);
286 if (buf == MAP_FAILED) {
287 goto cleanup;
288 }
289 mflags |= MAP_FIXED;

291 validsize = MIN(chunksize, nbytes - nwritten);
292 if (!write_buffer(wfd, buf, validsize)) {
293 (void) munmap(buf, chunksize);
294 goto cleanup;
295 }

297 }
298 if (buf != NULL) {
299 (void) munmap(buf, chunksize);
300 }

302 ret = B_TRUE;
303 cleanup:
304 if (ret == B_FALSE) {
305 if ((chars = snprintf(message, sizeof (message),
306 "error copying %s to %s", src, dest)) > 0 &&
307 chars <= sizeof (message)) {
308 print_status(500, message);
309 } else {
310 print_status(500, NULL);
311 }
312 }
313 if (rfd != -1) {
314 (void) close(rfd);
315 }
316 if (wfd != -1) {
317 (void) close(wfd);
318 }

320 return (ret);
321 }

323 static boolean_t
324 create_nonce(const char *noncepath, const char *nonce)
325 {

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 6

326 boolean_t ret = B_TRUE;
327 int fd;

329 if ((fd = open(noncepath,
330 O_WRONLY|O_CREAT|O_EXCL, S_IRUSR|S_IWUSR)) == -1 ||
331 !write_buffer(fd, nonce, strlen(nonce))) {
332 print_status(500, "(error creating nonce file)");
333 ret = B_FALSE;
334 }
335 if (fd != -1) {
336 (void) close(fd);
337 }

339 return (ret);
340 }

342 static boolean_t
343 create_timestamp(const char *timestamppath, const char *timestamp)
344 {
345 boolean_t ret = B_TRUE;
346 int fd;

348 if ((fd = open(timestamppath,
349 O_WRONLY|O_CREAT|O_EXCL, S_IRUSR|S_IWUSR)) == -1 ||
350 !write_buffer(fd, timestamp, strlen(timestamp))) {
351 print_status(500, "(error creating timestamp file)");
352 ret = B_FALSE;
353 }
354 if (fd != -1) {
355 (void) close(fd);
356 }

358 return (ret);
359 }

361 static boolean_t
362 create_urandom(const char *urandompath)
363 {
364 boolean_t ret = B_TRUE;
365 int fd;

367 if ((fd = open(urandompath,
368 O_WRONLY|O_CREAT|O_EXCL, S_IRUSR|S_IWUSR)) == -1 ||
369 !write_file(fd, WBCGI_DEV_URANDOM, 32 * 1024)) {
370 print_status(500, "(error creating urandom file)");
371 ret = B_FALSE;
372 }
373 if (fd != -1) {
374 (void) close(fd);
375 }

377 return (ret);
378 }

380 static boolean_t
381 create_null_hash(const char *hashpath)
382 {
383 boolean_t ret = B_TRUE;
384 int fd;
385 static char null_hash[HMAC_DIGEST_LEN];

387 if ((fd = open(hashpath,
388 O_WRONLY|O_CREAT|O_EXCL, S_IRUSR|S_IWUSR)) == -1 ||
389 !write_buffer(fd, null_hash, sizeof (null_hash))) {
390 print_status(500, "(error creating null hash)");
391 ret = B_FALSE;

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 7

392 }
393 if (fd != -1) {
394 (void) close(fd);
395 }

397 return (ret);
398 }

401 static char *
402 determine_doc_root(void)
403 {
404 char *doc_root;

406 /*
407 * If DOCUMENT_ROOT is valid, use that.
408 */
409 if ((doc_root = getenv("DOCUMENT_ROOT")) == NULL ||
410 strlen(doc_root) == 0) {
411 /*
412 * No DOCUMENT_ROOT - try PATH_TRANSLATED.
413 */
414 if ((doc_root = getenv("PATH_TRANSLATED")) == NULL ||
415 strlen(doc_root) == 0) {
416 /*
417 * Can’t determine the document root.
418 */
419 return (NULL);
420 }
421 }

423 return (doc_root);
424 }

426 static boolean_t
427 get_request_info(int *contentp, char **netp, char **cidp, char **noncep,
428 char **docrootp)
429 {
430 char *method;
431 char *query_string;
432 char *value;
433 char *junk;
434 int i;

436 if ((method = getenv("REQUEST_METHOD")) == NULL ||
437 strncasecmp(method, "GET", strlen("GET") != 0)) {
438 print_status(403, "(GET method expected)");
439 return (B_FALSE);
440 }

442 if ((query_string = getenv("QUERY_STRING")) == NULL) {
443 print_status(400, "(empty query string)");
444 return (B_FALSE);
445 }

447 for (i = 0; i < strlen(query_string); i++) {
448 if (query_string[i] == ’&’) {
449 query_string[i] = ’,’;
450 }
451 }

453 *contentp = WBCGI_CONTENT_ERROR;
454 *netp = *cidp = *noncep = NULL;

456 if ((*docrootp = determine_doc_root()) == NULL) {
457 print_status(400, "(unable to determine document root)");

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 8

458 return (B_FALSE);
459 }

461 while (*query_string != ’\0’) {
462 switch (getsubopt(&query_string, queryopts, &value)) {
463 case WBCGI_QUERYOPT_CONTENT:
464 *contentp = getsubopt(&value, contents, &junk);
465 break;
466 case WBCGI_QUERYOPT_NET:
467 *netp = value;
468 break;
469 case WBCGI_QUERYOPT_CID:
470 *cidp = value;
471 break;
472 case WBCGI_QUERYOPT_NONCE:
473 *noncep = value;
474 break;
475 default:
476 print_status(400, "(illegal query string)");
477 return (B_FALSE);
478 }
479 }

481 switch (*contentp) {
482 default:
483 print_status(400, "(missing or illegal CONTENT)");
484 return (B_FALSE);

486 case WBCGI_CONTENT_BOOTFS:
487 if (*netp == NULL || *cidp == NULL || *noncep == NULL) {
488 print_status(400,
489 "(CONTENT, IP, CID and NONCE required)");
490 return (B_FALSE);
491 }
492 break;

494 case WBCGI_CONTENT_BOOTFILE:
495 case WBCGI_CONTENT_ROOTFS:
496 if (*netp == NULL || *cidp == NULL || *docrootp == NULL) {
497 print_status(400,
498 "(CONTENT, IP, CID and DOCUMENT_ROOT required)");
499 return (B_FALSE);
500 }
501 break;
502 }

504 return (B_TRUE);
505 }

507 static boolean_t
508 encrypt_payload(const char *payload, const char *encr_payload,
509 const char *keyfile, const char *encryption_type)
510 {
511 struct stat sbuf;
512 int chars;
513 char cmd[MAXPATHLEN];
514 FILE *fp;
515 int status;
516 char msg[WBCGI_MAXBUF];

518 if (!WBCGI_FILE_EXISTS(payload, sbuf)) {
519 print_status(500, "(encrypt_payload: missing payload)");
520 return (B_FALSE);
521 }

523 if ((chars = snprintf(cmd, sizeof (cmd),

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 9

524 "%s -o type=%s -k %s < %s > %s", WBCGI_ENCR_PATH,
525 encryption_type, keyfile, payload, encr_payload)) < 0 ||
526 chars > sizeof (cmd)) {
527 print_status(500, "(encrypt_payload: buffer overflow)");
528 return (B_FALSE);
529 }

531 if ((fp = popen(cmd, "w")) == NULL) {
532 print_status(500, "(encrypt_payload: missing/file error)");
533 return (B_FALSE);
534 }
535 if ((status = WEXITSTATUS(pclose(fp))) != 0) {
536 (void) snprintf(msg, sizeof (msg),
537 "(encrypt_payload: failed, status=%d)", status);
538 print_status(500, msg);
539 return (B_FALSE);
540 }

542 if (!WBCGI_FILE_EXISTS(encr_payload, sbuf)) {
543 print_status(500, "(encrypt_payload: bad encrypted file)");
544 return (B_FALSE);
545 }

547 return (B_TRUE);
548 }

550 static boolean_t
551 hash_payload(const char *payload, const char *payload_hash,
552 const char *keyfile)
553 {
554 struct stat sbuf;
555 int chars;
556 char cmd[MAXPATHLEN];
557 FILE *fp;
558 int status;
559 char msg[WBCGI_MAXBUF];

561 if (!WBCGI_FILE_EXISTS(payload, sbuf)) {
562 print_status(500, "(hash_payload: missing payload)");
563 return (B_FALSE);
564 }

566 if ((chars = snprintf(cmd, sizeof (cmd), "%s -i %s -k %s > %s",
567 WBCGI_HMAC_PATH, payload, keyfile, payload_hash)) < 0 ||
568 chars > sizeof (cmd)) {
569 print_status(500, "(hash_payload: buffer overflow)");
570 return (B_FALSE);
571 }

573 if ((fp = popen(cmd, "w")) == NULL) {
574 print_status(500, "(hash_payload: missing/file error)");
575 return (B_FALSE);
576 }
577 if ((status = WEXITSTATUS(pclose(fp))) != 0) {
578 (void) snprintf(msg, sizeof (msg),
579 "(hash_payload: failed, status=%d)", status);
580 print_status(500, msg);
581 return (B_FALSE);
582 }

584 if (!WBCGI_FILE_EXISTS(payload_hash, sbuf) ||
585 sbuf.st_size < HMAC_DIGEST_LEN) {
586 print_status(500, "(hash_payload: bad signature file)");
587 return (B_FALSE);
588 }

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 10

590 return (B_TRUE);
591 }

593 static boolean_t
594 extract_keystore(const char *path, const char *keystorepath)
595 {
596 struct stat sbuf;
597 int chars;
598 char cmd[MAXPATHLEN];
599 FILE *fp;
600 int status;
601 char msg[WBCGI_MAXBUF];

603 if (!WBCGI_FILE_EXISTS(path, sbuf)) {
604 print_status(500, "(extract_keystore: missing keystore)");
605 return (B_FALSE);
606 }

608 if ((chars = snprintf(cmd, sizeof (cmd),
609 "%s -x -f %s -s %s -o type=rsa",
610 WBCGI_KEYMGMT_PATH, keystorepath, path)) < 0 ||
611 chars > sizeof (cmd)) {
612 print_status(500, "(extract_keystore: buffer overflow)");
613 return (B_FALSE);
614 }

616 if ((fp = popen(cmd, "w")) == NULL) {
617 print_status(500, "(extract_keystore: missing/file error)");
618 return (B_FALSE);
619 }
620 if ((status = WEXITSTATUS(pclose(fp))) != 0) {
621 (void) snprintf(msg, sizeof (msg),
622 "(extract_keystore: failed, status=%d)", status);
623 print_status(500, msg);
624 return (B_FALSE);
625 }

627 if (!WBCGI_FILE_EXISTS(keystorepath, sbuf)) {
628 print_status(500, "(extract_keystore: failed to create)");
629 return (B_FALSE);
630 }

632 return (B_TRUE);
633 }

635 static boolean_t
636 mkisofs(const char *image_dir, const char *image)
637 {
638 struct stat sbuf;
639 int chars;
640 char cmd[MAXPATHLEN];
641 FILE *fp;
642 int status;
643 char msg[WBCGI_MAXBUF];

645 if (!WBCGI_DIR_EXISTS(image_dir, sbuf)) {
646 print_status(500, "(mksiofs: missing image_dir)");
647 return (B_FALSE);
648 }

650 if ((chars = snprintf(cmd, sizeof (cmd), "%s -quiet -o %s -r %s",
651 WBCGI_MKISOFS_PATH, image, image_dir)) < 0 ||
652 chars > sizeof (cmd)) {
653 print_status(500, "(mkisofs: buffer overflow)");
654 return (B_FALSE);
655 }

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 11

657 if ((fp = popen(cmd, "w")) == NULL) {
658 print_status(500, "(mkisofs: missing/file error)");
659 return (B_FALSE);
660 }
661 if ((status = WEXITSTATUS(pclose(fp))) != 0) {
662 (void) snprintf(msg, sizeof (msg),
663 "(mkisofs: failed, status=%d)", status);
664 print_status(500, msg);
665 return (B_FALSE);
666 }

668 if (!WBCGI_FILE_EXISTS(image, sbuf)) {
669 print_status(500, "(mksiofs: failed to create image)");
670 return (B_FALSE);
671 }

673 return (B_TRUE);
674 }

676 /*
677 * This function, when invoked with a file name, optional network and
678 * client ID strings, and callback function will search for the file
679 * in the following locations:
680 *
681 * NB_NETBOOT_ROOT/<network>/<client id>/<file>
682 * NB_NETBOOT_ROOT/<client id>/<file>
683 * NB_NETBOOT_ROOT/<network>/<file>
684 * NB_NETBOOT_ROOT/<file>
685 *
686 * The callback function is invoked each time the file is found until
687 * we have searched all of the above locations or the callback function
688 * returns a value other than WBCGI_FTW_CBCONT.
689 *
690 * Arguments:
691 * filename - Name of file to search for.
692 * net - Optional network number to include in search hierarchy.
693 * cid - Optional client ID to include in search hierarchy.
694 * cb - Callback function to be called when file is found.
695 * arg - Argument to be supplied to the callback funtion.
696 *
697 * Returns:
698 * WBCGI_FTW_DONE, WBCGI_FTW_CBOK or WBCGI_FTW_CBERR.
699 */
700 static int
701 netboot_ftw(const char *filename, const char *net, const char *cid,
702 int (*cb)(const char *, void *arg), void *arg)
703 {
704 char ckpath[4][MAXPATHLEN];
705 int ret;
706 struct stat buf;
707 int i = 0;

709 if (snprintf(ckpath[i++], MAXPATHLEN, "%s%s", NB_NETBOOT_ROOT, filename)
710 >= MAXPATHLEN)
711 return (WBCGI_FTW_CBERR);

713 if (net != NULL && snprintf(ckpath[i++], MAXPATHLEN, "%s%s/%s",
714 NB_NETBOOT_ROOT, net, filename) >= MAXPATHLEN)
715 return (WBCGI_FTW_CBERR);

717 if (cid != NULL) {
718 if (snprintf(ckpath[i++], MAXPATHLEN, "%s%s/%s",
719 NB_NETBOOT_ROOT, cid, filename) >= MAXPATHLEN)
720 return (WBCGI_FTW_CBERR);

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 12

722 if (net != NULL && snprintf(ckpath[i++], MAXPATHLEN,
723 "%s%s/%s/%s", NB_NETBOOT_ROOT, net, cid, filename) >=
724 MAXPATHLEN)
725 return (WBCGI_FTW_CBERR);
726 }

728 /*
729 * Loop through hierarchy and check for file existence.
730 */
731 while (i > 0) {
732 --i;
733 if (WBCGI_FILE_EXISTS(ckpath[i], buf)) {
734 if ((ret = cb(ckpath[i], arg)) != WBCGI_FTW_CBCONT)
735 return (ret);
736 }
737 }
738 return (WBCGI_FTW_DONE);
739 }

741 /*ARGSUSED*/
742 static int
743 noact_cb(const char *path, void *arg)
744 {
745 return (WBCGI_FTW_CBOK);
746 }

748 static int
749 set_pathname(const char *path, void *pathname)
750 {
751 *(char **)pathname = strdup((char *)path);
752 return (WBCGI_FTW_CBOK);
753 }

755 static int
756 create_keystore(const char *path, void *keystorepath)
757 {
758 if (!extract_keystore(path, (char *)keystorepath)) {
759 return (WBCGI_FTW_CBERR);
760 }
761 return (WBCGI_FTW_CBOK);
762 }

764 static int
765 copy_certstore(const char *path, void *certstorepath)
766 {
767 if (!copy_file(path, (char *)certstorepath)) {
768 return (WBCGI_FTW_CBERR);
769 }
770 return (WBCGI_FTW_CBOK);
771 }

773 /*
774 * Add the certs found in the trustfile found in path (a trust store) to
775 * the file found at bootfs_dir/truststore. If necessary, create the
776 * output file.
777 */
778 static int
779 build_trustfile(const char *path, void *truststorepath)
780 {
781 int ret = WBCGI_FTW_CBERR;
782 STACK_OF(X509) *i_anchors = NULL;
783 STACK_OF(X509) *o_anchors = NULL;
784 char message[WBCGI_MAXBUF];
785 PKCS12 *p12 = NULL;
786 FILE *rfp = NULL;
787 FILE *wfp = NULL;

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 13

788 struct stat i_st;
789 struct stat o_st;
790 X509 *x = NULL;
791 int errtype = 0;
792 int wfd = -1;
793 int chars;
794 int i;

796 if (!WBCGI_FILE_EXISTS(path, i_st)) {
797 goto cleanup;
798 }

800 if (WBCGI_FILE_EXISTS((char *)truststorepath, o_st)) {
801 /*
802 * If we are inadvertantly writing to the input file.
803 * return success.
804 * XXX Pete: how can this happen, and why success?
805 */
806 if (i_st.st_ino == o_st.st_ino) {
807 ret = WBCGI_FTW_CBCONT;
808 goto cleanup;
809 }
810 if ((wfp = fopen((char *)truststorepath, "r+")) == NULL) {
811 goto cleanup;
812 }
813 /*
814 * Read what’s already there, so that new information
815 * can be added.
816 */
817 if ((p12 = d2i_PKCS12_fp(wfp, NULL)) == NULL) {
818 errtype = 1;
819 goto cleanup;
820 }
821 i = sunw_PKCS12_parse(p12, WANBOOT_PASSPHRASE, DO_NONE, NULL,
822 0, NULL, NULL, NULL, &o_anchors);
823 if (i <= 0) {
824 errtype = 1;
825 goto cleanup;
826 }

828 PKCS12_free(p12);
829 p12 = NULL;
830 } else {
831 if (errno != ENOENT) {
832 chars = snprintf(message, sizeof (message),
833 "(error accessing file %s, error %s)",
834 path, strerror(errno));
835 if (chars > 0 && chars < sizeof (message))
836 print_status(500, message);
837 else
838 print_status(500, NULL);
839 return (WBCGI_FTW_CBERR);
840 }

842 /*
843 * Note: We could copy the file to the new trustfile, but
844 * we can’t verify the password that way. Therefore, copy
845 * it by reading it.
846 */
847 if ((wfd = open((char *)truststorepath,
848 O_CREAT|O_EXCL|O_RDWR, 0700)) < 0) {
849 goto cleanup;
850 }
851 if ((wfp = fdopen(wfd, "w+")) == NULL) {
852 goto cleanup;
853 }

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 14

854 o_anchors = sk_X509_new_null();
855 if (o_anchors == NULL) {
856 goto cleanup;
857 }
858 }

860 if ((rfp = fopen(path, "r")) == NULL) {
861 goto cleanup;
862 }
863 if ((p12 = d2i_PKCS12_fp(rfp, NULL)) == NULL) {
864 errtype = 1;
865 goto cleanup;
866 }
867 i = sunw_PKCS12_parse(p12, WANBOOT_PASSPHRASE, DO_NONE, NULL, 0, NULL,
868 NULL, NULL, &i_anchors);
869 if (i <= 0) {
870 errtype = 1;
871 goto cleanup;
872 }
873 PKCS12_free(p12);
874 p12 = NULL;

876 /*
877 * Merge the two stacks of pkcs12 certs.
878 */
879 for (i = 0; i < sk_X509_num(i_anchors); i++) {
880 x = sk_X509_delete(i_anchors, i);
881 (void) sk_X509_push(o_anchors, x);
882 }

884 /*
885 * Create the pkcs12 structure from the modified input stack and
886 * then write out that structure.
887 */
888 p12 = sunw_PKCS12_create((const char *)WANBOOT_PASSPHRASE, NULL, NULL,
889 o_anchors);
890 if (p12 == NULL) {
891 goto cleanup;
892 }
893 rewind(wfp);
894 if (i2d_PKCS12_fp(wfp, p12) == 0) {
895 goto cleanup;
896 }

898 ret = WBCGI_FTW_CBCONT;
899 cleanup:
900 if (ret == WBCGI_FTW_CBERR) {
901 if (errtype == 1) {
902 chars = snprintf(message, sizeof (message),
903 "(internal PKCS12 error while copying %s to %s)",
904 path, (char *)truststorepath);
905 } else {
906 chars = snprintf(message, sizeof (message),
907 "(error copying %s to %s)",
908 path, (char *)truststorepath);
909 }
910 if (chars > 0 && chars <= sizeof (message)) {
911 print_status(500, message);
912 } else {
913 print_status(500, NULL);
914 }
915 }
916 if (rfp != NULL) {
917 (void) fclose(rfp);
918 }
919 if (wfp != NULL) {

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 15

920 /* Will also close wfd */
921 (void) fclose(wfp);
922 }
923 if (p12 != NULL) {
924 PKCS12_free(p12);
925 }
926 if (i_anchors != NULL) {
927 sk_X509_pop_free(i_anchors, X509_free);
928 }
929 if (o_anchors != NULL) {
930 sk_X509_pop_free(o_anchors, X509_free);
931 }

933 return (ret);
934 }

936 static boolean_t
937 check_key_type(const char *keyfile, const char *keytype, int flag)
938 {
939 boolean_t ret = B_FALSE;
940 FILE *key_fp = NULL;
941 wbku_key_attr_t ka;

943 /*
944 * Map keytype into the ka structure
945 */
946 if (wbku_str_to_keyattr(keytype, &ka, flag) != WBKU_SUCCESS) {
947 goto cleanup;
948 }

950 /*
951 * Open the key file for reading.
952 */
953 if ((key_fp = fopen(keyfile, "r")) == NULL) {
954 goto cleanup;
955 }

957 /*
958 * Find the valid client key, if it exists.
959 */
960 if (wbku_find_key(key_fp, NULL, &ka, NULL, B_FALSE) != WBKU_SUCCESS) {
961 goto cleanup;
962 }

964 ret = B_TRUE;
965 cleanup:
966 if (key_fp != NULL) {
967 (void) fclose(key_fp);
968 }

970 return (ret);
971 }

973 static boolean_t
974 resolve_hostname(const char *hostname, nvlist_t *nvl, boolean_t may_be_crap)
975 {
976 struct sockaddr_in sin;
977 struct hostent *hp;
978 struct utsname un;
979 static char myname[SYS_NMLN] = { ’\0’ };
980 char *cp = NULL;
981 char msg[WBCGI_MAXBUF];

983 /*
984 * Initialize cached nodename
985 */

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 16

986 if (strlen(myname) == 0) {
987 if (uname(&un) == -1) {
988 (void) snprintf(msg, sizeof (msg),
989 "(unable to retrieve uname, errno %d)", errno);
990 print_status(500, msg);
991 return (B_FALSE);
992 }
993 (void) strcpy(myname, un.nodename);
994 }

996 /*
997 * If hostname is local node name, return the address this
998 * request came in on, which is supplied as SERVER_ADDR in the
999 * cgi environment. This ensures we don’t send back a possible

1000 * alternate address that may be unreachable from the client’s
1001 * network. Otherwise, just resolve with nameservice.
1002 */
1003 if ((strcmp(hostname, myname) != 0) ||
1004 ((cp = getenv("SERVER_ADDR")) == NULL)) {
1005 if (((hp = gethostbyname(hostname)) == NULL) ||
1006 (hp->h_addrtype != AF_INET) ||
1007 (hp->h_length != sizeof (struct in_addr))) {
1008 if (!may_be_crap) {
1009 print_status(500, "(error resolving hostname)");
1010 }
1011 return (may_be_crap);
1012 }
1013 (void) memcpy(&sin.sin_addr, hp->h_addr, hp->h_length);
1014 cp = inet_ntoa(sin.sin_addr);
1015 }

1017 if (nvlist_add_string(nvl, (char *)hostname, cp) != 0) {
1018 print_status(500, "(error adding hostname to nvlist)");
1019 return (B_FALSE);
1020 }

1022 return (B_TRUE);
1023 }

1025 /*
1026 * one_name() is called for each certificate found and is passed the string
1027 * that X509_NAME_oneline() returns. Its job is to find the common name and
1028 * determine whether it is a host name; if it is then a line suitable for
1029 * inclusion in /etc/inet/hosts is written to that file.
1030 */
1031 static boolean_t
1032 one_name(const char *namestr, nvlist_t *nvl)
1033 {
1034 boolean_t ret = B_TRUE;
1035 char *p;
1036 char *q;
1037 char c;

1039 if (namestr != NULL &&
1040 (p = strstr(namestr, WBCGI_CNSTR)) != NULL) {
1041 p += WBCGI_CNSTR_LEN;

1043 if ((q = strpbrk(p, WBCGI_NAMESEP)) != NULL) {
1044 c = *q;
1045 *q = ’\0’;
1046 ret = resolve_hostname(p, nvl, B_TRUE);
1047 *q = c;
1048 } else {
1049 ret = resolve_hostname(p, nvl, B_TRUE);
1050 }
1051 }

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 17

1053 return (ret);
1054 }

1056 /*
1057 * Loop through the certificates in a file
1058 */
1059 static int
1060 get_hostnames(const char *path, void *nvl)
1061 {
1062 int ret = WBCGI_FTW_CBERR;
1063 STACK_OF(X509) *certs = NULL;
1064 PKCS12 *p12 = NULL;
1065 char message[WBCGI_MAXBUF];
1066 char buf[WBCGI_MAXBUF + 1];
1067 FILE *rfp = NULL;
1068 X509 *x = NULL;
1069 int errtype = 0;
1070 int chars;
1071 int i;

1073 if ((rfp = fopen(path, "r")) == NULL) {
1074 goto cleanup;
1075 }

1077 if ((p12 = d2i_PKCS12_fp(rfp, NULL)) == NULL) {
1078 errtype = 1;
1079 goto cleanup;
1080 }
1081 i = sunw_PKCS12_parse(p12, WANBOOT_PASSPHRASE, DO_NONE, NULL, 0, NULL,
1082 NULL, NULL, &certs);
1083 if (i <= 0) {
1084 errtype = 1;
1085 goto cleanup;
1086 }

1088 PKCS12_free(p12);
1089 p12 = NULL;

1091 for (i = 0; i < sk_X509_num(certs); i++) {
1092 x = sk_X509_value(certs, i);
1093 if (!one_name(sunw_issuer_attrs(x, buf, sizeof (buf) - 1),
1094 nvl)) {
1095 goto cleanup;
1096 }
1097 }

1099 ret = WBCGI_FTW_CBCONT;
1100 cleanup:
1101 if (ret == WBCGI_FTW_CBERR) {
1102 if (errtype == 1) {
1103 chars = snprintf(message, sizeof (message),
1104 "(internal PKCS12 error reading %s)", path);
1105 } else {
1106 chars = snprintf(message, sizeof (message),
1107 "error reading %s", path);
1108 }
1109 if (chars > 0 && chars <= sizeof (message)) {
1110 print_status(500, message);
1111 } else {
1112 print_status(500, NULL);
1113 }
1114 }
1115 if (rfp != NULL) {
1116 (void) fclose(rfp);
1117 }

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 18

1118 if (p12 != NULL) {
1119 PKCS12_free(p12);
1120 }
1121 if (certs != NULL) {
1122 sk_X509_pop_free(certs, X509_free);
1123 }

1125 return (ret);
1126 }

1128 /*
1129 * Create a hosts file by extracting hosts from client and truststore
1130 * files. Use the CN. Then we should copy that file to the inet dir.
1131 */
1132 static boolean_t
1133 create_hostsfile(const char *hostsfile, const char *net, const char *cid)
1134 {
1135 boolean_t ret = B_FALSE;
1136 nvlist_t *nvl;
1137 nvpair_t *nvp;
1138 FILE *hostfp = NULL;
1139 int hostfd = -1;
1140 int i;
1141 char *hostslist;
1142 const char *bc_urls[] = { BC_ROOT_SERVER, BC_BOOT_LOGGER, NULL };

1144 /*
1145 * Allocate nvlist handle to store our hostname/IP pairs.
1146 */
1147 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) {
1148 print_status(500, "(error allocating hostname nvlist)");
1149 goto cleanup;
1150 }

1152 /*
1153 * Extract and resolve hostnames from CNs.
1154 */
1155 if (netboot_ftw(NB_CLIENT_CERT, net, cid,
1156 get_hostnames, nvl) == WBCGI_FTW_CBERR ||
1157 netboot_ftw(NB_CA_CERT, net, cid,
1158 get_hostnames, nvl) == WBCGI_FTW_CBERR) {
1159 goto cleanup;
1160 }

1162 /*
1163 * Extract and resolve hostnames from any URLs in bootconf.
1164 */
1165 for (i = 0; bc_urls[i] != NULL; ++i) {
1166 char *urlstr;
1167 url_t url;

1169 if ((urlstr = bootconf_get(&bc_handle, bc_urls[i])) != NULL &&
1170 url_parse(urlstr, &url) == URL_PARSE_SUCCESS) {
1171 if (!resolve_hostname(url.hport.hostname,
1172 nvl, B_FALSE)) {
1173 goto cleanup;
1174 }
1175 }
1176 }

1178 /*
1179 * If there is a resolve-hosts list in bootconf, resolve those
1180 * hostnames too.
1181 */
1182 if ((hostslist = bootconf_get(&bc_handle, BC_RESOLVE_HOSTS)) != NULL) {
1183 char *hostname;

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 19

1185 for (hostname = strtok(hostslist, ","); hostname != NULL;
1186 hostname = strtok(NULL, ",")) {
1187 if (!resolve_hostname(hostname, nvl, B_FALSE)) {
1188 goto cleanup;
1189 }
1190 }
1191 }

1193 /*
1194 * Now write the hostname/IP pairs gathered to the hosts file.
1195 */
1196 if ((hostfd = open(hostsfile,
1197 O_RDWR|O_CREAT|O_EXCL, S_IRUSR|S_IWUSR)) == -1 ||
1198 (hostfp = fdopen(hostfd, "w+")) == NULL) {
1199 print_status(500, "(error creating hosts file)");
1200 goto cleanup;
1201 }
1202 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
1203 nvp = nvlist_next_nvpair(nvl, nvp)) {
1204 char *hostname;
1205 char *ipstr;

1207 hostname = nvpair_name(nvp);
1208 if (nvpair_value_string(nvp, &ipstr) != 0) {
1209 print_status(500, "(nvl error writing hosts file)");
1210 goto cleanup;
1211 }

1213 if (fprintf(hostfp, "%s\t%s\n", ipstr, hostname) < 0) {
1214 print_status(500, "(error writing hosts file)");
1215 goto cleanup;
1216 }
1217 }

1219 ret = B_TRUE;
1220 cleanup:
1221 if (nvl != NULL) {
1222 nvlist_free(nvl);
1223 }
1224 if (hostfp != NULL) {
1225 /*
1226 * hostfd is automatically closed as well.
1227 */
1228 (void) fclose(hostfp);
1229 }

1231 return (ret);
1232 }

1234 static boolean_t
1235 bootfile_payload(const char *docroot, char **bootpathp)
1236 {
1237 boolean_t ret = B_FALSE;
1238 char *boot_file;
1239 struct stat sbuf;

1241 if ((boot_file = bootconf_get(&bc_handle, BC_BOOT_FILE)) == NULL) {
1242 print_status(500, "(boot_file must be specified)");
1243 goto cleanup;
1244 }
1245 if ((*bootpathp = make_path(docroot, boot_file)) == NULL) {
1246 goto cleanup;
1247 }
1248 if (!WBCGI_FILE_EXISTS(*bootpathp, sbuf)) {
1249 print_status(500, "(boot_file missing)");

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 20

1250 goto cleanup;
1251 }

1253 ret = B_TRUE;
1254 cleanup:
1255 return (ret);
1256 }

1258 /*
1259 * Create the wanboot file system whose contents are determined by the
1260 * security configuration specified in bootconf.
1261 */
1262 static boolean_t
1263 wanbootfs_payload(const char *net, const char *cid, const char *nonce,
1264 const char *bootconf, char **wanbootfs_imagep)
1265 {
1266 int ret = B_FALSE;

1268 char *server_authentication;
1269 char *client_authentication;
1270 char *scf;

1272 char *bootfs_dir = NULL;
1273 char *bootfs_etc_dir = NULL;
1274 char *bootfs_etc_inet_dir = NULL;
1275 char *bootfs_dev_dir = NULL;

1277 char *systemconf = NULL;
1278 char *keystorepath = NULL;
1279 char *certstorepath = NULL;
1280 char *truststorepath = NULL;
1281 char *bootconfpath = NULL;
1282 char *systemconfpath = NULL;
1283 char *urandompath = NULL;
1284 char *noncepath = NULL;
1285 char *hostspath = NULL;
1286 char *etc_hostspath = NULL;
1287 char *timestamppath = NULL;

1289 boolean_t authenticate_client;
1290 boolean_t authenticate_server;

1292 struct stat sbuf;

1294 /*
1295 * Initialize SSL stuff.
1296 */
1297 sunw_crypto_init();

1299 /*
1300 * Get the security strategy values.
1301 */
1302 client_authentication = bootconf_get(&bc_handle,
1303 BC_CLIENT_AUTHENTICATION);
1304 authenticate_client = (client_authentication != NULL &&
1305 strcmp(client_authentication, "yes") == 0);
1306 server_authentication = bootconf_get(&bc_handle,
1307 BC_SERVER_AUTHENTICATION);
1308 authenticate_server = (server_authentication != NULL &&
1309 strcmp(server_authentication, "yes") == 0);

1311 /*
1312 * Make a temporary directory structure for the wanboot file system.
1313 */
1314 if ((bootfs_dir = gen_tmppath("bootfs_dir", net, cid)) == NULL ||
1315 (bootfs_etc_dir = make_path(bootfs_dir, "etc")) == NULL ||

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 21

1316 (bootfs_etc_inet_dir = make_path(bootfs_etc_dir, "inet")) == NULL ||
1317 (bootfs_dev_dir = make_path(bootfs_dir, "dev")) == NULL) {
1318 goto cleanup;
1319 }
1320 if (mkdirp(bootfs_dir, 0700) ||
1321 mkdirp(bootfs_etc_dir, 0700) ||
1322 mkdirp(bootfs_etc_inet_dir, 0700) ||
1323 mkdirp(bootfs_dev_dir, 0700)) {
1324 print_status(500, "(error creating wanbootfs dir structure)");
1325 goto cleanup;
1326 }

1328 if (authenticate_client) {
1329 /*
1330 * Add the client private key.
1331 */
1332 if ((keystorepath = make_path(bootfs_dir,
1333 NB_CLIENT_KEY)) == NULL ||
1334 netboot_ftw(NB_CLIENT_KEY, net, cid,
1335 create_keystore, keystorepath) != WBCGI_FTW_CBOK) {
1336 goto cleanup;
1337 }

1339 /*
1340 * Add the client certificate.
1341 */
1342 if ((certstorepath = make_path(bootfs_dir,
1343 NB_CLIENT_CERT)) == NULL ||
1344 netboot_ftw(NB_CLIENT_CERT, net, cid,
1345 copy_certstore, certstorepath) != WBCGI_FTW_CBOK) {
1346 goto cleanup;
1347 }
1348 }

1350 if (authenticate_client || authenticate_server) {
1351 /*
1352 * Add the trustfile; at least one truststore must exist.
1353 */
1354 if ((truststorepath = make_path(bootfs_dir,
1355 NB_CA_CERT)) == NULL) {
1356 goto cleanup;
1357 }
1358 if (netboot_ftw(NB_CA_CERT, net, cid,
1359 noact_cb, NULL) != WBCGI_FTW_CBOK) {
1360 print_status(500, "(truststore not found)");
1361 }
1362 if (netboot_ftw(NB_CA_CERT, net, cid,
1363 build_trustfile, truststorepath) == WBCGI_FTW_CBERR) {
1364 goto cleanup;
1365 }

1367 /*
1368 * Create the /dev/urandom file.
1369 */
1370 if ((urandompath = make_path(bootfs_dev_dir,
1371 "urandom")) == NULL ||
1372 !create_urandom(urandompath)) {
1373 goto cleanup;
1374 }
1375 }

1377 /*
1378 * Add the wanboot.conf(4) file.
1379 */
1380 if ((bootconfpath = make_path(bootfs_dir, NB_WANBOOT_CONF)) == NULL ||
1381 !copy_file(bootconf, bootconfpath)) {

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 22

1382 goto cleanup;
1383 }

1385 /*
1386 * Add the system_conf file if present.
1387 */
1388 if ((scf = bootconf_get(&bc_handle, BC_SYSTEM_CONF)) != NULL) {
1389 if (netboot_ftw(scf, net, cid,
1390 set_pathname, &systemconf) != WBCGI_FTW_CBOK) {
1391 print_status(500, "(system_conf file not found)");
1392 goto cleanup;
1393 }
1394 if ((systemconfpath = make_path(bootfs_dir,
1395 NB_SYSTEM_CONF)) == NULL ||
1396 !copy_file(systemconf, systemconfpath)) {
1397 goto cleanup;
1398 }
1399 }

1401 /*
1402 * Create the /nonce file.
1403 */
1404 if ((noncepath = make_path(bootfs_dir, "nonce")) == NULL ||
1405 !create_nonce(noncepath, nonce)) {
1406 goto cleanup;
1407 }

1409 /*
1410 * Create an /etc/inet/hosts file by extracting hostnames from CN,
1411 * URLs in bootconf and resolve-hosts in bootconf.
1412 */
1413 if ((hostspath = make_path(bootfs_etc_inet_dir, "hosts")) == NULL ||
1414 !create_hostsfile(hostspath, net, cid)) {
1415 goto cleanup;
1416 }

1418 /*
1419 * We would like to create a symbolic link etc/hosts -> etc/inet/hosts,
1420 * but unfortunately the HSFS support in the standalone doesn’t handle
1421 * symlinks.
1422 */
1423 if ((etc_hostspath = make_path(bootfs_etc_dir, "hosts")) == NULL ||
1424 !copy_file(hostspath, etc_hostspath)) {
1425 goto cleanup;
1426 }

1428 /*
1429 * Create the /timestamp file.
1430 */
1431 if ((timestamppath = make_path(bootfs_dir, "timestamp")) == NULL ||
1432 !create_timestamp(timestamppath, "timestamp")) {
1433 goto cleanup;
1434 }

1436 /*
1437 * Create an HSFS file system for the directory.
1438 */
1439 if ((*wanbootfs_imagep = gen_tmppath("wanbootfs", net, cid)) == NULL ||
1440 !mkisofs(bootfs_dir, *wanbootfs_imagep)) {
1441 goto cleanup;
1442 }

1444 ret = B_TRUE;
1445 cleanup:
1446 /*
1447 * Clean up temporary files and directories.

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 23

1448 */
1449 if (keystorepath != NULL &&
1450 WBCGI_FILE_EXISTS(keystorepath, sbuf)) {
1451 (void) unlink(keystorepath);
1452 }
1453 if (certstorepath != NULL &&
1454 WBCGI_FILE_EXISTS(certstorepath, sbuf)) {
1455 (void) unlink(certstorepath);
1456 }
1457 if (truststorepath != NULL &&
1458 WBCGI_FILE_EXISTS(truststorepath, sbuf)) {
1459 (void) unlink(truststorepath);
1460 }
1461 if (bootconfpath != NULL &&
1462 WBCGI_FILE_EXISTS(bootconfpath, sbuf)) {
1463 (void) unlink(bootconfpath);
1464 }
1465 if (systemconfpath != NULL &&
1466 WBCGI_FILE_EXISTS(systemconfpath, sbuf)) {
1467 (void) unlink(systemconfpath);
1468 }
1469 if (urandompath != NULL &&
1470 WBCGI_FILE_EXISTS(urandompath, sbuf)) {
1471 (void) unlink(urandompath);
1472 }
1473 if (noncepath != NULL &&
1474 WBCGI_FILE_EXISTS(noncepath, sbuf)) {
1475 (void) unlink(noncepath);
1476 }
1477 if (hostspath != NULL &&
1478 WBCGI_FILE_EXISTS(hostspath, sbuf)) {
1479 (void) unlink(hostspath);
1480 }
1481 if (etc_hostspath != NULL &&
1482 WBCGI_FILE_EXISTS(etc_hostspath, sbuf)) {
1483 (void) unlink(etc_hostspath);
1484 }
1485 if (timestamppath != NULL &&
1486 WBCGI_FILE_EXISTS(timestamppath, sbuf)) {
1487 (void) unlink(timestamppath);
1488 }

1490 if (bootfs_etc_inet_dir != NULL &&
1491 WBCGI_DIR_EXISTS(bootfs_etc_inet_dir, sbuf)) {
1492 (void) rmdir(bootfs_etc_inet_dir);
1493 }
1494 if (bootfs_etc_dir != NULL &&
1495 WBCGI_DIR_EXISTS(bootfs_etc_dir, sbuf)) {
1496 (void) rmdir(bootfs_etc_dir);
1497 }
1498 if (bootfs_dev_dir != NULL &&
1499 WBCGI_DIR_EXISTS(bootfs_dev_dir, sbuf)) {
1500 (void) rmdir(bootfs_dev_dir);
1501 }
1502 if (bootfs_dir != NULL &&
1503 WBCGI_DIR_EXISTS(bootfs_dir, sbuf)) {
1504 (void) rmdir(bootfs_dir);
1505 }

1507 /*
1508 * Free allocated memory.
1509 */
1510 free_path(&bootfs_dir);
1511 free_path(&bootfs_etc_dir);
1512 free_path(&bootfs_etc_inet_dir);
1513 free_path(&bootfs_dev_dir);

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 24

1515 free_path(&systemconf);
1516 free_path(&keystorepath);
1517 free_path(&certstorepath);
1518 free_path(&truststorepath);
1519 free_path(&bootconfpath);
1520 free_path(&systemconfpath);
1521 free_path(&urandompath);
1522 free_path(&noncepath);
1523 free_path(&hostspath);
1524 free_path(&etc_hostspath);
1525 free_path(×tamppath);

1527 return (ret);
1528 }

1530 static boolean_t
1531 miniroot_payload(const char *net, const char *cid, const char *docroot,
1532 char **rootpathp, char **rootinfop, boolean_t *https_rootserverp)
1533 {
1534 boolean_t ret = B_FALSE;
1535 char *root_server;
1536 char *root_file;
1537 url_t url;
1538 struct stat sbuf;
1539 char sizebuf[WBCGI_MAXBUF];
1540 int chars;
1541 int fd = -1;

1543 if ((root_server = bootconf_get(&bc_handle, BC_ROOT_SERVER)) == NULL) {
1544 print_status(500, "(root_server must be specified)");
1545 goto cleanup;
1546 }
1547 if (url_parse(root_server, &url) != URL_PARSE_SUCCESS) {
1548 print_status(500, "(root_server URL is invalid)");
1549 }
1550 *https_rootserverp = url.https;

1552 if ((root_file = bootconf_get(&bc_handle, BC_ROOT_FILE)) == NULL) {
1553 print_status(500, "(rootfile must be specified)");
1554 goto cleanup;
1555 }
1556 if ((*rootpathp = make_path(docroot, root_file)) == NULL) {
1557 goto cleanup;
1558 }
1559 if (!WBCGI_FILE_EXISTS(*rootpathp, sbuf)) {
1560 print_status(500, "(root filesystem image missing)");
1561 goto cleanup;
1562 }

1564 if ((*rootinfop = gen_tmppath("mrinfo", net, cid)) == NULL) {
1565 goto cleanup;
1566 }
1567 if ((chars = snprintf(sizebuf, sizeof (sizebuf), "%ld",
1568 sbuf.st_size)) < 0 || chars > sizeof (sizebuf) ||
1569 (fd = open(*rootinfop,
1570 O_RDWR|O_CREAT|O_EXCL, S_IRUSR|S_IWUSR)) == -1 ||
1571 !write_buffer(fd, sizebuf, strlen(sizebuf))) {
1572 print_status(500, "(error creating miniroot info file)");
1573 goto cleanup;
1574 }

1576 ret = B_TRUE;
1577 cleanup:
1578 if (fd != -1) {
1579 (void) close(fd);

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 25

1580 }

1582 return (ret);
1583 }

1585 static boolean_t
1586 deliver_payload(const char *payload, const char *payload_hash)
1587 {
1588 int fd = fileno(stdout);
1589 struct stat payload_buf, hash_buf;
1590 int chars;
1591 char main_header[WBCGI_MAXBUF];
1592 char multi_header[WBCGI_MAXBUF];
1593 char multi_header1[WBCGI_MAXBUF];
1594 char multi_header2[WBCGI_MAXBUF];
1595 char multi_end[WBCGI_MAXBUF];
1596 size_t msglen;

1598 if (!WBCGI_FILE_EXISTS(payload, payload_buf) ||
1599 !WBCGI_FILE_EXISTS(payload_hash, hash_buf)) {
1600 print_status(500, "(payload/hash file(s) missing)");
1601 return (B_FALSE);
1602 }

1604 /*
1605 * Multi-part header.
1606 */
1607 if ((chars = snprintf(multi_header, sizeof (multi_header),
1608 "%s--%s%s%sapplication/octet-stream%s%s", WBCGI_CRNL,
1609 WBCGI_WANBOOT_BNDTXT, WBCGI_CRNL, WBCGI_CONTENT_TYPE, WBCGI_CRNL,
1610 WBCGI_CONTENT_LENGTH)) < 0 || chars > sizeof (multi_header)) {
1611 print_status(500, "(error creating multi_header)");
1612 return (B_FALSE);
1613 }

1615 /*
1616 * Multi-part header for part one.
1617 */
1618 if ((chars = snprintf(multi_header1, sizeof (multi_header1),
1619 "%s%ld%s%s", multi_header, payload_buf.st_size, WBCGI_CRNL,
1620 WBCGI_CRNL)) < 0 || chars > sizeof (multi_header1)) {
1621 print_status(500, "(error creating multi_header1)");
1622 return (B_FALSE);
1623 }

1625 /*
1626 * Multi-part header for part two.
1627 */
1628 if ((chars = snprintf(multi_header2, sizeof (multi_header2),
1629 "%s%ld%s%s", multi_header, hash_buf.st_size, WBCGI_CRNL,
1630 WBCGI_CRNL)) < 0 || chars > sizeof (multi_header2)) {
1631 print_status(500, "(error creating multi_header2)");
1632 return (B_FALSE);
1633 }

1635 /*
1636 * End-of-parts Trailer.
1637 */
1638 if ((chars = snprintf(multi_end, sizeof (multi_end),
1639 "%s--%s--%s", WBCGI_CRNL, WBCGI_WANBOOT_BNDTXT,
1640 WBCGI_CRNL)) < 0 || chars > sizeof (multi_end)) {
1641 print_status(500, "(error creating multi_end)");
1642 return (B_FALSE);
1643 }

1645 /*

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 26

1646 * Message header.
1647 */
1648 msglen = payload_buf.st_size + hash_buf.st_size +
1649 strlen(multi_header1) + strlen(multi_header2) + strlen(multi_end);

1651 if ((chars = snprintf(main_header, sizeof (main_header),
1652 "%s%u%s%smultipart/mixed; boundary=%s%s%s", WBCGI_CONTENT_LENGTH,
1653 msglen, WBCGI_CRNL, WBCGI_CONTENT_TYPE, WBCGI_WANBOOT_BNDTXT,
1654 WBCGI_CRNL, WBCGI_CRNL)) < 0 || chars > sizeof (main_header)) {
1655 print_status(500, "(error creating main_header)");
1656 return (B_FALSE);
1657 }

1659 /*
1660 * Write the message out. If things fall apart during this then
1661 * there’s no way to report the error back to the client.
1662 */
1663 if (!write_buffer(fd, main_header, strlen(main_header)) ||
1664 !write_buffer(fd, multi_header1, strlen(multi_header1)) ||
1665 !write_file(fd, payload, payload_buf.st_size) ||
1666 !write_buffer(fd, multi_header2, strlen(multi_header2)) ||
1667 !write_file(fd, payload_hash, hash_buf.st_size) ||
1668 !write_buffer(fileno(stdout), multi_end, strlen(multi_end))) {
1669 return (B_FALSE);
1670 }

1672 return (B_TRUE);
1673 }

1676 /*ARGSUSED*/
1677 int
1678 main(int argc, char **argv)
1679 {
1680 int ret = WBCGI_STATUS_ERR;
1681 struct stat sbuf;
1682 int content;
1683 char *net;
1684 char *cid;
1685 char *nonce;
1686 char *docroot;
1687 char *payload;
1688 char *signature_type;
1689 char *encryption_type;
1690 char *bootconf = NULL;
1691 char *keyfile = NULL;
1692 char *bootpath = NULL;
1693 char *wanbootfs_image = NULL;
1694 char *rootpath = NULL;
1695 char *miniroot_info = NULL;
1696 char *encr_payload = NULL;
1697 char *payload_hash = NULL;
1698 boolean_t https_rootserver;

1700 /*
1701 * Process the query string.
1702 */
1703 if (!get_request_info(&content, &net, &cid, &nonce, &docroot)) {
1704 goto cleanup;
1705 }

1707 /*
1708 * Sanity check that the netboot directory exists.
1709 */
1710 if (!WBCGI_DIR_EXISTS(NB_NETBOOT_ROOT, sbuf)) {
1711 print_status(500, "(" NB_NETBOOT_ROOT " does not exist)");

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 27

1712 goto cleanup;
1713 }

1715 /*
1716 * Get absolute bootconf pathname.
1717 */
1718 if (netboot_ftw(NB_WANBOOT_CONF, net, cid,
1719 set_pathname, &bootconf) != WBCGI_FTW_CBOK) {
1720 print_status(500, "(wanboot.conf not found)");
1721 goto cleanup;
1722 }

1724 /*
1725 * Initialize bc_handle from the given wanboot.conf file.
1726 */
1727 if (bootconf_init(&bc_handle, bootconf) != BC_SUCCESS) {
1728 char message[WBCGI_MAXBUF];
1729 int chars;

1731 chars = snprintf(message, sizeof (message),
1732 "(wanboot.conf error: %s)", bootconf_errmsg(&bc_handle));
1733 if (chars > 0 && chars < sizeof (message))
1734 print_status(500, message);
1735 else
1736 print_status(500, "(wanboot.conf error)");
1737 goto cleanup;
1738 }

1740 /*
1741 * Get and check signature and encryption types,
1742 * presence of helper utilities, keystore, etc.
1743 */
1744 if ((signature_type = bootconf_get(&bc_handle,
1745 BC_SIGNATURE_TYPE)) != NULL) {
1746 if (!WBCGI_FILE_EXISTS(WBCGI_HMAC_PATH, sbuf)) {
1747 print_status(500, "(hmac utility not found)");
1748 goto cleanup;
1749 }
1750 if (keyfile == NULL && netboot_ftw(NB_CLIENT_KEY, net, cid,
1751 set_pathname, &keyfile) != WBCGI_FTW_CBOK) {
1752 print_status(500, "(keystore not found)");
1753 goto cleanup;
1754 }
1755 if (!check_key_type(keyfile, signature_type, WBKU_HASH_KEY)) {
1756 print_status(500, "(hash key not found)");
1757 goto cleanup;
1758 }
1759 }
1760 if ((encryption_type = bootconf_get(&bc_handle,
1761 BC_ENCRYPTION_TYPE)) != NULL) {
1762 if (signature_type == NULL) {
1763 print_status(500, "(encrypted but not signed)");
1764 goto cleanup;
1765 }
1766 if (!WBCGI_FILE_EXISTS(WBCGI_ENCR_PATH, sbuf)) {
1767 print_status(500, "(encr utility not found)");
1768 goto cleanup;
1769 }
1770 if (keyfile == NULL && netboot_ftw(NB_CLIENT_KEY, net, cid,
1771 set_pathname, &keyfile) != WBCGI_FTW_CBOK) {
1772 print_status(500, "(keystore not found)");
1773 goto cleanup;
1774 }
1775 if (!check_key_type(keyfile, encryption_type, WBKU_ENCR_KEY)) {
1776 print_status(500, "(encr key not found)");
1777 goto cleanup;

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 28

1778 }
1779 }

1781 /*
1782 * Determine/create our payload.
1783 */
1784 switch (content) {
1785 case WBCGI_CONTENT_BOOTFILE:
1786 if (!bootfile_payload(docroot, &bootpath)) {
1787 goto cleanup;
1788 }
1789 payload = bootpath;

1791 break;

1793 case WBCGI_CONTENT_BOOTFS:
1794 if (!wanbootfs_payload(net, cid, nonce,
1795 bootconf, &wanbootfs_image)) {
1796 goto cleanup;
1797 }
1798 payload = wanbootfs_image;

1800 break;

1802 case WBCGI_CONTENT_ROOTFS:
1803 if (!miniroot_payload(net, cid, docroot,
1804 &rootpath, &miniroot_info, &https_rootserver)) {
1805 goto cleanup;
1806 }
1807 payload = rootpath;

1809 break;
1810 }

1812 /*
1813 * Encrypt the payload if necessary.
1814 */
1815 if (content != WBCGI_CONTENT_BOOTFILE &&
1816 content != WBCGI_CONTENT_ROOTFS &&
1817 encryption_type != NULL) {
1818 if ((encr_payload = gen_tmppath("encr", net, cid)) == NULL) {
1819 goto cleanup;
1820 }

1822 if (!encrypt_payload(payload, encr_payload, keyfile,
1823 encryption_type)) {
1824 goto cleanup;
1825 }

1827 payload = encr_payload;
1828 }

1830 /*
1831 * Compute the hash (actual or null).
1832 */
1833 if ((payload_hash = gen_tmppath("hash", net, cid)) == NULL) {
1834 goto cleanup;
1835 }

1837 if (signature_type != NULL &&
1838 (content != WBCGI_CONTENT_ROOTFS || !https_rootserver)) {
1839 if (!hash_payload(payload, payload_hash, keyfile)) {
1840 goto cleanup;
1841 }
1842 } else {
1843 if (!create_null_hash(payload_hash)) {

new/usr/src/cmd/cmd-inet/usr.lib/wanboot/wanboot-cgi/wanboot-cgi.c 29

1844 goto cleanup;
1845 }
1846 }

1848 /*
1849 * For the rootfs the actual payload transmitted is the file
1850 * containing the size of the rootfs (as a string of ascii digits);
1851 * point payload at this instead.
1852 */
1853 if (content == WBCGI_CONTENT_ROOTFS) {
1854 payload = miniroot_info;
1855 }

1857 /*
1858 * Finally, deliver the payload and hash as a multipart message.
1859 */
1860 if (!deliver_payload(payload, payload_hash)) {
1861 goto cleanup;
1862 }

1864 ret = WBCGI_STATUS_OK;
1865 cleanup:
1866 /*
1867 * Clean up temporary files.
1868 */
1869 if (wanbootfs_image != NULL &&
1870 WBCGI_FILE_EXISTS(wanbootfs_image, sbuf)) {
1871 (void) unlink(wanbootfs_image);
1872 }
1873 if (miniroot_info != NULL &&
1874 WBCGI_FILE_EXISTS(miniroot_info, sbuf)) {
1875 (void) unlink(miniroot_info);
1876 }
1877 if (encr_payload != NULL &&
1878 WBCGI_FILE_EXISTS(encr_payload, sbuf)) {
1879 (void) unlink(encr_payload);
1880 }
1881 if (payload_hash != NULL &&
1882 WBCGI_FILE_EXISTS(payload_hash, sbuf)) {
1883 (void) unlink(payload_hash);
1884 }

1886 /*
1887 * Free up any allocated strings.
1888 */
1889 free_path(&bootconf);
1890 free_path(&keyfile);
1891 free_path(&bootpath);
1892 free_path(&wanbootfs_image);
1893 free_path(&rootpath);
1894 free_path(&miniroot_info);
1895 free_path(&encr_payload);
1896 free_path(&payload_hash);

1898 bootconf_end(&bc_handle);

1900 return (ret);
1901 }

new/usr/src/cmd/cmd-inet/usr.lib/wpad/Makefile 1

**
 1463 Fri May 30 18:31:08 2014
new/usr/src/cmd/cmd-inet/usr.lib/wpad/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #

25 PROG = wpad
26 MANIFEST = wpa.xml
27 OBJS = wpa_supplicant.o wpa.o wpa_enc.o eloop.o \
28 driver_wifi.o l2_packet.o
29 SRCS = $(OBJS:%.o=%.c)

31 include ../../../Makefile.cmd

33 ROOTMANIFESTDIR = $(ROOTSVCNETWORK)

35 LDLIBS += -ldladm -ldlpi
36 all install := LDLIBS += -lsunw_crypto

38 LINTFLAGS += -u

40 .KEEP_STATE:

42 all: $(PROG)

44 $(PROG): $(OBJS)
45 $(LINK.c) $(OBJS) -o $@ $(LDLIBS)
46 $(POST_PROCESS)

48 include ../Makefile.lib

50 install: all $(ROOTLIBINETPROG) $(ROOTMANIFEST)

52 check: $(CHKMANIFEST)

54 clean:
55 $(RM) $(OBJS)

57 lint: lint_SRCS

59 include ../../../Makefile.targ

new/usr/src/cmd/sendmail/src/Makefile 1

**
 2418 Fri May 30 18:31:08 2014
new/usr/src/cmd/sendmail/src/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright (c) 2011 Gary Mills

24 #
25 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
26 # Use is subject to license terms.
27 #
28 # cmd/sendmail/src/Makefile
29 #

31 PROG= sendmail

33 include ../../Makefile.cmd
34 include ../Makefile.cmd

36 OBJS= alias.o arpadate.o bf.o collect.o conf.o control.o convtime.o daemon.o \
37 deliver.o domain.o envelope.o err.o headers.o macro.o main.o map.o \
38 mci.o milter.o mime.o parseaddr.o queue.o ratectrl.o readcf.o \
39 recipient.o sasl.o savemail.o sfsasl.o sm_resolve.o srvrsmtp.o stab.o \
40 stats.o sysexits.o tls.o trace.o udb.o usersmtp.o util.o version.o

42 SRCS= $(OBJS:%.o=%.c)

44 MAPFILES = $(MAPFILE.INT) $(MAPFILE.NGB)
45 LDFLAGS += $(MAPFILES:%=-M%)

47 LDLIBS += ../libsmutil/libsmutil.a ../libsm/libsm.a -lresolv -lsocket \
48 -lnsl ../db/libdb.a -lldap -lsldap -lwrap -lumem \
49 -lsunw_ssl -lsunw_crypto -lsasl

51 INCPATH= -I. -I../include -I../db

53 ENVDEF= -DNETINET6 -DTCPWRAPPERS -DSTARTTLS -DSASL=20115
54 SUNENVDEF= -DSUN_EXTENSIONS -DVENDOR_DEFAULT=VENDOR_SUN \
55 -DSUN_INIT_DOMAIN -DSUN_SIMPLIFIED_LDAP -D_FFR_LOCAL_DAEMON \
56 -D_FFR_MAIL_MACRO

58 CPPFLAGS = $(INCPATH) $(ENVDEF) $(SUNENVDEF) $(DBMDEF) $(CPPFLAGS.sm)

60 FILEMODE= 2555

new/usr/src/cmd/sendmail/src/Makefile 2

62 ROOTSYMLINKS= $(ROOTUSRSBIN)/newaliases $(ROOTUSRSBIN)/sendmail

64 # build rule
65 #

67 .KEEP_STATE:
68 all: $(PROG)

70 .PARALLEL: $(OBJS)

72 $(PROG): $(OBJS) $(MAPFILES) \
73 ../libsmutil/libsmutil.a ../libsm/libsm.a ../db/libdb.a
74 $(LINK.c) -o $@ $(OBJS) $(LDLIBS)
75 $(POST_PROCESS)

77 install: $(ROOTLIBPROG) $(ROOTSYMLINKS)

79 $(ROOTSYMLINKS):
80 $(RM) $@; $(SYMLINK) ../lib/sendmail $@

82 clean:
83 $(RM) $(PROG) $(OBJS)

85 lint: lint_SRCS

87 include ../../Makefile.targ

new/usr/src/cmd/ssh/include/engine.h 1

**
 1226 Fri May 30 18:31:08 2014
new/usr/src/cmd/ssh/include/engine.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _ENGINE_H
27 #define _ENGINE_H

29 #ifdef __cplusplus
30 extern "C" {
31 #endif

33 #include "includes.h"
34 #include <openssl/opensslconf.h>
35 #include <openssl/engine.h>

37 ENGINE *pkcs11_engine_load(int use_engine);
38 void pkcs11_engine_finish(void *engine);

40 #ifdef __cplusplus
41 }
42 #endif

44 #endif /* _ENGINE_H */

new/usr/src/cmd/ssh/libopenbsd-compat/common/bsd-arc4random.c 1

**
 2526 Fri May 30 18:31:08 2014
new/usr/src/cmd/ssh/libopenbsd-compat/common/bsd-arc4random.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
5 /*
6 * Copyright (c) 1999-2000 Damien Miller. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */

29 #include "includes.h"
30 #include "log.h"

32 RCSID("$Id: bsd-arc4random.c,v 1.5 2002/05/08 22:57:18 tim Exp $");

34 #pragma ident "%Z%%M% %I% %E% SMI"

36 #ifndef HAVE_ARC4RANDOM

38 #include <openssl/opensslconf.h>
39 #include <openssl/rand.h>
40 #include <openssl/rc4.h>
41 #include <openssl/err.h>

43 /* Size of key to use */
44 #define SEED_SIZE 20

46 /* Number of bytes to reseed after */
47 #define REKEY_BYTES (1 << 24)

49 static int rc4_ready = 0;
50 static RC4_KEY rc4;

52 unsigned int arc4random(void)
53 {
54 unsigned int r = 0;
55 static int first_time = 1;

57 if (rc4_ready <= 0) {
58 if (first_time)
59 seed_rng();
60 first_time = 0;
61 arc4random_stir();

new/usr/src/cmd/ssh/libopenbsd-compat/common/bsd-arc4random.c 2

62 }

64 RC4(&rc4, sizeof(r), (unsigned char *)&r, (unsigned char *)&r);

66 rc4_ready -= sizeof(r);
67
68 return(r);
69 }

71 void arc4random_stir(void)
72 {
73 unsigned char rand_buf[SEED_SIZE];

75 memset(&rc4, 0, sizeof(rc4));
76 if (!RAND_bytes(rand_buf, sizeof(rand_buf)))
77 fatal("Couldn’t obtain random bytes (error %ld)",
78 ERR_get_error());
79 RC4_set_key(&rc4, sizeof(rand_buf), rand_buf);
80 memset(rand_buf, 0, sizeof(rand_buf));

82 rc4_ready = REKEY_BYTES;
83 }
84 #endif /* !HAVE_ARC4RANDOM */

new/usr/src/cmd/ssh/libssh/Makefile.com 1

**
 2444 Fri May 30 18:31:09 2014
new/usr/src/cmd/ssh/libssh/Makefile.com
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #

25 LIBRARY = libssh.a
26 VERS = .1

28 OBJECTS = \
29 addrmatch.o \
30 atomicio.o \
31 authfd.o \
32 authfile.o \
33 bufaux.o \
34 buffer.o \
35 canohost.o \
36 channels.o \
37 cipher.o \
38 cipher-ctr.o \
39 compat.o \
40 compress.o \
41 crc32.o \
42 deattack.o \
43 dh.o \
44 dispatch.o \
45 engine.o \
46 entropy.o \
47 fatal.o \
48 g11n.o \
49 hostfile.o \
50 key.o \
51 kex.o \
52 kexdh.o \
53 kexdhc.o \
54 kexdhs.o \
55 kexgex.o \
56 kexgexc.o \
57 kexgexs.o \
58 kexgssc.o \
59 kexgsss.o \
60 log.o \
61 mac.o \

new/usr/src/cmd/ssh/libssh/Makefile.com 2

62 match.o \
63 misc.o \
64 mpaux.o \
65 msg.o \
66 nchan.o \
67 packet.o \
68 progressmeter.o \
69 proxy-io.o \
70 radix.o \
71 readconf.o \
72 readpass.o \
73 rsa.o \
74 sftp-common.o \
75 ssh-dss.o \
76 ssh-gss.o \
77 ssh-rsa.o \
78 tildexpand.o \
79 ttymodes.o \
80 uidswap.o \
81 uuencode.o \
82 xlist.o \
83 xmalloc.o

85 include $(SRC)/lib/Makefile.lib

87 BUILD.AR = $(RM) $@ ; $(AR) $(ARFLAGS) $@ $(AROBJS)

89 SRCDIR = ../common
90 SRCS = $(OBJECTS:%.o=../common/%.c)

92 LIBS = $(LIBRARY) $(LINTLIB)

94 # Define LDLIBS conditionally for lintcheck, rather than in general, since
95 # we’re building an archive library which itself links to nothing, we just
96 # want lint to know about these libraries.
97 lintcheck := LDLIBS += -lz -lsocket -lnsl -lc
98 $(LINTLIB) := SRCS = $(SRCDIR)/$(LINTSRC)

100 POFILE_DIR = ../..

102 .KEEP_STATE:

104 all: $(LIBS)

106 # lint requires the (not installed) lint library
107 lint: $(LINTLIB) .WAIT lintcheck

109 include $(SRC)/lib/Makefile.targ

111 objs/%.o: $(SRCDIR)/%.c
112 $(COMPILE.c) -o $@ $<
113 $(POST_PROCESS_O)

115 include ../../Makefile.ssh-common
116 include ../../Makefile.msg.targ

new/usr/src/cmd/ssh/libssh/common/authfd.c 1

**
 16005 Fri May 30 18:31:09 2014
new/usr/src/cmd/ssh/libssh/common/authfd.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Author: Tatu Ylonen <ylo@cs.hut.fi>
3 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
4 * All rights reserved
5 * Functions for connecting the local authentication agent.
6 *
7 * As far as I am concerned, the code I have written for this software
8 * can be used freely for any purpose. Any derived versions of this
9 * software must be clearly marked as such, and if the derived work is
10 * incompatible with the protocol description in the RFC file, it must be
11 * called by a name other than "ssh" or "Secure Shell".
12 *
13 * SSH2 implementation,
14 * Copyright (c) 2000 Markus Friedl. All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
26 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
27 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
28 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */

37 #include "includes.h"
38 RCSID("$OpenBSD: authfd.c,v 1.57 2002/09/11 18:27:26 stevesk Exp $");

40 #include <openssl/opensslconf.h>
41 #include <openssl/evp.h>

43 #include "ssh.h"
44 #include "rsa.h"
45 #include "buffer.h"
46 #include "bufaux.h"
47 #include "xmalloc.h"
48 #include "getput.h"
49 #include "key.h"
50 #include "authfd.h"
51 #include "cipher.h"
52 #include "kex.h"
53 #include "compat.h"
54 #include "log.h"
55 #include "atomicio.h"

57 static int agent_present = 0;

59 /* helper */
60 int decode_reply(int type);

new/usr/src/cmd/ssh/libssh/common/authfd.c 2

62 /* macro to check for "agent failure" message */
63 #define agent_failed(x) \
64 ((x == SSH_AGENT_FAILURE) || (x == SSH_COM_AGENT2_FAILURE) || \
65 (x == SSH2_AGENT_FAILURE))

67 int
68 ssh_agent_present(void)
69 {
70 int authfd;

72 if (agent_present)
73 return 1;
74 if ((authfd = ssh_get_authentication_socket()) == -1)
75 return 0;
76 else {
77 ssh_close_authentication_socket(authfd);
78 return 1;
79 }
80 }

82 /* Returns the number of the authentication fd, or -1 if there is none. */

84 int
85 ssh_get_authentication_socket(void)
86 {
87 const char *authsocket;
88 int sock;
89 struct sockaddr_un sunaddr;

91 authsocket = getenv(SSH_AUTHSOCKET_ENV_NAME);
92 if (!authsocket)
93 return -1;

95 sunaddr.sun_family = AF_UNIX;
96 strlcpy(sunaddr.sun_path, authsocket, sizeof(sunaddr.sun_path));

98 sock = socket(AF_UNIX, SOCK_STREAM, 0);
99 if (sock < 0)
100 return -1;

102 /* close on exec */
103 if (fcntl(sock, F_SETFD, FD_CLOEXEC) == -1) {
104 close(sock);
105 return -1;
106 }
107 if (connect(sock, (struct sockaddr *) &sunaddr, sizeof sunaddr) < 0) {
108 close(sock);
109 return -1;
110 }
111 agent_present = 1;
112 return sock;
113 }

115 static int
116 ssh_request_reply(AuthenticationConnection *auth, Buffer *request, Buffer *reply
117 {
118 int l, len;
119 char buf[1024];

121 /* Get the length of the message, and format it in the buffer. */
122 len = buffer_len(request);
123 PUT_32BIT(buf, len);

125 /* Send the length and then the packet to the agent. */
126 if (atomicio(write, auth->fd, buf, 4) != 4 ||
127 atomicio(write, auth->fd, buffer_ptr(request),

new/usr/src/cmd/ssh/libssh/common/authfd.c 3

128 buffer_len(request)) != buffer_len(request)) {
129 error("Error writing to authentication socket.");
130 return 0;
131 }
132 /*
133 * Wait for response from the agent. First read the length of the
134 * response packet.
135 */
136 len = 4;
137 while (len > 0) {
138 l = read(auth->fd, buf + 4 - len, len);
139 if (l == -1 && (errno == EAGAIN || errno == EINTR))
140 continue;
141 if (l <= 0) {
142 error("Error reading response length from authentication
143 return 0;
144 }
145 len -= l;
146 }

148 /* Extract the length, and check it for sanity. */
149 len = GET_32BIT(buf);
150 if (len > 256 * 1024)
151 fatal("Authentication response too long: %d", len);

153 /* Read the rest of the response in to the buffer. */
154 buffer_clear(reply);
155 while (len > 0) {
156 l = len;
157 if (l > sizeof(buf))
158 l = sizeof(buf);
159 l = read(auth->fd, buf, l);
160 if (l == -1 && (errno == EAGAIN || errno == EINTR))
161 continue;
162 if (l <= 0) {
163 error("Error reading response from authentication socket
164 return 0;
165 }
166 buffer_append(reply, buf, l);
167 len -= l;
168 }
169 return 1;
170 }

172 /*
173 * Closes the agent socket if it should be closed (depends on how it was
174 * obtained). The argument must have been returned by
175 * ssh_get_authentication_socket().
176 */

178 void
179 ssh_close_authentication_socket(int sock)
180 {
181 if (getenv(SSH_AUTHSOCKET_ENV_NAME))
182 close(sock);
183 }

185 /*
186 * Opens and connects a private socket for communication with the
187 * authentication agent. Returns the file descriptor (which must be
188 * shut down and closed by the caller when no longer needed).
189 * Returns NULL if an error occurred and the connection could not be
190 * opened.
191 */

193 AuthenticationConnection *

new/usr/src/cmd/ssh/libssh/common/authfd.c 4

194 ssh_get_authentication_connection(void)
195 {
196 AuthenticationConnection *auth;
197 int sock;

199 sock = ssh_get_authentication_socket();

201 /*
202 * Fail if we couldn’t obtain a connection. This happens if we
203 * exited due to a timeout.
204 */
205 if (sock < 0)
206 return NULL;

208 auth = xmalloc(sizeof(*auth));
209 auth->fd = sock;
210 buffer_init(&auth->identities);
211 auth->howmany = 0;

213 return auth;
214 }

216 /*
217 * Closes the connection to the authentication agent and frees any associated
218 * memory.
219 */

221 void
222 ssh_close_authentication_connection(AuthenticationConnection *auth)
223 {
224 buffer_free(&auth->identities);
225 close(auth->fd);
226 xfree(auth);
227 }

229 /* Lock/unlock agent */
230 int
231 ssh_lock_agent(AuthenticationConnection *auth, int lock, const char *password)
232 {
233 int type;
234 Buffer msg;

236 buffer_init(&msg);
237 buffer_put_char(&msg, lock ? SSH_AGENTC_LOCK : SSH_AGENTC_UNLOCK);
238 buffer_put_cstring(&msg, password);

240 if (ssh_request_reply(auth, &msg, &msg) == 0) {
241 buffer_free(&msg);
242 return 0;
243 }
244 type = buffer_get_char(&msg);
245 buffer_free(&msg);
246 return decode_reply(type);
247 }

249 /*
250 * Returns the first authentication identity held by the agent.
251 */

253 int
254 ssh_get_num_identities(AuthenticationConnection *auth, int version)
255 {
256 int type, code1 = 0, code2 = 0;
257 Buffer request;

259 switch (version) {

new/usr/src/cmd/ssh/libssh/common/authfd.c 5

260 case 1:
261 code1 = SSH_AGENTC_REQUEST_RSA_IDENTITIES;
262 code2 = SSH_AGENT_RSA_IDENTITIES_ANSWER;
263 break;
264 case 2:
265 code1 = SSH2_AGENTC_REQUEST_IDENTITIES;
266 code2 = SSH2_AGENT_IDENTITIES_ANSWER;
267 break;
268 default:
269 return 0;
270 }

272 /*
273 * Send a message to the agent requesting for a list of the
274 * identities it can represent.
275 */
276 buffer_init(&request);
277 buffer_put_char(&request, code1);

279 buffer_clear(&auth->identities);
280 if (ssh_request_reply(auth, &request, &auth->identities) == 0) {
281 buffer_free(&request);
282 return 0;
283 }
284 buffer_free(&request);

286 /* Get message type, and verify that we got a proper answer. */
287 type = buffer_get_char(&auth->identities);
288 if (agent_failed(type)) {
289 return 0;
290 } else if (type != code2) {
291 fatal("Bad authentication reply message type: %d", type);
292 }

294 /* Get the number of entries in the response and check it for sanity. */
295 auth->howmany = buffer_get_int(&auth->identities);
296 if (auth->howmany > 1024)
297 fatal("Too many identities in authentication reply: %d",
298 auth->howmany);

300 return auth->howmany;
301 }

303 Key *
304 ssh_get_first_identity(AuthenticationConnection *auth, char **comment, int versi
305 {
306 /* get number of identities and return the first entry (if any). */
307 if (ssh_get_num_identities(auth, version) > 0)
308 return ssh_get_next_identity(auth, comment, version);
309 return NULL;
310 }

312 Key *
313 ssh_get_next_identity(AuthenticationConnection *auth, char **comment, int versio
314 {
315 u_int bits;
316 u_char *blob;
317 u_int blen;
318 Key *key = NULL;

320 /* Return failure if no more entries. */
321 if (auth->howmany <= 0)
322 return NULL;

324 /*
325 * Get the next entry from the packet. These will abort with a fatal

new/usr/src/cmd/ssh/libssh/common/authfd.c 6

326 * error if the packet is too short or contains corrupt data.
327 */
328 switch (version) {
329 case 1:
330 key = key_new(KEY_RSA1);
331 bits = buffer_get_int(&auth->identities);
332 buffer_get_bignum(&auth->identities, key->rsa->e);
333 buffer_get_bignum(&auth->identities, key->rsa->n);
334 *comment = buffer_get_string(&auth->identities, NULL);
335 if (bits != BN_num_bits(key->rsa->n))
336 log("Warning: identity keysize mismatch: actual %d, anno
337 BN_num_bits(key->rsa->n), bits);
338 break;
339 case 2:
340 blob = buffer_get_string(&auth->identities, &blen);
341 *comment = buffer_get_string(&auth->identities, NULL);
342 key = key_from_blob(blob, blen);
343 xfree(blob);
344 break;
345 default:
346 return NULL;
347 break;
348 }
349 /* Decrement the number of remaining entries. */
350 auth->howmany--;
351 return key;
352 }

354 /*
355 * Generates a random challenge, sends it to the agent, and waits for
356 * response from the agent. Returns true (non-zero) if the agent gave the
357 * correct answer, zero otherwise. Response type selects the style of
358 * response desired, with 0 corresponding to protocol version 1.0 (no longer
359 * supported) and 1 corresponding to protocol version 1.1.
360 */

362 int
363 ssh_decrypt_challenge(AuthenticationConnection *auth,
364 Key* key, BIGNUM *challenge,
365 u_char session_id[16],
366 u_int response_type,
367 u_char response[16])
368 {
369 Buffer buffer;
370 int success = 0;
371 int i;
372 int type;

374 if (key->type != KEY_RSA1)
375 return 0;
376 if (response_type == 0) {
377 log("Compatibility with ssh protocol version 1.0 no longer suppo
378 return 0;
379 }
380 buffer_init(&buffer);
381 buffer_put_char(&buffer, SSH_AGENTC_RSA_CHALLENGE);
382 buffer_put_int(&buffer, BN_num_bits(key->rsa->n));
383 buffer_put_bignum(&buffer, key->rsa->e);
384 buffer_put_bignum(&buffer, key->rsa->n);
385 buffer_put_bignum(&buffer, challenge);
386 buffer_append(&buffer, session_id, 16);
387 buffer_put_int(&buffer, response_type);

389 if (ssh_request_reply(auth, &buffer, &buffer) == 0) {
390 buffer_free(&buffer);
391 return 0;

new/usr/src/cmd/ssh/libssh/common/authfd.c 7

392 }
393 type = buffer_get_char(&buffer);

395 if (agent_failed(type)) {
396 log("Agent admitted failure to authenticate using the key.");
397 } else if (type != SSH_AGENT_RSA_RESPONSE) {
398 fatal("Bad authentication response: %d", type);
399 } else {
400 success = 1;
401 /*
402 * Get the response from the packet. This will abort with a
403 * fatal error if the packet is corrupt.
404 */
405 for (i = 0; i < 16; i++)
406 response[i] = buffer_get_char(&buffer);
407 }
408 buffer_free(&buffer);
409 return success;
410 }

412 /* ask agent to sign data, returns -1 on error, 0 on success */
413 int
414 ssh_agent_sign(AuthenticationConnection *auth,
415 Key *key,
416 u_char **sigp, u_int *lenp,
417 u_char *data, u_int datalen)
418 {
419 Buffer msg;
420 u_char *blob;
421 u_int blen;
422 int type, flags = 0;
423 int ret = -1;

425 if (key_to_blob(key, &blob, &blen) == 0)
426 return -1;

428 if (datafellows & SSH_BUG_SIGBLOB)
429 flags = SSH_AGENT_OLD_SIGNATURE;

431 buffer_init(&msg);
432 buffer_put_char(&msg, SSH2_AGENTC_SIGN_REQUEST);
433 buffer_put_string(&msg, blob, blen);
434 buffer_put_string(&msg, data, datalen);
435 buffer_put_int(&msg, flags);
436 xfree(blob);

438 if (ssh_request_reply(auth, &msg, &msg) == 0) {
439 buffer_free(&msg);
440 return -1;
441 }
442 type = buffer_get_char(&msg);
443 if (agent_failed(type)) {
444 log("Agent admitted failure to sign using the key.");
445 } else if (type != SSH2_AGENT_SIGN_RESPONSE) {
446 fatal("Bad authentication response: %d", type);
447 } else {
448 ret = 0;
449 *sigp = buffer_get_string(&msg, lenp);
450 }
451 buffer_free(&msg);
452 return ret;
453 }

455 /* Encode key for a message to the agent. */

457 static void

new/usr/src/cmd/ssh/libssh/common/authfd.c 8

458 ssh_encode_identity_rsa1(Buffer *b, RSA *key, const char *comment)
459 {
460 buffer_put_int(b, BN_num_bits(key->n));
461 buffer_put_bignum(b, key->n);
462 buffer_put_bignum(b, key->e);
463 buffer_put_bignum(b, key->d);
464 /* To keep within the protocol: p < q for ssh. in SSL p > q */
465 buffer_put_bignum(b, key->iqmp); /* ssh key->u */
466 buffer_put_bignum(b, key->q); /* ssh key->p, SSL key->q */
467 buffer_put_bignum(b, key->p); /* ssh key->q, SSL key->p */
468 buffer_put_cstring(b, comment);
469 }

471 static void
472 ssh_encode_identity_ssh2(Buffer *b, Key *key, const char *comment)
473 {
474 buffer_put_cstring(b, key_ssh_name(key));
475 switch (key->type) {
476 case KEY_RSA:
477 buffer_put_bignum2(b, key->rsa->n);
478 buffer_put_bignum2(b, key->rsa->e);
479 buffer_put_bignum2(b, key->rsa->d);
480 buffer_put_bignum2(b, key->rsa->iqmp);
481 buffer_put_bignum2(b, key->rsa->p);
482 buffer_put_bignum2(b, key->rsa->q);
483 break;
484 case KEY_DSA:
485 buffer_put_bignum2(b, key->dsa->p);
486 buffer_put_bignum2(b, key->dsa->q);
487 buffer_put_bignum2(b, key->dsa->g);
488 buffer_put_bignum2(b, key->dsa->pub_key);
489 buffer_put_bignum2(b, key->dsa->priv_key);
490 break;
491 }
492 buffer_put_cstring(b, comment);
493 }

495 /*
496 * Adds an identity to the authentication server. This call is not meant to
497 * be used by normal applications.
498 */

500 int
501 ssh_add_identity_constrained(AuthenticationConnection *auth, Key *key,
502 const char *comment, u_int life)
503 {
504 Buffer msg;
505 int type, constrained = (life != 0);

507 buffer_init(&msg);

509 switch (key->type) {
510 case KEY_RSA1:
511 type = constrained ?
512 SSH_AGENTC_ADD_RSA_ID_CONSTRAINED :
513 SSH_AGENTC_ADD_RSA_IDENTITY;
514 buffer_put_char(&msg, type);
515 ssh_encode_identity_rsa1(&msg, key->rsa, comment);
516 break;
517 case KEY_RSA:
518 case KEY_DSA:
519 type = constrained ?
520 SSH2_AGENTC_ADD_ID_CONSTRAINED :
521 SSH2_AGENTC_ADD_IDENTITY;
522 buffer_put_char(&msg, type);
523 ssh_encode_identity_ssh2(&msg, key, comment);

new/usr/src/cmd/ssh/libssh/common/authfd.c 9

524 break;
525 default:
526 buffer_free(&msg);
527 return 0;
528 break;
529 }
530 if (constrained) {
531 if (life != 0) {
532 buffer_put_char(&msg, SSH_AGENT_CONSTRAIN_LIFETIME);
533 buffer_put_int(&msg, life);
534 }
535 }
536 if (ssh_request_reply(auth, &msg, &msg) == 0) {
537 buffer_free(&msg);
538 return 0;
539 }
540 type = buffer_get_char(&msg);
541 buffer_free(&msg);
542 return decode_reply(type);
543 }

545 int
546 ssh_add_identity(AuthenticationConnection *auth, Key *key, const char *comment)
547 {
548 return ssh_add_identity_constrained(auth, key, comment, 0);
549 }

551 /*
552 * Removes an identity from the authentication server. This call is not
553 * meant to be used by normal applications.
554 */

556 int
557 ssh_remove_identity(AuthenticationConnection *auth, Key *key)
558 {
559 Buffer msg;
560 int type;
561 u_char *blob;
562 u_int blen;

564 buffer_init(&msg);

566 if (key->type == KEY_RSA1) {
567 buffer_put_char(&msg, SSH_AGENTC_REMOVE_RSA_IDENTITY);
568 buffer_put_int(&msg, BN_num_bits(key->rsa->n));
569 buffer_put_bignum(&msg, key->rsa->e);
570 buffer_put_bignum(&msg, key->rsa->n);
571 } else if (key->type == KEY_DSA || key->type == KEY_RSA) {
572 key_to_blob(key, &blob, &blen);
573 buffer_put_char(&msg, SSH2_AGENTC_REMOVE_IDENTITY);
574 buffer_put_string(&msg, blob, blen);
575 xfree(blob);
576 } else {
577 buffer_free(&msg);
578 return 0;
579 }
580 if (ssh_request_reply(auth, &msg, &msg) == 0) {
581 buffer_free(&msg);
582 return 0;
583 }
584 type = buffer_get_char(&msg);
585 buffer_free(&msg);
586 return decode_reply(type);
587 }

new/usr/src/cmd/ssh/libssh/common/authfd.c 10

590 /*
591 * Removes all identities from the agent. This call is not meant to be used
592 * by normal applications.
593 */

595 int
596 ssh_remove_all_identities(AuthenticationConnection *auth, int version)
597 {
598 Buffer msg;
599 int type;
600 int code = (version==1) ?
601 SSH_AGENTC_REMOVE_ALL_RSA_IDENTITIES :
602 SSH2_AGENTC_REMOVE_ALL_IDENTITIES;

604 buffer_init(&msg);
605 buffer_put_char(&msg, code);

607 if (ssh_request_reply(auth, &msg, &msg) == 0) {
608 buffer_free(&msg);
609 return 0;
610 }
611 type = buffer_get_char(&msg);
612 buffer_free(&msg);
613 return decode_reply(type);
614 }

616 int
617 decode_reply(int type)
618 {
619 switch (type) {
620 case SSH_AGENT_FAILURE:
621 case SSH_COM_AGENT2_FAILURE:
622 case SSH2_AGENT_FAILURE:
623 log("SSH_AGENT_FAILURE");
624 return 0;
625 case SSH_AGENT_SUCCESS:
626 return 1;
627 default:
628 fatal("Bad response from authentication agent: %d", type);
629 }
630 /* NOTREACHED */
631 return 0;
632 }

new/usr/src/cmd/ssh/libssh/common/authfile.c 1

**
 17293 Fri May 30 18:31:09 2014
new/usr/src/cmd/ssh/libssh/common/authfile.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Author: Tatu Ylonen <ylo@cs.hut.fi>
3 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
4 * All rights reserved
5 * This file contains functions for reading and writing identity files, and
6 * for reading the passphrase from the user.
7 *
8 * As far as I am concerned, the code I have written for this software
9 * can be used freely for any purpose. Any derived versions of this
10 * software must be clearly marked as such, and if the derived work is
11 * incompatible with the protocol description in the RFC file, it must be
12 * called by a name other than "ssh" or "Secure Shell".
13 *
14 *
15 * Copyright (c) 2000 Markus Friedl. All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
27 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
28 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
31 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
35 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */

38 #include "includes.h"
39 RCSID("$OpenBSD: authfile.c,v 1.50 2002/06/24 14:55:38 markus Exp $");

41 #pragma ident "%Z%%M% %I% %E% SMI"

43 #include <openssl/opensslconf.h>
44 #include <openssl/err.h>
45 #include <openssl/evp.h>
46 #include <openssl/pem.h>

48 #include "cipher.h"
49 #include "xmalloc.h"
50 #include "buffer.h"
51 #include "bufaux.h"
52 #include "key.h"
53 #include "ssh.h"
54 #include "log.h"
55 #include "authfile.h"
56 #include "rsa.h"

58 /* Version identification string for SSH v1 identity files. */
59 static const char authfile_id_string[] =
60 "SSH PRIVATE KEY FILE FORMAT 1.1\n";

new/usr/src/cmd/ssh/libssh/common/authfile.c 2

62 /*
63 * Saves the authentication (private) key in a file, encrypting it with
64 * passphrase. The identification of the file (lowest 64 bits of n) will
65 * precede the key to provide identification of the key without needing a
66 * passphrase.
67 */

69 static int
70 key_save_private_rsa1(Key *key, const char *filename, const char *passphrase,
71 const char *comment)
72 {
73 Buffer buffer, encrypted;
74 u_char buf[100], *cp;
75 int fd, i, cipher_num;
76 CipherContext ciphercontext;
77 Cipher *cipher;
78 u_int32_t rand;

80 /*
81 * If the passphrase is empty, use SSH_CIPHER_NONE to ease converting
82 * to another cipher; otherwise use SSH_AUTHFILE_CIPHER.
83 */
84 cipher_num = (strcmp(passphrase, "") == 0) ?
85 SSH_CIPHER_NONE : SSH_AUTHFILE_CIPHER;
86 if ((cipher = cipher_by_number(cipher_num)) == NULL)
87 fatal("save_private_key_rsa: bad cipher");

89 /* This buffer is used to built the secret part of the private key. */
90 buffer_init(&buffer);

92 /* Put checkbytes for checking passphrase validity. */
93 rand = arc4random();
94 buf[0] = rand & 0xff;
95 buf[1] = (rand >> 8) & 0xff;
96 buf[2] = buf[0];
97 buf[3] = buf[1];
98 buffer_append(&buffer, buf, 4);

100 /*
101 * Store the private key (n and e will not be stored because they
102 * will be stored in plain text, and storing them also in encrypted
103 * format would just give known plaintext).
104 */
105 buffer_put_bignum(&buffer, key->rsa->d);
106 buffer_put_bignum(&buffer, key->rsa->iqmp);
107 buffer_put_bignum(&buffer, key->rsa->q); /* reverse from SSL p */
108 buffer_put_bignum(&buffer, key->rsa->p); /* reverse from SSL q */

110 /* Pad the part to be encrypted until its size is a multiple of 8. */
111 while (buffer_len(&buffer) % 8 != 0)
112 buffer_put_char(&buffer, 0);

114 /* This buffer will be used to contain the data in the file. */
115 buffer_init(&encrypted);

117 /* First store keyfile id string. */
118 for (i = 0; authfile_id_string[i]; i++)
119 buffer_put_char(&encrypted, authfile_id_string[i]);
120 buffer_put_char(&encrypted, 0);

122 /* Store cipher type. */
123 buffer_put_char(&encrypted, cipher_num);
124 buffer_put_int(&encrypted, 0); /* For future extension */

126 /* Store public key. This will be in plain text. */
127 buffer_put_int(&encrypted, BN_num_bits(key->rsa->n));

new/usr/src/cmd/ssh/libssh/common/authfile.c 3

128 buffer_put_bignum(&encrypted, key->rsa->n);
129 buffer_put_bignum(&encrypted, key->rsa->e);
130 buffer_put_cstring(&encrypted, comment);

132 /* Allocate space for the private part of the key in the buffer. */
133 cp = buffer_append_space(&encrypted, buffer_len(&buffer));

135 cipher_set_key_string(&ciphercontext, cipher, passphrase,
136 CIPHER_ENCRYPT);
137 cipher_crypt(&ciphercontext, cp,
138 buffer_ptr(&buffer), buffer_len(&buffer));
139 cipher_cleanup(&ciphercontext);
140 memset(&ciphercontext, 0, sizeof(ciphercontext));

142 /* Destroy temporary data. */
143 memset(buf, 0, sizeof(buf));
144 buffer_free(&buffer);

146 fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0600);
147 if (fd < 0) {
148 error("open %s failed: %s.", filename, strerror(errno));
149 return 0;
150 }
151 if (write(fd, buffer_ptr(&encrypted), buffer_len(&encrypted)) !=
152 buffer_len(&encrypted)) {
153 error("write to key file %s failed: %s", filename,
154 strerror(errno));
155 buffer_free(&encrypted);
156 close(fd);
157 unlink(filename);
158 return 0;
159 }
160 close(fd);
161 buffer_free(&encrypted);
162 return 1;
163 }

165 /* save SSH v2 key in OpenSSL PEM format */
166 static int
167 key_save_private_pem(Key *key, const char *filename, const char *_passphrase,
168 const char *comment)
169 {
170 FILE *fp;
171 int fd;
172 int success = 0;
173 int len = strlen(_passphrase);
174 u_char *passphrase = (len > 0) ? (u_char *)_passphrase : NULL;
175 const EVP_CIPHER *cipher = (len > 0) ? EVP_des_ede3_cbc() : NULL;

177 if (len > 0 && len <= 4) {
178 error("passphrase too short: have %d bytes, need > 4", len);
179 return 0;
180 }
181 fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0600);
182 if (fd < 0) {
183 error("open %s failed: %s.", filename, strerror(errno));
184 return 0;
185 }
186 fp = fdopen(fd, "w");
187 if (fp == NULL) {
188 error("fdopen %s failed: %s.", filename, strerror(errno));
189 close(fd);
190 return 0;
191 }
192 switch (key->type) {
193 case KEY_DSA:

new/usr/src/cmd/ssh/libssh/common/authfile.c 4

194 success = PEM_write_DSAPrivateKey(fp, key->dsa,
195 cipher, passphrase, len, NULL, NULL);
196 break;
197 case KEY_RSA:
198 success = PEM_write_RSAPrivateKey(fp, key->rsa,
199 cipher, passphrase, len, NULL, NULL);
200 break;
201 }
202 fclose(fp);
203 return success;
204 }

206 int
207 key_save_private(Key *key, const char *filename, const char *passphrase,
208 const char *comment)
209 {
210 switch (key->type) {
211 case KEY_RSA1:
212 return key_save_private_rsa1(key, filename, passphrase,
213 comment);
214 break;
215 case KEY_DSA:
216 case KEY_RSA:
217 return key_save_private_pem(key, filename, passphrase,
218 comment);
219 break;
220 default:
221 break;
222 }
223 error("key_save_private: cannot save key type %d", key->type);
224 return 0;
225 }

227 /*
228 * Loads the public part of the ssh v1 key file. Returns NULL if an error was
229 * encountered (the file does not exist or is not readable), and the key
230 * otherwise.
231 */

233 static Key *
234 key_load_public_rsa1(int fd, const char *filename, char **commentp)
235 {
236 Buffer buffer;
237 Key *pub;
238 char *cp;
239 int i;
240 off_t len;

242 len = lseek(fd, (off_t) 0, SEEK_END);
243 lseek(fd, (off_t) 0, SEEK_SET);

245 buffer_init(&buffer);
246 cp = buffer_append_space(&buffer, len);

248 if (read(fd, cp, (size_t) len) != (size_t) len) {
249 debug("Read from key file %.200s failed: %.100s", filename,
250 strerror(errno));
251 buffer_free(&buffer);
252 return NULL;
253 }

255 /* Check that it is at least big enough to contain the ID string. */
256 if (len < sizeof(authfile_id_string)) {
257 debug3("Not a RSA1 key file %.200s.", filename);
258 buffer_free(&buffer);
259 return NULL;

new/usr/src/cmd/ssh/libssh/common/authfile.c 5

260 }
261 /*
262 * Make sure it begins with the id string. Consume the id string
263 * from the buffer.
264 */
265 for (i = 0; i < sizeof(authfile_id_string); i++)
266 if (buffer_get_char(&buffer) != authfile_id_string[i]) {
267 debug3("Not a RSA1 key file %.200s.", filename);
268 buffer_free(&buffer);
269 return NULL;
270 }
271 /* Skip cipher type and reserved data. */
272 (void) buffer_get_char(&buffer); /* cipher type */
273 (void) buffer_get_int(&buffer); /* reserved */

275 /* Read the public key from the buffer. */
276 (void) buffer_get_int(&buffer);
277 pub = key_new(KEY_RSA1);
278 buffer_get_bignum(&buffer, pub->rsa->n);
279 buffer_get_bignum(&buffer, pub->rsa->e);
280 if (commentp)
281 *commentp = buffer_get_string(&buffer, NULL);
282 /* The encrypted private part is not parsed by this function. */

284 buffer_free(&buffer);
285 return pub;
286 }

288 /* load public key from private-key file, works only for SSH v1 */
289 Key *
290 key_load_public_type(int type, const char *filename, char **commentp)
291 {
292 Key *pub;
293 int fd;

295 if (type == KEY_RSA1) {
296 fd = open(filename, O_RDONLY);
297 if (fd < 0)
298 return NULL;
299 pub = key_load_public_rsa1(fd, filename, commentp);
300 close(fd);
301 return pub;
302 }
303 return NULL;
304 }

306 /*
307 * Loads the private key from the file. Returns 0 if an error is encountered
308 * (file does not exist or is not readable, or passphrase is bad). This
309 * initializes the private key.
310 * Assumes we are called under uid of the owner of the file.
311 */

313 static Key *
314 key_load_private_rsa1(int fd, const char *filename, const char *passphrase,
315 char **commentp)
316 {
317 int i, check1, check2, cipher_type;
318 off_t len;
319 Buffer buffer, decrypted;
320 u_char *cp;
321 CipherContext ciphercontext;
322 Cipher *cipher;
323 Key *prv = NULL;

325 len = lseek(fd, (off_t) 0, SEEK_END);

new/usr/src/cmd/ssh/libssh/common/authfile.c 6

326 lseek(fd, (off_t) 0, SEEK_SET);

328 buffer_init(&buffer);
329 cp = buffer_append_space(&buffer, len);

331 if (read(fd, cp, (size_t) len) != (size_t) len) {
332 debug("Read from key file %.200s failed: %.100s", filename,
333 strerror(errno));
334 buffer_free(&buffer);
335 close(fd);
336 return NULL;
337 }

339 /* Check that it is at least big enough to contain the ID string. */
340 if (len < sizeof(authfile_id_string)) {
341 debug3("Not a RSA1 key file %.200s.", filename);
342 buffer_free(&buffer);
343 close(fd);
344 return NULL;
345 }
346 /*
347 * Make sure it begins with the id string. Consume the id string
348 * from the buffer.
349 */
350 for (i = 0; i < sizeof(authfile_id_string); i++)
351 if (buffer_get_char(&buffer) != authfile_id_string[i]) {
352 debug3("Not a RSA1 key file %.200s.", filename);
353 buffer_free(&buffer);
354 close(fd);
355 return NULL;
356 }

358 /* Read cipher type. */
359 cipher_type = buffer_get_char(&buffer);
360 (void) buffer_get_int(&buffer); /* Reserved data. */

362 /* Read the public key from the buffer. */
363 (void) buffer_get_int(&buffer);
364 prv = key_new_private(KEY_RSA1);

366 buffer_get_bignum(&buffer, prv->rsa->n);
367 buffer_get_bignum(&buffer, prv->rsa->e);
368 if (commentp)
369 *commentp = buffer_get_string(&buffer, NULL);
370 else
371 xfree(buffer_get_string(&buffer, NULL));

373 /* Check that it is a supported cipher. */
374 cipher = cipher_by_number(cipher_type);
375 if (cipher == NULL) {
376 debug("Unsupported cipher %d used in key file %.200s.",
377 cipher_type, filename);
378 buffer_free(&buffer);
379 goto fail;
380 }
381 /* Initialize space for decrypted data. */
382 buffer_init(&decrypted);
383 cp = buffer_append_space(&decrypted, buffer_len(&buffer));

385 /* Rest of the buffer is encrypted. Decrypt it using the passphrase. */
386 cipher_set_key_string(&ciphercontext, cipher, passphrase,
387 CIPHER_DECRYPT);
388 cipher_crypt(&ciphercontext, cp,
389 buffer_ptr(&buffer), buffer_len(&buffer));
390 cipher_cleanup(&ciphercontext);
391 memset(&ciphercontext, 0, sizeof(ciphercontext));

new/usr/src/cmd/ssh/libssh/common/authfile.c 7

392 buffer_free(&buffer);

394 check1 = buffer_get_char(&decrypted);
395 check2 = buffer_get_char(&decrypted);
396 if (check1 != buffer_get_char(&decrypted) ||
397 check2 != buffer_get_char(&decrypted)) {
398 if (strcmp(passphrase, "") != 0)
399 debug("Bad passphrase supplied for key file %.200s.",
400 filename);
401 /* Bad passphrase. */
402 buffer_free(&decrypted);
403 goto fail;
404 }
405 /* Read the rest of the private key. */
406 buffer_get_bignum(&decrypted, prv->rsa->d);
407 buffer_get_bignum(&decrypted, prv->rsa->iqmp); /* u */
408 /* in SSL and SSH v1 p and q are exchanged */
409 buffer_get_bignum(&decrypted, prv->rsa->q); /* p */
410 buffer_get_bignum(&decrypted, prv->rsa->p); /* q */

412 /* calculate p-1 and q-1 */
413 rsa_generate_additional_parameters(prv->rsa);

415 buffer_free(&decrypted);
416 close(fd);
417 return prv;

419 fail:
420 if (commentp)
421 xfree(*commentp);
422 close(fd);
423 key_free(prv);
424 return NULL;
425 }

427 Key *
428 key_load_private_pem(int fd, int type, const char *passphrase,
429 char **commentp)
430 {
431 FILE *fp;
432 EVP_PKEY *pk = NULL;
433 Key *prv = NULL;
434 char *name = "<no key>";

436 fp = fdopen(fd, "r");
437 if (fp == NULL) {
438 error("fdopen failed: %s", strerror(errno));
439 close(fd);
440 return NULL;
441 }
442 pk = PEM_read_PrivateKey(fp, NULL, NULL, (char *)passphrase);
443 if (pk == NULL) {
444 debug("PEM_read_PrivateKey failed");
445 (void)ERR_get_error();
446 } else if (pk->type == EVP_PKEY_RSA &&
447 (type == KEY_UNSPEC||type==KEY_RSA)) {
448 prv = key_new(KEY_UNSPEC);
449 prv->rsa = EVP_PKEY_get1_RSA(pk);
450 prv->type = KEY_RSA;
451 name = "rsa w/o comment";
452 #ifdef DEBUG_PK
453 RSA_print_fp(stderr, prv->rsa, 8);
454 #endif
455 } else if (pk->type == EVP_PKEY_DSA &&
456 (type == KEY_UNSPEC||type==KEY_DSA)) {
457 prv = key_new(KEY_UNSPEC);

new/usr/src/cmd/ssh/libssh/common/authfile.c 8

458 prv->dsa = EVP_PKEY_get1_DSA(pk);
459 prv->type = KEY_DSA;
460 name = "dsa w/o comment";
461 #ifdef DEBUG_PK
462 DSA_print_fp(stderr, prv->dsa, 8);
463 #endif
464 } else {
465 error("PEM_read_PrivateKey: mismatch or "
466 "unknown EVP_PKEY save_type %d", pk->save_type);
467 }
468 fclose(fp);
469 if (pk != NULL)
470 EVP_PKEY_free(pk);
471 if (prv != NULL && commentp)
472 *commentp = xstrdup(name);
473 debug("read PEM private key done: type %s",
474 prv ? key_type(prv) : "<unknown>");
475 return prv;
476 }

478 static int
479 key_perm_ok(int fd, const char *filename)
480 {
481 struct stat st;

483 if (fstat(fd, &st) < 0)
484 return 0;
485 /*
486 * if a key owned by the user is accessed, then we check the
487 * permissions of the file. if the key owned by a different user,
488 * then we don’t care.
489 */
490 #ifdef HAVE_CYGWIN
491 if (check_ntsec(filename))
492 #endif
493 if ((st.st_uid == getuid()) && (st.st_mode & 077) != 0) {
494 error("@@@
495 error("@ WARNING: UNPROTECTED PRIVATE KEY FILE!
496 error("@@@
497 error("Permissions 0%3.3o for ’%s’ are too open.",
498 (int)(st.st_mode & 0777), filename);
499 error("It is recommended that your private key files are NOT acc
500 error("This private key will be ignored.");
501 return 0;
502 }
503 return 1;
504 }

506 Key *
507 key_load_private_type(int type, const char *filename, const char *passphrase,
508 char **commentp)
509 {
510 int fd;

512 fd = open(filename, O_RDONLY);
513 if (fd < 0)
514 return NULL;
515 if (!key_perm_ok(fd, filename)) {
516 error("bad permissions: ignore key: %s", filename);
517 close(fd);
518 return NULL;
519 }
520 switch (type) {
521 case KEY_RSA1:
522 return key_load_private_rsa1(fd, filename, passphrase,
523 commentp);

new/usr/src/cmd/ssh/libssh/common/authfile.c 9

524 /* closes fd */
525 break;
526 case KEY_DSA:
527 case KEY_RSA:
528 case KEY_UNSPEC:
529 return key_load_private_pem(fd, type, passphrase, commentp);
530 /* closes fd */
531 break;
532 default:
533 close(fd);
534 break;
535 }
536 return NULL;
537 }

539 Key *
540 key_load_private(const char *filename, const char *passphrase,
541 char **commentp)
542 {
543 Key *pub, *prv;
544 int fd;

546 fd = open(filename, O_RDONLY);
547 if (fd < 0)
548 return NULL;
549 if (!key_perm_ok(fd, filename)) {
550 error("bad permissions: ignore key: %s", filename);
551 close(fd);
552 return NULL;
553 }
554 pub = key_load_public_rsa1(fd, filename, commentp);
555 lseek(fd, (off_t) 0, SEEK_SET); /* rewind */
556 if (pub == NULL) {
557 /* closes fd */
558 prv = key_load_private_pem(fd, KEY_UNSPEC, passphrase, NULL);
559 /* use the filename as a comment for PEM */
560 if (commentp && prv)
561 *commentp = xstrdup(filename);
562 } else {
563 /* it’s a SSH v1 key if the public key part is readable */
564 key_free(pub);
565 /* closes fd */
566 prv = key_load_private_rsa1(fd, filename, passphrase, NULL);
567 }
568 return prv;
569 }

571 static int
572 key_try_load_public(Key *k, const char *filename, char **commentp)
573 {
574 FILE *f;
575 char line[4096];
576 char *cp;

578 f = fopen(filename, "r");
579 if (f != NULL) {
580 while (fgets(line, sizeof(line), f)) {
581 line[sizeof(line)-1] = ’\0’;
582 cp = line;
583 switch (*cp) {
584 case ’#’:
585 case ’\n’:
586 case ’\0’:
587 continue;
588 }
589 /* Skip leading whitespace. */

new/usr/src/cmd/ssh/libssh/common/authfile.c 10

590 for (; *cp && (*cp == ’ ’ || *cp == ’\t’); cp++)
591 ;
592 if (*cp) {
593 if (key_read(k, &cp) == 1) {
594 if (commentp)
595 *commentp=xstrdup(filename);
596 fclose(f);
597 return 1;
598 }
599 }
600 }
601 fclose(f);
602 }
603 return 0;
604 }

606 /* load public key from ssh v1 private or any pubkey file */
607 Key *
608 key_load_public(const char *filename, char **commentp)
609 {
610 Key *pub;
611 char file[MAXPATHLEN];

613 pub = key_load_public_type(KEY_RSA1, filename, commentp);
614 if (pub != NULL)
615 return pub;
616 pub = key_new(KEY_UNSPEC);
617 if (key_try_load_public(pub, filename, commentp) == 1)
618 return pub;
619 if ((strlcpy(file, filename, sizeof file) < sizeof(file)) &&
620 (strlcat(file, ".pub", sizeof file) < sizeof(file)) &&
621 (key_try_load_public(pub, file, commentp) == 1))
622 return pub;
623 key_free(pub);
624 return NULL;
625 }

new/usr/src/cmd/ssh/libssh/common/bufaux.c 1

**
 10887 Fri May 30 18:31:09 2014
new/usr/src/cmd/ssh/libssh/common/bufaux.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
5 /*
6 * Author: Tatu Ylonen <ylo@cs.hut.fi>
7 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
8 * All rights reserved
9 * Auxiliary functions for storing and retrieving various data types to/from
10 * Buffers.
11 *
12 * As far as I am concerned, the code I have written for this software
13 * can be used freely for any purpose. Any derived versions of this
14 * software must be clearly marked as such, and if the derived work is
15 * incompatible with the protocol description in the RFC file, it must be
16 * called by a name other than "ssh" or "Secure Shell".
17 *
18 *
19 * SSH2 packet format added by Markus Friedl
20 * Copyright (c) 2000 Markus Friedl. All rights reserved.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the above copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
32 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
34 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
35 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
36 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
40 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */

43 #include "includes.h"
44 RCSID("$OpenBSD: bufaux.c,v 1.27 2002/06/26 08:53:12 markus Exp $");

46 #include <openssl/opensslconf.h>
47 #include <langinfo.h>
48 #include <openssl/bn.h>
49 #include "bufaux.h"
50 #include "xmalloc.h"
51 #include "getput.h"
52 #include "log.h"
53 #include "g11n.h"

55 /*
56 * Stores an BIGNUM in the buffer with a 2-byte msb first bit count, followed
57 * by (bits+7)/8 bytes of binary data, msb first.
58 */
59 int
60 buffer_put_bignum_ret(Buffer *buffer, const BIGNUM *value)
61 {

new/usr/src/cmd/ssh/libssh/common/bufaux.c 2

62 int bits = BN_num_bits(value);
63 int bin_size = (bits + 7) / 8;
64 u_char *buf = xmalloc(bin_size);
65 int oi;
66 char msg[2];

68 /* Get the value of in binary */
69 oi = BN_bn2bin(value, buf);
70 if (oi != bin_size) {
71 error("buffer_put_bignum_ret: BN_bn2bin() failed: oi %d != bin_s
72 oi, bin_size);
73 xfree(buf);
74 return (-1);
75 }

77 /* Store the number of bits in the buffer in two bytes, msb first. */
78 PUT_16BIT(msg, bits);
79 buffer_append(buffer, msg, 2);
80 /* Store the binary data. */
81 buffer_append(buffer, (char *)buf, oi);

83 memset(buf, 0, bin_size);
84 xfree(buf);

86 return (0);
87 }

89 void
90 buffer_put_bignum(Buffer *buffer, const BIGNUM *value)
91 {
92 if (buffer_put_bignum_ret(buffer, value) == -1)
93 fatal("buffer_put_bignum: buffer error");
94 }

96 /*
97 * Retrieves an BIGNUM from the buffer.
98 */
99 int
100 buffer_get_bignum_ret(Buffer *buffer, BIGNUM *value)
101 {
102 u_int bits, bytes;
103 u_char buf[2], *bin;

105 /* Get the number for bits. */
106 if (buffer_get_ret(buffer, (char *) buf, 2) == -1) {
107 error("buffer_get_bignum_ret: invalid length");
108 return (-1);
109 }
110 bits = GET_16BIT(buf);
111 /* Compute the number of binary bytes that follow. */
112 bytes = (bits + 7) / 8;
113 if (bytes > 8 * 1024) {
114 error("buffer_get_bignum_ret: cannot handle BN of size %d", byte
115 return (-1);
116 }
117 if (buffer_len(buffer) < bytes) {
118 error("buffer_get_bignum_ret: input buffer too small");
119 return (-1);
120 }
121 bin = buffer_ptr(buffer);
122 BN_bin2bn(bin, bytes, value);
123 if (buffer_consume_ret(buffer, bytes) == -1) {
124 error("buffer_get_bignum_ret: buffer_consume failed");
125 return (-1);
126 }
127 return (0);

new/usr/src/cmd/ssh/libssh/common/bufaux.c 3

128 }

130 void
131 buffer_get_bignum(Buffer *buffer, BIGNUM *value)
132 {
133 if (buffer_get_bignum_ret(buffer, value) == -1)
134 fatal("buffer_get_bignum: buffer error");
135 }

137 /*
138 * Stores an BIGNUM in the buffer in SSH2 format.
139 */
140 int
141 buffer_put_bignum2_ret(Buffer *buffer, const BIGNUM *value)
142 {
143 u_int bytes;
144 u_char *buf;
145 int oi;
146 u_int hasnohigh = 0;

148 if (BN_is_zero(value)) {
149 buffer_put_int(buffer, 0);
150 return 0;
151 }
152 if (value->neg) {
153 error("buffer_put_bignum2_ret: negative numbers not supported");
154 return (-1);
155 }
156 bytes = BN_num_bytes(value) + 1; /* extra padding byte */
157 if (bytes < 2) {
158 error("buffer_put_bignum2_ret: BN too small");
159 return (-1);
160 }
161 buf = xmalloc(bytes);
162 buf[0] = 0x00;
163 /* Get the value of in binary */
164 oi = BN_bn2bin(value, buf+1);
165 if (oi < 0 || (u_int)oi != bytes - 1) {
166 error("buffer_put_bignum2_ret: BN_bn2bin() failed: "
167 "oi %d != bin_size %d", oi, bytes);
168 xfree(buf);
169 return (-1);
170 }
171 hasnohigh = (buf[1] & 0x80) ? 0 : 1;
172 buffer_put_string(buffer, buf+hasnohigh, bytes-hasnohigh);
173 memset(buf, 0, bytes);
174 xfree(buf);
175 return (0);
176 }

178 void
179 buffer_put_bignum2(Buffer *buffer, const BIGNUM *value)
180 {
181 if (buffer_put_bignum2_ret(buffer, value) == -1)
182 fatal("buffer_put_bignum2: buffer error");
183 }

185 /* XXX does not handle negative BNs */
186 int
187 buffer_get_bignum2_ret(Buffer *buffer, BIGNUM *value)
188 {
189 u_int len;
190 u_char *bin;

192 if ((bin = buffer_get_string_ret(buffer, &len)) == NULL) {
193 error("buffer_get_bignum2_ret: invalid bignum");

new/usr/src/cmd/ssh/libssh/common/bufaux.c 4

194 return (-1);
195 }

197 if (len > 0 && (bin[0] & 0x80)) {
198 error("buffer_get_bignum2_ret: negative numbers not supported");
199 xfree(bin);
200 return (-1);
201 }
202 if (len > 8 * 1024) {
203 error("buffer_get_bignum2_ret: cannot handle BN of size %d", len
204 xfree(bin);
205 return (-1);
206 }
207 BN_bin2bn(bin, len, value);
208 xfree(bin);
209 return (0);
210 }

212 void
213 buffer_get_bignum2(Buffer *buffer, BIGNUM *value)
214 {
215 if (buffer_get_bignum2_ret(buffer, value) == -1)
216 fatal("buffer_get_bignum2: buffer error");
217 }

219 /*
220 * Returns integers from the buffer (msb first).
221 */

223 int
224 buffer_get_short_ret(u_short *ret, Buffer *buffer)
225 {
226 u_char buf[2];

228 if (buffer_get_ret(buffer, (char *) buf, 2) == -1)
229 return (-1);
230 *ret = GET_16BIT(buf);
231 return (0);
232 }

234 u_short
235 buffer_get_short(Buffer *buffer)
236 {
237 u_short ret;

239 if (buffer_get_short_ret(&ret, buffer) == -1)
240 fatal("buffer_get_short: buffer error");

242 return (ret);
243 }

245 int
246 buffer_get_int_ret(u_int *ret, Buffer *buffer)
247 {
248 u_char buf[4];

250 if (buffer_get_ret(buffer, (char *) buf, 4) == -1)
251 return (-1);
252 *ret = GET_32BIT(buf);
253 return (0);
254 }

256 u_int
257 buffer_get_int(Buffer *buffer)
258 {
259 u_int ret;

new/usr/src/cmd/ssh/libssh/common/bufaux.c 5

261 if (buffer_get_int_ret(&ret, buffer) == -1)
262 fatal("buffer_get_int: buffer error");

264 return (ret);
265 }

267 #ifdef HAVE_U_INT64_T
268 int
269 buffer_get_int64_ret(u_int64_t *ret, Buffer *buffer)
270 {
271 u_char buf[8];

273 if (buffer_get_ret(buffer, (char *) buf, 8) == -1)
274 return (-1);
275 *ret = GET_64BIT(buf);
276 return (0);
277 }

279 u_int64_t
280 buffer_get_int64(Buffer *buffer)
281 {
282 u_int64_t ret;

284 if (buffer_get_int64_ret(&ret, buffer) == -1)
285 fatal("buffer_get_int: buffer error");

287 return (ret);
288 }
289 #endif

291 /*
292 * Stores integers in the buffer, msb first.
293 */
294 void
295 buffer_put_short(Buffer *buffer, u_short value)
296 {
297 char buf[2];

299 PUT_16BIT(buf, value);
300 buffer_append(buffer, buf, 2);
301 }

303 void
304 buffer_put_int(Buffer *buffer, u_int value)
305 {
306 char buf[4];

308 PUT_32BIT(buf, value);
309 buffer_append(buffer, buf, 4);
310 }

312 #ifdef HAVE_U_INT64_T
313 void
314 buffer_put_int64(Buffer *buffer, u_int64_t value)
315 {
316 char buf[8];

318 PUT_64BIT(buf, value);
319 buffer_append(buffer, buf, 8);
320 }
321 #endif

323 /*
324 * Returns an arbitrary binary string from the buffer. The string cannot
325 * be longer than 256k. The returned value points to memory allocated

new/usr/src/cmd/ssh/libssh/common/bufaux.c 6

326 * with xmalloc; it is the responsibility of the calling function to free
327 * the data. If length_ptr is non-NULL, the length of the returned data
328 * will be stored there. A null character will be automatically appended
329 * to the returned string, and is not counted in length.
330 */
331 void *
332 buffer_get_string_ret(Buffer *buffer, u_int *length_ptr)
333 {
334 u_char *value;
335 u_int len;

337 /* Get the length. */
338 len = buffer_get_int(buffer);
339 if (len > 256 * 1024) {
340 error("buffer_get_string_ret: bad string length %u", len);
341 return (NULL);
342 }
343 /* Allocate space for the string. Add one byte for a null character. */
344 value = xmalloc(len + 1);
345 /* Get the string. */
346 if (buffer_get_ret(buffer, value, len) == -1) {
347 error("buffer_get_string_ret: buffer_get failed");
348 xfree(value);
349 return (NULL);
350 }
351 /* Append a null character to make processing easier. */
352 value[len] = 0;
353 /* Optionally return the length of the string. */
354 if (length_ptr)
355 *length_ptr = len;
356 return (value);
357 }

359 void *
360 buffer_get_string(Buffer *buffer, u_int *length_ptr)
361 {
362 void *ret;

364 if ((ret = buffer_get_string_ret(buffer, length_ptr)) == NULL)
365 fatal("buffer_get_string: buffer error");
366 return (ret);
367 }

369 char *
370 buffer_get_utf8_string(Buffer *buffer, uint_t *length_ptr)
371 {
372 char *value, *converted, *estr;
373 uint_t len;

375 if ((value = buffer_get_string(buffer, &len)) == NULL)
376 return (value);

378 converted = g11n_convert_from_utf8(value, &len, &estr);
379 if (converted == NULL) {
380 if (estr != NULL)
381 error("invalid UTF-8 sequence: %s", estr);
382 converted = value;
383 } else {
384 xfree(value);
385 }

387 if (length_ptr != NULL)
388 *length_ptr = len;

390 return (converted);
391 }

new/usr/src/cmd/ssh/libssh/common/bufaux.c 7

393 /*
394 * Stores and arbitrary binary string in the buffer.
395 */
396 void
397 buffer_put_string(Buffer *buffer, const void *buf, u_int len)
398 {
399 buffer_put_int(buffer, len);
400 buffer_append(buffer, buf, len);
401 }
402 void
403 buffer_put_cstring(Buffer *buffer, const char *s)
404 {
405 if (s == NULL)
406 fatal("buffer_put_cstring: s == NULL");
407 buffer_put_string(buffer, s, strlen(s));
408 }

410 /*
411 * UTF-8 versions of the above.
412 */
413 void
414 buffer_put_utf8_string(Buffer *buffer, const char *s, uint_t len)
415 {
416 char *converted, *estr;
417 uint_t nlen = len;

419 converted = g11n_convert_to_utf8(s, &nlen, 0, &estr);
420 if (converted == NULL) {
421 if (estr != NULL)
422 error("Can’t convert to UTF-8: %s", estr);
423 converted = (char *)s;
424 }

426 buffer_put_string(buffer, converted, nlen);

428 if (converted != s)
429 xfree(converted);
430 }

432 void
433 buffer_put_utf8_cstring(Buffer *buffer, const char *s)
434 {
435 buffer_put_utf8_string(buffer, s, strlen(s));
436 }

438 /*
439 * Returns a character from the buffer (0 - 255).
440 */
441 int
442 buffer_get_char_ret(char *ret, Buffer *buffer)
443 {
444 if (buffer_get_ret(buffer, ret, 1) == -1) {
445 error("buffer_get_char_ret: buffer_get_ret failed");
446 return (-1);
447 }
448 return (0);
449 }

451 int
452 buffer_get_char(Buffer *buffer)
453 {
454 char ch;

456 if (buffer_get_char_ret(&ch, buffer) == -1)
457 fatal("buffer_get_char: buffer error");

new/usr/src/cmd/ssh/libssh/common/bufaux.c 8

458 return (u_char) ch;
459 }

461 /*
462 * Stores a character in the buffer.
463 */
464 void
465 buffer_put_char(Buffer *buffer, int value)
466 {
467 char ch = value;

469 buffer_append(buffer, &ch, 1);
470 }

new/usr/src/cmd/ssh/libssh/common/cipher-ctr.c 1

**
 4360 Fri May 30 18:31:09 2014
new/usr/src/cmd/ssh/libssh/common/cipher-ctr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2003 Markus Friedl <markus@openbsd.org>
3 *
4 * Permission to use, copy, modify, and distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16 /*
17 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
18 * Use is subject to license terms.
19 */

21 #include "includes.h"
22 RCSID("$OpenBSD: cipher-ctr.c,v 1.4 2004/02/06 23:41:13 dtucker Exp $");

24 #include <openssl/opensslconf.h>
25 #include <openssl/evp.h>

27 #include "log.h"
28 #include "xmalloc.h"
29 #include <openssl/aes.h>

31 const EVP_CIPHER *evp_aes_128_ctr(void);
32 void ssh_aes_ctr_iv(EVP_CIPHER_CTX *, int, u_char *, u_int);

34 struct ssh_aes_ctr_ctx
35 {
36 AES_KEY aes_ctx;
37 u_char aes_counter[AES_BLOCK_SIZE];
38 };

40 /*
41 * increment counter ’ctr’,
42 * the counter is of size ’len’ bytes and stored in network-byte-order.
43 * (LSB at ctr[len-1], MSB at ctr[0])
44 */
45 static void
46 ssh_ctr_inc(u_char *ctr, u_int len)
47 {
48 int i;

50 for (i = len - 1; i >= 0; i--)
51 if (++ctr[i]) /* continue on overflow */
52 return;
53 }

55 static int
56 ssh_aes_ctr(EVP_CIPHER_CTX *ctx, u_char *dest, const u_char *src,
57 u_int len)
58 {
59 struct ssh_aes_ctr_ctx *c;
60 u_int n = 0;
61 u_char buf[AES_BLOCK_SIZE];

new/usr/src/cmd/ssh/libssh/common/cipher-ctr.c 2

63 if (len == 0)
64 return (1);
65 if ((c = EVP_CIPHER_CTX_get_app_data(ctx)) == NULL)
66 return (0);

68 while ((len--) > 0) {
69 if (n == 0) {
70 AES_encrypt(c->aes_counter, buf, &c->aes_ctx);
71 ssh_ctr_inc(c->aes_counter, AES_BLOCK_SIZE);
72 }
73 *(dest++) = *(src++) ^ buf[n];
74 n = (n + 1) % AES_BLOCK_SIZE;
75 }
76 return (1);
77 }

79 static int
80 ssh_aes_ctr_init(EVP_CIPHER_CTX *ctx, const u_char *key, const u_char *iv,
81 int enc)
82 {
83 struct ssh_aes_ctr_ctx *c;

85 if ((c = EVP_CIPHER_CTX_get_app_data(ctx)) == NULL) {
86 c = xmalloc(sizeof(*c));
87 EVP_CIPHER_CTX_set_app_data(ctx, c);
88 }
89 if (key != NULL)
90 AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
91 &c->aes_ctx);
92 if (iv != NULL)
93 memcpy(c->aes_counter, iv, AES_BLOCK_SIZE);
94 return (1);
95 }

97 static int
98 ssh_aes_ctr_cleanup(EVP_CIPHER_CTX *ctx)
99 {
100 struct ssh_aes_ctr_ctx *c;

102 if ((c = EVP_CIPHER_CTX_get_app_data(ctx)) != NULL) {
103 memset(c, 0, sizeof(*c));
104 xfree(c);
105 EVP_CIPHER_CTX_set_app_data(ctx, NULL);
106 }
107 return (1);
108 }

110 void
111 ssh_aes_ctr_iv(EVP_CIPHER_CTX *evp, int doset, u_char * iv, u_int len)
112 {
113 struct ssh_aes_ctr_ctx *c;

115 if ((c = EVP_CIPHER_CTX_get_app_data(evp)) == NULL)
116 fatal("ssh_aes_ctr_iv: no context");
117 if (doset)
118 memcpy(c->aes_counter, iv, len);
119 else
120 memcpy(iv, c->aes_counter, len);
121 }

123 /*
124 * Function fills an EVP_CIPHER structure for AES CTR functions based on the NID
125 * and the key length.
126 */
127 static const EVP_CIPHER *

new/usr/src/cmd/ssh/libssh/common/cipher-ctr.c 3

128 evp_aes_ctr(const char *nid, int key_len, EVP_CIPHER *aes_ctr)
129 {
130 memset(aes_ctr, 0, sizeof(EVP_CIPHER));
131 /*
132 * If the PKCS#11 engine is used the AES CTR NIDs were dynamically
133 * created during the engine initialization. If the engine is not used
134 * we work with NID_undef’s which is OK since in that case OpenSSL
135 * doesn’t use NIDs at all.
136 */
137 if ((aes_ctr->nid = OBJ_ln2nid(nid)) != NID_undef)
138 debug3("%s NID found", nid);

140 aes_ctr->block_size = AES_BLOCK_SIZE;
141 aes_ctr->iv_len = AES_BLOCK_SIZE;
142 aes_ctr->key_len = key_len;
143 aes_ctr->init = ssh_aes_ctr_init;
144 aes_ctr->cleanup = ssh_aes_ctr_cleanup;
145 aes_ctr->do_cipher = ssh_aes_ctr;
146 aes_ctr->flags = EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH |
147 EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CUSTOM_IV;
148 return (aes_ctr);
149 }

151 const EVP_CIPHER *
152 evp_aes_128_ctr(void)
153 {
154 static EVP_CIPHER aes_ctr;

156 return (evp_aes_ctr("aes-128-ctr", 16, &aes_ctr));
157 }

159 const EVP_CIPHER *
160 evp_aes_192_ctr(void)
161 {
162 static EVP_CIPHER aes_ctr;

164 return (evp_aes_ctr("aes-192-ctr", 24, &aes_ctr));
165 }

167 const EVP_CIPHER *
168 evp_aes_256_ctr(void)
169 {
170 static EVP_CIPHER aes_ctr;

172 return (evp_aes_ctr("aes-256-ctr", 32, &aes_ctr));
173 }

new/usr/src/cmd/ssh/libssh/common/cipher.c 1

**
 15100 Fri May 30 18:31:09 2014
new/usr/src/cmd/ssh/libssh/common/cipher.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Author: Tatu Ylonen <ylo@cs.hut.fi>
3 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
4 * All rights reserved
5 *
6 * As far as I am concerned, the code I have written for this software
7 * can be used freely for any purpose. Any derived versions of this
8 * software must be clearly marked as such, and if the derived work is
9 * incompatible with the protocol description in the RFC file, it must be
10 * called by a name other than "ssh" or "Secure Shell".
11 *
12 *
13 * Copyright (c) 1999 Niels Provos. All rights reserved.
14 * Copyright (c) 1999, 2000 Markus Friedl. All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
26 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
27 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
28 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
30 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
34 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */

37 /*
38 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
39 * Use is subject to license terms.
40 */

42 #include "includes.h"
43 RCSID("$OpenBSD: cipher.c,v 1.61 2002/07/12 15:50:17 markus Exp $");

45 #include "xmalloc.h"
46 #include "log.h"
47 #include "cipher.h"

49 #include <openssl/opensslconf.h>
50 #include <openssl/md5.h>

52 /*
53 * Symmetric ciphers can be offloaded to any engine through the EVP API only.
54 * However, OpenSSL doesn’t offer AES in counter mode through EVP. So, we must
55 * define our own EVP functions.
56 */
57 extern const EVP_CIPHER *evp_aes_128_ctr(void);
58 extern const EVP_CIPHER *evp_aes_192_ctr(void);
59 extern const EVP_CIPHER *evp_aes_256_ctr(void);
60 extern void ssh_aes_ctr_iv(EVP_CIPHER_CTX *, int, u_char *, u_int);

new/usr/src/cmd/ssh/libssh/common/cipher.c 2

62 static const EVP_CIPHER *evp_ssh1_3des(void);
63 static const EVP_CIPHER *evp_ssh1_bf(void);

65 struct Cipher {
66 char *name;
67 int number; /* for ssh1 only */
68 u_int block_size;
69 u_int key_len;
70 u_int discard_len;
71 const EVP_CIPHER *(*evptype)(void);
72 } ciphers[] = {
73 { "none", SSH_CIPHER_NONE, 8, 0, 0, EVP_enc_null },
74 { "des", SSH_CIPHER_DES, 8, 8, 0, EVP_des_cbc },
75 { "3des", SSH_CIPHER_3DES, 8, 16, 0, evp_ssh1_3des },
76 { "blowfish", SSH_CIPHER_BLOWFISH, 8, 32, 0, evp_ssh1_bf },
77 { "3des-cbc", SSH_CIPHER_SSH2, 8, 24, 0, EVP_des_ede3_cbc },
78 { "blowfish-cbc", SSH_CIPHER_SSH2, 8, 16, 0, EVP_bf_cbc },
79 #ifdef SOLARIS_SSH_ENABLE_CAST5_128
80 { "cast128-cbc", SSH_CIPHER_SSH2, 8, 16, 0, EVP_cast5_cbc },
81 #endif /* SOLARIS_SSH_ENABLE_CAST5_128 */
82 { "arcfour", SSH_CIPHER_SSH2, 8, 16, 0, EVP_rc4 },
83 { "arcfour128", SSH_CIPHER_SSH2, 8, 16, 1536, EVP_rc4 },
84 { "arcfour256", SSH_CIPHER_SSH2, 8, 32, 1536, EVP_rc4 },
85 { "aes128-cbc", SSH_CIPHER_SSH2, 16, 16, 0, EVP_aes_128_cbc },
86 { "aes192-cbc", SSH_CIPHER_SSH2, 16, 24, 0, EVP_aes_192_cbc },
87 { "aes256-cbc", SSH_CIPHER_SSH2, 16, 32, 0, EVP_aes_256_cbc },
88 { "aes128-ctr", SSH_CIPHER_SSH2, 16, 16, 0, evp_aes_128_ctr },
89 { "aes192-ctr", SSH_CIPHER_SSH2, 16, 24, 0, evp_aes_192_ctr },
90 { "aes256-ctr", SSH_CIPHER_SSH2, 16, 32, 0, evp_aes_256_ctr },
91 { NULL, SSH_CIPHER_ILLEGAL, 0, 0, 0, NULL }
92 };

94 /*--*/

96 u_int
97 cipher_blocksize(Cipher *c)
98 {
99 return (c->block_size);
100 }

102 u_int
103 cipher_keylen(Cipher *c)
104 {
105 return (c->key_len);
106 }

108 u_int
109 cipher_get_number(Cipher *c)
110 {
111 return (c->number);
112 }

114 u_int
115 cipher_mask_ssh1(int client)
116 {
117 u_int mask = 0;
118 mask |= 1 << SSH_CIPHER_3DES; /* Mandatory */
119 mask |= 1 << SSH_CIPHER_BLOWFISH;
120 if (client) {
121 mask |= 1 << SSH_CIPHER_DES;
122 }
123 return mask;
124 }

126 Cipher *
127 cipher_by_name(const char *name)

new/usr/src/cmd/ssh/libssh/common/cipher.c 3

128 {
129 Cipher *c;
130 for (c = ciphers; c->name != NULL; c++)
131 if (strcasecmp(c->name, name) == 0)
132 return c;
133 return NULL;
134 }

136 Cipher *
137 cipher_by_number(int id)
138 {
139 Cipher *c;
140 for (c = ciphers; c->name != NULL; c++)
141 if (c->number == id)
142 return c;
143 return NULL;
144 }

146 #define CIPHER_SEP ","
147 int
148 ciphers_valid(const char *names)
149 {
150 Cipher *c;
151 char *ciphers, *cp;
152 char *p;

154 if (names == NULL || strcmp(names, "") == 0)
155 return 0;
156 ciphers = cp = xstrdup(names);
157 for ((p = strsep(&cp, CIPHER_SEP)); p && *p != ’\0’;
158 (p = strsep(&cp, CIPHER_SEP))) {
159 c = cipher_by_name(p);
160 if (c == NULL || c->number != SSH_CIPHER_SSH2) {
161 debug("bad cipher %s [%s]", p, names);
162 xfree(ciphers);
163 return 0;
164 } else {
165 debug3("cipher ok: %s [%s]", p, names);
166 }
167 }
168 debug3("ciphers ok: [%s]", names);
169 xfree(ciphers);
170 return 1;
171 }

173 /*
174 * Parses the name of the cipher. Returns the number of the corresponding
175 * cipher, or -1 on error.
176 */

178 int
179 cipher_number(const char *name)
180 {
181 Cipher *c;
182 if (name == NULL)
183 return -1;
184 c = cipher_by_name(name);
185 return (c==NULL) ? -1 : c->number;
186 }

188 char *
189 cipher_name(int id)
190 {
191 Cipher *c = cipher_by_number(id);
192 return (c==NULL) ? "<unknown>" : c->name;
193 }

new/usr/src/cmd/ssh/libssh/common/cipher.c 4

195 void
196 cipher_init(CipherContext *cc, Cipher *cipher,
197 const u_char *key, u_int keylen, const u_char *iv, u_int ivlen,
198 int encrypt)
199 {
200 static int dowarn = 1;
201 const EVP_CIPHER *type;
202 int klen;
203 u_char *junk, *discard;

205 if (cipher->number == SSH_CIPHER_DES) {
206 if (dowarn) {
207 error("Warning: use of DES is strongly discouraged "
208 "due to cryptographic weaknesses");
209 dowarn = 0;
210 }
211 if (keylen > 8)
212 keylen = 8;
213 }
214 cc->plaintext = (cipher->number == SSH_CIPHER_NONE);

216 if (keylen < cipher->key_len)
217 fatal("cipher_init: key length %d is insufficient for %s.",
218 keylen, cipher->name);
219 if (iv != NULL && ivlen < cipher->block_size)
220 fatal("cipher_init: iv length %d is insufficient for %s.",
221 ivlen, cipher->name);
222 cc->cipher = cipher;

224 type = (*cipher->evptype)();

226 EVP_CIPHER_CTX_init(&cc->evp);
227 /*
228 * cc->evp is of type EVP_CIPHER_CTX and its key_len will be set to the
229 * default value here for the cipher type. If the requested key length
230 * is different from the default value we will call EVP_CipherInit()
231 * again, see below.
232 */
233 if (EVP_CipherInit(&cc->evp, type, NULL, (u_char *)iv,
234 (encrypt == CIPHER_ENCRYPT)) == 0)
235 fatal("cipher_init: EVP_CipherInit failed for %s",
236 cipher->name);
237 klen = EVP_CIPHER_CTX_key_length(&cc->evp);
238 if (klen > 0 && keylen != klen) {
239 debug("cipher_init: set keylen (%d -> %d)", klen, keylen);
240 if (EVP_CIPHER_CTX_set_key_length(&cc->evp, keylen) == 0)
241 fatal("cipher_init: set keylen failed (%d -> %d)",
242 klen, keylen);
243 }
244 if (EVP_CipherInit(&cc->evp, NULL, (u_char *)key, NULL, -1) == 0)
245 fatal("cipher_init: EVP_CipherInit: set key failed for %s",
246 cipher->name);

248 if (cipher->discard_len > 0) {
249 junk = xmalloc(cipher->discard_len);
250 discard = xmalloc(cipher->discard_len);
251 if (EVP_Cipher(&cc->evp, discard, junk,
252 cipher->discard_len) == 0)
253 fatal("cipher_init: EVP_Cipher failed during discard");
254 memset(discard, 0, cipher->discard_len);
255 xfree(junk);
256 xfree(discard);
257 }
258 }

new/usr/src/cmd/ssh/libssh/common/cipher.c 5

260 void
261 cipher_crypt(CipherContext *cc, u_char *dest, const u_char *src, u_int len)
262 {
263 if (len % cc->cipher->block_size)
264 fatal("cipher_encrypt: bad plaintext length %d", len);
265 if (EVP_Cipher(&cc->evp, dest, (u_char *)src, len) == 0)
266 fatal("evp_crypt: EVP_Cipher failed");
267 }

269 void
270 cipher_cleanup(CipherContext *cc)
271 {
272 if (EVP_CIPHER_CTX_cleanup(&cc->evp) == 0)
273 error("cipher_cleanup: EVP_CIPHER_CTX_cleanup failed");
274 }

276 /*
277 * Selects the cipher, and keys if by computing the MD5 checksum of the
278 * passphrase and using the resulting 16 bytes as the key.
279 */

281 void
282 cipher_set_key_string(CipherContext *cc, Cipher *cipher,
283 const char *passphrase, int encrypt)
284 {
285 MD5_CTX md;
286 u_char digest[16];

288 MD5_Init(&md);
289 MD5_Update(&md, (const u_char *)passphrase, strlen(passphrase));
290 MD5_Final(digest, &md);

292 cipher_init(cc, cipher, digest, 16, NULL, 0, encrypt);

294 memset(digest, 0, sizeof(digest));
295 memset(&md, 0, sizeof(md));
296 }

298 /* Implementations for other non-EVP ciphers */

300 /*
301 * This is used by SSH1:
302 *
303 * What kind of triple DES are these 2 routines?
304 *
305 * Why is there a redundant initialization vector?
306 *
307 * If only iv3 was used, then, this would till effect have been
308 * outer-cbc. However, there is also a private iv1 == iv2 which
309 * perhaps makes differential analysis easier. On the other hand, the
310 * private iv1 probably makes the CRC-32 attack ineffective. This is a
311 * result of that there is no longer any known iv1 to use when
312 * choosing the X block.
313 */
314 struct ssh1_3des_ctx
315 {
316 EVP_CIPHER_CTX k1, k2, k3;
317 };

319 static int
320 ssh1_3des_init(EVP_CIPHER_CTX *ctx, const u_char *key, const u_char *iv,
321 int enc)
322 {
323 struct ssh1_3des_ctx *c;
324 u_char *k1, *k2, *k3;

new/usr/src/cmd/ssh/libssh/common/cipher.c 6

326 if ((c = EVP_CIPHER_CTX_get_app_data(ctx)) == NULL) {
327 c = xmalloc(sizeof(*c));
328 EVP_CIPHER_CTX_set_app_data(ctx, c);
329 }
330 if (key == NULL)
331 return (1);
332 if (enc == -1)
333 enc = ctx->encrypt;
334 k1 = k2 = k3 = (u_char *) key;
335 k2 += 8;
336 if (EVP_CIPHER_CTX_key_length(ctx) >= 16+8) {
337 if (enc)
338 k3 += 16;
339 else
340 k1 += 16;
341 }
342 EVP_CIPHER_CTX_init(&c->k1);
343 EVP_CIPHER_CTX_init(&c->k2);
344 EVP_CIPHER_CTX_init(&c->k3);
345 if (EVP_CipherInit(&c->k1, EVP_des_cbc(), k1, NULL, enc) == 0 ||
346 EVP_CipherInit(&c->k2, EVP_des_cbc(), k2, NULL, !enc) == 0 ||
347 EVP_CipherInit(&c->k3, EVP_des_cbc(), k3, NULL, enc) == 0) {
348 memset(c, 0, sizeof(*c));
349 xfree(c);
350 EVP_CIPHER_CTX_set_app_data(ctx, NULL);
351 return (0);
352 }
353 return (1);
354 }

356 static int
357 ssh1_3des_cbc(EVP_CIPHER_CTX *ctx, u_char *dest, const u_char *src, u_int len)
358 {
359 struct ssh1_3des_ctx *c;

361 if ((c = EVP_CIPHER_CTX_get_app_data(ctx)) == NULL) {
362 error("ssh1_3des_cbc: no context");
363 return (0);
364 }
365 if (EVP_Cipher(&c->k1, dest, (u_char *)src, len) == 0 ||
366 EVP_Cipher(&c->k2, dest, dest, len) == 0 ||
367 EVP_Cipher(&c->k3, dest, dest, len) == 0)
368 return (0);
369 return (1);
370 }

372 static int
373 ssh1_3des_cleanup(EVP_CIPHER_CTX *ctx)
374 {
375 struct ssh1_3des_ctx *c;

377 if ((c = EVP_CIPHER_CTX_get_app_data(ctx)) != NULL) {
378 memset(c, 0, sizeof(*c));
379 xfree(c);
380 EVP_CIPHER_CTX_set_app_data(ctx, NULL);
381 }
382 return (1);
383 }

385 static const EVP_CIPHER *
386 evp_ssh1_3des(void)
387 {
388 static EVP_CIPHER ssh1_3des;

390 memset(&ssh1_3des, 0, sizeof(EVP_CIPHER));
391 ssh1_3des.nid = NID_undef;

new/usr/src/cmd/ssh/libssh/common/cipher.c 7

392 ssh1_3des.block_size = 8;
393 ssh1_3des.iv_len = 0;
394 ssh1_3des.key_len = 16;
395 ssh1_3des.init = ssh1_3des_init;
396 ssh1_3des.cleanup = ssh1_3des_cleanup;
397 ssh1_3des.do_cipher = ssh1_3des_cbc;
398 ssh1_3des.flags = EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH;
399 return (&ssh1_3des);
400 }

402 /*
403 * SSH1 uses a variation on Blowfish, all bytes must be swapped before
404 * and after encryption/decryption. Thus the swap_bytes stuff (yuk).
405 */
406 static void
407 swap_bytes(const u_char *src, u_char *dst, int n)
408 {
409 u_char c[4];

411 /* Process 4 bytes every lap. */
412 for (n = n / 4; n > 0; n--) {
413 c[3] = *src++;
414 c[2] = *src++;
415 c[1] = *src++;
416 c[0] = *src++;

418 *dst++ = c[0];
419 *dst++ = c[1];
420 *dst++ = c[2];
421 *dst++ = c[3];
422 }
423 }

425 static int (*orig_bf)(EVP_CIPHER_CTX *, u_char *, const u_char *, u_int) = NULL;

427 static int
428 bf_ssh1_cipher(EVP_CIPHER_CTX *ctx, u_char *out, const u_char *in, u_int len)
429 {
430 int ret;

432 swap_bytes(in, out, len);
433 ret = (*orig_bf)(ctx, out, out, len);
434 swap_bytes(out, out, len);
435 return (ret);
436 }

438 static const EVP_CIPHER *
439 evp_ssh1_bf(void)
440 {
441 static EVP_CIPHER ssh1_bf;

443 memcpy(&ssh1_bf, EVP_bf_cbc(), sizeof(EVP_CIPHER));
444 orig_bf = ssh1_bf.do_cipher;
445 ssh1_bf.nid = NID_undef;
446 ssh1_bf.do_cipher = bf_ssh1_cipher;
447 ssh1_bf.key_len = 32;
448 return (&ssh1_bf);
449 }

451 /*
452 * Exports an IV from the CipherContext required to export the key
453 * state back from the unprivileged child to the privileged parent
454 * process.
455 */

457 int

new/usr/src/cmd/ssh/libssh/common/cipher.c 8

458 cipher_get_keyiv_len(CipherContext *cc)
459 {
460 Cipher *c = cc->cipher;
461 int ivlen;

463 if (c->number == SSH_CIPHER_3DES)
464 ivlen = 24;
465 else
466 ivlen = EVP_CIPHER_CTX_iv_length(&cc->evp);
467 return (ivlen);
468 }

470 void
471 cipher_get_keyiv(CipherContext *cc, u_char *iv, u_int len)
472 {
473 Cipher *c = cc->cipher;
474 u_char *civ = NULL;
475 int evplen;

477 switch (c->number) {
478 case SSH_CIPHER_SSH2:
479 case SSH_CIPHER_DES:
480 case SSH_CIPHER_BLOWFISH:
481 evplen = EVP_CIPHER_CTX_iv_length(&cc->evp);
482 if (evplen == 0)
483 return;
484 if (evplen != len)
485 fatal("%s: wrong iv length %d != %d", __func__,
486 evplen, len);

488 if (c->evptype == evp_aes_128_ctr) {
489 ssh_aes_ctr_iv(&cc->evp, 0, iv, len);
490 return;
491 } else {
492 civ = cc->evp.iv;
493 }
494 break;
495 case SSH_CIPHER_3DES: {
496 struct ssh1_3des_ctx *desc;
497 if (len != 24)
498 fatal("%s: bad 3des iv length: %d", __func__, len);
499 desc = EVP_CIPHER_CTX_get_app_data(&cc->evp);
500 if (desc == NULL)
501 fatal("%s: no 3des context", __func__);
502 debug3("%s: Copying 3DES IV", __func__);
503 memcpy(iv, desc->k1.iv, 8);
504 memcpy(iv + 8, desc->k2.iv, 8);
505 memcpy(iv + 16, desc->k3.iv, 8);
506 return;
507 }
508 default:
509 fatal("%s: bad cipher %d", __func__, c->number);
510 }
511 memcpy(iv, civ, len);
512 }

514 void
515 cipher_set_keyiv(CipherContext *cc, u_char *iv)
516 {
517 Cipher *c = cc->cipher;
518 u_char *div = NULL;
519 int evplen = 0;

521 switch (c->number) {
522 case SSH_CIPHER_SSH2:
523 case SSH_CIPHER_DES:

new/usr/src/cmd/ssh/libssh/common/cipher.c 9

524 case SSH_CIPHER_BLOWFISH:
525 evplen = EVP_CIPHER_CTX_iv_length(&cc->evp);
526 if (evplen == 0)
527 return;

529 if (c->evptype == evp_aes_128_ctr) {
530 ssh_aes_ctr_iv(&cc->evp, 1, iv, evplen);
531 return;
532 } else {
533 div = cc->evp.iv;
534 }
535 break;
536 case SSH_CIPHER_3DES: {
537 struct ssh1_3des_ctx *desc;
538 desc = EVP_CIPHER_CTX_get_app_data(&cc->evp);
539 if (desc == NULL)
540 fatal("%s: no 3des context", __func__);
541 debug3("%s: Installed 3DES IV", __func__);
542 memcpy(desc->k1.iv, iv, 8);
543 memcpy(desc->k2.iv, iv + 8, 8);
544 memcpy(desc->k3.iv, iv + 16, 8);
545 return;
546 }
547 default:
548 fatal("%s: bad cipher %d", __func__, c->number);
549 }
550 memcpy(div, iv, evplen);
551 }

553 #if OPENSSL_VERSION_NUMBER < 0x00907000L
554 #define EVP_X_STATE(evp) &(evp).c
555 #define EVP_X_STATE_LEN(evp) sizeof((evp).c)
556 #else
557 #define EVP_X_STATE(evp) (evp).cipher_data
558 #define EVP_X_STATE_LEN(evp) (evp).cipher->ctx_size
559 #endif

561 int
562 cipher_get_keycontext(CipherContext *cc, u_char *dat)
563 {
564 int plen = 0;
565 Cipher *c = cc->cipher;

567 if (c->evptype == EVP_rc4) {
568 plen = EVP_X_STATE_LEN(cc->evp);
569 if (dat == NULL)
570 return (plen);
571 memcpy(dat, EVP_X_STATE(cc->evp), plen);
572 }
573 return (plen);
574 }

576 void
577 cipher_set_keycontext(CipherContext *cc, u_char *dat)
578 {
579 Cipher *c = cc->cipher;
580 int plen;

582 if (c->evptype == EVP_rc4) {
583 plen = EVP_X_STATE_LEN(cc->evp);
584 memcpy(EVP_X_STATE(cc->evp), dat, plen);
585 }
586 }

new/usr/src/cmd/ssh/libssh/common/dh.c 1

**
 7408 Fri May 30 18:31:09 2014
new/usr/src/cmd/ssh/libssh/common/dh.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2000 Niels Provos. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */

25 #include "includes.h"
26 RCSID("$OpenBSD: dh.c,v 1.22 2002/06/27 08:49:44 markus Exp $");

28 #include "xmalloc.h"

30 #include <openssl/opensslconf.h>
31 #include <openssl/bn.h>
32 #include <openssl/dh.h>
33 #include <openssl/evp.h>

35 #include "buffer.h"
36 #include "cipher.h"
37 #include "kex.h"
38 #include "dh.h"
39 #include "pathnames.h"
40 #include "log.h"
41 #include "misc.h"

43 static int
44 parse_prime(int linenum, char *line, struct dhgroup *dhg)
45 {
46 char *cp, *arg;
47 char *strsize, *gen, *prime;

49 cp = line;
50 arg = strdelim(&cp);
51 /* Ignore leading whitespace */
52 if (*arg == ’\0’)
53 arg = strdelim(&cp);
54 if (!arg || !*arg || *arg == ’#’)
55 return 0;

57 /* time */
58 if (cp == NULL || *arg == ’\0’)
59 goto fail;
60 arg = strsep(&cp, " "); /* type */
61 if (cp == NULL || *arg == ’\0’)

new/usr/src/cmd/ssh/libssh/common/dh.c 2

62 goto fail;
63 arg = strsep(&cp, " "); /* tests */
64 if (cp == NULL || *arg == ’\0’)
65 goto fail;
66 arg = strsep(&cp, " "); /* tries */
67 if (cp == NULL || *arg == ’\0’)
68 goto fail;
69 strsize = strsep(&cp, " "); /* size */
70 if (cp == NULL || *strsize == ’\0’ ||
71 (dhg->size = atoi(strsize)) == 0)
72 goto fail;
73 /* The whole group is one bit larger */
74 dhg->size++;
75 gen = strsep(&cp, " "); /* gen */
76 if (cp == NULL || *gen == ’\0’)
77 goto fail;
78 prime = strsep(&cp, " "); /* prime */
79 if (cp != NULL || *prime == ’\0’)
80 goto fail;

82 if ((dhg->g = BN_new()) == NULL)
83 fatal("parse_prime: BN_new failed");
84 if ((dhg->p = BN_new()) == NULL)
85 fatal("parse_prime: BN_new failed");
86 if (BN_hex2bn(&dhg->g, gen) == 0)
87 goto failclean;

89 if (BN_hex2bn(&dhg->p, prime) == 0)
90 goto failclean;

92 if (BN_num_bits(dhg->p) != dhg->size)
93 goto failclean;

95 return (1);

97 failclean:
98 BN_clear_free(dhg->g);
99 BN_clear_free(dhg->p);
100 fail:
101 error("Bad prime description in line %d", linenum);
102 return (0);
103 }

105 DH *
106 choose_dh(int min, int wantbits, int max)
107 {
108 FILE *f;
109 char line[2048];
110 int best, bestcount, which;
111 int linenum;
112 struct dhgroup dhg;

114 if ((f = fopen(_PATH_DH_MODULI, "r")) == NULL &&
115 (f = fopen(_PATH_DH_PRIMES, "r")) == NULL) {
116 log("WARNING: %s does not exist, using old modulus", _PATH_DH_MO
117 return (dh_new_group1());
118 }

120 linenum = 0;
121 best = bestcount = 0;
122 while (fgets(line, sizeof(line), f)) {
123 linenum++;
124 if (!parse_prime(linenum, line, &dhg))
125 continue;
126 BN_clear_free(dhg.g);
127 BN_clear_free(dhg.p);

new/usr/src/cmd/ssh/libssh/common/dh.c 3

129 if (dhg.size > max || dhg.size < min)
130 continue;

132 if ((dhg.size > wantbits && dhg.size < best) ||
133 (dhg.size > best && best < wantbits)) {
134 best = dhg.size;
135 bestcount = 0;
136 }
137 if (dhg.size == best)
138 bestcount++;
139 }
140 rewind(f);

142 if (bestcount == 0) {
143 fclose(f);
144 log("WARNING: no suitable primes in %s", _PATH_DH_PRIMES);
145 return (NULL);
146 }

148 linenum = 0;
149 which = arc4random() % bestcount;
150 while (fgets(line, sizeof(line), f)) {
151 if (!parse_prime(linenum, line, &dhg))
152 continue;
153 if ((dhg.size > max || dhg.size < min) ||
154 dhg.size != best ||
155 linenum++ != which) {
156 BN_clear_free(dhg.g);
157 BN_clear_free(dhg.p);
158 continue;
159 }
160 break;
161 }
162 fclose(f);
163 if (linenum != which+1)
164 fatal("WARNING: line %d disappeared in %s, giving up",
165 which, _PATH_DH_PRIMES);

167 return (dh_new_group(dhg.g, dhg.p));
168 }

170 /* diffie-hellman-group1-sha1 */

172 int
173 dh_pub_is_valid(DH *dh, BIGNUM *dh_pub)
174 {
175 int i;
176 int n = BN_num_bits(dh_pub);
177 int bits_set = 0;

179 if (dh_pub->neg) {
180 log("invalid public DH value: negativ");
181 return 0;
182 }
183 for (i = 0; i <= n; i++)
184 if (BN_is_bit_set(dh_pub, i))
185 bits_set++;
186 debug("bits set: %d/%d", bits_set, BN_num_bits(dh->p));

188 /* if g==2 and bits_set==1 then computing log_g(dh_pub) is trivial */
189 if (bits_set > 1 && (BN_cmp(dh_pub, dh->p) == -1))
190 return 1;
191 log("invalid public DH value (%d/%d)", bits_set, BN_num_bits(dh->p));
192 return 0;
193 }

new/usr/src/cmd/ssh/libssh/common/dh.c 4

195 void
196 dh_gen_key(DH *dh, int need)
197 {
198 int i, bits_set = 0, tries = 0;

200 if (dh->p == NULL)
201 fatal("dh_gen_key: dh->p == NULL");
202 if (2*need >= BN_num_bits(dh->p))
203 fatal("dh_gen_key: group too small: %d (2*need %d)",
204 BN_num_bits(dh->p), 2*need);
205 do {
206 if (dh->priv_key != NULL)
207 BN_clear_free(dh->priv_key);
208 if ((dh->priv_key = BN_new()) == NULL)
209 fatal("dh_gen_key: BN_new failed");
210 /* generate a 2*need bits random private exponent */
211 if (!BN_rand(dh->priv_key, 2*need, 0, 0))
212 fatal("dh_gen_key: BN_rand failed");
213 if (DH_generate_key(dh) == 0)
214 fatal("dh_gen_key: DH_generate_key() failed");
215 for (i = 0; i <= BN_num_bits(dh->priv_key); i++)
216 if (BN_is_bit_set(dh->priv_key, i))
217 bits_set++;
218 debug("dh_gen_key: priv key bits set: %d/%d",
219 bits_set, BN_num_bits(dh->priv_key));
220 if (tries++ > 10)
221 fatal("dh_gen_key: too many bad keys: giving up");
222 } while (!dh_pub_is_valid(dh, dh->pub_key));
223 }

225 DH *
226 dh_new_group_asc(const char *gen, const char *modulus)
227 {
228 DH *dh;

230 if ((dh = DH_new()) == NULL)
231 fatal("dh_new_group_asc: DH_new");

233 if (BN_hex2bn(&dh->p, modulus) == 0)
234 fatal("BN_hex2bn p");
235 if (BN_hex2bn(&dh->g, gen) == 0)
236 fatal("BN_hex2bn g");

238 return (dh);
239 }

241 /*
242 * This just returns the group, we still need to generate the exchange
243 * value.
244 */

246 DH *
247 dh_new_group(BIGNUM *gen, BIGNUM *modulus)
248 {
249 DH *dh;

251 if ((dh = DH_new()) == NULL)
252 fatal("dh_new_group: DH_new");
253 dh->p = modulus;
254 dh->g = gen;

256 return (dh);
257 }

259 DH *

new/usr/src/cmd/ssh/libssh/common/dh.c 5

260 dh_new_group1(void)
261 {
262 static char *gen = "2", *group1 =
263 "FFFFFFFF" "FFFFFFFF" "C90FDAA2" "2168C234" "C4C6628B" "80DC1CD1"
264 "29024E08" "8A67CC74" "020BBEA6" "3B139B22" "514A0879" "8E3404DD"
265 "EF9519B3" "CD3A431B" "302B0A6D" "F25F1437" "4FE1356D" "6D51C245"
266 "E485B576" "625E7EC6" "F44C42E9" "A637ED6B" "0BFF5CB6" "F406B7ED"
267 "EE386BFB" "5A899FA5" "AE9F2411" "7C4B1FE6" "49286651" "ECE65381"
268 "FFFFFFFF" "FFFFFFFF";

270 return (dh_new_group_asc(gen, group1));
271 }

273 /*
274 * Estimates the group order for a Diffie-Hellman group that has an
275 * attack complexity approximately the same as O(2**bits). Estimate
276 * with: O(exp(1.9223 * (ln q)^(1/3) (ln ln q)^(2/3)))
277 */

279 int
280 dh_estimate(int bits)
281 {

283 if (bits < 64)
284 return (512); /* O(2**63) */
285 if (bits < 128)
286 return (1024); /* O(2**86) */
287 if (bits < 192)
288 return (2048); /* O(2**116) */
289 return (4096); /* O(2**156) */
290 }

new/usr/src/cmd/ssh/libssh/common/entropy.c 1

**
 4742 Fri May 30 18:31:09 2014
new/usr/src/cmd/ssh/libssh/common/entropy.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2001 Damien Miller. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */

25 #include "includes.h"

27 #include <openssl/opensslconf.h>
28 #include <openssl/rand.h>
29 #include <openssl/crypto.h>

31 #include "ssh.h"
32 #include "misc.h"
33 #include "xmalloc.h"
34 #include "atomicio.h"
35 #include "pathnames.h"
36 #include "log.h"

38 /*
39 * Portable OpenSSH PRNG seeding:
40 * If OpenSSL has not "internally seeded" itself (e.g. pulled data from
41 * /dev/random), then we execute a "ssh-rand-helper" program which
42 * collects entropy and writes it to stdout. The child program must
43 * write at least RANDOM_SEED_SIZE bytes. The child is run with stderr
44 * attached, so error/debugging output should be visible.
45 *
46 * XXX: we should tell the child how many bytes we need.
47 */

49 RCSID("$Id: entropy.c,v 1.44 2002/06/09 19:41:48 mouring Exp $");

51 #pragma ident "%Z%%M% %I% %E% SMI"

53 #ifndef OPENSSL_PRNG_ONLY
54 #define RANDOM_SEED_SIZE 48
55 static uid_t original_uid, original_euid;
56 #endif

58 void
59 seed_rng(void)
60 {
61 #ifndef OPENSSL_PRNG_ONLY

new/usr/src/cmd/ssh/libssh/common/entropy.c 2

62 int devnull;
63 int p[2];
64 pid_t pid;
65 int ret;
66 unsigned char buf[RANDOM_SEED_SIZE];
67 mysig_t old_sigchld;

69 if (RAND_status() == 1) {
70 debug3("RNG is ready, skipping seeding");
71 return;
72 }

74 debug3("Seeding PRNG from %s", SSH_RAND_HELPER);

76 if ((devnull = open("/dev/null", O_RDWR)) == -1)
77 fatal("Couldn’t open /dev/null: %s", strerror(errno));
78 if (pipe(p) == -1)
79 fatal("pipe: %s", strerror(errno));

81 old_sigchld = mysignal(SIGCHLD, SIG_DFL);
82 if ((pid = fork()) == -1)
83 fatal("Couldn’t fork: %s", strerror(errno));
84 if (pid == 0) {
85 dup2(devnull, STDIN_FILENO);
86 dup2(p[1], STDOUT_FILENO);
87 /* Keep stderr open for errors */
88 close(p[0]);
89 close(p[1]);
90 close(devnull);

92 if (original_uid != original_euid &&
93 (seteuid(getuid()) == -1 ||
94 setuid(original_uid) == -1)) {
95 fprintf(stderr, "(rand child) setuid(%d): %s\n",
96 original_uid, strerror(errno));
97 _exit(1);
98 }
99
100 execl(SSH_RAND_HELPER, "ssh-rand-helper", NULL);
101 fprintf(stderr, "(rand child) Couldn’t exec ’%s’: %s\n",
102 SSH_RAND_HELPER, strerror(errno));
103 _exit(1);
104 }

106 close(devnull);
107 close(p[1]);

109 memset(buf, ’\0’, sizeof(buf));
110 ret = atomicio(read, p[0], buf, sizeof(buf));
111 if (ret == -1)
112 fatal("Couldn’t read from ssh-rand-helper: %s",
113 strerror(errno));
114 if (ret != sizeof(buf))
115 fatal("ssh-rand-helper child produced insufficient data");

117 close(p[0]);

119 if (waitpid(pid, &ret, 0) == -1)
120 fatal("Couldn’t wait for ssh-rand-helper completion: %s",
121 strerror(errno));
122 mysignal(SIGCHLD, old_sigchld);

124 /* We don’t mind if the child exits upon a SIGPIPE */
125 if (!WIFEXITED(ret) &&
126 (!WIFSIGNALED(ret) || WTERMSIG(ret) != SIGPIPE))
127 fatal("ssh-rand-helper terminated abnormally");

new/usr/src/cmd/ssh/libssh/common/entropy.c 3

128 if (WEXITSTATUS(ret) != 0)
129 fatal("ssh-rand-helper exit with exit status %d", ret);

131 RAND_add(buf, sizeof(buf), sizeof(buf));
132 memset(buf, ’\0’, sizeof(buf));

134 #endif /* OPENSSL_PRNG_ONLY */
135 if (RAND_status() != 1)
136 fatal("PRNG is not seeded");
137 }

139 void
140 init_rng(void)
141 {
142 /*
143 * OpenSSL version numbers: MNNFFPPS: major minor fix patch status
144 * We match major, minor, fix and status (not patch)
145 */
146 if ((SSLeay() ^ OPENSSL_VERSION_NUMBER) & ~0xff0L)
147 fatal("OpenSSL version mismatch. Built against %lx, you "
148 "have %lx", OPENSSL_VERSION_NUMBER, SSLeay());

150 #ifndef OPENSSL_PRNG_ONLY
151 if ((original_uid = getuid()) == -1)
152 fatal("getuid: %s", strerror(errno));
153 if ((original_euid = geteuid()) == -1)
154 fatal("geteuid: %s", strerror(errno));
155 #endif
156 }

new/usr/src/cmd/ssh/libssh/common/hostfile.c 1

**
 9930 Fri May 30 18:31:09 2014
new/usr/src/cmd/ssh/libssh/common/hostfile.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Author: Tatu Ylonen <ylo@cs.hut.fi>
3 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
4 * All rights reserved
5 * Functions for manipulating the known hosts files.
6 *
7 * As far as I am concerned, the code I have written for this software
8 * can be used freely for any purpose. Any derived versions of this
9 * software must be clearly marked as such, and if the derived work is
10 * incompatible with the protocol description in the RFC file, it must be
11 * called by a name other than "ssh" or "Secure Shell".
12 *
13 *
14 * Copyright (c) 1999, 2000 Markus Friedl. All rights reserved.
15 * Copyright (c) 1999 Niels Provos. All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
27 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
28 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
31 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
35 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */

38 /* $OpenBSD: hostfile.c,v 1.45 2006/08/03 03:34:42 deraadt Exp $ */

40 #pragma ident "%Z%%M% %I% %E% SMI"

42 #include "includes.h"

44 #include <openssl/opensslconf.h>
45 #include <openssl/hmac.h>
46 #include <openssl/sha.h>

48 #include "packet.h"
49 #include "xmalloc.h"
50 #include "match.h"
51 #include "key.h"
52 #include "hostfile.h"
53 #include "log.h"

55 /*
56 * Format of a hashed hostname is <MAGIC><SALT>|<HASHED_HOSTNAME>. <MAGIC> is
57 * "|1|". As in non-hashed hostnames this whole string is then followed by a
58 * space, a key type and the key (which is out of scope of this function).
59 *
60 * Example what can be in ’s’:
61 *

new/usr/src/cmd/ssh/libssh/common/hostfile.c 2

62 * |1|t17NtsuXSLwP0H0eYdd8vJeNakM=|9XFVPh3jZUrfY6YCWn8Ua5eGZtA=
63 */
64 static int
65 extract_salt(const char *s, u_int l, char *salt, size_t salt_len)
66 {
67 char *p;
68 u_char *b64salt;
69 u_int b64len;
70 int ret;

72 if (l < sizeof(HASH_MAGIC) - 1) {
73 debug2("extract_salt: string too short");
74 return (-1);
75 }
76 if (strncmp(s, HASH_MAGIC, sizeof(HASH_MAGIC) - 1) != 0) {
77 debug2("extract_salt: invalid magic identifier");
78 return (-1);
79 }
80 s += sizeof(HASH_MAGIC) - 1;
81 l -= sizeof(HASH_MAGIC) - 1;
82 if ((p = memchr(s, HASH_DELIM, l)) == NULL) {
83 debug2("extract_salt: missing salt termination character");
84 return (-1);
85 }

87 b64len = p - s;
88 /* Sanity check */
89 if (b64len == 0 || b64len > 1024) {
90 debug2("extract_salt: bad encoded salt length %u", b64len);
91 return (-1);
92 }
93 b64salt = xmalloc(1 + b64len);
94 memcpy(b64salt, s, b64len);
95 b64salt[b64len] = ’\0’;

97 ret = __b64_pton(b64salt, (u_char *) salt, salt_len);
98 xfree(b64salt);
99 if (ret == -1) {
100 debug2("extract_salt: salt decode error");
101 return (-1);
102 }
103 if (ret != SHA_DIGEST_LENGTH) {
104 debug2("extract_salt: expected salt len %d, got %d",
105 SHA_DIGEST_LENGTH, ret);
106 return (-1);
107 }

109 return (0);
110 }

112 char *
113 host_hash(const char *host, const char *name_from_hostfile, u_int src_len)
114 {
115 const EVP_MD *md = EVP_sha1();
116 HMAC_CTX mac_ctx;
117 char salt[256], result[256], uu_salt[512], uu_result[512];
118 static char encoded[1024];
119 u_int i, len;

121 len = EVP_MD_size(md);

123 if (name_from_hostfile == NULL) {
124 /* Create new salt */
125 for (i = 0; i < len; i++)
126 salt[i] = arc4random();
127 } else {

new/usr/src/cmd/ssh/libssh/common/hostfile.c 3

128 /* Extract salt from known host entry */
129 if (extract_salt(name_from_hostfile, src_len, salt,
130 sizeof(salt)) == -1)
131 return (NULL);
132 }

134 HMAC_Init(&mac_ctx, salt, len, md);
135 HMAC_Update(&mac_ctx, (u_char *) host, strlen(host));
136 HMAC_Final(&mac_ctx, (u_char *) result, NULL);
137 HMAC_cleanup(&mac_ctx);

139 if (__b64_ntop((u_char *) salt, len, uu_salt, sizeof(uu_salt)) == -1 ||
140 __b64_ntop((u_char *) result, len, uu_result, sizeof(uu_result)) ==
141 fatal("host_hash: __b64_ntop failed");

143 snprintf(encoded, sizeof(encoded), "%s%s%c%s", HASH_MAGIC, uu_salt,
144 HASH_DELIM, uu_result);

146 return (encoded);
147 }

149 /*
150 * Parses an RSA (number of bits, e, n) or DSA key from a string. Moves the
151 * pointer over the key. Skips any whitespace at the beginning and at end.
152 */

154 int
155 hostfile_read_key(char **cpp, u_int *bitsp, Key *ret)
156 {
157 char *cp;

159 /* Skip leading whitespace. */
160 for (cp = *cpp; *cp == ’ ’ || *cp == ’\t’; cp++)
161 ;

163 if (key_read(ret, &cp) != 1)
164 return 0;

166 /* Skip trailing whitespace. */
167 for (; *cp == ’ ’ || *cp == ’\t’; cp++)
168 ;

170 /* Return results. */
171 *cpp = cp;
172 *bitsp = key_size(ret);
173 return 1;
174 }

176 static int
177 hostfile_check_key(int bits, const Key *key, const char *host, const char *filen
178 {
179 if (key == NULL || key->type != KEY_RSA1 || key->rsa == NULL)
180 return 1;
181 if (bits != BN_num_bits(key->rsa->n)) {
182 log("Warning: %s, line %d: keysize mismatch for host %s: "
183 "actual %d vs. announced %d.",
184 filename, linenum, host, BN_num_bits(key->rsa->n), bits);
185 log("Warning: replace %d with %d in %s, line %d.",
186 bits, BN_num_bits(key->rsa->n), filename, linenum);
187 }
188 return 1;
189 }

191 /*
192 * Checks whether the given host (which must be in all lowercase) is already
193 * in the list of our known hosts. Returns HOST_OK if the host is known and

new/usr/src/cmd/ssh/libssh/common/hostfile.c 4

194 * has the specified key, HOST_NEW if the host is not known, and HOST_CHANGED
195 * if the host is known but used to have a different host key.
196 *
197 * If no ’key’ has been specified and a key of type ’keytype’ is known
198 * for the specified host, then HOST_FOUND is returned.
199 */

201 static HostStatus
202 check_host_in_hostfile_by_key_or_type(const char *filename,
203 const char *host, const Key *key, int keytype, Key *found, int *numret)
204 {
205 FILE *f;
206 char line[8192];
207 int linenum = 0;
208 u_int kbits;
209 char *cp, *cp2, *hashed_host;
210 HostStatus end_return;

212 debug3("check_host_in_hostfile: filename %s", filename);

214 /* Open the file containing the list of known hosts. */
215 f = fopen(filename, "r");
216 if (!f)
217 return HOST_NEW;

219 /*
220 * Return value when the loop terminates. This is set to
221 * HOST_CHANGED if we have seen a different key for the host and have
222 * not found the proper one.
223 */
224 end_return = HOST_NEW;

226 /* Go through the file. */
227 while (fgets(line, sizeof(line), f)) {
228 cp = line;
229 linenum++;

231 /* Skip any leading whitespace, comments and empty lines. */
232 for (; *cp == ’ ’ || *cp == ’\t’; cp++)
233 ;
234 if (!*cp || *cp == ’#’ || *cp == ’\n’)
235 continue;

237 /* Find the end of the host name portion. */
238 for (cp2 = cp; *cp2 && *cp2 != ’ ’ && *cp2 != ’\t’; cp2++)
239 ;

241 /* Check if the host name matches. */
242 if (match_hostname(host, cp, (u_int) (cp2 - cp)) != 1) {
243 if (*cp != HASH_DELIM)
244 continue;
245 hashed_host = host_hash(host, cp, (u_int) (cp2 - cp));
246 if (hashed_host == NULL) {
247 debug("Invalid hashed host line %d of %s",
248 linenum, filename);
249 continue;
250 }
251 if (strncmp(hashed_host, cp, (u_int) (cp2 - cp)) != 0)
252 continue;
253 }

255 /* Got a match. Skip host name. */
256 cp = cp2;

258 /*
259 * Extract the key from the line. This will skip any leading

new/usr/src/cmd/ssh/libssh/common/hostfile.c 5

260 * whitespace. Ignore badly formatted lines.
261 */
262 if (!hostfile_read_key(&cp, &kbits, found))
263 continue;

265 if (numret != NULL)
266 *numret = linenum;

268 if (key == NULL) {
269 /* we found a key of the requested type */
270 if (found->type == keytype) {
271 fclose(f);
272 return HOST_FOUND;
273 }
274 continue;
275 }

277 if (!hostfile_check_key(kbits, found, host, filename, linenum))
278 continue;

280 /* Check if the current key is the same as the given key. */
281 if (key_equal(key, found)) {
282 /* Ok, they match. */
283 debug3("check_host_in_hostfile: match line %d", linenum)
284 fclose(f);
285 return HOST_OK;
286 }
287 /*
288 * They do not match. We will continue to go through the
289 * file; however, we note that we will not return that it is
290 * new.
291 */
292 end_return = HOST_CHANGED;
293 }
294 /* Clear variables and close the file. */
295 fclose(f);

297 /*
298 * Return either HOST_NEW or HOST_CHANGED, depending on whether we
299 * saw a different key for the host.
300 */
301 return end_return;
302 }

304 HostStatus
305 check_host_in_hostfile(const char *filename, const char *host, const Key *key,
306 Key *found, int *numret)
307 {
308 if (key == NULL)
309 fatal("no key to look up");
310 return (check_host_in_hostfile_by_key_or_type(filename, host, key, 0,
311 found, numret));
312 }

314 int
315 lookup_key_in_hostfile_by_type(const char *filename, const char *host,
316 int keytype, Key *found, int *numret)
317 {
318 return (check_host_in_hostfile_by_key_or_type(filename, host, NULL,
319 keytype, found, numret) == HOST_FOUND);
320 }

322 /*
323 * Appends an entry to the host file. Returns false if the entry could not
324 * be appended.
325 */

new/usr/src/cmd/ssh/libssh/common/hostfile.c 6

327 int
328 add_host_to_hostfile(const char *filename, const char *host, const Key *key,
329 int store_hash)
330 {
331 FILE *f;
332 int success = 0;
333 char *hashed_host = NULL;

335 if (key == NULL)
336 return 1; /* XXX ? */
337 f = fopen(filename, "a");
338 if (!f)
339 return 0;

341 if (store_hash) {
342 if ((hashed_host = host_hash(host, NULL, 0)) == NULL) {
343 error("add_host_to_hostfile: host_hash failed");
344 fclose(f);
345 return 0;
346 }
347 }
348 fprintf(f, "%s ", store_hash ? hashed_host : host);

350 if (key_write(key, f)) {
351 success = 1;
352 } else {
353 error("add_host_to_hostfile: saving key in %s failed", filename)
354 }
355 fprintf(f, "\n");
356 fclose(f);
357 return success;
358 }

new/usr/src/cmd/ssh/libssh/common/kex.c 1

**
 19073 Fri May 30 18:31:09 2014
new/usr/src/cmd/ssh/libssh/common/kex.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 *
24 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */

28 #include "includes.h"
29 RCSID("$OpenBSD: kex.c,v 1.51 2002/06/24 14:55:38 markus Exp $");

31 #include <locale.h>

33 #include <openssl/opensslconf.h>
34 #include <openssl/crypto.h>

36 #include "ssh2.h"
37 #include "xmalloc.h"
38 #include "buffer.h"
39 #include "bufaux.h"
40 #include "packet.h"
41 #include "compat.h"
42 #include "cipher.h"
43 #include "kex.h"
44 #include "key.h"
45 #include "log.h"
46 #include "mac.h"
47 #include "match.h"
48 #include "dispatch.h"
49 #include "g11n.h"

51 #ifdef GSSAPI
52 #include "ssh-gss.h"
53 #endif

55 #define KEX_COOKIE_LEN 16

57 char *session_lang = NULL;

60 /* prototype */
61 static void kex_do_hook(Kex *kex);

new/usr/src/cmd/ssh/libssh/common/kex.c 2

62 static void kex_kexinit_finish(Kex *);
63 static void kex_choose_conf(Kex *);

65 /* put algorithm proposal into buffer */
66 static
67 void
68 kex_prop2buf(Buffer *b, char *proposal[PROPOSAL_MAX])
69 {
70 int i;

72 buffer_clear(b);
73 /*
74 * add a dummy cookie, the cookie will be overwritten by
75 * kex_send_kexinit(), each time a kexinit is set
76 */
77 for (i = 0; i < KEX_COOKIE_LEN; i++)
78 buffer_put_char(b, 0);
79 for (i = 0; i < PROPOSAL_MAX; i++)
80 buffer_put_cstring(b, proposal[i]);
81 buffer_put_char(b, 0); /* first_kex_packet_follows */
82 buffer_put_int(b, 0); /* uint32 reserved */
83 }

85 /* parse buffer and return algorithm proposal */
86 static
87 char **
88 kex_buf2prop(Buffer *raw, int *first_kex_follows)
89 {
90 Buffer b;
91 int i;
92 char **proposal;

94 proposal = xmalloc(PROPOSAL_MAX * sizeof(char *));

96 buffer_init(&b);
97 buffer_append(&b, buffer_ptr(raw), buffer_len(raw));
98 /* skip cookie */
99 for (i = 0; i < KEX_COOKIE_LEN; i++)
100 buffer_get_char(&b);
101 /* extract kex init proposal strings */
102 for (i = 0; i < PROPOSAL_MAX; i++) {
103 proposal[i] = buffer_get_string(&b,NULL);
104 debug2("kex_parse_kexinit: %s", proposal[i]);
105 }
106 /* first kex follows / reserved */
107 i = buffer_get_char(&b);
108 if (first_kex_follows != NULL)
109 *first_kex_follows = i;
110 debug2("kex_parse_kexinit: first_kex_follows %d ", i);
111 i = buffer_get_int(&b);
112 debug2("kex_parse_kexinit: reserved %d ", i);
113 buffer_free(&b);
114 return proposal;
115 }

117 static
118 void
119 kex_prop_free(char **proposal)
120 {
121 int i;

123 for (i = 0; i < PROPOSAL_MAX; i++)
124 xfree(proposal[i]);
125 xfree(proposal);
126 }

new/usr/src/cmd/ssh/libssh/common/kex.c 3

128 static void
129 kex_protocol_error(int type, u_int32_t seq, void *ctxt)
130 {
131 error("Hm, kex protocol error: type %d seq %u", type, seq);
132 }

134 static void
135 kex_reset_dispatch(void)
136 {
137 #ifdef ALTPRIVSEP
138 /* unprivileged sshd has a kex packet handler that must not be reset */
139 debug3("kex_reset_dispatch -- should we dispatch_set(KEXINIT) here? %d &
140 packet_is_server(), packet_is_monitor());
141 if (packet_is_server() && !packet_is_monitor()) {
142 debug3("kex_reset_dispatch -- skipping dispatch_set(KEXINIT) in
143 return;
144 }
145 #endif /* ALTPRIVSEP */

147 dispatch_range(SSH2_MSG_TRANSPORT_MIN,
148 SSH2_MSG_TRANSPORT_MAX, &kex_protocol_error);
149 dispatch_set(SSH2_MSG_KEXINIT, &kex_input_kexinit);
150 }

152 void
153 kex_finish(Kex *kex)
154 {
155 kex_reset_dispatch();

157 packet_start(SSH2_MSG_NEWKEYS);
158 packet_send();
159 /* packet_write_wait(); */
160 debug("SSH2_MSG_NEWKEYS sent");

162 #ifdef ALTPRIVSEP
163 if (packet_is_monitor())
164 goto skip_newkeys;
165 #endif /* ALTPRIVSEP */
166 debug("expecting SSH2_MSG_NEWKEYS");
167 packet_read_expect(SSH2_MSG_NEWKEYS);
168 packet_check_eom();
169 debug("SSH2_MSG_NEWKEYS received");
170 #ifdef ALTPRIVSEP
171 skip_newkeys:
172 #endif /* ALTPRIVSEP */

174 kex->done = 1;
175 kex->initial_kex_done = 1; /* never to be cleared once set */
176 buffer_clear(&kex->peer);
177 /* buffer_clear(&kex->my); */
178 kex->flags &= ~KEX_INIT_SENT;
179 xfree(kex->name);
180 kex->name = NULL;
181 }

183 void
184 kex_send_kexinit(Kex *kex)
185 {
186 u_int32_t rand = 0;
187 u_char *cookie;
188 int i;

190 if (kex == NULL) {
191 error("kex_send_kexinit: no kex, cannot rekey");
192 return;
193 }

new/usr/src/cmd/ssh/libssh/common/kex.c 4

194 if (kex->flags & KEX_INIT_SENT) {
195 debug("KEX_INIT_SENT");
196 return;
197 }
198 kex->done = 0;

200 /* update my proposal -- e.g., add/remove GSS kexalgs */
201 kex_do_hook(kex);

203 /* generate a random cookie */
204 if (buffer_len(&kex->my) < KEX_COOKIE_LEN)
205 fatal("kex_send_kexinit: kex proposal too short");
206 cookie = buffer_ptr(&kex->my);
207 for (i = 0; i < KEX_COOKIE_LEN; i++) {
208 if (i % 4 == 0)
209 rand = arc4random();
210 cookie[i] = rand;
211 rand >>= 8;
212 }
213 packet_start(SSH2_MSG_KEXINIT);
214 packet_put_raw(buffer_ptr(&kex->my), buffer_len(&kex->my));
215 packet_send();
216 debug("SSH2_MSG_KEXINIT sent");
217 kex->flags |= KEX_INIT_SENT;
218 }

220 void
221 kex_input_kexinit(int type, u_int32_t seq, void *ctxt)
222 {
223 char *ptr;
224 u_int dlen;
225 int i;
226 Kex *kex = (Kex *)ctxt;

228 debug("SSH2_MSG_KEXINIT received");
229 if (kex == NULL)
230 fatal("kex_input_kexinit: no kex, cannot rekey");

232 ptr = packet_get_raw(&dlen);
233 buffer_append(&kex->peer, ptr, dlen);

235 /* discard packet */
236 for (i = 0; i < KEX_COOKIE_LEN; i++)
237 packet_get_char();
238 for (i = 0; i < PROPOSAL_MAX; i++)
239 xfree(packet_get_string(NULL));
240 (void) packet_get_char();
241 (void) packet_get_int();
242 packet_check_eom();

244 kex_kexinit_finish(kex);
245 }

247 /*
248 * This is for GSS keyex, where actual KEX offer can change at rekey
249 * time due to credential expiration/renewal...
250 */
251 static
252 void
253 kex_do_hook(Kex *kex)
254 {
255 char **prop;

257 if (kex->kex_hook == NULL)
258 return;

new/usr/src/cmd/ssh/libssh/common/kex.c 5

260 /* Unmarshall my proposal, let the hook modify it, remarshall it */
261 prop = kex_buf2prop(&kex->my, NULL);
262 buffer_clear(&kex->my);
263 (kex->kex_hook)(kex, prop);
264 kex_prop2buf(&kex->my, prop);
265 kex_prop_free(prop);
266 }

268 /* Initiate the key exchange by sending the SSH2_MSG_KEXINIT message. */
269 void
270 kex_start(Kex *kex)
271 {
272 kex_send_kexinit(kex);
273 kex_reset_dispatch();
274 }

276 /*
277 * Allocate a key exchange structure and populate it with a proposal we are
278 * going to use. This function does not start the actual key exchange.
279 */
280 Kex *
281 kex_setup(const char *host, char *proposal[PROPOSAL_MAX], Kex_hook_func hook)
282 {
283 Kex *kex;

285 kex = xmalloc(sizeof(*kex));
286 memset(kex, 0, sizeof(*kex));
287 buffer_init(&kex->peer);
288 buffer_init(&kex->my);

290 kex->kex_hook = hook; /* called by kex_send_kexinit() */

292 if (host != NULL && *host != ’\0’)
293 kex->serverhost = xstrdup(host);
294 else
295 kex->server = 1;

297 kex_prop2buf(&kex->my, proposal);

299 return kex;
300 }

302 static void
303 kex_kexinit_finish(Kex *kex)
304 {
305 if (!(kex->flags & KEX_INIT_SENT))
306 kex_send_kexinit(kex);

308 kex_choose_conf(kex);

310 if (kex->kex_type >= 0 && kex->kex_type < KEX_MAX &&
311 kex->kex[kex->kex_type] != NULL)
312 (kex->kex[kex->kex_type])(kex);
313 else
314 fatal("Unsupported key exchange %d", kex->kex_type);
315 }

317 static void
318 choose_lang(char **lang, char *client, char *server)
319 {
320 if (datafellows & SSH_BUG_LOCALES_NOT_LANGTAGS)
321 *lang = match_list(client, server, NULL);
322 else
323 *lang = g11n_srvr_locale_negotiate(client, NULL);
324 }

new/usr/src/cmd/ssh/libssh/common/kex.c 6

326 /*
327 * Make the message clear enough so that if this happens the user can figure out
328 * the workaround of changing the Ciphers option.
329 */
330 #define CLIENT_ERR_MSG \
331 "Client and server could not agree on a common cipher:\n" \
332 " client: %s\n" \
333 " server: %s\n" \
334 "\n" \
335 "The client cipher list can be controlled using the \"Ciphers\" option, \n" \
336 "see ssh_config(4) for more information. The \"-o Ciphers=<cipher-list>\"\n" \
337 "option may be used to temporarily override the ciphers the client\n" \
338 "offers."

340 /*
341 * The server side message goes to syslogd and we do not want to send multiline
342 * messages there. What’s more, the server side notification may be shorter
343 * since we expect that an administrator will deal with that, not the user.
344 */
345 #define SERVER_ERR_MSG \
346 "Client and server could not agree on a common cipher: client \"%s\", " \
347 "server \"%s\". The server cipher list can be controlled using the " \
348 "\"Ciphers\" option, see sshd_config(4) for more information."

350 static void
351 choose_enc(int is_server, Enc *enc, char *client, char *server)
352 {
353 char *name = match_list(client, server, NULL);

355 if (name == NULL) {
356 if (is_server == 1)
357 fatal(SERVER_ERR_MSG, client, server);
358 else
359 fatal(CLIENT_ERR_MSG, client, server);
360 }

362 if ((enc->cipher = cipher_by_name(name)) == NULL)
363 fatal("matching cipher is not supported: %s", name);

365 enc->name = name;
366 enc->enabled = 0;
367 enc->iv = NULL;
368 enc->key = NULL;
369 enc->key_len = cipher_keylen(enc->cipher);
370 enc->block_size = cipher_blocksize(enc->cipher);
371 }

373 static void
374 choose_mac(Mac *mac, char *client, char *server)
375 {
376 char *name = match_list(client, server, NULL);
377 if (name == NULL)
378 fatal("no matching mac found: client %s server %s",
379 client, server);
380 if (mac_setup(mac, name) < 0)
381 fatal("unsupported mac %s", name);
382 /* truncate the key */
383 if (datafellows & SSH_BUG_HMAC)
384 mac->key_len = 16;
385 mac->name = name;
386 mac->key = NULL;
387 mac->enabled = 0;
388 }

390 static void
391 choose_comp(Comp *comp, char *client, char *server)

new/usr/src/cmd/ssh/libssh/common/kex.c 7

392 {
393 char *name = match_list(client, server, NULL);
394 if (name == NULL)
395 fatal("no matching comp found: client %s server %s", client, ser
396 if (strcmp(name, "zlib") == 0) {
397 comp->type = 1;
398 } else if (strcmp(name, "none") == 0) {
399 comp->type = 0;
400 } else {
401 fatal("unsupported comp %s", name);
402 }
403 comp->name = name;
404 }

406 static void
407 choose_kex(Kex *k, char *client, char *server)
408 {
409 k->name = match_list(client, server, NULL);
410 if (k->name == NULL)
411 fatal("no common kex alg: client ’%s’, server ’%s’", client,
412 server);
413 /* XXX Finish 3.6/7 merge of kex stuff -- choose_kex() done */
414 if (strcmp(k->name, KEX_DH1) == 0) {
415 k->kex_type = KEX_DH_GRP1_SHA1;
416 } else if (strcmp(k->name, KEX_DHGEX) == 0) {
417 k->kex_type = KEX_DH_GEX_SHA1;
418 #ifdef GSSAPI
419 } else if (strncmp(k->name, KEX_GSS_SHA1, sizeof(KEX_GSS_SHA1)-1) == 0)
420 k->kex_type = KEX_GSS_GRP1_SHA1;
421 #endif
422 } else
423 fatal("bad kex alg %s", k->name);
424 }

426 static void
427 choose_hostkeyalg(Kex *k, char *client, char *server)
428 {
429 char *hostkeyalg = match_list(client, server, NULL);
430 if (hostkeyalg == NULL)
431 fatal("no hostkey alg");
432 k->hostkey_type = key_type_from_name(hostkeyalg);
433 if (k->hostkey_type == KEY_UNSPEC)
434 fatal("bad hostkey alg ’%s’", hostkeyalg);
435 xfree(hostkeyalg);
436 }

438 static int
439 proposals_match(char *my[PROPOSAL_MAX], char *peer[PROPOSAL_MAX])
440 {
441 static int check[] = {
442 PROPOSAL_KEX_ALGS, PROPOSAL_SERVER_HOST_KEY_ALGS, -1
443 };
444 int *idx;
445 char *p;

447 for (idx = &check[0]; *idx != -1; idx++) {
448 if ((p = strchr(my[*idx], ’,’)) != NULL)
449 *p = ’\0’;
450 if ((p = strchr(peer[*idx], ’,’)) != NULL)
451 *p = ’\0’;
452 if (strcmp(my[*idx], peer[*idx]) != 0) {
453 debug2("proposal mismatch: my %s peer %s",
454 my[*idx], peer[*idx]);
455 return (0);
456 }
457 }

new/usr/src/cmd/ssh/libssh/common/kex.c 8

458 debug2("proposals match");
459 return (1);
460 }

462 static void
463 kex_choose_conf(Kex *kex)
464 {
465 Newkeys *newkeys;
466 char **my, **peer;
467 char **cprop, **sprop;
468 char *p_langs_c2s, *p_langs_s2c; /* peer’s langs */
469 char *plangs = NULL; /* peer’s langs*/
470 char *mlangs = NULL; /* my langs */
471 int nenc, nmac, ncomp;
472 int mode;
473 int ctos; /* direction: if true client-to-
474 int need;
475 int first_kex_follows, type;

477 my = kex_buf2prop(&kex->my, NULL);
478 peer = kex_buf2prop(&kex->peer, &first_kex_follows);

480 if (kex->server) {
481 cprop=peer;
482 sprop=my;
483 } else {
484 cprop=my;
485 sprop=peer;
486 }

488 /* Algorithm Negotiation */
489 for (mode = 0; mode < MODE_MAX; mode++) {
490 newkeys = xmalloc(sizeof(*newkeys));
491 memset(newkeys, 0, sizeof(*newkeys));
492 kex->newkeys[mode] = newkeys;
493 ctos = (!kex->server && mode == MODE_OUT) || (kex->server && mod
494 nenc = ctos ? PROPOSAL_ENC_ALGS_CTOS : PROPOSAL_ENC_ALGS_STOC;
495 nmac = ctos ? PROPOSAL_MAC_ALGS_CTOS : PROPOSAL_MAC_ALGS_STOC;
496 ncomp = ctos ? PROPOSAL_COMP_ALGS_CTOS : PROPOSAL_COMP_ALGS_STOC
497 choose_enc(kex->server, &newkeys->enc, cprop[nenc], sprop[nenc
498 choose_mac(&newkeys->mac, cprop[nmac], sprop[nmac]);
499 choose_comp(&newkeys->comp, cprop[ncomp], sprop[ncomp]);
500 debug("kex: %s %s %s %s",
501 ctos ? "client->server" : "server->client",
502 newkeys->enc.name,
503 newkeys->mac.name,
504 newkeys->comp.name);
505 }
506 choose_kex(kex, cprop[PROPOSAL_KEX_ALGS], sprop[PROPOSAL_KEX_ALGS]);
507 choose_hostkeyalg(kex, cprop[PROPOSAL_SERVER_HOST_KEY_ALGS],
508 sprop[PROPOSAL_SERVER_HOST_KEY_ALGS]);
509 need = 0;
510 for (mode = 0; mode < MODE_MAX; mode++) {
511 newkeys = kex->newkeys[mode];
512 if (need < newkeys->enc.key_len)
513 need = newkeys->enc.key_len;
514 if (need < newkeys->enc.block_size)
515 need = newkeys->enc.block_size;
516 if (need < newkeys->mac.key_len)
517 need = newkeys->mac.key_len;
518 }
519 /* XXX need runden? */
520 kex->we_need = need;

522 /* ignore the next message if the proposals do not match */
523 if (first_kex_follows && !proposals_match(my, peer) &&

new/usr/src/cmd/ssh/libssh/common/kex.c 9

524 !(datafellows & SSH_BUG_FIRSTKEX)) {
525 type = packet_read();
526 debug2("skipping next packet (type %u)", type);
527 }

529 /* Language/locale negotiation -- not worth doing on re-key */

531 if (!kex->initial_kex_done) {
532 p_langs_c2s = peer[PROPOSAL_LANG_CTOS];
533 p_langs_s2c = peer[PROPOSAL_LANG_STOC];
534 debug("Peer sent proposed langtags, ctos: %s", p_langs_c2s);
535 debug("Peer sent proposed langtags, stoc: %s", p_langs_s2c);
536 plangs = NULL;

538 /* We propose the same langs for each protocol direction */
539 mlangs = my[PROPOSAL_LANG_STOC];
540 debug("We proposed langtags, ctos: %s", my[PROPOSAL_LANG_CTOS]);
541 debug("We proposed langtags, stoc: %s", mlangs);
542
543 /*
544 * Why oh why did they bother with negotiating langs for
545 * each protocol direction?!
546 *
547 * The semantics of this are vaguely specified, but one can
548 * imagine using one language (locale) for the whole session and
549 * a different one for message localization (e.g., ’en_US.UTF-8’
550 * overall and ’fr’ for messages). Weird? Maybe. But lang
551 * tags don’t include codeset info, like locales do...
552 *
553 * So, server-side we want:
554 * - setlocale(LC_ALL, c2s_locale);
555 * and
556 * - setlocale(LC_MESSAGES, s2c_locale);
557 *
558 * Client-side we don’t really care. But we could do:
559 *
560 * - when very verbose, tell the use what lang the server’s
561 * messages are in, if left out in the protocol
562 * - when sending messages to the server, and if applicable, we
563 * can localize them according to the language negotiated for
564 * that direction.
565 *
566 * But for now we do nothing on the client side.
567 */
568 if ((p_langs_c2s && *p_langs_c2s) && !(p_langs_s2c && *p_langs_s
569 plangs = p_langs_c2s;
570 else if ((p_langs_s2c && *p_langs_s2c) && !(p_langs_c2s && *p_la
571 plangs = p_langs_s2c;
572 else
573 plangs = p_langs_c2s;

575 if (kex->server) {
576 if (plangs && mlangs && *plangs && *mlangs) {
577 char *locale;

579 g11n_test_langtag(plangs, 1);

581 choose_lang(&locale, plangs, mlangs);
582 if (locale) {
583 g11n_setlocale(LC_ALL, locale);
584 debug("Negotiated main locale: %s", loca
585 packet_send_debug("Negotiated main local
586 xfree(locale);
587 }
588 if (plangs != p_langs_s2c &&
589 p_langs_s2c && *p_langs_s2c) {

new/usr/src/cmd/ssh/libssh/common/kex.c 10

590 choose_lang(&locale, p_langs_s2c, mlangs
591 if (locale) {
592 g11n_setlocale(LC_MESSAGES, loca
593 debug("Negotiated messages local
594 packet_send_debug("Negotiated "
595 "messages locale: %s", local
596 xfree(locale);
597 }
598 }
599 }
600 }
601 else {
602 if (plangs && mlangs && *plangs && *mlangs &&
603 !(datafellows & SSH_BUG_LOCALES_NOT_LANGTAGS)) {
604 char *lang;
605 lang = g11n_clnt_langtag_negotiate(mlangs, plang
606 if (lang) {
607 session_lang = lang;
608 debug("Negotiated lang: %s", lang);
609 g11n_test_langtag(lang, 0);
610 }
611 }
612 }
613 }

615 kex_prop_free(my);
616 kex_prop_free(peer);
617 }

619 static u_char *
620 derive_key(Kex *kex, int id, int need, u_char *hash, BIGNUM *shared_secret)
621 {
622 Buffer b;
623 const EVP_MD *evp_md = EVP_sha1();
624 EVP_MD_CTX md;
625 char c = id;
626 int have;
627 int mdsz = EVP_MD_size(evp_md);
628 u_char *digest = xmalloc(roundup(need, mdsz));

630 buffer_init(&b);
631 buffer_put_bignum2(&b, shared_secret);

633 /* K1 = HASH(K || H || "A" || session_id) */
634 EVP_DigestInit(&md, evp_md);
635 if (!(datafellows & SSH_BUG_DERIVEKEY))
636 EVP_DigestUpdate(&md, buffer_ptr(&b), buffer_len(&b));
637 EVP_DigestUpdate(&md, hash, mdsz);
638 EVP_DigestUpdate(&md, &c, 1);
639 EVP_DigestUpdate(&md, kex->session_id, kex->session_id_len);
640 EVP_DigestFinal(&md, digest, NULL);

642 /*
643 * expand key:
644 * Kn = HASH(K || H || K1 || K2 || ... || Kn-1)
645 * Key = K1 || K2 || ... || Kn
646 */
647 for (have = mdsz; need > have; have += mdsz) {
648 EVP_DigestInit(&md, evp_md);
649 if (!(datafellows & SSH_BUG_DERIVEKEY))
650 EVP_DigestUpdate(&md, buffer_ptr(&b), buffer_len(&b));
651 EVP_DigestUpdate(&md, hash, mdsz);
652 EVP_DigestUpdate(&md, digest, have);
653 EVP_DigestFinal(&md, digest + have, NULL);
654 }
655 buffer_free(&b);

new/usr/src/cmd/ssh/libssh/common/kex.c 11

656 #ifdef DEBUG_KEX
657 fprintf(stderr, "key ’%c’== ", c);
658 dump_digest("key", digest, need);
659 #endif
660 return digest;
661 }

663 Newkeys *current_keys[MODE_MAX];

665 #define NKEYS 6
666 void
667 kex_derive_keys(Kex *kex, u_char *hash, BIGNUM *shared_secret)
668 {
669 u_char *keys[NKEYS];
670 int i, mode, ctos;

672 for (i = 0; i < NKEYS; i++)
673 keys[i] = derive_key(kex, ’A’+i, kex->we_need, hash, shared_secr

675 debug2("kex_derive_keys");
676 for (mode = 0; mode < MODE_MAX; mode++) {
677 current_keys[mode] = kex->newkeys[mode];
678 kex->newkeys[mode] = NULL;
679 ctos = (!kex->server && mode == MODE_OUT) || (kex->server && mod
680 current_keys[mode]->enc.iv = keys[ctos ? 0 : 1];
681 current_keys[mode]->enc.key = keys[ctos ? 2 : 3];
682 current_keys[mode]->mac.key = keys[ctos ? 4 : 5];
683 }
684 }

686 Newkeys *
687 kex_get_newkeys(int mode)
688 {
689 Newkeys *ret;

691 ret = current_keys[mode];
692 current_keys[mode] = NULL;
693 return ret;
694 }

696 #if defined(DEBUG_KEX) || defined(DEBUG_KEXDH)
697 void
698 dump_digest(char *msg, u_char *digest, int len)
699 {
700 int i;

702 fprintf(stderr, "%s\n", msg);
703 for (i = 0; i< len; i++) {
704 fprintf(stderr, "%02x", digest[i]);
705 if (i%32 == 31)
706 fprintf(stderr, "\n");
707 else if (i%8 == 7)
708 fprintf(stderr, " ");
709 }
710 fprintf(stderr, "\n");
711 }
712 #endif

new/usr/src/cmd/ssh/libssh/common/kexdh.c 1

**
 2956 Fri May 30 18:31:09 2014
new/usr/src/cmd/ssh/libssh/common/kexdh.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2001 Markus Friedl. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */

25 #include "includes.h"
26 RCSID("$OpenBSD: kexdh.c,v 1.18 2002/03/18 17:50:31 provos Exp $");

28 #pragma ident "%Z%%M% %I% %E% SMI"

30 #include <openssl/opensslconf.h>
31 #include <openssl/crypto.h>
32 #include <openssl/bn.h>

34 #include "xmalloc.h"
35 #include "buffer.h"
36 #include "bufaux.h"
37 #include "key.h"
38 #include "kex.h"
39 #include "log.h"
40 #include "packet.h"
41 #include "dh.h"
42 #include "ssh2.h"

44 u_char *
45 kex_dh_hash(
46 char *client_version_string,
47 char *server_version_string,
48 char *ckexinit, int ckexinitlen,
49 char *skexinit, int skexinitlen,
50 u_char *serverhostkeyblob, int sbloblen,
51 BIGNUM *client_dh_pub,
52 BIGNUM *server_dh_pub,
53 BIGNUM *shared_secret)
54 {
55 Buffer b;
56 static u_char digest[EVP_MAX_MD_SIZE];
57 const EVP_MD *evp_md = EVP_sha1();
58 EVP_MD_CTX md;

60 buffer_init(&b);
61 buffer_put_cstring(&b, client_version_string);

new/usr/src/cmd/ssh/libssh/common/kexdh.c 2

62 buffer_put_cstring(&b, server_version_string);

64 /* kexinit messages: fake header: len+SSH2_MSG_KEXINIT */
65 buffer_put_int(&b, ckexinitlen+1);
66 buffer_put_char(&b, SSH2_MSG_KEXINIT);
67 buffer_append(&b, ckexinit, ckexinitlen);
68 buffer_put_int(&b, skexinitlen+1);
69 buffer_put_char(&b, SSH2_MSG_KEXINIT);
70 buffer_append(&b, skexinit, skexinitlen);

72 buffer_put_string(&b, serverhostkeyblob, sbloblen);
73 buffer_put_bignum2(&b, client_dh_pub);
74 buffer_put_bignum2(&b, server_dh_pub);
75 buffer_put_bignum2(&b, shared_secret);

77 #ifdef DEBUG_KEX
78 buffer_dump(&b);
79 #endif
80 EVP_DigestInit(&md, evp_md);
81 EVP_DigestUpdate(&md, buffer_ptr(&b), buffer_len(&b));
82 EVP_DigestFinal(&md, digest, NULL);

84 buffer_free(&b);

86 #ifdef DEBUG_KEX
87 dump_digest("hash", digest, EVP_MD_size(evp_md));
88 #endif
89 return digest;
90 }

new/usr/src/cmd/ssh/libssh/common/kexdhc.c 1

**
 4549 Fri May 30 18:31:09 2014
new/usr/src/cmd/ssh/libssh/common/kexdhc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2001 Markus Friedl. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */

25 #include "includes.h"
26 RCSID("$OpenBSD: kexdh.c,v 1.18 2002/03/18 17:50:31 provos Exp $");

28 #pragma ident "%Z%%M% %I% %E% SMI"

30 #include <openssl/opensslconf.h>
31 #include <openssl/crypto.h>
32 #include <openssl/bn.h>

34 #include "xmalloc.h"
35 #include "buffer.h"
36 #include "bufaux.h"
37 #include "key.h"
38 #include "kex.h"
39 #include "log.h"
40 #include "packet.h"
41 #include "dh.h"
42 #include "ssh2.h"

44 void
45 kexdh_client(Kex *kex)
46 {
47 BIGNUM *dh_server_pub = NULL, *shared_secret = NULL;
48 DH *dh;
49 Key *server_host_key;
50 u_char *server_host_key_blob = NULL, *signature = NULL;
51 u_char *kbuf, *hash;
52 u_int klen, kout, slen, sbloblen;

54 /* generate and send ’e’, client DH public key */
55 dh = dh_new_group1();
56 dh_gen_key(dh, kex->we_need * 8);
57 packet_start(SSH2_MSG_KEXDH_INIT);
58 packet_put_bignum2(dh->pub_key);
59 packet_send();

61 debug("sending SSH2_MSG_KEXDH_INIT");

new/usr/src/cmd/ssh/libssh/common/kexdhc.c 2

62 #ifdef DEBUG_KEXDH
63 DHparams_print_fp(stderr, dh);
64 fprintf(stderr, "pub= ");
65 BN_print_fp(stderr, dh->pub_key);
66 fprintf(stderr, "\n");
67 #endif

69 debug("expecting SSH2_MSG_KEXDH_REPLY");
70 packet_read_expect(SSH2_MSG_KEXDH_REPLY);

72 /* key, cert */
73 server_host_key_blob = packet_get_string(&sbloblen);
74 server_host_key = key_from_blob(server_host_key_blob, sbloblen);
75 if (server_host_key == NULL)
76 fatal("cannot decode server_host_key_blob");
77 if (server_host_key->type != kex->hostkey_type)
78 fatal("type mismatch for decoded server_host_key_blob");
79 if (kex->verify_host_key == NULL)
80 fatal("cannot verify server_host_key");
81 if (kex->verify_host_key(server_host_key) == -1)
82 fatal("server_host_key verification failed");

84 /* DH paramter f, server public DH key */
85 if ((dh_server_pub = BN_new()) == NULL)
86 fatal("dh_server_pub == NULL");
87 packet_get_bignum2(dh_server_pub);

89 #ifdef DEBUG_KEXDH
90 fprintf(stderr, "dh_server_pub= ");
91 BN_print_fp(stderr, dh_server_pub);
92 fprintf(stderr, "\n");
93 debug("bits %d", BN_num_bits(dh_server_pub));
94 #endif

96 /* signed H */
97 signature = packet_get_string(&slen);
98 packet_check_eom();

100 if (!dh_pub_is_valid(dh, dh_server_pub))
101 packet_disconnect("bad server public DH value");

103 klen = DH_size(dh);
104 kbuf = xmalloc(klen);
105 kout = DH_compute_key(kbuf, dh_server_pub, dh);
106 #ifdef DEBUG_KEXDH
107 dump_digest("shared secret", kbuf, kout);
108 #endif
109 if ((shared_secret = BN_new()) == NULL)
110 fatal("kexdh_client: BN_new failed");
111 BN_bin2bn(kbuf, kout, shared_secret);
112 memset(kbuf, 0, klen);
113 xfree(kbuf);

115 /* calc and verify H */
116 hash = kex_dh_hash(
117 kex->client_version_string,
118 kex->server_version_string,
119 buffer_ptr(&kex->my), buffer_len(&kex->my),
120 buffer_ptr(&kex->peer), buffer_len(&kex->peer),
121 server_host_key_blob, sbloblen,
122 dh->pub_key,
123 dh_server_pub,
124 shared_secret
125);
126 xfree(server_host_key_blob);
127 BN_clear_free(dh_server_pub);

new/usr/src/cmd/ssh/libssh/common/kexdhc.c 3

128 DH_free(dh);

130 if (key_verify(server_host_key, signature, slen, hash, 20) != 1)
131 fatal("key_verify failed for server_host_key");
132 key_free(server_host_key);
133 xfree(signature);

135 /* save session id */
136 if (kex->session_id == NULL) {
137 kex->session_id_len = 20;
138 kex->session_id = xmalloc(kex->session_id_len);
139 memcpy(kex->session_id, hash, kex->session_id_len);
140 }

142 kex_derive_keys(kex, hash, shared_secret);
143 BN_clear_free(shared_secret);
144 kex_finish(kex);
145 }

new/usr/src/cmd/ssh/libssh/common/kexdhs.c 1

**
 4395 Fri May 30 18:31:10 2014
new/usr/src/cmd/ssh/libssh/common/kexdhs.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2001 Markus Friedl. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */

25 #include "includes.h"
26 RCSID("$OpenBSD: kexdh.c,v 1.18 2002/03/18 17:50:31 provos Exp $");

28 #pragma ident "%Z%%M% %I% %E% SMI"

30 #include <openssl/opensslconf.h>
31 #include <openssl/crypto.h>
32 #include <openssl/bn.h>

34 #include "xmalloc.h"
35 #include "buffer.h"
36 #include "bufaux.h"
37 #include "key.h"
38 #include "kex.h"
39 #include "log.h"
40 #include "packet.h"
41 #include "dh.h"
42 #include "ssh2.h"

44 void
45 kexdh_server(Kex *kex)
46 {
47 BIGNUM *shared_secret = NULL, *dh_client_pub = NULL;
48 DH *dh;
49 Key *server_host_key;
50 u_char *kbuf, *hash, *signature = NULL, *server_host_key_blob = NULL;
51 u_int sbloblen, klen, kout;
52 u_int slen;

54 /* generate server DH public key */
55 dh = dh_new_group1();
56 dh_gen_key(dh, kex->we_need * 8);

58 debug("expecting SSH2_MSG_KEXDH_INIT");
59 packet_read_expect(SSH2_MSG_KEXDH_INIT);

61 if (kex->load_host_key == NULL)

new/usr/src/cmd/ssh/libssh/common/kexdhs.c 2

62 fatal("Cannot load hostkey");
63 server_host_key = kex->load_host_key(kex->hostkey_type);
64 if (server_host_key == NULL)
65 fatal("Unsupported hostkey type %d", kex->hostkey_type);

67 /* key, cert */
68 if ((dh_client_pub = BN_new()) == NULL)
69 fatal("dh_client_pub == NULL");
70 packet_get_bignum2(dh_client_pub);
71 packet_check_eom();

73 #ifdef DEBUG_KEXDH
74 fprintf(stderr, "dh_client_pub= ");
75 BN_print_fp(stderr, dh_client_pub);
76 fprintf(stderr, "\n");
77 debug("bits %d", BN_num_bits(dh_client_pub));
78 #endif

80 #ifdef DEBUG_KEXDH
81 DHparams_print_fp(stderr, dh);
82 fprintf(stderr, "pub= ");
83 BN_print_fp(stderr, dh->pub_key);
84 fprintf(stderr, "\n");
85 #endif
86 if (!dh_pub_is_valid(dh, dh_client_pub))
87 packet_disconnect("bad client public DH value");

89 klen = DH_size(dh);
90 kbuf = xmalloc(klen);
91 kout = DH_compute_key(kbuf, dh_client_pub, dh);
92 #ifdef DEBUG_KEXDH
93 dump_digest("shared secret", kbuf, kout);
94 #endif
95 if ((shared_secret = BN_new()) == NULL)
96 fatal("kexdh_server: BN_new failed");
97 BN_bin2bn(kbuf, kout, shared_secret);
98 memset(kbuf, 0, klen);
99 xfree(kbuf);

101 key_to_blob(server_host_key, &server_host_key_blob, &sbloblen);

103 /* calc H */
104 hash = kex_dh_hash(
105 kex->client_version_string,
106 kex->server_version_string,
107 buffer_ptr(&kex->peer), buffer_len(&kex->peer),
108 buffer_ptr(&kex->my), buffer_len(&kex->my),
109 server_host_key_blob, sbloblen,
110 dh_client_pub,
111 dh->pub_key,
112 shared_secret
113);
114 BN_clear_free(dh_client_pub);

116 /* save session id := H */
117 /* XXX hashlen depends on KEX */
118 if (kex->session_id == NULL) {
119 kex->session_id_len = 20;
120 kex->session_id = xmalloc(kex->session_id_len);
121 memcpy(kex->session_id, hash, kex->session_id_len);
122 }

124 /* sign H */
125 /* XXX hashlen depends on KEX */
126 key_sign(server_host_key, &signature, &slen, hash, 20);

new/usr/src/cmd/ssh/libssh/common/kexdhs.c 3

128 /* destroy_sensitive_data(); */

130 /* send server hostkey, DH pubkey ’f’ and singed H */
131 packet_start(SSH2_MSG_KEXDH_REPLY);
132 packet_put_string(server_host_key_blob, sbloblen);
133 packet_put_bignum2(dh->pub_key); /* f */
134 packet_put_string(signature, slen);
135 packet_send();

137 xfree(signature);
138 xfree(server_host_key_blob);
139 /* have keys, free DH */
140 DH_free(dh);

142 kex_derive_keys(kex, hash, shared_secret);
143 BN_clear_free(shared_secret);
144 kex_finish(kex);
145 }

new/usr/src/cmd/ssh/libssh/common/kexgex.c 1

**
 3296 Fri May 30 18:31:10 2014
new/usr/src/cmd/ssh/libssh/common/kexgex.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2000 Niels Provos. All rights reserved.
3 * Copyright (c) 2001 Markus Friedl. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */

26 #include "includes.h"
27 RCSID("$OpenBSD: kexgex.c,v 1.22 2002/03/24 17:27:03 stevesk Exp $");

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #include <openssl/opensslconf.h>
32 #include <openssl/bn.h>

34 #include "xmalloc.h"
35 #include "buffer.h"
36 #include "bufaux.h"
37 #include "key.h"
38 #include "kex.h"
39 #include "log.h"
40 #include "packet.h"
41 #include "dh.h"
42 #include "ssh2.h"
43 #include "compat.h"

45 u_char *
46 kexgex_hash(
47 char *client_version_string,
48 char *server_version_string,
49 char *ckexinit, int ckexinitlen,
50 char *skexinit, int skexinitlen,
51 u_char *serverhostkeyblob, int sbloblen,
52 int min, int wantbits, int max, BIGNUM *prime, BIGNUM *gen,
53 BIGNUM *client_dh_pub,
54 BIGNUM *server_dh_pub,
55 BIGNUM *shared_secret)
56 {
57 Buffer b;
58 static u_char digest[EVP_MAX_MD_SIZE];
59 const EVP_MD *evp_md = EVP_sha1();
60 EVP_MD_CTX md;

new/usr/src/cmd/ssh/libssh/common/kexgex.c 2

62 buffer_init(&b);
63 buffer_put_cstring(&b, client_version_string);
64 buffer_put_cstring(&b, server_version_string);

66 /* kexinit messages: fake header: len+SSH2_MSG_KEXINIT */
67 buffer_put_int(&b, ckexinitlen+1);
68 buffer_put_char(&b, SSH2_MSG_KEXINIT);
69 buffer_append(&b, ckexinit, ckexinitlen);
70 buffer_put_int(&b, skexinitlen+1);
71 buffer_put_char(&b, SSH2_MSG_KEXINIT);
72 buffer_append(&b, skexinit, skexinitlen);

74 buffer_put_string(&b, serverhostkeyblob, sbloblen);
75 if (min == -1 || max == -1)
76 buffer_put_int(&b, wantbits);
77 else {
78 buffer_put_int(&b, min);
79 buffer_put_int(&b, wantbits);
80 buffer_put_int(&b, max);
81 }
82 buffer_put_bignum2(&b, prime);
83 buffer_put_bignum2(&b, gen);
84 buffer_put_bignum2(&b, client_dh_pub);
85 buffer_put_bignum2(&b, server_dh_pub);
86 buffer_put_bignum2(&b, shared_secret);

88 #ifdef DEBUG_KEXDH
89 buffer_dump(&b);
90 #endif
91 EVP_DigestInit(&md, evp_md);
92 EVP_DigestUpdate(&md, buffer_ptr(&b), buffer_len(&b));
93 EVP_DigestFinal(&md, digest, NULL);

95 buffer_free(&b);

97 #ifdef DEBUG_KEXDH
98 dump_digest("hash", digest, EVP_MD_size(evp_md));
99 #endif
100 return digest;
101 }

new/usr/src/cmd/ssh/libssh/common/kexgexc.c 1

**
 5813 Fri May 30 18:31:10 2014
new/usr/src/cmd/ssh/libssh/common/kexgexc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2000 Niels Provos. All rights reserved.
3 * Copyright (c) 2001 Markus Friedl. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */

26 #include "includes.h"
27 RCSID("$OpenBSD: kexgex.c,v 1.22 2002/03/24 17:27:03 stevesk Exp $");

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #include <openssl/opensslconf.h>
32 #include <openssl/bn.h>

34 #include "xmalloc.h"
35 #include "buffer.h"
36 #include "bufaux.h"
37 #include "key.h"
38 #include "kex.h"
39 #include "log.h"
40 #include "packet.h"
41 #include "dh.h"
42 #include "ssh2.h"
43 #include "compat.h"

45 void
46 kexgex_client(Kex *kex)
47 {
48 BIGNUM *dh_server_pub = NULL, *shared_secret = NULL;
49 BIGNUM *p = NULL, *g = NULL;
50 Key *server_host_key;
51 u_char *kbuf, *hash, *signature = NULL, *server_host_key_blob = NULL;
52 u_int klen, kout, slen, sbloblen;
53 int min, max, nbits;
54 DH *dh;

56 nbits = dh_estimate(kex->we_need * 8);

58 if (datafellows & SSH_OLD_DHGEX) {
59 debug("SSH2_MSG_KEX_DH_GEX_REQUEST_OLD sent");

61 /* Old GEX request */

new/usr/src/cmd/ssh/libssh/common/kexgexc.c 2

62 packet_start(SSH2_MSG_KEX_DH_GEX_REQUEST_OLD);
63 packet_put_int(nbits);
64 min = DH_GRP_MIN;
65 max = DH_GRP_MAX;
66 } else {
67 debug("SSH2_MSG_KEX_DH_GEX_REQUEST sent");

69 /* New GEX request */
70 min = DH_GRP_MIN;
71 max = DH_GRP_MAX;
72 packet_start(SSH2_MSG_KEX_DH_GEX_REQUEST);
73 packet_put_int(min);
74 packet_put_int(nbits);
75 packet_put_int(max);
76 }
77 #ifdef DEBUG_KEXDH
78 fprintf(stderr, "\nmin = %d, nbits = %d, max = %d\n",
79 min, nbits, max);
80 #endif
81 packet_send();

83 debug("expecting SSH2_MSG_KEX_DH_GEX_GROUP");
84 packet_read_expect(SSH2_MSG_KEX_DH_GEX_GROUP);

86 if ((p = BN_new()) == NULL)
87 fatal("BN_new");
88 packet_get_bignum2(p);
89 if ((g = BN_new()) == NULL)
90 fatal("BN_new");
91 packet_get_bignum2(g);
92 packet_check_eom();

94 if (BN_num_bits(p) < min || BN_num_bits(p) > max)
95 fatal("DH_GEX group out of range: %d !< %d !< %d",
96 min, BN_num_bits(p), max);

98 dh = dh_new_group(g, p);
99 dh_gen_key(dh, kex->we_need * 8);

101 #ifdef DEBUG_KEXDH
102 DHparams_print_fp(stderr, dh);
103 fprintf(stderr, "pub= ");
104 BN_print_fp(stderr, dh->pub_key);
105 fprintf(stderr, "\n");
106 #endif

108 debug("SSH2_MSG_KEX_DH_GEX_INIT sent");
109 /* generate and send ’e’, client DH public key */
110 packet_start(SSH2_MSG_KEX_DH_GEX_INIT);
111 packet_put_bignum2(dh->pub_key);
112 packet_send();

114 debug("expecting SSH2_MSG_KEX_DH_GEX_REPLY");
115 packet_read_expect(SSH2_MSG_KEX_DH_GEX_REPLY);

117 /* key, cert */
118 server_host_key_blob = packet_get_string(&sbloblen);
119 server_host_key = key_from_blob(server_host_key_blob, sbloblen);
120 if (server_host_key == NULL)
121 fatal("cannot decode server_host_key_blob");
122 if (server_host_key->type != kex->hostkey_type)
123 fatal("type mismatch for decoded server_host_key_blob");
124 if (kex->verify_host_key == NULL)
125 fatal("cannot verify server_host_key");
126 if (kex->verify_host_key(server_host_key) == -1)
127 fatal("server_host_key verification failed");

new/usr/src/cmd/ssh/libssh/common/kexgexc.c 3

129 /* DH paramter f, server public DH key */
130 if ((dh_server_pub = BN_new()) == NULL)
131 fatal("dh_server_pub == NULL");
132 packet_get_bignum2(dh_server_pub);

134 #ifdef DEBUG_KEXDH
135 fprintf(stderr, "dh_server_pub= ");
136 BN_print_fp(stderr, dh_server_pub);
137 fprintf(stderr, "\n");
138 debug("bits %d", BN_num_bits(dh_server_pub));
139 #endif

141 /* signed H */
142 signature = packet_get_string(&slen);
143 packet_check_eom();

145 if (!dh_pub_is_valid(dh, dh_server_pub))
146 packet_disconnect("bad server public DH value");

148 klen = DH_size(dh);
149 kbuf = xmalloc(klen);
150 kout = DH_compute_key(kbuf, dh_server_pub, dh);
151 #ifdef DEBUG_KEXDH
152 dump_digest("shared secret", kbuf, kout);
153 #endif
154 if ((shared_secret = BN_new()) == NULL)
155 fatal("kexgex_client: BN_new failed");
156 BN_bin2bn(kbuf, kout, shared_secret);
157 memset(kbuf, 0, klen);
158 xfree(kbuf);

160 if (datafellows & SSH_OLD_DHGEX)
161 min = max = -1;

163 /* calc and verify H */
164 hash = kexgex_hash(
165 kex->client_version_string,
166 kex->server_version_string,
167 buffer_ptr(&kex->my), buffer_len(&kex->my),
168 buffer_ptr(&kex->peer), buffer_len(&kex->peer),
169 server_host_key_blob, sbloblen,
170 min, nbits, max,
171 dh->p, dh->g,
172 dh->pub_key,
173 dh_server_pub,
174 shared_secret
175);
176 /* have keys, free DH */
177 DH_free(dh);
178 xfree(server_host_key_blob);
179 BN_clear_free(dh_server_pub);

181 if (key_verify(server_host_key, signature, slen, hash, 20) != 1)
182 fatal("key_verify failed for server_host_key");
183 key_free(server_host_key);
184 xfree(signature);

186 /* save session id */
187 if (kex->session_id == NULL) {
188 kex->session_id_len = 20;
189 kex->session_id = xmalloc(kex->session_id_len);
190 memcpy(kex->session_id, hash, kex->session_id_len);
191 }
192 kex_derive_keys(kex, hash, shared_secret);
193 BN_clear_free(shared_secret);

new/usr/src/cmd/ssh/libssh/common/kexgexc.c 4

195 kex_finish(kex);
196 }

new/usr/src/cmd/ssh/libssh/common/kexgexs.c 1

**
 5723 Fri May 30 18:31:10 2014
new/usr/src/cmd/ssh/libssh/common/kexgexs.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2000 Niels Provos. All rights reserved.
3 * Copyright (c) 2001 Markus Friedl. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */

26 #include "includes.h"
27 RCSID("$OpenBSD: kexgex.c,v 1.22 2002/03/24 17:27:03 stevesk Exp $");

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #include <openssl/opensslconf.h>
32 #include <openssl/bn.h>

34 #include "xmalloc.h"
35 #include "buffer.h"
36 #include "bufaux.h"
37 #include "key.h"
38 #include "kex.h"
39 #include "log.h"
40 #include "packet.h"
41 #include "dh.h"
42 #include "ssh2.h"
43 #include "compat.h"

45 void
46 kexgex_server(Kex *kex)
47 {
48 BIGNUM *shared_secret = NULL, *dh_client_pub = NULL;
49 Key *server_host_key;
50 DH *dh;
51 u_char *kbuf, *hash, *signature = NULL, *server_host_key_blob = NULL;
52 u_int sbloblen, klen, kout, slen;
53 int min = -1, max = -1, nbits = -1, type;

55 if (kex->load_host_key == NULL)
56 fatal("Cannot load hostkey");
57 server_host_key = kex->load_host_key(kex->hostkey_type);
58 if (server_host_key == NULL)
59 fatal("Unsupported hostkey type %d", kex->hostkey_type);

61 type = packet_read();

new/usr/src/cmd/ssh/libssh/common/kexgexs.c 2

62 switch (type) {
63 case SSH2_MSG_KEX_DH_GEX_REQUEST:
64 debug("SSH2_MSG_KEX_DH_GEX_REQUEST received");
65 min = packet_get_int();
66 nbits = packet_get_int();
67 max = packet_get_int();
68 min = MAX(DH_GRP_MIN, min);
69 max = MIN(DH_GRP_MAX, max);
70 break;
71 case SSH2_MSG_KEX_DH_GEX_REQUEST_OLD:
72 debug("SSH2_MSG_KEX_DH_GEX_REQUEST_OLD received");
73 nbits = packet_get_int();
74 min = DH_GRP_MIN;
75 max = DH_GRP_MAX;
76 /* unused for old GEX */
77 break;
78 default:
79 fatal("protocol error during kex, no DH_GEX_REQUEST: %d", type);
80 }
81 packet_check_eom();

83 if (max < min || nbits < min || max < nbits)
84 fatal("DH_GEX_REQUEST, bad parameters: %d !< %d !< %d",
85 min, nbits, max);

87 /* Contact privileged parent */
88 dh = choose_dh(min, nbits, max);
89 if (dh == NULL)
90 packet_disconnect("Protocol error: no matching DH grp found");

92 debug("SSH2_MSG_KEX_DH_GEX_GROUP sent");
93 packet_start(SSH2_MSG_KEX_DH_GEX_GROUP);
94 packet_put_bignum2(dh->p);
95 packet_put_bignum2(dh->g);
96 packet_send();

98 /* flush */
99 packet_write_wait();

101 /* Compute our exchange value in parallel with the client */
102 dh_gen_key(dh, kex->we_need * 8);

104 debug("expecting SSH2_MSG_KEX_DH_GEX_INIT");
105 packet_read_expect(SSH2_MSG_KEX_DH_GEX_INIT);

107 /* key, cert */
108 if ((dh_client_pub = BN_new()) == NULL)
109 fatal("dh_client_pub == NULL");
110 packet_get_bignum2(dh_client_pub);
111 packet_check_eom();

113 #ifdef DEBUG_KEXDH
114 fprintf(stderr, "dh_client_pub= ");
115 BN_print_fp(stderr, dh_client_pub);
116 fprintf(stderr, "\n");
117 debug("bits %d", BN_num_bits(dh_client_pub));
118 #endif

120 #ifdef DEBUG_KEXDH
121 DHparams_print_fp(stderr, dh);
122 fprintf(stderr, "pub= ");
123 BN_print_fp(stderr, dh->pub_key);
124 fprintf(stderr, "\n");
125 #endif
126 if (!dh_pub_is_valid(dh, dh_client_pub))
127 packet_disconnect("bad client public DH value");

new/usr/src/cmd/ssh/libssh/common/kexgexs.c 3

129 klen = DH_size(dh);
130 kbuf = xmalloc(klen);
131 kout = DH_compute_key(kbuf, dh_client_pub, dh);
132 #ifdef DEBUG_KEXDH
133 dump_digest("shared secret", kbuf, kout);
134 #endif
135 if ((shared_secret = BN_new()) == NULL)
136 fatal("kexgex_server: BN_new failed");
137 BN_bin2bn(kbuf, kout, shared_secret);
138 memset(kbuf, 0, klen);
139 xfree(kbuf);

141 key_to_blob(server_host_key, &server_host_key_blob, &sbloblen);

143 if (type == SSH2_MSG_KEX_DH_GEX_REQUEST_OLD)
144 min = max = -1;

146 /* calc H */ /* XXX depends on ’kex’ */
147 hash = kexgex_hash(
148 kex->client_version_string,
149 kex->server_version_string,
150 buffer_ptr(&kex->peer), buffer_len(&kex->peer),
151 buffer_ptr(&kex->my), buffer_len(&kex->my),
152 server_host_key_blob, sbloblen,
153 min, nbits, max,
154 dh->p, dh->g,
155 dh_client_pub,
156 dh->pub_key,
157 shared_secret
158);
159 BN_clear_free(dh_client_pub);

161 /* save session id := H */
162 /* XXX hashlen depends on KEX */
163 if (kex->session_id == NULL) {
164 kex->session_id_len = 20;
165 kex->session_id = xmalloc(kex->session_id_len);
166 memcpy(kex->session_id, hash, kex->session_id_len);
167 }

169 /* sign H */
170 /* XXX hashlen depends on KEX */
171 key_sign(server_host_key, &signature, &slen, hash, 20);

173 /* destroy_sensitive_data(); */

175 /* send server hostkey, DH pubkey ’f’ and singed H */
176 debug("SSH2_MSG_KEX_DH_GEX_REPLY sent");
177 packet_start(SSH2_MSG_KEX_DH_GEX_REPLY);
178 packet_put_string(server_host_key_blob, sbloblen);
179 packet_put_bignum2(dh->pub_key); /* f */
180 packet_put_string(signature, slen);
181 packet_send();

183 xfree(signature);
184 xfree(server_host_key_blob);
185 /* have keys, free DH */
186 DH_free(dh);

188 kex_derive_keys(kex, hash, shared_secret);
189 BN_clear_free(shared_secret);

191 kex_finish(kex);
192 }

new/usr/src/cmd/ssh/libssh/common/kexgssc.c 1

**
 9633 Fri May 30 18:31:10 2014
new/usr/src/cmd/ssh/libssh/common/kexgssc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2001-2003 Simon Wilkinson. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘AS IS’’ AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */
24 /*
25 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
27 */

29 #pragma ident "%Z%%M% %I% %E% SMI"

32 #include "includes.h"

34 #ifdef GSSAPI

36 #include <openssl/opensslconf.h>
37 #include <openssl/crypto.h>
38 #include <openssl/bn.h>

40 #include "xmalloc.h"
41 #include "buffer.h"
42 #include "bufaux.h"
43 #include "kex.h"
44 #include "log.h"
45 #include "packet.h"
46 #include "dh.h"
47 #include "canohost.h"
48 #include "ssh2.h"
49 #include "ssh-gss.h"

51 extern char *xxx_host;

53 Gssctxt *xxx_gssctxt;

55 static void kexgss_verbose_cleanup(void *arg);

57 void
58 kexgss_client(Kex *kex)
59 {
60 gss_buffer_desc gssbuf, send_tok, recv_tok, msg_tok;
61 gss_buffer_t token_ptr;

new/usr/src/cmd/ssh/libssh/common/kexgssc.c 2

62 gss_OID mech = GSS_C_NULL_OID;
63 Gssctxt *ctxt = NULL;
64 OM_uint32 maj_status, min_status, smaj_status, smin_status;
65 unsigned int klen, kout;
66 DH *dh;
67 BIGNUM *dh_server_pub = 0;
68 BIGNUM *shared_secret = 0;
69 Key *server_host_key = NULL;
70 unsigned char *kbuf;
71 unsigned char *hash;
72 unsigned char *server_host_key_blob = NULL;
73 char *msg, *lang;
74 int type = 0;
75 int first = 1;
76 uint_t sbloblen = 0;
77 uint_t strlen;

79 /* Map the negotiated kex name to a mech OID */
80 ssh_gssapi_oid_of_kexname(kex->name, &mech);
81 if (mech == GSS_C_NULL_OID)
82 fatal("Couldn’t match the negotiated GSS key exchange");

84 ssh_gssapi_build_ctx(&ctxt, 1, mech);

86 /* This code should match that in ssh_dh1_client */

88 /* Step 1 - e is dh->pub_key */
89 dh = dh_new_group1();
90 dh_gen_key(dh, kex->we_need * 8);

92 /* This is f, we initialise it now to make life easier */
93 dh_server_pub = BN_new();
94 if (dh_server_pub == NULL) {
95 fatal("dh_server_pub == NULL");
96 }

98 token_ptr = GSS_C_NO_BUFFER;

100 recv_tok.value = NULL;
101 recv_tok.length = 0;

103 do {
104 debug("Calling gss_init_sec_context");

106 maj_status = ssh_gssapi_init_ctx(ctxt, xxx_host,
107 kex->options.gss_deleg_creds, token_ptr, &send_tok);

109 if (GSS_ERROR(maj_status)) {
110 ssh_gssapi_error(ctxt, "performing GSS-API protected "
111 "SSHv2 key exchange");
112 (void) gss_release_buffer(&min_status, &send_tok);
113 packet_disconnect("A GSS-API error occurred during "
114 "GSS-API protected SSHv2 key exchange\n");
115 }

117 /* If we’ve got an old receive buffer get rid of it */
118 if (token_ptr != GSS_C_NO_BUFFER) {
119 /* We allocated recv_tok */
120 xfree(recv_tok.value);
121 recv_tok.value = NULL;
122 recv_tok.length = 0;
123 token_ptr = GSS_C_NO_BUFFER;
124 }

126 if (maj_status == GSS_S_COMPLETE) {
127 /* If mutual state flag is not true, kex fails */

new/usr/src/cmd/ssh/libssh/common/kexgssc.c 3

128 if (!(ctxt->flags & GSS_C_MUTUAL_FLAG)) {
129 fatal("Mutual authentication failed");
130 }
131 /* If integ avail flag is not true kex fails */
132 if (!(ctxt->flags & GSS_C_INTEG_FLAG)) {
133 fatal("Integrity check failed");
134 }
135 }

137 /*
138 * If we have data to send, then the last message that we
139 * received cannot have been a ’complete’.
140 */
141 if (send_tok.length != 0) {
142 if (first) {
143 packet_start(SSH2_MSG_KEXGSS_INIT);
144 packet_put_string(send_tok.value,
145 send_tok.length);
146 packet_put_bignum2(dh->pub_key);
147 first = 0;
148 } else {
149 packet_start(SSH2_MSG_KEXGSS_CONTINUE);
150 packet_put_string(send_tok.value,
151 send_tok.length);
152 }
153 (void) gss_release_buffer(&min_status, &send_tok);
154 packet_send();
155 packet_write_wait();

158 /*
159 * If we’ve sent them data, they’d better be polite and
160 * reply.
161 */

163 next_packet:
164 /*
165 * We need to catch connection closing w/o error
166 * tokens or messages so we can tell the user
167 * _something_ more useful than "Connection
168 * closed by ..."
169 *
170 * We use a fatal cleanup function as that’s
171 * all, really, that we can do for now.
172 */
173 fatal_add_cleanup(kexgss_verbose_cleanup, NULL);
174 type = packet_read();
175 fatal_remove_cleanup(kexgss_verbose_cleanup, NULL);
176 switch (type) {
177 case SSH2_MSG_KEXGSS_HOSTKEY:
178 debug("Received KEXGSS_HOSTKEY");
179 server_host_key_blob =
180 packet_get_string(&sbloblen);
181 server_host_key =
182 key_from_blob(server_host_key_blob,
183 sbloblen);
184 goto next_packet; /* there MUSt be another */
185 break;
186 case SSH2_MSG_KEXGSS_CONTINUE:
187 debug("Received GSSAPI_CONTINUE");
188 if (maj_status == GSS_S_COMPLETE)
189 packet_disconnect("Protocol error: "
190 "received GSS-API context token "
191 "though the context was already "
192 "established");
193 recv_tok.value = packet_get_string(&strlen);

new/usr/src/cmd/ssh/libssh/common/kexgssc.c 4

194 recv_tok.length = strlen; /* u_int vs. size_t */
195 break;
196 case SSH2_MSG_KEXGSS_COMPLETE:
197 debug("Received GSSAPI_COMPLETE");
198 packet_get_bignum2(dh_server_pub);
199 msg_tok.value = packet_get_string(&strlen);
200 msg_tok.length = strlen; /* u_int vs. size_t */

202 /* Is there a token included? */
203 if (packet_get_char()) {
204 recv_tok.value =
205 packet_get_string(&strlen);
206 /* u_int/size_t */
207 recv_tok.length = strlen;
208 }
209 if (recv_tok.length > 0 &&
210 maj_status == GSS_S_COMPLETE) {
211 packet_disconnect("Protocol error: "
212 "received GSS-API context token "
213 "though the context was already "
214 "established");
215 } else if (recv_tok.length == 0 &&
216 maj_status == GSS_S_CONTINUE_NEEDED) {
217 /* No token included */
218 packet_disconnect("Protocol error: "
219 "did not receive expected "
220 "GSS-API context token");
221 }
222 break;
223 case SSH2_MSG_KEXGSS_ERROR:
224 smaj_status = packet_get_int();
225 smin_status = packet_get_int();
226 msg = packet_get_string(NULL);
227 lang = packet_get_string(NULL);
228 xfree(lang);
229 error("Server had a GSS-API error; the "
230 "connection will close (%d/%d):\n%s",
231 smaj_status, smin_status, msg);
232 error("Use the GssKeyEx option to disable "
233 "GSS-API key exchange and try again.");
234 packet_disconnect("The server had a GSS-API "
235 "error during GSS-API protected SSHv2 "
236 "key exchange\n");
237 break;
238 default:
239 packet_disconnect("Protocol error: "
240 "didn’t expect packet type %d", type);
241 }
242 if (recv_tok.value)
243 token_ptr = &recv_tok;
244 } else {
245 /* No data, and not complete */
246 if (maj_status != GSS_S_COMPLETE) {
247 fatal("Not complete, and no token output");
248 }
249 }
250 } while (maj_status == GSS_S_CONTINUE_NEEDED);

252 /*
253 * We _must_ have received a COMPLETE message in reply from the
254 * server, which will have set dh_server_pub and msg_tok.
255 */
256 if (type != SSH2_MSG_KEXGSS_COMPLETE)
257 fatal("Expected SSH2_MSG_KEXGSS_COMPLETE never arrived");
258 if (maj_status != GSS_S_COMPLETE)
259 fatal("Internal error in GSS-API protected SSHv2 key exchange");

new/usr/src/cmd/ssh/libssh/common/kexgssc.c 5

261 /* Check f in range [1, p-1] */
262 if (!dh_pub_is_valid(dh, dh_server_pub))
263 packet_disconnect("bad server public DH value");

265 /* compute K=f^x mod p */
266 klen = DH_size(dh);
267 kbuf = xmalloc(klen);
268 kout = DH_compute_key(kbuf, dh_server_pub, dh);

270 shared_secret = BN_new();
271 BN_bin2bn(kbuf, kout, shared_secret);
272 (void) memset(kbuf, 0, klen);
273 xfree(kbuf);

275 /* The GSS hash is identical to the DH one */
276 hash = kex_dh_hash(
277 kex->client_version_string,
278 kex->server_version_string,
279 buffer_ptr(&kex->my), buffer_len(&kex->my),
280 buffer_ptr(&kex->peer), buffer_len(&kex->peer),
281 server_host_key_blob, sbloblen, /* server host key */
282 dh->pub_key, /* e */
283 dh_server_pub, /* f */
284 shared_secret); /* K */

286 gssbuf.value = hash;
287 gssbuf.length = 20;

289 /* Verify that H matches the token we just got. */
290 if ((maj_status = gss_verify_mic(&min_status, ctxt->context, &gssbuf,
291 &msg_tok, NULL))) {
292 packet_disconnect("Hash’s MIC didn’t verify");
293 }

295 if (server_host_key && kex->accept_host_key != NULL)
296 (void) kex->accept_host_key(server_host_key);

298 DH_free(dh);

300 xxx_gssctxt = ctxt; /* for gss keyex w/ mic userauth */

302 /* save session id */
303 if (kex->session_id == NULL) {
304 kex->session_id_len = 20;
305 kex->session_id = xmalloc(kex->session_id_len);
306 (void) memcpy(kex->session_id, hash, kex->session_id_len);
307 }

309 kex_derive_keys(kex, hash, shared_secret);
310 BN_clear_free(shared_secret);
311 kex_finish(kex);
312 }

314 /* ARGSUSED */
315 static
316 void
317 kexgss_verbose_cleanup(void *arg)
318 {
319 error("The GSS-API protected key exchange has failed without "
320 "indication\nfrom the server, possibly due to misconfiguration "
321 "of the server.");
322 error("Use the GssKeyEx option to disable GSS-API key exchange "
323 "and try again.");
324 }

new/usr/src/cmd/ssh/libssh/common/kexgssc.c 6

326 #endif /* GSSAPI */

new/usr/src/cmd/ssh/libssh/common/kexgsss.c 1

**
 7226 Fri May 30 18:31:10 2014
new/usr/src/cmd/ssh/libssh/common/kexgsss.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2001-2003 Simon Wilkinson. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘AS IS’’ AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */
24 /*
25 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
27 */

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #include "includes.h"

33 #ifdef GSSAPI

35 #include <openssl/opensslconf.h>
36 #include <openssl/crypto.h>
37 #include <openssl/bn.h>

39 #include "xmalloc.h"
40 #include "buffer.h"
41 #include "bufaux.h"
42 #include "compat.h"
43 #include "kex.h"
44 #include "log.h"
45 #include "packet.h"
46 #include "dh.h"
47 #include "ssh2.h"
48 #include "ssh-gss.h"
49 #include "auth.h"

51 Gssctxt *xxx_gssctxt;
52 extern Authctxt *x_authctxt;

54 static void kex_gss_send_error(Gssctxt *ctxt);

56 void
57 kexgss_server(Kex *kex)
58 {
59 OM_uint32 maj_status, min_status;
60 gss_buffer_desc gssbuf, send_tok, recv_tok, msg_tok;
61 Gssctxt *ctxt = NULL;

new/usr/src/cmd/ssh/libssh/common/kexgsss.c 2

62 unsigned int klen, kout;
63 unsigned int sbloblen = 0;
64 unsigned char *kbuf, *hash;
65 unsigned char *server_host_key_blob = NULL;
66 DH *dh;
67 Key *server_host_key = NULL;
68 BIGNUM *shared_secret = NULL;
69 BIGNUM *dh_client_pub = NULL;
70 int type = 0;
71 uint_t slen;
72 gss_OID oid;

74 /*
75 * Load host key to advertise in a SSH_MSG_KEXGSS_HOSTKEY packet
76 * -- unlike KEX_DH/KEX_GEX no host key, no problem since it’s
77 * the GSS-API that provides for server host authentication.
78 */
79 if (kex->load_host_key != NULL &&
80 !(datafellows & SSH_BUG_GSSKEX_HOSTKEY))
81 server_host_key = kex->load_host_key(kex->hostkey_type);
82 if (server_host_key != NULL)
83 key_to_blob(server_host_key, &server_host_key_blob, &sbloblen);

86 /* Initialise GSSAPI */

88 ssh_gssapi_oid_of_kexname(kex->name, &oid);
89 if (oid == GSS_C_NULL_OID) {
90 fatal("Couldn’t match the negotiated GSS key exchange");
91 }

93 ssh_gssapi_build_ctx(&xxx_gssctxt, 0, oid);

95 ctxt = xxx_gssctxt;

97 do {
98 debug("Wait SSH2_MSG_GSSAPI_INIT");
99 type = packet_read();
100 switch (type) {
101 case SSH2_MSG_KEXGSS_INIT:
102 if (dh_client_pub != NULL)
103 fatal("Received KEXGSS_INIT after "
104 "initialising");
105 recv_tok.value = packet_get_string(&slen);
106 recv_tok.length = slen; /* int vs. size_t */

108 dh_client_pub = BN_new();

110 if (dh_client_pub == NULL)
111 fatal("dh_client_pub == NULL");
112 packet_get_bignum2(dh_client_pub);

114 /* Send SSH_MSG_KEXGSS_HOSTKEY here, if we want */
115 if (sbloblen) {
116 packet_start(SSH2_MSG_KEXGSS_HOSTKEY);
117 packet_put_string(server_host_key_blob,
118 sbloblen);
119 packet_send();
120 packet_write_wait();
121 }
122 break;
123 case SSH2_MSG_KEXGSS_CONTINUE:
124 recv_tok.value = packet_get_string(&slen);
125 recv_tok.length = slen; /* int vs. size_t */
126 break;
127 default:

new/usr/src/cmd/ssh/libssh/common/kexgsss.c 3

128 packet_disconnect("Protocol error: didn’t expect "
129 "packet type %d", type);
130 }

132 maj_status = ssh_gssapi_accept_ctx(ctxt, &recv_tok, &send_tok);

134 xfree(recv_tok.value); /* We allocated this, not gss */

136 if (dh_client_pub == NULL)
137 fatal("No client public key");

139 if (maj_status == GSS_S_CONTINUE_NEEDED) {
140 debug("Sending GSSAPI_CONTINUE");
141 packet_start(SSH2_MSG_KEXGSS_CONTINUE);
142 packet_put_string(send_tok.value, send_tok.length);
143 packet_send();
144 packet_write_wait();
145 (void) gss_release_buffer(&min_status, &send_tok);
146 }
147 } while (maj_status == GSS_S_CONTINUE_NEEDED);

149 if (GSS_ERROR(maj_status)) {
150 kex_gss_send_error(ctxt);
151 if (send_tok.length > 0) {
152 packet_start(SSH2_MSG_KEXGSS_CONTINUE);
153 packet_put_string(send_tok.value, send_tok.length);
154 packet_send();
155 packet_write_wait();
156 (void) gss_release_buffer(&min_status, &send_tok);
157 }
158 fatal("accept_ctx died");
159 }

161 debug("gss_complete");
162 if (!(ctxt->flags & GSS_C_MUTUAL_FLAG))
163 fatal("Mutual authentication flag wasn’t set");

165 if (!(ctxt->flags & GSS_C_INTEG_FLAG))
166 fatal("Integrity flag wasn’t set");

168 dh = dh_new_group1();
169 dh_gen_key(dh, kex->we_need * 8);

171 if (!dh_pub_is_valid(dh, dh_client_pub))
172 packet_disconnect("bad client public DH value");

174 klen = DH_size(dh);
175 kbuf = xmalloc(klen);
176 kout = DH_compute_key(kbuf, dh_client_pub, dh);

178 shared_secret = BN_new();
179 BN_bin2bn(kbuf, kout, shared_secret);
180 (void) memset(kbuf, 0, klen);
181 xfree(kbuf);

183 /* The GSSAPI hash is identical to the Diffie Helman one */
184 hash = kex_dh_hash(
185 kex->client_version_string,
186 kex->server_version_string,
187 buffer_ptr(&kex->peer), buffer_len(&kex->peer),
188 buffer_ptr(&kex->my), buffer_len(&kex->my),
189 server_host_key_blob, sbloblen,
190 dh_client_pub,
191 dh->pub_key,
192 shared_secret);

new/usr/src/cmd/ssh/libssh/common/kexgsss.c 4

194 BN_free(dh_client_pub);

196 if (kex->session_id == NULL) {
197 kex->session_id_len = 20;
198 kex->session_id = xmalloc(kex->session_id_len);
199 (void) memcpy(kex->session_id, hash, kex->session_id_len);
200 } else if (x_authctxt != NULL && x_authctxt->success) {
201 ssh_gssapi_storecreds(ctxt, x_authctxt);
202 }

204 /* Should fix kex_dh_hash to output hash length */
205 gssbuf.length = 20; /* yes, it’s always 20 (SHA-1) */
206 gssbuf.value = hash; /* and it’s static constant storage */

208 if (GSS_ERROR(ssh_gssapi_get_mic(ctxt, &gssbuf, &msg_tok))) {
209 kex_gss_send_error(ctxt);
210 fatal("Couldn’t get MIC");
211 }

213 packet_start(SSH2_MSG_KEXGSS_COMPLETE);
214 packet_put_bignum2(dh->pub_key);
215 packet_put_string((char *)msg_tok.value, msg_tok.length);
216 (void) gss_release_buffer(&min_status, &msg_tok);

218 if (send_tok.length != 0) {
219 packet_put_char(1); /* true */
220 packet_put_string((char *)send_tok.value, send_tok.length);
221 (void) gss_release_buffer(&min_status, &send_tok);
222 } else {
223 packet_put_char(0); /* false */
224 }
225 packet_send();
226 packet_write_wait();

228 DH_free(dh);

230 kex_derive_keys(kex, hash, shared_secret);
231 BN_clear_free(shared_secret);
232 kex_finish(kex);
233 }

235 static void
236 kex_gss_send_error(Gssctxt *ctxt) {
237 char *errstr;
238 OM_uint32 maj, min;

240 errstr = ssh_gssapi_last_error(ctxt, &maj, &min);
241 if (errstr) {
242 packet_start(SSH2_MSG_KEXGSS_ERROR);
243 packet_put_int(maj);
244 packet_put_int(min);
245 packet_put_cstring(errstr);
246 packet_put_cstring("");
247 packet_send();
248 packet_write_wait();
249 /* XXX - We should probably log the error locally here */
250 xfree(errstr);
251 }
252 }
253 #endif /* GSSAPI */

new/usr/src/cmd/ssh/libssh/common/key.c 1

**
 19862 Fri May 30 18:31:10 2014
new/usr/src/cmd/ssh/libssh/common/key.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * read_bignum():
3 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
4 *
5 * As far as I am concerned, the code I have written for this software
6 * can be used freely for any purpose. Any derived versions of this
7 * software must be clearly marked as such, and if the derived work is
8 * incompatible with the protocol description in the RFC file, it must be
9 * called by a name other than "ssh" or "Secure Shell".
10 *
11 *
12 * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34 #include "includes.h"
35 RCSID("$OpenBSD: key.c,v 1.49 2002/09/09 14:54:14 markus Exp $");

37 #pragma ident "%Z%%M% %I% %E% SMI"

39 #include <openssl/opensslconf.h>
40 #include <openssl/evp.h>

42 #include "xmalloc.h"
43 #include "key.h"
44 #include "rsa.h"
45 #include "ssh-dss.h"
46 #include "ssh-rsa.h"
47 #include "uuencode.h"
48 #include "buffer.h"
49 #include "bufaux.h"
50 #include "log.h"

52 Key *
53 key_new(int type)
54 {
55 Key *k;
56 RSA *rsa;
57 DSA *dsa;
58 k = xmalloc(sizeof(*k));
59 k->type = type;
60 k->flags = 0;
61 k->dsa = NULL;

new/usr/src/cmd/ssh/libssh/common/key.c 2

62 k->rsa = NULL;
63 switch (k->type) {
64 case KEY_RSA1:
65 case KEY_RSA:
66 if ((rsa = RSA_new()) == NULL)
67 fatal("key_new: RSA_new failed");
68 if ((rsa->n = BN_new()) == NULL)
69 fatal("key_new: BN_new failed");
70 if ((rsa->e = BN_new()) == NULL)
71 fatal("key_new: BN_new failed");
72 k->rsa = rsa;
73 break;
74 case KEY_DSA:
75 if ((dsa = DSA_new()) == NULL)
76 fatal("key_new: DSA_new failed");
77 if ((dsa->p = BN_new()) == NULL)
78 fatal("key_new: BN_new failed");
79 if ((dsa->q = BN_new()) == NULL)
80 fatal("key_new: BN_new failed");
81 if ((dsa->g = BN_new()) == NULL)
82 fatal("key_new: BN_new failed");
83 if ((dsa->pub_key = BN_new()) == NULL)
84 fatal("key_new: BN_new failed");
85 k->dsa = dsa;
86 break;
87 case KEY_UNSPEC:
88 break;
89 default:
90 fatal("key_new: bad key type %d", k->type);
91 break;
92 }
93 return k;
94 }

96 Key *
97 key_new_private(int type)
98 {
99 Key *k = key_new(type);
100 switch (k->type) {
101 case KEY_RSA1:
102 case KEY_RSA:
103 if ((k->rsa->d = BN_new()) == NULL)
104 fatal("key_new_private: BN_new failed");
105 if ((k->rsa->iqmp = BN_new()) == NULL)
106 fatal("key_new_private: BN_new failed");
107 if ((k->rsa->q = BN_new()) == NULL)
108 fatal("key_new_private: BN_new failed");
109 if ((k->rsa->p = BN_new()) == NULL)
110 fatal("key_new_private: BN_new failed");
111 if ((k->rsa->dmq1 = BN_new()) == NULL)
112 fatal("key_new_private: BN_new failed");
113 if ((k->rsa->dmp1 = BN_new()) == NULL)
114 fatal("key_new_private: BN_new failed");
115 break;
116 case KEY_DSA:
117 if ((k->dsa->priv_key = BN_new()) == NULL)
118 fatal("key_new_private: BN_new failed");
119 break;
120 case KEY_UNSPEC:
121 break;
122 default:
123 break;
124 }
125 return k;
126 }

new/usr/src/cmd/ssh/libssh/common/key.c 3

128 void
129 key_free(Key *k)
130 {
131 switch (k->type) {
132 case KEY_RSA1:
133 case KEY_RSA:
134 if (k->rsa != NULL)
135 RSA_free(k->rsa);
136 k->rsa = NULL;
137 break;
138 case KEY_DSA:
139 if (k->dsa != NULL)
140 DSA_free(k->dsa);
141 k->dsa = NULL;
142 break;
143 case KEY_UNSPEC:
144 break;
145 default:
146 fatal("key_free: bad key type %d", k->type);
147 break;
148 }
149 xfree(k);
150 }
151 int
152 key_equal(const Key *a, const Key *b)
153 {
154 if (a == NULL || b == NULL || a->type != b->type)
155 return 0;
156 switch (a->type) {
157 case KEY_RSA1:
158 case KEY_RSA:
159 return a->rsa != NULL && b->rsa != NULL &&
160 BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
161 BN_cmp(a->rsa->n, b->rsa->n) == 0;
162 break;
163 case KEY_DSA:
164 return a->dsa != NULL && b->dsa != NULL &&
165 BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
166 BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
167 BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
168 BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
169 break;
170 default:
171 fatal("key_equal: bad key type %d", a->type);
172 break;
173 }
174 return 0;
175 }

177 static u_char *
178 key_fingerprint_raw(Key *k, enum fp_type dgst_type, u_int *dgst_raw_length)
179 {
180 const EVP_MD *md = NULL;
181 EVP_MD_CTX ctx;
182 u_char *blob = NULL;
183 u_char *retval = NULL;
184 u_int len = 0;
185 int nlen, elen;

187 *dgst_raw_length = 0;

189 switch (dgst_type) {
190 case SSH_FP_MD5:
191 md = EVP_md5();
192 break;
193 case SSH_FP_SHA1:

new/usr/src/cmd/ssh/libssh/common/key.c 4

194 md = EVP_sha1();
195 break;
196 default:
197 fatal("key_fingerprint_raw: bad digest type %d",
198 dgst_type);
199 }
200 switch (k->type) {
201 case KEY_RSA1:
202 nlen = BN_num_bytes(k->rsa->n);
203 elen = BN_num_bytes(k->rsa->e);
204 len = nlen + elen;
205 blob = xmalloc(len);
206 BN_bn2bin(k->rsa->n, blob);
207 BN_bn2bin(k->rsa->e, blob + nlen);
208 break;
209 case KEY_DSA:
210 case KEY_RSA:
211 key_to_blob(k, &blob, &len);
212 break;
213 case KEY_UNSPEC:
214 return retval;
215 break;
216 default:
217 fatal("key_fingerprint_raw: bad key type %d", k->type);
218 break;
219 }
220 if (blob != NULL) {
221 retval = xmalloc(EVP_MAX_MD_SIZE);
222 EVP_DigestInit(&ctx, md);
223 EVP_DigestUpdate(&ctx, blob, len);
224 EVP_DigestFinal(&ctx, retval, dgst_raw_length);
225 memset(blob, 0, len);
226 xfree(blob);
227 } else {
228 fatal("key_fingerprint_raw: blob is null");
229 }
230 return retval;
231 }

233 static char *
234 key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len)
235 {
236 char *retval;
237 int i;

239 retval = xmalloc(dgst_raw_len * 3 + 1);
240 retval[0] = ’\0’;
241 for (i = 0; i < dgst_raw_len; i++) {
242 char hex[4];
243 snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]);
244 strlcat(retval, hex, dgst_raw_len * 3);
245 }
246 retval[(dgst_raw_len * 3) - 1] = ’\0’;
247 return retval;
248 }

250 static char *
251 key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len)
252 {
253 char vowels[] = { ’a’, ’e’, ’i’, ’o’, ’u’, ’y’ };
254 char consonants[] = { ’b’, ’c’, ’d’, ’f’, ’g’, ’h’, ’k’, ’l’, ’m’,
255 ’n’, ’p’, ’r’, ’s’, ’t’, ’v’, ’z’, ’x’ };
256 u_int i, j = 0, rounds, seed = 1;
257 char *retval;

259 rounds = (dgst_raw_len / 2) + 1;

new/usr/src/cmd/ssh/libssh/common/key.c 5

260 retval = xmalloc(sizeof(char) * (rounds*6));
261 retval[j++] = ’x’;
262 for (i = 0; i < rounds; i++) {
263 u_int idx0, idx1, idx2, idx3, idx4;
264 if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
265 idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
266 seed) % 6;
267 idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
268 idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
269 (seed / 6)) % 6;
270 retval[j++] = vowels[idx0];
271 retval[j++] = consonants[idx1];
272 retval[j++] = vowels[idx2];
273 if ((i + 1) < rounds) {
274 idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) &
275 idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
276 retval[j++] = consonants[idx3];
277 retval[j++] = ’-’;
278 retval[j++] = consonants[idx4];
279 seed = ((seed * 5) +
280 ((((u_int)(dgst_raw[2 * i])) * 7) +
281 ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
282 }
283 } else {
284 idx0 = seed % 6;
285 idx1 = 16;
286 idx2 = seed / 6;
287 retval[j++] = vowels[idx0];
288 retval[j++] = consonants[idx1];
289 retval[j++] = vowels[idx2];
290 }
291 }
292 retval[j++] = ’x’;
293 retval[j++] = ’\0’;
294 return retval;
295 }

297 char *
298 key_fingerprint(Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep)
299 {
300 char *retval = NULL;
301 u_char *dgst_raw;
302 u_int dgst_raw_len;

304 dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len);
305 if (!dgst_raw)
306 fatal("key_fingerprint: null from key_fingerprint_raw()");
307 switch (dgst_rep) {
308 case SSH_FP_HEX:
309 retval = key_fingerprint_hex(dgst_raw, dgst_raw_len);
310 break;
311 case SSH_FP_BUBBLEBABBLE:
312 retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
313 break;
314 default:
315 fatal("key_fingerprint_ex: bad digest representation %d",
316 dgst_rep);
317 break;
318 }
319 memset(dgst_raw, 0, dgst_raw_len);
320 xfree(dgst_raw);
321 return retval;
322 }

324 /*
325 * Reads a multiple-precision integer in decimal from the buffer, and advances

new/usr/src/cmd/ssh/libssh/common/key.c 6

326 * the pointer. The integer must already be initialized. This function is
327 * permitted to modify the buffer. This leaves *cpp to point just beyond the
328 * last processed (and maybe modified) character. Note that this may modify
329 * the buffer containing the number.
330 */
331 static int
332 read_bignum(char **cpp, BIGNUM * value)
333 {
334 char *cp = *cpp;
335 int old;

337 /* Skip any leading whitespace. */
338 for (; *cp == ’ ’ || *cp == ’\t’; cp++)
339 ;

341 /* Check that it begins with a decimal digit. */
342 if (*cp < ’0’ || *cp > ’9’)
343 return 0;

345 /* Save starting position. */
346 *cpp = cp;

348 /* Move forward until all decimal digits skipped. */
349 for (; *cp >= ’0’ && *cp <= ’9’; cp++)
350 ;

352 /* Save the old terminating character, and replace it by \0. */
353 old = *cp;
354 *cp = 0;

356 /* Parse the number. */
357 if (BN_dec2bn(&value, *cpp) == 0)
358 return 0;

360 /* Restore old terminating character. */
361 *cp = old;

363 /* Move beyond the number and return success. */
364 *cpp = cp;
365 return 1;
366 }

368 static int
369 write_bignum(FILE *f, BIGNUM *num)
370 {
371 char *buf = BN_bn2dec(num);
372 if (buf == NULL) {
373 error("write_bignum: BN_bn2dec() failed");
374 return 0;
375 }
376 fprintf(f, " %s", buf);
377 OPENSSL_free(buf);
378 return 1;
379 }

381 /* returns 1 ok, -1 error */
382 int
383 key_read(Key *ret, char **cpp)
384 {
385 Key *k;
386 int success = -1;
387 char *cp, *space;
388 int len, n, type;
389 u_int bits;
390 u_char *blob;

new/usr/src/cmd/ssh/libssh/common/key.c 7

392 cp = *cpp;

394 switch (ret->type) {
395 case KEY_RSA1:
396 /* Get number of bits. */
397 if (*cp < ’0’ || *cp > ’9’)
398 return -1; /* Bad bit count... */
399 for (bits = 0; *cp >= ’0’ && *cp <= ’9’; cp++)
400 bits = 10 * bits + *cp - ’0’;
401 if (bits == 0)
402 return -1;
403 *cpp = cp;
404 /* Get public exponent, public modulus. */
405 if (!read_bignum(cpp, ret->rsa->e))
406 return -1;
407 if (!read_bignum(cpp, ret->rsa->n))
408 return -1;
409 success = 1;
410 break;
411 case KEY_UNSPEC:
412 case KEY_RSA:
413 case KEY_DSA:
414 space = strchr(cp, ’ ’);
415 if (space == NULL) {
416 debug3("key_read: no space");
417 return -1;
418 }
419 *space = ’\0’;
420 type = key_type_from_name(cp);
421 *space = ’ ’;
422 if (type == KEY_UNSPEC) {
423 debug3("key_read: no key found");
424 return -1;
425 }
426 cp = space+1;
427 if (*cp == ’\0’) {
428 debug3("key_read: short string");
429 return -1;
430 }
431 if (ret->type == KEY_UNSPEC) {
432 ret->type = type;
433 } else if (ret->type != type) {
434 /* is a key, but different type */
435 debug3("key_read: type mismatch");
436 return -1;
437 }
438 len = 2*strlen(cp);
439 blob = xmalloc(len);
440 n = uudecode(cp, blob, len);
441 if (n < 0) {
442 error("key_read: uudecode %s failed", cp);
443 xfree(blob);
444 return -1;
445 }
446 k = key_from_blob(blob, n);
447 xfree(blob);
448 if (k == NULL) {
449 error("key_read: key_from_blob %s failed", cp);
450 return -1;
451 }
452 if (k->type != type) {
453 error("key_read: type mismatch: encoding error");
454 key_free(k);
455 return -1;
456 }
457 /*XXXX*/

new/usr/src/cmd/ssh/libssh/common/key.c 8

458 if (ret->type == KEY_RSA) {
459 if (ret->rsa != NULL)
460 RSA_free(ret->rsa);
461 ret->rsa = k->rsa;
462 k->rsa = NULL;
463 success = 1;
464 #ifdef DEBUG_PK
465 RSA_print_fp(stderr, ret->rsa, 8);
466 #endif
467 } else {
468 if (ret->dsa != NULL)
469 DSA_free(ret->dsa);
470 ret->dsa = k->dsa;
471 k->dsa = NULL;
472 success = 1;
473 #ifdef DEBUG_PK
474 DSA_print_fp(stderr, ret->dsa, 8);
475 #endif
476 }
477 /*XXXX*/
478 key_free(k);
479 if (success != 1)
480 break;
481 /* advance cp: skip whitespace and data */
482 while (*cp == ’ ’ || *cp == ’\t’)
483 cp++;
484 while (*cp != ’\0’ && *cp != ’ ’ && *cp != ’\t’)
485 cp++;
486 *cpp = cp;
487 break;
488 default:
489 fatal("key_read: bad key type: %d", ret->type);
490 break;
491 }
492 return success;
493 }

495 int
496 key_write(const Key *key, FILE *f)
497 {
498 int n, success = 0;
499 u_int len, bits = 0;
500 u_char *blob;
501 char *uu;

503 if (key->type == KEY_RSA1 && key->rsa != NULL) {
504 /* size of modulus ’n’ */
505 bits = BN_num_bits(key->rsa->n);
506 fprintf(f, "%u", bits);
507 if (write_bignum(f, key->rsa->e) &&
508 write_bignum(f, key->rsa->n)) {
509 success = 1;
510 } else {
511 error("key_write: failed for RSA key");
512 }
513 } else if ((key->type == KEY_DSA && key->dsa != NULL) ||
514 (key->type == KEY_RSA && key->rsa != NULL)) {
515 key_to_blob(key, &blob, &len);
516 uu = xmalloc(2*len);
517 n = uuencode(blob, len, uu, 2*len);
518 if (n > 0) {
519 fprintf(f, "%s %s", key_ssh_name(key), uu);
520 success = 1;
521 }
522 xfree(blob);
523 xfree(uu);

new/usr/src/cmd/ssh/libssh/common/key.c 9

524 }
525 return success;
526 }

528 char *
529 key_type(Key *k)
530 {
531 switch (k->type) {
532 case KEY_RSA1:
533 return "RSA1";
534 break;
535 case KEY_RSA:
536 return "RSA";
537 break;
538 case KEY_DSA:
539 return "DSA";
540 break;
541 }
542 return "unknown";
543 }

545 char *
546 key_ssh_name(const Key *k)
547 {
548 switch (k->type) {
549 case KEY_RSA:
550 return "ssh-rsa";
551 break;
552 case KEY_DSA:
553 return "ssh-dss";
554 break;
555 }
556 return "ssh-unknown";
557 }

559 u_int
560 key_size(Key *k)
561 {
562 switch (k->type) {
563 case KEY_RSA1:
564 case KEY_RSA:
565 return BN_num_bits(k->rsa->n);
566 break;
567 case KEY_DSA:
568 return BN_num_bits(k->dsa->p);
569 break;
570 }
571 return 0;
572 }

574 static RSA *
575 rsa_generate_private_key(u_int bits)
576 {
577 RSA *private;
578 private = RSA_generate_key(bits, 35, NULL, NULL);
579 if (private == NULL)
580 fatal("rsa_generate_private_key: key generation failed.");
581 return private;
582 }

584 static DSA*
585 dsa_generate_private_key(u_int bits)
586 {
587 DSA *private = DSA_generate_parameters(bits, NULL, 0, NULL, NULL, NULL,
588 if (private == NULL)
589 fatal("dsa_generate_private_key: DSA_generate_parameters failed"

new/usr/src/cmd/ssh/libssh/common/key.c 10

590 if (!DSA_generate_key(private))
591 fatal("dsa_generate_private_key: DSA_generate_key failed.");
592 if (private == NULL)
593 fatal("dsa_generate_private_key: NULL.");
594 return private;
595 }

597 Key *
598 key_generate(int type, u_int bits)
599 {
600 Key *k = key_new(KEY_UNSPEC);
601 switch (type) {
602 case KEY_DSA:
603 k->dsa = dsa_generate_private_key(bits);
604 break;
605 case KEY_RSA:
606 case KEY_RSA1:
607 k->rsa = rsa_generate_private_key(bits);
608 break;
609 default:
610 fatal("key_generate: unknown type %d", type);
611 }
612 k->type = type;
613 return k;
614 }

616 Key *
617 key_from_private(Key *k)
618 {
619 Key *n = NULL;
620 switch (k->type) {
621 case KEY_DSA:
622 n = key_new(k->type);
623 BN_copy(n->dsa->p, k->dsa->p);
624 BN_copy(n->dsa->q, k->dsa->q);
625 BN_copy(n->dsa->g, k->dsa->g);
626 BN_copy(n->dsa->pub_key, k->dsa->pub_key);
627 break;
628 case KEY_RSA:
629 case KEY_RSA1:
630 n = key_new(k->type);
631 BN_copy(n->rsa->n, k->rsa->n);
632 BN_copy(n->rsa->e, k->rsa->e);
633 break;
634 default:
635 fatal("key_from_private: unknown type %d", k->type);
636 break;
637 }
638 return n;
639 }

641 int
642 key_type_from_name(char *name)
643 {
644 if (strcmp(name, "rsa1") == 0) {
645 return KEY_RSA1;
646 } else if (strcmp(name, "rsa") == 0) {
647 return KEY_RSA;
648 } else if (strcmp(name, "dsa") == 0) {
649 return KEY_DSA;
650 } else if (strcmp(name, "ssh-rsa") == 0) {
651 return KEY_RSA;
652 } else if (strcmp(name, "ssh-dss") == 0) {
653 return KEY_DSA;
654 } else if (strcmp(name, "null") == 0){
655 return KEY_NULL;

new/usr/src/cmd/ssh/libssh/common/key.c 11

656 }
657 debug2("key_type_from_name: unknown key type ’%s’", name);
658 return KEY_UNSPEC;
659 }

661 int
662 key_names_valid2(const char *names)
663 {
664 char *s, *cp, *p;

666 if (names == NULL || strcmp(names, "") == 0)
667 return 0;
668 s = cp = xstrdup(names);
669 for ((p = strsep(&cp, ",")); p && *p != ’\0’;
670 (p = strsep(&cp, ","))) {
671 switch (key_type_from_name(p)) {
672 case KEY_RSA1:
673 case KEY_UNSPEC:
674 xfree(s);
675 return 0;
676 }
677 }
678 debug3("key names ok: [%s]", names);
679 xfree(s);
680 return 1;
681 }

683 Key *
684 key_from_blob(u_char *blob, int blen)
685 {
686 Buffer b;
687 char *ktype;
688 int rlen, type;
689 Key *key = NULL;

691 #ifdef DEBUG_PK
692 dump_base64(stderr, blob, blen);
693 #endif
694 buffer_init(&b);
695 buffer_append(&b, blob, blen);
696 if ((ktype = buffer_get_string_ret(&b, NULL)) == NULL) {
697 error("key_from_blob: can’t read key type");
698 goto out;
699 }

701 type = key_type_from_name(ktype);

703 switch (type) {
704 case KEY_RSA:
705 key = key_new(type);
706 if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 ||
707 buffer_get_bignum2_ret(&b, key->rsa->n) == -1) {
708 error("key_from_blob: can’t read rsa key");
709 key_free(key);
710 key = NULL;
711 goto out;
712 }
713 #ifdef DEBUG_PK
714 RSA_print_fp(stderr, key->rsa, 8);
715 #endif
716 break;
717 case KEY_DSA:
718 key = key_new(type);
719 if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 ||
720 buffer_get_bignum2_ret(&b, key->dsa->q) == -1 ||
721 buffer_get_bignum2_ret(&b, key->dsa->g) == -1 ||

new/usr/src/cmd/ssh/libssh/common/key.c 12

722 buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) {
723 error("key_from_blob: can’t read dsa key");
724 key_free(key);
725 key = NULL;
726 goto out;
727 }
728 #ifdef DEBUG_PK
729 DSA_print_fp(stderr, key->dsa, 8);
730 #endif
731 break;
732 case KEY_UNSPEC:
733 key = key_new(type);
734 break;
735 default:
736 error("key_from_blob: cannot handle type %s", ktype);
737 goto out;
738 }
739 rlen = buffer_len(&b);
740 if (key != NULL && rlen != 0)
741 error("key_from_blob: remaining bytes in key blob %d", rlen);
742 out:
743 if (ktype != NULL)
744 xfree(ktype);
745 buffer_free(&b);
746 return key;
747 }

749 int
750 key_to_blob(const Key *key, u_char **blobp, u_int *lenp)
751 {
752 Buffer b;
753 int len;

755 if (key == NULL) {
756 error("key_to_blob: key == NULL");
757 return 0;
758 }
759 buffer_init(&b);
760 switch (key->type) {
761 case KEY_DSA:
762 buffer_put_cstring(&b, key_ssh_name(key));
763 buffer_put_bignum2(&b, key->dsa->p);
764 buffer_put_bignum2(&b, key->dsa->q);
765 buffer_put_bignum2(&b, key->dsa->g);
766 buffer_put_bignum2(&b, key->dsa->pub_key);
767 break;
768 case KEY_RSA:
769 buffer_put_cstring(&b, key_ssh_name(key));
770 buffer_put_bignum2(&b, key->rsa->e);
771 buffer_put_bignum2(&b, key->rsa->n);
772 break;
773 default:
774 error("key_to_blob: unsupported key type %d", key->type);
775 buffer_free(&b);
776 return 0;
777 }
778 len = buffer_len(&b);
779 if (lenp != NULL)
780 *lenp = len;
781 if (blobp != NULL) {
782 *blobp = xmalloc(len);
783 memcpy(*blobp, buffer_ptr(&b), len);
784 }
785 memset(buffer_ptr(&b), 0, len);
786 buffer_free(&b);
787 return len;

new/usr/src/cmd/ssh/libssh/common/key.c 13

788 }

790 int
791 key_sign(
792 Key *key,
793 u_char **sigp, u_int *lenp,
794 u_char *data, u_int datalen)
795 {
796 switch (key->type) {
797 case KEY_DSA:
798 return ssh_dss_sign(key, sigp, lenp, data, datalen);
799 break;
800 case KEY_RSA:
801 return ssh_rsa_sign(key, sigp, lenp, data, datalen);
802 break;
803 default:
804 error("key_sign: illegal key type %d", key->type);
805 return -1;
806 break;
807 }
808 }

810 /*
811 * key_verify returns 1 for a correct signature, 0 for an incorrect signature
812 * and -1 on error.
813 */
814 int
815 key_verify(
816 Key *key,
817 u_char *signature, u_int signaturelen,
818 u_char *data, u_int datalen)
819 {
820 if (signaturelen == 0)
821 return -1;

823 switch (key->type) {
824 case KEY_DSA:
825 return ssh_dss_verify(key, signature, signaturelen, data, datale
826 break;
827 case KEY_RSA:
828 return ssh_rsa_verify(key, signature, signaturelen, data, datale
829 break;
830 default:
831 error("key_verify: illegal key type %d", key->type);
832 return -1;
833 break;
834 }
835 }

837 /* Converts a private to a public key */
838 Key *
839 key_demote(Key *k)
840 {
841 Key *pk;

843 pk = xmalloc(sizeof(*pk));
844 pk->type = k->type;
845 pk->flags = k->flags;
846 pk->dsa = NULL;
847 pk->rsa = NULL;

849 switch (k->type) {
850 case KEY_RSA1:
851 case KEY_RSA:
852 if ((pk->rsa = RSA_new()) == NULL)
853 fatal("key_demote: RSA_new failed");

new/usr/src/cmd/ssh/libssh/common/key.c 14

854 if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL)
855 fatal("key_demote: BN_dup failed");
856 if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL)
857 fatal("key_demote: BN_dup failed");
858 break;
859 case KEY_DSA:
860 if ((pk->dsa = DSA_new()) == NULL)
861 fatal("key_demote: DSA_new failed");
862 if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL)
863 fatal("key_demote: BN_dup failed");
864 if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL)
865 fatal("key_demote: BN_dup failed");
866 if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL)
867 fatal("key_demote: BN_dup failed");
868 if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL)
869 fatal("key_demote: BN_dup failed");
870 break;
871 default:
872 fatal("key_free: bad key type %d", k->type);
873 break;
874 }

876 return (pk);
877 }

new/usr/src/cmd/ssh/libssh/common/mac.c 1

**
 4458 Fri May 30 18:31:10 2014
new/usr/src/cmd/ssh/libssh/common/mac.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2001 Markus Friedl. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */

25 #include "includes.h"
26 RCSID("$OpenBSD: mac.c,v 1.5 2002/05/16 22:02:50 markus Exp $");

28 #include <openssl/opensslconf.h>
29 #include <openssl/hmac.h>

31 #include "xmalloc.h"
32 #include "getput.h"
33 #include "log.h"
34 #include "cipher.h"
35 #include "kex.h"
36 #include "mac.h"
37 #include "misc.h"

39 #define SSH_EVP 1 /* OpenSSL EVP-based MAC */

41 struct {
42 char *name;
43 int type;
44 const EVP_MD * (*mdfunc)(void);
45 int truncatebits; /* truncate digest if != 0 */
46 int key_len; /* will be used if we have UMAC */
47 } macs[] = {
48 { "hmac-sha1", SSH_EVP, EVP_sha1, 0, -1 },
49 { "hmac-sha1-96", SSH_EVP, EVP_sha1, 96, -1 },
50 { "hmac-md5", SSH_EVP, EVP_md5, 0, -1 },
51 { "hmac-md5-96", SSH_EVP, EVP_md5, 96, -1 },
52 #ifdef SOLARIS_SSH_ENABLE_RIPEMD160
53 { "hmac-ripemd160", SSH_EVP, EVP_ripemd160, 0, -1 },
54 { "hmac-ripemd160@openssh.com", SSH_EVP, EVP_ripemd160, 0, -1 },
55 #endif /* SOLARIS_SSH_ENABLE_RIPEMD160 */
56 { NULL, 0, NULL, 0, -1 }
57 };

59 static void
60 mac_setup_by_id(Mac *mac, int which)
61 {

new/usr/src/cmd/ssh/libssh/common/mac.c 2

62 int evp_len;
63 mac->type = macs[which].type;
64 if (mac->type == SSH_EVP) {
65 mac->evp_md = (*macs[which].mdfunc)();
66 if ((evp_len = EVP_MD_size(mac->evp_md)) <= 0)
67 fatal("mac %s len %d", mac->name, evp_len);
68 mac->key_len = mac->mac_len = (u_int)evp_len;
69 } else
70 fatal("wrong MAC type (%d)", mac->type);
71 if (macs[which].truncatebits != 0)
72 mac->mac_len = macs[which].truncatebits / 8;
73 }

75 int
76 mac_setup(Mac *mac, char *name)
77 {
78 int i;

80 for (i = 0; macs[i].name; i++) {
81 if (strcmp(name, macs[i].name) == 0) {
82 if (mac != NULL)
83 mac_setup_by_id(mac, i);
84 debug2("mac_setup: found %s", name);
85 return (0);
86 }
87 }
88 debug2("mac_setup: unknown %s", name);
89 return (-1);
90 }

92 int
93 mac_init(Mac *mac)
94 {
95 if (mac->key == NULL)
96 fatal("mac_init: no key");
97 switch (mac->type) {
98 case SSH_EVP:
99 if (mac->evp_md == NULL)
100 return -1;
101 HMAC_Init(&mac->evp_ctx, mac->key, mac->key_len, mac->evp_md);
102 return 0;
103 default:
104 return -1;
105 }
106 }

108 u_char *
109 mac_compute(Mac *mac, u_int32_t seqno, u_char *data, int datalen)
110 {
111 static u_char m[EVP_MAX_MD_SIZE];
112 u_char b[4];

114 if (mac->mac_len > sizeof(m))
115 fatal("mac_compute: mac too long %u %lu",
116 mac->mac_len, (u_long)sizeof(m));

118 switch (mac->type) {
119 case SSH_EVP:
120 put_u32(b, seqno);
121 /* reset HMAC context */
122 HMAC_Init(&mac->evp_ctx, NULL, 0, NULL);
123 HMAC_Update(&mac->evp_ctx, b, sizeof(b));
124 HMAC_Update(&mac->evp_ctx, data, datalen);
125 HMAC_Final(&mac->evp_ctx, m, NULL);
126 break;
127 default:

new/usr/src/cmd/ssh/libssh/common/mac.c 3

128 fatal("mac_compute: unknown MAC type");
129 }

131 return (m);
132 }

134 void
135 mac_clear(Mac *mac)
136 {
137 if (mac->evp_md != NULL)
138 HMAC_cleanup(&mac->evp_ctx);
139 mac->evp_md = NULL;
140 }

142 /* XXX copied from ciphers_valid */
143 #define MAC_SEP ","
144 int
145 mac_valid(const char *names)
146 {
147 char *maclist, *cp, *p;

149 if (names == NULL || strcmp(names, "") == 0)
150 return (0);
151 maclist = cp = xstrdup(names);
152 for ((p = strsep(&cp, MAC_SEP)); p && *p != ’\0’;
153 (p = strsep(&cp, MAC_SEP))) {
154 if (mac_setup(NULL, p) < 0) {
155 debug("bad mac %s [%s]", p, names);
156 xfree(maclist);
157 return (0);
158 } else {
159 debug3("mac ok: %s [%s]", p, names);
160 }
161 }
162 debug3("macs ok: [%s]", names);
163 xfree(maclist);
164 return (1);
165 }

new/usr/src/cmd/ssh/libssh/common/mpaux.c 1

**
 1409 Fri May 30 18:31:10 2014
new/usr/src/cmd/ssh/libssh/common/mpaux.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Author: Tatu Ylonen <ylo@cs.hut.fi>
3 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
4 * All rights reserved
5 * This file contains various auxiliary functions related to multiple
6 * precision integers.
7 *
8 * As far as I am concerned, the code I have written for this software
9 * can be used freely for any purpose. Any derived versions of this
10 * software must be clearly marked as such, and if the derived work is
11 * incompatible with the protocol description in the RFC file, it must be
12 * called by a name other than "ssh" or "Secure Shell".
13 */

15 #include "includes.h"
16 RCSID("$OpenBSD: mpaux.c,v 1.16 2001/02/08 19:30:52 itojun Exp $");

18 #pragma ident "%Z%%M% %I% %E% SMI"

20 #include <openssl/opensslconf.h>
21 #include <openssl/bn.h>
22 #include "getput.h"
23 #include "xmalloc.h"

25 #include <openssl/md5.h>

27 #include "mpaux.h"

29 void
30 compute_session_id(u_char session_id[16],
31 u_char cookie[8],
32 BIGNUM* host_key_n,
33 BIGNUM* session_key_n)
34 {
35 u_int host_key_bytes = BN_num_bytes(host_key_n);
36 u_int session_key_bytes = BN_num_bytes(session_key_n);
37 u_int bytes = host_key_bytes + session_key_bytes;
38 u_char *buf = xmalloc(bytes);
39 MD5_CTX md;

41 BN_bn2bin(host_key_n, buf);
42 BN_bn2bin(session_key_n, buf + host_key_bytes);
43 MD5_Init(&md);
44 MD5_Update(&md, buf, bytes);
45 MD5_Update(&md, cookie, 8);
46 MD5_Final(session_id, &md);
47 memset(buf, 0, bytes);
48 xfree(buf);
49 }

new/usr/src/cmd/ssh/libssh/common/ssh-dss.c 1

**
 5126 Fri May 30 18:31:10 2014
new/usr/src/cmd/ssh/libssh/common/ssh-dss.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2000 Markus Friedl. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */

25 #include "includes.h"
26 RCSID("$OpenBSD: ssh-dss.c,v 1.17 2002/07/04 10:41:47 markus Exp $");

28 #pragma ident "%Z%%M% %I% %E% SMI"

30 #include <openssl/opensslconf.h>
31 #include <openssl/bn.h>
32 #include <openssl/evp.h>

34 #include "xmalloc.h"
35 #include "buffer.h"
36 #include "bufaux.h"
37 #include "compat.h"
38 #include "log.h"
39 #include "key.h"
40 #include "ssh-dss.h"

42 #define INTBLOB_LEN 20
43 #define SIGBLOB_LEN (2*INTBLOB_LEN)

45 int
46 ssh_dss_sign(Key *key, u_char **sigp, u_int *lenp,
47 u_char *data, u_int datalen)
48 {
49 DSA_SIG *sig;
50 const EVP_MD *evp_md = EVP_sha1();
51 EVP_MD_CTX md;
52 u_char digest[EVP_MAX_MD_SIZE], sigblob[SIGBLOB_LEN];
53 u_int rlen, slen, len, dlen;
54 Buffer b;

56 if (key == NULL || key->type != KEY_DSA || key->dsa == NULL) {
57 error("ssh_dss_sign: no DSA key");
58 return -1;
59 }
60 EVP_DigestInit(&md, evp_md);
61 EVP_DigestUpdate(&md, data, datalen);

new/usr/src/cmd/ssh/libssh/common/ssh-dss.c 2

62 EVP_DigestFinal(&md, digest, &dlen);

64 sig = DSA_do_sign(digest, dlen, key->dsa);
65 memset(digest, ’d’, sizeof(digest));

67 if (sig == NULL) {
68 error("ssh_dss_sign: sign failed");
69 return -1;
70 }

72 rlen = BN_num_bytes(sig->r);
73 slen = BN_num_bytes(sig->s);
74 if (rlen > INTBLOB_LEN || slen > INTBLOB_LEN) {
75 error("bad sig size %u %u", rlen, slen);
76 DSA_SIG_free(sig);
77 return -1;
78 }
79 memset(sigblob, 0, SIGBLOB_LEN);
80 BN_bn2bin(sig->r, sigblob+ SIGBLOB_LEN - INTBLOB_LEN - rlen);
81 BN_bn2bin(sig->s, sigblob+ SIGBLOB_LEN - slen);
82 DSA_SIG_free(sig);

84 if (datafellows & SSH_BUG_SIGBLOB) {
85 if (lenp != NULL)
86 *lenp = SIGBLOB_LEN;
87 if (sigp != NULL) {
88 *sigp = xmalloc(SIGBLOB_LEN);
89 memcpy(*sigp, sigblob, SIGBLOB_LEN);
90 }
91 } else {
92 /* ietf-drafts */
93 buffer_init(&b);
94 buffer_put_cstring(&b, "ssh-dss");
95 buffer_put_string(&b, sigblob, SIGBLOB_LEN);
96 len = buffer_len(&b);
97 if (lenp != NULL)
98 *lenp = len;
99 if (sigp != NULL) {
100 *sigp = xmalloc(len);
101 memcpy(*sigp, buffer_ptr(&b), len);
102 }
103 buffer_free(&b);
104 }
105 return 0;
106 }
107 int
108 ssh_dss_verify(Key *key, u_char *signature, u_int signaturelen,
109 u_char *data, u_int datalen)
110 {
111 DSA_SIG *sig;
112 const EVP_MD *evp_md = EVP_sha1();
113 EVP_MD_CTX md;
114 u_char digest[EVP_MAX_MD_SIZE], *sigblob;
115 u_int len, dlen;
116 int rlen, ret;
117 Buffer b;

119 if (key == NULL || key->type != KEY_DSA || key->dsa == NULL) {
120 error("ssh_dss_verify: no DSA key");
121 return -1;
122 }

124 /* fetch signature */
125 if (datafellows & SSH_BUG_SIGBLOB) {
126 sigblob = signature;
127 len = signaturelen;

new/usr/src/cmd/ssh/libssh/common/ssh-dss.c 3

128 } else {
129 /* ietf-drafts */
130 char *ktype;
131 buffer_init(&b);
132 buffer_append(&b, signature, signaturelen);
133 ktype = buffer_get_string(&b, NULL);
134 if (strcmp("ssh-dss", ktype) != 0) {
135 error("ssh_dss_verify: cannot handle type %s", ktype);
136 buffer_free(&b);
137 xfree(ktype);
138 return -1;
139 }
140 xfree(ktype);
141 sigblob = buffer_get_string(&b, &len);
142 rlen = buffer_len(&b);
143 buffer_free(&b);
144 if (rlen != 0) {
145 error("ssh_dss_verify: "
146 "remaining bytes in signature %d", rlen);
147 xfree(sigblob);
148 return -1;
149 }
150 }

152 if (len != SIGBLOB_LEN) {
153 fatal("bad sigbloblen %u != SIGBLOB_LEN", len);
154 }

156 /* parse signature */
157 if ((sig = DSA_SIG_new()) == NULL)
158 fatal("ssh_dss_verify: DSA_SIG_new failed");
159 if ((sig->r = BN_new()) == NULL)
160 fatal("ssh_dss_verify: BN_new failed");
161 if ((sig->s = BN_new()) == NULL)
162 fatal("ssh_dss_verify: BN_new failed");
163 BN_bin2bn(sigblob, INTBLOB_LEN, sig->r);
164 BN_bin2bn(sigblob+ INTBLOB_LEN, INTBLOB_LEN, sig->s);

166 if (!(datafellows & SSH_BUG_SIGBLOB)) {
167 memset(sigblob, 0, len);
168 xfree(sigblob);
169 }

171 /* sha1 the data */
172 EVP_DigestInit(&md, evp_md);
173 EVP_DigestUpdate(&md, data, datalen);
174 EVP_DigestFinal(&md, digest, &dlen);

176 ret = DSA_do_verify(digest, dlen, sig, key->dsa);
177 memset(digest, ’d’, sizeof(digest));

179 DSA_SIG_free(sig);

181 debug("ssh_dss_verify: signature %s",
182 ret == 1 ? "correct" : ret == 0 ? "incorrect" : "error");
183 return ret;
184 }

new/usr/src/cmd/ssh/libssh/common/ssh-gss.c 1

**
 20125 Fri May 30 18:31:10 2014
new/usr/src/cmd/ssh/libssh/common/ssh-gss.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2001-2003 Simon Wilkinson. All rights reserved. *
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions
5 * are met:
6 * 1. Redistributions of source code must retain the above copyright
7 * notice, this list of conditions and the following disclaimer.
8 * 2. Redistributions in binary form must reproduce the above copyright
9 * notice, this list of conditions and the following disclaimer in the
10 * documentation and/or other materials provided with the distribution.
11 *
12 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘AS IS’’ AND ANY EXPRESS OR
13 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
14 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
15 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
16 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
17 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
18 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
19 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
20 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
21 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
22 */
23 /*
24 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */

28 #include "includes.h"

30 #ifdef GSSAPI

32 #include "ssh.h"
33 #include "ssh2.h"
34 #include "xmalloc.h"
35 #include "buffer.h"
36 #include "bufaux.h"
37 #include "packet.h"
38 #include "compat.h"
39 #include <openssl/opensslconf.h>
40 #include <openssl/evp.h>
41 #include "cipher.h"
42 #include "kex.h"
43 #include "log.h"
44 #include "compat.h"
45 #include "xlist.h"

47 #include <netdb.h>

49 #include "ssh-gss.h"

51 #ifdef HAVE_GSS_OID_TO_MECH
52 #include <gssapi/gssapi_ext.h>
53 #endif /* HAVE_GSS_OID_TO_MECH */

55 typedef struct {
56 char *encoded;
57 gss_OID oid;
58 } ssh_gss_kex_mapping;

60 static ssh_gss_kex_mapping **gss_enc2oid = NULL;

new/usr/src/cmd/ssh/libssh/common/ssh-gss.c 2

62 static void ssh_gssapi_encode_oid_for_kex(const gss_OID oid, char **enc_name);
63 static char *ssh_gssapi_make_kexalgs_list(gss_OID_set mechs,
64 const char *old_kexalgs);

66 /*
67 * Populate gss_enc2oid table and return list of kexnames.
68 *
69 * If called with both mechs == GSS_C_NULL_OID_SET and kexname_list == NULL
70 * then cached gss_enc2oid table is cleaned up.
71 */
72 void
73 ssh_gssapi_mech_oids_to_kexnames(const gss_OID_set mechs, char **kexname_list)
74 {
75 ssh_gss_kex_mapping **new_gss_enc2oid, **p;
76 Buffer buf;
77 char *enc_name;
78 int i;

80 if (kexname_list != NULL)
81 *kexname_list = NULL; /* default to failed */

83 if (mechs != GSS_C_NULL_OID_SET || kexname_list == NULL) {
84 /* Cleanup gss_enc2oid table */
85 for (p = gss_enc2oid; p != NULL && *p != NULL; p++) {
86 if ((*p)->encoded)
87 xfree((*p)->encoded);
88 ssh_gssapi_release_oid(&(*p)->oid);
89 xfree(*p);
90 }
91 if (gss_enc2oid)
92 xfree(gss_enc2oid);
93 }

95 if (mechs == GSS_C_NULL_OID_SET && kexname_list == NULL)
96 return; /* nothing left to do */

98 if (mechs) {
99 gss_OID mech;
100 /* Populate gss_enc2oid table */
101 new_gss_enc2oid = xmalloc(sizeof (ssh_gss_kex_mapping *) *
102 (mechs->count + 1));
103 memset(new_gss_enc2oid, 0,
104 sizeof (ssh_gss_kex_mapping *) * (mechs->count + 1));

106 for (i = 0; i < mechs->count; i++) {
107 mech = &mechs->elements[i];
108 ssh_gssapi_encode_oid_for_kex((const gss_OID)mech,
109 &enc_name);

111 if (!enc_name)
112 continue;

114 new_gss_enc2oid[i] =
115 xmalloc(sizeof (ssh_gss_kex_mapping));
116 (new_gss_enc2oid[i])->encoded = enc_name;
117 (new_gss_enc2oid[i])->oid =
118 ssh_gssapi_dup_oid(&mechs->elements[i]);
119 }

121 /* Do this last to avoid run-ins with fatal_cleanups */
122 gss_enc2oid = new_gss_enc2oid;
123 }

125 if (!kexname_list)
126 return; /* nothing left to do */

new/usr/src/cmd/ssh/libssh/common/ssh-gss.c 3

128 /* Make kex name list */
129 buffer_init(&buf);
130 for (p = gss_enc2oid; p && *p; p++) {
131 buffer_put_char(&buf, ’,’);
132 buffer_append(&buf, (*p)->encoded, strlen((*p)->encoded));
133 }

135 if (buffer_len(&buf) == 0) {
136 buffer_free(&buf);
137 return;
138 }

140 buffer_consume(&buf, 1); /* consume leading ’,’ */
141 buffer_put_char(&buf, ’\0’);

143 *kexname_list = xstrdup(buffer_ptr(&buf));
144 buffer_free(&buf);
145 }

147 void
148 ssh_gssapi_mech_oid_to_kexname(const gss_OID mech, char **kexname)
149 {
150 ssh_gss_kex_mapping **p;

152 if (mech == GSS_C_NULL_OID || !kexname)
153 return;

155 *kexname = NULL; /* default to not found */
156 if (gss_enc2oid) {
157 for (p = gss_enc2oid; p && *p; p++) {
158 if (mech->length == (*p)->oid->length &&
159 memcmp(mech->elements, (*p)->oid->elements,
160 mech->length) == 0)
161 *kexname = xstrdup((*p)->encoded);
162 }
163 }

165 if (*kexname)
166 return; /* found */

168 ssh_gssapi_encode_oid_for_kex(mech, kexname);
169 }

171 void
172 ssh_gssapi_oid_of_kexname(const char *kexname, gss_OID *mech)
173 {
174 ssh_gss_kex_mapping **p;

176 if (!mech || !kexname || !*kexname)
177 return;

179 *mech = GSS_C_NULL_OID; /* default to not found */

181 if (!gss_enc2oid)
182 return;

184 for (p = gss_enc2oid; p && *p; p++) {
185 if (strcmp(kexname, (*p)->encoded) == 0) {
186 *mech = (*p)->oid;
187 return;
188 }
189 }
190 }

192 static
193 void

new/usr/src/cmd/ssh/libssh/common/ssh-gss.c 4

194 ssh_gssapi_encode_oid_for_kex(const gss_OID oid, char **enc_name)
195 {
196 Buffer buf;
197 OM_uint32 oidlen;
198 uint_t enclen;
199 const EVP_MD *evp_md = EVP_md5();
200 EVP_MD_CTX md;
201 uchar_t digest[EVP_MAX_MD_SIZE];
202 char *encoded;

204 if (oid == GSS_C_NULL_OID || !enc_name)
205 return;

207 *enc_name = NULL;

209 oidlen = oid->length;

211 /* No GSS mechs have OIDs as long as 128 -- simplify DER encoding */
212 if (oidlen > 128)
213 return; /* fail gracefully */

215 /*
216 * NOTE: If we need to support SSH_BUG_GSSAPI_BER this is where
217 * we’d do it.
218 *
219 * That means using "Se3H81ismmOC3OE+FwYCiQ==" for the Kerberos
220 * V mech and "N3+k7/4wGxHyuP8Yxi4RhA==" for the GSI mech. Ick.
221 */

223 buffer_init(&buf);

225 /* UNIVERSAL class tag for OBJECT IDENTIFIER */
226 buffer_put_char(&buf, 0x06);
227 buffer_put_char(&buf, oidlen); /* one octet DER length -- see above */

229 /* OID elements */
230 buffer_append(&buf, oid->elements, oidlen);

232 /* Make digest */
233 EVP_DigestInit(&md, evp_md);
234 EVP_DigestUpdate(&md, buffer_ptr(&buf), buffer_len(&buf));
235 EVP_DigestFinal(&md, digest, NULL);
236 buffer_free(&buf);

238 /* Base 64 encoding */
239 encoded = xmalloc(EVP_MD_size(evp_md)*2);
240 enclen = __b64_ntop(digest, EVP_MD_size(evp_md),
241 encoded, EVP_MD_size(evp_md) * 2);
242 buffer_init(&buf);
243 buffer_append(&buf, KEX_GSS_SHA1, sizeof (KEX_GSS_SHA1) - 1);
244 buffer_append(&buf, encoded, enclen);
245 buffer_put_char(&buf, ’\0’);

247 debug2("GSS-API Mechanism encoded as %s", encoded);
248 xfree(encoded);

250 *enc_name = xstrdup(buffer_ptr(&buf));
251 buffer_free(&buf);
252 }

254 static char *
255 ssh_gssapi_make_kexalgs_list(gss_OID_set mechs, const char *old_kexalgs)
256 {
257 char *gss_kexalgs, *new_kexalgs;
258 int len;

new/usr/src/cmd/ssh/libssh/common/ssh-gss.c 5

260 if (mechs == GSS_C_NULL_OID_SET)
261 return (xstrdup(old_kexalgs)); /* never null */

263 ssh_gssapi_mech_oids_to_kexnames(mechs, &gss_kexalgs);

265 if (gss_kexalgs == NULL || *gss_kexalgs == ’\0’)
266 return (xstrdup(old_kexalgs)); /* never null */

268 if (old_kexalgs == NULL || *old_kexalgs == ’\0’)
269 return (gss_kexalgs);

271 len = strlen(old_kexalgs) + strlen(gss_kexalgs) + 2;
272 new_kexalgs = xmalloc(len);
273 (void) snprintf(new_kexalgs, len, "%s,%s", gss_kexalgs, old_kexalgs);
274 xfree(gss_kexalgs);

276 return (new_kexalgs);
277 }

279 void
280 ssh_gssapi_modify_kex(Kex *kex, gss_OID_set mechs, char **proposal)
281 {
282 char *kexalgs, *orig_kexalgs, *p;
283 char **hostalg, *orig_hostalgs, *new_hostalgs;
284 char **hostalgs;
285 gss_OID_set dup_mechs;
286 OM_uint32 maj, min;
287 int i;

289 if (kex == NULL || proposal == NULL ||
290 proposal[PROPOSAL_KEX_ALGS] == NULL) {
291 fatal("INTERNAL ERROR (%s)", __func__);
292 }

294 orig_hostalgs = proposal[PROPOSAL_SERVER_HOST_KEY_ALGS];

296 if (kex->mechs == GSS_C_NULL_OID_SET && mechs == GSS_C_NULL_OID_SET)
297 return; /* didn’t offer GSS last time, not offering now */

299 if (kex->mechs == GSS_C_NULL_OID_SET || mechs == GSS_C_NULL_OID_SET)
300 goto mod_offer; /* didn’t offer last time or not offering now */

302 /* Check if mechs is congruent to kex->mechs (last offered) */
303 if (kex->mechs->count == mechs->count) {
304 int present, matches = 0;

306 for (i = 0; i < mechs->count; i++) {
307 maj = gss_test_oid_set_member(&min,
308 &kex->mechs->elements[i], mechs, &present);

310 if (GSS_ERROR(maj)) {
311 mechs = GSS_C_NULL_OID_SET;
312 break;
313 }

315 matches += (present) ? 1 : 0;
316 }

318 if (matches == kex->mechs->count)
319 return; /* no change in offer from last time */
320 }

322 mod_offer:
323 /*
324 * Remove previously offered mechs from PROPOSAL_KEX_ALGS proposal
325 *

new/usr/src/cmd/ssh/libssh/common/ssh-gss.c 6

326 * ASSUMPTION: GSS-API kex algs always go in front, so removing
327 * them is a matter of skipping them.
328 */
329 p = kexalgs = orig_kexalgs = proposal[PROPOSAL_KEX_ALGS];
330 while (p != NULL && *p != ’\0’ &&
331 strncmp(p, KEX_GSS_SHA1, strlen(KEX_GSS_SHA1)) == 0) {

333 if ((p = strchr(p, ’,’)) == NULL)
334 break;
335 p++;
336 kexalgs = p;

338 }
339 kexalgs = proposal[PROPOSAL_KEX_ALGS] = xstrdup(kexalgs);
340 xfree(orig_kexalgs);

342 (void) gss_release_oid_set(&min, &kex->mechs); /* ok if !kex->mechs */

344 /* Not offering GSS kex algorithms now -> all done */
345 if (mechs == GSS_C_NULL_OID_SET)
346 return;

348 /* Remember mechs we’re offering */
349 maj = gss_create_empty_oid_set(&min, &dup_mechs);
350 if (GSS_ERROR(maj))
351 return;
352 for (i = 0; i < mechs->count; i++) {
353 maj = gss_add_oid_set_member(&min, &mechs->elements[i],
354 &dup_mechs);

356 if (GSS_ERROR(maj)) {
357 (void) gss_release_oid_set(&min, &dup_mechs);
358 return;
359 }
360 }

362 /* Add mechs to kex algorithms ... */
363 proposal[PROPOSAL_KEX_ALGS] = ssh_gssapi_make_kexalgs_list(mechs,
364 kexalgs);
365 xfree(kexalgs);
366 kex->mechs = dup_mechs; /* remember what we offer now */

368 /*
369 * ... and add null host key alg, if it wasn’t there before, but
370 * not if we’re the server and we have other host key algs to
371 * offer.
372 *
373 * NOTE: Never remove "null" host key alg once added.
374 */
375 if (orig_hostalgs == NULL || *orig_hostalgs == ’\0’) {
376 proposal[PROPOSAL_SERVER_HOST_KEY_ALGS] = xstrdup("null");
377 } else if (!kex->server) {
378 hostalgs = xsplit(orig_hostalgs, ’,’);
379 for (hostalg = hostalgs; *hostalg != NULL; hostalg++) {
380 if (strcmp(*hostalg, "null") == 0) {
381 xfree_split_list(hostalgs);
382 return;
383 }
384 }
385 xfree_split_list(hostalgs);

387 if (kex->mechs != GSS_C_NULL_OID_SET) {
388 int len;

390 len = strlen(orig_hostalgs) + sizeof (",null");
391 new_hostalgs = xmalloc(len);

new/usr/src/cmd/ssh/libssh/common/ssh-gss.c 7

392 (void) snprintf(new_hostalgs, len, "%s,null",
393 orig_hostalgs);
394 proposal[PROPOSAL_SERVER_HOST_KEY_ALGS] = new_hostalgs;
395 }

397 xfree(orig_hostalgs);
398 }
399 }

401 /*
402 * Yes, we harcode OIDs for some things, for now it’s all we can do.
403 *
404 * We have to reference particular mechanisms due to lack of generality
405 * in the GSS-API in several areas: authorization, mapping principal
406 * names to usernames, "storing" delegated credentials, and discovering
407 * whether a mechanism is a pseudo-mechanism that negotiates mechanisms.
408 *
409 * Even if they were in some header file or if __gss_mech_to_oid()
410 * and/or __gss_oid_to_mech() were standard we’d still have to hardcode
411 * the mechanism names, and since the mechanisms have no standard names
412 * other than their OIDs it’s actually worse [less portable] to hardcode
413 * names than OIDs, so we hardcode OIDs.
414 *
415 * SPNEGO is a difficult problem though -- it MUST NOT be used in SSHv2,
416 * but that’s true of all possible pseudo-mechanisms that can perform
417 * mechanism negotiation, and SPNEGO could have new OIDs in the future.
418 * Ideally we could query each mechanism for its feature set and then
419 * ignore any mechanisms that negotiate mechanisms, but, alas, there’s
420 * no interface to do that.
421 *
422 * In the future, if the necessary generic GSS interfaces for the issues
423 * listed above are made available (even if they differ by platform, as
424 * we can expect authorization interfaces will), then we can stop
425 * referencing specific mechanism OIDs here.
426 */
427 int
428 ssh_gssapi_is_spnego(gss_OID oid)
429 {
430 return (oid->length == 6 &&
431 memcmp("\053\006\001\005\005\002", oid->elements, 6) == 0);
432 }

434 int
435 ssh_gssapi_is_krb5(gss_OID oid)
436 {
437 return (oid->length == 9 &&
438 memcmp("\x2A\x86\x48\x86\xF7\x12\x01\x02\x02",
439 oid->elements, 9) == 0);
440 }

442 int
443 ssh_gssapi_is_dh(gss_OID oid)
444 {
445 return (oid->length == 9 &&
446 memcmp("\053\006\004\001\052\002\032\002\005",
447 oid->elements, 9) == 0);
448 }

450 int
451 ssh_gssapi_is_gsi(gss_OID oid)
452 {
453 return (oid->length == 9 &&
454 memcmp("\x2B\x06\x01\x04\x01\x9B\x50\x01\x01",
455 oid->elements, 9) == 0);
456 }

new/usr/src/cmd/ssh/libssh/common/ssh-gss.c 8

458 const char *
459 ssh_gssapi_oid_to_name(gss_OID oid)
460 {
461 #ifdef HAVE_GSS_OID_TO_MECH
462 return (__gss_oid_to_mech(oid));
463 #else
464 if (ssh_gssapi_is_krb5(oid))
465 return ("Kerberos");
466 if (ssh_gssapi_is_gsi(oid))
467 return ("GSI");
468 return ("(unknown)");
469 #endif /* HAVE_GSS_OID_TO_MECH */
470 }

472 char *
473 ssh_gssapi_oid_to_str(gss_OID oid)
474 {
475 #ifdef HAVE_GSS_OID_TO_STR
476 gss_buffer_desc str_buf;
477 char *str;
478 OM_uint32 maj, min;

480 maj = gss_oid_to_str(&min, oid, &str_buf);

482 if (GSS_ERROR(maj))
483 return (xstrdup("<gss_oid_to_str() failed>"));

485 str = xmalloc(str_buf.length + 1);
486 memset(str, 0, str_buf.length + 1);
487 strlcpy(str, str_buf.value, str_buf.length + 1);
488 (void) gss_release_buffer(&min, &str_buf);

490 return (str);
491 #else
492 return (xstrdup("<gss_oid_to_str() unsupported>"));
493 #endif /* HAVE_GSS_OID_TO_STR */
494 }

496 /* Check that the OID in a data stream matches that in the context */
497 int
498 ssh_gssapi_check_mech_oid(Gssctxt *ctx, void *data, size_t len)
499 {

501 return (ctx != NULL && ctx->desired_mech != GSS_C_NULL_OID &&
502 ctx->desired_mech->length == len &&
503 memcmp(ctx->desired_mech->elements, data, len) == 0);
504 }

506 /* Set the contexts OID from a data stream */
507 void
508 ssh_gssapi_set_oid_data(Gssctxt *ctx, void *data, size_t len)
509 {
510 if (ctx->actual_mech != GSS_C_NULL_OID) {
511 xfree(ctx->actual_mech->elements);
512 xfree(ctx->actual_mech);
513 }
514 ctx->actual_mech = xmalloc(sizeof (gss_OID_desc));
515 ctx->actual_mech->length = len;
516 ctx->actual_mech->elements = xmalloc(len);
517 memcpy(ctx->actual_mech->elements, data, len);
518 }

520 /* Set the contexts OID */
521 void
522 ssh_gssapi_set_oid(Gssctxt *ctx, gss_OID oid)
523 {

new/usr/src/cmd/ssh/libssh/common/ssh-gss.c 9

524 ssh_gssapi_set_oid_data(ctx, oid->elements, oid->length);
525 }

527 /* All this effort to report an error ... */

529 void
530 ssh_gssapi_error(Gssctxt *ctxt, const char *where)
531 {
532 char *errmsg = ssh_gssapi_last_error(ctxt, NULL, NULL);

534 if (where != NULL)
535 debug("GSS-API error while %s: %s", where, errmsg);
536 else
537 debug("GSS-API error: %s", errmsg);

539 /* ssh_gssapi_last_error() can’t return NULL */
540 xfree(errmsg);
541 }

543 char *
544 ssh_gssapi_last_error(Gssctxt *ctxt, OM_uint32 *major_status,
545 OM_uint32 *minor_status)
546 {
547 OM_uint32 lmin, more;
548 OM_uint32 maj, min;
549 gss_OID mech = GSS_C_NULL_OID;
550 gss_buffer_desc msg;
551 Buffer b;
552 char *ret;

554 buffer_init(&b);

556 if (ctxt) {
557 /* Get status codes from the Gssctxt */
558 maj = ctxt->major;
559 min = ctxt->minor;
560 /* Output them if desired */
561 if (major_status)
562 *major_status = maj;
563 if (minor_status)
564 *minor_status = min;
565 /* Get mechanism for minor status display */
566 mech = (ctxt->actual_mech != GSS_C_NULL_OID) ?
567 ctxt->actual_mech : ctxt->desired_mech;
568 } else if (major_status && minor_status) {
569 maj = *major_status;
570 min = *major_status;
571 } else {
572 maj = GSS_S_COMPLETE;
573 min = 0;
574 }

576 more = 0;
577 /* The GSSAPI error */
578 do {
579 gss_display_status(&lmin, maj, GSS_C_GSS_CODE,
580 GSS_C_NULL_OID, &more, &msg);

582 buffer_append(&b, msg.value, msg.length);
583 buffer_put_char(&b, ’\n’);
584 gss_release_buffer(&lmin, &msg);
585 } while (more != 0);

587 /* The mechanism specific error */
588 do {
589 /*

new/usr/src/cmd/ssh/libssh/common/ssh-gss.c 10

590 * If mech == GSS_C_NULL_OID we may get the default
591 * mechanism, whatever that is, and that may not be
592 * useful.
593 */
594 gss_display_status(&lmin, min, GSS_C_MECH_CODE, mech, &more,
595 &msg);

597 buffer_append(&b, msg.value, msg.length);
598 buffer_put_char(&b, ’\n’);

600 gss_release_buffer(&lmin, &msg);
601 } while (more != 0);

603 buffer_put_char(&b, ’\0’);
604 ret = xstrdup(buffer_ptr(&b));
605 buffer_free(&b);

607 return (ret);
608 }

610 /*
611 * Initialise our GSSAPI context. We use this opaque structure to contain all
612 * of the data which both the client and server need to persist across
613 * {accept,init}_sec_context calls, so that when we do it from the userauth
614 * stuff life is a little easier
615 */
616 void
617 ssh_gssapi_build_ctx(Gssctxt **ctx, int client, gss_OID mech)
618 {
619 Gssctxt *newctx;

622 newctx = (Gssctxt*)xmalloc(sizeof (Gssctxt));
623 memset(newctx, 0, sizeof (Gssctxt));

626 newctx->local = client;
627 newctx->desired_mech = ssh_gssapi_dup_oid(mech);

629 /* This happens to be redundant given the memset() above */
630 newctx->major = GSS_S_COMPLETE;
631 newctx->context = GSS_C_NO_CONTEXT;
632 newctx->actual_mech = GSS_C_NULL_OID;
633 newctx->desired_name = GSS_C_NO_NAME;
634 newctx->src_name = GSS_C_NO_NAME;
635 newctx->dst_name = GSS_C_NO_NAME;
636 newctx->creds = GSS_C_NO_CREDENTIAL;
637 newctx->deleg_creds = GSS_C_NO_CREDENTIAL;

639 newctx->default_creds = (*ctx != NULL) ? (*ctx)->default_creds : 0;

641 ssh_gssapi_delete_ctx(ctx);

643 *ctx = newctx;
644 }

646 gss_OID
647 ssh_gssapi_dup_oid(gss_OID oid)
648 {
649 gss_OID new_oid;

651 new_oid = xmalloc(sizeof (gss_OID_desc));

653 new_oid->elements = xmalloc(oid->length);
654 new_oid->length = oid->length;
655 memcpy(new_oid->elements, oid->elements, oid->length);

new/usr/src/cmd/ssh/libssh/common/ssh-gss.c 11

657 return (new_oid);
658 }

660 gss_OID
661 ssh_gssapi_make_oid(size_t length, void *elements)
662 {
663 gss_OID_desc oid;

665 oid.length = length;
666 oid.elements = elements;

668 return (ssh_gssapi_dup_oid(&oid));
669 }

671 void
672 ssh_gssapi_release_oid(gss_OID *oid)
673 {
674 OM_uint32 min;

676 if (oid && *oid == GSS_C_NULL_OID)
677 return;
678 (void) gss_release_oid(&min, oid);

680 if (*oid == GSS_C_NULL_OID)
681 return; /* libgss did own this gss_OID and released it */

683 xfree((*oid)->elements);
684 xfree(*oid);
685 *oid = GSS_C_NULL_OID;
686 }

688 struct gss_name {
689 gss_OID name_type;
690 gss_buffer_t external_name;
691 gss_OID mech_type;
692 void *mech_name;
693 };

695 /* Delete our context, providing it has been built correctly */
696 void
697 ssh_gssapi_delete_ctx(Gssctxt **ctx)
698 {
699 OM_uint32 ms;

701 if ((*ctx) == NULL)
702 return;

704 if ((*ctx)->context != GSS_C_NO_CONTEXT)
705 gss_delete_sec_context(&ms, &(*ctx)->context, GSS_C_NO_BUFFER);
706 #if 0
707 /* XXX */
708 if ((*ctx)->desired_mech != GSS_C_NULL_OID)
709 ssh_gssapi_release_oid(&(*ctx)->desired_mech);
710 #endif
711 if ((*ctx)->actual_mech != GSS_C_NULL_OID)
712 (void) ssh_gssapi_release_oid(&(*ctx)->actual_mech);
713 if ((*ctx)->desired_name != GSS_C_NO_NAME)
714 gss_release_name(&ms, &(*ctx)->desired_name);
715 #if 0
716 if ((*ctx)->src_name != GSS_C_NO_NAME)
717 gss_release_name(&ms, &(*ctx)->src_name);
718 #endif
719 if ((*ctx)->dst_name != GSS_C_NO_NAME)
720 gss_release_name(&ms, &(*ctx)->dst_name);
721 if ((*ctx)->creds != GSS_C_NO_CREDENTIAL)

new/usr/src/cmd/ssh/libssh/common/ssh-gss.c 12

722 gss_release_cred(&ms, &(*ctx)->creds);
723 if ((*ctx)->deleg_creds != GSS_C_NO_CREDENTIAL)
724 gss_release_cred(&ms, &(*ctx)->deleg_creds);

726 xfree(*ctx);
727 *ctx = NULL;
728 }

730 /* Create a GSS hostbased service principal name for a given server hostname */
731 int
732 ssh_gssapi_import_name(Gssctxt *ctx, const char *server_host)
733 {
734 gss_buffer_desc name_buf;
735 int ret;

737 /* Build target principal */
738 name_buf.length = strlen(SSH_GSS_HOSTBASED_SERVICE) +
739 strlen(server_host) + 1; /* +1 for ’@’ */
740 name_buf.value = xmalloc(name_buf.length + 1); /* +1 for NUL */
741 ret = snprintf(name_buf.value, name_buf.length + 1, "%s@%s",
742 SSH_GSS_HOSTBASED_SERVICE, server_host);

744 debug3("%s: snprintf() returned %d, expected %d", __func__, ret,
745 name_buf.length);

747 ctx->major = gss_import_name(&ctx->minor, &name_buf,
748 GSS_C_NT_HOSTBASED_SERVICE, &ctx->desired_name);

750 if (GSS_ERROR(ctx->major)) {
751 ssh_gssapi_error(ctx, "calling GSS_Import_name()");
752 return (0);
753 }

755 xfree(name_buf.value);

757 return (1);
758 }

760 OM_uint32
761 ssh_gssapi_get_mic(Gssctxt *ctx, gss_buffer_desc *buffer, gss_buffer_desc *hash)
762 {

764 ctx->major = gss_get_mic(&ctx->minor, ctx->context,
765 GSS_C_QOP_DEFAULT, buffer, hash);
766 if (GSS_ERROR(ctx->major))
767 ssh_gssapi_error(ctx, "while getting MIC");
768 return (ctx->major);
769 }

771 OM_uint32
772 ssh_gssapi_verify_mic(Gssctxt *ctx, gss_buffer_desc *buffer,
773 gss_buffer_desc *hash)
774 {
775 gss_qop_t qop;

777 ctx->major = gss_verify_mic(&ctx->minor, ctx->context, buffer,
778 hash, &qop);
779 if (GSS_ERROR(ctx->major))
780 ssh_gssapi_error(ctx, "while verifying MIC");
781 return (ctx->major);
782 }
783 #endif /* GSSAPI */

new/usr/src/cmd/ssh/libssh/common/ssh-rsa.c 1

**
 7621 Fri May 30 18:31:10 2014
new/usr/src/cmd/ssh/libssh/common/ssh-rsa.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2000 Markus Friedl. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */

25 #include "includes.h"
26 RCSID("$OpenBSD: ssh-rsa.c,v 1.26 2002/08/27 17:13:56 stevesk Exp $");

28 #pragma ident "%Z%%M% %I% %E% SMI"

30 #include <openssl/opensslconf.h>
31 #include <openssl/evp.h>
32 #include <openssl/err.h>

34 #include "xmalloc.h"
35 #include "log.h"
36 #include "buffer.h"
37 #include "bufaux.h"
38 #include "key.h"
39 #include "ssh-rsa.h"
40 #include "compat.h"
41 #include "ssh.h"

43 static int openssh_RSA_verify(int, u_char *, u_int, u_char *, u_int , RSA *);

45 /* RSASSA-PKCS1-v1_5 (PKCS #1 v2.0 signature) with SHA1 */
46 int
47 ssh_rsa_sign(Key *key, u_char **sigp, u_int *lenp,
48 u_char *data, u_int datalen)
49 {
50 const EVP_MD *evp_md;
51 EVP_MD_CTX md;
52 u_char digest[EVP_MAX_MD_SIZE], *sig;
53 u_int slen, dlen, len;
54 int ok, nid;
55 Buffer b;

57 if (key == NULL || key->type != KEY_RSA || key->rsa == NULL) {
58 error("ssh_rsa_sign: no RSA key");
59 return -1;
60 }
61 nid = (datafellows & SSH_BUG_RSASIGMD5) ? NID_md5 : NID_sha1;

new/usr/src/cmd/ssh/libssh/common/ssh-rsa.c 2

62 if ((evp_md = EVP_get_digestbynid(nid)) == NULL) {
63 error("ssh_rsa_sign: EVP_get_digestbynid %d failed", nid);
64 return -1;
65 }
66 EVP_DigestInit(&md, evp_md);
67 EVP_DigestUpdate(&md, data, datalen);
68 EVP_DigestFinal(&md, digest, &dlen);

70 slen = RSA_size(key->rsa);
71 sig = xmalloc(slen);

73 ok = RSA_sign(nid, digest, dlen, sig, &len, key->rsa);
74 memset(digest, ’d’, sizeof(digest));

76 if (ok != 1) {
77 int ecode = ERR_get_error();
78 error("ssh_rsa_sign: RSA_sign failed: %s",
79 ERR_error_string(ecode, NULL));
80 xfree(sig);
81 return -1;
82 }
83 if (len < slen) {
84 u_int diff = slen - len;
85 debug("slen %u > len %u", slen, len);
86 memmove(sig + diff, sig, len);
87 memset(sig, 0, diff);
88 } else if (len > slen) {
89 error("ssh_rsa_sign: slen %u slen2 %u", slen, len);
90 xfree(sig);
91 return -1;
92 }
93 /* encode signature */
94 buffer_init(&b);
95 buffer_put_cstring(&b, "ssh-rsa");
96 buffer_put_string(&b, sig, slen);
97 len = buffer_len(&b);
98 if (lenp != NULL)
99 *lenp = len;
100 if (sigp != NULL) {
101 *sigp = xmalloc(len);
102 memcpy(*sigp, buffer_ptr(&b), len);
103 }
104 buffer_free(&b);
105 memset(sig, ’s’, slen);
106 xfree(sig);

108 return 0;
109 }

111 int
112 ssh_rsa_verify(Key *key, u_char *signature, u_int signaturelen,
113 u_char *data, u_int datalen)
114 {
115 Buffer b;
116 const EVP_MD *evp_md;
117 EVP_MD_CTX md;
118 char *ktype;
119 u_char digest[EVP_MAX_MD_SIZE], *sigblob;
120 u_int len, dlen, modlen;
121 int rlen, ret, nid;

123 if (key == NULL || key->type != KEY_RSA || key->rsa == NULL) {
124 error("ssh_rsa_verify: no RSA key");
125 return -1;
126 }
127 if (BN_num_bits(key->rsa->n) < SSH_RSA_MINIMUM_MODULUS_SIZE) {

new/usr/src/cmd/ssh/libssh/common/ssh-rsa.c 3

128 error("ssh_rsa_verify: RSA modulus too small: %d < minimum %d bi
129 BN_num_bits(key->rsa->n), SSH_RSA_MINIMUM_MODULUS_SIZE);
130 return -1;
131 }
132 buffer_init(&b);
133 buffer_append(&b, signature, signaturelen);
134 ktype = buffer_get_string(&b, NULL);
135 if (strcmp("ssh-rsa", ktype) != 0) {
136 error("ssh_rsa_verify: cannot handle type %s", ktype);
137 buffer_free(&b);
138 xfree(ktype);
139 return -1;
140 }
141 xfree(ktype);
142 sigblob = buffer_get_string(&b, &len);
143 rlen = buffer_len(&b);
144 buffer_free(&b);
145 if (rlen != 0) {
146 error("ssh_rsa_verify: remaining bytes in signature %d", rlen);
147 xfree(sigblob);
148 return -1;
149 }
150 /* RSA_verify expects a signature of RSA_size */
151 modlen = RSA_size(key->rsa);
152 if (len > modlen) {
153 error("ssh_rsa_verify: len %u > modlen %u", len, modlen);
154 xfree(sigblob);
155 return -1;
156 } else if (len < modlen) {
157 u_int diff = modlen - len;
158 debug("ssh_rsa_verify: add padding: modlen %u > len %u",
159 modlen, len);
160 sigblob = xrealloc(sigblob, modlen);
161 memmove(sigblob + diff, sigblob, len);
162 memset(sigblob, 0, diff);
163 len = modlen;
164 }
165 nid = (datafellows & SSH_BUG_RSASIGMD5) ? NID_md5 : NID_sha1;
166 if ((evp_md = EVP_get_digestbynid(nid)) == NULL) {
167 error("ssh_rsa_verify: EVP_get_digestbynid %d failed", nid);
168 xfree(sigblob);
169 return -1;
170 }
171 EVP_DigestInit(&md, evp_md);
172 EVP_DigestUpdate(&md, data, datalen);
173 EVP_DigestFinal(&md, digest, &dlen);

175 ret = openssh_RSA_verify(nid, digest, dlen, sigblob, len, key->rsa);
176 memset(digest, ’d’, sizeof(digest));
177 memset(sigblob, ’s’, len);
178 xfree(sigblob);
179 debug("ssh_rsa_verify: signature %scorrect", (ret==0) ? "in" : "");
180 return ret;
181 }

183 /*
184 * See:
185 * http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/
186 * ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.asn
187 */
188 /*
189 * id-sha1 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
190 * oiw(14) secsig(3) algorithms(2) 26 }
191 */
192 static const u_char id_sha1[] = {
193 0x30, 0x21, /* type Sequence, length 0x21 (33) */

new/usr/src/cmd/ssh/libssh/common/ssh-rsa.c 4

194 0x30, 0x09, /* type Sequence, length 0x09 */
195 0x06, 0x05, /* type OID, length 0x05 */
196 0x2b, 0x0e, 0x03, 0x02, 0x1a, /* id-sha1 OID */
197 0x05, 0x00, /* NULL */
198 0x04, 0x14 /* Octet string, length 0x14 (20), followed by sha1 hash */
199 };
200 /*
201 * id-md5 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
202 * rsadsi(113549) digestAlgorithm(2) 5 }
203 */
204 static const u_char id_md5[] = {
205 0x30, 0x20, /* type Sequence, length 0x20 (32) */
206 0x30, 0x0c, /* type Sequence, length 0x09 */
207 0x06, 0x08, /* type OID, length 0x05 */
208 0x2a, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05, /* id-md5 */
209 0x05, 0x00, /* NULL */
210 0x04, 0x10 /* Octet string, length 0x10 (16), followed by md5 hash */
211 };

213 static int
214 openssh_RSA_verify(int type, u_char *hash, u_int hashlen,
215 u_char *sigbuf, u_int siglen, RSA *rsa)
216 {
217 u_int ret, rsasize, oidlen = 0, hlen = 0;
218 int len;
219 const u_char *oid = NULL;
220 u_char *decrypted = NULL;

222 ret = 0;
223 switch (type) {
224 case NID_sha1:
225 oid = id_sha1;
226 oidlen = sizeof(id_sha1);
227 hlen = 20;
228 break;
229 case NID_md5:
230 oid = id_md5;
231 oidlen = sizeof(id_md5);
232 hlen = 16;
233 break;
234 default:
235 goto done;
236 break;
237 }
238 if (hashlen != hlen) {
239 error("bad hashlen");
240 goto done;
241 }
242 rsasize = RSA_size(rsa);
243 if (siglen == 0 || siglen > rsasize) {
244 error("bad siglen");
245 goto done;
246 }
247 decrypted = xmalloc(rsasize);
248 if ((len = RSA_public_decrypt(siglen, sigbuf, decrypted, rsa,
249 RSA_PKCS1_PADDING)) < 0) {
250 error("RSA_public_decrypt failed: %s",
251 ERR_error_string(ERR_get_error(), NULL));
252 goto done;
253 }
254 if (len != hlen + oidlen) {
255 error("bad decrypted len: %d != %d + %d", len, hlen, oidlen);
256 goto done;
257 }
258 if (memcmp(decrypted, oid, oidlen) != 0) {
259 error("oid mismatch");

new/usr/src/cmd/ssh/libssh/common/ssh-rsa.c 5

260 goto done;
261 }
262 if (memcmp(decrypted + oidlen, hash, hlen) != 0) {
263 error("hash mismatch");
264 goto done;
265 }
266 ret = 1;
267 done:
268 if (decrypted)
269 xfree(decrypted);
270 return ret;
271 }

new/usr/src/cmd/ssh/sftp-server/Makefile 1

**
 1599 Fri May 30 18:31:11 2014
new/usr/src/cmd/ssh/sftp-server/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # cmd/ssh/sftp-server/Makefile

26 PROG = sftp-server

28 OBJS = sftp-server.o sftp-server-main.o
29 SRCS = $(OBJS:.o=.c)

31 include ../../Makefile.cmd
32 include ../Makefile.ssh-common

34 LDLIBS += $(SSH_COMMON_LDLIBS) -lsocket

36 # libcrypto has no lint library, so we can only use it when building
37 $(PROG) := LDLIBS += -lsunw_crypto

39 POFILE_DIR = ..

41 .KEEP_STATE:

43 .PARALLEL: $(OBJS)

45 all: $(PROG)

47 $(PROG): $(OBJS) ../libssh/$(MACH)/libssh.a ../libopenbsd-compat/$(MACH)/
48 $(LINK.c) $(OBJS) -o $@ $(LDLIBS) $(DYNFLAGS)
49 $(POST_PROCESS)

51 install: all $(ROOTLIBSSHPROG) $(ROOTLIBSSH)

53 clean:
54 $(RM) -f $(OBJS) $(PROG)

56 lint: lint_SRCS

58 include ../Makefile.msg.targ
59 include ../../Makefile.targ

new/usr/src/cmd/ssh/sftp/Makefile 1

**
 1585 Fri May 30 18:31:11 2014
new/usr/src/cmd/ssh/sftp/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # cmd/ssh/sftp/Makefile

26 PROG = sftp

28 OBJS = \
29 sftp.o \
30 sftp-client.o \
31 sftp-glob.o

33 SRCS = $(OBJS:.o=.c)

35 include ../../Makefile.cmd
36 include ../Makefile.ssh-common

38 LDLIBS += $(SSH_COMMON_LDLIBS) -lsocket -ltecla

40 # libcrypto has no lint library, so we can only use it when building
41 $(PROG) := LDLIBS += -lsunw_crypto

43 POFILE_DIR = ..

45 .KEEP_STATE:

47 .PARALLEL: $(OBJS)

49 all: $(PROG)

51 $(PROG): $(OBJS) ../libssh/$(MACH)/libssh.a ../libopenbsd-compat/$(MACH)/
52 $(LINK.c) $(OBJS) -o $@ $(LDLIBS) $(DYNFLAGS)
53 $(POST_PROCESS)

55 install: all $(ROOTPROG)

57 clean:
58 $(RM) -f $(OBJS) $(PROG)

60 lint: lint_SRCS

new/usr/src/cmd/ssh/sftp/Makefile 2

62 include ../Makefile.msg.targ
63 include ../../Makefile.targ

new/usr/src/cmd/ssh/ssh-add/Makefile 1

**
 1547 Fri May 30 18:31:11 2014
new/usr/src/cmd/ssh/ssh-add/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # cmd/ssh/ssh-add/Makefile

26 PROG= ssh-add

28 OBJS = \
29 ssh-add.o
30 SRCS = $(OBJS:.o=.c)

32 include ../../Makefile.cmd
33 include ../Makefile.ssh-common

35 LDLIBS += $(SSH_COMMON_LDLIBS) -lsocket

37 # libcrypto has no lint library, so we can only use it when building
38 $(PROG) := LDLIBS += -lsunw_crypto

40 POFILE_DIR= ..

42 .KEEP_STATE:

44 .PARALLEL: $(OBJS)

46 all: $(PROG)

48 $(PROG): $(OBJS) ../libssh/$(MACH)/libssh.a ../libopenbsd-compat/$(MACH)/libopen
49 $(LINK.c) $(OBJS) -o $@ $(LDLIBS) $(DYNFLAGS)
50 $(POST_PROCESS)

52 install: all $(ROOTPROG)

54 clean:
55 $(RM) -f $(OBJS) $(PROG)

57 lint: lint_SRCS

59 include ../Makefile.msg.targ
60 include ../../Makefile.targ

new/usr/src/cmd/ssh/ssh-agent/Makefile 1

**
 1553 Fri May 30 18:31:11 2014
new/usr/src/cmd/ssh/ssh-agent/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # cmd/ssh/ssh-agent/Makefile

26 PROG= ssh-agent

28 OBJS = \
29 ssh-agent.o
30 SRCS = $(OBJS:.o=.c)

32 include ../../Makefile.cmd
33 include ../Makefile.ssh-common

35 LDLIBS += $(SSH_COMMON_LDLIBS) -lsocket

37 # libcrypto has no lint library, so we can only use it when building
38 $(PROG) := LDLIBS += -lsunw_crypto

40 POFILE_DIR= ..

42 .KEEP_STATE:

44 .PARALLEL: $(OBJS)

46 all: $(PROG)

48 $(PROG): $(OBJS) ../libssh/$(MACH)/libssh.a ../libopenbsd-compat/$(MACH)/libopen
49 $(LINK.c) $(OBJS) -o $@ $(LDLIBS) $(DYNFLAGS)
50 $(POST_PROCESS)

52 install: all $(ROOTPROG)

54 clean:
55 $(RM) -f $(OBJS) $(PROG)

57 lint: lint_SRCS

59 include ../Makefile.msg.targ
60 include ../../Makefile.targ

new/usr/src/cmd/ssh/ssh-keygen/Makefile 1

**
 1556 Fri May 30 18:31:11 2014
new/usr/src/cmd/ssh/ssh-keygen/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # cmd/ssh/ssh-keygen/Makefile

26 PROG= ssh-keygen

28 OBJS = \
29 ssh-keygen.o
30 SRCS = $(OBJS:.o=.c)

32 include ../../Makefile.cmd
33 include ../Makefile.ssh-common

35 LDLIBS += $(SSH_COMMON_LDLIBS) -lsocket

37 # libcrypto has no lint library, so we can only use it when building
38 $(PROG) := LDLIBS += -lsunw_crypto

40 POFILE_DIR= ..

42 .KEEP_STATE:

44 .PARALLEL: $(OBJS)

46 all: $(PROG)

48 $(PROG): $(OBJS) ../libssh/$(MACH)/libssh.a ../libopenbsd-compat/$(MACH)/libopen
49 $(LINK.c) $(OBJS) -o $@ $(LDLIBS) $(DYNFLAGS)
50 $(POST_PROCESS)

52 install: all $(ROOTPROG)

54 clean:
55 $(RM) -f $(OBJS) $(PROG)

57 lint: lint_SRCS

59 include ../Makefile.msg.targ
60 include ../../Makefile.targ

new/usr/src/cmd/ssh/ssh-keyscan/Makefile 1

**
 1569 Fri May 30 18:31:11 2014
new/usr/src/cmd/ssh/ssh-keyscan/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # cmd/ssh/ssh-keyscan/Makefile

26 PROG= ssh-keyscan

28 OBJS = \
29 ssh-keyscan.o
30 SRCS = $(OBJS:.o=.c)

32 include ../../Makefile.cmd
33 include ../Makefile.ssh-common

35 LDLIBS += $(SSH_COMMON_LDLIBS) -lsocket -lnsl -lz

37 # libcrypto has no lint library, so we can only use it when building
38 $(PROG) := LDLIBS += -lsunw_crypto

40 POFILE_DIR= ..

42 .KEEP_STATE:

44 .PARALLEL: $(OBJS)

46 all: $(PROG)

48 $(PROG): $(OBJS) ../libssh/$(MACH)/libssh.a ../libopenbsd-compat/$(MACH)/libopen
49 $(LINK.c) $(OBJS) -o $@ $(LDLIBS) $(DYNFLAGS)
50 $(POST_PROCESS)

52 clean:
53 $(RM) -f $(OBJS) $(PROG)

55 lint: lint_SRCS

57 include ../Makefile.msg.targ
58 include ../../Makefile.targ

60 install: all $(ROOTPROG)

new/usr/src/cmd/ssh/ssh-keysign/Makefile 1

**
 1690 Fri May 30 18:31:11 2014
new/usr/src/cmd/ssh/ssh-keysign/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # cmd/ssh/ssh-keysign/Makefile

26 PROG= ssh-keysign

28 DIRS= $(ROOTLIBSSH)

31 OBJS = ssh-keysign.o
32 SRCS = $(OBJS:.o=.c)

34 include ../../Makefile.cmd
35 include ../Makefile.ssh-common

37 FILEMODE= 04555

39 LDLIBS += $(SSH_COMMON_LDLIBS) -lsocket -lnsl -lz

41 # libcrypto has no lint library, so we can only use it when building
42 $(PROG) := LDLIBS += -lsunw_crypto

44 POFILE_DIR= ..

46 .KEEP_STATE:

48 .PARALLEL: $(OBJS)

50 all: $(PROG)

52 $(PROG): $(OBJS) ../libssh/$(MACH)/libssh.a ../libopenbsd-compat/$(MACH)/libopen
53 $(LINK.c) $(OBJS) -o $@ $(LDLIBS) $(DYNFLAGS)
54 $(POST_PROCESS)

56 clean:
57 $(RM) -f $(OBJS) $(PROG)

59 lint: lint_SRCS

61 include ../Makefile.msg.targ

new/usr/src/cmd/ssh/ssh-keysign/Makefile 2

62 include ../../Makefile.targ

64 install: all $(DIRS) $(ROOTLIBSSHPROG) $(ROOTLIBSSH)

67 $(ROOTLIBSSHPROG)/%: %
68 $(INS.file)

70 $(DIRS):
71 $(INS.dir)

new/usr/src/cmd/ssh/ssh/Makefile 1

**
 1686 Fri May 30 18:31:11 2014
new/usr/src/cmd/ssh/ssh/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # cmd/ssh/ssh/Makefile

26 PROG= ssh

28 OBJS = ssh.o \
29 sshconnect.o \
30 sshconnect1.o \
31 sshconnect2.o \
32 sshtty.o \
33 clientloop.o \
34 gss-clnt.o
35 SRCS = $(OBJS:.o=.c)

37 include ../../Makefile.cmd
38 include ../Makefile.ssh-common

40 LDLIBS += $(SSH_COMMON_LDLIBS) -lsocket \
41 -lnsl \
42 -lz \
43 -lgss

45 # libcrypto has no lint library, so we can only use it when building
46 $(PROG) := LDLIBS += -lsunw_crypto

48 POFILE_DIR= ..

50 .KEEP_STATE:

52 .PARALLEL: $(OBJS)

54 all: $(PROG)

56 $(PROG): $(OBJS) ../libssh/$(MACH)/libssh.a ../libopenbsd-compat/$(MACH)/libopen
57 $(LINK.c) $(OBJS) -o $@ $(LDLIBS) $(DYNFLAGS)
58 $(POST_PROCESS)

60 install: all $(ROOTPROG)

new/usr/src/cmd/ssh/ssh/Makefile 2

62 clean:
63 $(RM) -f $(OBJS) $(PROG)

65 lint: lint_SRCS

67 include ../Makefile.msg.targ

69 XGETFLAGS += --keyword=log
70 include ../../Makefile.targ

new/usr/src/cmd/ssh/sshd/Makefile 1

**
 2508 Fri May 30 18:31:11 2014
new/usr/src/cmd/ssh/sshd/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # cmd/ssh/sshd/Makefile

26 PROG= sshd

28 DIRS= $(ROOTLIBSSH)

30 OBJS = sshd.o \
31 altprivsep.o \
32 auth.o \
33 auth1.o \
34 auth2.o \
35 auth-options.o \
36 auth2-chall.o \
37 auth2-gss.o \
38 auth2-hostbased.o \
39 auth2-kbdint.o \
40 auth2-none.o \
41 auth2-passwd.o \
42 auth2-pam.o \
43 auth2-pubkey.o \
44 auth-bsdauth.o \
45 auth-chall.o \
46 auth-rhosts.o \
47 auth-krb4.o \
48 auth-krb5.o \
49 auth-pam.o \
50 auth-passwd.o \
51 auth-rsa.o \
52 auth-rh-rsa.o \
53 auth-sia.o \
54 auth-skey.o \
55 bsmaudit.o \
56 groupaccess.o \
57 gss-serv.o \
58 loginrec.o \
59 servconf.o \
60 serverloop.o \
61 session.o \

new/usr/src/cmd/ssh/sshd/Makefile 2

62 sshlogin.o \
63 sshpty.o

65 EXTOBJS = sftp-server.o

67 SRCS = $(OBJS:.o=.c) ../sftp-server/sftp-server.c

69 include ../../Makefile.cmd
70 include ../Makefile.ssh-common

72 LDLIBS += $(SSH_COMMON_LDLIBS) -lsocket \
73 -lnsl \
74 -lz \
75 -lpam \
76 -lbsm \
77 -lwrap \
78 -lgss \
79 -lcontract
80 MAPFILES = $(MAPFILE.INT) $(MAPFILE.NGB)
81 LDFLAGS += $(MAPFILES:%=-M%)

83 # libcrypto has no lint library, so we can only use it when building
84 $(PROG) := LDLIBS += -lsunw_crypto

86 POFILE_DIR= ..

88 .KEEP_STATE:

90 .PARALLEL: $(OBJS)

92 all: $(PROG)

94 $(PROG): $(OBJS) $(EXTOBJS) $(MAPFILES) ../libssh/$(MACH)/libssh.a \
95 ../libopenbsd-compat/$(MACH)/libopenbsd-compat.a
96 $(LINK.c) $(OBJS) $(EXTOBJS) -o $@ $(LDLIBS) $(DYNFLAGS)
97 $(POST_PROCESS)

99 %.o : ../sftp-server/%.c
100 $(COMPILE.c) -o $@ $<
101 $(POST_PROCESS_O)

103 install: all $(DIRS) $(ROOTLIBSSHPROG) $(ROOTLIBSSH)

106 $(ROOTLIBSSHPROG)/%: %
107 $(INS.file)

109 $(DIRS):
110 $(INS.dir)

112 clean:
113 $(RM) $(OBJS) $(EXTOBJS)

115 lint: lint_SRCS

117 include ../Makefile.msg.targ
118 include ../../Makefile.targ

new/usr/src/cmd/svr4pkg/pkgadd/Makefile 1

**
 1303 Fri May 30 18:31:11 2014
new/usr/src/cmd/svr4pkg/pkgadd/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 PROG= pkgadd

29 OBJS= check.o \
30 main.o \
31 quit.o

33 ROOTLINKS= $(ROOTUSRSBIN)/pkgask

35 include $(SRC)/cmd/svr4pkg/Makefile.svr4pkg

37 LDLIBS += -lpkg -linstzones -ladm
38 LDLIBS += -lsunw_crypto -lwanboot

40 .KEEP_STATE:

42 all: $(PROG)

44 install: all $(ROOTUSRSBINPROG) $(ROOTLINKS)

46 $(ROOTLINKS): $(ROOTUSRSBINPROG)
47 $(RM) $@
48 $(LN) $(ROOTUSRSBINPROG) $@

50 include $(SRC)/cmd/svr4pkg/Makefile.svr4pkg.targ

new/usr/src/cmd/svr4pkg/pkgadm/Makefile 1

**
 1223 Fri May 30 18:31:12 2014
new/usr/src/cmd/svr4pkg/pkgadm/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 PROG= pkgadm

29 OBJS= addcert.o \
30 certs.o \
31 listcert.o \
32 lock.o \
33 main.o \
34 removecert.o

36 include $(SRC)/cmd/svr4pkg/Makefile.svr4pkg

38 LDLIBS += -lpkg -ladm -lsunw_crypto -lgen

40 .KEEP_STATE:
41 all: $(PROG)

43 install: all $(ROOTPROG)

45 include $(SRC)/cmd/svr4pkg/Makefile.svr4pkg.targ

new/usr/src/common/net/wanboot/boot_http.c 1

**
 72083 Fri May 30 18:31:12 2014
new/usr/src/common/net/wanboot/boot_http.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, OmniTI Computer Consulting, Inc. All rights reserved.
25 */

27 #include <errno.h>
28 #include <sys/types.h>
29 #include <sys/socket.h>
30 #include <netinet/in.h>
31 #include <arpa/inet.h>
32 #include <ctype.h>
33 #include <stdio.h>
34 #include <strings.h>
35 #include <stdlib.h>
36 #include <netdb.h>

38 #include <openssl/ssl.h>
39 #include <openssl/err.h>
40 #include <openssl/rand.h>
41 #include <openssl/pkcs12.h>

43 /* this must be included after ssl.h to avoid re-defining ’offsetof’ */
44 #include <sys/sysmacros.h>

46 #include <boot_http.h>
47 #include <socket_inet.h>
48 #include <p12access.h>

50 #include "bootlog.h"

52 #define BOOT_HTTP_MAJOR_VERSION 1
53 #define BOOT_HTTP_MINOR_VERSION 0
54 #define BOOT_HTTP_MICRO_VERSION 0

56 static boot_http_ver_t boot_http_ver = {
57 BOOT_HTTP_MAJOR_VERSION,
58 BOOT_HTTP_MINOR_VERSION,
59 BOOT_HTTP_MICRO_VERSION
60 };

new/usr/src/common/net/wanboot/boot_http.c 2

62 static int early_err; /* Error from before error occurred */

64 static boolean_t verbosemode = B_FALSE;
65 static char *cipher_list = NULL; /* Ciphers supported (if not default) */

67 typedef struct {
68 int i; /* current position in buffer */
69 int n; /* number of bytes in buffer */
70 char buf[512]; /* buffer */
71 } buf_struct_t;

73 typedef struct {
74 uint_t errsrc; /* Source of this error */
75 ulong_t error; /* Which error? */
76 } errent_t;

79 typedef enum {
80 HTTP_REQ_TYPE_HEAD = 1,
81 HTTP_REQ_TYPE_GET
82 } http_req_t;

84 #define FAILSAFE 20 /* Max # empty lines to accept */
85 #define DEFAULT_TIMEOUT 10 /* Default socket read timeout value */
86 #define HTTP_CONN_INFO 0x90919293 /* Identifies a http_conn_t struct */
87 #define ESTACK_SIZE 20 /* Size of the stack */

89 typedef struct http_conn_t {
90 uint_t signature; /* Cookie indicating this is a handle */
91 int fd; /* Connection’s fd... */
92 SSL_CTX *ctx;
93 void *ssl; /* Handle to ssl data structure */
94 int read_timeout; /* Timeout to use on read requests in sec */
95 char *basic_auth_userid; /* Basic authentication user ID */
96 char *basic_auth_password; /* and password */
97 char is_multipart; /* B_TRUE if doing multipart/mixed download */
98 char is_firstpart; /* B_TRUE if first part in a multipart xfer */
99 char is_firstchunk; /* B_TRUE if first chunk in chunked xfer */
100 char is_chunked; /* B_TRUE if message body is chunked */
101 boolean_t keepalive;
102 struct sockaddr_in host_addr; /* Address of host */
103 url_t uri; /* The current URI */
104 url_hport_t proxy; /* The proxy info */
105 boolean_t proxied; /* Connection is proxied */
106 char *random_file; /* File with seed info for pseudo random */
107 /* number generator */
108 char *client_cert_file; /* File holding client’s certificate */
109 char *private_key_file; /* File with the private key */
110 char *file_password; /* file with password to key or pkcs12 file. */
111 http_respinfo_t resp; /* Response summary info */
112 char **resphdr; /* Array of header response lines */
113 buf_struct_t inbuf;
114 char *boundary; /* Boundary text (multipart downloads only) */
115 uint_t boundary_len; /* Length of boundary string */
116 uint_t numerrs;
117 uint_t nexterr; /* Next error to return */
118 ssize_t body_size; /* Size of message body or chunk */
119 ssize_t body_read; /* # of bytes of body_size processed */
120 ssize_t body_size_tot; /* Total message body size */
121 ssize_t body_read_tot; /* # of bytes of body_size_tot processed */
122 errent_t errs[ESTACK_SIZE]; /* stack of errors on the last request */
123 /* (libssl can return multiple errors on one */
124 /* operation) */
125 } http_conn_t;

127 /*

new/usr/src/common/net/wanboot/boot_http.c 3

128 * Convenient macros for accessing fields in connection structure.
129 */
130 #define CONN_HOSTNAME c_id->uri.hport.hostname
131 #define CONN_PORT c_id->uri.hport.port
132 #define CONN_ABSPATH c_id->uri.abspath
133 #define CONN_HTTPS c_id->uri.https
134 #define CONN_PROXY_HOSTNAME c_id->proxy.hostname
135 #define CONN_PROXY_PORT c_id->proxy.port

137 #define RESET_ERR(c_id) (c_id)->numerrs = 0, (c_id)->nexterr = 0
138 #define SET_ERR(c_id, src, err) if ((c_id)->numerrs < ESTACK_SIZE) \
139 (c_id)->errs[(c_id)->numerrs].errsrc = (src), \
140 (c_id)->errs[(c_id)->numerrs ++].error = (err)

142 #define GET_ERR(c_id, e_src, e_code) \
143 if ((c_id)->nexterr < (c_id)->numerrs) \
144 (e_src) = (c_id)->errs[((c_id)->nexterr)].errsrc, \
145 (e_code) = (c_id)->errs[((c_id)->nexterr)++].error; \
146 else \
147 (e_src) = 0, (e_code) = 0

149 /*
150 * Macro used to increment message body read counters
151 */
152 #define INC_BREAD_CNT(bool, bcnt) \
153 if (bool) { \
154 bcnt--; \
155 c_id->body_read++;\
156 c_id->body_read_tot++; \
157 }

159 static int ssl_init = 0; /* 1 when ssl has been initialized */
160 static char *ca_verify_file; /* List of trusted CA’s */
161 static int verify_depth = 16; /* Certificate chain depth to verify */
162 static int p12_format = 0; /* Default to PEM format */

165 /* prototypes for local functions */
166 static int http_req(http_handle_t, const char *, http_req_t, offset_t,
167 offset_t);
168 static boolean_t http_check_conn(http_conn_t *);
169 static SSL_CTX *initialize_ctx(http_conn_t *);
170 static int tcp_connect(http_conn_t *, const char *, uint16_t);
171 static int readline(http_conn_t *, int, char *, int);
172 static int proxy_connect(http_conn_t *);
173 static int check_cert_chain(http_conn_t *, char *);
174 static void print_ciphers(SSL *);
175 static int read_headerlines(http_conn_t *, boolean_t);
176 static void free_response(http_conn_t *, int);
177 static int free_ctx_ssl(http_conn_t *);
178 static int get_chunk_header(http_conn_t *);
179 static int init_bread(http_conn_t *);
180 static int get_msgcnt(http_conn_t *, ssize_t *);
181 static int getaline(http_conn_t *, char *, int, boolean_t);
182 static int getbytes(http_conn_t *, char *, int);
183 static int http_srv_send(http_conn_t *, const void *, size_t);
184 static int http_srv_recv(http_conn_t *, void *, size_t);
185 static void handle_ssl_error(http_conn_t *, int);
186 static int count_digits(int);
187 static int hexdigit(char);
188 static char *eat_ws(const char *);
189 static boolean_t startswith(const char **strp, const char *starts);

191 /* ---------------------- public functions ----------------------- */

193 /*

new/usr/src/common/net/wanboot/boot_http.c 4

194 * http_set_p12_format - Set flag indicating that certs & keys will be in
195 * pkcs12 format.
196 *
197 * Default is PEM certs. When this is called, the default can be changed to
198 * pcs12 format.
199 */
200 void
201 http_set_p12_format(int on_off)
202 {
203 p12_format = on_off;
204 }

206 /*
207 * http_get_version - Get current boot http support version
208 *
209 * pVer = http_get_version();
210 *
211 * Arguments:
212 * None.
213 *
214 * Returns:
215 * Pointer to struct with version information.
216 *
217 * Returns the version of the http support in the current library. This
218 * is a struct with unsigned integsrs for <major>, <minor> and
219 * <micro> version numbers. <major> changes when an incompatible change
220 * is made. <minor> changes when an upwardly-compatible API change is
221 * made. <micro> consists of bug fixes, etc.
222 */
223 boot_http_ver_t const *
224 http_get_version(void)
225 {
226 return (&boot_http_ver);
227 }

229 /*
230 * http_set_verbose - Turn verbose on/off
231 *
232 * http_set_verbose(on_off);
233 *
234 * Arguments:
235 * on_off - When TRUE, turn verbose mode one. When FALSE, turn
236 * verbose off.
237 *
238 * Returns:
239 * None.
240 *
241 * When enabled, information is logged to bootlog (or the Solaris equivalent).
242 */
243 void
244 http_set_verbose(boolean_t on_off)
245 {
246 verbosemode = on_off;
247 }

249 /*
250 * http_set_cipher_list - Change the list of ciphers that can be used.
251 *
252 * ret = http_set_cipher_list(handle, list);
253 *
254 * Arguments:
255 * list - List of ciphers that can be used.
256 *
257 * Returns:
258 * 0 - Success
259 * -1 - An error occurred. Check http_get_lasterr().

new/usr/src/common/net/wanboot/boot_http.c 5

260 */
261 int
262 http_set_cipher_list(const char *list)
263 {
264 early_err = 0;

266 if (list != NULL) {
267 list = strdup(list);
268 if (list == NULL) {
269 early_err = EHTTP_NOMEM;
270 return (-1);
271 }
272 }

274 free(cipher_list);
275 cipher_list = (char *)list;
276 return (0);
277 }

279 /*
280 * http_srv_init - Set up a structure for a connection.
281 *
282 * handle = http_srv_init(url);
283 *
284 * Arguments:
285 * url - the structure that contains the URI.
286 *
287 * Returns:
288 * != NULL - A handle for referring to this connection.
289 * == NULL - An error occurred. Get the exact error from
290 * http_get_lasterr().
291 */
292 http_handle_t
293 http_srv_init(const url_t *url)
294 {
295 http_conn_t *c_id;

297 early_err = 0;
298 if (url == NULL) {
299 early_err = EHTTP_BADARG;
300 return (NULL);
301 }

303 if ((c_id = malloc(sizeof (*c_id))) == NULL) {
304 early_err = EHTTP_NOMEM;
305 return (NULL);
306 }

308 bzero(c_id, sizeof (*c_id));
309 c_id->uri = *url;
310 c_id->proxied = B_FALSE;
311 c_id->read_timeout = DEFAULT_TIMEOUT;
312 c_id->keepalive = B_TRUE;
313 c_id->fd = -1;

315 /* Do this at the end, just in case.... */
316 c_id->signature = HTTP_CONN_INFO;

318 return (c_id);
319 }

321 /*
322 * http_conn_is_https - Determine whether the scheme is http or https.
323 *
324 * B_TRUE - Connection is an SSL connection.
325 * B_FALSE - Connection isn’t SSL.

new/usr/src/common/net/wanboot/boot_http.c 6

326 *
327 * ret = http_conn_is_https(handle, boolean_t *bool);
328 *
329 * Arguments:
330 * handle - Handle associated with the desired connection
331 * bool - Ptr to boolean in which to place result
332 *
333 * Returns:
334 * 0 - Success
335 * -1 - Some error occurred.
336 */
337 int
338 http_conn_is_https(http_handle_t handle, boolean_t *bool)
339 {
340 http_conn_t *c_id = handle;

342 if (!http_check_conn(c_id))
343 return (-1);

345 *bool = CONN_HTTPS;
346 return (0);
347 }

349 /*
350 * http_set_proxy - Establish the proxy name/port.
351 *
352 * ret = http_set_proxy(handle, proxy);
353 *
354 * Arguments:
355 * handle - Handle associated with the desired connection
356 * proxy - The hostport definition for the proxy. If NULL,
357 * The next connect will not use a proxy.
358 *
359 * Returns:
360 * 0 - Success
361 * -1 - An error occurred. Check http_get_lasterr().
362 */
363 int
364 http_set_proxy(http_handle_t handle, const url_hport_t *proxy)
365 {
366 http_conn_t *c_id = handle;

368 if (!http_check_conn(c_id))
369 return (-1);

371 if (proxy != NULL) {
372 c_id->proxy = *proxy;
373 c_id->proxied = B_TRUE;
374 } else {
375 CONN_PROXY_HOSTNAME[0] = ’\0’;
376 c_id->proxied = B_FALSE;
377 }

379 return (0);
380 }

382 /*
383 * http_set_keepalive - Set keepalive for this connection.
384 *
385 * http_set_keepalive(handle, on_off);
386 *
387 * Arguments:
388 * handle - Handle associated with the desired connection
389 * on_off - Boolean turning keepalive on (TRUE) or off (FALSE)
390 *
391 * Returns:

new/usr/src/common/net/wanboot/boot_http.c 7

392 * 0 - Success.
393 * -1 - An error occurred. Check http_get_lasterr().
394 *
395 * This setting takes effect next time a connection is opened using this
396 * handle.
397 */
398 int
399 http_set_keepalive(http_handle_t handle, boolean_t on_off)
400 {
401 http_conn_t *c_id = handle;

403 if (!http_check_conn(c_id))
404 return (-1);

406 c_id->keepalive = on_off;
407 return (0);
408 }

410 /*
411 * http_set_socket_read_timeout - Set the timeout reads
412 *
413 * http_set_socket_read_timeout(handle, timeout);
414 *
415 * Arguments:
416 * handle - Handle associated with the desired connection
417 * timeout - Timeout, in seconds. Zero will default to 10 second
418 * timeouts.
419 *
420 * Returns:
421 * 0 - Success.
422 * -1 - An error occurred. Check http_get_lasterr().
423 *
424 * This setting takes effect beginning with the next read operation on this
425 * connection.
426 */
427 int
428 http_set_socket_read_timeout(http_handle_t handle, uint_t timout)
429 {
430 http_conn_t *c_id = handle;

432 if (!http_check_conn(c_id))
433 return (-1);

435 c_id->read_timeout = (timout) ? timout : DEFAULT_TIMEOUT;
436 return (0);
437 }

439 /*
440 * http_set_basic_auth - Set the basic authorization user ID and password
441 *
442 * ret = http_set_basic_auth(handle, userid, password);
443 *
444 * Arguments:
445 * handle - Handle associated with the desired connection
446 * userid - ID to pass as part of http/https request
447 * password- Password which goes with the user ID
448 *
449 * Returns:
450 * 0 - Success
451 * -1 - An error occurred. Check http_get_lasterr().
452 *
453 * This must be set before a https connection is made.
454 */
455 int
456 http_set_basic_auth(http_handle_t handle, const char *userid,
457 const char *password)

new/usr/src/common/net/wanboot/boot_http.c 8

458 {
459 http_conn_t *c_id = handle;

461 if (!http_check_conn(c_id))
462 return (-1);

464 if (password == NULL || userid == NULL || userid[0] == ’\0’) {
465 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_BADARG);
466 return (-1);
467 }

469 userid = strdup(userid);
470 password = strdup(password);
471 if (userid == NULL || password == NULL) {
472 free((void *)userid);
473 free((void *)password);
474 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
475 return (-1);
476 }

478 free(c_id->basic_auth_userid);
479 c_id->basic_auth_userid = (char *)userid;
480 free(c_id->basic_auth_password);
481 c_id->basic_auth_password = (char *)password;
482 return (0);
483 }

485 /*
486 * http_set_random_file - See the pseudo random number generator with file data
487 *
488 * ret = http_set_random_file(handle, filename);
489 *
490 * Arguments:
491 * handle - Handle associated with the desired connection
492 * filename
493 * - filename (including path) with random number seed.
494 *
495 * Returns:
496 * 0 - Success
497 * -1 - An error occurred. Check http_get_lasterr().
498 *
499 * This must be set before a https connection is made.
500 */
501 int
502 http_set_random_file(http_handle_t handle, const char *fname)
503 {
504 http_conn_t *c_id = handle;

506 if (!http_check_conn(c_id))
507 return (-1);

509 if (fname != NULL) {
510 fname = strdup(fname);
511 if (fname == NULL) {
512 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
513 return (-1);
514 }
515 }

517 free(c_id->random_file);
518 c_id->random_file = (char *)fname;
519 return (0);
520 }

522 /*
523 * http_set_certificate_authority_file - Set the CA file.

new/usr/src/common/net/wanboot/boot_http.c 9

524 *
525 * ret = http_set_certificate_authority_file(filename);
526 *
527 * Arguments:
528 * filename- File with the certificate authority certs
529 *
530 * Returns:
531 * 0 - Success
532 * -1 - An error occurred. Check http_get_lasterr().
533 *
534 * This must be set before https connections to the servers is done.
535 */
536 int
537 http_set_certificate_authority_file(const char *fname)
538 {
539 early_err = 0;

541 if (fname != NULL) {
542 fname = strdup(fname);
543 if (fname == NULL) {
544 early_err = EHTTP_NOMEM;
545 return (-1);
546 }
547 }

549 free(ca_verify_file);
550 ca_verify_file = (char *)fname;
551 return (0);
552 }

554 /*
555 * http_set_client_certificate_file - Set the file containing the PKCS#12
556 * client certificate and optionally its certificate chain.
557 *
558 * ret = http_set_client_certificate_file(handle, filename);
559 *
560 * Arguments:
561 * handle - Handle associated with the desired connection
562 * filename- File (including path) containing certificate, etc.
563 *
564 * Returns:
565 * 0 - Success
566 * -1 - An error occurred. Check http_get_lasterr().
567 *
568 * This must be set before the handle is used to make a https connection
569 * which will require a client certificate.
570 */
571 int
572 http_set_client_certificate_file(http_handle_t handle, const char *fname)
573 {
574 http_conn_t *c_id = handle;

576 if (!http_check_conn(c_id))
577 return (-1);

579 if (fname != NULL) {
580 fname = strdup(fname);
581 if (fname == NULL) {
582 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
583 return (-1);
584 }
585 }

587 free(c_id->client_cert_file);
588 c_id->client_cert_file = (char *)fname;
589 return (0);

new/usr/src/common/net/wanboot/boot_http.c 10

590 }

592 /*
593 * http_set_password - Set the password for the private key or pkcs12 file.
594 *
595 * ret = http_set_password(handle, password);
596 *
597 * Arguments:
598 * handle - Handle associated with the desired connection
599 * password- Password for the client’s private key file or pkcs12 file.
600 *
601 * Returns:
602 * 0 - Success
603 * -1 - An error occurred. Check http_get_lasterr().
604 *
605 * This must be set before the handle is used to make a https connection.
606 */
607 int
608 http_set_password(http_handle_t handle, const char *password)
609 {
610 http_conn_t *c_id = handle;

612 if (!http_check_conn(c_id))
613 return (-1);

615 if (password != NULL) {
616 password = strdup(password);
617 if (password == NULL) {
618 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
619 return (-1);
620 }
621 }

623 free(c_id->file_password);
624 c_id->file_password = (char *)password;
625 return (0);
626 }

628 /*
629 * http_set_key_file_password - Set the password for the private key
630 * file.
631 *
632 * ret = http_set_key_file_password(handle, password);
633 *
634 * Arguments:
635 * handle - Handle associated with the desired connection
636 * password- Password for the client’s private key file.
637 *
638 * Returns:
639 * 0 - Success
640 * -1 - An error occurred. Check http_get_lasterr().
641 *
642 * This must be set before the handle is used to make a https connection.
643 */
644 int
645 http_set_key_file_password(http_handle_t handle, const char *password)
646 {
647 return (http_set_password(handle, password));
648 }

650 /*
651 * http_set_private_key_file - Set the file containing the PKCS#12
652 * private key for this client.
653 *
654 * ret = http_set_private_key_file(handle, filename);
655 *

new/usr/src/common/net/wanboot/boot_http.c 11

656 * Arguments:
657 * handle - Handle associated with the desired connection
658 * filename- File (including path) containing the private key.
659 *
660 * Returns:
661 * 0 - Success
662 * -1 - An error occurred. Check http_get_lasterr().
663 *
664 * This must be set before the handle is used to make a https connection.
665 */
666 int
667 http_set_private_key_file(http_handle_t handle, const char *fname)
668 {
669 http_conn_t *c_id = handle;

671 if (!http_check_conn(c_id))
672 return (-1);

674 if (fname != NULL) {
675 fname = strdup(fname);
676 if (fname == NULL) {
677 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
678 return (-1);
679 }
680 }

682 free(c_id->private_key_file);
683 c_id->private_key_file = (char *)fname;
684 return (0);
685 }

687 /*
688 * http_srv_connect - Establish a connection to the server
689 *
690 * ret = http_srv_connect(handle);
691 *
692 * Arguments:
693 * handle - Handle associated with the desired connection
694 *
695 * Returns:
696 * 0 - Success
697 * -1 - An error occurred. Check http_get_lasterr() for specifics.
698 */
699 int
700 http_srv_connect(http_handle_t handle)
701 {
702 http_conn_t *c_id = handle;
703 SSL_CTX *ctx = NULL;
704 int retval;

706 ERR_clear_error();
707 if (!http_check_conn(c_id))
708 return (-1);

710 if (CONN_HTTPS) {
711 /* Build our SSL context (this function sets any errors) */
712 ctx = initialize_ctx(c_id);
713 if (ctx == NULL) {
714 libbootlog(BOOTLOG_CRIT,
715 "http_srv_connect: initialize_ctx returned NULL");
716 return (-1);
717 }
718 }

720 /* Connect the TCP socket */
721 if (c_id->proxied) {

new/usr/src/common/net/wanboot/boot_http.c 12

722 c_id->fd = proxy_connect(c_id);
723 } else {
724 c_id->fd = tcp_connect(c_id, CONN_HOSTNAME, CONN_PORT);
725 }

727 if (c_id->fd < 0) {
728 if (ctx != NULL)
729 SSL_CTX_free(ctx);
730 libbootlog(BOOTLOG_CRIT,
731 "http_srv_connect: %s returned %d",
732 (c_id->proxied) ? "proxy_connect" : "tcp_connect",
733 c_id->fd);
734 return (-1);
735 }

737 if (CONN_HTTPS) {
738 /* Connect the SSL socket */
739 if ((c_id->ssl = SSL_new(ctx)) == NULL) {
740 ulong_t err;
741 while ((err = ERR_get_error()) != 0)
742 SET_ERR(c_id, ERRSRC_LIBSSL, err);
743 libbootlog(BOOTLOG_CRIT,
744 "http_srv_connect: SSL_new returned "
745 "NULL");
746 (void) free_ctx_ssl(c_id);
747 return (-1);
748 }
749 if (verbosemode)
750 print_ciphers(c_id->ssl);

752 /* Ensure automatic negotiations will do things right */
753 SSL_set_connect_state(c_id->ssl);

755 if (SSL_set_fd(c_id->ssl, c_id->fd) == 0) {
756 ulong_t err;
757 while ((err = ERR_get_error()) != 0)
758 SET_ERR(c_id, ERRSRC_LIBSSL, err);
759 libbootlog(BOOTLOG_CRIT,
760 "http_srv_connect: SSL_set_fd returned 0");
761 (void) free_ctx_ssl(c_id);
762 return (-1);
763 }

765 if ((retval = SSL_connect(c_id->ssl)) <= 0) {
766 handle_ssl_error(c_id, retval);
767 libbootlog(BOOTLOG_CRIT,
768 "http_srv_connect: SSL_connect");
769 (void) free_ctx_ssl(c_id);
770 return (-1);
771 }

773 if (check_cert_chain(c_id, CONN_HOSTNAME) != 0) {
774 (void) free_ctx_ssl(c_id);
775 return (-1);
776 }

778 if (verbosemode)
779 print_ciphers(c_id->ssl);
780 }

782 return (0);
783 }

785 /*
786 * http_head_request - Issue http HEAD request
787 *

new/usr/src/common/net/wanboot/boot_http.c 13

788 * ret = http_head_request(handle, abs_path);
789 *
790 * Arguments:
791 * handle - Handle associated with the desired connection
792 * abs_path- File name portion of the URI, beginning with a /. Query,
793 * segment, etc are allowed.
794 *
795 * Returns:
796 * 0 - Success
797 * -1 - An error occurred. Check http_get_lasterr().
798 */
799 int
800 http_head_request(http_handle_t handle, const char *abs_path)
801 {
802 return (http_req(handle, abs_path, HTTP_REQ_TYPE_HEAD, 0, 0));
803 }

805 /*
806 * http_get_request - Issue http GET request without a range.
807 *
808 * ret = http_get_request(handle, abs_path);
809 *
810 * Arguments:
811 * handle - Handle associated with the desired connection
812 * abs_path- File name portion of the URI, beginning with a /. Query,
813 * segment, etc are allowed.
814 *
815 * Returns:
816 * 0 - Success
817 * -1 - An error occurred. Check http_get_lasterr().
818 */
819 int
820 http_get_request(http_handle_t handle, const char *abs_path)
821 {
822 return (http_req(handle, abs_path, HTTP_REQ_TYPE_GET, -1, 0));
823 }

825 /*
826 * http_get_range_request - Issue http GET request using a range.
827 *
828 * ret = http_get_range_request(handle, abs_path, curpos, len);
829 *
830 * Arguments:
831 * handle - Handle associated with the desired connection
832 * abs_path- File name portion of the URI, beginning with a /. Query,
833 * segment, etc are allowed.
834 * curpos - >=0 - Beginning of range
835 * len - = 0 - Range ends at the end of the file
836 * > 0 - Length of range.
837 *
838 * Returns:
839 * 0 - Success
840 * -1 - An error occurred. Check http_get_lasterr().
841 */
842 int
843 http_get_range_request(http_handle_t handle, const char *abs_path,
844 offset_t curpos, offset_t len)
845 {
846 http_conn_t *c_id = handle;

848 if (!http_check_conn(c_id))
849 return (-1);

851 if (curpos < 0) {
852 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_BADARG);
853 return (-1);

new/usr/src/common/net/wanboot/boot_http.c 14

854 }

856 return (http_req(handle, abs_path, HTTP_REQ_TYPE_GET, curpos, len));
857 }

859 /*
860 * http_free_respinfo - Free a respinfo structure
861 *
862 * ret = http_free_respinfo(resp);
863 *
864 * Arguments:
865 * resp - respinfo structure presumably allocated by
866 * http_process_headers() or http_process_part_headers()
867 *
868 * Note that if resp is NULL, then this results in a NOOP.
869 *
870 */
871 void
872 http_free_respinfo(http_respinfo_t *resp)
873 {
874 if (resp == NULL) {
875 return;
876 }

878 if (resp->statusmsg != NULL) {
879 free(resp->statusmsg);
880 }
881 free(resp);
882 }

884 /*
885 * http_process_headers - Read in the header lines from the response
886 *
887 * ret = http_process_headers(handle, resp);
888 *
889 * Arguments:
890 * handle - Handle associated with the connection where the request
891 * was made.
892 * resp - Summary information about the response.
893 *
894 * Returns:
895 * 0 - Success
896 * < 0 - An error occurred. Specifics of the error can
897 * be gotten using http_get_lasterr().
898 *
899 * Process the HTTP headers in the response. Check for a valid response
900 * status line. Allocate and return response information via the ’resp’
901 * argument. Header lines are stored locally, are are returned using calls
902 * to http_get_response_header() and http_get_header_value().
903 *
904 * Note that the errors will be set in the http_conn_t struct before the
905 * function which detected the error returns.
906 *
907 * Note that if resp is non-NULL, then upon a successful return, information
908 * about the status line, the code in the status line and the number of
909 * header lines are returned in the http_respinfo_t structure. The caller is
910 * responsible for freeing the resources allocated to this structure via
911 * http_free_respinfo().
912 *
913 * Note that the counters used to read message bodies are initialized here.
914 *
915 * Calling this function replaces the header information which is
916 * queried using http_get_response_header() and http_get_header_value().
917 * Once this function is called, headers read by the previous call
918 * to http_process_headers() or http_process_part_headers() is lost.
919 */

new/usr/src/common/net/wanboot/boot_http.c 15

920 int
921 http_process_headers(http_handle_t handle, http_respinfo_t **resp)
922 {
923 http_conn_t *c_id = handle;
924 http_respinfo_t *lresp;
925 char line[MAXHOSTNAMELEN];
926 char *ptr;
927 int i;

929 ERR_clear_error();
930 if (!http_check_conn(c_id))
931 return (-1);

933 if (resp != NULL) {
934 if ((lresp = malloc(sizeof (http_respinfo_t))) == NULL) {
935 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
936 return (-1);
937 }

939 bzero(lresp, sizeof (http_respinfo_t));
940 }

942 /*
943 * check the response status line, expecting
944 * HTTP/1.1 200 OK
945 */
946 i = getaline(c_id, line, sizeof (line), B_FALSE);
947 if (i == 0) {
948 if (resp != NULL) {
949 *resp = lresp;
950 }
951 return (0);
952 }

954 if (i < 0) {
955 /*
956 * Cause of I/O error was already put into
957 * error stack. This is an additional error.
958 */
959 http_free_respinfo(lresp);
960 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NODATA);
961 return (-1);
962 }

964 free_response(c_id, B_TRUE);

966 if (verbosemode)
967 libbootlog(BOOTLOG_VERBOSE, "http_process_headers: %s", line);

969 ptr = line;
970 if (strncmp(ptr, "HTTP/1.1", 8) != 0) {
971 http_free_respinfo(lresp);
972 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOT_1_1);
973 return (-1);
974 }

976 /* skip to the code */
977 ptr += 8;
978 while (isspace(*ptr))
979 ptr++;

981 /* make sure it’s three digits */
982 i = 0;
983 while (isdigit(ptr[i]))
984 i++;
985 if (i != 3) {

new/usr/src/common/net/wanboot/boot_http.c 16

986 http_free_respinfo(lresp);
987 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_BADHDR);
988 return (-1);
989 }
990 c_id->resp.code = strtol(ptr, NULL, 10);

992 /* skip to the message */
993 ptr += 3;
994 while (isspace(*ptr))
995 ptr++;

997 /* save the message */
998 c_id->resp.statusmsg = malloc(strlen(ptr) + 1);
999 if (c_id->resp.statusmsg == NULL) {

1000 http_free_respinfo(lresp);
1001 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
1002 return (-1);
1003 }
1004 (void) strcpy(c_id->resp.statusmsg, ptr);

1006 if ((i = read_headerlines(c_id, B_FALSE)) < 0) {
1007 /*
1008 * Error stack was already set at a lower level.
1009 * ’statusmsg’ will be cleaned up next time
1010 * headers are read.
1011 */
1012 http_free_respinfo(lresp);
1013 return (-1);
1014 }

1016 /*
1017 * See if there is a ’content-type: multipart/mixed’ line in the
1018 * headers. If so, get the boundary string.
1019 */
1020 ptr = http_get_header_value(handle, "Content-Type");
1021 if (ptr != NULL) {
1022 char *ptr2;

1024 ptr2 = ptr;
1025 while (isspace(*ptr2))
1026 ptr2 ++;
1027 if (startswith((const char **)&ptr2, "Multipart/Mixed;")) {
1028 while (isspace(*ptr2))
1029 ptr2 ++;
1030 if (startswith((const char **)&ptr2, "Boundary=")) {
1031 if (ptr2[0] == ’"’) {
1032 ptr2 ++;
1033 if (ptr2[strlen(ptr2) - 1] == ’"’)
1034 ptr2[strlen(ptr2) - 1] = ’\0’;
1035 }
1036 c_id->boundary = strdup(ptr2);
1037 if (c_id->boundary == NULL) {
1038 free(ptr);
1039 http_free_respinfo(lresp);
1040 SET_ERR(c_id, ERRSRC_LIBHTTP,
1041 EHTTP_NOMEM);
1042 return (-1);
1043 }
1044 c_id->boundary_len = strlen(c_id->boundary);
1045 c_id->is_multipart = B_TRUE;
1046 c_id->is_firstpart = B_TRUE;
1047 }
1048 }
1049 free(ptr);
1050 }

new/usr/src/common/net/wanboot/boot_http.c 17

1052 /*
1053 * Initialize the counters used to process message bodies.
1054 */
1055 if (init_bread(c_id) != 0) {
1056 /*
1057 * Error stack was already set at a lower level.
1058 */
1059 http_free_respinfo(lresp);
1060 return (-1);
1061 }

1063 /* Copy fields to the caller’s structure */
1064 if (resp != NULL) {
1065 lresp->code = c_id->resp.code;
1066 lresp->nresphdrs = c_id->resp.nresphdrs;
1067 lresp->statusmsg = strdup(c_id->resp.statusmsg);
1068 if (lresp->statusmsg == NULL) {
1069 http_free_respinfo(lresp);
1070 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
1071 return (-1);
1072 }
1073 *resp = lresp;
1074 }

1076 return (0);
1077 }

1079 /*
1080 * http_process_part_headers - Read in part boundary and header lines for the
1081 * next part of a multipart message.
1082 *
1083 * ret = http_process_part_headers(handle, resp);
1084 *
1085 * Arguments:
1086 * handle - Handle associated with the connection where the request
1087 * was made.
1088 * resp - Return address for summary information about the
1089 * header block.
1090 *
1091 * Returns:
1092 * = 1 - The end part was found.
1093 * = 0 - Success, with header info returned in ’resp’
1094 * = -1 - An error occurred. Specifics of the error can
1095 * be gotten using http_get_lasterr().
1096 *
1097 * This function reads any \r\n sequences (empty lines) and expects to get
1098 * a boundary line as the next non-empty line. It then reads header lines
1099 * (content-length, etc) until it gets another empty lines, which ends the
1100 * header section.
1101 *
1102 * Note that if resp is non-NULL, then upon a successful return, information
1103 * about the the number of header lines is returned in the http_respinfo_t
1104 * structure. The caller is responsible for freeing the resources allocated
1105 * to this structure via http_free_respinfo().
1106 *
1107 * Headers values can be returned using http_get_response_header() and
1108 * http_get_header_value().
1109 *
1110 * Calling this function replaces the header information which is
1111 * queried using http_get_response_header() and http_get_header_value().
1112 * Once this function is called, information returned by the previous call
1113 * to http_process_headers() or http_process_part_headers() is gone.
1114 */
1115 int
1116 http_process_part_headers(http_handle_t handle, http_respinfo_t **resp)
1117 {

new/usr/src/common/net/wanboot/boot_http.c 18

1118 http_conn_t *c_id = handle;
1119 char line[MAXHOSTNAMELEN];
1120 int count;
1121 int limit;
1122 int i;

1124 ERR_clear_error();
1125 if (!http_check_conn(c_id))
1126 return (-1);

1128 if (c_id->is_multipart == 0) {
1129 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOTMULTI);
1130 return (-1);
1131 }

1133 /*
1134 * Figure out how many empty lines to allow. Before the first
1135 * boundary of the transmission, there can be any number of
1136 * empty lines (from 0 up). Limit these to some reasonable
1137 * failsafe.
1138 *
1139 * For the 2nd and later boundaries, there is supposed to be
1140 * one crlf pair. However, many implementations don’t require
1141 * it. So don’t require it.
1142 */
1143 if (c_id->is_firstpart) {
1144 limit = FAILSAFE;
1145 c_id->is_firstpart = B_FALSE;
1146 } else
1147 limit = 1;

1149 /* Look for the boundary line. */
1150 count = 0;
1151 while ((i = getaline(c_id, line, sizeof (line), B_TRUE)) == 0 &&
1152 count < FAILSAFE)
1153 count ++;
1154 if (i < 0 || count > limit) {
1155 /*
1156 * If I/O error, cause was already put into
1157 * error stack. This is an additional error.
1158 */
1159 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOBOUNDARY);
1160 return (-1);
1161 }

1163 free_response(c_id, B_FALSE);

1165 if (verbosemode)
1166 libbootlog(BOOTLOG_VERBOSE,
1167 "http_process_part_headers: %s", line);

1169 /* Look for boundary line - ’--<boundary text> */
1170 if (line[0] != ’-’ || line[1] != ’-’ ||
1171 strncmp(&line[2], c_id->boundary, c_id->boundary_len) != 0) {
1172 /* No boundary line.... */
1173 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOBOUNDARY);
1174 return (-1);
1175 }

1177 /* Is this the end-of-parts boundary (ends with a trailing ’--’) */
1178 if (strcmp(&line[c_id->boundary_len + 2], "--") == 0) {
1179 return (1);
1180 }

1182 free_response(c_id, B_FALSE);
1183 if (read_headerlines(c_id, B_TRUE) < 0) {

new/usr/src/common/net/wanboot/boot_http.c 19

1184 /* Error stack was already set at a lower level. */
1185 return (-1);
1186 }

1188 /* Copy fields to the caller’s structure */
1189 if (resp != NULL) {
1190 if ((*resp = malloc(sizeof (http_respinfo_t))) == NULL) {
1191 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
1192 return (-1);
1193 }
1194 bzero(*resp, sizeof (http_respinfo_t));
1195 (*resp)->code = ’ ’;
1196 (*resp)->nresphdrs = c_id->resp.nresphdrs;
1197 }

1199 return (0);
1200 }

1202 /*
1203 * http_get_response_header - Get a line from the response header
1204 *
1205 * ret = http_get_response_header(handle, whichline);
1206 *
1207 * Arguments:
1208 * handle - Handle associated with the desired connection
1209 * whichline - Which line of the header to return. This must be between
1210 * zero and resp.nresphdrs which was returned by the call to
1211 * http_process_headers().
1212 *
1213 * Returns:
1214 * ptr - Points to a copy of the header line.
1215 * NULL - An error occurred. Check http_get_lasterr().
1216 */
1217 char *
1218 http_get_response_header(http_handle_t handle, uint_t which)
1219 {
1220 http_conn_t *c_id = handle;
1221 char *res;

1223 if (!http_check_conn(c_id))
1224 return (NULL);

1226 if (which >= c_id->resp.nresphdrs) {
1227 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_OORANGE);
1228 return (NULL);
1229 }

1231 res = strdup(c_id->resphdr[which]);
1232 if (res == NULL) {
1233 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
1234 return (NULL);
1235 }
1236 return (res);
1237 }

1239 /*
1240 * http_get_header_value - Get the value of a header line.
1241 *
1242 * ret = http_get_header_value(handle, what);
1243 *
1244 * Arguments:
1245 * handle - Handle associated with the desired connection
1246 * what - The field name to look up.
1247 *
1248 * Returns:
1249 * ptr - Points to a copy of the header value.

new/usr/src/common/net/wanboot/boot_http.c 20

1250 * NULL - An error occurred. Check http_get_lasterr().
1251 */
1252 char *
1253 http_get_header_value(http_handle_t handle, const char *field_name)
1254 {
1255 http_conn_t *c_id = handle;
1256 char *ptr;
1257 char *res;
1258 int i;
1259 int n;

1261 if (!http_check_conn(c_id))
1262 return (NULL);

1264 if (field_name == NULL || field_name[0] == ’\0’) {
1265 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_BADARG);
1266 return (NULL);
1267 }

1269 for (i = 0; i < c_id->resp.nresphdrs; i++) {
1270 ptr = c_id->resphdr[i];
1271 n = strlen(field_name);
1272 if (strncasecmp(field_name, ptr, n) == 0 && ptr[n] == ’:’) {
1273 ptr += n + 1;

1275 while (isspace(*ptr))
1276 ptr++;

1278 res = strdup(ptr);
1279 if (res == NULL) {
1280 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
1281 return (NULL);
1282 }
1283 return (res);
1284 }
1285 }
1286 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMATCH);
1287 return (NULL);
1288 }

1290 /*
1291 * http_read_body - Read the HTTP response body.
1292 *
1293 * ret = http_read_body(handle, recv_buf_ptr, recv_buf_size);
1294 *
1295 * Arguments:
1296 * handle - Handle associated with the relevant connection
1297 * recv_buf_ptr - Points to buffer to receive buffer
1298 * recv_buf_size - Length in bytes of buffer.
1299 *
1300 * Returns:
1301 * n - Number of bytes read..
1302 * < 0 - An error occurred. This is (the number of bytes gotten + 1),
1303 * negated. In other words, if ’n’ bytes were read and then an
1304 * error occurred, this will return (-(n+1)). So zero bytes
1305 * were read and then an error occurs, this will return -1. If
1306 * 1 byte was read, it will return -2, etc. Specifics of the
1307 * error can be gotten using http_get_lasterr().
1308 *
1309 * Note that the errors will be set in the http_conn_t struct before the
1310 * function which detected the error returns.
1311 */
1312 int
1313 http_read_body(http_handle_t handle, char *recv_buf_ptr, size_t recv_buf_size)
1314 {
1315 http_conn_t *c_id = handle;

new/usr/src/common/net/wanboot/boot_http.c 21

1317 ERR_clear_error();
1318 if (!http_check_conn(c_id))
1319 return (-1);

1321 if (recv_buf_ptr == NULL || recv_buf_size == 0) {
1322 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_BADARG);
1323 return (-1);
1324 }

1326 return (getbytes(c_id, recv_buf_ptr, recv_buf_size));
1327 }

1329 /*
1330 * http_srv_disconnect - Get rid of the connection to the server without
1331 * freeing the http_conn_t structure.
1332 *
1333 * ret = http_srv_disconnect(handle);
1334 *
1335 * Arguments:
1336 * handle - Handle associated with the connection
1337 *
1338 * Returns:
1339 * 0 - Success
1340 * -1 - An error occurred. Specifics of the error can
1341 * be gotten using http_get_lasterr().
1342 */
1343 int
1344 http_srv_disconnect(http_handle_t handle)
1345 {
1346 http_conn_t *c_id = handle;
1347 int err_ret;

1349 ERR_clear_error();
1350 if (!http_check_conn(c_id))
1351 return (-1);

1353 err_ret = free_ctx_ssl(c_id);
1354 bzero(&c_id->inbuf, sizeof (c_id->inbuf));
1355 free_response(c_id, B_TRUE);

1357 return (err_ret);
1358 }

1360 /*
1361 * http_srv_close - Close the connection and clean up the http_conn_t
1362 * structure.
1363 *
1364 * http_srv_close(handle);
1365 *
1366 * Arguments:
1367 * handle - Handle associated with the desired connection
1368 *
1369 * Returns:
1370 * 0 - Success
1371 * -1 - An error occurred. Specifics of the error can
1372 * be gotten using http_get_lasterr().
1373 */
1374 int
1375 http_srv_close(http_handle_t handle)
1376 {
1377 http_conn_t *c_id = handle;
1378 int err_ret = 0;

1380 if (!http_check_conn(c_id))
1381 return (-1);

new/usr/src/common/net/wanboot/boot_http.c 22

1383 if (c_id->ctx != NULL || c_id->ssl != NULL || c_id->fd != -1)
1384 err_ret = http_srv_disconnect(handle);

1386 free(c_id->basic_auth_userid);
1387 free(c_id->basic_auth_password);
1388 free(c_id->resp.statusmsg);
1389 free(c_id->client_cert_file);
1390 free(c_id->private_key_file);
1391 free(c_id->random_file);
1392 free(c_id->file_password);
1393 c_id->signature = 0;

1395 free(c_id);
1396 return (err_ret);
1397 }

1399 /*
1400 * http_get_conn_info - Return current information about the connection
1401 *
1402 * err = http_get_conn_info(handle);
1403 *
1404 * Arguments:
1405 * handle - Handle associated with the connection in question
1406 *
1407 * Returns:
1408 * non_NULL- Points to structure
1409 * NULL - An error exists. Check http_get_lasterr().
1410 */
1411 http_conninfo_t *
1412 http_get_conn_info(http_handle_t handle)
1413 {
1414 http_conn_t *c_id = handle;
1415 http_conninfo_t *info;

1417 if (!http_check_conn(c_id))
1418 return (NULL);

1420 info = malloc(sizeof (*info));
1421 if (info == NULL) {
1422 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
1423 return (NULL);
1424 }

1426 bzero(info, sizeof (*info));

1428 info->uri = c_id->uri;
1429 info->proxy = c_id->proxy;
1430 info->keepalive = c_id->keepalive;
1431 info->read_timeout = c_id->read_timeout;

1433 return (info);
1434 }

1436 /*
1437 * http_get_lasterr - Return the next error on the last operation
1438 *
1439 * err = http_get_lasterr(handle, errsrc);
1440 *
1441 * Arguments:
1442 * handle - Handle associated with the connection in question
1443 * If no valid handle exists yet, this can be NULL.
1444 * However, it must be checked with the very next call.
1445 * errsrc - Returns the Sources of errors (ERRSRC_* values).
1446 *
1447 * Returns:

new/usr/src/common/net/wanboot/boot_http.c 23

1448 * 0 - No error exists
1449 * <> 0 - The error.
1450 */
1451 ulong_t
1452 http_get_lasterr(http_handle_t handle, uint_t *errsrc)
1453 {
1454 http_conn_t *c_id = handle;
1455 ulong_t src;
1456 ulong_t err;

1458 if (c_id == NULL || c_id->signature != HTTP_CONN_INFO) {
1459 if (errsrc)
1460 *errsrc = ERRSRC_LIBHTTP;
1461 err = early_err;
1462 early_err = 0;
1463 return (err);
1464 }

1466 GET_ERR(c_id, src, err);
1467 if (src == 0 && err == 0) {
1468 if (errsrc)
1469 *errsrc = ERRSRC_LIBHTTP;
1470 err = early_err;
1471 early_err = 0;
1472 return (err);
1473 }
1474 if (errsrc)
1475 *errsrc = src;
1476 return (err);
1477 }

1479 /*
1480 * http_decode_err - Decode a libssl error
1481 *
1482 * err = http_decode_err(err, errlib, errfunc, errcode);
1483 *
1484 * Arguments:
1485 * err - libssl/libcrypto error returned.
1486 * errlib - returns libssl/libcrypto sublibrary that caused the error
1487 * errfunc - returns function in that library
1488 * errcode - returns error code
1489 *
1490 * Returns:
1491 * None other than the above.
1492 */
1493 void
1494 http_decode_err(ulong_t err, int *errlib, int *errfunc, int *errcode)
1495 {
1496 if (errlib)
1497 *errlib = ERR_GET_LIB(err);
1498 if (errfunc)
1499 *errfunc = ERR_GET_FUNC(err);
1500 if (errcode)
1501 *errcode = ERR_GET_REASON(err);
1502 }

1504 /* ---------------------- private functions ----------------------- */

1506 /*
1507 * http_req - Issue http request (either HEAD or GET)
1508 *
1509 * ret = http_req(handle, abs_path, reqtype, curpos, len);
1510 *
1511 * Arguments:
1512 * handle - Handle associated with the desired connection
1513 * abs_path- File name portion of the URI, beginning with a /. Query,

new/usr/src/common/net/wanboot/boot_http.c 24

1514 * segment, etc are allowed.
1515 * type - HTTP_REQ_TYPE_HEAD or HTTP_REQ_TYPE_GET
1516 *
1517 * In the case of GET requests,
1518 * curpos- -1 - Range not used
1519 * >=0 - Beginning of range
1520 * len - 0 - Range ends at the end of the file
1521 * >0 - Length of range.
1522 *
1523 * Returns:
1524 * 0 - Success
1525 * -1 - An error occurred. Check http_get_lasterr().
1526 */
1527 static int
1528 http_req(http_handle_t handle, const char *abs_path, http_req_t type,
1529 offset_t curpos, offset_t len)
1530 {
1531 http_conn_t *c_id = handle;
1532 char *request;
1533 char *reqtypename;
1534 char *newreq;
1535 int requestlen;
1536 int retval;
1537 int j;

1539 ERR_clear_error();
1540 if (!http_check_conn(c_id))
1541 return (-1);

1543 if (abs_path == NULL || abs_path[0] == ’\0’) {
1544 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_BADARG);
1545 return (-1);
1546 }

1548 /* Determine the name for the request type */
1549 switch (type) {
1550 case HTTP_REQ_TYPE_GET:
1551 reqtypename = "GET";
1552 if (curpos < 0 && curpos != -1) {
1553 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_BADARG);
1554 return (-1);
1555 }
1556 break;

1558 case HTTP_REQ_TYPE_HEAD:
1559 reqtypename = "HEAD";
1560 break;

1562 default:
1563 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_BADARG);
1564 return (-1);
1565 }

1567 /* Do rudimentary checks on the absolute path */
1568 if (abs_path == NULL || *abs_path != ’/’) {
1569 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_BADARG);
1570 libbootlog(BOOTLOG_CRIT, "http_req: invalid file path");
1571 if (abs_path != NULL)
1572 libbootlog(BOOTLOG_CRIT, " %s", abs_path);
1573 return (-1);
1574 }
1575 (void) strlcpy(CONN_ABSPATH, abs_path, MAXHOSTNAMELEN);

1577 /*
1578 * Size the request.
1579 *

new/usr/src/common/net/wanboot/boot_http.c 25

1580 * With proxy:
1581 * reqtypename + " http://" + host + ":" + port + path +
1582 * " HTTP/1.1\r\n" +
1583 * Without proxy:
1584 * reqtypename + " " + path + " HTTP/1.1\r\n" +
1585 */
1586 requestlen = strlen(reqtypename) + 8 + strlen(CONN_HOSTNAME) + 1 +
1587 count_digits(CONN_PORT) + strlen(CONN_ABSPATH) + 11;

1589 /*
1590 * Plus the rest:
1591 * "Host: " + targethost + ":" + count_digits(port) + "\r\n" +
1592 * "Connection: Keep-Alive\r\n" plus trailing "\r\n\0"
1593 */
1594 requestlen += 6 + strlen(CONN_HOSTNAME) + 1 +
1595 count_digits(CONN_PORT) + 2 + 24 + 3;
1596 if ((request = malloc(requestlen)) == NULL) {
1597 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
1598 return (-1);
1599 }

1601 /* The request line */
1602 if (c_id->proxied && c_id->ssl == NULL) {
1603 j = snprintf(request, requestlen,
1604 "%s http://%s:%d%s HTTP/1.1\r\n",
1605 reqtypename, CONN_HOSTNAME, CONN_PORT,
1606 CONN_ABSPATH);
1607 } else {
1608 j = snprintf(request, requestlen, "%s %s HTTP/1.1\r\n",
1609 reqtypename, CONN_ABSPATH);
1610 }

1612 /* Ancillary headers */
1613 j += snprintf(&request[j], requestlen - j, "Host: %s:%d\r\n",
1614 CONN_HOSTNAME, CONN_PORT);
1615 if (!c_id->keepalive)
1616 j += snprintf(&request[j], requestlen - j,
1617 "Connection: close\r\n");
1618 else
1619 j += snprintf(&request[j], requestlen - j,
1620 "Connection: Keep-Alive\r\n");
1621 /*
1622 * We only send the range header on GET requests
1623 *
1624 * "Range: bytes=" + from + "-" + end + "\r\n" or
1625 * "Range: bytes=" + from + "-" "\r\n"
1626 */
1627 if (type == HTTP_REQ_TYPE_GET && curpos >= 0) {
1628 offset_t endpos;

1630 requestlen += 13 + count_digits(curpos) + 1 + 2;
1631 if (len > 0) {
1632 endpos = curpos + len - 1;
1633 requestlen += count_digits(endpos);
1634 }

1636 if ((newreq = realloc(request, requestlen)) == NULL) {
1637 free(request);
1638 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
1639 return (-1);
1640 }
1641 request = newreq;

1643 j += sprintf(&request[j], "Range: bytes=%lld-", curpos);
1644 if (len > 0)
1645 j += sprintf(&request[j], "%lld", endpos);

new/usr/src/common/net/wanboot/boot_http.c 26

1646 j += sprintf(&request[j], "\r\n");
1647 }

1649 /*
1650 * Authorization is added only if provided (RFC 2617, Section 2)
1651 *
1652 * "Authorization: Basic " + authencstr + "\r\n"
1653 */
1654 if (c_id->basic_auth_userid && c_id->basic_auth_password) {
1655 char *authstr;
1656 char *authencstr;
1657 int authlen;

1659 /*
1660 * Allow for concat(basic_auth_userid ":" basic_auth_password)
1661 */
1662 authlen = strlen(c_id->basic_auth_userid) + 2 +
1663 strlen(c_id->basic_auth_password);
1664 if ((authstr = malloc(authlen + 1)) == NULL) {
1665 free(request);
1666 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
1667 return (-1);
1668 }
1669 (void) snprintf(authstr, authlen + 1, "%s:%s",
1670 c_id->basic_auth_userid, c_id->basic_auth_password);

1672 /* 3 bytes encoded as 4 (round up) with null termination */
1673 if ((authencstr = malloc((authlen + 2) / 3 * 4 + 1)) == NULL) {
1674 free(authstr);
1675 free(request);
1676 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
1677 return (-1);
1678 }

1680 (void) EVP_EncodeBlock((unsigned char *)authencstr,
1681 (unsigned char *)authstr, authlen);

1683 /*
1684 * Finally do concat(Authorization: Basic " authencstr "\r\n")
1685 */
1686 requestlen += 21 + strlen(authencstr) + 2;
1687 if ((newreq = realloc(request, requestlen)) == NULL) {
1688 free(authencstr);
1689 free(authstr);
1690 free(request);
1691 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
1692 return (-1);
1693 }
1694 request = newreq;

1696 j += snprintf(&request[j], requestlen - j,
1697 "Authorization: Basic %s\r\n", authencstr);

1699 free(authencstr);
1700 free(authstr);
1701 }

1703 j += sprintf(&request[j], "\r\n");

1705 if (verbosemode)
1706 libbootlog(BOOTLOG_VERBOSE, "%s", request);

1708 /* send the HTTP request */
1709 retval = http_srv_send(c_id, request, j);

1711 free(request);

new/usr/src/common/net/wanboot/boot_http.c 27

1712 if (retval != j) {
1713 /* Assume error in was set by send request. */
1714 return (-1);
1715 }

1717 return (0);
1718 }

1720 /*
1721 * password_cb - Callback to get private key password and return it
1722 * to SSL. (Used for PEM certificates only.)
1723 *
1724 * len = passwd_cb(buf, buflen, rwflag, userdata);
1725 *
1726 * Arguments:
1727 * buf - Buffer for the password
1728 * buflen - Length of ’buf’
1729 * rwflag - password will be used for reading/decryption (== 0)
1730 * or writing/encryption (== 1).
1731 * userdata - Points to connection-specific information.
1732 *
1733 * Returns:
1734 * > 0 - Length of password that was put into ’buf’.
1735 * 0 - No password was returned (usually error occurred)
1736 *
1737 * NOTE: The password code is not thread safe
1738 */
1739 /* ARGSUSED */
1740 static int
1741 password_cb(char *buf, int buflen, int rwflag, void *userdata)
1742 {
1743 http_conn_t *c_id = userdata;

1745 if (c_id == NULL || c_id->signature != HTTP_CONN_INFO)
1746 return (0);

1748 if (c_id->file_password == NULL ||
1749 buflen < strlen(c_id->file_password) + 1)
1750 return (0);

1752 return (strlcpy(buf, c_id->file_password, buflen));
1753 }

1755 /*
1756 * initialize_ctx - Initialize the context for a connection.
1757 *
1758 * ctx = initialize_ctx(c_id);
1759 *
1760 * Arguments:
1761 * None.
1762 *
1763 * Returns:
1764 * non-NULL - Points to ctx structure.
1765 * NULL - An error occurred. Any cleanup is done and error
1766 * information is in the error stack.
1767 */
1768 static SSL_CTX *
1769 initialize_ctx(http_conn_t *c_id)
1770 {
1771 #if OPENSSL_VERSION_NUMBER < 0x10000000L
1772 SSL_METHOD *meth;
1773 #else
1774 const SSL_METHOD *meth;
1775 #endif
1776 SSL_CTX *ctx;

new/usr/src/common/net/wanboot/boot_http.c 28

1778 ERR_clear_error();

1780 /* Global system initialization */
1781 if (ssl_init == 0) {
1782 sunw_crypto_init();
1783 SSL_load_error_strings();
1784 ssl_init = 1;
1785 }

1787 /* Create our context */
1788 meth = SSLv3_client_method();
1789 if ((ctx = SSL_CTX_new(meth)) == NULL) {
1790 ulong_t err;
1791 while ((err = ERR_get_error()) != 0)
1792 SET_ERR(c_id, ERRSRC_LIBSSL, err);
1793 libbootlog(BOOTLOG_CRIT,
1794 "initialize_ctx: SSL_CTX_new returned NULL");
1795 return (NULL);
1796 }

1798 /*
1799 * Ensure that any renegotiations for blocking connections will
1800 * be done automatically. (The alternative is to return partial
1801 * reads to the caller and let it oversee the renegotiations.)
1802 */
1803 if (SSL_CTX_set_mode(ctx, SSL_MODE_AUTO_RETRY) == 0) {
1804 ulong_t err;
1805 while ((err = ERR_get_error()) != 0)
1806 SET_ERR(c_id, ERRSRC_LIBSSL, err);
1807 libbootlog(BOOTLOG_CRIT,
1808 "initialize_ctx: SSL_CTX_set_mode returned 0");
1809 (void) SSL_CTX_free(ctx);
1810 return (NULL);
1811 }

1813 /* set cipher list if provided */
1814 if (cipher_list != NULL) {
1815 if (!SSL_CTX_set_cipher_list(ctx, cipher_list)) {
1816 ulong_t err;
1817 while ((err = ERR_get_error()) != 0)
1818 SET_ERR(c_id, ERRSRC_LIBSSL, err);
1819 libbootlog(BOOTLOG_CRIT,
1820 "initialize_ctx: Error in cipher list");
1821 SSL_CTX_free(ctx);
1822 return (NULL);
1823 }
1824 }

1826 /*
1827 * We attempt to use the client_certificate_file for the private
1828 * key input scheme *only* in the absence of private_key_file. In
1829 * this instance the scheme will be the same as that used for the
1830 * certificate input.
1831 */

1833 /* Load our certificates */
1834 if (c_id->client_cert_file != NULL) {
1835 if (p12_format) {
1836 /* Load pkcs12-formated files */
1837 if (sunw_p12_use_certfile(ctx, c_id->client_cert_file,
1838 c_id->file_password)
1839 <= 0) {
1840 ulong_t err;
1841 while ((err = ERR_get_error()) != 0)
1842 SET_ERR(c_id, ERRSRC_LIBSSL, err);
1843 libbootlog(BOOTLOG_CRIT,

new/usr/src/common/net/wanboot/boot_http.c 29

1844 "initialize_ctx: Couldn’t read "
1845 "PKCS12 certificate file");
1846 SSL_CTX_free(ctx);
1847 return (NULL);
1848 }
1849 } else {
1850 /* Load PEM-formated files */
1851 if (SSL_CTX_use_certificate_file(ctx,
1852 c_id->client_cert_file, SSL_FILETYPE_PEM) <= 0) {
1853 ulong_t err;
1854 while ((err = ERR_get_error()) != 0)
1855 SET_ERR(c_id, ERRSRC_LIBSSL, err);
1856 libbootlog(BOOTLOG_CRIT,
1857 "initialize_ctx: Couldn’t read "
1858 "PEM certificate file");
1859 SSL_CTX_free(ctx);
1860 return (NULL);
1861 }
1862 }
1863 if (c_id->private_key_file == NULL)
1864 c_id->private_key_file = c_id->client_cert_file;
1865 }

1867 /* Load our keys */
1868 if (p12_format) {
1869 /* Load pkcs12-formated files */
1870 if (c_id->private_key_file != NULL) {
1871 if (sunw_p12_use_keyfile(ctx, c_id->private_key_file,
1872 c_id->file_password)
1873 <= 0) {
1874 ulong_t err;
1875 while ((err = ERR_get_error()) != 0)
1876 SET_ERR(c_id, ERRSRC_LIBSSL, err);
1877 libbootlog(BOOTLOG_CRIT,
1878 "initialize_ctx: Couldn’t read "
1879 "PKCS12 key file");
1880 SSL_CTX_free(ctx);
1881 return (NULL);
1882 }
1883 }
1884 } else {
1885 /* Load PEM-formated files */
1886 SSL_CTX_set_default_passwd_cb(ctx, password_cb);
1887 SSL_CTX_set_default_passwd_cb_userdata(ctx, c_id);
1888 if (c_id->private_key_file != NULL) {
1889 if (SSL_CTX_use_PrivateKey_file(ctx,
1890 c_id->private_key_file, SSL_FILETYPE_PEM) <= 0) {
1891 ulong_t err;
1892 while ((err = ERR_get_error()) != 0)
1893 SET_ERR(c_id, ERRSRC_LIBSSL, err);
1894 libbootlog(BOOTLOG_CRIT,
1895 "initialize_ctx: Couldn’t read "
1896 "PEM key file");
1897 SSL_CTX_free(ctx);
1898 return (NULL);
1899 }
1900 }
1901 }

1903 /* Load the CAs we trust */
1904 if (ca_verify_file != NULL) {
1905 if (p12_format) {
1906 if (sunw_p12_use_trustfile(ctx, ca_verify_file,
1907 c_id->file_password)
1908 <= 0) {
1909 ulong_t err;

new/usr/src/common/net/wanboot/boot_http.c 30

1910 while ((err = ERR_get_error()) != 0)
1911 SET_ERR(c_id, ERRSRC_LIBSSL, err);
1912 libbootlog(BOOTLOG_CRIT,
1913 "initialize_ctx: Couldn’t read "
1914 "PKCS12 CA list file");
1915 SSL_CTX_free(ctx);
1916 return (NULL);
1917 }
1918 } else {
1919 if (SSL_CTX_load_verify_locations(ctx, ca_verify_file,
1920 NULL) == 0) {
1921 ulong_t err;
1922 while ((err = ERR_get_error()) != 0)
1923 SET_ERR(c_id, ERRSRC_LIBSSL, err);
1924 libbootlog(BOOTLOG_CRIT,
1925 "initialize_ctx: Couldn’t read PEM"
1926 " CA list file");
1927 SSL_CTX_free(ctx);
1928 return (NULL);
1929 }
1930 }
1931 }

1933 SSL_CTX_set_verify_depth(ctx, verify_depth);

1935 /* Load randomness */
1936 if (c_id->random_file != NULL &&
1937 RAND_load_file(c_id->random_file, 1024 * 1024) <= 0) {
1938 ulong_t err;
1939 while ((err = ERR_get_error()) != 0)
1940 SET_ERR(c_id, ERRSRC_LIBSSL, err);
1941 libbootlog(BOOTLOG_CRIT,
1942 "initialize_ctx: Couldn’t load random file");
1943 SSL_CTX_free(ctx);
1944 return (NULL);
1945 }
1946 if (RAND_status() <= 0) {
1947 ulong_t err;
1948 while ((err = ERR_get_error()) != 0)
1949 SET_ERR(c_id, ERRSRC_LIBSSL, err);
1950 libbootlog(BOOTLOG_CRIT,
1951 "initialize_ctx: PRNG not seeded");
1952 SSL_CTX_free(ctx);
1953 return (NULL);
1954 }

1956 return (ctx);
1957 }

1959 /*
1960 * tcp_connect - Set up a TCP connection.
1961 *
1962 * sock = tcp_connect(c_id, hostname, port);
1963 *
1964 * Arguments:
1965 * c_id - Structure associated with the desired connection
1966 * hostname - the host to connect to
1967 * port - the port to connect to
1968 *
1969 * Returns:
1970 * >= 0 - Socket number.
1971 * -1 - Error occurred. Error information is set in the
1972 * error stack. Any cleanup is done.
1973 *
1974 * This function established a connection to the target host. When
1975 * it returns, the connection is ready for a HEAD or GET request.

new/usr/src/common/net/wanboot/boot_http.c 31

1976 */
1977 static int
1978 tcp_connect(http_conn_t *c_id, const char *hostname, uint16_t port)
1979 {
1980 struct hostent *hp;
1981 struct sockaddr_in addr;
1982 int sock;
1983 int status;

1985 if ((hp = gethostbyname(hostname)) == NULL) {
1986 SET_ERR(c_id, ERRSRC_RESOLVE, h_errno);
1987 return (-1);
1988 }

1990 bzero(&addr, sizeof (addr));
1991 /* LINTED */
1992 addr.sin_addr = *(struct in_addr *)hp->h_addr;
1993 addr.sin_family = AF_INET;
1994 addr.sin_port = htons(port);

1996 if ((sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0) {
1997 SET_ERR(c_id, ERRSRC_SYSTEM, errno);
1998 return (-1);
1999 }

2001 status = connect(sock, (struct sockaddr *)&addr, sizeof (addr));
2002 if (status < 0) {
2003 SET_ERR(c_id, ERRSRC_SYSTEM, errno);
2004 (void) socket_close(sock);
2005 return (-1);
2006 }

2008 c_id->host_addr = addr; /* save for future sendto calls */
2009 c_id->fd = sock;

2011 return (sock);
2012 }

2014 /*
2015 * readline - Get a line from the socket. Discard the end-of-line
2016 * (CR or CR/LF or LF).
2017 *
2018 * ret = readline(c_id, sock, buf, len);
2019 *
2020 * Arguments:
2021 * c_id - Structure associated with the desired connection
2022 * sock - Socket to read
2023 * buf - Buffer for the line
2024 * len - Length of the buffer
2025 *
2026 * Returns:
2027 * 0 - Success. ’buf’ contains the line.
2028 * -1 - Error occurred. Error information is set in the
2029 * error stack.
2030 */
2031 static int
2032 readline(http_conn_t *c_id, int sock, char *buf, int len)
2033 {
2034 int n, r;
2035 char *ptr = buf;

2037 for (n = 0; n < len; n++) {
2038 r = socket_read(sock, ptr, 1, c_id->read_timeout);

2040 if (r < 0) {
2041 SET_ERR(c_id, ERRSRC_SYSTEM, errno);

new/usr/src/common/net/wanboot/boot_http.c 32

2042 return (-1);
2043 } else if (r == 0) {
2044 libbootlog(BOOTLOG_WARNING, "Readline: no data");
2045 return (0);
2046 }

2048 if (*ptr == ’\n’) {
2049 *ptr = ’\0’;

2051 /* Strip off the CR if it’s there */
2052 if (buf[n-1] == ’\r’) {
2053 buf[n-1] = ’\0’;
2054 n--;
2055 }

2057 return (n);
2058 }

2060 ptr++;
2061 }

2063 libbootlog(BOOTLOG_WARNING, "readline: Buffer too short\n");
2064 return (0);
2065 }

2067 /*
2068 * proxy_connect - Set up a proxied TCP connection to the target host.
2069 *
2070 * sock = proxy_connect(c_id);
2071 *
2072 * Arguments:
2073 * c_id - Structure associated with the desired connection
2074 *
2075 * Returns:
2076 * >= 0 - Socket number.
2077 * -1 - Error occurred. Error information is set in the
2078 * error stack. Any cleanup is done.
2079 *
2080 * This function established a connection to the proxy and then sends
2081 * the request to connect to the target host. It reads the response
2082 * (the status line and any headers). When it returns, the connection
2083 * is ready for a HEAD or GET request.
2084 */
2085 static int
2086 proxy_connect(http_conn_t *c_id)
2087 {
2088 struct sockaddr_in addr;
2089 int sock;
2090 char buf[1024];
2091 char *ptr;
2092 int i;

2094 if ((sock = tcp_connect(c_id, CONN_PROXY_HOSTNAME,
2095 CONN_PROXY_PORT)) < 0) {
2096 return (-1);
2097 }

2099 if (!CONN_HTTPS) {
2100 return (sock);
2101 }

2103 /* Now that we’re connected, do the proxy request */
2104 (void) snprintf(buf, sizeof (buf),
2105 "CONNECT %s:%d HTTP/1.0\r\n\r\n", CONN_HOSTNAME, CONN_PORT);

2107 /* socket_write sets the errors */

new/usr/src/common/net/wanboot/boot_http.c 33

2108 if (socket_write(sock, buf, strlen(buf), &addr) <= 0) {
2109 SET_ERR(c_id, ERRSRC_SYSTEM, errno);
2110 (void) socket_close(sock);
2111 return (-1);
2112 }

2114 /* And read the response */
2115 i = readline(c_id, sock, buf, sizeof (buf));
2116 if (i <= 0) {
2117 if (i == 0)
2118 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NORESP);
2119 libbootlog(BOOTLOG_CRIT,
2120 "proxy_connect: Empty response from proxy");
2121 (void) socket_close(sock);
2122 return (-1);
2123 }

2125 ptr = buf;
2126 if (strncmp(ptr, "HTTP", 4) != 0) {
2127 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOT_1_1);
2128 libbootlog(BOOTLOG_CRIT,
2129 "proxy_connect: Unrecognized protocol");
2130 (void) socket_close(sock);
2131 return (-1);
2132 }

2134 /* skip to the code */
2135 ptr += 4;
2136 while (*ptr != ’ ’ && *ptr != ’\0’)
2137 ptr++;
2138 while (*ptr == ’ ’ && *ptr != ’\0’)
2139 ptr++;

2141 /* make sure it’s three digits */
2142 if (strncmp(ptr, "200", 3) != 0) {
2143 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_BADRESP);
2144 libbootlog(BOOTLOG_CRIT,
2145 "proxy_connect: Received error from proxy server");
2146 (void) socket_close(sock);
2147 return (-1);
2148 }
2149 ptr += 3;
2150 if (isdigit(*ptr)) {
2151 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_BADRESP);
2152 (void) socket_close(sock);
2153 return (-1);
2154 }

2156 /* Look for the blank line that signals end of proxy header */
2157 while ((i = readline(c_id, sock, buf, sizeof (buf))) > 0)
2158 ;

2160 if (i < 0) {
2161 (void) socket_close(sock);
2162 return (-1);
2163 }

2165 return (sock);
2166 }

2168 /*
2169 * check_cert_chain - Check if we have a valid certificate chain.
2170 *
2171 * ret = check_cert_chain(c_id, host);
2172 *
2173 * Arguments:

new/usr/src/common/net/wanboot/boot_http.c 34

2174 * c_id - Connection info.
2175 * host - Name to compare with the common name in the certificate.
2176 *
2177 * Returns:
2178 * 0 - Certificate chain and common name are both OK.
2179 * -1 - Certificate chain and/or common name is not valid.
2180 */
2181 static int
2182 check_cert_chain(http_conn_t *c_id, char *host)
2183 {
2184 X509 *peer;
2185 char peer_CN[256];
2186 long verify_err;

2188 if ((verify_err = SSL_get_verify_result(c_id->ssl)) != X509_V_OK) {
2189 SET_ERR(c_id, ERRSRC_VERIFERR, verify_err);
2190 libbootlog(BOOTLOG_CRIT,
2191 "check_cert_chain: Certificate doesn’t verify");
2192 return (-1);
2193 }

2195 /*
2196 * Check the cert chain. The chain length
2197 * is automatically checked by OpenSSL when we
2198 * set the verify depth in the ctx
2199 *
2200 * All we need to do here is check that the CN
2201 * matches
2202 */

2204 /* Check the common name */
2205 if ((peer = SSL_get_peer_certificate(c_id->ssl)) == NULL) {
2206 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOCERT);
2207 libbootlog(BOOTLOG_CRIT,
2208 "check_cert_chain: Peer did not present a certificate");
2209 return (-1);
2210 }
2211 (void) X509_NAME_get_text_by_NID(X509_get_subject_name(peer),
2212 NID_commonName, peer_CN, 256);

2214 if (verbosemode)
2215 libbootlog(BOOTLOG_VERBOSE,
2216 "server cert’s peer_CN is %s, host is %s", peer_CN, host);

2218 if (strcasecmp(peer_CN, host)) {
2219 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMATCH);
2220 libbootlog(BOOTLOG_CRIT,
2221 "check_cert_chain: Common name doesn’t match host name");
2222 libbootlog(BOOTLOG_CRIT,
2223 "peer_CN = %s, host = %s", peer_CN, host);
2224 return (-1);
2225 }

2227 return (0);
2228 }

2230 /*
2231 * print_ciphers - Print the list of ciphers for debugging.
2232 *
2233 * print_ciphers(ssl);
2234 *
2235 * Arguments:
2236 * ssl - SSL connection.
2237 *
2238 * Returns:
2239 * none

new/usr/src/common/net/wanboot/boot_http.c 35

2240 */
2241 static void
2242 print_ciphers(SSL *ssl)
2243 {
2244 SSL_CIPHER *c;
2245 STACK_OF(SSL_CIPHER) *sk;
2246 int i;
2247 const char *name;

2249 if (ssl == NULL)
2250 return;

2252 sk = SSL_get_ciphers(ssl);
2253 if (sk == NULL)
2254 return;

2256 for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
2257 c = sk_SSL_CIPHER_value(sk, i);
2258 libbootlog(BOOTLOG_VERBOSE, "%08lx %s", c->id, c->name);
2259 }
2260 name = SSL_get_cipher_name(ssl);
2261 if (name == NULL)
2262 name = "";
2263 libbootlog(BOOTLOG_VERBOSE, "Current cipher = %s", name);
2264 }

2266 /*
2267 * read_headerlines - Get the header lines from the server. This reads
2268 * lines until it gets a empty line indicating end of headers.
2269 *
2270 * ret = read_headerlines(c_id);
2271 *
2272 * Arguments:
2273 * c_id - Info about the connection being read.
2274 * bread - TRUE if the headerlines are part of the message body.
2275 *
2276 * Returns:
2277 * 0 - Header lines were read.
2278 * -1 - Error occurred. The errors information is already in
2279 * the error stack.
2280 *
2281 * Read the lines. If the current line begins with a space or tab, it is
2282 * a continuation. Take the new line and append it to the end of the
2283 * previous line rather than making an entry for another line in
2284 * c_id->resphdr.
2285 *
2286 * Note that I/O errors are put into the error stack by http_srv_recv(),
2287 * which is called by getaline().
2288 */
2289 static int
2290 read_headerlines(http_conn_t *c_id, boolean_t bread)
2291 {
2292 char line[MAXHOSTNAMELEN];
2293 char **new_buf;
2294 char *ptr;
2295 int next;
2296 int cur;
2297 int n;

2299 /* process headers, stop when we get to an empty line */
2300 cur = 0;
2301 next = 0;
2302 while ((n = getaline(c_id, line, sizeof (line), bread)) > 0) {

2304 if (verbosemode)
2305 libbootlog(BOOTLOG_VERBOSE,

new/usr/src/common/net/wanboot/boot_http.c 36

2306 "read_headerlines: %s", line);
2307 /*
2308 * See if this is a continuation line (first col is a
2309 * space or a tab)
2310 */
2311 if (line[0] != ’ ’ && line[0] != ’ ’) {
2312 cur = next;
2313 next ++;
2314 new_buf =
2315 realloc(c_id->resphdr, (cur + 1) * sizeof (void *));
2316 if (new_buf == NULL) {
2317 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
2318 return (-1);
2319 }
2320 c_id->resphdr = new_buf;

2322 c_id->resphdr[cur] = strdup(line);
2323 if (c_id->resphdr[cur] == NULL) {
2324 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
2325 return (-1);
2326 }
2327 } else {
2328 ptr = line;
2329 while (isspace(*ptr))
2330 ptr ++;
2331 c_id->resphdr[cur] = realloc(c_id->resphdr[cur],
2332 strlen(c_id->resphdr[cur]) + strlen(ptr) + 1);
2333 if (c_id->resphdr[cur] == NULL) {
2334 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOMEM);
2335 return (-1);
2336 }
2337 (void) strcat(c_id->resphdr[cur], ptr);
2338 }
2339 ptr = &(c_id->resphdr[cur][strlen(c_id->resphdr[cur]) - 1]);
2340 while (ptr > c_id->resphdr[cur] && isspace(*ptr))
2341 ptr --;
2342 }
2343 c_id->resp.nresphdrs = next;

2345 /* Cause of any I/O error was already put into error stack. */
2346 return (n >= 0 ? 0 : -1);
2347 }

2349 static void
2350 free_response(http_conn_t *c_id, int free_boundary)
2351 {
2352 int i;

2354 /* free memory from previous calls */
2355 if (c_id->resp.statusmsg != NULL) {
2356 free(c_id->resp.statusmsg);
2357 c_id->resp.statusmsg = NULL;
2358 }
2359 for (i = 0; i < c_id->resp.nresphdrs; i++) {
2360 free(c_id->resphdr[i]);
2361 c_id->resphdr[i] = NULL;
2362 }
2363 c_id->resp.nresphdrs = 0;
2364 if (c_id->resphdr != NULL) {
2365 free(c_id->resphdr);
2366 c_id->resphdr = NULL;
2367 }

2369 if (free_boundary && c_id->boundary) {
2370 free(c_id->boundary);
2371 c_id->boundary = NULL;

new/usr/src/common/net/wanboot/boot_http.c 37

2372 c_id->is_multipart = B_FALSE;
2373 }
2374 }

2376 static int
2377 free_ctx_ssl(http_conn_t *c_id)
2378 {
2379 int err_ret = 0;

2381 if (c_id->ssl != NULL) {
2382 if (SSL_shutdown(c_id->ssl) <= 0) {
2383 ulong_t err;
2384 while ((err = ERR_get_error()) != 0)
2385 SET_ERR(c_id, ERRSRC_LIBSSL, err);
2386 err_ret = -1;
2387 }
2388 SSL_free(c_id->ssl);
2389 c_id->ssl = NULL;
2390 }

2392 if (c_id->fd != -1 && socket_close(c_id->fd) < 0) {
2393 SET_ERR(c_id, ERRSRC_SYSTEM, errno);
2394 err_ret = -1;
2395 }
2396 c_id->fd = -1;

2398 if (c_id->ctx != NULL) {
2399 SSL_CTX_free(c_id->ctx);
2400 c_id->ctx = NULL;
2401 }

2403 return (err_ret);
2404 }

2406 /*
2407 * get_chunk_header - Get a chunk header line
2408 *
2409 * Arguments:
2410 * c_id - Structure describing the connection in question.
2411 *
2412 * Returns:
2413 * >=0 - Length of next chunk
2414 * -1 - Error occurred. The error information is in the error stack.
2415 */
2416 static int
2417 get_chunk_header(http_conn_t *c_id)
2418 {
2419 char line[MAXHOSTNAMELEN];
2420 char *ptr;
2421 int value;
2422 int ok;
2423 int i;

2425 /*
2426 * Determine whether an extra crlf pair will precede the
2427 * chunk header. For the first one, there is no preceding
2428 * crlf. For later chunks, there is one crlf.
2429 */
2430 if (c_id->is_firstchunk) {
2431 ok = 1;
2432 c_id->is_firstchunk = B_FALSE;
2433 } else {
2434 ok = ((i = getaline(c_id, line, sizeof (line), B_FALSE)) == 0);
2435 }

2437 if (ok)

new/usr/src/common/net/wanboot/boot_http.c 38

2438 i = getaline(c_id, line, sizeof (line), B_FALSE);
2439 if (!ok || i < 0) {
2440 /*
2441 * If I/O error, the Cause was already put into
2442 * error stack. This is an additional error.
2443 */
2444 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_NOHEADER);
2445 return (-1);
2446 }

2448 if (verbosemode)
2449 libbootlog(BOOTLOG_VERBOSE, "get_chunk_header: <%s>", line);

2452 /*
2453 * The first (and probably only) field in the line is the hex
2454 * length of the chunk.
2455 */
2456 ptr = line;
2457 value = 0;
2458 while (*ptr != ’\0’ && (i = hexdigit(*ptr)) >= 0) {
2459 value = (value << 4) + i;
2460 ptr ++;
2461 }

2463 return (value);
2464 }

2466 /*
2467 * init_bread - Initialize the counters used to read message bodies.
2468 *
2469 * Arguments:
2470 * c_id - Structure describing the connection in question.
2471 *
2472 * Returns:
2473 * 0 - Success
2474 * -1 - Error occurred. The error information is in the error stack.
2475 *
2476 * This routine will determine whether the message body being received is
2477 * chunked or non-chunked. Once determined, the counters used to read
2478 * message bodies will be initialized.
2479 */
2480 static int
2481 init_bread(http_conn_t *c_id)
2482 {
2483 char *hdr;
2484 char *ptr;
2485 boolean_t sized = B_FALSE;

2487 /*
2488 * Assume non-chunked reads until proven otherwise.
2489 */
2490 c_id->is_chunked = B_FALSE;
2491 c_id->is_firstchunk = B_FALSE;
2492 hdr = http_get_header_value(c_id, "Content-Length");
2493 if (hdr != NULL) {
2494 c_id->body_size = strtol(hdr, NULL, 10);
2495 if (c_id->body_size == 0 && errno != 0) {
2496 free(hdr);
2497 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_BADSIZE);
2498 return (-1);
2499 }
2500 free(hdr);
2501 sized = B_TRUE;
2502 }

new/usr/src/common/net/wanboot/boot_http.c 39

2504 /*
2505 * If size was not determined above, then see if this is a
2506 * chunked message. Keep in mind that the first chunk size is
2507 * "special".
2508 */
2509 if (!sized) {
2510 hdr = http_get_header_value(c_id, "Transfer-Encoding");
2511 if (hdr != NULL) {
2512 ptr = eat_ws(hdr);
2513 if (startswith((const char **)&ptr, "chunked;") ||
2514 strcasecmp(ptr, "chunked") == 0) {
2515 c_id->is_firstchunk = B_TRUE;
2516 c_id->is_chunked = B_TRUE;
2517 }
2518 free(hdr);
2519 if (c_id->is_chunked) {
2520 c_id->body_size = get_chunk_header(c_id);
2521 if (c_id->body_size == -1) {
2522 /*
2523 * Error stack was already set at a
2524 * lower level.
2525 */
2526 return (-1);
2527 }
2528 sized = B_TRUE;
2529 }
2530 }
2531 }

2533 /*
2534 * Well, isn’t this a fine predicament? It wasn’t chunked or
2535 * non-chunked as far as we can tell.
2536 */
2537 if (!sized) {
2538 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_BADSIZE);
2539 return (-1);
2540 }

2542 c_id->body_read = 0;
2543 c_id->body_size_tot = c_id->body_size;
2544 c_id->body_read_tot = 0;

2546 return (0);
2547 }

2549 /*
2550 * get_msgcnt - Get the number of bytes left in the message body or chunk.
2551 *
2552 * Arguments:
2553 * c_id - Structure describing the connection in question.
2554 * msgcnt - Where to store the message count.
2555 *
2556 * Returns:
2557 * 0 - Success
2558 * -1 - Error occurred. The error information is in the error stack.
2559 *
2560 * Note that if the message being read is not chunked, then the byte count
2561 * is simply the message size minus the bytes read thus far. In the case of
2562 * chunked messages, the byte count returned will be the number of bytes
2563 * left in the chunk. If the current chunk has been exhausted, then this
2564 * routine will determine the size of the next chunk. When the next chunk
2565 * size is zero, the message has been read in its entirety.
2566 */
2567 static int
2568 get_msgcnt(http_conn_t *c_id, ssize_t *msgcnt)
2569 {

new/usr/src/common/net/wanboot/boot_http.c 40

2570 /*
2571 * If there are more bytes in the message, then return.
2572 */
2573 *msgcnt = c_id->body_size - c_id->body_read;
2574 if (*msgcnt != 0) {
2575 return (0);
2576 }
2577 /*
2578 * If this is not a chunked message and the body has been
2579 * read, then we’re done.
2580 */
2581 if (!c_id->is_chunked) {
2582 return (0);
2583 }

2585 /*
2586 * We’re looking at a chunked message whose immediate
2587 * chunk has been totally processed. See if there is
2588 * another chunk.
2589 */
2590 c_id->body_size = get_chunk_header(c_id);
2591 if (c_id->body_size == -1) {
2592 /*
2593 * Error stack was already set at a
2594 * lower level.
2595 */
2596 return (-1);
2597 }

2599 /*
2600 * No bytes of this chunk have been processed yet.
2601 */
2602 c_id->body_read = 0;

2604 /*
2605 * A zero length chunk signals the end of the
2606 * message body and chunking.
2607 */
2608 if (c_id->body_size == 0) {
2609 c_id->is_chunked = B_FALSE;
2610 return (0);
2611 }

2613 /*
2614 * There is another chunk.
2615 */
2616 c_id->body_size_tot += c_id->body_size;
2617 *msgcnt = c_id->body_size - c_id->body_read;

2619 return (0);
2620 }

2622 /*
2623 * getaline - Get lines of data from the HTTP response, up to ’len’ bytes.
2624 * NOTE: the line will not end with a NULL if all ’len’ bytes
2625 * were read.
2626 *
2627 * Arguments:
2628 * c_id - Structure describing the connection in question.
2629 * line - Where to store the data.
2630 * len - Maximum number of bytes in the line.
2631 * bread - TRUE if the lines are part of the message body.
2632 *
2633 * Returns:
2634 * >=0 - The number of bytes successfully read.
2635 * <0 - An error occurred. This is (the number of bytes gotten + 1),

new/usr/src/common/net/wanboot/boot_http.c 41

2636 * negated. In other words, if ’n’ bytes were read and then an
2637 * error occurred, this will return (-(n+1)). So zero bytes read
2638 * and then an error occurs, this will return -1. If 1 bytes
2639 * was read, it will return -2, etc.
2640 *
2641 * Specifics of the error can be gotten using http_get_lasterr();
2642 *
2643 * Note that I/O errors are put into the error stack by http_srv_recv().1
2644 */
2645 static int
2646 getaline(http_conn_t *c_id, char *line, int len, boolean_t bread)
2647 {
2648 int i = 0;
2649 ssize_t msgcnt = 0;
2650 ssize_t cnt;

2652 while (i < len) {
2653 /*
2654 * Special processing required for message body reads.
2655 */
2656 if (bread) {
2657 /*
2658 * See if there is another chunk. Obviously, in the
2659 * case of non-chunked messages, there won’t be.
2660 * But in either case, chunked or not, if msgcnt
2661 * is still zero after the call to get_msgcnt(),
2662 * then we’re done.
2663 */
2664 if (msgcnt == 0) {
2665 if (get_msgcnt(c_id, &msgcnt) == -1) {
2666 return (-(i+1));
2667 }
2668 if (msgcnt == 0) {
2669 break;
2670 }
2671 }
2672 cnt = MIN(msgcnt, sizeof (c_id->inbuf.buf));
2673 } else {
2674 cnt = sizeof (c_id->inbuf.buf);
2675 }

2677 /* read more data if buffer empty */
2678 if (c_id->inbuf.i == c_id->inbuf.n) {
2679 c_id->inbuf.i = 0;
2680 c_id->inbuf.n = http_srv_recv(c_id, c_id->inbuf.buf,
2681 cnt);
2682 if (c_id->inbuf.n == 0) {
2683 return (i);
2684 }
2685 if (c_id->inbuf.n < 0) {
2686 return (-(i+1));
2687 }
2688 }
2689 /* skip CR */
2690 if (c_id->inbuf.buf[c_id->inbuf.i] == ’\r’) {
2691 INC_BREAD_CNT(bread, msgcnt);
2692 c_id->inbuf.i++;
2693 continue;
2694 }
2695 if (c_id->inbuf.buf[c_id->inbuf.i] == ’\n’) {
2696 INC_BREAD_CNT(bread, msgcnt);
2697 c_id->inbuf.i++;
2698 line[i] = ’\0’;
2699 return (i);
2700 }
2701 /* copy buf from internal buffer */

new/usr/src/common/net/wanboot/boot_http.c 42

2702 INC_BREAD_CNT(bread, msgcnt);
2703 line[i++] = c_id->inbuf.buf[c_id->inbuf.i++];
2704 }
2705 return (i);
2706 }

2708 /*
2709 * getbytes - Get a block from the HTTP response. Used for the HTTP body.
2710 *
2711 * Arguments:
2712 * c_id - Structure describing the connection in question.
2713 * line - Where to store the data.
2714 * len - Maximum number of bytes in the block.
2715 *
2716 * Returns:
2717 * >=0 - The number of bytes successfully read.
2718 * <0 - An error occurred. This is (the number of bytes gotten + 1),
2719 * negated. In other words, if ’n’ bytes were read and then an
2720 * error occurred, this will return (-(n+1)). So zero bytes read
2721 * and then an error occurs, this will return -1. If 1 bytes
2722 * was read, it will return -2, etc.
2723 *
2724 * Specifics of the error can be gotten using http_get_lasterr();
2725 *
2726 * Note that all reads performed here assume that a message body is being
2727 * read. If this changes in the future, then the logic should more closely
2728 * resemble getaline().
2729 *
2730 * Note that I/O errors are put into the error stack by http_srv_recv().
2731 */
2732 static int
2733 getbytes(http_conn_t *c_id, char *line, int len)
2734 {
2735 int i = 0;
2736 ssize_t msgcnt = 0;
2737 ssize_t cnt;
2738 int nbytes;

2740 while (i < len) {
2741 /*
2742 * See if there is another chunk. Obviously, in the
2743 * case of non-chunked messages, there won’t be.
2744 * But in either case, chunked or not, if msgcnt
2745 * is still zero after the call to get_msgcnt(), then
2746 * we’re done.
2747 */
2748 if (msgcnt == 0) {
2749 if (get_msgcnt(c_id, &msgcnt) == -1) {
2750 return (-(i+1));
2751 }
2752 if (msgcnt == 0) {
2753 break;
2754 }
2755 }

2757 cnt = MIN(msgcnt, len - i);

2759 if (c_id->inbuf.n != c_id->inbuf.i) {
2760 nbytes = (int)MIN(cnt, c_id->inbuf.n - c_id->inbuf.i);
2761 (void) memcpy(line, &c_id->inbuf.buf[c_id->inbuf.i],
2762 nbytes);
2763 c_id->inbuf.i += nbytes;
2764 } else {
2765 nbytes = http_srv_recv(c_id, line, cnt);
2766 if (nbytes == 0) {
2767 return (i);

new/usr/src/common/net/wanboot/boot_http.c 43

2768 }
2769 if (nbytes < 0) {
2770 return (-(i+1));
2771 }
2772 }

2774 i += nbytes;
2775 line += nbytes;
2776 msgcnt -= nbytes;
2777 c_id->body_read += nbytes;
2778 c_id->body_read_tot += nbytes;
2779 }

2781 return (i);
2782 }

2784 static int
2785 http_srv_send(http_conn_t *c_id, const void *buf, size_t nbyte)
2786 {
2787 int retval;

2789 if (c_id->ssl != NULL) {
2790 if ((retval = SSL_write(c_id->ssl, buf, nbyte)) <= 0) {
2791 handle_ssl_error(c_id, retval);
2792 }
2793 return (retval);
2794 } else {
2795 retval = socket_write(c_id->fd, buf, nbyte, &c_id->host_addr);
2796 if (retval < 0) {
2797 SET_ERR(c_id, ERRSRC_SYSTEM, errno);
2798 return (-1);
2799 }
2800 return (retval);
2801 }
2802 }

2804 static int
2805 http_srv_recv(http_conn_t *c_id, void *buf, size_t nbyte)
2806 {
2807 int retval;

2809 if (c_id->ssl != NULL) {
2810 if ((retval = SSL_read(c_id->ssl, buf, nbyte)) <= 0) {
2811 handle_ssl_error(c_id, retval);
2812 }
2813 return (retval);
2814 } else {
2815 retval = socket_read(c_id->fd, buf, nbyte, c_id->read_timeout);
2816 if (retval < 0) {
2817 SET_ERR(c_id, ERRSRC_SYSTEM, errno);
2818 return (-1);
2819 }
2820 return (retval);
2821 }
2822 }

2824 static boolean_t
2825 http_check_conn(http_conn_t *c_id)
2826 {
2827 early_err = 0;
2828 if (c_id == NULL || c_id->signature != HTTP_CONN_INFO) {
2829 early_err = EHTTP_BADARG;
2830 return (B_FALSE);
2831 }
2832 RESET_ERR(c_id);
2833 return (B_TRUE);

new/usr/src/common/net/wanboot/boot_http.c 44

2834 }

2836 static void
2837 handle_ssl_error(http_conn_t *c_id, int retval)
2838 {
2839 ulong_t err;

2841 err = SSL_get_error(c_id->ssl, retval);

2843 switch (err) {
2844 case SSL_ERROR_NONE:
2845 return;

2847 case SSL_ERROR_ZERO_RETURN:
2848 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_CONCLOSED);
2849 return;

2851 case SSL_ERROR_WANT_READ:
2852 case SSL_ERROR_WANT_WRITE:
2853 case SSL_ERROR_WANT_CONNECT:
2854 case SSL_ERROR_WANT_X509_LOOKUP:
2855 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_UNEXPECTED);
2856 return;

2858 case SSL_ERROR_SYSCALL:
2859 err = ERR_get_error();
2860 if (err == 0)
2861 SET_ERR(c_id, ERRSRC_LIBHTTP, EHTTP_EOFERR);
2862 else if (err == (ulong_t)-1)
2863 SET_ERR(c_id, ERRSRC_SYSTEM, errno);
2864 else {
2865 SET_ERR(c_id, ERRSRC_LIBSSL, err);
2866 while ((err = ERR_get_error()) != 0)
2867 SET_ERR(c_id, ERRSRC_LIBSSL, err);
2868 }
2869 return;

2871 case SSL_ERROR_SSL:
2872 while ((err = ERR_get_error()) != 0) {
2873 SET_ERR(c_id, ERRSRC_LIBSSL, err);
2874 }
2875 return;
2876 }
2877 }

2879 static int
2880 count_digits(int value)
2881 {
2882 int count = 1;

2884 if (value < 0) {
2885 count++;
2886 value = -value;
2887 }

2889 while (value > 9) {
2890 value /= 10;
2891 count++;
2892 }
2893 return (count);
2894 }

2896 static int
2897 hexdigit(char ch)
2898 {
2899 if (ch >= ’0’ && ch <= ’9’)

new/usr/src/common/net/wanboot/boot_http.c 45

2900 return (ch - ’0’);
2901 if (ch >= ’A’ && ch <= ’F’)
2902 return (ch - ’A’ + 10);
2903 if (ch >= ’a’ && ch <= ’f’)
2904 return (ch - ’a’ + 10);
2905 return (-1);
2906 }

2908 static char *
2909 eat_ws(const char *buf)
2910 {
2911 char *ptr = (char *)buf;

2913 while (isspace(*ptr))
2914 ptr++;

2916 return (ptr);
2917 }

2919 static boolean_t
2920 startswith(const char **strp, const char *starts)
2921 {
2922 int len = strlen(starts);

2924 if (strncasecmp(*strp, starts, len) == 0) {
2925 *strp += len;
2926 return (B_TRUE);
2927 }
2928 return (B_FALSE);
2929 }

new/usr/src/lib/Makefile 1

**
 13542 Fri May 30 18:31:12 2014
new/usr/src/lib/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 # Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012 by Delphix. All rights reserved.
25 # Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 # Copyright (c) 2013 Gary Mills

28 include ../Makefile.master

30 # Note that libcurses installs commands along with its library.
31 # This is a minor bug which probably should be fixed.
32 # Note also that a few extra libraries are kept in cmd source.
33 #
34 # Certain libraries are linked with, hence depend on, other libraries.
35 #
36 # Although we have historically used .WAIT to express dependencies, it
37 # reduces the amount of parallelism and thus lengthens the time it
38 # takes to build the libraries. Thus, we now require that any new
39 # libraries explicitly call out their dependencies. Eventually, all
40 # the library dependencies will be called out explicitly. See
41 # "Library interdependencies" near the end of this file.
42 #
43 # Aside from explicit dependencies (and legacy .WAITs), all libraries
44 # are built in parallel.
45 #
46 .PARALLEL:

48 SUBDIRS= \
49 common .WAIT \
50 ../cmd/sgs/libconv \
51 ../cmd/sgs/libdl .WAIT

53 SUBDIRS += \
54 libc .WAIT \
55 ../cmd/sgs/libelf .WAIT \
56 c_synonyms \
57 libmd \
58 libmd5 \
59 librsm \
60 libmp .WAIT \
61 libnsl \

new/usr/src/lib/Makefile 2

62 libsecdb .WAIT \
63 librpcsvc \
64 libsocket .WAIT \
65 libsctp \
66 libsip \
67 libcommputil \
68 libresolv \
69 libresolv2 .WAIT \
70 libw .WAIT \
71 libintl .WAIT \
72 ../cmd/sgs/librtld_db \
73 libaio \
74 libast \
75 libdll \
76 libcmd \
77 libshell \
78 libsum \
79 librt \
80 libadm \
81 libctf \
82 libdtrace \
83 libdtrace_jni \
84 libcurses \
85 libtermcap \
86 libgen \
87 libgss \
88 libpam \
89 libuuid \
90 libthread \
91 libpthread .WAIT \
92 libslp \
93 libbsdmalloc \
94 libdoor \
95 libdevinfo \
96 libdladm \
97 libdlpi \
98 libeti \
99 libcrypt \
100 libdns_sd \
101 libefi \
102 libfstyp \
103 libwanboot \
104 libwanbootutil \
105 libcryptoutil \
106 libinetutil \
107 libipadm \
108 libipd \
109 libipmp \
110 libiscsit \
111 libkmf \
112 libkstat \
113 libkvm \
114 liblm \
115 libmalloc \
116 libmapmalloc \
117 libmtmalloc \
118 libnls \
119 libnwam \
120 libsmbios \
121 libtecla \
122 libumem \
123 libnvpair .WAIT \
124 libexacct \
125 libsasl \
126 libldap5 \
127 libsldap .WAIT \

new/usr/src/lib/Makefile 3

128 libbsm \
129 libsys \
130 libsysevent \
131 libnisdb \
132 libpool \
133 libpp \
134 libproc \
135 libproject \
136 libsendfile \
137 nametoaddr \
138 ncad_addr \
139 hbaapi \
140 smhba \
141 sun_fc \
142 sun_sas \
143 gss_mechs/mech_krb5 .WAIT \
144 libkrb5 .WAIT \
145 krb5 .WAIT \
146 libsmbfs \
147 libfcoe \
148 libsrpt \
149 libstmf \
150 libstmfproxy \
151 libnsctl \
152 libunistat \
153 libdscfg \
154 librdc \
155 libinstzones \
156 libpkg \
157 libpcidb

159 SUBDIRS += \
160 passwdutil \
161 pam_modules \
162 crypt_modules \
163 libadt_jni \
164 abi \
165 auditd_plugins \
166 libvolmgt \
167 libdevice \
168 libdevid \
169 libdhcpsvc \
170 libc_db \
171 libndmp \
172 libsec \
173 libtnfprobe \
174 libtnf \
175 libtnfctl \
176 libdhcpagent \
177 libdhcpdu \
178 libdhcputil \
179 libxnet \
180 libipsecutil \
181 openssl \
182 nsswitch \
183 print \
184 libuutil \
185 libscf \
186 libinetsvc \
187 librestart \
188 libsched \
189 libelfsign \
190 pkcs11 .WAIT \
191 libpctx .WAIT \
192 libcpc \
193 getloginx \

new/usr/src/lib/Makefile 4

194 watchmalloc \
195 extendedFILE \
196 madv \
197 mpss \
198 libdisasm \
199 libwrap \
200 libxcurses \
201 libxcurses2 \
202 libbrand .WAIT \
203 libzonecfg \
204 libzoneinfo \
205 libzonestat \
206 libtsnet \
207 libtsol \
208 gss_mechs/mech_spnego \
209 gss_mechs/mech_dummy \
210 gss_mechs/mech_dh \
211 rpcsec_gss \
212 libraidcfg .WAIT \
213 librcm .WAIT \
214 libcfgadm .WAIT \
215 libpicl .WAIT \
216 libpicltree .WAIT \
217 raidcfg_plugins \
218 cfgadm_plugins \
219 libmail \
220 lvm \
221 libsmedia \
222 libipp \
223 libdiskmgt \
224 liblgrp \
225 libfsmgt \
226 fm \
227 libavl \
228 libcmdutils \
229 libcontract \
230 ../cmd/sendmail/libmilter \
231 sasl_plugins \
232 udapl \
233 libzpool \
234 libzfs_core \
235 libzfs \
236 libbe \
237 pylibbe \
238 libzfs_jni \
239 pyzfs \
240 pysolaris \
241 libmapid \
242 brand \
243 policykit \
244 hal \
245 libshare \
246 libsqlite \
247 libidmap \
248 libadutils \
249 libipmi \
250 libexacct/demo \
251 libvrrpadm \
252 libvscan \
253 libgrubmgmt \
254 smbsrv \
255 libilb \
256 scsi \
257 libima \
258 libsun_ima \
259 mpapi \

new/usr/src/lib/Makefile 5

260 librstp \
261 libreparse \
262 libhotplug \
263 libfruutils .WAIT \
264 libfru \
265 $($(MACH)_SUBDIRS)

267 i386_SUBDIRS= \
268 libntfs \
269 libparted \
270 libfdisk \
271 libsaveargs

273 sparc_SUBDIRS= .WAIT \
274 efcode \
275 libds \
276 libdscp \
277 libprtdiag .WAIT \
278 libprtdiag_psr \
279 libpri \
280 librsc \
281 storage \
282 libpcp \
283 libtsalarm \
284 libv12n

286 FM_sparc_DEPLIBS= libpri

288 fm: \
289 libexacct \
290 libipmi \
291 libzfs \
292 scsi \
293 $(FM_$(MACH)_DEPLIBS)

295 #
296 # Create a special version of $(SUBDIRS) with no .WAIT’s, for use with the
297 # clean and clobber targets (for more information, see those targets, below).
298 #
299 NOWAIT_SUBDIRS= $(SUBDIRS:.WAIT=)

301 DCSUBDIRS = \
302 lvm

304 MSGSUBDIRS= \
305 abi \
306 auditd_plugins \
307 brand \
308 cfgadm_plugins \
309 gss_mechs/mech_dh \
310 gss_mechs/mech_krb5 \
311 krb5 \
312 libast \
313 libbsm \
314 libc \
315 libcfgadm \
316 libcmd \
317 libcontract \
318 libcurses \
319 libdhcpsvc \
320 libdhcputil \
321 libipsecutil \
322 libdiskmgt \
323 libdladm \
324 libdll \
325 libgrubmgmt \

new/usr/src/lib/Makefile 6

326 libgss \
327 libidmap \
328 libipmp \
329 libilb \
330 libinetutil \
331 libinstzones \
332 libipadm \
333 libnsl \
334 libnwam \
335 libpam \
336 libpicl \
337 libpool \
338 libpkg \
339 libpp \
340 libscf \
341 libsasl \
342 libldap5 \
343 libsecdb \
344 libshare \
345 libshell \
346 libsldap \
347 libslp \
348 libsmbfs \
349 libsmedia \
350 libsum \
351 libtsol \
352 libuutil \
353 libvrrpadm \
354 libvscan \
355 libwanboot \
356 libwanbootutil \
357 libzfs \
358 libzonecfg \
359 lvm \
360 madv \
361 mpss \
362 pam_modules \
363 pyzfs \
364 pysolaris \
365 rpcsec_gss \
366 libreparse
367 MSGSUBDIRS += \
368 $($(MACH)_MSGSUBDIRS)

370 sparc_MSGSUBDIRS= \
371 libprtdiag \
372 libprtdiag_psr

374 i386_MSGSUBDIRS= libfdisk

376 HDRSUBDIRS= \
377 auditd_plugins \
378 libast \
379 libbrand \
380 libbsm \
381 libc \
382 libcmd \
383 libcmdutils \
384 libcommputil \
385 libcontract \
386 libcpc \
387 libctf \
388 libcurses \
389 libtermcap \
390 libcryptoutil \
391 libdevice \

new/usr/src/lib/Makefile 7

392 libdevid \
393 libdevinfo \
394 libdiskmgt \
395 libdladm \
396 libdll \
397 libdlpi \
398 libdhcpagent \
399 libdhcpsvc \
400 libdhcputil \
401 libdisasm \
402 libdns_sd \
403 libdscfg \
404 libdtrace \
405 libdtrace_jni \
406 libelfsign \
407 libeti \
408 libfru \
409 libfstyp \
410 libgen \
411 libipadm \
412 libipd \
413 libipsecutil \
414 libinetsvc \
415 libinetutil \
416 libinstzones \
417 libipmi \
418 libipmp \
419 libipp \
420 libiscsit \
421 libkstat \
422 libkvm \
423 libmail \
424 libmd \
425 libmtmalloc \
426 libndmp \
427 libnvpair \
428 libnsctl \
429 libnsl \
430 libnwam \
431 libpam \
432 libpcidb \
433 libpctx \
434 libpicl \
435 libpicltree \
436 libpool \
437 libpp \
438 libproc \
439 libraidcfg \
440 librcm \
441 librdc \
442 libscf \
443 libsip \
444 libsmbios \
445 librestart \
446 librpcsvc \
447 librsm \
448 librstp \
449 libsasl \
450 libsec \
451 libshell \
452 libslp \
453 libsmedia \
454 libsocket \
455 libsqlite \
456 libfcoe \
457 libsrpt \

new/usr/src/lib/Makefile 8

458 libstmf \
459 libstmfproxy \
460 libsum \
461 libsysevent \
462 libtecla \
463 libtnf \
464 libtnfctl \
465 libtnfprobe \
466 libtsnet \
467 libtsol \
468 libvrrpadm \
469 libvolmgt \
470 libumem \
471 libunistat \
472 libuutil \
473 libwanboot \
474 libwanbootutil \
475 libwrap \
476 libxcurses2 \
477 libzfs \
478 libzfs_core \
479 libzfs_jni \
480 libzoneinfo \
481 libzonestat \
482 hal \
483 policykit \
484 lvm \
485 pkcs11 \
486 passwdutil \
487 ../cmd/sendmail/libmilter \
488 fm \
489 udapl \
490 libmapid \
491 libkrb5 \
492 libsmbfs \
493 libshare \
494 libidmap \
495 libvscan \
496 libgrubmgmt \
497 smbsrv \
498 libilb \
499 scsi \
500 hbaapi \
501 smhba \
502 libima \
503 libsun_ima \
504 mpapi \
505 libreparse \
506 $($(MACH)_HDRSUBDIRS)

508 i386_HDRSUBDIRS= \
509 libparted \
510 libfdisk \
511 libsaveargs

513 sparc_HDRSUBDIRS= \
514 libds \
515 libdscp \
516 libpri \
517 libv12n \
518 storage

520 all := TARGET= all
521 check := TARGET= check
522 clean := TARGET= clean
523 clobber := TARGET= clobber

new/usr/src/lib/Makefile 9

524 install := TARGET= install
525 install_h := TARGET= install_h
526 lint := TARGET= lint
527 _dc := TARGET= _dc
528 _msg := TARGET= _msg

530 .KEEP_STATE:

532 #
533 # For the all and install targets, we clearly must respect library
534 # dependencies so that the libraries link correctly. However, for
535 # the remaining targets (check, clean, clobber, install_h, lint, _dc
536 # and _msg), libraries do not have any dependencies on one another
537 # and thus respecting dependencies just slows down the build.
538 # As such, for these rules, we use pattern replacement to explicitly
539 # avoid triggering the dependency information. Note that for clean,
540 # clobber and lint, we must use $(NOWAIT_SUBDIRS) rather than
541 # $(SUBDIRS), to prevent ‘.WAIT’ from expanding to ‘.WAIT-nodepend’.
542 #

544 all: $(SUBDIRS)

546 install: $(SUBDIRS) .WAIT install_extra

548 # extra libraries kept in other source areas
549 install_extra:
550 @cd ../cmd/sgs; pwd; $(MAKE) install_lib
551 @pwd

553 clean clobber lint: $(NOWAIT_SUBDIRS:%=%-nodepend)

555 install_h check: $(HDRSUBDIRS:%=%-nodepend)

557 _msg: $(MSGSUBDIRS:%=%-nodepend) .WAIT _dc

559 _dc: $(DCSUBDIRS:%=%-nodepend)

561 #
562 # Library interdependencies are called out explicitly here
563 #
564 auditd_plugins: libbsm libnsl libsecdb
565 gss_mechs/mech_krb5: libgss libnsl libsocket libresolv pkcs11
566 krb5: openssl
567 libadt_jni: libbsm
568 libast: libsocket
569 libadutils: libldap5 libresolv libsocket libnsl
570 nsswitch: libadutils libidmap
571 libbe: libzfs
572 libbsm: libtsol
573 libcmd: libsum libast libsocket libnsl
574 libcmdutils: libavl
575 libcontract: libnvpair
576 libdevid: libdevinfo
577 libdevinfo: libnvpair libsec
578 libdhcpagent: libsocket libdhcputil libuuid libdlpi libcontract
579 libdhcpsvc: libinetutil
580 libdhcputil: libnsl libgen libinetutil libdlpi
581 libdladm: libdevinfo libinetutil libsocket libscf librcm libnvpair \
582 libexacct libnsl libkstat libcurses
583 libdll: libast
584 libdlpi: libinetutil libdladm
585 libds: libsysevent
586 libdscfg: libnsctl libunistat libsocket libnsl
587 libdtrace: libproc libgen libctf
588 libdtrace_jni: libuutil libdtrace
589 libefi: libuuid

new/usr/src/lib/Makefile 10

590 libfstyp: libnvpair
591 libelfsign: libcryptoutil libkmf
592 libidmap: libadutils libldap5 libavl libsldap libuutil
593 libipadm: libnsl libinetutil libsocket libdlpi libnvpair libdhcpagent \
594 libdladm libsecdb
595 libiscsit: libc libnvpair libstmf libuuid libnsl
596 libkmf: libcryptoutil pkcs11 openssl
597 libnsl: libmd5
598 libmapid: libresolv
599 librdc: libsocket libnsl libnsctl libunistat libdscfg
600 libuuid: libdlpi
601 libinetutil: libsocket
602 libipsecutil: libtecla libsocket
603 libinstzones: libzonecfg libcontract
604 libpkg: libwanboot libscf libadm openssl
605 libnwam: libscf
606 libsecdb: libnsl
607 libsasl: libgss libsocket pkcs11 libmd
608 sasl_plugins: pkcs11 libgss libsocket libsasl
609 libsctp: libsocket
610 libshell: libast libcmd libdll libsocket libsecdb
611 libsip: libmd5
612 libsmbfs: libcmdutils libsocket libnsl libkrb5
613 libsocket: libnsl
614 libstmfproxy: libstmf libsocket libnsl libpthread
615 libsum: libast
616 libsysevent: libsecdb
617 libldap5: libsasl libsocket libnsl libmd
618 libsldap: libldap5 libtsol libnsl libc libscf libresolv
619 libpool: libnvpair libexacct
620 libpp: libast
621 libzonecfg: libc libsocket libnsl libuuid libnvpair libsysevent libsec \
622 libbrand libpool libscf
623 libproc: ../cmd/sgs/librtld_db ../cmd/sgs/libelf libctf libsaveargs
624 libproject: libpool libproc libsecdb
625 libtermcap: libcurses
626 libtsnet: libnsl libtsol libsecdb
627 libwrap: libnsl libsocket
628 libwanboot: libnvpair libresolv libnsl libsocket libdevinfo libinetutil \
629 libdhcputil openssl
630 libwanbootutil: libnsl
631 pam_modules: libproject passwdutil smbsrv
632 libscf: libuutil libmd libgen libsmbios libnsl
633 libinetsvc: libscf
634 librestart: libuutil libscf
635 libsaveargs: libdisasm
636 ../cmd/sgs/libdl: ../cmd/sgs/libconv
637 ../cmd/sgs/libelf: ../cmd/sgs/libconv
638 pkcs11: libcryptoutil openssl
639 print: libldap5
640 udapl/udapl_tavor: udapl/libdat
641 libzfs: libdevid libgen libnvpair libuutil \
642 libadm libavl libefi libidmap libmd libzfs_core
643 libzfs_core: libnvpair
644 libzfs_jni: libdiskmgt libnvpair libzfs
645 libzpool: libavl libumem libnvpair libcmdutils
646 libsec: libavl libidmap
647 brand: libc libsocket
648 libshare: libscf libzfs libuuid libfsmgt libsecdb libumem libsmbfs
649 libexacct/demo: libexacct libproject libsocket libnsl
650 libtsalarm: libpcp
651 smbsrv: libsocket libnsl libmd libxnet libpthread librt \
652 libshare libidmap pkcs11 libsqlite libcryptoutil \
653 libreparse libcmdutils
654 libv12n: libds libuuid
655 libvrrpadm: libsocket libdladm libscf

new/usr/src/lib/Makefile 11

656 libvscan: libscf
657 libfru: libfruutils
658 scsi: libnvpair libfru
659 mpapi: libpthread libdevinfo libsysevent libnvpair
660 sun_fc: libdevinfo libsysevent libnvpair
661 libsun_ima: libdevinfo libsysevent libnsl
662 sun_sas: libdevinfo libsysevent libnvpair libkstat libdevid
663 libgrubmgmt: libdevinfo libzfs libfstyp
664 pylibbe: libbe libzfs
665 pyzfs: libnvpair libzfs
666 pysolaris: libsec libidmap
667 libreparse: libnvpair
668 libhotplug: libnvpair
669 cfgadm_plugins: libhotplug
670 libilb: libsocket
671 openssl: libnsl libc libsocket
672 $(INTEL_BUILD)libdiskmgt:libfdisk

674 #
675 # The reason this rule checks for the existence of the
676 # Makefile is that some of the directories do not exist
677 # in certain situations (e.g., exportable source builds,
678 # OpenSolaris).
679 #
680 $(SUBDIRS): FRC
681 @if [-f $@/Makefile]; then \
682 cd $@; pwd; $(MAKE) $(TARGET); \
683 else \
684 true; \
685 fi

687 $(SUBDIRS:%=%-nodepend):
688 @if [-f $(@:%-nodepend=%)/Makefile]; then \
689 cd $(@:%-nodepend=%); pwd; $(MAKE) $(TARGET); \
690 else \
691 true; \
692 fi

694 FRC:

new/usr/src/lib/krb5/plugins/preauth/pkinit/Makefile.com 1

**
 2278 Fri May 30 18:31:12 2014
new/usr/src/lib/krb5/plugins/preauth/pkinit/Makefile.com
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #

27 LIBRARY= pkinit.a
28 VERS= .1

30 PKINIT_OBJS= \
31 pkinit_accessor.o \
32 pkinit_clnt.o \
33 pkinit_crypto_openssl.o \
34 pkinit_identity.o \
35 pkinit_lib.o \
36 pkinit_matching.o \
37 pkinit_profile.o \
38 pkinit_srv.o

41 OBJECTS= $(PKINIT_OBJS)

43 # include library definitions
44 include $(SRC)/lib/krb5/Makefile.lib

46 SRCS= $(PKINIT_OBJS:%.o=../%.c)

48 LIBS= $(DYNLIB)

50 include $(SRC)/lib/gss_mechs/mech_krb5/Makefile.mech_krb5

52 POFILE = $(LIBRARY:%.a=%.po)
53 POFILES = generic.po

55 #override liblink
56 INS.liblink= -$(RM) $@; $(SYMLINK) $(LIBLINKS)$(VERS) $@

59 CPPFLAGS += -I$(SRC)/lib/krb5 \
60 -I$(SRC)/lib/krb5/kdb \
61 -I$(SRC)/lib/gss_mechs/mech_krb5/include \

new/usr/src/lib/krb5/plugins/preauth/pkinit/Makefile.com 2

62 -I$(SRC)/lib/gss_mechs/mech_krb5/krb5/os \
63 -I$(SRC)/lib/gss_mechs/mech_krb5/include/krb5 \
64 -I$(SRC)/uts/common/gssapi/include/ \
65 -I$(SRC)/uts/common/gssapi/mechs/krb5/include \
66 -I$(SRC)

68 CERRWARN += -_gcc=-Wno-uninitialized
69 CERRWARN += -_gcc=-Wno-unused-function

71 CFLAGS += $(CCVERBOSE) -I..
72 DYNFLAGS += $(KRUNPATH) $(KMECHLIB) -znodelete
73 LDLIBS += -L $(ROOTLIBDIR) -lsunw_crypto -lc

75 ROOTLIBDIR= $(ROOT)/usr/lib/krb5/plugins/preauth

77 $(ROOTLIBDIR):
78 $(INS.dir)

80 .KEEP_STATE:

82 all: $(LIBS)

84 lint: lintcheck

86 # include library targets
87 include $(SRC)/lib/krb5/Makefile.targ

89 FRC:

91 generic.po: FRC
92 $(RM) messages.po
93 $(XGETTEXT) $(XGETFLAGS) ‘$(GREP) -l gettext ../*.[ch]‘
94 $(SED) "/^domain/d" messages.po > $@
95 $(RM) messages.po

new/usr/src/lib/libkmf/plugins/kmf_openssl/Makefile.com 1

**
 1949 Fri May 30 18:31:12 2014
new/usr/src/lib/libkmf/plugins/kmf_openssl/Makefile.com
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # Makefile for KMF Plugins
25 #

27 LIBRARY= kmf_openssl.a
28 VERS= .1

30 OBJECTS= openssl_spi.o

32 include $(SRC)/lib/Makefile.lib

34 LIBLINKS= $(DYNLIB:.so.1=.so)
35 KMFINC= -I../../../include -I../../../ber_der/inc

37 BERLIB= -lkmf -lkmfberder
38 BERLIB64= $(BERLIB)

40 OPENSSLLIBS= $(BERLIB) -lsunw_crypto -lcryptoutil -lc
41 OPENSSLLIBS64= $(BERLIB64) -lsunw_crypto -lcryptoutil -lc

43 LINTSSLLIBS = $(BERLIB) -lcryptoutil -lc
44 LINTSSLLIBS64 = $(BERLIB64) -lcryptoutil -lc

46 SRCDIR= ../common
47 INCDIR= ../../include

49 CFLAGS += $(CCVERBOSE)
50 CPPFLAGS += -D_REENTRANT $(KMFINC) \
51 -I$(INCDIR) -I$(ADJUNCT_PROTO)/usr/include/libxml2

53 CERRWARN += -_gcc=-Wno-unused-label
54 CERRWARN += -_gcc=-Wno-unused-value
55 CERRWARN += -_gcc=-Wno-uninitialized

57 PICS= $(OBJECTS:%=pics/%)

59 lint:= OPENSSLLIBS= $(LINTSSLLIBS)
60 lint:= OPENSSLLIBS64= $(LINTSSLLIBS64)

new/usr/src/lib/libkmf/plugins/kmf_openssl/Makefile.com 2

62 LDLIBS32 += $(OPENSSLLIBS)

64 ROOTLIBDIR= $(ROOTFS_LIBDIR)/crypto
65 ROOTLIBDIR64= $(ROOTFS_LIBDIR)/crypto/$(MACH64)

67 .KEEP_STATE:

69 LIBS = $(DYNLIB)
70 all: $(DYNLIB) $(LINTLIB)

72 lint: lintcheck

74 FRC:

76 include $(SRC)/lib/Makefile.targ

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 1

**
 133380 Fri May 30 18:31:12 2014
new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
3 *
4 * Use is subject to license terms.
5 */
6 /*
7 * Copyright (c) 2012, OmniTI Computer Consulting, Inc. All rights reserved.
8 */
9 /*
10 * Written by Dr Stephen N Henson (shenson@bigfoot.com) for the OpenSSL
11 * project 2000.
12 */
13 /*
14 * ==
15 * Copyright (c) 2000-2004 The OpenSSL Project. All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
19 * are met:
20 *
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 *
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in
26 * the documentation and/or other materials provided with the
27 * distribution.
28 *
29 * 3. All advertising materials mentioning features or use of this
30 * software must display the following acknowledgment:
31 * "This product includes software developed by the OpenSSL Project
32 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
33 *
34 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
35 * endorse or promote products derived from this software without
36 * prior written permission. For written permission, please contact
37 * licensing@OpenSSL.org.
38 *
39 * 5. Products derived from this software may not be called "OpenSSL"
40 * nor may "OpenSSL" appear in their names without prior written
41 * permission of the OpenSSL Project.
42 *
43 * 6. Redistributions of any form whatsoever must retain the following
44 * acknowledgment:
45 * "This product includes software developed by the OpenSSL Project
46 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
49 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
52 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
54 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
55 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
57 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
59 * OF THE POSSIBILITY OF SUCH DAMAGE.
60 * ==
61 *

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 2

62 * This product includes cryptographic software written by Eric Young
63 * (eay@cryptsoft.com). This product includes software written by Tim
64 * Hudson (tjh@cryptsoft.com).
65 *
66 */

68 #include <stdlib.h>
69 #include <kmfapiP.h>
70 #include <ber_der.h>
71 #include <fcntl.h>
72 #include <sys/stat.h>
73 #include <dirent.h>
74 #include <cryptoutil.h>
75 #include <synch.h>
76 #include <thread.h>

78 /* OPENSSL related headers */
79 #include <openssl/bio.h>
80 #include <openssl/bn.h>
81 #include <openssl/asn1.h>
82 #include <openssl/err.h>
83 #include <openssl/bn.h>
84 #include <openssl/x509.h>
85 #include <openssl/rsa.h>
86 #include <openssl/dsa.h>
87 #include <openssl/x509v3.h>
88 #include <openssl/objects.h>
89 #include <openssl/pem.h>
90 #include <openssl/pkcs12.h>
91 #include <openssl/ocsp.h>
92 #include <openssl/des.h>
93 #include <openssl/rand.h>

95 #define PRINT_ANY_EXTENSION (\
96 KMF_X509_EXT_KEY_USAGE |\
97 KMF_X509_EXT_CERT_POLICIES |\
98 KMF_X509_EXT_SUBJALTNAME |\
99 KMF_X509_EXT_BASIC_CONSTRAINTS |\
100 KMF_X509_EXT_NAME_CONSTRAINTS |\
101 KMF_X509_EXT_POLICY_CONSTRAINTS |\
102 KMF_X509_EXT_EXT_KEY_USAGE |\
103 KMF_X509_EXT_INHIBIT_ANY_POLICY |\
104 KMF_X509_EXT_AUTH_KEY_ID |\
105 KMF_X509_EXT_SUBJ_KEY_ID |\
106 KMF_X509_EXT_POLICY_MAPPING)

108 static uchar_t P[] = { 0x00, 0x8d, 0xf2, 0xa4, 0x94, 0x49, 0x22, 0x76,
109 0xaa, 0x3d, 0x25, 0x75, 0x9b, 0xb0, 0x68, 0x69,
110 0xcb, 0xea, 0xc0, 0xd8, 0x3a, 0xfb, 0x8d, 0x0c,
111 0xf7, 0xcb, 0xb8, 0x32, 0x4f, 0x0d, 0x78, 0x82,
112 0xe5, 0xd0, 0x76, 0x2f, 0xc5, 0xb7, 0x21, 0x0e,
113 0xaf, 0xc2, 0xe9, 0xad, 0xac, 0x32, 0xab, 0x7a,
114 0xac, 0x49, 0x69, 0x3d, 0xfb, 0xf8, 0x37, 0x24,
115 0xc2, 0xec, 0x07, 0x36, 0xee, 0x31, 0xc8, 0x02,
116 0x91 };

118 static uchar_t Q[] = { 0x00, 0xc7, 0x73, 0x21, 0x8c, 0x73, 0x7e, 0xc8,
119 0xee, 0x99, 0x3b, 0x4f, 0x2d, 0xed, 0x30, 0xf4,
120 0x8e, 0xda, 0xce, 0x91, 0x5f };

122 static uchar_t G[] = { 0x00, 0x62, 0x6d, 0x02, 0x78, 0x39, 0xea, 0x0a,
123 0x13, 0x41, 0x31, 0x63, 0xa5, 0x5b, 0x4c, 0xb5,
124 0x00, 0x29, 0x9d, 0x55, 0x22, 0x95, 0x6c, 0xef,
125 0xcb, 0x3b, 0xff, 0x10, 0xf3, 0x99, 0xce, 0x2c,
126 0x2e, 0x71, 0xcb, 0x9d, 0xe5, 0xfa, 0x24, 0xba,
127 0xbf, 0x58, 0xe5, 0xb7, 0x95, 0x21, 0x92, 0x5c,

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 3

128 0x9c, 0xc4, 0x2e, 0x9f, 0x6f, 0x46, 0x4b, 0x08,
129 0x8c, 0xc5, 0x72, 0xaf, 0x53, 0xe6, 0xd7, 0x88,
130 0x02 };

132 #define SET_ERROR(h, c) h->lasterr.kstype = KMF_KEYSTORE_OPENSSL; \
133 h->lasterr.errcode = c;

135 #define SET_SYS_ERROR(h, c) h->lasterr.kstype = -1; h->lasterr.errcode = c;

137 /*
138 * Declare some new macros for managing stacks of EVP_PKEYS, similar to
139 * what wanboot did.
140 */
141 DECLARE_STACK_OF(EVP_PKEY)

143 #define sk_EVP_PKEY_new_null() SKM_sk_new_null(EVP_PKEY)
144 #define sk_EVP_PKEY_free(st) SKM_sk_free(EVP_PKEY, (st))
145 #define sk_EVP_PKEY_num(st) SKM_sk_num(EVP_PKEY, (st))
146 #define sk_EVP_PKEY_value(st, i) SKM_sk_value(EVP_PKEY, (st), (i))
147 #define sk_EVP_PKEY_push(st, val) SKM_sk_push(EVP_PKEY, (st), (val))
148 #define sk_EVP_PKEY_pop_free(st, free_func) SKM_sk_pop_free(EVP_PKEY, (st), \
149 (free_func))

151 mutex_t init_lock = DEFAULTMUTEX;
152 static int ssl_initialized = 0;
153 static BIO *bio_err = NULL;

155 static int
156 test_for_file(char *, mode_t);
157 static KMF_RETURN
158 openssl_parse_bag(PKCS12_SAFEBAG *, char *, int,
159 STACK_OF(EVP_PKEY) *, STACK_OF(X509) *);

161 static KMF_RETURN
162 local_export_pk12(KMF_HANDLE_T, KMF_CREDENTIAL *, int, KMF_X509_DER_CERT *,
163 int, KMF_KEY_HANDLE *, char *);

165 static KMF_RETURN set_pkey_attrib(EVP_PKEY *, ASN1_TYPE *, int);

167 static KMF_RETURN
168 extract_pem(KMF_HANDLE *, char *, char *, KMF_BIGINT *, char *,
169 CK_UTF8CHAR *, CK_ULONG, EVP_PKEY **, KMF_DATA **, int *);

171 static KMF_RETURN
172 kmf_load_cert(KMF_HANDLE *, char *, char *, KMF_BIGINT *, KMF_CERT_VALIDITY,
173 char *, KMF_DATA *);

175 static KMF_RETURN
176 load_certs(KMF_HANDLE *, char *, char *, KMF_BIGINT *, KMF_CERT_VALIDITY,
177 char *, KMF_DATA **, uint32_t *);

179 static KMF_RETURN
180 sslBN2KMFBN(BIGNUM *, KMF_BIGINT *);

182 static EVP_PKEY *
183 ImportRawRSAKey(KMF_RAW_RSA_KEY *);

185 static KMF_RETURN
186 convertToRawKey(EVP_PKEY *, KMF_RAW_KEY_DATA *);

188 KMF_RETURN
189 OpenSSL_FindCert(KMF_HANDLE_T, int, KMF_ATTRIBUTE *);

191 void
192 OpenSSL_FreeKMFCert(KMF_HANDLE_T, KMF_X509_DER_CERT *);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 4

194 KMF_RETURN
195 OpenSSL_StoreCert(KMF_HANDLE_T handle, int, KMF_ATTRIBUTE *);

197 KMF_RETURN
198 OpenSSL_DeleteCert(KMF_HANDLE_T handle, int, KMF_ATTRIBUTE *);

200 KMF_RETURN
201 OpenSSL_CreateKeypair(KMF_HANDLE_T, int, KMF_ATTRIBUTE *);

203 KMF_RETURN
204 OpenSSL_StoreKey(KMF_HANDLE_T, int, KMF_ATTRIBUTE *);

206 KMF_RETURN
207 OpenSSL_EncodePubKeyData(KMF_HANDLE_T, KMF_KEY_HANDLE *, KMF_DATA *);

209 KMF_RETURN
210 OpenSSL_SignData(KMF_HANDLE_T, KMF_KEY_HANDLE *, KMF_OID *,
211 KMF_DATA *, KMF_DATA *);

213 KMF_RETURN
214 OpenSSL_DeleteKey(KMF_HANDLE_T, int, KMF_ATTRIBUTE *);

216 KMF_RETURN
217 OpenSSL_ImportCRL(KMF_HANDLE_T, int, KMF_ATTRIBUTE *);

219 KMF_RETURN
220 OpenSSL_DeleteCRL(KMF_HANDLE_T, int, KMF_ATTRIBUTE *);

222 KMF_RETURN
223 OpenSSL_ListCRL(KMF_HANDLE_T, int, KMF_ATTRIBUTE *);

225 KMF_RETURN
226 OpenSSL_FindCertInCRL(KMF_HANDLE_T, int, KMF_ATTRIBUTE *);

228 KMF_RETURN
229 OpenSSL_CertGetPrintable(KMF_HANDLE_T, const KMF_DATA *,
230 KMF_PRINTABLE_ITEM, char *);

232 KMF_RETURN
233 OpenSSL_GetErrorString(KMF_HANDLE_T, char **);

235 KMF_RETURN
236 OpenSSL_FindPrikeyByCert(KMF_HANDLE_T, int, KMF_ATTRIBUTE *);

238 KMF_RETURN
239 OpenSSL_DecryptData(KMF_HANDLE_T, KMF_KEY_HANDLE *, KMF_OID *,
240 KMF_DATA *, KMF_DATA *);

242 KMF_RETURN
243 OpenSSL_CreateOCSPRequest(KMF_HANDLE_T, int, KMF_ATTRIBUTE *);

245 KMF_RETURN
246 OpenSSL_GetOCSPStatusForCert(KMF_HANDLE_T, int, KMF_ATTRIBUTE *);

248 KMF_RETURN
249 OpenSSL_FindKey(KMF_HANDLE_T, int, KMF_ATTRIBUTE *);

251 KMF_RETURN
252 OpenSSL_ExportPK12(KMF_HANDLE_T, int, KMF_ATTRIBUTE *);

254 KMF_RETURN
255 OpenSSL_CreateSymKey(KMF_HANDLE_T, int, KMF_ATTRIBUTE *);

257 KMF_RETURN
258 OpenSSL_GetSymKeyValue(KMF_HANDLE_T, KMF_KEY_HANDLE *, KMF_RAW_SYM_KEY *);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 5

260 KMF_RETURN
261 OpenSSL_VerifyCRLFile(KMF_HANDLE_T, char *, KMF_DATA *);

263 KMF_RETURN
264 OpenSSL_CheckCRLDate(KMF_HANDLE_T, char *);

266 static
267 KMF_PLUGIN_FUNCLIST openssl_plugin_table =
268 {
269 1, /* Version */
270 NULL, /* ConfigureKeystore */
271 OpenSSL_FindCert,
272 OpenSSL_FreeKMFCert,
273 OpenSSL_StoreCert,
274 NULL, /* ImportCert */
275 OpenSSL_ImportCRL,
276 OpenSSL_DeleteCert,
277 OpenSSL_DeleteCRL,
278 OpenSSL_CreateKeypair,
279 OpenSSL_FindKey,
280 OpenSSL_EncodePubKeyData,
281 OpenSSL_SignData,
282 OpenSSL_DeleteKey,
283 OpenSSL_ListCRL,
284 NULL, /* FindCRL */
285 OpenSSL_FindCertInCRL,
286 OpenSSL_GetErrorString,
287 OpenSSL_FindPrikeyByCert,
288 OpenSSL_DecryptData,
289 OpenSSL_ExportPK12,
290 OpenSSL_CreateSymKey,
291 OpenSSL_GetSymKeyValue,
292 NULL, /* SetTokenPin */
293 OpenSSL_StoreKey,
294 NULL /* Finalize */
295 };

297 static mutex_t *lock_cs;
298 static long *lock_count;

300 static void
301 /* ARGSUSED1 */
302 locking_cb(int mode, int type, char *file, int line)
303 {
304 if (mode & CRYPTO_LOCK) {
305 (void) mutex_lock(&(lock_cs[type]));
306 lock_count[type]++;
307 } else {
308 (void) mutex_unlock(&(lock_cs[type]));
309 }
310 }

312 static unsigned long
313 thread_id()
314 {
315 return ((unsigned long)thr_self());
316 }

318 KMF_PLUGIN_FUNCLIST *
319 KMF_Plugin_Initialize()
320 {
321 int i;

323 (void) mutex_lock(&init_lock);
324 if (!ssl_initialized) {
325 /*

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 6

326 * Add support for extension OIDs that are not yet in the
327 * openssl default set.
328 */
329 (void) OBJ_create("2.5.29.30", "nameConstraints",
330 "X509v3 Name Constraints");
331 (void) OBJ_create("2.5.29.33", "policyMappings",
332 "X509v3 Policy Mappings");
333 (void) OBJ_create("2.5.29.36", "policyConstraints",
334 "X509v3 Policy Constraints");
335 (void) OBJ_create("2.5.29.46", "freshestCRL",
336 "X509v3 Freshest CRL");
337 (void) OBJ_create("2.5.29.54", "inhibitAnyPolicy",
338 "X509v3 Inhibit Any-Policy");
339 /*
340 * Set up for thread-safe operation.
341 */
342 lock_cs = OPENSSL_malloc(CRYPTO_num_locks() * sizeof (mutex_t));
343 if (lock_cs == NULL) {
344 (void) mutex_unlock(&init_lock);
345 return (NULL);
346 }

348 lock_count = OPENSSL_malloc(CRYPTO_num_locks() * sizeof (long));
349 if (lock_count == NULL) {
350 OPENSSL_free(lock_cs);
351 (void) mutex_unlock(&init_lock);
352 return (NULL);
353 }

355 for (i = 0; i < CRYPTO_num_locks(); i++) {
356 lock_count[i] = 0;
357 (void) mutex_init(&lock_cs[i], USYNC_THREAD, NULL);
358 }

360 CRYPTO_set_id_callback((unsigned long (*)())thread_id);
361 if (CRYPTO_get_locking_callback() == NULL)
362 CRYPTO_set_locking_callback((void (*)())locking_cb);

364 OpenSSL_add_all_algorithms();

366 /* Enable error strings for reporting */
367 ERR_load_crypto_strings();

369 ssl_initialized = 1;
370 }
371 (void) mutex_unlock(&init_lock);

373 return (&openssl_plugin_table);
374 }
375 /*
376 * Convert an SSL DN to a KMF DN.
377 */
378 static KMF_RETURN
379 get_x509_dn(X509_NAME *sslDN, KMF_X509_NAME *kmfDN)
380 {
381 KMF_DATA derdata;
382 KMF_RETURN rv = KMF_OK;
383 uchar_t *tmp;

385 /* Convert to raw DER format */
386 derdata.Length = i2d_X509_NAME(sslDN, NULL);
387 if ((tmp = derdata.Data = (uchar_t *)OPENSSL_malloc(derdata.Length))
388 == NULL) {
389 return (KMF_ERR_MEMORY);
390 }
391 (void) i2d_X509_NAME(sslDN, &tmp);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 7

393 /* Decode to KMF format */
394 rv = DerDecodeName(&derdata, kmfDN);
395 if (rv != KMF_OK) {
396 rv = KMF_ERR_BAD_CERT_FORMAT;
397 }
398 OPENSSL_free(derdata.Data);

400 return (rv);
401 }

403 int
404 isdir(char *path)
405 {
406 struct stat s;

408 if (stat(path, &s) == -1)
409 return (0);

411 return ((s.st_mode & S_IFMT) == S_IFDIR);
412 }

414 static KMF_RETURN
415 ssl_cert2KMFDATA(KMF_HANDLE *kmfh, X509 *x509cert, KMF_DATA *cert)
416 {
417 KMF_RETURN rv = KMF_OK;
418 unsigned char *buf = NULL, *p;
419 int len;

421 /*
422 * Convert the X509 internal struct to DER encoded data
423 */
424 if ((len = i2d_X509(x509cert, NULL)) < 0) {
425 SET_ERROR(kmfh, ERR_get_error());
426 rv = KMF_ERR_BAD_CERT_FORMAT;
427 goto cleanup;
428 }
429 if ((buf = malloc(len)) == NULL) {
430 SET_SYS_ERROR(kmfh, errno);
431 rv = KMF_ERR_MEMORY;
432 goto cleanup;
433 }

435 /*
436 * i2d_X509 will increment the buf pointer so that we need to
437 * save it.
438 */
439 p = buf;
440 if ((len = i2d_X509(x509cert, &p)) < 0) {
441 SET_ERROR(kmfh, ERR_get_error());
442 free(buf);
443 rv = KMF_ERR_BAD_CERT_FORMAT;
444 goto cleanup;
445 }

447 /* caller’s responsibility to free it */
448 cert->Data = buf;
449 cert->Length = len;

451 cleanup:
452 if (rv != KMF_OK) {
453 if (buf)
454 free(buf);
455 cert->Data = NULL;
456 cert->Length = 0;
457 }

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 8

459 return (rv);
460 }

463 static KMF_RETURN
464 check_cert(X509 *xcert, char *issuer, char *subject, KMF_BIGINT *serial,
465 boolean_t *match)
466 {
467 KMF_RETURN rv = KMF_OK;
468 boolean_t findIssuer = FALSE;
469 boolean_t findSubject = FALSE;
470 boolean_t findSerial = FALSE;
471 KMF_X509_NAME issuerDN, subjectDN;
472 KMF_X509_NAME certIssuerDN, certSubjectDN;

474 *match = FALSE;
475 if (xcert == NULL) {
476 return (KMF_ERR_BAD_PARAMETER);
477 }

479 (void) memset(&issuerDN, 0, sizeof (KMF_X509_NAME));
480 (void) memset(&subjectDN, 0, sizeof (KMF_X509_NAME));
481 (void) memset(&certIssuerDN, 0, sizeof (KMF_X509_NAME));
482 (void) memset(&certSubjectDN, 0, sizeof (KMF_X509_NAME));

484 if (issuer != NULL && strlen(issuer)) {
485 rv = kmf_dn_parser(issuer, &issuerDN);
486 if (rv != KMF_OK)
487 return (KMF_ERR_BAD_PARAMETER);

489 rv = get_x509_dn(xcert->cert_info->issuer, &certIssuerDN);
490 if (rv != KMF_OK) {
491 kmf_free_dn(&issuerDN);
492 return (KMF_ERR_BAD_PARAMETER);
493 }

495 findIssuer = TRUE;
496 }
497 if (subject != NULL && strlen(subject)) {
498 rv = kmf_dn_parser(subject, &subjectDN);
499 if (rv != KMF_OK) {
500 rv = KMF_ERR_BAD_PARAMETER;
501 goto cleanup;
502 }

504 rv = get_x509_dn(xcert->cert_info->subject, &certSubjectDN);
505 if (rv != KMF_OK) {
506 rv = KMF_ERR_BAD_PARAMETER;
507 goto cleanup;
508 }
509 findSubject = TRUE;
510 }
511 if (serial != NULL && serial->val != NULL)
512 findSerial = TRUE;

514 if (findSerial) {
515 BIGNUM *bn;

517 /* Comparing BIGNUMs is a pain! */
518 bn = ASN1_INTEGER_to_BN(xcert->cert_info->serialNumber, NULL);
519 if (bn != NULL) {
520 int bnlen = BN_num_bytes(bn);

522 if (bnlen == serial->len) {
523 uchar_t *a = malloc(bnlen);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 9

524 if (a == NULL) {
525 rv = KMF_ERR_MEMORY;
526 BN_free(bn);
527 goto cleanup;
528 }
529 bnlen = BN_bn2bin(bn, a);
530 *match = (memcmp(a, serial->val, serial->len) ==
531 0);
532 rv = KMF_OK;
533 free(a);
534 }
535 BN_free(bn);
536 if (!(*match))
537 goto cleanup;
538 } else {
539 rv = KMF_OK;
540 goto cleanup;
541 }
542 }
543 if (findIssuer) {
544 *match = (kmf_compare_rdns(&issuerDN, &certIssuerDN) == 0);
545 if ((*match) == B_FALSE) {
546 /* stop checking and bail */
547 rv = KMF_OK;
548 goto cleanup;
549 }
550 }
551 if (findSubject) {
552 *match = (kmf_compare_rdns(&subjectDN, &certSubjectDN) == 0);
553 if ((*match) == B_FALSE) {
554 /* stop checking and bail */
555 rv = KMF_OK;
556 goto cleanup;
557 }
558 }

560 *match = TRUE;
561 cleanup:
562 if (findIssuer) {
563 kmf_free_dn(&issuerDN);
564 kmf_free_dn(&certIssuerDN);
565 }
566 if (findSubject) {
567 kmf_free_dn(&subjectDN);
568 kmf_free_dn(&certSubjectDN);
569 }

571 return (rv);
572 }

575 /*
576 * This function loads a certificate file into an X509 data structure, and
577 * checks if its issuer, subject or the serial number matches with those
578 * values. If it matches, then return the X509 data structure.
579 */
580 static KMF_RETURN
581 load_X509cert(KMF_HANDLE *kmfh,
582 char *issuer, char *subject, KMF_BIGINT *serial,
583 char *pathname, X509 **outcert)
584 {
585 KMF_RETURN rv = KMF_OK;
586 X509 *xcert = NULL;
587 BIO *bcert = NULL;
588 boolean_t match = FALSE;
589 KMF_ENCODE_FORMAT format;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 10

591 /*
592 * auto-detect the file format, regardless of what
593 * the ’format’ parameters in the params say.
594 */
595 rv = kmf_get_file_format(pathname, &format);
596 if (rv != KMF_OK) {
597 if (rv == KMF_ERR_OPEN_FILE)
598 rv = KMF_ERR_CERT_NOT_FOUND;
599 return (rv);
600 }

602 /* Not ASN1(DER) format */
603 if ((bcert = BIO_new_file(pathname, "rb")) == NULL) {
604 SET_ERROR(kmfh, ERR_get_error());
605 rv = KMF_ERR_OPEN_FILE;
606 goto cleanup;
607 }

609 if (format == KMF_FORMAT_PEM)
610 xcert = PEM_read_bio_X509_AUX(bcert, NULL, NULL, NULL);
611 else if (format == KMF_FORMAT_ASN1)
612 xcert = d2i_X509_bio(bcert, NULL);
613 else if (format == KMF_FORMAT_PKCS12) {
614 PKCS12 *p12 = d2i_PKCS12_bio(bcert, NULL);
615 if (p12 != NULL) {
616 (void) PKCS12_parse(p12, NULL, NULL, &xcert, NULL);
617 PKCS12_free(p12);
618 p12 = NULL;
619 } else {
620 SET_ERROR(kmfh, ERR_get_error());
621 rv = KMF_ERR_BAD_CERT_FORMAT;
622 }
623 } else {
624 rv = KMF_ERR_BAD_PARAMETER;
625 goto cleanup;
626 }

628 if (xcert == NULL) {
629 SET_ERROR(kmfh, ERR_get_error());
630 rv = KMF_ERR_BAD_CERT_FORMAT;
631 goto cleanup;
632 }

634 if (check_cert(xcert, issuer, subject, serial, &match) != KMF_OK ||
635 match == FALSE) {
636 rv = KMF_ERR_CERT_NOT_FOUND;
637 goto cleanup;
638 }

640 if (outcert != NULL) {
641 *outcert = xcert;
642 }

644 cleanup:
645 if (bcert != NULL) (void) BIO_free(bcert);
646 if (rv != KMF_OK && xcert != NULL)
647 X509_free(xcert);

649 return (rv);
650 }

652 static int
653 datacmp(const void *a, const void *b)
654 {
655 KMF_DATA *adata = (KMF_DATA *)a;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 11

656 KMF_DATA *bdata = (KMF_DATA *)b;
657 if (adata->Length > bdata->Length)
658 return (-1);
659 if (adata->Length < bdata->Length)
660 return (1);
661 return (0);
662 }

664 static KMF_RETURN
665 load_certs(KMF_HANDLE *kmfh, char *issuer, char *subject, KMF_BIGINT *serial,
666 KMF_CERT_VALIDITY validity, char *pathname,
667 KMF_DATA **certlist, uint32_t *numcerts)
668 {
669 KMF_RETURN rv = KMF_OK;
670 int i;
671 KMF_DATA *certs = NULL;
672 int nc = 0;
673 int hits = 0;
674 KMF_ENCODE_FORMAT format;

676 rv = kmf_get_file_format(pathname, &format);
677 if (rv != KMF_OK) {
678 if (rv == KMF_ERR_OPEN_FILE)
679 rv = KMF_ERR_CERT_NOT_FOUND;
680 return (rv);
681 }
682 if (format == KMF_FORMAT_ASN1) {
683 /* load a single certificate */
684 certs = (KMF_DATA *)malloc(sizeof (KMF_DATA));
685 if (certs == NULL)
686 return (KMF_ERR_MEMORY);
687 certs->Data = NULL;
688 certs->Length = 0;
689 rv = kmf_load_cert(kmfh, issuer, subject, serial, validity,
690 pathname, certs);
691 if (rv == KMF_OK) {
692 *certlist = certs;
693 *numcerts = 1;
694 } else {
695 kmf_free_data(certs);
696 free(certs);
697 certs = NULL;
698 }
699 return (rv);
700 } else if (format == KMF_FORMAT_PKCS12) {
701 /* We need a credential to access a PKCS#12 file */
702 rv = KMF_ERR_BAD_CERT_FORMAT;
703 } else if (format == KMF_FORMAT_PEM ||
704 format != KMF_FORMAT_PEM_KEYPAIR) {

706 /* This function only works on PEM files */
707 rv = extract_pem(kmfh, issuer, subject, serial, pathname,
708 (uchar_t *)NULL, 0, NULL, &certs, &nc);
709 } else {
710 return (KMF_ERR_ENCODING);
711 }

713 if (rv != KMF_OK)
714 return (rv);

716 for (i = 0; i < nc; i++) {
717 if (validity == KMF_NONEXPIRED_CERTS) {
718 rv = kmf_check_cert_date(kmfh, &certs[i]);
719 } else if (validity == KMF_EXPIRED_CERTS) {
720 rv = kmf_check_cert_date(kmfh, &certs[i]);
721 if (rv == KMF_OK)

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 12

722 rv = KMF_ERR_CERT_NOT_FOUND;
723 if (rv == KMF_ERR_VALIDITY_PERIOD)
724 rv = KMF_OK;
725 }
726 if (rv != KMF_OK) {
727 /* Remove this cert from the list by clearing it. */
728 kmf_free_data(&certs[i]);
729 } else {
730 hits++; /* count valid certs found */
731 }
732 rv = KMF_OK;
733 }
734 if (rv == KMF_OK && hits > 0) {
735 /*
736 * Sort the list of certs by length to put the cleared ones
737 * at the end so they don’t get accessed by the caller.
738 */
739 qsort((void *)certs, nc, sizeof (KMF_DATA), datacmp);
740 *certlist = certs;

742 /* since we sorted the list, just return the number of hits */
743 *numcerts = hits;
744 } else {
745 if (rv == KMF_OK && hits == 0)
746 rv = KMF_ERR_CERT_NOT_FOUND;
747 if (certs != NULL) {
748 free(certs);
749 certs = NULL;
750 }
751 }
752 return (rv);
753 }

755 static KMF_RETURN
756 kmf_load_cert(KMF_HANDLE *kmfh,
757 char *issuer, char *subject, KMF_BIGINT *serial,
758 KMF_CERT_VALIDITY validity,
759 char *pathname,
760 KMF_DATA *cert)
761 {
762 KMF_RETURN rv = KMF_OK;
763 X509 *x509cert = NULL;

765 rv = load_X509cert(kmfh, issuer, subject, serial, pathname, &x509cert);
766 if (rv == KMF_OK && x509cert != NULL && cert != NULL) {
767 rv = ssl_cert2KMFDATA(kmfh, x509cert, cert);
768 if (rv != KMF_OK) {
769 goto cleanup;
770 }
771 if (validity == KMF_NONEXPIRED_CERTS) {
772 rv = kmf_check_cert_date(kmfh, cert);
773 } else if (validity == KMF_EXPIRED_CERTS) {
774 rv = kmf_check_cert_date(kmfh, cert);
775 if (rv == KMF_OK) {
776 /*
777 * This is a valid cert so skip it.
778 */
779 rv = KMF_ERR_CERT_NOT_FOUND;
780 }
781 if (rv == KMF_ERR_VALIDITY_PERIOD) {
782 /*
783 * We want to return success when we
784 * find an invalid cert.
785 */
786 rv = KMF_OK;
787 goto cleanup;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 13

788 }
789 }
790 }
791 cleanup:
792 if (x509cert != NULL)
793 X509_free(x509cert);

795 return (rv);
796 }

798 static KMF_RETURN
799 readAltFormatPrivateKey(KMF_DATA *filedata, EVP_PKEY **pkey)
800 {
801 KMF_RETURN ret = KMF_OK;
802 KMF_RAW_RSA_KEY rsa;
803 BerElement *asn1 = NULL;
804 BerValue filebuf;
805 BerValue OID = { NULL, 0 };
806 BerValue *Mod = NULL, *PubExp = NULL;
807 BerValue *PriExp = NULL, *Prime1 = NULL, *Prime2 = NULL;
808 BerValue *Coef = NULL;
809 BIGNUM *D = NULL, *P = NULL, *Q = NULL, *COEF = NULL;
810 BIGNUM *Exp1 = NULL, *Exp2 = NULL, *pminus1 = NULL;
811 BIGNUM *qminus1 = NULL;
812 BN_CTX *ctx = NULL;

814 *pkey = NULL;

816 filebuf.bv_val = (char *)filedata->Data;
817 filebuf.bv_len = filedata->Length;

819 asn1 = kmfder_init(&filebuf);
820 if (asn1 == NULL) {
821 ret = KMF_ERR_MEMORY;
822 goto out;
823 }

825 if (kmfber_scanf(asn1, "{{Dn{IIIIII}}}",
826 &OID, &Mod, &PubExp, &PriExp, &Prime1,
827 &Prime2, &Coef) == -1) {
828 ret = KMF_ERR_ENCODING;
829 goto out;
830 }

832 /*
833 * We have to derive the 2 Exponents using Bignumber math.
834 * Exp1 = PriExp mod (Prime1 - 1)
835 * Exp2 = PriExp mod (Prime2 - 1)
836 */

838 /* D = PrivateExponent */
839 D = BN_bin2bn((const uchar_t *)PriExp->bv_val, PriExp->bv_len, D);
840 if (D == NULL) {
841 ret = KMF_ERR_MEMORY;
842 goto out;
843 }

845 /* P = Prime1 (first prime factor of Modulus) */
846 P = BN_bin2bn((const uchar_t *)Prime1->bv_val, Prime1->bv_len, P);
847 if (D == NULL) {
848 ret = KMF_ERR_MEMORY;
849 goto out;
850 }

852 /* Q = Prime2 (second prime factor of Modulus) */
853 Q = BN_bin2bn((const uchar_t *)Prime2->bv_val, Prime2->bv_len, Q);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 14

855 if ((ctx = BN_CTX_new()) == NULL) {
856 ret = KMF_ERR_MEMORY;
857 goto out;
858 }

860 /* Compute (P - 1) */
861 pminus1 = BN_new();
862 (void) BN_sub(pminus1, P, BN_value_one());

864 /* Exponent1 = D mod (P - 1) */
865 Exp1 = BN_new();
866 (void) BN_mod(Exp1, D, pminus1, ctx);

868 /* Compute (Q - 1) */
869 qminus1 = BN_new();
870 (void) BN_sub(qminus1, Q, BN_value_one());

872 /* Exponent2 = D mod (Q - 1) */
873 Exp2 = BN_new();
874 (void) BN_mod(Exp2, D, qminus1, ctx);

876 /* Coef = (Inverse Q) mod P */
877 COEF = BN_new();
878 (void) BN_mod_inverse(COEF, Q, P, ctx);

880 /* Convert back to KMF format */
881 (void) memset(&rsa, 0, sizeof (rsa));

883 if ((ret = sslBN2KMFBN(Exp1, &rsa.exp1)) != KMF_OK)
884 goto out;
885 if ((ret = sslBN2KMFBN(Exp2, &rsa.exp2)) != KMF_OK)
886 goto out;
887 if ((ret = sslBN2KMFBN(COEF, &rsa.coef)) != KMF_OK)
888 goto out;

890 rsa.mod.val = (uchar_t *)Mod->bv_val;
891 rsa.mod.len = Mod->bv_len;

893 rsa.pubexp.val = (uchar_t *)PubExp->bv_val;
894 rsa.pubexp.len = PubExp->bv_len;

896 rsa.priexp.val = (uchar_t *)PriExp->bv_val;
897 rsa.priexp.len = PriExp->bv_len;

899 rsa.prime1.val = (uchar_t *)Prime1->bv_val;
900 rsa.prime1.len = Prime1->bv_len;

902 rsa.prime2.val = (uchar_t *)Prime2->bv_val;
903 rsa.prime2.len = Prime2->bv_len;

905 *pkey = ImportRawRSAKey(&rsa);
906 out:
907 if (asn1 != NULL)
908 kmfber_free(asn1, 1);

910 if (OID.bv_val) {
911 free(OID.bv_val);
912 }
913 if (PriExp)
914 free(PriExp);

916 if (Mod)
917 free(Mod);

919 if (PubExp)

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 15

920 free(PubExp);

922 if (Coef) {
923 (void) memset(Coef->bv_val, 0, Coef->bv_len);
924 free(Coef->bv_val);
925 free(Coef);
926 }
927 if (Prime1)
928 free(Prime1);
929 if (Prime2)
930 free(Prime2);

932 if (ctx != NULL)
933 BN_CTX_free(ctx);

935 if (D)
936 BN_clear_free(D);
937 if (P)
938 BN_clear_free(P);
939 if (Q)
940 BN_clear_free(Q);
941 if (pminus1)
942 BN_clear_free(pminus1);
943 if (qminus1)
944 BN_clear_free(qminus1);
945 if (Exp1)
946 BN_clear_free(Exp1);
947 if (Exp2)
948 BN_clear_free(Exp2);

950 return (ret);

952 }

954 static EVP_PKEY *
955 openssl_load_key(KMF_HANDLE_T handle, const char *file)
956 {
957 BIO *keyfile = NULL;
958 EVP_PKEY *pkey = NULL;
959 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
960 KMF_ENCODE_FORMAT format;
961 KMF_RETURN rv;
962 KMF_DATA filedata;

964 if (file == NULL) {
965 return (NULL);
966 }

968 if (kmf_get_file_format((char *)file, &format) != KMF_OK)
969 return (NULL);

971 keyfile = BIO_new_file(file, "rb");
972 if (keyfile == NULL) {
973 goto end;
974 }

976 if (format == KMF_FORMAT_ASN1) {
977 pkey = d2i_PrivateKey_bio(keyfile, NULL);
978 if (pkey == NULL) {

980 (void) BIO_free(keyfile);
981 keyfile = NULL;
982 /* Try odd ASN.1 variations */
983 rv = kmf_read_input_file(kmfh, (char *)file,
984 &filedata);
985 if (rv == KMF_OK) {

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 16

986 (void) readAltFormatPrivateKey(&filedata,
987 &pkey);
988 kmf_free_data(&filedata);
989 }
990 }
991 } else if (format == KMF_FORMAT_PEM ||
992 format == KMF_FORMAT_PEM_KEYPAIR) {
993 pkey = PEM_read_bio_PrivateKey(keyfile, NULL, NULL, NULL);
994 if (pkey == NULL) {
995 KMF_DATA derdata;
996 /*
997 * Check if this is the alt. format
998 * RSA private key file.
999 */

1000 rv = kmf_read_input_file(kmfh, (char *)file,
1001 &filedata);
1002 if (rv == KMF_OK) {
1003 uchar_t *d = NULL;
1004 int len;
1005 rv = kmf_pem_to_der(filedata.Data,
1006 filedata.Length, &d, &len);
1007 if (rv == KMF_OK && d != NULL) {
1008 derdata.Data = d;
1009 derdata.Length = (size_t)len;
1010 (void) readAltFormatPrivateKey(
1011 &derdata, &pkey);
1012 free(d);
1013 }
1014 kmf_free_data(&filedata);
1015 }
1016 }
1017 }

1019 end:
1020 if (pkey == NULL)
1021 SET_ERROR(kmfh, ERR_get_error());

1023 if (keyfile != NULL)
1024 (void) BIO_free(keyfile);

1026 return (pkey);
1027 }

1029 KMF_RETURN
1030 OpenSSL_FindCert(KMF_HANDLE_T handle, int numattr, KMF_ATTRIBUTE *attrlist)
1031 {
1032 KMF_RETURN rv = KMF_OK;
1033 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
1034 int i, n;
1035 uint32_t maxcerts = 0;
1036 uint32_t *num_certs;
1037 KMF_X509_DER_CERT *kmf_cert = NULL;
1038 char *dirpath = NULL;
1039 char *filename = NULL;
1040 char *fullpath = NULL;
1041 char *issuer = NULL;
1042 char *subject = NULL;
1043 KMF_BIGINT *serial = NULL;
1044 KMF_CERT_VALIDITY validity;

1046 num_certs = kmf_get_attr_ptr(KMF_COUNT_ATTR, attrlist, numattr);
1047 if (num_certs == NULL)
1048 return (KMF_ERR_BAD_PARAMETER);

1050 /* num_certs should reference the size of kmf_cert */
1051 maxcerts = *num_certs;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 17

1052 if (maxcerts == 0)
1053 maxcerts = 0xFFFFFFFF;
1054 *num_certs = 0;

1056 /* Get the optional returned certificate list */
1057 kmf_cert = kmf_get_attr_ptr(KMF_X509_DER_CERT_ATTR, attrlist,
1058 numattr);

1060 /*
1061 * The dirpath attribute and the filename attribute can not be NULL
1062 * at the same time.
1063 */
1064 dirpath = kmf_get_attr_ptr(KMF_DIRPATH_ATTR, attrlist, numattr);
1065 filename = kmf_get_attr_ptr(KMF_CERT_FILENAME_ATTR, attrlist,
1066 numattr);

1068 fullpath = get_fullpath(dirpath, filename);
1069 if (fullpath == NULL)
1070 return (KMF_ERR_BAD_PARAMETER);

1072 /* Get optional search criteria attributes */
1073 issuer = kmf_get_attr_ptr(KMF_ISSUER_NAME_ATTR, attrlist, numattr);
1074 subject = kmf_get_attr_ptr(KMF_SUBJECT_NAME_ATTR, attrlist, numattr);
1075 serial = kmf_get_attr_ptr(KMF_BIGINT_ATTR, attrlist, numattr);
1076 rv = kmf_get_attr(KMF_CERT_VALIDITY_ATTR, attrlist, numattr,
1077 &validity, NULL);
1078 if (rv != KMF_OK) {
1079 validity = KMF_ALL_CERTS;
1080 rv = KMF_OK;
1081 }

1083 if (isdir(fullpath)) {
1084 DIR *dirp;
1085 struct dirent *dp;

1087 n = 0;
1088 /* open all files in the directory and attempt to read them */
1089 if ((dirp = opendir(fullpath)) == NULL) {
1090 return (KMF_ERR_BAD_PARAMETER);
1091 }
1092 while ((dp = readdir(dirp)) != NULL) {
1093 char *fname;
1094 KMF_DATA *certlist = NULL;
1095 uint32_t loaded_certs = 0;

1097 if (strcmp(dp->d_name, ".") == 0 ||
1098 strcmp(dp->d_name, "..") == 0)
1099 continue;

1101 fname = get_fullpath(fullpath, (char *)&dp->d_name);

1103 rv = load_certs(kmfh, issuer, subject, serial,
1104 validity, fname, &certlist, &loaded_certs);

1106 if (rv != KMF_OK) {
1107 free(fname);
1108 if (certlist != NULL) {
1109 for (i = 0; i < loaded_certs; i++)
1110 kmf_free_data(&certlist[i]);
1111 free(certlist);
1112 }
1113 continue;
1114 }

1116 /* If load succeeds, add certdata to the list */
1117 if (kmf_cert != NULL) {

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 18

1118 for (i = 0; i < loaded_certs &&
1119 n < maxcerts; i++) {
1120 kmf_cert[n].certificate.Data =
1121 certlist[i].Data;
1122 kmf_cert[n].certificate.Length =
1123 certlist[i].Length;

1125 kmf_cert[n].kmf_private.keystore_type =
1126 KMF_KEYSTORE_OPENSSL;
1127 kmf_cert[n].kmf_private.flags =
1128 KMF_FLAG_CERT_VALID;
1129 kmf_cert[n].kmf_private.label =
1130 strdup(fname);
1131 n++;
1132 }
1133 /*
1134 * If maxcerts < loaded_certs, clean up the
1135 * certs that were not used.
1136 */
1137 for (; i < loaded_certs; i++)
1138 kmf_free_data(&certlist[i]);
1139 } else {
1140 for (i = 0; i < loaded_certs; i++)
1141 kmf_free_data(&certlist[i]);
1142 n += loaded_certs;
1143 }
1144 free(certlist);
1145 free(fname);
1146 }
1147 (*num_certs) = n;
1148 if (*num_certs == 0)
1149 rv = KMF_ERR_CERT_NOT_FOUND;
1150 if (*num_certs > 0)
1151 rv = KMF_OK;
1152 exit:
1153 (void) closedir(dirp);
1154 } else {
1155 KMF_DATA *certlist = NULL;
1156 uint32_t loaded_certs = 0;

1158 rv = load_certs(kmfh, issuer, subject, serial, validity,
1159 fullpath, &certlist, &loaded_certs);
1160 if (rv != KMF_OK) {
1161 free(fullpath);
1162 return (rv);
1163 }

1165 n = 0;
1166 if (kmf_cert != NULL && certlist != NULL) {
1167 for (i = 0; i < loaded_certs && i < maxcerts; i++) {
1168 kmf_cert[n].certificate.Data =
1169 certlist[i].Data;
1170 kmf_cert[n].certificate.Length =
1171 certlist[i].Length;
1172 kmf_cert[n].kmf_private.keystore_type =
1173 KMF_KEYSTORE_OPENSSL;
1174 kmf_cert[n].kmf_private.flags =
1175 KMF_FLAG_CERT_VALID;
1176 kmf_cert[n].kmf_private.label =
1177 strdup(fullpath);
1178 n++;
1179 }
1180 /* If maxcerts < loaded_certs, clean up */
1181 for (; i < loaded_certs; i++)
1182 kmf_free_data(&certlist[i]);
1183 } else if (certlist != NULL) {

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 19

1184 for (i = 0; i < loaded_certs; i++)
1185 kmf_free_data(&certlist[i]);
1186 n = loaded_certs;
1187 }
1188 if (certlist != NULL)
1189 free(certlist);
1190 *num_certs = n;
1191 }

1193 free(fullpath);

1195 return (rv);
1196 }

1198 void
1199 /*ARGSUSED*/
1200 OpenSSL_FreeKMFCert(KMF_HANDLE_T handle,
1201 KMF_X509_DER_CERT *kmf_cert)
1202 {
1203 if (kmf_cert != NULL) {
1204 if (kmf_cert->certificate.Data != NULL) {
1205 kmf_free_data(&kmf_cert->certificate);
1206 }
1207 if (kmf_cert->kmf_private.label)
1208 free(kmf_cert->kmf_private.label);
1209 }
1210 }

1212 /*ARGSUSED*/
1213 KMF_RETURN
1214 OpenSSL_StoreCert(KMF_HANDLE_T handle, int numattr, KMF_ATTRIBUTE *attrlist)
1215 {
1216 KMF_RETURN ret = KMF_OK;
1217 KMF_DATA *cert = NULL;
1218 char *outfilename = NULL;
1219 char *dirpath = NULL;
1220 char *fullpath = NULL;
1221 KMF_ENCODE_FORMAT format;

1223 /* Get the cert data */
1224 cert = kmf_get_attr_ptr(KMF_CERT_DATA_ATTR, attrlist, numattr);
1225 if (cert == NULL || cert->Data == NULL)
1226 return (KMF_ERR_BAD_PARAMETER);

1228 /* Check the output filename and directory attributes. */
1229 outfilename = kmf_get_attr_ptr(KMF_CERT_FILENAME_ATTR, attrlist,
1230 numattr);
1231 if (outfilename == NULL)
1232 return (KMF_ERR_BAD_PARAMETER);

1234 dirpath = kmf_get_attr_ptr(KMF_DIRPATH_ATTR, attrlist, numattr);
1235 fullpath = get_fullpath(dirpath, outfilename);
1236 if (fullpath == NULL)
1237 return (KMF_ERR_BAD_CERTFILE);

1239 /* Check the optional format attribute */
1240 ret = kmf_get_attr(KMF_ENCODE_FORMAT_ATTR, attrlist, numattr,
1241 &format, NULL);
1242 if (ret != KMF_OK) {
1243 /* If there is no format attribute, then default to PEM */
1244 format = KMF_FORMAT_PEM;
1245 ret = KMF_OK;
1246 } else if (format != KMF_FORMAT_ASN1 && format != KMF_FORMAT_PEM) {
1247 ret = KMF_ERR_BAD_CERT_FORMAT;
1248 goto out;
1249 }

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 20

1251 /* Store the certificate in the file with the specified format */
1252 ret = kmf_create_cert_file(cert, format, fullpath);

1254 out:
1255 if (fullpath != NULL)
1256 free(fullpath);

1258 return (ret);
1259 }

1262 KMF_RETURN
1263 OpenSSL_DeleteCert(KMF_HANDLE_T handle, int numattr, KMF_ATTRIBUTE *attrlist)
1264 {
1265 KMF_RETURN rv;
1266 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
1267 KMF_DATA certdata = {NULL, 0};
1268 char *dirpath = NULL;
1269 char *filename = NULL;
1270 char *fullpath = NULL;
1271 char *issuer = NULL;
1272 char *subject = NULL;
1273 KMF_BIGINT *serial = NULL;
1274 KMF_CERT_VALIDITY validity;

1276 /*
1277 * Get the DIRPATH and CERT_FILENAME attributes. They can not be
1278 * NULL at the same time.
1279 */
1280 dirpath = kmf_get_attr_ptr(KMF_DIRPATH_ATTR, attrlist, numattr);
1281 filename = kmf_get_attr_ptr(KMF_CERT_FILENAME_ATTR, attrlist,
1282 numattr);
1283 fullpath = get_fullpath(dirpath, filename);
1284 if (fullpath == NULL)
1285 return (KMF_ERR_BAD_PARAMETER);

1287 /* Get optional search criteria attributes */
1288 issuer = kmf_get_attr_ptr(KMF_ISSUER_NAME_ATTR, attrlist, numattr);
1289 subject = kmf_get_attr_ptr(KMF_SUBJECT_NAME_ATTR, attrlist, numattr);
1290 serial = kmf_get_attr_ptr(KMF_BIGINT_ATTR, attrlist, numattr);
1291 rv = kmf_get_attr(KMF_CERT_VALIDITY_ATTR, attrlist, numattr,
1292 &validity, NULL);
1293 if (rv != KMF_OK) {
1294 validity = KMF_ALL_CERTS;
1295 rv = KMF_OK;
1296 }

1298 if (isdir(fullpath)) {
1299 DIR *dirp;
1300 struct dirent *dp;

1302 /* open all files in the directory and attempt to read them */
1303 if ((dirp = opendir(fullpath)) == NULL) {
1304 return (KMF_ERR_BAD_PARAMETER);
1305 }

1307 while ((dp = readdir(dirp)) != NULL) {
1308 if (strcmp(dp->d_name, ".") != 0 &&
1309 strcmp(dp->d_name, "..") != 0) {
1310 char *fname;

1312 fname = get_fullpath(fullpath,
1313 (char *)&dp->d_name);

1315 if (fname == NULL) {

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 21

1316 rv = KMF_ERR_MEMORY;
1317 break;
1318 }

1320 rv = kmf_load_cert(kmfh, issuer, subject,
1321 serial, validity, fname, &certdata);

1323 if (rv == KMF_ERR_CERT_NOT_FOUND) {
1324 free(fname);
1325 kmf_free_data(&certdata);
1326 rv = KMF_OK;
1327 continue;
1328 } else if (rv != KMF_OK) {
1329 free(fname);
1330 break;
1331 }

1333 if (unlink(fname) != 0) {
1334 SET_SYS_ERROR(kmfh, errno);
1335 rv = KMF_ERR_INTERNAL;
1336 free(fname);
1337 break;
1338 }
1339 free(fname);
1340 kmf_free_data(&certdata);
1341 }
1342 }
1343 (void) closedir(dirp);
1344 } else {
1345 /* Just try to load a single certificate */
1346 rv = kmf_load_cert(kmfh, issuer, subject, serial, validity,
1347 fullpath, &certdata);
1348 if (rv == KMF_OK) {
1349 if (unlink(fullpath) != 0) {
1350 SET_SYS_ERROR(kmfh, errno);
1351 rv = KMF_ERR_INTERNAL;
1352 }
1353 }
1354 }

1356 out:
1357 if (fullpath != NULL)
1358 free(fullpath);

1360 kmf_free_data(&certdata);

1362 return (rv);
1363 }

1365 KMF_RETURN
1366 OpenSSL_EncodePubKeyData(KMF_HANDLE_T handle, KMF_KEY_HANDLE *key,
1367 KMF_DATA *keydata)
1368 {
1369 KMF_RETURN rv = KMF_OK;
1370 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
1371 int n;

1373 if (key == NULL || keydata == NULL ||
1374 key->keyp == NULL)
1375 return (KMF_ERR_BAD_PARAMETER);

1377 if (key->keyalg == KMF_RSA) {
1378 RSA *pubkey = EVP_PKEY_get1_RSA(key->keyp);

1380 if (!(n = i2d_RSA_PUBKEY(pubkey, &keydata->Data))) {
1381 SET_ERROR(kmfh, ERR_get_error());

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 22

1382 return (KMF_ERR_ENCODING);
1383 }
1384 RSA_free(pubkey);
1385 } else if (key->keyalg == KMF_DSA) {
1386 DSA *pubkey = EVP_PKEY_get1_DSA(key->keyp);

1388 if (!(n = i2d_DSA_PUBKEY(pubkey, &keydata->Data))) {
1389 SET_ERROR(kmfh, ERR_get_error());
1390 return (KMF_ERR_ENCODING);
1391 }
1392 DSA_free(pubkey);
1393 } else {
1394 return (KMF_ERR_BAD_PARAMETER);
1395 }
1396 keydata->Length = n;

1398 cleanup:
1399 if (rv != KMF_OK) {
1400 if (keydata->Data)
1401 free(keydata->Data);
1402 keydata->Data = NULL;
1403 keydata->Length = 0;
1404 }

1406 return (rv);
1407 }

1409 static KMF_RETURN
1410 ssl_write_key(KMF_HANDLE *kmfh, KMF_ENCODE_FORMAT format, BIO *out,
1411 KMF_CREDENTIAL *cred, EVP_PKEY *pkey, boolean_t private)
1412 {
1413 int rv = 0;
1414 RSA *rsa;
1415 DSA *dsa;

1417 if (pkey == NULL || out == NULL)
1418 return (KMF_ERR_BAD_PARAMETER);

1420 switch (format) {
1421 case KMF_FORMAT_RAWKEY:
1422 /* same as ASN.1 */
1423 case KMF_FORMAT_ASN1:
1424 if (pkey->type == EVP_PKEY_RSA) {
1425 rsa = EVP_PKEY_get1_RSA(pkey);
1426 if (private)
1427 rv = i2d_RSAPrivateKey_bio(out, rsa);
1428 else
1429 rv = i2d_RSAPublicKey_bio(out, rsa);
1430 RSA_free(rsa);
1431 } else if (pkey->type == EVP_PKEY_DSA) {
1432 dsa = EVP_PKEY_get1_DSA(pkey);
1433 rv = i2d_DSAPrivateKey_bio(out, dsa);
1434 DSA_free(dsa);
1435 }
1436 if (rv == 1) {
1437 rv = KMF_OK;
1438 } else {
1439 SET_ERROR(kmfh, rv);
1440 }
1441 break;
1442 case KMF_FORMAT_PEM:
1443 if (pkey->type == EVP_PKEY_RSA) {
1444 rsa = EVP_PKEY_get1_RSA(pkey);
1445 if (private)
1446 rv = PEM_write_bio_RSAPrivateKey(out,
1447 rsa, NULL, NULL, 0, NULL,

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 23

1448 (cred != NULL ? cred->cred : NULL));
1449 else
1450 rv = PEM_write_bio_RSAPublicKey(out,
1451 rsa);
1452 RSA_free(rsa);
1453 } else if (pkey->type == EVP_PKEY_DSA) {
1454 dsa = EVP_PKEY_get1_DSA(pkey);
1455 rv = PEM_write_bio_DSAPrivateKey(out,
1456 dsa, NULL, NULL, 0, NULL,
1457 (cred != NULL ? cred->cred : NULL));
1458 DSA_free(dsa);
1459 }

1461 if (rv == 1) {
1462 rv = KMF_OK;
1463 } else {
1464 SET_ERROR(kmfh, rv);
1465 }
1466 break;

1468 default:
1469 rv = KMF_ERR_BAD_PARAMETER;
1470 }

1472 return (rv);
1473 }

1475 KMF_RETURN
1476 OpenSSL_CreateKeypair(KMF_HANDLE_T handle, int numattr,
1477 KMF_ATTRIBUTE *attrlist)
1478 {
1479 KMF_RETURN rv = KMF_OK;
1480 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
1481 uint32_t eValue = 0x010001;
1482 RSA *sslPrivKey = NULL;
1483 DSA *sslDSAKey = NULL;
1484 EVP_PKEY *eprikey = NULL;
1485 EVP_PKEY *epubkey = NULL;
1486 BIO *out = NULL;
1487 KMF_KEY_HANDLE *pubkey = NULL, *privkey = NULL;
1488 uint32_t keylen = 1024;
1489 uint32_t keylen_size = sizeof (uint32_t);
1490 boolean_t storekey = TRUE;
1491 KMF_KEY_ALG keytype = KMF_RSA;

1493 rv = kmf_get_attr(KMF_STOREKEY_BOOL_ATTR, attrlist, numattr,
1494 &storekey, NULL);
1495 if (rv != KMF_OK) {
1496 /* "storekey" is optional. Default is TRUE */
1497 rv = KMF_OK;
1498 }

1500 rv = kmf_get_attr(KMF_KEYALG_ATTR, attrlist, numattr,
1501 (void *)&keytype, NULL);
1502 if (rv != KMF_OK)
1503 /* keytype is optional. KMF_RSA is default */
1504 rv = KMF_OK;

1506 pubkey = kmf_get_attr_ptr(KMF_PUBKEY_HANDLE_ATTR, attrlist, numattr);
1507 if (pubkey == NULL)
1508 return (KMF_ERR_BAD_PARAMETER);

1510 privkey = kmf_get_attr_ptr(KMF_PRIVKEY_HANDLE_ATTR, attrlist, numattr);
1511 if (privkey == NULL)
1512 return (KMF_ERR_BAD_PARAMETER);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 24

1514 (void) memset(pubkey, 0, sizeof (KMF_KEY_HANDLE));
1515 (void) memset(privkey, 0, sizeof (KMF_KEY_HANDLE));

1517 eprikey = EVP_PKEY_new();
1518 if (eprikey == NULL) {
1519 SET_ERROR(kmfh, ERR_get_error());
1520 rv = KMF_ERR_KEYGEN_FAILED;
1521 goto cleanup;
1522 }
1523 epubkey = EVP_PKEY_new();
1524 if (epubkey == NULL) {
1525 SET_ERROR(kmfh, ERR_get_error());
1526 rv = KMF_ERR_KEYGEN_FAILED;
1527 goto cleanup;
1528 }
1529 if (keytype == KMF_RSA) {
1530 KMF_BIGINT *rsaexp = NULL;

1532 rsaexp = kmf_get_attr_ptr(KMF_RSAEXP_ATTR, attrlist, numattr);
1533 if (rsaexp != NULL) {
1534 if (rsaexp->len > 0 &&
1535 rsaexp->len <= sizeof (eValue) &&
1536 rsaexp->val != NULL) {
1537 /* LINTED E_BAD_PTR_CAST_ALIGN */
1538 eValue = *(uint32_t *)rsaexp->val;
1539 } else {
1540 rv = KMF_ERR_BAD_PARAMETER;
1541 goto cleanup;
1542 }
1543 } else {
1544 /* RSA Exponent is optional. Default is 0x10001 */
1545 rv = KMF_OK;
1546 }

1548 rv = kmf_get_attr(KMF_KEYLENGTH_ATTR, attrlist, numattr,
1549 &keylen, &keylen_size);
1550 if (rv == KMF_ERR_ATTR_NOT_FOUND)
1551 /* keylen is optional, default is 1024 */
1552 rv = KMF_OK;
1553 if (rv != KMF_OK) {
1554 rv = KMF_ERR_BAD_PARAMETER;
1555 goto cleanup;
1556 }

1558 sslPrivKey = RSA_generate_key(keylen, eValue, NULL, NULL);
1559 if (sslPrivKey == NULL) {
1560 SET_ERROR(kmfh, ERR_get_error());
1561 rv = KMF_ERR_KEYGEN_FAILED;
1562 } else {
1563 (void) EVP_PKEY_set1_RSA(eprikey, sslPrivKey);
1564 privkey->kstype = KMF_KEYSTORE_OPENSSL;
1565 privkey->keyalg = KMF_RSA;
1566 privkey->keyclass = KMF_ASYM_PRI;
1567 privkey->israw = FALSE;
1568 privkey->keyp = (void *)eprikey;

1570 /* OpenSSL derives the public key from the private */
1571 (void) EVP_PKEY_set1_RSA(epubkey, sslPrivKey);
1572 pubkey->kstype = KMF_KEYSTORE_OPENSSL;
1573 pubkey->keyalg = KMF_RSA;
1574 pubkey->israw = FALSE;
1575 pubkey->keyclass = KMF_ASYM_PUB;
1576 pubkey->keyp = (void *)epubkey;
1577 }
1578 } else if (keytype == KMF_DSA) {
1579 DSA *dp;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 25

1580 sslDSAKey = DSA_new();
1581 if (sslDSAKey == NULL) {
1582 SET_ERROR(kmfh, ERR_get_error());
1583 return (KMF_ERR_MEMORY);
1584 }

1586 if ((sslDSAKey->p = BN_bin2bn(P, sizeof (P), sslDSAKey->p)) ==
1587 NULL) {
1588 SET_ERROR(kmfh, ERR_get_error());
1589 rv = KMF_ERR_KEYGEN_FAILED;
1590 goto cleanup;
1591 }
1592 if ((sslDSAKey->q = BN_bin2bn(Q, sizeof (Q), sslDSAKey->q)) ==
1593 NULL) {
1594 SET_ERROR(kmfh, ERR_get_error());
1595 rv = KMF_ERR_KEYGEN_FAILED;
1596 goto cleanup;
1597 }
1598 if ((sslDSAKey->g = BN_bin2bn(G, sizeof (G), sslDSAKey->g)) ==
1599 NULL) {
1600 SET_ERROR(kmfh, ERR_get_error());
1601 rv = KMF_ERR_KEYGEN_FAILED;
1602 goto cleanup;
1603 }

1605 if (!DSA_generate_key(sslDSAKey)) {
1606 SET_ERROR(kmfh, ERR_get_error());
1607 rv = KMF_ERR_KEYGEN_FAILED;
1608 goto cleanup;
1609 }

1611 privkey->kstype = KMF_KEYSTORE_OPENSSL;
1612 privkey->keyalg = KMF_DSA;
1613 privkey->keyclass = KMF_ASYM_PRI;
1614 privkey->israw = FALSE;
1615 if (EVP_PKEY_set1_DSA(eprikey, sslDSAKey)) {
1616 privkey->keyp = (void *)eprikey;
1617 } else {
1618 SET_ERROR(kmfh, ERR_get_error());
1619 rv = KMF_ERR_KEYGEN_FAILED;
1620 goto cleanup;
1621 }
1622 dp = DSA_new();
1623 /* Make a copy for the public key */
1624 if (dp != NULL) {
1625 if ((dp->p = BN_new()) == NULL) {
1626 SET_ERROR(kmfh, ERR_get_error());
1627 rv = KMF_ERR_MEMORY;
1628 DSA_free(dp);
1629 goto cleanup;
1630 }
1631 if ((dp->q = BN_new()) == NULL) {
1632 SET_ERROR(kmfh, ERR_get_error());
1633 rv = KMF_ERR_MEMORY;
1634 BN_free(dp->p);
1635 DSA_free(dp);
1636 goto cleanup;
1637 }
1638 if ((dp->g = BN_new()) == NULL) {
1639 SET_ERROR(kmfh, ERR_get_error());
1640 rv = KMF_ERR_MEMORY;
1641 BN_free(dp->q);
1642 BN_free(dp->p);
1643 DSA_free(dp);
1644 goto cleanup;
1645 }

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 26

1646 if ((dp->pub_key = BN_new()) == NULL) {
1647 SET_ERROR(kmfh, ERR_get_error());
1648 rv = KMF_ERR_MEMORY;
1649 BN_free(dp->q);
1650 BN_free(dp->p);
1651 BN_free(dp->g);
1652 DSA_free(dp);
1653 goto cleanup;
1654 }
1655 (void) BN_copy(dp->p, sslDSAKey->p);
1656 (void) BN_copy(dp->q, sslDSAKey->q);
1657 (void) BN_copy(dp->g, sslDSAKey->g);
1658 (void) BN_copy(dp->pub_key, sslDSAKey->pub_key);

1660 pubkey->kstype = KMF_KEYSTORE_OPENSSL;
1661 pubkey->keyalg = KMF_DSA;
1662 pubkey->keyclass = KMF_ASYM_PUB;
1663 pubkey->israw = FALSE;

1665 if (EVP_PKEY_set1_DSA(epubkey, sslDSAKey)) {
1666 pubkey->keyp = (void *)epubkey;
1667 } else {
1668 SET_ERROR(kmfh, ERR_get_error());
1669 rv = KMF_ERR_KEYGEN_FAILED;
1670 goto cleanup;
1671 }
1672 }
1673 }

1675 if (rv != KMF_OK) {
1676 goto cleanup;
1677 }

1679 if (storekey) {
1680 KMF_ATTRIBUTE storeattrs[4]; /* max. 4 attributes needed */
1681 int i = 0;
1682 char *keyfile = NULL, *dirpath = NULL;
1683 KMF_ENCODE_FORMAT format;
1684 /*
1685 * Construct a new attribute arrray and call openssl_store_key
1686 */
1687 kmf_set_attr_at_index(storeattrs, i, KMF_PRIVKEY_HANDLE_ATTR,
1688 privkey, sizeof (privkey));
1689 i++;

1691 dirpath = kmf_get_attr_ptr(KMF_DIRPATH_ATTR, attrlist, numattr);
1692 if (dirpath != NULL) {
1693 storeattrs[i].type = KMF_DIRPATH_ATTR;
1694 storeattrs[i].pValue = dirpath;
1695 storeattrs[i].valueLen = strlen(dirpath);
1696 i++;
1697 } else {
1698 rv = KMF_OK; /* DIRPATH is optional */
1699 }
1700 keyfile = kmf_get_attr_ptr(KMF_KEY_FILENAME_ATTR,
1701 attrlist, numattr);
1702 if (keyfile != NULL) {
1703 storeattrs[i].type = KMF_KEY_FILENAME_ATTR;
1704 storeattrs[i].pValue = keyfile;
1705 storeattrs[i].valueLen = strlen(keyfile);
1706 i++;
1707 } else {
1708 goto cleanup; /* KEYFILE is required */
1709 }
1710 rv = kmf_get_attr(KMF_ENCODE_FORMAT_ATTR, attrlist, numattr,
1711 (void *)&format, NULL);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 27

1712 if (rv == KMF_OK) {
1713 storeattrs[i].type = KMF_ENCODE_FORMAT_ATTR;
1714 storeattrs[i].pValue = &format;
1715 storeattrs[i].valueLen = sizeof (format);
1716 i++;
1717 }

1719 rv = OpenSSL_StoreKey(handle, i, storeattrs);
1720 }

1722 cleanup:
1723 if (rv != KMF_OK) {
1724 if (eprikey != NULL)
1725 EVP_PKEY_free(eprikey);

1727 if (epubkey != NULL)
1728 EVP_PKEY_free(epubkey);

1730 if (pubkey->keylabel) {
1731 free(pubkey->keylabel);
1732 pubkey->keylabel = NULL;
1733 }

1735 if (privkey->keylabel) {
1736 free(privkey->keylabel);
1737 privkey->keylabel = NULL;
1738 }

1740 pubkey->keyp = NULL;
1741 privkey->keyp = NULL;
1742 }

1744 if (sslPrivKey)
1745 RSA_free(sslPrivKey);

1747 if (sslDSAKey)
1748 DSA_free(sslDSAKey);

1750 if (out != NULL)
1751 (void) BIO_free(out);

1753 return (rv);
1754 }

1756 /*
1757 * Make sure the BN conversion is properly padded with 0x00
1758 * bytes. If not, signature verification for DSA signatures
1759 * may fail in the case where the bignum value does not use
1760 * all of the bits.
1761 */
1762 static int
1763 fixbnlen(BIGNUM *bn, unsigned char *buf, int len) {
1764 int bytes = len - BN_num_bytes(bn);

1766 /* prepend with leading 0x00 if necessary */
1767 while (bytes-- > 0)
1768 *buf++ = 0;

1770 (void) BN_bn2bin(bn, buf);
1771 /*
1772 * Return the desired length since we prepended it
1773 * with the necessary 0x00 padding.
1774 */
1775 return (len);
1776 }

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 28

1778 KMF_RETURN
1779 OpenSSL_SignData(KMF_HANDLE_T handle, KMF_KEY_HANDLE *key,
1780 KMF_OID *AlgOID, KMF_DATA *tobesigned, KMF_DATA *output)
1781 {
1782 KMF_RETURN ret = KMF_OK;
1783 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
1784 KMF_ALGORITHM_INDEX AlgId;
1785 EVP_MD_CTX ctx;
1786 const EVP_MD *md;

1788 if (key == NULL || AlgOID == NULL ||
1789 tobesigned == NULL || output == NULL ||
1790 tobesigned->Data == NULL ||
1791 output->Data == NULL)
1792 return (KMF_ERR_BAD_PARAMETER);

1794 /* Map the OID to an OpenSSL algorithm */
1795 AlgId = x509_algoid_to_algid(AlgOID);
1796 if (AlgId == KMF_ALGID_NONE)
1797 return (KMF_ERR_BAD_ALGORITHM);

1799 if (key->keyalg == KMF_RSA) {
1800 EVP_PKEY *pkey = (EVP_PKEY *)key->keyp;
1801 uchar_t *p;
1802 int len;
1803 if (AlgId == KMF_ALGID_MD5WithRSA)
1804 md = EVP_md5();
1805 else if (AlgId == KMF_ALGID_MD2WithRSA)
1806 md = EVP_md2();
1807 else if (AlgId == KMF_ALGID_SHA1WithRSA)
1808 md = EVP_sha1();
1809 else if (AlgId == KMF_ALGID_SHA256WithRSA)
1810 md = EVP_sha256();
1811 else if (AlgId == KMF_ALGID_SHA384WithRSA)
1812 md = EVP_sha384();
1813 else if (AlgId == KMF_ALGID_SHA512WithRSA)
1814 md = EVP_sha512();
1815 else if (AlgId == KMF_ALGID_RSA)
1816 md = NULL;
1817 else
1818 return (KMF_ERR_BAD_ALGORITHM);

1820 if ((md == NULL) && (AlgId == KMF_ALGID_RSA)) {
1821 RSA *rsa = EVP_PKEY_get1_RSA((EVP_PKEY *)pkey);

1823 p = output->Data;
1824 if ((len = RSA_private_encrypt(tobesigned->Length,
1825 tobesigned->Data, p, rsa,
1826 RSA_PKCS1_PADDING)) <= 0) {
1827 SET_ERROR(kmfh, ERR_get_error());
1828 ret = KMF_ERR_INTERNAL;
1829 }
1830 output->Length = len;
1831 } else {
1832 (void) EVP_MD_CTX_init(&ctx);
1833 (void) EVP_SignInit_ex(&ctx, md, NULL);
1834 (void) EVP_SignUpdate(&ctx, tobesigned->Data,
1835 (uint32_t)tobesigned->Length);
1836 len = (uint32_t)output->Length;
1837 p = output->Data;
1838 if (!EVP_SignFinal(&ctx, p, (uint32_t *)&len, pkey)) {
1839 SET_ERROR(kmfh, ERR_get_error());
1840 len = 0;
1841 ret = KMF_ERR_INTERNAL;
1842 }
1843 output->Length = len;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 29

1844 (void) EVP_MD_CTX_cleanup(&ctx);
1845 }
1846 } else if (key->keyalg == KMF_DSA) {
1847 DSA *dsa = EVP_PKEY_get1_DSA(key->keyp);

1849 uchar_t hash[EVP_MAX_MD_SIZE];
1850 uint32_t hashlen;
1851 DSA_SIG *dsasig;

1853 if (AlgId == KMF_ALGID_DSA ||
1854 AlgId == KMF_ALGID_SHA1WithDSA)
1855 md = EVP_sha1();
1856 else if (AlgId == KMF_ALGID_SHA256WithDSA)
1857 md = EVP_sha256();
1858 else /* Bad algorithm */
1859 return (KMF_ERR_BAD_ALGORITHM);

1861 /*
1862 * OpenSSL EVP_Sign operation automatically converts to
1863 * ASN.1 output so we do the operations separately so we
1864 * are assured of NOT getting ASN.1 output returned.
1865 * KMF does not want ASN.1 encoded results because
1866 * not all mechanisms return ASN.1 encodings (PKCS#11
1867 * and NSS return raw signature data).
1868 */
1869 EVP_MD_CTX_init(&ctx);
1870 (void) EVP_DigestInit_ex(&ctx, md, NULL);
1871 (void) EVP_DigestUpdate(&ctx, tobesigned->Data,
1872 tobesigned->Length);
1873 (void) EVP_DigestFinal_ex(&ctx, hash, &hashlen);

1875 /* Only sign first 20 bytes for SHA2 */
1876 if (AlgId == KMF_ALGID_SHA256WithDSA)
1877 hashlen = 20;
1878 dsasig = DSA_do_sign(hash, hashlen, dsa);
1879 if (dsasig != NULL) {
1880 int i;
1881 output->Length = i = fixbnlen(dsasig->r, output->Data,
1882 hashlen);

1884 output->Length += fixbnlen(dsasig->s, &output->Data[i],
1885 hashlen);

1887 DSA_SIG_free(dsasig);
1888 } else {
1889 SET_ERROR(kmfh, ERR_get_error());
1890 }
1891 (void) EVP_MD_CTX_cleanup(&ctx);
1892 } else {
1893 return (KMF_ERR_BAD_PARAMETER);
1894 }
1895 cleanup:
1896 return (ret);
1897 }

1899 KMF_RETURN
1900 /*ARGSUSED*/
1901 OpenSSL_DeleteKey(KMF_HANDLE_T handle,
1902 int numattr, KMF_ATTRIBUTE *attrlist)
1903 {
1904 KMF_RETURN rv = KMF_OK;
1905 KMF_KEY_HANDLE *key;
1906 boolean_t destroy = B_TRUE;

1908 key = kmf_get_attr_ptr(KMF_KEY_HANDLE_ATTR, attrlist, numattr);
1909 if (key == NULL || key->keyp == NULL)

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 30

1910 return (KMF_ERR_BAD_PARAMETER);

1912 rv = kmf_get_attr(KMF_DESTROY_BOOL_ATTR, attrlist, numattr,
1913 (void *)&destroy, NULL);
1914 if (rv != KMF_OK) {
1915 /* "destroy" is optional. Default is TRUE */
1916 rv = KMF_OK;
1917 }

1919 if (key->keyclass != KMF_ASYM_PUB &&
1920 key->keyclass != KMF_ASYM_PRI &&
1921 key->keyclass != KMF_SYMMETRIC)
1922 return (KMF_ERR_BAD_KEY_CLASS);

1924 if (key->keyclass == KMF_SYMMETRIC) {
1925 kmf_free_raw_sym_key((KMF_RAW_SYM_KEY *)key->keyp);
1926 key->keyp = NULL;
1927 } else {
1928 if (key->keyp != NULL) {
1929 EVP_PKEY_free(key->keyp);
1930 key->keyp = NULL;
1931 }
1932 }

1934 if (key->keylabel != NULL) {
1935 EVP_PKEY *pkey = NULL;
1936 /* If the file exists, make sure it is a proper key. */
1937 pkey = openssl_load_key(handle, key->keylabel);
1938 if (pkey == NULL) {
1939 if (key->keylabel != NULL) {
1940 free(key->keylabel);
1941 key->keylabel = NULL;
1942 }
1943 return (KMF_ERR_KEY_NOT_FOUND);
1944 }
1945 EVP_PKEY_free(pkey);

1947 if (destroy) {
1948 if (unlink(key->keylabel) != 0) {
1949 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
1950 SET_SYS_ERROR(kmfh, errno);
1951 rv = KMF_ERR_INTERNAL;
1952 }
1953 }
1954 if (key->keylabel != NULL) {
1955 free(key->keylabel);
1956 key->keylabel = NULL;
1957 }
1958 }
1959 return (rv);
1960 }

1962 KMF_RETURN
1963 OpenSSL_GetErrorString(KMF_HANDLE_T handle, char **msgstr)
1964 {
1965 KMF_RETURN ret = KMF_OK;
1966 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
1967 char str[256]; /* OpenSSL needs at least 120 byte buffer */

1969 ERR_error_string_n(kmfh->lasterr.errcode, str, sizeof (str));
1970 if (strlen(str)) {
1971 *msgstr = (char *)strdup(str);
1972 if ((*msgstr) == NULL)
1973 ret = KMF_ERR_MEMORY;
1974 } else {
1975 *msgstr = NULL;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 31

1976 }

1978 return (ret);
1979 }

1981 static int
1982 ext2NID(int kmfext)
1983 {
1984 switch (kmfext) {
1985 case KMF_X509_EXT_KEY_USAGE:
1986 return (NID_key_usage);
1987 case KMF_X509_EXT_PRIV_KEY_USAGE_PERIOD:
1988 return (NID_private_key_usage_period);
1989 case KMF_X509_EXT_CERT_POLICIES:
1990 return (NID_certificate_policies);
1991 case KMF_X509_EXT_SUBJ_ALTNAME:
1992 return (NID_subject_alt_name);
1993 case KMF_X509_EXT_ISSUER_ALTNAME:
1994 return (NID_issuer_alt_name);
1995 case KMF_X509_EXT_BASIC_CONSTRAINTS:
1996 return (NID_basic_constraints);
1997 case KMF_X509_EXT_EXT_KEY_USAGE:
1998 return (NID_ext_key_usage);
1999 case KMF_X509_EXT_AUTH_KEY_ID:
2000 return (NID_authority_key_identifier);
2001 case KMF_X509_EXT_CRL_DIST_POINTS:
2002 return (NID_crl_distribution_points);
2003 case KMF_X509_EXT_SUBJ_KEY_ID:
2004 return (NID_subject_key_identifier);
2005 case KMF_X509_EXT_POLICY_MAPPINGS:
2006 return (OBJ_sn2nid("policyMappings"));
2007 case KMF_X509_EXT_NAME_CONSTRAINTS:
2008 return (OBJ_sn2nid("nameConstraints"));
2009 case KMF_X509_EXT_POLICY_CONSTRAINTS:
2010 return (OBJ_sn2nid("policyConstraints"));
2011 case KMF_X509_EXT_INHIBIT_ANY_POLICY:
2012 return (OBJ_sn2nid("inhibitAnyPolicy"));
2013 case KMF_X509_EXT_FRESHEST_CRL:
2014 return (OBJ_sn2nid("freshestCRL"));
2015 default:
2016 return (NID_undef);
2017 }
2018 }

2020 KMF_RETURN
2021 OpenSSL_CertGetPrintable(KMF_HANDLE_T handle, const KMF_DATA *pcert,
2022 KMF_PRINTABLE_ITEM flag, char *resultStr)
2023 {
2024 KMF_RETURN ret = KMF_OK;
2025 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
2026 X509 *xcert = NULL;
2027 unsigned char *outbuf = NULL;
2028 unsigned char *outbuf_p;
2029 char *tmpstr = NULL;
2030 int j;
2031 int ext_index, nid, len;
2032 BIO *mem = NULL;
2033 #if OPENSSL_VERSION_NUMBER < 0x10000000L
2034 STACK *emlst = NULL;
2035 #else
2036 STACK_OF(OPENSSL_STRING) *emlst = NULL;
2037 #endif
2038 X509_EXTENSION *ex;
2039 X509_CINF *ci;

2041 if (pcert == NULL || pcert->Data == NULL || pcert->Length == 0) {

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 32

2042 return (KMF_ERR_BAD_PARAMETER);
2043 }

2045 /* copy cert data to outbuf */
2046 outbuf = malloc(pcert->Length);
2047 if (outbuf == NULL) {
2048 return (KMF_ERR_MEMORY);
2049 }
2050 (void) memcpy(outbuf, pcert->Data, pcert->Length);

2052 outbuf_p = outbuf; /* use a temp pointer; required by openssl */
2053 xcert = d2i_X509(NULL, (const uchar_t **)&outbuf_p, pcert->Length);
2054 if (xcert == NULL) {
2055 SET_ERROR(kmfh, ERR_get_error());
2056 ret = KMF_ERR_ENCODING;
2057 goto out;
2058 }

2060 mem = BIO_new(BIO_s_mem());
2061 if (mem == NULL) {
2062 SET_ERROR(kmfh, ERR_get_error());
2063 ret = KMF_ERR_MEMORY;
2064 goto out;
2065 }

2067 switch (flag) {
2068 case KMF_CERT_ISSUER:
2069 (void) X509_NAME_print_ex(mem, X509_get_issuer_name(xcert), 0,
2070 XN_FLAG_SEP_CPLUS_SPC);
2071 len = BIO_gets(mem, resultStr, KMF_CERT_PRINTABLE_LEN);
2072 break;

2074 case KMF_CERT_SUBJECT:
2075 (void) X509_NAME_print_ex(mem, X509_get_subject_name(xcert), 0,
2076 XN_FLAG_SEP_CPLUS_SPC);
2077 len = BIO_gets(mem, resultStr, KMF_CERT_PRINTABLE_LEN);
2078 break;

2080 case KMF_CERT_VERSION:
2081 tmpstr = i2s_ASN1_INTEGER(NULL, xcert->cert_info->version);
2082 (void) strncpy(resultStr, tmpstr, KMF_CERT_PRINTABLE_LEN);
2083 OPENSSL_free(tmpstr);
2084 len = strlen(resultStr);
2085 break;

2087 case KMF_CERT_SERIALNUM:
2088 if (i2a_ASN1_INTEGER(mem, X509_get_serialNumber(xcert)) > 0) {
2089 (void) strcpy(resultStr, "0x");
2090 len = BIO_gets(mem, &resultStr[2],
2091 KMF_CERT_PRINTABLE_LEN - 2);
2092 }
2093 break;

2095 case KMF_CERT_NOTBEFORE:
2096 (void) ASN1_TIME_print(mem, X509_get_notBefore(xcert));
2097 len = BIO_gets(mem, resultStr, KMF_CERT_PRINTABLE_LEN);
2098 break;

2100 case KMF_CERT_NOTAFTER:
2101 (void) ASN1_TIME_print(mem, X509_get_notAfter(xcert));
2102 len = BIO_gets(mem, resultStr, KMF_CERT_PRINTABLE_LEN);
2103 break;

2105 case KMF_CERT_PUBKEY_DATA:
2106 {
2107 EVP_PKEY *pkey = X509_get_pubkey(xcert);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 33

2108 if (pkey == NULL) {
2109 SET_ERROR(kmfh, ERR_get_error());
2110 ret = KMF_ERR_ENCODING;
2111 goto out;
2112 }

2114 if (pkey->type == EVP_PKEY_RSA) {
2115 (void) BIO_printf(mem,
2116 "RSA Public Key: (%d bit)\n",
2117 BN_num_bits(pkey->pkey.rsa->n));
2118 (void) RSA_print(mem, pkey->pkey.rsa, 0);
2119 } else if (pkey->type == EVP_PKEY_DSA) {
2120 (void) BIO_printf(mem,
2121 "%12sDSA Public Key:\n", "");
2122 (void) DSA_print(mem, pkey->pkey.dsa, 0);
2123 } else {
2124 (void) BIO_printf(mem,
2125 "%12sUnknown Public Key:\n", "");
2126 }
2127 (void) BIO_printf(mem, "\n");
2128 EVP_PKEY_free(pkey);
2129 }
2130 len = BIO_read(mem, resultStr, KMF_CERT_PRINTABLE_LEN);
2131 break;
2132 case KMF_CERT_SIGNATURE_ALG:
2133 case KMF_CERT_PUBKEY_ALG:
2134 if (flag == KMF_CERT_SIGNATURE_ALG) {
2135 len = i2a_ASN1_OBJECT(mem,
2136 xcert->sig_alg->algorithm);
2137 } else {
2138 len = i2a_ASN1_OBJECT(mem,
2139 xcert->cert_info->key->algor->algorithm);
2140 }

2142 if (len > 0) {
2143 len = BIO_read(mem, resultStr,
2144 KMF_CERT_PRINTABLE_LEN);
2145 }
2146 break;

2148 case KMF_CERT_EMAIL:
2149 emlst = X509_get1_email(xcert);
2150 #if OPENSSL_VERSION_NUMBER < 0x10000000L
2151 for (j = 0; j < sk_num(emlst); j++)
2152 (void) BIO_printf(mem, "%s\n", sk_value(emlst, j));
2153 #else
2154 for (j = 0; j < sk_OPENSSL_STRING_num(emlst); j++)
2155 (void) BIO_printf(mem, "%s\n",
2156 sk_OPENSSL_STRING_value(emlst, j));
2157 #endif

2159 len = BIO_gets(mem, resultStr, KMF_CERT_PRINTABLE_LEN);
2160 X509_email_free(emlst);
2161 break;
2162 case KMF_X509_EXT_ISSUER_ALTNAME:
2163 case KMF_X509_EXT_SUBJ_ALTNAME:
2164 case KMF_X509_EXT_KEY_USAGE:
2165 case KMF_X509_EXT_PRIV_KEY_USAGE_PERIOD:
2166 case KMF_X509_EXT_CERT_POLICIES:
2167 case KMF_X509_EXT_BASIC_CONSTRAINTS:
2168 case KMF_X509_EXT_NAME_CONSTRAINTS:
2169 case KMF_X509_EXT_POLICY_CONSTRAINTS:
2170 case KMF_X509_EXT_EXT_KEY_USAGE:
2171 case KMF_X509_EXT_INHIBIT_ANY_POLICY:
2172 case KMF_X509_EXT_AUTH_KEY_ID:
2173 case KMF_X509_EXT_SUBJ_KEY_ID:

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 34

2174 case KMF_X509_EXT_POLICY_MAPPINGS:
2175 case KMF_X509_EXT_CRL_DIST_POINTS:
2176 case KMF_X509_EXT_FRESHEST_CRL:
2177 nid = ext2NID(flag);
2178 if (nid == NID_undef) {
2179 ret = KMF_ERR_EXTENSION_NOT_FOUND;
2180 goto out;
2181 }
2182 ci = xcert->cert_info;

2184 ext_index = X509v3_get_ext_by_NID(ci->extensions, nid, -1);
2185 if (ext_index == -1) {
2186 SET_ERROR(kmfh, ERR_get_error());

2188 ret = KMF_ERR_EXTENSION_NOT_FOUND;
2189 goto out;
2190 }
2191 ex = X509v3_get_ext(ci->extensions, ext_index);

2193 (void) i2a_ASN1_OBJECT(mem, X509_EXTENSION_get_object(ex));

2195 if (BIO_printf(mem, ": %s\n",
2196 X509_EXTENSION_get_critical(ex) ? "critical" : "") <= 0) {
2197 SET_ERROR(kmfh, ERR_get_error());
2198 ret = KMF_ERR_ENCODING;
2199 goto out;
2200 }
2201 if (!X509V3_EXT_print(mem, ex, X509V3_EXT_DUMP_UNKNOWN, 4)) {
2202 (void) BIO_printf(mem, "%*s", 4, "");
2203 (void) M_ASN1_OCTET_STRING_print(mem, ex->value);
2204 }
2205 if (BIO_write(mem, "\n", 1) <= 0) {
2206 SET_ERROR(kmfh, ERR_get_error());
2207 ret = KMF_ERR_ENCODING;
2208 goto out;
2209 }
2210 len = BIO_read(mem, resultStr, KMF_CERT_PRINTABLE_LEN);
2211 }
2212 if (len <= 0) {
2213 SET_ERROR(kmfh, ERR_get_error());
2214 ret = KMF_ERR_ENCODING;
2215 }

2217 out:
2218 if (outbuf != NULL) {
2219 free(outbuf);
2220 }

2222 if (xcert != NULL) {
2223 X509_free(xcert);
2224 }

2226 if (mem != NULL) {
2227 (void) BIO_free(mem);
2228 }

2230 return (ret);
2231 }

2233 KMF_RETURN
2234 /*ARGSUSED*/
2235 OpenSSL_FindPrikeyByCert(KMF_HANDLE_T handle, int numattr,
2236 KMF_ATTRIBUTE *attrlist)
2237 {
2238 KMF_RETURN rv = KMF_OK;
2239 KMF_KEYSTORE_TYPE kstype = KMF_KEYSTORE_OPENSSL;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 35

2240 KMF_KEY_CLASS keyclass = KMF_ASYM_PRI;
2241 KMF_KEY_HANDLE *key = NULL;
2242 uint32_t numkeys = 1; /* 1 key only */
2243 char *dirpath = NULL;
2244 char *keyfile = NULL;
2245 KMF_ATTRIBUTE new_attrlist[16];
2246 int i = 0;

2248 /*
2249 * This is really just a FindKey operation, reuse the
2250 * FindKey function.
2251 */
2252 kmf_set_attr_at_index(new_attrlist, i,
2253 KMF_KEYSTORE_TYPE_ATTR, &kstype, sizeof (kstype));
2254 i++;

2256 kmf_set_attr_at_index(new_attrlist, i,
2257 KMF_COUNT_ATTR, &numkeys, sizeof (uint32_t));
2258 i++;

2260 kmf_set_attr_at_index(new_attrlist, i,
2261 KMF_KEYCLASS_ATTR, &keyclass, sizeof (keyclass));
2262 i++;

2264 key = kmf_get_attr_ptr(KMF_KEY_HANDLE_ATTR, attrlist, numattr);
2265 if (key == NULL) {
2266 return (KMF_ERR_BAD_PARAMETER);
2267 } else {
2268 kmf_set_attr_at_index(new_attrlist, i,
2269 KMF_KEY_HANDLE_ATTR, key, sizeof (KMF_KEY_HANDLE));
2270 i++;
2271 }

2273 dirpath = kmf_get_attr_ptr(KMF_DIRPATH_ATTR, attrlist, numattr);
2274 if (dirpath != NULL) {
2275 kmf_set_attr_at_index(new_attrlist, i,
2276 KMF_DIRPATH_ATTR, dirpath, strlen(dirpath));
2277 i++;
2278 }

2280 keyfile = kmf_get_attr_ptr(KMF_KEY_FILENAME_ATTR, attrlist, numattr);
2281 if (keyfile == NULL)
2282 return (KMF_ERR_BAD_PARAMETER);
2283 else {
2284 kmf_set_attr_at_index(new_attrlist, i,
2285 KMF_KEY_FILENAME_ATTR, keyfile, strlen(keyfile));
2286 i++;
2287 }

2289 rv = OpenSSL_FindKey(handle, i, new_attrlist);
2290 return (rv);
2291 }

2293 KMF_RETURN
2294 /*ARGSUSED*/
2295 OpenSSL_DecryptData(KMF_HANDLE_T handle, KMF_KEY_HANDLE *key,
2296 KMF_OID *AlgOID, KMF_DATA *ciphertext,
2297 KMF_DATA *output)
2298 {
2299 KMF_RETURN ret = KMF_OK;
2300 RSA *rsa = NULL;
2301 unsigned int in_len = 0, out_len = 0;
2302 unsigned int total_decrypted = 0, modulus_len = 0;
2303 uint8_t *in_data, *out_data;
2304 int i, blocks;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 36

2306 if (key == NULL || AlgOID == NULL ||
2307 ciphertext == NULL || output == NULL ||
2308 ciphertext->Data == NULL ||
2309 output->Data == NULL)
2310 return (KMF_ERR_BAD_PARAMETER);

2312 if (key->keyalg == KMF_RSA) {
2313 rsa = EVP_PKEY_get1_RSA((EVP_PKEY *)key->keyp);
2314 modulus_len = RSA_size(rsa);
2315 } else {
2316 return (KMF_ERR_BAD_PARAMETER);
2317 }

2319 blocks = ciphertext->Length/modulus_len;
2320 out_data = output->Data;
2321 in_data = ciphertext->Data;
2322 out_len = modulus_len - 11;
2323 in_len = modulus_len;

2325 for (i = 0; i < blocks; i++) {
2326 out_len = RSA_private_decrypt(in_len,
2327 in_data, out_data, rsa, RSA_PKCS1_PADDING);

2329 if (out_len == 0) {
2330 ret = KMF_ERR_INTERNAL;
2331 goto cleanup;
2332 }

2334 out_data += out_len;
2335 total_decrypted += out_len;
2336 in_data += in_len;
2337 }

2339 output->Length = total_decrypted;

2341 cleanup:
2342 RSA_free(rsa);
2343 if (ret != KMF_OK)
2344 output->Length = 0;

2346 return (ret);

2348 }

2350 /*
2351 * This function will create a certid from issuer_cert and user_cert.
2352 * The caller should use OCSP_CERTID_free(OCSP_CERTID *) to deallocate
2353 * certid memory after use.
2354 */
2355 static KMF_RETURN
2356 create_certid(KMF_HANDLE_T handle, const KMF_DATA *issuer_cert,
2357 const KMF_DATA *user_cert, OCSP_CERTID **certid)
2358 {
2359 KMF_RETURN ret = KMF_OK;
2360 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
2361 X509 *issuer = NULL;
2362 X509 *cert = NULL;
2363 unsigned char *ptmp;

2365 if (issuer_cert == NULL || user_cert == NULL) {
2366 return (KMF_ERR_BAD_PARAMETER);
2367 }

2369 /* convert the DER-encoded issuer cert to an internal X509 */
2370 ptmp = issuer_cert->Data;
2371 issuer = d2i_X509(NULL, (const uchar_t **)&ptmp,

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 37

2372 issuer_cert->Length);
2373 if (issuer == NULL) {
2374 SET_ERROR(kmfh, ERR_get_error());
2375 ret = KMF_ERR_OCSP_BAD_ISSUER;
2376 goto end;
2377 }

2379 /* convert the DER-encoded user cert to an internal X509 */
2380 ptmp = user_cert->Data;
2381 cert = d2i_X509(NULL, (const uchar_t **)&ptmp,
2382 user_cert->Length);
2383 if (cert == NULL) {
2384 SET_ERROR(kmfh, ERR_get_error());

2386 ret = KMF_ERR_OCSP_BAD_CERT;
2387 goto end;
2388 }

2390 /* create a CERTID */
2391 *certid = OCSP_cert_to_id(NULL, cert, issuer);
2392 if (*certid == NULL) {
2393 SET_ERROR(kmfh, ERR_get_error());
2394 ret = KMF_ERR_OCSP_CERTID;
2395 goto end;
2396 }

2398 end:
2399 if (issuer != NULL) {
2400 X509_free(issuer);
2401 }

2403 if (cert != NULL) {
2404 X509_free(cert);
2405 }

2407 return (ret);
2408 }

2410 KMF_RETURN
2411 OpenSSL_CreateOCSPRequest(KMF_HANDLE_T handle,
2412 int numattr, KMF_ATTRIBUTE *attrlist)
2413 {
2414 KMF_RETURN ret = KMF_OK;
2415 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
2416 OCSP_CERTID *id = NULL;
2417 OCSP_REQUEST *req = NULL;
2418 BIO *derbio = NULL;
2419 char *reqfile;
2420 KMF_DATA *issuer_cert;
2421 KMF_DATA *user_cert;

2423 user_cert = kmf_get_attr_ptr(KMF_USER_CERT_DATA_ATTR,
2424 attrlist, numattr);
2425 if (user_cert == NULL)
2426 return (KMF_ERR_BAD_PARAMETER);

2428 issuer_cert = kmf_get_attr_ptr(KMF_ISSUER_CERT_DATA_ATTR,
2429 attrlist, numattr);
2430 if (issuer_cert == NULL)
2431 return (KMF_ERR_BAD_PARAMETER);

2433 reqfile = kmf_get_attr_ptr(KMF_OCSP_REQUEST_FILENAME_ATTR,
2434 attrlist, numattr);
2435 if (reqfile == NULL)
2436 return (KMF_ERR_BAD_PARAMETER);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 38

2438 ret = create_certid(handle, issuer_cert, user_cert, &id);
2439 if (ret != KMF_OK) {
2440 return (ret);
2441 }

2443 /* Create an OCSP request */
2444 req = OCSP_REQUEST_new();
2445 if (req == NULL) {
2446 SET_ERROR(kmfh, ERR_get_error());
2447 ret = KMF_ERR_OCSP_CREATE_REQUEST;
2448 goto end;
2449 }

2451 if (!OCSP_request_add0_id(req, id)) {
2452 ret = KMF_ERR_OCSP_CREATE_REQUEST;
2453 goto end;
2454 }

2456 /* Write the request to the output file with DER encoding */
2457 derbio = BIO_new_file(reqfile, "wb");
2458 if (!derbio) {
2459 SET_ERROR(kmfh, ERR_get_error());
2460 ret = KMF_ERR_OPEN_FILE;
2461 goto end;
2462 }
2463 if (i2d_OCSP_REQUEST_bio(derbio, req) <= 0) {
2464 ret = KMF_ERR_ENCODING;
2465 }

2467 end:
2468 /*
2469 * We don’t need to free "id" explicitely, because OCSP_REQUEST_free()
2470 * will also deallocate certid’s space.
2471 */
2472 if (req != NULL) {
2473 OCSP_REQUEST_free(req);
2474 }

2476 if (derbio != NULL) {
2477 (void) BIO_free(derbio);
2478 }

2480 return (ret);
2481 }

2483 /* ocsp_find_signer_sk() is copied from openssl source */
2484 static X509 *ocsp_find_signer_sk(STACK_OF(X509) *certs, OCSP_RESPID *id)
2485 {
2486 int i;
2487 unsigned char tmphash[SHA_DIGEST_LENGTH], *keyhash;

2489 /* Easy if lookup by name */
2490 if (id->type == V_OCSP_RESPID_NAME)
2491 return (X509_find_by_subject(certs, id->value.byName));

2493 /* Lookup by key hash */

2495 /* If key hash isn’t SHA1 length then forget it */
2496 if (id->value.byKey->length != SHA_DIGEST_LENGTH)
2497 return (NULL);

2499 keyhash = id->value.byKey->data;
2500 /* Calculate hash of each key and compare */
2501 for (i = 0; i < sk_X509_num(certs); i++) {
2502 X509 *x = sk_X509_value(certs, i);
2503 /* Use pubkey_digest to get the key ID value */

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 39

2504 (void) X509_pubkey_digest(x, EVP_sha1(), tmphash, NULL);
2505 if (!memcmp(keyhash, tmphash, SHA_DIGEST_LENGTH))
2506 return (x);
2507 }
2508 return (NULL);
2509 }

2511 /* ocsp_find_signer() is copied from openssl source */
2512 /* ARGSUSED2 */
2513 static int
2514 ocsp_find_signer(X509 **psigner, OCSP_BASICRESP *bs, STACK_OF(X509) *certs,
2515 X509_STORE *st, unsigned long flags)
2516 {
2517 X509 *signer;
2518 OCSP_RESPID *rid = bs->tbsResponseData->responderId;
2519 if ((signer = ocsp_find_signer_sk(certs, rid))) {
2520 *psigner = signer;
2521 return (2);
2522 }
2523 if (!(flags & OCSP_NOINTERN) &&
2524 (signer = ocsp_find_signer_sk(bs->certs, rid))) {
2525 *psigner = signer;
2526 return (1);
2527 }
2528 /* Maybe lookup from store if by subject name */

2530 *psigner = NULL;
2531 return (0);
2532 }

2534 /*
2535 * This function will verify the signature of a basic response, using
2536 * the public key from the OCSP responder certificate.
2537 */
2538 static KMF_RETURN
2539 check_response_signature(KMF_HANDLE_T handle, OCSP_BASICRESP *bs,
2540 KMF_DATA *signer_cert, KMF_DATA *issuer_cert)
2541 {
2542 KMF_RETURN ret = KMF_OK;
2543 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
2544 STACK_OF(X509) *cert_stack = NULL;
2545 X509 *signer = NULL;
2546 X509 *issuer = NULL;
2547 EVP_PKEY *skey = NULL;
2548 unsigned char *ptmp;

2551 if (bs == NULL || issuer_cert == NULL)
2552 return (KMF_ERR_BAD_PARAMETER);

2554 /*
2555 * Find the certificate that signed the basic response.
2556 *
2557 * If signer_cert is not NULL, we will use that as the signer cert.
2558 * Otherwise, we will check if the issuer cert is actually the signer.
2559 * If we still do not find a signer, we will look for it from the
2560 * certificate list came with the response file.
2561 */
2562 if (signer_cert != NULL) {
2563 ptmp = signer_cert->Data;
2564 signer = d2i_X509(NULL, (const uchar_t **)&ptmp,
2565 signer_cert->Length);
2566 if (signer == NULL) {
2567 SET_ERROR(kmfh, ERR_get_error());
2568 ret = KMF_ERR_OCSP_BAD_SIGNER;
2569 goto end;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 40

2570 }
2571 } else {
2572 /*
2573 * Convert the issuer cert into X509 and push it into a
2574 * stack to be used by ocsp_find_signer().
2575 */
2576 ptmp = issuer_cert->Data;
2577 issuer = d2i_X509(NULL, (const uchar_t **)&ptmp,
2578 issuer_cert->Length);
2579 if (issuer == NULL) {
2580 SET_ERROR(kmfh, ERR_get_error());
2581 ret = KMF_ERR_OCSP_BAD_ISSUER;
2582 goto end;
2583 }

2585 if ((cert_stack = sk_X509_new_null()) == NULL) {
2586 ret = KMF_ERR_INTERNAL;
2587 goto end;
2588 }

2590 if (sk_X509_push(cert_stack, issuer) == NULL) {
2591 ret = KMF_ERR_INTERNAL;
2592 goto end;
2593 }

2595 ret = ocsp_find_signer(&signer, bs, cert_stack, NULL, 0);
2596 if (!ret) {
2597 /* can not find the signer */
2598 ret = KMF_ERR_OCSP_BAD_SIGNER;
2599 goto end;
2600 }
2601 }

2603 /* Verify the signature of the response */
2604 skey = X509_get_pubkey(signer);
2605 if (skey == NULL) {
2606 ret = KMF_ERR_OCSP_BAD_SIGNER;
2607 goto end;
2608 }

2610 ret = OCSP_BASICRESP_verify(bs, skey, 0);
2611 if (ret == 0) {
2612 ret = KMF_ERR_OCSP_RESPONSE_SIGNATURE;
2613 goto end;
2614 }

2616 end:
2617 if (issuer != NULL) {
2618 X509_free(issuer);
2619 }

2621 if (signer != NULL) {
2622 X509_free(signer);
2623 }

2625 if (skey != NULL) {
2626 EVP_PKEY_free(skey);
2627 }

2629 if (cert_stack != NULL) {
2630 sk_X509_free(cert_stack);
2631 }

2633 return (ret);
2634 }

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 41

2638 KMF_RETURN
2639 OpenSSL_GetOCSPStatusForCert(KMF_HANDLE_T handle,
2640 int numattr, KMF_ATTRIBUTE *attrlist)
2641 {
2642 KMF_RETURN ret = KMF_OK;
2643 BIO *derbio = NULL;
2644 OCSP_RESPONSE *resp = NULL;
2645 OCSP_BASICRESP *bs = NULL;
2646 OCSP_CERTID *id = NULL;
2647 OCSP_SINGLERESP *single = NULL;
2648 ASN1_GENERALIZEDTIME *rev, *thisupd, *nextupd;
2649 int index, status, reason;
2650 KMF_DATA *issuer_cert;
2651 KMF_DATA *user_cert;
2652 KMF_DATA *signer_cert;
2653 KMF_DATA *response;
2654 int *response_reason, *response_status, *cert_status;
2655 boolean_t ignore_response_sign = B_FALSE; /* default is FALSE */
2656 uint32_t response_lifetime;

2658 issuer_cert = kmf_get_attr_ptr(KMF_ISSUER_CERT_DATA_ATTR,
2659 attrlist, numattr);
2660 if (issuer_cert == NULL)
2661 return (KMF_ERR_BAD_PARAMETER);

2663 user_cert = kmf_get_attr_ptr(KMF_USER_CERT_DATA_ATTR,
2664 attrlist, numattr);
2665 if (user_cert == NULL)
2666 return (KMF_ERR_BAD_PARAMETER);

2668 response = kmf_get_attr_ptr(KMF_OCSP_RESPONSE_DATA_ATTR,
2669 attrlist, numattr);
2670 if (response == NULL)
2671 return (KMF_ERR_BAD_PARAMETER);

2673 response_status = kmf_get_attr_ptr(KMF_OCSP_RESPONSE_STATUS_ATTR,
2674 attrlist, numattr);
2675 if (response_status == NULL)
2676 return (KMF_ERR_BAD_PARAMETER);

2678 response_reason = kmf_get_attr_ptr(KMF_OCSP_RESPONSE_REASON_ATTR,
2679 attrlist, numattr);
2680 if (response_reason == NULL)
2681 return (KMF_ERR_BAD_PARAMETER);

2683 cert_status = kmf_get_attr_ptr(KMF_OCSP_RESPONSE_CERT_STATUS_ATTR,
2684 attrlist, numattr);
2685 if (cert_status == NULL)
2686 return (KMF_ERR_BAD_PARAMETER);

2688 /* Read in the response */
2689 derbio = BIO_new_mem_buf(response->Data, response->Length);
2690 if (!derbio) {
2691 ret = KMF_ERR_MEMORY;
2692 return (ret);
2693 }

2695 resp = d2i_OCSP_RESPONSE_bio(derbio, NULL);
2696 if (resp == NULL) {
2697 ret = KMF_ERR_OCSP_MALFORMED_RESPONSE;
2698 goto end;
2699 }

2701 /* Check the response status */

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 42

2702 status = OCSP_response_status(resp);
2703 *response_status = status;
2704 if (status != OCSP_RESPONSE_STATUS_SUCCESSFUL) {
2705 ret = KMF_ERR_OCSP_RESPONSE_STATUS;
2706 goto end;
2707 }

2709 #ifdef DEBUG
2710 printf("Successfully checked the response file status.\n");
2711 #endif /* DEBUG */

2713 /* Extract basic response */
2714 bs = OCSP_response_get1_basic(resp);
2715 if (bs == NULL) {
2716 ret = KMF_ERR_OCSP_NO_BASIC_RESPONSE;
2717 goto end;
2718 }

2720 #ifdef DEBUG
2721 printf("Successfully retrieved the basic response.\n");
2722 #endif /* DEBUG */

2724 /* Check the basic response signature if required */
2725 ret = kmf_get_attr(KMF_IGNORE_RESPONSE_SIGN_ATTR, attrlist, numattr,
2726 (void *)&ignore_response_sign, NULL);
2727 if (ret != KMF_OK)
2728 ret = KMF_OK;

2730 signer_cert = kmf_get_attr_ptr(KMF_SIGNER_CERT_DATA_ATTR,
2731 attrlist, numattr);

2733 if (ignore_response_sign == B_FALSE) {
2734 ret = check_response_signature(handle, bs,
2735 signer_cert, issuer_cert);
2736 if (ret != KMF_OK)
2737 goto end;
2738 }

2740 #ifdef DEBUG
2741 printf("Successfully verified the response signature.\n");
2742 #endif /* DEBUG */

2744 /* Create a certid for the certificate in question */
2745 ret = create_certid(handle, issuer_cert, user_cert, &id);
2746 if (ret != KMF_OK) {
2747 ret = KMF_ERR_OCSP_CERTID;
2748 goto end;
2749 }

2751 #ifdef DEBUG
2752 printf("successfully created a certid for the cert.\n");
2753 #endif /* DEBUG */

2755 /* Find the index of the single response for the certid */
2756 index = OCSP_resp_find(bs, id, -1);
2757 if (index < 0) {
2758 /* cound not find this certificate in the response */
2759 ret = KMF_ERR_OCSP_UNKNOWN_CERT;
2760 goto end;
2761 }

2763 #ifdef DEBUG
2764 printf("Successfully found the single response index for the cert.\n");
2765 #endif /* DEBUG */

2767 /* Retrieve the single response and get the cert status */

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 43

2768 single = OCSP_resp_get0(bs, index);
2769 status = OCSP_single_get0_status(single, &reason, &rev, &thisupd,
2770 &nextupd);
2771 if (status == V_OCSP_CERTSTATUS_GOOD) {
2772 *cert_status = OCSP_GOOD;
2773 } else if (status == V_OCSP_CERTSTATUS_UNKNOWN) {
2774 *cert_status = OCSP_UNKNOWN;
2775 } else { /* revoked */
2776 *cert_status = OCSP_REVOKED;
2777 *response_reason = reason;
2778 }
2779 ret = KMF_OK;

2781 /* resp. time is optional, so we don’t care about the return code. */
2782 (void) kmf_get_attr(KMF_RESPONSE_LIFETIME_ATTR, attrlist, numattr,
2783 (void *)&response_lifetime, NULL);

2785 if (!OCSP_check_validity(thisupd, nextupd, 300,
2786 response_lifetime)) {
2787 ret = KMF_ERR_OCSP_STATUS_TIME_INVALID;
2788 goto end;
2789 }

2791 #ifdef DEBUG
2792 printf("Successfully verify the time.\n");
2793 #endif /* DEBUG */

2795 end:
2796 if (derbio != NULL)
2797 (void) BIO_free(derbio);

2799 if (resp != NULL)
2800 OCSP_RESPONSE_free(resp);

2802 if (bs != NULL)
2803 OCSP_BASICRESP_free(bs);

2805 if (id != NULL)
2806 OCSP_CERTID_free(id);

2808 return (ret);
2809 }

2811 static KMF_RETURN
2812 fetch_key(KMF_HANDLE_T handle, char *path,
2813 KMF_KEY_CLASS keyclass, KMF_KEY_HANDLE *key)
2814 {
2815 KMF_RETURN rv = KMF_OK;
2816 EVP_PKEY *pkey = NULL;
2817 KMF_RAW_SYM_KEY *rkey = NULL;

2819 if (keyclass == KMF_ASYM_PRI ||
2820 keyclass == KMF_ASYM_PUB) {
2821 pkey = openssl_load_key(handle, path);
2822 if (pkey == NULL) {
2823 return (KMF_ERR_KEY_NOT_FOUND);
2824 }
2825 if (key != NULL) {
2826 if (pkey->type == EVP_PKEY_RSA)
2827 key->keyalg = KMF_RSA;
2828 else if (pkey->type == EVP_PKEY_DSA)
2829 key->keyalg = KMF_DSA;

2831 key->kstype = KMF_KEYSTORE_OPENSSL;
2832 key->keyclass = keyclass;
2833 key->keyp = (void *)pkey;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 44

2834 key->israw = FALSE;
2835 if (path != NULL &&
2836 ((key->keylabel = strdup(path)) == NULL)) {
2837 EVP_PKEY_free(pkey);
2838 return (KMF_ERR_MEMORY);
2839 }
2840 } else {
2841 EVP_PKEY_free(pkey);
2842 pkey = NULL;
2843 }
2844 } else if (keyclass == KMF_SYMMETRIC) {
2845 KMF_ENCODE_FORMAT fmt;
2846 /*
2847 * If the file is a recognized format,
2848 * then it is NOT a symmetric key.
2849 */
2850 rv = kmf_get_file_format(path, &fmt);
2851 if (rv == KMF_OK || fmt != 0) {
2852 return (KMF_ERR_KEY_NOT_FOUND);
2853 } else if (rv == KMF_ERR_ENCODING) {
2854 /*
2855 * If we don’t know the encoding,
2856 * it is probably a symmetric key.
2857 */
2858 rv = KMF_OK;
2859 } else if (rv == KMF_ERR_OPEN_FILE) {
2860 return (KMF_ERR_KEY_NOT_FOUND);
2861 }

2863 if (key != NULL) {
2864 KMF_DATA keyvalue;
2865 rkey = malloc(sizeof (KMF_RAW_SYM_KEY));
2866 if (rkey == NULL) {
2867 rv = KMF_ERR_MEMORY;
2868 goto out;
2869 }

2871 (void) memset(rkey, 0, sizeof (KMF_RAW_SYM_KEY));
2872 rv = kmf_read_input_file(handle, path, &keyvalue);
2873 if (rv != KMF_OK)
2874 goto out;

2876 rkey->keydata.len = keyvalue.Length;
2877 rkey->keydata.val = keyvalue.Data;

2879 key->kstype = KMF_KEYSTORE_OPENSSL;
2880 key->keyclass = keyclass;
2881 key->israw = TRUE;
2882 key->keyp = (void *)rkey;
2883 if (path != NULL &&
2884 ((key->keylabel = strdup(path)) == NULL)) {
2885 rv = KMF_ERR_MEMORY;
2886 }
2887 }
2888 }
2889 out:
2890 if (rv != KMF_OK) {
2891 if (rkey != NULL) {
2892 kmf_free_raw_sym_key(rkey);
2893 }
2894 if (pkey != NULL)
2895 EVP_PKEY_free(pkey);

2897 if (key != NULL) {
2898 key->keyalg = KMF_KEYALG_NONE;
2899 key->keyclass = KMF_KEYCLASS_NONE;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 45

2900 key->keyp = NULL;
2901 }
2902 }

2904 return (rv);
2905 }

2907 KMF_RETURN
2908 OpenSSL_FindKey(KMF_HANDLE_T handle,
2909 int numattr, KMF_ATTRIBUTE *attrlist)
2910 {
2911 KMF_RETURN rv = KMF_OK;
2912 char *fullpath = NULL;
2913 uint32_t maxkeys;
2914 KMF_KEY_HANDLE *key;
2915 uint32_t *numkeys;
2916 KMF_KEY_CLASS keyclass;
2917 KMF_RAW_KEY_DATA *rawkey;
2918 char *dirpath;
2919 char *keyfile;

2921 if (handle == NULL)
2922 return (KMF_ERR_BAD_PARAMETER);

2924 numkeys = kmf_get_attr_ptr(KMF_COUNT_ATTR, attrlist, numattr);
2925 if (numkeys == NULL)
2926 return (KMF_ERR_BAD_PARAMETER);

2928 rv = kmf_get_attr(KMF_KEYCLASS_ATTR, attrlist, numattr,
2929 (void *)&keyclass, NULL);
2930 if (rv != KMF_OK)
2931 return (KMF_ERR_BAD_PARAMETER);

2933 if (keyclass != KMF_ASYM_PUB &&
2934 keyclass != KMF_ASYM_PRI &&
2935 keyclass != KMF_SYMMETRIC)
2936 return (KMF_ERR_BAD_KEY_CLASS);

2938 dirpath = kmf_get_attr_ptr(KMF_DIRPATH_ATTR, attrlist, numattr);
2939 keyfile = kmf_get_attr_ptr(KMF_KEY_FILENAME_ATTR, attrlist, numattr);

2941 fullpath = get_fullpath(dirpath, keyfile);

2943 if (fullpath == NULL)
2944 return (KMF_ERR_BAD_PARAMETER);

2946 maxkeys = *numkeys;
2947 if (maxkeys == 0)
2948 maxkeys = 0xFFFFFFFF;
2949 *numkeys = 0;

2951 key = kmf_get_attr_ptr(KMF_KEY_HANDLE_ATTR, attrlist, numattr);
2952 /* it is okay to have "keys" contains NULL */

2954 /*
2955 * The caller may want a list of the raw key data as well.
2956 * Useful for importing keys from a file into other keystores.
2957 */
2958 rawkey = kmf_get_attr_ptr(KMF_RAW_KEY_ATTR, attrlist, numattr);

2960 if (isdir(fullpath)) {
2961 DIR *dirp;
2962 struct dirent *dp;
2963 int n = 0;

2965 /* open all files in the directory and attempt to read them */

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 46

2966 if ((dirp = opendir(fullpath)) == NULL) {
2967 return (KMF_ERR_BAD_PARAMETER);
2968 }
2969 rewinddir(dirp);
2970 while ((dp = readdir(dirp)) != NULL && n < maxkeys) {
2971 if (strcmp(dp->d_name, ".") &&
2972 strcmp(dp->d_name, "..")) {
2973 char *fname;

2975 fname = get_fullpath(fullpath,
2976 (char *)&dp->d_name);

2978 rv = fetch_key(handle, fname,
2979 keyclass, key ? &key[n] : NULL);

2981 if (rv == KMF_OK) {
2982 if (key != NULL && rawkey != NULL)
2983 rv = convertToRawKey(
2984 key[n].keyp, &rawkey[n]);
2985 n++;
2986 }

2988 if (rv != KMF_OK || key == NULL)
2989 free(fname);
2990 }
2991 }
2992 (void) closedir(dirp);
2993 free(fullpath);
2994 (*numkeys) = n;
2995 } else {
2996 rv = fetch_key(handle, fullpath, keyclass, key);
2997 if (rv == KMF_OK)
2998 (*numkeys) = 1;

3000 if (rv != KMF_OK || key == NULL)
3001 free(fullpath);

3003 if (rv == KMF_OK && key != NULL && rawkey != NULL) {
3004 rv = convertToRawKey(key->keyp, rawkey);
3005 }
3006 }

3008 if (rv == KMF_OK && (*numkeys) == 0)
3009 rv = KMF_ERR_KEY_NOT_FOUND;
3010 else if (rv == KMF_ERR_KEY_NOT_FOUND && (*numkeys) > 0)
3011 rv = KMF_OK;

3013 return (rv);
3014 }

3016 #define HANDLE_PK12_ERROR { \
3017 SET_ERROR(kmfh, ERR_get_error()); \
3018 rv = KMF_ERR_ENCODING; \
3019 goto out; \
3020 }

3022 static int
3023 add_alias_to_bag(PKCS12_SAFEBAG *bag, X509 *xcert)
3024 {
3025 if (xcert != NULL && xcert->aux != NULL &&
3026 xcert->aux->alias != NULL) {
3027 if (PKCS12_add_friendlyname_asc(bag,
3028 (const char *)xcert->aux->alias->data,
3029 xcert->aux->alias->length) == 0)
3030 return (0);
3031 }

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 47

3032 return (1);
3033 }

3035 static PKCS7 *
3036 add_cert_to_safe(X509 *sslcert, KMF_CREDENTIAL *cred,
3037 uchar_t *keyid, unsigned int keyidlen)
3038 {
3039 PKCS12_SAFEBAG *bag = NULL;
3040 PKCS7 *cert_authsafe = NULL;
3041 STACK_OF(PKCS12_SAFEBAG) *bag_stack;

3043 bag_stack = sk_PKCS12_SAFEBAG_new_null();
3044 if (bag_stack == NULL)
3045 return (NULL);

3047 /* Convert cert from X509 struct to PKCS#12 bag */
3048 bag = PKCS12_x5092certbag(sslcert);
3049 if (bag == NULL) {
3050 goto out;
3051 }

3053 /* Add the key id to the certificate bag. */
3054 if (keyidlen > 0 && !PKCS12_add_localkeyid(bag, keyid, keyidlen)) {
3055 goto out;
3056 }

3058 if (!add_alias_to_bag(bag, sslcert))
3059 goto out;

3061 /* Pile it on the bag_stack. */
3062 if (!sk_PKCS12_SAFEBAG_push(bag_stack, bag)) {
3063 goto out;
3064 }
3065 /* Turn bag_stack of certs into encrypted authsafe. */
3066 cert_authsafe = PKCS12_pack_p7encdata(
3067 NID_pbe_WithSHA1And40BitRC2_CBC,
3068 cred->cred, cred->credlen, NULL, 0,
3069 PKCS12_DEFAULT_ITER, bag_stack);

3071 out:
3072 if (bag_stack != NULL)
3073 sk_PKCS12_SAFEBAG_pop_free(bag_stack, PKCS12_SAFEBAG_free);

3075 return (cert_authsafe);
3076 }

3078 static PKCS7 *
3079 add_key_to_safe(EVP_PKEY *pkey, KMF_CREDENTIAL *cred,
3080 uchar_t *keyid, unsigned int keyidlen,
3081 char *label, int label_len)
3082 {
3083 PKCS8_PRIV_KEY_INFO *p8 = NULL;
3084 STACK_OF(PKCS12_SAFEBAG) *bag_stack = NULL;
3085 PKCS12_SAFEBAG *bag = NULL;
3086 PKCS7 *key_authsafe = NULL;

3088 p8 = EVP_PKEY2PKCS8(pkey);
3089 if (p8 == NULL) {
3090 return (NULL);
3091 }
3092 /* Put the shrouded key into a PKCS#12 bag. */
3093 bag = PKCS12_MAKE_SHKEYBAG(
3094 NID_pbe_WithSHA1And3_Key_TripleDES_CBC,
3095 cred->cred, cred->credlen,
3096 NULL, 0, PKCS12_DEFAULT_ITER, p8);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 48

3098 /* Clean up the PKCS#8 shrouded key, don’t need it now. */
3099 PKCS8_PRIV_KEY_INFO_free(p8);
3100 p8 = NULL;

3102 if (bag == NULL) {
3103 return (NULL);
3104 }
3105 if (keyidlen && !PKCS12_add_localkeyid(bag, keyid, keyidlen))
3106 goto out;
3107 if (label != NULL && !PKCS12_add_friendlyname(bag, label, label_len))
3108 goto out;

3110 /* Start a PKCS#12 safebag container for the private key. */
3111 bag_stack = sk_PKCS12_SAFEBAG_new_null();
3112 if (bag_stack == NULL)
3113 goto out;

3115 /* Pile on the private key on the bag_stack. */
3116 if (!sk_PKCS12_SAFEBAG_push(bag_stack, bag))
3117 goto out;

3119 key_authsafe = PKCS12_pack_p7data(bag_stack);

3121 out:
3122 if (bag_stack != NULL)
3123 sk_PKCS12_SAFEBAG_pop_free(bag_stack, PKCS12_SAFEBAG_free);
3124 bag_stack = NULL;
3125 return (key_authsafe);
3126 }

3128 static EVP_PKEY *
3129 ImportRawRSAKey(KMF_RAW_RSA_KEY *key)
3130 {
3131 RSA *rsa = NULL;
3132 EVP_PKEY *newkey = NULL;

3134 if ((rsa = RSA_new()) == NULL)
3135 return (NULL);

3137 if ((rsa->n = BN_bin2bn(key->mod.val, key->mod.len, rsa->n)) == NULL)
3138 return (NULL);

3140 if ((rsa->e = BN_bin2bn(key->pubexp.val, key->pubexp.len, rsa->e)) ==
3141 NULL)
3142 return (NULL);

3144 if (key->priexp.val != NULL)
3145 if ((rsa->d = BN_bin2bn(key->priexp.val, key->priexp.len,
3146 rsa->d)) == NULL)
3147 return (NULL);

3149 if (key->prime1.val != NULL)
3150 if ((rsa->p = BN_bin2bn(key->prime1.val, key->prime1.len,
3151 rsa->p)) == NULL)
3152 return (NULL);

3154 if (key->prime2.val != NULL)
3155 if ((rsa->q = BN_bin2bn(key->prime2.val, key->prime2.len,
3156 rsa->q)) == NULL)
3157 return (NULL);

3159 if (key->exp1.val != NULL)
3160 if ((rsa->dmp1 = BN_bin2bn(key->exp1.val, key->exp1.len,
3161 rsa->dmp1)) == NULL)
3162 return (NULL);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 49

3164 if (key->exp2.val != NULL)
3165 if ((rsa->dmq1 = BN_bin2bn(key->exp2.val, key->exp2.len,
3166 rsa->dmq1)) == NULL)
3167 return (NULL);

3169 if (key->coef.val != NULL)
3170 if ((rsa->iqmp = BN_bin2bn(key->coef.val, key->coef.len,
3171 rsa->iqmp)) == NULL)
3172 return (NULL);

3174 if ((newkey = EVP_PKEY_new()) == NULL)
3175 return (NULL);

3177 (void) EVP_PKEY_set1_RSA(newkey, rsa);

3179 /* The original key must be freed once here or it leaks memory */
3180 RSA_free(rsa);

3182 return (newkey);
3183 }

3185 static EVP_PKEY *
3186 ImportRawDSAKey(KMF_RAW_DSA_KEY *key)
3187 {
3188 DSA *dsa = NULL;
3189 EVP_PKEY *newkey = NULL;

3191 if ((dsa = DSA_new()) == NULL)
3192 return (NULL);

3194 if ((dsa->p = BN_bin2bn(key->prime.val, key->prime.len,
3195 dsa->p)) == NULL)
3196 return (NULL);

3198 if ((dsa->q = BN_bin2bn(key->subprime.val, key->subprime.len,
3199 dsa->q)) == NULL)
3200 return (NULL);

3202 if ((dsa->g = BN_bin2bn(key->base.val, key->base.len,
3203 dsa->g)) == NULL)
3204 return (NULL);

3206 if ((dsa->priv_key = BN_bin2bn(key->value.val, key->value.len,
3207 dsa->priv_key)) == NULL)
3208 return (NULL);

3210 if (key->pubvalue.val != NULL) {
3211 if ((dsa->pub_key = BN_bin2bn(key->pubvalue.val,
3212 key->pubvalue.len, dsa->pub_key)) == NULL)
3213 return (NULL);
3214 }

3216 if ((newkey = EVP_PKEY_new()) == NULL)
3217 return (NULL);

3219 (void) EVP_PKEY_set1_DSA(newkey, dsa);

3221 /* The original key must be freed once here or it leaks memory */
3222 DSA_free(dsa);
3223 return (newkey);
3224 }

3226 static EVP_PKEY *
3227 raw_key_to_pkey(KMF_KEY_HANDLE *key)
3228 {
3229 EVP_PKEY *pkey = NULL;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 50

3230 KMF_RAW_KEY_DATA *rawkey;
3231 ASN1_TYPE *attr = NULL;
3232 KMF_RETURN ret;

3234 if (key == NULL || !key->israw)
3235 return (NULL);

3237 rawkey = (KMF_RAW_KEY_DATA *)key->keyp;
3238 if (rawkey->keytype == KMF_RSA) {
3239 pkey = ImportRawRSAKey(&rawkey->rawdata.rsa);
3240 } else if (rawkey->keytype == KMF_DSA) {
3241 pkey = ImportRawDSAKey(&rawkey->rawdata.dsa);
3242 } else if (rawkey->keytype == KMF_ECDSA) {
3243 /*
3244 * OpenSSL in Solaris does not support EC for
3245 * legal reasons
3246 */
3247 return (NULL);
3248 } else {
3249 /* wrong kind of key */
3250 return (NULL);
3251 }

3253 if (rawkey->label != NULL) {
3254 if ((attr = ASN1_TYPE_new()) == NULL) {
3255 EVP_PKEY_free(pkey);
3256 return (NULL);
3257 }
3258 attr->value.bmpstring = ASN1_STRING_type_new(V_ASN1_BMPSTRING);
3259 (void) ASN1_STRING_set(attr->value.bmpstring, rawkey->label,
3260 strlen(rawkey->label));
3261 attr->type = V_ASN1_BMPSTRING;
3262 attr->value.ptr = (char *)attr->value.bmpstring;
3263 ret = set_pkey_attrib(pkey, attr, NID_friendlyName);
3264 if (ret != KMF_OK) {
3265 EVP_PKEY_free(pkey);
3266 ASN1_TYPE_free(attr);
3267 return (NULL);
3268 }
3269 }
3270 if (rawkey->id.Data != NULL) {
3271 if ((attr = ASN1_TYPE_new()) == NULL) {
3272 EVP_PKEY_free(pkey);
3273 return (NULL);
3274 }
3275 attr->value.octet_string =
3276 ASN1_STRING_type_new(V_ASN1_OCTET_STRING);
3277 attr->type = V_ASN1_OCTET_STRING;
3278 (void) ASN1_STRING_set(attr->value.octet_string,
3279 rawkey->id.Data, rawkey->id.Length);
3280 attr->value.ptr = (char *)attr->value.octet_string;
3281 ret = set_pkey_attrib(pkey, attr, NID_localKeyID);
3282 if (ret != KMF_OK) {
3283 EVP_PKEY_free(pkey);
3284 ASN1_TYPE_free(attr);
3285 return (NULL);
3286 }
3287 }
3288 return (pkey);
3289 }

3291 /*
3292 * Search a list of private keys to find one that goes with the certificate.
3293 */
3294 static EVP_PKEY *
3295 find_matching_key(X509 *xcert, int numkeys, KMF_KEY_HANDLE *keylist)

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 51

3296 {
3297 int i;
3298 EVP_PKEY *pkey = NULL;

3300 if (numkeys == 0 || keylist == NULL || xcert == NULL)
3301 return (NULL);
3302 for (i = 0; i < numkeys; i++) {
3303 if (keylist[i].israw)
3304 pkey = raw_key_to_pkey(&keylist[i]);
3305 else
3306 pkey = (EVP_PKEY *)keylist[i].keyp;
3307 if (pkey != NULL) {
3308 if (X509_check_private_key(xcert, pkey)) {
3309 return (pkey);
3310 } else {
3311 EVP_PKEY_free(pkey);
3312 pkey = NULL;
3313 }
3314 }
3315 }
3316 return (pkey);
3317 }

3319 static KMF_RETURN
3320 local_export_pk12(KMF_HANDLE_T handle,
3321 KMF_CREDENTIAL *cred,
3322 int numcerts, KMF_X509_DER_CERT *certlist,
3323 int numkeys, KMF_KEY_HANDLE *keylist,
3324 char *filename)
3325 {
3326 KMF_RETURN rv = KMF_OK;
3327 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
3328 BIO *bio = NULL;
3329 PKCS7 *cert_authsafe = NULL;
3330 PKCS7 *key_authsafe = NULL;
3331 STACK_OF(PKCS7) *authsafe_stack = NULL;
3332 PKCS12 *p12_elem = NULL;
3333 int i;

3335 if (numcerts == 0 && numkeys == 0)
3336 return (KMF_ERR_BAD_PARAMETER);

3338 /*
3339 * Open the output file.
3340 */
3341 if ((bio = BIO_new_file(filename, "wb")) == NULL) {
3342 SET_ERROR(kmfh, ERR_get_error());
3343 rv = KMF_ERR_OPEN_FILE;
3344 goto cleanup;
3345 }

3347 /* Start a PKCS#7 stack. */
3348 authsafe_stack = sk_PKCS7_new_null();
3349 if (authsafe_stack == NULL) {
3350 rv = KMF_ERR_MEMORY;
3351 goto cleanup;
3352 }
3353 if (numcerts > 0) {
3354 for (i = 0; rv == KMF_OK && i < numcerts; i++) {
3355 const uchar_t *p = certlist[i].certificate.Data;
3356 long len = certlist[i].certificate.Length;
3357 X509 *xcert = NULL;
3358 EVP_PKEY *pkey = NULL;
3359 unsigned char keyid[EVP_MAX_MD_SIZE];
3360 unsigned int keyidlen = 0;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 52

3362 xcert = d2i_X509(NULL, &p, len);
3363 if (xcert == NULL) {
3364 SET_ERROR(kmfh, ERR_get_error());
3365 rv = KMF_ERR_ENCODING;
3366 }
3367 if (certlist[i].kmf_private.label != NULL) {
3368 /* Set alias attribute */
3369 (void) X509_alias_set1(xcert,
3370 (uchar_t *)certlist[i].kmf_private.label,
3371 strlen(certlist[i].kmf_private.label));
3372 }
3373 /* Check if there is a key corresponding to this cert */
3374 pkey = find_matching_key(xcert, numkeys, keylist);

3376 /*
3377 * If key is found, get fingerprint and create a
3378 * safebag.
3379 */
3380 if (pkey != NULL) {
3381 (void) X509_digest(xcert, EVP_sha1(),
3382 keyid, &keyidlen);
3383 key_authsafe = add_key_to_safe(pkey, cred,
3384 keyid, keyidlen,
3385 certlist[i].kmf_private.label,
3386 (certlist[i].kmf_private.label ?
3387 strlen(certlist[i].kmf_private.label) : 0));

3389 if (key_authsafe == NULL) {
3390 X509_free(xcert);
3391 EVP_PKEY_free(pkey);
3392 goto cleanup;
3393 }
3394 /* Put the key safe into the Auth Safe */
3395 if (!sk_PKCS7_push(authsafe_stack,
3396 key_authsafe)) {
3397 X509_free(xcert);
3398 EVP_PKEY_free(pkey);
3399 goto cleanup;
3400 }
3401 }

3403 /* create a certificate safebag */
3404 cert_authsafe = add_cert_to_safe(xcert, cred, keyid,
3405 keyidlen);
3406 if (cert_authsafe == NULL) {
3407 X509_free(xcert);
3408 EVP_PKEY_free(pkey);
3409 goto cleanup;
3410 }
3411 if (!sk_PKCS7_push(authsafe_stack, cert_authsafe)) {
3412 X509_free(xcert);
3413 EVP_PKEY_free(pkey);
3414 goto cleanup;
3415 }

3417 X509_free(xcert);
3418 if (pkey)
3419 EVP_PKEY_free(pkey);
3420 }
3421 } else if (numcerts == 0 && numkeys > 0) {
3422 /*
3423 * If only adding keys to the file.
3424 */
3425 for (i = 0; i < numkeys; i++) {
3426 EVP_PKEY *pkey = NULL;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 53

3428 if (keylist[i].israw)
3429 pkey = raw_key_to_pkey(&keylist[i]);
3430 else
3431 pkey = (EVP_PKEY *)keylist[i].keyp;

3433 if (pkey == NULL)
3434 continue;

3436 key_authsafe = add_key_to_safe(pkey, cred,
3437 NULL, 0, NULL, 0);

3439 if (key_authsafe == NULL) {
3440 EVP_PKEY_free(pkey);
3441 goto cleanup;
3442 }
3443 if (!sk_PKCS7_push(authsafe_stack, key_authsafe)) {
3444 EVP_PKEY_free(pkey);
3445 goto cleanup;
3446 }
3447 }
3448 }
3449 p12_elem = PKCS12_init(NID_pkcs7_data);
3450 if (p12_elem == NULL) {
3451 goto cleanup;
3452 }

3454 /* Put the PKCS#7 stack into the PKCS#12 element. */
3455 if (!PKCS12_pack_authsafes(p12_elem, authsafe_stack)) {
3456 goto cleanup;
3457 }

3459 /* Set the integrity MAC on the PKCS#12 element. */
3460 if (!PKCS12_set_mac(p12_elem, cred->cred, cred->credlen,
3461 NULL, 0, PKCS12_DEFAULT_ITER, NULL)) {
3462 goto cleanup;
3463 }

3465 /* Write the PKCS#12 element to the export file. */
3466 if (!i2d_PKCS12_bio(bio, p12_elem)) {
3467 goto cleanup;
3468 }
3469 PKCS12_free(p12_elem);

3471 cleanup:
3472 /* Clear away the PKCS#7 stack, we’re done with it. */
3473 if (authsafe_stack)
3474 sk_PKCS7_pop_free(authsafe_stack, PKCS7_free);

3476 if (bio != NULL)
3477 (void) BIO_free_all(bio);

3479 return (rv);
3480 }

3482 KMF_RETURN
3483 openssl_build_pk12(KMF_HANDLE_T handle, int numcerts,
3484 KMF_X509_DER_CERT *certlist, int numkeys, KMF_KEY_HANDLE *keylist,
3485 KMF_CREDENTIAL *p12cred, char *filename)
3486 {
3487 KMF_RETURN rv;

3489 if (certlist == NULL && keylist == NULL)
3490 return (KMF_ERR_BAD_PARAMETER);

3492 rv = local_export_pk12(handle, p12cred, numcerts, certlist,
3493 numkeys, keylist, filename);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 54

3495 return (rv);
3496 }

3498 KMF_RETURN
3499 OpenSSL_ExportPK12(KMF_HANDLE_T handle, int numattr, KMF_ATTRIBUTE *attrlist)
3500 {
3501 KMF_RETURN rv;
3502 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
3503 char *fullpath = NULL;
3504 char *dirpath = NULL;
3505 char *certfile = NULL;
3506 char *keyfile = NULL;
3507 char *filename = NULL;
3508 KMF_CREDENTIAL *p12cred = NULL;
3509 KMF_X509_DER_CERT certdata;
3510 KMF_KEY_HANDLE key;
3511 int gotkey = 0;
3512 int gotcert = 0;

3514 if (handle == NULL)
3515 return (KMF_ERR_BAD_PARAMETER);

3517 /*
3518 * First, find the certificate.
3519 */
3520 dirpath = kmf_get_attr_ptr(KMF_DIRPATH_ATTR, attrlist, numattr);
3521 certfile = kmf_get_attr_ptr(KMF_CERT_FILENAME_ATTR, attrlist, numattr);
3522 if (certfile != NULL) {
3523 fullpath = get_fullpath(dirpath, certfile);
3524 if (fullpath == NULL)
3525 return (KMF_ERR_BAD_PARAMETER);

3527 if (isdir(fullpath)) {
3528 free(fullpath);
3529 return (KMF_ERR_AMBIGUOUS_PATHNAME);
3530 }

3532 (void) memset(&certdata, 0, sizeof (certdata));
3533 rv = kmf_load_cert(kmfh, NULL, NULL, NULL, NULL,
3534 fullpath, &certdata.certificate);
3535 if (rv != KMF_OK)
3536 goto end;

3538 gotcert++;
3539 certdata.kmf_private.keystore_type = KMF_KEYSTORE_OPENSSL;
3540 free(fullpath);
3541 }

3543 /*
3544 * Now find the private key.
3545 */
3546 keyfile = kmf_get_attr_ptr(KMF_KEY_FILENAME_ATTR, attrlist, numattr);
3547 if (keyfile != NULL) {
3548 fullpath = get_fullpath(dirpath, keyfile);
3549 if (fullpath == NULL)
3550 return (KMF_ERR_BAD_PARAMETER);

3552 if (isdir(fullpath)) {
3553 free(fullpath);
3554 return (KMF_ERR_AMBIGUOUS_PATHNAME);
3555 }

3557 (void) memset(&key, 0, sizeof (KMF_KEY_HANDLE));
3558 rv = fetch_key(handle, fullpath, KMF_ASYM_PRI, &key);
3559 if (rv != KMF_OK)

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 55

3560 goto end;
3561 gotkey++;
3562 }

3564 /*
3565 * Open the output file.
3566 */
3567 filename = kmf_get_attr_ptr(KMF_OUTPUT_FILENAME_ATTR, attrlist,
3568 numattr);
3569 if (filename == NULL) {
3570 rv = KMF_ERR_BAD_PARAMETER;
3571 goto end;
3572 }

3574 /* Stick the key and the cert into a PKCS#12 file */
3575 p12cred = kmf_get_attr_ptr(KMF_PK12CRED_ATTR, attrlist, numattr);
3576 if (p12cred == NULL) {
3577 rv = KMF_ERR_BAD_PARAMETER;
3578 goto end;
3579 }

3581 rv = local_export_pk12(handle, p12cred, 1, &certdata,
3582 1, &key, filename);

3584 end:
3585 if (fullpath)
3586 free(fullpath);

3588 if (gotcert)
3589 kmf_free_kmf_cert(handle, &certdata);
3590 if (gotkey)
3591 kmf_free_kmf_key(handle, &key);
3592 return (rv);
3593 }

3595 /*
3596 * Helper function to extract keys and certificates from
3597 * a single PEM file. Typically the file should contain a
3598 * private key and an associated public key wrapped in an x509 cert.
3599 * However, the file may be just a list of X509 certs with no keys.
3600 */
3601 static KMF_RETURN
3602 extract_pem(KMF_HANDLE *kmfh,
3603 char *issuer, char *subject, KMF_BIGINT *serial,
3604 char *filename, CK_UTF8CHAR *pin,
3605 CK_ULONG pinlen, EVP_PKEY **priv_key, KMF_DATA **certs,
3606 int *numcerts)
3607 /* ARGSUSED6 */
3608 {
3609 KMF_RETURN rv = KMF_OK;
3610 FILE *fp;
3611 STACK_OF(X509_INFO) *x509_info_stack = NULL;
3612 int i, ncerts = 0, matchcerts = 0;
3613 EVP_PKEY *pkey = NULL;
3614 X509_INFO *info;
3615 X509 *x;
3616 X509_INFO **cert_infos = NULL;
3617 KMF_DATA *certlist = NULL;

3619 if (priv_key)
3620 *priv_key = NULL;
3621 if (certs)
3622 *certs = NULL;
3623 fp = fopen(filename, "r");
3624 if (fp == NULL)
3625 return (KMF_ERR_OPEN_FILE);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 56

3627 x509_info_stack = PEM_X509_INFO_read(fp, NULL, NULL, pin);
3628 if (x509_info_stack == NULL) {
3629 (void) fclose(fp);
3630 return (KMF_ERR_ENCODING);
3631 }
3632 cert_infos = (X509_INFO **)malloc(sk_X509_INFO_num(x509_info_stack) *
3633 sizeof (X509_INFO *));
3634 if (cert_infos == NULL) {
3635 (void) fclose(fp);
3636 rv = KMF_ERR_MEMORY;
3637 goto err;
3638 }

3640 for (i = 0; i < sk_X509_INFO_num(x509_info_stack); i++) {
3641 cert_infos[ncerts] = sk_X509_INFO_value(x509_info_stack, i);
3642 ncerts++;
3643 }

3645 if (ncerts == 0) {
3646 (void) fclose(fp);
3647 rv = KMF_ERR_CERT_NOT_FOUND;
3648 goto err;
3649 }

3651 if (priv_key != NULL) {
3652 rewind(fp);
3653 pkey = PEM_read_PrivateKey(fp, NULL, NULL, pin);
3654 }
3655 (void) fclose(fp);

3657 x = cert_infos[ncerts - 1]->x509;
3658 /*
3659 * Make sure the private key matchs the last cert in the file.
3660 */
3661 if (pkey != NULL && !X509_check_private_key(x, pkey)) {
3662 EVP_PKEY_free(pkey);
3663 rv = KMF_ERR_KEY_MISMATCH;
3664 goto err;
3665 }

3667 certlist = (KMF_DATA *)calloc(ncerts, sizeof (KMF_DATA));
3668 if (certlist == NULL) {
3669 if (pkey != NULL)
3670 EVP_PKEY_free(pkey);
3671 rv = KMF_ERR_MEMORY;
3672 goto err;
3673 }

3675 /*
3676 * Convert all of the certs to DER format.
3677 */
3678 matchcerts = 0;
3679 for (i = 0; rv == KMF_OK && certs != NULL && i < ncerts; i++) {
3680 boolean_t match = FALSE;
3681 info = cert_infos[ncerts - 1 - i];

3683 rv = check_cert(info->x509, issuer, subject, serial, &match);
3684 if (rv != KMF_OK || match != TRUE) {
3685 rv = KMF_OK;
3686 continue;
3687 }

3689 rv = ssl_cert2KMFDATA(kmfh, info->x509,
3690 &certlist[matchcerts++]);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 57

3692 if (rv != KMF_OK) {
3693 int j;
3694 for (j = 0; j < matchcerts; j++)
3695 kmf_free_data(&certlist[j]);
3696 free(certlist);
3697 certlist = NULL;
3698 ncerts = matchcerts = 0;
3699 }
3700 }

3702 if (numcerts != NULL)
3703 *numcerts = matchcerts;

3705 if (certs != NULL)
3706 *certs = certlist;
3707 else if (certlist != NULL) {
3708 for (i = 0; i < ncerts; i++)
3709 kmf_free_data(&certlist[i]);
3710 free(certlist);
3711 certlist = NULL;
3712 }

3714 if (priv_key == NULL && pkey != NULL)
3715 EVP_PKEY_free(pkey);
3716 else if (priv_key != NULL && pkey != NULL)
3717 *priv_key = pkey;

3719 err:
3720 /* Cleanup the stack of X509 info records */
3721 for (i = 0; i < sk_X509_INFO_num(x509_info_stack); i++) {
3722 info = (X509_INFO *)sk_X509_INFO_value(x509_info_stack, i);
3723 X509_INFO_free(info);
3724 }
3725 if (x509_info_stack)
3726 sk_X509_INFO_free(x509_info_stack);

3728 if (cert_infos != NULL)
3729 free(cert_infos);

3731 return (rv);
3732 }

3734 static KMF_RETURN
3735 openssl_parse_bags(STACK_OF(PKCS12_SAFEBAG) *bags, char *pin,
3736 STACK_OF(EVP_PKEY) *keys, STACK_OF(X509) *certs)
3737 {
3738 KMF_RETURN ret;
3739 int i;

3741 for (i = 0; i < sk_PKCS12_SAFEBAG_num(bags); i++) {
3742 PKCS12_SAFEBAG *bag = sk_PKCS12_SAFEBAG_value(bags, i);
3743 ret = openssl_parse_bag(bag, pin, (pin ? strlen(pin) : 0),
3744 keys, certs);

3746 if (ret != KMF_OK)
3747 return (ret);
3748 }

3750 return (ret);
3751 }

3753 static KMF_RETURN
3754 set_pkey_attrib(EVP_PKEY *pkey, ASN1_TYPE *attrib, int nid)
3755 {
3756 X509_ATTRIBUTE *attr = NULL;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 58

3758 if (pkey == NULL || attrib == NULL)
3759 return (KMF_ERR_BAD_PARAMETER);

3761 if (pkey->attributes == NULL) {
3762 pkey->attributes = sk_X509_ATTRIBUTE_new_null();
3763 if (pkey->attributes == NULL)
3764 return (KMF_ERR_MEMORY);
3765 }
3766 attr = X509_ATTRIBUTE_create(nid, attrib->type, attrib->value.ptr);
3767 if (attr != NULL) {
3768 int i;
3769 X509_ATTRIBUTE *a;
3770 for (i = 0;
3771 i < sk_X509_ATTRIBUTE_num(pkey->attributes); i++) {
3772 a = sk_X509_ATTRIBUTE_value(pkey->attributes, i);
3773 if (OBJ_obj2nid(a->object) == nid) {
3774 X509_ATTRIBUTE_free(a);
3775 sk_X509_ATTRIBUTE_set(pkey->attributes,
3776 i, attr);
3777 return (KMF_OK);
3778 }
3779 }
3780 if (sk_X509_ATTRIBUTE_push(pkey->attributes, attr) == NULL) {
3781 X509_ATTRIBUTE_free(attr);
3782 return (KMF_ERR_MEMORY);
3783 }
3784 } else {
3785 return (KMF_ERR_MEMORY);
3786 }

3788 return (KMF_OK);
3789 }

3791 static KMF_RETURN
3792 openssl_parse_bag(PKCS12_SAFEBAG *bag, char *pass, int passlen,
3793 STACK_OF(EVP_PKEY) *keylist, STACK_OF(X509) *certlist)
3794 {
3795 KMF_RETURN ret = KMF_OK;
3796 PKCS8_PRIV_KEY_INFO *p8 = NULL;
3797 EVP_PKEY *pkey = NULL;
3798 X509 *xcert = NULL;
3799 ASN1_TYPE *keyid = NULL;
3800 ASN1_TYPE *fname = NULL;
3801 uchar_t *data = NULL;

3803 keyid = PKCS12_get_attr(bag, NID_localKeyID);
3804 fname = PKCS12_get_attr(bag, NID_friendlyName);

3806 switch (M_PKCS12_bag_type(bag)) {
3807 case NID_keyBag:
3808 if (keylist == NULL)
3809 goto end;
3810 pkey = EVP_PKCS82PKEY(bag->value.keybag);
3811 if (pkey == NULL)
3812 ret = KMF_ERR_PKCS12_FORMAT;

3814 break;
3815 case NID_pkcs8ShroudedKeyBag:
3816 if (keylist == NULL)
3817 goto end;
3818 p8 = M_PKCS12_decrypt_skey(bag, pass, passlen);
3819 if (p8 == NULL)
3820 return (KMF_ERR_AUTH_FAILED);
3821 pkey = EVP_PKCS82PKEY(p8);
3822 PKCS8_PRIV_KEY_INFO_free(p8);
3823 if (pkey == NULL)

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 59

3824 ret = KMF_ERR_PKCS12_FORMAT;
3825 break;
3826 case NID_certBag:
3827 if (certlist == NULL)
3828 goto end;
3829 if (M_PKCS12_cert_bag_type(bag) != NID_x509Certificate)
3830 return (KMF_ERR_PKCS12_FORMAT);
3831 xcert = M_PKCS12_certbag2x509(bag);
3832 if (xcert == NULL) {
3833 ret = KMF_ERR_PKCS12_FORMAT;
3834 goto end;
3835 }
3836 if (keyid != NULL) {
3837 if (X509_keyid_set1(xcert,
3838 keyid->value.octet_string->data,
3839 keyid->value.octet_string->length) == 0) {
3840 ret = KMF_ERR_PKCS12_FORMAT;
3841 goto end;
3842 }
3843 }
3844 if (fname != NULL) {
3845 int len, r;
3846 len = ASN1_STRING_to_UTF8(&data,
3847 fname->value.asn1_string);
3848 if (len > 0 && data != NULL) {
3849 r = X509_alias_set1(xcert, data, len);
3850 if (r == NULL) {
3851 ret = KMF_ERR_PKCS12_FORMAT;
3852 goto end;
3853 }
3854 } else {
3855 ret = KMF_ERR_PKCS12_FORMAT;
3856 goto end;
3857 }
3858 }
3859 if (sk_X509_push(certlist, xcert) == 0)
3860 ret = KMF_ERR_MEMORY;
3861 else
3862 xcert = NULL;
3863 break;
3864 case NID_safeContentsBag:
3865 return (openssl_parse_bags(bag->value.safes, pass,
3866 keylist, certlist));
3867 default:
3868 ret = KMF_ERR_PKCS12_FORMAT;
3869 break;
3870 }

3872 /*
3873 * Set the ID and/or FriendlyName attributes on the key.
3874 * If converting to PKCS11 objects, these can translate to CKA_ID
3875 * and CKA_LABEL values.
3876 */
3877 if (pkey != NULL && ret == KMF_OK) {
3878 ASN1_TYPE *attr = NULL;
3879 if (keyid != NULL && keyid->type == V_ASN1_OCTET_STRING) {
3880 if ((attr = ASN1_TYPE_new()) == NULL)
3881 return (KMF_ERR_MEMORY);
3882 attr->value.octet_string =
3883 ASN1_STRING_dup(keyid->value.octet_string);
3884 attr->type = V_ASN1_OCTET_STRING;
3885 attr->value.ptr = (char *)attr->value.octet_string;
3886 ret = set_pkey_attrib(pkey, attr, NID_localKeyID);
3887 OPENSSL_free(attr);
3888 }

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 60

3890 if (ret == KMF_OK && fname != NULL &&
3891 fname->type == V_ASN1_BMPSTRING) {
3892 if ((attr = ASN1_TYPE_new()) == NULL)
3893 return (KMF_ERR_MEMORY);
3894 attr->value.bmpstring =
3895 ASN1_STRING_dup(fname->value.bmpstring);
3896 attr->type = V_ASN1_BMPSTRING;
3897 attr->value.ptr = (char *)attr->value.bmpstring;
3898 ret = set_pkey_attrib(pkey, attr, NID_friendlyName);
3899 OPENSSL_free(attr);
3900 }

3902 if (ret == KMF_OK && keylist != NULL &&
3903 sk_EVP_PKEY_push(keylist, pkey) == 0)
3904 ret = KMF_ERR_MEMORY;
3905 }
3906 if (ret == KMF_OK && keylist != NULL)
3907 pkey = NULL;
3908 end:
3909 if (pkey != NULL)
3910 EVP_PKEY_free(pkey);
3911 if (xcert != NULL)
3912 X509_free(xcert);
3913 if (data != NULL)
3914 OPENSSL_free(data);

3916 return (ret);
3917 }

3919 static KMF_RETURN
3920 openssl_pkcs12_parse(PKCS12 *p12, char *pin,
3921 STACK_OF(EVP_PKEY) *keys,
3922 STACK_OF(X509) *certs,
3923 STACK_OF(X509) *ca)
3924 /* ARGSUSED3 */
3925 {
3926 KMF_RETURN ret = KMF_OK;
3927 STACK_OF(PKCS7) *asafes = NULL;
3928 STACK_OF(PKCS12_SAFEBAG) *bags = NULL;
3929 int i, bagnid;
3930 PKCS7 *p7;

3932 if (p12 == NULL || (keys == NULL && certs == NULL))
3933 return (KMF_ERR_BAD_PARAMETER);

3935 if (pin == NULL || *pin == NULL) {
3936 if (PKCS12_verify_mac(p12, NULL, 0)) {
3937 pin = NULL;
3938 } else if (PKCS12_verify_mac(p12, "", 0)) {
3939 pin = "";
3940 } else {
3941 return (KMF_ERR_AUTH_FAILED);
3942 }
3943 } else if (!PKCS12_verify_mac(p12, pin, -1)) {
3944 return (KMF_ERR_AUTH_FAILED);
3945 }

3947 if ((asafes = PKCS12_unpack_authsafes(p12)) == NULL)
3948 return (KMF_ERR_PKCS12_FORMAT);

3950 for (i = 0; ret == KMF_OK && i < sk_PKCS7_num(asafes); i++) {
3951 bags = NULL;
3952 p7 = sk_PKCS7_value(asafes, i);
3953 bagnid = OBJ_obj2nid(p7->type);

3955 if (bagnid == NID_pkcs7_data) {

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 61

3956 bags = PKCS12_unpack_p7data(p7);
3957 } else if (bagnid == NID_pkcs7_encrypted) {
3958 bags = PKCS12_unpack_p7encdata(p7, pin,
3959 (pin ? strlen(pin) : 0));
3960 } else {
3961 continue;
3962 }
3963 if (bags == NULL) {
3964 ret = KMF_ERR_PKCS12_FORMAT;
3965 goto out;
3966 }

3968 if (openssl_parse_bags(bags, pin, keys, certs) != KMF_OK)
3969 ret = KMF_ERR_PKCS12_FORMAT;

3971 sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free);
3972 }
3973 out:
3974 if (asafes != NULL)
3975 sk_PKCS7_pop_free(asafes, PKCS7_free);

3977 return (ret);
3978 }

3980 /*
3981 * Helper function to decrypt and parse PKCS#12 import file.
3982 */
3983 static KMF_RETURN
3984 extract_pkcs12(BIO *fbio, CK_UTF8CHAR *pin, CK_ULONG pinlen,
3985 STACK_OF(EVP_PKEY) **priv_key, STACK_OF(X509) **certs,
3986 STACK_OF(X509) **ca)
3987 /* ARGSUSED2 */
3988 {
3989 PKCS12 *pk12, *pk12_tmp;
3990 STACK_OF(EVP_PKEY) *pkeylist = NULL;
3991 STACK_OF(X509) *xcertlist = NULL;
3992 STACK_OF(X509) *cacertlist = NULL;

3994 if ((pk12 = PKCS12_new()) == NULL) {
3995 return (KMF_ERR_MEMORY);
3996 }

3998 if ((pk12_tmp = d2i_PKCS12_bio(fbio, &pk12)) == NULL) {
3999 /* This is ok; it seems to mean there is no more to read. */
4000 if (ERR_GET_LIB(ERR_peek_error()) == ERR_LIB_ASN1 &&
4001 ERR_GET_REASON(ERR_peek_error()) == ASN1_R_HEADER_TOO_LONG)
4002 goto end_extract_pkcs12;

4004 PKCS12_free(pk12);
4005 return (KMF_ERR_PKCS12_FORMAT);
4006 }
4007 pk12 = pk12_tmp;

4009 xcertlist = sk_X509_new_null();
4010 if (xcertlist == NULL) {
4011 PKCS12_free(pk12);
4012 return (KMF_ERR_MEMORY);
4013 }
4014 pkeylist = sk_EVP_PKEY_new_null();
4015 if (pkeylist == NULL) {
4016 sk_X509_pop_free(xcertlist, X509_free);
4017 PKCS12_free(pk12);
4018 return (KMF_ERR_MEMORY);
4019 }

4021 if (openssl_pkcs12_parse(pk12, (char *)pin, pkeylist, xcertlist,

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 62

4022 cacertlist) != KMF_OK) {
4023 sk_X509_pop_free(xcertlist, X509_free);
4024 sk_EVP_PKEY_pop_free(pkeylist, EVP_PKEY_free);
4025 PKCS12_free(pk12);
4026 return (KMF_ERR_PKCS12_FORMAT);
4027 }

4029 if (priv_key && pkeylist)
4030 *priv_key = pkeylist;
4031 else if (pkeylist)
4032 sk_EVP_PKEY_pop_free(pkeylist, EVP_PKEY_free);
4033 if (certs && xcertlist)
4034 *certs = xcertlist;
4035 else if (xcertlist)
4036 sk_X509_pop_free(xcertlist, X509_free);
4037 if (ca && cacertlist)
4038 *ca = cacertlist;
4039 else if (cacertlist)
4040 sk_X509_pop_free(cacertlist, X509_free);

4042 end_extract_pkcs12:

4044 PKCS12_free(pk12);
4045 return (KMF_OK);
4046 }

4048 static KMF_RETURN
4049 sslBN2KMFBN(BIGNUM *from, KMF_BIGINT *to)
4050 {
4051 KMF_RETURN rv = KMF_OK;
4052 uint32_t sz;

4054 sz = BN_num_bytes(from);
4055 to->val = (uchar_t *)malloc(sz);
4056 if (to->val == NULL)
4057 return (KMF_ERR_MEMORY);

4059 if ((to->len = BN_bn2bin(from, to->val)) != sz) {
4060 free(to->val);
4061 to->val = NULL;
4062 to->len = 0;
4063 rv = KMF_ERR_MEMORY;
4064 }

4066 return (rv);
4067 }

4069 static KMF_RETURN
4070 exportRawRSAKey(RSA *rsa, KMF_RAW_KEY_DATA *key)
4071 {
4072 KMF_RETURN rv;
4073 KMF_RAW_RSA_KEY *kmfkey = &key->rawdata.rsa;

4075 (void) memset(kmfkey, 0, sizeof (KMF_RAW_RSA_KEY));
4076 if ((rv = sslBN2KMFBN(rsa->n, &kmfkey->mod)) != KMF_OK)
4077 goto cleanup;

4079 if ((rv = sslBN2KMFBN(rsa->e, &kmfkey->pubexp)) != KMF_OK)
4080 goto cleanup;

4082 if (rsa->d != NULL)
4083 if ((rv = sslBN2KMFBN(rsa->d, &kmfkey->priexp)) != KMF_OK)
4084 goto cleanup;

4086 if (rsa->p != NULL)
4087 if ((rv = sslBN2KMFBN(rsa->p, &kmfkey->prime1)) != KMF_OK)

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 63

4088 goto cleanup;

4090 if (rsa->q != NULL)
4091 if ((rv = sslBN2KMFBN(rsa->q, &kmfkey->prime2)) != KMF_OK)
4092 goto cleanup;

4094 if (rsa->dmp1 != NULL)
4095 if ((rv = sslBN2KMFBN(rsa->dmp1, &kmfkey->exp1)) != KMF_OK)
4096 goto cleanup;

4098 if (rsa->dmq1 != NULL)
4099 if ((rv = sslBN2KMFBN(rsa->dmq1, &kmfkey->exp2)) != KMF_OK)
4100 goto cleanup;

4102 if (rsa->iqmp != NULL)
4103 if ((rv = sslBN2KMFBN(rsa->iqmp, &kmfkey->coef)) != KMF_OK)
4104 goto cleanup;
4105 cleanup:
4106 if (rv != KMF_OK)
4107 kmf_free_raw_key(key);
4108 else
4109 key->keytype = KMF_RSA;

4111 /*
4112 * Free the reference to this key, SSL will not actually free
4113 * the memory until the refcount == 0, so this is safe.
4114 */
4115 RSA_free(rsa);

4117 return (rv);
4118 }

4120 static KMF_RETURN
4121 exportRawDSAKey(DSA *dsa, KMF_RAW_KEY_DATA *key)
4122 {
4123 KMF_RETURN rv;
4124 KMF_RAW_DSA_KEY *kmfkey = &key->rawdata.dsa;

4126 (void) memset(kmfkey, 0, sizeof (KMF_RAW_DSA_KEY));
4127 if ((rv = sslBN2KMFBN(dsa->p, &kmfkey->prime)) != KMF_OK)
4128 goto cleanup;

4130 if ((rv = sslBN2KMFBN(dsa->q, &kmfkey->subprime)) != KMF_OK)
4131 goto cleanup;

4133 if ((rv = sslBN2KMFBN(dsa->g, &kmfkey->base)) != KMF_OK)
4134 goto cleanup;

4136 if ((rv = sslBN2KMFBN(dsa->priv_key, &kmfkey->value)) != KMF_OK)
4137 goto cleanup;

4139 cleanup:
4140 if (rv != KMF_OK)
4141 kmf_free_raw_key(key);
4142 else
4143 key->keytype = KMF_DSA;

4145 /*
4146 * Free the reference to this key, SSL will not actually free
4147 * the memory until the refcount == 0, so this is safe.
4148 */
4149 DSA_free(dsa);

4151 return (rv);
4152 }

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 64

4154 static KMF_RETURN
4155 add_cert_to_list(KMF_HANDLE *kmfh, X509 *sslcert,
4156 KMF_X509_DER_CERT **certlist, int *ncerts)
4157 {
4158 KMF_RETURN rv = KMF_OK;
4159 KMF_X509_DER_CERT *list = (*certlist);
4160 KMF_X509_DER_CERT cert;
4161 int n = (*ncerts);

4163 if (list == NULL) {
4164 list = (KMF_X509_DER_CERT *)malloc(sizeof (KMF_X509_DER_CERT));
4165 } else {
4166 list = (KMF_X509_DER_CERT *)realloc(list,
4167 sizeof (KMF_X509_DER_CERT) * (n + 1));
4168 }

4170 if (list == NULL)
4171 return (KMF_ERR_MEMORY);

4173 (void) memset(&cert, 0, sizeof (cert));
4174 rv = ssl_cert2KMFDATA(kmfh, sslcert, &cert.certificate);
4175 if (rv == KMF_OK) {
4176 int len = 0;
4177 /* Get the alias name for the cert if there is one */
4178 char *a = (char *)X509_alias_get0(sslcert, &len);
4179 if (a != NULL)
4180 cert.kmf_private.label = strdup(a);
4181 cert.kmf_private.keystore_type = KMF_KEYSTORE_OPENSSL;

4183 list[n] = cert;
4184 (*ncerts) = n + 1;

4186 *certlist = list;
4187 } else {
4188 free(list);
4189 }

4191 return (rv);
4192 }

4194 static KMF_RETURN
4195 add_key_to_list(KMF_RAW_KEY_DATA **keylist,
4196 KMF_RAW_KEY_DATA *newkey, int *nkeys)
4197 {
4198 KMF_RAW_KEY_DATA *list = (*keylist);
4199 int n = (*nkeys);

4201 if (list == NULL) {
4202 list = (KMF_RAW_KEY_DATA *)malloc(sizeof (KMF_RAW_KEY_DATA));
4203 } else {
4204 list = (KMF_RAW_KEY_DATA *)realloc(list,
4205 sizeof (KMF_RAW_KEY_DATA) * (n + 1));
4206 }

4208 if (list == NULL)
4209 return (KMF_ERR_MEMORY);

4211 list[n] = *newkey;
4212 (*nkeys) = n + 1;

4214 *keylist = list;

4216 return (KMF_OK);
4217 }

4219 static X509_ATTRIBUTE *

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 65

4220 find_attr(STACK_OF(X509_ATTRIBUTE) *attrs, int nid)
4221 {
4222 X509_ATTRIBUTE *a;
4223 int i;

4225 if (attrs == NULL)
4226 return (NULL);

4228 for (i = 0; i < sk_X509_ATTRIBUTE_num(attrs); i++) {
4229 a = sk_X509_ATTRIBUTE_value(attrs, i);
4230 if (OBJ_obj2nid(a->object) == nid)
4231 return (a);
4232 }
4233 return (NULL);
4234 }

4236 static KMF_RETURN
4237 convertToRawKey(EVP_PKEY *pkey, KMF_RAW_KEY_DATA *key)
4238 {
4239 KMF_RETURN rv = KMF_OK;
4240 X509_ATTRIBUTE *attr;

4242 if (pkey == NULL || key == NULL)
4243 return (KMF_ERR_BAD_PARAMETER);
4244 /* Convert SSL key to raw key */
4245 switch (pkey->type) {
4246 case EVP_PKEY_RSA:
4247 rv = exportRawRSAKey(EVP_PKEY_get1_RSA(pkey),
4248 key);
4249 if (rv != KMF_OK)
4250 return (rv);
4251 break;
4252 case EVP_PKEY_DSA:
4253 rv = exportRawDSAKey(EVP_PKEY_get1_DSA(pkey),
4254 key);
4255 if (rv != KMF_OK)
4256 return (rv);
4257 break;
4258 default:
4259 return (KMF_ERR_BAD_PARAMETER);
4260 }
4261 /*
4262 * If friendlyName, add it to record.
4263 */
4264 attr = find_attr(pkey->attributes, NID_friendlyName);
4265 if (attr != NULL) {
4266 ASN1_TYPE *ty = NULL;
4267 int numattr = sk_ASN1_TYPE_num(attr->value.set);
4268 if (attr->single == 0 && numattr > 0) {
4269 ty = sk_ASN1_TYPE_value(attr->value.set, 0);
4270 }
4271 if (ty != NULL) {
4272 #if OPENSSL_VERSION_NUMBER < 0x10000000L
4273 key->label = uni2asc(ty->value.bmpstring->data,
4274 ty->value.bmpstring->length);
4275 #else
4276 key->label = OPENSSL_uni2asc(ty->value.bmpstring->data,
4277 ty->value.bmpstring->length);
4278 #endif
4279 }
4280 } else {
4281 key->label = NULL;
4282 }

4284 /*
4285 * If KeyID, add it to record as a KMF_DATA object.

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 66

4286 */
4287 attr = find_attr(pkey->attributes, NID_localKeyID);
4288 if (attr != NULL) {
4289 ASN1_TYPE *ty = NULL;
4290 int numattr = sk_ASN1_TYPE_num(attr->value.set);
4291 if (attr->single == 0 && numattr > 0) {
4292 ty = sk_ASN1_TYPE_value(attr->value.set, 0);
4293 }
4294 key->id.Data = (uchar_t *)malloc(
4295 ty->value.octet_string->length);
4296 if (key->id.Data == NULL)
4297 return (KMF_ERR_MEMORY);
4298 (void) memcpy(key->id.Data, ty->value.octet_string->data,
4299 ty->value.octet_string->length);
4300 key->id.Length = ty->value.octet_string->length;
4301 } else {
4302 (void) memset(&key->id, 0, sizeof (KMF_DATA));
4303 }

4305 return (rv);
4306 }

4308 static KMF_RETURN
4309 convertPK12Objects(
4310 KMF_HANDLE *kmfh,
4311 STACK_OF(EVP_PKEY) *sslkeys,
4312 STACK_OF(X509) *sslcert,
4313 STACK_OF(X509) *sslcacerts,
4314 KMF_RAW_KEY_DATA **keylist, int *nkeys,
4315 KMF_X509_DER_CERT **certlist, int *ncerts)
4316 {
4317 KMF_RETURN rv = KMF_OK;
4318 KMF_RAW_KEY_DATA key;
4319 int i;

4321 for (i = 0; sslkeys != NULL && i < sk_EVP_PKEY_num(sslkeys); i++) {
4322 EVP_PKEY *pkey = sk_EVP_PKEY_value(sslkeys, i);
4323 rv = convertToRawKey(pkey, &key);
4324 if (rv == KMF_OK)
4325 rv = add_key_to_list(keylist, &key, nkeys);

4327 if (rv != KMF_OK)
4328 return (rv);
4329 }

4331 /* Now add the certificate to the certlist */
4332 for (i = 0; sslcert != NULL && i < sk_X509_num(sslcert); i++) {
4333 X509 *cert = sk_X509_value(sslcert, i);
4334 rv = add_cert_to_list(kmfh, cert, certlist, ncerts);
4335 if (rv != KMF_OK)
4336 return (rv);
4337 }

4339 /* Also add any included CA certs to the list */
4340 for (i = 0; sslcacerts != NULL && i < sk_X509_num(sslcacerts); i++) {
4341 X509 *c;
4342 /*
4343 * sk_X509_value() is macro that embeds a cast to (X509 *).
4344 * Here it translates into ((X509 *)sk_value((ca), (i))).
4345 * Lint is complaining about the embedded casting, and
4346 * to fix it, you need to fix openssl header files.
4347 */
4348 c = sk_X509_value(sslcacerts, i);

4350 /* Now add the ca cert to the certlist */
4351 rv = add_cert_to_list(kmfh, c, certlist, ncerts);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 67

4352 if (rv != KMF_OK)
4353 return (rv);
4354 }
4355 return (rv);
4356 }

4358 KMF_RETURN
4359 openssl_import_objects(KMF_HANDLE *kmfh,
4360 char *filename, KMF_CREDENTIAL *cred,
4361 KMF_X509_DER_CERT **certlist, int *ncerts,
4362 KMF_RAW_KEY_DATA **keylist, int *nkeys)
4363 {
4364 KMF_RETURN rv = KMF_OK;
4365 KMF_ENCODE_FORMAT format;
4366 BIO *bio = NULL;
4367 STACK_OF(EVP_PKEY) *privkeys = NULL;
4368 STACK_OF(X509) *certs = NULL;
4369 STACK_OF(X509) *cacerts = NULL;

4371 /*
4372 * auto-detect the file format, regardless of what
4373 * the ’format’ parameters in the params say.
4374 */
4375 rv = kmf_get_file_format(filename, &format);
4376 if (rv != KMF_OK) {
4377 return (rv);
4378 }

4380 /* This function only works for PEM or PKCS#12 files */
4381 if (format != KMF_FORMAT_PEM &&
4382 format != KMF_FORMAT_PEM_KEYPAIR &&
4383 format != KMF_FORMAT_PKCS12)
4384 return (KMF_ERR_ENCODING);

4386 *certlist = NULL;
4387 *keylist = NULL;
4388 *ncerts = 0;
4389 *nkeys = 0;

4391 if (format == KMF_FORMAT_PKCS12) {
4392 bio = BIO_new_file(filename, "rb");
4393 if (bio == NULL) {
4394 SET_ERROR(kmfh, ERR_get_error());
4395 rv = KMF_ERR_OPEN_FILE;
4396 goto end;
4397 }

4399 rv = extract_pkcs12(bio, (uchar_t *)cred->cred,
4400 (uint32_t)cred->credlen, &privkeys, &certs, &cacerts);

4402 if (rv == KMF_OK)
4403 /* Convert keys and certs to exportable format */
4404 rv = convertPK12Objects(kmfh, privkeys, certs, cacerts,
4405 keylist, nkeys, certlist, ncerts);
4406 } else {
4407 EVP_PKEY *pkey;
4408 KMF_DATA *certdata = NULL;
4409 KMF_X509_DER_CERT *kmfcerts = NULL;
4410 int i;
4411 rv = extract_pem(kmfh, NULL, NULL, NULL, filename,
4412 (uchar_t *)cred->cred, (uint32_t)cred->credlen,
4413 &pkey, &certdata, ncerts);

4415 /* Reached end of import file? */
4416 if (rv == KMF_OK && pkey != NULL) {
4417 privkeys = sk_EVP_PKEY_new_null();

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 68

4418 if (privkeys == NULL) {
4419 rv = KMF_ERR_MEMORY;
4420 goto end;
4421 }
4422 (void) sk_EVP_PKEY_push(privkeys, pkey);
4423 /* convert the certificate list here */
4424 if (*ncerts > 0 && certlist != NULL) {
4425 kmfcerts = (KMF_X509_DER_CERT *)calloc(*ncerts,
4426 sizeof (KMF_X509_DER_CERT));
4427 if (kmfcerts == NULL) {
4428 rv = KMF_ERR_MEMORY;
4429 goto end;
4430 }
4431 for (i = 0; i < *ncerts; i++) {
4432 kmfcerts[i].certificate = certdata[i];
4433 kmfcerts[i].kmf_private.keystore_type =
4434 KMF_KEYSTORE_OPENSSL;
4435 }
4436 *certlist = kmfcerts;
4437 }
4438 /*
4439 * Convert keys to exportable format, the certs
4440 * are already OK.
4441 */
4442 rv = convertPK12Objects(kmfh, privkeys, NULL, NULL,
4443 keylist, nkeys, NULL, NULL);
4444 }
4445 }
4446 end:
4447 if (bio != NULL)
4448 (void) BIO_free(bio);

4450 if (privkeys)
4451 sk_EVP_PKEY_pop_free(privkeys, EVP_PKEY_free);
4452 if (certs)
4453 sk_X509_pop_free(certs, X509_free);
4454 if (cacerts)
4455 sk_X509_pop_free(cacerts, X509_free);

4457 return (rv);
4458 }

4460 static KMF_RETURN
4461 create_deskey(DES_cblock **deskey)
4462 {
4463 DES_cblock *key;

4465 key = (DES_cblock *) malloc(sizeof (DES_cblock));
4466 if (key == NULL) {
4467 return (KMF_ERR_MEMORY);
4468 }

4470 if (DES_random_key(key) == 0) {
4471 free(key);
4472 return (KMF_ERR_KEYGEN_FAILED);
4473 }

4475 *deskey = key;
4476 return (KMF_OK);
4477 }

4479 #define KEYGEN_RETRY 3
4480 #define DES3_KEY_SIZE 24

4482 static KMF_RETURN
4483 create_des3key(unsigned char **des3key)

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 69

4484 {
4485 KMF_RETURN ret = KMF_OK;
4486 DES_cblock *deskey1 = NULL;
4487 DES_cblock *deskey2 = NULL;
4488 DES_cblock *deskey3 = NULL;
4489 unsigned char *newkey = NULL;
4490 int retry;

4492 if ((newkey = malloc(DES3_KEY_SIZE)) == NULL) {
4493 return (KMF_ERR_MEMORY);
4494 }

4496 /* create the 1st DES key */
4497 if ((ret = create_deskey(&deskey1)) != KMF_OK) {
4498 goto out;
4499 }

4501 /*
4502 * Create the 2nd DES key and make sure its value is different
4503 * from the 1st DES key.
4504 */
4505 retry = 0;
4506 do {
4507 if (deskey2 != NULL) {
4508 free(deskey2);
4509 deskey2 = NULL;
4510 }

4512 if ((ret = create_deskey(&deskey2)) != KMF_OK) {
4513 goto out;
4514 }

4516 if (memcmp((const void *) deskey1, (const void *) deskey2, 8)
4517 == 0) {
4518 ret = KMF_ERR_KEYGEN_FAILED;
4519 retry++;
4520 }
4521 } while (ret == KMF_ERR_KEYGEN_FAILED && retry < KEYGEN_RETRY);

4523 if (ret != KMF_OK) {
4524 goto out;
4525 }

4527 /*
4528 * Create the 3rd DES key and make sure its value is different
4529 * from the 2nd DES key.
4530 */
4531 retry = 0;
4532 do {
4533 if (deskey3 != NULL) {
4534 free(deskey3);
4535 deskey3 = NULL;
4536 }

4538 if ((ret = create_deskey(&deskey3)) != KMF_OK) {
4539 goto out;
4540 }

4542 if (memcmp((const void *)deskey2, (const void *)deskey3, 8)
4543 == 0) {
4544 ret = KMF_ERR_KEYGEN_FAILED;
4545 retry++;
4546 }
4547 } while (ret == KMF_ERR_KEYGEN_FAILED && retry < KEYGEN_RETRY);

4549 if (ret != KMF_OK) {

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 70

4550 goto out;
4551 }

4553 /* Concatenate 3 DES keys into a DES3 key */
4554 (void) memcpy((void *)newkey, (const void *)deskey1, 8);
4555 (void) memcpy((void *)(newkey + 8), (const void *)deskey2, 8);
4556 (void) memcpy((void *)(newkey + 16), (const void *)deskey3, 8);
4557 *des3key = newkey;

4559 out:
4560 if (deskey1 != NULL)
4561 free(deskey1);

4563 if (deskey2 != NULL)
4564 free(deskey2);

4566 if (deskey3 != NULL)
4567 free(deskey3);

4569 if (ret != KMF_OK && newkey != NULL)
4570 free(newkey);

4572 return (ret);
4573 }

4575 KMF_RETURN
4576 OpenSSL_CreateSymKey(KMF_HANDLE_T handle,
4577 int numattr, KMF_ATTRIBUTE *attrlist)
4578 {
4579 KMF_RETURN ret = KMF_OK;
4580 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
4581 char *fullpath = NULL;
4582 KMF_RAW_SYM_KEY *rkey = NULL;
4583 DES_cblock *deskey = NULL;
4584 unsigned char *des3key = NULL;
4585 unsigned char *random = NULL;
4586 int fd = -1;
4587 KMF_KEY_HANDLE *symkey;
4588 KMF_KEY_ALG keytype;
4589 uint32_t keylen;
4590 uint32_t keylen_size = sizeof (keylen);
4591 char *dirpath;
4592 char *keyfile;

4594 if (kmfh == NULL)
4595 return (KMF_ERR_UNINITIALIZED);

4597 symkey = kmf_get_attr_ptr(KMF_KEY_HANDLE_ATTR, attrlist, numattr);
4598 if (symkey == NULL)
4599 return (KMF_ERR_BAD_PARAMETER);

4601 dirpath = kmf_get_attr_ptr(KMF_DIRPATH_ATTR, attrlist, numattr);

4603 keyfile = kmf_get_attr_ptr(KMF_KEY_FILENAME_ATTR, attrlist, numattr);
4604 if (keyfile == NULL)
4605 return (KMF_ERR_BAD_PARAMETER);

4607 ret = kmf_get_attr(KMF_KEYALG_ATTR, attrlist, numattr,
4608 (void *)&keytype, NULL);
4609 if (ret != KMF_OK)
4610 return (KMF_ERR_BAD_PARAMETER);

4612 ret = kmf_get_attr(KMF_KEYLENGTH_ATTR, attrlist, numattr,
4613 &keylen, &keylen_size);
4614 if (ret == KMF_ERR_ATTR_NOT_FOUND &&
4615 (keytype == KMF_DES || keytype == KMF_DES3))

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 71

4616 /* keylength is not required for DES and 3DES */
4617 ret = KMF_OK;
4618 if (ret != KMF_OK)
4619 return (KMF_ERR_BAD_PARAMETER);

4621 fullpath = get_fullpath(dirpath, keyfile);
4622 if (fullpath == NULL)
4623 return (KMF_ERR_BAD_PARAMETER);

4625 /* If the requested file exists, return an error */
4626 if (test_for_file(fullpath, 0400) == 1) {
4627 free(fullpath);
4628 return (KMF_ERR_DUPLICATE_KEYFILE);
4629 }

4631 fd = open(fullpath, O_CREAT|O_TRUNC|O_RDWR, 0400);
4632 if (fd == -1) {
4633 ret = KMF_ERR_OPEN_FILE;
4634 goto out;
4635 }

4637 rkey = malloc(sizeof (KMF_RAW_SYM_KEY));
4638 if (rkey == NULL) {
4639 ret = KMF_ERR_MEMORY;
4640 goto out;
4641 }
4642 (void) memset(rkey, 0, sizeof (KMF_RAW_SYM_KEY));

4644 if (keytype == KMF_DES) {
4645 if ((ret = create_deskey(&deskey)) != KMF_OK) {
4646 goto out;
4647 }
4648 rkey->keydata.val = (uchar_t *)deskey;
4649 rkey->keydata.len = 8;

4651 symkey->keyalg = KMF_DES;

4653 } else if (keytype == KMF_DES3) {
4654 if ((ret = create_des3key(&des3key)) != KMF_OK) {
4655 goto out;
4656 }
4657 rkey->keydata.val = (uchar_t *)des3key;
4658 rkey->keydata.len = DES3_KEY_SIZE;
4659 symkey->keyalg = KMF_DES3;

4661 } else if (keytype == KMF_AES || keytype == KMF_RC4 ||
4662 keytype == KMF_GENERIC_SECRET) {
4663 int bytes;

4665 if (keylen % 8 != 0) {
4666 ret = KMF_ERR_BAD_KEY_SIZE;
4667 goto out;
4668 }

4670 if (keytype == KMF_AES) {
4671 if (keylen != 128 &&
4672 keylen != 192 &&
4673 keylen != 256) {
4674 ret = KMF_ERR_BAD_KEY_SIZE;
4675 goto out;
4676 }
4677 }

4679 bytes = keylen/8;
4680 random = malloc(bytes);
4681 if (random == NULL) {

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 72

4682 ret = KMF_ERR_MEMORY;
4683 goto out;
4684 }
4685 if (RAND_bytes(random, bytes) != 1) {
4686 ret = KMF_ERR_KEYGEN_FAILED;
4687 goto out;
4688 }

4690 rkey->keydata.val = (uchar_t *)random;
4691 rkey->keydata.len = bytes;
4692 symkey->keyalg = keytype;

4694 } else {
4695 ret = KMF_ERR_BAD_KEY_TYPE;
4696 goto out;
4697 }

4699 (void) write(fd, (const void *) rkey->keydata.val, rkey->keydata.len);

4701 symkey->kstype = KMF_KEYSTORE_OPENSSL;
4702 symkey->keyclass = KMF_SYMMETRIC;
4703 symkey->keylabel = (char *)fullpath;
4704 symkey->israw = TRUE;
4705 symkey->keyp = rkey;

4707 out:
4708 if (fd != -1)
4709 (void) close(fd);

4711 if (ret != KMF_OK && fullpath != NULL) {
4712 free(fullpath);
4713 }
4714 if (ret != KMF_OK) {
4715 kmf_free_raw_sym_key(rkey);
4716 symkey->keyp = NULL;
4717 symkey->keyalg = KMF_KEYALG_NONE;
4718 }

4720 return (ret);
4721 }

4723 /*
4724 * Check a file to see if it is a CRL file with PEM or DER format.
4725 * If success, return its format in the "pformat" argument.
4726 */
4727 KMF_RETURN
4728 OpenSSL_IsCRLFile(KMF_HANDLE_T handle, char *filename, int *pformat)
4729 {
4730 KMF_RETURN ret = KMF_OK;
4731 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
4732 BIO *bio = NULL;
4733 X509_CRL *xcrl = NULL;

4735 if (filename == NULL) {
4736 return (KMF_ERR_BAD_PARAMETER);
4737 }

4739 bio = BIO_new_file(filename, "rb");
4740 if (bio == NULL) {
4741 SET_ERROR(kmfh, ERR_get_error());
4742 ret = KMF_ERR_OPEN_FILE;
4743 goto out;
4744 }

4746 if ((xcrl = PEM_read_bio_X509_CRL(bio, NULL, NULL, NULL)) != NULL) {
4747 *pformat = KMF_FORMAT_PEM;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 73

4748 goto out;
4749 }
4750 (void) BIO_free(bio);

4752 /*
4753 * Now try to read it as raw DER data.
4754 */
4755 bio = BIO_new_file(filename, "rb");
4756 if (bio == NULL) {
4757 SET_ERROR(kmfh, ERR_get_error());
4758 ret = KMF_ERR_OPEN_FILE;
4759 goto out;
4760 }

4762 if ((xcrl = d2i_X509_CRL_bio(bio, NULL)) != NULL) {
4763 *pformat = KMF_FORMAT_ASN1;
4764 } else {
4765 ret = KMF_ERR_BAD_CRLFILE;
4766 }

4768 out:
4769 if (bio != NULL)
4770 (void) BIO_free(bio);

4772 if (xcrl != NULL)
4773 X509_CRL_free(xcrl);

4775 return (ret);
4776 }

4778 KMF_RETURN
4779 OpenSSL_GetSymKeyValue(KMF_HANDLE_T handle, KMF_KEY_HANDLE *symkey,
4780 KMF_RAW_SYM_KEY *rkey)
4781 {
4782 KMF_RETURN rv = KMF_OK;
4783 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
4784 KMF_DATA keyvalue;

4786 if (kmfh == NULL)
4787 return (KMF_ERR_UNINITIALIZED);

4789 if (symkey == NULL || rkey == NULL)
4790 return (KMF_ERR_BAD_PARAMETER);
4791 else if (symkey->keyclass != KMF_SYMMETRIC)
4792 return (KMF_ERR_BAD_KEY_CLASS);

4794 if (symkey->israw) {
4795 KMF_RAW_SYM_KEY *rawkey = (KMF_RAW_SYM_KEY *)symkey->keyp;

4797 if (rawkey == NULL ||
4798 rawkey->keydata.val == NULL ||
4799 rawkey->keydata.len == 0)
4800 return (KMF_ERR_BAD_KEYHANDLE);

4802 rkey->keydata.len = rawkey->keydata.len;
4803 if ((rkey->keydata.val = malloc(rkey->keydata.len)) == NULL)
4804 return (KMF_ERR_MEMORY);
4805 (void) memcpy(rkey->keydata.val, rawkey->keydata.val,
4806 rkey->keydata.len);
4807 } else {
4808 rv = kmf_read_input_file(handle, symkey->keylabel, &keyvalue);
4809 if (rv != KMF_OK)
4810 return (rv);
4811 rkey->keydata.len = keyvalue.Length;
4812 rkey->keydata.val = keyvalue.Data;
4813 }

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 74

4815 return (rv);
4816 }

4818 /*
4819 * substitute for the unsafe access(2) function.
4820 * If the file in question already exists, return 1.
4821 * else 0. If an error occurs during testing (other
4822 * than EEXIST), return -1.
4823 */
4824 static int
4825 test_for_file(char *filename, mode_t mode)
4826 {
4827 int fd;

4829 /*
4830 * Try to create the file with the EXCL flag.
4831 * The call should fail if the file exists.
4832 */
4833 fd = open(filename, O_WRONLY|O_CREAT|O_EXCL, mode);
4834 if (fd == -1 && errno == EEXIST)
4835 return (1);
4836 else if (fd == -1) /* some other error */
4837 return (-1);

4839 /* The file did NOT exist. Delete the testcase. */
4840 (void) close(fd);
4841 (void) unlink(filename);
4842 return (0);
4843 }

4845 KMF_RETURN
4846 OpenSSL_StoreKey(KMF_HANDLE_T handle, int numattr,
4847 KMF_ATTRIBUTE *attrlist)
4848 {
4849 KMF_RETURN rv = KMF_OK;
4850 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
4851 KMF_KEY_HANDLE *pubkey = NULL, *prikey = NULL;
4852 KMF_RAW_KEY_DATA *rawkey;
4853 EVP_PKEY *pkey = NULL;
4854 KMF_ENCODE_FORMAT format = KMF_FORMAT_PEM;
4855 KMF_CREDENTIAL cred = {NULL, 0};
4856 BIO *out = NULL;
4857 int keys = 0;
4858 char *fullpath = NULL;
4859 char *keyfile = NULL;
4860 char *dirpath = NULL;

4862 pubkey = kmf_get_attr_ptr(KMF_PUBKEY_HANDLE_ATTR, attrlist, numattr);
4863 if (pubkey != NULL)
4864 keys++;

4866 prikey = kmf_get_attr_ptr(KMF_PRIVKEY_HANDLE_ATTR, attrlist, numattr);
4867 if (prikey != NULL)
4868 keys++;

4870 rawkey = kmf_get_attr_ptr(KMF_RAW_KEY_ATTR, attrlist, numattr);
4871 if (rawkey != NULL)
4872 keys++;

4874 /*
4875 * Exactly 1 type of key must be passed to this function.
4876 */
4877 if (keys != 1)
4878 return (KMF_ERR_BAD_PARAMETER);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 75

4880 keyfile = (char *)kmf_get_attr_ptr(KMF_KEY_FILENAME_ATTR, attrlist,
4881 numattr);
4882 if (keyfile == NULL)
4883 return (KMF_ERR_BAD_PARAMETER);

4885 dirpath = kmf_get_attr_ptr(KMF_DIRPATH_ATTR, attrlist, numattr);

4887 fullpath = get_fullpath(dirpath, keyfile);

4889 /* Once we have the full path, we don’t need the pieces */
4890 if (fullpath == NULL)
4891 return (KMF_ERR_BAD_PARAMETER);

4893 /* If the requested file exists, return an error */
4894 if (test_for_file(fullpath, 0400) == 1) {
4895 free(fullpath);
4896 return (KMF_ERR_DUPLICATE_KEYFILE);
4897 }

4899 rv = kmf_get_attr(KMF_ENCODE_FORMAT_ATTR, attrlist, numattr,
4900 &format, NULL);
4901 if (rv != KMF_OK)
4902 /* format is optional. */
4903 rv = KMF_OK;

4905 /* CRED is not required for OpenSSL files */
4906 (void) kmf_get_attr(KMF_CREDENTIAL_ATTR, attrlist, numattr,
4907 &cred, NULL);

4909 /* Store the private key to the keyfile */
4910 out = BIO_new_file(fullpath, "wb");
4911 if (out == NULL) {
4912 SET_ERROR(kmfh, ERR_get_error());
4913 rv = KMF_ERR_OPEN_FILE;
4914 goto end;
4915 }

4917 if (prikey != NULL && prikey->keyp != NULL) {
4918 if (prikey->keyalg == KMF_RSA ||
4919 prikey->keyalg == KMF_DSA) {
4920 pkey = (EVP_PKEY *)prikey->keyp;

4922 rv = ssl_write_key(kmfh, format,
4923 out, &cred, pkey, TRUE);

4925 if (rv == KMF_OK && prikey->keylabel == NULL) {
4926 prikey->keylabel = strdup(fullpath);
4927 if (prikey->keylabel == NULL)
4928 rv = KMF_ERR_MEMORY;
4929 }
4930 }
4931 } else if (pubkey != NULL && pubkey->keyp != NULL) {
4932 if (pubkey->keyalg == KMF_RSA ||
4933 pubkey->keyalg == KMF_DSA) {
4934 pkey = (EVP_PKEY *)pubkey->keyp;

4936 rv = ssl_write_key(kmfh, format,
4937 out, &cred, pkey, FALSE);

4939 if (rv == KMF_OK && pubkey->keylabel == NULL) {
4940 pubkey->keylabel = strdup(fullpath);
4941 if (pubkey->keylabel == NULL)
4942 rv = KMF_ERR_MEMORY;
4943 }
4944 }
4945 } else if (rawkey != NULL) {

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 76

4946 if (rawkey->keytype == KMF_RSA) {
4947 pkey = ImportRawRSAKey(&rawkey->rawdata.rsa);
4948 } else if (rawkey->keytype == KMF_DSA) {
4949 pkey = ImportRawDSAKey(&rawkey->rawdata.dsa);
4950 } else {
4951 rv = KMF_ERR_BAD_PARAMETER;
4952 }
4953 if (pkey != NULL) {
4954 KMF_KEY_CLASS kclass = KMF_ASYM_PRI;

4956 rv = kmf_get_attr(KMF_KEYCLASS_ATTR, attrlist, numattr,
4957 (void *)&kclass, NULL);
4958 if (rv != KMF_OK)
4959 rv = KMF_OK;
4960 rv = ssl_write_key(kmfh, format, out,
4961 &cred, pkey, (kclass == KMF_ASYM_PRI));
4962 EVP_PKEY_free(pkey);
4963 }
4964 }

4966 end:

4968 if (out)
4969 (void) BIO_free(out);

4972 if (rv == KMF_OK)
4973 (void) chmod(fullpath, 0400);

4975 free(fullpath);
4976 return (rv);
4977 }

4979 KMF_RETURN
4980 OpenSSL_ImportCRL(KMF_HANDLE_T handle, int numattr, KMF_ATTRIBUTE *attrlist)
4981 {
4982 KMF_RETURN ret = KMF_OK;
4983 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
4984 X509_CRL *xcrl = NULL;
4985 X509 *xcert = NULL;
4986 EVP_PKEY *pkey;
4987 KMF_ENCODE_FORMAT format;
4988 BIO *in = NULL, *out = NULL;
4989 int openssl_ret = 0;
4990 KMF_ENCODE_FORMAT outformat;
4991 boolean_t crlcheck = FALSE;
4992 char *certfile, *dirpath, *crlfile, *incrl, *outcrl, *outcrlfile;

4994 if (numattr == 0 || attrlist == NULL) {
4995 return (KMF_ERR_BAD_PARAMETER);
4996 }

4998 /* CRL check is optional */
4999 (void) kmf_get_attr(KMF_CRL_CHECK_ATTR, attrlist, numattr,
5000 &crlcheck, NULL);

5002 certfile = kmf_get_attr_ptr(KMF_CERT_FILENAME_ATTR, attrlist, numattr);
5003 if (crlcheck == B_TRUE && certfile == NULL) {
5004 return (KMF_ERR_BAD_CERTFILE);
5005 }

5007 dirpath = kmf_get_attr_ptr(KMF_DIRPATH_ATTR, attrlist, numattr);
5008 incrl = kmf_get_attr_ptr(KMF_CRL_FILENAME_ATTR, attrlist, numattr);
5009 outcrl = kmf_get_attr_ptr(KMF_CRL_OUTFILE_ATTR, attrlist, numattr);

5011 crlfile = get_fullpath(dirpath, incrl);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 77

5013 if (crlfile == NULL)
5014 return (KMF_ERR_BAD_CRLFILE);

5016 outcrlfile = get_fullpath(dirpath, outcrl);
5017 if (outcrlfile == NULL)
5018 return (KMF_ERR_BAD_CRLFILE);

5020 if (isdir(outcrlfile)) {
5021 free(outcrlfile);
5022 return (KMF_ERR_BAD_CRLFILE);
5023 }

5025 ret = kmf_is_crl_file(handle, crlfile, &format);
5026 if (ret != KMF_OK) {
5027 free(outcrlfile);
5028 return (ret);
5029 }

5031 in = BIO_new_file(crlfile, "rb");
5032 if (in == NULL) {
5033 SET_ERROR(kmfh, ERR_get_error());
5034 ret = KMF_ERR_OPEN_FILE;
5035 goto end;
5036 }

5038 if (format == KMF_FORMAT_ASN1) {
5039 xcrl = d2i_X509_CRL_bio(in, NULL);
5040 } else if (format == KMF_FORMAT_PEM) {
5041 xcrl = PEM_read_bio_X509_CRL(in, NULL, NULL, NULL);
5042 }

5044 if (xcrl == NULL) {
5045 SET_ERROR(kmfh, ERR_get_error());
5046 ret = KMF_ERR_BAD_CRLFILE;
5047 goto end;
5048 }

5050 /* If bypasscheck is specified, no need to verify. */
5051 if (crlcheck == B_FALSE)
5052 goto output;

5054 ret = kmf_is_cert_file(handle, certfile, &format);
5055 if (ret != KMF_OK)
5056 goto end;

5058 /* Read in the CA cert file and convert to X509 */
5059 if (BIO_read_filename(in, certfile) <= 0) {
5060 SET_ERROR(kmfh, ERR_get_error());
5061 ret = KMF_ERR_OPEN_FILE;
5062 goto end;
5063 }

5065 if (format == KMF_FORMAT_ASN1) {
5066 xcert = d2i_X509_bio(in, NULL);
5067 } else if (format == KMF_FORMAT_PEM) {
5068 xcert = PEM_read_bio_X509(in, NULL, NULL, NULL);
5069 } else {
5070 ret = KMF_ERR_BAD_CERT_FORMAT;
5071 goto end;
5072 }

5074 if (xcert == NULL) {
5075 SET_ERROR(kmfh, ERR_get_error());
5076 ret = KMF_ERR_BAD_CERT_FORMAT;
5077 goto end;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 78

5078 }
5079 /* Now get the public key from the CA cert */
5080 pkey = X509_get_pubkey(xcert);
5081 if (pkey == NULL) {
5082 SET_ERROR(kmfh, ERR_get_error());
5083 ret = KMF_ERR_BAD_CERTFILE;
5084 goto end;
5085 }

5087 /* Verify the CRL with the CA’s public key */
5088 openssl_ret = X509_CRL_verify(xcrl, pkey);
5089 EVP_PKEY_free(pkey);
5090 if (openssl_ret > 0) {
5091 ret = KMF_OK; /* verify succeed */
5092 } else {
5093 SET_ERROR(kmfh, openssl_ret);
5094 ret = KMF_ERR_BAD_CRLFILE;
5095 }

5097 output:
5098 ret = kmf_get_attr(KMF_ENCODE_FORMAT_ATTR, attrlist, numattr,
5099 &outformat, NULL);
5100 if (ret != KMF_OK) {
5101 ret = KMF_OK;
5102 outformat = KMF_FORMAT_PEM;
5103 }

5105 out = BIO_new_file(outcrlfile, "wb");
5106 if (out == NULL) {
5107 SET_ERROR(kmfh, ERR_get_error());
5108 ret = KMF_ERR_OPEN_FILE;
5109 goto end;
5110 }

5112 if (outformat == KMF_FORMAT_ASN1) {
5113 openssl_ret = (int)i2d_X509_CRL_bio(out, xcrl);
5114 } else if (outformat == KMF_FORMAT_PEM) {
5115 openssl_ret = PEM_write_bio_X509_CRL(out, xcrl);
5116 } else {
5117 ret = KMF_ERR_BAD_PARAMETER;
5118 goto end;
5119 }

5121 if (openssl_ret <= 0) {
5122 SET_ERROR(kmfh, ERR_get_error());
5123 ret = KMF_ERR_WRITE_FILE;
5124 } else {
5125 ret = KMF_OK;
5126 }

5128 end:
5129 if (xcrl != NULL)
5130 X509_CRL_free(xcrl);

5132 if (xcert != NULL)
5133 X509_free(xcert);

5135 if (in != NULL)
5136 (void) BIO_free(in);

5138 if (out != NULL)
5139 (void) BIO_free(out);

5141 if (outcrlfile != NULL)
5142 free(outcrlfile);

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 79

5144 return (ret);
5145 }

5147 KMF_RETURN
5148 OpenSSL_ListCRL(KMF_HANDLE_T handle, int numattr, KMF_ATTRIBUTE *attrlist)
5149 {
5150 KMF_RETURN ret = KMF_OK;
5151 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
5152 X509_CRL *x = NULL;
5153 KMF_ENCODE_FORMAT format;
5154 char *crlfile = NULL;
5155 BIO *in = NULL;
5156 BIO *mem = NULL;
5157 long len;
5158 char *memptr;
5159 char *data = NULL;
5160 char **crldata;
5161 char *crlfilename, *dirpath;

5163 if (numattr == 0 || attrlist == NULL) {
5164 return (KMF_ERR_BAD_PARAMETER);
5165 }
5166 crlfilename = kmf_get_attr_ptr(KMF_CRL_FILENAME_ATTR,
5167 attrlist, numattr);
5168 if (crlfilename == NULL)
5169 return (KMF_ERR_BAD_CRLFILE);

5171 crldata = (char **)kmf_get_attr_ptr(KMF_CRL_DATA_ATTR,
5172 attrlist, numattr);

5174 if (crldata == NULL)
5175 return (KMF_ERR_BAD_PARAMETER);

5177 dirpath = kmf_get_attr_ptr(KMF_DIRPATH_ATTR, attrlist, numattr);

5179 crlfile = get_fullpath(dirpath, crlfilename);

5181 if (crlfile == NULL)
5182 return (KMF_ERR_BAD_CRLFILE);

5184 if (isdir(crlfile)) {
5185 free(crlfile);
5186 return (KMF_ERR_BAD_CRLFILE);
5187 }

5189 ret = kmf_is_crl_file(handle, crlfile, &format);
5190 if (ret != KMF_OK) {
5191 free(crlfile);
5192 return (ret);
5193 }

5195 if (bio_err == NULL)
5196 bio_err = BIO_new_fp(stderr, BIO_NOCLOSE);

5198 in = BIO_new_file(crlfile, "rb");
5199 if (in == NULL) {
5200 SET_ERROR(kmfh, ERR_get_error());
5201 ret = KMF_ERR_OPEN_FILE;
5202 goto end;
5203 }

5205 if (format == KMF_FORMAT_ASN1) {
5206 x = d2i_X509_CRL_bio(in, NULL);
5207 } else if (format == KMF_FORMAT_PEM) {
5208 x = PEM_read_bio_X509_CRL(in, NULL, NULL, NULL);
5209 }

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 80

5211 if (x == NULL) { /* should not happen */
5212 SET_ERROR(kmfh, ERR_get_error());
5213 ret = KMF_ERR_OPEN_FILE;
5214 goto end;
5215 }

5217 mem = BIO_new(BIO_s_mem());
5218 if (mem == NULL) {
5219 SET_ERROR(kmfh, ERR_get_error());
5220 ret = KMF_ERR_MEMORY;
5221 goto end;
5222 }

5224 (void) X509_CRL_print(mem, x);
5225 len = BIO_get_mem_data(mem, &memptr);
5226 if (len <= 0) {
5227 SET_ERROR(kmfh, ERR_get_error());
5228 ret = KMF_ERR_MEMORY;
5229 goto end;
5230 }

5232 data = malloc(len + 1);
5233 if (data == NULL) {
5234 ret = KMF_ERR_MEMORY;
5235 goto end;
5236 }

5238 (void) memcpy(data, memptr, len);
5239 data[len] = ’\0’;
5240 *crldata = data;

5242 end:
5243 if (x != NULL)
5244 X509_CRL_free(x);

5246 if (crlfile != NULL)
5247 free(crlfile);

5249 if (in != NULL)
5250 (void) BIO_free(in);

5252 if (mem != NULL)
5253 (void) BIO_free(mem);

5255 return (ret);
5256 }

5258 KMF_RETURN
5259 OpenSSL_DeleteCRL(KMF_HANDLE_T handle, int numattr, KMF_ATTRIBUTE *attrlist)
5260 {
5261 KMF_RETURN ret = KMF_OK;
5262 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
5263 KMF_ENCODE_FORMAT format;
5264 char *crlfile = NULL;
5265 BIO *in = NULL;
5266 char *crlfilename, *dirpath;

5268 if (numattr == 0 || attrlist == NULL) {
5269 return (KMF_ERR_BAD_PARAMETER);
5270 }

5272 crlfilename = kmf_get_attr_ptr(KMF_CRL_FILENAME_ATTR,
5273 attrlist, numattr);

5275 if (crlfilename == NULL)

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 81

5276 return (KMF_ERR_BAD_CRLFILE);

5278 dirpath = kmf_get_attr_ptr(KMF_DIRPATH_ATTR, attrlist, numattr);

5280 crlfile = get_fullpath(dirpath, crlfilename);

5282 if (crlfile == NULL)
5283 return (KMF_ERR_BAD_CRLFILE);

5285 if (isdir(crlfile)) {
5286 ret = KMF_ERR_BAD_CRLFILE;
5287 goto end;
5288 }

5290 ret = kmf_is_crl_file(handle, crlfile, &format);
5291 if (ret != KMF_OK)
5292 goto end;

5294 if (unlink(crlfile) != 0) {
5295 SET_SYS_ERROR(kmfh, errno);
5296 ret = KMF_ERR_INTERNAL;
5297 goto end;
5298 }

5300 end:
5301 if (in != NULL)
5302 (void) BIO_free(in);
5303 if (crlfile != NULL)
5304 free(crlfile);

5306 return (ret);
5307 }

5309 KMF_RETURN
5310 OpenSSL_FindCertInCRL(KMF_HANDLE_T handle, int numattr, KMF_ATTRIBUTE *attrlist)
5311 {
5312 KMF_RETURN ret = KMF_OK;
5313 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
5314 KMF_ENCODE_FORMAT format;
5315 BIO *in = NULL;
5316 X509 *xcert = NULL;
5317 X509_CRL *xcrl = NULL;
5318 STACK_OF(X509_REVOKED) *revoke_stack = NULL;
5319 X509_REVOKED *revoke;
5320 int i;
5321 char *crlfilename, *crlfile, *dirpath, *certfile;

5323 if (numattr == 0 || attrlist == NULL) {
5324 return (KMF_ERR_BAD_PARAMETER);
5325 }

5327 crlfilename = kmf_get_attr_ptr(KMF_CRL_FILENAME_ATTR,
5328 attrlist, numattr);

5330 if (crlfilename == NULL)
5331 return (KMF_ERR_BAD_CRLFILE);

5333 certfile = kmf_get_attr_ptr(KMF_CERT_FILENAME_ATTR, attrlist, numattr);
5334 if (certfile == NULL)
5335 return (KMF_ERR_BAD_CRLFILE);

5337 dirpath = kmf_get_attr_ptr(KMF_DIRPATH_ATTR, attrlist, numattr);

5339 crlfile = get_fullpath(dirpath, crlfilename);

5341 if (crlfile == NULL)

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 82

5342 return (KMF_ERR_BAD_CRLFILE);

5344 if (isdir(crlfile)) {
5345 ret = KMF_ERR_BAD_CRLFILE;
5346 goto end;
5347 }

5349 ret = kmf_is_crl_file(handle, crlfile, &format);
5350 if (ret != KMF_OK)
5351 goto end;

5353 /* Read the CRL file and load it into a X509_CRL structure */
5354 in = BIO_new_file(crlfilename, "rb");
5355 if (in == NULL) {
5356 SET_ERROR(kmfh, ERR_get_error());
5357 ret = KMF_ERR_OPEN_FILE;
5358 goto end;
5359 }

5361 if (format == KMF_FORMAT_ASN1) {
5362 xcrl = d2i_X509_CRL_bio(in, NULL);
5363 } else if (format == KMF_FORMAT_PEM) {
5364 xcrl = PEM_read_bio_X509_CRL(in, NULL, NULL, NULL);
5365 }

5367 if (xcrl == NULL) {
5368 SET_ERROR(kmfh, ERR_get_error());
5369 ret = KMF_ERR_BAD_CRLFILE;
5370 goto end;
5371 }
5372 (void) BIO_free(in);

5374 /* Read the Certificate file and load it into a X509 structure */
5375 ret = kmf_is_cert_file(handle, certfile, &format);
5376 if (ret != KMF_OK)
5377 goto end;

5379 in = BIO_new_file(certfile, "rb");
5380 if (in == NULL) {
5381 SET_ERROR(kmfh, ERR_get_error());
5382 ret = KMF_ERR_OPEN_FILE;
5383 goto end;
5384 }

5386 if (format == KMF_FORMAT_ASN1) {
5387 xcert = d2i_X509_bio(in, NULL);
5388 } else if (format == KMF_FORMAT_PEM) {
5389 xcert = PEM_read_bio_X509(in, NULL, NULL, NULL);
5390 }

5392 if (xcert == NULL) {
5393 SET_ERROR(kmfh, ERR_get_error());
5394 ret = KMF_ERR_BAD_CERTFILE;
5395 goto end;
5396 }

5398 /* Check if the certificate and the CRL have same issuer */
5399 if (X509_NAME_cmp(xcert->cert_info->issuer, xcrl->crl->issuer) != 0) {
5400 ret = KMF_ERR_ISSUER;
5401 goto end;
5402 }

5404 /* Check to see if the certificate serial number is revoked */
5405 revoke_stack = X509_CRL_get_REVOKED(xcrl);
5406 if (sk_X509_REVOKED_num(revoke_stack) <= 0) {
5407 /* No revoked certificates in the CRL file */

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 83

5408 SET_ERROR(kmfh, ERR_get_error());
5409 ret = KMF_ERR_EMPTY_CRL;
5410 goto end;
5411 }

5413 for (i = 0; i < sk_X509_REVOKED_num(revoke_stack); i++) {
5414 revoke = sk_X509_REVOKED_value(revoke_stack, i);
5415 if (ASN1_INTEGER_cmp(xcert->cert_info->serialNumber,
5416 revoke->serialNumber) == 0) {
5417 break;
5418 }
5419 }

5421 if (i < sk_X509_REVOKED_num(revoke_stack)) {
5422 ret = KMF_OK;
5423 } else {
5424 ret = KMF_ERR_NOT_REVOKED;
5425 }

5427 end:
5428 if (in != NULL)
5429 (void) BIO_free(in);
5430 if (xcrl != NULL)
5431 X509_CRL_free(xcrl);
5432 if (xcert != NULL)
5433 X509_free(xcert);

5435 return (ret);
5436 }

5438 KMF_RETURN
5439 OpenSSL_VerifyCRLFile(KMF_HANDLE_T handle, char *crlname, KMF_DATA *tacert)
5440 {
5441 KMF_RETURN ret = KMF_OK;
5442 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
5443 BIO *bcrl = NULL;
5444 X509_CRL *xcrl = NULL;
5445 X509 *xcert = NULL;
5446 EVP_PKEY *pkey;
5447 int sslret;
5448 KMF_ENCODE_FORMAT crl_format;
5449 unsigned char *p;
5450 long len;

5452 if (handle == NULL || crlname == NULL || tacert == NULL) {
5453 return (KMF_ERR_BAD_PARAMETER);
5454 }

5456 ret = kmf_get_file_format(crlname, &crl_format);
5457 if (ret != KMF_OK)
5458 return (ret);

5460 bcrl = BIO_new_file(crlname, "rb");
5461 if (bcrl == NULL) {
5462 SET_ERROR(kmfh, ERR_get_error());
5463 ret = KMF_ERR_OPEN_FILE;
5464 goto cleanup;
5465 }

5467 if (crl_format == KMF_FORMAT_ASN1) {
5468 xcrl = d2i_X509_CRL_bio(bcrl, NULL);
5469 } else if (crl_format == KMF_FORMAT_PEM) {
5470 xcrl = PEM_read_bio_X509_CRL(bcrl, NULL, NULL, NULL);
5471 } else {
5472 ret = KMF_ERR_BAD_PARAMETER;
5473 goto cleanup;

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 84

5474 }

5476 if (xcrl == NULL) {
5477 SET_ERROR(kmfh, ERR_get_error());
5478 ret = KMF_ERR_BAD_CRLFILE;
5479 goto cleanup;
5480 }

5482 p = tacert->Data;
5483 len = tacert->Length;
5484 xcert = d2i_X509(NULL, (const uchar_t **)&p, len);

5486 if (xcert == NULL) {
5487 SET_ERROR(kmfh, ERR_get_error());
5488 ret = KMF_ERR_BAD_CERTFILE;
5489 goto cleanup;
5490 }

5492 /* Get issuer certificate public key */
5493 pkey = X509_get_pubkey(xcert);
5494 if (pkey == NULL) {
5495 SET_ERROR(kmfh, ERR_get_error());
5496 ret = KMF_ERR_BAD_CERT_FORMAT;
5497 goto cleanup;
5498 }

5500 /* Verify CRL signature */
5501 sslret = X509_CRL_verify(xcrl, pkey);
5502 EVP_PKEY_free(pkey);
5503 if (sslret > 0) {
5504 ret = KMF_OK;
5505 } else {
5506 SET_ERROR(kmfh, sslret);
5507 ret = KMF_ERR_BAD_CRLFILE;
5508 }

5510 cleanup:
5511 if (bcrl != NULL)
5512 (void) BIO_free(bcrl);

5514 if (xcrl != NULL)
5515 X509_CRL_free(xcrl);

5517 if (xcert != NULL)
5518 X509_free(xcert);

5520 return (ret);

5522 }

5524 KMF_RETURN
5525 OpenSSL_CheckCRLDate(KMF_HANDLE_T handle, char *crlname)
5526 {
5527 KMF_RETURN ret = KMF_OK;
5528 KMF_HANDLE *kmfh = (KMF_HANDLE *)handle;
5529 KMF_ENCODE_FORMAT crl_format;
5530 BIO *bcrl = NULL;
5531 X509_CRL *xcrl = NULL;
5532 int i;

5534 if (handle == NULL || crlname == NULL) {
5535 return (KMF_ERR_BAD_PARAMETER);
5536 }

5538 ret = kmf_is_crl_file(handle, crlname, &crl_format);
5539 if (ret != KMF_OK)

new/usr/src/lib/libkmf/plugins/kmf_openssl/common/openssl_spi.c 85

5540 return (ret);

5542 bcrl = BIO_new_file(crlname, "rb");
5543 if (bcrl == NULL) {
5544 SET_ERROR(kmfh, ERR_get_error());
5545 ret = KMF_ERR_OPEN_FILE;
5546 goto cleanup;
5547 }

5549 if (crl_format == KMF_FORMAT_ASN1)
5550 xcrl = d2i_X509_CRL_bio(bcrl, NULL);
5551 else if (crl_format == KMF_FORMAT_PEM)
5552 xcrl = PEM_read_bio_X509_CRL(bcrl, NULL, NULL, NULL);

5554 if (xcrl == NULL) {
5555 SET_ERROR(kmfh, ERR_get_error());
5556 ret = KMF_ERR_BAD_CRLFILE;
5557 goto cleanup;
5558 }
5559 i = X509_cmp_time(X509_CRL_get_lastUpdate(xcrl), NULL);
5560 if (i >= 0) {
5561 ret = KMF_ERR_VALIDITY_PERIOD;
5562 goto cleanup;
5563 }
5564 if (X509_CRL_get_nextUpdate(xcrl)) {
5565 i = X509_cmp_time(X509_CRL_get_nextUpdate(xcrl), NULL);

5567 if (i <= 0) {
5568 ret = KMF_ERR_VALIDITY_PERIOD;
5569 goto cleanup;
5570 }
5571 }

5573 ret = KMF_OK;

5575 cleanup:
5576 if (bcrl != NULL)
5577 (void) BIO_free(bcrl);

5579 if (xcrl != NULL)
5580 X509_CRL_free(xcrl);

5582 return (ret);
5583 }

new/usr/src/lib/libpkg/Makefile.com 1

**
 2551 Fri May 30 18:31:13 2014
new/usr/src/lib/libpkg/Makefile.com
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 LIBRARY= libpkg.a
28 VERS= .1

30 # include library definitions
31 OBJECTS= \
32 canonize.o ckparam.o ckvolseq.o \
33 devtype.o dstream.o gpkglist.o \
34 gpkgmap.o isdir.o logerr.o \
35 mappath.o ncgrpw.o nhash.o \
36 pkgexecl.o pkgexecv.o pkgmount.o \
37 pkgtrans.o ppkgmap.o \
38 progerr.o putcfile.o rrmdir.o \
39 runcmd.o srchcfile.o tputcfent.o \
40 verify.o security.o pkgweb.o \
41 pkgerr.o keystore.o p12lib.o \
42 vfpops.o fmkdir.o pkgstr.o \
43 handlelocalfs.o pkgserv.o

46 # include library definitions
47 include $(SRC)/lib/Makefile.lib

49 SRCDIR= ../common

51 POFILE = libpkg.po
52 MSGFILES = $(OBJECTS:%.o=../common/%.i)
53 CLEANFILES += $(MSGFILES)

55 # This library is NOT lint clean

57 # openssl forces us to ignore dubious pointer casts, thanks to its clever
58 # use of macros for stack management.
59 LINTFLAGS= -umx -errtags \
60 -erroff=E_BAD_PTR_CAST_ALIGN,E_BAD_PTR_CAST
61 $(LINTLIB):= SRCS = $(SRCDIR)/$(LINTSRC)

new/usr/src/lib/libpkg/Makefile.com 2

64 LIBS = $(DYNLIB) $(LINTLIB)

67 LDLIBS += -lc -lwanboot -lscf -ladm

69 # libcrypto and libssl have no lint library, and so can only be used when
70 # building
71 $(DYNLIB) := LDLIBS += -lsunw_crypto -lsunw_ssl

73 CFLAGS += $(CCVERBOSE)
74 CERRWARN += -_gcc=-Wno-unused-label
75 CERRWARN += -_gcc=-Wno-parentheses
76 CERRWARN += -_gcc=-Wno-uninitialized
77 CERRWARN += -_gcc=-Wno-clobbered
78 CERRWARN += -_gcc=-Wno-switch
79 CERRWARN += -_gcc=-Wno-unused-value
80 CPPFLAGS += -I$(SRCDIR) -D_FILE_OFFSET_BITS=64

82 .KEEP_STATE:

84 all: $(LIBS)

86 $(POFILE): $(MSGFILES)
87 $(BUILDPO.msgfiles)

89 _msg: $(MSGDOMAINPOFILE)

91 lint: lintcheck

93 # include library targets
94 include $(SRC)/lib/Makefile.targ
95 include $(SRC)/Makefile.msg.targ

new/usr/src/lib/libpkg/common/security.c 1

**
 6803 Fri May 30 18:31:13 2014
new/usr/src/lib/libpkg/common/security.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

28 /*
29 * Module: security.c
30 * Description:
31 * Module for handling certificates and various
32 * utilities to access their data.
33 */

35 #include <stdio.h>
36 #include <string.h>
37 #include <errno.h>
38 #include <ctype.h>
39 #include <sys/types.h>
40 #include <sys/stat.h>
41 #include <limits.h>
42 #include <pkgstrct.h>
43 #include <pkginfo.h>
44 #include <locale.h>
45 #include <libintl.h>
46 #include <unistd.h>
47 #include <stdlib.h>

49 #include <openssl/bio.h>
50 #include <openssl/pkcs12.h>
51 #include <openssl/pkcs7.h>
52 #include <openssl/x509.h>
53 #include <openssl/err.h>
54 #include <openssl/ssl.h>
55 #include "pkgerr.h"
56 #include "pkglib.h"
57 #include "pkglibmsgs.h"
58 #include "pkglocale.h"
59 #include "p12lib.h"

61 /* length of allowable passwords */

new/usr/src/lib/libpkg/common/security.c 2

62 #define MAX_PASSLEN 128

64 /*
65 * Name: init_security
66 * Description: Initializes structures, libraries, for security operations
67 * Arguments: none
68 * Returns: 0 if we couldn’t initialize, non-zero otherwise
69 */
70 void
71 sec_init(void)
72 {
73 OpenSSL_add_all_algorithms();
74 SSL_load_error_strings();
75 ERR_load_SUNW_strings();
76 (void) SSL_library_init();
77 }

79 /*
80 * get_cert_chain - Builds a chain of certificates, from a given
81 * user certificate to a trusted certificate.
82 *
83 * Arguments:
84 * err - Error object to add errors to
85 * cert - User cert to start with
86 * cas - Trusted certs to use as trust anchors
87 * chain - The resulting chain of certs (in the form of an
88 * ordered set) is placed here.
89 *
90 * Returns:
91 * 0 - Success - chain is stored in ’chain’.
92 * non-zero - Failure, errors recorded in err
93 */
94 int
95 get_cert_chain(PKG_ERR *err, X509 *cert, STACK_OF(X509) *clcerts,
96 STACK_OF(X509) *cas, STACK_OF(X509) **chain)
97 {
98 X509_STORE_CTX *store_ctx = NULL;
99 X509_STORE *ca_store = NULL;
100 X509 *ca_cert = NULL;
101 int i;
102 int ret = 0;

104 if ((ca_store = X509_STORE_new()) == NULL) {
105 pkgerr_add(err, PKGERR_NOMEM,
106 gettext(ERR_MEM));
107 ret = 1;
108 goto cleanup;
109 }

111 /* add all ca certs into the store */
112 for (i = 0; i < sk_X509_num(cas); i++) {
113 ca_cert = sk_X509_value(cas, i);
114 if (X509_STORE_add_cert(ca_store, ca_cert) == 0) {
115 pkgerr_add(err, PKGERR_NOMEM, gettext(ERR_MEM));
116 ret = 1;
117 goto cleanup;
118 }
119 }

121 /* initialize context object used during the chain resolution */

123 if ((store_ctx = X509_STORE_CTX_new()) == NULL) {
124 pkgerr_add(err, PKGERR_NOMEM, gettext(ERR_MEM));
125 ret = 1;
126 goto cleanup;
127 }

new/usr/src/lib/libpkg/common/security.c 3

129 (void) X509_STORE_CTX_init(store_ctx, ca_store, cert, clcerts);
130 /* attempt to verify the cert, which builds the cert chain */
131 if (X509_verify_cert(store_ctx) <= 0) {
132 pkgerr_add(err, PKGERR_CHAIN,
133 gettext(ERR_CERTCHAIN),
134 get_subject_display_name(cert),
135 X509_verify_cert_error_string(store_ctx->error));
136 ret = 1;
137 goto cleanup;
138 }
139 *chain = X509_STORE_CTX_get1_chain(store_ctx);

141 cleanup:
142 if (ca_store != NULL)
143 (void) X509_STORE_free(ca_store);
144 if (store_ctx != NULL) {
145 (void) X509_STORE_CTX_cleanup(store_ctx);
146 (void) X509_STORE_CTX_free(store_ctx);
147 }

149 return (ret);
150 }

152 /*
153 * Name: get_subject_name
154 * Description: Retrieves a name used for identifying a certificate’s subject.
155 *
156 * Arguments: cert - The certificate to get the name from
157 *
158 * Returns : A static buffer containing the common name (CN) of the
159 * subject of the cert.
160 *
161 * if the CN is not available, returns a string with the entire
162 * X509 distinguished name.
163 */
164 char
165 *get_subject_display_name(X509 *cert)
166 {

168 X509_NAME *xname;
169 static char sname[ATTR_MAX];

171 xname = X509_get_subject_name(cert);
172 if (X509_NAME_get_text_by_NID(xname,
173 NID_commonName, sname,
174 ATTR_MAX) <= 0) {
175 (void) strncpy(sname,
176 X509_NAME_oneline(xname, NULL, 0), ATTR_MAX);
177 sname[ATTR_MAX - 1] = ’\0’;
178 }
179 return (sname);
180 }

182 /*
183 * Name: get_display_name
184 * Description: Retrieves a name used for identifying a certificate’s issuer.
185 *
186 * Arguments: cert - The certificate to get the name from
187 *
188 * Returns : A static buffer containing the common name (CN)
189 * of the issuer of the cert.
190 *
191 * if the CN is not available, returns a string with the entire
192 * X509 distinguished name.
193 */

new/usr/src/lib/libpkg/common/security.c 4

194 char
195 *get_issuer_display_name(X509 *cert)
196 {

198 X509_NAME *xname;
199 static char sname[ATTR_MAX];

201 xname = X509_get_issuer_name(cert);
202 if (X509_NAME_get_text_by_NID(xname,
203 NID_commonName, sname,
204 ATTR_MAX) <= 0) {
205 (void) strncpy(sname,
206 X509_NAME_oneline(xname, NULL, 0), ATTR_MAX);
207 sname[ATTR_MAX - 1] = ’\0’;
208 }
209 return (sname);
210 }

213 /*
214 * Name: get_serial_num
215 * Description: Retrieves the serial number of an X509 cert
216 *
217 * Arguments: cert - The certificate to get the data from
218 *
219 * Returns : A static buffer containing the serial number
220 * of the cert
221 *
222 * if the SN is not available, returns NULL
223 */
224 char
225 *get_serial_num(X509 *cert)
226 {
227 static char sn_str[ATTR_MAX];
228 ASN1_INTEGER *sn;

230 if ((sn = X509_get_serialNumber(cert)) != 0) {
231 return (NULL);
232 } else {
233 (void) snprintf(sn_str, ATTR_MAX, "%ld",
234 ASN1_INTEGER_get(sn));
235 }

237 return (sn_str);
238 }

240 /*
241 * Name: get_fingerprint
242 * Description: Generates a fingerprint string given
243 * a digest algorithm with which to calculate
244 * the fingerprint
245 *
246 * Arguments: cert - The certificate to get the data from
247 * Arguments: alg - The algorithm to use to calculate the fingerprint
248 *
249 * Returns : A static buffer containing the digest
250 * NULL if cert is NULL, or digest cannot be calculated
251 */
252 char
253 *get_fingerprint(X509 *cert, const EVP_MD *alg)
254 {
255 static char fp_str[ATTR_MAX];
256 char tmp[ATTR_MAX] = "";
257 unsigned int n;
258 unsigned char md[EVP_MAX_MD_SIZE];
259 int i;

new/usr/src/lib/libpkg/common/security.c 5

261 if (!X509_digest(cert, alg, md, &n)) {
262 return (NULL);
263 }

265 /* start with empty string */
266 fp_str[0] = ’\0’;

268 for (i = 0; i < (int)n; i++) {
269 /* form a byte of the fingerprint */
270 (void) snprintf(tmp, ATTR_MAX, "%02X:", md[i]);
271 /* cat it onto the end of the result */
272 (void) strlcat(fp_str, tmp, ATTR_MAX);
273 }

275 /* nuke trailing ’:’ */
276 fp_str[strlen(fp_str) - 1] = ’\0’;

278 return (fp_str);
279 }

new/usr/src/lib/libwanboot/Makefile.com 1

**
 2771 Fri May 30 18:31:13 2014
new/usr/src/lib/libwanboot/Makefile.com
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # Copyright (c) 2012 by Delphix. All rights reserved.
25 #

27 LIBRARY = libwanboot.a
28 VERS = .1

30 # List of locally located modules.
31 LOC_DIR = ../common
32 LOC_OBJS = socket_inet.o bootinfo_aux.o
33 LOC_SRCS = $(LOC_OBJS:%.o=$(LOC_DIR)/%.c)

35 # List of common wanboot objects.
36 COM_DIR = ../../../common/net/wanboot
37 COM_OBJS = auxutil.o \
38 boot_http.o \
39 bootconf.o \
40 bootconf_errmsg.o \
41 bootinfo.o \
42 bootlog.o \
43 http_errorstr.o \
44 p12access.o \
45 p12auxpars.o \
46 p12auxutl.o \
47 p12err.o \
48 p12misc.o \
49 parseURL.o
50 COM_SRCS = $(COM_OBJS:%.o=$(COM_DIR)/%.c)

52 # List of common DHCP modules.
53 DHCP_DIR = $(SRC)/common/net/dhcp
54 DHCP_OBJS = dhcpinfo.o
55 DHCP_SRCS = $(DHCP_OBJS:%.o=$(DHCP_DIR)/%.c)

57 OBJECTS = $(LOC_OBJS) $(COM_OBJS) $(DHCP_OBJS)

59 include ../../Makefile.lib

61 LIBS += $(LINTLIB)

new/usr/src/lib/libwanboot/Makefile.com 2

62 LDLIBS += -lnvpair -lresolv -lnsl -lsocket -ldevinfo -ldhcputil \
63 -linetutil -lc

65 # libcrypto and libssl have no lint library, so we can only use it when
66 # building
67 $(DYNLIB) := LDLIBS += -lsunw_crypto -lsunw_ssl

69 CPPFLAGS = -I$(SRC)/common/net/wanboot/crypt $(CPPFLAGS.master)
70 CERRWARN += -_gcc=-Wno-switch
71 CERRWARN += -_gcc=-Wno-parentheses
72 CERRWARN += -_gcc=-Wno-unused-value
73 CERRWARN += -_gcc=-Wno-uninitialized

75 # Must override SRCS from Makefile.lib since sources have
76 # multiple source directories.
77 SRCS = $(LOC_SRCS) $(COM_SRCS) $(DHCP_SRCS)

79 # Must define location of lint library source.
80 SRCDIR = $(LOC_DIR)
81 $(LINTLIB) := SRCS = $(SRCDIR)/$(LINTSRC)

83 # OpenSSL requires us to turn this off
84 LINTFLAGS += -erroff=E_BAD_PTR_CAST_ALIGN
85 LINTFLAGS64 += -erroff=E_BAD_PTR_CAST_ALIGN

87 CFLAGS += $(CCVERBOSE)
88 CPPFLAGS += -I$(LOC_DIR) -I$(COM_DIR) -I$(DHCP_DIR)

90 .KEEP_STATE:

92 all: $(LIBS)

94 lint: lintcheck

96 pics/%.o: $(COM_DIR)/%.c
97 $(COMPILE.c) -o $@ $<
98 $(POST_PROCESS_O)

100 pics/%.o: $(DHCP_DIR)/%.c
101 $(COMPILE.c) -o $@ $<
102 $(POST_PROCESS_O)

104 include ../../Makefile.targ

new/usr/src/lib/openssl/Makefile 1

**
 1746 Fri May 30 18:31:13 2014
new/usr/src/lib/openssl/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # lib/openssl/Makefile
26 #

28 include $(SRC)/lib/Makefile.lib

30 SUBDIRS = libsunw_crypto .WAIT libsunw_ssl

32 # conditional assignments
33 all := TARGET= all
34 install := TARGET= install
35 clean := TARGET= clean
36 clobber := TARGET= clobber
37 lint := TARGET= lint
38 _msg := TARGET= _msg

40 .KEEP_STATE:

42 HDRS.cmd= ls include/openssl/
43 HDRS= $(HDRS.cmd:sh)

45 HDRDIR= include/openssl
46 ROOTHDRDIR= $(ROOT)/usr/include/openssl
47 ROOTHDRS= $(HDRS:%=$(ROOTHDRDIR)/%)
48 CHECKHDRS= $(HDRS:%.h=%.check)

51 all install clean clobber lint: $(SUBDIRS)

53 $(ROOTHDRS): $(ROOTHDRDIR)

55 $(ROOTHDRDIR):
56 $(INS.dir)

58 $(ROOTHDRDIR)/%: $(HDRDIR)/%
59 $(INS.file)

61 install install_h: $(ROOTHDRS)

new/usr/src/lib/openssl/Makefile 2

63 $(SUBDIRS): FRC
64 @cd $@; pwd; $(MAKE) $(TARGET)

66 check: $(CHECKHDRS)
67 @cd libsunw_ssl; pwd; $(MAKE) $@
68 @cd libsunw_crypto; pwd; $(MAKE) $@

70 FRC:
71

new/usr/src/lib/openssl/include/aes_locl.h 1

**
 3526 Fri May 30 18:31:13 2014
new/usr/src/lib/openssl/include/aes_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/aes/aes.h -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */

52 #ifndef HEADER_AES_LOCL_H
53 #define HEADER_AES_LOCL_H

55 #include <openssl/e_os2.h>

57 #ifdef OPENSSL_NO_AES
58 #error AES is disabled.
59 #endif

61 #include <stdio.h>

new/usr/src/lib/openssl/include/aes_locl.h 2

62 #include <stdlib.h>
63 #include <string.h>

65 #if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X6
66 # define SWAP(x) (_lrotl(x, 8) & 0x00ff00ff | _lrotr(x, 8) & 0xff00ff00)
67 # define GETU32(p) SWAP(*((u32 *)(p)))
68 # define PUTU32(ct, st) { *((u32 *)(ct)) = SWAP((st)); }
69 #else
70 # define GETU32(pt) (((u32)(pt)[0] << 24) ^ ((u32)(pt)[1] << 16) ^ ((u32)(pt)[2]
71 # define PUTU32(ct, st) { (ct)[0] = (u8)((st) >> 24); (ct)[1] = (u8)((st) >> 16)
72 #endif

74 #ifdef AES_LONG
75 typedef unsigned long u32;
76 #else
77 typedef unsigned int u32;
78 #endif
79 typedef unsigned short u16;
80 typedef unsigned char u8;

82 #define MAXKC (256/32)
83 #define MAXKB (256/8)
84 #define MAXNR 14

86 /* This controls loop-unrolling in aes_core.c */
87 #undef FULL_UNROLL

89 #endif /* !HEADER_AES_LOCL_H */

new/usr/src/lib/openssl/include/asn1_locl.h 1

**
 5472 Fri May 30 18:31:13 2014
new/usr/src/lib/openssl/include/asn1_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* asn1t.h */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2006.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 /* Internal ASN1 structures and functions: not for application use */

61 /* ASN1 print context structure */

new/usr/src/lib/openssl/include/asn1_locl.h 2

63 struct asn1_pctx_st
64 {
65 unsigned long flags;
66 unsigned long nm_flags;
67 unsigned long cert_flags;
68 unsigned long oid_flags;
69 unsigned long str_flags;
70 } /* ASN1_PCTX */;

72 /* ASN1 public key method structure */

74 struct evp_pkey_asn1_method_st
75 {
76 int pkey_id;
77 int pkey_base_id;
78 unsigned long pkey_flags;

80 char *pem_str;
81 char *info;

83 int (*pub_decode)(EVP_PKEY *pk, X509_PUBKEY *pub);
84 int (*pub_encode)(X509_PUBKEY *pub, const EVP_PKEY *pk);
85 int (*pub_cmp)(const EVP_PKEY *a, const EVP_PKEY *b);
86 int (*pub_print)(BIO *out, const EVP_PKEY *pkey, int indent,
87 ASN1_PCTX *pctx);

89 int (*priv_decode)(EVP_PKEY *pk, PKCS8_PRIV_KEY_INFO *p8inf);
90 int (*priv_encode)(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pk);
91 int (*priv_print)(BIO *out, const EVP_PKEY *pkey, int indent,
92 ASN1_PCTX *pctx);

94 int (*pkey_size)(const EVP_PKEY *pk);
95 int (*pkey_bits)(const EVP_PKEY *pk);

97 int (*param_decode)(EVP_PKEY *pkey,
98 const unsigned char **pder, int derlen);
99 int (*param_encode)(const EVP_PKEY *pkey, unsigned char **pder);
100 int (*param_missing)(const EVP_PKEY *pk);
101 int (*param_copy)(EVP_PKEY *to, const EVP_PKEY *from);
102 int (*param_cmp)(const EVP_PKEY *a, const EVP_PKEY *b);
103 int (*param_print)(BIO *out, const EVP_PKEY *pkey, int indent,
104 ASN1_PCTX *pctx);
105 int (*sig_print)(BIO *out,
106 const X509_ALGOR *sigalg, const ASN1_STRING *sig,
107 int indent, ASN1_PCTX *pctx);

110 void (*pkey_free)(EVP_PKEY *pkey);
111 int (*pkey_ctrl)(EVP_PKEY *pkey, int op, long arg1, void *arg2);

113 /* Legacy functions for old PEM */

115 int (*old_priv_decode)(EVP_PKEY *pkey,
116 const unsigned char **pder, int derlen);
117 int (*old_priv_encode)(const EVP_PKEY *pkey, unsigned char **pder);
118 /* Custom ASN1 signature verification */
119 int (*item_verify)(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn,
120 X509_ALGOR *a, ASN1_BIT_STRING *sig,
121 EVP_PKEY *pkey);
122 int (*item_sign)(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn,
123 X509_ALGOR *alg1, X509_ALGOR *alg2,
124 ASN1_BIT_STRING *sig);

126 } /* EVP_PKEY_ASN1_METHOD */;

new/usr/src/lib/openssl/include/asn1_locl.h 3

128 /* Method to handle CRL access.
129 * In general a CRL could be very large (several Mb) and can consume large
130 * amounts of resources if stored in memory by multiple processes.
131 * This method allows general CRL operations to be redirected to more
132 * efficient callbacks: for example a CRL entry database.
133 */

135 #define X509_CRL_METHOD_DYNAMIC 1

137 struct x509_crl_method_st
138 {
139 int flags;
140 int (*crl_init)(X509_CRL *crl);
141 int (*crl_free)(X509_CRL *crl);
142 int (*crl_lookup)(X509_CRL *crl, X509_REVOKED **ret,
143 ASN1_INTEGER *ser, X509_NAME *issuer);
144 int (*crl_verify)(X509_CRL *crl, EVP_PKEY *pk);
145 };

new/usr/src/lib/openssl/include/bf_locl.h 1

**
 8795 Fri May 30 18:31:13 2014
new/usr/src/lib/openssl/include/bf_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bf/bf_locl.h */
2 /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_BF_LOCL_H
60 #define HEADER_BF_LOCL_H
61 #include <openssl/opensslconf.h> /* BF_PTR, BF_PTR2 */

new/usr/src/lib/openssl/include/bf_locl.h 2

63 #undef c2l
64 #define c2l(c,l) (l =((unsigned long)(*((c)++))) , \
65 l|=((unsigned long)(*((c)++)))<< 8L, \
66 l|=((unsigned long)(*((c)++)))<<16L, \
67 l|=((unsigned long)(*((c)++)))<<24L)

69 /* NOTE - c is not incremented as per c2l */
70 #undef c2ln
71 #define c2ln(c,l1,l2,n) { \
72 c+=n; \
73 l1=l2=0; \
74 switch (n) { \
75 case 8: l2 =((unsigned long)(*(--(c))))<<24L; \
76 case 7: l2|=((unsigned long)(*(--(c))))<<16L; \
77 case 6: l2|=((unsigned long)(*(--(c))))<< 8L; \
78 case 5: l2|=((unsigned long)(*(--(c)))); \
79 case 4: l1 =((unsigned long)(*(--(c))))<<24L; \
80 case 3: l1|=((unsigned long)(*(--(c))))<<16L; \
81 case 2: l1|=((unsigned long)(*(--(c))))<< 8L; \
82 case 1: l1|=((unsigned long)(*(--(c)))); \
83 } \
84 }

86 #undef l2c
87 #define l2c(l,c) (*((c)++)=(unsigned char)(((l))&0xff), \
88 *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \
89 *((c)++)=(unsigned char)(((l)>>16L)&0xff), \
90 *((c)++)=(unsigned char)(((l)>>24L)&0xff))

92 /* NOTE - c is not incremented as per l2c */
93 #undef l2cn
94 #define l2cn(l1,l2,c,n) { \
95 c+=n; \
96 switch (n) { \
97 case 8: *(--(c))=(unsigned char)(((l2)>>24L)&0xff); \
98 case 7: *(--(c))=(unsigned char)(((l2)>>16L)&0xff); \
99 case 6: *(--(c))=(unsigned char)(((l2)>> 8L)&0xff); \
100 case 5: *(--(c))=(unsigned char)(((l2))&0xff); \
101 case 4: *(--(c))=(unsigned char)(((l1)>>24L)&0xff); \
102 case 3: *(--(c))=(unsigned char)(((l1)>>16L)&0xff); \
103 case 2: *(--(c))=(unsigned char)(((l1)>> 8L)&0xff); \
104 case 1: *(--(c))=(unsigned char)(((l1))&0xff); \
105 } \
106 }

108 /* NOTE - c is not incremented as per n2l */
109 #define n2ln(c,l1,l2,n) { \
110 c+=n; \
111 l1=l2=0; \
112 switch (n) { \
113 case 8: l2 =((unsigned long)(*(--(c)))) ; \
114 case 7: l2|=((unsigned long)(*(--(c))))<< 8; \
115 case 6: l2|=((unsigned long)(*(--(c))))<<16; \
116 case 5: l2|=((unsigned long)(*(--(c))))<<24; \
117 case 4: l1 =((unsigned long)(*(--(c)))) ; \
118 case 3: l1|=((unsigned long)(*(--(c))))<< 8; \
119 case 2: l1|=((unsigned long)(*(--(c))))<<16; \
120 case 1: l1|=((unsigned long)(*(--(c))))<<24; \
121 } \
122 }

124 /* NOTE - c is not incremented as per l2n */
125 #define l2nn(l1,l2,c,n) { \
126 c+=n; \
127 switch (n) { \

new/usr/src/lib/openssl/include/bf_locl.h 3

128 case 8: *(--(c))=(unsigned char)(((l2))&0xff); \
129 case 7: *(--(c))=(unsigned char)(((l2)>> 8)&0xff); \
130 case 6: *(--(c))=(unsigned char)(((l2)>>16)&0xff); \
131 case 5: *(--(c))=(unsigned char)(((l2)>>24)&0xff); \
132 case 4: *(--(c))=(unsigned char)(((l1))&0xff); \
133 case 3: *(--(c))=(unsigned char)(((l1)>> 8)&0xff); \
134 case 2: *(--(c))=(unsigned char)(((l1)>>16)&0xff); \
135 case 1: *(--(c))=(unsigned char)(((l1)>>24)&0xff); \
136 } \
137 }

139 #undef n2l
140 #define n2l(c,l) (l =((unsigned long)(*((c)++)))<<24L, \
141 l|=((unsigned long)(*((c)++)))<<16L, \
142 l|=((unsigned long)(*((c)++)))<< 8L, \
143 l|=((unsigned long)(*((c)++))))

145 #undef l2n
146 #define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24L)&0xff), \
147 *((c)++)=(unsigned char)(((l)>>16L)&0xff), \
148 *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \
149 *((c)++)=(unsigned char)(((l))&0xff))

151 /* This is actually a big endian algorithm, the most significant byte
152 * is used to lookup array 0 */

154 #if defined(BF_PTR2)

156 /*
157 * This is basically a special Intel version. Point is that Intel
158 * doesn’t have many registers, but offers a reach choice of addressing
159 * modes. So we spare some registers by directly traversing BF_KEY
160 * structure and hiring the most decorated addressing mode. The code
161 * generated by EGCS is *perfectly* competitive with assembler
162 * implementation!
163 */
164 #define BF_ENC(LL,R,KEY,Pi) (\
165 LL^=KEY[Pi], \
166 t= KEY[BF_ROUNDS+2 + 0 + ((R>>24)&0xFF)], \
167 t+= KEY[BF_ROUNDS+2 + 256 + ((R>>16)&0xFF)], \
168 t^= KEY[BF_ROUNDS+2 + 512 + ((R>>8)&0xFF)], \
169 t+= KEY[BF_ROUNDS+2 + 768 + ((R)&0xFF)], \
170 LL^=t \
171)

173 #elif defined(BF_PTR)

175 #ifndef BF_LONG_LOG2
176 #define BF_LONG_LOG2 2 /* default to BF_LONG being 32 bits */
177 #endif
178 #define BF_M (0xFF<<BF_LONG_LOG2)
179 #define BF_0 (24-BF_LONG_LOG2)
180 #define BF_1 (16-BF_LONG_LOG2)
181 #define BF_2 (8-BF_LONG_LOG2)
182 #define BF_3 BF_LONG_LOG2 /* left shift */

184 /*
185 * This is normally very good on RISC platforms where normally you
186 * have to explicitly "multiply" array index by sizeof(BF_LONG)
187 * in order to calculate the effective address. This implementation
188 * excuses CPU from this extra work. Power[PC] uses should have most
189 * fun as (R>>BF_i)&BF_M gets folded into a single instruction, namely
190 * rlwinm. So let’em double-check if their compiler does it.
191 */

193 #define BF_ENC(LL,R,S,P) (\

new/usr/src/lib/openssl/include/bf_locl.h 4

194 LL^=P, \
195 LL^= (((*(BF_LONG *)((unsigned char *)&(S[0])+((R>>BF_0)&BF_M))+ \
196 *(BF_LONG *)((unsigned char *)&(S[256])+((R>>BF_1)&BF_M)))^ \
197 *(BF_LONG *)((unsigned char *)&(S[512])+((R>>BF_2)&BF_M)))+ \
198 *(BF_LONG *)((unsigned char *)&(S[768])+((R<<BF_3)&BF_M))) \
199)
200 #else

202 /*
203 * This is a *generic* version. Seem to perform best on platforms that
204 * offer explicit support for extraction of 8-bit nibbles preferably
205 * complemented with "multiplying" of array index by sizeof(BF_LONG).
206 * For the moment of this writing the list comprises Alpha CPU featuring
207 * extbl and s[48]addq instructions.
208 */

210 #define BF_ENC(LL,R,S,P) (\
211 LL^=P, \
212 LL^=(((S[((int)(R>>24)&0xff)] + \
213 S[0x0100+((int)(R>>16)&0xff)])^ \
214 S[0x0200+((int)(R>> 8)&0xff)])+ \
215 S[0x0300+((int)(R)&0xff)])&0xffffffffL \
216)
217 #endif

219 #endif

new/usr/src/lib/openssl/include/bf_pi.h 1

**
 17302 Fri May 30 18:31:13 2014
new/usr/src/lib/openssl/include/bf_pi.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bf/bf_pi.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 static const BF_KEY bf_init= {
60 {
61 0x243f6a88L, 0x85a308d3L, 0x13198a2eL, 0x03707344L,

new/usr/src/lib/openssl/include/bf_pi.h 2

62 0xa4093822L, 0x299f31d0L, 0x082efa98L, 0xec4e6c89L,
63 0x452821e6L, 0x38d01377L, 0xbe5466cfL, 0x34e90c6cL,
64 0xc0ac29b7L, 0xc97c50ddL, 0x3f84d5b5L, 0xb5470917L,
65 0x9216d5d9L, 0x8979fb1b
66 },{
67 0xd1310ba6L, 0x98dfb5acL, 0x2ffd72dbL, 0xd01adfb7L,
68 0xb8e1afedL, 0x6a267e96L, 0xba7c9045L, 0xf12c7f99L,
69 0x24a19947L, 0xb3916cf7L, 0x0801f2e2L, 0x858efc16L,
70 0x636920d8L, 0x71574e69L, 0xa458fea3L, 0xf4933d7eL,
71 0x0d95748fL, 0x728eb658L, 0x718bcd58L, 0x82154aeeL,
72 0x7b54a41dL, 0xc25a59b5L, 0x9c30d539L, 0x2af26013L,
73 0xc5d1b023L, 0x286085f0L, 0xca417918L, 0xb8db38efL,
74 0x8e79dcb0L, 0x603a180eL, 0x6c9e0e8bL, 0xb01e8a3eL,
75 0xd71577c1L, 0xbd314b27L, 0x78af2fdaL, 0x55605c60L,
76 0xe65525f3L, 0xaa55ab94L, 0x57489862L, 0x63e81440L,
77 0x55ca396aL, 0x2aab10b6L, 0xb4cc5c34L, 0x1141e8ceL,
78 0xa15486afL, 0x7c72e993L, 0xb3ee1411L, 0x636fbc2aL,
79 0x2ba9c55dL, 0x741831f6L, 0xce5c3e16L, 0x9b87931eL,
80 0xafd6ba33L, 0x6c24cf5cL, 0x7a325381L, 0x28958677L,
81 0x3b8f4898L, 0x6b4bb9afL, 0xc4bfe81bL, 0x66282193L,
82 0x61d809ccL, 0xfb21a991L, 0x487cac60L, 0x5dec8032L,
83 0xef845d5dL, 0xe98575b1L, 0xdc262302L, 0xeb651b88L,
84 0x23893e81L, 0xd396acc5L, 0x0f6d6ff3L, 0x83f44239L,
85 0x2e0b4482L, 0xa4842004L, 0x69c8f04aL, 0x9e1f9b5eL,
86 0x21c66842L, 0xf6e96c9aL, 0x670c9c61L, 0xabd388f0L,
87 0x6a51a0d2L, 0xd8542f68L, 0x960fa728L, 0xab5133a3L,
88 0x6eef0b6cL, 0x137a3be4L, 0xba3bf050L, 0x7efb2a98L,
89 0xa1f1651dL, 0x39af0176L, 0x66ca593eL, 0x82430e88L,
90 0x8cee8619L, 0x456f9fb4L, 0x7d84a5c3L, 0x3b8b5ebeL,
91 0xe06f75d8L, 0x85c12073L, 0x401a449fL, 0x56c16aa6L,
92 0x4ed3aa62L, 0x363f7706L, 0x1bfedf72L, 0x429b023dL,
93 0x37d0d724L, 0xd00a1248L, 0xdb0fead3L, 0x49f1c09bL,
94 0x075372c9L, 0x80991b7bL, 0x25d479d8L, 0xf6e8def7L,
95 0xe3fe501aL, 0xb6794c3bL, 0x976ce0bdL, 0x04c006baL,
96 0xc1a94fb6L, 0x409f60c4L, 0x5e5c9ec2L, 0x196a2463L,
97 0x68fb6fafL, 0x3e6c53b5L, 0x1339b2ebL, 0x3b52ec6fL,
98 0x6dfc511fL, 0x9b30952cL, 0xcc814544L, 0xaf5ebd09L,
99 0xbee3d004L, 0xde334afdL, 0x660f2807L, 0x192e4bb3L,
100 0xc0cba857L, 0x45c8740fL, 0xd20b5f39L, 0xb9d3fbdbL,
101 0x5579c0bdL, 0x1a60320aL, 0xd6a100c6L, 0x402c7279L,
102 0x679f25feL, 0xfb1fa3ccL, 0x8ea5e9f8L, 0xdb3222f8L,
103 0x3c7516dfL, 0xfd616b15L, 0x2f501ec8L, 0xad0552abL,
104 0x323db5faL, 0xfd238760L, 0x53317b48L, 0x3e00df82L,
105 0x9e5c57bbL, 0xca6f8ca0L, 0x1a87562eL, 0xdf1769dbL,
106 0xd542a8f6L, 0x287effc3L, 0xac6732c6L, 0x8c4f5573L,
107 0x695b27b0L, 0xbbca58c8L, 0xe1ffa35dL, 0xb8f011a0L,
108 0x10fa3d98L, 0xfd2183b8L, 0x4afcb56cL, 0x2dd1d35bL,
109 0x9a53e479L, 0xb6f84565L, 0xd28e49bcL, 0x4bfb9790L,
110 0xe1ddf2daL, 0xa4cb7e33L, 0x62fb1341L, 0xcee4c6e8L,
111 0xef20cadaL, 0x36774c01L, 0xd07e9efeL, 0x2bf11fb4L,
112 0x95dbda4dL, 0xae909198L, 0xeaad8e71L, 0x6b93d5a0L,
113 0xd08ed1d0L, 0xafc725e0L, 0x8e3c5b2fL, 0x8e7594b7L,
114 0x8ff6e2fbL, 0xf2122b64L, 0x8888b812L, 0x900df01cL,
115 0x4fad5ea0L, 0x688fc31cL, 0xd1cff191L, 0xb3a8c1adL,
116 0x2f2f2218L, 0xbe0e1777L, 0xea752dfeL, 0x8b021fa1L,
117 0xe5a0cc0fL, 0xb56f74e8L, 0x18acf3d6L, 0xce89e299L,
118 0xb4a84fe0L, 0xfd13e0b7L, 0x7cc43b81L, 0xd2ada8d9L,
119 0x165fa266L, 0x80957705L, 0x93cc7314L, 0x211a1477L,
120 0xe6ad2065L, 0x77b5fa86L, 0xc75442f5L, 0xfb9d35cfL,
121 0xebcdaf0cL, 0x7b3e89a0L, 0xd6411bd3L, 0xae1e7e49L,
122 0x00250e2dL, 0x2071b35eL, 0x226800bbL, 0x57b8e0afL,
123 0x2464369bL, 0xf009b91eL, 0x5563911dL, 0x59dfa6aaL,
124 0x78c14389L, 0xd95a537fL, 0x207d5ba2L, 0x02e5b9c5L,
125 0x83260376L, 0x6295cfa9L, 0x11c81968L, 0x4e734a41L,
126 0xb3472dcaL, 0x7b14a94aL, 0x1b510052L, 0x9a532915L,
127 0xd60f573fL, 0xbc9bc6e4L, 0x2b60a476L, 0x81e67400L,

new/usr/src/lib/openssl/include/bf_pi.h 3

128 0x08ba6fb5L, 0x571be91fL, 0xf296ec6bL, 0x2a0dd915L,
129 0xb6636521L, 0xe7b9f9b6L, 0xff34052eL, 0xc5855664L,
130 0x53b02d5dL, 0xa99f8fa1L, 0x08ba4799L, 0x6e85076aL,
131 0x4b7a70e9L, 0xb5b32944L, 0xdb75092eL, 0xc4192623L,
132 0xad6ea6b0L, 0x49a7df7dL, 0x9cee60b8L, 0x8fedb266L,
133 0xecaa8c71L, 0x699a17ffL, 0x5664526cL, 0xc2b19ee1L,
134 0x193602a5L, 0x75094c29L, 0xa0591340L, 0xe4183a3eL,
135 0x3f54989aL, 0x5b429d65L, 0x6b8fe4d6L, 0x99f73fd6L,
136 0xa1d29c07L, 0xefe830f5L, 0x4d2d38e6L, 0xf0255dc1L,
137 0x4cdd2086L, 0x8470eb26L, 0x6382e9c6L, 0x021ecc5eL,
138 0x09686b3fL, 0x3ebaefc9L, 0x3c971814L, 0x6b6a70a1L,
139 0x687f3584L, 0x52a0e286L, 0xb79c5305L, 0xaa500737L,
140 0x3e07841cL, 0x7fdeae5cL, 0x8e7d44ecL, 0x5716f2b8L,
141 0xb03ada37L, 0xf0500c0dL, 0xf01c1f04L, 0x0200b3ffL,
142 0xae0cf51aL, 0x3cb574b2L, 0x25837a58L, 0xdc0921bdL,
143 0xd19113f9L, 0x7ca92ff6L, 0x94324773L, 0x22f54701L,
144 0x3ae5e581L, 0x37c2dadcL, 0xc8b57634L, 0x9af3dda7L,
145 0xa9446146L, 0x0fd0030eL, 0xecc8c73eL, 0xa4751e41L,
146 0xe238cd99L, 0x3bea0e2fL, 0x3280bba1L, 0x183eb331L,
147 0x4e548b38L, 0x4f6db908L, 0x6f420d03L, 0xf60a04bfL,
148 0x2cb81290L, 0x24977c79L, 0x5679b072L, 0xbcaf89afL,
149 0xde9a771fL, 0xd9930810L, 0xb38bae12L, 0xdccf3f2eL,
150 0x5512721fL, 0x2e6b7124L, 0x501adde6L, 0x9f84cd87L,
151 0x7a584718L, 0x7408da17L, 0xbc9f9abcL, 0xe94b7d8cL,
152 0xec7aec3aL, 0xdb851dfaL, 0x63094366L, 0xc464c3d2L,
153 0xef1c1847L, 0x3215d908L, 0xdd433b37L, 0x24c2ba16L,
154 0x12a14d43L, 0x2a65c451L, 0x50940002L, 0x133ae4ddL,
155 0x71dff89eL, 0x10314e55L, 0x81ac77d6L, 0x5f11199bL,
156 0x043556f1L, 0xd7a3c76bL, 0x3c11183bL, 0x5924a509L,
157 0xf28fe6edL, 0x97f1fbfaL, 0x9ebabf2cL, 0x1e153c6eL,
158 0x86e34570L, 0xeae96fb1L, 0x860e5e0aL, 0x5a3e2ab3L,
159 0x771fe71cL, 0x4e3d06faL, 0x2965dcb9L, 0x99e71d0fL,
160 0x803e89d6L, 0x5266c825L, 0x2e4cc978L, 0x9c10b36aL,
161 0xc6150ebaL, 0x94e2ea78L, 0xa5fc3c53L, 0x1e0a2df4L,
162 0xf2f74ea7L, 0x361d2b3dL, 0x1939260fL, 0x19c27960L,
163 0x5223a708L, 0xf71312b6L, 0xebadfe6eL, 0xeac31f66L,
164 0xe3bc4595L, 0xa67bc883L, 0xb17f37d1L, 0x018cff28L,
165 0xc332ddefL, 0xbe6c5aa5L, 0x65582185L, 0x68ab9802L,
166 0xeecea50fL, 0xdb2f953bL, 0x2aef7dadL, 0x5b6e2f84L,
167 0x1521b628L, 0x29076170L, 0xecdd4775L, 0x619f1510L,
168 0x13cca830L, 0xeb61bd96L, 0x0334fe1eL, 0xaa0363cfL,
169 0xb5735c90L, 0x4c70a239L, 0xd59e9e0bL, 0xcbaade14L,
170 0xeecc86bcL, 0x60622ca7L, 0x9cab5cabL, 0xb2f3846eL,
171 0x648b1eafL, 0x19bdf0caL, 0xa02369b9L, 0x655abb50L,
172 0x40685a32L, 0x3c2ab4b3L, 0x319ee9d5L, 0xc021b8f7L,
173 0x9b540b19L, 0x875fa099L, 0x95f7997eL, 0x623d7da8L,
174 0xf837889aL, 0x97e32d77L, 0x11ed935fL, 0x16681281L,
175 0x0e358829L, 0xc7e61fd6L, 0x96dedfa1L, 0x7858ba99L,
176 0x57f584a5L, 0x1b227263L, 0x9b83c3ffL, 0x1ac24696L,
177 0xcdb30aebL, 0x532e3054L, 0x8fd948e4L, 0x6dbc3128L,
178 0x58ebf2efL, 0x34c6ffeaL, 0xfe28ed61L, 0xee7c3c73L,
179 0x5d4a14d9L, 0xe864b7e3L, 0x42105d14L, 0x203e13e0L,
180 0x45eee2b6L, 0xa3aaabeaL, 0xdb6c4f15L, 0xfacb4fd0L,
181 0xc742f442L, 0xef6abbb5L, 0x654f3b1dL, 0x41cd2105L,
182 0xd81e799eL, 0x86854dc7L, 0xe44b476aL, 0x3d816250L,
183 0xcf62a1f2L, 0x5b8d2646L, 0xfc8883a0L, 0xc1c7b6a3L,
184 0x7f1524c3L, 0x69cb7492L, 0x47848a0bL, 0x5692b285L,
185 0x095bbf00L, 0xad19489dL, 0x1462b174L, 0x23820e00L,
186 0x58428d2aL, 0x0c55f5eaL, 0x1dadf43eL, 0x233f7061L,
187 0x3372f092L, 0x8d937e41L, 0xd65fecf1L, 0x6c223bdbL,
188 0x7cde3759L, 0xcbee7460L, 0x4085f2a7L, 0xce77326eL,
189 0xa6078084L, 0x19f8509eL, 0xe8efd855L, 0x61d99735L,
190 0xa969a7aaL, 0xc50c06c2L, 0x5a04abfcL, 0x800bcadcL,
191 0x9e447a2eL, 0xc3453484L, 0xfdd56705L, 0x0e1e9ec9L,
192 0xdb73dbd3L, 0x105588cdL, 0x675fda79L, 0xe3674340L,
193 0xc5c43465L, 0x713e38d8L, 0x3d28f89eL, 0xf16dff20L,

new/usr/src/lib/openssl/include/bf_pi.h 4

194 0x153e21e7L, 0x8fb03d4aL, 0xe6e39f2bL, 0xdb83adf7L,
195 0xe93d5a68L, 0x948140f7L, 0xf64c261cL, 0x94692934L,
196 0x411520f7L, 0x7602d4f7L, 0xbcf46b2eL, 0xd4a20068L,
197 0xd4082471L, 0x3320f46aL, 0x43b7d4b7L, 0x500061afL,
198 0x1e39f62eL, 0x97244546L, 0x14214f74L, 0xbf8b8840L,
199 0x4d95fc1dL, 0x96b591afL, 0x70f4ddd3L, 0x66a02f45L,
200 0xbfbc09ecL, 0x03bd9785L, 0x7fac6dd0L, 0x31cb8504L,
201 0x96eb27b3L, 0x55fd3941L, 0xda2547e6L, 0xabca0a9aL,
202 0x28507825L, 0x530429f4L, 0x0a2c86daL, 0xe9b66dfbL,
203 0x68dc1462L, 0xd7486900L, 0x680ec0a4L, 0x27a18deeL,
204 0x4f3ffea2L, 0xe887ad8cL, 0xb58ce006L, 0x7af4d6b6L,
205 0xaace1e7cL, 0xd3375fecL, 0xce78a399L, 0x406b2a42L,
206 0x20fe9e35L, 0xd9f385b9L, 0xee39d7abL, 0x3b124e8bL,
207 0x1dc9faf7L, 0x4b6d1856L, 0x26a36631L, 0xeae397b2L,
208 0x3a6efa74L, 0xdd5b4332L, 0x6841e7f7L, 0xca7820fbL,
209 0xfb0af54eL, 0xd8feb397L, 0x454056acL, 0xba489527L,
210 0x55533a3aL, 0x20838d87L, 0xfe6ba9b7L, 0xd096954bL,
211 0x55a867bcL, 0xa1159a58L, 0xcca92963L, 0x99e1db33L,
212 0xa62a4a56L, 0x3f3125f9L, 0x5ef47e1cL, 0x9029317cL,
213 0xfdf8e802L, 0x04272f70L, 0x80bb155cL, 0x05282ce3L,
214 0x95c11548L, 0xe4c66d22L, 0x48c1133fL, 0xc70f86dcL,
215 0x07f9c9eeL, 0x41041f0fL, 0x404779a4L, 0x5d886e17L,
216 0x325f51ebL, 0xd59bc0d1L, 0xf2bcc18fL, 0x41113564L,
217 0x257b7834L, 0x602a9c60L, 0xdff8e8a3L, 0x1f636c1bL,
218 0x0e12b4c2L, 0x02e1329eL, 0xaf664fd1L, 0xcad18115L,
219 0x6b2395e0L, 0x333e92e1L, 0x3b240b62L, 0xeebeb922L,
220 0x85b2a20eL, 0xe6ba0d99L, 0xde720c8cL, 0x2da2f728L,
221 0xd0127845L, 0x95b794fdL, 0x647d0862L, 0xe7ccf5f0L,
222 0x5449a36fL, 0x877d48faL, 0xc39dfd27L, 0xf33e8d1eL,
223 0x0a476341L, 0x992eff74L, 0x3a6f6eabL, 0xf4f8fd37L,
224 0xa812dc60L, 0xa1ebddf8L, 0x991be14cL, 0xdb6e6b0dL,
225 0xc67b5510L, 0x6d672c37L, 0x2765d43bL, 0xdcd0e804L,
226 0xf1290dc7L, 0xcc00ffa3L, 0xb5390f92L, 0x690fed0bL,
227 0x667b9ffbL, 0xcedb7d9cL, 0xa091cf0bL, 0xd9155ea3L,
228 0xbb132f88L, 0x515bad24L, 0x7b9479bfL, 0x763bd6ebL,
229 0x37392eb3L, 0xcc115979L, 0x8026e297L, 0xf42e312dL,
230 0x6842ada7L, 0xc66a2b3bL, 0x12754cccL, 0x782ef11cL,
231 0x6a124237L, 0xb79251e7L, 0x06a1bbe6L, 0x4bfb6350L,
232 0x1a6b1018L, 0x11caedfaL, 0x3d25bdd8L, 0xe2e1c3c9L,
233 0x44421659L, 0x0a121386L, 0xd90cec6eL, 0xd5abea2aL,
234 0x64af674eL, 0xda86a85fL, 0xbebfe988L, 0x64e4c3feL,
235 0x9dbc8057L, 0xf0f7c086L, 0x60787bf8L, 0x6003604dL,
236 0xd1fd8346L, 0xf6381fb0L, 0x7745ae04L, 0xd736fcccL,
237 0x83426b33L, 0xf01eab71L, 0xb0804187L, 0x3c005e5fL,
238 0x77a057beL, 0xbde8ae24L, 0x55464299L, 0xbf582e61L,
239 0x4e58f48fL, 0xf2ddfda2L, 0xf474ef38L, 0x8789bdc2L,
240 0x5366f9c3L, 0xc8b38e74L, 0xb475f255L, 0x46fcd9b9L,
241 0x7aeb2661L, 0x8b1ddf84L, 0x846a0e79L, 0x915f95e2L,
242 0x466e598eL, 0x20b45770L, 0x8cd55591L, 0xc902de4cL,
243 0xb90bace1L, 0xbb8205d0L, 0x11a86248L, 0x7574a99eL,
244 0xb77f19b6L, 0xe0a9dc09L, 0x662d09a1L, 0xc4324633L,
245 0xe85a1f02L, 0x09f0be8cL, 0x4a99a025L, 0x1d6efe10L,
246 0x1ab93d1dL, 0x0ba5a4dfL, 0xa186f20fL, 0x2868f169L,
247 0xdcb7da83L, 0x573906feL, 0xa1e2ce9bL, 0x4fcd7f52L,
248 0x50115e01L, 0xa70683faL, 0xa002b5c4L, 0x0de6d027L,
249 0x9af88c27L, 0x773f8641L, 0xc3604c06L, 0x61a806b5L,
250 0xf0177a28L, 0xc0f586e0L, 0x006058aaL, 0x30dc7d62L,
251 0x11e69ed7L, 0x2338ea63L, 0x53c2dd94L, 0xc2c21634L,
252 0xbbcbee56L, 0x90bcb6deL, 0xebfc7da1L, 0xce591d76L,
253 0x6f05e409L, 0x4b7c0188L, 0x39720a3dL, 0x7c927c24L,
254 0x86e3725fL, 0x724d9db9L, 0x1ac15bb4L, 0xd39eb8fcL,
255 0xed545578L, 0x08fca5b5L, 0xd83d7cd3L, 0x4dad0fc4L,
256 0x1e50ef5eL, 0xb161e6f8L, 0xa28514d9L, 0x6c51133cL,
257 0x6fd5c7e7L, 0x56e14ec4L, 0x362abfceL, 0xddc6c837L,
258 0xd79a3234L, 0x92638212L, 0x670efa8eL, 0x406000e0L,
259 0x3a39ce37L, 0xd3faf5cfL, 0xabc27737L, 0x5ac52d1bL,

new/usr/src/lib/openssl/include/bf_pi.h 5

260 0x5cb0679eL, 0x4fa33742L, 0xd3822740L, 0x99bc9bbeL,
261 0xd5118e9dL, 0xbf0f7315L, 0xd62d1c7eL, 0xc700c47bL,
262 0xb78c1b6bL, 0x21a19045L, 0xb26eb1beL, 0x6a366eb4L,
263 0x5748ab2fL, 0xbc946e79L, 0xc6a376d2L, 0x6549c2c8L,
264 0x530ff8eeL, 0x468dde7dL, 0xd5730a1dL, 0x4cd04dc6L,
265 0x2939bbdbL, 0xa9ba4650L, 0xac9526e8L, 0xbe5ee304L,
266 0xa1fad5f0L, 0x6a2d519aL, 0x63ef8ce2L, 0x9a86ee22L,
267 0xc089c2b8L, 0x43242ef6L, 0xa51e03aaL, 0x9cf2d0a4L,
268 0x83c061baL, 0x9be96a4dL, 0x8fe51550L, 0xba645bd6L,
269 0x2826a2f9L, 0xa73a3ae1L, 0x4ba99586L, 0xef5562e9L,
270 0xc72fefd3L, 0xf752f7daL, 0x3f046f69L, 0x77fa0a59L,
271 0x80e4a915L, 0x87b08601L, 0x9b09e6adL, 0x3b3ee593L,
272 0xe990fd5aL, 0x9e34d797L, 0x2cf0b7d9L, 0x022b8b51L,
273 0x96d5ac3aL, 0x017da67dL, 0xd1cf3ed6L, 0x7c7d2d28L,
274 0x1f9f25cfL, 0xadf2b89bL, 0x5ad6b472L, 0x5a88f54cL,
275 0xe029ac71L, 0xe019a5e6L, 0x47b0acfdL, 0xed93fa9bL,
276 0xe8d3c48dL, 0x283b57ccL, 0xf8d56629L, 0x79132e28L,
277 0x785f0191L, 0xed756055L, 0xf7960e44L, 0xe3d35e8cL,
278 0x15056dd4L, 0x88f46dbaL, 0x03a16125L, 0x0564f0bdL,
279 0xc3eb9e15L, 0x3c9057a2L, 0x97271aecL, 0xa93a072aL,
280 0x1b3f6d9bL, 0x1e6321f5L, 0xf59c66fbL, 0x26dcf319L,
281 0x7533d928L, 0xb155fdf5L, 0x03563482L, 0x8aba3cbbL,
282 0x28517711L, 0xc20ad9f8L, 0xabcc5167L, 0xccad925fL,
283 0x4de81751L, 0x3830dc8eL, 0x379d5862L, 0x9320f991L,
284 0xea7a90c2L, 0xfb3e7bceL, 0x5121ce64L, 0x774fbe32L,
285 0xa8b6e37eL, 0xc3293d46L, 0x48de5369L, 0x6413e680L,
286 0xa2ae0810L, 0xdd6db224L, 0x69852dfdL, 0x09072166L,
287 0xb39a460aL, 0x6445c0ddL, 0x586cdecfL, 0x1c20c8aeL,
288 0x5bbef7ddL, 0x1b588d40L, 0xccd2017fL, 0x6bb4e3bbL,
289 0xdda26a7eL, 0x3a59ff45L, 0x3e350a44L, 0xbcb4cdd5L,
290 0x72eacea8L, 0xfa6484bbL, 0x8d6612aeL, 0xbf3c6f47L,
291 0xd29be463L, 0x542f5d9eL, 0xaec2771bL, 0xf64e6370L,
292 0x740e0d8dL, 0xe75b1357L, 0xf8721671L, 0xaf537d5dL,
293 0x4040cb08L, 0x4eb4e2ccL, 0x34d2466aL, 0x0115af84L,
294 0xe1b00428L, 0x95983a1dL, 0x06b89fb4L, 0xce6ea048L,
295 0x6f3f3b82L, 0x3520ab82L, 0x011a1d4bL, 0x277227f8L,
296 0x611560b1L, 0xe7933fdcL, 0xbb3a792bL, 0x344525bdL,
297 0xa08839e1L, 0x51ce794bL, 0x2f32c9b7L, 0xa01fbac9L,
298 0xe01cc87eL, 0xbcc7d1f6L, 0xcf0111c3L, 0xa1e8aac7L,
299 0x1a908749L, 0xd44fbd9aL, 0xd0dadecbL, 0xd50ada38L,
300 0x0339c32aL, 0xc6913667L, 0x8df9317cL, 0xe0b12b4fL,
301 0xf79e59b7L, 0x43f5bb3aL, 0xf2d519ffL, 0x27d9459cL,
302 0xbf97222cL, 0x15e6fc2aL, 0x0f91fc71L, 0x9b941525L,
303 0xfae59361L, 0xceb69cebL, 0xc2a86459L, 0x12baa8d1L,
304 0xb6c1075eL, 0xe3056a0cL, 0x10d25065L, 0xcb03a442L,
305 0xe0ec6e0eL, 0x1698db3bL, 0x4c98a0beL, 0x3278e964L,
306 0x9f1f9532L, 0xe0d392dfL, 0xd3a0342bL, 0x8971f21eL,
307 0x1b0a7441L, 0x4ba3348cL, 0xc5be7120L, 0xc37632d8L,
308 0xdf359f8dL, 0x9b992f2eL, 0xe60b6f47L, 0x0fe3f11dL,
309 0xe54cda54L, 0x1edad891L, 0xce6279cfL, 0xcd3e7e6fL,
310 0x1618b166L, 0xfd2c1d05L, 0x848fd2c5L, 0xf6fb2299L,
311 0xf523f357L, 0xa6327623L, 0x93a83531L, 0x56cccd02L,
312 0xacf08162L, 0x5a75ebb5L, 0x6e163697L, 0x88d273ccL,
313 0xde966292L, 0x81b949d0L, 0x4c50901bL, 0x71c65614L,
314 0xe6c6c7bdL, 0x327a140aL, 0x45e1d006L, 0xc3f27b9aL,
315 0xc9aa53fdL, 0x62a80f00L, 0xbb25bfe2L, 0x35bdd2f6L,
316 0x71126905L, 0xb2040222L, 0xb6cbcf7cL, 0xcd769c2bL,
317 0x53113ec0L, 0x1640e3d3L, 0x38abbd60L, 0x2547adf0L,
318 0xba38209cL, 0xf746ce76L, 0x77afa1c5L, 0x20756060L,
319 0x85cbfe4eL, 0x8ae88dd8L, 0x7aaaf9b0L, 0x4cf9aa7eL,
320 0x1948c25cL, 0x02fb8a8cL, 0x01c36ae4L, 0xd6ebe1f9L,
321 0x90d4f869L, 0xa65cdea0L, 0x3f09252dL, 0xc208e69fL,
322 0xb74e6132L, 0xce77e25bL, 0x578fdfe3L, 0x3ac372e6L,
323 }
324 };

new/usr/src/lib/openssl/include/bf_pi.h 6

new/usr/src/lib/openssl/include/bio_lcl.h 1

**
 771 Fri May 30 18:31:13 2014
new/usr/src/lib/openssl/include/bio_lcl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #include <openssl/bio.h>

3 #if BIO_FLAGS_UPLINK==0
4 /* Shortcut UPLINK calls on most platforms... */
5 #define UP_stdin stdin
6 #define UP_stdout stdout
7 #define UP_stderr stderr
8 #define UP_fprintf fprintf
9 #define UP_fgets fgets
10 #define UP_fread fread
11 #define UP_fwrite fwrite
12 #undef UP_fsetmod
13 #define UP_feof feof
14 #define UP_fclose fclose

16 #define UP_fopen fopen
17 #define UP_fseek fseek
18 #define UP_ftell ftell
19 #define UP_fflush fflush
20 #define UP_ferror ferror
21 #ifdef _WIN32
22 #define UP_fileno _fileno
23 #define UP_open _open
24 #define UP_read _read
25 #define UP_write _write
26 #define UP_lseek _lseek
27 #define UP_close _close
28 #else
29 #define UP_fileno fileno
30 #define UP_open open
31 #define UP_read read
32 #define UP_write write
33 #define UP_lseek lseek
34 #define UP_close close
35 #endif
36 #endif

new/usr/src/lib/openssl/include/blowfish.h 1

**
 5143 Fri May 30 18:31:14 2014
new/usr/src/lib/openssl/include/blowfish.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bf/blowfish.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_BLOWFISH_H
60 #define HEADER_BLOWFISH_H

new/usr/src/lib/openssl/include/blowfish.h 2

62 #include <openssl/e_os2.h>

64 #ifdef __cplusplus
65 extern "C" {
66 #endif

68 #ifdef OPENSSL_NO_BF
69 #error BF is disabled.
70 #endif

72 #define BF_ENCRYPT 1
73 #define BF_DECRYPT 0

75 /*
76 * !!
77 * ! BF_LONG has to be at least 32 bits wide. If it’s wider, then !
78 * ! BF_LONG_LOG2 has to be defined along. !
79 * !!
80 */

82 #if defined(__LP32__)
83 #define BF_LONG unsigned long
84 #elif defined(OPENSSL_SYS_CRAY) || defined(__ILP64__)
85 #define BF_LONG unsigned long
86 #define BF_LONG_LOG2 3
87 /*
88 * _CRAY note. I could declare short, but I have no idea what impact
89 * does it have on performance on none-T3E machines. I could declare
90 * int, but at least on C90 sizeof(int) can be chosen at compile time.
91 * So I’ve chosen long...
92 * <appro@fy.chalmers.se>
93 */
94 #else
95 #define BF_LONG unsigned int
96 #endif

98 #define BF_ROUNDS 16
99 #define BF_BLOCK 8

101 typedef struct bf_key_st
102 {
103 BF_LONG P[BF_ROUNDS+2];
104 BF_LONG S[4*256];
105 } BF_KEY;

107 #ifdef OPENSSL_FIPS
108 void private_BF_set_key(BF_KEY *key, int len, const unsigned char *data);
109 #endif
110 void BF_set_key(BF_KEY *key, int len, const unsigned char *data);

112 void BF_encrypt(BF_LONG *data,const BF_KEY *key);
113 void BF_decrypt(BF_LONG *data,const BF_KEY *key);

115 void BF_ecb_encrypt(const unsigned char *in, unsigned char *out,
116 const BF_KEY *key, int enc);
117 void BF_cbc_encrypt(const unsigned char *in, unsigned char *out, long length,
118 const BF_KEY *schedule, unsigned char *ivec, int enc);
119 void BF_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length,
120 const BF_KEY *schedule, unsigned char *ivec, int *num, int enc);
121 void BF_ofb64_encrypt(const unsigned char *in, unsigned char *out, long length,
122 const BF_KEY *schedule, unsigned char *ivec, int *num);
123 const char *BF_options(void);

125 #ifdef __cplusplus
126 }
127 #endif

new/usr/src/lib/openssl/include/blowfish.h 3

129 #endif

new/usr/src/lib/openssl/include/bn_lcl.h 1

**
 17183 Fri May 30 18:31:14 2014
new/usr/src/lib/openssl/include/bn_lcl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_lcl.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/include/bn_lcl.h 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #ifndef HEADER_BN_LCL_H
113 #define HEADER_BN_LCL_H

115 #include <openssl/bn.h>

117 #ifdef __cplusplus
118 extern "C" {
119 #endif

122 /*
123 * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp function
124 *
125 *
126 * For window size ’w’ (w >= 2) and a random ’b’ bits exponent,
127 * the number of multiplications is a constant plus on average

new/usr/src/lib/openssl/include/bn_lcl.h 3

128 *
129 * 2^(w-1) + (b-w)/(w+1);
130 *
131 * here 2^(w-1) is for precomputing the table (we actually need
132 * entries only for windows that have the lowest bit set), and
133 * (b-w)/(w+1) is an approximation for the expected number of
134 * w-bit windows, not counting the first one.
135 *
136 * Thus we should use
137 *
138 * w >= 6 if b > 671
139 * w = 5 if 671 > b > 239
140 * w = 4 if 239 > b > 79
141 * w = 3 if 79 > b > 23
142 * w <= 2 if 23 > b
143 *
144 * (with draws in between). Very small exponents are often selected
145 * with low Hamming weight, so we use w = 1 for b <= 23.
146 */
147 #if 1
148 #define BN_window_bits_for_exponent_size(b) \
149 ((b) > 671 ? 6 : \
150 (b) > 239 ? 5 : \
151 (b) > 79 ? 4 : \
152 (b) > 23 ? 3 : 1)
153 #else
154 /* Old SSLeay/OpenSSL table.
155 * Maximum window size was 5, so this table differs for b==1024;
156 * but it coincides for other interesting values (b==160, b==512).
157 */
158 #define BN_window_bits_for_exponent_size(b) \
159 ((b) > 255 ? 5 : \
160 (b) > 127 ? 4 : \
161 (b) > 17 ? 3 : 1)
162 #endif

166 /* BN_mod_exp_mont_conttime is based on the assumption that the
167 * L1 data cache line width of the target processor is at least
168 * the following value.
169 */
170 #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64)
171 #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WI

173 /* Window sizes optimized for fixed window size modular exponentiation
174 * algorithm (BN_mod_exp_mont_consttime).
175 *
176 * To achieve the security goals of BN_mode_exp_mont_consttime, the
177 * maximum size of the window must not exceed
178 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
179 *
180 * Window size thresholds are defined for cache line sizes of 32 and 64,
181 * cache line sizes where log_2(32)=5 and log_2(64)=6 respectively. A
182 * window size of 7 should only be used on processors that have a 128
183 * byte or greater cache line size.
184 */
185 #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64

187 # define BN_window_bits_for_ctime_exponent_size(b) \
188 ((b) > 937 ? 6 : \
189 (b) > 306 ? 5 : \
190 (b) > 89 ? 4 : \
191 (b) > 22 ? 3 : 1)
192 # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)

new/usr/src/lib/openssl/include/bn_lcl.h 4

194 #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32

196 # define BN_window_bits_for_ctime_exponent_size(b) \
197 ((b) > 306 ? 5 : \
198 (b) > 89 ? 4 : \
199 (b) > 22 ? 3 : 1)
200 # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)

202 #endif

205 /* Pentium pro 16,16,16,32,64 */
206 /* Alpha 16,16,16,16.64 */
207 #define BN_MULL_SIZE_NORMAL (16) /* 32 */
208 #define BN_MUL_RECURSIVE_SIZE_NORMAL (16) /* 32 less than */
209 #define BN_SQR_RECURSIVE_SIZE_NORMAL (16) /* 32 */
210 #define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32) /* 32 */
211 #define BN_MONT_CTX_SET_SIZE_WORD (64) /* 32 */

213 #if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDA
214 /*
215 * BN_UMULT_HIGH section.
216 *
217 * No, I’m not trying to overwhelm you when stating that the
218 * product of N-bit numbers is 2*N bits wide:-) No, I don’t expect
219 * you to be impressed when I say that if the compiler doesn’t
220 * support 2*N integer type, then you have to replace every N*N
221 * multiplication with 4 (N/2)*(N/2) accompanied by some shifts
222 * and additions which unavoidably results in severe performance
223 * penalties. Of course provided that the hardware is capable of
224 * producing 2*N result... That’s when you normally start
225 * considering assembler implementation. However! It should be
226 * pointed out that some CPUs (most notably Alpha, PowerPC and
227 * upcoming IA-64 family:-) provide *separate* instruction
228 * calculating the upper half of the product placing the result
229 * into a general purpose register. Now *if* the compiler supports
230 * inline assembler, then it’s not impossible to implement the
231 * "bignum" routines (and have the compiler optimize ’em)
232 * exhibiting "native" performance in C. That’s what BN_UMULT_HIGH
233 * macro is about:-)
234 *
235 * <appro@fy.chalmers.se>
236 */
237 # if defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT
238 # if defined(__DECC)
239 # include <c_asm.h>
240 # define BN_UMULT_HIGH(a,b) (BN_ULONG)__asm__("umulh %a0,%a1,%v0",(a),(b))
241 # elif defined(__GNUC__) && __GNUC__>=2
242 # define BN_UMULT_HIGH(a,b) ({ \
243 register BN_ULONG ret; \
244 __asm__ ("umulh %1,%2,%0" \
245 : "=r"(ret) \
246 : "r"(a), "r"(b)); \
247 ret; })
248 # endif /* compiler */
249 # elif defined(_ARCH_PPC) && defined(__64BIT__) && defined(SIXTY_FOUR_BIT_LONG)
250 # if defined(__GNUC__) && __GNUC__>=2
251 # define BN_UMULT_HIGH(a,b) ({ \
252 register BN_ULONG ret; \
253 __asm__ ("mulhdu %0,%1,%2" \
254 : "=r"(ret) \
255 : "r"(a), "r"(b)); \
256 ret; })
257 # endif /* compiler */
258 # elif (defined(__x86_64) || defined(__x86_64__)) && \
259 (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))

new/usr/src/lib/openssl/include/bn_lcl.h 5

260 # if defined(__GNUC__) && __GNUC__>=2
261 # define BN_UMULT_HIGH(a,b) ({ \
262 register BN_ULONG ret,discard; \
263 __asm__ ("mulq %3" \
264 : "=a"(discard),"=d"(ret) \
265 : "a"(a), "g"(b) \
266 : "cc"); \
267 ret; })
268 # define BN_UMULT_LOHI(low,high,a,b) \
269 __asm__ ("mulq %3" \
270 : "=a"(low),"=d"(high) \
271 : "a"(a),"g"(b) \
272 : "cc");
273 # endif
274 # elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
275 # if defined(_MSC_VER) && _MSC_VER>=1400
276 unsigned __int64 __umulh (unsigned __int64 a,unsigned __int64 b);
277 unsigned __int64 _umul128 (unsigned __int64 a,unsigned __int64 b,
278 unsigned __int64 *h);
279 # pragma intrinsic(__umulh,_umul128)
280 # define BN_UMULT_HIGH(a,b) __umulh((a),(b))
281 # define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high)))
282 # endif
283 # elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LON
284 # if defined(__GNUC__) && __GNUC__>=2
285 # if __GNUC__>=4 && __GNUC_MINOR__>=4 /* "h" constraint is no more since 4.4 *
286 # define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64)
287 # define BN_UMULT_LOHI(low,high,a,b) ({ \
288 __uint128_t ret=(__uint128_t)(a)*(b); \
289 (high)=ret>>64; (low)=ret; })
290 # else
291 # define BN_UMULT_HIGH(a,b) ({ \
292 register BN_ULONG ret; \
293 __asm__ ("dmultu %1,%2" \
294 : "=h"(ret) \
295 : "r"(a), "r"(b) : "l"); \
296 ret; })
297 # define BN_UMULT_LOHI(low,high,a,b)\
298 __asm__ ("dmultu %2,%3" \
299 : "=l"(low),"=h"(high) \
300 : "r"(a), "r"(b));
301 # endif
302 # endif
303 # endif /* cpu */
304 #endif /* OPENSSL_NO_ASM */

306 /***
307 * Using the long long type
308 */
309 #define Lw(t) (((BN_ULONG)(t))&BN_MASK2)
310 #define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)

312 #ifdef BN_DEBUG_RAND
313 #define bn_clear_top2max(a) \
314 { \
315 int ind = (a)->dmax - (a)->top; \
316 BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
317 for (; ind != 0; ind--) \
318 *(++ftl) = 0x0; \
319 }
320 #else
321 #define bn_clear_top2max(a)
322 #endif

324 #ifdef BN_LLONG
325 #define mul_add(r,a,w,c) { \

new/usr/src/lib/openssl/include/bn_lcl.h 6

326 BN_ULLONG t; \
327 t=(BN_ULLONG)w * (a) + (r) + (c); \
328 (r)= Lw(t); \
329 (c)= Hw(t); \
330 }

332 #define mul(r,a,w,c) { \
333 BN_ULLONG t; \
334 t=(BN_ULLONG)w * (a) + (c); \
335 (r)= Lw(t); \
336 (c)= Hw(t); \
337 }

339 #define sqr(r0,r1,a) { \
340 BN_ULLONG t; \
341 t=(BN_ULLONG)(a)*(a); \
342 (r0)=Lw(t); \
343 (r1)=Hw(t); \
344 }

346 #elif defined(BN_UMULT_LOHI)
347 #define mul_add(r,a,w,c) { \
348 BN_ULONG high,low,ret,tmp=(a); \
349 ret = (r); \
350 BN_UMULT_LOHI(low,high,w,tmp); \
351 ret += (c); \
352 (c) = (ret<(c))?1:0; \
353 (c) += high; \
354 ret += low; \
355 (c) += (ret<low)?1:0; \
356 (r) = ret; \
357 }

359 #define mul(r,a,w,c) { \
360 BN_ULONG high,low,ret,ta=(a); \
361 BN_UMULT_LOHI(low,high,w,ta); \
362 ret = low + (c); \
363 (c) = high; \
364 (c) += (ret<low)?1:0; \
365 (r) = ret; \
366 }

368 #define sqr(r0,r1,a) { \
369 BN_ULONG tmp=(a); \
370 BN_UMULT_LOHI(r0,r1,tmp,tmp); \
371 }

373 #elif defined(BN_UMULT_HIGH)
374 #define mul_add(r,a,w,c) { \
375 BN_ULONG high,low,ret,tmp=(a); \
376 ret = (r); \
377 high= BN_UMULT_HIGH(w,tmp); \
378 ret += (c); \
379 low = (w) * tmp; \
380 (c) = (ret<(c))?1:0; \
381 (c) += high; \
382 ret += low; \
383 (c) += (ret<low)?1:0; \
384 (r) = ret; \
385 }

387 #define mul(r,a,w,c) { \
388 BN_ULONG high,low,ret,ta=(a); \
389 low = (w) * ta; \
390 high= BN_UMULT_HIGH(w,ta); \
391 ret = low + (c); \

new/usr/src/lib/openssl/include/bn_lcl.h 7

392 (c) = high; \
393 (c) += (ret<low)?1:0; \
394 (r) = ret; \
395 }

397 #define sqr(r0,r1,a) { \
398 BN_ULONG tmp=(a); \
399 (r0) = tmp * tmp; \
400 (r1) = BN_UMULT_HIGH(tmp,tmp); \
401 }

403 #else
404 /***
405 * No long long type
406 */

408 #define LBITS(a) ((a)&BN_MASK2l)
409 #define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l)
410 #define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2)

412 #define LLBITS(a) ((a)&BN_MASKl)
413 #define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl)
414 #define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)

416 #define mul64(l,h,bl,bh) \
417 { \
418 BN_ULONG m,m1,lt,ht; \
419 \
420 lt=l; \
421 ht=h; \
422 m =(bh)*(lt); \
423 lt=(bl)*(lt); \
424 m1=(bl)*(ht); \
425 ht =(bh)*(ht); \
426 m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
427 ht+=HBITS(m); \
428 m1=L2HBITS(m); \
429 lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
430 (l)=lt; \
431 (h)=ht; \
432 }

434 #define sqr64(lo,ho,in) \
435 { \
436 BN_ULONG l,h,m; \
437 \
438 h=(in); \
439 l=LBITS(h); \
440 h=HBITS(h); \
441 m =(l)*(h); \
442 l*=l; \
443 h*=h; \
444 h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
445 m =(m&BN_MASK2l)<<(BN_BITS4+1); \
446 l=(l+m)&BN_MASK2; if (l < m) h++; \
447 (lo)=l; \
448 (ho)=h; \
449 }

451 #define mul_add(r,a,bl,bh,c) { \
452 BN_ULONG l,h; \
453 \
454 h= (a); \
455 l=LBITS(h); \
456 h=HBITS(h); \
457 mul64(l,h,(bl),(bh)); \

new/usr/src/lib/openssl/include/bn_lcl.h 8

458 \
459 /* non-multiply part */ \
460 l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
461 (c)=(r); \
462 l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
463 (c)=h&BN_MASK2; \
464 (r)=l; \
465 }

467 #define mul(r,a,bl,bh,c) { \
468 BN_ULONG l,h; \
469 \
470 h= (a); \
471 l=LBITS(h); \
472 h=HBITS(h); \
473 mul64(l,h,(bl),(bh)); \
474 \
475 /* non-multiply part */ \
476 l+=(c); if ((l&BN_MASK2) < (c)) h++; \
477 (c)=h&BN_MASK2; \
478 (r)=l&BN_MASK2; \
479 }
480 #endif /* !BN_LLONG */

482 #if defined(OPENSSL_DOING_MAKEDEPEND) && defined(OPENSSL_FIPS)
483 #undef bn_div_words
484 #endif

486 void bn_mul_normal(BN_ULONG *r,BN_ULONG *a,int na,BN_ULONG *b,int nb);
487 void bn_mul_comba8(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b);
488 void bn_mul_comba4(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b);
489 void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
490 void bn_sqr_comba8(BN_ULONG *r,const BN_ULONG *a);
491 void bn_sqr_comba4(BN_ULONG *r,const BN_ULONG *a);
492 int bn_cmp_words(const BN_ULONG *a,const BN_ULONG *b,int n);
493 int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b,
494 int cl, int dl);
495 void bn_mul_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2,
496 int dna,int dnb,BN_ULONG *t);
497 void bn_mul_part_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,
498 int n,int tna,int tnb,BN_ULONG *t);
499 void bn_sqr_recursive(BN_ULONG *r,const BN_ULONG *a, int n2, BN_ULONG *t);
500 void bn_mul_low_normal(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b, int n);
501 void bn_mul_low_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2,
502 BN_ULONG *t);
503 void bn_mul_high(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,BN_ULONG *l,int n2,
504 BN_ULONG *t);
505 BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
506 int cl, int dl);
507 BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
508 int cl, int dl);
509 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_U

511 #ifdef __cplusplus
512 }
513 #endif

515 #endif

new/usr/src/lib/openssl/include/bn_prime.h 1

**
 14989 Fri May 30 18:31:14 2014
new/usr/src/lib/openssl/include/bn_prime.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* Auto generated by bn_prime.pl */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef EIGHT_BIT
60 #define NUMPRIMES 2048
61 typedef unsigned short prime_t;

new/usr/src/lib/openssl/include/bn_prime.h 2

62 #else
63 #define NUMPRIMES 54
64 typedef unsigned char prime_t;
65 #endif
66 static const prime_t primes[NUMPRIMES]=
67 {
68 2, 3, 5, 7, 11, 13, 17, 19,
69 23, 29, 31, 37, 41, 43, 47, 53,
70 59, 61, 67, 71, 73, 79, 83, 89,
71 97, 101, 103, 107, 109, 113, 127, 131,
72 137, 139, 149, 151, 157, 163, 167, 173,
73 179, 181, 191, 193, 197, 199, 211, 223,
74 227, 229, 233, 239, 241, 251,
75 #ifndef EIGHT_BIT
76 257, 263,
77 269, 271, 277, 281, 283, 293, 307, 311,
78 313, 317, 331, 337, 347, 349, 353, 359,
79 367, 373, 379, 383, 389, 397, 401, 409,
80 419, 421, 431, 433, 439, 443, 449, 457,
81 461, 463, 467, 479, 487, 491, 499, 503,
82 509, 521, 523, 541, 547, 557, 563, 569,
83 571, 577, 587, 593, 599, 601, 607, 613,
84 617, 619, 631, 641, 643, 647, 653, 659,
85 661, 673, 677, 683, 691, 701, 709, 719,
86 727, 733, 739, 743, 751, 757, 761, 769,
87 773, 787, 797, 809, 811, 821, 823, 827,
88 829, 839, 853, 857, 859, 863, 877, 881,
89 883, 887, 907, 911, 919, 929, 937, 941,
90 947, 953, 967, 971, 977, 983, 991, 997,
91 1009,1013,1019,1021,1031,1033,1039,1049,
92 1051,1061,1063,1069,1087,1091,1093,1097,
93 1103,1109,1117,1123,1129,1151,1153,1163,
94 1171,1181,1187,1193,1201,1213,1217,1223,
95 1229,1231,1237,1249,1259,1277,1279,1283,
96 1289,1291,1297,1301,1303,1307,1319,1321,
97 1327,1361,1367,1373,1381,1399,1409,1423,
98 1427,1429,1433,1439,1447,1451,1453,1459,
99 1471,1481,1483,1487,1489,1493,1499,1511,
100 1523,1531,1543,1549,1553,1559,1567,1571,
101 1579,1583,1597,1601,1607,1609,1613,1619,
102 1621,1627,1637,1657,1663,1667,1669,1693,
103 1697,1699,1709,1721,1723,1733,1741,1747,
104 1753,1759,1777,1783,1787,1789,1801,1811,
105 1823,1831,1847,1861,1867,1871,1873,1877,
106 1879,1889,1901,1907,1913,1931,1933,1949,
107 1951,1973,1979,1987,1993,1997,1999,2003,
108 2011,2017,2027,2029,2039,2053,2063,2069,
109 2081,2083,2087,2089,2099,2111,2113,2129,
110 2131,2137,2141,2143,2153,2161,2179,2203,
111 2207,2213,2221,2237,2239,2243,2251,2267,
112 2269,2273,2281,2287,2293,2297,2309,2311,
113 2333,2339,2341,2347,2351,2357,2371,2377,
114 2381,2383,2389,2393,2399,2411,2417,2423,
115 2437,2441,2447,2459,2467,2473,2477,2503,
116 2521,2531,2539,2543,2549,2551,2557,2579,
117 2591,2593,2609,2617,2621,2633,2647,2657,
118 2659,2663,2671,2677,2683,2687,2689,2693,
119 2699,2707,2711,2713,2719,2729,2731,2741,
120 2749,2753,2767,2777,2789,2791,2797,2801,
121 2803,2819,2833,2837,2843,2851,2857,2861,
122 2879,2887,2897,2903,2909,2917,2927,2939,
123 2953,2957,2963,2969,2971,2999,3001,3011,
124 3019,3023,3037,3041,3049,3061,3067,3079,
125 3083,3089,3109,3119,3121,3137,3163,3167,
126 3169,3181,3187,3191,3203,3209,3217,3221,
127 3229,3251,3253,3257,3259,3271,3299,3301,

new/usr/src/lib/openssl/include/bn_prime.h 3

128 3307,3313,3319,3323,3329,3331,3343,3347,
129 3359,3361,3371,3373,3389,3391,3407,3413,
130 3433,3449,3457,3461,3463,3467,3469,3491,
131 3499,3511,3517,3527,3529,3533,3539,3541,
132 3547,3557,3559,3571,3581,3583,3593,3607,
133 3613,3617,3623,3631,3637,3643,3659,3671,
134 3673,3677,3691,3697,3701,3709,3719,3727,
135 3733,3739,3761,3767,3769,3779,3793,3797,
136 3803,3821,3823,3833,3847,3851,3853,3863,
137 3877,3881,3889,3907,3911,3917,3919,3923,
138 3929,3931,3943,3947,3967,3989,4001,4003,
139 4007,4013,4019,4021,4027,4049,4051,4057,
140 4073,4079,4091,4093,4099,4111,4127,4129,
141 4133,4139,4153,4157,4159,4177,4201,4211,
142 4217,4219,4229,4231,4241,4243,4253,4259,
143 4261,4271,4273,4283,4289,4297,4327,4337,
144 4339,4349,4357,4363,4373,4391,4397,4409,
145 4421,4423,4441,4447,4451,4457,4463,4481,
146 4483,4493,4507,4513,4517,4519,4523,4547,
147 4549,4561,4567,4583,4591,4597,4603,4621,
148 4637,4639,4643,4649,4651,4657,4663,4673,
149 4679,4691,4703,4721,4723,4729,4733,4751,
150 4759,4783,4787,4789,4793,4799,4801,4813,
151 4817,4831,4861,4871,4877,4889,4903,4909,
152 4919,4931,4933,4937,4943,4951,4957,4967,
153 4969,4973,4987,4993,4999,5003,5009,5011,
154 5021,5023,5039,5051,5059,5077,5081,5087,
155 5099,5101,5107,5113,5119,5147,5153,5167,
156 5171,5179,5189,5197,5209,5227,5231,5233,
157 5237,5261,5273,5279,5281,5297,5303,5309,
158 5323,5333,5347,5351,5381,5387,5393,5399,
159 5407,5413,5417,5419,5431,5437,5441,5443,
160 5449,5471,5477,5479,5483,5501,5503,5507,
161 5519,5521,5527,5531,5557,5563,5569,5573,
162 5581,5591,5623,5639,5641,5647,5651,5653,
163 5657,5659,5669,5683,5689,5693,5701,5711,
164 5717,5737,5741,5743,5749,5779,5783,5791,
165 5801,5807,5813,5821,5827,5839,5843,5849,
166 5851,5857,5861,5867,5869,5879,5881,5897,
167 5903,5923,5927,5939,5953,5981,5987,6007,
168 6011,6029,6037,6043,6047,6053,6067,6073,
169 6079,6089,6091,6101,6113,6121,6131,6133,
170 6143,6151,6163,6173,6197,6199,6203,6211,
171 6217,6221,6229,6247,6257,6263,6269,6271,
172 6277,6287,6299,6301,6311,6317,6323,6329,
173 6337,6343,6353,6359,6361,6367,6373,6379,
174 6389,6397,6421,6427,6449,6451,6469,6473,
175 6481,6491,6521,6529,6547,6551,6553,6563,
176 6569,6571,6577,6581,6599,6607,6619,6637,
177 6653,6659,6661,6673,6679,6689,6691,6701,
178 6703,6709,6719,6733,6737,6761,6763,6779,
179 6781,6791,6793,6803,6823,6827,6829,6833,
180 6841,6857,6863,6869,6871,6883,6899,6907,
181 6911,6917,6947,6949,6959,6961,6967,6971,
182 6977,6983,6991,6997,7001,7013,7019,7027,
183 7039,7043,7057,7069,7079,7103,7109,7121,
184 7127,7129,7151,7159,7177,7187,7193,7207,
185 7211,7213,7219,7229,7237,7243,7247,7253,
186 7283,7297,7307,7309,7321,7331,7333,7349,
187 7351,7369,7393,7411,7417,7433,7451,7457,
188 7459,7477,7481,7487,7489,7499,7507,7517,
189 7523,7529,7537,7541,7547,7549,7559,7561,
190 7573,7577,7583,7589,7591,7603,7607,7621,
191 7639,7643,7649,7669,7673,7681,7687,7691,
192 7699,7703,7717,7723,7727,7741,7753,7757,
193 7759,7789,7793,7817,7823,7829,7841,7853,

new/usr/src/lib/openssl/include/bn_prime.h 4

194 7867,7873,7877,7879,7883,7901,7907,7919,
195 7927,7933,7937,7949,7951,7963,7993,8009,
196 8011,8017,8039,8053,8059,8069,8081,8087,
197 8089,8093,8101,8111,8117,8123,8147,8161,
198 8167,8171,8179,8191,8209,8219,8221,8231,
199 8233,8237,8243,8263,8269,8273,8287,8291,
200 8293,8297,8311,8317,8329,8353,8363,8369,
201 8377,8387,8389,8419,8423,8429,8431,8443,
202 8447,8461,8467,8501,8513,8521,8527,8537,
203 8539,8543,8563,8573,8581,8597,8599,8609,
204 8623,8627,8629,8641,8647,8663,8669,8677,
205 8681,8689,8693,8699,8707,8713,8719,8731,
206 8737,8741,8747,8753,8761,8779,8783,8803,
207 8807,8819,8821,8831,8837,8839,8849,8861,
208 8863,8867,8887,8893,8923,8929,8933,8941,
209 8951,8963,8969,8971,8999,9001,9007,9011,
210 9013,9029,9041,9043,9049,9059,9067,9091,
211 9103,9109,9127,9133,9137,9151,9157,9161,
212 9173,9181,9187,9199,9203,9209,9221,9227,
213 9239,9241,9257,9277,9281,9283,9293,9311,
214 9319,9323,9337,9341,9343,9349,9371,9377,
215 9391,9397,9403,9413,9419,9421,9431,9433,
216 9437,9439,9461,9463,9467,9473,9479,9491,
217 9497,9511,9521,9533,9539,9547,9551,9587,
218 9601,9613,9619,9623,9629,9631,9643,9649,
219 9661,9677,9679,9689,9697,9719,9721,9733,
220 9739,9743,9749,9767,9769,9781,9787,9791,
221 9803,9811,9817,9829,9833,9839,9851,9857,
222 9859,9871,9883,9887,9901,9907,9923,9929,
223 9931,9941,9949,9967,9973,10007,10009,10037,
224 10039,10061,10067,10069,10079,10091,10093,10099,
225 10103,10111,10133,10139,10141,10151,10159,10163,
226 10169,10177,10181,10193,10211,10223,10243,10247,
227 10253,10259,10267,10271,10273,10289,10301,10303,
228 10313,10321,10331,10333,10337,10343,10357,10369,
229 10391,10399,10427,10429,10433,10453,10457,10459,
230 10463,10477,10487,10499,10501,10513,10529,10531,
231 10559,10567,10589,10597,10601,10607,10613,10627,
232 10631,10639,10651,10657,10663,10667,10687,10691,
233 10709,10711,10723,10729,10733,10739,10753,10771,
234 10781,10789,10799,10831,10837,10847,10853,10859,
235 10861,10867,10883,10889,10891,10903,10909,10937,
236 10939,10949,10957,10973,10979,10987,10993,11003,
237 11027,11047,11057,11059,11069,11071,11083,11087,
238 11093,11113,11117,11119,11131,11149,11159,11161,
239 11171,11173,11177,11197,11213,11239,11243,11251,
240 11257,11261,11273,11279,11287,11299,11311,11317,
241 11321,11329,11351,11353,11369,11383,11393,11399,
242 11411,11423,11437,11443,11447,11467,11471,11483,
243 11489,11491,11497,11503,11519,11527,11549,11551,
244 11579,11587,11593,11597,11617,11621,11633,11657,
245 11677,11681,11689,11699,11701,11717,11719,11731,
246 11743,11777,11779,11783,11789,11801,11807,11813,
247 11821,11827,11831,11833,11839,11863,11867,11887,
248 11897,11903,11909,11923,11927,11933,11939,11941,
249 11953,11959,11969,11971,11981,11987,12007,12011,
250 12037,12041,12043,12049,12071,12073,12097,12101,
251 12107,12109,12113,12119,12143,12149,12157,12161,
252 12163,12197,12203,12211,12227,12239,12241,12251,
253 12253,12263,12269,12277,12281,12289,12301,12323,
254 12329,12343,12347,12373,12377,12379,12391,12401,
255 12409,12413,12421,12433,12437,12451,12457,12473,
256 12479,12487,12491,12497,12503,12511,12517,12527,
257 12539,12541,12547,12553,12569,12577,12583,12589,
258 12601,12611,12613,12619,12637,12641,12647,12653,
259 12659,12671,12689,12697,12703,12713,12721,12739,

new/usr/src/lib/openssl/include/bn_prime.h 5

260 12743,12757,12763,12781,12791,12799,12809,12821,
261 12823,12829,12841,12853,12889,12893,12899,12907,
262 12911,12917,12919,12923,12941,12953,12959,12967,
263 12973,12979,12983,13001,13003,13007,13009,13033,
264 13037,13043,13049,13063,13093,13099,13103,13109,
265 13121,13127,13147,13151,13159,13163,13171,13177,
266 13183,13187,13217,13219,13229,13241,13249,13259,
267 13267,13291,13297,13309,13313,13327,13331,13337,
268 13339,13367,13381,13397,13399,13411,13417,13421,
269 13441,13451,13457,13463,13469,13477,13487,13499,
270 13513,13523,13537,13553,13567,13577,13591,13597,
271 13613,13619,13627,13633,13649,13669,13679,13681,
272 13687,13691,13693,13697,13709,13711,13721,13723,
273 13729,13751,13757,13759,13763,13781,13789,13799,
274 13807,13829,13831,13841,13859,13873,13877,13879,
275 13883,13901,13903,13907,13913,13921,13931,13933,
276 13963,13967,13997,13999,14009,14011,14029,14033,
277 14051,14057,14071,14081,14083,14087,14107,14143,
278 14149,14153,14159,14173,14177,14197,14207,14221,
279 14243,14249,14251,14281,14293,14303,14321,14323,
280 14327,14341,14347,14369,14387,14389,14401,14407,
281 14411,14419,14423,14431,14437,14447,14449,14461,
282 14479,14489,14503,14519,14533,14537,14543,14549,
283 14551,14557,14561,14563,14591,14593,14621,14627,
284 14629,14633,14639,14653,14657,14669,14683,14699,
285 14713,14717,14723,14731,14737,14741,14747,14753,
286 14759,14767,14771,14779,14783,14797,14813,14821,
287 14827,14831,14843,14851,14867,14869,14879,14887,
288 14891,14897,14923,14929,14939,14947,14951,14957,
289 14969,14983,15013,15017,15031,15053,15061,15073,
290 15077,15083,15091,15101,15107,15121,15131,15137,
291 15139,15149,15161,15173,15187,15193,15199,15217,
292 15227,15233,15241,15259,15263,15269,15271,15277,
293 15287,15289,15299,15307,15313,15319,15329,15331,
294 15349,15359,15361,15373,15377,15383,15391,15401,
295 15413,15427,15439,15443,15451,15461,15467,15473,
296 15493,15497,15511,15527,15541,15551,15559,15569,
297 15581,15583,15601,15607,15619,15629,15641,15643,
298 15647,15649,15661,15667,15671,15679,15683,15727,
299 15731,15733,15737,15739,15749,15761,15767,15773,
300 15787,15791,15797,15803,15809,15817,15823,15859,
301 15877,15881,15887,15889,15901,15907,15913,15919,
302 15923,15937,15959,15971,15973,15991,16001,16007,
303 16033,16057,16061,16063,16067,16069,16073,16087,
304 16091,16097,16103,16111,16127,16139,16141,16183,
305 16187,16189,16193,16217,16223,16229,16231,16249,
306 16253,16267,16273,16301,16319,16333,16339,16349,
307 16361,16363,16369,16381,16411,16417,16421,16427,
308 16433,16447,16451,16453,16477,16481,16487,16493,
309 16519,16529,16547,16553,16561,16567,16573,16603,
310 16607,16619,16631,16633,16649,16651,16657,16661,
311 16673,16691,16693,16699,16703,16729,16741,16747,
312 16759,16763,16787,16811,16823,16829,16831,16843,
313 16871,16879,16883,16889,16901,16903,16921,16927,
314 16931,16937,16943,16963,16979,16981,16987,16993,
315 17011,17021,17027,17029,17033,17041,17047,17053,
316 17077,17093,17099,17107,17117,17123,17137,17159,
317 17167,17183,17189,17191,17203,17207,17209,17231,
318 17239,17257,17291,17293,17299,17317,17321,17327,
319 17333,17341,17351,17359,17377,17383,17387,17389,
320 17393,17401,17417,17419,17431,17443,17449,17467,
321 17471,17477,17483,17489,17491,17497,17509,17519,
322 17539,17551,17569,17573,17579,17581,17597,17599,
323 17609,17623,17627,17657,17659,17669,17681,17683,
324 17707,17713,17729,17737,17747,17749,17761,17783,
325 17789,17791,17807,17827,17837,17839,17851,17863,

new/usr/src/lib/openssl/include/bn_prime.h 6

326 #endif
327 };

new/usr/src/lib/openssl/include/cast_lcl.h 1

**
 8575 Fri May 30 18:31:14 2014
new/usr/src/lib/openssl/include/cast_lcl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cast/cast_lcl.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

60 #include "e_os.h"

new/usr/src/lib/openssl/include/cast_lcl.h 2

62 #ifdef OPENSSL_SYS_WIN32
63 #include <stdlib.h>
64 #endif

67 #undef c2l
68 #define c2l(c,l) (l =((unsigned long)(*((c)++))) , \
69 l|=((unsigned long)(*((c)++)))<< 8L, \
70 l|=((unsigned long)(*((c)++)))<<16L, \
71 l|=((unsigned long)(*((c)++)))<<24L)

73 /* NOTE - c is not incremented as per c2l */
74 #undef c2ln
75 #define c2ln(c,l1,l2,n) { \
76 c+=n; \
77 l1=l2=0; \
78 switch (n) { \
79 case 8: l2 =((unsigned long)(*(--(c))))<<24L; \
80 case 7: l2|=((unsigned long)(*(--(c))))<<16L; \
81 case 6: l2|=((unsigned long)(*(--(c))))<< 8L; \
82 case 5: l2|=((unsigned long)(*(--(c)))); \
83 case 4: l1 =((unsigned long)(*(--(c))))<<24L; \
84 case 3: l1|=((unsigned long)(*(--(c))))<<16L; \
85 case 2: l1|=((unsigned long)(*(--(c))))<< 8L; \
86 case 1: l1|=((unsigned long)(*(--(c)))); \
87 } \
88 }

90 #undef l2c
91 #define l2c(l,c) (*((c)++)=(unsigned char)(((l))&0xff), \
92 *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \
93 *((c)++)=(unsigned char)(((l)>>16L)&0xff), \
94 *((c)++)=(unsigned char)(((l)>>24L)&0xff))

96 /* NOTE - c is not incremented as per l2c */
97 #undef l2cn
98 #define l2cn(l1,l2,c,n) { \
99 c+=n; \
100 switch (n) { \
101 case 8: *(--(c))=(unsigned char)(((l2)>>24L)&0xff); \
102 case 7: *(--(c))=(unsigned char)(((l2)>>16L)&0xff); \
103 case 6: *(--(c))=(unsigned char)(((l2)>> 8L)&0xff); \
104 case 5: *(--(c))=(unsigned char)(((l2))&0xff); \
105 case 4: *(--(c))=(unsigned char)(((l1)>>24L)&0xff); \
106 case 3: *(--(c))=(unsigned char)(((l1)>>16L)&0xff); \
107 case 2: *(--(c))=(unsigned char)(((l1)>> 8L)&0xff); \
108 case 1: *(--(c))=(unsigned char)(((l1))&0xff); \
109 } \
110 }

112 /* NOTE - c is not incremented as per n2l */
113 #define n2ln(c,l1,l2,n) { \
114 c+=n; \
115 l1=l2=0; \
116 switch (n) { \
117 case 8: l2 =((unsigned long)(*(--(c)))) ; \
118 case 7: l2|=((unsigned long)(*(--(c))))<< 8; \
119 case 6: l2|=((unsigned long)(*(--(c))))<<16; \
120 case 5: l2|=((unsigned long)(*(--(c))))<<24; \
121 case 4: l1 =((unsigned long)(*(--(c)))) ; \
122 case 3: l1|=((unsigned long)(*(--(c))))<< 8; \
123 case 2: l1|=((unsigned long)(*(--(c))))<<16; \
124 case 1: l1|=((unsigned long)(*(--(c))))<<24; \
125 } \
126 }

new/usr/src/lib/openssl/include/cast_lcl.h 3

128 /* NOTE - c is not incremented as per l2n */
129 #define l2nn(l1,l2,c,n) { \
130 c+=n; \
131 switch (n) { \
132 case 8: *(--(c))=(unsigned char)(((l2))&0xff); \
133 case 7: *(--(c))=(unsigned char)(((l2)>> 8)&0xff); \
134 case 6: *(--(c))=(unsigned char)(((l2)>>16)&0xff); \
135 case 5: *(--(c))=(unsigned char)(((l2)>>24)&0xff); \
136 case 4: *(--(c))=(unsigned char)(((l1))&0xff); \
137 case 3: *(--(c))=(unsigned char)(((l1)>> 8)&0xff); \
138 case 2: *(--(c))=(unsigned char)(((l1)>>16)&0xff); \
139 case 1: *(--(c))=(unsigned char)(((l1)>>24)&0xff); \
140 } \
141 }

143 #undef n2l
144 #define n2l(c,l) (l =((unsigned long)(*((c)++)))<<24L, \
145 l|=((unsigned long)(*((c)++)))<<16L, \
146 l|=((unsigned long)(*((c)++)))<< 8L, \
147 l|=((unsigned long)(*((c)++))))

149 #undef l2n
150 #define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24L)&0xff), \
151 *((c)++)=(unsigned char)(((l)>>16L)&0xff), \
152 *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \
153 *((c)++)=(unsigned char)(((l))&0xff))

155 #if defined(OPENSSL_SYS_WIN32) && defined(_MSC_VER)
156 #define ROTL(a,n) (_lrotl(a,n))
157 #else
158 #define ROTL(a,n) ((((a)<<(n))&0xffffffffL)|((a)>>(32-(n))))
159 #endif

161 #define C_M 0x3fc
162 #define C_0 22L
163 #define C_1 14L
164 #define C_2 6L
165 #define C_3 2L /* left shift */

167 /* The rotate has an extra 16 added to it to help the x86 asm */
168 #if defined(CAST_PTR)
169 #define E_CAST(n,key,L,R,OP1,OP2,OP3) \
170 { \
171 int i; \
172 t=(key[n*2] OP1 R)&0xffffffffL; \
173 i=key[n*2+1]; \
174 t=ROTL(t,i); \
175 L^= (((((*(CAST_LONG *)((unsigned char *) \
176 CAST_S_table0+((t>>C_2)&C_M)) OP2 \
177 *(CAST_LONG *)((unsigned char *) \
178 CAST_S_table1+((t<<C_3)&C_M)))&0xffffffffL) OP3 \
179 *(CAST_LONG *)((unsigned char *) \
180 CAST_S_table2+((t>>C_0)&C_M)))&0xffffffffL) OP1 \
181 *(CAST_LONG *)((unsigned char *) \
182 CAST_S_table3+((t>>C_1)&C_M)))&0xffffffffL; \
183 }
184 #elif defined(CAST_PTR2)
185 #define E_CAST(n,key,L,R,OP1,OP2,OP3) \
186 { \
187 int i; \
188 CAST_LONG u,v,w; \
189 w=(key[n*2] OP1 R)&0xffffffffL; \
190 i=key[n*2+1]; \
191 w=ROTL(w,i); \
192 u=w>>C_2; \
193 v=w<<C_3; \

new/usr/src/lib/openssl/include/cast_lcl.h 4

194 u&=C_M; \
195 v&=C_M; \
196 t= *(CAST_LONG *)((unsigned char *)CAST_S_table0+u); \
197 u=w>>C_0; \
198 t=(t OP2 *(CAST_LONG *)((unsigned char *)CAST_S_table1+v))&0xffffffffL;\
199 v=w>>C_1; \
200 u&=C_M; \
201 v&=C_M; \
202 t=(t OP3 *(CAST_LONG *)((unsigned char *)CAST_S_table2+u)&0xffffffffL);\
203 t=(t OP1 *(CAST_LONG *)((unsigned char *)CAST_S_table3+v)&0xffffffffL);\
204 L^=(t&0xffffffff); \
205 }
206 #else
207 #define E_CAST(n,key,L,R,OP1,OP2,OP3) \
208 { \
209 CAST_LONG a,b,c,d; \
210 t=(key[n*2] OP1 R)&0xffffffff; \
211 t=ROTL(t,(key[n*2+1])); \
212 a=CAST_S_table0[(t>> 8)&0xff]; \
213 b=CAST_S_table1[(t)&0xff]; \
214 c=CAST_S_table2[(t>>24)&0xff]; \
215 d=CAST_S_table3[(t>>16)&0xff]; \
216 L^=(((((a OP2 b)&0xffffffffL) OP3 c)&0xffffffffL) OP1 d)&0xffffffffL; \
217 }
218 #endif

220 extern const CAST_LONG CAST_S_table0[256];
221 extern const CAST_LONG CAST_S_table1[256];
222 extern const CAST_LONG CAST_S_table2[256];
223 extern const CAST_LONG CAST_S_table3[256];
224 extern const CAST_LONG CAST_S_table4[256];
225 extern const CAST_LONG CAST_S_table5[256];
226 extern const CAST_LONG CAST_S_table6[256];
227 extern const CAST_LONG CAST_S_table7[256];

new/usr/src/lib/openssl/include/cast_s.h 1

**
 27196 Fri May 30 18:31:14 2014
new/usr/src/lib/openssl/include/cast_s.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cast/cast_s.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 OPENSSL_GLOBAL const CAST_LONG CAST_S_table0[256]={
59 0x30fb40d4,0x9fa0ff0b,0x6beccd2f,0x3f258c7a,
60 0x1e213f2f,0x9c004dd3,0x6003e540,0xcf9fc949,
61 0xbfd4af27,0x88bbbdb5,0xe2034090,0x98d09675,

new/usr/src/lib/openssl/include/cast_s.h 2

62 0x6e63a0e0,0x15c361d2,0xc2e7661d,0x22d4ff8e,
63 0x28683b6f,0xc07fd059,0xff2379c8,0x775f50e2,
64 0x43c340d3,0xdf2f8656,0x887ca41a,0xa2d2bd2d,
65 0xa1c9e0d6,0x346c4819,0x61b76d87,0x22540f2f,
66 0x2abe32e1,0xaa54166b,0x22568e3a,0xa2d341d0,
67 0x66db40c8,0xa784392f,0x004dff2f,0x2db9d2de,
68 0x97943fac,0x4a97c1d8,0x527644b7,0xb5f437a7,
69 0xb82cbaef,0xd751d159,0x6ff7f0ed,0x5a097a1f,
70 0x827b68d0,0x90ecf52e,0x22b0c054,0xbc8e5935,
71 0x4b6d2f7f,0x50bb64a2,0xd2664910,0xbee5812d,
72 0xb7332290,0xe93b159f,0xb48ee411,0x4bff345d,
73 0xfd45c240,0xad31973f,0xc4f6d02e,0x55fc8165,
74 0xd5b1caad,0xa1ac2dae,0xa2d4b76d,0xc19b0c50,
75 0x882240f2,0x0c6e4f38,0xa4e4bfd7,0x4f5ba272,
76 0x564c1d2f,0xc59c5319,0xb949e354,0xb04669fe,
77 0xb1b6ab8a,0xc71358dd,0x6385c545,0x110f935d,
78 0x57538ad5,0x6a390493,0xe63d37e0,0x2a54f6b3,
79 0x3a787d5f,0x6276a0b5,0x19a6fcdf,0x7a42206a,
80 0x29f9d4d5,0xf61b1891,0xbb72275e,0xaa508167,
81 0x38901091,0xc6b505eb,0x84c7cb8c,0x2ad75a0f,
82 0x874a1427,0xa2d1936b,0x2ad286af,0xaa56d291,
83 0xd7894360,0x425c750d,0x93b39e26,0x187184c9,
84 0x6c00b32d,0x73e2bb14,0xa0bebc3c,0x54623779,
85 0x64459eab,0x3f328b82,0x7718cf82,0x59a2cea6,
86 0x04ee002e,0x89fe78e6,0x3fab0950,0x325ff6c2,
87 0x81383f05,0x6963c5c8,0x76cb5ad6,0xd49974c9,
88 0xca180dcf,0x380782d5,0xc7fa5cf6,0x8ac31511,
89 0x35e79e13,0x47da91d0,0xf40f9086,0xa7e2419e,
90 0x31366241,0x051ef495,0xaa573b04,0x4a805d8d,
91 0x548300d0,0x00322a3c,0xbf64cddf,0xba57a68e,
92 0x75c6372b,0x50afd341,0xa7c13275,0x915a0bf5,
93 0x6b54bfab,0x2b0b1426,0xab4cc9d7,0x449ccd82,
94 0xf7fbf265,0xab85c5f3,0x1b55db94,0xaad4e324,
95 0xcfa4bd3f,0x2deaa3e2,0x9e204d02,0xc8bd25ac,
96 0xeadf55b3,0xd5bd9e98,0xe31231b2,0x2ad5ad6c,
97 0x954329de,0xadbe4528,0xd8710f69,0xaa51c90f,
98 0xaa786bf6,0x22513f1e,0xaa51a79b,0x2ad344cc,
99 0x7b5a41f0,0xd37cfbad,0x1b069505,0x41ece491,
100 0xb4c332e6,0x032268d4,0xc9600acc,0xce387e6d,
101 0xbf6bb16c,0x6a70fb78,0x0d03d9c9,0xd4df39de,
102 0xe01063da,0x4736f464,0x5ad328d8,0xb347cc96,
103 0x75bb0fc3,0x98511bfb,0x4ffbcc35,0xb58bcf6a,
104 0xe11f0abc,0xbfc5fe4a,0xa70aec10,0xac39570a,
105 0x3f04442f,0x6188b153,0xe0397a2e,0x5727cb79,
106 0x9ceb418f,0x1cacd68d,0x2ad37c96,0x0175cb9d,
107 0xc69dff09,0xc75b65f0,0xd9db40d8,0xec0e7779,
108 0x4744ead4,0xb11c3274,0xdd24cb9e,0x7e1c54bd,
109 0xf01144f9,0xd2240eb1,0x9675b3fd,0xa3ac3755,
110 0xd47c27af,0x51c85f4d,0x56907596,0xa5bb15e6,
111 0x580304f0,0xca042cf1,0x011a37ea,0x8dbfaadb,
112 0x35ba3e4a,0x3526ffa0,0xc37b4d09,0xbc306ed9,
113 0x98a52666,0x5648f725,0xff5e569d,0x0ced63d0,
114 0x7c63b2cf,0x700b45e1,0xd5ea50f1,0x85a92872,
115 0xaf1fbda7,0xd4234870,0xa7870bf3,0x2d3b4d79,
116 0x42e04198,0x0cd0ede7,0x26470db8,0xf881814c,
117 0x474d6ad7,0x7c0c5e5c,0xd1231959,0x381b7298,
118 0xf5d2f4db,0xab838653,0x6e2f1e23,0x83719c9e,
119 0xbd91e046,0x9a56456e,0xdc39200c,0x20c8c571,
120 0x962bda1c,0xe1e696ff,0xb141ab08,0x7cca89b9,
121 0x1a69e783,0x02cc4843,0xa2f7c579,0x429ef47d,
122 0x427b169c,0x5ac9f049,0xdd8f0f00,0x5c8165bf,
123 };
124 OPENSSL_GLOBAL const CAST_LONG CAST_S_table1[256]={
125 0x1f201094,0xef0ba75b,0x69e3cf7e,0x393f4380,
126 0xfe61cf7a,0xeec5207a,0x55889c94,0x72fc0651,
127 0xada7ef79,0x4e1d7235,0xd55a63ce,0xde0436ba,

new/usr/src/lib/openssl/include/cast_s.h 3

128 0x99c430ef,0x5f0c0794,0x18dcdb7d,0xa1d6eff3,
129 0xa0b52f7b,0x59e83605,0xee15b094,0xe9ffd909,
130 0xdc440086,0xef944459,0xba83ccb3,0xe0c3cdfb,
131 0xd1da4181,0x3b092ab1,0xf997f1c1,0xa5e6cf7b,
132 0x01420ddb,0xe4e7ef5b,0x25a1ff41,0xe180f806,
133 0x1fc41080,0x179bee7a,0xd37ac6a9,0xfe5830a4,
134 0x98de8b7f,0x77e83f4e,0x79929269,0x24fa9f7b,
135 0xe113c85b,0xacc40083,0xd7503525,0xf7ea615f,
136 0x62143154,0x0d554b63,0x5d681121,0xc866c359,
137 0x3d63cf73,0xcee234c0,0xd4d87e87,0x5c672b21,
138 0x071f6181,0x39f7627f,0x361e3084,0xe4eb573b,
139 0x602f64a4,0xd63acd9c,0x1bbc4635,0x9e81032d,
140 0x2701f50c,0x99847ab4,0xa0e3df79,0xba6cf38c,
141 0x10843094,0x2537a95e,0xf46f6ffe,0xa1ff3b1f,
142 0x208cfb6a,0x8f458c74,0xd9e0a227,0x4ec73a34,
143 0xfc884f69,0x3e4de8df,0xef0e0088,0x3559648d,
144 0x8a45388c,0x1d804366,0x721d9bfd,0xa58684bb,
145 0xe8256333,0x844e8212,0x128d8098,0xfed33fb4,
146 0xce280ae1,0x27e19ba5,0xd5a6c252,0xe49754bd,
147 0xc5d655dd,0xeb667064,0x77840b4d,0xa1b6a801,
148 0x84db26a9,0xe0b56714,0x21f043b7,0xe5d05860,
149 0x54f03084,0x066ff472,0xa31aa153,0xdadc4755,
150 0xb5625dbf,0x68561be6,0x83ca6b94,0x2d6ed23b,
151 0xeccf01db,0xa6d3d0ba,0xb6803d5c,0xaf77a709,
152 0x33b4a34c,0x397bc8d6,0x5ee22b95,0x5f0e5304,
153 0x81ed6f61,0x20e74364,0xb45e1378,0xde18639b,
154 0x881ca122,0xb96726d1,0x8049a7e8,0x22b7da7b,
155 0x5e552d25,0x5272d237,0x79d2951c,0xc60d894c,
156 0x488cb402,0x1ba4fe5b,0xa4b09f6b,0x1ca815cf,
157 0xa20c3005,0x8871df63,0xb9de2fcb,0x0cc6c9e9,
158 0x0beeff53,0xe3214517,0xb4542835,0x9f63293c,
159 0xee41e729,0x6e1d2d7c,0x50045286,0x1e6685f3,
160 0xf33401c6,0x30a22c95,0x31a70850,0x60930f13,
161 0x73f98417,0xa1269859,0xec645c44,0x52c877a9,
162 0xcdff33a6,0xa02b1741,0x7cbad9a2,0x2180036f,
163 0x50d99c08,0xcb3f4861,0xc26bd765,0x64a3f6ab,
164 0x80342676,0x25a75e7b,0xe4e6d1fc,0x20c710e6,
165 0xcdf0b680,0x17844d3b,0x31eef84d,0x7e0824e4,
166 0x2ccb49eb,0x846a3bae,0x8ff77888,0xee5d60f6,
167 0x7af75673,0x2fdd5cdb,0xa11631c1,0x30f66f43,
168 0xb3faec54,0x157fd7fa,0xef8579cc,0xd152de58,
169 0xdb2ffd5e,0x8f32ce19,0x306af97a,0x02f03ef8,
170 0x99319ad5,0xc242fa0f,0xa7e3ebb0,0xc68e4906,
171 0xb8da230c,0x80823028,0xdcdef3c8,0xd35fb171,
172 0x088a1bc8,0xbec0c560,0x61a3c9e8,0xbca8f54d,
173 0xc72feffa,0x22822e99,0x82c570b4,0xd8d94e89,
174 0x8b1c34bc,0x301e16e6,0x273be979,0xb0ffeaa6,
175 0x61d9b8c6,0x00b24869,0xb7ffce3f,0x08dc283b,
176 0x43daf65a,0xf7e19798,0x7619b72f,0x8f1c9ba4,
177 0xdc8637a0,0x16a7d3b1,0x9fc393b7,0xa7136eeb,
178 0xc6bcc63e,0x1a513742,0xef6828bc,0x520365d6,
179 0x2d6a77ab,0x3527ed4b,0x821fd216,0x095c6e2e,
180 0xdb92f2fb,0x5eea29cb,0x145892f5,0x91584f7f,
181 0x5483697b,0x2667a8cc,0x85196048,0x8c4bacea,
182 0x833860d4,0x0d23e0f9,0x6c387e8a,0x0ae6d249,
183 0xb284600c,0xd835731d,0xdcb1c647,0xac4c56ea,
184 0x3ebd81b3,0x230eabb0,0x6438bc87,0xf0b5b1fa,
185 0x8f5ea2b3,0xfc184642,0x0a036b7a,0x4fb089bd,
186 0x649da589,0xa345415e,0x5c038323,0x3e5d3bb9,
187 0x43d79572,0x7e6dd07c,0x06dfdf1e,0x6c6cc4ef,
188 0x7160a539,0x73bfbe70,0x83877605,0x4523ecf1,
189 };
190 OPENSSL_GLOBAL const CAST_LONG CAST_S_table2[256]={
191 0x8defc240,0x25fa5d9f,0xeb903dbf,0xe810c907,
192 0x47607fff,0x369fe44b,0x8c1fc644,0xaececa90,
193 0xbeb1f9bf,0xeefbcaea,0xe8cf1950,0x51df07ae,

new/usr/src/lib/openssl/include/cast_s.h 4

194 0x920e8806,0xf0ad0548,0xe13c8d83,0x927010d5,
195 0x11107d9f,0x07647db9,0xb2e3e4d4,0x3d4f285e,
196 0xb9afa820,0xfade82e0,0xa067268b,0x8272792e,
197 0x553fb2c0,0x489ae22b,0xd4ef9794,0x125e3fbc,
198 0x21fffcee,0x825b1bfd,0x9255c5ed,0x1257a240,
199 0x4e1a8302,0xbae07fff,0x528246e7,0x8e57140e,
200 0x3373f7bf,0x8c9f8188,0xa6fc4ee8,0xc982b5a5,
201 0xa8c01db7,0x579fc264,0x67094f31,0xf2bd3f5f,
202 0x40fff7c1,0x1fb78dfc,0x8e6bd2c1,0x437be59b,
203 0x99b03dbf,0xb5dbc64b,0x638dc0e6,0x55819d99,
204 0xa197c81c,0x4a012d6e,0xc5884a28,0xccc36f71,
205 0xb843c213,0x6c0743f1,0x8309893c,0x0feddd5f,
206 0x2f7fe850,0xd7c07f7e,0x02507fbf,0x5afb9a04,
207 0xa747d2d0,0x1651192e,0xaf70bf3e,0x58c31380,
208 0x5f98302e,0x727cc3c4,0x0a0fb402,0x0f7fef82,
209 0x8c96fdad,0x5d2c2aae,0x8ee99a49,0x50da88b8,
210 0x8427f4a0,0x1eac5790,0x796fb449,0x8252dc15,
211 0xefbd7d9b,0xa672597d,0xada840d8,0x45f54504,
212 0xfa5d7403,0xe83ec305,0x4f91751a,0x925669c2,
213 0x23efe941,0xa903f12e,0x60270df2,0x0276e4b6,
214 0x94fd6574,0x927985b2,0x8276dbcb,0x02778176,
215 0xf8af918d,0x4e48f79e,0x8f616ddf,0xe29d840e,
216 0x842f7d83,0x340ce5c8,0x96bbb682,0x93b4b148,
217 0xef303cab,0x984faf28,0x779faf9b,0x92dc560d,
218 0x224d1e20,0x8437aa88,0x7d29dc96,0x2756d3dc,
219 0x8b907cee,0xb51fd240,0xe7c07ce3,0xe566b4a1,
220 0xc3e9615e,0x3cf8209d,0x6094d1e3,0xcd9ca341,
221 0x5c76460e,0x00ea983b,0xd4d67881,0xfd47572c,
222 0xf76cedd9,0xbda8229c,0x127dadaa,0x438a074e,
223 0x1f97c090,0x081bdb8a,0x93a07ebe,0xb938ca15,
224 0x97b03cff,0x3dc2c0f8,0x8d1ab2ec,0x64380e51,
225 0x68cc7bfb,0xd90f2788,0x12490181,0x5de5ffd4,
226 0xdd7ef86a,0x76a2e214,0xb9a40368,0x925d958f,
227 0x4b39fffa,0xba39aee9,0xa4ffd30b,0xfaf7933b,
228 0x6d498623,0x193cbcfa,0x27627545,0x825cf47a,
229 0x61bd8ba0,0xd11e42d1,0xcead04f4,0x127ea392,
230 0x10428db7,0x8272a972,0x9270c4a8,0x127de50b,
231 0x285ba1c8,0x3c62f44f,0x35c0eaa5,0xe805d231,
232 0x428929fb,0xb4fcdf82,0x4fb66a53,0x0e7dc15b,
233 0x1f081fab,0x108618ae,0xfcfd086d,0xf9ff2889,
234 0x694bcc11,0x236a5cae,0x12deca4d,0x2c3f8cc5,
235 0xd2d02dfe,0xf8ef5896,0xe4cf52da,0x95155b67,
236 0x494a488c,0xb9b6a80c,0x5c8f82bc,0x89d36b45,
237 0x3a609437,0xec00c9a9,0x44715253,0x0a874b49,
238 0xd773bc40,0x7c34671c,0x02717ef6,0x4feb5536,
239 0xa2d02fff,0xd2bf60c4,0xd43f03c0,0x50b4ef6d,
240 0x07478cd1,0x006e1888,0xa2e53f55,0xb9e6d4bc,
241 0xa2048016,0x97573833,0xd7207d67,0xde0f8f3d,
242 0x72f87b33,0xabcc4f33,0x7688c55d,0x7b00a6b0,
243 0x947b0001,0x570075d2,0xf9bb88f8,0x8942019e,
244 0x4264a5ff,0x856302e0,0x72dbd92b,0xee971b69,
245 0x6ea22fde,0x5f08ae2b,0xaf7a616d,0xe5c98767,
246 0xcf1febd2,0x61efc8c2,0xf1ac2571,0xcc8239c2,
247 0x67214cb8,0xb1e583d1,0xb7dc3e62,0x7f10bdce,
248 0xf90a5c38,0x0ff0443d,0x606e6dc6,0x60543a49,
249 0x5727c148,0x2be98a1d,0x8ab41738,0x20e1be24,
250 0xaf96da0f,0x68458425,0x99833be5,0x600d457d,
251 0x282f9350,0x8334b362,0xd91d1120,0x2b6d8da0,
252 0x642b1e31,0x9c305a00,0x52bce688,0x1b03588a,
253 0xf7baefd5,0x4142ed9c,0xa4315c11,0x83323ec5,
254 0xdfef4636,0xa133c501,0xe9d3531c,0xee353783,
255 };
256 OPENSSL_GLOBAL const CAST_LONG CAST_S_table3[256]={
257 0x9db30420,0x1fb6e9de,0xa7be7bef,0xd273a298,
258 0x4a4f7bdb,0x64ad8c57,0x85510443,0xfa020ed1,
259 0x7e287aff,0xe60fb663,0x095f35a1,0x79ebf120,

new/usr/src/lib/openssl/include/cast_s.h 5

260 0xfd059d43,0x6497b7b1,0xf3641f63,0x241e4adf,
261 0x28147f5f,0x4fa2b8cd,0xc9430040,0x0cc32220,
262 0xfdd30b30,0xc0a5374f,0x1d2d00d9,0x24147b15,
263 0xee4d111a,0x0fca5167,0x71ff904c,0x2d195ffe,
264 0x1a05645f,0x0c13fefe,0x081b08ca,0x05170121,
265 0x80530100,0xe83e5efe,0xac9af4f8,0x7fe72701,
266 0xd2b8ee5f,0x06df4261,0xbb9e9b8a,0x7293ea25,
267 0xce84ffdf,0xf5718801,0x3dd64b04,0xa26f263b,
268 0x7ed48400,0x547eebe6,0x446d4ca0,0x6cf3d6f5,
269 0x2649abdf,0xaea0c7f5,0x36338cc1,0x503f7e93,
270 0xd3772061,0x11b638e1,0x72500e03,0xf80eb2bb,
271 0xabe0502e,0xec8d77de,0x57971e81,0xe14f6746,
272 0xc9335400,0x6920318f,0x081dbb99,0xffc304a5,
273 0x4d351805,0x7f3d5ce3,0xa6c866c6,0x5d5bcca9,
274 0xdaec6fea,0x9f926f91,0x9f46222f,0x3991467d,
275 0xa5bf6d8e,0x1143c44f,0x43958302,0xd0214eeb,
276 0x022083b8,0x3fb6180c,0x18f8931e,0x281658e6,
277 0x26486e3e,0x8bd78a70,0x7477e4c1,0xb506e07c,
278 0xf32d0a25,0x79098b02,0xe4eabb81,0x28123b23,
279 0x69dead38,0x1574ca16,0xdf871b62,0x211c40b7,
280 0xa51a9ef9,0x0014377b,0x041e8ac8,0x09114003,
281 0xbd59e4d2,0xe3d156d5,0x4fe876d5,0x2f91a340,
282 0x557be8de,0x00eae4a7,0x0ce5c2ec,0x4db4bba6,
283 0xe756bdff,0xdd3369ac,0xec17b035,0x06572327,
284 0x99afc8b0,0x56c8c391,0x6b65811c,0x5e146119,
285 0x6e85cb75,0xbe07c002,0xc2325577,0x893ff4ec,
286 0x5bbfc92d,0xd0ec3b25,0xb7801ab7,0x8d6d3b24,
287 0x20c763ef,0xc366a5fc,0x9c382880,0x0ace3205,
288 0xaac9548a,0xeca1d7c7,0x041afa32,0x1d16625a,
289 0x6701902c,0x9b757a54,0x31d477f7,0x9126b031,
290 0x36cc6fdb,0xc70b8b46,0xd9e66a48,0x56e55a79,
291 0x026a4ceb,0x52437eff,0x2f8f76b4,0x0df980a5,
292 0x8674cde3,0xedda04eb,0x17a9be04,0x2c18f4df,
293 0xb7747f9d,0xab2af7b4,0xefc34d20,0x2e096b7c,
294 0x1741a254,0xe5b6a035,0x213d42f6,0x2c1c7c26,
295 0x61c2f50f,0x6552daf9,0xd2c231f8,0x25130f69,
296 0xd8167fa2,0x0418f2c8,0x001a96a6,0x0d1526ab,
297 0x63315c21,0x5e0a72ec,0x49bafefd,0x187908d9,
298 0x8d0dbd86,0x311170a7,0x3e9b640c,0xcc3e10d7,
299 0xd5cad3b6,0x0caec388,0xf73001e1,0x6c728aff,
300 0x71eae2a1,0x1f9af36e,0xcfcbd12f,0xc1de8417,
301 0xac07be6b,0xcb44a1d8,0x8b9b0f56,0x013988c3,
302 0xb1c52fca,0xb4be31cd,0xd8782806,0x12a3a4e2,
303 0x6f7de532,0x58fd7eb6,0xd01ee900,0x24adffc2,
304 0xf4990fc5,0x9711aac5,0x001d7b95,0x82e5e7d2,
305 0x109873f6,0x00613096,0xc32d9521,0xada121ff,
306 0x29908415,0x7fbb977f,0xaf9eb3db,0x29c9ed2a,
307 0x5ce2a465,0xa730f32c,0xd0aa3fe8,0x8a5cc091,
308 0xd49e2ce7,0x0ce454a9,0xd60acd86,0x015f1919,
309 0x77079103,0xdea03af6,0x78a8565e,0xdee356df,
310 0x21f05cbe,0x8b75e387,0xb3c50651,0xb8a5c3ef,
311 0xd8eeb6d2,0xe523be77,0xc2154529,0x2f69efdf,
312 0xafe67afb,0xf470c4b2,0xf3e0eb5b,0xd6cc9876,
313 0x39e4460c,0x1fda8538,0x1987832f,0xca007367,
314 0xa99144f8,0x296b299e,0x492fc295,0x9266beab,
315 0xb5676e69,0x9bd3ddda,0xdf7e052f,0xdb25701c,
316 0x1b5e51ee,0xf65324e6,0x6afce36c,0x0316cc04,
317 0x8644213e,0xb7dc59d0,0x7965291f,0xccd6fd43,
318 0x41823979,0x932bcdf6,0xb657c34d,0x4edfd282,
319 0x7ae5290c,0x3cb9536b,0x851e20fe,0x9833557e,
320 0x13ecf0b0,0xd3ffb372,0x3f85c5c1,0x0aef7ed2,
321 };
322 OPENSSL_GLOBAL const CAST_LONG CAST_S_table4[256]={
323 0x7ec90c04,0x2c6e74b9,0x9b0e66df,0xa6337911,
324 0xb86a7fff,0x1dd358f5,0x44dd9d44,0x1731167f,
325 0x08fbf1fa,0xe7f511cc,0xd2051b00,0x735aba00,

new/usr/src/lib/openssl/include/cast_s.h 6

326 0x2ab722d8,0x386381cb,0xacf6243a,0x69befd7a,
327 0xe6a2e77f,0xf0c720cd,0xc4494816,0xccf5c180,
328 0x38851640,0x15b0a848,0xe68b18cb,0x4caadeff,
329 0x5f480a01,0x0412b2aa,0x259814fc,0x41d0efe2,
330 0x4e40b48d,0x248eb6fb,0x8dba1cfe,0x41a99b02,
331 0x1a550a04,0xba8f65cb,0x7251f4e7,0x95a51725,
332 0xc106ecd7,0x97a5980a,0xc539b9aa,0x4d79fe6a,
333 0xf2f3f763,0x68af8040,0xed0c9e56,0x11b4958b,
334 0xe1eb5a88,0x8709e6b0,0xd7e07156,0x4e29fea7,
335 0x6366e52d,0x02d1c000,0xc4ac8e05,0x9377f571,
336 0x0c05372a,0x578535f2,0x2261be02,0xd642a0c9,
337 0xdf13a280,0x74b55bd2,0x682199c0,0xd421e5ec,
338 0x53fb3ce8,0xc8adedb3,0x28a87fc9,0x3d959981,
339 0x5c1ff900,0xfe38d399,0x0c4eff0b,0x062407ea,
340 0xaa2f4fb1,0x4fb96976,0x90c79505,0xb0a8a774,
341 0xef55a1ff,0xe59ca2c2,0xa6b62d27,0xe66a4263,
342 0xdf65001f,0x0ec50966,0xdfdd55bc,0x29de0655,
343 0x911e739a,0x17af8975,0x32c7911c,0x89f89468,
344 0x0d01e980,0x524755f4,0x03b63cc9,0x0cc844b2,
345 0xbcf3f0aa,0x87ac36e9,0xe53a7426,0x01b3d82b,
346 0x1a9e7449,0x64ee2d7e,0xcddbb1da,0x01c94910,
347 0xb868bf80,0x0d26f3fd,0x9342ede7,0x04a5c284,
348 0x636737b6,0x50f5b616,0xf24766e3,0x8eca36c1,
349 0x136e05db,0xfef18391,0xfb887a37,0xd6e7f7d4,
350 0xc7fb7dc9,0x3063fcdf,0xb6f589de,0xec2941da,
351 0x26e46695,0xb7566419,0xf654efc5,0xd08d58b7,
352 0x48925401,0xc1bacb7f,0xe5ff550f,0xb6083049,
353 0x5bb5d0e8,0x87d72e5a,0xab6a6ee1,0x223a66ce,
354 0xc62bf3cd,0x9e0885f9,0x68cb3e47,0x086c010f,
355 0xa21de820,0xd18b69de,0xf3f65777,0xfa02c3f6,
356 0x407edac3,0xcbb3d550,0x1793084d,0xb0d70eba,
357 0x0ab378d5,0xd951fb0c,0xded7da56,0x4124bbe4,
358 0x94ca0b56,0x0f5755d1,0xe0e1e56e,0x6184b5be,
359 0x580a249f,0x94f74bc0,0xe327888e,0x9f7b5561,
360 0xc3dc0280,0x05687715,0x646c6bd7,0x44904db3,
361 0x66b4f0a3,0xc0f1648a,0x697ed5af,0x49e92ff6,
362 0x309e374f,0x2cb6356a,0x85808573,0x4991f840,
363 0x76f0ae02,0x083be84d,0x28421c9a,0x44489406,
364 0x736e4cb8,0xc1092910,0x8bc95fc6,0x7d869cf4,
365 0x134f616f,0x2e77118d,0xb31b2be1,0xaa90b472,
366 0x3ca5d717,0x7d161bba,0x9cad9010,0xaf462ba2,
367 0x9fe459d2,0x45d34559,0xd9f2da13,0xdbc65487,
368 0xf3e4f94e,0x176d486f,0x097c13ea,0x631da5c7,
369 0x445f7382,0x175683f4,0xcdc66a97,0x70be0288,
370 0xb3cdcf72,0x6e5dd2f3,0x20936079,0x459b80a5,
371 0xbe60e2db,0xa9c23101,0xeba5315c,0x224e42f2,
372 0x1c5c1572,0xf6721b2c,0x1ad2fff3,0x8c25404e,
373 0x324ed72f,0x4067b7fd,0x0523138e,0x5ca3bc78,
374 0xdc0fd66e,0x75922283,0x784d6b17,0x58ebb16e,
375 0x44094f85,0x3f481d87,0xfcfeae7b,0x77b5ff76,
376 0x8c2302bf,0xaaf47556,0x5f46b02a,0x2b092801,
377 0x3d38f5f7,0x0ca81f36,0x52af4a8a,0x66d5e7c0,
378 0xdf3b0874,0x95055110,0x1b5ad7a8,0xf61ed5ad,
379 0x6cf6e479,0x20758184,0xd0cefa65,0x88f7be58,
380 0x4a046826,0x0ff6f8f3,0xa09c7f70,0x5346aba0,
381 0x5ce96c28,0xe176eda3,0x6bac307f,0x376829d2,
382 0x85360fa9,0x17e3fe2a,0x24b79767,0xf5a96b20,
383 0xd6cd2595,0x68ff1ebf,0x7555442c,0xf19f06be,
384 0xf9e0659a,0xeeb9491d,0x34010718,0xbb30cab8,
385 0xe822fe15,0x88570983,0x750e6249,0xda627e55,
386 0x5e76ffa8,0xb1534546,0x6d47de08,0xefe9e7d4,
387 };
388 OPENSSL_GLOBAL const CAST_LONG CAST_S_table5[256]={
389 0xf6fa8f9d,0x2cac6ce1,0x4ca34867,0xe2337f7c,
390 0x95db08e7,0x016843b4,0xeced5cbc,0x325553ac,
391 0xbf9f0960,0xdfa1e2ed,0x83f0579d,0x63ed86b9,

new/usr/src/lib/openssl/include/cast_s.h 7

392 0x1ab6a6b8,0xde5ebe39,0xf38ff732,0x8989b138,
393 0x33f14961,0xc01937bd,0xf506c6da,0xe4625e7e,
394 0xa308ea99,0x4e23e33c,0x79cbd7cc,0x48a14367,
395 0xa3149619,0xfec94bd5,0xa114174a,0xeaa01866,
396 0xa084db2d,0x09a8486f,0xa888614a,0x2900af98,
397 0x01665991,0xe1992863,0xc8f30c60,0x2e78ef3c,
398 0xd0d51932,0xcf0fec14,0xf7ca07d2,0xd0a82072,
399 0xfd41197e,0x9305a6b0,0xe86be3da,0x74bed3cd,
400 0x372da53c,0x4c7f4448,0xdab5d440,0x6dba0ec3,
401 0x083919a7,0x9fbaeed9,0x49dbcfb0,0x4e670c53,
402 0x5c3d9c01,0x64bdb941,0x2c0e636a,0xba7dd9cd,
403 0xea6f7388,0xe70bc762,0x35f29adb,0x5c4cdd8d,
404 0xf0d48d8c,0xb88153e2,0x08a19866,0x1ae2eac8,
405 0x284caf89,0xaa928223,0x9334be53,0x3b3a21bf,
406 0x16434be3,0x9aea3906,0xefe8c36e,0xf890cdd9,
407 0x80226dae,0xc340a4a3,0xdf7e9c09,0xa694a807,
408 0x5b7c5ecc,0x221db3a6,0x9a69a02f,0x68818a54,
409 0xceb2296f,0x53c0843a,0xfe893655,0x25bfe68a,
410 0xb4628abc,0xcf222ebf,0x25ac6f48,0xa9a99387,
411 0x53bddb65,0xe76ffbe7,0xe967fd78,0x0ba93563,
412 0x8e342bc1,0xe8a11be9,0x4980740d,0xc8087dfc,
413 0x8de4bf99,0xa11101a0,0x7fd37975,0xda5a26c0,
414 0xe81f994f,0x9528cd89,0xfd339fed,0xb87834bf,
415 0x5f04456d,0x22258698,0xc9c4c83b,0x2dc156be,
416 0x4f628daa,0x57f55ec5,0xe2220abe,0xd2916ebf,
417 0x4ec75b95,0x24f2c3c0,0x42d15d99,0xcd0d7fa0,
418 0x7b6e27ff,0xa8dc8af0,0x7345c106,0xf41e232f,
419 0x35162386,0xe6ea8926,0x3333b094,0x157ec6f2,
420 0x372b74af,0x692573e4,0xe9a9d848,0xf3160289,
421 0x3a62ef1d,0xa787e238,0xf3a5f676,0x74364853,
422 0x20951063,0x4576698d,0xb6fad407,0x592af950,
423 0x36f73523,0x4cfb6e87,0x7da4cec0,0x6c152daa,
424 0xcb0396a8,0xc50dfe5d,0xfcd707ab,0x0921c42f,
425 0x89dff0bb,0x5fe2be78,0x448f4f33,0x754613c9,
426 0x2b05d08d,0x48b9d585,0xdc049441,0xc8098f9b,
427 0x7dede786,0xc39a3373,0x42410005,0x6a091751,
428 0x0ef3c8a6,0x890072d6,0x28207682,0xa9a9f7be,
429 0xbf32679d,0xd45b5b75,0xb353fd00,0xcbb0e358,
430 0x830f220a,0x1f8fb214,0xd372cf08,0xcc3c4a13,
431 0x8cf63166,0x061c87be,0x88c98f88,0x6062e397,
432 0x47cf8e7a,0xb6c85283,0x3cc2acfb,0x3fc06976,
433 0x4e8f0252,0x64d8314d,0xda3870e3,0x1e665459,
434 0xc10908f0,0x513021a5,0x6c5b68b7,0x822f8aa0,
435 0x3007cd3e,0x74719eef,0xdc872681,0x073340d4,
436 0x7e432fd9,0x0c5ec241,0x8809286c,0xf592d891,
437 0x08a930f6,0x957ef305,0xb7fbffbd,0xc266e96f,
438 0x6fe4ac98,0xb173ecc0,0xbc60b42a,0x953498da,
439 0xfba1ae12,0x2d4bd736,0x0f25faab,0xa4f3fceb,
440 0xe2969123,0x257f0c3d,0x9348af49,0x361400bc,
441 0xe8816f4a,0x3814f200,0xa3f94043,0x9c7a54c2,
442 0xbc704f57,0xda41e7f9,0xc25ad33a,0x54f4a084,
443 0xb17f5505,0x59357cbe,0xedbd15c8,0x7f97c5ab,
444 0xba5ac7b5,0xb6f6deaf,0x3a479c3a,0x5302da25,
445 0x653d7e6a,0x54268d49,0x51a477ea,0x5017d55b,
446 0xd7d25d88,0x44136c76,0x0404a8c8,0xb8e5a121,
447 0xb81a928a,0x60ed5869,0x97c55b96,0xeaec991b,
448 0x29935913,0x01fdb7f1,0x088e8dfa,0x9ab6f6f5,
449 0x3b4cbf9f,0x4a5de3ab,0xe6051d35,0xa0e1d855,
450 0xd36b4cf1,0xf544edeb,0xb0e93524,0xbebb8fbd,
451 0xa2d762cf,0x49c92f54,0x38b5f331,0x7128a454,
452 0x48392905,0xa65b1db8,0x851c97bd,0xd675cf2f,
453 };
454 OPENSSL_GLOBAL const CAST_LONG CAST_S_table6[256]={
455 0x85e04019,0x332bf567,0x662dbfff,0xcfc65693,
456 0x2a8d7f6f,0xab9bc912,0xde6008a1,0x2028da1f,
457 0x0227bce7,0x4d642916,0x18fac300,0x50f18b82,

new/usr/src/lib/openssl/include/cast_s.h 8

458 0x2cb2cb11,0xb232e75c,0x4b3695f2,0xb28707de,
459 0xa05fbcf6,0xcd4181e9,0xe150210c,0xe24ef1bd,
460 0xb168c381,0xfde4e789,0x5c79b0d8,0x1e8bfd43,
461 0x4d495001,0x38be4341,0x913cee1d,0x92a79c3f,
462 0x089766be,0xbaeeadf4,0x1286becf,0xb6eacb19,
463 0x2660c200,0x7565bde4,0x64241f7a,0x8248dca9,
464 0xc3b3ad66,0x28136086,0x0bd8dfa8,0x356d1cf2,
465 0x107789be,0xb3b2e9ce,0x0502aa8f,0x0bc0351e,
466 0x166bf52a,0xeb12ff82,0xe3486911,0xd34d7516,
467 0x4e7b3aff,0x5f43671b,0x9cf6e037,0x4981ac83,
468 0x334266ce,0x8c9341b7,0xd0d854c0,0xcb3a6c88,
469 0x47bc2829,0x4725ba37,0xa66ad22b,0x7ad61f1e,
470 0x0c5cbafa,0x4437f107,0xb6e79962,0x42d2d816,
471 0x0a961288,0xe1a5c06e,0x13749e67,0x72fc081a,
472 0xb1d139f7,0xf9583745,0xcf19df58,0xbec3f756,
473 0xc06eba30,0x07211b24,0x45c28829,0xc95e317f,
474 0xbc8ec511,0x38bc46e9,0xc6e6fa14,0xbae8584a,
475 0xad4ebc46,0x468f508b,0x7829435f,0xf124183b,
476 0x821dba9f,0xaff60ff4,0xea2c4e6d,0x16e39264,
477 0x92544a8b,0x009b4fc3,0xaba68ced,0x9ac96f78,
478 0x06a5b79a,0xb2856e6e,0x1aec3ca9,0xbe838688,
479 0x0e0804e9,0x55f1be56,0xe7e5363b,0xb3a1f25d,
480 0xf7debb85,0x61fe033c,0x16746233,0x3c034c28,
481 0xda6d0c74,0x79aac56c,0x3ce4e1ad,0x51f0c802,
482 0x98f8f35a,0x1626a49f,0xeed82b29,0x1d382fe3,
483 0x0c4fb99a,0xbb325778,0x3ec6d97b,0x6e77a6a9,
484 0xcb658b5c,0xd45230c7,0x2bd1408b,0x60c03eb7,
485 0xb9068d78,0xa33754f4,0xf430c87d,0xc8a71302,
486 0xb96d8c32,0xebd4e7be,0xbe8b9d2d,0x7979fb06,
487 0xe7225308,0x8b75cf77,0x11ef8da4,0xe083c858,
488 0x8d6b786f,0x5a6317a6,0xfa5cf7a0,0x5dda0033,
489 0xf28ebfb0,0xf5b9c310,0xa0eac280,0x08b9767a,
490 0xa3d9d2b0,0x79d34217,0x021a718d,0x9ac6336a,
491 0x2711fd60,0x438050e3,0x069908a8,0x3d7fedc4,
492 0x826d2bef,0x4eeb8476,0x488dcf25,0x36c9d566,
493 0x28e74e41,0xc2610aca,0x3d49a9cf,0xbae3b9df,
494 0xb65f8de6,0x92aeaf64,0x3ac7d5e6,0x9ea80509,
495 0xf22b017d,0xa4173f70,0xdd1e16c3,0x15e0d7f9,
496 0x50b1b887,0x2b9f4fd5,0x625aba82,0x6a017962,
497 0x2ec01b9c,0x15488aa9,0xd716e740,0x40055a2c,
498 0x93d29a22,0xe32dbf9a,0x058745b9,0x3453dc1e,
499 0xd699296e,0x496cff6f,0x1c9f4986,0xdfe2ed07,
500 0xb87242d1,0x19de7eae,0x053e561a,0x15ad6f8c,
501 0x66626c1c,0x7154c24c,0xea082b2a,0x93eb2939,
502 0x17dcb0f0,0x58d4f2ae,0x9ea294fb,0x52cf564c,
503 0x9883fe66,0x2ec40581,0x763953c3,0x01d6692e,
504 0xd3a0c108,0xa1e7160e,0xe4f2dfa6,0x693ed285,
505 0x74904698,0x4c2b0edd,0x4f757656,0x5d393378,
506 0xa132234f,0x3d321c5d,0xc3f5e194,0x4b269301,
507 0xc79f022f,0x3c997e7e,0x5e4f9504,0x3ffafbbd,
508 0x76f7ad0e,0x296693f4,0x3d1fce6f,0xc61e45be,
509 0xd3b5ab34,0xf72bf9b7,0x1b0434c0,0x4e72b567,
510 0x5592a33d,0xb5229301,0xcfd2a87f,0x60aeb767,
511 0x1814386b,0x30bcc33d,0x38a0c07d,0xfd1606f2,
512 0xc363519b,0x589dd390,0x5479f8e6,0x1cb8d647,
513 0x97fd61a9,0xea7759f4,0x2d57539d,0x569a58cf,
514 0xe84e63ad,0x462e1b78,0x6580f87e,0xf3817914,
515 0x91da55f4,0x40a230f3,0xd1988f35,0xb6e318d2,
516 0x3ffa50bc,0x3d40f021,0xc3c0bdae,0x4958c24c,
517 0x518f36b2,0x84b1d370,0x0fedce83,0x878ddada,
518 0xf2a279c7,0x94e01be8,0x90716f4b,0x954b8aa3,
519 };
520 OPENSSL_GLOBAL const CAST_LONG CAST_S_table7[256]={
521 0xe216300d,0xbbddfffc,0xa7ebdabd,0x35648095,
522 0x7789f8b7,0xe6c1121b,0x0e241600,0x052ce8b5,
523 0x11a9cfb0,0xe5952f11,0xece7990a,0x9386d174,

new/usr/src/lib/openssl/include/cast_s.h 9

524 0x2a42931c,0x76e38111,0xb12def3a,0x37ddddfc,
525 0xde9adeb1,0x0a0cc32c,0xbe197029,0x84a00940,
526 0xbb243a0f,0xb4d137cf,0xb44e79f0,0x049eedfd,
527 0x0b15a15d,0x480d3168,0x8bbbde5a,0x669ded42,
528 0xc7ece831,0x3f8f95e7,0x72df191b,0x7580330d,
529 0x94074251,0x5c7dcdfa,0xabbe6d63,0xaa402164,
530 0xb301d40a,0x02e7d1ca,0x53571dae,0x7a3182a2,
531 0x12a8ddec,0xfdaa335d,0x176f43e8,0x71fb46d4,
532 0x38129022,0xce949ad4,0xb84769ad,0x965bd862,
533 0x82f3d055,0x66fb9767,0x15b80b4e,0x1d5b47a0,
534 0x4cfde06f,0xc28ec4b8,0x57e8726e,0x647a78fc,
535 0x99865d44,0x608bd593,0x6c200e03,0x39dc5ff6,
536 0x5d0b00a3,0xae63aff2,0x7e8bd632,0x70108c0c,
537 0xbbd35049,0x2998df04,0x980cf42a,0x9b6df491,
538 0x9e7edd53,0x06918548,0x58cb7e07,0x3b74ef2e,
539 0x522fffb1,0xd24708cc,0x1c7e27cd,0xa4eb215b,
540 0x3cf1d2e2,0x19b47a38,0x424f7618,0x35856039,
541 0x9d17dee7,0x27eb35e6,0xc9aff67b,0x36baf5b8,
542 0x09c467cd,0xc18910b1,0xe11dbf7b,0x06cd1af8,
543 0x7170c608,0x2d5e3354,0xd4de495a,0x64c6d006,
544 0xbcc0c62c,0x3dd00db3,0x708f8f34,0x77d51b42,
545 0x264f620f,0x24b8d2bf,0x15c1b79e,0x46a52564,
546 0xf8d7e54e,0x3e378160,0x7895cda5,0x859c15a5,
547 0xe6459788,0xc37bc75f,0xdb07ba0c,0x0676a3ab,
548 0x7f229b1e,0x31842e7b,0x24259fd7,0xf8bef472,
549 0x835ffcb8,0x6df4c1f2,0x96f5b195,0xfd0af0fc,
550 0xb0fe134c,0xe2506d3d,0x4f9b12ea,0xf215f225,
551 0xa223736f,0x9fb4c428,0x25d04979,0x34c713f8,
552 0xc4618187,0xea7a6e98,0x7cd16efc,0x1436876c,
553 0xf1544107,0xbedeee14,0x56e9af27,0xa04aa441,
554 0x3cf7c899,0x92ecbae6,0xdd67016d,0x151682eb,
555 0xa842eedf,0xfdba60b4,0xf1907b75,0x20e3030f,
556 0x24d8c29e,0xe139673b,0xefa63fb8,0x71873054,
557 0xb6f2cf3b,0x9f326442,0xcb15a4cc,0xb01a4504,
558 0xf1e47d8d,0x844a1be5,0xbae7dfdc,0x42cbda70,
559 0xcd7dae0a,0x57e85b7a,0xd53f5af6,0x20cf4d8c,
560 0xcea4d428,0x79d130a4,0x3486ebfb,0x33d3cddc,
561 0x77853b53,0x37effcb5,0xc5068778,0xe580b3e6,
562 0x4e68b8f4,0xc5c8b37e,0x0d809ea2,0x398feb7c,
563 0x132a4f94,0x43b7950e,0x2fee7d1c,0x223613bd,
564 0xdd06caa2,0x37df932b,0xc4248289,0xacf3ebc3,
565 0x5715f6b7,0xef3478dd,0xf267616f,0xc148cbe4,
566 0x9052815e,0x5e410fab,0xb48a2465,0x2eda7fa4,
567 0xe87b40e4,0xe98ea084,0x5889e9e1,0xefd390fc,
568 0xdd07d35b,0xdb485694,0x38d7e5b2,0x57720101,
569 0x730edebc,0x5b643113,0x94917e4f,0x503c2fba,
570 0x646f1282,0x7523d24a,0xe0779695,0xf9c17a8f,
571 0x7a5b2121,0xd187b896,0x29263a4d,0xba510cdf,
572 0x81f47c9f,0xad1163ed,0xea7b5965,0x1a00726e,
573 0x11403092,0x00da6d77,0x4a0cdd61,0xad1f4603,
574 0x605bdfb0,0x9eedc364,0x22ebe6a8,0xcee7d28a,
575 0xa0e736a0,0x5564a6b9,0x10853209,0xc7eb8f37,
576 0x2de705ca,0x8951570f,0xdf09822b,0xbd691a6c,
577 0xaa12e4f2,0x87451c0f,0xe0f6a27a,0x3ada4819,
578 0x4cf1764f,0x0d771c2b,0x67cdb156,0x350d8384,
579 0x5938fa0f,0x42399ef3,0x36997b07,0x0e84093d,
580 0x4aa93e61,0x8360d87b,0x1fa98b0c,0x1149382c,
581 0xe97625a5,0x0614d1b7,0x0e25244b,0x0c768347,
582 0x589e8d82,0x0d2059d1,0xa466bb1e,0xf8da0a82,
583 0x04f19130,0xba6e4ec0,0x99265164,0x1ee7230d,
584 0x50b2ad80,0xeaee6801,0x8db2a283,0xea8bf59e,
585 };

new/usr/src/lib/openssl/include/charmap.h 1

**
 527 Fri May 30 18:31:14 2014
new/usr/src/lib/openssl/include/charmap.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* Auto generated with chartype.pl script.
2 * Mask of various character properties
3 */

5 static const unsigned char char_type[] = {
6 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
7 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
8 120, 0, 1,40, 0, 0, 0,16,16,16, 0,25,25,16,16,16,
9 16,16,16,16,16,16,16,16,16,16,16, 9, 9,16, 9,16,
10 0,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,
11 16,16,16,16,16,16,16,16,16,16,16, 0, 1, 0, 0, 0,
12 0,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,
13 16,16,16,16,16,16,16,16,16,16,16, 0, 0, 0, 0, 2
14 };

new/usr/src/lib/openssl/include/cmll_locl.h 1

**
 4027 Fri May 30 18:31:14 2014
new/usr/src/lib/openssl/include/cmll_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/camellia/camellia_locl.h -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright 2006 NTT (Nippon Telegraph and Telephone Corporation) .
4 * ALL RIGHTS RESERVED.
5 *
6 * Intellectual Property information for Camellia:
7 * http://info.isl.ntt.co.jp/crypt/eng/info/chiteki.html
8 *
9 * News Release for Announcement of Camellia open source:
10 * http://www.ntt.co.jp/news/news06e/0604/060413a.html
11 *
12 * The Camellia Code included herein is developed by
13 * NTT (Nippon Telegraph and Telephone Corporation), and is contributed
14 * to the OpenSSL project.
15 *
16 * The Camellia Code is licensed pursuant to the OpenSSL open source
17 * license provided below.
18 */
19 /* ==
20 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 *
26 * 1. Redistributions of source code must retain the above copyright
27 * notice, this list of conditions and the following disclaimer.
28 *
29 * 2. Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 *
34 * 3. All advertising materials mentioning features or use of this
35 * software must display the following acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
38 *
39 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
40 * endorse or promote products derived from this software without
41 * prior written permission. For written permission, please contact
42 * openssl-core@openssl.org.
43 *
44 * 5. Products derived from this software may not be called "OpenSSL"
45 * nor may "OpenSSL" appear in their names without prior written
46 * permission of the OpenSSL Project.
47 *
48 * 6. Redistributions of any form whatsoever must retain the following
49 * acknowledgment:
50 * "This product includes software developed by the OpenSSL Project
51 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
54 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
57 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
58 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
59 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

new/usr/src/lib/openssl/include/cmll_locl.h 2

62 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
64 * OF THE POSSIBILITY OF SUCH DAMAGE.
65 * ==
66 */

68 #ifndef HEADER_CAMELLIA_LOCL_H
69 #define HEADER_CAMELLIA_LOCL_H

71 typedef unsigned int u32;
72 typedef unsigned char u8;

74 int Camellia_Ekeygen(int keyBitLength, const u8 *rawKey,
75 KEY_TABLE_TYPE keyTable);
76 void Camellia_EncryptBlock_Rounds(int grandRounds, const u8 plaintext[],
77 const KEY_TABLE_TYPE keyTable, u8 ciphertext[]);
78 void Camellia_DecryptBlock_Rounds(int grandRounds, const u8 ciphertext[],
79 const KEY_TABLE_TYPE keyTable, u8 plaintext[]);
80 void Camellia_EncryptBlock(int keyBitLength, const u8 plaintext[],
81 const KEY_TABLE_TYPE keyTable, u8 ciphertext[]);
82 void Camellia_DecryptBlock(int keyBitLength, const u8 ciphertext[],
83 const KEY_TABLE_TYPE keyTable, u8 plaintext[]);
84 int private_Camellia_set_key(const unsigned char *userKey, const int bits,
85 CAMELLIA_KEY *key);
86 #endif /* #ifndef HEADER_CAMELLIA_LOCL_H */

new/usr/src/lib/openssl/include/cms_lcl.h 1

**
 13394 Fri May 30 18:31:14 2014
new/usr/src/lib/openssl/include/cms_lcl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cms/cms_lcl.h */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

54 #ifndef HEADER_CMS_LCL_H
55 #define HEADER_CMS_LCL_H

57 #ifdef __cplusplus
58 extern "C" {
59 #endif

61 #include <openssl/x509.h>

new/usr/src/lib/openssl/include/cms_lcl.h 2

63 /* Cryptographic message syntax (CMS) structures: taken
64 * from RFC3852
65 */

67 /* Forward references */

69 typedef struct CMS_IssuerAndSerialNumber_st CMS_IssuerAndSerialNumber;
70 typedef struct CMS_EncapsulatedContentInfo_st CMS_EncapsulatedContentInfo;
71 typedef struct CMS_SignerIdentifier_st CMS_SignerIdentifier;
72 typedef struct CMS_SignedData_st CMS_SignedData;
73 typedef struct CMS_OtherRevocationInfoFormat_st CMS_OtherRevocationInfoFormat;
74 typedef struct CMS_OriginatorInfo_st CMS_OriginatorInfo;
75 typedef struct CMS_EncryptedContentInfo_st CMS_EncryptedContentInfo;
76 typedef struct CMS_EnvelopedData_st CMS_EnvelopedData;
77 typedef struct CMS_DigestedData_st CMS_DigestedData;
78 typedef struct CMS_EncryptedData_st CMS_EncryptedData;
79 typedef struct CMS_AuthenticatedData_st CMS_AuthenticatedData;
80 typedef struct CMS_CompressedData_st CMS_CompressedData;
81 typedef struct CMS_OtherCertificateFormat_st CMS_OtherCertificateFormat;
82 typedef struct CMS_KeyTransRecipientInfo_st CMS_KeyTransRecipientInfo;
83 typedef struct CMS_OriginatorPublicKey_st CMS_OriginatorPublicKey;
84 typedef struct CMS_OriginatorIdentifierOrKey_st CMS_OriginatorIdentifierOrKey;
85 typedef struct CMS_KeyAgreeRecipientInfo_st CMS_KeyAgreeRecipientInfo;
86 typedef struct CMS_OtherKeyAttribute_st CMS_OtherKeyAttribute;
87 typedef struct CMS_RecipientKeyIdentifier_st CMS_RecipientKeyIdentifier;
88 typedef struct CMS_KeyAgreeRecipientIdentifier_st CMS_KeyAgreeRecipientIdentifie
89 typedef struct CMS_RecipientEncryptedKey_st CMS_RecipientEncryptedKey;
90 typedef struct CMS_KEKIdentifier_st CMS_KEKIdentifier;
91 typedef struct CMS_KEKRecipientInfo_st CMS_KEKRecipientInfo;
92 typedef struct CMS_PasswordRecipientInfo_st CMS_PasswordRecipientInfo;
93 typedef struct CMS_OtherRecipientInfo_st CMS_OtherRecipientInfo;
94 typedef struct CMS_ReceiptsFrom_st CMS_ReceiptsFrom;

96 struct CMS_ContentInfo_st
97 {
98 ASN1_OBJECT *contentType;
99 union {
100 ASN1_OCTET_STRING *data;
101 CMS_SignedData *signedData;
102 CMS_EnvelopedData *envelopedData;
103 CMS_DigestedData *digestedData;
104 CMS_EncryptedData *encryptedData;
105 CMS_AuthenticatedData *authenticatedData;
106 CMS_CompressedData *compressedData;
107 ASN1_TYPE *other;
108 /* Other types ... */
109 void *otherData;
110 } d;
111 };

113 struct CMS_SignedData_st
114 {
115 long version;
116 STACK_OF(X509_ALGOR) *digestAlgorithms;
117 CMS_EncapsulatedContentInfo *encapContentInfo;
118 STACK_OF(CMS_CertificateChoices) *certificates;
119 STACK_OF(CMS_RevocationInfoChoice) *crls;
120 STACK_OF(CMS_SignerInfo) *signerInfos;
121 };
122
123 struct CMS_EncapsulatedContentInfo_st
124 {
125 ASN1_OBJECT *eContentType;
126 ASN1_OCTET_STRING *eContent;
127 /* Set to 1 if incomplete structure only part set up */

new/usr/src/lib/openssl/include/cms_lcl.h 3

128 int partial;
129 };

131 struct CMS_SignerInfo_st
132 {
133 long version;
134 CMS_SignerIdentifier *sid;
135 X509_ALGOR *digestAlgorithm;
136 STACK_OF(X509_ATTRIBUTE) *signedAttrs;
137 X509_ALGOR *signatureAlgorithm;
138 ASN1_OCTET_STRING *signature;
139 STACK_OF(X509_ATTRIBUTE) *unsignedAttrs;
140 /* Signing certificate and key */
141 X509 *signer;
142 EVP_PKEY *pkey;
143 };

145 struct CMS_SignerIdentifier_st
146 {
147 int type;
148 union {
149 CMS_IssuerAndSerialNumber *issuerAndSerialNumber;
150 ASN1_OCTET_STRING *subjectKeyIdentifier;
151 } d;
152 };

154 struct CMS_EnvelopedData_st
155 {
156 long version;
157 CMS_OriginatorInfo *originatorInfo;
158 STACK_OF(CMS_RecipientInfo) *recipientInfos;
159 CMS_EncryptedContentInfo *encryptedContentInfo;
160 STACK_OF(X509_ATTRIBUTE) *unprotectedAttrs;
161 };

163 struct CMS_OriginatorInfo_st
164 {
165 STACK_OF(CMS_CertificateChoices) *certificates;
166 STACK_OF(CMS_RevocationInfoChoice) *crls;
167 };

169 struct CMS_EncryptedContentInfo_st
170 {
171 ASN1_OBJECT *contentType;
172 X509_ALGOR *contentEncryptionAlgorithm;
173 ASN1_OCTET_STRING *encryptedContent;
174 /* Content encryption algorithm and key */
175 const EVP_CIPHER *cipher;
176 unsigned char *key;
177 size_t keylen;
178 /* Set to 1 if we are debugging decrypt and don’t fake keys for MMA */
179 int debug;
180 };

182 struct CMS_RecipientInfo_st
183 {
184 int type;
185 union {
186 CMS_KeyTransRecipientInfo *ktri;
187 CMS_KeyAgreeRecipientInfo *kari;
188 CMS_KEKRecipientInfo *kekri;
189 CMS_PasswordRecipientInfo *pwri;
190 CMS_OtherRecipientInfo *ori;
191 } d;
192 };

new/usr/src/lib/openssl/include/cms_lcl.h 4

194 typedef CMS_SignerIdentifier CMS_RecipientIdentifier;

196 struct CMS_KeyTransRecipientInfo_st
197 {
198 long version;
199 CMS_RecipientIdentifier *rid;
200 X509_ALGOR *keyEncryptionAlgorithm;
201 ASN1_OCTET_STRING *encryptedKey;
202 /* Recipient Key and cert */
203 X509 *recip;
204 EVP_PKEY *pkey;
205 };

207 struct CMS_KeyAgreeRecipientInfo_st
208 {
209 long version;
210 CMS_OriginatorIdentifierOrKey *originator;
211 ASN1_OCTET_STRING *ukm;
212 X509_ALGOR *keyEncryptionAlgorithm;
213 STACK_OF(CMS_RecipientEncryptedKey) *recipientEncryptedKeys;
214 };

216 struct CMS_OriginatorIdentifierOrKey_st
217 {
218 int type;
219 union {
220 CMS_IssuerAndSerialNumber *issuerAndSerialNumber;
221 ASN1_OCTET_STRING *subjectKeyIdentifier;
222 CMS_OriginatorPublicKey *originatorKey;
223 } d;
224 };

226 struct CMS_OriginatorPublicKey_st
227 {
228 X509_ALGOR *algorithm;
229 ASN1_BIT_STRING *publicKey;
230 };

232 struct CMS_RecipientEncryptedKey_st
233 {
234 CMS_KeyAgreeRecipientIdentifier *rid;
235 ASN1_OCTET_STRING *encryptedKey;
236 };

238 struct CMS_KeyAgreeRecipientIdentifier_st
239 {
240 int type;
241 union {
242 CMS_IssuerAndSerialNumber *issuerAndSerialNumber;
243 CMS_RecipientKeyIdentifier *rKeyId;
244 } d;
245 };

247 struct CMS_RecipientKeyIdentifier_st
248 {
249 ASN1_OCTET_STRING *subjectKeyIdentifier;
250 ASN1_GENERALIZEDTIME *date;
251 CMS_OtherKeyAttribute *other;
252 };

254 struct CMS_KEKRecipientInfo_st
255 {
256 long version;
257 CMS_KEKIdentifier *kekid;
258 X509_ALGOR *keyEncryptionAlgorithm;
259 ASN1_OCTET_STRING *encryptedKey;

new/usr/src/lib/openssl/include/cms_lcl.h 5

260 /* Extra info: symmetric key to use */
261 unsigned char *key;
262 size_t keylen;
263 };

265 struct CMS_KEKIdentifier_st
266 {
267 ASN1_OCTET_STRING *keyIdentifier;
268 ASN1_GENERALIZEDTIME *date;
269 CMS_OtherKeyAttribute *other;
270 };

272 struct CMS_PasswordRecipientInfo_st
273 {
274 long version;
275 X509_ALGOR *keyDerivationAlgorithm;
276 X509_ALGOR *keyEncryptionAlgorithm;
277 ASN1_OCTET_STRING *encryptedKey;
278 /* Extra info: password to use */
279 unsigned char *pass;
280 size_t passlen;
281 };

283 struct CMS_OtherRecipientInfo_st
284 {
285 ASN1_OBJECT *oriType;
286 ASN1_TYPE *oriValue;
287 };

289 struct CMS_DigestedData_st
290 {
291 long version;
292 X509_ALGOR *digestAlgorithm;
293 CMS_EncapsulatedContentInfo *encapContentInfo;
294 ASN1_OCTET_STRING *digest;
295 };

297 struct CMS_EncryptedData_st
298 {
299 long version;
300 CMS_EncryptedContentInfo *encryptedContentInfo;
301 STACK_OF(X509_ATTRIBUTE) *unprotectedAttrs;
302 };

304 struct CMS_AuthenticatedData_st
305 {
306 long version;
307 CMS_OriginatorInfo *originatorInfo;
308 STACK_OF(CMS_RecipientInfo) *recipientInfos;
309 X509_ALGOR *macAlgorithm;
310 X509_ALGOR *digestAlgorithm;
311 CMS_EncapsulatedContentInfo *encapContentInfo;
312 STACK_OF(X509_ATTRIBUTE) *authAttrs;
313 ASN1_OCTET_STRING *mac;
314 STACK_OF(X509_ATTRIBUTE) *unauthAttrs;
315 };

317 struct CMS_CompressedData_st
318 {
319 long version;
320 X509_ALGOR *compressionAlgorithm;
321 STACK_OF(CMS_RecipientInfo) *recipientInfos;
322 CMS_EncapsulatedContentInfo *encapContentInfo;
323 };

325 struct CMS_RevocationInfoChoice_st

new/usr/src/lib/openssl/include/cms_lcl.h 6

326 {
327 int type;
328 union {
329 X509_CRL *crl;
330 CMS_OtherRevocationInfoFormat *other;
331 } d;
332 };

334 #define CMS_REVCHOICE_CRL 0
335 #define CMS_REVCHOICE_OTHER 1

337 struct CMS_OtherRevocationInfoFormat_st
338 {
339 ASN1_OBJECT *otherRevInfoFormat;
340 ASN1_TYPE *otherRevInfo;
341 };

343 struct CMS_CertificateChoices
344 {
345 int type;
346 union {
347 X509 *certificate;
348 ASN1_STRING *extendedCertificate; /* Obsolete */
349 ASN1_STRING *v1AttrCert; /* Left encoded for now */
350 ASN1_STRING *v2AttrCert; /* Left encoded for now */
351 CMS_OtherCertificateFormat *other;
352 } d;
353 };

355 #define CMS_CERTCHOICE_CERT 0
356 #define CMS_CERTCHOICE_EXCERT 1
357 #define CMS_CERTCHOICE_V1ACERT 2
358 #define CMS_CERTCHOICE_V2ACERT 3
359 #define CMS_CERTCHOICE_OTHER 4

361 struct CMS_OtherCertificateFormat_st
362 {
363 ASN1_OBJECT *otherCertFormat;
364 ASN1_TYPE *otherCert;
365 };

367 /* This is also defined in pkcs7.h but we duplicate it
368 * to allow the CMS code to be independent of PKCS#7
369 */

371 struct CMS_IssuerAndSerialNumber_st
372 {
373 X509_NAME *issuer;
374 ASN1_INTEGER *serialNumber;
375 };

377 struct CMS_OtherKeyAttribute_st
378 {
379 ASN1_OBJECT *keyAttrId;
380 ASN1_TYPE *keyAttr;
381 };

383 /* ESS structures */

385 #ifdef HEADER_X509V3_H

387 struct CMS_ReceiptRequest_st
388 {
389 ASN1_OCTET_STRING *signedContentIdentifier;
390 CMS_ReceiptsFrom *receiptsFrom;
391 STACK_OF(GENERAL_NAMES) *receiptsTo;

new/usr/src/lib/openssl/include/cms_lcl.h 7

392 };

395 struct CMS_ReceiptsFrom_st
396 {
397 int type;
398 union
399 {
400 long allOrFirstTier;
401 STACK_OF(GENERAL_NAMES) *receiptList;
402 } d;
403 };
404 #endif

406 struct CMS_Receipt_st
407 {
408 long version;
409 ASN1_OBJECT *contentType;
410 ASN1_OCTET_STRING *signedContentIdentifier;
411 ASN1_OCTET_STRING *originatorSignatureValue;
412 };

414 DECLARE_ASN1_FUNCTIONS(CMS_ContentInfo)
415 DECLARE_ASN1_ITEM(CMS_SignerInfo)
416 DECLARE_ASN1_ITEM(CMS_IssuerAndSerialNumber)
417 DECLARE_ASN1_ITEM(CMS_Attributes_Sign)
418 DECLARE_ASN1_ITEM(CMS_Attributes_Verify)
419 DECLARE_ASN1_ITEM(CMS_RecipientInfo)
420 DECLARE_ASN1_ITEM(CMS_PasswordRecipientInfo)
421 DECLARE_ASN1_ALLOC_FUNCTIONS(CMS_IssuerAndSerialNumber)

423 #define CMS_SIGNERINFO_ISSUER_SERIAL 0
424 #define CMS_SIGNERINFO_KEYIDENTIFIER 1

426 #define CMS_RECIPINFO_ISSUER_SERIAL 0
427 #define CMS_RECIPINFO_KEYIDENTIFIER 1

429 BIO *cms_content_bio(CMS_ContentInfo *cms);

431 CMS_ContentInfo *cms_Data_create(void);

433 CMS_ContentInfo *cms_DigestedData_create(const EVP_MD *md);
434 BIO *cms_DigestedData_init_bio(CMS_ContentInfo *cms);
435 int cms_DigestedData_do_final(CMS_ContentInfo *cms, BIO *chain, int verify);

437 BIO *cms_SignedData_init_bio(CMS_ContentInfo *cms);
438 int cms_SignedData_final(CMS_ContentInfo *cms, BIO *chain);
439 int cms_set1_SignerIdentifier(CMS_SignerIdentifier *sid, X509 *cert, int type);
440 int cms_SignerIdentifier_get0_signer_id(CMS_SignerIdentifier *sid,
441 ASN1_OCTET_STRING **keyid,
442 X509_NAME **issuer, ASN1_INTEGER **sno);
443 int cms_SignerIdentifier_cert_cmp(CMS_SignerIdentifier *sid, X509 *cert);

445 CMS_ContentInfo *cms_CompressedData_create(int comp_nid);
446 BIO *cms_CompressedData_init_bio(CMS_ContentInfo *cms);

448 void cms_DigestAlgorithm_set(X509_ALGOR *alg, const EVP_MD *md);
449 BIO *cms_DigestAlgorithm_init_bio(X509_ALGOR *digestAlgorithm);
450 int cms_DigestAlgorithm_find_ctx(EVP_MD_CTX *mctx, BIO *chain,
451 X509_ALGOR *mdalg);

453 BIO *cms_EncryptedContent_init_bio(CMS_EncryptedContentInfo *ec);
454 BIO *cms_EncryptedData_init_bio(CMS_ContentInfo *cms);
455 int cms_EncryptedContent_init(CMS_EncryptedContentInfo *ec,
456 const EVP_CIPHER *cipher,
457 const unsigned char *key, size_t keylen);

new/usr/src/lib/openssl/include/cms_lcl.h 8

459 int cms_Receipt_verify(CMS_ContentInfo *cms, CMS_ContentInfo *req_cms);
460 int cms_msgSigDigest_add1(CMS_SignerInfo *dest, CMS_SignerInfo *src);
461 ASN1_OCTET_STRING *cms_encode_Receipt(CMS_SignerInfo *si);

463 BIO *cms_EnvelopedData_init_bio(CMS_ContentInfo *cms);
464 CMS_EnvelopedData *cms_get0_enveloped(CMS_ContentInfo *cms);

466 /* PWRI routines */
467 int cms_RecipientInfo_pwri_crypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri,
468 int en_de);
469
470 #ifdef __cplusplus
471 }
472 #endif
473 #endif

new/usr/src/lib/openssl/include/conf_def.h 1

**
 9250 Fri May 30 18:31:14 2014
new/usr/src/lib/openssl/include/conf_def.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/conf/conf_def.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* THIS FILE WAS AUTOMAGICALLY GENERATED!
60 Please modify and use keysets.pl to regenerate it. */

new/usr/src/lib/openssl/include/conf_def.h 2

62 #define CONF_NUMBER 1
63 #define CONF_UPPER 2
64 #define CONF_LOWER 4
65 #define CONF_UNDER 256
66 #define CONF_PUNCTUATION 512
67 #define CONF_WS 16
68 #define CONF_ESC 32
69 #define CONF_QUOTE 64
70 #define CONF_DQUOTE 1024
71 #define CONF_COMMENT 128
72 #define CONF_FCOMMENT 2048
73 #define CONF_EOF 8
74 #define CONF_HIGHBIT 4096
75 #define CONF_ALPHA (CONF_UPPER|CONF_LOWER)
76 #define CONF_ALPHA_NUMERIC (CONF_ALPHA|CONF_NUMBER|CONF_UNDER)
77 #define CONF_ALPHA_NUMERIC_PUNCT (CONF_ALPHA|CONF_NUMBER|CONF_UNDER| \
78 CONF_PUNCTUATION)

80 #define KEYTYPES(c) ((unsigned short *)((c)->meth_data))
81 #ifndef CHARSET_EBCDIC
82 #define IS_COMMENT(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_COMMENT)
83 #define IS_FCOMMENT(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_FCOMMENT)
84 #define IS_EOF(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_EOF)
85 #define IS_ESC(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_ESC)
86 #define IS_NUMBER(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_NUMBER)
87 #define IS_WS(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_WS)
88 #define IS_ALPHA_NUMERIC(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_ALPHA_NUMERIC)
89 #define IS_ALPHA_NUMERIC_PUNCT(c,a) \
90 (KEYTYPES(c)[(a)&0xff]&CONF_ALPHA_NUMERIC_PUNCT)
91 #define IS_QUOTE(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_QUOTE)
92 #define IS_DQUOTE(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_DQUOTE)
93 #define IS_HIGHBIT(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_HIGHBIT)

95 #else /*CHARSET_EBCDIC*/

97 #define IS_COMMENT(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_COMMENT)
98 #define IS_FCOMMENT(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_FCOMMENT)
99 #define IS_EOF(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_EOF)
100 #define IS_ESC(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_ESC)
101 #define IS_NUMBER(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_NUMBER)
102 #define IS_WS(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_WS)
103 #define IS_ALPHA_NUMERIC(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_ALPHA_NUME
104 #define IS_ALPHA_NUMERIC_PUNCT(c,a) \
105 (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_ALPHA_NUME
106 #define IS_QUOTE(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_QUOTE)
107 #define IS_DQUOTE(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_DQUOTE)
108 #define IS_HIGHBIT(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_HIGHBIT)
109 #endif /*CHARSET_EBCDIC*/

111 static unsigned short CONF_type_default[256]={
112 0x0008,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
113 0x0000,0x0010,0x0010,0x0000,0x0000,0x0010,0x0000,0x0000,
114 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
115 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
116 0x0010,0x0200,0x0040,0x0080,0x0000,0x0200,0x0200,0x0040,
117 0x0000,0x0000,0x0200,0x0200,0x0200,0x0200,0x0200,0x0200,
118 0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,
119 0x0001,0x0001,0x0000,0x0200,0x0000,0x0000,0x0000,0x0200,
120 0x0200,0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,
121 0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,
122 0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,
123 0x0002,0x0002,0x0002,0x0000,0x0020,0x0000,0x0200,0x0100,
124 0x0040,0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,
125 0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,
126 0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,
127 0x0004,0x0004,0x0004,0x0000,0x0200,0x0000,0x0200,0x0000,

new/usr/src/lib/openssl/include/conf_def.h 3

128 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
129 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
130 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
131 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
132 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
133 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
134 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
135 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
136 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
137 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
138 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
139 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
140 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
141 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
142 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
143 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
144 };

146 static unsigned short CONF_type_win32[256]={
147 0x0008,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
148 0x0000,0x0010,0x0010,0x0000,0x0000,0x0010,0x0000,0x0000,
149 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
150 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
151 0x0010,0x0200,0x0400,0x0000,0x0000,0x0200,0x0200,0x0000,
152 0x0000,0x0000,0x0200,0x0200,0x0200,0x0200,0x0200,0x0200,
153 0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,
154 0x0001,0x0001,0x0000,0x0A00,0x0000,0x0000,0x0000,0x0200,
155 0x0200,0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,
156 0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,
157 0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,0x0002,
158 0x0002,0x0002,0x0002,0x0000,0x0000,0x0000,0x0200,0x0100,
159 0x0000,0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,
160 0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,
161 0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,0x0004,
162 0x0004,0x0004,0x0004,0x0000,0x0200,0x0000,0x0200,0x0000,
163 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
164 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
165 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
166 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
167 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
168 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
169 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
170 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
171 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
172 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
173 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
174 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
175 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
176 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
177 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
178 0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,0x1000,
179 };

new/usr/src/lib/openssl/include/cryptlib.h 1

**
 4440 Fri May 30 18:31:14 2014
new/usr/src/lib/openssl/include/cryptlib.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cryptlib.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_CRYPTLIB_H
60 #define HEADER_CRYPTLIB_H

new/usr/src/lib/openssl/include/cryptlib.h 2

62 #include <stdlib.h>
63 #include <string.h>

65 #include "e_os.h"

67 #ifdef OPENSSL_USE_APPLINK
68 #define BIO_FLAGS_UPLINK 0x8000
69 #include "ms/uplink.h"
70 #endif

72 #include <openssl/crypto.h>
73 #include <openssl/buffer.h>
74 #include <openssl/bio.h>
75 #include <openssl/err.h>
76 #include <openssl/opensslconf.h>

78 #ifdef __cplusplus
79 extern "C" {
80 #endif

82 #ifndef OPENSSL_SYS_VMS
83 #define X509_CERT_AREA OPENSSLDIR
84 #define X509_CERT_DIR OPENSSLDIR "/certs"
85 #define X509_CERT_FILE OPENSSLDIR "/cert.pem"
86 #define X509_PRIVATE_DIR OPENSSLDIR "/private"
87 #else
88 #define X509_CERT_AREA "SSLROOT:[000000]"
89 #define X509_CERT_DIR "SSLCERTS:"
90 #define X509_CERT_FILE "SSLCERTS:cert.pem"
91 #define X509_PRIVATE_DIR "SSLPRIVATE:"
92 #endif

94 #define X509_CERT_DIR_EVP "SSL_CERT_DIR"
95 #define X509_CERT_FILE_EVP "SSL_CERT_FILE"

97 /* size of string representations */
98 #define DECIMAL_SIZE(type) ((sizeof(type)*8+2)/3+1)
99 #define HEX_SIZE(type) (sizeof(type)*2)

101 void OPENSSL_cpuid_setup(void);
102 extern unsigned int OPENSSL_ia32cap_P[];
103 void OPENSSL_showfatal(const char *fmta,...);
104 void *OPENSSL_stderr(void);
105 extern int OPENSSL_NONPIC_relocated;

107 void solaris_locking_setup();

109 #ifdef __cplusplus
110 }
111 #endif

113 #endif

new/usr/src/lib/openssl/include/cryptoki.h 1

**
 2579 Fri May 30 18:31:14 2014
new/usr/src/lib/openssl/include/cryptoki.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _CRYPTOKI_H
28 #define _CRYPTOKI_H

30 #pragma ident "@(#)cryptoki.h 1.2 05/06/08 SMI"

32 #ifdef __cplusplus
33 extern "C" {
34 #endif

36 #ifndef CK_PTR
37 #define CK_PTR *
38 #endif

40 #ifndef CK_DEFINE_FUNCTION
41 #define CK_DEFINE_FUNCTION(returnType, name) returnType name
42 #endif

44 #ifndef CK_DECLARE_FUNCTION
45 #define CK_DECLARE_FUNCTION(returnType, name) returnType name
46 #endif

48 #ifndef CK_DECLARE_FUNCTION_POINTER
49 #define CK_DECLARE_FUNCTION_POINTER(returnType, name) returnType (* name)
50 #endif

52 #ifndef CK_CALLBACK_FUNCTION
53 #define CK_CALLBACK_FUNCTION(returnType, name) returnType (* name)
54 #endif

56 #ifndef NULL_PTR
57 #include <unistd.h> /* For NULL */
58 #define NULL_PTR NULL
59 #endif

61 /*

new/usr/src/lib/openssl/include/cryptoki.h 2

62 * pkcs11t.h defines TRUE and FALSE in a way that upsets lint
63 */
64 #ifndef CK_DISABLE_TRUE_FALSE
65 #define CK_DISABLE_TRUE_FALSE
66 #ifndef TRUE
67 #define TRUE 1
68 #endif /* TRUE */
69 #ifndef FALSE
70 #define FALSE 0
71 #endif /* FALSE */
72 #endif /* CK_DISABLE_TRUE_FALSE */

74 #undef CK_PKCS11_FUNCTION_INFO

76 #include "pkcs11.h"

78 /* Solaris specific functions */

80 #include <stdlib.h>

82 /*
83 * SUNW_C_GetMechSession will initialize the framework and do all
84 * the necessary PKCS#11 calls to create a session capable of
85 * providing operations on the requested mechanism
86 */
87 CK_RV SUNW_C_GetMechSession(CK_MECHANISM_TYPE mech,
88 CK_SESSION_HANDLE_PTR hSession);

90 /*
91 * SUNW_C_KeyToObject will create a secret key object for the given
92 * mechanism from the rawkey data.
93 */
94 CK_RV SUNW_C_KeyToObject(CK_SESSION_HANDLE hSession,
95 CK_MECHANISM_TYPE mech, const void *rawkey, size_t rawkey_len,
96 CK_OBJECT_HANDLE_PTR obj);

99 #ifdef __cplusplus
100 }
101 #endif

103 #endif /* _CRYPTOKI_H */

new/usr/src/lib/openssl/include/des_locl.h 1

**
 13706 Fri May 30 18:31:14 2014
new/usr/src/lib/openssl/include/des_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/des_locl.h */
2 /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_DES_LOCL_H
60 #define HEADER_DES_LOCL_H

new/usr/src/lib/openssl/include/des_locl.h 2

62 #include <openssl/e_os2.h>

64 #if defined(OPENSSL_SYS_WIN32)
65 #ifndef OPENSSL_SYS_MSDOS
66 #define OPENSSL_SYS_MSDOS
67 #endif
68 #endif

70 #include <stdio.h>
71 #include <stdlib.h>

73 #ifndef OPENSSL_SYS_MSDOS
74 #if !defined(OPENSSL_SYS_VMS) || defined(__DECC)
75 #ifdef OPENSSL_UNISTD
76 # include OPENSSL_UNISTD
77 #else
78 # include <unistd.h>
79 #endif
80 #include <math.h>
81 #endif
82 #endif
83 #include <openssl/des.h>

85 #ifdef OPENSSL_SYS_MSDOS /* Visual C++ 2.1 (Windows NT/95) */
86 #include <stdlib.h>
87 #include <errno.h>
88 #include <time.h>
89 #include <io.h>
90 #endif

92 #if defined(__STDC__) || defined(OPENSSL_SYS_VMS) || defined(M_XENIX) || defined
93 #include <string.h>
94 #endif

96 #ifdef OPENSSL_BUILD_SHLIBCRYPTO
97 # undef OPENSSL_EXTERN
98 # define OPENSSL_EXTERN OPENSSL_EXPORT
99 #endif

101 #define ITERATIONS 16
102 #define HALF_ITERATIONS 8

104 /* used in des_read and des_write */
105 #define MAXWRITE (1024*16)
106 #define BSIZE (MAXWRITE+4)

108 #define c2l(c,l) (l =((DES_LONG)(*((c)++))) , \
109 l|=((DES_LONG)(*((c)++)))<< 8L, \
110 l|=((DES_LONG)(*((c)++)))<<16L, \
111 l|=((DES_LONG)(*((c)++)))<<24L)

113 /* NOTE - c is not incremented as per c2l */
114 #define c2ln(c,l1,l2,n) { \
115 c+=n; \
116 l1=l2=0; \
117 switch (n) { \
118 case 8: l2 =((DES_LONG)(*(--(c))))<<24L; \
119 case 7: l2|=((DES_LONG)(*(--(c))))<<16L; \
120 case 6: l2|=((DES_LONG)(*(--(c))))<< 8L; \
121 case 5: l2|=((DES_LONG)(*(--(c)))); \
122 case 4: l1 =((DES_LONG)(*(--(c))))<<24L; \
123 case 3: l1|=((DES_LONG)(*(--(c))))<<16L; \
124 case 2: l1|=((DES_LONG)(*(--(c))))<< 8L; \
125 case 1: l1|=((DES_LONG)(*(--(c)))); \
126 } \
127 }

new/usr/src/lib/openssl/include/des_locl.h 3

129 #define l2c(l,c) (*((c)++)=(unsigned char)(((l))&0xff), \
130 *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \
131 *((c)++)=(unsigned char)(((l)>>16L)&0xff), \
132 *((c)++)=(unsigned char)(((l)>>24L)&0xff))

134 /* replacements for htonl and ntohl since I have no idea what to do
135 * when faced with machines with 8 byte longs. */
136 #define HDRSIZE 4

138 #define n2l(c,l) (l =((DES_LONG)(*((c)++)))<<24L, \
139 l|=((DES_LONG)(*((c)++)))<<16L, \
140 l|=((DES_LONG)(*((c)++)))<< 8L, \
141 l|=((DES_LONG)(*((c)++))))

143 #define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24L)&0xff), \
144 *((c)++)=(unsigned char)(((l)>>16L)&0xff), \
145 *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \
146 *((c)++)=(unsigned char)(((l))&0xff))

148 /* NOTE - c is not incremented as per l2c */
149 #define l2cn(l1,l2,c,n) { \
150 c+=n; \
151 switch (n) { \
152 case 8: *(--(c))=(unsigned char)(((l2)>>24L)&0xff); \
153 case 7: *(--(c))=(unsigned char)(((l2)>>16L)&0xff); \
154 case 6: *(--(c))=(unsigned char)(((l2)>> 8L)&0xff); \
155 case 5: *(--(c))=(unsigned char)(((l2))&0xff); \
156 case 4: *(--(c))=(unsigned char)(((l1)>>24L)&0xff); \
157 case 3: *(--(c))=(unsigned char)(((l1)>>16L)&0xff); \
158 case 2: *(--(c))=(unsigned char)(((l1)>> 8L)&0xff); \
159 case 1: *(--(c))=(unsigned char)(((l1))&0xff); \
160 } \
161 }

163 #if (defined(OPENSSL_SYS_WIN32) && defined(_MSC_VER)) || defined(__ICC)
164 #define ROTATE(a,n) (_lrotr(a,n))
165 #elif defined(__GNUC__) && __GNUC__>=2 && !defined(__STRICT_ANSI__) && !defined(
166 # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_
167 # define ROTATE(a,n) ({ register unsigned int ret; \
168 __asm__ ("rorl %1,%0" \
169 : "=r"(ret) \
170 : "I"(n),"0"(a) \
171 : "cc"); \
172 ret; \
173 })
174 # endif
175 #endif
176 #ifndef ROTATE
177 #define ROTATE(a,n) (((a)>>(n))+((a)<<(32-(n))))
178 #endif

180 /* Don’t worry about the LOAD_DATA() stuff, that is used by
181 * fcrypt() to add it’s little bit to the front */

183 #ifdef DES_FCRYPT

185 #define LOAD_DATA_tmp(R,S,u,t,E0,E1) \
186 { DES_LONG tmp; LOAD_DATA(R,S,u,t,E0,E1,tmp); }

188 #define LOAD_DATA(R,S,u,t,E0,E1,tmp) \
189 t=R^(R>>16L); \
190 u=t&E0; t&=E1; \
191 tmp=(u<<16); u^=R^s[S]; u^=tmp; \
192 tmp=(t<<16); t^=R^s[S+1]; t^=tmp
193 #else

new/usr/src/lib/openssl/include/des_locl.h 4

194 #define LOAD_DATA_tmp(a,b,c,d,e,f) LOAD_DATA(a,b,c,d,e,f,g)
195 #define LOAD_DATA(R,S,u,t,E0,E1,tmp) \
196 u=R^s[S]; \
197 t=R^s[S+1]
198 #endif

200 /* The changes to this macro may help or hinder, depending on the
201 * compiler and the architecture. gcc2 always seems to do well :-).
202 * Inspired by Dana How <how@isl.stanford.edu>
203 * DO NOT use the alternative version on machines with 8 byte longs.
204 * It does not seem to work on the Alpha, even when DES_LONG is 4
205 * bytes, probably an issue of accessing non-word aligned objects :-(*/
206 #ifdef DES_PTR

208 /* It recently occurred to me that 0^0^0^0^0^0^0 == 0, so there
209 * is no reason to not xor all the sub items together. This potentially
210 * saves a register since things can be xored directly into L */

212 #if defined(DES_RISC1) || defined(DES_RISC2)
213 #ifdef DES_RISC1
214 #define D_ENCRYPT(LL,R,S) { \
215 unsigned int u1,u2,u3; \
216 LOAD_DATA(R,S,u,t,E0,E1,u1); \
217 u2=(int)u>>8L; \
218 u1=(int)u&0xfc; \
219 u2&=0xfc; \
220 t=ROTATE(t,4); \
221 u>>=16L; \
222 LL^= *(const DES_LONG *)(des_SP +u1); \
223 LL^= *(const DES_LONG *)(des_SP+0x200+u2); \
224 u3=(int)(u>>8L); \
225 u1=(int)u&0xfc; \
226 u3&=0xfc; \
227 LL^= *(const DES_LONG *)(des_SP+0x400+u1); \
228 LL^= *(const DES_LONG *)(des_SP+0x600+u3); \
229 u2=(int)t>>8L; \
230 u1=(int)t&0xfc; \
231 u2&=0xfc; \
232 t>>=16L; \
233 LL^= *(const DES_LONG *)(des_SP+0x100+u1); \
234 LL^= *(const DES_LONG *)(des_SP+0x300+u2); \
235 u3=(int)t>>8L; \
236 u1=(int)t&0xfc; \
237 u3&=0xfc; \
238 LL^= *(const DES_LONG *)(des_SP+0x500+u1); \
239 LL^= *(const DES_LONG *)(des_SP+0x700+u3); }
240 #endif
241 #ifdef DES_RISC2
242 #define D_ENCRYPT(LL,R,S) { \
243 unsigned int u1,u2,s1,s2; \
244 LOAD_DATA(R,S,u,t,E0,E1,u1); \
245 u2=(int)u>>8L; \
246 u1=(int)u&0xfc; \
247 u2&=0xfc; \
248 t=ROTATE(t,4); \
249 LL^= *(const DES_LONG *)(des_SP +u1); \
250 LL^= *(const DES_LONG *)(des_SP+0x200+u2); \
251 s1=(int)(u>>16L); \
252 s2=(int)(u>>24L); \
253 s1&=0xfc; \
254 s2&=0xfc; \
255 LL^= *(const DES_LONG *)(des_SP+0x400+s1); \
256 LL^= *(const DES_LONG *)(des_SP+0x600+s2); \
257 u2=(int)t>>8L; \
258 u1=(int)t&0xfc; \
259 u2&=0xfc; \

new/usr/src/lib/openssl/include/des_locl.h 5

260 LL^= *(const DES_LONG *)(des_SP+0x100+u1); \
261 LL^= *(const DES_LONG *)(des_SP+0x300+u2); \
262 s1=(int)(t>>16L); \
263 s2=(int)(t>>24L); \
264 s1&=0xfc; \
265 s2&=0xfc; \
266 LL^= *(const DES_LONG *)(des_SP+0x500+s1); \
267 LL^= *(const DES_LONG *)(des_SP+0x700+s2); }
268 #endif
269 #else
270 #define D_ENCRYPT(LL,R,S) { \
271 LOAD_DATA_tmp(R,S,u,t,E0,E1); \
272 t=ROTATE(t,4); \
273 LL^= \
274 *(const DES_LONG *)(des_SP +((u)&0xfc))^ \
275 *(const DES_LONG *)(des_SP+0x200+((u>> 8L)&0xfc))^ \
276 *(const DES_LONG *)(des_SP+0x400+((u>>16L)&0xfc))^ \
277 *(const DES_LONG *)(des_SP+0x600+((u>>24L)&0xfc))^ \
278 *(const DES_LONG *)(des_SP+0x100+((t)&0xfc))^ \
279 *(const DES_LONG *)(des_SP+0x300+((t>> 8L)&0xfc))^ \
280 *(const DES_LONG *)(des_SP+0x500+((t>>16L)&0xfc))^ \
281 *(const DES_LONG *)(des_SP+0x700+((t>>24L)&0xfc)); }
282 #endif

284 #else /* original version */

286 #if defined(DES_RISC1) || defined(DES_RISC2)
287 #ifdef DES_RISC1
288 #define D_ENCRYPT(LL,R,S) {\
289 unsigned int u1,u2,u3; \
290 LOAD_DATA(R,S,u,t,E0,E1,u1); \
291 u>>=2L; \
292 t=ROTATE(t,6); \
293 u2=(int)u>>8L; \
294 u1=(int)u&0x3f; \
295 u2&=0x3f; \
296 u>>=16L; \
297 LL^=DES_SPtrans[0][u1]; \
298 LL^=DES_SPtrans[2][u2]; \
299 u3=(int)u>>8L; \
300 u1=(int)u&0x3f; \
301 u3&=0x3f; \
302 LL^=DES_SPtrans[4][u1]; \
303 LL^=DES_SPtrans[6][u3]; \
304 u2=(int)t>>8L; \
305 u1=(int)t&0x3f; \
306 u2&=0x3f; \
307 t>>=16L; \
308 LL^=DES_SPtrans[1][u1]; \
309 LL^=DES_SPtrans[3][u2]; \
310 u3=(int)t>>8L; \
311 u1=(int)t&0x3f; \
312 u3&=0x3f; \
313 LL^=DES_SPtrans[5][u1]; \
314 LL^=DES_SPtrans[7][u3]; }
315 #endif
316 #ifdef DES_RISC2
317 #define D_ENCRYPT(LL,R,S) {\
318 unsigned int u1,u2,s1,s2; \
319 LOAD_DATA(R,S,u,t,E0,E1,u1); \
320 u>>=2L; \
321 t=ROTATE(t,6); \
322 u2=(int)u>>8L; \
323 u1=(int)u&0x3f; \
324 u2&=0x3f; \
325 LL^=DES_SPtrans[0][u1]; \

new/usr/src/lib/openssl/include/des_locl.h 6

326 LL^=DES_SPtrans[2][u2]; \
327 s1=(int)u>>16L; \
328 s2=(int)u>>24L; \
329 s1&=0x3f; \
330 s2&=0x3f; \
331 LL^=DES_SPtrans[4][s1]; \
332 LL^=DES_SPtrans[6][s2]; \
333 u2=(int)t>>8L; \
334 u1=(int)t&0x3f; \
335 u2&=0x3f; \
336 LL^=DES_SPtrans[1][u1]; \
337 LL^=DES_SPtrans[3][u2]; \
338 s1=(int)t>>16; \
339 s2=(int)t>>24L; \
340 s1&=0x3f; \
341 s2&=0x3f; \
342 LL^=DES_SPtrans[5][s1]; \
343 LL^=DES_SPtrans[7][s2]; }
344 #endif

346 #else

348 #define D_ENCRYPT(LL,R,S) {\
349 LOAD_DATA_tmp(R,S,u,t,E0,E1); \
350 t=ROTATE(t,4); \
351 LL^=\
352 DES_SPtrans[0][(u>> 2L)&0x3f]^ \
353 DES_SPtrans[2][(u>>10L)&0x3f]^ \
354 DES_SPtrans[4][(u>>18L)&0x3f]^ \
355 DES_SPtrans[6][(u>>26L)&0x3f]^ \
356 DES_SPtrans[1][(t>> 2L)&0x3f]^ \
357 DES_SPtrans[3][(t>>10L)&0x3f]^ \
358 DES_SPtrans[5][(t>>18L)&0x3f]^ \
359 DES_SPtrans[7][(t>>26L)&0x3f]; }
360 #endif
361 #endif

363 /* IP and FP
364 * The problem is more of a geometric problem that random bit fiddling.
365 0 1 2 3 4 5 6 7 62 54 46 38 30 22 14 6
366 8 9 10 11 12 13 14 15 60 52 44 36 28 20 12 4
367 16 17 18 19 20 21 22 23 58 50 42 34 26 18 10 2
368 24 25 26 27 28 29 30 31 to 56 48 40 32 24 16 8 0

370 32 33 34 35 36 37 38 39 63 55 47 39 31 23 15 7
371 40 41 42 43 44 45 46 47 61 53 45 37 29 21 13 5
372 48 49 50 51 52 53 54 55 59 51 43 35 27 19 11 3
373 56 57 58 59 60 61 62 63 57 49 41 33 25 17 9 1

375 The output has been subject to swaps of the form
376 0 1 -> 3 1 but the odd and even bits have been put into
377 2 3 2 0
378 different words. The main trick is to remember that
379 t=((l>>size)^r)&(mask);
380 r^=t;
381 l^=(t<<size);
382 can be used to swap and move bits between words.

384 So l = 0 1 2 3 r = 16 17 18 19
385 4 5 6 7 20 21 22 23
386 8 9 10 11 24 25 26 27
387 12 13 14 15 28 29 30 31
388 becomes (for size == 2 and mask == 0x3333)
389 t = 2^16 3^17 -- -- l = 0 1 16 17 r = 2 3 18 19
390 6^20 7^21 -- -- 4 5 20 21 6 7 22 23
391 10^24 11^25 -- -- 8 9 24 25 10 11 24 25

new/usr/src/lib/openssl/include/des_locl.h 7

392 14^28 15^29 -- -- 12 13 28 29 14 15 28 29

394 Thanks for hints from Richard Outerbridge - he told me IP&FP
395 could be done in 15 xor, 10 shifts and 5 ands.
396 When I finally started to think of the problem in 2D
397 I first got ~42 operations without xors. When I remembered
398 how to use xors :-) I got it to its final state.
399 */
400 #define PERM_OP(a,b,t,n,m) ((t)=((((a)>>(n))^(b))&(m)),\
401 (b)^=(t),\
402 (a)^=((t)<<(n)))

404 #define IP(l,r) \
405 { \
406 register DES_LONG tt; \
407 PERM_OP(r,l,tt, 4,0x0f0f0f0fL); \
408 PERM_OP(l,r,tt,16,0x0000ffffL); \
409 PERM_OP(r,l,tt, 2,0x33333333L); \
410 PERM_OP(l,r,tt, 8,0x00ff00ffL); \
411 PERM_OP(r,l,tt, 1,0x55555555L); \
412 }

414 #define FP(l,r) \
415 { \
416 register DES_LONG tt; \
417 PERM_OP(l,r,tt, 1,0x55555555L); \
418 PERM_OP(r,l,tt, 8,0x00ff00ffL); \
419 PERM_OP(l,r,tt, 2,0x33333333L); \
420 PERM_OP(r,l,tt,16,0x0000ffffL); \
421 PERM_OP(l,r,tt, 4,0x0f0f0f0fL); \
422 }

424 extern const DES_LONG DES_SPtrans[8][64];

426 void fcrypt_body(DES_LONG *out,DES_key_schedule *ks,
427 DES_LONG Eswap0, DES_LONG Eswap1);

429 #ifdef OPENSSL_SMALL_FOOTPRINT
430 #undef DES_UNROLL
431 #endif
432 #endif

new/usr/src/lib/openssl/include/des_ver.h 1

**
 3643 Fri May 30 18:31:15 2014
new/usr/src/lib/openssl/include/des_ver.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/des_ver.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/e_os2.h>

61 #ifdef OPENSSL_BUILD_SHLIBCRYPTO

new/usr/src/lib/openssl/include/des_ver.h 2

62 # undef OPENSSL_EXTERN
63 # define OPENSSL_EXTERN OPENSSL_EXPORT
64 #endif

66 /* The following macros make sure the names are different from libdes names */
67 #define DES_version OSSL_DES_version
68 #define libdes_version OSSL_libdes_version

70 OPENSSL_EXTERN const char OSSL_DES_version[]; /* SSLeay version string */
71 OPENSSL_EXTERN const char OSSL_libdes_version[]; /* old libdes version st

new/usr/src/lib/openssl/include/dsa_locl.h 1

**
 2869 Fri May 30 18:31:15 2014
new/usr/src/lib/openssl/include/dsa_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2007 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 #include <openssl/dsa.h>

57 int dsa_builtin_paramgen(DSA *ret, size_t bits, size_t qbits,
58 const EVP_MD *evpmd, const unsigned char *seed_in, size_t seed_len,
59 unsigned char *seed_out,
60 int *counter_ret, unsigned long *h_ret, BN_GENCB *cb);

new/usr/src/lib/openssl/include/e_os.h 1

**
 23524 Fri May 30 18:31:15 2014
new/usr/src/lib/openssl/include/e_os.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* e_os.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_E_OS_H
60 #define HEADER_E_OS_H

new/usr/src/lib/openssl/include/e_os.h 2

62 #include <openssl/opensslconf.h>

64 #include <openssl/e_os2.h>
65 /* <openssl/e_os2.h> contains what we can justify to make visible
66 * to the outside; this file e_os.h is not part of the exported
67 * interface. */

69 #ifdef __cplusplus
70 extern "C" {
71 #endif

73 /* Used to checking reference counts, most while doing perl5 stuff :-) */
74 #ifdef REF_PRINT
75 #undef REF_PRINT
76 #define REF_PRINT(a,b) fprintf(stderr,"%08X:%4d:%s\n",(int)b,b->references,a)
77 #endif

79 #ifndef DEVRANDOM
80 /* set this to a comma-separated list of ’random’ device files to try out.
81 * My default, we will try to read at least one of these files */
82 #define DEVRANDOM "/dev/urandom","/dev/random","/dev/srandom"
83 #endif
84 #ifndef DEVRANDOM_EGD
85 /* set this to a comma-seperated list of ’egd’ sockets to try out. These
86 * sockets will be tried in the order listed in case accessing the device files
87 * listed in DEVRANDOM did not return enough entropy. */
88 #define DEVRANDOM_EGD "/var/run/egd-pool","/dev/egd-pool","/etc/egd-pool","/etc/
89 #endif

91 #if defined(OPENSSL_SYS_VXWORKS)
92 # define NO_SYS_PARAM_H
93 # define NO_CHMOD
94 # define NO_SYSLOG
95 #endif
96
97 #if defined(OPENSSL_SYS_MACINTOSH_CLASSIC)
98 # if macintosh==1
99 # ifndef MAC_OS_GUSI_SOURCE
100 # define MAC_OS_pre_X
101 # define NO_SYS_TYPES_H
102 # endif
103 # define NO_SYS_PARAM_H
104 # define NO_CHMOD
105 # define NO_SYSLOG
106 # undef DEVRANDOM
107 # define GETPID_IS_MEANINGLESS
108 # endif
109 #endif

111 /**
112 The Microsoft section
113 **/
114 /* The following is used because of the small stack in some
115 * Microsoft operating systems */
116 #if defined(OPENSSL_SYS_MSDOS) && !defined(OPENSSL_SYSNAME_WIN32)
117 # define MS_STATIC static
118 #else
119 # define MS_STATIC
120 #endif

122 #if defined(OPENSSL_SYS_WIN32) && !defined(WIN32)
123 # define WIN32
124 #endif
125 #if defined(OPENSSL_SYS_WINDOWS) && !defined(WINDOWS)
126 # define WINDOWS
127 #endif

new/usr/src/lib/openssl/include/e_os.h 3

128 #if defined(OPENSSL_SYS_MSDOS) && !defined(MSDOS)
129 # define MSDOS
130 #endif

132 #if defined(MSDOS) && !defined(GETPID_IS_MEANINGLESS)
133 # define GETPID_IS_MEANINGLESS
134 #endif

136 #ifdef WIN32
137 #define get_last_sys_error() GetLastError()
138 #define clear_sys_error() SetLastError(0)
139 #if !defined(WINNT)
140 #define WIN_CONSOLE_BUG
141 #endif
142 #else
143 #define get_last_sys_error() errno
144 #define clear_sys_error() errno=0
145 #endif

147 #if defined(WINDOWS)
148 #define get_last_socket_error() WSAGetLastError()
149 #define clear_socket_error() WSASetLastError(0)
150 #define readsocket(s,b,n) recv((s),(b),(n),0)
151 #define writesocket(s,b,n) send((s),(b),(n),0)
152 #elif defined(__DJGPP__)
153 #define WATT32
154 #define get_last_socket_error() errno
155 #define clear_socket_error() errno=0
156 #define closesocket(s) close_s(s)
157 #define readsocket(s,b,n) read_s(s,b,n)
158 #define writesocket(s,b,n) send(s,b,n,0)
159 #elif defined(MAC_OS_pre_X)
160 #define get_last_socket_error() errno
161 #define clear_socket_error() errno=0
162 #define closesocket(s) MacSocket_close(s)
163 #define readsocket(s,b,n) MacSocket_recv((s),(b),(n),true)
164 #define writesocket(s,b,n) MacSocket_send((s),(b),(n))
165 #elif defined(OPENSSL_SYS_VMS)
166 #define get_last_socket_error() errno
167 #define clear_socket_error() errno=0
168 #define ioctlsocket(a,b,c) ioctl(a,b,c)
169 #define closesocket(s) close(s)
170 #define readsocket(s,b,n) recv((s),(b),(n),0)
171 #define writesocket(s,b,n) send((s),(b),(n),0)
172 #elif defined(OPENSSL_SYS_VXWORKS)
173 #define get_last_socket_error() errno
174 #define clear_socket_error() errno=0
175 #define ioctlsocket(a,b,c) ioctl((a),(b),(int)(c))
176 #define closesocket(s) close(s)
177 #define readsocket(s,b,n) read((s),(b),(n))
178 #define writesocket(s,b,n) write((s),(char *)(b),(n))
179 #elif defined(OPENSSL_SYS_BEOS_R5)
180 #define get_last_socket_error() errno
181 #define clear_socket_error() errno=0
182 #define FIONBIO SO_NONBLOCK
183 #define ioctlsocket(a,b,c) setsockopt((a),SOL_SOCKET,(b),(c),size
184 #define readsocket(s,b,n) recv((s),(b),(n),0)
185 #define writesocket(s,b,n) send((s),(b),(n),0)
186 #elif defined(OPENSSL_SYS_NETWARE)
187 #if defined(NETWARE_BSDSOCK)
188 #define get_last_socket_error() errno
189 #define clear_socket_error() errno=0
190 #define closesocket(s) close(s)
191 #define ioctlsocket(a,b,c) ioctl(a,b,c)
192 #if defined(NETWARE_LIBC)
193 #define readsocket(s,b,n) recv((s),(b),(n),0)

new/usr/src/lib/openssl/include/e_os.h 4

194 #define writesocket(s,b,n) send((s),(b),(n),0)
195 #else
196 #define readsocket(s,b,n) recv((s),(char*)(b),(n),0)
197 #define writesocket(s,b,n) send((s),(char*)(b),(n),0)
198 #endif
199 #else
200 #define get_last_socket_error() WSAGetLastError()
201 #define clear_socket_error() WSASetLastError(0)
202 #define readsocket(s,b,n) recv((s),(b),(n),0)
203 #define writesocket(s,b,n) send((s),(b),(n),0)
204 #endif
205 #else
206 #define get_last_socket_error() errno
207 #define clear_socket_error() errno=0
208 #define ioctlsocket(a,b,c) ioctl(a,b,c)
209 #define closesocket(s) close(s)
210 #define readsocket(s,b,n) read((s),(b),(n))
211 #define writesocket(s,b,n) write((s),(b),(n))
212 #endif

214 #ifdef WIN16 /* never the case */
215 # define MS_CALLBACK _far _loadds
216 # define MS_FAR _far
217 #else
218 # define MS_CALLBACK
219 # define MS_FAR
220 #endif

222 #ifdef OPENSSL_NO_STDIO
223 # undef OPENSSL_NO_FP_API
224 # define OPENSSL_NO_FP_API
225 #endif

227 #if (defined(WINDOWS) || defined(MSDOS))

229 # ifdef __DJGPP__
230 # include <unistd.h>
231 # include <sys/stat.h>
232 # include <sys/socket.h>
233 # include <tcp.h>
234 # include <netdb.h>
235 # define _setmode setmode
236 # define _O_TEXT O_TEXT
237 # define _O_BINARY O_BINARY
238 # undef DEVRANDOM
239 # define DEVRANDOM "/dev/urandom\x24"
240 # endif /* __DJGPP__ */

242 # ifndef S_IFDIR
243 # define S_IFDIR _S_IFDIR
244 # endif

246 # ifndef S_IFMT
247 # define S_IFMT _S_IFMT
248 # endif

250 # if !defined(WINNT) && !defined(__DJGPP__)
251 # define NO_SYSLOG
252 # endif
253 # define NO_DIRENT

255 # ifdef WINDOWS
256 # if !defined(_WIN32_WCE) && !defined(_WIN32_WINNT)
257 /*
258 * Defining _WIN32_WINNT here in e_os.h implies certain "discipline."
259 * Most notably we ought to check for availability of each specific

new/usr/src/lib/openssl/include/e_os.h 5

260 * routine with GetProcAddress() and/or guard NT-specific calls with
261 * GetVersion() < 0x80000000. One can argue that in latter "or" case
262 * we ought to /DELAYLOAD some .DLLs in order to protect ourselves
263 * against run-time link errors. This doesn’t seem to be necessary,
264 * because it turned out that already Windows 95, first non-NT Win32
265 * implementation, is equipped with at least NT 3.51 stubs, dummy
266 * routines with same name, but which do nothing. Meaning that it’s
267 * apparently sufficient to guard "vanilla" NT calls with GetVersion
268 * alone, while NT 4.0 and above interfaces ought to be linked with
269 * GetProcAddress at run-time.
270 */
271 # define _WIN32_WINNT 0x0400
272 # endif
273 # if !defined(OPENSSL_NO_SOCK) && defined(_WIN32_WINNT)
274 /*
275 * Just like defining _WIN32_WINNT including winsock2.h implies
276 * certain "discipline" for maintaining [broad] binary compatibility.
277 * As long as structures are invariant among Winsock versions,
278 * it’s sufficient to check for specific Winsock2 API availability
279 * at run-time [DSO_global_lookup is recommended]...
280 */
281 # include <winsock2.h>
282 # include <ws2tcpip.h>
283 /* yes, they have to be #included prior to <windows.h> */
284 # endif
285 # include <windows.h>
286 # include <stdio.h>
287 # include <stddef.h>
288 # include <errno.h>
289 # include <string.h>
290 # ifdef _WIN64
291 # define strlen(s) _strlen31(s)
292 /* cut strings to 2GB */
293 static unsigned int _strlen31(const char *str)
294 {
295 unsigned int len=0;
296 while (*str && len<0x80000000U) str++, len++;
297 return len&0x7FFFFFFF;
298 }
299 # endif
300 # include <malloc.h>
301 # if defined(_MSC_VER) && _MSC_VER<=1200 && defined(_MT) && defined(isspace)
302 /* compensate for bug in VC6 ctype.h */
303 # undef isspace
304 # undef isdigit
305 # undef isalnum
306 # undef isupper
307 # undef isxdigit
308 # endif
309 # if defined(_MSC_VER) && !defined(_DLL) && defined(stdin)
310 # if _MSC_VER>=1300
311 # undef stdin
312 # undef stdout
313 # undef stderr
314 FILE *__iob_func();
315 # define stdin (&__iob_func()[0])
316 # define stdout (&__iob_func()[1])
317 # define stderr (&__iob_func()[2])
318 # elif defined(I_CAN_LIVE_WITH_LNK4049)
319 # undef stdin
320 # undef stdout
321 # undef stderr
322 /* pre-1300 has __p__iob(), but it’s available only in msvcrt.lib,
323 * or in other words with /MD. Declaring implicit import, i.e.
324 * with _imp_ prefix, works correctly with all compiler options,
325 * but without /MD results in LINK warning LNK4049:

new/usr/src/lib/openssl/include/e_os.h 6

326 * ’locally defined symbol "__iob" imported’.
327 */
328 extern FILE *_imp___iob;
329 # define stdin (&_imp___iob[0])
330 # define stdout (&_imp___iob[1])
331 # define stderr (&_imp___iob[2])
332 # endif
333 # endif
334 # endif
335 # include <io.h>
336 # include <fcntl.h>

338 # ifdef OPENSSL_SYS_WINCE
339 # define OPENSSL_NO_POSIX_IO
340 # endif

342 # if defined (__BORLANDC__)
343 # define _setmode setmode
344 # define _O_TEXT O_TEXT
345 # define _O_BINARY O_BINARY
346 # define _int64 __int64
347 # define _kbhit kbhit
348 # endif

350 # define EXIT(n) exit(n)
351 # define LIST_SEPARATOR_CHAR ’;’
352 # ifndef X_OK
353 # define X_OK 0
354 # endif
355 # ifndef W_OK
356 # define W_OK 2
357 # endif
358 # ifndef R_OK
359 # define R_OK 4
360 # endif
361 # define OPENSSL_CONF "openssl.cnf"
362 # define SSLEAY_CONF OPENSSL_CONF
363 # define NUL_DEV "nul"
364 # define RFILE ".rnd"
365 # ifdef OPENSSL_SYS_WINCE
366 # define DEFAULT_HOME ""
367 # else
368 # define DEFAULT_HOME "C:"
369 # endif

371 /* Avoid Windows 8 SDK GetVersion deprecated problems */
372 #if defined(_MSC_VER) && _MSC_VER>=1800
373 # define check_winnt() (1)
374 #else
375 # define check_winnt() (GetVersion() < 0x80000000)
376 #endif

378 #else /* The non-microsoft world */

380 # ifdef OPENSSL_SYS_VMS
381 # define VMS 1
382 /* some programs don’t include stdlib, so exit() and others give implicit
383 function warnings */
384 # include <stdlib.h>
385 # if defined(__DECC)
386 # include <unistd.h>
387 # else
388 # include <unixlib.h>
389 # endif
390 # define OPENSSL_CONF "openssl.cnf"
391 # define SSLEAY_CONF OPENSSL_CONF

new/usr/src/lib/openssl/include/e_os.h 7

392 # define RFILE ".rnd"
393 # define LIST_SEPARATOR_CHAR ’,’
394 # define NUL_DEV "NLA0:"
395 /* We don’t have any well-defined random devices on VMS, yet... */
396 # undef DEVRANDOM
397 /* We need to do this since VMS has the following coding on status codes:

399 Bits 0-2: status type: 0 = warning, 1 = success, 2 = error, 3 = info ...
400 The important thing to know is that odd numbers are considered
401 good, while even ones are considered errors.
402 Bits 3-15: actual status number
403 Bits 16-27: facility number. 0 is considered "unknown"
404 Bits 28-31: control bits. If bit 28 is set, the shell won’t try to
405 output the message (which, for random codes, just looks ugly)

407 So, what we do here is to change 0 to 1 to get the default success status,
408 and everything else is shifted up to fit into the status number field, and
409 the status is tagged as an error, which I believe is what is wanted here.
410 -- Richard Levitte
411 */
412 # define EXIT(n) do { int __VMS_EXIT = n; \
413 if (__VMS_EXIT == 0) \
414 __VMS_EXIT = 1; \
415 else \
416 __VMS_EXIT = (n << 3) | 2; \
417 __VMS_EXIT |= 0x10000000; \
418 exit(__VMS_EXIT); } while(0)
419 # define NO_SYS_PARAM_H

421 # elif defined(OPENSSL_SYS_NETWARE)
422 # include <fcntl.h>
423 # include <unistd.h>
424 # define NO_SYS_TYPES_H
425 # undef DEVRANDOM
426 # ifdef NETWARE_CLIB
427 # define getpid GetThreadID
428 extern int GetThreadID(void);
429 /* # include <conio.h> */
430 extern int kbhit(void);
431 # else
432 # include <screen.h>
433 # endif
434 # define NO_SYSLOG
435 # define _setmode setmode
436 # define _kbhit kbhit
437 # define _O_TEXT O_TEXT
438 # define _O_BINARY O_BINARY
439 # define OPENSSL_CONF "openssl.cnf"
440 # define SSLEAY_CONF OPENSSL_CONF
441 # define RFILE ".rnd"
442 # define LIST_SEPARATOR_CHAR ’;’
443 # define EXIT(n) { if (n) printf("ERROR: %d\n", (int)n); exit(n); }

445 # else
446 /* !defined VMS */
447 # ifdef OPENSSL_SYS_MPE
448 # define NO_SYS_PARAM_H
449 # endif
450 # ifdef OPENSSL_UNISTD
451 # include OPENSSL_UNISTD
452 # else
453 # include <unistd.h>
454 # endif
455 # ifndef NO_SYS_TYPES_H
456 # include <sys/types.h>
457 # endif

new/usr/src/lib/openssl/include/e_os.h 8

458 # if defined(NeXT) || defined(OPENSSL_SYS_NEWS4)
459 # define pid_t int /* pid_t is missing on NEXTSTEP/OPENSTEP
460 * (unless when compiling with -D_POSIX_SOURCE,
461 * which doesn’t work for us) */
462 # endif
463 # ifdef OPENSSL_SYS_NEWS4 /* setvbuf is missing on mips-sony-bsd */
464 # define setvbuf(a, b, c, d) setbuffer((a), (b), (d))
465 typedef unsigned long clock_t;
466 # endif
467 # ifdef OPENSSL_SYS_WIN32_CYGWIN
468 # include <io.h>
469 # include <fcntl.h>
470 # endif

472 # define OPENSSL_CONF "openssl.cnf"
473 # define SSLEAY_CONF OPENSSL_CONF
474 # define RFILE ".rnd"
475 # define LIST_SEPARATOR_CHAR ’:’
476 # define NUL_DEV "/dev/null"
477 # define EXIT(n) exit(n)
478 # endif

480 # define SSLeay_getpid() getpid()

482 #endif

485 /*************/

487 #ifdef USE_SOCKETS
488 # if defined(WINDOWS) || defined(MSDOS)
489 /* windows world */

491 # ifdef OPENSSL_NO_SOCK
492 # define SSLeay_Write(a,b,c) (-1)
493 # define SSLeay_Read(a,b,c) (-1)
494 # define SHUTDOWN(fd) close(fd)
495 # define SHUTDOWN2(fd) close(fd)
496 # elif !defined(__DJGPP__)
497 # if defined(_WIN32_WCE) && _WIN32_WCE<410
498 # define getservbyname _masked_declaration_getservbyname
499 # endif
500 # if !defined(IPPROTO_IP)
501 /* winsock[2].h was included already? */
502 # include <winsock.h>
503 # endif
504 # ifdef getservbyname
505 # undef getservbyname
506 /* this is used to be wcecompat/include/winsock_extras.h */
507 struct servent* PASCAL getservbyname(const char*,const char*);
508 # endif

510 # ifdef _WIN64
511 /*
512 * Even though sizeof(SOCKET) is 8, it’s safe to cast it to int, because
513 * the value constitutes an index in per-process table of limited size
514 * and not a real pointer.
515 */
516 # define socket(d,t,p) ((int)socket(d,t,p))
517 # define accept(s,f,l) ((int)accept(s,f,l))
518 # endif
519 # define SSLeay_Write(a,b,c) send((a),(b),(c),0)
520 # define SSLeay_Read(a,b,c) recv((a),(b),(c),0)
521 # define SHUTDOWN(fd) { shutdown((fd),0); closesocket(fd); }
522 # define SHUTDOWN2(fd) { shutdown((fd),2); closesocket(fd); }
523 # else

new/usr/src/lib/openssl/include/e_os.h 9

524 # define SSLeay_Write(a,b,c) write_s(a,b,c,0)
525 # define SSLeay_Read(a,b,c) read_s(a,b,c)
526 # define SHUTDOWN(fd) close_s(fd)
527 # define SHUTDOWN2(fd) close_s(fd)
528 # endif

530 # elif defined(MAC_OS_pre_X)

532 # include "MacSocket.h"
533 # define SSLeay_Write(a,b,c) MacSocket_send((a),(b),(c))
534 # define SSLeay_Read(a,b,c) MacSocket_recv((a),(b),(c),true)
535 # define SHUTDOWN(fd) MacSocket_close(fd)
536 # define SHUTDOWN2(fd) MacSocket_close(fd)

538 # elif defined(OPENSSL_SYS_NETWARE)
539 /* NetWare uses the WinSock2 interfaces by default, but can be configur
540 */
541 # if defined(NETWARE_BSDSOCK)
542 # include <sys/socket.h>
543 # include <netinet/in.h>
544 # include <sys/time.h>
545 # if defined(NETWARE_CLIB)
546 # include <sys/bsdskt.h>
547 # else
548 # include <sys/select.h>
549 # endif
550 # define INVALID_SOCKET (int)(~0)
551 # else
552 # include <novsock2.h>
553 # endif
554 # define SSLeay_Write(a,b,c) send((a),(b),(c),0)
555 # define SSLeay_Read(a,b,c) recv((a),(b),(c),0)
556 # define SHUTDOWN(fd) { shutdown((fd),0); closesocket(fd); }
557 # define SHUTDOWN2(fd) { shutdown((fd),2); closesocket(fd); }

559 # else

561 # ifndef NO_SYS_PARAM_H
562 # include <sys/param.h>
563 # endif
564 # ifdef OPENSSL_SYS_VXWORKS
565 # include <time.h>
566 # elif !defined(OPENSSL_SYS_MPE)
567 # include <sys/time.h> /* Needed under linux for FD_XXX */
568 # endif

570 # include <netdb.h>
571 # if defined(OPENSSL_SYS_VMS_NODECC)
572 # include <socket.h>
573 # include <in.h>
574 # include <inet.h>
575 # else
576 # include <sys/socket.h>
577 # ifdef FILIO_H
578 # include <sys/filio.h> /* Added for FIONBIO under unixware */
579 # endif
580 # include <netinet/in.h>
581 # if !defined(OPENSSL_SYS_BEOS_R5)
582 # include <arpa/inet.h>
583 # endif
584 # endif

586 # if defined(NeXT) || defined(_NEXT_SOURCE)
587 # include <sys/fcntl.h>
588 # include <sys/types.h>
589 # endif

new/usr/src/lib/openssl/include/e_os.h 10

591 # ifdef OPENSSL_SYS_AIX
592 # include <sys/select.h>
593 # endif

595 # ifdef __QNX__
596 # include <sys/select.h>
597 # endif

599 # if defined(sun)
600 # include <sys/filio.h>
601 # else
602 # ifndef VMS
603 # include <sys/ioctl.h>
604 # else
605 /* ioctl is only in VMS > 7.0 and when socketshr is not used */
606 # if !defined(TCPIP_TYPE_SOCKETSHR) && defined(__VMS_VER) && (__VMS_VER >
607 # include <sys/ioctl.h>
608 # endif
609 # endif
610 # endif

612 # ifdef VMS
613 # include <unixio.h>
614 # if defined(TCPIP_TYPE_SOCKETSHR)
615 # include <socketshr.h>
616 # endif
617 # endif

619 # define SSLeay_Read(a,b,c) read((a),(b),(c))
620 # define SSLeay_Write(a,b,c) write((a),(b),(c))
621 # define SHUTDOWN(fd) { shutdown((fd),0); closesocket((fd)); }
622 # define SHUTDOWN2(fd) { shutdown((fd),2); closesocket((fd)); }
623 # ifndef INVALID_SOCKET
624 # define INVALID_SOCKET (-1)
625 # endif /* INVALID_SOCKET */
626 # endif

628 /* Some IPv6 implementations are broken, disable them in known bad
629 * versions.
630 */
631 # if !defined(OPENSSL_USE_IPV6)
632 # if defined(AF_INET6) && !defined(OPENSSL_SYS_BEOS_BONE) && !defined(NETWARE
633 # define OPENSSL_USE_IPV6 1
634 # else
635 # define OPENSSL_USE_IPV6 0
636 # endif
637 # endif

639 #endif

641 #if defined(sun) && !defined(__svr4__) && !defined(__SVR4)
642 /* include headers first, so our defines don’t break it */
643 #include <stdlib.h>
644 #include <string.h>
645 /* bcopy can handle overlapping moves according to SunOS 4.1.4 manpage */
646 # define memmove(s1,s2,n) bcopy((s2),(s1),(n))
647 # define strtoul(s,e,b) ((unsigned long int)strtol((s),(e),(b)))
648 extern char *sys_errlist[]; extern int sys_nerr;
649 # define strerror(errnum) \
650 (((errnum)<0 || (errnum)>=sys_nerr) ? NULL : sys_errlist[errnum])
651 /* Being signed SunOS 4.x memcpy breaks ASN1_OBJECT table lookup */
652 #include "crypto/o_str.h"
653 # define memcmp OPENSSL_memcmp
654 #endif

new/usr/src/lib/openssl/include/e_os.h 11

656 #ifndef OPENSSL_EXIT
657 # if defined(MONOLITH) && !defined(OPENSSL_C)
658 # define OPENSSL_EXIT(n) return(n)
659 # else
660 # define OPENSSL_EXIT(n) do { EXIT(n); return(n); } while(0)
661 # endif
662 #endif

664 /***/

666 #define DG_GCC_BUG /* gcc < 2.6.3 on DGUX */

668 #ifdef sgi
669 #define IRIX_CC_BUG /* all version of IRIX I’ve tested (4.* 5.*) */
670 #endif
671 #ifdef OPENSSL_SYS_SNI
672 #define IRIX_CC_BUG /* CDS++ up to V2.0Bsomething suffered from the same bug
673 #endif

675 #if defined(OPENSSL_SYS_WINDOWS)
676 # define strcasecmp _stricmp
677 # define strncasecmp _strnicmp
678 #elif defined(OPENSSL_SYS_VMS)
679 /* VMS below version 7.0 doesn’t have strcasecmp() */
680 # include "o_str.h"
681 # define strcasecmp OPENSSL_strcasecmp
682 # define strncasecmp OPENSSL_strncasecmp
683 # define OPENSSL_IMPLEMENTS_strncasecmp
684 #elif defined(OPENSSL_SYS_OS2) && defined(__EMX__)
685 # define strcasecmp stricmp
686 # define strncasecmp strnicmp
687 #elif defined(OPENSSL_SYS_NETWARE)
688 # include <string.h>
689 # if defined(NETWARE_CLIB)
690 # define strcasecmp stricmp
691 # define strncasecmp strnicmp
692 # endif /* NETWARE_CLIB */
693 #endif

695 #if defined(OPENSSL_SYS_OS2) && defined(__EMX__)
696 # include <io.h>
697 # include <fcntl.h>
698 # define NO_SYSLOG
699 #endif

701 /* vxworks */
702 #if defined(OPENSSL_SYS_VXWORKS)
703 #include <ioLib.h>
704 #include <tickLib.h>
705 #include <sysLib.h>

707 #define TTY_STRUCT int

709 #define sleep(a) taskDelay((a) * sysClkRateGet())

711 #include <vxWorks.h>
712 #include <sockLib.h>
713 #include <taskLib.h>

715 #define getpid taskIdSelf

717 /* NOTE: these are implemented by helpers in database app!
718 * if the database is not linked, we need to implement them
719 * elswhere */
720 struct hostent *gethostbyname(const char *name);
721 struct hostent *gethostbyaddr(const char *addr, int length, int type);

new/usr/src/lib/openssl/include/e_os.h 12

722 struct servent *getservbyname(const char *name, const char *proto);

724 #endif
725 /* end vxworks */

727 /* beos */
728 #if defined(OPENSSL_SYS_BEOS_R5)
729 #define SO_ERROR 0
730 #define NO_SYS_UN
731 #define IPPROTO_IP 0
732 #include <OS.h>
733 #endif

736 #ifdef __cplusplus
737 }
738 #endif

740 #endif

new/usr/src/lib/openssl/include/ec_lcl.h 1

**
 21911 Fri May 30 18:31:15 2014
new/usr/src/lib/openssl/include/ec_lcl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ec/ec_lcl.h */
2 /*
3 * Originally written by Bodo Moeller for the OpenSSL project.
4 */
5 /* ==
6 * Copyright (c) 1998-2010 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 /* ==
59 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60 *
61 * Portions of the attached software ("Contribution") are developed by

new/usr/src/lib/openssl/include/ec_lcl.h 2

62 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
63 *
64 * The Contribution is licensed pursuant to the OpenSSL open source
65 * license provided above.
66 *
67 * The elliptic curve binary polynomial software is originally written by
68 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories.
69 *
70 */

73 #include <stdlib.h>

75 #include <openssl/obj_mac.h>
76 #include <openssl/ec.h>
77 #include <openssl/bn.h>

79 #if defined(__SUNPRO_C)
80 # if __SUNPRO_C >= 0x520
81 # pragma error_messages (off,E_ARRAY_OF_INCOMPLETE_NONAME,E_ARRAY_OF_INCOMPLETE)
82 # endif
83 #endif

85 /* Use default functions for poin2oct, oct2point and compressed coordinates */
86 #define EC_FLAGS_DEFAULT_OCT 0x1

88 /* Structure details are not part of the exported interface,
89 * so all this may change in future versions. */

91 struct ec_method_st {
92 /* Various method flags */
93 int flags;
94 /* used by EC_METHOD_get_field_type: */
95 int field_type; /* a NID */

97 /* used by EC_GROUP_new, EC_GROUP_free, EC_GROUP_clear_free, EC_GROUP_co
98 int (*group_init)(EC_GROUP *);
99 void (*group_finish)(EC_GROUP *);
100 void (*group_clear_finish)(EC_GROUP *);
101 int (*group_copy)(EC_GROUP *, const EC_GROUP *);

103 /* used by EC_GROUP_set_curve_GFp, EC_GROUP_get_curve_GFp, */
104 /* EC_GROUP_set_curve_GF2m, and EC_GROUP_get_curve_GF2m: */
105 int (*group_set_curve)(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, con
106 int (*group_get_curve)(const EC_GROUP *, BIGNUM *p, BIGNUM *a, BIGNUM *b

108 /* used by EC_GROUP_get_degree: */
109 int (*group_get_degree)(const EC_GROUP *);

111 /* used by EC_GROUP_check: */
112 int (*group_check_discriminant)(const EC_GROUP *, BN_CTX *);

114 /* used by EC_POINT_new, EC_POINT_free, EC_POINT_clear_free, EC_POINT_co
115 int (*point_init)(EC_POINT *);
116 void (*point_finish)(EC_POINT *);
117 void (*point_clear_finish)(EC_POINT *);
118 int (*point_copy)(EC_POINT *, const EC_POINT *);

120 /* used by EC_POINT_set_to_infinity,
121 * EC_POINT_set_Jprojective_coordinates_GFp,
122 * EC_POINT_get_Jprojective_coordinates_GFp,
123 * EC_POINT_set_affine_coordinates_GFp, ..._GF2m,
124 * EC_POINT_get_affine_coordinates_GFp, ..._GF2m,
125 * EC_POINT_set_compressed_coordinates_GFp, ..._GF2m:
126 */
127 int (*point_set_to_infinity)(const EC_GROUP *, EC_POINT *);

new/usr/src/lib/openssl/include/ec_lcl.h 3

128 int (*point_set_Jprojective_coordinates_GFp)(const EC_GROUP *, EC_POINT
129 const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *);
130 int (*point_get_Jprojective_coordinates_GFp)(const EC_GROUP *, const EC_
131 BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *);
132 int (*point_set_affine_coordinates)(const EC_GROUP *, EC_POINT *,
133 const BIGNUM *x, const BIGNUM *y, BN_CTX *);
134 int (*point_get_affine_coordinates)(const EC_GROUP *, const EC_POINT *,
135 BIGNUM *x, BIGNUM *y, BN_CTX *);
136 int (*point_set_compressed_coordinates)(const EC_GROUP *, EC_POINT *,
137 const BIGNUM *x, int y_bit, BN_CTX *);

139 /* used by EC_POINT_point2oct, EC_POINT_oct2point: */
140 size_t (*point2oct)(const EC_GROUP *, const EC_POINT *, point_conversion
141 unsigned char *buf, size_t len, BN_CTX *);
142 int (*oct2point)(const EC_GROUP *, EC_POINT *,
143 const unsigned char *buf, size_t len, BN_CTX *);

145 /* used by EC_POINT_add, EC_POINT_dbl, ECP_POINT_invert: */
146 int (*add)(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, const EC_PO
147 int (*dbl)(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *);
148 int (*invert)(const EC_GROUP *, EC_POINT *, BN_CTX *);

150 /* used by EC_POINT_is_at_infinity, EC_POINT_is_on_curve, EC_POINT_cmp:
151 int (*is_at_infinity)(const EC_GROUP *, const EC_POINT *);
152 int (*is_on_curve)(const EC_GROUP *, const EC_POINT *, BN_CTX *);
153 int (*point_cmp)(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b,

155 /* used by EC_POINT_make_affine, EC_POINTs_make_affine: */
156 int (*make_affine)(const EC_GROUP *, EC_POINT *, BN_CTX *);
157 int (*points_make_affine)(const EC_GROUP *, size_t num, EC_POINT *[], BN

159 /* used by EC_POINTs_mul, EC_POINT_mul, EC_POINT_precompute_mult, EC_POI
160 * (default implementations are used if the ’mul’ pointer is 0): */
161 int (*mul)(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
162 size_t num, const EC_POINT *points[], const BIGNUM *scalars[], B
163 int (*precompute_mult)(EC_GROUP *group, BN_CTX *);
164 int (*have_precompute_mult)(const EC_GROUP *group);

167 /* internal functions */

169 /* ’field_mul’, ’field_sqr’, and ’field_div’ can be used by ’add’ and ’d
170 * the same implementations of point operations can be used with differe
171 * optimized implementations of expensive field operations: */
172 int (*field_mul)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIG
173 int (*field_sqr)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *)
174 int (*field_div)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIG

176 int (*field_encode)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX
177 int (*field_decode)(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX
178 int (*field_set_to_one)(const EC_GROUP *, BIGNUM *r, BN_CTX *);
179 } /* EC_METHOD */;

181 typedef struct ec_extra_data_st {
182 struct ec_extra_data_st *next;
183 void *data;
184 void *(*dup_func)(void *);
185 void (*free_func)(void *);
186 void (*clear_free_func)(void *);
187 } EC_EXTRA_DATA; /* used in EC_GROUP */

189 struct ec_group_st {
190 const EC_METHOD *meth;

192 EC_POINT *generator; /* optional */
193 BIGNUM order, cofactor;

new/usr/src/lib/openssl/include/ec_lcl.h 4

195 int curve_name;/* optional NID for named curve */
196 int asn1_flag; /* flag to control the asn1 encoding */
197 point_conversion_form_t asn1_form;

199 unsigned char *seed; /* optional seed for parameters (appears in ASN1) *
200 size_t seed_len;

202 EC_EXTRA_DATA *extra_data; /* linked list */

204 /* The following members are handled by the method functions,
205 * even if they appear generic */
206
207 BIGNUM field; /* Field specification.
208 * For curves over GF(p), this is the modulus;
209 * for curves over GF(2^m), this is the
210 * irreducible polynomial defining the field.
211 */

213 int poly[6]; /* Field specification for curves over GF(2^m).
214 * The irreducible f(t) is then of the form:
215 * t^poly[0] + t^poly[1] + ... + t^poly[k]
216 * where m = poly[0] > poly[1] > ... > poly[k] = 0.
217 * The array is terminated with poly[k+1]=-1.
218 * All elliptic curve irreducibles have at most 5
219 * non-zero terms.
220 */

222 BIGNUM a, b; /* Curve coefficients.
223 * (Here the assumption is that BIGNUMs can be used
224 * or abused for all kinds of fields, not just GF(p).)
225 * For characteristic > 3, the curve is defined
226 * by a Weierstrass equation of the form
227 * y^2 = x^3 + a*x + b.
228 * For characteristic 2, the curve is defined by
229 * an equation of the form
230 * y^2 + x*y = x^3 + a*x^2 + b.
231 */

233 int a_is_minus3; /* enable optimized point arithmetics for special case

235 void *field_data1; /* method-specific (e.g., Montgomery structure) */
236 void *field_data2; /* method-specific */
237 int (*field_mod_func)(BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *
238 } /* EC_GROUP */;

240 struct ec_key_st {
241 int version;

243 EC_GROUP *group;

245 EC_POINT *pub_key;
246 BIGNUM *priv_key;

248 unsigned int enc_flag;
249 point_conversion_form_t conv_form;

251 int references;
252 int flags;

254 EC_EXTRA_DATA *method_data;
255 } /* EC_KEY */;

257 /* Basically a ’mixin’ for extra data, but available for EC_GROUPs/EC_KEYs only
258 * (with visibility limited to ’package’ level for now).
259 * We use the function pointers as index for retrieval; this obviates

new/usr/src/lib/openssl/include/ec_lcl.h 5

260 * global ex_data-style index tables.
261 */
262 int EC_EX_DATA_set_data(EC_EXTRA_DATA **, void *data,
263 void *(*dup_func)(void *), void (*free_func)(void *), void (*clear_free_
264 void *EC_EX_DATA_get_data(const EC_EXTRA_DATA *,
265 void *(*dup_func)(void *), void (*free_func)(void *), void (*clear_free_
266 void EC_EX_DATA_free_data(EC_EXTRA_DATA **,
267 void *(*dup_func)(void *), void (*free_func)(void *), void (*clear_free_
268 void EC_EX_DATA_clear_free_data(EC_EXTRA_DATA **,
269 void *(*dup_func)(void *), void (*free_func)(void *), void (*clear_free_
270 void EC_EX_DATA_free_all_data(EC_EXTRA_DATA **);
271 void EC_EX_DATA_clear_free_all_data(EC_EXTRA_DATA **);

275 struct ec_point_st {
276 const EC_METHOD *meth;

278 /* All members except ’meth’ are handled by the method functions,
279 * even if they appear generic */

281 BIGNUM X;
282 BIGNUM Y;
283 BIGNUM Z; /* Jacobian projective coordinates:
284 * (X, Y, Z) represents (X/Z^2, Y/Z^3) if Z != 0 */
285 int Z_is_one; /* enable optimized point arithmetics for special case */
286 } /* EC_POINT */;

290 /* method functions in ec_mult.c
291 * (ec_lib.c uses these as defaults if group->method->mul is 0) */
292 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
293 size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *)
294 int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *);
295 int ec_wNAF_have_precompute_mult(const EC_GROUP *group);

298 /* method functions in ecp_smpl.c */
299 int ec_GFp_simple_group_init(EC_GROUP *);
300 void ec_GFp_simple_group_finish(EC_GROUP *);
301 void ec_GFp_simple_group_clear_finish(EC_GROUP *);
302 int ec_GFp_simple_group_copy(EC_GROUP *, const EC_GROUP *);
303 int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
304 int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a, BIGNUM
305 int ec_GFp_simple_group_get_degree(const EC_GROUP *);
306 int ec_GFp_simple_group_check_discriminant(const EC_GROUP *, BN_CTX *);
307 int ec_GFp_simple_point_init(EC_POINT *);
308 void ec_GFp_simple_point_finish(EC_POINT *);
309 void ec_GFp_simple_point_clear_finish(EC_POINT *);
310 int ec_GFp_simple_point_copy(EC_POINT *, const EC_POINT *);
311 int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_POINT *);
312 int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *, EC_POINT *,
313 const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *);
314 int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *, const EC_POI
315 BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *);
316 int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_POINT *,
317 const BIGNUM *x, const BIGNUM *y, BN_CTX *);
318 int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *, const EC_POINT
319 BIGNUM *x, BIGNUM *y, BN_CTX *);
320 int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *, EC_POINT *,
321 const BIGNUM *x, int y_bit, BN_CTX *);
322 size_t ec_GFp_simple_point2oct(const EC_GROUP *, const EC_POINT *, point_convers
323 unsigned char *buf, size_t len, BN_CTX *);
324 int ec_GFp_simple_oct2point(const EC_GROUP *, EC_POINT *,
325 const unsigned char *buf, size_t len, BN_CTX *);

new/usr/src/lib/openssl/include/ec_lcl.h 6

326 int ec_GFp_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, const EC
327 int ec_GFp_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX *
328 int ec_GFp_simple_invert(const EC_GROUP *, EC_POINT *, BN_CTX *);
329 int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *);
330 int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *);
331 int ec_GFp_simple_cmp(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b, BN
332 int ec_GFp_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *);
333 int ec_GFp_simple_points_make_affine(const EC_GROUP *, size_t num, EC_POINT *[],
334 int ec_GFp_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const
335 int ec_GFp_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX

338 /* method functions in ecp_mont.c */
339 int ec_GFp_mont_group_init(EC_GROUP *);
340 int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, co
341 void ec_GFp_mont_group_finish(EC_GROUP *);
342 void ec_GFp_mont_group_clear_finish(EC_GROUP *);
343 int ec_GFp_mont_group_copy(EC_GROUP *, const EC_GROUP *);
344 int ec_GFp_mont_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BI
345 int ec_GFp_mont_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *
346 int ec_GFp_mont_field_encode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CT
347 int ec_GFp_mont_field_decode(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CT
348 int ec_GFp_mont_field_set_to_one(const EC_GROUP *, BIGNUM *r, BN_CTX *);

351 /* method functions in ecp_nist.c */
352 int ec_GFp_nist_group_copy(EC_GROUP *dest, const EC_GROUP *src);
353 int ec_GFp_nist_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a, co
354 int ec_GFp_nist_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BI
355 int ec_GFp_nist_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *

358 /* method functions in ec2_smpl.c */
359 int ec_GF2m_simple_group_init(EC_GROUP *);
360 void ec_GF2m_simple_group_finish(EC_GROUP *);
361 void ec_GF2m_simple_group_clear_finish(EC_GROUP *);
362 int ec_GF2m_simple_group_copy(EC_GROUP *, const EC_GROUP *);
363 int ec_GF2m_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
364 int ec_GF2m_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a, BIGNU
365 int ec_GF2m_simple_group_get_degree(const EC_GROUP *);
366 int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *, BN_CTX *);
367 int ec_GF2m_simple_point_init(EC_POINT *);
368 void ec_GF2m_simple_point_finish(EC_POINT *);
369 void ec_GF2m_simple_point_clear_finish(EC_POINT *);
370 int ec_GF2m_simple_point_copy(EC_POINT *, const EC_POINT *);
371 int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *, EC_POINT *);
372 int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *, EC_POINT *,
373 const BIGNUM *x, const BIGNUM *y, BN_CTX *);
374 int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *, const EC_POINT
375 BIGNUM *x, BIGNUM *y, BN_CTX *);
376 int ec_GF2m_simple_set_compressed_coordinates(const EC_GROUP *, EC_POINT *,
377 const BIGNUM *x, int y_bit, BN_CTX *);
378 size_t ec_GF2m_simple_point2oct(const EC_GROUP *, const EC_POINT *, point_conver
379 unsigned char *buf, size_t len, BN_CTX *);
380 int ec_GF2m_simple_oct2point(const EC_GROUP *, EC_POINT *,
381 const unsigned char *buf, size_t len, BN_CTX *);
382 int ec_GF2m_simple_add(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, const E
383 int ec_GF2m_simple_dbl(const EC_GROUP *, EC_POINT *r, const EC_POINT *a, BN_CTX
384 int ec_GF2m_simple_invert(const EC_GROUP *, EC_POINT *, BN_CTX *);
385 int ec_GF2m_simple_is_at_infinity(const EC_GROUP *, const EC_POINT *);
386 int ec_GF2m_simple_is_on_curve(const EC_GROUP *, const EC_POINT *, BN_CTX *);
387 int ec_GF2m_simple_cmp(const EC_GROUP *, const EC_POINT *a, const EC_POINT *b, B
388 int ec_GF2m_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *);
389 int ec_GF2m_simple_points_make_affine(const EC_GROUP *, size_t num, EC_POINT *[]
390 int ec_GF2m_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const
391 int ec_GF2m_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CT

new/usr/src/lib/openssl/include/ec_lcl.h 7

392 int ec_GF2m_simple_field_div(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const

395 /* method functions in ec2_mult.c */
396 int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
397 size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *)
398 int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx);
399 int ec_GF2m_have_precompute_mult(const EC_GROUP *group);

401 /* method functions in ec2_mult.c */
402 int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
403 size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *)
404 int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx);
405 int ec_GF2m_have_precompute_mult(const EC_GROUP *group);

407 #ifndef OPENSSL_EC_NISTP_64_GCC_128
408 /* method functions in ecp_nistp224.c */
409 int ec_GFp_nistp224_group_init(EC_GROUP *group);
410 int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGN
411 int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group, const EC
412 int ec_GFp_nistp224_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar
413 int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM
414 int ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx);
415 int ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group);

417 /* method functions in ecp_nistp256.c */
418 int ec_GFp_nistp256_group_init(EC_GROUP *group);
419 int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGN
420 int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group, const EC
421 int ec_GFp_nistp256_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar
422 int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM
423 int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx);
424 int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group);

426 /* method functions in ecp_nistp521.c */
427 int ec_GFp_nistp521_group_init(EC_GROUP *group);
428 int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGN
429 int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group, const EC
430 int ec_GFp_nistp521_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar
431 int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM
432 int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx);
433 int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group);

435 /* utility functions in ecp_nistputil.c */
436 void ec_GFp_nistp_points_make_affine_internal(size_t num, void *point_array,
437 size_t felem_size, void *tmp_felems,
438 void (*felem_one)(void *out),
439 int (*felem_is_zero)(const void *in),
440 void (*felem_assign)(void *out, const void *in),
441 void (*felem_square)(void *out, const void *in),
442 void (*felem_mul)(void *out, const void *in1, const void *in2),
443 void (*felem_inv)(void *out, const void *in),
444 void (*felem_contract)(void *out, const void *in));
445 void ec_GFp_nistp_recode_scalar_bits(unsigned char *sign, unsigned char *digit,
446 #endif

new/usr/src/lib/openssl/include/ech_locl.h 1

**
 3700 Fri May 30 18:31:15 2014
new/usr/src/lib/openssl/include/ech_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ecdh/ech_locl.h */
2 /* ==
3 * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * licensing@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 #ifndef HEADER_ECH_LOCL_H
57 #define HEADER_ECH_LOCL_H

59 #include <openssl/ecdh.h>

61 #ifdef __cplusplus

new/usr/src/lib/openssl/include/ech_locl.h 2

62 extern "C" {
63 #endif

65 struct ecdh_method
66 {
67 const char *name;
68 int (*compute_key)(void *key, size_t outlen, const EC_POINT *pub_key, EC
69 void *(*KDF)(const void *in, size_t inlen, void *out,
70 #if 0
71 int (*init)(EC_KEY *eckey);
72 int (*finish)(EC_KEY *eckey);
73 #endif
74 int flags;
75 char *app_data;
76 };

78 /* If this flag is set the ECDH method is FIPS compliant and can be used
79 * in FIPS mode. This is set in the validated module method. If an
80 * application sets this flag in its own methods it is its responsibility
81 * to ensure the result is compliant.
82 */

84 #define ECDH_FLAG_FIPS_METHOD 0x1

86 typedef struct ecdh_data_st {
87 /* EC_KEY_METH_DATA part */
88 int (*init)(EC_KEY *);
89 /* method specific part */
90 ENGINE *engine;
91 int flags;
92 const ECDH_METHOD *meth;
93 CRYPTO_EX_DATA ex_data;
94 } ECDH_DATA;

96 ECDH_DATA *ecdh_check(EC_KEY *);

98 #ifdef __cplusplus
99 }
100 #endif

102 #endif /* HEADER_ECH_LOCL_H */

new/usr/src/lib/openssl/include/ecs_locl.h 1

**
 4184 Fri May 30 18:31:15 2014
new/usr/src/lib/openssl/include/ecs_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ecdsa/ecs_locl.h */
2 /*
3 * Written by Nils Larsch for the OpenSSL project
4 */
5 /* ==
6 * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #ifndef HEADER_ECS_LOCL_H
60 #define HEADER_ECS_LOCL_H

new/usr/src/lib/openssl/include/ecs_locl.h 2

62 #include <openssl/ecdsa.h>

64 #ifdef __cplusplus
65 extern "C" {
66 #endif

68 struct ecdsa_method
69 {
70 const char *name;
71 ECDSA_SIG *(*ecdsa_do_sign)(const unsigned char *dgst, int dgst_len,
72 const BIGNUM *inv, const BIGNUM *rp, EC_KEY *eckey);
73 int (*ecdsa_sign_setup)(EC_KEY *eckey, BN_CTX *ctx, BIGNUM **kinv,
74 BIGNUM **r);
75 int (*ecdsa_do_verify)(const unsigned char *dgst, int dgst_len,
76 const ECDSA_SIG *sig, EC_KEY *eckey);
77 #if 0
78 int (*init)(EC_KEY *eckey);
79 int (*finish)(EC_KEY *eckey);
80 #endif
81 int flags;
82 char *app_data;
83 };

85 /* If this flag is set the ECDSA method is FIPS compliant and can be used
86 * in FIPS mode. This is set in the validated module method. If an
87 * application sets this flag in its own methods it is its responsibility
88 * to ensure the result is compliant.
89 */

91 #define ECDSA_FLAG_FIPS_METHOD 0x1

93 typedef struct ecdsa_data_st {
94 /* EC_KEY_METH_DATA part */
95 int (*init)(EC_KEY *);
96 /* method (ECDSA) specific part */
97 ENGINE *engine;
98 int flags;
99 const ECDSA_METHOD *meth;
100 CRYPTO_EX_DATA ex_data;
101 } ECDSA_DATA;

103 /** ecdsa_check
104 * checks whether ECKEY->meth_data is a pointer to a ECDSA_DATA structure
105 * and if not it removes the old meth_data and creates a ECDSA_DATA structure.
106 * \param eckey pointer to a EC_KEY object
107 * \return pointer to a ECDSA_DATA structure
108 */
109 ECDSA_DATA *ecdsa_check(EC_KEY *eckey);

111 #ifdef __cplusplus
112 }
113 #endif

115 #endif /* HEADER_ECS_LOCL_H */

new/usr/src/lib/openssl/include/eng_int.h 1

**
 8295 Fri May 30 18:31:15 2014
new/usr/src/lib/openssl/include/eng_int.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/engine/eng_int.h */
2 /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 /* ==
59 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60 * ECDH support in OpenSSL originally developed by
61 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.

new/usr/src/lib/openssl/include/eng_int.h 2

62 */

64 #ifndef HEADER_ENGINE_INT_H
65 #define HEADER_ENGINE_INT_H

67 #include "cryptlib.h"
68 /* Take public definitions from engine.h */
69 #include <openssl/engine.h>

71 #ifdef __cplusplus
72 extern "C" {
73 #endif

75 /* If we compile with this symbol defined, then both reference counts in the
76 * ENGINE structure will be monitored with a line of output on stderr for each
77 * change. This prints the engine’s pointer address (truncated to unsigned int),
78 * "struct" or "funct" to indicate the reference type, the before and after
79 * reference count, and the file:line-number pair. The "engine_ref_debug"
80 * statements must come *after* the change. */
81 #ifdef ENGINE_REF_COUNT_DEBUG

83 #define engine_ref_debug(e, isfunct, diff) \
84 fprintf(stderr, "engine: %08x %s from %d to %d (%s:%d)\n", \
85 (unsigned int)(e), (isfunct ? "funct" : "struct"), \
86 ((isfunct) ? ((e)->funct_ref - (diff)) : ((e)->struct_ref - (dif
87 ((isfunct) ? (e)->funct_ref : (e)->struct_ref), \
88 (__FILE__), (__LINE__));

90 #else

92 #define engine_ref_debug(e, isfunct, diff)

94 #endif

96 /* Any code that will need cleanup operations should use these functions to
97 * register callbacks. ENGINE_cleanup() will call all registered callbacks in
98 * order. NB: both the "add" functions assume CRYPTO_LOCK_ENGINE to already be
99 * held (in "write" mode). */
100 typedef void (ENGINE_CLEANUP_CB)(void);
101 typedef struct st_engine_cleanup_item
102 {
103 ENGINE_CLEANUP_CB *cb;
104 } ENGINE_CLEANUP_ITEM;
105 DECLARE_STACK_OF(ENGINE_CLEANUP_ITEM)
106 void engine_cleanup_add_first(ENGINE_CLEANUP_CB *cb);
107 void engine_cleanup_add_last(ENGINE_CLEANUP_CB *cb);

109 /* We need stacks of ENGINEs for use in eng_table.c */
110 DECLARE_STACK_OF(ENGINE)

112 /* If this symbol is defined then engine_table_select(), the function that is
113 * used by RSA, DSA (etc) code to select registered ENGINEs, cache defaults and
114 * functional references (etc), will display debugging summaries to stderr. */
115 /* #define ENGINE_TABLE_DEBUG */

117 /* This represents an implementation table. Dependent code should instantiate it
118 * as a (ENGINE_TABLE *) pointer value set initially to NULL. */
119 typedef struct st_engine_table ENGINE_TABLE;
120 int engine_table_register(ENGINE_TABLE **table, ENGINE_CLEANUP_CB *cleanup,
121 ENGINE *e, const int *nids, int num_nids, int setdefault);
122 void engine_table_unregister(ENGINE_TABLE **table, ENGINE *e);
123 void engine_table_cleanup(ENGINE_TABLE **table);
124 #ifndef ENGINE_TABLE_DEBUG
125 ENGINE *engine_table_select(ENGINE_TABLE **table, int nid);
126 #else
127 ENGINE *engine_table_select_tmp(ENGINE_TABLE **table, int nid, const char *f, in

new/usr/src/lib/openssl/include/eng_int.h 3

128 #define engine_table_select(t,n) engine_table_select_tmp(t,n,__FILE__,__LINE__)
129 #endif
130 typedef void (engine_table_doall_cb)(int nid, STACK_OF(ENGINE) *sk, ENGINE *def,
131 void engine_table_doall(ENGINE_TABLE *table, engine_table_doall_cb *cb, void *ar

133 /* Internal versions of API functions that have control over locking. These are
134 * used between C files when functionality needs to be shared but the caller may
135 * already be controlling of the CRYPTO_LOCK_ENGINE lock. */
136 int engine_unlocked_init(ENGINE *e);
137 int engine_unlocked_finish(ENGINE *e, int unlock_for_handlers);
138 int engine_free_util(ENGINE *e, int locked);

140 /* This function will reset all "set"able values in an ENGINE to NULL. This
141 * won’t touch reference counts or ex_data, but is equivalent to calling all the
142 * ENGINE_set_***() functions with a NULL value. */
143 void engine_set_all_null(ENGINE *e);

145 /* NB: Bitwise OR-able values for the "flags" variable in ENGINE are now exposed
146 * in engine.h. */

148 /* Free up dynamically allocated public key methods associated with ENGINE */

150 void engine_pkey_meths_free(ENGINE *e);
151 void engine_pkey_asn1_meths_free(ENGINE *e);

153 /* This is a structure for storing implementations of various crypto
154 * algorithms and functions. */
155 struct engine_st
156 {
157 const char *id;
158 const char *name;
159 const RSA_METHOD *rsa_meth;
160 const DSA_METHOD *dsa_meth;
161 const DH_METHOD *dh_meth;
162 const ECDH_METHOD *ecdh_meth;
163 const ECDSA_METHOD *ecdsa_meth;
164 const RAND_METHOD *rand_meth;
165 const STORE_METHOD *store_meth;
166 /* Cipher handling is via this callback */
167 ENGINE_CIPHERS_PTR ciphers;
168 /* Digest handling is via this callback */
169 ENGINE_DIGESTS_PTR digests;
170 /* Public key handling via this callback */
171 ENGINE_PKEY_METHS_PTR pkey_meths;
172 /* ASN1 public key handling via this callback */
173 ENGINE_PKEY_ASN1_METHS_PTR pkey_asn1_meths;

175 ENGINE_GEN_INT_FUNC_PTR destroy;

177 ENGINE_GEN_INT_FUNC_PTR init;
178 ENGINE_GEN_INT_FUNC_PTR finish;
179 ENGINE_CTRL_FUNC_PTR ctrl;
180 ENGINE_LOAD_KEY_PTR load_privkey;
181 ENGINE_LOAD_KEY_PTR load_pubkey;

183 ENGINE_SSL_CLIENT_CERT_PTR load_ssl_client_cert;

185 const ENGINE_CMD_DEFN *cmd_defns;
186 int flags;
187 /* reference count on the structure itself */
188 int struct_ref;
189 /* reference count on usability of the engine type. NB: This
190 * controls the loading and initialisation of any functionlity
191 * required by this engine, whereas the previous count is
192 * simply to cope with (de)allocation of this structure. Hence,
193 * running_ref <= struct_ref at all times. */

new/usr/src/lib/openssl/include/eng_int.h 4

194 int funct_ref;
195 /* A place to store per-ENGINE data */
196 CRYPTO_EX_DATA ex_data;
197 /* Used to maintain the linked-list of engines. */
198 struct engine_st *prev;
199 struct engine_st *next;
200 };

202 #ifdef __cplusplus
203 }
204 #endif

206 #endif /* HEADER_ENGINE_INT_H */

new/usr/src/lib/openssl/include/evp_locl.h 1

**
 13925 Fri May 30 18:31:15 2014
new/usr/src/lib/openssl/include/evp_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* evp_locl.h */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 /* Macros to code block cipher wrappers */

61 /* Wrapper functions for each cipher mode */

new/usr/src/lib/openssl/include/evp_locl.h 2

63 #define BLOCK_CIPHER_ecb_loop() \
64 size_t i, bl; \
65 bl = ctx->cipher->block_size;\
66 if(inl < bl) return 1;\
67 inl -= bl; \
68 for(i=0; i <= inl; i+=bl)

70 #define BLOCK_CIPHER_func_ecb(cname, cprefix, kstruct, ksched) \
71 static int cname##_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const uns
72 {\
73 BLOCK_CIPHER_ecb_loop() \
74 cprefix##_ecb_encrypt(in + i, out + i, &((kstruct *)ctx->cipher_
75 return 1;\
76 }

78 #define EVP_MAXCHUNK ((size_t)1<<(sizeof(long)*8-2))

80 #define BLOCK_CIPHER_func_ofb(cname, cprefix, cbits, kstruct, ksched) \
81 static int cname##_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const uns
82 {\
83 while(inl>=EVP_MAXCHUNK)\
84 {\
85 cprefix##_ofb##cbits##_encrypt(in, out, (long)EVP_MAXCHUNK, &((kstru
86 inl-=EVP_MAXCHUNK;\
87 in +=EVP_MAXCHUNK;\
88 out+=EVP_MAXCHUNK;\
89 }\
90 if (inl)\
91 cprefix##_ofb##cbits##_encrypt(in, out, (long)inl, &((kstruct *)ctx-
92 return 1;\
93 }

95 #define BLOCK_CIPHER_func_cbc(cname, cprefix, kstruct, ksched) \
96 static int cname##_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const uns
97 {\
98 while(inl>=EVP_MAXCHUNK) \
99 {\
100 cprefix##_cbc_encrypt(in, out, (long)EVP_MAXCHUNK, &((kstruct *)ctx-
101 inl-=EVP_MAXCHUNK;\
102 in +=EVP_MAXCHUNK;\
103 out+=EVP_MAXCHUNK;\
104 }\
105 if (inl)\
106 cprefix##_cbc_encrypt(in, out, (long)inl, &((kstruct *)ctx->cipher_d
107 return 1;\
108 }

110 #define BLOCK_CIPHER_func_cfb(cname, cprefix, cbits, kstruct, ksched) \
111 static int cname##_cfb##cbits##_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
112 {\
113 size_t chunk=EVP_MAXCHUNK;\
114 if (cbits==1) chunk>>=3;\
115 if (inl<chunk) chunk=inl;\
116 while(inl && inl>=chunk)\
117 {\
118 cprefix##_cfb##cbits##_encrypt(in, out, (long)((cbits==1) && !(ctx->
119 inl-=chunk;\
120 in +=chunk;\
121 out+=chunk;\
122 if(inl<chunk) chunk=inl;\
123 }\
124 return 1;\
125 }

127 #define BLOCK_CIPHER_all_funcs(cname, cprefix, cbits, kstruct, ksched) \

new/usr/src/lib/openssl/include/evp_locl.h 3

128 BLOCK_CIPHER_func_cbc(cname, cprefix, kstruct, ksched) \
129 BLOCK_CIPHER_func_cfb(cname, cprefix, cbits, kstruct, ksched) \
130 BLOCK_CIPHER_func_ecb(cname, cprefix, kstruct, ksched) \
131 BLOCK_CIPHER_func_ofb(cname, cprefix, cbits, kstruct, ksched)

133 #define BLOCK_CIPHER_def1(cname, nmode, mode, MODE, kstruct, nid, block_size, \
134 key_len, iv_len, flags, init_key, cleanup, \
135 set_asn1, get_asn1, ctrl) \
136 static const EVP_CIPHER cname##_##mode = { \
137 nid##_##nmode, block_size, key_len, iv_len, \
138 flags | EVP_CIPH_##MODE##_MODE, \
139 init_key, \
140 cname##_##mode##_cipher, \
141 cleanup, \
142 sizeof(kstruct), \
143 set_asn1, get_asn1,\
144 ctrl, \
145 NULL \
146 }; \
147 const EVP_CIPHER *EVP_##cname##_##mode(void) { return &cname##_##mode; }

149 #define BLOCK_CIPHER_def_cbc(cname, kstruct, nid, block_size, key_len, \
150 iv_len, flags, init_key, cleanup, set_asn1, \
151 get_asn1, ctrl) \
152 BLOCK_CIPHER_def1(cname, cbc, cbc, CBC, kstruct, nid, block_size, key_len, \
153 iv_len, flags, init_key, cleanup, set_asn1, get_asn1, ctrl)

155 #define BLOCK_CIPHER_def_cfb(cname, kstruct, nid, key_len, \
156 iv_len, cbits, flags, init_key, cleanup, \
157 set_asn1, get_asn1, ctrl) \
158 BLOCK_CIPHER_def1(cname, cfb##cbits, cfb##cbits, CFB, kstruct, nid, 1, \
159 key_len, iv_len, flags, init_key, cleanup, set_asn1, \
160 get_asn1, ctrl)

162 #define BLOCK_CIPHER_def_ofb(cname, kstruct, nid, key_len, \
163 iv_len, cbits, flags, init_key, cleanup, \
164 set_asn1, get_asn1, ctrl) \
165 BLOCK_CIPHER_def1(cname, ofb##cbits, ofb, OFB, kstruct, nid, 1, \
166 key_len, iv_len, flags, init_key, cleanup, set_asn1, \
167 get_asn1, ctrl)

169 #define BLOCK_CIPHER_def_ecb(cname, kstruct, nid, block_size, key_len, \
170 flags, init_key, cleanup, set_asn1, \
171 get_asn1, ctrl) \
172 BLOCK_CIPHER_def1(cname, ecb, ecb, ECB, kstruct, nid, block_size, key_len, \
173 0, flags, init_key, cleanup, set_asn1, get_asn1, ctrl)

175 #define BLOCK_CIPHER_defs(cname, kstruct, \
176 nid, block_size, key_len, iv_len, cbits, flags, \
177 init_key, cleanup, set_asn1, get_asn1, ctrl) \
178 BLOCK_CIPHER_def_cbc(cname, kstruct, nid, block_size, key_len, iv_len, flags, \
179 init_key, cleanup, set_asn1, get_asn1, ctrl) \
180 BLOCK_CIPHER_def_cfb(cname, kstruct, nid, key_len, iv_len, cbits, \
181 flags, init_key, cleanup, set_asn1, get_asn1, ctrl) \
182 BLOCK_CIPHER_def_ofb(cname, kstruct, nid, key_len, iv_len, cbits, \
183 flags, init_key, cleanup, set_asn1, get_asn1, ctrl) \
184 BLOCK_CIPHER_def_ecb(cname, kstruct, nid, block_size, key_len, flags, \
185 init_key, cleanup, set_asn1, get_asn1, ctrl)

188 /*
189 #define BLOCK_CIPHER_defs(cname, kstruct, \
190 nid, block_size, key_len, iv_len, flags,\
191 init_key, cleanup, set_asn1, get_asn1, ctrl)\
192 static const EVP_CIPHER cname##_cbc = {\
193 nid##_cbc, block_size, key_len, iv_len, \

new/usr/src/lib/openssl/include/evp_locl.h 4

194 flags | EVP_CIPH_CBC_MODE,\
195 init_key,\
196 cname##_cbc_cipher,\
197 cleanup,\
198 sizeof(EVP_CIPHER_CTX)-sizeof((((EVP_CIPHER_CTX *)NULL)->c))+\
199 sizeof((((EVP_CIPHER_CTX *)NULL)->c.kstruct)),\
200 set_asn1, get_asn1,\
201 ctrl, \
202 NULL \
203 };\
204 const EVP_CIPHER *EVP_##cname##_cbc(void) { return &cname##_cbc; }\
205 static const EVP_CIPHER cname##_cfb = {\
206 nid##_cfb64, 1, key_len, iv_len, \
207 flags | EVP_CIPH_CFB_MODE,\
208 init_key,\
209 cname##_cfb_cipher,\
210 cleanup,\
211 sizeof(EVP_CIPHER_CTX)-sizeof((((EVP_CIPHER_CTX *)NULL)->c))+\
212 sizeof((((EVP_CIPHER_CTX *)NULL)->c.kstruct)),\
213 set_asn1, get_asn1,\
214 ctrl,\
215 NULL \
216 };\
217 const EVP_CIPHER *EVP_##cname##_cfb(void) { return &cname##_cfb; }\
218 static const EVP_CIPHER cname##_ofb = {\
219 nid##_ofb64, 1, key_len, iv_len, \
220 flags | EVP_CIPH_OFB_MODE,\
221 init_key,\
222 cname##_ofb_cipher,\
223 cleanup,\
224 sizeof(EVP_CIPHER_CTX)-sizeof((((EVP_CIPHER_CTX *)NULL)->c))+\
225 sizeof((((EVP_CIPHER_CTX *)NULL)->c.kstruct)),\
226 set_asn1, get_asn1,\
227 ctrl,\
228 NULL \
229 };\
230 const EVP_CIPHER *EVP_##cname##_ofb(void) { return &cname##_ofb; }\
231 static const EVP_CIPHER cname##_ecb = {\
232 nid##_ecb, block_size, key_len, iv_len, \
233 flags | EVP_CIPH_ECB_MODE,\
234 init_key,\
235 cname##_ecb_cipher,\
236 cleanup,\
237 sizeof(EVP_CIPHER_CTX)-sizeof((((EVP_CIPHER_CTX *)NULL)->c))+\
238 sizeof((((EVP_CIPHER_CTX *)NULL)->c.kstruct)),\
239 set_asn1, get_asn1,\
240 ctrl,\
241 NULL \
242 };\
243 const EVP_CIPHER *EVP_##cname##_ecb(void) { return &cname##_ecb; }
244 */

246 #define IMPLEMENT_BLOCK_CIPHER(cname, ksched, cprefix, kstruct, nid, \
247 block_size, key_len, iv_len, cbits, \
248 flags, init_key, \
249 cleanup, set_asn1, get_asn1, ctrl) \
250 BLOCK_CIPHER_all_funcs(cname, cprefix, cbits, kstruct, ksched) \
251 BLOCK_CIPHER_defs(cname, kstruct, nid, block_size, key_len, iv_len, \
252 cbits, flags, init_key, cleanup, set_asn1, \
253 get_asn1, ctrl)

255 #define EVP_C_DATA(kstruct, ctx) ((kstruct *)(ctx)->cipher_data)

257 #define IMPLEMENT_CFBR(cipher,cprefix,kstruct,ksched,keysize,cbits,iv_len) \
258 BLOCK_CIPHER_func_cfb(cipher##_##keysize,cprefix,cbits,kstruct,ksched) \
259 BLOCK_CIPHER_def_cfb(cipher##_##keysize,kstruct, \

new/usr/src/lib/openssl/include/evp_locl.h 5

260 NID_##cipher##_##keysize, keysize/8, iv_len, cbits,
261 0, cipher##_init_key, NULL, \
262 EVP_CIPHER_set_asn1_iv, \
263 EVP_CIPHER_get_asn1_iv, \
264 NULL)

266 struct evp_pkey_ctx_st
267 {
268 /* Method associated with this operation */
269 const EVP_PKEY_METHOD *pmeth;
270 /* Engine that implements this method or NULL if builtin */
271 ENGINE *engine;
272 /* Key: may be NULL */
273 EVP_PKEY *pkey;
274 /* Peer key for key agreement, may be NULL */
275 EVP_PKEY *peerkey;
276 /* Actual operation */
277 int operation;
278 /* Algorithm specific data */
279 void *data;
280 /* Application specific data */
281 void *app_data;
282 /* Keygen callback */
283 EVP_PKEY_gen_cb *pkey_gencb;
284 /* implementation specific keygen data */
285 int *keygen_info;
286 int keygen_info_count;
287 } /* EVP_PKEY_CTX */;

289 #define EVP_PKEY_FLAG_DYNAMIC 1

291 struct evp_pkey_method_st
292 {
293 int pkey_id;
294 int flags;

296 int (*init)(EVP_PKEY_CTX *ctx);
297 int (*copy)(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src);
298 void (*cleanup)(EVP_PKEY_CTX *ctx);

300 int (*paramgen_init)(EVP_PKEY_CTX *ctx);
301 int (*paramgen)(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey);

303 int (*keygen_init)(EVP_PKEY_CTX *ctx);
304 int (*keygen)(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey);

306 int (*sign_init)(EVP_PKEY_CTX *ctx);
307 int (*sign)(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen,
308 const unsigned char *tbs, size_t tbslen);

310 int (*verify_init)(EVP_PKEY_CTX *ctx);
311 int (*verify)(EVP_PKEY_CTX *ctx,
312 const unsigned char *sig, size_t siglen,
313 const unsigned char *tbs, size_t tbslen);

315 int (*verify_recover_init)(EVP_PKEY_CTX *ctx);
316 int (*verify_recover)(EVP_PKEY_CTX *ctx,
317 unsigned char *rout, size_t *routlen,
318 const unsigned char *sig, size_t siglen);

320 int (*signctx_init)(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx);
321 int (*signctx)(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen,
322 EVP_MD_CTX *mctx);

324 int (*verifyctx_init)(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx);
325 int (*verifyctx)(EVP_PKEY_CTX *ctx, const unsigned char *sig,int siglen,

new/usr/src/lib/openssl/include/evp_locl.h 6

326 EVP_MD_CTX *mctx);

328 int (*encrypt_init)(EVP_PKEY_CTX *ctx);
329 int (*encrypt)(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen,
330 const unsigned char *in, size_t inlen);

332 int (*decrypt_init)(EVP_PKEY_CTX *ctx);
333 int (*decrypt)(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen,
334 const unsigned char *in, size_t inlen);

336 int (*derive_init)(EVP_PKEY_CTX *ctx);
337 int (*derive)(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen);

339 int (*ctrl)(EVP_PKEY_CTX *ctx, int type, int p1, void *p2);
340 int (*ctrl_str)(EVP_PKEY_CTX *ctx, const char *type, const char *value);

343 } /* EVP_PKEY_METHOD */;

345 void evp_pkey_set_cb_translate(BN_GENCB *cb, EVP_PKEY_CTX *ctx);

347 int PKCS5_v2_PBKDF2_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen,
348 ASN1_TYPE *param,
349 const EVP_CIPHER *c, const EVP_MD *md, int en_de);

351 #ifdef OPENSSL_FIPS

353 #ifdef OPENSSL_DOING_MAKEDEPEND
354 #undef SHA1_Init
355 #undef SHA1_Update
356 #undef SHA224_Init
357 #undef SHA256_Init
358 #undef SHA384_Init
359 #undef SHA512_Init
360 #undef DES_set_key_unchecked
361 #endif

363 #define RIPEMD160_Init private_RIPEMD160_Init
364 #define WHIRLPOOL_Init private_WHIRLPOOL_Init
365 #define MD5_Init private_MD5_Init
366 #define MD4_Init private_MD4_Init
367 #define MD2_Init private_MD2_Init
368 #define MDC2_Init private_MDC2_Init
369 #define SHA_Init private_SHA_Init
370 #define SHA1_Init private_SHA1_Init
371 #define SHA224_Init private_SHA224_Init
372 #define SHA256_Init private_SHA256_Init
373 #define SHA384_Init private_SHA384_Init
374 #define SHA512_Init private_SHA512_Init

376 #define BF_set_key private_BF_set_key
377 #define CAST_set_key private_CAST_set_key
378 #define idea_set_encrypt_key private_idea_set_encrypt_key
379 #define SEED_set_key private_SEED_set_key
380 #define RC2_set_key private_RC2_set_key
381 #define RC4_set_key private_RC4_set_key
382 #define DES_set_key_unchecked private_DES_set_key_unchecked
383 #define Camellia_set_key private_Camellia_set_key

385 #endif

new/usr/src/lib/openssl/include/ext_dat.h 1

**
 4608 Fri May 30 18:31:15 2014
new/usr/src/lib/openssl/include/ext_dat.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ext_dat.h */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999-2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 /* This file contains a table of "standard" extensions */

60 extern X509V3_EXT_METHOD v3_bcons, v3_nscert, v3_key_usage, v3_ext_ku;
61 extern X509V3_EXT_METHOD v3_pkey_usage_period, v3_sxnet, v3_info, v3_sinfo;

new/usr/src/lib/openssl/include/ext_dat.h 2

62 extern X509V3_EXT_METHOD v3_ns_ia5_list[], v3_alt[], v3_skey_id, v3_akey_id;
63 extern X509V3_EXT_METHOD v3_crl_num, v3_crl_reason, v3_crl_invdate;
64 extern X509V3_EXT_METHOD v3_delta_crl, v3_cpols, v3_crld, v3_freshest_crl;
65 extern X509V3_EXT_METHOD v3_ocsp_nonce, v3_ocsp_accresp, v3_ocsp_acutoff;
66 extern X509V3_EXT_METHOD v3_ocsp_crlid, v3_ocsp_nocheck, v3_ocsp_serviceloc;
67 extern X509V3_EXT_METHOD v3_crl_hold, v3_pci;
68 extern X509V3_EXT_METHOD v3_policy_mappings, v3_policy_constraints;
69 extern X509V3_EXT_METHOD v3_name_constraints, v3_inhibit_anyp, v3_idp;
70 extern X509V3_EXT_METHOD v3_addr, v3_asid;

72 /* This table will be searched using OBJ_bsearch so it *must* kept in
73 * order of the ext_nid values.
74 */

76 static const X509V3_EXT_METHOD *standard_exts[] = {
77 &v3_nscert,
78 &v3_ns_ia5_list[0],
79 &v3_ns_ia5_list[1],
80 &v3_ns_ia5_list[2],
81 &v3_ns_ia5_list[3],
82 &v3_ns_ia5_list[4],
83 &v3_ns_ia5_list[5],
84 &v3_ns_ia5_list[6],
85 &v3_skey_id,
86 &v3_key_usage,
87 &v3_pkey_usage_period,
88 &v3_alt[0],
89 &v3_alt[1],
90 &v3_bcons,
91 &v3_crl_num,
92 &v3_cpols,
93 &v3_akey_id,
94 &v3_crld,
95 &v3_ext_ku,
96 &v3_delta_crl,
97 &v3_crl_reason,
98 #ifndef OPENSSL_NO_OCSP
99 &v3_crl_invdate,
100 #endif
101 &v3_sxnet,
102 &v3_info,
103 #ifndef OPENSSL_NO_RFC3779
104 &v3_addr,
105 &v3_asid,
106 #endif
107 #ifndef OPENSSL_NO_OCSP
108 &v3_ocsp_nonce,
109 &v3_ocsp_crlid,
110 &v3_ocsp_accresp,
111 &v3_ocsp_nocheck,
112 &v3_ocsp_acutoff,
113 &v3_ocsp_serviceloc,
114 #endif
115 &v3_sinfo,
116 &v3_policy_constraints,
117 #ifndef OPENSSL_NO_OCSP
118 &v3_crl_hold,
119 #endif
120 &v3_pci,
121 &v3_name_constraints,
122 &v3_policy_mappings,
123 &v3_inhibit_anyp,
124 &v3_idp,
125 &v3_alt[2],
126 &v3_freshest_crl,
127 };

new/usr/src/lib/openssl/include/ext_dat.h 3

129 /* Number of standard extensions */

131 #define STANDARD_EXTENSION_COUNT (sizeof(standard_exts)/sizeof(X509V3_EXT_METHOD

new/usr/src/lib/openssl/include/hw_pk11_err.h 1

**
 13663 Fri May 30 18:31:15 2014
new/usr/src/lib/openssl/include/hw_pk11_err.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */

6 /* crypto/engine/hw_pk11_err.h */
7 /*
8 * This product includes software developed by the OpenSSL Project for
9 * use in the OpenSSL Toolkit (http://www.openssl.org/).
10 *
11 * This project also referenced hw_pkcs11-0.9.7b.patch written by
12 * Afchine Madjlessi.
13 */
14 /*
15 * ==
16 * Copyright (c) 2000-2001 The OpenSSL Project. All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 *
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 *
25 * 2. Redistributions in binary form must reproduce the above copyright
26 * notice, this list of conditions and the following disclaimer in
27 * the documentation and/or other materials provided with the
28 * distribution.
29 *
30 * 3. All advertising materials mentioning features or use of this
31 * software must display the following acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
34 *
35 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
36 * endorse or promote products derived from this software without
37 * prior written permission. For written permission, please contact
38 * licensing@OpenSSL.org.
39 *
40 * 5. Products derived from this software may not be called "OpenSSL"
41 * nor may "OpenSSL" appear in their names without prior written
42 * permission of the OpenSSL Project.
43 *
44 * 6. Redistributions of any form whatsoever must retain the following
45 * acknowledgment:
46 * "This product includes software developed by the OpenSSL Project
47 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
50 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
53 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
54 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
55 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
56 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
58 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
60 * OF THE POSSIBILITY OF SUCH DAMAGE.
61 * ==

new/usr/src/lib/openssl/include/hw_pk11_err.h 2

62 *
63 * This product includes cryptographic software written by Eric Young
64 * (eay@cryptsoft.com). This product includes software written by Tim
65 * Hudson (tjh@cryptsoft.com).
66 *
67 */

69 #ifndef HW_PK11_ERR_H
70 #define HW_PK11_ERR_H

72 void ERR_pk11_error(int function, int reason, char *file, int line);
73 void PK11err_add_data(int function, int reason, CK_RV rv);
74 #define PK11err(f, r) ERR_pk11_error((f), (r), __FILE__, __LINE__)

76 /* Error codes for the PK11 functions. */

78 /* Function codes. */

80 #define PK11_F_INIT 100
81 #define PK11_F_FINISH 101
82 #define PK11_F_DESTROY 102
83 #define PK11_F_CTRL 103
84 #define PK11_F_RSA_INIT 104
85 #define PK11_F_RSA_FINISH 105
86 #define PK11_F_GET_PUB_RSA_KEY 106
87 #define PK11_F_GET_PRIV_RSA_KEY 107
88 #define PK11_F_RSA_GEN_KEY 108
89 #define PK11_F_RSA_PUB_ENC 109
90 #define PK11_F_RSA_PRIV_ENC 110
91 #define PK11_F_RSA_PUB_DEC 111
92 #define PK11_F_RSA_PRIV_DEC 112
93 #define PK11_F_RSA_SIGN 113
94 #define PK11_F_RSA_VERIFY 114
95 #define PK11_F_RAND_ADD 115
96 #define PK11_F_RAND_BYTES 116
97 #define PK11_F_GET_SESSION 117
98 #define PK11_F_FREE_SESSION 118
99 #define PK11_F_LOAD_PUBKEY 119
100 #define PK11_F_LOAD_PRIVKEY 120
101 #define PK11_F_RSA_PUB_ENC_LOW 121
102 #define PK11_F_RSA_PRIV_ENC_LOW 122
103 #define PK11_F_RSA_PUB_DEC_LOW 123
104 #define PK11_F_RSA_PRIV_DEC_LOW 124
105 #define PK11_F_DSA_SIGN 125
106 #define PK11_F_DSA_VERIFY 126
107 #define PK11_F_DSA_INIT 127
108 #define PK11_F_DSA_FINISH 128
109 #define PK11_F_GET_PUB_DSA_KEY 129
110 #define PK11_F_GET_PRIV_DSA_KEY 130
111 #define PK11_F_DH_INIT 131
112 #define PK11_F_DH_FINISH 132
113 #define PK11_F_MOD_EXP_DH 133
114 #define PK11_F_GET_DH_KEY 134
115 #define PK11_F_FREE_ALL_SESSIONS 135
116 #define PK11_F_SETUP_SESSION 136
117 #define PK11_F_DESTROY_OBJECT 137
118 #define PK11_F_CIPHER_INIT 138
119 #define PK11_F_CIPHER_DO_CIPHER 139
120 #define PK11_F_GET_CIPHER_KEY 140
121 #define PK11_F_DIGEST_INIT 141
122 #define PK11_F_DIGEST_UPDATE 142
123 #define PK11_F_DIGEST_FINAL 143
124 #define PK11_F_CHOOSE_SLOT 144
125 #define PK11_F_CIPHER_FINAL 145
126 #define PK11_F_LIBRARY_INIT 146
127 #define PK11_F_LOAD 147

new/usr/src/lib/openssl/include/hw_pk11_err.h 3

128 #define PK11_F_DH_GEN_KEY 148
129 #define PK11_F_DH_COMP_KEY 149
130 #define PK11_F_DIGEST_COPY 150
131 #define PK11_F_CIPHER_CLEANUP 151
132 #define PK11_F_ACTIVE_ADD 152
133 #define PK11_F_ACTIVE_DELETE 153
134 #define PK11_F_CHECK_HW_MECHANISMS 154
135 #define PK11_F_INIT_SYMMETRIC 155
136 #define PK11_F_ADD_AES_CTR_NIDS 156
137 #define PK11_F_INIT_ALL_LOCKS 157
138 #define PK11_F_RETURN_SESSION 158

140 /* Reason codes. */
141 #define PK11_R_ALREADY_LOADED 100
142 #define PK11_R_DSO_FAILURE 101
143 #define PK11_R_NOT_LOADED 102
144 #define PK11_R_PASSED_NULL_PARAMETER 103
145 #define PK11_R_COMMAND_NOT_IMPLEMENTED 104
146 #define PK11_R_INITIALIZE 105
147 #define PK11_R_FINALIZE 106
148 #define PK11_R_GETINFO 107
149 #define PK11_R_GETSLOTLIST 108
150 #define PK11_R_NO_MODULUS_OR_NO_EXPONENT 109
151 #define PK11_R_ATTRIBUT_SENSITIVE_OR_INVALID 110
152 #define PK11_R_GETATTRIBUTVALUE 111
153 #define PK11_R_NO_MODULUS 112
154 #define PK11_R_NO_EXPONENT 113
155 #define PK11_R_FINDOBJECTSINIT 114
156 #define PK11_R_FINDOBJECTS 115
157 #define PK11_R_FINDOBJECTSFINAL 116
158 #define PK11_R_CREATEOBJECT 118
159 #define PK11_R_DESTROYOBJECT 119
160 #define PK11_R_OPENSESSION 120
161 #define PK11_R_CLOSESESSION 121
162 #define PK11_R_ENCRYPTINIT 122
163 #define PK11_R_ENCRYPT 123
164 #define PK11_R_SIGNINIT 124
165 #define PK11_R_SIGN 125
166 #define PK11_R_DECRYPTINIT 126
167 #define PK11_R_DECRYPT 127
168 #define PK11_R_VERIFYINIT 128
169 #define PK11_R_VERIFY 129
170 #define PK11_R_VERIFYRECOVERINIT 130
171 #define PK11_R_VERIFYRECOVER 131
172 #define PK11_R_GEN_KEY 132
173 #define PK11_R_SEEDRANDOM 133
174 #define PK11_R_GENERATERANDOM 134
175 #define PK11_R_INVALID_MESSAGE_LENGTH 135
176 #define PK11_R_UNKNOWN_ALGORITHM_TYPE 136
177 #define PK11_R_UNKNOWN_ASN1_OBJECT_ID 137
178 #define PK11_R_UNKNOWN_PADDING_TYPE 138
179 #define PK11_R_PADDING_CHECK_FAILED 139
180 #define PK11_R_DIGEST_TOO_BIG 140
181 #define PK11_R_MALLOC_FAILURE 141
182 #define PK11_R_CTRL_COMMAND_NOT_IMPLEMENTED 142
183 #define PK11_R_DATA_GREATER_THAN_MOD_LEN 143
184 #define PK11_R_DATA_TOO_LARGE_FOR_MODULUS 144
185 #define PK11_R_MISSING_KEY_COMPONENT 145
186 #define PK11_R_INVALID_SIGNATURE_LENGTH 146
187 #define PK11_R_INVALID_DSA_SIGNATURE_R 147
188 #define PK11_R_INVALID_DSA_SIGNATURE_S 148
189 #define PK11_R_INCONSISTENT_KEY 149
190 #define PK11_R_ENCRYPTUPDATE 150
191 #define PK11_R_DECRYPTUPDATE 151
192 #define PK11_R_DIGESTINIT 152
193 #define PK11_R_DIGESTUPDATE 153

new/usr/src/lib/openssl/include/hw_pk11_err.h 4

194 #define PK11_R_DIGESTFINAL 154
195 #define PK11_R_ENCRYPTFINAL 155
196 #define PK11_R_DECRYPTFINAL 156
197 #define PK11_R_NO_PRNG_SUPPORT 157
198 #define PK11_R_GETTOKENINFO 158
199 #define PK11_R_DERIVEKEY 159
200 #define PK11_R_GET_OPERATION_STATE 160
201 #define PK11_R_SET_OPERATION_STATE 161
202 #define PK11_R_INVALID_HANDLE 162
203 #define PK11_R_KEY_OR_IV_LEN_PROBLEM 163
204 #define PK11_R_INVALID_OPERATION_TYPE 164
205 #define PK11_R_ADD_NID_FAILED 165
206 #define PK11_R_ATFORK_FAILED 166

208 /* max byte length of a symetric key we support */
209 #define PK11_KEY_LEN_MAX 32

211 /*
212 * This structure encapsulates all reusable information for a PKCS#11
213 * session. A list of these objects is created on behalf of the
214 * calling application using an on-demand method. Each operation
215 * type (see PK11_OPTYPE below) has its own per-process list.
216 * Each of the lists is basically a cache for faster PKCS#11 object
217 * access to avoid expensive C_Find{,Init,Final}Object() calls.
218 *
219 * When a new request comes in, an object will be taken from the list
220 * (if there is one) or a new one is created to handle the request
221 * (if the list is empty). See pk11_get_session() on how it is done.
222 */
223 typedef struct PK11_st_SESSION
224 {
225 struct PK11_st_SESSION *next;
226 CK_SESSION_HANDLE session; /* PK11 session handle */
227 pid_t pid; /* Current process ID */
228 union
229 {
230 #ifndef OPENSSL_NO_RSA
231 struct
232 {
233 CK_OBJECT_HANDLE rsa_pub_key; /* pub handle */
234 CK_OBJECT_HANDLE rsa_priv_key; /* priv handle */
235 RSA *rsa_pub; /* pub key addr */
236 BIGNUM *rsa_n_num; /* pub modulus */
237 BIGNUM *rsa_e_num; /* pub exponent */
238 RSA *rsa_priv; /* priv key addr */
239 BIGNUM *rsa_d_num; /* priv exponent */
240 } u_RSA;
241 #endif /* OPENSSL_NO_RSA */
242 #ifndef OPENSSL_NO_DSA
243 struct
244 {
245 CK_OBJECT_HANDLE dsa_pub_key; /* pub handle */
246 CK_OBJECT_HANDLE dsa_priv_key; /* priv handle */
247 DSA *dsa_pub; /* pub key addr */
248 BIGNUM *dsa_pub_num; /* pub key */
249 DSA *dsa_priv; /* priv key addr */
250 BIGNUM *dsa_priv_num; /* priv key */
251 } u_DSA;
252 #endif /* OPENSSL_NO_DSA */
253 #ifndef OPENSSL_NO_DH
254 struct
255 {
256 CK_OBJECT_HANDLE dh_key; /* key handle */
257 DH *dh; /* dh key addr */
258 BIGNUM *dh_priv_num; /* priv dh key */
259 } u_DH;

new/usr/src/lib/openssl/include/hw_pk11_err.h 5

260 #endif /* OPENSSL_NO_DH */
261 struct
262 {
263 CK_OBJECT_HANDLE cipher_key; /* key handle */
264 unsigned char key[PK11_KEY_LEN_MAX];
265 int key_len; /* priv key len */
266 int encrypt; /* 1/0 enc/decr */
267 } u_cipher;
268 } opdata_u;
269 } PK11_SESSION;

271 #define opdata_rsa_pub_key opdata_u.u_RSA.rsa_pub_key
272 #define opdata_rsa_priv_key opdata_u.u_RSA.rsa_priv_key
273 #define opdata_rsa_pub opdata_u.u_RSA.rsa_pub
274 #define opdata_rsa_priv opdata_u.u_RSA.rsa_priv
275 #define opdata_rsa_n_num opdata_u.u_RSA.rsa_n_num
276 #define opdata_rsa_e_num opdata_u.u_RSA.rsa_e_num
277 #define opdata_rsa_d_num opdata_u.u_RSA.rsa_d_num
278 #define opdata_dsa_pub_key opdata_u.u_DSA.dsa_pub_key
279 #define opdata_dsa_priv_key opdata_u.u_DSA.dsa_priv_key
280 #define opdata_dsa_pub opdata_u.u_DSA.dsa_pub
281 #define opdata_dsa_pub_num opdata_u.u_DSA.dsa_pub_num
282 #define opdata_dsa_priv opdata_u.u_DSA.dsa_priv
283 #define opdata_dsa_priv_num opdata_u.u_DSA.dsa_priv_num
284 #define opdata_dh_key opdata_u.u_DH.dh_key
285 #define opdata_dh opdata_u.u_DH.dh
286 #define opdata_dh_priv_num opdata_u.u_DH.dh_priv_num
287 #define opdata_cipher_key opdata_u.u_cipher.cipher_key
288 #define opdata_key opdata_u.u_cipher.key
289 #define opdata_key_len opdata_u.u_cipher.key_len
290 #define opdata_encrypt opdata_u.u_cipher.encrypt

292 /*
293 * We have 3 different groups of operation types:
294 * 1) asymmetric operations
295 * 2) random operations
296 * 3) symmetric and digest operations
297 *
298 * This division into groups stems from the fact that it’s common that hardware
299 * providers may support operations from one group only. For example, hardware
300 * providers on UltraSPARC T2, n2rng(7d), ncp(7d), and n2cp(7d), each support
301 * only a single group of operations.
302 *
303 * For every group a different slot can be chosen. That means that we must have
304 * at least 3 different lists of cached PKCS#11 sessions since sessions from
305 * different groups may be initialized in different slots.
306 *
307 * To provide locking granularity in multithreaded environment, the groups are
308 * further splitted into types with each type having a separate session cache.
309 */
310 typedef enum PK11_OPTYPE_ENUM
311 {
312 OP_RAND,
313 OP_RSA,
314 OP_DSA,
315 OP_DH,
316 OP_CIPHER,
317 OP_DIGEST,
318 OP_MAX
319 } PK11_OPTYPE;

321 /*
322 * This structure contains the heads of the lists forming the object caches
323 * and locks associated with the lists.
324 */
325 typedef struct PK11_st_CACHE

new/usr/src/lib/openssl/include/hw_pk11_err.h 6

326 {
327 PK11_SESSION *head;
328 pthread_mutex_t *lock;
329 } PK11_CACHE;

331 /* structure for tracking handles of asymmetric key objects */
332 typedef struct PK11_active_st
333 {
334 CK_OBJECT_HANDLE h;
335 unsigned int refcnt;
336 struct PK11_active_st *prev;
337 struct PK11_active_st *next;
338 } PK11_active;

340 extern pthread_mutex_t *find_lock[];
341 extern PK11_active *active_list[];

343 #define LOCK_OBJSTORE(alg_type) \
344 (void) pthread_mutex_lock(find_lock[alg_type])
345 #define UNLOCK_OBJSTORE(alg_type) \
346 (void) pthread_mutex_unlock(find_lock[alg_type])

348 extern PK11_SESSION *pk11_get_session(PK11_OPTYPE optype);
349 extern void pk11_return_session(PK11_SESSION *sp, PK11_OPTYPE optype);

351 #ifndef OPENSSL_NO_RSA
352 extern int pk11_destroy_rsa_key_objects(PK11_SESSION *session);
353 extern int pk11_destroy_rsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock);
354 extern int pk11_destroy_rsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock);
355 extern EVP_PKEY *pk11_load_privkey(ENGINE *e, const char *pubkey_file,
356 UI_METHOD *ui_method, void *callback_data);
357 extern EVP_PKEY *pk11_load_pubkey(ENGINE *e, const char *pubkey_file,
358 UI_METHOD *ui_method, void *callback_data);
359 extern RSA_METHOD *PK11_RSA(void);
360 #endif /* OPENSSL_NO_RSA */
361 #ifndef OPENSSL_NO_DSA
362 extern int pk11_destroy_dsa_key_objects(PK11_SESSION *session);
363 extern int pk11_destroy_dsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock);
364 extern int pk11_destroy_dsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock);
365 extern DSA_METHOD *PK11_DSA(void);
366 #endif /* OPENSSL_NO_DSA */
367 #ifndef OPENSSL_NO_DH
368 extern int pk11_destroy_dh_key_objects(PK11_SESSION *session);
369 extern int pk11_destroy_dh_object(PK11_SESSION *sp, CK_BBOOL uselock);
370 extern DH_METHOD *PK11_DH(void);
371 #endif /* OPENSSL_NO_DH */

373 extern CK_FUNCTION_LIST_PTR pFuncList;

375 #endif /* HW_PK11_ERR_H */

new/usr/src/lib/openssl/include/kssl_lcl.h 1

**
 3439 Fri May 30 18:31:15 2014
new/usr/src/lib/openssl/include/kssl_lcl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/kssl.h -*- mode: C; c-file-style: "eay" -*- */
2 /* Written by Vern Staats <staatsvr@asc.hpc.mil> for the OpenSSL project 2000.
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #ifndef KSSL_LCL_H
60 #define KSSL_LCL_H

new/usr/src/lib/openssl/include/kssl_lcl.h 2

62 #include <openssl/kssl.h>

64 #ifndef OPENSSL_NO_KRB5

66 #ifdef __cplusplus
67 extern "C" {
68 #endif

70 /* Private (internal to OpenSSL) */
71 void print_krb5_data(char *label, krb5_data *kdata);
72 void print_krb5_authdata(char *label, krb5_authdata **adata);
73 void print_krb5_keyblock(char *label, krb5_keyblock *keyblk);

75 char *kstring(char *string);
76 char *knumber(int len, krb5_octet *contents);

78 const EVP_CIPHER *kssl_map_enc(krb5_enctype enctype);

80 int kssl_keytab_is_available(KSSL_CTX *kssl_ctx);
81 int kssl_tgt_is_available(KSSL_CTX *kssl_ctx);

83 #ifdef __cplusplus
84 }
85 #endif
86 #endif /* OPENSSL_NO_KRB5 */
87 #endif /* KSSL_LCL_H */

new/usr/src/lib/openssl/include/md32_common.h 1

**
 12522 Fri May 30 18:31:15 2014
new/usr/src/lib/openssl/include/md32_common.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/md32_common.h */
2 /* ==
3 * Copyright (c) 1999-2007 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * licensing@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */

52 /*
53 * This is a generic 32 bit "collector" for message digest algorithms.
54 * Whenever needed it collects input character stream into chunks of
55 * 32 bit values and invokes a block function that performs actual hash
56 * calculations.
57 *
58 * Porting guide.
59 *
60 * Obligatory macros:
61 *

new/usr/src/lib/openssl/include/md32_common.h 2

62 * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
63 * this macro defines byte order of input stream.
64 * HASH_CBLOCK
65 * size of a unit chunk HASH_BLOCK operates on.
66 * HASH_LONG
67 * has to be at lest 32 bit wide, if it’s wider, then
68 * HASH_LONG_LOG2 *has to* be defined along
69 * HASH_CTX
70 * context structure that at least contains following
71 * members:
72 * typedef struct {
73 * ...
74 * HASH_LONG Nl,Nh;
75 * either {
76 * HASH_LONG data[HASH_LBLOCK];
77 * unsigned char data[HASH_CBLOCK];
78 * };
79 * unsigned int num;
80 * ...
81 * } HASH_CTX;
82 * data[] vector is expected to be zeroed upon first call to
83 * HASH_UPDATE.
84 * HASH_UPDATE
85 * name of "Update" function, implemented here.
86 * HASH_TRANSFORM
87 * name of "Transform" function, implemented here.
88 * HASH_FINAL
89 * name of "Final" function, implemented here.
90 * HASH_BLOCK_DATA_ORDER
91 * name of "block" function capable of treating *unaligned* input
92 * message in original (data) byte order, implemented externally.
93 * HASH_MAKE_STRING
94 * macro convering context variables to an ASCII hash string.
95 *
96 * MD5 example:
97 *
98 * #define DATA_ORDER_IS_LITTLE_ENDIAN
99 *
100 * #define HASH_LONG MD5_LONG
101 * #define HASH_LONG_LOG2 MD5_LONG_LOG2
102 * #define HASH_CTX MD5_CTX
103 * #define HASH_CBLOCK MD5_CBLOCK
104 * #define HASH_UPDATE MD5_Update
105 * #define HASH_TRANSFORM MD5_Transform
106 * #define HASH_FINAL MD5_Final
107 * #define HASH_BLOCK_DATA_ORDER md5_block_data_order
108 *
109 * <appro@fy.chalmers.se>
110 */

112 #if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
113 #error "DATA_ORDER must be defined!"
114 #endif

116 #ifndef HASH_CBLOCK
117 #error "HASH_CBLOCK must be defined!"
118 #endif
119 #ifndef HASH_LONG
120 #error "HASH_LONG must be defined!"
121 #endif
122 #ifndef HASH_CTX
123 #error "HASH_CTX must be defined!"
124 #endif

126 #ifndef HASH_UPDATE
127 #error "HASH_UPDATE must be defined!"

new/usr/src/lib/openssl/include/md32_common.h 3

128 #endif
129 #ifndef HASH_TRANSFORM
130 #error "HASH_TRANSFORM must be defined!"
131 #endif
132 #ifndef HASH_FINAL
133 #error "HASH_FINAL must be defined!"
134 #endif

136 #ifndef HASH_BLOCK_DATA_ORDER
137 #error "HASH_BLOCK_DATA_ORDER must be defined!"
138 #endif

140 /*
141 * Engage compiler specific rotate intrinsic function if available.
142 */
143 #undef ROTATE
144 #ifndef PEDANTIC
145 # if defined(_MSC_VER) || defined(__ICC)
146 # define ROTATE(a,n) _lrotl(a,n)
147 # elif defined(__MWERKS__)
148 # if defined(__POWERPC__)
149 # define ROTATE(a,n) __rlwinm(a,n,0,31)
150 # elif defined(__MC68K__)
151 /* Motorola specific tweak. <appro@fy.chalmers.se> */
152 # define ROTATE(a,n) (n<24 ? __rol(a,n) : __ror(a,32-n))
153 # else
154 # define ROTATE(a,n) __rol(a,n)
155 # endif
156 # elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(
157 /*
158 * Some GNU C inline assembler templates. Note that these are
159 * rotates by *constant* number of bits! But that’s exactly
160 * what we need here...
161 * <appro@fy.chalmers.se>
162 */
163 # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86
164 # define ROTATE(a,n) ({ register unsigned int ret; \
165 __asm__ (\
166 "roll %1,%0" \
167 : "=r"(ret) \
168 : "I"(n), "0"((unsigned int)(a)) \
169 : "cc"); \
170 ret; \
171 })
172 # elif defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \
173 defined(__powerpc) || defined(__ppc__) || defined(__powerpc64__)
174 # define ROTATE(a,n) ({ register unsigned int ret; \
175 __asm__ (\
176 "rlwinm %0,%1,%2,0,31" \
177 : "=r"(ret) \
178 : "r"(a), "I"(n)); \
179 ret; \
180 })
181 # elif defined(__s390x__)
182 # define ROTATE(a,n) ({ register unsigned int ret; \
183 __asm__ ("rll %0,%1,%2" \
184 : "=r"(ret) \
185 : "r"(a), "I"(n)); \
186 ret; \
187 })
188 # endif
189 # endif
190 #endif /* PEDANTIC */

192 #ifndef ROTATE
193 #define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))

new/usr/src/lib/openssl/include/md32_common.h 4

194 #endif

196 #if defined(DATA_ORDER_IS_BIG_ENDIAN)

198 #ifndef PEDANTIC
199 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OP
200 # if ((defined(__i386) || defined(__i386__)) && !defined(I386_ONLY)) || \
201 (defined(__x86_64) || defined(__x86_64__))
202 # if !defined(B_ENDIAN)
203 /*
204 * This gives ~30-40% performance improvement in SHA-256 compiled
205 * with gcc [on P4]. Well, first macro to be frank. We can pull
206 * this trick on x86* platforms only, because these CPUs can fetch
207 * unaligned data without raising an exception.
208 */
209 # define HOST_c2l(c,l) ({ unsigned int r=*((const unsigned int *)(c));
210 __asm__ ("bswapl %0":"=r"(r):"0"(r));
211 (c)+=4; (l)=r; })
212 # define HOST_l2c(l,c) ({ unsigned int r=(l); \
213 __asm__ ("bswapl %0":"=r"(r):"0"(r));
214 *((unsigned int *)(c))=r; (c)+=4; r; })
215 # endif
216 # endif
217 # endif
218 #endif
219 #if defined(__s390__) || defined(__s390x__)
220 # define HOST_c2l(c,l) ((l)=*((const unsigned int *)(c)), (c)+=4, (l))
221 # define HOST_l2c(l,c) (*((unsigned int *)(c))=(l), (c)+=4, (l))
222 #endif

224 #ifndef HOST_c2l
225 #define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))<<24), \
226 l|=(((unsigned long)(*((c)++)))<<16), \
227 l|=(((unsigned long)(*((c)++)))<< 8), \
228 l|=(((unsigned long)(*((c)++)))), \
229 l)
230 #endif
231 #ifndef HOST_l2c
232 #define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
233 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
234 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
235 *((c)++)=(unsigned char)(((l))&0xff), \
236 l)
237 #endif

239 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)

241 #ifndef PEDANTIC
242 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OP
243 # if defined(__s390x__)
244 # define HOST_c2l(c,l) ({ __asm__ ("lrv %0,%1"
245 :"=d"(l) :"m"(*(const unsigned int *)(c)));\
246 (c)+=4; (l); })
247 # define HOST_l2c(l,c) ({ __asm__ ("strv %1,%0"
248 :"=m"(*(unsigned int *)(c)) :"d"(l));\
249 (c)+=4; (l); })
250 # endif
251 # endif
252 #endif
253 #if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_6
254 # ifndef B_ENDIAN
255 /* See comment in DATA_ORDER_IS_BIG_ENDIAN section. */
256 # define HOST_c2l(c,l) ((l)=*((const unsigned int *)(c)), (c)+=4, l)
257 # define HOST_l2c(l,c) (*((unsigned int *)(c))=(l), (c)+=4, l)
258 # endif
259 #endif

new/usr/src/lib/openssl/include/md32_common.h 5

261 #ifndef HOST_c2l
262 #define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))), \
263 l|=(((unsigned long)(*((c)++)))<< 8), \
264 l|=(((unsigned long)(*((c)++)))<<16), \
265 l|=(((unsigned long)(*((c)++)))<<24), \
266 l)
267 #endif
268 #ifndef HOST_l2c
269 #define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l))&0xff), \
270 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
271 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
272 *((c)++)=(unsigned char)(((l)>>24)&0xff), \
273 l)
274 #endif

276 #endif

278 /*
279 * Time for some action:-)
280 */

282 int HASH_UPDATE (HASH_CTX *c, const void *data_, size_t len)
283 {
284 const unsigned char *data=data_;
285 unsigned char *p;
286 HASH_LONG l;
287 size_t n;

289 if (len==0) return 1;

291 l=(c->Nl+(((HASH_LONG)len)<<3))&0xffffffffUL;
292 /* 95-05-24 eay Fixed a bug with the overflow handling, thanks to
293 * Wei Dai <weidai@eskimo.com> for pointing it out. */
294 if (l < c->Nl) /* overflow */
295 c->Nh++;
296 c->Nh+=(HASH_LONG)(len>>29); /* might cause compiler warning on 16-bi
297 c->Nl=l;

299 n = c->num;
300 if (n != 0)
301 {
302 p=(unsigned char *)c->data;

304 if (len >= HASH_CBLOCK || len+n >= HASH_CBLOCK)
305 {
306 memcpy (p+n,data,HASH_CBLOCK-n);
307 HASH_BLOCK_DATA_ORDER (c,p,1);
308 n = HASH_CBLOCK-n;
309 data += n;
310 len -= n;
311 c->num = 0;
312 memset (p,0,HASH_CBLOCK); /* keep it zeroed */
313 }
314 else
315 {
316 memcpy (p+n,data,len);
317 c->num += (unsigned int)len;
318 return 1;
319 }
320 }

322 n = len/HASH_CBLOCK;
323 if (n > 0)
324 {
325 HASH_BLOCK_DATA_ORDER (c,data,n);

new/usr/src/lib/openssl/include/md32_common.h 6

326 n *= HASH_CBLOCK;
327 data += n;
328 len -= n;
329 }

331 if (len != 0)
332 {
333 p = (unsigned char *)c->data;
334 c->num = (unsigned int)len;
335 memcpy (p,data,len);
336 }
337 return 1;
338 }

341 void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data)
342 {
343 HASH_BLOCK_DATA_ORDER (c,data,1);
344 }

347 int HASH_FINAL (unsigned char *md, HASH_CTX *c)
348 {
349 unsigned char *p = (unsigned char *)c->data;
350 size_t n = c->num;

352 p[n] = 0x80; /* there is always room for one */
353 n++;

355 if (n > (HASH_CBLOCK-8))
356 {
357 memset (p+n,0,HASH_CBLOCK-n);
358 n=0;
359 HASH_BLOCK_DATA_ORDER (c,p,1);
360 }
361 memset (p+n,0,HASH_CBLOCK-8-n);

363 p += HASH_CBLOCK-8;
364 #if defined(DATA_ORDER_IS_BIG_ENDIAN)
365 (void)HOST_l2c(c->Nh,p);
366 (void)HOST_l2c(c->Nl,p);
367 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
368 (void)HOST_l2c(c->Nl,p);
369 (void)HOST_l2c(c->Nh,p);
370 #endif
371 p -= HASH_CBLOCK;
372 HASH_BLOCK_DATA_ORDER (c,p,1);
373 c->num=0;
374 memset (p,0,HASH_CBLOCK);

376 #ifndef HASH_MAKE_STRING
377 #error "HASH_MAKE_STRING must be defined!"
378 #else
379 HASH_MAKE_STRING(c,md);
380 #endif

382 return 1;
383 }

385 #ifndef MD32_REG_T
386 #if defined(__alpha) || defined(__sparcv9) || defined(__mips)
387 #define MD32_REG_T long
388 /*
389 * This comment was originaly written for MD5, which is why it
390 * discusses A-D. But it basically applies to all 32-bit digests,
391 * which is why it was moved to common header file.

new/usr/src/lib/openssl/include/md32_common.h 7

392 *
393 * In case you wonder why A-D are declared as long and not
394 * as MD5_LONG. Doing so results in slight performance
395 * boost on LP64 architectures. The catch is we don’t
396 * really care if 32 MSBs of a 64-bit register get polluted
397 * with eventual overflows as we *save* only 32 LSBs in
398 * *either* case. Now declaring ’em long excuses the compiler
399 * from keeping 32 MSBs zeroed resulting in 13% performance
400 * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
401 * Well, to be honest it should say that this *prevents*
402 * performance degradation.
403 * <appro@fy.chalmers.se>
404 */
405 #else
406 /*
407 * Above is not absolute and there are LP64 compilers that
408 * generate better code if MD32_REG_T is defined int. The above
409 * pre-processor condition reflects the circumstances under which
410 * the conclusion was made and is subject to further extension.
411 * <appro@fy.chalmers.se>
412 */
413 #define MD32_REG_T int
414 #endif
415 #endif

new/usr/src/lib/openssl/include/md4_locl.h 1

**
 4689 Fri May 30 18:31:16 2014
new/usr/src/lib/openssl/include/md4_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/md4/md4_locl.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdlib.h>
60 #include <string.h>
61 #include <openssl/opensslconf.h>

new/usr/src/lib/openssl/include/md4_locl.h 2

62 #include <openssl/md4.h>

64 #ifndef MD4_LONG_LOG2
65 #define MD4_LONG_LOG2 2 /* default to 32 bits */
66 #endif

68 void md4_block_data_order (MD4_CTX *c, const void *p,size_t num);

70 #define DATA_ORDER_IS_LITTLE_ENDIAN

72 #define HASH_LONG MD4_LONG
73 #define HASH_CTX MD4_CTX
74 #define HASH_CBLOCK MD4_CBLOCK
75 #define HASH_UPDATE MD4_Update
76 #define HASH_TRANSFORM MD4_Transform
77 #define HASH_FINAL MD4_Final
78 #define HASH_MAKE_STRING(c,s) do { \
79 unsigned long ll; \
80 ll=(c)->A; (void)HOST_l2c(ll,(s)); \
81 ll=(c)->B; (void)HOST_l2c(ll,(s)); \
82 ll=(c)->C; (void)HOST_l2c(ll,(s)); \
83 ll=(c)->D; (void)HOST_l2c(ll,(s)); \
84 } while (0)
85 #define HASH_BLOCK_DATA_ORDER md4_block_data_order

87 #include "md32_common.h"

89 /*
90 #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z)))
91 #define G(x,y,z) (((x) & (y)) | ((x) & ((z))) | ((y) & ((z))))
92 */

94 /* As pointed out by Wei Dai <weidai@eskimo.com>, the above can be
95 * simplified to the code below. Wei attributes these optimizations
96 * to Peter Gutmann’s SHS code, and he attributes it to Rich Schroeppel.
97 */
98 #define F(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
99 #define G(b,c,d) (((b) & (c)) | ((b) & (d)) | ((c) & (d)))
100 #define H(b,c,d) ((b) ^ (c) ^ (d))

102 #define R0(a,b,c,d,k,s,t) { \
103 a+=((k)+(t)+F((b),(c),(d))); \
104 a=ROTATE(a,s); };

106 #define R1(a,b,c,d,k,s,t) { \
107 a+=((k)+(t)+G((b),(c),(d))); \
108 a=ROTATE(a,s); };\

110 #define R2(a,b,c,d,k,s,t) { \
111 a+=((k)+(t)+H((b),(c),(d))); \
112 a=ROTATE(a,s); };

new/usr/src/lib/openssl/include/md5_locl.h 1

**
 5194 Fri May 30 18:31:16 2014
new/usr/src/lib/openssl/include/md5_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/md5/md5_locl.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdlib.h>
60 #include <string.h>
61 #include <openssl/e_os2.h>

new/usr/src/lib/openssl/include/md5_locl.h 2

62 #include <openssl/md5.h>

64 #ifndef MD5_LONG_LOG2
65 #define MD5_LONG_LOG2 2 /* default to 32 bits */
66 #endif

68 #ifdef MD5_ASM
69 # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL
70 defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M
71 # define md5_block_data_order md5_block_asm_data_order
72 # elif defined(__ia64) || defined(__ia64__) || defined(_M_IA64)
73 # define md5_block_data_order md5_block_asm_data_order
74 # endif
75 #endif

77 void md5_block_data_order (MD5_CTX *c, const void *p,size_t num);

79 #define DATA_ORDER_IS_LITTLE_ENDIAN

81 #define HASH_LONG MD5_LONG
82 #define HASH_CTX MD5_CTX
83 #define HASH_CBLOCK MD5_CBLOCK
84 #define HASH_UPDATE MD5_Update
85 #define HASH_TRANSFORM MD5_Transform
86 #define HASH_FINAL MD5_Final
87 #define HASH_MAKE_STRING(c,s) do { \
88 unsigned long ll; \
89 ll=(c)->A; (void)HOST_l2c(ll,(s)); \
90 ll=(c)->B; (void)HOST_l2c(ll,(s)); \
91 ll=(c)->C; (void)HOST_l2c(ll,(s)); \
92 ll=(c)->D; (void)HOST_l2c(ll,(s)); \
93 } while (0)
94 #define HASH_BLOCK_DATA_ORDER md5_block_data_order

96 #include "md32_common.h"

98 /*
99 #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z)))
100 #define G(x,y,z) (((x) & (z)) | ((y) & (~(z))))
101 */

103 /* As pointed out by Wei Dai <weidai@eskimo.com>, the above can be
104 * simplified to the code below. Wei attributes these optimizations
105 * to Peter Gutmann’s SHS code, and he attributes it to Rich Schroeppel.
106 */
107 #define F(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
108 #define G(b,c,d) ((((b) ^ (c)) & (d)) ^ (c))
109 #define H(b,c,d) ((b) ^ (c) ^ (d))
110 #define I(b,c,d) (((~(d)) | (b)) ^ (c))

112 #define R0(a,b,c,d,k,s,t) { \
113 a+=((k)+(t)+F((b),(c),(d))); \
114 a=ROTATE(a,s); \
115 a+=b; };\

117 #define R1(a,b,c,d,k,s,t) { \
118 a+=((k)+(t)+G((b),(c),(d))); \
119 a=ROTATE(a,s); \
120 a+=b; };

122 #define R2(a,b,c,d,k,s,t) { \
123 a+=((k)+(t)+H((b),(c),(d))); \
124 a=ROTATE(a,s); \
125 a+=b; };

127 #define R3(a,b,c,d,k,s,t) { \

new/usr/src/lib/openssl/include/md5_locl.h 3

128 a+=((k)+(t)+I((b),(c),(d))); \
129 a=ROTATE(a,s); \
130 a+=b; };

new/usr/src/lib/openssl/include/modes_lcl.h 1

**
 3637 Fri May 30 18:31:16 2014
new/usr/src/lib/openssl/include/modes_lcl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2010 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use is governed by OpenSSL license.
5 * ==
6 */

8 #include <openssl/modes.h>

11 #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__)
12 typedef __int64 i64;
13 typedef unsigned __int64 u64;
14 #define U64(C) C##UI64
15 #elif defined(__arch64__)
16 typedef long i64;
17 typedef unsigned long u64;
18 #define U64(C) C##UL
19 #else
20 typedef long long i64;
21 typedef unsigned long long u64;
22 #define U64(C) C##ULL
23 #endif

25 typedef unsigned int u32;
26 typedef unsigned char u8;

28 #define STRICT_ALIGNMENT 1
29 #if defined(__i386) || defined(__i386__) || \
30 defined(__x86_64) || defined(__x86_64__) || \
31 defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64) || \
32 defined(__s390__) || defined(__s390x__)
33 # undef STRICT_ALIGNMENT
34 #endif

36 #if !defined(PEDANTIC) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE
37 #if defined(__GNUC__) && __GNUC__>=2
38 # if defined(__x86_64) || defined(__x86_64__)
39 # define BSWAP8(x) ({ u64 ret=(x); \
40 __asm__ ("bswapq %0" \
41 : "+r"(ret)); ret; })
42 # define BSWAP4(x) ({ u32 ret=(x); \
43 __asm__ ("bswapl %0" \
44 : "+r"(ret)); ret; })
45 # elif (defined(__i386) || defined(__i386__)) && !defined(I386_ONLY)
46 # define BSWAP8(x) ({ u32 lo=(u64)(x)>>32,hi=(x); \
47 __asm__ ("bswapl %0; bswapl %1" \
48 : "+r"(hi),"+r"(lo)); \
49 (u64)hi<<32|lo; })
50 # define BSWAP4(x) ({ u32 ret=(x); \
51 __asm__ ("bswapl %0" \
52 : "+r"(ret)); ret; })
53 # elif (defined(__arm__) || defined(__arm)) && !defined(STRICT_ALIGNMENT)
54 # define BSWAP8(x) ({ u32 lo=(u64)(x)>>32,hi=(x); \
55 __asm__ ("rev %0,%0; rev %1,%1" \
56 : "+r"(hi),"+r"(lo)); \
57 (u64)hi<<32|lo; })
58 # define BSWAP4(x) ({ u32 ret; \
59 __asm__ ("rev %0,%1" \
60 : "=r"(ret) : "r"((u32)(x))); \
61 ret; })

new/usr/src/lib/openssl/include/modes_lcl.h 2

62 # endif
63 #elif defined(_MSC_VER)
64 # if _MSC_VER>=1300
65 # pragma intrinsic(_byteswap_uint64,_byteswap_ulong)
66 # define BSWAP8(x) _byteswap_uint64((u64)(x))
67 # define BSWAP4(x) _byteswap_ulong((u32)(x))
68 # elif defined(_M_IX86)
69 __inline u32 _bswap4(u32 val) {
70 _asm mov eax,val
71 _asm bswap eax
72 }
73 # define BSWAP4(x) _bswap4(x)
74 # endif
75 #endif
76 #endif

78 #if defined(BSWAP4) && !defined(STRICT_ALIGNMENT)
79 #define GETU32(p) BSWAP4(*(const u32 *)(p))
80 #define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v)
81 #else
82 #define GETU32(p) ((u32)(p)[0]<<24|(u32)(p)[1]<<16|(u32)(p)[2]<<8|(u32)(p)
83 #define PUTU32(p,v) ((p)[0]=(u8)((v)>>24),(p)[1]=(u8)((v)>>16),(p)[2]=(u8)((
84 #endif

86 /* GCM definitions */

88 typedef struct { u64 hi,lo; } u128;

90 #ifdef TABLE_BITS
91 #undef TABLE_BITS
92 #endif
93 /*
94 * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should
95 * never be set to 8 [or 1]. For further information see gcm128.c.
96 */
97 #define TABLE_BITS 4

99 struct gcm128_context {
100 /* Following 6 names follow names in GCM specification */
101 union { u64 u[2]; u32 d[4]; u8 c[16]; size_t t[16/sizeof(size_t)]; }
102 Yi,EKi,EK0,len,Xi,H;
103 /* Relative position of Xi, H and pre-computed Htable is used
104 * in some assembler modules, i.e. don’t change the order! */
105 #if TABLE_BITS==8
106 u128 Htable[256];
107 #else
108 u128 Htable[16];
109 void (*gmult)(u64 Xi[2],const u128 Htable[16]);
110 void (*ghash)(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
111 #endif
112 unsigned int mres, ares;
113 block128_f block;
114 void *key;
115 };

117 struct xts128_context {
118 void *key1, *key2;
119 block128_f block1,block2;
120 };

122 struct ccm128_context {
123 union { u64 u[2]; u8 c[16]; } nonce, cmac;
124 u64 blocks;
125 block128_f block;
126 void *key;
127 };

new/usr/src/lib/openssl/include/modes_lcl.h 3

new/usr/src/lib/openssl/include/o_dir.h 1

**
 2111 Fri May 30 18:31:16 2014
new/usr/src/lib/openssl/include/o_dir.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/o_dir.h -*- mode:C; c-file-style: "eay" -*- */
2 /* Copied from Richard Levitte’s (richard@levitte.org) LP library. All
3 * symbol names have been changed, with permission from the author.
4 */

6 /* $LP: LPlib/source/LPdir.h,v 1.1 2004/06/14 08:56:04 _cvs_levitte Exp $ */
7 /*
8 * Copyright (c) 2004, Richard Levitte <richard@levitte.org>
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */

34 #ifndef O_DIR_H
35 #define O_DIR_H

37 #ifdef __cplusplus
38 extern "C" {
39 #endif

41 typedef struct OPENSSL_dir_context_st OPENSSL_DIR_CTX;

43 /* returns NULL on error or end-of-directory.
44 If it is end-of-directory, errno will be zero */
45 const char *OPENSSL_DIR_read(OPENSSL_DIR_CTX **ctx, const char *directory);
46 /* returns 1 on success, 0 on error */
47 int OPENSSL_DIR_end(OPENSSL_DIR_CTX **ctx);

49 #ifdef __cplusplus
50 }
51 #endif

53 #endif /* LPDIR_H */

new/usr/src/lib/openssl/include/o_str.h 1

**
 3061 Fri May 30 18:31:16 2014
new/usr/src/lib/openssl/include/o_str.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/o_str.h -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
3 * project 2003.
4 */
5 /* ==
6 * Copyright (c) 2003 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #ifndef HEADER_O_STR_H
60 #define HEADER_O_STR_H

new/usr/src/lib/openssl/include/o_str.h 2

62 #include <stddef.h> /* to get size_t */

64 int OPENSSL_strcasecmp(const char *str1, const char *str2);
65 int OPENSSL_strncasecmp(const char *str1, const char *str2, size_t n);
66 int OPENSSL_memcmp(const void *p1,const void *p2,size_t n);

68 #endif

new/usr/src/lib/openssl/include/o_time.h 1

**
 2989 Fri May 30 18:31:16 2014
new/usr/src/lib/openssl/include/o_time.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/o_time.h -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #ifndef HEADER_O_TIME_H
60 #define HEADER_O_TIME_H

new/usr/src/lib/openssl/include/o_time.h 2

62 #include <time.h>

64 struct tm *OPENSSL_gmtime(const time_t *timer, struct tm *result);
65 int OPENSSL_gmtime_adj(struct tm *tm, int offset_day, long offset_sec);

67 #endif

new/usr/src/lib/openssl/include/obj_dat.h 1

**
 256051 Fri May 30 18:31:16 2014
new/usr/src/lib/openssl/include/obj_dat.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/objects/obj_dat.h */

3 /* THIS FILE IS GENERATED FROM objects.h by obj_dat.pl via the
4 * following command:
5 * perl obj_dat.pl obj_mac.h obj_dat.h
6 */

8 /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
9 * All rights reserved.
10 *
11 * This package is an SSL implementation written
12 * by Eric Young (eay@cryptsoft.com).
13 * The implementation was written so as to conform with Netscapes SSL.
14 *
15 * This library is free for commercial and non-commercial use as long as
16 * the following conditions are aheared to. The following conditions
17 * apply to all code found in this distribution, be it the RC4, RSA,
18 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
19 * included with this distribution is covered by the same copyright terms
20 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
21 *
22 * Copyright remains Eric Young’s, and as such any Copyright notices in
23 * the code are not to be removed.
24 * If this package is used in a product, Eric Young should be given attribution
25 * as the author of the parts of the library used.
26 * This can be in the form of a textual message at program startup or
27 * in documentation (online or textual) provided with the package.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 * 1. Redistributions of source code must retain the copyright
33 * notice, this list of conditions and the following disclaimer.
34 * 2. Redistributions in binary form must reproduce the above copyright
35 * notice, this list of conditions and the following disclaimer in the
36 * documentation and/or other materials provided with the distribution.
37 * 3. All advertising materials mentioning features or use of this software
38 * must display the following acknowledgement:
39 * "This product includes cryptographic software written by
40 * Eric Young (eay@cryptsoft.com)"
41 * The word ’cryptographic’ can be left out if the rouines from the library
42 * being used are not cryptographic related :-).
43 * 4. If you include any Windows specific code (or a derivative thereof) from
44 * the apps directory (application code) you must include an acknowledgement:
45 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
46 *
47 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * The licence and distribution terms for any publically available version or
60 * derivative of this code cannot be changed. i.e. this code cannot simply be
61 * copied and put under another distribution licence

new/usr/src/lib/openssl/include/obj_dat.h 2

62 * [including the GNU Public Licence.]
63 */

65 #define NUM_NID 920
66 #define NUM_SN 913
67 #define NUM_LN 913
68 #define NUM_OBJ 857

70 static const unsigned char lvalues[5980]={
71 0x00, /* [0] OBJ_undef */
72 0x2A,0x86,0x48,0x86,0xF7,0x0D, /* [1] OBJ_rsadsi */
73 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01, /* [7] OBJ_pkcs */
74 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x02, /* [14] OBJ_md2 */
75 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x05, /* [22] OBJ_md5 */
76 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x03,0x04, /* [30] OBJ_rc4 */
77 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x01,/* [38] OBJ_rsaEncryption */
78 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x02,/* [47] OBJ_md2WithRSAEncryption *
79 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x04,/* [56] OBJ_md5WithRSAEncryption *
80 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x01,/* [65] OBJ_pbeWithMD2AndDES_CBC *
81 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x03,/* [74] OBJ_pbeWithMD5AndDES_CBC *
82 0x55, /* [83] OBJ_X500 */
83 0x55,0x04, /* [84] OBJ_X509 */
84 0x55,0x04,0x03, /* [86] OBJ_commonName */
85 0x55,0x04,0x06, /* [89] OBJ_countryName */
86 0x55,0x04,0x07, /* [92] OBJ_localityName */
87 0x55,0x04,0x08, /* [95] OBJ_stateOrProvinceName */
88 0x55,0x04,0x0A, /* [98] OBJ_organizationName */
89 0x55,0x04,0x0B, /* [101] OBJ_organizationalUnitName
90 0x55,0x08,0x01,0x01, /* [104] OBJ_rsa */
91 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x07, /* [108] OBJ_pkcs7 */
92 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x07,0x01,/* [116] OBJ_pkcs7_data */
93 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x07,0x02,/* [125] OBJ_pkcs7_signed */
94 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x07,0x03,/* [134] OBJ_pkcs7_enveloped */
95 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x07,0x04,/* [143] OBJ_pkcs7_signedAndEnvelop
96 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x07,0x05,/* [152] OBJ_pkcs7_digest */
97 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x07,0x06,/* [161] OBJ_pkcs7_encrypted */
98 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x03, /* [170] OBJ_pkcs3 */
99 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x03,0x01,/* [178] OBJ_dhKeyAgreement */
100 0x2B,0x0E,0x03,0x02,0x06, /* [187] OBJ_des_ecb */
101 0x2B,0x0E,0x03,0x02,0x09, /* [192] OBJ_des_cfb64 */
102 0x2B,0x0E,0x03,0x02,0x07, /* [197] OBJ_des_cbc */
103 0x2B,0x0E,0x03,0x02,0x11, /* [202] OBJ_des_ede_ecb */
104 0x2B,0x06,0x01,0x04,0x01,0x81,0x3C,0x07,0x01,0x01,0x02,/* [207] OBJ_idea_cbc */
105 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x03,0x02, /* [218] OBJ_rc2_cbc */
106 0x2B,0x0E,0x03,0x02,0x12, /* [226] OBJ_sha */
107 0x2B,0x0E,0x03,0x02,0x0F, /* [231] OBJ_shaWithRSAEncryption *
108 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x03,0x07, /* [236] OBJ_des_ede3_cbc */
109 0x2B,0x0E,0x03,0x02,0x08, /* [244] OBJ_des_ofb64 */
110 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09, /* [249] OBJ_pkcs9 */
111 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x01,/* [257] OBJ_pkcs9_emailAddress */
112 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x02,/* [266] OBJ_pkcs9_unstructuredName
113 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x03,/* [275] OBJ_pkcs9_contentType */
114 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x04,/* [284] OBJ_pkcs9_messageDigest */
115 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x05,/* [293] OBJ_pkcs9_signingTime */
116 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x06,/* [302] OBJ_pkcs9_countersignature
117 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x07,/* [311] OBJ_pkcs9_challengePasswor
118 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x08,/* [320] OBJ_pkcs9_unstructuredAddr
119 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x09,/* [329] OBJ_pkcs9_extCertAttribute
120 0x60,0x86,0x48,0x01,0x86,0xF8,0x42, /* [338] OBJ_netscape */
121 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01, /* [345] OBJ_netscape_cert_extensio
122 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x02, /* [353] OBJ_netscape_data_type */
123 0x2B,0x0E,0x03,0x02,0x1A, /* [361] OBJ_sha1 */
124 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x05,/* [366] OBJ_sha1WithRSAEncryption
125 0x2B,0x0E,0x03,0x02,0x0D, /* [375] OBJ_dsaWithSHA */
126 0x2B,0x0E,0x03,0x02,0x0C, /* [380] OBJ_dsa_2 */
127 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x0B,/* [385] OBJ_pbeWithSHA1AndRC2_CBC

new/usr/src/lib/openssl/include/obj_dat.h 3

128 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x0C,/* [394] OBJ_id_pbkdf2 */
129 0x2B,0x0E,0x03,0x02,0x1B, /* [403] OBJ_dsaWithSHA1_2 */
130 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x01,/* [408] OBJ_netscape_cert_type */
131 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x02,/* [417] OBJ_netscape_base_url */
132 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x03,/* [426] OBJ_netscape_revocation_ur
133 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x04,/* [435] OBJ_netscape_ca_revocation
134 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x07,/* [444] OBJ_netscape_renewal_url *
135 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x08,/* [453] OBJ_netscape_ca_policy_url
136 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x0C,/* [462] OBJ_netscape_ssl_server_na
137 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x01,0x0D,/* [471] OBJ_netscape_comment */
138 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x02,0x05,/* [480] OBJ_netscape_cert_sequence
139 0x55,0x1D, /* [489] OBJ_id_ce */
140 0x55,0x1D,0x0E, /* [491] OBJ_subject_key_identifier
141 0x55,0x1D,0x0F, /* [494] OBJ_key_usage */
142 0x55,0x1D,0x10, /* [497] OBJ_private_key_usage_peri
143 0x55,0x1D,0x11, /* [500] OBJ_subject_alt_name */
144 0x55,0x1D,0x12, /* [503] OBJ_issuer_alt_name */
145 0x55,0x1D,0x13, /* [506] OBJ_basic_constraints */
146 0x55,0x1D,0x14, /* [509] OBJ_crl_number */
147 0x55,0x1D,0x20, /* [512] OBJ_certificate_policies *
148 0x55,0x1D,0x23, /* [515] OBJ_authority_key_identifi
149 0x2B,0x06,0x01,0x04,0x01,0x97,0x55,0x01,0x02,/* [518] OBJ_bf_cbc */
150 0x55,0x08,0x03,0x65, /* [527] OBJ_mdc2 */
151 0x55,0x08,0x03,0x64, /* [531] OBJ_mdc2WithRSA */
152 0x55,0x04,0x2A, /* [535] OBJ_givenName */
153 0x55,0x04,0x04, /* [538] OBJ_surname */
154 0x55,0x04,0x2B, /* [541] OBJ_initials */
155 0x55,0x1D,0x1F, /* [544] OBJ_crl_distribution_point
156 0x2B,0x0E,0x03,0x02,0x03, /* [547] OBJ_md5WithRSA */
157 0x55,0x04,0x05, /* [552] OBJ_serialNumber */
158 0x55,0x04,0x0C, /* [555] OBJ_title */
159 0x55,0x04,0x0D, /* [558] OBJ_description */
160 0x2A,0x86,0x48,0x86,0xF6,0x7D,0x07,0x42,0x0A,/* [561] OBJ_cast5_cbc */
161 0x2A,0x86,0x48,0x86,0xF6,0x7D,0x07,0x42,0x0C,/* [570] OBJ_pbeWithMD5AndCast5_CBC
162 0x2A,0x86,0x48,0xCE,0x38,0x04,0x03, /* [579] OBJ_dsaWithSHA1 */
163 0x2B,0x0E,0x03,0x02,0x1D, /* [586] OBJ_sha1WithRSA */
164 0x2A,0x86,0x48,0xCE,0x38,0x04,0x01, /* [591] OBJ_dsa */
165 0x2B,0x24,0x03,0x02,0x01, /* [598] OBJ_ripemd160 */
166 0x2B,0x24,0x03,0x03,0x01,0x02, /* [603] OBJ_ripemd160WithRSA */
167 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x03,0x08, /* [609] OBJ_rc5_cbc */
168 0x29,0x01,0x01,0x85,0x1A,0x01, /* [617] OBJ_rle_compression */
169 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x08,/* [623] OBJ_zlib_compres
170 0x55,0x1D,0x25, /* [634] OBJ_ext_key_usage */
171 0x2B,0x06,0x01,0x05,0x05,0x07, /* [637] OBJ_id_pkix */
172 0x2B,0x06,0x01,0x05,0x05,0x07,0x03, /* [643] OBJ_id_kp */
173 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x01, /* [650] OBJ_server_auth */
174 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x02, /* [658] OBJ_client_auth */
175 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x03, /* [666] OBJ_code_sign */
176 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x04, /* [674] OBJ_email_protect */
177 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x08, /* [682] OBJ_time_stamp */
178 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x02,0x01,0x15,/* [690] OBJ_ms_code_ind */
179 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x02,0x01,0x16,/* [700] OBJ_ms_code_com */
180 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x0A,0x03,0x01,/* [710] OBJ_ms_ctl_sign */
181 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x0A,0x03,0x03,/* [720] OBJ_ms_sgc */
182 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x0A,0x03,0x04,/* [730] OBJ_ms_efs */
183 0x60,0x86,0x48,0x01,0x86,0xF8,0x42,0x04,0x01,/* [740] OBJ_ns_sgc */
184 0x55,0x1D,0x1B, /* [749] OBJ_delta_crl */
185 0x55,0x1D,0x15, /* [752] OBJ_crl_reason */
186 0x55,0x1D,0x18, /* [755] OBJ_invalidity_date */
187 0x2B,0x65,0x01,0x04,0x01, /* [758] OBJ_sxnet */
188 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x01,0x01,/* [763] OBJ_pbe_WithSHA1And12
189 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x01,0x02,/* [773] OBJ_pbe_WithSHA1And40
190 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x01,0x03,/* [783] OBJ_pbe_WithSHA1And3_
191 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x01,0x04,/* [793] OBJ_pbe_WithSHA1And2_
192 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x01,0x05,/* [803] OBJ_pbe_WithSHA1And12
193 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x01,0x06,/* [813] OBJ_pbe_WithSHA1And40

new/usr/src/lib/openssl/include/obj_dat.h 4

194 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x0A,0x01,0x01,/* [823] OBJ_keyBag */
195 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x0A,0x01,0x02,/* [834] OBJ_pkcs8Shroude
196 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x0A,0x01,0x03,/* [845] OBJ_certBag */
197 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x0A,0x01,0x04,/* [856] OBJ_crlBag */
198 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x0A,0x01,0x05,/* [867] OBJ_secretBag */
199 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x0C,0x0A,0x01,0x06,/* [878] OBJ_safeContents
200 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x14,/* [889] OBJ_friendlyName */
201 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x15,/* [898] OBJ_localKeyID */
202 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x16,0x01,/* [907] OBJ_x509Certificate *
203 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x16,0x02,/* [917] OBJ_sdsiCertificate *
204 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x17,0x01,/* [927] OBJ_x509Crl */
205 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x0D,/* [937] OBJ_pbes2 */
206 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x0E,/* [946] OBJ_pbmac1 */
207 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x07, /* [955] OBJ_hmacWithSHA1 */
208 0x2B,0x06,0x01,0x05,0x05,0x07,0x02,0x01, /* [963] OBJ_id_qt_cps */
209 0x2B,0x06,0x01,0x05,0x05,0x07,0x02,0x02, /* [971] OBJ_id_qt_unotice */
210 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x0F,/* [979] OBJ_SMIMECapabilities */
211 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x04,/* [988] OBJ_pbeWithMD2AndRC2_CBC *
212 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x06,/* [997] OBJ_pbeWithMD5AndRC2_CBC *
213 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05,0x0A,/* [1006] OBJ_pbeWithSHA1AndDES_CBC
214 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x02,0x01,0x0E,/* [1015] OBJ_ms_ext_req */
215 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x0E,/* [1025] OBJ_ext_req */
216 0x55,0x04,0x29, /* [1034] OBJ_name */
217 0x55,0x04,0x2E, /* [1037] OBJ_dnQualifier */
218 0x2B,0x06,0x01,0x05,0x05,0x07,0x01, /* [1040] OBJ_id_pe */
219 0x2B,0x06,0x01,0x05,0x05,0x07,0x30, /* [1047] OBJ_id_ad */
220 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x01, /* [1054] OBJ_info_access */
221 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01, /* [1062] OBJ_ad_OCSP */
222 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x02, /* [1070] OBJ_ad_ca_issuers */
223 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x09, /* [1078] OBJ_OCSP_sign */
224 0x28, /* [1086] OBJ_iso */
225 0x2A, /* [1087] OBJ_member_body */
226 0x2A,0x86,0x48, /* [1088] OBJ_ISO_US */
227 0x2A,0x86,0x48,0xCE,0x38, /* [1091] OBJ_X9_57 */
228 0x2A,0x86,0x48,0xCE,0x38,0x04, /* [1096] OBJ_X9cm */
229 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01, /* [1102] OBJ_pkcs1 */
230 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x05, /* [1110] OBJ_pkcs5 */
231 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,/* [1118] OBJ_SMIME */
232 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,/* [1127] OBJ_id_smime_mod */
233 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,/* [1137] OBJ_id_smime_ct */
234 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,/* [1147] OBJ_id_smime_aa */
235 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,/* [1157] OBJ_id_smime_alg */
236 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x04,/* [1167] OBJ_id_smime_cd */
237 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x05,/* [1177] OBJ_id_smime_spq */
238 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x06,/* [1187] OBJ_id_smime_cti */
239 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x01,/* [1197] OBJ_id_smime_mo
240 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x02,/* [1208] OBJ_id_smime_mo
241 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x03,/* [1219] OBJ_id_smime_mo
242 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x04,/* [1230] OBJ_id_smime_mo
243 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x05,/* [1241] OBJ_id_smime_mo
244 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x06,/* [1252] OBJ_id_smime_mo
245 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x07,/* [1263] OBJ_id_smime_mo
246 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x00,0x08,/* [1274] OBJ_id_smime_mo
247 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x01,/* [1285] OBJ_id_smime_ct
248 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x02,/* [1296] OBJ_id_smime_ct
249 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x03,/* [1307] OBJ_id_smime_ct
250 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x04,/* [1318] OBJ_id_smime_ct
251 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x05,/* [1329] OBJ_id_smime_ct
252 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x06,/* [1340] OBJ_id_smime_ct
253 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x07,/* [1351] OBJ_id_smime_ct
254 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x08,/* [1362] OBJ_id_smime_ct
255 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x01,/* [1373] OBJ_id_smime_aa
256 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x02,/* [1384] OBJ_id_smime_aa
257 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x03,/* [1395] OBJ_id_smime_aa
258 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x04,/* [1406] OBJ_id_smime_aa
259 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x05,/* [1417] OBJ_id_smime_aa

new/usr/src/lib/openssl/include/obj_dat.h 5

260 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x06,/* [1428] OBJ_id_smime_aa
261 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x07,/* [1439] OBJ_id_smime_aa
262 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x08,/* [1450] OBJ_id_smime_aa
263 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x09,/* [1461] OBJ_id_smime_aa
264 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x0A,/* [1472] OBJ_id_smime_aa
265 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x0B,/* [1483] OBJ_id_smime_aa
266 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x0C,/* [1494] OBJ_id_smime_aa
267 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x0D,/* [1505] OBJ_id_smime_aa
268 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x0E,/* [1516] OBJ_id_smime_aa
269 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x0F,/* [1527] OBJ_id_smime_aa
270 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x10,/* [1538] OBJ_id_smime_aa
271 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x11,/* [1549] OBJ_id_smime_aa
272 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x12,/* [1560] OBJ_id_smime_aa
273 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x13,/* [1571] OBJ_id_smime_aa
274 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x14,/* [1582] OBJ_id_smime_aa
275 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x15,/* [1593] OBJ_id_smime_aa
276 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x16,/* [1604] OBJ_id_smime_aa
277 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x17,/* [1615] OBJ_id_smime_aa
278 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x18,/* [1626] OBJ_id_smime_aa
279 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x19,/* [1637] OBJ_id_smime_aa
280 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x1A,/* [1648] OBJ_id_smime_aa
281 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x1B,/* [1659] OBJ_id_smime_aa
282 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x1C,/* [1670] OBJ_id_smime_aa
283 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x02,0x1D,/* [1681] OBJ_id_smime_aa
284 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x01,/* [1692] OBJ_id_smime_al
285 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x02,/* [1703] OBJ_id_smime_al
286 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x03,/* [1714] OBJ_id_smime_al
287 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x04,/* [1725] OBJ_id_smime_al
288 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x05,/* [1736] OBJ_id_smime_al
289 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x06,/* [1747] OBJ_id_smime_al
290 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x07,/* [1758] OBJ_id_smime_al
291 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x04,0x01,/* [1769] OBJ_id_smime_cd
292 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x05,0x01,/* [1780] OBJ_id_smime_sp
293 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x05,0x02,/* [1791] OBJ_id_smime_sp
294 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x06,0x01,/* [1802] OBJ_id_smime_ct
295 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x06,0x02,/* [1813] OBJ_id_smime_ct
296 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x06,0x03,/* [1824] OBJ_id_smime_ct
297 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x06,0x04,/* [1835] OBJ_id_smime_ct
298 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x06,0x05,/* [1846] OBJ_id_smime_ct
299 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x06,0x06,/* [1857] OBJ_id_smime_ct
300 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x04, /* [1868] OBJ_md4 */
301 0x2B,0x06,0x01,0x05,0x05,0x07,0x00, /* [1876] OBJ_id_pkix_mod */
302 0x2B,0x06,0x01,0x05,0x05,0x07,0x02, /* [1883] OBJ_id_qt */
303 0x2B,0x06,0x01,0x05,0x05,0x07,0x04, /* [1890] OBJ_id_it */
304 0x2B,0x06,0x01,0x05,0x05,0x07,0x05, /* [1897] OBJ_id_pkip */
305 0x2B,0x06,0x01,0x05,0x05,0x07,0x06, /* [1904] OBJ_id_alg */
306 0x2B,0x06,0x01,0x05,0x05,0x07,0x07, /* [1911] OBJ_id_cmc */
307 0x2B,0x06,0x01,0x05,0x05,0x07,0x08, /* [1918] OBJ_id_on */
308 0x2B,0x06,0x01,0x05,0x05,0x07,0x09, /* [1925] OBJ_id_pda */
309 0x2B,0x06,0x01,0x05,0x05,0x07,0x0A, /* [1932] OBJ_id_aca */
310 0x2B,0x06,0x01,0x05,0x05,0x07,0x0B, /* [1939] OBJ_id_qcs */
311 0x2B,0x06,0x01,0x05,0x05,0x07,0x0C, /* [1946] OBJ_id_cct */
312 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x01, /* [1953] OBJ_id_pkix1_explicit_88
313 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x02, /* [1961] OBJ_id_pkix1_implicit_88
314 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x03, /* [1969] OBJ_id_pkix1_explicit_93
315 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x04, /* [1977] OBJ_id_pkix1_implicit_93
316 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x05, /* [1985] OBJ_id_mod_crmf */
317 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x06, /* [1993] OBJ_id_mod_cmc */
318 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x07, /* [2001] OBJ_id_mod_kea_profile_88
319 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x08, /* [2009] OBJ_id_mod_kea_profile_93
320 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x09, /* [2017] OBJ_id_mod_cmp */
321 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x0A, /* [2025] OBJ_id_mod_qualified_cert
322 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x0B, /* [2033] OBJ_id_mod_qualified_cert
323 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x0C, /* [2041] OBJ_id_mod_attribute_cert
324 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x0D, /* [2049] OBJ_id_mod_timestamp_prot
325 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x0E, /* [2057] OBJ_id_mod_ocsp */

new/usr/src/lib/openssl/include/obj_dat.h 6

326 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x0F, /* [2065] OBJ_id_mod_dvcs */
327 0x2B,0x06,0x01,0x05,0x05,0x07,0x00,0x10, /* [2073] OBJ_id_mod_cmp2000 */
328 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x02, /* [2081] OBJ_biometricInfo */
329 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x03, /* [2089] OBJ_qcStatements */
330 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x04, /* [2097] OBJ_ac_auditEntity */
331 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x05, /* [2105] OBJ_ac_targeting */
332 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x06, /* [2113] OBJ_aaControls */
333 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x07, /* [2121] OBJ_sbgp_ipAddrBlock */
334 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x08, /* [2129] OBJ_sbgp_autonomousSysNum
335 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x09, /* [2137] OBJ_sbgp_routerIdentifier
336 0x2B,0x06,0x01,0x05,0x05,0x07,0x02,0x03, /* [2145] OBJ_textNotice */
337 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x05, /* [2153] OBJ_ipsecEndSystem */
338 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x06, /* [2161] OBJ_ipsecTunnel */
339 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x07, /* [2169] OBJ_ipsecUser */
340 0x2B,0x06,0x01,0x05,0x05,0x07,0x03,0x0A, /* [2177] OBJ_dvcs */
341 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x01, /* [2185] OBJ_id_it_caProtEncCert *
342 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x02, /* [2193] OBJ_id_it_signKeyPairType
343 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x03, /* [2201] OBJ_id_it_encKeyPairTypes
344 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x04, /* [2209] OBJ_id_it_preferredSymmAl
345 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x05, /* [2217] OBJ_id_it_caKeyUpdateInfo
346 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x06, /* [2225] OBJ_id_it_currentCRL */
347 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x07, /* [2233] OBJ_id_it_unsupportedOIDs
348 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x08, /* [2241] OBJ_id_it_subscriptionReq
349 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x09, /* [2249] OBJ_id_it_subscriptionRes
350 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x0A, /* [2257] OBJ_id_it_keyPairParamReq
351 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x0B, /* [2265] OBJ_id_it_keyPairParamRep
352 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x0C, /* [2273] OBJ_id_it_revPassphrase *
353 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x0D, /* [2281] OBJ_id_it_implicitConfirm
354 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x0E, /* [2289] OBJ_id_it_confirmWaitTime
355 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x0F, /* [2297] OBJ_id_it_origPKIMessage
356 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x01, /* [2305] OBJ_id_regCtrl */
357 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x02, /* [2313] OBJ_id_regInfo */
358 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x01,0x01,/* [2321] OBJ_id_regCtrl_regToken *
359 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x01,0x02,/* [2330] OBJ_id_regCtrl_authentica
360 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x01,0x03,/* [2339] OBJ_id_regCtrl_pkiPublica
361 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x01,0x04,/* [2348] OBJ_id_regCtrl_pkiArchive
362 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x01,0x05,/* [2357] OBJ_id_regCtrl_oldCertID
363 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x01,0x06,/* [2366] OBJ_id_regCtrl_protocolEn
364 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x02,0x01,/* [2375] OBJ_id_regInfo_utf8Pairs
365 0x2B,0x06,0x01,0x05,0x05,0x07,0x05,0x02,0x02,/* [2384] OBJ_id_regInfo_certReq */
366 0x2B,0x06,0x01,0x05,0x05,0x07,0x06,0x01, /* [2393] OBJ_id_alg_des40 */
367 0x2B,0x06,0x01,0x05,0x05,0x07,0x06,0x02, /* [2401] OBJ_id_alg_noSignature */
368 0x2B,0x06,0x01,0x05,0x05,0x07,0x06,0x03, /* [2409] OBJ_id_alg_dh_sig_hmac_sh
369 0x2B,0x06,0x01,0x05,0x05,0x07,0x06,0x04, /* [2417] OBJ_id_alg_dh_pop */
370 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x01, /* [2425] OBJ_id_cmc_statusInfo */
371 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x02, /* [2433] OBJ_id_cmc_identification
372 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x03, /* [2441] OBJ_id_cmc_identityProof
373 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x04, /* [2449] OBJ_id_cmc_dataReturn */
374 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x05, /* [2457] OBJ_id_cmc_transactionId
375 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x06, /* [2465] OBJ_id_cmc_senderNonce */
376 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x07, /* [2473] OBJ_id_cmc_recipientNonce
377 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x08, /* [2481] OBJ_id_cmc_addExtensions
378 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x09, /* [2489] OBJ_id_cmc_encryptedPOP *
379 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x0A, /* [2497] OBJ_id_cmc_decryptedPOP *
380 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x0B, /* [2505] OBJ_id_cmc_lraPOPWitness
381 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x0F, /* [2513] OBJ_id_cmc_getCert */
382 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x10, /* [2521] OBJ_id_cmc_getCRL */
383 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x11, /* [2529] OBJ_id_cmc_revokeRequest
384 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x12, /* [2537] OBJ_id_cmc_regInfo */
385 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x13, /* [2545] OBJ_id_cmc_responseInfo *
386 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x15, /* [2553] OBJ_id_cmc_queryPending *
387 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x16, /* [2561] OBJ_id_cmc_popLinkRandom
388 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x17, /* [2569] OBJ_id_cmc_popLinkWitness
389 0x2B,0x06,0x01,0x05,0x05,0x07,0x07,0x18, /* [2577] OBJ_id_cmc_confirmCertAcc
390 0x2B,0x06,0x01,0x05,0x05,0x07,0x08,0x01, /* [2585] OBJ_id_on_personalData */
391 0x2B,0x06,0x01,0x05,0x05,0x07,0x09,0x01, /* [2593] OBJ_id_pda_dateOfBirth */

new/usr/src/lib/openssl/include/obj_dat.h 7

392 0x2B,0x06,0x01,0x05,0x05,0x07,0x09,0x02, /* [2601] OBJ_id_pda_placeOfBirth *
393 0x2B,0x06,0x01,0x05,0x05,0x07,0x09,0x03, /* [2609] OBJ_id_pda_gender */
394 0x2B,0x06,0x01,0x05,0x05,0x07,0x09,0x04, /* [2617] OBJ_id_pda_countryOfCitiz
395 0x2B,0x06,0x01,0x05,0x05,0x07,0x09,0x05, /* [2625] OBJ_id_pda_countryOfResid
396 0x2B,0x06,0x01,0x05,0x05,0x07,0x0A,0x01, /* [2633] OBJ_id_aca_authentication
397 0x2B,0x06,0x01,0x05,0x05,0x07,0x0A,0x02, /* [2641] OBJ_id_aca_accessIdentity
398 0x2B,0x06,0x01,0x05,0x05,0x07,0x0A,0x03, /* [2649] OBJ_id_aca_chargingIdenti
399 0x2B,0x06,0x01,0x05,0x05,0x07,0x0A,0x04, /* [2657] OBJ_id_aca_group */
400 0x2B,0x06,0x01,0x05,0x05,0x07,0x0A,0x05, /* [2665] OBJ_id_aca_role */
401 0x2B,0x06,0x01,0x05,0x05,0x07,0x0B,0x01, /* [2673] OBJ_id_qcs_pkixQCSyntax_v
402 0x2B,0x06,0x01,0x05,0x05,0x07,0x0C,0x01, /* [2681] OBJ_id_cct_crs */
403 0x2B,0x06,0x01,0x05,0x05,0x07,0x0C,0x02, /* [2689] OBJ_id_cct_PKIData */
404 0x2B,0x06,0x01,0x05,0x05,0x07,0x0C,0x03, /* [2697] OBJ_id_cct_PKIResponse */
405 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x03, /* [2705] OBJ_ad_timeStamping */
406 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x04, /* [2713] OBJ_ad_dvcs */
407 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x01,/* [2721] OBJ_id_pkix_OCSP_basic */
408 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x02,/* [2730] OBJ_id_pkix_OCSP_Nonce */
409 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x03,/* [2739] OBJ_id_pkix_OCSP_CrlID */
410 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x04,/* [2748] OBJ_id_pkix_OCSP_acceptab
411 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x05,/* [2757] OBJ_id_pkix_OCSP_noCheck
412 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x06,/* [2766] OBJ_id_pkix_OCSP_archiveC
413 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x07,/* [2775] OBJ_id_pkix_OCSP_serviceL
414 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x08,/* [2784] OBJ_id_pkix_OCSP_extended
415 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x09,/* [2793] OBJ_id_pkix_OCSP_valid */
416 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x0A,/* [2802] OBJ_id_pkix_OCSP_path */
417 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x01,0x0B,/* [2811] OBJ_id_pkix_OCSP_trustRoo
418 0x2B,0x0E,0x03,0x02, /* [2820] OBJ_algorithm */
419 0x2B,0x0E,0x03,0x02,0x0B, /* [2824] OBJ_rsaSignature */
420 0x55,0x08, /* [2829] OBJ_X500algorithms */
421 0x2B, /* [2831] OBJ_org */
422 0x2B,0x06, /* [2832] OBJ_dod */
423 0x2B,0x06,0x01, /* [2834] OBJ_iana */
424 0x2B,0x06,0x01,0x01, /* [2837] OBJ_Directory */
425 0x2B,0x06,0x01,0x02, /* [2841] OBJ_Management */
426 0x2B,0x06,0x01,0x03, /* [2845] OBJ_Experimental */
427 0x2B,0x06,0x01,0x04, /* [2849] OBJ_Private */
428 0x2B,0x06,0x01,0x05, /* [2853] OBJ_Security */
429 0x2B,0x06,0x01,0x06, /* [2857] OBJ_SNMPv2 */
430 0x2B,0x06,0x01,0x07, /* [2861] OBJ_Mail */
431 0x2B,0x06,0x01,0x04,0x01, /* [2865] OBJ_Enterprises */
432 0x2B,0x06,0x01,0x04,0x01,0x8B,0x3A,0x82,0x58,/* [2870] OBJ_dcObject */
433 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x19,/* [2879] OBJ_domainComponent
434 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x0D,/* [2889] OBJ_Domain */
435 0x00, /* [2899] OBJ_joint_iso_ccitt */
436 0x55,0x01,0x05, /* [2900] OBJ_selected_attribute_ty
437 0x55,0x01,0x05,0x37, /* [2903] OBJ_clearance */
438 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x03,/* [2907] OBJ_md4WithRSAEncryption
439 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x0A, /* [2916] OBJ_ac_proxying */
440 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x0B, /* [2924] OBJ_sinfo_access */
441 0x2B,0x06,0x01,0x05,0x05,0x07,0x0A,0x06, /* [2932] OBJ_id_aca_encAttrs */
442 0x55,0x04,0x48, /* [2940] OBJ_role */
443 0x55,0x1D,0x24, /* [2943] OBJ_policy_constraints */
444 0x55,0x1D,0x37, /* [2946] OBJ_target_information */
445 0x55,0x1D,0x38, /* [2949] OBJ_no_rev_avail */
446 0x00, /* [2952] OBJ_ccitt */
447 0x2A,0x86,0x48,0xCE,0x3D, /* [2953] OBJ_ansi_X9_62 */
448 0x2A,0x86,0x48,0xCE,0x3D,0x01,0x01, /* [2958] OBJ_X9_62_prime_field */
449 0x2A,0x86,0x48,0xCE,0x3D,0x01,0x02, /* [2965] OBJ_X9_62_characteristic_
450 0x2A,0x86,0x48,0xCE,0x3D,0x02,0x01, /* [2972] OBJ_X9_62_id_ecPublicKey
451 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x01,0x01, /* [2979] OBJ_X9_62_prime192v1 */
452 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x01,0x02, /* [2987] OBJ_X9_62_prime192v2 */
453 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x01,0x03, /* [2995] OBJ_X9_62_prime192v3 */
454 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x01,0x04, /* [3003] OBJ_X9_62_prime239v1 */
455 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x01,0x05, /* [3011] OBJ_X9_62_prime239v2 */
456 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x01,0x06, /* [3019] OBJ_X9_62_prime239v3 */
457 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x01,0x07, /* [3027] OBJ_X9_62_prime256v1 */

new/usr/src/lib/openssl/include/obj_dat.h 8

458 0x2A,0x86,0x48,0xCE,0x3D,0x04,0x01, /* [3035] OBJ_ecdsa_with_SHA1 */
459 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x11,0x01,/* [3042] OBJ_ms_csp_name */
460 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x01,/* [3051] OBJ_aes_128_ecb */
461 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x02,/* [3060] OBJ_aes_128_cbc */
462 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x03,/* [3069] OBJ_aes_128_ofb128 */
463 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x04,/* [3078] OBJ_aes_128_cfb128 */
464 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x15,/* [3087] OBJ_aes_192_ecb */
465 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x16,/* [3096] OBJ_aes_192_cbc */
466 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x17,/* [3105] OBJ_aes_192_ofb128 */
467 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x18,/* [3114] OBJ_aes_192_cfb128 */
468 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x29,/* [3123] OBJ_aes_256_ecb */
469 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x2A,/* [3132] OBJ_aes_256_cbc */
470 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x2B,/* [3141] OBJ_aes_256_ofb128 */
471 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x2C,/* [3150] OBJ_aes_256_cfb128 */
472 0x55,0x1D,0x17, /* [3159] OBJ_hold_instruction_code
473 0x2A,0x86,0x48,0xCE,0x38,0x02,0x01, /* [3162] OBJ_hold_instruction_none
474 0x2A,0x86,0x48,0xCE,0x38,0x02,0x02, /* [3169] OBJ_hold_instruction_call
475 0x2A,0x86,0x48,0xCE,0x38,0x02,0x03, /* [3176] OBJ_hold_instruction_reje
476 0x09, /* [3183] OBJ_data */
477 0x09,0x92,0x26, /* [3184] OBJ_pss */
478 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C, /* [3187] OBJ_ucl */
479 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64, /* [3194] OBJ_pilot */
480 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,/* [3202] OBJ_pilotAttributeType */
481 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x03,/* [3211] OBJ_pilotAttributeSyntax
482 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,/* [3220] OBJ_pilotObjectClass */
483 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x0A,/* [3229] OBJ_pilotGroups */
484 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x03,0x04,/* [3238] OBJ_iA5StringSyntax
485 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x03,0x05,/* [3248] OBJ_caseIgnoreIA5Str
486 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x03,/* [3258] OBJ_pilotObject */
487 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x04,/* [3268] OBJ_pilotPerson */
488 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x05,/* [3278] OBJ_account */
489 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x06,/* [3288] OBJ_document */
490 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x07,/* [3298] OBJ_room */
491 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x09,/* [3308] OBJ_documentSeries *
492 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x0E,/* [3318] OBJ_rFC822localPart
493 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x0F,/* [3328] OBJ_dNSDomain */
494 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x11,/* [3338] OBJ_domainRelatedObj
495 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x12,/* [3348] OBJ_friendlyCountry
496 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x13,/* [3358] OBJ_simpleSecurityOb
497 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x14,/* [3368] OBJ_pilotOrganizatio
498 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x15,/* [3378] OBJ_pilotDSA */
499 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x04,0x16,/* [3388] OBJ_qualityLabelledD
500 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x01,/* [3398] OBJ_userId */
501 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x02,/* [3408] OBJ_textEncodedORAdd
502 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x03,/* [3418] OBJ_rfc822Mailbox */
503 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x04,/* [3428] OBJ_info */
504 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x05,/* [3438] OBJ_favouriteDrink *
505 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x06,/* [3448] OBJ_roomNumber */
506 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x07,/* [3458] OBJ_photo */
507 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x08,/* [3468] OBJ_userClass */
508 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x09,/* [3478] OBJ_host */
509 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x0A,/* [3488] OBJ_manager */
510 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x0B,/* [3498] OBJ_documentIdentifi
511 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x0C,/* [3508] OBJ_documentTitle */
512 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x0D,/* [3518] OBJ_documentVersion
513 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x0E,/* [3528] OBJ_documentAuthor *
514 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x0F,/* [3538] OBJ_documentLocation
515 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x14,/* [3548] OBJ_homeTelephoneNum
516 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x15,/* [3558] OBJ_secretary */
517 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x16,/* [3568] OBJ_otherMailbox */
518 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x17,/* [3578] OBJ_lastModifiedTime
519 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x18,/* [3588] OBJ_lastModifiedBy *
520 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x1A,/* [3598] OBJ_aRecord */
521 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x1B,/* [3608] OBJ_pilotAttributeTy
522 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x1C,/* [3618] OBJ_mXRecord */
523 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x1D,/* [3628] OBJ_nSRecord */

new/usr/src/lib/openssl/include/obj_dat.h 9

524 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x1E,/* [3638] OBJ_sOARecord */
525 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x1F,/* [3648] OBJ_cNAMERecord */
526 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x25,/* [3658] OBJ_associatedDomain
527 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x26,/* [3668] OBJ_associatedName *
528 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x27,/* [3678] OBJ_homePostalAddres
529 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x28,/* [3688] OBJ_personalTitle */
530 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x29,/* [3698] OBJ_mobileTelephoneN
531 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x2A,/* [3708] OBJ_pagerTelephoneNu
532 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x2B,/* [3718] OBJ_friendlyCountryN
533 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x2D,/* [3728] OBJ_organizationalSt
534 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x2E,/* [3738] OBJ_janetMailbox */
535 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x2F,/* [3748] OBJ_mailPreferenceOp
536 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x30,/* [3758] OBJ_buildingName */
537 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x31,/* [3768] OBJ_dSAQuality */
538 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x32,/* [3778] OBJ_singleLevelQuali
539 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x33,/* [3788] OBJ_subtreeMinimumQu
540 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x34,/* [3798] OBJ_subtreeMaximumQu
541 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x35,/* [3808] OBJ_personalSignatur
542 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x36,/* [3818] OBJ_dITRedirect */
543 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x37,/* [3828] OBJ_audio */
544 0x09,0x92,0x26,0x89,0x93,0xF2,0x2C,0x64,0x01,0x38,/* [3838] OBJ_documentPublishe
545 0x55,0x04,0x2D, /* [3848] OBJ_x500UniqueIdentifier
546 0x2B,0x06,0x01,0x07,0x01, /* [3851] OBJ_mime_mhs */
547 0x2B,0x06,0x01,0x07,0x01,0x01, /* [3856] OBJ_mime_mhs_headings */
548 0x2B,0x06,0x01,0x07,0x01,0x02, /* [3862] OBJ_mime_mhs_bodies */
549 0x2B,0x06,0x01,0x07,0x01,0x01,0x01, /* [3868] OBJ_id_hex_partial_messag
550 0x2B,0x06,0x01,0x07,0x01,0x01,0x02, /* [3875] OBJ_id_hex_multipart_mess
551 0x55,0x04,0x2C, /* [3882] OBJ_generationQualifier *
552 0x55,0x04,0x41, /* [3885] OBJ_pseudonym */
553 0x67,0x2A, /* [3888] OBJ_id_set */
554 0x67,0x2A,0x00, /* [3890] OBJ_set_ctype */
555 0x67,0x2A,0x01, /* [3893] OBJ_set_msgExt */
556 0x67,0x2A,0x03, /* [3896] OBJ_set_attr */
557 0x67,0x2A,0x05, /* [3899] OBJ_set_policy */
558 0x67,0x2A,0x07, /* [3902] OBJ_set_certExt */
559 0x67,0x2A,0x08, /* [3905] OBJ_set_brand */
560 0x67,0x2A,0x00,0x00, /* [3908] OBJ_setct_PANData */
561 0x67,0x2A,0x00,0x01, /* [3912] OBJ_setct_PANToken */
562 0x67,0x2A,0x00,0x02, /* [3916] OBJ_setct_PANOnly */
563 0x67,0x2A,0x00,0x03, /* [3920] OBJ_setct_OIData */
564 0x67,0x2A,0x00,0x04, /* [3924] OBJ_setct_PI */
565 0x67,0x2A,0x00,0x05, /* [3928] OBJ_setct_PIData */
566 0x67,0x2A,0x00,0x06, /* [3932] OBJ_setct_PIDataUnsigned
567 0x67,0x2A,0x00,0x07, /* [3936] OBJ_setct_HODInput */
568 0x67,0x2A,0x00,0x08, /* [3940] OBJ_setct_AuthResBaggage
569 0x67,0x2A,0x00,0x09, /* [3944] OBJ_setct_AuthRevReqBagga
570 0x67,0x2A,0x00,0x0A, /* [3948] OBJ_setct_AuthRevResBagga
571 0x67,0x2A,0x00,0x0B, /* [3952] OBJ_setct_CapTokenSeq */
572 0x67,0x2A,0x00,0x0C, /* [3956] OBJ_setct_PInitResData */
573 0x67,0x2A,0x00,0x0D, /* [3960] OBJ_setct_PI_TBS */
574 0x67,0x2A,0x00,0x0E, /* [3964] OBJ_setct_PResData */
575 0x67,0x2A,0x00,0x10, /* [3968] OBJ_setct_AuthReqTBS */
576 0x67,0x2A,0x00,0x11, /* [3972] OBJ_setct_AuthResTBS */
577 0x67,0x2A,0x00,0x12, /* [3976] OBJ_setct_AuthResTBSX */
578 0x67,0x2A,0x00,0x13, /* [3980] OBJ_setct_AuthTokenTBS */
579 0x67,0x2A,0x00,0x14, /* [3984] OBJ_setct_CapTokenData */
580 0x67,0x2A,0x00,0x15, /* [3988] OBJ_setct_CapTokenTBS */
581 0x67,0x2A,0x00,0x16, /* [3992] OBJ_setct_AcqCardCodeMsg
582 0x67,0x2A,0x00,0x17, /* [3996] OBJ_setct_AuthRevReqTBS *
583 0x67,0x2A,0x00,0x18, /* [4000] OBJ_setct_AuthRevResData
584 0x67,0x2A,0x00,0x19, /* [4004] OBJ_setct_AuthRevResTBS *
585 0x67,0x2A,0x00,0x1A, /* [4008] OBJ_setct_CapReqTBS */
586 0x67,0x2A,0x00,0x1B, /* [4012] OBJ_setct_CapReqTBSX */
587 0x67,0x2A,0x00,0x1C, /* [4016] OBJ_setct_CapResData */
588 0x67,0x2A,0x00,0x1D, /* [4020] OBJ_setct_CapRevReqTBS */
589 0x67,0x2A,0x00,0x1E, /* [4024] OBJ_setct_CapRevReqTBSX *

new/usr/src/lib/openssl/include/obj_dat.h 10

590 0x67,0x2A,0x00,0x1F, /* [4028] OBJ_setct_CapRevResData *
591 0x67,0x2A,0x00,0x20, /* [4032] OBJ_setct_CredReqTBS */
592 0x67,0x2A,0x00,0x21, /* [4036] OBJ_setct_CredReqTBSX */
593 0x67,0x2A,0x00,0x22, /* [4040] OBJ_setct_CredResData */
594 0x67,0x2A,0x00,0x23, /* [4044] OBJ_setct_CredRevReqTBS *
595 0x67,0x2A,0x00,0x24, /* [4048] OBJ_setct_CredRevReqTBSX
596 0x67,0x2A,0x00,0x25, /* [4052] OBJ_setct_CredRevResData
597 0x67,0x2A,0x00,0x26, /* [4056] OBJ_setct_PCertReqData */
598 0x67,0x2A,0x00,0x27, /* [4060] OBJ_setct_PCertResTBS */
599 0x67,0x2A,0x00,0x28, /* [4064] OBJ_setct_BatchAdminReqDa
600 0x67,0x2A,0x00,0x29, /* [4068] OBJ_setct_BatchAdminResDa
601 0x67,0x2A,0x00,0x2A, /* [4072] OBJ_setct_CardCInitResTBS
602 0x67,0x2A,0x00,0x2B, /* [4076] OBJ_setct_MeAqCInitResTBS
603 0x67,0x2A,0x00,0x2C, /* [4080] OBJ_setct_RegFormResTBS *
604 0x67,0x2A,0x00,0x2D, /* [4084] OBJ_setct_CertReqData */
605 0x67,0x2A,0x00,0x2E, /* [4088] OBJ_setct_CertReqTBS */
606 0x67,0x2A,0x00,0x2F, /* [4092] OBJ_setct_CertResData */
607 0x67,0x2A,0x00,0x30, /* [4096] OBJ_setct_CertInqReqTBS *
608 0x67,0x2A,0x00,0x31, /* [4100] OBJ_setct_ErrorTBS */
609 0x67,0x2A,0x00,0x32, /* [4104] OBJ_setct_PIDualSignedTBE
610 0x67,0x2A,0x00,0x33, /* [4108] OBJ_setct_PIUnsignedTBE *
611 0x67,0x2A,0x00,0x34, /* [4112] OBJ_setct_AuthReqTBE */
612 0x67,0x2A,0x00,0x35, /* [4116] OBJ_setct_AuthResTBE */
613 0x67,0x2A,0x00,0x36, /* [4120] OBJ_setct_AuthResTBEX */
614 0x67,0x2A,0x00,0x37, /* [4124] OBJ_setct_AuthTokenTBE */
615 0x67,0x2A,0x00,0x38, /* [4128] OBJ_setct_CapTokenTBE */
616 0x67,0x2A,0x00,0x39, /* [4132] OBJ_setct_CapTokenTBEX */
617 0x67,0x2A,0x00,0x3A, /* [4136] OBJ_setct_AcqCardCodeMsgT
618 0x67,0x2A,0x00,0x3B, /* [4140] OBJ_setct_AuthRevReqTBE *
619 0x67,0x2A,0x00,0x3C, /* [4144] OBJ_setct_AuthRevResTBE *
620 0x67,0x2A,0x00,0x3D, /* [4148] OBJ_setct_AuthRevResTBEB
621 0x67,0x2A,0x00,0x3E, /* [4152] OBJ_setct_CapReqTBE */
622 0x67,0x2A,0x00,0x3F, /* [4156] OBJ_setct_CapReqTBEX */
623 0x67,0x2A,0x00,0x40, /* [4160] OBJ_setct_CapResTBE */
624 0x67,0x2A,0x00,0x41, /* [4164] OBJ_setct_CapRevReqTBE */
625 0x67,0x2A,0x00,0x42, /* [4168] OBJ_setct_CapRevReqTBEX *
626 0x67,0x2A,0x00,0x43, /* [4172] OBJ_setct_CapRevResTBE */
627 0x67,0x2A,0x00,0x44, /* [4176] OBJ_setct_CredReqTBE */
628 0x67,0x2A,0x00,0x45, /* [4180] OBJ_setct_CredReqTBEX */
629 0x67,0x2A,0x00,0x46, /* [4184] OBJ_setct_CredResTBE */
630 0x67,0x2A,0x00,0x47, /* [4188] OBJ_setct_CredRevReqTBE *
631 0x67,0x2A,0x00,0x48, /* [4192] OBJ_setct_CredRevReqTBEX
632 0x67,0x2A,0x00,0x49, /* [4196] OBJ_setct_CredRevResTBE *
633 0x67,0x2A,0x00,0x4A, /* [4200] OBJ_setct_BatchAdminReqTB
634 0x67,0x2A,0x00,0x4B, /* [4204] OBJ_setct_BatchAdminResTB
635 0x67,0x2A,0x00,0x4C, /* [4208] OBJ_setct_RegFormReqTBE *
636 0x67,0x2A,0x00,0x4D, /* [4212] OBJ_setct_CertReqTBE */
637 0x67,0x2A,0x00,0x4E, /* [4216] OBJ_setct_CertReqTBEX */
638 0x67,0x2A,0x00,0x4F, /* [4220] OBJ_setct_CertResTBE */
639 0x67,0x2A,0x00,0x50, /* [4224] OBJ_setct_CRLNotification
640 0x67,0x2A,0x00,0x51, /* [4228] OBJ_setct_CRLNotification
641 0x67,0x2A,0x00,0x52, /* [4232] OBJ_setct_BCIDistribution
642 0x67,0x2A,0x01,0x01, /* [4236] OBJ_setext_genCrypt */
643 0x67,0x2A,0x01,0x03, /* [4240] OBJ_setext_miAuth */
644 0x67,0x2A,0x01,0x04, /* [4244] OBJ_setext_pinSecure */
645 0x67,0x2A,0x01,0x05, /* [4248] OBJ_setext_pinAny */
646 0x67,0x2A,0x01,0x07, /* [4252] OBJ_setext_track2 */
647 0x67,0x2A,0x01,0x08, /* [4256] OBJ_setext_cv */
648 0x67,0x2A,0x05,0x00, /* [4260] OBJ_set_policy_root */
649 0x67,0x2A,0x07,0x00, /* [4264] OBJ_setCext_hashedRoot */
650 0x67,0x2A,0x07,0x01, /* [4268] OBJ_setCext_certType */
651 0x67,0x2A,0x07,0x02, /* [4272] OBJ_setCext_merchData */
652 0x67,0x2A,0x07,0x03, /* [4276] OBJ_setCext_cCertRequired
653 0x67,0x2A,0x07,0x04, /* [4280] OBJ_setCext_tunneling */
654 0x67,0x2A,0x07,0x05, /* [4284] OBJ_setCext_setExt */
655 0x67,0x2A,0x07,0x06, /* [4288] OBJ_setCext_setQualf */

new/usr/src/lib/openssl/include/obj_dat.h 11

656 0x67,0x2A,0x07,0x07, /* [4292] OBJ_setCext_PGWYcapabilit
657 0x67,0x2A,0x07,0x08, /* [4296] OBJ_setCext_TokenIdentifi
658 0x67,0x2A,0x07,0x09, /* [4300] OBJ_setCext_Track2Data */
659 0x67,0x2A,0x07,0x0A, /* [4304] OBJ_setCext_TokenType */
660 0x67,0x2A,0x07,0x0B, /* [4308] OBJ_setCext_IssuerCapabil
661 0x67,0x2A,0x03,0x00, /* [4312] OBJ_setAttr_Cert */
662 0x67,0x2A,0x03,0x01, /* [4316] OBJ_setAttr_PGWYcap */
663 0x67,0x2A,0x03,0x02, /* [4320] OBJ_setAttr_TokenType */
664 0x67,0x2A,0x03,0x03, /* [4324] OBJ_setAttr_IssCap */
665 0x67,0x2A,0x03,0x00,0x00, /* [4328] OBJ_set_rootKeyThumb */
666 0x67,0x2A,0x03,0x00,0x01, /* [4333] OBJ_set_addPolicy */
667 0x67,0x2A,0x03,0x02,0x01, /* [4338] OBJ_setAttr_Token_EMV */
668 0x67,0x2A,0x03,0x02,0x02, /* [4343] OBJ_setAttr_Token_B0Prime
669 0x67,0x2A,0x03,0x03,0x03, /* [4348] OBJ_setAttr_IssCap_CVM */
670 0x67,0x2A,0x03,0x03,0x04, /* [4353] OBJ_setAttr_IssCap_T2 */
671 0x67,0x2A,0x03,0x03,0x05, /* [4358] OBJ_setAttr_IssCap_Sig */
672 0x67,0x2A,0x03,0x03,0x03,0x01, /* [4363] OBJ_setAttr_GenCryptgrm *
673 0x67,0x2A,0x03,0x03,0x04,0x01, /* [4369] OBJ_setAttr_T2Enc */
674 0x67,0x2A,0x03,0x03,0x04,0x02, /* [4375] OBJ_setAttr_T2cleartxt */
675 0x67,0x2A,0x03,0x03,0x05,0x01, /* [4381] OBJ_setAttr_TokICCsig */
676 0x67,0x2A,0x03,0x03,0x05,0x02, /* [4387] OBJ_setAttr_SecDevSig */
677 0x67,0x2A,0x08,0x01, /* [4393] OBJ_set_brand_IATA_ATA */
678 0x67,0x2A,0x08,0x1E, /* [4397] OBJ_set_brand_Diners */
679 0x67,0x2A,0x08,0x22, /* [4401] OBJ_set_brand_AmericanExp
680 0x67,0x2A,0x08,0x23, /* [4405] OBJ_set_brand_JCB */
681 0x67,0x2A,0x08,0x04, /* [4409] OBJ_set_brand_Visa */
682 0x67,0x2A,0x08,0x05, /* [4413] OBJ_set_brand_MasterCard
683 0x67,0x2A,0x08,0xAE,0x7B, /* [4417] OBJ_set_brand_Novus */
684 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x03,0x0A, /* [4422] OBJ_des_cdmf */
685 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x06,/* [4430] OBJ_rsaOAEPEncryptionSET
686 0x00, /* [4439] OBJ_itu_t */
687 0x50, /* [4440] OBJ_joint_iso_itu_t */
688 0x67, /* [4441] OBJ_international_organiz
689 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x14,0x02,0x02,/* [4442] OBJ_ms_smartcard_log
690 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x14,0x02,0x03,/* [4452] OBJ_ms_upn */
691 0x55,0x04,0x09, /* [4462] OBJ_streetAddress */
692 0x55,0x04,0x11, /* [4465] OBJ_postalCode */
693 0x2B,0x06,0x01,0x05,0x05,0x07,0x15, /* [4468] OBJ_id_ppl */
694 0x2B,0x06,0x01,0x05,0x05,0x07,0x01,0x0E, /* [4475] OBJ_proxyCertInfo */
695 0x2B,0x06,0x01,0x05,0x05,0x07,0x15,0x00, /* [4483] OBJ_id_ppl_anyLanguage */
696 0x2B,0x06,0x01,0x05,0x05,0x07,0x15,0x01, /* [4491] OBJ_id_ppl_inheritAll */
697 0x55,0x1D,0x1E, /* [4499] OBJ_name_constraints */
698 0x2B,0x06,0x01,0x05,0x05,0x07,0x15,0x02, /* [4502] OBJ_Independent */
699 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x0B,/* [4510] OBJ_sha256WithRSAEncrypti
700 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x0C,/* [4519] OBJ_sha384WithRSAEncrypti
701 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x0D,/* [4528] OBJ_sha512WithRSAEncrypti
702 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x0E,/* [4537] OBJ_sha224WithRSAEncrypti
703 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x01,/* [4546] OBJ_sha256 */
704 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x02,/* [4555] OBJ_sha384 */
705 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x03,/* [4564] OBJ_sha512 */
706 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x04,/* [4573] OBJ_sha224 */
707 0x2B, /* [4582] OBJ_identified_organizati
708 0x2B,0x81,0x04, /* [4583] OBJ_certicom_arc */
709 0x67,0x2B, /* [4586] OBJ_wap */
710 0x67,0x2B,0x01, /* [4588] OBJ_wap_wsg */
711 0x2A,0x86,0x48,0xCE,0x3D,0x01,0x02,0x03, /* [4591] OBJ_X9_62_id_characterist
712 0x2A,0x86,0x48,0xCE,0x3D,0x01,0x02,0x03,0x01,/* [4599] OBJ_X9_62_onBasis */
713 0x2A,0x86,0x48,0xCE,0x3D,0x01,0x02,0x03,0x02,/* [4608] OBJ_X9_62_tpBasis */
714 0x2A,0x86,0x48,0xCE,0x3D,0x01,0x02,0x03,0x03,/* [4617] OBJ_X9_62_ppBasis */
715 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x01, /* [4626] OBJ_X9_62_c2pnb163v1 */
716 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x02, /* [4634] OBJ_X9_62_c2pnb163v2 */
717 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x03, /* [4642] OBJ_X9_62_c2pnb163v3 */
718 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x04, /* [4650] OBJ_X9_62_c2pnb176v1 */
719 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x05, /* [4658] OBJ_X9_62_c2tnb191v1 */
720 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x06, /* [4666] OBJ_X9_62_c2tnb191v2 */
721 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x07, /* [4674] OBJ_X9_62_c2tnb191v3 */

new/usr/src/lib/openssl/include/obj_dat.h 12

722 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x08, /* [4682] OBJ_X9_62_c2onb191v4 */
723 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x09, /* [4690] OBJ_X9_62_c2onb191v5 */
724 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x0A, /* [4698] OBJ_X9_62_c2pnb208w1 */
725 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x0B, /* [4706] OBJ_X9_62_c2tnb239v1 */
726 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x0C, /* [4714] OBJ_X9_62_c2tnb239v2 */
727 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x0D, /* [4722] OBJ_X9_62_c2tnb239v3 */
728 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x0E, /* [4730] OBJ_X9_62_c2onb239v4 */
729 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x0F, /* [4738] OBJ_X9_62_c2onb239v5 */
730 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x10, /* [4746] OBJ_X9_62_c2pnb272w1 */
731 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x11, /* [4754] OBJ_X9_62_c2pnb304w1 */
732 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x12, /* [4762] OBJ_X9_62_c2tnb359v1 */
733 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x13, /* [4770] OBJ_X9_62_c2pnb368w1 */
734 0x2A,0x86,0x48,0xCE,0x3D,0x03,0x00,0x14, /* [4778] OBJ_X9_62_c2tnb431r1 */
735 0x2B,0x81,0x04,0x00,0x06, /* [4786] OBJ_secp112r1 */
736 0x2B,0x81,0x04,0x00,0x07, /* [4791] OBJ_secp112r2 */
737 0x2B,0x81,0x04,0x00,0x1C, /* [4796] OBJ_secp128r1 */
738 0x2B,0x81,0x04,0x00,0x1D, /* [4801] OBJ_secp128r2 */
739 0x2B,0x81,0x04,0x00,0x09, /* [4806] OBJ_secp160k1 */
740 0x2B,0x81,0x04,0x00,0x08, /* [4811] OBJ_secp160r1 */
741 0x2B,0x81,0x04,0x00,0x1E, /* [4816] OBJ_secp160r2 */
742 0x2B,0x81,0x04,0x00,0x1F, /* [4821] OBJ_secp192k1 */
743 0x2B,0x81,0x04,0x00,0x20, /* [4826] OBJ_secp224k1 */
744 0x2B,0x81,0x04,0x00,0x21, /* [4831] OBJ_secp224r1 */
745 0x2B,0x81,0x04,0x00,0x0A, /* [4836] OBJ_secp256k1 */
746 0x2B,0x81,0x04,0x00,0x22, /* [4841] OBJ_secp384r1 */
747 0x2B,0x81,0x04,0x00,0x23, /* [4846] OBJ_secp521r1 */
748 0x2B,0x81,0x04,0x00,0x04, /* [4851] OBJ_sect113r1 */
749 0x2B,0x81,0x04,0x00,0x05, /* [4856] OBJ_sect113r2 */
750 0x2B,0x81,0x04,0x00,0x16, /* [4861] OBJ_sect131r1 */
751 0x2B,0x81,0x04,0x00,0x17, /* [4866] OBJ_sect131r2 */
752 0x2B,0x81,0x04,0x00,0x01, /* [4871] OBJ_sect163k1 */
753 0x2B,0x81,0x04,0x00,0x02, /* [4876] OBJ_sect163r1 */
754 0x2B,0x81,0x04,0x00,0x0F, /* [4881] OBJ_sect163r2 */
755 0x2B,0x81,0x04,0x00,0x18, /* [4886] OBJ_sect193r1 */
756 0x2B,0x81,0x04,0x00,0x19, /* [4891] OBJ_sect193r2 */
757 0x2B,0x81,0x04,0x00,0x1A, /* [4896] OBJ_sect233k1 */
758 0x2B,0x81,0x04,0x00,0x1B, /* [4901] OBJ_sect233r1 */
759 0x2B,0x81,0x04,0x00,0x03, /* [4906] OBJ_sect239k1 */
760 0x2B,0x81,0x04,0x00,0x10, /* [4911] OBJ_sect283k1 */
761 0x2B,0x81,0x04,0x00,0x11, /* [4916] OBJ_sect283r1 */
762 0x2B,0x81,0x04,0x00,0x24, /* [4921] OBJ_sect409k1 */
763 0x2B,0x81,0x04,0x00,0x25, /* [4926] OBJ_sect409r1 */
764 0x2B,0x81,0x04,0x00,0x26, /* [4931] OBJ_sect571k1 */
765 0x2B,0x81,0x04,0x00,0x27, /* [4936] OBJ_sect571r1 */
766 0x67,0x2B,0x01,0x04,0x01, /* [4941] OBJ_wap_wsg_idm_ecid_wtls
767 0x67,0x2B,0x01,0x04,0x03, /* [4946] OBJ_wap_wsg_idm_ecid_wtls
768 0x67,0x2B,0x01,0x04,0x04, /* [4951] OBJ_wap_wsg_idm_ecid_wtls
769 0x67,0x2B,0x01,0x04,0x05, /* [4956] OBJ_wap_wsg_idm_ecid_wtls
770 0x67,0x2B,0x01,0x04,0x06, /* [4961] OBJ_wap_wsg_idm_ecid_wtls
771 0x67,0x2B,0x01,0x04,0x07, /* [4966] OBJ_wap_wsg_idm_ecid_wtls
772 0x67,0x2B,0x01,0x04,0x08, /* [4971] OBJ_wap_wsg_idm_ecid_wtls
773 0x67,0x2B,0x01,0x04,0x09, /* [4976] OBJ_wap_wsg_idm_ecid_wtls
774 0x67,0x2B,0x01,0x04,0x0A, /* [4981] OBJ_wap_wsg_idm_ecid_wtls
775 0x67,0x2B,0x01,0x04,0x0B, /* [4986] OBJ_wap_wsg_idm_ecid_wtls
776 0x67,0x2B,0x01,0x04,0x0C, /* [4991] OBJ_wap_wsg_idm_ecid_wtls
777 0x55,0x1D,0x20,0x00, /* [4996] OBJ_any_policy */
778 0x55,0x1D,0x21, /* [5000] OBJ_policy_mappings */
779 0x55,0x1D,0x36, /* [5003] OBJ_inhibit_any_policy */
780 0x2A,0x83,0x08,0x8C,0x9A,0x4B,0x3D,0x01,0x01,0x01,0x02,/* [5006] OBJ_camellia_12
781 0x2A,0x83,0x08,0x8C,0x9A,0x4B,0x3D,0x01,0x01,0x01,0x03,/* [5017] OBJ_camellia_19
782 0x2A,0x83,0x08,0x8C,0x9A,0x4B,0x3D,0x01,0x01,0x01,0x04,/* [5028] OBJ_camellia_25
783 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x01, /* [5039] OBJ_camellia_128_ecb */
784 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x15, /* [5047] OBJ_camellia_192_ecb */
785 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x29, /* [5055] OBJ_camellia_256_ecb */
786 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x04, /* [5063] OBJ_camellia_128_cfb128 *
787 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x18, /* [5071] OBJ_camellia_192_cfb128 *

new/usr/src/lib/openssl/include/obj_dat.h 13

788 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x2C, /* [5079] OBJ_camellia_256_cfb128 *
789 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x03, /* [5087] OBJ_camellia_128_ofb128 *
790 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x17, /* [5095] OBJ_camellia_192_ofb128 *
791 0x03,0xA2,0x31,0x05,0x03,0x01,0x09,0x2B, /* [5103] OBJ_camellia_256_ofb128 *
792 0x55,0x1D,0x09, /* [5111] OBJ_subject_directory_att
793 0x55,0x1D,0x1C, /* [5114] OBJ_issuing_distribution_
794 0x55,0x1D,0x1D, /* [5117] OBJ_certificate_issuer */
795 0x2A,0x83,0x1A,0x8C,0x9A,0x44, /* [5120] OBJ_kisa */
796 0x2A,0x83,0x1A,0x8C,0x9A,0x44,0x01,0x03, /* [5126] OBJ_seed_ecb */
797 0x2A,0x83,0x1A,0x8C,0x9A,0x44,0x01,0x04, /* [5134] OBJ_seed_cbc */
798 0x2A,0x83,0x1A,0x8C,0x9A,0x44,0x01,0x06, /* [5142] OBJ_seed_ofb128 */
799 0x2A,0x83,0x1A,0x8C,0x9A,0x44,0x01,0x05, /* [5150] OBJ_seed_cfb128 */
800 0x2B,0x06,0x01,0x05,0x05,0x08,0x01,0x01, /* [5158] OBJ_hmac_md5 */
801 0x2B,0x06,0x01,0x05,0x05,0x08,0x01,0x02, /* [5166] OBJ_hmac_sha1 */
802 0x2A,0x86,0x48,0x86,0xF6,0x7D,0x07,0x42,0x0D,/* [5174] OBJ_id_PasswordBasedMAC *
803 0x2A,0x86,0x48,0x86,0xF6,0x7D,0x07,0x42,0x1E,/* [5183] OBJ_id_DHBasedMac */
804 0x2B,0x06,0x01,0x05,0x05,0x07,0x04,0x10, /* [5192] OBJ_id_it_suppLangTags */
805 0x2B,0x06,0x01,0x05,0x05,0x07,0x30,0x05, /* [5200] OBJ_caRepository */
806 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x09,/* [5208] OBJ_id_smime_ct
807 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x01,0x1B,/* [5219] OBJ_id_ct_ascii
808 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x05,/* [5230] OBJ_id_aes128_wrap */
809 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x19,/* [5239] OBJ_id_aes192_wrap */
810 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x2D,/* [5248] OBJ_id_aes256_wrap */
811 0x2A,0x86,0x48,0xCE,0x3D,0x04,0x02, /* [5257] OBJ_ecdsa_with_Recommende
812 0x2A,0x86,0x48,0xCE,0x3D,0x04,0x03, /* [5264] OBJ_ecdsa_with_Specified
813 0x2A,0x86,0x48,0xCE,0x3D,0x04,0x03,0x01, /* [5271] OBJ_ecdsa_with_SHA224 */
814 0x2A,0x86,0x48,0xCE,0x3D,0x04,0x03,0x02, /* [5279] OBJ_ecdsa_with_SHA256 */
815 0x2A,0x86,0x48,0xCE,0x3D,0x04,0x03,0x03, /* [5287] OBJ_ecdsa_with_SHA384 */
816 0x2A,0x86,0x48,0xCE,0x3D,0x04,0x03,0x04, /* [5295] OBJ_ecdsa_with_SHA512 */
817 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x06, /* [5303] OBJ_hmacWithMD5 */
818 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x08, /* [5311] OBJ_hmacWithSHA224 */
819 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x09, /* [5319] OBJ_hmacWithSHA256 */
820 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x0A, /* [5327] OBJ_hmacWithSHA384 */
821 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x02,0x0B, /* [5335] OBJ_hmacWithSHA512 */
822 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x01,/* [5343] OBJ_dsa_with_SHA224 */
823 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x03,0x02,/* [5352] OBJ_dsa_with_SHA256 */
824 0x28,0xCF,0x06,0x03,0x00,0x37, /* [5361] OBJ_whirlpool */
825 0x2A,0x85,0x03,0x02,0x02, /* [5367] OBJ_cryptopro */
826 0x2A,0x85,0x03,0x02,0x09, /* [5372] OBJ_cryptocom */
827 0x2A,0x85,0x03,0x02,0x02,0x03, /* [5377] OBJ_id_GostR3411_94_with_
828 0x2A,0x85,0x03,0x02,0x02,0x04, /* [5383] OBJ_id_GostR3411_94_with_
829 0x2A,0x85,0x03,0x02,0x02,0x09, /* [5389] OBJ_id_GostR3411_94 */
830 0x2A,0x85,0x03,0x02,0x02,0x0A, /* [5395] OBJ_id_HMACGostR3411_94 *
831 0x2A,0x85,0x03,0x02,0x02,0x13, /* [5401] OBJ_id_GostR3410_2001 */
832 0x2A,0x85,0x03,0x02,0x02,0x14, /* [5407] OBJ_id_GostR3410_94 */
833 0x2A,0x85,0x03,0x02,0x02,0x15, /* [5413] OBJ_id_Gost28147_89 */
834 0x2A,0x85,0x03,0x02,0x02,0x16, /* [5419] OBJ_id_Gost28147_89_MAC *
835 0x2A,0x85,0x03,0x02,0x02,0x17, /* [5425] OBJ_id_GostR3411_94_prf *
836 0x2A,0x85,0x03,0x02,0x02,0x62, /* [5431] OBJ_id_GostR3410_2001DH *
837 0x2A,0x85,0x03,0x02,0x02,0x63, /* [5437] OBJ_id_GostR3410_94DH */
838 0x2A,0x85,0x03,0x02,0x02,0x0E,0x01, /* [5443] OBJ_id_Gost28147_89_Crypt
839 0x2A,0x85,0x03,0x02,0x02,0x0E,0x00, /* [5450] OBJ_id_Gost28147_89_None_
840 0x2A,0x85,0x03,0x02,0x02,0x1E,0x00, /* [5457] OBJ_id_GostR3411_94_TestP
841 0x2A,0x85,0x03,0x02,0x02,0x1E,0x01, /* [5464] OBJ_id_GostR3411_94_Crypt
842 0x2A,0x85,0x03,0x02,0x02,0x1F,0x00, /* [5471] OBJ_id_Gost28147_89_TestP
843 0x2A,0x85,0x03,0x02,0x02,0x1F,0x01, /* [5478] OBJ_id_Gost28147_89_Crypt
844 0x2A,0x85,0x03,0x02,0x02,0x1F,0x02, /* [5485] OBJ_id_Gost28147_89_Crypt
845 0x2A,0x85,0x03,0x02,0x02,0x1F,0x03, /* [5492] OBJ_id_Gost28147_89_Crypt
846 0x2A,0x85,0x03,0x02,0x02,0x1F,0x04, /* [5499] OBJ_id_Gost28147_89_Crypt
847 0x2A,0x85,0x03,0x02,0x02,0x1F,0x05, /* [5506] OBJ_id_Gost28147_89_Crypt
848 0x2A,0x85,0x03,0x02,0x02,0x1F,0x06, /* [5513] OBJ_id_Gost28147_89_Crypt
849 0x2A,0x85,0x03,0x02,0x02,0x1F,0x07, /* [5520] OBJ_id_Gost28147_89_Crypt
850 0x2A,0x85,0x03,0x02,0x02,0x20,0x00, /* [5527] OBJ_id_GostR3410_94_TestP
851 0x2A,0x85,0x03,0x02,0x02,0x20,0x02, /* [5534] OBJ_id_GostR3410_94_Crypt
852 0x2A,0x85,0x03,0x02,0x02,0x20,0x03, /* [5541] OBJ_id_GostR3410_94_Crypt
853 0x2A,0x85,0x03,0x02,0x02,0x20,0x04, /* [5548] OBJ_id_GostR3410_94_Crypt

new/usr/src/lib/openssl/include/obj_dat.h 14

854 0x2A,0x85,0x03,0x02,0x02,0x20,0x05, /* [5555] OBJ_id_GostR3410_94_Crypt
855 0x2A,0x85,0x03,0x02,0x02,0x21,0x01, /* [5562] OBJ_id_GostR3410_94_Crypt
856 0x2A,0x85,0x03,0x02,0x02,0x21,0x02, /* [5569] OBJ_id_GostR3410_94_Crypt
857 0x2A,0x85,0x03,0x02,0x02,0x21,0x03, /* [5576] OBJ_id_GostR3410_94_Crypt
858 0x2A,0x85,0x03,0x02,0x02,0x23,0x00, /* [5583] OBJ_id_GostR3410_2001_Tes
859 0x2A,0x85,0x03,0x02,0x02,0x23,0x01, /* [5590] OBJ_id_GostR3410_2001_Cry
860 0x2A,0x85,0x03,0x02,0x02,0x23,0x02, /* [5597] OBJ_id_GostR3410_2001_Cry
861 0x2A,0x85,0x03,0x02,0x02,0x23,0x03, /* [5604] OBJ_id_GostR3410_2001_Cry
862 0x2A,0x85,0x03,0x02,0x02,0x24,0x00, /* [5611] OBJ_id_GostR3410_2001_Cry
863 0x2A,0x85,0x03,0x02,0x02,0x24,0x01, /* [5618] OBJ_id_GostR3410_2001_Cry
864 0x2A,0x85,0x03,0x02,0x02,0x14,0x01, /* [5625] OBJ_id_GostR3410_94_a */
865 0x2A,0x85,0x03,0x02,0x02,0x14,0x02, /* [5632] OBJ_id_GostR3410_94_aBis
866 0x2A,0x85,0x03,0x02,0x02,0x14,0x03, /* [5639] OBJ_id_GostR3410_94_b */
867 0x2A,0x85,0x03,0x02,0x02,0x14,0x04, /* [5646] OBJ_id_GostR3410_94_bBis
868 0x2A,0x85,0x03,0x02,0x09,0x01,0x06,0x01, /* [5653] OBJ_id_Gost28147_89_cc */
869 0x2A,0x85,0x03,0x02,0x09,0x01,0x05,0x03, /* [5661] OBJ_id_GostR3410_94_cc */
870 0x2A,0x85,0x03,0x02,0x09,0x01,0x05,0x04, /* [5669] OBJ_id_GostR3410_2001_cc
871 0x2A,0x85,0x03,0x02,0x09,0x01,0x03,0x03, /* [5677] OBJ_id_GostR3411_94_with_
872 0x2A,0x85,0x03,0x02,0x09,0x01,0x03,0x04, /* [5685] OBJ_id_GostR3411_94_with_
873 0x2A,0x85,0x03,0x02,0x09,0x01,0x08,0x01, /* [5693] OBJ_id_GostR3410_2001_Par
874 0x2B,0x06,0x01,0x04,0x01,0x82,0x37,0x11,0x02,/* [5701] OBJ_LocalKeySet */
875 0x55,0x1D,0x2E, /* [5710] OBJ_freshest_crl */
876 0x2B,0x06,0x01,0x05,0x05,0x07,0x08,0x03, /* [5713] OBJ_id_on_permanentIdenti
877 0x55,0x04,0x0E, /* [5721] OBJ_searchGuide */
878 0x55,0x04,0x0F, /* [5724] OBJ_businessCategory */
879 0x55,0x04,0x10, /* [5727] OBJ_postalAddress */
880 0x55,0x04,0x12, /* [5730] OBJ_postOfficeBox */
881 0x55,0x04,0x13, /* [5733] OBJ_physicalDeliveryOffic
882 0x55,0x04,0x14, /* [5736] OBJ_telephoneNumber */
883 0x55,0x04,0x15, /* [5739] OBJ_telexNumber */
884 0x55,0x04,0x16, /* [5742] OBJ_teletexTerminalIdenti
885 0x55,0x04,0x17, /* [5745] OBJ_facsimileTelephoneNum
886 0x55,0x04,0x18, /* [5748] OBJ_x121Address */
887 0x55,0x04,0x19, /* [5751] OBJ_internationaliSDNNumb
888 0x55,0x04,0x1A, /* [5754] OBJ_registeredAddress */
889 0x55,0x04,0x1B, /* [5757] OBJ_destinationIndicator
890 0x55,0x04,0x1C, /* [5760] OBJ_preferredDeliveryMeth
891 0x55,0x04,0x1D, /* [5763] OBJ_presentationAddress *
892 0x55,0x04,0x1E, /* [5766] OBJ_supportedApplicationC
893 0x55,0x04,0x1F, /* [5769] OBJ_member */
894 0x55,0x04,0x20, /* [5772] OBJ_owner */
895 0x55,0x04,0x21, /* [5775] OBJ_roleOccupant */
896 0x55,0x04,0x22, /* [5778] OBJ_seeAlso */
897 0x55,0x04,0x23, /* [5781] OBJ_userPassword */
898 0x55,0x04,0x24, /* [5784] OBJ_userCertificate */
899 0x55,0x04,0x25, /* [5787] OBJ_cACertificate */
900 0x55,0x04,0x26, /* [5790] OBJ_authorityRevocationLi
901 0x55,0x04,0x27, /* [5793] OBJ_certificateRevocation
902 0x55,0x04,0x28, /* [5796] OBJ_crossCertificatePair
903 0x55,0x04,0x2F, /* [5799] OBJ_enhancedSearchGuide *
904 0x55,0x04,0x30, /* [5802] OBJ_protocolInformation *
905 0x55,0x04,0x31, /* [5805] OBJ_distinguishedName */
906 0x55,0x04,0x32, /* [5808] OBJ_uniqueMember */
907 0x55,0x04,0x33, /* [5811] OBJ_houseIdentifier */
908 0x55,0x04,0x34, /* [5814] OBJ_supportedAlgorithms *
909 0x55,0x04,0x35, /* [5817] OBJ_deltaRevocationList *
910 0x55,0x04,0x36, /* [5820] OBJ_dmdName */
911 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x09,0x10,0x03,0x09,/* [5823] OBJ_id_alg_PWRI
912 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x06,/* [5834] OBJ_aes_128_gcm */
913 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x07,/* [5843] OBJ_aes_128_ccm */
914 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x08,/* [5852] OBJ_id_aes128_wrap_pad */
915 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x1A,/* [5861] OBJ_aes_192_gcm */
916 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x1B,/* [5870] OBJ_aes_192_ccm */
917 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x1C,/* [5879] OBJ_id_aes192_wrap_pad */
918 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x2E,/* [5888] OBJ_aes_256_gcm */
919 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x2F,/* [5897] OBJ_aes_256_ccm */

new/usr/src/lib/openssl/include/obj_dat.h 15

920 0x60,0x86,0x48,0x01,0x65,0x03,0x04,0x01,0x30,/* [5906] OBJ_id_aes256_wrap_pad */
921 0x2A,0x83,0x08,0x8C,0x9A,0x4B,0x3D,0x01,0x01,0x03,0x02,/* [5915] OBJ_id_camellia
922 0x2A,0x83,0x08,0x8C,0x9A,0x4B,0x3D,0x01,0x01,0x03,0x03,/* [5926] OBJ_id_camellia
923 0x2A,0x83,0x08,0x8C,0x9A,0x4B,0x3D,0x01,0x01,0x03,0x04,/* [5937] OBJ_id_camellia
924 0x55,0x1D,0x25,0x00, /* [5948] OBJ_anyExtendedKeyUsage *
925 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x08,/* [5952] OBJ_mgf1 */
926 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x0A,/* [5961] OBJ_rsassaPss */
927 0x2A,0x86,0x48,0x86,0xF7,0x0D,0x01,0x01,0x07,/* [5970] OBJ_rsaesOaep */
928 };

930 static const ASN1_OBJECT nid_objs[NUM_NID]={
931 {"UNDEF","undefined",NID_undef,1,&(lvalues[0]),0},
932 {"rsadsi","RSA Data Security, Inc.",NID_rsadsi,6,&(lvalues[1]),0},
933 {"pkcs","RSA Data Security, Inc. PKCS",NID_pkcs,7,&(lvalues[7]),0},
934 {"MD2","md2",NID_md2,8,&(lvalues[14]),0},
935 {"MD5","md5",NID_md5,8,&(lvalues[22]),0},
936 {"RC4","rc4",NID_rc4,8,&(lvalues[30]),0},
937 {"rsaEncryption","rsaEncryption",NID_rsaEncryption,9,&(lvalues[38]),0},
938 {"RSA-MD2","md2WithRSAEncryption",NID_md2WithRSAEncryption,9,
939 &(lvalues[47]),0},
940 {"RSA-MD5","md5WithRSAEncryption",NID_md5WithRSAEncryption,9,
941 &(lvalues[56]),0},
942 {"PBE-MD2-DES","pbeWithMD2AndDES-CBC",NID_pbeWithMD2AndDES_CBC,9,
943 &(lvalues[65]),0},
944 {"PBE-MD5-DES","pbeWithMD5AndDES-CBC",NID_pbeWithMD5AndDES_CBC,9,
945 &(lvalues[74]),0},
946 {"X500","directory services (X.500)",NID_X500,1,&(lvalues[83]),0},
947 {"X509","X509",NID_X509,2,&(lvalues[84]),0},
948 {"CN","commonName",NID_commonName,3,&(lvalues[86]),0},
949 {"C","countryName",NID_countryName,3,&(lvalues[89]),0},
950 {"L","localityName",NID_localityName,3,&(lvalues[92]),0},
951 {"ST","stateOrProvinceName",NID_stateOrProvinceName,3,&(lvalues[95]),0},
952 {"O","organizationName",NID_organizationName,3,&(lvalues[98]),0},
953 {"OU","organizationalUnitName",NID_organizationalUnitName,3,
954 &(lvalues[101]),0},
955 {"RSA","rsa",NID_rsa,4,&(lvalues[104]),0},
956 {"pkcs7","pkcs7",NID_pkcs7,8,&(lvalues[108]),0},
957 {"pkcs7-data","pkcs7-data",NID_pkcs7_data,9,&(lvalues[116]),0},
958 {"pkcs7-signedData","pkcs7-signedData",NID_pkcs7_signed,9,
959 &(lvalues[125]),0},
960 {"pkcs7-envelopedData","pkcs7-envelopedData",NID_pkcs7_enveloped,9,
961 &(lvalues[134]),0},
962 {"pkcs7-signedAndEnvelopedData","pkcs7-signedAndEnvelopedData",
963 NID_pkcs7_signedAndEnveloped,9,&(lvalues[143]),0},
964 {"pkcs7-digestData","pkcs7-digestData",NID_pkcs7_digest,9,
965 &(lvalues[152]),0},
966 {"pkcs7-encryptedData","pkcs7-encryptedData",NID_pkcs7_encrypted,9,
967 &(lvalues[161]),0},
968 {"pkcs3","pkcs3",NID_pkcs3,8,&(lvalues[170]),0},
969 {"dhKeyAgreement","dhKeyAgreement",NID_dhKeyAgreement,9,
970 &(lvalues[178]),0},
971 {"DES-ECB","des-ecb",NID_des_ecb,5,&(lvalues[187]),0},
972 {"DES-CFB","des-cfb",NID_des_cfb64,5,&(lvalues[192]),0},
973 {"DES-CBC","des-cbc",NID_des_cbc,5,&(lvalues[197]),0},
974 {"DES-EDE","des-ede",NID_des_ede_ecb,5,&(lvalues[202]),0},
975 {"DES-EDE3","des-ede3",NID_des_ede3_ecb,0,NULL,0},
976 {"IDEA-CBC","idea-cbc",NID_idea_cbc,11,&(lvalues[207]),0},
977 {"IDEA-CFB","idea-cfb",NID_idea_cfb64,0,NULL,0},
978 {"IDEA-ECB","idea-ecb",NID_idea_ecb,0,NULL,0},
979 {"RC2-CBC","rc2-cbc",NID_rc2_cbc,8,&(lvalues[218]),0},
980 {"RC2-ECB","rc2-ecb",NID_rc2_ecb,0,NULL,0},
981 {"RC2-CFB","rc2-cfb",NID_rc2_cfb64,0,NULL,0},
982 {"RC2-OFB","rc2-ofb",NID_rc2_ofb64,0,NULL,0},
983 {"SHA","sha",NID_sha,5,&(lvalues[226]),0},
984 {"RSA-SHA","shaWithRSAEncryption",NID_shaWithRSAEncryption,5,
985 &(lvalues[231]),0},

new/usr/src/lib/openssl/include/obj_dat.h 16

986 {"DES-EDE-CBC","des-ede-cbc",NID_des_ede_cbc,0,NULL,0},
987 {"DES-EDE3-CBC","des-ede3-cbc",NID_des_ede3_cbc,8,&(lvalues[236]),0},
988 {"DES-OFB","des-ofb",NID_des_ofb64,5,&(lvalues[244]),0},
989 {"IDEA-OFB","idea-ofb",NID_idea_ofb64,0,NULL,0},
990 {"pkcs9","pkcs9",NID_pkcs9,8,&(lvalues[249]),0},
991 {"emailAddress","emailAddress",NID_pkcs9_emailAddress,9,
992 &(lvalues[257]),0},
993 {"unstructuredName","unstructuredName",NID_pkcs9_unstructuredName,9,
994 &(lvalues[266]),0},
995 {"contentType","contentType",NID_pkcs9_contentType,9,&(lvalues[275]),0},
996 {"messageDigest","messageDigest",NID_pkcs9_messageDigest,9,
997 &(lvalues[284]),0},
998 {"signingTime","signingTime",NID_pkcs9_signingTime,9,&(lvalues[293]),0},
999 {"countersignature","countersignature",NID_pkcs9_countersignature,9,

1000 &(lvalues[302]),0},
1001 {"challengePassword","challengePassword",NID_pkcs9_challengePassword,
1002 9,&(lvalues[311]),0},
1003 {"unstructuredAddress","unstructuredAddress",
1004 NID_pkcs9_unstructuredAddress,9,&(lvalues[320]),0},
1005 {"extendedCertificateAttributes","extendedCertificateAttributes",
1006 NID_pkcs9_extCertAttributes,9,&(lvalues[329]),0},
1007 {"Netscape","Netscape Communications Corp.",NID_netscape,7,
1008 &(lvalues[338]),0},
1009 {"nsCertExt","Netscape Certificate Extension",
1010 NID_netscape_cert_extension,8,&(lvalues[345]),0},
1011 {"nsDataType","Netscape Data Type",NID_netscape_data_type,8,
1012 &(lvalues[353]),0},
1013 {"DES-EDE-CFB","des-ede-cfb",NID_des_ede_cfb64,0,NULL,0},
1014 {"DES-EDE3-CFB","des-ede3-cfb",NID_des_ede3_cfb64,0,NULL,0},
1015 {"DES-EDE-OFB","des-ede-ofb",NID_des_ede_ofb64,0,NULL,0},
1016 {"DES-EDE3-OFB","des-ede3-ofb",NID_des_ede3_ofb64,0,NULL,0},
1017 {"SHA1","sha1",NID_sha1,5,&(lvalues[361]),0},
1018 {"RSA-SHA1","sha1WithRSAEncryption",NID_sha1WithRSAEncryption,9,
1019 &(lvalues[366]),0},
1020 {"DSA-SHA","dsaWithSHA",NID_dsaWithSHA,5,&(lvalues[375]),0},
1021 {"DSA-old","dsaEncryption-old",NID_dsa_2,5,&(lvalues[380]),0},
1022 {"PBE-SHA1-RC2-64","pbeWithSHA1AndRC2-CBC",NID_pbeWithSHA1AndRC2_CBC,
1023 9,&(lvalues[385]),0},
1024 {"PBKDF2","PBKDF2",NID_id_pbkdf2,9,&(lvalues[394]),0},
1025 {"DSA-SHA1-old","dsaWithSHA1-old",NID_dsaWithSHA1_2,5,&(lvalues[403]),0},
1026 {"nsCertType","Netscape Cert Type",NID_netscape_cert_type,9,
1027 &(lvalues[408]),0},
1028 {"nsBaseUrl","Netscape Base Url",NID_netscape_base_url,9,
1029 &(lvalues[417]),0},
1030 {"nsRevocationUrl","Netscape Revocation Url",
1031 NID_netscape_revocation_url,9,&(lvalues[426]),0},
1032 {"nsCaRevocationUrl","Netscape CA Revocation Url",
1033 NID_netscape_ca_revocation_url,9,&(lvalues[435]),0},
1034 {"nsRenewalUrl","Netscape Renewal Url",NID_netscape_renewal_url,9,
1035 &(lvalues[444]),0},
1036 {"nsCaPolicyUrl","Netscape CA Policy Url",NID_netscape_ca_policy_url,
1037 9,&(lvalues[453]),0},
1038 {"nsSslServerName","Netscape SSL Server Name",
1039 NID_netscape_ssl_server_name,9,&(lvalues[462]),0},
1040 {"nsComment","Netscape Comment",NID_netscape_comment,9,&(lvalues[471]),0},
1041 {"nsCertSequence","Netscape Certificate Sequence",
1042 NID_netscape_cert_sequence,9,&(lvalues[480]),0},
1043 {"DESX-CBC","desx-cbc",NID_desx_cbc,0,NULL,0},
1044 {"id-ce","id-ce",NID_id_ce,2,&(lvalues[489]),0},
1045 {"subjectKeyIdentifier","X509v3 Subject Key Identifier",
1046 NID_subject_key_identifier,3,&(lvalues[491]),0},
1047 {"keyUsage","X509v3 Key Usage",NID_key_usage,3,&(lvalues[494]),0},
1048 {"privateKeyUsagePeriod","X509v3 Private Key Usage Period",
1049 NID_private_key_usage_period,3,&(lvalues[497]),0},
1050 {"subjectAltName","X509v3 Subject Alternative Name",
1051 NID_subject_alt_name,3,&(lvalues[500]),0},

new/usr/src/lib/openssl/include/obj_dat.h 17

1052 {"issuerAltName","X509v3 Issuer Alternative Name",NID_issuer_alt_name,
1053 3,&(lvalues[503]),0},
1054 {"basicConstraints","X509v3 Basic Constraints",NID_basic_constraints,
1055 3,&(lvalues[506]),0},
1056 {"crlNumber","X509v3 CRL Number",NID_crl_number,3,&(lvalues[509]),0},
1057 {"certificatePolicies","X509v3 Certificate Policies",
1058 NID_certificate_policies,3,&(lvalues[512]),0},
1059 {"authorityKeyIdentifier","X509v3 Authority Key Identifier",
1060 NID_authority_key_identifier,3,&(lvalues[515]),0},
1061 {"BF-CBC","bf-cbc",NID_bf_cbc,9,&(lvalues[518]),0},
1062 {"BF-ECB","bf-ecb",NID_bf_ecb,0,NULL,0},
1063 {"BF-CFB","bf-cfb",NID_bf_cfb64,0,NULL,0},
1064 {"BF-OFB","bf-ofb",NID_bf_ofb64,0,NULL,0},
1065 {"MDC2","mdc2",NID_mdc2,4,&(lvalues[527]),0},
1066 {"RSA-MDC2","mdc2WithRSA",NID_mdc2WithRSA,4,&(lvalues[531]),0},
1067 {"RC4-40","rc4-40",NID_rc4_40,0,NULL,0},
1068 {"RC2-40-CBC","rc2-40-cbc",NID_rc2_40_cbc,0,NULL,0},
1069 {"GN","givenName",NID_givenName,3,&(lvalues[535]),0},
1070 {"SN","surname",NID_surname,3,&(lvalues[538]),0},
1071 {"initials","initials",NID_initials,3,&(lvalues[541]),0},
1072 {NULL,NULL,NID_undef,0,NULL,0},
1073 {"crlDistributionPoints","X509v3 CRL Distribution Points",
1074 NID_crl_distribution_points,3,&(lvalues[544]),0},
1075 {"RSA-NP-MD5","md5WithRSA",NID_md5WithRSA,5,&(lvalues[547]),0},
1076 {"serialNumber","serialNumber",NID_serialNumber,3,&(lvalues[552]),0},
1077 {"title","title",NID_title,3,&(lvalues[555]),0},
1078 {"description","description",NID_description,3,&(lvalues[558]),0},
1079 {"CAST5-CBC","cast5-cbc",NID_cast5_cbc,9,&(lvalues[561]),0},
1080 {"CAST5-ECB","cast5-ecb",NID_cast5_ecb,0,NULL,0},
1081 {"CAST5-CFB","cast5-cfb",NID_cast5_cfb64,0,NULL,0},
1082 {"CAST5-OFB","cast5-ofb",NID_cast5_ofb64,0,NULL,0},
1083 {"pbeWithMD5AndCast5CBC","pbeWithMD5AndCast5CBC",
1084 NID_pbeWithMD5AndCast5_CBC,9,&(lvalues[570]),0},
1085 {"DSA-SHA1","dsaWithSHA1",NID_dsaWithSHA1,7,&(lvalues[579]),0},
1086 {"MD5-SHA1","md5-sha1",NID_md5_sha1,0,NULL,0},
1087 {"RSA-SHA1-2","sha1WithRSA",NID_sha1WithRSA,5,&(lvalues[586]),0},
1088 {"DSA","dsaEncryption",NID_dsa,7,&(lvalues[591]),0},
1089 {"RIPEMD160","ripemd160",NID_ripemd160,5,&(lvalues[598]),0},
1090 {NULL,NULL,NID_undef,0,NULL,0},
1091 {"RSA-RIPEMD160","ripemd160WithRSA",NID_ripemd160WithRSA,6,
1092 &(lvalues[603]),0},
1093 {"RC5-CBC","rc5-cbc",NID_rc5_cbc,8,&(lvalues[609]),0},
1094 {"RC5-ECB","rc5-ecb",NID_rc5_ecb,0,NULL,0},
1095 {"RC5-CFB","rc5-cfb",NID_rc5_cfb64,0,NULL,0},
1096 {"RC5-OFB","rc5-ofb",NID_rc5_ofb64,0,NULL,0},
1097 {"RLE","run length compression",NID_rle_compression,6,&(lvalues[617]),0},
1098 {"ZLIB","zlib compression",NID_zlib_compression,11,&(lvalues[623]),0},
1099 {"extendedKeyUsage","X509v3 Extended Key Usage",NID_ext_key_usage,3,
1100 &(lvalues[634]),0},
1101 {"PKIX","PKIX",NID_id_pkix,6,&(lvalues[637]),0},
1102 {"id-kp","id-kp",NID_id_kp,7,&(lvalues[643]),0},
1103 {"serverAuth","TLS Web Server Authentication",NID_server_auth,8,
1104 &(lvalues[650]),0},
1105 {"clientAuth","TLS Web Client Authentication",NID_client_auth,8,
1106 &(lvalues[658]),0},
1107 {"codeSigning","Code Signing",NID_code_sign,8,&(lvalues[666]),0},
1108 {"emailProtection","E-mail Protection",NID_email_protect,8,
1109 &(lvalues[674]),0},
1110 {"timeStamping","Time Stamping",NID_time_stamp,8,&(lvalues[682]),0},
1111 {"msCodeInd","Microsoft Individual Code Signing",NID_ms_code_ind,10,
1112 &(lvalues[690]),0},
1113 {"msCodeCom","Microsoft Commercial Code Signing",NID_ms_code_com,10,
1114 &(lvalues[700]),0},
1115 {"msCTLSign","Microsoft Trust List Signing",NID_ms_ctl_sign,10,
1116 &(lvalues[710]),0},
1117 {"msSGC","Microsoft Server Gated Crypto",NID_ms_sgc,10,&(lvalues[720]),0},

new/usr/src/lib/openssl/include/obj_dat.h 18

1118 {"msEFS","Microsoft Encrypted File System",NID_ms_efs,10,
1119 &(lvalues[730]),0},
1120 {"nsSGC","Netscape Server Gated Crypto",NID_ns_sgc,9,&(lvalues[740]),0},
1121 {"deltaCRL","X509v3 Delta CRL Indicator",NID_delta_crl,3,
1122 &(lvalues[749]),0},
1123 {"CRLReason","X509v3 CRL Reason Code",NID_crl_reason,3,&(lvalues[752]),0},
1124 {"invalidityDate","Invalidity Date",NID_invalidity_date,3,
1125 &(lvalues[755]),0},
1126 {"SXNetID","Strong Extranet ID",NID_sxnet,5,&(lvalues[758]),0},
1127 {"PBE-SHA1-RC4-128","pbeWithSHA1And128BitRC4",
1128 NID_pbe_WithSHA1And128BitRC4,10,&(lvalues[763]),0},
1129 {"PBE-SHA1-RC4-40","pbeWithSHA1And40BitRC4",
1130 NID_pbe_WithSHA1And40BitRC4,10,&(lvalues[773]),0},
1131 {"PBE-SHA1-3DES","pbeWithSHA1And3-KeyTripleDES-CBC",
1132 NID_pbe_WithSHA1And3_Key_TripleDES_CBC,10,&(lvalues[783]),0},
1133 {"PBE-SHA1-2DES","pbeWithSHA1And2-KeyTripleDES-CBC",
1134 NID_pbe_WithSHA1And2_Key_TripleDES_CBC,10,&(lvalues[793]),0},
1135 {"PBE-SHA1-RC2-128","pbeWithSHA1And128BitRC2-CBC",
1136 NID_pbe_WithSHA1And128BitRC2_CBC,10,&(lvalues[803]),0},
1137 {"PBE-SHA1-RC2-40","pbeWithSHA1And40BitRC2-CBC",
1138 NID_pbe_WithSHA1And40BitRC2_CBC,10,&(lvalues[813]),0},
1139 {"keyBag","keyBag",NID_keyBag,11,&(lvalues[823]),0},
1140 {"pkcs8ShroudedKeyBag","pkcs8ShroudedKeyBag",NID_pkcs8ShroudedKeyBag,
1141 11,&(lvalues[834]),0},
1142 {"certBag","certBag",NID_certBag,11,&(lvalues[845]),0},
1143 {"crlBag","crlBag",NID_crlBag,11,&(lvalues[856]),0},
1144 {"secretBag","secretBag",NID_secretBag,11,&(lvalues[867]),0},
1145 {"safeContentsBag","safeContentsBag",NID_safeContentsBag,11,
1146 &(lvalues[878]),0},
1147 {"friendlyName","friendlyName",NID_friendlyName,9,&(lvalues[889]),0},
1148 {"localKeyID","localKeyID",NID_localKeyID,9,&(lvalues[898]),0},
1149 {"x509Certificate","x509Certificate",NID_x509Certificate,10,
1150 &(lvalues[907]),0},
1151 {"sdsiCertificate","sdsiCertificate",NID_sdsiCertificate,10,
1152 &(lvalues[917]),0},
1153 {"x509Crl","x509Crl",NID_x509Crl,10,&(lvalues[927]),0},
1154 {"PBES2","PBES2",NID_pbes2,9,&(lvalues[937]),0},
1155 {"PBMAC1","PBMAC1",NID_pbmac1,9,&(lvalues[946]),0},
1156 {"hmacWithSHA1","hmacWithSHA1",NID_hmacWithSHA1,8,&(lvalues[955]),0},
1157 {"id-qt-cps","Policy Qualifier CPS",NID_id_qt_cps,8,&(lvalues[963]),0},
1158 {"id-qt-unotice","Policy Qualifier User Notice",NID_id_qt_unotice,8,
1159 &(lvalues[971]),0},
1160 {"RC2-64-CBC","rc2-64-cbc",NID_rc2_64_cbc,0,NULL,0},
1161 {"SMIME-CAPS","S/MIME Capabilities",NID_SMIMECapabilities,9,
1162 &(lvalues[979]),0},
1163 {"PBE-MD2-RC2-64","pbeWithMD2AndRC2-CBC",NID_pbeWithMD2AndRC2_CBC,9,
1164 &(lvalues[988]),0},
1165 {"PBE-MD5-RC2-64","pbeWithMD5AndRC2-CBC",NID_pbeWithMD5AndRC2_CBC,9,
1166 &(lvalues[997]),0},
1167 {"PBE-SHA1-DES","pbeWithSHA1AndDES-CBC",NID_pbeWithSHA1AndDES_CBC,9,
1168 &(lvalues[1006]),0},
1169 {"msExtReq","Microsoft Extension Request",NID_ms_ext_req,10,
1170 &(lvalues[1015]),0},
1171 {"extReq","Extension Request",NID_ext_req,9,&(lvalues[1025]),0},
1172 {"name","name",NID_name,3,&(lvalues[1034]),0},
1173 {"dnQualifier","dnQualifier",NID_dnQualifier,3,&(lvalues[1037]),0},
1174 {"id-pe","id-pe",NID_id_pe,7,&(lvalues[1040]),0},
1175 {"id-ad","id-ad",NID_id_ad,7,&(lvalues[1047]),0},
1176 {"authorityInfoAccess","Authority Information Access",NID_info_access,
1177 8,&(lvalues[1054]),0},
1178 {"OCSP","OCSP",NID_ad_OCSP,8,&(lvalues[1062]),0},
1179 {"caIssuers","CA Issuers",NID_ad_ca_issuers,8,&(lvalues[1070]),0},
1180 {"OCSPSigning","OCSP Signing",NID_OCSP_sign,8,&(lvalues[1078]),0},
1181 {"ISO","iso",NID_iso,1,&(lvalues[1086]),0},
1182 {"member-body","ISO Member Body",NID_member_body,1,&(lvalues[1087]),0},
1183 {"ISO-US","ISO US Member Body",NID_ISO_US,3,&(lvalues[1088]),0},

new/usr/src/lib/openssl/include/obj_dat.h 19

1184 {"X9-57","X9.57",NID_X9_57,5,&(lvalues[1091]),0},
1185 {"X9cm","X9.57 CM ?",NID_X9cm,6,&(lvalues[1096]),0},
1186 {"pkcs1","pkcs1",NID_pkcs1,8,&(lvalues[1102]),0},
1187 {"pkcs5","pkcs5",NID_pkcs5,8,&(lvalues[1110]),0},
1188 {"SMIME","S/MIME",NID_SMIME,9,&(lvalues[1118]),0},
1189 {"id-smime-mod","id-smime-mod",NID_id_smime_mod,10,&(lvalues[1127]),0},
1190 {"id-smime-ct","id-smime-ct",NID_id_smime_ct,10,&(lvalues[1137]),0},
1191 {"id-smime-aa","id-smime-aa",NID_id_smime_aa,10,&(lvalues[1147]),0},
1192 {"id-smime-alg","id-smime-alg",NID_id_smime_alg,10,&(lvalues[1157]),0},
1193 {"id-smime-cd","id-smime-cd",NID_id_smime_cd,10,&(lvalues[1167]),0},
1194 {"id-smime-spq","id-smime-spq",NID_id_smime_spq,10,&(lvalues[1177]),0},
1195 {"id-smime-cti","id-smime-cti",NID_id_smime_cti,10,&(lvalues[1187]),0},
1196 {"id-smime-mod-cms","id-smime-mod-cms",NID_id_smime_mod_cms,11,
1197 &(lvalues[1197]),0},
1198 {"id-smime-mod-ess","id-smime-mod-ess",NID_id_smime_mod_ess,11,
1199 &(lvalues[1208]),0},
1200 {"id-smime-mod-oid","id-smime-mod-oid",NID_id_smime_mod_oid,11,
1201 &(lvalues[1219]),0},
1202 {"id-smime-mod-msg-v3","id-smime-mod-msg-v3",NID_id_smime_mod_msg_v3,
1203 11,&(lvalues[1230]),0},
1204 {"id-smime-mod-ets-eSignature-88","id-smime-mod-ets-eSignature-88",
1205 NID_id_smime_mod_ets_eSignature_88,11,&(lvalues[1241]),0},
1206 {"id-smime-mod-ets-eSignature-97","id-smime-mod-ets-eSignature-97",
1207 NID_id_smime_mod_ets_eSignature_97,11,&(lvalues[1252]),0},
1208 {"id-smime-mod-ets-eSigPolicy-88","id-smime-mod-ets-eSigPolicy-88",
1209 NID_id_smime_mod_ets_eSigPolicy_88,11,&(lvalues[1263]),0},
1210 {"id-smime-mod-ets-eSigPolicy-97","id-smime-mod-ets-eSigPolicy-97",
1211 NID_id_smime_mod_ets_eSigPolicy_97,11,&(lvalues[1274]),0},
1212 {"id-smime-ct-receipt","id-smime-ct-receipt",NID_id_smime_ct_receipt,
1213 11,&(lvalues[1285]),0},
1214 {"id-smime-ct-authData","id-smime-ct-authData",
1215 NID_id_smime_ct_authData,11,&(lvalues[1296]),0},
1216 {"id-smime-ct-publishCert","id-smime-ct-publishCert",
1217 NID_id_smime_ct_publishCert,11,&(lvalues[1307]),0},
1218 {"id-smime-ct-TSTInfo","id-smime-ct-TSTInfo",NID_id_smime_ct_TSTInfo,
1219 11,&(lvalues[1318]),0},
1220 {"id-smime-ct-TDTInfo","id-smime-ct-TDTInfo",NID_id_smime_ct_TDTInfo,
1221 11,&(lvalues[1329]),0},
1222 {"id-smime-ct-contentInfo","id-smime-ct-contentInfo",
1223 NID_id_smime_ct_contentInfo,11,&(lvalues[1340]),0},
1224 {"id-smime-ct-DVCSRequestData","id-smime-ct-DVCSRequestData",
1225 NID_id_smime_ct_DVCSRequestData,11,&(lvalues[1351]),0},
1226 {"id-smime-ct-DVCSResponseData","id-smime-ct-DVCSResponseData",
1227 NID_id_smime_ct_DVCSResponseData,11,&(lvalues[1362]),0},
1228 {"id-smime-aa-receiptRequest","id-smime-aa-receiptRequest",
1229 NID_id_smime_aa_receiptRequest,11,&(lvalues[1373]),0},
1230 {"id-smime-aa-securityLabel","id-smime-aa-securityLabel",
1231 NID_id_smime_aa_securityLabel,11,&(lvalues[1384]),0},
1232 {"id-smime-aa-mlExpandHistory","id-smime-aa-mlExpandHistory",
1233 NID_id_smime_aa_mlExpandHistory,11,&(lvalues[1395]),0},
1234 {"id-smime-aa-contentHint","id-smime-aa-contentHint",
1235 NID_id_smime_aa_contentHint,11,&(lvalues[1406]),0},
1236 {"id-smime-aa-msgSigDigest","id-smime-aa-msgSigDigest",
1237 NID_id_smime_aa_msgSigDigest,11,&(lvalues[1417]),0},
1238 {"id-smime-aa-encapContentType","id-smime-aa-encapContentType",
1239 NID_id_smime_aa_encapContentType,11,&(lvalues[1428]),0},
1240 {"id-smime-aa-contentIdentifier","id-smime-aa-contentIdentifier",
1241 NID_id_smime_aa_contentIdentifier,11,&(lvalues[1439]),0},
1242 {"id-smime-aa-macValue","id-smime-aa-macValue",
1243 NID_id_smime_aa_macValue,11,&(lvalues[1450]),0},
1244 {"id-smime-aa-equivalentLabels","id-smime-aa-equivalentLabels",
1245 NID_id_smime_aa_equivalentLabels,11,&(lvalues[1461]),0},
1246 {"id-smime-aa-contentReference","id-smime-aa-contentReference",
1247 NID_id_smime_aa_contentReference,11,&(lvalues[1472]),0},
1248 {"id-smime-aa-encrypKeyPref","id-smime-aa-encrypKeyPref",
1249 NID_id_smime_aa_encrypKeyPref,11,&(lvalues[1483]),0},

new/usr/src/lib/openssl/include/obj_dat.h 20

1250 {"id-smime-aa-signingCertificate","id-smime-aa-signingCertificate",
1251 NID_id_smime_aa_signingCertificate,11,&(lvalues[1494]),0},
1252 {"id-smime-aa-smimeEncryptCerts","id-smime-aa-smimeEncryptCerts",
1253 NID_id_smime_aa_smimeEncryptCerts,11,&(lvalues[1505]),0},
1254 {"id-smime-aa-timeStampToken","id-smime-aa-timeStampToken",
1255 NID_id_smime_aa_timeStampToken,11,&(lvalues[1516]),0},
1256 {"id-smime-aa-ets-sigPolicyId","id-smime-aa-ets-sigPolicyId",
1257 NID_id_smime_aa_ets_sigPolicyId,11,&(lvalues[1527]),0},
1258 {"id-smime-aa-ets-commitmentType","id-smime-aa-ets-commitmentType",
1259 NID_id_smime_aa_ets_commitmentType,11,&(lvalues[1538]),0},
1260 {"id-smime-aa-ets-signerLocation","id-smime-aa-ets-signerLocation",
1261 NID_id_smime_aa_ets_signerLocation,11,&(lvalues[1549]),0},
1262 {"id-smime-aa-ets-signerAttr","id-smime-aa-ets-signerAttr",
1263 NID_id_smime_aa_ets_signerAttr,11,&(lvalues[1560]),0},
1264 {"id-smime-aa-ets-otherSigCert","id-smime-aa-ets-otherSigCert",
1265 NID_id_smime_aa_ets_otherSigCert,11,&(lvalues[1571]),0},
1266 {"id-smime-aa-ets-contentTimestamp",
1267 "id-smime-aa-ets-contentTimestamp",
1268 NID_id_smime_aa_ets_contentTimestamp,11,&(lvalues[1582]),0},
1269 {"id-smime-aa-ets-CertificateRefs","id-smime-aa-ets-CertificateRefs",
1270 NID_id_smime_aa_ets_CertificateRefs,11,&(lvalues[1593]),0},
1271 {"id-smime-aa-ets-RevocationRefs","id-smime-aa-ets-RevocationRefs",
1272 NID_id_smime_aa_ets_RevocationRefs,11,&(lvalues[1604]),0},
1273 {"id-smime-aa-ets-certValues","id-smime-aa-ets-certValues",
1274 NID_id_smime_aa_ets_certValues,11,&(lvalues[1615]),0},
1275 {"id-smime-aa-ets-revocationValues",
1276 "id-smime-aa-ets-revocationValues",
1277 NID_id_smime_aa_ets_revocationValues,11,&(lvalues[1626]),0},
1278 {"id-smime-aa-ets-escTimeStamp","id-smime-aa-ets-escTimeStamp",
1279 NID_id_smime_aa_ets_escTimeStamp,11,&(lvalues[1637]),0},
1280 {"id-smime-aa-ets-certCRLTimestamp",
1281 "id-smime-aa-ets-certCRLTimestamp",
1282 NID_id_smime_aa_ets_certCRLTimestamp,11,&(lvalues[1648]),0},
1283 {"id-smime-aa-ets-archiveTimeStamp",
1284 "id-smime-aa-ets-archiveTimeStamp",
1285 NID_id_smime_aa_ets_archiveTimeStamp,11,&(lvalues[1659]),0},
1286 {"id-smime-aa-signatureType","id-smime-aa-signatureType",
1287 NID_id_smime_aa_signatureType,11,&(lvalues[1670]),0},
1288 {"id-smime-aa-dvcs-dvc","id-smime-aa-dvcs-dvc",
1289 NID_id_smime_aa_dvcs_dvc,11,&(lvalues[1681]),0},
1290 {"id-smime-alg-ESDHwith3DES","id-smime-alg-ESDHwith3DES",
1291 NID_id_smime_alg_ESDHwith3DES,11,&(lvalues[1692]),0},
1292 {"id-smime-alg-ESDHwithRC2","id-smime-alg-ESDHwithRC2",
1293 NID_id_smime_alg_ESDHwithRC2,11,&(lvalues[1703]),0},
1294 {"id-smime-alg-3DESwrap","id-smime-alg-3DESwrap",
1295 NID_id_smime_alg_3DESwrap,11,&(lvalues[1714]),0},
1296 {"id-smime-alg-RC2wrap","id-smime-alg-RC2wrap",
1297 NID_id_smime_alg_RC2wrap,11,&(lvalues[1725]),0},
1298 {"id-smime-alg-ESDH","id-smime-alg-ESDH",NID_id_smime_alg_ESDH,11,
1299 &(lvalues[1736]),0},
1300 {"id-smime-alg-CMS3DESwrap","id-smime-alg-CMS3DESwrap",
1301 NID_id_smime_alg_CMS3DESwrap,11,&(lvalues[1747]),0},
1302 {"id-smime-alg-CMSRC2wrap","id-smime-alg-CMSRC2wrap",
1303 NID_id_smime_alg_CMSRC2wrap,11,&(lvalues[1758]),0},
1304 {"id-smime-cd-ldap","id-smime-cd-ldap",NID_id_smime_cd_ldap,11,
1305 &(lvalues[1769]),0},
1306 {"id-smime-spq-ets-sqt-uri","id-smime-spq-ets-sqt-uri",
1307 NID_id_smime_spq_ets_sqt_uri,11,&(lvalues[1780]),0},
1308 {"id-smime-spq-ets-sqt-unotice","id-smime-spq-ets-sqt-unotice",
1309 NID_id_smime_spq_ets_sqt_unotice,11,&(lvalues[1791]),0},
1310 {"id-smime-cti-ets-proofOfOrigin","id-smime-cti-ets-proofOfOrigin",
1311 NID_id_smime_cti_ets_proofOfOrigin,11,&(lvalues[1802]),0},
1312 {"id-smime-cti-ets-proofOfReceipt","id-smime-cti-ets-proofOfReceipt",
1313 NID_id_smime_cti_ets_proofOfReceipt,11,&(lvalues[1813]),0},
1314 {"id-smime-cti-ets-proofOfDelivery",
1315 "id-smime-cti-ets-proofOfDelivery",

new/usr/src/lib/openssl/include/obj_dat.h 21

1316 NID_id_smime_cti_ets_proofOfDelivery,11,&(lvalues[1824]),0},
1317 {"id-smime-cti-ets-proofOfSender","id-smime-cti-ets-proofOfSender",
1318 NID_id_smime_cti_ets_proofOfSender,11,&(lvalues[1835]),0},
1319 {"id-smime-cti-ets-proofOfApproval",
1320 "id-smime-cti-ets-proofOfApproval",
1321 NID_id_smime_cti_ets_proofOfApproval,11,&(lvalues[1846]),0},
1322 {"id-smime-cti-ets-proofOfCreation",
1323 "id-smime-cti-ets-proofOfCreation",
1324 NID_id_smime_cti_ets_proofOfCreation,11,&(lvalues[1857]),0},
1325 {"MD4","md4",NID_md4,8,&(lvalues[1868]),0},
1326 {"id-pkix-mod","id-pkix-mod",NID_id_pkix_mod,7,&(lvalues[1876]),0},
1327 {"id-qt","id-qt",NID_id_qt,7,&(lvalues[1883]),0},
1328 {"id-it","id-it",NID_id_it,7,&(lvalues[1890]),0},
1329 {"id-pkip","id-pkip",NID_id_pkip,7,&(lvalues[1897]),0},
1330 {"id-alg","id-alg",NID_id_alg,7,&(lvalues[1904]),0},
1331 {"id-cmc","id-cmc",NID_id_cmc,7,&(lvalues[1911]),0},
1332 {"id-on","id-on",NID_id_on,7,&(lvalues[1918]),0},
1333 {"id-pda","id-pda",NID_id_pda,7,&(lvalues[1925]),0},
1334 {"id-aca","id-aca",NID_id_aca,7,&(lvalues[1932]),0},
1335 {"id-qcs","id-qcs",NID_id_qcs,7,&(lvalues[1939]),0},
1336 {"id-cct","id-cct",NID_id_cct,7,&(lvalues[1946]),0},
1337 {"id-pkix1-explicit-88","id-pkix1-explicit-88",
1338 NID_id_pkix1_explicit_88,8,&(lvalues[1953]),0},
1339 {"id-pkix1-implicit-88","id-pkix1-implicit-88",
1340 NID_id_pkix1_implicit_88,8,&(lvalues[1961]),0},
1341 {"id-pkix1-explicit-93","id-pkix1-explicit-93",
1342 NID_id_pkix1_explicit_93,8,&(lvalues[1969]),0},
1343 {"id-pkix1-implicit-93","id-pkix1-implicit-93",
1344 NID_id_pkix1_implicit_93,8,&(lvalues[1977]),0},
1345 {"id-mod-crmf","id-mod-crmf",NID_id_mod_crmf,8,&(lvalues[1985]),0},
1346 {"id-mod-cmc","id-mod-cmc",NID_id_mod_cmc,8,&(lvalues[1993]),0},
1347 {"id-mod-kea-profile-88","id-mod-kea-profile-88",
1348 NID_id_mod_kea_profile_88,8,&(lvalues[2001]),0},
1349 {"id-mod-kea-profile-93","id-mod-kea-profile-93",
1350 NID_id_mod_kea_profile_93,8,&(lvalues[2009]),0},
1351 {"id-mod-cmp","id-mod-cmp",NID_id_mod_cmp,8,&(lvalues[2017]),0},
1352 {"id-mod-qualified-cert-88","id-mod-qualified-cert-88",
1353 NID_id_mod_qualified_cert_88,8,&(lvalues[2025]),0},
1354 {"id-mod-qualified-cert-93","id-mod-qualified-cert-93",
1355 NID_id_mod_qualified_cert_93,8,&(lvalues[2033]),0},
1356 {"id-mod-attribute-cert","id-mod-attribute-cert",
1357 NID_id_mod_attribute_cert,8,&(lvalues[2041]),0},
1358 {"id-mod-timestamp-protocol","id-mod-timestamp-protocol",
1359 NID_id_mod_timestamp_protocol,8,&(lvalues[2049]),0},
1360 {"id-mod-ocsp","id-mod-ocsp",NID_id_mod_ocsp,8,&(lvalues[2057]),0},
1361 {"id-mod-dvcs","id-mod-dvcs",NID_id_mod_dvcs,8,&(lvalues[2065]),0},
1362 {"id-mod-cmp2000","id-mod-cmp2000",NID_id_mod_cmp2000,8,
1363 &(lvalues[2073]),0},
1364 {"biometricInfo","Biometric Info",NID_biometricInfo,8,&(lvalues[2081]),0},
1365 {"qcStatements","qcStatements",NID_qcStatements,8,&(lvalues[2089]),0},
1366 {"ac-auditEntity","ac-auditEntity",NID_ac_auditEntity,8,
1367 &(lvalues[2097]),0},
1368 {"ac-targeting","ac-targeting",NID_ac_targeting,8,&(lvalues[2105]),0},
1369 {"aaControls","aaControls",NID_aaControls,8,&(lvalues[2113]),0},
1370 {"sbgp-ipAddrBlock","sbgp-ipAddrBlock",NID_sbgp_ipAddrBlock,8,
1371 &(lvalues[2121]),0},
1372 {"sbgp-autonomousSysNum","sbgp-autonomousSysNum",
1373 NID_sbgp_autonomousSysNum,8,&(lvalues[2129]),0},
1374 {"sbgp-routerIdentifier","sbgp-routerIdentifier",
1375 NID_sbgp_routerIdentifier,8,&(lvalues[2137]),0},
1376 {"textNotice","textNotice",NID_textNotice,8,&(lvalues[2145]),0},
1377 {"ipsecEndSystem","IPSec End System",NID_ipsecEndSystem,8,
1378 &(lvalues[2153]),0},
1379 {"ipsecTunnel","IPSec Tunnel",NID_ipsecTunnel,8,&(lvalues[2161]),0},
1380 {"ipsecUser","IPSec User",NID_ipsecUser,8,&(lvalues[2169]),0},
1381 {"DVCS","dvcs",NID_dvcs,8,&(lvalues[2177]),0},

new/usr/src/lib/openssl/include/obj_dat.h 22

1382 {"id-it-caProtEncCert","id-it-caProtEncCert",NID_id_it_caProtEncCert,
1383 8,&(lvalues[2185]),0},
1384 {"id-it-signKeyPairTypes","id-it-signKeyPairTypes",
1385 NID_id_it_signKeyPairTypes,8,&(lvalues[2193]),0},
1386 {"id-it-encKeyPairTypes","id-it-encKeyPairTypes",
1387 NID_id_it_encKeyPairTypes,8,&(lvalues[2201]),0},
1388 {"id-it-preferredSymmAlg","id-it-preferredSymmAlg",
1389 NID_id_it_preferredSymmAlg,8,&(lvalues[2209]),0},
1390 {"id-it-caKeyUpdateInfo","id-it-caKeyUpdateInfo",
1391 NID_id_it_caKeyUpdateInfo,8,&(lvalues[2217]),0},
1392 {"id-it-currentCRL","id-it-currentCRL",NID_id_it_currentCRL,8,
1393 &(lvalues[2225]),0},
1394 {"id-it-unsupportedOIDs","id-it-unsupportedOIDs",
1395 NID_id_it_unsupportedOIDs,8,&(lvalues[2233]),0},
1396 {"id-it-subscriptionRequest","id-it-subscriptionRequest",
1397 NID_id_it_subscriptionRequest,8,&(lvalues[2241]),0},
1398 {"id-it-subscriptionResponse","id-it-subscriptionResponse",
1399 NID_id_it_subscriptionResponse,8,&(lvalues[2249]),0},
1400 {"id-it-keyPairParamReq","id-it-keyPairParamReq",
1401 NID_id_it_keyPairParamReq,8,&(lvalues[2257]),0},
1402 {"id-it-keyPairParamRep","id-it-keyPairParamRep",
1403 NID_id_it_keyPairParamRep,8,&(lvalues[2265]),0},
1404 {"id-it-revPassphrase","id-it-revPassphrase",NID_id_it_revPassphrase,
1405 8,&(lvalues[2273]),0},
1406 {"id-it-implicitConfirm","id-it-implicitConfirm",
1407 NID_id_it_implicitConfirm,8,&(lvalues[2281]),0},
1408 {"id-it-confirmWaitTime","id-it-confirmWaitTime",
1409 NID_id_it_confirmWaitTime,8,&(lvalues[2289]),0},
1410 {"id-it-origPKIMessage","id-it-origPKIMessage",
1411 NID_id_it_origPKIMessage,8,&(lvalues[2297]),0},
1412 {"id-regCtrl","id-regCtrl",NID_id_regCtrl,8,&(lvalues[2305]),0},
1413 {"id-regInfo","id-regInfo",NID_id_regInfo,8,&(lvalues[2313]),0},
1414 {"id-regCtrl-regToken","id-regCtrl-regToken",NID_id_regCtrl_regToken,
1415 9,&(lvalues[2321]),0},
1416 {"id-regCtrl-authenticator","id-regCtrl-authenticator",
1417 NID_id_regCtrl_authenticator,9,&(lvalues[2330]),0},
1418 {"id-regCtrl-pkiPublicationInfo","id-regCtrl-pkiPublicationInfo",
1419 NID_id_regCtrl_pkiPublicationInfo,9,&(lvalues[2339]),0},
1420 {"id-regCtrl-pkiArchiveOptions","id-regCtrl-pkiArchiveOptions",
1421 NID_id_regCtrl_pkiArchiveOptions,9,&(lvalues[2348]),0},
1422 {"id-regCtrl-oldCertID","id-regCtrl-oldCertID",
1423 NID_id_regCtrl_oldCertID,9,&(lvalues[2357]),0},
1424 {"id-regCtrl-protocolEncrKey","id-regCtrl-protocolEncrKey",
1425 NID_id_regCtrl_protocolEncrKey,9,&(lvalues[2366]),0},
1426 {"id-regInfo-utf8Pairs","id-regInfo-utf8Pairs",
1427 NID_id_regInfo_utf8Pairs,9,&(lvalues[2375]),0},
1428 {"id-regInfo-certReq","id-regInfo-certReq",NID_id_regInfo_certReq,9,
1429 &(lvalues[2384]),0},
1430 {"id-alg-des40","id-alg-des40",NID_id_alg_des40,8,&(lvalues[2393]),0},
1431 {"id-alg-noSignature","id-alg-noSignature",NID_id_alg_noSignature,8,
1432 &(lvalues[2401]),0},
1433 {"id-alg-dh-sig-hmac-sha1","id-alg-dh-sig-hmac-sha1",
1434 NID_id_alg_dh_sig_hmac_sha1,8,&(lvalues[2409]),0},
1435 {"id-alg-dh-pop","id-alg-dh-pop",NID_id_alg_dh_pop,8,&(lvalues[2417]),0},
1436 {"id-cmc-statusInfo","id-cmc-statusInfo",NID_id_cmc_statusInfo,8,
1437 &(lvalues[2425]),0},
1438 {"id-cmc-identification","id-cmc-identification",
1439 NID_id_cmc_identification,8,&(lvalues[2433]),0},
1440 {"id-cmc-identityProof","id-cmc-identityProof",
1441 NID_id_cmc_identityProof,8,&(lvalues[2441]),0},
1442 {"id-cmc-dataReturn","id-cmc-dataReturn",NID_id_cmc_dataReturn,8,
1443 &(lvalues[2449]),0},
1444 {"id-cmc-transactionId","id-cmc-transactionId",
1445 NID_id_cmc_transactionId,8,&(lvalues[2457]),0},
1446 {"id-cmc-senderNonce","id-cmc-senderNonce",NID_id_cmc_senderNonce,8,
1447 &(lvalues[2465]),0},

new/usr/src/lib/openssl/include/obj_dat.h 23

1448 {"id-cmc-recipientNonce","id-cmc-recipientNonce",
1449 NID_id_cmc_recipientNonce,8,&(lvalues[2473]),0},
1450 {"id-cmc-addExtensions","id-cmc-addExtensions",
1451 NID_id_cmc_addExtensions,8,&(lvalues[2481]),0},
1452 {"id-cmc-encryptedPOP","id-cmc-encryptedPOP",NID_id_cmc_encryptedPOP,
1453 8,&(lvalues[2489]),0},
1454 {"id-cmc-decryptedPOP","id-cmc-decryptedPOP",NID_id_cmc_decryptedPOP,
1455 8,&(lvalues[2497]),0},
1456 {"id-cmc-lraPOPWitness","id-cmc-lraPOPWitness",
1457 NID_id_cmc_lraPOPWitness,8,&(lvalues[2505]),0},
1458 {"id-cmc-getCert","id-cmc-getCert",NID_id_cmc_getCert,8,
1459 &(lvalues[2513]),0},
1460 {"id-cmc-getCRL","id-cmc-getCRL",NID_id_cmc_getCRL,8,&(lvalues[2521]),0},
1461 {"id-cmc-revokeRequest","id-cmc-revokeRequest",
1462 NID_id_cmc_revokeRequest,8,&(lvalues[2529]),0},
1463 {"id-cmc-regInfo","id-cmc-regInfo",NID_id_cmc_regInfo,8,
1464 &(lvalues[2537]),0},
1465 {"id-cmc-responseInfo","id-cmc-responseInfo",NID_id_cmc_responseInfo,
1466 8,&(lvalues[2545]),0},
1467 {"id-cmc-queryPending","id-cmc-queryPending",NID_id_cmc_queryPending,
1468 8,&(lvalues[2553]),0},
1469 {"id-cmc-popLinkRandom","id-cmc-popLinkRandom",
1470 NID_id_cmc_popLinkRandom,8,&(lvalues[2561]),0},
1471 {"id-cmc-popLinkWitness","id-cmc-popLinkWitness",
1472 NID_id_cmc_popLinkWitness,8,&(lvalues[2569]),0},
1473 {"id-cmc-confirmCertAcceptance","id-cmc-confirmCertAcceptance",
1474 NID_id_cmc_confirmCertAcceptance,8,&(lvalues[2577]),0},
1475 {"id-on-personalData","id-on-personalData",NID_id_on_personalData,8,
1476 &(lvalues[2585]),0},
1477 {"id-pda-dateOfBirth","id-pda-dateOfBirth",NID_id_pda_dateOfBirth,8,
1478 &(lvalues[2593]),0},
1479 {"id-pda-placeOfBirth","id-pda-placeOfBirth",NID_id_pda_placeOfBirth,
1480 8,&(lvalues[2601]),0},
1481 {NULL,NULL,NID_undef,0,NULL,0},
1482 {"id-pda-gender","id-pda-gender",NID_id_pda_gender,8,&(lvalues[2609]),0},
1483 {"id-pda-countryOfCitizenship","id-pda-countryOfCitizenship",
1484 NID_id_pda_countryOfCitizenship,8,&(lvalues[2617]),0},
1485 {"id-pda-countryOfResidence","id-pda-countryOfResidence",
1486 NID_id_pda_countryOfResidence,8,&(lvalues[2625]),0},
1487 {"id-aca-authenticationInfo","id-aca-authenticationInfo",
1488 NID_id_aca_authenticationInfo,8,&(lvalues[2633]),0},
1489 {"id-aca-accessIdentity","id-aca-accessIdentity",
1490 NID_id_aca_accessIdentity,8,&(lvalues[2641]),0},
1491 {"id-aca-chargingIdentity","id-aca-chargingIdentity",
1492 NID_id_aca_chargingIdentity,8,&(lvalues[2649]),0},
1493 {"id-aca-group","id-aca-group",NID_id_aca_group,8,&(lvalues[2657]),0},
1494 {"id-aca-role","id-aca-role",NID_id_aca_role,8,&(lvalues[2665]),0},
1495 {"id-qcs-pkixQCSyntax-v1","id-qcs-pkixQCSyntax-v1",
1496 NID_id_qcs_pkixQCSyntax_v1,8,&(lvalues[2673]),0},
1497 {"id-cct-crs","id-cct-crs",NID_id_cct_crs,8,&(lvalues[2681]),0},
1498 {"id-cct-PKIData","id-cct-PKIData",NID_id_cct_PKIData,8,
1499 &(lvalues[2689]),0},
1500 {"id-cct-PKIResponse","id-cct-PKIResponse",NID_id_cct_PKIResponse,8,
1501 &(lvalues[2697]),0},
1502 {"ad_timestamping","AD Time Stamping",NID_ad_timeStamping,8,
1503 &(lvalues[2705]),0},
1504 {"AD_DVCS","ad dvcs",NID_ad_dvcs,8,&(lvalues[2713]),0},
1505 {"basicOCSPResponse","Basic OCSP Response",NID_id_pkix_OCSP_basic,9,
1506 &(lvalues[2721]),0},
1507 {"Nonce","OCSP Nonce",NID_id_pkix_OCSP_Nonce,9,&(lvalues[2730]),0},
1508 {"CrlID","OCSP CRL ID",NID_id_pkix_OCSP_CrlID,9,&(lvalues[2739]),0},
1509 {"acceptableResponses","Acceptable OCSP Responses",
1510 NID_id_pkix_OCSP_acceptableResponses,9,&(lvalues[2748]),0},
1511 {"noCheck","OCSP No Check",NID_id_pkix_OCSP_noCheck,9,&(lvalues[2757]),0},
1512 {"archiveCutoff","OCSP Archive Cutoff",NID_id_pkix_OCSP_archiveCutoff,
1513 9,&(lvalues[2766]),0},

new/usr/src/lib/openssl/include/obj_dat.h 24

1514 {"serviceLocator","OCSP Service Locator",
1515 NID_id_pkix_OCSP_serviceLocator,9,&(lvalues[2775]),0},
1516 {"extendedStatus","Extended OCSP Status",
1517 NID_id_pkix_OCSP_extendedStatus,9,&(lvalues[2784]),0},
1518 {"valid","valid",NID_id_pkix_OCSP_valid,9,&(lvalues[2793]),0},
1519 {"path","path",NID_id_pkix_OCSP_path,9,&(lvalues[2802]),0},
1520 {"trustRoot","Trust Root",NID_id_pkix_OCSP_trustRoot,9,
1521 &(lvalues[2811]),0},
1522 {"algorithm","algorithm",NID_algorithm,4,&(lvalues[2820]),0},
1523 {"rsaSignature","rsaSignature",NID_rsaSignature,5,&(lvalues[2824]),0},
1524 {"X500algorithms","directory services - algorithms",
1525 NID_X500algorithms,2,&(lvalues[2829]),0},
1526 {"ORG","org",NID_org,1,&(lvalues[2831]),0},
1527 {"DOD","dod",NID_dod,2,&(lvalues[2832]),0},
1528 {"IANA","iana",NID_iana,3,&(lvalues[2834]),0},
1529 {"directory","Directory",NID_Directory,4,&(lvalues[2837]),0},
1530 {"mgmt","Management",NID_Management,4,&(lvalues[2841]),0},
1531 {"experimental","Experimental",NID_Experimental,4,&(lvalues[2845]),0},
1532 {"private","Private",NID_Private,4,&(lvalues[2849]),0},
1533 {"security","Security",NID_Security,4,&(lvalues[2853]),0},
1534 {"snmpv2","SNMPv2",NID_SNMPv2,4,&(lvalues[2857]),0},
1535 {"Mail","Mail",NID_Mail,4,&(lvalues[2861]),0},
1536 {"enterprises","Enterprises",NID_Enterprises,5,&(lvalues[2865]),0},
1537 {"dcobject","dcObject",NID_dcObject,9,&(lvalues[2870]),0},
1538 {"DC","domainComponent",NID_domainComponent,10,&(lvalues[2879]),0},
1539 {"domain","Domain",NID_Domain,10,&(lvalues[2889]),0},
1540 {"NULL","NULL",NID_joint_iso_ccitt,1,&(lvalues[2899]),0},
1541 {"selected-attribute-types","Selected Attribute Types",
1542 NID_selected_attribute_types,3,&(lvalues[2900]),0},
1543 {"clearance","clearance",NID_clearance,4,&(lvalues[2903]),0},
1544 {"RSA-MD4","md4WithRSAEncryption",NID_md4WithRSAEncryption,9,
1545 &(lvalues[2907]),0},
1546 {"ac-proxying","ac-proxying",NID_ac_proxying,8,&(lvalues[2916]),0},
1547 {"subjectInfoAccess","Subject Information Access",NID_sinfo_access,8,
1548 &(lvalues[2924]),0},
1549 {"id-aca-encAttrs","id-aca-encAttrs",NID_id_aca_encAttrs,8,
1550 &(lvalues[2932]),0},
1551 {"role","role",NID_role,3,&(lvalues[2940]),0},
1552 {"policyConstraints","X509v3 Policy Constraints",
1553 NID_policy_constraints,3,&(lvalues[2943]),0},
1554 {"targetInformation","X509v3 AC Targeting",NID_target_information,3,
1555 &(lvalues[2946]),0},
1556 {"noRevAvail","X509v3 No Revocation Available",NID_no_rev_avail,3,
1557 &(lvalues[2949]),0},
1558 {"NULL","NULL",NID_ccitt,1,&(lvalues[2952]),0},
1559 {"ansi-X9-62","ANSI X9.62",NID_ansi_X9_62,5,&(lvalues[2953]),0},
1560 {"prime-field","prime-field",NID_X9_62_prime_field,7,&(lvalues[2958]),0},
1561 {"characteristic-two-field","characteristic-two-field",
1562 NID_X9_62_characteristic_two_field,7,&(lvalues[2965]),0},
1563 {"id-ecPublicKey","id-ecPublicKey",NID_X9_62_id_ecPublicKey,7,
1564 &(lvalues[2972]),0},
1565 {"prime192v1","prime192v1",NID_X9_62_prime192v1,8,&(lvalues[2979]),0},
1566 {"prime192v2","prime192v2",NID_X9_62_prime192v2,8,&(lvalues[2987]),0},
1567 {"prime192v3","prime192v3",NID_X9_62_prime192v3,8,&(lvalues[2995]),0},
1568 {"prime239v1","prime239v1",NID_X9_62_prime239v1,8,&(lvalues[3003]),0},
1569 {"prime239v2","prime239v2",NID_X9_62_prime239v2,8,&(lvalues[3011]),0},
1570 {"prime239v3","prime239v3",NID_X9_62_prime239v3,8,&(lvalues[3019]),0},
1571 {"prime256v1","prime256v1",NID_X9_62_prime256v1,8,&(lvalues[3027]),0},
1572 {"ecdsa-with-SHA1","ecdsa-with-SHA1",NID_ecdsa_with_SHA1,7,
1573 &(lvalues[3035]),0},
1574 {"CSPName","Microsoft CSP Name",NID_ms_csp_name,9,&(lvalues[3042]),0},
1575 {"AES-128-ECB","aes-128-ecb",NID_aes_128_ecb,9,&(lvalues[3051]),0},
1576 {"AES-128-CBC","aes-128-cbc",NID_aes_128_cbc,9,&(lvalues[3060]),0},
1577 {"AES-128-OFB","aes-128-ofb",NID_aes_128_ofb128,9,&(lvalues[3069]),0},
1578 {"AES-128-CFB","aes-128-cfb",NID_aes_128_cfb128,9,&(lvalues[3078]),0},
1579 {"AES-192-ECB","aes-192-ecb",NID_aes_192_ecb,9,&(lvalues[3087]),0},

new/usr/src/lib/openssl/include/obj_dat.h 25

1580 {"AES-192-CBC","aes-192-cbc",NID_aes_192_cbc,9,&(lvalues[3096]),0},
1581 {"AES-192-OFB","aes-192-ofb",NID_aes_192_ofb128,9,&(lvalues[3105]),0},
1582 {"AES-192-CFB","aes-192-cfb",NID_aes_192_cfb128,9,&(lvalues[3114]),0},
1583 {"AES-256-ECB","aes-256-ecb",NID_aes_256_ecb,9,&(lvalues[3123]),0},
1584 {"AES-256-CBC","aes-256-cbc",NID_aes_256_cbc,9,&(lvalues[3132]),0},
1585 {"AES-256-OFB","aes-256-ofb",NID_aes_256_ofb128,9,&(lvalues[3141]),0},
1586 {"AES-256-CFB","aes-256-cfb",NID_aes_256_cfb128,9,&(lvalues[3150]),0},
1587 {"holdInstructionCode","Hold Instruction Code",
1588 NID_hold_instruction_code,3,&(lvalues[3159]),0},
1589 {"holdInstructionNone","Hold Instruction None",
1590 NID_hold_instruction_none,7,&(lvalues[3162]),0},
1591 {"holdInstructionCallIssuer","Hold Instruction Call Issuer",
1592 NID_hold_instruction_call_issuer,7,&(lvalues[3169]),0},
1593 {"holdInstructionReject","Hold Instruction Reject",
1594 NID_hold_instruction_reject,7,&(lvalues[3176]),0},
1595 {"data","data",NID_data,1,&(lvalues[3183]),0},
1596 {"pss","pss",NID_pss,3,&(lvalues[3184]),0},
1597 {"ucl","ucl",NID_ucl,7,&(lvalues[3187]),0},
1598 {"pilot","pilot",NID_pilot,8,&(lvalues[3194]),0},
1599 {"pilotAttributeType","pilotAttributeType",NID_pilotAttributeType,9,
1600 &(lvalues[3202]),0},
1601 {"pilotAttributeSyntax","pilotAttributeSyntax",
1602 NID_pilotAttributeSyntax,9,&(lvalues[3211]),0},
1603 {"pilotObjectClass","pilotObjectClass",NID_pilotObjectClass,9,
1604 &(lvalues[3220]),0},
1605 {"pilotGroups","pilotGroups",NID_pilotGroups,9,&(lvalues[3229]),0},
1606 {"iA5StringSyntax","iA5StringSyntax",NID_iA5StringSyntax,10,
1607 &(lvalues[3238]),0},
1608 {"caseIgnoreIA5StringSyntax","caseIgnoreIA5StringSyntax",
1609 NID_caseIgnoreIA5StringSyntax,10,&(lvalues[3248]),0},
1610 {"pilotObject","pilotObject",NID_pilotObject,10,&(lvalues[3258]),0},
1611 {"pilotPerson","pilotPerson",NID_pilotPerson,10,&(lvalues[3268]),0},
1612 {"account","account",NID_account,10,&(lvalues[3278]),0},
1613 {"document","document",NID_document,10,&(lvalues[3288]),0},
1614 {"room","room",NID_room,10,&(lvalues[3298]),0},
1615 {"documentSeries","documentSeries",NID_documentSeries,10,
1616 &(lvalues[3308]),0},
1617 {"rFC822localPart","rFC822localPart",NID_rFC822localPart,10,
1618 &(lvalues[3318]),0},
1619 {"dNSDomain","dNSDomain",NID_dNSDomain,10,&(lvalues[3328]),0},
1620 {"domainRelatedObject","domainRelatedObject",NID_domainRelatedObject,
1621 10,&(lvalues[3338]),0},
1622 {"friendlyCountry","friendlyCountry",NID_friendlyCountry,10,
1623 &(lvalues[3348]),0},
1624 {"simpleSecurityObject","simpleSecurityObject",
1625 NID_simpleSecurityObject,10,&(lvalues[3358]),0},
1626 {"pilotOrganization","pilotOrganization",NID_pilotOrganization,10,
1627 &(lvalues[3368]),0},
1628 {"pilotDSA","pilotDSA",NID_pilotDSA,10,&(lvalues[3378]),0},
1629 {"qualityLabelledData","qualityLabelledData",NID_qualityLabelledData,
1630 10,&(lvalues[3388]),0},
1631 {"UID","userId",NID_userId,10,&(lvalues[3398]),0},
1632 {"textEncodedORAddress","textEncodedORAddress",
1633 NID_textEncodedORAddress,10,&(lvalues[3408]),0},
1634 {"mail","rfc822Mailbox",NID_rfc822Mailbox,10,&(lvalues[3418]),0},
1635 {"info","info",NID_info,10,&(lvalues[3428]),0},
1636 {"favouriteDrink","favouriteDrink",NID_favouriteDrink,10,
1637 &(lvalues[3438]),0},
1638 {"roomNumber","roomNumber",NID_roomNumber,10,&(lvalues[3448]),0},
1639 {"photo","photo",NID_photo,10,&(lvalues[3458]),0},
1640 {"userClass","userClass",NID_userClass,10,&(lvalues[3468]),0},
1641 {"host","host",NID_host,10,&(lvalues[3478]),0},
1642 {"manager","manager",NID_manager,10,&(lvalues[3488]),0},
1643 {"documentIdentifier","documentIdentifier",NID_documentIdentifier,10,
1644 &(lvalues[3498]),0},
1645 {"documentTitle","documentTitle",NID_documentTitle,10,&(lvalues[3508]),0},

new/usr/src/lib/openssl/include/obj_dat.h 26

1646 {"documentVersion","documentVersion",NID_documentVersion,10,
1647 &(lvalues[3518]),0},
1648 {"documentAuthor","documentAuthor",NID_documentAuthor,10,
1649 &(lvalues[3528]),0},
1650 {"documentLocation","documentLocation",NID_documentLocation,10,
1651 &(lvalues[3538]),0},
1652 {"homeTelephoneNumber","homeTelephoneNumber",NID_homeTelephoneNumber,
1653 10,&(lvalues[3548]),0},
1654 {"secretary","secretary",NID_secretary,10,&(lvalues[3558]),0},
1655 {"otherMailbox","otherMailbox",NID_otherMailbox,10,&(lvalues[3568]),0},
1656 {"lastModifiedTime","lastModifiedTime",NID_lastModifiedTime,10,
1657 &(lvalues[3578]),0},
1658 {"lastModifiedBy","lastModifiedBy",NID_lastModifiedBy,10,
1659 &(lvalues[3588]),0},
1660 {"aRecord","aRecord",NID_aRecord,10,&(lvalues[3598]),0},
1661 {"pilotAttributeType27","pilotAttributeType27",
1662 NID_pilotAttributeType27,10,&(lvalues[3608]),0},
1663 {"mXRecord","mXRecord",NID_mXRecord,10,&(lvalues[3618]),0},
1664 {"nSRecord","nSRecord",NID_nSRecord,10,&(lvalues[3628]),0},
1665 {"sOARecord","sOARecord",NID_sOARecord,10,&(lvalues[3638]),0},
1666 {"cNAMERecord","cNAMERecord",NID_cNAMERecord,10,&(lvalues[3648]),0},
1667 {"associatedDomain","associatedDomain",NID_associatedDomain,10,
1668 &(lvalues[3658]),0},
1669 {"associatedName","associatedName",NID_associatedName,10,
1670 &(lvalues[3668]),0},
1671 {"homePostalAddress","homePostalAddress",NID_homePostalAddress,10,
1672 &(lvalues[3678]),0},
1673 {"personalTitle","personalTitle",NID_personalTitle,10,&(lvalues[3688]),0},
1674 {"mobileTelephoneNumber","mobileTelephoneNumber",
1675 NID_mobileTelephoneNumber,10,&(lvalues[3698]),0},
1676 {"pagerTelephoneNumber","pagerTelephoneNumber",
1677 NID_pagerTelephoneNumber,10,&(lvalues[3708]),0},
1678 {"friendlyCountryName","friendlyCountryName",NID_friendlyCountryName,
1679 10,&(lvalues[3718]),0},
1680 {"organizationalStatus","organizationalStatus",
1681 NID_organizationalStatus,10,&(lvalues[3728]),0},
1682 {"janetMailbox","janetMailbox",NID_janetMailbox,10,&(lvalues[3738]),0},
1683 {"mailPreferenceOption","mailPreferenceOption",
1684 NID_mailPreferenceOption,10,&(lvalues[3748]),0},
1685 {"buildingName","buildingName",NID_buildingName,10,&(lvalues[3758]),0},
1686 {"dSAQuality","dSAQuality",NID_dSAQuality,10,&(lvalues[3768]),0},
1687 {"singleLevelQuality","singleLevelQuality",NID_singleLevelQuality,10,
1688 &(lvalues[3778]),0},
1689 {"subtreeMinimumQuality","subtreeMinimumQuality",
1690 NID_subtreeMinimumQuality,10,&(lvalues[3788]),0},
1691 {"subtreeMaximumQuality","subtreeMaximumQuality",
1692 NID_subtreeMaximumQuality,10,&(lvalues[3798]),0},
1693 {"personalSignature","personalSignature",NID_personalSignature,10,
1694 &(lvalues[3808]),0},
1695 {"dITRedirect","dITRedirect",NID_dITRedirect,10,&(lvalues[3818]),0},
1696 {"audio","audio",NID_audio,10,&(lvalues[3828]),0},
1697 {"documentPublisher","documentPublisher",NID_documentPublisher,10,
1698 &(lvalues[3838]),0},
1699 {"x500UniqueIdentifier","x500UniqueIdentifier",
1700 NID_x500UniqueIdentifier,3,&(lvalues[3848]),0},
1701 {"mime-mhs","MIME MHS",NID_mime_mhs,5,&(lvalues[3851]),0},
1702 {"mime-mhs-headings","mime-mhs-headings",NID_mime_mhs_headings,6,
1703 &(lvalues[3856]),0},
1704 {"mime-mhs-bodies","mime-mhs-bodies",NID_mime_mhs_bodies,6,
1705 &(lvalues[3862]),0},
1706 {"id-hex-partial-message","id-hex-partial-message",
1707 NID_id_hex_partial_message,7,&(lvalues[3868]),0},
1708 {"id-hex-multipart-message","id-hex-multipart-message",
1709 NID_id_hex_multipart_message,7,&(lvalues[3875]),0},
1710 {"generationQualifier","generationQualifier",NID_generationQualifier,
1711 3,&(lvalues[3882]),0},

new/usr/src/lib/openssl/include/obj_dat.h 27

1712 {"pseudonym","pseudonym",NID_pseudonym,3,&(lvalues[3885]),0},
1713 {NULL,NULL,NID_undef,0,NULL,0},
1714 {"id-set","Secure Electronic Transactions",NID_id_set,2,
1715 &(lvalues[3888]),0},
1716 {"set-ctype","content types",NID_set_ctype,3,&(lvalues[3890]),0},
1717 {"set-msgExt","message extensions",NID_set_msgExt,3,&(lvalues[3893]),0},
1718 {"set-attr","set-attr",NID_set_attr,3,&(lvalues[3896]),0},
1719 {"set-policy","set-policy",NID_set_policy,3,&(lvalues[3899]),0},
1720 {"set-certExt","certificate extensions",NID_set_certExt,3,
1721 &(lvalues[3902]),0},
1722 {"set-brand","set-brand",NID_set_brand,3,&(lvalues[3905]),0},
1723 {"setct-PANData","setct-PANData",NID_setct_PANData,4,&(lvalues[3908]),0},
1724 {"setct-PANToken","setct-PANToken",NID_setct_PANToken,4,
1725 &(lvalues[3912]),0},
1726 {"setct-PANOnly","setct-PANOnly",NID_setct_PANOnly,4,&(lvalues[3916]),0},
1727 {"setct-OIData","setct-OIData",NID_setct_OIData,4,&(lvalues[3920]),0},
1728 {"setct-PI","setct-PI",NID_setct_PI,4,&(lvalues[3924]),0},
1729 {"setct-PIData","setct-PIData",NID_setct_PIData,4,&(lvalues[3928]),0},
1730 {"setct-PIDataUnsigned","setct-PIDataUnsigned",
1731 NID_setct_PIDataUnsigned,4,&(lvalues[3932]),0},
1732 {"setct-HODInput","setct-HODInput",NID_setct_HODInput,4,
1733 &(lvalues[3936]),0},
1734 {"setct-AuthResBaggage","setct-AuthResBaggage",
1735 NID_setct_AuthResBaggage,4,&(lvalues[3940]),0},
1736 {"setct-AuthRevReqBaggage","setct-AuthRevReqBaggage",
1737 NID_setct_AuthRevReqBaggage,4,&(lvalues[3944]),0},
1738 {"setct-AuthRevResBaggage","setct-AuthRevResBaggage",
1739 NID_setct_AuthRevResBaggage,4,&(lvalues[3948]),0},
1740 {"setct-CapTokenSeq","setct-CapTokenSeq",NID_setct_CapTokenSeq,4,
1741 &(lvalues[3952]),0},
1742 {"setct-PInitResData","setct-PInitResData",NID_setct_PInitResData,4,
1743 &(lvalues[3956]),0},
1744 {"setct-PI-TBS","setct-PI-TBS",NID_setct_PI_TBS,4,&(lvalues[3960]),0},
1745 {"setct-PResData","setct-PResData",NID_setct_PResData,4,
1746 &(lvalues[3964]),0},
1747 {"setct-AuthReqTBS","setct-AuthReqTBS",NID_setct_AuthReqTBS,4,
1748 &(lvalues[3968]),0},
1749 {"setct-AuthResTBS","setct-AuthResTBS",NID_setct_AuthResTBS,4,
1750 &(lvalues[3972]),0},
1751 {"setct-AuthResTBSX","setct-AuthResTBSX",NID_setct_AuthResTBSX,4,
1752 &(lvalues[3976]),0},
1753 {"setct-AuthTokenTBS","setct-AuthTokenTBS",NID_setct_AuthTokenTBS,4,
1754 &(lvalues[3980]),0},
1755 {"setct-CapTokenData","setct-CapTokenData",NID_setct_CapTokenData,4,
1756 &(lvalues[3984]),0},
1757 {"setct-CapTokenTBS","setct-CapTokenTBS",NID_setct_CapTokenTBS,4,
1758 &(lvalues[3988]),0},
1759 {"setct-AcqCardCodeMsg","setct-AcqCardCodeMsg",
1760 NID_setct_AcqCardCodeMsg,4,&(lvalues[3992]),0},
1761 {"setct-AuthRevReqTBS","setct-AuthRevReqTBS",NID_setct_AuthRevReqTBS,
1762 4,&(lvalues[3996]),0},
1763 {"setct-AuthRevResData","setct-AuthRevResData",
1764 NID_setct_AuthRevResData,4,&(lvalues[4000]),0},
1765 {"setct-AuthRevResTBS","setct-AuthRevResTBS",NID_setct_AuthRevResTBS,
1766 4,&(lvalues[4004]),0},
1767 {"setct-CapReqTBS","setct-CapReqTBS",NID_setct_CapReqTBS,4,
1768 &(lvalues[4008]),0},
1769 {"setct-CapReqTBSX","setct-CapReqTBSX",NID_setct_CapReqTBSX,4,
1770 &(lvalues[4012]),0},
1771 {"setct-CapResData","setct-CapResData",NID_setct_CapResData,4,
1772 &(lvalues[4016]),0},
1773 {"setct-CapRevReqTBS","setct-CapRevReqTBS",NID_setct_CapRevReqTBS,4,
1774 &(lvalues[4020]),0},
1775 {"setct-CapRevReqTBSX","setct-CapRevReqTBSX",NID_setct_CapRevReqTBSX,
1776 4,&(lvalues[4024]),0},
1777 {"setct-CapRevResData","setct-CapRevResData",NID_setct_CapRevResData,

new/usr/src/lib/openssl/include/obj_dat.h 28

1778 4,&(lvalues[4028]),0},
1779 {"setct-CredReqTBS","setct-CredReqTBS",NID_setct_CredReqTBS,4,
1780 &(lvalues[4032]),0},
1781 {"setct-CredReqTBSX","setct-CredReqTBSX",NID_setct_CredReqTBSX,4,
1782 &(lvalues[4036]),0},
1783 {"setct-CredResData","setct-CredResData",NID_setct_CredResData,4,
1784 &(lvalues[4040]),0},
1785 {"setct-CredRevReqTBS","setct-CredRevReqTBS",NID_setct_CredRevReqTBS,
1786 4,&(lvalues[4044]),0},
1787 {"setct-CredRevReqTBSX","setct-CredRevReqTBSX",
1788 NID_setct_CredRevReqTBSX,4,&(lvalues[4048]),0},
1789 {"setct-CredRevResData","setct-CredRevResData",
1790 NID_setct_CredRevResData,4,&(lvalues[4052]),0},
1791 {"setct-PCertReqData","setct-PCertReqData",NID_setct_PCertReqData,4,
1792 &(lvalues[4056]),0},
1793 {"setct-PCertResTBS","setct-PCertResTBS",NID_setct_PCertResTBS,4,
1794 &(lvalues[4060]),0},
1795 {"setct-BatchAdminReqData","setct-BatchAdminReqData",
1796 NID_setct_BatchAdminReqData,4,&(lvalues[4064]),0},
1797 {"setct-BatchAdminResData","setct-BatchAdminResData",
1798 NID_setct_BatchAdminResData,4,&(lvalues[4068]),0},
1799 {"setct-CardCInitResTBS","setct-CardCInitResTBS",
1800 NID_setct_CardCInitResTBS,4,&(lvalues[4072]),0},
1801 {"setct-MeAqCInitResTBS","setct-MeAqCInitResTBS",
1802 NID_setct_MeAqCInitResTBS,4,&(lvalues[4076]),0},
1803 {"setct-RegFormResTBS","setct-RegFormResTBS",NID_setct_RegFormResTBS,
1804 4,&(lvalues[4080]),0},
1805 {"setct-CertReqData","setct-CertReqData",NID_setct_CertReqData,4,
1806 &(lvalues[4084]),0},
1807 {"setct-CertReqTBS","setct-CertReqTBS",NID_setct_CertReqTBS,4,
1808 &(lvalues[4088]),0},
1809 {"setct-CertResData","setct-CertResData",NID_setct_CertResData,4,
1810 &(lvalues[4092]),0},
1811 {"setct-CertInqReqTBS","setct-CertInqReqTBS",NID_setct_CertInqReqTBS,
1812 4,&(lvalues[4096]),0},
1813 {"setct-ErrorTBS","setct-ErrorTBS",NID_setct_ErrorTBS,4,
1814 &(lvalues[4100]),0},
1815 {"setct-PIDualSignedTBE","setct-PIDualSignedTBE",
1816 NID_setct_PIDualSignedTBE,4,&(lvalues[4104]),0},
1817 {"setct-PIUnsignedTBE","setct-PIUnsignedTBE",NID_setct_PIUnsignedTBE,
1818 4,&(lvalues[4108]),0},
1819 {"setct-AuthReqTBE","setct-AuthReqTBE",NID_setct_AuthReqTBE,4,
1820 &(lvalues[4112]),0},
1821 {"setct-AuthResTBE","setct-AuthResTBE",NID_setct_AuthResTBE,4,
1822 &(lvalues[4116]),0},
1823 {"setct-AuthResTBEX","setct-AuthResTBEX",NID_setct_AuthResTBEX,4,
1824 &(lvalues[4120]),0},
1825 {"setct-AuthTokenTBE","setct-AuthTokenTBE",NID_setct_AuthTokenTBE,4,
1826 &(lvalues[4124]),0},
1827 {"setct-CapTokenTBE","setct-CapTokenTBE",NID_setct_CapTokenTBE,4,
1828 &(lvalues[4128]),0},
1829 {"setct-CapTokenTBEX","setct-CapTokenTBEX",NID_setct_CapTokenTBEX,4,
1830 &(lvalues[4132]),0},
1831 {"setct-AcqCardCodeMsgTBE","setct-AcqCardCodeMsgTBE",
1832 NID_setct_AcqCardCodeMsgTBE,4,&(lvalues[4136]),0},
1833 {"setct-AuthRevReqTBE","setct-AuthRevReqTBE",NID_setct_AuthRevReqTBE,
1834 4,&(lvalues[4140]),0},
1835 {"setct-AuthRevResTBE","setct-AuthRevResTBE",NID_setct_AuthRevResTBE,
1836 4,&(lvalues[4144]),0},
1837 {"setct-AuthRevResTBEB","setct-AuthRevResTBEB",
1838 NID_setct_AuthRevResTBEB,4,&(lvalues[4148]),0},
1839 {"setct-CapReqTBE","setct-CapReqTBE",NID_setct_CapReqTBE,4,
1840 &(lvalues[4152]),0},
1841 {"setct-CapReqTBEX","setct-CapReqTBEX",NID_setct_CapReqTBEX,4,
1842 &(lvalues[4156]),0},
1843 {"setct-CapResTBE","setct-CapResTBE",NID_setct_CapResTBE,4,

new/usr/src/lib/openssl/include/obj_dat.h 29

1844 &(lvalues[4160]),0},
1845 {"setct-CapRevReqTBE","setct-CapRevReqTBE",NID_setct_CapRevReqTBE,4,
1846 &(lvalues[4164]),0},
1847 {"setct-CapRevReqTBEX","setct-CapRevReqTBEX",NID_setct_CapRevReqTBEX,
1848 4,&(lvalues[4168]),0},
1849 {"setct-CapRevResTBE","setct-CapRevResTBE",NID_setct_CapRevResTBE,4,
1850 &(lvalues[4172]),0},
1851 {"setct-CredReqTBE","setct-CredReqTBE",NID_setct_CredReqTBE,4,
1852 &(lvalues[4176]),0},
1853 {"setct-CredReqTBEX","setct-CredReqTBEX",NID_setct_CredReqTBEX,4,
1854 &(lvalues[4180]),0},
1855 {"setct-CredResTBE","setct-CredResTBE",NID_setct_CredResTBE,4,
1856 &(lvalues[4184]),0},
1857 {"setct-CredRevReqTBE","setct-CredRevReqTBE",NID_setct_CredRevReqTBE,
1858 4,&(lvalues[4188]),0},
1859 {"setct-CredRevReqTBEX","setct-CredRevReqTBEX",
1860 NID_setct_CredRevReqTBEX,4,&(lvalues[4192]),0},
1861 {"setct-CredRevResTBE","setct-CredRevResTBE",NID_setct_CredRevResTBE,
1862 4,&(lvalues[4196]),0},
1863 {"setct-BatchAdminReqTBE","setct-BatchAdminReqTBE",
1864 NID_setct_BatchAdminReqTBE,4,&(lvalues[4200]),0},
1865 {"setct-BatchAdminResTBE","setct-BatchAdminResTBE",
1866 NID_setct_BatchAdminResTBE,4,&(lvalues[4204]),0},
1867 {"setct-RegFormReqTBE","setct-RegFormReqTBE",NID_setct_RegFormReqTBE,
1868 4,&(lvalues[4208]),0},
1869 {"setct-CertReqTBE","setct-CertReqTBE",NID_setct_CertReqTBE,4,
1870 &(lvalues[4212]),0},
1871 {"setct-CertReqTBEX","setct-CertReqTBEX",NID_setct_CertReqTBEX,4,
1872 &(lvalues[4216]),0},
1873 {"setct-CertResTBE","setct-CertResTBE",NID_setct_CertResTBE,4,
1874 &(lvalues[4220]),0},
1875 {"setct-CRLNotificationTBS","setct-CRLNotificationTBS",
1876 NID_setct_CRLNotificationTBS,4,&(lvalues[4224]),0},
1877 {"setct-CRLNotificationResTBS","setct-CRLNotificationResTBS",
1878 NID_setct_CRLNotificationResTBS,4,&(lvalues[4228]),0},
1879 {"setct-BCIDistributionTBS","setct-BCIDistributionTBS",
1880 NID_setct_BCIDistributionTBS,4,&(lvalues[4232]),0},
1881 {"setext-genCrypt","generic cryptogram",NID_setext_genCrypt,4,
1882 &(lvalues[4236]),0},
1883 {"setext-miAuth","merchant initiated auth",NID_setext_miAuth,4,
1884 &(lvalues[4240]),0},
1885 {"setext-pinSecure","setext-pinSecure",NID_setext_pinSecure,4,
1886 &(lvalues[4244]),0},
1887 {"setext-pinAny","setext-pinAny",NID_setext_pinAny,4,&(lvalues[4248]),0},
1888 {"setext-track2","setext-track2",NID_setext_track2,4,&(lvalues[4252]),0},
1889 {"setext-cv","additional verification",NID_setext_cv,4,
1890 &(lvalues[4256]),0},
1891 {"set-policy-root","set-policy-root",NID_set_policy_root,4,
1892 &(lvalues[4260]),0},
1893 {"setCext-hashedRoot","setCext-hashedRoot",NID_setCext_hashedRoot,4,
1894 &(lvalues[4264]),0},
1895 {"setCext-certType","setCext-certType",NID_setCext_certType,4,
1896 &(lvalues[4268]),0},
1897 {"setCext-merchData","setCext-merchData",NID_setCext_merchData,4,
1898 &(lvalues[4272]),0},
1899 {"setCext-cCertRequired","setCext-cCertRequired",
1900 NID_setCext_cCertRequired,4,&(lvalues[4276]),0},
1901 {"setCext-tunneling","setCext-tunneling",NID_setCext_tunneling,4,
1902 &(lvalues[4280]),0},
1903 {"setCext-setExt","setCext-setExt",NID_setCext_setExt,4,
1904 &(lvalues[4284]),0},
1905 {"setCext-setQualf","setCext-setQualf",NID_setCext_setQualf,4,
1906 &(lvalues[4288]),0},
1907 {"setCext-PGWYcapabilities","setCext-PGWYcapabilities",
1908 NID_setCext_PGWYcapabilities,4,&(lvalues[4292]),0},
1909 {"setCext-TokenIdentifier","setCext-TokenIdentifier",

new/usr/src/lib/openssl/include/obj_dat.h 30

1910 NID_setCext_TokenIdentifier,4,&(lvalues[4296]),0},
1911 {"setCext-Track2Data","setCext-Track2Data",NID_setCext_Track2Data,4,
1912 &(lvalues[4300]),0},
1913 {"setCext-TokenType","setCext-TokenType",NID_setCext_TokenType,4,
1914 &(lvalues[4304]),0},
1915 {"setCext-IssuerCapabilities","setCext-IssuerCapabilities",
1916 NID_setCext_IssuerCapabilities,4,&(lvalues[4308]),0},
1917 {"setAttr-Cert","setAttr-Cert",NID_setAttr_Cert,4,&(lvalues[4312]),0},
1918 {"setAttr-PGWYcap","payment gateway capabilities",NID_setAttr_PGWYcap,
1919 4,&(lvalues[4316]),0},
1920 {"setAttr-TokenType","setAttr-TokenType",NID_setAttr_TokenType,4,
1921 &(lvalues[4320]),0},
1922 {"setAttr-IssCap","issuer capabilities",NID_setAttr_IssCap,4,
1923 &(lvalues[4324]),0},
1924 {"set-rootKeyThumb","set-rootKeyThumb",NID_set_rootKeyThumb,5,
1925 &(lvalues[4328]),0},
1926 {"set-addPolicy","set-addPolicy",NID_set_addPolicy,5,&(lvalues[4333]),0},
1927 {"setAttr-Token-EMV","setAttr-Token-EMV",NID_setAttr_Token_EMV,5,
1928 &(lvalues[4338]),0},
1929 {"setAttr-Token-B0Prime","setAttr-Token-B0Prime",
1930 NID_setAttr_Token_B0Prime,5,&(lvalues[4343]),0},
1931 {"setAttr-IssCap-CVM","setAttr-IssCap-CVM",NID_setAttr_IssCap_CVM,5,
1932 &(lvalues[4348]),0},
1933 {"setAttr-IssCap-T2","setAttr-IssCap-T2",NID_setAttr_IssCap_T2,5,
1934 &(lvalues[4353]),0},
1935 {"setAttr-IssCap-Sig","setAttr-IssCap-Sig",NID_setAttr_IssCap_Sig,5,
1936 &(lvalues[4358]),0},
1937 {"setAttr-GenCryptgrm","generate cryptogram",NID_setAttr_GenCryptgrm,
1938 6,&(lvalues[4363]),0},
1939 {"setAttr-T2Enc","encrypted track 2",NID_setAttr_T2Enc,6,
1940 &(lvalues[4369]),0},
1941 {"setAttr-T2cleartxt","cleartext track 2",NID_setAttr_T2cleartxt,6,
1942 &(lvalues[4375]),0},
1943 {"setAttr-TokICCsig","ICC or token signature",NID_setAttr_TokICCsig,6,
1944 &(lvalues[4381]),0},
1945 {"setAttr-SecDevSig","secure device signature",NID_setAttr_SecDevSig,
1946 6,&(lvalues[4387]),0},
1947 {"set-brand-IATA-ATA","set-brand-IATA-ATA",NID_set_brand_IATA_ATA,4,
1948 &(lvalues[4393]),0},
1949 {"set-brand-Diners","set-brand-Diners",NID_set_brand_Diners,4,
1950 &(lvalues[4397]),0},
1951 {"set-brand-AmericanExpress","set-brand-AmericanExpress",
1952 NID_set_brand_AmericanExpress,4,&(lvalues[4401]),0},
1953 {"set-brand-JCB","set-brand-JCB",NID_set_brand_JCB,4,&(lvalues[4405]),0},
1954 {"set-brand-Visa","set-brand-Visa",NID_set_brand_Visa,4,
1955 &(lvalues[4409]),0},
1956 {"set-brand-MasterCard","set-brand-MasterCard",
1957 NID_set_brand_MasterCard,4,&(lvalues[4413]),0},
1958 {"set-brand-Novus","set-brand-Novus",NID_set_brand_Novus,5,
1959 &(lvalues[4417]),0},
1960 {"DES-CDMF","des-cdmf",NID_des_cdmf,8,&(lvalues[4422]),0},
1961 {"rsaOAEPEncryptionSET","rsaOAEPEncryptionSET",
1962 NID_rsaOAEPEncryptionSET,9,&(lvalues[4430]),0},
1963 {"ITU-T","itu-t",NID_itu_t,1,&(lvalues[4439]),0},
1964 {"JOINT-ISO-ITU-T","joint-iso-itu-t",NID_joint_iso_itu_t,1,
1965 &(lvalues[4440]),0},
1966 {"international-organizations","International Organizations",
1967 NID_international_organizations,1,&(lvalues[4441]),0},
1968 {"msSmartcardLogin","Microsoft Smartcardlogin",NID_ms_smartcard_login,
1969 10,&(lvalues[4442]),0},
1970 {"msUPN","Microsoft Universal Principal Name",NID_ms_upn,10,
1971 &(lvalues[4452]),0},
1972 {"AES-128-CFB1","aes-128-cfb1",NID_aes_128_cfb1,0,NULL,0},
1973 {"AES-192-CFB1","aes-192-cfb1",NID_aes_192_cfb1,0,NULL,0},
1974 {"AES-256-CFB1","aes-256-cfb1",NID_aes_256_cfb1,0,NULL,0},
1975 {"AES-128-CFB8","aes-128-cfb8",NID_aes_128_cfb8,0,NULL,0},

new/usr/src/lib/openssl/include/obj_dat.h 31

1976 {"AES-192-CFB8","aes-192-cfb8",NID_aes_192_cfb8,0,NULL,0},
1977 {"AES-256-CFB8","aes-256-cfb8",NID_aes_256_cfb8,0,NULL,0},
1978 {"DES-CFB1","des-cfb1",NID_des_cfb1,0,NULL,0},
1979 {"DES-CFB8","des-cfb8",NID_des_cfb8,0,NULL,0},
1980 {"DES-EDE3-CFB1","des-ede3-cfb1",NID_des_ede3_cfb1,0,NULL,0},
1981 {"DES-EDE3-CFB8","des-ede3-cfb8",NID_des_ede3_cfb8,0,NULL,0},
1982 {"street","streetAddress",NID_streetAddress,3,&(lvalues[4462]),0},
1983 {"postalCode","postalCode",NID_postalCode,3,&(lvalues[4465]),0},
1984 {"id-ppl","id-ppl",NID_id_ppl,7,&(lvalues[4468]),0},
1985 {"proxyCertInfo","Proxy Certificate Information",NID_proxyCertInfo,8,
1986 &(lvalues[4475]),0},
1987 {"id-ppl-anyLanguage","Any language",NID_id_ppl_anyLanguage,8,
1988 &(lvalues[4483]),0},
1989 {"id-ppl-inheritAll","Inherit all",NID_id_ppl_inheritAll,8,
1990 &(lvalues[4491]),0},
1991 {"nameConstraints","X509v3 Name Constraints",NID_name_constraints,3,
1992 &(lvalues[4499]),0},
1993 {"id-ppl-independent","Independent",NID_Independent,8,&(lvalues[4502]),0},
1994 {"RSA-SHA256","sha256WithRSAEncryption",NID_sha256WithRSAEncryption,9,
1995 &(lvalues[4510]),0},
1996 {"RSA-SHA384","sha384WithRSAEncryption",NID_sha384WithRSAEncryption,9,
1997 &(lvalues[4519]),0},
1998 {"RSA-SHA512","sha512WithRSAEncryption",NID_sha512WithRSAEncryption,9,
1999 &(lvalues[4528]),0},
2000 {"RSA-SHA224","sha224WithRSAEncryption",NID_sha224WithRSAEncryption,9,
2001 &(lvalues[4537]),0},
2002 {"SHA256","sha256",NID_sha256,9,&(lvalues[4546]),0},
2003 {"SHA384","sha384",NID_sha384,9,&(lvalues[4555]),0},
2004 {"SHA512","sha512",NID_sha512,9,&(lvalues[4564]),0},
2005 {"SHA224","sha224",NID_sha224,9,&(lvalues[4573]),0},
2006 {"identified-organization","identified-organization",
2007 NID_identified_organization,1,&(lvalues[4582]),0},
2008 {"certicom-arc","certicom-arc",NID_certicom_arc,3,&(lvalues[4583]),0},
2009 {"wap","wap",NID_wap,2,&(lvalues[4586]),0},
2010 {"wap-wsg","wap-wsg",NID_wap_wsg,3,&(lvalues[4588]),0},
2011 {"id-characteristic-two-basis","id-characteristic-two-basis",
2012 NID_X9_62_id_characteristic_two_basis,8,&(lvalues[4591]),0},
2013 {"onBasis","onBasis",NID_X9_62_onBasis,9,&(lvalues[4599]),0},
2014 {"tpBasis","tpBasis",NID_X9_62_tpBasis,9,&(lvalues[4608]),0},
2015 {"ppBasis","ppBasis",NID_X9_62_ppBasis,9,&(lvalues[4617]),0},
2016 {"c2pnb163v1","c2pnb163v1",NID_X9_62_c2pnb163v1,8,&(lvalues[4626]),0},
2017 {"c2pnb163v2","c2pnb163v2",NID_X9_62_c2pnb163v2,8,&(lvalues[4634]),0},
2018 {"c2pnb163v3","c2pnb163v3",NID_X9_62_c2pnb163v3,8,&(lvalues[4642]),0},
2019 {"c2pnb176v1","c2pnb176v1",NID_X9_62_c2pnb176v1,8,&(lvalues[4650]),0},
2020 {"c2tnb191v1","c2tnb191v1",NID_X9_62_c2tnb191v1,8,&(lvalues[4658]),0},
2021 {"c2tnb191v2","c2tnb191v2",NID_X9_62_c2tnb191v2,8,&(lvalues[4666]),0},
2022 {"c2tnb191v3","c2tnb191v3",NID_X9_62_c2tnb191v3,8,&(lvalues[4674]),0},
2023 {"c2onb191v4","c2onb191v4",NID_X9_62_c2onb191v4,8,&(lvalues[4682]),0},
2024 {"c2onb191v5","c2onb191v5",NID_X9_62_c2onb191v5,8,&(lvalues[4690]),0},
2025 {"c2pnb208w1","c2pnb208w1",NID_X9_62_c2pnb208w1,8,&(lvalues[4698]),0},
2026 {"c2tnb239v1","c2tnb239v1",NID_X9_62_c2tnb239v1,8,&(lvalues[4706]),0},
2027 {"c2tnb239v2","c2tnb239v2",NID_X9_62_c2tnb239v2,8,&(lvalues[4714]),0},
2028 {"c2tnb239v3","c2tnb239v3",NID_X9_62_c2tnb239v3,8,&(lvalues[4722]),0},
2029 {"c2onb239v4","c2onb239v4",NID_X9_62_c2onb239v4,8,&(lvalues[4730]),0},
2030 {"c2onb239v5","c2onb239v5",NID_X9_62_c2onb239v5,8,&(lvalues[4738]),0},
2031 {"c2pnb272w1","c2pnb272w1",NID_X9_62_c2pnb272w1,8,&(lvalues[4746]),0},
2032 {"c2pnb304w1","c2pnb304w1",NID_X9_62_c2pnb304w1,8,&(lvalues[4754]),0},
2033 {"c2tnb359v1","c2tnb359v1",NID_X9_62_c2tnb359v1,8,&(lvalues[4762]),0},
2034 {"c2pnb368w1","c2pnb368w1",NID_X9_62_c2pnb368w1,8,&(lvalues[4770]),0},
2035 {"c2tnb431r1","c2tnb431r1",NID_X9_62_c2tnb431r1,8,&(lvalues[4778]),0},
2036 {"secp112r1","secp112r1",NID_secp112r1,5,&(lvalues[4786]),0},
2037 {"secp112r2","secp112r2",NID_secp112r2,5,&(lvalues[4791]),0},
2038 {"secp128r1","secp128r1",NID_secp128r1,5,&(lvalues[4796]),0},
2039 {"secp128r2","secp128r2",NID_secp128r2,5,&(lvalues[4801]),0},
2040 {"secp160k1","secp160k1",NID_secp160k1,5,&(lvalues[4806]),0},
2041 {"secp160r1","secp160r1",NID_secp160r1,5,&(lvalues[4811]),0},

new/usr/src/lib/openssl/include/obj_dat.h 32

2042 {"secp160r2","secp160r2",NID_secp160r2,5,&(lvalues[4816]),0},
2043 {"secp192k1","secp192k1",NID_secp192k1,5,&(lvalues[4821]),0},
2044 {"secp224k1","secp224k1",NID_secp224k1,5,&(lvalues[4826]),0},
2045 {"secp224r1","secp224r1",NID_secp224r1,5,&(lvalues[4831]),0},
2046 {"secp256k1","secp256k1",NID_secp256k1,5,&(lvalues[4836]),0},
2047 {"secp384r1","secp384r1",NID_secp384r1,5,&(lvalues[4841]),0},
2048 {"secp521r1","secp521r1",NID_secp521r1,5,&(lvalues[4846]),0},
2049 {"sect113r1","sect113r1",NID_sect113r1,5,&(lvalues[4851]),0},
2050 {"sect113r2","sect113r2",NID_sect113r2,5,&(lvalues[4856]),0},
2051 {"sect131r1","sect131r1",NID_sect131r1,5,&(lvalues[4861]),0},
2052 {"sect131r2","sect131r2",NID_sect131r2,5,&(lvalues[4866]),0},
2053 {"sect163k1","sect163k1",NID_sect163k1,5,&(lvalues[4871]),0},
2054 {"sect163r1","sect163r1",NID_sect163r1,5,&(lvalues[4876]),0},
2055 {"sect163r2","sect163r2",NID_sect163r2,5,&(lvalues[4881]),0},
2056 {"sect193r1","sect193r1",NID_sect193r1,5,&(lvalues[4886]),0},
2057 {"sect193r2","sect193r2",NID_sect193r2,5,&(lvalues[4891]),0},
2058 {"sect233k1","sect233k1",NID_sect233k1,5,&(lvalues[4896]),0},
2059 {"sect233r1","sect233r1",NID_sect233r1,5,&(lvalues[4901]),0},
2060 {"sect239k1","sect239k1",NID_sect239k1,5,&(lvalues[4906]),0},
2061 {"sect283k1","sect283k1",NID_sect283k1,5,&(lvalues[4911]),0},
2062 {"sect283r1","sect283r1",NID_sect283r1,5,&(lvalues[4916]),0},
2063 {"sect409k1","sect409k1",NID_sect409k1,5,&(lvalues[4921]),0},
2064 {"sect409r1","sect409r1",NID_sect409r1,5,&(lvalues[4926]),0},
2065 {"sect571k1","sect571k1",NID_sect571k1,5,&(lvalues[4931]),0},
2066 {"sect571r1","sect571r1",NID_sect571r1,5,&(lvalues[4936]),0},
2067 {"wap-wsg-idm-ecid-wtls1","wap-wsg-idm-ecid-wtls1",
2068 NID_wap_wsg_idm_ecid_wtls1,5,&(lvalues[4941]),0},
2069 {"wap-wsg-idm-ecid-wtls3","wap-wsg-idm-ecid-wtls3",
2070 NID_wap_wsg_idm_ecid_wtls3,5,&(lvalues[4946]),0},
2071 {"wap-wsg-idm-ecid-wtls4","wap-wsg-idm-ecid-wtls4",
2072 NID_wap_wsg_idm_ecid_wtls4,5,&(lvalues[4951]),0},
2073 {"wap-wsg-idm-ecid-wtls5","wap-wsg-idm-ecid-wtls5",
2074 NID_wap_wsg_idm_ecid_wtls5,5,&(lvalues[4956]),0},
2075 {"wap-wsg-idm-ecid-wtls6","wap-wsg-idm-ecid-wtls6",
2076 NID_wap_wsg_idm_ecid_wtls6,5,&(lvalues[4961]),0},
2077 {"wap-wsg-idm-ecid-wtls7","wap-wsg-idm-ecid-wtls7",
2078 NID_wap_wsg_idm_ecid_wtls7,5,&(lvalues[4966]),0},
2079 {"wap-wsg-idm-ecid-wtls8","wap-wsg-idm-ecid-wtls8",
2080 NID_wap_wsg_idm_ecid_wtls8,5,&(lvalues[4971]),0},
2081 {"wap-wsg-idm-ecid-wtls9","wap-wsg-idm-ecid-wtls9",
2082 NID_wap_wsg_idm_ecid_wtls9,5,&(lvalues[4976]),0},
2083 {"wap-wsg-idm-ecid-wtls10","wap-wsg-idm-ecid-wtls10",
2084 NID_wap_wsg_idm_ecid_wtls10,5,&(lvalues[4981]),0},
2085 {"wap-wsg-idm-ecid-wtls11","wap-wsg-idm-ecid-wtls11",
2086 NID_wap_wsg_idm_ecid_wtls11,5,&(lvalues[4986]),0},
2087 {"wap-wsg-idm-ecid-wtls12","wap-wsg-idm-ecid-wtls12",
2088 NID_wap_wsg_idm_ecid_wtls12,5,&(lvalues[4991]),0},
2089 {"anyPolicy","X509v3 Any Policy",NID_any_policy,4,&(lvalues[4996]),0},
2090 {"policyMappings","X509v3 Policy Mappings",NID_policy_mappings,3,
2091 &(lvalues[5000]),0},
2092 {"inhibitAnyPolicy","X509v3 Inhibit Any Policy",
2093 NID_inhibit_any_policy,3,&(lvalues[5003]),0},
2094 {"Oakley-EC2N-3","ipsec3",NID_ipsec3,0,NULL,0},
2095 {"Oakley-EC2N-4","ipsec4",NID_ipsec4,0,NULL,0},
2096 {"CAMELLIA-128-CBC","camellia-128-cbc",NID_camellia_128_cbc,11,
2097 &(lvalues[5006]),0},
2098 {"CAMELLIA-192-CBC","camellia-192-cbc",NID_camellia_192_cbc,11,
2099 &(lvalues[5017]),0},
2100 {"CAMELLIA-256-CBC","camellia-256-cbc",NID_camellia_256_cbc,11,
2101 &(lvalues[5028]),0},
2102 {"CAMELLIA-128-ECB","camellia-128-ecb",NID_camellia_128_ecb,8,
2103 &(lvalues[5039]),0},
2104 {"CAMELLIA-192-ECB","camellia-192-ecb",NID_camellia_192_ecb,8,
2105 &(lvalues[5047]),0},
2106 {"CAMELLIA-256-ECB","camellia-256-ecb",NID_camellia_256_ecb,8,
2107 &(lvalues[5055]),0},

new/usr/src/lib/openssl/include/obj_dat.h 33

2108 {"CAMELLIA-128-CFB","camellia-128-cfb",NID_camellia_128_cfb128,8,
2109 &(lvalues[5063]),0},
2110 {"CAMELLIA-192-CFB","camellia-192-cfb",NID_camellia_192_cfb128,8,
2111 &(lvalues[5071]),0},
2112 {"CAMELLIA-256-CFB","camellia-256-cfb",NID_camellia_256_cfb128,8,
2113 &(lvalues[5079]),0},
2114 {"CAMELLIA-128-CFB1","camellia-128-cfb1",NID_camellia_128_cfb1,0,NULL,0},
2115 {"CAMELLIA-192-CFB1","camellia-192-cfb1",NID_camellia_192_cfb1,0,NULL,0},
2116 {"CAMELLIA-256-CFB1","camellia-256-cfb1",NID_camellia_256_cfb1,0,NULL,0},
2117 {"CAMELLIA-128-CFB8","camellia-128-cfb8",NID_camellia_128_cfb8,0,NULL,0},
2118 {"CAMELLIA-192-CFB8","camellia-192-cfb8",NID_camellia_192_cfb8,0,NULL,0},
2119 {"CAMELLIA-256-CFB8","camellia-256-cfb8",NID_camellia_256_cfb8,0,NULL,0},
2120 {"CAMELLIA-128-OFB","camellia-128-ofb",NID_camellia_128_ofb128,8,
2121 &(lvalues[5087]),0},
2122 {"CAMELLIA-192-OFB","camellia-192-ofb",NID_camellia_192_ofb128,8,
2123 &(lvalues[5095]),0},
2124 {"CAMELLIA-256-OFB","camellia-256-ofb",NID_camellia_256_ofb128,8,
2125 &(lvalues[5103]),0},
2126 {"subjectDirectoryAttributes","X509v3 Subject Directory Attributes",
2127 NID_subject_directory_attributes,3,&(lvalues[5111]),0},
2128 {"issuingDistributionPoint","X509v3 Issuing Distrubution Point",
2129 NID_issuing_distribution_point,3,&(lvalues[5114]),0},
2130 {"certificateIssuer","X509v3 Certificate Issuer",
2131 NID_certificate_issuer,3,&(lvalues[5117]),0},
2132 {NULL,NULL,NID_undef,0,NULL,0},
2133 {"KISA","kisa",NID_kisa,6,&(lvalues[5120]),0},
2134 {NULL,NULL,NID_undef,0,NULL,0},
2135 {NULL,NULL,NID_undef,0,NULL,0},
2136 {"SEED-ECB","seed-ecb",NID_seed_ecb,8,&(lvalues[5126]),0},
2137 {"SEED-CBC","seed-cbc",NID_seed_cbc,8,&(lvalues[5134]),0},
2138 {"SEED-OFB","seed-ofb",NID_seed_ofb128,8,&(lvalues[5142]),0},
2139 {"SEED-CFB","seed-cfb",NID_seed_cfb128,8,&(lvalues[5150]),0},
2140 {"HMAC-MD5","hmac-md5",NID_hmac_md5,8,&(lvalues[5158]),0},
2141 {"HMAC-SHA1","hmac-sha1",NID_hmac_sha1,8,&(lvalues[5166]),0},
2142 {"id-PasswordBasedMAC","password based MAC",NID_id_PasswordBasedMAC,9,
2143 &(lvalues[5174]),0},
2144 {"id-DHBasedMac","Diffie-Hellman based MAC",NID_id_DHBasedMac,9,
2145 &(lvalues[5183]),0},
2146 {"id-it-suppLangTags","id-it-suppLangTags",NID_id_it_suppLangTags,8,
2147 &(lvalues[5192]),0},
2148 {"caRepository","CA Repository",NID_caRepository,8,&(lvalues[5200]),0},
2149 {"id-smime-ct-compressedData","id-smime-ct-compressedData",
2150 NID_id_smime_ct_compressedData,11,&(lvalues[5208]),0},
2151 {"id-ct-asciiTextWithCRLF","id-ct-asciiTextWithCRLF",
2152 NID_id_ct_asciiTextWithCRLF,11,&(lvalues[5219]),0},
2153 {"id-aes128-wrap","id-aes128-wrap",NID_id_aes128_wrap,9,
2154 &(lvalues[5230]),0},
2155 {"id-aes192-wrap","id-aes192-wrap",NID_id_aes192_wrap,9,
2156 &(lvalues[5239]),0},
2157 {"id-aes256-wrap","id-aes256-wrap",NID_id_aes256_wrap,9,
2158 &(lvalues[5248]),0},
2159 {"ecdsa-with-Recommended","ecdsa-with-Recommended",
2160 NID_ecdsa_with_Recommended,7,&(lvalues[5257]),0},
2161 {"ecdsa-with-Specified","ecdsa-with-Specified",
2162 NID_ecdsa_with_Specified,7,&(lvalues[5264]),0},
2163 {"ecdsa-with-SHA224","ecdsa-with-SHA224",NID_ecdsa_with_SHA224,8,
2164 &(lvalues[5271]),0},
2165 {"ecdsa-with-SHA256","ecdsa-with-SHA256",NID_ecdsa_with_SHA256,8,
2166 &(lvalues[5279]),0},
2167 {"ecdsa-with-SHA384","ecdsa-with-SHA384",NID_ecdsa_with_SHA384,8,
2168 &(lvalues[5287]),0},
2169 {"ecdsa-with-SHA512","ecdsa-with-SHA512",NID_ecdsa_with_SHA512,8,
2170 &(lvalues[5295]),0},
2171 {"hmacWithMD5","hmacWithMD5",NID_hmacWithMD5,8,&(lvalues[5303]),0},
2172 {"hmacWithSHA224","hmacWithSHA224",NID_hmacWithSHA224,8,
2173 &(lvalues[5311]),0},

new/usr/src/lib/openssl/include/obj_dat.h 34

2174 {"hmacWithSHA256","hmacWithSHA256",NID_hmacWithSHA256,8,
2175 &(lvalues[5319]),0},
2176 {"hmacWithSHA384","hmacWithSHA384",NID_hmacWithSHA384,8,
2177 &(lvalues[5327]),0},
2178 {"hmacWithSHA512","hmacWithSHA512",NID_hmacWithSHA512,8,
2179 &(lvalues[5335]),0},
2180 {"dsa_with_SHA224","dsa_with_SHA224",NID_dsa_with_SHA224,9,
2181 &(lvalues[5343]),0},
2182 {"dsa_with_SHA256","dsa_with_SHA256",NID_dsa_with_SHA256,9,
2183 &(lvalues[5352]),0},
2184 {"whirlpool","whirlpool",NID_whirlpool,6,&(lvalues[5361]),0},
2185 {"cryptopro","cryptopro",NID_cryptopro,5,&(lvalues[5367]),0},
2186 {"cryptocom","cryptocom",NID_cryptocom,5,&(lvalues[5372]),0},
2187 {"id-GostR3411-94-with-GostR3410-2001",
2188 "GOST R 34.11-94 with GOST R 34.10-2001",
2189 NID_id_GostR3411_94_with_GostR3410_2001,6,&(lvalues[5377]),0},
2190 {"id-GostR3411-94-with-GostR3410-94",
2191 "GOST R 34.11-94 with GOST R 34.10-94",
2192 NID_id_GostR3411_94_with_GostR3410_94,6,&(lvalues[5383]),0},
2193 {"md_gost94","GOST R 34.11-94",NID_id_GostR3411_94,6,&(lvalues[5389]),0},
2194 {"id-HMACGostR3411-94","HMAC GOST 34.11-94",NID_id_HMACGostR3411_94,6,
2195 &(lvalues[5395]),0},
2196 {"gost2001","GOST R 34.10-2001",NID_id_GostR3410_2001,6,
2197 &(lvalues[5401]),0},
2198 {"gost94","GOST R 34.10-94",NID_id_GostR3410_94,6,&(lvalues[5407]),0},
2199 {"gost89","GOST 28147-89",NID_id_Gost28147_89,6,&(lvalues[5413]),0},
2200 {"gost89-cnt","gost89-cnt",NID_gost89_cnt,0,NULL,0},
2201 {"gost-mac","GOST 28147-89 MAC",NID_id_Gost28147_89_MAC,6,
2202 &(lvalues[5419]),0},
2203 {"prf-gostr3411-94","GOST R 34.11-94 PRF",NID_id_GostR3411_94_prf,6,
2204 &(lvalues[5425]),0},
2205 {"id-GostR3410-2001DH","GOST R 34.10-2001 DH",NID_id_GostR3410_2001DH,
2206 6,&(lvalues[5431]),0},
2207 {"id-GostR3410-94DH","GOST R 34.10-94 DH",NID_id_GostR3410_94DH,6,
2208 &(lvalues[5437]),0},
2209 {"id-Gost28147-89-CryptoPro-KeyMeshing",
2210 "id-Gost28147-89-CryptoPro-KeyMeshing",
2211 NID_id_Gost28147_89_CryptoPro_KeyMeshing,7,&(lvalues[5443]),0},
2212 {"id-Gost28147-89-None-KeyMeshing","id-Gost28147-89-None-KeyMeshing",
2213 NID_id_Gost28147_89_None_KeyMeshing,7,&(lvalues[5450]),0},
2214 {"id-GostR3411-94-TestParamSet","id-GostR3411-94-TestParamSet",
2215 NID_id_GostR3411_94_TestParamSet,7,&(lvalues[5457]),0},
2216 {"id-GostR3411-94-CryptoProParamSet",
2217 "id-GostR3411-94-CryptoProParamSet",
2218 NID_id_GostR3411_94_CryptoProParamSet,7,&(lvalues[5464]),0},
2219 {"id-Gost28147-89-TestParamSet","id-Gost28147-89-TestParamSet",
2220 NID_id_Gost28147_89_TestParamSet,7,&(lvalues[5471]),0},
2221 {"id-Gost28147-89-CryptoPro-A-ParamSet",
2222 "id-Gost28147-89-CryptoPro-A-ParamSet",
2223 NID_id_Gost28147_89_CryptoPro_A_ParamSet,7,&(lvalues[5478]),0},
2224 {"id-Gost28147-89-CryptoPro-B-ParamSet",
2225 "id-Gost28147-89-CryptoPro-B-ParamSet",
2226 NID_id_Gost28147_89_CryptoPro_B_ParamSet,7,&(lvalues[5485]),0},
2227 {"id-Gost28147-89-CryptoPro-C-ParamSet",
2228 "id-Gost28147-89-CryptoPro-C-ParamSet",
2229 NID_id_Gost28147_89_CryptoPro_C_ParamSet,7,&(lvalues[5492]),0},
2230 {"id-Gost28147-89-CryptoPro-D-ParamSet",
2231 "id-Gost28147-89-CryptoPro-D-ParamSet",
2232 NID_id_Gost28147_89_CryptoPro_D_ParamSet,7,&(lvalues[5499]),0},
2233 {"id-Gost28147-89-CryptoPro-Oscar-1-1-ParamSet",
2234 "id-Gost28147-89-CryptoPro-Oscar-1-1-ParamSet",
2235 NID_id_Gost28147_89_CryptoPro_Oscar_1_1_ParamSet,7,&(lvalues[5506]),
2236 0},
2237 {"id-Gost28147-89-CryptoPro-Oscar-1-0-ParamSet",
2238 "id-Gost28147-89-CryptoPro-Oscar-1-0-ParamSet",
2239 NID_id_Gost28147_89_CryptoPro_Oscar_1_0_ParamSet,7,&(lvalues[5513]),

new/usr/src/lib/openssl/include/obj_dat.h 35

2240 0},
2241 {"id-Gost28147-89-CryptoPro-RIC-1-ParamSet",
2242 "id-Gost28147-89-CryptoPro-RIC-1-ParamSet",
2243 NID_id_Gost28147_89_CryptoPro_RIC_1_ParamSet,7,&(lvalues[5520]),0},
2244 {"id-GostR3410-94-TestParamSet","id-GostR3410-94-TestParamSet",
2245 NID_id_GostR3410_94_TestParamSet,7,&(lvalues[5527]),0},
2246 {"id-GostR3410-94-CryptoPro-A-ParamSet",
2247 "id-GostR3410-94-CryptoPro-A-ParamSet",
2248 NID_id_GostR3410_94_CryptoPro_A_ParamSet,7,&(lvalues[5534]),0},
2249 {"id-GostR3410-94-CryptoPro-B-ParamSet",
2250 "id-GostR3410-94-CryptoPro-B-ParamSet",
2251 NID_id_GostR3410_94_CryptoPro_B_ParamSet,7,&(lvalues[5541]),0},
2252 {"id-GostR3410-94-CryptoPro-C-ParamSet",
2253 "id-GostR3410-94-CryptoPro-C-ParamSet",
2254 NID_id_GostR3410_94_CryptoPro_C_ParamSet,7,&(lvalues[5548]),0},
2255 {"id-GostR3410-94-CryptoPro-D-ParamSet",
2256 "id-GostR3410-94-CryptoPro-D-ParamSet",
2257 NID_id_GostR3410_94_CryptoPro_D_ParamSet,7,&(lvalues[5555]),0},
2258 {"id-GostR3410-94-CryptoPro-XchA-ParamSet",
2259 "id-GostR3410-94-CryptoPro-XchA-ParamSet",
2260 NID_id_GostR3410_94_CryptoPro_XchA_ParamSet,7,&(lvalues[5562]),0},
2261 {"id-GostR3410-94-CryptoPro-XchB-ParamSet",
2262 "id-GostR3410-94-CryptoPro-XchB-ParamSet",
2263 NID_id_GostR3410_94_CryptoPro_XchB_ParamSet,7,&(lvalues[5569]),0},
2264 {"id-GostR3410-94-CryptoPro-XchC-ParamSet",
2265 "id-GostR3410-94-CryptoPro-XchC-ParamSet",
2266 NID_id_GostR3410_94_CryptoPro_XchC_ParamSet,7,&(lvalues[5576]),0},
2267 {"id-GostR3410-2001-TestParamSet","id-GostR3410-2001-TestParamSet",
2268 NID_id_GostR3410_2001_TestParamSet,7,&(lvalues[5583]),0},
2269 {"id-GostR3410-2001-CryptoPro-A-ParamSet",
2270 "id-GostR3410-2001-CryptoPro-A-ParamSet",
2271 NID_id_GostR3410_2001_CryptoPro_A_ParamSet,7,&(lvalues[5590]),0},
2272 {"id-GostR3410-2001-CryptoPro-B-ParamSet",
2273 "id-GostR3410-2001-CryptoPro-B-ParamSet",
2274 NID_id_GostR3410_2001_CryptoPro_B_ParamSet,7,&(lvalues[5597]),0},
2275 {"id-GostR3410-2001-CryptoPro-C-ParamSet",
2276 "id-GostR3410-2001-CryptoPro-C-ParamSet",
2277 NID_id_GostR3410_2001_CryptoPro_C_ParamSet,7,&(lvalues[5604]),0},
2278 {"id-GostR3410-2001-CryptoPro-XchA-ParamSet",
2279 "id-GostR3410-2001-CryptoPro-XchA-ParamSet",
2280 NID_id_GostR3410_2001_CryptoPro_XchA_ParamSet,7,&(lvalues[5611]),0},
2281
2282 {"id-GostR3410-2001-CryptoPro-XchB-ParamSet",
2283 "id-GostR3410-2001-CryptoPro-XchB-ParamSet",
2284 NID_id_GostR3410_2001_CryptoPro_XchB_ParamSet,7,&(lvalues[5618]),0},
2285
2286 {"id-GostR3410-94-a","id-GostR3410-94-a",NID_id_GostR3410_94_a,7,
2287 &(lvalues[5625]),0},
2288 {"id-GostR3410-94-aBis","id-GostR3410-94-aBis",
2289 NID_id_GostR3410_94_aBis,7,&(lvalues[5632]),0},
2290 {"id-GostR3410-94-b","id-GostR3410-94-b",NID_id_GostR3410_94_b,7,
2291 &(lvalues[5639]),0},
2292 {"id-GostR3410-94-bBis","id-GostR3410-94-bBis",
2293 NID_id_GostR3410_94_bBis,7,&(lvalues[5646]),0},
2294 {"id-Gost28147-89-cc","GOST 28147-89 Cryptocom ParamSet",
2295 NID_id_Gost28147_89_cc,8,&(lvalues[5653]),0},
2296 {"gost94cc","GOST 34.10-94 Cryptocom",NID_id_GostR3410_94_cc,8,
2297 &(lvalues[5661]),0},
2298 {"gost2001cc","GOST 34.10-2001 Cryptocom",NID_id_GostR3410_2001_cc,8,
2299 &(lvalues[5669]),0},
2300 {"id-GostR3411-94-with-GostR3410-94-cc",
2301 "GOST R 34.11-94 with GOST R 34.10-94 Cryptocom",
2302 NID_id_GostR3411_94_with_GostR3410_94_cc,8,&(lvalues[5677]),0},
2303 {"id-GostR3411-94-with-GostR3410-2001-cc",
2304 "GOST R 34.11-94 with GOST R 34.10-2001 Cryptocom",
2305 NID_id_GostR3411_94_with_GostR3410_2001_cc,8,&(lvalues[5685]),0},

new/usr/src/lib/openssl/include/obj_dat.h 36

2306 {"id-GostR3410-2001-ParamSet-cc",
2307 "GOST R 3410-2001 Parameter Set Cryptocom",
2308 NID_id_GostR3410_2001_ParamSet_cc,8,&(lvalues[5693]),0},
2309 {"HMAC","hmac",NID_hmac,0,NULL,0},
2310 {"LocalKeySet","Microsoft Local Key set",NID_LocalKeySet,9,
2311 &(lvalues[5701]),0},
2312 {"freshestCRL","X509v3 Freshest CRL",NID_freshest_crl,3,
2313 &(lvalues[5710]),0},
2314 {"id-on-permanentIdentifier","Permanent Identifier",
2315 NID_id_on_permanentIdentifier,8,&(lvalues[5713]),0},
2316 {"searchGuide","searchGuide",NID_searchGuide,3,&(lvalues[5721]),0},
2317 {"businessCategory","businessCategory",NID_businessCategory,3,
2318 &(lvalues[5724]),0},
2319 {"postalAddress","postalAddress",NID_postalAddress,3,&(lvalues[5727]),0},
2320 {"postOfficeBox","postOfficeBox",NID_postOfficeBox,3,&(lvalues[5730]),0},
2321 {"physicalDeliveryOfficeName","physicalDeliveryOfficeName",
2322 NID_physicalDeliveryOfficeName,3,&(lvalues[5733]),0},
2323 {"telephoneNumber","telephoneNumber",NID_telephoneNumber,3,
2324 &(lvalues[5736]),0},
2325 {"telexNumber","telexNumber",NID_telexNumber,3,&(lvalues[5739]),0},
2326 {"teletexTerminalIdentifier","teletexTerminalIdentifier",
2327 NID_teletexTerminalIdentifier,3,&(lvalues[5742]),0},
2328 {"facsimileTelephoneNumber","facsimileTelephoneNumber",
2329 NID_facsimileTelephoneNumber,3,&(lvalues[5745]),0},
2330 {"x121Address","x121Address",NID_x121Address,3,&(lvalues[5748]),0},
2331 {"internationaliSDNNumber","internationaliSDNNumber",
2332 NID_internationaliSDNNumber,3,&(lvalues[5751]),0},
2333 {"registeredAddress","registeredAddress",NID_registeredAddress,3,
2334 &(lvalues[5754]),0},
2335 {"destinationIndicator","destinationIndicator",
2336 NID_destinationIndicator,3,&(lvalues[5757]),0},
2337 {"preferredDeliveryMethod","preferredDeliveryMethod",
2338 NID_preferredDeliveryMethod,3,&(lvalues[5760]),0},
2339 {"presentationAddress","presentationAddress",NID_presentationAddress,
2340 3,&(lvalues[5763]),0},
2341 {"supportedApplicationContext","supportedApplicationContext",
2342 NID_supportedApplicationContext,3,&(lvalues[5766]),0},
2343 {"member","member",NID_member,3,&(lvalues[5769]),0},
2344 {"owner","owner",NID_owner,3,&(lvalues[5772]),0},
2345 {"roleOccupant","roleOccupant",NID_roleOccupant,3,&(lvalues[5775]),0},
2346 {"seeAlso","seeAlso",NID_seeAlso,3,&(lvalues[5778]),0},
2347 {"userPassword","userPassword",NID_userPassword,3,&(lvalues[5781]),0},
2348 {"userCertificate","userCertificate",NID_userCertificate,3,
2349 &(lvalues[5784]),0},
2350 {"cACertificate","cACertificate",NID_cACertificate,3,&(lvalues[5787]),0},
2351 {"authorityRevocationList","authorityRevocationList",
2352 NID_authorityRevocationList,3,&(lvalues[5790]),0},
2353 {"certificateRevocationList","certificateRevocationList",
2354 NID_certificateRevocationList,3,&(lvalues[5793]),0},
2355 {"crossCertificatePair","crossCertificatePair",
2356 NID_crossCertificatePair,3,&(lvalues[5796]),0},
2357 {"enhancedSearchGuide","enhancedSearchGuide",NID_enhancedSearchGuide,
2358 3,&(lvalues[5799]),0},
2359 {"protocolInformation","protocolInformation",NID_protocolInformation,
2360 3,&(lvalues[5802]),0},
2361 {"distinguishedName","distinguishedName",NID_distinguishedName,3,
2362 &(lvalues[5805]),0},
2363 {"uniqueMember","uniqueMember",NID_uniqueMember,3,&(lvalues[5808]),0},
2364 {"houseIdentifier","houseIdentifier",NID_houseIdentifier,3,
2365 &(lvalues[5811]),0},
2366 {"supportedAlgorithms","supportedAlgorithms",NID_supportedAlgorithms,
2367 3,&(lvalues[5814]),0},
2368 {"deltaRevocationList","deltaRevocationList",NID_deltaRevocationList,
2369 3,&(lvalues[5817]),0},
2370 {"dmdName","dmdName",NID_dmdName,3,&(lvalues[5820]),0},
2371 {"id-alg-PWRI-KEK","id-alg-PWRI-KEK",NID_id_alg_PWRI_KEK,11,

new/usr/src/lib/openssl/include/obj_dat.h 37

2372 &(lvalues[5823]),0},
2373 {"CMAC","cmac",NID_cmac,0,NULL,0},
2374 {"id-aes128-GCM","aes-128-gcm",NID_aes_128_gcm,9,&(lvalues[5834]),0},
2375 {"id-aes128-CCM","aes-128-ccm",NID_aes_128_ccm,9,&(lvalues[5843]),0},
2376 {"id-aes128-wrap-pad","id-aes128-wrap-pad",NID_id_aes128_wrap_pad,9,
2377 &(lvalues[5852]),0},
2378 {"id-aes192-GCM","aes-192-gcm",NID_aes_192_gcm,9,&(lvalues[5861]),0},
2379 {"id-aes192-CCM","aes-192-ccm",NID_aes_192_ccm,9,&(lvalues[5870]),0},
2380 {"id-aes192-wrap-pad","id-aes192-wrap-pad",NID_id_aes192_wrap_pad,9,
2381 &(lvalues[5879]),0},
2382 {"id-aes256-GCM","aes-256-gcm",NID_aes_256_gcm,9,&(lvalues[5888]),0},
2383 {"id-aes256-CCM","aes-256-ccm",NID_aes_256_ccm,9,&(lvalues[5897]),0},
2384 {"id-aes256-wrap-pad","id-aes256-wrap-pad",NID_id_aes256_wrap_pad,9,
2385 &(lvalues[5906]),0},
2386 {"AES-128-CTR","aes-128-ctr",NID_aes_128_ctr,0,NULL,0},
2387 {"AES-192-CTR","aes-192-ctr",NID_aes_192_ctr,0,NULL,0},
2388 {"AES-256-CTR","aes-256-ctr",NID_aes_256_ctr,0,NULL,0},
2389 {"id-camellia128-wrap","id-camellia128-wrap",NID_id_camellia128_wrap,
2390 11,&(lvalues[5915]),0},
2391 {"id-camellia192-wrap","id-camellia192-wrap",NID_id_camellia192_wrap,
2392 11,&(lvalues[5926]),0},
2393 {"id-camellia256-wrap","id-camellia256-wrap",NID_id_camellia256_wrap,
2394 11,&(lvalues[5937]),0},
2395 {"anyExtendedKeyUsage","Any Extended Key Usage",
2396 NID_anyExtendedKeyUsage,4,&(lvalues[5948]),0},
2397 {"MGF1","mgf1",NID_mgf1,9,&(lvalues[5952]),0},
2398 {"RSASSA-PSS","rsassaPss",NID_rsassaPss,9,&(lvalues[5961]),0},
2399 {"AES-128-XTS","aes-128-xts",NID_aes_128_xts,0,NULL,0},
2400 {"AES-256-XTS","aes-256-xts",NID_aes_256_xts,0,NULL,0},
2401 {"RC4-HMAC-MD5","rc4-hmac-md5",NID_rc4_hmac_md5,0,NULL,0},
2402 {"AES-128-CBC-HMAC-SHA1","aes-128-cbc-hmac-sha1",
2403 NID_aes_128_cbc_hmac_sha1,0,NULL,0},
2404 {"AES-192-CBC-HMAC-SHA1","aes-192-cbc-hmac-sha1",
2405 NID_aes_192_cbc_hmac_sha1,0,NULL,0},
2406 {"AES-256-CBC-HMAC-SHA1","aes-256-cbc-hmac-sha1",
2407 NID_aes_256_cbc_hmac_sha1,0,NULL,0},
2408 {"RSAES-OAEP","rsaesOaep",NID_rsaesOaep,9,&(lvalues[5970]),0},
2409 };

2411 static const unsigned int sn_objs[NUM_SN]={
2412 364, /* "AD_DVCS" */
2413 419, /* "AES-128-CBC" */
2414 916, /* "AES-128-CBC-HMAC-SHA1" */
2415 421, /* "AES-128-CFB" */
2416 650, /* "AES-128-CFB1" */
2417 653, /* "AES-128-CFB8" */
2418 904, /* "AES-128-CTR" */
2419 418, /* "AES-128-ECB" */
2420 420, /* "AES-128-OFB" */
2421 913, /* "AES-128-XTS" */
2422 423, /* "AES-192-CBC" */
2423 917, /* "AES-192-CBC-HMAC-SHA1" */
2424 425, /* "AES-192-CFB" */
2425 651, /* "AES-192-CFB1" */
2426 654, /* "AES-192-CFB8" */
2427 905, /* "AES-192-CTR" */
2428 422, /* "AES-192-ECB" */
2429 424, /* "AES-192-OFB" */
2430 427, /* "AES-256-CBC" */
2431 918, /* "AES-256-CBC-HMAC-SHA1" */
2432 429, /* "AES-256-CFB" */
2433 652, /* "AES-256-CFB1" */
2434 655, /* "AES-256-CFB8" */
2435 906, /* "AES-256-CTR" */
2436 426, /* "AES-256-ECB" */
2437 428, /* "AES-256-OFB" */

new/usr/src/lib/openssl/include/obj_dat.h 38

2438 914, /* "AES-256-XTS" */
2439 91, /* "BF-CBC" */
2440 93, /* "BF-CFB" */
2441 92, /* "BF-ECB" */
2442 94, /* "BF-OFB" */
2443 14, /* "C" */
2444 751, /* "CAMELLIA-128-CBC" */
2445 757, /* "CAMELLIA-128-CFB" */
2446 760, /* "CAMELLIA-128-CFB1" */
2447 763, /* "CAMELLIA-128-CFB8" */
2448 754, /* "CAMELLIA-128-ECB" */
2449 766, /* "CAMELLIA-128-OFB" */
2450 752, /* "CAMELLIA-192-CBC" */
2451 758, /* "CAMELLIA-192-CFB" */
2452 761, /* "CAMELLIA-192-CFB1" */
2453 764, /* "CAMELLIA-192-CFB8" */
2454 755, /* "CAMELLIA-192-ECB" */
2455 767, /* "CAMELLIA-192-OFB" */
2456 753, /* "CAMELLIA-256-CBC" */
2457 759, /* "CAMELLIA-256-CFB" */
2458 762, /* "CAMELLIA-256-CFB1" */
2459 765, /* "CAMELLIA-256-CFB8" */
2460 756, /* "CAMELLIA-256-ECB" */
2461 768, /* "CAMELLIA-256-OFB" */
2462 108, /* "CAST5-CBC" */
2463 110, /* "CAST5-CFB" */
2464 109, /* "CAST5-ECB" */
2465 111, /* "CAST5-OFB" */
2466 894, /* "CMAC" */
2467 13, /* "CN" */
2468 141, /* "CRLReason" */
2469 417, /* "CSPName" */
2470 367, /* "CrlID" */
2471 391, /* "DC" */
2472 31, /* "DES-CBC" */
2473 643, /* "DES-CDMF" */
2474 30, /* "DES-CFB" */
2475 656, /* "DES-CFB1" */
2476 657, /* "DES-CFB8" */
2477 29, /* "DES-ECB" */
2478 32, /* "DES-EDE" */
2479 43, /* "DES-EDE-CBC" */
2480 60, /* "DES-EDE-CFB" */
2481 62, /* "DES-EDE-OFB" */
2482 33, /* "DES-EDE3" */
2483 44, /* "DES-EDE3-CBC" */
2484 61, /* "DES-EDE3-CFB" */
2485 658, /* "DES-EDE3-CFB1" */
2486 659, /* "DES-EDE3-CFB8" */
2487 63, /* "DES-EDE3-OFB" */
2488 45, /* "DES-OFB" */
2489 80, /* "DESX-CBC" */
2490 380, /* "DOD" */
2491 116, /* "DSA" */
2492 66, /* "DSA-SHA" */
2493 113, /* "DSA-SHA1" */
2494 70, /* "DSA-SHA1-old" */
2495 67, /* "DSA-old" */
2496 297, /* "DVCS" */
2497 99, /* "GN" */
2498 855, /* "HMAC" */
2499 780, /* "HMAC-MD5" */
2500 781, /* "HMAC-SHA1" */
2501 381, /* "IANA" */
2502 34, /* "IDEA-CBC" */
2503 35, /* "IDEA-CFB" */

new/usr/src/lib/openssl/include/obj_dat.h 39

2504 36, /* "IDEA-ECB" */
2505 46, /* "IDEA-OFB" */
2506 181, /* "ISO" */
2507 183, /* "ISO-US" */
2508 645, /* "ITU-T" */
2509 646, /* "JOINT-ISO-ITU-T" */
2510 773, /* "KISA" */
2511 15, /* "L" */
2512 856, /* "LocalKeySet" */
2513 3, /* "MD2" */
2514 257, /* "MD4" */
2515 4, /* "MD5" */
2516 114, /* "MD5-SHA1" */
2517 95, /* "MDC2" */
2518 911, /* "MGF1" */
2519 388, /* "Mail" */
2520 393, /* "NULL" */
2521 404, /* "NULL" */
2522 57, /* "Netscape" */
2523 366, /* "Nonce" */
2524 17, /* "O" */
2525 178, /* "OCSP" */
2526 180, /* "OCSPSigning" */
2527 379, /* "ORG" */
2528 18, /* "OU" */
2529 749, /* "Oakley-EC2N-3" */
2530 750, /* "Oakley-EC2N-4" */
2531 9, /* "PBE-MD2-DES" */
2532 168, /* "PBE-MD2-RC2-64" */
2533 10, /* "PBE-MD5-DES" */
2534 169, /* "PBE-MD5-RC2-64" */
2535 147, /* "PBE-SHA1-2DES" */
2536 146, /* "PBE-SHA1-3DES" */
2537 170, /* "PBE-SHA1-DES" */
2538 148, /* "PBE-SHA1-RC2-128" */
2539 149, /* "PBE-SHA1-RC2-40" */
2540 68, /* "PBE-SHA1-RC2-64" */
2541 144, /* "PBE-SHA1-RC4-128" */
2542 145, /* "PBE-SHA1-RC4-40" */
2543 161, /* "PBES2" */
2544 69, /* "PBKDF2" */
2545 162, /* "PBMAC1" */
2546 127, /* "PKIX" */
2547 98, /* "RC2-40-CBC" */
2548 166, /* "RC2-64-CBC" */
2549 37, /* "RC2-CBC" */
2550 39, /* "RC2-CFB" */
2551 38, /* "RC2-ECB" */
2552 40, /* "RC2-OFB" */
2553 5, /* "RC4" */
2554 97, /* "RC4-40" */
2555 915, /* "RC4-HMAC-MD5" */
2556 120, /* "RC5-CBC" */
2557 122, /* "RC5-CFB" */
2558 121, /* "RC5-ECB" */
2559 123, /* "RC5-OFB" */
2560 117, /* "RIPEMD160" */
2561 124, /* "RLE" */
2562 19, /* "RSA" */
2563 7, /* "RSA-MD2" */
2564 396, /* "RSA-MD4" */
2565 8, /* "RSA-MD5" */
2566 96, /* "RSA-MDC2" */
2567 104, /* "RSA-NP-MD5" */
2568 119, /* "RSA-RIPEMD160" */
2569 42, /* "RSA-SHA" */

new/usr/src/lib/openssl/include/obj_dat.h 40

2570 65, /* "RSA-SHA1" */
2571 115, /* "RSA-SHA1-2" */
2572 671, /* "RSA-SHA224" */
2573 668, /* "RSA-SHA256" */
2574 669, /* "RSA-SHA384" */
2575 670, /* "RSA-SHA512" */
2576 919, /* "RSAES-OAEP" */
2577 912, /* "RSASSA-PSS" */
2578 777, /* "SEED-CBC" */
2579 779, /* "SEED-CFB" */
2580 776, /* "SEED-ECB" */
2581 778, /* "SEED-OFB" */
2582 41, /* "SHA" */
2583 64, /* "SHA1" */
2584 675, /* "SHA224" */
2585 672, /* "SHA256" */
2586 673, /* "SHA384" */
2587 674, /* "SHA512" */
2588 188, /* "SMIME" */
2589 167, /* "SMIME-CAPS" */
2590 100, /* "SN" */
2591 16, /* "ST" */
2592 143, /* "SXNetID" */
2593 458, /* "UID" */
2594 0, /* "UNDEF" */
2595 11, /* "X500" */
2596 378, /* "X500algorithms" */
2597 12, /* "X509" */
2598 184, /* "X9-57" */
2599 185, /* "X9cm" */
2600 125, /* "ZLIB" */
2601 478, /* "aRecord" */
2602 289, /* "aaControls" */
2603 287, /* "ac-auditEntity" */
2604 397, /* "ac-proxying" */
2605 288, /* "ac-targeting" */
2606 368, /* "acceptableResponses" */
2607 446, /* "account" */
2608 363, /* "ad_timestamping" */
2609 376, /* "algorithm" */
2610 405, /* "ansi-X9-62" */
2611 910, /* "anyExtendedKeyUsage" */
2612 746, /* "anyPolicy" */
2613 370, /* "archiveCutoff" */
2614 484, /* "associatedDomain" */
2615 485, /* "associatedName" */
2616 501, /* "audio" */
2617 177, /* "authorityInfoAccess" */
2618 90, /* "authorityKeyIdentifier" */
2619 882, /* "authorityRevocationList" */
2620 87, /* "basicConstraints" */
2621 365, /* "basicOCSPResponse" */
2622 285, /* "biometricInfo" */
2623 494, /* "buildingName" */
2624 860, /* "businessCategory" */
2625 691, /* "c2onb191v4" */
2626 692, /* "c2onb191v5" */
2627 697, /* "c2onb239v4" */
2628 698, /* "c2onb239v5" */
2629 684, /* "c2pnb163v1" */
2630 685, /* "c2pnb163v2" */
2631 686, /* "c2pnb163v3" */
2632 687, /* "c2pnb176v1" */
2633 693, /* "c2pnb208w1" */
2634 699, /* "c2pnb272w1" */
2635 700, /* "c2pnb304w1" */

new/usr/src/lib/openssl/include/obj_dat.h 41

2636 702, /* "c2pnb368w1" */
2637 688, /* "c2tnb191v1" */
2638 689, /* "c2tnb191v2" */
2639 690, /* "c2tnb191v3" */
2640 694, /* "c2tnb239v1" */
2641 695, /* "c2tnb239v2" */
2642 696, /* "c2tnb239v3" */
2643 701, /* "c2tnb359v1" */
2644 703, /* "c2tnb431r1" */
2645 881, /* "cACertificate" */
2646 483, /* "cNAMERecord" */
2647 179, /* "caIssuers" */
2648 785, /* "caRepository" */
2649 443, /* "caseIgnoreIA5StringSyntax" */
2650 152, /* "certBag" */
2651 677, /* "certicom-arc" */
2652 771, /* "certificateIssuer" */
2653 89, /* "certificatePolicies" */
2654 883, /* "certificateRevocationList" */
2655 54, /* "challengePassword" */
2656 407, /* "characteristic-two-field" */
2657 395, /* "clearance" */
2658 130, /* "clientAuth" */
2659 131, /* "codeSigning" */
2660 50, /* "contentType" */
2661 53, /* "countersignature" */
2662 153, /* "crlBag" */
2663 103, /* "crlDistributionPoints" */
2664 88, /* "crlNumber" */
2665 884, /* "crossCertificatePair" */
2666 806, /* "cryptocom" */
2667 805, /* "cryptopro" */
2668 500, /* "dITRedirect" */
2669 451, /* "dNSDomain" */
2670 495, /* "dSAQuality" */
2671 434, /* "data" */
2672 390, /* "dcobject" */
2673 140, /* "deltaCRL" */
2674 891, /* "deltaRevocationList" */
2675 107, /* "description" */
2676 871, /* "destinationIndicator" */
2677 28, /* "dhKeyAgreement" */
2678 382, /* "directory" */
2679 887, /* "distinguishedName" */
2680 892, /* "dmdName" */
2681 174, /* "dnQualifier" */
2682 447, /* "document" */
2683 471, /* "documentAuthor" */
2684 468, /* "documentIdentifier" */
2685 472, /* "documentLocation" */
2686 502, /* "documentPublisher" */
2687 449, /* "documentSeries" */
2688 469, /* "documentTitle" */
2689 470, /* "documentVersion" */
2690 392, /* "domain" */
2691 452, /* "domainRelatedObject" */
2692 802, /* "dsa_with_SHA224" */
2693 803, /* "dsa_with_SHA256" */
2694 791, /* "ecdsa-with-Recommended" */
2695 416, /* "ecdsa-with-SHA1" */
2696 793, /* "ecdsa-with-SHA224" */
2697 794, /* "ecdsa-with-SHA256" */
2698 795, /* "ecdsa-with-SHA384" */
2699 796, /* "ecdsa-with-SHA512" */
2700 792, /* "ecdsa-with-Specified" */
2701 48, /* "emailAddress" */

new/usr/src/lib/openssl/include/obj_dat.h 42

2702 132, /* "emailProtection" */
2703 885, /* "enhancedSearchGuide" */
2704 389, /* "enterprises" */
2705 384, /* "experimental" */
2706 172, /* "extReq" */
2707 56, /* "extendedCertificateAttributes" */
2708 126, /* "extendedKeyUsage" */
2709 372, /* "extendedStatus" */
2710 867, /* "facsimileTelephoneNumber" */
2711 462, /* "favouriteDrink" */
2712 857, /* "freshestCRL" */
2713 453, /* "friendlyCountry" */
2714 490, /* "friendlyCountryName" */
2715 156, /* "friendlyName" */
2716 509, /* "generationQualifier" */
2717 815, /* "gost-mac" */
2718 811, /* "gost2001" */
2719 851, /* "gost2001cc" */
2720 813, /* "gost89" */
2721 814, /* "gost89-cnt" */
2722 812, /* "gost94" */
2723 850, /* "gost94cc" */
2724 797, /* "hmacWithMD5" */
2725 163, /* "hmacWithSHA1" */
2726 798, /* "hmacWithSHA224" */
2727 799, /* "hmacWithSHA256" */
2728 800, /* "hmacWithSHA384" */
2729 801, /* "hmacWithSHA512" */
2730 432, /* "holdInstructionCallIssuer" */
2731 430, /* "holdInstructionCode" */
2732 431, /* "holdInstructionNone" */
2733 433, /* "holdInstructionReject" */
2734 486, /* "homePostalAddress" */
2735 473, /* "homeTelephoneNumber" */
2736 466, /* "host" */
2737 889, /* "houseIdentifier" */
2738 442, /* "iA5StringSyntax" */
2739 783, /* "id-DHBasedMac" */
2740 824, /* "id-Gost28147-89-CryptoPro-A-ParamSet" */
2741 825, /* "id-Gost28147-89-CryptoPro-B-ParamSet" */
2742 826, /* "id-Gost28147-89-CryptoPro-C-ParamSet" */
2743 827, /* "id-Gost28147-89-CryptoPro-D-ParamSet" */
2744 819, /* "id-Gost28147-89-CryptoPro-KeyMeshing" */
2745 829, /* "id-Gost28147-89-CryptoPro-Oscar-1-0-ParamSet" */
2746 828, /* "id-Gost28147-89-CryptoPro-Oscar-1-1-ParamSet" */
2747 830, /* "id-Gost28147-89-CryptoPro-RIC-1-ParamSet" */
2748 820, /* "id-Gost28147-89-None-KeyMeshing" */
2749 823, /* "id-Gost28147-89-TestParamSet" */
2750 849, /* "id-Gost28147-89-cc" */
2751 840, /* "id-GostR3410-2001-CryptoPro-A-ParamSet" */
2752 841, /* "id-GostR3410-2001-CryptoPro-B-ParamSet" */
2753 842, /* "id-GostR3410-2001-CryptoPro-C-ParamSet" */
2754 843, /* "id-GostR3410-2001-CryptoPro-XchA-ParamSet" */
2755 844, /* "id-GostR3410-2001-CryptoPro-XchB-ParamSet" */
2756 854, /* "id-GostR3410-2001-ParamSet-cc" */
2757 839, /* "id-GostR3410-2001-TestParamSet" */
2758 817, /* "id-GostR3410-2001DH" */
2759 832, /* "id-GostR3410-94-CryptoPro-A-ParamSet" */
2760 833, /* "id-GostR3410-94-CryptoPro-B-ParamSet" */
2761 834, /* "id-GostR3410-94-CryptoPro-C-ParamSet" */
2762 835, /* "id-GostR3410-94-CryptoPro-D-ParamSet" */
2763 836, /* "id-GostR3410-94-CryptoPro-XchA-ParamSet" */
2764 837, /* "id-GostR3410-94-CryptoPro-XchB-ParamSet" */
2765 838, /* "id-GostR3410-94-CryptoPro-XchC-ParamSet" */
2766 831, /* "id-GostR3410-94-TestParamSet" */
2767 845, /* "id-GostR3410-94-a" */

new/usr/src/lib/openssl/include/obj_dat.h 43

2768 846, /* "id-GostR3410-94-aBis" */
2769 847, /* "id-GostR3410-94-b" */
2770 848, /* "id-GostR3410-94-bBis" */
2771 818, /* "id-GostR3410-94DH" */
2772 822, /* "id-GostR3411-94-CryptoProParamSet" */
2773 821, /* "id-GostR3411-94-TestParamSet" */
2774 807, /* "id-GostR3411-94-with-GostR3410-2001" */
2775 853, /* "id-GostR3411-94-with-GostR3410-2001-cc" */
2776 808, /* "id-GostR3411-94-with-GostR3410-94" */
2777 852, /* "id-GostR3411-94-with-GostR3410-94-cc" */
2778 810, /* "id-HMACGostR3411-94" */
2779 782, /* "id-PasswordBasedMAC" */
2780 266, /* "id-aca" */
2781 355, /* "id-aca-accessIdentity" */
2782 354, /* "id-aca-authenticationInfo" */
2783 356, /* "id-aca-chargingIdentity" */
2784 399, /* "id-aca-encAttrs" */
2785 357, /* "id-aca-group" */
2786 358, /* "id-aca-role" */
2787 176, /* "id-ad" */
2788 896, /* "id-aes128-CCM" */
2789 895, /* "id-aes128-GCM" */
2790 788, /* "id-aes128-wrap" */
2791 897, /* "id-aes128-wrap-pad" */
2792 899, /* "id-aes192-CCM" */
2793 898, /* "id-aes192-GCM" */
2794 789, /* "id-aes192-wrap" */
2795 900, /* "id-aes192-wrap-pad" */
2796 902, /* "id-aes256-CCM" */
2797 901, /* "id-aes256-GCM" */
2798 790, /* "id-aes256-wrap" */
2799 903, /* "id-aes256-wrap-pad" */
2800 262, /* "id-alg" */
2801 893, /* "id-alg-PWRI-KEK" */
2802 323, /* "id-alg-des40" */
2803 326, /* "id-alg-dh-pop" */
2804 325, /* "id-alg-dh-sig-hmac-sha1" */
2805 324, /* "id-alg-noSignature" */
2806 907, /* "id-camellia128-wrap" */
2807 908, /* "id-camellia192-wrap" */
2808 909, /* "id-camellia256-wrap" */
2809 268, /* "id-cct" */
2810 361, /* "id-cct-PKIData" */
2811 362, /* "id-cct-PKIResponse" */
2812 360, /* "id-cct-crs" */
2813 81, /* "id-ce" */
2814 680, /* "id-characteristic-two-basis" */
2815 263, /* "id-cmc" */
2816 334, /* "id-cmc-addExtensions" */
2817 346, /* "id-cmc-confirmCertAcceptance" */
2818 330, /* "id-cmc-dataReturn" */
2819 336, /* "id-cmc-decryptedPOP" */
2820 335, /* "id-cmc-encryptedPOP" */
2821 339, /* "id-cmc-getCRL" */
2822 338, /* "id-cmc-getCert" */
2823 328, /* "id-cmc-identification" */
2824 329, /* "id-cmc-identityProof" */
2825 337, /* "id-cmc-lraPOPWitness" */
2826 344, /* "id-cmc-popLinkRandom" */
2827 345, /* "id-cmc-popLinkWitness" */
2828 343, /* "id-cmc-queryPending" */
2829 333, /* "id-cmc-recipientNonce" */
2830 341, /* "id-cmc-regInfo" */
2831 342, /* "id-cmc-responseInfo" */
2832 340, /* "id-cmc-revokeRequest" */
2833 332, /* "id-cmc-senderNonce" */

new/usr/src/lib/openssl/include/obj_dat.h 44

2834 327, /* "id-cmc-statusInfo" */
2835 331, /* "id-cmc-transactionId" */
2836 787, /* "id-ct-asciiTextWithCRLF" */
2837 408, /* "id-ecPublicKey" */
2838 508, /* "id-hex-multipart-message" */
2839 507, /* "id-hex-partial-message" */
2840 260, /* "id-it" */
2841 302, /* "id-it-caKeyUpdateInfo" */
2842 298, /* "id-it-caProtEncCert" */
2843 311, /* "id-it-confirmWaitTime" */
2844 303, /* "id-it-currentCRL" */
2845 300, /* "id-it-encKeyPairTypes" */
2846 310, /* "id-it-implicitConfirm" */
2847 308, /* "id-it-keyPairParamRep" */
2848 307, /* "id-it-keyPairParamReq" */
2849 312, /* "id-it-origPKIMessage" */
2850 301, /* "id-it-preferredSymmAlg" */
2851 309, /* "id-it-revPassphrase" */
2852 299, /* "id-it-signKeyPairTypes" */
2853 305, /* "id-it-subscriptionRequest" */
2854 306, /* "id-it-subscriptionResponse" */
2855 784, /* "id-it-suppLangTags" */
2856 304, /* "id-it-unsupportedOIDs" */
2857 128, /* "id-kp" */
2858 280, /* "id-mod-attribute-cert" */
2859 274, /* "id-mod-cmc" */
2860 277, /* "id-mod-cmp" */
2861 284, /* "id-mod-cmp2000" */
2862 273, /* "id-mod-crmf" */
2863 283, /* "id-mod-dvcs" */
2864 275, /* "id-mod-kea-profile-88" */
2865 276, /* "id-mod-kea-profile-93" */
2866 282, /* "id-mod-ocsp" */
2867 278, /* "id-mod-qualified-cert-88" */
2868 279, /* "id-mod-qualified-cert-93" */
2869 281, /* "id-mod-timestamp-protocol" */
2870 264, /* "id-on" */
2871 858, /* "id-on-permanentIdentifier" */
2872 347, /* "id-on-personalData" */
2873 265, /* "id-pda" */
2874 352, /* "id-pda-countryOfCitizenship" */
2875 353, /* "id-pda-countryOfResidence" */
2876 348, /* "id-pda-dateOfBirth" */
2877 351, /* "id-pda-gender" */
2878 349, /* "id-pda-placeOfBirth" */
2879 175, /* "id-pe" */
2880 261, /* "id-pkip" */
2881 258, /* "id-pkix-mod" */
2882 269, /* "id-pkix1-explicit-88" */
2883 271, /* "id-pkix1-explicit-93" */
2884 270, /* "id-pkix1-implicit-88" */
2885 272, /* "id-pkix1-implicit-93" */
2886 662, /* "id-ppl" */
2887 664, /* "id-ppl-anyLanguage" */
2888 667, /* "id-ppl-independent" */
2889 665, /* "id-ppl-inheritAll" */
2890 267, /* "id-qcs" */
2891 359, /* "id-qcs-pkixQCSyntax-v1" */
2892 259, /* "id-qt" */
2893 164, /* "id-qt-cps" */
2894 165, /* "id-qt-unotice" */
2895 313, /* "id-regCtrl" */
2896 316, /* "id-regCtrl-authenticator" */
2897 319, /* "id-regCtrl-oldCertID" */
2898 318, /* "id-regCtrl-pkiArchiveOptions" */
2899 317, /* "id-regCtrl-pkiPublicationInfo" */

new/usr/src/lib/openssl/include/obj_dat.h 45

2900 320, /* "id-regCtrl-protocolEncrKey" */
2901 315, /* "id-regCtrl-regToken" */
2902 314, /* "id-regInfo" */
2903 322, /* "id-regInfo-certReq" */
2904 321, /* "id-regInfo-utf8Pairs" */
2905 512, /* "id-set" */
2906 191, /* "id-smime-aa" */
2907 215, /* "id-smime-aa-contentHint" */
2908 218, /* "id-smime-aa-contentIdentifier" */
2909 221, /* "id-smime-aa-contentReference" */
2910 240, /* "id-smime-aa-dvcs-dvc" */
2911 217, /* "id-smime-aa-encapContentType" */
2912 222, /* "id-smime-aa-encrypKeyPref" */
2913 220, /* "id-smime-aa-equivalentLabels" */
2914 232, /* "id-smime-aa-ets-CertificateRefs" */
2915 233, /* "id-smime-aa-ets-RevocationRefs" */
2916 238, /* "id-smime-aa-ets-archiveTimeStamp" */
2917 237, /* "id-smime-aa-ets-certCRLTimestamp" */
2918 234, /* "id-smime-aa-ets-certValues" */
2919 227, /* "id-smime-aa-ets-commitmentType" */
2920 231, /* "id-smime-aa-ets-contentTimestamp" */
2921 236, /* "id-smime-aa-ets-escTimeStamp" */
2922 230, /* "id-smime-aa-ets-otherSigCert" */
2923 235, /* "id-smime-aa-ets-revocationValues" */
2924 226, /* "id-smime-aa-ets-sigPolicyId" */
2925 229, /* "id-smime-aa-ets-signerAttr" */
2926 228, /* "id-smime-aa-ets-signerLocation" */
2927 219, /* "id-smime-aa-macValue" */
2928 214, /* "id-smime-aa-mlExpandHistory" */
2929 216, /* "id-smime-aa-msgSigDigest" */
2930 212, /* "id-smime-aa-receiptRequest" */
2931 213, /* "id-smime-aa-securityLabel" */
2932 239, /* "id-smime-aa-signatureType" */
2933 223, /* "id-smime-aa-signingCertificate" */
2934 224, /* "id-smime-aa-smimeEncryptCerts" */
2935 225, /* "id-smime-aa-timeStampToken" */
2936 192, /* "id-smime-alg" */
2937 243, /* "id-smime-alg-3DESwrap" */
2938 246, /* "id-smime-alg-CMS3DESwrap" */
2939 247, /* "id-smime-alg-CMSRC2wrap" */
2940 245, /* "id-smime-alg-ESDH" */
2941 241, /* "id-smime-alg-ESDHwith3DES" */
2942 242, /* "id-smime-alg-ESDHwithRC2" */
2943 244, /* "id-smime-alg-RC2wrap" */
2944 193, /* "id-smime-cd" */
2945 248, /* "id-smime-cd-ldap" */
2946 190, /* "id-smime-ct" */
2947 210, /* "id-smime-ct-DVCSRequestData" */
2948 211, /* "id-smime-ct-DVCSResponseData" */
2949 208, /* "id-smime-ct-TDTInfo" */
2950 207, /* "id-smime-ct-TSTInfo" */
2951 205, /* "id-smime-ct-authData" */
2952 786, /* "id-smime-ct-compressedData" */
2953 209, /* "id-smime-ct-contentInfo" */
2954 206, /* "id-smime-ct-publishCert" */
2955 204, /* "id-smime-ct-receipt" */
2956 195, /* "id-smime-cti" */
2957 255, /* "id-smime-cti-ets-proofOfApproval" */
2958 256, /* "id-smime-cti-ets-proofOfCreation" */
2959 253, /* "id-smime-cti-ets-proofOfDelivery" */
2960 251, /* "id-smime-cti-ets-proofOfOrigin" */
2961 252, /* "id-smime-cti-ets-proofOfReceipt" */
2962 254, /* "id-smime-cti-ets-proofOfSender" */
2963 189, /* "id-smime-mod" */
2964 196, /* "id-smime-mod-cms" */
2965 197, /* "id-smime-mod-ess" */

new/usr/src/lib/openssl/include/obj_dat.h 46

2966 202, /* "id-smime-mod-ets-eSigPolicy-88" */
2967 203, /* "id-smime-mod-ets-eSigPolicy-97" */
2968 200, /* "id-smime-mod-ets-eSignature-88" */
2969 201, /* "id-smime-mod-ets-eSignature-97" */
2970 199, /* "id-smime-mod-msg-v3" */
2971 198, /* "id-smime-mod-oid" */
2972 194, /* "id-smime-spq" */
2973 250, /* "id-smime-spq-ets-sqt-unotice" */
2974 249, /* "id-smime-spq-ets-sqt-uri" */
2975 676, /* "identified-organization" */
2976 461, /* "info" */
2977 748, /* "inhibitAnyPolicy" */
2978 101, /* "initials" */
2979 647, /* "international-organizations" */
2980 869, /* "internationaliSDNNumber" */
2981 142, /* "invalidityDate" */
2982 294, /* "ipsecEndSystem" */
2983 295, /* "ipsecTunnel" */
2984 296, /* "ipsecUser" */
2985 86, /* "issuerAltName" */
2986 770, /* "issuingDistributionPoint" */
2987 492, /* "janetMailbox" */
2988 150, /* "keyBag" */
2989 83, /* "keyUsage" */
2990 477, /* "lastModifiedBy" */
2991 476, /* "lastModifiedTime" */
2992 157, /* "localKeyID" */
2993 480, /* "mXRecord" */
2994 460, /* "mail" */
2995 493, /* "mailPreferenceOption" */
2996 467, /* "manager" */
2997 809, /* "md_gost94" */
2998 875, /* "member" */
2999 182, /* "member-body" */
3000 51, /* "messageDigest" */
3001 383, /* "mgmt" */
3002 504, /* "mime-mhs" */
3003 506, /* "mime-mhs-bodies" */
3004 505, /* "mime-mhs-headings" */
3005 488, /* "mobileTelephoneNumber" */
3006 136, /* "msCTLSign" */
3007 135, /* "msCodeCom" */
3008 134, /* "msCodeInd" */
3009 138, /* "msEFS" */
3010 171, /* "msExtReq" */
3011 137, /* "msSGC" */
3012 648, /* "msSmartcardLogin" */
3013 649, /* "msUPN" */
3014 481, /* "nSRecord" */
3015 173, /* "name" */
3016 666, /* "nameConstraints" */
3017 369, /* "noCheck" */
3018 403, /* "noRevAvail" */
3019 72, /* "nsBaseUrl" */
3020 76, /* "nsCaPolicyUrl" */
3021 74, /* "nsCaRevocationUrl" */
3022 58, /* "nsCertExt" */
3023 79, /* "nsCertSequence" */
3024 71, /* "nsCertType" */
3025 78, /* "nsComment" */
3026 59, /* "nsDataType" */
3027 75, /* "nsRenewalUrl" */
3028 73, /* "nsRevocationUrl" */
3029 139, /* "nsSGC" */
3030 77, /* "nsSslServerName" */
3031 681, /* "onBasis" */

new/usr/src/lib/openssl/include/obj_dat.h 47

3032 491, /* "organizationalStatus" */
3033 475, /* "otherMailbox" */
3034 876, /* "owner" */
3035 489, /* "pagerTelephoneNumber" */
3036 374, /* "path" */
3037 112, /* "pbeWithMD5AndCast5CBC" */
3038 499, /* "personalSignature" */
3039 487, /* "personalTitle" */
3040 464, /* "photo" */
3041 863, /* "physicalDeliveryOfficeName" */
3042 437, /* "pilot" */
3043 439, /* "pilotAttributeSyntax" */
3044 438, /* "pilotAttributeType" */
3045 479, /* "pilotAttributeType27" */
3046 456, /* "pilotDSA" */
3047 441, /* "pilotGroups" */
3048 444, /* "pilotObject" */
3049 440, /* "pilotObjectClass" */
3050 455, /* "pilotOrganization" */
3051 445, /* "pilotPerson" */
3052 2, /* "pkcs" */
3053 186, /* "pkcs1" */
3054 27, /* "pkcs3" */
3055 187, /* "pkcs5" */
3056 20, /* "pkcs7" */
3057 21, /* "pkcs7-data" */
3058 25, /* "pkcs7-digestData" */
3059 26, /* "pkcs7-encryptedData" */
3060 23, /* "pkcs7-envelopedData" */
3061 24, /* "pkcs7-signedAndEnvelopedData" */
3062 22, /* "pkcs7-signedData" */
3063 151, /* "pkcs8ShroudedKeyBag" */
3064 47, /* "pkcs9" */
3065 401, /* "policyConstraints" */
3066 747, /* "policyMappings" */
3067 862, /* "postOfficeBox" */
3068 861, /* "postalAddress" */
3069 661, /* "postalCode" */
3070 683, /* "ppBasis" */
3071 872, /* "preferredDeliveryMethod" */
3072 873, /* "presentationAddress" */
3073 816, /* "prf-gostr3411-94" */
3074 406, /* "prime-field" */
3075 409, /* "prime192v1" */
3076 410, /* "prime192v2" */
3077 411, /* "prime192v3" */
3078 412, /* "prime239v1" */
3079 413, /* "prime239v2" */
3080 414, /* "prime239v3" */
3081 415, /* "prime256v1" */
3082 385, /* "private" */
3083 84, /* "privateKeyUsagePeriod" */
3084 886, /* "protocolInformation" */
3085 663, /* "proxyCertInfo" */
3086 510, /* "pseudonym" */
3087 435, /* "pss" */
3088 286, /* "qcStatements" */
3089 457, /* "qualityLabelledData" */
3090 450, /* "rFC822localPart" */
3091 870, /* "registeredAddress" */
3092 400, /* "role" */
3093 877, /* "roleOccupant" */
3094 448, /* "room" */
3095 463, /* "roomNumber" */
3096 6, /* "rsaEncryption" */
3097 644, /* "rsaOAEPEncryptionSET" */

new/usr/src/lib/openssl/include/obj_dat.h 48

3098 377, /* "rsaSignature" */
3099 1, /* "rsadsi" */
3100 482, /* "sOARecord" */
3101 155, /* "safeContentsBag" */
3102 291, /* "sbgp-autonomousSysNum" */
3103 290, /* "sbgp-ipAddrBlock" */
3104 292, /* "sbgp-routerIdentifier" */
3105 159, /* "sdsiCertificate" */
3106 859, /* "searchGuide" */
3107 704, /* "secp112r1" */
3108 705, /* "secp112r2" */
3109 706, /* "secp128r1" */
3110 707, /* "secp128r2" */
3111 708, /* "secp160k1" */
3112 709, /* "secp160r1" */
3113 710, /* "secp160r2" */
3114 711, /* "secp192k1" */
3115 712, /* "secp224k1" */
3116 713, /* "secp224r1" */
3117 714, /* "secp256k1" */
3118 715, /* "secp384r1" */
3119 716, /* "secp521r1" */
3120 154, /* "secretBag" */
3121 474, /* "secretary" */
3122 717, /* "sect113r1" */
3123 718, /* "sect113r2" */
3124 719, /* "sect131r1" */
3125 720, /* "sect131r2" */
3126 721, /* "sect163k1" */
3127 722, /* "sect163r1" */
3128 723, /* "sect163r2" */
3129 724, /* "sect193r1" */
3130 725, /* "sect193r2" */
3131 726, /* "sect233k1" */
3132 727, /* "sect233r1" */
3133 728, /* "sect239k1" */
3134 729, /* "sect283k1" */
3135 730, /* "sect283r1" */
3136 731, /* "sect409k1" */
3137 732, /* "sect409r1" */
3138 733, /* "sect571k1" */
3139 734, /* "sect571r1" */
3140 386, /* "security" */
3141 878, /* "seeAlso" */
3142 394, /* "selected-attribute-types" */
3143 105, /* "serialNumber" */
3144 129, /* "serverAuth" */
3145 371, /* "serviceLocator" */
3146 625, /* "set-addPolicy" */
3147 515, /* "set-attr" */
3148 518, /* "set-brand" */
3149 638, /* "set-brand-AmericanExpress" */
3150 637, /* "set-brand-Diners" */
3151 636, /* "set-brand-IATA-ATA" */
3152 639, /* "set-brand-JCB" */
3153 641, /* "set-brand-MasterCard" */
3154 642, /* "set-brand-Novus" */
3155 640, /* "set-brand-Visa" */
3156 517, /* "set-certExt" */
3157 513, /* "set-ctype" */
3158 514, /* "set-msgExt" */
3159 516, /* "set-policy" */
3160 607, /* "set-policy-root" */
3161 624, /* "set-rootKeyThumb" */
3162 620, /* "setAttr-Cert" */
3163 631, /* "setAttr-GenCryptgrm" */

new/usr/src/lib/openssl/include/obj_dat.h 49

3164 623, /* "setAttr-IssCap" */
3165 628, /* "setAttr-IssCap-CVM" */
3166 630, /* "setAttr-IssCap-Sig" */
3167 629, /* "setAttr-IssCap-T2" */
3168 621, /* "setAttr-PGWYcap" */
3169 635, /* "setAttr-SecDevSig" */
3170 632, /* "setAttr-T2Enc" */
3171 633, /* "setAttr-T2cleartxt" */
3172 634, /* "setAttr-TokICCsig" */
3173 627, /* "setAttr-Token-B0Prime" */
3174 626, /* "setAttr-Token-EMV" */
3175 622, /* "setAttr-TokenType" */
3176 619, /* "setCext-IssuerCapabilities" */
3177 615, /* "setCext-PGWYcapabilities" */
3178 616, /* "setCext-TokenIdentifier" */
3179 618, /* "setCext-TokenType" */
3180 617, /* "setCext-Track2Data" */
3181 611, /* "setCext-cCertRequired" */
3182 609, /* "setCext-certType" */
3183 608, /* "setCext-hashedRoot" */
3184 610, /* "setCext-merchData" */
3185 613, /* "setCext-setExt" */
3186 614, /* "setCext-setQualf" */
3187 612, /* "setCext-tunneling" */
3188 540, /* "setct-AcqCardCodeMsg" */
3189 576, /* "setct-AcqCardCodeMsgTBE" */
3190 570, /* "setct-AuthReqTBE" */
3191 534, /* "setct-AuthReqTBS" */
3192 527, /* "setct-AuthResBaggage" */
3193 571, /* "setct-AuthResTBE" */
3194 572, /* "setct-AuthResTBEX" */
3195 535, /* "setct-AuthResTBS" */
3196 536, /* "setct-AuthResTBSX" */
3197 528, /* "setct-AuthRevReqBaggage" */
3198 577, /* "setct-AuthRevReqTBE" */
3199 541, /* "setct-AuthRevReqTBS" */
3200 529, /* "setct-AuthRevResBaggage" */
3201 542, /* "setct-AuthRevResData" */
3202 578, /* "setct-AuthRevResTBE" */
3203 579, /* "setct-AuthRevResTBEB" */
3204 543, /* "setct-AuthRevResTBS" */
3205 573, /* "setct-AuthTokenTBE" */
3206 537, /* "setct-AuthTokenTBS" */
3207 600, /* "setct-BCIDistributionTBS" */
3208 558, /* "setct-BatchAdminReqData" */
3209 592, /* "setct-BatchAdminReqTBE" */
3210 559, /* "setct-BatchAdminResData" */
3211 593, /* "setct-BatchAdminResTBE" */
3212 599, /* "setct-CRLNotificationResTBS" */
3213 598, /* "setct-CRLNotificationTBS" */
3214 580, /* "setct-CapReqTBE" */
3215 581, /* "setct-CapReqTBEX" */
3216 544, /* "setct-CapReqTBS" */
3217 545, /* "setct-CapReqTBSX" */
3218 546, /* "setct-CapResData" */
3219 582, /* "setct-CapResTBE" */
3220 583, /* "setct-CapRevReqTBE" */
3221 584, /* "setct-CapRevReqTBEX" */
3222 547, /* "setct-CapRevReqTBS" */
3223 548, /* "setct-CapRevReqTBSX" */
3224 549, /* "setct-CapRevResData" */
3225 585, /* "setct-CapRevResTBE" */
3226 538, /* "setct-CapTokenData" */
3227 530, /* "setct-CapTokenSeq" */
3228 574, /* "setct-CapTokenTBE" */
3229 575, /* "setct-CapTokenTBEX" */

new/usr/src/lib/openssl/include/obj_dat.h 50

3230 539, /* "setct-CapTokenTBS" */
3231 560, /* "setct-CardCInitResTBS" */
3232 566, /* "setct-CertInqReqTBS" */
3233 563, /* "setct-CertReqData" */
3234 595, /* "setct-CertReqTBE" */
3235 596, /* "setct-CertReqTBEX" */
3236 564, /* "setct-CertReqTBS" */
3237 565, /* "setct-CertResData" */
3238 597, /* "setct-CertResTBE" */
3239 586, /* "setct-CredReqTBE" */
3240 587, /* "setct-CredReqTBEX" */
3241 550, /* "setct-CredReqTBS" */
3242 551, /* "setct-CredReqTBSX" */
3243 552, /* "setct-CredResData" */
3244 588, /* "setct-CredResTBE" */
3245 589, /* "setct-CredRevReqTBE" */
3246 590, /* "setct-CredRevReqTBEX" */
3247 553, /* "setct-CredRevReqTBS" */
3248 554, /* "setct-CredRevReqTBSX" */
3249 555, /* "setct-CredRevResData" */
3250 591, /* "setct-CredRevResTBE" */
3251 567, /* "setct-ErrorTBS" */
3252 526, /* "setct-HODInput" */
3253 561, /* "setct-MeAqCInitResTBS" */
3254 522, /* "setct-OIData" */
3255 519, /* "setct-PANData" */
3256 521, /* "setct-PANOnly" */
3257 520, /* "setct-PANToken" */
3258 556, /* "setct-PCertReqData" */
3259 557, /* "setct-PCertResTBS" */
3260 523, /* "setct-PI" */
3261 532, /* "setct-PI-TBS" */
3262 524, /* "setct-PIData" */
3263 525, /* "setct-PIDataUnsigned" */
3264 568, /* "setct-PIDualSignedTBE" */
3265 569, /* "setct-PIUnsignedTBE" */
3266 531, /* "setct-PInitResData" */
3267 533, /* "setct-PResData" */
3268 594, /* "setct-RegFormReqTBE" */
3269 562, /* "setct-RegFormResTBS" */
3270 606, /* "setext-cv" */
3271 601, /* "setext-genCrypt" */
3272 602, /* "setext-miAuth" */
3273 604, /* "setext-pinAny" */
3274 603, /* "setext-pinSecure" */
3275 605, /* "setext-track2" */
3276 52, /* "signingTime" */
3277 454, /* "simpleSecurityObject" */
3278 496, /* "singleLevelQuality" */
3279 387, /* "snmpv2" */
3280 660, /* "street" */
3281 85, /* "subjectAltName" */
3282 769, /* "subjectDirectoryAttributes" */
3283 398, /* "subjectInfoAccess" */
3284 82, /* "subjectKeyIdentifier" */
3285 498, /* "subtreeMaximumQuality" */
3286 497, /* "subtreeMinimumQuality" */
3287 890, /* "supportedAlgorithms" */
3288 874, /* "supportedApplicationContext" */
3289 402, /* "targetInformation" */
3290 864, /* "telephoneNumber" */
3291 866, /* "teletexTerminalIdentifier" */
3292 865, /* "telexNumber" */
3293 459, /* "textEncodedORAddress" */
3294 293, /* "textNotice" */
3295 133, /* "timeStamping" */

new/usr/src/lib/openssl/include/obj_dat.h 51

3296 106, /* "title" */
3297 682, /* "tpBasis" */
3298 375, /* "trustRoot" */
3299 436, /* "ucl" */
3300 888, /* "uniqueMember" */
3301 55, /* "unstructuredAddress" */
3302 49, /* "unstructuredName" */
3303 880, /* "userCertificate" */
3304 465, /* "userClass" */
3305 879, /* "userPassword" */
3306 373, /* "valid" */
3307 678, /* "wap" */
3308 679, /* "wap-wsg" */
3309 735, /* "wap-wsg-idm-ecid-wtls1" */
3310 743, /* "wap-wsg-idm-ecid-wtls10" */
3311 744, /* "wap-wsg-idm-ecid-wtls11" */
3312 745, /* "wap-wsg-idm-ecid-wtls12" */
3313 736, /* "wap-wsg-idm-ecid-wtls3" */
3314 737, /* "wap-wsg-idm-ecid-wtls4" */
3315 738, /* "wap-wsg-idm-ecid-wtls5" */
3316 739, /* "wap-wsg-idm-ecid-wtls6" */
3317 740, /* "wap-wsg-idm-ecid-wtls7" */
3318 741, /* "wap-wsg-idm-ecid-wtls8" */
3319 742, /* "wap-wsg-idm-ecid-wtls9" */
3320 804, /* "whirlpool" */
3321 868, /* "x121Address" */
3322 503, /* "x500UniqueIdentifier" */
3323 158, /* "x509Certificate" */
3324 160, /* "x509Crl" */
3325 };

3327 static const unsigned int ln_objs[NUM_LN]={
3328 363, /* "AD Time Stamping" */
3329 405, /* "ANSI X9.62" */
3330 368, /* "Acceptable OCSP Responses" */
3331 910, /* "Any Extended Key Usage" */
3332 664, /* "Any language" */
3333 177, /* "Authority Information Access" */
3334 365, /* "Basic OCSP Response" */
3335 285, /* "Biometric Info" */
3336 179, /* "CA Issuers" */
3337 785, /* "CA Repository" */
3338 131, /* "Code Signing" */
3339 783, /* "Diffie-Hellman based MAC" */
3340 382, /* "Directory" */
3341 392, /* "Domain" */
3342 132, /* "E-mail Protection" */
3343 389, /* "Enterprises" */
3344 384, /* "Experimental" */
3345 372, /* "Extended OCSP Status" */
3346 172, /* "Extension Request" */
3347 813, /* "GOST 28147-89" */
3348 849, /* "GOST 28147-89 Cryptocom ParamSet" */
3349 815, /* "GOST 28147-89 MAC" */
3350 851, /* "GOST 34.10-2001 Cryptocom" */
3351 850, /* "GOST 34.10-94 Cryptocom" */
3352 811, /* "GOST R 34.10-2001" */
3353 817, /* "GOST R 34.10-2001 DH" */
3354 812, /* "GOST R 34.10-94" */
3355 818, /* "GOST R 34.10-94 DH" */
3356 809, /* "GOST R 34.11-94" */
3357 816, /* "GOST R 34.11-94 PRF" */
3358 807, /* "GOST R 34.11-94 with GOST R 34.10-2001" */
3359 853, /* "GOST R 34.11-94 with GOST R 34.10-2001 Cryptocom" */
3360 808, /* "GOST R 34.11-94 with GOST R 34.10-94" */
3361 852, /* "GOST R 34.11-94 with GOST R 34.10-94 Cryptocom" */

new/usr/src/lib/openssl/include/obj_dat.h 52

3362 854, /* "GOST R 3410-2001 Parameter Set Cryptocom" */
3363 810, /* "HMAC GOST 34.11-94" */
3364 432, /* "Hold Instruction Call Issuer" */
3365 430, /* "Hold Instruction Code" */
3366 431, /* "Hold Instruction None" */
3367 433, /* "Hold Instruction Reject" */
3368 634, /* "ICC or token signature" */
3369 294, /* "IPSec End System" */
3370 295, /* "IPSec Tunnel" */
3371 296, /* "IPSec User" */
3372 182, /* "ISO Member Body" */
3373 183, /* "ISO US Member Body" */
3374 667, /* "Independent" */
3375 665, /* "Inherit all" */
3376 647, /* "International Organizations" */
3377 142, /* "Invalidity Date" */
3378 504, /* "MIME MHS" */
3379 388, /* "Mail" */
3380 383, /* "Management" */
3381 417, /* "Microsoft CSP Name" */
3382 135, /* "Microsoft Commercial Code Signing" */
3383 138, /* "Microsoft Encrypted File System" */
3384 171, /* "Microsoft Extension Request" */
3385 134, /* "Microsoft Individual Code Signing" */
3386 856, /* "Microsoft Local Key set" */
3387 137, /* "Microsoft Server Gated Crypto" */
3388 648, /* "Microsoft Smartcardlogin" */
3389 136, /* "Microsoft Trust List Signing" */
3390 649, /* "Microsoft Universal Principal Name" */
3391 393, /* "NULL" */
3392 404, /* "NULL" */
3393 72, /* "Netscape Base Url" */
3394 76, /* "Netscape CA Policy Url" */
3395 74, /* "Netscape CA Revocation Url" */
3396 71, /* "Netscape Cert Type" */
3397 58, /* "Netscape Certificate Extension" */
3398 79, /* "Netscape Certificate Sequence" */
3399 78, /* "Netscape Comment" */
3400 57, /* "Netscape Communications Corp." */
3401 59, /* "Netscape Data Type" */
3402 75, /* "Netscape Renewal Url" */
3403 73, /* "Netscape Revocation Url" */
3404 77, /* "Netscape SSL Server Name" */
3405 139, /* "Netscape Server Gated Crypto" */
3406 178, /* "OCSP" */
3407 370, /* "OCSP Archive Cutoff" */
3408 367, /* "OCSP CRL ID" */
3409 369, /* "OCSP No Check" */
3410 366, /* "OCSP Nonce" */
3411 371, /* "OCSP Service Locator" */
3412 180, /* "OCSP Signing" */
3413 161, /* "PBES2" */
3414 69, /* "PBKDF2" */
3415 162, /* "PBMAC1" */
3416 127, /* "PKIX" */
3417 858, /* "Permanent Identifier" */
3418 164, /* "Policy Qualifier CPS" */
3419 165, /* "Policy Qualifier User Notice" */
3420 385, /* "Private" */
3421 663, /* "Proxy Certificate Information" */
3422 1, /* "RSA Data Security, Inc." */
3423 2, /* "RSA Data Security, Inc. PKCS" */
3424 188, /* "S/MIME" */
3425 167, /* "S/MIME Capabilities" */
3426 387, /* "SNMPv2" */
3427 512, /* "Secure Electronic Transactions" */

new/usr/src/lib/openssl/include/obj_dat.h 53

3428 386, /* "Security" */
3429 394, /* "Selected Attribute Types" */
3430 143, /* "Strong Extranet ID" */
3431 398, /* "Subject Information Access" */
3432 130, /* "TLS Web Client Authentication" */
3433 129, /* "TLS Web Server Authentication" */
3434 133, /* "Time Stamping" */
3435 375, /* "Trust Root" */
3436 12, /* "X509" */
3437 402, /* "X509v3 AC Targeting" */
3438 746, /* "X509v3 Any Policy" */
3439 90, /* "X509v3 Authority Key Identifier" */
3440 87, /* "X509v3 Basic Constraints" */
3441 103, /* "X509v3 CRL Distribution Points" */
3442 88, /* "X509v3 CRL Number" */
3443 141, /* "X509v3 CRL Reason Code" */
3444 771, /* "X509v3 Certificate Issuer" */
3445 89, /* "X509v3 Certificate Policies" */
3446 140, /* "X509v3 Delta CRL Indicator" */
3447 126, /* "X509v3 Extended Key Usage" */
3448 857, /* "X509v3 Freshest CRL" */
3449 748, /* "X509v3 Inhibit Any Policy" */
3450 86, /* "X509v3 Issuer Alternative Name" */
3451 770, /* "X509v3 Issuing Distrubution Point" */
3452 83, /* "X509v3 Key Usage" */
3453 666, /* "X509v3 Name Constraints" */
3454 403, /* "X509v3 No Revocation Available" */
3455 401, /* "X509v3 Policy Constraints" */
3456 747, /* "X509v3 Policy Mappings" */
3457 84, /* "X509v3 Private Key Usage Period" */
3458 85, /* "X509v3 Subject Alternative Name" */
3459 769, /* "X509v3 Subject Directory Attributes" */
3460 82, /* "X509v3 Subject Key Identifier" */
3461 184, /* "X9.57" */
3462 185, /* "X9.57 CM ?" */
3463 478, /* "aRecord" */
3464 289, /* "aaControls" */
3465 287, /* "ac-auditEntity" */
3466 397, /* "ac-proxying" */
3467 288, /* "ac-targeting" */
3468 446, /* "account" */
3469 364, /* "ad dvcs" */
3470 606, /* "additional verification" */
3471 419, /* "aes-128-cbc" */
3472 916, /* "aes-128-cbc-hmac-sha1" */
3473 896, /* "aes-128-ccm" */
3474 421, /* "aes-128-cfb" */
3475 650, /* "aes-128-cfb1" */
3476 653, /* "aes-128-cfb8" */
3477 904, /* "aes-128-ctr" */
3478 418, /* "aes-128-ecb" */
3479 895, /* "aes-128-gcm" */
3480 420, /* "aes-128-ofb" */
3481 913, /* "aes-128-xts" */
3482 423, /* "aes-192-cbc" */
3483 917, /* "aes-192-cbc-hmac-sha1" */
3484 899, /* "aes-192-ccm" */
3485 425, /* "aes-192-cfb" */
3486 651, /* "aes-192-cfb1" */
3487 654, /* "aes-192-cfb8" */
3488 905, /* "aes-192-ctr" */
3489 422, /* "aes-192-ecb" */
3490 898, /* "aes-192-gcm" */
3491 424, /* "aes-192-ofb" */
3492 427, /* "aes-256-cbc" */
3493 918, /* "aes-256-cbc-hmac-sha1" */

new/usr/src/lib/openssl/include/obj_dat.h 54

3494 902, /* "aes-256-ccm" */
3495 429, /* "aes-256-cfb" */
3496 652, /* "aes-256-cfb1" */
3497 655, /* "aes-256-cfb8" */
3498 906, /* "aes-256-ctr" */
3499 426, /* "aes-256-ecb" */
3500 901, /* "aes-256-gcm" */
3501 428, /* "aes-256-ofb" */
3502 914, /* "aes-256-xts" */
3503 376, /* "algorithm" */
3504 484, /* "associatedDomain" */
3505 485, /* "associatedName" */
3506 501, /* "audio" */
3507 882, /* "authorityRevocationList" */
3508 91, /* "bf-cbc" */
3509 93, /* "bf-cfb" */
3510 92, /* "bf-ecb" */
3511 94, /* "bf-ofb" */
3512 494, /* "buildingName" */
3513 860, /* "businessCategory" */
3514 691, /* "c2onb191v4" */
3515 692, /* "c2onb191v5" */
3516 697, /* "c2onb239v4" */
3517 698, /* "c2onb239v5" */
3518 684, /* "c2pnb163v1" */
3519 685, /* "c2pnb163v2" */
3520 686, /* "c2pnb163v3" */
3521 687, /* "c2pnb176v1" */
3522 693, /* "c2pnb208w1" */
3523 699, /* "c2pnb272w1" */
3524 700, /* "c2pnb304w1" */
3525 702, /* "c2pnb368w1" */
3526 688, /* "c2tnb191v1" */
3527 689, /* "c2tnb191v2" */
3528 690, /* "c2tnb191v3" */
3529 694, /* "c2tnb239v1" */
3530 695, /* "c2tnb239v2" */
3531 696, /* "c2tnb239v3" */
3532 701, /* "c2tnb359v1" */
3533 703, /* "c2tnb431r1" */
3534 881, /* "cACertificate" */
3535 483, /* "cNAMERecord" */
3536 751, /* "camellia-128-cbc" */
3537 757, /* "camellia-128-cfb" */
3538 760, /* "camellia-128-cfb1" */
3539 763, /* "camellia-128-cfb8" */
3540 754, /* "camellia-128-ecb" */
3541 766, /* "camellia-128-ofb" */
3542 752, /* "camellia-192-cbc" */
3543 758, /* "camellia-192-cfb" */
3544 761, /* "camellia-192-cfb1" */
3545 764, /* "camellia-192-cfb8" */
3546 755, /* "camellia-192-ecb" */
3547 767, /* "camellia-192-ofb" */
3548 753, /* "camellia-256-cbc" */
3549 759, /* "camellia-256-cfb" */
3550 762, /* "camellia-256-cfb1" */
3551 765, /* "camellia-256-cfb8" */
3552 756, /* "camellia-256-ecb" */
3553 768, /* "camellia-256-ofb" */
3554 443, /* "caseIgnoreIA5StringSyntax" */
3555 108, /* "cast5-cbc" */
3556 110, /* "cast5-cfb" */
3557 109, /* "cast5-ecb" */
3558 111, /* "cast5-ofb" */
3559 152, /* "certBag" */

new/usr/src/lib/openssl/include/obj_dat.h 55

3560 677, /* "certicom-arc" */
3561 517, /* "certificate extensions" */
3562 883, /* "certificateRevocationList" */
3563 54, /* "challengePassword" */
3564 407, /* "characteristic-two-field" */
3565 395, /* "clearance" */
3566 633, /* "cleartext track 2" */
3567 894, /* "cmac" */
3568 13, /* "commonName" */
3569 513, /* "content types" */
3570 50, /* "contentType" */
3571 53, /* "countersignature" */
3572 14, /* "countryName" */
3573 153, /* "crlBag" */
3574 884, /* "crossCertificatePair" */
3575 806, /* "cryptocom" */
3576 805, /* "cryptopro" */
3577 500, /* "dITRedirect" */
3578 451, /* "dNSDomain" */
3579 495, /* "dSAQuality" */
3580 434, /* "data" */
3581 390, /* "dcObject" */
3582 891, /* "deltaRevocationList" */
3583 31, /* "des-cbc" */
3584 643, /* "des-cdmf" */
3585 30, /* "des-cfb" */
3586 656, /* "des-cfb1" */
3587 657, /* "des-cfb8" */
3588 29, /* "des-ecb" */
3589 32, /* "des-ede" */
3590 43, /* "des-ede-cbc" */
3591 60, /* "des-ede-cfb" */
3592 62, /* "des-ede-ofb" */
3593 33, /* "des-ede3" */
3594 44, /* "des-ede3-cbc" */
3595 61, /* "des-ede3-cfb" */
3596 658, /* "des-ede3-cfb1" */
3597 659, /* "des-ede3-cfb8" */
3598 63, /* "des-ede3-ofb" */
3599 45, /* "des-ofb" */
3600 107, /* "description" */
3601 871, /* "destinationIndicator" */
3602 80, /* "desx-cbc" */
3603 28, /* "dhKeyAgreement" */
3604 11, /* "directory services (X.500)" */
3605 378, /* "directory services - algorithms" */
3606 887, /* "distinguishedName" */
3607 892, /* "dmdName" */
3608 174, /* "dnQualifier" */
3609 447, /* "document" */
3610 471, /* "documentAuthor" */
3611 468, /* "documentIdentifier" */
3612 472, /* "documentLocation" */
3613 502, /* "documentPublisher" */
3614 449, /* "documentSeries" */
3615 469, /* "documentTitle" */
3616 470, /* "documentVersion" */
3617 380, /* "dod" */
3618 391, /* "domainComponent" */
3619 452, /* "domainRelatedObject" */
3620 116, /* "dsaEncryption" */
3621 67, /* "dsaEncryption-old" */
3622 66, /* "dsaWithSHA" */
3623 113, /* "dsaWithSHA1" */
3624 70, /* "dsaWithSHA1-old" */
3625 802, /* "dsa_with_SHA224" */

new/usr/src/lib/openssl/include/obj_dat.h 56

3626 803, /* "dsa_with_SHA256" */
3627 297, /* "dvcs" */
3628 791, /* "ecdsa-with-Recommended" */
3629 416, /* "ecdsa-with-SHA1" */
3630 793, /* "ecdsa-with-SHA224" */
3631 794, /* "ecdsa-with-SHA256" */
3632 795, /* "ecdsa-with-SHA384" */
3633 796, /* "ecdsa-with-SHA512" */
3634 792, /* "ecdsa-with-Specified" */
3635 48, /* "emailAddress" */
3636 632, /* "encrypted track 2" */
3637 885, /* "enhancedSearchGuide" */
3638 56, /* "extendedCertificateAttributes" */
3639 867, /* "facsimileTelephoneNumber" */
3640 462, /* "favouriteDrink" */
3641 453, /* "friendlyCountry" */
3642 490, /* "friendlyCountryName" */
3643 156, /* "friendlyName" */
3644 631, /* "generate cryptogram" */
3645 509, /* "generationQualifier" */
3646 601, /* "generic cryptogram" */
3647 99, /* "givenName" */
3648 814, /* "gost89-cnt" */
3649 855, /* "hmac" */
3650 780, /* "hmac-md5" */
3651 781, /* "hmac-sha1" */
3652 797, /* "hmacWithMD5" */
3653 163, /* "hmacWithSHA1" */
3654 798, /* "hmacWithSHA224" */
3655 799, /* "hmacWithSHA256" */
3656 800, /* "hmacWithSHA384" */
3657 801, /* "hmacWithSHA512" */
3658 486, /* "homePostalAddress" */
3659 473, /* "homeTelephoneNumber" */
3660 466, /* "host" */
3661 889, /* "houseIdentifier" */
3662 442, /* "iA5StringSyntax" */
3663 381, /* "iana" */
3664 824, /* "id-Gost28147-89-CryptoPro-A-ParamSet" */
3665 825, /* "id-Gost28147-89-CryptoPro-B-ParamSet" */
3666 826, /* "id-Gost28147-89-CryptoPro-C-ParamSet" */
3667 827, /* "id-Gost28147-89-CryptoPro-D-ParamSet" */
3668 819, /* "id-Gost28147-89-CryptoPro-KeyMeshing" */
3669 829, /* "id-Gost28147-89-CryptoPro-Oscar-1-0-ParamSet" */
3670 828, /* "id-Gost28147-89-CryptoPro-Oscar-1-1-ParamSet" */
3671 830, /* "id-Gost28147-89-CryptoPro-RIC-1-ParamSet" */
3672 820, /* "id-Gost28147-89-None-KeyMeshing" */
3673 823, /* "id-Gost28147-89-TestParamSet" */
3674 840, /* "id-GostR3410-2001-CryptoPro-A-ParamSet" */
3675 841, /* "id-GostR3410-2001-CryptoPro-B-ParamSet" */
3676 842, /* "id-GostR3410-2001-CryptoPro-C-ParamSet" */
3677 843, /* "id-GostR3410-2001-CryptoPro-XchA-ParamSet" */
3678 844, /* "id-GostR3410-2001-CryptoPro-XchB-ParamSet" */
3679 839, /* "id-GostR3410-2001-TestParamSet" */
3680 832, /* "id-GostR3410-94-CryptoPro-A-ParamSet" */
3681 833, /* "id-GostR3410-94-CryptoPro-B-ParamSet" */
3682 834, /* "id-GostR3410-94-CryptoPro-C-ParamSet" */
3683 835, /* "id-GostR3410-94-CryptoPro-D-ParamSet" */
3684 836, /* "id-GostR3410-94-CryptoPro-XchA-ParamSet" */
3685 837, /* "id-GostR3410-94-CryptoPro-XchB-ParamSet" */
3686 838, /* "id-GostR3410-94-CryptoPro-XchC-ParamSet" */
3687 831, /* "id-GostR3410-94-TestParamSet" */
3688 845, /* "id-GostR3410-94-a" */
3689 846, /* "id-GostR3410-94-aBis" */
3690 847, /* "id-GostR3410-94-b" */
3691 848, /* "id-GostR3410-94-bBis" */

new/usr/src/lib/openssl/include/obj_dat.h 57

3692 822, /* "id-GostR3411-94-CryptoProParamSet" */
3693 821, /* "id-GostR3411-94-TestParamSet" */
3694 266, /* "id-aca" */
3695 355, /* "id-aca-accessIdentity" */
3696 354, /* "id-aca-authenticationInfo" */
3697 356, /* "id-aca-chargingIdentity" */
3698 399, /* "id-aca-encAttrs" */
3699 357, /* "id-aca-group" */
3700 358, /* "id-aca-role" */
3701 176, /* "id-ad" */
3702 788, /* "id-aes128-wrap" */
3703 897, /* "id-aes128-wrap-pad" */
3704 789, /* "id-aes192-wrap" */
3705 900, /* "id-aes192-wrap-pad" */
3706 790, /* "id-aes256-wrap" */
3707 903, /* "id-aes256-wrap-pad" */
3708 262, /* "id-alg" */
3709 893, /* "id-alg-PWRI-KEK" */
3710 323, /* "id-alg-des40" */
3711 326, /* "id-alg-dh-pop" */
3712 325, /* "id-alg-dh-sig-hmac-sha1" */
3713 324, /* "id-alg-noSignature" */
3714 907, /* "id-camellia128-wrap" */
3715 908, /* "id-camellia192-wrap" */
3716 909, /* "id-camellia256-wrap" */
3717 268, /* "id-cct" */
3718 361, /* "id-cct-PKIData" */
3719 362, /* "id-cct-PKIResponse" */
3720 360, /* "id-cct-crs" */
3721 81, /* "id-ce" */
3722 680, /* "id-characteristic-two-basis" */
3723 263, /* "id-cmc" */
3724 334, /* "id-cmc-addExtensions" */
3725 346, /* "id-cmc-confirmCertAcceptance" */
3726 330, /* "id-cmc-dataReturn" */
3727 336, /* "id-cmc-decryptedPOP" */
3728 335, /* "id-cmc-encryptedPOP" */
3729 339, /* "id-cmc-getCRL" */
3730 338, /* "id-cmc-getCert" */
3731 328, /* "id-cmc-identification" */
3732 329, /* "id-cmc-identityProof" */
3733 337, /* "id-cmc-lraPOPWitness" */
3734 344, /* "id-cmc-popLinkRandom" */
3735 345, /* "id-cmc-popLinkWitness" */
3736 343, /* "id-cmc-queryPending" */
3737 333, /* "id-cmc-recipientNonce" */
3738 341, /* "id-cmc-regInfo" */
3739 342, /* "id-cmc-responseInfo" */
3740 340, /* "id-cmc-revokeRequest" */
3741 332, /* "id-cmc-senderNonce" */
3742 327, /* "id-cmc-statusInfo" */
3743 331, /* "id-cmc-transactionId" */
3744 787, /* "id-ct-asciiTextWithCRLF" */
3745 408, /* "id-ecPublicKey" */
3746 508, /* "id-hex-multipart-message" */
3747 507, /* "id-hex-partial-message" */
3748 260, /* "id-it" */
3749 302, /* "id-it-caKeyUpdateInfo" */
3750 298, /* "id-it-caProtEncCert" */
3751 311, /* "id-it-confirmWaitTime" */
3752 303, /* "id-it-currentCRL" */
3753 300, /* "id-it-encKeyPairTypes" */
3754 310, /* "id-it-implicitConfirm" */
3755 308, /* "id-it-keyPairParamRep" */
3756 307, /* "id-it-keyPairParamReq" */
3757 312, /* "id-it-origPKIMessage" */

new/usr/src/lib/openssl/include/obj_dat.h 58

3758 301, /* "id-it-preferredSymmAlg" */
3759 309, /* "id-it-revPassphrase" */
3760 299, /* "id-it-signKeyPairTypes" */
3761 305, /* "id-it-subscriptionRequest" */
3762 306, /* "id-it-subscriptionResponse" */
3763 784, /* "id-it-suppLangTags" */
3764 304, /* "id-it-unsupportedOIDs" */
3765 128, /* "id-kp" */
3766 280, /* "id-mod-attribute-cert" */
3767 274, /* "id-mod-cmc" */
3768 277, /* "id-mod-cmp" */
3769 284, /* "id-mod-cmp2000" */
3770 273, /* "id-mod-crmf" */
3771 283, /* "id-mod-dvcs" */
3772 275, /* "id-mod-kea-profile-88" */
3773 276, /* "id-mod-kea-profile-93" */
3774 282, /* "id-mod-ocsp" */
3775 278, /* "id-mod-qualified-cert-88" */
3776 279, /* "id-mod-qualified-cert-93" */
3777 281, /* "id-mod-timestamp-protocol" */
3778 264, /* "id-on" */
3779 347, /* "id-on-personalData" */
3780 265, /* "id-pda" */
3781 352, /* "id-pda-countryOfCitizenship" */
3782 353, /* "id-pda-countryOfResidence" */
3783 348, /* "id-pda-dateOfBirth" */
3784 351, /* "id-pda-gender" */
3785 349, /* "id-pda-placeOfBirth" */
3786 175, /* "id-pe" */
3787 261, /* "id-pkip" */
3788 258, /* "id-pkix-mod" */
3789 269, /* "id-pkix1-explicit-88" */
3790 271, /* "id-pkix1-explicit-93" */
3791 270, /* "id-pkix1-implicit-88" */
3792 272, /* "id-pkix1-implicit-93" */
3793 662, /* "id-ppl" */
3794 267, /* "id-qcs" */
3795 359, /* "id-qcs-pkixQCSyntax-v1" */
3796 259, /* "id-qt" */
3797 313, /* "id-regCtrl" */
3798 316, /* "id-regCtrl-authenticator" */
3799 319, /* "id-regCtrl-oldCertID" */
3800 318, /* "id-regCtrl-pkiArchiveOptions" */
3801 317, /* "id-regCtrl-pkiPublicationInfo" */
3802 320, /* "id-regCtrl-protocolEncrKey" */
3803 315, /* "id-regCtrl-regToken" */
3804 314, /* "id-regInfo" */
3805 322, /* "id-regInfo-certReq" */
3806 321, /* "id-regInfo-utf8Pairs" */
3807 191, /* "id-smime-aa" */
3808 215, /* "id-smime-aa-contentHint" */
3809 218, /* "id-smime-aa-contentIdentifier" */
3810 221, /* "id-smime-aa-contentReference" */
3811 240, /* "id-smime-aa-dvcs-dvc" */
3812 217, /* "id-smime-aa-encapContentType" */
3813 222, /* "id-smime-aa-encrypKeyPref" */
3814 220, /* "id-smime-aa-equivalentLabels" */
3815 232, /* "id-smime-aa-ets-CertificateRefs" */
3816 233, /* "id-smime-aa-ets-RevocationRefs" */
3817 238, /* "id-smime-aa-ets-archiveTimeStamp" */
3818 237, /* "id-smime-aa-ets-certCRLTimestamp" */
3819 234, /* "id-smime-aa-ets-certValues" */
3820 227, /* "id-smime-aa-ets-commitmentType" */
3821 231, /* "id-smime-aa-ets-contentTimestamp" */
3822 236, /* "id-smime-aa-ets-escTimeStamp" */
3823 230, /* "id-smime-aa-ets-otherSigCert" */

new/usr/src/lib/openssl/include/obj_dat.h 59

3824 235, /* "id-smime-aa-ets-revocationValues" */
3825 226, /* "id-smime-aa-ets-sigPolicyId" */
3826 229, /* "id-smime-aa-ets-signerAttr" */
3827 228, /* "id-smime-aa-ets-signerLocation" */
3828 219, /* "id-smime-aa-macValue" */
3829 214, /* "id-smime-aa-mlExpandHistory" */
3830 216, /* "id-smime-aa-msgSigDigest" */
3831 212, /* "id-smime-aa-receiptRequest" */
3832 213, /* "id-smime-aa-securityLabel" */
3833 239, /* "id-smime-aa-signatureType" */
3834 223, /* "id-smime-aa-signingCertificate" */
3835 224, /* "id-smime-aa-smimeEncryptCerts" */
3836 225, /* "id-smime-aa-timeStampToken" */
3837 192, /* "id-smime-alg" */
3838 243, /* "id-smime-alg-3DESwrap" */
3839 246, /* "id-smime-alg-CMS3DESwrap" */
3840 247, /* "id-smime-alg-CMSRC2wrap" */
3841 245, /* "id-smime-alg-ESDH" */
3842 241, /* "id-smime-alg-ESDHwith3DES" */
3843 242, /* "id-smime-alg-ESDHwithRC2" */
3844 244, /* "id-smime-alg-RC2wrap" */
3845 193, /* "id-smime-cd" */
3846 248, /* "id-smime-cd-ldap" */
3847 190, /* "id-smime-ct" */
3848 210, /* "id-smime-ct-DVCSRequestData" */
3849 211, /* "id-smime-ct-DVCSResponseData" */
3850 208, /* "id-smime-ct-TDTInfo" */
3851 207, /* "id-smime-ct-TSTInfo" */
3852 205, /* "id-smime-ct-authData" */
3853 786, /* "id-smime-ct-compressedData" */
3854 209, /* "id-smime-ct-contentInfo" */
3855 206, /* "id-smime-ct-publishCert" */
3856 204, /* "id-smime-ct-receipt" */
3857 195, /* "id-smime-cti" */
3858 255, /* "id-smime-cti-ets-proofOfApproval" */
3859 256, /* "id-smime-cti-ets-proofOfCreation" */
3860 253, /* "id-smime-cti-ets-proofOfDelivery" */
3861 251, /* "id-smime-cti-ets-proofOfOrigin" */
3862 252, /* "id-smime-cti-ets-proofOfReceipt" */
3863 254, /* "id-smime-cti-ets-proofOfSender" */
3864 189, /* "id-smime-mod" */
3865 196, /* "id-smime-mod-cms" */
3866 197, /* "id-smime-mod-ess" */
3867 202, /* "id-smime-mod-ets-eSigPolicy-88" */
3868 203, /* "id-smime-mod-ets-eSigPolicy-97" */
3869 200, /* "id-smime-mod-ets-eSignature-88" */
3870 201, /* "id-smime-mod-ets-eSignature-97" */
3871 199, /* "id-smime-mod-msg-v3" */
3872 198, /* "id-smime-mod-oid" */
3873 194, /* "id-smime-spq" */
3874 250, /* "id-smime-spq-ets-sqt-unotice" */
3875 249, /* "id-smime-spq-ets-sqt-uri" */
3876 34, /* "idea-cbc" */
3877 35, /* "idea-cfb" */
3878 36, /* "idea-ecb" */
3879 46, /* "idea-ofb" */
3880 676, /* "identified-organization" */
3881 461, /* "info" */
3882 101, /* "initials" */
3883 869, /* "internationaliSDNNumber" */
3884 749, /* "ipsec3" */
3885 750, /* "ipsec4" */
3886 181, /* "iso" */
3887 623, /* "issuer capabilities" */
3888 645, /* "itu-t" */
3889 492, /* "janetMailbox" */

new/usr/src/lib/openssl/include/obj_dat.h 60

3890 646, /* "joint-iso-itu-t" */
3891 150, /* "keyBag" */
3892 773, /* "kisa" */
3893 477, /* "lastModifiedBy" */
3894 476, /* "lastModifiedTime" */
3895 157, /* "localKeyID" */
3896 15, /* "localityName" */
3897 480, /* "mXRecord" */
3898 493, /* "mailPreferenceOption" */
3899 467, /* "manager" */
3900 3, /* "md2" */
3901 7, /* "md2WithRSAEncryption" */
3902 257, /* "md4" */
3903 396, /* "md4WithRSAEncryption" */
3904 4, /* "md5" */
3905 114, /* "md5-sha1" */
3906 104, /* "md5WithRSA" */
3907 8, /* "md5WithRSAEncryption" */
3908 95, /* "mdc2" */
3909 96, /* "mdc2WithRSA" */
3910 875, /* "member" */
3911 602, /* "merchant initiated auth" */
3912 514, /* "message extensions" */
3913 51, /* "messageDigest" */
3914 911, /* "mgf1" */
3915 506, /* "mime-mhs-bodies" */
3916 505, /* "mime-mhs-headings" */
3917 488, /* "mobileTelephoneNumber" */
3918 481, /* "nSRecord" */
3919 173, /* "name" */
3920 681, /* "onBasis" */
3921 379, /* "org" */
3922 17, /* "organizationName" */
3923 491, /* "organizationalStatus" */
3924 18, /* "organizationalUnitName" */
3925 475, /* "otherMailbox" */
3926 876, /* "owner" */
3927 489, /* "pagerTelephoneNumber" */
3928 782, /* "password based MAC" */
3929 374, /* "path" */
3930 621, /* "payment gateway capabilities" */
3931 9, /* "pbeWithMD2AndDES-CBC" */
3932 168, /* "pbeWithMD2AndRC2-CBC" */
3933 112, /* "pbeWithMD5AndCast5CBC" */
3934 10, /* "pbeWithMD5AndDES-CBC" */
3935 169, /* "pbeWithMD5AndRC2-CBC" */
3936 148, /* "pbeWithSHA1And128BitRC2-CBC" */
3937 144, /* "pbeWithSHA1And128BitRC4" */
3938 147, /* "pbeWithSHA1And2-KeyTripleDES-CBC" */
3939 146, /* "pbeWithSHA1And3-KeyTripleDES-CBC" */
3940 149, /* "pbeWithSHA1And40BitRC2-CBC" */
3941 145, /* "pbeWithSHA1And40BitRC4" */
3942 170, /* "pbeWithSHA1AndDES-CBC" */
3943 68, /* "pbeWithSHA1AndRC2-CBC" */
3944 499, /* "personalSignature" */
3945 487, /* "personalTitle" */
3946 464, /* "photo" */
3947 863, /* "physicalDeliveryOfficeName" */
3948 437, /* "pilot" */
3949 439, /* "pilotAttributeSyntax" */
3950 438, /* "pilotAttributeType" */
3951 479, /* "pilotAttributeType27" */
3952 456, /* "pilotDSA" */
3953 441, /* "pilotGroups" */
3954 444, /* "pilotObject" */
3955 440, /* "pilotObjectClass" */

new/usr/src/lib/openssl/include/obj_dat.h 61

3956 455, /* "pilotOrganization" */
3957 445, /* "pilotPerson" */
3958 186, /* "pkcs1" */
3959 27, /* "pkcs3" */
3960 187, /* "pkcs5" */
3961 20, /* "pkcs7" */
3962 21, /* "pkcs7-data" */
3963 25, /* "pkcs7-digestData" */
3964 26, /* "pkcs7-encryptedData" */
3965 23, /* "pkcs7-envelopedData" */
3966 24, /* "pkcs7-signedAndEnvelopedData" */
3967 22, /* "pkcs7-signedData" */
3968 151, /* "pkcs8ShroudedKeyBag" */
3969 47, /* "pkcs9" */
3970 862, /* "postOfficeBox" */
3971 861, /* "postalAddress" */
3972 661, /* "postalCode" */
3973 683, /* "ppBasis" */
3974 872, /* "preferredDeliveryMethod" */
3975 873, /* "presentationAddress" */
3976 406, /* "prime-field" */
3977 409, /* "prime192v1" */
3978 410, /* "prime192v2" */
3979 411, /* "prime192v3" */
3980 412, /* "prime239v1" */
3981 413, /* "prime239v2" */
3982 414, /* "prime239v3" */
3983 415, /* "prime256v1" */
3984 886, /* "protocolInformation" */
3985 510, /* "pseudonym" */
3986 435, /* "pss" */
3987 286, /* "qcStatements" */
3988 457, /* "qualityLabelledData" */
3989 450, /* "rFC822localPart" */
3990 98, /* "rc2-40-cbc" */
3991 166, /* "rc2-64-cbc" */
3992 37, /* "rc2-cbc" */
3993 39, /* "rc2-cfb" */
3994 38, /* "rc2-ecb" */
3995 40, /* "rc2-ofb" */
3996 5, /* "rc4" */
3997 97, /* "rc4-40" */
3998 915, /* "rc4-hmac-md5" */
3999 120, /* "rc5-cbc" */
4000 122, /* "rc5-cfb" */
4001 121, /* "rc5-ecb" */
4002 123, /* "rc5-ofb" */
4003 870, /* "registeredAddress" */
4004 460, /* "rfc822Mailbox" */
4005 117, /* "ripemd160" */
4006 119, /* "ripemd160WithRSA" */
4007 400, /* "role" */
4008 877, /* "roleOccupant" */
4009 448, /* "room" */
4010 463, /* "roomNumber" */
4011 19, /* "rsa" */
4012 6, /* "rsaEncryption" */
4013 644, /* "rsaOAEPEncryptionSET" */
4014 377, /* "rsaSignature" */
4015 919, /* "rsaesOaep" */
4016 912, /* "rsassaPss" */
4017 124, /* "run length compression" */
4018 482, /* "sOARecord" */
4019 155, /* "safeContentsBag" */
4020 291, /* "sbgp-autonomousSysNum" */
4021 290, /* "sbgp-ipAddrBlock" */

new/usr/src/lib/openssl/include/obj_dat.h 62

4022 292, /* "sbgp-routerIdentifier" */
4023 159, /* "sdsiCertificate" */
4024 859, /* "searchGuide" */
4025 704, /* "secp112r1" */
4026 705, /* "secp112r2" */
4027 706, /* "secp128r1" */
4028 707, /* "secp128r2" */
4029 708, /* "secp160k1" */
4030 709, /* "secp160r1" */
4031 710, /* "secp160r2" */
4032 711, /* "secp192k1" */
4033 712, /* "secp224k1" */
4034 713, /* "secp224r1" */
4035 714, /* "secp256k1" */
4036 715, /* "secp384r1" */
4037 716, /* "secp521r1" */
4038 154, /* "secretBag" */
4039 474, /* "secretary" */
4040 717, /* "sect113r1" */
4041 718, /* "sect113r2" */
4042 719, /* "sect131r1" */
4043 720, /* "sect131r2" */
4044 721, /* "sect163k1" */
4045 722, /* "sect163r1" */
4046 723, /* "sect163r2" */
4047 724, /* "sect193r1" */
4048 725, /* "sect193r2" */
4049 726, /* "sect233k1" */
4050 727, /* "sect233r1" */
4051 728, /* "sect239k1" */
4052 729, /* "sect283k1" */
4053 730, /* "sect283r1" */
4054 731, /* "sect409k1" */
4055 732, /* "sect409r1" */
4056 733, /* "sect571k1" */
4057 734, /* "sect571r1" */
4058 635, /* "secure device signature" */
4059 878, /* "seeAlso" */
4060 777, /* "seed-cbc" */
4061 779, /* "seed-cfb" */
4062 776, /* "seed-ecb" */
4063 778, /* "seed-ofb" */
4064 105, /* "serialNumber" */
4065 625, /* "set-addPolicy" */
4066 515, /* "set-attr" */
4067 518, /* "set-brand" */
4068 638, /* "set-brand-AmericanExpress" */
4069 637, /* "set-brand-Diners" */
4070 636, /* "set-brand-IATA-ATA" */
4071 639, /* "set-brand-JCB" */
4072 641, /* "set-brand-MasterCard" */
4073 642, /* "set-brand-Novus" */
4074 640, /* "set-brand-Visa" */
4075 516, /* "set-policy" */
4076 607, /* "set-policy-root" */
4077 624, /* "set-rootKeyThumb" */
4078 620, /* "setAttr-Cert" */
4079 628, /* "setAttr-IssCap-CVM" */
4080 630, /* "setAttr-IssCap-Sig" */
4081 629, /* "setAttr-IssCap-T2" */
4082 627, /* "setAttr-Token-B0Prime" */
4083 626, /* "setAttr-Token-EMV" */
4084 622, /* "setAttr-TokenType" */
4085 619, /* "setCext-IssuerCapabilities" */
4086 615, /* "setCext-PGWYcapabilities" */
4087 616, /* "setCext-TokenIdentifier" */

new/usr/src/lib/openssl/include/obj_dat.h 63

4088 618, /* "setCext-TokenType" */
4089 617, /* "setCext-Track2Data" */
4090 611, /* "setCext-cCertRequired" */
4091 609, /* "setCext-certType" */
4092 608, /* "setCext-hashedRoot" */
4093 610, /* "setCext-merchData" */
4094 613, /* "setCext-setExt" */
4095 614, /* "setCext-setQualf" */
4096 612, /* "setCext-tunneling" */
4097 540, /* "setct-AcqCardCodeMsg" */
4098 576, /* "setct-AcqCardCodeMsgTBE" */
4099 570, /* "setct-AuthReqTBE" */
4100 534, /* "setct-AuthReqTBS" */
4101 527, /* "setct-AuthResBaggage" */
4102 571, /* "setct-AuthResTBE" */
4103 572, /* "setct-AuthResTBEX" */
4104 535, /* "setct-AuthResTBS" */
4105 536, /* "setct-AuthResTBSX" */
4106 528, /* "setct-AuthRevReqBaggage" */
4107 577, /* "setct-AuthRevReqTBE" */
4108 541, /* "setct-AuthRevReqTBS" */
4109 529, /* "setct-AuthRevResBaggage" */
4110 542, /* "setct-AuthRevResData" */
4111 578, /* "setct-AuthRevResTBE" */
4112 579, /* "setct-AuthRevResTBEB" */
4113 543, /* "setct-AuthRevResTBS" */
4114 573, /* "setct-AuthTokenTBE" */
4115 537, /* "setct-AuthTokenTBS" */
4116 600, /* "setct-BCIDistributionTBS" */
4117 558, /* "setct-BatchAdminReqData" */
4118 592, /* "setct-BatchAdminReqTBE" */
4119 559, /* "setct-BatchAdminResData" */
4120 593, /* "setct-BatchAdminResTBE" */
4121 599, /* "setct-CRLNotificationResTBS" */
4122 598, /* "setct-CRLNotificationTBS" */
4123 580, /* "setct-CapReqTBE" */
4124 581, /* "setct-CapReqTBEX" */
4125 544, /* "setct-CapReqTBS" */
4126 545, /* "setct-CapReqTBSX" */
4127 546, /* "setct-CapResData" */
4128 582, /* "setct-CapResTBE" */
4129 583, /* "setct-CapRevReqTBE" */
4130 584, /* "setct-CapRevReqTBEX" */
4131 547, /* "setct-CapRevReqTBS" */
4132 548, /* "setct-CapRevReqTBSX" */
4133 549, /* "setct-CapRevResData" */
4134 585, /* "setct-CapRevResTBE" */
4135 538, /* "setct-CapTokenData" */
4136 530, /* "setct-CapTokenSeq" */
4137 574, /* "setct-CapTokenTBE" */
4138 575, /* "setct-CapTokenTBEX" */
4139 539, /* "setct-CapTokenTBS" */
4140 560, /* "setct-CardCInitResTBS" */
4141 566, /* "setct-CertInqReqTBS" */
4142 563, /* "setct-CertReqData" */
4143 595, /* "setct-CertReqTBE" */
4144 596, /* "setct-CertReqTBEX" */
4145 564, /* "setct-CertReqTBS" */
4146 565, /* "setct-CertResData" */
4147 597, /* "setct-CertResTBE" */
4148 586, /* "setct-CredReqTBE" */
4149 587, /* "setct-CredReqTBEX" */
4150 550, /* "setct-CredReqTBS" */
4151 551, /* "setct-CredReqTBSX" */
4152 552, /* "setct-CredResData" */
4153 588, /* "setct-CredResTBE" */

new/usr/src/lib/openssl/include/obj_dat.h 64

4154 589, /* "setct-CredRevReqTBE" */
4155 590, /* "setct-CredRevReqTBEX" */
4156 553, /* "setct-CredRevReqTBS" */
4157 554, /* "setct-CredRevReqTBSX" */
4158 555, /* "setct-CredRevResData" */
4159 591, /* "setct-CredRevResTBE" */
4160 567, /* "setct-ErrorTBS" */
4161 526, /* "setct-HODInput" */
4162 561, /* "setct-MeAqCInitResTBS" */
4163 522, /* "setct-OIData" */
4164 519, /* "setct-PANData" */
4165 521, /* "setct-PANOnly" */
4166 520, /* "setct-PANToken" */
4167 556, /* "setct-PCertReqData" */
4168 557, /* "setct-PCertResTBS" */
4169 523, /* "setct-PI" */
4170 532, /* "setct-PI-TBS" */
4171 524, /* "setct-PIData" */
4172 525, /* "setct-PIDataUnsigned" */
4173 568, /* "setct-PIDualSignedTBE" */
4174 569, /* "setct-PIUnsignedTBE" */
4175 531, /* "setct-PInitResData" */
4176 533, /* "setct-PResData" */
4177 594, /* "setct-RegFormReqTBE" */
4178 562, /* "setct-RegFormResTBS" */
4179 604, /* "setext-pinAny" */
4180 603, /* "setext-pinSecure" */
4181 605, /* "setext-track2" */
4182 41, /* "sha" */
4183 64, /* "sha1" */
4184 115, /* "sha1WithRSA" */
4185 65, /* "sha1WithRSAEncryption" */
4186 675, /* "sha224" */
4187 671, /* "sha224WithRSAEncryption" */
4188 672, /* "sha256" */
4189 668, /* "sha256WithRSAEncryption" */
4190 673, /* "sha384" */
4191 669, /* "sha384WithRSAEncryption" */
4192 674, /* "sha512" */
4193 670, /* "sha512WithRSAEncryption" */
4194 42, /* "shaWithRSAEncryption" */
4195 52, /* "signingTime" */
4196 454, /* "simpleSecurityObject" */
4197 496, /* "singleLevelQuality" */
4198 16, /* "stateOrProvinceName" */
4199 660, /* "streetAddress" */
4200 498, /* "subtreeMaximumQuality" */
4201 497, /* "subtreeMinimumQuality" */
4202 890, /* "supportedAlgorithms" */
4203 874, /* "supportedApplicationContext" */
4204 100, /* "surname" */
4205 864, /* "telephoneNumber" */
4206 866, /* "teletexTerminalIdentifier" */
4207 865, /* "telexNumber" */
4208 459, /* "textEncodedORAddress" */
4209 293, /* "textNotice" */
4210 106, /* "title" */
4211 682, /* "tpBasis" */
4212 436, /* "ucl" */
4213 0, /* "undefined" */
4214 888, /* "uniqueMember" */
4215 55, /* "unstructuredAddress" */
4216 49, /* "unstructuredName" */
4217 880, /* "userCertificate" */
4218 465, /* "userClass" */
4219 458, /* "userId" */

new/usr/src/lib/openssl/include/obj_dat.h 65

4220 879, /* "userPassword" */
4221 373, /* "valid" */
4222 678, /* "wap" */
4223 679, /* "wap-wsg" */
4224 735, /* "wap-wsg-idm-ecid-wtls1" */
4225 743, /* "wap-wsg-idm-ecid-wtls10" */
4226 744, /* "wap-wsg-idm-ecid-wtls11" */
4227 745, /* "wap-wsg-idm-ecid-wtls12" */
4228 736, /* "wap-wsg-idm-ecid-wtls3" */
4229 737, /* "wap-wsg-idm-ecid-wtls4" */
4230 738, /* "wap-wsg-idm-ecid-wtls5" */
4231 739, /* "wap-wsg-idm-ecid-wtls6" */
4232 740, /* "wap-wsg-idm-ecid-wtls7" */
4233 741, /* "wap-wsg-idm-ecid-wtls8" */
4234 742, /* "wap-wsg-idm-ecid-wtls9" */
4235 804, /* "whirlpool" */
4236 868, /* "x121Address" */
4237 503, /* "x500UniqueIdentifier" */
4238 158, /* "x509Certificate" */
4239 160, /* "x509Crl" */
4240 125, /* "zlib compression" */
4241 };

4243 static const unsigned int obj_objs[NUM_OBJ]={
4244 0, /* OBJ_undef 0 */
4245 393, /* OBJ_joint_iso_ccitt OBJ_joint_iso_itu_t */
4246 404, /* OBJ_ccitt OBJ_itu_t */
4247 645, /* OBJ_itu_t 0 */
4248 434, /* OBJ_data 0 9 */
4249 181, /* OBJ_iso 1 */
4250 182, /* OBJ_member_body 1 2 */
4251 379, /* OBJ_org 1 3 */
4252 676, /* OBJ_identified_organization 1 3 */
4253 646, /* OBJ_joint_iso_itu_t 2 */
4254 11, /* OBJ_X500 2 5 */
4255 647, /* OBJ_international_organizations 2 23 */
4256 380, /* OBJ_dod 1 3 6 */
4257 12, /* OBJ_X509 2 5 4 */
4258 378, /* OBJ_X500algorithms 2 5 8 */
4259 81, /* OBJ_id_ce 2 5 29 */
4260 512, /* OBJ_id_set 2 23 42 */
4261 678, /* OBJ_wap 2 23 43 */
4262 435, /* OBJ_pss 0 9 2342 */
4263 183, /* OBJ_ISO_US 1 2 840 */
4264 381, /* OBJ_iana 1 3 6 1 */
4265 677, /* OBJ_certicom_arc 1 3 132 */
4266 394, /* OBJ_selected_attribute_types 2 5 1 5 */
4267 13, /* OBJ_commonName 2 5 4 3 */
4268 100, /* OBJ_surname 2 5 4 4 */
4269 105, /* OBJ_serialNumber 2 5 4 5 */
4270 14, /* OBJ_countryName 2 5 4 6 */
4271 15, /* OBJ_localityName 2 5 4 7 */
4272 16, /* OBJ_stateOrProvinceName 2 5 4 8 */
4273 660, /* OBJ_streetAddress 2 5 4 9 */
4274 17, /* OBJ_organizationName 2 5 4 10 */
4275 18, /* OBJ_organizationalUnitName 2 5 4 11 */
4276 106, /* OBJ_title 2 5 4 12 */
4277 107, /* OBJ_description 2 5 4 13 */
4278 859, /* OBJ_searchGuide 2 5 4 14 */
4279 860, /* OBJ_businessCategory 2 5 4 15 */
4280 861, /* OBJ_postalAddress 2 5 4 16 */
4281 661, /* OBJ_postalCode 2 5 4 17 */
4282 862, /* OBJ_postOfficeBox 2 5 4 18 */
4283 863, /* OBJ_physicalDeliveryOfficeName 2 5 4 19 */
4284 864, /* OBJ_telephoneNumber 2 5 4 20 */
4285 865, /* OBJ_telexNumber 2 5 4 21 */

new/usr/src/lib/openssl/include/obj_dat.h 66

4286 866, /* OBJ_teletexTerminalIdentifier 2 5 4 22 */
4287 867, /* OBJ_facsimileTelephoneNumber 2 5 4 23 */
4288 868, /* OBJ_x121Address 2 5 4 24 */
4289 869, /* OBJ_internationaliSDNNumber 2 5 4 25 */
4290 870, /* OBJ_registeredAddress 2 5 4 26 */
4291 871, /* OBJ_destinationIndicator 2 5 4 27 */
4292 872, /* OBJ_preferredDeliveryMethod 2 5 4 28 */
4293 873, /* OBJ_presentationAddress 2 5 4 29 */
4294 874, /* OBJ_supportedApplicationContext 2 5 4 30 */
4295 875, /* OBJ_member 2 5 4 31 */
4296 876, /* OBJ_owner 2 5 4 32 */
4297 877, /* OBJ_roleOccupant 2 5 4 33 */
4298 878, /* OBJ_seeAlso 2 5 4 34 */
4299 879, /* OBJ_userPassword 2 5 4 35 */
4300 880, /* OBJ_userCertificate 2 5 4 36 */
4301 881, /* OBJ_cACertificate 2 5 4 37 */
4302 882, /* OBJ_authorityRevocationList 2 5 4 38 */
4303 883, /* OBJ_certificateRevocationList 2 5 4 39 */
4304 884, /* OBJ_crossCertificatePair 2 5 4 40 */
4305 173, /* OBJ_name 2 5 4 41 */
4306 99, /* OBJ_givenName 2 5 4 42 */
4307 101, /* OBJ_initials 2 5 4 43 */
4308 509, /* OBJ_generationQualifier 2 5 4 44 */
4309 503, /* OBJ_x500UniqueIdentifier 2 5 4 45 */
4310 174, /* OBJ_dnQualifier 2 5 4 46 */
4311 885, /* OBJ_enhancedSearchGuide 2 5 4 47 */
4312 886, /* OBJ_protocolInformation 2 5 4 48 */
4313 887, /* OBJ_distinguishedName 2 5 4 49 */
4314 888, /* OBJ_uniqueMember 2 5 4 50 */
4315 889, /* OBJ_houseIdentifier 2 5 4 51 */
4316 890, /* OBJ_supportedAlgorithms 2 5 4 52 */
4317 891, /* OBJ_deltaRevocationList 2 5 4 53 */
4318 892, /* OBJ_dmdName 2 5 4 54 */
4319 510, /* OBJ_pseudonym 2 5 4 65 */
4320 400, /* OBJ_role 2 5 4 72 */
4321 769, /* OBJ_subject_directory_attributes 2 5 29 9 */
4322 82, /* OBJ_subject_key_identifier 2 5 29 14 */
4323 83, /* OBJ_key_usage 2 5 29 15 */
4324 84, /* OBJ_private_key_usage_period 2 5 29 16 */
4325 85, /* OBJ_subject_alt_name 2 5 29 17 */
4326 86, /* OBJ_issuer_alt_name 2 5 29 18 */
4327 87, /* OBJ_basic_constraints 2 5 29 19 */
4328 88, /* OBJ_crl_number 2 5 29 20 */
4329 141, /* OBJ_crl_reason 2 5 29 21 */
4330 430, /* OBJ_hold_instruction_code 2 5 29 23 */
4331 142, /* OBJ_invalidity_date 2 5 29 24 */
4332 140, /* OBJ_delta_crl 2 5 29 27 */
4333 770, /* OBJ_issuing_distribution_point 2 5 29 28 */
4334 771, /* OBJ_certificate_issuer 2 5 29 29 */
4335 666, /* OBJ_name_constraints 2 5 29 30 */
4336 103, /* OBJ_crl_distribution_points 2 5 29 31 */
4337 89, /* OBJ_certificate_policies 2 5 29 32 */
4338 747, /* OBJ_policy_mappings 2 5 29 33 */
4339 90, /* OBJ_authority_key_identifier 2 5 29 35 */
4340 401, /* OBJ_policy_constraints 2 5 29 36 */
4341 126, /* OBJ_ext_key_usage 2 5 29 37 */
4342 857, /* OBJ_freshest_crl 2 5 29 46 */
4343 748, /* OBJ_inhibit_any_policy 2 5 29 54 */
4344 402, /* OBJ_target_information 2 5 29 55 */
4345 403, /* OBJ_no_rev_avail 2 5 29 56 */
4346 513, /* OBJ_set_ctype 2 23 42 0 */
4347 514, /* OBJ_set_msgExt 2 23 42 1 */
4348 515, /* OBJ_set_attr 2 23 42 3 */
4349 516, /* OBJ_set_policy 2 23 42 5 */
4350 517, /* OBJ_set_certExt 2 23 42 7 */
4351 518, /* OBJ_set_brand 2 23 42 8 */

new/usr/src/lib/openssl/include/obj_dat.h 67

4352 679, /* OBJ_wap_wsg 2 23 43 1 */
4353 382, /* OBJ_Directory 1 3 6 1 1 */
4354 383, /* OBJ_Management 1 3 6 1 2 */
4355 384, /* OBJ_Experimental 1 3 6 1 3 */
4356 385, /* OBJ_Private 1 3 6 1 4 */
4357 386, /* OBJ_Security 1 3 6 1 5 */
4358 387, /* OBJ_SNMPv2 1 3 6 1 6 */
4359 388, /* OBJ_Mail 1 3 6 1 7 */
4360 376, /* OBJ_algorithm 1 3 14 3 2 */
4361 395, /* OBJ_clearance 2 5 1 5 55 */
4362 19, /* OBJ_rsa 2 5 8 1 1 */
4363 96, /* OBJ_mdc2WithRSA 2 5 8 3 100 */
4364 95, /* OBJ_mdc2 2 5 8 3 101 */
4365 746, /* OBJ_any_policy 2 5 29 32 0 */
4366 910, /* OBJ_anyExtendedKeyUsage 2 5 29 37 0 */
4367 519, /* OBJ_setct_PANData 2 23 42 0 0 */
4368 520, /* OBJ_setct_PANToken 2 23 42 0 1 */
4369 521, /* OBJ_setct_PANOnly 2 23 42 0 2 */
4370 522, /* OBJ_setct_OIData 2 23 42 0 3 */
4371 523, /* OBJ_setct_PI 2 23 42 0 4 */
4372 524, /* OBJ_setct_PIData 2 23 42 0 5 */
4373 525, /* OBJ_setct_PIDataUnsigned 2 23 42 0 6 */
4374 526, /* OBJ_setct_HODInput 2 23 42 0 7 */
4375 527, /* OBJ_setct_AuthResBaggage 2 23 42 0 8 */
4376 528, /* OBJ_setct_AuthRevReqBaggage 2 23 42 0 9 */
4377 529, /* OBJ_setct_AuthRevResBaggage 2 23 42 0 10 */
4378 530, /* OBJ_setct_CapTokenSeq 2 23 42 0 11 */
4379 531, /* OBJ_setct_PInitResData 2 23 42 0 12 */
4380 532, /* OBJ_setct_PI_TBS 2 23 42 0 13 */
4381 533, /* OBJ_setct_PResData 2 23 42 0 14 */
4382 534, /* OBJ_setct_AuthReqTBS 2 23 42 0 16 */
4383 535, /* OBJ_setct_AuthResTBS 2 23 42 0 17 */
4384 536, /* OBJ_setct_AuthResTBSX 2 23 42 0 18 */
4385 537, /* OBJ_setct_AuthTokenTBS 2 23 42 0 19 */
4386 538, /* OBJ_setct_CapTokenData 2 23 42 0 20 */
4387 539, /* OBJ_setct_CapTokenTBS 2 23 42 0 21 */
4388 540, /* OBJ_setct_AcqCardCodeMsg 2 23 42 0 22 */
4389 541, /* OBJ_setct_AuthRevReqTBS 2 23 42 0 23 */
4390 542, /* OBJ_setct_AuthRevResData 2 23 42 0 24 */
4391 543, /* OBJ_setct_AuthRevResTBS 2 23 42 0 25 */
4392 544, /* OBJ_setct_CapReqTBS 2 23 42 0 26 */
4393 545, /* OBJ_setct_CapReqTBSX 2 23 42 0 27 */
4394 546, /* OBJ_setct_CapResData 2 23 42 0 28 */
4395 547, /* OBJ_setct_CapRevReqTBS 2 23 42 0 29 */
4396 548, /* OBJ_setct_CapRevReqTBSX 2 23 42 0 30 */
4397 549, /* OBJ_setct_CapRevResData 2 23 42 0 31 */
4398 550, /* OBJ_setct_CredReqTBS 2 23 42 0 32 */
4399 551, /* OBJ_setct_CredReqTBSX 2 23 42 0 33 */
4400 552, /* OBJ_setct_CredResData 2 23 42 0 34 */
4401 553, /* OBJ_setct_CredRevReqTBS 2 23 42 0 35 */
4402 554, /* OBJ_setct_CredRevReqTBSX 2 23 42 0 36 */
4403 555, /* OBJ_setct_CredRevResData 2 23 42 0 37 */
4404 556, /* OBJ_setct_PCertReqData 2 23 42 0 38 */
4405 557, /* OBJ_setct_PCertResTBS 2 23 42 0 39 */
4406 558, /* OBJ_setct_BatchAdminReqData 2 23 42 0 40 */
4407 559, /* OBJ_setct_BatchAdminResData 2 23 42 0 41 */
4408 560, /* OBJ_setct_CardCInitResTBS 2 23 42 0 42 */
4409 561, /* OBJ_setct_MeAqCInitResTBS 2 23 42 0 43 */
4410 562, /* OBJ_setct_RegFormResTBS 2 23 42 0 44 */
4411 563, /* OBJ_setct_CertReqData 2 23 42 0 45 */
4412 564, /* OBJ_setct_CertReqTBS 2 23 42 0 46 */
4413 565, /* OBJ_setct_CertResData 2 23 42 0 47 */
4414 566, /* OBJ_setct_CertInqReqTBS 2 23 42 0 48 */
4415 567, /* OBJ_setct_ErrorTBS 2 23 42 0 49 */
4416 568, /* OBJ_setct_PIDualSignedTBE 2 23 42 0 50 */
4417 569, /* OBJ_setct_PIUnsignedTBE 2 23 42 0 51 */

new/usr/src/lib/openssl/include/obj_dat.h 68

4418 570, /* OBJ_setct_AuthReqTBE 2 23 42 0 52 */
4419 571, /* OBJ_setct_AuthResTBE 2 23 42 0 53 */
4420 572, /* OBJ_setct_AuthResTBEX 2 23 42 0 54 */
4421 573, /* OBJ_setct_AuthTokenTBE 2 23 42 0 55 */
4422 574, /* OBJ_setct_CapTokenTBE 2 23 42 0 56 */
4423 575, /* OBJ_setct_CapTokenTBEX 2 23 42 0 57 */
4424 576, /* OBJ_setct_AcqCardCodeMsgTBE 2 23 42 0 58 */
4425 577, /* OBJ_setct_AuthRevReqTBE 2 23 42 0 59 */
4426 578, /* OBJ_setct_AuthRevResTBE 2 23 42 0 60 */
4427 579, /* OBJ_setct_AuthRevResTBEB 2 23 42 0 61 */
4428 580, /* OBJ_setct_CapReqTBE 2 23 42 0 62 */
4429 581, /* OBJ_setct_CapReqTBEX 2 23 42 0 63 */
4430 582, /* OBJ_setct_CapResTBE 2 23 42 0 64 */
4431 583, /* OBJ_setct_CapRevReqTBE 2 23 42 0 65 */
4432 584, /* OBJ_setct_CapRevReqTBEX 2 23 42 0 66 */
4433 585, /* OBJ_setct_CapRevResTBE 2 23 42 0 67 */
4434 586, /* OBJ_setct_CredReqTBE 2 23 42 0 68 */
4435 587, /* OBJ_setct_CredReqTBEX 2 23 42 0 69 */
4436 588, /* OBJ_setct_CredResTBE 2 23 42 0 70 */
4437 589, /* OBJ_setct_CredRevReqTBE 2 23 42 0 71 */
4438 590, /* OBJ_setct_CredRevReqTBEX 2 23 42 0 72 */
4439 591, /* OBJ_setct_CredRevResTBE 2 23 42 0 73 */
4440 592, /* OBJ_setct_BatchAdminReqTBE 2 23 42 0 74 */
4441 593, /* OBJ_setct_BatchAdminResTBE 2 23 42 0 75 */
4442 594, /* OBJ_setct_RegFormReqTBE 2 23 42 0 76 */
4443 595, /* OBJ_setct_CertReqTBE 2 23 42 0 77 */
4444 596, /* OBJ_setct_CertReqTBEX 2 23 42 0 78 */
4445 597, /* OBJ_setct_CertResTBE 2 23 42 0 79 */
4446 598, /* OBJ_setct_CRLNotificationTBS 2 23 42 0 80 */
4447 599, /* OBJ_setct_CRLNotificationResTBS 2 23 42 0 81 */
4448 600, /* OBJ_setct_BCIDistributionTBS 2 23 42 0 82 */
4449 601, /* OBJ_setext_genCrypt 2 23 42 1 1 */
4450 602, /* OBJ_setext_miAuth 2 23 42 1 3 */
4451 603, /* OBJ_setext_pinSecure 2 23 42 1 4 */
4452 604, /* OBJ_setext_pinAny 2 23 42 1 5 */
4453 605, /* OBJ_setext_track2 2 23 42 1 7 */
4454 606, /* OBJ_setext_cv 2 23 42 1 8 */
4455 620, /* OBJ_setAttr_Cert 2 23 42 3 0 */
4456 621, /* OBJ_setAttr_PGWYcap 2 23 42 3 1 */
4457 622, /* OBJ_setAttr_TokenType 2 23 42 3 2 */
4458 623, /* OBJ_setAttr_IssCap 2 23 42 3 3 */
4459 607, /* OBJ_set_policy_root 2 23 42 5 0 */
4460 608, /* OBJ_setCext_hashedRoot 2 23 42 7 0 */
4461 609, /* OBJ_setCext_certType 2 23 42 7 1 */
4462 610, /* OBJ_setCext_merchData 2 23 42 7 2 */
4463 611, /* OBJ_setCext_cCertRequired 2 23 42 7 3 */
4464 612, /* OBJ_setCext_tunneling 2 23 42 7 4 */
4465 613, /* OBJ_setCext_setExt 2 23 42 7 5 */
4466 614, /* OBJ_setCext_setQualf 2 23 42 7 6 */
4467 615, /* OBJ_setCext_PGWYcapabilities 2 23 42 7 7 */
4468 616, /* OBJ_setCext_TokenIdentifier 2 23 42 7 8 */
4469 617, /* OBJ_setCext_Track2Data 2 23 42 7 9 */
4470 618, /* OBJ_setCext_TokenType 2 23 42 7 10 */
4471 619, /* OBJ_setCext_IssuerCapabilities 2 23 42 7 11 */
4472 636, /* OBJ_set_brand_IATA_ATA 2 23 42 8 1 */
4473 640, /* OBJ_set_brand_Visa 2 23 42 8 4 */
4474 641, /* OBJ_set_brand_MasterCard 2 23 42 8 5 */
4475 637, /* OBJ_set_brand_Diners 2 23 42 8 30 */
4476 638, /* OBJ_set_brand_AmericanExpress 2 23 42 8 34 */
4477 639, /* OBJ_set_brand_JCB 2 23 42 8 35 */
4478 805, /* OBJ_cryptopro 1 2 643 2 2 */
4479 806, /* OBJ_cryptocom 1 2 643 2 9 */
4480 184, /* OBJ_X9_57 1 2 840 10040 */
4481 405, /* OBJ_ansi_X9_62 1 2 840 10045 */
4482 389, /* OBJ_Enterprises 1 3 6 1 4 1 */
4483 504, /* OBJ_mime_mhs 1 3 6 1 7 1 */

new/usr/src/lib/openssl/include/obj_dat.h 69

4484 104, /* OBJ_md5WithRSA 1 3 14 3 2 3 */
4485 29, /* OBJ_des_ecb 1 3 14 3 2 6 */
4486 31, /* OBJ_des_cbc 1 3 14 3 2 7 */
4487 45, /* OBJ_des_ofb64 1 3 14 3 2 8 */
4488 30, /* OBJ_des_cfb64 1 3 14 3 2 9 */
4489 377, /* OBJ_rsaSignature 1 3 14 3 2 11 */
4490 67, /* OBJ_dsa_2 1 3 14 3 2 12 */
4491 66, /* OBJ_dsaWithSHA 1 3 14 3 2 13 */
4492 42, /* OBJ_shaWithRSAEncryption 1 3 14 3 2 15 */
4493 32, /* OBJ_des_ede_ecb 1 3 14 3 2 17 */
4494 41, /* OBJ_sha 1 3 14 3 2 18 */
4495 64, /* OBJ_sha1 1 3 14 3 2 26 */
4496 70, /* OBJ_dsaWithSHA1_2 1 3 14 3 2 27 */
4497 115, /* OBJ_sha1WithRSA 1 3 14 3 2 29 */
4498 117, /* OBJ_ripemd160 1 3 36 3 2 1 */
4499 143, /* OBJ_sxnet 1 3 101 1 4 1 */
4500 721, /* OBJ_sect163k1 1 3 132 0 1 */
4501 722, /* OBJ_sect163r1 1 3 132 0 2 */
4502 728, /* OBJ_sect239k1 1 3 132 0 3 */
4503 717, /* OBJ_sect113r1 1 3 132 0 4 */
4504 718, /* OBJ_sect113r2 1 3 132 0 5 */
4505 704, /* OBJ_secp112r1 1 3 132 0 6 */
4506 705, /* OBJ_secp112r2 1 3 132 0 7 */
4507 709, /* OBJ_secp160r1 1 3 132 0 8 */
4508 708, /* OBJ_secp160k1 1 3 132 0 9 */
4509 714, /* OBJ_secp256k1 1 3 132 0 10 */
4510 723, /* OBJ_sect163r2 1 3 132 0 15 */
4511 729, /* OBJ_sect283k1 1 3 132 0 16 */
4512 730, /* OBJ_sect283r1 1 3 132 0 17 */
4513 719, /* OBJ_sect131r1 1 3 132 0 22 */
4514 720, /* OBJ_sect131r2 1 3 132 0 23 */
4515 724, /* OBJ_sect193r1 1 3 132 0 24 */
4516 725, /* OBJ_sect193r2 1 3 132 0 25 */
4517 726, /* OBJ_sect233k1 1 3 132 0 26 */
4518 727, /* OBJ_sect233r1 1 3 132 0 27 */
4519 706, /* OBJ_secp128r1 1 3 132 0 28 */
4520 707, /* OBJ_secp128r2 1 3 132 0 29 */
4521 710, /* OBJ_secp160r2 1 3 132 0 30 */
4522 711, /* OBJ_secp192k1 1 3 132 0 31 */
4523 712, /* OBJ_secp224k1 1 3 132 0 32 */
4524 713, /* OBJ_secp224r1 1 3 132 0 33 */
4525 715, /* OBJ_secp384r1 1 3 132 0 34 */
4526 716, /* OBJ_secp521r1 1 3 132 0 35 */
4527 731, /* OBJ_sect409k1 1 3 132 0 36 */
4528 732, /* OBJ_sect409r1 1 3 132 0 37 */
4529 733, /* OBJ_sect571k1 1 3 132 0 38 */
4530 734, /* OBJ_sect571r1 1 3 132 0 39 */
4531 624, /* OBJ_set_rootKeyThumb 2 23 42 3 0 0 */
4532 625, /* OBJ_set_addPolicy 2 23 42 3 0 1 */
4533 626, /* OBJ_setAttr_Token_EMV 2 23 42 3 2 1 */
4534 627, /* OBJ_setAttr_Token_B0Prime 2 23 42 3 2 2 */
4535 628, /* OBJ_setAttr_IssCap_CVM 2 23 42 3 3 3 */
4536 629, /* OBJ_setAttr_IssCap_T2 2 23 42 3 3 4 */
4537 630, /* OBJ_setAttr_IssCap_Sig 2 23 42 3 3 5 */
4538 642, /* OBJ_set_brand_Novus 2 23 42 8 6011 */
4539 735, /* OBJ_wap_wsg_idm_ecid_wtls1 2 23 43 1 4 1 */
4540 736, /* OBJ_wap_wsg_idm_ecid_wtls3 2 23 43 1 4 3 */
4541 737, /* OBJ_wap_wsg_idm_ecid_wtls4 2 23 43 1 4 4 */
4542 738, /* OBJ_wap_wsg_idm_ecid_wtls5 2 23 43 1 4 5 */
4543 739, /* OBJ_wap_wsg_idm_ecid_wtls6 2 23 43 1 4 6 */
4544 740, /* OBJ_wap_wsg_idm_ecid_wtls7 2 23 43 1 4 7 */
4545 741, /* OBJ_wap_wsg_idm_ecid_wtls8 2 23 43 1 4 8 */
4546 742, /* OBJ_wap_wsg_idm_ecid_wtls9 2 23 43 1 4 9 */
4547 743, /* OBJ_wap_wsg_idm_ecid_wtls10 2 23 43 1 4 10 */
4548 744, /* OBJ_wap_wsg_idm_ecid_wtls11 2 23 43 1 4 11 */
4549 745, /* OBJ_wap_wsg_idm_ecid_wtls12 2 23 43 1 4 12 */

new/usr/src/lib/openssl/include/obj_dat.h 70

4550 804, /* OBJ_whirlpool 1 0 10118 3 0 55 */
4551 124, /* OBJ_rle_compression 1 1 1 1 666 1 */
4552 773, /* OBJ_kisa 1 2 410 200004 */
4553 807, /* OBJ_id_GostR3411_94_with_GostR3410_2001 1 2 643 2 2 3 */
4554 808, /* OBJ_id_GostR3411_94_with_GostR3410_94 1 2 643 2 2 4 */
4555 809, /* OBJ_id_GostR3411_94 1 2 643 2 2 9 */
4556 810, /* OBJ_id_HMACGostR3411_94 1 2 643 2 2 10 */
4557 811, /* OBJ_id_GostR3410_2001 1 2 643 2 2 19 */
4558 812, /* OBJ_id_GostR3410_94 1 2 643 2 2 20 */
4559 813, /* OBJ_id_Gost28147_89 1 2 643 2 2 21 */
4560 815, /* OBJ_id_Gost28147_89_MAC 1 2 643 2 2 22 */
4561 816, /* OBJ_id_GostR3411_94_prf 1 2 643 2 2 23 */
4562 817, /* OBJ_id_GostR3410_2001DH 1 2 643 2 2 98 */
4563 818, /* OBJ_id_GostR3410_94DH 1 2 643 2 2 99 */
4564 1, /* OBJ_rsadsi 1 2 840 113549 */
4565 185, /* OBJ_X9cm 1 2 840 10040 4 */
4566 127, /* OBJ_id_pkix 1 3 6 1 5 5 7 */
4567 505, /* OBJ_mime_mhs_headings 1 3 6 1 7 1 1 */
4568 506, /* OBJ_mime_mhs_bodies 1 3 6 1 7 1 2 */
4569 119, /* OBJ_ripemd160WithRSA 1 3 36 3 3 1 2 */
4570 631, /* OBJ_setAttr_GenCryptgrm 2 23 42 3 3 3 1 */
4571 632, /* OBJ_setAttr_T2Enc 2 23 42 3 3 4 1 */
4572 633, /* OBJ_setAttr_T2cleartxt 2 23 42 3 3 4 2 */
4573 634, /* OBJ_setAttr_TokICCsig 2 23 42 3 3 5 1 */
4574 635, /* OBJ_setAttr_SecDevSig 2 23 42 3 3 5 2 */
4575 436, /* OBJ_ucl 0 9 2342 19200300 */
4576 820, /* OBJ_id_Gost28147_89_None_KeyMeshing 1 2 643 2 2 14 0 */
4577 819, /* OBJ_id_Gost28147_89_CryptoPro_KeyMeshing 1 2 643 2 2 14 1 */
4578 845, /* OBJ_id_GostR3410_94_a 1 2 643 2 2 20 1 */
4579 846, /* OBJ_id_GostR3410_94_aBis 1 2 643 2 2 20 2 */
4580 847, /* OBJ_id_GostR3410_94_b 1 2 643 2 2 20 3 */
4581 848, /* OBJ_id_GostR3410_94_bBis 1 2 643 2 2 20 4 */
4582 821, /* OBJ_id_GostR3411_94_TestParamSet 1 2 643 2 2 30 0 */
4583 822, /* OBJ_id_GostR3411_94_CryptoProParamSet 1 2 643 2 2 30 1 */
4584 823, /* OBJ_id_Gost28147_89_TestParamSet 1 2 643 2 2 31 0 */
4585 824, /* OBJ_id_Gost28147_89_CryptoPro_A_ParamSet 1 2 643 2 2 31 1 */
4586 825, /* OBJ_id_Gost28147_89_CryptoPro_B_ParamSet 1 2 643 2 2 31 2 */
4587 826, /* OBJ_id_Gost28147_89_CryptoPro_C_ParamSet 1 2 643 2 2 31 3 */
4588 827, /* OBJ_id_Gost28147_89_CryptoPro_D_ParamSet 1 2 643 2 2 31 4 */
4589 828, /* OBJ_id_Gost28147_89_CryptoPro_Oscar_1_1_ParamSet 1 2 643 2 2 31 5 */
4590 829, /* OBJ_id_Gost28147_89_CryptoPro_Oscar_1_0_ParamSet 1 2 643 2 2 31 6 */
4591 830, /* OBJ_id_Gost28147_89_CryptoPro_RIC_1_ParamSet 1 2 643 2 2 31 7 */
4592 831, /* OBJ_id_GostR3410_94_TestParamSet 1 2 643 2 2 32 0 */
4593 832, /* OBJ_id_GostR3410_94_CryptoPro_A_ParamSet 1 2 643 2 2 32 2 */
4594 833, /* OBJ_id_GostR3410_94_CryptoPro_B_ParamSet 1 2 643 2 2 32 3 */
4595 834, /* OBJ_id_GostR3410_94_CryptoPro_C_ParamSet 1 2 643 2 2 32 4 */
4596 835, /* OBJ_id_GostR3410_94_CryptoPro_D_ParamSet 1 2 643 2 2 32 5 */
4597 836, /* OBJ_id_GostR3410_94_CryptoPro_XchA_ParamSet 1 2 643 2 2 33 1 */
4598 837, /* OBJ_id_GostR3410_94_CryptoPro_XchB_ParamSet 1 2 643 2 2 33 2 */
4599 838, /* OBJ_id_GostR3410_94_CryptoPro_XchC_ParamSet 1 2 643 2 2 33 3 */
4600 839, /* OBJ_id_GostR3410_2001_TestParamSet 1 2 643 2 2 35 0 */
4601 840, /* OBJ_id_GostR3410_2001_CryptoPro_A_ParamSet 1 2 643 2 2 35 1 */
4602 841, /* OBJ_id_GostR3410_2001_CryptoPro_B_ParamSet 1 2 643 2 2 35 2 */
4603 842, /* OBJ_id_GostR3410_2001_CryptoPro_C_ParamSet 1 2 643 2 2 35 3 */
4604 843, /* OBJ_id_GostR3410_2001_CryptoPro_XchA_ParamSet 1 2 643 2 2 36 0 */
4605 844, /* OBJ_id_GostR3410_2001_CryptoPro_XchB_ParamSet 1 2 643 2 2 36 1 */
4606 2, /* OBJ_pkcs 1 2 840 113549 1 */
4607 431, /* OBJ_hold_instruction_none 1 2 840 10040 2 1 */
4608 432, /* OBJ_hold_instruction_call_issuer 1 2 840 10040 2 2 */
4609 433, /* OBJ_hold_instruction_reject 1 2 840 10040 2 3 */
4610 116, /* OBJ_dsa 1 2 840 10040 4 1 */
4611 113, /* OBJ_dsaWithSHA1 1 2 840 10040 4 3 */
4612 406, /* OBJ_X9_62_prime_field 1 2 840 10045 1 1 */
4613 407, /* OBJ_X9_62_characteristic_two_field 1 2 840 10045 1 2 */
4614 408, /* OBJ_X9_62_id_ecPublicKey 1 2 840 10045 2 1 */
4615 416, /* OBJ_ecdsa_with_SHA1 1 2 840 10045 4 1 */

new/usr/src/lib/openssl/include/obj_dat.h 71

4616 791, /* OBJ_ecdsa_with_Recommended 1 2 840 10045 4 2 */
4617 792, /* OBJ_ecdsa_with_Specified 1 2 840 10045 4 3 */
4618 258, /* OBJ_id_pkix_mod 1 3 6 1 5 5 7 0 */
4619 175, /* OBJ_id_pe 1 3 6 1 5 5 7 1 */
4620 259, /* OBJ_id_qt 1 3 6 1 5 5 7 2 */
4621 128, /* OBJ_id_kp 1 3 6 1 5 5 7 3 */
4622 260, /* OBJ_id_it 1 3 6 1 5 5 7 4 */
4623 261, /* OBJ_id_pkip 1 3 6 1 5 5 7 5 */
4624 262, /* OBJ_id_alg 1 3 6 1 5 5 7 6 */
4625 263, /* OBJ_id_cmc 1 3 6 1 5 5 7 7 */
4626 264, /* OBJ_id_on 1 3 6 1 5 5 7 8 */
4627 265, /* OBJ_id_pda 1 3 6 1 5 5 7 9 */
4628 266, /* OBJ_id_aca 1 3 6 1 5 5 7 10 */
4629 267, /* OBJ_id_qcs 1 3 6 1 5 5 7 11 */
4630 268, /* OBJ_id_cct 1 3 6 1 5 5 7 12 */
4631 662, /* OBJ_id_ppl 1 3 6 1 5 5 7 21 */
4632 176, /* OBJ_id_ad 1 3 6 1 5 5 7 48 */
4633 507, /* OBJ_id_hex_partial_message 1 3 6 1 7 1 1 1 */
4634 508, /* OBJ_id_hex_multipart_message 1 3 6 1 7 1 1 2 */
4635 57, /* OBJ_netscape 2 16 840 1 113730 */
4636 754, /* OBJ_camellia_128_ecb 0 3 4401 5 3 1 9 1 */
4637 766, /* OBJ_camellia_128_ofb128 0 3 4401 5 3 1 9 3 */
4638 757, /* OBJ_camellia_128_cfb128 0 3 4401 5 3 1 9 4 */
4639 755, /* OBJ_camellia_192_ecb 0 3 4401 5 3 1 9 21 */
4640 767, /* OBJ_camellia_192_ofb128 0 3 4401 5 3 1 9 23 */
4641 758, /* OBJ_camellia_192_cfb128 0 3 4401 5 3 1 9 24 */
4642 756, /* OBJ_camellia_256_ecb 0 3 4401 5 3 1 9 41 */
4643 768, /* OBJ_camellia_256_ofb128 0 3 4401 5 3 1 9 43 */
4644 759, /* OBJ_camellia_256_cfb128 0 3 4401 5 3 1 9 44 */
4645 437, /* OBJ_pilot 0 9 2342 19200300 100 */
4646 776, /* OBJ_seed_ecb 1 2 410 200004 1 3 */
4647 777, /* OBJ_seed_cbc 1 2 410 200004 1 4 */
4648 779, /* OBJ_seed_cfb128 1 2 410 200004 1 5 */
4649 778, /* OBJ_seed_ofb128 1 2 410 200004 1 6 */
4650 852, /* OBJ_id_GostR3411_94_with_GostR3410_94_cc 1 2 643 2 9 1 3 3 */
4651 853, /* OBJ_id_GostR3411_94_with_GostR3410_2001_cc 1 2 643 2 9 1 3 4 */
4652 850, /* OBJ_id_GostR3410_94_cc 1 2 643 2 9 1 5 3 */
4653 851, /* OBJ_id_GostR3410_2001_cc 1 2 643 2 9 1 5 4 */
4654 849, /* OBJ_id_Gost28147_89_cc 1 2 643 2 9 1 6 1 */
4655 854, /* OBJ_id_GostR3410_2001_ParamSet_cc 1 2 643 2 9 1 8 1 */
4656 186, /* OBJ_pkcs1 1 2 840 113549 1 1 */
4657 27, /* OBJ_pkcs3 1 2 840 113549 1 3 */
4658 187, /* OBJ_pkcs5 1 2 840 113549 1 5 */
4659 20, /* OBJ_pkcs7 1 2 840 113549 1 7 */
4660 47, /* OBJ_pkcs9 1 2 840 113549 1 9 */
4661 3, /* OBJ_md2 1 2 840 113549 2 2 */
4662 257, /* OBJ_md4 1 2 840 113549 2 4 */
4663 4, /* OBJ_md5 1 2 840 113549 2 5 */
4664 797, /* OBJ_hmacWithMD5 1 2 840 113549 2 6 */
4665 163, /* OBJ_hmacWithSHA1 1 2 840 113549 2 7 */
4666 798, /* OBJ_hmacWithSHA224 1 2 840 113549 2 8 */
4667 799, /* OBJ_hmacWithSHA256 1 2 840 113549 2 9 */
4668 800, /* OBJ_hmacWithSHA384 1 2 840 113549 2 10 */
4669 801, /* OBJ_hmacWithSHA512 1 2 840 113549 2 11 */
4670 37, /* OBJ_rc2_cbc 1 2 840 113549 3 2 */
4671 5, /* OBJ_rc4 1 2 840 113549 3 4 */
4672 44, /* OBJ_des_ede3_cbc 1 2 840 113549 3 7 */
4673 120, /* OBJ_rc5_cbc 1 2 840 113549 3 8 */
4674 643, /* OBJ_des_cdmf 1 2 840 113549 3 10 */
4675 680, /* OBJ_X9_62_id_characteristic_two_basis 1 2 840 10045 1 2 3 */
4676 684, /* OBJ_X9_62_c2pnb163v1 1 2 840 10045 3 0 1 */
4677 685, /* OBJ_X9_62_c2pnb163v2 1 2 840 10045 3 0 2 */
4678 686, /* OBJ_X9_62_c2pnb163v3 1 2 840 10045 3 0 3 */
4679 687, /* OBJ_X9_62_c2pnb176v1 1 2 840 10045 3 0 4 */
4680 688, /* OBJ_X9_62_c2tnb191v1 1 2 840 10045 3 0 5 */
4681 689, /* OBJ_X9_62_c2tnb191v2 1 2 840 10045 3 0 6 */

new/usr/src/lib/openssl/include/obj_dat.h 72

4682 690, /* OBJ_X9_62_c2tnb191v3 1 2 840 10045 3 0 7 */
4683 691, /* OBJ_X9_62_c2onb191v4 1 2 840 10045 3 0 8 */
4684 692, /* OBJ_X9_62_c2onb191v5 1 2 840 10045 3 0 9 */
4685 693, /* OBJ_X9_62_c2pnb208w1 1 2 840 10045 3 0 10 */
4686 694, /* OBJ_X9_62_c2tnb239v1 1 2 840 10045 3 0 11 */
4687 695, /* OBJ_X9_62_c2tnb239v2 1 2 840 10045 3 0 12 */
4688 696, /* OBJ_X9_62_c2tnb239v3 1 2 840 10045 3 0 13 */
4689 697, /* OBJ_X9_62_c2onb239v4 1 2 840 10045 3 0 14 */
4690 698, /* OBJ_X9_62_c2onb239v5 1 2 840 10045 3 0 15 */
4691 699, /* OBJ_X9_62_c2pnb272w1 1 2 840 10045 3 0 16 */
4692 700, /* OBJ_X9_62_c2pnb304w1 1 2 840 10045 3 0 17 */
4693 701, /* OBJ_X9_62_c2tnb359v1 1 2 840 10045 3 0 18 */
4694 702, /* OBJ_X9_62_c2pnb368w1 1 2 840 10045 3 0 19 */
4695 703, /* OBJ_X9_62_c2tnb431r1 1 2 840 10045 3 0 20 */
4696 409, /* OBJ_X9_62_prime192v1 1 2 840 10045 3 1 1 */
4697 410, /* OBJ_X9_62_prime192v2 1 2 840 10045 3 1 2 */
4698 411, /* OBJ_X9_62_prime192v3 1 2 840 10045 3 1 3 */
4699 412, /* OBJ_X9_62_prime239v1 1 2 840 10045 3 1 4 */
4700 413, /* OBJ_X9_62_prime239v2 1 2 840 10045 3 1 5 */
4701 414, /* OBJ_X9_62_prime239v3 1 2 840 10045 3 1 6 */
4702 415, /* OBJ_X9_62_prime256v1 1 2 840 10045 3 1 7 */
4703 793, /* OBJ_ecdsa_with_SHA224 1 2 840 10045 4 3 1 */
4704 794, /* OBJ_ecdsa_with_SHA256 1 2 840 10045 4 3 2 */
4705 795, /* OBJ_ecdsa_with_SHA384 1 2 840 10045 4 3 3 */
4706 796, /* OBJ_ecdsa_with_SHA512 1 2 840 10045 4 3 4 */
4707 269, /* OBJ_id_pkix1_explicit_88 1 3 6 1 5 5 7 0 1 */
4708 270, /* OBJ_id_pkix1_implicit_88 1 3 6 1 5 5 7 0 2 */
4709 271, /* OBJ_id_pkix1_explicit_93 1 3 6 1 5 5 7 0 3 */
4710 272, /* OBJ_id_pkix1_implicit_93 1 3 6 1 5 5 7 0 4 */
4711 273, /* OBJ_id_mod_crmf 1 3 6 1 5 5 7 0 5 */
4712 274, /* OBJ_id_mod_cmc 1 3 6 1 5 5 7 0 6 */
4713 275, /* OBJ_id_mod_kea_profile_88 1 3 6 1 5 5 7 0 7 */
4714 276, /* OBJ_id_mod_kea_profile_93 1 3 6 1 5 5 7 0 8 */
4715 277, /* OBJ_id_mod_cmp 1 3 6 1 5 5 7 0 9 */
4716 278, /* OBJ_id_mod_qualified_cert_88 1 3 6 1 5 5 7 0 10 */
4717 279, /* OBJ_id_mod_qualified_cert_93 1 3 6 1 5 5 7 0 11 */
4718 280, /* OBJ_id_mod_attribute_cert 1 3 6 1 5 5 7 0 12 */
4719 281, /* OBJ_id_mod_timestamp_protocol 1 3 6 1 5 5 7 0 13 */
4720 282, /* OBJ_id_mod_ocsp 1 3 6 1 5 5 7 0 14 */
4721 283, /* OBJ_id_mod_dvcs 1 3 6 1 5 5 7 0 15 */
4722 284, /* OBJ_id_mod_cmp2000 1 3 6 1 5 5 7 0 16 */
4723 177, /* OBJ_info_access 1 3 6 1 5 5 7 1 1 */
4724 285, /* OBJ_biometricInfo 1 3 6 1 5 5 7 1 2 */
4725 286, /* OBJ_qcStatements 1 3 6 1 5 5 7 1 3 */
4726 287, /* OBJ_ac_auditEntity 1 3 6 1 5 5 7 1 4 */
4727 288, /* OBJ_ac_targeting 1 3 6 1 5 5 7 1 5 */
4728 289, /* OBJ_aaControls 1 3 6 1 5 5 7 1 6 */
4729 290, /* OBJ_sbgp_ipAddrBlock 1 3 6 1 5 5 7 1 7 */
4730 291, /* OBJ_sbgp_autonomousSysNum 1 3 6 1 5 5 7 1 8 */
4731 292, /* OBJ_sbgp_routerIdentifier 1 3 6 1 5 5 7 1 9 */
4732 397, /* OBJ_ac_proxying 1 3 6 1 5 5 7 1 10 */
4733 398, /* OBJ_sinfo_access 1 3 6 1 5 5 7 1 11 */
4734 663, /* OBJ_proxyCertInfo 1 3 6 1 5 5 7 1 14 */
4735 164, /* OBJ_id_qt_cps 1 3 6 1 5 5 7 2 1 */
4736 165, /* OBJ_id_qt_unotice 1 3 6 1 5 5 7 2 2 */
4737 293, /* OBJ_textNotice 1 3 6 1 5 5 7 2 3 */
4738 129, /* OBJ_server_auth 1 3 6 1 5 5 7 3 1 */
4739 130, /* OBJ_client_auth 1 3 6 1 5 5 7 3 2 */
4740 131, /* OBJ_code_sign 1 3 6 1 5 5 7 3 3 */
4741 132, /* OBJ_email_protect 1 3 6 1 5 5 7 3 4 */
4742 294, /* OBJ_ipsecEndSystem 1 3 6 1 5 5 7 3 5 */
4743 295, /* OBJ_ipsecTunnel 1 3 6 1 5 5 7 3 6 */
4744 296, /* OBJ_ipsecUser 1 3 6 1 5 5 7 3 7 */
4745 133, /* OBJ_time_stamp 1 3 6 1 5 5 7 3 8 */
4746 180, /* OBJ_OCSP_sign 1 3 6 1 5 5 7 3 9 */
4747 297, /* OBJ_dvcs 1 3 6 1 5 5 7 3 10 */

new/usr/src/lib/openssl/include/obj_dat.h 73

4748 298, /* OBJ_id_it_caProtEncCert 1 3 6 1 5 5 7 4 1 */
4749 299, /* OBJ_id_it_signKeyPairTypes 1 3 6 1 5 5 7 4 2 */
4750 300, /* OBJ_id_it_encKeyPairTypes 1 3 6 1 5 5 7 4 3 */
4751 301, /* OBJ_id_it_preferredSymmAlg 1 3 6 1 5 5 7 4 4 */
4752 302, /* OBJ_id_it_caKeyUpdateInfo 1 3 6 1 5 5 7 4 5 */
4753 303, /* OBJ_id_it_currentCRL 1 3 6 1 5 5 7 4 6 */
4754 304, /* OBJ_id_it_unsupportedOIDs 1 3 6 1 5 5 7 4 7 */
4755 305, /* OBJ_id_it_subscriptionRequest 1 3 6 1 5 5 7 4 8 */
4756 306, /* OBJ_id_it_subscriptionResponse 1 3 6 1 5 5 7 4 9 */
4757 307, /* OBJ_id_it_keyPairParamReq 1 3 6 1 5 5 7 4 10 */
4758 308, /* OBJ_id_it_keyPairParamRep 1 3 6 1 5 5 7 4 11 */
4759 309, /* OBJ_id_it_revPassphrase 1 3 6 1 5 5 7 4 12 */
4760 310, /* OBJ_id_it_implicitConfirm 1 3 6 1 5 5 7 4 13 */
4761 311, /* OBJ_id_it_confirmWaitTime 1 3 6 1 5 5 7 4 14 */
4762 312, /* OBJ_id_it_origPKIMessage 1 3 6 1 5 5 7 4 15 */
4763 784, /* OBJ_id_it_suppLangTags 1 3 6 1 5 5 7 4 16 */
4764 313, /* OBJ_id_regCtrl 1 3 6 1 5 5 7 5 1 */
4765 314, /* OBJ_id_regInfo 1 3 6 1 5 5 7 5 2 */
4766 323, /* OBJ_id_alg_des40 1 3 6 1 5 5 7 6 1 */
4767 324, /* OBJ_id_alg_noSignature 1 3 6 1 5 5 7 6 2 */
4768 325, /* OBJ_id_alg_dh_sig_hmac_sha1 1 3 6 1 5 5 7 6 3 */
4769 326, /* OBJ_id_alg_dh_pop 1 3 6 1 5 5 7 6 4 */
4770 327, /* OBJ_id_cmc_statusInfo 1 3 6 1 5 5 7 7 1 */
4771 328, /* OBJ_id_cmc_identification 1 3 6 1 5 5 7 7 2 */
4772 329, /* OBJ_id_cmc_identityProof 1 3 6 1 5 5 7 7 3 */
4773 330, /* OBJ_id_cmc_dataReturn 1 3 6 1 5 5 7 7 4 */
4774 331, /* OBJ_id_cmc_transactionId 1 3 6 1 5 5 7 7 5 */
4775 332, /* OBJ_id_cmc_senderNonce 1 3 6 1 5 5 7 7 6 */
4776 333, /* OBJ_id_cmc_recipientNonce 1 3 6 1 5 5 7 7 7 */
4777 334, /* OBJ_id_cmc_addExtensions 1 3 6 1 5 5 7 7 8 */
4778 335, /* OBJ_id_cmc_encryptedPOP 1 3 6 1 5 5 7 7 9 */
4779 336, /* OBJ_id_cmc_decryptedPOP 1 3 6 1 5 5 7 7 10 */
4780 337, /* OBJ_id_cmc_lraPOPWitness 1 3 6 1 5 5 7 7 11 */
4781 338, /* OBJ_id_cmc_getCert 1 3 6 1 5 5 7 7 15 */
4782 339, /* OBJ_id_cmc_getCRL 1 3 6 1 5 5 7 7 16 */
4783 340, /* OBJ_id_cmc_revokeRequest 1 3 6 1 5 5 7 7 17 */
4784 341, /* OBJ_id_cmc_regInfo 1 3 6 1 5 5 7 7 18 */
4785 342, /* OBJ_id_cmc_responseInfo 1 3 6 1 5 5 7 7 19 */
4786 343, /* OBJ_id_cmc_queryPending 1 3 6 1 5 5 7 7 21 */
4787 344, /* OBJ_id_cmc_popLinkRandom 1 3 6 1 5 5 7 7 22 */
4788 345, /* OBJ_id_cmc_popLinkWitness 1 3 6 1 5 5 7 7 23 */
4789 346, /* OBJ_id_cmc_confirmCertAcceptance 1 3 6 1 5 5 7 7 24 */
4790 347, /* OBJ_id_on_personalData 1 3 6 1 5 5 7 8 1 */
4791 858, /* OBJ_id_on_permanentIdentifier 1 3 6 1 5 5 7 8 3 */
4792 348, /* OBJ_id_pda_dateOfBirth 1 3 6 1 5 5 7 9 1 */
4793 349, /* OBJ_id_pda_placeOfBirth 1 3 6 1 5 5 7 9 2 */
4794 351, /* OBJ_id_pda_gender 1 3 6 1 5 5 7 9 3 */
4795 352, /* OBJ_id_pda_countryOfCitizenship 1 3 6 1 5 5 7 9 4 */
4796 353, /* OBJ_id_pda_countryOfResidence 1 3 6 1 5 5 7 9 5 */
4797 354, /* OBJ_id_aca_authenticationInfo 1 3 6 1 5 5 7 10 1 */
4798 355, /* OBJ_id_aca_accessIdentity 1 3 6 1 5 5 7 10 2 */
4799 356, /* OBJ_id_aca_chargingIdentity 1 3 6 1 5 5 7 10 3 */
4800 357, /* OBJ_id_aca_group 1 3 6 1 5 5 7 10 4 */
4801 358, /* OBJ_id_aca_role 1 3 6 1 5 5 7 10 5 */
4802 399, /* OBJ_id_aca_encAttrs 1 3 6 1 5 5 7 10 6 */
4803 359, /* OBJ_id_qcs_pkixQCSyntax_v1 1 3 6 1 5 5 7 11 1 */
4804 360, /* OBJ_id_cct_crs 1 3 6 1 5 5 7 12 1 */
4805 361, /* OBJ_id_cct_PKIData 1 3 6 1 5 5 7 12 2 */
4806 362, /* OBJ_id_cct_PKIResponse 1 3 6 1 5 5 7 12 3 */
4807 664, /* OBJ_id_ppl_anyLanguage 1 3 6 1 5 5 7 21 0 */
4808 665, /* OBJ_id_ppl_inheritAll 1 3 6 1 5 5 7 21 1 */
4809 667, /* OBJ_Independent 1 3 6 1 5 5 7 21 2 */
4810 178, /* OBJ_ad_OCSP 1 3 6 1 5 5 7 48 1 */
4811 179, /* OBJ_ad_ca_issuers 1 3 6 1 5 5 7 48 2 */
4812 363, /* OBJ_ad_timeStamping 1 3 6 1 5 5 7 48 3 */
4813 364, /* OBJ_ad_dvcs 1 3 6 1 5 5 7 48 4 */

new/usr/src/lib/openssl/include/obj_dat.h 74

4814 785, /* OBJ_caRepository 1 3 6 1 5 5 7 48 5 */
4815 780, /* OBJ_hmac_md5 1 3 6 1 5 5 8 1 1 */
4816 781, /* OBJ_hmac_sha1 1 3 6 1 5 5 8 1 2 */
4817 58, /* OBJ_netscape_cert_extension 2 16 840 1 113730 1 */
4818 59, /* OBJ_netscape_data_type 2 16 840 1 113730 2 */
4819 438, /* OBJ_pilotAttributeType 0 9 2342 19200300 100 1 */
4820 439, /* OBJ_pilotAttributeSyntax 0 9 2342 19200300 100 3 */
4821 440, /* OBJ_pilotObjectClass 0 9 2342 19200300 100 4 */
4822 441, /* OBJ_pilotGroups 0 9 2342 19200300 100 10 */
4823 108, /* OBJ_cast5_cbc 1 2 840 113533 7 66 10 */
4824 112, /* OBJ_pbeWithMD5AndCast5_CBC 1 2 840 113533 7 66 12 */
4825 782, /* OBJ_id_PasswordBasedMAC 1 2 840 113533 7 66 13 */
4826 783, /* OBJ_id_DHBasedMac 1 2 840 113533 7 66 30 */
4827 6, /* OBJ_rsaEncryption 1 2 840 113549 1 1 1 */
4828 7, /* OBJ_md2WithRSAEncryption 1 2 840 113549 1 1 2 */
4829 396, /* OBJ_md4WithRSAEncryption 1 2 840 113549 1 1 3 */
4830 8, /* OBJ_md5WithRSAEncryption 1 2 840 113549 1 1 4 */
4831 65, /* OBJ_sha1WithRSAEncryption 1 2 840 113549 1 1 5 */
4832 644, /* OBJ_rsaOAEPEncryptionSET 1 2 840 113549 1 1 6 */
4833 919, /* OBJ_rsaesOaep 1 2 840 113549 1 1 7 */
4834 911, /* OBJ_mgf1 1 2 840 113549 1 1 8 */
4835 912, /* OBJ_rsassaPss 1 2 840 113549 1 1 10 */
4836 668, /* OBJ_sha256WithRSAEncryption 1 2 840 113549 1 1 11 */
4837 669, /* OBJ_sha384WithRSAEncryption 1 2 840 113549 1 1 12 */
4838 670, /* OBJ_sha512WithRSAEncryption 1 2 840 113549 1 1 13 */
4839 671, /* OBJ_sha224WithRSAEncryption 1 2 840 113549 1 1 14 */
4840 28, /* OBJ_dhKeyAgreement 1 2 840 113549 1 3 1 */
4841 9, /* OBJ_pbeWithMD2AndDES_CBC 1 2 840 113549 1 5 1 */
4842 10, /* OBJ_pbeWithMD5AndDES_CBC 1 2 840 113549 1 5 3 */
4843 168, /* OBJ_pbeWithMD2AndRC2_CBC 1 2 840 113549 1 5 4 */
4844 169, /* OBJ_pbeWithMD5AndRC2_CBC 1 2 840 113549 1 5 6 */
4845 170, /* OBJ_pbeWithSHA1AndDES_CBC 1 2 840 113549 1 5 10 */
4846 68, /* OBJ_pbeWithSHA1AndRC2_CBC 1 2 840 113549 1 5 11 */
4847 69, /* OBJ_id_pbkdf2 1 2 840 113549 1 5 12 */
4848 161, /* OBJ_pbes2 1 2 840 113549 1 5 13 */
4849 162, /* OBJ_pbmac1 1 2 840 113549 1 5 14 */
4850 21, /* OBJ_pkcs7_data 1 2 840 113549 1 7 1 */
4851 22, /* OBJ_pkcs7_signed 1 2 840 113549 1 7 2 */
4852 23, /* OBJ_pkcs7_enveloped 1 2 840 113549 1 7 3 */
4853 24, /* OBJ_pkcs7_signedAndEnveloped 1 2 840 113549 1 7 4 */
4854 25, /* OBJ_pkcs7_digest 1 2 840 113549 1 7 5 */
4855 26, /* OBJ_pkcs7_encrypted 1 2 840 113549 1 7 6 */
4856 48, /* OBJ_pkcs9_emailAddress 1 2 840 113549 1 9 1 */
4857 49, /* OBJ_pkcs9_unstructuredName 1 2 840 113549 1 9 2 */
4858 50, /* OBJ_pkcs9_contentType 1 2 840 113549 1 9 3 */
4859 51, /* OBJ_pkcs9_messageDigest 1 2 840 113549 1 9 4 */
4860 52, /* OBJ_pkcs9_signingTime 1 2 840 113549 1 9 5 */
4861 53, /* OBJ_pkcs9_countersignature 1 2 840 113549 1 9 6 */
4862 54, /* OBJ_pkcs9_challengePassword 1 2 840 113549 1 9 7 */
4863 55, /* OBJ_pkcs9_unstructuredAddress 1 2 840 113549 1 9 8 */
4864 56, /* OBJ_pkcs9_extCertAttributes 1 2 840 113549 1 9 9 */
4865 172, /* OBJ_ext_req 1 2 840 113549 1 9 14 */
4866 167, /* OBJ_SMIMECapabilities 1 2 840 113549 1 9 15 */
4867 188, /* OBJ_SMIME 1 2 840 113549 1 9 16 */
4868 156, /* OBJ_friendlyName 1 2 840 113549 1 9 20 */
4869 157, /* OBJ_localKeyID 1 2 840 113549 1 9 21 */
4870 681, /* OBJ_X9_62_onBasis 1 2 840 10045 1 2 3 1 */
4871 682, /* OBJ_X9_62_tpBasis 1 2 840 10045 1 2 3 2 */
4872 683, /* OBJ_X9_62_ppBasis 1 2 840 10045 1 2 3 3 */
4873 417, /* OBJ_ms_csp_name 1 3 6 1 4 1 311 17 1 */
4874 856, /* OBJ_LocalKeySet 1 3 6 1 4 1 311 17 2 */
4875 390, /* OBJ_dcObject 1 3 6 1 4 1 1466 344 */
4876 91, /* OBJ_bf_cbc 1 3 6 1 4 1 3029 1 2 */
4877 315, /* OBJ_id_regCtrl_regToken 1 3 6 1 5 5 7 5 1 1 */
4878 316, /* OBJ_id_regCtrl_authenticator 1 3 6 1 5 5 7 5 1 2 */
4879 317, /* OBJ_id_regCtrl_pkiPublicationInfo 1 3 6 1 5 5 7 5 1 3 */

new/usr/src/lib/openssl/include/obj_dat.h 75

4880 318, /* OBJ_id_regCtrl_pkiArchiveOptions 1 3 6 1 5 5 7 5 1 4 */
4881 319, /* OBJ_id_regCtrl_oldCertID 1 3 6 1 5 5 7 5 1 5 */
4882 320, /* OBJ_id_regCtrl_protocolEncrKey 1 3 6 1 5 5 7 5 1 6 */
4883 321, /* OBJ_id_regInfo_utf8Pairs 1 3 6 1 5 5 7 5 2 1 */
4884 322, /* OBJ_id_regInfo_certReq 1 3 6 1 5 5 7 5 2 2 */
4885 365, /* OBJ_id_pkix_OCSP_basic 1 3 6 1 5 5 7 48 1 1 */
4886 366, /* OBJ_id_pkix_OCSP_Nonce 1 3 6 1 5 5 7 48 1 2 */
4887 367, /* OBJ_id_pkix_OCSP_CrlID 1 3 6 1 5 5 7 48 1 3 */
4888 368, /* OBJ_id_pkix_OCSP_acceptableResponses 1 3 6 1 5 5 7 48 1 4 */
4889 369, /* OBJ_id_pkix_OCSP_noCheck 1 3 6 1 5 5 7 48 1 5 */
4890 370, /* OBJ_id_pkix_OCSP_archiveCutoff 1 3 6 1 5 5 7 48 1 6 */
4891 371, /* OBJ_id_pkix_OCSP_serviceLocator 1 3 6 1 5 5 7 48 1 7 */
4892 372, /* OBJ_id_pkix_OCSP_extendedStatus 1 3 6 1 5 5 7 48 1 8 */
4893 373, /* OBJ_id_pkix_OCSP_valid 1 3 6 1 5 5 7 48 1 9 */
4894 374, /* OBJ_id_pkix_OCSP_path 1 3 6 1 5 5 7 48 1 10 */
4895 375, /* OBJ_id_pkix_OCSP_trustRoot 1 3 6 1 5 5 7 48 1 11 */
4896 418, /* OBJ_aes_128_ecb 2 16 840 1 101 3 4 1 1 */
4897 419, /* OBJ_aes_128_cbc 2 16 840 1 101 3 4 1 2 */
4898 420, /* OBJ_aes_128_ofb128 2 16 840 1 101 3 4 1 3 */
4899 421, /* OBJ_aes_128_cfb128 2 16 840 1 101 3 4 1 4 */
4900 788, /* OBJ_id_aes128_wrap 2 16 840 1 101 3 4 1 5 */
4901 895, /* OBJ_aes_128_gcm 2 16 840 1 101 3 4 1 6 */
4902 896, /* OBJ_aes_128_ccm 2 16 840 1 101 3 4 1 7 */
4903 897, /* OBJ_id_aes128_wrap_pad 2 16 840 1 101 3 4 1 8 */
4904 422, /* OBJ_aes_192_ecb 2 16 840 1 101 3 4 1 21 */
4905 423, /* OBJ_aes_192_cbc 2 16 840 1 101 3 4 1 22 */
4906 424, /* OBJ_aes_192_ofb128 2 16 840 1 101 3 4 1 23 */
4907 425, /* OBJ_aes_192_cfb128 2 16 840 1 101 3 4 1 24 */
4908 789, /* OBJ_id_aes192_wrap 2 16 840 1 101 3 4 1 25 */
4909 898, /* OBJ_aes_192_gcm 2 16 840 1 101 3 4 1 26 */
4910 899, /* OBJ_aes_192_ccm 2 16 840 1 101 3 4 1 27 */
4911 900, /* OBJ_id_aes192_wrap_pad 2 16 840 1 101 3 4 1 28 */
4912 426, /* OBJ_aes_256_ecb 2 16 840 1 101 3 4 1 41 */
4913 427, /* OBJ_aes_256_cbc 2 16 840 1 101 3 4 1 42 */
4914 428, /* OBJ_aes_256_ofb128 2 16 840 1 101 3 4 1 43 */
4915 429, /* OBJ_aes_256_cfb128 2 16 840 1 101 3 4 1 44 */
4916 790, /* OBJ_id_aes256_wrap 2 16 840 1 101 3 4 1 45 */
4917 901, /* OBJ_aes_256_gcm 2 16 840 1 101 3 4 1 46 */
4918 902, /* OBJ_aes_256_ccm 2 16 840 1 101 3 4 1 47 */
4919 903, /* OBJ_id_aes256_wrap_pad 2 16 840 1 101 3 4 1 48 */
4920 672, /* OBJ_sha256 2 16 840 1 101 3 4 2 1 */
4921 673, /* OBJ_sha384 2 16 840 1 101 3 4 2 2 */
4922 674, /* OBJ_sha512 2 16 840 1 101 3 4 2 3 */
4923 675, /* OBJ_sha224 2 16 840 1 101 3 4 2 4 */
4924 802, /* OBJ_dsa_with_SHA224 2 16 840 1 101 3 4 3 1 */
4925 803, /* OBJ_dsa_with_SHA256 2 16 840 1 101 3 4 3 2 */
4926 71, /* OBJ_netscape_cert_type 2 16 840 1 113730 1 1 */
4927 72, /* OBJ_netscape_base_url 2 16 840 1 113730 1 2 */
4928 73, /* OBJ_netscape_revocation_url 2 16 840 1 113730 1 3 */
4929 74, /* OBJ_netscape_ca_revocation_url 2 16 840 1 113730 1 4 */
4930 75, /* OBJ_netscape_renewal_url 2 16 840 1 113730 1 7 */
4931 76, /* OBJ_netscape_ca_policy_url 2 16 840 1 113730 1 8 */
4932 77, /* OBJ_netscape_ssl_server_name 2 16 840 1 113730 1 12 */
4933 78, /* OBJ_netscape_comment 2 16 840 1 113730 1 13 */
4934 79, /* OBJ_netscape_cert_sequence 2 16 840 1 113730 2 5 */
4935 139, /* OBJ_ns_sgc 2 16 840 1 113730 4 1 */
4936 458, /* OBJ_userId 0 9 2342 19200300 100 1 1 */
4937 459, /* OBJ_textEncodedORAddress 0 9 2342 19200300 100 1 2 */
4938 460, /* OBJ_rfc822Mailbox 0 9 2342 19200300 100 1 3 */
4939 461, /* OBJ_info 0 9 2342 19200300 100 1 4 */
4940 462, /* OBJ_favouriteDrink 0 9 2342 19200300 100 1 5 */
4941 463, /* OBJ_roomNumber 0 9 2342 19200300 100 1 6 */
4942 464, /* OBJ_photo 0 9 2342 19200300 100 1 7 */
4943 465, /* OBJ_userClass 0 9 2342 19200300 100 1 8 */
4944 466, /* OBJ_host 0 9 2342 19200300 100 1 9 */
4945 467, /* OBJ_manager 0 9 2342 19200300 100 1 10 */

new/usr/src/lib/openssl/include/obj_dat.h 76

4946 468, /* OBJ_documentIdentifier 0 9 2342 19200300 100 1 11 */
4947 469, /* OBJ_documentTitle 0 9 2342 19200300 100 1 12 */
4948 470, /* OBJ_documentVersion 0 9 2342 19200300 100 1 13 */
4949 471, /* OBJ_documentAuthor 0 9 2342 19200300 100 1 14 */
4950 472, /* OBJ_documentLocation 0 9 2342 19200300 100 1 15 */
4951 473, /* OBJ_homeTelephoneNumber 0 9 2342 19200300 100 1 20 */
4952 474, /* OBJ_secretary 0 9 2342 19200300 100 1 21 */
4953 475, /* OBJ_otherMailbox 0 9 2342 19200300 100 1 22 */
4954 476, /* OBJ_lastModifiedTime 0 9 2342 19200300 100 1 23 */
4955 477, /* OBJ_lastModifiedBy 0 9 2342 19200300 100 1 24 */
4956 391, /* OBJ_domainComponent 0 9 2342 19200300 100 1 25 */
4957 478, /* OBJ_aRecord 0 9 2342 19200300 100 1 26 */
4958 479, /* OBJ_pilotAttributeType27 0 9 2342 19200300 100 1 27 */
4959 480, /* OBJ_mXRecord 0 9 2342 19200300 100 1 28 */
4960 481, /* OBJ_nSRecord 0 9 2342 19200300 100 1 29 */
4961 482, /* OBJ_sOARecord 0 9 2342 19200300 100 1 30 */
4962 483, /* OBJ_cNAMERecord 0 9 2342 19200300 100 1 31 */
4963 484, /* OBJ_associatedDomain 0 9 2342 19200300 100 1 37 */
4964 485, /* OBJ_associatedName 0 9 2342 19200300 100 1 38 */
4965 486, /* OBJ_homePostalAddress 0 9 2342 19200300 100 1 39 */
4966 487, /* OBJ_personalTitle 0 9 2342 19200300 100 1 40 */
4967 488, /* OBJ_mobileTelephoneNumber 0 9 2342 19200300 100 1 41 */
4968 489, /* OBJ_pagerTelephoneNumber 0 9 2342 19200300 100 1 42 */
4969 490, /* OBJ_friendlyCountryName 0 9 2342 19200300 100 1 43 */
4970 491, /* OBJ_organizationalStatus 0 9 2342 19200300 100 1 45 */
4971 492, /* OBJ_janetMailbox 0 9 2342 19200300 100 1 46 */
4972 493, /* OBJ_mailPreferenceOption 0 9 2342 19200300 100 1 47 */
4973 494, /* OBJ_buildingName 0 9 2342 19200300 100 1 48 */
4974 495, /* OBJ_dSAQuality 0 9 2342 19200300 100 1 49 */
4975 496, /* OBJ_singleLevelQuality 0 9 2342 19200300 100 1 50 */
4976 497, /* OBJ_subtreeMinimumQuality 0 9 2342 19200300 100 1 51 */
4977 498, /* OBJ_subtreeMaximumQuality 0 9 2342 19200300 100 1 52 */
4978 499, /* OBJ_personalSignature 0 9 2342 19200300 100 1 53 */
4979 500, /* OBJ_dITRedirect 0 9 2342 19200300 100 1 54 */
4980 501, /* OBJ_audio 0 9 2342 19200300 100 1 55 */
4981 502, /* OBJ_documentPublisher 0 9 2342 19200300 100 1 56 */
4982 442, /* OBJ_iA5StringSyntax 0 9 2342 19200300 100 3 4 */
4983 443, /* OBJ_caseIgnoreIA5StringSyntax 0 9 2342 19200300 100 3 5 */
4984 444, /* OBJ_pilotObject 0 9 2342 19200300 100 4 3 */
4985 445, /* OBJ_pilotPerson 0 9 2342 19200300 100 4 4 */
4986 446, /* OBJ_account 0 9 2342 19200300 100 4 5 */
4987 447, /* OBJ_document 0 9 2342 19200300 100 4 6 */
4988 448, /* OBJ_room 0 9 2342 19200300 100 4 7 */
4989 449, /* OBJ_documentSeries 0 9 2342 19200300 100 4 9 */
4990 392, /* OBJ_Domain 0 9 2342 19200300 100 4 13 */
4991 450, /* OBJ_rFC822localPart 0 9 2342 19200300 100 4 14 */
4992 451, /* OBJ_dNSDomain 0 9 2342 19200300 100 4 15 */
4993 452, /* OBJ_domainRelatedObject 0 9 2342 19200300 100 4 17 */
4994 453, /* OBJ_friendlyCountry 0 9 2342 19200300 100 4 18 */
4995 454, /* OBJ_simpleSecurityObject 0 9 2342 19200300 100 4 19 */
4996 455, /* OBJ_pilotOrganization 0 9 2342 19200300 100 4 20 */
4997 456, /* OBJ_pilotDSA 0 9 2342 19200300 100 4 21 */
4998 457, /* OBJ_qualityLabelledData 0 9 2342 19200300 100 4 22 */
4999 189, /* OBJ_id_smime_mod 1 2 840 113549 1 9 16 0 */
5000 190, /* OBJ_id_smime_ct 1 2 840 113549 1 9 16 1 */
5001 191, /* OBJ_id_smime_aa 1 2 840 113549 1 9 16 2 */
5002 192, /* OBJ_id_smime_alg 1 2 840 113549 1 9 16 3 */
5003 193, /* OBJ_id_smime_cd 1 2 840 113549 1 9 16 4 */
5004 194, /* OBJ_id_smime_spq 1 2 840 113549 1 9 16 5 */
5005 195, /* OBJ_id_smime_cti 1 2 840 113549 1 9 16 6 */
5006 158, /* OBJ_x509Certificate 1 2 840 113549 1 9 22 1 */
5007 159, /* OBJ_sdsiCertificate 1 2 840 113549 1 9 22 2 */
5008 160, /* OBJ_x509Crl 1 2 840 113549 1 9 23 1 */
5009 144, /* OBJ_pbe_WithSHA1And128BitRC4 1 2 840 113549 1 12 1 1 */
5010 145, /* OBJ_pbe_WithSHA1And40BitRC4 1 2 840 113549 1 12 1 2 */
5011 146, /* OBJ_pbe_WithSHA1And3_Key_TripleDES_CBC 1 2 840 113549 1 12 1 3 */

new/usr/src/lib/openssl/include/obj_dat.h 77

5012 147, /* OBJ_pbe_WithSHA1And2_Key_TripleDES_CBC 1 2 840 113549 1 12 1 4 */
5013 148, /* OBJ_pbe_WithSHA1And128BitRC2_CBC 1 2 840 113549 1 12 1 5 */
5014 149, /* OBJ_pbe_WithSHA1And40BitRC2_CBC 1 2 840 113549 1 12 1 6 */
5015 171, /* OBJ_ms_ext_req 1 3 6 1 4 1 311 2 1 14 */
5016 134, /* OBJ_ms_code_ind 1 3 6 1 4 1 311 2 1 21 */
5017 135, /* OBJ_ms_code_com 1 3 6 1 4 1 311 2 1 22 */
5018 136, /* OBJ_ms_ctl_sign 1 3 6 1 4 1 311 10 3 1 */
5019 137, /* OBJ_ms_sgc 1 3 6 1 4 1 311 10 3 3 */
5020 138, /* OBJ_ms_efs 1 3 6 1 4 1 311 10 3 4 */
5021 648, /* OBJ_ms_smartcard_login 1 3 6 1 4 1 311 20 2 2 */
5022 649, /* OBJ_ms_upn 1 3 6 1 4 1 311 20 2 3 */
5023 751, /* OBJ_camellia_128_cbc 1 2 392 200011 61 1 1 1 2 */
5024 752, /* OBJ_camellia_192_cbc 1 2 392 200011 61 1 1 1 3 */
5025 753, /* OBJ_camellia_256_cbc 1 2 392 200011 61 1 1 1 4 */
5026 907, /* OBJ_id_camellia128_wrap 1 2 392 200011 61 1 1 3 2 */
5027 908, /* OBJ_id_camellia192_wrap 1 2 392 200011 61 1 1 3 3 */
5028 909, /* OBJ_id_camellia256_wrap 1 2 392 200011 61 1 1 3 4 */
5029 196, /* OBJ_id_smime_mod_cms 1 2 840 113549 1 9 16 0 1 */
5030 197, /* OBJ_id_smime_mod_ess 1 2 840 113549 1 9 16 0 2 */
5031 198, /* OBJ_id_smime_mod_oid 1 2 840 113549 1 9 16 0 3 */
5032 199, /* OBJ_id_smime_mod_msg_v3 1 2 840 113549 1 9 16 0 4 */
5033 200, /* OBJ_id_smime_mod_ets_eSignature_88 1 2 840 113549 1 9 16 0 5 */
5034 201, /* OBJ_id_smime_mod_ets_eSignature_97 1 2 840 113549 1 9 16 0 6 */
5035 202, /* OBJ_id_smime_mod_ets_eSigPolicy_88 1 2 840 113549 1 9 16 0 7 */
5036 203, /* OBJ_id_smime_mod_ets_eSigPolicy_97 1 2 840 113549 1 9 16 0 8 */
5037 204, /* OBJ_id_smime_ct_receipt 1 2 840 113549 1 9 16 1 1 */
5038 205, /* OBJ_id_smime_ct_authData 1 2 840 113549 1 9 16 1 2 */
5039 206, /* OBJ_id_smime_ct_publishCert 1 2 840 113549 1 9 16 1 3 */
5040 207, /* OBJ_id_smime_ct_TSTInfo 1 2 840 113549 1 9 16 1 4 */
5041 208, /* OBJ_id_smime_ct_TDTInfo 1 2 840 113549 1 9 16 1 5 */
5042 209, /* OBJ_id_smime_ct_contentInfo 1 2 840 113549 1 9 16 1 6 */
5043 210, /* OBJ_id_smime_ct_DVCSRequestData 1 2 840 113549 1 9 16 1 7 */
5044 211, /* OBJ_id_smime_ct_DVCSResponseData 1 2 840 113549 1 9 16 1 8 */
5045 786, /* OBJ_id_smime_ct_compressedData 1 2 840 113549 1 9 16 1 9 */
5046 787, /* OBJ_id_ct_asciiTextWithCRLF 1 2 840 113549 1 9 16 1 27 */
5047 212, /* OBJ_id_smime_aa_receiptRequest 1 2 840 113549 1 9 16 2 1 */
5048 213, /* OBJ_id_smime_aa_securityLabel 1 2 840 113549 1 9 16 2 2 */
5049 214, /* OBJ_id_smime_aa_mlExpandHistory 1 2 840 113549 1 9 16 2 3 */
5050 215, /* OBJ_id_smime_aa_contentHint 1 2 840 113549 1 9 16 2 4 */
5051 216, /* OBJ_id_smime_aa_msgSigDigest 1 2 840 113549 1 9 16 2 5 */
5052 217, /* OBJ_id_smime_aa_encapContentType 1 2 840 113549 1 9 16 2 6 */
5053 218, /* OBJ_id_smime_aa_contentIdentifier 1 2 840 113549 1 9 16 2 7 */
5054 219, /* OBJ_id_smime_aa_macValue 1 2 840 113549 1 9 16 2 8 */
5055 220, /* OBJ_id_smime_aa_equivalentLabels 1 2 840 113549 1 9 16 2 9 */
5056 221, /* OBJ_id_smime_aa_contentReference 1 2 840 113549 1 9 16 2 10 */
5057 222, /* OBJ_id_smime_aa_encrypKeyPref 1 2 840 113549 1 9 16 2 11 */
5058 223, /* OBJ_id_smime_aa_signingCertificate 1 2 840 113549 1 9 16 2 12 */
5059 224, /* OBJ_id_smime_aa_smimeEncryptCerts 1 2 840 113549 1 9 16 2 13 */
5060 225, /* OBJ_id_smime_aa_timeStampToken 1 2 840 113549 1 9 16 2 14 */
5061 226, /* OBJ_id_smime_aa_ets_sigPolicyId 1 2 840 113549 1 9 16 2 15 */
5062 227, /* OBJ_id_smime_aa_ets_commitmentType 1 2 840 113549 1 9 16 2 16 */
5063 228, /* OBJ_id_smime_aa_ets_signerLocation 1 2 840 113549 1 9 16 2 17 */
5064 229, /* OBJ_id_smime_aa_ets_signerAttr 1 2 840 113549 1 9 16 2 18 */
5065 230, /* OBJ_id_smime_aa_ets_otherSigCert 1 2 840 113549 1 9 16 2 19 */
5066 231, /* OBJ_id_smime_aa_ets_contentTimestamp 1 2 840 113549 1 9 16 2 20 */
5067 232, /* OBJ_id_smime_aa_ets_CertificateRefs 1 2 840 113549 1 9 16 2 21 */
5068 233, /* OBJ_id_smime_aa_ets_RevocationRefs 1 2 840 113549 1 9 16 2 22 */
5069 234, /* OBJ_id_smime_aa_ets_certValues 1 2 840 113549 1 9 16 2 23 */
5070 235, /* OBJ_id_smime_aa_ets_revocationValues 1 2 840 113549 1 9 16 2 24 */
5071 236, /* OBJ_id_smime_aa_ets_escTimeStamp 1 2 840 113549 1 9 16 2 25 */
5072 237, /* OBJ_id_smime_aa_ets_certCRLTimestamp 1 2 840 113549 1 9 16 2 26 */
5073 238, /* OBJ_id_smime_aa_ets_archiveTimeStamp 1 2 840 113549 1 9 16 2 27 */
5074 239, /* OBJ_id_smime_aa_signatureType 1 2 840 113549 1 9 16 2 28 */
5075 240, /* OBJ_id_smime_aa_dvcs_dvc 1 2 840 113549 1 9 16 2 29 */
5076 241, /* OBJ_id_smime_alg_ESDHwith3DES 1 2 840 113549 1 9 16 3 1 */
5077 242, /* OBJ_id_smime_alg_ESDHwithRC2 1 2 840 113549 1 9 16 3 2 */

new/usr/src/lib/openssl/include/obj_dat.h 78

5078 243, /* OBJ_id_smime_alg_3DESwrap 1 2 840 113549 1 9 16 3 3 */
5079 244, /* OBJ_id_smime_alg_RC2wrap 1 2 840 113549 1 9 16 3 4 */
5080 245, /* OBJ_id_smime_alg_ESDH 1 2 840 113549 1 9 16 3 5 */
5081 246, /* OBJ_id_smime_alg_CMS3DESwrap 1 2 840 113549 1 9 16 3 6 */
5082 247, /* OBJ_id_smime_alg_CMSRC2wrap 1 2 840 113549 1 9 16 3 7 */
5083 125, /* OBJ_zlib_compression 1 2 840 113549 1 9 16 3 8 */
5084 893, /* OBJ_id_alg_PWRI_KEK 1 2 840 113549 1 9 16 3 9 */
5085 248, /* OBJ_id_smime_cd_ldap 1 2 840 113549 1 9 16 4 1 */
5086 249, /* OBJ_id_smime_spq_ets_sqt_uri 1 2 840 113549 1 9 16 5 1 */
5087 250, /* OBJ_id_smime_spq_ets_sqt_unotice 1 2 840 113549 1 9 16 5 2 */
5088 251, /* OBJ_id_smime_cti_ets_proofOfOrigin 1 2 840 113549 1 9 16 6 1 */
5089 252, /* OBJ_id_smime_cti_ets_proofOfReceipt 1 2 840 113549 1 9 16 6 2 */
5090 253, /* OBJ_id_smime_cti_ets_proofOfDelivery 1 2 840 113549 1 9 16 6 3 */
5091 254, /* OBJ_id_smime_cti_ets_proofOfSender 1 2 840 113549 1 9 16 6 4 */
5092 255, /* OBJ_id_smime_cti_ets_proofOfApproval 1 2 840 113549 1 9 16 6 5 */
5093 256, /* OBJ_id_smime_cti_ets_proofOfCreation 1 2 840 113549 1 9 16 6 6 */
5094 150, /* OBJ_keyBag 1 2 840 113549 1 12 10 1 1 */
5095 151, /* OBJ_pkcs8ShroudedKeyBag 1 2 840 113549 1 12 10 1 2 */
5096 152, /* OBJ_certBag 1 2 840 113549 1 12 10 1 3 */
5097 153, /* OBJ_crlBag 1 2 840 113549 1 12 10 1 4 */
5098 154, /* OBJ_secretBag 1 2 840 113549 1 12 10 1 5 */
5099 155, /* OBJ_safeContentsBag 1 2 840 113549 1 12 10 1 6 */
5100 34, /* OBJ_idea_cbc 1 3 6 1 4 1 188 7 1 1 2 */
5101 };

new/usr/src/lib/openssl/include/obj_xref.h 1

**
 2547 Fri May 30 18:31:17 2014
new/usr/src/lib/openssl/include/obj_xref.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* AUTOGENERATED BY objxref.pl, DO NOT EDIT */

3 typedef struct
4 {
5 int sign_id;
6 int hash_id;
7 int pkey_id;
8 } nid_triple;

10 static const nid_triple sigoid_srt[] =
11 {
12 {NID_md2WithRSAEncryption, NID_md2, NID_rsaEncryption},
13 {NID_md5WithRSAEncryption, NID_md5, NID_rsaEncryption},
14 {NID_shaWithRSAEncryption, NID_sha, NID_rsaEncryption},
15 {NID_sha1WithRSAEncryption, NID_sha1, NID_rsaEncryption},
16 {NID_dsaWithSHA, NID_sha, NID_dsa},
17 {NID_dsaWithSHA1_2, NID_sha1, NID_dsa_2},
18 {NID_mdc2WithRSA, NID_mdc2, NID_rsaEncryption},
19 {NID_md5WithRSA, NID_md5, NID_rsa},
20 {NID_dsaWithSHA1, NID_sha1, NID_dsa},
21 {NID_sha1WithRSA, NID_sha1, NID_rsa},
22 {NID_ripemd160WithRSA, NID_ripemd160, NID_rsaEncryption},
23 {NID_md4WithRSAEncryption, NID_md4, NID_rsaEncryption},
24 {NID_ecdsa_with_SHA1, NID_sha1, NID_X9_62_id_ecPublicKey},
25 {NID_sha256WithRSAEncryption, NID_sha256, NID_rsaEncryption},
26 {NID_sha384WithRSAEncryption, NID_sha384, NID_rsaEncryption},
27 {NID_sha512WithRSAEncryption, NID_sha512, NID_rsaEncryption},
28 {NID_sha224WithRSAEncryption, NID_sha224, NID_rsaEncryption},
29 {NID_ecdsa_with_Recommended, NID_undef, NID_X9_62_id_ecPublicKey},
30 {NID_ecdsa_with_Specified, NID_undef, NID_X9_62_id_ecPublicKey},
31 {NID_ecdsa_with_SHA224, NID_sha224, NID_X9_62_id_ecPublicKey},
32 {NID_ecdsa_with_SHA256, NID_sha256, NID_X9_62_id_ecPublicKey},
33 {NID_ecdsa_with_SHA384, NID_sha384, NID_X9_62_id_ecPublicKey},
34 {NID_ecdsa_with_SHA512, NID_sha512, NID_X9_62_id_ecPublicKey},
35 {NID_dsa_with_SHA224, NID_sha224, NID_dsa},
36 {NID_dsa_with_SHA256, NID_sha256, NID_dsa},
37 {NID_id_GostR3411_94_with_GostR3410_2001, NID_id_GostR3411_94, NID_id_Go
38 {NID_id_GostR3411_94_with_GostR3410_94, NID_id_GostR3411_94, NID_id_Gost
39 {NID_id_GostR3411_94_with_GostR3410_94_cc, NID_id_GostR3411_94, NID_id_G
40 {NID_id_GostR3411_94_with_GostR3410_2001_cc, NID_id_GostR3411_94, NID_id
41 {NID_rsassaPss, NID_undef, NID_rsaEncryption},
42 };

44 static const nid_triple * const sigoid_srt_xref[] =
45 {
46 &sigoid_srt[29],
47 &sigoid_srt[17],
48 &sigoid_srt[18],
49 &sigoid_srt[0],
50 &sigoid_srt[1],
51 &sigoid_srt[7],
52 &sigoid_srt[2],
53 &sigoid_srt[4],
54 &sigoid_srt[3],
55 &sigoid_srt[9],
56 &sigoid_srt[5],
57 &sigoid_srt[8],
58 &sigoid_srt[12],
59 &sigoid_srt[6],
60 &sigoid_srt[10],
61 &sigoid_srt[11],

new/usr/src/lib/openssl/include/obj_xref.h 2

62 &sigoid_srt[13],
63 &sigoid_srt[24],
64 &sigoid_srt[20],
65 &sigoid_srt[14],
66 &sigoid_srt[21],
67 &sigoid_srt[15],
68 &sigoid_srt[22],
69 &sigoid_srt[16],
70 &sigoid_srt[23],
71 &sigoid_srt[19],
72 &sigoid_srt[25],
73 &sigoid_srt[26],
74 &sigoid_srt[27],
75 &sigoid_srt[28],
76 };

new/usr/src/lib/openssl/include/openssl/aes.h 1

**
 5507 Fri May 30 18:31:17 2014
new/usr/src/lib/openssl/include/openssl/aes.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/aes/aes.h -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */

52 #ifndef HEADER_AES_H
53 #define HEADER_AES_H

55 #include <openssl/opensslconf.h>

57 #ifdef OPENSSL_NO_AES
58 #error AES is disabled.
59 #endif

61 #include <stddef.h>

new/usr/src/lib/openssl/include/openssl/aes.h 2

63 #define AES_ENCRYPT 1
64 #define AES_DECRYPT 0

66 /* Because array size can’t be a const in C, the following two are macros.
67 Both sizes are in bytes. */
68 #define AES_MAXNR 14
69 #define AES_BLOCK_SIZE 16

71 #ifdef __cplusplus
72 extern "C" {
73 #endif

75 /* This should be a hidden type, but EVP requires that the size be known */
76 struct aes_key_st {
77 #ifdef AES_LONG
78 unsigned long rd_key[4 *(AES_MAXNR + 1)];
79 #else
80 unsigned int rd_key[4 *(AES_MAXNR + 1)];
81 #endif
82 int rounds;
83 };
84 typedef struct aes_key_st AES_KEY;

86 const char *AES_options(void);

88 int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
89 AES_KEY *key);
90 int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
91 AES_KEY *key);

93 int private_AES_set_encrypt_key(const unsigned char *userKey, const int bits,
94 AES_KEY *key);
95 int private_AES_set_decrypt_key(const unsigned char *userKey, const int bits,
96 AES_KEY *key);

98 void AES_encrypt(const unsigned char *in, unsigned char *out,
99 const AES_KEY *key);
100 void AES_decrypt(const unsigned char *in, unsigned char *out,
101 const AES_KEY *key);

103 void AES_ecb_encrypt(const unsigned char *in, unsigned char *out,
104 const AES_KEY *key, const int enc);
105 void AES_cbc_encrypt(const unsigned char *in, unsigned char *out,
106 size_t length, const AES_KEY *key,
107 unsigned char *ivec, const int enc);
108 void AES_cfb128_encrypt(const unsigned char *in, unsigned char *out,
109 size_t length, const AES_KEY *key,
110 unsigned char *ivec, int *num, const int enc);
111 void AES_cfb1_encrypt(const unsigned char *in, unsigned char *out,
112 size_t length, const AES_KEY *key,
113 unsigned char *ivec, int *num, const int enc);
114 void AES_cfb8_encrypt(const unsigned char *in, unsigned char *out,
115 size_t length, const AES_KEY *key,
116 unsigned char *ivec, int *num, const int enc);
117 void AES_ofb128_encrypt(const unsigned char *in, unsigned char *out,
118 size_t length, const AES_KEY *key,
119 unsigned char *ivec, int *num);
120 void AES_ctr128_encrypt(const unsigned char *in, unsigned char *out,
121 size_t length, const AES_KEY *key,
122 unsigned char ivec[AES_BLOCK_SIZE],
123 unsigned char ecount_buf[AES_BLOCK_SIZE],
124 unsigned int *num);
125 /* NB: the IV is _two_ blocks long */
126 void AES_ige_encrypt(const unsigned char *in, unsigned char *out,
127 size_t length, const AES_KEY *key,

new/usr/src/lib/openssl/include/openssl/aes.h 3

128 unsigned char *ivec, const int enc);
129 /* NB: the IV is _four_ blocks long */
130 void AES_bi_ige_encrypt(const unsigned char *in, unsigned char *out,
131 size_t length, const AES_KEY *key,
132 const AES_KEY *key2, const unsigned char *ivec,
133 const int enc);

135 int AES_wrap_key(AES_KEY *key, const unsigned char *iv,
136 unsigned char *out,
137 const unsigned char *in, unsigned int inlen);
138 int AES_unwrap_key(AES_KEY *key, const unsigned char *iv,
139 unsigned char *out,
140 const unsigned char *in, unsigned int inlen);

143 #ifdef __cplusplus
144 }
145 #endif

147 #endif /* !HEADER_AES_H */

new/usr/src/lib/openssl/include/openssl/asn1.h 1

**
 52190 Fri May 30 18:31:17 2014
new/usr/src/lib/openssl/include/openssl/asn1.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/asn1.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_ASN1_H
60 #define HEADER_ASN1_H

new/usr/src/lib/openssl/include/openssl/asn1.h 2

62 #include <time.h>
63 #include <openssl/e_os2.h>
64 #ifndef OPENSSL_NO_BIO
65 #include <openssl/bio.h>
66 #endif
67 #include <openssl/stack.h>
68 #include <openssl/safestack.h>

70 #include <openssl/symhacks.h>

72 #include <openssl/ossl_typ.h>
73 #ifndef OPENSSL_NO_DEPRECATED
74 #include <openssl/bn.h>
75 #endif

77 #ifdef OPENSSL_BUILD_SHLIBCRYPTO
78 # undef OPENSSL_EXTERN
79 # define OPENSSL_EXTERN OPENSSL_EXPORT
80 #endif

82 #ifdef __cplusplus
83 extern "C" {
84 #endif

86 #define V_ASN1_UNIVERSAL 0x00
87 #define V_ASN1_APPLICATION 0x40
88 #define V_ASN1_CONTEXT_SPECIFIC 0x80
89 #define V_ASN1_PRIVATE 0xc0

91 #define V_ASN1_CONSTRUCTED 0x20
92 #define V_ASN1_PRIMITIVE_TAG 0x1f
93 #define V_ASN1_PRIMATIVE_TAG 0x1f

95 #define V_ASN1_APP_CHOOSE -2 /* let the recipient choose */
96 #define V_ASN1_OTHER -3 /* used in ASN1_TYPE */
97 #define V_ASN1_ANY -4 /* used in ASN1 template code */

99 #define V_ASN1_NEG 0x100 /* negative flag */

101 #define V_ASN1_UNDEF -1
102 #define V_ASN1_EOC 0
103 #define V_ASN1_BOOLEAN 1 /**/
104 #define V_ASN1_INTEGER 2
105 #define V_ASN1_NEG_INTEGER (2 | V_ASN1_NEG)
106 #define V_ASN1_BIT_STRING 3
107 #define V_ASN1_OCTET_STRING 4
108 #define V_ASN1_NULL 5
109 #define V_ASN1_OBJECT 6
110 #define V_ASN1_OBJECT_DESCRIPTOR 7
111 #define V_ASN1_EXTERNAL 8
112 #define V_ASN1_REAL 9
113 #define V_ASN1_ENUMERATED 10
114 #define V_ASN1_NEG_ENUMERATED (10 | V_ASN1_NEG)
115 #define V_ASN1_UTF8STRING 12
116 #define V_ASN1_SEQUENCE 16
117 #define V_ASN1_SET 17
118 #define V_ASN1_NUMERICSTRING 18 /**/
119 #define V_ASN1_PRINTABLESTRING 19
120 #define V_ASN1_T61STRING 20
121 #define V_ASN1_TELETEXSTRING 20 /* alias */
122 #define V_ASN1_VIDEOTEXSTRING 21 /**/
123 #define V_ASN1_IA5STRING 22
124 #define V_ASN1_UTCTIME 23
125 #define V_ASN1_GENERALIZEDTIME 24 /**/
126 #define V_ASN1_GRAPHICSTRING 25 /**/
127 #define V_ASN1_ISO64STRING 26 /**/

new/usr/src/lib/openssl/include/openssl/asn1.h 3

128 #define V_ASN1_VISIBLESTRING 26 /* alias */
129 #define V_ASN1_GENERALSTRING 27 /**/
130 #define V_ASN1_UNIVERSALSTRING 28 /**/
131 #define V_ASN1_BMPSTRING 30

133 /* For use with d2i_ASN1_type_bytes() */
134 #define B_ASN1_NUMERICSTRING 0x0001
135 #define B_ASN1_PRINTABLESTRING 0x0002
136 #define B_ASN1_T61STRING 0x0004
137 #define B_ASN1_TELETEXSTRING 0x0004
138 #define B_ASN1_VIDEOTEXSTRING 0x0008
139 #define B_ASN1_IA5STRING 0x0010
140 #define B_ASN1_GRAPHICSTRING 0x0020
141 #define B_ASN1_ISO64STRING 0x0040
142 #define B_ASN1_VISIBLESTRING 0x0040
143 #define B_ASN1_GENERALSTRING 0x0080
144 #define B_ASN1_UNIVERSALSTRING 0x0100
145 #define B_ASN1_OCTET_STRING 0x0200
146 #define B_ASN1_BIT_STRING 0x0400
147 #define B_ASN1_BMPSTRING 0x0800
148 #define B_ASN1_UNKNOWN 0x1000
149 #define B_ASN1_UTF8STRING 0x2000
150 #define B_ASN1_UTCTIME 0x4000
151 #define B_ASN1_GENERALIZEDTIME 0x8000
152 #define B_ASN1_SEQUENCE 0x10000

154 /* For use with ASN1_mbstring_copy() */
155 #define MBSTRING_FLAG 0x1000
156 #define MBSTRING_UTF8 (MBSTRING_FLAG)
157 #define MBSTRING_ASC (MBSTRING_FLAG|1)
158 #define MBSTRING_BMP (MBSTRING_FLAG|2)
159 #define MBSTRING_UNIV (MBSTRING_FLAG|4)

161 #define SMIME_OLDMIME 0x400
162 #define SMIME_CRLFEOL 0x800
163 #define SMIME_STREAM 0x1000

165 struct X509_algor_st;
166 DECLARE_STACK_OF(X509_ALGOR)

168 #define DECLARE_ASN1_SET_OF(type) /* filled in by mkstack.pl */
169 #define IMPLEMENT_ASN1_SET_OF(type) /* nothing, no longer needed */

171 /* We MUST make sure that, except for constness, asn1_ctx_st and
172 asn1_const_ctx are exactly the same. Fortunately, as soon as
173 the old ASN1 parsing macros are gone, we can throw this away
174 as well... */
175 typedef struct asn1_ctx_st
176 {
177 unsigned char *p;/* work char pointer */
178 int eos; /* end of sequence read for indefinite encoding */
179 int error; /* error code to use when returning an error */
180 int inf; /* constructed if 0x20, indefinite is 0x21 */
181 int tag; /* tag from last ’get object’ */
182 int xclass; /* class from last ’get object’ */
183 long slen; /* length of last ’get object’ */
184 unsigned char *max; /* largest value of p allowed */
185 unsigned char *q;/* temporary variable */
186 unsigned char **pp;/* variable */
187 int line; /* used in error processing */
188 } ASN1_CTX;

190 typedef struct asn1_const_ctx_st
191 {
192 const unsigned char *p;/* work char pointer */
193 int eos; /* end of sequence read for indefinite encoding */

new/usr/src/lib/openssl/include/openssl/asn1.h 4

194 int error; /* error code to use when returning an error */
195 int inf; /* constructed if 0x20, indefinite is 0x21 */
196 int tag; /* tag from last ’get object’ */
197 int xclass; /* class from last ’get object’ */
198 long slen; /* length of last ’get object’ */
199 const unsigned char *max; /* largest value of p allowed */
200 const unsigned char *q;/* temporary variable */
201 const unsigned char **pp;/* variable */
202 int line; /* used in error processing */
203 } ASN1_const_CTX;

205 /* These are used internally in the ASN1_OBJECT to keep track of
206 * whether the names and data need to be free()ed */
207 #define ASN1_OBJECT_FLAG_DYNAMIC 0x01 /* internal use */
208 #define ASN1_OBJECT_FLAG_CRITICAL 0x02 /* critical x509v3 object id */
209 #define ASN1_OBJECT_FLAG_DYNAMIC_STRINGS 0x04 /* internal use */
210 #define ASN1_OBJECT_FLAG_DYNAMIC_DATA 0x08 /* internal use */
211 typedef struct asn1_object_st
212 {
213 const char *sn,*ln;
214 int nid;
215 int length;
216 const unsigned char *data; /* data remains const after init */
217 int flags; /* Should we free this one */
218 } ASN1_OBJECT;

220 #define ASN1_STRING_FLAG_BITS_LEFT 0x08 /* Set if 0x07 has bits left value */
221 /* This indicates that the ASN1_STRING is not a real value but just a place
222 * holder for the location where indefinite length constructed data should
223 * be inserted in the memory buffer
224 */
225 #define ASN1_STRING_FLAG_NDEF 0x010

227 /* This flag is used by the CMS code to indicate that a string is not
228 * complete and is a place holder for content when it had all been
229 * accessed. The flag will be reset when content has been written to it.
230 */

232 #define ASN1_STRING_FLAG_CONT 0x020
233 /* This flag is used by ASN1 code to indicate an ASN1_STRING is an MSTRING
234 * type.
235 */
236 #define ASN1_STRING_FLAG_MSTRING 0x040
237 /* This is the base type that holds just about everything :-) */
238 struct asn1_string_st
239 {
240 int length;
241 int type;
242 unsigned char *data;
243 /* The value of the following field depends on the type being
244 * held. It is mostly being used for BIT_STRING so if the
245 * input data has a non-zero ’unused bits’ value, it will be
246 * handled correctly */
247 long flags;
248 };

250 /* ASN1_ENCODING structure: this is used to save the received
251 * encoding of an ASN1 type. This is useful to get round
252 * problems with invalid encodings which can break signatures.
253 */

255 typedef struct ASN1_ENCODING_st
256 {
257 unsigned char *enc; /* DER encoding */
258 long len; /* Length of encoding */
259 int modified; /* set to 1 if ’enc’ is invalid */

new/usr/src/lib/openssl/include/openssl/asn1.h 5

260 } ASN1_ENCODING;

262 /* Used with ASN1 LONG type: if a long is set to this it is omitted */
263 #define ASN1_LONG_UNDEF 0x7fffffffL

265 #define STABLE_FLAGS_MALLOC 0x01
266 #define STABLE_NO_MASK 0x02
267 #define DIRSTRING_TYPE \
268 (B_ASN1_PRINTABLESTRING|B_ASN1_T61STRING|B_ASN1_BMPSTRING|B_ASN1_UTF8STRING)
269 #define PKCS9STRING_TYPE (DIRSTRING_TYPE|B_ASN1_IA5STRING)

271 typedef struct asn1_string_table_st {
272 int nid;
273 long minsize;
274 long maxsize;
275 unsigned long mask;
276 unsigned long flags;
277 } ASN1_STRING_TABLE;

279 DECLARE_STACK_OF(ASN1_STRING_TABLE)

281 /* size limits: this stuff is taken straight from RFC2459 */

283 #define ub_name 32768
284 #define ub_common_name 64
285 #define ub_locality_name 128
286 #define ub_state_name 128
287 #define ub_organization_name 64
288 #define ub_organization_unit_name 64
289 #define ub_title 64
290 #define ub_email_address 128

292 /* Declarations for template structures: for full definitions
293 * see asn1t.h
294 */
295 typedef struct ASN1_TEMPLATE_st ASN1_TEMPLATE;
296 typedef struct ASN1_TLC_st ASN1_TLC;
297 /* This is just an opaque pointer */
298 typedef struct ASN1_VALUE_st ASN1_VALUE;

300 /* Declare ASN1 functions: the implement macro in in asn1t.h */

302 #define DECLARE_ASN1_FUNCTIONS(type) DECLARE_ASN1_FUNCTIONS_name(type, type)

304 #define DECLARE_ASN1_ALLOC_FUNCTIONS(type) \
305 DECLARE_ASN1_ALLOC_FUNCTIONS_name(type, type)

307 #define DECLARE_ASN1_FUNCTIONS_name(type, name) \
308 DECLARE_ASN1_ALLOC_FUNCTIONS_name(type, name) \
309 DECLARE_ASN1_ENCODE_FUNCTIONS(type, name, name)

311 #define DECLARE_ASN1_FUNCTIONS_fname(type, itname, name) \
312 DECLARE_ASN1_ALLOC_FUNCTIONS_name(type, name) \
313 DECLARE_ASN1_ENCODE_FUNCTIONS(type, itname, name)

315 #define DECLARE_ASN1_ENCODE_FUNCTIONS(type, itname, name) \
316 type *d2i_##name(type **a, const unsigned char **in, long len); \
317 int i2d_##name(type *a, unsigned char **out); \
318 DECLARE_ASN1_ITEM(itname)

320 #define DECLARE_ASN1_ENCODE_FUNCTIONS_const(type, name) \
321 type *d2i_##name(type **a, const unsigned char **in, long len); \
322 int i2d_##name(const type *a, unsigned char **out); \
323 DECLARE_ASN1_ITEM(name)

325 #define DECLARE_ASN1_NDEF_FUNCTION(name) \

new/usr/src/lib/openssl/include/openssl/asn1.h 6

326 int i2d_##name##_NDEF(name *a, unsigned char **out);

328 #define DECLARE_ASN1_FUNCTIONS_const(name) \
329 DECLARE_ASN1_ALLOC_FUNCTIONS(name) \
330 DECLARE_ASN1_ENCODE_FUNCTIONS_const(name, name)

332 #define DECLARE_ASN1_ALLOC_FUNCTIONS_name(type, name) \
333 type *name##_new(void); \
334 void name##_free(type *a);

336 #define DECLARE_ASN1_PRINT_FUNCTION(stname) \
337 DECLARE_ASN1_PRINT_FUNCTION_fname(stname, stname)

339 #define DECLARE_ASN1_PRINT_FUNCTION_fname(stname, fname) \
340 int fname##_print_ctx(BIO *out, stname *x, int indent, \
341 const ASN1_PCTX *pctx);

343 #define D2I_OF(type) type *(*)(type **,const unsigned char **,long)
344 #define I2D_OF(type) int (*)(type *,unsigned char **)
345 #define I2D_OF_const(type) int (*)(const type *,unsigned char **)

347 #define CHECKED_D2I_OF(type, d2i) \
348 ((d2i_of_void*) (1 ? d2i : ((D2I_OF(type))0)))
349 #define CHECKED_I2D_OF(type, i2d) \
350 ((i2d_of_void*) (1 ? i2d : ((I2D_OF(type))0)))
351 #define CHECKED_NEW_OF(type, xnew) \
352 ((void *(*)(void)) (1 ? xnew : ((type *(*)(void))0)))
353 #define CHECKED_PTR_OF(type, p) \
354 ((void*) (1 ? p : (type*)0))
355 #define CHECKED_PPTR_OF(type, p) \
356 ((void**) (1 ? p : (type**)0))

358 #define TYPEDEF_D2I_OF(type) typedef type *d2i_of_##type(type **,const unsigned
359 #define TYPEDEF_I2D_OF(type) typedef int i2d_of_##type(type *,unsigned char **)
360 #define TYPEDEF_D2I2D_OF(type) TYPEDEF_D2I_OF(type); TYPEDEF_I2D_OF(type)

362 TYPEDEF_D2I2D_OF(void);

364 /* The following macros and typedefs allow an ASN1_ITEM
365 * to be embedded in a structure and referenced. Since
366 * the ASN1_ITEM pointers need to be globally accessible
367 * (possibly from shared libraries) they may exist in
368 * different forms. On platforms that support it the
369 * ASN1_ITEM structure itself will be globally exported.
370 * Other platforms will export a function that returns
371 * an ASN1_ITEM pointer.
372 *
373 * To handle both cases transparently the macros below
374 * should be used instead of hard coding an ASN1_ITEM
375 * pointer in a structure.
376 *
377 * The structure will look like this:
378 *
379 * typedef struct SOMETHING_st {
380 * ...
381 * ASN1_ITEM_EXP *iptr;
382 * ...
383 * } SOMETHING;
384 *
385 * It would be initialised as e.g.:
386 *
387 * SOMETHING somevar = {...,ASN1_ITEM_ref(X509),...};
388 *
389 * and the actual pointer extracted with:
390 *
391 * const ASN1_ITEM *it = ASN1_ITEM_ptr(somevar.iptr);

new/usr/src/lib/openssl/include/openssl/asn1.h 7

392 *
393 * Finally an ASN1_ITEM pointer can be extracted from an
394 * appropriate reference with: ASN1_ITEM_rptr(X509). This
395 * would be used when a function takes an ASN1_ITEM * argument.
396 *
397 */

399 #ifndef OPENSSL_EXPORT_VAR_AS_FUNCTION

401 /* ASN1_ITEM pointer exported type */
402 typedef const ASN1_ITEM ASN1_ITEM_EXP;

404 /* Macro to obtain ASN1_ITEM pointer from exported type */
405 #define ASN1_ITEM_ptr(iptr) (iptr)

407 /* Macro to include ASN1_ITEM pointer from base type */
408 #define ASN1_ITEM_ref(iptr) (&(iptr##_it))

410 #define ASN1_ITEM_rptr(ref) (&(ref##_it))

412 #define DECLARE_ASN1_ITEM(name) \
413 OPENSSL_EXTERN const ASN1_ITEM name##_it;

415 #else

417 /* Platforms that can’t easily handle shared global variables are declared
418 * as functions returning ASN1_ITEM pointers.
419 */

421 /* ASN1_ITEM pointer exported type */
422 typedef const ASN1_ITEM * ASN1_ITEM_EXP(void);

424 /* Macro to obtain ASN1_ITEM pointer from exported type */
425 #define ASN1_ITEM_ptr(iptr) (iptr())

427 /* Macro to include ASN1_ITEM pointer from base type */
428 #define ASN1_ITEM_ref(iptr) (iptr##_it)

430 #define ASN1_ITEM_rptr(ref) (ref##_it())

432 #define DECLARE_ASN1_ITEM(name) \
433 const ASN1_ITEM * name##_it(void);

435 #endif

437 /* Parameters used by ASN1_STRING_print_ex() */

439 /* These determine which characters to escape:
440 * RFC2253 special characters, control characters and
441 * MSB set characters
442 */

444 #define ASN1_STRFLGS_ESC_2253 1
445 #define ASN1_STRFLGS_ESC_CTRL 2
446 #define ASN1_STRFLGS_ESC_MSB 4

449 /* This flag determines how we do escaping: normally
450 * RC2253 backslash only, set this to use backslash and
451 * quote.
452 */

454 #define ASN1_STRFLGS_ESC_QUOTE 8

457 /* These three flags are internal use only. */

new/usr/src/lib/openssl/include/openssl/asn1.h 8

459 /* Character is a valid PrintableString character */
460 #define CHARTYPE_PRINTABLESTRING 0x10
461 /* Character needs escaping if it is the first character */
462 #define CHARTYPE_FIRST_ESC_2253 0x20
463 /* Character needs escaping if it is the last character */
464 #define CHARTYPE_LAST_ESC_2253 0x40

466 /* NB the internal flags are safely reused below by flags
467 * handled at the top level.
468 */

470 /* If this is set we convert all character strings
471 * to UTF8 first
472 */

474 #define ASN1_STRFLGS_UTF8_CONVERT 0x10

476 /* If this is set we don’t attempt to interpret content:
477 * just assume all strings are 1 byte per character. This
478 * will produce some pretty odd looking output!
479 */

481 #define ASN1_STRFLGS_IGNORE_TYPE 0x20

483 /* If this is set we include the string type in the output */
484 #define ASN1_STRFLGS_SHOW_TYPE 0x40

486 /* This determines which strings to display and which to
487 * ’dump’ (hex dump of content octets or DER encoding). We can
488 * only dump non character strings or everything. If we
489 * don’t dump ’unknown’ they are interpreted as character
490 * strings with 1 octet per character and are subject to
491 * the usual escaping options.
492 */

494 #define ASN1_STRFLGS_DUMP_ALL 0x80
495 #define ASN1_STRFLGS_DUMP_UNKNOWN 0x100

497 /* These determine what ’dumping’ does, we can dump the
498 * content octets or the DER encoding: both use the
499 * RFC2253 #XXXXX notation.
500 */

502 #define ASN1_STRFLGS_DUMP_DER 0x200

504 /* All the string flags consistent with RFC2253,
505 * escaping control characters isn’t essential in
506 * RFC2253 but it is advisable anyway.
507 */

509 #define ASN1_STRFLGS_RFC2253 (ASN1_STRFLGS_ESC_2253 | \
510 ASN1_STRFLGS_ESC_CTRL | \
511 ASN1_STRFLGS_ESC_MSB | \
512 ASN1_STRFLGS_UTF8_CONVERT | \
513 ASN1_STRFLGS_DUMP_UNKNOWN | \
514 ASN1_STRFLGS_DUMP_DER)

516 DECLARE_STACK_OF(ASN1_INTEGER)
517 DECLARE_ASN1_SET_OF(ASN1_INTEGER)

519 DECLARE_STACK_OF(ASN1_GENERALSTRING)

521 typedef struct asn1_type_st
522 {
523 int type;

new/usr/src/lib/openssl/include/openssl/asn1.h 9

524 union {
525 char *ptr;
526 ASN1_BOOLEAN boolean;
527 ASN1_STRING * asn1_string;
528 ASN1_OBJECT * object;
529 ASN1_INTEGER * integer;
530 ASN1_ENUMERATED * enumerated;
531 ASN1_BIT_STRING * bit_string;
532 ASN1_OCTET_STRING * octet_string;
533 ASN1_PRINTABLESTRING * printablestring;
534 ASN1_T61STRING * t61string;
535 ASN1_IA5STRING * ia5string;
536 ASN1_GENERALSTRING * generalstring;
537 ASN1_BMPSTRING * bmpstring;
538 ASN1_UNIVERSALSTRING * universalstring;
539 ASN1_UTCTIME * utctime;
540 ASN1_GENERALIZEDTIME * generalizedtime;
541 ASN1_VISIBLESTRING * visiblestring;
542 ASN1_UTF8STRING * utf8string;
543 /* set and sequence are left complete and still
544 * contain the set or sequence bytes */
545 ASN1_STRING * set;
546 ASN1_STRING * sequence;
547 ASN1_VALUE * asn1_value;
548 } value;
549 } ASN1_TYPE;

551 DECLARE_STACK_OF(ASN1_TYPE)
552 DECLARE_ASN1_SET_OF(ASN1_TYPE)

554 typedef STACK_OF(ASN1_TYPE) ASN1_SEQUENCE_ANY;

556 DECLARE_ASN1_ENCODE_FUNCTIONS_const(ASN1_SEQUENCE_ANY, ASN1_SEQUENCE_ANY)
557 DECLARE_ASN1_ENCODE_FUNCTIONS_const(ASN1_SEQUENCE_ANY, ASN1_SET_ANY)

559 typedef struct NETSCAPE_X509_st
560 {
561 ASN1_OCTET_STRING *header;
562 X509 *cert;
563 } NETSCAPE_X509;

565 /* This is used to contain a list of bit names */
566 typedef struct BIT_STRING_BITNAME_st {
567 int bitnum;
568 const char *lname;
569 const char *sname;
570 } BIT_STRING_BITNAME;

573 #define M_ASN1_STRING_length(x) ((x)->length)
574 #define M_ASN1_STRING_length_set(x, n) ((x)->length = (n))
575 #define M_ASN1_STRING_type(x) ((x)->type)
576 #define M_ASN1_STRING_data(x) ((x)->data)

578 /* Macros for string operations */
579 #define M_ASN1_BIT_STRING_new() (ASN1_BIT_STRING *)\
580 ASN1_STRING_type_new(V_ASN1_BIT_STRING)
581 #define M_ASN1_BIT_STRING_free(a) ASN1_STRING_free((ASN1_STRING *)a)
582 #define M_ASN1_BIT_STRING_dup(a) (ASN1_BIT_STRING *)\
583 ASN1_STRING_dup((const ASN1_STRING *)a)
584 #define M_ASN1_BIT_STRING_cmp(a,b) ASN1_STRING_cmp(\
585 (const ASN1_STRING *)a,(const ASN1_STRING *)b)
586 #define M_ASN1_BIT_STRING_set(a,b,c) ASN1_STRING_set((ASN1_STRING *)a,b,c)

588 #define M_ASN1_INTEGER_new() (ASN1_INTEGER *)\
589 ASN1_STRING_type_new(V_ASN1_INTEGER)

new/usr/src/lib/openssl/include/openssl/asn1.h 10

590 #define M_ASN1_INTEGER_free(a) ASN1_STRING_free((ASN1_STRING *)a)
591 #define M_ASN1_INTEGER_dup(a) (ASN1_INTEGER *)\
592 ASN1_STRING_dup((const ASN1_STRING *)a)
593 #define M_ASN1_INTEGER_cmp(a,b) ASN1_STRING_cmp(\
594 (const ASN1_STRING *)a,(const ASN1_STRING *)b)

596 #define M_ASN1_ENUMERATED_new() (ASN1_ENUMERATED *)\
597 ASN1_STRING_type_new(V_ASN1_ENUMERATED)
598 #define M_ASN1_ENUMERATED_free(a) ASN1_STRING_free((ASN1_STRING *)a)
599 #define M_ASN1_ENUMERATED_dup(a) (ASN1_ENUMERATED *)\
600 ASN1_STRING_dup((const ASN1_STRING *)a)
601 #define M_ASN1_ENUMERATED_cmp(a,b) ASN1_STRING_cmp(\
602 (const ASN1_STRING *)a,(const ASN1_STRING *)b)

604 #define M_ASN1_OCTET_STRING_new() (ASN1_OCTET_STRING *)\
605 ASN1_STRING_type_new(V_ASN1_OCTET_STRING)
606 #define M_ASN1_OCTET_STRING_free(a) ASN1_STRING_free((ASN1_STRING *)a)
607 #define M_ASN1_OCTET_STRING_dup(a) (ASN1_OCTET_STRING *)\
608 ASN1_STRING_dup((const ASN1_STRING *)a)
609 #define M_ASN1_OCTET_STRING_cmp(a,b) ASN1_STRING_cmp(\
610 (const ASN1_STRING *)a,(const ASN1_STRING *)b)
611 #define M_ASN1_OCTET_STRING_set(a,b,c) ASN1_STRING_set((ASN1_STRING *)a,b,c)
612 #define M_ASN1_OCTET_STRING_print(a,b) ASN1_STRING_print(a,(ASN1_STRING *)b)
613 #define M_i2d_ASN1_OCTET_STRING(a,pp) \
614 i2d_ASN1_bytes((ASN1_STRING *)a,pp,V_ASN1_OCTET_STRING,\
615 V_ASN1_UNIVERSAL)

617 #define B_ASN1_TIME \
618 B_ASN1_UTCTIME | \
619 B_ASN1_GENERALIZEDTIME

621 #define B_ASN1_PRINTABLE \
622 B_ASN1_NUMERICSTRING| \
623 B_ASN1_PRINTABLESTRING| \
624 B_ASN1_T61STRING| \
625 B_ASN1_IA5STRING| \
626 B_ASN1_BIT_STRING| \
627 B_ASN1_UNIVERSALSTRING|\
628 B_ASN1_BMPSTRING|\
629 B_ASN1_UTF8STRING|\
630 B_ASN1_SEQUENCE|\
631 B_ASN1_UNKNOWN

633 #define B_ASN1_DIRECTORYSTRING \
634 B_ASN1_PRINTABLESTRING| \
635 B_ASN1_TELETEXSTRING|\
636 B_ASN1_BMPSTRING|\
637 B_ASN1_UNIVERSALSTRING|\
638 B_ASN1_UTF8STRING

640 #define B_ASN1_DISPLAYTEXT \
641 B_ASN1_IA5STRING| \
642 B_ASN1_VISIBLESTRING| \
643 B_ASN1_BMPSTRING|\
644 B_ASN1_UTF8STRING

646 #define M_ASN1_PRINTABLE_new() ASN1_STRING_type_new(V_ASN1_T61STRING)
647 #define M_ASN1_PRINTABLE_free(a) ASN1_STRING_free((ASN1_STRING *)a)
648 #define M_i2d_ASN1_PRINTABLE(a,pp) i2d_ASN1_bytes((ASN1_STRING *)a,\
649 pp,a->type,V_ASN1_UNIVERSAL)
650 #define M_d2i_ASN1_PRINTABLE(a,pp,l) \
651 d2i_ASN1_type_bytes((ASN1_STRING **)a,pp,l, \
652 B_ASN1_PRINTABLE)

654 #define M_DIRECTORYSTRING_new() ASN1_STRING_type_new(V_ASN1_PRINTABLESTRING)
655 #define M_DIRECTORYSTRING_free(a) ASN1_STRING_free((ASN1_STRING *)a)

new/usr/src/lib/openssl/include/openssl/asn1.h 11

656 #define M_i2d_DIRECTORYSTRING(a,pp) i2d_ASN1_bytes((ASN1_STRING *)a,\
657 pp,a->type,V_ASN1_UNIVERSAL)
658 #define M_d2i_DIRECTORYSTRING(a,pp,l) \
659 d2i_ASN1_type_bytes((ASN1_STRING **)a,pp,l, \
660 B_ASN1_DIRECTORYSTRING)

662 #define M_DISPLAYTEXT_new() ASN1_STRING_type_new(V_ASN1_VISIBLESTRING)
663 #define M_DISPLAYTEXT_free(a) ASN1_STRING_free((ASN1_STRING *)a)
664 #define M_i2d_DISPLAYTEXT(a,pp) i2d_ASN1_bytes((ASN1_STRING *)a,\
665 pp,a->type,V_ASN1_UNIVERSAL)
666 #define M_d2i_DISPLAYTEXT(a,pp,l) \
667 d2i_ASN1_type_bytes((ASN1_STRING **)a,pp,l, \
668 B_ASN1_DISPLAYTEXT)

670 #define M_ASN1_PRINTABLESTRING_new() (ASN1_PRINTABLESTRING *)\
671 ASN1_STRING_type_new(V_ASN1_PRINTABLESTRING)
672 #define M_ASN1_PRINTABLESTRING_free(a) ASN1_STRING_free((ASN1_STRING *)a)
673 #define M_i2d_ASN1_PRINTABLESTRING(a,pp) \
674 i2d_ASN1_bytes((ASN1_STRING *)a,pp,V_ASN1_PRINTABLESTRING,\
675 V_ASN1_UNIVERSAL)
676 #define M_d2i_ASN1_PRINTABLESTRING(a,pp,l) \
677 (ASN1_PRINTABLESTRING *)d2i_ASN1_type_bytes\
678 ((ASN1_STRING **)a,pp,l,B_ASN1_PRINTABLESTRING)

680 #define M_ASN1_T61STRING_new() (ASN1_T61STRING *)\
681 ASN1_STRING_type_new(V_ASN1_T61STRING)
682 #define M_ASN1_T61STRING_free(a) ASN1_STRING_free((ASN1_STRING *)a)
683 #define M_i2d_ASN1_T61STRING(a,pp) \
684 i2d_ASN1_bytes((ASN1_STRING *)a,pp,V_ASN1_T61STRING,\
685 V_ASN1_UNIVERSAL)
686 #define M_d2i_ASN1_T61STRING(a,pp,l) \
687 (ASN1_T61STRING *)d2i_ASN1_type_bytes\
688 ((ASN1_STRING **)a,pp,l,B_ASN1_T61STRING)

690 #define M_ASN1_IA5STRING_new() (ASN1_IA5STRING *)\
691 ASN1_STRING_type_new(V_ASN1_IA5STRING)
692 #define M_ASN1_IA5STRING_free(a) ASN1_STRING_free((ASN1_STRING *)a)
693 #define M_ASN1_IA5STRING_dup(a) \
694 (ASN1_IA5STRING *)ASN1_STRING_dup((const ASN1_STRING *)a)
695 #define M_i2d_ASN1_IA5STRING(a,pp) \
696 i2d_ASN1_bytes((ASN1_STRING *)a,pp,V_ASN1_IA5STRING,\
697 V_ASN1_UNIVERSAL)
698 #define M_d2i_ASN1_IA5STRING(a,pp,l) \
699 (ASN1_IA5STRING *)d2i_ASN1_type_bytes((ASN1_STRING **)a,pp,l,\
700 B_ASN1_IA5STRING)

702 #define M_ASN1_UTCTIME_new() (ASN1_UTCTIME *)\
703 ASN1_STRING_type_new(V_ASN1_UTCTIME)
704 #define M_ASN1_UTCTIME_free(a) ASN1_STRING_free((ASN1_STRING *)a)
705 #define M_ASN1_UTCTIME_dup(a) (ASN1_UTCTIME *)\
706 ASN1_STRING_dup((const ASN1_STRING *)a)

708 #define M_ASN1_GENERALIZEDTIME_new() (ASN1_GENERALIZEDTIME *)\
709 ASN1_STRING_type_new(V_ASN1_GENERALIZEDTIME)
710 #define M_ASN1_GENERALIZEDTIME_free(a) ASN1_STRING_free((ASN1_STRING *)a)
711 #define M_ASN1_GENERALIZEDTIME_dup(a) (ASN1_GENERALIZEDTIME *)ASN1_STRING_dup(\
712 (const ASN1_STRING *)a)

714 #define M_ASN1_TIME_new() (ASN1_TIME *)\
715 ASN1_STRING_type_new(V_ASN1_UTCTIME)
716 #define M_ASN1_TIME_free(a) ASN1_STRING_free((ASN1_STRING *)a)
717 #define M_ASN1_TIME_dup(a) (ASN1_TIME *)\
718 ASN1_STRING_dup((const ASN1_STRING *)a)

720 #define M_ASN1_GENERALSTRING_new() (ASN1_GENERALSTRING *)\
721 ASN1_STRING_type_new(V_ASN1_GENERALSTRING)

new/usr/src/lib/openssl/include/openssl/asn1.h 12

722 #define M_ASN1_GENERALSTRING_free(a) ASN1_STRING_free((ASN1_STRING *)a)
723 #define M_i2d_ASN1_GENERALSTRING(a,pp) \
724 i2d_ASN1_bytes((ASN1_STRING *)a,pp,V_ASN1_GENERALSTRING,\
725 V_ASN1_UNIVERSAL)
726 #define M_d2i_ASN1_GENERALSTRING(a,pp,l) \
727 (ASN1_GENERALSTRING *)d2i_ASN1_type_bytes\
728 ((ASN1_STRING **)a,pp,l,B_ASN1_GENERALSTRING)

730 #define M_ASN1_UNIVERSALSTRING_new() (ASN1_UNIVERSALSTRING *)\
731 ASN1_STRING_type_new(V_ASN1_UNIVERSALSTRING)
732 #define M_ASN1_UNIVERSALSTRING_free(a) ASN1_STRING_free((ASN1_STRING *)a)
733 #define M_i2d_ASN1_UNIVERSALSTRING(a,pp) \
734 i2d_ASN1_bytes((ASN1_STRING *)a,pp,V_ASN1_UNIVERSALSTRING,\
735 V_ASN1_UNIVERSAL)
736 #define M_d2i_ASN1_UNIVERSALSTRING(a,pp,l) \
737 (ASN1_UNIVERSALSTRING *)d2i_ASN1_type_bytes\
738 ((ASN1_STRING **)a,pp,l,B_ASN1_UNIVERSALSTRING)

740 #define M_ASN1_BMPSTRING_new() (ASN1_BMPSTRING *)\
741 ASN1_STRING_type_new(V_ASN1_BMPSTRING)
742 #define M_ASN1_BMPSTRING_free(a) ASN1_STRING_free((ASN1_STRING *)a)
743 #define M_i2d_ASN1_BMPSTRING(a,pp) \
744 i2d_ASN1_bytes((ASN1_STRING *)a,pp,V_ASN1_BMPSTRING,\
745 V_ASN1_UNIVERSAL)
746 #define M_d2i_ASN1_BMPSTRING(a,pp,l) \
747 (ASN1_BMPSTRING *)d2i_ASN1_type_bytes\
748 ((ASN1_STRING **)a,pp,l,B_ASN1_BMPSTRING)

750 #define M_ASN1_VISIBLESTRING_new() (ASN1_VISIBLESTRING *)\
751 ASN1_STRING_type_new(V_ASN1_VISIBLESTRING)
752 #define M_ASN1_VISIBLESTRING_free(a) ASN1_STRING_free((ASN1_STRING *)a)
753 #define M_i2d_ASN1_VISIBLESTRING(a,pp) \
754 i2d_ASN1_bytes((ASN1_STRING *)a,pp,V_ASN1_VISIBLESTRING,\
755 V_ASN1_UNIVERSAL)
756 #define M_d2i_ASN1_VISIBLESTRING(a,pp,l) \
757 (ASN1_VISIBLESTRING *)d2i_ASN1_type_bytes\
758 ((ASN1_STRING **)a,pp,l,B_ASN1_VISIBLESTRING)

760 #define M_ASN1_UTF8STRING_new() (ASN1_UTF8STRING *)\
761 ASN1_STRING_type_new(V_ASN1_UTF8STRING)
762 #define M_ASN1_UTF8STRING_free(a) ASN1_STRING_free((ASN1_STRING *)a)
763 #define M_i2d_ASN1_UTF8STRING(a,pp) \
764 i2d_ASN1_bytes((ASN1_STRING *)a,pp,V_ASN1_UTF8STRING,\
765 V_ASN1_UNIVERSAL)
766 #define M_d2i_ASN1_UTF8STRING(a,pp,l) \
767 (ASN1_UTF8STRING *)d2i_ASN1_type_bytes\
768 ((ASN1_STRING **)a,pp,l,B_ASN1_UTF8STRING)

770 /* for the is_set parameter to i2d_ASN1_SET */
771 #define IS_SEQUENCE 0
772 #define IS_SET 1

774 DECLARE_ASN1_FUNCTIONS_fname(ASN1_TYPE, ASN1_ANY, ASN1_TYPE)

776 int ASN1_TYPE_get(ASN1_TYPE *a);
777 void ASN1_TYPE_set(ASN1_TYPE *a, int type, void *value);
778 int ASN1_TYPE_set1(ASN1_TYPE *a, int type, const void *value);
779 int ASN1_TYPE_cmp(ASN1_TYPE *a, ASN1_TYPE *b);

781 ASN1_OBJECT * ASN1_OBJECT_new(void);
782 void ASN1_OBJECT_free(ASN1_OBJECT *a);
783 int i2d_ASN1_OBJECT(ASN1_OBJECT *a,unsigned char **pp);
784 ASN1_OBJECT * c2i_ASN1_OBJECT(ASN1_OBJECT **a,const unsigned char **pp,
785 long length);
786 ASN1_OBJECT * d2i_ASN1_OBJECT(ASN1_OBJECT **a,const unsigned char **pp,
787 long length);

new/usr/src/lib/openssl/include/openssl/asn1.h 13

789 DECLARE_ASN1_ITEM(ASN1_OBJECT)

791 DECLARE_STACK_OF(ASN1_OBJECT)
792 DECLARE_ASN1_SET_OF(ASN1_OBJECT)

794 ASN1_STRING * ASN1_STRING_new(void);
795 void ASN1_STRING_free(ASN1_STRING *a);
796 int ASN1_STRING_copy(ASN1_STRING *dst, const ASN1_STRING *str);
797 ASN1_STRING * ASN1_STRING_dup(const ASN1_STRING *a);
798 ASN1_STRING * ASN1_STRING_type_new(int type);
799 int ASN1_STRING_cmp(const ASN1_STRING *a, const ASN1_STRING *b);
800 /* Since this is used to store all sorts of things, via macros, for now, make
801 its data void * */
802 int ASN1_STRING_set(ASN1_STRING *str, const void *data, int len);
803 void ASN1_STRING_set0(ASN1_STRING *str, void *data, int len);
804 int ASN1_STRING_length(const ASN1_STRING *x);
805 void ASN1_STRING_length_set(ASN1_STRING *x, int n);
806 int ASN1_STRING_type(ASN1_STRING *x);
807 unsigned char * ASN1_STRING_data(ASN1_STRING *x);

809 DECLARE_ASN1_FUNCTIONS(ASN1_BIT_STRING)
810 int i2c_ASN1_BIT_STRING(ASN1_BIT_STRING *a,unsigned char **pp);
811 ASN1_BIT_STRING *c2i_ASN1_BIT_STRING(ASN1_BIT_STRING **a,const unsigned char **p
812 long length);
813 int ASN1_BIT_STRING_set(ASN1_BIT_STRING *a, unsigned char *d,
814 int length);
815 int ASN1_BIT_STRING_set_bit(ASN1_BIT_STRING *a, int n, int value);
816 int ASN1_BIT_STRING_get_bit(ASN1_BIT_STRING *a, int n);
817 int ASN1_BIT_STRING_check(ASN1_BIT_STRING *a,
818 unsigned char *flags, int flags_len);

820 #ifndef OPENSSL_NO_BIO
821 int ASN1_BIT_STRING_name_print(BIO *out, ASN1_BIT_STRING *bs,
822 BIT_STRING_BITNAME *tbl, int indent);
823 #endif
824 int ASN1_BIT_STRING_num_asc(char *name, BIT_STRING_BITNAME *tbl);
825 int ASN1_BIT_STRING_set_asc(ASN1_BIT_STRING *bs, char *name, int value,
826 BIT_STRING_BITNAME *tbl);

828 int i2d_ASN1_BOOLEAN(int a,unsigned char **pp);
829 int d2i_ASN1_BOOLEAN(int *a,const unsigned char **pp,long length);

831 DECLARE_ASN1_FUNCTIONS(ASN1_INTEGER)
832 int i2c_ASN1_INTEGER(ASN1_INTEGER *a,unsigned char **pp);
833 ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a,const unsigned char **pp,
834 long length);
835 ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a,const unsigned char **pp,
836 long length);
837 ASN1_INTEGER * ASN1_INTEGER_dup(const ASN1_INTEGER *x);
838 int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y);

840 DECLARE_ASN1_FUNCTIONS(ASN1_ENUMERATED)

842 int ASN1_UTCTIME_check(ASN1_UTCTIME *a);
843 ASN1_UTCTIME *ASN1_UTCTIME_set(ASN1_UTCTIME *s,time_t t);
844 ASN1_UTCTIME *ASN1_UTCTIME_adj(ASN1_UTCTIME *s, time_t t,
845 int offset_day, long offset_sec);
846 int ASN1_UTCTIME_set_string(ASN1_UTCTIME *s, const char *str);
847 int ASN1_UTCTIME_cmp_time_t(const ASN1_UTCTIME *s, time_t t);
848 #if 0
849 time_t ASN1_UTCTIME_get(const ASN1_UTCTIME *s);
850 #endif

852 int ASN1_GENERALIZEDTIME_check(ASN1_GENERALIZEDTIME *a);
853 ASN1_GENERALIZEDTIME *ASN1_GENERALIZEDTIME_set(ASN1_GENERALIZEDTIME *s,time_t t)

new/usr/src/lib/openssl/include/openssl/asn1.h 14

854 ASN1_GENERALIZEDTIME *ASN1_GENERALIZEDTIME_adj(ASN1_GENERALIZEDTIME *s,
855 time_t t, int offset_day, long offset_sec);
856 int ASN1_GENERALIZEDTIME_set_string(ASN1_GENERALIZEDTIME *s, const char *str);

858 DECLARE_ASN1_FUNCTIONS(ASN1_OCTET_STRING)
859 ASN1_OCTET_STRING * ASN1_OCTET_STRING_dup(const ASN1_OCTET_STRING *a);
860 int ASN1_OCTET_STRING_cmp(const ASN1_OCTET_STRING *a, const ASN1_OCTET_STRIN
861 int ASN1_OCTET_STRING_set(ASN1_OCTET_STRING *str, const unsigned char *data,

863 DECLARE_ASN1_FUNCTIONS(ASN1_VISIBLESTRING)
864 DECLARE_ASN1_FUNCTIONS(ASN1_UNIVERSALSTRING)
865 DECLARE_ASN1_FUNCTIONS(ASN1_UTF8STRING)
866 DECLARE_ASN1_FUNCTIONS(ASN1_NULL)
867 DECLARE_ASN1_FUNCTIONS(ASN1_BMPSTRING)

869 int UTF8_getc(const unsigned char *str, int len, unsigned long *val);
870 int UTF8_putc(unsigned char *str, int len, unsigned long value);

872 DECLARE_ASN1_FUNCTIONS_name(ASN1_STRING, ASN1_PRINTABLE)

874 DECLARE_ASN1_FUNCTIONS_name(ASN1_STRING, DIRECTORYSTRING)
875 DECLARE_ASN1_FUNCTIONS_name(ASN1_STRING, DISPLAYTEXT)
876 DECLARE_ASN1_FUNCTIONS(ASN1_PRINTABLESTRING)
877 DECLARE_ASN1_FUNCTIONS(ASN1_T61STRING)
878 DECLARE_ASN1_FUNCTIONS(ASN1_IA5STRING)
879 DECLARE_ASN1_FUNCTIONS(ASN1_GENERALSTRING)
880 DECLARE_ASN1_FUNCTIONS(ASN1_UTCTIME)
881 DECLARE_ASN1_FUNCTIONS(ASN1_GENERALIZEDTIME)
882 DECLARE_ASN1_FUNCTIONS(ASN1_TIME)

884 DECLARE_ASN1_ITEM(ASN1_OCTET_STRING_NDEF)

886 ASN1_TIME *ASN1_TIME_set(ASN1_TIME *s,time_t t);
887 ASN1_TIME *ASN1_TIME_adj(ASN1_TIME *s,time_t t,
888 int offset_day, long offset_sec);
889 int ASN1_TIME_check(ASN1_TIME *t);
890 ASN1_GENERALIZEDTIME *ASN1_TIME_to_generalizedtime(ASN1_TIME *t, ASN1_GENERALIZE
891 int ASN1_TIME_set_string(ASN1_TIME *s, const char *str);

893 int i2d_ASN1_SET(STACK_OF(OPENSSL_BLOCK) *a, unsigned char **pp,
894 i2d_of_void *i2d, int ex_tag, int ex_class,
895 int is_set);
896 STACK_OF(OPENSSL_BLOCK) *d2i_ASN1_SET(STACK_OF(OPENSSL_BLOCK) **a,
897 const unsigned char **pp,
898 long length, d2i_of_void *d2i,
899 void (*free_func)(OPENSSL_BLOCK), int ex_tag,
900 int ex_class);

902 #ifndef OPENSSL_NO_BIO
903 int i2a_ASN1_INTEGER(BIO *bp, ASN1_INTEGER *a);
904 int a2i_ASN1_INTEGER(BIO *bp,ASN1_INTEGER *bs,char *buf,int size);
905 int i2a_ASN1_ENUMERATED(BIO *bp, ASN1_ENUMERATED *a);
906 int a2i_ASN1_ENUMERATED(BIO *bp,ASN1_ENUMERATED *bs,char *buf,int size);
907 int i2a_ASN1_OBJECT(BIO *bp,ASN1_OBJECT *a);
908 int a2i_ASN1_STRING(BIO *bp,ASN1_STRING *bs,char *buf,int size);
909 int i2a_ASN1_STRING(BIO *bp, ASN1_STRING *a, int type);
910 #endif
911 int i2t_ASN1_OBJECT(char *buf,int buf_len,ASN1_OBJECT *a);

913 int a2d_ASN1_OBJECT(unsigned char *out,int olen, const char *buf, int num);
914 ASN1_OBJECT *ASN1_OBJECT_create(int nid, unsigned char *data,int len,
915 const char *sn, const char *ln);

917 int ASN1_INTEGER_set(ASN1_INTEGER *a, long v);
918 long ASN1_INTEGER_get(const ASN1_INTEGER *a);
919 ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai);

new/usr/src/lib/openssl/include/openssl/asn1.h 15

920 BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai,BIGNUM *bn);

922 int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v);
923 long ASN1_ENUMERATED_get(ASN1_ENUMERATED *a);
924 ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(BIGNUM *bn, ASN1_ENUMERATED *ai);
925 BIGNUM *ASN1_ENUMERATED_to_BN(ASN1_ENUMERATED *ai,BIGNUM *bn);

927 /* General */
928 /* given a string, return the correct type, max is the maximum length */
929 int ASN1_PRINTABLE_type(const unsigned char *s, int max);

931 int i2d_ASN1_bytes(ASN1_STRING *a, unsigned char **pp, int tag, int xclass);
932 ASN1_STRING *d2i_ASN1_bytes(ASN1_STRING **a, const unsigned char **pp,
933 long length, int Ptag, int Pclass);
934 unsigned long ASN1_tag2bit(int tag);
935 /* type is one or more of the B_ASN1_ values. */
936 ASN1_STRING *d2i_ASN1_type_bytes(ASN1_STRING **a,const unsigned char **pp,
937 long length,int type);

939 /* PARSING */
940 int asn1_Finish(ASN1_CTX *c);
941 int asn1_const_Finish(ASN1_const_CTX *c);

943 /* SPECIALS */
944 int ASN1_get_object(const unsigned char **pp, long *plength, int *ptag,
945 int *pclass, long omax);
946 int ASN1_check_infinite_end(unsigned char **p,long len);
947 int ASN1_const_check_infinite_end(const unsigned char **p,long len);
948 void ASN1_put_object(unsigned char **pp, int constructed, int length,
949 int tag, int xclass);
950 int ASN1_put_eoc(unsigned char **pp);
951 int ASN1_object_size(int constructed, int length, int tag);

953 /* Used to implement other functions */
954 void *ASN1_dup(i2d_of_void *i2d, d2i_of_void *d2i, void *x);

956 #define ASN1_dup_of(type,i2d,d2i,x) \
957 ((type*)ASN1_dup(CHECKED_I2D_OF(type, i2d), \
958 CHECKED_D2I_OF(type, d2i), \
959 CHECKED_PTR_OF(type, x)))

961 #define ASN1_dup_of_const(type,i2d,d2i,x) \
962 ((type*)ASN1_dup(CHECKED_I2D_OF(const type, i2d), \
963 CHECKED_D2I_OF(type, d2i), \
964 CHECKED_PTR_OF(const type, x)))

966 void *ASN1_item_dup(const ASN1_ITEM *it, void *x);

968 /* ASN1 alloc/free macros for when a type is only used internally */

970 #define M_ASN1_new_of(type) (type *)ASN1_item_new(ASN1_ITEM_rptr(type))
971 #define M_ASN1_free_of(x, type) \
972 ASN1_item_free(CHECKED_PTR_OF(type, x), ASN1_ITEM_rptr(type))

974 #ifndef OPENSSL_NO_FP_API
975 void *ASN1_d2i_fp(void *(*xnew)(void), d2i_of_void *d2i, FILE *in, void **x);

977 #define ASN1_d2i_fp_of(type,xnew,d2i,in,x) \
978 ((type*)ASN1_d2i_fp(CHECKED_NEW_OF(type, xnew), \
979 CHECKED_D2I_OF(type, d2i), \
980 in, \
981 CHECKED_PPTR_OF(type, x)))

983 void *ASN1_item_d2i_fp(const ASN1_ITEM *it, FILE *in, void *x);
984 int ASN1_i2d_fp(i2d_of_void *i2d,FILE *out,void *x);

new/usr/src/lib/openssl/include/openssl/asn1.h 16

986 #define ASN1_i2d_fp_of(type,i2d,out,x) \
987 (ASN1_i2d_fp(CHECKED_I2D_OF(type, i2d), \
988 out, \
989 CHECKED_PTR_OF(type, x)))

991 #define ASN1_i2d_fp_of_const(type,i2d,out,x) \
992 (ASN1_i2d_fp(CHECKED_I2D_OF(const type, i2d), \
993 out, \
994 CHECKED_PTR_OF(const type, x)))

996 int ASN1_item_i2d_fp(const ASN1_ITEM *it, FILE *out, void *x);
997 int ASN1_STRING_print_ex_fp(FILE *fp, ASN1_STRING *str, unsigned long flags);
998 #endif

1000 int ASN1_STRING_to_UTF8(unsigned char **out, ASN1_STRING *in);

1002 #ifndef OPENSSL_NO_BIO
1003 void *ASN1_d2i_bio(void *(*xnew)(void), d2i_of_void *d2i, BIO *in, void **x);

1005 #define ASN1_d2i_bio_of(type,xnew,d2i,in,x) \
1006 ((type*)ASN1_d2i_bio(CHECKED_NEW_OF(type, xnew), \
1007 CHECKED_D2I_OF(type, d2i), \
1008 in, \
1009 CHECKED_PPTR_OF(type, x)))

1011 void *ASN1_item_d2i_bio(const ASN1_ITEM *it, BIO *in, void *x);
1012 int ASN1_i2d_bio(i2d_of_void *i2d,BIO *out, unsigned char *x);

1014 #define ASN1_i2d_bio_of(type,i2d,out,x) \
1015 (ASN1_i2d_bio(CHECKED_I2D_OF(type, i2d), \
1016 out, \
1017 CHECKED_PTR_OF(type, x)))

1019 #define ASN1_i2d_bio_of_const(type,i2d,out,x) \
1020 (ASN1_i2d_bio(CHECKED_I2D_OF(const type, i2d), \
1021 out, \
1022 CHECKED_PTR_OF(const type, x)))

1024 int ASN1_item_i2d_bio(const ASN1_ITEM *it, BIO *out, void *x);
1025 int ASN1_UTCTIME_print(BIO *fp, const ASN1_UTCTIME *a);
1026 int ASN1_GENERALIZEDTIME_print(BIO *fp, const ASN1_GENERALIZEDTIME *a);
1027 int ASN1_TIME_print(BIO *fp, const ASN1_TIME *a);
1028 int ASN1_STRING_print(BIO *bp, const ASN1_STRING *v);
1029 int ASN1_STRING_print_ex(BIO *out, ASN1_STRING *str, unsigned long flags);
1030 int ASN1_bn_print(BIO *bp, const char *number, const BIGNUM *num,
1031 unsigned char *buf, int off);
1032 int ASN1_parse(BIO *bp,const unsigned char *pp,long len,int indent);
1033 int ASN1_parse_dump(BIO *bp,const unsigned char *pp,long len,int indent,int dump
1034 #endif
1035 const char *ASN1_tag2str(int tag);

1037 /* Used to load and write netscape format cert */

1039 DECLARE_ASN1_FUNCTIONS(NETSCAPE_X509)

1041 int ASN1_UNIVERSALSTRING_to_string(ASN1_UNIVERSALSTRING *s);

1043 int ASN1_TYPE_set_octetstring(ASN1_TYPE *a,
1044 unsigned char *data, int len);
1045 int ASN1_TYPE_get_octetstring(ASN1_TYPE *a,
1046 unsigned char *data, int max_len);
1047 int ASN1_TYPE_set_int_octetstring(ASN1_TYPE *a, long num,
1048 unsigned char *data, int len);
1049 int ASN1_TYPE_get_int_octetstring(ASN1_TYPE *a,long *num,
1050 unsigned char *data, int max_len);

new/usr/src/lib/openssl/include/openssl/asn1.h 17

1052 STACK_OF(OPENSSL_BLOCK) *ASN1_seq_unpack(const unsigned char *buf, int len,
1053 d2i_of_void *d2i, void (*free_func)(OPENSSL_BLO
1054 unsigned char *ASN1_seq_pack(STACK_OF(OPENSSL_BLOCK) *safes, i2d_of_void *i2d,
1055 unsigned char **buf, int *len);
1056 void *ASN1_unpack_string(ASN1_STRING *oct, d2i_of_void *d2i);
1057 void *ASN1_item_unpack(ASN1_STRING *oct, const ASN1_ITEM *it);
1058 ASN1_STRING *ASN1_pack_string(void *obj, i2d_of_void *i2d,
1059 ASN1_OCTET_STRING **oct);

1061 #define ASN1_pack_string_of(type,obj,i2d,oct) \
1062 (ASN1_pack_string(CHECKED_PTR_OF(type, obj), \
1063 CHECKED_I2D_OF(type, i2d), \
1064 oct))

1066 ASN1_STRING *ASN1_item_pack(void *obj, const ASN1_ITEM *it, ASN1_OCTET_STRING **

1068 void ASN1_STRING_set_default_mask(unsigned long mask);
1069 int ASN1_STRING_set_default_mask_asc(const char *p);
1070 unsigned long ASN1_STRING_get_default_mask(void);
1071 int ASN1_mbstring_copy(ASN1_STRING **out, const unsigned char *in, int len,
1072 int inform, unsigned long mask);
1073 int ASN1_mbstring_ncopy(ASN1_STRING **out, const unsigned char *in, int len,
1074 int inform, unsigned long mask,
1075 long minsize, long maxsize);

1077 ASN1_STRING *ASN1_STRING_set_by_NID(ASN1_STRING **out,
1078 const unsigned char *in, int inlen, int inform, int nid);
1079 ASN1_STRING_TABLE *ASN1_STRING_TABLE_get(int nid);
1080 int ASN1_STRING_TABLE_add(int, long, long, unsigned long, unsigned long);
1081 void ASN1_STRING_TABLE_cleanup(void);

1083 /* ASN1 template functions */

1085 /* Old API compatible functions */
1086 ASN1_VALUE *ASN1_item_new(const ASN1_ITEM *it);
1087 void ASN1_item_free(ASN1_VALUE *val, const ASN1_ITEM *it);
1088 ASN1_VALUE * ASN1_item_d2i(ASN1_VALUE **val, const unsigned char **in, long len,
1089 int ASN1_item_i2d(ASN1_VALUE *val, unsigned char **out, const ASN1_ITEM *it);
1090 int ASN1_item_ndef_i2d(ASN1_VALUE *val, unsigned char **out, const ASN1_ITEM *it

1092 void ASN1_add_oid_module(void);

1094 ASN1_TYPE *ASN1_generate_nconf(char *str, CONF *nconf);
1095 ASN1_TYPE *ASN1_generate_v3(char *str, X509V3_CTX *cnf);

1097 /* ASN1 Print flags */

1099 /* Indicate missing OPTIONAL fields */
1100 #define ASN1_PCTX_FLAGS_SHOW_ABSENT 0x001
1101 /* Mark start and end of SEQUENCE */
1102 #define ASN1_PCTX_FLAGS_SHOW_SEQUENCE 0x002
1103 /* Mark start and end of SEQUENCE/SET OF */
1104 #define ASN1_PCTX_FLAGS_SHOW_SSOF 0x004
1105 /* Show the ASN1 type of primitives */
1106 #define ASN1_PCTX_FLAGS_SHOW_TYPE 0x008
1107 /* Don’t show ASN1 type of ANY */
1108 #define ASN1_PCTX_FLAGS_NO_ANY_TYPE 0x010
1109 /* Don’t show ASN1 type of MSTRINGs */
1110 #define ASN1_PCTX_FLAGS_NO_MSTRING_TYPE 0x020
1111 /* Don’t show field names in SEQUENCE */
1112 #define ASN1_PCTX_FLAGS_NO_FIELD_NAME 0x040
1113 /* Show structure names of each SEQUENCE field */
1114 #define ASN1_PCTX_FLAGS_SHOW_FIELD_STRUCT_NAME 0x080
1115 /* Don’t show structure name even at top level */
1116 #define ASN1_PCTX_FLAGS_NO_STRUCT_NAME 0x100

new/usr/src/lib/openssl/include/openssl/asn1.h 18

1118 int ASN1_item_print(BIO *out, ASN1_VALUE *ifld, int indent,
1119 const ASN1_ITEM *it, const ASN1_PCTX *pctx);
1120 ASN1_PCTX *ASN1_PCTX_new(void);
1121 void ASN1_PCTX_free(ASN1_PCTX *p);
1122 unsigned long ASN1_PCTX_get_flags(ASN1_PCTX *p);
1123 void ASN1_PCTX_set_flags(ASN1_PCTX *p, unsigned long flags);
1124 unsigned long ASN1_PCTX_get_nm_flags(ASN1_PCTX *p);
1125 void ASN1_PCTX_set_nm_flags(ASN1_PCTX *p, unsigned long flags);
1126 unsigned long ASN1_PCTX_get_cert_flags(ASN1_PCTX *p);
1127 void ASN1_PCTX_set_cert_flags(ASN1_PCTX *p, unsigned long flags);
1128 unsigned long ASN1_PCTX_get_oid_flags(ASN1_PCTX *p);
1129 void ASN1_PCTX_set_oid_flags(ASN1_PCTX *p, unsigned long flags);
1130 unsigned long ASN1_PCTX_get_str_flags(ASN1_PCTX *p);
1131 void ASN1_PCTX_set_str_flags(ASN1_PCTX *p, unsigned long flags);

1133 BIO_METHOD *BIO_f_asn1(void);

1135 BIO *BIO_new_NDEF(BIO *out, ASN1_VALUE *val, const ASN1_ITEM *it);

1137 int i2d_ASN1_bio_stream(BIO *out, ASN1_VALUE *val, BIO *in, int flags,
1138 const ASN1_ITEM *it);
1139 int PEM_write_bio_ASN1_stream(BIO *out, ASN1_VALUE *val, BIO *in, int flags,
1140 const char *hdr,
1141 const ASN1_ITEM *it);
1142 int SMIME_write_ASN1(BIO *bio, ASN1_VALUE *val, BIO *data, int flags,
1143 int ctype_nid, int econt_nid,
1144 STACK_OF(X509_ALGOR) *mdalgs,
1145 const ASN1_ITEM *it);
1146 ASN1_VALUE *SMIME_read_ASN1(BIO *bio, BIO **bcont, const ASN1_ITEM *it);
1147 int SMIME_crlf_copy(BIO *in, BIO *out, int flags);
1148 int SMIME_text(BIO *in, BIO *out);

1150 /* BEGIN ERROR CODES */
1151 /* The following lines are auto generated by the script mkerr.pl. Any changes
1152 * made after this point may be overwritten when the script is next run.
1153 */
1154 void ERR_load_ASN1_strings(void);

1156 /* Error codes for the ASN1 functions. */

1158 /* Function codes. */
1159 #define ASN1_F_A2D_ASN1_OBJECT 100
1160 #define ASN1_F_A2I_ASN1_ENUMERATED 101
1161 #define ASN1_F_A2I_ASN1_INTEGER 102
1162 #define ASN1_F_A2I_ASN1_STRING 103
1163 #define ASN1_F_APPEND_EXP 176
1164 #define ASN1_F_ASN1_BIT_STRING_SET_BIT 183
1165 #define ASN1_F_ASN1_CB 177
1166 #define ASN1_F_ASN1_CHECK_TLEN 104
1167 #define ASN1_F_ASN1_COLLATE_PRIMITIVE 105
1168 #define ASN1_F_ASN1_COLLECT 106
1169 #define ASN1_F_ASN1_D2I_EX_PRIMITIVE 108
1170 #define ASN1_F_ASN1_D2I_FP 109
1171 #define ASN1_F_ASN1_D2I_READ_BIO 107
1172 #define ASN1_F_ASN1_DIGEST 184
1173 #define ASN1_F_ASN1_DO_ADB 110
1174 #define ASN1_F_ASN1_DUP 111
1175 #define ASN1_F_ASN1_ENUMERATED_SET 112
1176 #define ASN1_F_ASN1_ENUMERATED_TO_BN 113
1177 #define ASN1_F_ASN1_EX_C2I 204
1178 #define ASN1_F_ASN1_FIND_END 190
1179 #define ASN1_F_ASN1_GENERALIZEDTIME_ADJ 216
1180 #define ASN1_F_ASN1_GENERALIZEDTIME_SET 185
1181 #define ASN1_F_ASN1_GENERATE_V3 178
1182 #define ASN1_F_ASN1_GET_OBJECT 114
1183 #define ASN1_F_ASN1_HEADER_NEW 115

new/usr/src/lib/openssl/include/openssl/asn1.h 19

1184 #define ASN1_F_ASN1_I2D_BIO 116
1185 #define ASN1_F_ASN1_I2D_FP 117
1186 #define ASN1_F_ASN1_INTEGER_SET 118
1187 #define ASN1_F_ASN1_INTEGER_TO_BN 119
1188 #define ASN1_F_ASN1_ITEM_D2I_FP 206
1189 #define ASN1_F_ASN1_ITEM_DUP 191
1190 #define ASN1_F_ASN1_ITEM_EX_COMBINE_NEW 121
1191 #define ASN1_F_ASN1_ITEM_EX_D2I 120
1192 #define ASN1_F_ASN1_ITEM_I2D_BIO 192
1193 #define ASN1_F_ASN1_ITEM_I2D_FP 193
1194 #define ASN1_F_ASN1_ITEM_PACK 198
1195 #define ASN1_F_ASN1_ITEM_SIGN 195
1196 #define ASN1_F_ASN1_ITEM_SIGN_CTX 220
1197 #define ASN1_F_ASN1_ITEM_UNPACK 199
1198 #define ASN1_F_ASN1_ITEM_VERIFY 197
1199 #define ASN1_F_ASN1_MBSTRING_NCOPY 122
1200 #define ASN1_F_ASN1_OBJECT_NEW 123
1201 #define ASN1_F_ASN1_OUTPUT_DATA 214
1202 #define ASN1_F_ASN1_PACK_STRING 124
1203 #define ASN1_F_ASN1_PCTX_NEW 205
1204 #define ASN1_F_ASN1_PKCS5_PBE_SET 125
1205 #define ASN1_F_ASN1_SEQ_PACK 126
1206 #define ASN1_F_ASN1_SEQ_UNPACK 127
1207 #define ASN1_F_ASN1_SIGN 128
1208 #define ASN1_F_ASN1_STR2TYPE 179
1209 #define ASN1_F_ASN1_STRING_SET 186
1210 #define ASN1_F_ASN1_STRING_TABLE_ADD 129
1211 #define ASN1_F_ASN1_STRING_TYPE_NEW 130
1212 #define ASN1_F_ASN1_TEMPLATE_EX_D2I 132
1213 #define ASN1_F_ASN1_TEMPLATE_NEW 133
1214 #define ASN1_F_ASN1_TEMPLATE_NOEXP_D2I 131
1215 #define ASN1_F_ASN1_TIME_ADJ 217
1216 #define ASN1_F_ASN1_TIME_SET 175
1217 #define ASN1_F_ASN1_TYPE_GET_INT_OCTETSTRING 134
1218 #define ASN1_F_ASN1_TYPE_GET_OCTETSTRING 135
1219 #define ASN1_F_ASN1_UNPACK_STRING 136
1220 #define ASN1_F_ASN1_UTCTIME_ADJ 218
1221 #define ASN1_F_ASN1_UTCTIME_SET 187
1222 #define ASN1_F_ASN1_VERIFY 137
1223 #define ASN1_F_B64_READ_ASN1 209
1224 #define ASN1_F_B64_WRITE_ASN1 210
1225 #define ASN1_F_BIO_NEW_NDEF 208
1226 #define ASN1_F_BITSTR_CB 180
1227 #define ASN1_F_BN_TO_ASN1_ENUMERATED 138
1228 #define ASN1_F_BN_TO_ASN1_INTEGER 139
1229 #define ASN1_F_C2I_ASN1_BIT_STRING 189
1230 #define ASN1_F_C2I_ASN1_INTEGER 194
1231 #define ASN1_F_C2I_ASN1_OBJECT 196
1232 #define ASN1_F_COLLECT_DATA 140
1233 #define ASN1_F_D2I_ASN1_BIT_STRING 141
1234 #define ASN1_F_D2I_ASN1_BOOLEAN 142
1235 #define ASN1_F_D2I_ASN1_BYTES 143
1236 #define ASN1_F_D2I_ASN1_GENERALIZEDTIME 144
1237 #define ASN1_F_D2I_ASN1_HEADER 145
1238 #define ASN1_F_D2I_ASN1_INTEGER 146
1239 #define ASN1_F_D2I_ASN1_OBJECT 147
1240 #define ASN1_F_D2I_ASN1_SET 148
1241 #define ASN1_F_D2I_ASN1_TYPE_BYTES 149
1242 #define ASN1_F_D2I_ASN1_UINTEGER 150
1243 #define ASN1_F_D2I_ASN1_UTCTIME 151
1244 #define ASN1_F_D2I_AUTOPRIVATEKEY 207
1245 #define ASN1_F_D2I_NETSCAPE_RSA 152
1246 #define ASN1_F_D2I_NETSCAPE_RSA_2 153
1247 #define ASN1_F_D2I_PRIVATEKEY 154
1248 #define ASN1_F_D2I_PUBLICKEY 155
1249 #define ASN1_F_D2I_RSA_NET 200

new/usr/src/lib/openssl/include/openssl/asn1.h 20

1250 #define ASN1_F_D2I_RSA_NET_2 201
1251 #define ASN1_F_D2I_X509 156
1252 #define ASN1_F_D2I_X509_CINF 157
1253 #define ASN1_F_D2I_X509_PKEY 159
1254 #define ASN1_F_I2D_ASN1_BIO_STREAM 211
1255 #define ASN1_F_I2D_ASN1_SET 188
1256 #define ASN1_F_I2D_ASN1_TIME 160
1257 #define ASN1_F_I2D_DSA_PUBKEY 161
1258 #define ASN1_F_I2D_EC_PUBKEY 181
1259 #define ASN1_F_I2D_PRIVATEKEY 163
1260 #define ASN1_F_I2D_PUBLICKEY 164
1261 #define ASN1_F_I2D_RSA_NET 162
1262 #define ASN1_F_I2D_RSA_PUBKEY 165
1263 #define ASN1_F_LONG_C2I 166
1264 #define ASN1_F_OID_MODULE_INIT 174
1265 #define ASN1_F_PARSE_TAGGING 182
1266 #define ASN1_F_PKCS5_PBE2_SET_IV 167
1267 #define ASN1_F_PKCS5_PBE_SET 202
1268 #define ASN1_F_PKCS5_PBE_SET0_ALGOR 215
1269 #define ASN1_F_PKCS5_PBKDF2_SET 219
1270 #define ASN1_F_SMIME_READ_ASN1 212
1271 #define ASN1_F_SMIME_TEXT 213
1272 #define ASN1_F_X509_CINF_NEW 168
1273 #define ASN1_F_X509_CRL_ADD0_REVOKED 169
1274 #define ASN1_F_X509_INFO_NEW 170
1275 #define ASN1_F_X509_NAME_ENCODE 203
1276 #define ASN1_F_X509_NAME_EX_D2I 158
1277 #define ASN1_F_X509_NAME_EX_NEW 171
1278 #define ASN1_F_X509_NEW 172
1279 #define ASN1_F_X509_PKEY_NEW 173

1281 /* Reason codes. */
1282 #define ASN1_R_ADDING_OBJECT 171
1283 #define ASN1_R_ASN1_PARSE_ERROR 203
1284 #define ASN1_R_ASN1_SIG_PARSE_ERROR 204
1285 #define ASN1_R_AUX_ERROR 100
1286 #define ASN1_R_BAD_CLASS 101
1287 #define ASN1_R_BAD_OBJECT_HEADER 102
1288 #define ASN1_R_BAD_PASSWORD_READ 103
1289 #define ASN1_R_BAD_TAG 104
1290 #define ASN1_R_BMPSTRING_IS_WRONG_LENGTH 214
1291 #define ASN1_R_BN_LIB 105
1292 #define ASN1_R_BOOLEAN_IS_WRONG_LENGTH 106
1293 #define ASN1_R_BUFFER_TOO_SMALL 107
1294 #define ASN1_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER 108
1295 #define ASN1_R_CONTEXT_NOT_INITIALISED 217
1296 #define ASN1_R_DATA_IS_WRONG 109
1297 #define ASN1_R_DECODE_ERROR 110
1298 #define ASN1_R_DECODING_ERROR 111
1299 #define ASN1_R_DEPTH_EXCEEDED 174
1300 #define ASN1_R_DIGEST_AND_KEY_TYPE_NOT_SUPPORTED 198
1301 #define ASN1_R_ENCODE_ERROR 112
1302 #define ASN1_R_ERROR_GETTING_TIME 173
1303 #define ASN1_R_ERROR_LOADING_SECTION 172
1304 #define ASN1_R_ERROR_PARSING_SET_ELEMENT 113
1305 #define ASN1_R_ERROR_SETTING_CIPHER_PARAMS 114
1306 #define ASN1_R_EXPECTING_AN_INTEGER 115
1307 #define ASN1_R_EXPECTING_AN_OBJECT 116
1308 #define ASN1_R_EXPECTING_A_BOOLEAN 117
1309 #define ASN1_R_EXPECTING_A_TIME 118
1310 #define ASN1_R_EXPLICIT_LENGTH_MISMATCH 119
1311 #define ASN1_R_EXPLICIT_TAG_NOT_CONSTRUCTED 120
1312 #define ASN1_R_FIELD_MISSING 121
1313 #define ASN1_R_FIRST_NUM_TOO_LARGE 122
1314 #define ASN1_R_HEADER_TOO_LONG 123
1315 #define ASN1_R_ILLEGAL_BITSTRING_FORMAT 175

new/usr/src/lib/openssl/include/openssl/asn1.h 21

1316 #define ASN1_R_ILLEGAL_BOOLEAN 176
1317 #define ASN1_R_ILLEGAL_CHARACTERS 124
1318 #define ASN1_R_ILLEGAL_FORMAT 177
1319 #define ASN1_R_ILLEGAL_HEX 178
1320 #define ASN1_R_ILLEGAL_IMPLICIT_TAG 179
1321 #define ASN1_R_ILLEGAL_INTEGER 180
1322 #define ASN1_R_ILLEGAL_NESTED_TAGGING 181
1323 #define ASN1_R_ILLEGAL_NULL 125
1324 #define ASN1_R_ILLEGAL_NULL_VALUE 182
1325 #define ASN1_R_ILLEGAL_OBJECT 183
1326 #define ASN1_R_ILLEGAL_OPTIONAL_ANY 126
1327 #define ASN1_R_ILLEGAL_OPTIONS_ON_ITEM_TEMPLATE 170
1328 #define ASN1_R_ILLEGAL_TAGGED_ANY 127
1329 #define ASN1_R_ILLEGAL_TIME_VALUE 184
1330 #define ASN1_R_INTEGER_NOT_ASCII_FORMAT 185
1331 #define ASN1_R_INTEGER_TOO_LARGE_FOR_LONG 128
1332 #define ASN1_R_INVALID_BMPSTRING_LENGTH 129
1333 #define ASN1_R_INVALID_DIGIT 130
1334 #define ASN1_R_INVALID_MIME_TYPE 205
1335 #define ASN1_R_INVALID_MODIFIER 186
1336 #define ASN1_R_INVALID_NUMBER 187
1337 #define ASN1_R_INVALID_OBJECT_ENCODING 216
1338 #define ASN1_R_INVALID_SEPARATOR 131
1339 #define ASN1_R_INVALID_TIME_FORMAT 132
1340 #define ASN1_R_INVALID_UNIVERSALSTRING_LENGTH 133
1341 #define ASN1_R_INVALID_UTF8STRING 134
1342 #define ASN1_R_IV_TOO_LARGE 135
1343 #define ASN1_R_LENGTH_ERROR 136
1344 #define ASN1_R_LIST_ERROR 188
1345 #define ASN1_R_MIME_NO_CONTENT_TYPE 206
1346 #define ASN1_R_MIME_PARSE_ERROR 207
1347 #define ASN1_R_MIME_SIG_PARSE_ERROR 208
1348 #define ASN1_R_MISSING_EOC 137
1349 #define ASN1_R_MISSING_SECOND_NUMBER 138
1350 #define ASN1_R_MISSING_VALUE 189
1351 #define ASN1_R_MSTRING_NOT_UNIVERSAL 139
1352 #define ASN1_R_MSTRING_WRONG_TAG 140
1353 #define ASN1_R_NESTED_ASN1_STRING 197
1354 #define ASN1_R_NON_HEX_CHARACTERS 141
1355 #define ASN1_R_NOT_ASCII_FORMAT 190
1356 #define ASN1_R_NOT_ENOUGH_DATA 142
1357 #define ASN1_R_NO_CONTENT_TYPE 209
1358 #define ASN1_R_NO_DEFAULT_DIGEST 201
1359 #define ASN1_R_NO_MATCHING_CHOICE_TYPE 143
1360 #define ASN1_R_NO_MULTIPART_BODY_FAILURE 210
1361 #define ASN1_R_NO_MULTIPART_BOUNDARY 211
1362 #define ASN1_R_NO_SIG_CONTENT_TYPE 212
1363 #define ASN1_R_NULL_IS_WRONG_LENGTH 144
1364 #define ASN1_R_OBJECT_NOT_ASCII_FORMAT 191
1365 #define ASN1_R_ODD_NUMBER_OF_CHARS 145
1366 #define ASN1_R_PRIVATE_KEY_HEADER_MISSING 146
1367 #define ASN1_R_SECOND_NUMBER_TOO_LARGE 147
1368 #define ASN1_R_SEQUENCE_LENGTH_MISMATCH 148
1369 #define ASN1_R_SEQUENCE_NOT_CONSTRUCTED 149
1370 #define ASN1_R_SEQUENCE_OR_SET_NEEDS_CONFIG 192
1371 #define ASN1_R_SHORT_LINE 150
1372 #define ASN1_R_SIG_INVALID_MIME_TYPE 213
1373 #define ASN1_R_STREAMING_NOT_SUPPORTED 202
1374 #define ASN1_R_STRING_TOO_LONG 151
1375 #define ASN1_R_STRING_TOO_SHORT 152
1376 #define ASN1_R_TAG_VALUE_TOO_HIGH 153
1377 #define ASN1_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD 154
1378 #define ASN1_R_TIME_NOT_ASCII_FORMAT 193
1379 #define ASN1_R_TOO_LONG 155
1380 #define ASN1_R_TYPE_NOT_CONSTRUCTED 156
1381 #define ASN1_R_UNABLE_TO_DECODE_RSA_KEY 157

new/usr/src/lib/openssl/include/openssl/asn1.h 22

1382 #define ASN1_R_UNABLE_TO_DECODE_RSA_PRIVATE_KEY 158
1383 #define ASN1_R_UNEXPECTED_EOC 159
1384 #define ASN1_R_UNIVERSALSTRING_IS_WRONG_LENGTH 215
1385 #define ASN1_R_UNKNOWN_FORMAT 160
1386 #define ASN1_R_UNKNOWN_MESSAGE_DIGEST_ALGORITHM 161
1387 #define ASN1_R_UNKNOWN_OBJECT_TYPE 162
1388 #define ASN1_R_UNKNOWN_PUBLIC_KEY_TYPE 163
1389 #define ASN1_R_UNKNOWN_SIGNATURE_ALGORITHM 199
1390 #define ASN1_R_UNKNOWN_TAG 194
1391 #define ASN1_R_UNKOWN_FORMAT 195
1392 #define ASN1_R_UNSUPPORTED_ANY_DEFINED_BY_TYPE 164
1393 #define ASN1_R_UNSUPPORTED_CIPHER 165
1394 #define ASN1_R_UNSUPPORTED_ENCRYPTION_ALGORITHM 166
1395 #define ASN1_R_UNSUPPORTED_PUBLIC_KEY_TYPE 167
1396 #define ASN1_R_UNSUPPORTED_TYPE 196
1397 #define ASN1_R_WRONG_PUBLIC_KEY_TYPE 200
1398 #define ASN1_R_WRONG_TAG 168
1399 #define ASN1_R_WRONG_TYPE 169

1401 #ifdef __cplusplus
1402 }
1403 #endif
1404 #endif

new/usr/src/lib/openssl/include/openssl/asn1_mac.h 1

**
 19143 Fri May 30 18:31:17 2014
new/usr/src/lib/openssl/include/openssl/asn1_mac.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/asn1_mac.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_ASN1_MAC_H
60 #define HEADER_ASN1_MAC_H

new/usr/src/lib/openssl/include/openssl/asn1_mac.h 2

62 #include <openssl/asn1.h>

64 #ifdef __cplusplus
65 extern "C" {
66 #endif

68 #ifndef ASN1_MAC_ERR_LIB
69 #define ASN1_MAC_ERR_LIB ERR_LIB_ASN1
70 #endif

72 #define ASN1_MAC_H_err(f,r,line) \
73 ERR_PUT_error(ASN1_MAC_ERR_LIB,(f),(r),__FILE__,(line))

75 #define M_ASN1_D2I_vars(a,type,func) \
76 ASN1_const_CTX c; \
77 type ret=NULL; \
78 \
79 c.pp=(const unsigned char **)pp; \
80 c.q= *(const unsigned char **)pp; \
81 c.error=ERR_R_NESTED_ASN1_ERROR; \
82 if ((a == NULL) || ((*a) == NULL)) \
83 { if ((ret=(type)func()) == NULL) \
84 { c.line=__LINE__; goto err; } } \
85 else ret=(*a);

87 #define M_ASN1_D2I_Init() \
88 c.p= *(const unsigned char **)pp; \
89 c.max=(length == 0)?0:(c.p+length);

91 #define M_ASN1_D2I_Finish_2(a) \
92 if (!asn1_const_Finish(&c)) \
93 { c.line=__LINE__; goto err; } \
94 *(const unsigned char **)pp=c.p; \
95 if (a != NULL) (*a)=ret; \
96 return(ret);

98 #define M_ASN1_D2I_Finish(a,func,e) \
99 M_ASN1_D2I_Finish_2(a); \
100 err:\
101 ASN1_MAC_H_err((e),c.error,c.line); \
102 asn1_add_error(*(const unsigned char **)pp,(int)(c.q- *pp)); \
103 if ((ret != NULL) && ((a == NULL) || (*a != ret))) func(ret); \
104 return(NULL)

106 #define M_ASN1_D2I_start_sequence() \
107 if (!asn1_GetSequence(&c,&length)) \
108 { c.line=__LINE__; goto err; }
109 /* Begin reading ASN1 without a surrounding sequence */
110 #define M_ASN1_D2I_begin() \
111 c.slen = length;

113 /* End reading ASN1 with no check on length */
114 #define M_ASN1_D2I_Finish_nolen(a, func, e) \
115 *pp=c.p; \
116 if (a != NULL) (*a)=ret; \
117 return(ret); \
118 err:\
119 ASN1_MAC_H_err((e),c.error,c.line); \
120 asn1_add_error(*pp,(int)(c.q- *pp)); \
121 if ((ret != NULL) && ((a == NULL) || (*a != ret))) func(ret); \
122 return(NULL)

124 #define M_ASN1_D2I_end_sequence() \
125 (((c.inf&1) == 0)?(c.slen <= 0): \
126 (c.eos=ASN1_const_check_infinite_end(&c.p,c.slen)))

new/usr/src/lib/openssl/include/openssl/asn1_mac.h 3

128 /* Don’t use this with d2i_ASN1_BOOLEAN() */
129 #define M_ASN1_D2I_get(b, func) \
130 c.q=c.p; \
131 if (func(&(b),&c.p,c.slen) == NULL) \
132 {c.line=__LINE__; goto err; } \
133 c.slen-=(c.p-c.q);

135 /* Don’t use this with d2i_ASN1_BOOLEAN() */
136 #define M_ASN1_D2I_get_x(type,b,func) \
137 c.q=c.p; \
138 if (((D2I_OF(type))func)(&(b),&c.p,c.slen) == NULL) \
139 {c.line=__LINE__; goto err; } \
140 c.slen-=(c.p-c.q);

142 /* use this instead () */
143 #define M_ASN1_D2I_get_int(b,func) \
144 c.q=c.p; \
145 if (func(&(b),&c.p,c.slen) < 0) \
146 {c.line=__LINE__; goto err; } \
147 c.slen-=(c.p-c.q);

149 #define M_ASN1_D2I_get_opt(b,func,type) \
150 if ((c.slen != 0) && ((M_ASN1_next & (~V_ASN1_CONSTRUCTED)) \
151 == (V_ASN1_UNIVERSAL|(type)))) \
152 { \
153 M_ASN1_D2I_get(b,func); \
154 }

156 #define M_ASN1_D2I_get_int_opt(b,func,type) \
157 if ((c.slen != 0) && ((M_ASN1_next & (~V_ASN1_CONSTRUCTED)) \
158 == (V_ASN1_UNIVERSAL|(type)))) \
159 { \
160 M_ASN1_D2I_get_int(b,func); \
161 }

163 #define M_ASN1_D2I_get_imp(b,func, type) \
164 M_ASN1_next=(_tmp& V_ASN1_CONSTRUCTED)|type; \
165 c.q=c.p; \
166 if (func(&(b),&c.p,c.slen) == NULL) \
167 {c.line=__LINE__; M_ASN1_next_prev = _tmp; goto err; } \
168 c.slen-=(c.p-c.q);\
169 M_ASN1_next_prev=_tmp;

171 #define M_ASN1_D2I_get_IMP_opt(b,func,tag,type) \
172 if ((c.slen != 0) && ((M_ASN1_next & (~V_ASN1_CONSTRUCTED)) == \
173 (V_ASN1_CONTEXT_SPECIFIC|(tag)))) \
174 { \
175 unsigned char _tmp = M_ASN1_next; \
176 M_ASN1_D2I_get_imp(b,func, type);\
177 }

179 #define M_ASN1_D2I_get_set(r,func,free_func) \
180 M_ASN1_D2I_get_imp_set(r,func,free_func, \
181 V_ASN1_SET,V_ASN1_UNIVERSAL);

183 #define M_ASN1_D2I_get_set_type(type,r,func,free_func) \
184 M_ASN1_D2I_get_imp_set_type(type,r,func,free_func, \
185 V_ASN1_SET,V_ASN1_UNIVERSAL);

187 #define M_ASN1_D2I_get_set_opt(r,func,free_func) \
188 if ((c.slen != 0) && (M_ASN1_next == (V_ASN1_UNIVERSAL| \
189 V_ASN1_CONSTRUCTED|V_ASN1_SET)))\
190 { M_ASN1_D2I_get_set(r,func,free_func); }

192 #define M_ASN1_D2I_get_set_opt_type(type,r,func,free_func) \
193 if ((c.slen != 0) && (M_ASN1_next == (V_ASN1_UNIVERSAL| \

new/usr/src/lib/openssl/include/openssl/asn1_mac.h 4

194 V_ASN1_CONSTRUCTED|V_ASN1_SET)))\
195 { M_ASN1_D2I_get_set_type(type,r,func,free_func); }

197 #define M_ASN1_I2D_len_SET_opt(a,f) \
198 if ((a != NULL) && (sk_num(a) != 0)) \
199 M_ASN1_I2D_len_SET(a,f);

201 #define M_ASN1_I2D_put_SET_opt(a,f) \
202 if ((a != NULL) && (sk_num(a) != 0)) \
203 M_ASN1_I2D_put_SET(a,f);

205 #define M_ASN1_I2D_put_SEQUENCE_opt(a,f) \
206 if ((a != NULL) && (sk_num(a) != 0)) \
207 M_ASN1_I2D_put_SEQUENCE(a,f);

209 #define M_ASN1_I2D_put_SEQUENCE_opt_type(type,a,f) \
210 if ((a != NULL) && (sk_##type##_num(a) != 0)) \
211 M_ASN1_I2D_put_SEQUENCE_type(type,a,f);

213 #define M_ASN1_D2I_get_IMP_set_opt(b,func,free_func,tag) \
214 if ((c.slen != 0) && \
215 (M_ASN1_next == \
216 (V_ASN1_CONTEXT_SPECIFIC|V_ASN1_CONSTRUCTED|(tag))))\
217 { \
218 M_ASN1_D2I_get_imp_set(b,func,free_func,\
219 tag,V_ASN1_CONTEXT_SPECIFIC); \
220 }

222 #define M_ASN1_D2I_get_IMP_set_opt_type(type,b,func,free_func,tag) \
223 if ((c.slen != 0) && \
224 (M_ASN1_next == \
225 (V_ASN1_CONTEXT_SPECIFIC|V_ASN1_CONSTRUCTED|(tag))))\
226 { \
227 M_ASN1_D2I_get_imp_set_type(type,b,func,free_func,\
228 tag,V_ASN1_CONTEXT_SPECIFIC); \
229 }

231 #define M_ASN1_D2I_get_seq(r,func,free_func) \
232 M_ASN1_D2I_get_imp_set(r,func,free_func,\
233 V_ASN1_SEQUENCE,V_ASN1_UNIVERSAL);

235 #define M_ASN1_D2I_get_seq_type(type,r,func,free_func) \
236 M_ASN1_D2I_get_imp_set_type(type,r,func,free_func,\
237 V_ASN1_SEQUENCE,V_ASN1_UNIVERSAL)

239 #define M_ASN1_D2I_get_seq_opt(r,func,free_func) \
240 if ((c.slen != 0) && (M_ASN1_next == (V_ASN1_UNIVERSAL| \
241 V_ASN1_CONSTRUCTED|V_ASN1_SEQUENCE)))\
242 { M_ASN1_D2I_get_seq(r,func,free_func); }

244 #define M_ASN1_D2I_get_seq_opt_type(type,r,func,free_func) \
245 if ((c.slen != 0) && (M_ASN1_next == (V_ASN1_UNIVERSAL| \
246 V_ASN1_CONSTRUCTED|V_ASN1_SEQUENCE)))\
247 { M_ASN1_D2I_get_seq_type(type,r,func,free_func); }

249 #define M_ASN1_D2I_get_IMP_set(r,func,free_func,x) \
250 M_ASN1_D2I_get_imp_set(r,func,free_func,\
251 x,V_ASN1_CONTEXT_SPECIFIC);

253 #define M_ASN1_D2I_get_IMP_set_type(type,r,func,free_func,x) \
254 M_ASN1_D2I_get_imp_set_type(type,r,func,free_func,\
255 x,V_ASN1_CONTEXT_SPECIFIC);

257 #define M_ASN1_D2I_get_imp_set(r,func,free_func,a,b) \
258 c.q=c.p; \
259 if (d2i_ASN1_SET(&(r),&c.p,c.slen,(char *(*)())func,\

new/usr/src/lib/openssl/include/openssl/asn1_mac.h 5

260 (void (*)())free_func,a,b) == NULL) \
261 { c.line=__LINE__; goto err; } \
262 c.slen-=(c.p-c.q);

264 #define M_ASN1_D2I_get_imp_set_type(type,r,func,free_func,a,b) \
265 c.q=c.p; \
266 if (d2i_ASN1_SET_OF_##type(&(r),&c.p,c.slen,func,\
267 free_func,a,b) == NULL) \
268 { c.line=__LINE__; goto err; } \
269 c.slen-=(c.p-c.q);

271 #define M_ASN1_D2I_get_set_strings(r,func,a,b) \
272 c.q=c.p; \
273 if (d2i_ASN1_STRING_SET(&(r),&c.p,c.slen,a,b) == NULL) \
274 { c.line=__LINE__; goto err; } \
275 c.slen-=(c.p-c.q);

277 #define M_ASN1_D2I_get_EXP_opt(r,func,tag) \
278 if ((c.slen != 0L) && (M_ASN1_next == \
279 (V_ASN1_CONSTRUCTED|V_ASN1_CONTEXT_SPECIFIC|tag))) \
280 { \
281 int Tinf,Ttag,Tclass; \
282 long Tlen; \
283 \
284 c.q=c.p; \
285 Tinf=ASN1_get_object(&c.p,&Tlen,&Ttag,&Tclass,c.slen); \
286 if (Tinf & 0x80) \
287 { c.error=ERR_R_BAD_ASN1_OBJECT_HEADER; \
288 c.line=__LINE__; goto err; } \
289 if (Tinf == (V_ASN1_CONSTRUCTED+1)) \
290 Tlen = c.slen - (c.p - c.q) - 2; \
291 if (func(&(r),&c.p,Tlen) == NULL) \
292 { c.line=__LINE__; goto err; } \
293 if (Tinf == (V_ASN1_CONSTRUCTED+1)) { \
294 Tlen = c.slen - (c.p - c.q); \
295 if(!ASN1_const_check_infinite_end(&c.p, Tlen)) \
296 { c.error=ERR_R_MISSING_ASN1_EOS; \
297 c.line=__LINE__; goto err; } \
298 }\
299 c.slen-=(c.p-c.q); \
300 }

302 #define M_ASN1_D2I_get_EXP_set_opt(r,func,free_func,tag,b) \
303 if ((c.slen != 0) && (M_ASN1_next == \
304 (V_ASN1_CONSTRUCTED|V_ASN1_CONTEXT_SPECIFIC|tag))) \
305 { \
306 int Tinf,Ttag,Tclass; \
307 long Tlen; \
308 \
309 c.q=c.p; \
310 Tinf=ASN1_get_object(&c.p,&Tlen,&Ttag,&Tclass,c.slen); \
311 if (Tinf & 0x80) \
312 { c.error=ERR_R_BAD_ASN1_OBJECT_HEADER; \
313 c.line=__LINE__; goto err; } \
314 if (Tinf == (V_ASN1_CONSTRUCTED+1)) \
315 Tlen = c.slen - (c.p - c.q) - 2; \
316 if (d2i_ASN1_SET(&(r),&c.p,Tlen,(char *(*)())func, \
317 (void (*)())free_func, \
318 b,V_ASN1_UNIVERSAL) == NULL) \
319 { c.line=__LINE__; goto err; } \
320 if (Tinf == (V_ASN1_CONSTRUCTED+1)) { \
321 Tlen = c.slen - (c.p - c.q); \
322 if(!ASN1_check_infinite_end(&c.p, Tlen)) \
323 { c.error=ERR_R_MISSING_ASN1_EOS; \
324 c.line=__LINE__; goto err; } \
325 }\

new/usr/src/lib/openssl/include/openssl/asn1_mac.h 6

326 c.slen-=(c.p-c.q); \
327 }

329 #define M_ASN1_D2I_get_EXP_set_opt_type(type,r,func,free_func,tag,b) \
330 if ((c.slen != 0) && (M_ASN1_next == \
331 (V_ASN1_CONSTRUCTED|V_ASN1_CONTEXT_SPECIFIC|tag))) \
332 { \
333 int Tinf,Ttag,Tclass; \
334 long Tlen; \
335 \
336 c.q=c.p; \
337 Tinf=ASN1_get_object(&c.p,&Tlen,&Ttag,&Tclass,c.slen); \
338 if (Tinf & 0x80) \
339 { c.error=ERR_R_BAD_ASN1_OBJECT_HEADER; \
340 c.line=__LINE__; goto err; } \
341 if (Tinf == (V_ASN1_CONSTRUCTED+1)) \
342 Tlen = c.slen - (c.p - c.q) - 2; \
343 if (d2i_ASN1_SET_OF_##type(&(r),&c.p,Tlen,func, \
344 free_func,b,V_ASN1_UNIVERSAL) == NULL) \
345 { c.line=__LINE__; goto err; } \
346 if (Tinf == (V_ASN1_CONSTRUCTED+1)) { \
347 Tlen = c.slen - (c.p - c.q); \
348 if(!ASN1_check_infinite_end(&c.p, Tlen)) \
349 { c.error=ERR_R_MISSING_ASN1_EOS; \
350 c.line=__LINE__; goto err; } \
351 }\
352 c.slen-=(c.p-c.q); \
353 }

355 /* New macros */
356 #define M_ASN1_New_Malloc(ret,type) \
357 if ((ret=(type *)OPENSSL_malloc(sizeof(type))) == NULL) \
358 { c.line=__LINE__; goto err2; }

360 #define M_ASN1_New(arg,func) \
361 if (((arg)=func()) == NULL) return(NULL)

363 #define M_ASN1_New_Error(a) \
364 /* err: ASN1_MAC_H_err((a),ERR_R_NESTED_ASN1_ERROR,c.line); \
365 return(NULL);*/ \
366 err2: ASN1_MAC_H_err((a),ERR_R_MALLOC_FAILURE,c.line); \
367 return(NULL)

370 /* BIG UGLY WARNING! This is so damn ugly I wanna puke. Unfortunately,
371 some macros that use ASN1_const_CTX still insist on writing in the input
372 stream. ARGH! ARGH! ARGH! Let’s get rid of this macro package.
373 Please? -- Richard Levitte */
374 #define M_ASN1_next (*((unsigned char *)(c.p)))
375 #define M_ASN1_next_prev (*((unsigned char *)(c.q)))

377 /***/

379 #define M_ASN1_I2D_vars(a) int r=0,ret=0; \
380 unsigned char *p; \
381 if (a == NULL) return(0)

383 /* Length Macros */
384 #define M_ASN1_I2D_len(a,f) ret+=f(a,NULL)
385 #define M_ASN1_I2D_len_IMP_opt(a,f) if (a != NULL) M_ASN1_I2D_len(a,f)

387 #define M_ASN1_I2D_len_SET(a,f) \
388 ret+=i2d_ASN1_SET(a,NULL,f,V_ASN1_SET,V_ASN1_UNIVERSAL,IS_SET);

390 #define M_ASN1_I2D_len_SET_type(type,a,f) \
391 ret+=i2d_ASN1_SET_OF_##type(a,NULL,f,V_ASN1_SET, \

new/usr/src/lib/openssl/include/openssl/asn1_mac.h 7

392 V_ASN1_UNIVERSAL,IS_SET);

394 #define M_ASN1_I2D_len_SEQUENCE(a,f) \
395 ret+=i2d_ASN1_SET(a,NULL,f,V_ASN1_SEQUENCE,V_ASN1_UNIVERSAL, \
396 IS_SEQUENCE);

398 #define M_ASN1_I2D_len_SEQUENCE_type(type,a,f) \
399 ret+=i2d_ASN1_SET_OF_##type(a,NULL,f,V_ASN1_SEQUENCE, \
400 V_ASN1_UNIVERSAL,IS_SEQUENCE)

402 #define M_ASN1_I2D_len_SEQUENCE_opt(a,f) \
403 if ((a != NULL) && (sk_num(a) != 0)) \
404 M_ASN1_I2D_len_SEQUENCE(a,f);

406 #define M_ASN1_I2D_len_SEQUENCE_opt_type(type,a,f) \
407 if ((a != NULL) && (sk_##type##_num(a) != 0)) \
408 M_ASN1_I2D_len_SEQUENCE_type(type,a,f);

410 #define M_ASN1_I2D_len_IMP_SET(a,f,x) \
411 ret+=i2d_ASN1_SET(a,NULL,f,x,V_ASN1_CONTEXT_SPECIFIC,IS_SET);

413 #define M_ASN1_I2D_len_IMP_SET_type(type,a,f,x) \
414 ret+=i2d_ASN1_SET_OF_##type(a,NULL,f,x, \
415 V_ASN1_CONTEXT_SPECIFIC,IS_SET);

417 #define M_ASN1_I2D_len_IMP_SET_opt(a,f,x) \
418 if ((a != NULL) && (sk_num(a) != 0)) \
419 ret+=i2d_ASN1_SET(a,NULL,f,x,V_ASN1_CONTEXT_SPECIFIC, \
420 IS_SET);

422 #define M_ASN1_I2D_len_IMP_SET_opt_type(type,a,f,x) \
423 if ((a != NULL) && (sk_##type##_num(a) != 0)) \
424 ret+=i2d_ASN1_SET_OF_##type(a,NULL,f,x, \
425 V_ASN1_CONTEXT_SPECIFIC,IS_SET);

427 #define M_ASN1_I2D_len_IMP_SEQUENCE(a,f,x) \
428 ret+=i2d_ASN1_SET(a,NULL,f,x,V_ASN1_CONTEXT_SPECIFIC, \
429 IS_SEQUENCE);

431 #define M_ASN1_I2D_len_IMP_SEQUENCE_opt(a,f,x) \
432 if ((a != NULL) && (sk_num(a) != 0)) \
433 ret+=i2d_ASN1_SET(a,NULL,f,x,V_ASN1_CONTEXT_SPECIFIC, \
434 IS_SEQUENCE);

436 #define M_ASN1_I2D_len_IMP_SEQUENCE_opt_type(type,a,f,x) \
437 if ((a != NULL) && (sk_##type##_num(a) != 0)) \
438 ret+=i2d_ASN1_SET_OF_##type(a,NULL,f,x, \
439 V_ASN1_CONTEXT_SPECIFIC, \
440 IS_SEQUENCE);

442 #define M_ASN1_I2D_len_EXP_opt(a,f,mtag,v) \
443 if (a != NULL)\
444 { \
445 v=f(a,NULL); \
446 ret+=ASN1_object_size(1,v,mtag); \
447 }

449 #define M_ASN1_I2D_len_EXP_SET_opt(a,f,mtag,tag,v) \
450 if ((a != NULL) && (sk_num(a) != 0))\
451 { \
452 v=i2d_ASN1_SET(a,NULL,f,tag,V_ASN1_UNIVERSAL,IS_SET); \
453 ret+=ASN1_object_size(1,v,mtag); \
454 }

456 #define M_ASN1_I2D_len_EXP_SEQUENCE_opt(a,f,mtag,tag,v) \
457 if ((a != NULL) && (sk_num(a) != 0))\

new/usr/src/lib/openssl/include/openssl/asn1_mac.h 8

458 { \
459 v=i2d_ASN1_SET(a,NULL,f,tag,V_ASN1_UNIVERSAL, \
460 IS_SEQUENCE); \
461 ret+=ASN1_object_size(1,v,mtag); \
462 }

464 #define M_ASN1_I2D_len_EXP_SEQUENCE_opt_type(type,a,f,mtag,tag,v) \
465 if ((a != NULL) && (sk_##type##_num(a) != 0))\
466 { \
467 v=i2d_ASN1_SET_OF_##type(a,NULL,f,tag, \
468 V_ASN1_UNIVERSAL, \
469 IS_SEQUENCE); \
470 ret+=ASN1_object_size(1,v,mtag); \
471 }

473 /* Put Macros */
474 #define M_ASN1_I2D_put(a,f) f(a,&p)

476 #define M_ASN1_I2D_put_IMP_opt(a,f,t) \
477 if (a != NULL) \
478 { \
479 unsigned char *q=p; \
480 f(a,&p); \
481 *q=(V_ASN1_CONTEXT_SPECIFIC|t|(*q&V_ASN1_CONSTRUCTED));\
482 }

484 #define M_ASN1_I2D_put_SET(a,f) i2d_ASN1_SET(a,&p,f,V_ASN1_SET,\
485 V_ASN1_UNIVERSAL,IS_SET)
486 #define M_ASN1_I2D_put_SET_type(type,a,f) \
487 i2d_ASN1_SET_OF_##type(a,&p,f,V_ASN1_SET,V_ASN1_UNIVERSAL,IS_SET)
488 #define M_ASN1_I2D_put_IMP_SET(a,f,x) i2d_ASN1_SET(a,&p,f,x,\
489 V_ASN1_CONTEXT_SPECIFIC,IS_SET)
490 #define M_ASN1_I2D_put_IMP_SET_type(type,a,f,x) \
491 i2d_ASN1_SET_OF_##type(a,&p,f,x,V_ASN1_CONTEXT_SPECIFIC,IS_SET)
492 #define M_ASN1_I2D_put_IMP_SEQUENCE(a,f,x) i2d_ASN1_SET(a,&p,f,x,\
493 V_ASN1_CONTEXT_SPECIFIC,IS_SEQUENCE)

495 #define M_ASN1_I2D_put_SEQUENCE(a,f) i2d_ASN1_SET(a,&p,f,V_ASN1_SEQUENCE,\
496 V_ASN1_UNIVERSAL,IS_SEQUENCE)

498 #define M_ASN1_I2D_put_SEQUENCE_type(type,a,f) \
499 i2d_ASN1_SET_OF_##type(a,&p,f,V_ASN1_SEQUENCE,V_ASN1_UNIVERSAL, \
500 IS_SEQUENCE)

502 #define M_ASN1_I2D_put_SEQUENCE_opt(a,f) \
503 if ((a != NULL) && (sk_num(a) != 0)) \
504 M_ASN1_I2D_put_SEQUENCE(a,f);

506 #define M_ASN1_I2D_put_IMP_SET_opt(a,f,x) \
507 if ((a != NULL) && (sk_num(a) != 0)) \
508 { i2d_ASN1_SET(a,&p,f,x,V_ASN1_CONTEXT_SPECIFIC, \
509 IS_SET); }

511 #define M_ASN1_I2D_put_IMP_SET_opt_type(type,a,f,x) \
512 if ((a != NULL) && (sk_##type##_num(a) != 0)) \
513 { i2d_ASN1_SET_OF_##type(a,&p,f,x, \
514 V_ASN1_CONTEXT_SPECIFIC, \
515 IS_SET); }

517 #define M_ASN1_I2D_put_IMP_SEQUENCE_opt(a,f,x) \
518 if ((a != NULL) && (sk_num(a) != 0)) \
519 { i2d_ASN1_SET(a,&p,f,x,V_ASN1_CONTEXT_SPECIFIC, \
520 IS_SEQUENCE); }

522 #define M_ASN1_I2D_put_IMP_SEQUENCE_opt_type(type,a,f,x) \
523 if ((a != NULL) && (sk_##type##_num(a) != 0)) \

new/usr/src/lib/openssl/include/openssl/asn1_mac.h 9

524 { i2d_ASN1_SET_OF_##type(a,&p,f,x, \
525 V_ASN1_CONTEXT_SPECIFIC, \
526 IS_SEQUENCE); }

528 #define M_ASN1_I2D_put_EXP_opt(a,f,tag,v) \
529 if (a != NULL) \
530 { \
531 ASN1_put_object(&p,1,v,tag,V_ASN1_CONTEXT_SPECIFIC); \
532 f(a,&p); \
533 }

535 #define M_ASN1_I2D_put_EXP_SET_opt(a,f,mtag,tag,v) \
536 if ((a != NULL) && (sk_num(a) != 0)) \
537 { \
538 ASN1_put_object(&p,1,v,mtag,V_ASN1_CONTEXT_SPECIFIC); \
539 i2d_ASN1_SET(a,&p,f,tag,V_ASN1_UNIVERSAL,IS_SET); \
540 }

542 #define M_ASN1_I2D_put_EXP_SEQUENCE_opt(a,f,mtag,tag,v) \
543 if ((a != NULL) && (sk_num(a) != 0)) \
544 { \
545 ASN1_put_object(&p,1,v,mtag,V_ASN1_CONTEXT_SPECIFIC); \
546 i2d_ASN1_SET(a,&p,f,tag,V_ASN1_UNIVERSAL,IS_SEQUENCE); \
547 }

549 #define M_ASN1_I2D_put_EXP_SEQUENCE_opt_type(type,a,f,mtag,tag,v) \
550 if ((a != NULL) && (sk_##type##_num(a) != 0)) \
551 { \
552 ASN1_put_object(&p,1,v,mtag,V_ASN1_CONTEXT_SPECIFIC); \
553 i2d_ASN1_SET_OF_##type(a,&p,f,tag,V_ASN1_UNIVERSAL, \
554 IS_SEQUENCE); \
555 }

557 #define M_ASN1_I2D_seq_total() \
558 r=ASN1_object_size(1,ret,V_ASN1_SEQUENCE); \
559 if (pp == NULL) return(r); \
560 p= *pp; \
561 ASN1_put_object(&p,1,ret,V_ASN1_SEQUENCE,V_ASN1_UNIVERSAL)

563 #define M_ASN1_I2D_INF_seq_start(tag,ctx) \
564 *(p++)=(V_ASN1_CONSTRUCTED|(tag)|(ctx)); \
565 *(p++)=0x80

567 #define M_ASN1_I2D_INF_seq_end() *(p++)=0x00; *(p++)=0x00

569 #define M_ASN1_I2D_finish() *pp=p; \
570 return(r);

572 int asn1_GetSequence(ASN1_const_CTX *c, long *length);
573 void asn1_add_error(const unsigned char *address,int offset);
574 #ifdef __cplusplus
575 }
576 #endif

578 #endif

new/usr/src/lib/openssl/include/openssl/asn1t.h 1

**
 30092 Fri May 30 18:31:17 2014
new/usr/src/lib/openssl/include/openssl/asn1t.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* asn1t.h */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 #ifndef HEADER_ASN1T_H
59 #define HEADER_ASN1T_H

61 #include <stddef.h>

new/usr/src/lib/openssl/include/openssl/asn1t.h 2

62 #include <openssl/e_os2.h>
63 #include <openssl/asn1.h>

65 #ifdef OPENSSL_BUILD_SHLIBCRYPTO
66 # undef OPENSSL_EXTERN
67 # define OPENSSL_EXTERN OPENSSL_EXPORT
68 #endif

70 /* ASN1 template defines, structures and functions */

72 #ifdef __cplusplus
73 extern "C" {
74 #endif

77 #ifndef OPENSSL_EXPORT_VAR_AS_FUNCTION

79 /* Macro to obtain ASN1_ADB pointer from a type (only used internally) */
80 #define ASN1_ADB_ptr(iptr) ((const ASN1_ADB *)(iptr))

83 /* Macros for start and end of ASN1_ITEM definition */

85 #define ASN1_ITEM_start(itname) \
86 OPENSSL_GLOBAL const ASN1_ITEM itname##_it = {

88 #define ASN1_ITEM_end(itname) \
89 };

91 #else

93 /* Macro to obtain ASN1_ADB pointer from a type (only used internally) */
94 #define ASN1_ADB_ptr(iptr) ((const ASN1_ADB *)(iptr()))

97 /* Macros for start and end of ASN1_ITEM definition */

99 #define ASN1_ITEM_start(itname) \
100 const ASN1_ITEM * itname##_it(void) \
101 { \
102 static const ASN1_ITEM local_it = {

104 #define ASN1_ITEM_end(itname) \
105 }; \
106 return &local_it; \
107 }

109 #endif

112 /* Macros to aid ASN1 template writing */

114 #define ASN1_ITEM_TEMPLATE(tname) \
115 static const ASN1_TEMPLATE tname##_item_tt

117 #define ASN1_ITEM_TEMPLATE_END(tname) \
118 ;\
119 ASN1_ITEM_start(tname) \
120 ASN1_ITYPE_PRIMITIVE,\
121 -1,\
122 &tname##_item_tt,\
123 0,\
124 NULL,\
125 0,\
126 #tname \
127 ASN1_ITEM_end(tname)

new/usr/src/lib/openssl/include/openssl/asn1t.h 3

130 /* This is a ASN1 type which just embeds a template */
131
132 /* This pair helps declare a SEQUENCE. We can do:
133 *
134 * ASN1_SEQUENCE(stname) = {
135 * ... SEQUENCE components ...
136 * } ASN1_SEQUENCE_END(stname)
137 *
138 * This will produce an ASN1_ITEM called stname_it
139 * for a structure called stname.
140 *
141 * If you want the same structure but a different
142 * name then use:
143 *
144 * ASN1_SEQUENCE(itname) = {
145 * ... SEQUENCE components ...
146 * } ASN1_SEQUENCE_END_name(stname, itname)
147 *
148 * This will create an item called itname_it using
149 * a structure called stname.
150 */

152 #define ASN1_SEQUENCE(tname) \
153 static const ASN1_TEMPLATE tname##_seq_tt[]

155 #define ASN1_SEQUENCE_END(stname) ASN1_SEQUENCE_END_name(stname, stname)

157 #define ASN1_SEQUENCE_END_name(stname, tname) \
158 ;\
159 ASN1_ITEM_start(tname) \
160 ASN1_ITYPE_SEQUENCE,\
161 V_ASN1_SEQUENCE,\
162 tname##_seq_tt,\
163 sizeof(tname##_seq_tt) / sizeof(ASN1_TEMPLATE),\
164 NULL,\
165 sizeof(stname),\
166 #stname \
167 ASN1_ITEM_end(tname)

169 #define ASN1_NDEF_SEQUENCE(tname) \
170 ASN1_SEQUENCE(tname)

172 #define ASN1_NDEF_SEQUENCE_cb(tname, cb) \
173 ASN1_SEQUENCE_cb(tname, cb)

175 #define ASN1_SEQUENCE_cb(tname, cb) \
176 static const ASN1_AUX tname##_aux = {NULL, 0, 0, 0, cb, 0}; \
177 ASN1_SEQUENCE(tname)

179 #define ASN1_BROKEN_SEQUENCE(tname) \
180 static const ASN1_AUX tname##_aux = {NULL, ASN1_AFLG_BROKEN, 0, 0, 0, 0}
181 ASN1_SEQUENCE(tname)

183 #define ASN1_SEQUENCE_ref(tname, cb, lck) \
184 static const ASN1_AUX tname##_aux = {NULL, ASN1_AFLG_REFCOUNT, offsetof(
185 ASN1_SEQUENCE(tname)

187 #define ASN1_SEQUENCE_enc(tname, enc, cb) \
188 static const ASN1_AUX tname##_aux = {NULL, ASN1_AFLG_ENCODING, 0, 0, cb,
189 ASN1_SEQUENCE(tname)

191 #define ASN1_NDEF_SEQUENCE_END(tname) \
192 ;\
193 ASN1_ITEM_start(tname) \

new/usr/src/lib/openssl/include/openssl/asn1t.h 4

194 ASN1_ITYPE_NDEF_SEQUENCE,\
195 V_ASN1_SEQUENCE,\
196 tname##_seq_tt,\
197 sizeof(tname##_seq_tt) / sizeof(ASN1_TEMPLATE),\
198 NULL,\
199 sizeof(tname),\
200 #tname \
201 ASN1_ITEM_end(tname)

203 #define ASN1_BROKEN_SEQUENCE_END(stname) ASN1_SEQUENCE_END_ref(stname, stname)

205 #define ASN1_SEQUENCE_END_enc(stname, tname) ASN1_SEQUENCE_END_ref(stname, tname

207 #define ASN1_SEQUENCE_END_cb(stname, tname) ASN1_SEQUENCE_END_ref(stname, tname)

209 #define ASN1_SEQUENCE_END_ref(stname, tname) \
210 ;\
211 ASN1_ITEM_start(tname) \
212 ASN1_ITYPE_SEQUENCE,\
213 V_ASN1_SEQUENCE,\
214 tname##_seq_tt,\
215 sizeof(tname##_seq_tt) / sizeof(ASN1_TEMPLATE),\
216 &tname##_aux,\
217 sizeof(stname),\
218 #stname \
219 ASN1_ITEM_end(tname)

221 #define ASN1_NDEF_SEQUENCE_END_cb(stname, tname) \
222 ;\
223 ASN1_ITEM_start(tname) \
224 ASN1_ITYPE_NDEF_SEQUENCE,\
225 V_ASN1_SEQUENCE,\
226 tname##_seq_tt,\
227 sizeof(tname##_seq_tt) / sizeof(ASN1_TEMPLATE),\
228 &tname##_aux,\
229 sizeof(stname),\
230 #stname \
231 ASN1_ITEM_end(tname)

234 /* This pair helps declare a CHOICE type. We can do:
235 *
236 * ASN1_CHOICE(chname) = {
237 * ... CHOICE options ...
238 * ASN1_CHOICE_END(chname)
239 *
240 * This will produce an ASN1_ITEM called chname_it
241 * for a structure called chname. The structure
242 * definition must look like this:
243 * typedef struct {
244 * int type;
245 * union {
246 * ASN1_SOMETHING *opt1;
247 * ASN1_SOMEOTHER *opt2;
248 * } value;
249 * } chname;
250 *
251 * the name of the selector must be ’type’.
252 * to use an alternative selector name use the
253 * ASN1_CHOICE_END_selector() version.
254 */

256 #define ASN1_CHOICE(tname) \
257 static const ASN1_TEMPLATE tname##_ch_tt[]

259 #define ASN1_CHOICE_cb(tname, cb) \

new/usr/src/lib/openssl/include/openssl/asn1t.h 5

260 static const ASN1_AUX tname##_aux = {NULL, 0, 0, 0, cb, 0}; \
261 ASN1_CHOICE(tname)

263 #define ASN1_CHOICE_END(stname) ASN1_CHOICE_END_name(stname, stname)

265 #define ASN1_CHOICE_END_name(stname, tname) ASN1_CHOICE_END_selector(stname, tna

267 #define ASN1_CHOICE_END_selector(stname, tname, selname) \
268 ;\
269 ASN1_ITEM_start(tname) \
270 ASN1_ITYPE_CHOICE,\
271 offsetof(stname,selname) ,\
272 tname##_ch_tt,\
273 sizeof(tname##_ch_tt) / sizeof(ASN1_TEMPLATE),\
274 NULL,\
275 sizeof(stname),\
276 #stname \
277 ASN1_ITEM_end(tname)

279 #define ASN1_CHOICE_END_cb(stname, tname, selname) \
280 ;\
281 ASN1_ITEM_start(tname) \
282 ASN1_ITYPE_CHOICE,\
283 offsetof(stname,selname) ,\
284 tname##_ch_tt,\
285 sizeof(tname##_ch_tt) / sizeof(ASN1_TEMPLATE),\
286 &tname##_aux,\
287 sizeof(stname),\
288 #stname \
289 ASN1_ITEM_end(tname)

291 /* This helps with the template wrapper form of ASN1_ITEM */

293 #define ASN1_EX_TEMPLATE_TYPE(flags, tag, name, type) { \
294 (flags), (tag), 0,\
295 #name, ASN1_ITEM_ref(type) }

297 /* These help with SEQUENCE or CHOICE components */

299 /* used to declare other types */

301 #define ASN1_EX_TYPE(flags, tag, stname, field, type) { \
302 (flags), (tag), offsetof(stname, field),\
303 #field, ASN1_ITEM_ref(type) }

305 /* used when the structure is combined with the parent */

307 #define ASN1_EX_COMBINE(flags, tag, type) { \
308 (flags)|ASN1_TFLG_COMBINE, (tag), 0, NULL, ASN1_ITEM_ref(type) }

310 /* implicit and explicit helper macros */

312 #define ASN1_IMP_EX(stname, field, type, tag, ex) \
313 ASN1_EX_TYPE(ASN1_TFLG_IMPLICIT | ex, tag, stname, field, type)

315 #define ASN1_EXP_EX(stname, field, type, tag, ex) \
316 ASN1_EX_TYPE(ASN1_TFLG_EXPLICIT | ex, tag, stname, field, type)

318 /* Any defined by macros: the field used is in the table itself */

320 #ifndef OPENSSL_EXPORT_VAR_AS_FUNCTION
321 #define ASN1_ADB_OBJECT(tblname) { ASN1_TFLG_ADB_OID, -1, 0, #tblname, (const AS
322 #define ASN1_ADB_INTEGER(tblname) { ASN1_TFLG_ADB_INT, -1, 0, #tblname, (const A
323 #else
324 #define ASN1_ADB_OBJECT(tblname) { ASN1_TFLG_ADB_OID, -1, 0, #tblname, tblname##
325 #define ASN1_ADB_INTEGER(tblname) { ASN1_TFLG_ADB_INT, -1, 0, #tblname, tblname#

new/usr/src/lib/openssl/include/openssl/asn1t.h 6

326 #endif
327 /* Plain simple type */
328 #define ASN1_SIMPLE(stname, field, type) ASN1_EX_TYPE(0,0, stname, field, type)

330 /* OPTIONAL simple type */
331 #define ASN1_OPT(stname, field, type) ASN1_EX_TYPE(ASN1_TFLG_OPTIONAL, 0, stname

333 /* IMPLICIT tagged simple type */
334 #define ASN1_IMP(stname, field, type, tag) ASN1_IMP_EX(stname, field, type, tag,

336 /* IMPLICIT tagged OPTIONAL simple type */
337 #define ASN1_IMP_OPT(stname, field, type, tag) ASN1_IMP_EX(stname, field, type,

339 /* Same as above but EXPLICIT */

341 #define ASN1_EXP(stname, field, type, tag) ASN1_EXP_EX(stname, field, type, tag,
342 #define ASN1_EXP_OPT(stname, field, type, tag) ASN1_EXP_EX(stname, field, type,

344 /* SEQUENCE OF type */
345 #define ASN1_SEQUENCE_OF(stname, field, type) \
346 ASN1_EX_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, stname, field, type)

348 /* OPTIONAL SEQUENCE OF */
349 #define ASN1_SEQUENCE_OF_OPT(stname, field, type) \
350 ASN1_EX_TYPE(ASN1_TFLG_SEQUENCE_OF|ASN1_TFLG_OPTIONAL, 0, stname

352 /* Same as above but for SET OF */

354 #define ASN1_SET_OF(stname, field, type) \
355 ASN1_EX_TYPE(ASN1_TFLG_SET_OF, 0, stname, field, type)

357 #define ASN1_SET_OF_OPT(stname, field, type) \
358 ASN1_EX_TYPE(ASN1_TFLG_SET_OF|ASN1_TFLG_OPTIONAL, 0, stname, fie

360 /* Finally compound types of SEQUENCE, SET, IMPLICIT, EXPLICIT and OPTIONAL */

362 #define ASN1_IMP_SET_OF(stname, field, type, tag) \
363 ASN1_IMP_EX(stname, field, type, tag, ASN1_TFLG_SET_OF)

365 #define ASN1_EXP_SET_OF(stname, field, type, tag) \
366 ASN1_EXP_EX(stname, field, type, tag, ASN1_TFLG_SET_OF)

368 #define ASN1_IMP_SET_OF_OPT(stname, field, type, tag) \
369 ASN1_IMP_EX(stname, field, type, tag, ASN1_TFLG_SET_OF|A

371 #define ASN1_EXP_SET_OF_OPT(stname, field, type, tag) \
372 ASN1_EXP_EX(stname, field, type, tag, ASN1_TFLG_SET_OF|A

374 #define ASN1_IMP_SEQUENCE_OF(stname, field, type, tag) \
375 ASN1_IMP_EX(stname, field, type, tag, ASN1_TFLG_SEQUENCE

377 #define ASN1_IMP_SEQUENCE_OF_OPT(stname, field, type, tag) \
378 ASN1_IMP_EX(stname, field, type, tag, ASN1_TFLG_SEQUENCE

380 #define ASN1_EXP_SEQUENCE_OF(stname, field, type, tag) \
381 ASN1_EXP_EX(stname, field, type, tag, ASN1_TFLG_SEQUENCE

383 #define ASN1_EXP_SEQUENCE_OF_OPT(stname, field, type, tag) \
384 ASN1_EXP_EX(stname, field, type, tag, ASN1_TFLG_SEQUENCE

386 /* EXPLICIT using indefinite length constructed form */
387 #define ASN1_NDEF_EXP(stname, field, type, tag) \
388 ASN1_EXP_EX(stname, field, type, tag, ASN1_TFLG_NDEF)

390 /* EXPLICIT OPTIONAL using indefinite length constructed form */
391 #define ASN1_NDEF_EXP_OPT(stname, field, type, tag) \

new/usr/src/lib/openssl/include/openssl/asn1t.h 7

392 ASN1_EXP_EX(stname, field, type, tag, ASN1_TFLG_OPTIONAL

394 /* Macros for the ASN1_ADB structure */

396 #define ASN1_ADB(name) \
397 static const ASN1_ADB_TABLE name##_adbtbl[]

399 #ifndef OPENSSL_EXPORT_VAR_AS_FUNCTION

401 #define ASN1_ADB_END(name, flags, field, app_table, def, none) \
402 ;\
403 static const ASN1_ADB name##_adb = {\
404 flags,\
405 offsetof(name, field),\
406 app_table,\
407 name##_adbtbl,\
408 sizeof(name##_adbtbl) / sizeof(ASN1_ADB_TABLE),\
409 def,\
410 none\
411 }

413 #else

415 #define ASN1_ADB_END(name, flags, field, app_table, def, none) \
416 ;\
417 static const ASN1_ITEM *name##_adb(void) \
418 { \
419 static const ASN1_ADB internal_adb = \
420 {\
421 flags,\
422 offsetof(name, field),\
423 app_table,\
424 name##_adbtbl,\
425 sizeof(name##_adbtbl) / sizeof(ASN1_ADB_TABLE),\
426 def,\
427 none\
428 }; \
429 return (const ASN1_ITEM *) &internal_adb; \
430 } \
431 void dummy_function(void)

433 #endif

435 #define ADB_ENTRY(val, template) {val, template}

437 #define ASN1_ADB_TEMPLATE(name) \
438 static const ASN1_TEMPLATE name##_tt

440 /* This is the ASN1 template structure that defines
441 * a wrapper round the actual type. It determines the
442 * actual position of the field in the value structure,
443 * various flags such as OPTIONAL and the field name.
444 */

446 struct ASN1_TEMPLATE_st {
447 unsigned long flags; /* Various flags */
448 long tag; /* tag, not used if no tagging */
449 unsigned long offset; /* Offset of this field in structure */
450 #ifndef NO_ASN1_FIELD_NAMES
451 const char *field_name; /* Field name */
452 #endif
453 ASN1_ITEM_EXP *item; /* Relevant ASN1_ITEM or ASN1_ADB */
454 };

456 /* Macro to extract ASN1_ITEM and ASN1_ADB pointer from ASN1_TEMPLATE */

new/usr/src/lib/openssl/include/openssl/asn1t.h 8

458 #define ASN1_TEMPLATE_item(t) (t->item_ptr)
459 #define ASN1_TEMPLATE_adb(t) (t->item_ptr)

461 typedef struct ASN1_ADB_TABLE_st ASN1_ADB_TABLE;
462 typedef struct ASN1_ADB_st ASN1_ADB;

464 struct ASN1_ADB_st {
465 unsigned long flags; /* Various flags */
466 unsigned long offset; /* Offset of selector field */
467 STACK_OF(ASN1_ADB_TABLE) **app_items; /* Application defined items */
468 const ASN1_ADB_TABLE *tbl; /* Table of possible types */
469 long tblcount; /* Number of entries in tbl */
470 const ASN1_TEMPLATE *default_tt; /* Type to use if no match */
471 const ASN1_TEMPLATE *null_tt; /* Type to use if selector is NULL */
472 };

474 struct ASN1_ADB_TABLE_st {
475 long value; /* NID for an object or value for an int */
476 const ASN1_TEMPLATE tt; /* item for this value */
477 };

479 /* template flags */

481 /* Field is optional */
482 #define ASN1_TFLG_OPTIONAL (0x1)

484 /* Field is a SET OF */
485 #define ASN1_TFLG_SET_OF (0x1 << 1)

487 /* Field is a SEQUENCE OF */
488 #define ASN1_TFLG_SEQUENCE_OF (0x2 << 1)

490 /* Special case: this refers to a SET OF that
491 * will be sorted into DER order when encoded *and*
492 * the corresponding STACK will be modified to match
493 * the new order.
494 */
495 #define ASN1_TFLG_SET_ORDER (0x3 << 1)

497 /* Mask for SET OF or SEQUENCE OF */
498 #define ASN1_TFLG_SK_MASK (0x3 << 1)

500 /* These flags mean the tag should be taken from the
501 * tag field. If EXPLICIT then the underlying type
502 * is used for the inner tag.
503 */

505 /* IMPLICIT tagging */
506 #define ASN1_TFLG_IMPTAG (0x1 << 3)

509 /* EXPLICIT tagging, inner tag from underlying type */
510 #define ASN1_TFLG_EXPTAG (0x2 << 3)

512 #define ASN1_TFLG_TAG_MASK (0x3 << 3)

514 /* context specific IMPLICIT */
515 #define ASN1_TFLG_IMPLICIT ASN1_TFLG_IMPTAG|ASN1_TFLG_CONTEXT

517 /* context specific EXPLICIT */
518 #define ASN1_TFLG_EXPLICIT ASN1_TFLG_EXPTAG|ASN1_TFLG_CONTEXT

520 /* If tagging is in force these determine the
521 * type of tag to use. Otherwise the tag is
522 * determined by the underlying type. These
523 * values reflect the actual octet format.

new/usr/src/lib/openssl/include/openssl/asn1t.h 9

524 */

526 /* Universal tag */
527 #define ASN1_TFLG_UNIVERSAL (0x0<<6)
528 /* Application tag */
529 #define ASN1_TFLG_APPLICATION (0x1<<6)
530 /* Context specific tag */
531 #define ASN1_TFLG_CONTEXT (0x2<<6)
532 /* Private tag */
533 #define ASN1_TFLG_PRIVATE (0x3<<6)

535 #define ASN1_TFLG_TAG_CLASS (0x3<<6)

537 /* These are for ANY DEFINED BY type. In this case
538 * the ’item’ field points to an ASN1_ADB structure
539 * which contains a table of values to decode the
540 * relevant type
541 */

543 #define ASN1_TFLG_ADB_MASK (0x3<<8)

545 #define ASN1_TFLG_ADB_OID (0x1<<8)

547 #define ASN1_TFLG_ADB_INT (0x1<<9)

549 /* This flag means a parent structure is passed
550 * instead of the field: this is useful is a
551 * SEQUENCE is being combined with a CHOICE for
552 * example. Since this means the structure and
553 * item name will differ we need to use the
554 * ASN1_CHOICE_END_name() macro for example.
555 */

557 #define ASN1_TFLG_COMBINE (0x1<<10)

559 /* This flag when present in a SEQUENCE OF, SET OF
560 * or EXPLICIT causes indefinite length constructed
561 * encoding to be used if required.
562 */

564 #define ASN1_TFLG_NDEF (0x1<<11)

566 /* This is the actual ASN1 item itself */

568 struct ASN1_ITEM_st {
569 char itype; /* The item type, primitive, SEQUENCE, CHOICE or
570 long utype; /* underlying type */
571 const ASN1_TEMPLATE *templates; /* If SEQUENCE or CHOICE this contains the conte
572 long tcount; /* Number of templates if SEQUENCE or CHOICE */
573 const void *funcs; /* functions that handle this type */
574 long size; /* Structure size (usually)*/
575 #ifndef NO_ASN1_FIELD_NAMES
576 const char *sname; /* Structure name */
577 #endif
578 };

580 /* These are values for the itype field and
581 * determine how the type is interpreted.
582 *
583 * For PRIMITIVE types the underlying type
584 * determines the behaviour if items is NULL.
585 *
586 * Otherwise templates must contain a single
587 * template and the type is treated in the
588 * same way as the type specified in the template.
589 *

new/usr/src/lib/openssl/include/openssl/asn1t.h 10

590 * For SEQUENCE types the templates field points
591 * to the members, the size field is the
592 * structure size.
593 *
594 * For CHOICE types the templates field points
595 * to each possible member (typically a union)
596 * and the ’size’ field is the offset of the
597 * selector.
598 *
599 * The ’funcs’ field is used for application
600 * specific functions.
601 *
602 * For COMPAT types the funcs field gives a
603 * set of functions that handle this type, this
604 * supports the old d2i, i2d convention.
605 *
606 * The EXTERN type uses a new style d2i/i2d.
607 * The new style should be used where possible
608 * because it avoids things like the d2i IMPLICIT
609 * hack.
610 *
611 * MSTRING is a multiple string type, it is used
612 * for a CHOICE of character strings where the
613 * actual strings all occupy an ASN1_STRING
614 * structure. In this case the ’utype’ field
615 * has a special meaning, it is used as a mask
616 * of acceptable types using the B_ASN1 constants.
617 *
618 * NDEF_SEQUENCE is the same as SEQUENCE except
619 * that it will use indefinite length constructed
620 * encoding if requested.
621 *
622 */

624 #define ASN1_ITYPE_PRIMITIVE 0x0

626 #define ASN1_ITYPE_SEQUENCE 0x1

628 #define ASN1_ITYPE_CHOICE 0x2

630 #define ASN1_ITYPE_COMPAT 0x3

632 #define ASN1_ITYPE_EXTERN 0x4

634 #define ASN1_ITYPE_MSTRING 0x5

636 #define ASN1_ITYPE_NDEF_SEQUENCE 0x6

638 /* Cache for ASN1 tag and length, so we
639 * don’t keep re-reading it for things
640 * like CHOICE
641 */

643 struct ASN1_TLC_st{
644 char valid; /* Values below are valid */
645 int ret; /* return value */
646 long plen; /* length */
647 int ptag; /* class value */
648 int pclass; /* class value */
649 int hdrlen; /* header length */
650 };

652 /* Typedefs for ASN1 function pointers */

654 typedef ASN1_VALUE * ASN1_new_func(void);
655 typedef void ASN1_free_func(ASN1_VALUE *a);

new/usr/src/lib/openssl/include/openssl/asn1t.h 11

656 typedef ASN1_VALUE * ASN1_d2i_func(ASN1_VALUE **a, const unsigned char ** in, lo
657 typedef int ASN1_i2d_func(ASN1_VALUE * a, unsigned char **in);

659 typedef int ASN1_ex_d2i(ASN1_VALUE **pval, const unsigned char **in, long len, c
660 int tag, int aclass, char opt, ASN1_TLC

662 typedef int ASN1_ex_i2d(ASN1_VALUE **pval, unsigned char **out, const ASN1_ITEM
663 typedef int ASN1_ex_new_func(ASN1_VALUE **pval, const ASN1_ITEM *it);
664 typedef void ASN1_ex_free_func(ASN1_VALUE **pval, const ASN1_ITEM *it);

666 typedef int ASN1_ex_print_func(BIO *out, ASN1_VALUE **pval,
667 int indent, const char *fname,
668 const ASN1_PCTX *pctx);

670 typedef int ASN1_primitive_i2c(ASN1_VALUE **pval, unsigned char *cont, int *puty
671 typedef int ASN1_primitive_c2i(ASN1_VALUE **pval, const unsigned char *cont, int
672 typedef int ASN1_primitive_print(BIO *out, ASN1_VALUE **pval, const ASN1_ITEM *i

674 typedef struct ASN1_COMPAT_FUNCS_st {
675 ASN1_new_func *asn1_new;
676 ASN1_free_func *asn1_free;
677 ASN1_d2i_func *asn1_d2i;
678 ASN1_i2d_func *asn1_i2d;
679 } ASN1_COMPAT_FUNCS;

681 typedef struct ASN1_EXTERN_FUNCS_st {
682 void *app_data;
683 ASN1_ex_new_func *asn1_ex_new;
684 ASN1_ex_free_func *asn1_ex_free;
685 ASN1_ex_free_func *asn1_ex_clear;
686 ASN1_ex_d2i *asn1_ex_d2i;
687 ASN1_ex_i2d *asn1_ex_i2d;
688 ASN1_ex_print_func *asn1_ex_print;
689 } ASN1_EXTERN_FUNCS;

691 typedef struct ASN1_PRIMITIVE_FUNCS_st {
692 void *app_data;
693 unsigned long flags;
694 ASN1_ex_new_func *prim_new;
695 ASN1_ex_free_func *prim_free;
696 ASN1_ex_free_func *prim_clear;
697 ASN1_primitive_c2i *prim_c2i;
698 ASN1_primitive_i2c *prim_i2c;
699 ASN1_primitive_print *prim_print;
700 } ASN1_PRIMITIVE_FUNCS;

702 /* This is the ASN1_AUX structure: it handles various
703 * miscellaneous requirements. For example the use of
704 * reference counts and an informational callback.
705 *
706 * The "informational callback" is called at various
707 * points during the ASN1 encoding and decoding. It can
708 * be used to provide minor customisation of the structures
709 * used. This is most useful where the supplied routines
710 * *almost* do the right thing but need some extra help
711 * at a few points. If the callback returns zero then
712 * it is assumed a fatal error has occurred and the
713 * main operation should be abandoned.
714 *
715 * If major changes in the default behaviour are required
716 * then an external type is more appropriate.
717 */

719 typedef int ASN1_aux_cb(int operation, ASN1_VALUE **in, const ASN1_ITEM *it,
720 void *exarg);

new/usr/src/lib/openssl/include/openssl/asn1t.h 12

722 typedef struct ASN1_AUX_st {
723 void *app_data;
724 int flags;
725 int ref_offset; /* Offset of reference value */
726 int ref_lock; /* Lock type to use */
727 ASN1_aux_cb *asn1_cb;
728 int enc_offset; /* Offset of ASN1_ENCODING structure */
729 } ASN1_AUX;

731 /* For print related callbacks exarg points to this structure */
732 typedef struct ASN1_PRINT_ARG_st {
733 BIO *out;
734 int indent;
735 const ASN1_PCTX *pctx;
736 } ASN1_PRINT_ARG;

738 /* For streaming related callbacks exarg points to this structure */
739 typedef struct ASN1_STREAM_ARG_st {
740 /* BIO to stream through */
741 BIO *out;
742 /* BIO with filters appended */
743 BIO *ndef_bio;
744 /* Streaming I/O boundary */
745 unsigned char **boundary;
746 } ASN1_STREAM_ARG;

748 /* Flags in ASN1_AUX */

750 /* Use a reference count */
751 #define ASN1_AFLG_REFCOUNT 1
752 /* Save the encoding of structure (useful for signatures) */
753 #define ASN1_AFLG_ENCODING 2
754 /* The Sequence length is invalid */
755 #define ASN1_AFLG_BROKEN 4

757 /* operation values for asn1_cb */

759 #define ASN1_OP_NEW_PRE 0
760 #define ASN1_OP_NEW_POST 1
761 #define ASN1_OP_FREE_PRE 2
762 #define ASN1_OP_FREE_POST 3
763 #define ASN1_OP_D2I_PRE 4
764 #define ASN1_OP_D2I_POST 5
765 #define ASN1_OP_I2D_PRE 6
766 #define ASN1_OP_I2D_POST 7
767 #define ASN1_OP_PRINT_PRE 8
768 #define ASN1_OP_PRINT_POST 9
769 #define ASN1_OP_STREAM_PRE 10
770 #define ASN1_OP_STREAM_POST 11
771 #define ASN1_OP_DETACHED_PRE 12
772 #define ASN1_OP_DETACHED_POST 13

774 /* Macro to implement a primitive type */
775 #define IMPLEMENT_ASN1_TYPE(stname) IMPLEMENT_ASN1_TYPE_ex(stname, stname, 0)
776 #define IMPLEMENT_ASN1_TYPE_ex(itname, vname, ex) \
777 ASN1_ITEM_start(itname) \
778 ASN1_ITYPE_PRIMITIVE, V_##vname, NULL, 0
779 ASN1_ITEM_end(itname)

781 /* Macro to implement a multi string type */
782 #define IMPLEMENT_ASN1_MSTRING(itname, mask) \
783 ASN1_ITEM_start(itname) \
784 ASN1_ITYPE_MSTRING, mask, NULL, 0, NULL,
785 ASN1_ITEM_end(itname)

787 /* Macro to implement an ASN1_ITEM in terms of old style funcs */

new/usr/src/lib/openssl/include/openssl/asn1t.h 13

789 #define IMPLEMENT_COMPAT_ASN1(sname) IMPLEMENT_COMPAT_ASN1_type(sname, V_ASN1_SE

791 #define IMPLEMENT_COMPAT_ASN1_type(sname, tag) \
792 static const ASN1_COMPAT_FUNCS sname##_ff = { \
793 (ASN1_new_func *)sname##_new, \
794 (ASN1_free_func *)sname##_free, \
795 (ASN1_d2i_func *)d2i_##sname, \
796 (ASN1_i2d_func *)i2d_##sname, \
797 }; \
798 ASN1_ITEM_start(sname) \
799 ASN1_ITYPE_COMPAT, \
800 tag, \
801 NULL, \
802 0, \
803 &sname##_ff, \
804 0, \
805 #sname \
806 ASN1_ITEM_end(sname)

808 #define IMPLEMENT_EXTERN_ASN1(sname, tag, fptrs) \
809 ASN1_ITEM_start(sname) \
810 ASN1_ITYPE_EXTERN, \
811 tag, \
812 NULL, \
813 0, \
814 &fptrs, \
815 0, \
816 #sname \
817 ASN1_ITEM_end(sname)

819 /* Macro to implement standard functions in terms of ASN1_ITEM structures */

821 #define IMPLEMENT_ASN1_FUNCTIONS(stname) IMPLEMENT_ASN1_FUNCTIONS_fname(stname,

823 #define IMPLEMENT_ASN1_FUNCTIONS_name(stname, itname) IMPLEMENT_ASN1_FUNCTIONS_f

825 #define IMPLEMENT_ASN1_FUNCTIONS_ENCODE_name(stname, itname) \
826 IMPLEMENT_ASN1_FUNCTIONS_ENCODE_fname(stname, itname, it

828 #define IMPLEMENT_STATIC_ASN1_ALLOC_FUNCTIONS(stname) \
829 IMPLEMENT_ASN1_ALLOC_FUNCTIONS_pfname(static, stname, stname, st

831 #define IMPLEMENT_ASN1_ALLOC_FUNCTIONS(stname) \
832 IMPLEMENT_ASN1_ALLOC_FUNCTIONS_fname(stname, stname, stname)

834 #define IMPLEMENT_ASN1_ALLOC_FUNCTIONS_pfname(pre, stname, itname, fname) \
835 pre stname *fname##_new(void) \
836 { \
837 return (stname *)ASN1_item_new(ASN1_ITEM_rptr(itname)); \
838 } \
839 pre void fname##_free(stname *a) \
840 { \
841 ASN1_item_free((ASN1_VALUE *)a, ASN1_ITEM_rptr(itname)); \
842 }

844 #define IMPLEMENT_ASN1_ALLOC_FUNCTIONS_fname(stname, itname, fname) \
845 stname *fname##_new(void) \
846 { \
847 return (stname *)ASN1_item_new(ASN1_ITEM_rptr(itname)); \
848 } \
849 void fname##_free(stname *a) \
850 { \
851 ASN1_item_free((ASN1_VALUE *)a, ASN1_ITEM_rptr(itname)); \
852 }

new/usr/src/lib/openssl/include/openssl/asn1t.h 14

854 #define IMPLEMENT_ASN1_FUNCTIONS_fname(stname, itname, fname) \
855 IMPLEMENT_ASN1_ENCODE_FUNCTIONS_fname(stname, itname, fname) \
856 IMPLEMENT_ASN1_ALLOC_FUNCTIONS_fname(stname, itname, fname)

858 #define IMPLEMENT_ASN1_ENCODE_FUNCTIONS_fname(stname, itname, fname) \
859 stname *d2i_##fname(stname **a, const unsigned char **in, long len) \
860 { \
861 return (stname *)ASN1_item_d2i((ASN1_VALUE **)a, in, len, ASN1_I
862 } \
863 int i2d_##fname(stname *a, unsigned char **out) \
864 { \
865 return ASN1_item_i2d((ASN1_VALUE *)a, out, ASN1_ITEM_rptr(itname
866 }

868 #define IMPLEMENT_ASN1_NDEF_FUNCTION(stname) \
869 int i2d_##stname##_NDEF(stname *a, unsigned char **out) \
870 { \
871 return ASN1_item_ndef_i2d((ASN1_VALUE *)a, out, ASN1_ITEM_rptr(s
872 }

874 /* This includes evil casts to remove const: they will go away when full
875 * ASN1 constification is done.
876 */
877 #define IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(stname, itname, fname) \
878 stname *d2i_##fname(stname **a, const unsigned char **in, long len) \
879 { \
880 return (stname *)ASN1_item_d2i((ASN1_VALUE **)a, in, len, ASN1_I
881 } \
882 int i2d_##fname(const stname *a, unsigned char **out) \
883 { \
884 return ASN1_item_i2d((ASN1_VALUE *)a, out, ASN1_ITEM_rptr(itname
885 }

887 #define IMPLEMENT_ASN1_DUP_FUNCTION(stname) \
888 stname * stname##_dup(stname *x) \
889 { \
890 return ASN1_item_dup(ASN1_ITEM_rptr(stname), x); \
891 }

893 #define IMPLEMENT_ASN1_PRINT_FUNCTION(stname) \
894 IMPLEMENT_ASN1_PRINT_FUNCTION_fname(stname, stname, stname)

896 #define IMPLEMENT_ASN1_PRINT_FUNCTION_fname(stname, itname, fname) \
897 int fname##_print_ctx(BIO *out, stname *x, int indent, \
898 const ASN1_PCTX *pctx) \
899 { \
900 return ASN1_item_print(out, (ASN1_VALUE *)x, indent, \
901 ASN1_ITEM_rptr(itname), pctx); \
902 }

904 #define IMPLEMENT_ASN1_FUNCTIONS_const(name) \
905 IMPLEMENT_ASN1_FUNCTIONS_const_fname(name, name, name)

907 #define IMPLEMENT_ASN1_FUNCTIONS_const_fname(stname, itname, fname) \
908 IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(stname, itname, fname) \
909 IMPLEMENT_ASN1_ALLOC_FUNCTIONS_fname(stname, itname, fname)

911 /* external definitions for primitive types */

913 DECLARE_ASN1_ITEM(ASN1_BOOLEAN)
914 DECLARE_ASN1_ITEM(ASN1_TBOOLEAN)
915 DECLARE_ASN1_ITEM(ASN1_FBOOLEAN)
916 DECLARE_ASN1_ITEM(ASN1_SEQUENCE)
917 DECLARE_ASN1_ITEM(CBIGNUM)
918 DECLARE_ASN1_ITEM(BIGNUM)
919 DECLARE_ASN1_ITEM(LONG)

new/usr/src/lib/openssl/include/openssl/asn1t.h 15

920 DECLARE_ASN1_ITEM(ZLONG)

922 DECLARE_STACK_OF(ASN1_VALUE)

924 /* Functions used internally by the ASN1 code */

926 int ASN1_item_ex_new(ASN1_VALUE **pval, const ASN1_ITEM *it);
927 void ASN1_item_ex_free(ASN1_VALUE **pval, const ASN1_ITEM *it);
928 int ASN1_template_new(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt);
929 int ASN1_primitive_new(ASN1_VALUE **pval, const ASN1_ITEM *it);

931 void ASN1_template_free(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt);
932 int ASN1_template_d2i(ASN1_VALUE **pval, const unsigned char **in, long len, con
933 int ASN1_item_ex_d2i(ASN1_VALUE **pval, const unsigned char **in, long len, cons
934 int tag, int aclass, char opt, ASN1_TLC *ctx);

936 int ASN1_item_ex_i2d(ASN1_VALUE **pval, unsigned char **out, const ASN1_ITEM *it
937 int ASN1_template_i2d(ASN1_VALUE **pval, unsigned char **out, const ASN1_TEMPLAT
938 void ASN1_primitive_free(ASN1_VALUE **pval, const ASN1_ITEM *it);

940 int asn1_ex_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype, const ASN1_
941 int asn1_ex_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len, int utype

943 int asn1_get_choice_selector(ASN1_VALUE **pval, const ASN1_ITEM *it);
944 int asn1_set_choice_selector(ASN1_VALUE **pval, int value, const ASN1_ITEM *it);

946 ASN1_VALUE ** asn1_get_field_ptr(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt);

948 const ASN1_TEMPLATE *asn1_do_adb(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt, int

950 int asn1_do_lock(ASN1_VALUE **pval, int op, const ASN1_ITEM *it);

952 void asn1_enc_init(ASN1_VALUE **pval, const ASN1_ITEM *it);
953 void asn1_enc_free(ASN1_VALUE **pval, const ASN1_ITEM *it);
954 int asn1_enc_restore(int *len, unsigned char **out, ASN1_VALUE **pval, const ASN
955 int asn1_enc_save(ASN1_VALUE **pval, const unsigned char *in, int inlen, const A

957 #ifdef __cplusplus
958 }
959 #endif
960 #endif

new/usr/src/lib/openssl/include/openssl/bio.h 1

**
 32987 Fri May 30 18:31:17 2014
new/usr/src/lib/openssl/include/openssl/bio.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bio.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_BIO_H
60 #define HEADER_BIO_H

new/usr/src/lib/openssl/include/openssl/bio.h 2

62 #include <openssl/e_os2.h>

64 #ifndef OPENSSL_NO_FP_API
65 # include <stdio.h>
66 #endif
67 #include <stdarg.h>

69 #include <openssl/crypto.h>

71 #ifndef OPENSSL_NO_SCTP
72 # ifndef OPENSSL_SYS_VMS
73 # include <stdint.h>
74 # else
75 # include <inttypes.h>
76 # endif
77 #endif

79 #ifdef __cplusplus
80 extern "C" {
81 #endif

83 /* These are the ’types’ of BIOs */
84 #define BIO_TYPE_NONE 0
85 #define BIO_TYPE_MEM (1|0x0400)
86 #define BIO_TYPE_FILE (2|0x0400)

88 #define BIO_TYPE_FD (4|0x0400|0x0100)
89 #define BIO_TYPE_SOCKET (5|0x0400|0x0100)
90 #define BIO_TYPE_NULL (6|0x0400)
91 #define BIO_TYPE_SSL (7|0x0200)
92 #define BIO_TYPE_MD (8|0x0200) /* passive filter */
93 #define BIO_TYPE_BUFFER (9|0x0200) /* filter */
94 #define BIO_TYPE_CIPHER (10|0x0200) /* filter */
95 #define BIO_TYPE_BASE64 (11|0x0200) /* filter */
96 #define BIO_TYPE_CONNECT (12|0x0400|0x0100) /* socket - connect */
97 #define BIO_TYPE_ACCEPT (13|0x0400|0x0100) /* socket for accept */
98 #define BIO_TYPE_PROXY_CLIENT (14|0x0200) /* client proxy BIO */
99 #define BIO_TYPE_PROXY_SERVER (15|0x0200) /* server proxy BIO */
100 #define BIO_TYPE_NBIO_TEST (16|0x0200) /* server proxy BIO */
101 #define BIO_TYPE_NULL_FILTER (17|0x0200)
102 #define BIO_TYPE_BER (18|0x0200) /* BER -> bin filter */
103 #define BIO_TYPE_BIO (19|0x0400) /* (half a) BIO pair */
104 #define BIO_TYPE_LINEBUFFER (20|0x0200) /* filter */
105 #define BIO_TYPE_DGRAM (21|0x0400|0x0100)
106 #ifndef OPENSSL_NO_SCTP
107 #define BIO_TYPE_DGRAM_SCTP (24|0x0400|0x0100)
108 #endif
109 #define BIO_TYPE_ASN1 (22|0x0200) /* filter */
110 #define BIO_TYPE_COMP (23|0x0200) /* filter */

112 #define BIO_TYPE_DESCRIPTOR 0x0100 /* socket, fd, connect or accept */
113 #define BIO_TYPE_FILTER 0x0200
114 #define BIO_TYPE_SOURCE_SINK 0x0400

116 /* BIO_FILENAME_READ|BIO_CLOSE to open or close on free.
117 * BIO_set_fp(in,stdin,BIO_NOCLOSE); */
118 #define BIO_NOCLOSE 0x00
119 #define BIO_CLOSE 0x01

121 /* These are used in the following macros and are passed to
122 * BIO_ctrl() */
123 #define BIO_CTRL_RESET 1 /* opt - rewind/zero etc */
124 #define BIO_CTRL_EOF 2 /* opt - are we at the eof */
125 #define BIO_CTRL_INFO 3 /* opt - extra tit-bits */
126 #define BIO_CTRL_SET 4 /* man - set the ’IO’ type */
127 #define BIO_CTRL_GET 5 /* man - get the ’IO’ type */

new/usr/src/lib/openssl/include/openssl/bio.h 3

128 #define BIO_CTRL_PUSH 6 /* opt - internal, used to signify change */
129 #define BIO_CTRL_POP 7 /* opt - internal, used to signify change */
130 #define BIO_CTRL_GET_CLOSE 8 /* man - set the ’close’ on free */
131 #define BIO_CTRL_SET_CLOSE 9 /* man - set the ’close’ on free */
132 #define BIO_CTRL_PENDING 10 /* opt - is their more data buffered */
133 #define BIO_CTRL_FLUSH 11 /* opt - ’flush’ buffered output */
134 #define BIO_CTRL_DUP 12 /* man - extra stuff for ’duped’ BIO */
135 #define BIO_CTRL_WPENDING 13 /* opt - number of bytes still to write */
136 /* callback is int cb(BIO *bio,state,ret); */
137 #define BIO_CTRL_SET_CALLBACK 14 /* opt - set callback function */
138 #define BIO_CTRL_GET_CALLBACK 15 /* opt - set callback function */

140 #define BIO_CTRL_SET_FILENAME 30 /* BIO_s_file special */

142 /* dgram BIO stuff */
143 #define BIO_CTRL_DGRAM_CONNECT 31 /* BIO dgram special */
144 #define BIO_CTRL_DGRAM_SET_CONNECTED 32 /* allow for an externally
145 * connected socket to be
146 * passed in */
147 #define BIO_CTRL_DGRAM_SET_RECV_TIMEOUT 33 /* setsockopt, essentially */
148 #define BIO_CTRL_DGRAM_GET_RECV_TIMEOUT 34 /* getsockopt, essentially */
149 #define BIO_CTRL_DGRAM_SET_SEND_TIMEOUT 35 /* setsockopt, essentially */
150 #define BIO_CTRL_DGRAM_GET_SEND_TIMEOUT 36 /* getsockopt, essentially */

152 #define BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP 37 /* flag whether the last */
153 #define BIO_CTRL_DGRAM_GET_SEND_TIMER_EXP 38 /* I/O operation tiemd out */
154
155 /* #ifdef IP_MTU_DISCOVER */
156 #define BIO_CTRL_DGRAM_MTU_DISCOVER 39 /* set DF bit on egress packets */
157 /* #endif */

159 #define BIO_CTRL_DGRAM_QUERY_MTU 40 /* as kernel for current MTU */
160 #define BIO_CTRL_DGRAM_GET_FALLBACK_MTU 47
161 #define BIO_CTRL_DGRAM_GET_MTU 41 /* get cached value for MTU */
162 #define BIO_CTRL_DGRAM_SET_MTU 42 /* set cached value for
163 * MTU. want to use this
164 * if asking the kernel
165 * fails */

167 #define BIO_CTRL_DGRAM_MTU_EXCEEDED 43 /* check whether the MTU
168 * was exceed in the
169 * previous write
170 * operation */

172 #define BIO_CTRL_DGRAM_GET_PEER 46
173 #define BIO_CTRL_DGRAM_SET_PEER 44 /* Destination for the data */

175 #define BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT 45 /* Next DTLS handshake timeout to
176 * adjust socket timeouts */

178 #ifndef OPENSSL_NO_SCTP
179 /* SCTP stuff */
180 #define BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE 50
181 #define BIO_CTRL_DGRAM_SCTP_ADD_AUTH_KEY 51
182 #define BIO_CTRL_DGRAM_SCTP_NEXT_AUTH_KEY 52
183 #define BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD 53
184 #define BIO_CTRL_DGRAM_SCTP_GET_SNDINFO 60
185 #define BIO_CTRL_DGRAM_SCTP_SET_SNDINFO 61
186 #define BIO_CTRL_DGRAM_SCTP_GET_RCVINFO 62
187 #define BIO_CTRL_DGRAM_SCTP_SET_RCVINFO 63
188 #define BIO_CTRL_DGRAM_SCTP_GET_PRINFO 64
189 #define BIO_CTRL_DGRAM_SCTP_SET_PRINFO 65
190 #define BIO_CTRL_DGRAM_SCTP_SAVE_SHUTDOWN 70
191 #endif

193 /* modifiers */

new/usr/src/lib/openssl/include/openssl/bio.h 4

194 #define BIO_FP_READ 0x02
195 #define BIO_FP_WRITE 0x04
196 #define BIO_FP_APPEND 0x08
197 #define BIO_FP_TEXT 0x10

199 #define BIO_FLAGS_READ 0x01
200 #define BIO_FLAGS_WRITE 0x02
201 #define BIO_FLAGS_IO_SPECIAL 0x04
202 #define BIO_FLAGS_RWS (BIO_FLAGS_READ|BIO_FLAGS_WRITE|BIO_FLAGS_IO_SPECIAL)
203 #define BIO_FLAGS_SHOULD_RETRY 0x08
204 #ifndef BIO_FLAGS_UPLINK
205 /* "UPLINK" flag denotes file descriptors provided by application.
206 It defaults to 0, as most platforms don’t require UPLINK interface. */
207 #define BIO_FLAGS_UPLINK 0
208 #endif

210 /* Used in BIO_gethostbyname() */
211 #define BIO_GHBN_CTRL_HITS 1
212 #define BIO_GHBN_CTRL_MISSES 2
213 #define BIO_GHBN_CTRL_CACHE_SIZE 3
214 #define BIO_GHBN_CTRL_GET_ENTRY 4
215 #define BIO_GHBN_CTRL_FLUSH 5

217 /* Mostly used in the SSL BIO */
218 /* Not used anymore
219 * #define BIO_FLAGS_PROTOCOL_DELAYED_READ 0x10
220 * #define BIO_FLAGS_PROTOCOL_DELAYED_WRITE 0x20
221 * #define BIO_FLAGS_PROTOCOL_STARTUP 0x40
222 */

224 #define BIO_FLAGS_BASE64_NO_NL 0x100

226 /* This is used with memory BIOs: it means we shouldn’t free up or change the
227 * data in any way.
228 */
229 #define BIO_FLAGS_MEM_RDONLY 0x200

231 typedef struct bio_st BIO;

233 void BIO_set_flags(BIO *b, int flags);
234 int BIO_test_flags(const BIO *b, int flags);
235 void BIO_clear_flags(BIO *b, int flags);

237 #define BIO_get_flags(b) BIO_test_flags(b, ~(0x0))
238 #define BIO_set_retry_special(b) \
239 BIO_set_flags(b, (BIO_FLAGS_IO_SPECIAL|BIO_FLAGS_SHOULD_RETRY))
240 #define BIO_set_retry_read(b) \
241 BIO_set_flags(b, (BIO_FLAGS_READ|BIO_FLAGS_SHOULD_RETRY))
242 #define BIO_set_retry_write(b) \
243 BIO_set_flags(b, (BIO_FLAGS_WRITE|BIO_FLAGS_SHOULD_RETRY))

245 /* These are normally used internally in BIOs */
246 #define BIO_clear_retry_flags(b) \
247 BIO_clear_flags(b, (BIO_FLAGS_RWS|BIO_FLAGS_SHOULD_RETRY))
248 #define BIO_get_retry_flags(b) \
249 BIO_test_flags(b, (BIO_FLAGS_RWS|BIO_FLAGS_SHOULD_RETRY))

251 /* These should be used by the application to tell why we should retry */
252 #define BIO_should_read(a) BIO_test_flags(a, BIO_FLAGS_READ)
253 #define BIO_should_write(a) BIO_test_flags(a, BIO_FLAGS_WRITE)
254 #define BIO_should_io_special(a) BIO_test_flags(a, BIO_FLAGS_IO_SPECIAL)
255 #define BIO_retry_type(a) BIO_test_flags(a, BIO_FLAGS_RWS)
256 #define BIO_should_retry(a) BIO_test_flags(a, BIO_FLAGS_SHOULD_RETRY

258 /* The next three are used in conjunction with the
259 * BIO_should_io_special() condition. After this returns true,

new/usr/src/lib/openssl/include/openssl/bio.h 5

260 * BIO *BIO_get_retry_BIO(BIO *bio, int *reason); will walk the BIO
261 * stack and return the ’reason’ for the special and the offending BIO.
262 * Given a BIO, BIO_get_retry_reason(bio) will return the code. */
263 /* Returned from the SSL bio when the certificate retrieval code had an error */
264 #define BIO_RR_SSL_X509_LOOKUP 0x01
265 /* Returned from the connect BIO when a connect would have blocked */
266 #define BIO_RR_CONNECT 0x02
267 /* Returned from the accept BIO when an accept would have blocked */
268 #define BIO_RR_ACCEPT 0x03

270 /* These are passed by the BIO callback */
271 #define BIO_CB_FREE 0x01
272 #define BIO_CB_READ 0x02
273 #define BIO_CB_WRITE 0x03
274 #define BIO_CB_PUTS 0x04
275 #define BIO_CB_GETS 0x05
276 #define BIO_CB_CTRL 0x06

278 /* The callback is called before and after the underling operation,
279 * The BIO_CB_RETURN flag indicates if it is after the call */
280 #define BIO_CB_RETURN 0x80
281 #define BIO_CB_return(a) ((a)|BIO_CB_RETURN))
282 #define BIO_cb_pre(a) (!((a)&BIO_CB_RETURN))
283 #define BIO_cb_post(a) ((a)&BIO_CB_RETURN)

285 long (*BIO_get_callback(const BIO *b)) (struct bio_st *,int,const char *,int, lo
286 void BIO_set_callback(BIO *b,
287 long (*callback)(struct bio_st *,int,const char *,int, long,long));
288 char *BIO_get_callback_arg(const BIO *b);
289 void BIO_set_callback_arg(BIO *b, char *arg);

291 const char * BIO_method_name(const BIO *b);
292 int BIO_method_type(const BIO *b);

294 typedef void bio_info_cb(struct bio_st *, int, const char *, int, long, long);

296 typedef struct bio_method_st
297 {
298 int type;
299 const char *name;
300 int (*bwrite)(BIO *, const char *, int);
301 int (*bread)(BIO *, char *, int);
302 int (*bputs)(BIO *, const char *);
303 int (*bgets)(BIO *, char *, int);
304 long (*ctrl)(BIO *, int, long, void *);
305 int (*create)(BIO *);
306 int (*destroy)(BIO *);
307 long (*callback_ctrl)(BIO *, int, bio_info_cb *);
308 } BIO_METHOD;

310 struct bio_st
311 {
312 BIO_METHOD *method;
313 /* bio, mode, argp, argi, argl, ret */
314 long (*callback)(struct bio_st *,int,const char *,int, long,long);
315 char *cb_arg; /* first argument for the callback */

317 int init;
318 int shutdown;
319 int flags; /* extra storage */
320 int retry_reason;
321 int num;
322 void *ptr;
323 struct bio_st *next_bio; /* used by filter BIOs */
324 struct bio_st *prev_bio; /* used by filter BIOs */
325 int references;

new/usr/src/lib/openssl/include/openssl/bio.h 6

326 unsigned long num_read;
327 unsigned long num_write;

329 CRYPTO_EX_DATA ex_data;
330 };

332 DECLARE_STACK_OF(BIO)

334 typedef struct bio_f_buffer_ctx_struct
335 {
336 /* Buffers are setup like this:
337 *
338 * <---------------------- size ----------------------->
339 * +---+
340 * | consumed | remaining | free space |
341 * +---+
342 * <-- off --><------- len ------->
343 */

345 /* BIO *bio; */ /* this is now in the BIO struct */
346 int ibuf_size; /* how big is the input buffer */
347 int obuf_size; /* how big is the output buffer */

349 char *ibuf; /* the char array */
350 int ibuf_len; /* how many bytes are in it */
351 int ibuf_off; /* write/read offset */

353 char *obuf; /* the char array */
354 int obuf_len; /* how many bytes are in it */
355 int obuf_off; /* write/read offset */
356 } BIO_F_BUFFER_CTX;

358 /* Prefix and suffix callback in ASN1 BIO */
359 typedef int asn1_ps_func(BIO *b, unsigned char **pbuf, int *plen, void *parg);

361 #ifndef OPENSSL_NO_SCTP
362 /* SCTP parameter structs */
363 struct bio_dgram_sctp_sndinfo
364 {
365 uint16_t snd_sid;
366 uint16_t snd_flags;
367 uint32_t snd_ppid;
368 uint32_t snd_context;
369 };

371 struct bio_dgram_sctp_rcvinfo
372 {
373 uint16_t rcv_sid;
374 uint16_t rcv_ssn;
375 uint16_t rcv_flags;
376 uint32_t rcv_ppid;
377 uint32_t rcv_tsn;
378 uint32_t rcv_cumtsn;
379 uint32_t rcv_context;
380 };

382 struct bio_dgram_sctp_prinfo
383 {
384 uint16_t pr_policy;
385 uint32_t pr_value;
386 };
387 #endif

389 /* connect BIO stuff */
390 #define BIO_CONN_S_BEFORE 1
391 #define BIO_CONN_S_GET_IP 2

new/usr/src/lib/openssl/include/openssl/bio.h 7

392 #define BIO_CONN_S_GET_PORT 3
393 #define BIO_CONN_S_CREATE_SOCKET 4
394 #define BIO_CONN_S_CONNECT 5
395 #define BIO_CONN_S_OK 6
396 #define BIO_CONN_S_BLOCKED_CONNECT 7
397 #define BIO_CONN_S_NBIO 8
398 /*#define BIO_CONN_get_param_hostname BIO_ctrl */

400 #define BIO_C_SET_CONNECT 100
401 #define BIO_C_DO_STATE_MACHINE 101
402 #define BIO_C_SET_NBIO 102
403 #define BIO_C_SET_PROXY_PARAM 103
404 #define BIO_C_SET_FD 104
405 #define BIO_C_GET_FD 105
406 #define BIO_C_SET_FILE_PTR 106
407 #define BIO_C_GET_FILE_PTR 107
408 #define BIO_C_SET_FILENAME 108
409 #define BIO_C_SET_SSL 109
410 #define BIO_C_GET_SSL 110
411 #define BIO_C_SET_MD 111
412 #define BIO_C_GET_MD 112
413 #define BIO_C_GET_CIPHER_STATUS 113
414 #define BIO_C_SET_BUF_MEM 114
415 #define BIO_C_GET_BUF_MEM_PTR 115
416 #define BIO_C_GET_BUFF_NUM_LINES 116
417 #define BIO_C_SET_BUFF_SIZE 117
418 #define BIO_C_SET_ACCEPT 118
419 #define BIO_C_SSL_MODE 119
420 #define BIO_C_GET_MD_CTX 120
421 #define BIO_C_GET_PROXY_PARAM 121
422 #define BIO_C_SET_BUFF_READ_DATA 122 /* data to read first */
423 #define BIO_C_GET_CONNECT 123
424 #define BIO_C_GET_ACCEPT 124
425 #define BIO_C_SET_SSL_RENEGOTIATE_BYTES 125
426 #define BIO_C_GET_SSL_NUM_RENEGOTIATES 126
427 #define BIO_C_SET_SSL_RENEGOTIATE_TIMEOUT 127
428 #define BIO_C_FILE_SEEK 128
429 #define BIO_C_GET_CIPHER_CTX 129
430 #define BIO_C_SET_BUF_MEM_EOF_RETURN 130/*return end of input value*/
431 #define BIO_C_SET_BIND_MODE 131
432 #define BIO_C_GET_BIND_MODE 132
433 #define BIO_C_FILE_TELL 133
434 #define BIO_C_GET_SOCKS 134
435 #define BIO_C_SET_SOCKS 135

437 #define BIO_C_SET_WRITE_BUF_SIZE 136/* for BIO_s_bio */
438 #define BIO_C_GET_WRITE_BUF_SIZE 137
439 #define BIO_C_MAKE_BIO_PAIR 138
440 #define BIO_C_DESTROY_BIO_PAIR 139
441 #define BIO_C_GET_WRITE_GUARANTEE 140
442 #define BIO_C_GET_READ_REQUEST 141
443 #define BIO_C_SHUTDOWN_WR 142
444 #define BIO_C_NREAD0 143
445 #define BIO_C_NREAD 144
446 #define BIO_C_NWRITE0 145
447 #define BIO_C_NWRITE 146
448 #define BIO_C_RESET_READ_REQUEST 147
449 #define BIO_C_SET_MD_CTX 148

451 #define BIO_C_SET_PREFIX 149
452 #define BIO_C_GET_PREFIX 150
453 #define BIO_C_SET_SUFFIX 151
454 #define BIO_C_GET_SUFFIX 152

456 #define BIO_C_SET_EX_ARG 153
457 #define BIO_C_GET_EX_ARG 154

new/usr/src/lib/openssl/include/openssl/bio.h 8

459 #define BIO_set_app_data(s,arg) BIO_set_ex_data(s,0,arg)
460 #define BIO_get_app_data(s) BIO_get_ex_data(s,0)

462 /* BIO_s_connect() and BIO_s_socks4a_connect() */
463 #define BIO_set_conn_hostname(b,name) BIO_ctrl(b,BIO_C_SET_CONNECT,0,(char *)nam
464 #define BIO_set_conn_port(b,port) BIO_ctrl(b,BIO_C_SET_CONNECT,1,(char *)port)
465 #define BIO_set_conn_ip(b,ip) BIO_ctrl(b,BIO_C_SET_CONNECT,2,(char *)ip)
466 #define BIO_set_conn_int_port(b,port) BIO_ctrl(b,BIO_C_SET_CONNECT,3,(char *)por
467 #define BIO_get_conn_hostname(b) BIO_ptr_ctrl(b,BIO_C_GET_CONNECT,0)
468 #define BIO_get_conn_port(b) BIO_ptr_ctrl(b,BIO_C_GET_CONNECT,1)
469 #define BIO_get_conn_ip(b) BIO_ptr_ctrl(b,BIO_C_GET_CONNECT,2)
470 #define BIO_get_conn_int_port(b) BIO_int_ctrl(b,BIO_C_GET_CONNECT,3,0)

473 #define BIO_set_nbio(b,n) BIO_ctrl(b,BIO_C_SET_NBIO,(n),NULL)

475 /* BIO_s_accept_socket() */
476 #define BIO_set_accept_port(b,name) BIO_ctrl(b,BIO_C_SET_ACCEPT,0,(char *)name)
477 #define BIO_get_accept_port(b) BIO_ptr_ctrl(b,BIO_C_GET_ACCEPT,0)
478 /* #define BIO_set_nbio(b,n) BIO_ctrl(b,BIO_C_SET_NBIO,(n),NULL) */
479 #define BIO_set_nbio_accept(b,n) BIO_ctrl(b,BIO_C_SET_ACCEPT,1,(n)?(void *)"a":N
480 #define BIO_set_accept_bios(b,bio) BIO_ctrl(b,BIO_C_SET_ACCEPT,2,(char *)bio)

482 #define BIO_BIND_NORMAL 0
483 #define BIO_BIND_REUSEADDR_IF_UNUSED 1
484 #define BIO_BIND_REUSEADDR 2
485 #define BIO_set_bind_mode(b,mode) BIO_ctrl(b,BIO_C_SET_BIND_MODE,mode,NULL)
486 #define BIO_get_bind_mode(b,mode) BIO_ctrl(b,BIO_C_GET_BIND_MODE,0,NULL)

488 #define BIO_do_connect(b) BIO_do_handshake(b)
489 #define BIO_do_accept(b) BIO_do_handshake(b)
490 #define BIO_do_handshake(b) BIO_ctrl(b,BIO_C_DO_STATE_MACHINE,0,NULL)

492 /* BIO_s_proxy_client() */
493 #define BIO_set_url(b,url) BIO_ctrl(b,BIO_C_SET_PROXY_PARAM,0,(char *)(url)
494 #define BIO_set_proxies(b,p) BIO_ctrl(b,BIO_C_SET_PROXY_PARAM,1,(char *)(p))
495 /* BIO_set_nbio(b,n) */
496 #define BIO_set_filter_bio(b,s) BIO_ctrl(b,BIO_C_SET_PROXY_PARAM,2,(char *)(s))
497 /* BIO *BIO_get_filter_bio(BIO *bio); */
498 #define BIO_set_proxy_cb(b,cb) BIO_callback_ctrl(b,BIO_C_SET_PROXY_PARAM,3,(void
499 #define BIO_set_proxy_header(b,sk) BIO_ctrl(b,BIO_C_SET_PROXY_PARAM,4,(char *)sk
500 #define BIO_set_no_connect_return(b,bool) BIO_int_ctrl(b,BIO_C_SET_PROXY_PARAM,5

502 #define BIO_get_proxy_header(b,skp) BIO_ctrl(b,BIO_C_GET_PROXY_PARAM,0,(char *)s
503 #define BIO_get_proxies(b,pxy_p) BIO_ctrl(b,BIO_C_GET_PROXY_PARAM,1,(char *)(pxy
504 #define BIO_get_url(b,url) BIO_ctrl(b,BIO_C_GET_PROXY_PARAM,2,(char *)(url)
505 #define BIO_get_no_connect_return(b) BIO_ctrl(b,BIO_C_GET_PROXY_PARAM,5,NULL)

507 #define BIO_set_fd(b,fd,c) BIO_int_ctrl(b,BIO_C_SET_FD,c,fd)
508 #define BIO_get_fd(b,c) BIO_ctrl(b,BIO_C_GET_FD,0,(char *)c)

510 #define BIO_set_fp(b,fp,c) BIO_ctrl(b,BIO_C_SET_FILE_PTR,c,(char *)fp)
511 #define BIO_get_fp(b,fpp) BIO_ctrl(b,BIO_C_GET_FILE_PTR,0,(char *)fpp)

513 #define BIO_seek(b,ofs) (int)BIO_ctrl(b,BIO_C_FILE_SEEK,ofs,NULL)
514 #define BIO_tell(b) (int)BIO_ctrl(b,BIO_C_FILE_TELL,0,NULL)

516 /* name is cast to lose const, but might be better to route through a function
517 so we can do it safely */
518 #ifdef CONST_STRICT
519 /* If you are wondering why this isn’t defined, its because CONST_STRICT is
520 * purely a compile-time kludge to allow const to be checked.
521 */
522 int BIO_read_filename(BIO *b,const char *name);
523 #else

new/usr/src/lib/openssl/include/openssl/bio.h 9

524 #define BIO_read_filename(b,name) BIO_ctrl(b,BIO_C_SET_FILENAME, \
525 BIO_CLOSE|BIO_FP_READ,(char *)name)
526 #endif
527 #define BIO_write_filename(b,name) BIO_ctrl(b,BIO_C_SET_FILENAME, \
528 BIO_CLOSE|BIO_FP_WRITE,name)
529 #define BIO_append_filename(b,name) BIO_ctrl(b,BIO_C_SET_FILENAME, \
530 BIO_CLOSE|BIO_FP_APPEND,name)
531 #define BIO_rw_filename(b,name) BIO_ctrl(b,BIO_C_SET_FILENAME, \
532 BIO_CLOSE|BIO_FP_READ|BIO_FP_WRITE,name)

534 /* WARNING WARNING, this ups the reference count on the read bio of the
535 * SSL structure. This is because the ssl read BIO is now pointed to by
536 * the next_bio field in the bio. So when you free the BIO, make sure
537 * you are doing a BIO_free_all() to catch the underlying BIO. */
538 #define BIO_set_ssl(b,ssl,c) BIO_ctrl(b,BIO_C_SET_SSL,c,(char *)ssl)
539 #define BIO_get_ssl(b,sslp) BIO_ctrl(b,BIO_C_GET_SSL,0,(char *)sslp)
540 #define BIO_set_ssl_mode(b,client) BIO_ctrl(b,BIO_C_SSL_MODE,client,NULL)
541 #define BIO_set_ssl_renegotiate_bytes(b,num) \
542 BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_BYTES,num,NULL);
543 #define BIO_get_num_renegotiates(b) \
544 BIO_ctrl(b,BIO_C_GET_SSL_NUM_RENEGOTIATES,0,NULL);
545 #define BIO_set_ssl_renegotiate_timeout(b,seconds) \
546 BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_TIMEOUT,seconds,NULL);

548 /* defined in evp.h */
549 /* #define BIO_set_md(b,md) BIO_ctrl(b,BIO_C_SET_MD,1,(char *)md) */

551 #define BIO_get_mem_data(b,pp) BIO_ctrl(b,BIO_CTRL_INFO,0,(char *)pp)
552 #define BIO_set_mem_buf(b,bm,c) BIO_ctrl(b,BIO_C_SET_BUF_MEM,c,(char *)bm)
553 #define BIO_get_mem_ptr(b,pp) BIO_ctrl(b,BIO_C_GET_BUF_MEM_PTR,0,(char *)pp)
554 #define BIO_set_mem_eof_return(b,v) \
555 BIO_ctrl(b,BIO_C_SET_BUF_MEM_EOF_RETURN,v,NULL)

557 /* For the BIO_f_buffer() type */
558 #define BIO_get_buffer_num_lines(b) BIO_ctrl(b,BIO_C_GET_BUFF_NUM_LINES,0,NU
559 #define BIO_set_buffer_size(b,size) BIO_ctrl(b,BIO_C_SET_BUFF_SIZE,size,NULL
560 #define BIO_set_read_buffer_size(b,size) BIO_int_ctrl(b,BIO_C_SET_BUFF_SIZE,size
561 #define BIO_set_write_buffer_size(b,size) BIO_int_ctrl(b,BIO_C_SET_BUFF_SIZE,siz
562 #define BIO_set_buffer_read_data(b,buf,num) BIO_ctrl(b,BIO_C_SET_BUFF_READ_DATA,

564 /* Don’t use the next one unless you know what you are doing :-) */
565 #define BIO_dup_state(b,ret) BIO_ctrl(b,BIO_CTRL_DUP,0,(char *)(ret))

567 #define BIO_reset(b) (int)BIO_ctrl(b,BIO_CTRL_RESET,0,NULL)
568 #define BIO_eof(b) (int)BIO_ctrl(b,BIO_CTRL_EOF,0,NULL)
569 #define BIO_set_close(b,c) (int)BIO_ctrl(b,BIO_CTRL_SET_CLOSE,(c),NULL)
570 #define BIO_get_close(b) (int)BIO_ctrl(b,BIO_CTRL_GET_CLOSE,0,NULL)
571 #define BIO_pending(b) (int)BIO_ctrl(b,BIO_CTRL_PENDING,0,NULL)
572 #define BIO_wpending(b) (int)BIO_ctrl(b,BIO_CTRL_WPENDING,0,NULL)
573 /* ...pending macros have inappropriate return type */
574 size_t BIO_ctrl_pending(BIO *b);
575 size_t BIO_ctrl_wpending(BIO *b);
576 #define BIO_flush(b) (int)BIO_ctrl(b,BIO_CTRL_FLUSH,0,NULL)
577 #define BIO_get_info_callback(b,cbp) (int)BIO_ctrl(b,BIO_CTRL_GET_CALLBACK,0, \
578 cbp)
579 #define BIO_set_info_callback(b,cb) (int)BIO_callback_ctrl(b,BIO_CTRL_SET_CALLBA

581 /* For the BIO_f_buffer() type */
582 #define BIO_buffer_get_num_lines(b) BIO_ctrl(b,BIO_CTRL_GET,0,NULL)

584 /* For BIO_s_bio() */
585 #define BIO_set_write_buf_size(b,size) (int)BIO_ctrl(b,BIO_C_SET_WRITE_BUF_SIZE,
586 #define BIO_get_write_buf_size(b,size) (size_t)BIO_ctrl(b,BIO_C_GET_WRITE_BUF_SI
587 #define BIO_make_bio_pair(b1,b2) (int)BIO_ctrl(b1,BIO_C_MAKE_BIO_PAIR,0,b2)
588 #define BIO_destroy_bio_pair(b) (int)BIO_ctrl(b,BIO_C_DESTROY_BIO_PAIR,0,NULL
589 #define BIO_shutdown_wr(b) (int)BIO_ctrl(b, BIO_C_SHUTDOWN_WR, 0, NULL)

new/usr/src/lib/openssl/include/openssl/bio.h 10

590 /* macros with inappropriate type -- but ...pending macros use int too: */
591 #define BIO_get_write_guarantee(b) (int)BIO_ctrl(b,BIO_C_GET_WRITE_GUARANTEE,0,N
592 #define BIO_get_read_request(b) (int)BIO_ctrl(b,BIO_C_GET_READ_REQUEST,0,NULL
593 size_t BIO_ctrl_get_write_guarantee(BIO *b);
594 size_t BIO_ctrl_get_read_request(BIO *b);
595 int BIO_ctrl_reset_read_request(BIO *b);

597 /* ctrl macros for dgram */
598 #define BIO_ctrl_dgram_connect(b,peer) \
599 (int)BIO_ctrl(b,BIO_CTRL_DGRAM_CONNECT,0, (char *)peer)
600 #define BIO_ctrl_set_connected(b, state, peer) \
601 (int)BIO_ctrl(b, BIO_CTRL_DGRAM_SET_CONNECTED, state, (char *)peer)
602 #define BIO_dgram_recv_timedout(b) \
603 (int)BIO_ctrl(b, BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP, 0, NULL)
604 #define BIO_dgram_send_timedout(b) \
605 (int)BIO_ctrl(b, BIO_CTRL_DGRAM_GET_SEND_TIMER_EXP, 0, NULL)
606 #define BIO_dgram_get_peer(b,peer) \
607 (int)BIO_ctrl(b, BIO_CTRL_DGRAM_GET_PEER, 0, (char *)peer)
608 #define BIO_dgram_set_peer(b,peer) \
609 (int)BIO_ctrl(b, BIO_CTRL_DGRAM_SET_PEER, 0, (char *)peer)

611 /* These two aren’t currently implemented */
612 /* int BIO_get_ex_num(BIO *bio); */
613 /* void BIO_set_ex_free_func(BIO *bio,int idx,void (*cb)()); */
614 int BIO_set_ex_data(BIO *bio,int idx,void *data);
615 void *BIO_get_ex_data(BIO *bio,int idx);
616 int BIO_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
617 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);
618 unsigned long BIO_number_read(BIO *bio);
619 unsigned long BIO_number_written(BIO *bio);

621 /* For BIO_f_asn1() */
622 int BIO_asn1_set_prefix(BIO *b, asn1_ps_func *prefix,
623 asn1_ps_func *prefix_free);
624 int BIO_asn1_get_prefix(BIO *b, asn1_ps_func **pprefix,
625 asn1_ps_func **pprefix_free);
626 int BIO_asn1_set_suffix(BIO *b, asn1_ps_func *suffix,
627 asn1_ps_func *suffix_free);
628 int BIO_asn1_get_suffix(BIO *b, asn1_ps_func **psuffix,
629 asn1_ps_func **psuffix_free);

631 # ifndef OPENSSL_NO_FP_API
632 BIO_METHOD *BIO_s_file(void);
633 BIO *BIO_new_file(const char *filename, const char *mode);
634 BIO *BIO_new_fp(FILE *stream, int close_flag);
635 # define BIO_s_file_internal BIO_s_file
636 # endif
637 BIO * BIO_new(BIO_METHOD *type);
638 int BIO_set(BIO *a,BIO_METHOD *type);
639 int BIO_free(BIO *a);
640 void BIO_vfree(BIO *a);
641 int BIO_read(BIO *b, void *data, int len);
642 int BIO_gets(BIO *bp,char *buf, int size);
643 int BIO_write(BIO *b, const void *data, int len);
644 int BIO_puts(BIO *bp,const char *buf);
645 int BIO_indent(BIO *b,int indent,int max);
646 long BIO_ctrl(BIO *bp,int cmd,long larg,void *parg);
647 long BIO_callback_ctrl(BIO *b, int cmd, void (*fp)(struct bio_st *, int, const c
648 char * BIO_ptr_ctrl(BIO *bp,int cmd,long larg);
649 long BIO_int_ctrl(BIO *bp,int cmd,long larg,int iarg);
650 BIO * BIO_push(BIO *b,BIO *append);
651 BIO * BIO_pop(BIO *b);
652 void BIO_free_all(BIO *a);
653 BIO * BIO_find_type(BIO *b,int bio_type);
654 BIO * BIO_next(BIO *b);
655 BIO * BIO_get_retry_BIO(BIO *bio, int *reason);

new/usr/src/lib/openssl/include/openssl/bio.h 11

656 int BIO_get_retry_reason(BIO *bio);
657 BIO * BIO_dup_chain(BIO *in);

659 int BIO_nread0(BIO *bio, char **buf);
660 int BIO_nread(BIO *bio, char **buf, int num);
661 int BIO_nwrite0(BIO *bio, char **buf);
662 int BIO_nwrite(BIO *bio, char **buf, int num);

664 long BIO_debug_callback(BIO *bio,int cmd,const char *argp,int argi,
665 long argl,long ret);

667 BIO_METHOD *BIO_s_mem(void);
668 BIO *BIO_new_mem_buf(void *buf, int len);
669 BIO_METHOD *BIO_s_socket(void);
670 BIO_METHOD *BIO_s_connect(void);
671 BIO_METHOD *BIO_s_accept(void);
672 BIO_METHOD *BIO_s_fd(void);
673 #ifndef OPENSSL_SYS_OS2
674 BIO_METHOD *BIO_s_log(void);
675 #endif
676 BIO_METHOD *BIO_s_bio(void);
677 BIO_METHOD *BIO_s_null(void);
678 BIO_METHOD *BIO_f_null(void);
679 BIO_METHOD *BIO_f_buffer(void);
680 #ifdef OPENSSL_SYS_VMS
681 BIO_METHOD *BIO_f_linebuffer(void);
682 #endif
683 BIO_METHOD *BIO_f_nbio_test(void);
684 #ifndef OPENSSL_NO_DGRAM
685 BIO_METHOD *BIO_s_datagram(void);
686 #ifndef OPENSSL_NO_SCTP
687 BIO_METHOD *BIO_s_datagram_sctp(void);
688 #endif
689 #endif

691 /* BIO_METHOD *BIO_f_ber(void); */

693 int BIO_sock_should_retry(int i);
694 int BIO_sock_non_fatal_error(int error);
695 int BIO_dgram_non_fatal_error(int error);

697 int BIO_fd_should_retry(int i);
698 int BIO_fd_non_fatal_error(int error);
699 int BIO_dump_cb(int (*cb)(const void *data, size_t len, void *u),
700 void *u, const char *s, int len);
701 int BIO_dump_indent_cb(int (*cb)(const void *data, size_t len, void *u),
702 void *u, const char *s, int len, int indent);
703 int BIO_dump(BIO *b,const char *bytes,int len);
704 int BIO_dump_indent(BIO *b,const char *bytes,int len,int indent);
705 #ifndef OPENSSL_NO_FP_API
706 int BIO_dump_fp(FILE *fp, const char *s, int len);
707 int BIO_dump_indent_fp(FILE *fp, const char *s, int len, int indent);
708 #endif
709 struct hostent *BIO_gethostbyname(const char *name);
710 /* We might want a thread-safe interface too:
711 * struct hostent *BIO_gethostbyname_r(const char *name,
712 * struct hostent *result, void *buffer, size_t buflen);
713 * or something similar (caller allocates a struct hostent,
714 * pointed to by "result", and additional buffer space for the various
715 * substructures; if the buffer does not suffice, NULL is returned
716 * and an appropriate error code is set).
717 */
718 int BIO_sock_error(int sock);
719 int BIO_socket_ioctl(int fd, long type, void *arg);
720 int BIO_socket_nbio(int fd,int mode);
721 int BIO_get_port(const char *str, unsigned short *port_ptr);

new/usr/src/lib/openssl/include/openssl/bio.h 12

722 int BIO_get_host_ip(const char *str, unsigned char *ip);
723 int BIO_get_accept_socket(char *host_port,int mode);
724 int BIO_accept(int sock,char **ip_port);
725 int BIO_sock_init(void);
726 void BIO_sock_cleanup(void);
727 int BIO_set_tcp_ndelay(int sock,int turn_on);

729 BIO *BIO_new_socket(int sock, int close_flag);
730 BIO *BIO_new_dgram(int fd, int close_flag);
731 #ifndef OPENSSL_NO_SCTP
732 BIO *BIO_new_dgram_sctp(int fd, int close_flag);
733 int BIO_dgram_is_sctp(BIO *bio);
734 int BIO_dgram_sctp_notification_cb(BIO *b,
735 void (*handle_notifications)(BIO *bio, void *
736 void *context);
737 int BIO_dgram_sctp_wait_for_dry(BIO *b);
738 int BIO_dgram_sctp_msg_waiting(BIO *b);
739 #endif
740 BIO *BIO_new_fd(int fd, int close_flag);
741 BIO *BIO_new_connect(char *host_port);
742 BIO *BIO_new_accept(char *host_port);

744 int BIO_new_bio_pair(BIO **bio1, size_t writebuf1,
745 BIO **bio2, size_t writebuf2);
746 /* If successful, returns 1 and in *bio1, *bio2 two BIO pair endpoints.
747 * Otherwise returns 0 and sets *bio1 and *bio2 to NULL.
748 * Size 0 uses default value.
749 */

751 void BIO_copy_next_retry(BIO *b);

753 /*long BIO_ghbn_ctrl(int cmd,int iarg,char *parg);*/

755 #ifdef __GNUC__
756 # define __bio_h__attr__ __attribute__
757 #else
758 # define __bio_h__attr__(x)
759 #endif
760 int BIO_printf(BIO *bio, const char *format, ...)
761 __bio_h__attr__((__format__(__printf__,2,3)));
762 int BIO_vprintf(BIO *bio, const char *format, va_list args)
763 __bio_h__attr__((__format__(__printf__,2,0)));
764 int BIO_snprintf(char *buf, size_t n, const char *format, ...)
765 __bio_h__attr__((__format__(__printf__,3,4)));
766 int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args)
767 __bio_h__attr__((__format__(__printf__,3,0)));
768 #undef __bio_h__attr__

770 /* BEGIN ERROR CODES */
771 /* The following lines are auto generated by the script mkerr.pl. Any changes
772 * made after this point may be overwritten when the script is next run.
773 */
774 void ERR_load_BIO_strings(void);

776 /* Error codes for the BIO functions. */

778 /* Function codes. */
779 #define BIO_F_ACPT_STATE 100
780 #define BIO_F_BIO_ACCEPT 101
781 #define BIO_F_BIO_BER_GET_HEADER 102
782 #define BIO_F_BIO_CALLBACK_CTRL 131
783 #define BIO_F_BIO_CTRL 103
784 #define BIO_F_BIO_GETHOSTBYNAME 120
785 #define BIO_F_BIO_GETS 104
786 #define BIO_F_BIO_GET_ACCEPT_SOCKET 105
787 #define BIO_F_BIO_GET_HOST_IP 106

new/usr/src/lib/openssl/include/openssl/bio.h 13

788 #define BIO_F_BIO_GET_PORT 107
789 #define BIO_F_BIO_MAKE_PAIR 121
790 #define BIO_F_BIO_NEW 108
791 #define BIO_F_BIO_NEW_FILE 109
792 #define BIO_F_BIO_NEW_MEM_BUF 126
793 #define BIO_F_BIO_NREAD 123
794 #define BIO_F_BIO_NREAD0 124
795 #define BIO_F_BIO_NWRITE 125
796 #define BIO_F_BIO_NWRITE0 122
797 #define BIO_F_BIO_PUTS 110
798 #define BIO_F_BIO_READ 111
799 #define BIO_F_BIO_SOCK_INIT 112
800 #define BIO_F_BIO_WRITE 113
801 #define BIO_F_BUFFER_CTRL 114
802 #define BIO_F_CONN_CTRL 127
803 #define BIO_F_CONN_STATE 115
804 #define BIO_F_DGRAM_SCTP_READ 132
805 #define BIO_F_FILE_CTRL 116
806 #define BIO_F_FILE_READ 130
807 #define BIO_F_LINEBUFFER_CTRL 129
808 #define BIO_F_MEM_READ 128
809 #define BIO_F_MEM_WRITE 117
810 #define BIO_F_SSL_NEW 118
811 #define BIO_F_WSASTARTUP 119

813 /* Reason codes. */
814 #define BIO_R_ACCEPT_ERROR 100
815 #define BIO_R_BAD_FOPEN_MODE 101
816 #define BIO_R_BAD_HOSTNAME_LOOKUP 102
817 #define BIO_R_BROKEN_PIPE 124
818 #define BIO_R_CONNECT_ERROR 103
819 #define BIO_R_EOF_ON_MEMORY_BIO 127
820 #define BIO_R_ERROR_SETTING_NBIO 104
821 #define BIO_R_ERROR_SETTING_NBIO_ON_ACCEPTED_SOCKET 105
822 #define BIO_R_ERROR_SETTING_NBIO_ON_ACCEPT_SOCKET 106
823 #define BIO_R_GETHOSTBYNAME_ADDR_IS_NOT_AF_INET 107
824 #define BIO_R_INVALID_ARGUMENT 125
825 #define BIO_R_INVALID_IP_ADDRESS 108
826 #define BIO_R_IN_USE 123
827 #define BIO_R_KEEPALIVE 109
828 #define BIO_R_NBIO_CONNECT_ERROR 110
829 #define BIO_R_NO_ACCEPT_PORT_SPECIFIED 111
830 #define BIO_R_NO_HOSTNAME_SPECIFIED 112
831 #define BIO_R_NO_PORT_DEFINED 113
832 #define BIO_R_NO_PORT_SPECIFIED 114
833 #define BIO_R_NO_SUCH_FILE 128
834 #define BIO_R_NULL_PARAMETER 115
835 #define BIO_R_TAG_MISMATCH 116
836 #define BIO_R_UNABLE_TO_BIND_SOCKET 117
837 #define BIO_R_UNABLE_TO_CREATE_SOCKET 118
838 #define BIO_R_UNABLE_TO_LISTEN_SOCKET 119
839 #define BIO_R_UNINITIALIZED 120
840 #define BIO_R_UNSUPPORTED_METHOD 121
841 #define BIO_R_WRITE_TO_READ_ONLY_BIO 126
842 #define BIO_R_WSASTARTUP 122

844 #ifdef __cplusplus
845 }
846 #endif
847 #endif

new/usr/src/lib/openssl/include/openssl/blowfish.h 1

**
 5143 Fri May 30 18:31:17 2014
new/usr/src/lib/openssl/include/openssl/blowfish.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bf/blowfish.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_BLOWFISH_H
60 #define HEADER_BLOWFISH_H

new/usr/src/lib/openssl/include/openssl/blowfish.h 2

62 #include <openssl/e_os2.h>

64 #ifdef __cplusplus
65 extern "C" {
66 #endif

68 #ifdef OPENSSL_NO_BF
69 #error BF is disabled.
70 #endif

72 #define BF_ENCRYPT 1
73 #define BF_DECRYPT 0

75 /*
76 * !!
77 * ! BF_LONG has to be at least 32 bits wide. If it’s wider, then !
78 * ! BF_LONG_LOG2 has to be defined along. !
79 * !!
80 */

82 #if defined(__LP32__)
83 #define BF_LONG unsigned long
84 #elif defined(OPENSSL_SYS_CRAY) || defined(__ILP64__)
85 #define BF_LONG unsigned long
86 #define BF_LONG_LOG2 3
87 /*
88 * _CRAY note. I could declare short, but I have no idea what impact
89 * does it have on performance on none-T3E machines. I could declare
90 * int, but at least on C90 sizeof(int) can be chosen at compile time.
91 * So I’ve chosen long...
92 * <appro@fy.chalmers.se>
93 */
94 #else
95 #define BF_LONG unsigned int
96 #endif

98 #define BF_ROUNDS 16
99 #define BF_BLOCK 8

101 typedef struct bf_key_st
102 {
103 BF_LONG P[BF_ROUNDS+2];
104 BF_LONG S[4*256];
105 } BF_KEY;

107 #ifdef OPENSSL_FIPS
108 void private_BF_set_key(BF_KEY *key, int len, const unsigned char *data);
109 #endif
110 void BF_set_key(BF_KEY *key, int len, const unsigned char *data);

112 void BF_encrypt(BF_LONG *data,const BF_KEY *key);
113 void BF_decrypt(BF_LONG *data,const BF_KEY *key);

115 void BF_ecb_encrypt(const unsigned char *in, unsigned char *out,
116 const BF_KEY *key, int enc);
117 void BF_cbc_encrypt(const unsigned char *in, unsigned char *out, long length,
118 const BF_KEY *schedule, unsigned char *ivec, int enc);
119 void BF_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length,
120 const BF_KEY *schedule, unsigned char *ivec, int *num, int enc);
121 void BF_ofb64_encrypt(const unsigned char *in, unsigned char *out, long length,
122 const BF_KEY *schedule, unsigned char *ivec, int *num);
123 const char *BF_options(void);

125 #ifdef __cplusplus
126 }
127 #endif

new/usr/src/lib/openssl/include/openssl/blowfish.h 3

129 #endif

new/usr/src/lib/openssl/include/openssl/bn.h 1

**
 36559 Fri May 30 18:31:17 2014
new/usr/src/lib/openssl/include/openssl/bn.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn.h */
2 /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/include/openssl/bn.h 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /* ==
112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
113 *
114 * Portions of the attached software ("Contribution") are developed by
115 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
116 *
117 * The Contribution is licensed pursuant to the Eric Young open source
118 * license provided above.
119 *
120 * The binary polynomial arithmetic software is originally written by
121 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories.
122 *
123 */

125 #ifndef HEADER_BN_H
126 #define HEADER_BN_H

new/usr/src/lib/openssl/include/openssl/bn.h 3

128 #include <openssl/e_os2.h>
129 #ifndef OPENSSL_NO_FP_API
130 #include <stdio.h> /* FILE */
131 #endif
132 #include <openssl/ossl_typ.h>
133 #include <openssl/crypto.h>

135 #ifdef __cplusplus
136 extern "C" {
137 #endif

139 /* These preprocessor symbols control various aspects of the bignum headers and
140 * library code. They’re not defined by any "normal" configuration, as they are
141 * intended for development and testing purposes. NB: defining all three can be
142 * useful for debugging application code as well as openssl itself.
143 *
144 * BN_DEBUG - turn on various debugging alterations to the bignum code
145 * BN_DEBUG_RAND - uses random poisoning of unused words to trip up
146 * mismanagement of bignum internals. You must also define BN_DEBUG.
147 */
148 /* #define BN_DEBUG */
149 /* #define BN_DEBUG_RAND */

151 #ifndef OPENSSL_SMALL_FOOTPRINT
152 #define BN_MUL_COMBA
153 #define BN_SQR_COMBA
154 #define BN_RECURSION
155 #endif

157 /* This next option uses the C libraries (2 word)/(1 word) function.
158 * If it is not defined, I use my C version (which is slower).
159 * The reason for this flag is that when the particular C compiler
160 * library routine is used, and the library is linked with a different
161 * compiler, the library is missing. This mostly happens when the
162 * library is built with gcc and then linked using normal cc. This would
163 * be a common occurrence because gcc normally produces code that is
164 * 2 times faster than system compilers for the big number stuff.
165 * For machines with only one compiler (or shared libraries), this should
166 * be on. Again this in only really a problem on machines
167 * using "long long’s", are 32bit, and are not using my assembler code. */
168 #if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \
169 defined(OPENSSL_SYS_WIN32) || defined(linux)
170 # ifndef BN_DIV2W
171 # define BN_DIV2W
172 # endif
173 #endif

175 /* assuming long is 64bit - this is the DEC Alpha
176 * unsigned long long is only 64 bits :-(, don’t define
177 * BN_LLONG for the DEC Alpha */
178 #ifdef SIXTY_FOUR_BIT_LONG
179 #define BN_ULLONG unsigned long long
180 #define BN_ULONG unsigned long
181 #define BN_LONG long
182 #define BN_BITS 128
183 #define BN_BYTES 8
184 #define BN_BITS2 64
185 #define BN_BITS4 32
186 #define BN_MASK (0xffffffffffffffffffffffffffffffffLL)
187 #define BN_MASK2 (0xffffffffffffffffL)
188 #define BN_MASK2l (0xffffffffL)
189 #define BN_MASK2h (0xffffffff00000000L)
190 #define BN_MASK2h1 (0xffffffff80000000L)
191 #define BN_TBIT (0x8000000000000000L)
192 #define BN_DEC_CONV (10000000000000000000UL)
193 #define BN_DEC_FMT1 "%lu"

new/usr/src/lib/openssl/include/openssl/bn.h 4

194 #define BN_DEC_FMT2 "%019lu"
195 #define BN_DEC_NUM 19
196 #define BN_HEX_FMT1 "%lX"
197 #define BN_HEX_FMT2 "%016lX"
198 #endif

200 /* This is where the long long data type is 64 bits, but long is 32.
201 * For machines where there are 64bit registers, this is the mode to use.
202 * IRIX, on R4000 and above should use this mode, along with the relevant
203 * assembler code :-). Do NOT define BN_LLONG.
204 */
205 #ifdef SIXTY_FOUR_BIT
206 #undef BN_LLONG
207 #undef BN_ULLONG
208 #define BN_ULONG unsigned long long
209 #define BN_LONG long long
210 #define BN_BITS 128
211 #define BN_BYTES 8
212 #define BN_BITS2 64
213 #define BN_BITS4 32
214 #define BN_MASK2 (0xffffffffffffffffLL)
215 #define BN_MASK2l (0xffffffffL)
216 #define BN_MASK2h (0xffffffff00000000LL)
217 #define BN_MASK2h1 (0xffffffff80000000LL)
218 #define BN_TBIT (0x8000000000000000LL)
219 #define BN_DEC_CONV (10000000000000000000ULL)
220 #define BN_DEC_FMT1 "%llu"
221 #define BN_DEC_FMT2 "%019llu"
222 #define BN_DEC_NUM 19
223 #define BN_HEX_FMT1 "%llX"
224 #define BN_HEX_FMT2 "%016llX"
225 #endif

227 #ifdef THIRTY_TWO_BIT
228 #ifdef BN_LLONG
229 # if defined(_WIN32) && !defined(__GNUC__)
230 # define BN_ULLONG unsigned __int64
231 # define BN_MASK (0xffffffffffffffffI64)
232 # else
233 # define BN_ULLONG unsigned long long
234 # define BN_MASK (0xffffffffffffffffLL)
235 # endif
236 #endif
237 #define BN_ULONG unsigned int
238 #define BN_LONG int
239 #define BN_BITS 64
240 #define BN_BYTES 4
241 #define BN_BITS2 32
242 #define BN_BITS4 16
243 #define BN_MASK2 (0xffffffffL)
244 #define BN_MASK2l (0xffff)
245 #define BN_MASK2h1 (0xffff8000L)
246 #define BN_MASK2h (0xffff0000L)
247 #define BN_TBIT (0x80000000L)
248 #define BN_DEC_CONV (1000000000L)
249 #define BN_DEC_FMT1 "%u"
250 #define BN_DEC_FMT2 "%09u"
251 #define BN_DEC_NUM 9
252 #define BN_HEX_FMT1 "%X"
253 #define BN_HEX_FMT2 "%08X"
254 #endif

256 /* 2011-02-22 SMS.
257 * In various places, a size_t variable or a type cast to size_t was
258 * used to perform integer-only operations on pointers. This failed on
259 * VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t is

new/usr/src/lib/openssl/include/openssl/bn.h 5

260 * still only 32 bits. What’s needed in these cases is an integer type
261 * with the same size as a pointer, which size_t is not certain to be.
262 * The only fix here is VMS-specific.
263 */
264 #if defined(OPENSSL_SYS_VMS)
265 # if __INITIAL_POINTER_SIZE == 64
266 # define PTR_SIZE_INT long long
267 # else /* __INITIAL_POINTER_SIZE == 64 */
268 # define PTR_SIZE_INT int
269 # endif /* __INITIAL_POINTER_SIZE == 64 [else] */
270 #else /* defined(OPENSSL_SYS_VMS) */
271 # define PTR_SIZE_INT size_t
272 #endif /* defined(OPENSSL_SYS_VMS) [else] */

274 #define BN_DEFAULT_BITS 1280

276 #define BN_FLG_MALLOCED 0x01
277 #define BN_FLG_STATIC_DATA 0x02
278 #define BN_FLG_CONSTTIME 0x04 /* avoid leaking exponent information throu
279 * BN_mod_exp_mont() will call BN_mod_exp_m
280 * BN_div() will call BN_div_no_branch,
281 * BN_mod_inverse() will call BN_mod_invers
282 */

284 #ifndef OPENSSL_NO_DEPRECATED
285 #define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME /* deprecated name for the flag */
286 /* avoid leaking exponent information thro
287 * (BN_mod_exp_mont() will call BN_mod_exp_
288 #endif

290 #ifndef OPENSSL_NO_DEPRECATED
291 #define BN_FLG_FREE 0x8000 /* used for debuging */
292 #endif
293 #define BN_set_flags(b,n) ((b)->flags|=(n))
294 #define BN_get_flags(b,n) ((b)->flags&(n))

296 /* get a clone of a BIGNUM with changed flags, for *temporary* use only
297 * (the two BIGNUMs cannot not be used in parallel!) */
298 #define BN_with_flags(dest,b,n) ((dest)->d=(b)->d, \
299 (dest)->top=(b)->top, \
300 (dest)->dmax=(b)->dmax, \
301 (dest)->neg=(b)->neg, \
302 (dest)->flags=(((dest)->flags & BN_FLG_MALLOCE
303 | ((b)->flags & ~BN_FLG_MALLOC
304 | BN_FLG_STATIC_DATA \
305 | (n)))

307 /* Already declared in ossl_typ.h */
308 #if 0
309 typedef struct bignum_st BIGNUM;
310 /* Used for temp variables (declaration hidden in bn_lcl.h) */
311 typedef struct bignum_ctx BN_CTX;
312 typedef struct bn_blinding_st BN_BLINDING;
313 typedef struct bn_mont_ctx_st BN_MONT_CTX;
314 typedef struct bn_recp_ctx_st BN_RECP_CTX;
315 typedef struct bn_gencb_st BN_GENCB;
316 #endif

318 struct bignum_st
319 {
320 BN_ULONG *d; /* Pointer to an array of ’BN_BITS2’ bit chunks. */
321 int top; /* Index of last used d +1. */
322 /* The next are internal book keeping for bn_expand. */
323 int dmax; /* Size of the d array. */
324 int neg; /* one if the number is negative */
325 int flags;

new/usr/src/lib/openssl/include/openssl/bn.h 6

326 };

328 /* Used for montgomery multiplication */
329 struct bn_mont_ctx_st
330 {
331 int ri; /* number of bits in R */
332 BIGNUM RR; /* used to convert to montgomery form */
333 BIGNUM N; /* The modulus */
334 BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1
335 * (Ni is only stored for bignum algorithm) */
336 BN_ULONG n0[2];/* least significant word(s) of Ni;
337 (type changed with 0.9.9, was "BN_ULONG n0;" before) *
338 int flags;
339 };

341 /* Used for reciprocal division/mod functions
342 * It cannot be shared between threads
343 */
344 struct bn_recp_ctx_st
345 {
346 BIGNUM N; /* the divisor */
347 BIGNUM Nr; /* the reciprocal */
348 int num_bits;
349 int shift;
350 int flags;
351 };

353 /* Used for slow "generation" functions. */
354 struct bn_gencb_st
355 {
356 unsigned int ver; /* To handle binary (in)compatibility */
357 void *arg; /* callback-specific data */
358 union
359 {
360 /* if(ver==1) - handles old style callbacks */
361 void (*cb_1)(int, int, void *);
362 /* if(ver==2) - new callback style */
363 int (*cb_2)(int, int, BN_GENCB *);
364 } cb;
365 };
366 /* Wrapper function to make using BN_GENCB easier, */
367 int BN_GENCB_call(BN_GENCB *cb, int a, int b);
368 /* Macro to populate a BN_GENCB structure with an "old"-style callback */
369 #define BN_GENCB_set_old(gencb, callback, cb_arg) { \
370 BN_GENCB *tmp_gencb = (gencb); \
371 tmp_gencb->ver = 1; \
372 tmp_gencb->arg = (cb_arg); \
373 tmp_gencb->cb.cb_1 = (callback); }
374 /* Macro to populate a BN_GENCB structure with a "new"-style callback */
375 #define BN_GENCB_set(gencb, callback, cb_arg) { \
376 BN_GENCB *tmp_gencb = (gencb); \
377 tmp_gencb->ver = 2; \
378 tmp_gencb->arg = (cb_arg); \
379 tmp_gencb->cb.cb_2 = (callback); }

381 #define BN_prime_checks 0 /* default: select number of iterations
382 based on the size of the number */

384 /* number of Miller-Rabin iterations for an error rate of less than 2^-80
385 * for random ’b’-bit input, b >= 100 (taken from table 4.4 in the Handbook
386 * of Applied Cryptography [Menezes, van Oorschot, Vanstone; CRC Press 1996];
387 * original paper: Damgaard, Landrock, Pomerance: Average case error estimates
388 * for the strong probable prime test. -- Math. Comp. 61 (1993) 177-194) */
389 #define BN_prime_checks_for_size(b) ((b) >= 1300 ? 2 : \
390 (b) >= 850 ? 3 : \
391 (b) >= 650 ? 4 : \

new/usr/src/lib/openssl/include/openssl/bn.h 7

392 (b) >= 550 ? 5 : \
393 (b) >= 450 ? 6 : \
394 (b) >= 400 ? 7 : \
395 (b) >= 350 ? 8 : \
396 (b) >= 300 ? 9 : \
397 (b) >= 250 ? 12 : \
398 (b) >= 200 ? 15 : \
399 (b) >= 150 ? 18 : \
400 /* b >= 100 */ 27)

402 #define BN_num_bytes(a) ((BN_num_bits(a)+7)/8)

404 /* Note that BN_abs_is_word didn’t work reliably for w == 0 until 0.9.8 */
405 #define BN_abs_is_word(a,w) ((((a)->top == 1) && ((a)->d[0] == (BN_ULONG)(w))) |
406 (((w) == 0) && ((a)->top == 0)))
407 #define BN_is_zero(a) ((a)->top == 0)
408 #define BN_is_one(a) (BN_abs_is_word((a),1) && !(a)->neg)
409 #define BN_is_word(a,w) (BN_abs_is_word((a),(w)) && (!(w) || !(a)->neg))
410 #define BN_is_odd(a) (((a)->top > 0) && ((a)->d[0] & 1))

412 #define BN_one(a) (BN_set_word((a),1))
413 #define BN_zero_ex(a) \
414 do { \
415 BIGNUM *_tmp_bn = (a); \
416 _tmp_bn->top = 0; \
417 _tmp_bn->neg = 0; \
418 } while(0)
419 #ifdef OPENSSL_NO_DEPRECATED
420 #define BN_zero(a) BN_zero_ex(a)
421 #else
422 #define BN_zero(a) (BN_set_word((a),0))
423 #endif

425 const BIGNUM *BN_value_one(void);
426 char * BN_options(void);
427 BN_CTX *BN_CTX_new(void);
428 #ifndef OPENSSL_NO_DEPRECATED
429 void BN_CTX_init(BN_CTX *c);
430 #endif
431 void BN_CTX_free(BN_CTX *c);
432 void BN_CTX_start(BN_CTX *ctx);
433 BIGNUM *BN_CTX_get(BN_CTX *ctx);
434 void BN_CTX_end(BN_CTX *ctx);
435 int BN_rand(BIGNUM *rnd, int bits, int top,int bottom);
436 int BN_pseudo_rand(BIGNUM *rnd, int bits, int top,int bottom);
437 int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
438 int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
439 int BN_num_bits(const BIGNUM *a);
440 int BN_num_bits_word(BN_ULONG);
441 BIGNUM *BN_new(void);
442 void BN_init(BIGNUM *);
443 void BN_clear_free(BIGNUM *a);
444 BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);
445 void BN_swap(BIGNUM *a, BIGNUM *b);
446 BIGNUM *BN_bin2bn(const unsigned char *s,int len,BIGNUM *ret);
447 int BN_bn2bin(const BIGNUM *a, unsigned char *to);
448 BIGNUM *BN_mpi2bn(const unsigned char *s,int len,BIGNUM *ret);
449 int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
450 int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
451 int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
452 int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
453 int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
454 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
455 int BN_sqr(BIGNUM *r, const BIGNUM *a,BN_CTX *ctx);
456 /** BN_set_negative sets sign of a BIGNUM
457 * \param b pointer to the BIGNUM object

new/usr/src/lib/openssl/include/openssl/bn.h 8

458 * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise
459 */
460 void BN_set_negative(BIGNUM *b, int n);
461 /** BN_is_negative returns 1 if the BIGNUM is negative
462 * \param a pointer to the BIGNUM object
463 * \return 1 if a < 0 and 0 otherwise
464 */
465 #define BN_is_negative(a) ((a)->neg != 0)

467 int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
468 BN_CTX *ctx);
469 #define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx))
470 int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx);
471 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
472 int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGN
473 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
474 int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGN
475 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
476 const BIGNUM *m, BN_CTX *ctx);
477 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
478 int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx)
479 int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m);
480 int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX
481 int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m);

483 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
484 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);
485 int BN_mul_word(BIGNUM *a, BN_ULONG w);
486 int BN_add_word(BIGNUM *a, BN_ULONG w);
487 int BN_sub_word(BIGNUM *a, BN_ULONG w);
488 int BN_set_word(BIGNUM *a, BN_ULONG w);
489 BN_ULONG BN_get_word(const BIGNUM *a);

491 int BN_cmp(const BIGNUM *a, const BIGNUM *b);
492 void BN_free(BIGNUM *a);
493 int BN_is_bit_set(const BIGNUM *a, int n);
494 int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
495 int BN_lshift1(BIGNUM *r, const BIGNUM *a);
496 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,BN_CTX *ctx);

498 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
499 const BIGNUM *m,BN_CTX *ctx);
500 int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
501 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
502 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
503 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont);
504 int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
505 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
506 int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1,
507 const BIGNUM *a2, const BIGNUM *p2,const BIGNUM *m,
508 BN_CTX *ctx,BN_MONT_CTX *m_ctx);
509 int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
510 const BIGNUM *m,BN_CTX *ctx);

512 int BN_mask_bits(BIGNUM *a,int n);
513 #ifndef OPENSSL_NO_FP_API
514 int BN_print_fp(FILE *fp, const BIGNUM *a);
515 #endif
516 #ifdef HEADER_BIO_H
517 int BN_print(BIO *fp, const BIGNUM *a);
518 #else
519 int BN_print(void *fp, const BIGNUM *a);
520 #endif
521 int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx);
522 int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
523 int BN_rshift1(BIGNUM *r, const BIGNUM *a);

new/usr/src/lib/openssl/include/openssl/bn.h 9

524 void BN_clear(BIGNUM *a);
525 BIGNUM *BN_dup(const BIGNUM *a);
526 int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
527 int BN_set_bit(BIGNUM *a, int n);
528 int BN_clear_bit(BIGNUM *a, int n);
529 char * BN_bn2hex(const BIGNUM *a);
530 char * BN_bn2dec(const BIGNUM *a);
531 int BN_hex2bn(BIGNUM **a, const char *str);
532 int BN_dec2bn(BIGNUM **a, const char *str);
533 int BN_asc2bn(BIGNUM **a, const char *str);
534 int BN_gcd(BIGNUM *r,const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx);
535 int BN_kronecker(const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx); /* returns -2
536 BIGNUM *BN_mod_inverse(BIGNUM *ret,
537 const BIGNUM *a, const BIGNUM *n,BN_CTX *ctx);
538 BIGNUM *BN_mod_sqrt(BIGNUM *ret,
539 const BIGNUM *a, const BIGNUM *n,BN_CTX *ctx);

541 void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords);

543 /* Deprecated versions */
544 #ifndef OPENSSL_NO_DEPRECATED
545 BIGNUM *BN_generate_prime(BIGNUM *ret,int bits,int safe,
546 const BIGNUM *add, const BIGNUM *rem,
547 void (*callback)(int,int,void *),void *cb_arg);
548 int BN_is_prime(const BIGNUM *p,int nchecks,
549 void (*callback)(int,int,void *),
550 BN_CTX *ctx,void *cb_arg);
551 int BN_is_prime_fasttest(const BIGNUM *p,int nchecks,
552 void (*callback)(int,int,void *),BN_CTX *ctx,void *cb_arg,
553 int do_trial_division);
554 #endif /* !defined(OPENSSL_NO_DEPRECATED) */

556 /* Newer versions */
557 int BN_generate_prime_ex(BIGNUM *ret,int bits,int safe, const BIGNUM *add,
558 const BIGNUM *rem, BN_GENCB *cb);
559 int BN_is_prime_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx, BN_GENCB *cb);
560 int BN_is_prime_fasttest_ex(const BIGNUM *p,int nchecks, BN_CTX *ctx,
561 int do_trial_division, BN_GENCB *cb);

563 int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx);

565 int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
566 const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2,
567 const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb);
568 int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
569 BIGNUM *Xp1, BIGNUM *Xp2,
570 const BIGNUM *Xp,
571 const BIGNUM *e, BN_CTX *ctx,
572 BN_GENCB *cb);

574 BN_MONT_CTX *BN_MONT_CTX_new(void);
575 void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
576 int BN_mod_mul_montgomery(BIGNUM *r,const BIGNUM *a,const BIGNUM *b,
577 BN_MONT_CTX *mont, BN_CTX *ctx);
578 #define BN_to_montgomery(r,a,mont,ctx) BN_mod_mul_montgomery(\
579 (r),(a),&((mont)->RR),(mont),(ctx))
580 int BN_from_montgomery(BIGNUM *r,const BIGNUM *a,
581 BN_MONT_CTX *mont, BN_CTX *ctx);
582 void BN_MONT_CTX_free(BN_MONT_CTX *mont);
583 int BN_MONT_CTX_set(BN_MONT_CTX *mont,const BIGNUM *mod,BN_CTX *ctx);
584 BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to,BN_MONT_CTX *from);
585 BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, int lock,
586 const BIGNUM *mod, BN_CTX *ctx);

588 /* BN_BLINDING flags */
589 #define BN_BLINDING_NO_UPDATE 0x00000001

new/usr/src/lib/openssl/include/openssl/bn.h 10

590 #define BN_BLINDING_NO_RECREATE 0x00000002

592 BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod);
593 void BN_BLINDING_free(BN_BLINDING *b);
594 int BN_BLINDING_update(BN_BLINDING *b,BN_CTX *ctx);
595 int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
596 int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
597 int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *);
598 int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, BN_CTX *);
599 #ifndef OPENSSL_NO_DEPRECATED
600 unsigned long BN_BLINDING_get_thread_id(const BN_BLINDING *);
601 void BN_BLINDING_set_thread_id(BN_BLINDING *, unsigned long);
602 #endif
603 CRYPTO_THREADID *BN_BLINDING_thread_id(BN_BLINDING *);
604 unsigned long BN_BLINDING_get_flags(const BN_BLINDING *);
605 void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long);
606 BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b,
607 const BIGNUM *e, BIGNUM *m, BN_CTX *ctx,
608 int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
609 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx),
610 BN_MONT_CTX *m_ctx);

612 #ifndef OPENSSL_NO_DEPRECATED
613 void BN_set_params(int mul,int high,int low,int mont);
614 int BN_get_params(int which); /* 0, mul, 1 high, 2 low, 3 mont */
615 #endif

617 void BN_RECP_CTX_init(BN_RECP_CTX *recp);
618 BN_RECP_CTX *BN_RECP_CTX_new(void);
619 void BN_RECP_CTX_free(BN_RECP_CTX *recp);
620 int BN_RECP_CTX_set(BN_RECP_CTX *recp,const BIGNUM *rdiv,BN_CTX *ctx);
621 int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
622 BN_RECP_CTX *recp,BN_CTX *ctx);
623 int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
624 const BIGNUM *m, BN_CTX *ctx);
625 int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
626 BN_RECP_CTX *recp, BN_CTX *ctx);

628 #ifndef OPENSSL_NO_EC2M

630 /* Functions for arithmetic over binary polynomials represented by BIGNUMs.
631 *
632 * The BIGNUM::neg property of BIGNUMs representing binary polynomials is
633 * ignored.
634 *
635 * Note that input arguments are not const so that their bit arrays can
636 * be expanded to the appropriate size if needed.
637 */

639 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); /*r = a + b*/
640 #define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b)
641 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p); /*r=a mod p*/
642 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
643 const BIGNUM *p, BN_CTX *ctx); /* r = (a * b) mod p */
644 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
645 BN_CTX *ctx); /* r = (a * a) mod p */
646 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p,
647 BN_CTX *ctx); /* r = (1 / b) mod p */
648 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
649 const BIGNUM *p, BN_CTX *ctx); /* r = (a / b) mod p */
650 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
651 const BIGNUM *p, BN_CTX *ctx); /* r = (a ^ b) mod p */
652 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
653 BN_CTX *ctx); /* r = sqrt(a) mod p */
654 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
655 BN_CTX *ctx); /* r^2 + r = a mod p */

new/usr/src/lib/openssl/include/openssl/bn.h 11

656 #define BN_GF2m_cmp(a, b) BN_ucmp((a), (b))
657 /* Some functions allow for representation of the irreducible polynomials
658 * as an unsigned int[], say p. The irreducible f(t) is then of the form:
659 * t^p[0] + t^p[1] + ... + t^p[k]
660 * where m = p[0] > p[1] > ... > p[k] = 0.
661 */
662 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]);
663 /* r = a mod p */
664 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
665 const int p[], BN_CTX *ctx); /* r = (a * b) mod p */
666 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
667 BN_CTX *ctx); /* r = (a * a) mod p */
668 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[],
669 BN_CTX *ctx); /* r = (1 / b) mod p */
670 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
671 const int p[], BN_CTX *ctx); /* r = (a / b) mod p */
672 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
673 const int p[], BN_CTX *ctx); /* r = (a ^ b) mod p */
674 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a,
675 const int p[], BN_CTX *ctx); /* r = sqrt(a) mod p */
676 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a,
677 const int p[], BN_CTX *ctx); /* r^2 + r = a mod p */
678 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max);
679 int BN_GF2m_arr2poly(const int p[], BIGNUM *a);

681 #endif

683 /* faster mod functions for the ’NIST primes’
684 * 0 <= a < p^2 */
685 int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
686 int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
687 int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
688 int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
689 int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);

691 const BIGNUM *BN_get0_nist_prime_192(void);
692 const BIGNUM *BN_get0_nist_prime_224(void);
693 const BIGNUM *BN_get0_nist_prime_256(void);
694 const BIGNUM *BN_get0_nist_prime_384(void);
695 const BIGNUM *BN_get0_nist_prime_521(void);

697 /* library internal functions */

699 #define bn_expand(a,bits) ((((((bits+BN_BITS2-1))/BN_BITS2)) <= (a)->dmax)?\
700 (a):bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2))
701 #define bn_wexpand(a,words) (((words) <= (a)->dmax)?(a):bn_expand2((a),(words)))
702 BIGNUM *bn_expand2(BIGNUM *a, int words);
703 #ifndef OPENSSL_NO_DEPRECATED
704 BIGNUM *bn_dup_expand(const BIGNUM *a, int words); /* unused */
705 #endif

707 /* Bignum consistency macros
708 * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
709 * bignum data after direct manipulations on the data. There is also an
710 * "internal" macro, bn_check_top(), for verifying that there are no leading
711 * zeroes. Unfortunately, some auditing is required due to the fact that
712 * bn_fix_top() has become an overabused duct-tape because bignum data is
713 * occasionally passed around in an inconsistent state. So the following
714 * changes have been made to sort this out;
715 * - bn_fix_top()s implementation has been moved to bn_correct_top()
716 * - if BN_DEBUG isn’t defined, bn_fix_top() maps to bn_correct_top(), and
717 * bn_check_top() is as before.
718 * - if BN_DEBUG *is* defined;
719 * - bn_check_top() tries to pollute unused words even if the bignum ’top’ is
720 * consistent. (ed: only if BN_DEBUG_RAND is defined)
721 * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.

new/usr/src/lib/openssl/include/openssl/bn.h 12

722 * The idea is to have debug builds flag up inconsistent bignums when they
723 * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
724 * the use of bn_fix_top() was appropriate (ie. it follows directly after code
725 * that manipulates the bignum) it is converted to bn_correct_top(), and if it
726 * was not appropriate, we convert it permanently to bn_check_top() and track
727 * down the cause of the bug. Eventually, no internal code should be using the
728 * bn_fix_top() macro. External applications and libraries should try this with
729 * their own code too, both in terms of building against the openssl headers
730 * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
731 * defined. This not only improves external code, it provides more test
732 * coverage for openssl’s own code.
733 */

735 #ifdef BN_DEBUG

737 /* We only need assert() when debugging */
738 #include <assert.h>

740 #ifdef BN_DEBUG_RAND
741 /* To avoid "make update" cvs wars due to BN_DEBUG, use some tricks */
742 #ifndef RAND_pseudo_bytes
743 int RAND_pseudo_bytes(unsigned char *buf,int num);
744 #define BN_DEBUG_TRIX
745 #endif
746 #define bn_pollute(a) \
747 do { \
748 const BIGNUM *_bnum1 = (a); \
749 if(_bnum1->top < _bnum1->dmax) { \
750 unsigned char _tmp_char; \
751 /* We cast away const without the compiler knowing, any
752 * *genuinely* constant variables that aren’t mutable \
753 * wouldn’t be constructed with top!=dmax. */ \
754 BN_ULONG *_not_const; \
755 memcpy(&_not_const, &_bnum1->d, sizeof(BN_ULONG*)); \
756 RAND_pseudo_bytes(&_tmp_char, 1); \
757 memset((unsigned char *)(_not_const + _bnum1->top), _tmp
758 (_bnum1->dmax - _bnum1->top) * sizeof(BN_ULONG))
759 } \
760 } while(0)
761 #ifdef BN_DEBUG_TRIX
762 #undef RAND_pseudo_bytes
763 #endif
764 #else
765 #define bn_pollute(a)
766 #endif
767 #define bn_check_top(a) \
768 do { \
769 const BIGNUM *_bnum2 = (a); \
770 if (_bnum2 != NULL) { \
771 assert((_bnum2->top == 0) || \
772 (_bnum2->d[_bnum2->top - 1] != 0)); \
773 bn_pollute(_bnum2); \
774 } \
775 } while(0)

777 #define bn_fix_top(a) bn_check_top(a)

779 #define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
780 #define bn_wcheck_size(bn, words) \
781 do { \
782 const BIGNUM *_bnum2 = (bn); \
783 assert(words <= (_bnum2)->dmax && words >= (_bnum2)->top); \
784 } while(0)

786 #else /* !BN_DEBUG */

new/usr/src/lib/openssl/include/openssl/bn.h 13

788 #define bn_pollute(a)
789 #define bn_check_top(a)
790 #define bn_fix_top(a) bn_correct_top(a)
791 #define bn_check_size(bn, bits)
792 #define bn_wcheck_size(bn, words)

794 #endif

796 #define bn_correct_top(a) \
797 { \
798 BN_ULONG *ftl; \
799 int tmp_top = (a)->top; \
800 if (tmp_top > 0) \
801 { \
802 for (ftl= &((a)->d[tmp_top-1]); tmp_top > 0; tmp_top--) \
803 if (*(ftl--)) break; \
804 (a)->top = tmp_top; \
805 } \
806 bn_pollute(a); \
807 }

809 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
810 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
811 void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
812 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
813 BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int n
814 BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int n

816 /* Primes from RFC 2409 */
817 BIGNUM *get_rfc2409_prime_768(BIGNUM *bn);
818 BIGNUM *get_rfc2409_prime_1024(BIGNUM *bn);

820 /* Primes from RFC 3526 */
821 BIGNUM *get_rfc3526_prime_1536(BIGNUM *bn);
822 BIGNUM *get_rfc3526_prime_2048(BIGNUM *bn);
823 BIGNUM *get_rfc3526_prime_3072(BIGNUM *bn);
824 BIGNUM *get_rfc3526_prime_4096(BIGNUM *bn);
825 BIGNUM *get_rfc3526_prime_6144(BIGNUM *bn);
826 BIGNUM *get_rfc3526_prime_8192(BIGNUM *bn);

828 int BN_bntest_rand(BIGNUM *rnd, int bits, int top,int bottom);

830 /* BEGIN ERROR CODES */
831 /* The following lines are auto generated by the script mkerr.pl. Any changes
832 * made after this point may be overwritten when the script is next run.
833 */
834 void ERR_load_BN_strings(void);

836 /* Error codes for the BN functions. */

838 /* Function codes. */
839 #define BN_F_BNRAND 127
840 #define BN_F_BN_BLINDING_CONVERT_EX 100
841 #define BN_F_BN_BLINDING_CREATE_PARAM 128
842 #define BN_F_BN_BLINDING_INVERT_EX 101
843 #define BN_F_BN_BLINDING_NEW 102
844 #define BN_F_BN_BLINDING_UPDATE 103
845 #define BN_F_BN_BN2DEC 104
846 #define BN_F_BN_BN2HEX 105
847 #define BN_F_BN_CTX_GET 116
848 #define BN_F_BN_CTX_NEW 106
849 #define BN_F_BN_CTX_START 129
850 #define BN_F_BN_DIV 107
851 #define BN_F_BN_DIV_NO_BRANCH 138
852 #define BN_F_BN_DIV_RECP 130
853 #define BN_F_BN_EXP 123

new/usr/src/lib/openssl/include/openssl/bn.h 14

854 #define BN_F_BN_EXPAND2 108
855 #define BN_F_BN_EXPAND_INTERNAL 120
856 #define BN_F_BN_GF2M_MOD 131
857 #define BN_F_BN_GF2M_MOD_EXP 132
858 #define BN_F_BN_GF2M_MOD_MUL 133
859 #define BN_F_BN_GF2M_MOD_SOLVE_QUAD 134
860 #define BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR 135
861 #define BN_F_BN_GF2M_MOD_SQR 136
862 #define BN_F_BN_GF2M_MOD_SQRT 137
863 #define BN_F_BN_MOD_EXP2_MONT 118
864 #define BN_F_BN_MOD_EXP_MONT 109
865 #define BN_F_BN_MOD_EXP_MONT_CONSTTIME 124
866 #define BN_F_BN_MOD_EXP_MONT_WORD 117
867 #define BN_F_BN_MOD_EXP_RECP 125
868 #define BN_F_BN_MOD_EXP_SIMPLE 126
869 #define BN_F_BN_MOD_INVERSE 110
870 #define BN_F_BN_MOD_INVERSE_NO_BRANCH 139
871 #define BN_F_BN_MOD_LSHIFT_QUICK 119
872 #define BN_F_BN_MOD_MUL_RECIPROCAL 111
873 #define BN_F_BN_MOD_SQRT 121
874 #define BN_F_BN_MPI2BN 112
875 #define BN_F_BN_NEW 113
876 #define BN_F_BN_RAND 114
877 #define BN_F_BN_RAND_RANGE 122
878 #define BN_F_BN_USUB 115

880 /* Reason codes. */
881 #define BN_R_ARG2_LT_ARG3 100
882 #define BN_R_BAD_RECIPROCAL 101
883 #define BN_R_BIGNUM_TOO_LONG 114
884 #define BN_R_CALLED_WITH_EVEN_MODULUS 102
885 #define BN_R_DIV_BY_ZERO 103
886 #define BN_R_ENCODING_ERROR 104
887 #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 105
888 #define BN_R_INPUT_NOT_REDUCED 110
889 #define BN_R_INVALID_LENGTH 106
890 #define BN_R_INVALID_RANGE 115
891 #define BN_R_NOT_A_SQUARE 111
892 #define BN_R_NOT_INITIALIZED 107
893 #define BN_R_NO_INVERSE 108
894 #define BN_R_NO_SOLUTION 116
895 #define BN_R_P_IS_NOT_PRIME 112
896 #define BN_R_TOO_MANY_ITERATIONS 113
897 #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 109

899 #ifdef __cplusplus
900 }
901 #endif
902 #endif

new/usr/src/lib/openssl/include/openssl/buffer.h 1

**
 4652 Fri May 30 18:31:17 2014
new/usr/src/lib/openssl/include/openssl/buffer.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/buffer/buffer.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_BUFFER_H
60 #define HEADER_BUFFER_H

new/usr/src/lib/openssl/include/openssl/buffer.h 2

62 #include <openssl/ossl_typ.h>

64 #ifdef __cplusplus
65 extern "C" {
66 #endif

68 #include <stddef.h>

70 #if !defined(NO_SYS_TYPES_H)
71 #include <sys/types.h>
72 #endif

74 /* Already declared in ossl_typ.h */
75 /* typedef struct buf_mem_st BUF_MEM; */

77 struct buf_mem_st
78 {
79 size_t length; /* current number of bytes */
80 char *data;
81 size_t max; /* size of buffer */
82 };

84 BUF_MEM *BUF_MEM_new(void);
85 void BUF_MEM_free(BUF_MEM *a);
86 int BUF_MEM_grow(BUF_MEM *str, size_t len);
87 int BUF_MEM_grow_clean(BUF_MEM *str, size_t len);
88 char * BUF_strdup(const char *str);
89 char * BUF_strndup(const char *str, size_t siz);
90 void * BUF_memdup(const void *data, size_t siz);
91 void BUF_reverse(unsigned char *out, const unsigned char *in, size_t siz);

93 /* safe string functions */
94 size_t BUF_strlcpy(char *dst,const char *src,size_t siz);
95 size_t BUF_strlcat(char *dst,const char *src,size_t siz);

98 /* BEGIN ERROR CODES */
99 /* The following lines are auto generated by the script mkerr.pl. Any changes
100 * made after this point may be overwritten when the script is next run.
101 */
102 void ERR_load_BUF_strings(void);

104 /* Error codes for the BUF functions. */

106 /* Function codes. */
107 #define BUF_F_BUF_MEMDUP 103
108 #define BUF_F_BUF_MEM_GROW 100
109 #define BUF_F_BUF_MEM_GROW_CLEAN 105
110 #define BUF_F_BUF_MEM_NEW 101
111 #define BUF_F_BUF_STRDUP 102
112 #define BUF_F_BUF_STRNDUP 104

114 /* Reason codes. */

116 #ifdef __cplusplus
117 }
118 #endif
119 #endif

new/usr/src/lib/openssl/include/openssl/camellia.h 1

**
 4956 Fri May 30 18:31:17 2014
new/usr/src/lib/openssl/include/openssl/camellia.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/camellia/camellia.h -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */

52 #ifndef HEADER_CAMELLIA_H
53 #define HEADER_CAMELLIA_H

55 #include <openssl/opensslconf.h>

57 #ifdef OPENSSL_NO_CAMELLIA
58 #error CAMELLIA is disabled.
59 #endif

61 #include <stddef.h>

new/usr/src/lib/openssl/include/openssl/camellia.h 2

63 #define CAMELLIA_ENCRYPT 1
64 #define CAMELLIA_DECRYPT 0

66 /* Because array size can’t be a const in C, the following two are macros.
67 Both sizes are in bytes. */

69 #ifdef __cplusplus
70 extern "C" {
71 #endif

73 /* This should be a hidden type, but EVP requires that the size be known */

75 #define CAMELLIA_BLOCK_SIZE 16
76 #define CAMELLIA_TABLE_BYTE_LEN 272
77 #define CAMELLIA_TABLE_WORD_LEN (CAMELLIA_TABLE_BYTE_LEN / 4)

79 typedef unsigned int KEY_TABLE_TYPE[CAMELLIA_TABLE_WORD_LEN]; /* to match with W

81 struct camellia_key_st
82 {
83 union {
84 double d; /* ensures 64-bit align */
85 KEY_TABLE_TYPE rd_key;
86 } u;
87 int grand_rounds;
88 };
89 typedef struct camellia_key_st CAMELLIA_KEY;

91 #ifdef OPENSSL_FIPS
92 int private_Camellia_set_key(const unsigned char *userKey, const int bits,
93 CAMELLIA_KEY *key);
94 #endif
95 int Camellia_set_key(const unsigned char *userKey, const int bits,
96 CAMELLIA_KEY *key);

98 void Camellia_encrypt(const unsigned char *in, unsigned char *out,
99 const CAMELLIA_KEY *key);
100 void Camellia_decrypt(const unsigned char *in, unsigned char *out,
101 const CAMELLIA_KEY *key);

103 void Camellia_ecb_encrypt(const unsigned char *in, unsigned char *out,
104 const CAMELLIA_KEY *key, const int enc);
105 void Camellia_cbc_encrypt(const unsigned char *in, unsigned char *out,
106 size_t length, const CAMELLIA_KEY *key,
107 unsigned char *ivec, const int enc);
108 void Camellia_cfb128_encrypt(const unsigned char *in, unsigned char *out,
109 size_t length, const CAMELLIA_KEY *key,
110 unsigned char *ivec, int *num, const int enc);
111 void Camellia_cfb1_encrypt(const unsigned char *in, unsigned char *out,
112 size_t length, const CAMELLIA_KEY *key,
113 unsigned char *ivec, int *num, const int enc);
114 void Camellia_cfb8_encrypt(const unsigned char *in, unsigned char *out,
115 size_t length, const CAMELLIA_KEY *key,
116 unsigned char *ivec, int *num, const int enc);
117 void Camellia_ofb128_encrypt(const unsigned char *in, unsigned char *out,
118 size_t length, const CAMELLIA_KEY *key,
119 unsigned char *ivec, int *num);
120 void Camellia_ctr128_encrypt(const unsigned char *in, unsigned char *out,
121 size_t length, const CAMELLIA_KEY *key,
122 unsigned char ivec[CAMELLIA_BLOCK_SIZE],
123 unsigned char ecount_buf[CAMELLIA_BLOCK_SIZE],
124 unsigned int *num);

126 #ifdef __cplusplus
127 }

new/usr/src/lib/openssl/include/openssl/camellia.h 3

128 #endif

130 #endif /* !HEADER_Camellia_H */

new/usr/src/lib/openssl/include/openssl/cast.h 1

**
 4492 Fri May 30 18:31:17 2014
new/usr/src/lib/openssl/include/openssl/cast.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cast/cast.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_CAST_H
60 #define HEADER_CAST_H

new/usr/src/lib/openssl/include/openssl/cast.h 2

62 #ifdef __cplusplus
63 extern "C" {
64 #endif

66 #include <openssl/opensslconf.h>

68 #ifdef OPENSSL_NO_CAST
69 #error CAST is disabled.
70 #endif

72 #define CAST_ENCRYPT 1
73 #define CAST_DECRYPT 0

75 #define CAST_LONG unsigned int

77 #define CAST_BLOCK 8
78 #define CAST_KEY_LENGTH 16

80 typedef struct cast_key_st
81 {
82 CAST_LONG data[32];
83 int short_key; /* Use reduced rounds for short key */
84 } CAST_KEY;

86 #ifdef OPENSSL_FIPS
87 void private_CAST_set_key(CAST_KEY *key, int len, const unsigned char *data);
88 #endif
89 void CAST_set_key(CAST_KEY *key, int len, const unsigned char *data);
90 void CAST_ecb_encrypt(const unsigned char *in, unsigned char *out, const CAST_KE
91 int enc);
92 void CAST_encrypt(CAST_LONG *data, const CAST_KEY *key);
93 void CAST_decrypt(CAST_LONG *data, const CAST_KEY *key);
94 void CAST_cbc_encrypt(const unsigned char *in, unsigned char *out, long length,
95 const CAST_KEY *ks, unsigned char *iv, int enc);
96 void CAST_cfb64_encrypt(const unsigned char *in, unsigned char *out,
97 long length, const CAST_KEY *schedule, unsigned char *iv
98 int *num, int enc);
99 void CAST_ofb64_encrypt(const unsigned char *in, unsigned char *out,
100 long length, const CAST_KEY *schedule, unsigned char *iv
101 int *num);

103 #ifdef __cplusplus
104 }
105 #endif

107 #endif

new/usr/src/lib/openssl/include/openssl/cmac.h 1

**
 3244 Fri May 30 18:31:18 2014
new/usr/src/lib/openssl/include/openssl/cmac.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cmac/cmac.h */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2010 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

55 #ifndef HEADER_CMAC_H
56 #define HEADER_CMAC_H

58 #ifdef __cplusplus
59 extern "C" {
60 #endif

new/usr/src/lib/openssl/include/openssl/cmac.h 2

62 #include <openssl/evp.h>

64 /* Opaque */
65 typedef struct CMAC_CTX_st CMAC_CTX;

67 CMAC_CTX *CMAC_CTX_new(void);
68 void CMAC_CTX_cleanup(CMAC_CTX *ctx);
69 void CMAC_CTX_free(CMAC_CTX *ctx);
70 EVP_CIPHER_CTX *CMAC_CTX_get0_cipher_ctx(CMAC_CTX *ctx);
71 int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in);

73 int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t keylen,
74 const EVP_CIPHER *cipher, ENGINE *impl);
75 int CMAC_Update(CMAC_CTX *ctx, const void *data, size_t dlen);
76 int CMAC_Final(CMAC_CTX *ctx, unsigned char *out, size_t *poutlen);
77 int CMAC_resume(CMAC_CTX *ctx);

79 #ifdef __cplusplus
80 }
81 #endif
82 #endif

new/usr/src/lib/openssl/include/openssl/cms.h 1

**
 19927 Fri May 30 18:31:18 2014
new/usr/src/lib/openssl/include/openssl/cms.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cms/cms.h */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

55 #ifndef HEADER_CMS_H
56 #define HEADER_CMS_H

58 #include <openssl/x509.h>

60 #ifdef OPENSSL_NO_CMS
61 #error CMS is disabled.

new/usr/src/lib/openssl/include/openssl/cms.h 2

62 #endif

64 #ifdef __cplusplus
65 extern "C" {
66 #endif

69 typedef struct CMS_ContentInfo_st CMS_ContentInfo;
70 typedef struct CMS_SignerInfo_st CMS_SignerInfo;
71 typedef struct CMS_CertificateChoices CMS_CertificateChoices;
72 typedef struct CMS_RevocationInfoChoice_st CMS_RevocationInfoChoice;
73 typedef struct CMS_RecipientInfo_st CMS_RecipientInfo;
74 typedef struct CMS_ReceiptRequest_st CMS_ReceiptRequest;
75 typedef struct CMS_Receipt_st CMS_Receipt;

77 DECLARE_STACK_OF(CMS_SignerInfo)
78 DECLARE_STACK_OF(GENERAL_NAMES)
79 DECLARE_ASN1_FUNCTIONS(CMS_ContentInfo)
80 DECLARE_ASN1_FUNCTIONS(CMS_ReceiptRequest)
81 DECLARE_ASN1_PRINT_FUNCTION(CMS_ContentInfo)

83 #define CMS_SIGNERINFO_ISSUER_SERIAL 0
84 #define CMS_SIGNERINFO_KEYIDENTIFIER 1

86 #define CMS_RECIPINFO_TRANS 0
87 #define CMS_RECIPINFO_AGREE 1
88 #define CMS_RECIPINFO_KEK 2
89 #define CMS_RECIPINFO_PASS 3
90 #define CMS_RECIPINFO_OTHER 4

92 /* S/MIME related flags */

94 #define CMS_TEXT 0x1
95 #define CMS_NOCERTS 0x2
96 #define CMS_NO_CONTENT_VERIFY 0x4
97 #define CMS_NO_ATTR_VERIFY 0x8
98 #define CMS_NOSIGS \
99 (CMS_NO_CONTENT_VERIFY|CMS_NO_ATTR_VERIFY)
100 #define CMS_NOINTERN 0x10
101 #define CMS_NO_SIGNER_CERT_VERIFY 0x20
102 #define CMS_NOVERIFY 0x20
103 #define CMS_DETACHED 0x40
104 #define CMS_BINARY 0x80
105 #define CMS_NOATTR 0x100
106 #define CMS_NOSMIMECAP 0x200
107 #define CMS_NOOLDMIMETYPE 0x400
108 #define CMS_CRLFEOL 0x800
109 #define CMS_STREAM 0x1000
110 #define CMS_NOCRL 0x2000
111 #define CMS_PARTIAL 0x4000
112 #define CMS_REUSE_DIGEST 0x8000
113 #define CMS_USE_KEYID 0x10000
114 #define CMS_DEBUG_DECRYPT 0x20000

116 const ASN1_OBJECT *CMS_get0_type(CMS_ContentInfo *cms);

118 BIO *CMS_dataInit(CMS_ContentInfo *cms, BIO *icont);
119 int CMS_dataFinal(CMS_ContentInfo *cms, BIO *bio);

121 ASN1_OCTET_STRING **CMS_get0_content(CMS_ContentInfo *cms);
122 int CMS_is_detached(CMS_ContentInfo *cms);
123 int CMS_set_detached(CMS_ContentInfo *cms, int detached);

125 #ifdef HEADER_PEM_H
126 DECLARE_PEM_rw_const(CMS, CMS_ContentInfo)
127 #endif

new/usr/src/lib/openssl/include/openssl/cms.h 3

129 int CMS_stream(unsigned char ***boundary, CMS_ContentInfo *cms);
130 CMS_ContentInfo *d2i_CMS_bio(BIO *bp, CMS_ContentInfo **cms);
131 int i2d_CMS_bio(BIO *bp, CMS_ContentInfo *cms);

133 BIO *BIO_new_CMS(BIO *out, CMS_ContentInfo *cms);
134 int i2d_CMS_bio_stream(BIO *out, CMS_ContentInfo *cms, BIO *in, int flags);
135 int PEM_write_bio_CMS_stream(BIO *out, CMS_ContentInfo *cms, BIO *in, int flags)
136 CMS_ContentInfo *SMIME_read_CMS(BIO *bio, BIO **bcont);
137 int SMIME_write_CMS(BIO *bio, CMS_ContentInfo *cms, BIO *data, int flags);

139 int CMS_final(CMS_ContentInfo *cms, BIO *data, BIO *dcont, unsigned int flags);

141 CMS_ContentInfo *CMS_sign(X509 *signcert, EVP_PKEY *pkey, STACK_OF(X509) *certs,
142 BIO *data, unsigned int flags);

144 CMS_ContentInfo *CMS_sign_receipt(CMS_SignerInfo *si,
145 X509 *signcert, EVP_PKEY *pkey,
146 STACK_OF(X509) *certs,
147 unsigned int flags);

149 int CMS_data(CMS_ContentInfo *cms, BIO *out, unsigned int flags);
150 CMS_ContentInfo *CMS_data_create(BIO *in, unsigned int flags);

152 int CMS_digest_verify(CMS_ContentInfo *cms, BIO *dcont, BIO *out,
153 unsigned int flags);
154 CMS_ContentInfo *CMS_digest_create(BIO *in, const EVP_MD *md,
155 unsigned int flags);

157 int CMS_EncryptedData_decrypt(CMS_ContentInfo *cms,
158 const unsigned char *key, size_t keylen,
159 BIO *dcont, BIO *out, unsigned int flags);

161 CMS_ContentInfo *CMS_EncryptedData_encrypt(BIO *in, const EVP_CIPHER *cipher,
162 const unsigned char *key, size_t keylen,
163 unsigned int flags);

165 int CMS_EncryptedData_set1_key(CMS_ContentInfo *cms, const EVP_CIPHER *ciph,
166 const unsigned char *key, size_t keylen);

168 int CMS_verify(CMS_ContentInfo *cms, STACK_OF(X509) *certs,
169 X509_STORE *store, BIO *dcont, BIO *out, unsigned int flags);

171 int CMS_verify_receipt(CMS_ContentInfo *rcms, CMS_ContentInfo *ocms,
172 STACK_OF(X509) *certs,
173 X509_STORE *store, unsigned int flags);

175 STACK_OF(X509) *CMS_get0_signers(CMS_ContentInfo *cms);

177 CMS_ContentInfo *CMS_encrypt(STACK_OF(X509) *certs, BIO *in,
178 const EVP_CIPHER *cipher, unsigned int flags);

180 int CMS_decrypt(CMS_ContentInfo *cms, EVP_PKEY *pkey, X509 *cert,
181 BIO *dcont, BIO *out,
182 unsigned int flags);
183
184 int CMS_decrypt_set1_pkey(CMS_ContentInfo *cms, EVP_PKEY *pk, X509 *cert);
185 int CMS_decrypt_set1_key(CMS_ContentInfo *cms,
186 unsigned char *key, size_t keylen,
187 unsigned char *id, size_t idlen);
188 int CMS_decrypt_set1_password(CMS_ContentInfo *cms,
189 unsigned char *pass, ossl_ssize_t passlen);

191 STACK_OF(CMS_RecipientInfo) *CMS_get0_RecipientInfos(CMS_ContentInfo *cms);
192 int CMS_RecipientInfo_type(CMS_RecipientInfo *ri);
193 CMS_ContentInfo *CMS_EnvelopedData_create(const EVP_CIPHER *cipher);

new/usr/src/lib/openssl/include/openssl/cms.h 4

194 CMS_RecipientInfo *CMS_add1_recipient_cert(CMS_ContentInfo *cms,
195 X509 *recip, unsigned int flags);
196 int CMS_RecipientInfo_set0_pkey(CMS_RecipientInfo *ri, EVP_PKEY *pkey);
197 int CMS_RecipientInfo_ktri_cert_cmp(CMS_RecipientInfo *ri, X509 *cert);
198 int CMS_RecipientInfo_ktri_get0_algs(CMS_RecipientInfo *ri,
199 EVP_PKEY **pk, X509 **recip,
200 X509_ALGOR **palg);
201 int CMS_RecipientInfo_ktri_get0_signer_id(CMS_RecipientInfo *ri,
202 ASN1_OCTET_STRING **keyid,
203 X509_NAME **issuer, ASN1_INTEGER **sno);

205 CMS_RecipientInfo *CMS_add0_recipient_key(CMS_ContentInfo *cms, int nid,
206 unsigned char *key, size_t keylen,
207 unsigned char *id, size_t idlen,
208 ASN1_GENERALIZEDTIME *date,
209 ASN1_OBJECT *otherTypeId,
210 ASN1_TYPE *otherType);

212 int CMS_RecipientInfo_kekri_get0_id(CMS_RecipientInfo *ri,
213 X509_ALGOR **palg,
214 ASN1_OCTET_STRING **pid,
215 ASN1_GENERALIZEDTIME **pdate,
216 ASN1_OBJECT **potherid,
217 ASN1_TYPE **pothertype);

219 int CMS_RecipientInfo_set0_key(CMS_RecipientInfo *ri,
220 unsigned char *key, size_t keylen);

222 int CMS_RecipientInfo_kekri_id_cmp(CMS_RecipientInfo *ri,
223 const unsigned char *id, size_t idlen);

225 int CMS_RecipientInfo_set0_password(CMS_RecipientInfo *ri,
226 unsigned char *pass,
227 ossl_ssize_t passlen);

229 CMS_RecipientInfo *CMS_add0_recipient_password(CMS_ContentInfo *cms,
230 int iter, int wrap_nid, int pbe_nid,
231 unsigned char *pass,
232 ossl_ssize_t passlen,
233 const EVP_CIPHER *kekciph);

235 int CMS_RecipientInfo_decrypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri);
236
237 int CMS_uncompress(CMS_ContentInfo *cms, BIO *dcont, BIO *out,
238 unsigned int flags);
239 CMS_ContentInfo *CMS_compress(BIO *in, int comp_nid, unsigned int flags);

241 int CMS_set1_eContentType(CMS_ContentInfo *cms, const ASN1_OBJECT *oid);
242 const ASN1_OBJECT *CMS_get0_eContentType(CMS_ContentInfo *cms);

244 CMS_CertificateChoices *CMS_add0_CertificateChoices(CMS_ContentInfo *cms);
245 int CMS_add0_cert(CMS_ContentInfo *cms, X509 *cert);
246 int CMS_add1_cert(CMS_ContentInfo *cms, X509 *cert);
247 STACK_OF(X509) *CMS_get1_certs(CMS_ContentInfo *cms);

249 CMS_RevocationInfoChoice *CMS_add0_RevocationInfoChoice(CMS_ContentInfo *cms);
250 int CMS_add0_crl(CMS_ContentInfo *cms, X509_CRL *crl);
251 int CMS_add1_crl(CMS_ContentInfo *cms, X509_CRL *crl);
252 STACK_OF(X509_CRL) *CMS_get1_crls(CMS_ContentInfo *cms);

254 int CMS_SignedData_init(CMS_ContentInfo *cms);
255 CMS_SignerInfo *CMS_add1_signer(CMS_ContentInfo *cms,
256 X509 *signer, EVP_PKEY *pk, const EVP_MD *md,
257 unsigned int flags);
258 STACK_OF(CMS_SignerInfo) *CMS_get0_SignerInfos(CMS_ContentInfo *cms);

new/usr/src/lib/openssl/include/openssl/cms.h 5

260 void CMS_SignerInfo_set1_signer_cert(CMS_SignerInfo *si, X509 *signer);
261 int CMS_SignerInfo_get0_signer_id(CMS_SignerInfo *si,
262 ASN1_OCTET_STRING **keyid,
263 X509_NAME **issuer, ASN1_INTEGER **sno);
264 int CMS_SignerInfo_cert_cmp(CMS_SignerInfo *si, X509 *cert);
265 int CMS_set1_signers_certs(CMS_ContentInfo *cms, STACK_OF(X509) *certs,
266 unsigned int flags);
267 void CMS_SignerInfo_get0_algs(CMS_SignerInfo *si, EVP_PKEY **pk, X509 **signer,
268 X509_ALGOR **pdig, X509_ALGOR **psig);
269 int CMS_SignerInfo_sign(CMS_SignerInfo *si);
270 int CMS_SignerInfo_verify(CMS_SignerInfo *si);
271 int CMS_SignerInfo_verify_content(CMS_SignerInfo *si, BIO *chain);

273 int CMS_add_smimecap(CMS_SignerInfo *si, STACK_OF(X509_ALGOR) *algs);
274 int CMS_add_simple_smimecap(STACK_OF(X509_ALGOR) **algs,
275 int algnid, int keysize);
276 int CMS_add_standard_smimecap(STACK_OF(X509_ALGOR) **smcap);

278 int CMS_signed_get_attr_count(const CMS_SignerInfo *si);
279 int CMS_signed_get_attr_by_NID(const CMS_SignerInfo *si, int nid,
280 int lastpos);
281 int CMS_signed_get_attr_by_OBJ(const CMS_SignerInfo *si, ASN1_OBJECT *obj,
282 int lastpos);
283 X509_ATTRIBUTE *CMS_signed_get_attr(const CMS_SignerInfo *si, int loc);
284 X509_ATTRIBUTE *CMS_signed_delete_attr(CMS_SignerInfo *si, int loc);
285 int CMS_signed_add1_attr(CMS_SignerInfo *si, X509_ATTRIBUTE *attr);
286 int CMS_signed_add1_attr_by_OBJ(CMS_SignerInfo *si,
287 const ASN1_OBJECT *obj, int type,
288 const void *bytes, int len);
289 int CMS_signed_add1_attr_by_NID(CMS_SignerInfo *si,
290 int nid, int type,
291 const void *bytes, int len);
292 int CMS_signed_add1_attr_by_txt(CMS_SignerInfo *si,
293 const char *attrname, int type,
294 const void *bytes, int len);
295 void *CMS_signed_get0_data_by_OBJ(CMS_SignerInfo *si, ASN1_OBJECT *oid,
296 int lastpos, int type);

298 int CMS_unsigned_get_attr_count(const CMS_SignerInfo *si);
299 int CMS_unsigned_get_attr_by_NID(const CMS_SignerInfo *si, int nid,
300 int lastpos);
301 int CMS_unsigned_get_attr_by_OBJ(const CMS_SignerInfo *si, ASN1_OBJECT *obj,
302 int lastpos);
303 X509_ATTRIBUTE *CMS_unsigned_get_attr(const CMS_SignerInfo *si, int loc);
304 X509_ATTRIBUTE *CMS_unsigned_delete_attr(CMS_SignerInfo *si, int loc);
305 int CMS_unsigned_add1_attr(CMS_SignerInfo *si, X509_ATTRIBUTE *attr);
306 int CMS_unsigned_add1_attr_by_OBJ(CMS_SignerInfo *si,
307 const ASN1_OBJECT *obj, int type,
308 const void *bytes, int len);
309 int CMS_unsigned_add1_attr_by_NID(CMS_SignerInfo *si,
310 int nid, int type,
311 const void *bytes, int len);
312 int CMS_unsigned_add1_attr_by_txt(CMS_SignerInfo *si,
313 const char *attrname, int type,
314 const void *bytes, int len);
315 void *CMS_unsigned_get0_data_by_OBJ(CMS_SignerInfo *si, ASN1_OBJECT *oid,
316 int lastpos, int type);

318 #ifdef HEADER_X509V3_H

320 int CMS_get1_ReceiptRequest(CMS_SignerInfo *si, CMS_ReceiptRequest **prr);
321 CMS_ReceiptRequest *CMS_ReceiptRequest_create0(unsigned char *id, int idlen,
322 int allorfirst,
323 STACK_OF(GENERAL_NAMES) *receiptList,
324 STACK_OF(GENERAL_NAMES) *receiptsTo);
325 int CMS_add1_ReceiptRequest(CMS_SignerInfo *si, CMS_ReceiptRequest *rr);

new/usr/src/lib/openssl/include/openssl/cms.h 6

326 void CMS_ReceiptRequest_get0_values(CMS_ReceiptRequest *rr,
327 ASN1_STRING **pcid,
328 int *pallorfirst,
329 STACK_OF(GENERAL_NAMES) **plist,
330 STACK_OF(GENERAL_NAMES) **prto);

332 #endif

334 /* BEGIN ERROR CODES */
335 /* The following lines are auto generated by the script mkerr.pl. Any changes
336 * made after this point may be overwritten when the script is next run.
337 */
338 void ERR_load_CMS_strings(void);

340 /* Error codes for the CMS functions. */

342 /* Function codes. */
343 #define CMS_F_CHECK_CONTENT 99
344 #define CMS_F_CMS_ADD0_CERT 164
345 #define CMS_F_CMS_ADD0_RECIPIENT_KEY 100
346 #define CMS_F_CMS_ADD0_RECIPIENT_PASSWORD 165
347 #define CMS_F_CMS_ADD1_RECEIPTREQUEST 158
348 #define CMS_F_CMS_ADD1_RECIPIENT_CERT 101
349 #define CMS_F_CMS_ADD1_SIGNER 102
350 #define CMS_F_CMS_ADD1_SIGNINGTIME 103
351 #define CMS_F_CMS_COMPRESS 104
352 #define CMS_F_CMS_COMPRESSEDDATA_CREATE 105
353 #define CMS_F_CMS_COMPRESSEDDATA_INIT_BIO 106
354 #define CMS_F_CMS_COPY_CONTENT 107
355 #define CMS_F_CMS_COPY_MESSAGEDIGEST 108
356 #define CMS_F_CMS_DATA 109
357 #define CMS_F_CMS_DATAFINAL 110
358 #define CMS_F_CMS_DATAINIT 111
359 #define CMS_F_CMS_DECRYPT 112
360 #define CMS_F_CMS_DECRYPT_SET1_KEY 113
361 #define CMS_F_CMS_DECRYPT_SET1_PASSWORD 166
362 #define CMS_F_CMS_DECRYPT_SET1_PKEY 114
363 #define CMS_F_CMS_DIGESTALGORITHM_FIND_CTX 115
364 #define CMS_F_CMS_DIGESTALGORITHM_INIT_BIO 116
365 #define CMS_F_CMS_DIGESTEDDATA_DO_FINAL 117
366 #define CMS_F_CMS_DIGEST_VERIFY 118
367 #define CMS_F_CMS_ENCODE_RECEIPT 161
368 #define CMS_F_CMS_ENCRYPT 119
369 #define CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO 120
370 #define CMS_F_CMS_ENCRYPTEDDATA_DECRYPT 121
371 #define CMS_F_CMS_ENCRYPTEDDATA_ENCRYPT 122
372 #define CMS_F_CMS_ENCRYPTEDDATA_SET1_KEY 123
373 #define CMS_F_CMS_ENVELOPEDDATA_CREATE 124
374 #define CMS_F_CMS_ENVELOPEDDATA_INIT_BIO 125
375 #define CMS_F_CMS_ENVELOPED_DATA_INIT 126
376 #define CMS_F_CMS_FINAL 127
377 #define CMS_F_CMS_GET0_CERTIFICATE_CHOICES 128
378 #define CMS_F_CMS_GET0_CONTENT 129
379 #define CMS_F_CMS_GET0_ECONTENT_TYPE 130
380 #define CMS_F_CMS_GET0_ENVELOPED 131
381 #define CMS_F_CMS_GET0_REVOCATION_CHOICES 132
382 #define CMS_F_CMS_GET0_SIGNED 133
383 #define CMS_F_CMS_MSGSIGDIGEST_ADD1 162
384 #define CMS_F_CMS_RECEIPTREQUEST_CREATE0 159
385 #define CMS_F_CMS_RECEIPT_VERIFY 160
386 #define CMS_F_CMS_RECIPIENTINFO_DECRYPT 134
387 #define CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT 135
388 #define CMS_F_CMS_RECIPIENTINFO_KEKRI_ENCRYPT 136
389 #define CMS_F_CMS_RECIPIENTINFO_KEKRI_GET0_ID 137
390 #define CMS_F_CMS_RECIPIENTINFO_KEKRI_ID_CMP 138
391 #define CMS_F_CMS_RECIPIENTINFO_KTRI_CERT_CMP 139

new/usr/src/lib/openssl/include/openssl/cms.h 7

392 #define CMS_F_CMS_RECIPIENTINFO_KTRI_DECRYPT 140
393 #define CMS_F_CMS_RECIPIENTINFO_KTRI_ENCRYPT 141
394 #define CMS_F_CMS_RECIPIENTINFO_KTRI_GET0_ALGS 142
395 #define CMS_F_CMS_RECIPIENTINFO_KTRI_GET0_SIGNER_ID 143
396 #define CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT 167
397 #define CMS_F_CMS_RECIPIENTINFO_SET0_KEY 144
398 #define CMS_F_CMS_RECIPIENTINFO_SET0_PASSWORD 168
399 #define CMS_F_CMS_RECIPIENTINFO_SET0_PKEY 145
400 #define CMS_F_CMS_SET1_SIGNERIDENTIFIER 146
401 #define CMS_F_CMS_SET_DETACHED 147
402 #define CMS_F_CMS_SIGN 148
403 #define CMS_F_CMS_SIGNED_DATA_INIT 149
404 #define CMS_F_CMS_SIGNERINFO_CONTENT_SIGN 150
405 #define CMS_F_CMS_SIGNERINFO_SIGN 151
406 #define CMS_F_CMS_SIGNERINFO_VERIFY 152
407 #define CMS_F_CMS_SIGNERINFO_VERIFY_CERT 153
408 #define CMS_F_CMS_SIGNERINFO_VERIFY_CONTENT 154
409 #define CMS_F_CMS_SIGN_RECEIPT 163
410 #define CMS_F_CMS_STREAM 155
411 #define CMS_F_CMS_UNCOMPRESS 156
412 #define CMS_F_CMS_VERIFY 157

414 /* Reason codes. */
415 #define CMS_R_ADD_SIGNER_ERROR 99
416 #define CMS_R_CERTIFICATE_ALREADY_PRESENT 175
417 #define CMS_R_CERTIFICATE_HAS_NO_KEYID 160
418 #define CMS_R_CERTIFICATE_VERIFY_ERROR 100
419 #define CMS_R_CIPHER_INITIALISATION_ERROR 101
420 #define CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR 102
421 #define CMS_R_CMS_DATAFINAL_ERROR 103
422 #define CMS_R_CMS_LIB 104
423 #define CMS_R_CONTENTIDENTIFIER_MISMATCH 170
424 #define CMS_R_CONTENT_NOT_FOUND 105
425 #define CMS_R_CONTENT_TYPE_MISMATCH 171
426 #define CMS_R_CONTENT_TYPE_NOT_COMPRESSED_DATA 106
427 #define CMS_R_CONTENT_TYPE_NOT_ENVELOPED_DATA 107
428 #define CMS_R_CONTENT_TYPE_NOT_SIGNED_DATA 108
429 #define CMS_R_CONTENT_VERIFY_ERROR 109
430 #define CMS_R_CTRL_ERROR 110
431 #define CMS_R_CTRL_FAILURE 111
432 #define CMS_R_DECRYPT_ERROR 112
433 #define CMS_R_DIGEST_ERROR 161
434 #define CMS_R_ERROR_GETTING_PUBLIC_KEY 113
435 #define CMS_R_ERROR_READING_MESSAGEDIGEST_ATTRIBUTE 114
436 #define CMS_R_ERROR_SETTING_KEY 115
437 #define CMS_R_ERROR_SETTING_RECIPIENTINFO 116
438 #define CMS_R_INVALID_ENCRYPTED_KEY_LENGTH 117
439 #define CMS_R_INVALID_KEY_ENCRYPTION_PARAMETER 176
440 #define CMS_R_INVALID_KEY_LENGTH 118
441 #define CMS_R_MD_BIO_INIT_ERROR 119
442 #define CMS_R_MESSAGEDIGEST_ATTRIBUTE_WRONG_LENGTH 120
443 #define CMS_R_MESSAGEDIGEST_WRONG_LENGTH 121
444 #define CMS_R_MSGSIGDIGEST_ERROR 172
445 #define CMS_R_MSGSIGDIGEST_VERIFICATION_FAILURE 162
446 #define CMS_R_MSGSIGDIGEST_WRONG_LENGTH 163
447 #define CMS_R_NEED_ONE_SIGNER 164
448 #define CMS_R_NOT_A_SIGNED_RECEIPT 165
449 #define CMS_R_NOT_ENCRYPTED_DATA 122
450 #define CMS_R_NOT_KEK 123
451 #define CMS_R_NOT_KEY_TRANSPORT 124
452 #define CMS_R_NOT_PWRI 177
453 #define CMS_R_NOT_SUPPORTED_FOR_THIS_KEY_TYPE 125
454 #define CMS_R_NO_CIPHER 126
455 #define CMS_R_NO_CONTENT 127
456 #define CMS_R_NO_CONTENT_TYPE 173
457 #define CMS_R_NO_DEFAULT_DIGEST 128

new/usr/src/lib/openssl/include/openssl/cms.h 8

458 #define CMS_R_NO_DIGEST_SET 129
459 #define CMS_R_NO_KEY 130
460 #define CMS_R_NO_KEY_OR_CERT 174
461 #define CMS_R_NO_MATCHING_DIGEST 131
462 #define CMS_R_NO_MATCHING_RECIPIENT 132
463 #define CMS_R_NO_MATCHING_SIGNATURE 166
464 #define CMS_R_NO_MSGSIGDIGEST 167
465 #define CMS_R_NO_PASSWORD 178
466 #define CMS_R_NO_PRIVATE_KEY 133
467 #define CMS_R_NO_PUBLIC_KEY 134
468 #define CMS_R_NO_RECEIPT_REQUEST 168
469 #define CMS_R_NO_SIGNERS 135
470 #define CMS_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE 136
471 #define CMS_R_RECEIPT_DECODE_ERROR 169
472 #define CMS_R_RECIPIENT_ERROR 137
473 #define CMS_R_SIGNER_CERTIFICATE_NOT_FOUND 138
474 #define CMS_R_SIGNFINAL_ERROR 139
475 #define CMS_R_SMIME_TEXT_ERROR 140
476 #define CMS_R_STORE_INIT_ERROR 141
477 #define CMS_R_TYPE_NOT_COMPRESSED_DATA 142
478 #define CMS_R_TYPE_NOT_DATA 143
479 #define CMS_R_TYPE_NOT_DIGESTED_DATA 144
480 #define CMS_R_TYPE_NOT_ENCRYPTED_DATA 145
481 #define CMS_R_TYPE_NOT_ENVELOPED_DATA 146
482 #define CMS_R_UNABLE_TO_FINALIZE_CONTEXT 147
483 #define CMS_R_UNKNOWN_CIPHER 148
484 #define CMS_R_UNKNOWN_DIGEST_ALGORIHM 149
485 #define CMS_R_UNKNOWN_ID 150
486 #define CMS_R_UNSUPPORTED_COMPRESSION_ALGORITHM 151
487 #define CMS_R_UNSUPPORTED_CONTENT_TYPE 152
488 #define CMS_R_UNSUPPORTED_KEK_ALGORITHM 153
489 #define CMS_R_UNSUPPORTED_KEY_ENCRYPTION_ALGORITHM 179
490 #define CMS_R_UNSUPPORTED_RECIPIENT_TYPE 154
491 #define CMS_R_UNSUPPORTED_RECPIENTINFO_TYPE 155
492 #define CMS_R_UNSUPPORTED_TYPE 156
493 #define CMS_R_UNWRAP_ERROR 157
494 #define CMS_R_UNWRAP_FAILURE 180
495 #define CMS_R_VERIFICATION_FAILURE 158
496 #define CMS_R_WRAP_ERROR 159

498 #ifdef __cplusplus
499 }
500 #endif
501 #endif

new/usr/src/lib/openssl/include/openssl/comp.h 1

**
 1978 Fri May 30 18:31:18 2014
new/usr/src/lib/openssl/include/openssl/comp.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

2 #ifndef HEADER_COMP_H
3 #define HEADER_COMP_H

5 #include <openssl/crypto.h>

7 #ifdef __cplusplus
8 extern "C" {
9 #endif

11 typedef struct comp_ctx_st COMP_CTX;

13 typedef struct comp_method_st
14 {
15 int type; /* NID for compression library */
16 const char *name; /* A text string to identify the library */
17 int (*init)(COMP_CTX *ctx);
18 void (*finish)(COMP_CTX *ctx);
19 int (*compress)(COMP_CTX *ctx,
20 unsigned char *out, unsigned int olen,
21 unsigned char *in, unsigned int ilen);
22 int (*expand)(COMP_CTX *ctx,
23 unsigned char *out, unsigned int olen,
24 unsigned char *in, unsigned int ilen);
25 /* The following two do NOTHING, but are kept for backward compatibility
26 long (*ctrl)(void);
27 long (*callback_ctrl)(void);
28 } COMP_METHOD;

30 struct comp_ctx_st
31 {
32 COMP_METHOD *meth;
33 unsigned long compress_in;
34 unsigned long compress_out;
35 unsigned long expand_in;
36 unsigned long expand_out;

38 CRYPTO_EX_DATA ex_data;
39 };

42 COMP_CTX *COMP_CTX_new(COMP_METHOD *meth);
43 void COMP_CTX_free(COMP_CTX *ctx);
44 int COMP_compress_block(COMP_CTX *ctx, unsigned char *out, int olen,
45 unsigned char *in, int ilen);
46 int COMP_expand_block(COMP_CTX *ctx, unsigned char *out, int olen,
47 unsigned char *in, int ilen);
48 COMP_METHOD *COMP_rle(void);
49 COMP_METHOD *COMP_zlib(void);
50 void COMP_zlib_cleanup(void);

52 #ifdef HEADER_BIO_H
53 #ifdef ZLIB
54 BIO_METHOD *BIO_f_zlib(void);
55 #endif
56 #endif

58 /* BEGIN ERROR CODES */
59 /* The following lines are auto generated by the script mkerr.pl. Any changes
60 * made after this point may be overwritten when the script is next run.
61 */

new/usr/src/lib/openssl/include/openssl/comp.h 2

62 void ERR_load_COMP_strings(void);

64 /* Error codes for the COMP functions. */

66 /* Function codes. */
67 #define COMP_F_BIO_ZLIB_FLUSH 99
68 #define COMP_F_BIO_ZLIB_NEW 100
69 #define COMP_F_BIO_ZLIB_READ 101
70 #define COMP_F_BIO_ZLIB_WRITE 102

72 /* Reason codes. */
73 #define COMP_R_ZLIB_DEFLATE_ERROR 99
74 #define COMP_R_ZLIB_INFLATE_ERROR 100
75 #define COMP_R_ZLIB_NOT_SUPPORTED 101

77 #ifdef __cplusplus
78 }
79 #endif
80 #endif

new/usr/src/lib/openssl/include/openssl/conf.h 1

**
 9848 Fri May 30 18:31:18 2014
new/usr/src/lib/openssl/include/openssl/conf.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/conf/conf.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_CONF_H
60 #define HEADER_CONF_H

new/usr/src/lib/openssl/include/openssl/conf.h 2

62 #include <openssl/bio.h>
63 #include <openssl/lhash.h>
64 #include <openssl/stack.h>
65 #include <openssl/safestack.h>
66 #include <openssl/e_os2.h>

68 #include <openssl/ossl_typ.h>

70 #ifdef __cplusplus
71 extern "C" {
72 #endif

74 typedef struct
75 {
76 char *section;
77 char *name;
78 char *value;
79 } CONF_VALUE;

81 DECLARE_STACK_OF(CONF_VALUE)
82 DECLARE_LHASH_OF(CONF_VALUE);

84 struct conf_st;
85 struct conf_method_st;
86 typedef struct conf_method_st CONF_METHOD;

88 struct conf_method_st
89 {
90 const char *name;
91 CONF *(*create)(CONF_METHOD *meth);
92 int (*init)(CONF *conf);
93 int (*destroy)(CONF *conf);
94 int (*destroy_data)(CONF *conf);
95 int (*load_bio)(CONF *conf, BIO *bp, long *eline);
96 int (*dump)(const CONF *conf, BIO *bp);
97 int (*is_number)(const CONF *conf, char c);
98 int (*to_int)(const CONF *conf, char c);
99 int (*load)(CONF *conf, const char *name, long *eline);
100 };

102 /* Module definitions */

104 typedef struct conf_imodule_st CONF_IMODULE;
105 typedef struct conf_module_st CONF_MODULE;

107 DECLARE_STACK_OF(CONF_MODULE)
108 DECLARE_STACK_OF(CONF_IMODULE)

110 /* DSO module function typedefs */
111 typedef int conf_init_func(CONF_IMODULE *md, const CONF *cnf);
112 typedef void conf_finish_func(CONF_IMODULE *md);

114 #define CONF_MFLAGS_IGNORE_ERRORS 0x1
115 #define CONF_MFLAGS_IGNORE_RETURN_CODES 0x2
116 #define CONF_MFLAGS_SILENT 0x4
117 #define CONF_MFLAGS_NO_DSO 0x8
118 #define CONF_MFLAGS_IGNORE_MISSING_FILE 0x10
119 #define CONF_MFLAGS_DEFAULT_SECTION 0x20

121 int CONF_set_default_method(CONF_METHOD *meth);
122 void CONF_set_nconf(CONF *conf,LHASH_OF(CONF_VALUE) *hash);
123 LHASH_OF(CONF_VALUE) *CONF_load(LHASH_OF(CONF_VALUE) *conf,const char *file,
124 long *eline);
125 #ifndef OPENSSL_NO_FP_API
126 LHASH_OF(CONF_VALUE) *CONF_load_fp(LHASH_OF(CONF_VALUE) *conf, FILE *fp,
127 long *eline);

new/usr/src/lib/openssl/include/openssl/conf.h 3

128 #endif
129 LHASH_OF(CONF_VALUE) *CONF_load_bio(LHASH_OF(CONF_VALUE) *conf, BIO *bp,long *el
130 STACK_OF(CONF_VALUE) *CONF_get_section(LHASH_OF(CONF_VALUE) *conf,
131 const char *section);
132 char *CONF_get_string(LHASH_OF(CONF_VALUE) *conf,const char *group,
133 const char *name);
134 long CONF_get_number(LHASH_OF(CONF_VALUE) *conf,const char *group,
135 const char *name);
136 void CONF_free(LHASH_OF(CONF_VALUE) *conf);
137 int CONF_dump_fp(LHASH_OF(CONF_VALUE) *conf, FILE *out);
138 int CONF_dump_bio(LHASH_OF(CONF_VALUE) *conf, BIO *out);

140 void OPENSSL_config(const char *config_name);
141 void OPENSSL_no_config(void);

143 /* New conf code. The semantics are different from the functions above.
144 If that wasn’t the case, the above functions would have been replaced */

146 struct conf_st
147 {
148 CONF_METHOD *meth;
149 void *meth_data;
150 LHASH_OF(CONF_VALUE) *data;
151 };

153 CONF *NCONF_new(CONF_METHOD *meth);
154 CONF_METHOD *NCONF_default(void);
155 CONF_METHOD *NCONF_WIN32(void);
156 #if 0 /* Just to give you an idea of what I have in mind */
157 CONF_METHOD *NCONF_XML(void);
158 #endif
159 void NCONF_free(CONF *conf);
160 void NCONF_free_data(CONF *conf);

162 int NCONF_load(CONF *conf,const char *file,long *eline);
163 #ifndef OPENSSL_NO_FP_API
164 int NCONF_load_fp(CONF *conf, FILE *fp,long *eline);
165 #endif
166 int NCONF_load_bio(CONF *conf, BIO *bp,long *eline);
167 STACK_OF(CONF_VALUE) *NCONF_get_section(const CONF *conf,const char *section);
168 char *NCONF_get_string(const CONF *conf,const char *group,const char *name);
169 int NCONF_get_number_e(const CONF *conf,const char *group,const char *name,
170 long *result);
171 int NCONF_dump_fp(const CONF *conf, FILE *out);
172 int NCONF_dump_bio(const CONF *conf, BIO *out);

174 #if 0 /* The following function has no error checking,
175 and should therefore be avoided */
176 long NCONF_get_number(CONF *conf,char *group,char *name);
177 #else
178 #define NCONF_get_number(c,g,n,r) NCONF_get_number_e(c,g,n,r)
179 #endif
180
181 /* Module functions */

183 int CONF_modules_load(const CONF *cnf, const char *appname,
184 unsigned long flags);
185 int CONF_modules_load_file(const char *filename, const char *appname,
186 unsigned long flags);
187 void CONF_modules_unload(int all);
188 void CONF_modules_finish(void);
189 void CONF_modules_free(void);
190 int CONF_module_add(const char *name, conf_init_func *ifunc,
191 conf_finish_func *ffunc);

193 const char *CONF_imodule_get_name(const CONF_IMODULE *md);

new/usr/src/lib/openssl/include/openssl/conf.h 4

194 const char *CONF_imodule_get_value(const CONF_IMODULE *md);
195 void *CONF_imodule_get_usr_data(const CONF_IMODULE *md);
196 void CONF_imodule_set_usr_data(CONF_IMODULE *md, void *usr_data);
197 CONF_MODULE *CONF_imodule_get_module(const CONF_IMODULE *md);
198 unsigned long CONF_imodule_get_flags(const CONF_IMODULE *md);
199 void CONF_imodule_set_flags(CONF_IMODULE *md, unsigned long flags);
200 void *CONF_module_get_usr_data(CONF_MODULE *pmod);
201 void CONF_module_set_usr_data(CONF_MODULE *pmod, void *usr_data);

203 char *CONF_get1_default_config_file(void);

205 int CONF_parse_list(const char *list, int sep, int nospc,
206 int (*list_cb)(const char *elem, int len, void *usr), void *arg);

208 void OPENSSL_load_builtin_modules(void);

210 /* BEGIN ERROR CODES */
211 /* The following lines are auto generated by the script mkerr.pl. Any changes
212 * made after this point may be overwritten when the script is next run.
213 */
214 void ERR_load_CONF_strings(void);

216 /* Error codes for the CONF functions. */

218 /* Function codes. */
219 #define CONF_F_CONF_DUMP_FP 104
220 #define CONF_F_CONF_LOAD 100
221 #define CONF_F_CONF_LOAD_BIO 102
222 #define CONF_F_CONF_LOAD_FP 103
223 #define CONF_F_CONF_MODULES_LOAD 116
224 #define CONF_F_CONF_PARSE_LIST 119
225 #define CONF_F_DEF_LOAD 120
226 #define CONF_F_DEF_LOAD_BIO 121
227 #define CONF_F_MODULE_INIT 115
228 #define CONF_F_MODULE_LOAD_DSO 117
229 #define CONF_F_MODULE_RUN 118
230 #define CONF_F_NCONF_DUMP_BIO 105
231 #define CONF_F_NCONF_DUMP_FP 106
232 #define CONF_F_NCONF_GET_NUMBER 107
233 #define CONF_F_NCONF_GET_NUMBER_E 112
234 #define CONF_F_NCONF_GET_SECTION 108
235 #define CONF_F_NCONF_GET_STRING 109
236 #define CONF_F_NCONF_LOAD 113
237 #define CONF_F_NCONF_LOAD_BIO 110
238 #define CONF_F_NCONF_LOAD_FP 114
239 #define CONF_F_NCONF_NEW 111
240 #define CONF_F_STR_COPY 101

242 /* Reason codes. */
243 #define CONF_R_ERROR_LOADING_DSO 110
244 #define CONF_R_LIST_CANNOT_BE_NULL 115
245 #define CONF_R_MISSING_CLOSE_SQUARE_BRACKET 100
246 #define CONF_R_MISSING_EQUAL_SIGN 101
247 #define CONF_R_MISSING_FINISH_FUNCTION 111
248 #define CONF_R_MISSING_INIT_FUNCTION 112
249 #define CONF_R_MODULE_INITIALIZATION_ERROR 109
250 #define CONF_R_NO_CLOSE_BRACE 102
251 #define CONF_R_NO_CONF 105
252 #define CONF_R_NO_CONF_OR_ENVIRONMENT_VARIABLE 106
253 #define CONF_R_NO_SECTION 107
254 #define CONF_R_NO_SUCH_FILE 114
255 #define CONF_R_NO_VALUE 108
256 #define CONF_R_UNABLE_TO_CREATE_NEW_SECTION 103
257 #define CONF_R_UNKNOWN_MODULE_NAME 113
258 #define CONF_R_VARIABLE_HAS_NO_VALUE 104

new/usr/src/lib/openssl/include/openssl/conf.h 5

260 #ifdef __cplusplus
261 }
262 #endif
263 #endif

new/usr/src/lib/openssl/include/openssl/conf_api.h 1

**
 4080 Fri May 30 18:31:18 2014
new/usr/src/lib/openssl/include/openssl/conf_api.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* conf_api.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_CONF_API_H
60 #define HEADER_CONF_API_H

new/usr/src/lib/openssl/include/openssl/conf_api.h 2

62 #include <openssl/lhash.h>
63 #include <openssl/conf.h>

65 #ifdef __cplusplus
66 extern "C" {
67 #endif

69 /* Up until OpenSSL 0.9.5a, this was new_section */
70 CONF_VALUE *_CONF_new_section(CONF *conf, const char *section);
71 /* Up until OpenSSL 0.9.5a, this was get_section */
72 CONF_VALUE *_CONF_get_section(const CONF *conf, const char *section);
73 /* Up until OpenSSL 0.9.5a, this was CONF_get_section */
74 STACK_OF(CONF_VALUE) *_CONF_get_section_values(const CONF *conf,
75 const char *section);

77 int _CONF_add_string(CONF *conf, CONF_VALUE *section, CONF_VALUE *value);
78 char *_CONF_get_string(const CONF *conf, const char *section,
79 const char *name);
80 long _CONF_get_number(const CONF *conf, const char *section, const char *name);

82 int _CONF_new_data(CONF *conf);
83 void _CONF_free_data(CONF *conf);

85 #ifdef __cplusplus
86 }
87 #endif
88 #endif

new/usr/src/lib/openssl/include/openssl/crypto.h 1

**
 24337 Fri May 30 18:31:18 2014
new/usr/src/lib/openssl/include/openssl/crypto.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/crypto.h */
2 /* ==
3 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
56 * All rights reserved.
57 *
58 * This package is an SSL implementation written
59 * by Eric Young (eay@cryptsoft.com).
60 * The implementation was written so as to conform with Netscapes SSL.
61 *

new/usr/src/lib/openssl/include/openssl/crypto.h 2

62 * This library is free for commercial and non-commercial use as long as
63 * the following conditions are aheared to. The following conditions
64 * apply to all code found in this distribution, be it the RC4, RSA,
65 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
66 * included with this distribution is covered by the same copyright terms
67 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
68 *
69 * Copyright remains Eric Young’s, and as such any Copyright notices in
70 * the code are not to be removed.
71 * If this package is used in a product, Eric Young should be given attribution
72 * as the author of the parts of the library used.
73 * This can be in the form of a textual message at program startup or
74 * in documentation (online or textual) provided with the package.
75 *
76 * Redistribution and use in source and binary forms, with or without
77 * modification, are permitted provided that the following conditions
78 * are met:
79 * 1. Redistributions of source code must retain the copyright
80 * notice, this list of conditions and the following disclaimer.
81 * 2. Redistributions in binary form must reproduce the above copyright
82 * notice, this list of conditions and the following disclaimer in the
83 * documentation and/or other materials provided with the distribution.
84 * 3. All advertising materials mentioning features or use of this software
85 * must display the following acknowledgement:
86 * "This product includes cryptographic software written by
87 * Eric Young (eay@cryptsoft.com)"
88 * The word ’cryptographic’ can be left out if the rouines from the library
89 * being used are not cryptographic related :-).
90 * 4. If you include any Windows specific code (or a derivative thereof) from
91 * the apps directory (application code) you must include an acknowledgement:
92 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
93 *
94 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
95 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
96 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
97 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
98 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
99 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
100 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 * SUCH DAMAGE.
105 *
106 * The licence and distribution terms for any publically available version or
107 * derivative of this code cannot be changed. i.e. this code cannot simply be
108 * copied and put under another distribution licence
109 * [including the GNU Public Licence.]
110 */
111 /* ==
112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
113 * ECDH support in OpenSSL originally developed by
114 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
115 */

117 #ifndef HEADER_CRYPTO_H
118 #define HEADER_CRYPTO_H

120 #include <stdlib.h>

122 #include <openssl/e_os2.h>

124 #ifndef OPENSSL_NO_FP_API
125 #include <stdio.h>
126 #endif

new/usr/src/lib/openssl/include/openssl/crypto.h 3

128 #include <openssl/stack.h>
129 #include <openssl/safestack.h>
130 #include <openssl/opensslv.h>
131 #include <openssl/ossl_typ.h>

133 #ifdef CHARSET_EBCDIC
134 #include <openssl/ebcdic.h>
135 #endif

137 /* Resolve problems on some operating systems with symbol names that clash
138 one way or another */
139 #include <openssl/symhacks.h>

141 #ifdef __cplusplus
142 extern "C" {
143 #endif

145 /* Backward compatibility to SSLeay */
146 /* This is more to be used to check the correct DLL is being used
147 * in the MS world. */
148 #define SSLEAY_VERSION_NUMBER OPENSSL_VERSION_NUMBER
149 #define SSLEAY_VERSION 0
150 /* #define SSLEAY_OPTIONS 1 no longer supported */
151 #define SSLEAY_CFLAGS 2
152 #define SSLEAY_BUILT_ON 3
153 #define SSLEAY_PLATFORM 4
154 #define SSLEAY_DIR 5

156 /* Already declared in ossl_typ.h */
157 #if 0
158 typedef struct crypto_ex_data_st CRYPTO_EX_DATA;
159 /* Called when a new object is created */
160 typedef int CRYPTO_EX_new(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
161 int idx, long argl, void *argp);
162 /* Called when an object is free()ed */
163 typedef void CRYPTO_EX_free(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
164 int idx, long argl, void *argp);
165 /* Called when we need to dup an object */
166 typedef int CRYPTO_EX_dup(CRYPTO_EX_DATA *to, CRYPTO_EX_DATA *from, void *from_d
167 int idx, long argl, void *argp);
168 #endif

170 /* A generic structure to pass assorted data in a expandable way */
171 typedef struct openssl_item_st
172 {
173 int code;
174 void *value; /* Not used for flag attributes */
175 size_t value_size; /* Max size of value for output, length for inpu
176 size_t *value_length; /* Returned length of value for output */
177 } OPENSSL_ITEM;

180 /* When changing the CRYPTO_LOCK_* list, be sure to maintin the text lock
181 * names in cryptlib.c
182 */

184 #define CRYPTO_LOCK_ERR 1
185 #define CRYPTO_LOCK_EX_DATA 2
186 #define CRYPTO_LOCK_X509 3
187 #define CRYPTO_LOCK_X509_INFO 4
188 #define CRYPTO_LOCK_X509_PKEY 5
189 #define CRYPTO_LOCK_X509_CRL 6
190 #define CRYPTO_LOCK_X509_REQ 7
191 #define CRYPTO_LOCK_DSA 8
192 #define CRYPTO_LOCK_RSA 9
193 #define CRYPTO_LOCK_EVP_PKEY 10

new/usr/src/lib/openssl/include/openssl/crypto.h 4

194 #define CRYPTO_LOCK_X509_STORE 11
195 #define CRYPTO_LOCK_SSL_CTX 12
196 #define CRYPTO_LOCK_SSL_CERT 13
197 #define CRYPTO_LOCK_SSL_SESSION 14
198 #define CRYPTO_LOCK_SSL_SESS_CERT 15
199 #define CRYPTO_LOCK_SSL 16
200 #define CRYPTO_LOCK_SSL_METHOD 17
201 #define CRYPTO_LOCK_RAND 18
202 #define CRYPTO_LOCK_RAND2 19
203 #define CRYPTO_LOCK_MALLOC 20
204 #define CRYPTO_LOCK_BIO 21
205 #define CRYPTO_LOCK_GETHOSTBYNAME 22
206 #define CRYPTO_LOCK_GETSERVBYNAME 23
207 #define CRYPTO_LOCK_READDIR 24
208 #define CRYPTO_LOCK_RSA_BLINDING 25
209 #define CRYPTO_LOCK_DH 26
210 #define CRYPTO_LOCK_MALLOC2 27
211 #define CRYPTO_LOCK_DSO 28
212 #define CRYPTO_LOCK_DYNLOCK 29
213 #define CRYPTO_LOCK_ENGINE 30
214 #define CRYPTO_LOCK_UI 31
215 #define CRYPTO_LOCK_ECDSA 32
216 #define CRYPTO_LOCK_EC 33
217 #define CRYPTO_LOCK_ECDH 34
218 #define CRYPTO_LOCK_BN 35
219 #define CRYPTO_LOCK_EC_PRE_COMP 36
220 #define CRYPTO_LOCK_STORE 37
221 #define CRYPTO_LOCK_COMP 38
222 #define CRYPTO_LOCK_FIPS 39
223 #define CRYPTO_LOCK_FIPS2 40
224 #define CRYPTO_NUM_LOCKS 41

226 #define CRYPTO_LOCK 1
227 #define CRYPTO_UNLOCK 2
228 #define CRYPTO_READ 4
229 #define CRYPTO_WRITE 8

231 #ifndef OPENSSL_NO_LOCKING
232 #ifndef CRYPTO_w_lock
233 #define CRYPTO_w_lock(type) \
234 CRYPTO_lock(CRYPTO_LOCK|CRYPTO_WRITE,type,__FILE__,__LINE__)
235 #define CRYPTO_w_unlock(type) \
236 CRYPTO_lock(CRYPTO_UNLOCK|CRYPTO_WRITE,type,__FILE__,__LINE__)
237 #define CRYPTO_r_lock(type) \
238 CRYPTO_lock(CRYPTO_LOCK|CRYPTO_READ,type,__FILE__,__LINE__)
239 #define CRYPTO_r_unlock(type) \
240 CRYPTO_lock(CRYPTO_UNLOCK|CRYPTO_READ,type,__FILE__,__LINE__)
241 #define CRYPTO_add(addr,amount,type) \
242 CRYPTO_add_lock(addr,amount,type,__FILE__,__LINE__)
243 #endif
244 #else
245 #define CRYPTO_w_lock(a)
246 #define CRYPTO_w_unlock(a)
247 #define CRYPTO_r_lock(a)
248 #define CRYPTO_r_unlock(a)
249 #define CRYPTO_add(a,b,c) ((*(a))+=(b))
250 #endif

252 /* Some applications as well as some parts of OpenSSL need to allocate
253 and deallocate locks in a dynamic fashion. The following typedef
254 makes this possible in a type-safe manner. */
255 /* struct CRYPTO_dynlock_value has to be defined by the application. */
256 typedef struct
257 {
258 int references;
259 struct CRYPTO_dynlock_value *data;

new/usr/src/lib/openssl/include/openssl/crypto.h 5

260 } CRYPTO_dynlock;

263 /* The following can be used to detect memory leaks in the SSLeay library.
264 * It used, it turns on malloc checking */

266 #define CRYPTO_MEM_CHECK_OFF 0x0 /* an enume */
267 #define CRYPTO_MEM_CHECK_ON 0x1 /* a bit */
268 #define CRYPTO_MEM_CHECK_ENABLE 0x2 /* a bit */
269 #define CRYPTO_MEM_CHECK_DISABLE 0x3 /* an enume */

271 /* The following are bit values to turn on or off options connected to the
272 * malloc checking functionality */

274 /* Adds time to the memory checking information */
275 #define V_CRYPTO_MDEBUG_TIME 0x1 /* a bit */
276 /* Adds thread number to the memory checking information */
277 #define V_CRYPTO_MDEBUG_THREAD 0x2 /* a bit */

279 #define V_CRYPTO_MDEBUG_ALL (V_CRYPTO_MDEBUG_TIME | V_CRYPTO_MDEBUG_THREAD)

282 /* predec of the BIO type */
283 typedef struct bio_st BIO_dummy;

285 struct crypto_ex_data_st
286 {
287 STACK_OF(void) *sk;
288 int dummy; /* gcc is screwing up this data structure :-(*/
289 };
290 DECLARE_STACK_OF(void)

292 /* This stuff is basically class callback functions
293 * The current classes are SSL_CTX, SSL, SSL_SESSION, and a few more */

295 typedef struct crypto_ex_data_func_st
296 {
297 long argl; /* Arbitary long */
298 void *argp; /* Arbitary void * */
299 CRYPTO_EX_new *new_func;
300 CRYPTO_EX_free *free_func;
301 CRYPTO_EX_dup *dup_func;
302 } CRYPTO_EX_DATA_FUNCS;

304 DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)

306 /* Per class, we have a STACK of CRYPTO_EX_DATA_FUNCS for each CRYPTO_EX_DATA
307 * entry.
308 */

310 #define CRYPTO_EX_INDEX_BIO 0
311 #define CRYPTO_EX_INDEX_SSL 1
312 #define CRYPTO_EX_INDEX_SSL_CTX 2
313 #define CRYPTO_EX_INDEX_SSL_SESSION 3
314 #define CRYPTO_EX_INDEX_X509_STORE 4
315 #define CRYPTO_EX_INDEX_X509_STORE_CTX 5
316 #define CRYPTO_EX_INDEX_RSA 6
317 #define CRYPTO_EX_INDEX_DSA 7
318 #define CRYPTO_EX_INDEX_DH 8
319 #define CRYPTO_EX_INDEX_ENGINE 9
320 #define CRYPTO_EX_INDEX_X509 10
321 #define CRYPTO_EX_INDEX_UI 11
322 #define CRYPTO_EX_INDEX_ECDSA 12
323 #define CRYPTO_EX_INDEX_ECDH 13
324 #define CRYPTO_EX_INDEX_COMP 14
325 #define CRYPTO_EX_INDEX_STORE 15

new/usr/src/lib/openssl/include/openssl/crypto.h 6

327 /* Dynamically assigned indexes start from this value (don’t use directly, use
328 * via CRYPTO_ex_data_new_class). */
329 #define CRYPTO_EX_INDEX_USER 100

332 /* This is the default callbacks, but we can have others as well:
333 * this is needed in Win32 where the application malloc and the
334 * library malloc may not be the same.
335 */
336 #define CRYPTO_malloc_init() CRYPTO_set_mem_functions(\
337 malloc, realloc, free)

339 #if defined CRYPTO_MDEBUG_ALL || defined CRYPTO_MDEBUG_TIME || defined CRYPTO_MD
340 # ifndef CRYPTO_MDEBUG /* avoid duplicate #define */
341 # define CRYPTO_MDEBUG
342 # endif
343 #endif

345 /* Set standard debugging functions (not done by default
346 * unless CRYPTO_MDEBUG is defined) */
347 #define CRYPTO_malloc_debug_init() do {\
348 CRYPTO_set_mem_debug_functions(\
349 CRYPTO_dbg_malloc,\
350 CRYPTO_dbg_realloc,\
351 CRYPTO_dbg_free,\
352 CRYPTO_dbg_set_options,\
353 CRYPTO_dbg_get_options);\
354 } while(0)

356 int CRYPTO_mem_ctrl(int mode);
357 int CRYPTO_is_mem_check_on(void);

359 /* for applications */
360 #define MemCheck_start() CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ON)
361 #define MemCheck_stop() CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_OFF)

363 /* for library-internal use */
364 #define MemCheck_on() CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ENABLE)
365 #define MemCheck_off() CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_DISABLE)
366 #define is_MemCheck_on() CRYPTO_is_mem_check_on()

368 #define OPENSSL_malloc(num) CRYPTO_malloc((int)num,__FILE__,__LINE__)
369 #define OPENSSL_strdup(str) CRYPTO_strdup((str),__FILE__,__LINE__)
370 #define OPENSSL_realloc(addr,num) \
371 CRYPTO_realloc((char *)addr,(int)num,__FILE__,__LINE__)
372 #define OPENSSL_realloc_clean(addr,old_num,num) \
373 CRYPTO_realloc_clean(addr,old_num,num,__FILE__,__LINE__)
374 #define OPENSSL_remalloc(addr,num) \
375 CRYPTO_remalloc((char **)addr,(int)num,__FILE__,__LINE__)
376 #define OPENSSL_freeFunc CRYPTO_free
377 #define OPENSSL_free(addr) CRYPTO_free(addr)

379 #define OPENSSL_malloc_locked(num) \
380 CRYPTO_malloc_locked((int)num,__FILE__,__LINE__)
381 #define OPENSSL_free_locked(addr) CRYPTO_free_locked(addr)

384 const char *SSLeay_version(int type);
385 unsigned long SSLeay(void);

387 int OPENSSL_issetugid(void);

389 /* An opaque type representing an implementation of "ex_data" support */
390 typedef struct st_CRYPTO_EX_DATA_IMPL CRYPTO_EX_DATA_IMPL;
391 /* Return an opaque pointer to the current "ex_data" implementation */

new/usr/src/lib/openssl/include/openssl/crypto.h 7

392 const CRYPTO_EX_DATA_IMPL *CRYPTO_get_ex_data_implementation(void);
393 /* Sets the "ex_data" implementation to be used (if it’s not too late) */
394 int CRYPTO_set_ex_data_implementation(const CRYPTO_EX_DATA_IMPL *i);
395 /* Get a new "ex_data" class, and return the corresponding "class_index" */
396 int CRYPTO_ex_data_new_class(void);
397 /* Within a given class, get/register a new index */
398 int CRYPTO_get_ex_new_index(int class_index, long argl, void *argp,
399 CRYPTO_EX_new *new_func, CRYPTO_EX_dup *dup_func,
400 CRYPTO_EX_free *free_func);
401 /* Initialise/duplicate/free CRYPTO_EX_DATA variables corresponding to a given
402 * class (invokes whatever per-class callbacks are applicable) */
403 int CRYPTO_new_ex_data(int class_index, void *obj, CRYPTO_EX_DATA *ad);
404 int CRYPTO_dup_ex_data(int class_index, CRYPTO_EX_DATA *to,
405 CRYPTO_EX_DATA *from);
406 void CRYPTO_free_ex_data(int class_index, void *obj, CRYPTO_EX_DATA *ad);
407 /* Get/set data in a CRYPTO_EX_DATA variable corresponding to a particular index
408 * (relative to the class type involved) */
409 int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int idx, void *val);
410 void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad,int idx);
411 /* This function cleans up all "ex_data" state. It mustn’t be called under
412 * potential race-conditions. */
413 void CRYPTO_cleanup_all_ex_data(void);

415 int CRYPTO_get_new_lockid(char *name);

417 int CRYPTO_num_locks(void); /* return CRYPTO_NUM_LOCKS (shared libs!) */
418 void CRYPTO_lock(int mode, int type,const char *file,int line);
419 void CRYPTO_set_locking_callback(void (*func)(int mode,int type,
420 const char *file,int line));
421 void (*CRYPTO_get_locking_callback(void))(int mode,int type,const char *file,
422 int line);
423 void CRYPTO_set_add_lock_callback(int (*func)(int *num,int mount,int type,
424 const char *file, int line));
425 int (*CRYPTO_get_add_lock_callback(void))(int *num,int mount,int type,
426 const char *file,int line);

428 /* Don’t use this structure directly. */
429 typedef struct crypto_threadid_st
430 {
431 void *ptr;
432 unsigned long val;
433 } CRYPTO_THREADID;
434 /* Only use CRYPTO_THREADID_set_[numeric|pointer]() within callbacks */
435 void CRYPTO_THREADID_set_numeric(CRYPTO_THREADID *id, unsigned long val);
436 void CRYPTO_THREADID_set_pointer(CRYPTO_THREADID *id, void *ptr);
437 int CRYPTO_THREADID_set_callback(void (*threadid_func)(CRYPTO_THREADID *));
438 void (*CRYPTO_THREADID_get_callback(void))(CRYPTO_THREADID *);
439 void CRYPTO_THREADID_current(CRYPTO_THREADID *id);
440 int CRYPTO_THREADID_cmp(const CRYPTO_THREADID *a, const CRYPTO_THREADID *b);
441 void CRYPTO_THREADID_cpy(CRYPTO_THREADID *dest, const CRYPTO_THREADID *src);
442 unsigned long CRYPTO_THREADID_hash(const CRYPTO_THREADID *id);
443 #ifndef OPENSSL_NO_DEPRECATED
444 void CRYPTO_set_id_callback(unsigned long (*func)(void));
445 unsigned long (*CRYPTO_get_id_callback(void))(void);
446 unsigned long CRYPTO_thread_id(void);
447 #endif

449 const char *CRYPTO_get_lock_name(int type);
450 int CRYPTO_add_lock(int *pointer,int amount,int type, const char *file,
451 int line);

453 int CRYPTO_get_new_dynlockid(void);
454 void CRYPTO_destroy_dynlockid(int i);
455 struct CRYPTO_dynlock_value *CRYPTO_get_dynlock_value(int i);
456 void CRYPTO_set_dynlock_create_callback(struct CRYPTO_dynlock_value *(*dyn_creat
457 void CRYPTO_set_dynlock_lock_callback(void (*dyn_lock_function)(int mode, struct

new/usr/src/lib/openssl/include/openssl/crypto.h 8

458 void CRYPTO_set_dynlock_destroy_callback(void (*dyn_destroy_function)(struct CRY
459 struct CRYPTO_dynlock_value *(*CRYPTO_get_dynlock_create_callback(void))(const c
460 void (*CRYPTO_get_dynlock_lock_callback(void))(int mode, struct CRYPTO_dynlock_v
461 void (*CRYPTO_get_dynlock_destroy_callback(void))(struct CRYPTO_dynlock_value *l

463 /* CRYPTO_set_mem_functions includes CRYPTO_set_locked_mem_functions --
464 * call the latter last if you need different functions */
465 int CRYPTO_set_mem_functions(void *(*m)(size_t),void *(*r)(void *,size_t), void
466 int CRYPTO_set_locked_mem_functions(void *(*m)(size_t), void (*free_func)(void *
467 int CRYPTO_set_mem_ex_functions(void *(*m)(size_t,const char *,int),
468 void *(*r)(void *,size_t,const char *,int),
469 void (*f)(void *));
470 int CRYPTO_set_locked_mem_ex_functions(void *(*m)(size_t,const char *,int),
471 void (*free_func)(void *));
472 int CRYPTO_set_mem_debug_functions(void (*m)(void *,int,const char *,int,int),
473 void (*r)(void *,void *,int,const char *,int,
474 void (*f)(void *,int),
475 void (*so)(long),
476 long (*go)(void));
477 void CRYPTO_get_mem_functions(void *(**m)(size_t),void *(**r)(void *, size_t), v
478 void CRYPTO_get_locked_mem_functions(void *(**m)(size_t), void (**f)(void *));
479 void CRYPTO_get_mem_ex_functions(void *(**m)(size_t,const char *,int),
480 void *(**r)(void *, size_t,const char *,int),
481 void (**f)(void *));
482 void CRYPTO_get_locked_mem_ex_functions(void *(**m)(size_t,const char *,int),
483 void (**f)(void *));
484 void CRYPTO_get_mem_debug_functions(void (**m)(void *,int,const char *,int,int),
485 void (**r)(void *,void *,int,const char *,in
486 void (**f)(void *,int),
487 void (**so)(long),
488 long (**go)(void));

490 void *CRYPTO_malloc_locked(int num, const char *file, int line);
491 void CRYPTO_free_locked(void *ptr);
492 void *CRYPTO_malloc(int num, const char *file, int line);
493 char *CRYPTO_strdup(const char *str, const char *file, int line);
494 void CRYPTO_free(void *ptr);
495 void *CRYPTO_realloc(void *addr,int num, const char *file, int line);
496 void *CRYPTO_realloc_clean(void *addr,int old_num,int num,const char *file,
497 int line);
498 void *CRYPTO_remalloc(void *addr,int num, const char *file, int line);

500 void OPENSSL_cleanse(void *ptr, size_t len);

502 void CRYPTO_set_mem_debug_options(long bits);
503 long CRYPTO_get_mem_debug_options(void);

505 #define CRYPTO_push_info(info) \
506 CRYPTO_push_info_(info, __FILE__, __LINE__);
507 int CRYPTO_push_info_(const char *info, const char *file, int line);
508 int CRYPTO_pop_info(void);
509 int CRYPTO_remove_all_info(void);

512 /* Default debugging functions (enabled by CRYPTO_malloc_debug_init() macro;
513 * used as default in CRYPTO_MDEBUG compilations): */
514 /* The last argument has the following significance:
515 *
516 * 0: called before the actual memory allocation has taken place
517 * 1: called after the actual memory allocation has taken place
518 */
519 void CRYPTO_dbg_malloc(void *addr,int num,const char *file,int line,int before_p
520 void CRYPTO_dbg_realloc(void *addr1,void *addr2,int num,const char *file,int lin
521 void CRYPTO_dbg_free(void *addr,int before_p);
522 /* Tell the debugging code about options. By default, the following values
523 * apply:

new/usr/src/lib/openssl/include/openssl/crypto.h 9

524 *
525 * 0: Clear all options.
526 * V_CRYPTO_MDEBUG_TIME (1): Set the "Show Time" option.
527 * V_CRYPTO_MDEBUG_THREAD (2): Set the "Show Thread Number" option.
528 * V_CRYPTO_MDEBUG_ALL (3): 1 + 2
529 */
530 void CRYPTO_dbg_set_options(long bits);
531 long CRYPTO_dbg_get_options(void);

534 #ifndef OPENSSL_NO_FP_API
535 void CRYPTO_mem_leaks_fp(FILE *);
536 #endif
537 void CRYPTO_mem_leaks(struct bio_st *bio);
538 /* unsigned long order, char *file, int line, int num_bytes, char *addr */
539 typedef void *CRYPTO_MEM_LEAK_CB(unsigned long, const char *, int, int, void *);
540 void CRYPTO_mem_leaks_cb(CRYPTO_MEM_LEAK_CB *cb);

542 /* die if we have to */
543 void OpenSSLDie(const char *file,int line,const char *assertion);
544 #define OPENSSL_assert(e) (void)((e) ? 0 : (OpenSSLDie(__FILE__, __LINE__,

546 unsigned long *OPENSSL_ia32cap_loc(void);
547 #define OPENSSL_ia32cap (*(OPENSSL_ia32cap_loc()))
548 int OPENSSL_isservice(void);

550 int FIPS_mode(void);
551 int FIPS_mode_set(int r);

553 void OPENSSL_init(void);

555 #define fips_md_init(alg) fips_md_init_ctx(alg, alg)

557 #ifdef OPENSSL_FIPS
558 #define fips_md_init_ctx(alg, cx) \
559 int alg##_Init(cx##_CTX *c) \
560 { \
561 if (FIPS_mode()) OpenSSLDie(__FILE__, __LINE__, \
562 "Low level API call to digest " #alg " forbidden in FIPS mode!")
563 return private_##alg##_Init(c); \
564 } \
565 int private_##alg##_Init(cx##_CTX *c)

567 #define fips_cipher_abort(alg) \
568 if (FIPS_mode()) OpenSSLDie(__FILE__, __LINE__, \
569 "Low level API call to cipher " #alg " forbidden in FIPS mode!")

571 #else
572 #define fips_md_init_ctx(alg, cx) \
573 int alg##_Init(cx##_CTX *c)
574 #define fips_cipher_abort(alg) while(0)
575 #endif

577 /* CRYPTO_memcmp returns zero iff the |len| bytes at |a| and |b| are equal. It
578 * takes an amount of time dependent on |len|, but independent of the contents
579 * of |a| and |b|. Unlike memcmp, it cannot be used to put elements into a
580 * defined order as the return value when a != b is undefined, other than to be
581 * non-zero. */
582 int CRYPTO_memcmp(const void *a, const void *b, size_t len);

584 /* BEGIN ERROR CODES */
585 /* The following lines are auto generated by the script mkerr.pl. Any changes
586 * made after this point may be overwritten when the script is next run.
587 */
588 void ERR_load_CRYPTO_strings(void);

new/usr/src/lib/openssl/include/openssl/crypto.h 10

590 /* Error codes for the CRYPTO functions. */

592 /* Function codes. */
593 #define CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX 100
594 #define CRYPTO_F_CRYPTO_GET_NEW_DYNLOCKID 103
595 #define CRYPTO_F_CRYPTO_GET_NEW_LOCKID 101
596 #define CRYPTO_F_CRYPTO_SET_EX_DATA 102
597 #define CRYPTO_F_DEF_ADD_INDEX 104
598 #define CRYPTO_F_DEF_GET_CLASS 105
599 #define CRYPTO_F_FIPS_MODE_SET 109
600 #define CRYPTO_F_INT_DUP_EX_DATA 106
601 #define CRYPTO_F_INT_FREE_EX_DATA 107
602 #define CRYPTO_F_INT_NEW_EX_DATA 108

604 /* Reason codes. */
605 #define CRYPTO_R_FIPS_MODE_NOT_SUPPORTED 101
606 #define CRYPTO_R_NO_DYNLOCK_CREATE_CALLBACK 100

608 #ifdef __cplusplus
609 }
610 #endif
611 #endif

new/usr/src/lib/openssl/include/openssl/des.h 1

**
 10849 Fri May 30 18:31:18 2014
new/usr/src/lib/openssl/include/openssl/des.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/des.h */
2 /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_NEW_DES_H
60 #define HEADER_NEW_DES_H

new/usr/src/lib/openssl/include/openssl/des.h 2

62 #include <openssl/e_os2.h> /* OPENSSL_EXTERN, OPENSSL_NO_DES,
63 DES_LONG (via openssl/opensslconf.h */

65 #ifdef OPENSSL_NO_DES
66 #error DES is disabled.
67 #endif

69 #ifdef OPENSSL_BUILD_SHLIBCRYPTO
70 # undef OPENSSL_EXTERN
71 # define OPENSSL_EXTERN OPENSSL_EXPORT
72 #endif

74 #ifdef __cplusplus
75 extern "C" {
76 #endif

78 typedef unsigned char DES_cblock[8];
79 typedef /* const */ unsigned char const_DES_cblock[8];
80 /* With "const", gcc 2.8.1 on Solaris thinks that DES_cblock *
81 * and const_DES_cblock * are incompatible pointer types. */

83 typedef struct DES_ks
84 {
85 union
86 {
87 DES_cblock cblock;
88 /* make sure things are correct size on machines with
89 * 8 byte longs */
90 DES_LONG deslong[2];
91 } ks[16];
92 } DES_key_schedule;

94 #ifndef OPENSSL_DISABLE_OLD_DES_SUPPORT
95 # ifndef OPENSSL_ENABLE_OLD_DES_SUPPORT
96 # define OPENSSL_ENABLE_OLD_DES_SUPPORT
97 # endif
98 #endif

100 #ifdef OPENSSL_ENABLE_OLD_DES_SUPPORT
101 # include <openssl/des_old.h>
102 #endif

104 #define DES_KEY_SZ (sizeof(DES_cblock))
105 #define DES_SCHEDULE_SZ (sizeof(DES_key_schedule))

107 #define DES_ENCRYPT 1
108 #define DES_DECRYPT 0

110 #define DES_CBC_MODE 0
111 #define DES_PCBC_MODE 1

113 #define DES_ecb2_encrypt(i,o,k1,k2,e) \
114 DES_ecb3_encrypt((i),(o),(k1),(k2),(k1),(e))

116 #define DES_ede2_cbc_encrypt(i,o,l,k1,k2,iv,e) \
117 DES_ede3_cbc_encrypt((i),(o),(l),(k1),(k2),(k1),(iv),(e))

119 #define DES_ede2_cfb64_encrypt(i,o,l,k1,k2,iv,n,e) \
120 DES_ede3_cfb64_encrypt((i),(o),(l),(k1),(k2),(k1),(iv),(n),(e))

122 #define DES_ede2_ofb64_encrypt(i,o,l,k1,k2,iv,n) \
123 DES_ede3_ofb64_encrypt((i),(o),(l),(k1),(k2),(k1),(iv),(n))

125 OPENSSL_DECLARE_GLOBAL(int,DES_check_key); /* defaults to false */
126 #define DES_check_key OPENSSL_GLOBAL_REF(DES_check_key)
127 OPENSSL_DECLARE_GLOBAL(int,DES_rw_mode); /* defaults to DES_PCBC_MODE */

new/usr/src/lib/openssl/include/openssl/des.h 3

128 #define DES_rw_mode OPENSSL_GLOBAL_REF(DES_rw_mode)

130 const char *DES_options(void);
131 void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
132 DES_key_schedule *ks1,DES_key_schedule *ks2,
133 DES_key_schedule *ks3, int enc);
134 DES_LONG DES_cbc_cksum(const unsigned char *input,DES_cblock *output,
135 long length,DES_key_schedule *schedule,
136 const_DES_cblock *ivec);
137 /* DES_cbc_encrypt does not update the IV! Use DES_ncbc_encrypt instead. */
138 void DES_cbc_encrypt(const unsigned char *input,unsigned char *output,
139 long length,DES_key_schedule *schedule,DES_cblock *ivec,
140 int enc);
141 void DES_ncbc_encrypt(const unsigned char *input,unsigned char *output,
142 long length,DES_key_schedule *schedule,DES_cblock *ivec,
143 int enc);
144 void DES_xcbc_encrypt(const unsigned char *input,unsigned char *output,
145 long length,DES_key_schedule *schedule,DES_cblock *ivec,
146 const_DES_cblock *inw,const_DES_cblock *outw,int enc);
147 void DES_cfb_encrypt(const unsigned char *in,unsigned char *out,int numbits,
148 long length,DES_key_schedule *schedule,DES_cblock *ivec,
149 int enc);
150 void DES_ecb_encrypt(const_DES_cblock *input,DES_cblock *output,
151 DES_key_schedule *ks,int enc);

153 /* This is the DES encryption function that gets called by just about
154 every other DES routine in the library. You should not use this
155 function except to implement ’modes’ of DES. I say this because the
156 functions that call this routine do the conversion from ’char *’ to
157 long, and this needs to be done to make sure ’non-aligned’ memory
158 access do not occur. The characters are loaded ’little endian’.
159 Data is a pointer to 2 unsigned long’s and ks is the
160 DES_key_schedule to use. enc, is non zero specifies encryption,
161 zero if decryption. */
162 void DES_encrypt1(DES_LONG *data,DES_key_schedule *ks, int enc);

164 /* This functions is the same as DES_encrypt1() except that the DES
165 initial permutation (IP) and final permutation (FP) have been left
166 out. As for DES_encrypt1(), you should not use this function.
167 It is used by the routines in the library that implement triple DES.
168 IP() DES_encrypt2() DES_encrypt2() DES_encrypt2() FP() is the same
169 as DES_encrypt1() DES_encrypt1() DES_encrypt1() except faster :-). */
170 void DES_encrypt2(DES_LONG *data,DES_key_schedule *ks, int enc);

172 void DES_encrypt3(DES_LONG *data, DES_key_schedule *ks1,
173 DES_key_schedule *ks2, DES_key_schedule *ks3);
174 void DES_decrypt3(DES_LONG *data, DES_key_schedule *ks1,
175 DES_key_schedule *ks2, DES_key_schedule *ks3);
176 void DES_ede3_cbc_encrypt(const unsigned char *input,unsigned char *output,
177 long length,
178 DES_key_schedule *ks1,DES_key_schedule *ks2,
179 DES_key_schedule *ks3,DES_cblock *ivec,int enc);
180 void DES_ede3_cbcm_encrypt(const unsigned char *in,unsigned char *out,
181 long length,
182 DES_key_schedule *ks1,DES_key_schedule *ks2,
183 DES_key_schedule *ks3,
184 DES_cblock *ivec1,DES_cblock *ivec2,
185 int enc);
186 void DES_ede3_cfb64_encrypt(const unsigned char *in,unsigned char *out,
187 long length,DES_key_schedule *ks1,
188 DES_key_schedule *ks2,DES_key_schedule *ks3,
189 DES_cblock *ivec,int *num,int enc);
190 void DES_ede3_cfb_encrypt(const unsigned char *in,unsigned char *out,
191 int numbits,long length,DES_key_schedule *ks1,
192 DES_key_schedule *ks2,DES_key_schedule *ks3,
193 DES_cblock *ivec,int enc);

new/usr/src/lib/openssl/include/openssl/des.h 4

194 void DES_ede3_ofb64_encrypt(const unsigned char *in,unsigned char *out,
195 long length,DES_key_schedule *ks1,
196 DES_key_schedule *ks2,DES_key_schedule *ks3,
197 DES_cblock *ivec,int *num);
198 #if 0
199 void DES_xwhite_in2out(const_DES_cblock *DES_key,const_DES_cblock *in_white,
200 DES_cblock *out_white);
201 #endif

203 int DES_enc_read(int fd,void *buf,int len,DES_key_schedule *sched,
204 DES_cblock *iv);
205 int DES_enc_write(int fd,const void *buf,int len,DES_key_schedule *sched,
206 DES_cblock *iv);
207 char *DES_fcrypt(const char *buf,const char *salt, char *ret);
208 char *DES_crypt(const char *buf,const char *salt);
209 void DES_ofb_encrypt(const unsigned char *in,unsigned char *out,int numbits,
210 long length,DES_key_schedule *schedule,DES_cblock *ivec);
211 void DES_pcbc_encrypt(const unsigned char *input,unsigned char *output,
212 long length,DES_key_schedule *schedule,DES_cblock *ivec,
213 int enc);
214 DES_LONG DES_quad_cksum(const unsigned char *input,DES_cblock output[],
215 long length,int out_count,DES_cblock *seed);
216 int DES_random_key(DES_cblock *ret);
217 void DES_set_odd_parity(DES_cblock *key);
218 int DES_check_key_parity(const_DES_cblock *key);
219 int DES_is_weak_key(const_DES_cblock *key);
220 /* DES_set_key (= set_key = DES_key_sched = key_sched) calls
221 * DES_set_key_checked if global variable DES_check_key is set,
222 * DES_set_key_unchecked otherwise. */
223 int DES_set_key(const_DES_cblock *key,DES_key_schedule *schedule);
224 int DES_key_sched(const_DES_cblock *key,DES_key_schedule *schedule);
225 int DES_set_key_checked(const_DES_cblock *key,DES_key_schedule *schedule);
226 void DES_set_key_unchecked(const_DES_cblock *key,DES_key_schedule *schedule);
227 #ifdef OPENSSL_FIPS
228 void private_DES_set_key_unchecked(const_DES_cblock *key,DES_key_schedule *sched
229 #endif
230 void DES_string_to_key(const char *str,DES_cblock *key);
231 void DES_string_to_2keys(const char *str,DES_cblock *key1,DES_cblock *key2);
232 void DES_cfb64_encrypt(const unsigned char *in,unsigned char *out,long length,
233 DES_key_schedule *schedule,DES_cblock *ivec,int *num,
234 int enc);
235 void DES_ofb64_encrypt(const unsigned char *in,unsigned char *out,long length,
236 DES_key_schedule *schedule,DES_cblock *ivec,int *num);

238 int DES_read_password(DES_cblock *key, const char *prompt, int verify);
239 int DES_read_2passwords(DES_cblock *key1, DES_cblock *key2, const char *prompt,
240 int verify);

242 #define DES_fixup_key_parity DES_set_odd_parity

244 #ifdef __cplusplus
245 }
246 #endif

248 #endif

new/usr/src/lib/openssl/include/openssl/des_old.h 1

**
 18238 Fri May 30 18:31:18 2014
new/usr/src/lib/openssl/include/openssl/des_old.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/des_old.h -*- mode:C; c-file-style: "eay" -*- */

3 /* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
4 *
5 * The function names in here are deprecated and are only present to
6 * provide an interface compatible with openssl 0.9.6 and older as
7 * well as libdes. OpenSSL now provides functions where "des_" has
8 * been replaced with "DES_" in the names, to make it possible to
9 * make incompatible changes that are needed for C type security and
10 * other stuff.
11 *
12 * This include files has two compatibility modes:
13 *
14 * - If OPENSSL_DES_LIBDES_COMPATIBILITY is defined, you get an API
15 * that is compatible with libdes and SSLeay.
16 * - If OPENSSL_DES_LIBDES_COMPATIBILITY isn’t defined, you get an
17 * API that is compatible with OpenSSL 0.9.5x to 0.9.6x.
18 *
19 * Note that these modes break earlier snapshots of OpenSSL, where
20 * libdes compatibility was the only available mode or (later on) the
21 * prefered compatibility mode. However, after much consideration
22 * (and more or less violent discussions with external parties), it
23 * was concluded that OpenSSL should be compatible with earlier versions
24 * of itself before anything else. Also, in all honesty, libdes is
25 * an old beast that shouldn’t really be used any more.
26 *
27 * Please consider starting to use the DES_ functions rather than the
28 * des_ ones. The des_ functions will disappear completely before
29 * OpenSSL 1.0!
30 *
31 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
32 */

34 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
35 * project 2001.
36 */
37 /* ==
38 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in
49 * the documentation and/or other materials provided with the
50 * distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 * software must display the following acknowledgment:
54 * "This product includes software developed by the OpenSSL Project
55 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 * endorse or promote products derived from this software without
59 * prior written permission. For written permission, please contact
60 * openssl-core@openssl.org.
61 *

new/usr/src/lib/openssl/include/openssl/des_old.h 2

62 * 5. Products derived from this software may not be called "OpenSSL"
63 * nor may "OpenSSL" appear in their names without prior written
64 * permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 * acknowledgment:
68 * "This product includes software developed by the OpenSSL Project
69 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ==
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com). This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */

91 #ifndef HEADER_DES_H
92 #define HEADER_DES_H

94 #include <openssl/e_os2.h> /* OPENSSL_EXTERN, OPENSSL_NO_DES, DES_LONG */

96 #ifdef OPENSSL_NO_DES
97 #error DES is disabled.
98 #endif

100 #ifndef HEADER_NEW_DES_H
101 #error You must include des.h, not des_old.h directly.
102 #endif

104 #ifdef _KERBEROS_DES_H
105 #error <openssl/des_old.h> replaces <kerberos/des.h>.
106 #endif

108 #include <openssl/symhacks.h>

110 #ifdef OPENSSL_BUILD_SHLIBCRYPTO
111 # undef OPENSSL_EXTERN
112 # define OPENSSL_EXTERN OPENSSL_EXPORT
113 #endif

115 #ifdef __cplusplus
116 extern "C" {
117 #endif

119 #ifdef _
120 #undef _
121 #endif

123 typedef unsigned char _ossl_old_des_cblock[8];
124 typedef struct _ossl_old_des_ks_struct
125 {
126 union {
127 _ossl_old_des_cblock _;

new/usr/src/lib/openssl/include/openssl/des_old.h 3

128 /* make sure things are correct size on machines with
129 * 8 byte longs */
130 DES_LONG pad[2];
131 } ks;
132 } _ossl_old_des_key_schedule[16];

134 #ifndef OPENSSL_DES_LIBDES_COMPATIBILITY
135 #define des_cblock DES_cblock
136 #define const_des_cblock const_DES_cblock
137 #define des_key_schedule DES_key_schedule
138 #define des_ecb3_encrypt(i,o,k1,k2,k3,e)\
139 DES_ecb3_encrypt((i),(o),&(k1),&(k2),&(k3),(e))
140 #define des_ede3_cbc_encrypt(i,o,l,k1,k2,k3,iv,e)\
141 DES_ede3_cbc_encrypt((i),(o),(l),&(k1),&(k2),&(k3),(iv),(e))
142 #define des_ede3_cbcm_encrypt(i,o,l,k1,k2,k3,iv1,iv2,e)\
143 DES_ede3_cbcm_encrypt((i),(o),(l),&(k1),&(k2),&(k3),(iv1),(iv2),(e))
144 #define des_ede3_cfb64_encrypt(i,o,l,k1,k2,k3,iv,n,e)\
145 DES_ede3_cfb64_encrypt((i),(o),(l),&(k1),&(k2),&(k3),(iv),(n),(e))
146 #define des_ede3_ofb64_encrypt(i,o,l,k1,k2,k3,iv,n)\
147 DES_ede3_ofb64_encrypt((i),(o),(l),&(k1),&(k2),&(k3),(iv),(n))
148 #define des_options()\
149 DES_options()
150 #define des_cbc_cksum(i,o,l,k,iv)\
151 DES_cbc_cksum((i),(o),(l),&(k),(iv))
152 #define des_cbc_encrypt(i,o,l,k,iv,e)\
153 DES_cbc_encrypt((i),(o),(l),&(k),(iv),(e))
154 #define des_ncbc_encrypt(i,o,l,k,iv,e)\
155 DES_ncbc_encrypt((i),(o),(l),&(k),(iv),(e))
156 #define des_xcbc_encrypt(i,o,l,k,iv,inw,outw,e)\
157 DES_xcbc_encrypt((i),(o),(l),&(k),(iv),(inw),(outw),(e))
158 #define des_cfb_encrypt(i,o,n,l,k,iv,e)\
159 DES_cfb_encrypt((i),(o),(n),(l),&(k),(iv),(e))
160 #define des_ecb_encrypt(i,o,k,e)\
161 DES_ecb_encrypt((i),(o),&(k),(e))
162 #define des_encrypt1(d,k,e)\
163 DES_encrypt1((d),&(k),(e))
164 #define des_encrypt2(d,k,e)\
165 DES_encrypt2((d),&(k),(e))
166 #define des_encrypt3(d,k1,k2,k3)\
167 DES_encrypt3((d),&(k1),&(k2),&(k3))
168 #define des_decrypt3(d,k1,k2,k3)\
169 DES_decrypt3((d),&(k1),&(k2),&(k3))
170 #define des_xwhite_in2out(k,i,o)\
171 DES_xwhite_in2out((k),(i),(o))
172 #define des_enc_read(f,b,l,k,iv)\
173 DES_enc_read((f),(b),(l),&(k),(iv))
174 #define des_enc_write(f,b,l,k,iv)\
175 DES_enc_write((f),(b),(l),&(k),(iv))
176 #define des_fcrypt(b,s,r)\
177 DES_fcrypt((b),(s),(r))
178 #if 0
179 #define des_crypt(b,s)\
180 DES_crypt((b),(s))
181 #if !defined(PERL5) && !defined(__FreeBSD__) && !defined(NeXT) && !defined(__Ope
182 #define crypt(b,s)\
183 DES_crypt((b),(s))
184 #endif
185 #endif
186 #define des_ofb_encrypt(i,o,n,l,k,iv)\
187 DES_ofb_encrypt((i),(o),(n),(l),&(k),(iv))
188 #define des_pcbc_encrypt(i,o,l,k,iv,e)\
189 DES_pcbc_encrypt((i),(o),(l),&(k),(iv),(e))
190 #define des_quad_cksum(i,o,l,c,s)\
191 DES_quad_cksum((i),(o),(l),(c),(s))
192 #define des_random_seed(k)\
193 _ossl_096_des_random_seed((k))

new/usr/src/lib/openssl/include/openssl/des_old.h 4

194 #define des_random_key(r)\
195 DES_random_key((r))
196 #define des_read_password(k,p,v) \
197 DES_read_password((k),(p),(v))
198 #define des_read_2passwords(k1,k2,p,v) \
199 DES_read_2passwords((k1),(k2),(p),(v))
200 #define des_set_odd_parity(k)\
201 DES_set_odd_parity((k))
202 #define des_check_key_parity(k)\
203 DES_check_key_parity((k))
204 #define des_is_weak_key(k)\
205 DES_is_weak_key((k))
206 #define des_set_key(k,ks)\
207 DES_set_key((k),&(ks))
208 #define des_key_sched(k,ks)\
209 DES_key_sched((k),&(ks))
210 #define des_set_key_checked(k,ks)\
211 DES_set_key_checked((k),&(ks))
212 #define des_set_key_unchecked(k,ks)\
213 DES_set_key_unchecked((k),&(ks))
214 #define des_string_to_key(s,k)\
215 DES_string_to_key((s),(k))
216 #define des_string_to_2keys(s,k1,k2)\
217 DES_string_to_2keys((s),(k1),(k2))
218 #define des_cfb64_encrypt(i,o,l,ks,iv,n,e)\
219 DES_cfb64_encrypt((i),(o),(l),&(ks),(iv),(n),(e))
220 #define des_ofb64_encrypt(i,o,l,ks,iv,n)\
221 DES_ofb64_encrypt((i),(o),(l),&(ks),(iv),(n))
222

224 #define des_ecb2_encrypt(i,o,k1,k2,e) \
225 des_ecb3_encrypt((i),(o),(k1),(k2),(k1),(e))

227 #define des_ede2_cbc_encrypt(i,o,l,k1,k2,iv,e) \
228 des_ede3_cbc_encrypt((i),(o),(l),(k1),(k2),(k1),(iv),(e))

230 #define des_ede2_cfb64_encrypt(i,o,l,k1,k2,iv,n,e) \
231 des_ede3_cfb64_encrypt((i),(o),(l),(k1),(k2),(k1),(iv),(n),(e))

233 #define des_ede2_ofb64_encrypt(i,o,l,k1,k2,iv,n) \
234 des_ede3_ofb64_encrypt((i),(o),(l),(k1),(k2),(k1),(iv),(n))

236 #define des_check_key DES_check_key
237 #define des_rw_mode DES_rw_mode
238 #else /* libdes compatibility */
239 /* Map all symbol names to _ossl_old_des_* form, so we avoid all
240 clashes with libdes */
241 #define des_cblock _ossl_old_des_cblock
242 #define des_key_schedule _ossl_old_des_key_schedule
243 #define des_ecb3_encrypt(i,o,k1,k2,k3,e)\
244 _ossl_old_des_ecb3_encrypt((i),(o),(k1),(k2),(k3),(e))
245 #define des_ede3_cbc_encrypt(i,o,l,k1,k2,k3,iv,e)\
246 _ossl_old_des_ede3_cbc_encrypt((i),(o),(l),(k1),(k2),(k3),(iv),(e))
247 #define des_ede3_cfb64_encrypt(i,o,l,k1,k2,k3,iv,n,e)\
248 _ossl_old_des_ede3_cfb64_encrypt((i),(o),(l),(k1),(k2),(k3),(iv),(n),(e)
249 #define des_ede3_ofb64_encrypt(i,o,l,k1,k2,k3,iv,n)\
250 _ossl_old_des_ede3_ofb64_encrypt((i),(o),(l),(k1),(k2),(k3),(iv),(n))
251 #define des_options()\
252 _ossl_old_des_options()
253 #define des_cbc_cksum(i,o,l,k,iv)\
254 _ossl_old_des_cbc_cksum((i),(o),(l),(k),(iv))
255 #define des_cbc_encrypt(i,o,l,k,iv,e)\
256 _ossl_old_des_cbc_encrypt((i),(o),(l),(k),(iv),(e))
257 #define des_ncbc_encrypt(i,o,l,k,iv,e)\
258 _ossl_old_des_ncbc_encrypt((i),(o),(l),(k),(iv),(e))
259 #define des_xcbc_encrypt(i,o,l,k,iv,inw,outw,e)\

new/usr/src/lib/openssl/include/openssl/des_old.h 5

260 _ossl_old_des_xcbc_encrypt((i),(o),(l),(k),(iv),(inw),(outw),(e))
261 #define des_cfb_encrypt(i,o,n,l,k,iv,e)\
262 _ossl_old_des_cfb_encrypt((i),(o),(n),(l),(k),(iv),(e))
263 #define des_ecb_encrypt(i,o,k,e)\
264 _ossl_old_des_ecb_encrypt((i),(o),(k),(e))
265 #define des_encrypt(d,k,e)\
266 _ossl_old_des_encrypt((d),(k),(e))
267 #define des_encrypt2(d,k,e)\
268 _ossl_old_des_encrypt2((d),(k),(e))
269 #define des_encrypt3(d,k1,k2,k3)\
270 _ossl_old_des_encrypt3((d),(k1),(k2),(k3))
271 #define des_decrypt3(d,k1,k2,k3)\
272 _ossl_old_des_decrypt3((d),(k1),(k2),(k3))
273 #define des_xwhite_in2out(k,i,o)\
274 _ossl_old_des_xwhite_in2out((k),(i),(o))
275 #define des_enc_read(f,b,l,k,iv)\
276 _ossl_old_des_enc_read((f),(b),(l),(k),(iv))
277 #define des_enc_write(f,b,l,k,iv)\
278 _ossl_old_des_enc_write((f),(b),(l),(k),(iv))
279 #define des_fcrypt(b,s,r)\
280 _ossl_old_des_fcrypt((b),(s),(r))
281 #define des_crypt(b,s)\
282 _ossl_old_des_crypt((b),(s))
283 #if 0
284 #define crypt(b,s)\
285 _ossl_old_crypt((b),(s))
286 #endif
287 #define des_ofb_encrypt(i,o,n,l,k,iv)\
288 _ossl_old_des_ofb_encrypt((i),(o),(n),(l),(k),(iv))
289 #define des_pcbc_encrypt(i,o,l,k,iv,e)\
290 _ossl_old_des_pcbc_encrypt((i),(o),(l),(k),(iv),(e))
291 #define des_quad_cksum(i,o,l,c,s)\
292 _ossl_old_des_quad_cksum((i),(o),(l),(c),(s))
293 #define des_random_seed(k)\
294 _ossl_old_des_random_seed((k))
295 #define des_random_key(r)\
296 _ossl_old_des_random_key((r))
297 #define des_read_password(k,p,v) \
298 _ossl_old_des_read_password((k),(p),(v))
299 #define des_read_2passwords(k1,k2,p,v) \
300 _ossl_old_des_read_2passwords((k1),(k2),(p),(v))
301 #define des_set_odd_parity(k)\
302 _ossl_old_des_set_odd_parity((k))
303 #define des_is_weak_key(k)\
304 _ossl_old_des_is_weak_key((k))
305 #define des_set_key(k,ks)\
306 _ossl_old_des_set_key((k),(ks))
307 #define des_key_sched(k,ks)\
308 _ossl_old_des_key_sched((k),(ks))
309 #define des_string_to_key(s,k)\
310 _ossl_old_des_string_to_key((s),(k))
311 #define des_string_to_2keys(s,k1,k2)\
312 _ossl_old_des_string_to_2keys((s),(k1),(k2))
313 #define des_cfb64_encrypt(i,o,l,ks,iv,n,e)\
314 _ossl_old_des_cfb64_encrypt((i),(o),(l),(ks),(iv),(n),(e))
315 #define des_ofb64_encrypt(i,o,l,ks,iv,n)\
316 _ossl_old_des_ofb64_encrypt((i),(o),(l),(ks),(iv),(n))
317

319 #define des_ecb2_encrypt(i,o,k1,k2,e) \
320 des_ecb3_encrypt((i),(o),(k1),(k2),(k1),(e))

322 #define des_ede2_cbc_encrypt(i,o,l,k1,k2,iv,e) \
323 des_ede3_cbc_encrypt((i),(o),(l),(k1),(k2),(k1),(iv),(e))

325 #define des_ede2_cfb64_encrypt(i,o,l,k1,k2,iv,n,e) \

new/usr/src/lib/openssl/include/openssl/des_old.h 6

326 des_ede3_cfb64_encrypt((i),(o),(l),(k1),(k2),(k1),(iv),(n),(e))

328 #define des_ede2_ofb64_encrypt(i,o,l,k1,k2,iv,n) \
329 des_ede3_ofb64_encrypt((i),(o),(l),(k1),(k2),(k1),(iv),(n))

331 #define des_check_key DES_check_key
332 #define des_rw_mode DES_rw_mode
333 #endif

335 const char *_ossl_old_des_options(void);
336 void _ossl_old_des_ecb3_encrypt(_ossl_old_des_cblock *input,_ossl_old_des_cblock
337 _ossl_old_des_key_schedule ks1,_ossl_old_des_key_schedule ks2,
338 _ossl_old_des_key_schedule ks3, int enc);
339 DES_LONG _ossl_old_des_cbc_cksum(_ossl_old_des_cblock *input,_ossl_old_des_cbloc
340 long length,_ossl_old_des_key_schedule schedule,_ossl_old_des_cblock *iv
341 void _ossl_old_des_cbc_encrypt(_ossl_old_des_cblock *input,_ossl_old_des_cblock
342 _ossl_old_des_key_schedule schedule,_ossl_old_des_cblock *ivec,int enc);
343 void _ossl_old_des_ncbc_encrypt(_ossl_old_des_cblock *input,_ossl_old_des_cblock
344 _ossl_old_des_key_schedule schedule,_ossl_old_des_cblock *ivec,int enc);
345 void _ossl_old_des_xcbc_encrypt(_ossl_old_des_cblock *input,_ossl_old_des_cblock
346 _ossl_old_des_key_schedule schedule,_ossl_old_des_cblock *ivec,
347 _ossl_old_des_cblock *inw,_ossl_old_des_cblock *outw,int enc);
348 void _ossl_old_des_cfb_encrypt(unsigned char *in,unsigned char *out,int numbits,
349 long length,_ossl_old_des_key_schedule schedule,_ossl_old_des_cblock *iv
350 void _ossl_old_des_ecb_encrypt(_ossl_old_des_cblock *input,_ossl_old_des_cblock
351 _ossl_old_des_key_schedule ks,int enc);
352 void _ossl_old_des_encrypt(DES_LONG *data,_ossl_old_des_key_schedule ks, int enc
353 void _ossl_old_des_encrypt2(DES_LONG *data,_ossl_old_des_key_schedule ks, int en
354 void _ossl_old_des_encrypt3(DES_LONG *data, _ossl_old_des_key_schedule ks1,
355 _ossl_old_des_key_schedule ks2, _ossl_old_des_key_schedule ks3);
356 void _ossl_old_des_decrypt3(DES_LONG *data, _ossl_old_des_key_schedule ks1,
357 _ossl_old_des_key_schedule ks2, _ossl_old_des_key_schedule ks3);
358 void _ossl_old_des_ede3_cbc_encrypt(_ossl_old_des_cblock *input, _ossl_old_des_c
359 long length, _ossl_old_des_key_schedule ks1, _ossl_old_des_key_schedule
360 _ossl_old_des_key_schedule ks3, _ossl_old_des_cblock *ivec, int enc);
361 void _ossl_old_des_ede3_cfb64_encrypt(unsigned char *in, unsigned char *out,
362 long length, _ossl_old_des_key_schedule ks1, _ossl_old_des_key_schedule
363 _ossl_old_des_key_schedule ks3, _ossl_old_des_cblock *ivec, int *num, in
364 void _ossl_old_des_ede3_ofb64_encrypt(unsigned char *in, unsigned char *out,
365 long length, _ossl_old_des_key_schedule ks1, _ossl_old_des_key_schedule
366 _ossl_old_des_key_schedule ks3, _ossl_old_des_cblock *ivec, int *num);
367 #if 0
368 void _ossl_old_des_xwhite_in2out(_ossl_old_des_cblock (*des_key), _ossl_old_des_
369 _ossl_old_des_cblock (*out_white));
370 #endif

372 int _ossl_old_des_enc_read(int fd,char *buf,int len,_ossl_old_des_key_schedule s
373 _ossl_old_des_cblock *iv);
374 int _ossl_old_des_enc_write(int fd,char *buf,int len,_ossl_old_des_key_schedule
375 _ossl_old_des_cblock *iv);
376 char *_ossl_old_des_fcrypt(const char *buf,const char *salt, char *ret);
377 char *_ossl_old_des_crypt(const char *buf,const char *salt);
378 #if !defined(PERL5) && !defined(NeXT)
379 char *_ossl_old_crypt(const char *buf,const char *salt);
380 #endif
381 void _ossl_old_des_ofb_encrypt(unsigned char *in,unsigned char *out,
382 int numbits,long length,_ossl_old_des_key_schedule schedule,_ossl_old_de
383 void _ossl_old_des_pcbc_encrypt(_ossl_old_des_cblock *input,_ossl_old_des_cblock
384 _ossl_old_des_key_schedule schedule,_ossl_old_des_cblock *ivec,int enc);
385 DES_LONG _ossl_old_des_quad_cksum(_ossl_old_des_cblock *input,_ossl_old_des_cblo
386 long length,int out_count,_ossl_old_des_cblock *seed);
387 void _ossl_old_des_random_seed(_ossl_old_des_cblock key);
388 void _ossl_old_des_random_key(_ossl_old_des_cblock ret);
389 int _ossl_old_des_read_password(_ossl_old_des_cblock *key,const char *prompt,int
390 int _ossl_old_des_read_2passwords(_ossl_old_des_cblock *key1,_ossl_old_des_cbloc
391 const char *prompt,int verify);

new/usr/src/lib/openssl/include/openssl/des_old.h 7

392 void _ossl_old_des_set_odd_parity(_ossl_old_des_cblock *key);
393 int _ossl_old_des_is_weak_key(_ossl_old_des_cblock *key);
394 int _ossl_old_des_set_key(_ossl_old_des_cblock *key,_ossl_old_des_key_schedule s
395 int _ossl_old_des_key_sched(_ossl_old_des_cblock *key,_ossl_old_des_key_schedule
396 void _ossl_old_des_string_to_key(char *str,_ossl_old_des_cblock *key);
397 void _ossl_old_des_string_to_2keys(char *str,_ossl_old_des_cblock *key1,_ossl_ol
398 void _ossl_old_des_cfb64_encrypt(unsigned char *in, unsigned char *out, long len
399 _ossl_old_des_key_schedule schedule, _ossl_old_des_cblock *ivec, int *nu
400 void _ossl_old_des_ofb64_encrypt(unsigned char *in, unsigned char *out, long len
401 _ossl_old_des_key_schedule schedule, _ossl_old_des_cblock *ivec, int *nu

403 void _ossl_096_des_random_seed(des_cblock *key);

405 /* The following definitions provide compatibility with the MIT Kerberos
406 * library. The _ossl_old_des_key_schedule structure is not binary compatible. *

408 #define _KERBEROS_DES_H

410 #define KRBDES_ENCRYPT DES_ENCRYPT
411 #define KRBDES_DECRYPT DES_DECRYPT

413 #ifdef KERBEROS
414 # define ENCRYPT DES_ENCRYPT
415 # define DECRYPT DES_DECRYPT
416 #endif

418 #ifndef NCOMPAT
419 # define C_Block des_cblock
420 # define Key_schedule des_key_schedule
421 # define KEY_SZ DES_KEY_SZ
422 # define string_to_key des_string_to_key
423 # define read_pw_string des_read_pw_string
424 # define random_key des_random_key
425 # define pcbc_encrypt des_pcbc_encrypt
426 # define set_key des_set_key
427 # define key_sched des_key_sched
428 # define ecb_encrypt des_ecb_encrypt
429 # define cbc_encrypt des_cbc_encrypt
430 # define ncbc_encrypt des_ncbc_encrypt
431 # define xcbc_encrypt des_xcbc_encrypt
432 # define cbc_cksum des_cbc_cksum
433 # define quad_cksum des_quad_cksum
434 # define check_parity des_check_key_parity
435 #endif

437 #define des_fixup_key_parity DES_fixup_key_parity

439 #ifdef __cplusplus
440 }
441 #endif

443 /* for DES_read_pw_string et al */
444 #include <openssl/ui_compat.h>

446 #endif

new/usr/src/lib/openssl/include/openssl/dh.h 1

**
 9979 Fri May 30 18:31:18 2014
new/usr/src/lib/openssl/include/openssl/dh.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dh/dh.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_DH_H
60 #define HEADER_DH_H

new/usr/src/lib/openssl/include/openssl/dh.h 2

62 #include <openssl/e_os2.h>

64 #ifdef OPENSSL_NO_DH
65 #error DH is disabled.
66 #endif

68 #ifndef OPENSSL_NO_BIO
69 #include <openssl/bio.h>
70 #endif
71 #include <openssl/ossl_typ.h>
72 #ifndef OPENSSL_NO_DEPRECATED
73 #include <openssl/bn.h>
74 #endif
75
76 #ifndef OPENSSL_DH_MAX_MODULUS_BITS
77 # define OPENSSL_DH_MAX_MODULUS_BITS 10000
78 #endif

80 #define DH_FLAG_CACHE_MONT_P 0x01
81 #define DH_FLAG_NO_EXP_CONSTTIME 0x02 /* new with 0.9.7h; the built-in DH
82 * implementation now uses constant time
83 * modular exponentiation for secret expon
84 * by default. This flag causes the
85 * faster variable sliding window method t
86 * be used for all exponents.
87 */

89 /* If this flag is set the DH method is FIPS compliant and can be used
90 * in FIPS mode. This is set in the validated module method. If an
91 * application sets this flag in its own methods it is its reposibility
92 * to ensure the result is compliant.
93 */

95 #define DH_FLAG_FIPS_METHOD 0x0400

97 /* If this flag is set the operations normally disabled in FIPS mode are
98 * permitted it is then the applications responsibility to ensure that the
99 * usage is compliant.
100 */

102 #define DH_FLAG_NON_FIPS_ALLOW 0x0400

104 #ifdef __cplusplus
105 extern "C" {
106 #endif

108 /* Already defined in ossl_typ.h */
109 /* typedef struct dh_st DH; */
110 /* typedef struct dh_method DH_METHOD; */

112 struct dh_method
113 {
114 const char *name;
115 /* Methods here */
116 int (*generate_key)(DH *dh);
117 int (*compute_key)(unsigned char *key,const BIGNUM *pub_key,DH *dh);
118 int (*bn_mod_exp)(const DH *dh, BIGNUM *r, const BIGNUM *a,
119 const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
120 BN_MONT_CTX *m_ctx); /* Can be null */

122 int (*init)(DH *dh);
123 int (*finish)(DH *dh);
124 int flags;
125 char *app_data;
126 /* If this is non-NULL, it will be used to generate parameters */
127 int (*generate_params)(DH *dh, int prime_len, int generator, BN_GENCB *c

new/usr/src/lib/openssl/include/openssl/dh.h 3

128 };

130 struct dh_st
131 {
132 /* This first argument is used to pick up errors when
133 * a DH is passed instead of a EVP_PKEY */
134 int pad;
135 int version;
136 BIGNUM *p;
137 BIGNUM *g;
138 long length; /* optional */
139 BIGNUM *pub_key; /* g^x */
140 BIGNUM *priv_key; /* x */

142 int flags;
143 BN_MONT_CTX *method_mont_p;
144 /* Place holders if we want to do X9.42 DH */
145 BIGNUM *q;
146 BIGNUM *j;
147 unsigned char *seed;
148 int seedlen;
149 BIGNUM *counter;

151 int references;
152 CRYPTO_EX_DATA ex_data;
153 const DH_METHOD *meth;
154 ENGINE *engine;
155 };

157 #define DH_GENERATOR_2 2
158 /* #define DH_GENERATOR_3 3 */
159 #define DH_GENERATOR_5 5

161 /* DH_check error codes */
162 #define DH_CHECK_P_NOT_PRIME 0x01
163 #define DH_CHECK_P_NOT_SAFE_PRIME 0x02
164 #define DH_UNABLE_TO_CHECK_GENERATOR 0x04
165 #define DH_NOT_SUITABLE_GENERATOR 0x08

167 /* DH_check_pub_key error codes */
168 #define DH_CHECK_PUBKEY_TOO_SMALL 0x01
169 #define DH_CHECK_PUBKEY_TOO_LARGE 0x02

171 /* primes p where (p-1)/2 is prime too are called "safe"; we define
172 this for backward compatibility: */
173 #define DH_CHECK_P_NOT_STRONG_PRIME DH_CHECK_P_NOT_SAFE_PRIME

175 #define d2i_DHparams_fp(fp,x) (DH *)ASN1_d2i_fp((char *(*)())DH_new, \
176 (char *(*)())d2i_DHparams,(fp),(unsigned char **)(x))
177 #define i2d_DHparams_fp(fp,x) ASN1_i2d_fp(i2d_DHparams,(fp), \
178 (unsigned char *)(x))
179 #define d2i_DHparams_bio(bp,x) ASN1_d2i_bio_of(DH,DH_new,d2i_DHparams,bp,x)
180 #define i2d_DHparams_bio(bp,x) ASN1_i2d_bio_of_const(DH,i2d_DHparams,bp,x)

182 DH *DHparams_dup(DH *);

184 const DH_METHOD *DH_OpenSSL(void);

186 void DH_set_default_method(const DH_METHOD *meth);
187 const DH_METHOD *DH_get_default_method(void);
188 int DH_set_method(DH *dh, const DH_METHOD *meth);
189 DH *DH_new_method(ENGINE *engine);

191 DH * DH_new(void);
192 void DH_free(DH *dh);
193 int DH_up_ref(DH *dh);

new/usr/src/lib/openssl/include/openssl/dh.h 4

194 int DH_size(const DH *dh);
195 int DH_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
196 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);
197 int DH_set_ex_data(DH *d, int idx, void *arg);
198 void *DH_get_ex_data(DH *d, int idx);

200 /* Deprecated version */
201 #ifndef OPENSSL_NO_DEPRECATED
202 DH * DH_generate_parameters(int prime_len,int generator,
203 void (*callback)(int,int,void *),void *cb_arg);
204 #endif /* !defined(OPENSSL_NO_DEPRECATED) */

206 /* New version */
207 int DH_generate_parameters_ex(DH *dh, int prime_len,int generator, BN_GENCB

209 int DH_check(const DH *dh,int *codes);
210 int DH_check_pub_key(const DH *dh,const BIGNUM *pub_key, int *codes);
211 int DH_generate_key(DH *dh);
212 int DH_compute_key(unsigned char *key,const BIGNUM *pub_key,DH *dh);
213 DH * d2i_DHparams(DH **a,const unsigned char **pp, long length);
214 int i2d_DHparams(const DH *a,unsigned char **pp);
215 #ifndef OPENSSL_NO_FP_API
216 int DHparams_print_fp(FILE *fp, const DH *x);
217 #endif
218 #ifndef OPENSSL_NO_BIO
219 int DHparams_print(BIO *bp, const DH *x);
220 #else
221 int DHparams_print(char *bp, const DH *x);
222 #endif

224 #define EVP_PKEY_CTX_set_dh_paramgen_prime_len(ctx, len) \
225 EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_DH, EVP_PKEY_OP_PARAMGEN, \
226 EVP_PKEY_CTRL_DH_PARAMGEN_PRIME_LEN, len, NULL)

228 #define EVP_PKEY_CTX_set_dh_paramgen_generator(ctx, gen) \
229 EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_DH, EVP_PKEY_OP_PARAMGEN, \
230 EVP_PKEY_CTRL_DH_PARAMGEN_GENERATOR, gen, NULL)

232 #define EVP_PKEY_CTRL_DH_PARAMGEN_PRIME_LEN (EVP_PKEY_ALG_CTRL + 1)
233 #define EVP_PKEY_CTRL_DH_PARAMGEN_GENERATOR (EVP_PKEY_ALG_CTRL + 2)
234

236 /* BEGIN ERROR CODES */
237 /* The following lines are auto generated by the script mkerr.pl. Any changes
238 * made after this point may be overwritten when the script is next run.
239 */
240 void ERR_load_DH_strings(void);

242 /* Error codes for the DH functions. */

244 /* Function codes. */
245 #define DH_F_COMPUTE_KEY 102
246 #define DH_F_DHPARAMS_PRINT_FP 101
247 #define DH_F_DH_BUILTIN_GENPARAMS 106
248 #define DH_F_DH_COMPUTE_KEY 114
249 #define DH_F_DH_GENERATE_KEY 115
250 #define DH_F_DH_GENERATE_PARAMETERS_EX 116
251 #define DH_F_DH_NEW_METHOD 105
252 #define DH_F_DH_PARAM_DECODE 107
253 #define DH_F_DH_PRIV_DECODE 110
254 #define DH_F_DH_PRIV_ENCODE 111
255 #define DH_F_DH_PUB_DECODE 108
256 #define DH_F_DH_PUB_ENCODE 109
257 #define DH_F_DO_DH_PRINT 100
258 #define DH_F_GENERATE_KEY 103
259 #define DH_F_GENERATE_PARAMETERS 104

new/usr/src/lib/openssl/include/openssl/dh.h 5

260 #define DH_F_PKEY_DH_DERIVE 112
261 #define DH_F_PKEY_DH_KEYGEN 113

263 /* Reason codes. */
264 #define DH_R_BAD_GENERATOR 101
265 #define DH_R_BN_DECODE_ERROR 109
266 #define DH_R_BN_ERROR 106
267 #define DH_R_DECODE_ERROR 104
268 #define DH_R_INVALID_PUBKEY 102
269 #define DH_R_KEYS_NOT_SET 108
270 #define DH_R_KEY_SIZE_TOO_SMALL 110
271 #define DH_R_MODULUS_TOO_LARGE 103
272 #define DH_R_NON_FIPS_METHOD 111
273 #define DH_R_NO_PARAMETERS_SET 107
274 #define DH_R_NO_PRIVATE_VALUE 100
275 #define DH_R_PARAMETER_ENCODING_ERROR 105

277 #ifdef __cplusplus
278 }
279 #endif
280 #endif

new/usr/src/lib/openssl/include/openssl/dsa.h 1

**
 12057 Fri May 30 18:31:18 2014
new/usr/src/lib/openssl/include/openssl/dsa.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dsa/dsa.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /*
60 * The DSS routines are based on patches supplied by
61 * Steven Schoch <schoch@sheba.arc.nasa.gov>. He basically did the

new/usr/src/lib/openssl/include/openssl/dsa.h 2

62 * work and I have just tweaked them a little to fit into my
63 * stylistic vision for SSLeay :-) */

65 #ifndef HEADER_DSA_H
66 #define HEADER_DSA_H

68 #include <openssl/e_os2.h>

70 #ifdef OPENSSL_NO_DSA
71 #error DSA is disabled.
72 #endif

74 #ifndef OPENSSL_NO_BIO
75 #include <openssl/bio.h>
76 #endif
77 #include <openssl/crypto.h>
78 #include <openssl/ossl_typ.h>

80 #ifndef OPENSSL_NO_DEPRECATED
81 #include <openssl/bn.h>
82 #ifndef OPENSSL_NO_DH
83 # include <openssl/dh.h>
84 #endif
85 #endif

87 #ifndef OPENSSL_DSA_MAX_MODULUS_BITS
88 # define OPENSSL_DSA_MAX_MODULUS_BITS 10000
89 #endif

91 #define DSA_FLAG_CACHE_MONT_P 0x01
92 #define DSA_FLAG_NO_EXP_CONSTTIME 0x02 /* new with 0.9.7h; the built-in DS
93 * implementation now uses constant
94 * modular exponentiation for secre
95 * by default. This flag causes the
96 * faster variable sliding window m
97 * be used for all exponents.
98 */

100 /* If this flag is set the DSA method is FIPS compliant and can be used
101 * in FIPS mode. This is set in the validated module method. If an
102 * application sets this flag in its own methods it is its reposibility
103 * to ensure the result is compliant.
104 */

106 #define DSA_FLAG_FIPS_METHOD 0x0400

108 /* If this flag is set the operations normally disabled in FIPS mode are
109 * permitted it is then the applications responsibility to ensure that the
110 * usage is compliant.
111 */

113 #define DSA_FLAG_NON_FIPS_ALLOW 0x0400

115 #ifdef __cplusplus
116 extern "C" {
117 #endif

119 /* Already defined in ossl_typ.h */
120 /* typedef struct dsa_st DSA; */
121 /* typedef struct dsa_method DSA_METHOD; */

123 typedef struct DSA_SIG_st
124 {
125 BIGNUM *r;
126 BIGNUM *s;
127 } DSA_SIG;

new/usr/src/lib/openssl/include/openssl/dsa.h 3

129 struct dsa_method
130 {
131 const char *name;
132 DSA_SIG * (*dsa_do_sign)(const unsigned char *dgst, int dlen, DSA *dsa);
133 int (*dsa_sign_setup)(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp,
134 BIGNUM **rp);
135 int (*dsa_do_verify)(const unsigned char *dgst, int dgst_len,
136 DSA_SIG *sig, DSA *dsa);
137 int (*dsa_mod_exp)(DSA *dsa, BIGNUM *rr, BIGNUM *a1, BIGNUM *p1,
138 BIGNUM *a2, BIGNUM *p2, BIGNUM *m, BN_CTX *ctx,
139 BN_MONT_CTX *in_mont);
140 int (*bn_mod_exp)(DSA *dsa, BIGNUM *r, BIGNUM *a, const BIGNUM *p,
141 const BIGNUM *m, BN_CTX *ctx,
142 BN_MONT_CTX *m_ctx); /* Can be null */
143 int (*init)(DSA *dsa);
144 int (*finish)(DSA *dsa);
145 int flags;
146 char *app_data;
147 /* If this is non-NULL, it is used to generate DSA parameters */
148 int (*dsa_paramgen)(DSA *dsa, int bits,
149 const unsigned char *seed, int seed_len,
150 int *counter_ret, unsigned long *h_ret,
151 BN_GENCB *cb);
152 /* If this is non-NULL, it is used to generate DSA keys */
153 int (*dsa_keygen)(DSA *dsa);
154 };

156 struct dsa_st
157 {
158 /* This first variable is used to pick up errors where
159 * a DSA is passed instead of of a EVP_PKEY */
160 int pad;
161 long version;
162 int write_params;
163 BIGNUM *p;
164 BIGNUM *q; /* == 20 */
165 BIGNUM *g;

167 BIGNUM *pub_key; /* y public key */
168 BIGNUM *priv_key; /* x private key */

170 BIGNUM *kinv; /* Signing pre-calc */
171 BIGNUM *r; /* Signing pre-calc */

173 int flags;
174 /* Normally used to cache montgomery values */
175 BN_MONT_CTX *method_mont_p;
176 int references;
177 CRYPTO_EX_DATA ex_data;
178 const DSA_METHOD *meth;
179 /* functional reference if ’meth’ is ENGINE-provided */
180 ENGINE *engine;
181 };

183 #define d2i_DSAparams_fp(fp,x) (DSA *)ASN1_d2i_fp((char *(*)())DSA_new, \
184 (char *(*)())d2i_DSAparams,(fp),(unsigned char **)(x))
185 #define i2d_DSAparams_fp(fp,x) ASN1_i2d_fp(i2d_DSAparams,(fp), \
186 (unsigned char *)(x))
187 #define d2i_DSAparams_bio(bp,x) ASN1_d2i_bio_of(DSA,DSA_new,d2i_DSAparams,bp,x)
188 #define i2d_DSAparams_bio(bp,x) ASN1_i2d_bio_of_const(DSA,i2d_DSAparams,bp,x)

191 DSA *DSAparams_dup(DSA *x);
192 DSA_SIG * DSA_SIG_new(void);
193 void DSA_SIG_free(DSA_SIG *a);

new/usr/src/lib/openssl/include/openssl/dsa.h 4

194 int i2d_DSA_SIG(const DSA_SIG *a, unsigned char **pp);
195 DSA_SIG * d2i_DSA_SIG(DSA_SIG **v, const unsigned char **pp, long length);

197 DSA_SIG * DSA_do_sign(const unsigned char *dgst,int dlen,DSA *dsa);
198 int DSA_do_verify(const unsigned char *dgst,int dgst_len,
199 DSA_SIG *sig,DSA *dsa);

201 const DSA_METHOD *DSA_OpenSSL(void);

203 void DSA_set_default_method(const DSA_METHOD *);
204 const DSA_METHOD *DSA_get_default_method(void);
205 int DSA_set_method(DSA *dsa, const DSA_METHOD *);

207 DSA * DSA_new(void);
208 DSA * DSA_new_method(ENGINE *engine);
209 void DSA_free (DSA *r);
210 /* "up" the DSA object’s reference count */
211 int DSA_up_ref(DSA *r);
212 int DSA_size(const DSA *);
213 /* next 4 return -1 on error */
214 int DSA_sign_setup(DSA *dsa,BN_CTX *ctx_in,BIGNUM **kinvp,BIGNUM **rp);
215 int DSA_sign(int type,const unsigned char *dgst,int dlen,
216 unsigned char *sig, unsigned int *siglen, DSA *dsa);
217 int DSA_verify(int type,const unsigned char *dgst,int dgst_len,
218 const unsigned char *sigbuf, int siglen, DSA *dsa);
219 int DSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
220 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);
221 int DSA_set_ex_data(DSA *d, int idx, void *arg);
222 void *DSA_get_ex_data(DSA *d, int idx);

224 DSA * d2i_DSAPublicKey(DSA **a, const unsigned char **pp, long length);
225 DSA * d2i_DSAPrivateKey(DSA **a, const unsigned char **pp, long length);
226 DSA * d2i_DSAparams(DSA **a, const unsigned char **pp, long length);

228 /* Deprecated version */
229 #ifndef OPENSSL_NO_DEPRECATED
230 DSA * DSA_generate_parameters(int bits,
231 unsigned char *seed,int seed_len,
232 int *counter_ret, unsigned long *h_ret,void
233 (*callback)(int, int, void *),void *cb_arg);
234 #endif /* !defined(OPENSSL_NO_DEPRECATED) */

236 /* New version */
237 int DSA_generate_parameters_ex(DSA *dsa, int bits,
238 const unsigned char *seed,int seed_len,
239 int *counter_ret, unsigned long *h_ret, BN_GENCB *cb);

241 int DSA_generate_key(DSA *a);
242 int i2d_DSAPublicKey(const DSA *a, unsigned char **pp);
243 int i2d_DSAPrivateKey(const DSA *a, unsigned char **pp);
244 int i2d_DSAparams(const DSA *a,unsigned char **pp);

246 #ifndef OPENSSL_NO_BIO
247 int DSAparams_print(BIO *bp, const DSA *x);
248 int DSA_print(BIO *bp, const DSA *x, int off);
249 #endif
250 #ifndef OPENSSL_NO_FP_API
251 int DSAparams_print_fp(FILE *fp, const DSA *x);
252 int DSA_print_fp(FILE *bp, const DSA *x, int off);
253 #endif

255 #define DSS_prime_checks 50
256 /* Primality test according to FIPS PUB 186[-1], Appendix 2.1:
257 * 50 rounds of Rabin-Miller */
258 #define DSA_is_prime(n, callback, cb_arg) \
259 BN_is_prime(n, DSS_prime_checks, callback, NULL, cb_arg)

new/usr/src/lib/openssl/include/openssl/dsa.h 5

261 #ifndef OPENSSL_NO_DH
262 /* Convert DSA structure (key or just parameters) into DH structure
263 * (be careful to avoid small subgroup attacks when using this!) */
264 DH *DSA_dup_DH(const DSA *r);
265 #endif

267 #define EVP_PKEY_CTX_set_dsa_paramgen_bits(ctx, nbits) \
268 EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_DSA, EVP_PKEY_OP_PARAMGEN, \
269 EVP_PKEY_CTRL_DSA_PARAMGEN_BITS, nbits, NULL)

271 #define EVP_PKEY_CTRL_DSA_PARAMGEN_BITS (EVP_PKEY_ALG_CTRL + 1)
272 #define EVP_PKEY_CTRL_DSA_PARAMGEN_Q_BITS (EVP_PKEY_ALG_CTRL + 2)
273 #define EVP_PKEY_CTRL_DSA_PARAMGEN_MD (EVP_PKEY_ALG_CTRL + 3)

275 /* BEGIN ERROR CODES */
276 /* The following lines are auto generated by the script mkerr.pl. Any changes
277 * made after this point may be overwritten when the script is next run.
278 */
279 void ERR_load_DSA_strings(void);

281 /* Error codes for the DSA functions. */

283 /* Function codes. */
284 #define DSA_F_D2I_DSA_SIG 110
285 #define DSA_F_DO_DSA_PRINT 104
286 #define DSA_F_DSAPARAMS_PRINT 100
287 #define DSA_F_DSAPARAMS_PRINT_FP 101
288 #define DSA_F_DSA_DO_SIGN 112
289 #define DSA_F_DSA_DO_VERIFY 113
290 #define DSA_F_DSA_GENERATE_KEY 124
291 #define DSA_F_DSA_GENERATE_PARAMETERS_EX 123
292 #define DSA_F_DSA_NEW_METHOD 103
293 #define DSA_F_DSA_PARAM_DECODE 119
294 #define DSA_F_DSA_PRINT_FP 105
295 #define DSA_F_DSA_PRIV_DECODE 115
296 #define DSA_F_DSA_PRIV_ENCODE 116
297 #define DSA_F_DSA_PUB_DECODE 117
298 #define DSA_F_DSA_PUB_ENCODE 118
299 #define DSA_F_DSA_SIGN 106
300 #define DSA_F_DSA_SIGN_SETUP 107
301 #define DSA_F_DSA_SIG_NEW 109
302 #define DSA_F_DSA_SIG_PRINT 125
303 #define DSA_F_DSA_VERIFY 108
304 #define DSA_F_I2D_DSA_SIG 111
305 #define DSA_F_OLD_DSA_PRIV_DECODE 122
306 #define DSA_F_PKEY_DSA_CTRL 120
307 #define DSA_F_PKEY_DSA_KEYGEN 121
308 #define DSA_F_SIG_CB 114

310 /* Reason codes. */
311 #define DSA_R_BAD_Q_VALUE 102
312 #define DSA_R_BN_DECODE_ERROR 108
313 #define DSA_R_BN_ERROR 109
314 #define DSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE 100
315 #define DSA_R_DECODE_ERROR 104
316 #define DSA_R_INVALID_DIGEST_TYPE 106
317 #define DSA_R_MISSING_PARAMETERS 101
318 #define DSA_R_MODULUS_TOO_LARGE 103
319 #define DSA_R_NEED_NEW_SETUP_VALUES 110
320 #define DSA_R_NON_FIPS_DSA_METHOD 111
321 #define DSA_R_NO_PARAMETERS_SET 107
322 #define DSA_R_PARAMETER_ENCODING_ERROR 105

324 #ifdef __cplusplus
325 }

new/usr/src/lib/openssl/include/openssl/dsa.h 6

326 #endif
327 #endif

new/usr/src/lib/openssl/include/openssl/dso.h 1

**
 18095 Fri May 30 18:31:18 2014
new/usr/src/lib/openssl/include/openssl/dso.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* dso.h -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #ifndef HEADER_DSO_H
60 #define HEADER_DSO_H

new/usr/src/lib/openssl/include/openssl/dso.h 2

62 #include <openssl/crypto.h>

64 #ifdef __cplusplus
65 extern "C" {
66 #endif

68 /* These values are used as commands to DSO_ctrl() */
69 #define DSO_CTRL_GET_FLAGS 1
70 #define DSO_CTRL_SET_FLAGS 2
71 #define DSO_CTRL_OR_FLAGS 3

73 /* By default, DSO_load() will translate the provided filename into a form
74 * typical for the platform (more specifically the DSO_METHOD) using the
75 * dso_name_converter function of the method. Eg. win32 will transform "blah"
76 * into "blah.dll", and dlfcn will transform it into "libblah.so". The
77 * behaviour can be overriden by setting the name_converter callback in the DSO
78 * object (using DSO_set_name_converter()). This callback could even utilise
79 * the DSO_METHOD’s converter too if it only wants to override behaviour for
80 * one or two possible DSO methods. However, the following flag can be set in a
81 * DSO to prevent *any* native name-translation at all - eg. if the caller has
82 * prompted the user for a path to a driver library so the filename should be
83 * interpreted as-is. */
84 #define DSO_FLAG_NO_NAME_TRANSLATION 0x01
85 /* An extra flag to give if only the extension should be added as
86 * translation. This is obviously only of importance on Unix and
87 * other operating systems where the translation also may prefix
88 * the name with something, like ’lib’, and ignored everywhere else.
89 * This flag is also ignored if DSO_FLAG_NO_NAME_TRANSLATION is used
90 * at the same time. */
91 #define DSO_FLAG_NAME_TRANSLATION_EXT_ONLY 0x02

93 /* The following flag controls the translation of symbol names to upper
94 * case. This is currently only being implemented for OpenVMS.
95 */
96 #define DSO_FLAG_UPCASE_SYMBOL 0x10

98 /* This flag loads the library with public symbols.
99 * Meaning: The exported symbols of this library are public
100 * to all libraries loaded after this library.
101 * At the moment only implemented in unix.
102 */
103 #define DSO_FLAG_GLOBAL_SYMBOLS 0x20

106 typedef void (*DSO_FUNC_TYPE)(void);

108 typedef struct dso_st DSO;

110 /* The function prototype used for method functions (or caller-provided
111 * callbacks) that transform filenames. They are passed a DSO structure pointer
112 * (or NULL if they are to be used independantly of a DSO object) and a
113 * filename to transform. They should either return NULL (if there is an error
114 * condition) or a newly allocated string containing the transformed form that
115 * the caller will need to free with OPENSSL_free() when done. */
116 typedef char* (*DSO_NAME_CONVERTER_FUNC)(DSO *, const char *);
117 /* The function prototype used for method functions (or caller-provided
118 * callbacks) that merge two file specifications. They are passed a
119 * DSO structure pointer (or NULL if they are to be used independantly of
120 * a DSO object) and two file specifications to merge. They should
121 * either return NULL (if there is an error condition) or a newly allocated
122 * string containing the result of merging that the caller will need
123 * to free with OPENSSL_free() when done.
124 * Here, merging means that bits and pieces are taken from each of the
125 * file specifications and added together in whatever fashion that is
126 * sensible for the DSO method in question. The only rule that really
127 * applies is that if the two specification contain pieces of the same

new/usr/src/lib/openssl/include/openssl/dso.h 3

128 * type, the copy from the first string takes priority. One could see
129 * it as the first specification is the one given by the user and the
130 * second being a bunch of defaults to add on if they’re missing in the
131 * first. */
132 typedef char* (*DSO_MERGER_FUNC)(DSO *, const char *, const char *);

134 typedef struct dso_meth_st
135 {
136 const char *name;
137 /* Loads a shared library, NB: new DSO_METHODs must ensure that a
138 * successful load populates the loaded_filename field, and likewise a
139 * successful unload OPENSSL_frees and NULLs it out. */
140 int (*dso_load)(DSO *dso);
141 /* Unloads a shared library */
142 int (*dso_unload)(DSO *dso);
143 /* Binds a variable */
144 void *(*dso_bind_var)(DSO *dso, const char *symname);
145 /* Binds a function - assumes a return type of DSO_FUNC_TYPE.
146 * This should be cast to the real function prototype by the
147 * caller. Platforms that don’t have compatible representations
148 * for different prototypes (this is possible within ANSI C)
149 * are highly unlikely to have shared libraries at all, let
150 * alone a DSO_METHOD implemented for them. */
151 DSO_FUNC_TYPE (*dso_bind_func)(DSO *dso, const char *symname);

153 /* I don’t think this would actually be used in any circumstances. */
154 #if 0
155 /* Unbinds a variable */
156 int (*dso_unbind_var)(DSO *dso, char *symname, void *symptr);
157 /* Unbinds a function */
158 int (*dso_unbind_func)(DSO *dso, char *symname, DSO_FUNC_TYPE symptr);
159 #endif
160 /* The generic (yuck) "ctrl()" function. NB: Negative return
161 * values (rather than zero) indicate errors. */
162 long (*dso_ctrl)(DSO *dso, int cmd, long larg, void *parg);
163 /* The default DSO_METHOD-specific function for converting filenames to
164 * a canonical native form. */
165 DSO_NAME_CONVERTER_FUNC dso_name_converter;
166 /* The default DSO_METHOD-specific function for converting filenames to
167 * a canonical native form. */
168 DSO_MERGER_FUNC dso_merger;

170 /* [De]Initialisation handlers. */
171 int (*init)(DSO *dso);
172 int (*finish)(DSO *dso);

174 /* Return pathname of the module containing location */
175 int (*pathbyaddr)(void *addr,char *path,int sz);
176 /* Perform global symbol lookup, i.e. among *all* modules */
177 void *(*globallookup)(const char *symname);
178 } DSO_METHOD;

180 /**/
181 /* The low-level handle type used to refer to a loaded shared library */

183 struct dso_st
184 {
185 DSO_METHOD *meth;
186 /* Standard dlopen uses a (void *). Win32 uses a HANDLE. VMS
187 * doesn’t use anything but will need to cache the filename
188 * for use in the dso_bind handler. All in all, let each
189 * method control its own destiny. "Handles" and such go in
190 * a STACK. */
191 STACK_OF(void) *meth_data;
192 int references;
193 int flags;

new/usr/src/lib/openssl/include/openssl/dso.h 4

194 /* For use by applications etc ... use this for your bits’n’pieces,
195 * don’t touch meth_data! */
196 CRYPTO_EX_DATA ex_data;
197 /* If this callback function pointer is set to non-NULL, then it will
198 * be used in DSO_load() in place of meth->dso_name_converter. NB: This
199 * should normally set using DSO_set_name_converter(). */
200 DSO_NAME_CONVERTER_FUNC name_converter;
201 /* If this callback function pointer is set to non-NULL, then it will
202 * be used in DSO_load() in place of meth->dso_merger. NB: This
203 * should normally set using DSO_set_merger(). */
204 DSO_MERGER_FUNC merger;
205 /* This is populated with (a copy of) the platform-independant
206 * filename used for this DSO. */
207 char *filename;
208 /* This is populated with (a copy of) the translated filename by which
209 * the DSO was actually loaded. It is NULL iff the DSO is not currently
210 * loaded. NB: This is here because the filename translation process
211 * may involve a callback being invoked more than once not only to
212 * convert to a platform-specific form, but also to try different
213 * filenames in the process of trying to perform a load. As such, this
214 * variable can be used to indicate (a) whether this DSO structure
215 * corresponds to a loaded library or not, and (b) the filename with
216 * which it was actually loaded. */
217 char *loaded_filename;
218 };

221 DSO * DSO_new(void);
222 DSO * DSO_new_method(DSO_METHOD *method);
223 int DSO_free(DSO *dso);
224 int DSO_flags(DSO *dso);
225 int DSO_up_ref(DSO *dso);
226 long DSO_ctrl(DSO *dso, int cmd, long larg, void *parg);

228 /* This function sets the DSO’s name_converter callback. If it is non-NULL,
229 * then it will be used instead of the associated DSO_METHOD’s function. If
230 * oldcb is non-NULL then it is set to the function pointer value being
231 * replaced. Return value is non-zero for success. */
232 int DSO_set_name_converter(DSO *dso, DSO_NAME_CONVERTER_FUNC cb,
233 DSO_NAME_CONVERTER_FUNC *oldcb);
234 /* These functions can be used to get/set the platform-independant filename
235 * used for a DSO. NB: set will fail if the DSO is already loaded. */
236 const char *DSO_get_filename(DSO *dso);
237 int DSO_set_filename(DSO *dso, const char *filename);
238 /* This function will invoke the DSO’s name_converter callback to translate a
239 * filename, or if the callback isn’t set it will instead use the DSO_METHOD’s
240 * converter. If "filename" is NULL, the "filename" in the DSO itself will be
241 * used. If the DSO_FLAG_NO_NAME_TRANSLATION flag is set, then the filename is
242 * simply duplicated. NB: This function is usually called from within a
243 * DSO_METHOD during the processing of a DSO_load() call, and is exposed so that
244 * caller-created DSO_METHODs can do the same thing. A non-NULL return value
245 * will need to be OPENSSL_free()’d. */
246 char *DSO_convert_filename(DSO *dso, const char *filename);
247 /* This function will invoke the DSO’s merger callback to merge two file
248 * specifications, or if the callback isn’t set it will instead use the
249 * DSO_METHOD’s merger. A non-NULL return value will need to be
250 * OPENSSL_free()’d. */
251 char *DSO_merge(DSO *dso, const char *filespec1, const char *filespec2);
252 /* If the DSO is currently loaded, this returns the filename that it was loaded
253 * under, otherwise it returns NULL. So it is also useful as a test as to
254 * whether the DSO is currently loaded. NB: This will not necessarily return
255 * the same value as DSO_convert_filename(dso, dso->filename), because the
256 * DSO_METHOD’s load function may have tried a variety of filenames (with
257 * and/or without the aid of the converters) before settling on the one it
258 * actually loaded. */
259 const char *DSO_get_loaded_filename(DSO *dso);

new/usr/src/lib/openssl/include/openssl/dso.h 5

261 void DSO_set_default_method(DSO_METHOD *meth);
262 DSO_METHOD *DSO_get_default_method(void);
263 DSO_METHOD *DSO_get_method(DSO *dso);
264 DSO_METHOD *DSO_set_method(DSO *dso, DSO_METHOD *meth);

266 /* The all-singing all-dancing load function, you normally pass NULL
267 * for the first and third parameters. Use DSO_up and DSO_free for
268 * subsequent reference count handling. Any flags passed in will be set
269 * in the constructed DSO after its init() function but before the
270 * load operation. If ’dso’ is non-NULL, ’flags’ is ignored. */
271 DSO *DSO_load(DSO *dso, const char *filename, DSO_METHOD *meth, int flags);

273 /* This function binds to a variable inside a shared library. */
274 void *DSO_bind_var(DSO *dso, const char *symname);

276 /* This function binds to a function inside a shared library. */
277 DSO_FUNC_TYPE DSO_bind_func(DSO *dso, const char *symname);

279 /* This method is the default, but will beg, borrow, or steal whatever
280 * method should be the default on any particular platform (including
281 * DSO_METH_null() if necessary). */
282 DSO_METHOD *DSO_METHOD_openssl(void);

284 /* This method is defined for all platforms - if a platform has no
285 * DSO support then this will be the only method! */
286 DSO_METHOD *DSO_METHOD_null(void);

288 /* If DSO_DLFCN is defined, the standard dlfcn.h-style functions
289 * (dlopen, dlclose, dlsym, etc) will be used and incorporated into
290 * this method. If not, this method will return NULL. */
291 DSO_METHOD *DSO_METHOD_dlfcn(void);

293 /* If DSO_DL is defined, the standard dl.h-style functions (shl_load,
294 * shl_unload, shl_findsym, etc) will be used and incorporated into
295 * this method. If not, this method will return NULL. */
296 DSO_METHOD *DSO_METHOD_dl(void);

298 /* If WIN32 is defined, use DLLs. If not, return NULL. */
299 DSO_METHOD *DSO_METHOD_win32(void);

301 /* If VMS is defined, use shared images. If not, return NULL. */
302 DSO_METHOD *DSO_METHOD_vms(void);

304 /* This function writes null-terminated pathname of DSO module
305 * containing ’addr’ into ’sz’ large caller-provided ’path’ and
306 * returns the number of characters [including trailing zero]
307 * written to it. If ’sz’ is 0 or negative, ’path’ is ignored and
308 * required amount of charachers [including trailing zero] to
309 * accomodate pathname is returned. If ’addr’ is NULL, then
310 * pathname of cryptolib itself is returned. Negative or zero
311 * return value denotes error.
312 */
313 int DSO_pathbyaddr(void *addr,char *path,int sz);

315 /* This function should be used with caution! It looks up symbols in
316 * *all* loaded modules and if module gets unloaded by somebody else
317 * attempt to dereference the pointer is doomed to have fatal
318 * consequences. Primary usage for this function is to probe *core*
319 * system functionality, e.g. check if getnameinfo(3) is available
320 * at run-time without bothering about OS-specific details such as
321 * libc.so.versioning or where does it actually reside: in libc
322 * itself or libsocket. */
323 void *DSO_global_lookup(const char *name);

325 /* If BeOS is defined, use shared images. If not, return NULL. */

new/usr/src/lib/openssl/include/openssl/dso.h 6

326 DSO_METHOD *DSO_METHOD_beos(void);

328 /* BEGIN ERROR CODES */
329 /* The following lines are auto generated by the script mkerr.pl. Any changes
330 * made after this point may be overwritten when the script is next run.
331 */
332 void ERR_load_DSO_strings(void);

334 /* Error codes for the DSO functions. */

336 /* Function codes. */
337 #define DSO_F_BEOS_BIND_FUNC 144
338 #define DSO_F_BEOS_BIND_VAR 145
339 #define DSO_F_BEOS_LOAD 146
340 #define DSO_F_BEOS_NAME_CONVERTER 147
341 #define DSO_F_BEOS_UNLOAD 148
342 #define DSO_F_DLFCN_BIND_FUNC 100
343 #define DSO_F_DLFCN_BIND_VAR 101
344 #define DSO_F_DLFCN_LOAD 102
345 #define DSO_F_DLFCN_MERGER 130
346 #define DSO_F_DLFCN_NAME_CONVERTER 123
347 #define DSO_F_DLFCN_UNLOAD 103
348 #define DSO_F_DL_BIND_FUNC 104
349 #define DSO_F_DL_BIND_VAR 105
350 #define DSO_F_DL_LOAD 106
351 #define DSO_F_DL_MERGER 131
352 #define DSO_F_DL_NAME_CONVERTER 124
353 #define DSO_F_DL_UNLOAD 107
354 #define DSO_F_DSO_BIND_FUNC 108
355 #define DSO_F_DSO_BIND_VAR 109
356 #define DSO_F_DSO_CONVERT_FILENAME 126
357 #define DSO_F_DSO_CTRL 110
358 #define DSO_F_DSO_FREE 111
359 #define DSO_F_DSO_GET_FILENAME 127
360 #define DSO_F_DSO_GET_LOADED_FILENAME 128
361 #define DSO_F_DSO_GLOBAL_LOOKUP 139
362 #define DSO_F_DSO_LOAD 112
363 #define DSO_F_DSO_MERGE 132
364 #define DSO_F_DSO_NEW_METHOD 113
365 #define DSO_F_DSO_PATHBYADDR 140
366 #define DSO_F_DSO_SET_FILENAME 129
367 #define DSO_F_DSO_SET_NAME_CONVERTER 122
368 #define DSO_F_DSO_UP_REF 114
369 #define DSO_F_GLOBAL_LOOKUP_FUNC 138
370 #define DSO_F_PATHBYADDR 137
371 #define DSO_F_VMS_BIND_SYM 115
372 #define DSO_F_VMS_LOAD 116
373 #define DSO_F_VMS_MERGER 133
374 #define DSO_F_VMS_UNLOAD 117
375 #define DSO_F_WIN32_BIND_FUNC 118
376 #define DSO_F_WIN32_BIND_VAR 119
377 #define DSO_F_WIN32_GLOBALLOOKUP 142
378 #define DSO_F_WIN32_GLOBALLOOKUP_FUNC 143
379 #define DSO_F_WIN32_JOINER 135
380 #define DSO_F_WIN32_LOAD 120
381 #define DSO_F_WIN32_MERGER 134
382 #define DSO_F_WIN32_NAME_CONVERTER 125
383 #define DSO_F_WIN32_PATHBYADDR 141
384 #define DSO_F_WIN32_SPLITTER 136
385 #define DSO_F_WIN32_UNLOAD 121

387 /* Reason codes. */
388 #define DSO_R_CTRL_FAILED 100
389 #define DSO_R_DSO_ALREADY_LOADED 110
390 #define DSO_R_EMPTY_FILE_STRUCTURE 113
391 #define DSO_R_FAILURE 114

new/usr/src/lib/openssl/include/openssl/dso.h 7

392 #define DSO_R_FILENAME_TOO_BIG 101
393 #define DSO_R_FINISH_FAILED 102
394 #define DSO_R_INCORRECT_FILE_SYNTAX 115
395 #define DSO_R_LOAD_FAILED 103
396 #define DSO_R_NAME_TRANSLATION_FAILED 109
397 #define DSO_R_NO_FILENAME 111
398 #define DSO_R_NO_FILE_SPECIFICATION 116
399 #define DSO_R_NULL_HANDLE 104
400 #define DSO_R_SET_FILENAME_FAILED 112
401 #define DSO_R_STACK_ERROR 105
402 #define DSO_R_SYM_FAILURE 106
403 #define DSO_R_UNLOAD_FAILED 107
404 #define DSO_R_UNSUPPORTED 108

406 #ifdef __cplusplus
407 }
408 #endif
409 #endif

new/usr/src/lib/openssl/include/openssl/dtls1.h 1

**
 8026 Fri May 30 18:31:18 2014
new/usr/src/lib/openssl/include/openssl/dtls1.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/dtls1.h */
2 /*
3 * DTLS implementation written by Nagendra Modadugu
4 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
5 */
6 /* ==
7 * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * openssl-core@OpenSSL.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */

60 #ifndef HEADER_DTLS1_H
61 #define HEADER_DTLS1_H

new/usr/src/lib/openssl/include/openssl/dtls1.h 2

63 #include <openssl/buffer.h>
64 #include <openssl/pqueue.h>
65 #ifdef OPENSSL_SYS_VMS
66 #include <resource.h>
67 #include <sys/timeb.h>
68 #endif
69 #ifdef OPENSSL_SYS_WIN32
70 /* Needed for struct timeval */
71 #include <winsock.h>
72 #elif defined(OPENSSL_SYS_NETWARE) && !defined(_WINSOCK2API_)
73 #include <sys/timeval.h>
74 #else
75 #if defined(OPENSSL_SYS_VXWORKS)
76 #include <sys/times.h>
77 #else
78 #include <sys/time.h>
79 #endif
80 #endif

82 #ifdef __cplusplus
83 extern "C" {
84 #endif

86 #define DTLS1_VERSION 0xFEFF
87 #define DTLS1_BAD_VER 0x0100

89 #if 0
90 /* this alert description is not specified anywhere... */
91 #define DTLS1_AD_MISSING_HANDSHAKE_MESSAGE 110
92 #endif

94 /* lengths of messages */
95 #define DTLS1_COOKIE_LENGTH 256

97 #define DTLS1_RT_HEADER_LENGTH 13

99 #define DTLS1_HM_HEADER_LENGTH 12

101 #define DTLS1_HM_BAD_FRAGMENT -2
102 #define DTLS1_HM_FRAGMENT_RETRY -3

104 #define DTLS1_CCS_HEADER_LENGTH 1

106 #ifdef DTLS1_AD_MISSING_HANDSHAKE_MESSAGE
107 #define DTLS1_AL_HEADER_LENGTH 7
108 #else
109 #define DTLS1_AL_HEADER_LENGTH 2
110 #endif

112 #ifndef OPENSSL_NO_SSL_INTERN

114 #ifndef OPENSSL_NO_SCTP
115 #define DTLS1_SCTP_AUTH_LABEL "EXPORTER_DTLS_OVER_SCTP"
116 #endif

118 typedef struct dtls1_bitmap_st
119 {
120 unsigned long map; /* track 32 packets on 32-bit systems
121 and 64 - on 64-bit systems */
122 unsigned char max_seq_num[8]; /* max record number seen so far,
123 64-bit value in big-endian
124 encoding */
125 } DTLS1_BITMAP;

127 struct dtls1_retransmit_state

new/usr/src/lib/openssl/include/openssl/dtls1.h 3

128 {
129 EVP_CIPHER_CTX *enc_write_ctx; /* cryptographic state */
130 EVP_MD_CTX *write_hash; /* used for mac generation */
131 #ifndef OPENSSL_NO_COMP
132 COMP_CTX *compress; /* compression */
133 #else
134 char *compress;
135 #endif
136 SSL_SESSION *session;
137 unsigned short epoch;
138 };

140 struct hm_header_st
141 {
142 unsigned char type;
143 unsigned long msg_len;
144 unsigned short seq;
145 unsigned long frag_off;
146 unsigned long frag_len;
147 unsigned int is_ccs;
148 struct dtls1_retransmit_state saved_retransmit_state;
149 };

151 struct ccs_header_st
152 {
153 unsigned char type;
154 unsigned short seq;
155 };

157 struct dtls1_timeout_st
158 {
159 /* Number of read timeouts so far */
160 unsigned int read_timeouts;
161
162 /* Number of write timeouts so far */
163 unsigned int write_timeouts;
164
165 /* Number of alerts received so far */
166 unsigned int num_alerts;
167 };

169 typedef struct record_pqueue_st
170 {
171 unsigned short epoch;
172 pqueue q;
173 } record_pqueue;

175 typedef struct hm_fragment_st
176 {
177 struct hm_header_st msg_header;
178 unsigned char *fragment;
179 unsigned char *reassembly;
180 } hm_fragment;

182 typedef struct dtls1_state_st
183 {
184 unsigned int send_cookie;
185 unsigned char cookie[DTLS1_COOKIE_LENGTH];
186 unsigned char rcvd_cookie[DTLS1_COOKIE_LENGTH];
187 unsigned int cookie_len;

189 /*
190 * The current data and handshake epoch. This is initially
191 * undefined, and starts at zero once the initial handshake is
192 * completed
193 */

new/usr/src/lib/openssl/include/openssl/dtls1.h 4

194 unsigned short r_epoch;
195 unsigned short w_epoch;

197 /* records being received in the current epoch */
198 DTLS1_BITMAP bitmap;

200 /* renegotiation starts a new set of sequence numbers */
201 DTLS1_BITMAP next_bitmap;

203 /* handshake message numbers */
204 unsigned short handshake_write_seq;
205 unsigned short next_handshake_write_seq;

207 unsigned short handshake_read_seq;

209 /* save last sequence number for retransmissions */
210 unsigned char last_write_sequence[8];

212 /* Received handshake records (processed and unprocessed) */
213 record_pqueue unprocessed_rcds;
214 record_pqueue processed_rcds;

216 /* Buffered handshake messages */
217 pqueue buffered_messages;

219 /* Buffered (sent) handshake records */
220 pqueue sent_messages;

222 /* Buffered application records.
223 * Only for records between CCS and Finished
224 * to prevent either protocol violation or
225 * unnecessary message loss.
226 */
227 record_pqueue buffered_app_data;

229 /* Is set when listening for new connections with dtls1_listen() */
230 unsigned int listen;

232 unsigned int mtu; /* max DTLS packet size */

234 struct hm_header_st w_msg_hdr;
235 struct hm_header_st r_msg_hdr;

237 struct dtls1_timeout_st timeout;

239 /* Indicates when the last handshake msg or heartbeat sent will timeout
240 struct timeval next_timeout;

242 /* Timeout duration */
243 unsigned short timeout_duration;

245 /* storage for Alert/Handshake protocol data received but not
246 * yet processed by ssl3_read_bytes: */
247 unsigned char alert_fragment[DTLS1_AL_HEADER_LENGTH];
248 unsigned int alert_fragment_len;
249 unsigned char handshake_fragment[DTLS1_HM_HEADER_LENGTH];
250 unsigned int handshake_fragment_len;

252 unsigned int retransmitting;
253 unsigned int change_cipher_spec_ok;

255 #ifndef OPENSSL_NO_SCTP
256 /* used when SSL_ST_XX_FLUSH is entered */
257 int next_state;

259 int shutdown_received;

new/usr/src/lib/openssl/include/openssl/dtls1.h 5

260 #endif

262 } DTLS1_STATE;

264 typedef struct dtls1_record_data_st
265 {
266 unsigned char *packet;
267 unsigned int packet_length;
268 SSL3_BUFFER rbuf;
269 SSL3_RECORD rrec;
270 #ifndef OPENSSL_NO_SCTP
271 struct bio_dgram_sctp_rcvinfo recordinfo;
272 #endif
273 } DTLS1_RECORD_DATA;

275 #endif

277 /* Timeout multipliers (timeout slice is defined in apps/timeouts.h */
278 #define DTLS1_TMO_READ_COUNT 2
279 #define DTLS1_TMO_WRITE_COUNT 2

281 #define DTLS1_TMO_ALERT_COUNT 12

283 #ifdef __cplusplus
284 }
285 #endif
286 #endif

new/usr/src/lib/openssl/include/openssl/e_os2.h 1

**
 10444 Fri May 30 18:31:19 2014
new/usr/src/lib/openssl/include/openssl/e_os2.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* e_os2.h */
2 /* ==
3 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 #include <openssl/opensslconf.h>

58 #ifndef HEADER_E_OS2_H
59 #define HEADER_E_OS2_H

61 #ifdef __cplusplus

new/usr/src/lib/openssl/include/openssl/e_os2.h 2

62 extern "C" {
63 #endif

65 /**
66 * Detect operating systems. This probably needs completing.
67 * The result is that at least one OPENSSL_SYS_os macro should be defined.
68 * However, if none is defined, Unix is assumed.
69 **/

71 #define OPENSSL_SYS_UNIX

73 /* ----------------------- Macintosh, before MacOS X ----------------------- */
74 #if defined(__MWERKS__) && defined(macintosh) || defined(OPENSSL_SYSNAME_MAC)
75 # undef OPENSSL_SYS_UNIX
76 # define OPENSSL_SYS_MACINTOSH_CLASSIC
77 #endif

79 /* ----------------------- NetWare --- */
80 #if defined(NETWARE) || defined(OPENSSL_SYSNAME_NETWARE)
81 # undef OPENSSL_SYS_UNIX
82 # define OPENSSL_SYS_NETWARE
83 #endif

85 /* ---------------------- Microsoft operating systems ---------------------- */

87 /* Note that MSDOS actually denotes 32-bit environments running on top of
88 MS-DOS, such as DJGPP one. */
89 #if defined(OPENSSL_SYSNAME_MSDOS)
90 # undef OPENSSL_SYS_UNIX
91 # define OPENSSL_SYS_MSDOS
92 #endif

94 /* For 32 bit environment, there seems to be the CygWin environment and then
95 all the others that try to do the same thing Microsoft does... */
96 #if defined(OPENSSL_SYSNAME_UWIN)
97 # undef OPENSSL_SYS_UNIX
98 # define OPENSSL_SYS_WIN32_UWIN
99 #else
100 # if defined(__CYGWIN32__) || defined(OPENSSL_SYSNAME_CYGWIN32)
101 # undef OPENSSL_SYS_UNIX
102 # define OPENSSL_SYS_WIN32_CYGWIN
103 # else
104 # if defined(_WIN32) || defined(OPENSSL_SYSNAME_WIN32)
105 # undef OPENSSL_SYS_UNIX
106 # define OPENSSL_SYS_WIN32
107 # endif
108 # if defined(OPENSSL_SYSNAME_WINNT)
109 # undef OPENSSL_SYS_UNIX
110 # define OPENSSL_SYS_WINNT
111 # endif
112 # if defined(OPENSSL_SYSNAME_WINCE)
113 # undef OPENSSL_SYS_UNIX
114 # define OPENSSL_SYS_WINCE
115 # endif
116 # endif
117 #endif

119 /* Anything that tries to look like Microsoft is "Windows" */
120 #if defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_WINNT) || defined(OPENSSL_
121 # undef OPENSSL_SYS_UNIX
122 # define OPENSSL_SYS_WINDOWS
123 # ifndef OPENSSL_SYS_MSDOS
124 # define OPENSSL_SYS_MSDOS
125 # endif
126 #endif

new/usr/src/lib/openssl/include/openssl/e_os2.h 3

128 /* DLL settings. This part is a bit tough, because it’s up to the application
129 implementor how he or she will link the application, so it requires some
130 macro to be used. */
131 #ifdef OPENSSL_SYS_WINDOWS
132 # ifndef OPENSSL_OPT_WINDLL
133 # if defined(_WINDLL) /* This is used when building OpenSSL to indicate that
134 DLL linkage should be used */
135 # define OPENSSL_OPT_WINDLL
136 # endif
137 # endif
138 #endif

140 /* -------------------------------- OpenVMS -------------------------------- */
141 #if defined(__VMS) || defined(VMS) || defined(OPENSSL_SYSNAME_VMS)
142 # undef OPENSSL_SYS_UNIX
143 # define OPENSSL_SYS_VMS
144 # if defined(__DECC)
145 # define OPENSSL_SYS_VMS_DECC
146 # elif defined(__DECCXX)
147 # define OPENSSL_SYS_VMS_DECC
148 # define OPENSSL_SYS_VMS_DECCXX
149 # else
150 # define OPENSSL_SYS_VMS_NODECC
151 # endif
152 #endif

154 /* --------------------------------- OS/2 ---------------------------------- */
155 #if defined(__EMX__) || defined(__OS2__)
156 # undef OPENSSL_SYS_UNIX
157 # define OPENSSL_SYS_OS2
158 #endif

160 /* --------------------------------- Unix ---------------------------------- */
161 #ifdef OPENSSL_SYS_UNIX
162 # if defined(linux) || defined(__linux__) || defined(OPENSSL_SYSNAME_LINUX)
163 # define OPENSSL_SYS_LINUX
164 # endif
165 # ifdef OPENSSL_SYSNAME_MPE
166 # define OPENSSL_SYS_MPE
167 # endif
168 # ifdef OPENSSL_SYSNAME_SNI
169 # define OPENSSL_SYS_SNI
170 # endif
171 # ifdef OPENSSL_SYSNAME_ULTRASPARC
172 # define OPENSSL_SYS_ULTRASPARC
173 # endif
174 # ifdef OPENSSL_SYSNAME_NEWS4
175 # define OPENSSL_SYS_NEWS4
176 # endif
177 # ifdef OPENSSL_SYSNAME_MACOSX
178 # define OPENSSL_SYS_MACOSX
179 # endif
180 # ifdef OPENSSL_SYSNAME_MACOSX_RHAPSODY
181 # define OPENSSL_SYS_MACOSX_RHAPSODY
182 # define OPENSSL_SYS_MACOSX
183 # endif
184 # ifdef OPENSSL_SYSNAME_SUNOS
185 # define OPENSSL_SYS_SUNOS
186 #endif
187 # if defined(_CRAY) || defined(OPENSSL_SYSNAME_CRAY)
188 # define OPENSSL_SYS_CRAY
189 # endif
190 # if defined(_AIX) || defined(OPENSSL_SYSNAME_AIX)
191 # define OPENSSL_SYS_AIX
192 # endif
193 #endif

new/usr/src/lib/openssl/include/openssl/e_os2.h 4

195 /* --------------------------------- VOS ----------------------------------- */
196 #if defined(__VOS__) || defined(OPENSSL_SYSNAME_VOS)
197 # define OPENSSL_SYS_VOS
198 #ifdef __HPPA__
199 # define OPENSSL_SYS_VOS_HPPA
200 #endif
201 #ifdef __IA32__
202 # define OPENSSL_SYS_VOS_IA32
203 #endif
204 #endif

206 /* ------------------------------- VxWorks --------------------------------- */
207 #ifdef OPENSSL_SYSNAME_VXWORKS
208 # define OPENSSL_SYS_VXWORKS
209 #endif

211 /* --------------------------------- BeOS ---------------------------------- */
212 #if defined(__BEOS__)
213 # define OPENSSL_SYS_BEOS
214 # include <sys/socket.h>
215 # if defined(BONE_VERSION)
216 # define OPENSSL_SYS_BEOS_BONE
217 # else
218 # define OPENSSL_SYS_BEOS_R5
219 # endif
220 #endif

222 /**
223 * That’s it for OS-specific stuff
224 ***/

227 /* Specials for I/O an exit */
228 #ifdef OPENSSL_SYS_MSDOS
229 # define OPENSSL_UNISTD_IO <io.h>
230 # define OPENSSL_DECLARE_EXIT extern void exit(int);
231 #else
232 # define OPENSSL_UNISTD_IO OPENSSL_UNISTD
233 # define OPENSSL_DECLARE_EXIT /* declared in unistd.h */
234 #endif

236 /* Definitions of OPENSSL_GLOBAL and OPENSSL_EXTERN, to define and declare
237 certain global symbols that, with some compilers under VMS, have to be
238 defined and declared explicitely with globaldef and globalref.
239 Definitions of OPENSSL_EXPORT and OPENSSL_IMPORT, to define and declare
240 DLL exports and imports for compilers under Win32. These are a little
241 more complicated to use. Basically, for any library that exports some
242 global variables, the following code must be present in the header file
243 that declares them, before OPENSSL_EXTERN is used:

245 #ifdef SOME_BUILD_FLAG_MACRO
246 # undef OPENSSL_EXTERN
247 # define OPENSSL_EXTERN OPENSSL_EXPORT
248 #endif

250 The default is to have OPENSSL_EXPORT, OPENSSL_IMPORT and OPENSSL_GLOBAL
251 have some generally sensible values, and for OPENSSL_EXTERN to have the
252 value OPENSSL_IMPORT.
253 */

255 #if defined(OPENSSL_SYS_VMS_NODECC)
256 # define OPENSSL_EXPORT globalref
257 # define OPENSSL_IMPORT globalref
258 # define OPENSSL_GLOBAL globaldef
259 #elif defined(OPENSSL_SYS_WINDOWS) && defined(OPENSSL_OPT_WINDLL)

new/usr/src/lib/openssl/include/openssl/e_os2.h 5

260 # define OPENSSL_EXPORT extern __declspec(dllexport)
261 # define OPENSSL_IMPORT extern __declspec(dllimport)
262 # define OPENSSL_GLOBAL
263 #else
264 # define OPENSSL_EXPORT extern
265 # define OPENSSL_IMPORT extern
266 # define OPENSSL_GLOBAL
267 #endif
268 #define OPENSSL_EXTERN OPENSSL_IMPORT

270 /* Macros to allow global variables to be reached through function calls when
271 required (if a shared library version requires it, for example.
272 The way it’s done allows definitions like this:

274 // in foobar.c
275 OPENSSL_IMPLEMENT_GLOBAL(int,foobar,0)
276 // in foobar.h
277 OPENSSL_DECLARE_GLOBAL(int,foobar);
278 #define foobar OPENSSL_GLOBAL_REF(foobar)
279 */
280 #ifdef OPENSSL_EXPORT_VAR_AS_FUNCTION
281 # define OPENSSL_IMPLEMENT_GLOBAL(type,name,value) \
282 type *_shadow_##name(void) \
283 { static type _hide_##name=value; return &_hide_##name; }
284 # define OPENSSL_DECLARE_GLOBAL(type,name) type *_shadow_##name(void)
285 # define OPENSSL_GLOBAL_REF(name) (*(_shadow_##name()))
286 #else
287 # define OPENSSL_IMPLEMENT_GLOBAL(type,name,value) OPENSSL_GLOBAL type _shadow_#
288 # define OPENSSL_DECLARE_GLOBAL(type,name) OPENSSL_EXPORT type _shadow_##name
289 # define OPENSSL_GLOBAL_REF(name) _shadow_##name
290 #endif

292 #if defined(OPENSSL_SYS_MACINTOSH_CLASSIC) && macintosh==1 && !defined(MAC_OS_GU
293 # define ossl_ssize_t long
294 #endif

296 #ifdef OPENSSL_SYS_MSDOS
297 # define ossl_ssize_t long
298 #endif

300 #if defined(NeXT) || defined(OPENSSL_SYS_NEWS4) || defined(OPENSSL_SYS_SUNOS)
301 # define ssize_t int
302 #endif

304 #if defined(__ultrix) && !defined(ssize_t)
305 # define ossl_ssize_t int
306 #endif

308 #ifndef ossl_ssize_t
309 # define ossl_ssize_t ssize_t
310 #endif

312 #ifdef __cplusplus
313 }
314 #endif
315 #endif

new/usr/src/lib/openssl/include/openssl/ebcdic.h 1

**
 540 Fri May 30 18:31:19 2014
new/usr/src/lib/openssl/include/openssl/ebcdic.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ebcdic.h */

3 #ifndef HEADER_EBCDIC_H
4 #define HEADER_EBCDIC_H

6 #include <sys/types.h>

8 /* Avoid name clashes with other applications */
9 #define os_toascii _openssl_os_toascii
10 #define os_toebcdic _openssl_os_toebcdic
11 #define ebcdic2ascii _openssl_ebcdic2ascii
12 #define ascii2ebcdic _openssl_ascii2ebcdic

14 extern const unsigned char os_toascii[256];
15 extern const unsigned char os_toebcdic[256];
16 void *ebcdic2ascii(void *dest, const void *srce, size_t count);
17 void *ascii2ebcdic(void *dest, const void *srce, size_t count);

19 #endif

new/usr/src/lib/openssl/include/openssl/engine.h 1

**
 40614 Fri May 30 18:31:19 2014
new/usr/src/lib/openssl/include/openssl/engine.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* openssl/engine.h */
2 /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 1999-2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 /* ==
59 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60 * ECDH support in OpenSSL originally developed by
61 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.

new/usr/src/lib/openssl/include/openssl/engine.h 2

62 */

64 #ifndef HEADER_ENGINE_H
65 #define HEADER_ENGINE_H

67 #include <openssl/opensslconf.h>

69 #ifdef OPENSSL_NO_ENGINE
70 #error ENGINE is disabled.
71 #endif

73 #ifndef OPENSSL_NO_DEPRECATED
74 #include <openssl/bn.h>
75 #ifndef OPENSSL_NO_RSA
76 #include <openssl/rsa.h>
77 #endif
78 #ifndef OPENSSL_NO_DSA
79 #include <openssl/dsa.h>
80 #endif
81 #ifndef OPENSSL_NO_DH
82 #include <openssl/dh.h>
83 #endif
84 #ifndef OPENSSL_NO_ECDH
85 #include <openssl/ecdh.h>
86 #endif
87 #ifndef OPENSSL_NO_ECDSA
88 #include <openssl/ecdsa.h>
89 #endif
90 #include <openssl/rand.h>
91 #include <openssl/ui.h>
92 #include <openssl/err.h>
93 #endif

95 #include <openssl/ossl_typ.h>
96 #include <openssl/symhacks.h>

98 #include <openssl/x509.h>

100 #ifdef __cplusplus
101 extern "C" {
102 #endif

104 /* These flags are used to control combinations of algorithm (methods)
105 * by bitwise "OR"ing. */
106 #define ENGINE_METHOD_RSA (unsigned int)0x0001
107 #define ENGINE_METHOD_DSA (unsigned int)0x0002
108 #define ENGINE_METHOD_DH (unsigned int)0x0004
109 #define ENGINE_METHOD_RAND (unsigned int)0x0008
110 #define ENGINE_METHOD_ECDH (unsigned int)0x0010
111 #define ENGINE_METHOD_ECDSA (unsigned int)0x0020
112 #define ENGINE_METHOD_CIPHERS (unsigned int)0x0040
113 #define ENGINE_METHOD_DIGESTS (unsigned int)0x0080
114 #define ENGINE_METHOD_STORE (unsigned int)0x0100
115 #define ENGINE_METHOD_PKEY_METHS (unsigned int)0x0200
116 #define ENGINE_METHOD_PKEY_ASN1_METHS (unsigned int)0x0400
117 /* Obvious all-or-nothing cases. */
118 #define ENGINE_METHOD_ALL (unsigned int)0xFFFF
119 #define ENGINE_METHOD_NONE (unsigned int)0x0000

121 /* This(ese) flag(s) controls behaviour of the ENGINE_TABLE mechanism used
122 * internally to control registration of ENGINE implementations, and can be set
123 * by ENGINE_set_table_flags(). The "NOINIT" flag prevents attempts to
124 * initialise registered ENGINEs if they are not already initialised. */
125 #define ENGINE_TABLE_FLAG_NOINIT (unsigned int)0x0001

127 /* ENGINE flags that can be set by ENGINE_set_flags(). */

new/usr/src/lib/openssl/include/openssl/engine.h 3

128 /* #define ENGINE_FLAGS_MALLOCED 0x0001 */ /* Not used */

130 /* This flag is for ENGINEs that wish to handle the various ’CMD’-related
131 * control commands on their own. Without this flag, ENGINE_ctrl() handles these
132 * control commands on behalf of the ENGINE using their "cmd_defns" data. */
133 #define ENGINE_FLAGS_MANUAL_CMD_CTRL (int)0x0002

135 /* This flag is for ENGINEs who return new duplicate structures when found via
136 * "ENGINE_by_id()". When an ENGINE must store state (eg. if ENGINE_ctrl()
137 * commands are called in sequence as part of some stateful process like
138 * key-generation setup and execution), it can set this flag - then each attempt
139 * to obtain the ENGINE will result in it being copied into a new structure.
140 * Normally, ENGINEs don’t declare this flag so ENGINE_by_id() just increments
141 * the existing ENGINE’s structural reference count. */
142 #define ENGINE_FLAGS_BY_ID_COPY (int)0x0004

144 /* This flag if for an ENGINE that does not want its methods registered as
145 * part of ENGINE_register_all_complete() for example if the methods are
146 * not usable as default methods.
147 */

149 #define ENGINE_FLAGS_NO_REGISTER_ALL (int)0x0008

151 /* ENGINEs can support their own command types, and these flags are used in
152 * ENGINE_CTRL_GET_CMD_FLAGS to indicate to the caller what kind of input each
153 * command expects. Currently only numeric and string input is supported. If a
154 * control command supports none of the _NUMERIC, _STRING, or _NO_INPUT options,
155 * then it is regarded as an "internal" control command - and not for use in
156 * config setting situations. As such, they’re not available to the
157 * ENGINE_ctrl_cmd_string() function, only raw ENGINE_ctrl() access. Changes to
158 * this list of ’command types’ should be reflected carefully in
159 * ENGINE_cmd_is_executable() and ENGINE_ctrl_cmd_string(). */

161 /* accepts a ’long’ input value (3rd parameter to ENGINE_ctrl) */
162 #define ENGINE_CMD_FLAG_NUMERIC (unsigned int)0x0001
163 /* accepts string input (cast from ’void*’ to ’const char *’, 4th parameter to
164 * ENGINE_ctrl) */
165 #define ENGINE_CMD_FLAG_STRING (unsigned int)0x0002
166 /* Indicates that the control command takes *no* input. Ie. the control command
167 * is unparameterised. */
168 #define ENGINE_CMD_FLAG_NO_INPUT (unsigned int)0x0004
169 /* Indicates that the control command is internal. This control command won’t
170 * be shown in any output, and is only usable through the ENGINE_ctrl_cmd()
171 * function. */
172 #define ENGINE_CMD_FLAG_INTERNAL (unsigned int)0x0008

174 /* NB: These 3 control commands are deprecated and should not be used. ENGINEs
175 * relying on these commands should compile conditional support for
176 * compatibility (eg. if these symbols are defined) but should also migrate the
177 * same functionality to their own ENGINE-specific control functions that can be
178 * "discovered" by calling applications. The fact these control commands
179 * wouldn’t be "executable" (ie. usable by text-based config) doesn’t change the
180 * fact that application code can find and use them without requiring per-ENGINE
181 * hacking. */

183 /* These flags are used to tell the ctrl function what should be done.
184 * All command numbers are shared between all engines, even if some don’t
185 * make sense to some engines. In such a case, they do nothing but return
186 * the error ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED. */
187 #define ENGINE_CTRL_SET_LOGSTREAM 1
188 #define ENGINE_CTRL_SET_PASSWORD_CALLBACK 2
189 #define ENGINE_CTRL_HUP 3 /* Close and reinitialise any
190 handles/connections etc. */
191 #define ENGINE_CTRL_SET_USER_INTERFACE 4 /* Alternative to callback */
192 #define ENGINE_CTRL_SET_CALLBACK_DATA 5 /* User-specific data, used
193 when calling the password

new/usr/src/lib/openssl/include/openssl/engine.h 4

194 callback and the user
195 interface */
196 #define ENGINE_CTRL_LOAD_CONFIGURATION 6 /* Load a configuration, given
197 a string that represents a
198 file name or so */
199 #define ENGINE_CTRL_LOAD_SECTION 7 /* Load data from a given
200 section in the already load
201 configuration */

203 /* These control commands allow an application to deal with an arbitrary engine
204 * in a dynamic way. Warn: Negative return values indicate errors FOR THESE
205 * COMMANDS because zero is used to indicate ’end-of-list’. Other commands,
206 * including ENGINE-specific command types, return zero for an error.
207 *
208 * An ENGINE can choose to implement these ctrl functions, and can internally
209 * manage things however it chooses - it does so by setting the
210 * ENGINE_FLAGS_MANUAL_CMD_CTRL flag (using ENGINE_set_flags()). Otherwise the
211 * ENGINE_ctrl() code handles this on the ENGINE’s behalf using the cmd_defns
212 * data (set using ENGINE_set_cmd_defns()). This means an ENGINE’s ctrl()
213 * handler need only implement its own commands - the above "meta" commands will
214 * be taken care of. */

216 /* Returns non-zero if the supplied ENGINE has a ctrl() handler. If "not", then
217 * all the remaining control commands will return failure, so it is worth
218 * checking this first if the caller is trying to "discover" the engine’s
219 * capabilities and doesn’t want errors generated unnecessarily. */
220 #define ENGINE_CTRL_HAS_CTRL_FUNCTION 10
221 /* Returns a positive command number for the first command supported by the
222 * engine. Returns zero if no ctrl commands are supported. */
223 #define ENGINE_CTRL_GET_FIRST_CMD_TYPE 11
224 /* The ’long’ argument specifies a command implemented by the engine, and the
225 * return value is the next command supported, or zero if there are no more. */
226 #define ENGINE_CTRL_GET_NEXT_CMD_TYPE 12
227 /* The ’void*’ argument is a command name (cast from ’const char *’), and the
228 * return value is the command that corresponds to it. */
229 #define ENGINE_CTRL_GET_CMD_FROM_NAME 13
230 /* The next two allow a command to be converted into its corresponding string
231 * form. In each case, the ’long’ argument supplies the command. In the NAME_LEN
232 * case, the return value is the length of the command name (not counting a
233 * trailing EOL). In the NAME case, the ’void*’ argument must be a string buffer
234 * large enough, and it will be populated with the name of the command (WITH a
235 * trailing EOL). */
236 #define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD 14
237 #define ENGINE_CTRL_GET_NAME_FROM_CMD 15
238 /* The next two are similar but give a "short description" of a command. */
239 #define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD 16
240 #define ENGINE_CTRL_GET_DESC_FROM_CMD 17
241 /* With this command, the return value is the OR’d combination of
242 * ENGINE_CMD_FLAG_*** values that indicate what kind of input a given
243 * engine-specific ctrl command expects. */
244 #define ENGINE_CTRL_GET_CMD_FLAGS 18

246 /* ENGINE implementations should start the numbering of their own control
247 * commands from this value. (ie. ENGINE_CMD_BASE, ENGINE_CMD_BASE + 1, etc). */
248 #define ENGINE_CMD_BASE 200

250 /* NB: These 2 nCipher "chil" control commands are deprecated, and their
251 * functionality is now available through ENGINE-specific control commands
252 * (exposed through the above-mentioned ’CMD’-handling). Code using these 2
253 * commands should be migrated to the more general command handling before these
254 * are removed. */

256 /* Flags specific to the nCipher "chil" engine */
257 #define ENGINE_CTRL_CHIL_SET_FORKCHECK 100
258 /* Depending on the value of the (long)i argument, this sets or
259 * unsets the SimpleForkCheck flag in the CHIL API to enable or

new/usr/src/lib/openssl/include/openssl/engine.h 5

260 * disable checking and workarounds for applications that fork().
261 */
262 #define ENGINE_CTRL_CHIL_NO_LOCKING 101
263 /* This prevents the initialisation function from providing mutex
264 * callbacks to the nCipher library. */

266 /* If an ENGINE supports its own specific control commands and wishes the
267 * framework to handle the above ’ENGINE_CMD_***’-manipulation commands on its
268 * behalf, it should supply a null-terminated array of ENGINE_CMD_DEFN entries
269 * to ENGINE_set_cmd_defns(). It should also implement a ctrl() handler that
270 * supports the stated commands (ie. the "cmd_num" entries as described by the
271 * array). NB: The array must be ordered in increasing order of cmd_num.
272 * "null-terminated" means that the last ENGINE_CMD_DEFN element has cmd_num set
273 * to zero and/or cmd_name set to NULL. */
274 typedef struct ENGINE_CMD_DEFN_st
275 {
276 unsigned int cmd_num; /* The command number */
277 const char *cmd_name; /* The command name itself */
278 const char *cmd_desc; /* A short description of the command */
279 unsigned int cmd_flags; /* The input the command expects */
280 } ENGINE_CMD_DEFN;

282 /* Generic function pointer */
283 typedef int (*ENGINE_GEN_FUNC_PTR)(void);
284 /* Generic function pointer taking no arguments */
285 typedef int (*ENGINE_GEN_INT_FUNC_PTR)(ENGINE *);
286 /* Specific control function pointer */
287 typedef int (*ENGINE_CTRL_FUNC_PTR)(ENGINE *, int, long, void *, void (*f)(void)
288 /* Generic load_key function pointer */
289 typedef EVP_PKEY * (*ENGINE_LOAD_KEY_PTR)(ENGINE *, const char *,
290 UI_METHOD *ui_method, void *callback_data);
291 typedef int (*ENGINE_SSL_CLIENT_CERT_PTR)(ENGINE *, SSL *ssl,
292 STACK_OF(X509_NAME) *ca_dn, X509 **pcert, EVP_PKEY **pkey,
293 STACK_OF(X509) **pother, UI_METHOD *ui_method, void *callback_data);
294 /* These callback types are for an ENGINE’s handler for cipher and digest logic.
295 * These handlers have these prototypes;
296 * int foo(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid);
297 * int foo(ENGINE *e, const EVP_MD **digest, const int **nids, int nid);
298 * Looking at how to implement these handlers in the case of cipher support, if
299 * the framework wants the EVP_CIPHER for ’nid’, it will call;
300 * foo(e, &p_evp_cipher, NULL, nid); (return zero for failure)
301 * If the framework wants a list of supported ’nid’s, it will call;
302 * foo(e, NULL, &p_nids, 0); (returns number of ’nids’ or -1 for error)
303 */
304 /* Returns to a pointer to the array of supported cipher ’nid’s. If the second
305 * parameter is non-NULL it is set to the size of the returned array. */
306 typedef int (*ENGINE_CIPHERS_PTR)(ENGINE *, const EVP_CIPHER **, const int **, i
307 typedef int (*ENGINE_DIGESTS_PTR)(ENGINE *, const EVP_MD **, const int **, int);
308 typedef int (*ENGINE_PKEY_METHS_PTR)(ENGINE *, EVP_PKEY_METHOD **, const int **,
309 typedef int (*ENGINE_PKEY_ASN1_METHS_PTR)(ENGINE *, EVP_PKEY_ASN1_METHOD **, con
310 /* STRUCTURE functions ... all of these functions deal with pointers to ENGINE
311 * structures where the pointers have a "structural reference". This means that
312 * their reference is to allowed access to the structure but it does not imply
313 * that the structure is functional. To simply increment or decrement the
314 * structural reference count, use ENGINE_by_id and ENGINE_free. NB: This is not
315 * required when iterating using ENGINE_get_next as it will automatically
316 * decrement the structural reference count of the "current" ENGINE and
317 * increment the structural reference count of the ENGINE it returns (unless it
318 * is NULL). */

320 /* Get the first/last "ENGINE" type available. */
321 ENGINE *ENGINE_get_first(void);
322 ENGINE *ENGINE_get_last(void);
323 /* Iterate to the next/previous "ENGINE" type (NULL = end of the list). */
324 ENGINE *ENGINE_get_next(ENGINE *e);
325 ENGINE *ENGINE_get_prev(ENGINE *e);

new/usr/src/lib/openssl/include/openssl/engine.h 6

326 /* Add another "ENGINE" type into the array. */
327 int ENGINE_add(ENGINE *e);
328 /* Remove an existing "ENGINE" type from the array. */
329 int ENGINE_remove(ENGINE *e);
330 /* Retrieve an engine from the list by its unique "id" value. */
331 ENGINE *ENGINE_by_id(const char *id);
332 /* Add all the built-in engines. */
333 void ENGINE_load_openssl(void);
334 void ENGINE_load_dynamic(void);
335 #ifndef OPENSSL_NO_STATIC_ENGINE
336 void ENGINE_load_4758cca(void);
337 void ENGINE_load_aep(void);
338 void ENGINE_load_atalla(void);
339 void ENGINE_load_chil(void);
340 void ENGINE_load_cswift(void);
341 void ENGINE_load_nuron(void);
342 void ENGINE_load_sureware(void);
343 void ENGINE_load_ubsec(void);
344 void ENGINE_load_padlock(void);
345 void ENGINE_load_capi(void);
346 #ifndef OPENSSL_NO_GMP
347 void ENGINE_load_gmp(void);
348 #endif
349 #ifndef OPENSSL_NO_GOST
350 void ENGINE_load_gost(void);
351 #endif
352 #endif
353 void ENGINE_load_cryptodev(void);
354 void ENGINE_load_pk11(void);
355 void ENGINE_load_rsax(void);
356 void ENGINE_load_rdrand(void);
357 void ENGINE_load_builtin_engines(void);

359 /* Get and set global flags (ENGINE_TABLE_FLAG_***) for the implementation
360 * "registry" handling. */
361 unsigned int ENGINE_get_table_flags(void);
362 void ENGINE_set_table_flags(unsigned int flags);

364 /* Manage registration of ENGINEs per "table". For each type, there are 3
365 * functions;
366 * ENGINE_register_***(e) - registers the implementation from ’e’ (if it has o
367 * ENGINE_unregister_***(e) - unregister the implementation from ’e’
368 * ENGINE_register_all_***() - call ENGINE_register_***() for each ’e’ in the
369 * Cleanup is automatically registered from each table when required, so
370 * ENGINE_cleanup() will reverse any "register" operations. */

372 int ENGINE_register_RSA(ENGINE *e);
373 void ENGINE_unregister_RSA(ENGINE *e);
374 void ENGINE_register_all_RSA(void);

376 int ENGINE_register_DSA(ENGINE *e);
377 void ENGINE_unregister_DSA(ENGINE *e);
378 void ENGINE_register_all_DSA(void);

380 int ENGINE_register_ECDH(ENGINE *e);
381 void ENGINE_unregister_ECDH(ENGINE *e);
382 void ENGINE_register_all_ECDH(void);

384 int ENGINE_register_ECDSA(ENGINE *e);
385 void ENGINE_unregister_ECDSA(ENGINE *e);
386 void ENGINE_register_all_ECDSA(void);

388 int ENGINE_register_DH(ENGINE *e);
389 void ENGINE_unregister_DH(ENGINE *e);
390 void ENGINE_register_all_DH(void);

new/usr/src/lib/openssl/include/openssl/engine.h 7

392 int ENGINE_register_RAND(ENGINE *e);
393 void ENGINE_unregister_RAND(ENGINE *e);
394 void ENGINE_register_all_RAND(void);

396 int ENGINE_register_STORE(ENGINE *e);
397 void ENGINE_unregister_STORE(ENGINE *e);
398 void ENGINE_register_all_STORE(void);

400 int ENGINE_register_ciphers(ENGINE *e);
401 void ENGINE_unregister_ciphers(ENGINE *e);
402 void ENGINE_register_all_ciphers(void);

404 int ENGINE_register_digests(ENGINE *e);
405 void ENGINE_unregister_digests(ENGINE *e);
406 void ENGINE_register_all_digests(void);

408 int ENGINE_register_pkey_meths(ENGINE *e);
409 void ENGINE_unregister_pkey_meths(ENGINE *e);
410 void ENGINE_register_all_pkey_meths(void);

412 int ENGINE_register_pkey_asn1_meths(ENGINE *e);
413 void ENGINE_unregister_pkey_asn1_meths(ENGINE *e);
414 void ENGINE_register_all_pkey_asn1_meths(void);

416 /* These functions register all support from the above categories. Note, use of
417 * these functions can result in static linkage of code your application may not
418 * need. If you only need a subset of functionality, consider using more
419 * selective initialisation. */
420 int ENGINE_register_complete(ENGINE *e);
421 int ENGINE_register_all_complete(void);

423 /* Send parametrised control commands to the engine. The possibilities to send
424 * down an integer, a pointer to data or a function pointer are provided. Any of
425 * the parameters may or may not be NULL, depending on the command number. In
426 * actuality, this function only requires a structural (rather than functional)
427 * reference to an engine, but many control commands may require the engine be
428 * functional. The caller should be aware of trying commands that require an
429 * operational ENGINE, and only use functional references in such situations. */
430 int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void));

432 /* This function tests if an ENGINE-specific command is usable as a "setting".
433 * Eg. in an application’s config file that gets processed through
434 * ENGINE_ctrl_cmd_string(). If this returns zero, it is not available to
435 * ENGINE_ctrl_cmd_string(), only ENGINE_ctrl(). */
436 int ENGINE_cmd_is_executable(ENGINE *e, int cmd);

438 /* This function works like ENGINE_ctrl() with the exception of taking a
439 * command name instead of a command number, and can handle optional commands.
440 * See the comment on ENGINE_ctrl_cmd_string() for an explanation on how to
441 * use the cmd_name and cmd_optional. */
442 int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name,
443 long i, void *p, void (*f)(void), int cmd_optional);

445 /* This function passes a command-name and argument to an ENGINE. The cmd_name
446 * is converted to a command number and the control command is called using
447 * ’arg’ as an argument (unless the ENGINE doesn’t support such a command, in
448 * which case no control command is called). The command is checked for input
449 * flags, and if necessary the argument will be converted to a numeric value. If
450 * cmd_optional is non-zero, then if the ENGINE doesn’t support the given
451 * cmd_name the return value will be success anyway. This function is intended
452 * for applications to use so that users (or config files) can supply
453 * engine-specific config data to the ENGINE at run-time to control behaviour of
454 * specific engines. As such, it shouldn’t be used for calling ENGINE_ctrl()
455 * functions that return data, deal with binary data, or that are otherwise
456 * supposed to be used directly through ENGINE_ctrl() in application code. Any
457 * "return" data from an ENGINE_ctrl() operation in this function will be lost -

new/usr/src/lib/openssl/include/openssl/engine.h 8

458 * the return value is interpreted as failure if the return value is zero,
459 * success otherwise, and this function returns a boolean value as a result. In
460 * other words, vendors of ’ENGINE’-enabled devices should write ENGINE
461 * implementations with parameterisations that work in this scheme, so that
462 * compliant ENGINE-based applications can work consistently with the same
463 * configuration for the same ENGINE-enabled devices, across applications. */
464 int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,
465 int cmd_optional);

467 /* These functions are useful for manufacturing new ENGINE structures. They
468 * don’t address reference counting at all - one uses them to populate an ENGINE
469 * structure with personalised implementations of things prior to using it
470 * directly or adding it to the builtin ENGINE list in OpenSSL. These are also
471 * here so that the ENGINE structure doesn’t have to be exposed and break binary
472 * compatibility! */
473 ENGINE *ENGINE_new(void);
474 int ENGINE_free(ENGINE *e);
475 int ENGINE_up_ref(ENGINE *e);
476 int ENGINE_set_id(ENGINE *e, const char *id);
477 int ENGINE_set_name(ENGINE *e, const char *name);
478 int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth);
479 int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth);
480 int ENGINE_set_ECDH(ENGINE *e, const ECDH_METHOD *ecdh_meth);
481 int ENGINE_set_ECDSA(ENGINE *e, const ECDSA_METHOD *ecdsa_meth);
482 int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth);
483 int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth);
484 int ENGINE_set_STORE(ENGINE *e, const STORE_METHOD *store_meth);
485 int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f);
486 int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f);
487 int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f);
488 int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f);
489 int ENGINE_set_load_privkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpriv_f);
490 int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f);
491 int ENGINE_set_load_ssl_client_cert_function(ENGINE *e,
492 ENGINE_SSL_CLIENT_CERT_PTR loadssl_f);
493 int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f);
494 int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f);
495 int ENGINE_set_pkey_meths(ENGINE *e, ENGINE_PKEY_METHS_PTR f);
496 int ENGINE_set_pkey_asn1_meths(ENGINE *e, ENGINE_PKEY_ASN1_METHS_PTR f);
497 int ENGINE_set_flags(ENGINE *e, int flags);
498 int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns);
499 /* These functions allow control over any per-structure ENGINE data. */
500 int ENGINE_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
501 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);
502 int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg);
503 void *ENGINE_get_ex_data(const ENGINE *e, int idx);

505 /* This function cleans up anything that needs it. Eg. the ENGINE_add() function
506 * automatically ensures the list cleanup function is registered to be called
507 * from ENGINE_cleanup(). Similarly, all ENGINE_register_*** functions ensure
508 * ENGINE_cleanup() will clean up after them. */
509 void ENGINE_cleanup(void);

511 /* These return values from within the ENGINE structure. These can be useful
512 * with functional references as well as structural references - it depends
513 * which you obtained. Using the result for functional purposes if you only
514 * obtained a structural reference may be problematic! */
515 const char *ENGINE_get_id(const ENGINE *e);
516 const char *ENGINE_get_name(const ENGINE *e);
517 const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e);
518 const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e);
519 const ECDH_METHOD *ENGINE_get_ECDH(const ENGINE *e);
520 const ECDSA_METHOD *ENGINE_get_ECDSA(const ENGINE *e);
521 const DH_METHOD *ENGINE_get_DH(const ENGINE *e);
522 const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e);
523 const STORE_METHOD *ENGINE_get_STORE(const ENGINE *e);

new/usr/src/lib/openssl/include/openssl/engine.h 9

524 ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e);
525 ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e);
526 ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e);
527 ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e);
528 ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e);
529 ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e);
530 ENGINE_SSL_CLIENT_CERT_PTR ENGINE_get_ssl_client_cert_function(const ENGINE *e);
531 ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e);
532 ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e);
533 ENGINE_PKEY_METHS_PTR ENGINE_get_pkey_meths(const ENGINE *e);
534 ENGINE_PKEY_ASN1_METHS_PTR ENGINE_get_pkey_asn1_meths(const ENGINE *e);
535 const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid);
536 const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid);
537 const EVP_PKEY_METHOD *ENGINE_get_pkey_meth(ENGINE *e, int nid);
538 const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth(ENGINE *e, int nid);
539 const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth_str(ENGINE *e,
540 const char *str, int len);
541 const EVP_PKEY_ASN1_METHOD *ENGINE_pkey_asn1_find_str(ENGINE **pe,
542 const char *str, int len);
543 const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e);
544 int ENGINE_get_flags(const ENGINE *e);

546 /* FUNCTIONAL functions. These functions deal with ENGINE structures
547 * that have (or will) be initialised for use. Broadly speaking, the
548 * structural functions are useful for iterating the list of available
549 * engine types, creating new engine types, and other "list" operations.
550 * These functions actually deal with ENGINEs that are to be used. As
551 * such these functions can fail (if applicable) when particular
552 * engines are unavailable - eg. if a hardware accelerator is not
553 * attached or not functioning correctly. Each ENGINE has 2 reference
554 * counts; structural and functional. Every time a functional reference
555 * is obtained or released, a corresponding structural reference is
556 * automatically obtained or released too. */

558 /* Initialise a engine type for use (or up its reference count if it’s
559 * already in use). This will fail if the engine is not currently
560 * operational and cannot initialise. */
561 int ENGINE_init(ENGINE *e);
562 /* Free a functional reference to a engine type. This does not require
563 * a corresponding call to ENGINE_free as it also releases a structural
564 * reference. */
565 int ENGINE_finish(ENGINE *e);

567 /* The following functions handle keys that are stored in some secondary
568 * location, handled by the engine. The storage may be on a card or
569 * whatever. */
570 EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id,
571 UI_METHOD *ui_method, void *callback_data);
572 EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id,
573 UI_METHOD *ui_method, void *callback_data);
574 int ENGINE_load_ssl_client_cert(ENGINE *e, SSL *s,
575 STACK_OF(X509_NAME) *ca_dn, X509 **pcert, EVP_PKEY **ppkey,
576 STACK_OF(X509) **pother,
577 UI_METHOD *ui_method, void *callback_data);

579 /* This returns a pointer for the current ENGINE structure that
580 * is (by default) performing any RSA operations. The value returned
581 * is an incremented reference, so it should be free’d (ENGINE_finish)
582 * before it is discarded. */
583 ENGINE *ENGINE_get_default_RSA(void);
584 /* Same for the other "methods" */
585 ENGINE *ENGINE_get_default_DSA(void);
586 ENGINE *ENGINE_get_default_ECDH(void);
587 ENGINE *ENGINE_get_default_ECDSA(void);
588 ENGINE *ENGINE_get_default_DH(void);
589 ENGINE *ENGINE_get_default_RAND(void);

new/usr/src/lib/openssl/include/openssl/engine.h 10

590 /* These functions can be used to get a functional reference to perform
591 * ciphering or digesting corresponding to "nid". */
592 ENGINE *ENGINE_get_cipher_engine(int nid);
593 ENGINE *ENGINE_get_digest_engine(int nid);
594 ENGINE *ENGINE_get_pkey_meth_engine(int nid);
595 ENGINE *ENGINE_get_pkey_asn1_meth_engine(int nid);

597 /* This sets a new default ENGINE structure for performing RSA
598 * operations. If the result is non-zero (success) then the ENGINE
599 * structure will have had its reference count up’d so the caller
600 * should still free their own reference ’e’. */
601 int ENGINE_set_default_RSA(ENGINE *e);
602 int ENGINE_set_default_string(ENGINE *e, const char *def_list);
603 /* Same for the other "methods" */
604 int ENGINE_set_default_DSA(ENGINE *e);
605 int ENGINE_set_default_ECDH(ENGINE *e);
606 int ENGINE_set_default_ECDSA(ENGINE *e);
607 int ENGINE_set_default_DH(ENGINE *e);
608 int ENGINE_set_default_RAND(ENGINE *e);
609 int ENGINE_set_default_ciphers(ENGINE *e);
610 int ENGINE_set_default_digests(ENGINE *e);
611 int ENGINE_set_default_pkey_meths(ENGINE *e);
612 int ENGINE_set_default_pkey_asn1_meths(ENGINE *e);

614 /* The combination "set" - the flags are bitwise "OR"d from the
615 * ENGINE_METHOD_*** defines above. As with the "ENGINE_register_complete()"
616 * function, this function can result in unnecessary static linkage. If your
617 * application requires only specific functionality, consider using more
618 * selective functions. */
619 int ENGINE_set_default(ENGINE *e, unsigned int flags);

621 void ENGINE_add_conf_module(void);

623 /* Deprecated functions ... */
624 /* int ENGINE_clear_defaults(void); */

626 /**************************/
627 /* DYNAMIC ENGINE SUPPORT */
628 /**************************/

630 /* Binary/behaviour compatibility levels */
631 #define OSSL_DYNAMIC_VERSION (unsigned long)0x00020000
632 /* Binary versions older than this are too old for us (whether we’re a loader or
633 * a loadee) */
634 #define OSSL_DYNAMIC_OLDEST (unsigned long)0x00020000

636 /* When compiling an ENGINE entirely as an external shared library, loadable by
637 * the "dynamic" ENGINE, these types are needed. The ’dynamic_fns’ structure
638 * type provides the calling application’s (or library’s) error functionality
639 * and memory management function pointers to the loaded library. These should
640 * be used/set in the loaded library code so that the loading application’s
641 * ’state’ will be used/changed in all operations. The ’static_state’ pointer
642 * allows the loaded library to know if it shares the same static data as the
643 * calling application (or library), and thus whether these callbacks need to be
644 * set or not. */
645 typedef void *(*dyn_MEM_malloc_cb)(size_t);
646 typedef void *(*dyn_MEM_realloc_cb)(void *, size_t);
647 typedef void (*dyn_MEM_free_cb)(void *);
648 typedef struct st_dynamic_MEM_fns {
649 dyn_MEM_malloc_cb malloc_cb;
650 dyn_MEM_realloc_cb realloc_cb;
651 dyn_MEM_free_cb free_cb;
652 } dynamic_MEM_fns;
653 /* FIXME: Perhaps the memory and locking code (crypto.h) should declare and use
654 * these types so we (and any other dependant code) can simplify a bit?? */
655 typedef void (*dyn_lock_locking_cb)(int,int,const char *,int);

new/usr/src/lib/openssl/include/openssl/engine.h 11

656 typedef int (*dyn_lock_add_lock_cb)(int*,int,int,const char *,int);
657 typedef struct CRYPTO_dynlock_value *(*dyn_dynlock_create_cb)(
658 const char *,int);
659 typedef void (*dyn_dynlock_lock_cb)(int,struct CRYPTO_dynlock_value *,
660 const char *,int);
661 typedef void (*dyn_dynlock_destroy_cb)(struct CRYPTO_dynlock_value *,
662 const char *,int);
663 typedef struct st_dynamic_LOCK_fns {
664 dyn_lock_locking_cb lock_locking_cb;
665 dyn_lock_add_lock_cb lock_add_lock_cb;
666 dyn_dynlock_create_cb dynlock_create_cb;
667 dyn_dynlock_lock_cb dynlock_lock_cb;
668 dyn_dynlock_destroy_cb dynlock_destroy_cb;
669 } dynamic_LOCK_fns;
670 /* The top-level structure */
671 typedef struct st_dynamic_fns {
672 void *static_state;
673 const ERR_FNS *err_fns;
674 const CRYPTO_EX_DATA_IMPL *ex_data_fns;
675 dynamic_MEM_fns mem_fns;
676 dynamic_LOCK_fns lock_fns;
677 } dynamic_fns;

679 /* The version checking function should be of this prototype. NB: The
680 * ossl_version value passed in is the OSSL_DYNAMIC_VERSION of the loading code.
681 * If this function returns zero, it indicates a (potential) version
682 * incompatibility and the loaded library doesn’t believe it can proceed.
683 * Otherwise, the returned value is the (latest) version supported by the
684 * loading library. The loader may still decide that the loaded code’s version
685 * is unsatisfactory and could veto the load. The function is expected to
686 * be implemented with the symbol name "v_check", and a default implementation
687 * can be fully instantiated with IMPLEMENT_DYNAMIC_CHECK_FN(). */
688 typedef unsigned long (*dynamic_v_check_fn)(unsigned long ossl_version);
689 #define IMPLEMENT_DYNAMIC_CHECK_FN() \
690 OPENSSL_EXPORT unsigned long v_check(unsigned long v); \
691 OPENSSL_EXPORT unsigned long v_check(unsigned long v) { \
692 if(v >= OSSL_DYNAMIC_OLDEST) return OSSL_DYNAMIC_VERSION; \
693 return 0; }

695 /* This function is passed the ENGINE structure to initialise with its own
696 * function and command settings. It should not adjust the structural or
697 * functional reference counts. If this function returns zero, (a) the load will
698 * be aborted, (b) the previous ENGINE state will be memcpy’d back onto the
699 * structure, and (c) the shared library will be unloaded. So implementations
700 * should do their own internal cleanup in failure circumstances otherwise they
701 * could leak. The ’id’ parameter, if non-NULL, represents the ENGINE id that
702 * the loader is looking for. If this is NULL, the shared library can choose to
703 * return failure or to initialise a ’default’ ENGINE. If non-NULL, the shared
704 * library must initialise only an ENGINE matching the passed ’id’. The function
705 * is expected to be implemented with the symbol name "bind_engine". A standard
706 * implementation can be instantiated with IMPLEMENT_DYNAMIC_BIND_FN(fn) where
707 * the parameter ’fn’ is a callback function that populates the ENGINE structure
708 * and returns an int value (zero for failure). ’fn’ should have prototype;
709 * [static] int fn(ENGINE *e, const char *id); */
710 typedef int (*dynamic_bind_engine)(ENGINE *e, const char *id,
711 const dynamic_fns *fns);
712 #define IMPLEMENT_DYNAMIC_BIND_FN(fn) \
713 OPENSSL_EXPORT \
714 int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); \
715 OPENSSL_EXPORT \
716 int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) { \
717 if(ENGINE_get_static_state() == fns->static_state) goto skip_cbs
718 if(!CRYPTO_set_mem_functions(fns->mem_fns.malloc_cb, \
719 fns->mem_fns.realloc_cb, fns->mem_fns.free_cb)) \
720 return 0; \
721 CRYPTO_set_locking_callback(fns->lock_fns.lock_locking_cb); \

new/usr/src/lib/openssl/include/openssl/engine.h 12

722 CRYPTO_set_add_lock_callback(fns->lock_fns.lock_add_lock_cb); \
723 CRYPTO_set_dynlock_create_callback(fns->lock_fns.dynlock_create_
724 CRYPTO_set_dynlock_lock_callback(fns->lock_fns.dynlock_lock_cb);
725 CRYPTO_set_dynlock_destroy_callback(fns->lock_fns.dynlock_destro
726 if(!CRYPTO_set_ex_data_implementation(fns->ex_data_fns)) \
727 return 0; \
728 if(!ERR_set_implementation(fns->err_fns)) return 0; \
729 skip_cbs: \
730 if(!fn(e,id)) return 0; \
731 return 1; }

733 /* If the loading application (or library) and the loaded ENGINE library share
734 * the same static data (eg. they’re both dynamically linked to the same
735 * libcrypto.so) we need a way to avoid trying to set system callbacks - this
736 * would fail, and for the same reason that it’s unnecessary to try. If the
737 * loaded ENGINE has (or gets from through the loader) its own copy of the
738 * libcrypto static data, we will need to set the callbacks. The easiest way to
739 * detect this is to have a function that returns a pointer to some static data
740 * and let the loading application and loaded ENGINE compare their respective
741 * values. */
742 void *ENGINE_get_static_state(void);

744 #if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(HAVE_CRYPTODEV)
745 void ENGINE_setup_bsd_cryptodev(void);
746 #endif

748 /* BEGIN ERROR CODES */
749 /* The following lines are auto generated by the script mkerr.pl. Any changes
750 * made after this point may be overwritten when the script is next run.
751 */
752 void ERR_load_ENGINE_strings(void);

754 /* Error codes for the ENGINE functions. */

756 /* Function codes. */
757 #define ENGINE_F_DYNAMIC_CTRL 180
758 #define ENGINE_F_DYNAMIC_GET_DATA_CTX 181
759 #define ENGINE_F_DYNAMIC_LOAD 182
760 #define ENGINE_F_DYNAMIC_SET_DATA_CTX 183
761 #define ENGINE_F_ENGINE_ADD 105
762 #define ENGINE_F_ENGINE_BY_ID 106
763 #define ENGINE_F_ENGINE_CMD_IS_EXECUTABLE 170
764 #define ENGINE_F_ENGINE_CTRL 142
765 #define ENGINE_F_ENGINE_CTRL_CMD 178
766 #define ENGINE_F_ENGINE_CTRL_CMD_STRING 171
767 #define ENGINE_F_ENGINE_FINISH 107
768 #define ENGINE_F_ENGINE_FREE_UTIL 108
769 #define ENGINE_F_ENGINE_GET_CIPHER 185
770 #define ENGINE_F_ENGINE_GET_DEFAULT_TYPE 177
771 #define ENGINE_F_ENGINE_GET_DIGEST 186
772 #define ENGINE_F_ENGINE_GET_NEXT 115
773 #define ENGINE_F_ENGINE_GET_PKEY_ASN1_METH 193
774 #define ENGINE_F_ENGINE_GET_PKEY_METH 192
775 #define ENGINE_F_ENGINE_GET_PREV 116
776 #define ENGINE_F_ENGINE_INIT 119
777 #define ENGINE_F_ENGINE_LIST_ADD 120
778 #define ENGINE_F_ENGINE_LIST_REMOVE 121
779 #define ENGINE_F_ENGINE_LOAD_PRIVATE_KEY 150
780 #define ENGINE_F_ENGINE_LOAD_PUBLIC_KEY 151
781 #define ENGINE_F_ENGINE_LOAD_SSL_CLIENT_CERT 194
782 #define ENGINE_F_ENGINE_NEW 122
783 #define ENGINE_F_ENGINE_REMOVE 123
784 #define ENGINE_F_ENGINE_SET_DEFAULT_STRING 189
785 #define ENGINE_F_ENGINE_SET_DEFAULT_TYPE 126
786 #define ENGINE_F_ENGINE_SET_ID 129
787 #define ENGINE_F_ENGINE_SET_NAME 130

new/usr/src/lib/openssl/include/openssl/engine.h 13

788 #define ENGINE_F_ENGINE_TABLE_REGISTER 184
789 #define ENGINE_F_ENGINE_UNLOAD_KEY 152
790 #define ENGINE_F_ENGINE_UNLOCKED_FINISH 191
791 #define ENGINE_F_ENGINE_UP_REF 190
792 #define ENGINE_F_INT_CTRL_HELPER 172
793 #define ENGINE_F_INT_ENGINE_CONFIGURE 188
794 #define ENGINE_F_INT_ENGINE_MODULE_INIT 187
795 #define ENGINE_F_LOG_MESSAGE 141

797 /* Reason codes. */
798 #define ENGINE_R_ALREADY_LOADED 100
799 #define ENGINE_R_ARGUMENT_IS_NOT_A_NUMBER 133
800 #define ENGINE_R_CMD_NOT_EXECUTABLE 134
801 #define ENGINE_R_COMMAND_TAKES_INPUT 135
802 #define ENGINE_R_COMMAND_TAKES_NO_INPUT 136
803 #define ENGINE_R_CONFLICTING_ENGINE_ID 103
804 #define ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED 119
805 #define ENGINE_R_DH_NOT_IMPLEMENTED 139
806 #define ENGINE_R_DSA_NOT_IMPLEMENTED 140
807 #define ENGINE_R_DSO_FAILURE 104
808 #define ENGINE_R_DSO_NOT_FOUND 132
809 #define ENGINE_R_ENGINES_SECTION_ERROR 148
810 #define ENGINE_R_ENGINE_CONFIGURATION_ERROR 102
811 #define ENGINE_R_ENGINE_IS_NOT_IN_LIST 105
812 #define ENGINE_R_ENGINE_SECTION_ERROR 149
813 #define ENGINE_R_FAILED_LOADING_PRIVATE_KEY 128
814 #define ENGINE_R_FAILED_LOADING_PUBLIC_KEY 129
815 #define ENGINE_R_FINISH_FAILED 106
816 #define ENGINE_R_GET_HANDLE_FAILED 107
817 #define ENGINE_R_ID_OR_NAME_MISSING 108
818 #define ENGINE_R_INIT_FAILED 109
819 #define ENGINE_R_INTERNAL_LIST_ERROR 110
820 #define ENGINE_R_INVALID_ARGUMENT 143
821 #define ENGINE_R_INVALID_CMD_NAME 137
822 #define ENGINE_R_INVALID_CMD_NUMBER 138
823 #define ENGINE_R_INVALID_INIT_VALUE 151
824 #define ENGINE_R_INVALID_STRING 150
825 #define ENGINE_R_NOT_INITIALISED 117
826 #define ENGINE_R_NOT_LOADED 112
827 #define ENGINE_R_NO_CONTROL_FUNCTION 120
828 #define ENGINE_R_NO_INDEX 144
829 #define ENGINE_R_NO_LOAD_FUNCTION 125
830 #define ENGINE_R_NO_REFERENCE 130
831 #define ENGINE_R_NO_SUCH_ENGINE 116
832 #define ENGINE_R_NO_UNLOAD_FUNCTION 126
833 #define ENGINE_R_PROVIDE_PARAMETERS 113
834 #define ENGINE_R_RSA_NOT_IMPLEMENTED 141
835 #define ENGINE_R_UNIMPLEMENTED_CIPHER 146
836 #define ENGINE_R_UNIMPLEMENTED_DIGEST 147
837 #define ENGINE_R_UNIMPLEMENTED_PUBLIC_KEY_METHOD 101
838 #define ENGINE_R_VERSION_INCOMPATIBILITY 145

840 #ifdef __cplusplus
841 }
842 #endif
843 #endif

new/usr/src/lib/openssl/include/openssl/err.h 1

**
 15862 Fri May 30 18:31:19 2014
new/usr/src/lib/openssl/include/openssl/err.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/err/err.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/include/openssl/err.h 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #ifndef HEADER_ERR_H
113 #define HEADER_ERR_H

115 #include <openssl/e_os2.h>

117 #ifndef OPENSSL_NO_FP_API
118 #include <stdio.h>
119 #include <stdlib.h>
120 #endif

122 #include <openssl/ossl_typ.h>
123 #ifndef OPENSSL_NO_BIO
124 #include <openssl/bio.h>
125 #endif
126 #ifndef OPENSSL_NO_LHASH
127 #include <openssl/lhash.h>

new/usr/src/lib/openssl/include/openssl/err.h 3

128 #endif

130 #ifdef __cplusplus
131 extern "C" {
132 #endif

134 #ifndef OPENSSL_NO_ERR
135 #define ERR_PUT_error(a,b,c,d,e) ERR_put_error(a,b,c,d,e)
136 #else
137 #define ERR_PUT_error(a,b,c,d,e) ERR_put_error(a,b,c,NULL,0)
138 #endif

140 #include <errno.h>

142 #define ERR_TXT_MALLOCED 0x01
143 #define ERR_TXT_STRING 0x02

145 #define ERR_FLAG_MARK 0x01

147 #define ERR_NUM_ERRORS 16
148 typedef struct err_state_st
149 {
150 CRYPTO_THREADID tid;
151 int err_flags[ERR_NUM_ERRORS];
152 unsigned long err_buffer[ERR_NUM_ERRORS];
153 char *err_data[ERR_NUM_ERRORS];
154 int err_data_flags[ERR_NUM_ERRORS];
155 const char *err_file[ERR_NUM_ERRORS];
156 int err_line[ERR_NUM_ERRORS];
157 int top,bottom;
158 } ERR_STATE;

160 /* library */
161 #define ERR_LIB_NONE 1
162 #define ERR_LIB_SYS 2
163 #define ERR_LIB_BN 3
164 #define ERR_LIB_RSA 4
165 #define ERR_LIB_DH 5
166 #define ERR_LIB_EVP 6
167 #define ERR_LIB_BUF 7
168 #define ERR_LIB_OBJ 8
169 #define ERR_LIB_PEM 9
170 #define ERR_LIB_DSA 10
171 #define ERR_LIB_X509 11
172 /* #define ERR_LIB_METH 12 */
173 #define ERR_LIB_ASN1 13
174 #define ERR_LIB_CONF 14
175 #define ERR_LIB_CRYPTO 15
176 #define ERR_LIB_EC 16
177 #define ERR_LIB_SSL 20
178 /* #define ERR_LIB_SSL23 21 */
179 /* #define ERR_LIB_SSL2 22 */
180 /* #define ERR_LIB_SSL3 23 */
181 /* #define ERR_LIB_RSAREF 30 */
182 /* #define ERR_LIB_PROXY 31 */
183 #define ERR_LIB_BIO 32
184 #define ERR_LIB_PKCS7 33
185 #define ERR_LIB_X509V3 34
186 #define ERR_LIB_PKCS12 35
187 #define ERR_LIB_RAND 36
188 #define ERR_LIB_DSO 37
189 #define ERR_LIB_ENGINE 38
190 #define ERR_LIB_OCSP 39
191 #define ERR_LIB_UI 40
192 #define ERR_LIB_COMP 41
193 #define ERR_LIB_ECDSA 42

new/usr/src/lib/openssl/include/openssl/err.h 4

194 #define ERR_LIB_ECDH 43
195 #define ERR_LIB_STORE 44
196 #define ERR_LIB_FIPS 45
197 #define ERR_LIB_CMS 46
198 #define ERR_LIB_TS 47
199 #define ERR_LIB_HMAC 48
200 #define ERR_LIB_JPAKE 49

202 #define ERR_LIB_USER 128

204 #define SYSerr(f,r) ERR_PUT_error(ERR_LIB_SYS,(f),(r),__FILE__,__LINE__)
205 #define BNerr(f,r) ERR_PUT_error(ERR_LIB_BN,(f),(r),__FILE__,__LINE__)
206 #define RSAerr(f,r) ERR_PUT_error(ERR_LIB_RSA,(f),(r),__FILE__,__LINE__)
207 #define DHerr(f,r) ERR_PUT_error(ERR_LIB_DH,(f),(r),__FILE__,__LINE__)
208 #define EVPerr(f,r) ERR_PUT_error(ERR_LIB_EVP,(f),(r),__FILE__,__LINE__)
209 #define BUFerr(f,r) ERR_PUT_error(ERR_LIB_BUF,(f),(r),__FILE__,__LINE__)
210 #define OBJerr(f,r) ERR_PUT_error(ERR_LIB_OBJ,(f),(r),__FILE__,__LINE__)
211 #define PEMerr(f,r) ERR_PUT_error(ERR_LIB_PEM,(f),(r),__FILE__,__LINE__)
212 #define DSAerr(f,r) ERR_PUT_error(ERR_LIB_DSA,(f),(r),__FILE__,__LINE__)
213 #define X509err(f,r) ERR_PUT_error(ERR_LIB_X509,(f),(r),__FILE__,__LINE__)
214 #define ASN1err(f,r) ERR_PUT_error(ERR_LIB_ASN1,(f),(r),__FILE__,__LINE__)
215 #define CONFerr(f,r) ERR_PUT_error(ERR_LIB_CONF,(f),(r),__FILE__,__LINE__)
216 #define CRYPTOerr(f,r) ERR_PUT_error(ERR_LIB_CRYPTO,(f),(r),__FILE__,__LINE__)
217 #define ECerr(f,r) ERR_PUT_error(ERR_LIB_EC,(f),(r),__FILE__,__LINE__)
218 #define SSLerr(f,r) ERR_PUT_error(ERR_LIB_SSL,(f),(r),__FILE__,__LINE__)
219 #define BIOerr(f,r) ERR_PUT_error(ERR_LIB_BIO,(f),(r),__FILE__,__LINE__)
220 #define PKCS7err(f,r) ERR_PUT_error(ERR_LIB_PKCS7,(f),(r),__FILE__,__LINE__)
221 #define X509V3err(f,r) ERR_PUT_error(ERR_LIB_X509V3,(f),(r),__FILE__,__LINE__)
222 #define PKCS12err(f,r) ERR_PUT_error(ERR_LIB_PKCS12,(f),(r),__FILE__,__LINE__)
223 #define RANDerr(f,r) ERR_PUT_error(ERR_LIB_RAND,(f),(r),__FILE__,__LINE__)
224 #define DSOerr(f,r) ERR_PUT_error(ERR_LIB_DSO,(f),(r),__FILE__,__LINE__)
225 #define ENGINEerr(f,r) ERR_PUT_error(ERR_LIB_ENGINE,(f),(r),__FILE__,__LINE__)
226 #define OCSPerr(f,r) ERR_PUT_error(ERR_LIB_OCSP,(f),(r),__FILE__,__LINE__)
227 #define UIerr(f,r) ERR_PUT_error(ERR_LIB_UI,(f),(r),__FILE__,__LINE__)
228 #define COMPerr(f,r) ERR_PUT_error(ERR_LIB_COMP,(f),(r),__FILE__,__LINE__)
229 #define ECDSAerr(f,r) ERR_PUT_error(ERR_LIB_ECDSA,(f),(r),__FILE__,__LINE__)
230 #define ECDHerr(f,r) ERR_PUT_error(ERR_LIB_ECDH,(f),(r),__FILE__,__LINE__)
231 #define STOREerr(f,r) ERR_PUT_error(ERR_LIB_STORE,(f),(r),__FILE__,__LINE__)
232 #define FIPSerr(f,r) ERR_PUT_error(ERR_LIB_FIPS,(f),(r),__FILE__,__LINE__)
233 #define CMSerr(f,r) ERR_PUT_error(ERR_LIB_CMS,(f),(r),__FILE__,__LINE__)
234 #define TSerr(f,r) ERR_PUT_error(ERR_LIB_TS,(f),(r),__FILE__,__LINE__)
235 #define HMACerr(f,r) ERR_PUT_error(ERR_LIB_HMAC,(f),(r),__FILE__,__LINE__)
236 #define JPAKEerr(f,r) ERR_PUT_error(ERR_LIB_JPAKE,(f),(r),__FILE__,__LINE__)

238 /* Borland C seems too stupid to be able to shift and do longs in
239 * the pre-processor :-(*/
240 #define ERR_PACK(l,f,r) (((((unsigned long)l)&0xffL)*0x1000000)| \
241 ((((unsigned long)f)&0xfffL)*0x1000)| \
242 ((((unsigned long)r)&0xfffL)))
243 #define ERR_GET_LIB(l) (int)((((unsigned long)l)>>24L)&0xffL)
244 #define ERR_GET_FUNC(l) (int)((((unsigned long)l)>>12L)&0xfffL)
245 #define ERR_GET_REASON(l) (int)((l)&0xfffL)
246 #define ERR_FATAL_ERROR(l) (int)((l)&ERR_R_FATAL)

249 /* OS functions */
250 #define SYS_F_FOPEN 1
251 #define SYS_F_CONNECT 2
252 #define SYS_F_GETSERVBYNAME 3
253 #define SYS_F_SOCKET 4
254 #define SYS_F_IOCTLSOCKET 5
255 #define SYS_F_BIND 6
256 #define SYS_F_LISTEN 7
257 #define SYS_F_ACCEPT 8
258 #define SYS_F_WSASTARTUP 9 /* Winsock stuff */
259 #define SYS_F_OPENDIR 10

new/usr/src/lib/openssl/include/openssl/err.h 5

260 #define SYS_F_FREAD 11

263 /* reasons */
264 #define ERR_R_SYS_LIB ERR_LIB_SYS /* 2 */
265 #define ERR_R_BN_LIB ERR_LIB_BN /* 3 */
266 #define ERR_R_RSA_LIB ERR_LIB_RSA /* 4 */
267 #define ERR_R_DH_LIB ERR_LIB_DH /* 5 */
268 #define ERR_R_EVP_LIB ERR_LIB_EVP /* 6 */
269 #define ERR_R_BUF_LIB ERR_LIB_BUF /* 7 */
270 #define ERR_R_OBJ_LIB ERR_LIB_OBJ /* 8 */
271 #define ERR_R_PEM_LIB ERR_LIB_PEM /* 9 */
272 #define ERR_R_DSA_LIB ERR_LIB_DSA /* 10 */
273 #define ERR_R_X509_LIB ERR_LIB_X509 /* 11 */
274 #define ERR_R_ASN1_LIB ERR_LIB_ASN1 /* 13 */
275 #define ERR_R_CONF_LIB ERR_LIB_CONF /* 14 */
276 #define ERR_R_CRYPTO_LIB ERR_LIB_CRYPTO /* 15 */
277 #define ERR_R_EC_LIB ERR_LIB_EC /* 16 */
278 #define ERR_R_SSL_LIB ERR_LIB_SSL /* 20 */
279 #define ERR_R_BIO_LIB ERR_LIB_BIO /* 32 */
280 #define ERR_R_PKCS7_LIB ERR_LIB_PKCS7 /* 33 */
281 #define ERR_R_X509V3_LIB ERR_LIB_X509V3 /* 34 */
282 #define ERR_R_PKCS12_LIB ERR_LIB_PKCS12 /* 35 */
283 #define ERR_R_RAND_LIB ERR_LIB_RAND /* 36 */
284 #define ERR_R_DSO_LIB ERR_LIB_DSO /* 37 */
285 #define ERR_R_ENGINE_LIB ERR_LIB_ENGINE /* 38 */
286 #define ERR_R_OCSP_LIB ERR_LIB_OCSP /* 39 */
287 #define ERR_R_UI_LIB ERR_LIB_UI /* 40 */
288 #define ERR_R_COMP_LIB ERR_LIB_COMP /* 41 */
289 #define ERR_R_ECDSA_LIB ERR_LIB_ECDSA /* 42 */
290 #define ERR_R_ECDH_LIB ERR_LIB_ECDH /* 43 */
291 #define ERR_R_STORE_LIB ERR_LIB_STORE /* 44 */
292 #define ERR_R_TS_LIB ERR_LIB_TS /* 45 */

294 #define ERR_R_NESTED_ASN1_ERROR 58
295 #define ERR_R_BAD_ASN1_OBJECT_HEADER 59
296 #define ERR_R_BAD_GET_ASN1_OBJECT_CALL 60
297 #define ERR_R_EXPECTING_AN_ASN1_SEQUENCE 61
298 #define ERR_R_ASN1_LENGTH_MISMATCH 62
299 #define ERR_R_MISSING_ASN1_EOS 63

301 /* fatal error */
302 #define ERR_R_FATAL 64
303 #define ERR_R_MALLOC_FAILURE (1|ERR_R_FATAL)
304 #define ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED (2|ERR_R_FATAL)
305 #define ERR_R_PASSED_NULL_PARAMETER (3|ERR_R_FATAL)
306 #define ERR_R_INTERNAL_ERROR (4|ERR_R_FATAL)
307 #define ERR_R_DISABLED (5|ERR_R_FATAL)

309 /* 99 is the maximum possible ERR_R_... code, higher values
310 * are reserved for the individual libraries */

313 typedef struct ERR_string_data_st
314 {
315 unsigned long error;
316 const char *string;
317 } ERR_STRING_DATA;

319 void ERR_put_error(int lib, int func,int reason,const char *file,int line);
320 void ERR_set_error_data(char *data,int flags);

322 unsigned long ERR_get_error(void);
323 unsigned long ERR_get_error_line(const char **file,int *line);
324 unsigned long ERR_get_error_line_data(const char **file,int *line,
325 const char **data, int *flags);

new/usr/src/lib/openssl/include/openssl/err.h 6

326 unsigned long ERR_peek_error(void);
327 unsigned long ERR_peek_error_line(const char **file,int *line);
328 unsigned long ERR_peek_error_line_data(const char **file,int *line,
329 const char **data,int *flags);
330 unsigned long ERR_peek_last_error(void);
331 unsigned long ERR_peek_last_error_line(const char **file,int *line);
332 unsigned long ERR_peek_last_error_line_data(const char **file,int *line,
333 const char **data,int *flags);
334 void ERR_clear_error(void);
335 char *ERR_error_string(unsigned long e,char *buf);
336 void ERR_error_string_n(unsigned long e, char *buf, size_t len);
337 const char *ERR_lib_error_string(unsigned long e);
338 const char *ERR_func_error_string(unsigned long e);
339 const char *ERR_reason_error_string(unsigned long e);
340 void ERR_print_errors_cb(int (*cb)(const char *str, size_t len, void *u),
341 void *u);
342 #ifndef OPENSSL_NO_FP_API
343 void ERR_print_errors_fp(FILE *fp);
344 #endif
345 #ifndef OPENSSL_NO_BIO
346 void ERR_print_errors(BIO *bp);
347 #endif
348 void ERR_add_error_data(int num, ...);
349 void ERR_add_error_vdata(int num, va_list args);
350 void ERR_load_strings(int lib,ERR_STRING_DATA str[]);
351 void ERR_unload_strings(int lib,ERR_STRING_DATA str[]);
352 void ERR_load_ERR_strings(void);
353 void ERR_load_crypto_strings(void);
354 void ERR_free_strings(void);

356 void ERR_remove_thread_state(const CRYPTO_THREADID *tid);
357 #ifndef OPENSSL_NO_DEPRECATED
358 void ERR_remove_state(unsigned long pid); /* if zero we look it up */
359 #endif
360 ERR_STATE *ERR_get_state(void);

362 #ifndef OPENSSL_NO_LHASH
363 LHASH_OF(ERR_STRING_DATA) *ERR_get_string_table(void);
364 LHASH_OF(ERR_STATE) *ERR_get_err_state_table(void);
365 void ERR_release_err_state_table(LHASH_OF(ERR_STATE) **hash);
366 #endif

368 int ERR_get_next_error_library(void);

370 int ERR_set_mark(void);
371 int ERR_pop_to_mark(void);

373 /* Already defined in ossl_typ.h */
374 /* typedef struct st_ERR_FNS ERR_FNS; */
375 /* An application can use this function and provide the return value to loaded
376 * modules that should use the application’s ERR state/functionality */
377 const ERR_FNS *ERR_get_implementation(void);
378 /* A loaded module should call this function prior to any ERR operations using
379 * the application’s "ERR_FNS". */
380 int ERR_set_implementation(const ERR_FNS *fns);

382 #ifdef __cplusplus
383 }
384 #endif

386 #endif

new/usr/src/lib/openssl/include/openssl/evp.h 1

**
 52791 Fri May 30 18:31:19 2014
new/usr/src/lib/openssl/include/openssl/evp.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/evp.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_ENVELOPE_H
60 #define HEADER_ENVELOPE_H

new/usr/src/lib/openssl/include/openssl/evp.h 2

62 #ifdef OPENSSL_ALGORITHM_DEFINES
63 # include <openssl/opensslconf.h>
64 #else
65 # define OPENSSL_ALGORITHM_DEFINES
66 # include <openssl/opensslconf.h>
67 # undef OPENSSL_ALGORITHM_DEFINES
68 #endif

70 #include <openssl/ossl_typ.h>

72 #include <openssl/symhacks.h>

74 #ifndef OPENSSL_NO_BIO
75 #include <openssl/bio.h>
76 #endif

78 /*
79 #define EVP_RC2_KEY_SIZE 16
80 #define EVP_RC4_KEY_SIZE 16
81 #define EVP_BLOWFISH_KEY_SIZE 16
82 #define EVP_CAST5_KEY_SIZE 16
83 #define EVP_RC5_32_12_16_KEY_SIZE 16
84 */
85 #define EVP_MAX_MD_SIZE 64 /* longest known is SHA512 */
86 #define EVP_MAX_KEY_LENGTH 64
87 #define EVP_MAX_IV_LENGTH 16
88 #define EVP_MAX_BLOCK_LENGTH 32

90 #define PKCS5_SALT_LEN 8
91 /* Default PKCS#5 iteration count */
92 #define PKCS5_DEFAULT_ITER 2048

94 #include <openssl/objects.h>

96 #define EVP_PK_RSA 0x0001
97 #define EVP_PK_DSA 0x0002
98 #define EVP_PK_DH 0x0004
99 #define EVP_PK_EC 0x0008
100 #define EVP_PKT_SIGN 0x0010
101 #define EVP_PKT_ENC 0x0020
102 #define EVP_PKT_EXCH 0x0040
103 #define EVP_PKS_RSA 0x0100
104 #define EVP_PKS_DSA 0x0200
105 #define EVP_PKS_EC 0x0400
106 #define EVP_PKT_EXP 0x1000 /* <= 512 bit key */

108 #define EVP_PKEY_NONE NID_undef
109 #define EVP_PKEY_RSA NID_rsaEncryption
110 #define EVP_PKEY_RSA2 NID_rsa
111 #define EVP_PKEY_DSA NID_dsa
112 #define EVP_PKEY_DSA1 NID_dsa_2
113 #define EVP_PKEY_DSA2 NID_dsaWithSHA
114 #define EVP_PKEY_DSA3 NID_dsaWithSHA1
115 #define EVP_PKEY_DSA4 NID_dsaWithSHA1_2
116 #define EVP_PKEY_DH NID_dhKeyAgreement
117 #define EVP_PKEY_EC NID_X9_62_id_ecPublicKey
118 #define EVP_PKEY_HMAC NID_hmac
119 #define EVP_PKEY_CMAC NID_cmac

121 #ifdef __cplusplus
122 extern "C" {
123 #endif

125 /* Type needs to be a bit field
126 * Sub-type needs to be for variations on the method, as in, can it do
127 * arbitrary encryption.... */

new/usr/src/lib/openssl/include/openssl/evp.h 3

128 struct evp_pkey_st
129 {
130 int type;
131 int save_type;
132 int references;
133 const EVP_PKEY_ASN1_METHOD *ameth;
134 ENGINE *engine;
135 union {
136 char *ptr;
137 #ifndef OPENSSL_NO_RSA
138 struct rsa_st *rsa; /* RSA */
139 #endif
140 #ifndef OPENSSL_NO_DSA
141 struct dsa_st *dsa; /* DSA */
142 #endif
143 #ifndef OPENSSL_NO_DH
144 struct dh_st *dh; /* DH */
145 #endif
146 #ifndef OPENSSL_NO_EC
147 struct ec_key_st *ec; /* ECC */
148 #endif
149 } pkey;
150 int save_parameters;
151 STACK_OF(X509_ATTRIBUTE) *attributes; /* [0] */
152 } /* EVP_PKEY */;

154 #define EVP_PKEY_MO_SIGN 0x0001
155 #define EVP_PKEY_MO_VERIFY 0x0002
156 #define EVP_PKEY_MO_ENCRYPT 0x0004
157 #define EVP_PKEY_MO_DECRYPT 0x0008

159 #ifndef EVP_MD
160 struct env_md_st
161 {
162 int type;
163 int pkey_type;
164 int md_size;
165 unsigned long flags;
166 int (*init)(EVP_MD_CTX *ctx);
167 int (*update)(EVP_MD_CTX *ctx,const void *data,size_t count);
168 int (*final)(EVP_MD_CTX *ctx,unsigned char *md);
169 int (*copy)(EVP_MD_CTX *to,const EVP_MD_CTX *from);
170 int (*cleanup)(EVP_MD_CTX *ctx);

172 /* FIXME: prototype these some day */
173 int (*sign)(int type, const unsigned char *m, unsigned int m_length,
174 unsigned char *sigret, unsigned int *siglen, void *key);
175 int (*verify)(int type, const unsigned char *m, unsigned int m_length,
176 const unsigned char *sigbuf, unsigned int siglen,
177 void *key);
178 int required_pkey_type[5]; /*EVP_PKEY_xxx */
179 int block_size;
180 int ctx_size; /* how big does the ctx->md_data need to be */
181 /* control function */
182 int (*md_ctrl)(EVP_MD_CTX *ctx, int cmd, int p1, void *p2);
183 } /* EVP_MD */;

185 typedef int evp_sign_method(int type,const unsigned char *m,
186 unsigned int m_length,unsigned char *sigret,
187 unsigned int *siglen, void *key);
188 typedef int evp_verify_method(int type,const unsigned char *m,
189 unsigned int m_length,const unsigned char *sigbuf,
190 unsigned int siglen, void *key);

192 #define EVP_MD_FLAG_ONESHOT 0x0001 /* digest can only handle a single
193 * block */

new/usr/src/lib/openssl/include/openssl/evp.h 4

195 #define EVP_MD_FLAG_PKEY_DIGEST 0x0002 /* digest is a "clone" digest used
196 * which is a copy of an existing
197 * one for a specific public key type.
198 * EVP_dss1() etc */

200 /* Digest uses EVP_PKEY_METHOD for signing instead of MD specific signing */

202 #define EVP_MD_FLAG_PKEY_METHOD_SIGNATURE 0x0004

204 /* DigestAlgorithmIdentifier flags... */

206 #define EVP_MD_FLAG_DIGALGID_MASK 0x0018

208 /* NULL or absent parameter accepted. Use NULL */

210 #define EVP_MD_FLAG_DIGALGID_NULL 0x0000

212 /* NULL or absent parameter accepted. Use NULL for PKCS#1 otherwise absent */

214 #define EVP_MD_FLAG_DIGALGID_ABSENT 0x0008

216 /* Custom handling via ctrl */

218 #define EVP_MD_FLAG_DIGALGID_CUSTOM 0x0018

220 #define EVP_MD_FLAG_FIPS 0x0400 /* Note if suitable for use in FIPS mode

222 /* Digest ctrls */

224 #define EVP_MD_CTRL_DIGALGID 0x1
225 #define EVP_MD_CTRL_MICALG 0x2

227 /* Minimum Algorithm specific ctrl value */

229 #define EVP_MD_CTRL_ALG_CTRL 0x1000

231 #define EVP_PKEY_NULL_method NULL,NULL,{0,0,0,0}

233 #ifndef OPENSSL_NO_DSA
234 #define EVP_PKEY_DSA_method (evp_sign_method *)DSA_sign, \
235 (evp_verify_method *)DSA_verify, \
236 {EVP_PKEY_DSA,EVP_PKEY_DSA2,EVP_PKEY_DSA3, \
237 EVP_PKEY_DSA4,0}
238 #else
239 #define EVP_PKEY_DSA_method EVP_PKEY_NULL_method
240 #endif

242 #ifndef OPENSSL_NO_ECDSA
243 #define EVP_PKEY_ECDSA_method (evp_sign_method *)ECDSA_sign, \
244 (evp_verify_method *)ECDSA_verify, \
245 {EVP_PKEY_EC,0,0,0}
246 #else
247 #define EVP_PKEY_ECDSA_method EVP_PKEY_NULL_method
248 #endif

250 #ifndef OPENSSL_NO_RSA
251 #define EVP_PKEY_RSA_method (evp_sign_method *)RSA_sign, \
252 (evp_verify_method *)RSA_verify, \
253 {EVP_PKEY_RSA,EVP_PKEY_RSA2,0,0}
254 #define EVP_PKEY_RSA_ASN1_OCTET_STRING_method \
255 (evp_sign_method *)RSA_sign_ASN1_OCTET_STRING, \
256 (evp_verify_method *)RSA_verify_ASN1_OCTET_STRIN
257 {EVP_PKEY_RSA,EVP_PKEY_RSA2,0,0}
258 #else
259 #define EVP_PKEY_RSA_method EVP_PKEY_NULL_method

new/usr/src/lib/openssl/include/openssl/evp.h 5

260 #define EVP_PKEY_RSA_ASN1_OCTET_STRING_method EVP_PKEY_NULL_method
261 #endif

263 #endif /* !EVP_MD */

265 struct env_md_ctx_st
266 {
267 const EVP_MD *digest;
268 ENGINE *engine; /* functional reference if ’digest’ is ENGINE-provided *
269 unsigned long flags;
270 void *md_data;
271 /* Public key context for sign/verify */
272 EVP_PKEY_CTX *pctx;
273 /* Update function: usually copied from EVP_MD */
274 int (*update)(EVP_MD_CTX *ctx,const void *data,size_t count);
275 } /* EVP_MD_CTX */;

277 /* values for EVP_MD_CTX flags */

279 #define EVP_MD_CTX_FLAG_ONESHOT 0x0001 /* digest update will be called
280 * once only */
281 #define EVP_MD_CTX_FLAG_CLEANED 0x0002 /* context has already been
282 * cleaned */
283 #define EVP_MD_CTX_FLAG_REUSE 0x0004 /* Don’t free up ctx->md_data
284 * in EVP_MD_CTX_cleanup */
285 /* FIPS and pad options are ignored in 1.0.0, definitions are here
286 * so we don’t accidentally reuse the values for other purposes.
287 */

289 #define EVP_MD_CTX_FLAG_NON_FIPS_ALLOW 0x0008 /* Allow use of non FIPS digest
290 * in FIPS mode */

292 /* The following PAD options are also currently ignored in 1.0.0, digest
293 * parameters are handled through EVP_DigestSign*() and EVP_DigestVerify*()
294 * instead.
295 */
296 #define EVP_MD_CTX_FLAG_PAD_MASK 0xF0 /* RSA mode to use */
297 #define EVP_MD_CTX_FLAG_PAD_PKCS1 0x00 /* PKCS#1 v1.5 mode */
298 #define EVP_MD_CTX_FLAG_PAD_X931 0x10 /* X9.31 mode */
299 #define EVP_MD_CTX_FLAG_PAD_PSS 0x20 /* PSS mode */

301 #define EVP_MD_CTX_FLAG_NO_INIT 0x0100 /* Don’t initialize md_data */

303 struct evp_cipher_st
304 {
305 int nid;
306 int block_size;
307 int key_len; /* Default value for variable length ciphers */
308 int iv_len;
309 unsigned long flags; /* Various flags */
310 int (*init)(EVP_CIPHER_CTX *ctx, const unsigned char *key,
311 const unsigned char *iv, int enc); /* init key */
312 int (*do_cipher)(EVP_CIPHER_CTX *ctx, unsigned char *out,
313 const unsigned char *in, size_t inl);/* encrypt/decrypt
314 int (*cleanup)(EVP_CIPHER_CTX *); /* cleanup ctx */
315 int ctx_size; /* how big ctx->cipher_data needs to be */
316 int (*set_asn1_parameters)(EVP_CIPHER_CTX *, ASN1_TYPE *); /* Populate a
317 int (*get_asn1_parameters)(EVP_CIPHER_CTX *, ASN1_TYPE *); /* Get parame
318 int (*ctrl)(EVP_CIPHER_CTX *, int type, int arg, void *ptr); /* Miscella
319 void *app_data; /* Application data */
320 } /* EVP_CIPHER */;

322 /* Values for cipher flags */

324 /* Modes for ciphers */

new/usr/src/lib/openssl/include/openssl/evp.h 6

326 #define EVP_CIPH_STREAM_CIPHER 0x0
327 #define EVP_CIPH_ECB_MODE 0x1
328 #define EVP_CIPH_CBC_MODE 0x2
329 #define EVP_CIPH_CFB_MODE 0x3
330 #define EVP_CIPH_OFB_MODE 0x4
331 #define EVP_CIPH_CTR_MODE 0x5
332 #define EVP_CIPH_GCM_MODE 0x6
333 #define EVP_CIPH_CCM_MODE 0x7
334 #define EVP_CIPH_XTS_MODE 0x10001
335 #define EVP_CIPH_MODE 0xF0007
336 /* Set if variable length cipher */
337 #define EVP_CIPH_VARIABLE_LENGTH 0x8
338 /* Set if the iv handling should be done by the cipher itself */
339 #define EVP_CIPH_CUSTOM_IV 0x10
340 /* Set if the cipher’s init() function should be called if key is NULL */
341 #define EVP_CIPH_ALWAYS_CALL_INIT 0x20
342 /* Call ctrl() to init cipher parameters */
343 #define EVP_CIPH_CTRL_INIT 0x40
344 /* Don’t use standard key length function */
345 #define EVP_CIPH_CUSTOM_KEY_LENGTH 0x80
346 /* Don’t use standard block padding */
347 #define EVP_CIPH_NO_PADDING 0x100
348 /* cipher handles random key generation */
349 #define EVP_CIPH_RAND_KEY 0x200
350 /* cipher has its own additional copying logic */
351 #define EVP_CIPH_CUSTOM_COPY 0x400
352 /* Allow use default ASN1 get/set iv */
353 #define EVP_CIPH_FLAG_DEFAULT_ASN1 0x1000
354 /* Buffer length in bits not bytes: CFB1 mode only */
355 #define EVP_CIPH_FLAG_LENGTH_BITS 0x2000
356 /* Note if suitable for use in FIPS mode */
357 #define EVP_CIPH_FLAG_FIPS 0x4000
358 /* Allow non FIPS cipher in FIPS mode */
359 #define EVP_CIPH_FLAG_NON_FIPS_ALLOW 0x8000
360 /* Cipher handles any and all padding logic as well
361 * as finalisation.
362 */
363 #define EVP_CIPH_FLAG_CUSTOM_CIPHER 0x100000
364 #define EVP_CIPH_FLAG_AEAD_CIPHER 0x200000

366 /* ctrl() values */

368 #define EVP_CTRL_INIT 0x0
369 #define EVP_CTRL_SET_KEY_LENGTH 0x1
370 #define EVP_CTRL_GET_RC2_KEY_BITS 0x2
371 #define EVP_CTRL_SET_RC2_KEY_BITS 0x3
372 #define EVP_CTRL_GET_RC5_ROUNDS 0x4
373 #define EVP_CTRL_SET_RC5_ROUNDS 0x5
374 #define EVP_CTRL_RAND_KEY 0x6
375 #define EVP_CTRL_PBE_PRF_NID 0x7
376 #define EVP_CTRL_COPY 0x8
377 #define EVP_CTRL_GCM_SET_IVLEN 0x9
378 #define EVP_CTRL_GCM_GET_TAG 0x10
379 #define EVP_CTRL_GCM_SET_TAG 0x11
380 #define EVP_CTRL_GCM_SET_IV_FIXED 0x12
381 #define EVP_CTRL_GCM_IV_GEN 0x13
382 #define EVP_CTRL_CCM_SET_IVLEN EVP_CTRL_GCM_SET_IVLEN
383 #define EVP_CTRL_CCM_GET_TAG EVP_CTRL_GCM_GET_TAG
384 #define EVP_CTRL_CCM_SET_TAG EVP_CTRL_GCM_SET_TAG
385 #define EVP_CTRL_CCM_SET_L 0x14
386 #define EVP_CTRL_CCM_SET_MSGLEN 0x15
387 /* AEAD cipher deduces payload length and returns number of bytes
388 * required to store MAC and eventual padding. Subsequent call to
389 * EVP_Cipher even appends/verifies MAC.
390 */
391 #define EVP_CTRL_AEAD_TLS1_AAD 0x16

new/usr/src/lib/openssl/include/openssl/evp.h 7

392 /* Used by composite AEAD ciphers, no-op in GCM, CCM... */
393 #define EVP_CTRL_AEAD_SET_MAC_KEY 0x17
394 /* Set the GCM invocation field, decrypt only */
395 #define EVP_CTRL_GCM_SET_IV_INV 0x18

397 /* GCM TLS constants */
398 /* Length of fixed part of IV derived from PRF */
399 #define EVP_GCM_TLS_FIXED_IV_LEN 4
400 /* Length of explicit part of IV part of TLS records */
401 #define EVP_GCM_TLS_EXPLICIT_IV_LEN 8
402 /* Length of tag for TLS */
403 #define EVP_GCM_TLS_TAG_LEN 16

405 typedef struct evp_cipher_info_st
406 {
407 const EVP_CIPHER *cipher;
408 unsigned char iv[EVP_MAX_IV_LENGTH];
409 } EVP_CIPHER_INFO;

411 struct evp_cipher_ctx_st
412 {
413 const EVP_CIPHER *cipher;
414 ENGINE *engine; /* functional reference if ’cipher’ is ENGINE-provided *
415 int encrypt; /* encrypt or decrypt */
416 int buf_len; /* number we have left */

418 unsigned char oiv[EVP_MAX_IV_LENGTH]; /* original iv */
419 unsigned char iv[EVP_MAX_IV_LENGTH]; /* working iv */
420 unsigned char buf[EVP_MAX_BLOCK_LENGTH];/* saved partial block */
421 int num; /* used by cfb/ofb/ctr mode */

423 void *app_data; /* application stuff */
424 int key_len; /* May change for variable length cipher */
425 unsigned long flags; /* Various flags */
426 void *cipher_data; /* per EVP data */
427 int final_used;
428 int block_mask;
429 unsigned char final[EVP_MAX_BLOCK_LENGTH];/* possible final block */
430 } /* EVP_CIPHER_CTX */;

432 typedef struct evp_Encode_Ctx_st
433 {
434 int num; /* number saved in a partial encode/decode */
435 int length; /* The length is either the output line length
436 * (in input bytes) or the shortest input line
437 * length that is ok. Once decoding begins,
438 * the length is adjusted up each time a longer
439 * line is decoded */
440 unsigned char enc_data[80]; /* data to encode */
441 int line_num; /* number read on current line */
442 int expect_nl;
443 } EVP_ENCODE_CTX;

445 /* Password based encryption function */
446 typedef int (EVP_PBE_KEYGEN)(EVP_CIPHER_CTX *ctx, const char *pass, int passlen,
447 ASN1_TYPE *param, const EVP_CIPHER *cipher,
448 const EVP_MD *md, int en_de);

450 #ifndef OPENSSL_NO_RSA
451 #define EVP_PKEY_assign_RSA(pkey,rsa) EVP_PKEY_assign((pkey),EVP_PKEY_RSA,\
452 (char *)(rsa))
453 #endif

455 #ifndef OPENSSL_NO_DSA
456 #define EVP_PKEY_assign_DSA(pkey,dsa) EVP_PKEY_assign((pkey),EVP_PKEY_DSA,\
457 (char *)(dsa))

new/usr/src/lib/openssl/include/openssl/evp.h 8

458 #endif

460 #ifndef OPENSSL_NO_DH
461 #define EVP_PKEY_assign_DH(pkey,dh) EVP_PKEY_assign((pkey),EVP_PKEY_DH,\
462 (char *)(dh))
463 #endif

465 #ifndef OPENSSL_NO_EC
466 #define EVP_PKEY_assign_EC_KEY(pkey,eckey) EVP_PKEY_assign((pkey),EVP_PKEY_EC,\
467 (char *)(eckey))
468 #endif

470 /* Add some extra combinations */
471 #define EVP_get_digestbynid(a) EVP_get_digestbyname(OBJ_nid2sn(a))
472 #define EVP_get_digestbyobj(a) EVP_get_digestbynid(OBJ_obj2nid(a))
473 #define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a))
474 #define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a))

476 int EVP_MD_type(const EVP_MD *md);
477 #define EVP_MD_nid(e) EVP_MD_type(e)
478 #define EVP_MD_name(e) OBJ_nid2sn(EVP_MD_nid(e))
479 int EVP_MD_pkey_type(const EVP_MD *md);
480 int EVP_MD_size(const EVP_MD *md);
481 int EVP_MD_block_size(const EVP_MD *md);
482 unsigned long EVP_MD_flags(const EVP_MD *md);

484 const EVP_MD *EVP_MD_CTX_md(const EVP_MD_CTX *ctx);
485 #define EVP_MD_CTX_size(e) EVP_MD_size(EVP_MD_CTX_md(e))
486 #define EVP_MD_CTX_block_size(e) EVP_MD_block_size(EVP_MD_CTX_md(e))
487 #define EVP_MD_CTX_type(e) EVP_MD_type(EVP_MD_CTX_md(e))

489 int EVP_CIPHER_nid(const EVP_CIPHER *cipher);
490 #define EVP_CIPHER_name(e) OBJ_nid2sn(EVP_CIPHER_nid(e))
491 int EVP_CIPHER_block_size(const EVP_CIPHER *cipher);
492 int EVP_CIPHER_key_length(const EVP_CIPHER *cipher);
493 int EVP_CIPHER_iv_length(const EVP_CIPHER *cipher);
494 unsigned long EVP_CIPHER_flags(const EVP_CIPHER *cipher);
495 #define EVP_CIPHER_mode(e) (EVP_CIPHER_flags(e) & EVP_CIPH_MODE)

497 const EVP_CIPHER * EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx);
498 int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx);
499 int EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx);
500 int EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx);
501 int EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx);
502 int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in);
503 void * EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx);
504 void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data);
505 #define EVP_CIPHER_CTX_type(c) EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c))
506 unsigned long EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx);
507 #define EVP_CIPHER_CTX_mode(e) (EVP_CIPHER_CTX_flags(e) & EVP_CIPH_MODE

509 #define EVP_ENCODE_LENGTH(l) (((l+2)/3*4)+(l/48+1)*2+80)
510 #define EVP_DECODE_LENGTH(l) ((l+3)/4*3+80)

512 #define EVP_SignInit_ex(a,b,c) EVP_DigestInit_ex(a,b,c)
513 #define EVP_SignInit(a,b) EVP_DigestInit(a,b)
514 #define EVP_SignUpdate(a,b,c) EVP_DigestUpdate(a,b,c)
515 #define EVP_VerifyInit_ex(a,b,c) EVP_DigestInit_ex(a,b,c)
516 #define EVP_VerifyInit(a,b) EVP_DigestInit(a,b)
517 #define EVP_VerifyUpdate(a,b,c) EVP_DigestUpdate(a,b,c)
518 #define EVP_OpenUpdate(a,b,c,d,e) EVP_DecryptUpdate(a,b,c,d,e)
519 #define EVP_SealUpdate(a,b,c,d,e) EVP_EncryptUpdate(a,b,c,d,e)
520 #define EVP_DigestSignUpdate(a,b,c) EVP_DigestUpdate(a,b,c)
521 #define EVP_DigestVerifyUpdate(a,b,c) EVP_DigestUpdate(a,b,c)

523 #ifdef CONST_STRICT

new/usr/src/lib/openssl/include/openssl/evp.h 9

524 void BIO_set_md(BIO *,const EVP_MD *md);
525 #else
526 # define BIO_set_md(b,md) BIO_ctrl(b,BIO_C_SET_MD,0,(char *)md)
527 #endif
528 #define BIO_get_md(b,mdp) BIO_ctrl(b,BIO_C_GET_MD,0,(char *)mdp)
529 #define BIO_get_md_ctx(b,mdcp) BIO_ctrl(b,BIO_C_GET_MD_CTX,0,(char *)mdcp)
530 #define BIO_set_md_ctx(b,mdcp) BIO_ctrl(b,BIO_C_SET_MD_CTX,0,(char *)mdcp)
531 #define BIO_get_cipher_status(b) BIO_ctrl(b,BIO_C_GET_CIPHER_STATUS,0,NUL
532 #define BIO_get_cipher_ctx(b,c_pp) BIO_ctrl(b,BIO_C_GET_CIPHER_CTX,0,(char

534 int EVP_Cipher(EVP_CIPHER_CTX *c,
535 unsigned char *out,
536 const unsigned char *in,
537 unsigned int inl);

539 #define EVP_add_cipher_alias(n,alias) \
540 OBJ_NAME_add((alias),OBJ_NAME_TYPE_CIPHER_METH|OBJ_NAME_ALIAS,(n))
541 #define EVP_add_digest_alias(n,alias) \
542 OBJ_NAME_add((alias),OBJ_NAME_TYPE_MD_METH|OBJ_NAME_ALIAS,(n))
543 #define EVP_delete_cipher_alias(alias) \
544 OBJ_NAME_remove(alias,OBJ_NAME_TYPE_CIPHER_METH|OBJ_NAME_ALIAS);
545 #define EVP_delete_digest_alias(alias) \
546 OBJ_NAME_remove(alias,OBJ_NAME_TYPE_MD_METH|OBJ_NAME_ALIAS);

548 void EVP_MD_CTX_init(EVP_MD_CTX *ctx);
549 int EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx);
550 EVP_MD_CTX *EVP_MD_CTX_create(void);
551 void EVP_MD_CTX_destroy(EVP_MD_CTX *ctx);
552 int EVP_MD_CTX_copy_ex(EVP_MD_CTX *out,const EVP_MD_CTX *in);
553 void EVP_MD_CTX_set_flags(EVP_MD_CTX *ctx, int flags);
554 void EVP_MD_CTX_clear_flags(EVP_MD_CTX *ctx, int flags);
555 int EVP_MD_CTX_test_flags(const EVP_MD_CTX *ctx,int flags);
556 int EVP_DigestInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
557 int EVP_DigestUpdate(EVP_MD_CTX *ctx,const void *d,
558 size_t cnt);
559 int EVP_DigestFinal_ex(EVP_MD_CTX *ctx,unsigned char *md,unsigned int *s);
560 int EVP_Digest(const void *data, size_t count,
561 unsigned char *md, unsigned int *size, const EVP_MD *type, ENGIN

563 int EVP_MD_CTX_copy(EVP_MD_CTX *out,const EVP_MD_CTX *in);
564 int EVP_DigestInit(EVP_MD_CTX *ctx, const EVP_MD *type);
565 int EVP_DigestFinal(EVP_MD_CTX *ctx,unsigned char *md,unsigned int *s);

567 int EVP_read_pw_string(char *buf,int length,const char *prompt,int verify);
568 int EVP_read_pw_string_min(char *buf,int minlen,int maxlen,const char *promp
569 void EVP_set_pw_prompt(const char *prompt);
570 char * EVP_get_pw_prompt(void);

572 int EVP_BytesToKey(const EVP_CIPHER *type,const EVP_MD *md,
573 const unsigned char *salt, const unsigned char *data,
574 int datal, int count, unsigned char *key,unsigned char *iv);

576 void EVP_CIPHER_CTX_set_flags(EVP_CIPHER_CTX *ctx, int flags);
577 void EVP_CIPHER_CTX_clear_flags(EVP_CIPHER_CTX *ctx, int flags);
578 int EVP_CIPHER_CTX_test_flags(const EVP_CIPHER_CTX *ctx,int flags);

580 int EVP_EncryptInit(EVP_CIPHER_CTX *ctx,const EVP_CIPHER *cipher,
581 const unsigned char *key, const unsigned char *iv);
582 int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx,const EVP_CIPHER *cipher, ENGINE
583 const unsigned char *key, const unsigned char *iv);
584 int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
585 int *outl, const unsigned char *in, int inl);
586 int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);
587 int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);

589 int EVP_DecryptInit(EVP_CIPHER_CTX *ctx,const EVP_CIPHER *cipher,

new/usr/src/lib/openssl/include/openssl/evp.h 10

590 const unsigned char *key, const unsigned char *iv);
591 int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx,const EVP_CIPHER *cipher, ENGINE
592 const unsigned char *key, const unsigned char *iv);
593 int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
594 int *outl, const unsigned char *in, int inl);
595 int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);
596 int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl)

598 int EVP_CipherInit(EVP_CIPHER_CTX *ctx,const EVP_CIPHER *cipher,
599 const unsigned char *key,const unsigned char *iv,
600 int enc);
601 int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx,const EVP_CIPHER *cipher, ENGINE *
602 const unsigned char *key,const unsigned char *iv,
603 int enc);
604 int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
605 int *outl, const unsigned char *in, int inl);
606 int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);
607 int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);

609 int EVP_SignFinal(EVP_MD_CTX *ctx,unsigned char *md,unsigned int *s,
610 EVP_PKEY *pkey);

612 int EVP_VerifyFinal(EVP_MD_CTX *ctx,const unsigned char *sigbuf,
613 unsigned int siglen,EVP_PKEY *pkey);

615 int EVP_DigestSignInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx,
616 const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey);
617 int EVP_DigestSignFinal(EVP_MD_CTX *ctx,
618 unsigned char *sigret, size_t *siglen);

620 int EVP_DigestVerifyInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx,
621 const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey);
622 int EVP_DigestVerifyFinal(EVP_MD_CTX *ctx,
623 unsigned char *sig, size_t siglen);

625 int EVP_OpenInit(EVP_CIPHER_CTX *ctx,const EVP_CIPHER *type,
626 const unsigned char *ek, int ekl, const unsigned char *iv,
627 EVP_PKEY *priv);
628 int EVP_OpenFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);

630 int EVP_SealInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
631 unsigned char **ek, int *ekl, unsigned char *iv,
632 EVP_PKEY **pubk, int npubk);
633 int EVP_SealFinal(EVP_CIPHER_CTX *ctx,unsigned char *out,int *outl);

635 void EVP_EncodeInit(EVP_ENCODE_CTX *ctx);
636 void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx,unsigned char *out,int *outl,
637 const unsigned char *in,int inl);
638 void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx,unsigned char *out,int *outl);
639 int EVP_EncodeBlock(unsigned char *t, const unsigned char *f, int n);

641 void EVP_DecodeInit(EVP_ENCODE_CTX *ctx);
642 int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx,unsigned char *out,int *outl,
643 const unsigned char *in, int inl);
644 int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, unsigned
645 char *out, int *outl);
646 int EVP_DecodeBlock(unsigned char *t, const unsigned char *f, int n);

648 void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *a);
649 int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *a);
650 EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void);
651 void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *a);
652 int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
653 int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *c, int pad);
654 int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
655 int EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, unsigned char *key);

new/usr/src/lib/openssl/include/openssl/evp.h 11

657 #ifndef OPENSSL_NO_BIO
658 BIO_METHOD *BIO_f_md(void);
659 BIO_METHOD *BIO_f_base64(void);
660 BIO_METHOD *BIO_f_cipher(void);
661 BIO_METHOD *BIO_f_reliable(void);
662 void BIO_set_cipher(BIO *b,const EVP_CIPHER *c,const unsigned char *k,
663 const unsigned char *i, int enc);
664 #endif

666 const EVP_MD *EVP_md_null(void);
667 #ifndef OPENSSL_NO_MD2
668 const EVP_MD *EVP_md2(void);
669 #endif
670 #ifndef OPENSSL_NO_MD4
671 const EVP_MD *EVP_md4(void);
672 #endif
673 #ifndef OPENSSL_NO_MD5
674 const EVP_MD *EVP_md5(void);
675 #endif
676 #ifndef OPENSSL_NO_SHA
677 const EVP_MD *EVP_sha(void);
678 const EVP_MD *EVP_sha1(void);
679 const EVP_MD *EVP_dss(void);
680 const EVP_MD *EVP_dss1(void);
681 const EVP_MD *EVP_ecdsa(void);
682 #endif
683 #ifndef OPENSSL_NO_SHA256
684 const EVP_MD *EVP_sha224(void);
685 const EVP_MD *EVP_sha256(void);
686 #endif
687 #ifndef OPENSSL_NO_SHA512
688 const EVP_MD *EVP_sha384(void);
689 const EVP_MD *EVP_sha512(void);
690 #endif
691 #ifndef OPENSSL_NO_MDC2
692 const EVP_MD *EVP_mdc2(void);
693 #endif
694 #ifndef OPENSSL_NO_RIPEMD
695 const EVP_MD *EVP_ripemd160(void);
696 #endif
697 #ifndef OPENSSL_NO_WHIRLPOOL
698 const EVP_MD *EVP_whirlpool(void);
699 #endif
700 const EVP_CIPHER *EVP_enc_null(void); /* does nothing :-) */
701 #ifndef OPENSSL_NO_DES
702 const EVP_CIPHER *EVP_des_ecb(void);
703 const EVP_CIPHER *EVP_des_ede(void);
704 const EVP_CIPHER *EVP_des_ede3(void);
705 const EVP_CIPHER *EVP_des_ede_ecb(void);
706 const EVP_CIPHER *EVP_des_ede3_ecb(void);
707 const EVP_CIPHER *EVP_des_cfb64(void);
708 # define EVP_des_cfb EVP_des_cfb64
709 const EVP_CIPHER *EVP_des_cfb1(void);
710 const EVP_CIPHER *EVP_des_cfb8(void);
711 const EVP_CIPHER *EVP_des_ede_cfb64(void);
712 # define EVP_des_ede_cfb EVP_des_ede_cfb64
713 #if 0
714 const EVP_CIPHER *EVP_des_ede_cfb1(void);
715 const EVP_CIPHER *EVP_des_ede_cfb8(void);
716 #endif
717 const EVP_CIPHER *EVP_des_ede3_cfb64(void);
718 # define EVP_des_ede3_cfb EVP_des_ede3_cfb64
719 const EVP_CIPHER *EVP_des_ede3_cfb1(void);
720 const EVP_CIPHER *EVP_des_ede3_cfb8(void);
721 const EVP_CIPHER *EVP_des_ofb(void);

new/usr/src/lib/openssl/include/openssl/evp.h 12

722 const EVP_CIPHER *EVP_des_ede_ofb(void);
723 const EVP_CIPHER *EVP_des_ede3_ofb(void);
724 const EVP_CIPHER *EVP_des_cbc(void);
725 const EVP_CIPHER *EVP_des_ede_cbc(void);
726 const EVP_CIPHER *EVP_des_ede3_cbc(void);
727 const EVP_CIPHER *EVP_desx_cbc(void);
728 /* This should now be supported through the dev_crypto ENGINE. But also, why are
729 * rc4 and md5 declarations made here inside a "NO_DES" precompiler branch? */
730 #if 0
731 # ifdef OPENSSL_OPENBSD_DEV_CRYPTO
732 const EVP_CIPHER *EVP_dev_crypto_des_ede3_cbc(void);
733 const EVP_CIPHER *EVP_dev_crypto_rc4(void);
734 const EVP_MD *EVP_dev_crypto_md5(void);
735 # endif
736 #endif
737 #endif
738 #ifndef OPENSSL_NO_RC4
739 const EVP_CIPHER *EVP_rc4(void);
740 const EVP_CIPHER *EVP_rc4_40(void);
741 #ifndef OPENSSL_NO_MD5
742 const EVP_CIPHER *EVP_rc4_hmac_md5(void);
743 #endif
744 #endif
745 #ifndef OPENSSL_NO_IDEA
746 const EVP_CIPHER *EVP_idea_ecb(void);
747 const EVP_CIPHER *EVP_idea_cfb64(void);
748 # define EVP_idea_cfb EVP_idea_cfb64
749 const EVP_CIPHER *EVP_idea_ofb(void);
750 const EVP_CIPHER *EVP_idea_cbc(void);
751 #endif
752 #ifndef OPENSSL_NO_RC2
753 const EVP_CIPHER *EVP_rc2_ecb(void);
754 const EVP_CIPHER *EVP_rc2_cbc(void);
755 const EVP_CIPHER *EVP_rc2_40_cbc(void);
756 const EVP_CIPHER *EVP_rc2_64_cbc(void);
757 const EVP_CIPHER *EVP_rc2_cfb64(void);
758 # define EVP_rc2_cfb EVP_rc2_cfb64
759 const EVP_CIPHER *EVP_rc2_ofb(void);
760 #endif
761 #ifndef OPENSSL_NO_BF
762 const EVP_CIPHER *EVP_bf_ecb(void);
763 const EVP_CIPHER *EVP_bf_cbc(void);
764 const EVP_CIPHER *EVP_bf_cfb64(void);
765 # define EVP_bf_cfb EVP_bf_cfb64
766 const EVP_CIPHER *EVP_bf_ofb(void);
767 #endif
768 #ifndef OPENSSL_NO_CAST
769 const EVP_CIPHER *EVP_cast5_ecb(void);
770 const EVP_CIPHER *EVP_cast5_cbc(void);
771 const EVP_CIPHER *EVP_cast5_cfb64(void);
772 # define EVP_cast5_cfb EVP_cast5_cfb64
773 const EVP_CIPHER *EVP_cast5_ofb(void);
774 #endif
775 #ifndef OPENSSL_NO_RC5
776 const EVP_CIPHER *EVP_rc5_32_12_16_cbc(void);
777 const EVP_CIPHER *EVP_rc5_32_12_16_ecb(void);
778 const EVP_CIPHER *EVP_rc5_32_12_16_cfb64(void);
779 # define EVP_rc5_32_12_16_cfb EVP_rc5_32_12_16_cfb64
780 const EVP_CIPHER *EVP_rc5_32_12_16_ofb(void);
781 #endif
782 #ifndef OPENSSL_NO_AES
783 const EVP_CIPHER *EVP_aes_128_ecb(void);
784 const EVP_CIPHER *EVP_aes_128_cbc(void);
785 const EVP_CIPHER *EVP_aes_128_cfb1(void);
786 const EVP_CIPHER *EVP_aes_128_cfb8(void);
787 const EVP_CIPHER *EVP_aes_128_cfb128(void);

new/usr/src/lib/openssl/include/openssl/evp.h 13

788 # define EVP_aes_128_cfb EVP_aes_128_cfb128
789 const EVP_CIPHER *EVP_aes_128_ofb(void);
790 const EVP_CIPHER *EVP_aes_128_ctr(void);
791 const EVP_CIPHER *EVP_aes_128_ccm(void);
792 const EVP_CIPHER *EVP_aes_128_gcm(void);
793 const EVP_CIPHER *EVP_aes_128_xts(void);
794 const EVP_CIPHER *EVP_aes_192_ecb(void);
795 const EVP_CIPHER *EVP_aes_192_cbc(void);
796 const EVP_CIPHER *EVP_aes_192_cfb1(void);
797 const EVP_CIPHER *EVP_aes_192_cfb8(void);
798 const EVP_CIPHER *EVP_aes_192_cfb128(void);
799 # define EVP_aes_192_cfb EVP_aes_192_cfb128
800 const EVP_CIPHER *EVP_aes_192_ofb(void);
801 const EVP_CIPHER *EVP_aes_192_ctr(void);
802 const EVP_CIPHER *EVP_aes_192_ccm(void);
803 const EVP_CIPHER *EVP_aes_192_gcm(void);
804 const EVP_CIPHER *EVP_aes_256_ecb(void);
805 const EVP_CIPHER *EVP_aes_256_cbc(void);
806 const EVP_CIPHER *EVP_aes_256_cfb1(void);
807 const EVP_CIPHER *EVP_aes_256_cfb8(void);
808 const EVP_CIPHER *EVP_aes_256_cfb128(void);
809 # define EVP_aes_256_cfb EVP_aes_256_cfb128
810 const EVP_CIPHER *EVP_aes_256_ofb(void);
811 const EVP_CIPHER *EVP_aes_256_ctr(void);
812 const EVP_CIPHER *EVP_aes_256_ccm(void);
813 const EVP_CIPHER *EVP_aes_256_gcm(void);
814 const EVP_CIPHER *EVP_aes_256_xts(void);
815 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1)
816 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void);
817 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void);
818 #endif
819 #endif
820 #ifndef OPENSSL_NO_CAMELLIA
821 const EVP_CIPHER *EVP_camellia_128_ecb(void);
822 const EVP_CIPHER *EVP_camellia_128_cbc(void);
823 const EVP_CIPHER *EVP_camellia_128_cfb1(void);
824 const EVP_CIPHER *EVP_camellia_128_cfb8(void);
825 const EVP_CIPHER *EVP_camellia_128_cfb128(void);
826 # define EVP_camellia_128_cfb EVP_camellia_128_cfb128
827 const EVP_CIPHER *EVP_camellia_128_ofb(void);
828 const EVP_CIPHER *EVP_camellia_192_ecb(void);
829 const EVP_CIPHER *EVP_camellia_192_cbc(void);
830 const EVP_CIPHER *EVP_camellia_192_cfb1(void);
831 const EVP_CIPHER *EVP_camellia_192_cfb8(void);
832 const EVP_CIPHER *EVP_camellia_192_cfb128(void);
833 # define EVP_camellia_192_cfb EVP_camellia_192_cfb128
834 const EVP_CIPHER *EVP_camellia_192_ofb(void);
835 const EVP_CIPHER *EVP_camellia_256_ecb(void);
836 const EVP_CIPHER *EVP_camellia_256_cbc(void);
837 const EVP_CIPHER *EVP_camellia_256_cfb1(void);
838 const EVP_CIPHER *EVP_camellia_256_cfb8(void);
839 const EVP_CIPHER *EVP_camellia_256_cfb128(void);
840 # define EVP_camellia_256_cfb EVP_camellia_256_cfb128
841 const EVP_CIPHER *EVP_camellia_256_ofb(void);
842 #endif

844 #ifndef OPENSSL_NO_SEED
845 const EVP_CIPHER *EVP_seed_ecb(void);
846 const EVP_CIPHER *EVP_seed_cbc(void);
847 const EVP_CIPHER *EVP_seed_cfb128(void);
848 # define EVP_seed_cfb EVP_seed_cfb128
849 const EVP_CIPHER *EVP_seed_ofb(void);
850 #endif

852 void OPENSSL_add_all_algorithms_noconf(void);
853 void OPENSSL_add_all_algorithms_conf(void);

new/usr/src/lib/openssl/include/openssl/evp.h 14

855 #ifdef OPENSSL_LOAD_CONF
856 #define OpenSSL_add_all_algorithms() \
857 OPENSSL_add_all_algorithms_conf()
858 #else
859 #define OpenSSL_add_all_algorithms() \
860 OPENSSL_add_all_algorithms_noconf()
861 #endif

863 void OpenSSL_add_all_ciphers(void);
864 void OpenSSL_add_all_digests(void);
865 #define SSLeay_add_all_algorithms() OpenSSL_add_all_algorithms()
866 #define SSLeay_add_all_ciphers() OpenSSL_add_all_ciphers()
867 #define SSLeay_add_all_digests() OpenSSL_add_all_digests()

869 int EVP_add_cipher(const EVP_CIPHER *cipher);
870 int EVP_add_digest(const EVP_MD *digest);

872 const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
873 const EVP_MD *EVP_get_digestbyname(const char *name);
874 void EVP_cleanup(void);

876 void EVP_CIPHER_do_all(void (*fn)(const EVP_CIPHER *ciph,
877 const char *from, const char *to, void *x), void *arg);
878 void EVP_CIPHER_do_all_sorted(void (*fn)(const EVP_CIPHER *ciph,
879 const char *from, const char *to, void *x), void *arg);

881 void EVP_MD_do_all(void (*fn)(const EVP_MD *ciph,
882 const char *from, const char *to, void *x), void *arg);
883 void EVP_MD_do_all_sorted(void (*fn)(const EVP_MD *ciph,
884 const char *from, const char *to, void *x), void *arg);

886 int EVP_PKEY_decrypt_old(unsigned char *dec_key,
887 const unsigned char *enc_key,int enc_key_len,
888 EVP_PKEY *private_key);
889 int EVP_PKEY_encrypt_old(unsigned char *enc_key,
890 const unsigned char *key,int key_len,
891 EVP_PKEY *pub_key);
892 int EVP_PKEY_type(int type);
893 int EVP_PKEY_id(const EVP_PKEY *pkey);
894 int EVP_PKEY_base_id(const EVP_PKEY *pkey);
895 int EVP_PKEY_bits(EVP_PKEY *pkey);
896 int EVP_PKEY_size(EVP_PKEY *pkey);
897 int EVP_PKEY_set_type(EVP_PKEY *pkey,int type);
898 int EVP_PKEY_set_type_str(EVP_PKEY *pkey, const char *str, int len);
899 int EVP_PKEY_assign(EVP_PKEY *pkey,int type,void *key);
900 void * EVP_PKEY_get0(EVP_PKEY *pkey);

902 #ifndef OPENSSL_NO_RSA
903 struct rsa_st;
904 int EVP_PKEY_set1_RSA(EVP_PKEY *pkey,struct rsa_st *key);
905 struct rsa_st *EVP_PKEY_get1_RSA(EVP_PKEY *pkey);
906 #endif
907 #ifndef OPENSSL_NO_DSA
908 struct dsa_st;
909 int EVP_PKEY_set1_DSA(EVP_PKEY *pkey,struct dsa_st *key);
910 struct dsa_st *EVP_PKEY_get1_DSA(EVP_PKEY *pkey);
911 #endif
912 #ifndef OPENSSL_NO_DH
913 struct dh_st;
914 int EVP_PKEY_set1_DH(EVP_PKEY *pkey,struct dh_st *key);
915 struct dh_st *EVP_PKEY_get1_DH(EVP_PKEY *pkey);
916 #endif
917 #ifndef OPENSSL_NO_EC
918 struct ec_key_st;
919 int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey,struct ec_key_st *key);

new/usr/src/lib/openssl/include/openssl/evp.h 15

920 struct ec_key_st *EVP_PKEY_get1_EC_KEY(EVP_PKEY *pkey);
921 #endif

923 EVP_PKEY * EVP_PKEY_new(void);
924 void EVP_PKEY_free(EVP_PKEY *pkey);

926 EVP_PKEY * d2i_PublicKey(int type,EVP_PKEY **a, const unsigned char **pp,
927 long length);
928 int i2d_PublicKey(EVP_PKEY *a, unsigned char **pp);

930 EVP_PKEY * d2i_PrivateKey(int type,EVP_PKEY **a, const unsigned char **pp,
931 long length);
932 EVP_PKEY * d2i_AutoPrivateKey(EVP_PKEY **a, const unsigned char **pp,
933 long length);
934 int i2d_PrivateKey(EVP_PKEY *a, unsigned char **pp);

936 int EVP_PKEY_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from);
937 int EVP_PKEY_missing_parameters(const EVP_PKEY *pkey);
938 int EVP_PKEY_save_parameters(EVP_PKEY *pkey,int mode);
939 int EVP_PKEY_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b);

941 int EVP_PKEY_cmp(const EVP_PKEY *a, const EVP_PKEY *b);

943 int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey,
944 int indent, ASN1_PCTX *pctx);
945 int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey,
946 int indent, ASN1_PCTX *pctx);
947 int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey,
948 int indent, ASN1_PCTX *pctx);

950 int EVP_PKEY_get_default_digest_nid(EVP_PKEY *pkey, int *pnid);

952 int EVP_CIPHER_type(const EVP_CIPHER *ctx);

954 /* calls methods */
955 int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
956 int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);

958 /* These are used by EVP_CIPHER methods */
959 int EVP_CIPHER_set_asn1_iv(EVP_CIPHER_CTX *c,ASN1_TYPE *type);
960 int EVP_CIPHER_get_asn1_iv(EVP_CIPHER_CTX *c,ASN1_TYPE *type);

962 /* PKCS5 password based encryption */
963 int PKCS5_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen,
964 ASN1_TYPE *param, const EVP_CIPHER *cipher, const EVP_M
965 int en_de);
966 int PKCS5_PBKDF2_HMAC_SHA1(const char *pass, int passlen,
967 const unsigned char *salt, int saltlen, int iter,
968 int keylen, unsigned char *out);
969 int PKCS5_PBKDF2_HMAC(const char *pass, int passlen,
970 const unsigned char *salt, int saltlen, int iter,
971 const EVP_MD *digest,
972 int keylen, unsigned char *out);
973 int PKCS5_v2_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen,
974 ASN1_TYPE *param, const EVP_CIPHER *cipher, const EVP_M
975 int en_de);

977 void PKCS5_PBE_add(void);

979 int EVP_PBE_CipherInit (ASN1_OBJECT *pbe_obj, const char *pass, int passlen,
980 ASN1_TYPE *param, EVP_CIPHER_CTX *ctx, int en_de);

982 /* PBE type */

984 /* Can appear as the outermost AlgorithmIdentifier */
985 #define EVP_PBE_TYPE_OUTER 0x0

new/usr/src/lib/openssl/include/openssl/evp.h 16

986 /* Is an PRF type OID */
987 #define EVP_PBE_TYPE_PRF 0x1

989 int EVP_PBE_alg_add_type(int pbe_type, int pbe_nid, int cipher_nid, int md_nid,
990 EVP_PBE_KEYGEN *keygen);
991 int EVP_PBE_alg_add(int nid, const EVP_CIPHER *cipher, const EVP_MD *md,
992 EVP_PBE_KEYGEN *keygen);
993 int EVP_PBE_find(int type, int pbe_nid,
994 int *pcnid, int *pmnid, EVP_PBE_KEYGEN **pkeygen);
995 void EVP_PBE_cleanup(void);

997 #define ASN1_PKEY_ALIAS 0x1
998 #define ASN1_PKEY_DYNAMIC 0x2
999 #define ASN1_PKEY_SIGPARAM_NULL 0x4

1001 #define ASN1_PKEY_CTRL_PKCS7_SIGN 0x1
1002 #define ASN1_PKEY_CTRL_PKCS7_ENCRYPT 0x2
1003 #define ASN1_PKEY_CTRL_DEFAULT_MD_NID 0x3
1004 #define ASN1_PKEY_CTRL_CMS_SIGN 0x5
1005 #define ASN1_PKEY_CTRL_CMS_ENVELOPE 0x7

1007 int EVP_PKEY_asn1_get_count(void);
1008 const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_get0(int idx);
1009 const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_find(ENGINE **pe, int type);
1010 const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_find_str(ENGINE **pe,
1011 const char *str, int len);
1012 int EVP_PKEY_asn1_add0(const EVP_PKEY_ASN1_METHOD *ameth);
1013 int EVP_PKEY_asn1_add_alias(int to, int from);
1014 int EVP_PKEY_asn1_get0_info(int *ppkey_id, int *pkey_base_id, int *ppkey_flags,
1015 const char **pinfo, const char **ppem_str,
1016 const EVP_PKEY_ASN1_METHOD *ameth);

1018 const EVP_PKEY_ASN1_METHOD* EVP_PKEY_get0_asn1(EVP_PKEY *pkey);
1019 EVP_PKEY_ASN1_METHOD* EVP_PKEY_asn1_new(int id, int flags,
1020 const char *pem_str, const char *info);
1021 void EVP_PKEY_asn1_copy(EVP_PKEY_ASN1_METHOD *dst,
1022 const EVP_PKEY_ASN1_METHOD *src);
1023 void EVP_PKEY_asn1_free(EVP_PKEY_ASN1_METHOD *ameth);
1024 void EVP_PKEY_asn1_set_public(EVP_PKEY_ASN1_METHOD *ameth,
1025 int (*pub_decode)(EVP_PKEY *pk, X509_PUBKEY *pub),
1026 int (*pub_encode)(X509_PUBKEY *pub, const EVP_PKEY *pk),
1027 int (*pub_cmp)(const EVP_PKEY *a, const EVP_PKEY *b),
1028 int (*pub_print)(BIO *out, const EVP_PKEY *pkey, int indent,
1029 ASN1_PCTX *pctx),
1030 int (*pkey_size)(const EVP_PKEY *pk),
1031 int (*pkey_bits)(const EVP_PKEY *pk));
1032 void EVP_PKEY_asn1_set_private(EVP_PKEY_ASN1_METHOD *ameth,
1033 int (*priv_decode)(EVP_PKEY *pk, PKCS8_PRIV_KEY_INFO *p8inf),
1034 int (*priv_encode)(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pk),
1035 int (*priv_print)(BIO *out, const EVP_PKEY *pkey, int indent,
1036 ASN1_PCTX *pctx));
1037 void EVP_PKEY_asn1_set_param(EVP_PKEY_ASN1_METHOD *ameth,
1038 int (*param_decode)(EVP_PKEY *pkey,
1039 const unsigned char **pder, int derlen),
1040 int (*param_encode)(const EVP_PKEY *pkey, unsigned char **pder),
1041 int (*param_missing)(const EVP_PKEY *pk),
1042 int (*param_copy)(EVP_PKEY *to, const EVP_PKEY *from),
1043 int (*param_cmp)(const EVP_PKEY *a, const EVP_PKEY *b),
1044 int (*param_print)(BIO *out, const EVP_PKEY *pkey, int indent,
1045 ASN1_PCTX *pctx));

1047 void EVP_PKEY_asn1_set_free(EVP_PKEY_ASN1_METHOD *ameth,
1048 void (*pkey_free)(EVP_PKEY *pkey));
1049 void EVP_PKEY_asn1_set_ctrl(EVP_PKEY_ASN1_METHOD *ameth,
1050 int (*pkey_ctrl)(EVP_PKEY *pkey, int op,
1051 long arg1, void *arg2));

new/usr/src/lib/openssl/include/openssl/evp.h 17

1054 #define EVP_PKEY_OP_UNDEFINED 0
1055 #define EVP_PKEY_OP_PARAMGEN (1<<1)
1056 #define EVP_PKEY_OP_KEYGEN (1<<2)
1057 #define EVP_PKEY_OP_SIGN (1<<3)
1058 #define EVP_PKEY_OP_VERIFY (1<<4)
1059 #define EVP_PKEY_OP_VERIFYRECOVER (1<<5)
1060 #define EVP_PKEY_OP_SIGNCTX (1<<6)
1061 #define EVP_PKEY_OP_VERIFYCTX (1<<7)
1062 #define EVP_PKEY_OP_ENCRYPT (1<<8)
1063 #define EVP_PKEY_OP_DECRYPT (1<<9)
1064 #define EVP_PKEY_OP_DERIVE (1<<10)

1066 #define EVP_PKEY_OP_TYPE_SIG \
1067 (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY | EVP_PKEY_OP_VERIFYRECOVER \
1068 | EVP_PKEY_OP_SIGNCTX | EVP_PKEY_OP_VERIFYCTX)

1070 #define EVP_PKEY_OP_TYPE_CRYPT \
1071 (EVP_PKEY_OP_ENCRYPT | EVP_PKEY_OP_DECRYPT)

1073 #define EVP_PKEY_OP_TYPE_NOGEN \
1074 (EVP_PKEY_OP_SIG | EVP_PKEY_OP_CRYPT | EVP_PKEY_OP_DERIVE)

1076 #define EVP_PKEY_OP_TYPE_GEN \
1077 (EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN)

1079 #define EVP_PKEY_CTX_set_signature_md(ctx, md) \
1080 EVP_PKEY_CTX_ctrl(ctx, -1, EVP_PKEY_OP_TYPE_SIG, \
1081 EVP_PKEY_CTRL_MD, 0, (void *)md)

1083 #define EVP_PKEY_CTRL_MD 1
1084 #define EVP_PKEY_CTRL_PEER_KEY 2

1086 #define EVP_PKEY_CTRL_PKCS7_ENCRYPT 3
1087 #define EVP_PKEY_CTRL_PKCS7_DECRYPT 4

1089 #define EVP_PKEY_CTRL_PKCS7_SIGN 5

1091 #define EVP_PKEY_CTRL_SET_MAC_KEY 6

1093 #define EVP_PKEY_CTRL_DIGESTINIT 7

1095 /* Used by GOST key encryption in TLS */
1096 #define EVP_PKEY_CTRL_SET_IV 8

1098 #define EVP_PKEY_CTRL_CMS_ENCRYPT 9
1099 #define EVP_PKEY_CTRL_CMS_DECRYPT 10
1100 #define EVP_PKEY_CTRL_CMS_SIGN 11

1102 #define EVP_PKEY_CTRL_CIPHER 12

1104 #define EVP_PKEY_ALG_CTRL 0x1000

1107 #define EVP_PKEY_FLAG_AUTOARGLEN 2
1108 /* Method handles all operations: don’t assume any digest related
1109 * defaults.
1110 */
1111 #define EVP_PKEY_FLAG_SIGCTX_CUSTOM 4

1113 const EVP_PKEY_METHOD *EVP_PKEY_meth_find(int type);
1114 EVP_PKEY_METHOD* EVP_PKEY_meth_new(int id, int flags);
1115 void EVP_PKEY_meth_get0_info(int *ppkey_id, int *pflags,
1116 const EVP_PKEY_METHOD *meth);
1117 void EVP_PKEY_meth_copy(EVP_PKEY_METHOD *dst, const EVP_PKEY_METHOD *src);

new/usr/src/lib/openssl/include/openssl/evp.h 18

1118 void EVP_PKEY_meth_free(EVP_PKEY_METHOD *pmeth);
1119 int EVP_PKEY_meth_add0(const EVP_PKEY_METHOD *pmeth);

1121 EVP_PKEY_CTX *EVP_PKEY_CTX_new(EVP_PKEY *pkey, ENGINE *e);
1122 EVP_PKEY_CTX *EVP_PKEY_CTX_new_id(int id, ENGINE *e);
1123 EVP_PKEY_CTX *EVP_PKEY_CTX_dup(EVP_PKEY_CTX *ctx);
1124 void EVP_PKEY_CTX_free(EVP_PKEY_CTX *ctx);

1126 int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype,
1127 int cmd, int p1, void *p2);
1128 int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
1129 const char *value);

1131 int EVP_PKEY_CTX_get_operation(EVP_PKEY_CTX *ctx);
1132 void EVP_PKEY_CTX_set0_keygen_info(EVP_PKEY_CTX *ctx, int *dat, int datlen);

1134 EVP_PKEY *EVP_PKEY_new_mac_key(int type, ENGINE *e,
1135 const unsigned char *key, int keylen);

1137 void EVP_PKEY_CTX_set_data(EVP_PKEY_CTX *ctx, void *data);
1138 void *EVP_PKEY_CTX_get_data(EVP_PKEY_CTX *ctx);
1139 EVP_PKEY *EVP_PKEY_CTX_get0_pkey(EVP_PKEY_CTX *ctx);

1141 EVP_PKEY *EVP_PKEY_CTX_get0_peerkey(EVP_PKEY_CTX *ctx);

1143 void EVP_PKEY_CTX_set_app_data(EVP_PKEY_CTX *ctx, void *data);
1144 void *EVP_PKEY_CTX_get_app_data(EVP_PKEY_CTX *ctx);

1146 int EVP_PKEY_sign_init(EVP_PKEY_CTX *ctx);
1147 int EVP_PKEY_sign(EVP_PKEY_CTX *ctx,
1148 unsigned char *sig, size_t *siglen,
1149 const unsigned char *tbs, size_t tbslen);
1150 int EVP_PKEY_verify_init(EVP_PKEY_CTX *ctx);
1151 int EVP_PKEY_verify(EVP_PKEY_CTX *ctx,
1152 const unsigned char *sig, size_t siglen,
1153 const unsigned char *tbs, size_t tbslen);
1154 int EVP_PKEY_verify_recover_init(EVP_PKEY_CTX *ctx);
1155 int EVP_PKEY_verify_recover(EVP_PKEY_CTX *ctx,
1156 unsigned char *rout, size_t *routlen,
1157 const unsigned char *sig, size_t siglen);
1158 int EVP_PKEY_encrypt_init(EVP_PKEY_CTX *ctx);
1159 int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx,
1160 unsigned char *out, size_t *outlen,
1161 const unsigned char *in, size_t inlen);
1162 int EVP_PKEY_decrypt_init(EVP_PKEY_CTX *ctx);
1163 int EVP_PKEY_decrypt(EVP_PKEY_CTX *ctx,
1164 unsigned char *out, size_t *outlen,
1165 const unsigned char *in, size_t inlen);

1167 int EVP_PKEY_derive_init(EVP_PKEY_CTX *ctx);
1168 int EVP_PKEY_derive_set_peer(EVP_PKEY_CTX *ctx, EVP_PKEY *peer);
1169 int EVP_PKEY_derive(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen);

1171 typedef int EVP_PKEY_gen_cb(EVP_PKEY_CTX *ctx);

1173 int EVP_PKEY_paramgen_init(EVP_PKEY_CTX *ctx);
1174 int EVP_PKEY_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY **ppkey);
1175 int EVP_PKEY_keygen_init(EVP_PKEY_CTX *ctx);
1176 int EVP_PKEY_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY **ppkey);

1178 void EVP_PKEY_CTX_set_cb(EVP_PKEY_CTX *ctx, EVP_PKEY_gen_cb *cb);
1179 EVP_PKEY_gen_cb *EVP_PKEY_CTX_get_cb(EVP_PKEY_CTX *ctx);

1181 int EVP_PKEY_CTX_get_keygen_info(EVP_PKEY_CTX *ctx, int idx);

1183 void EVP_PKEY_meth_set_init(EVP_PKEY_METHOD *pmeth,

new/usr/src/lib/openssl/include/openssl/evp.h 19

1184 int (*init)(EVP_PKEY_CTX *ctx));

1186 void EVP_PKEY_meth_set_copy(EVP_PKEY_METHOD *pmeth,
1187 int (*copy)(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src));

1189 void EVP_PKEY_meth_set_cleanup(EVP_PKEY_METHOD *pmeth,
1190 void (*cleanup)(EVP_PKEY_CTX *ctx));

1192 void EVP_PKEY_meth_set_paramgen(EVP_PKEY_METHOD *pmeth,
1193 int (*paramgen_init)(EVP_PKEY_CTX *ctx),
1194 int (*paramgen)(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey));

1196 void EVP_PKEY_meth_set_keygen(EVP_PKEY_METHOD *pmeth,
1197 int (*keygen_init)(EVP_PKEY_CTX *ctx),
1198 int (*keygen)(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey));

1200 void EVP_PKEY_meth_set_sign(EVP_PKEY_METHOD *pmeth,
1201 int (*sign_init)(EVP_PKEY_CTX *ctx),
1202 int (*sign)(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen,
1203 const unsigned char *tbs, size_t tbslen)

1205 void EVP_PKEY_meth_set_verify(EVP_PKEY_METHOD *pmeth,
1206 int (*verify_init)(EVP_PKEY_CTX *ctx),
1207 int (*verify)(EVP_PKEY_CTX *ctx, const unsigned char *sig, size_t siglen
1208 const unsigned char *tbs, size_t tbslen)

1210 void EVP_PKEY_meth_set_verify_recover(EVP_PKEY_METHOD *pmeth,
1211 int (*verify_recover_init)(EVP_PKEY_CTX *ctx),
1212 int (*verify_recover)(EVP_PKEY_CTX *ctx,
1213 unsigned char *sig, size_t *siglen,
1214 const unsigned char *tbs, size_t tbslen)

1216 void EVP_PKEY_meth_set_signctx(EVP_PKEY_METHOD *pmeth,
1217 int (*signctx_init)(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx),
1218 int (*signctx)(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen,
1219 EVP_MD_CTX *mctx));

1221 void EVP_PKEY_meth_set_verifyctx(EVP_PKEY_METHOD *pmeth,
1222 int (*verifyctx_init)(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx),
1223 int (*verifyctx)(EVP_PKEY_CTX *ctx, const unsigned char *sig,int siglen,
1224 EVP_MD_CTX *mctx));

1226 void EVP_PKEY_meth_set_encrypt(EVP_PKEY_METHOD *pmeth,
1227 int (*encrypt_init)(EVP_PKEY_CTX *ctx),
1228 int (*encryptfn)(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen,
1229 const unsigned char *in, size_t inlen));

1231 void EVP_PKEY_meth_set_decrypt(EVP_PKEY_METHOD *pmeth,
1232 int (*decrypt_init)(EVP_PKEY_CTX *ctx),
1233 int (*decrypt)(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen,
1234 const unsigned char *in, size_t inlen));

1236 void EVP_PKEY_meth_set_derive(EVP_PKEY_METHOD *pmeth,
1237 int (*derive_init)(EVP_PKEY_CTX *ctx),
1238 int (*derive)(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen));

1240 void EVP_PKEY_meth_set_ctrl(EVP_PKEY_METHOD *pmeth,
1241 int (*ctrl)(EVP_PKEY_CTX *ctx, int type, int p1, void *p2),
1242 int (*ctrl_str)(EVP_PKEY_CTX *ctx,
1243 const char *type, const char *value));

1245 void EVP_add_alg_module(void);

1247 /* BEGIN ERROR CODES */
1248 /* The following lines are auto generated by the script mkerr.pl. Any changes
1249 * made after this point may be overwritten when the script is next run.

new/usr/src/lib/openssl/include/openssl/evp.h 20

1250 */
1251 void ERR_load_EVP_strings(void);

1253 /* Error codes for the EVP functions. */

1255 /* Function codes. */
1256 #define EVP_F_AESNI_INIT_KEY 165
1257 #define EVP_F_AESNI_XTS_CIPHER 176
1258 #define EVP_F_AES_INIT_KEY 133
1259 #define EVP_F_AES_XTS 172
1260 #define EVP_F_AES_XTS_CIPHER 175
1261 #define EVP_F_ALG_MODULE_INIT 177
1262 #define EVP_F_CAMELLIA_INIT_KEY 159
1263 #define EVP_F_CMAC_INIT 173
1264 #define EVP_F_D2I_PKEY 100
1265 #define EVP_F_DO_SIGVER_INIT 161
1266 #define EVP_F_DSAPKEY2PKCS8 134
1267 #define EVP_F_DSA_PKEY2PKCS8 135
1268 #define EVP_F_ECDSA_PKEY2PKCS8 129
1269 #define EVP_F_ECKEY_PKEY2PKCS8 132
1270 #define EVP_F_EVP_CIPHERINIT_EX 123
1271 #define EVP_F_EVP_CIPHER_CTX_COPY 163
1272 #define EVP_F_EVP_CIPHER_CTX_CTRL 124
1273 #define EVP_F_EVP_CIPHER_CTX_SET_KEY_LENGTH 122
1274 #define EVP_F_EVP_DECRYPTFINAL_EX 101
1275 #define EVP_F_EVP_DIGESTINIT_EX 128
1276 #define EVP_F_EVP_ENCRYPTFINAL_EX 127
1277 #define EVP_F_EVP_MD_CTX_COPY_EX 110
1278 #define EVP_F_EVP_MD_SIZE 162
1279 #define EVP_F_EVP_OPENINIT 102
1280 #define EVP_F_EVP_PBE_ALG_ADD 115
1281 #define EVP_F_EVP_PBE_ALG_ADD_TYPE 160
1282 #define EVP_F_EVP_PBE_CIPHERINIT 116
1283 #define EVP_F_EVP_PKCS82PKEY 111
1284 #define EVP_F_EVP_PKCS82PKEY_BROKEN 136
1285 #define EVP_F_EVP_PKEY2PKCS8_BROKEN 113
1286 #define EVP_F_EVP_PKEY_COPY_PARAMETERS 103
1287 #define EVP_F_EVP_PKEY_CTX_CTRL 137
1288 #define EVP_F_EVP_PKEY_CTX_CTRL_STR 150
1289 #define EVP_F_EVP_PKEY_CTX_DUP 156
1290 #define EVP_F_EVP_PKEY_DECRYPT 104
1291 #define EVP_F_EVP_PKEY_DECRYPT_INIT 138
1292 #define EVP_F_EVP_PKEY_DECRYPT_OLD 151
1293 #define EVP_F_EVP_PKEY_DERIVE 153
1294 #define EVP_F_EVP_PKEY_DERIVE_INIT 154
1295 #define EVP_F_EVP_PKEY_DERIVE_SET_PEER 155
1296 #define EVP_F_EVP_PKEY_ENCRYPT 105
1297 #define EVP_F_EVP_PKEY_ENCRYPT_INIT 139
1298 #define EVP_F_EVP_PKEY_ENCRYPT_OLD 152
1299 #define EVP_F_EVP_PKEY_GET1_DH 119
1300 #define EVP_F_EVP_PKEY_GET1_DSA 120
1301 #define EVP_F_EVP_PKEY_GET1_ECDSA 130
1302 #define EVP_F_EVP_PKEY_GET1_EC_KEY 131
1303 #define EVP_F_EVP_PKEY_GET1_RSA 121
1304 #define EVP_F_EVP_PKEY_KEYGEN 146
1305 #define EVP_F_EVP_PKEY_KEYGEN_INIT 147
1306 #define EVP_F_EVP_PKEY_NEW 106
1307 #define EVP_F_EVP_PKEY_PARAMGEN 148
1308 #define EVP_F_EVP_PKEY_PARAMGEN_INIT 149
1309 #define EVP_F_EVP_PKEY_SIGN 140
1310 #define EVP_F_EVP_PKEY_SIGN_INIT 141
1311 #define EVP_F_EVP_PKEY_VERIFY 142
1312 #define EVP_F_EVP_PKEY_VERIFY_INIT 143
1313 #define EVP_F_EVP_PKEY_VERIFY_RECOVER 144
1314 #define EVP_F_EVP_PKEY_VERIFY_RECOVER_INIT 145
1315 #define EVP_F_EVP_RIJNDAEL 126

new/usr/src/lib/openssl/include/openssl/evp.h 21

1316 #define EVP_F_EVP_SIGNFINAL 107
1317 #define EVP_F_EVP_VERIFYFINAL 108
1318 #define EVP_F_FIPS_CIPHERINIT 166
1319 #define EVP_F_FIPS_CIPHER_CTX_COPY 170
1320 #define EVP_F_FIPS_CIPHER_CTX_CTRL 167
1321 #define EVP_F_FIPS_CIPHER_CTX_SET_KEY_LENGTH 171
1322 #define EVP_F_FIPS_DIGESTINIT 168
1323 #define EVP_F_FIPS_MD_CTX_COPY 169
1324 #define EVP_F_HMAC_INIT_EX 174
1325 #define EVP_F_INT_CTX_NEW 157
1326 #define EVP_F_PKCS5_PBE_KEYIVGEN 117
1327 #define EVP_F_PKCS5_V2_PBE_KEYIVGEN 118
1328 #define EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN 164
1329 #define EVP_F_PKCS8_SET_BROKEN 112
1330 #define EVP_F_PKEY_SET_TYPE 158
1331 #define EVP_F_RC2_MAGIC_TO_METH 109
1332 #define EVP_F_RC5_CTRL 125

1334 /* Reason codes. */
1335 #define EVP_R_AES_IV_SETUP_FAILED 162
1336 #define EVP_R_AES_KEY_SETUP_FAILED 143
1337 #define EVP_R_ASN1_LIB 140
1338 #define EVP_R_BAD_BLOCK_LENGTH 136
1339 #define EVP_R_BAD_DECRYPT 100
1340 #define EVP_R_BAD_KEY_LENGTH 137
1341 #define EVP_R_BN_DECODE_ERROR 112
1342 #define EVP_R_BN_PUBKEY_ERROR 113
1343 #define EVP_R_BUFFER_TOO_SMALL 155
1344 #define EVP_R_CAMELLIA_KEY_SETUP_FAILED 157
1345 #define EVP_R_CIPHER_PARAMETER_ERROR 122
1346 #define EVP_R_COMMAND_NOT_SUPPORTED 147
1347 #define EVP_R_CTRL_NOT_IMPLEMENTED 132
1348 #define EVP_R_CTRL_OPERATION_NOT_IMPLEMENTED 133
1349 #define EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH 138
1350 #define EVP_R_DECODE_ERROR 114
1351 #define EVP_R_DIFFERENT_KEY_TYPES 101
1352 #define EVP_R_DIFFERENT_PARAMETERS 153
1353 #define EVP_R_DISABLED_FOR_FIPS 163
1354 #define EVP_R_ENCODE_ERROR 115
1355 #define EVP_R_ERROR_LOADING_SECTION 165
1356 #define EVP_R_ERROR_SETTING_FIPS_MODE 166
1357 #define EVP_R_EVP_PBE_CIPHERINIT_ERROR 119
1358 #define EVP_R_EXPECTING_AN_RSA_KEY 127
1359 #define EVP_R_EXPECTING_A_DH_KEY 128
1360 #define EVP_R_EXPECTING_A_DSA_KEY 129
1361 #define EVP_R_EXPECTING_A_ECDSA_KEY 141
1362 #define EVP_R_EXPECTING_A_EC_KEY 142
1363 #define EVP_R_FIPS_MODE_NOT_SUPPORTED 167
1364 #define EVP_R_INITIALIZATION_ERROR 134
1365 #define EVP_R_INPUT_NOT_INITIALIZED 111
1366 #define EVP_R_INVALID_DIGEST 152
1367 #define EVP_R_INVALID_FIPS_MODE 168
1368 #define EVP_R_INVALID_KEY_LENGTH 130
1369 #define EVP_R_INVALID_OPERATION 148
1370 #define EVP_R_IV_TOO_LARGE 102
1371 #define EVP_R_KEYGEN_FAILURE 120
1372 #define EVP_R_MESSAGE_DIGEST_IS_NULL 159
1373 #define EVP_R_METHOD_NOT_SUPPORTED 144
1374 #define EVP_R_MISSING_PARAMETERS 103
1375 #define EVP_R_NO_CIPHER_SET 131
1376 #define EVP_R_NO_DEFAULT_DIGEST 158
1377 #define EVP_R_NO_DIGEST_SET 139
1378 #define EVP_R_NO_DSA_PARAMETERS 116
1379 #define EVP_R_NO_KEY_SET 154
1380 #define EVP_R_NO_OPERATION_SET 149
1381 #define EVP_R_NO_SIGN_FUNCTION_CONFIGURED 104

new/usr/src/lib/openssl/include/openssl/evp.h 22

1382 #define EVP_R_NO_VERIFY_FUNCTION_CONFIGURED 105
1383 #define EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE 150
1384 #define EVP_R_OPERATON_NOT_INITIALIZED 151
1385 #define EVP_R_PKCS8_UNKNOWN_BROKEN_TYPE 117
1386 #define EVP_R_PRIVATE_KEY_DECODE_ERROR 145
1387 #define EVP_R_PRIVATE_KEY_ENCODE_ERROR 146
1388 #define EVP_R_PUBLIC_KEY_NOT_RSA 106
1389 #define EVP_R_TOO_LARGE 164
1390 #define EVP_R_UNKNOWN_CIPHER 160
1391 #define EVP_R_UNKNOWN_DIGEST 161
1392 #define EVP_R_UNKNOWN_OPTION 169
1393 #define EVP_R_UNKNOWN_PBE_ALGORITHM 121
1394 #define EVP_R_UNSUPORTED_NUMBER_OF_ROUNDS 135
1395 #define EVP_R_UNSUPPORTED_ALGORITHM 156
1396 #define EVP_R_UNSUPPORTED_CIPHER 107
1397 #define EVP_R_UNSUPPORTED_KEYLENGTH 123
1398 #define EVP_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION 124
1399 #define EVP_R_UNSUPPORTED_KEY_SIZE 108
1400 #define EVP_R_UNSUPPORTED_PRF 125
1401 #define EVP_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM 118
1402 #define EVP_R_UNSUPPORTED_SALT_TYPE 126
1403 #define EVP_R_WRONG_FINAL_BLOCK_LENGTH 109
1404 #define EVP_R_WRONG_PUBLIC_KEY_TYPE 110

1406 #ifdef __cplusplus
1407 }
1408 #endif
1409 #endif

new/usr/src/lib/openssl/include/openssl/hmac.h 1

**
 4476 Fri May 30 18:31:19 2014
new/usr/src/lib/openssl/include/openssl/hmac.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/hmac/hmac.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 #ifndef HEADER_HMAC_H
59 #define HEADER_HMAC_H

61 #include <openssl/opensslconf.h>

new/usr/src/lib/openssl/include/openssl/hmac.h 2

63 #ifdef OPENSSL_NO_HMAC
64 #error HMAC is disabled.
65 #endif

67 #include <openssl/evp.h>

69 #define HMAC_MAX_MD_CBLOCK 128 /* largest known is SHA512 */

71 #ifdef __cplusplus
72 extern "C" {
73 #endif

75 typedef struct hmac_ctx_st
76 {
77 const EVP_MD *md;
78 EVP_MD_CTX md_ctx;
79 EVP_MD_CTX i_ctx;
80 EVP_MD_CTX o_ctx;
81 unsigned int key_length;
82 unsigned char key[HMAC_MAX_MD_CBLOCK];
83 } HMAC_CTX;

85 #define HMAC_size(e) (EVP_MD_size((e)->md))

88 void HMAC_CTX_init(HMAC_CTX *ctx);
89 void HMAC_CTX_cleanup(HMAC_CTX *ctx);

91 #define HMAC_cleanup(ctx) HMAC_CTX_cleanup(ctx) /* deprecated */

93 int HMAC_Init(HMAC_CTX *ctx, const void *key, int len,
94 const EVP_MD *md); /* deprecated */
95 int HMAC_Init_ex(HMAC_CTX *ctx, const void *key, int len,
96 const EVP_MD *md, ENGINE *impl);
97 int HMAC_Update(HMAC_CTX *ctx, const unsigned char *data, size_t len);
98 int HMAC_Final(HMAC_CTX *ctx, unsigned char *md, unsigned int *len);
99 unsigned char *HMAC(const EVP_MD *evp_md, const void *key, int key_len,
100 const unsigned char *d, size_t n, unsigned char *md,
101 unsigned int *md_len);
102 int HMAC_CTX_copy(HMAC_CTX *dctx, HMAC_CTX *sctx);

104 void HMAC_CTX_set_flags(HMAC_CTX *ctx, unsigned long flags);

106 #ifdef __cplusplus
107 }
108 #endif

110 #endif

new/usr/src/lib/openssl/include/openssl/krb5_asn.h 1

**
 7642 Fri May 30 18:31:19 2014
new/usr/src/lib/openssl/include/openssl/krb5_asn.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* krb5_asn.h */
2 /* Written by Vern Staats <staatsvr@asc.hpc.mil> for the OpenSSL project,
3 ** using ocsp/{*.h,*asn*.c} as a starting point
4 */

6 /* ==
7 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * openssl-core@openssl.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */

60 #ifndef HEADER_KRB5_ASN_H
61 #define HEADER_KRB5_ASN_H

new/usr/src/lib/openssl/include/openssl/krb5_asn.h 2

63 /*
64 #include <krb5.h>
65 */
66 #include <openssl/safestack.h>

68 #ifdef __cplusplus
69 extern "C" {
70 #endif

73 /* ASN.1 from Kerberos RFC 1510
74 */

76 /* EncryptedData ::= SEQUENCE {
77 ** etype[0] INTEGER, -- EncryptionType
78 ** kvno[1] INTEGER OPTIONAL,
79 ** cipher[2] OCTET STRING -- ciphertext
80 ** }
81 */
82 typedef struct krb5_encdata_st
83 {
84 ASN1_INTEGER *etype;
85 ASN1_INTEGER *kvno;
86 ASN1_OCTET_STRING *cipher;
87 } KRB5_ENCDATA;

89 DECLARE_STACK_OF(KRB5_ENCDATA)

91 /* PrincipalName ::= SEQUENCE {
92 ** name-type[0] INTEGER,
93 ** name-string[1] SEQUENCE OF GeneralString
94 ** }
95 */
96 typedef struct krb5_princname_st
97 {
98 ASN1_INTEGER *nametype;
99 STACK_OF(ASN1_GENERALSTRING) *namestring;
100 } KRB5_PRINCNAME;

102 DECLARE_STACK_OF(KRB5_PRINCNAME)

105 /* Ticket ::= [APPLICATION 1] SEQUENCE {
106 ** tkt-vno[0] INTEGER,
107 ** realm[1] Realm,
108 ** sname[2] PrincipalName,
109 ** enc-part[3] EncryptedData
110 ** }
111 */
112 typedef struct krb5_tktbody_st
113 {
114 ASN1_INTEGER *tktvno;
115 ASN1_GENERALSTRING *realm;
116 KRB5_PRINCNAME *sname;
117 KRB5_ENCDATA *encdata;
118 } KRB5_TKTBODY;

120 typedef STACK_OF(KRB5_TKTBODY) KRB5_TICKET;
121 DECLARE_STACK_OF(KRB5_TKTBODY)

124 /* AP-REQ ::= [APPLICATION 14] SEQUENCE {
125 ** pvno[0] INTEGER,
126 ** msg-type[1] INTEGER,
127 ** ap-options[2] APOptions,

new/usr/src/lib/openssl/include/openssl/krb5_asn.h 3

128 ** ticket[3] Ticket,
129 ** authenticator[4] EncryptedData
130 ** }
131 **
132 ** APOptions ::= BIT STRING {
133 ** reserved(0), use-session-key(1), mutual-required(2) }
134 */
135 typedef struct krb5_ap_req_st
136 {
137 ASN1_INTEGER *pvno;
138 ASN1_INTEGER *msgtype;
139 ASN1_BIT_STRING *apoptions;
140 KRB5_TICKET *ticket;
141 KRB5_ENCDATA *authenticator;
142 } KRB5_APREQBODY;

144 typedef STACK_OF(KRB5_APREQBODY) KRB5_APREQ;
145 DECLARE_STACK_OF(KRB5_APREQBODY)

148 /* Authenticator Stuff */

151 /* Checksum ::= SEQUENCE {
152 ** cksumtype[0] INTEGER,
153 ** checksum[1] OCTET STRING
154 ** }
155 */
156 typedef struct krb5_checksum_st
157 {
158 ASN1_INTEGER *ctype;
159 ASN1_OCTET_STRING *checksum;
160 } KRB5_CHECKSUM;

162 DECLARE_STACK_OF(KRB5_CHECKSUM)

165 /* EncryptionKey ::= SEQUENCE {
166 ** keytype[0] INTEGER,
167 ** keyvalue[1] OCTET STRING
168 ** }
169 */
170 typedef struct krb5_encryptionkey_st
171 {
172 ASN1_INTEGER *ktype;
173 ASN1_OCTET_STRING *keyvalue;
174 } KRB5_ENCKEY;

176 DECLARE_STACK_OF(KRB5_ENCKEY)

179 /* AuthorizationData ::= SEQUENCE OF SEQUENCE {
180 ** ad-type[0] INTEGER,
181 ** ad-data[1] OCTET STRING
182 ** }
183 */
184 typedef struct krb5_authorization_st
185 {
186 ASN1_INTEGER *adtype;
187 ASN1_OCTET_STRING *addata;
188 } KRB5_AUTHDATA;

190 DECLARE_STACK_OF(KRB5_AUTHDATA)

192
193 /* -- Unencrypted authenticator

new/usr/src/lib/openssl/include/openssl/krb5_asn.h 4

194 ** Authenticator ::= [APPLICATION 2] SEQUENCE {
195 ** authenticator-vno[0] INTEGER,
196 ** crealm[1] Realm,
197 ** cname[2] PrincipalName,
198 ** cksum[3] Checksum OPTIONAL,
199 ** cusec[4] INTEGER,
200 ** ctime[5] KerberosTime,
201 ** subkey[6] EncryptionKey OPTIONAL,
202 ** seq-number[7] INTEGER OPTIONAL,
203 ** authorization-data[8] AuthorizationData OPTIONAL
204 ** }
205 */
206 typedef struct krb5_authenticator_st
207 {
208 ASN1_INTEGER *avno;
209 ASN1_GENERALSTRING *crealm;
210 KRB5_PRINCNAME *cname;
211 KRB5_CHECKSUM *cksum;
212 ASN1_INTEGER *cusec;
213 ASN1_GENERALIZEDTIME *ctime;
214 KRB5_ENCKEY *subkey;
215 ASN1_INTEGER *seqnum;
216 KRB5_AUTHDATA *authorization;
217 } KRB5_AUTHENTBODY;

219 typedef STACK_OF(KRB5_AUTHENTBODY) KRB5_AUTHENT;
220 DECLARE_STACK_OF(KRB5_AUTHENTBODY)

223 /* DECLARE_ASN1_FUNCTIONS(type) = DECLARE_ASN1_FUNCTIONS_name(type, type) =
224 ** type *name##_new(void);
225 ** void name##_free(type *a);
226 ** DECLARE_ASN1_ENCODE_FUNCTIONS(type, name, name) =
227 ** DECLARE_ASN1_ENCODE_FUNCTIONS(type, itname, name) =
228 ** type *d2i_##name(type **a, const unsigned char **in, long len);
229 ** int i2d_##name(type *a, unsigned char **out);
230 ** DECLARE_ASN1_ITEM(itname) = OPENSSL_EXTERN const ASN1_ITEM itname##_it
231 */

233 DECLARE_ASN1_FUNCTIONS(KRB5_ENCDATA)
234 DECLARE_ASN1_FUNCTIONS(KRB5_PRINCNAME)
235 DECLARE_ASN1_FUNCTIONS(KRB5_TKTBODY)
236 DECLARE_ASN1_FUNCTIONS(KRB5_APREQBODY)
237 DECLARE_ASN1_FUNCTIONS(KRB5_TICKET)
238 DECLARE_ASN1_FUNCTIONS(KRB5_APREQ)

240 DECLARE_ASN1_FUNCTIONS(KRB5_CHECKSUM)
241 DECLARE_ASN1_FUNCTIONS(KRB5_ENCKEY)
242 DECLARE_ASN1_FUNCTIONS(KRB5_AUTHDATA)
243 DECLARE_ASN1_FUNCTIONS(KRB5_AUTHENTBODY)
244 DECLARE_ASN1_FUNCTIONS(KRB5_AUTHENT)

247 /* BEGIN ERROR CODES */
248 /* The following lines are auto generated by the script mkerr.pl. Any changes
249 * made after this point may be overwritten when the script is next run.
250 */

252 #ifdef __cplusplus
253 }
254 #endif
255 #endif

new/usr/src/lib/openssl/include/openssl/kssl.h 1

**
 6290 Fri May 30 18:31:19 2014
new/usr/src/lib/openssl/include/openssl/kssl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/kssl.h -*- mode: C; c-file-style: "eay" -*- */
2 /* Written by Vern Staats <staatsvr@asc.hpc.mil> for the OpenSSL project 2000.
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 /*
60 ** 19990701 VRS Started.
61 */

new/usr/src/lib/openssl/include/openssl/kssl.h 2

63 #ifndef KSSL_H
64 #define KSSL_H

66 #include <openssl/opensslconf.h>

68 #ifndef OPENSSL_NO_KRB5

70 #include <stdio.h>
71 #include <ctype.h>
72 #include <krb5.h>
73 #ifdef OPENSSL_SYS_WIN32
74 /* These can sometimes get redefined indirectly by krb5 header files
75 * after they get undefed in ossl_typ.h
76 */
77 #undef X509_NAME
78 #undef X509_EXTENSIONS
79 #undef OCSP_REQUEST
80 #undef OCSP_RESPONSE
81 #endif

83 #ifdef __cplusplus
84 extern "C" {
85 #endif

87 /*
88 ** Depending on which KRB5 implementation used, some types from
89 ** the other may be missing. Resolve that here and now
90 */
91 #ifdef KRB5_HEIMDAL
92 typedef unsigned char krb5_octet;
93 #define FAR
94 #else

96 #ifndef FAR
97 #define FAR
98 #endif

100 #endif

102 /* Uncomment this to debug kssl problems or
103 ** to trace usage of the Kerberos session key
104 **
105 ** #define KSSL_DEBUG
106 */

108 #ifndef KRB5SVC
109 #define KRB5SVC "host"
110 #endif

112 #ifndef KRB5KEYTAB
113 #define KRB5KEYTAB "/etc/krb5.keytab"
114 #endif

116 #ifndef KRB5SENDAUTH
117 #define KRB5SENDAUTH 1
118 #endif

120 #ifndef KRB5CHECKAUTH
121 #define KRB5CHECKAUTH 1
122 #endif

124 #ifndef KSSL_CLOCKSKEW
125 #define KSSL_CLOCKSKEW 300;
126 #endif

new/usr/src/lib/openssl/include/openssl/kssl.h 3

128 #define KSSL_ERR_MAX 255
129 typedef struct kssl_err_st {
130 int reason;
131 char text[KSSL_ERR_MAX+1];
132 } KSSL_ERR;

135 /* Context for passing
136 ** (1) Kerberos session key to SSL, and
137 ** (2) Config data between application and SSL lib
138 */
139 typedef struct kssl_ctx_st
140 {
141 /* used by: disposition: */
142 char *service_name; /* C,S default ok (kssl) */
143 char *service_host; /* C input, REQUIRED */
144 char *client_princ; /* S output from krb5 ticket */
145 char *keytab_file; /* S NULL (/etc/krb5.keytab) */
146 char *cred_cache; /* C NULL (default) */
147 krb5_enctype enctype;
148 int length;
149 krb5_octet FAR *key;
150 } KSSL_CTX;

152 #define KSSL_CLIENT 1
153 #define KSSL_SERVER 2
154 #define KSSL_SERVICE 3
155 #define KSSL_KEYTAB 4

157 #define KSSL_CTX_OK 0
158 #define KSSL_CTX_ERR 1
159 #define KSSL_NOMEM 2

161 /* Public (for use by applications that use OpenSSL with Kerberos 5 support */
162 krb5_error_code kssl_ctx_setstring(KSSL_CTX *kssl_ctx, int which, char *text);
163 KSSL_CTX *kssl_ctx_new(void);
164 KSSL_CTX *kssl_ctx_free(KSSL_CTX *kssl_ctx);
165 void kssl_ctx_show(KSSL_CTX *kssl_ctx);
166 krb5_error_code kssl_ctx_setprinc(KSSL_CTX *kssl_ctx, int which,
167 krb5_data *realm, krb5_data *entity, int nentities);
168 krb5_error_code kssl_cget_tkt(KSSL_CTX *kssl_ctx, krb5_data **enc_tktp,
169 krb5_data *authenp, KSSL_ERR *kssl_err);
170 krb5_error_code kssl_sget_tkt(KSSL_CTX *kssl_ctx, krb5_data *indata,
171 krb5_ticket_times *ttimes, KSSL_ERR *kssl_err);
172 krb5_error_code kssl_ctx_setkey(KSSL_CTX *kssl_ctx, krb5_keyblock *session);
173 void kssl_err_set(KSSL_ERR *kssl_err, int reason, char *text);
174 void kssl_krb5_free_data_contents(krb5_context context, krb5_data *data);
175 krb5_error_code kssl_build_principal_2(krb5_context context,
176 krb5_principal *princ, int rlen, const char *realm,
177 int slen, const char *svc, int hlen, const char *host);
178 krb5_error_code kssl_validate_times(krb5_timestamp atime,
179 krb5_ticket_times *ttimes);
180 krb5_error_code kssl_check_authent(KSSL_CTX *kssl_ctx, krb5_data *authentp,
181 krb5_timestamp *atimep, KSSL_ERR *kssl_err);
182 unsigned char *kssl_skip_confound(krb5_enctype enctype, unsigned char *authn);

184 void SSL_set0_kssl_ctx(SSL *s, KSSL_CTX *kctx);
185 KSSL_CTX * SSL_get0_kssl_ctx(SSL *s);
186 char *kssl_ctx_get0_client_princ(KSSL_CTX *kctx);

188 #ifdef __cplusplus
189 }
190 #endif
191 #endif /* OPENSSL_NO_KRB5 */
192 #endif /* KSSL_H */

new/usr/src/lib/openssl/include/openssl/lhash.h 1

**
 9092 Fri May 30 18:31:19 2014
new/usr/src/lib/openssl/include/openssl/lhash.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/lhash/lhash.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* Header for dynamic hash table routines
60 * Author - Eric Young
61 */

new/usr/src/lib/openssl/include/openssl/lhash.h 2

63 #ifndef HEADER_LHASH_H
64 #define HEADER_LHASH_H

66 #include <openssl/e_os2.h>
67 #ifndef OPENSSL_NO_FP_API
68 #include <stdio.h>
69 #endif

71 #ifndef OPENSSL_NO_BIO
72 #include <openssl/bio.h>
73 #endif

75 #ifdef __cplusplus
76 extern "C" {
77 #endif

79 typedef struct lhash_node_st
80 {
81 void *data;
82 struct lhash_node_st *next;
83 #ifndef OPENSSL_NO_HASH_COMP
84 unsigned long hash;
85 #endif
86 } LHASH_NODE;

88 typedef int (*LHASH_COMP_FN_TYPE)(const void *, const void *);
89 typedef unsigned long (*LHASH_HASH_FN_TYPE)(const void *);
90 typedef void (*LHASH_DOALL_FN_TYPE)(void *);
91 typedef void (*LHASH_DOALL_ARG_FN_TYPE)(void *, void *);

93 /* Macros for declaring and implementing type-safe wrappers for LHASH callbacks.
94 * This way, callbacks can be provided to LHASH structures without function
95 * pointer casting and the macro-defined callbacks provide per-variable casting
96 * before deferring to the underlying type-specific callbacks. NB: It is
97 * possible to place a "static" in front of both the DECLARE and IMPLEMENT
98 * macros if the functions are strictly internal. */

100 /* First: "hash" functions */
101 #define DECLARE_LHASH_HASH_FN(name, o_type) \
102 unsigned long name##_LHASH_HASH(const void *);
103 #define IMPLEMENT_LHASH_HASH_FN(name, o_type) \
104 unsigned long name##_LHASH_HASH(const void *arg) { \
105 const o_type *a = arg; \
106 return name##_hash(a); }
107 #define LHASH_HASH_FN(name) name##_LHASH_HASH

109 /* Second: "compare" functions */
110 #define DECLARE_LHASH_COMP_FN(name, o_type) \
111 int name##_LHASH_COMP(const void *, const void *);
112 #define IMPLEMENT_LHASH_COMP_FN(name, o_type) \
113 int name##_LHASH_COMP(const void *arg1, const void *arg2) { \
114 const o_type *a = arg1; \
115 const o_type *b = arg2; \
116 return name##_cmp(a,b); }
117 #define LHASH_COMP_FN(name) name##_LHASH_COMP

119 /* Third: "doall" functions */
120 #define DECLARE_LHASH_DOALL_FN(name, o_type) \
121 void name##_LHASH_DOALL(void *);
122 #define IMPLEMENT_LHASH_DOALL_FN(name, o_type) \
123 void name##_LHASH_DOALL(void *arg) { \
124 o_type *a = arg; \
125 name##_doall(a); }
126 #define LHASH_DOALL_FN(name) name##_LHASH_DOALL

new/usr/src/lib/openssl/include/openssl/lhash.h 3

128 /* Fourth: "doall_arg" functions */
129 #define DECLARE_LHASH_DOALL_ARG_FN(name, o_type, a_type) \
130 void name##_LHASH_DOALL_ARG(void *, void *);
131 #define IMPLEMENT_LHASH_DOALL_ARG_FN(name, o_type, a_type) \
132 void name##_LHASH_DOALL_ARG(void *arg1, void *arg2) { \
133 o_type *a = arg1; \
134 a_type *b = arg2; \
135 name##_doall_arg(a, b); }
136 #define LHASH_DOALL_ARG_FN(name) name##_LHASH_DOALL_ARG

138 typedef struct lhash_st
139 {
140 LHASH_NODE **b;
141 LHASH_COMP_FN_TYPE comp;
142 LHASH_HASH_FN_TYPE hash;
143 unsigned int num_nodes;
144 unsigned int num_alloc_nodes;
145 unsigned int p;
146 unsigned int pmax;
147 unsigned long up_load; /* load times 256 */
148 unsigned long down_load; /* load times 256 */
149 unsigned long num_items;

151 unsigned long num_expands;
152 unsigned long num_expand_reallocs;
153 unsigned long num_contracts;
154 unsigned long num_contract_reallocs;
155 unsigned long num_hash_calls;
156 unsigned long num_comp_calls;
157 unsigned long num_insert;
158 unsigned long num_replace;
159 unsigned long num_delete;
160 unsigned long num_no_delete;
161 unsigned long num_retrieve;
162 unsigned long num_retrieve_miss;
163 unsigned long num_hash_comps;

165 int error;
166 } _LHASH; /* Do not use _LHASH directly, use LHASH_OF
167 * and friends */

169 #define LH_LOAD_MULT 256

171 /* Indicates a malloc() error in the last call, this is only bad
172 * in lh_insert(). */
173 #define lh_error(lh) ((lh)->error)

175 _LHASH *lh_new(LHASH_HASH_FN_TYPE h, LHASH_COMP_FN_TYPE c);
176 void lh_free(_LHASH *lh);
177 void *lh_insert(_LHASH *lh, void *data);
178 void *lh_delete(_LHASH *lh, const void *data);
179 void *lh_retrieve(_LHASH *lh, const void *data);
180 void lh_doall(_LHASH *lh, LHASH_DOALL_FN_TYPE func);
181 void lh_doall_arg(_LHASH *lh, LHASH_DOALL_ARG_FN_TYPE func, void *arg);
182 unsigned long lh_strhash(const char *c);
183 unsigned long lh_num_items(const _LHASH *lh);

185 #ifndef OPENSSL_NO_FP_API
186 void lh_stats(const _LHASH *lh, FILE *out);
187 void lh_node_stats(const _LHASH *lh, FILE *out);
188 void lh_node_usage_stats(const _LHASH *lh, FILE *out);
189 #endif

191 #ifndef OPENSSL_NO_BIO
192 void lh_stats_bio(const _LHASH *lh, BIO *out);
193 void lh_node_stats_bio(const _LHASH *lh, BIO *out);

new/usr/src/lib/openssl/include/openssl/lhash.h 4

194 void lh_node_usage_stats_bio(const _LHASH *lh, BIO *out);
195 #endif

197 /* Type checking... */

199 #define LHASH_OF(type) struct lhash_st_##type

201 #define DECLARE_LHASH_OF(type) LHASH_OF(type) { int dummy; }

203 #define CHECKED_LHASH_OF(type,lh) \
204 ((_LHASH *)CHECKED_PTR_OF(LHASH_OF(type),lh))

206 /* Define wrapper functions. */
207 #define LHM_lh_new(type, name) \
208 ((LHASH_OF(type) *)lh_new(LHASH_HASH_FN(name), LHASH_COMP_FN(name)))
209 #define LHM_lh_error(type, lh) \
210 lh_error(CHECKED_LHASH_OF(type,lh))
211 #define LHM_lh_insert(type, lh, inst) \
212 ((type *)lh_insert(CHECKED_LHASH_OF(type, lh), \
213 CHECKED_PTR_OF(type, inst)))
214 #define LHM_lh_retrieve(type, lh, inst) \
215 ((type *)lh_retrieve(CHECKED_LHASH_OF(type, lh), \
216 CHECKED_PTR_OF(type, inst)))
217 #define LHM_lh_delete(type, lh, inst) \
218 ((type *)lh_delete(CHECKED_LHASH_OF(type, lh), \
219 CHECKED_PTR_OF(type, inst)))
220 #define LHM_lh_doall(type, lh,fn) lh_doall(CHECKED_LHASH_OF(type, lh), fn)
221 #define LHM_lh_doall_arg(type, lh, fn, arg_type, arg) \
222 lh_doall_arg(CHECKED_LHASH_OF(type, lh), fn, CHECKED_PTR_OF(arg_type, arg))
223 #define LHM_lh_num_items(type, lh) lh_num_items(CHECKED_LHASH_OF(type, lh))
224 #define LHM_lh_down_load(type, lh) (CHECKED_LHASH_OF(type, lh)->down_load)
225 #define LHM_lh_node_stats_bio(type, lh, out) \
226 lh_node_stats_bio(CHECKED_LHASH_OF(type, lh), out)
227 #define LHM_lh_node_usage_stats_bio(type, lh, out) \
228 lh_node_usage_stats_bio(CHECKED_LHASH_OF(type, lh), out)
229 #define LHM_lh_stats_bio(type, lh, out) \
230 lh_stats_bio(CHECKED_LHASH_OF(type, lh), out)
231 #define LHM_lh_free(type, lh) lh_free(CHECKED_LHASH_OF(type, lh))

233 DECLARE_LHASH_OF(OPENSSL_STRING);
234 DECLARE_LHASH_OF(OPENSSL_CSTRING);

236 #ifdef __cplusplus
237 }
238 #endif

240 #endif

new/usr/src/lib/openssl/include/openssl/md2.h 1

**
 3958 Fri May 30 18:31:19 2014
new/usr/src/lib/openssl/include/openssl/md2.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/md/md2.h */
2 /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_MD2_H
60 #define HEADER_MD2_H

new/usr/src/lib/openssl/include/openssl/md2.h 2

62 #include <openssl/opensslconf.h> /* OPENSSL_NO_MD2, MD2_INT */
63 #ifdef OPENSSL_NO_MD2
64 #error MD2 is disabled.
65 #endif
66 #include <stddef.h>

68 #define MD2_DIGEST_LENGTH 16
69 #define MD2_BLOCK 16

71 #ifdef __cplusplus
72 extern "C" {
73 #endif

75 typedef struct MD2state_st
76 {
77 unsigned int num;
78 unsigned char data[MD2_BLOCK];
79 MD2_INT cksm[MD2_BLOCK];
80 MD2_INT state[MD2_BLOCK];
81 } MD2_CTX;

83 const char *MD2_options(void);
84 #ifdef OPENSSL_FIPS
85 int private_MD2_Init(MD2_CTX *c);
86 #endif
87 int MD2_Init(MD2_CTX *c);
88 int MD2_Update(MD2_CTX *c, const unsigned char *data, size_t len);
89 int MD2_Final(unsigned char *md, MD2_CTX *c);
90 unsigned char *MD2(const unsigned char *d, size_t n,unsigned char *md);
91 #ifdef __cplusplus
92 }
93 #endif

95 #endif

new/usr/src/lib/openssl/include/openssl/md4.h 1

**
 4692 Fri May 30 18:31:19 2014
new/usr/src/lib/openssl/include/openssl/md4.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/md4/md4.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_MD4_H
60 #define HEADER_MD4_H

new/usr/src/lib/openssl/include/openssl/md4.h 2

62 #include <openssl/e_os2.h>
63 #include <stddef.h>

65 #ifdef __cplusplus
66 extern "C" {
67 #endif

69 #ifdef OPENSSL_NO_MD4
70 #error MD4 is disabled.
71 #endif

73 /*
74 * !!!
75 * ! MD4_LONG has to be at least 32 bits wide. If it’s wider, then !
76 * ! MD4_LONG_LOG2 has to be defined along. !
77 * !!!
78 */

80 #if defined(__LP32__)
81 #define MD4_LONG unsigned long
82 #elif defined(OPENSSL_SYS_CRAY) || defined(__ILP64__)
83 #define MD4_LONG unsigned long
84 #define MD4_LONG_LOG2 3
85 /*
86 * _CRAY note. I could declare short, but I have no idea what impact
87 * does it have on performance on none-T3E machines. I could declare
88 * int, but at least on C90 sizeof(int) can be chosen at compile time.
89 * So I’ve chosen long...
90 * <appro@fy.chalmers.se>
91 */
92 #else
93 #define MD4_LONG unsigned int
94 #endif

96 #define MD4_CBLOCK 64
97 #define MD4_LBLOCK (MD4_CBLOCK/4)
98 #define MD4_DIGEST_LENGTH 16

100 typedef struct MD4state_st
101 {
102 MD4_LONG A,B,C,D;
103 MD4_LONG Nl,Nh;
104 MD4_LONG data[MD4_LBLOCK];
105 unsigned int num;
106 } MD4_CTX;

108 #ifdef OPENSSL_FIPS
109 int private_MD4_Init(MD4_CTX *c);
110 #endif
111 int MD4_Init(MD4_CTX *c);
112 int MD4_Update(MD4_CTX *c, const void *data, size_t len);
113 int MD4_Final(unsigned char *md, MD4_CTX *c);
114 unsigned char *MD4(const unsigned char *d, size_t n, unsigned char *md);
115 void MD4_Transform(MD4_CTX *c, const unsigned char *b);
116 #ifdef __cplusplus
117 }
118 #endif

120 #endif

new/usr/src/lib/openssl/include/openssl/md5.h 1

**
 4692 Fri May 30 18:31:20 2014
new/usr/src/lib/openssl/include/openssl/md5.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/md5/md5.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_MD5_H
60 #define HEADER_MD5_H

new/usr/src/lib/openssl/include/openssl/md5.h 2

62 #include <openssl/e_os2.h>
63 #include <stddef.h>

65 #ifdef __cplusplus
66 extern "C" {
67 #endif

69 #ifdef OPENSSL_NO_MD5
70 #error MD5 is disabled.
71 #endif

73 /*
74 * !!!
75 * ! MD5_LONG has to be at least 32 bits wide. If it’s wider, then !
76 * ! MD5_LONG_LOG2 has to be defined along. !
77 * !!!
78 */

80 #if defined(__LP32__)
81 #define MD5_LONG unsigned long
82 #elif defined(OPENSSL_SYS_CRAY) || defined(__ILP64__)
83 #define MD5_LONG unsigned long
84 #define MD5_LONG_LOG2 3
85 /*
86 * _CRAY note. I could declare short, but I have no idea what impact
87 * does it have on performance on none-T3E machines. I could declare
88 * int, but at least on C90 sizeof(int) can be chosen at compile time.
89 * So I’ve chosen long...
90 * <appro@fy.chalmers.se>
91 */
92 #else
93 #define MD5_LONG unsigned int
94 #endif

96 #define MD5_CBLOCK 64
97 #define MD5_LBLOCK (MD5_CBLOCK/4)
98 #define MD5_DIGEST_LENGTH 16

100 typedef struct MD5state_st
101 {
102 MD5_LONG A,B,C,D;
103 MD5_LONG Nl,Nh;
104 MD5_LONG data[MD5_LBLOCK];
105 unsigned int num;
106 } MD5_CTX;

108 #ifdef OPENSSL_FIPS
109 int private_MD5_Init(MD5_CTX *c);
110 #endif
111 int MD5_Init(MD5_CTX *c);
112 int MD5_Update(MD5_CTX *c, const void *data, size_t len);
113 int MD5_Final(unsigned char *md, MD5_CTX *c);
114 unsigned char *MD5(const unsigned char *d, size_t n, unsigned char *md);
115 void MD5_Transform(MD5_CTX *c, const unsigned char *b);
116 #ifdef __cplusplus
117 }
118 #endif

120 #endif

new/usr/src/lib/openssl/include/openssl/modes.h 1

**
 5619 Fri May 30 18:31:20 2014
new/usr/src/lib/openssl/include/openssl/modes.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
3 *
4 * Rights for redistribution and usage in source and binary
5 * forms are granted according to the OpenSSL license.
6 */

8 #include <stddef.h>

10 typedef void (*block128_f)(const unsigned char in[16],
11 unsigned char out[16],
12 const void *key);

14 typedef void (*cbc128_f)(const unsigned char *in, unsigned char *out,
15 size_t len, const void *key,
16 unsigned char ivec[16], int enc);

18 typedef void (*ctr128_f)(const unsigned char *in, unsigned char *out,
19 size_t blocks, const void *key,
20 const unsigned char ivec[16]);

22 typedef void (*ccm128_f)(const unsigned char *in, unsigned char *out,
23 size_t blocks, const void *key,
24 const unsigned char ivec[16],unsigned char cmac[16]);

26 void CRYPTO_cbc128_encrypt(const unsigned char *in, unsigned char *out,
27 size_t len, const void *key,
28 unsigned char ivec[16], block128_f block);
29 void CRYPTO_cbc128_decrypt(const unsigned char *in, unsigned char *out,
30 size_t len, const void *key,
31 unsigned char ivec[16], block128_f block);

33 void CRYPTO_ctr128_encrypt(const unsigned char *in, unsigned char *out,
34 size_t len, const void *key,
35 unsigned char ivec[16], unsigned char ecount_buf[16],
36 unsigned int *num, block128_f block);

38 void CRYPTO_ctr128_encrypt_ctr32(const unsigned char *in, unsigned char *out,
39 size_t len, const void *key,
40 unsigned char ivec[16], unsigned char ecount_buf[16],
41 unsigned int *num, ctr128_f ctr);

43 void CRYPTO_ofb128_encrypt(const unsigned char *in, unsigned char *out,
44 size_t len, const void *key,
45 unsigned char ivec[16], int *num,
46 block128_f block);

48 void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out,
49 size_t len, const void *key,
50 unsigned char ivec[16], int *num,
51 int enc, block128_f block);
52 void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out,
53 size_t length, const void *key,
54 unsigned char ivec[16], int *num,
55 int enc, block128_f block);
56 void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out,
57 size_t bits, const void *key,
58 unsigned char ivec[16], int *num,
59 int enc, block128_f block);

61 size_t CRYPTO_cts128_encrypt_block(const unsigned char *in, unsigned char *out,

new/usr/src/lib/openssl/include/openssl/modes.h 2

62 size_t len, const void *key,
63 unsigned char ivec[16], block128_f block);
64 size_t CRYPTO_cts128_encrypt(const unsigned char *in, unsigned char *out,
65 size_t len, const void *key,
66 unsigned char ivec[16], cbc128_f cbc);
67 size_t CRYPTO_cts128_decrypt_block(const unsigned char *in, unsigned char *out,
68 size_t len, const void *key,
69 unsigned char ivec[16], block128_f block);
70 size_t CRYPTO_cts128_decrypt(const unsigned char *in, unsigned char *out,
71 size_t len, const void *key,
72 unsigned char ivec[16], cbc128_f cbc);

74 size_t CRYPTO_nistcts128_encrypt_block(const unsigned char *in, unsigned char *o
75 size_t len, const void *key,
76 unsigned char ivec[16], block128_f block);
77 size_t CRYPTO_nistcts128_encrypt(const unsigned char *in, unsigned char *out,
78 size_t len, const void *key,
79 unsigned char ivec[16], cbc128_f cbc);
80 size_t CRYPTO_nistcts128_decrypt_block(const unsigned char *in, unsigned char *o
81 size_t len, const void *key,
82 unsigned char ivec[16], block128_f block);
83 size_t CRYPTO_nistcts128_decrypt(const unsigned char *in, unsigned char *out,
84 size_t len, const void *key,
85 unsigned char ivec[16], cbc128_f cbc);

87 typedef struct gcm128_context GCM128_CONTEXT;

89 GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block);
90 void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block);
91 void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv,
92 size_t len);
93 int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad,
94 size_t len);
95 int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
96 const unsigned char *in, unsigned char *out,
97 size_t len);
98 int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
99 const unsigned char *in, unsigned char *out,
100 size_t len);
101 int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
102 const unsigned char *in, unsigned char *out,
103 size_t len, ctr128_f stream);
104 int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
105 const unsigned char *in, unsigned char *out,
106 size_t len, ctr128_f stream);
107 int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx,const unsigned char *tag,
108 size_t len);
109 void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len);
110 void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx);

112 typedef struct ccm128_context CCM128_CONTEXT;

114 void CRYPTO_ccm128_init(CCM128_CONTEXT *ctx,
115 unsigned int M, unsigned int L, void *key,block128_f block);
116 int CRYPTO_ccm128_setiv(CCM128_CONTEXT *ctx,
117 const unsigned char *nonce, size_t nlen, size_t mlen);
118 void CRYPTO_ccm128_aad(CCM128_CONTEXT *ctx,
119 const unsigned char *aad, size_t alen);
120 int CRYPTO_ccm128_encrypt(CCM128_CONTEXT *ctx,
121 const unsigned char *inp, unsigned char *out, size_t len);
122 int CRYPTO_ccm128_decrypt(CCM128_CONTEXT *ctx,
123 const unsigned char *inp, unsigned char *out, size_t len);
124 int CRYPTO_ccm128_encrypt_ccm64(CCM128_CONTEXT *ctx,
125 const unsigned char *inp, unsigned char *out, size_t len,
126 ccm128_f stream);
127 int CRYPTO_ccm128_decrypt_ccm64(CCM128_CONTEXT *ctx,

new/usr/src/lib/openssl/include/openssl/modes.h 3

128 const unsigned char *inp, unsigned char *out, size_t len,
129 ccm128_f stream);
130 size_t CRYPTO_ccm128_tag(CCM128_CONTEXT *ctx, unsigned char *tag, size_t len);

132 typedef struct xts128_context XTS128_CONTEXT;

134 int CRYPTO_xts128_encrypt(const XTS128_CONTEXT *ctx, const unsigned char iv[16],
135 const unsigned char *inp, unsigned char *out, size_t len, int enc);

new/usr/src/lib/openssl/include/openssl/obj_mac.h 1

**
 136214 Fri May 30 18:31:20 2014
new/usr/src/lib/openssl/include/openssl/obj_mac.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/objects/obj_mac.h */

3 /* THIS FILE IS GENERATED FROM objects.txt by objects.pl via the
4 * following command:
5 * perl objects.pl objects.txt obj_mac.num obj_mac.h
6 */

8 /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
9 * All rights reserved.
10 *
11 * This package is an SSL implementation written
12 * by Eric Young (eay@cryptsoft.com).
13 * The implementation was written so as to conform with Netscapes SSL.
14 *
15 * This library is free for commercial and non-commercial use as long as
16 * the following conditions are aheared to. The following conditions
17 * apply to all code found in this distribution, be it the RC4, RSA,
18 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
19 * included with this distribution is covered by the same copyright terms
20 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
21 *
22 * Copyright remains Eric Young’s, and as such any Copyright notices in
23 * the code are not to be removed.
24 * If this package is used in a product, Eric Young should be given attribution
25 * as the author of the parts of the library used.
26 * This can be in the form of a textual message at program startup or
27 * in documentation (online or textual) provided with the package.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 * 1. Redistributions of source code must retain the copyright
33 * notice, this list of conditions and the following disclaimer.
34 * 2. Redistributions in binary form must reproduce the above copyright
35 * notice, this list of conditions and the following disclaimer in the
36 * documentation and/or other materials provided with the distribution.
37 * 3. All advertising materials mentioning features or use of this software
38 * must display the following acknowledgement:
39 * "This product includes cryptographic software written by
40 * Eric Young (eay@cryptsoft.com)"
41 * The word ’cryptographic’ can be left out if the rouines from the library
42 * being used are not cryptographic related :-).
43 * 4. If you include any Windows specific code (or a derivative thereof) from
44 * the apps directory (application code) you must include an acknowledgement:
45 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
46 *
47 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * The licence and distribution terms for any publically available version or
60 * derivative of this code cannot be changed. i.e. this code cannot simply be
61 * copied and put under another distribution licence

new/usr/src/lib/openssl/include/openssl/obj_mac.h 2

62 * [including the GNU Public Licence.]
63 */

65 #define SN_undef "UNDEF"
66 #define LN_undef "undefined"
67 #define NID_undef 0
68 #define OBJ_undef 0L

70 #define SN_itu_t "ITU-T"
71 #define LN_itu_t "itu-t"
72 #define NID_itu_t 645
73 #define OBJ_itu_t 0L

75 #define NID_ccitt 404
76 #define OBJ_ccitt OBJ_itu_t

78 #define SN_iso "ISO"
79 #define LN_iso "iso"
80 #define NID_iso 181
81 #define OBJ_iso 1L

83 #define SN_joint_iso_itu_t "JOINT-ISO-ITU-T"
84 #define LN_joint_iso_itu_t "joint-iso-itu-t"
85 #define NID_joint_iso_itu_t 646
86 #define OBJ_joint_iso_itu_t 2L

88 #define NID_joint_iso_ccitt 393
89 #define OBJ_joint_iso_ccitt OBJ_joint_iso_itu_t

91 #define SN_member_body "member-body"
92 #define LN_member_body "ISO Member Body"
93 #define NID_member_body 182
94 #define OBJ_member_body OBJ_iso,2L

96 #define SN_identified_organization "identified-organization"
97 #define NID_identified_organization 676
98 #define OBJ_identified_organization OBJ_iso,3L

100 #define SN_hmac_md5 "HMAC-MD5"
101 #define LN_hmac_md5 "hmac-md5"
102 #define NID_hmac_md5 780
103 #define OBJ_hmac_md5 OBJ_identified_organization,6L,1L,5L,5L,8L,1L,1L

105 #define SN_hmac_sha1 "HMAC-SHA1"
106 #define LN_hmac_sha1 "hmac-sha1"
107 #define NID_hmac_sha1 781
108 #define OBJ_hmac_sha1 OBJ_identified_organization,6L,1L,5L,5L,8L,1L,2L

110 #define SN_certicom_arc "certicom-arc"
111 #define NID_certicom_arc 677
112 #define OBJ_certicom_arc OBJ_identified_organization,132L

114 #define SN_international_organizations "international-organizations"
115 #define LN_international_organizations "International Organizations"
116 #define NID_international_organizations 647
117 #define OBJ_international_organizations OBJ_joint_iso_itu_t,23L

119 #define SN_wap "wap"
120 #define NID_wap 678
121 #define OBJ_wap OBJ_international_organizations,43L

123 #define SN_wap_wsg "wap-wsg"
124 #define NID_wap_wsg 679
125 #define OBJ_wap_wsg OBJ_wap,1L

127 #define SN_selected_attribute_types "selected-attribute-types"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 3

128 #define LN_selected_attribute_types "Selected Attribute Types"
129 #define NID_selected_attribute_types 394
130 #define OBJ_selected_attribute_types OBJ_joint_iso_itu_t,5L,1L,5L

132 #define SN_clearance "clearance"
133 #define NID_clearance 395
134 #define OBJ_clearance OBJ_selected_attribute_types,55L

136 #define SN_ISO_US "ISO-US"
137 #define LN_ISO_US "ISO US Member Body"
138 #define NID_ISO_US 183
139 #define OBJ_ISO_US OBJ_member_body,840L

141 #define SN_X9_57 "X9-57"
142 #define LN_X9_57 "X9.57"
143 #define NID_X9_57 184
144 #define OBJ_X9_57 OBJ_ISO_US,10040L

146 #define SN_X9cm "X9cm"
147 #define LN_X9cm "X9.57 CM ?"
148 #define NID_X9cm 185
149 #define OBJ_X9cm OBJ_X9_57,4L

151 #define SN_dsa "DSA"
152 #define LN_dsa "dsaEncryption"
153 #define NID_dsa 116
154 #define OBJ_dsa OBJ_X9cm,1L

156 #define SN_dsaWithSHA1 "DSA-SHA1"
157 #define LN_dsaWithSHA1 "dsaWithSHA1"
158 #define NID_dsaWithSHA1 113
159 #define OBJ_dsaWithSHA1 OBJ_X9cm,3L

161 #define SN_ansi_X9_62 "ansi-X9-62"
162 #define LN_ansi_X9_62 "ANSI X9.62"
163 #define NID_ansi_X9_62 405
164 #define OBJ_ansi_X9_62 OBJ_ISO_US,10045L

166 #define OBJ_X9_62_id_fieldType OBJ_ansi_X9_62,1L

168 #define SN_X9_62_prime_field "prime-field"
169 #define NID_X9_62_prime_field 406
170 #define OBJ_X9_62_prime_field OBJ_X9_62_id_fieldType,1L

172 #define SN_X9_62_characteristic_two_field "characteristic-two-fiel
173 #define NID_X9_62_characteristic_two_field 407
174 #define OBJ_X9_62_characteristic_two_field OBJ_X9_62_id_fieldType,2

176 #define SN_X9_62_id_characteristic_two_basis "id-characteristic-two-b
177 #define NID_X9_62_id_characteristic_two_basis 680
178 #define OBJ_X9_62_id_characteristic_two_basis OBJ_X9_62_characteristic

180 #define SN_X9_62_onBasis "onBasis"
181 #define NID_X9_62_onBasis 681
182 #define OBJ_X9_62_onBasis OBJ_X9_62_id_characteristic_two_basis,1L

184 #define SN_X9_62_tpBasis "tpBasis"
185 #define NID_X9_62_tpBasis 682
186 #define OBJ_X9_62_tpBasis OBJ_X9_62_id_characteristic_two_basis,2L

188 #define SN_X9_62_ppBasis "ppBasis"
189 #define NID_X9_62_ppBasis 683
190 #define OBJ_X9_62_ppBasis OBJ_X9_62_id_characteristic_two_basis,3L

192 #define OBJ_X9_62_id_publicKeyType OBJ_ansi_X9_62,2L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 4

194 #define SN_X9_62_id_ecPublicKey "id-ecPublicKey"
195 #define NID_X9_62_id_ecPublicKey 408
196 #define OBJ_X9_62_id_ecPublicKey OBJ_X9_62_id_publicKeyType,1L

198 #define OBJ_X9_62_ellipticCurve OBJ_ansi_X9_62,3L

200 #define OBJ_X9_62_c_TwoCurve OBJ_X9_62_ellipticCurve,0L

202 #define SN_X9_62_c2pnb163v1 "c2pnb163v1"
203 #define NID_X9_62_c2pnb163v1 684
204 #define OBJ_X9_62_c2pnb163v1 OBJ_X9_62_c_TwoCurve,1L

206 #define SN_X9_62_c2pnb163v2 "c2pnb163v2"
207 #define NID_X9_62_c2pnb163v2 685
208 #define OBJ_X9_62_c2pnb163v2 OBJ_X9_62_c_TwoCurve,2L

210 #define SN_X9_62_c2pnb163v3 "c2pnb163v3"
211 #define NID_X9_62_c2pnb163v3 686
212 #define OBJ_X9_62_c2pnb163v3 OBJ_X9_62_c_TwoCurve,3L

214 #define SN_X9_62_c2pnb176v1 "c2pnb176v1"
215 #define NID_X9_62_c2pnb176v1 687
216 #define OBJ_X9_62_c2pnb176v1 OBJ_X9_62_c_TwoCurve,4L

218 #define SN_X9_62_c2tnb191v1 "c2tnb191v1"
219 #define NID_X9_62_c2tnb191v1 688
220 #define OBJ_X9_62_c2tnb191v1 OBJ_X9_62_c_TwoCurve,5L

222 #define SN_X9_62_c2tnb191v2 "c2tnb191v2"
223 #define NID_X9_62_c2tnb191v2 689
224 #define OBJ_X9_62_c2tnb191v2 OBJ_X9_62_c_TwoCurve,6L

226 #define SN_X9_62_c2tnb191v3 "c2tnb191v3"
227 #define NID_X9_62_c2tnb191v3 690
228 #define OBJ_X9_62_c2tnb191v3 OBJ_X9_62_c_TwoCurve,7L

230 #define SN_X9_62_c2onb191v4 "c2onb191v4"
231 #define NID_X9_62_c2onb191v4 691
232 #define OBJ_X9_62_c2onb191v4 OBJ_X9_62_c_TwoCurve,8L

234 #define SN_X9_62_c2onb191v5 "c2onb191v5"
235 #define NID_X9_62_c2onb191v5 692
236 #define OBJ_X9_62_c2onb191v5 OBJ_X9_62_c_TwoCurve,9L

238 #define SN_X9_62_c2pnb208w1 "c2pnb208w1"
239 #define NID_X9_62_c2pnb208w1 693
240 #define OBJ_X9_62_c2pnb208w1 OBJ_X9_62_c_TwoCurve,10L

242 #define SN_X9_62_c2tnb239v1 "c2tnb239v1"
243 #define NID_X9_62_c2tnb239v1 694
244 #define OBJ_X9_62_c2tnb239v1 OBJ_X9_62_c_TwoCurve,11L

246 #define SN_X9_62_c2tnb239v2 "c2tnb239v2"
247 #define NID_X9_62_c2tnb239v2 695
248 #define OBJ_X9_62_c2tnb239v2 OBJ_X9_62_c_TwoCurve,12L

250 #define SN_X9_62_c2tnb239v3 "c2tnb239v3"
251 #define NID_X9_62_c2tnb239v3 696
252 #define OBJ_X9_62_c2tnb239v3 OBJ_X9_62_c_TwoCurve,13L

254 #define SN_X9_62_c2onb239v4 "c2onb239v4"
255 #define NID_X9_62_c2onb239v4 697
256 #define OBJ_X9_62_c2onb239v4 OBJ_X9_62_c_TwoCurve,14L

258 #define SN_X9_62_c2onb239v5 "c2onb239v5"
259 #define NID_X9_62_c2onb239v5 698

new/usr/src/lib/openssl/include/openssl/obj_mac.h 5

260 #define OBJ_X9_62_c2onb239v5 OBJ_X9_62_c_TwoCurve,15L

262 #define SN_X9_62_c2pnb272w1 "c2pnb272w1"
263 #define NID_X9_62_c2pnb272w1 699
264 #define OBJ_X9_62_c2pnb272w1 OBJ_X9_62_c_TwoCurve,16L

266 #define SN_X9_62_c2pnb304w1 "c2pnb304w1"
267 #define NID_X9_62_c2pnb304w1 700
268 #define OBJ_X9_62_c2pnb304w1 OBJ_X9_62_c_TwoCurve,17L

270 #define SN_X9_62_c2tnb359v1 "c2tnb359v1"
271 #define NID_X9_62_c2tnb359v1 701
272 #define OBJ_X9_62_c2tnb359v1 OBJ_X9_62_c_TwoCurve,18L

274 #define SN_X9_62_c2pnb368w1 "c2pnb368w1"
275 #define NID_X9_62_c2pnb368w1 702
276 #define OBJ_X9_62_c2pnb368w1 OBJ_X9_62_c_TwoCurve,19L

278 #define SN_X9_62_c2tnb431r1 "c2tnb431r1"
279 #define NID_X9_62_c2tnb431r1 703
280 #define OBJ_X9_62_c2tnb431r1 OBJ_X9_62_c_TwoCurve,20L

282 #define OBJ_X9_62_primeCurve OBJ_X9_62_ellipticCurve,1L

284 #define SN_X9_62_prime192v1 "prime192v1"
285 #define NID_X9_62_prime192v1 409
286 #define OBJ_X9_62_prime192v1 OBJ_X9_62_primeCurve,1L

288 #define SN_X9_62_prime192v2 "prime192v2"
289 #define NID_X9_62_prime192v2 410
290 #define OBJ_X9_62_prime192v2 OBJ_X9_62_primeCurve,2L

292 #define SN_X9_62_prime192v3 "prime192v3"
293 #define NID_X9_62_prime192v3 411
294 #define OBJ_X9_62_prime192v3 OBJ_X9_62_primeCurve,3L

296 #define SN_X9_62_prime239v1 "prime239v1"
297 #define NID_X9_62_prime239v1 412
298 #define OBJ_X9_62_prime239v1 OBJ_X9_62_primeCurve,4L

300 #define SN_X9_62_prime239v2 "prime239v2"
301 #define NID_X9_62_prime239v2 413
302 #define OBJ_X9_62_prime239v2 OBJ_X9_62_primeCurve,5L

304 #define SN_X9_62_prime239v3 "prime239v3"
305 #define NID_X9_62_prime239v3 414
306 #define OBJ_X9_62_prime239v3 OBJ_X9_62_primeCurve,6L

308 #define SN_X9_62_prime256v1 "prime256v1"
309 #define NID_X9_62_prime256v1 415
310 #define OBJ_X9_62_prime256v1 OBJ_X9_62_primeCurve,7L

312 #define OBJ_X9_62_id_ecSigType OBJ_ansi_X9_62,4L

314 #define SN_ecdsa_with_SHA1 "ecdsa-with-SHA1"
315 #define NID_ecdsa_with_SHA1 416
316 #define OBJ_ecdsa_with_SHA1 OBJ_X9_62_id_ecSigType,1L

318 #define SN_ecdsa_with_Recommended "ecdsa-with-Recommended"
319 #define NID_ecdsa_with_Recommended 791
320 #define OBJ_ecdsa_with_Recommended OBJ_X9_62_id_ecSigType,2L

322 #define SN_ecdsa_with_Specified "ecdsa-with-Specified"
323 #define NID_ecdsa_with_Specified 792
324 #define OBJ_ecdsa_with_Specified OBJ_X9_62_id_ecSigType,3L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 6

326 #define SN_ecdsa_with_SHA224 "ecdsa-with-SHA224"
327 #define NID_ecdsa_with_SHA224 793
328 #define OBJ_ecdsa_with_SHA224 OBJ_ecdsa_with_Specified,1L

330 #define SN_ecdsa_with_SHA256 "ecdsa-with-SHA256"
331 #define NID_ecdsa_with_SHA256 794
332 #define OBJ_ecdsa_with_SHA256 OBJ_ecdsa_with_Specified,2L

334 #define SN_ecdsa_with_SHA384 "ecdsa-with-SHA384"
335 #define NID_ecdsa_with_SHA384 795
336 #define OBJ_ecdsa_with_SHA384 OBJ_ecdsa_with_Specified,3L

338 #define SN_ecdsa_with_SHA512 "ecdsa-with-SHA512"
339 #define NID_ecdsa_with_SHA512 796
340 #define OBJ_ecdsa_with_SHA512 OBJ_ecdsa_with_Specified,4L

342 #define OBJ_secg_ellipticCurve OBJ_certicom_arc,0L

344 #define SN_secp112r1 "secp112r1"
345 #define NID_secp112r1 704
346 #define OBJ_secp112r1 OBJ_secg_ellipticCurve,6L

348 #define SN_secp112r2 "secp112r2"
349 #define NID_secp112r2 705
350 #define OBJ_secp112r2 OBJ_secg_ellipticCurve,7L

352 #define SN_secp128r1 "secp128r1"
353 #define NID_secp128r1 706
354 #define OBJ_secp128r1 OBJ_secg_ellipticCurve,28L

356 #define SN_secp128r2 "secp128r2"
357 #define NID_secp128r2 707
358 #define OBJ_secp128r2 OBJ_secg_ellipticCurve,29L

360 #define SN_secp160k1 "secp160k1"
361 #define NID_secp160k1 708
362 #define OBJ_secp160k1 OBJ_secg_ellipticCurve,9L

364 #define SN_secp160r1 "secp160r1"
365 #define NID_secp160r1 709
366 #define OBJ_secp160r1 OBJ_secg_ellipticCurve,8L

368 #define SN_secp160r2 "secp160r2"
369 #define NID_secp160r2 710
370 #define OBJ_secp160r2 OBJ_secg_ellipticCurve,30L

372 #define SN_secp192k1 "secp192k1"
373 #define NID_secp192k1 711
374 #define OBJ_secp192k1 OBJ_secg_ellipticCurve,31L

376 #define SN_secp224k1 "secp224k1"
377 #define NID_secp224k1 712
378 #define OBJ_secp224k1 OBJ_secg_ellipticCurve,32L

380 #define SN_secp224r1 "secp224r1"
381 #define NID_secp224r1 713
382 #define OBJ_secp224r1 OBJ_secg_ellipticCurve,33L

384 #define SN_secp256k1 "secp256k1"
385 #define NID_secp256k1 714
386 #define OBJ_secp256k1 OBJ_secg_ellipticCurve,10L

388 #define SN_secp384r1 "secp384r1"
389 #define NID_secp384r1 715
390 #define OBJ_secp384r1 OBJ_secg_ellipticCurve,34L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 7

392 #define SN_secp521r1 "secp521r1"
393 #define NID_secp521r1 716
394 #define OBJ_secp521r1 OBJ_secg_ellipticCurve,35L

396 #define SN_sect113r1 "sect113r1"
397 #define NID_sect113r1 717
398 #define OBJ_sect113r1 OBJ_secg_ellipticCurve,4L

400 #define SN_sect113r2 "sect113r2"
401 #define NID_sect113r2 718
402 #define OBJ_sect113r2 OBJ_secg_ellipticCurve,5L

404 #define SN_sect131r1 "sect131r1"
405 #define NID_sect131r1 719
406 #define OBJ_sect131r1 OBJ_secg_ellipticCurve,22L

408 #define SN_sect131r2 "sect131r2"
409 #define NID_sect131r2 720
410 #define OBJ_sect131r2 OBJ_secg_ellipticCurve,23L

412 #define SN_sect163k1 "sect163k1"
413 #define NID_sect163k1 721
414 #define OBJ_sect163k1 OBJ_secg_ellipticCurve,1L

416 #define SN_sect163r1 "sect163r1"
417 #define NID_sect163r1 722
418 #define OBJ_sect163r1 OBJ_secg_ellipticCurve,2L

420 #define SN_sect163r2 "sect163r2"
421 #define NID_sect163r2 723
422 #define OBJ_sect163r2 OBJ_secg_ellipticCurve,15L

424 #define SN_sect193r1 "sect193r1"
425 #define NID_sect193r1 724
426 #define OBJ_sect193r1 OBJ_secg_ellipticCurve,24L

428 #define SN_sect193r2 "sect193r2"
429 #define NID_sect193r2 725
430 #define OBJ_sect193r2 OBJ_secg_ellipticCurve,25L

432 #define SN_sect233k1 "sect233k1"
433 #define NID_sect233k1 726
434 #define OBJ_sect233k1 OBJ_secg_ellipticCurve,26L

436 #define SN_sect233r1 "sect233r1"
437 #define NID_sect233r1 727
438 #define OBJ_sect233r1 OBJ_secg_ellipticCurve,27L

440 #define SN_sect239k1 "sect239k1"
441 #define NID_sect239k1 728
442 #define OBJ_sect239k1 OBJ_secg_ellipticCurve,3L

444 #define SN_sect283k1 "sect283k1"
445 #define NID_sect283k1 729
446 #define OBJ_sect283k1 OBJ_secg_ellipticCurve,16L

448 #define SN_sect283r1 "sect283r1"
449 #define NID_sect283r1 730
450 #define OBJ_sect283r1 OBJ_secg_ellipticCurve,17L

452 #define SN_sect409k1 "sect409k1"
453 #define NID_sect409k1 731
454 #define OBJ_sect409k1 OBJ_secg_ellipticCurve,36L

456 #define SN_sect409r1 "sect409r1"
457 #define NID_sect409r1 732

new/usr/src/lib/openssl/include/openssl/obj_mac.h 8

458 #define OBJ_sect409r1 OBJ_secg_ellipticCurve,37L

460 #define SN_sect571k1 "sect571k1"
461 #define NID_sect571k1 733
462 #define OBJ_sect571k1 OBJ_secg_ellipticCurve,38L

464 #define SN_sect571r1 "sect571r1"
465 #define NID_sect571r1 734
466 #define OBJ_sect571r1 OBJ_secg_ellipticCurve,39L

468 #define OBJ_wap_wsg_idm_ecid OBJ_wap_wsg,4L

470 #define SN_wap_wsg_idm_ecid_wtls1 "wap-wsg-idm-ecid-wtls1"
471 #define NID_wap_wsg_idm_ecid_wtls1 735
472 #define OBJ_wap_wsg_idm_ecid_wtls1 OBJ_wap_wsg_idm_ecid,1L

474 #define SN_wap_wsg_idm_ecid_wtls3 "wap-wsg-idm-ecid-wtls3"
475 #define NID_wap_wsg_idm_ecid_wtls3 736
476 #define OBJ_wap_wsg_idm_ecid_wtls3 OBJ_wap_wsg_idm_ecid,3L

478 #define SN_wap_wsg_idm_ecid_wtls4 "wap-wsg-idm-ecid-wtls4"
479 #define NID_wap_wsg_idm_ecid_wtls4 737
480 #define OBJ_wap_wsg_idm_ecid_wtls4 OBJ_wap_wsg_idm_ecid,4L

482 #define SN_wap_wsg_idm_ecid_wtls5 "wap-wsg-idm-ecid-wtls5"
483 #define NID_wap_wsg_idm_ecid_wtls5 738
484 #define OBJ_wap_wsg_idm_ecid_wtls5 OBJ_wap_wsg_idm_ecid,5L

486 #define SN_wap_wsg_idm_ecid_wtls6 "wap-wsg-idm-ecid-wtls6"
487 #define NID_wap_wsg_idm_ecid_wtls6 739
488 #define OBJ_wap_wsg_idm_ecid_wtls6 OBJ_wap_wsg_idm_ecid,6L

490 #define SN_wap_wsg_idm_ecid_wtls7 "wap-wsg-idm-ecid-wtls7"
491 #define NID_wap_wsg_idm_ecid_wtls7 740
492 #define OBJ_wap_wsg_idm_ecid_wtls7 OBJ_wap_wsg_idm_ecid,7L

494 #define SN_wap_wsg_idm_ecid_wtls8 "wap-wsg-idm-ecid-wtls8"
495 #define NID_wap_wsg_idm_ecid_wtls8 741
496 #define OBJ_wap_wsg_idm_ecid_wtls8 OBJ_wap_wsg_idm_ecid,8L

498 #define SN_wap_wsg_idm_ecid_wtls9 "wap-wsg-idm-ecid-wtls9"
499 #define NID_wap_wsg_idm_ecid_wtls9 742
500 #define OBJ_wap_wsg_idm_ecid_wtls9 OBJ_wap_wsg_idm_ecid,9L

502 #define SN_wap_wsg_idm_ecid_wtls10 "wap-wsg-idm-ecid-wtls10"
503 #define NID_wap_wsg_idm_ecid_wtls10 743
504 #define OBJ_wap_wsg_idm_ecid_wtls10 OBJ_wap_wsg_idm_ecid,10L

506 #define SN_wap_wsg_idm_ecid_wtls11 "wap-wsg-idm-ecid-wtls11"
507 #define NID_wap_wsg_idm_ecid_wtls11 744
508 #define OBJ_wap_wsg_idm_ecid_wtls11 OBJ_wap_wsg_idm_ecid,11L

510 #define SN_wap_wsg_idm_ecid_wtls12 "wap-wsg-idm-ecid-wtls12"
511 #define NID_wap_wsg_idm_ecid_wtls12 745
512 #define OBJ_wap_wsg_idm_ecid_wtls12 OBJ_wap_wsg_idm_ecid,12L

514 #define SN_cast5_cbc "CAST5-CBC"
515 #define LN_cast5_cbc "cast5-cbc"
516 #define NID_cast5_cbc 108
517 #define OBJ_cast5_cbc OBJ_ISO_US,113533L,7L,66L,10L

519 #define SN_cast5_ecb "CAST5-ECB"
520 #define LN_cast5_ecb "cast5-ecb"
521 #define NID_cast5_ecb 109

523 #define SN_cast5_cfb64 "CAST5-CFB"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 9

524 #define LN_cast5_cfb64 "cast5-cfb"
525 #define NID_cast5_cfb64 110

527 #define SN_cast5_ofb64 "CAST5-OFB"
528 #define LN_cast5_ofb64 "cast5-ofb"
529 #define NID_cast5_ofb64 111

531 #define LN_pbeWithMD5AndCast5_CBC "pbeWithMD5AndCast5CBC"
532 #define NID_pbeWithMD5AndCast5_CBC 112
533 #define OBJ_pbeWithMD5AndCast5_CBC OBJ_ISO_US,113533L,7L,66L,12L

535 #define SN_id_PasswordBasedMAC "id-PasswordBasedMAC"
536 #define LN_id_PasswordBasedMAC "password based MAC"
537 #define NID_id_PasswordBasedMAC 782
538 #define OBJ_id_PasswordBasedMAC OBJ_ISO_US,113533L,7L,66L,13L

540 #define SN_id_DHBasedMac "id-DHBasedMac"
541 #define LN_id_DHBasedMac "Diffie-Hellman based MAC"
542 #define NID_id_DHBasedMac 783
543 #define OBJ_id_DHBasedMac OBJ_ISO_US,113533L,7L,66L,30L

545 #define SN_rsadsi "rsadsi"
546 #define LN_rsadsi "RSA Data Security, Inc."
547 #define NID_rsadsi 1
548 #define OBJ_rsadsi OBJ_ISO_US,113549L

550 #define SN_pkcs "pkcs"
551 #define LN_pkcs "RSA Data Security, Inc. PKCS"
552 #define NID_pkcs 2
553 #define OBJ_pkcs OBJ_rsadsi,1L

555 #define SN_pkcs1 "pkcs1"
556 #define NID_pkcs1 186
557 #define OBJ_pkcs1 OBJ_pkcs,1L

559 #define LN_rsaEncryption "rsaEncryption"
560 #define NID_rsaEncryption 6
561 #define OBJ_rsaEncryption OBJ_pkcs1,1L

563 #define SN_md2WithRSAEncryption "RSA-MD2"
564 #define LN_md2WithRSAEncryption "md2WithRSAEncryption"
565 #define NID_md2WithRSAEncryption 7
566 #define OBJ_md2WithRSAEncryption OBJ_pkcs1,2L

568 #define SN_md4WithRSAEncryption "RSA-MD4"
569 #define LN_md4WithRSAEncryption "md4WithRSAEncryption"
570 #define NID_md4WithRSAEncryption 396
571 #define OBJ_md4WithRSAEncryption OBJ_pkcs1,3L

573 #define SN_md5WithRSAEncryption "RSA-MD5"
574 #define LN_md5WithRSAEncryption "md5WithRSAEncryption"
575 #define NID_md5WithRSAEncryption 8
576 #define OBJ_md5WithRSAEncryption OBJ_pkcs1,4L

578 #define SN_sha1WithRSAEncryption "RSA-SHA1"
579 #define LN_sha1WithRSAEncryption "sha1WithRSAEncryption"
580 #define NID_sha1WithRSAEncryption 65
581 #define OBJ_sha1WithRSAEncryption OBJ_pkcs1,5L

583 #define SN_rsaesOaep "RSAES-OAEP"
584 #define LN_rsaesOaep "rsaesOaep"
585 #define NID_rsaesOaep 919
586 #define OBJ_rsaesOaep OBJ_pkcs1,7L

588 #define SN_mgf1 "MGF1"
589 #define LN_mgf1 "mgf1"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 10

590 #define NID_mgf1 911
591 #define OBJ_mgf1 OBJ_pkcs1,8L

593 #define SN_rsassaPss "RSASSA-PSS"
594 #define LN_rsassaPss "rsassaPss"
595 #define NID_rsassaPss 912
596 #define OBJ_rsassaPss OBJ_pkcs1,10L

598 #define SN_sha256WithRSAEncryption "RSA-SHA256"
599 #define LN_sha256WithRSAEncryption "sha256WithRSAEncryption"
600 #define NID_sha256WithRSAEncryption 668
601 #define OBJ_sha256WithRSAEncryption OBJ_pkcs1,11L

603 #define SN_sha384WithRSAEncryption "RSA-SHA384"
604 #define LN_sha384WithRSAEncryption "sha384WithRSAEncryption"
605 #define NID_sha384WithRSAEncryption 669
606 #define OBJ_sha384WithRSAEncryption OBJ_pkcs1,12L

608 #define SN_sha512WithRSAEncryption "RSA-SHA512"
609 #define LN_sha512WithRSAEncryption "sha512WithRSAEncryption"
610 #define NID_sha512WithRSAEncryption 670
611 #define OBJ_sha512WithRSAEncryption OBJ_pkcs1,13L

613 #define SN_sha224WithRSAEncryption "RSA-SHA224"
614 #define LN_sha224WithRSAEncryption "sha224WithRSAEncryption"
615 #define NID_sha224WithRSAEncryption 671
616 #define OBJ_sha224WithRSAEncryption OBJ_pkcs1,14L

618 #define SN_pkcs3 "pkcs3"
619 #define NID_pkcs3 27
620 #define OBJ_pkcs3 OBJ_pkcs,3L

622 #define LN_dhKeyAgreement "dhKeyAgreement"
623 #define NID_dhKeyAgreement 28
624 #define OBJ_dhKeyAgreement OBJ_pkcs3,1L

626 #define SN_pkcs5 "pkcs5"
627 #define NID_pkcs5 187
628 #define OBJ_pkcs5 OBJ_pkcs,5L

630 #define SN_pbeWithMD2AndDES_CBC "PBE-MD2-DES"
631 #define LN_pbeWithMD2AndDES_CBC "pbeWithMD2AndDES-CBC"
632 #define NID_pbeWithMD2AndDES_CBC 9
633 #define OBJ_pbeWithMD2AndDES_CBC OBJ_pkcs5,1L

635 #define SN_pbeWithMD5AndDES_CBC "PBE-MD5-DES"
636 #define LN_pbeWithMD5AndDES_CBC "pbeWithMD5AndDES-CBC"
637 #define NID_pbeWithMD5AndDES_CBC 10
638 #define OBJ_pbeWithMD5AndDES_CBC OBJ_pkcs5,3L

640 #define SN_pbeWithMD2AndRC2_CBC "PBE-MD2-RC2-64"
641 #define LN_pbeWithMD2AndRC2_CBC "pbeWithMD2AndRC2-CBC"
642 #define NID_pbeWithMD2AndRC2_CBC 168
643 #define OBJ_pbeWithMD2AndRC2_CBC OBJ_pkcs5,4L

645 #define SN_pbeWithMD5AndRC2_CBC "PBE-MD5-RC2-64"
646 #define LN_pbeWithMD5AndRC2_CBC "pbeWithMD5AndRC2-CBC"
647 #define NID_pbeWithMD5AndRC2_CBC 169
648 #define OBJ_pbeWithMD5AndRC2_CBC OBJ_pkcs5,6L

650 #define SN_pbeWithSHA1AndDES_CBC "PBE-SHA1-DES"
651 #define LN_pbeWithSHA1AndDES_CBC "pbeWithSHA1AndDES-CBC"
652 #define NID_pbeWithSHA1AndDES_CBC 170
653 #define OBJ_pbeWithSHA1AndDES_CBC OBJ_pkcs5,10L

655 #define SN_pbeWithSHA1AndRC2_CBC "PBE-SHA1-RC2-64"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 11

656 #define LN_pbeWithSHA1AndRC2_CBC "pbeWithSHA1AndRC2-CBC"
657 #define NID_pbeWithSHA1AndRC2_CBC 68
658 #define OBJ_pbeWithSHA1AndRC2_CBC OBJ_pkcs5,11L

660 #define LN_id_pbkdf2 "PBKDF2"
661 #define NID_id_pbkdf2 69
662 #define OBJ_id_pbkdf2 OBJ_pkcs5,12L

664 #define LN_pbes2 "PBES2"
665 #define NID_pbes2 161
666 #define OBJ_pbes2 OBJ_pkcs5,13L

668 #define LN_pbmac1 "PBMAC1"
669 #define NID_pbmac1 162
670 #define OBJ_pbmac1 OBJ_pkcs5,14L

672 #define SN_pkcs7 "pkcs7"
673 #define NID_pkcs7 20
674 #define OBJ_pkcs7 OBJ_pkcs,7L

676 #define LN_pkcs7_data "pkcs7-data"
677 #define NID_pkcs7_data 21
678 #define OBJ_pkcs7_data OBJ_pkcs7,1L

680 #define LN_pkcs7_signed "pkcs7-signedData"
681 #define NID_pkcs7_signed 22
682 #define OBJ_pkcs7_signed OBJ_pkcs7,2L

684 #define LN_pkcs7_enveloped "pkcs7-envelopedData"
685 #define NID_pkcs7_enveloped 23
686 #define OBJ_pkcs7_enveloped OBJ_pkcs7,3L

688 #define LN_pkcs7_signedAndEnveloped "pkcs7-signedAndEnvelopedData"
689 #define NID_pkcs7_signedAndEnveloped 24
690 #define OBJ_pkcs7_signedAndEnveloped OBJ_pkcs7,4L

692 #define LN_pkcs7_digest "pkcs7-digestData"
693 #define NID_pkcs7_digest 25
694 #define OBJ_pkcs7_digest OBJ_pkcs7,5L

696 #define LN_pkcs7_encrypted "pkcs7-encryptedData"
697 #define NID_pkcs7_encrypted 26
698 #define OBJ_pkcs7_encrypted OBJ_pkcs7,6L

700 #define SN_pkcs9 "pkcs9"
701 #define NID_pkcs9 47
702 #define OBJ_pkcs9 OBJ_pkcs,9L

704 #define LN_pkcs9_emailAddress "emailAddress"
705 #define NID_pkcs9_emailAddress 48
706 #define OBJ_pkcs9_emailAddress OBJ_pkcs9,1L

708 #define LN_pkcs9_unstructuredName "unstructuredName"
709 #define NID_pkcs9_unstructuredName 49
710 #define OBJ_pkcs9_unstructuredName OBJ_pkcs9,2L

712 #define LN_pkcs9_contentType "contentType"
713 #define NID_pkcs9_contentType 50
714 #define OBJ_pkcs9_contentType OBJ_pkcs9,3L

716 #define LN_pkcs9_messageDigest "messageDigest"
717 #define NID_pkcs9_messageDigest 51
718 #define OBJ_pkcs9_messageDigest OBJ_pkcs9,4L

720 #define LN_pkcs9_signingTime "signingTime"
721 #define NID_pkcs9_signingTime 52

new/usr/src/lib/openssl/include/openssl/obj_mac.h 12

722 #define OBJ_pkcs9_signingTime OBJ_pkcs9,5L

724 #define LN_pkcs9_countersignature "countersignature"
725 #define NID_pkcs9_countersignature 53
726 #define OBJ_pkcs9_countersignature OBJ_pkcs9,6L

728 #define LN_pkcs9_challengePassword "challengePassword"
729 #define NID_pkcs9_challengePassword 54
730 #define OBJ_pkcs9_challengePassword OBJ_pkcs9,7L

732 #define LN_pkcs9_unstructuredAddress "unstructuredAddress"
733 #define NID_pkcs9_unstructuredAddress 55
734 #define OBJ_pkcs9_unstructuredAddress OBJ_pkcs9,8L

736 #define LN_pkcs9_extCertAttributes "extendedCertificateAttributes"
737 #define NID_pkcs9_extCertAttributes 56
738 #define OBJ_pkcs9_extCertAttributes OBJ_pkcs9,9L

740 #define SN_ext_req "extReq"
741 #define LN_ext_req "Extension Request"
742 #define NID_ext_req 172
743 #define OBJ_ext_req OBJ_pkcs9,14L

745 #define SN_SMIMECapabilities "SMIME-CAPS"
746 #define LN_SMIMECapabilities "S/MIME Capabilities"
747 #define NID_SMIMECapabilities 167
748 #define OBJ_SMIMECapabilities OBJ_pkcs9,15L

750 #define SN_SMIME "SMIME"
751 #define LN_SMIME "S/MIME"
752 #define NID_SMIME 188
753 #define OBJ_SMIME OBJ_pkcs9,16L

755 #define SN_id_smime_mod "id-smime-mod"
756 #define NID_id_smime_mod 189
757 #define OBJ_id_smime_mod OBJ_SMIME,0L

759 #define SN_id_smime_ct "id-smime-ct"
760 #define NID_id_smime_ct 190
761 #define OBJ_id_smime_ct OBJ_SMIME,1L

763 #define SN_id_smime_aa "id-smime-aa"
764 #define NID_id_smime_aa 191
765 #define OBJ_id_smime_aa OBJ_SMIME,2L

767 #define SN_id_smime_alg "id-smime-alg"
768 #define NID_id_smime_alg 192
769 #define OBJ_id_smime_alg OBJ_SMIME,3L

771 #define SN_id_smime_cd "id-smime-cd"
772 #define NID_id_smime_cd 193
773 #define OBJ_id_smime_cd OBJ_SMIME,4L

775 #define SN_id_smime_spq "id-smime-spq"
776 #define NID_id_smime_spq 194
777 #define OBJ_id_smime_spq OBJ_SMIME,5L

779 #define SN_id_smime_cti "id-smime-cti"
780 #define NID_id_smime_cti 195
781 #define OBJ_id_smime_cti OBJ_SMIME,6L

783 #define SN_id_smime_mod_cms "id-smime-mod-cms"
784 #define NID_id_smime_mod_cms 196
785 #define OBJ_id_smime_mod_cms OBJ_id_smime_mod,1L

787 #define SN_id_smime_mod_ess "id-smime-mod-ess"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 13

788 #define NID_id_smime_mod_ess 197
789 #define OBJ_id_smime_mod_ess OBJ_id_smime_mod,2L

791 #define SN_id_smime_mod_oid "id-smime-mod-oid"
792 #define NID_id_smime_mod_oid 198
793 #define OBJ_id_smime_mod_oid OBJ_id_smime_mod,3L

795 #define SN_id_smime_mod_msg_v3 "id-smime-mod-msg-v3"
796 #define NID_id_smime_mod_msg_v3 199
797 #define OBJ_id_smime_mod_msg_v3 OBJ_id_smime_mod,4L

799 #define SN_id_smime_mod_ets_eSignature_88 "id-smime-mod-ets-eSigna
800 #define NID_id_smime_mod_ets_eSignature_88 200
801 #define OBJ_id_smime_mod_ets_eSignature_88 OBJ_id_smime_mod,5L

803 #define SN_id_smime_mod_ets_eSignature_97 "id-smime-mod-ets-eSigna
804 #define NID_id_smime_mod_ets_eSignature_97 201
805 #define OBJ_id_smime_mod_ets_eSignature_97 OBJ_id_smime_mod,6L

807 #define SN_id_smime_mod_ets_eSigPolicy_88 "id-smime-mod-ets-eSigPo
808 #define NID_id_smime_mod_ets_eSigPolicy_88 202
809 #define OBJ_id_smime_mod_ets_eSigPolicy_88 OBJ_id_smime_mod,7L

811 #define SN_id_smime_mod_ets_eSigPolicy_97 "id-smime-mod-ets-eSigPo
812 #define NID_id_smime_mod_ets_eSigPolicy_97 203
813 #define OBJ_id_smime_mod_ets_eSigPolicy_97 OBJ_id_smime_mod,8L

815 #define SN_id_smime_ct_receipt "id-smime-ct-receipt"
816 #define NID_id_smime_ct_receipt 204
817 #define OBJ_id_smime_ct_receipt OBJ_id_smime_ct,1L

819 #define SN_id_smime_ct_authData "id-smime-ct-authData"
820 #define NID_id_smime_ct_authData 205
821 #define OBJ_id_smime_ct_authData OBJ_id_smime_ct,2L

823 #define SN_id_smime_ct_publishCert "id-smime-ct-publishCert"
824 #define NID_id_smime_ct_publishCert 206
825 #define OBJ_id_smime_ct_publishCert OBJ_id_smime_ct,3L

827 #define SN_id_smime_ct_TSTInfo "id-smime-ct-TSTInfo"
828 #define NID_id_smime_ct_TSTInfo 207
829 #define OBJ_id_smime_ct_TSTInfo OBJ_id_smime_ct,4L

831 #define SN_id_smime_ct_TDTInfo "id-smime-ct-TDTInfo"
832 #define NID_id_smime_ct_TDTInfo 208
833 #define OBJ_id_smime_ct_TDTInfo OBJ_id_smime_ct,5L

835 #define SN_id_smime_ct_contentInfo "id-smime-ct-contentInfo"
836 #define NID_id_smime_ct_contentInfo 209
837 #define OBJ_id_smime_ct_contentInfo OBJ_id_smime_ct,6L

839 #define SN_id_smime_ct_DVCSRequestData "id-smime-ct-DVCSRequestData"
840 #define NID_id_smime_ct_DVCSRequestData 210
841 #define OBJ_id_smime_ct_DVCSRequestData OBJ_id_smime_ct,7L

843 #define SN_id_smime_ct_DVCSResponseData "id-smime-ct-DVCSResponseData"
844 #define NID_id_smime_ct_DVCSResponseData 211
845 #define OBJ_id_smime_ct_DVCSResponseData OBJ_id_smime_ct,8L

847 #define SN_id_smime_ct_compressedData "id-smime-ct-compressedData"
848 #define NID_id_smime_ct_compressedData 786
849 #define OBJ_id_smime_ct_compressedData OBJ_id_smime_ct,9L

851 #define SN_id_ct_asciiTextWithCRLF "id-ct-asciiTextWithCRLF"
852 #define NID_id_ct_asciiTextWithCRLF 787
853 #define OBJ_id_ct_asciiTextWithCRLF OBJ_id_smime_ct,27L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 14

855 #define SN_id_smime_aa_receiptRequest "id-smime-aa-receiptRequest"
856 #define NID_id_smime_aa_receiptRequest 212
857 #define OBJ_id_smime_aa_receiptRequest OBJ_id_smime_aa,1L

859 #define SN_id_smime_aa_securityLabel "id-smime-aa-securityLabel"
860 #define NID_id_smime_aa_securityLabel 213
861 #define OBJ_id_smime_aa_securityLabel OBJ_id_smime_aa,2L

863 #define SN_id_smime_aa_mlExpandHistory "id-smime-aa-mlExpandHistory"
864 #define NID_id_smime_aa_mlExpandHistory 214
865 #define OBJ_id_smime_aa_mlExpandHistory OBJ_id_smime_aa,3L

867 #define SN_id_smime_aa_contentHint "id-smime-aa-contentHint"
868 #define NID_id_smime_aa_contentHint 215
869 #define OBJ_id_smime_aa_contentHint OBJ_id_smime_aa,4L

871 #define SN_id_smime_aa_msgSigDigest "id-smime-aa-msgSigDigest"
872 #define NID_id_smime_aa_msgSigDigest 216
873 #define OBJ_id_smime_aa_msgSigDigest OBJ_id_smime_aa,5L

875 #define SN_id_smime_aa_encapContentType "id-smime-aa-encapContentType"
876 #define NID_id_smime_aa_encapContentType 217
877 #define OBJ_id_smime_aa_encapContentType OBJ_id_smime_aa,6L

879 #define SN_id_smime_aa_contentIdentifier "id-smime-aa-contentIden
880 #define NID_id_smime_aa_contentIdentifier 218
881 #define OBJ_id_smime_aa_contentIdentifier OBJ_id_smime_aa,7L

883 #define SN_id_smime_aa_macValue "id-smime-aa-macValue"
884 #define NID_id_smime_aa_macValue 219
885 #define OBJ_id_smime_aa_macValue OBJ_id_smime_aa,8L

887 #define SN_id_smime_aa_equivalentLabels "id-smime-aa-equivalentLabels"
888 #define NID_id_smime_aa_equivalentLabels 220
889 #define OBJ_id_smime_aa_equivalentLabels OBJ_id_smime_aa,9L

891 #define SN_id_smime_aa_contentReference "id-smime-aa-contentReference"
892 #define NID_id_smime_aa_contentReference 221
893 #define OBJ_id_smime_aa_contentReference OBJ_id_smime_aa,10L

895 #define SN_id_smime_aa_encrypKeyPref "id-smime-aa-encrypKeyPref"
896 #define NID_id_smime_aa_encrypKeyPref 222
897 #define OBJ_id_smime_aa_encrypKeyPref OBJ_id_smime_aa,11L

899 #define SN_id_smime_aa_signingCertificate "id-smime-aa-signingCert
900 #define NID_id_smime_aa_signingCertificate 223
901 #define OBJ_id_smime_aa_signingCertificate OBJ_id_smime_aa,12L

903 #define SN_id_smime_aa_smimeEncryptCerts "id-smime-aa-smimeEncryp
904 #define NID_id_smime_aa_smimeEncryptCerts 224
905 #define OBJ_id_smime_aa_smimeEncryptCerts OBJ_id_smime_aa,13L

907 #define SN_id_smime_aa_timeStampToken "id-smime-aa-timeStampToken"
908 #define NID_id_smime_aa_timeStampToken 225
909 #define OBJ_id_smime_aa_timeStampToken OBJ_id_smime_aa,14L

911 #define SN_id_smime_aa_ets_sigPolicyId "id-smime-aa-ets-sigPolicyId"
912 #define NID_id_smime_aa_ets_sigPolicyId 226
913 #define OBJ_id_smime_aa_ets_sigPolicyId OBJ_id_smime_aa,15L

915 #define SN_id_smime_aa_ets_commitmentType "id-smime-aa-ets-commitm
916 #define NID_id_smime_aa_ets_commitmentType 227
917 #define OBJ_id_smime_aa_ets_commitmentType OBJ_id_smime_aa,16L

919 #define SN_id_smime_aa_ets_signerLocation "id-smime-aa-ets-signerL

new/usr/src/lib/openssl/include/openssl/obj_mac.h 15

920 #define NID_id_smime_aa_ets_signerLocation 228
921 #define OBJ_id_smime_aa_ets_signerLocation OBJ_id_smime_aa,17L

923 #define SN_id_smime_aa_ets_signerAttr "id-smime-aa-ets-signerAttr"
924 #define NID_id_smime_aa_ets_signerAttr 229
925 #define OBJ_id_smime_aa_ets_signerAttr OBJ_id_smime_aa,18L

927 #define SN_id_smime_aa_ets_otherSigCert "id-smime-aa-ets-otherSigCert"
928 #define NID_id_smime_aa_ets_otherSigCert 230
929 #define OBJ_id_smime_aa_ets_otherSigCert OBJ_id_smime_aa,19L

931 #define SN_id_smime_aa_ets_contentTimestamp "id-smime-aa-ets-content
932 #define NID_id_smime_aa_ets_contentTimestamp 231
933 #define OBJ_id_smime_aa_ets_contentTimestamp OBJ_id_smime_aa,20L

935 #define SN_id_smime_aa_ets_CertificateRefs "id-smime-aa-ets-Certifi
936 #define NID_id_smime_aa_ets_CertificateRefs 232
937 #define OBJ_id_smime_aa_ets_CertificateRefs OBJ_id_smime_aa,21L

939 #define SN_id_smime_aa_ets_RevocationRefs "id-smime-aa-ets-Revocat
940 #define NID_id_smime_aa_ets_RevocationRefs 233
941 #define OBJ_id_smime_aa_ets_RevocationRefs OBJ_id_smime_aa,22L

943 #define SN_id_smime_aa_ets_certValues "id-smime-aa-ets-certValues"
944 #define NID_id_smime_aa_ets_certValues 234
945 #define OBJ_id_smime_aa_ets_certValues OBJ_id_smime_aa,23L

947 #define SN_id_smime_aa_ets_revocationValues "id-smime-aa-ets-revocat
948 #define NID_id_smime_aa_ets_revocationValues 235
949 #define OBJ_id_smime_aa_ets_revocationValues OBJ_id_smime_aa,24L

951 #define SN_id_smime_aa_ets_escTimeStamp "id-smime-aa-ets-escTimeStamp"
952 #define NID_id_smime_aa_ets_escTimeStamp 236
953 #define OBJ_id_smime_aa_ets_escTimeStamp OBJ_id_smime_aa,25L

955 #define SN_id_smime_aa_ets_certCRLTimestamp "id-smime-aa-ets-certCRL
956 #define NID_id_smime_aa_ets_certCRLTimestamp 237
957 #define OBJ_id_smime_aa_ets_certCRLTimestamp OBJ_id_smime_aa,26L

959 #define SN_id_smime_aa_ets_archiveTimeStamp "id-smime-aa-ets-archive
960 #define NID_id_smime_aa_ets_archiveTimeStamp 238
961 #define OBJ_id_smime_aa_ets_archiveTimeStamp OBJ_id_smime_aa,27L

963 #define SN_id_smime_aa_signatureType "id-smime-aa-signatureType"
964 #define NID_id_smime_aa_signatureType 239
965 #define OBJ_id_smime_aa_signatureType OBJ_id_smime_aa,28L

967 #define SN_id_smime_aa_dvcs_dvc "id-smime-aa-dvcs-dvc"
968 #define NID_id_smime_aa_dvcs_dvc 240
969 #define OBJ_id_smime_aa_dvcs_dvc OBJ_id_smime_aa,29L

971 #define SN_id_smime_alg_ESDHwith3DES "id-smime-alg-ESDHwith3DES"
972 #define NID_id_smime_alg_ESDHwith3DES 241
973 #define OBJ_id_smime_alg_ESDHwith3DES OBJ_id_smime_alg,1L

975 #define SN_id_smime_alg_ESDHwithRC2 "id-smime-alg-ESDHwithRC2"
976 #define NID_id_smime_alg_ESDHwithRC2 242
977 #define OBJ_id_smime_alg_ESDHwithRC2 OBJ_id_smime_alg,2L

979 #define SN_id_smime_alg_3DESwrap "id-smime-alg-3DESwrap"
980 #define NID_id_smime_alg_3DESwrap 243
981 #define OBJ_id_smime_alg_3DESwrap OBJ_id_smime_alg,3L

983 #define SN_id_smime_alg_RC2wrap "id-smime-alg-RC2wrap"
984 #define NID_id_smime_alg_RC2wrap 244
985 #define OBJ_id_smime_alg_RC2wrap OBJ_id_smime_alg,4L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 16

987 #define SN_id_smime_alg_ESDH "id-smime-alg-ESDH"
988 #define NID_id_smime_alg_ESDH 245
989 #define OBJ_id_smime_alg_ESDH OBJ_id_smime_alg,5L

991 #define SN_id_smime_alg_CMS3DESwrap "id-smime-alg-CMS3DESwrap"
992 #define NID_id_smime_alg_CMS3DESwrap 246
993 #define OBJ_id_smime_alg_CMS3DESwrap OBJ_id_smime_alg,6L

995 #define SN_id_smime_alg_CMSRC2wrap "id-smime-alg-CMSRC2wrap"
996 #define NID_id_smime_alg_CMSRC2wrap 247
997 #define OBJ_id_smime_alg_CMSRC2wrap OBJ_id_smime_alg,7L

999 #define SN_id_alg_PWRI_KEK "id-alg-PWRI-KEK"
1000 #define NID_id_alg_PWRI_KEK 893
1001 #define OBJ_id_alg_PWRI_KEK OBJ_id_smime_alg,9L

1003 #define SN_id_smime_cd_ldap "id-smime-cd-ldap"
1004 #define NID_id_smime_cd_ldap 248
1005 #define OBJ_id_smime_cd_ldap OBJ_id_smime_cd,1L

1007 #define SN_id_smime_spq_ets_sqt_uri "id-smime-spq-ets-sqt-uri"
1008 #define NID_id_smime_spq_ets_sqt_uri 249
1009 #define OBJ_id_smime_spq_ets_sqt_uri OBJ_id_smime_spq,1L

1011 #define SN_id_smime_spq_ets_sqt_unotice "id-smime-spq-ets-sqt-unotice"
1012 #define NID_id_smime_spq_ets_sqt_unotice 250
1013 #define OBJ_id_smime_spq_ets_sqt_unotice OBJ_id_smime_spq,2L

1015 #define SN_id_smime_cti_ets_proofOfOrigin "id-smime-cti-ets-proofO
1016 #define NID_id_smime_cti_ets_proofOfOrigin 251
1017 #define OBJ_id_smime_cti_ets_proofOfOrigin OBJ_id_smime_cti,1L

1019 #define SN_id_smime_cti_ets_proofOfReceipt "id-smime-cti-ets-proofO
1020 #define NID_id_smime_cti_ets_proofOfReceipt 252
1021 #define OBJ_id_smime_cti_ets_proofOfReceipt OBJ_id_smime_cti,2L

1023 #define SN_id_smime_cti_ets_proofOfDelivery "id-smime-cti-ets-proofO
1024 #define NID_id_smime_cti_ets_proofOfDelivery 253
1025 #define OBJ_id_smime_cti_ets_proofOfDelivery OBJ_id_smime_cti,3L

1027 #define SN_id_smime_cti_ets_proofOfSender "id-smime-cti-ets-proofO
1028 #define NID_id_smime_cti_ets_proofOfSender 254
1029 #define OBJ_id_smime_cti_ets_proofOfSender OBJ_id_smime_cti,4L

1031 #define SN_id_smime_cti_ets_proofOfApproval "id-smime-cti-ets-proofO
1032 #define NID_id_smime_cti_ets_proofOfApproval 255
1033 #define OBJ_id_smime_cti_ets_proofOfApproval OBJ_id_smime_cti,5L

1035 #define SN_id_smime_cti_ets_proofOfCreation "id-smime-cti-ets-proofO
1036 #define NID_id_smime_cti_ets_proofOfCreation 256
1037 #define OBJ_id_smime_cti_ets_proofOfCreation OBJ_id_smime_cti,6L

1039 #define LN_friendlyName "friendlyName"
1040 #define NID_friendlyName 156
1041 #define OBJ_friendlyName OBJ_pkcs9,20L

1043 #define LN_localKeyID "localKeyID"
1044 #define NID_localKeyID 157
1045 #define OBJ_localKeyID OBJ_pkcs9,21L

1047 #define SN_ms_csp_name "CSPName"
1048 #define LN_ms_csp_name "Microsoft CSP Name"
1049 #define NID_ms_csp_name 417
1050 #define OBJ_ms_csp_name 1L,3L,6L,1L,4L,1L,311L,17L,1L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 17

1052 #define SN_LocalKeySet "LocalKeySet"
1053 #define LN_LocalKeySet "Microsoft Local Key set"
1054 #define NID_LocalKeySet 856
1055 #define OBJ_LocalKeySet 1L,3L,6L,1L,4L,1L,311L,17L,2L

1057 #define OBJ_certTypes OBJ_pkcs9,22L

1059 #define LN_x509Certificate "x509Certificate"
1060 #define NID_x509Certificate 158
1061 #define OBJ_x509Certificate OBJ_certTypes,1L

1063 #define LN_sdsiCertificate "sdsiCertificate"
1064 #define NID_sdsiCertificate 159
1065 #define OBJ_sdsiCertificate OBJ_certTypes,2L

1067 #define OBJ_crlTypes OBJ_pkcs9,23L

1069 #define LN_x509Crl "x509Crl"
1070 #define NID_x509Crl 160
1071 #define OBJ_x509Crl OBJ_crlTypes,1L

1073 #define OBJ_pkcs12 OBJ_pkcs,12L

1075 #define OBJ_pkcs12_pbeids OBJ_pkcs12,1L

1077 #define SN_pbe_WithSHA1And128BitRC4 "PBE-SHA1-RC4-128"
1078 #define LN_pbe_WithSHA1And128BitRC4 "pbeWithSHA1And128BitRC4"
1079 #define NID_pbe_WithSHA1And128BitRC4 144
1080 #define OBJ_pbe_WithSHA1And128BitRC4 OBJ_pkcs12_pbeids,1L

1082 #define SN_pbe_WithSHA1And40BitRC4 "PBE-SHA1-RC4-40"
1083 #define LN_pbe_WithSHA1And40BitRC4 "pbeWithSHA1And40BitRC4"
1084 #define NID_pbe_WithSHA1And40BitRC4 145
1085 #define OBJ_pbe_WithSHA1And40BitRC4 OBJ_pkcs12_pbeids,2L

1087 #define SN_pbe_WithSHA1And3_Key_TripleDES_CBC "PBE-SHA1-3DES"
1088 #define LN_pbe_WithSHA1And3_Key_TripleDES_CBC "pbeWithSHA1And3-KeyTrip
1089 #define NID_pbe_WithSHA1And3_Key_TripleDES_CBC 146
1090 #define OBJ_pbe_WithSHA1And3_Key_TripleDES_CBC OBJ_pkcs12_pbeids,3L

1092 #define SN_pbe_WithSHA1And2_Key_TripleDES_CBC "PBE-SHA1-2DES"
1093 #define LN_pbe_WithSHA1And2_Key_TripleDES_CBC "pbeWithSHA1And2-KeyTrip
1094 #define NID_pbe_WithSHA1And2_Key_TripleDES_CBC 147
1095 #define OBJ_pbe_WithSHA1And2_Key_TripleDES_CBC OBJ_pkcs12_pbeids,4L

1097 #define SN_pbe_WithSHA1And128BitRC2_CBC "PBE-SHA1-RC2-128"
1098 #define LN_pbe_WithSHA1And128BitRC2_CBC "pbeWithSHA1And128BitRC2-CBC"
1099 #define NID_pbe_WithSHA1And128BitRC2_CBC 148
1100 #define OBJ_pbe_WithSHA1And128BitRC2_CBC OBJ_pkcs12_pbeids,5L

1102 #define SN_pbe_WithSHA1And40BitRC2_CBC "PBE-SHA1-RC2-40"
1103 #define LN_pbe_WithSHA1And40BitRC2_CBC "pbeWithSHA1And40BitRC2-CBC"
1104 #define NID_pbe_WithSHA1And40BitRC2_CBC 149
1105 #define OBJ_pbe_WithSHA1And40BitRC2_CBC OBJ_pkcs12_pbeids,6L

1107 #define OBJ_pkcs12_Version1 OBJ_pkcs12,10L

1109 #define OBJ_pkcs12_BagIds OBJ_pkcs12_Version1,1L

1111 #define LN_keyBag "keyBag"
1112 #define NID_keyBag 150
1113 #define OBJ_keyBag OBJ_pkcs12_BagIds,1L

1115 #define LN_pkcs8ShroudedKeyBag "pkcs8ShroudedKeyBag"
1116 #define NID_pkcs8ShroudedKeyBag 151
1117 #define OBJ_pkcs8ShroudedKeyBag OBJ_pkcs12_BagIds,2L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 18

1119 #define LN_certBag "certBag"
1120 #define NID_certBag 152
1121 #define OBJ_certBag OBJ_pkcs12_BagIds,3L

1123 #define LN_crlBag "crlBag"
1124 #define NID_crlBag 153
1125 #define OBJ_crlBag OBJ_pkcs12_BagIds,4L

1127 #define LN_secretBag "secretBag"
1128 #define NID_secretBag 154
1129 #define OBJ_secretBag OBJ_pkcs12_BagIds,5L

1131 #define LN_safeContentsBag "safeContentsBag"
1132 #define NID_safeContentsBag 155
1133 #define OBJ_safeContentsBag OBJ_pkcs12_BagIds,6L

1135 #define SN_md2 "MD2"
1136 #define LN_md2 "md2"
1137 #define NID_md2 3
1138 #define OBJ_md2 OBJ_rsadsi,2L,2L

1140 #define SN_md4 "MD4"
1141 #define LN_md4 "md4"
1142 #define NID_md4 257
1143 #define OBJ_md4 OBJ_rsadsi,2L,4L

1145 #define SN_md5 "MD5"
1146 #define LN_md5 "md5"
1147 #define NID_md5 4
1148 #define OBJ_md5 OBJ_rsadsi,2L,5L

1150 #define SN_md5_sha1 "MD5-SHA1"
1151 #define LN_md5_sha1 "md5-sha1"
1152 #define NID_md5_sha1 114

1154 #define LN_hmacWithMD5 "hmacWithMD5"
1155 #define NID_hmacWithMD5 797
1156 #define OBJ_hmacWithMD5 OBJ_rsadsi,2L,6L

1158 #define LN_hmacWithSHA1 "hmacWithSHA1"
1159 #define NID_hmacWithSHA1 163
1160 #define OBJ_hmacWithSHA1 OBJ_rsadsi,2L,7L

1162 #define LN_hmacWithSHA224 "hmacWithSHA224"
1163 #define NID_hmacWithSHA224 798
1164 #define OBJ_hmacWithSHA224 OBJ_rsadsi,2L,8L

1166 #define LN_hmacWithSHA256 "hmacWithSHA256"
1167 #define NID_hmacWithSHA256 799
1168 #define OBJ_hmacWithSHA256 OBJ_rsadsi,2L,9L

1170 #define LN_hmacWithSHA384 "hmacWithSHA384"
1171 #define NID_hmacWithSHA384 800
1172 #define OBJ_hmacWithSHA384 OBJ_rsadsi,2L,10L

1174 #define LN_hmacWithSHA512 "hmacWithSHA512"
1175 #define NID_hmacWithSHA512 801
1176 #define OBJ_hmacWithSHA512 OBJ_rsadsi,2L,11L

1178 #define SN_rc2_cbc "RC2-CBC"
1179 #define LN_rc2_cbc "rc2-cbc"
1180 #define NID_rc2_cbc 37
1181 #define OBJ_rc2_cbc OBJ_rsadsi,3L,2L

1183 #define SN_rc2_ecb "RC2-ECB"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 19

1184 #define LN_rc2_ecb "rc2-ecb"
1185 #define NID_rc2_ecb 38

1187 #define SN_rc2_cfb64 "RC2-CFB"
1188 #define LN_rc2_cfb64 "rc2-cfb"
1189 #define NID_rc2_cfb64 39

1191 #define SN_rc2_ofb64 "RC2-OFB"
1192 #define LN_rc2_ofb64 "rc2-ofb"
1193 #define NID_rc2_ofb64 40

1195 #define SN_rc2_40_cbc "RC2-40-CBC"
1196 #define LN_rc2_40_cbc "rc2-40-cbc"
1197 #define NID_rc2_40_cbc 98

1199 #define SN_rc2_64_cbc "RC2-64-CBC"
1200 #define LN_rc2_64_cbc "rc2-64-cbc"
1201 #define NID_rc2_64_cbc 166

1203 #define SN_rc4 "RC4"
1204 #define LN_rc4 "rc4"
1205 #define NID_rc4 5
1206 #define OBJ_rc4 OBJ_rsadsi,3L,4L

1208 #define SN_rc4_40 "RC4-40"
1209 #define LN_rc4_40 "rc4-40"
1210 #define NID_rc4_40 97

1212 #define SN_des_ede3_cbc "DES-EDE3-CBC"
1213 #define LN_des_ede3_cbc "des-ede3-cbc"
1214 #define NID_des_ede3_cbc 44
1215 #define OBJ_des_ede3_cbc OBJ_rsadsi,3L,7L

1217 #define SN_rc5_cbc "RC5-CBC"
1218 #define LN_rc5_cbc "rc5-cbc"
1219 #define NID_rc5_cbc 120
1220 #define OBJ_rc5_cbc OBJ_rsadsi,3L,8L

1222 #define SN_rc5_ecb "RC5-ECB"
1223 #define LN_rc5_ecb "rc5-ecb"
1224 #define NID_rc5_ecb 121

1226 #define SN_rc5_cfb64 "RC5-CFB"
1227 #define LN_rc5_cfb64 "rc5-cfb"
1228 #define NID_rc5_cfb64 122

1230 #define SN_rc5_ofb64 "RC5-OFB"
1231 #define LN_rc5_ofb64 "rc5-ofb"
1232 #define NID_rc5_ofb64 123

1234 #define SN_ms_ext_req "msExtReq"
1235 #define LN_ms_ext_req "Microsoft Extension Request"
1236 #define NID_ms_ext_req 171
1237 #define OBJ_ms_ext_req 1L,3L,6L,1L,4L,1L,311L,2L,1L,14L

1239 #define SN_ms_code_ind "msCodeInd"
1240 #define LN_ms_code_ind "Microsoft Individual Code Signing"
1241 #define NID_ms_code_ind 134
1242 #define OBJ_ms_code_ind 1L,3L,6L,1L,4L,1L,311L,2L,1L,21L

1244 #define SN_ms_code_com "msCodeCom"
1245 #define LN_ms_code_com "Microsoft Commercial Code Signing"
1246 #define NID_ms_code_com 135
1247 #define OBJ_ms_code_com 1L,3L,6L,1L,4L,1L,311L,2L,1L,22L

1249 #define SN_ms_ctl_sign "msCTLSign"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 20

1250 #define LN_ms_ctl_sign "Microsoft Trust List Signing"
1251 #define NID_ms_ctl_sign 136
1252 #define OBJ_ms_ctl_sign 1L,3L,6L,1L,4L,1L,311L,10L,3L,1L

1254 #define SN_ms_sgc "msSGC"
1255 #define LN_ms_sgc "Microsoft Server Gated Crypto"
1256 #define NID_ms_sgc 137
1257 #define OBJ_ms_sgc 1L,3L,6L,1L,4L,1L,311L,10L,3L,3L

1259 #define SN_ms_efs "msEFS"
1260 #define LN_ms_efs "Microsoft Encrypted File System"
1261 #define NID_ms_efs 138
1262 #define OBJ_ms_efs 1L,3L,6L,1L,4L,1L,311L,10L,3L,4L

1264 #define SN_ms_smartcard_login "msSmartcardLogin"
1265 #define LN_ms_smartcard_login "Microsoft Smartcardlogin"
1266 #define NID_ms_smartcard_login 648
1267 #define OBJ_ms_smartcard_login 1L,3L,6L,1L,4L,1L,311L,20L,2L,2L

1269 #define SN_ms_upn "msUPN"
1270 #define LN_ms_upn "Microsoft Universal Principal Name"
1271 #define NID_ms_upn 649
1272 #define OBJ_ms_upn 1L,3L,6L,1L,4L,1L,311L,20L,2L,3L

1274 #define SN_idea_cbc "IDEA-CBC"
1275 #define LN_idea_cbc "idea-cbc"
1276 #define NID_idea_cbc 34
1277 #define OBJ_idea_cbc 1L,3L,6L,1L,4L,1L,188L,7L,1L,1L,2L

1279 #define SN_idea_ecb "IDEA-ECB"
1280 #define LN_idea_ecb "idea-ecb"
1281 #define NID_idea_ecb 36

1283 #define SN_idea_cfb64 "IDEA-CFB"
1284 #define LN_idea_cfb64 "idea-cfb"
1285 #define NID_idea_cfb64 35

1287 #define SN_idea_ofb64 "IDEA-OFB"
1288 #define LN_idea_ofb64 "idea-ofb"
1289 #define NID_idea_ofb64 46

1291 #define SN_bf_cbc "BF-CBC"
1292 #define LN_bf_cbc "bf-cbc"
1293 #define NID_bf_cbc 91
1294 #define OBJ_bf_cbc 1L,3L,6L,1L,4L,1L,3029L,1L,2L

1296 #define SN_bf_ecb "BF-ECB"
1297 #define LN_bf_ecb "bf-ecb"
1298 #define NID_bf_ecb 92

1300 #define SN_bf_cfb64 "BF-CFB"
1301 #define LN_bf_cfb64 "bf-cfb"
1302 #define NID_bf_cfb64 93

1304 #define SN_bf_ofb64 "BF-OFB"
1305 #define LN_bf_ofb64 "bf-ofb"
1306 #define NID_bf_ofb64 94

1308 #define SN_id_pkix "PKIX"
1309 #define NID_id_pkix 127
1310 #define OBJ_id_pkix 1L,3L,6L,1L,5L,5L,7L

1312 #define SN_id_pkix_mod "id-pkix-mod"
1313 #define NID_id_pkix_mod 258
1314 #define OBJ_id_pkix_mod OBJ_id_pkix,0L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 21

1316 #define SN_id_pe "id-pe"
1317 #define NID_id_pe 175
1318 #define OBJ_id_pe OBJ_id_pkix,1L

1320 #define SN_id_qt "id-qt"
1321 #define NID_id_qt 259
1322 #define OBJ_id_qt OBJ_id_pkix,2L

1324 #define SN_id_kp "id-kp"
1325 #define NID_id_kp 128
1326 #define OBJ_id_kp OBJ_id_pkix,3L

1328 #define SN_id_it "id-it"
1329 #define NID_id_it 260
1330 #define OBJ_id_it OBJ_id_pkix,4L

1332 #define SN_id_pkip "id-pkip"
1333 #define NID_id_pkip 261
1334 #define OBJ_id_pkip OBJ_id_pkix,5L

1336 #define SN_id_alg "id-alg"
1337 #define NID_id_alg 262
1338 #define OBJ_id_alg OBJ_id_pkix,6L

1340 #define SN_id_cmc "id-cmc"
1341 #define NID_id_cmc 263
1342 #define OBJ_id_cmc OBJ_id_pkix,7L

1344 #define SN_id_on "id-on"
1345 #define NID_id_on 264
1346 #define OBJ_id_on OBJ_id_pkix,8L

1348 #define SN_id_pda "id-pda"
1349 #define NID_id_pda 265
1350 #define OBJ_id_pda OBJ_id_pkix,9L

1352 #define SN_id_aca "id-aca"
1353 #define NID_id_aca 266
1354 #define OBJ_id_aca OBJ_id_pkix,10L

1356 #define SN_id_qcs "id-qcs"
1357 #define NID_id_qcs 267
1358 #define OBJ_id_qcs OBJ_id_pkix,11L

1360 #define SN_id_cct "id-cct"
1361 #define NID_id_cct 268
1362 #define OBJ_id_cct OBJ_id_pkix,12L

1364 #define SN_id_ppl "id-ppl"
1365 #define NID_id_ppl 662
1366 #define OBJ_id_ppl OBJ_id_pkix,21L

1368 #define SN_id_ad "id-ad"
1369 #define NID_id_ad 176
1370 #define OBJ_id_ad OBJ_id_pkix,48L

1372 #define SN_id_pkix1_explicit_88 "id-pkix1-explicit-88"
1373 #define NID_id_pkix1_explicit_88 269
1374 #define OBJ_id_pkix1_explicit_88 OBJ_id_pkix_mod,1L

1376 #define SN_id_pkix1_implicit_88 "id-pkix1-implicit-88"
1377 #define NID_id_pkix1_implicit_88 270
1378 #define OBJ_id_pkix1_implicit_88 OBJ_id_pkix_mod,2L

1380 #define SN_id_pkix1_explicit_93 "id-pkix1-explicit-93"
1381 #define NID_id_pkix1_explicit_93 271

new/usr/src/lib/openssl/include/openssl/obj_mac.h 22

1382 #define OBJ_id_pkix1_explicit_93 OBJ_id_pkix_mod,3L

1384 #define SN_id_pkix1_implicit_93 "id-pkix1-implicit-93"
1385 #define NID_id_pkix1_implicit_93 272
1386 #define OBJ_id_pkix1_implicit_93 OBJ_id_pkix_mod,4L

1388 #define SN_id_mod_crmf "id-mod-crmf"
1389 #define NID_id_mod_crmf 273
1390 #define OBJ_id_mod_crmf OBJ_id_pkix_mod,5L

1392 #define SN_id_mod_cmc "id-mod-cmc"
1393 #define NID_id_mod_cmc 274
1394 #define OBJ_id_mod_cmc OBJ_id_pkix_mod,6L

1396 #define SN_id_mod_kea_profile_88 "id-mod-kea-profile-88"
1397 #define NID_id_mod_kea_profile_88 275
1398 #define OBJ_id_mod_kea_profile_88 OBJ_id_pkix_mod,7L

1400 #define SN_id_mod_kea_profile_93 "id-mod-kea-profile-93"
1401 #define NID_id_mod_kea_profile_93 276
1402 #define OBJ_id_mod_kea_profile_93 OBJ_id_pkix_mod,8L

1404 #define SN_id_mod_cmp "id-mod-cmp"
1405 #define NID_id_mod_cmp 277
1406 #define OBJ_id_mod_cmp OBJ_id_pkix_mod,9L

1408 #define SN_id_mod_qualified_cert_88 "id-mod-qualified-cert-88"
1409 #define NID_id_mod_qualified_cert_88 278
1410 #define OBJ_id_mod_qualified_cert_88 OBJ_id_pkix_mod,10L

1412 #define SN_id_mod_qualified_cert_93 "id-mod-qualified-cert-93"
1413 #define NID_id_mod_qualified_cert_93 279
1414 #define OBJ_id_mod_qualified_cert_93 OBJ_id_pkix_mod,11L

1416 #define SN_id_mod_attribute_cert "id-mod-attribute-cert"
1417 #define NID_id_mod_attribute_cert 280
1418 #define OBJ_id_mod_attribute_cert OBJ_id_pkix_mod,12L

1420 #define SN_id_mod_timestamp_protocol "id-mod-timestamp-protocol"
1421 #define NID_id_mod_timestamp_protocol 281
1422 #define OBJ_id_mod_timestamp_protocol OBJ_id_pkix_mod,13L

1424 #define SN_id_mod_ocsp "id-mod-ocsp"
1425 #define NID_id_mod_ocsp 282
1426 #define OBJ_id_mod_ocsp OBJ_id_pkix_mod,14L

1428 #define SN_id_mod_dvcs "id-mod-dvcs"
1429 #define NID_id_mod_dvcs 283
1430 #define OBJ_id_mod_dvcs OBJ_id_pkix_mod,15L

1432 #define SN_id_mod_cmp2000 "id-mod-cmp2000"
1433 #define NID_id_mod_cmp2000 284
1434 #define OBJ_id_mod_cmp2000 OBJ_id_pkix_mod,16L

1436 #define SN_info_access "authorityInfoAccess"
1437 #define LN_info_access "Authority Information Access"
1438 #define NID_info_access 177
1439 #define OBJ_info_access OBJ_id_pe,1L

1441 #define SN_biometricInfo "biometricInfo"
1442 #define LN_biometricInfo "Biometric Info"
1443 #define NID_biometricInfo 285
1444 #define OBJ_biometricInfo OBJ_id_pe,2L

1446 #define SN_qcStatements "qcStatements"
1447 #define NID_qcStatements 286

new/usr/src/lib/openssl/include/openssl/obj_mac.h 23

1448 #define OBJ_qcStatements OBJ_id_pe,3L

1450 #define SN_ac_auditEntity "ac-auditEntity"
1451 #define NID_ac_auditEntity 287
1452 #define OBJ_ac_auditEntity OBJ_id_pe,4L

1454 #define SN_ac_targeting "ac-targeting"
1455 #define NID_ac_targeting 288
1456 #define OBJ_ac_targeting OBJ_id_pe,5L

1458 #define SN_aaControls "aaControls"
1459 #define NID_aaControls 289
1460 #define OBJ_aaControls OBJ_id_pe,6L

1462 #define SN_sbgp_ipAddrBlock "sbgp-ipAddrBlock"
1463 #define NID_sbgp_ipAddrBlock 290
1464 #define OBJ_sbgp_ipAddrBlock OBJ_id_pe,7L

1466 #define SN_sbgp_autonomousSysNum "sbgp-autonomousSysNum"
1467 #define NID_sbgp_autonomousSysNum 291
1468 #define OBJ_sbgp_autonomousSysNum OBJ_id_pe,8L

1470 #define SN_sbgp_routerIdentifier "sbgp-routerIdentifier"
1471 #define NID_sbgp_routerIdentifier 292
1472 #define OBJ_sbgp_routerIdentifier OBJ_id_pe,9L

1474 #define SN_ac_proxying "ac-proxying"
1475 #define NID_ac_proxying 397
1476 #define OBJ_ac_proxying OBJ_id_pe,10L

1478 #define SN_sinfo_access "subjectInfoAccess"
1479 #define LN_sinfo_access "Subject Information Access"
1480 #define NID_sinfo_access 398
1481 #define OBJ_sinfo_access OBJ_id_pe,11L

1483 #define SN_proxyCertInfo "proxyCertInfo"
1484 #define LN_proxyCertInfo "Proxy Certificate Information"
1485 #define NID_proxyCertInfo 663
1486 #define OBJ_proxyCertInfo OBJ_id_pe,14L

1488 #define SN_id_qt_cps "id-qt-cps"
1489 #define LN_id_qt_cps "Policy Qualifier CPS"
1490 #define NID_id_qt_cps 164
1491 #define OBJ_id_qt_cps OBJ_id_qt,1L

1493 #define SN_id_qt_unotice "id-qt-unotice"
1494 #define LN_id_qt_unotice "Policy Qualifier User Notice"
1495 #define NID_id_qt_unotice 165
1496 #define OBJ_id_qt_unotice OBJ_id_qt,2L

1498 #define SN_textNotice "textNotice"
1499 #define NID_textNotice 293
1500 #define OBJ_textNotice OBJ_id_qt,3L

1502 #define SN_server_auth "serverAuth"
1503 #define LN_server_auth "TLS Web Server Authentication"
1504 #define NID_server_auth 129
1505 #define OBJ_server_auth OBJ_id_kp,1L

1507 #define SN_client_auth "clientAuth"
1508 #define LN_client_auth "TLS Web Client Authentication"
1509 #define NID_client_auth 130
1510 #define OBJ_client_auth OBJ_id_kp,2L

1512 #define SN_code_sign "codeSigning"
1513 #define LN_code_sign "Code Signing"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 24

1514 #define NID_code_sign 131
1515 #define OBJ_code_sign OBJ_id_kp,3L

1517 #define SN_email_protect "emailProtection"
1518 #define LN_email_protect "E-mail Protection"
1519 #define NID_email_protect 132
1520 #define OBJ_email_protect OBJ_id_kp,4L

1522 #define SN_ipsecEndSystem "ipsecEndSystem"
1523 #define LN_ipsecEndSystem "IPSec End System"
1524 #define NID_ipsecEndSystem 294
1525 #define OBJ_ipsecEndSystem OBJ_id_kp,5L

1527 #define SN_ipsecTunnel "ipsecTunnel"
1528 #define LN_ipsecTunnel "IPSec Tunnel"
1529 #define NID_ipsecTunnel 295
1530 #define OBJ_ipsecTunnel OBJ_id_kp,6L

1532 #define SN_ipsecUser "ipsecUser"
1533 #define LN_ipsecUser "IPSec User"
1534 #define NID_ipsecUser 296
1535 #define OBJ_ipsecUser OBJ_id_kp,7L

1537 #define SN_time_stamp "timeStamping"
1538 #define LN_time_stamp "Time Stamping"
1539 #define NID_time_stamp 133
1540 #define OBJ_time_stamp OBJ_id_kp,8L

1542 #define SN_OCSP_sign "OCSPSigning"
1543 #define LN_OCSP_sign "OCSP Signing"
1544 #define NID_OCSP_sign 180
1545 #define OBJ_OCSP_sign OBJ_id_kp,9L

1547 #define SN_dvcs "DVCS"
1548 #define LN_dvcs "dvcs"
1549 #define NID_dvcs 297
1550 #define OBJ_dvcs OBJ_id_kp,10L

1552 #define SN_id_it_caProtEncCert "id-it-caProtEncCert"
1553 #define NID_id_it_caProtEncCert 298
1554 #define OBJ_id_it_caProtEncCert OBJ_id_it,1L

1556 #define SN_id_it_signKeyPairTypes "id-it-signKeyPairTypes"
1557 #define NID_id_it_signKeyPairTypes 299
1558 #define OBJ_id_it_signKeyPairTypes OBJ_id_it,2L

1560 #define SN_id_it_encKeyPairTypes "id-it-encKeyPairTypes"
1561 #define NID_id_it_encKeyPairTypes 300
1562 #define OBJ_id_it_encKeyPairTypes OBJ_id_it,3L

1564 #define SN_id_it_preferredSymmAlg "id-it-preferredSymmAlg"
1565 #define NID_id_it_preferredSymmAlg 301
1566 #define OBJ_id_it_preferredSymmAlg OBJ_id_it,4L

1568 #define SN_id_it_caKeyUpdateInfo "id-it-caKeyUpdateInfo"
1569 #define NID_id_it_caKeyUpdateInfo 302
1570 #define OBJ_id_it_caKeyUpdateInfo OBJ_id_it,5L

1572 #define SN_id_it_currentCRL "id-it-currentCRL"
1573 #define NID_id_it_currentCRL 303
1574 #define OBJ_id_it_currentCRL OBJ_id_it,6L

1576 #define SN_id_it_unsupportedOIDs "id-it-unsupportedOIDs"
1577 #define NID_id_it_unsupportedOIDs 304
1578 #define OBJ_id_it_unsupportedOIDs OBJ_id_it,7L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 25

1580 #define SN_id_it_subscriptionRequest "id-it-subscriptionRequest"
1581 #define NID_id_it_subscriptionRequest 305
1582 #define OBJ_id_it_subscriptionRequest OBJ_id_it,8L

1584 #define SN_id_it_subscriptionResponse "id-it-subscriptionResponse"
1585 #define NID_id_it_subscriptionResponse 306
1586 #define OBJ_id_it_subscriptionResponse OBJ_id_it,9L

1588 #define SN_id_it_keyPairParamReq "id-it-keyPairParamReq"
1589 #define NID_id_it_keyPairParamReq 307
1590 #define OBJ_id_it_keyPairParamReq OBJ_id_it,10L

1592 #define SN_id_it_keyPairParamRep "id-it-keyPairParamRep"
1593 #define NID_id_it_keyPairParamRep 308
1594 #define OBJ_id_it_keyPairParamRep OBJ_id_it,11L

1596 #define SN_id_it_revPassphrase "id-it-revPassphrase"
1597 #define NID_id_it_revPassphrase 309
1598 #define OBJ_id_it_revPassphrase OBJ_id_it,12L

1600 #define SN_id_it_implicitConfirm "id-it-implicitConfirm"
1601 #define NID_id_it_implicitConfirm 310
1602 #define OBJ_id_it_implicitConfirm OBJ_id_it,13L

1604 #define SN_id_it_confirmWaitTime "id-it-confirmWaitTime"
1605 #define NID_id_it_confirmWaitTime 311
1606 #define OBJ_id_it_confirmWaitTime OBJ_id_it,14L

1608 #define SN_id_it_origPKIMessage "id-it-origPKIMessage"
1609 #define NID_id_it_origPKIMessage 312
1610 #define OBJ_id_it_origPKIMessage OBJ_id_it,15L

1612 #define SN_id_it_suppLangTags "id-it-suppLangTags"
1613 #define NID_id_it_suppLangTags 784
1614 #define OBJ_id_it_suppLangTags OBJ_id_it,16L

1616 #define SN_id_regCtrl "id-regCtrl"
1617 #define NID_id_regCtrl 313
1618 #define OBJ_id_regCtrl OBJ_id_pkip,1L

1620 #define SN_id_regInfo "id-regInfo"
1621 #define NID_id_regInfo 314
1622 #define OBJ_id_regInfo OBJ_id_pkip,2L

1624 #define SN_id_regCtrl_regToken "id-regCtrl-regToken"
1625 #define NID_id_regCtrl_regToken 315
1626 #define OBJ_id_regCtrl_regToken OBJ_id_regCtrl,1L

1628 #define SN_id_regCtrl_authenticator "id-regCtrl-authenticator"
1629 #define NID_id_regCtrl_authenticator 316
1630 #define OBJ_id_regCtrl_authenticator OBJ_id_regCtrl,2L

1632 #define SN_id_regCtrl_pkiPublicationInfo "id-regCtrl-pkiPublicati
1633 #define NID_id_regCtrl_pkiPublicationInfo 317
1634 #define OBJ_id_regCtrl_pkiPublicationInfo OBJ_id_regCtrl,3L

1636 #define SN_id_regCtrl_pkiArchiveOptions "id-regCtrl-pkiArchiveOptions"
1637 #define NID_id_regCtrl_pkiArchiveOptions 318
1638 #define OBJ_id_regCtrl_pkiArchiveOptions OBJ_id_regCtrl,4L

1640 #define SN_id_regCtrl_oldCertID "id-regCtrl-oldCertID"
1641 #define NID_id_regCtrl_oldCertID 319
1642 #define OBJ_id_regCtrl_oldCertID OBJ_id_regCtrl,5L

1644 #define SN_id_regCtrl_protocolEncrKey "id-regCtrl-protocolEncrKey"
1645 #define NID_id_regCtrl_protocolEncrKey 320

new/usr/src/lib/openssl/include/openssl/obj_mac.h 26

1646 #define OBJ_id_regCtrl_protocolEncrKey OBJ_id_regCtrl,6L

1648 #define SN_id_regInfo_utf8Pairs "id-regInfo-utf8Pairs"
1649 #define NID_id_regInfo_utf8Pairs 321
1650 #define OBJ_id_regInfo_utf8Pairs OBJ_id_regInfo,1L

1652 #define SN_id_regInfo_certReq "id-regInfo-certReq"
1653 #define NID_id_regInfo_certReq 322
1654 #define OBJ_id_regInfo_certReq OBJ_id_regInfo,2L

1656 #define SN_id_alg_des40 "id-alg-des40"
1657 #define NID_id_alg_des40 323
1658 #define OBJ_id_alg_des40 OBJ_id_alg,1L

1660 #define SN_id_alg_noSignature "id-alg-noSignature"
1661 #define NID_id_alg_noSignature 324
1662 #define OBJ_id_alg_noSignature OBJ_id_alg,2L

1664 #define SN_id_alg_dh_sig_hmac_sha1 "id-alg-dh-sig-hmac-sha1"
1665 #define NID_id_alg_dh_sig_hmac_sha1 325
1666 #define OBJ_id_alg_dh_sig_hmac_sha1 OBJ_id_alg,3L

1668 #define SN_id_alg_dh_pop "id-alg-dh-pop"
1669 #define NID_id_alg_dh_pop 326
1670 #define OBJ_id_alg_dh_pop OBJ_id_alg,4L

1672 #define SN_id_cmc_statusInfo "id-cmc-statusInfo"
1673 #define NID_id_cmc_statusInfo 327
1674 #define OBJ_id_cmc_statusInfo OBJ_id_cmc,1L

1676 #define SN_id_cmc_identification "id-cmc-identification"
1677 #define NID_id_cmc_identification 328
1678 #define OBJ_id_cmc_identification OBJ_id_cmc,2L

1680 #define SN_id_cmc_identityProof "id-cmc-identityProof"
1681 #define NID_id_cmc_identityProof 329
1682 #define OBJ_id_cmc_identityProof OBJ_id_cmc,3L

1684 #define SN_id_cmc_dataReturn "id-cmc-dataReturn"
1685 #define NID_id_cmc_dataReturn 330
1686 #define OBJ_id_cmc_dataReturn OBJ_id_cmc,4L

1688 #define SN_id_cmc_transactionId "id-cmc-transactionId"
1689 #define NID_id_cmc_transactionId 331
1690 #define OBJ_id_cmc_transactionId OBJ_id_cmc,5L

1692 #define SN_id_cmc_senderNonce "id-cmc-senderNonce"
1693 #define NID_id_cmc_senderNonce 332
1694 #define OBJ_id_cmc_senderNonce OBJ_id_cmc,6L

1696 #define SN_id_cmc_recipientNonce "id-cmc-recipientNonce"
1697 #define NID_id_cmc_recipientNonce 333
1698 #define OBJ_id_cmc_recipientNonce OBJ_id_cmc,7L

1700 #define SN_id_cmc_addExtensions "id-cmc-addExtensions"
1701 #define NID_id_cmc_addExtensions 334
1702 #define OBJ_id_cmc_addExtensions OBJ_id_cmc,8L

1704 #define SN_id_cmc_encryptedPOP "id-cmc-encryptedPOP"
1705 #define NID_id_cmc_encryptedPOP 335
1706 #define OBJ_id_cmc_encryptedPOP OBJ_id_cmc,9L

1708 #define SN_id_cmc_decryptedPOP "id-cmc-decryptedPOP"
1709 #define NID_id_cmc_decryptedPOP 336
1710 #define OBJ_id_cmc_decryptedPOP OBJ_id_cmc,10L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 27

1712 #define SN_id_cmc_lraPOPWitness "id-cmc-lraPOPWitness"
1713 #define NID_id_cmc_lraPOPWitness 337
1714 #define OBJ_id_cmc_lraPOPWitness OBJ_id_cmc,11L

1716 #define SN_id_cmc_getCert "id-cmc-getCert"
1717 #define NID_id_cmc_getCert 338
1718 #define OBJ_id_cmc_getCert OBJ_id_cmc,15L

1720 #define SN_id_cmc_getCRL "id-cmc-getCRL"
1721 #define NID_id_cmc_getCRL 339
1722 #define OBJ_id_cmc_getCRL OBJ_id_cmc,16L

1724 #define SN_id_cmc_revokeRequest "id-cmc-revokeRequest"
1725 #define NID_id_cmc_revokeRequest 340
1726 #define OBJ_id_cmc_revokeRequest OBJ_id_cmc,17L

1728 #define SN_id_cmc_regInfo "id-cmc-regInfo"
1729 #define NID_id_cmc_regInfo 341
1730 #define OBJ_id_cmc_regInfo OBJ_id_cmc,18L

1732 #define SN_id_cmc_responseInfo "id-cmc-responseInfo"
1733 #define NID_id_cmc_responseInfo 342
1734 #define OBJ_id_cmc_responseInfo OBJ_id_cmc,19L

1736 #define SN_id_cmc_queryPending "id-cmc-queryPending"
1737 #define NID_id_cmc_queryPending 343
1738 #define OBJ_id_cmc_queryPending OBJ_id_cmc,21L

1740 #define SN_id_cmc_popLinkRandom "id-cmc-popLinkRandom"
1741 #define NID_id_cmc_popLinkRandom 344
1742 #define OBJ_id_cmc_popLinkRandom OBJ_id_cmc,22L

1744 #define SN_id_cmc_popLinkWitness "id-cmc-popLinkWitness"
1745 #define NID_id_cmc_popLinkWitness 345
1746 #define OBJ_id_cmc_popLinkWitness OBJ_id_cmc,23L

1748 #define SN_id_cmc_confirmCertAcceptance "id-cmc-confirmCertAcceptance"
1749 #define NID_id_cmc_confirmCertAcceptance 346
1750 #define OBJ_id_cmc_confirmCertAcceptance OBJ_id_cmc,24L

1752 #define SN_id_on_personalData "id-on-personalData"
1753 #define NID_id_on_personalData 347
1754 #define OBJ_id_on_personalData OBJ_id_on,1L

1756 #define SN_id_on_permanentIdentifier "id-on-permanentIdentifier"
1757 #define LN_id_on_permanentIdentifier "Permanent Identifier"
1758 #define NID_id_on_permanentIdentifier 858
1759 #define OBJ_id_on_permanentIdentifier OBJ_id_on,3L

1761 #define SN_id_pda_dateOfBirth "id-pda-dateOfBirth"
1762 #define NID_id_pda_dateOfBirth 348
1763 #define OBJ_id_pda_dateOfBirth OBJ_id_pda,1L

1765 #define SN_id_pda_placeOfBirth "id-pda-placeOfBirth"
1766 #define NID_id_pda_placeOfBirth 349
1767 #define OBJ_id_pda_placeOfBirth OBJ_id_pda,2L

1769 #define SN_id_pda_gender "id-pda-gender"
1770 #define NID_id_pda_gender 351
1771 #define OBJ_id_pda_gender OBJ_id_pda,3L

1773 #define SN_id_pda_countryOfCitizenship "id-pda-countryOfCitizenship"
1774 #define NID_id_pda_countryOfCitizenship 352
1775 #define OBJ_id_pda_countryOfCitizenship OBJ_id_pda,4L

1777 #define SN_id_pda_countryOfResidence "id-pda-countryOfResidence"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 28

1778 #define NID_id_pda_countryOfResidence 353
1779 #define OBJ_id_pda_countryOfResidence OBJ_id_pda,5L

1781 #define SN_id_aca_authenticationInfo "id-aca-authenticationInfo"
1782 #define NID_id_aca_authenticationInfo 354
1783 #define OBJ_id_aca_authenticationInfo OBJ_id_aca,1L

1785 #define SN_id_aca_accessIdentity "id-aca-accessIdentity"
1786 #define NID_id_aca_accessIdentity 355
1787 #define OBJ_id_aca_accessIdentity OBJ_id_aca,2L

1789 #define SN_id_aca_chargingIdentity "id-aca-chargingIdentity"
1790 #define NID_id_aca_chargingIdentity 356
1791 #define OBJ_id_aca_chargingIdentity OBJ_id_aca,3L

1793 #define SN_id_aca_group "id-aca-group"
1794 #define NID_id_aca_group 357
1795 #define OBJ_id_aca_group OBJ_id_aca,4L

1797 #define SN_id_aca_role "id-aca-role"
1798 #define NID_id_aca_role 358
1799 #define OBJ_id_aca_role OBJ_id_aca,5L

1801 #define SN_id_aca_encAttrs "id-aca-encAttrs"
1802 #define NID_id_aca_encAttrs 399
1803 #define OBJ_id_aca_encAttrs OBJ_id_aca,6L

1805 #define SN_id_qcs_pkixQCSyntax_v1 "id-qcs-pkixQCSyntax-v1"
1806 #define NID_id_qcs_pkixQCSyntax_v1 359
1807 #define OBJ_id_qcs_pkixQCSyntax_v1 OBJ_id_qcs,1L

1809 #define SN_id_cct_crs "id-cct-crs"
1810 #define NID_id_cct_crs 360
1811 #define OBJ_id_cct_crs OBJ_id_cct,1L

1813 #define SN_id_cct_PKIData "id-cct-PKIData"
1814 #define NID_id_cct_PKIData 361
1815 #define OBJ_id_cct_PKIData OBJ_id_cct,2L

1817 #define SN_id_cct_PKIResponse "id-cct-PKIResponse"
1818 #define NID_id_cct_PKIResponse 362
1819 #define OBJ_id_cct_PKIResponse OBJ_id_cct,3L

1821 #define SN_id_ppl_anyLanguage "id-ppl-anyLanguage"
1822 #define LN_id_ppl_anyLanguage "Any language"
1823 #define NID_id_ppl_anyLanguage 664
1824 #define OBJ_id_ppl_anyLanguage OBJ_id_ppl,0L

1826 #define SN_id_ppl_inheritAll "id-ppl-inheritAll"
1827 #define LN_id_ppl_inheritAll "Inherit all"
1828 #define NID_id_ppl_inheritAll 665
1829 #define OBJ_id_ppl_inheritAll OBJ_id_ppl,1L

1831 #define SN_Independent "id-ppl-independent"
1832 #define LN_Independent "Independent"
1833 #define NID_Independent 667
1834 #define OBJ_Independent OBJ_id_ppl,2L

1836 #define SN_ad_OCSP "OCSP"
1837 #define LN_ad_OCSP "OCSP"
1838 #define NID_ad_OCSP 178
1839 #define OBJ_ad_OCSP OBJ_id_ad,1L

1841 #define SN_ad_ca_issuers "caIssuers"
1842 #define LN_ad_ca_issuers "CA Issuers"
1843 #define NID_ad_ca_issuers 179

new/usr/src/lib/openssl/include/openssl/obj_mac.h 29

1844 #define OBJ_ad_ca_issuers OBJ_id_ad,2L

1846 #define SN_ad_timeStamping "ad_timestamping"
1847 #define LN_ad_timeStamping "AD Time Stamping"
1848 #define NID_ad_timeStamping 363
1849 #define OBJ_ad_timeStamping OBJ_id_ad,3L

1851 #define SN_ad_dvcs "AD_DVCS"
1852 #define LN_ad_dvcs "ad dvcs"
1853 #define NID_ad_dvcs 364
1854 #define OBJ_ad_dvcs OBJ_id_ad,4L

1856 #define SN_caRepository "caRepository"
1857 #define LN_caRepository "CA Repository"
1858 #define NID_caRepository 785
1859 #define OBJ_caRepository OBJ_id_ad,5L

1861 #define OBJ_id_pkix_OCSP OBJ_ad_OCSP

1863 #define SN_id_pkix_OCSP_basic "basicOCSPResponse"
1864 #define LN_id_pkix_OCSP_basic "Basic OCSP Response"
1865 #define NID_id_pkix_OCSP_basic 365
1866 #define OBJ_id_pkix_OCSP_basic OBJ_id_pkix_OCSP,1L

1868 #define SN_id_pkix_OCSP_Nonce "Nonce"
1869 #define LN_id_pkix_OCSP_Nonce "OCSP Nonce"
1870 #define NID_id_pkix_OCSP_Nonce 366
1871 #define OBJ_id_pkix_OCSP_Nonce OBJ_id_pkix_OCSP,2L

1873 #define SN_id_pkix_OCSP_CrlID "CrlID"
1874 #define LN_id_pkix_OCSP_CrlID "OCSP CRL ID"
1875 #define NID_id_pkix_OCSP_CrlID 367
1876 #define OBJ_id_pkix_OCSP_CrlID OBJ_id_pkix_OCSP,3L

1878 #define SN_id_pkix_OCSP_acceptableResponses "acceptableResponses"
1879 #define LN_id_pkix_OCSP_acceptableResponses "Acceptable OCSP Respons
1880 #define NID_id_pkix_OCSP_acceptableResponses 368
1881 #define OBJ_id_pkix_OCSP_acceptableResponses OBJ_id_pkix_OCSP,4L

1883 #define SN_id_pkix_OCSP_noCheck "noCheck"
1884 #define LN_id_pkix_OCSP_noCheck "OCSP No Check"
1885 #define NID_id_pkix_OCSP_noCheck 369
1886 #define OBJ_id_pkix_OCSP_noCheck OBJ_id_pkix_OCSP,5L

1888 #define SN_id_pkix_OCSP_archiveCutoff "archiveCutoff"
1889 #define LN_id_pkix_OCSP_archiveCutoff "OCSP Archive Cutoff"
1890 #define NID_id_pkix_OCSP_archiveCutoff 370
1891 #define OBJ_id_pkix_OCSP_archiveCutoff OBJ_id_pkix_OCSP,6L

1893 #define SN_id_pkix_OCSP_serviceLocator "serviceLocator"
1894 #define LN_id_pkix_OCSP_serviceLocator "OCSP Service Locator"
1895 #define NID_id_pkix_OCSP_serviceLocator 371
1896 #define OBJ_id_pkix_OCSP_serviceLocator OBJ_id_pkix_OCSP,7L

1898 #define SN_id_pkix_OCSP_extendedStatus "extendedStatus"
1899 #define LN_id_pkix_OCSP_extendedStatus "Extended OCSP Status"
1900 #define NID_id_pkix_OCSP_extendedStatus 372
1901 #define OBJ_id_pkix_OCSP_extendedStatus OBJ_id_pkix_OCSP,8L

1903 #define SN_id_pkix_OCSP_valid "valid"
1904 #define NID_id_pkix_OCSP_valid 373
1905 #define OBJ_id_pkix_OCSP_valid OBJ_id_pkix_OCSP,9L

1907 #define SN_id_pkix_OCSP_path "path"
1908 #define NID_id_pkix_OCSP_path 374
1909 #define OBJ_id_pkix_OCSP_path OBJ_id_pkix_OCSP,10L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 30

1911 #define SN_id_pkix_OCSP_trustRoot "trustRoot"
1912 #define LN_id_pkix_OCSP_trustRoot "Trust Root"
1913 #define NID_id_pkix_OCSP_trustRoot 375
1914 #define OBJ_id_pkix_OCSP_trustRoot OBJ_id_pkix_OCSP,11L

1916 #define SN_algorithm "algorithm"
1917 #define LN_algorithm "algorithm"
1918 #define NID_algorithm 376
1919 #define OBJ_algorithm 1L,3L,14L,3L,2L

1921 #define SN_md5WithRSA "RSA-NP-MD5"
1922 #define LN_md5WithRSA "md5WithRSA"
1923 #define NID_md5WithRSA 104
1924 #define OBJ_md5WithRSA OBJ_algorithm,3L

1926 #define SN_des_ecb "DES-ECB"
1927 #define LN_des_ecb "des-ecb"
1928 #define NID_des_ecb 29
1929 #define OBJ_des_ecb OBJ_algorithm,6L

1931 #define SN_des_cbc "DES-CBC"
1932 #define LN_des_cbc "des-cbc"
1933 #define NID_des_cbc 31
1934 #define OBJ_des_cbc OBJ_algorithm,7L

1936 #define SN_des_ofb64 "DES-OFB"
1937 #define LN_des_ofb64 "des-ofb"
1938 #define NID_des_ofb64 45
1939 #define OBJ_des_ofb64 OBJ_algorithm,8L

1941 #define SN_des_cfb64 "DES-CFB"
1942 #define LN_des_cfb64 "des-cfb"
1943 #define NID_des_cfb64 30
1944 #define OBJ_des_cfb64 OBJ_algorithm,9L

1946 #define SN_rsaSignature "rsaSignature"
1947 #define NID_rsaSignature 377
1948 #define OBJ_rsaSignature OBJ_algorithm,11L

1950 #define SN_dsa_2 "DSA-old"
1951 #define LN_dsa_2 "dsaEncryption-old"
1952 #define NID_dsa_2 67
1953 #define OBJ_dsa_2 OBJ_algorithm,12L

1955 #define SN_dsaWithSHA "DSA-SHA"
1956 #define LN_dsaWithSHA "dsaWithSHA"
1957 #define NID_dsaWithSHA 66
1958 #define OBJ_dsaWithSHA OBJ_algorithm,13L

1960 #define SN_shaWithRSAEncryption "RSA-SHA"
1961 #define LN_shaWithRSAEncryption "shaWithRSAEncryption"
1962 #define NID_shaWithRSAEncryption 42
1963 #define OBJ_shaWithRSAEncryption OBJ_algorithm,15L

1965 #define SN_des_ede_ecb "DES-EDE"
1966 #define LN_des_ede_ecb "des-ede"
1967 #define NID_des_ede_ecb 32
1968 #define OBJ_des_ede_ecb OBJ_algorithm,17L

1970 #define SN_des_ede3_ecb "DES-EDE3"
1971 #define LN_des_ede3_ecb "des-ede3"
1972 #define NID_des_ede3_ecb 33

1974 #define SN_des_ede_cbc "DES-EDE-CBC"
1975 #define LN_des_ede_cbc "des-ede-cbc"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 31

1976 #define NID_des_ede_cbc 43

1978 #define SN_des_ede_cfb64 "DES-EDE-CFB"
1979 #define LN_des_ede_cfb64 "des-ede-cfb"
1980 #define NID_des_ede_cfb64 60

1982 #define SN_des_ede3_cfb64 "DES-EDE3-CFB"
1983 #define LN_des_ede3_cfb64 "des-ede3-cfb"
1984 #define NID_des_ede3_cfb64 61

1986 #define SN_des_ede_ofb64 "DES-EDE-OFB"
1987 #define LN_des_ede_ofb64 "des-ede-ofb"
1988 #define NID_des_ede_ofb64 62

1990 #define SN_des_ede3_ofb64 "DES-EDE3-OFB"
1991 #define LN_des_ede3_ofb64 "des-ede3-ofb"
1992 #define NID_des_ede3_ofb64 63

1994 #define SN_desx_cbc "DESX-CBC"
1995 #define LN_desx_cbc "desx-cbc"
1996 #define NID_desx_cbc 80

1998 #define SN_sha "SHA"
1999 #define LN_sha "sha"
2000 #define NID_sha 41
2001 #define OBJ_sha OBJ_algorithm,18L

2003 #define SN_sha1 "SHA1"
2004 #define LN_sha1 "sha1"
2005 #define NID_sha1 64
2006 #define OBJ_sha1 OBJ_algorithm,26L

2008 #define SN_dsaWithSHA1_2 "DSA-SHA1-old"
2009 #define LN_dsaWithSHA1_2 "dsaWithSHA1-old"
2010 #define NID_dsaWithSHA1_2 70
2011 #define OBJ_dsaWithSHA1_2 OBJ_algorithm,27L

2013 #define SN_sha1WithRSA "RSA-SHA1-2"
2014 #define LN_sha1WithRSA "sha1WithRSA"
2015 #define NID_sha1WithRSA 115
2016 #define OBJ_sha1WithRSA OBJ_algorithm,29L

2018 #define SN_ripemd160 "RIPEMD160"
2019 #define LN_ripemd160 "ripemd160"
2020 #define NID_ripemd160 117
2021 #define OBJ_ripemd160 1L,3L,36L,3L,2L,1L

2023 #define SN_ripemd160WithRSA "RSA-RIPEMD160"
2024 #define LN_ripemd160WithRSA "ripemd160WithRSA"
2025 #define NID_ripemd160WithRSA 119
2026 #define OBJ_ripemd160WithRSA 1L,3L,36L,3L,3L,1L,2L

2028 #define SN_sxnet "SXNetID"
2029 #define LN_sxnet "Strong Extranet ID"
2030 #define NID_sxnet 143
2031 #define OBJ_sxnet 1L,3L,101L,1L,4L,1L

2033 #define SN_X500 "X500"
2034 #define LN_X500 "directory services (X.500)"
2035 #define NID_X500 11
2036 #define OBJ_X500 2L,5L

2038 #define SN_X509 "X509"
2039 #define NID_X509 12
2040 #define OBJ_X509 OBJ_X500,4L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 32

2042 #define SN_commonName "CN"
2043 #define LN_commonName "commonName"
2044 #define NID_commonName 13
2045 #define OBJ_commonName OBJ_X509,3L

2047 #define SN_surname "SN"
2048 #define LN_surname "surname"
2049 #define NID_surname 100
2050 #define OBJ_surname OBJ_X509,4L

2052 #define LN_serialNumber "serialNumber"
2053 #define NID_serialNumber 105
2054 #define OBJ_serialNumber OBJ_X509,5L

2056 #define SN_countryName "C"
2057 #define LN_countryName "countryName"
2058 #define NID_countryName 14
2059 #define OBJ_countryName OBJ_X509,6L

2061 #define SN_localityName "L"
2062 #define LN_localityName "localityName"
2063 #define NID_localityName 15
2064 #define OBJ_localityName OBJ_X509,7L

2066 #define SN_stateOrProvinceName "ST"
2067 #define LN_stateOrProvinceName "stateOrProvinceName"
2068 #define NID_stateOrProvinceName 16
2069 #define OBJ_stateOrProvinceName OBJ_X509,8L

2071 #define SN_streetAddress "street"
2072 #define LN_streetAddress "streetAddress"
2073 #define NID_streetAddress 660
2074 #define OBJ_streetAddress OBJ_X509,9L

2076 #define SN_organizationName "O"
2077 #define LN_organizationName "organizationName"
2078 #define NID_organizationName 17
2079 #define OBJ_organizationName OBJ_X509,10L

2081 #define SN_organizationalUnitName "OU"
2082 #define LN_organizationalUnitName "organizationalUnitName"
2083 #define NID_organizationalUnitName 18
2084 #define OBJ_organizationalUnitName OBJ_X509,11L

2086 #define SN_title "title"
2087 #define LN_title "title"
2088 #define NID_title 106
2089 #define OBJ_title OBJ_X509,12L

2091 #define LN_description "description"
2092 #define NID_description 107
2093 #define OBJ_description OBJ_X509,13L

2095 #define LN_searchGuide "searchGuide"
2096 #define NID_searchGuide 859
2097 #define OBJ_searchGuide OBJ_X509,14L

2099 #define LN_businessCategory "businessCategory"
2100 #define NID_businessCategory 860
2101 #define OBJ_businessCategory OBJ_X509,15L

2103 #define LN_postalAddress "postalAddress"
2104 #define NID_postalAddress 861
2105 #define OBJ_postalAddress OBJ_X509,16L

2107 #define LN_postalCode "postalCode"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 33

2108 #define NID_postalCode 661
2109 #define OBJ_postalCode OBJ_X509,17L

2111 #define LN_postOfficeBox "postOfficeBox"
2112 #define NID_postOfficeBox 862
2113 #define OBJ_postOfficeBox OBJ_X509,18L

2115 #define LN_physicalDeliveryOfficeName "physicalDeliveryOfficeName"
2116 #define NID_physicalDeliveryOfficeName 863
2117 #define OBJ_physicalDeliveryOfficeName OBJ_X509,19L

2119 #define LN_telephoneNumber "telephoneNumber"
2120 #define NID_telephoneNumber 864
2121 #define OBJ_telephoneNumber OBJ_X509,20L

2123 #define LN_telexNumber "telexNumber"
2124 #define NID_telexNumber 865
2125 #define OBJ_telexNumber OBJ_X509,21L

2127 #define LN_teletexTerminalIdentifier "teletexTerminalIdentifier"
2128 #define NID_teletexTerminalIdentifier 866
2129 #define OBJ_teletexTerminalIdentifier OBJ_X509,22L

2131 #define LN_facsimileTelephoneNumber "facsimileTelephoneNumber"
2132 #define NID_facsimileTelephoneNumber 867
2133 #define OBJ_facsimileTelephoneNumber OBJ_X509,23L

2135 #define LN_x121Address "x121Address"
2136 #define NID_x121Address 868
2137 #define OBJ_x121Address OBJ_X509,24L

2139 #define LN_internationaliSDNNumber "internationaliSDNNumber"
2140 #define NID_internationaliSDNNumber 869
2141 #define OBJ_internationaliSDNNumber OBJ_X509,25L

2143 #define LN_registeredAddress "registeredAddress"
2144 #define NID_registeredAddress 870
2145 #define OBJ_registeredAddress OBJ_X509,26L

2147 #define LN_destinationIndicator "destinationIndicator"
2148 #define NID_destinationIndicator 871
2149 #define OBJ_destinationIndicator OBJ_X509,27L

2151 #define LN_preferredDeliveryMethod "preferredDeliveryMethod"
2152 #define NID_preferredDeliveryMethod 872
2153 #define OBJ_preferredDeliveryMethod OBJ_X509,28L

2155 #define LN_presentationAddress "presentationAddress"
2156 #define NID_presentationAddress 873
2157 #define OBJ_presentationAddress OBJ_X509,29L

2159 #define LN_supportedApplicationContext "supportedApplicationContext"
2160 #define NID_supportedApplicationContext 874
2161 #define OBJ_supportedApplicationContext OBJ_X509,30L

2163 #define SN_member "member"
2164 #define NID_member 875
2165 #define OBJ_member OBJ_X509,31L

2167 #define SN_owner "owner"
2168 #define NID_owner 876
2169 #define OBJ_owner OBJ_X509,32L

2171 #define LN_roleOccupant "roleOccupant"
2172 #define NID_roleOccupant 877
2173 #define OBJ_roleOccupant OBJ_X509,33L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 34

2175 #define SN_seeAlso "seeAlso"
2176 #define NID_seeAlso 878
2177 #define OBJ_seeAlso OBJ_X509,34L

2179 #define LN_userPassword "userPassword"
2180 #define NID_userPassword 879
2181 #define OBJ_userPassword OBJ_X509,35L

2183 #define LN_userCertificate "userCertificate"
2184 #define NID_userCertificate 880
2185 #define OBJ_userCertificate OBJ_X509,36L

2187 #define LN_cACertificate "cACertificate"
2188 #define NID_cACertificate 881
2189 #define OBJ_cACertificate OBJ_X509,37L

2191 #define LN_authorityRevocationList "authorityRevocationList"
2192 #define NID_authorityRevocationList 882
2193 #define OBJ_authorityRevocationList OBJ_X509,38L

2195 #define LN_certificateRevocationList "certificateRevocationList"
2196 #define NID_certificateRevocationList 883
2197 #define OBJ_certificateRevocationList OBJ_X509,39L

2199 #define LN_crossCertificatePair "crossCertificatePair"
2200 #define NID_crossCertificatePair 884
2201 #define OBJ_crossCertificatePair OBJ_X509,40L

2203 #define SN_name "name"
2204 #define LN_name "name"
2205 #define NID_name 173
2206 #define OBJ_name OBJ_X509,41L

2208 #define SN_givenName "GN"
2209 #define LN_givenName "givenName"
2210 #define NID_givenName 99
2211 #define OBJ_givenName OBJ_X509,42L

2213 #define SN_initials "initials"
2214 #define LN_initials "initials"
2215 #define NID_initials 101
2216 #define OBJ_initials OBJ_X509,43L

2218 #define LN_generationQualifier "generationQualifier"
2219 #define NID_generationQualifier 509
2220 #define OBJ_generationQualifier OBJ_X509,44L

2222 #define LN_x500UniqueIdentifier "x500UniqueIdentifier"
2223 #define NID_x500UniqueIdentifier 503
2224 #define OBJ_x500UniqueIdentifier OBJ_X509,45L

2226 #define SN_dnQualifier "dnQualifier"
2227 #define LN_dnQualifier "dnQualifier"
2228 #define NID_dnQualifier 174
2229 #define OBJ_dnQualifier OBJ_X509,46L

2231 #define LN_enhancedSearchGuide "enhancedSearchGuide"
2232 #define NID_enhancedSearchGuide 885
2233 #define OBJ_enhancedSearchGuide OBJ_X509,47L

2235 #define LN_protocolInformation "protocolInformation"
2236 #define NID_protocolInformation 886
2237 #define OBJ_protocolInformation OBJ_X509,48L

2239 #define LN_distinguishedName "distinguishedName"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 35

2240 #define NID_distinguishedName 887
2241 #define OBJ_distinguishedName OBJ_X509,49L

2243 #define LN_uniqueMember "uniqueMember"
2244 #define NID_uniqueMember 888
2245 #define OBJ_uniqueMember OBJ_X509,50L

2247 #define LN_houseIdentifier "houseIdentifier"
2248 #define NID_houseIdentifier 889
2249 #define OBJ_houseIdentifier OBJ_X509,51L

2251 #define LN_supportedAlgorithms "supportedAlgorithms"
2252 #define NID_supportedAlgorithms 890
2253 #define OBJ_supportedAlgorithms OBJ_X509,52L

2255 #define LN_deltaRevocationList "deltaRevocationList"
2256 #define NID_deltaRevocationList 891
2257 #define OBJ_deltaRevocationList OBJ_X509,53L

2259 #define SN_dmdName "dmdName"
2260 #define NID_dmdName 892
2261 #define OBJ_dmdName OBJ_X509,54L

2263 #define LN_pseudonym "pseudonym"
2264 #define NID_pseudonym 510
2265 #define OBJ_pseudonym OBJ_X509,65L

2267 #define SN_role "role"
2268 #define LN_role "role"
2269 #define NID_role 400
2270 #define OBJ_role OBJ_X509,72L

2272 #define SN_X500algorithms "X500algorithms"
2273 #define LN_X500algorithms "directory services - algorithms"
2274 #define NID_X500algorithms 378
2275 #define OBJ_X500algorithms OBJ_X500,8L

2277 #define SN_rsa "RSA"
2278 #define LN_rsa "rsa"
2279 #define NID_rsa 19
2280 #define OBJ_rsa OBJ_X500algorithms,1L,1L

2282 #define SN_mdc2WithRSA "RSA-MDC2"
2283 #define LN_mdc2WithRSA "mdc2WithRSA"
2284 #define NID_mdc2WithRSA 96
2285 #define OBJ_mdc2WithRSA OBJ_X500algorithms,3L,100L

2287 #define SN_mdc2 "MDC2"
2288 #define LN_mdc2 "mdc2"
2289 #define NID_mdc2 95
2290 #define OBJ_mdc2 OBJ_X500algorithms,3L,101L

2292 #define SN_id_ce "id-ce"
2293 #define NID_id_ce 81
2294 #define OBJ_id_ce OBJ_X500,29L

2296 #define SN_subject_directory_attributes "subjectDirectoryAttributes"
2297 #define LN_subject_directory_attributes "X509v3 Subject Directory Attrib
2298 #define NID_subject_directory_attributes 769
2299 #define OBJ_subject_directory_attributes OBJ_id_ce,9L

2301 #define SN_subject_key_identifier "subjectKeyIdentifier"
2302 #define LN_subject_key_identifier "X509v3 Subject Key Identifier"
2303 #define NID_subject_key_identifier 82
2304 #define OBJ_subject_key_identifier OBJ_id_ce,14L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 36

2306 #define SN_key_usage "keyUsage"
2307 #define LN_key_usage "X509v3 Key Usage"
2308 #define NID_key_usage 83
2309 #define OBJ_key_usage OBJ_id_ce,15L

2311 #define SN_private_key_usage_period "privateKeyUsagePeriod"
2312 #define LN_private_key_usage_period "X509v3 Private Key Usage Period
2313 #define NID_private_key_usage_period 84
2314 #define OBJ_private_key_usage_period OBJ_id_ce,16L

2316 #define SN_subject_alt_name "subjectAltName"
2317 #define LN_subject_alt_name "X509v3 Subject Alternative Name"
2318 #define NID_subject_alt_name 85
2319 #define OBJ_subject_alt_name OBJ_id_ce,17L

2321 #define SN_issuer_alt_name "issuerAltName"
2322 #define LN_issuer_alt_name "X509v3 Issuer Alternative Name"
2323 #define NID_issuer_alt_name 86
2324 #define OBJ_issuer_alt_name OBJ_id_ce,18L

2326 #define SN_basic_constraints "basicConstraints"
2327 #define LN_basic_constraints "X509v3 Basic Constraints"
2328 #define NID_basic_constraints 87
2329 #define OBJ_basic_constraints OBJ_id_ce,19L

2331 #define SN_crl_number "crlNumber"
2332 #define LN_crl_number "X509v3 CRL Number"
2333 #define NID_crl_number 88
2334 #define OBJ_crl_number OBJ_id_ce,20L

2336 #define SN_crl_reason "CRLReason"
2337 #define LN_crl_reason "X509v3 CRL Reason Code"
2338 #define NID_crl_reason 141
2339 #define OBJ_crl_reason OBJ_id_ce,21L

2341 #define SN_invalidity_date "invalidityDate"
2342 #define LN_invalidity_date "Invalidity Date"
2343 #define NID_invalidity_date 142
2344 #define OBJ_invalidity_date OBJ_id_ce,24L

2346 #define SN_delta_crl "deltaCRL"
2347 #define LN_delta_crl "X509v3 Delta CRL Indicator"
2348 #define NID_delta_crl 140
2349 #define OBJ_delta_crl OBJ_id_ce,27L

2351 #define SN_issuing_distribution_point "issuingDistributionPoint"
2352 #define LN_issuing_distribution_point "X509v3 Issuing Distrubution Poi
2353 #define NID_issuing_distribution_point 770
2354 #define OBJ_issuing_distribution_point OBJ_id_ce,28L

2356 #define SN_certificate_issuer "certificateIssuer"
2357 #define LN_certificate_issuer "X509v3 Certificate Issuer"
2358 #define NID_certificate_issuer 771
2359 #define OBJ_certificate_issuer OBJ_id_ce,29L

2361 #define SN_name_constraints "nameConstraints"
2362 #define LN_name_constraints "X509v3 Name Constraints"
2363 #define NID_name_constraints 666
2364 #define OBJ_name_constraints OBJ_id_ce,30L

2366 #define SN_crl_distribution_points "crlDistributionPoints"
2367 #define LN_crl_distribution_points "X509v3 CRL Distribution Points"
2368 #define NID_crl_distribution_points 103
2369 #define OBJ_crl_distribution_points OBJ_id_ce,31L

2371 #define SN_certificate_policies "certificatePolicies"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 37

2372 #define LN_certificate_policies "X509v3 Certificate Policies"
2373 #define NID_certificate_policies 89
2374 #define OBJ_certificate_policies OBJ_id_ce,32L

2376 #define SN_any_policy "anyPolicy"
2377 #define LN_any_policy "X509v3 Any Policy"
2378 #define NID_any_policy 746
2379 #define OBJ_any_policy OBJ_certificate_policies,0L

2381 #define SN_policy_mappings "policyMappings"
2382 #define LN_policy_mappings "X509v3 Policy Mappings"
2383 #define NID_policy_mappings 747
2384 #define OBJ_policy_mappings OBJ_id_ce,33L

2386 #define SN_authority_key_identifier "authorityKeyIdentifier"
2387 #define LN_authority_key_identifier "X509v3 Authority Key Identifier
2388 #define NID_authority_key_identifier 90
2389 #define OBJ_authority_key_identifier OBJ_id_ce,35L

2391 #define SN_policy_constraints "policyConstraints"
2392 #define LN_policy_constraints "X509v3 Policy Constraints"
2393 #define NID_policy_constraints 401
2394 #define OBJ_policy_constraints OBJ_id_ce,36L

2396 #define SN_ext_key_usage "extendedKeyUsage"
2397 #define LN_ext_key_usage "X509v3 Extended Key Usage"
2398 #define NID_ext_key_usage 126
2399 #define OBJ_ext_key_usage OBJ_id_ce,37L

2401 #define SN_freshest_crl "freshestCRL"
2402 #define LN_freshest_crl "X509v3 Freshest CRL"
2403 #define NID_freshest_crl 857
2404 #define OBJ_freshest_crl OBJ_id_ce,46L

2406 #define SN_inhibit_any_policy "inhibitAnyPolicy"
2407 #define LN_inhibit_any_policy "X509v3 Inhibit Any Policy"
2408 #define NID_inhibit_any_policy 748
2409 #define OBJ_inhibit_any_policy OBJ_id_ce,54L

2411 #define SN_target_information "targetInformation"
2412 #define LN_target_information "X509v3 AC Targeting"
2413 #define NID_target_information 402
2414 #define OBJ_target_information OBJ_id_ce,55L

2416 #define SN_no_rev_avail "noRevAvail"
2417 #define LN_no_rev_avail "X509v3 No Revocation Available"
2418 #define NID_no_rev_avail 403
2419 #define OBJ_no_rev_avail OBJ_id_ce,56L

2421 #define SN_anyExtendedKeyUsage "anyExtendedKeyUsage"
2422 #define LN_anyExtendedKeyUsage "Any Extended Key Usage"
2423 #define NID_anyExtendedKeyUsage 910
2424 #define OBJ_anyExtendedKeyUsage OBJ_ext_key_usage,0L

2426 #define SN_netscape "Netscape"
2427 #define LN_netscape "Netscape Communications Corp."
2428 #define NID_netscape 57
2429 #define OBJ_netscape 2L,16L,840L,1L,113730L

2431 #define SN_netscape_cert_extension "nsCertExt"
2432 #define LN_netscape_cert_extension "Netscape Certificate Extension"
2433 #define NID_netscape_cert_extension 58
2434 #define OBJ_netscape_cert_extension OBJ_netscape,1L

2436 #define SN_netscape_data_type "nsDataType"
2437 #define LN_netscape_data_type "Netscape Data Type"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 38

2438 #define NID_netscape_data_type 59
2439 #define OBJ_netscape_data_type OBJ_netscape,2L

2441 #define SN_netscape_cert_type "nsCertType"
2442 #define LN_netscape_cert_type "Netscape Cert Type"
2443 #define NID_netscape_cert_type 71
2444 #define OBJ_netscape_cert_type OBJ_netscape_cert_extension,1L

2446 #define SN_netscape_base_url "nsBaseUrl"
2447 #define LN_netscape_base_url "Netscape Base Url"
2448 #define NID_netscape_base_url 72
2449 #define OBJ_netscape_base_url OBJ_netscape_cert_extension,2L

2451 #define SN_netscape_revocation_url "nsRevocationUrl"
2452 #define LN_netscape_revocation_url "Netscape Revocation Url"
2453 #define NID_netscape_revocation_url 73
2454 #define OBJ_netscape_revocation_url OBJ_netscape_cert_extension,3L

2456 #define SN_netscape_ca_revocation_url "nsCaRevocationUrl"
2457 #define LN_netscape_ca_revocation_url "Netscape CA Revocation Url"
2458 #define NID_netscape_ca_revocation_url 74
2459 #define OBJ_netscape_ca_revocation_url OBJ_netscape_cert_extension,4L

2461 #define SN_netscape_renewal_url "nsRenewalUrl"
2462 #define LN_netscape_renewal_url "Netscape Renewal Url"
2463 #define NID_netscape_renewal_url 75
2464 #define OBJ_netscape_renewal_url OBJ_netscape_cert_extension,7L

2466 #define SN_netscape_ca_policy_url "nsCaPolicyUrl"
2467 #define LN_netscape_ca_policy_url "Netscape CA Policy Url"
2468 #define NID_netscape_ca_policy_url 76
2469 #define OBJ_netscape_ca_policy_url OBJ_netscape_cert_extension,8L

2471 #define SN_netscape_ssl_server_name "nsSslServerName"
2472 #define LN_netscape_ssl_server_name "Netscape SSL Server Name"
2473 #define NID_netscape_ssl_server_name 77
2474 #define OBJ_netscape_ssl_server_name OBJ_netscape_cert_extension,12L

2476 #define SN_netscape_comment "nsComment"
2477 #define LN_netscape_comment "Netscape Comment"
2478 #define NID_netscape_comment 78
2479 #define OBJ_netscape_comment OBJ_netscape_cert_extension,13L

2481 #define SN_netscape_cert_sequence "nsCertSequence"
2482 #define LN_netscape_cert_sequence "Netscape Certificate Sequence"
2483 #define NID_netscape_cert_sequence 79
2484 #define OBJ_netscape_cert_sequence OBJ_netscape_data_type,5L

2486 #define SN_ns_sgc "nsSGC"
2487 #define LN_ns_sgc "Netscape Server Gated Crypto"
2488 #define NID_ns_sgc 139
2489 #define OBJ_ns_sgc OBJ_netscape,4L,1L

2491 #define SN_org "ORG"
2492 #define LN_org "org"
2493 #define NID_org 379
2494 #define OBJ_org OBJ_iso,3L

2496 #define SN_dod "DOD"
2497 #define LN_dod "dod"
2498 #define NID_dod 380
2499 #define OBJ_dod OBJ_org,6L

2501 #define SN_iana "IANA"
2502 #define LN_iana "iana"
2503 #define NID_iana 381

new/usr/src/lib/openssl/include/openssl/obj_mac.h 39

2504 #define OBJ_iana OBJ_dod,1L

2506 #define OBJ_internet OBJ_iana

2508 #define SN_Directory "directory"
2509 #define LN_Directory "Directory"
2510 #define NID_Directory 382
2511 #define OBJ_Directory OBJ_internet,1L

2513 #define SN_Management "mgmt"
2514 #define LN_Management "Management"
2515 #define NID_Management 383
2516 #define OBJ_Management OBJ_internet,2L

2518 #define SN_Experimental "experimental"
2519 #define LN_Experimental "Experimental"
2520 #define NID_Experimental 384
2521 #define OBJ_Experimental OBJ_internet,3L

2523 #define SN_Private "private"
2524 #define LN_Private "Private"
2525 #define NID_Private 385
2526 #define OBJ_Private OBJ_internet,4L

2528 #define SN_Security "security"
2529 #define LN_Security "Security"
2530 #define NID_Security 386
2531 #define OBJ_Security OBJ_internet,5L

2533 #define SN_SNMPv2 "snmpv2"
2534 #define LN_SNMPv2 "SNMPv2"
2535 #define NID_SNMPv2 387
2536 #define OBJ_SNMPv2 OBJ_internet,6L

2538 #define LN_Mail "Mail"
2539 #define NID_Mail 388
2540 #define OBJ_Mail OBJ_internet,7L

2542 #define SN_Enterprises "enterprises"
2543 #define LN_Enterprises "Enterprises"
2544 #define NID_Enterprises 389
2545 #define OBJ_Enterprises OBJ_Private,1L

2547 #define SN_dcObject "dcobject"
2548 #define LN_dcObject "dcObject"
2549 #define NID_dcObject 390
2550 #define OBJ_dcObject OBJ_Enterprises,1466L,344L

2552 #define SN_mime_mhs "mime-mhs"
2553 #define LN_mime_mhs "MIME MHS"
2554 #define NID_mime_mhs 504
2555 #define OBJ_mime_mhs OBJ_Mail,1L

2557 #define SN_mime_mhs_headings "mime-mhs-headings"
2558 #define LN_mime_mhs_headings "mime-mhs-headings"
2559 #define NID_mime_mhs_headings 505
2560 #define OBJ_mime_mhs_headings OBJ_mime_mhs,1L

2562 #define SN_mime_mhs_bodies "mime-mhs-bodies"
2563 #define LN_mime_mhs_bodies "mime-mhs-bodies"
2564 #define NID_mime_mhs_bodies 506
2565 #define OBJ_mime_mhs_bodies OBJ_mime_mhs,2L

2567 #define SN_id_hex_partial_message "id-hex-partial-message"
2568 #define LN_id_hex_partial_message "id-hex-partial-message"
2569 #define NID_id_hex_partial_message 507

new/usr/src/lib/openssl/include/openssl/obj_mac.h 40

2570 #define OBJ_id_hex_partial_message OBJ_mime_mhs_headings,1L

2572 #define SN_id_hex_multipart_message "id-hex-multipart-message"
2573 #define LN_id_hex_multipart_message "id-hex-multipart-message"
2574 #define NID_id_hex_multipart_message 508
2575 #define OBJ_id_hex_multipart_message OBJ_mime_mhs_headings,2L

2577 #define SN_rle_compression "RLE"
2578 #define LN_rle_compression "run length compression"
2579 #define NID_rle_compression 124
2580 #define OBJ_rle_compression 1L,1L,1L,1L,666L,1L

2582 #define SN_zlib_compression "ZLIB"
2583 #define LN_zlib_compression "zlib compression"
2584 #define NID_zlib_compression 125
2585 #define OBJ_zlib_compression OBJ_id_smime_alg,8L

2587 #define OBJ_csor 2L,16L,840L,1L,101L,3L

2589 #define OBJ_nistAlgorithms OBJ_csor,4L

2591 #define OBJ_aes OBJ_nistAlgorithms,1L

2593 #define SN_aes_128_ecb "AES-128-ECB"
2594 #define LN_aes_128_ecb "aes-128-ecb"
2595 #define NID_aes_128_ecb 418
2596 #define OBJ_aes_128_ecb OBJ_aes,1L

2598 #define SN_aes_128_cbc "AES-128-CBC"
2599 #define LN_aes_128_cbc "aes-128-cbc"
2600 #define NID_aes_128_cbc 419
2601 #define OBJ_aes_128_cbc OBJ_aes,2L

2603 #define SN_aes_128_ofb128 "AES-128-OFB"
2604 #define LN_aes_128_ofb128 "aes-128-ofb"
2605 #define NID_aes_128_ofb128 420
2606 #define OBJ_aes_128_ofb128 OBJ_aes,3L

2608 #define SN_aes_128_cfb128 "AES-128-CFB"
2609 #define LN_aes_128_cfb128 "aes-128-cfb"
2610 #define NID_aes_128_cfb128 421
2611 #define OBJ_aes_128_cfb128 OBJ_aes,4L

2613 #define SN_id_aes128_wrap "id-aes128-wrap"
2614 #define NID_id_aes128_wrap 788
2615 #define OBJ_id_aes128_wrap OBJ_aes,5L

2617 #define SN_aes_128_gcm "id-aes128-GCM"
2618 #define LN_aes_128_gcm "aes-128-gcm"
2619 #define NID_aes_128_gcm 895
2620 #define OBJ_aes_128_gcm OBJ_aes,6L

2622 #define SN_aes_128_ccm "id-aes128-CCM"
2623 #define LN_aes_128_ccm "aes-128-ccm"
2624 #define NID_aes_128_ccm 896
2625 #define OBJ_aes_128_ccm OBJ_aes,7L

2627 #define SN_id_aes128_wrap_pad "id-aes128-wrap-pad"
2628 #define NID_id_aes128_wrap_pad 897
2629 #define OBJ_id_aes128_wrap_pad OBJ_aes,8L

2631 #define SN_aes_192_ecb "AES-192-ECB"
2632 #define LN_aes_192_ecb "aes-192-ecb"
2633 #define NID_aes_192_ecb 422
2634 #define OBJ_aes_192_ecb OBJ_aes,21L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 41

2636 #define SN_aes_192_cbc "AES-192-CBC"
2637 #define LN_aes_192_cbc "aes-192-cbc"
2638 #define NID_aes_192_cbc 423
2639 #define OBJ_aes_192_cbc OBJ_aes,22L

2641 #define SN_aes_192_ofb128 "AES-192-OFB"
2642 #define LN_aes_192_ofb128 "aes-192-ofb"
2643 #define NID_aes_192_ofb128 424
2644 #define OBJ_aes_192_ofb128 OBJ_aes,23L

2646 #define SN_aes_192_cfb128 "AES-192-CFB"
2647 #define LN_aes_192_cfb128 "aes-192-cfb"
2648 #define NID_aes_192_cfb128 425
2649 #define OBJ_aes_192_cfb128 OBJ_aes,24L

2651 #define SN_id_aes192_wrap "id-aes192-wrap"
2652 #define NID_id_aes192_wrap 789
2653 #define OBJ_id_aes192_wrap OBJ_aes,25L

2655 #define SN_aes_192_gcm "id-aes192-GCM"
2656 #define LN_aes_192_gcm "aes-192-gcm"
2657 #define NID_aes_192_gcm 898
2658 #define OBJ_aes_192_gcm OBJ_aes,26L

2660 #define SN_aes_192_ccm "id-aes192-CCM"
2661 #define LN_aes_192_ccm "aes-192-ccm"
2662 #define NID_aes_192_ccm 899
2663 #define OBJ_aes_192_ccm OBJ_aes,27L

2665 #define SN_id_aes192_wrap_pad "id-aes192-wrap-pad"
2666 #define NID_id_aes192_wrap_pad 900
2667 #define OBJ_id_aes192_wrap_pad OBJ_aes,28L

2669 #define SN_aes_256_ecb "AES-256-ECB"
2670 #define LN_aes_256_ecb "aes-256-ecb"
2671 #define NID_aes_256_ecb 426
2672 #define OBJ_aes_256_ecb OBJ_aes,41L

2674 #define SN_aes_256_cbc "AES-256-CBC"
2675 #define LN_aes_256_cbc "aes-256-cbc"
2676 #define NID_aes_256_cbc 427
2677 #define OBJ_aes_256_cbc OBJ_aes,42L

2679 #define SN_aes_256_ofb128 "AES-256-OFB"
2680 #define LN_aes_256_ofb128 "aes-256-ofb"
2681 #define NID_aes_256_ofb128 428
2682 #define OBJ_aes_256_ofb128 OBJ_aes,43L

2684 #define SN_aes_256_cfb128 "AES-256-CFB"
2685 #define LN_aes_256_cfb128 "aes-256-cfb"
2686 #define NID_aes_256_cfb128 429
2687 #define OBJ_aes_256_cfb128 OBJ_aes,44L

2689 #define SN_id_aes256_wrap "id-aes256-wrap"
2690 #define NID_id_aes256_wrap 790
2691 #define OBJ_id_aes256_wrap OBJ_aes,45L

2693 #define SN_aes_256_gcm "id-aes256-GCM"
2694 #define LN_aes_256_gcm "aes-256-gcm"
2695 #define NID_aes_256_gcm 901
2696 #define OBJ_aes_256_gcm OBJ_aes,46L

2698 #define SN_aes_256_ccm "id-aes256-CCM"
2699 #define LN_aes_256_ccm "aes-256-ccm"
2700 #define NID_aes_256_ccm 902
2701 #define OBJ_aes_256_ccm OBJ_aes,47L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 42

2703 #define SN_id_aes256_wrap_pad "id-aes256-wrap-pad"
2704 #define NID_id_aes256_wrap_pad 903
2705 #define OBJ_id_aes256_wrap_pad OBJ_aes,48L

2707 #define SN_aes_128_cfb1 "AES-128-CFB1"
2708 #define LN_aes_128_cfb1 "aes-128-cfb1"
2709 #define NID_aes_128_cfb1 650

2711 #define SN_aes_192_cfb1 "AES-192-CFB1"
2712 #define LN_aes_192_cfb1 "aes-192-cfb1"
2713 #define NID_aes_192_cfb1 651

2715 #define SN_aes_256_cfb1 "AES-256-CFB1"
2716 #define LN_aes_256_cfb1 "aes-256-cfb1"
2717 #define NID_aes_256_cfb1 652

2719 #define SN_aes_128_cfb8 "AES-128-CFB8"
2720 #define LN_aes_128_cfb8 "aes-128-cfb8"
2721 #define NID_aes_128_cfb8 653

2723 #define SN_aes_192_cfb8 "AES-192-CFB8"
2724 #define LN_aes_192_cfb8 "aes-192-cfb8"
2725 #define NID_aes_192_cfb8 654

2727 #define SN_aes_256_cfb8 "AES-256-CFB8"
2728 #define LN_aes_256_cfb8 "aes-256-cfb8"
2729 #define NID_aes_256_cfb8 655

2731 #define SN_aes_128_ctr "AES-128-CTR"
2732 #define LN_aes_128_ctr "aes-128-ctr"
2733 #define NID_aes_128_ctr 904

2735 #define SN_aes_192_ctr "AES-192-CTR"
2736 #define LN_aes_192_ctr "aes-192-ctr"
2737 #define NID_aes_192_ctr 905

2739 #define SN_aes_256_ctr "AES-256-CTR"
2740 #define LN_aes_256_ctr "aes-256-ctr"
2741 #define NID_aes_256_ctr 906

2743 #define SN_aes_128_xts "AES-128-XTS"
2744 #define LN_aes_128_xts "aes-128-xts"
2745 #define NID_aes_128_xts 913

2747 #define SN_aes_256_xts "AES-256-XTS"
2748 #define LN_aes_256_xts "aes-256-xts"
2749 #define NID_aes_256_xts 914

2751 #define SN_des_cfb1 "DES-CFB1"
2752 #define LN_des_cfb1 "des-cfb1"
2753 #define NID_des_cfb1 656

2755 #define SN_des_cfb8 "DES-CFB8"
2756 #define LN_des_cfb8 "des-cfb8"
2757 #define NID_des_cfb8 657

2759 #define SN_des_ede3_cfb1 "DES-EDE3-CFB1"
2760 #define LN_des_ede3_cfb1 "des-ede3-cfb1"
2761 #define NID_des_ede3_cfb1 658

2763 #define SN_des_ede3_cfb8 "DES-EDE3-CFB8"
2764 #define LN_des_ede3_cfb8 "des-ede3-cfb8"
2765 #define NID_des_ede3_cfb8 659

2767 #define OBJ_nist_hashalgs OBJ_nistAlgorithms,2L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 43

2769 #define SN_sha256 "SHA256"
2770 #define LN_sha256 "sha256"
2771 #define NID_sha256 672
2772 #define OBJ_sha256 OBJ_nist_hashalgs,1L

2774 #define SN_sha384 "SHA384"
2775 #define LN_sha384 "sha384"
2776 #define NID_sha384 673
2777 #define OBJ_sha384 OBJ_nist_hashalgs,2L

2779 #define SN_sha512 "SHA512"
2780 #define LN_sha512 "sha512"
2781 #define NID_sha512 674
2782 #define OBJ_sha512 OBJ_nist_hashalgs,3L

2784 #define SN_sha224 "SHA224"
2785 #define LN_sha224 "sha224"
2786 #define NID_sha224 675
2787 #define OBJ_sha224 OBJ_nist_hashalgs,4L

2789 #define OBJ_dsa_with_sha2 OBJ_nistAlgorithms,3L

2791 #define SN_dsa_with_SHA224 "dsa_with_SHA224"
2792 #define NID_dsa_with_SHA224 802
2793 #define OBJ_dsa_with_SHA224 OBJ_dsa_with_sha2,1L

2795 #define SN_dsa_with_SHA256 "dsa_with_SHA256"
2796 #define NID_dsa_with_SHA256 803
2797 #define OBJ_dsa_with_SHA256 OBJ_dsa_with_sha2,2L

2799 #define SN_hold_instruction_code "holdInstructionCode"
2800 #define LN_hold_instruction_code "Hold Instruction Code"
2801 #define NID_hold_instruction_code 430
2802 #define OBJ_hold_instruction_code OBJ_id_ce,23L

2804 #define OBJ_holdInstruction OBJ_X9_57,2L

2806 #define SN_hold_instruction_none "holdInstructionNone"
2807 #define LN_hold_instruction_none "Hold Instruction None"
2808 #define NID_hold_instruction_none 431
2809 #define OBJ_hold_instruction_none OBJ_holdInstruction,1L

2811 #define SN_hold_instruction_call_issuer "holdInstructionCallIssuer"
2812 #define LN_hold_instruction_call_issuer "Hold Instruction Call Issuer"
2813 #define NID_hold_instruction_call_issuer 432
2814 #define OBJ_hold_instruction_call_issuer OBJ_holdInstruction,2L

2816 #define SN_hold_instruction_reject "holdInstructionReject"
2817 #define LN_hold_instruction_reject "Hold Instruction Reject"
2818 #define NID_hold_instruction_reject 433
2819 #define OBJ_hold_instruction_reject OBJ_holdInstruction,3L

2821 #define SN_data "data"
2822 #define NID_data 434
2823 #define OBJ_data OBJ_itu_t,9L

2825 #define SN_pss "pss"
2826 #define NID_pss 435
2827 #define OBJ_pss OBJ_data,2342L

2829 #define SN_ucl "ucl"
2830 #define NID_ucl 436
2831 #define OBJ_ucl OBJ_pss,19200300L

2833 #define SN_pilot "pilot"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 44

2834 #define NID_pilot 437
2835 #define OBJ_pilot OBJ_ucl,100L

2837 #define LN_pilotAttributeType "pilotAttributeType"
2838 #define NID_pilotAttributeType 438
2839 #define OBJ_pilotAttributeType OBJ_pilot,1L

2841 #define LN_pilotAttributeSyntax "pilotAttributeSyntax"
2842 #define NID_pilotAttributeSyntax 439
2843 #define OBJ_pilotAttributeSyntax OBJ_pilot,3L

2845 #define LN_pilotObjectClass "pilotObjectClass"
2846 #define NID_pilotObjectClass 440
2847 #define OBJ_pilotObjectClass OBJ_pilot,4L

2849 #define LN_pilotGroups "pilotGroups"
2850 #define NID_pilotGroups 441
2851 #define OBJ_pilotGroups OBJ_pilot,10L

2853 #define LN_iA5StringSyntax "iA5StringSyntax"
2854 #define NID_iA5StringSyntax 442
2855 #define OBJ_iA5StringSyntax OBJ_pilotAttributeSyntax,4L

2857 #define LN_caseIgnoreIA5StringSyntax "caseIgnoreIA5StringSyntax"
2858 #define NID_caseIgnoreIA5StringSyntax 443
2859 #define OBJ_caseIgnoreIA5StringSyntax OBJ_pilotAttributeSyntax,5L

2861 #define LN_pilotObject "pilotObject"
2862 #define NID_pilotObject 444
2863 #define OBJ_pilotObject OBJ_pilotObjectClass,3L

2865 #define LN_pilotPerson "pilotPerson"
2866 #define NID_pilotPerson 445
2867 #define OBJ_pilotPerson OBJ_pilotObjectClass,4L

2869 #define SN_account "account"
2870 #define NID_account 446
2871 #define OBJ_account OBJ_pilotObjectClass,5L

2873 #define SN_document "document"
2874 #define NID_document 447
2875 #define OBJ_document OBJ_pilotObjectClass,6L

2877 #define SN_room "room"
2878 #define NID_room 448
2879 #define OBJ_room OBJ_pilotObjectClass,7L

2881 #define LN_documentSeries "documentSeries"
2882 #define NID_documentSeries 449
2883 #define OBJ_documentSeries OBJ_pilotObjectClass,9L

2885 #define SN_Domain "domain"
2886 #define LN_Domain "Domain"
2887 #define NID_Domain 392
2888 #define OBJ_Domain OBJ_pilotObjectClass,13L

2890 #define LN_rFC822localPart "rFC822localPart"
2891 #define NID_rFC822localPart 450
2892 #define OBJ_rFC822localPart OBJ_pilotObjectClass,14L

2894 #define LN_dNSDomain "dNSDomain"
2895 #define NID_dNSDomain 451
2896 #define OBJ_dNSDomain OBJ_pilotObjectClass,15L

2898 #define LN_domainRelatedObject "domainRelatedObject"
2899 #define NID_domainRelatedObject 452

new/usr/src/lib/openssl/include/openssl/obj_mac.h 45

2900 #define OBJ_domainRelatedObject OBJ_pilotObjectClass,17L

2902 #define LN_friendlyCountry "friendlyCountry"
2903 #define NID_friendlyCountry 453
2904 #define OBJ_friendlyCountry OBJ_pilotObjectClass,18L

2906 #define LN_simpleSecurityObject "simpleSecurityObject"
2907 #define NID_simpleSecurityObject 454
2908 #define OBJ_simpleSecurityObject OBJ_pilotObjectClass,19L

2910 #define LN_pilotOrganization "pilotOrganization"
2911 #define NID_pilotOrganization 455
2912 #define OBJ_pilotOrganization OBJ_pilotObjectClass,20L

2914 #define LN_pilotDSA "pilotDSA"
2915 #define NID_pilotDSA 456
2916 #define OBJ_pilotDSA OBJ_pilotObjectClass,21L

2918 #define LN_qualityLabelledData "qualityLabelledData"
2919 #define NID_qualityLabelledData 457
2920 #define OBJ_qualityLabelledData OBJ_pilotObjectClass,22L

2922 #define SN_userId "UID"
2923 #define LN_userId "userId"
2924 #define NID_userId 458
2925 #define OBJ_userId OBJ_pilotAttributeType,1L

2927 #define LN_textEncodedORAddress "textEncodedORAddress"
2928 #define NID_textEncodedORAddress 459
2929 #define OBJ_textEncodedORAddress OBJ_pilotAttributeType,2L

2931 #define SN_rfc822Mailbox "mail"
2932 #define LN_rfc822Mailbox "rfc822Mailbox"
2933 #define NID_rfc822Mailbox 460
2934 #define OBJ_rfc822Mailbox OBJ_pilotAttributeType,3L

2936 #define SN_info "info"
2937 #define NID_info 461
2938 #define OBJ_info OBJ_pilotAttributeType,4L

2940 #define LN_favouriteDrink "favouriteDrink"
2941 #define NID_favouriteDrink 462
2942 #define OBJ_favouriteDrink OBJ_pilotAttributeType,5L

2944 #define LN_roomNumber "roomNumber"
2945 #define NID_roomNumber 463
2946 #define OBJ_roomNumber OBJ_pilotAttributeType,6L

2948 #define SN_photo "photo"
2949 #define NID_photo 464
2950 #define OBJ_photo OBJ_pilotAttributeType,7L

2952 #define LN_userClass "userClass"
2953 #define NID_userClass 465
2954 #define OBJ_userClass OBJ_pilotAttributeType,8L

2956 #define SN_host "host"
2957 #define NID_host 466
2958 #define OBJ_host OBJ_pilotAttributeType,9L

2960 #define SN_manager "manager"
2961 #define NID_manager 467
2962 #define OBJ_manager OBJ_pilotAttributeType,10L

2964 #define LN_documentIdentifier "documentIdentifier"
2965 #define NID_documentIdentifier 468

new/usr/src/lib/openssl/include/openssl/obj_mac.h 46

2966 #define OBJ_documentIdentifier OBJ_pilotAttributeType,11L

2968 #define LN_documentTitle "documentTitle"
2969 #define NID_documentTitle 469
2970 #define OBJ_documentTitle OBJ_pilotAttributeType,12L

2972 #define LN_documentVersion "documentVersion"
2973 #define NID_documentVersion 470
2974 #define OBJ_documentVersion OBJ_pilotAttributeType,13L

2976 #define LN_documentAuthor "documentAuthor"
2977 #define NID_documentAuthor 471
2978 #define OBJ_documentAuthor OBJ_pilotAttributeType,14L

2980 #define LN_documentLocation "documentLocation"
2981 #define NID_documentLocation 472
2982 #define OBJ_documentLocation OBJ_pilotAttributeType,15L

2984 #define LN_homeTelephoneNumber "homeTelephoneNumber"
2985 #define NID_homeTelephoneNumber 473
2986 #define OBJ_homeTelephoneNumber OBJ_pilotAttributeType,20L

2988 #define SN_secretary "secretary"
2989 #define NID_secretary 474
2990 #define OBJ_secretary OBJ_pilotAttributeType,21L

2992 #define LN_otherMailbox "otherMailbox"
2993 #define NID_otherMailbox 475
2994 #define OBJ_otherMailbox OBJ_pilotAttributeType,22L

2996 #define LN_lastModifiedTime "lastModifiedTime"
2997 #define NID_lastModifiedTime 476
2998 #define OBJ_lastModifiedTime OBJ_pilotAttributeType,23L

3000 #define LN_lastModifiedBy "lastModifiedBy"
3001 #define NID_lastModifiedBy 477
3002 #define OBJ_lastModifiedBy OBJ_pilotAttributeType,24L

3004 #define SN_domainComponent "DC"
3005 #define LN_domainComponent "domainComponent"
3006 #define NID_domainComponent 391
3007 #define OBJ_domainComponent OBJ_pilotAttributeType,25L

3009 #define LN_aRecord "aRecord"
3010 #define NID_aRecord 478
3011 #define OBJ_aRecord OBJ_pilotAttributeType,26L

3013 #define LN_pilotAttributeType27 "pilotAttributeType27"
3014 #define NID_pilotAttributeType27 479
3015 #define OBJ_pilotAttributeType27 OBJ_pilotAttributeType,27L

3017 #define LN_mXRecord "mXRecord"
3018 #define NID_mXRecord 480
3019 #define OBJ_mXRecord OBJ_pilotAttributeType,28L

3021 #define LN_nSRecord "nSRecord"
3022 #define NID_nSRecord 481
3023 #define OBJ_nSRecord OBJ_pilotAttributeType,29L

3025 #define LN_sOARecord "sOARecord"
3026 #define NID_sOARecord 482
3027 #define OBJ_sOARecord OBJ_pilotAttributeType,30L

3029 #define LN_cNAMERecord "cNAMERecord"
3030 #define NID_cNAMERecord 483
3031 #define OBJ_cNAMERecord OBJ_pilotAttributeType,31L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 47

3033 #define LN_associatedDomain "associatedDomain"
3034 #define NID_associatedDomain 484
3035 #define OBJ_associatedDomain OBJ_pilotAttributeType,37L

3037 #define LN_associatedName "associatedName"
3038 #define NID_associatedName 485
3039 #define OBJ_associatedName OBJ_pilotAttributeType,38L

3041 #define LN_homePostalAddress "homePostalAddress"
3042 #define NID_homePostalAddress 486
3043 #define OBJ_homePostalAddress OBJ_pilotAttributeType,39L

3045 #define LN_personalTitle "personalTitle"
3046 #define NID_personalTitle 487
3047 #define OBJ_personalTitle OBJ_pilotAttributeType,40L

3049 #define LN_mobileTelephoneNumber "mobileTelephoneNumber"
3050 #define NID_mobileTelephoneNumber 488
3051 #define OBJ_mobileTelephoneNumber OBJ_pilotAttributeType,41L

3053 #define LN_pagerTelephoneNumber "pagerTelephoneNumber"
3054 #define NID_pagerTelephoneNumber 489
3055 #define OBJ_pagerTelephoneNumber OBJ_pilotAttributeType,42L

3057 #define LN_friendlyCountryName "friendlyCountryName"
3058 #define NID_friendlyCountryName 490
3059 #define OBJ_friendlyCountryName OBJ_pilotAttributeType,43L

3061 #define LN_organizationalStatus "organizationalStatus"
3062 #define NID_organizationalStatus 491
3063 #define OBJ_organizationalStatus OBJ_pilotAttributeType,45L

3065 #define LN_janetMailbox "janetMailbox"
3066 #define NID_janetMailbox 492
3067 #define OBJ_janetMailbox OBJ_pilotAttributeType,46L

3069 #define LN_mailPreferenceOption "mailPreferenceOption"
3070 #define NID_mailPreferenceOption 493
3071 #define OBJ_mailPreferenceOption OBJ_pilotAttributeType,47L

3073 #define LN_buildingName "buildingName"
3074 #define NID_buildingName 494
3075 #define OBJ_buildingName OBJ_pilotAttributeType,48L

3077 #define LN_dSAQuality "dSAQuality"
3078 #define NID_dSAQuality 495
3079 #define OBJ_dSAQuality OBJ_pilotAttributeType,49L

3081 #define LN_singleLevelQuality "singleLevelQuality"
3082 #define NID_singleLevelQuality 496
3083 #define OBJ_singleLevelQuality OBJ_pilotAttributeType,50L

3085 #define LN_subtreeMinimumQuality "subtreeMinimumQuality"
3086 #define NID_subtreeMinimumQuality 497
3087 #define OBJ_subtreeMinimumQuality OBJ_pilotAttributeType,51L

3089 #define LN_subtreeMaximumQuality "subtreeMaximumQuality"
3090 #define NID_subtreeMaximumQuality 498
3091 #define OBJ_subtreeMaximumQuality OBJ_pilotAttributeType,52L

3093 #define LN_personalSignature "personalSignature"
3094 #define NID_personalSignature 499
3095 #define OBJ_personalSignature OBJ_pilotAttributeType,53L

3097 #define LN_dITRedirect "dITRedirect"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 48

3098 #define NID_dITRedirect 500
3099 #define OBJ_dITRedirect OBJ_pilotAttributeType,54L

3101 #define SN_audio "audio"
3102 #define NID_audio 501
3103 #define OBJ_audio OBJ_pilotAttributeType,55L

3105 #define LN_documentPublisher "documentPublisher"
3106 #define NID_documentPublisher 502
3107 #define OBJ_documentPublisher OBJ_pilotAttributeType,56L

3109 #define SN_id_set "id-set"
3110 #define LN_id_set "Secure Electronic Transactions"
3111 #define NID_id_set 512
3112 #define OBJ_id_set OBJ_international_organizations,42L

3114 #define SN_set_ctype "set-ctype"
3115 #define LN_set_ctype "content types"
3116 #define NID_set_ctype 513
3117 #define OBJ_set_ctype OBJ_id_set,0L

3119 #define SN_set_msgExt "set-msgExt"
3120 #define LN_set_msgExt "message extensions"
3121 #define NID_set_msgExt 514
3122 #define OBJ_set_msgExt OBJ_id_set,1L

3124 #define SN_set_attr "set-attr"
3125 #define NID_set_attr 515
3126 #define OBJ_set_attr OBJ_id_set,3L

3128 #define SN_set_policy "set-policy"
3129 #define NID_set_policy 516
3130 #define OBJ_set_policy OBJ_id_set,5L

3132 #define SN_set_certExt "set-certExt"
3133 #define LN_set_certExt "certificate extensions"
3134 #define NID_set_certExt 517
3135 #define OBJ_set_certExt OBJ_id_set,7L

3137 #define SN_set_brand "set-brand"
3138 #define NID_set_brand 518
3139 #define OBJ_set_brand OBJ_id_set,8L

3141 #define SN_setct_PANData "setct-PANData"
3142 #define NID_setct_PANData 519
3143 #define OBJ_setct_PANData OBJ_set_ctype,0L

3145 #define SN_setct_PANToken "setct-PANToken"
3146 #define NID_setct_PANToken 520
3147 #define OBJ_setct_PANToken OBJ_set_ctype,1L

3149 #define SN_setct_PANOnly "setct-PANOnly"
3150 #define NID_setct_PANOnly 521
3151 #define OBJ_setct_PANOnly OBJ_set_ctype,2L

3153 #define SN_setct_OIData "setct-OIData"
3154 #define NID_setct_OIData 522
3155 #define OBJ_setct_OIData OBJ_set_ctype,3L

3157 #define SN_setct_PI "setct-PI"
3158 #define NID_setct_PI 523
3159 #define OBJ_setct_PI OBJ_set_ctype,4L

3161 #define SN_setct_PIData "setct-PIData"
3162 #define NID_setct_PIData 524
3163 #define OBJ_setct_PIData OBJ_set_ctype,5L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 49

3165 #define SN_setct_PIDataUnsigned "setct-PIDataUnsigned"
3166 #define NID_setct_PIDataUnsigned 525
3167 #define OBJ_setct_PIDataUnsigned OBJ_set_ctype,6L

3169 #define SN_setct_HODInput "setct-HODInput"
3170 #define NID_setct_HODInput 526
3171 #define OBJ_setct_HODInput OBJ_set_ctype,7L

3173 #define SN_setct_AuthResBaggage "setct-AuthResBaggage"
3174 #define NID_setct_AuthResBaggage 527
3175 #define OBJ_setct_AuthResBaggage OBJ_set_ctype,8L

3177 #define SN_setct_AuthRevReqBaggage "setct-AuthRevReqBaggage"
3178 #define NID_setct_AuthRevReqBaggage 528
3179 #define OBJ_setct_AuthRevReqBaggage OBJ_set_ctype,9L

3181 #define SN_setct_AuthRevResBaggage "setct-AuthRevResBaggage"
3182 #define NID_setct_AuthRevResBaggage 529
3183 #define OBJ_setct_AuthRevResBaggage OBJ_set_ctype,10L

3185 #define SN_setct_CapTokenSeq "setct-CapTokenSeq"
3186 #define NID_setct_CapTokenSeq 530
3187 #define OBJ_setct_CapTokenSeq OBJ_set_ctype,11L

3189 #define SN_setct_PInitResData "setct-PInitResData"
3190 #define NID_setct_PInitResData 531
3191 #define OBJ_setct_PInitResData OBJ_set_ctype,12L

3193 #define SN_setct_PI_TBS "setct-PI-TBS"
3194 #define NID_setct_PI_TBS 532
3195 #define OBJ_setct_PI_TBS OBJ_set_ctype,13L

3197 #define SN_setct_PResData "setct-PResData"
3198 #define NID_setct_PResData 533
3199 #define OBJ_setct_PResData OBJ_set_ctype,14L

3201 #define SN_setct_AuthReqTBS "setct-AuthReqTBS"
3202 #define NID_setct_AuthReqTBS 534
3203 #define OBJ_setct_AuthReqTBS OBJ_set_ctype,16L

3205 #define SN_setct_AuthResTBS "setct-AuthResTBS"
3206 #define NID_setct_AuthResTBS 535
3207 #define OBJ_setct_AuthResTBS OBJ_set_ctype,17L

3209 #define SN_setct_AuthResTBSX "setct-AuthResTBSX"
3210 #define NID_setct_AuthResTBSX 536
3211 #define OBJ_setct_AuthResTBSX OBJ_set_ctype,18L

3213 #define SN_setct_AuthTokenTBS "setct-AuthTokenTBS"
3214 #define NID_setct_AuthTokenTBS 537
3215 #define OBJ_setct_AuthTokenTBS OBJ_set_ctype,19L

3217 #define SN_setct_CapTokenData "setct-CapTokenData"
3218 #define NID_setct_CapTokenData 538
3219 #define OBJ_setct_CapTokenData OBJ_set_ctype,20L

3221 #define SN_setct_CapTokenTBS "setct-CapTokenTBS"
3222 #define NID_setct_CapTokenTBS 539
3223 #define OBJ_setct_CapTokenTBS OBJ_set_ctype,21L

3225 #define SN_setct_AcqCardCodeMsg "setct-AcqCardCodeMsg"
3226 #define NID_setct_AcqCardCodeMsg 540
3227 #define OBJ_setct_AcqCardCodeMsg OBJ_set_ctype,22L

3229 #define SN_setct_AuthRevReqTBS "setct-AuthRevReqTBS"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 50

3230 #define NID_setct_AuthRevReqTBS 541
3231 #define OBJ_setct_AuthRevReqTBS OBJ_set_ctype,23L

3233 #define SN_setct_AuthRevResData "setct-AuthRevResData"
3234 #define NID_setct_AuthRevResData 542
3235 #define OBJ_setct_AuthRevResData OBJ_set_ctype,24L

3237 #define SN_setct_AuthRevResTBS "setct-AuthRevResTBS"
3238 #define NID_setct_AuthRevResTBS 543
3239 #define OBJ_setct_AuthRevResTBS OBJ_set_ctype,25L

3241 #define SN_setct_CapReqTBS "setct-CapReqTBS"
3242 #define NID_setct_CapReqTBS 544
3243 #define OBJ_setct_CapReqTBS OBJ_set_ctype,26L

3245 #define SN_setct_CapReqTBSX "setct-CapReqTBSX"
3246 #define NID_setct_CapReqTBSX 545
3247 #define OBJ_setct_CapReqTBSX OBJ_set_ctype,27L

3249 #define SN_setct_CapResData "setct-CapResData"
3250 #define NID_setct_CapResData 546
3251 #define OBJ_setct_CapResData OBJ_set_ctype,28L

3253 #define SN_setct_CapRevReqTBS "setct-CapRevReqTBS"
3254 #define NID_setct_CapRevReqTBS 547
3255 #define OBJ_setct_CapRevReqTBS OBJ_set_ctype,29L

3257 #define SN_setct_CapRevReqTBSX "setct-CapRevReqTBSX"
3258 #define NID_setct_CapRevReqTBSX 548
3259 #define OBJ_setct_CapRevReqTBSX OBJ_set_ctype,30L

3261 #define SN_setct_CapRevResData "setct-CapRevResData"
3262 #define NID_setct_CapRevResData 549
3263 #define OBJ_setct_CapRevResData OBJ_set_ctype,31L

3265 #define SN_setct_CredReqTBS "setct-CredReqTBS"
3266 #define NID_setct_CredReqTBS 550
3267 #define OBJ_setct_CredReqTBS OBJ_set_ctype,32L

3269 #define SN_setct_CredReqTBSX "setct-CredReqTBSX"
3270 #define NID_setct_CredReqTBSX 551
3271 #define OBJ_setct_CredReqTBSX OBJ_set_ctype,33L

3273 #define SN_setct_CredResData "setct-CredResData"
3274 #define NID_setct_CredResData 552
3275 #define OBJ_setct_CredResData OBJ_set_ctype,34L

3277 #define SN_setct_CredRevReqTBS "setct-CredRevReqTBS"
3278 #define NID_setct_CredRevReqTBS 553
3279 #define OBJ_setct_CredRevReqTBS OBJ_set_ctype,35L

3281 #define SN_setct_CredRevReqTBSX "setct-CredRevReqTBSX"
3282 #define NID_setct_CredRevReqTBSX 554
3283 #define OBJ_setct_CredRevReqTBSX OBJ_set_ctype,36L

3285 #define SN_setct_CredRevResData "setct-CredRevResData"
3286 #define NID_setct_CredRevResData 555
3287 #define OBJ_setct_CredRevResData OBJ_set_ctype,37L

3289 #define SN_setct_PCertReqData "setct-PCertReqData"
3290 #define NID_setct_PCertReqData 556
3291 #define OBJ_setct_PCertReqData OBJ_set_ctype,38L

3293 #define SN_setct_PCertResTBS "setct-PCertResTBS"
3294 #define NID_setct_PCertResTBS 557
3295 #define OBJ_setct_PCertResTBS OBJ_set_ctype,39L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 51

3297 #define SN_setct_BatchAdminReqData "setct-BatchAdminReqData"
3298 #define NID_setct_BatchAdminReqData 558
3299 #define OBJ_setct_BatchAdminReqData OBJ_set_ctype,40L

3301 #define SN_setct_BatchAdminResData "setct-BatchAdminResData"
3302 #define NID_setct_BatchAdminResData 559
3303 #define OBJ_setct_BatchAdminResData OBJ_set_ctype,41L

3305 #define SN_setct_CardCInitResTBS "setct-CardCInitResTBS"
3306 #define NID_setct_CardCInitResTBS 560
3307 #define OBJ_setct_CardCInitResTBS OBJ_set_ctype,42L

3309 #define SN_setct_MeAqCInitResTBS "setct-MeAqCInitResTBS"
3310 #define NID_setct_MeAqCInitResTBS 561
3311 #define OBJ_setct_MeAqCInitResTBS OBJ_set_ctype,43L

3313 #define SN_setct_RegFormResTBS "setct-RegFormResTBS"
3314 #define NID_setct_RegFormResTBS 562
3315 #define OBJ_setct_RegFormResTBS OBJ_set_ctype,44L

3317 #define SN_setct_CertReqData "setct-CertReqData"
3318 #define NID_setct_CertReqData 563
3319 #define OBJ_setct_CertReqData OBJ_set_ctype,45L

3321 #define SN_setct_CertReqTBS "setct-CertReqTBS"
3322 #define NID_setct_CertReqTBS 564
3323 #define OBJ_setct_CertReqTBS OBJ_set_ctype,46L

3325 #define SN_setct_CertResData "setct-CertResData"
3326 #define NID_setct_CertResData 565
3327 #define OBJ_setct_CertResData OBJ_set_ctype,47L

3329 #define SN_setct_CertInqReqTBS "setct-CertInqReqTBS"
3330 #define NID_setct_CertInqReqTBS 566
3331 #define OBJ_setct_CertInqReqTBS OBJ_set_ctype,48L

3333 #define SN_setct_ErrorTBS "setct-ErrorTBS"
3334 #define NID_setct_ErrorTBS 567
3335 #define OBJ_setct_ErrorTBS OBJ_set_ctype,49L

3337 #define SN_setct_PIDualSignedTBE "setct-PIDualSignedTBE"
3338 #define NID_setct_PIDualSignedTBE 568
3339 #define OBJ_setct_PIDualSignedTBE OBJ_set_ctype,50L

3341 #define SN_setct_PIUnsignedTBE "setct-PIUnsignedTBE"
3342 #define NID_setct_PIUnsignedTBE 569
3343 #define OBJ_setct_PIUnsignedTBE OBJ_set_ctype,51L

3345 #define SN_setct_AuthReqTBE "setct-AuthReqTBE"
3346 #define NID_setct_AuthReqTBE 570
3347 #define OBJ_setct_AuthReqTBE OBJ_set_ctype,52L

3349 #define SN_setct_AuthResTBE "setct-AuthResTBE"
3350 #define NID_setct_AuthResTBE 571
3351 #define OBJ_setct_AuthResTBE OBJ_set_ctype,53L

3353 #define SN_setct_AuthResTBEX "setct-AuthResTBEX"
3354 #define NID_setct_AuthResTBEX 572
3355 #define OBJ_setct_AuthResTBEX OBJ_set_ctype,54L

3357 #define SN_setct_AuthTokenTBE "setct-AuthTokenTBE"
3358 #define NID_setct_AuthTokenTBE 573
3359 #define OBJ_setct_AuthTokenTBE OBJ_set_ctype,55L

3361 #define SN_setct_CapTokenTBE "setct-CapTokenTBE"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 52

3362 #define NID_setct_CapTokenTBE 574
3363 #define OBJ_setct_CapTokenTBE OBJ_set_ctype,56L

3365 #define SN_setct_CapTokenTBEX "setct-CapTokenTBEX"
3366 #define NID_setct_CapTokenTBEX 575
3367 #define OBJ_setct_CapTokenTBEX OBJ_set_ctype,57L

3369 #define SN_setct_AcqCardCodeMsgTBE "setct-AcqCardCodeMsgTBE"
3370 #define NID_setct_AcqCardCodeMsgTBE 576
3371 #define OBJ_setct_AcqCardCodeMsgTBE OBJ_set_ctype,58L

3373 #define SN_setct_AuthRevReqTBE "setct-AuthRevReqTBE"
3374 #define NID_setct_AuthRevReqTBE 577
3375 #define OBJ_setct_AuthRevReqTBE OBJ_set_ctype,59L

3377 #define SN_setct_AuthRevResTBE "setct-AuthRevResTBE"
3378 #define NID_setct_AuthRevResTBE 578
3379 #define OBJ_setct_AuthRevResTBE OBJ_set_ctype,60L

3381 #define SN_setct_AuthRevResTBEB "setct-AuthRevResTBEB"
3382 #define NID_setct_AuthRevResTBEB 579
3383 #define OBJ_setct_AuthRevResTBEB OBJ_set_ctype,61L

3385 #define SN_setct_CapReqTBE "setct-CapReqTBE"
3386 #define NID_setct_CapReqTBE 580
3387 #define OBJ_setct_CapReqTBE OBJ_set_ctype,62L

3389 #define SN_setct_CapReqTBEX "setct-CapReqTBEX"
3390 #define NID_setct_CapReqTBEX 581
3391 #define OBJ_setct_CapReqTBEX OBJ_set_ctype,63L

3393 #define SN_setct_CapResTBE "setct-CapResTBE"
3394 #define NID_setct_CapResTBE 582
3395 #define OBJ_setct_CapResTBE OBJ_set_ctype,64L

3397 #define SN_setct_CapRevReqTBE "setct-CapRevReqTBE"
3398 #define NID_setct_CapRevReqTBE 583
3399 #define OBJ_setct_CapRevReqTBE OBJ_set_ctype,65L

3401 #define SN_setct_CapRevReqTBEX "setct-CapRevReqTBEX"
3402 #define NID_setct_CapRevReqTBEX 584
3403 #define OBJ_setct_CapRevReqTBEX OBJ_set_ctype,66L

3405 #define SN_setct_CapRevResTBE "setct-CapRevResTBE"
3406 #define NID_setct_CapRevResTBE 585
3407 #define OBJ_setct_CapRevResTBE OBJ_set_ctype,67L

3409 #define SN_setct_CredReqTBE "setct-CredReqTBE"
3410 #define NID_setct_CredReqTBE 586
3411 #define OBJ_setct_CredReqTBE OBJ_set_ctype,68L

3413 #define SN_setct_CredReqTBEX "setct-CredReqTBEX"
3414 #define NID_setct_CredReqTBEX 587
3415 #define OBJ_setct_CredReqTBEX OBJ_set_ctype,69L

3417 #define SN_setct_CredResTBE "setct-CredResTBE"
3418 #define NID_setct_CredResTBE 588
3419 #define OBJ_setct_CredResTBE OBJ_set_ctype,70L

3421 #define SN_setct_CredRevReqTBE "setct-CredRevReqTBE"
3422 #define NID_setct_CredRevReqTBE 589
3423 #define OBJ_setct_CredRevReqTBE OBJ_set_ctype,71L

3425 #define SN_setct_CredRevReqTBEX "setct-CredRevReqTBEX"
3426 #define NID_setct_CredRevReqTBEX 590
3427 #define OBJ_setct_CredRevReqTBEX OBJ_set_ctype,72L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 53

3429 #define SN_setct_CredRevResTBE "setct-CredRevResTBE"
3430 #define NID_setct_CredRevResTBE 591
3431 #define OBJ_setct_CredRevResTBE OBJ_set_ctype,73L

3433 #define SN_setct_BatchAdminReqTBE "setct-BatchAdminReqTBE"
3434 #define NID_setct_BatchAdminReqTBE 592
3435 #define OBJ_setct_BatchAdminReqTBE OBJ_set_ctype,74L

3437 #define SN_setct_BatchAdminResTBE "setct-BatchAdminResTBE"
3438 #define NID_setct_BatchAdminResTBE 593
3439 #define OBJ_setct_BatchAdminResTBE OBJ_set_ctype,75L

3441 #define SN_setct_RegFormReqTBE "setct-RegFormReqTBE"
3442 #define NID_setct_RegFormReqTBE 594
3443 #define OBJ_setct_RegFormReqTBE OBJ_set_ctype,76L

3445 #define SN_setct_CertReqTBE "setct-CertReqTBE"
3446 #define NID_setct_CertReqTBE 595
3447 #define OBJ_setct_CertReqTBE OBJ_set_ctype,77L

3449 #define SN_setct_CertReqTBEX "setct-CertReqTBEX"
3450 #define NID_setct_CertReqTBEX 596
3451 #define OBJ_setct_CertReqTBEX OBJ_set_ctype,78L

3453 #define SN_setct_CertResTBE "setct-CertResTBE"
3454 #define NID_setct_CertResTBE 597
3455 #define OBJ_setct_CertResTBE OBJ_set_ctype,79L

3457 #define SN_setct_CRLNotificationTBS "setct-CRLNotificationTBS"
3458 #define NID_setct_CRLNotificationTBS 598
3459 #define OBJ_setct_CRLNotificationTBS OBJ_set_ctype,80L

3461 #define SN_setct_CRLNotificationResTBS "setct-CRLNotificationResTBS"
3462 #define NID_setct_CRLNotificationResTBS 599
3463 #define OBJ_setct_CRLNotificationResTBS OBJ_set_ctype,81L

3465 #define SN_setct_BCIDistributionTBS "setct-BCIDistributionTBS"
3466 #define NID_setct_BCIDistributionTBS 600
3467 #define OBJ_setct_BCIDistributionTBS OBJ_set_ctype,82L

3469 #define SN_setext_genCrypt "setext-genCrypt"
3470 #define LN_setext_genCrypt "generic cryptogram"
3471 #define NID_setext_genCrypt 601
3472 #define OBJ_setext_genCrypt OBJ_set_msgExt,1L

3474 #define SN_setext_miAuth "setext-miAuth"
3475 #define LN_setext_miAuth "merchant initiated auth"
3476 #define NID_setext_miAuth 602
3477 #define OBJ_setext_miAuth OBJ_set_msgExt,3L

3479 #define SN_setext_pinSecure "setext-pinSecure"
3480 #define NID_setext_pinSecure 603
3481 #define OBJ_setext_pinSecure OBJ_set_msgExt,4L

3483 #define SN_setext_pinAny "setext-pinAny"
3484 #define NID_setext_pinAny 604
3485 #define OBJ_setext_pinAny OBJ_set_msgExt,5L

3487 #define SN_setext_track2 "setext-track2"
3488 #define NID_setext_track2 605
3489 #define OBJ_setext_track2 OBJ_set_msgExt,7L

3491 #define SN_setext_cv "setext-cv"
3492 #define LN_setext_cv "additional verification"
3493 #define NID_setext_cv 606

new/usr/src/lib/openssl/include/openssl/obj_mac.h 54

3494 #define OBJ_setext_cv OBJ_set_msgExt,8L

3496 #define SN_set_policy_root "set-policy-root"
3497 #define NID_set_policy_root 607
3498 #define OBJ_set_policy_root OBJ_set_policy,0L

3500 #define SN_setCext_hashedRoot "setCext-hashedRoot"
3501 #define NID_setCext_hashedRoot 608
3502 #define OBJ_setCext_hashedRoot OBJ_set_certExt,0L

3504 #define SN_setCext_certType "setCext-certType"
3505 #define NID_setCext_certType 609
3506 #define OBJ_setCext_certType OBJ_set_certExt,1L

3508 #define SN_setCext_merchData "setCext-merchData"
3509 #define NID_setCext_merchData 610
3510 #define OBJ_setCext_merchData OBJ_set_certExt,2L

3512 #define SN_setCext_cCertRequired "setCext-cCertRequired"
3513 #define NID_setCext_cCertRequired 611
3514 #define OBJ_setCext_cCertRequired OBJ_set_certExt,3L

3516 #define SN_setCext_tunneling "setCext-tunneling"
3517 #define NID_setCext_tunneling 612
3518 #define OBJ_setCext_tunneling OBJ_set_certExt,4L

3520 #define SN_setCext_setExt "setCext-setExt"
3521 #define NID_setCext_setExt 613
3522 #define OBJ_setCext_setExt OBJ_set_certExt,5L

3524 #define SN_setCext_setQualf "setCext-setQualf"
3525 #define NID_setCext_setQualf 614
3526 #define OBJ_setCext_setQualf OBJ_set_certExt,6L

3528 #define SN_setCext_PGWYcapabilities "setCext-PGWYcapabilities"
3529 #define NID_setCext_PGWYcapabilities 615
3530 #define OBJ_setCext_PGWYcapabilities OBJ_set_certExt,7L

3532 #define SN_setCext_TokenIdentifier "setCext-TokenIdentifier"
3533 #define NID_setCext_TokenIdentifier 616
3534 #define OBJ_setCext_TokenIdentifier OBJ_set_certExt,8L

3536 #define SN_setCext_Track2Data "setCext-Track2Data"
3537 #define NID_setCext_Track2Data 617
3538 #define OBJ_setCext_Track2Data OBJ_set_certExt,9L

3540 #define SN_setCext_TokenType "setCext-TokenType"
3541 #define NID_setCext_TokenType 618
3542 #define OBJ_setCext_TokenType OBJ_set_certExt,10L

3544 #define SN_setCext_IssuerCapabilities "setCext-IssuerCapabilities"
3545 #define NID_setCext_IssuerCapabilities 619
3546 #define OBJ_setCext_IssuerCapabilities OBJ_set_certExt,11L

3548 #define SN_setAttr_Cert "setAttr-Cert"
3549 #define NID_setAttr_Cert 620
3550 #define OBJ_setAttr_Cert OBJ_set_attr,0L

3552 #define SN_setAttr_PGWYcap "setAttr-PGWYcap"
3553 #define LN_setAttr_PGWYcap "payment gateway capabilities"
3554 #define NID_setAttr_PGWYcap 621
3555 #define OBJ_setAttr_PGWYcap OBJ_set_attr,1L

3557 #define SN_setAttr_TokenType "setAttr-TokenType"
3558 #define NID_setAttr_TokenType 622
3559 #define OBJ_setAttr_TokenType OBJ_set_attr,2L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 55

3561 #define SN_setAttr_IssCap "setAttr-IssCap"
3562 #define LN_setAttr_IssCap "issuer capabilities"
3563 #define NID_setAttr_IssCap 623
3564 #define OBJ_setAttr_IssCap OBJ_set_attr,3L

3566 #define SN_set_rootKeyThumb "set-rootKeyThumb"
3567 #define NID_set_rootKeyThumb 624
3568 #define OBJ_set_rootKeyThumb OBJ_setAttr_Cert,0L

3570 #define SN_set_addPolicy "set-addPolicy"
3571 #define NID_set_addPolicy 625
3572 #define OBJ_set_addPolicy OBJ_setAttr_Cert,1L

3574 #define SN_setAttr_Token_EMV "setAttr-Token-EMV"
3575 #define NID_setAttr_Token_EMV 626
3576 #define OBJ_setAttr_Token_EMV OBJ_setAttr_TokenType,1L

3578 #define SN_setAttr_Token_B0Prime "setAttr-Token-B0Prime"
3579 #define NID_setAttr_Token_B0Prime 627
3580 #define OBJ_setAttr_Token_B0Prime OBJ_setAttr_TokenType,2L

3582 #define SN_setAttr_IssCap_CVM "setAttr-IssCap-CVM"
3583 #define NID_setAttr_IssCap_CVM 628
3584 #define OBJ_setAttr_IssCap_CVM OBJ_setAttr_IssCap,3L

3586 #define SN_setAttr_IssCap_T2 "setAttr-IssCap-T2"
3587 #define NID_setAttr_IssCap_T2 629
3588 #define OBJ_setAttr_IssCap_T2 OBJ_setAttr_IssCap,4L

3590 #define SN_setAttr_IssCap_Sig "setAttr-IssCap-Sig"
3591 #define NID_setAttr_IssCap_Sig 630
3592 #define OBJ_setAttr_IssCap_Sig OBJ_setAttr_IssCap,5L

3594 #define SN_setAttr_GenCryptgrm "setAttr-GenCryptgrm"
3595 #define LN_setAttr_GenCryptgrm "generate cryptogram"
3596 #define NID_setAttr_GenCryptgrm 631
3597 #define OBJ_setAttr_GenCryptgrm OBJ_setAttr_IssCap_CVM,1L

3599 #define SN_setAttr_T2Enc "setAttr-T2Enc"
3600 #define LN_setAttr_T2Enc "encrypted track 2"
3601 #define NID_setAttr_T2Enc 632
3602 #define OBJ_setAttr_T2Enc OBJ_setAttr_IssCap_T2,1L

3604 #define SN_setAttr_T2cleartxt "setAttr-T2cleartxt"
3605 #define LN_setAttr_T2cleartxt "cleartext track 2"
3606 #define NID_setAttr_T2cleartxt 633
3607 #define OBJ_setAttr_T2cleartxt OBJ_setAttr_IssCap_T2,2L

3609 #define SN_setAttr_TokICCsig "setAttr-TokICCsig"
3610 #define LN_setAttr_TokICCsig "ICC or token signature"
3611 #define NID_setAttr_TokICCsig 634
3612 #define OBJ_setAttr_TokICCsig OBJ_setAttr_IssCap_Sig,1L

3614 #define SN_setAttr_SecDevSig "setAttr-SecDevSig"
3615 #define LN_setAttr_SecDevSig "secure device signature"
3616 #define NID_setAttr_SecDevSig 635
3617 #define OBJ_setAttr_SecDevSig OBJ_setAttr_IssCap_Sig,2L

3619 #define SN_set_brand_IATA_ATA "set-brand-IATA-ATA"
3620 #define NID_set_brand_IATA_ATA 636
3621 #define OBJ_set_brand_IATA_ATA OBJ_set_brand,1L

3623 #define SN_set_brand_Diners "set-brand-Diners"
3624 #define NID_set_brand_Diners 637
3625 #define OBJ_set_brand_Diners OBJ_set_brand,30L

new/usr/src/lib/openssl/include/openssl/obj_mac.h 56

3627 #define SN_set_brand_AmericanExpress "set-brand-AmericanExpress"
3628 #define NID_set_brand_AmericanExpress 638
3629 #define OBJ_set_brand_AmericanExpress OBJ_set_brand,34L

3631 #define SN_set_brand_JCB "set-brand-JCB"
3632 #define NID_set_brand_JCB 639
3633 #define OBJ_set_brand_JCB OBJ_set_brand,35L

3635 #define SN_set_brand_Visa "set-brand-Visa"
3636 #define NID_set_brand_Visa 640
3637 #define OBJ_set_brand_Visa OBJ_set_brand,4L

3639 #define SN_set_brand_MasterCard "set-brand-MasterCard"
3640 #define NID_set_brand_MasterCard 641
3641 #define OBJ_set_brand_MasterCard OBJ_set_brand,5L

3643 #define SN_set_brand_Novus "set-brand-Novus"
3644 #define NID_set_brand_Novus 642
3645 #define OBJ_set_brand_Novus OBJ_set_brand,6011L

3647 #define SN_des_cdmf "DES-CDMF"
3648 #define LN_des_cdmf "des-cdmf"
3649 #define NID_des_cdmf 643
3650 #define OBJ_des_cdmf OBJ_rsadsi,3L,10L

3652 #define SN_rsaOAEPEncryptionSET "rsaOAEPEncryptionSET"
3653 #define NID_rsaOAEPEncryptionSET 644
3654 #define OBJ_rsaOAEPEncryptionSET OBJ_rsadsi,1L,1L,6L

3656 #define SN_ipsec3 "Oakley-EC2N-3"
3657 #define LN_ipsec3 "ipsec3"
3658 #define NID_ipsec3 749

3660 #define SN_ipsec4 "Oakley-EC2N-4"
3661 #define LN_ipsec4 "ipsec4"
3662 #define NID_ipsec4 750

3664 #define SN_whirlpool "whirlpool"
3665 #define NID_whirlpool 804
3666 #define OBJ_whirlpool OBJ_iso,0L,10118L,3L,0L,55L

3668 #define SN_cryptopro "cryptopro"
3669 #define NID_cryptopro 805
3670 #define OBJ_cryptopro OBJ_member_body,643L,2L,2L

3672 #define SN_cryptocom "cryptocom"
3673 #define NID_cryptocom 806
3674 #define OBJ_cryptocom OBJ_member_body,643L,2L,9L

3676 #define SN_id_GostR3411_94_with_GostR3410_2001 "id-GostR3411-94-with-Go
3677 #define LN_id_GostR3411_94_with_GostR3410_2001 "GOST R 34.11-94 with GO
3678 #define NID_id_GostR3411_94_with_GostR3410_2001 807
3679 #define OBJ_id_GostR3411_94_with_GostR3410_2001 OBJ_cryptopro,3L

3681 #define SN_id_GostR3411_94_with_GostR3410_94 "id-GostR3411-94-with-Go
3682 #define LN_id_GostR3411_94_with_GostR3410_94 "GOST R 34.11-94 with GO
3683 #define NID_id_GostR3411_94_with_GostR3410_94 808
3684 #define OBJ_id_GostR3411_94_with_GostR3410_94 OBJ_cryptopro,4L

3686 #define SN_id_GostR3411_94 "md_gost94"
3687 #define LN_id_GostR3411_94 "GOST R 34.11-94"
3688 #define NID_id_GostR3411_94 809
3689 #define OBJ_id_GostR3411_94 OBJ_cryptopro,9L

3691 #define SN_id_HMACGostR3411_94 "id-HMACGostR3411-94"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 57

3692 #define LN_id_HMACGostR3411_94 "HMAC GOST 34.11-94"
3693 #define NID_id_HMACGostR3411_94 810
3694 #define OBJ_id_HMACGostR3411_94 OBJ_cryptopro,10L

3696 #define SN_id_GostR3410_2001 "gost2001"
3697 #define LN_id_GostR3410_2001 "GOST R 34.10-2001"
3698 #define NID_id_GostR3410_2001 811
3699 #define OBJ_id_GostR3410_2001 OBJ_cryptopro,19L

3701 #define SN_id_GostR3410_94 "gost94"
3702 #define LN_id_GostR3410_94 "GOST R 34.10-94"
3703 #define NID_id_GostR3410_94 812
3704 #define OBJ_id_GostR3410_94 OBJ_cryptopro,20L

3706 #define SN_id_Gost28147_89 "gost89"
3707 #define LN_id_Gost28147_89 "GOST 28147-89"
3708 #define NID_id_Gost28147_89 813
3709 #define OBJ_id_Gost28147_89 OBJ_cryptopro,21L

3711 #define SN_gost89_cnt "gost89-cnt"
3712 #define NID_gost89_cnt 814

3714 #define SN_id_Gost28147_89_MAC "gost-mac"
3715 #define LN_id_Gost28147_89_MAC "GOST 28147-89 MAC"
3716 #define NID_id_Gost28147_89_MAC 815
3717 #define OBJ_id_Gost28147_89_MAC OBJ_cryptopro,22L

3719 #define SN_id_GostR3411_94_prf "prf-gostr3411-94"
3720 #define LN_id_GostR3411_94_prf "GOST R 34.11-94 PRF"
3721 #define NID_id_GostR3411_94_prf 816
3722 #define OBJ_id_GostR3411_94_prf OBJ_cryptopro,23L

3724 #define SN_id_GostR3410_2001DH "id-GostR3410-2001DH"
3725 #define LN_id_GostR3410_2001DH "GOST R 34.10-2001 DH"
3726 #define NID_id_GostR3410_2001DH 817
3727 #define OBJ_id_GostR3410_2001DH OBJ_cryptopro,98L

3729 #define SN_id_GostR3410_94DH "id-GostR3410-94DH"
3730 #define LN_id_GostR3410_94DH "GOST R 34.10-94 DH"
3731 #define NID_id_GostR3410_94DH 818
3732 #define OBJ_id_GostR3410_94DH OBJ_cryptopro,99L

3734 #define SN_id_Gost28147_89_CryptoPro_KeyMeshing "id-Gost28147-89-CryptoP
3735 #define NID_id_Gost28147_89_CryptoPro_KeyMeshing 819
3736 #define OBJ_id_Gost28147_89_CryptoPro_KeyMeshing OBJ_cryptopro,14

3738 #define SN_id_Gost28147_89_None_KeyMeshing "id-Gost28147-89-None-Ke
3739 #define NID_id_Gost28147_89_None_KeyMeshing 820
3740 #define OBJ_id_Gost28147_89_None_KeyMeshing OBJ_cryptopro,14L,0L

3742 #define SN_id_GostR3411_94_TestParamSet "id-GostR3411-94-TestParamSet"
3743 #define NID_id_GostR3411_94_TestParamSet 821
3744 #define OBJ_id_GostR3411_94_TestParamSet OBJ_cryptopro,30L,0L

3746 #define SN_id_GostR3411_94_CryptoProParamSet "id-GostR3411-94-CryptoP
3747 #define NID_id_GostR3411_94_CryptoProParamSet 822
3748 #define OBJ_id_GostR3411_94_CryptoProParamSet OBJ_cryptopro,30L,1L

3750 #define SN_id_Gost28147_89_TestParamSet "id-Gost28147-89-TestParamSet"
3751 #define NID_id_Gost28147_89_TestParamSet 823
3752 #define OBJ_id_Gost28147_89_TestParamSet OBJ_cryptopro,31L,0L

3754 #define SN_id_Gost28147_89_CryptoPro_A_ParamSet "id-Gost28147-89-CryptoP
3755 #define NID_id_Gost28147_89_CryptoPro_A_ParamSet 824
3756 #define OBJ_id_Gost28147_89_CryptoPro_A_ParamSet OBJ_cryptopro,31

new/usr/src/lib/openssl/include/openssl/obj_mac.h 58

3758 #define SN_id_Gost28147_89_CryptoPro_B_ParamSet "id-Gost28147-89-CryptoP
3759 #define NID_id_Gost28147_89_CryptoPro_B_ParamSet 825
3760 #define OBJ_id_Gost28147_89_CryptoPro_B_ParamSet OBJ_cryptopro,31

3762 #define SN_id_Gost28147_89_CryptoPro_C_ParamSet "id-Gost28147-89-CryptoP
3763 #define NID_id_Gost28147_89_CryptoPro_C_ParamSet 826
3764 #define OBJ_id_Gost28147_89_CryptoPro_C_ParamSet OBJ_cryptopro,31

3766 #define SN_id_Gost28147_89_CryptoPro_D_ParamSet "id-Gost28147-89-CryptoP
3767 #define NID_id_Gost28147_89_CryptoPro_D_ParamSet 827
3768 #define OBJ_id_Gost28147_89_CryptoPro_D_ParamSet OBJ_cryptopro,31

3770 #define SN_id_Gost28147_89_CryptoPro_Oscar_1_1_ParamSet "id-Gost28147-89
3771 #define NID_id_Gost28147_89_CryptoPro_Oscar_1_1_ParamSet 828
3772 #define OBJ_id_Gost28147_89_CryptoPro_Oscar_1_1_ParamSet OBJ_cryp

3774 #define SN_id_Gost28147_89_CryptoPro_Oscar_1_0_ParamSet "id-Gost28147-89
3775 #define NID_id_Gost28147_89_CryptoPro_Oscar_1_0_ParamSet 829
3776 #define OBJ_id_Gost28147_89_CryptoPro_Oscar_1_0_ParamSet OBJ_cryp

3778 #define SN_id_Gost28147_89_CryptoPro_RIC_1_ParamSet "id-Gost28147-89
3779 #define NID_id_Gost28147_89_CryptoPro_RIC_1_ParamSet 830
3780 #define OBJ_id_Gost28147_89_CryptoPro_RIC_1_ParamSet OBJ_cryptopro,31

3782 #define SN_id_GostR3410_94_TestParamSet "id-GostR3410-94-TestParamSet"
3783 #define NID_id_GostR3410_94_TestParamSet 831
3784 #define OBJ_id_GostR3410_94_TestParamSet OBJ_cryptopro,32L,0L

3786 #define SN_id_GostR3410_94_CryptoPro_A_ParamSet "id-GostR3410-94-CryptoP
3787 #define NID_id_GostR3410_94_CryptoPro_A_ParamSet 832
3788 #define OBJ_id_GostR3410_94_CryptoPro_A_ParamSet OBJ_cryptopro,32

3790 #define SN_id_GostR3410_94_CryptoPro_B_ParamSet "id-GostR3410-94-CryptoP
3791 #define NID_id_GostR3410_94_CryptoPro_B_ParamSet 833
3792 #define OBJ_id_GostR3410_94_CryptoPro_B_ParamSet OBJ_cryptopro,32

3794 #define SN_id_GostR3410_94_CryptoPro_C_ParamSet "id-GostR3410-94-CryptoP
3795 #define NID_id_GostR3410_94_CryptoPro_C_ParamSet 834
3796 #define OBJ_id_GostR3410_94_CryptoPro_C_ParamSet OBJ_cryptopro,32

3798 #define SN_id_GostR3410_94_CryptoPro_D_ParamSet "id-GostR3410-94-CryptoP
3799 #define NID_id_GostR3410_94_CryptoPro_D_ParamSet 835
3800 #define OBJ_id_GostR3410_94_CryptoPro_D_ParamSet OBJ_cryptopro,32

3802 #define SN_id_GostR3410_94_CryptoPro_XchA_ParamSet "id-GostR3410-94
3803 #define NID_id_GostR3410_94_CryptoPro_XchA_ParamSet 836
3804 #define OBJ_id_GostR3410_94_CryptoPro_XchA_ParamSet OBJ_cryptopro,33

3806 #define SN_id_GostR3410_94_CryptoPro_XchB_ParamSet "id-GostR3410-94
3807 #define NID_id_GostR3410_94_CryptoPro_XchB_ParamSet 837
3808 #define OBJ_id_GostR3410_94_CryptoPro_XchB_ParamSet OBJ_cryptopro,33

3810 #define SN_id_GostR3410_94_CryptoPro_XchC_ParamSet "id-GostR3410-94
3811 #define NID_id_GostR3410_94_CryptoPro_XchC_ParamSet 838
3812 #define OBJ_id_GostR3410_94_CryptoPro_XchC_ParamSet OBJ_cryptopro,33

3814 #define SN_id_GostR3410_2001_TestParamSet "id-GostR3410-2001-TestP
3815 #define NID_id_GostR3410_2001_TestParamSet 839
3816 #define OBJ_id_GostR3410_2001_TestParamSet OBJ_cryptopro,35L,0L

3818 #define SN_id_GostR3410_2001_CryptoPro_A_ParamSet "id-GostR3410-20
3819 #define NID_id_GostR3410_2001_CryptoPro_A_ParamSet 840
3820 #define OBJ_id_GostR3410_2001_CryptoPro_A_ParamSet OBJ_cryptopro,35

3822 #define SN_id_GostR3410_2001_CryptoPro_B_ParamSet "id-GostR3410-20
3823 #define NID_id_GostR3410_2001_CryptoPro_B_ParamSet 841

new/usr/src/lib/openssl/include/openssl/obj_mac.h 59

3824 #define OBJ_id_GostR3410_2001_CryptoPro_B_ParamSet OBJ_cryptopro,35

3826 #define SN_id_GostR3410_2001_CryptoPro_C_ParamSet "id-GostR3410-20
3827 #define NID_id_GostR3410_2001_CryptoPro_C_ParamSet 842
3828 #define OBJ_id_GostR3410_2001_CryptoPro_C_ParamSet OBJ_cryptopro,35

3830 #define SN_id_GostR3410_2001_CryptoPro_XchA_ParamSet "id-GostR3410-20
3831 #define NID_id_GostR3410_2001_CryptoPro_XchA_ParamSet 843
3832 #define OBJ_id_GostR3410_2001_CryptoPro_XchA_ParamSet OBJ_cryptopro,36

3834 #define SN_id_GostR3410_2001_CryptoPro_XchB_ParamSet "id-GostR3410-20
3835 #define NID_id_GostR3410_2001_CryptoPro_XchB_ParamSet 844
3836 #define OBJ_id_GostR3410_2001_CryptoPro_XchB_ParamSet OBJ_cryptopro,36

3838 #define SN_id_GostR3410_94_a "id-GostR3410-94-a"
3839 #define NID_id_GostR3410_94_a 845
3840 #define OBJ_id_GostR3410_94_a OBJ_id_GostR3410_94,1L

3842 #define SN_id_GostR3410_94_aBis "id-GostR3410-94-aBis"
3843 #define NID_id_GostR3410_94_aBis 846
3844 #define OBJ_id_GostR3410_94_aBis OBJ_id_GostR3410_94,2L

3846 #define SN_id_GostR3410_94_b "id-GostR3410-94-b"
3847 #define NID_id_GostR3410_94_b 847
3848 #define OBJ_id_GostR3410_94_b OBJ_id_GostR3410_94,3L

3850 #define SN_id_GostR3410_94_bBis "id-GostR3410-94-bBis"
3851 #define NID_id_GostR3410_94_bBis 848
3852 #define OBJ_id_GostR3410_94_bBis OBJ_id_GostR3410_94,4L

3854 #define SN_id_Gost28147_89_cc "id-Gost28147-89-cc"
3855 #define LN_id_Gost28147_89_cc "GOST 28147-89 Cryptocom ParamSet"
3856 #define NID_id_Gost28147_89_cc 849
3857 #define OBJ_id_Gost28147_89_cc OBJ_cryptocom,1L,6L,1L

3859 #define SN_id_GostR3410_94_cc "gost94cc"
3860 #define LN_id_GostR3410_94_cc "GOST 34.10-94 Cryptocom"
3861 #define NID_id_GostR3410_94_cc 850
3862 #define OBJ_id_GostR3410_94_cc OBJ_cryptocom,1L,5L,3L

3864 #define SN_id_GostR3410_2001_cc "gost2001cc"
3865 #define LN_id_GostR3410_2001_cc "GOST 34.10-2001 Cryptocom"
3866 #define NID_id_GostR3410_2001_cc 851
3867 #define OBJ_id_GostR3410_2001_cc OBJ_cryptocom,1L,5L,4L

3869 #define SN_id_GostR3411_94_with_GostR3410_94_cc "id-GostR3411-94-with-Go
3870 #define LN_id_GostR3411_94_with_GostR3410_94_cc "GOST R 34.11-94 with GO
3871 #define NID_id_GostR3411_94_with_GostR3410_94_cc 852
3872 #define OBJ_id_GostR3411_94_with_GostR3410_94_cc OBJ_cryptocom,1L

3874 #define SN_id_GostR3411_94_with_GostR3410_2001_cc "id-GostR3411-94
3875 #define LN_id_GostR3411_94_with_GostR3410_2001_cc "GOST R 34.11-94
3876 #define NID_id_GostR3411_94_with_GostR3410_2001_cc 853
3877 #define OBJ_id_GostR3411_94_with_GostR3410_2001_cc OBJ_cryptocom,1L

3879 #define SN_id_GostR3410_2001_ParamSet_cc "id-GostR3410-2001-Param
3880 #define LN_id_GostR3410_2001_ParamSet_cc "GOST R 3410-2001 Parame
3881 #define NID_id_GostR3410_2001_ParamSet_cc 854
3882 #define OBJ_id_GostR3410_2001_ParamSet_cc OBJ_cryptocom,1L,8L,1L

3884 #define SN_camellia_128_cbc "CAMELLIA-128-CBC"
3885 #define LN_camellia_128_cbc "camellia-128-cbc"
3886 #define NID_camellia_128_cbc 751
3887 #define OBJ_camellia_128_cbc 1L,2L,392L,200011L,61L,1L,1L,1L,2L

3889 #define SN_camellia_192_cbc "CAMELLIA-192-CBC"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 60

3890 #define LN_camellia_192_cbc "camellia-192-cbc"
3891 #define NID_camellia_192_cbc 752
3892 #define OBJ_camellia_192_cbc 1L,2L,392L,200011L,61L,1L,1L,1L,3L

3894 #define SN_camellia_256_cbc "CAMELLIA-256-CBC"
3895 #define LN_camellia_256_cbc "camellia-256-cbc"
3896 #define NID_camellia_256_cbc 753
3897 #define OBJ_camellia_256_cbc 1L,2L,392L,200011L,61L,1L,1L,1L,4L

3899 #define SN_id_camellia128_wrap "id-camellia128-wrap"
3900 #define NID_id_camellia128_wrap 907
3901 #define OBJ_id_camellia128_wrap 1L,2L,392L,200011L,61L,1L,1L,3L,2L

3903 #define SN_id_camellia192_wrap "id-camellia192-wrap"
3904 #define NID_id_camellia192_wrap 908
3905 #define OBJ_id_camellia192_wrap 1L,2L,392L,200011L,61L,1L,1L,3L,3L

3907 #define SN_id_camellia256_wrap "id-camellia256-wrap"
3908 #define NID_id_camellia256_wrap 909
3909 #define OBJ_id_camellia256_wrap 1L,2L,392L,200011L,61L,1L,1L,3L,4L

3911 #define OBJ_ntt_ds 0L,3L,4401L,5L

3913 #define OBJ_camellia OBJ_ntt_ds,3L,1L,9L

3915 #define SN_camellia_128_ecb "CAMELLIA-128-ECB"
3916 #define LN_camellia_128_ecb "camellia-128-ecb"
3917 #define NID_camellia_128_ecb 754
3918 #define OBJ_camellia_128_ecb OBJ_camellia,1L

3920 #define SN_camellia_128_ofb128 "CAMELLIA-128-OFB"
3921 #define LN_camellia_128_ofb128 "camellia-128-ofb"
3922 #define NID_camellia_128_ofb128 766
3923 #define OBJ_camellia_128_ofb128 OBJ_camellia,3L

3925 #define SN_camellia_128_cfb128 "CAMELLIA-128-CFB"
3926 #define LN_camellia_128_cfb128 "camellia-128-cfb"
3927 #define NID_camellia_128_cfb128 757
3928 #define OBJ_camellia_128_cfb128 OBJ_camellia,4L

3930 #define SN_camellia_192_ecb "CAMELLIA-192-ECB"
3931 #define LN_camellia_192_ecb "camellia-192-ecb"
3932 #define NID_camellia_192_ecb 755
3933 #define OBJ_camellia_192_ecb OBJ_camellia,21L

3935 #define SN_camellia_192_ofb128 "CAMELLIA-192-OFB"
3936 #define LN_camellia_192_ofb128 "camellia-192-ofb"
3937 #define NID_camellia_192_ofb128 767
3938 #define OBJ_camellia_192_ofb128 OBJ_camellia,23L

3940 #define SN_camellia_192_cfb128 "CAMELLIA-192-CFB"
3941 #define LN_camellia_192_cfb128 "camellia-192-cfb"
3942 #define NID_camellia_192_cfb128 758
3943 #define OBJ_camellia_192_cfb128 OBJ_camellia,24L

3945 #define SN_camellia_256_ecb "CAMELLIA-256-ECB"
3946 #define LN_camellia_256_ecb "camellia-256-ecb"
3947 #define NID_camellia_256_ecb 756
3948 #define OBJ_camellia_256_ecb OBJ_camellia,41L

3950 #define SN_camellia_256_ofb128 "CAMELLIA-256-OFB"
3951 #define LN_camellia_256_ofb128 "camellia-256-ofb"
3952 #define NID_camellia_256_ofb128 768
3953 #define OBJ_camellia_256_ofb128 OBJ_camellia,43L

3955 #define SN_camellia_256_cfb128 "CAMELLIA-256-CFB"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 61

3956 #define LN_camellia_256_cfb128 "camellia-256-cfb"
3957 #define NID_camellia_256_cfb128 759
3958 #define OBJ_camellia_256_cfb128 OBJ_camellia,44L

3960 #define SN_camellia_128_cfb1 "CAMELLIA-128-CFB1"
3961 #define LN_camellia_128_cfb1 "camellia-128-cfb1"
3962 #define NID_camellia_128_cfb1 760

3964 #define SN_camellia_192_cfb1 "CAMELLIA-192-CFB1"
3965 #define LN_camellia_192_cfb1 "camellia-192-cfb1"
3966 #define NID_camellia_192_cfb1 761

3968 #define SN_camellia_256_cfb1 "CAMELLIA-256-CFB1"
3969 #define LN_camellia_256_cfb1 "camellia-256-cfb1"
3970 #define NID_camellia_256_cfb1 762

3972 #define SN_camellia_128_cfb8 "CAMELLIA-128-CFB8"
3973 #define LN_camellia_128_cfb8 "camellia-128-cfb8"
3974 #define NID_camellia_128_cfb8 763

3976 #define SN_camellia_192_cfb8 "CAMELLIA-192-CFB8"
3977 #define LN_camellia_192_cfb8 "camellia-192-cfb8"
3978 #define NID_camellia_192_cfb8 764

3980 #define SN_camellia_256_cfb8 "CAMELLIA-256-CFB8"
3981 #define LN_camellia_256_cfb8 "camellia-256-cfb8"
3982 #define NID_camellia_256_cfb8 765

3984 #define SN_kisa "KISA"
3985 #define LN_kisa "kisa"
3986 #define NID_kisa 773
3987 #define OBJ_kisa OBJ_member_body,410L,200004L

3989 #define SN_seed_ecb "SEED-ECB"
3990 #define LN_seed_ecb "seed-ecb"
3991 #define NID_seed_ecb 776
3992 #define OBJ_seed_ecb OBJ_kisa,1L,3L

3994 #define SN_seed_cbc "SEED-CBC"
3995 #define LN_seed_cbc "seed-cbc"
3996 #define NID_seed_cbc 777
3997 #define OBJ_seed_cbc OBJ_kisa,1L,4L

3999 #define SN_seed_cfb128 "SEED-CFB"
4000 #define LN_seed_cfb128 "seed-cfb"
4001 #define NID_seed_cfb128 779
4002 #define OBJ_seed_cfb128 OBJ_kisa,1L,5L

4004 #define SN_seed_ofb128 "SEED-OFB"
4005 #define LN_seed_ofb128 "seed-ofb"
4006 #define NID_seed_ofb128 778
4007 #define OBJ_seed_ofb128 OBJ_kisa,1L,6L

4009 #define SN_hmac "HMAC"
4010 #define LN_hmac "hmac"
4011 #define NID_hmac 855

4013 #define SN_cmac "CMAC"
4014 #define LN_cmac "cmac"
4015 #define NID_cmac 894

4017 #define SN_rc4_hmac_md5 "RC4-HMAC-MD5"
4018 #define LN_rc4_hmac_md5 "rc4-hmac-md5"
4019 #define NID_rc4_hmac_md5 915

4021 #define SN_aes_128_cbc_hmac_sha1 "AES-128-CBC-HMAC-SHA1"

new/usr/src/lib/openssl/include/openssl/obj_mac.h 62

4022 #define LN_aes_128_cbc_hmac_sha1 "aes-128-cbc-hmac-sha1"
4023 #define NID_aes_128_cbc_hmac_sha1 916

4025 #define SN_aes_192_cbc_hmac_sha1 "AES-192-CBC-HMAC-SHA1"
4026 #define LN_aes_192_cbc_hmac_sha1 "aes-192-cbc-hmac-sha1"
4027 #define NID_aes_192_cbc_hmac_sha1 917

4029 #define SN_aes_256_cbc_hmac_sha1 "AES-256-CBC-HMAC-SHA1"
4030 #define LN_aes_256_cbc_hmac_sha1 "aes-256-cbc-hmac-sha1"
4031 #define NID_aes_256_cbc_hmac_sha1 918

new/usr/src/lib/openssl/include/openssl/objects.h 1

**
 36641 Fri May 30 18:31:20 2014
new/usr/src/lib/openssl/include/openssl/objects.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/objects/objects.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_OBJECTS_H
60 #define HEADER_OBJECTS_H

new/usr/src/lib/openssl/include/openssl/objects.h 2

62 #define USE_OBJ_MAC

64 #ifdef USE_OBJ_MAC
65 #include <openssl/obj_mac.h>
66 #else
67 #define SN_undef "UNDEF"
68 #define LN_undef "undefined"
69 #define NID_undef 0
70 #define OBJ_undef 0L

72 #define SN_Algorithm "Algorithm"
73 #define LN_algorithm "algorithm"
74 #define NID_algorithm 38
75 #define OBJ_algorithm 1L,3L,14L,3L,2L

77 #define LN_rsadsi "rsadsi"
78 #define NID_rsadsi 1
79 #define OBJ_rsadsi 1L,2L,840L,113549L

81 #define LN_pkcs "pkcs"
82 #define NID_pkcs 2
83 #define OBJ_pkcs OBJ_rsadsi,1L

85 #define SN_md2 "MD2"
86 #define LN_md2 "md2"
87 #define NID_md2 3
88 #define OBJ_md2 OBJ_rsadsi,2L,2L

90 #define SN_md5 "MD5"
91 #define LN_md5 "md5"
92 #define NID_md5 4
93 #define OBJ_md5 OBJ_rsadsi,2L,5L

95 #define SN_rc4 "RC4"
96 #define LN_rc4 "rc4"
97 #define NID_rc4 5
98 #define OBJ_rc4 OBJ_rsadsi,3L,4L

100 #define LN_rsaEncryption "rsaEncryption"
101 #define NID_rsaEncryption 6
102 #define OBJ_rsaEncryption OBJ_pkcs,1L,1L

104 #define SN_md2WithRSAEncryption "RSA-MD2"
105 #define LN_md2WithRSAEncryption "md2WithRSAEncryption"
106 #define NID_md2WithRSAEncryption 7
107 #define OBJ_md2WithRSAEncryption OBJ_pkcs,1L,2L

109 #define SN_md5WithRSAEncryption "RSA-MD5"
110 #define LN_md5WithRSAEncryption "md5WithRSAEncryption"
111 #define NID_md5WithRSAEncryption 8
112 #define OBJ_md5WithRSAEncryption OBJ_pkcs,1L,4L

114 #define SN_pbeWithMD2AndDES_CBC "PBE-MD2-DES"
115 #define LN_pbeWithMD2AndDES_CBC "pbeWithMD2AndDES-CBC"
116 #define NID_pbeWithMD2AndDES_CBC 9
117 #define OBJ_pbeWithMD2AndDES_CBC OBJ_pkcs,5L,1L

119 #define SN_pbeWithMD5AndDES_CBC "PBE-MD5-DES"
120 #define LN_pbeWithMD5AndDES_CBC "pbeWithMD5AndDES-CBC"
121 #define NID_pbeWithMD5AndDES_CBC 10
122 #define OBJ_pbeWithMD5AndDES_CBC OBJ_pkcs,5L,3L

124 #define LN_X500 "X500"
125 #define NID_X500 11
126 #define OBJ_X500 2L,5L

new/usr/src/lib/openssl/include/openssl/objects.h 3

128 #define LN_X509 "X509"
129 #define NID_X509 12
130 #define OBJ_X509 OBJ_X500,4L

132 #define SN_commonName "CN"
133 #define LN_commonName "commonName"
134 #define NID_commonName 13
135 #define OBJ_commonName OBJ_X509,3L

137 #define SN_countryName "C"
138 #define LN_countryName "countryName"
139 #define NID_countryName 14
140 #define OBJ_countryName OBJ_X509,6L

142 #define SN_localityName "L"
143 #define LN_localityName "localityName"
144 #define NID_localityName 15
145 #define OBJ_localityName OBJ_X509,7L

147 /* Postal Address? PA */

149 /* should be "ST" (rfc1327) but MS uses ’S’ */
150 #define SN_stateOrProvinceName "ST"
151 #define LN_stateOrProvinceName "stateOrProvinceName"
152 #define NID_stateOrProvinceName 16
153 #define OBJ_stateOrProvinceName OBJ_X509,8L

155 #define SN_organizationName "O"
156 #define LN_organizationName "organizationName"
157 #define NID_organizationName 17
158 #define OBJ_organizationName OBJ_X509,10L

160 #define SN_organizationalUnitName "OU"
161 #define LN_organizationalUnitName "organizationalUnitName"
162 #define NID_organizationalUnitName 18
163 #define OBJ_organizationalUnitName OBJ_X509,11L

165 #define SN_rsa "RSA"
166 #define LN_rsa "rsa"
167 #define NID_rsa 19
168 #define OBJ_rsa OBJ_X500,8L,1L,1L

170 #define LN_pkcs7 "pkcs7"
171 #define NID_pkcs7 20
172 #define OBJ_pkcs7 OBJ_pkcs,7L

174 #define LN_pkcs7_data "pkcs7-data"
175 #define NID_pkcs7_data 21
176 #define OBJ_pkcs7_data OBJ_pkcs7,1L

178 #define LN_pkcs7_signed "pkcs7-signedData"
179 #define NID_pkcs7_signed 22
180 #define OBJ_pkcs7_signed OBJ_pkcs7,2L

182 #define LN_pkcs7_enveloped "pkcs7-envelopedData"
183 #define NID_pkcs7_enveloped 23
184 #define OBJ_pkcs7_enveloped OBJ_pkcs7,3L

186 #define LN_pkcs7_signedAndEnveloped "pkcs7-signedAndEnvelopedData"
187 #define NID_pkcs7_signedAndEnveloped 24
188 #define OBJ_pkcs7_signedAndEnveloped OBJ_pkcs7,4L

190 #define LN_pkcs7_digest "pkcs7-digestData"
191 #define NID_pkcs7_digest 25
192 #define OBJ_pkcs7_digest OBJ_pkcs7,5L

new/usr/src/lib/openssl/include/openssl/objects.h 4

194 #define LN_pkcs7_encrypted "pkcs7-encryptedData"
195 #define NID_pkcs7_encrypted 26
196 #define OBJ_pkcs7_encrypted OBJ_pkcs7,6L

198 #define LN_pkcs3 "pkcs3"
199 #define NID_pkcs3 27
200 #define OBJ_pkcs3 OBJ_pkcs,3L

202 #define LN_dhKeyAgreement "dhKeyAgreement"
203 #define NID_dhKeyAgreement 28
204 #define OBJ_dhKeyAgreement OBJ_pkcs3,1L

206 #define SN_des_ecb "DES-ECB"
207 #define LN_des_ecb "des-ecb"
208 #define NID_des_ecb 29
209 #define OBJ_des_ecb OBJ_algorithm,6L

211 #define SN_des_cfb64 "DES-CFB"
212 #define LN_des_cfb64 "des-cfb"
213 #define NID_des_cfb64 30
214 /* IV + num */
215 #define OBJ_des_cfb64 OBJ_algorithm,9L

217 #define SN_des_cbc "DES-CBC"
218 #define LN_des_cbc "des-cbc"
219 #define NID_des_cbc 31
220 /* IV */
221 #define OBJ_des_cbc OBJ_algorithm,7L

223 #define SN_des_ede "DES-EDE"
224 #define LN_des_ede "des-ede"
225 #define NID_des_ede 32
226 /* ?? */
227 #define OBJ_des_ede OBJ_algorithm,17L

229 #define SN_des_ede3 "DES-EDE3"
230 #define LN_des_ede3 "des-ede3"
231 #define NID_des_ede3 33

233 #define SN_idea_cbc "IDEA-CBC"
234 #define LN_idea_cbc "idea-cbc"
235 #define NID_idea_cbc 34
236 #define OBJ_idea_cbc 1L,3L,6L,1L,4L,1L,188L,7L,1L,1L,2L

238 #define SN_idea_cfb64 "IDEA-CFB"
239 #define LN_idea_cfb64 "idea-cfb"
240 #define NID_idea_cfb64 35

242 #define SN_idea_ecb "IDEA-ECB"
243 #define LN_idea_ecb "idea-ecb"
244 #define NID_idea_ecb 36

246 #define SN_rc2_cbc "RC2-CBC"
247 #define LN_rc2_cbc "rc2-cbc"
248 #define NID_rc2_cbc 37
249 #define OBJ_rc2_cbc OBJ_rsadsi,3L,2L

251 #define SN_rc2_ecb "RC2-ECB"
252 #define LN_rc2_ecb "rc2-ecb"
253 #define NID_rc2_ecb 38

255 #define SN_rc2_cfb64 "RC2-CFB"
256 #define LN_rc2_cfb64 "rc2-cfb"
257 #define NID_rc2_cfb64 39

259 #define SN_rc2_ofb64 "RC2-OFB"

new/usr/src/lib/openssl/include/openssl/objects.h 5

260 #define LN_rc2_ofb64 "rc2-ofb"
261 #define NID_rc2_ofb64 40

263 #define SN_sha "SHA"
264 #define LN_sha "sha"
265 #define NID_sha 41
266 #define OBJ_sha OBJ_algorithm,18L

268 #define SN_shaWithRSAEncryption "RSA-SHA"
269 #define LN_shaWithRSAEncryption "shaWithRSAEncryption"
270 #define NID_shaWithRSAEncryption 42
271 #define OBJ_shaWithRSAEncryption OBJ_algorithm,15L

273 #define SN_des_ede_cbc "DES-EDE-CBC"
274 #define LN_des_ede_cbc "des-ede-cbc"
275 #define NID_des_ede_cbc 43

277 #define SN_des_ede3_cbc "DES-EDE3-CBC"
278 #define LN_des_ede3_cbc "des-ede3-cbc"
279 #define NID_des_ede3_cbc 44
280 #define OBJ_des_ede3_cbc OBJ_rsadsi,3L,7L

282 #define SN_des_ofb64 "DES-OFB"
283 #define LN_des_ofb64 "des-ofb"
284 #define NID_des_ofb64 45
285 #define OBJ_des_ofb64 OBJ_algorithm,8L

287 #define SN_idea_ofb64 "IDEA-OFB"
288 #define LN_idea_ofb64 "idea-ofb"
289 #define NID_idea_ofb64 46

291 #define LN_pkcs9 "pkcs9"
292 #define NID_pkcs9 47
293 #define OBJ_pkcs9 OBJ_pkcs,9L

295 #define SN_pkcs9_emailAddress "Email"
296 #define LN_pkcs9_emailAddress "emailAddress"
297 #define NID_pkcs9_emailAddress 48
298 #define OBJ_pkcs9_emailAddress OBJ_pkcs9,1L

300 #define LN_pkcs9_unstructuredName "unstructuredName"
301 #define NID_pkcs9_unstructuredName 49
302 #define OBJ_pkcs9_unstructuredName OBJ_pkcs9,2L

304 #define LN_pkcs9_contentType "contentType"
305 #define NID_pkcs9_contentType 50
306 #define OBJ_pkcs9_contentType OBJ_pkcs9,3L

308 #define LN_pkcs9_messageDigest "messageDigest"
309 #define NID_pkcs9_messageDigest 51
310 #define OBJ_pkcs9_messageDigest OBJ_pkcs9,4L

312 #define LN_pkcs9_signingTime "signingTime"
313 #define NID_pkcs9_signingTime 52
314 #define OBJ_pkcs9_signingTime OBJ_pkcs9,5L

316 #define LN_pkcs9_countersignature "countersignature"
317 #define NID_pkcs9_countersignature 53
318 #define OBJ_pkcs9_countersignature OBJ_pkcs9,6L

320 #define LN_pkcs9_challengePassword "challengePassword"
321 #define NID_pkcs9_challengePassword 54
322 #define OBJ_pkcs9_challengePassword OBJ_pkcs9,7L

324 #define LN_pkcs9_unstructuredAddress "unstructuredAddress"
325 #define NID_pkcs9_unstructuredAddress 55

new/usr/src/lib/openssl/include/openssl/objects.h 6

326 #define OBJ_pkcs9_unstructuredAddress OBJ_pkcs9,8L

328 #define LN_pkcs9_extCertAttributes "extendedCertificateAttributes"
329 #define NID_pkcs9_extCertAttributes 56
330 #define OBJ_pkcs9_extCertAttributes OBJ_pkcs9,9L

332 #define SN_netscape "Netscape"
333 #define LN_netscape "Netscape Communications Corp."
334 #define NID_netscape 57
335 #define OBJ_netscape 2L,16L,840L,1L,113730L

337 #define SN_netscape_cert_extension "nsCertExt"
338 #define LN_netscape_cert_extension "Netscape Certificate Extension"
339 #define NID_netscape_cert_extension 58
340 #define OBJ_netscape_cert_extension OBJ_netscape,1L

342 #define SN_netscape_data_type "nsDataType"
343 #define LN_netscape_data_type "Netscape Data Type"
344 #define NID_netscape_data_type 59
345 #define OBJ_netscape_data_type OBJ_netscape,2L

347 #define SN_des_ede_cfb64 "DES-EDE-CFB"
348 #define LN_des_ede_cfb64 "des-ede-cfb"
349 #define NID_des_ede_cfb64 60

351 #define SN_des_ede3_cfb64 "DES-EDE3-CFB"
352 #define LN_des_ede3_cfb64 "des-ede3-cfb"
353 #define NID_des_ede3_cfb64 61

355 #define SN_des_ede_ofb64 "DES-EDE-OFB"
356 #define LN_des_ede_ofb64 "des-ede-ofb"
357 #define NID_des_ede_ofb64 62

359 #define SN_des_ede3_ofb64 "DES-EDE3-OFB"
360 #define LN_des_ede3_ofb64 "des-ede3-ofb"
361 #define NID_des_ede3_ofb64 63

363 /* I’m not sure about the object ID */
364 #define SN_sha1 "SHA1"
365 #define LN_sha1 "sha1"
366 #define NID_sha1 64
367 #define OBJ_sha1 OBJ_algorithm,26L
368 /* 28 Jun 1996 - eay */
369 /* #define OBJ_sha1 1L,3L,14L,2L,26L,05L <- wrong */

371 #define SN_sha1WithRSAEncryption "RSA-SHA1"
372 #define LN_sha1WithRSAEncryption "sha1WithRSAEncryption"
373 #define NID_sha1WithRSAEncryption 65
374 #define OBJ_sha1WithRSAEncryption OBJ_pkcs,1L,5L

376 #define SN_dsaWithSHA "DSA-SHA"
377 #define LN_dsaWithSHA "dsaWithSHA"
378 #define NID_dsaWithSHA 66
379 #define OBJ_dsaWithSHA OBJ_algorithm,13L

381 #define SN_dsa_2 "DSA-old"
382 #define LN_dsa_2 "dsaEncryption-old"
383 #define NID_dsa_2 67
384 #define OBJ_dsa_2 OBJ_algorithm,12L

386 /* proposed by microsoft to RSA */
387 #define SN_pbeWithSHA1AndRC2_CBC "PBE-SHA1-RC2-64"
388 #define LN_pbeWithSHA1AndRC2_CBC "pbeWithSHA1AndRC2-CBC"
389 #define NID_pbeWithSHA1AndRC2_CBC 68
390 #define OBJ_pbeWithSHA1AndRC2_CBC OBJ_pkcs,5L,11L

new/usr/src/lib/openssl/include/openssl/objects.h 7

392 /* proposed by microsoft to RSA as pbeWithSHA1AndRC4: it is now
393 * defined explicitly in PKCS#5 v2.0 as id-PBKDF2 which is something
394 * completely different.
395 */
396 #define LN_id_pbkdf2 "PBKDF2"
397 #define NID_id_pbkdf2 69
398 #define OBJ_id_pbkdf2 OBJ_pkcs,5L,12L

400 #define SN_dsaWithSHA1_2 "DSA-SHA1-old"
401 #define LN_dsaWithSHA1_2 "dsaWithSHA1-old"
402 #define NID_dsaWithSHA1_2 70
403 /* Got this one from ’sdn706r20.pdf’ which is actually an NSA document :-) */
404 #define OBJ_dsaWithSHA1_2 OBJ_algorithm,27L

406 #define SN_netscape_cert_type "nsCertType"
407 #define LN_netscape_cert_type "Netscape Cert Type"
408 #define NID_netscape_cert_type 71
409 #define OBJ_netscape_cert_type OBJ_netscape_cert_extension,1L

411 #define SN_netscape_base_url "nsBaseUrl"
412 #define LN_netscape_base_url "Netscape Base Url"
413 #define NID_netscape_base_url 72
414 #define OBJ_netscape_base_url OBJ_netscape_cert_extension,2L

416 #define SN_netscape_revocation_url "nsRevocationUrl"
417 #define LN_netscape_revocation_url "Netscape Revocation Url"
418 #define NID_netscape_revocation_url 73
419 #define OBJ_netscape_revocation_url OBJ_netscape_cert_extension,3L

421 #define SN_netscape_ca_revocation_url "nsCaRevocationUrl"
422 #define LN_netscape_ca_revocation_url "Netscape CA Revocation Url"
423 #define NID_netscape_ca_revocation_url 74
424 #define OBJ_netscape_ca_revocation_url OBJ_netscape_cert_extension,4L

426 #define SN_netscape_renewal_url "nsRenewalUrl"
427 #define LN_netscape_renewal_url "Netscape Renewal Url"
428 #define NID_netscape_renewal_url 75
429 #define OBJ_netscape_renewal_url OBJ_netscape_cert_extension,7L

431 #define SN_netscape_ca_policy_url "nsCaPolicyUrl"
432 #define LN_netscape_ca_policy_url "Netscape CA Policy Url"
433 #define NID_netscape_ca_policy_url 76
434 #define OBJ_netscape_ca_policy_url OBJ_netscape_cert_extension,8L

436 #define SN_netscape_ssl_server_name "nsSslServerName"
437 #define LN_netscape_ssl_server_name "Netscape SSL Server Name"
438 #define NID_netscape_ssl_server_name 77
439 #define OBJ_netscape_ssl_server_name OBJ_netscape_cert_extension,12L

441 #define SN_netscape_comment "nsComment"
442 #define LN_netscape_comment "Netscape Comment"
443 #define NID_netscape_comment 78
444 #define OBJ_netscape_comment OBJ_netscape_cert_extension,13L

446 #define SN_netscape_cert_sequence "nsCertSequence"
447 #define LN_netscape_cert_sequence "Netscape Certificate Sequence"
448 #define NID_netscape_cert_sequence 79
449 #define OBJ_netscape_cert_sequence OBJ_netscape_data_type,5L

451 #define SN_desx_cbc "DESX-CBC"
452 #define LN_desx_cbc "desx-cbc"
453 #define NID_desx_cbc 80

455 #define SN_id_ce "id-ce"
456 #define NID_id_ce 81
457 #define OBJ_id_ce 2L,5L,29L

new/usr/src/lib/openssl/include/openssl/objects.h 8

459 #define SN_subject_key_identifier "subjectKeyIdentifier"
460 #define LN_subject_key_identifier "X509v3 Subject Key Identifier"
461 #define NID_subject_key_identifier 82
462 #define OBJ_subject_key_identifier OBJ_id_ce,14L

464 #define SN_key_usage "keyUsage"
465 #define LN_key_usage "X509v3 Key Usage"
466 #define NID_key_usage 83
467 #define OBJ_key_usage OBJ_id_ce,15L

469 #define SN_private_key_usage_period "privateKeyUsagePeriod"
470 #define LN_private_key_usage_period "X509v3 Private Key Usage Period"
471 #define NID_private_key_usage_period 84
472 #define OBJ_private_key_usage_period OBJ_id_ce,16L

474 #define SN_subject_alt_name "subjectAltName"
475 #define LN_subject_alt_name "X509v3 Subject Alternative Name"
476 #define NID_subject_alt_name 85
477 #define OBJ_subject_alt_name OBJ_id_ce,17L

479 #define SN_issuer_alt_name "issuerAltName"
480 #define LN_issuer_alt_name "X509v3 Issuer Alternative Name"
481 #define NID_issuer_alt_name 86
482 #define OBJ_issuer_alt_name OBJ_id_ce,18L

484 #define SN_basic_constraints "basicConstraints"
485 #define LN_basic_constraints "X509v3 Basic Constraints"
486 #define NID_basic_constraints 87
487 #define OBJ_basic_constraints OBJ_id_ce,19L

489 #define SN_crl_number "crlNumber"
490 #define LN_crl_number "X509v3 CRL Number"
491 #define NID_crl_number 88
492 #define OBJ_crl_number OBJ_id_ce,20L

494 #define SN_certificate_policies "certificatePolicies"
495 #define LN_certificate_policies "X509v3 Certificate Policies"
496 #define NID_certificate_policies 89
497 #define OBJ_certificate_policies OBJ_id_ce,32L

499 #define SN_authority_key_identifier "authorityKeyIdentifier"
500 #define LN_authority_key_identifier "X509v3 Authority Key Identifier"
501 #define NID_authority_key_identifier 90
502 #define OBJ_authority_key_identifier OBJ_id_ce,35L

504 #define SN_bf_cbc "BF-CBC"
505 #define LN_bf_cbc "bf-cbc"
506 #define NID_bf_cbc 91
507 #define OBJ_bf_cbc 1L,3L,6L,1L,4L,1L,3029L,1L,2L

509 #define SN_bf_ecb "BF-ECB"
510 #define LN_bf_ecb "bf-ecb"
511 #define NID_bf_ecb 92

513 #define SN_bf_cfb64 "BF-CFB"
514 #define LN_bf_cfb64 "bf-cfb"
515 #define NID_bf_cfb64 93

517 #define SN_bf_ofb64 "BF-OFB"
518 #define LN_bf_ofb64 "bf-ofb"
519 #define NID_bf_ofb64 94

521 #define SN_mdc2 "MDC2"
522 #define LN_mdc2 "mdc2"
523 #define NID_mdc2 95

new/usr/src/lib/openssl/include/openssl/objects.h 9

524 #define OBJ_mdc2 2L,5L,8L,3L,101L
525 /* An alternative? 1L,3L,14L,3L,2L,19L */

527 #define SN_mdc2WithRSA "RSA-MDC2"
528 #define LN_mdc2WithRSA "mdc2withRSA"
529 #define NID_mdc2WithRSA 96
530 #define OBJ_mdc2WithRSA 2L,5L,8L,3L,100L

532 #define SN_rc4_40 "RC4-40"
533 #define LN_rc4_40 "rc4-40"
534 #define NID_rc4_40 97

536 #define SN_rc2_40_cbc "RC2-40-CBC"
537 #define LN_rc2_40_cbc "rc2-40-cbc"
538 #define NID_rc2_40_cbc 98

540 #define SN_givenName "G"
541 #define LN_givenName "givenName"
542 #define NID_givenName 99
543 #define OBJ_givenName OBJ_X509,42L

545 #define SN_surname "S"
546 #define LN_surname "surname"
547 #define NID_surname 100
548 #define OBJ_surname OBJ_X509,4L

550 #define SN_initials "I"
551 #define LN_initials "initials"
552 #define NID_initials 101
553 #define OBJ_initials OBJ_X509,43L

555 #define SN_uniqueIdentifier "UID"
556 #define LN_uniqueIdentifier "uniqueIdentifier"
557 #define NID_uniqueIdentifier 102
558 #define OBJ_uniqueIdentifier OBJ_X509,45L

560 #define SN_crl_distribution_points "crlDistributionPoints"
561 #define LN_crl_distribution_points "X509v3 CRL Distribution Points"
562 #define NID_crl_distribution_points 103
563 #define OBJ_crl_distribution_points OBJ_id_ce,31L

565 #define SN_md5WithRSA "RSA-NP-MD5"
566 #define LN_md5WithRSA "md5WithRSA"
567 #define NID_md5WithRSA 104
568 #define OBJ_md5WithRSA OBJ_algorithm,3L

570 #define SN_serialNumber "SN"
571 #define LN_serialNumber "serialNumber"
572 #define NID_serialNumber 105
573 #define OBJ_serialNumber OBJ_X509,5L

575 #define SN_title "T"
576 #define LN_title "title"
577 #define NID_title 106
578 #define OBJ_title OBJ_X509,12L

580 #define SN_description "D"
581 #define LN_description "description"
582 #define NID_description 107
583 #define OBJ_description OBJ_X509,13L

585 /* CAST5 is CAST-128, I’m just sticking with the documentation */
586 #define SN_cast5_cbc "CAST5-CBC"
587 #define LN_cast5_cbc "cast5-cbc"
588 #define NID_cast5_cbc 108
589 #define OBJ_cast5_cbc 1L,2L,840L,113533L,7L,66L,10L

new/usr/src/lib/openssl/include/openssl/objects.h 10

591 #define SN_cast5_ecb "CAST5-ECB"
592 #define LN_cast5_ecb "cast5-ecb"
593 #define NID_cast5_ecb 109

595 #define SN_cast5_cfb64 "CAST5-CFB"
596 #define LN_cast5_cfb64 "cast5-cfb"
597 #define NID_cast5_cfb64 110

599 #define SN_cast5_ofb64 "CAST5-OFB"
600 #define LN_cast5_ofb64 "cast5-ofb"
601 #define NID_cast5_ofb64 111

603 #define LN_pbeWithMD5AndCast5_CBC "pbeWithMD5AndCast5CBC"
604 #define NID_pbeWithMD5AndCast5_CBC 112
605 #define OBJ_pbeWithMD5AndCast5_CBC 1L,2L,840L,113533L,7L,66L,12L

607 /* This is one sun will soon be using :-(
608 * id-dsa-with-sha1 ID ::= {
609 * iso(1) member-body(2) us(840) x9-57 (10040) x9cm(4) 3 }
610 */
611 #define SN_dsaWithSHA1 "DSA-SHA1"
612 #define LN_dsaWithSHA1 "dsaWithSHA1"
613 #define NID_dsaWithSHA1 113
614 #define OBJ_dsaWithSHA1 1L,2L,840L,10040L,4L,3L

616 #define NID_md5_sha1 114
617 #define SN_md5_sha1 "MD5-SHA1"
618 #define LN_md5_sha1 "md5-sha1"

620 #define SN_sha1WithRSA "RSA-SHA1-2"
621 #define LN_sha1WithRSA "sha1WithRSA"
622 #define NID_sha1WithRSA 115
623 #define OBJ_sha1WithRSA OBJ_algorithm,29L

625 #define SN_dsa "DSA"
626 #define LN_dsa "dsaEncryption"
627 #define NID_dsa 116
628 #define OBJ_dsa 1L,2L,840L,10040L,4L,1L

630 #define SN_ripemd160 "RIPEMD160"
631 #define LN_ripemd160 "ripemd160"
632 #define NID_ripemd160 117
633 #define OBJ_ripemd160 1L,3L,36L,3L,2L,1L

635 /* The name should actually be rsaSignatureWithripemd160, but I’m going
636 * to continue using the convention I’m using with the other ciphers */
637 #define SN_ripemd160WithRSA "RSA-RIPEMD160"
638 #define LN_ripemd160WithRSA "ripemd160WithRSA"
639 #define NID_ripemd160WithRSA 119
640 #define OBJ_ripemd160WithRSA 1L,3L,36L,3L,3L,1L,2L

642 /* Taken from rfc2040
643 * RC5_CBC_Parameters ::= SEQUENCE {
644 * version INTEGER (v1_0(16)),
645 * rounds INTEGER (8..127),
646 * blockSizeInBits INTEGER (64, 128),
647 * iv OCTET STRING OPTIONAL
648 * }
649 */
650 #define SN_rc5_cbc "RC5-CBC"
651 #define LN_rc5_cbc "rc5-cbc"
652 #define NID_rc5_cbc 120
653 #define OBJ_rc5_cbc OBJ_rsadsi,3L,8L

655 #define SN_rc5_ecb "RC5-ECB"

new/usr/src/lib/openssl/include/openssl/objects.h 11

656 #define LN_rc5_ecb "rc5-ecb"
657 #define NID_rc5_ecb 121

659 #define SN_rc5_cfb64 "RC5-CFB"
660 #define LN_rc5_cfb64 "rc5-cfb"
661 #define NID_rc5_cfb64 122

663 #define SN_rc5_ofb64 "RC5-OFB"
664 #define LN_rc5_ofb64 "rc5-ofb"
665 #define NID_rc5_ofb64 123

667 #define SN_rle_compression "RLE"
668 #define LN_rle_compression "run length compression"
669 #define NID_rle_compression 124
670 #define OBJ_rle_compression 1L,1L,1L,1L,666L,1L

672 #define SN_zlib_compression "ZLIB"
673 #define LN_zlib_compression "zlib compression"
674 #define NID_zlib_compression 125
675 #define OBJ_zlib_compression 1L,1L,1L,1L,666L,2L

677 #define SN_ext_key_usage "extendedKeyUsage"
678 #define LN_ext_key_usage "X509v3 Extended Key Usage"
679 #define NID_ext_key_usage 126
680 #define OBJ_ext_key_usage OBJ_id_ce,37

682 #define SN_id_pkix "PKIX"
683 #define NID_id_pkix 127
684 #define OBJ_id_pkix 1L,3L,6L,1L,5L,5L,7L

686 #define SN_id_kp "id-kp"
687 #define NID_id_kp 128
688 #define OBJ_id_kp OBJ_id_pkix,3L

690 /* PKIX extended key usage OIDs */

692 #define SN_server_auth "serverAuth"
693 #define LN_server_auth "TLS Web Server Authentication"
694 #define NID_server_auth 129
695 #define OBJ_server_auth OBJ_id_kp,1L

697 #define SN_client_auth "clientAuth"
698 #define LN_client_auth "TLS Web Client Authentication"
699 #define NID_client_auth 130
700 #define OBJ_client_auth OBJ_id_kp,2L

702 #define SN_code_sign "codeSigning"
703 #define LN_code_sign "Code Signing"
704 #define NID_code_sign 131
705 #define OBJ_code_sign OBJ_id_kp,3L

707 #define SN_email_protect "emailProtection"
708 #define LN_email_protect "E-mail Protection"
709 #define NID_email_protect 132
710 #define OBJ_email_protect OBJ_id_kp,4L

712 #define SN_time_stamp "timeStamping"
713 #define LN_time_stamp "Time Stamping"
714 #define NID_time_stamp 133
715 #define OBJ_time_stamp OBJ_id_kp,8L

717 /* Additional extended key usage OIDs: Microsoft */

719 #define SN_ms_code_ind "msCodeInd"
720 #define LN_ms_code_ind "Microsoft Individual Code Signing"
721 #define NID_ms_code_ind 134

new/usr/src/lib/openssl/include/openssl/objects.h 12

722 #define OBJ_ms_code_ind 1L,3L,6L,1L,4L,1L,311L,2L,1L,21L

724 #define SN_ms_code_com "msCodeCom"
725 #define LN_ms_code_com "Microsoft Commercial Code Signing"
726 #define NID_ms_code_com 135
727 #define OBJ_ms_code_com 1L,3L,6L,1L,4L,1L,311L,2L,1L,22L

729 #define SN_ms_ctl_sign "msCTLSign"
730 #define LN_ms_ctl_sign "Microsoft Trust List Signing"
731 #define NID_ms_ctl_sign 136
732 #define OBJ_ms_ctl_sign 1L,3L,6L,1L,4L,1L,311L,10L,3L,1L

734 #define SN_ms_sgc "msSGC"
735 #define LN_ms_sgc "Microsoft Server Gated Crypto"
736 #define NID_ms_sgc 137
737 #define OBJ_ms_sgc 1L,3L,6L,1L,4L,1L,311L,10L,3L,3L

739 #define SN_ms_efs "msEFS"
740 #define LN_ms_efs "Microsoft Encrypted File System"
741 #define NID_ms_efs 138
742 #define OBJ_ms_efs 1L,3L,6L,1L,4L,1L,311L,10L,3L,4L

744 /* Additional usage: Netscape */

746 #define SN_ns_sgc "nsSGC"
747 #define LN_ns_sgc "Netscape Server Gated Crypto"
748 #define NID_ns_sgc 139
749 #define OBJ_ns_sgc OBJ_netscape,4L,1L

751 #define SN_delta_crl "deltaCRL"
752 #define LN_delta_crl "X509v3 Delta CRL Indicator"
753 #define NID_delta_crl 140
754 #define OBJ_delta_crl OBJ_id_ce,27L

756 #define SN_crl_reason "CRLReason"
757 #define LN_crl_reason "CRL Reason Code"
758 #define NID_crl_reason 141
759 #define OBJ_crl_reason OBJ_id_ce,21L

761 #define SN_invalidity_date "invalidityDate"
762 #define LN_invalidity_date "Invalidity Date"
763 #define NID_invalidity_date 142
764 #define OBJ_invalidity_date OBJ_id_ce,24L

766 #define SN_sxnet "SXNetID"
767 #define LN_sxnet "Strong Extranet ID"
768 #define NID_sxnet 143
769 #define OBJ_sxnet 1L,3L,101L,1L,4L,1L

771 /* PKCS12 and related OBJECT IDENTIFIERS */

773 #define OBJ_pkcs12 OBJ_pkcs,12L
774 #define OBJ_pkcs12_pbeids OBJ_pkcs12, 1

776 #define SN_pbe_WithSHA1And128BitRC4 "PBE-SHA1-RC4-128"
777 #define LN_pbe_WithSHA1And128BitRC4 "pbeWithSHA1And128BitRC4"
778 #define NID_pbe_WithSHA1And128BitRC4 144
779 #define OBJ_pbe_WithSHA1And128BitRC4 OBJ_pkcs12_pbeids, 1L

781 #define SN_pbe_WithSHA1And40BitRC4 "PBE-SHA1-RC4-40"
782 #define LN_pbe_WithSHA1And40BitRC4 "pbeWithSHA1And40BitRC4"
783 #define NID_pbe_WithSHA1And40BitRC4 145
784 #define OBJ_pbe_WithSHA1And40BitRC4 OBJ_pkcs12_pbeids, 2L

786 #define SN_pbe_WithSHA1And3_Key_TripleDES_CBC "PBE-SHA1-3DES"
787 #define LN_pbe_WithSHA1And3_Key_TripleDES_CBC "pbeWithSHA1And3-KeyTripleDES-CB

new/usr/src/lib/openssl/include/openssl/objects.h 13

788 #define NID_pbe_WithSHA1And3_Key_TripleDES_CBC 146
789 #define OBJ_pbe_WithSHA1And3_Key_TripleDES_CBC OBJ_pkcs12_pbeids, 3L

791 #define SN_pbe_WithSHA1And2_Key_TripleDES_CBC "PBE-SHA1-2DES"
792 #define LN_pbe_WithSHA1And2_Key_TripleDES_CBC "pbeWithSHA1And2-KeyTripleDES-CB
793 #define NID_pbe_WithSHA1And2_Key_TripleDES_CBC 147
794 #define OBJ_pbe_WithSHA1And2_Key_TripleDES_CBC OBJ_pkcs12_pbeids, 4L

796 #define SN_pbe_WithSHA1And128BitRC2_CBC "PBE-SHA1-RC2-128"
797 #define LN_pbe_WithSHA1And128BitRC2_CBC "pbeWithSHA1And128BitRC2-CBC"
798 #define NID_pbe_WithSHA1And128BitRC2_CBC 148
799 #define OBJ_pbe_WithSHA1And128BitRC2_CBC OBJ_pkcs12_pbeids, 5L

801 #define SN_pbe_WithSHA1And40BitRC2_CBC "PBE-SHA1-RC2-40"
802 #define LN_pbe_WithSHA1And40BitRC2_CBC "pbeWithSHA1And40BitRC2-CBC"
803 #define NID_pbe_WithSHA1And40BitRC2_CBC 149
804 #define OBJ_pbe_WithSHA1And40BitRC2_CBC OBJ_pkcs12_pbeids, 6L

806 #define OBJ_pkcs12_Version1 OBJ_pkcs12, 10L

808 #define OBJ_pkcs12_BagIds OBJ_pkcs12_Version1, 1L

810 #define LN_keyBag "keyBag"
811 #define NID_keyBag 150
812 #define OBJ_keyBag OBJ_pkcs12_BagIds, 1L

814 #define LN_pkcs8ShroudedKeyBag "pkcs8ShroudedKeyBag"
815 #define NID_pkcs8ShroudedKeyBag 151
816 #define OBJ_pkcs8ShroudedKeyBag OBJ_pkcs12_BagIds, 2L

818 #define LN_certBag "certBag"
819 #define NID_certBag 152
820 #define OBJ_certBag OBJ_pkcs12_BagIds, 3L

822 #define LN_crlBag "crlBag"
823 #define NID_crlBag 153
824 #define OBJ_crlBag OBJ_pkcs12_BagIds, 4L

826 #define LN_secretBag "secretBag"
827 #define NID_secretBag 154
828 #define OBJ_secretBag OBJ_pkcs12_BagIds, 5L

830 #define LN_safeContentsBag "safeContentsBag"
831 #define NID_safeContentsBag 155
832 #define OBJ_safeContentsBag OBJ_pkcs12_BagIds, 6L

834 #define LN_friendlyName "friendlyName"
835 #define NID_friendlyName 156
836 #define OBJ_friendlyName OBJ_pkcs9, 20L

838 #define LN_localKeyID "localKeyID"
839 #define NID_localKeyID 157
840 #define OBJ_localKeyID OBJ_pkcs9, 21L

842 #define OBJ_certTypes OBJ_pkcs9, 22L

844 #define LN_x509Certificate "x509Certificate"
845 #define NID_x509Certificate 158
846 #define OBJ_x509Certificate OBJ_certTypes, 1L

848 #define LN_sdsiCertificate "sdsiCertificate"
849 #define NID_sdsiCertificate 159
850 #define OBJ_sdsiCertificate OBJ_certTypes, 2L

852 #define OBJ_crlTypes OBJ_pkcs9, 23L

new/usr/src/lib/openssl/include/openssl/objects.h 14

854 #define LN_x509Crl "x509Crl"
855 #define NID_x509Crl 160
856 #define OBJ_x509Crl OBJ_crlTypes, 1L

858 /* PKCS#5 v2 OIDs */

860 #define LN_pbes2 "PBES2"
861 #define NID_pbes2 161
862 #define OBJ_pbes2 OBJ_pkcs,5L,13L

864 #define LN_pbmac1 "PBMAC1"
865 #define NID_pbmac1 162
866 #define OBJ_pbmac1 OBJ_pkcs,5L,14L

868 #define LN_hmacWithSHA1 "hmacWithSHA1"
869 #define NID_hmacWithSHA1 163
870 #define OBJ_hmacWithSHA1 OBJ_rsadsi,2L,7L

872 /* Policy Qualifier Ids */

874 #define LN_id_qt_cps "Policy Qualifier CPS"
875 #define SN_id_qt_cps "id-qt-cps"
876 #define NID_id_qt_cps 164
877 #define OBJ_id_qt_cps OBJ_id_pkix,2L,1L

879 #define LN_id_qt_unotice "Policy Qualifier User Notice"
880 #define SN_id_qt_unotice "id-qt-unotice"
881 #define NID_id_qt_unotice 165
882 #define OBJ_id_qt_unotice OBJ_id_pkix,2L,2L

884 #define SN_rc2_64_cbc "RC2-64-CBC"
885 #define LN_rc2_64_cbc "rc2-64-cbc"
886 #define NID_rc2_64_cbc 166

888 #define SN_SMIMECapabilities "SMIME-CAPS"
889 #define LN_SMIMECapabilities "S/MIME Capabilities"
890 #define NID_SMIMECapabilities 167
891 #define OBJ_SMIMECapabilities OBJ_pkcs9,15L

893 #define SN_pbeWithMD2AndRC2_CBC "PBE-MD2-RC2-64"
894 #define LN_pbeWithMD2AndRC2_CBC "pbeWithMD2AndRC2-CBC"
895 #define NID_pbeWithMD2AndRC2_CBC 168
896 #define OBJ_pbeWithMD2AndRC2_CBC OBJ_pkcs,5L,4L

898 #define SN_pbeWithMD5AndRC2_CBC "PBE-MD5-RC2-64"
899 #define LN_pbeWithMD5AndRC2_CBC "pbeWithMD5AndRC2-CBC"
900 #define NID_pbeWithMD5AndRC2_CBC 169
901 #define OBJ_pbeWithMD5AndRC2_CBC OBJ_pkcs,5L,6L

903 #define SN_pbeWithSHA1AndDES_CBC "PBE-SHA1-DES"
904 #define LN_pbeWithSHA1AndDES_CBC "pbeWithSHA1AndDES-CBC"
905 #define NID_pbeWithSHA1AndDES_CBC 170
906 #define OBJ_pbeWithSHA1AndDES_CBC OBJ_pkcs,5L,10L

908 /* Extension request OIDs */

910 #define LN_ms_ext_req "Microsoft Extension Request"
911 #define SN_ms_ext_req "msExtReq"
912 #define NID_ms_ext_req 171
913 #define OBJ_ms_ext_req 1L,3L,6L,1L,4L,1L,311L,2L,1L,14L

915 #define LN_ext_req "Extension Request"
916 #define SN_ext_req "extReq"
917 #define NID_ext_req 172
918 #define OBJ_ext_req OBJ_pkcs9,14L

new/usr/src/lib/openssl/include/openssl/objects.h 15

920 #define SN_name "name"
921 #define LN_name "name"
922 #define NID_name 173
923 #define OBJ_name OBJ_X509,41L

925 #define SN_dnQualifier "dnQualifier"
926 #define LN_dnQualifier "dnQualifier"
927 #define NID_dnQualifier 174
928 #define OBJ_dnQualifier OBJ_X509,46L

930 #define SN_id_pe "id-pe"
931 #define NID_id_pe 175
932 #define OBJ_id_pe OBJ_id_pkix,1L

934 #define SN_id_ad "id-ad"
935 #define NID_id_ad 176
936 #define OBJ_id_ad OBJ_id_pkix,48L

938 #define SN_info_access "authorityInfoAccess"
939 #define LN_info_access "Authority Information Access"
940 #define NID_info_access 177
941 #define OBJ_info_access OBJ_id_pe,1L

943 #define SN_ad_OCSP "OCSP"
944 #define LN_ad_OCSP "OCSP"
945 #define NID_ad_OCSP 178
946 #define OBJ_ad_OCSP OBJ_id_ad,1L

948 #define SN_ad_ca_issuers "caIssuers"
949 #define LN_ad_ca_issuers "CA Issuers"
950 #define NID_ad_ca_issuers 179
951 #define OBJ_ad_ca_issuers OBJ_id_ad,2L

953 #define SN_OCSP_sign "OCSPSigning"
954 #define LN_OCSP_sign "OCSP Signing"
955 #define NID_OCSP_sign 180
956 #define OBJ_OCSP_sign OBJ_id_kp,9L
957 #endif /* USE_OBJ_MAC */

959 #include <openssl/bio.h>
960 #include <openssl/asn1.h>

962 #define OBJ_NAME_TYPE_UNDEF 0x00
963 #define OBJ_NAME_TYPE_MD_METH 0x01
964 #define OBJ_NAME_TYPE_CIPHER_METH 0x02
965 #define OBJ_NAME_TYPE_PKEY_METH 0x03
966 #define OBJ_NAME_TYPE_COMP_METH 0x04
967 #define OBJ_NAME_TYPE_NUM 0x05

969 #define OBJ_NAME_ALIAS 0x8000

971 #define OBJ_BSEARCH_VALUE_ON_NOMATCH 0x01
972 #define OBJ_BSEARCH_FIRST_VALUE_ON_MATCH 0x02

975 #ifdef __cplusplus
976 extern "C" {
977 #endif

979 typedef struct obj_name_st
980 {
981 int type;
982 int alias;
983 const char *name;
984 const char *data;
985 } OBJ_NAME;

new/usr/src/lib/openssl/include/openssl/objects.h 16

987 #define OBJ_create_and_add_object(a,b,c) OBJ_create(a,b,c)

990 int OBJ_NAME_init(void);
991 int OBJ_NAME_new_index(unsigned long (*hash_func)(const char *),
992 int (*cmp_func)(const char *, const char *),
993 void (*free_func)(const char *, int, const char *));
994 const char *OBJ_NAME_get(const char *name,int type);
995 int OBJ_NAME_add(const char *name,int type,const char *data);
996 int OBJ_NAME_remove(const char *name,int type);
997 void OBJ_NAME_cleanup(int type); /* -1 for everything */
998 void OBJ_NAME_do_all(int type,void (*fn)(const OBJ_NAME *,void *arg),
999 void *arg);

1000 void OBJ_NAME_do_all_sorted(int type,void (*fn)(const OBJ_NAME *,void *arg),
1001 void *arg);

1003 ASN1_OBJECT * OBJ_dup(const ASN1_OBJECT *o);
1004 ASN1_OBJECT * OBJ_nid2obj(int n);
1005 const char * OBJ_nid2ln(int n);
1006 const char * OBJ_nid2sn(int n);
1007 int OBJ_obj2nid(const ASN1_OBJECT *o);
1008 ASN1_OBJECT * OBJ_txt2obj(const char *s, int no_name);
1009 int OBJ_obj2txt(char *buf, int buf_len, const ASN1_OBJECT *a, int no_name);
1010 int OBJ_txt2nid(const char *s);
1011 int OBJ_ln2nid(const char *s);
1012 int OBJ_sn2nid(const char *s);
1013 int OBJ_cmp(const ASN1_OBJECT *a,const ASN1_OBJECT *b);
1014 const void * OBJ_bsearch_(const void *key,const void *base,int num,int size,
1015 int (*cmp)(const void *, const void *));
1016 const void * OBJ_bsearch_ex_(const void *key,const void *base,int num,
1017 int size,
1018 int (*cmp)(const void *, const void *),
1019 int flags);

1021 #define _DECLARE_OBJ_BSEARCH_CMP_FN(scope, type1, type2, nm) \
1022 static int nm##_cmp_BSEARCH_CMP_FN(const void *, const void *); \
1023 static int nm##_cmp(type1 const *, type2 const *); \
1024 scope type2 * OBJ_bsearch_##nm(type1 *key, type2 const *base, int num)

1026 #define DECLARE_OBJ_BSEARCH_CMP_FN(type1, type2, cmp) \
1027 _DECLARE_OBJ_BSEARCH_CMP_FN(static, type1, type2, cmp)
1028 #define DECLARE_OBJ_BSEARCH_GLOBAL_CMP_FN(type1, type2, nm) \
1029 type2 * OBJ_bsearch_##nm(type1 *key, type2 const *base, int num)

1031 /*
1032 * Unsolved problem: if a type is actually a pointer type, like
1033 * nid_triple is, then its impossible to get a const where you need
1034 * it. Consider:
1035 *
1036 * typedef int nid_triple[3];
1037 * const void *a_;
1038 * const nid_triple const *a = a_;
1039 *
1040 * The assignement discards a const because what you really want is:
1041 *
1042 * const int const * const *a = a_;
1043 *
1044 * But if you do that, you lose the fact that a is an array of 3 ints,
1045 * which breaks comparison functions.
1046 *
1047 * Thus we end up having to cast, sadly, or unpack the
1048 * declarations. Or, as I finally did in this case, delcare nid_triple
1049 * to be a struct, which it should have been in the first place.
1050 *
1051 * Ben, August 2008.

new/usr/src/lib/openssl/include/openssl/objects.h 17

1052 *
1053 * Also, strictly speaking not all types need be const, but handling
1054 * the non-constness means a lot of complication, and in practice
1055 * comparison routines do always not touch their arguments.
1056 */

1058 #define IMPLEMENT_OBJ_BSEARCH_CMP_FN(type1, type2, nm) \
1059 static int nm##_cmp_BSEARCH_CMP_FN(const void *a_, const void *b_) \
1060 { \
1061 type1 const *a = a_; \
1062 type2 const *b = b_; \
1063 return nm##_cmp(a,b); \
1064 } \
1065 static type2 *OBJ_bsearch_##nm(type1 *key, type2 const *base, int num) \
1066 { \
1067 return (type2 *)OBJ_bsearch_(key, base, num, sizeof(type2), \
1068 nm##_cmp_BSEARCH_CMP_FN); \
1069 } \
1070 extern void dummy_prototype(void)

1072 #define IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(type1, type2, nm) \
1073 static int nm##_cmp_BSEARCH_CMP_FN(const void *a_, const void *b_) \
1074 { \
1075 type1 const *a = a_; \
1076 type2 const *b = b_; \
1077 return nm##_cmp(a,b); \
1078 } \
1079 type2 *OBJ_bsearch_##nm(type1 *key, type2 const *base, int num) \
1080 { \
1081 return (type2 *)OBJ_bsearch_(key, base, num, sizeof(type2), \
1082 nm##_cmp_BSEARCH_CMP_FN); \
1083 } \
1084 extern void dummy_prototype(void)

1086 #define OBJ_bsearch(type1,key,type2,base,num,cmp) \
1087 ((type2 *)OBJ_bsearch_(CHECKED_PTR_OF(type1,key),CHECKED_PTR_OF(type2,base), \
1088 num,sizeof(type2), \
1089 ((void)CHECKED_PTR_OF(type1,cmp##_type_1), \
1090 (void)CHECKED_PTR_OF(type2,cmp##_type_2), \
1091 cmp##_BSEARCH_CMP_FN)))

1093 #define OBJ_bsearch_ex(type1,key,type2,base,num,cmp,flags)
1094 ((type2 *)OBJ_bsearch_ex_(CHECKED_PTR_OF(type1,key),CHECKED_PTR_OF(type2,base)
1095 num,sizeof(type2), \
1096 ((void)CHECKED_PTR_OF(type1,cmp##_type_1), \
1097 (void)type_2=CHECKED_PTR_OF(type2,cmp##_type_2), \
1098 cmp##_BSEARCH_CMP_FN)),flags)

1100 int OBJ_new_nid(int num);
1101 int OBJ_add_object(const ASN1_OBJECT *obj);
1102 int OBJ_create(const char *oid,const char *sn,const char *ln);
1103 void OBJ_cleanup(void);
1104 int OBJ_create_objects(BIO *in);

1106 int OBJ_find_sigid_algs(int signid, int *pdig_nid, int *ppkey_nid);
1107 int OBJ_find_sigid_by_algs(int *psignid, int dig_nid, int pkey_nid);
1108 int OBJ_add_sigid(int signid, int dig_id, int pkey_id);
1109 void OBJ_sigid_free(void);

1111 extern int obj_cleanup_defer;
1112 void check_defer(int nid);

1114 /* BEGIN ERROR CODES */
1115 /* The following lines are auto generated by the script mkerr.pl. Any changes
1116 * made after this point may be overwritten when the script is next run.
1117 */

new/usr/src/lib/openssl/include/openssl/objects.h 18

1118 void ERR_load_OBJ_strings(void);

1120 /* Error codes for the OBJ functions. */

1122 /* Function codes. */
1123 #define OBJ_F_OBJ_ADD_OBJECT 105
1124 #define OBJ_F_OBJ_CREATE 100
1125 #define OBJ_F_OBJ_DUP 101
1126 #define OBJ_F_OBJ_NAME_NEW_INDEX 106
1127 #define OBJ_F_OBJ_NID2LN 102
1128 #define OBJ_F_OBJ_NID2OBJ 103
1129 #define OBJ_F_OBJ_NID2SN 104

1131 /* Reason codes. */
1132 #define OBJ_R_MALLOC_FAILURE 100
1133 #define OBJ_R_UNKNOWN_NID 101

1135 #ifdef __cplusplus
1136 }
1137 #endif
1138 #endif

new/usr/src/lib/openssl/include/openssl/ocsp.h 1

**
 24041 Fri May 30 18:31:20 2014
new/usr/src/lib/openssl/include/openssl/ocsp.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ocsp.h */
2 /* Written by Tom Titchener <Tom_Titchener@groove.net> for the OpenSSL
3 * project. */

5 /* History:
6 This file was transfered to Richard Levitte from CertCo by Kathy
7 Weinhold in mid-spring 2000 to be included in OpenSSL or released
8 as a patch kit. */

10 /* ==
11 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 *
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 *
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in
22 * the documentation and/or other materials provided with the
23 * distribution.
24 *
25 * 3. All advertising materials mentioning features or use of this
26 * software must display the following acknowledgment:
27 * "This product includes software developed by the OpenSSL Project
28 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
29 *
30 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
31 * endorse or promote products derived from this software without
32 * prior written permission. For written permission, please contact
33 * openssl-core@openssl.org.
34 *
35 * 5. Products derived from this software may not be called "OpenSSL"
36 * nor may "OpenSSL" appear in their names without prior written
37 * permission of the OpenSSL Project.
38 *
39 * 6. Redistributions of any form whatsoever must retain the following
40 * acknowledgment:
41 * "This product includes software developed by the OpenSSL Project
42 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
43 *
44 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
45 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
46 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
47 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
48 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
49 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
50 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
51 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
53 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
54 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
55 * OF THE POSSIBILITY OF SUCH DAMAGE.
56 * ==
57 *
58 * This product includes cryptographic software written by Eric Young
59 * (eay@cryptsoft.com). This product includes software written by Tim
60 * Hudson (tjh@cryptsoft.com).
61 *

new/usr/src/lib/openssl/include/openssl/ocsp.h 2

62 */

64 #ifndef HEADER_OCSP_H
65 #define HEADER_OCSP_H

67 #include <openssl/ossl_typ.h>
68 #include <openssl/x509.h>
69 #include <openssl/x509v3.h>
70 #include <openssl/safestack.h>

72 #ifdef __cplusplus
73 extern "C" {
74 #endif

76 /* Various flags and values */

78 #define OCSP_DEFAULT_NONCE_LENGTH 16

80 #define OCSP_NOCERTS 0x1
81 #define OCSP_NOINTERN 0x2
82 #define OCSP_NOSIGS 0x4
83 #define OCSP_NOCHAIN 0x8
84 #define OCSP_NOVERIFY 0x10
85 #define OCSP_NOEXPLICIT 0x20
86 #define OCSP_NOCASIGN 0x40
87 #define OCSP_NODELEGATED 0x80
88 #define OCSP_NOCHECKS 0x100
89 #define OCSP_TRUSTOTHER 0x200
90 #define OCSP_RESPID_KEY 0x400
91 #define OCSP_NOTIME 0x800

93 /* CertID ::= SEQUENCE {
94 * hashAlgorithm AlgorithmIdentifier,
95 * issuerNameHash OCTET STRING, -- Hash of Issuer’s DN
96 * issuerKeyHash OCTET STRING, -- Hash of Issuers public key (excludi
97 * serialNumber CertificateSerialNumber }
98 */
99 typedef struct ocsp_cert_id_st
100 {
101 X509_ALGOR *hashAlgorithm;
102 ASN1_OCTET_STRING *issuerNameHash;
103 ASN1_OCTET_STRING *issuerKeyHash;
104 ASN1_INTEGER *serialNumber;
105 } OCSP_CERTID;

107 DECLARE_STACK_OF(OCSP_CERTID)

109 /* Request ::= SEQUENCE {
110 * reqCert CertID,
111 * singleRequestExtensions [0] EXPLICIT Extensions OPTIONAL }
112 */
113 typedef struct ocsp_one_request_st
114 {
115 OCSP_CERTID *reqCert;
116 STACK_OF(X509_EXTENSION) *singleRequestExtensions;
117 } OCSP_ONEREQ;

119 DECLARE_STACK_OF(OCSP_ONEREQ)
120 DECLARE_ASN1_SET_OF(OCSP_ONEREQ)

123 /* TBSRequest ::= SEQUENCE {
124 * version [0] EXPLICIT Version DEFAULT v1,
125 * requestorName [1] EXPLICIT GeneralName OPTIONAL,
126 * requestList SEQUENCE OF Request,
127 * requestExtensions [2] EXPLICIT Extensions OPTIONAL }

new/usr/src/lib/openssl/include/openssl/ocsp.h 3

128 */
129 typedef struct ocsp_req_info_st
130 {
131 ASN1_INTEGER *version;
132 GENERAL_NAME *requestorName;
133 STACK_OF(OCSP_ONEREQ) *requestList;
134 STACK_OF(X509_EXTENSION) *requestExtensions;
135 } OCSP_REQINFO;

137 /* Signature ::= SEQUENCE {
138 * signatureAlgorithm AlgorithmIdentifier,
139 * signature BIT STRING,
140 * certs [0] EXPLICIT SEQUENCE OF Certificate OPTIONAL }
141 */
142 typedef struct ocsp_signature_st
143 {
144 X509_ALGOR *signatureAlgorithm;
145 ASN1_BIT_STRING *signature;
146 STACK_OF(X509) *certs;
147 } OCSP_SIGNATURE;

149 /* OCSPRequest ::= SEQUENCE {
150 * tbsRequest TBSRequest,
151 * optionalSignature [0] EXPLICIT Signature OPTIONAL }
152 */
153 typedef struct ocsp_request_st
154 {
155 OCSP_REQINFO *tbsRequest;
156 OCSP_SIGNATURE *optionalSignature; /* OPTIONAL */
157 } OCSP_REQUEST;

159 /* OCSPResponseStatus ::= ENUMERATED {
160 * successful (0), --Response has valid confirmations
161 * malformedRequest (1), --Illegal confirmation request
162 * internalError (2), --Internal error in issuer
163 * tryLater (3), --Try again later
164 * --(4) is not used
165 * sigRequired (5), --Must sign the request
166 * unauthorized (6) --Request unauthorized
167 * }
168 */
169 #define OCSP_RESPONSE_STATUS_SUCCESSFUL 0
170 #define OCSP_RESPONSE_STATUS_MALFORMEDREQUEST 1
171 #define OCSP_RESPONSE_STATUS_INTERNALERROR 2
172 #define OCSP_RESPONSE_STATUS_TRYLATER 3
173 #define OCSP_RESPONSE_STATUS_SIGREQUIRED 5
174 #define OCSP_RESPONSE_STATUS_UNAUTHORIZED 6

176 /* ResponseBytes ::= SEQUENCE {
177 * responseType OBJECT IDENTIFIER,
178 * response OCTET STRING }
179 */
180 typedef struct ocsp_resp_bytes_st
181 {
182 ASN1_OBJECT *responseType;
183 ASN1_OCTET_STRING *response;
184 } OCSP_RESPBYTES;

186 /* OCSPResponse ::= SEQUENCE {
187 * responseStatus OCSPResponseStatus,
188 * responseBytes [0] EXPLICIT ResponseBytes OPTIONAL }
189 */
190 struct ocsp_response_st
191 {
192 ASN1_ENUMERATED *responseStatus;
193 OCSP_RESPBYTES *responseBytes;

new/usr/src/lib/openssl/include/openssl/ocsp.h 4

194 };

196 /* ResponderID ::= CHOICE {
197 * byName [1] Name,
198 * byKey [2] KeyHash }
199 */
200 #define V_OCSP_RESPID_NAME 0
201 #define V_OCSP_RESPID_KEY 1
202 struct ocsp_responder_id_st
203 {
204 int type;
205 union {
206 X509_NAME* byName;
207 ASN1_OCTET_STRING *byKey;
208 } value;
209 };

211 DECLARE_STACK_OF(OCSP_RESPID)
212 DECLARE_ASN1_FUNCTIONS(OCSP_RESPID)

214 /* KeyHash ::= OCTET STRING --SHA-1 hash of responder’s public key
215 * --(excluding the tag and length fields)
216 */

218 /* RevokedInfo ::= SEQUENCE {
219 * revocationTime GeneralizedTime,
220 * revocationReason [0] EXPLICIT CRLReason OPTIONAL }
221 */
222 typedef struct ocsp_revoked_info_st
223 {
224 ASN1_GENERALIZEDTIME *revocationTime;
225 ASN1_ENUMERATED *revocationReason;
226 } OCSP_REVOKEDINFO;

228 /* CertStatus ::= CHOICE {
229 * good [0] IMPLICIT NULL,
230 * revoked [1] IMPLICIT RevokedInfo,
231 * unknown [2] IMPLICIT UnknownInfo }
232 */
233 #define V_OCSP_CERTSTATUS_GOOD 0
234 #define V_OCSP_CERTSTATUS_REVOKED 1
235 #define V_OCSP_CERTSTATUS_UNKNOWN 2
236 typedef struct ocsp_cert_status_st
237 {
238 int type;
239 union {
240 ASN1_NULL *good;
241 OCSP_REVOKEDINFO *revoked;
242 ASN1_NULL *unknown;
243 } value;
244 } OCSP_CERTSTATUS;

246 /* SingleResponse ::= SEQUENCE {
247 * certID CertID,
248 * certStatus CertStatus,
249 * thisUpdate GeneralizedTime,
250 * nextUpdate [0] EXPLICIT GeneralizedTime OPTIONAL,
251 * singleExtensions [1] EXPLICIT Extensions OPTIONAL }
252 */
253 typedef struct ocsp_single_response_st
254 {
255 OCSP_CERTID *certId;
256 OCSP_CERTSTATUS *certStatus;
257 ASN1_GENERALIZEDTIME *thisUpdate;
258 ASN1_GENERALIZEDTIME *nextUpdate;
259 STACK_OF(X509_EXTENSION) *singleExtensions;

new/usr/src/lib/openssl/include/openssl/ocsp.h 5

260 } OCSP_SINGLERESP;

262 DECLARE_STACK_OF(OCSP_SINGLERESP)
263 DECLARE_ASN1_SET_OF(OCSP_SINGLERESP)

265 /* ResponseData ::= SEQUENCE {
266 * version [0] EXPLICIT Version DEFAULT v1,
267 * responderID ResponderID,
268 * producedAt GeneralizedTime,
269 * responses SEQUENCE OF SingleResponse,
270 * responseExtensions [1] EXPLICIT Extensions OPTIONAL }
271 */
272 typedef struct ocsp_response_data_st
273 {
274 ASN1_INTEGER *version;
275 OCSP_RESPID *responderId;
276 ASN1_GENERALIZEDTIME *producedAt;
277 STACK_OF(OCSP_SINGLERESP) *responses;
278 STACK_OF(X509_EXTENSION) *responseExtensions;
279 } OCSP_RESPDATA;

281 /* BasicOCSPResponse ::= SEQUENCE {
282 * tbsResponseData ResponseData,
283 * signatureAlgorithm AlgorithmIdentifier,
284 * signature BIT STRING,
285 * certs [0] EXPLICIT SEQUENCE OF Certificate OPTIONAL }
286 */
287 /* Note 1:
288 The value for "signature" is specified in the OCSP rfc2560 as follows:
289 "The value for the signature SHALL be computed on the hash of the DER
290 encoding ResponseData." This means that you must hash the DER-encoded
291 tbsResponseData, and then run it through a crypto-signing function, which
292 will (at least w/RSA) do a hash-’n’-private-encrypt operation. This seems
293 a bit odd, but that’s the spec. Also note that the data structures do not
294 leave anywhere to independently specify the algorithm used for the initial
295 hash. So, we look at the signature-specification algorithm, and try to do
296 something intelligent. -- Kathy Weinhold, CertCo */
297 /* Note 2:
298 It seems that the mentioned passage from RFC 2560 (section 4.2.1) is open
299 for interpretation. I’ve done tests against another responder, and found
300 that it doesn’t do the double hashing that the RFC seems to say one
301 should. Therefore, all relevant functions take a flag saying which
302 variant should be used. -- Richard Levitte, OpenSSL team and CeloCom */
303 typedef struct ocsp_basic_response_st
304 {
305 OCSP_RESPDATA *tbsResponseData;
306 X509_ALGOR *signatureAlgorithm;
307 ASN1_BIT_STRING *signature;
308 STACK_OF(X509) *certs;
309 } OCSP_BASICRESP;

311 /*
312 * CRLReason ::= ENUMERATED {
313 * unspecified (0),
314 * keyCompromise (1),
315 * cACompromise (2),
316 * affiliationChanged (3),
317 * superseded (4),
318 * cessationOfOperation (5),
319 * certificateHold (6),
320 * removeFromCRL (8) }
321 */
322 #define OCSP_REVOKED_STATUS_NOSTATUS -1
323 #define OCSP_REVOKED_STATUS_UNSPECIFIED 0
324 #define OCSP_REVOKED_STATUS_KEYCOMPROMISE 1
325 #define OCSP_REVOKED_STATUS_CACOMPROMISE 2

new/usr/src/lib/openssl/include/openssl/ocsp.h 6

326 #define OCSP_REVOKED_STATUS_AFFILIATIONCHANGED 3
327 #define OCSP_REVOKED_STATUS_SUPERSEDED 4
328 #define OCSP_REVOKED_STATUS_CESSATIONOFOPERATION 5
329 #define OCSP_REVOKED_STATUS_CERTIFICATEHOLD 6
330 #define OCSP_REVOKED_STATUS_REMOVEFROMCRL 8

332 /* CrlID ::= SEQUENCE {
333 * crlUrl [0] EXPLICIT IA5String OPTIONAL,
334 * crlNum [1] EXPLICIT INTEGER OPTIONAL,
335 * crlTime [2] EXPLICIT GeneralizedTime OPTIONAL }
336 */
337 typedef struct ocsp_crl_id_st
338 {
339 ASN1_IA5STRING *crlUrl;
340 ASN1_INTEGER *crlNum;
341 ASN1_GENERALIZEDTIME *crlTime;
342 } OCSP_CRLID;

344 /* ServiceLocator ::= SEQUENCE {
345 * issuer Name,
346 * locator AuthorityInfoAccessSyntax OPTIONAL }
347 */
348 typedef struct ocsp_service_locator_st
349 {
350 X509_NAME* issuer;
351 STACK_OF(ACCESS_DESCRIPTION) *locator;
352 } OCSP_SERVICELOC;
353
354 #define PEM_STRING_OCSP_REQUEST "OCSP REQUEST"
355 #define PEM_STRING_OCSP_RESPONSE "OCSP RESPONSE"

357 #define d2i_OCSP_REQUEST_bio(bp,p) ASN1_d2i_bio_of(OCSP_REQUEST,OCSP_REQUEST_new

359 #define d2i_OCSP_RESPONSE_bio(bp,p) ASN1_d2i_bio_of(OCSP_RESPONSE,OCSP_RESPONSE_

361 #define PEM_read_bio_OCSP_REQUEST(bp,x,cb) (OCSP_REQUEST *)PEM_ASN1_read_bio(\
362 (char *(*)())d2i_OCSP_REQUEST,PEM_STRING_OCSP_REQUEST,bp,(char **)x,cb,NULL

364 #define PEM_read_bio_OCSP_RESPONSE(bp,x,cb)(OCSP_RESPONSE *)PEM_ASN1_read_bio(\
365 (char *(*)())d2i_OCSP_RESPONSE,PEM_STRING_OCSP_RESPONSE,bp,(char **)x,cb,NU

367 #define PEM_write_bio_OCSP_REQUEST(bp,o) \
368 PEM_ASN1_write_bio((int (*)())i2d_OCSP_REQUEST,PEM_STRING_OCSP_REQUEST,\
369 bp,(char *)o, NULL,NULL,0,NULL,NULL)

371 #define PEM_write_bio_OCSP_RESPONSE(bp,o) \
372 PEM_ASN1_write_bio((int (*)())i2d_OCSP_RESPONSE,PEM_STRING_OCSP_RESPONSE,\
373 bp,(char *)o, NULL,NULL,0,NULL,NULL)

375 #define i2d_OCSP_RESPONSE_bio(bp,o) ASN1_i2d_bio_of(OCSP_RESPONSE,i2d_OCSP_RESPO

377 #define i2d_OCSP_REQUEST_bio(bp,o) ASN1_i2d_bio_of(OCSP_REQUEST,i2d_OCSP_REQUEST

379 #define OCSP_REQUEST_sign(o,pkey,md) \
380 ASN1_item_sign(ASN1_ITEM_rptr(OCSP_REQINFO),\
381 o->optionalSignature->signatureAlgorithm,NULL,\
382 o->optionalSignature->signature,o->tbsRequest,pkey,md)

384 #define OCSP_BASICRESP_sign(o,pkey,md,d) \
385 ASN1_item_sign(ASN1_ITEM_rptr(OCSP_RESPDATA),o->signatureAlgorithm,NULL,
386 o->signature,o->tbsResponseData,pkey,md)

388 #define OCSP_REQUEST_verify(a,r) ASN1_item_verify(ASN1_ITEM_rptr(OCSP_REQINFO),\
389 a->optionalSignature->signatureAlgorithm,\
390 a->optionalSignature->signature,a->tbsRequest,r)

new/usr/src/lib/openssl/include/openssl/ocsp.h 7

392 #define OCSP_BASICRESP_verify(a,r,d) ASN1_item_verify(ASN1_ITEM_rptr(OCSP_RESPDA
393 a->signatureAlgorithm,a->signature,a->tbsResponseData,r)

395 #define ASN1_BIT_STRING_digest(data,type,md,len) \
396 ASN1_item_digest(ASN1_ITEM_rptr(ASN1_BIT_STRING),type,data,md,len)

398 #define OCSP_CERTSTATUS_dup(cs)\
399 (OCSP_CERTSTATUS*)ASN1_dup((int(*)())i2d_OCSP_CERTSTATUS,\
400 (char *(*)())d2i_OCSP_CERTSTATUS,(char *)(cs))

402 OCSP_CERTID *OCSP_CERTID_dup(OCSP_CERTID *id);

404 OCSP_RESPONSE *OCSP_sendreq_bio(BIO *b, char *path, OCSP_REQUEST *req);
405 OCSP_REQ_CTX *OCSP_sendreq_new(BIO *io, char *path, OCSP_REQUEST *req,
406 int maxline);
407 int OCSP_sendreq_nbio(OCSP_RESPONSE **presp, OCSP_REQ_CTX *rctx);
408 void OCSP_REQ_CTX_free(OCSP_REQ_CTX *rctx);
409 int OCSP_REQ_CTX_set1_req(OCSP_REQ_CTX *rctx, OCSP_REQUEST *req);
410 int OCSP_REQ_CTX_add1_header(OCSP_REQ_CTX *rctx,
411 const char *name, const char *value);

413 OCSP_CERTID *OCSP_cert_to_id(const EVP_MD *dgst, X509 *subject, X509 *issuer);

415 OCSP_CERTID *OCSP_cert_id_new(const EVP_MD *dgst,
416 X509_NAME *issuerName,
417 ASN1_BIT_STRING* issuerKey,
418 ASN1_INTEGER *serialNumber);

420 OCSP_ONEREQ *OCSP_request_add0_id(OCSP_REQUEST *req, OCSP_CERTID *cid);

422 int OCSP_request_add1_nonce(OCSP_REQUEST *req, unsigned char *val, int len);
423 int OCSP_basic_add1_nonce(OCSP_BASICRESP *resp, unsigned char *val, int len);
424 int OCSP_check_nonce(OCSP_REQUEST *req, OCSP_BASICRESP *bs);
425 int OCSP_copy_nonce(OCSP_BASICRESP *resp, OCSP_REQUEST *req);

427 int OCSP_request_set1_name(OCSP_REQUEST *req, X509_NAME *nm);
428 int OCSP_request_add1_cert(OCSP_REQUEST *req, X509 *cert);

430 int OCSP_request_sign(OCSP_REQUEST *req,
431 X509 *signer,
432 EVP_PKEY *key,
433 const EVP_MD *dgst,
434 STACK_OF(X509) *certs,
435 unsigned long flags);

437 int OCSP_response_status(OCSP_RESPONSE *resp);
438 OCSP_BASICRESP *OCSP_response_get1_basic(OCSP_RESPONSE *resp);

440 int OCSP_resp_count(OCSP_BASICRESP *bs);
441 OCSP_SINGLERESP *OCSP_resp_get0(OCSP_BASICRESP *bs, int idx);
442 int OCSP_resp_find(OCSP_BASICRESP *bs, OCSP_CERTID *id, int last);
443 int OCSP_single_get0_status(OCSP_SINGLERESP *single, int *reason,
444 ASN1_GENERALIZEDTIME **revtime,
445 ASN1_GENERALIZEDTIME **thisupd,
446 ASN1_GENERALIZEDTIME **nextupd);
447 int OCSP_resp_find_status(OCSP_BASICRESP *bs, OCSP_CERTID *id, int *status,
448 int *reason,
449 ASN1_GENERALIZEDTIME **revtime,
450 ASN1_GENERALIZEDTIME **thisupd,
451 ASN1_GENERALIZEDTIME **nextupd);
452 int OCSP_check_validity(ASN1_GENERALIZEDTIME *thisupd,
453 ASN1_GENERALIZEDTIME *nextupd,
454 long sec, long maxsec);

456 int OCSP_request_verify(OCSP_REQUEST *req, STACK_OF(X509) *certs, X509_STORE *st

new/usr/src/lib/openssl/include/openssl/ocsp.h 8

458 int OCSP_parse_url(char *url, char **phost, char **pport, char **ppath, int *pss

460 int OCSP_id_issuer_cmp(OCSP_CERTID *a, OCSP_CERTID *b);
461 int OCSP_id_cmp(OCSP_CERTID *a, OCSP_CERTID *b);

463 int OCSP_request_onereq_count(OCSP_REQUEST *req);
464 OCSP_ONEREQ *OCSP_request_onereq_get0(OCSP_REQUEST *req, int i);
465 OCSP_CERTID *OCSP_onereq_get0_id(OCSP_ONEREQ *one);
466 int OCSP_id_get0_info(ASN1_OCTET_STRING **piNameHash, ASN1_OBJECT **pmd,
467 ASN1_OCTET_STRING **pikeyHash,
468 ASN1_INTEGER **pserial, OCSP_CERTID *cid);
469 int OCSP_request_is_signed(OCSP_REQUEST *req);
470 OCSP_RESPONSE *OCSP_response_create(int status, OCSP_BASICRESP *bs);
471 OCSP_SINGLERESP *OCSP_basic_add1_status(OCSP_BASICRESP *rsp,
472 OCSP_CERTID *cid,
473 int status, int reason,
474 ASN1_TIME *revtime,
475 ASN1_TIME *thisupd, ASN1_TIME *nextupd);
476 int OCSP_basic_add1_cert(OCSP_BASICRESP *resp, X509 *cert);
477 int OCSP_basic_sign(OCSP_BASICRESP *brsp,
478 X509 *signer, EVP_PKEY *key, const EVP_MD *dgst,
479 STACK_OF(X509) *certs, unsigned long flags);

481 X509_EXTENSION *OCSP_crlID_new(char *url, long *n, char *tim);

483 X509_EXTENSION *OCSP_accept_responses_new(char **oids);

485 X509_EXTENSION *OCSP_archive_cutoff_new(char* tim);

487 X509_EXTENSION *OCSP_url_svcloc_new(X509_NAME* issuer, char **urls);

489 int OCSP_REQUEST_get_ext_count(OCSP_REQUEST *x);
490 int OCSP_REQUEST_get_ext_by_NID(OCSP_REQUEST *x, int nid, int lastpos);
491 int OCSP_REQUEST_get_ext_by_OBJ(OCSP_REQUEST *x, ASN1_OBJECT *obj, int lastpos);
492 int OCSP_REQUEST_get_ext_by_critical(OCSP_REQUEST *x, int crit, int lastpos);
493 X509_EXTENSION *OCSP_REQUEST_get_ext(OCSP_REQUEST *x, int loc);
494 X509_EXTENSION *OCSP_REQUEST_delete_ext(OCSP_REQUEST *x, int loc);
495 void *OCSP_REQUEST_get1_ext_d2i(OCSP_REQUEST *x, int nid, int *crit, int *idx);
496 int OCSP_REQUEST_add1_ext_i2d(OCSP_REQUEST *x, int nid, void *value, int crit,
497 unsigned long flags);
498 int OCSP_REQUEST_add_ext(OCSP_REQUEST *x, X509_EXTENSION *ex, int loc);

500 int OCSP_ONEREQ_get_ext_count(OCSP_ONEREQ *x);
501 int OCSP_ONEREQ_get_ext_by_NID(OCSP_ONEREQ *x, int nid, int lastpos);
502 int OCSP_ONEREQ_get_ext_by_OBJ(OCSP_ONEREQ *x, ASN1_OBJECT *obj, int lastpos);
503 int OCSP_ONEREQ_get_ext_by_critical(OCSP_ONEREQ *x, int crit, int lastpos);
504 X509_EXTENSION *OCSP_ONEREQ_get_ext(OCSP_ONEREQ *x, int loc);
505 X509_EXTENSION *OCSP_ONEREQ_delete_ext(OCSP_ONEREQ *x, int loc);
506 void *OCSP_ONEREQ_get1_ext_d2i(OCSP_ONEREQ *x, int nid, int *crit, int *idx);
507 int OCSP_ONEREQ_add1_ext_i2d(OCSP_ONEREQ *x, int nid, void *value, int crit,
508 unsigned long flags);
509 int OCSP_ONEREQ_add_ext(OCSP_ONEREQ *x, X509_EXTENSION *ex, int loc);

511 int OCSP_BASICRESP_get_ext_count(OCSP_BASICRESP *x);
512 int OCSP_BASICRESP_get_ext_by_NID(OCSP_BASICRESP *x, int nid, int lastpos);
513 int OCSP_BASICRESP_get_ext_by_OBJ(OCSP_BASICRESP *x, ASN1_OBJECT *obj, int lastp
514 int OCSP_BASICRESP_get_ext_by_critical(OCSP_BASICRESP *x, int crit, int lastpos)
515 X509_EXTENSION *OCSP_BASICRESP_get_ext(OCSP_BASICRESP *x, int loc);
516 X509_EXTENSION *OCSP_BASICRESP_delete_ext(OCSP_BASICRESP *x, int loc);
517 void *OCSP_BASICRESP_get1_ext_d2i(OCSP_BASICRESP *x, int nid, int *crit, int *id
518 int OCSP_BASICRESP_add1_ext_i2d(OCSP_BASICRESP *x, int nid, void *value, int cri
519 unsigned long flags);
520 int OCSP_BASICRESP_add_ext(OCSP_BASICRESP *x, X509_EXTENSION *ex, int loc);

522 int OCSP_SINGLERESP_get_ext_count(OCSP_SINGLERESP *x);
523 int OCSP_SINGLERESP_get_ext_by_NID(OCSP_SINGLERESP *x, int nid, int lastpos);

new/usr/src/lib/openssl/include/openssl/ocsp.h 9

524 int OCSP_SINGLERESP_get_ext_by_OBJ(OCSP_SINGLERESP *x, ASN1_OBJECT *obj, int las
525 int OCSP_SINGLERESP_get_ext_by_critical(OCSP_SINGLERESP *x, int crit, int lastpo
526 X509_EXTENSION *OCSP_SINGLERESP_get_ext(OCSP_SINGLERESP *x, int loc);
527 X509_EXTENSION *OCSP_SINGLERESP_delete_ext(OCSP_SINGLERESP *x, int loc);
528 void *OCSP_SINGLERESP_get1_ext_d2i(OCSP_SINGLERESP *x, int nid, int *crit, int *
529 int OCSP_SINGLERESP_add1_ext_i2d(OCSP_SINGLERESP *x, int nid, void *value, int c
530 unsigned long flags);
531 int OCSP_SINGLERESP_add_ext(OCSP_SINGLERESP *x, X509_EXTENSION *ex, int loc);

533 DECLARE_ASN1_FUNCTIONS(OCSP_SINGLERESP)
534 DECLARE_ASN1_FUNCTIONS(OCSP_CERTSTATUS)
535 DECLARE_ASN1_FUNCTIONS(OCSP_REVOKEDINFO)
536 DECLARE_ASN1_FUNCTIONS(OCSP_BASICRESP)
537 DECLARE_ASN1_FUNCTIONS(OCSP_RESPDATA)
538 DECLARE_ASN1_FUNCTIONS(OCSP_RESPID)
539 DECLARE_ASN1_FUNCTIONS(OCSP_RESPONSE)
540 DECLARE_ASN1_FUNCTIONS(OCSP_RESPBYTES)
541 DECLARE_ASN1_FUNCTIONS(OCSP_ONEREQ)
542 DECLARE_ASN1_FUNCTIONS(OCSP_CERTID)
543 DECLARE_ASN1_FUNCTIONS(OCSP_REQUEST)
544 DECLARE_ASN1_FUNCTIONS(OCSP_SIGNATURE)
545 DECLARE_ASN1_FUNCTIONS(OCSP_REQINFO)
546 DECLARE_ASN1_FUNCTIONS(OCSP_CRLID)
547 DECLARE_ASN1_FUNCTIONS(OCSP_SERVICELOC)

549 const char *OCSP_response_status_str(long s);
550 const char *OCSP_cert_status_str(long s);
551 const char *OCSP_crl_reason_str(long s);

553 int OCSP_REQUEST_print(BIO *bp, OCSP_REQUEST* a, unsigned long flags);
554 int OCSP_RESPONSE_print(BIO *bp, OCSP_RESPONSE* o, unsigned long flags);

556 int OCSP_basic_verify(OCSP_BASICRESP *bs, STACK_OF(X509) *certs,
557 X509_STORE *st, unsigned long flags);

559 /* BEGIN ERROR CODES */
560 /* The following lines are auto generated by the script mkerr.pl. Any changes
561 * made after this point may be overwritten when the script is next run.
562 */
563 void ERR_load_OCSP_strings(void);

565 /* Error codes for the OCSP functions. */

567 /* Function codes. */
568 #define OCSP_F_ASN1_STRING_ENCODE 100
569 #define OCSP_F_D2I_OCSP_NONCE 102
570 #define OCSP_F_OCSP_BASIC_ADD1_STATUS 103
571 #define OCSP_F_OCSP_BASIC_SIGN 104
572 #define OCSP_F_OCSP_BASIC_VERIFY 105
573 #define OCSP_F_OCSP_CERT_ID_NEW 101
574 #define OCSP_F_OCSP_CHECK_DELEGATED 106
575 #define OCSP_F_OCSP_CHECK_IDS 107
576 #define OCSP_F_OCSP_CHECK_ISSUER 108
577 #define OCSP_F_OCSP_CHECK_VALIDITY 115
578 #define OCSP_F_OCSP_MATCH_ISSUERID 109
579 #define OCSP_F_OCSP_PARSE_URL 114
580 #define OCSP_F_OCSP_REQUEST_SIGN 110
581 #define OCSP_F_OCSP_REQUEST_VERIFY 116
582 #define OCSP_F_OCSP_RESPONSE_GET1_BASIC 111
583 #define OCSP_F_OCSP_SENDREQ_BIO 112
584 #define OCSP_F_OCSP_SENDREQ_NBIO 117
585 #define OCSP_F_PARSE_HTTP_LINE1 118
586 #define OCSP_F_REQUEST_VERIFY 113

588 /* Reason codes. */
589 #define OCSP_R_BAD_DATA 100

new/usr/src/lib/openssl/include/openssl/ocsp.h 10

590 #define OCSP_R_CERTIFICATE_VERIFY_ERROR 101
591 #define OCSP_R_DIGEST_ERR 102
592 #define OCSP_R_ERROR_IN_NEXTUPDATE_FIELD 122
593 #define OCSP_R_ERROR_IN_THISUPDATE_FIELD 123
594 #define OCSP_R_ERROR_PARSING_URL 121
595 #define OCSP_R_MISSING_OCSPSIGNING_USAGE 103
596 #define OCSP_R_NEXTUPDATE_BEFORE_THISUPDATE 124
597 #define OCSP_R_NOT_BASIC_RESPONSE 104
598 #define OCSP_R_NO_CERTIFICATES_IN_CHAIN 105
599 #define OCSP_R_NO_CONTENT 106
600 #define OCSP_R_NO_PUBLIC_KEY 107
601 #define OCSP_R_NO_RESPONSE_DATA 108
602 #define OCSP_R_NO_REVOKED_TIME 109
603 #define OCSP_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE 110
604 #define OCSP_R_REQUEST_NOT_SIGNED 128
605 #define OCSP_R_RESPONSE_CONTAINS_NO_REVOCATION_DATA 111
606 #define OCSP_R_ROOT_CA_NOT_TRUSTED 112
607 #define OCSP_R_SERVER_READ_ERROR 113
608 #define OCSP_R_SERVER_RESPONSE_ERROR 114
609 #define OCSP_R_SERVER_RESPONSE_PARSE_ERROR 115
610 #define OCSP_R_SERVER_WRITE_ERROR 116
611 #define OCSP_R_SIGNATURE_FAILURE 117
612 #define OCSP_R_SIGNER_CERTIFICATE_NOT_FOUND 118
613 #define OCSP_R_STATUS_EXPIRED 125
614 #define OCSP_R_STATUS_NOT_YET_VALID 126
615 #define OCSP_R_STATUS_TOO_OLD 127
616 #define OCSP_R_UNKNOWN_MESSAGE_DIGEST 119
617 #define OCSP_R_UNKNOWN_NID 120
618 #define OCSP_R_UNSUPPORTED_REQUESTORNAME_TYPE 129

620 #ifdef __cplusplus
621 }
622 #endif
623 #endif

new/usr/src/lib/openssl/include/openssl/opensslconf.h 1

**
 9889 Fri May 30 18:31:20 2014
new/usr/src/lib/openssl/include/openssl/opensslconf.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* opensslconf.h */
2 /* WARNING: Generated automatically from opensslconf.h.in by Configure. */

4 /* OpenSSL was configured with the following options: */
5 #ifndef OPENSSL_DOING_MAKEDEPEND

8 #ifndef OPENSSL_NO_EC
9 # define OPENSSL_NO_EC
10 #endif
11 #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
12 # define OPENSSL_NO_EC_NISTP_64_GCC_128
13 #endif
14 #ifndef OPENSSL_NO_ECDH
15 # define OPENSSL_NO_ECDH
16 #endif
17 #ifndef OPENSSL_NO_ECDSA
18 # define OPENSSL_NO_ECDSA
19 #endif
20 #ifndef OPENSSL_NO_GMP
21 # define OPENSSL_NO_GMP
22 #endif
23 #ifndef OPENSSL_NO_GOST
24 # define OPENSSL_NO_GOST
25 #endif
26 #ifndef OPENSSL_NO_HW_4758_CCA
27 # define OPENSSL_NO_HW_4758_CCA
28 #endif
29 #ifndef OPENSSL_NO_HW_AEP
30 # define OPENSSL_NO_HW_AEP
31 #endif
32 #ifndef OPENSSL_NO_HW_ATALLA
33 # define OPENSSL_NO_HW_ATALLA
34 #endif
35 #ifndef OPENSSL_NO_HW_CHIL
36 # define OPENSSL_NO_HW_CHIL
37 #endif
38 #ifndef OPENSSL_NO_HW_CSWIFT
39 # define OPENSSL_NO_HW_CSWIFT
40 #endif
41 #ifndef OPENSSL_NO_HW_GMP
42 # define OPENSSL_NO_HW_GMP
43 #endif
44 #ifndef OPENSSL_NO_HW_NCIPHER
45 # define OPENSSL_NO_HW_NCIPHER
46 #endif
47 #ifndef OPENSSL_NO_HW_NURON
48 # define OPENSSL_NO_HW_NURON
49 #endif
50 #ifndef OPENSSL_NO_HW_PADLOCK
51 # define OPENSSL_NO_HW_PADLOCK
52 #endif
53 #ifndef OPENSSL_NO_HW_SUREWARE
54 # define OPENSSL_NO_HW_SUREWARE
55 #endif
56 #ifndef OPENSSL_NO_HW_UBSEC
57 # define OPENSSL_NO_HW_UBSEC
58 #endif
59 #ifndef OPENSSL_NO_IDEA
60 # define OPENSSL_NO_IDEA
61 #endif

new/usr/src/lib/openssl/include/openssl/opensslconf.h 2

62 #ifndef OPENSSL_NO_JPAKE
63 # define OPENSSL_NO_JPAKE
64 #endif
65 #ifndef OPENSSL_NO_KRB5
66 # define OPENSSL_NO_KRB5
67 #endif
68 #ifndef OPENSSL_NO_MDC2
69 # define OPENSSL_NO_MDC2
70 #endif
71 #ifndef OPENSSL_NO_RC3
72 # define OPENSSL_NO_RC3
73 #endif
74 #ifndef OPENSSL_NO_RC5
75 # define OPENSSL_NO_RC5
76 #endif
77 #ifndef OPENSSL_NO_RFC3779
78 # define OPENSSL_NO_RFC3779
79 #endif
80 #ifndef OPENSSL_NO_SCTP
81 # define OPENSSL_NO_SCTP
82 #endif
83 #ifndef OPENSSL_NO_SEED
84 # define OPENSSL_NO_SEED
85 #endif
86 #ifndef OPENSSL_NO_STORE
87 # define OPENSSL_NO_STORE
88 #endif
89 #ifndef OPENSSL_NO_WHIRLPOOL
90 # define OPENSSL_NO_WHIRLPOOL
91 #endif
92 #ifndef OPENSSL_NO_WHRLPOOL
93 # define OPENSSL_NO_WHRLPOOL
94 #endif

96 #endif /* OPENSSL_DOING_MAKEDEPEND */

98 #ifndef OPENSSL_THREADS
99 # define OPENSSL_THREADS
100 #endif
101 #ifndef OPENSSL_NO_STATIC_ENGINE
102 # define OPENSSL_NO_STATIC_ENGINE
103 #endif

105 /* The OPENSSL_NO_* macros are also defined as NO_* if the application
106 asks for it. This is a transient feature that is provided for those
107 who haven’t had the time to do the appropriate changes in their
108 applications. */
109 #ifdef OPENSSL_ALGORITHM_DEFINES
110 # if defined(OPENSSL_NO_EC) && !defined(NO_EC)
111 # define NO_EC
112 # endif
113 # if defined(OPENSSL_NO_EC_NISTP_64_GCC_128) && !defined(NO_EC_NISTP_64_GCC_128)
114 # define NO_EC_NISTP_64_GCC_128
115 # endif
116 # if defined(OPENSSL_NO_ECDH) && !defined(NO_ECDH)
117 # define NO_ECDH
118 # endif
119 # if defined(OPENSSL_NO_ECDSA) && !defined(NO_ECDSA)
120 # define NO_ECDSA
121 # endif
122 # if defined(OPENSSL_NO_GMP) && !defined(NO_GMP)
123 # define NO_GMP
124 # endif
125 # if defined(OPENSSL_NO_GOST) && !defined(NO_GOST)
126 # define NO_GOST
127 # endif

new/usr/src/lib/openssl/include/openssl/opensslconf.h 3

128 # if defined(OPENSSL_NO_HW_4758_CCA) && !defined(NO_HW_4758_CCA)
129 # define NO_HW_4758_CCA
130 # endif
131 # if defined(OPENSSL_NO_HW_AEP) && !defined(NO_HW_AEP)
132 # define NO_HW_AEP
133 # endif
134 # if defined(OPENSSL_NO_HW_ATALLA) && !defined(NO_HW_ATALLA)
135 # define NO_HW_ATALLA
136 # endif
137 # if defined(OPENSSL_NO_HW_CHIL) && !defined(NO_HW_CHIL)
138 # define NO_HW_CHIL
139 # endif
140 # if defined(OPENSSL_NO_HW_CSWIFT) && !defined(NO_HW_CSWIFT)
141 # define NO_HW_CSWIFT
142 # endif
143 # if defined(OPENSSL_NO_HW_GMP) && !defined(NO_HW_GMP)
144 # define NO_HW_GMP
145 # endif
146 # if defined(OPENSSL_NO_HW_NCIPHER) && !defined(NO_HW_NCIPHER)
147 # define NO_HW_NCIPHER
148 # endif
149 # if defined(OPENSSL_NO_HW_NURON) && !defined(NO_HW_NURON)
150 # define NO_HW_NURON
151 # endif
152 # if defined(OPENSSL_NO_HW_PADLOCK) && !defined(NO_HW_PADLOCK)
153 # define NO_HW_PADLOCK
154 # endif
155 # if defined(OPENSSL_NO_HW_SUREWARE) && !defined(NO_HW_SUREWARE)
156 # define NO_HW_SUREWARE
157 # endif
158 # if defined(OPENSSL_NO_HW_UBSEC) && !defined(NO_HW_UBSEC)
159 # define NO_HW_UBSEC
160 # endif
161 # if defined(OPENSSL_NO_IDEA) && !defined(NO_IDEA)
162 # define NO_IDEA
163 # endif
164 # if defined(OPENSSL_NO_JPAKE) && !defined(NO_JPAKE)
165 # define NO_JPAKE
166 # endif
167 # if defined(OPENSSL_NO_KRB5) && !defined(NO_KRB5)
168 # define NO_KRB5
169 # endif
170 # if defined(OPENSSL_NO_MDC2) && !defined(NO_MDC2)
171 # define NO_MDC2
172 # endif
173 # if defined(OPENSSL_NO_RC3) && !defined(NO_RC3)
174 # define NO_RC3
175 # endif
176 # if defined(OPENSSL_NO_RC5) && !defined(NO_RC5)
177 # define NO_RC5
178 # endif
179 # if defined(OPENSSL_NO_RFC3779) && !defined(NO_RFC3779)
180 # define NO_RFC3779
181 # endif
182 # if defined(OPENSSL_NO_SCTP) && !defined(NO_SCTP)
183 # define NO_SCTP
184 # endif
185 # if defined(OPENSSL_NO_SEED) && !defined(NO_SEED)
186 # define NO_SEED
187 # endif
188 # if defined(OPENSSL_NO_STORE) && !defined(NO_STORE)
189 # define NO_STORE
190 # endif
191 # if defined(OPENSSL_NO_WHIRLPOOL) && !defined(NO_WHIRLPOOL)
192 # define NO_WHIRLPOOL
193 # endif

new/usr/src/lib/openssl/include/openssl/opensslconf.h 4

194 # if defined(OPENSSL_NO_WHRLPOOL) && !defined(NO_WHRLPOOL)
195 # define NO_WHRLPOOL
196 # endif
197 #endif

199 #define OPENSSL_CPUID_OBJ

201 /* crypto/opensslconf.h.in */

203 #include <openssl/sunw_prefix.h>

205 /* Generate 80386 code? */
206 #undef I386_ONLY

208 #if !(defined(VMS) || defined(__VMS)) /* VMS uses logical names instead */
209 #if defined(HEADER_CRYPTLIB_H) && !defined(OPENSSLDIR)
210 #if defined(__sparcv9) || defined(__x86_64)
211 #define ENGINESDIR "/lib/openssl/engines/64"
212 #else
213 #define ENGINESDIR "/lib/openssl/engines"
214 #endif
215 #define OPENSSLDIR "/etc/openssl"
216 #endif
217 #endif

219 #undef OPENSSL_UNISTD
220 #define OPENSSL_UNISTD <unistd.h>

222 #undef OPENSSL_EXPORT_VAR_AS_FUNCTION

224 #if defined(HEADER_IDEA_H) && !defined(IDEA_INT)
225 #define IDEA_INT unsigned int
226 #endif

228 #if defined(HEADER_MD2_H) && !defined(MD2_INT)
229 #define MD2_INT unsigned int
230 #endif

232 #if defined(HEADER_RC2_H) && !defined(RC2_INT)
233 /* I need to put in a mod for the alpha - eay */
234 #define RC2_INT unsigned int
235 #endif

237 #if defined(HEADER_RC4_H)
238 #if !defined(RC4_INT)
239 /* using int types make the structure larger but make the code faster
240 * on most boxes I have tested - up to %20 faster. */
241 /*
242 * I don’t know what does "most" mean, but declaring "int" is a must on:
243 * - Intel P6 because partial register stalls are very expensive;
244 * - elder Alpha because it lacks byte load/store instructions;
245 */
246 #define RC4_INT unsigned int
247 #endif
248 #if !defined(RC4_CHUNK)
249 /*
250 * This enables code handling data aligned at natural CPU word
251 * boundary. See crypto/rc4/rc4_enc.c for further details.
252 */
253 #define RC4_CHUNK unsigned long
254 #endif
255 #endif

257 #if (defined(HEADER_NEW_DES_H) || defined(HEADER_DES_H)) && !defined(DES_LONG)
258 /* If this is set to ’unsigned int’ on a DEC Alpha, this gives about a
259 * %20 speed up (longs are 8 bytes, int’s are 4). */

new/usr/src/lib/openssl/include/openssl/opensslconf.h 5

260 #ifndef DES_LONG
261 #if defined(__sparcv9) || defined(__x86_64)
262 #define DES_LONG unsigned int
263 #else
264 #define DES_LONG unsigned long
265 #endif
266 #endif
267 #endif

269 #if defined(HEADER_BN_H) && !defined(CONFIG_HEADER_BN_H)
270 #define CONFIG_HEADER_BN_H
271 /*
272 * OpenSSL revision 1.521 from 2005-12-15 in OpenSSL_1_0_0-stable branch changed
273 * 64 bit sparcv9 configuration from SIXTY_FOUR_BIT_LONG to BN_LLONG.
274 */
275 #if defined(__x86_64)
276 #undef BN_LLONG
277 #else
278 #define BN_LLONG
279 #endif

281 /* Should we define BN_DIV2W here? */

283 /* Only one for the following should be defined */
284 #if defined(__x86_64)
285 #define SIXTY_FOUR_BIT_LONG
286 #undef THIRTY_TWO_BIT
287 #else
288 #undef SIXTY_FOUR_BIT_LONG
289 #undef SIXTY_FOUR_BIT
290 #define THIRTY_TWO_BIT
291 #endif
292 #undef SIXTY_FOUR_BIT
293 #endif

295 #if defined(HEADER_RC4_LOCL_H) && !defined(CONFIG_HEADER_RC4_LOCL_H)
296 #define CONFIG_HEADER_RC4_LOCL_H
297 /* if this is defined data[i] is used instead of *data, this is a %20
298 * speedup on x86 */
299 #define RC4_INDEX
300 #endif

302 #if defined(HEADER_BF_LOCL_H) && !defined(CONFIG_HEADER_BF_LOCL_H)
303 #define CONFIG_HEADER_BF_LOCL_H
304 #define BF_PTR
305 #endif /* HEADER_BF_LOCL_H */

307 #if defined(HEADER_DES_LOCL_H) && !defined(CONFIG_HEADER_DES_LOCL_H)
308 #define CONFIG_HEADER_DES_LOCL_H
309 #ifndef DES_DEFAULT_OPTIONS
310 /* the following is tweaked from a config script, that is why it is a
311 * protected undef/define */
312 #ifndef DES_PTR
313 #define DES_PTR
314 #endif

316 /* This helps C compiler generate the correct code for multiple functional
317 * units. It reduces register dependancies at the expense of 2 more
318 * registers */
319 #ifndef DES_RISC1
320 #define DES_RISC1
321 #endif

323 #ifndef DES_RISC2
324 #undef DES_RISC2
325 #endif

new/usr/src/lib/openssl/include/openssl/opensslconf.h 6

327 #if defined(DES_RISC1) && defined(DES_RISC2)
328 YOU SHOULD NOT HAVE BOTH DES_RISC1 AND DES_RISC2 DEFINED!!!!!
329 #endif

331 /* Unroll the inner loop, this sometimes helps, sometimes hinders.
332 * Very mucy CPU dependant */
333 #ifndef DES_UNROLL
334 #define DES_UNROLL
335 #endif

337 /* These default values were supplied by
338 * Peter Gutman <pgut001@cs.auckland.ac.nz>
339 * They are only used if nothing else has been defined */
340 #if !defined(DES_PTR) && !defined(DES_RISC1) && !defined(DES_RISC2) && !defined(
341 /* Special defines which change the way the code is built depending on the
342 CPU and OS. For SGI machines you can use _MIPS_SZLONG (32 or 64) to find
343 even newer MIPS CPU’s, but at the moment one size fits all for
344 optimization options. Older Sparc’s work better with only UNROLL, but
345 there’s no way to tell at compile time what it is you’re running on */
346
347 #if defined(sun) /* Newer Sparc’s */
348 # define DES_PTR
349 # define DES_RISC1
350 # define DES_UNROLL
351 #elif defined(__ultrix) /* Older MIPS */
352 # define DES_PTR
353 # define DES_RISC2
354 # define DES_UNROLL
355 #elif defined(__osf1__) /* Alpha */
356 # define DES_PTR
357 # define DES_RISC2
358 #elif defined (_AIX) /* RS6000 */
359 /* Unknown */
360 #elif defined(__hpux) /* HP-PA */
361 /* Unknown */
362 #elif defined(__aux) /* 68K */
363 /* Unknown */
364 #elif defined(__dgux) /* 88K (but P6 in latest boxes) */
365 # define DES_UNROLL
366 #elif defined(__sgi) /* Newer MIPS */
367 # define DES_PTR
368 # define DES_RISC2
369 # define DES_UNROLL
370 #elif defined(i386) || defined(__i386__) /* x86 boxes, should be gcc */
371 # define DES_PTR
372 # define DES_RISC1
373 # define DES_UNROLL
374 #endif /* Systems-specific speed defines */
375 #endif

377 #endif /* DES_DEFAULT_OPTIONS */
378 #endif /* HEADER_DES_LOCL_H */

new/usr/src/lib/openssl/include/openssl/opensslv.h 1

**
 3750 Fri May 30 18:31:20 2014
new/usr/src/lib/openssl/include/openssl/opensslv.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #ifndef HEADER_OPENSSLV_H
2 #define HEADER_OPENSSLV_H

4 /* Numeric release version identifier:
5 * MNNFFPPS: major minor fix patch status
6 * The status nibble has one of the values 0 for development, 1 to e for betas
7 * 1 to 14, and f for release. The patch level is exactly that.
8 * For example:
9 * 0.9.3-dev 0x00903000
10 * 0.9.3-beta1 0x00903001
11 * 0.9.3-beta2-dev 0x00903002
12 * 0.9.3-beta2 0x00903002 (same as ...beta2-dev)
13 * 0.9.3 0x0090300f
14 * 0.9.3a 0x0090301f
15 * 0.9.4 0x0090400f
16 * 1.2.3z 0x102031af
17 *
18 * For continuity reasons (because 0.9.5 is already out, and is coded
19 * 0x00905100), between 0.9.5 and 0.9.6 the coding of the patch level
20 * part is slightly different, by setting the highest bit. This means
21 * that 0.9.5a looks like this: 0x0090581f. At 0.9.6, we can start
22 * with 0x0090600S...
23 *
24 * (Prior to 0.9.3-dev a different scheme was used: 0.9.2b is 0x0922.)
25 * (Prior to 0.9.5a beta1, a different scheme was used: MMNNFFRBB for
26 * major minor fix final patch/beta)
27 */
28 #define OPENSSL_VERSION_NUMBER 0x1000107fL
29 #ifdef OPENSSL_FIPS
30 #define OPENSSL_VERSION_TEXT "OpenSSL 1.0.1g-fips 7 Apr 2014"
31 #else
32 #define OPENSSL_VERSION_TEXT "OpenSSL 1.0.1g 7 Apr 2014"
33 #endif
34 #define OPENSSL_VERSION_PTEXT " part of " OPENSSL_VERSION_TEXT

37 /* The macros below are to be used for shared library (.so, .dll, ...)
38 * versioning. That kind of versioning works a bit differently between
39 * operating systems. The most usual scheme is to set a major and a minor
40 * number, and have the runtime loader check that the major number is equal
41 * to what it was at application link time, while the minor number has to
42 * be greater or equal to what it was at application link time. With this
43 * scheme, the version number is usually part of the file name, like this:
44 *
45 * libcrypto.so.0.9
46 *
47 * Some unixen also make a softlink with the major verson number only:
48 *
49 * libcrypto.so.0
50 *
51 * On Tru64 and IRIX 6.x it works a little bit differently. There, the
52 * shared library version is stored in the file, and is actually a series
53 * of versions, separated by colons. The rightmost version present in the
54 * library when linking an application is stored in the application to be
55 * matched at run time. When the application is run, a check is done to
56 * see if the library version stored in the application matches any of the
57 * versions in the version string of the library itself.
58 * This version string can be constructed in any way, depending on what
59 * kind of matching is desired. However, to implement the same scheme as
60 * the one used in the other unixen, all compatible versions, from lowest
61 * to highest, should be part of the string. Consecutive builds would

new/usr/src/lib/openssl/include/openssl/opensslv.h 2

62 * give the following versions strings:
63 *
64 * 3.0
65 * 3.0:3.1
66 * 3.0:3.1:3.2
67 * 4.0
68 * 4.0:4.1
69 *
70 * Notice how version 4 is completely incompatible with version, and
71 * therefore give the breach you can see.
72 *
73 * There may be other schemes as well that I haven’t yet discovered.
74 *
75 * So, here’s the way it works here: first of all, the library version
76 * number doesn’t need at all to match the overall OpenSSL version.
77 * However, it’s nice and more understandable if it actually does.
78 * The current library version is stored in the macro SHLIB_VERSION_NUMBER,
79 * which is just a piece of text in the format "M.m.e" (Major, minor, edit).
80 * For the sake of Tru64, IRIX, and any other OS that behaves in similar ways,
81 * we need to keep a history of version numbers, which is done in the
82 * macro SHLIB_VERSION_HISTORY. The numbers are separated by colons and
83 * should only keep the versions that are binary compatible with the current.
84 */
85 #define SHLIB_VERSION_HISTORY ""
86 #define SHLIB_VERSION_NUMBER "1.0.0"

89 #endif /* HEADER_OPENSSLV_H */

new/usr/src/lib/openssl/include/openssl/ossl_typ.h 1

**
 7397 Fri May 30 18:31:20 2014
new/usr/src/lib/openssl/include/openssl/ossl_typ.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 #ifndef HEADER_OPENSSL_TYPES_H
56 #define HEADER_OPENSSL_TYPES_H

58 #include <openssl/e_os2.h>

60 #ifdef NO_ASN1_TYPEDEFS
61 #define ASN1_INTEGER ASN1_STRING

new/usr/src/lib/openssl/include/openssl/ossl_typ.h 2

62 #define ASN1_ENUMERATED ASN1_STRING
63 #define ASN1_BIT_STRING ASN1_STRING
64 #define ASN1_OCTET_STRING ASN1_STRING
65 #define ASN1_PRINTABLESTRING ASN1_STRING
66 #define ASN1_T61STRING ASN1_STRING
67 #define ASN1_IA5STRING ASN1_STRING
68 #define ASN1_UTCTIME ASN1_STRING
69 #define ASN1_GENERALIZEDTIME ASN1_STRING
70 #define ASN1_TIME ASN1_STRING
71 #define ASN1_GENERALSTRING ASN1_STRING
72 #define ASN1_UNIVERSALSTRING ASN1_STRING
73 #define ASN1_BMPSTRING ASN1_STRING
74 #define ASN1_VISIBLESTRING ASN1_STRING
75 #define ASN1_UTF8STRING ASN1_STRING
76 #define ASN1_BOOLEAN int
77 #define ASN1_NULL int
78 #else
79 typedef struct asn1_string_st ASN1_INTEGER;
80 typedef struct asn1_string_st ASN1_ENUMERATED;
81 typedef struct asn1_string_st ASN1_BIT_STRING;
82 typedef struct asn1_string_st ASN1_OCTET_STRING;
83 typedef struct asn1_string_st ASN1_PRINTABLESTRING;
84 typedef struct asn1_string_st ASN1_T61STRING;
85 typedef struct asn1_string_st ASN1_IA5STRING;
86 typedef struct asn1_string_st ASN1_GENERALSTRING;
87 typedef struct asn1_string_st ASN1_UNIVERSALSTRING;
88 typedef struct asn1_string_st ASN1_BMPSTRING;
89 typedef struct asn1_string_st ASN1_UTCTIME;
90 typedef struct asn1_string_st ASN1_TIME;
91 typedef struct asn1_string_st ASN1_GENERALIZEDTIME;
92 typedef struct asn1_string_st ASN1_VISIBLESTRING;
93 typedef struct asn1_string_st ASN1_UTF8STRING;
94 typedef struct asn1_string_st ASN1_STRING;
95 typedef int ASN1_BOOLEAN;
96 typedef int ASN1_NULL;
97 #endif

99 typedef struct ASN1_ITEM_st ASN1_ITEM;
100 typedef struct asn1_pctx_st ASN1_PCTX;

102 #ifdef OPENSSL_SYS_WIN32
103 #undef X509_NAME
104 #undef X509_EXTENSIONS
105 #undef X509_CERT_PAIR
106 #undef PKCS7_ISSUER_AND_SERIAL
107 #undef OCSP_REQUEST
108 #undef OCSP_RESPONSE
109 #endif

111 #ifdef BIGNUM
112 #undef BIGNUM
113 #endif
114 typedef struct bignum_st BIGNUM;
115 typedef struct bignum_ctx BN_CTX;
116 typedef struct bn_blinding_st BN_BLINDING;
117 typedef struct bn_mont_ctx_st BN_MONT_CTX;
118 typedef struct bn_recp_ctx_st BN_RECP_CTX;
119 typedef struct bn_gencb_st BN_GENCB;

121 typedef struct buf_mem_st BUF_MEM;

123 typedef struct evp_cipher_st EVP_CIPHER;
124 typedef struct evp_cipher_ctx_st EVP_CIPHER_CTX;
125 typedef struct env_md_st EVP_MD;
126 typedef struct env_md_ctx_st EVP_MD_CTX;
127 typedef struct evp_pkey_st EVP_PKEY;

new/usr/src/lib/openssl/include/openssl/ossl_typ.h 3

129 typedef struct evp_pkey_asn1_method_st EVP_PKEY_ASN1_METHOD;

131 typedef struct evp_pkey_method_st EVP_PKEY_METHOD;
132 typedef struct evp_pkey_ctx_st EVP_PKEY_CTX;

134 typedef struct dh_st DH;
135 typedef struct dh_method DH_METHOD;

137 typedef struct dsa_st DSA;
138 typedef struct dsa_method DSA_METHOD;

140 typedef struct rsa_st RSA;
141 typedef struct rsa_meth_st RSA_METHOD;

143 typedef struct rand_meth_st RAND_METHOD;

145 typedef struct ecdh_method ECDH_METHOD;
146 typedef struct ecdsa_method ECDSA_METHOD;

148 typedef struct x509_st X509;
149 typedef struct X509_algor_st X509_ALGOR;
150 typedef struct X509_crl_st X509_CRL;
151 typedef struct x509_crl_method_st X509_CRL_METHOD;
152 typedef struct x509_revoked_st X509_REVOKED;
153 typedef struct X509_name_st X509_NAME;
154 typedef struct X509_pubkey_st X509_PUBKEY;
155 typedef struct x509_store_st X509_STORE;
156 typedef struct x509_store_ctx_st X509_STORE_CTX;

158 typedef struct pkcs8_priv_key_info_st PKCS8_PRIV_KEY_INFO;

160 typedef struct v3_ext_ctx X509V3_CTX;
161 typedef struct conf_st CONF;

163 typedef struct store_st STORE;
164 typedef struct store_method_st STORE_METHOD;

166 typedef struct ui_st UI;
167 typedef struct ui_method_st UI_METHOD;

169 typedef struct st_ERR_FNS ERR_FNS;

171 typedef struct engine_st ENGINE;
172 typedef struct ssl_st SSL;
173 typedef struct ssl_ctx_st SSL_CTX;

175 typedef struct X509_POLICY_NODE_st X509_POLICY_NODE;
176 typedef struct X509_POLICY_LEVEL_st X509_POLICY_LEVEL;
177 typedef struct X509_POLICY_TREE_st X509_POLICY_TREE;
178 typedef struct X509_POLICY_CACHE_st X509_POLICY_CACHE;

180 typedef struct AUTHORITY_KEYID_st AUTHORITY_KEYID;
181 typedef struct DIST_POINT_st DIST_POINT;
182 typedef struct ISSUING_DIST_POINT_st ISSUING_DIST_POINT;
183 typedef struct NAME_CONSTRAINTS_st NAME_CONSTRAINTS;

185 /* If placed in pkcs12.h, we end up with a circular depency with pkcs7.h */
186 #define DECLARE_PKCS12_STACK_OF(type) /* Nothing */
187 #define IMPLEMENT_PKCS12_STACK_OF(type) /* Nothing */

189 typedef struct crypto_ex_data_st CRYPTO_EX_DATA;
190 /* Callback types for crypto.h */
191 typedef int CRYPTO_EX_new(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
192 int idx, long argl, void *argp);
193 typedef void CRYPTO_EX_free(void *parent, void *ptr, CRYPTO_EX_DATA *ad,

new/usr/src/lib/openssl/include/openssl/ossl_typ.h 4

194 int idx, long argl, void *argp);
195 typedef int CRYPTO_EX_dup(CRYPTO_EX_DATA *to, CRYPTO_EX_DATA *from, void *from_d
196 int idx, long argl, void *argp);

198 typedef struct ocsp_req_ctx_st OCSP_REQ_CTX;
199 typedef struct ocsp_response_st OCSP_RESPONSE;
200 typedef struct ocsp_responder_id_st OCSP_RESPID;

202 #endif /* def HEADER_OPENSSL_TYPES_H */

new/usr/src/lib/openssl/include/openssl/pem.h 1

**
 21992 Fri May 30 18:31:21 2014
new/usr/src/lib/openssl/include/openssl/pem.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pem/pem.h */
2 /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_PEM_H
60 #define HEADER_PEM_H

new/usr/src/lib/openssl/include/openssl/pem.h 2

62 #include <openssl/e_os2.h>
63 #ifndef OPENSSL_NO_BIO
64 #include <openssl/bio.h>
65 #endif
66 #ifndef OPENSSL_NO_STACK
67 #include <openssl/stack.h>
68 #endif
69 #include <openssl/evp.h>
70 #include <openssl/x509.h>
71 #include <openssl/pem2.h>

73 #ifdef __cplusplus
74 extern "C" {
75 #endif

77 #define PEM_BUFSIZE 1024

79 #define PEM_OBJ_UNDEF 0
80 #define PEM_OBJ_X509 1
81 #define PEM_OBJ_X509_REQ 2
82 #define PEM_OBJ_CRL 3
83 #define PEM_OBJ_SSL_SESSION 4
84 #define PEM_OBJ_PRIV_KEY 10
85 #define PEM_OBJ_PRIV_RSA 11
86 #define PEM_OBJ_PRIV_DSA 12
87 #define PEM_OBJ_PRIV_DH 13
88 #define PEM_OBJ_PUB_RSA 14
89 #define PEM_OBJ_PUB_DSA 15
90 #define PEM_OBJ_PUB_DH 16
91 #define PEM_OBJ_DHPARAMS 17
92 #define PEM_OBJ_DSAPARAMS 18
93 #define PEM_OBJ_PRIV_RSA_PUBLIC 19
94 #define PEM_OBJ_PRIV_ECDSA 20
95 #define PEM_OBJ_PUB_ECDSA 21
96 #define PEM_OBJ_ECPARAMETERS 22

98 #define PEM_ERROR 30
99 #define PEM_DEK_DES_CBC 40
100 #define PEM_DEK_IDEA_CBC 45
101 #define PEM_DEK_DES_EDE 50
102 #define PEM_DEK_DES_ECB 60
103 #define PEM_DEK_RSA 70
104 #define PEM_DEK_RSA_MD2 80
105 #define PEM_DEK_RSA_MD5 90

107 #define PEM_MD_MD2 NID_md2
108 #define PEM_MD_MD5 NID_md5
109 #define PEM_MD_SHA NID_sha
110 #define PEM_MD_MD2_RSA NID_md2WithRSAEncryption
111 #define PEM_MD_MD5_RSA NID_md5WithRSAEncryption
112 #define PEM_MD_SHA_RSA NID_sha1WithRSAEncryption

114 #define PEM_STRING_X509_OLD "X509 CERTIFICATE"
115 #define PEM_STRING_X509 "CERTIFICATE"
116 #define PEM_STRING_X509_PAIR "CERTIFICATE PAIR"
117 #define PEM_STRING_X509_TRUSTED "TRUSTED CERTIFICATE"
118 #define PEM_STRING_X509_REQ_OLD "NEW CERTIFICATE REQUEST"
119 #define PEM_STRING_X509_REQ "CERTIFICATE REQUEST"
120 #define PEM_STRING_X509_CRL "X509 CRL"
121 #define PEM_STRING_EVP_PKEY "ANY PRIVATE KEY"
122 #define PEM_STRING_PUBLIC "PUBLIC KEY"
123 #define PEM_STRING_RSA "RSA PRIVATE KEY"
124 #define PEM_STRING_RSA_PUBLIC "RSA PUBLIC KEY"
125 #define PEM_STRING_DSA "DSA PRIVATE KEY"
126 #define PEM_STRING_DSA_PUBLIC "DSA PUBLIC KEY"
127 #define PEM_STRING_PKCS7 "PKCS7"

new/usr/src/lib/openssl/include/openssl/pem.h 3

128 #define PEM_STRING_PKCS7_SIGNED "PKCS #7 SIGNED DATA"
129 #define PEM_STRING_PKCS8 "ENCRYPTED PRIVATE KEY"
130 #define PEM_STRING_PKCS8INF "PRIVATE KEY"
131 #define PEM_STRING_DHPARAMS "DH PARAMETERS"
132 #define PEM_STRING_SSL_SESSION "SSL SESSION PARAMETERS"
133 #define PEM_STRING_DSAPARAMS "DSA PARAMETERS"
134 #define PEM_STRING_ECDSA_PUBLIC "ECDSA PUBLIC KEY"
135 #define PEM_STRING_ECPARAMETERS "EC PARAMETERS"
136 #define PEM_STRING_ECPRIVATEKEY "EC PRIVATE KEY"
137 #define PEM_STRING_PARAMETERS "PARAMETERS"
138 #define PEM_STRING_CMS "CMS"

140 /* Note that this structure is initialised by PEM_SealInit and cleaned up
141 by PEM_SealFinal (at least for now) */
142 typedef struct PEM_Encode_Seal_st
143 {
144 EVP_ENCODE_CTX encode;
145 EVP_MD_CTX md;
146 EVP_CIPHER_CTX cipher;
147 } PEM_ENCODE_SEAL_CTX;

149 /* enc_type is one off */
150 #define PEM_TYPE_ENCRYPTED 10
151 #define PEM_TYPE_MIC_ONLY 20
152 #define PEM_TYPE_MIC_CLEAR 30
153 #define PEM_TYPE_CLEAR 40

155 typedef struct pem_recip_st
156 {
157 char *name;
158 X509_NAME *dn;

160 int cipher;
161 int key_enc;
162 /* char iv[8]; unused and wrong size */
163 } PEM_USER;

165 typedef struct pem_ctx_st
166 {
167 int type; /* what type of object */

169 struct {
170 int version;
171 int mode;
172 } proc_type;

174 char *domain;

176 struct {
177 int cipher;
178 /* unused, and wrong size
179 unsigned char iv[8]; */
180 } DEK_info;
181
182 PEM_USER *originator;

184 int num_recipient;
185 PEM_USER **recipient;

187 /* XXX(ben): don#t think this is used!
188 STACK *x509_chain; / * certificate chain */
189 EVP_MD *md; /* signature type */

191 int md_enc; /* is the md encrypted or not? */
192 int md_len; /* length of md_data */
193 char *md_data; /* message digest, could be pkey encrypted */

new/usr/src/lib/openssl/include/openssl/pem.h 4

195 EVP_CIPHER *dec; /* date encryption cipher */
196 int key_len; /* key length */
197 unsigned char *key; /* key */
198 /* unused, and wrong size
199 unsigned char iv[8]; */

201
202 int data_enc; /* is the data encrypted */
203 int data_len;
204 unsigned char *data;
205 } PEM_CTX;

207 /* These macros make the PEM_read/PEM_write functions easier to maintain and
208 * write. Now they are all implemented with either:
209 * IMPLEMENT_PEM_rw(...) or IMPLEMENT_PEM_rw_cb(...)
210 */

212 #ifdef OPENSSL_NO_FP_API

214 #define IMPLEMENT_PEM_read_fp(name, type, str, asn1) /**/
215 #define IMPLEMENT_PEM_write_fp(name, type, str, asn1) /**/
216 #define IMPLEMENT_PEM_write_fp_const(name, type, str, asn1) /**/
217 #define IMPLEMENT_PEM_write_cb_fp(name, type, str, asn1) /**/
218 #define IMPLEMENT_PEM_write_cb_fp_const(name, type, str, asn1) /**/

220 #else

222 #define IMPLEMENT_PEM_read_fp(name, type, str, asn1) \
223 type *PEM_read_##name(FILE *fp, type **x, pem_password_cb *cb, void *u)\
224 { \
225 return PEM_ASN1_read((d2i_of_void *)d2i_##asn1, str,fp,(void **)x,cb,u); \
226 }

228 #define IMPLEMENT_PEM_write_fp(name, type, str, asn1) \
229 int PEM_write_##name(FILE *fp, type *x) \
230 { \
231 return PEM_ASN1_write((i2d_of_void *)i2d_##asn1,str,fp,x,NULL,NULL,0,NULL,NULL);
232 }

234 #define IMPLEMENT_PEM_write_fp_const(name, type, str, asn1) \
235 int PEM_write_##name(FILE *fp, const type *x) \
236 { \
237 return PEM_ASN1_write((i2d_of_void *)i2d_##asn1,str,fp,(void *)x,NULL,NULL,0,NUL
238 }

240 #define IMPLEMENT_PEM_write_cb_fp(name, type, str, asn1) \
241 int PEM_write_##name(FILE *fp, type *x, const EVP_CIPHER *enc, \
242 unsigned char *kstr, int klen, pem_password_cb *cb, \
243 void *u) \
244 { \
245 return PEM_ASN1_write((i2d_of_void *)i2d_##asn1,str,fp,x,enc,kstr,klen,c
246 }

248 #define IMPLEMENT_PEM_write_cb_fp_const(name, type, str, asn1) \
249 int PEM_write_##name(FILE *fp, type *x, const EVP_CIPHER *enc, \
250 unsigned char *kstr, int klen, pem_password_cb *cb, \
251 void *u) \
252 { \
253 return PEM_ASN1_write((i2d_of_void *)i2d_##asn1,str,fp,x,enc,kstr,klen,c
254 }

256 #endif

258 #define IMPLEMENT_PEM_read_bio(name, type, str, asn1) \
259 type *PEM_read_bio_##name(BIO *bp, type **x, pem_password_cb *cb, void *u)\

new/usr/src/lib/openssl/include/openssl/pem.h 5

260 { \
261 return PEM_ASN1_read_bio((d2i_of_void *)d2i_##asn1, str,bp,(void **)x,cb,u); \
262 }

264 #define IMPLEMENT_PEM_write_bio(name, type, str, asn1) \
265 int PEM_write_bio_##name(BIO *bp, type *x) \
266 { \
267 return PEM_ASN1_write_bio((i2d_of_void *)i2d_##asn1,str,bp,x,NULL,NULL,0,NULL,NU
268 }

270 #define IMPLEMENT_PEM_write_bio_const(name, type, str, asn1) \
271 int PEM_write_bio_##name(BIO *bp, const type *x) \
272 { \
273 return PEM_ASN1_write_bio((i2d_of_void *)i2d_##asn1,str,bp,(void *)x,NULL,NULL,0
274 }

276 #define IMPLEMENT_PEM_write_cb_bio(name, type, str, asn1) \
277 int PEM_write_bio_##name(BIO *bp, type *x, const EVP_CIPHER *enc, \
278 unsigned char *kstr, int klen, pem_password_cb *cb, void *u) \
279 { \
280 return PEM_ASN1_write_bio((i2d_of_void *)i2d_##asn1,str,bp,x,enc,kstr,kl
281 }

283 #define IMPLEMENT_PEM_write_cb_bio_const(name, type, str, asn1) \
284 int PEM_write_bio_##name(BIO *bp, type *x, const EVP_CIPHER *enc, \
285 unsigned char *kstr, int klen, pem_password_cb *cb, void *u) \
286 { \
287 return PEM_ASN1_write_bio((i2d_of_void *)i2d_##asn1,str,bp,(void *)x,enc
288 }

290 #define IMPLEMENT_PEM_write(name, type, str, asn1) \
291 IMPLEMENT_PEM_write_bio(name, type, str, asn1) \
292 IMPLEMENT_PEM_write_fp(name, type, str, asn1)

294 #define IMPLEMENT_PEM_write_const(name, type, str, asn1) \
295 IMPLEMENT_PEM_write_bio_const(name, type, str, asn1) \
296 IMPLEMENT_PEM_write_fp_const(name, type, str, asn1)

298 #define IMPLEMENT_PEM_write_cb(name, type, str, asn1) \
299 IMPLEMENT_PEM_write_cb_bio(name, type, str, asn1) \
300 IMPLEMENT_PEM_write_cb_fp(name, type, str, asn1)

302 #define IMPLEMENT_PEM_write_cb_const(name, type, str, asn1) \
303 IMPLEMENT_PEM_write_cb_bio_const(name, type, str, asn1) \
304 IMPLEMENT_PEM_write_cb_fp_const(name, type, str, asn1)

306 #define IMPLEMENT_PEM_read(name, type, str, asn1) \
307 IMPLEMENT_PEM_read_bio(name, type, str, asn1) \
308 IMPLEMENT_PEM_read_fp(name, type, str, asn1)

310 #define IMPLEMENT_PEM_rw(name, type, str, asn1) \
311 IMPLEMENT_PEM_read(name, type, str, asn1) \
312 IMPLEMENT_PEM_write(name, type, str, asn1)

314 #define IMPLEMENT_PEM_rw_const(name, type, str, asn1) \
315 IMPLEMENT_PEM_read(name, type, str, asn1) \
316 IMPLEMENT_PEM_write_const(name, type, str, asn1)

318 #define IMPLEMENT_PEM_rw_cb(name, type, str, asn1) \
319 IMPLEMENT_PEM_read(name, type, str, asn1) \
320 IMPLEMENT_PEM_write_cb(name, type, str, asn1)

322 /* These are the same except they are for the declarations */

324 #if defined(OPENSSL_NO_FP_API)

new/usr/src/lib/openssl/include/openssl/pem.h 6

326 #define DECLARE_PEM_read_fp(name, type) /**/
327 #define DECLARE_PEM_write_fp(name, type) /**/
328 #define DECLARE_PEM_write_cb_fp(name, type) /**/

330 #else

332 #define DECLARE_PEM_read_fp(name, type) \
333 type *PEM_read_##name(FILE *fp, type **x, pem_password_cb *cb, void *u);

335 #define DECLARE_PEM_write_fp(name, type) \
336 int PEM_write_##name(FILE *fp, type *x);

338 #define DECLARE_PEM_write_fp_const(name, type) \
339 int PEM_write_##name(FILE *fp, const type *x);

341 #define DECLARE_PEM_write_cb_fp(name, type) \
342 int PEM_write_##name(FILE *fp, type *x, const EVP_CIPHER *enc, \
343 unsigned char *kstr, int klen, pem_password_cb *cb, void *u);

345 #endif

347 #ifndef OPENSSL_NO_BIO
348 #define DECLARE_PEM_read_bio(name, type) \
349 type *PEM_read_bio_##name(BIO *bp, type **x, pem_password_cb *cb, void *

351 #define DECLARE_PEM_write_bio(name, type) \
352 int PEM_write_bio_##name(BIO *bp, type *x);

354 #define DECLARE_PEM_write_bio_const(name, type) \
355 int PEM_write_bio_##name(BIO *bp, const type *x);

357 #define DECLARE_PEM_write_cb_bio(name, type) \
358 int PEM_write_bio_##name(BIO *bp, type *x, const EVP_CIPHER *enc, \
359 unsigned char *kstr, int klen, pem_password_cb *cb, void *u);

361 #else

363 #define DECLARE_PEM_read_bio(name, type) /**/
364 #define DECLARE_PEM_write_bio(name, type) /**/
365 #define DECLARE_PEM_write_bio_const(name, type) /**/
366 #define DECLARE_PEM_write_cb_bio(name, type) /**/

368 #endif

370 #define DECLARE_PEM_write(name, type) \
371 DECLARE_PEM_write_bio(name, type) \
372 DECLARE_PEM_write_fp(name, type)

374 #define DECLARE_PEM_write_const(name, type) \
375 DECLARE_PEM_write_bio_const(name, type) \
376 DECLARE_PEM_write_fp_const(name, type)

378 #define DECLARE_PEM_write_cb(name, type) \
379 DECLARE_PEM_write_cb_bio(name, type) \
380 DECLARE_PEM_write_cb_fp(name, type)

382 #define DECLARE_PEM_read(name, type) \
383 DECLARE_PEM_read_bio(name, type) \
384 DECLARE_PEM_read_fp(name, type)

386 #define DECLARE_PEM_rw(name, type) \
387 DECLARE_PEM_read(name, type) \
388 DECLARE_PEM_write(name, type)

390 #define DECLARE_PEM_rw_const(name, type) \
391 DECLARE_PEM_read(name, type) \

new/usr/src/lib/openssl/include/openssl/pem.h 7

392 DECLARE_PEM_write_const(name, type)

394 #define DECLARE_PEM_rw_cb(name, type) \
395 DECLARE_PEM_read(name, type) \
396 DECLARE_PEM_write_cb(name, type)

398 #if 1
399 /* "userdata": new with OpenSSL 0.9.4 */
400 typedef int pem_password_cb(char *buf, int size, int rwflag, void *userdata);
401 #else
402 /* OpenSSL 0.9.3, 0.9.3a */
403 typedef int pem_password_cb(char *buf, int size, int rwflag);
404 #endif

406 int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher);
407 int PEM_do_header (EVP_CIPHER_INFO *cipher, unsigned char *data,long *len,
408 pem_password_cb *callback,void *u);

410 #ifndef OPENSSL_NO_BIO
411 int PEM_read_bio(BIO *bp, char **name, char **header,
412 unsigned char **data,long *len);
413 int PEM_write_bio(BIO *bp,const char *name,char *hdr,unsigned char *data,
414 long len);
415 int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, const char
416 pem_password_cb *cb, void *u);
417 void * PEM_ASN1_read_bio(d2i_of_void *d2i, const char *name, BIO *bp,
418 void **x, pem_password_cb *cb, void *u);
419 int PEM_ASN1_write_bio(i2d_of_void *i2d,const char *name,BIO *bp, void *x,
420 const EVP_CIPHER *enc,unsigned char *kstr,int klen,
421 pem_password_cb *cb, void *u);

423 STACK_OF(X509_INFO) * PEM_X509_INFO_read_bio(BIO *bp, STACK_OF(X509_INFO) *sk,
424 int PEM_X509_INFO_write_bio(BIO *bp,X509_INFO *xi, EVP_CIPHER *enc,
425 unsigned char *kstr, int klen, pem_password_cb *cd, void *u);
426 #endif

428 int PEM_read(FILE *fp, char **name, char **header,
429 unsigned char **data,long *len);
430 int PEM_write(FILE *fp,char *name,char *hdr,unsigned char *data,long len);
431 void * PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x,
432 pem_password_cb *cb, void *u);
433 int PEM_ASN1_write(i2d_of_void *i2d,const char *name,FILE *fp,
434 void *x,const EVP_CIPHER *enc,unsigned char *kstr,
435 int klen,pem_password_cb *callback, void *u);
436 STACK_OF(X509_INFO) * PEM_X509_INFO_read(FILE *fp, STACK_OF(X509_INFO) *sk,
437 pem_password_cb *cb, void *u);

439 int PEM_SealInit(PEM_ENCODE_SEAL_CTX *ctx, EVP_CIPHER *type,
440 EVP_MD *md_type, unsigned char **ek, int *ekl,
441 unsigned char *iv, EVP_PKEY **pubk, int npubk);
442 void PEM_SealUpdate(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *out, int *outl,
443 unsigned char *in, int inl);
444 int PEM_SealFinal(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *sig,int *sigl,
445 unsigned char *out, int *outl, EVP_PKEY *priv);

447 void PEM_SignInit(EVP_MD_CTX *ctx, EVP_MD *type);
448 void PEM_SignUpdate(EVP_MD_CTX *ctx,unsigned char *d,unsigned int cnt);
449 int PEM_SignFinal(EVP_MD_CTX *ctx, unsigned char *sigret,
450 unsigned int *siglen, EVP_PKEY *pkey);

452 int PEM_def_callback(char *buf, int num, int w, void *key);
453 void PEM_proc_type(char *buf, int type);
454 void PEM_dek_info(char *buf, const char *type, int len, char *str);

457 #include <openssl/symhacks.h>

new/usr/src/lib/openssl/include/openssl/pem.h 8

459 DECLARE_PEM_rw(X509, X509)

461 DECLARE_PEM_rw(X509_AUX, X509)

463 DECLARE_PEM_rw(X509_CERT_PAIR, X509_CERT_PAIR)

465 DECLARE_PEM_rw(X509_REQ, X509_REQ)
466 DECLARE_PEM_write(X509_REQ_NEW, X509_REQ)

468 DECLARE_PEM_rw(X509_CRL, X509_CRL)

470 DECLARE_PEM_rw(PKCS7, PKCS7)

472 DECLARE_PEM_rw(NETSCAPE_CERT_SEQUENCE, NETSCAPE_CERT_SEQUENCE)

474 DECLARE_PEM_rw(PKCS8, X509_SIG)

476 DECLARE_PEM_rw(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO)

478 #ifndef OPENSSL_NO_RSA

480 DECLARE_PEM_rw_cb(RSAPrivateKey, RSA)

482 DECLARE_PEM_rw_const(RSAPublicKey, RSA)
483 DECLARE_PEM_rw(RSA_PUBKEY, RSA)

485 #endif

487 #ifndef OPENSSL_NO_DSA

489 DECLARE_PEM_rw_cb(DSAPrivateKey, DSA)

491 DECLARE_PEM_rw(DSA_PUBKEY, DSA)

493 DECLARE_PEM_rw_const(DSAparams, DSA)

495 #endif

497 #ifndef OPENSSL_NO_EC
498 DECLARE_PEM_rw_const(ECPKParameters, EC_GROUP)
499 DECLARE_PEM_rw_cb(ECPrivateKey, EC_KEY)
500 DECLARE_PEM_rw(EC_PUBKEY, EC_KEY)
501 #endif

503 #ifndef OPENSSL_NO_DH

505 DECLARE_PEM_rw_const(DHparams, DH)

507 #endif

509 DECLARE_PEM_rw_cb(PrivateKey, EVP_PKEY)

511 DECLARE_PEM_rw(PUBKEY, EVP_PKEY)

513 int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
514 char *kstr, int klen,
515 pem_password_cb *cb, void *u);
516 int PEM_write_bio_PKCS8PrivateKey(BIO *, EVP_PKEY *, const EVP_CIPHER *,
517 char *, int, pem_password_cb *, void *);
518 int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
519 char *kstr, int klen,
520 pem_password_cb *cb, void *u);
521 int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid,
522 char *kstr, int klen,
523 pem_password_cb *cb, void *u);

new/usr/src/lib/openssl/include/openssl/pem.h 9

524 EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, vo

526 int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
527 char *kstr, int klen,
528 pem_password_cb *cb, void *u);
529 int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid,
530 char *kstr, int klen,
531 pem_password_cb *cb, void *u);
532 int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
533 char *kstr, int klen,
534 pem_password_cb *cb, void *u);

536 EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, vo

538 int PEM_write_PKCS8PrivateKey(FILE *fp,EVP_PKEY *x,const EVP_CIPHER *enc,
539 char *kstr,int klen, pem_password_cb *cd, void *u)

541 EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x);
542 int PEM_write_bio_Parameters(BIO *bp, EVP_PKEY *x);

545 EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length);
546 EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length);
547 EVP_PKEY *b2i_PrivateKey_bio(BIO *in);
548 EVP_PKEY *b2i_PublicKey_bio(BIO *in);
549 int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk);
550 int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk);
551 #ifndef OPENSSL_NO_RC4
552 EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u);
553 int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel,
554 pem_password_cb *cb, void *u);
555 #endif

558 /* BEGIN ERROR CODES */
559 /* The following lines are auto generated by the script mkerr.pl. Any changes
560 * made after this point may be overwritten when the script is next run.
561 */
562 void ERR_load_PEM_strings(void);

564 /* Error codes for the PEM functions. */

566 /* Function codes. */
567 #define PEM_F_B2I_DSS 127
568 #define PEM_F_B2I_PVK_BIO 128
569 #define PEM_F_B2I_RSA 129
570 #define PEM_F_CHECK_BITLEN_DSA 130
571 #define PEM_F_CHECK_BITLEN_RSA 131
572 #define PEM_F_D2I_PKCS8PRIVATEKEY_BIO 120
573 #define PEM_F_D2I_PKCS8PRIVATEKEY_FP 121
574 #define PEM_F_DO_B2I 132
575 #define PEM_F_DO_B2I_BIO 133
576 #define PEM_F_DO_BLOB_HEADER 134
577 #define PEM_F_DO_PK8PKEY 126
578 #define PEM_F_DO_PK8PKEY_FP 125
579 #define PEM_F_DO_PVK_BODY 135
580 #define PEM_F_DO_PVK_HEADER 136
581 #define PEM_F_I2B_PVK 137
582 #define PEM_F_I2B_PVK_BIO 138
583 #define PEM_F_LOAD_IV 101
584 #define PEM_F_PEM_ASN1_READ 102
585 #define PEM_F_PEM_ASN1_READ_BIO 103
586 #define PEM_F_PEM_ASN1_WRITE 104
587 #define PEM_F_PEM_ASN1_WRITE_BIO 105
588 #define PEM_F_PEM_DEF_CALLBACK 100
589 #define PEM_F_PEM_DO_HEADER 106

new/usr/src/lib/openssl/include/openssl/pem.h 10

590 #define PEM_F_PEM_F_PEM_WRITE_PKCS8PRIVATEKEY 118
591 #define PEM_F_PEM_GET_EVP_CIPHER_INFO 107
592 #define PEM_F_PEM_PK8PKEY 119
593 #define PEM_F_PEM_READ 108
594 #define PEM_F_PEM_READ_BIO 109
595 #define PEM_F_PEM_READ_BIO_PARAMETERS 140
596 #define PEM_F_PEM_READ_BIO_PRIVATEKEY 123
597 #define PEM_F_PEM_READ_PRIVATEKEY 124
598 #define PEM_F_PEM_SEALFINAL 110
599 #define PEM_F_PEM_SEALINIT 111
600 #define PEM_F_PEM_SIGNFINAL 112
601 #define PEM_F_PEM_WRITE 113
602 #define PEM_F_PEM_WRITE_BIO 114
603 #define PEM_F_PEM_WRITE_PRIVATEKEY 139
604 #define PEM_F_PEM_X509_INFO_READ 115
605 #define PEM_F_PEM_X509_INFO_READ_BIO 116
606 #define PEM_F_PEM_X509_INFO_WRITE_BIO 117

608 /* Reason codes. */
609 #define PEM_R_BAD_BASE64_DECODE 100
610 #define PEM_R_BAD_DECRYPT 101
611 #define PEM_R_BAD_END_LINE 102
612 #define PEM_R_BAD_IV_CHARS 103
613 #define PEM_R_BAD_MAGIC_NUMBER 116
614 #define PEM_R_BAD_PASSWORD_READ 104
615 #define PEM_R_BAD_VERSION_NUMBER 117
616 #define PEM_R_BIO_WRITE_FAILURE 118
617 #define PEM_R_CIPHER_IS_NULL 127
618 #define PEM_R_ERROR_CONVERTING_PRIVATE_KEY 115
619 #define PEM_R_EXPECTING_PRIVATE_KEY_BLOB 119
620 #define PEM_R_EXPECTING_PUBLIC_KEY_BLOB 120
621 #define PEM_R_INCONSISTENT_HEADER 121
622 #define PEM_R_KEYBLOB_HEADER_PARSE_ERROR 122
623 #define PEM_R_KEYBLOB_TOO_SHORT 123
624 #define PEM_R_NOT_DEK_INFO 105
625 #define PEM_R_NOT_ENCRYPTED 106
626 #define PEM_R_NOT_PROC_TYPE 107
627 #define PEM_R_NO_START_LINE 108
628 #define PEM_R_PROBLEMS_GETTING_PASSWORD 109
629 #define PEM_R_PUBLIC_KEY_NO_RSA 110
630 #define PEM_R_PVK_DATA_TOO_SHORT 124
631 #define PEM_R_PVK_TOO_SHORT 125
632 #define PEM_R_READ_KEY 111
633 #define PEM_R_SHORT_HEADER 112
634 #define PEM_R_UNSUPPORTED_CIPHER 113
635 #define PEM_R_UNSUPPORTED_ENCRYPTION 114
636 #define PEM_R_UNSUPPORTED_KEY_COMPONENTS 126

638 #ifdef __cplusplus
639 }
640 #endif
641 #endif

new/usr/src/lib/openssl/include/openssl/pem2.h 1

**
 2863 Fri May 30 18:31:21 2014
new/usr/src/lib/openssl/include/openssl/pem2.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 /*
56 * This header only exists to break a circular dependency between pem and err
57 * Ben 30 Jan 1999.
58 */

60 #ifdef __cplusplus
61 extern "C" {

new/usr/src/lib/openssl/include/openssl/pem2.h 2

62 #endif

64 #ifndef HEADER_PEM_H
65 void ERR_load_PEM_strings(void);
66 #endif

68 #ifdef __cplusplus
69 }
70 #endif

new/usr/src/lib/openssl/include/openssl/pkcs12.h 1

**
 12654 Fri May 30 18:31:21 2014
new/usr/src/lib/openssl/include/openssl/pkcs12.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pkcs12.h */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #ifndef HEADER_PKCS12_H
60 #define HEADER_PKCS12_H

new/usr/src/lib/openssl/include/openssl/pkcs12.h 2

62 #include <openssl/bio.h>
63 #include <openssl/x509.h>

65 #ifdef __cplusplus
66 extern "C" {
67 #endif

69 #define PKCS12_KEY_ID 1
70 #define PKCS12_IV_ID 2
71 #define PKCS12_MAC_ID 3

73 /* Default iteration count */
74 #ifndef PKCS12_DEFAULT_ITER
75 #define PKCS12_DEFAULT_ITER PKCS5_DEFAULT_ITER
76 #endif

78 #define PKCS12_MAC_KEY_LENGTH 20

80 #define PKCS12_SALT_LEN 8

82 /* Uncomment out next line for unicode password and names, otherwise ASCII */

84 /*#define PBE_UNICODE*/

86 #ifdef PBE_UNICODE
87 #define PKCS12_key_gen PKCS12_key_gen_uni
88 #define PKCS12_add_friendlyname PKCS12_add_friendlyname_uni
89 #else
90 #define PKCS12_key_gen PKCS12_key_gen_asc
91 #define PKCS12_add_friendlyname PKCS12_add_friendlyname_asc
92 #endif

94 /* MS key usage constants */

96 #define KEY_EX 0x10
97 #define KEY_SIG 0x80

99 typedef struct {
100 X509_SIG *dinfo;
101 ASN1_OCTET_STRING *salt;
102 ASN1_INTEGER *iter; /* defaults to 1 */
103 } PKCS12_MAC_DATA;

105 typedef struct {
106 ASN1_INTEGER *version;
107 PKCS12_MAC_DATA *mac;
108 PKCS7 *authsafes;
109 } PKCS12;

111 typedef struct {
112 ASN1_OBJECT *type;
113 union {
114 struct pkcs12_bag_st *bag; /* secret, crl and certbag */
115 struct pkcs8_priv_key_info_st *keybag; /* keybag */
116 X509_SIG *shkeybag; /* shrouded key bag */
117 STACK_OF(PKCS12_SAFEBAG) *safes;
118 ASN1_TYPE *other;
119 }value;
120 STACK_OF(X509_ATTRIBUTE) *attrib;
121 } PKCS12_SAFEBAG;

123 DECLARE_STACK_OF(PKCS12_SAFEBAG)
124 DECLARE_ASN1_SET_OF(PKCS12_SAFEBAG)
125 DECLARE_PKCS12_STACK_OF(PKCS12_SAFEBAG)

127 typedef struct pkcs12_bag_st {

new/usr/src/lib/openssl/include/openssl/pkcs12.h 3

128 ASN1_OBJECT *type;
129 union {
130 ASN1_OCTET_STRING *x509cert;
131 ASN1_OCTET_STRING *x509crl;
132 ASN1_OCTET_STRING *octet;
133 ASN1_IA5STRING *sdsicert;
134 ASN1_TYPE *other; /* Secret or other bag */
135 }value;
136 } PKCS12_BAGS;

138 #define PKCS12_ERROR 0
139 #define PKCS12_OK 1

141 /* Compatibility macros */

143 #define M_PKCS12_x5092certbag PKCS12_x5092certbag
144 #define M_PKCS12_x509crl2certbag PKCS12_x509crl2certbag

146 #define M_PKCS12_certbag2x509 PKCS12_certbag2x509
147 #define M_PKCS12_certbag2x509crl PKCS12_certbag2x509crl

149 #define M_PKCS12_unpack_p7data PKCS12_unpack_p7data
150 #define M_PKCS12_pack_authsafes PKCS12_pack_authsafes
151 #define M_PKCS12_unpack_authsafes PKCS12_unpack_authsafes
152 #define M_PKCS12_unpack_p7encdata PKCS12_unpack_p7encdata

154 #define M_PKCS12_decrypt_skey PKCS12_decrypt_skey
155 #define M_PKCS8_decrypt PKCS8_decrypt

157 #define M_PKCS12_bag_type(bg) OBJ_obj2nid((bg)->type)
158 #define M_PKCS12_cert_bag_type(bg) OBJ_obj2nid((bg)->value.bag->type)
159 #define M_PKCS12_crl_bag_type M_PKCS12_cert_bag_type

161 #define PKCS12_get_attr(bag, attr_nid) \
162 PKCS12_get_attr_gen(bag->attrib, attr_nid)

164 #define PKCS8_get_attr(p8, attr_nid) \
165 PKCS12_get_attr_gen(p8->attributes, attr_nid)

167 #define PKCS12_mac_present(p12) ((p12)->mac ? 1 : 0)

170 PKCS12_SAFEBAG *PKCS12_x5092certbag(X509 *x509);
171 PKCS12_SAFEBAG *PKCS12_x509crl2certbag(X509_CRL *crl);
172 X509 *PKCS12_certbag2x509(PKCS12_SAFEBAG *bag);
173 X509_CRL *PKCS12_certbag2x509crl(PKCS12_SAFEBAG *bag);

175 PKCS12_SAFEBAG *PKCS12_item_pack_safebag(void *obj, const ASN1_ITEM *it, int nid
176 int nid2);
177 PKCS12_SAFEBAG *PKCS12_MAKE_KEYBAG(PKCS8_PRIV_KEY_INFO *p8);
178 PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *p8, const char *pass, int passlen);
179 PKCS8_PRIV_KEY_INFO *PKCS12_decrypt_skey(PKCS12_SAFEBAG *bag, const char *pass,
180 int passlen);
181 X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher,
182 const char *pass, int passlen,
183 unsigned char *salt, int saltlen, int iter,
184 PKCS8_PRIV_KEY_INFO *p8);
185 PKCS12_SAFEBAG *PKCS12_MAKE_SHKEYBAG(int pbe_nid, const char *pass,
186 int passlen, unsigned char *salt,
187 int saltlen, int iter,
188 PKCS8_PRIV_KEY_INFO *p8);
189 PKCS7 *PKCS12_pack_p7data(STACK_OF(PKCS12_SAFEBAG) *sk);
190 STACK_OF(PKCS12_SAFEBAG) *PKCS12_unpack_p7data(PKCS7 *p7);
191 PKCS7 *PKCS12_pack_p7encdata(int pbe_nid, const char *pass, int passlen,
192 unsigned char *salt, int saltlen, int iter,
193 STACK_OF(PKCS12_SAFEBAG) *bags);

new/usr/src/lib/openssl/include/openssl/pkcs12.h 4

194 STACK_OF(PKCS12_SAFEBAG) *PKCS12_unpack_p7encdata(PKCS7 *p7, const char *pass, i

196 int PKCS12_pack_authsafes(PKCS12 *p12, STACK_OF(PKCS7) *safes);
197 STACK_OF(PKCS7) *PKCS12_unpack_authsafes(PKCS12 *p12);

199 int PKCS12_add_localkeyid(PKCS12_SAFEBAG *bag, unsigned char *name, int namelen)
200 int PKCS12_add_friendlyname_asc(PKCS12_SAFEBAG *bag, const char *name,
201 int namelen);
202 int PKCS12_add_CSPName_asc(PKCS12_SAFEBAG *bag, const char *name,
203 int namelen);
204 int PKCS12_add_friendlyname_uni(PKCS12_SAFEBAG *bag, const unsigned char *name,
205 int namelen);
206 int PKCS8_add_keyusage(PKCS8_PRIV_KEY_INFO *p8, int usage);
207 ASN1_TYPE *PKCS12_get_attr_gen(STACK_OF(X509_ATTRIBUTE) *attrs, int attr_nid);
208 char *PKCS12_get_friendlyname(PKCS12_SAFEBAG *bag);
209 unsigned char *PKCS12_pbe_crypt(X509_ALGOR *algor, const char *pass,
210 int passlen, unsigned char *in, int inlen,
211 unsigned char **data, int *datalen, int en_de);
212 void * PKCS12_item_decrypt_d2i(X509_ALGOR *algor, const ASN1_ITEM *it,
213 const char *pass, int passlen, ASN1_OCTET_STRING *oct, int zbuf);
214 ASN1_OCTET_STRING *PKCS12_item_i2d_encrypt(X509_ALGOR *algor, const ASN1_ITEM *i
215 const char *pass, int passlen,
216 void *obj, int zbuf);
217 PKCS12 *PKCS12_init(int mode);
218 int PKCS12_key_gen_asc(const char *pass, int passlen, unsigned char *salt,
219 int saltlen, int id, int iter, int n,
220 unsigned char *out, const EVP_MD *md_type);
221 int PKCS12_key_gen_uni(unsigned char *pass, int passlen, unsigned char *salt, in
222 int PKCS12_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen,
223 ASN1_TYPE *param, const EVP_CIPHER *cipher, const EVP_M
224 int en_de);
225 int PKCS12_gen_mac(PKCS12 *p12, const char *pass, int passlen,
226 unsigned char *mac, unsigned int *maclen);
227 int PKCS12_verify_mac(PKCS12 *p12, const char *pass, int passlen);
228 int PKCS12_set_mac(PKCS12 *p12, const char *pass, int passlen,
229 unsigned char *salt, int saltlen, int iter,
230 const EVP_MD *md_type);
231 int PKCS12_setup_mac(PKCS12 *p12, int iter, unsigned char *salt,
232 int saltlen, const EVP_MD *md_type);
233 unsigned char *OPENSSL_asc2uni(const char *asc, int asclen, unsigned char **uni,
234 char *OPENSSL_uni2asc(unsigned char *uni, int unilen);

236 DECLARE_ASN1_FUNCTIONS(PKCS12)
237 DECLARE_ASN1_FUNCTIONS(PKCS12_MAC_DATA)
238 DECLARE_ASN1_FUNCTIONS(PKCS12_SAFEBAG)
239 DECLARE_ASN1_FUNCTIONS(PKCS12_BAGS)

241 DECLARE_ASN1_ITEM(PKCS12_SAFEBAGS)
242 DECLARE_ASN1_ITEM(PKCS12_AUTHSAFES)

244 void PKCS12_PBE_add(void);
245 int PKCS12_parse(PKCS12 *p12, const char *pass, EVP_PKEY **pkey, X509 **cert,
246 STACK_OF(X509) **ca);
247 PKCS12 *PKCS12_create(char *pass, char *name, EVP_PKEY *pkey, X509 *cert,
248 STACK_OF(X509) *ca, int nid_key, int nid_cert, int iter
249 int mac_iter, int keytype);

251 PKCS12_SAFEBAG *PKCS12_add_cert(STACK_OF(PKCS12_SAFEBAG) **pbags, X509 *cert);
252 PKCS12_SAFEBAG *PKCS12_add_key(STACK_OF(PKCS12_SAFEBAG) **pbags, EVP_PKEY *key,
253 int key_usage, int iter,
254 int key_nid, char *pass);
255 int PKCS12_add_safe(STACK_OF(PKCS7) **psafes, STACK_OF(PKCS12_SAFEBAG) *bags,
256 int safe_nid, int iter, char *pass);
257 PKCS12 *PKCS12_add_safes(STACK_OF(PKCS7) *safes, int p7_nid);

259 int i2d_PKCS12_bio(BIO *bp, PKCS12 *p12);

new/usr/src/lib/openssl/include/openssl/pkcs12.h 5

260 int i2d_PKCS12_fp(FILE *fp, PKCS12 *p12);
261 PKCS12 *d2i_PKCS12_bio(BIO *bp, PKCS12 **p12);
262 PKCS12 *d2i_PKCS12_fp(FILE *fp, PKCS12 **p12);
263 int PKCS12_newpass(PKCS12 *p12, char *oldpass, char *newpass);

265 /* BEGIN ERROR CODES */
266 /* The following lines are auto generated by the script mkerr.pl. Any changes
267 * made after this point may be overwritten when the script is next run.
268 */
269 void ERR_load_PKCS12_strings(void);

271 /* Error codes for the PKCS12 functions. */

273 /* Function codes. */
274 #define PKCS12_F_PARSE_BAG 129
275 #define PKCS12_F_PARSE_BAGS 103
276 #define PKCS12_F_PKCS12_ADD_FRIENDLYNAME 100
277 #define PKCS12_F_PKCS12_ADD_FRIENDLYNAME_ASC 127
278 #define PKCS12_F_PKCS12_ADD_FRIENDLYNAME_UNI 102
279 #define PKCS12_F_PKCS12_ADD_LOCALKEYID 104
280 #define PKCS12_F_PKCS12_CREATE 105
281 #define PKCS12_F_PKCS12_GEN_MAC 107
282 #define PKCS12_F_PKCS12_INIT 109
283 #define PKCS12_F_PKCS12_ITEM_DECRYPT_D2I 106
284 #define PKCS12_F_PKCS12_ITEM_I2D_ENCRYPT 108
285 #define PKCS12_F_PKCS12_ITEM_PACK_SAFEBAG 117
286 #define PKCS12_F_PKCS12_KEY_GEN_ASC 110
287 #define PKCS12_F_PKCS12_KEY_GEN_UNI 111
288 #define PKCS12_F_PKCS12_MAKE_KEYBAG 112
289 #define PKCS12_F_PKCS12_MAKE_SHKEYBAG 113
290 #define PKCS12_F_PKCS12_NEWPASS 128
291 #define PKCS12_F_PKCS12_PACK_P7DATA 114
292 #define PKCS12_F_PKCS12_PACK_P7ENCDATA 115
293 #define PKCS12_F_PKCS12_PARSE 118
294 #define PKCS12_F_PKCS12_PBE_CRYPT 119
295 #define PKCS12_F_PKCS12_PBE_KEYIVGEN 120
296 #define PKCS12_F_PKCS12_SETUP_MAC 122
297 #define PKCS12_F_PKCS12_SET_MAC 123
298 #define PKCS12_F_PKCS12_UNPACK_AUTHSAFES 130
299 #define PKCS12_F_PKCS12_UNPACK_P7DATA 131
300 #define PKCS12_F_PKCS12_VERIFY_MAC 126
301 #define PKCS12_F_PKCS8_ADD_KEYUSAGE 124
302 #define PKCS12_F_PKCS8_ENCRYPT 125

304 /* Reason codes. */
305 #define PKCS12_R_CANT_PACK_STRUCTURE 100
306 #define PKCS12_R_CONTENT_TYPE_NOT_DATA 121
307 #define PKCS12_R_DECODE_ERROR 101
308 #define PKCS12_R_ENCODE_ERROR 102
309 #define PKCS12_R_ENCRYPT_ERROR 103
310 #define PKCS12_R_ERROR_SETTING_ENCRYPTED_DATA_TYPE 120
311 #define PKCS12_R_INVALID_NULL_ARGUMENT 104
312 #define PKCS12_R_INVALID_NULL_PKCS12_POINTER 105
313 #define PKCS12_R_IV_GEN_ERROR 106
314 #define PKCS12_R_KEY_GEN_ERROR 107
315 #define PKCS12_R_MAC_ABSENT 108
316 #define PKCS12_R_MAC_GENERATION_ERROR 109
317 #define PKCS12_R_MAC_SETUP_ERROR 110
318 #define PKCS12_R_MAC_STRING_SET_ERROR 111
319 #define PKCS12_R_MAC_VERIFY_ERROR 112
320 #define PKCS12_R_MAC_VERIFY_FAILURE 113
321 #define PKCS12_R_PARSE_ERROR 114
322 #define PKCS12_R_PKCS12_ALGOR_CIPHERINIT_ERROR 115
323 #define PKCS12_R_PKCS12_CIPHERFINAL_ERROR 116
324 #define PKCS12_R_PKCS12_PBE_CRYPT_ERROR 117
325 #define PKCS12_R_UNKNOWN_DIGEST_ALGORITHM 118

new/usr/src/lib/openssl/include/openssl/pkcs12.h 6

326 #define PKCS12_R_UNSUPPORTED_PKCS12_MODE 119

328 #ifdef __cplusplus
329 }
330 #endif
331 #endif

new/usr/src/lib/openssl/include/openssl/pkcs7.h 1

**
 18064 Fri May 30 18:31:21 2014
new/usr/src/lib/openssl/include/openssl/pkcs7.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pkcs7/pkcs7.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_PKCS7_H
60 #define HEADER_PKCS7_H

new/usr/src/lib/openssl/include/openssl/pkcs7.h 2

62 #include <openssl/asn1.h>
63 #include <openssl/bio.h>
64 #include <openssl/e_os2.h>

66 #include <openssl/symhacks.h>
67 #include <openssl/ossl_typ.h>

69 #ifdef __cplusplus
70 extern "C" {
71 #endif

73 #ifdef OPENSSL_SYS_WIN32
74 /* Under Win32 thes are defined in wincrypt.h */
75 #undef PKCS7_ISSUER_AND_SERIAL
76 #undef PKCS7_SIGNER_INFO
77 #endif

79 /*
80 Encryption_ID DES-CBC
81 Digest_ID MD5
82 Digest_Encryption_ID rsaEncryption
83 Key_Encryption_ID rsaEncryption
84 */

86 typedef struct pkcs7_issuer_and_serial_st
87 {
88 X509_NAME *issuer;
89 ASN1_INTEGER *serial;
90 } PKCS7_ISSUER_AND_SERIAL;

92 typedef struct pkcs7_signer_info_st
93 {
94 ASN1_INTEGER *version; /* version 1 */
95 PKCS7_ISSUER_AND_SERIAL *issuer_and_serial;
96 X509_ALGOR *digest_alg;
97 STACK_OF(X509_ATTRIBUTE) *auth_attr; /* [0] */
98 X509_ALGOR *digest_enc_alg;
99 ASN1_OCTET_STRING *enc_digest;
100 STACK_OF(X509_ATTRIBUTE) *unauth_attr; /* [1] */

102 /* The private key to sign with */
103 EVP_PKEY *pkey;
104 } PKCS7_SIGNER_INFO;

106 DECLARE_STACK_OF(PKCS7_SIGNER_INFO)
107 DECLARE_ASN1_SET_OF(PKCS7_SIGNER_INFO)

109 typedef struct pkcs7_recip_info_st
110 {
111 ASN1_INTEGER *version; /* version 0 */
112 PKCS7_ISSUER_AND_SERIAL *issuer_and_serial;
113 X509_ALGOR *key_enc_algor;
114 ASN1_OCTET_STRING *enc_key;
115 X509 *cert; /* get the pub-key from this */
116 } PKCS7_RECIP_INFO;

118 DECLARE_STACK_OF(PKCS7_RECIP_INFO)
119 DECLARE_ASN1_SET_OF(PKCS7_RECIP_INFO)

121 typedef struct pkcs7_signed_st
122 {
123 ASN1_INTEGER *version; /* version 1 */
124 STACK_OF(X509_ALGOR) *md_algs; /* md used */
125 STACK_OF(X509) *cert; /* [0] */
126 STACK_OF(X509_CRL) *crl; /* [1] */
127 STACK_OF(PKCS7_SIGNER_INFO) *signer_info;

new/usr/src/lib/openssl/include/openssl/pkcs7.h 3

129 struct pkcs7_st *contents;
130 } PKCS7_SIGNED;
131 /* The above structure is very very similar to PKCS7_SIGN_ENVELOPE.
132 * How about merging the two */

134 typedef struct pkcs7_enc_content_st
135 {
136 ASN1_OBJECT *content_type;
137 X509_ALGOR *algorithm;
138 ASN1_OCTET_STRING *enc_data; /* [0] */
139 const EVP_CIPHER *cipher;
140 } PKCS7_ENC_CONTENT;

142 typedef struct pkcs7_enveloped_st
143 {
144 ASN1_INTEGER *version; /* version 0 */
145 STACK_OF(PKCS7_RECIP_INFO) *recipientinfo;
146 PKCS7_ENC_CONTENT *enc_data;
147 } PKCS7_ENVELOPE;

149 typedef struct pkcs7_signedandenveloped_st
150 {
151 ASN1_INTEGER *version; /* version 1 */
152 STACK_OF(X509_ALGOR) *md_algs; /* md used */
153 STACK_OF(X509) *cert; /* [0] */
154 STACK_OF(X509_CRL) *crl; /* [1] */
155 STACK_OF(PKCS7_SIGNER_INFO) *signer_info;

157 PKCS7_ENC_CONTENT *enc_data;
158 STACK_OF(PKCS7_RECIP_INFO) *recipientinfo;
159 } PKCS7_SIGN_ENVELOPE;

161 typedef struct pkcs7_digest_st
162 {
163 ASN1_INTEGER *version; /* version 0 */
164 X509_ALGOR *md; /* md used */
165 struct pkcs7_st *contents;
166 ASN1_OCTET_STRING *digest;
167 } PKCS7_DIGEST;

169 typedef struct pkcs7_encrypted_st
170 {
171 ASN1_INTEGER *version; /* version 0 */
172 PKCS7_ENC_CONTENT *enc_data;
173 } PKCS7_ENCRYPT;

175 typedef struct pkcs7_st
176 {
177 /* The following is non NULL if it contains ASN1 encoding of
178 * this structure */
179 unsigned char *asn1;
180 long length;

182 #define PKCS7_S_HEADER 0
183 #define PKCS7_S_BODY 1
184 #define PKCS7_S_TAIL 2
185 int state; /* used during processing */

187 int detached;

189 ASN1_OBJECT *type;
190 /* content as defined by the type */
191 /* all encryption/message digests are applied to the ’contents’,
192 * leaving out the ’type’ field. */
193 union {

new/usr/src/lib/openssl/include/openssl/pkcs7.h 4

194 char *ptr;

196 /* NID_pkcs7_data */
197 ASN1_OCTET_STRING *data;

199 /* NID_pkcs7_signed */
200 PKCS7_SIGNED *sign;

202 /* NID_pkcs7_enveloped */
203 PKCS7_ENVELOPE *enveloped;

205 /* NID_pkcs7_signedAndEnveloped */
206 PKCS7_SIGN_ENVELOPE *signed_and_enveloped;

208 /* NID_pkcs7_digest */
209 PKCS7_DIGEST *digest;

211 /* NID_pkcs7_encrypted */
212 PKCS7_ENCRYPT *encrypted;

214 /* Anything else */
215 ASN1_TYPE *other;
216 } d;
217 } PKCS7;

219 DECLARE_STACK_OF(PKCS7)
220 DECLARE_ASN1_SET_OF(PKCS7)
221 DECLARE_PKCS12_STACK_OF(PKCS7)

223 #define PKCS7_OP_SET_DETACHED_SIGNATURE 1
224 #define PKCS7_OP_GET_DETACHED_SIGNATURE 2

226 #define PKCS7_get_signed_attributes(si) ((si)->auth_attr)
227 #define PKCS7_get_attributes(si) ((si)->unauth_attr)

229 #define PKCS7_type_is_signed(a) (OBJ_obj2nid((a)->type) == NID_pkcs7_signed)
230 #define PKCS7_type_is_encrypted(a) (OBJ_obj2nid((a)->type) == NID_pkcs7_encrypte
231 #define PKCS7_type_is_enveloped(a) (OBJ_obj2nid((a)->type) == NID_pkcs7_envelope
232 #define PKCS7_type_is_signedAndEnveloped(a) \
233 (OBJ_obj2nid((a)->type) == NID_pkcs7_signedAndEnveloped)
234 #define PKCS7_type_is_data(a) (OBJ_obj2nid((a)->type) == NID_pkcs7_data)
235 #define PKCS7_type_is_digest(a) (OBJ_obj2nid((a)->type) == NID_pkcs7_digest)
236 #define PKCS7_type_is_encrypted(a) \
237 (OBJ_obj2nid((a)->type) == NID_pkcs7_encrypted)

239 #define PKCS7_type_is_digest(a) (OBJ_obj2nid((a)->type) == NID_pkcs7_digest)

241 #define PKCS7_set_detached(p,v) \
242 PKCS7_ctrl(p,PKCS7_OP_SET_DETACHED_SIGNATURE,v,NULL)
243 #define PKCS7_get_detached(p) \
244 PKCS7_ctrl(p,PKCS7_OP_GET_DETACHED_SIGNATURE,0,NULL)

246 #define PKCS7_is_detached(p7) (PKCS7_type_is_signed(p7) && PKCS7_get_detached(p7

248 /* S/MIME related flags */

250 #define PKCS7_TEXT 0x1
251 #define PKCS7_NOCERTS 0x2
252 #define PKCS7_NOSIGS 0x4
253 #define PKCS7_NOCHAIN 0x8
254 #define PKCS7_NOINTERN 0x10
255 #define PKCS7_NOVERIFY 0x20
256 #define PKCS7_DETACHED 0x40
257 #define PKCS7_BINARY 0x80
258 #define PKCS7_NOATTR 0x100
259 #define PKCS7_NOSMIMECAP 0x200

new/usr/src/lib/openssl/include/openssl/pkcs7.h 5

260 #define PKCS7_NOOLDMIMETYPE 0x400
261 #define PKCS7_CRLFEOL 0x800
262 #define PKCS7_STREAM 0x1000
263 #define PKCS7_NOCRL 0x2000
264 #define PKCS7_PARTIAL 0x4000
265 #define PKCS7_REUSE_DIGEST 0x8000

267 /* Flags: for compatibility with older code */

269 #define SMIME_TEXT PKCS7_TEXT
270 #define SMIME_NOCERTS PKCS7_NOCERTS
271 #define SMIME_NOSIGS PKCS7_NOSIGS
272 #define SMIME_NOCHAIN PKCS7_NOCHAIN
273 #define SMIME_NOINTERN PKCS7_NOINTERN
274 #define SMIME_NOVERIFY PKCS7_NOVERIFY
275 #define SMIME_DETACHED PKCS7_DETACHED
276 #define SMIME_BINARY PKCS7_BINARY
277 #define SMIME_NOATTR PKCS7_NOATTR

279 DECLARE_ASN1_FUNCTIONS(PKCS7_ISSUER_AND_SERIAL)

281 int PKCS7_ISSUER_AND_SERIAL_digest(PKCS7_ISSUER_AND_SERIAL *data,const EVP_MD *t
282 unsigned char *md,unsigned int *len);
283 #ifndef OPENSSL_NO_FP_API
284 PKCS7 *d2i_PKCS7_fp(FILE *fp,PKCS7 **p7);
285 int i2d_PKCS7_fp(FILE *fp,PKCS7 *p7);
286 #endif
287 PKCS7 *PKCS7_dup(PKCS7 *p7);
288 PKCS7 *d2i_PKCS7_bio(BIO *bp,PKCS7 **p7);
289 int i2d_PKCS7_bio(BIO *bp,PKCS7 *p7);
290 int i2d_PKCS7_bio_stream(BIO *out, PKCS7 *p7, BIO *in, int flags);
291 int PEM_write_bio_PKCS7_stream(BIO *out, PKCS7 *p7, BIO *in, int flags);

293 DECLARE_ASN1_FUNCTIONS(PKCS7_SIGNER_INFO)
294 DECLARE_ASN1_FUNCTIONS(PKCS7_RECIP_INFO)
295 DECLARE_ASN1_FUNCTIONS(PKCS7_SIGNED)
296 DECLARE_ASN1_FUNCTIONS(PKCS7_ENC_CONTENT)
297 DECLARE_ASN1_FUNCTIONS(PKCS7_ENVELOPE)
298 DECLARE_ASN1_FUNCTIONS(PKCS7_SIGN_ENVELOPE)
299 DECLARE_ASN1_FUNCTIONS(PKCS7_DIGEST)
300 DECLARE_ASN1_FUNCTIONS(PKCS7_ENCRYPT)
301 DECLARE_ASN1_FUNCTIONS(PKCS7)

303 DECLARE_ASN1_ITEM(PKCS7_ATTR_SIGN)
304 DECLARE_ASN1_ITEM(PKCS7_ATTR_VERIFY)

306 DECLARE_ASN1_NDEF_FUNCTION(PKCS7)
307 DECLARE_ASN1_PRINT_FUNCTION(PKCS7)

309 long PKCS7_ctrl(PKCS7 *p7, int cmd, long larg, char *parg);

311 int PKCS7_set_type(PKCS7 *p7, int type);
312 int PKCS7_set0_type_other(PKCS7 *p7, int type, ASN1_TYPE *other);
313 int PKCS7_set_content(PKCS7 *p7, PKCS7 *p7_data);
314 int PKCS7_SIGNER_INFO_set(PKCS7_SIGNER_INFO *p7i, X509 *x509, EVP_PKEY *pkey,
315 const EVP_MD *dgst);
316 int PKCS7_SIGNER_INFO_sign(PKCS7_SIGNER_INFO *si);
317 int PKCS7_add_signer(PKCS7 *p7, PKCS7_SIGNER_INFO *p7i);
318 int PKCS7_add_certificate(PKCS7 *p7, X509 *x509);
319 int PKCS7_add_crl(PKCS7 *p7, X509_CRL *x509);
320 int PKCS7_content_new(PKCS7 *p7, int nid);
321 int PKCS7_dataVerify(X509_STORE *cert_store, X509_STORE_CTX *ctx,
322 BIO *bio, PKCS7 *p7, PKCS7_SIGNER_INFO *si);
323 int PKCS7_signatureVerify(BIO *bio, PKCS7 *p7, PKCS7_SIGNER_INFO *si,
324 X509 *x509);

new/usr/src/lib/openssl/include/openssl/pkcs7.h 6

326 BIO *PKCS7_dataInit(PKCS7 *p7, BIO *bio);
327 int PKCS7_dataFinal(PKCS7 *p7, BIO *bio);
328 BIO *PKCS7_dataDecode(PKCS7 *p7, EVP_PKEY *pkey, BIO *in_bio, X509 *pcert);

331 PKCS7_SIGNER_INFO *PKCS7_add_signature(PKCS7 *p7, X509 *x509,
332 EVP_PKEY *pkey, const EVP_MD *dgst);
333 X509 *PKCS7_cert_from_signer_info(PKCS7 *p7, PKCS7_SIGNER_INFO *si);
334 int PKCS7_set_digest(PKCS7 *p7, const EVP_MD *md);
335 STACK_OF(PKCS7_SIGNER_INFO) *PKCS7_get_signer_info(PKCS7 *p7);

337 PKCS7_RECIP_INFO *PKCS7_add_recipient(PKCS7 *p7, X509 *x509);
338 void PKCS7_SIGNER_INFO_get0_algs(PKCS7_SIGNER_INFO *si, EVP_PKEY **pk,
339 X509_ALGOR **pdig, X509_ALGOR **psig);
340 void PKCS7_RECIP_INFO_get0_alg(PKCS7_RECIP_INFO *ri, X509_ALGOR **penc);
341 int PKCS7_add_recipient_info(PKCS7 *p7, PKCS7_RECIP_INFO *ri);
342 int PKCS7_RECIP_INFO_set(PKCS7_RECIP_INFO *p7i, X509 *x509);
343 int PKCS7_set_cipher(PKCS7 *p7, const EVP_CIPHER *cipher);
344 int PKCS7_stream(unsigned char ***boundary, PKCS7 *p7);

346 PKCS7_ISSUER_AND_SERIAL *PKCS7_get_issuer_and_serial(PKCS7 *p7, int idx);
347 ASN1_OCTET_STRING *PKCS7_digest_from_attributes(STACK_OF(X509_ATTRIBUTE) *sk);
348 int PKCS7_add_signed_attribute(PKCS7_SIGNER_INFO *p7si,int nid,int type,
349 void *data);
350 int PKCS7_add_attribute (PKCS7_SIGNER_INFO *p7si, int nid, int atrtype,
351 void *value);
352 ASN1_TYPE *PKCS7_get_attribute(PKCS7_SIGNER_INFO *si, int nid);
353 ASN1_TYPE *PKCS7_get_signed_attribute(PKCS7_SIGNER_INFO *si, int nid);
354 int PKCS7_set_signed_attributes(PKCS7_SIGNER_INFO *p7si,
355 STACK_OF(X509_ATTRIBUTE) *sk);
356 int PKCS7_set_attributes(PKCS7_SIGNER_INFO *p7si,STACK_OF(X509_ATTRIBUTE) *sk);

359 PKCS7 *PKCS7_sign(X509 *signcert, EVP_PKEY *pkey, STACK_OF(X509) *certs,
360 BIO *data, int flags);

362 PKCS7_SIGNER_INFO *PKCS7_sign_add_signer(PKCS7 *p7,
363 X509 *signcert, EVP_PKEY *pkey, const EVP_MD *md,
364 int flags);

366 int PKCS7_final(PKCS7 *p7, BIO *data, int flags);
367 int PKCS7_verify(PKCS7 *p7, STACK_OF(X509) *certs, X509_STORE *store,
368 BIO *indata, BIO *out, int flags);
369 STACK_OF(X509) *PKCS7_get0_signers(PKCS7 *p7, STACK_OF(X509) *certs, int flags);
370 PKCS7 *PKCS7_encrypt(STACK_OF(X509) *certs, BIO *in, const EVP_CIPHER *cipher,
371 int flags);
372 int PKCS7_decrypt(PKCS7 *p7, EVP_PKEY *pkey, X509 *cert, BIO *data, int flags);

374 int PKCS7_add_attrib_smimecap(PKCS7_SIGNER_INFO *si,
375 STACK_OF(X509_ALGOR) *cap);
376 STACK_OF(X509_ALGOR) *PKCS7_get_smimecap(PKCS7_SIGNER_INFO *si);
377 int PKCS7_simple_smimecap(STACK_OF(X509_ALGOR) *sk, int nid, int arg);

379 int PKCS7_add_attrib_content_type(PKCS7_SIGNER_INFO *si, ASN1_OBJECT *coid);
380 int PKCS7_add0_attrib_signing_time(PKCS7_SIGNER_INFO *si, ASN1_TIME *t);
381 int PKCS7_add1_attrib_digest(PKCS7_SIGNER_INFO *si,
382 const unsigned char *md, int mdlen);

384 int SMIME_write_PKCS7(BIO *bio, PKCS7 *p7, BIO *data, int flags);
385 PKCS7 *SMIME_read_PKCS7(BIO *bio, BIO **bcont);

387 BIO *BIO_new_PKCS7(BIO *out, PKCS7 *p7);

390 /* BEGIN ERROR CODES */
391 /* The following lines are auto generated by the script mkerr.pl. Any changes

new/usr/src/lib/openssl/include/openssl/pkcs7.h 7

392 * made after this point may be overwritten when the script is next run.
393 */
394 void ERR_load_PKCS7_strings(void);

396 /* Error codes for the PKCS7 functions. */

398 /* Function codes. */
399 #define PKCS7_F_B64_READ_PKCS7 120
400 #define PKCS7_F_B64_WRITE_PKCS7 121
401 #define PKCS7_F_DO_PKCS7_SIGNED_ATTRIB 136
402 #define PKCS7_F_I2D_PKCS7_BIO_STREAM 140
403 #define PKCS7_F_PKCS7_ADD0_ATTRIB_SIGNING_TIME 135
404 #define PKCS7_F_PKCS7_ADD_ATTRIB_SMIMECAP 118
405 #define PKCS7_F_PKCS7_ADD_CERTIFICATE 100
406 #define PKCS7_F_PKCS7_ADD_CRL 101
407 #define PKCS7_F_PKCS7_ADD_RECIPIENT_INFO 102
408 #define PKCS7_F_PKCS7_ADD_SIGNATURE 131
409 #define PKCS7_F_PKCS7_ADD_SIGNER 103
410 #define PKCS7_F_PKCS7_BIO_ADD_DIGEST 125
411 #define PKCS7_F_PKCS7_COPY_EXISTING_DIGEST 138
412 #define PKCS7_F_PKCS7_CTRL 104
413 #define PKCS7_F_PKCS7_DATADECODE 112
414 #define PKCS7_F_PKCS7_DATAFINAL 128
415 #define PKCS7_F_PKCS7_DATAINIT 105
416 #define PKCS7_F_PKCS7_DATASIGN 106
417 #define PKCS7_F_PKCS7_DATAVERIFY 107
418 #define PKCS7_F_PKCS7_DECRYPT 114
419 #define PKCS7_F_PKCS7_DECRYPT_RINFO 133
420 #define PKCS7_F_PKCS7_ENCODE_RINFO 132
421 #define PKCS7_F_PKCS7_ENCRYPT 115
422 #define PKCS7_F_PKCS7_FINAL 134
423 #define PKCS7_F_PKCS7_FIND_DIGEST 127
424 #define PKCS7_F_PKCS7_GET0_SIGNERS 124
425 #define PKCS7_F_PKCS7_RECIP_INFO_SET 130
426 #define PKCS7_F_PKCS7_SET_CIPHER 108
427 #define PKCS7_F_PKCS7_SET_CONTENT 109
428 #define PKCS7_F_PKCS7_SET_DIGEST 126
429 #define PKCS7_F_PKCS7_SET_TYPE 110
430 #define PKCS7_F_PKCS7_SIGN 116
431 #define PKCS7_F_PKCS7_SIGNATUREVERIFY 113
432 #define PKCS7_F_PKCS7_SIGNER_INFO_SET 129
433 #define PKCS7_F_PKCS7_SIGNER_INFO_SIGN 139
434 #define PKCS7_F_PKCS7_SIGN_ADD_SIGNER 137
435 #define PKCS7_F_PKCS7_SIMPLE_SMIMECAP 119
436 #define PKCS7_F_PKCS7_VERIFY 117
437 #define PKCS7_F_SMIME_READ_PKCS7 122
438 #define PKCS7_F_SMIME_TEXT 123

440 /* Reason codes. */
441 #define PKCS7_R_CERTIFICATE_VERIFY_ERROR 117
442 #define PKCS7_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER 144
443 #define PKCS7_R_CIPHER_NOT_INITIALIZED 116
444 #define PKCS7_R_CONTENT_AND_DATA_PRESENT 118
445 #define PKCS7_R_CTRL_ERROR 152
446 #define PKCS7_R_DECODE_ERROR 130
447 #define PKCS7_R_DECRYPTED_KEY_IS_WRONG_LENGTH 100
448 #define PKCS7_R_DECRYPT_ERROR 119
449 #define PKCS7_R_DIGEST_FAILURE 101
450 #define PKCS7_R_ENCRYPTION_CTRL_FAILURE 149
451 #define PKCS7_R_ENCRYPTION_NOT_SUPPORTED_FOR_THIS_KEY_TYPE 150
452 #define PKCS7_R_ERROR_ADDING_RECIPIENT 120
453 #define PKCS7_R_ERROR_SETTING_CIPHER 121
454 #define PKCS7_R_INVALID_MIME_TYPE 131
455 #define PKCS7_R_INVALID_NULL_POINTER 143
456 #define PKCS7_R_MIME_NO_CONTENT_TYPE 132
457 #define PKCS7_R_MIME_PARSE_ERROR 133

new/usr/src/lib/openssl/include/openssl/pkcs7.h 8

458 #define PKCS7_R_MIME_SIG_PARSE_ERROR 134
459 #define PKCS7_R_MISSING_CERIPEND_INFO 103
460 #define PKCS7_R_NO_CONTENT 122
461 #define PKCS7_R_NO_CONTENT_TYPE 135
462 #define PKCS7_R_NO_DEFAULT_DIGEST 151
463 #define PKCS7_R_NO_MATCHING_DIGEST_TYPE_FOUND 154
464 #define PKCS7_R_NO_MULTIPART_BODY_FAILURE 136
465 #define PKCS7_R_NO_MULTIPART_BOUNDARY 137
466 #define PKCS7_R_NO_RECIPIENT_MATCHES_CERTIFICATE 115
467 #define PKCS7_R_NO_RECIPIENT_MATCHES_KEY 146
468 #define PKCS7_R_NO_SIGNATURES_ON_DATA 123
469 #define PKCS7_R_NO_SIGNERS 142
470 #define PKCS7_R_NO_SIG_CONTENT_TYPE 138
471 #define PKCS7_R_OPERATION_NOT_SUPPORTED_ON_THIS_TYPE 104
472 #define PKCS7_R_PKCS7_ADD_SIGNATURE_ERROR 124
473 #define PKCS7_R_PKCS7_ADD_SIGNER_ERROR 153
474 #define PKCS7_R_PKCS7_DATAFINAL 126
475 #define PKCS7_R_PKCS7_DATAFINAL_ERROR 125
476 #define PKCS7_R_PKCS7_DATASIGN 145
477 #define PKCS7_R_PKCS7_PARSE_ERROR 139
478 #define PKCS7_R_PKCS7_SIG_PARSE_ERROR 140
479 #define PKCS7_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE 127
480 #define PKCS7_R_SIGNATURE_FAILURE 105
481 #define PKCS7_R_SIGNER_CERTIFICATE_NOT_FOUND 128
482 #define PKCS7_R_SIGNING_CTRL_FAILURE 147
483 #define PKCS7_R_SIGNING_NOT_SUPPORTED_FOR_THIS_KEY_TYPE 148
484 #define PKCS7_R_SIG_INVALID_MIME_TYPE 141
485 #define PKCS7_R_SMIME_TEXT_ERROR 129
486 #define PKCS7_R_UNABLE_TO_FIND_CERTIFICATE 106
487 #define PKCS7_R_UNABLE_TO_FIND_MEM_BIO 107
488 #define PKCS7_R_UNABLE_TO_FIND_MESSAGE_DIGEST 108
489 #define PKCS7_R_UNKNOWN_DIGEST_TYPE 109
490 #define PKCS7_R_UNKNOWN_OPERATION 110
491 #define PKCS7_R_UNSUPPORTED_CIPHER_TYPE 111
492 #define PKCS7_R_UNSUPPORTED_CONTENT_TYPE 112
493 #define PKCS7_R_WRONG_CONTENT_TYPE 113
494 #define PKCS7_R_WRONG_PKCS7_TYPE 114

496 #ifdef __cplusplus
497 }
498 #endif
499 #endif

new/usr/src/lib/openssl/include/openssl/pqueue.h 1

**
 3580 Fri May 30 18:31:21 2014
new/usr/src/lib/openssl/include/openssl/pqueue.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pqueue/pqueue.h */
2 /*
3 * DTLS implementation written by Nagendra Modadugu
4 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
5 */
6 /* ==
7 * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * openssl-core@OpenSSL.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */

60 #ifndef HEADER_PQUEUE_H
61 #define HEADER_PQUEUE_H

new/usr/src/lib/openssl/include/openssl/pqueue.h 2

63 #include <stdio.h>
64 #include <stdlib.h>
65 #include <string.h>

67 typedef struct _pqueue *pqueue;

69 typedef struct _pitem
70 {
71 unsigned char priority[8]; /* 64-bit value in big-endian encoding */
72 void *data;
73 struct _pitem *next;
74 } pitem;

76 typedef struct _pitem *piterator;

78 pitem *pitem_new(unsigned char *prio64be, void *data);
79 void pitem_free(pitem *item);

81 pqueue pqueue_new(void);
82 void pqueue_free(pqueue pq);

84 pitem *pqueue_insert(pqueue pq, pitem *item);
85 pitem *pqueue_peek(pqueue pq);
86 pitem *pqueue_pop(pqueue pq);
87 pitem *pqueue_find(pqueue pq, unsigned char *prio64be);
88 pitem *pqueue_iterator(pqueue pq);
89 pitem *pqueue_next(piterator *iter);

91 void pqueue_print(pqueue pq);
92 int pqueue_size(pqueue pq);

94 #endif /* ! HEADER_PQUEUE_H */

new/usr/src/lib/openssl/include/openssl/rand.h 1

**
 5578 Fri May 30 18:31:21 2014
new/usr/src/lib/openssl/include/openssl/rand.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rand/rand.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_RAND_H
60 #define HEADER_RAND_H

new/usr/src/lib/openssl/include/openssl/rand.h 2

62 #include <stdlib.h>
63 #include <openssl/ossl_typ.h>
64 #include <openssl/e_os2.h>

66 #if defined(OPENSSL_SYS_WINDOWS)
67 #include <windows.h>
68 #endif

70 #ifdef __cplusplus
71 extern "C" {
72 #endif

74 #if defined(OPENSSL_FIPS)
75 #define FIPS_RAND_SIZE_T size_t
76 #endif

78 /* Already defined in ossl_typ.h */
79 /* typedef struct rand_meth_st RAND_METHOD; */

81 struct rand_meth_st
82 {
83 void (*seed)(const void *buf, int num);
84 int (*bytes)(unsigned char *buf, int num);
85 void (*cleanup)(void);
86 void (*add)(const void *buf, int num, double entropy);
87 int (*pseudorand)(unsigned char *buf, int num);
88 int (*status)(void);
89 };

91 #ifdef BN_DEBUG
92 extern int rand_predictable;
93 #endif

95 int RAND_set_rand_method(const RAND_METHOD *meth);
96 const RAND_METHOD *RAND_get_rand_method(void);
97 #ifndef OPENSSL_NO_ENGINE
98 int RAND_set_rand_engine(ENGINE *engine);
99 #endif
100 RAND_METHOD *RAND_SSLeay(void);
101 void RAND_cleanup(void);
102 int RAND_bytes(unsigned char *buf,int num);
103 int RAND_pseudo_bytes(unsigned char *buf,int num);
104 void RAND_seed(const void *buf,int num);
105 void RAND_add(const void *buf,int num,double entropy);
106 int RAND_load_file(const char *file,long max_bytes);
107 int RAND_write_file(const char *file);
108 const char *RAND_file_name(char *file,size_t num);
109 int RAND_status(void);
110 int RAND_query_egd_bytes(const char *path, unsigned char *buf, int bytes);
111 int RAND_egd(const char *path);
112 int RAND_egd_bytes(const char *path,int bytes);
113 int RAND_poll(void);

115 #if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32)

117 void RAND_screen(void);
118 int RAND_event(UINT, WPARAM, LPARAM);

120 #endif

122 #ifdef OPENSSL_FIPS
123 void RAND_set_fips_drbg_type(int type, int flags);
124 int RAND_init_fips(void);
125 #endif

127 /* BEGIN ERROR CODES */

new/usr/src/lib/openssl/include/openssl/rand.h 3

128 /* The following lines are auto generated by the script mkerr.pl. Any changes
129 * made after this point may be overwritten when the script is next run.
130 */
131 void ERR_load_RAND_strings(void);

133 /* Error codes for the RAND functions. */

135 /* Function codes. */
136 #define RAND_F_RAND_GET_RAND_METHOD 101
137 #define RAND_F_RAND_INIT_FIPS 102
138 #define RAND_F_SSLEAY_RAND_BYTES 100

140 /* Reason codes. */
141 #define RAND_R_DUAL_EC_DRBG_DISABLED 104
142 #define RAND_R_ERROR_INITIALISING_DRBG 102
143 #define RAND_R_ERROR_INSTANTIATING_DRBG 103
144 #define RAND_R_NO_FIPS_RANDOM_METHOD_SET 101
145 #define RAND_R_PRNG_NOT_SEEDED 100

147 #ifdef __cplusplus
148 }
149 #endif
150 #endif

new/usr/src/lib/openssl/include/openssl/rc2.h 1

**
 4405 Fri May 30 18:31:21 2014
new/usr/src/lib/openssl/include/openssl/rc2.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rc2/rc2.h */
2 /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_RC2_H
60 #define HEADER_RC2_H

new/usr/src/lib/openssl/include/openssl/rc2.h 2

62 #include <openssl/opensslconf.h> /* OPENSSL_NO_RC2, RC2_INT */
63 #ifdef OPENSSL_NO_RC2
64 #error RC2 is disabled.
65 #endif

67 #define RC2_ENCRYPT 1
68 #define RC2_DECRYPT 0

70 #define RC2_BLOCK 8
71 #define RC2_KEY_LENGTH 16

73 #ifdef __cplusplus
74 extern "C" {
75 #endif

77 typedef struct rc2_key_st
78 {
79 RC2_INT data[64];
80 } RC2_KEY;

82 #ifdef OPENSSL_FIPS
83 void private_RC2_set_key(RC2_KEY *key, int len, const unsigned char *data,int bi
84 #endif
85 void RC2_set_key(RC2_KEY *key, int len, const unsigned char *data,int bits);
86 void RC2_ecb_encrypt(const unsigned char *in,unsigned char *out,RC2_KEY *key,
87 int enc);
88 void RC2_encrypt(unsigned long *data,RC2_KEY *key);
89 void RC2_decrypt(unsigned long *data,RC2_KEY *key);
90 void RC2_cbc_encrypt(const unsigned char *in, unsigned char *out, long length,
91 RC2_KEY *ks, unsigned char *iv, int enc);
92 void RC2_cfb64_encrypt(const unsigned char *in, unsigned char *out,
93 long length, RC2_KEY *schedule, unsigned char *ivec,
94 int *num, int enc);
95 void RC2_ofb64_encrypt(const unsigned char *in, unsigned char *out,
96 long length, RC2_KEY *schedule, unsigned char *ivec,
97 int *num);

99 #ifdef __cplusplus
100 }
101 #endif

103 #endif

new/usr/src/lib/openssl/include/openssl/rc4.h 1

**
 3797 Fri May 30 18:31:21 2014
new/usr/src/lib/openssl/include/openssl/rc4.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rc4/rc4.h */
2 /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_RC4_H
60 #define HEADER_RC4_H

new/usr/src/lib/openssl/include/openssl/rc4.h 2

62 #include <openssl/opensslconf.h> /* OPENSSL_NO_RC4, RC4_INT */
63 #ifdef OPENSSL_NO_RC4
64 #error RC4 is disabled.
65 #endif

67 #include <stddef.h>

69 #ifdef __cplusplus
70 extern "C" {
71 #endif

73 typedef struct rc4_key_st
74 {
75 RC4_INT x,y;
76 RC4_INT data[256];
77 } RC4_KEY;

79
80 const char *RC4_options(void);
81 void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data);
82 void private_RC4_set_key(RC4_KEY *key, int len, const unsigned char *data);
83 void RC4(RC4_KEY *key, size_t len, const unsigned char *indata,
84 unsigned char *outdata);

86 #ifdef __cplusplus
87 }
88 #endif

90 #endif

new/usr/src/lib/openssl/include/openssl/ripemd.h 1

**
 4327 Fri May 30 18:31:21 2014
new/usr/src/lib/openssl/include/openssl/ripemd.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ripemd/ripemd.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_RIPEMD_H
60 #define HEADER_RIPEMD_H

new/usr/src/lib/openssl/include/openssl/ripemd.h 2

62 #include <openssl/e_os2.h>
63 #include <stddef.h>

65 #ifdef __cplusplus
66 extern "C" {
67 #endif

69 #ifdef OPENSSL_NO_RIPEMD
70 #error RIPEMD is disabled.
71 #endif

73 #if defined(__LP32__)
74 #define RIPEMD160_LONG unsigned long
75 #elif defined(OPENSSL_SYS_CRAY) || defined(__ILP64__)
76 #define RIPEMD160_LONG unsigned long
77 #define RIPEMD160_LONG_LOG2 3
78 #else
79 #define RIPEMD160_LONG unsigned int
80 #endif

82 #define RIPEMD160_CBLOCK 64
83 #define RIPEMD160_LBLOCK (RIPEMD160_CBLOCK/4)
84 #define RIPEMD160_DIGEST_LENGTH 20

86 typedef struct RIPEMD160state_st
87 {
88 RIPEMD160_LONG A,B,C,D,E;
89 RIPEMD160_LONG Nl,Nh;
90 RIPEMD160_LONG data[RIPEMD160_LBLOCK];
91 unsigned int num;
92 } RIPEMD160_CTX;

94 #ifdef OPENSSL_FIPS
95 int private_RIPEMD160_Init(RIPEMD160_CTX *c);
96 #endif
97 int RIPEMD160_Init(RIPEMD160_CTX *c);
98 int RIPEMD160_Update(RIPEMD160_CTX *c, const void *data, size_t len);
99 int RIPEMD160_Final(unsigned char *md, RIPEMD160_CTX *c);
100 unsigned char *RIPEMD160(const unsigned char *d, size_t n,
101 unsigned char *md);
102 void RIPEMD160_Transform(RIPEMD160_CTX *c, const unsigned char *b);
103 #ifdef __cplusplus
104 }
105 #endif

107 #endif

new/usr/src/lib/openssl/include/openssl/rsa.h 1

**
 22870 Fri May 30 18:31:21 2014
new/usr/src/lib/openssl/include/openssl/rsa.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_RSA_H
60 #define HEADER_RSA_H

new/usr/src/lib/openssl/include/openssl/rsa.h 2

62 #include <openssl/asn1.h>

64 #ifndef OPENSSL_NO_BIO
65 #include <openssl/bio.h>
66 #endif
67 #include <openssl/crypto.h>
68 #include <openssl/ossl_typ.h>
69 #ifndef OPENSSL_NO_DEPRECATED
70 #include <openssl/bn.h>
71 #endif

73 #ifdef OPENSSL_NO_RSA
74 #error RSA is disabled.
75 #endif

77 #ifdef __cplusplus
78 extern "C" {
79 #endif

81 /* Declared already in ossl_typ.h */
82 /* typedef struct rsa_st RSA; */
83 /* typedef struct rsa_meth_st RSA_METHOD; */

85 struct rsa_meth_st
86 {
87 const char *name;
88 int (*rsa_pub_enc)(int flen,const unsigned char *from,
89 unsigned char *to,
90 RSA *rsa,int padding);
91 int (*rsa_pub_dec)(int flen,const unsigned char *from,
92 unsigned char *to,
93 RSA *rsa,int padding);
94 int (*rsa_priv_enc)(int flen,const unsigned char *from,
95 unsigned char *to,
96 RSA *rsa,int padding);
97 int (*rsa_priv_dec)(int flen,const unsigned char *from,
98 unsigned char *to,
99 RSA *rsa,int padding);
100 int (*rsa_mod_exp)(BIGNUM *r0,const BIGNUM *I,RSA *rsa,BN_CTX *ctx); /*
101 int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
102 const BIGNUM *m, BN_CTX *ctx,
103 BN_MONT_CTX *m_ctx); /* Can be null */
104 int (*init)(RSA *rsa); /* called at new */
105 int (*finish)(RSA *rsa); /* called at free */
106 int flags; /* RSA_METHOD_FLAG_* things */
107 char *app_data; /* may be needed! */
108 /* New sign and verify functions: some libraries don’t allow arbitrary data
109 * to be signed/verified: this allows them to be used. Note: for this to work
110 * the RSA_public_decrypt() and RSA_private_encrypt() should *NOT* be used
111 * RSA_sign(), RSA_verify() should be used instead. Note: for backwards
112 * compatibility this functionality is only enabled if the RSA_FLAG_SIGN_VER
113 * option is set in ’flags’.
114 */
115 int (*rsa_sign)(int type,
116 const unsigned char *m, unsigned int m_length,
117 unsigned char *sigret, unsigned int *siglen, const RSA *rsa);
118 int (*rsa_verify)(int dtype,
119 const unsigned char *m, unsigned int m_length,
120 const unsigned char *sigbuf, unsigned int siglen,
121 const RSA *rsa);
122 /* If this callback is NULL, the builtin software RSA key-gen will be used. This
123 * is for behavioural compatibility whilst the code gets rewired, but one day
124 * it would be nice to assume there are no such things as "builtin software"
125 * implementations. */
126 int (*rsa_keygen)(RSA *rsa, int bits, BIGNUM *e, BN_GENCB *cb);
127 };

new/usr/src/lib/openssl/include/openssl/rsa.h 3

129 struct rsa_st
130 {
131 /* The first parameter is used to pickup errors where
132 * this is passed instead of aEVP_PKEY, it is set to 0 */
133 int pad;
134 long version;
135 const RSA_METHOD *meth;
136 /* functional reference if ’meth’ is ENGINE-provided */
137 ENGINE *engine;
138 BIGNUM *n;
139 BIGNUM *e;
140 BIGNUM *d;
141 BIGNUM *p;
142 BIGNUM *q;
143 BIGNUM *dmp1;
144 BIGNUM *dmq1;
145 BIGNUM *iqmp;
146 /* be careful using this if the RSA structure is shared */
147 CRYPTO_EX_DATA ex_data;
148 int references;
149 int flags;

151 /* Used to cache montgomery values */
152 BN_MONT_CTX *_method_mod_n;
153 BN_MONT_CTX *_method_mod_p;
154 BN_MONT_CTX *_method_mod_q;

156 /* all BIGNUM values are actually in the following data, if it is not
157 * NULL */
158 char *bignum_data;
159 BN_BLINDING *blinding;
160 BN_BLINDING *mt_blinding;
161 };

163 #ifndef OPENSSL_RSA_MAX_MODULUS_BITS
164 # define OPENSSL_RSA_MAX_MODULUS_BITS 16384
165 #endif

167 #ifndef OPENSSL_RSA_SMALL_MODULUS_BITS
168 # define OPENSSL_RSA_SMALL_MODULUS_BITS 3072
169 #endif
170 #ifndef OPENSSL_RSA_MAX_PUBEXP_BITS
171 # define OPENSSL_RSA_MAX_PUBEXP_BITS 64 /* exponent limit enforced for "large
172 #endif

174 #define RSA_3 0x3L
175 #define RSA_F4 0x10001L

177 #define RSA_METHOD_FLAG_NO_CHECK 0x0001 /* don’t check pub/private match

179 #define RSA_FLAG_CACHE_PUBLIC 0x0002
180 #define RSA_FLAG_CACHE_PRIVATE 0x0004
181 #define RSA_FLAG_BLINDING 0x0008
182 #define RSA_FLAG_THREAD_SAFE 0x0010
183 /* This flag means the private key operations will be handled by rsa_mod_exp
184 * and that they do not depend on the private key components being present:
185 * for example a key stored in external hardware. Without this flag bn_mod_exp
186 * gets called when private key components are absent.
187 */
188 #define RSA_FLAG_EXT_PKEY 0x0020

190 /* This flag in the RSA_METHOD enables the new rsa_sign, rsa_verify functions.
191 */
192 #define RSA_FLAG_SIGN_VER 0x0040

new/usr/src/lib/openssl/include/openssl/rsa.h 4

194 #define RSA_FLAG_NO_BLINDING 0x0080 /* new with 0.9.6j and 0.9.7b; th
195 * RSA implementation now uses bl
196 * default (ignoring RSA_FLAG_BLI
197 * but other engines might not ne
198 */
199 #define RSA_FLAG_NO_CONSTTIME 0x0100 /* new with 0.9.8f; the built-in
200 * implementation now uses consta
201 * operations by default in priva
202 * e.g., constant time modular ex
203 * modular inverse without leakin
204 * division without leaking branc
205 * flag disables these constant t
206 * operations and results in fast
207 * private key operations.
208 */
209 #ifndef OPENSSL_NO_DEPRECATED
210 #define RSA_FLAG_NO_EXP_CONSTTIME RSA_FLAG_NO_CONSTTIME /* deprecated name for t
211 /* new with 0.9.7h; the built-in
212 * implementation now uses consta
213 * modular exponentiation for sec
214 * by default. This flag causes t
215 * faster variable sliding window
216 * be used for all exponents.
217 */
218 #endif

221 #define EVP_PKEY_CTX_set_rsa_padding(ctx, pad) \
222 EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, -1, EVP_PKEY_CTRL_RSA_PADDING, \
223 pad, NULL)

225 #define EVP_PKEY_CTX_get_rsa_padding(ctx, ppad) \
226 EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, -1, \
227 EVP_PKEY_CTRL_GET_RSA_PADDING, 0, ppad)

229 #define EVP_PKEY_CTX_set_rsa_pss_saltlen(ctx, len) \
230 EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, \
231 (EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY), \
232 EVP_PKEY_CTRL_RSA_PSS_SALTLEN, \
233 len, NULL)

235 #define EVP_PKEY_CTX_get_rsa_pss_saltlen(ctx, plen) \
236 EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, \
237 (EVP_PKEY_OP_SIGN|EVP_PKEY_OP_VERIFY), \
238 EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, \
239 0, plen)

241 #define EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, bits) \
242 EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN, \
243 EVP_PKEY_CTRL_RSA_KEYGEN_BITS, bits, NULL)

245 #define EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp) \
246 EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN, \
247 EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, pubexp)

249 #define EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, md) \
250 EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_SIG, \
251 EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)md)

253 #define EVP_PKEY_CTX_get_rsa_mgf1_md(ctx, pmd) \
254 EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_SIG, \
255 EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)pmd)

257 #define EVP_PKEY_CTRL_RSA_PADDING (EVP_PKEY_ALG_CTRL + 1)
258 #define EVP_PKEY_CTRL_RSA_PSS_SALTLEN (EVP_PKEY_ALG_CTRL + 2)

new/usr/src/lib/openssl/include/openssl/rsa.h 5

260 #define EVP_PKEY_CTRL_RSA_KEYGEN_BITS (EVP_PKEY_ALG_CTRL + 3)
261 #define EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP (EVP_PKEY_ALG_CTRL + 4)
262 #define EVP_PKEY_CTRL_RSA_MGF1_MD (EVP_PKEY_ALG_CTRL + 5)

264 #define EVP_PKEY_CTRL_GET_RSA_PADDING (EVP_PKEY_ALG_CTRL + 6)
265 #define EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN (EVP_PKEY_ALG_CTRL + 7)
266 #define EVP_PKEY_CTRL_GET_RSA_MGF1_MD (EVP_PKEY_ALG_CTRL + 8)

268 #define RSA_PKCS1_PADDING 1
269 #define RSA_SSLV23_PADDING 2
270 #define RSA_NO_PADDING 3
271 #define RSA_PKCS1_OAEP_PADDING 4
272 #define RSA_X931_PADDING 5
273 /* EVP_PKEY_ only */
274 #define RSA_PKCS1_PSS_PADDING 6

276 #define RSA_PKCS1_PADDING_SIZE 11

278 #define RSA_set_app_data(s,arg) RSA_set_ex_data(s,0,arg)
279 #define RSA_get_app_data(s) RSA_get_ex_data(s,0)

281 RSA * RSA_new(void);
282 RSA * RSA_new_method(ENGINE *engine);
283 int RSA_size(const RSA *rsa);

285 /* Deprecated version */
286 #ifndef OPENSSL_NO_DEPRECATED
287 RSA * RSA_generate_key(int bits, unsigned long e,void
288 (*callback)(int,int,void *),void *cb_arg);
289 #endif /* !defined(OPENSSL_NO_DEPRECATED) */

291 /* New version */
292 int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e, BN_GENCB *cb);

294 int RSA_check_key(const RSA *);
295 /* next 4 return -1 on error */
296 int RSA_public_encrypt(int flen, const unsigned char *from,
297 unsigned char *to, RSA *rsa,int padding);
298 int RSA_private_encrypt(int flen, const unsigned char *from,
299 unsigned char *to, RSA *rsa,int padding);
300 int RSA_public_decrypt(int flen, const unsigned char *from,
301 unsigned char *to, RSA *rsa,int padding);
302 int RSA_private_decrypt(int flen, const unsigned char *from,
303 unsigned char *to, RSA *rsa,int padding);
304 void RSA_free (RSA *r);
305 /* "up" the RSA object’s reference count */
306 int RSA_up_ref(RSA *r);

308 int RSA_flags(const RSA *r);

310 void RSA_set_default_method(const RSA_METHOD *meth);
311 const RSA_METHOD *RSA_get_default_method(void);
312 const RSA_METHOD *RSA_get_method(const RSA *rsa);
313 int RSA_set_method(RSA *rsa, const RSA_METHOD *meth);

315 /* This function needs the memory locking malloc callbacks to be installed */
316 int RSA_memory_lock(RSA *r);

318 /* these are the actual SSLeay RSA functions */
319 const RSA_METHOD *RSA_PKCS1_SSLeay(void);

321 const RSA_METHOD *RSA_null_method(void);

323 DECLARE_ASN1_ENCODE_FUNCTIONS_const(RSA, RSAPublicKey)
324 DECLARE_ASN1_ENCODE_FUNCTIONS_const(RSA, RSAPrivateKey)

new/usr/src/lib/openssl/include/openssl/rsa.h 6

326 typedef struct rsa_pss_params_st
327 {
328 X509_ALGOR *hashAlgorithm;
329 X509_ALGOR *maskGenAlgorithm;
330 ASN1_INTEGER *saltLength;
331 ASN1_INTEGER *trailerField;
332 } RSA_PSS_PARAMS;

334 DECLARE_ASN1_FUNCTIONS(RSA_PSS_PARAMS)

336 #ifndef OPENSSL_NO_FP_API
337 int RSA_print_fp(FILE *fp, const RSA *r,int offset);
338 #endif

340 #ifndef OPENSSL_NO_BIO
341 int RSA_print(BIO *bp, const RSA *r,int offset);
342 #endif

344 #ifndef OPENSSL_NO_RC4
345 int i2d_RSA_NET(const RSA *a, unsigned char **pp,
346 int (*cb)(char *buf, int len, const char *prompt, int verify),
347 int sgckey);
348 RSA *d2i_RSA_NET(RSA **a, const unsigned char **pp, long length,
349 int (*cb)(char *buf, int len, const char *prompt, int verify),
350 int sgckey);

352 int i2d_Netscape_RSA(const RSA *a, unsigned char **pp,
353 int (*cb)(char *buf, int len, const char *prompt,
354 int verify));
355 RSA *d2i_Netscape_RSA(RSA **a, const unsigned char **pp, long length,
356 int (*cb)(char *buf, int len, const char *prompt,
357 int verify));
358 #endif

360 /* The following 2 functions sign and verify a X509_SIG ASN1 object
361 * inside PKCS#1 padded RSA encryption */
362 int RSA_sign(int type, const unsigned char *m, unsigned int m_length,
363 unsigned char *sigret, unsigned int *siglen, RSA *rsa);
364 int RSA_verify(int type, const unsigned char *m, unsigned int m_length,
365 const unsigned char *sigbuf, unsigned int siglen, RSA *rsa);

367 /* The following 2 function sign and verify a ASN1_OCTET_STRING
368 * object inside PKCS#1 padded RSA encryption */
369 int RSA_sign_ASN1_OCTET_STRING(int type,
370 const unsigned char *m, unsigned int m_length,
371 unsigned char *sigret, unsigned int *siglen, RSA *rsa);
372 int RSA_verify_ASN1_OCTET_STRING(int type,
373 const unsigned char *m, unsigned int m_length,
374 unsigned char *sigbuf, unsigned int siglen, RSA *rsa);

376 int RSA_blinding_on(RSA *rsa, BN_CTX *ctx);
377 void RSA_blinding_off(RSA *rsa);
378 BN_BLINDING *RSA_setup_blinding(RSA *rsa, BN_CTX *ctx);

380 int RSA_padding_add_PKCS1_type_1(unsigned char *to,int tlen,
381 const unsigned char *f,int fl);
382 int RSA_padding_check_PKCS1_type_1(unsigned char *to,int tlen,
383 const unsigned char *f,int fl,int rsa_len);
384 int RSA_padding_add_PKCS1_type_2(unsigned char *to,int tlen,
385 const unsigned char *f,int fl);
386 int RSA_padding_check_PKCS1_type_2(unsigned char *to,int tlen,
387 const unsigned char *f,int fl,int rsa_len);
388 int PKCS1_MGF1(unsigned char *mask, long len,
389 const unsigned char *seed, long seedlen, const EVP_MD *dgst);
390 int RSA_padding_add_PKCS1_OAEP(unsigned char *to,int tlen,
391 const unsigned char *f,int fl,

new/usr/src/lib/openssl/include/openssl/rsa.h 7

392 const unsigned char *p,int pl);
393 int RSA_padding_check_PKCS1_OAEP(unsigned char *to,int tlen,
394 const unsigned char *f,int fl,int rsa_len,
395 const unsigned char *p,int pl);
396 int RSA_padding_add_SSLv23(unsigned char *to,int tlen,
397 const unsigned char *f,int fl);
398 int RSA_padding_check_SSLv23(unsigned char *to,int tlen,
399 const unsigned char *f,int fl,int rsa_len);
400 int RSA_padding_add_none(unsigned char *to,int tlen,
401 const unsigned char *f,int fl);
402 int RSA_padding_check_none(unsigned char *to,int tlen,
403 const unsigned char *f,int fl,int rsa_len);
404 int RSA_padding_add_X931(unsigned char *to,int tlen,
405 const unsigned char *f,int fl);
406 int RSA_padding_check_X931(unsigned char *to,int tlen,
407 const unsigned char *f,int fl,int rsa_len);
408 int RSA_X931_hash_id(int nid);

410 int RSA_verify_PKCS1_PSS(RSA *rsa, const unsigned char *mHash,
411 const EVP_MD *Hash, const unsigned char *EM, int sLen);
412 int RSA_padding_add_PKCS1_PSS(RSA *rsa, unsigned char *EM,
413 const unsigned char *mHash,
414 const EVP_MD *Hash, int sLen);

416 int RSA_verify_PKCS1_PSS_mgf1(RSA *rsa, const unsigned char *mHash,
417 const EVP_MD *Hash, const EVP_MD *mgf1Hash,
418 const unsigned char *EM, int sLen);

420 int RSA_padding_add_PKCS1_PSS_mgf1(RSA *rsa, unsigned char *EM,
421 const unsigned char *mHash,
422 const EVP_MD *Hash, const EVP_MD *mgf1Hash, int sLen);

424 int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
425 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);
426 int RSA_set_ex_data(RSA *r,int idx,void *arg);
427 void *RSA_get_ex_data(const RSA *r, int idx);

429 RSA *RSAPublicKey_dup(RSA *rsa);
430 RSA *RSAPrivateKey_dup(RSA *rsa);

432 /* If this flag is set the RSA method is FIPS compliant and can be used
433 * in FIPS mode. This is set in the validated module method. If an
434 * application sets this flag in its own methods it is its responsibility
435 * to ensure the result is compliant.
436 */

438 #define RSA_FLAG_FIPS_METHOD 0x0400

440 /* If this flag is set the operations normally disabled in FIPS mode are
441 * permitted it is then the applications responsibility to ensure that the
442 * usage is compliant.
443 */

445 #define RSA_FLAG_NON_FIPS_ALLOW 0x0400
446 /* Application has decided PRNG is good enough to generate a key: don’t
447 * check.
448 */
449 #define RSA_FLAG_CHECKED 0x0800

451 /* BEGIN ERROR CODES */
452 /* The following lines are auto generated by the script mkerr.pl. Any changes
453 * made after this point may be overwritten when the script is next run.
454 */
455 void ERR_load_RSA_strings(void);

457 /* Error codes for the RSA functions. */

new/usr/src/lib/openssl/include/openssl/rsa.h 8

459 /* Function codes. */
460 #define RSA_F_CHECK_PADDING_MD 140
461 #define RSA_F_DO_RSA_PRINT 146
462 #define RSA_F_INT_RSA_VERIFY 145
463 #define RSA_F_MEMORY_LOCK 100
464 #define RSA_F_OLD_RSA_PRIV_DECODE 147
465 #define RSA_F_PKEY_RSA_CTRL 143
466 #define RSA_F_PKEY_RSA_CTRL_STR 144
467 #define RSA_F_PKEY_RSA_SIGN 142
468 #define RSA_F_PKEY_RSA_VERIFY 154
469 #define RSA_F_PKEY_RSA_VERIFYRECOVER 141
470 #define RSA_F_RSA_BUILTIN_KEYGEN 129
471 #define RSA_F_RSA_CHECK_KEY 123
472 #define RSA_F_RSA_EAY_PRIVATE_DECRYPT 101
473 #define RSA_F_RSA_EAY_PRIVATE_ENCRYPT 102
474 #define RSA_F_RSA_EAY_PUBLIC_DECRYPT 103
475 #define RSA_F_RSA_EAY_PUBLIC_ENCRYPT 104
476 #define RSA_F_RSA_GENERATE_KEY 105
477 #define RSA_F_RSA_GENERATE_KEY_EX 155
478 #define RSA_F_RSA_ITEM_VERIFY 156
479 #define RSA_F_RSA_MEMORY_LOCK 130
480 #define RSA_F_RSA_NEW_METHOD 106
481 #define RSA_F_RSA_NULL 124
482 #define RSA_F_RSA_NULL_MOD_EXP 131
483 #define RSA_F_RSA_NULL_PRIVATE_DECRYPT 132
484 #define RSA_F_RSA_NULL_PRIVATE_ENCRYPT 133
485 #define RSA_F_RSA_NULL_PUBLIC_DECRYPT 134
486 #define RSA_F_RSA_NULL_PUBLIC_ENCRYPT 135
487 #define RSA_F_RSA_PADDING_ADD_NONE 107
488 #define RSA_F_RSA_PADDING_ADD_PKCS1_OAEP 121
489 #define RSA_F_RSA_PADDING_ADD_PKCS1_PSS 125
490 #define RSA_F_RSA_PADDING_ADD_PKCS1_PSS_MGF1 148
491 #define RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_1 108
492 #define RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_2 109
493 #define RSA_F_RSA_PADDING_ADD_SSLV23 110
494 #define RSA_F_RSA_PADDING_ADD_X931 127
495 #define RSA_F_RSA_PADDING_CHECK_NONE 111
496 #define RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP 122
497 #define RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1 112
498 #define RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2 113
499 #define RSA_F_RSA_PADDING_CHECK_SSLV23 114
500 #define RSA_F_RSA_PADDING_CHECK_X931 128
501 #define RSA_F_RSA_PRINT 115
502 #define RSA_F_RSA_PRINT_FP 116
503 #define RSA_F_RSA_PRIVATE_DECRYPT 150
504 #define RSA_F_RSA_PRIVATE_ENCRYPT 151
505 #define RSA_F_RSA_PRIV_DECODE 137
506 #define RSA_F_RSA_PRIV_ENCODE 138
507 #define RSA_F_RSA_PUBLIC_DECRYPT 152
508 #define RSA_F_RSA_PUBLIC_ENCRYPT 153
509 #define RSA_F_RSA_PUB_DECODE 139
510 #define RSA_F_RSA_SETUP_BLINDING 136
511 #define RSA_F_RSA_SIGN 117
512 #define RSA_F_RSA_SIGN_ASN1_OCTET_STRING 118
513 #define RSA_F_RSA_VERIFY 119
514 #define RSA_F_RSA_VERIFY_ASN1_OCTET_STRING 120
515 #define RSA_F_RSA_VERIFY_PKCS1_PSS 126
516 #define RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1 149

518 /* Reason codes. */
519 #define RSA_R_ALGORITHM_MISMATCH 100
520 #define RSA_R_BAD_E_VALUE 101
521 #define RSA_R_BAD_FIXED_HEADER_DECRYPT 102
522 #define RSA_R_BAD_PAD_BYTE_COUNT 103
523 #define RSA_R_BAD_SIGNATURE 104

new/usr/src/lib/openssl/include/openssl/rsa.h 9

524 #define RSA_R_BLOCK_TYPE_IS_NOT_01 106
525 #define RSA_R_BLOCK_TYPE_IS_NOT_02 107
526 #define RSA_R_DATA_GREATER_THAN_MOD_LEN 108
527 #define RSA_R_DATA_TOO_LARGE 109
528 #define RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE 110
529 #define RSA_R_DATA_TOO_LARGE_FOR_MODULUS 132
530 #define RSA_R_DATA_TOO_SMALL 111
531 #define RSA_R_DATA_TOO_SMALL_FOR_KEY_SIZE 122
532 #define RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY 112
533 #define RSA_R_DMP1_NOT_CONGRUENT_TO_D 124
534 #define RSA_R_DMQ1_NOT_CONGRUENT_TO_D 125
535 #define RSA_R_D_E_NOT_CONGRUENT_TO_1 123
536 #define RSA_R_FIRST_OCTET_INVALID 133
537 #define RSA_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE 144
538 #define RSA_R_INVALID_DIGEST_LENGTH 143
539 #define RSA_R_INVALID_HEADER 137
540 #define RSA_R_INVALID_KEYBITS 145
541 #define RSA_R_INVALID_MESSAGE_LENGTH 131
542 #define RSA_R_INVALID_MGF1_MD 156
543 #define RSA_R_INVALID_PADDING 138
544 #define RSA_R_INVALID_PADDING_MODE 141
545 #define RSA_R_INVALID_PSS_PARAMETERS 149
546 #define RSA_R_INVALID_PSS_SALTLEN 146
547 #define RSA_R_INVALID_SALT_LENGTH 150
548 #define RSA_R_INVALID_TRAILER 139
549 #define RSA_R_INVALID_X931_DIGEST 142
550 #define RSA_R_IQMP_NOT_INVERSE_OF_Q 126
551 #define RSA_R_KEY_SIZE_TOO_SMALL 120
552 #define RSA_R_LAST_OCTET_INVALID 134
553 #define RSA_R_MODULUS_TOO_LARGE 105
554 #define RSA_R_NON_FIPS_RSA_METHOD 157
555 #define RSA_R_NO_PUBLIC_EXPONENT 140
556 #define RSA_R_NULL_BEFORE_BLOCK_MISSING 113
557 #define RSA_R_N_DOES_NOT_EQUAL_P_Q 127
558 #define RSA_R_OAEP_DECODING_ERROR 121
559 #define RSA_R_OPERATION_NOT_ALLOWED_IN_FIPS_MODE 158
560 #define RSA_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE 148
561 #define RSA_R_PADDING_CHECK_FAILED 114
562 #define RSA_R_P_NOT_PRIME 128
563 #define RSA_R_Q_NOT_PRIME 129
564 #define RSA_R_RSA_OPERATIONS_NOT_SUPPORTED 130
565 #define RSA_R_SLEN_CHECK_FAILED 136
566 #define RSA_R_SLEN_RECOVERY_FAILED 135
567 #define RSA_R_SSLV3_ROLLBACK_ATTACK 115
568 #define RSA_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD 116
569 #define RSA_R_UNKNOWN_ALGORITHM_TYPE 117
570 #define RSA_R_UNKNOWN_MASK_DIGEST 151
571 #define RSA_R_UNKNOWN_PADDING_TYPE 118
572 #define RSA_R_UNKNOWN_PSS_DIGEST 152
573 #define RSA_R_UNSUPPORTED_MASK_ALGORITHM 153
574 #define RSA_R_UNSUPPORTED_MASK_PARAMETER 154
575 #define RSA_R_UNSUPPORTED_SIGNATURE_TYPE 155
576 #define RSA_R_VALUE_MISSING 147
577 #define RSA_R_WRONG_SIGNATURE_LENGTH 119

579 #ifdef __cplusplus
580 }
581 #endif
582 #endif

new/usr/src/lib/openssl/include/openssl/safestack.h 1

**
 184155 Fri May 30 18:31:21 2014
new/usr/src/lib/openssl/include/openssl/safestack.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 #ifndef HEADER_SAFESTACK_H
56 #define HEADER_SAFESTACK_H

58 #include <openssl/stack.h>

60 #ifndef CHECKED_PTR_OF
61 #define CHECKED_PTR_OF(type, p) \

new/usr/src/lib/openssl/include/openssl/safestack.h 2

62 ((void*) (1 ? p : (type*)0))
63 #endif

65 /* In C++ we get problems because an explicit cast is needed from (void *)
66 * we use CHECKED_STACK_OF to ensure the correct type is passed in the macros
67 * below.
68 */

70 #define CHECKED_STACK_OF(type, p) \
71 ((_STACK*) (1 ? p : (STACK_OF(type)*)0))

73 #define CHECKED_SK_FREE_FUNC(type, p) \
74 ((void (*)(void *)) ((1 ? p : (void (*)(type *))0)))

76 #define CHECKED_SK_FREE_FUNC2(type, p) \
77 ((void (*)(void *)) ((1 ? p : (void (*)(type))0)))

79 #define CHECKED_SK_CMP_FUNC(type, p) \
80 ((int (*)(const void *, const void *)) \
81 ((1 ? p : (int (*)(const type * const *, const type * const *))0)))

83 #define STACK_OF(type) struct stack_st_##type
84 #define PREDECLARE_STACK_OF(type) STACK_OF(type);

86 #define DECLARE_STACK_OF(type) \
87 STACK_OF(type) \
88 { \
89 _STACK stack; \
90 };
91 #define DECLARE_SPECIAL_STACK_OF(type, type2) \
92 STACK_OF(type) \
93 { \
94 _STACK stack; \
95 };

97 #define IMPLEMENT_STACK_OF(type) /* nada (obsolete in new safestack approach)*/

100 /* Strings are special: normally an lhash entry will point to a single
101 * (somewhat) mutable object. In the case of strings:
102 *
103 * a) Instead of a single char, there is an array of chars, NUL-terminated.
104 * b) The string may have be immutable.
105 *
106 * So, they need their own declarations. Especially important for
107 * type-checking tools, such as Deputy.
108 *
109 o * In practice, however, it appears to be hard to have a const
110 * string. For now, I’m settling for dealing with the fact it is a
111 * string at all.
112 */
113 typedef char *OPENSSL_STRING;

115 typedef const char *OPENSSL_CSTRING;

117 /* Confusingly, LHASH_OF(STRING) deals with char ** throughout, but
118 * STACK_OF(STRING) is really more like STACK_OF(char), only, as
119 * mentioned above, instead of a single char each entry is a
120 * NUL-terminated array of chars. So, we have to implement STRING
121 * specially for STACK_OF. This is dealt with in the autogenerated
122 * macros below.
123 */

125 DECLARE_SPECIAL_STACK_OF(OPENSSL_STRING, char)

127 /* Similarly, we sometimes use a block of characters, NOT

new/usr/src/lib/openssl/include/openssl/safestack.h 3

128 * nul-terminated. These should also be distinguished from "normal"
129 * stacks. */

131 typedef void *OPENSSL_BLOCK;
132 DECLARE_SPECIAL_STACK_OF(OPENSSL_BLOCK, void)

134 /* SKM_sk_... stack macros are internal to safestack.h:
135 * never use them directly, use sk_<type>_... instead */
136 #define SKM_sk_new(type, cmp) \
137 ((STACK_OF(type) *)sk_new(CHECKED_SK_CMP_FUNC(type, cmp)))
138 #define SKM_sk_new_null(type) \
139 ((STACK_OF(type) *)sk_new_null())
140 #define SKM_sk_free(type, st) \
141 sk_free(CHECKED_STACK_OF(type, st))
142 #define SKM_sk_num(type, st) \
143 sk_num(CHECKED_STACK_OF(type, st))
144 #define SKM_sk_value(type, st,i) \
145 ((type *)sk_value(CHECKED_STACK_OF(type, st), i))
146 #define SKM_sk_set(type, st,i,val) \
147 sk_set(CHECKED_STACK_OF(type, st), i, CHECKED_PTR_OF(type, val))
148 #define SKM_sk_zero(type, st) \
149 sk_zero(CHECKED_STACK_OF(type, st))
150 #define SKM_sk_push(type, st, val) \
151 sk_push(CHECKED_STACK_OF(type, st), CHECKED_PTR_OF(type, val))
152 #define SKM_sk_unshift(type, st, val) \
153 sk_unshift(CHECKED_STACK_OF(type, st), CHECKED_PTR_OF(type, val))
154 #define SKM_sk_find(type, st, val) \
155 sk_find(CHECKED_STACK_OF(type, st), CHECKED_PTR_OF(type, val))
156 #define SKM_sk_find_ex(type, st, val) \
157 sk_find_ex(CHECKED_STACK_OF(type, st), \
158 CHECKED_PTR_OF(type, val))
159 #define SKM_sk_delete(type, st, i) \
160 (type *)sk_delete(CHECKED_STACK_OF(type, st), i)
161 #define SKM_sk_delete_ptr(type, st, ptr) \
162 (type *)sk_delete_ptr(CHECKED_STACK_OF(type, st), CHECKED_PTR_OF(type, p
163 #define SKM_sk_insert(type, st,val, i) \
164 sk_insert(CHECKED_STACK_OF(type, st), CHECKED_PTR_OF(type, val), i)
165 #define SKM_sk_set_cmp_func(type, st, cmp) \
166 ((int (*)(const type * const *,const type * const *)) \
167 sk_set_cmp_func(CHECKED_STACK_OF(type, st), CHECKED_SK_CMP_FUNC(type, cm
168 #define SKM_sk_dup(type, st) \
169 (STACK_OF(type) *)sk_dup(CHECKED_STACK_OF(type, st))
170 #define SKM_sk_pop_free(type, st, free_func) \
171 sk_pop_free(CHECKED_STACK_OF(type, st), CHECKED_SK_FREE_FUNC(type, free_
172 #define SKM_sk_shift(type, st) \
173 (type *)sk_shift(CHECKED_STACK_OF(type, st))
174 #define SKM_sk_pop(type, st) \
175 (type *)sk_pop(CHECKED_STACK_OF(type, st))
176 #define SKM_sk_sort(type, st) \
177 sk_sort(CHECKED_STACK_OF(type, st))
178 #define SKM_sk_is_sorted(type, st) \
179 sk_is_sorted(CHECKED_STACK_OF(type, st))

181 #define SKM_ASN1_SET_OF_d2i(type, st, pp, length, d2i_func, free_func, ex_tag, e
182 (STACK_OF(type) *)d2i_ASN1_SET(\
183 (STACK_OF(OPENSSL_BLOCK) **)CHECKED_PTR_OF(STACK
184 pp, length, \
185 CHECKED_D2I_OF(type, d2i_func), \
186 CHECKED_SK_FREE_FUNC(type, free_func), \
187 ex_tag, ex_class)

189 #define SKM_ASN1_SET_OF_i2d(type, st, pp, i2d_func, ex_tag, ex_class, is_set) \
190 i2d_ASN1_SET((STACK_OF(OPENSSL_BLOCK) *)CHECKED_STACK_OF(type, st), pp, \
191 CHECKED_I2D_OF(type, i2d_func), \
192 ex_tag, ex_class, is_set)

new/usr/src/lib/openssl/include/openssl/safestack.h 4

194 #define SKM_ASN1_seq_pack(type, st, i2d_func, buf, len) \
195 ASN1_seq_pack(CHECKED_PTR_OF(STACK_OF(type), st), \
196 CHECKED_I2D_OF(type, i2d_func), buf, len)

198 #define SKM_ASN1_seq_unpack(type, buf, len, d2i_func, free_func) \
199 (STACK_OF(type) *)ASN1_seq_unpack(buf, len, CHECKED_D2I_OF(type, d2i_fun

201 #define SKM_PKCS12_decrypt_d2i(type, algor, d2i_func, free_func, pass, passlen,
202 (STACK_OF(type) *)PKCS12_decrypt_d2i(algor, \
203 CHECKED_D2I_OF(type, d2i_func), \
204 CHECKED_SK_FREE_FUNC(type, free_func), \
205 pass, passlen, oct, seq)

207 /* This block of defines is updated by util/mkstack.pl, please do not touch! */
208 #define sk_ACCESS_DESCRIPTION_new(cmp) SKM_sk_new(ACCESS_DESCRIPTION, (cmp))
209 #define sk_ACCESS_DESCRIPTION_new_null() SKM_sk_new_null(ACCESS_DESCRIPTION)
210 #define sk_ACCESS_DESCRIPTION_free(st) SKM_sk_free(ACCESS_DESCRIPTION, (st))
211 #define sk_ACCESS_DESCRIPTION_num(st) SKM_sk_num(ACCESS_DESCRIPTION, (st))
212 #define sk_ACCESS_DESCRIPTION_value(st, i) SKM_sk_value(ACCESS_DESCRIPTION, (st)
213 #define sk_ACCESS_DESCRIPTION_set(st, i, val) SKM_sk_set(ACCESS_DESCRIPTION, (st
214 #define sk_ACCESS_DESCRIPTION_zero(st) SKM_sk_zero(ACCESS_DESCRIPTION, (st))
215 #define sk_ACCESS_DESCRIPTION_push(st, val) SKM_sk_push(ACCESS_DESCRIPTION, (st)
216 #define sk_ACCESS_DESCRIPTION_unshift(st, val) SKM_sk_unshift(ACCESS_DESCRIPTION
217 #define sk_ACCESS_DESCRIPTION_find(st, val) SKM_sk_find(ACCESS_DESCRIPTION, (st)
218 #define sk_ACCESS_DESCRIPTION_find_ex(st, val) SKM_sk_find_ex(ACCESS_DESCRIPTION
219 #define sk_ACCESS_DESCRIPTION_delete(st, i) SKM_sk_delete(ACCESS_DESCRIPTION, (s
220 #define sk_ACCESS_DESCRIPTION_delete_ptr(st, ptr) SKM_sk_delete_ptr(ACCESS_DESCR
221 #define sk_ACCESS_DESCRIPTION_insert(st, val, i) SKM_sk_insert(ACCESS_DESCRIPTIO
222 #define sk_ACCESS_DESCRIPTION_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(ACCESS_D
223 #define sk_ACCESS_DESCRIPTION_dup(st) SKM_sk_dup(ACCESS_DESCRIPTION, st)
224 #define sk_ACCESS_DESCRIPTION_pop_free(st, free_func) SKM_sk_pop_free(ACCESS_DES
225 #define sk_ACCESS_DESCRIPTION_shift(st) SKM_sk_shift(ACCESS_DESCRIPTION, (st))
226 #define sk_ACCESS_DESCRIPTION_pop(st) SKM_sk_pop(ACCESS_DESCRIPTION, (st))
227 #define sk_ACCESS_DESCRIPTION_sort(st) SKM_sk_sort(ACCESS_DESCRIPTION, (st))
228 #define sk_ACCESS_DESCRIPTION_is_sorted(st) SKM_sk_is_sorted(ACCESS_DESCRIPTION,

230 #define sk_ASIdOrRange_new(cmp) SKM_sk_new(ASIdOrRange, (cmp))
231 #define sk_ASIdOrRange_new_null() SKM_sk_new_null(ASIdOrRange)
232 #define sk_ASIdOrRange_free(st) SKM_sk_free(ASIdOrRange, (st))
233 #define sk_ASIdOrRange_num(st) SKM_sk_num(ASIdOrRange, (st))
234 #define sk_ASIdOrRange_value(st, i) SKM_sk_value(ASIdOrRange, (st), (i))
235 #define sk_ASIdOrRange_set(st, i, val) SKM_sk_set(ASIdOrRange, (st), (i), (val))
236 #define sk_ASIdOrRange_zero(st) SKM_sk_zero(ASIdOrRange, (st))
237 #define sk_ASIdOrRange_push(st, val) SKM_sk_push(ASIdOrRange, (st), (val))
238 #define sk_ASIdOrRange_unshift(st, val) SKM_sk_unshift(ASIdOrRange, (st), (val))
239 #define sk_ASIdOrRange_find(st, val) SKM_sk_find(ASIdOrRange, (st), (val))
240 #define sk_ASIdOrRange_find_ex(st, val) SKM_sk_find_ex(ASIdOrRange, (st), (val))
241 #define sk_ASIdOrRange_delete(st, i) SKM_sk_delete(ASIdOrRange, (st), (i))
242 #define sk_ASIdOrRange_delete_ptr(st, ptr) SKM_sk_delete_ptr(ASIdOrRange, (st),
243 #define sk_ASIdOrRange_insert(st, val, i) SKM_sk_insert(ASIdOrRange, (st), (val)
244 #define sk_ASIdOrRange_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(ASIdOrRange, (s
245 #define sk_ASIdOrRange_dup(st) SKM_sk_dup(ASIdOrRange, st)
246 #define sk_ASIdOrRange_pop_free(st, free_func) SKM_sk_pop_free(ASIdOrRange, (st)
247 #define sk_ASIdOrRange_shift(st) SKM_sk_shift(ASIdOrRange, (st))
248 #define sk_ASIdOrRange_pop(st) SKM_sk_pop(ASIdOrRange, (st))
249 #define sk_ASIdOrRange_sort(st) SKM_sk_sort(ASIdOrRange, (st))
250 #define sk_ASIdOrRange_is_sorted(st) SKM_sk_is_sorted(ASIdOrRange, (st))

252 #define sk_ASN1_GENERALSTRING_new(cmp) SKM_sk_new(ASN1_GENERALSTRING, (cmp))
253 #define sk_ASN1_GENERALSTRING_new_null() SKM_sk_new_null(ASN1_GENERALSTRING)
254 #define sk_ASN1_GENERALSTRING_free(st) SKM_sk_free(ASN1_GENERALSTRING, (st))
255 #define sk_ASN1_GENERALSTRING_num(st) SKM_sk_num(ASN1_GENERALSTRING, (st))
256 #define sk_ASN1_GENERALSTRING_value(st, i) SKM_sk_value(ASN1_GENERALSTRING, (st)
257 #define sk_ASN1_GENERALSTRING_set(st, i, val) SKM_sk_set(ASN1_GENERALSTRING, (st
258 #define sk_ASN1_GENERALSTRING_zero(st) SKM_sk_zero(ASN1_GENERALSTRING, (st))
259 #define sk_ASN1_GENERALSTRING_push(st, val) SKM_sk_push(ASN1_GENERALSTRING, (st)

new/usr/src/lib/openssl/include/openssl/safestack.h 5

260 #define sk_ASN1_GENERALSTRING_unshift(st, val) SKM_sk_unshift(ASN1_GENERALSTRING
261 #define sk_ASN1_GENERALSTRING_find(st, val) SKM_sk_find(ASN1_GENERALSTRING, (st)
262 #define sk_ASN1_GENERALSTRING_find_ex(st, val) SKM_sk_find_ex(ASN1_GENERALSTRING
263 #define sk_ASN1_GENERALSTRING_delete(st, i) SKM_sk_delete(ASN1_GENERALSTRING, (s
264 #define sk_ASN1_GENERALSTRING_delete_ptr(st, ptr) SKM_sk_delete_ptr(ASN1_GENERAL
265 #define sk_ASN1_GENERALSTRING_insert(st, val, i) SKM_sk_insert(ASN1_GENERALSTRIN
266 #define sk_ASN1_GENERALSTRING_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(ASN1_GEN
267 #define sk_ASN1_GENERALSTRING_dup(st) SKM_sk_dup(ASN1_GENERALSTRING, st)
268 #define sk_ASN1_GENERALSTRING_pop_free(st, free_func) SKM_sk_pop_free(ASN1_GENER
269 #define sk_ASN1_GENERALSTRING_shift(st) SKM_sk_shift(ASN1_GENERALSTRING, (st))
270 #define sk_ASN1_GENERALSTRING_pop(st) SKM_sk_pop(ASN1_GENERALSTRING, (st))
271 #define sk_ASN1_GENERALSTRING_sort(st) SKM_sk_sort(ASN1_GENERALSTRING, (st))
272 #define sk_ASN1_GENERALSTRING_is_sorted(st) SKM_sk_is_sorted(ASN1_GENERALSTRING,

274 #define sk_ASN1_INTEGER_new(cmp) SKM_sk_new(ASN1_INTEGER, (cmp))
275 #define sk_ASN1_INTEGER_new_null() SKM_sk_new_null(ASN1_INTEGER)
276 #define sk_ASN1_INTEGER_free(st) SKM_sk_free(ASN1_INTEGER, (st))
277 #define sk_ASN1_INTEGER_num(st) SKM_sk_num(ASN1_INTEGER, (st))
278 #define sk_ASN1_INTEGER_value(st, i) SKM_sk_value(ASN1_INTEGER, (st), (i))
279 #define sk_ASN1_INTEGER_set(st, i, val) SKM_sk_set(ASN1_INTEGER, (st), (i), (val
280 #define sk_ASN1_INTEGER_zero(st) SKM_sk_zero(ASN1_INTEGER, (st))
281 #define sk_ASN1_INTEGER_push(st, val) SKM_sk_push(ASN1_INTEGER, (st), (val))
282 #define sk_ASN1_INTEGER_unshift(st, val) SKM_sk_unshift(ASN1_INTEGER, (st), (val
283 #define sk_ASN1_INTEGER_find(st, val) SKM_sk_find(ASN1_INTEGER, (st), (val))
284 #define sk_ASN1_INTEGER_find_ex(st, val) SKM_sk_find_ex(ASN1_INTEGER, (st), (val
285 #define sk_ASN1_INTEGER_delete(st, i) SKM_sk_delete(ASN1_INTEGER, (st), (i))
286 #define sk_ASN1_INTEGER_delete_ptr(st, ptr) SKM_sk_delete_ptr(ASN1_INTEGER, (st)
287 #define sk_ASN1_INTEGER_insert(st, val, i) SKM_sk_insert(ASN1_INTEGER, (st), (va
288 #define sk_ASN1_INTEGER_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(ASN1_INTEGER,
289 #define sk_ASN1_INTEGER_dup(st) SKM_sk_dup(ASN1_INTEGER, st)
290 #define sk_ASN1_INTEGER_pop_free(st, free_func) SKM_sk_pop_free(ASN1_INTEGER, (s
291 #define sk_ASN1_INTEGER_shift(st) SKM_sk_shift(ASN1_INTEGER, (st))
292 #define sk_ASN1_INTEGER_pop(st) SKM_sk_pop(ASN1_INTEGER, (st))
293 #define sk_ASN1_INTEGER_sort(st) SKM_sk_sort(ASN1_INTEGER, (st))
294 #define sk_ASN1_INTEGER_is_sorted(st) SKM_sk_is_sorted(ASN1_INTEGER, (st))

296 #define sk_ASN1_OBJECT_new(cmp) SKM_sk_new(ASN1_OBJECT, (cmp))
297 #define sk_ASN1_OBJECT_new_null() SKM_sk_new_null(ASN1_OBJECT)
298 #define sk_ASN1_OBJECT_free(st) SKM_sk_free(ASN1_OBJECT, (st))
299 #define sk_ASN1_OBJECT_num(st) SKM_sk_num(ASN1_OBJECT, (st))
300 #define sk_ASN1_OBJECT_value(st, i) SKM_sk_value(ASN1_OBJECT, (st), (i))
301 #define sk_ASN1_OBJECT_set(st, i, val) SKM_sk_set(ASN1_OBJECT, (st), (i), (val))
302 #define sk_ASN1_OBJECT_zero(st) SKM_sk_zero(ASN1_OBJECT, (st))
303 #define sk_ASN1_OBJECT_push(st, val) SKM_sk_push(ASN1_OBJECT, (st), (val))
304 #define sk_ASN1_OBJECT_unshift(st, val) SKM_sk_unshift(ASN1_OBJECT, (st), (val))
305 #define sk_ASN1_OBJECT_find(st, val) SKM_sk_find(ASN1_OBJECT, (st), (val))
306 #define sk_ASN1_OBJECT_find_ex(st, val) SKM_sk_find_ex(ASN1_OBJECT, (st), (val))
307 #define sk_ASN1_OBJECT_delete(st, i) SKM_sk_delete(ASN1_OBJECT, (st), (i))
308 #define sk_ASN1_OBJECT_delete_ptr(st, ptr) SKM_sk_delete_ptr(ASN1_OBJECT, (st),
309 #define sk_ASN1_OBJECT_insert(st, val, i) SKM_sk_insert(ASN1_OBJECT, (st), (val)
310 #define sk_ASN1_OBJECT_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(ASN1_OBJECT, (s
311 #define sk_ASN1_OBJECT_dup(st) SKM_sk_dup(ASN1_OBJECT, st)
312 #define sk_ASN1_OBJECT_pop_free(st, free_func) SKM_sk_pop_free(ASN1_OBJECT, (st)
313 #define sk_ASN1_OBJECT_shift(st) SKM_sk_shift(ASN1_OBJECT, (st))
314 #define sk_ASN1_OBJECT_pop(st) SKM_sk_pop(ASN1_OBJECT, (st))
315 #define sk_ASN1_OBJECT_sort(st) SKM_sk_sort(ASN1_OBJECT, (st))
316 #define sk_ASN1_OBJECT_is_sorted(st) SKM_sk_is_sorted(ASN1_OBJECT, (st))

318 #define sk_ASN1_STRING_TABLE_new(cmp) SKM_sk_new(ASN1_STRING_TABLE, (cmp))
319 #define sk_ASN1_STRING_TABLE_new_null() SKM_sk_new_null(ASN1_STRING_TABLE)
320 #define sk_ASN1_STRING_TABLE_free(st) SKM_sk_free(ASN1_STRING_TABLE, (st))
321 #define sk_ASN1_STRING_TABLE_num(st) SKM_sk_num(ASN1_STRING_TABLE, (st))
322 #define sk_ASN1_STRING_TABLE_value(st, i) SKM_sk_value(ASN1_STRING_TABLE, (st),
323 #define sk_ASN1_STRING_TABLE_set(st, i, val) SKM_sk_set(ASN1_STRING_TABLE, (st),
324 #define sk_ASN1_STRING_TABLE_zero(st) SKM_sk_zero(ASN1_STRING_TABLE, (st))
325 #define sk_ASN1_STRING_TABLE_push(st, val) SKM_sk_push(ASN1_STRING_TABLE, (st),

new/usr/src/lib/openssl/include/openssl/safestack.h 6

326 #define sk_ASN1_STRING_TABLE_unshift(st, val) SKM_sk_unshift(ASN1_STRING_TABLE,
327 #define sk_ASN1_STRING_TABLE_find(st, val) SKM_sk_find(ASN1_STRING_TABLE, (st),
328 #define sk_ASN1_STRING_TABLE_find_ex(st, val) SKM_sk_find_ex(ASN1_STRING_TABLE,
329 #define sk_ASN1_STRING_TABLE_delete(st, i) SKM_sk_delete(ASN1_STRING_TABLE, (st)
330 #define sk_ASN1_STRING_TABLE_delete_ptr(st, ptr) SKM_sk_delete_ptr(ASN1_STRING_T
331 #define sk_ASN1_STRING_TABLE_insert(st, val, i) SKM_sk_insert(ASN1_STRING_TABLE,
332 #define sk_ASN1_STRING_TABLE_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(ASN1_STRI
333 #define sk_ASN1_STRING_TABLE_dup(st) SKM_sk_dup(ASN1_STRING_TABLE, st)
334 #define sk_ASN1_STRING_TABLE_pop_free(st, free_func) SKM_sk_pop_free(ASN1_STRING
335 #define sk_ASN1_STRING_TABLE_shift(st) SKM_sk_shift(ASN1_STRING_TABLE, (st))
336 #define sk_ASN1_STRING_TABLE_pop(st) SKM_sk_pop(ASN1_STRING_TABLE, (st))
337 #define sk_ASN1_STRING_TABLE_sort(st) SKM_sk_sort(ASN1_STRING_TABLE, (st))
338 #define sk_ASN1_STRING_TABLE_is_sorted(st) SKM_sk_is_sorted(ASN1_STRING_TABLE, (

340 #define sk_ASN1_TYPE_new(cmp) SKM_sk_new(ASN1_TYPE, (cmp))
341 #define sk_ASN1_TYPE_new_null() SKM_sk_new_null(ASN1_TYPE)
342 #define sk_ASN1_TYPE_free(st) SKM_sk_free(ASN1_TYPE, (st))
343 #define sk_ASN1_TYPE_num(st) SKM_sk_num(ASN1_TYPE, (st))
344 #define sk_ASN1_TYPE_value(st, i) SKM_sk_value(ASN1_TYPE, (st), (i))
345 #define sk_ASN1_TYPE_set(st, i, val) SKM_sk_set(ASN1_TYPE, (st), (i), (val))
346 #define sk_ASN1_TYPE_zero(st) SKM_sk_zero(ASN1_TYPE, (st))
347 #define sk_ASN1_TYPE_push(st, val) SKM_sk_push(ASN1_TYPE, (st), (val))
348 #define sk_ASN1_TYPE_unshift(st, val) SKM_sk_unshift(ASN1_TYPE, (st), (val))
349 #define sk_ASN1_TYPE_find(st, val) SKM_sk_find(ASN1_TYPE, (st), (val))
350 #define sk_ASN1_TYPE_find_ex(st, val) SKM_sk_find_ex(ASN1_TYPE, (st), (val))
351 #define sk_ASN1_TYPE_delete(st, i) SKM_sk_delete(ASN1_TYPE, (st), (i))
352 #define sk_ASN1_TYPE_delete_ptr(st, ptr) SKM_sk_delete_ptr(ASN1_TYPE, (st), (ptr
353 #define sk_ASN1_TYPE_insert(st, val, i) SKM_sk_insert(ASN1_TYPE, (st), (val), (i
354 #define sk_ASN1_TYPE_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(ASN1_TYPE, (st),
355 #define sk_ASN1_TYPE_dup(st) SKM_sk_dup(ASN1_TYPE, st)
356 #define sk_ASN1_TYPE_pop_free(st, free_func) SKM_sk_pop_free(ASN1_TYPE, (st), (f
357 #define sk_ASN1_TYPE_shift(st) SKM_sk_shift(ASN1_TYPE, (st))
358 #define sk_ASN1_TYPE_pop(st) SKM_sk_pop(ASN1_TYPE, (st))
359 #define sk_ASN1_TYPE_sort(st) SKM_sk_sort(ASN1_TYPE, (st))
360 #define sk_ASN1_TYPE_is_sorted(st) SKM_sk_is_sorted(ASN1_TYPE, (st))

362 #define sk_ASN1_UTF8STRING_new(cmp) SKM_sk_new(ASN1_UTF8STRING, (cmp))
363 #define sk_ASN1_UTF8STRING_new_null() SKM_sk_new_null(ASN1_UTF8STRING)
364 #define sk_ASN1_UTF8STRING_free(st) SKM_sk_free(ASN1_UTF8STRING, (st))
365 #define sk_ASN1_UTF8STRING_num(st) SKM_sk_num(ASN1_UTF8STRING, (st))
366 #define sk_ASN1_UTF8STRING_value(st, i) SKM_sk_value(ASN1_UTF8STRING, (st), (i))
367 #define sk_ASN1_UTF8STRING_set(st, i, val) SKM_sk_set(ASN1_UTF8STRING, (st), (i)
368 #define sk_ASN1_UTF8STRING_zero(st) SKM_sk_zero(ASN1_UTF8STRING, (st))
369 #define sk_ASN1_UTF8STRING_push(st, val) SKM_sk_push(ASN1_UTF8STRING, (st), (val
370 #define sk_ASN1_UTF8STRING_unshift(st, val) SKM_sk_unshift(ASN1_UTF8STRING, (st)
371 #define sk_ASN1_UTF8STRING_find(st, val) SKM_sk_find(ASN1_UTF8STRING, (st), (val
372 #define sk_ASN1_UTF8STRING_find_ex(st, val) SKM_sk_find_ex(ASN1_UTF8STRING, (st)
373 #define sk_ASN1_UTF8STRING_delete(st, i) SKM_sk_delete(ASN1_UTF8STRING, (st), (i
374 #define sk_ASN1_UTF8STRING_delete_ptr(st, ptr) SKM_sk_delete_ptr(ASN1_UTF8STRING
375 #define sk_ASN1_UTF8STRING_insert(st, val, i) SKM_sk_insert(ASN1_UTF8STRING, (st
376 #define sk_ASN1_UTF8STRING_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(ASN1_UTF8ST
377 #define sk_ASN1_UTF8STRING_dup(st) SKM_sk_dup(ASN1_UTF8STRING, st)
378 #define sk_ASN1_UTF8STRING_pop_free(st, free_func) SKM_sk_pop_free(ASN1_UTF8STRI
379 #define sk_ASN1_UTF8STRING_shift(st) SKM_sk_shift(ASN1_UTF8STRING, (st))
380 #define sk_ASN1_UTF8STRING_pop(st) SKM_sk_pop(ASN1_UTF8STRING, (st))
381 #define sk_ASN1_UTF8STRING_sort(st) SKM_sk_sort(ASN1_UTF8STRING, (st))
382 #define sk_ASN1_UTF8STRING_is_sorted(st) SKM_sk_is_sorted(ASN1_UTF8STRING, (st))

384 #define sk_ASN1_VALUE_new(cmp) SKM_sk_new(ASN1_VALUE, (cmp))
385 #define sk_ASN1_VALUE_new_null() SKM_sk_new_null(ASN1_VALUE)
386 #define sk_ASN1_VALUE_free(st) SKM_sk_free(ASN1_VALUE, (st))
387 #define sk_ASN1_VALUE_num(st) SKM_sk_num(ASN1_VALUE, (st))
388 #define sk_ASN1_VALUE_value(st, i) SKM_sk_value(ASN1_VALUE, (st), (i))
389 #define sk_ASN1_VALUE_set(st, i, val) SKM_sk_set(ASN1_VALUE, (st), (i), (val))
390 #define sk_ASN1_VALUE_zero(st) SKM_sk_zero(ASN1_VALUE, (st))
391 #define sk_ASN1_VALUE_push(st, val) SKM_sk_push(ASN1_VALUE, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 7

392 #define sk_ASN1_VALUE_unshift(st, val) SKM_sk_unshift(ASN1_VALUE, (st), (val))
393 #define sk_ASN1_VALUE_find(st, val) SKM_sk_find(ASN1_VALUE, (st), (val))
394 #define sk_ASN1_VALUE_find_ex(st, val) SKM_sk_find_ex(ASN1_VALUE, (st), (val))
395 #define sk_ASN1_VALUE_delete(st, i) SKM_sk_delete(ASN1_VALUE, (st), (i))
396 #define sk_ASN1_VALUE_delete_ptr(st, ptr) SKM_sk_delete_ptr(ASN1_VALUE, (st), (p
397 #define sk_ASN1_VALUE_insert(st, val, i) SKM_sk_insert(ASN1_VALUE, (st), (val),
398 #define sk_ASN1_VALUE_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(ASN1_VALUE, (st)
399 #define sk_ASN1_VALUE_dup(st) SKM_sk_dup(ASN1_VALUE, st)
400 #define sk_ASN1_VALUE_pop_free(st, free_func) SKM_sk_pop_free(ASN1_VALUE, (st),
401 #define sk_ASN1_VALUE_shift(st) SKM_sk_shift(ASN1_VALUE, (st))
402 #define sk_ASN1_VALUE_pop(st) SKM_sk_pop(ASN1_VALUE, (st))
403 #define sk_ASN1_VALUE_sort(st) SKM_sk_sort(ASN1_VALUE, (st))
404 #define sk_ASN1_VALUE_is_sorted(st) SKM_sk_is_sorted(ASN1_VALUE, (st))

406 #define sk_BIO_new(cmp) SKM_sk_new(BIO, (cmp))
407 #define sk_BIO_new_null() SKM_sk_new_null(BIO)
408 #define sk_BIO_free(st) SKM_sk_free(BIO, (st))
409 #define sk_BIO_num(st) SKM_sk_num(BIO, (st))
410 #define sk_BIO_value(st, i) SKM_sk_value(BIO, (st), (i))
411 #define sk_BIO_set(st, i, val) SKM_sk_set(BIO, (st), (i), (val))
412 #define sk_BIO_zero(st) SKM_sk_zero(BIO, (st))
413 #define sk_BIO_push(st, val) SKM_sk_push(BIO, (st), (val))
414 #define sk_BIO_unshift(st, val) SKM_sk_unshift(BIO, (st), (val))
415 #define sk_BIO_find(st, val) SKM_sk_find(BIO, (st), (val))
416 #define sk_BIO_find_ex(st, val) SKM_sk_find_ex(BIO, (st), (val))
417 #define sk_BIO_delete(st, i) SKM_sk_delete(BIO, (st), (i))
418 #define sk_BIO_delete_ptr(st, ptr) SKM_sk_delete_ptr(BIO, (st), (ptr))
419 #define sk_BIO_insert(st, val, i) SKM_sk_insert(BIO, (st), (val), (i))
420 #define sk_BIO_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(BIO, (st), (cmp))
421 #define sk_BIO_dup(st) SKM_sk_dup(BIO, st)
422 #define sk_BIO_pop_free(st, free_func) SKM_sk_pop_free(BIO, (st), (free_func))
423 #define sk_BIO_shift(st) SKM_sk_shift(BIO, (st))
424 #define sk_BIO_pop(st) SKM_sk_pop(BIO, (st))
425 #define sk_BIO_sort(st) SKM_sk_sort(BIO, (st))
426 #define sk_BIO_is_sorted(st) SKM_sk_is_sorted(BIO, (st))

428 #define sk_BY_DIR_ENTRY_new(cmp) SKM_sk_new(BY_DIR_ENTRY, (cmp))
429 #define sk_BY_DIR_ENTRY_new_null() SKM_sk_new_null(BY_DIR_ENTRY)
430 #define sk_BY_DIR_ENTRY_free(st) SKM_sk_free(BY_DIR_ENTRY, (st))
431 #define sk_BY_DIR_ENTRY_num(st) SKM_sk_num(BY_DIR_ENTRY, (st))
432 #define sk_BY_DIR_ENTRY_value(st, i) SKM_sk_value(BY_DIR_ENTRY, (st), (i))
433 #define sk_BY_DIR_ENTRY_set(st, i, val) SKM_sk_set(BY_DIR_ENTRY, (st), (i), (val
434 #define sk_BY_DIR_ENTRY_zero(st) SKM_sk_zero(BY_DIR_ENTRY, (st))
435 #define sk_BY_DIR_ENTRY_push(st, val) SKM_sk_push(BY_DIR_ENTRY, (st), (val))
436 #define sk_BY_DIR_ENTRY_unshift(st, val) SKM_sk_unshift(BY_DIR_ENTRY, (st), (val
437 #define sk_BY_DIR_ENTRY_find(st, val) SKM_sk_find(BY_DIR_ENTRY, (st), (val))
438 #define sk_BY_DIR_ENTRY_find_ex(st, val) SKM_sk_find_ex(BY_DIR_ENTRY, (st), (val
439 #define sk_BY_DIR_ENTRY_delete(st, i) SKM_sk_delete(BY_DIR_ENTRY, (st), (i))
440 #define sk_BY_DIR_ENTRY_delete_ptr(st, ptr) SKM_sk_delete_ptr(BY_DIR_ENTRY, (st)
441 #define sk_BY_DIR_ENTRY_insert(st, val, i) SKM_sk_insert(BY_DIR_ENTRY, (st), (va
442 #define sk_BY_DIR_ENTRY_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(BY_DIR_ENTRY,
443 #define sk_BY_DIR_ENTRY_dup(st) SKM_sk_dup(BY_DIR_ENTRY, st)
444 #define sk_BY_DIR_ENTRY_pop_free(st, free_func) SKM_sk_pop_free(BY_DIR_ENTRY, (s
445 #define sk_BY_DIR_ENTRY_shift(st) SKM_sk_shift(BY_DIR_ENTRY, (st))
446 #define sk_BY_DIR_ENTRY_pop(st) SKM_sk_pop(BY_DIR_ENTRY, (st))
447 #define sk_BY_DIR_ENTRY_sort(st) SKM_sk_sort(BY_DIR_ENTRY, (st))
448 #define sk_BY_DIR_ENTRY_is_sorted(st) SKM_sk_is_sorted(BY_DIR_ENTRY, (st))

450 #define sk_BY_DIR_HASH_new(cmp) SKM_sk_new(BY_DIR_HASH, (cmp))
451 #define sk_BY_DIR_HASH_new_null() SKM_sk_new_null(BY_DIR_HASH)
452 #define sk_BY_DIR_HASH_free(st) SKM_sk_free(BY_DIR_HASH, (st))
453 #define sk_BY_DIR_HASH_num(st) SKM_sk_num(BY_DIR_HASH, (st))
454 #define sk_BY_DIR_HASH_value(st, i) SKM_sk_value(BY_DIR_HASH, (st), (i))
455 #define sk_BY_DIR_HASH_set(st, i, val) SKM_sk_set(BY_DIR_HASH, (st), (i), (val))
456 #define sk_BY_DIR_HASH_zero(st) SKM_sk_zero(BY_DIR_HASH, (st))
457 #define sk_BY_DIR_HASH_push(st, val) SKM_sk_push(BY_DIR_HASH, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 8

458 #define sk_BY_DIR_HASH_unshift(st, val) SKM_sk_unshift(BY_DIR_HASH, (st), (val))
459 #define sk_BY_DIR_HASH_find(st, val) SKM_sk_find(BY_DIR_HASH, (st), (val))
460 #define sk_BY_DIR_HASH_find_ex(st, val) SKM_sk_find_ex(BY_DIR_HASH, (st), (val))
461 #define sk_BY_DIR_HASH_delete(st, i) SKM_sk_delete(BY_DIR_HASH, (st), (i))
462 #define sk_BY_DIR_HASH_delete_ptr(st, ptr) SKM_sk_delete_ptr(BY_DIR_HASH, (st),
463 #define sk_BY_DIR_HASH_insert(st, val, i) SKM_sk_insert(BY_DIR_HASH, (st), (val)
464 #define sk_BY_DIR_HASH_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(BY_DIR_HASH, (s
465 #define sk_BY_DIR_HASH_dup(st) SKM_sk_dup(BY_DIR_HASH, st)
466 #define sk_BY_DIR_HASH_pop_free(st, free_func) SKM_sk_pop_free(BY_DIR_HASH, (st)
467 #define sk_BY_DIR_HASH_shift(st) SKM_sk_shift(BY_DIR_HASH, (st))
468 #define sk_BY_DIR_HASH_pop(st) SKM_sk_pop(BY_DIR_HASH, (st))
469 #define sk_BY_DIR_HASH_sort(st) SKM_sk_sort(BY_DIR_HASH, (st))
470 #define sk_BY_DIR_HASH_is_sorted(st) SKM_sk_is_sorted(BY_DIR_HASH, (st))

472 #define sk_CMS_CertificateChoices_new(cmp) SKM_sk_new(CMS_CertificateChoices, (c
473 #define sk_CMS_CertificateChoices_new_null() SKM_sk_new_null(CMS_CertificateChoi
474 #define sk_CMS_CertificateChoices_free(st) SKM_sk_free(CMS_CertificateChoices, (
475 #define sk_CMS_CertificateChoices_num(st) SKM_sk_num(CMS_CertificateChoices, (st
476 #define sk_CMS_CertificateChoices_value(st, i) SKM_sk_value(CMS_CertificateChoic
477 #define sk_CMS_CertificateChoices_set(st, i, val) SKM_sk_set(CMS_CertificateChoi
478 #define sk_CMS_CertificateChoices_zero(st) SKM_sk_zero(CMS_CertificateChoices, (
479 #define sk_CMS_CertificateChoices_push(st, val) SKM_sk_push(CMS_CertificateChoic
480 #define sk_CMS_CertificateChoices_unshift(st, val) SKM_sk_unshift(CMS_Certificat
481 #define sk_CMS_CertificateChoices_find(st, val) SKM_sk_find(CMS_CertificateChoic
482 #define sk_CMS_CertificateChoices_find_ex(st, val) SKM_sk_find_ex(CMS_Certificat
483 #define sk_CMS_CertificateChoices_delete(st, i) SKM_sk_delete(CMS_CertificateCho
484 #define sk_CMS_CertificateChoices_delete_ptr(st, ptr) SKM_sk_delete_ptr(CMS_Cert
485 #define sk_CMS_CertificateChoices_insert(st, val, i) SKM_sk_insert(CMS_Certifica
486 #define sk_CMS_CertificateChoices_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(CMS_
487 #define sk_CMS_CertificateChoices_dup(st) SKM_sk_dup(CMS_CertificateChoices, st)
488 #define sk_CMS_CertificateChoices_pop_free(st, free_func) SKM_sk_pop_free(CMS_Ce
489 #define sk_CMS_CertificateChoices_shift(st) SKM_sk_shift(CMS_CertificateChoices,
490 #define sk_CMS_CertificateChoices_pop(st) SKM_sk_pop(CMS_CertificateChoices, (st
491 #define sk_CMS_CertificateChoices_sort(st) SKM_sk_sort(CMS_CertificateChoices, (
492 #define sk_CMS_CertificateChoices_is_sorted(st) SKM_sk_is_sorted(CMS_Certificate

494 #define sk_CMS_RecipientInfo_new(cmp) SKM_sk_new(CMS_RecipientInfo, (cmp))
495 #define sk_CMS_RecipientInfo_new_null() SKM_sk_new_null(CMS_RecipientInfo)
496 #define sk_CMS_RecipientInfo_free(st) SKM_sk_free(CMS_RecipientInfo, (st))
497 #define sk_CMS_RecipientInfo_num(st) SKM_sk_num(CMS_RecipientInfo, (st))
498 #define sk_CMS_RecipientInfo_value(st, i) SKM_sk_value(CMS_RecipientInfo, (st),
499 #define sk_CMS_RecipientInfo_set(st, i, val) SKM_sk_set(CMS_RecipientInfo, (st),
500 #define sk_CMS_RecipientInfo_zero(st) SKM_sk_zero(CMS_RecipientInfo, (st))
501 #define sk_CMS_RecipientInfo_push(st, val) SKM_sk_push(CMS_RecipientInfo, (st),
502 #define sk_CMS_RecipientInfo_unshift(st, val) SKM_sk_unshift(CMS_RecipientInfo,
503 #define sk_CMS_RecipientInfo_find(st, val) SKM_sk_find(CMS_RecipientInfo, (st),
504 #define sk_CMS_RecipientInfo_find_ex(st, val) SKM_sk_find_ex(CMS_RecipientInfo,
505 #define sk_CMS_RecipientInfo_delete(st, i) SKM_sk_delete(CMS_RecipientInfo, (st)
506 #define sk_CMS_RecipientInfo_delete_ptr(st, ptr) SKM_sk_delete_ptr(CMS_Recipient
507 #define sk_CMS_RecipientInfo_insert(st, val, i) SKM_sk_insert(CMS_RecipientInfo,
508 #define sk_CMS_RecipientInfo_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(CMS_Recip
509 #define sk_CMS_RecipientInfo_dup(st) SKM_sk_dup(CMS_RecipientInfo, st)
510 #define sk_CMS_RecipientInfo_pop_free(st, free_func) SKM_sk_pop_free(CMS_Recipie
511 #define sk_CMS_RecipientInfo_shift(st) SKM_sk_shift(CMS_RecipientInfo, (st))
512 #define sk_CMS_RecipientInfo_pop(st) SKM_sk_pop(CMS_RecipientInfo, (st))
513 #define sk_CMS_RecipientInfo_sort(st) SKM_sk_sort(CMS_RecipientInfo, (st))
514 #define sk_CMS_RecipientInfo_is_sorted(st) SKM_sk_is_sorted(CMS_RecipientInfo, (

516 #define sk_CMS_RevocationInfoChoice_new(cmp) SKM_sk_new(CMS_RevocationInfoChoice
517 #define sk_CMS_RevocationInfoChoice_new_null() SKM_sk_new_null(CMS_RevocationInf
518 #define sk_CMS_RevocationInfoChoice_free(st) SKM_sk_free(CMS_RevocationInfoChoic
519 #define sk_CMS_RevocationInfoChoice_num(st) SKM_sk_num(CMS_RevocationInfoChoice,
520 #define sk_CMS_RevocationInfoChoice_value(st, i) SKM_sk_value(CMS_RevocationInfo
521 #define sk_CMS_RevocationInfoChoice_set(st, i, val) SKM_sk_set(CMS_RevocationInf
522 #define sk_CMS_RevocationInfoChoice_zero(st) SKM_sk_zero(CMS_RevocationInfoChoic
523 #define sk_CMS_RevocationInfoChoice_push(st, val) SKM_sk_push(CMS_RevocationInfo

new/usr/src/lib/openssl/include/openssl/safestack.h 9

524 #define sk_CMS_RevocationInfoChoice_unshift(st, val) SKM_sk_unshift(CMS_Revocati
525 #define sk_CMS_RevocationInfoChoice_find(st, val) SKM_sk_find(CMS_RevocationInfo
526 #define sk_CMS_RevocationInfoChoice_find_ex(st, val) SKM_sk_find_ex(CMS_Revocati
527 #define sk_CMS_RevocationInfoChoice_delete(st, i) SKM_sk_delete(CMS_RevocationIn
528 #define sk_CMS_RevocationInfoChoice_delete_ptr(st, ptr) SKM_sk_delete_ptr(CMS_Re
529 #define sk_CMS_RevocationInfoChoice_insert(st, val, i) SKM_sk_insert(CMS_Revocat
530 #define sk_CMS_RevocationInfoChoice_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(CM
531 #define sk_CMS_RevocationInfoChoice_dup(st) SKM_sk_dup(CMS_RevocationInfoChoice,
532 #define sk_CMS_RevocationInfoChoice_pop_free(st, free_func) SKM_sk_pop_free(CMS_
533 #define sk_CMS_RevocationInfoChoice_shift(st) SKM_sk_shift(CMS_RevocationInfoCho
534 #define sk_CMS_RevocationInfoChoice_pop(st) SKM_sk_pop(CMS_RevocationInfoChoice,
535 #define sk_CMS_RevocationInfoChoice_sort(st) SKM_sk_sort(CMS_RevocationInfoChoic
536 #define sk_CMS_RevocationInfoChoice_is_sorted(st) SKM_sk_is_sorted(CMS_Revocatio

538 #define sk_CMS_SignerInfo_new(cmp) SKM_sk_new(CMS_SignerInfo, (cmp))
539 #define sk_CMS_SignerInfo_new_null() SKM_sk_new_null(CMS_SignerInfo)
540 #define sk_CMS_SignerInfo_free(st) SKM_sk_free(CMS_SignerInfo, (st))
541 #define sk_CMS_SignerInfo_num(st) SKM_sk_num(CMS_SignerInfo, (st))
542 #define sk_CMS_SignerInfo_value(st, i) SKM_sk_value(CMS_SignerInfo, (st), (i))
543 #define sk_CMS_SignerInfo_set(st, i, val) SKM_sk_set(CMS_SignerInfo, (st), (i),
544 #define sk_CMS_SignerInfo_zero(st) SKM_sk_zero(CMS_SignerInfo, (st))
545 #define sk_CMS_SignerInfo_push(st, val) SKM_sk_push(CMS_SignerInfo, (st), (val))
546 #define sk_CMS_SignerInfo_unshift(st, val) SKM_sk_unshift(CMS_SignerInfo, (st),
547 #define sk_CMS_SignerInfo_find(st, val) SKM_sk_find(CMS_SignerInfo, (st), (val))
548 #define sk_CMS_SignerInfo_find_ex(st, val) SKM_sk_find_ex(CMS_SignerInfo, (st),
549 #define sk_CMS_SignerInfo_delete(st, i) SKM_sk_delete(CMS_SignerInfo, (st), (i))
550 #define sk_CMS_SignerInfo_delete_ptr(st, ptr) SKM_sk_delete_ptr(CMS_SignerInfo,
551 #define sk_CMS_SignerInfo_insert(st, val, i) SKM_sk_insert(CMS_SignerInfo, (st),
552 #define sk_CMS_SignerInfo_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(CMS_SignerIn
553 #define sk_CMS_SignerInfo_dup(st) SKM_sk_dup(CMS_SignerInfo, st)
554 #define sk_CMS_SignerInfo_pop_free(st, free_func) SKM_sk_pop_free(CMS_SignerInfo
555 #define sk_CMS_SignerInfo_shift(st) SKM_sk_shift(CMS_SignerInfo, (st))
556 #define sk_CMS_SignerInfo_pop(st) SKM_sk_pop(CMS_SignerInfo, (st))
557 #define sk_CMS_SignerInfo_sort(st) SKM_sk_sort(CMS_SignerInfo, (st))
558 #define sk_CMS_SignerInfo_is_sorted(st) SKM_sk_is_sorted(CMS_SignerInfo, (st))

560 #define sk_CONF_IMODULE_new(cmp) SKM_sk_new(CONF_IMODULE, (cmp))
561 #define sk_CONF_IMODULE_new_null() SKM_sk_new_null(CONF_IMODULE)
562 #define sk_CONF_IMODULE_free(st) SKM_sk_free(CONF_IMODULE, (st))
563 #define sk_CONF_IMODULE_num(st) SKM_sk_num(CONF_IMODULE, (st))
564 #define sk_CONF_IMODULE_value(st, i) SKM_sk_value(CONF_IMODULE, (st), (i))
565 #define sk_CONF_IMODULE_set(st, i, val) SKM_sk_set(CONF_IMODULE, (st), (i), (val
566 #define sk_CONF_IMODULE_zero(st) SKM_sk_zero(CONF_IMODULE, (st))
567 #define sk_CONF_IMODULE_push(st, val) SKM_sk_push(CONF_IMODULE, (st), (val))
568 #define sk_CONF_IMODULE_unshift(st, val) SKM_sk_unshift(CONF_IMODULE, (st), (val
569 #define sk_CONF_IMODULE_find(st, val) SKM_sk_find(CONF_IMODULE, (st), (val))
570 #define sk_CONF_IMODULE_find_ex(st, val) SKM_sk_find_ex(CONF_IMODULE, (st), (val
571 #define sk_CONF_IMODULE_delete(st, i) SKM_sk_delete(CONF_IMODULE, (st), (i))
572 #define sk_CONF_IMODULE_delete_ptr(st, ptr) SKM_sk_delete_ptr(CONF_IMODULE, (st)
573 #define sk_CONF_IMODULE_insert(st, val, i) SKM_sk_insert(CONF_IMODULE, (st), (va
574 #define sk_CONF_IMODULE_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(CONF_IMODULE,
575 #define sk_CONF_IMODULE_dup(st) SKM_sk_dup(CONF_IMODULE, st)
576 #define sk_CONF_IMODULE_pop_free(st, free_func) SKM_sk_pop_free(CONF_IMODULE, (s
577 #define sk_CONF_IMODULE_shift(st) SKM_sk_shift(CONF_IMODULE, (st))
578 #define sk_CONF_IMODULE_pop(st) SKM_sk_pop(CONF_IMODULE, (st))
579 #define sk_CONF_IMODULE_sort(st) SKM_sk_sort(CONF_IMODULE, (st))
580 #define sk_CONF_IMODULE_is_sorted(st) SKM_sk_is_sorted(CONF_IMODULE, (st))

582 #define sk_CONF_MODULE_new(cmp) SKM_sk_new(CONF_MODULE, (cmp))
583 #define sk_CONF_MODULE_new_null() SKM_sk_new_null(CONF_MODULE)
584 #define sk_CONF_MODULE_free(st) SKM_sk_free(CONF_MODULE, (st))
585 #define sk_CONF_MODULE_num(st) SKM_sk_num(CONF_MODULE, (st))
586 #define sk_CONF_MODULE_value(st, i) SKM_sk_value(CONF_MODULE, (st), (i))
587 #define sk_CONF_MODULE_set(st, i, val) SKM_sk_set(CONF_MODULE, (st), (i), (val))
588 #define sk_CONF_MODULE_zero(st) SKM_sk_zero(CONF_MODULE, (st))
589 #define sk_CONF_MODULE_push(st, val) SKM_sk_push(CONF_MODULE, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 10

590 #define sk_CONF_MODULE_unshift(st, val) SKM_sk_unshift(CONF_MODULE, (st), (val))
591 #define sk_CONF_MODULE_find(st, val) SKM_sk_find(CONF_MODULE, (st), (val))
592 #define sk_CONF_MODULE_find_ex(st, val) SKM_sk_find_ex(CONF_MODULE, (st), (val))
593 #define sk_CONF_MODULE_delete(st, i) SKM_sk_delete(CONF_MODULE, (st), (i))
594 #define sk_CONF_MODULE_delete_ptr(st, ptr) SKM_sk_delete_ptr(CONF_MODULE, (st),
595 #define sk_CONF_MODULE_insert(st, val, i) SKM_sk_insert(CONF_MODULE, (st), (val)
596 #define sk_CONF_MODULE_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(CONF_MODULE, (s
597 #define sk_CONF_MODULE_dup(st) SKM_sk_dup(CONF_MODULE, st)
598 #define sk_CONF_MODULE_pop_free(st, free_func) SKM_sk_pop_free(CONF_MODULE, (st)
599 #define sk_CONF_MODULE_shift(st) SKM_sk_shift(CONF_MODULE, (st))
600 #define sk_CONF_MODULE_pop(st) SKM_sk_pop(CONF_MODULE, (st))
601 #define sk_CONF_MODULE_sort(st) SKM_sk_sort(CONF_MODULE, (st))
602 #define sk_CONF_MODULE_is_sorted(st) SKM_sk_is_sorted(CONF_MODULE, (st))

604 #define sk_CONF_VALUE_new(cmp) SKM_sk_new(CONF_VALUE, (cmp))
605 #define sk_CONF_VALUE_new_null() SKM_sk_new_null(CONF_VALUE)
606 #define sk_CONF_VALUE_free(st) SKM_sk_free(CONF_VALUE, (st))
607 #define sk_CONF_VALUE_num(st) SKM_sk_num(CONF_VALUE, (st))
608 #define sk_CONF_VALUE_value(st, i) SKM_sk_value(CONF_VALUE, (st), (i))
609 #define sk_CONF_VALUE_set(st, i, val) SKM_sk_set(CONF_VALUE, (st), (i), (val))
610 #define sk_CONF_VALUE_zero(st) SKM_sk_zero(CONF_VALUE, (st))
611 #define sk_CONF_VALUE_push(st, val) SKM_sk_push(CONF_VALUE, (st), (val))
612 #define sk_CONF_VALUE_unshift(st, val) SKM_sk_unshift(CONF_VALUE, (st), (val))
613 #define sk_CONF_VALUE_find(st, val) SKM_sk_find(CONF_VALUE, (st), (val))
614 #define sk_CONF_VALUE_find_ex(st, val) SKM_sk_find_ex(CONF_VALUE, (st), (val))
615 #define sk_CONF_VALUE_delete(st, i) SKM_sk_delete(CONF_VALUE, (st), (i))
616 #define sk_CONF_VALUE_delete_ptr(st, ptr) SKM_sk_delete_ptr(CONF_VALUE, (st), (p
617 #define sk_CONF_VALUE_insert(st, val, i) SKM_sk_insert(CONF_VALUE, (st), (val),
618 #define sk_CONF_VALUE_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(CONF_VALUE, (st)
619 #define sk_CONF_VALUE_dup(st) SKM_sk_dup(CONF_VALUE, st)
620 #define sk_CONF_VALUE_pop_free(st, free_func) SKM_sk_pop_free(CONF_VALUE, (st),
621 #define sk_CONF_VALUE_shift(st) SKM_sk_shift(CONF_VALUE, (st))
622 #define sk_CONF_VALUE_pop(st) SKM_sk_pop(CONF_VALUE, (st))
623 #define sk_CONF_VALUE_sort(st) SKM_sk_sort(CONF_VALUE, (st))
624 #define sk_CONF_VALUE_is_sorted(st) SKM_sk_is_sorted(CONF_VALUE, (st))

626 #define sk_CRYPTO_EX_DATA_FUNCS_new(cmp) SKM_sk_new(CRYPTO_EX_DATA_FUNCS, (cmp))
627 #define sk_CRYPTO_EX_DATA_FUNCS_new_null() SKM_sk_new_null(CRYPTO_EX_DATA_FUNCS)
628 #define sk_CRYPTO_EX_DATA_FUNCS_free(st) SKM_sk_free(CRYPTO_EX_DATA_FUNCS, (st))
629 #define sk_CRYPTO_EX_DATA_FUNCS_num(st) SKM_sk_num(CRYPTO_EX_DATA_FUNCS, (st))
630 #define sk_CRYPTO_EX_DATA_FUNCS_value(st, i) SKM_sk_value(CRYPTO_EX_DATA_FUNCS,
631 #define sk_CRYPTO_EX_DATA_FUNCS_set(st, i, val) SKM_sk_set(CRYPTO_EX_DATA_FUNCS,
632 #define sk_CRYPTO_EX_DATA_FUNCS_zero(st) SKM_sk_zero(CRYPTO_EX_DATA_FUNCS, (st))
633 #define sk_CRYPTO_EX_DATA_FUNCS_push(st, val) SKM_sk_push(CRYPTO_EX_DATA_FUNCS,
634 #define sk_CRYPTO_EX_DATA_FUNCS_unshift(st, val) SKM_sk_unshift(CRYPTO_EX_DATA_F
635 #define sk_CRYPTO_EX_DATA_FUNCS_find(st, val) SKM_sk_find(CRYPTO_EX_DATA_FUNCS,
636 #define sk_CRYPTO_EX_DATA_FUNCS_find_ex(st, val) SKM_sk_find_ex(CRYPTO_EX_DATA_F
637 #define sk_CRYPTO_EX_DATA_FUNCS_delete(st, i) SKM_sk_delete(CRYPTO_EX_DATA_FUNCS
638 #define sk_CRYPTO_EX_DATA_FUNCS_delete_ptr(st, ptr) SKM_sk_delete_ptr(CRYPTO_EX_
639 #define sk_CRYPTO_EX_DATA_FUNCS_insert(st, val, i) SKM_sk_insert(CRYPTO_EX_DATA_
640 #define sk_CRYPTO_EX_DATA_FUNCS_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(CRYPTO
641 #define sk_CRYPTO_EX_DATA_FUNCS_dup(st) SKM_sk_dup(CRYPTO_EX_DATA_FUNCS, st)
642 #define sk_CRYPTO_EX_DATA_FUNCS_pop_free(st, free_func) SKM_sk_pop_free(CRYPTO_E
643 #define sk_CRYPTO_EX_DATA_FUNCS_shift(st) SKM_sk_shift(CRYPTO_EX_DATA_FUNCS, (st
644 #define sk_CRYPTO_EX_DATA_FUNCS_pop(st) SKM_sk_pop(CRYPTO_EX_DATA_FUNCS, (st))
645 #define sk_CRYPTO_EX_DATA_FUNCS_sort(st) SKM_sk_sort(CRYPTO_EX_DATA_FUNCS, (st))
646 #define sk_CRYPTO_EX_DATA_FUNCS_is_sorted(st) SKM_sk_is_sorted(CRYPTO_EX_DATA_FU

648 #define sk_CRYPTO_dynlock_new(cmp) SKM_sk_new(CRYPTO_dynlock, (cmp))
649 #define sk_CRYPTO_dynlock_new_null() SKM_sk_new_null(CRYPTO_dynlock)
650 #define sk_CRYPTO_dynlock_free(st) SKM_sk_free(CRYPTO_dynlock, (st))
651 #define sk_CRYPTO_dynlock_num(st) SKM_sk_num(CRYPTO_dynlock, (st))
652 #define sk_CRYPTO_dynlock_value(st, i) SKM_sk_value(CRYPTO_dynlock, (st), (i))
653 #define sk_CRYPTO_dynlock_set(st, i, val) SKM_sk_set(CRYPTO_dynlock, (st), (i),
654 #define sk_CRYPTO_dynlock_zero(st) SKM_sk_zero(CRYPTO_dynlock, (st))
655 #define sk_CRYPTO_dynlock_push(st, val) SKM_sk_push(CRYPTO_dynlock, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 11

656 #define sk_CRYPTO_dynlock_unshift(st, val) SKM_sk_unshift(CRYPTO_dynlock, (st),
657 #define sk_CRYPTO_dynlock_find(st, val) SKM_sk_find(CRYPTO_dynlock, (st), (val))
658 #define sk_CRYPTO_dynlock_find_ex(st, val) SKM_sk_find_ex(CRYPTO_dynlock, (st),
659 #define sk_CRYPTO_dynlock_delete(st, i) SKM_sk_delete(CRYPTO_dynlock, (st), (i))
660 #define sk_CRYPTO_dynlock_delete_ptr(st, ptr) SKM_sk_delete_ptr(CRYPTO_dynlock,
661 #define sk_CRYPTO_dynlock_insert(st, val, i) SKM_sk_insert(CRYPTO_dynlock, (st),
662 #define sk_CRYPTO_dynlock_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(CRYPTO_dynlo
663 #define sk_CRYPTO_dynlock_dup(st) SKM_sk_dup(CRYPTO_dynlock, st)
664 #define sk_CRYPTO_dynlock_pop_free(st, free_func) SKM_sk_pop_free(CRYPTO_dynlock
665 #define sk_CRYPTO_dynlock_shift(st) SKM_sk_shift(CRYPTO_dynlock, (st))
666 #define sk_CRYPTO_dynlock_pop(st) SKM_sk_pop(CRYPTO_dynlock, (st))
667 #define sk_CRYPTO_dynlock_sort(st) SKM_sk_sort(CRYPTO_dynlock, (st))
668 #define sk_CRYPTO_dynlock_is_sorted(st) SKM_sk_is_sorted(CRYPTO_dynlock, (st))

670 #define sk_DIST_POINT_new(cmp) SKM_sk_new(DIST_POINT, (cmp))
671 #define sk_DIST_POINT_new_null() SKM_sk_new_null(DIST_POINT)
672 #define sk_DIST_POINT_free(st) SKM_sk_free(DIST_POINT, (st))
673 #define sk_DIST_POINT_num(st) SKM_sk_num(DIST_POINT, (st))
674 #define sk_DIST_POINT_value(st, i) SKM_sk_value(DIST_POINT, (st), (i))
675 #define sk_DIST_POINT_set(st, i, val) SKM_sk_set(DIST_POINT, (st), (i), (val))
676 #define sk_DIST_POINT_zero(st) SKM_sk_zero(DIST_POINT, (st))
677 #define sk_DIST_POINT_push(st, val) SKM_sk_push(DIST_POINT, (st), (val))
678 #define sk_DIST_POINT_unshift(st, val) SKM_sk_unshift(DIST_POINT, (st), (val))
679 #define sk_DIST_POINT_find(st, val) SKM_sk_find(DIST_POINT, (st), (val))
680 #define sk_DIST_POINT_find_ex(st, val) SKM_sk_find_ex(DIST_POINT, (st), (val))
681 #define sk_DIST_POINT_delete(st, i) SKM_sk_delete(DIST_POINT, (st), (i))
682 #define sk_DIST_POINT_delete_ptr(st, ptr) SKM_sk_delete_ptr(DIST_POINT, (st), (p
683 #define sk_DIST_POINT_insert(st, val, i) SKM_sk_insert(DIST_POINT, (st), (val),
684 #define sk_DIST_POINT_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(DIST_POINT, (st)
685 #define sk_DIST_POINT_dup(st) SKM_sk_dup(DIST_POINT, st)
686 #define sk_DIST_POINT_pop_free(st, free_func) SKM_sk_pop_free(DIST_POINT, (st),
687 #define sk_DIST_POINT_shift(st) SKM_sk_shift(DIST_POINT, (st))
688 #define sk_DIST_POINT_pop(st) SKM_sk_pop(DIST_POINT, (st))
689 #define sk_DIST_POINT_sort(st) SKM_sk_sort(DIST_POINT, (st))
690 #define sk_DIST_POINT_is_sorted(st) SKM_sk_is_sorted(DIST_POINT, (st))

692 #define sk_ENGINE_new(cmp) SKM_sk_new(ENGINE, (cmp))
693 #define sk_ENGINE_new_null() SKM_sk_new_null(ENGINE)
694 #define sk_ENGINE_free(st) SKM_sk_free(ENGINE, (st))
695 #define sk_ENGINE_num(st) SKM_sk_num(ENGINE, (st))
696 #define sk_ENGINE_value(st, i) SKM_sk_value(ENGINE, (st), (i))
697 #define sk_ENGINE_set(st, i, val) SKM_sk_set(ENGINE, (st), (i), (val))
698 #define sk_ENGINE_zero(st) SKM_sk_zero(ENGINE, (st))
699 #define sk_ENGINE_push(st, val) SKM_sk_push(ENGINE, (st), (val))
700 #define sk_ENGINE_unshift(st, val) SKM_sk_unshift(ENGINE, (st), (val))
701 #define sk_ENGINE_find(st, val) SKM_sk_find(ENGINE, (st), (val))
702 #define sk_ENGINE_find_ex(st, val) SKM_sk_find_ex(ENGINE, (st), (val))
703 #define sk_ENGINE_delete(st, i) SKM_sk_delete(ENGINE, (st), (i))
704 #define sk_ENGINE_delete_ptr(st, ptr) SKM_sk_delete_ptr(ENGINE, (st), (ptr))
705 #define sk_ENGINE_insert(st, val, i) SKM_sk_insert(ENGINE, (st), (val), (i))
706 #define sk_ENGINE_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(ENGINE, (st), (cmp))
707 #define sk_ENGINE_dup(st) SKM_sk_dup(ENGINE, st)
708 #define sk_ENGINE_pop_free(st, free_func) SKM_sk_pop_free(ENGINE, (st), (free_fu
709 #define sk_ENGINE_shift(st) SKM_sk_shift(ENGINE, (st))
710 #define sk_ENGINE_pop(st) SKM_sk_pop(ENGINE, (st))
711 #define sk_ENGINE_sort(st) SKM_sk_sort(ENGINE, (st))
712 #define sk_ENGINE_is_sorted(st) SKM_sk_is_sorted(ENGINE, (st))

714 #define sk_ENGINE_CLEANUP_ITEM_new(cmp) SKM_sk_new(ENGINE_CLEANUP_ITEM, (cmp))
715 #define sk_ENGINE_CLEANUP_ITEM_new_null() SKM_sk_new_null(ENGINE_CLEANUP_ITEM)
716 #define sk_ENGINE_CLEANUP_ITEM_free(st) SKM_sk_free(ENGINE_CLEANUP_ITEM, (st))
717 #define sk_ENGINE_CLEANUP_ITEM_num(st) SKM_sk_num(ENGINE_CLEANUP_ITEM, (st))
718 #define sk_ENGINE_CLEANUP_ITEM_value(st, i) SKM_sk_value(ENGINE_CLEANUP_ITEM, (s
719 #define sk_ENGINE_CLEANUP_ITEM_set(st, i, val) SKM_sk_set(ENGINE_CLEANUP_ITEM, (
720 #define sk_ENGINE_CLEANUP_ITEM_zero(st) SKM_sk_zero(ENGINE_CLEANUP_ITEM, (st))
721 #define sk_ENGINE_CLEANUP_ITEM_push(st, val) SKM_sk_push(ENGINE_CLEANUP_ITEM, (s

new/usr/src/lib/openssl/include/openssl/safestack.h 12

722 #define sk_ENGINE_CLEANUP_ITEM_unshift(st, val) SKM_sk_unshift(ENGINE_CLEANUP_IT
723 #define sk_ENGINE_CLEANUP_ITEM_find(st, val) SKM_sk_find(ENGINE_CLEANUP_ITEM, (s
724 #define sk_ENGINE_CLEANUP_ITEM_find_ex(st, val) SKM_sk_find_ex(ENGINE_CLEANUP_IT
725 #define sk_ENGINE_CLEANUP_ITEM_delete(st, i) SKM_sk_delete(ENGINE_CLEANUP_ITEM,
726 #define sk_ENGINE_CLEANUP_ITEM_delete_ptr(st, ptr) SKM_sk_delete_ptr(ENGINE_CLEA
727 #define sk_ENGINE_CLEANUP_ITEM_insert(st, val, i) SKM_sk_insert(ENGINE_CLEANUP_I
728 #define sk_ENGINE_CLEANUP_ITEM_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(ENGINE_
729 #define sk_ENGINE_CLEANUP_ITEM_dup(st) SKM_sk_dup(ENGINE_CLEANUP_ITEM, st)
730 #define sk_ENGINE_CLEANUP_ITEM_pop_free(st, free_func) SKM_sk_pop_free(ENGINE_CL
731 #define sk_ENGINE_CLEANUP_ITEM_shift(st) SKM_sk_shift(ENGINE_CLEANUP_ITEM, (st))
732 #define sk_ENGINE_CLEANUP_ITEM_pop(st) SKM_sk_pop(ENGINE_CLEANUP_ITEM, (st))
733 #define sk_ENGINE_CLEANUP_ITEM_sort(st) SKM_sk_sort(ENGINE_CLEANUP_ITEM, (st))
734 #define sk_ENGINE_CLEANUP_ITEM_is_sorted(st) SKM_sk_is_sorted(ENGINE_CLEANUP_ITE

736 #define sk_ESS_CERT_ID_new(cmp) SKM_sk_new(ESS_CERT_ID, (cmp))
737 #define sk_ESS_CERT_ID_new_null() SKM_sk_new_null(ESS_CERT_ID)
738 #define sk_ESS_CERT_ID_free(st) SKM_sk_free(ESS_CERT_ID, (st))
739 #define sk_ESS_CERT_ID_num(st) SKM_sk_num(ESS_CERT_ID, (st))
740 #define sk_ESS_CERT_ID_value(st, i) SKM_sk_value(ESS_CERT_ID, (st), (i))
741 #define sk_ESS_CERT_ID_set(st, i, val) SKM_sk_set(ESS_CERT_ID, (st), (i), (val))
742 #define sk_ESS_CERT_ID_zero(st) SKM_sk_zero(ESS_CERT_ID, (st))
743 #define sk_ESS_CERT_ID_push(st, val) SKM_sk_push(ESS_CERT_ID, (st), (val))
744 #define sk_ESS_CERT_ID_unshift(st, val) SKM_sk_unshift(ESS_CERT_ID, (st), (val))
745 #define sk_ESS_CERT_ID_find(st, val) SKM_sk_find(ESS_CERT_ID, (st), (val))
746 #define sk_ESS_CERT_ID_find_ex(st, val) SKM_sk_find_ex(ESS_CERT_ID, (st), (val))
747 #define sk_ESS_CERT_ID_delete(st, i) SKM_sk_delete(ESS_CERT_ID, (st), (i))
748 #define sk_ESS_CERT_ID_delete_ptr(st, ptr) SKM_sk_delete_ptr(ESS_CERT_ID, (st),
749 #define sk_ESS_CERT_ID_insert(st, val, i) SKM_sk_insert(ESS_CERT_ID, (st), (val)
750 #define sk_ESS_CERT_ID_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(ESS_CERT_ID, (s
751 #define sk_ESS_CERT_ID_dup(st) SKM_sk_dup(ESS_CERT_ID, st)
752 #define sk_ESS_CERT_ID_pop_free(st, free_func) SKM_sk_pop_free(ESS_CERT_ID, (st)
753 #define sk_ESS_CERT_ID_shift(st) SKM_sk_shift(ESS_CERT_ID, (st))
754 #define sk_ESS_CERT_ID_pop(st) SKM_sk_pop(ESS_CERT_ID, (st))
755 #define sk_ESS_CERT_ID_sort(st) SKM_sk_sort(ESS_CERT_ID, (st))
756 #define sk_ESS_CERT_ID_is_sorted(st) SKM_sk_is_sorted(ESS_CERT_ID, (st))

758 #define sk_EVP_MD_new(cmp) SKM_sk_new(EVP_MD, (cmp))
759 #define sk_EVP_MD_new_null() SKM_sk_new_null(EVP_MD)
760 #define sk_EVP_MD_free(st) SKM_sk_free(EVP_MD, (st))
761 #define sk_EVP_MD_num(st) SKM_sk_num(EVP_MD, (st))
762 #define sk_EVP_MD_value(st, i) SKM_sk_value(EVP_MD, (st), (i))
763 #define sk_EVP_MD_set(st, i, val) SKM_sk_set(EVP_MD, (st), (i), (val))
764 #define sk_EVP_MD_zero(st) SKM_sk_zero(EVP_MD, (st))
765 #define sk_EVP_MD_push(st, val) SKM_sk_push(EVP_MD, (st), (val))
766 #define sk_EVP_MD_unshift(st, val) SKM_sk_unshift(EVP_MD, (st), (val))
767 #define sk_EVP_MD_find(st, val) SKM_sk_find(EVP_MD, (st), (val))
768 #define sk_EVP_MD_find_ex(st, val) SKM_sk_find_ex(EVP_MD, (st), (val))
769 #define sk_EVP_MD_delete(st, i) SKM_sk_delete(EVP_MD, (st), (i))
770 #define sk_EVP_MD_delete_ptr(st, ptr) SKM_sk_delete_ptr(EVP_MD, (st), (ptr))
771 #define sk_EVP_MD_insert(st, val, i) SKM_sk_insert(EVP_MD, (st), (val), (i))
772 #define sk_EVP_MD_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(EVP_MD, (st), (cmp))
773 #define sk_EVP_MD_dup(st) SKM_sk_dup(EVP_MD, st)
774 #define sk_EVP_MD_pop_free(st, free_func) SKM_sk_pop_free(EVP_MD, (st), (free_fu
775 #define sk_EVP_MD_shift(st) SKM_sk_shift(EVP_MD, (st))
776 #define sk_EVP_MD_pop(st) SKM_sk_pop(EVP_MD, (st))
777 #define sk_EVP_MD_sort(st) SKM_sk_sort(EVP_MD, (st))
778 #define sk_EVP_MD_is_sorted(st) SKM_sk_is_sorted(EVP_MD, (st))

780 #define sk_EVP_PBE_CTL_new(cmp) SKM_sk_new(EVP_PBE_CTL, (cmp))
781 #define sk_EVP_PBE_CTL_new_null() SKM_sk_new_null(EVP_PBE_CTL)
782 #define sk_EVP_PBE_CTL_free(st) SKM_sk_free(EVP_PBE_CTL, (st))
783 #define sk_EVP_PBE_CTL_num(st) SKM_sk_num(EVP_PBE_CTL, (st))
784 #define sk_EVP_PBE_CTL_value(st, i) SKM_sk_value(EVP_PBE_CTL, (st), (i))
785 #define sk_EVP_PBE_CTL_set(st, i, val) SKM_sk_set(EVP_PBE_CTL, (st), (i), (val))
786 #define sk_EVP_PBE_CTL_zero(st) SKM_sk_zero(EVP_PBE_CTL, (st))
787 #define sk_EVP_PBE_CTL_push(st, val) SKM_sk_push(EVP_PBE_CTL, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 13

788 #define sk_EVP_PBE_CTL_unshift(st, val) SKM_sk_unshift(EVP_PBE_CTL, (st), (val))
789 #define sk_EVP_PBE_CTL_find(st, val) SKM_sk_find(EVP_PBE_CTL, (st), (val))
790 #define sk_EVP_PBE_CTL_find_ex(st, val) SKM_sk_find_ex(EVP_PBE_CTL, (st), (val))
791 #define sk_EVP_PBE_CTL_delete(st, i) SKM_sk_delete(EVP_PBE_CTL, (st), (i))
792 #define sk_EVP_PBE_CTL_delete_ptr(st, ptr) SKM_sk_delete_ptr(EVP_PBE_CTL, (st),
793 #define sk_EVP_PBE_CTL_insert(st, val, i) SKM_sk_insert(EVP_PBE_CTL, (st), (val)
794 #define sk_EVP_PBE_CTL_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(EVP_PBE_CTL, (s
795 #define sk_EVP_PBE_CTL_dup(st) SKM_sk_dup(EVP_PBE_CTL, st)
796 #define sk_EVP_PBE_CTL_pop_free(st, free_func) SKM_sk_pop_free(EVP_PBE_CTL, (st)
797 #define sk_EVP_PBE_CTL_shift(st) SKM_sk_shift(EVP_PBE_CTL, (st))
798 #define sk_EVP_PBE_CTL_pop(st) SKM_sk_pop(EVP_PBE_CTL, (st))
799 #define sk_EVP_PBE_CTL_sort(st) SKM_sk_sort(EVP_PBE_CTL, (st))
800 #define sk_EVP_PBE_CTL_is_sorted(st) SKM_sk_is_sorted(EVP_PBE_CTL, (st))

802 #define sk_EVP_PKEY_ASN1_METHOD_new(cmp) SKM_sk_new(EVP_PKEY_ASN1_METHOD, (cmp))
803 #define sk_EVP_PKEY_ASN1_METHOD_new_null() SKM_sk_new_null(EVP_PKEY_ASN1_METHOD)
804 #define sk_EVP_PKEY_ASN1_METHOD_free(st) SKM_sk_free(EVP_PKEY_ASN1_METHOD, (st))
805 #define sk_EVP_PKEY_ASN1_METHOD_num(st) SKM_sk_num(EVP_PKEY_ASN1_METHOD, (st))
806 #define sk_EVP_PKEY_ASN1_METHOD_value(st, i) SKM_sk_value(EVP_PKEY_ASN1_METHOD,
807 #define sk_EVP_PKEY_ASN1_METHOD_set(st, i, val) SKM_sk_set(EVP_PKEY_ASN1_METHOD,
808 #define sk_EVP_PKEY_ASN1_METHOD_zero(st) SKM_sk_zero(EVP_PKEY_ASN1_METHOD, (st))
809 #define sk_EVP_PKEY_ASN1_METHOD_push(st, val) SKM_sk_push(EVP_PKEY_ASN1_METHOD,
810 #define sk_EVP_PKEY_ASN1_METHOD_unshift(st, val) SKM_sk_unshift(EVP_PKEY_ASN1_ME
811 #define sk_EVP_PKEY_ASN1_METHOD_find(st, val) SKM_sk_find(EVP_PKEY_ASN1_METHOD,
812 #define sk_EVP_PKEY_ASN1_METHOD_find_ex(st, val) SKM_sk_find_ex(EVP_PKEY_ASN1_ME
813 #define sk_EVP_PKEY_ASN1_METHOD_delete(st, i) SKM_sk_delete(EVP_PKEY_ASN1_METHOD
814 #define sk_EVP_PKEY_ASN1_METHOD_delete_ptr(st, ptr) SKM_sk_delete_ptr(EVP_PKEY_A
815 #define sk_EVP_PKEY_ASN1_METHOD_insert(st, val, i) SKM_sk_insert(EVP_PKEY_ASN1_M
816 #define sk_EVP_PKEY_ASN1_METHOD_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(EVP_PK
817 #define sk_EVP_PKEY_ASN1_METHOD_dup(st) SKM_sk_dup(EVP_PKEY_ASN1_METHOD, st)
818 #define sk_EVP_PKEY_ASN1_METHOD_pop_free(st, free_func) SKM_sk_pop_free(EVP_PKEY
819 #define sk_EVP_PKEY_ASN1_METHOD_shift(st) SKM_sk_shift(EVP_PKEY_ASN1_METHOD, (st
820 #define sk_EVP_PKEY_ASN1_METHOD_pop(st) SKM_sk_pop(EVP_PKEY_ASN1_METHOD, (st))
821 #define sk_EVP_PKEY_ASN1_METHOD_sort(st) SKM_sk_sort(EVP_PKEY_ASN1_METHOD, (st))
822 #define sk_EVP_PKEY_ASN1_METHOD_is_sorted(st) SKM_sk_is_sorted(EVP_PKEY_ASN1_MET

824 #define sk_EVP_PKEY_METHOD_new(cmp) SKM_sk_new(EVP_PKEY_METHOD, (cmp))
825 #define sk_EVP_PKEY_METHOD_new_null() SKM_sk_new_null(EVP_PKEY_METHOD)
826 #define sk_EVP_PKEY_METHOD_free(st) SKM_sk_free(EVP_PKEY_METHOD, (st))
827 #define sk_EVP_PKEY_METHOD_num(st) SKM_sk_num(EVP_PKEY_METHOD, (st))
828 #define sk_EVP_PKEY_METHOD_value(st, i) SKM_sk_value(EVP_PKEY_METHOD, (st), (i))
829 #define sk_EVP_PKEY_METHOD_set(st, i, val) SKM_sk_set(EVP_PKEY_METHOD, (st), (i)
830 #define sk_EVP_PKEY_METHOD_zero(st) SKM_sk_zero(EVP_PKEY_METHOD, (st))
831 #define sk_EVP_PKEY_METHOD_push(st, val) SKM_sk_push(EVP_PKEY_METHOD, (st), (val
832 #define sk_EVP_PKEY_METHOD_unshift(st, val) SKM_sk_unshift(EVP_PKEY_METHOD, (st)
833 #define sk_EVP_PKEY_METHOD_find(st, val) SKM_sk_find(EVP_PKEY_METHOD, (st), (val
834 #define sk_EVP_PKEY_METHOD_find_ex(st, val) SKM_sk_find_ex(EVP_PKEY_METHOD, (st)
835 #define sk_EVP_PKEY_METHOD_delete(st, i) SKM_sk_delete(EVP_PKEY_METHOD, (st), (i
836 #define sk_EVP_PKEY_METHOD_delete_ptr(st, ptr) SKM_sk_delete_ptr(EVP_PKEY_METHOD
837 #define sk_EVP_PKEY_METHOD_insert(st, val, i) SKM_sk_insert(EVP_PKEY_METHOD, (st
838 #define sk_EVP_PKEY_METHOD_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(EVP_PKEY_ME
839 #define sk_EVP_PKEY_METHOD_dup(st) SKM_sk_dup(EVP_PKEY_METHOD, st)
840 #define sk_EVP_PKEY_METHOD_pop_free(st, free_func) SKM_sk_pop_free(EVP_PKEY_METH
841 #define sk_EVP_PKEY_METHOD_shift(st) SKM_sk_shift(EVP_PKEY_METHOD, (st))
842 #define sk_EVP_PKEY_METHOD_pop(st) SKM_sk_pop(EVP_PKEY_METHOD, (st))
843 #define sk_EVP_PKEY_METHOD_sort(st) SKM_sk_sort(EVP_PKEY_METHOD, (st))
844 #define sk_EVP_PKEY_METHOD_is_sorted(st) SKM_sk_is_sorted(EVP_PKEY_METHOD, (st))

846 #define sk_GENERAL_NAME_new(cmp) SKM_sk_new(GENERAL_NAME, (cmp))
847 #define sk_GENERAL_NAME_new_null() SKM_sk_new_null(GENERAL_NAME)
848 #define sk_GENERAL_NAME_free(st) SKM_sk_free(GENERAL_NAME, (st))
849 #define sk_GENERAL_NAME_num(st) SKM_sk_num(GENERAL_NAME, (st))
850 #define sk_GENERAL_NAME_value(st, i) SKM_sk_value(GENERAL_NAME, (st), (i))
851 #define sk_GENERAL_NAME_set(st, i, val) SKM_sk_set(GENERAL_NAME, (st), (i), (val
852 #define sk_GENERAL_NAME_zero(st) SKM_sk_zero(GENERAL_NAME, (st))
853 #define sk_GENERAL_NAME_push(st, val) SKM_sk_push(GENERAL_NAME, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 14

854 #define sk_GENERAL_NAME_unshift(st, val) SKM_sk_unshift(GENERAL_NAME, (st), (val
855 #define sk_GENERAL_NAME_find(st, val) SKM_sk_find(GENERAL_NAME, (st), (val))
856 #define sk_GENERAL_NAME_find_ex(st, val) SKM_sk_find_ex(GENERAL_NAME, (st), (val
857 #define sk_GENERAL_NAME_delete(st, i) SKM_sk_delete(GENERAL_NAME, (st), (i))
858 #define sk_GENERAL_NAME_delete_ptr(st, ptr) SKM_sk_delete_ptr(GENERAL_NAME, (st)
859 #define sk_GENERAL_NAME_insert(st, val, i) SKM_sk_insert(GENERAL_NAME, (st), (va
860 #define sk_GENERAL_NAME_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(GENERAL_NAME,
861 #define sk_GENERAL_NAME_dup(st) SKM_sk_dup(GENERAL_NAME, st)
862 #define sk_GENERAL_NAME_pop_free(st, free_func) SKM_sk_pop_free(GENERAL_NAME, (s
863 #define sk_GENERAL_NAME_shift(st) SKM_sk_shift(GENERAL_NAME, (st))
864 #define sk_GENERAL_NAME_pop(st) SKM_sk_pop(GENERAL_NAME, (st))
865 #define sk_GENERAL_NAME_sort(st) SKM_sk_sort(GENERAL_NAME, (st))
866 #define sk_GENERAL_NAME_is_sorted(st) SKM_sk_is_sorted(GENERAL_NAME, (st))

868 #define sk_GENERAL_NAMES_new(cmp) SKM_sk_new(GENERAL_NAMES, (cmp))
869 #define sk_GENERAL_NAMES_new_null() SKM_sk_new_null(GENERAL_NAMES)
870 #define sk_GENERAL_NAMES_free(st) SKM_sk_free(GENERAL_NAMES, (st))
871 #define sk_GENERAL_NAMES_num(st) SKM_sk_num(GENERAL_NAMES, (st))
872 #define sk_GENERAL_NAMES_value(st, i) SKM_sk_value(GENERAL_NAMES, (st), (i))
873 #define sk_GENERAL_NAMES_set(st, i, val) SKM_sk_set(GENERAL_NAMES, (st), (i), (v
874 #define sk_GENERAL_NAMES_zero(st) SKM_sk_zero(GENERAL_NAMES, (st))
875 #define sk_GENERAL_NAMES_push(st, val) SKM_sk_push(GENERAL_NAMES, (st), (val))
876 #define sk_GENERAL_NAMES_unshift(st, val) SKM_sk_unshift(GENERAL_NAMES, (st), (v
877 #define sk_GENERAL_NAMES_find(st, val) SKM_sk_find(GENERAL_NAMES, (st), (val))
878 #define sk_GENERAL_NAMES_find_ex(st, val) SKM_sk_find_ex(GENERAL_NAMES, (st), (v
879 #define sk_GENERAL_NAMES_delete(st, i) SKM_sk_delete(GENERAL_NAMES, (st), (i))
880 #define sk_GENERAL_NAMES_delete_ptr(st, ptr) SKM_sk_delete_ptr(GENERAL_NAMES, (s
881 #define sk_GENERAL_NAMES_insert(st, val, i) SKM_sk_insert(GENERAL_NAMES, (st), (
882 #define sk_GENERAL_NAMES_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(GENERAL_NAMES
883 #define sk_GENERAL_NAMES_dup(st) SKM_sk_dup(GENERAL_NAMES, st)
884 #define sk_GENERAL_NAMES_pop_free(st, free_func) SKM_sk_pop_free(GENERAL_NAMES,
885 #define sk_GENERAL_NAMES_shift(st) SKM_sk_shift(GENERAL_NAMES, (st))
886 #define sk_GENERAL_NAMES_pop(st) SKM_sk_pop(GENERAL_NAMES, (st))
887 #define sk_GENERAL_NAMES_sort(st) SKM_sk_sort(GENERAL_NAMES, (st))
888 #define sk_GENERAL_NAMES_is_sorted(st) SKM_sk_is_sorted(GENERAL_NAMES, (st))

890 #define sk_GENERAL_SUBTREE_new(cmp) SKM_sk_new(GENERAL_SUBTREE, (cmp))
891 #define sk_GENERAL_SUBTREE_new_null() SKM_sk_new_null(GENERAL_SUBTREE)
892 #define sk_GENERAL_SUBTREE_free(st) SKM_sk_free(GENERAL_SUBTREE, (st))
893 #define sk_GENERAL_SUBTREE_num(st) SKM_sk_num(GENERAL_SUBTREE, (st))
894 #define sk_GENERAL_SUBTREE_value(st, i) SKM_sk_value(GENERAL_SUBTREE, (st), (i))
895 #define sk_GENERAL_SUBTREE_set(st, i, val) SKM_sk_set(GENERAL_SUBTREE, (st), (i)
896 #define sk_GENERAL_SUBTREE_zero(st) SKM_sk_zero(GENERAL_SUBTREE, (st))
897 #define sk_GENERAL_SUBTREE_push(st, val) SKM_sk_push(GENERAL_SUBTREE, (st), (val
898 #define sk_GENERAL_SUBTREE_unshift(st, val) SKM_sk_unshift(GENERAL_SUBTREE, (st)
899 #define sk_GENERAL_SUBTREE_find(st, val) SKM_sk_find(GENERAL_SUBTREE, (st), (val
900 #define sk_GENERAL_SUBTREE_find_ex(st, val) SKM_sk_find_ex(GENERAL_SUBTREE, (st)
901 #define sk_GENERAL_SUBTREE_delete(st, i) SKM_sk_delete(GENERAL_SUBTREE, (st), (i
902 #define sk_GENERAL_SUBTREE_delete_ptr(st, ptr) SKM_sk_delete_ptr(GENERAL_SUBTREE
903 #define sk_GENERAL_SUBTREE_insert(st, val, i) SKM_sk_insert(GENERAL_SUBTREE, (st
904 #define sk_GENERAL_SUBTREE_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(GENERAL_SUB
905 #define sk_GENERAL_SUBTREE_dup(st) SKM_sk_dup(GENERAL_SUBTREE, st)
906 #define sk_GENERAL_SUBTREE_pop_free(st, free_func) SKM_sk_pop_free(GENERAL_SUBTR
907 #define sk_GENERAL_SUBTREE_shift(st) SKM_sk_shift(GENERAL_SUBTREE, (st))
908 #define sk_GENERAL_SUBTREE_pop(st) SKM_sk_pop(GENERAL_SUBTREE, (st))
909 #define sk_GENERAL_SUBTREE_sort(st) SKM_sk_sort(GENERAL_SUBTREE, (st))
910 #define sk_GENERAL_SUBTREE_is_sorted(st) SKM_sk_is_sorted(GENERAL_SUBTREE, (st))

912 #define sk_IPAddressFamily_new(cmp) SKM_sk_new(IPAddressFamily, (cmp))
913 #define sk_IPAddressFamily_new_null() SKM_sk_new_null(IPAddressFamily)
914 #define sk_IPAddressFamily_free(st) SKM_sk_free(IPAddressFamily, (st))
915 #define sk_IPAddressFamily_num(st) SKM_sk_num(IPAddressFamily, (st))
916 #define sk_IPAddressFamily_value(st, i) SKM_sk_value(IPAddressFamily, (st), (i))
917 #define sk_IPAddressFamily_set(st, i, val) SKM_sk_set(IPAddressFamily, (st), (i)
918 #define sk_IPAddressFamily_zero(st) SKM_sk_zero(IPAddressFamily, (st))
919 #define sk_IPAddressFamily_push(st, val) SKM_sk_push(IPAddressFamily, (st), (val

new/usr/src/lib/openssl/include/openssl/safestack.h 15

920 #define sk_IPAddressFamily_unshift(st, val) SKM_sk_unshift(IPAddressFamily, (st)
921 #define sk_IPAddressFamily_find(st, val) SKM_sk_find(IPAddressFamily, (st), (val
922 #define sk_IPAddressFamily_find_ex(st, val) SKM_sk_find_ex(IPAddressFamily, (st)
923 #define sk_IPAddressFamily_delete(st, i) SKM_sk_delete(IPAddressFamily, (st), (i
924 #define sk_IPAddressFamily_delete_ptr(st, ptr) SKM_sk_delete_ptr(IPAddressFamily
925 #define sk_IPAddressFamily_insert(st, val, i) SKM_sk_insert(IPAddressFamily, (st
926 #define sk_IPAddressFamily_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(IPAddressFa
927 #define sk_IPAddressFamily_dup(st) SKM_sk_dup(IPAddressFamily, st)
928 #define sk_IPAddressFamily_pop_free(st, free_func) SKM_sk_pop_free(IPAddressFami
929 #define sk_IPAddressFamily_shift(st) SKM_sk_shift(IPAddressFamily, (st))
930 #define sk_IPAddressFamily_pop(st) SKM_sk_pop(IPAddressFamily, (st))
931 #define sk_IPAddressFamily_sort(st) SKM_sk_sort(IPAddressFamily, (st))
932 #define sk_IPAddressFamily_is_sorted(st) SKM_sk_is_sorted(IPAddressFamily, (st))

934 #define sk_IPAddressOrRange_new(cmp) SKM_sk_new(IPAddressOrRange, (cmp))
935 #define sk_IPAddressOrRange_new_null() SKM_sk_new_null(IPAddressOrRange)
936 #define sk_IPAddressOrRange_free(st) SKM_sk_free(IPAddressOrRange, (st))
937 #define sk_IPAddressOrRange_num(st) SKM_sk_num(IPAddressOrRange, (st))
938 #define sk_IPAddressOrRange_value(st, i) SKM_sk_value(IPAddressOrRange, (st), (i
939 #define sk_IPAddressOrRange_set(st, i, val) SKM_sk_set(IPAddressOrRange, (st), (
940 #define sk_IPAddressOrRange_zero(st) SKM_sk_zero(IPAddressOrRange, (st))
941 #define sk_IPAddressOrRange_push(st, val) SKM_sk_push(IPAddressOrRange, (st), (v
942 #define sk_IPAddressOrRange_unshift(st, val) SKM_sk_unshift(IPAddressOrRange, (s
943 #define sk_IPAddressOrRange_find(st, val) SKM_sk_find(IPAddressOrRange, (st), (v
944 #define sk_IPAddressOrRange_find_ex(st, val) SKM_sk_find_ex(IPAddressOrRange, (s
945 #define sk_IPAddressOrRange_delete(st, i) SKM_sk_delete(IPAddressOrRange, (st),
946 #define sk_IPAddressOrRange_delete_ptr(st, ptr) SKM_sk_delete_ptr(IPAddressOrRan
947 #define sk_IPAddressOrRange_insert(st, val, i) SKM_sk_insert(IPAddressOrRange, (
948 #define sk_IPAddressOrRange_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(IPAddressO
949 #define sk_IPAddressOrRange_dup(st) SKM_sk_dup(IPAddressOrRange, st)
950 #define sk_IPAddressOrRange_pop_free(st, free_func) SKM_sk_pop_free(IPAddressOrR
951 #define sk_IPAddressOrRange_shift(st) SKM_sk_shift(IPAddressOrRange, (st))
952 #define sk_IPAddressOrRange_pop(st) SKM_sk_pop(IPAddressOrRange, (st))
953 #define sk_IPAddressOrRange_sort(st) SKM_sk_sort(IPAddressOrRange, (st))
954 #define sk_IPAddressOrRange_is_sorted(st) SKM_sk_is_sorted(IPAddressOrRange, (st

956 #define sk_KRB5_APREQBODY_new(cmp) SKM_sk_new(KRB5_APREQBODY, (cmp))
957 #define sk_KRB5_APREQBODY_new_null() SKM_sk_new_null(KRB5_APREQBODY)
958 #define sk_KRB5_APREQBODY_free(st) SKM_sk_free(KRB5_APREQBODY, (st))
959 #define sk_KRB5_APREQBODY_num(st) SKM_sk_num(KRB5_APREQBODY, (st))
960 #define sk_KRB5_APREQBODY_value(st, i) SKM_sk_value(KRB5_APREQBODY, (st), (i))
961 #define sk_KRB5_APREQBODY_set(st, i, val) SKM_sk_set(KRB5_APREQBODY, (st), (i),
962 #define sk_KRB5_APREQBODY_zero(st) SKM_sk_zero(KRB5_APREQBODY, (st))
963 #define sk_KRB5_APREQBODY_push(st, val) SKM_sk_push(KRB5_APREQBODY, (st), (val))
964 #define sk_KRB5_APREQBODY_unshift(st, val) SKM_sk_unshift(KRB5_APREQBODY, (st),
965 #define sk_KRB5_APREQBODY_find(st, val) SKM_sk_find(KRB5_APREQBODY, (st), (val))
966 #define sk_KRB5_APREQBODY_find_ex(st, val) SKM_sk_find_ex(KRB5_APREQBODY, (st),
967 #define sk_KRB5_APREQBODY_delete(st, i) SKM_sk_delete(KRB5_APREQBODY, (st), (i))
968 #define sk_KRB5_APREQBODY_delete_ptr(st, ptr) SKM_sk_delete_ptr(KRB5_APREQBODY,
969 #define sk_KRB5_APREQBODY_insert(st, val, i) SKM_sk_insert(KRB5_APREQBODY, (st),
970 #define sk_KRB5_APREQBODY_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(KRB5_APREQBO
971 #define sk_KRB5_APREQBODY_dup(st) SKM_sk_dup(KRB5_APREQBODY, st)
972 #define sk_KRB5_APREQBODY_pop_free(st, free_func) SKM_sk_pop_free(KRB5_APREQBODY
973 #define sk_KRB5_APREQBODY_shift(st) SKM_sk_shift(KRB5_APREQBODY, (st))
974 #define sk_KRB5_APREQBODY_pop(st) SKM_sk_pop(KRB5_APREQBODY, (st))
975 #define sk_KRB5_APREQBODY_sort(st) SKM_sk_sort(KRB5_APREQBODY, (st))
976 #define sk_KRB5_APREQBODY_is_sorted(st) SKM_sk_is_sorted(KRB5_APREQBODY, (st))

978 #define sk_KRB5_AUTHDATA_new(cmp) SKM_sk_new(KRB5_AUTHDATA, (cmp))
979 #define sk_KRB5_AUTHDATA_new_null() SKM_sk_new_null(KRB5_AUTHDATA)
980 #define sk_KRB5_AUTHDATA_free(st) SKM_sk_free(KRB5_AUTHDATA, (st))
981 #define sk_KRB5_AUTHDATA_num(st) SKM_sk_num(KRB5_AUTHDATA, (st))
982 #define sk_KRB5_AUTHDATA_value(st, i) SKM_sk_value(KRB5_AUTHDATA, (st), (i))
983 #define sk_KRB5_AUTHDATA_set(st, i, val) SKM_sk_set(KRB5_AUTHDATA, (st), (i), (v
984 #define sk_KRB5_AUTHDATA_zero(st) SKM_sk_zero(KRB5_AUTHDATA, (st))
985 #define sk_KRB5_AUTHDATA_push(st, val) SKM_sk_push(KRB5_AUTHDATA, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 16

986 #define sk_KRB5_AUTHDATA_unshift(st, val) SKM_sk_unshift(KRB5_AUTHDATA, (st), (v
987 #define sk_KRB5_AUTHDATA_find(st, val) SKM_sk_find(KRB5_AUTHDATA, (st), (val))
988 #define sk_KRB5_AUTHDATA_find_ex(st, val) SKM_sk_find_ex(KRB5_AUTHDATA, (st), (v
989 #define sk_KRB5_AUTHDATA_delete(st, i) SKM_sk_delete(KRB5_AUTHDATA, (st), (i))
990 #define sk_KRB5_AUTHDATA_delete_ptr(st, ptr) SKM_sk_delete_ptr(KRB5_AUTHDATA, (s
991 #define sk_KRB5_AUTHDATA_insert(st, val, i) SKM_sk_insert(KRB5_AUTHDATA, (st), (
992 #define sk_KRB5_AUTHDATA_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(KRB5_AUTHDATA
993 #define sk_KRB5_AUTHDATA_dup(st) SKM_sk_dup(KRB5_AUTHDATA, st)
994 #define sk_KRB5_AUTHDATA_pop_free(st, free_func) SKM_sk_pop_free(KRB5_AUTHDATA,
995 #define sk_KRB5_AUTHDATA_shift(st) SKM_sk_shift(KRB5_AUTHDATA, (st))
996 #define sk_KRB5_AUTHDATA_pop(st) SKM_sk_pop(KRB5_AUTHDATA, (st))
997 #define sk_KRB5_AUTHDATA_sort(st) SKM_sk_sort(KRB5_AUTHDATA, (st))
998 #define sk_KRB5_AUTHDATA_is_sorted(st) SKM_sk_is_sorted(KRB5_AUTHDATA, (st))

1000 #define sk_KRB5_AUTHENTBODY_new(cmp) SKM_sk_new(KRB5_AUTHENTBODY, (cmp))
1001 #define sk_KRB5_AUTHENTBODY_new_null() SKM_sk_new_null(KRB5_AUTHENTBODY)
1002 #define sk_KRB5_AUTHENTBODY_free(st) SKM_sk_free(KRB5_AUTHENTBODY, (st))
1003 #define sk_KRB5_AUTHENTBODY_num(st) SKM_sk_num(KRB5_AUTHENTBODY, (st))
1004 #define sk_KRB5_AUTHENTBODY_value(st, i) SKM_sk_value(KRB5_AUTHENTBODY, (st), (i
1005 #define sk_KRB5_AUTHENTBODY_set(st, i, val) SKM_sk_set(KRB5_AUTHENTBODY, (st), (
1006 #define sk_KRB5_AUTHENTBODY_zero(st) SKM_sk_zero(KRB5_AUTHENTBODY, (st))
1007 #define sk_KRB5_AUTHENTBODY_push(st, val) SKM_sk_push(KRB5_AUTHENTBODY, (st), (v
1008 #define sk_KRB5_AUTHENTBODY_unshift(st, val) SKM_sk_unshift(KRB5_AUTHENTBODY, (s
1009 #define sk_KRB5_AUTHENTBODY_find(st, val) SKM_sk_find(KRB5_AUTHENTBODY, (st), (v
1010 #define sk_KRB5_AUTHENTBODY_find_ex(st, val) SKM_sk_find_ex(KRB5_AUTHENTBODY, (s
1011 #define sk_KRB5_AUTHENTBODY_delete(st, i) SKM_sk_delete(KRB5_AUTHENTBODY, (st),
1012 #define sk_KRB5_AUTHENTBODY_delete_ptr(st, ptr) SKM_sk_delete_ptr(KRB5_AUTHENTBO
1013 #define sk_KRB5_AUTHENTBODY_insert(st, val, i) SKM_sk_insert(KRB5_AUTHENTBODY, (
1014 #define sk_KRB5_AUTHENTBODY_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(KRB5_AUTHE
1015 #define sk_KRB5_AUTHENTBODY_dup(st) SKM_sk_dup(KRB5_AUTHENTBODY, st)
1016 #define sk_KRB5_AUTHENTBODY_pop_free(st, free_func) SKM_sk_pop_free(KRB5_AUTHENT
1017 #define sk_KRB5_AUTHENTBODY_shift(st) SKM_sk_shift(KRB5_AUTHENTBODY, (st))
1018 #define sk_KRB5_AUTHENTBODY_pop(st) SKM_sk_pop(KRB5_AUTHENTBODY, (st))
1019 #define sk_KRB5_AUTHENTBODY_sort(st) SKM_sk_sort(KRB5_AUTHENTBODY, (st))
1020 #define sk_KRB5_AUTHENTBODY_is_sorted(st) SKM_sk_is_sorted(KRB5_AUTHENTBODY, (st

1022 #define sk_KRB5_CHECKSUM_new(cmp) SKM_sk_new(KRB5_CHECKSUM, (cmp))
1023 #define sk_KRB5_CHECKSUM_new_null() SKM_sk_new_null(KRB5_CHECKSUM)
1024 #define sk_KRB5_CHECKSUM_free(st) SKM_sk_free(KRB5_CHECKSUM, (st))
1025 #define sk_KRB5_CHECKSUM_num(st) SKM_sk_num(KRB5_CHECKSUM, (st))
1026 #define sk_KRB5_CHECKSUM_value(st, i) SKM_sk_value(KRB5_CHECKSUM, (st), (i))
1027 #define sk_KRB5_CHECKSUM_set(st, i, val) SKM_sk_set(KRB5_CHECKSUM, (st), (i), (v
1028 #define sk_KRB5_CHECKSUM_zero(st) SKM_sk_zero(KRB5_CHECKSUM, (st))
1029 #define sk_KRB5_CHECKSUM_push(st, val) SKM_sk_push(KRB5_CHECKSUM, (st), (val))
1030 #define sk_KRB5_CHECKSUM_unshift(st, val) SKM_sk_unshift(KRB5_CHECKSUM, (st), (v
1031 #define sk_KRB5_CHECKSUM_find(st, val) SKM_sk_find(KRB5_CHECKSUM, (st), (val))
1032 #define sk_KRB5_CHECKSUM_find_ex(st, val) SKM_sk_find_ex(KRB5_CHECKSUM, (st), (v
1033 #define sk_KRB5_CHECKSUM_delete(st, i) SKM_sk_delete(KRB5_CHECKSUM, (st), (i))
1034 #define sk_KRB5_CHECKSUM_delete_ptr(st, ptr) SKM_sk_delete_ptr(KRB5_CHECKSUM, (s
1035 #define sk_KRB5_CHECKSUM_insert(st, val, i) SKM_sk_insert(KRB5_CHECKSUM, (st), (
1036 #define sk_KRB5_CHECKSUM_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(KRB5_CHECKSUM
1037 #define sk_KRB5_CHECKSUM_dup(st) SKM_sk_dup(KRB5_CHECKSUM, st)
1038 #define sk_KRB5_CHECKSUM_pop_free(st, free_func) SKM_sk_pop_free(KRB5_CHECKSUM,
1039 #define sk_KRB5_CHECKSUM_shift(st) SKM_sk_shift(KRB5_CHECKSUM, (st))
1040 #define sk_KRB5_CHECKSUM_pop(st) SKM_sk_pop(KRB5_CHECKSUM, (st))
1041 #define sk_KRB5_CHECKSUM_sort(st) SKM_sk_sort(KRB5_CHECKSUM, (st))
1042 #define sk_KRB5_CHECKSUM_is_sorted(st) SKM_sk_is_sorted(KRB5_CHECKSUM, (st))

1044 #define sk_KRB5_ENCDATA_new(cmp) SKM_sk_new(KRB5_ENCDATA, (cmp))
1045 #define sk_KRB5_ENCDATA_new_null() SKM_sk_new_null(KRB5_ENCDATA)
1046 #define sk_KRB5_ENCDATA_free(st) SKM_sk_free(KRB5_ENCDATA, (st))
1047 #define sk_KRB5_ENCDATA_num(st) SKM_sk_num(KRB5_ENCDATA, (st))
1048 #define sk_KRB5_ENCDATA_value(st, i) SKM_sk_value(KRB5_ENCDATA, (st), (i))
1049 #define sk_KRB5_ENCDATA_set(st, i, val) SKM_sk_set(KRB5_ENCDATA, (st), (i), (val
1050 #define sk_KRB5_ENCDATA_zero(st) SKM_sk_zero(KRB5_ENCDATA, (st))
1051 #define sk_KRB5_ENCDATA_push(st, val) SKM_sk_push(KRB5_ENCDATA, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 17

1052 #define sk_KRB5_ENCDATA_unshift(st, val) SKM_sk_unshift(KRB5_ENCDATA, (st), (val
1053 #define sk_KRB5_ENCDATA_find(st, val) SKM_sk_find(KRB5_ENCDATA, (st), (val))
1054 #define sk_KRB5_ENCDATA_find_ex(st, val) SKM_sk_find_ex(KRB5_ENCDATA, (st), (val
1055 #define sk_KRB5_ENCDATA_delete(st, i) SKM_sk_delete(KRB5_ENCDATA, (st), (i))
1056 #define sk_KRB5_ENCDATA_delete_ptr(st, ptr) SKM_sk_delete_ptr(KRB5_ENCDATA, (st)
1057 #define sk_KRB5_ENCDATA_insert(st, val, i) SKM_sk_insert(KRB5_ENCDATA, (st), (va
1058 #define sk_KRB5_ENCDATA_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(KRB5_ENCDATA,
1059 #define sk_KRB5_ENCDATA_dup(st) SKM_sk_dup(KRB5_ENCDATA, st)
1060 #define sk_KRB5_ENCDATA_pop_free(st, free_func) SKM_sk_pop_free(KRB5_ENCDATA, (s
1061 #define sk_KRB5_ENCDATA_shift(st) SKM_sk_shift(KRB5_ENCDATA, (st))
1062 #define sk_KRB5_ENCDATA_pop(st) SKM_sk_pop(KRB5_ENCDATA, (st))
1063 #define sk_KRB5_ENCDATA_sort(st) SKM_sk_sort(KRB5_ENCDATA, (st))
1064 #define sk_KRB5_ENCDATA_is_sorted(st) SKM_sk_is_sorted(KRB5_ENCDATA, (st))

1066 #define sk_KRB5_ENCKEY_new(cmp) SKM_sk_new(KRB5_ENCKEY, (cmp))
1067 #define sk_KRB5_ENCKEY_new_null() SKM_sk_new_null(KRB5_ENCKEY)
1068 #define sk_KRB5_ENCKEY_free(st) SKM_sk_free(KRB5_ENCKEY, (st))
1069 #define sk_KRB5_ENCKEY_num(st) SKM_sk_num(KRB5_ENCKEY, (st))
1070 #define sk_KRB5_ENCKEY_value(st, i) SKM_sk_value(KRB5_ENCKEY, (st), (i))
1071 #define sk_KRB5_ENCKEY_set(st, i, val) SKM_sk_set(KRB5_ENCKEY, (st), (i), (val))
1072 #define sk_KRB5_ENCKEY_zero(st) SKM_sk_zero(KRB5_ENCKEY, (st))
1073 #define sk_KRB5_ENCKEY_push(st, val) SKM_sk_push(KRB5_ENCKEY, (st), (val))
1074 #define sk_KRB5_ENCKEY_unshift(st, val) SKM_sk_unshift(KRB5_ENCKEY, (st), (val))
1075 #define sk_KRB5_ENCKEY_find(st, val) SKM_sk_find(KRB5_ENCKEY, (st), (val))
1076 #define sk_KRB5_ENCKEY_find_ex(st, val) SKM_sk_find_ex(KRB5_ENCKEY, (st), (val))
1077 #define sk_KRB5_ENCKEY_delete(st, i) SKM_sk_delete(KRB5_ENCKEY, (st), (i))
1078 #define sk_KRB5_ENCKEY_delete_ptr(st, ptr) SKM_sk_delete_ptr(KRB5_ENCKEY, (st),
1079 #define sk_KRB5_ENCKEY_insert(st, val, i) SKM_sk_insert(KRB5_ENCKEY, (st), (val)
1080 #define sk_KRB5_ENCKEY_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(KRB5_ENCKEY, (s
1081 #define sk_KRB5_ENCKEY_dup(st) SKM_sk_dup(KRB5_ENCKEY, st)
1082 #define sk_KRB5_ENCKEY_pop_free(st, free_func) SKM_sk_pop_free(KRB5_ENCKEY, (st)
1083 #define sk_KRB5_ENCKEY_shift(st) SKM_sk_shift(KRB5_ENCKEY, (st))
1084 #define sk_KRB5_ENCKEY_pop(st) SKM_sk_pop(KRB5_ENCKEY, (st))
1085 #define sk_KRB5_ENCKEY_sort(st) SKM_sk_sort(KRB5_ENCKEY, (st))
1086 #define sk_KRB5_ENCKEY_is_sorted(st) SKM_sk_is_sorted(KRB5_ENCKEY, (st))

1088 #define sk_KRB5_PRINCNAME_new(cmp) SKM_sk_new(KRB5_PRINCNAME, (cmp))
1089 #define sk_KRB5_PRINCNAME_new_null() SKM_sk_new_null(KRB5_PRINCNAME)
1090 #define sk_KRB5_PRINCNAME_free(st) SKM_sk_free(KRB5_PRINCNAME, (st))
1091 #define sk_KRB5_PRINCNAME_num(st) SKM_sk_num(KRB5_PRINCNAME, (st))
1092 #define sk_KRB5_PRINCNAME_value(st, i) SKM_sk_value(KRB5_PRINCNAME, (st), (i))
1093 #define sk_KRB5_PRINCNAME_set(st, i, val) SKM_sk_set(KRB5_PRINCNAME, (st), (i),
1094 #define sk_KRB5_PRINCNAME_zero(st) SKM_sk_zero(KRB5_PRINCNAME, (st))
1095 #define sk_KRB5_PRINCNAME_push(st, val) SKM_sk_push(KRB5_PRINCNAME, (st), (val))
1096 #define sk_KRB5_PRINCNAME_unshift(st, val) SKM_sk_unshift(KRB5_PRINCNAME, (st),
1097 #define sk_KRB5_PRINCNAME_find(st, val) SKM_sk_find(KRB5_PRINCNAME, (st), (val))
1098 #define sk_KRB5_PRINCNAME_find_ex(st, val) SKM_sk_find_ex(KRB5_PRINCNAME, (st),
1099 #define sk_KRB5_PRINCNAME_delete(st, i) SKM_sk_delete(KRB5_PRINCNAME, (st), (i))
1100 #define sk_KRB5_PRINCNAME_delete_ptr(st, ptr) SKM_sk_delete_ptr(KRB5_PRINCNAME,
1101 #define sk_KRB5_PRINCNAME_insert(st, val, i) SKM_sk_insert(KRB5_PRINCNAME, (st),
1102 #define sk_KRB5_PRINCNAME_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(KRB5_PRINCNA
1103 #define sk_KRB5_PRINCNAME_dup(st) SKM_sk_dup(KRB5_PRINCNAME, st)
1104 #define sk_KRB5_PRINCNAME_pop_free(st, free_func) SKM_sk_pop_free(KRB5_PRINCNAME
1105 #define sk_KRB5_PRINCNAME_shift(st) SKM_sk_shift(KRB5_PRINCNAME, (st))
1106 #define sk_KRB5_PRINCNAME_pop(st) SKM_sk_pop(KRB5_PRINCNAME, (st))
1107 #define sk_KRB5_PRINCNAME_sort(st) SKM_sk_sort(KRB5_PRINCNAME, (st))
1108 #define sk_KRB5_PRINCNAME_is_sorted(st) SKM_sk_is_sorted(KRB5_PRINCNAME, (st))

1110 #define sk_KRB5_TKTBODY_new(cmp) SKM_sk_new(KRB5_TKTBODY, (cmp))
1111 #define sk_KRB5_TKTBODY_new_null() SKM_sk_new_null(KRB5_TKTBODY)
1112 #define sk_KRB5_TKTBODY_free(st) SKM_sk_free(KRB5_TKTBODY, (st))
1113 #define sk_KRB5_TKTBODY_num(st) SKM_sk_num(KRB5_TKTBODY, (st))
1114 #define sk_KRB5_TKTBODY_value(st, i) SKM_sk_value(KRB5_TKTBODY, (st), (i))
1115 #define sk_KRB5_TKTBODY_set(st, i, val) SKM_sk_set(KRB5_TKTBODY, (st), (i), (val
1116 #define sk_KRB5_TKTBODY_zero(st) SKM_sk_zero(KRB5_TKTBODY, (st))
1117 #define sk_KRB5_TKTBODY_push(st, val) SKM_sk_push(KRB5_TKTBODY, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 18

1118 #define sk_KRB5_TKTBODY_unshift(st, val) SKM_sk_unshift(KRB5_TKTBODY, (st), (val
1119 #define sk_KRB5_TKTBODY_find(st, val) SKM_sk_find(KRB5_TKTBODY, (st), (val))
1120 #define sk_KRB5_TKTBODY_find_ex(st, val) SKM_sk_find_ex(KRB5_TKTBODY, (st), (val
1121 #define sk_KRB5_TKTBODY_delete(st, i) SKM_sk_delete(KRB5_TKTBODY, (st), (i))
1122 #define sk_KRB5_TKTBODY_delete_ptr(st, ptr) SKM_sk_delete_ptr(KRB5_TKTBODY, (st)
1123 #define sk_KRB5_TKTBODY_insert(st, val, i) SKM_sk_insert(KRB5_TKTBODY, (st), (va
1124 #define sk_KRB5_TKTBODY_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(KRB5_TKTBODY,
1125 #define sk_KRB5_TKTBODY_dup(st) SKM_sk_dup(KRB5_TKTBODY, st)
1126 #define sk_KRB5_TKTBODY_pop_free(st, free_func) SKM_sk_pop_free(KRB5_TKTBODY, (s
1127 #define sk_KRB5_TKTBODY_shift(st) SKM_sk_shift(KRB5_TKTBODY, (st))
1128 #define sk_KRB5_TKTBODY_pop(st) SKM_sk_pop(KRB5_TKTBODY, (st))
1129 #define sk_KRB5_TKTBODY_sort(st) SKM_sk_sort(KRB5_TKTBODY, (st))
1130 #define sk_KRB5_TKTBODY_is_sorted(st) SKM_sk_is_sorted(KRB5_TKTBODY, (st))

1132 #define sk_MEM_OBJECT_DATA_new(cmp) SKM_sk_new(MEM_OBJECT_DATA, (cmp))
1133 #define sk_MEM_OBJECT_DATA_new_null() SKM_sk_new_null(MEM_OBJECT_DATA)
1134 #define sk_MEM_OBJECT_DATA_free(st) SKM_sk_free(MEM_OBJECT_DATA, (st))
1135 #define sk_MEM_OBJECT_DATA_num(st) SKM_sk_num(MEM_OBJECT_DATA, (st))
1136 #define sk_MEM_OBJECT_DATA_value(st, i) SKM_sk_value(MEM_OBJECT_DATA, (st), (i))
1137 #define sk_MEM_OBJECT_DATA_set(st, i, val) SKM_sk_set(MEM_OBJECT_DATA, (st), (i)
1138 #define sk_MEM_OBJECT_DATA_zero(st) SKM_sk_zero(MEM_OBJECT_DATA, (st))
1139 #define sk_MEM_OBJECT_DATA_push(st, val) SKM_sk_push(MEM_OBJECT_DATA, (st), (val
1140 #define sk_MEM_OBJECT_DATA_unshift(st, val) SKM_sk_unshift(MEM_OBJECT_DATA, (st)
1141 #define sk_MEM_OBJECT_DATA_find(st, val) SKM_sk_find(MEM_OBJECT_DATA, (st), (val
1142 #define sk_MEM_OBJECT_DATA_find_ex(st, val) SKM_sk_find_ex(MEM_OBJECT_DATA, (st)
1143 #define sk_MEM_OBJECT_DATA_delete(st, i) SKM_sk_delete(MEM_OBJECT_DATA, (st), (i
1144 #define sk_MEM_OBJECT_DATA_delete_ptr(st, ptr) SKM_sk_delete_ptr(MEM_OBJECT_DATA
1145 #define sk_MEM_OBJECT_DATA_insert(st, val, i) SKM_sk_insert(MEM_OBJECT_DATA, (st
1146 #define sk_MEM_OBJECT_DATA_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(MEM_OBJECT_
1147 #define sk_MEM_OBJECT_DATA_dup(st) SKM_sk_dup(MEM_OBJECT_DATA, st)
1148 #define sk_MEM_OBJECT_DATA_pop_free(st, free_func) SKM_sk_pop_free(MEM_OBJECT_DA
1149 #define sk_MEM_OBJECT_DATA_shift(st) SKM_sk_shift(MEM_OBJECT_DATA, (st))
1150 #define sk_MEM_OBJECT_DATA_pop(st) SKM_sk_pop(MEM_OBJECT_DATA, (st))
1151 #define sk_MEM_OBJECT_DATA_sort(st) SKM_sk_sort(MEM_OBJECT_DATA, (st))
1152 #define sk_MEM_OBJECT_DATA_is_sorted(st) SKM_sk_is_sorted(MEM_OBJECT_DATA, (st))

1154 #define sk_MIME_HEADER_new(cmp) SKM_sk_new(MIME_HEADER, (cmp))
1155 #define sk_MIME_HEADER_new_null() SKM_sk_new_null(MIME_HEADER)
1156 #define sk_MIME_HEADER_free(st) SKM_sk_free(MIME_HEADER, (st))
1157 #define sk_MIME_HEADER_num(st) SKM_sk_num(MIME_HEADER, (st))
1158 #define sk_MIME_HEADER_value(st, i) SKM_sk_value(MIME_HEADER, (st), (i))
1159 #define sk_MIME_HEADER_set(st, i, val) SKM_sk_set(MIME_HEADER, (st), (i), (val))
1160 #define sk_MIME_HEADER_zero(st) SKM_sk_zero(MIME_HEADER, (st))
1161 #define sk_MIME_HEADER_push(st, val) SKM_sk_push(MIME_HEADER, (st), (val))
1162 #define sk_MIME_HEADER_unshift(st, val) SKM_sk_unshift(MIME_HEADER, (st), (val))
1163 #define sk_MIME_HEADER_find(st, val) SKM_sk_find(MIME_HEADER, (st), (val))
1164 #define sk_MIME_HEADER_find_ex(st, val) SKM_sk_find_ex(MIME_HEADER, (st), (val))
1165 #define sk_MIME_HEADER_delete(st, i) SKM_sk_delete(MIME_HEADER, (st), (i))
1166 #define sk_MIME_HEADER_delete_ptr(st, ptr) SKM_sk_delete_ptr(MIME_HEADER, (st),
1167 #define sk_MIME_HEADER_insert(st, val, i) SKM_sk_insert(MIME_HEADER, (st), (val)
1168 #define sk_MIME_HEADER_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(MIME_HEADER, (s
1169 #define sk_MIME_HEADER_dup(st) SKM_sk_dup(MIME_HEADER, st)
1170 #define sk_MIME_HEADER_pop_free(st, free_func) SKM_sk_pop_free(MIME_HEADER, (st)
1171 #define sk_MIME_HEADER_shift(st) SKM_sk_shift(MIME_HEADER, (st))
1172 #define sk_MIME_HEADER_pop(st) SKM_sk_pop(MIME_HEADER, (st))
1173 #define sk_MIME_HEADER_sort(st) SKM_sk_sort(MIME_HEADER, (st))
1174 #define sk_MIME_HEADER_is_sorted(st) SKM_sk_is_sorted(MIME_HEADER, (st))

1176 #define sk_MIME_PARAM_new(cmp) SKM_sk_new(MIME_PARAM, (cmp))
1177 #define sk_MIME_PARAM_new_null() SKM_sk_new_null(MIME_PARAM)
1178 #define sk_MIME_PARAM_free(st) SKM_sk_free(MIME_PARAM, (st))
1179 #define sk_MIME_PARAM_num(st) SKM_sk_num(MIME_PARAM, (st))
1180 #define sk_MIME_PARAM_value(st, i) SKM_sk_value(MIME_PARAM, (st), (i))
1181 #define sk_MIME_PARAM_set(st, i, val) SKM_sk_set(MIME_PARAM, (st), (i), (val))
1182 #define sk_MIME_PARAM_zero(st) SKM_sk_zero(MIME_PARAM, (st))
1183 #define sk_MIME_PARAM_push(st, val) SKM_sk_push(MIME_PARAM, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 19

1184 #define sk_MIME_PARAM_unshift(st, val) SKM_sk_unshift(MIME_PARAM, (st), (val))
1185 #define sk_MIME_PARAM_find(st, val) SKM_sk_find(MIME_PARAM, (st), (val))
1186 #define sk_MIME_PARAM_find_ex(st, val) SKM_sk_find_ex(MIME_PARAM, (st), (val))
1187 #define sk_MIME_PARAM_delete(st, i) SKM_sk_delete(MIME_PARAM, (st), (i))
1188 #define sk_MIME_PARAM_delete_ptr(st, ptr) SKM_sk_delete_ptr(MIME_PARAM, (st), (p
1189 #define sk_MIME_PARAM_insert(st, val, i) SKM_sk_insert(MIME_PARAM, (st), (val),
1190 #define sk_MIME_PARAM_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(MIME_PARAM, (st)
1191 #define sk_MIME_PARAM_dup(st) SKM_sk_dup(MIME_PARAM, st)
1192 #define sk_MIME_PARAM_pop_free(st, free_func) SKM_sk_pop_free(MIME_PARAM, (st),
1193 #define sk_MIME_PARAM_shift(st) SKM_sk_shift(MIME_PARAM, (st))
1194 #define sk_MIME_PARAM_pop(st) SKM_sk_pop(MIME_PARAM, (st))
1195 #define sk_MIME_PARAM_sort(st) SKM_sk_sort(MIME_PARAM, (st))
1196 #define sk_MIME_PARAM_is_sorted(st) SKM_sk_is_sorted(MIME_PARAM, (st))

1198 #define sk_NAME_FUNCS_new(cmp) SKM_sk_new(NAME_FUNCS, (cmp))
1199 #define sk_NAME_FUNCS_new_null() SKM_sk_new_null(NAME_FUNCS)
1200 #define sk_NAME_FUNCS_free(st) SKM_sk_free(NAME_FUNCS, (st))
1201 #define sk_NAME_FUNCS_num(st) SKM_sk_num(NAME_FUNCS, (st))
1202 #define sk_NAME_FUNCS_value(st, i) SKM_sk_value(NAME_FUNCS, (st), (i))
1203 #define sk_NAME_FUNCS_set(st, i, val) SKM_sk_set(NAME_FUNCS, (st), (i), (val))
1204 #define sk_NAME_FUNCS_zero(st) SKM_sk_zero(NAME_FUNCS, (st))
1205 #define sk_NAME_FUNCS_push(st, val) SKM_sk_push(NAME_FUNCS, (st), (val))
1206 #define sk_NAME_FUNCS_unshift(st, val) SKM_sk_unshift(NAME_FUNCS, (st), (val))
1207 #define sk_NAME_FUNCS_find(st, val) SKM_sk_find(NAME_FUNCS, (st), (val))
1208 #define sk_NAME_FUNCS_find_ex(st, val) SKM_sk_find_ex(NAME_FUNCS, (st), (val))
1209 #define sk_NAME_FUNCS_delete(st, i) SKM_sk_delete(NAME_FUNCS, (st), (i))
1210 #define sk_NAME_FUNCS_delete_ptr(st, ptr) SKM_sk_delete_ptr(NAME_FUNCS, (st), (p
1211 #define sk_NAME_FUNCS_insert(st, val, i) SKM_sk_insert(NAME_FUNCS, (st), (val),
1212 #define sk_NAME_FUNCS_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(NAME_FUNCS, (st)
1213 #define sk_NAME_FUNCS_dup(st) SKM_sk_dup(NAME_FUNCS, st)
1214 #define sk_NAME_FUNCS_pop_free(st, free_func) SKM_sk_pop_free(NAME_FUNCS, (st),
1215 #define sk_NAME_FUNCS_shift(st) SKM_sk_shift(NAME_FUNCS, (st))
1216 #define sk_NAME_FUNCS_pop(st) SKM_sk_pop(NAME_FUNCS, (st))
1217 #define sk_NAME_FUNCS_sort(st) SKM_sk_sort(NAME_FUNCS, (st))
1218 #define sk_NAME_FUNCS_is_sorted(st) SKM_sk_is_sorted(NAME_FUNCS, (st))

1220 #define sk_OCSP_CERTID_new(cmp) SKM_sk_new(OCSP_CERTID, (cmp))
1221 #define sk_OCSP_CERTID_new_null() SKM_sk_new_null(OCSP_CERTID)
1222 #define sk_OCSP_CERTID_free(st) SKM_sk_free(OCSP_CERTID, (st))
1223 #define sk_OCSP_CERTID_num(st) SKM_sk_num(OCSP_CERTID, (st))
1224 #define sk_OCSP_CERTID_value(st, i) SKM_sk_value(OCSP_CERTID, (st), (i))
1225 #define sk_OCSP_CERTID_set(st, i, val) SKM_sk_set(OCSP_CERTID, (st), (i), (val))
1226 #define sk_OCSP_CERTID_zero(st) SKM_sk_zero(OCSP_CERTID, (st))
1227 #define sk_OCSP_CERTID_push(st, val) SKM_sk_push(OCSP_CERTID, (st), (val))
1228 #define sk_OCSP_CERTID_unshift(st, val) SKM_sk_unshift(OCSP_CERTID, (st), (val))
1229 #define sk_OCSP_CERTID_find(st, val) SKM_sk_find(OCSP_CERTID, (st), (val))
1230 #define sk_OCSP_CERTID_find_ex(st, val) SKM_sk_find_ex(OCSP_CERTID, (st), (val))
1231 #define sk_OCSP_CERTID_delete(st, i) SKM_sk_delete(OCSP_CERTID, (st), (i))
1232 #define sk_OCSP_CERTID_delete_ptr(st, ptr) SKM_sk_delete_ptr(OCSP_CERTID, (st),
1233 #define sk_OCSP_CERTID_insert(st, val, i) SKM_sk_insert(OCSP_CERTID, (st), (val)
1234 #define sk_OCSP_CERTID_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(OCSP_CERTID, (s
1235 #define sk_OCSP_CERTID_dup(st) SKM_sk_dup(OCSP_CERTID, st)
1236 #define sk_OCSP_CERTID_pop_free(st, free_func) SKM_sk_pop_free(OCSP_CERTID, (st)
1237 #define sk_OCSP_CERTID_shift(st) SKM_sk_shift(OCSP_CERTID, (st))
1238 #define sk_OCSP_CERTID_pop(st) SKM_sk_pop(OCSP_CERTID, (st))
1239 #define sk_OCSP_CERTID_sort(st) SKM_sk_sort(OCSP_CERTID, (st))
1240 #define sk_OCSP_CERTID_is_sorted(st) SKM_sk_is_sorted(OCSP_CERTID, (st))

1242 #define sk_OCSP_ONEREQ_new(cmp) SKM_sk_new(OCSP_ONEREQ, (cmp))
1243 #define sk_OCSP_ONEREQ_new_null() SKM_sk_new_null(OCSP_ONEREQ)
1244 #define sk_OCSP_ONEREQ_free(st) SKM_sk_free(OCSP_ONEREQ, (st))
1245 #define sk_OCSP_ONEREQ_num(st) SKM_sk_num(OCSP_ONEREQ, (st))
1246 #define sk_OCSP_ONEREQ_value(st, i) SKM_sk_value(OCSP_ONEREQ, (st), (i))
1247 #define sk_OCSP_ONEREQ_set(st, i, val) SKM_sk_set(OCSP_ONEREQ, (st), (i), (val))
1248 #define sk_OCSP_ONEREQ_zero(st) SKM_sk_zero(OCSP_ONEREQ, (st))
1249 #define sk_OCSP_ONEREQ_push(st, val) SKM_sk_push(OCSP_ONEREQ, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 20

1250 #define sk_OCSP_ONEREQ_unshift(st, val) SKM_sk_unshift(OCSP_ONEREQ, (st), (val))
1251 #define sk_OCSP_ONEREQ_find(st, val) SKM_sk_find(OCSP_ONEREQ, (st), (val))
1252 #define sk_OCSP_ONEREQ_find_ex(st, val) SKM_sk_find_ex(OCSP_ONEREQ, (st), (val))
1253 #define sk_OCSP_ONEREQ_delete(st, i) SKM_sk_delete(OCSP_ONEREQ, (st), (i))
1254 #define sk_OCSP_ONEREQ_delete_ptr(st, ptr) SKM_sk_delete_ptr(OCSP_ONEREQ, (st),
1255 #define sk_OCSP_ONEREQ_insert(st, val, i) SKM_sk_insert(OCSP_ONEREQ, (st), (val)
1256 #define sk_OCSP_ONEREQ_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(OCSP_ONEREQ, (s
1257 #define sk_OCSP_ONEREQ_dup(st) SKM_sk_dup(OCSP_ONEREQ, st)
1258 #define sk_OCSP_ONEREQ_pop_free(st, free_func) SKM_sk_pop_free(OCSP_ONEREQ, (st)
1259 #define sk_OCSP_ONEREQ_shift(st) SKM_sk_shift(OCSP_ONEREQ, (st))
1260 #define sk_OCSP_ONEREQ_pop(st) SKM_sk_pop(OCSP_ONEREQ, (st))
1261 #define sk_OCSP_ONEREQ_sort(st) SKM_sk_sort(OCSP_ONEREQ, (st))
1262 #define sk_OCSP_ONEREQ_is_sorted(st) SKM_sk_is_sorted(OCSP_ONEREQ, (st))

1264 #define sk_OCSP_RESPID_new(cmp) SKM_sk_new(OCSP_RESPID, (cmp))
1265 #define sk_OCSP_RESPID_new_null() SKM_sk_new_null(OCSP_RESPID)
1266 #define sk_OCSP_RESPID_free(st) SKM_sk_free(OCSP_RESPID, (st))
1267 #define sk_OCSP_RESPID_num(st) SKM_sk_num(OCSP_RESPID, (st))
1268 #define sk_OCSP_RESPID_value(st, i) SKM_sk_value(OCSP_RESPID, (st), (i))
1269 #define sk_OCSP_RESPID_set(st, i, val) SKM_sk_set(OCSP_RESPID, (st), (i), (val))
1270 #define sk_OCSP_RESPID_zero(st) SKM_sk_zero(OCSP_RESPID, (st))
1271 #define sk_OCSP_RESPID_push(st, val) SKM_sk_push(OCSP_RESPID, (st), (val))
1272 #define sk_OCSP_RESPID_unshift(st, val) SKM_sk_unshift(OCSP_RESPID, (st), (val))
1273 #define sk_OCSP_RESPID_find(st, val) SKM_sk_find(OCSP_RESPID, (st), (val))
1274 #define sk_OCSP_RESPID_find_ex(st, val) SKM_sk_find_ex(OCSP_RESPID, (st), (val))
1275 #define sk_OCSP_RESPID_delete(st, i) SKM_sk_delete(OCSP_RESPID, (st), (i))
1276 #define sk_OCSP_RESPID_delete_ptr(st, ptr) SKM_sk_delete_ptr(OCSP_RESPID, (st),
1277 #define sk_OCSP_RESPID_insert(st, val, i) SKM_sk_insert(OCSP_RESPID, (st), (val)
1278 #define sk_OCSP_RESPID_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(OCSP_RESPID, (s
1279 #define sk_OCSP_RESPID_dup(st) SKM_sk_dup(OCSP_RESPID, st)
1280 #define sk_OCSP_RESPID_pop_free(st, free_func) SKM_sk_pop_free(OCSP_RESPID, (st)
1281 #define sk_OCSP_RESPID_shift(st) SKM_sk_shift(OCSP_RESPID, (st))
1282 #define sk_OCSP_RESPID_pop(st) SKM_sk_pop(OCSP_RESPID, (st))
1283 #define sk_OCSP_RESPID_sort(st) SKM_sk_sort(OCSP_RESPID, (st))
1284 #define sk_OCSP_RESPID_is_sorted(st) SKM_sk_is_sorted(OCSP_RESPID, (st))

1286 #define sk_OCSP_SINGLERESP_new(cmp) SKM_sk_new(OCSP_SINGLERESP, (cmp))
1287 #define sk_OCSP_SINGLERESP_new_null() SKM_sk_new_null(OCSP_SINGLERESP)
1288 #define sk_OCSP_SINGLERESP_free(st) SKM_sk_free(OCSP_SINGLERESP, (st))
1289 #define sk_OCSP_SINGLERESP_num(st) SKM_sk_num(OCSP_SINGLERESP, (st))
1290 #define sk_OCSP_SINGLERESP_value(st, i) SKM_sk_value(OCSP_SINGLERESP, (st), (i))
1291 #define sk_OCSP_SINGLERESP_set(st, i, val) SKM_sk_set(OCSP_SINGLERESP, (st), (i)
1292 #define sk_OCSP_SINGLERESP_zero(st) SKM_sk_zero(OCSP_SINGLERESP, (st))
1293 #define sk_OCSP_SINGLERESP_push(st, val) SKM_sk_push(OCSP_SINGLERESP, (st), (val
1294 #define sk_OCSP_SINGLERESP_unshift(st, val) SKM_sk_unshift(OCSP_SINGLERESP, (st)
1295 #define sk_OCSP_SINGLERESP_find(st, val) SKM_sk_find(OCSP_SINGLERESP, (st), (val
1296 #define sk_OCSP_SINGLERESP_find_ex(st, val) SKM_sk_find_ex(OCSP_SINGLERESP, (st)
1297 #define sk_OCSP_SINGLERESP_delete(st, i) SKM_sk_delete(OCSP_SINGLERESP, (st), (i
1298 #define sk_OCSP_SINGLERESP_delete_ptr(st, ptr) SKM_sk_delete_ptr(OCSP_SINGLERESP
1299 #define sk_OCSP_SINGLERESP_insert(st, val, i) SKM_sk_insert(OCSP_SINGLERESP, (st
1300 #define sk_OCSP_SINGLERESP_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(OCSP_SINGLE
1301 #define sk_OCSP_SINGLERESP_dup(st) SKM_sk_dup(OCSP_SINGLERESP, st)
1302 #define sk_OCSP_SINGLERESP_pop_free(st, free_func) SKM_sk_pop_free(OCSP_SINGLERE
1303 #define sk_OCSP_SINGLERESP_shift(st) SKM_sk_shift(OCSP_SINGLERESP, (st))
1304 #define sk_OCSP_SINGLERESP_pop(st) SKM_sk_pop(OCSP_SINGLERESP, (st))
1305 #define sk_OCSP_SINGLERESP_sort(st) SKM_sk_sort(OCSP_SINGLERESP, (st))
1306 #define sk_OCSP_SINGLERESP_is_sorted(st) SKM_sk_is_sorted(OCSP_SINGLERESP, (st))

1308 #define sk_PKCS12_SAFEBAG_new(cmp) SKM_sk_new(PKCS12_SAFEBAG, (cmp))
1309 #define sk_PKCS12_SAFEBAG_new_null() SKM_sk_new_null(PKCS12_SAFEBAG)
1310 #define sk_PKCS12_SAFEBAG_free(st) SKM_sk_free(PKCS12_SAFEBAG, (st))
1311 #define sk_PKCS12_SAFEBAG_num(st) SKM_sk_num(PKCS12_SAFEBAG, (st))
1312 #define sk_PKCS12_SAFEBAG_value(st, i) SKM_sk_value(PKCS12_SAFEBAG, (st), (i))
1313 #define sk_PKCS12_SAFEBAG_set(st, i, val) SKM_sk_set(PKCS12_SAFEBAG, (st), (i),
1314 #define sk_PKCS12_SAFEBAG_zero(st) SKM_sk_zero(PKCS12_SAFEBAG, (st))
1315 #define sk_PKCS12_SAFEBAG_push(st, val) SKM_sk_push(PKCS12_SAFEBAG, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 21

1316 #define sk_PKCS12_SAFEBAG_unshift(st, val) SKM_sk_unshift(PKCS12_SAFEBAG, (st),
1317 #define sk_PKCS12_SAFEBAG_find(st, val) SKM_sk_find(PKCS12_SAFEBAG, (st), (val))
1318 #define sk_PKCS12_SAFEBAG_find_ex(st, val) SKM_sk_find_ex(PKCS12_SAFEBAG, (st),
1319 #define sk_PKCS12_SAFEBAG_delete(st, i) SKM_sk_delete(PKCS12_SAFEBAG, (st), (i))
1320 #define sk_PKCS12_SAFEBAG_delete_ptr(st, ptr) SKM_sk_delete_ptr(PKCS12_SAFEBAG,
1321 #define sk_PKCS12_SAFEBAG_insert(st, val, i) SKM_sk_insert(PKCS12_SAFEBAG, (st),
1322 #define sk_PKCS12_SAFEBAG_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(PKCS12_SAFEB
1323 #define sk_PKCS12_SAFEBAG_dup(st) SKM_sk_dup(PKCS12_SAFEBAG, st)
1324 #define sk_PKCS12_SAFEBAG_pop_free(st, free_func) SKM_sk_pop_free(PKCS12_SAFEBAG
1325 #define sk_PKCS12_SAFEBAG_shift(st) SKM_sk_shift(PKCS12_SAFEBAG, (st))
1326 #define sk_PKCS12_SAFEBAG_pop(st) SKM_sk_pop(PKCS12_SAFEBAG, (st))
1327 #define sk_PKCS12_SAFEBAG_sort(st) SKM_sk_sort(PKCS12_SAFEBAG, (st))
1328 #define sk_PKCS12_SAFEBAG_is_sorted(st) SKM_sk_is_sorted(PKCS12_SAFEBAG, (st))

1330 #define sk_PKCS7_new(cmp) SKM_sk_new(PKCS7, (cmp))
1331 #define sk_PKCS7_new_null() SKM_sk_new_null(PKCS7)
1332 #define sk_PKCS7_free(st) SKM_sk_free(PKCS7, (st))
1333 #define sk_PKCS7_num(st) SKM_sk_num(PKCS7, (st))
1334 #define sk_PKCS7_value(st, i) SKM_sk_value(PKCS7, (st), (i))
1335 #define sk_PKCS7_set(st, i, val) SKM_sk_set(PKCS7, (st), (i), (val))
1336 #define sk_PKCS7_zero(st) SKM_sk_zero(PKCS7, (st))
1337 #define sk_PKCS7_push(st, val) SKM_sk_push(PKCS7, (st), (val))
1338 #define sk_PKCS7_unshift(st, val) SKM_sk_unshift(PKCS7, (st), (val))
1339 #define sk_PKCS7_find(st, val) SKM_sk_find(PKCS7, (st), (val))
1340 #define sk_PKCS7_find_ex(st, val) SKM_sk_find_ex(PKCS7, (st), (val))
1341 #define sk_PKCS7_delete(st, i) SKM_sk_delete(PKCS7, (st), (i))
1342 #define sk_PKCS7_delete_ptr(st, ptr) SKM_sk_delete_ptr(PKCS7, (st), (ptr))
1343 #define sk_PKCS7_insert(st, val, i) SKM_sk_insert(PKCS7, (st), (val), (i))
1344 #define sk_PKCS7_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(PKCS7, (st), (cmp))
1345 #define sk_PKCS7_dup(st) SKM_sk_dup(PKCS7, st)
1346 #define sk_PKCS7_pop_free(st, free_func) SKM_sk_pop_free(PKCS7, (st), (free_func
1347 #define sk_PKCS7_shift(st) SKM_sk_shift(PKCS7, (st))
1348 #define sk_PKCS7_pop(st) SKM_sk_pop(PKCS7, (st))
1349 #define sk_PKCS7_sort(st) SKM_sk_sort(PKCS7, (st))
1350 #define sk_PKCS7_is_sorted(st) SKM_sk_is_sorted(PKCS7, (st))

1352 #define sk_PKCS7_RECIP_INFO_new(cmp) SKM_sk_new(PKCS7_RECIP_INFO, (cmp))
1353 #define sk_PKCS7_RECIP_INFO_new_null() SKM_sk_new_null(PKCS7_RECIP_INFO)
1354 #define sk_PKCS7_RECIP_INFO_free(st) SKM_sk_free(PKCS7_RECIP_INFO, (st))
1355 #define sk_PKCS7_RECIP_INFO_num(st) SKM_sk_num(PKCS7_RECIP_INFO, (st))
1356 #define sk_PKCS7_RECIP_INFO_value(st, i) SKM_sk_value(PKCS7_RECIP_INFO, (st), (i
1357 #define sk_PKCS7_RECIP_INFO_set(st, i, val) SKM_sk_set(PKCS7_RECIP_INFO, (st), (
1358 #define sk_PKCS7_RECIP_INFO_zero(st) SKM_sk_zero(PKCS7_RECIP_INFO, (st))
1359 #define sk_PKCS7_RECIP_INFO_push(st, val) SKM_sk_push(PKCS7_RECIP_INFO, (st), (v
1360 #define sk_PKCS7_RECIP_INFO_unshift(st, val) SKM_sk_unshift(PKCS7_RECIP_INFO, (s
1361 #define sk_PKCS7_RECIP_INFO_find(st, val) SKM_sk_find(PKCS7_RECIP_INFO, (st), (v
1362 #define sk_PKCS7_RECIP_INFO_find_ex(st, val) SKM_sk_find_ex(PKCS7_RECIP_INFO, (s
1363 #define sk_PKCS7_RECIP_INFO_delete(st, i) SKM_sk_delete(PKCS7_RECIP_INFO, (st),
1364 #define sk_PKCS7_RECIP_INFO_delete_ptr(st, ptr) SKM_sk_delete_ptr(PKCS7_RECIP_IN
1365 #define sk_PKCS7_RECIP_INFO_insert(st, val, i) SKM_sk_insert(PKCS7_RECIP_INFO, (
1366 #define sk_PKCS7_RECIP_INFO_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(PKCS7_RECI
1367 #define sk_PKCS7_RECIP_INFO_dup(st) SKM_sk_dup(PKCS7_RECIP_INFO, st)
1368 #define sk_PKCS7_RECIP_INFO_pop_free(st, free_func) SKM_sk_pop_free(PKCS7_RECIP_
1369 #define sk_PKCS7_RECIP_INFO_shift(st) SKM_sk_shift(PKCS7_RECIP_INFO, (st))
1370 #define sk_PKCS7_RECIP_INFO_pop(st) SKM_sk_pop(PKCS7_RECIP_INFO, (st))
1371 #define sk_PKCS7_RECIP_INFO_sort(st) SKM_sk_sort(PKCS7_RECIP_INFO, (st))
1372 #define sk_PKCS7_RECIP_INFO_is_sorted(st) SKM_sk_is_sorted(PKCS7_RECIP_INFO, (st

1374 #define sk_PKCS7_SIGNER_INFO_new(cmp) SKM_sk_new(PKCS7_SIGNER_INFO, (cmp))
1375 #define sk_PKCS7_SIGNER_INFO_new_null() SKM_sk_new_null(PKCS7_SIGNER_INFO)
1376 #define sk_PKCS7_SIGNER_INFO_free(st) SKM_sk_free(PKCS7_SIGNER_INFO, (st))
1377 #define sk_PKCS7_SIGNER_INFO_num(st) SKM_sk_num(PKCS7_SIGNER_INFO, (st))
1378 #define sk_PKCS7_SIGNER_INFO_value(st, i) SKM_sk_value(PKCS7_SIGNER_INFO, (st),
1379 #define sk_PKCS7_SIGNER_INFO_set(st, i, val) SKM_sk_set(PKCS7_SIGNER_INFO, (st),
1380 #define sk_PKCS7_SIGNER_INFO_zero(st) SKM_sk_zero(PKCS7_SIGNER_INFO, (st))
1381 #define sk_PKCS7_SIGNER_INFO_push(st, val) SKM_sk_push(PKCS7_SIGNER_INFO, (st),

new/usr/src/lib/openssl/include/openssl/safestack.h 22

1382 #define sk_PKCS7_SIGNER_INFO_unshift(st, val) SKM_sk_unshift(PKCS7_SIGNER_INFO,
1383 #define sk_PKCS7_SIGNER_INFO_find(st, val) SKM_sk_find(PKCS7_SIGNER_INFO, (st),
1384 #define sk_PKCS7_SIGNER_INFO_find_ex(st, val) SKM_sk_find_ex(PKCS7_SIGNER_INFO,
1385 #define sk_PKCS7_SIGNER_INFO_delete(st, i) SKM_sk_delete(PKCS7_SIGNER_INFO, (st)
1386 #define sk_PKCS7_SIGNER_INFO_delete_ptr(st, ptr) SKM_sk_delete_ptr(PKCS7_SIGNER_
1387 #define sk_PKCS7_SIGNER_INFO_insert(st, val, i) SKM_sk_insert(PKCS7_SIGNER_INFO,
1388 #define sk_PKCS7_SIGNER_INFO_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(PKCS7_SIG
1389 #define sk_PKCS7_SIGNER_INFO_dup(st) SKM_sk_dup(PKCS7_SIGNER_INFO, st)
1390 #define sk_PKCS7_SIGNER_INFO_pop_free(st, free_func) SKM_sk_pop_free(PKCS7_SIGNE
1391 #define sk_PKCS7_SIGNER_INFO_shift(st) SKM_sk_shift(PKCS7_SIGNER_INFO, (st))
1392 #define sk_PKCS7_SIGNER_INFO_pop(st) SKM_sk_pop(PKCS7_SIGNER_INFO, (st))
1393 #define sk_PKCS7_SIGNER_INFO_sort(st) SKM_sk_sort(PKCS7_SIGNER_INFO, (st))
1394 #define sk_PKCS7_SIGNER_INFO_is_sorted(st) SKM_sk_is_sorted(PKCS7_SIGNER_INFO, (

1396 #define sk_POLICYINFO_new(cmp) SKM_sk_new(POLICYINFO, (cmp))
1397 #define sk_POLICYINFO_new_null() SKM_sk_new_null(POLICYINFO)
1398 #define sk_POLICYINFO_free(st) SKM_sk_free(POLICYINFO, (st))
1399 #define sk_POLICYINFO_num(st) SKM_sk_num(POLICYINFO, (st))
1400 #define sk_POLICYINFO_value(st, i) SKM_sk_value(POLICYINFO, (st), (i))
1401 #define sk_POLICYINFO_set(st, i, val) SKM_sk_set(POLICYINFO, (st), (i), (val))
1402 #define sk_POLICYINFO_zero(st) SKM_sk_zero(POLICYINFO, (st))
1403 #define sk_POLICYINFO_push(st, val) SKM_sk_push(POLICYINFO, (st), (val))
1404 #define sk_POLICYINFO_unshift(st, val) SKM_sk_unshift(POLICYINFO, (st), (val))
1405 #define sk_POLICYINFO_find(st, val) SKM_sk_find(POLICYINFO, (st), (val))
1406 #define sk_POLICYINFO_find_ex(st, val) SKM_sk_find_ex(POLICYINFO, (st), (val))
1407 #define sk_POLICYINFO_delete(st, i) SKM_sk_delete(POLICYINFO, (st), (i))
1408 #define sk_POLICYINFO_delete_ptr(st, ptr) SKM_sk_delete_ptr(POLICYINFO, (st), (p
1409 #define sk_POLICYINFO_insert(st, val, i) SKM_sk_insert(POLICYINFO, (st), (val),
1410 #define sk_POLICYINFO_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(POLICYINFO, (st)
1411 #define sk_POLICYINFO_dup(st) SKM_sk_dup(POLICYINFO, st)
1412 #define sk_POLICYINFO_pop_free(st, free_func) SKM_sk_pop_free(POLICYINFO, (st),
1413 #define sk_POLICYINFO_shift(st) SKM_sk_shift(POLICYINFO, (st))
1414 #define sk_POLICYINFO_pop(st) SKM_sk_pop(POLICYINFO, (st))
1415 #define sk_POLICYINFO_sort(st) SKM_sk_sort(POLICYINFO, (st))
1416 #define sk_POLICYINFO_is_sorted(st) SKM_sk_is_sorted(POLICYINFO, (st))

1418 #define sk_POLICYQUALINFO_new(cmp) SKM_sk_new(POLICYQUALINFO, (cmp))
1419 #define sk_POLICYQUALINFO_new_null() SKM_sk_new_null(POLICYQUALINFO)
1420 #define sk_POLICYQUALINFO_free(st) SKM_sk_free(POLICYQUALINFO, (st))
1421 #define sk_POLICYQUALINFO_num(st) SKM_sk_num(POLICYQUALINFO, (st))
1422 #define sk_POLICYQUALINFO_value(st, i) SKM_sk_value(POLICYQUALINFO, (st), (i))
1423 #define sk_POLICYQUALINFO_set(st, i, val) SKM_sk_set(POLICYQUALINFO, (st), (i),
1424 #define sk_POLICYQUALINFO_zero(st) SKM_sk_zero(POLICYQUALINFO, (st))
1425 #define sk_POLICYQUALINFO_push(st, val) SKM_sk_push(POLICYQUALINFO, (st), (val))
1426 #define sk_POLICYQUALINFO_unshift(st, val) SKM_sk_unshift(POLICYQUALINFO, (st),
1427 #define sk_POLICYQUALINFO_find(st, val) SKM_sk_find(POLICYQUALINFO, (st), (val))
1428 #define sk_POLICYQUALINFO_find_ex(st, val) SKM_sk_find_ex(POLICYQUALINFO, (st),
1429 #define sk_POLICYQUALINFO_delete(st, i) SKM_sk_delete(POLICYQUALINFO, (st), (i))
1430 #define sk_POLICYQUALINFO_delete_ptr(st, ptr) SKM_sk_delete_ptr(POLICYQUALINFO,
1431 #define sk_POLICYQUALINFO_insert(st, val, i) SKM_sk_insert(POLICYQUALINFO, (st),
1432 #define sk_POLICYQUALINFO_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(POLICYQUALIN
1433 #define sk_POLICYQUALINFO_dup(st) SKM_sk_dup(POLICYQUALINFO, st)
1434 #define sk_POLICYQUALINFO_pop_free(st, free_func) SKM_sk_pop_free(POLICYQUALINFO
1435 #define sk_POLICYQUALINFO_shift(st) SKM_sk_shift(POLICYQUALINFO, (st))
1436 #define sk_POLICYQUALINFO_pop(st) SKM_sk_pop(POLICYQUALINFO, (st))
1437 #define sk_POLICYQUALINFO_sort(st) SKM_sk_sort(POLICYQUALINFO, (st))
1438 #define sk_POLICYQUALINFO_is_sorted(st) SKM_sk_is_sorted(POLICYQUALINFO, (st))

1440 #define sk_POLICY_MAPPING_new(cmp) SKM_sk_new(POLICY_MAPPING, (cmp))
1441 #define sk_POLICY_MAPPING_new_null() SKM_sk_new_null(POLICY_MAPPING)
1442 #define sk_POLICY_MAPPING_free(st) SKM_sk_free(POLICY_MAPPING, (st))
1443 #define sk_POLICY_MAPPING_num(st) SKM_sk_num(POLICY_MAPPING, (st))
1444 #define sk_POLICY_MAPPING_value(st, i) SKM_sk_value(POLICY_MAPPING, (st), (i))
1445 #define sk_POLICY_MAPPING_set(st, i, val) SKM_sk_set(POLICY_MAPPING, (st), (i),
1446 #define sk_POLICY_MAPPING_zero(st) SKM_sk_zero(POLICY_MAPPING, (st))
1447 #define sk_POLICY_MAPPING_push(st, val) SKM_sk_push(POLICY_MAPPING, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 23

1448 #define sk_POLICY_MAPPING_unshift(st, val) SKM_sk_unshift(POLICY_MAPPING, (st),
1449 #define sk_POLICY_MAPPING_find(st, val) SKM_sk_find(POLICY_MAPPING, (st), (val))
1450 #define sk_POLICY_MAPPING_find_ex(st, val) SKM_sk_find_ex(POLICY_MAPPING, (st),
1451 #define sk_POLICY_MAPPING_delete(st, i) SKM_sk_delete(POLICY_MAPPING, (st), (i))
1452 #define sk_POLICY_MAPPING_delete_ptr(st, ptr) SKM_sk_delete_ptr(POLICY_MAPPING,
1453 #define sk_POLICY_MAPPING_insert(st, val, i) SKM_sk_insert(POLICY_MAPPING, (st),
1454 #define sk_POLICY_MAPPING_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(POLICY_MAPPI
1455 #define sk_POLICY_MAPPING_dup(st) SKM_sk_dup(POLICY_MAPPING, st)
1456 #define sk_POLICY_MAPPING_pop_free(st, free_func) SKM_sk_pop_free(POLICY_MAPPING
1457 #define sk_POLICY_MAPPING_shift(st) SKM_sk_shift(POLICY_MAPPING, (st))
1458 #define sk_POLICY_MAPPING_pop(st) SKM_sk_pop(POLICY_MAPPING, (st))
1459 #define sk_POLICY_MAPPING_sort(st) SKM_sk_sort(POLICY_MAPPING, (st))
1460 #define sk_POLICY_MAPPING_is_sorted(st) SKM_sk_is_sorted(POLICY_MAPPING, (st))

1462 #define sk_SRP_gN_new(cmp) SKM_sk_new(SRP_gN, (cmp))
1463 #define sk_SRP_gN_new_null() SKM_sk_new_null(SRP_gN)
1464 #define sk_SRP_gN_free(st) SKM_sk_free(SRP_gN, (st))
1465 #define sk_SRP_gN_num(st) SKM_sk_num(SRP_gN, (st))
1466 #define sk_SRP_gN_value(st, i) SKM_sk_value(SRP_gN, (st), (i))
1467 #define sk_SRP_gN_set(st, i, val) SKM_sk_set(SRP_gN, (st), (i), (val))
1468 #define sk_SRP_gN_zero(st) SKM_sk_zero(SRP_gN, (st))
1469 #define sk_SRP_gN_push(st, val) SKM_sk_push(SRP_gN, (st), (val))
1470 #define sk_SRP_gN_unshift(st, val) SKM_sk_unshift(SRP_gN, (st), (val))
1471 #define sk_SRP_gN_find(st, val) SKM_sk_find(SRP_gN, (st), (val))
1472 #define sk_SRP_gN_find_ex(st, val) SKM_sk_find_ex(SRP_gN, (st), (val))
1473 #define sk_SRP_gN_delete(st, i) SKM_sk_delete(SRP_gN, (st), (i))
1474 #define sk_SRP_gN_delete_ptr(st, ptr) SKM_sk_delete_ptr(SRP_gN, (st), (ptr))
1475 #define sk_SRP_gN_insert(st, val, i) SKM_sk_insert(SRP_gN, (st), (val), (i))
1476 #define sk_SRP_gN_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(SRP_gN, (st), (cmp))
1477 #define sk_SRP_gN_dup(st) SKM_sk_dup(SRP_gN, st)
1478 #define sk_SRP_gN_pop_free(st, free_func) SKM_sk_pop_free(SRP_gN, (st), (free_fu
1479 #define sk_SRP_gN_shift(st) SKM_sk_shift(SRP_gN, (st))
1480 #define sk_SRP_gN_pop(st) SKM_sk_pop(SRP_gN, (st))
1481 #define sk_SRP_gN_sort(st) SKM_sk_sort(SRP_gN, (st))
1482 #define sk_SRP_gN_is_sorted(st) SKM_sk_is_sorted(SRP_gN, (st))

1484 #define sk_SRP_gN_cache_new(cmp) SKM_sk_new(SRP_gN_cache, (cmp))
1485 #define sk_SRP_gN_cache_new_null() SKM_sk_new_null(SRP_gN_cache)
1486 #define sk_SRP_gN_cache_free(st) SKM_sk_free(SRP_gN_cache, (st))
1487 #define sk_SRP_gN_cache_num(st) SKM_sk_num(SRP_gN_cache, (st))
1488 #define sk_SRP_gN_cache_value(st, i) SKM_sk_value(SRP_gN_cache, (st), (i))
1489 #define sk_SRP_gN_cache_set(st, i, val) SKM_sk_set(SRP_gN_cache, (st), (i), (val
1490 #define sk_SRP_gN_cache_zero(st) SKM_sk_zero(SRP_gN_cache, (st))
1491 #define sk_SRP_gN_cache_push(st, val) SKM_sk_push(SRP_gN_cache, (st), (val))
1492 #define sk_SRP_gN_cache_unshift(st, val) SKM_sk_unshift(SRP_gN_cache, (st), (val
1493 #define sk_SRP_gN_cache_find(st, val) SKM_sk_find(SRP_gN_cache, (st), (val))
1494 #define sk_SRP_gN_cache_find_ex(st, val) SKM_sk_find_ex(SRP_gN_cache, (st), (val
1495 #define sk_SRP_gN_cache_delete(st, i) SKM_sk_delete(SRP_gN_cache, (st), (i))
1496 #define sk_SRP_gN_cache_delete_ptr(st, ptr) SKM_sk_delete_ptr(SRP_gN_cache, (st)
1497 #define sk_SRP_gN_cache_insert(st, val, i) SKM_sk_insert(SRP_gN_cache, (st), (va
1498 #define sk_SRP_gN_cache_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(SRP_gN_cache,
1499 #define sk_SRP_gN_cache_dup(st) SKM_sk_dup(SRP_gN_cache, st)
1500 #define sk_SRP_gN_cache_pop_free(st, free_func) SKM_sk_pop_free(SRP_gN_cache, (s
1501 #define sk_SRP_gN_cache_shift(st) SKM_sk_shift(SRP_gN_cache, (st))
1502 #define sk_SRP_gN_cache_pop(st) SKM_sk_pop(SRP_gN_cache, (st))
1503 #define sk_SRP_gN_cache_sort(st) SKM_sk_sort(SRP_gN_cache, (st))
1504 #define sk_SRP_gN_cache_is_sorted(st) SKM_sk_is_sorted(SRP_gN_cache, (st))

1506 #define sk_SRP_user_pwd_new(cmp) SKM_sk_new(SRP_user_pwd, (cmp))
1507 #define sk_SRP_user_pwd_new_null() SKM_sk_new_null(SRP_user_pwd)
1508 #define sk_SRP_user_pwd_free(st) SKM_sk_free(SRP_user_pwd, (st))
1509 #define sk_SRP_user_pwd_num(st) SKM_sk_num(SRP_user_pwd, (st))
1510 #define sk_SRP_user_pwd_value(st, i) SKM_sk_value(SRP_user_pwd, (st), (i))
1511 #define sk_SRP_user_pwd_set(st, i, val) SKM_sk_set(SRP_user_pwd, (st), (i), (val
1512 #define sk_SRP_user_pwd_zero(st) SKM_sk_zero(SRP_user_pwd, (st))
1513 #define sk_SRP_user_pwd_push(st, val) SKM_sk_push(SRP_user_pwd, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 24

1514 #define sk_SRP_user_pwd_unshift(st, val) SKM_sk_unshift(SRP_user_pwd, (st), (val
1515 #define sk_SRP_user_pwd_find(st, val) SKM_sk_find(SRP_user_pwd, (st), (val))
1516 #define sk_SRP_user_pwd_find_ex(st, val) SKM_sk_find_ex(SRP_user_pwd, (st), (val
1517 #define sk_SRP_user_pwd_delete(st, i) SKM_sk_delete(SRP_user_pwd, (st), (i))
1518 #define sk_SRP_user_pwd_delete_ptr(st, ptr) SKM_sk_delete_ptr(SRP_user_pwd, (st)
1519 #define sk_SRP_user_pwd_insert(st, val, i) SKM_sk_insert(SRP_user_pwd, (st), (va
1520 #define sk_SRP_user_pwd_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(SRP_user_pwd,
1521 #define sk_SRP_user_pwd_dup(st) SKM_sk_dup(SRP_user_pwd, st)
1522 #define sk_SRP_user_pwd_pop_free(st, free_func) SKM_sk_pop_free(SRP_user_pwd, (s
1523 #define sk_SRP_user_pwd_shift(st) SKM_sk_shift(SRP_user_pwd, (st))
1524 #define sk_SRP_user_pwd_pop(st) SKM_sk_pop(SRP_user_pwd, (st))
1525 #define sk_SRP_user_pwd_sort(st) SKM_sk_sort(SRP_user_pwd, (st))
1526 #define sk_SRP_user_pwd_is_sorted(st) SKM_sk_is_sorted(SRP_user_pwd, (st))

1528 #define sk_SRTP_PROTECTION_PROFILE_new(cmp) SKM_sk_new(SRTP_PROTECTION_PROFILE,
1529 #define sk_SRTP_PROTECTION_PROFILE_new_null() SKM_sk_new_null(SRTP_PROTECTION_PR
1530 #define sk_SRTP_PROTECTION_PROFILE_free(st) SKM_sk_free(SRTP_PROTECTION_PROFILE,
1531 #define sk_SRTP_PROTECTION_PROFILE_num(st) SKM_sk_num(SRTP_PROTECTION_PROFILE, (
1532 #define sk_SRTP_PROTECTION_PROFILE_value(st, i) SKM_sk_value(SRTP_PROTECTION_PRO
1533 #define sk_SRTP_PROTECTION_PROFILE_set(st, i, val) SKM_sk_set(SRTP_PROTECTION_PR
1534 #define sk_SRTP_PROTECTION_PROFILE_zero(st) SKM_sk_zero(SRTP_PROTECTION_PROFILE,
1535 #define sk_SRTP_PROTECTION_PROFILE_push(st, val) SKM_sk_push(SRTP_PROTECTION_PRO
1536 #define sk_SRTP_PROTECTION_PROFILE_unshift(st, val) SKM_sk_unshift(SRTP_PROTECTI
1537 #define sk_SRTP_PROTECTION_PROFILE_find(st, val) SKM_sk_find(SRTP_PROTECTION_PRO
1538 #define sk_SRTP_PROTECTION_PROFILE_find_ex(st, val) SKM_sk_find_ex(SRTP_PROTECTI
1539 #define sk_SRTP_PROTECTION_PROFILE_delete(st, i) SKM_sk_delete(SRTP_PROTECTION_P
1540 #define sk_SRTP_PROTECTION_PROFILE_delete_ptr(st, ptr) SKM_sk_delete_ptr(SRTP_PR
1541 #define sk_SRTP_PROTECTION_PROFILE_insert(st, val, i) SKM_sk_insert(SRTP_PROTECT
1542 #define sk_SRTP_PROTECTION_PROFILE_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(SRT
1543 #define sk_SRTP_PROTECTION_PROFILE_dup(st) SKM_sk_dup(SRTP_PROTECTION_PROFILE, s
1544 #define sk_SRTP_PROTECTION_PROFILE_pop_free(st, free_func) SKM_sk_pop_free(SRTP_
1545 #define sk_SRTP_PROTECTION_PROFILE_shift(st) SKM_sk_shift(SRTP_PROTECTION_PROFIL
1546 #define sk_SRTP_PROTECTION_PROFILE_pop(st) SKM_sk_pop(SRTP_PROTECTION_PROFILE, (
1547 #define sk_SRTP_PROTECTION_PROFILE_sort(st) SKM_sk_sort(SRTP_PROTECTION_PROFILE,
1548 #define sk_SRTP_PROTECTION_PROFILE_is_sorted(st) SKM_sk_is_sorted(SRTP_PROTECTIO

1550 #define sk_SSL_CIPHER_new(cmp) SKM_sk_new(SSL_CIPHER, (cmp))
1551 #define sk_SSL_CIPHER_new_null() SKM_sk_new_null(SSL_CIPHER)
1552 #define sk_SSL_CIPHER_free(st) SKM_sk_free(SSL_CIPHER, (st))
1553 #define sk_SSL_CIPHER_num(st) SKM_sk_num(SSL_CIPHER, (st))
1554 #define sk_SSL_CIPHER_value(st, i) SKM_sk_value(SSL_CIPHER, (st), (i))
1555 #define sk_SSL_CIPHER_set(st, i, val) SKM_sk_set(SSL_CIPHER, (st), (i), (val))
1556 #define sk_SSL_CIPHER_zero(st) SKM_sk_zero(SSL_CIPHER, (st))
1557 #define sk_SSL_CIPHER_push(st, val) SKM_sk_push(SSL_CIPHER, (st), (val))
1558 #define sk_SSL_CIPHER_unshift(st, val) SKM_sk_unshift(SSL_CIPHER, (st), (val))
1559 #define sk_SSL_CIPHER_find(st, val) SKM_sk_find(SSL_CIPHER, (st), (val))
1560 #define sk_SSL_CIPHER_find_ex(st, val) SKM_sk_find_ex(SSL_CIPHER, (st), (val))
1561 #define sk_SSL_CIPHER_delete(st, i) SKM_sk_delete(SSL_CIPHER, (st), (i))
1562 #define sk_SSL_CIPHER_delete_ptr(st, ptr) SKM_sk_delete_ptr(SSL_CIPHER, (st), (p
1563 #define sk_SSL_CIPHER_insert(st, val, i) SKM_sk_insert(SSL_CIPHER, (st), (val),
1564 #define sk_SSL_CIPHER_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(SSL_CIPHER, (st)
1565 #define sk_SSL_CIPHER_dup(st) SKM_sk_dup(SSL_CIPHER, st)
1566 #define sk_SSL_CIPHER_pop_free(st, free_func) SKM_sk_pop_free(SSL_CIPHER, (st),
1567 #define sk_SSL_CIPHER_shift(st) SKM_sk_shift(SSL_CIPHER, (st))
1568 #define sk_SSL_CIPHER_pop(st) SKM_sk_pop(SSL_CIPHER, (st))
1569 #define sk_SSL_CIPHER_sort(st) SKM_sk_sort(SSL_CIPHER, (st))
1570 #define sk_SSL_CIPHER_is_sorted(st) SKM_sk_is_sorted(SSL_CIPHER, (st))

1572 #define sk_SSL_COMP_new(cmp) SKM_sk_new(SSL_COMP, (cmp))
1573 #define sk_SSL_COMP_new_null() SKM_sk_new_null(SSL_COMP)
1574 #define sk_SSL_COMP_free(st) SKM_sk_free(SSL_COMP, (st))
1575 #define sk_SSL_COMP_num(st) SKM_sk_num(SSL_COMP, (st))
1576 #define sk_SSL_COMP_value(st, i) SKM_sk_value(SSL_COMP, (st), (i))
1577 #define sk_SSL_COMP_set(st, i, val) SKM_sk_set(SSL_COMP, (st), (i), (val))
1578 #define sk_SSL_COMP_zero(st) SKM_sk_zero(SSL_COMP, (st))
1579 #define sk_SSL_COMP_push(st, val) SKM_sk_push(SSL_COMP, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 25

1580 #define sk_SSL_COMP_unshift(st, val) SKM_sk_unshift(SSL_COMP, (st), (val))
1581 #define sk_SSL_COMP_find(st, val) SKM_sk_find(SSL_COMP, (st), (val))
1582 #define sk_SSL_COMP_find_ex(st, val) SKM_sk_find_ex(SSL_COMP, (st), (val))
1583 #define sk_SSL_COMP_delete(st, i) SKM_sk_delete(SSL_COMP, (st), (i))
1584 #define sk_SSL_COMP_delete_ptr(st, ptr) SKM_sk_delete_ptr(SSL_COMP, (st), (ptr))
1585 #define sk_SSL_COMP_insert(st, val, i) SKM_sk_insert(SSL_COMP, (st), (val), (i))
1586 #define sk_SSL_COMP_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(SSL_COMP, (st), (c
1587 #define sk_SSL_COMP_dup(st) SKM_sk_dup(SSL_COMP, st)
1588 #define sk_SSL_COMP_pop_free(st, free_func) SKM_sk_pop_free(SSL_COMP, (st), (fre
1589 #define sk_SSL_COMP_shift(st) SKM_sk_shift(SSL_COMP, (st))
1590 #define sk_SSL_COMP_pop(st) SKM_sk_pop(SSL_COMP, (st))
1591 #define sk_SSL_COMP_sort(st) SKM_sk_sort(SSL_COMP, (st))
1592 #define sk_SSL_COMP_is_sorted(st) SKM_sk_is_sorted(SSL_COMP, (st))

1594 #define sk_STACK_OF_X509_NAME_ENTRY_new(cmp) SKM_sk_new(STACK_OF_X509_NAME_ENTRY
1595 #define sk_STACK_OF_X509_NAME_ENTRY_new_null() SKM_sk_new_null(STACK_OF_X509_NAM
1596 #define sk_STACK_OF_X509_NAME_ENTRY_free(st) SKM_sk_free(STACK_OF_X509_NAME_ENTR
1597 #define sk_STACK_OF_X509_NAME_ENTRY_num(st) SKM_sk_num(STACK_OF_X509_NAME_ENTRY,
1598 #define sk_STACK_OF_X509_NAME_ENTRY_value(st, i) SKM_sk_value(STACK_OF_X509_NAME
1599 #define sk_STACK_OF_X509_NAME_ENTRY_set(st, i, val) SKM_sk_set(STACK_OF_X509_NAM
1600 #define sk_STACK_OF_X509_NAME_ENTRY_zero(st) SKM_sk_zero(STACK_OF_X509_NAME_ENTR
1601 #define sk_STACK_OF_X509_NAME_ENTRY_push(st, val) SKM_sk_push(STACK_OF_X509_NAME
1602 #define sk_STACK_OF_X509_NAME_ENTRY_unshift(st, val) SKM_sk_unshift(STACK_OF_X50
1603 #define sk_STACK_OF_X509_NAME_ENTRY_find(st, val) SKM_sk_find(STACK_OF_X509_NAME
1604 #define sk_STACK_OF_X509_NAME_ENTRY_find_ex(st, val) SKM_sk_find_ex(STACK_OF_X50
1605 #define sk_STACK_OF_X509_NAME_ENTRY_delete(st, i) SKM_sk_delete(STACK_OF_X509_NA
1606 #define sk_STACK_OF_X509_NAME_ENTRY_delete_ptr(st, ptr) SKM_sk_delete_ptr(STACK_
1607 #define sk_STACK_OF_X509_NAME_ENTRY_insert(st, val, i) SKM_sk_insert(STACK_OF_X5
1608 #define sk_STACK_OF_X509_NAME_ENTRY_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(ST
1609 #define sk_STACK_OF_X509_NAME_ENTRY_dup(st) SKM_sk_dup(STACK_OF_X509_NAME_ENTRY,
1610 #define sk_STACK_OF_X509_NAME_ENTRY_pop_free(st, free_func) SKM_sk_pop_free(STAC
1611 #define sk_STACK_OF_X509_NAME_ENTRY_shift(st) SKM_sk_shift(STACK_OF_X509_NAME_EN
1612 #define sk_STACK_OF_X509_NAME_ENTRY_pop(st) SKM_sk_pop(STACK_OF_X509_NAME_ENTRY,
1613 #define sk_STACK_OF_X509_NAME_ENTRY_sort(st) SKM_sk_sort(STACK_OF_X509_NAME_ENTR
1614 #define sk_STACK_OF_X509_NAME_ENTRY_is_sorted(st) SKM_sk_is_sorted(STACK_OF_X509

1616 #define sk_STORE_ATTR_INFO_new(cmp) SKM_sk_new(STORE_ATTR_INFO, (cmp))
1617 #define sk_STORE_ATTR_INFO_new_null() SKM_sk_new_null(STORE_ATTR_INFO)
1618 #define sk_STORE_ATTR_INFO_free(st) SKM_sk_free(STORE_ATTR_INFO, (st))
1619 #define sk_STORE_ATTR_INFO_num(st) SKM_sk_num(STORE_ATTR_INFO, (st))
1620 #define sk_STORE_ATTR_INFO_value(st, i) SKM_sk_value(STORE_ATTR_INFO, (st), (i))
1621 #define sk_STORE_ATTR_INFO_set(st, i, val) SKM_sk_set(STORE_ATTR_INFO, (st), (i)
1622 #define sk_STORE_ATTR_INFO_zero(st) SKM_sk_zero(STORE_ATTR_INFO, (st))
1623 #define sk_STORE_ATTR_INFO_push(st, val) SKM_sk_push(STORE_ATTR_INFO, (st), (val
1624 #define sk_STORE_ATTR_INFO_unshift(st, val) SKM_sk_unshift(STORE_ATTR_INFO, (st)
1625 #define sk_STORE_ATTR_INFO_find(st, val) SKM_sk_find(STORE_ATTR_INFO, (st), (val
1626 #define sk_STORE_ATTR_INFO_find_ex(st, val) SKM_sk_find_ex(STORE_ATTR_INFO, (st)
1627 #define sk_STORE_ATTR_INFO_delete(st, i) SKM_sk_delete(STORE_ATTR_INFO, (st), (i
1628 #define sk_STORE_ATTR_INFO_delete_ptr(st, ptr) SKM_sk_delete_ptr(STORE_ATTR_INFO
1629 #define sk_STORE_ATTR_INFO_insert(st, val, i) SKM_sk_insert(STORE_ATTR_INFO, (st
1630 #define sk_STORE_ATTR_INFO_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(STORE_ATTR_
1631 #define sk_STORE_ATTR_INFO_dup(st) SKM_sk_dup(STORE_ATTR_INFO, st)
1632 #define sk_STORE_ATTR_INFO_pop_free(st, free_func) SKM_sk_pop_free(STORE_ATTR_IN
1633 #define sk_STORE_ATTR_INFO_shift(st) SKM_sk_shift(STORE_ATTR_INFO, (st))
1634 #define sk_STORE_ATTR_INFO_pop(st) SKM_sk_pop(STORE_ATTR_INFO, (st))
1635 #define sk_STORE_ATTR_INFO_sort(st) SKM_sk_sort(STORE_ATTR_INFO, (st))
1636 #define sk_STORE_ATTR_INFO_is_sorted(st) SKM_sk_is_sorted(STORE_ATTR_INFO, (st))

1638 #define sk_STORE_OBJECT_new(cmp) SKM_sk_new(STORE_OBJECT, (cmp))
1639 #define sk_STORE_OBJECT_new_null() SKM_sk_new_null(STORE_OBJECT)
1640 #define sk_STORE_OBJECT_free(st) SKM_sk_free(STORE_OBJECT, (st))
1641 #define sk_STORE_OBJECT_num(st) SKM_sk_num(STORE_OBJECT, (st))
1642 #define sk_STORE_OBJECT_value(st, i) SKM_sk_value(STORE_OBJECT, (st), (i))
1643 #define sk_STORE_OBJECT_set(st, i, val) SKM_sk_set(STORE_OBJECT, (st), (i), (val
1644 #define sk_STORE_OBJECT_zero(st) SKM_sk_zero(STORE_OBJECT, (st))
1645 #define sk_STORE_OBJECT_push(st, val) SKM_sk_push(STORE_OBJECT, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 26

1646 #define sk_STORE_OBJECT_unshift(st, val) SKM_sk_unshift(STORE_OBJECT, (st), (val
1647 #define sk_STORE_OBJECT_find(st, val) SKM_sk_find(STORE_OBJECT, (st), (val))
1648 #define sk_STORE_OBJECT_find_ex(st, val) SKM_sk_find_ex(STORE_OBJECT, (st), (val
1649 #define sk_STORE_OBJECT_delete(st, i) SKM_sk_delete(STORE_OBJECT, (st), (i))
1650 #define sk_STORE_OBJECT_delete_ptr(st, ptr) SKM_sk_delete_ptr(STORE_OBJECT, (st)
1651 #define sk_STORE_OBJECT_insert(st, val, i) SKM_sk_insert(STORE_OBJECT, (st), (va
1652 #define sk_STORE_OBJECT_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(STORE_OBJECT,
1653 #define sk_STORE_OBJECT_dup(st) SKM_sk_dup(STORE_OBJECT, st)
1654 #define sk_STORE_OBJECT_pop_free(st, free_func) SKM_sk_pop_free(STORE_OBJECT, (s
1655 #define sk_STORE_OBJECT_shift(st) SKM_sk_shift(STORE_OBJECT, (st))
1656 #define sk_STORE_OBJECT_pop(st) SKM_sk_pop(STORE_OBJECT, (st))
1657 #define sk_STORE_OBJECT_sort(st) SKM_sk_sort(STORE_OBJECT, (st))
1658 #define sk_STORE_OBJECT_is_sorted(st) SKM_sk_is_sorted(STORE_OBJECT, (st))

1660 #define sk_SXNETID_new(cmp) SKM_sk_new(SXNETID, (cmp))
1661 #define sk_SXNETID_new_null() SKM_sk_new_null(SXNETID)
1662 #define sk_SXNETID_free(st) SKM_sk_free(SXNETID, (st))
1663 #define sk_SXNETID_num(st) SKM_sk_num(SXNETID, (st))
1664 #define sk_SXNETID_value(st, i) SKM_sk_value(SXNETID, (st), (i))
1665 #define sk_SXNETID_set(st, i, val) SKM_sk_set(SXNETID, (st), (i), (val))
1666 #define sk_SXNETID_zero(st) SKM_sk_zero(SXNETID, (st))
1667 #define sk_SXNETID_push(st, val) SKM_sk_push(SXNETID, (st), (val))
1668 #define sk_SXNETID_unshift(st, val) SKM_sk_unshift(SXNETID, (st), (val))
1669 #define sk_SXNETID_find(st, val) SKM_sk_find(SXNETID, (st), (val))
1670 #define sk_SXNETID_find_ex(st, val) SKM_sk_find_ex(SXNETID, (st), (val))
1671 #define sk_SXNETID_delete(st, i) SKM_sk_delete(SXNETID, (st), (i))
1672 #define sk_SXNETID_delete_ptr(st, ptr) SKM_sk_delete_ptr(SXNETID, (st), (ptr))
1673 #define sk_SXNETID_insert(st, val, i) SKM_sk_insert(SXNETID, (st), (val), (i))
1674 #define sk_SXNETID_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(SXNETID, (st), (cmp
1675 #define sk_SXNETID_dup(st) SKM_sk_dup(SXNETID, st)
1676 #define sk_SXNETID_pop_free(st, free_func) SKM_sk_pop_free(SXNETID, (st), (free_
1677 #define sk_SXNETID_shift(st) SKM_sk_shift(SXNETID, (st))
1678 #define sk_SXNETID_pop(st) SKM_sk_pop(SXNETID, (st))
1679 #define sk_SXNETID_sort(st) SKM_sk_sort(SXNETID, (st))
1680 #define sk_SXNETID_is_sorted(st) SKM_sk_is_sorted(SXNETID, (st))

1682 #define sk_UI_STRING_new(cmp) SKM_sk_new(UI_STRING, (cmp))
1683 #define sk_UI_STRING_new_null() SKM_sk_new_null(UI_STRING)
1684 #define sk_UI_STRING_free(st) SKM_sk_free(UI_STRING, (st))
1685 #define sk_UI_STRING_num(st) SKM_sk_num(UI_STRING, (st))
1686 #define sk_UI_STRING_value(st, i) SKM_sk_value(UI_STRING, (st), (i))
1687 #define sk_UI_STRING_set(st, i, val) SKM_sk_set(UI_STRING, (st), (i), (val))
1688 #define sk_UI_STRING_zero(st) SKM_sk_zero(UI_STRING, (st))
1689 #define sk_UI_STRING_push(st, val) SKM_sk_push(UI_STRING, (st), (val))
1690 #define sk_UI_STRING_unshift(st, val) SKM_sk_unshift(UI_STRING, (st), (val))
1691 #define sk_UI_STRING_find(st, val) SKM_sk_find(UI_STRING, (st), (val))
1692 #define sk_UI_STRING_find_ex(st, val) SKM_sk_find_ex(UI_STRING, (st), (val))
1693 #define sk_UI_STRING_delete(st, i) SKM_sk_delete(UI_STRING, (st), (i))
1694 #define sk_UI_STRING_delete_ptr(st, ptr) SKM_sk_delete_ptr(UI_STRING, (st), (ptr
1695 #define sk_UI_STRING_insert(st, val, i) SKM_sk_insert(UI_STRING, (st), (val), (i
1696 #define sk_UI_STRING_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(UI_STRING, (st),
1697 #define sk_UI_STRING_dup(st) SKM_sk_dup(UI_STRING, st)
1698 #define sk_UI_STRING_pop_free(st, free_func) SKM_sk_pop_free(UI_STRING, (st), (f
1699 #define sk_UI_STRING_shift(st) SKM_sk_shift(UI_STRING, (st))
1700 #define sk_UI_STRING_pop(st) SKM_sk_pop(UI_STRING, (st))
1701 #define sk_UI_STRING_sort(st) SKM_sk_sort(UI_STRING, (st))
1702 #define sk_UI_STRING_is_sorted(st) SKM_sk_is_sorted(UI_STRING, (st))

1704 #define sk_X509_new(cmp) SKM_sk_new(X509, (cmp))
1705 #define sk_X509_new_null() SKM_sk_new_null(X509)
1706 #define sk_X509_free(st) SKM_sk_free(X509, (st))
1707 #define sk_X509_num(st) SKM_sk_num(X509, (st))
1708 #define sk_X509_value(st, i) SKM_sk_value(X509, (st), (i))
1709 #define sk_X509_set(st, i, val) SKM_sk_set(X509, (st), (i), (val))
1710 #define sk_X509_zero(st) SKM_sk_zero(X509, (st))
1711 #define sk_X509_push(st, val) SKM_sk_push(X509, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 27

1712 #define sk_X509_unshift(st, val) SKM_sk_unshift(X509, (st), (val))
1713 #define sk_X509_find(st, val) SKM_sk_find(X509, (st), (val))
1714 #define sk_X509_find_ex(st, val) SKM_sk_find_ex(X509, (st), (val))
1715 #define sk_X509_delete(st, i) SKM_sk_delete(X509, (st), (i))
1716 #define sk_X509_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509, (st), (ptr))
1717 #define sk_X509_insert(st, val, i) SKM_sk_insert(X509, (st), (val), (i))
1718 #define sk_X509_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509, (st), (cmp))
1719 #define sk_X509_dup(st) SKM_sk_dup(X509, st)
1720 #define sk_X509_pop_free(st, free_func) SKM_sk_pop_free(X509, (st), (free_func))
1721 #define sk_X509_shift(st) SKM_sk_shift(X509, (st))
1722 #define sk_X509_pop(st) SKM_sk_pop(X509, (st))
1723 #define sk_X509_sort(st) SKM_sk_sort(X509, (st))
1724 #define sk_X509_is_sorted(st) SKM_sk_is_sorted(X509, (st))

1726 #define sk_X509V3_EXT_METHOD_new(cmp) SKM_sk_new(X509V3_EXT_METHOD, (cmp))
1727 #define sk_X509V3_EXT_METHOD_new_null() SKM_sk_new_null(X509V3_EXT_METHOD)
1728 #define sk_X509V3_EXT_METHOD_free(st) SKM_sk_free(X509V3_EXT_METHOD, (st))
1729 #define sk_X509V3_EXT_METHOD_num(st) SKM_sk_num(X509V3_EXT_METHOD, (st))
1730 #define sk_X509V3_EXT_METHOD_value(st, i) SKM_sk_value(X509V3_EXT_METHOD, (st),
1731 #define sk_X509V3_EXT_METHOD_set(st, i, val) SKM_sk_set(X509V3_EXT_METHOD, (st),
1732 #define sk_X509V3_EXT_METHOD_zero(st) SKM_sk_zero(X509V3_EXT_METHOD, (st))
1733 #define sk_X509V3_EXT_METHOD_push(st, val) SKM_sk_push(X509V3_EXT_METHOD, (st),
1734 #define sk_X509V3_EXT_METHOD_unshift(st, val) SKM_sk_unshift(X509V3_EXT_METHOD,
1735 #define sk_X509V3_EXT_METHOD_find(st, val) SKM_sk_find(X509V3_EXT_METHOD, (st),
1736 #define sk_X509V3_EXT_METHOD_find_ex(st, val) SKM_sk_find_ex(X509V3_EXT_METHOD,
1737 #define sk_X509V3_EXT_METHOD_delete(st, i) SKM_sk_delete(X509V3_EXT_METHOD, (st)
1738 #define sk_X509V3_EXT_METHOD_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509V3_EXT_ME
1739 #define sk_X509V3_EXT_METHOD_insert(st, val, i) SKM_sk_insert(X509V3_EXT_METHOD,
1740 #define sk_X509V3_EXT_METHOD_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509V3_EX
1741 #define sk_X509V3_EXT_METHOD_dup(st) SKM_sk_dup(X509V3_EXT_METHOD, st)
1742 #define sk_X509V3_EXT_METHOD_pop_free(st, free_func) SKM_sk_pop_free(X509V3_EXT_
1743 #define sk_X509V3_EXT_METHOD_shift(st) SKM_sk_shift(X509V3_EXT_METHOD, (st))
1744 #define sk_X509V3_EXT_METHOD_pop(st) SKM_sk_pop(X509V3_EXT_METHOD, (st))
1745 #define sk_X509V3_EXT_METHOD_sort(st) SKM_sk_sort(X509V3_EXT_METHOD, (st))
1746 #define sk_X509V3_EXT_METHOD_is_sorted(st) SKM_sk_is_sorted(X509V3_EXT_METHOD, (

1748 #define sk_X509_ALGOR_new(cmp) SKM_sk_new(X509_ALGOR, (cmp))
1749 #define sk_X509_ALGOR_new_null() SKM_sk_new_null(X509_ALGOR)
1750 #define sk_X509_ALGOR_free(st) SKM_sk_free(X509_ALGOR, (st))
1751 #define sk_X509_ALGOR_num(st) SKM_sk_num(X509_ALGOR, (st))
1752 #define sk_X509_ALGOR_value(st, i) SKM_sk_value(X509_ALGOR, (st), (i))
1753 #define sk_X509_ALGOR_set(st, i, val) SKM_sk_set(X509_ALGOR, (st), (i), (val))
1754 #define sk_X509_ALGOR_zero(st) SKM_sk_zero(X509_ALGOR, (st))
1755 #define sk_X509_ALGOR_push(st, val) SKM_sk_push(X509_ALGOR, (st), (val))
1756 #define sk_X509_ALGOR_unshift(st, val) SKM_sk_unshift(X509_ALGOR, (st), (val))
1757 #define sk_X509_ALGOR_find(st, val) SKM_sk_find(X509_ALGOR, (st), (val))
1758 #define sk_X509_ALGOR_find_ex(st, val) SKM_sk_find_ex(X509_ALGOR, (st), (val))
1759 #define sk_X509_ALGOR_delete(st, i) SKM_sk_delete(X509_ALGOR, (st), (i))
1760 #define sk_X509_ALGOR_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509_ALGOR, (st), (p
1761 #define sk_X509_ALGOR_insert(st, val, i) SKM_sk_insert(X509_ALGOR, (st), (val),
1762 #define sk_X509_ALGOR_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509_ALGOR, (st)
1763 #define sk_X509_ALGOR_dup(st) SKM_sk_dup(X509_ALGOR, st)
1764 #define sk_X509_ALGOR_pop_free(st, free_func) SKM_sk_pop_free(X509_ALGOR, (st),
1765 #define sk_X509_ALGOR_shift(st) SKM_sk_shift(X509_ALGOR, (st))
1766 #define sk_X509_ALGOR_pop(st) SKM_sk_pop(X509_ALGOR, (st))
1767 #define sk_X509_ALGOR_sort(st) SKM_sk_sort(X509_ALGOR, (st))
1768 #define sk_X509_ALGOR_is_sorted(st) SKM_sk_is_sorted(X509_ALGOR, (st))

1770 #define sk_X509_ATTRIBUTE_new(cmp) SKM_sk_new(X509_ATTRIBUTE, (cmp))
1771 #define sk_X509_ATTRIBUTE_new_null() SKM_sk_new_null(X509_ATTRIBUTE)
1772 #define sk_X509_ATTRIBUTE_free(st) SKM_sk_free(X509_ATTRIBUTE, (st))
1773 #define sk_X509_ATTRIBUTE_num(st) SKM_sk_num(X509_ATTRIBUTE, (st))
1774 #define sk_X509_ATTRIBUTE_value(st, i) SKM_sk_value(X509_ATTRIBUTE, (st), (i))
1775 #define sk_X509_ATTRIBUTE_set(st, i, val) SKM_sk_set(X509_ATTRIBUTE, (st), (i),
1776 #define sk_X509_ATTRIBUTE_zero(st) SKM_sk_zero(X509_ATTRIBUTE, (st))
1777 #define sk_X509_ATTRIBUTE_push(st, val) SKM_sk_push(X509_ATTRIBUTE, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 28

1778 #define sk_X509_ATTRIBUTE_unshift(st, val) SKM_sk_unshift(X509_ATTRIBUTE, (st),
1779 #define sk_X509_ATTRIBUTE_find(st, val) SKM_sk_find(X509_ATTRIBUTE, (st), (val))
1780 #define sk_X509_ATTRIBUTE_find_ex(st, val) SKM_sk_find_ex(X509_ATTRIBUTE, (st),
1781 #define sk_X509_ATTRIBUTE_delete(st, i) SKM_sk_delete(X509_ATTRIBUTE, (st), (i))
1782 #define sk_X509_ATTRIBUTE_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509_ATTRIBUTE,
1783 #define sk_X509_ATTRIBUTE_insert(st, val, i) SKM_sk_insert(X509_ATTRIBUTE, (st),
1784 #define sk_X509_ATTRIBUTE_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509_ATTRIBU
1785 #define sk_X509_ATTRIBUTE_dup(st) SKM_sk_dup(X509_ATTRIBUTE, st)
1786 #define sk_X509_ATTRIBUTE_pop_free(st, free_func) SKM_sk_pop_free(X509_ATTRIBUTE
1787 #define sk_X509_ATTRIBUTE_shift(st) SKM_sk_shift(X509_ATTRIBUTE, (st))
1788 #define sk_X509_ATTRIBUTE_pop(st) SKM_sk_pop(X509_ATTRIBUTE, (st))
1789 #define sk_X509_ATTRIBUTE_sort(st) SKM_sk_sort(X509_ATTRIBUTE, (st))
1790 #define sk_X509_ATTRIBUTE_is_sorted(st) SKM_sk_is_sorted(X509_ATTRIBUTE, (st))

1792 #define sk_X509_CRL_new(cmp) SKM_sk_new(X509_CRL, (cmp))
1793 #define sk_X509_CRL_new_null() SKM_sk_new_null(X509_CRL)
1794 #define sk_X509_CRL_free(st) SKM_sk_free(X509_CRL, (st))
1795 #define sk_X509_CRL_num(st) SKM_sk_num(X509_CRL, (st))
1796 #define sk_X509_CRL_value(st, i) SKM_sk_value(X509_CRL, (st), (i))
1797 #define sk_X509_CRL_set(st, i, val) SKM_sk_set(X509_CRL, (st), (i), (val))
1798 #define sk_X509_CRL_zero(st) SKM_sk_zero(X509_CRL, (st))
1799 #define sk_X509_CRL_push(st, val) SKM_sk_push(X509_CRL, (st), (val))
1800 #define sk_X509_CRL_unshift(st, val) SKM_sk_unshift(X509_CRL, (st), (val))
1801 #define sk_X509_CRL_find(st, val) SKM_sk_find(X509_CRL, (st), (val))
1802 #define sk_X509_CRL_find_ex(st, val) SKM_sk_find_ex(X509_CRL, (st), (val))
1803 #define sk_X509_CRL_delete(st, i) SKM_sk_delete(X509_CRL, (st), (i))
1804 #define sk_X509_CRL_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509_CRL, (st), (ptr))
1805 #define sk_X509_CRL_insert(st, val, i) SKM_sk_insert(X509_CRL, (st), (val), (i))
1806 #define sk_X509_CRL_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509_CRL, (st), (c
1807 #define sk_X509_CRL_dup(st) SKM_sk_dup(X509_CRL, st)
1808 #define sk_X509_CRL_pop_free(st, free_func) SKM_sk_pop_free(X509_CRL, (st), (fre
1809 #define sk_X509_CRL_shift(st) SKM_sk_shift(X509_CRL, (st))
1810 #define sk_X509_CRL_pop(st) SKM_sk_pop(X509_CRL, (st))
1811 #define sk_X509_CRL_sort(st) SKM_sk_sort(X509_CRL, (st))
1812 #define sk_X509_CRL_is_sorted(st) SKM_sk_is_sorted(X509_CRL, (st))

1814 #define sk_X509_EXTENSION_new(cmp) SKM_sk_new(X509_EXTENSION, (cmp))
1815 #define sk_X509_EXTENSION_new_null() SKM_sk_new_null(X509_EXTENSION)
1816 #define sk_X509_EXTENSION_free(st) SKM_sk_free(X509_EXTENSION, (st))
1817 #define sk_X509_EXTENSION_num(st) SKM_sk_num(X509_EXTENSION, (st))
1818 #define sk_X509_EXTENSION_value(st, i) SKM_sk_value(X509_EXTENSION, (st), (i))
1819 #define sk_X509_EXTENSION_set(st, i, val) SKM_sk_set(X509_EXTENSION, (st), (i),
1820 #define sk_X509_EXTENSION_zero(st) SKM_sk_zero(X509_EXTENSION, (st))
1821 #define sk_X509_EXTENSION_push(st, val) SKM_sk_push(X509_EXTENSION, (st), (val))
1822 #define sk_X509_EXTENSION_unshift(st, val) SKM_sk_unshift(X509_EXTENSION, (st),
1823 #define sk_X509_EXTENSION_find(st, val) SKM_sk_find(X509_EXTENSION, (st), (val))
1824 #define sk_X509_EXTENSION_find_ex(st, val) SKM_sk_find_ex(X509_EXTENSION, (st),
1825 #define sk_X509_EXTENSION_delete(st, i) SKM_sk_delete(X509_EXTENSION, (st), (i))
1826 #define sk_X509_EXTENSION_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509_EXTENSION,
1827 #define sk_X509_EXTENSION_insert(st, val, i) SKM_sk_insert(X509_EXTENSION, (st),
1828 #define sk_X509_EXTENSION_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509_EXTENSI
1829 #define sk_X509_EXTENSION_dup(st) SKM_sk_dup(X509_EXTENSION, st)
1830 #define sk_X509_EXTENSION_pop_free(st, free_func) SKM_sk_pop_free(X509_EXTENSION
1831 #define sk_X509_EXTENSION_shift(st) SKM_sk_shift(X509_EXTENSION, (st))
1832 #define sk_X509_EXTENSION_pop(st) SKM_sk_pop(X509_EXTENSION, (st))
1833 #define sk_X509_EXTENSION_sort(st) SKM_sk_sort(X509_EXTENSION, (st))
1834 #define sk_X509_EXTENSION_is_sorted(st) SKM_sk_is_sorted(X509_EXTENSION, (st))

1836 #define sk_X509_INFO_new(cmp) SKM_sk_new(X509_INFO, (cmp))
1837 #define sk_X509_INFO_new_null() SKM_sk_new_null(X509_INFO)
1838 #define sk_X509_INFO_free(st) SKM_sk_free(X509_INFO, (st))
1839 #define sk_X509_INFO_num(st) SKM_sk_num(X509_INFO, (st))
1840 #define sk_X509_INFO_value(st, i) SKM_sk_value(X509_INFO, (st), (i))
1841 #define sk_X509_INFO_set(st, i, val) SKM_sk_set(X509_INFO, (st), (i), (val))
1842 #define sk_X509_INFO_zero(st) SKM_sk_zero(X509_INFO, (st))
1843 #define sk_X509_INFO_push(st, val) SKM_sk_push(X509_INFO, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 29

1844 #define sk_X509_INFO_unshift(st, val) SKM_sk_unshift(X509_INFO, (st), (val))
1845 #define sk_X509_INFO_find(st, val) SKM_sk_find(X509_INFO, (st), (val))
1846 #define sk_X509_INFO_find_ex(st, val) SKM_sk_find_ex(X509_INFO, (st), (val))
1847 #define sk_X509_INFO_delete(st, i) SKM_sk_delete(X509_INFO, (st), (i))
1848 #define sk_X509_INFO_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509_INFO, (st), (ptr
1849 #define sk_X509_INFO_insert(st, val, i) SKM_sk_insert(X509_INFO, (st), (val), (i
1850 #define sk_X509_INFO_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509_INFO, (st),
1851 #define sk_X509_INFO_dup(st) SKM_sk_dup(X509_INFO, st)
1852 #define sk_X509_INFO_pop_free(st, free_func) SKM_sk_pop_free(X509_INFO, (st), (f
1853 #define sk_X509_INFO_shift(st) SKM_sk_shift(X509_INFO, (st))
1854 #define sk_X509_INFO_pop(st) SKM_sk_pop(X509_INFO, (st))
1855 #define sk_X509_INFO_sort(st) SKM_sk_sort(X509_INFO, (st))
1856 #define sk_X509_INFO_is_sorted(st) SKM_sk_is_sorted(X509_INFO, (st))

1858 #define sk_X509_LOOKUP_new(cmp) SKM_sk_new(X509_LOOKUP, (cmp))
1859 #define sk_X509_LOOKUP_new_null() SKM_sk_new_null(X509_LOOKUP)
1860 #define sk_X509_LOOKUP_free(st) SKM_sk_free(X509_LOOKUP, (st))
1861 #define sk_X509_LOOKUP_num(st) SKM_sk_num(X509_LOOKUP, (st))
1862 #define sk_X509_LOOKUP_value(st, i) SKM_sk_value(X509_LOOKUP, (st), (i))
1863 #define sk_X509_LOOKUP_set(st, i, val) SKM_sk_set(X509_LOOKUP, (st), (i), (val))
1864 #define sk_X509_LOOKUP_zero(st) SKM_sk_zero(X509_LOOKUP, (st))
1865 #define sk_X509_LOOKUP_push(st, val) SKM_sk_push(X509_LOOKUP, (st), (val))
1866 #define sk_X509_LOOKUP_unshift(st, val) SKM_sk_unshift(X509_LOOKUP, (st), (val))
1867 #define sk_X509_LOOKUP_find(st, val) SKM_sk_find(X509_LOOKUP, (st), (val))
1868 #define sk_X509_LOOKUP_find_ex(st, val) SKM_sk_find_ex(X509_LOOKUP, (st), (val))
1869 #define sk_X509_LOOKUP_delete(st, i) SKM_sk_delete(X509_LOOKUP, (st), (i))
1870 #define sk_X509_LOOKUP_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509_LOOKUP, (st),
1871 #define sk_X509_LOOKUP_insert(st, val, i) SKM_sk_insert(X509_LOOKUP, (st), (val)
1872 #define sk_X509_LOOKUP_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509_LOOKUP, (s
1873 #define sk_X509_LOOKUP_dup(st) SKM_sk_dup(X509_LOOKUP, st)
1874 #define sk_X509_LOOKUP_pop_free(st, free_func) SKM_sk_pop_free(X509_LOOKUP, (st)
1875 #define sk_X509_LOOKUP_shift(st) SKM_sk_shift(X509_LOOKUP, (st))
1876 #define sk_X509_LOOKUP_pop(st) SKM_sk_pop(X509_LOOKUP, (st))
1877 #define sk_X509_LOOKUP_sort(st) SKM_sk_sort(X509_LOOKUP, (st))
1878 #define sk_X509_LOOKUP_is_sorted(st) SKM_sk_is_sorted(X509_LOOKUP, (st))

1880 #define sk_X509_NAME_new(cmp) SKM_sk_new(X509_NAME, (cmp))
1881 #define sk_X509_NAME_new_null() SKM_sk_new_null(X509_NAME)
1882 #define sk_X509_NAME_free(st) SKM_sk_free(X509_NAME, (st))
1883 #define sk_X509_NAME_num(st) SKM_sk_num(X509_NAME, (st))
1884 #define sk_X509_NAME_value(st, i) SKM_sk_value(X509_NAME, (st), (i))
1885 #define sk_X509_NAME_set(st, i, val) SKM_sk_set(X509_NAME, (st), (i), (val))
1886 #define sk_X509_NAME_zero(st) SKM_sk_zero(X509_NAME, (st))
1887 #define sk_X509_NAME_push(st, val) SKM_sk_push(X509_NAME, (st), (val))
1888 #define sk_X509_NAME_unshift(st, val) SKM_sk_unshift(X509_NAME, (st), (val))
1889 #define sk_X509_NAME_find(st, val) SKM_sk_find(X509_NAME, (st), (val))
1890 #define sk_X509_NAME_find_ex(st, val) SKM_sk_find_ex(X509_NAME, (st), (val))
1891 #define sk_X509_NAME_delete(st, i) SKM_sk_delete(X509_NAME, (st), (i))
1892 #define sk_X509_NAME_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509_NAME, (st), (ptr
1893 #define sk_X509_NAME_insert(st, val, i) SKM_sk_insert(X509_NAME, (st), (val), (i
1894 #define sk_X509_NAME_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509_NAME, (st),
1895 #define sk_X509_NAME_dup(st) SKM_sk_dup(X509_NAME, st)
1896 #define sk_X509_NAME_pop_free(st, free_func) SKM_sk_pop_free(X509_NAME, (st), (f
1897 #define sk_X509_NAME_shift(st) SKM_sk_shift(X509_NAME, (st))
1898 #define sk_X509_NAME_pop(st) SKM_sk_pop(X509_NAME, (st))
1899 #define sk_X509_NAME_sort(st) SKM_sk_sort(X509_NAME, (st))
1900 #define sk_X509_NAME_is_sorted(st) SKM_sk_is_sorted(X509_NAME, (st))

1902 #define sk_X509_NAME_ENTRY_new(cmp) SKM_sk_new(X509_NAME_ENTRY, (cmp))
1903 #define sk_X509_NAME_ENTRY_new_null() SKM_sk_new_null(X509_NAME_ENTRY)
1904 #define sk_X509_NAME_ENTRY_free(st) SKM_sk_free(X509_NAME_ENTRY, (st))
1905 #define sk_X509_NAME_ENTRY_num(st) SKM_sk_num(X509_NAME_ENTRY, (st))
1906 #define sk_X509_NAME_ENTRY_value(st, i) SKM_sk_value(X509_NAME_ENTRY, (st), (i))
1907 #define sk_X509_NAME_ENTRY_set(st, i, val) SKM_sk_set(X509_NAME_ENTRY, (st), (i)
1908 #define sk_X509_NAME_ENTRY_zero(st) SKM_sk_zero(X509_NAME_ENTRY, (st))
1909 #define sk_X509_NAME_ENTRY_push(st, val) SKM_sk_push(X509_NAME_ENTRY, (st), (val

new/usr/src/lib/openssl/include/openssl/safestack.h 30

1910 #define sk_X509_NAME_ENTRY_unshift(st, val) SKM_sk_unshift(X509_NAME_ENTRY, (st)
1911 #define sk_X509_NAME_ENTRY_find(st, val) SKM_sk_find(X509_NAME_ENTRY, (st), (val
1912 #define sk_X509_NAME_ENTRY_find_ex(st, val) SKM_sk_find_ex(X509_NAME_ENTRY, (st)
1913 #define sk_X509_NAME_ENTRY_delete(st, i) SKM_sk_delete(X509_NAME_ENTRY, (st), (i
1914 #define sk_X509_NAME_ENTRY_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509_NAME_ENTRY
1915 #define sk_X509_NAME_ENTRY_insert(st, val, i) SKM_sk_insert(X509_NAME_ENTRY, (st
1916 #define sk_X509_NAME_ENTRY_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509_NAME_E
1917 #define sk_X509_NAME_ENTRY_dup(st) SKM_sk_dup(X509_NAME_ENTRY, st)
1918 #define sk_X509_NAME_ENTRY_pop_free(st, free_func) SKM_sk_pop_free(X509_NAME_ENT
1919 #define sk_X509_NAME_ENTRY_shift(st) SKM_sk_shift(X509_NAME_ENTRY, (st))
1920 #define sk_X509_NAME_ENTRY_pop(st) SKM_sk_pop(X509_NAME_ENTRY, (st))
1921 #define sk_X509_NAME_ENTRY_sort(st) SKM_sk_sort(X509_NAME_ENTRY, (st))
1922 #define sk_X509_NAME_ENTRY_is_sorted(st) SKM_sk_is_sorted(X509_NAME_ENTRY, (st))

1924 #define sk_X509_OBJECT_new(cmp) SKM_sk_new(X509_OBJECT, (cmp))
1925 #define sk_X509_OBJECT_new_null() SKM_sk_new_null(X509_OBJECT)
1926 #define sk_X509_OBJECT_free(st) SKM_sk_free(X509_OBJECT, (st))
1927 #define sk_X509_OBJECT_num(st) SKM_sk_num(X509_OBJECT, (st))
1928 #define sk_X509_OBJECT_value(st, i) SKM_sk_value(X509_OBJECT, (st), (i))
1929 #define sk_X509_OBJECT_set(st, i, val) SKM_sk_set(X509_OBJECT, (st), (i), (val))
1930 #define sk_X509_OBJECT_zero(st) SKM_sk_zero(X509_OBJECT, (st))
1931 #define sk_X509_OBJECT_push(st, val) SKM_sk_push(X509_OBJECT, (st), (val))
1932 #define sk_X509_OBJECT_unshift(st, val) SKM_sk_unshift(X509_OBJECT, (st), (val))
1933 #define sk_X509_OBJECT_find(st, val) SKM_sk_find(X509_OBJECT, (st), (val))
1934 #define sk_X509_OBJECT_find_ex(st, val) SKM_sk_find_ex(X509_OBJECT, (st), (val))
1935 #define sk_X509_OBJECT_delete(st, i) SKM_sk_delete(X509_OBJECT, (st), (i))
1936 #define sk_X509_OBJECT_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509_OBJECT, (st),
1937 #define sk_X509_OBJECT_insert(st, val, i) SKM_sk_insert(X509_OBJECT, (st), (val)
1938 #define sk_X509_OBJECT_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509_OBJECT, (s
1939 #define sk_X509_OBJECT_dup(st) SKM_sk_dup(X509_OBJECT, st)
1940 #define sk_X509_OBJECT_pop_free(st, free_func) SKM_sk_pop_free(X509_OBJECT, (st)
1941 #define sk_X509_OBJECT_shift(st) SKM_sk_shift(X509_OBJECT, (st))
1942 #define sk_X509_OBJECT_pop(st) SKM_sk_pop(X509_OBJECT, (st))
1943 #define sk_X509_OBJECT_sort(st) SKM_sk_sort(X509_OBJECT, (st))
1944 #define sk_X509_OBJECT_is_sorted(st) SKM_sk_is_sorted(X509_OBJECT, (st))

1946 #define sk_X509_POLICY_DATA_new(cmp) SKM_sk_new(X509_POLICY_DATA, (cmp))
1947 #define sk_X509_POLICY_DATA_new_null() SKM_sk_new_null(X509_POLICY_DATA)
1948 #define sk_X509_POLICY_DATA_free(st) SKM_sk_free(X509_POLICY_DATA, (st))
1949 #define sk_X509_POLICY_DATA_num(st) SKM_sk_num(X509_POLICY_DATA, (st))
1950 #define sk_X509_POLICY_DATA_value(st, i) SKM_sk_value(X509_POLICY_DATA, (st), (i
1951 #define sk_X509_POLICY_DATA_set(st, i, val) SKM_sk_set(X509_POLICY_DATA, (st), (
1952 #define sk_X509_POLICY_DATA_zero(st) SKM_sk_zero(X509_POLICY_DATA, (st))
1953 #define sk_X509_POLICY_DATA_push(st, val) SKM_sk_push(X509_POLICY_DATA, (st), (v
1954 #define sk_X509_POLICY_DATA_unshift(st, val) SKM_sk_unshift(X509_POLICY_DATA, (s
1955 #define sk_X509_POLICY_DATA_find(st, val) SKM_sk_find(X509_POLICY_DATA, (st), (v
1956 #define sk_X509_POLICY_DATA_find_ex(st, val) SKM_sk_find_ex(X509_POLICY_DATA, (s
1957 #define sk_X509_POLICY_DATA_delete(st, i) SKM_sk_delete(X509_POLICY_DATA, (st),
1958 #define sk_X509_POLICY_DATA_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509_POLICY_DA
1959 #define sk_X509_POLICY_DATA_insert(st, val, i) SKM_sk_insert(X509_POLICY_DATA, (
1960 #define sk_X509_POLICY_DATA_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509_POLIC
1961 #define sk_X509_POLICY_DATA_dup(st) SKM_sk_dup(X509_POLICY_DATA, st)
1962 #define sk_X509_POLICY_DATA_pop_free(st, free_func) SKM_sk_pop_free(X509_POLICY_
1963 #define sk_X509_POLICY_DATA_shift(st) SKM_sk_shift(X509_POLICY_DATA, (st))
1964 #define sk_X509_POLICY_DATA_pop(st) SKM_sk_pop(X509_POLICY_DATA, (st))
1965 #define sk_X509_POLICY_DATA_sort(st) SKM_sk_sort(X509_POLICY_DATA, (st))
1966 #define sk_X509_POLICY_DATA_is_sorted(st) SKM_sk_is_sorted(X509_POLICY_DATA, (st

1968 #define sk_X509_POLICY_NODE_new(cmp) SKM_sk_new(X509_POLICY_NODE, (cmp))
1969 #define sk_X509_POLICY_NODE_new_null() SKM_sk_new_null(X509_POLICY_NODE)
1970 #define sk_X509_POLICY_NODE_free(st) SKM_sk_free(X509_POLICY_NODE, (st))
1971 #define sk_X509_POLICY_NODE_num(st) SKM_sk_num(X509_POLICY_NODE, (st))
1972 #define sk_X509_POLICY_NODE_value(st, i) SKM_sk_value(X509_POLICY_NODE, (st), (i
1973 #define sk_X509_POLICY_NODE_set(st, i, val) SKM_sk_set(X509_POLICY_NODE, (st), (
1974 #define sk_X509_POLICY_NODE_zero(st) SKM_sk_zero(X509_POLICY_NODE, (st))
1975 #define sk_X509_POLICY_NODE_push(st, val) SKM_sk_push(X509_POLICY_NODE, (st), (v

new/usr/src/lib/openssl/include/openssl/safestack.h 31

1976 #define sk_X509_POLICY_NODE_unshift(st, val) SKM_sk_unshift(X509_POLICY_NODE, (s
1977 #define sk_X509_POLICY_NODE_find(st, val) SKM_sk_find(X509_POLICY_NODE, (st), (v
1978 #define sk_X509_POLICY_NODE_find_ex(st, val) SKM_sk_find_ex(X509_POLICY_NODE, (s
1979 #define sk_X509_POLICY_NODE_delete(st, i) SKM_sk_delete(X509_POLICY_NODE, (st),
1980 #define sk_X509_POLICY_NODE_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509_POLICY_NO
1981 #define sk_X509_POLICY_NODE_insert(st, val, i) SKM_sk_insert(X509_POLICY_NODE, (
1982 #define sk_X509_POLICY_NODE_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509_POLIC
1983 #define sk_X509_POLICY_NODE_dup(st) SKM_sk_dup(X509_POLICY_NODE, st)
1984 #define sk_X509_POLICY_NODE_pop_free(st, free_func) SKM_sk_pop_free(X509_POLICY_
1985 #define sk_X509_POLICY_NODE_shift(st) SKM_sk_shift(X509_POLICY_NODE, (st))
1986 #define sk_X509_POLICY_NODE_pop(st) SKM_sk_pop(X509_POLICY_NODE, (st))
1987 #define sk_X509_POLICY_NODE_sort(st) SKM_sk_sort(X509_POLICY_NODE, (st))
1988 #define sk_X509_POLICY_NODE_is_sorted(st) SKM_sk_is_sorted(X509_POLICY_NODE, (st

1990 #define sk_X509_PURPOSE_new(cmp) SKM_sk_new(X509_PURPOSE, (cmp))
1991 #define sk_X509_PURPOSE_new_null() SKM_sk_new_null(X509_PURPOSE)
1992 #define sk_X509_PURPOSE_free(st) SKM_sk_free(X509_PURPOSE, (st))
1993 #define sk_X509_PURPOSE_num(st) SKM_sk_num(X509_PURPOSE, (st))
1994 #define sk_X509_PURPOSE_value(st, i) SKM_sk_value(X509_PURPOSE, (st), (i))
1995 #define sk_X509_PURPOSE_set(st, i, val) SKM_sk_set(X509_PURPOSE, (st), (i), (val
1996 #define sk_X509_PURPOSE_zero(st) SKM_sk_zero(X509_PURPOSE, (st))
1997 #define sk_X509_PURPOSE_push(st, val) SKM_sk_push(X509_PURPOSE, (st), (val))
1998 #define sk_X509_PURPOSE_unshift(st, val) SKM_sk_unshift(X509_PURPOSE, (st), (val
1999 #define sk_X509_PURPOSE_find(st, val) SKM_sk_find(X509_PURPOSE, (st), (val))
2000 #define sk_X509_PURPOSE_find_ex(st, val) SKM_sk_find_ex(X509_PURPOSE, (st), (val
2001 #define sk_X509_PURPOSE_delete(st, i) SKM_sk_delete(X509_PURPOSE, (st), (i))
2002 #define sk_X509_PURPOSE_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509_PURPOSE, (st)
2003 #define sk_X509_PURPOSE_insert(st, val, i) SKM_sk_insert(X509_PURPOSE, (st), (va
2004 #define sk_X509_PURPOSE_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509_PURPOSE,
2005 #define sk_X509_PURPOSE_dup(st) SKM_sk_dup(X509_PURPOSE, st)
2006 #define sk_X509_PURPOSE_pop_free(st, free_func) SKM_sk_pop_free(X509_PURPOSE, (s
2007 #define sk_X509_PURPOSE_shift(st) SKM_sk_shift(X509_PURPOSE, (st))
2008 #define sk_X509_PURPOSE_pop(st) SKM_sk_pop(X509_PURPOSE, (st))
2009 #define sk_X509_PURPOSE_sort(st) SKM_sk_sort(X509_PURPOSE, (st))
2010 #define sk_X509_PURPOSE_is_sorted(st) SKM_sk_is_sorted(X509_PURPOSE, (st))

2012 #define sk_X509_REVOKED_new(cmp) SKM_sk_new(X509_REVOKED, (cmp))
2013 #define sk_X509_REVOKED_new_null() SKM_sk_new_null(X509_REVOKED)
2014 #define sk_X509_REVOKED_free(st) SKM_sk_free(X509_REVOKED, (st))
2015 #define sk_X509_REVOKED_num(st) SKM_sk_num(X509_REVOKED, (st))
2016 #define sk_X509_REVOKED_value(st, i) SKM_sk_value(X509_REVOKED, (st), (i))
2017 #define sk_X509_REVOKED_set(st, i, val) SKM_sk_set(X509_REVOKED, (st), (i), (val
2018 #define sk_X509_REVOKED_zero(st) SKM_sk_zero(X509_REVOKED, (st))
2019 #define sk_X509_REVOKED_push(st, val) SKM_sk_push(X509_REVOKED, (st), (val))
2020 #define sk_X509_REVOKED_unshift(st, val) SKM_sk_unshift(X509_REVOKED, (st), (val
2021 #define sk_X509_REVOKED_find(st, val) SKM_sk_find(X509_REVOKED, (st), (val))
2022 #define sk_X509_REVOKED_find_ex(st, val) SKM_sk_find_ex(X509_REVOKED, (st), (val
2023 #define sk_X509_REVOKED_delete(st, i) SKM_sk_delete(X509_REVOKED, (st), (i))
2024 #define sk_X509_REVOKED_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509_REVOKED, (st)
2025 #define sk_X509_REVOKED_insert(st, val, i) SKM_sk_insert(X509_REVOKED, (st), (va
2026 #define sk_X509_REVOKED_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509_REVOKED,
2027 #define sk_X509_REVOKED_dup(st) SKM_sk_dup(X509_REVOKED, st)
2028 #define sk_X509_REVOKED_pop_free(st, free_func) SKM_sk_pop_free(X509_REVOKED, (s
2029 #define sk_X509_REVOKED_shift(st) SKM_sk_shift(X509_REVOKED, (st))
2030 #define sk_X509_REVOKED_pop(st) SKM_sk_pop(X509_REVOKED, (st))
2031 #define sk_X509_REVOKED_sort(st) SKM_sk_sort(X509_REVOKED, (st))
2032 #define sk_X509_REVOKED_is_sorted(st) SKM_sk_is_sorted(X509_REVOKED, (st))

2034 #define sk_X509_TRUST_new(cmp) SKM_sk_new(X509_TRUST, (cmp))
2035 #define sk_X509_TRUST_new_null() SKM_sk_new_null(X509_TRUST)
2036 #define sk_X509_TRUST_free(st) SKM_sk_free(X509_TRUST, (st))
2037 #define sk_X509_TRUST_num(st) SKM_sk_num(X509_TRUST, (st))
2038 #define sk_X509_TRUST_value(st, i) SKM_sk_value(X509_TRUST, (st), (i))
2039 #define sk_X509_TRUST_set(st, i, val) SKM_sk_set(X509_TRUST, (st), (i), (val))
2040 #define sk_X509_TRUST_zero(st) SKM_sk_zero(X509_TRUST, (st))
2041 #define sk_X509_TRUST_push(st, val) SKM_sk_push(X509_TRUST, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 32

2042 #define sk_X509_TRUST_unshift(st, val) SKM_sk_unshift(X509_TRUST, (st), (val))
2043 #define sk_X509_TRUST_find(st, val) SKM_sk_find(X509_TRUST, (st), (val))
2044 #define sk_X509_TRUST_find_ex(st, val) SKM_sk_find_ex(X509_TRUST, (st), (val))
2045 #define sk_X509_TRUST_delete(st, i) SKM_sk_delete(X509_TRUST, (st), (i))
2046 #define sk_X509_TRUST_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509_TRUST, (st), (p
2047 #define sk_X509_TRUST_insert(st, val, i) SKM_sk_insert(X509_TRUST, (st), (val),
2048 #define sk_X509_TRUST_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509_TRUST, (st)
2049 #define sk_X509_TRUST_dup(st) SKM_sk_dup(X509_TRUST, st)
2050 #define sk_X509_TRUST_pop_free(st, free_func) SKM_sk_pop_free(X509_TRUST, (st),
2051 #define sk_X509_TRUST_shift(st) SKM_sk_shift(X509_TRUST, (st))
2052 #define sk_X509_TRUST_pop(st) SKM_sk_pop(X509_TRUST, (st))
2053 #define sk_X509_TRUST_sort(st) SKM_sk_sort(X509_TRUST, (st))
2054 #define sk_X509_TRUST_is_sorted(st) SKM_sk_is_sorted(X509_TRUST, (st))

2056 #define sk_X509_VERIFY_PARAM_new(cmp) SKM_sk_new(X509_VERIFY_PARAM, (cmp))
2057 #define sk_X509_VERIFY_PARAM_new_null() SKM_sk_new_null(X509_VERIFY_PARAM)
2058 #define sk_X509_VERIFY_PARAM_free(st) SKM_sk_free(X509_VERIFY_PARAM, (st))
2059 #define sk_X509_VERIFY_PARAM_num(st) SKM_sk_num(X509_VERIFY_PARAM, (st))
2060 #define sk_X509_VERIFY_PARAM_value(st, i) SKM_sk_value(X509_VERIFY_PARAM, (st),
2061 #define sk_X509_VERIFY_PARAM_set(st, i, val) SKM_sk_set(X509_VERIFY_PARAM, (st),
2062 #define sk_X509_VERIFY_PARAM_zero(st) SKM_sk_zero(X509_VERIFY_PARAM, (st))
2063 #define sk_X509_VERIFY_PARAM_push(st, val) SKM_sk_push(X509_VERIFY_PARAM, (st),
2064 #define sk_X509_VERIFY_PARAM_unshift(st, val) SKM_sk_unshift(X509_VERIFY_PARAM,
2065 #define sk_X509_VERIFY_PARAM_find(st, val) SKM_sk_find(X509_VERIFY_PARAM, (st),
2066 #define sk_X509_VERIFY_PARAM_find_ex(st, val) SKM_sk_find_ex(X509_VERIFY_PARAM,
2067 #define sk_X509_VERIFY_PARAM_delete(st, i) SKM_sk_delete(X509_VERIFY_PARAM, (st)
2068 #define sk_X509_VERIFY_PARAM_delete_ptr(st, ptr) SKM_sk_delete_ptr(X509_VERIFY_P
2069 #define sk_X509_VERIFY_PARAM_insert(st, val, i) SKM_sk_insert(X509_VERIFY_PARAM,
2070 #define sk_X509_VERIFY_PARAM_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(X509_VERI
2071 #define sk_X509_VERIFY_PARAM_dup(st) SKM_sk_dup(X509_VERIFY_PARAM, st)
2072 #define sk_X509_VERIFY_PARAM_pop_free(st, free_func) SKM_sk_pop_free(X509_VERIFY
2073 #define sk_X509_VERIFY_PARAM_shift(st) SKM_sk_shift(X509_VERIFY_PARAM, (st))
2074 #define sk_X509_VERIFY_PARAM_pop(st) SKM_sk_pop(X509_VERIFY_PARAM, (st))
2075 #define sk_X509_VERIFY_PARAM_sort(st) SKM_sk_sort(X509_VERIFY_PARAM, (st))
2076 #define sk_X509_VERIFY_PARAM_is_sorted(st) SKM_sk_is_sorted(X509_VERIFY_PARAM, (

2078 #define sk_nid_triple_new(cmp) SKM_sk_new(nid_triple, (cmp))
2079 #define sk_nid_triple_new_null() SKM_sk_new_null(nid_triple)
2080 #define sk_nid_triple_free(st) SKM_sk_free(nid_triple, (st))
2081 #define sk_nid_triple_num(st) SKM_sk_num(nid_triple, (st))
2082 #define sk_nid_triple_value(st, i) SKM_sk_value(nid_triple, (st), (i))
2083 #define sk_nid_triple_set(st, i, val) SKM_sk_set(nid_triple, (st), (i), (val))
2084 #define sk_nid_triple_zero(st) SKM_sk_zero(nid_triple, (st))
2085 #define sk_nid_triple_push(st, val) SKM_sk_push(nid_triple, (st), (val))
2086 #define sk_nid_triple_unshift(st, val) SKM_sk_unshift(nid_triple, (st), (val))
2087 #define sk_nid_triple_find(st, val) SKM_sk_find(nid_triple, (st), (val))
2088 #define sk_nid_triple_find_ex(st, val) SKM_sk_find_ex(nid_triple, (st), (val))
2089 #define sk_nid_triple_delete(st, i) SKM_sk_delete(nid_triple, (st), (i))
2090 #define sk_nid_triple_delete_ptr(st, ptr) SKM_sk_delete_ptr(nid_triple, (st), (p
2091 #define sk_nid_triple_insert(st, val, i) SKM_sk_insert(nid_triple, (st), (val),
2092 #define sk_nid_triple_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(nid_triple, (st)
2093 #define sk_nid_triple_dup(st) SKM_sk_dup(nid_triple, st)
2094 #define sk_nid_triple_pop_free(st, free_func) SKM_sk_pop_free(nid_triple, (st),
2095 #define sk_nid_triple_shift(st) SKM_sk_shift(nid_triple, (st))
2096 #define sk_nid_triple_pop(st) SKM_sk_pop(nid_triple, (st))
2097 #define sk_nid_triple_sort(st) SKM_sk_sort(nid_triple, (st))
2098 #define sk_nid_triple_is_sorted(st) SKM_sk_is_sorted(nid_triple, (st))

2100 #define sk_void_new(cmp) SKM_sk_new(void, (cmp))
2101 #define sk_void_new_null() SKM_sk_new_null(void)
2102 #define sk_void_free(st) SKM_sk_free(void, (st))
2103 #define sk_void_num(st) SKM_sk_num(void, (st))
2104 #define sk_void_value(st, i) SKM_sk_value(void, (st), (i))
2105 #define sk_void_set(st, i, val) SKM_sk_set(void, (st), (i), (val))
2106 #define sk_void_zero(st) SKM_sk_zero(void, (st))
2107 #define sk_void_push(st, val) SKM_sk_push(void, (st), (val))

new/usr/src/lib/openssl/include/openssl/safestack.h 33

2108 #define sk_void_unshift(st, val) SKM_sk_unshift(void, (st), (val))
2109 #define sk_void_find(st, val) SKM_sk_find(void, (st), (val))
2110 #define sk_void_find_ex(st, val) SKM_sk_find_ex(void, (st), (val))
2111 #define sk_void_delete(st, i) SKM_sk_delete(void, (st), (i))
2112 #define sk_void_delete_ptr(st, ptr) SKM_sk_delete_ptr(void, (st), (ptr))
2113 #define sk_void_insert(st, val, i) SKM_sk_insert(void, (st), (val), (i))
2114 #define sk_void_set_cmp_func(st, cmp) SKM_sk_set_cmp_func(void, (st), (cmp))
2115 #define sk_void_dup(st) SKM_sk_dup(void, st)
2116 #define sk_void_pop_free(st, free_func) SKM_sk_pop_free(void, (st), (free_func))
2117 #define sk_void_shift(st) SKM_sk_shift(void, (st))
2118 #define sk_void_pop(st) SKM_sk_pop(void, (st))
2119 #define sk_void_sort(st) SKM_sk_sort(void, (st))
2120 #define sk_void_is_sorted(st) SKM_sk_is_sorted(void, (st))

2122 #define sk_OPENSSL_STRING_new(cmp) ((STACK_OF(OPENSSL_STRING) *)sk_new(CHECKED_S
2123 #define sk_OPENSSL_STRING_new_null() ((STACK_OF(OPENSSL_STRING) *)sk_new_null())
2124 #define sk_OPENSSL_STRING_push(st, val) sk_push(CHECKED_STACK_OF(OPENSSL_STRING,
2125 #define sk_OPENSSL_STRING_find(st, val) sk_find(CHECKED_STACK_OF(OPENSSL_STRING,
2126 #define sk_OPENSSL_STRING_value(st, i) ((OPENSSL_STRING)sk_value(CHECKED_STACK_O
2127 #define sk_OPENSSL_STRING_num(st) SKM_sk_num(OPENSSL_STRING, st)
2128 #define sk_OPENSSL_STRING_pop_free(st, free_func) sk_pop_free(CHECKED_STACK_OF(O
2129 #define sk_OPENSSL_STRING_insert(st, val, i) sk_insert(CHECKED_STACK_OF(OPENSSL_
2130 #define sk_OPENSSL_STRING_free(st) SKM_sk_free(OPENSSL_STRING, st)
2131 #define sk_OPENSSL_STRING_set(st, i, val) sk_set(CHECKED_STACK_OF(OPENSSL_STRING
2132 #define sk_OPENSSL_STRING_zero(st) SKM_sk_zero(OPENSSL_STRING, (st))
2133 #define sk_OPENSSL_STRING_unshift(st, val) sk_unshift(CHECKED_STACK_OF(OPENSSL_S
2134 #define sk_OPENSSL_STRING_find_ex(st, val) sk_find_ex((_STACK *)CHECKED_CONST_PT
2135 #define sk_OPENSSL_STRING_delete(st, i) SKM_sk_delete(OPENSSL_STRING, (st), (i))
2136 #define sk_OPENSSL_STRING_delete_ptr(st, ptr) (OPENSSL_STRING *)sk_delete_ptr(CH
2137 #define sk_OPENSSL_STRING_set_cmp_func(st, cmp) \
2138 ((int (*)(const char * const *,const char * const *)) \
2139 sk_set_cmp_func(CHECKED_STACK_OF(OPENSSL_STRING, st), CHECKED_SK_CMP_FUN
2140 #define sk_OPENSSL_STRING_dup(st) SKM_sk_dup(OPENSSL_STRING, st)
2141 #define sk_OPENSSL_STRING_shift(st) SKM_sk_shift(OPENSSL_STRING, (st))
2142 #define sk_OPENSSL_STRING_pop(st) (char *)sk_pop(CHECKED_STACK_OF(OPENSSL_STRING
2143 #define sk_OPENSSL_STRING_sort(st) SKM_sk_sort(OPENSSL_STRING, (st))
2144 #define sk_OPENSSL_STRING_is_sorted(st) SKM_sk_is_sorted(OPENSSL_STRING, (st))

2147 #define sk_OPENSSL_BLOCK_new(cmp) ((STACK_OF(OPENSSL_BLOCK) *)sk_new(CHECKED_SK_
2148 #define sk_OPENSSL_BLOCK_new_null() ((STACK_OF(OPENSSL_BLOCK) *)sk_new_null())
2149 #define sk_OPENSSL_BLOCK_push(st, val) sk_push(CHECKED_STACK_OF(OPENSSL_BLOCK, s
2150 #define sk_OPENSSL_BLOCK_find(st, val) sk_find(CHECKED_STACK_OF(OPENSSL_BLOCK, s
2151 #define sk_OPENSSL_BLOCK_value(st, i) ((OPENSSL_BLOCK)sk_value(CHECKED_STACK_OF(
2152 #define sk_OPENSSL_BLOCK_num(st) SKM_sk_num(OPENSSL_BLOCK, st)
2153 #define sk_OPENSSL_BLOCK_pop_free(st, free_func) sk_pop_free(CHECKED_STACK_OF(OP
2154 #define sk_OPENSSL_BLOCK_insert(st, val, i) sk_insert(CHECKED_STACK_OF(OPENSSL_B
2155 #define sk_OPENSSL_BLOCK_free(st) SKM_sk_free(OPENSSL_BLOCK, st)
2156 #define sk_OPENSSL_BLOCK_set(st, i, val) sk_set(CHECKED_STACK_OF(OPENSSL_BLOCK,
2157 #define sk_OPENSSL_BLOCK_zero(st) SKM_sk_zero(OPENSSL_BLOCK, (st))
2158 #define sk_OPENSSL_BLOCK_unshift(st, val) sk_unshift(CHECKED_STACK_OF(OPENSSL_BL
2159 #define sk_OPENSSL_BLOCK_find_ex(st, val) sk_find_ex((_STACK *)CHECKED_CONST_PTR
2160 #define sk_OPENSSL_BLOCK_delete(st, i) SKM_sk_delete(OPENSSL_BLOCK, (st), (i))
2161 #define sk_OPENSSL_BLOCK_delete_ptr(st, ptr) (OPENSSL_BLOCK *)sk_delete_ptr(CHEC
2162 #define sk_OPENSSL_BLOCK_set_cmp_func(st, cmp) \
2163 ((int (*)(const void * const *,const void * const *)) \
2164 sk_set_cmp_func(CHECKED_STACK_OF(OPENSSL_BLOCK, st), CHECKED_SK_CMP_FUNC
2165 #define sk_OPENSSL_BLOCK_dup(st) SKM_sk_dup(OPENSSL_BLOCK, st)
2166 #define sk_OPENSSL_BLOCK_shift(st) SKM_sk_shift(OPENSSL_BLOCK, (st))
2167 #define sk_OPENSSL_BLOCK_pop(st) (void *)sk_pop(CHECKED_STACK_OF(OPENSSL_BLOCK,
2168 #define sk_OPENSSL_BLOCK_sort(st) SKM_sk_sort(OPENSSL_BLOCK, (st))
2169 #define sk_OPENSSL_BLOCK_is_sorted(st) SKM_sk_is_sorted(OPENSSL_BLOCK, (st))

2172 #define sk_OPENSSL_PSTRING_new(cmp) ((STACK_OF(OPENSSL_PSTRING) *)sk_new(CHECKED
2173 #define sk_OPENSSL_PSTRING_new_null() ((STACK_OF(OPENSSL_PSTRING) *)sk_new_null(

new/usr/src/lib/openssl/include/openssl/safestack.h 34

2174 #define sk_OPENSSL_PSTRING_push(st, val) sk_push(CHECKED_STACK_OF(OPENSSL_PSTRIN
2175 #define sk_OPENSSL_PSTRING_find(st, val) sk_find(CHECKED_STACK_OF(OPENSSL_PSTRIN
2176 #define sk_OPENSSL_PSTRING_value(st, i) ((OPENSSL_PSTRING)sk_value(CHECKED_STACK
2177 #define sk_OPENSSL_PSTRING_num(st) SKM_sk_num(OPENSSL_PSTRING, st)
2178 #define sk_OPENSSL_PSTRING_pop_free(st, free_func) sk_pop_free(CHECKED_STACK_OF(
2179 #define sk_OPENSSL_PSTRING_insert(st, val, i) sk_insert(CHECKED_STACK_OF(OPENSSL
2180 #define sk_OPENSSL_PSTRING_free(st) SKM_sk_free(OPENSSL_PSTRING, st)
2181 #define sk_OPENSSL_PSTRING_set(st, i, val) sk_set(CHECKED_STACK_OF(OPENSSL_PSTRI
2182 #define sk_OPENSSL_PSTRING_zero(st) SKM_sk_zero(OPENSSL_PSTRING, (st))
2183 #define sk_OPENSSL_PSTRING_unshift(st, val) sk_unshift(CHECKED_STACK_OF(OPENSSL_
2184 #define sk_OPENSSL_PSTRING_find_ex(st, val) sk_find_ex((_STACK *)CHECKED_CONST_P
2185 #define sk_OPENSSL_PSTRING_delete(st, i) SKM_sk_delete(OPENSSL_PSTRING, (st), (i
2186 #define sk_OPENSSL_PSTRING_delete_ptr(st, ptr) (OPENSSL_PSTRING *)sk_delete_ptr(
2187 #define sk_OPENSSL_PSTRING_set_cmp_func(st, cmp) \
2188 ((int (*)(const OPENSSL_STRING * const *,const OPENSSL_STRING * const *)
2189 sk_set_cmp_func(CHECKED_STACK_OF(OPENSSL_PSTRING, st), CHECKED_SK_CMP_FU
2190 #define sk_OPENSSL_PSTRING_dup(st) SKM_sk_dup(OPENSSL_PSTRING, st)
2191 #define sk_OPENSSL_PSTRING_shift(st) SKM_sk_shift(OPENSSL_PSTRING, (st))
2192 #define sk_OPENSSL_PSTRING_pop(st) (OPENSSL_STRING *)sk_pop(CHECKED_STACK_OF(OPE
2193 #define sk_OPENSSL_PSTRING_sort(st) SKM_sk_sort(OPENSSL_PSTRING, (st))
2194 #define sk_OPENSSL_PSTRING_is_sorted(st) SKM_sk_is_sorted(OPENSSL_PSTRING, (st))

2197 #define d2i_ASN1_SET_OF_ACCESS_DESCRIPTION(st, pp, length, d2i_func, free_func,
2198 SKM_ASN1_SET_OF_d2i(ACCESS_DESCRIPTION, (st), (pp), (length), (d2i_func)
2199 #define i2d_ASN1_SET_OF_ACCESS_DESCRIPTION(st, pp, i2d_func, ex_tag, ex_class, i
2200 SKM_ASN1_SET_OF_i2d(ACCESS_DESCRIPTION, (st), (pp), (i2d_func), (ex_tag)
2201 #define ASN1_seq_pack_ACCESS_DESCRIPTION(st, i2d_func, buf, len) \
2202 SKM_ASN1_seq_pack(ACCESS_DESCRIPTION, (st), (i2d_func), (buf), (len))
2203 #define ASN1_seq_unpack_ACCESS_DESCRIPTION(buf, len, d2i_func, free_func) \
2204 SKM_ASN1_seq_unpack(ACCESS_DESCRIPTION, (buf), (len), (d2i_func), (free_

2206 #define d2i_ASN1_SET_OF_ASN1_INTEGER(st, pp, length, d2i_func, free_func, ex_tag
2207 SKM_ASN1_SET_OF_d2i(ASN1_INTEGER, (st), (pp), (length), (d2i_func), (fre
2208 #define i2d_ASN1_SET_OF_ASN1_INTEGER(st, pp, i2d_func, ex_tag, ex_class, is_set)
2209 SKM_ASN1_SET_OF_i2d(ASN1_INTEGER, (st), (pp), (i2d_func), (ex_tag), (ex_
2210 #define ASN1_seq_pack_ASN1_INTEGER(st, i2d_func, buf, len) \
2211 SKM_ASN1_seq_pack(ASN1_INTEGER, (st), (i2d_func), (buf), (len))
2212 #define ASN1_seq_unpack_ASN1_INTEGER(buf, len, d2i_func, free_func) \
2213 SKM_ASN1_seq_unpack(ASN1_INTEGER, (buf), (len), (d2i_func), (free_func))

2215 #define d2i_ASN1_SET_OF_ASN1_OBJECT(st, pp, length, d2i_func, free_func, ex_tag,
2216 SKM_ASN1_SET_OF_d2i(ASN1_OBJECT, (st), (pp), (length), (d2i_func), (free
2217 #define i2d_ASN1_SET_OF_ASN1_OBJECT(st, pp, i2d_func, ex_tag, ex_class, is_set)
2218 SKM_ASN1_SET_OF_i2d(ASN1_OBJECT, (st), (pp), (i2d_func), (ex_tag), (ex_c
2219 #define ASN1_seq_pack_ASN1_OBJECT(st, i2d_func, buf, len) \
2220 SKM_ASN1_seq_pack(ASN1_OBJECT, (st), (i2d_func), (buf), (len))
2221 #define ASN1_seq_unpack_ASN1_OBJECT(buf, len, d2i_func, free_func) \
2222 SKM_ASN1_seq_unpack(ASN1_OBJECT, (buf), (len), (d2i_func), (free_func))

2224 #define d2i_ASN1_SET_OF_ASN1_TYPE(st, pp, length, d2i_func, free_func, ex_tag, e
2225 SKM_ASN1_SET_OF_d2i(ASN1_TYPE, (st), (pp), (length), (d2i_func), (free_f
2226 #define i2d_ASN1_SET_OF_ASN1_TYPE(st, pp, i2d_func, ex_tag, ex_class, is_set) \
2227 SKM_ASN1_SET_OF_i2d(ASN1_TYPE, (st), (pp), (i2d_func), (ex_tag), (ex_cla
2228 #define ASN1_seq_pack_ASN1_TYPE(st, i2d_func, buf, len) \
2229 SKM_ASN1_seq_pack(ASN1_TYPE, (st), (i2d_func), (buf), (len))
2230 #define ASN1_seq_unpack_ASN1_TYPE(buf, len, d2i_func, free_func) \
2231 SKM_ASN1_seq_unpack(ASN1_TYPE, (buf), (len), (d2i_func), (free_func))

2233 #define d2i_ASN1_SET_OF_ASN1_UTF8STRING(st, pp, length, d2i_func, free_func, ex_
2234 SKM_ASN1_SET_OF_d2i(ASN1_UTF8STRING, (st), (pp), (length), (d2i_func), (
2235 #define i2d_ASN1_SET_OF_ASN1_UTF8STRING(st, pp, i2d_func, ex_tag, ex_class, is_s
2236 SKM_ASN1_SET_OF_i2d(ASN1_UTF8STRING, (st), (pp), (i2d_func), (ex_tag), (
2237 #define ASN1_seq_pack_ASN1_UTF8STRING(st, i2d_func, buf, len) \
2238 SKM_ASN1_seq_pack(ASN1_UTF8STRING, (st), (i2d_func), (buf), (len))
2239 #define ASN1_seq_unpack_ASN1_UTF8STRING(buf, len, d2i_func, free_func) \

new/usr/src/lib/openssl/include/openssl/safestack.h 35

2240 SKM_ASN1_seq_unpack(ASN1_UTF8STRING, (buf), (len), (d2i_func), (free_fun

2242 #define d2i_ASN1_SET_OF_DIST_POINT(st, pp, length, d2i_func, free_func, ex_tag,
2243 SKM_ASN1_SET_OF_d2i(DIST_POINT, (st), (pp), (length), (d2i_func), (free_
2244 #define i2d_ASN1_SET_OF_DIST_POINT(st, pp, i2d_func, ex_tag, ex_class, is_set) \
2245 SKM_ASN1_SET_OF_i2d(DIST_POINT, (st), (pp), (i2d_func), (ex_tag), (ex_cl
2246 #define ASN1_seq_pack_DIST_POINT(st, i2d_func, buf, len) \
2247 SKM_ASN1_seq_pack(DIST_POINT, (st), (i2d_func), (buf), (len))
2248 #define ASN1_seq_unpack_DIST_POINT(buf, len, d2i_func, free_func) \
2249 SKM_ASN1_seq_unpack(DIST_POINT, (buf), (len), (d2i_func), (free_func))

2251 #define d2i_ASN1_SET_OF_ESS_CERT_ID(st, pp, length, d2i_func, free_func, ex_tag,
2252 SKM_ASN1_SET_OF_d2i(ESS_CERT_ID, (st), (pp), (length), (d2i_func), (free
2253 #define i2d_ASN1_SET_OF_ESS_CERT_ID(st, pp, i2d_func, ex_tag, ex_class, is_set)
2254 SKM_ASN1_SET_OF_i2d(ESS_CERT_ID, (st), (pp), (i2d_func), (ex_tag), (ex_c
2255 #define ASN1_seq_pack_ESS_CERT_ID(st, i2d_func, buf, len) \
2256 SKM_ASN1_seq_pack(ESS_CERT_ID, (st), (i2d_func), (buf), (len))
2257 #define ASN1_seq_unpack_ESS_CERT_ID(buf, len, d2i_func, free_func) \
2258 SKM_ASN1_seq_unpack(ESS_CERT_ID, (buf), (len), (d2i_func), (free_func))

2260 #define d2i_ASN1_SET_OF_EVP_MD(st, pp, length, d2i_func, free_func, ex_tag, ex_c
2261 SKM_ASN1_SET_OF_d2i(EVP_MD, (st), (pp), (length), (d2i_func), (free_func
2262 #define i2d_ASN1_SET_OF_EVP_MD(st, pp, i2d_func, ex_tag, ex_class, is_set) \
2263 SKM_ASN1_SET_OF_i2d(EVP_MD, (st), (pp), (i2d_func), (ex_tag), (ex_class)
2264 #define ASN1_seq_pack_EVP_MD(st, i2d_func, buf, len) \
2265 SKM_ASN1_seq_pack(EVP_MD, (st), (i2d_func), (buf), (len))
2266 #define ASN1_seq_unpack_EVP_MD(buf, len, d2i_func, free_func) \
2267 SKM_ASN1_seq_unpack(EVP_MD, (buf), (len), (d2i_func), (free_func))

2269 #define d2i_ASN1_SET_OF_GENERAL_NAME(st, pp, length, d2i_func, free_func, ex_tag
2270 SKM_ASN1_SET_OF_d2i(GENERAL_NAME, (st), (pp), (length), (d2i_func), (fre
2271 #define i2d_ASN1_SET_OF_GENERAL_NAME(st, pp, i2d_func, ex_tag, ex_class, is_set)
2272 SKM_ASN1_SET_OF_i2d(GENERAL_NAME, (st), (pp), (i2d_func), (ex_tag), (ex_
2273 #define ASN1_seq_pack_GENERAL_NAME(st, i2d_func, buf, len) \
2274 SKM_ASN1_seq_pack(GENERAL_NAME, (st), (i2d_func), (buf), (len))
2275 #define ASN1_seq_unpack_GENERAL_NAME(buf, len, d2i_func, free_func) \
2276 SKM_ASN1_seq_unpack(GENERAL_NAME, (buf), (len), (d2i_func), (free_func))

2278 #define d2i_ASN1_SET_OF_OCSP_ONEREQ(st, pp, length, d2i_func, free_func, ex_tag,
2279 SKM_ASN1_SET_OF_d2i(OCSP_ONEREQ, (st), (pp), (length), (d2i_func), (free
2280 #define i2d_ASN1_SET_OF_OCSP_ONEREQ(st, pp, i2d_func, ex_tag, ex_class, is_set)
2281 SKM_ASN1_SET_OF_i2d(OCSP_ONEREQ, (st), (pp), (i2d_func), (ex_tag), (ex_c
2282 #define ASN1_seq_pack_OCSP_ONEREQ(st, i2d_func, buf, len) \
2283 SKM_ASN1_seq_pack(OCSP_ONEREQ, (st), (i2d_func), (buf), (len))
2284 #define ASN1_seq_unpack_OCSP_ONEREQ(buf, len, d2i_func, free_func) \
2285 SKM_ASN1_seq_unpack(OCSP_ONEREQ, (buf), (len), (d2i_func), (free_func))

2287 #define d2i_ASN1_SET_OF_OCSP_SINGLERESP(st, pp, length, d2i_func, free_func, ex_
2288 SKM_ASN1_SET_OF_d2i(OCSP_SINGLERESP, (st), (pp), (length), (d2i_func), (
2289 #define i2d_ASN1_SET_OF_OCSP_SINGLERESP(st, pp, i2d_func, ex_tag, ex_class, is_s
2290 SKM_ASN1_SET_OF_i2d(OCSP_SINGLERESP, (st), (pp), (i2d_func), (ex_tag), (
2291 #define ASN1_seq_pack_OCSP_SINGLERESP(st, i2d_func, buf, len) \
2292 SKM_ASN1_seq_pack(OCSP_SINGLERESP, (st), (i2d_func), (buf), (len))
2293 #define ASN1_seq_unpack_OCSP_SINGLERESP(buf, len, d2i_func, free_func) \
2294 SKM_ASN1_seq_unpack(OCSP_SINGLERESP, (buf), (len), (d2i_func), (free_fun

2296 #define d2i_ASN1_SET_OF_PKCS12_SAFEBAG(st, pp, length, d2i_func, free_func, ex_t
2297 SKM_ASN1_SET_OF_d2i(PKCS12_SAFEBAG, (st), (pp), (length), (d2i_func), (f
2298 #define i2d_ASN1_SET_OF_PKCS12_SAFEBAG(st, pp, i2d_func, ex_tag, ex_class, is_se
2299 SKM_ASN1_SET_OF_i2d(PKCS12_SAFEBAG, (st), (pp), (i2d_func), (ex_tag), (e
2300 #define ASN1_seq_pack_PKCS12_SAFEBAG(st, i2d_func, buf, len) \
2301 SKM_ASN1_seq_pack(PKCS12_SAFEBAG, (st), (i2d_func), (buf), (len))
2302 #define ASN1_seq_unpack_PKCS12_SAFEBAG(buf, len, d2i_func, free_func) \
2303 SKM_ASN1_seq_unpack(PKCS12_SAFEBAG, (buf), (len), (d2i_func), (free_func

2305 #define d2i_ASN1_SET_OF_PKCS7(st, pp, length, d2i_func, free_func, ex_tag, ex_cl

new/usr/src/lib/openssl/include/openssl/safestack.h 36

2306 SKM_ASN1_SET_OF_d2i(PKCS7, (st), (pp), (length), (d2i_func), (free_func)
2307 #define i2d_ASN1_SET_OF_PKCS7(st, pp, i2d_func, ex_tag, ex_class, is_set) \
2308 SKM_ASN1_SET_OF_i2d(PKCS7, (st), (pp), (i2d_func), (ex_tag), (ex_class),
2309 #define ASN1_seq_pack_PKCS7(st, i2d_func, buf, len) \
2310 SKM_ASN1_seq_pack(PKCS7, (st), (i2d_func), (buf), (len))
2311 #define ASN1_seq_unpack_PKCS7(buf, len, d2i_func, free_func) \
2312 SKM_ASN1_seq_unpack(PKCS7, (buf), (len), (d2i_func), (free_func))

2314 #define d2i_ASN1_SET_OF_PKCS7_RECIP_INFO(st, pp, length, d2i_func, free_func, ex
2315 SKM_ASN1_SET_OF_d2i(PKCS7_RECIP_INFO, (st), (pp), (length), (d2i_func),
2316 #define i2d_ASN1_SET_OF_PKCS7_RECIP_INFO(st, pp, i2d_func, ex_tag, ex_class, is_
2317 SKM_ASN1_SET_OF_i2d(PKCS7_RECIP_INFO, (st), (pp), (i2d_func), (ex_tag),
2318 #define ASN1_seq_pack_PKCS7_RECIP_INFO(st, i2d_func, buf, len) \
2319 SKM_ASN1_seq_pack(PKCS7_RECIP_INFO, (st), (i2d_func), (buf), (len))
2320 #define ASN1_seq_unpack_PKCS7_RECIP_INFO(buf, len, d2i_func, free_func) \
2321 SKM_ASN1_seq_unpack(PKCS7_RECIP_INFO, (buf), (len), (d2i_func), (free_fu

2323 #define d2i_ASN1_SET_OF_PKCS7_SIGNER_INFO(st, pp, length, d2i_func, free_func, e
2324 SKM_ASN1_SET_OF_d2i(PKCS7_SIGNER_INFO, (st), (pp), (length), (d2i_func),
2325 #define i2d_ASN1_SET_OF_PKCS7_SIGNER_INFO(st, pp, i2d_func, ex_tag, ex_class, is
2326 SKM_ASN1_SET_OF_i2d(PKCS7_SIGNER_INFO, (st), (pp), (i2d_func), (ex_tag),
2327 #define ASN1_seq_pack_PKCS7_SIGNER_INFO(st, i2d_func, buf, len) \
2328 SKM_ASN1_seq_pack(PKCS7_SIGNER_INFO, (st), (i2d_func), (buf), (len))
2329 #define ASN1_seq_unpack_PKCS7_SIGNER_INFO(buf, len, d2i_func, free_func) \
2330 SKM_ASN1_seq_unpack(PKCS7_SIGNER_INFO, (buf), (len), (d2i_func), (free_f

2332 #define d2i_ASN1_SET_OF_POLICYINFO(st, pp, length, d2i_func, free_func, ex_tag,
2333 SKM_ASN1_SET_OF_d2i(POLICYINFO, (st), (pp), (length), (d2i_func), (free_
2334 #define i2d_ASN1_SET_OF_POLICYINFO(st, pp, i2d_func, ex_tag, ex_class, is_set) \
2335 SKM_ASN1_SET_OF_i2d(POLICYINFO, (st), (pp), (i2d_func), (ex_tag), (ex_cl
2336 #define ASN1_seq_pack_POLICYINFO(st, i2d_func, buf, len) \
2337 SKM_ASN1_seq_pack(POLICYINFO, (st), (i2d_func), (buf), (len))
2338 #define ASN1_seq_unpack_POLICYINFO(buf, len, d2i_func, free_func) \
2339 SKM_ASN1_seq_unpack(POLICYINFO, (buf), (len), (d2i_func), (free_func))

2341 #define d2i_ASN1_SET_OF_POLICYQUALINFO(st, pp, length, d2i_func, free_func, ex_t
2342 SKM_ASN1_SET_OF_d2i(POLICYQUALINFO, (st), (pp), (length), (d2i_func), (f
2343 #define i2d_ASN1_SET_OF_POLICYQUALINFO(st, pp, i2d_func, ex_tag, ex_class, is_se
2344 SKM_ASN1_SET_OF_i2d(POLICYQUALINFO, (st), (pp), (i2d_func), (ex_tag), (e
2345 #define ASN1_seq_pack_POLICYQUALINFO(st, i2d_func, buf, len) \
2346 SKM_ASN1_seq_pack(POLICYQUALINFO, (st), (i2d_func), (buf), (len))
2347 #define ASN1_seq_unpack_POLICYQUALINFO(buf, len, d2i_func, free_func) \
2348 SKM_ASN1_seq_unpack(POLICYQUALINFO, (buf), (len), (d2i_func), (free_func

2350 #define d2i_ASN1_SET_OF_SXNETID(st, pp, length, d2i_func, free_func, ex_tag, ex_
2351 SKM_ASN1_SET_OF_d2i(SXNETID, (st), (pp), (length), (d2i_func), (free_fun
2352 #define i2d_ASN1_SET_OF_SXNETID(st, pp, i2d_func, ex_tag, ex_class, is_set) \
2353 SKM_ASN1_SET_OF_i2d(SXNETID, (st), (pp), (i2d_func), (ex_tag), (ex_class
2354 #define ASN1_seq_pack_SXNETID(st, i2d_func, buf, len) \
2355 SKM_ASN1_seq_pack(SXNETID, (st), (i2d_func), (buf), (len))
2356 #define ASN1_seq_unpack_SXNETID(buf, len, d2i_func, free_func) \
2357 SKM_ASN1_seq_unpack(SXNETID, (buf), (len), (d2i_func), (free_func))

2359 #define d2i_ASN1_SET_OF_X509(st, pp, length, d2i_func, free_func, ex_tag, ex_cla
2360 SKM_ASN1_SET_OF_d2i(X509, (st), (pp), (length), (d2i_func), (free_func),
2361 #define i2d_ASN1_SET_OF_X509(st, pp, i2d_func, ex_tag, ex_class, is_set) \
2362 SKM_ASN1_SET_OF_i2d(X509, (st), (pp), (i2d_func), (ex_tag), (ex_class),
2363 #define ASN1_seq_pack_X509(st, i2d_func, buf, len) \
2364 SKM_ASN1_seq_pack(X509, (st), (i2d_func), (buf), (len))
2365 #define ASN1_seq_unpack_X509(buf, len, d2i_func, free_func) \
2366 SKM_ASN1_seq_unpack(X509, (buf), (len), (d2i_func), (free_func))

2368 #define d2i_ASN1_SET_OF_X509_ALGOR(st, pp, length, d2i_func, free_func, ex_tag,
2369 SKM_ASN1_SET_OF_d2i(X509_ALGOR, (st), (pp), (length), (d2i_func), (free_
2370 #define i2d_ASN1_SET_OF_X509_ALGOR(st, pp, i2d_func, ex_tag, ex_class, is_set) \
2371 SKM_ASN1_SET_OF_i2d(X509_ALGOR, (st), (pp), (i2d_func), (ex_tag), (ex_cl

new/usr/src/lib/openssl/include/openssl/safestack.h 37

2372 #define ASN1_seq_pack_X509_ALGOR(st, i2d_func, buf, len) \
2373 SKM_ASN1_seq_pack(X509_ALGOR, (st), (i2d_func), (buf), (len))
2374 #define ASN1_seq_unpack_X509_ALGOR(buf, len, d2i_func, free_func) \
2375 SKM_ASN1_seq_unpack(X509_ALGOR, (buf), (len), (d2i_func), (free_func))

2377 #define d2i_ASN1_SET_OF_X509_ATTRIBUTE(st, pp, length, d2i_func, free_func, ex_t
2378 SKM_ASN1_SET_OF_d2i(X509_ATTRIBUTE, (st), (pp), (length), (d2i_func), (f
2379 #define i2d_ASN1_SET_OF_X509_ATTRIBUTE(st, pp, i2d_func, ex_tag, ex_class, is_se
2380 SKM_ASN1_SET_OF_i2d(X509_ATTRIBUTE, (st), (pp), (i2d_func), (ex_tag), (e
2381 #define ASN1_seq_pack_X509_ATTRIBUTE(st, i2d_func, buf, len) \
2382 SKM_ASN1_seq_pack(X509_ATTRIBUTE, (st), (i2d_func), (buf), (len))
2383 #define ASN1_seq_unpack_X509_ATTRIBUTE(buf, len, d2i_func, free_func) \
2384 SKM_ASN1_seq_unpack(X509_ATTRIBUTE, (buf), (len), (d2i_func), (free_func

2386 #define d2i_ASN1_SET_OF_X509_CRL(st, pp, length, d2i_func, free_func, ex_tag, ex
2387 SKM_ASN1_SET_OF_d2i(X509_CRL, (st), (pp), (length), (d2i_func), (free_fu
2388 #define i2d_ASN1_SET_OF_X509_CRL(st, pp, i2d_func, ex_tag, ex_class, is_set) \
2389 SKM_ASN1_SET_OF_i2d(X509_CRL, (st), (pp), (i2d_func), (ex_tag), (ex_clas
2390 #define ASN1_seq_pack_X509_CRL(st, i2d_func, buf, len) \
2391 SKM_ASN1_seq_pack(X509_CRL, (st), (i2d_func), (buf), (len))
2392 #define ASN1_seq_unpack_X509_CRL(buf, len, d2i_func, free_func) \
2393 SKM_ASN1_seq_unpack(X509_CRL, (buf), (len), (d2i_func), (free_func))

2395 #define d2i_ASN1_SET_OF_X509_EXTENSION(st, pp, length, d2i_func, free_func, ex_t
2396 SKM_ASN1_SET_OF_d2i(X509_EXTENSION, (st), (pp), (length), (d2i_func), (f
2397 #define i2d_ASN1_SET_OF_X509_EXTENSION(st, pp, i2d_func, ex_tag, ex_class, is_se
2398 SKM_ASN1_SET_OF_i2d(X509_EXTENSION, (st), (pp), (i2d_func), (ex_tag), (e
2399 #define ASN1_seq_pack_X509_EXTENSION(st, i2d_func, buf, len) \
2400 SKM_ASN1_seq_pack(X509_EXTENSION, (st), (i2d_func), (buf), (len))
2401 #define ASN1_seq_unpack_X509_EXTENSION(buf, len, d2i_func, free_func) \
2402 SKM_ASN1_seq_unpack(X509_EXTENSION, (buf), (len), (d2i_func), (free_func

2404 #define d2i_ASN1_SET_OF_X509_NAME_ENTRY(st, pp, length, d2i_func, free_func, ex_
2405 SKM_ASN1_SET_OF_d2i(X509_NAME_ENTRY, (st), (pp), (length), (d2i_func), (
2406 #define i2d_ASN1_SET_OF_X509_NAME_ENTRY(st, pp, i2d_func, ex_tag, ex_class, is_s
2407 SKM_ASN1_SET_OF_i2d(X509_NAME_ENTRY, (st), (pp), (i2d_func), (ex_tag), (
2408 #define ASN1_seq_pack_X509_NAME_ENTRY(st, i2d_func, buf, len) \
2409 SKM_ASN1_seq_pack(X509_NAME_ENTRY, (st), (i2d_func), (buf), (len))
2410 #define ASN1_seq_unpack_X509_NAME_ENTRY(buf, len, d2i_func, free_func) \
2411 SKM_ASN1_seq_unpack(X509_NAME_ENTRY, (buf), (len), (d2i_func), (free_fun

2413 #define d2i_ASN1_SET_OF_X509_REVOKED(st, pp, length, d2i_func, free_func, ex_tag
2414 SKM_ASN1_SET_OF_d2i(X509_REVOKED, (st), (pp), (length), (d2i_func), (fre
2415 #define i2d_ASN1_SET_OF_X509_REVOKED(st, pp, i2d_func, ex_tag, ex_class, is_set)
2416 SKM_ASN1_SET_OF_i2d(X509_REVOKED, (st), (pp), (i2d_func), (ex_tag), (ex_
2417 #define ASN1_seq_pack_X509_REVOKED(st, i2d_func, buf, len) \
2418 SKM_ASN1_seq_pack(X509_REVOKED, (st), (i2d_func), (buf), (len))
2419 #define ASN1_seq_unpack_X509_REVOKED(buf, len, d2i_func, free_func) \
2420 SKM_ASN1_seq_unpack(X509_REVOKED, (buf), (len), (d2i_func), (free_func))

2422 #define PKCS12_decrypt_d2i_PKCS12_SAFEBAG(algor, d2i_func, free_func, pass, pass
2423 SKM_PKCS12_decrypt_d2i(PKCS12_SAFEBAG, (algor), (d2i_func), (free_func),

2425 #define PKCS12_decrypt_d2i_PKCS7(algor, d2i_func, free_func, pass, passlen, oct,
2426 SKM_PKCS12_decrypt_d2i(PKCS7, (algor), (d2i_func), (free_func), (pass),

2428 #define lh_ADDED_OBJ_new() LHM_lh_new(ADDED_OBJ,added_obj)
2429 #define lh_ADDED_OBJ_insert(lh,inst) LHM_lh_insert(ADDED_OBJ,lh,inst)
2430 #define lh_ADDED_OBJ_retrieve(lh,inst) LHM_lh_retrieve(ADDED_OBJ,lh,inst)
2431 #define lh_ADDED_OBJ_delete(lh,inst) LHM_lh_delete(ADDED_OBJ,lh,inst)
2432 #define lh_ADDED_OBJ_doall(lh,fn) LHM_lh_doall(ADDED_OBJ,lh,fn)
2433 #define lh_ADDED_OBJ_doall_arg(lh,fn,arg_type,arg) \
2434 LHM_lh_doall_arg(ADDED_OBJ,lh,fn,arg_type,arg)
2435 #define lh_ADDED_OBJ_error(lh) LHM_lh_error(ADDED_OBJ,lh)
2436 #define lh_ADDED_OBJ_num_items(lh) LHM_lh_num_items(ADDED_OBJ,lh)
2437 #define lh_ADDED_OBJ_down_load(lh) LHM_lh_down_load(ADDED_OBJ,lh)

new/usr/src/lib/openssl/include/openssl/safestack.h 38

2438 #define lh_ADDED_OBJ_node_stats_bio(lh,out) \
2439 LHM_lh_node_stats_bio(ADDED_OBJ,lh,out)
2440 #define lh_ADDED_OBJ_node_usage_stats_bio(lh,out) \
2441 LHM_lh_node_usage_stats_bio(ADDED_OBJ,lh,out)
2442 #define lh_ADDED_OBJ_stats_bio(lh,out) \
2443 LHM_lh_stats_bio(ADDED_OBJ,lh,out)
2444 #define lh_ADDED_OBJ_free(lh) LHM_lh_free(ADDED_OBJ,lh)

2446 #define lh_APP_INFO_new() LHM_lh_new(APP_INFO,app_info)
2447 #define lh_APP_INFO_insert(lh,inst) LHM_lh_insert(APP_INFO,lh,inst)
2448 #define lh_APP_INFO_retrieve(lh,inst) LHM_lh_retrieve(APP_INFO,lh,inst)
2449 #define lh_APP_INFO_delete(lh,inst) LHM_lh_delete(APP_INFO,lh,inst)
2450 #define lh_APP_INFO_doall(lh,fn) LHM_lh_doall(APP_INFO,lh,fn)
2451 #define lh_APP_INFO_doall_arg(lh,fn,arg_type,arg) \
2452 LHM_lh_doall_arg(APP_INFO,lh,fn,arg_type,arg)
2453 #define lh_APP_INFO_error(lh) LHM_lh_error(APP_INFO,lh)
2454 #define lh_APP_INFO_num_items(lh) LHM_lh_num_items(APP_INFO,lh)
2455 #define lh_APP_INFO_down_load(lh) LHM_lh_down_load(APP_INFO,lh)
2456 #define lh_APP_INFO_node_stats_bio(lh,out) \
2457 LHM_lh_node_stats_bio(APP_INFO,lh,out)
2458 #define lh_APP_INFO_node_usage_stats_bio(lh,out) \
2459 LHM_lh_node_usage_stats_bio(APP_INFO,lh,out)
2460 #define lh_APP_INFO_stats_bio(lh,out) \
2461 LHM_lh_stats_bio(APP_INFO,lh,out)
2462 #define lh_APP_INFO_free(lh) LHM_lh_free(APP_INFO,lh)

2464 #define lh_CONF_VALUE_new() LHM_lh_new(CONF_VALUE,conf_value)
2465 #define lh_CONF_VALUE_insert(lh,inst) LHM_lh_insert(CONF_VALUE,lh,inst)
2466 #define lh_CONF_VALUE_retrieve(lh,inst) LHM_lh_retrieve(CONF_VALUE,lh,inst)
2467 #define lh_CONF_VALUE_delete(lh,inst) LHM_lh_delete(CONF_VALUE,lh,inst)
2468 #define lh_CONF_VALUE_doall(lh,fn) LHM_lh_doall(CONF_VALUE,lh,fn)
2469 #define lh_CONF_VALUE_doall_arg(lh,fn,arg_type,arg) \
2470 LHM_lh_doall_arg(CONF_VALUE,lh,fn,arg_type,arg)
2471 #define lh_CONF_VALUE_error(lh) LHM_lh_error(CONF_VALUE,lh)
2472 #define lh_CONF_VALUE_num_items(lh) LHM_lh_num_items(CONF_VALUE,lh)
2473 #define lh_CONF_VALUE_down_load(lh) LHM_lh_down_load(CONF_VALUE,lh)
2474 #define lh_CONF_VALUE_node_stats_bio(lh,out) \
2475 LHM_lh_node_stats_bio(CONF_VALUE,lh,out)
2476 #define lh_CONF_VALUE_node_usage_stats_bio(lh,out) \
2477 LHM_lh_node_usage_stats_bio(CONF_VALUE,lh,out)
2478 #define lh_CONF_VALUE_stats_bio(lh,out) \
2479 LHM_lh_stats_bio(CONF_VALUE,lh,out)
2480 #define lh_CONF_VALUE_free(lh) LHM_lh_free(CONF_VALUE,lh)

2482 #define lh_ENGINE_PILE_new() LHM_lh_new(ENGINE_PILE,engine_pile)
2483 #define lh_ENGINE_PILE_insert(lh,inst) LHM_lh_insert(ENGINE_PILE,lh,inst)
2484 #define lh_ENGINE_PILE_retrieve(lh,inst) LHM_lh_retrieve(ENGINE_PILE,lh,inst)
2485 #define lh_ENGINE_PILE_delete(lh,inst) LHM_lh_delete(ENGINE_PILE,lh,inst)
2486 #define lh_ENGINE_PILE_doall(lh,fn) LHM_lh_doall(ENGINE_PILE,lh,fn)
2487 #define lh_ENGINE_PILE_doall_arg(lh,fn,arg_type,arg) \
2488 LHM_lh_doall_arg(ENGINE_PILE,lh,fn,arg_type,arg)
2489 #define lh_ENGINE_PILE_error(lh) LHM_lh_error(ENGINE_PILE,lh)
2490 #define lh_ENGINE_PILE_num_items(lh) LHM_lh_num_items(ENGINE_PILE,lh)
2491 #define lh_ENGINE_PILE_down_load(lh) LHM_lh_down_load(ENGINE_PILE,lh)
2492 #define lh_ENGINE_PILE_node_stats_bio(lh,out) \
2493 LHM_lh_node_stats_bio(ENGINE_PILE,lh,out)
2494 #define lh_ENGINE_PILE_node_usage_stats_bio(lh,out) \
2495 LHM_lh_node_usage_stats_bio(ENGINE_PILE,lh,out)
2496 #define lh_ENGINE_PILE_stats_bio(lh,out) \
2497 LHM_lh_stats_bio(ENGINE_PILE,lh,out)
2498 #define lh_ENGINE_PILE_free(lh) LHM_lh_free(ENGINE_PILE,lh)

2500 #define lh_ERR_STATE_new() LHM_lh_new(ERR_STATE,err_state)
2501 #define lh_ERR_STATE_insert(lh,inst) LHM_lh_insert(ERR_STATE,lh,inst)
2502 #define lh_ERR_STATE_retrieve(lh,inst) LHM_lh_retrieve(ERR_STATE,lh,inst)
2503 #define lh_ERR_STATE_delete(lh,inst) LHM_lh_delete(ERR_STATE,lh,inst)

new/usr/src/lib/openssl/include/openssl/safestack.h 39

2504 #define lh_ERR_STATE_doall(lh,fn) LHM_lh_doall(ERR_STATE,lh,fn)
2505 #define lh_ERR_STATE_doall_arg(lh,fn,arg_type,arg) \
2506 LHM_lh_doall_arg(ERR_STATE,lh,fn,arg_type,arg)
2507 #define lh_ERR_STATE_error(lh) LHM_lh_error(ERR_STATE,lh)
2508 #define lh_ERR_STATE_num_items(lh) LHM_lh_num_items(ERR_STATE,lh)
2509 #define lh_ERR_STATE_down_load(lh) LHM_lh_down_load(ERR_STATE,lh)
2510 #define lh_ERR_STATE_node_stats_bio(lh,out) \
2511 LHM_lh_node_stats_bio(ERR_STATE,lh,out)
2512 #define lh_ERR_STATE_node_usage_stats_bio(lh,out) \
2513 LHM_lh_node_usage_stats_bio(ERR_STATE,lh,out)
2514 #define lh_ERR_STATE_stats_bio(lh,out) \
2515 LHM_lh_stats_bio(ERR_STATE,lh,out)
2516 #define lh_ERR_STATE_free(lh) LHM_lh_free(ERR_STATE,lh)

2518 #define lh_ERR_STRING_DATA_new() LHM_lh_new(ERR_STRING_DATA,err_string_data)
2519 #define lh_ERR_STRING_DATA_insert(lh,inst) LHM_lh_insert(ERR_STRING_DATA,lh,inst
2520 #define lh_ERR_STRING_DATA_retrieve(lh,inst) LHM_lh_retrieve(ERR_STRING_DATA,lh,
2521 #define lh_ERR_STRING_DATA_delete(lh,inst) LHM_lh_delete(ERR_STRING_DATA,lh,inst
2522 #define lh_ERR_STRING_DATA_doall(lh,fn) LHM_lh_doall(ERR_STRING_DATA,lh,fn)
2523 #define lh_ERR_STRING_DATA_doall_arg(lh,fn,arg_type,arg) \
2524 LHM_lh_doall_arg(ERR_STRING_DATA,lh,fn,arg_type,arg)
2525 #define lh_ERR_STRING_DATA_error(lh) LHM_lh_error(ERR_STRING_DATA,lh)
2526 #define lh_ERR_STRING_DATA_num_items(lh) LHM_lh_num_items(ERR_STRING_DATA,lh)
2527 #define lh_ERR_STRING_DATA_down_load(lh) LHM_lh_down_load(ERR_STRING_DATA,lh)
2528 #define lh_ERR_STRING_DATA_node_stats_bio(lh,out) \
2529 LHM_lh_node_stats_bio(ERR_STRING_DATA,lh,out)
2530 #define lh_ERR_STRING_DATA_node_usage_stats_bio(lh,out) \
2531 LHM_lh_node_usage_stats_bio(ERR_STRING_DATA,lh,out)
2532 #define lh_ERR_STRING_DATA_stats_bio(lh,out) \
2533 LHM_lh_stats_bio(ERR_STRING_DATA,lh,out)
2534 #define lh_ERR_STRING_DATA_free(lh) LHM_lh_free(ERR_STRING_DATA,lh)

2536 #define lh_EX_CLASS_ITEM_new() LHM_lh_new(EX_CLASS_ITEM,ex_class_item)
2537 #define lh_EX_CLASS_ITEM_insert(lh,inst) LHM_lh_insert(EX_CLASS_ITEM,lh,inst)
2538 #define lh_EX_CLASS_ITEM_retrieve(lh,inst) LHM_lh_retrieve(EX_CLASS_ITEM,lh,inst
2539 #define lh_EX_CLASS_ITEM_delete(lh,inst) LHM_lh_delete(EX_CLASS_ITEM,lh,inst)
2540 #define lh_EX_CLASS_ITEM_doall(lh,fn) LHM_lh_doall(EX_CLASS_ITEM,lh,fn)
2541 #define lh_EX_CLASS_ITEM_doall_arg(lh,fn,arg_type,arg) \
2542 LHM_lh_doall_arg(EX_CLASS_ITEM,lh,fn,arg_type,arg)
2543 #define lh_EX_CLASS_ITEM_error(lh) LHM_lh_error(EX_CLASS_ITEM,lh)
2544 #define lh_EX_CLASS_ITEM_num_items(lh) LHM_lh_num_items(EX_CLASS_ITEM,lh)
2545 #define lh_EX_CLASS_ITEM_down_load(lh) LHM_lh_down_load(EX_CLASS_ITEM,lh)
2546 #define lh_EX_CLASS_ITEM_node_stats_bio(lh,out) \
2547 LHM_lh_node_stats_bio(EX_CLASS_ITEM,lh,out)
2548 #define lh_EX_CLASS_ITEM_node_usage_stats_bio(lh,out) \
2549 LHM_lh_node_usage_stats_bio(EX_CLASS_ITEM,lh,out)
2550 #define lh_EX_CLASS_ITEM_stats_bio(lh,out) \
2551 LHM_lh_stats_bio(EX_CLASS_ITEM,lh,out)
2552 #define lh_EX_CLASS_ITEM_free(lh) LHM_lh_free(EX_CLASS_ITEM,lh)

2554 #define lh_FUNCTION_new() LHM_lh_new(FUNCTION,function)
2555 #define lh_FUNCTION_insert(lh,inst) LHM_lh_insert(FUNCTION,lh,inst)
2556 #define lh_FUNCTION_retrieve(lh,inst) LHM_lh_retrieve(FUNCTION,lh,inst)
2557 #define lh_FUNCTION_delete(lh,inst) LHM_lh_delete(FUNCTION,lh,inst)
2558 #define lh_FUNCTION_doall(lh,fn) LHM_lh_doall(FUNCTION,lh,fn)
2559 #define lh_FUNCTION_doall_arg(lh,fn,arg_type,arg) \
2560 LHM_lh_doall_arg(FUNCTION,lh,fn,arg_type,arg)
2561 #define lh_FUNCTION_error(lh) LHM_lh_error(FUNCTION,lh)
2562 #define lh_FUNCTION_num_items(lh) LHM_lh_num_items(FUNCTION,lh)
2563 #define lh_FUNCTION_down_load(lh) LHM_lh_down_load(FUNCTION,lh)
2564 #define lh_FUNCTION_node_stats_bio(lh,out) \
2565 LHM_lh_node_stats_bio(FUNCTION,lh,out)
2566 #define lh_FUNCTION_node_usage_stats_bio(lh,out) \
2567 LHM_lh_node_usage_stats_bio(FUNCTION,lh,out)
2568 #define lh_FUNCTION_stats_bio(lh,out) \
2569 LHM_lh_stats_bio(FUNCTION,lh,out)

new/usr/src/lib/openssl/include/openssl/safestack.h 40

2570 #define lh_FUNCTION_free(lh) LHM_lh_free(FUNCTION,lh)

2572 #define lh_MEM_new() LHM_lh_new(MEM,mem)
2573 #define lh_MEM_insert(lh,inst) LHM_lh_insert(MEM,lh,inst)
2574 #define lh_MEM_retrieve(lh,inst) LHM_lh_retrieve(MEM,lh,inst)
2575 #define lh_MEM_delete(lh,inst) LHM_lh_delete(MEM,lh,inst)
2576 #define lh_MEM_doall(lh,fn) LHM_lh_doall(MEM,lh,fn)
2577 #define lh_MEM_doall_arg(lh,fn,arg_type,arg) \
2578 LHM_lh_doall_arg(MEM,lh,fn,arg_type,arg)
2579 #define lh_MEM_error(lh) LHM_lh_error(MEM,lh)
2580 #define lh_MEM_num_items(lh) LHM_lh_num_items(MEM,lh)
2581 #define lh_MEM_down_load(lh) LHM_lh_down_load(MEM,lh)
2582 #define lh_MEM_node_stats_bio(lh,out) \
2583 LHM_lh_node_stats_bio(MEM,lh,out)
2584 #define lh_MEM_node_usage_stats_bio(lh,out) \
2585 LHM_lh_node_usage_stats_bio(MEM,lh,out)
2586 #define lh_MEM_stats_bio(lh,out) \
2587 LHM_lh_stats_bio(MEM,lh,out)
2588 #define lh_MEM_free(lh) LHM_lh_free(MEM,lh)

2590 #define lh_OBJ_NAME_new() LHM_lh_new(OBJ_NAME,obj_name)
2591 #define lh_OBJ_NAME_insert(lh,inst) LHM_lh_insert(OBJ_NAME,lh,inst)
2592 #define lh_OBJ_NAME_retrieve(lh,inst) LHM_lh_retrieve(OBJ_NAME,lh,inst)
2593 #define lh_OBJ_NAME_delete(lh,inst) LHM_lh_delete(OBJ_NAME,lh,inst)
2594 #define lh_OBJ_NAME_doall(lh,fn) LHM_lh_doall(OBJ_NAME,lh,fn)
2595 #define lh_OBJ_NAME_doall_arg(lh,fn,arg_type,arg) \
2596 LHM_lh_doall_arg(OBJ_NAME,lh,fn,arg_type,arg)
2597 #define lh_OBJ_NAME_error(lh) LHM_lh_error(OBJ_NAME,lh)
2598 #define lh_OBJ_NAME_num_items(lh) LHM_lh_num_items(OBJ_NAME,lh)
2599 #define lh_OBJ_NAME_down_load(lh) LHM_lh_down_load(OBJ_NAME,lh)
2600 #define lh_OBJ_NAME_node_stats_bio(lh,out) \
2601 LHM_lh_node_stats_bio(OBJ_NAME,lh,out)
2602 #define lh_OBJ_NAME_node_usage_stats_bio(lh,out) \
2603 LHM_lh_node_usage_stats_bio(OBJ_NAME,lh,out)
2604 #define lh_OBJ_NAME_stats_bio(lh,out) \
2605 LHM_lh_stats_bio(OBJ_NAME,lh,out)
2606 #define lh_OBJ_NAME_free(lh) LHM_lh_free(OBJ_NAME,lh)

2608 #define lh_OPENSSL_CSTRING_new() LHM_lh_new(OPENSSL_CSTRING,openssl_cstring)
2609 #define lh_OPENSSL_CSTRING_insert(lh,inst) LHM_lh_insert(OPENSSL_CSTRING,lh,inst
2610 #define lh_OPENSSL_CSTRING_retrieve(lh,inst) LHM_lh_retrieve(OPENSSL_CSTRING,lh,
2611 #define lh_OPENSSL_CSTRING_delete(lh,inst) LHM_lh_delete(OPENSSL_CSTRING,lh,inst
2612 #define lh_OPENSSL_CSTRING_doall(lh,fn) LHM_lh_doall(OPENSSL_CSTRING,lh,fn)
2613 #define lh_OPENSSL_CSTRING_doall_arg(lh,fn,arg_type,arg) \
2614 LHM_lh_doall_arg(OPENSSL_CSTRING,lh,fn,arg_type,arg)
2615 #define lh_OPENSSL_CSTRING_error(lh) LHM_lh_error(OPENSSL_CSTRING,lh)
2616 #define lh_OPENSSL_CSTRING_num_items(lh) LHM_lh_num_items(OPENSSL_CSTRING,lh)
2617 #define lh_OPENSSL_CSTRING_down_load(lh) LHM_lh_down_load(OPENSSL_CSTRING,lh)
2618 #define lh_OPENSSL_CSTRING_node_stats_bio(lh,out) \
2619 LHM_lh_node_stats_bio(OPENSSL_CSTRING,lh,out)
2620 #define lh_OPENSSL_CSTRING_node_usage_stats_bio(lh,out) \
2621 LHM_lh_node_usage_stats_bio(OPENSSL_CSTRING,lh,out)
2622 #define lh_OPENSSL_CSTRING_stats_bio(lh,out) \
2623 LHM_lh_stats_bio(OPENSSL_CSTRING,lh,out)
2624 #define lh_OPENSSL_CSTRING_free(lh) LHM_lh_free(OPENSSL_CSTRING,lh)

2626 #define lh_OPENSSL_STRING_new() LHM_lh_new(OPENSSL_STRING,openssl_string)
2627 #define lh_OPENSSL_STRING_insert(lh,inst) LHM_lh_insert(OPENSSL_STRING,lh,inst)
2628 #define lh_OPENSSL_STRING_retrieve(lh,inst) LHM_lh_retrieve(OPENSSL_STRING,lh,in
2629 #define lh_OPENSSL_STRING_delete(lh,inst) LHM_lh_delete(OPENSSL_STRING,lh,inst)
2630 #define lh_OPENSSL_STRING_doall(lh,fn) LHM_lh_doall(OPENSSL_STRING,lh,fn)
2631 #define lh_OPENSSL_STRING_doall_arg(lh,fn,arg_type,arg) \
2632 LHM_lh_doall_arg(OPENSSL_STRING,lh,fn,arg_type,arg)
2633 #define lh_OPENSSL_STRING_error(lh) LHM_lh_error(OPENSSL_STRING,lh)
2634 #define lh_OPENSSL_STRING_num_items(lh) LHM_lh_num_items(OPENSSL_STRING,lh)
2635 #define lh_OPENSSL_STRING_down_load(lh) LHM_lh_down_load(OPENSSL_STRING,lh)

new/usr/src/lib/openssl/include/openssl/safestack.h 41

2636 #define lh_OPENSSL_STRING_node_stats_bio(lh,out) \
2637 LHM_lh_node_stats_bio(OPENSSL_STRING,lh,out)
2638 #define lh_OPENSSL_STRING_node_usage_stats_bio(lh,out) \
2639 LHM_lh_node_usage_stats_bio(OPENSSL_STRING,lh,out)
2640 #define lh_OPENSSL_STRING_stats_bio(lh,out) \
2641 LHM_lh_stats_bio(OPENSSL_STRING,lh,out)
2642 #define lh_OPENSSL_STRING_free(lh) LHM_lh_free(OPENSSL_STRING,lh)

2644 #define lh_SSL_SESSION_new() LHM_lh_new(SSL_SESSION,ssl_session)
2645 #define lh_SSL_SESSION_insert(lh,inst) LHM_lh_insert(SSL_SESSION,lh,inst)
2646 #define lh_SSL_SESSION_retrieve(lh,inst) LHM_lh_retrieve(SSL_SESSION,lh,inst)
2647 #define lh_SSL_SESSION_delete(lh,inst) LHM_lh_delete(SSL_SESSION,lh,inst)
2648 #define lh_SSL_SESSION_doall(lh,fn) LHM_lh_doall(SSL_SESSION,lh,fn)
2649 #define lh_SSL_SESSION_doall_arg(lh,fn,arg_type,arg) \
2650 LHM_lh_doall_arg(SSL_SESSION,lh,fn,arg_type,arg)
2651 #define lh_SSL_SESSION_error(lh) LHM_lh_error(SSL_SESSION,lh)
2652 #define lh_SSL_SESSION_num_items(lh) LHM_lh_num_items(SSL_SESSION,lh)
2653 #define lh_SSL_SESSION_down_load(lh) LHM_lh_down_load(SSL_SESSION,lh)
2654 #define lh_SSL_SESSION_node_stats_bio(lh,out) \
2655 LHM_lh_node_stats_bio(SSL_SESSION,lh,out)
2656 #define lh_SSL_SESSION_node_usage_stats_bio(lh,out) \
2657 LHM_lh_node_usage_stats_bio(SSL_SESSION,lh,out)
2658 #define lh_SSL_SESSION_stats_bio(lh,out) \
2659 LHM_lh_stats_bio(SSL_SESSION,lh,out)
2660 #define lh_SSL_SESSION_free(lh) LHM_lh_free(SSL_SESSION,lh)
2661 /* End of util/mkstack.pl block, you may now edit :-) */

2663 #endif /* !defined HEADER_SAFESTACK_H */

new/usr/src/lib/openssl/include/openssl/sha.h 1

**
 7636 Fri May 30 18:31:22 2014
new/usr/src/lib/openssl/include/openssl/sha.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/sha/sha.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_SHA_H
60 #define HEADER_SHA_H

new/usr/src/lib/openssl/include/openssl/sha.h 2

62 #include <openssl/e_os2.h>
63 #include <stddef.h>

65 #ifdef __cplusplus
66 extern "C" {
67 #endif

69 #if defined(OPENSSL_NO_SHA) || (defined(OPENSSL_NO_SHA0) && defined(OPENSSL_NO_S
70 #error SHA is disabled.
71 #endif

73 #if defined(OPENSSL_FIPS)
74 #define FIPS_SHA_SIZE_T size_t
75 #endif

77 /*
78 * !!
79 * ! SHA_LONG has to be at least 32 bits wide. If it’s wider, then !
80 * ! SHA_LONG_LOG2 has to be defined along. !
81 * !!
82 */

84 #if defined(__LP32__)
85 #define SHA_LONG unsigned long
86 #elif defined(OPENSSL_SYS_CRAY) || defined(__ILP64__)
87 #define SHA_LONG unsigned long
88 #define SHA_LONG_LOG2 3
89 #else
90 #define SHA_LONG unsigned int
91 #endif

93 #define SHA_LBLOCK 16
94 #define SHA_CBLOCK (SHA_LBLOCK*4) /* SHA treats input data as a
95 * contiguous array of 32 bit
96 * wide big-endian values. */
97 #define SHA_LAST_BLOCK (SHA_CBLOCK-8)
98 #define SHA_DIGEST_LENGTH 20

100 typedef struct SHAstate_st
101 {
102 SHA_LONG h0,h1,h2,h3,h4;
103 SHA_LONG Nl,Nh;
104 SHA_LONG data[SHA_LBLOCK];
105 unsigned int num;
106 } SHA_CTX;

108 #ifndef OPENSSL_NO_SHA0
109 #ifdef OPENSSL_FIPS
110 int private_SHA_Init(SHA_CTX *c);
111 #endif
112 int SHA_Init(SHA_CTX *c);
113 int SHA_Update(SHA_CTX *c, const void *data, size_t len);
114 int SHA_Final(unsigned char *md, SHA_CTX *c);
115 unsigned char *SHA(const unsigned char *d, size_t n, unsigned char *md);
116 void SHA_Transform(SHA_CTX *c, const unsigned char *data);
117 #endif
118 #ifndef OPENSSL_NO_SHA1
119 #ifdef OPENSSL_FIPS
120 int private_SHA1_Init(SHA_CTX *c);
121 #endif
122 int SHA1_Init(SHA_CTX *c);
123 int SHA1_Update(SHA_CTX *c, const void *data, size_t len);
124 int SHA1_Final(unsigned char *md, SHA_CTX *c);
125 unsigned char *SHA1(const unsigned char *d, size_t n, unsigned char *md);
126 void SHA1_Transform(SHA_CTX *c, const unsigned char *data);
127 #endif

new/usr/src/lib/openssl/include/openssl/sha.h 3

129 #define SHA256_CBLOCK (SHA_LBLOCK*4) /* SHA-256 treats input data as a
130 * contiguous array of 32 bit
131 * wide big-endian values. */
132 #define SHA224_DIGEST_LENGTH 28
133 #define SHA256_DIGEST_LENGTH 32

135 typedef struct SHA256state_st
136 {
137 SHA_LONG h[8];
138 SHA_LONG Nl,Nh;
139 SHA_LONG data[SHA_LBLOCK];
140 unsigned int num,md_len;
141 } SHA256_CTX;

143 #ifndef OPENSSL_NO_SHA256
144 #ifdef OPENSSL_FIPS
145 int private_SHA224_Init(SHA256_CTX *c);
146 int private_SHA256_Init(SHA256_CTX *c);
147 #endif
148 int SHA224_Init(SHA256_CTX *c);
149 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len);
150 int SHA224_Final(unsigned char *md, SHA256_CTX *c);
151 unsigned char *SHA224(const unsigned char *d, size_t n,unsigned char *md);
152 int SHA256_Init(SHA256_CTX *c);
153 int SHA256_Update(SHA256_CTX *c, const void *data, size_t len);
154 int SHA256_Final(unsigned char *md, SHA256_CTX *c);
155 unsigned char *SHA256(const unsigned char *d, size_t n,unsigned char *md);
156 void SHA256_Transform(SHA256_CTX *c, const unsigned char *data);
157 #endif

159 #define SHA384_DIGEST_LENGTH 48
160 #define SHA512_DIGEST_LENGTH 64

162 #ifndef OPENSSL_NO_SHA512
163 /*
164 * Unlike 32-bit digest algorithms, SHA-512 *relies* on SHA_LONG64
165 * being exactly 64-bit wide. See Implementation Notes in sha512.c
166 * for further details.
167 */
168 #define SHA512_CBLOCK (SHA_LBLOCK*8) /* SHA-512 treats input data as a
169 * contiguous array of 64 bit
170 * wide big-endian values. */
171 #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__)
172 #define SHA_LONG64 unsigned __int64
173 #define U64(C) C##UI64
174 #elif defined(__arch64__)
175 #define SHA_LONG64 unsigned long
176 #define U64(C) C##UL
177 #else
178 #define SHA_LONG64 unsigned long long
179 #define U64(C) C##ULL
180 #endif

182 typedef struct SHA512state_st
183 {
184 SHA_LONG64 h[8];
185 SHA_LONG64 Nl,Nh;
186 union {
187 SHA_LONG64 d[SHA_LBLOCK];
188 unsigned char p[SHA512_CBLOCK];
189 } u;
190 unsigned int num,md_len;
191 } SHA512_CTX;
192 #endif

new/usr/src/lib/openssl/include/openssl/sha.h 4

194 #ifndef OPENSSL_NO_SHA512
195 #ifdef OPENSSL_FIPS
196 int private_SHA384_Init(SHA512_CTX *c);
197 int private_SHA512_Init(SHA512_CTX *c);
198 #endif
199 int SHA384_Init(SHA512_CTX *c);
200 int SHA384_Update(SHA512_CTX *c, const void *data, size_t len);
201 int SHA384_Final(unsigned char *md, SHA512_CTX *c);
202 unsigned char *SHA384(const unsigned char *d, size_t n,unsigned char *md);
203 int SHA512_Init(SHA512_CTX *c);
204 int SHA512_Update(SHA512_CTX *c, const void *data, size_t len);
205 int SHA512_Final(unsigned char *md, SHA512_CTX *c);
206 unsigned char *SHA512(const unsigned char *d, size_t n,unsigned char *md);
207 void SHA512_Transform(SHA512_CTX *c, const unsigned char *data);
208 #endif

210 #ifdef __cplusplus
211 }
212 #endif

214 #endif

new/usr/src/lib/openssl/include/openssl/srp.h 1

**
 5378 Fri May 30 18:31:22 2014
new/usr/src/lib/openssl/include/openssl/srp.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/srp/srp.h */
2 /* Written by Christophe Renou (christophe.renou@edelweb.fr) with
3 * the precious help of Peter Sylvester (peter.sylvester@edelweb.fr)
4 * for the EdelKey project and contributed to the OpenSSL project 2004.
5 */
6 /* ==
7 * Copyright (c) 2004 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * licensing@OpenSSL.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */
59 #ifndef __SRP_H__
60 #define __SRP_H__

new/usr/src/lib/openssl/include/openssl/srp.h 2

62 #ifndef OPENSSL_NO_SRP

64 #include <stdio.h>
65 #include <string.h>

67 #ifdef __cplusplus
68 extern "C" {
69 #endif

71 #include <openssl/safestack.h>
72 #include <openssl/bn.h>
73 #include <openssl/crypto.h>

75 typedef struct SRP_gN_cache_st
76 {
77 char *b64_bn;
78 BIGNUM *bn;
79 } SRP_gN_cache;

82 DECLARE_STACK_OF(SRP_gN_cache)

84 typedef struct SRP_user_pwd_st
85 {
86 char *id;
87 BIGNUM *s;
88 BIGNUM *v;
89 const BIGNUM *g;
90 const BIGNUM *N;
91 char *info;
92 } SRP_user_pwd;

94 DECLARE_STACK_OF(SRP_user_pwd)

96 typedef struct SRP_VBASE_st
97 {
98 STACK_OF(SRP_user_pwd) *users_pwd;
99 STACK_OF(SRP_gN_cache) *gN_cache;
100 /* to simulate a user */
101 char *seed_key;
102 BIGNUM *default_g;
103 BIGNUM *default_N;
104 } SRP_VBASE;

107 /*Structure interne pour retenir les couples N et g*/
108 typedef struct SRP_gN_st
109 {
110 char *id;
111 BIGNUM *g;
112 BIGNUM *N;
113 } SRP_gN;

115 DECLARE_STACK_OF(SRP_gN)

117 SRP_VBASE *SRP_VBASE_new(char *seed_key);
118 int SRP_VBASE_free(SRP_VBASE *vb);
119 int SRP_VBASE_init(SRP_VBASE *vb, char * verifier_file);
120 SRP_user_pwd *SRP_VBASE_get_by_user(SRP_VBASE *vb, char *username);
121 char *SRP_create_verifier(const char *user, const char *pass, char **salt,
122 char **verifier, const char *N, const char *g);
123 int SRP_create_verifier_BN(const char *user, const char *pass, BIGNUM **salt, BI

126 #define SRP_NO_ERROR 0
127 #define SRP_ERR_VBASE_INCOMPLETE_FILE 1

new/usr/src/lib/openssl/include/openssl/srp.h 3

128 #define SRP_ERR_VBASE_BN_LIB 2
129 #define SRP_ERR_OPEN_FILE 3
130 #define SRP_ERR_MEMORY 4

132 #define DB_srptype 0
133 #define DB_srpverifier 1
134 #define DB_srpsalt 2
135 #define DB_srpid 3
136 #define DB_srpgN 4
137 #define DB_srpinfo 5
138 #undef DB_NUMBER
139 #define DB_NUMBER 6

141 #define DB_SRP_INDEX ’I’
142 #define DB_SRP_VALID ’V’
143 #define DB_SRP_REVOKED ’R’
144 #define DB_SRP_MODIF ’v’

147 /* see srp.c */
148 char * SRP_check_known_gN_param(BIGNUM* g, BIGNUM* N);
149 SRP_gN *SRP_get_default_gN(const char * id) ;

151 /* server side */
152 BIGNUM *SRP_Calc_server_key(BIGNUM *A, BIGNUM *v, BIGNUM *u, BIGNUM *b, BIGNUM *
153 BIGNUM *SRP_Calc_B(BIGNUM *b, BIGNUM *N, BIGNUM *g, BIGNUM *v);
154 int SRP_Verify_A_mod_N(BIGNUM *A, BIGNUM *N);
155 BIGNUM *SRP_Calc_u(BIGNUM *A, BIGNUM *B, BIGNUM *N) ;

159 /* client side */
160 BIGNUM *SRP_Calc_x(BIGNUM *s, const char *user, const char *pass);
161 BIGNUM *SRP_Calc_A(BIGNUM *a, BIGNUM *N, BIGNUM *g);
162 BIGNUM *SRP_Calc_client_key(BIGNUM *N, BIGNUM *B, BIGNUM *g, BIGNUM *x, BIGNUM *
163 int SRP_Verify_B_mod_N(BIGNUM *B, BIGNUM *N);

165 #define SRP_MINIMAL_N 1024

167 #ifdef __cplusplus
168 }
169 #endif

171 #endif
172 #endif

new/usr/src/lib/openssl/include/openssl/srtp.h 1

**
 6644 Fri May 30 18:31:22 2014
new/usr/src/lib/openssl/include/openssl/srtp.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/tls1.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/include/openssl/srtp.h 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /*
112 DTLS code by Eric Rescorla <ekr@rtfm.com>

114 Copyright (C) 2006, Network Resonance, Inc.
115 Copyright (C) 2011, RTFM, Inc.
116 */

118 #ifndef HEADER_D1_SRTP_H
119 #define HEADER_D1_SRTP_H

121 #ifdef __cplusplus
122 extern "C" {
123 #endif

125
126 #define SRTP_AES128_CM_SHA1_80 0x0001
127 #define SRTP_AES128_CM_SHA1_32 0x0002

new/usr/src/lib/openssl/include/openssl/srtp.h 3

128 #define SRTP_AES128_F8_SHA1_80 0x0003
129 #define SRTP_AES128_F8_SHA1_32 0x0004
130 #define SRTP_NULL_SHA1_80 0x0005
131 #define SRTP_NULL_SHA1_32 0x0006

133 int SSL_CTX_set_tlsext_use_srtp(SSL_CTX *ctx, const char *profiles);
134 int SSL_set_tlsext_use_srtp(SSL *ctx, const char *profiles);
135 SRTP_PROTECTION_PROFILE *SSL_get_selected_srtp_profile(SSL *s);

137 STACK_OF(SRTP_PROTECTION_PROFILE) *SSL_get_srtp_profiles(SSL *ssl);
138 SRTP_PROTECTION_PROFILE *SSL_get_selected_srtp_profile(SSL *s);

140 #ifdef __cplusplus
141 }
142 #endif

144 #endif

new/usr/src/lib/openssl/include/openssl/ssl.h 1

**
 103768 Fri May 30 18:31:22 2014
new/usr/src/lib/openssl/include/openssl/ssl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/ssl.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/include/openssl/ssl.h 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /* ==
112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
113 * ECC cipher suite support in OpenSSL originally developed by
114 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
115 */
116 /* ==
117 * Copyright 2005 Nokia. All rights reserved.
118 *
119 * The portions of the attached software ("Contribution") is developed by
120 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
121 * license.
122 *
123 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
124 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
125 * support (see RFC 4279) to OpenSSL.
126 *
127 * No patent licenses or other rights except those expressly stated in

new/usr/src/lib/openssl/include/openssl/ssl.h 3

128 * the OpenSSL open source license shall be deemed granted or received
129 * expressly, by implication, estoppel, or otherwise.
130 *
131 * No assurances are provided by Nokia that the Contribution does not
132 * infringe the patent or other intellectual property rights of any third
133 * party or that the license provides you with all the necessary rights
134 * to make use of the Contribution.
135 *
136 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
137 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
138 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
139 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
140 * OTHERWISE.
141 */

143 #ifndef HEADER_SSL_H
144 #define HEADER_SSL_H

146 #include <openssl/e_os2.h>

148 #ifndef OPENSSL_NO_COMP
149 #include <openssl/comp.h>
150 #endif
151 #ifndef OPENSSL_NO_BIO
152 #include <openssl/bio.h>
153 #endif
154 #ifndef OPENSSL_NO_DEPRECATED
155 #ifndef OPENSSL_NO_X509
156 #include <openssl/x509.h>
157 #endif
158 #include <openssl/crypto.h>
159 #include <openssl/lhash.h>
160 #include <openssl/buffer.h>
161 #endif
162 #include <openssl/pem.h>
163 #include <openssl/hmac.h>

165 #include <openssl/kssl.h>
166 #include <openssl/safestack.h>
167 #include <openssl/symhacks.h>

169 #ifdef __cplusplus
170 extern "C" {
171 #endif

173 /* SSLeay version number for ASN.1 encoding of the session information */
174 /* Version 0 - initial version
175 * Version 1 - added the optional peer certificate
176 */
177 #define SSL_SESSION_ASN1_VERSION 0x0001

179 /* text strings for the ciphers */
180 #define SSL_TXT_NULL_WITH_MD5 SSL2_TXT_NULL_WITH_MD5
181 #define SSL_TXT_RC4_128_WITH_MD5 SSL2_TXT_RC4_128_WITH_MD5
182 #define SSL_TXT_RC4_128_EXPORT40_WITH_MD5 SSL2_TXT_RC4_128_EXPORT40_WITH_MD5
183 #define SSL_TXT_RC2_128_CBC_WITH_MD5 SSL2_TXT_RC2_128_CBC_WITH_MD5
184 #define SSL_TXT_RC2_128_CBC_EXPORT40_WITH_MD5 SSL2_TXT_RC2_128_CBC_EXPORT40_WITH
185 #define SSL_TXT_IDEA_128_CBC_WITH_MD5 SSL2_TXT_IDEA_128_CBC_WITH_MD5
186 #define SSL_TXT_DES_64_CBC_WITH_MD5 SSL2_TXT_DES_64_CBC_WITH_MD5
187 #define SSL_TXT_DES_64_CBC_WITH_SHA SSL2_TXT_DES_64_CBC_WITH_SHA
188 #define SSL_TXT_DES_192_EDE3_CBC_WITH_MD5 SSL2_TXT_DES_192_EDE3_CBC_WITH_MD5
189 #define SSL_TXT_DES_192_EDE3_CBC_WITH_SHA SSL2_TXT_DES_192_EDE3_CBC_WITH_SHA

191 /* VRS Additional Kerberos5 entries
192 */
193 #define SSL_TXT_KRB5_DES_64_CBC_SHA SSL3_TXT_KRB5_DES_64_CBC_SHA

new/usr/src/lib/openssl/include/openssl/ssl.h 4

194 #define SSL_TXT_KRB5_DES_192_CBC3_SHA SSL3_TXT_KRB5_DES_192_CBC3_SHA
195 #define SSL_TXT_KRB5_RC4_128_SHA SSL3_TXT_KRB5_RC4_128_SHA
196 #define SSL_TXT_KRB5_IDEA_128_CBC_SHA SSL3_TXT_KRB5_IDEA_128_CBC_SHA
197 #define SSL_TXT_KRB5_DES_64_CBC_MD5 SSL3_TXT_KRB5_DES_64_CBC_MD5
198 #define SSL_TXT_KRB5_DES_192_CBC3_MD5 SSL3_TXT_KRB5_DES_192_CBC3_MD5
199 #define SSL_TXT_KRB5_RC4_128_MD5 SSL3_TXT_KRB5_RC4_128_MD5
200 #define SSL_TXT_KRB5_IDEA_128_CBC_MD5 SSL3_TXT_KRB5_IDEA_128_CBC_MD5

202 #define SSL_TXT_KRB5_DES_40_CBC_SHA SSL3_TXT_KRB5_DES_40_CBC_SHA
203 #define SSL_TXT_KRB5_RC2_40_CBC_SHA SSL3_TXT_KRB5_RC2_40_CBC_SHA
204 #define SSL_TXT_KRB5_RC4_40_SHA SSL3_TXT_KRB5_RC4_40_SHA
205 #define SSL_TXT_KRB5_DES_40_CBC_MD5 SSL3_TXT_KRB5_DES_40_CBC_MD5
206 #define SSL_TXT_KRB5_RC2_40_CBC_MD5 SSL3_TXT_KRB5_RC2_40_CBC_MD5
207 #define SSL_TXT_KRB5_RC4_40_MD5 SSL3_TXT_KRB5_RC4_40_MD5

209 #define SSL_TXT_KRB5_DES_40_CBC_SHA SSL3_TXT_KRB5_DES_40_CBC_SHA
210 #define SSL_TXT_KRB5_DES_40_CBC_MD5 SSL3_TXT_KRB5_DES_40_CBC_MD5
211 #define SSL_TXT_KRB5_DES_64_CBC_SHA SSL3_TXT_KRB5_DES_64_CBC_SHA
212 #define SSL_TXT_KRB5_DES_64_CBC_MD5 SSL3_TXT_KRB5_DES_64_CBC_MD5
213 #define SSL_TXT_KRB5_DES_192_CBC3_SHA SSL3_TXT_KRB5_DES_192_CBC3_SHA
214 #define SSL_TXT_KRB5_DES_192_CBC3_MD5 SSL3_TXT_KRB5_DES_192_CBC3_MD5
215 #define SSL_MAX_KRB5_PRINCIPAL_LENGTH 256

217 #define SSL_MAX_SSL_SESSION_ID_LENGTH 32
218 #define SSL_MAX_SID_CTX_LENGTH 32

220 #define SSL_MIN_RSA_MODULUS_LENGTH_IN_BYTES (512/8)
221 #define SSL_MAX_KEY_ARG_LENGTH 8
222 #define SSL_MAX_MASTER_KEY_LENGTH 48

225 /* These are used to specify which ciphers to use and not to use */

227 #define SSL_TXT_EXP40 "EXPORT40"
228 #define SSL_TXT_EXP56 "EXPORT56"
229 #define SSL_TXT_LOW "LOW"
230 #define SSL_TXT_MEDIUM "MEDIUM"
231 #define SSL_TXT_HIGH "HIGH"
232 #define SSL_TXT_FIPS "FIPS"

234 #define SSL_TXT_kFZA "kFZA" /* unused! */
235 #define SSL_TXT_aFZA "aFZA" /* unused! */
236 #define SSL_TXT_eFZA "eFZA" /* unused! */
237 #define SSL_TXT_FZA "FZA" /* unused! */

239 #define SSL_TXT_aNULL "aNULL"
240 #define SSL_TXT_eNULL "eNULL"
241 #define SSL_TXT_NULL "NULL"

243 #define SSL_TXT_kRSA "kRSA"
244 #define SSL_TXT_kDHr "kDHr" /* no such ciphersuites supported! */
245 #define SSL_TXT_kDHd "kDHd" /* no such ciphersuites supported! */
246 #define SSL_TXT_kDH "kDH" /* no such ciphersuites supported! */
247 #define SSL_TXT_kEDH "kEDH"
248 #define SSL_TXT_kKRB5 "kKRB5"
249 #define SSL_TXT_kECDHr "kECDHr"
250 #define SSL_TXT_kECDHe "kECDHe"
251 #define SSL_TXT_kECDH "kECDH"
252 #define SSL_TXT_kEECDH "kEECDH"
253 #define SSL_TXT_kPSK "kPSK"
254 #define SSL_TXT_kGOST "kGOST"
255 #define SSL_TXT_kSRP "kSRP"

257 #define SSL_TXT_aRSA "aRSA"
258 #define SSL_TXT_aDSS "aDSS"
259 #define SSL_TXT_aDH "aDH" /* no such ciphersuites supported! */

new/usr/src/lib/openssl/include/openssl/ssl.h 5

260 #define SSL_TXT_aECDH "aECDH"
261 #define SSL_TXT_aKRB5 "aKRB5"
262 #define SSL_TXT_aECDSA "aECDSA"
263 #define SSL_TXT_aPSK "aPSK"
264 #define SSL_TXT_aGOST94 "aGOST94"
265 #define SSL_TXT_aGOST01 "aGOST01"
266 #define SSL_TXT_aGOST "aGOST"

268 #define SSL_TXT_DSS "DSS"
269 #define SSL_TXT_DH "DH"
270 #define SSL_TXT_EDH "EDH" /* same as "kEDH:-ADH" */
271 #define SSL_TXT_ADH "ADH"
272 #define SSL_TXT_RSA "RSA"
273 #define SSL_TXT_ECDH "ECDH"
274 #define SSL_TXT_EECDH "EECDH" /* same as "kEECDH:-AECDH" */
275 #define SSL_TXT_AECDH "AECDH"
276 #define SSL_TXT_ECDSA "ECDSA"
277 #define SSL_TXT_KRB5 "KRB5"
278 #define SSL_TXT_PSK "PSK"
279 #define SSL_TXT_SRP "SRP"

281 #define SSL_TXT_DES "DES"
282 #define SSL_TXT_3DES "3DES"
283 #define SSL_TXT_RC4 "RC4"
284 #define SSL_TXT_RC2 "RC2"
285 #define SSL_TXT_IDEA "IDEA"
286 #define SSL_TXT_SEED "SEED"
287 #define SSL_TXT_AES128 "AES128"
288 #define SSL_TXT_AES256 "AES256"
289 #define SSL_TXT_AES "AES"
290 #define SSL_TXT_AES_GCM "AESGCM"
291 #define SSL_TXT_CAMELLIA128 "CAMELLIA128"
292 #define SSL_TXT_CAMELLIA256 "CAMELLIA256"
293 #define SSL_TXT_CAMELLIA "CAMELLIA"

295 #define SSL_TXT_MD5 "MD5"
296 #define SSL_TXT_SHA1 "SHA1"
297 #define SSL_TXT_SHA "SHA" /* same as "SHA1" */
298 #define SSL_TXT_GOST94 "GOST94"
299 #define SSL_TXT_GOST89MAC "GOST89MAC"
300 #define SSL_TXT_SHA256 "SHA256"
301 #define SSL_TXT_SHA384 "SHA384"

303 #define SSL_TXT_SSLV2 "SSLv2"
304 #define SSL_TXT_SSLV3 "SSLv3"
305 #define SSL_TXT_TLSV1 "TLSv1"
306 #define SSL_TXT_TLSV1_1 "TLSv1.1"
307 #define SSL_TXT_TLSV1_2 "TLSv1.2"

309 #define SSL_TXT_EXP "EXP"
310 #define SSL_TXT_EXPORT "EXPORT"

312 #define SSL_TXT_ALL "ALL"

314 /*
315 * COMPLEMENTOF* definitions. These identifiers are used to (de-select)
316 * ciphers normally not being used.
317 * Example: "RC4" will activate all ciphers using RC4 including ciphers
318 * without authentication, which would normally disabled by DEFAULT (due
319 * the "!ADH" being part of default). Therefore "RC4:!COMPLEMENTOFDEFAULT"
320 * will make sure that it is also disabled in the specific selection.
321 * COMPLEMENTOF* identifiers are portable between version, as adjustments
322 * to the default cipher setup will also be included here.
323 *
324 * COMPLEMENTOFDEFAULT does not experience the same special treatment that
325 * DEFAULT gets, as only selection is being done and no sorting as needed

new/usr/src/lib/openssl/include/openssl/ssl.h 6

326 * for DEFAULT.
327 */
328 #define SSL_TXT_CMPALL "COMPLEMENTOFALL"
329 #define SSL_TXT_CMPDEF "COMPLEMENTOFDEFAULT"

331 /* The following cipher list is used by default.
332 * It also is substituted when an application-defined cipher list string
333 * starts with ’DEFAULT’. */
334 #define SSL_DEFAULT_CIPHER_LIST "ALL:!aNULL:!eNULL:!SSLv2"
335 /* As of OpenSSL 1.0.0, ssl_create_cipher_list() in ssl/ssl_ciph.c always
336 * starts with a reasonable order, and all we have to do for DEFAULT is
337 * throwing out anonymous and unencrypted ciphersuites!
338 * (The latter are not actually enabled by ALL, but "ALL:RSA" would enable
339 * some of them.)
340 */

342 /* Used in SSL_set_shutdown()/SSL_get_shutdown(); */
343 #define SSL_SENT_SHUTDOWN 1
344 #define SSL_RECEIVED_SHUTDOWN 2

346 #ifdef __cplusplus
347 }
348 #endif

350 #ifdef __cplusplus
351 extern "C" {
352 #endif

354 #if (defined(OPENSSL_NO_RSA) || defined(OPENSSL_NO_MD5)) && !defined(OPENSSL_NO_
355 #define OPENSSL_NO_SSL2
356 #endif

358 #define SSL_FILETYPE_ASN1 X509_FILETYPE_ASN1
359 #define SSL_FILETYPE_PEM X509_FILETYPE_PEM

361 /* This is needed to stop compilers complaining about the
362 * ’struct ssl_st *’ function parameters used to prototype callbacks
363 * in SSL_CTX. */
364 typedef struct ssl_st *ssl_crock_st;
365 typedef struct tls_session_ticket_ext_st TLS_SESSION_TICKET_EXT;
366 typedef struct ssl_method_st SSL_METHOD;
367 typedef struct ssl_cipher_st SSL_CIPHER;
368 typedef struct ssl_session_st SSL_SESSION;

370 DECLARE_STACK_OF(SSL_CIPHER)

372 /* SRTP protection profiles for use with the use_srtp extension (RFC 5764)*/
373 typedef struct srtp_protection_profile_st
374 {
375 const char *name;
376 unsigned long id;
377 } SRTP_PROTECTION_PROFILE;

379 DECLARE_STACK_OF(SRTP_PROTECTION_PROFILE)

381 typedef int (*tls_session_ticket_ext_cb_fn)(SSL *s, const unsigned char *data, i
382 typedef int (*tls_session_secret_cb_fn)(SSL *s, void *secret, int *secret_len, S

385 #ifndef OPENSSL_NO_SSL_INTERN

387 /* used to hold info on the particular ciphers used */
388 struct ssl_cipher_st
389 {
390 int valid;
391 const char *name; /* text name */

new/usr/src/lib/openssl/include/openssl/ssl.h 7

392 unsigned long id; /* id, 4 bytes, first is version */

394 /* changed in 0.9.9: these four used to be portions of a single value ’a
395 unsigned long algorithm_mkey; /* key exchange algorithm */
396 unsigned long algorithm_auth; /* server authentication */
397 unsigned long algorithm_enc; /* symmetric encryption */
398 unsigned long algorithm_mac; /* symmetric authentication */
399 unsigned long algorithm_ssl; /* (major) protocol version */

401 unsigned long algo_strength; /* strength and export flags */
402 unsigned long algorithm2; /* Extra flags */
403 int strength_bits; /* Number of bits really used */
404 int alg_bits; /* Number of bits for algorithm */
405 };

408 /* Used to hold functions for SSLv2 or SSLv3/TLSv1 functions */
409 struct ssl_method_st
410 {
411 int version;
412 int (*ssl_new)(SSL *s);
413 void (*ssl_clear)(SSL *s);
414 void (*ssl_free)(SSL *s);
415 int (*ssl_accept)(SSL *s);
416 int (*ssl_connect)(SSL *s);
417 int (*ssl_read)(SSL *s,void *buf,int len);
418 int (*ssl_peek)(SSL *s,void *buf,int len);
419 int (*ssl_write)(SSL *s,const void *buf,int len);
420 int (*ssl_shutdown)(SSL *s);
421 int (*ssl_renegotiate)(SSL *s);
422 int (*ssl_renegotiate_check)(SSL *s);
423 long (*ssl_get_message)(SSL *s, int st1, int stn, int mt, long
424 max, int *ok);
425 int (*ssl_read_bytes)(SSL *s, int type, unsigned char *buf, int len,
426 int peek);
427 int (*ssl_write_bytes)(SSL *s, int type, const void *buf_, int len);
428 int (*ssl_dispatch_alert)(SSL *s);
429 long (*ssl_ctrl)(SSL *s,int cmd,long larg,void *parg);
430 long (*ssl_ctx_ctrl)(SSL_CTX *ctx,int cmd,long larg,void *parg);
431 const SSL_CIPHER *(*get_cipher_by_char)(const unsigned char *ptr);
432 int (*put_cipher_by_char)(const SSL_CIPHER *cipher,unsigned char *ptr);
433 int (*ssl_pending)(const SSL *s);
434 int (*num_ciphers)(void);
435 const SSL_CIPHER *(*get_cipher)(unsigned ncipher);
436 const struct ssl_method_st *(*get_ssl_method)(int version);
437 long (*get_timeout)(void);
438 struct ssl3_enc_method *ssl3_enc; /* Extra SSLv3/TLS stuff */
439 int (*ssl_version)(void);
440 long (*ssl_callback_ctrl)(SSL *s, int cb_id, void (*fp)(void));
441 long (*ssl_ctx_callback_ctrl)(SSL_CTX *s, int cb_id, void (*fp)(void));
442 };

444 /* Lets make this into an ASN.1 type structure as follows
445 * SSL_SESSION_ID ::= SEQUENCE {
446 * version INTEGER, -- structure version number
447 * SSLversion INTEGER, -- SSL version number
448 * Cipher OCTET STRING, -- the 3 byte cipher ID
449 * Session_ID OCTET STRING, -- the Session ID
450 * Master_key OCTET STRING, -- the master key
451 * KRB5_principal OCTET STRING -- optional Kerberos principal
452 * Key_Arg [0] IMPLICIT OCTET STRING, -- the optional Key argument
453 * Time [1] EXPLICIT INTEGER, -- optional Start Time
454 * Timeout [2] EXPLICIT INTEGER, -- optional Timeout ins seconds
455 * Peer [3] EXPLICIT X509, -- optional Peer Certificate
456 * Session_ID_context [4] EXPLICIT OCTET STRING, -- the Session ID cont
457 * Verify_result [5] EXPLICIT INTEGER, -- X509_V_... code for ‘Peer’

new/usr/src/lib/openssl/include/openssl/ssl.h 8

458 * HostName [6] EXPLICIT OCTET STRING, -- optional HostName from server
459 * PSK_identity_hint [7] EXPLICIT OCTET STRING, -- optional PSK identity
460 * PSK_identity [8] EXPLICIT OCTET STRING, -- optional PSK identity
461 * Ticket_lifetime_hint [9] EXPLICIT INTEGER, -- server’s lifetime hint for
462 * Ticket [10] EXPLICIT OCTET STRING, -- session ticket (client
463 * Compression_meth [11] EXPLICIT OCTET STRING, -- optional compression m
464 * SRP_username [12] EXPLICIT OCTET STRING -- optional SRP username
465 * }
466 * Look in ssl/ssl_asn1.c for more details
467 * I’m using EXPLICIT tags so I can read the damn things using asn1parse :-).
468 */
469 struct ssl_session_st
470 {
471 int ssl_version; /* what ssl version session info is
472 * being kept in here? */

474 /* only really used in SSLv2 */
475 unsigned int key_arg_length;
476 unsigned char key_arg[SSL_MAX_KEY_ARG_LENGTH];
477 int master_key_length;
478 unsigned char master_key[SSL_MAX_MASTER_KEY_LENGTH];
479 /* session_id - valid? */
480 unsigned int session_id_length;
481 unsigned char session_id[SSL_MAX_SSL_SESSION_ID_LENGTH];
482 /* this is used to determine whether the session is being reused in
483 * the appropriate context. It is up to the application to set this,
484 * via SSL_new */
485 unsigned int sid_ctx_length;
486 unsigned char sid_ctx[SSL_MAX_SID_CTX_LENGTH];

488 #ifndef OPENSSL_NO_KRB5
489 unsigned int krb5_client_princ_len;
490 unsigned char krb5_client_princ[SSL_MAX_KRB5_PRINCIPAL_LENGTH];
491 #endif /* OPENSSL_NO_KRB5 */
492 #ifndef OPENSSL_NO_PSK
493 char *psk_identity_hint;
494 char *psk_identity;
495 #endif
496 /* Used to indicate that session resumption is not allowed.
497 * Applications can also set this bit for a new session via
498 * not_resumable_session_cb to disable session caching and tickets. */
499 int not_resumable;

501 /* The cert is the certificate used to establish this connection */
502 struct sess_cert_st /* SESS_CERT */ *sess_cert;

504 /* This is the cert for the other end.
505 * On clients, it will be the same as sess_cert->peer_key->x509
506 * (the latter is not enough as sess_cert is not retained
507 * in the external representation of sessions, see ssl_asn1.c). */
508 X509 *peer;
509 /* when app_verify_callback accepts a session where the peer’s certifica
510 * is not ok, we must remember the error for session reuse: */
511 long verify_result; /* only for servers */

513 int references;
514 long timeout;
515 long time;

517 unsigned int compress_meth; /* Need to lookup the method */

519 const SSL_CIPHER *cipher;
520 unsigned long cipher_id; /* when ASN.1 loaded, this
521 * needs to be used to load
522 * the ’cipher’ structure */

new/usr/src/lib/openssl/include/openssl/ssl.h 9

524 STACK_OF(SSL_CIPHER) *ciphers; /* shared ciphers? */

526 CRYPTO_EX_DATA ex_data; /* application specific data */

528 /* These are used to make removal of session-ids more
529 * efficient and to implement a maximum cache size. */
530 struct ssl_session_st *prev,*next;
531 #ifndef OPENSSL_NO_TLSEXT
532 char *tlsext_hostname;
533 #ifndef OPENSSL_NO_EC
534 size_t tlsext_ecpointformatlist_length;
535 unsigned char *tlsext_ecpointformatlist; /* peer’s list */
536 size_t tlsext_ellipticcurvelist_length;
537 unsigned char *tlsext_ellipticcurvelist; /* peer’s list */
538 #endif /* OPENSSL_NO_EC */
539 /* RFC4507 info */
540 unsigned char *tlsext_tick; /* Session ticket */
541 size_t tlsext_ticklen; /* Session ticket length */
542 long tlsext_tick_lifetime_hint; /* Session lifetime hint in seconds */
543 #endif
544 #ifndef OPENSSL_NO_SRP
545 char *srp_username;
546 #endif
547 };

549 #endif

551 #define SSL_OP_MICROSOFT_SESS_ID_BUG 0x00000001L
552 #define SSL_OP_NETSCAPE_CHALLENGE_BUG 0x00000002L
553 /* Allow initial connection to servers that don’t support RI */
554 #define SSL_OP_LEGACY_SERVER_CONNECT 0x00000004L
555 #define SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG 0x00000008L
556 #define SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG 0x00000010L
557 #define SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER 0x00000020L
558 #define SSL_OP_SAFARI_ECDHE_ECDSA_BUG 0x00000040L
559 #define SSL_OP_SSLEAY_080_CLIENT_DH_BUG 0x00000080L
560 #define SSL_OP_TLS_D5_BUG 0x00000100L
561 #define SSL_OP_TLS_BLOCK_PADDING_BUG 0x00000200L

563 /* Hasn’t done anything since OpenSSL 0.9.7h, retained for compatibility */
564 #define SSL_OP_MSIE_SSLV2_RSA_PADDING 0x0

566 /* Disable SSL 3.0/TLS 1.0 CBC vulnerability workaround that was added
567 * in OpenSSL 0.9.6d. Usually (depending on the application protocol)
568 * the workaround is not needed. Unfortunately some broken SSL/TLS
569 * implementations cannot handle it at all, which is why we include
570 * it in SSL_OP_ALL. */
571 #define SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS 0x00000800L /* added in

573 /* SSL_OP_ALL: various bug workarounds that should be rather harmless.
574 * This used to be 0x000FFFFFL before 0.9.7. */
575 #define SSL_OP_ALL 0x80000BFFL

577 /* DTLS options */
578 #define SSL_OP_NO_QUERY_MTU 0x00001000L
579 /* Turn on Cookie Exchange (on relevant for servers) */
580 #define SSL_OP_COOKIE_EXCHANGE 0x00002000L
581 /* Don’t use RFC4507 ticket extension */
582 #define SSL_OP_NO_TICKET 0x00004000L
583 /* Use Cisco’s "speshul" version of DTLS_BAD_VER (as client) */
584 #define SSL_OP_CISCO_ANYCONNECT 0x00008000L

586 /* As server, disallow session resumption on renegotiation */
587 #define SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION 0x00010000L
588 /* Don’t use compression even if supported */
589 #define SSL_OP_NO_COMPRESSION 0x00020000L

new/usr/src/lib/openssl/include/openssl/ssl.h 10

590 /* Permit unsafe legacy renegotiation */
591 #define SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION 0x00040000L
592 /* If set, always create a new key when using tmp_ecdh parameters */
593 #define SSL_OP_SINGLE_ECDH_USE 0x00080000L
594 /* If set, always create a new key when using tmp_dh parameters */
595 #define SSL_OP_SINGLE_DH_USE 0x00100000L
596 /* Set to always use the tmp_rsa key when doing RSA operations,
597 * even when this violates protocol specs */
598 #define SSL_OP_EPHEMERAL_RSA 0x00200000L
599 /* Set on servers to choose the cipher according to the server’s
600 * preferences */
601 #define SSL_OP_CIPHER_SERVER_PREFERENCE 0x00400000L
602 /* If set, a server will allow a client to issue a SSLv3.0 version number
603 * as latest version supported in the premaster secret, even when TLSv1.0
604 * (version 3.1) was announced in the client hello. Normally this is
605 * forbidden to prevent version rollback attacks. */
606 #define SSL_OP_TLS_ROLLBACK_BUG 0x00800000L

608 #define SSL_OP_NO_SSLv2 0x01000000L
609 #define SSL_OP_NO_SSLv3 0x02000000L
610 #define SSL_OP_NO_TLSv1 0x04000000L
611 #define SSL_OP_NO_TLSv1_2 0x08000000L
612 #define SSL_OP_NO_TLSv1_1 0x10000000L

614 /* These next two were never actually used for anything since SSLeay
615 * zap so we have some more flags.
616 */
617 /* The next flag deliberately changes the ciphertest, this is a check
618 * for the PKCS#1 attack */
619 #define SSL_OP_PKCS1_CHECK_1 0x0
620 #define SSL_OP_PKCS1_CHECK_2 0x0

622 #define SSL_OP_NETSCAPE_CA_DN_BUG 0x20000000L
623 #define SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG 0x40000000L
624 /* Make server add server-hello extension from early version of
625 * cryptopro draft, when GOST ciphersuite is negotiated.
626 * Required for interoperability with CryptoPro CSP 3.x
627 */
628 #define SSL_OP_CRYPTOPRO_TLSEXT_BUG 0x80000000L

630 /* Allow SSL_write(..., n) to return r with 0 < r < n (i.e. report success
631 * when just a single record has been written): */
632 #define SSL_MODE_ENABLE_PARTIAL_WRITE 0x00000001L
633 /* Make it possible to retry SSL_write() with changed buffer location
634 * (buffer contents must stay the same!); this is not the default to avoid
635 * the misconception that non-blocking SSL_write() behaves like
636 * non-blocking write(): */
637 #define SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER 0x00000002L
638 /* Never bother the application with retries if the transport
639 * is blocking: */
640 #define SSL_MODE_AUTO_RETRY 0x00000004L
641 /* Don’t attempt to automatically build certificate chain */
642 #define SSL_MODE_NO_AUTO_CHAIN 0x00000008L
643 /* Save RAM by releasing read and write buffers when they’re empty. (SSL3 and
644 * TLS only.) "Released" buffers are put onto a free-list in the context
645 * or just freed (depending on the context’s setting for freelist_max_len). */
646 #define SSL_MODE_RELEASE_BUFFERS 0x00000010L
647 /* Send the current time in the Random fields of the ClientHello and
648 * ServerHello records for compatibility with hypothetical implementations
649 * that require it.
650 */
651 #define SSL_MODE_SEND_CLIENTHELLO_TIME 0x00000020L
652 #define SSL_MODE_SEND_SERVERHELLO_TIME 0x00000040L

654 /* Note: SSL[_CTX]_set_{options,mode} use |= op on the previous value,
655 * they cannot be used to clear bits. */

new/usr/src/lib/openssl/include/openssl/ssl.h 11

657 #define SSL_CTX_set_options(ctx,op) \
658 SSL_CTX_ctrl((ctx),SSL_CTRL_OPTIONS,(op),NULL)
659 #define SSL_CTX_clear_options(ctx,op) \
660 SSL_CTX_ctrl((ctx),SSL_CTRL_CLEAR_OPTIONS,(op),NULL)
661 #define SSL_CTX_get_options(ctx) \
662 SSL_CTX_ctrl((ctx),SSL_CTRL_OPTIONS,0,NULL)
663 #define SSL_set_options(ssl,op) \
664 SSL_ctrl((ssl),SSL_CTRL_OPTIONS,(op),NULL)
665 #define SSL_clear_options(ssl,op) \
666 SSL_ctrl((ssl),SSL_CTRL_CLEAR_OPTIONS,(op),NULL)
667 #define SSL_get_options(ssl) \
668 SSL_ctrl((ssl),SSL_CTRL_OPTIONS,0,NULL)

670 #define SSL_CTX_set_mode(ctx,op) \
671 SSL_CTX_ctrl((ctx),SSL_CTRL_MODE,(op),NULL)
672 #define SSL_CTX_clear_mode(ctx,op) \
673 SSL_CTX_ctrl((ctx),SSL_CTRL_CLEAR_MODE,(op),NULL)
674 #define SSL_CTX_get_mode(ctx) \
675 SSL_CTX_ctrl((ctx),SSL_CTRL_MODE,0,NULL)
676 #define SSL_clear_mode(ssl,op) \
677 SSL_ctrl((ssl),SSL_CTRL_CLEAR_MODE,(op),NULL)
678 #define SSL_set_mode(ssl,op) \
679 SSL_ctrl((ssl),SSL_CTRL_MODE,(op),NULL)
680 #define SSL_get_mode(ssl) \
681 SSL_ctrl((ssl),SSL_CTRL_MODE,0,NULL)
682 #define SSL_set_mtu(ssl, mtu) \
683 SSL_ctrl((ssl),SSL_CTRL_SET_MTU,(mtu),NULL)

685 #define SSL_get_secure_renegotiation_support(ssl) \
686 SSL_ctrl((ssl), SSL_CTRL_GET_RI_SUPPORT, 0, NULL)

688 #ifndef OPENSSL_NO_HEARTBEATS
689 #define SSL_heartbeat(ssl) \
690 SSL_ctrl((ssl),SSL_CTRL_TLS_EXT_SEND_HEARTBEAT,0,NULL)
691 #endif

693 void SSL_CTX_set_msg_callback(SSL_CTX *ctx, void (*cb)(int write_p, int version,
694 void SSL_set_msg_callback(SSL *ssl, void (*cb)(int write_p, int version, int con
695 #define SSL_CTX_set_msg_callback_arg(ctx, arg) SSL_CTX_ctrl((ctx), SSL_CTRL_SET_
696 #define SSL_set_msg_callback_arg(ssl, arg) SSL_ctrl((ssl), SSL_CTRL_SET_MSG_CALL

698 #ifndef OPENSSL_NO_SRP

700 #ifndef OPENSSL_NO_SSL_INTERN

702 typedef struct srp_ctx_st
703 {
704 /* param for all the callbacks */
705 void *SRP_cb_arg;
706 /* set client Hello login callback */
707 int (*TLS_ext_srp_username_callback)(SSL *, int *, void *);
708 /* set SRP N/g param callback for verification */
709 int (*SRP_verify_param_callback)(SSL *, void *);
710 /* set SRP client passwd callback */
711 char *(*SRP_give_srp_client_pwd_callback)(SSL *, void *);

713 char *login;
714 BIGNUM *N,*g,*s,*B,*A;
715 BIGNUM *a,*b,*v;
716 char *info;
717 int strength;

719 unsigned long srp_Mask;
720 } SRP_CTX;

new/usr/src/lib/openssl/include/openssl/ssl.h 12

722 #endif

724 /* see tls_srp.c */
725 int SSL_SRP_CTX_init(SSL *s);
726 int SSL_CTX_SRP_CTX_init(SSL_CTX *ctx);
727 int SSL_SRP_CTX_free(SSL *ctx);
728 int SSL_CTX_SRP_CTX_free(SSL_CTX *ctx);
729 int SSL_srp_server_param_with_username(SSL *s, int *ad);
730 int SRP_generate_server_master_secret(SSL *s,unsigned char *master_key);
731 int SRP_Calc_A_param(SSL *s);
732 int SRP_generate_client_master_secret(SSL *s,unsigned char *master_key);

734 #endif

736 #if defined(OPENSSL_SYS_MSDOS) && !defined(OPENSSL_SYS_WIN32)
737 #define SSL_MAX_CERT_LIST_DEFAULT 1024*30 /* 30k max cert list :-) */
738 #else
739 #define SSL_MAX_CERT_LIST_DEFAULT 1024*100 /* 100k max cert list :-) */
740 #endif

742 #define SSL_SESSION_CACHE_MAX_SIZE_DEFAULT (1024*20)

744 /* This callback type is used inside SSL_CTX, SSL, and in the functions that set
745 * them. It is used to override the generation of SSL/TLS session IDs in a
746 * server. Return value should be zero on an error, non-zero to proceed. Also,
747 * callbacks should themselves check if the id they generate is unique otherwise
748 * the SSL handshake will fail with an error - callbacks can do this using the
749 * ’ssl’ value they’re passed by;
750 * SSL_has_matching_session_id(ssl, id, *id_len)
751 * The length value passed in is set at the maximum size the session ID can be.
752 * In SSLv2 this is 16 bytes, whereas SSLv3/TLSv1 it is 32 bytes. The callback
753 * can alter this length to be less if desired, but under SSLv2 session IDs are
754 * supposed to be fixed at 16 bytes so the id will be padded after the callback
755 * returns in this case. It is also an error for the callback to set the size to
756 * zero. */
757 typedef int (*GEN_SESSION_CB)(const SSL *ssl, unsigned char *id,
758 unsigned int *id_len);

760 typedef struct ssl_comp_st SSL_COMP;

762 #ifndef OPENSSL_NO_SSL_INTERN

764 struct ssl_comp_st
765 {
766 int id;
767 const char *name;
768 #ifndef OPENSSL_NO_COMP
769 COMP_METHOD *method;
770 #else
771 char *method;
772 #endif
773 };

775 DECLARE_STACK_OF(SSL_COMP)
776 DECLARE_LHASH_OF(SSL_SESSION);

778 struct ssl_ctx_st
779 {
780 const SSL_METHOD *method;

782 STACK_OF(SSL_CIPHER) *cipher_list;
783 /* same as above but sorted for lookup */
784 STACK_OF(SSL_CIPHER) *cipher_list_by_id;

786 struct x509_store_st /* X509_STORE */ *cert_store;
787 LHASH_OF(SSL_SESSION) *sessions;

new/usr/src/lib/openssl/include/openssl/ssl.h 13

788 /* Most session-ids that will be cached, default is
789 * SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited. */
790 unsigned long session_cache_size;
791 struct ssl_session_st *session_cache_head;
792 struct ssl_session_st *session_cache_tail;

794 /* This can have one of 2 values, ored together,
795 * SSL_SESS_CACHE_CLIENT,
796 * SSL_SESS_CACHE_SERVER,
797 * Default is SSL_SESSION_CACHE_SERVER, which means only
798 * SSL_accept which cache SSL_SESSIONS. */
799 int session_cache_mode;

801 /* If timeout is not 0, it is the default timeout value set
802 * when SSL_new() is called. This has been put in to make
803 * life easier to set things up */
804 long session_timeout;

806 /* If this callback is not null, it will be called each
807 * time a session id is added to the cache. If this function
808 * returns 1, it means that the callback will do a
809 * SSL_SESSION_free() when it has finished using it. Otherwise,
810 * on 0, it means the callback has finished with it.
811 * If remove_session_cb is not null, it will be called when
812 * a session-id is removed from the cache. After the call,
813 * OpenSSL will SSL_SESSION_free() it. */
814 int (*new_session_cb)(struct ssl_st *ssl,SSL_SESSION *sess);
815 void (*remove_session_cb)(struct ssl_ctx_st *ctx,SSL_SESSION *sess);
816 SSL_SESSION *(*get_session_cb)(struct ssl_st *ssl,
817 unsigned char *data,int len,int *copy);

819 struct
820 {
821 int sess_connect; /* SSL new conn - started */
822 int sess_connect_renegotiate;/* SSL reneg - requested */
823 int sess_connect_good; /* SSL new conne/reneg - finished */
824 int sess_accept; /* SSL new accept - started */
825 int sess_accept_renegotiate;/* SSL reneg - requested */
826 int sess_accept_good; /* SSL accept/reneg - finished */
827 int sess_miss; /* session lookup misses */
828 int sess_timeout; /* reuse attempt on timeouted session */
829 int sess_cache_full; /* session removed due to full cache */
830 int sess_hit; /* session reuse actually done */
831 int sess_cb_hit; /* session-id that was not
832 * in the cache was
833 * passed back via the callback. This
834 * indicates that the application is
835 * supplying session-id’s from other
836 * processes - spooky :-) */
837 } stats;

839 int references;

841 /* if defined, these override the X509_verify_cert() calls */
842 int (*app_verify_callback)(X509_STORE_CTX *, void *);
843 void *app_verify_arg;
844 /* before OpenSSL 0.9.7, ’app_verify_arg’ was ignored
845 * (’app_verify_callback’ was called with just one argument) */

847 /* Default password callback. */
848 pem_password_cb *default_passwd_callback;

850 /* Default password callback user data. */
851 void *default_passwd_callback_userdata;

853 /* get client cert callback */

new/usr/src/lib/openssl/include/openssl/ssl.h 14

854 int (*client_cert_cb)(SSL *ssl, X509 **x509, EVP_PKEY **pkey);

856 /* cookie generate callback */
857 int (*app_gen_cookie_cb)(SSL *ssl, unsigned char *cookie,
858 unsigned int *cookie_len);

860 /* verify cookie callback */
861 int (*app_verify_cookie_cb)(SSL *ssl, unsigned char *cookie,
862 unsigned int cookie_len);

864 CRYPTO_EX_DATA ex_data;

866 const EVP_MD *rsa_md5;/* For SSLv2 - name is ’ssl2-md5’ */
867 const EVP_MD *md5; /* For SSLv3/TLSv1 ’ssl3-md5’ */
868 const EVP_MD *sha1; /* For SSLv3/TLSv1 ’ssl3->sha1’ */

870 STACK_OF(X509) *extra_certs;
871 STACK_OF(SSL_COMP) *comp_methods; /* stack of SSL_COMP, SSLv3/TLSv1 */

874 /* Default values used when no per-SSL value is defined follow */

876 void (*info_callback)(const SSL *ssl,int type,int val); /* used if SSL’s

878 /* what we put in client cert requests */
879 STACK_OF(X509_NAME) *client_CA;

882 /* Default values to use in SSL structures follow (these are copied by S

884 unsigned long options;
885 unsigned long mode;
886 long max_cert_list;

888 struct cert_st /* CERT */ *cert;
889 int read_ahead;

891 /* callback that allows applications to peek at protocol messages */
892 void (*msg_callback)(int write_p, int version, int content_type, const v
893 void *msg_callback_arg;

895 int verify_mode;
896 unsigned int sid_ctx_length;
897 unsigned char sid_ctx[SSL_MAX_SID_CTX_LENGTH];
898 int (*default_verify_callback)(int ok,X509_STORE_CTX *ctx); /* called ’v

900 /* Default generate session ID callback. */
901 GEN_SESSION_CB generate_session_id;

903 X509_VERIFY_PARAM *param;

905 #if 0
906 int purpose; /* Purpose setting */
907 int trust; /* Trust setting */
908 #endif

910 int quiet_shutdown;

912 /* Maximum amount of data to send in one fragment.
913 * actual record size can be more than this due to
914 * padding and MAC overheads.
915 */
916 unsigned int max_send_fragment;

918 #ifndef OPENSSL_NO_ENGINE
919 /* Engine to pass requests for client certs to

new/usr/src/lib/openssl/include/openssl/ssl.h 15

920 */
921 ENGINE *client_cert_engine;
922 #endif

924 #ifndef OPENSSL_NO_TLSEXT
925 /* TLS extensions servername callback */
926 int (*tlsext_servername_callback)(SSL*, int *, void *);
927 void *tlsext_servername_arg;
928 /* RFC 4507 session ticket keys */
929 unsigned char tlsext_tick_key_name[16];
930 unsigned char tlsext_tick_hmac_key[16];
931 unsigned char tlsext_tick_aes_key[16];
932 /* Callback to support customisation of ticket key setting */
933 int (*tlsext_ticket_key_cb)(SSL *ssl,
934 unsigned char *name, unsigned char *iv,
935 EVP_CIPHER_CTX *ectx,
936 HMAC_CTX *hctx, int enc);

938 /* certificate status request info */
939 /* Callback for status request */
940 int (*tlsext_status_cb)(SSL *ssl, void *arg);
941 void *tlsext_status_arg;

943 /* draft-rescorla-tls-opaque-prf-input-00.txt information */
944 int (*tlsext_opaque_prf_input_callback)(SSL *, void *peerinput, size_t l
945 void *tlsext_opaque_prf_input_callback_arg;
946 #endif

948 #ifndef OPENSSL_NO_PSK
949 char *psk_identity_hint;
950 unsigned int (*psk_client_callback)(SSL *ssl, const char *hint, char *id
951 unsigned int max_identity_len, unsigned char *psk,
952 unsigned int max_psk_len);
953 unsigned int (*psk_server_callback)(SSL *ssl, const char *identity,
954 unsigned char *psk, unsigned int max_psk_len);
955 #endif

957 #ifndef OPENSSL_NO_BUF_FREELISTS
958 #define SSL_MAX_BUF_FREELIST_LEN_DEFAULT 32
959 unsigned int freelist_max_len;
960 struct ssl3_buf_freelist_st *wbuf_freelist;
961 struct ssl3_buf_freelist_st *rbuf_freelist;
962 #endif
963 #ifndef OPENSSL_NO_SRP
964 SRP_CTX srp_ctx; /* ctx for SRP authentication */
965 #endif

967 #ifndef OPENSSL_NO_TLSEXT

969 # ifndef OPENSSL_NO_NEXTPROTONEG
970 /* Next protocol negotiation information */
971 /* (for experimental NPN extension). */

973 /* For a server, this contains a callback function by which the set of
974 * advertised protocols can be provided. */
975 int (*next_protos_advertised_cb)(SSL *s, const unsigned char **buf,
976 unsigned int *len, void *arg);
977 void *next_protos_advertised_cb_arg;
978 /* For a client, this contains a callback function that selects the
979 * next protocol from the list provided by the server. */
980 int (*next_proto_select_cb)(SSL *s, unsigned char **out,
981 unsigned char *outlen,
982 const unsigned char *in,
983 unsigned int inlen,
984 void *arg);
985 void *next_proto_select_cb_arg;

new/usr/src/lib/openssl/include/openssl/ssl.h 16

986 # endif
987 /* SRTP profiles we are willing to do from RFC 5764 */
988 STACK_OF(SRTP_PROTECTION_PROFILE) *srtp_profiles;
989 #endif
990 };

992 #endif

994 #define SSL_SESS_CACHE_OFF 0x0000
995 #define SSL_SESS_CACHE_CLIENT 0x0001
996 #define SSL_SESS_CACHE_SERVER 0x0002
997 #define SSL_SESS_CACHE_BOTH (SSL_SESS_CACHE_CLIENT|SSL_SESS_CACHE_SERVER)
998 #define SSL_SESS_CACHE_NO_AUTO_CLEAR 0x0080
999 /* enough comments already ... see SSL_CTX_set_session_cache_mode(3) */

1000 #define SSL_SESS_CACHE_NO_INTERNAL_LOOKUP 0x0100
1001 #define SSL_SESS_CACHE_NO_INTERNAL_STORE 0x0200
1002 #define SSL_SESS_CACHE_NO_INTERNAL \
1003 (SSL_SESS_CACHE_NO_INTERNAL_LOOKUP|SSL_SESS_CACHE_NO_INTERNAL_STORE)

1005 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx);
1006 #define SSL_CTX_sess_number(ctx) \
1007 SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_NUMBER,0,NULL)
1008 #define SSL_CTX_sess_connect(ctx) \
1009 SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_CONNECT,0,NULL)
1010 #define SSL_CTX_sess_connect_good(ctx) \
1011 SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_CONNECT_GOOD,0,NULL)
1012 #define SSL_CTX_sess_connect_renegotiate(ctx) \
1013 SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_CONNECT_RENEGOTIATE,0,NULL)
1014 #define SSL_CTX_sess_accept(ctx) \
1015 SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_ACCEPT,0,NULL)
1016 #define SSL_CTX_sess_accept_renegotiate(ctx) \
1017 SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_ACCEPT_RENEGOTIATE,0,NULL)
1018 #define SSL_CTX_sess_accept_good(ctx) \
1019 SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_ACCEPT_GOOD,0,NULL)
1020 #define SSL_CTX_sess_hits(ctx) \
1021 SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_HIT,0,NULL)
1022 #define SSL_CTX_sess_cb_hits(ctx) \
1023 SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_CB_HIT,0,NULL)
1024 #define SSL_CTX_sess_misses(ctx) \
1025 SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_MISSES,0,NULL)
1026 #define SSL_CTX_sess_timeouts(ctx) \
1027 SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_TIMEOUTS,0,NULL)
1028 #define SSL_CTX_sess_cache_full(ctx) \
1029 SSL_CTX_ctrl(ctx,SSL_CTRL_SESS_CACHE_FULL,0,NULL)

1031 void SSL_CTX_sess_set_new_cb(SSL_CTX *ctx, int (*new_session_cb)(struct ssl_st *
1032 int (*SSL_CTX_sess_get_new_cb(SSL_CTX *ctx))(struct ssl_st *ssl, SSL_SESSION *se
1033 void SSL_CTX_sess_set_remove_cb(SSL_CTX *ctx, void (*remove_session_cb)(struct s
1034 void (*SSL_CTX_sess_get_remove_cb(SSL_CTX *ctx))(struct ssl_ctx_st *ctx, SSL_SES
1035 void SSL_CTX_sess_set_get_cb(SSL_CTX *ctx, SSL_SESSION *(*get_session_cb)(struct
1036 SSL_SESSION *(*SSL_CTX_sess_get_get_cb(SSL_CTX *ctx))(struct ssl_st *ssl, unsign
1037 void SSL_CTX_set_info_callback(SSL_CTX *ctx, void (*cb)(const SSL *ssl,int type,
1038 void (*SSL_CTX_get_info_callback(SSL_CTX *ctx))(const SSL *ssl,int type,int val)
1039 void SSL_CTX_set_client_cert_cb(SSL_CTX *ctx, int (*client_cert_cb)(SSL *ssl, X5
1040 int (*SSL_CTX_get_client_cert_cb(SSL_CTX *ctx))(SSL *ssl, X509 **x509, EVP_PKEY
1041 #ifndef OPENSSL_NO_ENGINE
1042 int SSL_CTX_set_client_cert_engine(SSL_CTX *ctx, ENGINE *e);
1043 #endif
1044 void SSL_CTX_set_cookie_generate_cb(SSL_CTX *ctx, int (*app_gen_cookie_cb)(SSL *
1045 void SSL_CTX_set_cookie_verify_cb(SSL_CTX *ctx, int (*app_verify_cookie_cb)(SSL
1046 #ifndef OPENSSL_NO_NEXTPROTONEG
1047 void SSL_CTX_set_next_protos_advertised_cb(SSL_CTX *s,
1048 int (*cb) (SSL *ssl,
1049 const unsigned char **out,
1050 unsigned int *outlen,
1051 void *arg),

new/usr/src/lib/openssl/include/openssl/ssl.h 17

1052 void *arg);
1053 void SSL_CTX_set_next_proto_select_cb(SSL_CTX *s,
1054 int (*cb) (SSL *ssl,
1055 unsigned char **out,
1056 unsigned char *outlen,
1057 const unsigned char *in,
1058 unsigned int inlen,
1059 void *arg),
1060 void *arg);

1062 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
1063 const unsigned char *in, unsigned int inlen,
1064 const unsigned char *client, unsigned int client_len);
1065 void SSL_get0_next_proto_negotiated(const SSL *s,
1066 const unsigned char **data, unsigned *len);

1068 #define OPENSSL_NPN_UNSUPPORTED 0
1069 #define OPENSSL_NPN_NEGOTIATED 1
1070 #define OPENSSL_NPN_NO_OVERLAP 2
1071 #endif

1073 #ifndef OPENSSL_NO_PSK
1074 /* the maximum length of the buffer given to callbacks containing the
1075 * resulting identity/psk */
1076 #define PSK_MAX_IDENTITY_LEN 128
1077 #define PSK_MAX_PSK_LEN 256
1078 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx,
1079 unsigned int (*psk_client_callback)(SSL *ssl, const char *hint,
1080 char *identity, unsigned int max_identity_len, unsigned char *ps
1081 unsigned int max_psk_len));
1082 void SSL_set_psk_client_callback(SSL *ssl,
1083 unsigned int (*psk_client_callback)(SSL *ssl, const char *hint,
1084 char *identity, unsigned int max_identity_len, unsigned char *ps
1085 unsigned int max_psk_len));
1086 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx,
1087 unsigned int (*psk_server_callback)(SSL *ssl, const char *identity,
1088 unsigned char *psk, unsigned int max_psk_len));
1089 void SSL_set_psk_server_callback(SSL *ssl,
1090 unsigned int (*psk_server_callback)(SSL *ssl, const char *identity,
1091 unsigned char *psk, unsigned int max_psk_len));
1092 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint);
1093 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint);
1094 const char *SSL_get_psk_identity_hint(const SSL *s);
1095 const char *SSL_get_psk_identity(const SSL *s);
1096 #endif

1098 #define SSL_NOTHING 1
1099 #define SSL_WRITING 2
1100 #define SSL_READING 3
1101 #define SSL_X509_LOOKUP 4

1103 /* These will only be used when doing non-blocking IO */
1104 #define SSL_want_nothing(s) (SSL_want(s) == SSL_NOTHING)
1105 #define SSL_want_read(s) (SSL_want(s) == SSL_READING)
1106 #define SSL_want_write(s) (SSL_want(s) == SSL_WRITING)
1107 #define SSL_want_x509_lookup(s) (SSL_want(s) == SSL_X509_LOOKUP)

1109 #define SSL_MAC_FLAG_READ_MAC_STREAM 1
1110 #define SSL_MAC_FLAG_WRITE_MAC_STREAM 2

1112 #ifndef OPENSSL_NO_SSL_INTERN

1114 struct ssl_st
1115 {
1116 /* protocol version
1117 * (one of SSL2_VERSION, SSL3_VERSION, TLS1_VERSION, DTLS1_VERSION)

new/usr/src/lib/openssl/include/openssl/ssl.h 18

1118 */
1119 int version;
1120 int type; /* SSL_ST_CONNECT or SSL_ST_ACCEPT */

1122 const SSL_METHOD *method; /* SSLv3 */

1124 /* There are 2 BIO’s even though they are normally both the
1125 * same. This is so data can be read and written to different
1126 * handlers */

1128 #ifndef OPENSSL_NO_BIO
1129 BIO *rbio; /* used by SSL_read */
1130 BIO *wbio; /* used by SSL_write */
1131 BIO *bbio; /* used during session-id reuse to concatenate
1132 * messages */
1133 #else
1134 char *rbio; /* used by SSL_read */
1135 char *wbio; /* used by SSL_write */
1136 char *bbio;
1137 #endif
1138 /* This holds a variable that indicates what we were doing
1139 * when a 0 or -1 is returned. This is needed for
1140 * non-blocking IO so we know what request needs re-doing when
1141 * in SSL_accept or SSL_connect */
1142 int rwstate;

1144 /* true when we are actually in SSL_accept() or SSL_connect() */
1145 int in_handshake;
1146 int (*handshake_func)(SSL *);

1148 /* Imagine that here’s a boolean member "init" that is
1149 * switched as soon as SSL_set_{accept/connect}_state
1150 * is called for the first time, so that "state" and
1151 * "handshake_func" are properly initialized. But as
1152 * handshake_func is == 0 until then, we use this
1153 * test instead of an "init" member.
1154 */

1156 int server; /* are we the server side? - mostly used by SSL_clear*/

1158 int new_session;/* Generate a new session or reuse an old one.
1159 * NB: For servers, the ’new’ session may actually be a
1160 * cached session or even the previous session unless
1161 * SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION is set
1162 int quiet_shutdown;/* don’t send shutdown packets */
1163 int shutdown; /* we have shut things down, 0x01 sent, 0x02
1164 * for received */
1165 int state; /* where we are */
1166 int rstate; /* where we are when reading */

1168 BUF_MEM *init_buf; /* buffer used during init */
1169 void *init_msg; /* pointer to handshake message body, set by ssl
1170 int init_num; /* amount read/written */
1171 int init_off; /* amount read/written */

1173 /* used internally to point at a raw packet */
1174 unsigned char *packet;
1175 unsigned int packet_length;

1177 struct ssl2_state_st *s2; /* SSLv2 variables */
1178 struct ssl3_state_st *s3; /* SSLv3 variables */
1179 struct dtls1_state_st *d1; /* DTLSv1 variables */

1181 int read_ahead; /* Read as many input bytes as possible
1182 * (for non-blocking reads) */

new/usr/src/lib/openssl/include/openssl/ssl.h 19

1184 /* callback that allows applications to peek at protocol messages */
1185 void (*msg_callback)(int write_p, int version, int content_type, const v
1186 void *msg_callback_arg;

1188 int hit; /* reusing a previous session */

1190 X509_VERIFY_PARAM *param;

1192 #if 0
1193 int purpose; /* Purpose setting */
1194 int trust; /* Trust setting */
1195 #endif

1197 /* crypto */
1198 STACK_OF(SSL_CIPHER) *cipher_list;
1199 STACK_OF(SSL_CIPHER) *cipher_list_by_id;

1201 /* These are the ones being used, the ones in SSL_SESSION are
1202 * the ones to be ’copied’ into these ones */
1203 int mac_flags;
1204 EVP_CIPHER_CTX *enc_read_ctx; /* cryptographic state */
1205 EVP_MD_CTX *read_hash; /* used for mac generation */
1206 #ifndef OPENSSL_NO_COMP
1207 COMP_CTX *expand; /* uncompress */
1208 #else
1209 char *expand;
1210 #endif

1212 EVP_CIPHER_CTX *enc_write_ctx; /* cryptographic state */
1213 EVP_MD_CTX *write_hash; /* used for mac generation */
1214 #ifndef OPENSSL_NO_COMP
1215 COMP_CTX *compress; /* compression */
1216 #else
1217 char *compress;
1218 #endif

1220 /* session info */

1222 /* client cert? */
1223 /* This is used to hold the server certificate used */
1224 struct cert_st /* CERT */ *cert;

1226 /* the session_id_context is used to ensure sessions are only reused
1227 * in the appropriate context */
1228 unsigned int sid_ctx_length;
1229 unsigned char sid_ctx[SSL_MAX_SID_CTX_LENGTH];

1231 /* This can also be in the session once a session is established */
1232 SSL_SESSION *session;

1234 /* Default generate session ID callback. */
1235 GEN_SESSION_CB generate_session_id;

1237 /* Used in SSL2 and SSL3 */
1238 int verify_mode; /* 0 don’t care about verify failure.
1239 * 1 fail if verify fails */
1240 int (*verify_callback)(int ok,X509_STORE_CTX *ctx); /* fail if callback

1242 void (*info_callback)(const SSL *ssl,int type,int val); /* optional info

1244 int error; /* error bytes to be written */
1245 int error_code; /* actual code */

1247 #ifndef OPENSSL_NO_KRB5
1248 KSSL_CTX *kssl_ctx; /* Kerberos 5 context */
1249 #endif /* OPENSSL_NO_KRB5 */

new/usr/src/lib/openssl/include/openssl/ssl.h 20

1251 #ifndef OPENSSL_NO_PSK
1252 unsigned int (*psk_client_callback)(SSL *ssl, const char *hint, char *id
1253 unsigned int max_identity_len, unsigned char *psk,
1254 unsigned int max_psk_len);
1255 unsigned int (*psk_server_callback)(SSL *ssl, const char *identity,
1256 unsigned char *psk, unsigned int max_psk_len);
1257 #endif

1259 SSL_CTX *ctx;
1260 /* set this flag to 1 and a sleep(1) is put into all SSL_read()
1261 * and SSL_write() calls, good for nbio debuging :-) */
1262 int debug;

1264 /* extra application data */
1265 long verify_result;
1266 CRYPTO_EX_DATA ex_data;

1268 /* for server side, keep the list of CA_dn we can use */
1269 STACK_OF(X509_NAME) *client_CA;

1271 int references;
1272 unsigned long options; /* protocol behaviour */
1273 unsigned long mode; /* API behaviour */
1274 long max_cert_list;
1275 int first_packet;
1276 int client_version; /* what was passed, used for
1277 * SSLv3/TLS rollback check */
1278 unsigned int max_send_fragment;
1279 #ifndef OPENSSL_NO_TLSEXT
1280 /* TLS extension debug callback */
1281 void (*tlsext_debug_cb)(SSL *s, int client_server, int type,
1282 unsigned char *data, int len,
1283 void *arg);
1284 void *tlsext_debug_arg;
1285 char *tlsext_hostname;
1286 int servername_done; /* no further mod of servername
1287 0 : call the servername extension callback.
1288 1 : prepare 2, allow last ack just after in se
1289 2 : don’t call servername callback, no ack in
1290 */
1291 /* certificate status request info */
1292 /* Status type or -1 if no status type */
1293 int tlsext_status_type;
1294 /* Expect OCSP CertificateStatus message */
1295 int tlsext_status_expected;
1296 /* OCSP status request only */
1297 STACK_OF(OCSP_RESPID) *tlsext_ocsp_ids;
1298 X509_EXTENSIONS *tlsext_ocsp_exts;
1299 /* OCSP response received or to be sent */
1300 unsigned char *tlsext_ocsp_resp;
1301 int tlsext_ocsp_resplen;

1303 /* RFC4507 session ticket expected to be received or sent */
1304 int tlsext_ticket_expected;
1305 #ifndef OPENSSL_NO_EC
1306 size_t tlsext_ecpointformatlist_length;
1307 unsigned char *tlsext_ecpointformatlist; /* our list */
1308 size_t tlsext_ellipticcurvelist_length;
1309 unsigned char *tlsext_ellipticcurvelist; /* our list */
1310 #endif /* OPENSSL_NO_EC */

1312 /* draft-rescorla-tls-opaque-prf-input-00.txt information to be used for
1313 void *tlsext_opaque_prf_input;
1314 size_t tlsext_opaque_prf_input_len;

new/usr/src/lib/openssl/include/openssl/ssl.h 21

1316 /* TLS Session Ticket extension override */
1317 TLS_SESSION_TICKET_EXT *tlsext_session_ticket;

1319 /* TLS Session Ticket extension callback */
1320 tls_session_ticket_ext_cb_fn tls_session_ticket_ext_cb;
1321 void *tls_session_ticket_ext_cb_arg;

1323 /* TLS pre-shared secret session resumption */
1324 tls_session_secret_cb_fn tls_session_secret_cb;
1325 void *tls_session_secret_cb_arg;

1327 SSL_CTX * initial_ctx; /* initial ctx, used to store sessions */

1329 #ifndef OPENSSL_NO_NEXTPROTONEG
1330 /* Next protocol negotiation. For the client, this is the protocol that
1331 * we sent in NextProtocol and is set when handling ServerHello
1332 * extensions.
1333 *
1334 * For a server, this is the client’s selected_protocol from
1335 * NextProtocol and is set when handling the NextProtocol message,
1336 * before the Finished message. */
1337 unsigned char *next_proto_negotiated;
1338 unsigned char next_proto_negotiated_len;
1339 #endif

1341 #define session_ctx initial_ctx

1343 STACK_OF(SRTP_PROTECTION_PROFILE) *srtp_profiles; /* What we’ll do */
1344 SRTP_PROTECTION_PROFILE *srtp_profile; /* What’s been chosen

1346 unsigned int tlsext_heartbeat; /* Is use of the Heartbeat extension neg
1347 0: disabled
1348 1: enabled
1349 2: enabled, but not allowed to send R
1350 */
1351 unsigned int tlsext_hb_pending; /* Indicates if a HeartbeatRequest is in
1352 unsigned int tlsext_hb_seq; /* HeartbeatRequest sequence number */
1353 #else
1354 #define session_ctx ctx
1355 #endif /* OPENSSL_NO_TLSEXT */

1357 int renegotiate;/* 1 if we are renegotiating.
1358 * 2 if we are a server and are inside a handshake
1359 * (i.e. not just sending a HelloRequest) */

1361 #ifndef OPENSSL_NO_SRP
1362 SRP_CTX srp_ctx; /* ctx for SRP authentication */
1363 #endif
1364 };

1366 #endif

1368 #ifdef __cplusplus
1369 }
1370 #endif

1372 #include <openssl/ssl2.h>
1373 #include <openssl/ssl3.h>
1374 #include <openssl/tls1.h> /* This is mostly sslv3 with a few tweaks */
1375 #include <openssl/dtls1.h> /* Datagram TLS */
1376 #include <openssl/ssl23.h>
1377 #include <openssl/srtp.h> /* Support for the use_srtp extension */

1379 #ifdef __cplusplus
1380 extern "C" {
1381 #endif

new/usr/src/lib/openssl/include/openssl/ssl.h 22

1383 /* compatibility */
1384 #define SSL_set_app_data(s,arg) (SSL_set_ex_data(s,0,(char *)arg))
1385 #define SSL_get_app_data(s) (SSL_get_ex_data(s,0))
1386 #define SSL_SESSION_set_app_data(s,a) (SSL_SESSION_set_ex_data(s,0,(char *)a))
1387 #define SSL_SESSION_get_app_data(s) (SSL_SESSION_get_ex_data(s,0))
1388 #define SSL_CTX_get_app_data(ctx) (SSL_CTX_get_ex_data(ctx,0))
1389 #define SSL_CTX_set_app_data(ctx,arg) (SSL_CTX_set_ex_data(ctx,0,(char *)arg))

1391 /* The following are the possible values for ssl->state are are
1392 * used to indicate where we are up to in the SSL connection establishment.
1393 * The macros that follow are about the only things you should need to use
1394 * and even then, only when using non-blocking IO.
1395 * It can also be useful to work out where you were when the connection
1396 * failed */

1398 #define SSL_ST_CONNECT 0x1000
1399 #define SSL_ST_ACCEPT 0x2000
1400 #define SSL_ST_MASK 0x0FFF
1401 #define SSL_ST_INIT (SSL_ST_CONNECT|SSL_ST_ACCEPT)
1402 #define SSL_ST_BEFORE 0x4000
1403 #define SSL_ST_OK 0x03
1404 #define SSL_ST_RENEGOTIATE (0x04|SSL_ST_INIT)

1406 #define SSL_CB_LOOP 0x01
1407 #define SSL_CB_EXIT 0x02
1408 #define SSL_CB_READ 0x04
1409 #define SSL_CB_WRITE 0x08
1410 #define SSL_CB_ALERT 0x4000 /* used in callback */
1411 #define SSL_CB_READ_ALERT (SSL_CB_ALERT|SSL_CB_READ)
1412 #define SSL_CB_WRITE_ALERT (SSL_CB_ALERT|SSL_CB_WRITE)
1413 #define SSL_CB_ACCEPT_LOOP (SSL_ST_ACCEPT|SSL_CB_LOOP)
1414 #define SSL_CB_ACCEPT_EXIT (SSL_ST_ACCEPT|SSL_CB_EXIT)
1415 #define SSL_CB_CONNECT_LOOP (SSL_ST_CONNECT|SSL_CB_LOOP)
1416 #define SSL_CB_CONNECT_EXIT (SSL_ST_CONNECT|SSL_CB_EXIT)
1417 #define SSL_CB_HANDSHAKE_START 0x10
1418 #define SSL_CB_HANDSHAKE_DONE 0x20

1420 /* Is the SSL_connection established? */
1421 #define SSL_get_state(a) SSL_state(a)
1422 #define SSL_is_init_finished(a) (SSL_state(a) == SSL_ST_OK)
1423 #define SSL_in_init(a) (SSL_state(a)&SSL_ST_INIT)
1424 #define SSL_in_before(a) (SSL_state(a)&SSL_ST_BEFORE)
1425 #define SSL_in_connect_init(a) (SSL_state(a)&SSL_ST_CONNECT)
1426 #define SSL_in_accept_init(a) (SSL_state(a)&SSL_ST_ACCEPT)

1428 /* The following 2 states are kept in ssl->rstate when reads fail,
1429 * you should not need these */
1430 #define SSL_ST_READ_HEADER 0xF0
1431 #define SSL_ST_READ_BODY 0xF1
1432 #define SSL_ST_READ_DONE 0xF2

1434 /* Obtain latest Finished message
1435 * -- that we sent (SSL_get_finished)
1436 * -- that we expected from peer (SSL_get_peer_finished).
1437 * Returns length (0 == no Finished so far), copies up to ’count’ bytes. */
1438 size_t SSL_get_finished(const SSL *s, void *buf, size_t count);
1439 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count);

1441 /* use either SSL_VERIFY_NONE or SSL_VERIFY_PEER, the last 2 options
1442 * are ’ored’ with SSL_VERIFY_PEER if they are desired */
1443 #define SSL_VERIFY_NONE 0x00
1444 #define SSL_VERIFY_PEER 0x01
1445 #define SSL_VERIFY_FAIL_IF_NO_PEER_CERT 0x02
1446 #define SSL_VERIFY_CLIENT_ONCE 0x04

new/usr/src/lib/openssl/include/openssl/ssl.h 23

1448 #define OpenSSL_add_ssl_algorithms() SSL_library_init()
1449 #define SSLeay_add_ssl_algorithms() SSL_library_init()

1451 /* this is for backward compatibility */
1452 #if 0 /* NEW_SSLEAY */
1453 #define SSL_CTX_set_default_verify(a,b,c) SSL_CTX_set_verify(a,b,c)
1454 #define SSL_set_pref_cipher(c,n) SSL_set_cipher_list(c,n)
1455 #define SSL_add_session(a,b) SSL_CTX_add_session((a),(b))
1456 #define SSL_remove_session(a,b) SSL_CTX_remove_session((a),(b))
1457 #define SSL_flush_sessions(a,b) SSL_CTX_flush_sessions((a),(b))
1458 #endif
1459 /* More backward compatibility */
1460 #define SSL_get_cipher(s) \
1461 SSL_CIPHER_get_name(SSL_get_current_cipher(s))
1462 #define SSL_get_cipher_bits(s,np) \
1463 SSL_CIPHER_get_bits(SSL_get_current_cipher(s),np)
1464 #define SSL_get_cipher_version(s) \
1465 SSL_CIPHER_get_version(SSL_get_current_cipher(s))
1466 #define SSL_get_cipher_name(s) \
1467 SSL_CIPHER_get_name(SSL_get_current_cipher(s))
1468 #define SSL_get_time(a) SSL_SESSION_get_time(a)
1469 #define SSL_set_time(a,b) SSL_SESSION_set_time((a),(b))
1470 #define SSL_get_timeout(a) SSL_SESSION_get_timeout(a)
1471 #define SSL_set_timeout(a,b) SSL_SESSION_set_timeout((a),(b))

1473 #define d2i_SSL_SESSION_bio(bp,s_id) ASN1_d2i_bio_of(SSL_SESSION,SSL_SESSION_new
1474 #define i2d_SSL_SESSION_bio(bp,s_id) ASN1_i2d_bio_of(SSL_SESSION,i2d_SSL_SESSION

1476 DECLARE_PEM_rw(SSL_SESSION, SSL_SESSION)

1478 #define SSL_AD_REASON_OFFSET 1000 /* offset to get SSL_R_... value fr

1480 /* These alert types are for SSLv3 and TLSv1 */
1481 #define SSL_AD_CLOSE_NOTIFY SSL3_AD_CLOSE_NOTIFY
1482 #define SSL_AD_UNEXPECTED_MESSAGE SSL3_AD_UNEXPECTED_MESSAGE /* fatal */
1483 #define SSL_AD_BAD_RECORD_MAC SSL3_AD_BAD_RECORD_MAC /* fatal */
1484 #define SSL_AD_DECRYPTION_FAILED TLS1_AD_DECRYPTION_FAILED
1485 #define SSL_AD_RECORD_OVERFLOW TLS1_AD_RECORD_OVERFLOW
1486 #define SSL_AD_DECOMPRESSION_FAILURE SSL3_AD_DECOMPRESSION_FAILURE/* fatal */
1487 #define SSL_AD_HANDSHAKE_FAILURE SSL3_AD_HANDSHAKE_FAILURE/* fatal */
1488 #define SSL_AD_NO_CERTIFICATE SSL3_AD_NO_CERTIFICATE /* Not for TLS */
1489 #define SSL_AD_BAD_CERTIFICATE SSL3_AD_BAD_CERTIFICATE
1490 #define SSL_AD_UNSUPPORTED_CERTIFICATE SSL3_AD_UNSUPPORTED_CERTIFICATE
1491 #define SSL_AD_CERTIFICATE_REVOKED SSL3_AD_CERTIFICATE_REVOKED
1492 #define SSL_AD_CERTIFICATE_EXPIRED SSL3_AD_CERTIFICATE_EXPIRED
1493 #define SSL_AD_CERTIFICATE_UNKNOWN SSL3_AD_CERTIFICATE_UNKNOWN
1494 #define SSL_AD_ILLEGAL_PARAMETER SSL3_AD_ILLEGAL_PARAMETER /* fatal */
1495 #define SSL_AD_UNKNOWN_CA TLS1_AD_UNKNOWN_CA /* fatal */
1496 #define SSL_AD_ACCESS_DENIED TLS1_AD_ACCESS_DENIED /* fatal */
1497 #define SSL_AD_DECODE_ERROR TLS1_AD_DECODE_ERROR /* fatal */
1498 #define SSL_AD_DECRYPT_ERROR TLS1_AD_DECRYPT_ERROR
1499 #define SSL_AD_EXPORT_RESTRICTION TLS1_AD_EXPORT_RESTRICTION/* fatal */
1500 #define SSL_AD_PROTOCOL_VERSION TLS1_AD_PROTOCOL_VERSION /* fatal */
1501 #define SSL_AD_INSUFFICIENT_SECURITY TLS1_AD_INSUFFICIENT_SECURITY/* fatal */
1502 #define SSL_AD_INTERNAL_ERROR TLS1_AD_INTERNAL_ERROR /* fatal */
1503 #define SSL_AD_USER_CANCELLED TLS1_AD_USER_CANCELLED
1504 #define SSL_AD_NO_RENEGOTIATION TLS1_AD_NO_RENEGOTIATION
1505 #define SSL_AD_UNSUPPORTED_EXTENSION TLS1_AD_UNSUPPORTED_EXTENSION
1506 #define SSL_AD_CERTIFICATE_UNOBTAINABLE TLS1_AD_CERTIFICATE_UNOBTAINABLE
1507 #define SSL_AD_UNRECOGNIZED_NAME TLS1_AD_UNRECOGNIZED_NAME
1508 #define SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE TLS1_AD_BAD_CERTIFICATE_STATUS_RE
1509 #define SSL_AD_BAD_CERTIFICATE_HASH_VALUE TLS1_AD_BAD_CERTIFICATE_HASH_VALUE
1510 #define SSL_AD_UNKNOWN_PSK_IDENTITY TLS1_AD_UNKNOWN_PSK_IDENTITY /* fatal */

1512 #define SSL_ERROR_NONE 0
1513 #define SSL_ERROR_SSL 1

new/usr/src/lib/openssl/include/openssl/ssl.h 24

1514 #define SSL_ERROR_WANT_READ 2
1515 #define SSL_ERROR_WANT_WRITE 3
1516 #define SSL_ERROR_WANT_X509_LOOKUP 4
1517 #define SSL_ERROR_SYSCALL 5 /* look at error stack/return value/er
1518 #define SSL_ERROR_ZERO_RETURN 6
1519 #define SSL_ERROR_WANT_CONNECT 7
1520 #define SSL_ERROR_WANT_ACCEPT 8

1522 #define SSL_CTRL_NEED_TMP_RSA 1
1523 #define SSL_CTRL_SET_TMP_RSA 2
1524 #define SSL_CTRL_SET_TMP_DH 3
1525 #define SSL_CTRL_SET_TMP_ECDH 4
1526 #define SSL_CTRL_SET_TMP_RSA_CB 5
1527 #define SSL_CTRL_SET_TMP_DH_CB 6
1528 #define SSL_CTRL_SET_TMP_ECDH_CB 7

1530 #define SSL_CTRL_GET_SESSION_REUSED 8
1531 #define SSL_CTRL_GET_CLIENT_CERT_REQUEST 9
1532 #define SSL_CTRL_GET_NUM_RENEGOTIATIONS 10
1533 #define SSL_CTRL_CLEAR_NUM_RENEGOTIATIONS 11
1534 #define SSL_CTRL_GET_TOTAL_RENEGOTIATIONS 12
1535 #define SSL_CTRL_GET_FLAGS 13
1536 #define SSL_CTRL_EXTRA_CHAIN_CERT 14

1538 #define SSL_CTRL_SET_MSG_CALLBACK 15
1539 #define SSL_CTRL_SET_MSG_CALLBACK_ARG 16

1541 /* only applies to datagram connections */
1542 #define SSL_CTRL_SET_MTU 17
1543 /* Stats */
1544 #define SSL_CTRL_SESS_NUMBER 20
1545 #define SSL_CTRL_SESS_CONNECT 21
1546 #define SSL_CTRL_SESS_CONNECT_GOOD 22
1547 #define SSL_CTRL_SESS_CONNECT_RENEGOTIATE 23
1548 #define SSL_CTRL_SESS_ACCEPT 24
1549 #define SSL_CTRL_SESS_ACCEPT_GOOD 25
1550 #define SSL_CTRL_SESS_ACCEPT_RENEGOTIATE 26
1551 #define SSL_CTRL_SESS_HIT 27
1552 #define SSL_CTRL_SESS_CB_HIT 28
1553 #define SSL_CTRL_SESS_MISSES 29
1554 #define SSL_CTRL_SESS_TIMEOUTS 30
1555 #define SSL_CTRL_SESS_CACHE_FULL 31
1556 #define SSL_CTRL_OPTIONS 32
1557 #define SSL_CTRL_MODE 33

1559 #define SSL_CTRL_GET_READ_AHEAD 40
1560 #define SSL_CTRL_SET_READ_AHEAD 41
1561 #define SSL_CTRL_SET_SESS_CACHE_SIZE 42
1562 #define SSL_CTRL_GET_SESS_CACHE_SIZE 43
1563 #define SSL_CTRL_SET_SESS_CACHE_MODE 44
1564 #define SSL_CTRL_GET_SESS_CACHE_MODE 45

1566 #define SSL_CTRL_GET_MAX_CERT_LIST 50
1567 #define SSL_CTRL_SET_MAX_CERT_LIST 51

1569 #define SSL_CTRL_SET_MAX_SEND_FRAGMENT 52

1571 /* see tls1.h for macros based on these */
1572 #ifndef OPENSSL_NO_TLSEXT
1573 #define SSL_CTRL_SET_TLSEXT_SERVERNAME_CB 53
1574 #define SSL_CTRL_SET_TLSEXT_SERVERNAME_ARG 54
1575 #define SSL_CTRL_SET_TLSEXT_HOSTNAME 55
1576 #define SSL_CTRL_SET_TLSEXT_DEBUG_CB 56
1577 #define SSL_CTRL_SET_TLSEXT_DEBUG_ARG 57
1578 #define SSL_CTRL_GET_TLSEXT_TICKET_KEYS 58
1579 #define SSL_CTRL_SET_TLSEXT_TICKET_KEYS 59

new/usr/src/lib/openssl/include/openssl/ssl.h 25

1580 #define SSL_CTRL_SET_TLSEXT_OPAQUE_PRF_INPUT 60
1581 #define SSL_CTRL_SET_TLSEXT_OPAQUE_PRF_INPUT_CB 61
1582 #define SSL_CTRL_SET_TLSEXT_OPAQUE_PRF_INPUT_CB_ARG 62
1583 #define SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB 63
1584 #define SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB_ARG 64
1585 #define SSL_CTRL_SET_TLSEXT_STATUS_REQ_TYPE 65
1586 #define SSL_CTRL_GET_TLSEXT_STATUS_REQ_EXTS 66
1587 #define SSL_CTRL_SET_TLSEXT_STATUS_REQ_EXTS 67
1588 #define SSL_CTRL_GET_TLSEXT_STATUS_REQ_IDS 68
1589 #define SSL_CTRL_SET_TLSEXT_STATUS_REQ_IDS 69
1590 #define SSL_CTRL_GET_TLSEXT_STATUS_REQ_OCSP_RESP 70
1591 #define SSL_CTRL_SET_TLSEXT_STATUS_REQ_OCSP_RESP 71

1593 #define SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB 72

1595 #define SSL_CTRL_SET_TLS_EXT_SRP_USERNAME_CB 75
1596 #define SSL_CTRL_SET_SRP_VERIFY_PARAM_CB 76
1597 #define SSL_CTRL_SET_SRP_GIVE_CLIENT_PWD_CB 77

1599 #define SSL_CTRL_SET_SRP_ARG 78
1600 #define SSL_CTRL_SET_TLS_EXT_SRP_USERNAME 79
1601 #define SSL_CTRL_SET_TLS_EXT_SRP_STRENGTH 80
1602 #define SSL_CTRL_SET_TLS_EXT_SRP_PASSWORD 81
1603 #ifndef OPENSSL_NO_HEARTBEATS
1604 #define SSL_CTRL_TLS_EXT_SEND_HEARTBEAT 85
1605 #define SSL_CTRL_GET_TLS_EXT_HEARTBEAT_PENDING 86
1606 #define SSL_CTRL_SET_TLS_EXT_HEARTBEAT_NO_REQUESTS 87
1607 #endif
1608 #endif

1610 #define DTLS_CTRL_GET_TIMEOUT 73
1611 #define DTLS_CTRL_HANDLE_TIMEOUT 74
1612 #define DTLS_CTRL_LISTEN 75

1614 #define SSL_CTRL_GET_RI_SUPPORT 76
1615 #define SSL_CTRL_CLEAR_OPTIONS 77
1616 #define SSL_CTRL_CLEAR_MODE 78

1618 #define SSL_CTRL_GET_EXTRA_CHAIN_CERTS 82
1619 #define SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS 83

1621 #define DTLSv1_get_timeout(ssl, arg) \
1622 SSL_ctrl(ssl,DTLS_CTRL_GET_TIMEOUT,0, (void *)arg)
1623 #define DTLSv1_handle_timeout(ssl) \
1624 SSL_ctrl(ssl,DTLS_CTRL_HANDLE_TIMEOUT,0, NULL)
1625 #define DTLSv1_listen(ssl, peer) \
1626 SSL_ctrl(ssl,DTLS_CTRL_LISTEN,0, (void *)peer)

1628 #define SSL_session_reused(ssl) \
1629 SSL_ctrl((ssl),SSL_CTRL_GET_SESSION_REUSED,0,NULL)
1630 #define SSL_num_renegotiations(ssl) \
1631 SSL_ctrl((ssl),SSL_CTRL_GET_NUM_RENEGOTIATIONS,0,NULL)
1632 #define SSL_clear_num_renegotiations(ssl) \
1633 SSL_ctrl((ssl),SSL_CTRL_CLEAR_NUM_RENEGOTIATIONS,0,NULL)
1634 #define SSL_total_renegotiations(ssl) \
1635 SSL_ctrl((ssl),SSL_CTRL_GET_TOTAL_RENEGOTIATIONS,0,NULL)

1637 #define SSL_CTX_need_tmp_RSA(ctx) \
1638 SSL_CTX_ctrl(ctx,SSL_CTRL_NEED_TMP_RSA,0,NULL)
1639 #define SSL_CTX_set_tmp_rsa(ctx,rsa) \
1640 SSL_CTX_ctrl(ctx,SSL_CTRL_SET_TMP_RSA,0,(char *)rsa)
1641 #define SSL_CTX_set_tmp_dh(ctx,dh) \
1642 SSL_CTX_ctrl(ctx,SSL_CTRL_SET_TMP_DH,0,(char *)dh)
1643 #define SSL_CTX_set_tmp_ecdh(ctx,ecdh) \
1644 SSL_CTX_ctrl(ctx,SSL_CTRL_SET_TMP_ECDH,0,(char *)ecdh)

new/usr/src/lib/openssl/include/openssl/ssl.h 26

1646 #define SSL_need_tmp_RSA(ssl) \
1647 SSL_ctrl(ssl,SSL_CTRL_NEED_TMP_RSA,0,NULL)
1648 #define SSL_set_tmp_rsa(ssl,rsa) \
1649 SSL_ctrl(ssl,SSL_CTRL_SET_TMP_RSA,0,(char *)rsa)
1650 #define SSL_set_tmp_dh(ssl,dh) \
1651 SSL_ctrl(ssl,SSL_CTRL_SET_TMP_DH,0,(char *)dh)
1652 #define SSL_set_tmp_ecdh(ssl,ecdh) \
1653 SSL_ctrl(ssl,SSL_CTRL_SET_TMP_ECDH,0,(char *)ecdh)

1655 #define SSL_CTX_add_extra_chain_cert(ctx,x509) \
1656 SSL_CTX_ctrl(ctx,SSL_CTRL_EXTRA_CHAIN_CERT,0,(char *)x509)
1657 #define SSL_CTX_get_extra_chain_certs(ctx,px509) \
1658 SSL_CTX_ctrl(ctx,SSL_CTRL_GET_EXTRA_CHAIN_CERTS,0,px509)
1659 #define SSL_CTX_clear_extra_chain_certs(ctx) \
1660 SSL_CTX_ctrl(ctx,SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS,0,NULL)

1662 #ifndef OPENSSL_NO_BIO
1663 BIO_METHOD *BIO_f_ssl(void);
1664 BIO *BIO_new_ssl(SSL_CTX *ctx,int client);
1665 BIO *BIO_new_ssl_connect(SSL_CTX *ctx);
1666 BIO *BIO_new_buffer_ssl_connect(SSL_CTX *ctx);
1667 int BIO_ssl_copy_session_id(BIO *to,BIO *from);
1668 void BIO_ssl_shutdown(BIO *ssl_bio);

1670 #endif

1672 int SSL_CTX_set_cipher_list(SSL_CTX *,const char *str);
1673 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth);
1674 void SSL_CTX_free(SSL_CTX *);
1675 long SSL_CTX_set_timeout(SSL_CTX *ctx,long t);
1676 long SSL_CTX_get_timeout(const SSL_CTX *ctx);
1677 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *);
1678 void SSL_CTX_set_cert_store(SSL_CTX *,X509_STORE *);
1679 int SSL_want(const SSL *s);
1680 int SSL_clear(SSL *s);

1682 void SSL_CTX_flush_sessions(SSL_CTX *ctx,long tm);

1684 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s);
1685 int SSL_CIPHER_get_bits(const SSL_CIPHER *c,int *alg_bits);
1686 char * SSL_CIPHER_get_version(const SSL_CIPHER *c);
1687 const char * SSL_CIPHER_get_name(const SSL_CIPHER *c);
1688 unsigned long SSL_CIPHER_get_id(const SSL_CIPHER *c);

1690 int SSL_get_fd(const SSL *s);
1691 int SSL_get_rfd(const SSL *s);
1692 int SSL_get_wfd(const SSL *s);
1693 const char * SSL_get_cipher_list(const SSL *s,int n);
1694 char * SSL_get_shared_ciphers(const SSL *s, char *buf, int len);
1695 int SSL_get_read_ahead(const SSL * s);
1696 int SSL_pending(const SSL *s);
1697 #ifndef OPENSSL_NO_SOCK
1698 int SSL_set_fd(SSL *s, int fd);
1699 int SSL_set_rfd(SSL *s, int fd);
1700 int SSL_set_wfd(SSL *s, int fd);
1701 #endif
1702 #ifndef OPENSSL_NO_BIO
1703 void SSL_set_bio(SSL *s, BIO *rbio,BIO *wbio);
1704 BIO * SSL_get_rbio(const SSL *s);
1705 BIO * SSL_get_wbio(const SSL *s);
1706 #endif
1707 int SSL_set_cipher_list(SSL *s, const char *str);
1708 void SSL_set_read_ahead(SSL *s, int yes);
1709 int SSL_get_verify_mode(const SSL *s);
1710 int SSL_get_verify_depth(const SSL *s);
1711 int (*SSL_get_verify_callback(const SSL *s))(int,X509_STORE_CTX *);

new/usr/src/lib/openssl/include/openssl/ssl.h 27

1712 void SSL_set_verify(SSL *s, int mode,
1713 int (*callback)(int ok,X509_STORE_CTX *ctx));
1714 void SSL_set_verify_depth(SSL *s, int depth);
1715 #ifndef OPENSSL_NO_RSA
1716 int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa);
1717 #endif
1718 int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, unsigned char *d, long len);
1719 int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey);
1720 int SSL_use_PrivateKey_ASN1(int pk,SSL *ssl, const unsigned char *d, long le
1721 int SSL_use_certificate(SSL *ssl, X509 *x);
1722 int SSL_use_certificate_ASN1(SSL *ssl, const unsigned char *d, int len);

1724 #ifndef OPENSSL_NO_STDIO
1725 int SSL_use_RSAPrivateKey_file(SSL *ssl, const char *file, int type);
1726 int SSL_use_PrivateKey_file(SSL *ssl, const char *file, int type);
1727 int SSL_use_certificate_file(SSL *ssl, const char *file, int type);
1728 int SSL_CTX_use_RSAPrivateKey_file(SSL_CTX *ctx, const char *file, int type)
1729 int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, const char *file, int type);
1730 int SSL_CTX_use_certificate_file(SSL_CTX *ctx, const char *file, int type);
1731 int SSL_CTX_use_certificate_chain_file(SSL_CTX *ctx, const char *file); /* P
1732 STACK_OF(X509_NAME) *SSL_load_client_CA_file(const char *file);
1733 int SSL_add_file_cert_subjects_to_stack(STACK_OF(X509_NAME) *stackCAs,
1734 const char *file);
1735 #ifndef OPENSSL_SYS_VMS
1736 #ifndef OPENSSL_SYS_MACINTOSH_CLASSIC /* XXXXX: Better scheme needed! [was: #ifn
1737 int SSL_add_dir_cert_subjects_to_stack(STACK_OF(X509_NAME) *stackCAs,
1738 const char *dir);
1739 #endif
1740 #endif

1742 #endif

1744 void SSL_load_error_strings(void);
1745 const char *SSL_state_string(const SSL *s);
1746 const char *SSL_rstate_string(const SSL *s);
1747 const char *SSL_state_string_long(const SSL *s);
1748 const char *SSL_rstate_string_long(const SSL *s);
1749 long SSL_SESSION_get_time(const SSL_SESSION *s);
1750 long SSL_SESSION_set_time(SSL_SESSION *s, long t);
1751 long SSL_SESSION_get_timeout(const SSL_SESSION *s);
1752 long SSL_SESSION_set_timeout(SSL_SESSION *s, long t);
1753 void SSL_copy_session_id(SSL *to,const SSL *from);
1754 X509 *SSL_SESSION_get0_peer(SSL_SESSION *s);
1755 int SSL_SESSION_set1_id_context(SSL_SESSION *s,const unsigned char *sid_ctx,
1756 unsigned int sid_ctx_len);

1758 SSL_SESSION *SSL_SESSION_new(void);
1759 const unsigned char *SSL_SESSION_get_id(const SSL_SESSION *s,
1760 unsigned int *len);
1761 unsigned int SSL_SESSION_get_compress_id(const SSL_SESSION *s);
1762 #ifndef OPENSSL_NO_FP_API
1763 int SSL_SESSION_print_fp(FILE *fp,const SSL_SESSION *ses);
1764 #endif
1765 #ifndef OPENSSL_NO_BIO
1766 int SSL_SESSION_print(BIO *fp,const SSL_SESSION *ses);
1767 #endif
1768 void SSL_SESSION_free(SSL_SESSION *ses);
1769 int i2d_SSL_SESSION(SSL_SESSION *in,unsigned char **pp);
1770 int SSL_set_session(SSL *to, SSL_SESSION *session);
1771 int SSL_CTX_add_session(SSL_CTX *s, SSL_SESSION *c);
1772 int SSL_CTX_remove_session(SSL_CTX *,SSL_SESSION *c);
1773 int SSL_CTX_set_generate_session_id(SSL_CTX *, GEN_SESSION_CB);
1774 int SSL_set_generate_session_id(SSL *, GEN_SESSION_CB);
1775 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
1776 unsigned int id_len);
1777 SSL_SESSION *d2i_SSL_SESSION(SSL_SESSION **a,const unsigned char **pp,

new/usr/src/lib/openssl/include/openssl/ssl.h 28

1778 long length);

1780 #ifdef HEADER_X509_H
1781 X509 * SSL_get_peer_certificate(const SSL *s);
1782 #endif

1784 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s);

1786 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx);
1787 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx);
1788 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx))(int,X509_STORE_CTX *);
1789 void SSL_CTX_set_verify(SSL_CTX *ctx,int mode,
1790 int (*callback)(int, X509_STORE_CTX *));
1791 void SSL_CTX_set_verify_depth(SSL_CTX *ctx,int depth);
1792 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, int (*cb)(X509_STORE_CTX *,v
1793 #ifndef OPENSSL_NO_RSA
1794 int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa);
1795 #endif
1796 int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const unsigned char *d, long le
1797 int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey);
1798 int SSL_CTX_use_PrivateKey_ASN1(int pk,SSL_CTX *ctx,
1799 const unsigned char *d, long len);
1800 int SSL_CTX_use_certificate(SSL_CTX *ctx, X509 *x);
1801 int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, int len, const unsigned char *d);

1803 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb);
1804 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u);

1806 int SSL_CTX_check_private_key(const SSL_CTX *ctx);
1807 int SSL_check_private_key(const SSL *ctx);

1809 int SSL_CTX_set_session_id_context(SSL_CTX *ctx,const unsigned char *sid_ctx
1810 unsigned int sid_ctx_len);

1812 SSL * SSL_new(SSL_CTX *ctx);
1813 int SSL_set_session_id_context(SSL *ssl,const unsigned char *sid_ctx,
1814 unsigned int sid_ctx_len);

1816 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose);
1817 int SSL_set_purpose(SSL *s, int purpose);
1818 int SSL_CTX_set_trust(SSL_CTX *s, int trust);
1819 int SSL_set_trust(SSL *s, int trust);

1821 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm);
1822 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm);

1824 #ifndef OPENSSL_NO_SRP
1825 int SSL_CTX_set_srp_username(SSL_CTX *ctx,char *name);
1826 int SSL_CTX_set_srp_password(SSL_CTX *ctx,char *password);
1827 int SSL_CTX_set_srp_strength(SSL_CTX *ctx, int strength);
1828 int SSL_CTX_set_srp_client_pwd_callback(SSL_CTX *ctx,
1829 char *(*cb)(SSL *,void *));
1830 int SSL_CTX_set_srp_verify_param_callback(SSL_CTX *ctx,
1831 int (*cb)(SSL *,void *));
1832 int SSL_CTX_set_srp_username_callback(SSL_CTX *ctx,
1833 int (*cb)(SSL *,int *,void *));
1834 int SSL_CTX_set_srp_cb_arg(SSL_CTX *ctx, void *arg);

1836 int SSL_set_srp_server_param(SSL *s, const BIGNUM *N, const BIGNUM *g,
1837 BIGNUM *sa, BIGNUM *v, char *info);
1838 int SSL_set_srp_server_param_pw(SSL *s, const char *user, const char *pass,
1839 const char *grp);

1841 BIGNUM *SSL_get_srp_g(SSL *s);
1842 BIGNUM *SSL_get_srp_N(SSL *s);

new/usr/src/lib/openssl/include/openssl/ssl.h 29

1844 char *SSL_get_srp_username(SSL *s);
1845 char *SSL_get_srp_userinfo(SSL *s);
1846 #endif

1848 void SSL_free(SSL *ssl);
1849 int SSL_accept(SSL *ssl);
1850 int SSL_connect(SSL *ssl);
1851 int SSL_read(SSL *ssl,void *buf,int num);
1852 int SSL_peek(SSL *ssl,void *buf,int num);
1853 int SSL_write(SSL *ssl,const void *buf,int num);
1854 long SSL_ctrl(SSL *ssl,int cmd, long larg, void *parg);
1855 long SSL_callback_ctrl(SSL *, int, void (*)(void));
1856 long SSL_CTX_ctrl(SSL_CTX *ctx,int cmd, long larg, void *parg);
1857 long SSL_CTX_callback_ctrl(SSL_CTX *, int, void (*)(void));

1859 int SSL_get_error(const SSL *s,int ret_code);
1860 const char *SSL_get_version(const SSL *s);

1862 /* This sets the ’default’ SSL version that SSL_new() will create */
1863 int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth);

1865 #ifndef OPENSSL_NO_SSL2
1866 const SSL_METHOD *SSLv2_method(void); /* SSLv2 */
1867 const SSL_METHOD *SSLv2_server_method(void); /* SSLv2 */
1868 const SSL_METHOD *SSLv2_client_method(void); /* SSLv2 */
1869 #endif

1871 const SSL_METHOD *SSLv3_method(void); /* SSLv3 */
1872 const SSL_METHOD *SSLv3_server_method(void); /* SSLv3 */
1873 const SSL_METHOD *SSLv3_client_method(void); /* SSLv3 */

1875 const SSL_METHOD *SSLv23_method(void); /* SSLv3 but can rollback to v2 */
1876 const SSL_METHOD *SSLv23_server_method(void); /* SSLv3 but can rollback to v2
1877 const SSL_METHOD *SSLv23_client_method(void); /* SSLv3 but can rollback to v2

1879 const SSL_METHOD *TLSv1_method(void); /* TLSv1.0 */
1880 const SSL_METHOD *TLSv1_server_method(void); /* TLSv1.0 */
1881 const SSL_METHOD *TLSv1_client_method(void); /* TLSv1.0 */

1883 const SSL_METHOD *TLSv1_1_method(void); /* TLSv1.1 */
1884 const SSL_METHOD *TLSv1_1_server_method(void); /* TLSv1.1 */
1885 const SSL_METHOD *TLSv1_1_client_method(void); /* TLSv1.1 */

1887 const SSL_METHOD *TLSv1_2_method(void); /* TLSv1.2 */
1888 const SSL_METHOD *TLSv1_2_server_method(void); /* TLSv1.2 */
1889 const SSL_METHOD *TLSv1_2_client_method(void); /* TLSv1.2 */

1892 const SSL_METHOD *DTLSv1_method(void); /* DTLSv1.0 */
1893 const SSL_METHOD *DTLSv1_server_method(void); /* DTLSv1.0 */
1894 const SSL_METHOD *DTLSv1_client_method(void); /* DTLSv1.0 */

1896 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s);

1898 int SSL_do_handshake(SSL *s);
1899 int SSL_renegotiate(SSL *s);
1900 int SSL_renegotiate_abbreviated(SSL *s);
1901 int SSL_renegotiate_pending(SSL *s);
1902 int SSL_shutdown(SSL *s);

1904 const SSL_METHOD *SSL_get_ssl_method(SSL *s);
1905 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *method);
1906 const char *SSL_alert_type_string_long(int value);
1907 const char *SSL_alert_type_string(int value);
1908 const char *SSL_alert_desc_string_long(int value);
1909 const char *SSL_alert_desc_string(int value);

new/usr/src/lib/openssl/include/openssl/ssl.h 30

1911 void SSL_set_client_CA_list(SSL *s, STACK_OF(X509_NAME) *name_list);
1912 void SSL_CTX_set_client_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *name_list);
1913 STACK_OF(X509_NAME) *SSL_get_client_CA_list(const SSL *s);
1914 STACK_OF(X509_NAME) *SSL_CTX_get_client_CA_list(const SSL_CTX *s);
1915 int SSL_add_client_CA(SSL *ssl,X509 *x);
1916 int SSL_CTX_add_client_CA(SSL_CTX *ctx,X509 *x);

1918 void SSL_set_connect_state(SSL *s);
1919 void SSL_set_accept_state(SSL *s);

1921 long SSL_get_default_timeout(const SSL *s);

1923 int SSL_library_init(void);

1925 char *SSL_CIPHER_description(const SSL_CIPHER *,char *buf,int size);
1926 STACK_OF(X509_NAME) *SSL_dup_CA_list(STACK_OF(X509_NAME) *sk);

1928 SSL *SSL_dup(SSL *ssl);

1930 X509 *SSL_get_certificate(const SSL *ssl);
1931 /* EVP_PKEY */ struct evp_pkey_st *SSL_get_privatekey(SSL *ssl);

1933 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx,int mode);
1934 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx);
1935 void SSL_set_quiet_shutdown(SSL *ssl,int mode);
1936 int SSL_get_quiet_shutdown(const SSL *ssl);
1937 void SSL_set_shutdown(SSL *ssl,int mode);
1938 int SSL_get_shutdown(const SSL *ssl);
1939 int SSL_version(const SSL *ssl);
1940 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx);
1941 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
1942 const char *CApath);
1943 #define SSL_get0_session SSL_get_session /* just peek at pointer */
1944 SSL_SESSION *SSL_get_session(const SSL *ssl);
1945 SSL_SESSION *SSL_get1_session(SSL *ssl); /* obtain a reference count */
1946 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl);
1947 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX* ctx);
1948 void SSL_set_info_callback(SSL *ssl,
1949 void (*cb)(const SSL *ssl,int type,int val));
1950 void (*SSL_get_info_callback(const SSL *ssl))(const SSL *ssl,int type,int val);
1951 int SSL_state(const SSL *ssl);
1952 void SSL_set_state(SSL *ssl, int state);

1954 void SSL_set_verify_result(SSL *ssl,long v);
1955 long SSL_get_verify_result(const SSL *ssl);

1957 int SSL_set_ex_data(SSL *ssl,int idx,void *data);
1958 void *SSL_get_ex_data(const SSL *ssl,int idx);
1959 int SSL_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
1960 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);

1962 int SSL_SESSION_set_ex_data(SSL_SESSION *ss,int idx,void *data);
1963 void *SSL_SESSION_get_ex_data(const SSL_SESSION *ss,int idx);
1964 int SSL_SESSION_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
1965 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);

1967 int SSL_CTX_set_ex_data(SSL_CTX *ssl,int idx,void *data);
1968 void *SSL_CTX_get_ex_data(const SSL_CTX *ssl,int idx);
1969 int SSL_CTX_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
1970 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);

1972 int SSL_get_ex_data_X509_STORE_CTX_idx(void);

1974 #define SSL_CTX_sess_set_cache_size(ctx,t) \
1975 SSL_CTX_ctrl(ctx,SSL_CTRL_SET_SESS_CACHE_SIZE,t,NULL)

new/usr/src/lib/openssl/include/openssl/ssl.h 31

1976 #define SSL_CTX_sess_get_cache_size(ctx) \
1977 SSL_CTX_ctrl(ctx,SSL_CTRL_GET_SESS_CACHE_SIZE,0,NULL)
1978 #define SSL_CTX_set_session_cache_mode(ctx,m) \
1979 SSL_CTX_ctrl(ctx,SSL_CTRL_SET_SESS_CACHE_MODE,m,NULL)
1980 #define SSL_CTX_get_session_cache_mode(ctx) \
1981 SSL_CTX_ctrl(ctx,SSL_CTRL_GET_SESS_CACHE_MODE,0,NULL)

1983 #define SSL_CTX_get_default_read_ahead(ctx) SSL_CTX_get_read_ahead(ctx)
1984 #define SSL_CTX_set_default_read_ahead(ctx,m) SSL_CTX_set_read_ahead(ctx,m)
1985 #define SSL_CTX_get_read_ahead(ctx) \
1986 SSL_CTX_ctrl(ctx,SSL_CTRL_GET_READ_AHEAD,0,NULL)
1987 #define SSL_CTX_set_read_ahead(ctx,m) \
1988 SSL_CTX_ctrl(ctx,SSL_CTRL_SET_READ_AHEAD,m,NULL)
1989 #define SSL_CTX_get_max_cert_list(ctx) \
1990 SSL_CTX_ctrl(ctx,SSL_CTRL_GET_MAX_CERT_LIST,0,NULL)
1991 #define SSL_CTX_set_max_cert_list(ctx,m) \
1992 SSL_CTX_ctrl(ctx,SSL_CTRL_SET_MAX_CERT_LIST,m,NULL)
1993 #define SSL_get_max_cert_list(ssl) \
1994 SSL_ctrl(ssl,SSL_CTRL_GET_MAX_CERT_LIST,0,NULL)
1995 #define SSL_set_max_cert_list(ssl,m) \
1996 SSL_ctrl(ssl,SSL_CTRL_SET_MAX_CERT_LIST,m,NULL)

1998 #define SSL_CTX_set_max_send_fragment(ctx,m) \
1999 SSL_CTX_ctrl(ctx,SSL_CTRL_SET_MAX_SEND_FRAGMENT,m,NULL)
2000 #define SSL_set_max_send_fragment(ssl,m) \
2001 SSL_ctrl(ssl,SSL_CTRL_SET_MAX_SEND_FRAGMENT,m,NULL)

2003 /* NB: the keylength is only applicable when is_export is true */
2004 #ifndef OPENSSL_NO_RSA
2005 void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx,
2006 RSA *(*cb)(SSL *ssl,int is_export,
2007 int keylength));

2009 void SSL_set_tmp_rsa_callback(SSL *ssl,
2010 RSA *(*cb)(SSL *ssl,int is_export,
2011 int keylength));
2012 #endif
2013 #ifndef OPENSSL_NO_DH
2014 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
2015 DH *(*dh)(SSL *ssl,int is_export,
2016 int keylength));
2017 void SSL_set_tmp_dh_callback(SSL *ssl,
2018 DH *(*dh)(SSL *ssl,int is_export,
2019 int keylength));
2020 #endif
2021 #ifndef OPENSSL_NO_ECDH
2022 void SSL_CTX_set_tmp_ecdh_callback(SSL_CTX *ctx,
2023 EC_KEY *(*ecdh)(SSL *ssl,int is_export,
2024 int keylength));
2025 void SSL_set_tmp_ecdh_callback(SSL *ssl,
2026 EC_KEY *(*ecdh)(SSL *ssl,int is_export,
2027 int keylength));
2028 #endif

2030 #ifndef OPENSSL_NO_COMP
2031 const COMP_METHOD *SSL_get_current_compression(SSL *s);
2032 const COMP_METHOD *SSL_get_current_expansion(SSL *s);
2033 const char *SSL_COMP_get_name(const COMP_METHOD *comp);
2034 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void);
2035 int SSL_COMP_add_compression_method(int id,COMP_METHOD *cm);
2036 #else
2037 const void *SSL_get_current_compression(SSL *s);
2038 const void *SSL_get_current_expansion(SSL *s);
2039 const char *SSL_COMP_get_name(const void *comp);
2040 void *SSL_COMP_get_compression_methods(void);
2041 int SSL_COMP_add_compression_method(int id,void *cm);

new/usr/src/lib/openssl/include/openssl/ssl.h 32

2042 #endif

2044 /* TLS extensions functions */
2045 int SSL_set_session_ticket_ext(SSL *s, void *ext_data, int ext_len);

2047 int SSL_set_session_ticket_ext_cb(SSL *s, tls_session_ticket_ext_cb_fn cb,
2048 void *arg);

2050 /* Pre-shared secret session resumption functions */
2051 int SSL_set_session_secret_cb(SSL *s, tls_session_secret_cb_fn tls_session_secre

2053 void SSL_set_debug(SSL *s, int debug);
2054 int SSL_cache_hit(SSL *s);

2056 /* BEGIN ERROR CODES */
2057 /* The following lines are auto generated by the script mkerr.pl. Any changes
2058 * made after this point may be overwritten when the script is next run.
2059 */
2060 void ERR_load_SSL_strings(void);

2062 /* Error codes for the SSL functions. */

2064 /* Function codes. */
2065 #define SSL_F_CLIENT_CERTIFICATE 100
2066 #define SSL_F_CLIENT_FINISHED 167
2067 #define SSL_F_CLIENT_HELLO 101
2068 #define SSL_F_CLIENT_MASTER_KEY 102
2069 #define SSL_F_D2I_SSL_SESSION 103
2070 #define SSL_F_DO_DTLS1_WRITE 245
2071 #define SSL_F_DO_SSL3_WRITE 104
2072 #define SSL_F_DTLS1_ACCEPT 246
2073 #define SSL_F_DTLS1_ADD_CERT_TO_BUF 295
2074 #define SSL_F_DTLS1_BUFFER_RECORD 247
2075 #define SSL_F_DTLS1_CHECK_TIMEOUT_NUM 316
2076 #define SSL_F_DTLS1_CLIENT_HELLO 248
2077 #define SSL_F_DTLS1_CONNECT 249
2078 #define SSL_F_DTLS1_ENC 250
2079 #define SSL_F_DTLS1_GET_HELLO_VERIFY 251
2080 #define SSL_F_DTLS1_GET_MESSAGE 252
2081 #define SSL_F_DTLS1_GET_MESSAGE_FRAGMENT 253
2082 #define SSL_F_DTLS1_GET_RECORD 254
2083 #define SSL_F_DTLS1_HANDLE_TIMEOUT 297
2084 #define SSL_F_DTLS1_HEARTBEAT 305
2085 #define SSL_F_DTLS1_OUTPUT_CERT_CHAIN 255
2086 #define SSL_F_DTLS1_PREPROCESS_FRAGMENT 288
2087 #define SSL_F_DTLS1_PROCESS_OUT_OF_SEQ_MESSAGE 256
2088 #define SSL_F_DTLS1_PROCESS_RECORD 257
2089 #define SSL_F_DTLS1_READ_BYTES 258
2090 #define SSL_F_DTLS1_READ_FAILED 259
2091 #define SSL_F_DTLS1_SEND_CERTIFICATE_REQUEST 260
2092 #define SSL_F_DTLS1_SEND_CLIENT_CERTIFICATE 261
2093 #define SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE 262
2094 #define SSL_F_DTLS1_SEND_CLIENT_VERIFY 263
2095 #define SSL_F_DTLS1_SEND_HELLO_VERIFY_REQUEST 264
2096 #define SSL_F_DTLS1_SEND_SERVER_CERTIFICATE 265
2097 #define SSL_F_DTLS1_SEND_SERVER_HELLO 266
2098 #define SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE 267
2099 #define SSL_F_DTLS1_WRITE_APP_DATA_BYTES 268
2100 #define SSL_F_GET_CLIENT_FINISHED 105
2101 #define SSL_F_GET_CLIENT_HELLO 106
2102 #define SSL_F_GET_CLIENT_MASTER_KEY 107
2103 #define SSL_F_GET_SERVER_FINISHED 108
2104 #define SSL_F_GET_SERVER_HELLO 109
2105 #define SSL_F_GET_SERVER_VERIFY 110
2106 #define SSL_F_I2D_SSL_SESSION 111
2107 #define SSL_F_READ_N 112

new/usr/src/lib/openssl/include/openssl/ssl.h 33

2108 #define SSL_F_REQUEST_CERTIFICATE 113
2109 #define SSL_F_SERVER_FINISH 239
2110 #define SSL_F_SERVER_HELLO 114
2111 #define SSL_F_SERVER_VERIFY 240
2112 #define SSL_F_SSL23_ACCEPT 115
2113 #define SSL_F_SSL23_CLIENT_HELLO 116
2114 #define SSL_F_SSL23_CONNECT 117
2115 #define SSL_F_SSL23_GET_CLIENT_HELLO 118
2116 #define SSL_F_SSL23_GET_SERVER_HELLO 119
2117 #define SSL_F_SSL23_PEEK 237
2118 #define SSL_F_SSL23_READ 120
2119 #define SSL_F_SSL23_WRITE 121
2120 #define SSL_F_SSL2_ACCEPT 122
2121 #define SSL_F_SSL2_CONNECT 123
2122 #define SSL_F_SSL2_ENC_INIT 124
2123 #define SSL_F_SSL2_GENERATE_KEY_MATERIAL 241
2124 #define SSL_F_SSL2_PEEK 234
2125 #define SSL_F_SSL2_READ 125
2126 #define SSL_F_SSL2_READ_INTERNAL 236
2127 #define SSL_F_SSL2_SET_CERTIFICATE 126
2128 #define SSL_F_SSL2_WRITE 127
2129 #define SSL_F_SSL3_ACCEPT 128
2130 #define SSL_F_SSL3_ADD_CERT_TO_BUF 296
2131 #define SSL_F_SSL3_CALLBACK_CTRL 233
2132 #define SSL_F_SSL3_CHANGE_CIPHER_STATE 129
2133 #define SSL_F_SSL3_CHECK_CERT_AND_ALGORITHM 130
2134 #define SSL_F_SSL3_CHECK_CLIENT_HELLO 304
2135 #define SSL_F_SSL3_CLIENT_HELLO 131
2136 #define SSL_F_SSL3_CONNECT 132
2137 #define SSL_F_SSL3_CTRL 213
2138 #define SSL_F_SSL3_CTX_CTRL 133
2139 #define SSL_F_SSL3_DIGEST_CACHED_RECORDS 293
2140 #define SSL_F_SSL3_DO_CHANGE_CIPHER_SPEC 292
2141 #define SSL_F_SSL3_ENC 134
2142 #define SSL_F_SSL3_GENERATE_KEY_BLOCK 238
2143 #define SSL_F_SSL3_GET_CERTIFICATE_REQUEST 135
2144 #define SSL_F_SSL3_GET_CERT_STATUS 289
2145 #define SSL_F_SSL3_GET_CERT_VERIFY 136
2146 #define SSL_F_SSL3_GET_CLIENT_CERTIFICATE 137
2147 #define SSL_F_SSL3_GET_CLIENT_HELLO 138
2148 #define SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE 139
2149 #define SSL_F_SSL3_GET_FINISHED 140
2150 #define SSL_F_SSL3_GET_KEY_EXCHANGE 141
2151 #define SSL_F_SSL3_GET_MESSAGE 142
2152 #define SSL_F_SSL3_GET_NEW_SESSION_TICKET 283
2153 #define SSL_F_SSL3_GET_NEXT_PROTO 306
2154 #define SSL_F_SSL3_GET_RECORD 143
2155 #define SSL_F_SSL3_GET_SERVER_CERTIFICATE 144
2156 #define SSL_F_SSL3_GET_SERVER_DONE 145
2157 #define SSL_F_SSL3_GET_SERVER_HELLO 146
2158 #define SSL_F_SSL3_HANDSHAKE_MAC 285
2159 #define SSL_F_SSL3_NEW_SESSION_TICKET 287
2160 #define SSL_F_SSL3_OUTPUT_CERT_CHAIN 147
2161 #define SSL_F_SSL3_PEEK 235
2162 #define SSL_F_SSL3_READ_BYTES 148
2163 #define SSL_F_SSL3_READ_N 149
2164 #define SSL_F_SSL3_SEND_CERTIFICATE_REQUEST 150
2165 #define SSL_F_SSL3_SEND_CLIENT_CERTIFICATE 151
2166 #define SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE 152
2167 #define SSL_F_SSL3_SEND_CLIENT_VERIFY 153
2168 #define SSL_F_SSL3_SEND_SERVER_CERTIFICATE 154
2169 #define SSL_F_SSL3_SEND_SERVER_HELLO 242
2170 #define SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE 155
2171 #define SSL_F_SSL3_SETUP_KEY_BLOCK 157
2172 #define SSL_F_SSL3_SETUP_READ_BUFFER 156
2173 #define SSL_F_SSL3_SETUP_WRITE_BUFFER 291

new/usr/src/lib/openssl/include/openssl/ssl.h 34

2174 #define SSL_F_SSL3_WRITE_BYTES 158
2175 #define SSL_F_SSL3_WRITE_PENDING 159
2176 #define SSL_F_SSL_ADD_CLIENTHELLO_RENEGOTIATE_EXT 298
2177 #define SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT 277
2178 #define SSL_F_SSL_ADD_CLIENTHELLO_USE_SRTP_EXT 307
2179 #define SSL_F_SSL_ADD_DIR_CERT_SUBJECTS_TO_STACK 215
2180 #define SSL_F_SSL_ADD_FILE_CERT_SUBJECTS_TO_STACK 216
2181 #define SSL_F_SSL_ADD_SERVERHELLO_RENEGOTIATE_EXT 299
2182 #define SSL_F_SSL_ADD_SERVERHELLO_TLSEXT 278
2183 #define SSL_F_SSL_ADD_SERVERHELLO_USE_SRTP_EXT 308
2184 #define SSL_F_SSL_BAD_METHOD 160
2185 #define SSL_F_SSL_BYTES_TO_CIPHER_LIST 161
2186 #define SSL_F_SSL_CERT_DUP 221
2187 #define SSL_F_SSL_CERT_INST 222
2188 #define SSL_F_SSL_CERT_INSTANTIATE 214
2189 #define SSL_F_SSL_CERT_NEW 162
2190 #define SSL_F_SSL_CHECK_PRIVATE_KEY 163
2191 #define SSL_F_SSL_CHECK_SERVERHELLO_TLSEXT 280
2192 #define SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG 279
2193 #define SSL_F_SSL_CIPHER_PROCESS_RULESTR 230
2194 #define SSL_F_SSL_CIPHER_STRENGTH_SORT 231
2195 #define SSL_F_SSL_CLEAR 164
2196 #define SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD 165
2197 #define SSL_F_SSL_CREATE_CIPHER_LIST 166
2198 #define SSL_F_SSL_CTRL 232
2199 #define SSL_F_SSL_CTX_CHECK_PRIVATE_KEY 168
2200 #define SSL_F_SSL_CTX_MAKE_PROFILES 309
2201 #define SSL_F_SSL_CTX_NEW 169
2202 #define SSL_F_SSL_CTX_SET_CIPHER_LIST 269
2203 #define SSL_F_SSL_CTX_SET_CLIENT_CERT_ENGINE 290
2204 #define SSL_F_SSL_CTX_SET_PURPOSE 226
2205 #define SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT 219
2206 #define SSL_F_SSL_CTX_SET_SSL_VERSION 170
2207 #define SSL_F_SSL_CTX_SET_TRUST 229
2208 #define SSL_F_SSL_CTX_USE_CERTIFICATE 171
2209 #define SSL_F_SSL_CTX_USE_CERTIFICATE_ASN1 172
2210 #define SSL_F_SSL_CTX_USE_CERTIFICATE_CHAIN_FILE 220
2211 #define SSL_F_SSL_CTX_USE_CERTIFICATE_FILE 173
2212 #define SSL_F_SSL_CTX_USE_PRIVATEKEY 174
2213 #define SSL_F_SSL_CTX_USE_PRIVATEKEY_ASN1 175
2214 #define SSL_F_SSL_CTX_USE_PRIVATEKEY_FILE 176
2215 #define SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT 272
2216 #define SSL_F_SSL_CTX_USE_RSAPRIVATEKEY 177
2217 #define SSL_F_SSL_CTX_USE_RSAPRIVATEKEY_ASN1 178
2218 #define SSL_F_SSL_CTX_USE_RSAPRIVATEKEY_FILE 179
2219 #define SSL_F_SSL_DO_HANDSHAKE 180
2220 #define SSL_F_SSL_GET_NEW_SESSION 181
2221 #define SSL_F_SSL_GET_PREV_SESSION 217
2222 #define SSL_F_SSL_GET_SERVER_SEND_CERT 182
2223 #define SSL_F_SSL_GET_SERVER_SEND_PKEY 317
2224 #define SSL_F_SSL_GET_SIGN_PKEY 183
2225 #define SSL_F_SSL_INIT_WBIO_BUFFER 184
2226 #define SSL_F_SSL_LOAD_CLIENT_CA_FILE 185
2227 #define SSL_F_SSL_NEW 186
2228 #define SSL_F_SSL_PARSE_CLIENTHELLO_RENEGOTIATE_EXT 300
2229 #define SSL_F_SSL_PARSE_CLIENTHELLO_TLSEXT 302
2230 #define SSL_F_SSL_PARSE_CLIENTHELLO_USE_SRTP_EXT 310
2231 #define SSL_F_SSL_PARSE_SERVERHELLO_RENEGOTIATE_EXT 301
2232 #define SSL_F_SSL_PARSE_SERVERHELLO_TLSEXT 303
2233 #define SSL_F_SSL_PARSE_SERVERHELLO_USE_SRTP_EXT 311
2234 #define SSL_F_SSL_PEEK 270
2235 #define SSL_F_SSL_PREPARE_CLIENTHELLO_TLSEXT 281
2236 #define SSL_F_SSL_PREPARE_SERVERHELLO_TLSEXT 282
2237 #define SSL_F_SSL_READ 223
2238 #define SSL_F_SSL_RSA_PRIVATE_DECRYPT 187
2239 #define SSL_F_SSL_RSA_PUBLIC_ENCRYPT 188

new/usr/src/lib/openssl/include/openssl/ssl.h 35

2240 #define SSL_F_SSL_SESSION_NEW 189
2241 #define SSL_F_SSL_SESSION_PRINT_FP 190
2242 #define SSL_F_SSL_SESSION_SET1_ID_CONTEXT 312
2243 #define SSL_F_SSL_SESS_CERT_NEW 225
2244 #define SSL_F_SSL_SET_CERT 191
2245 #define SSL_F_SSL_SET_CIPHER_LIST 271
2246 #define SSL_F_SSL_SET_FD 192
2247 #define SSL_F_SSL_SET_PKEY 193
2248 #define SSL_F_SSL_SET_PURPOSE 227
2249 #define SSL_F_SSL_SET_RFD 194
2250 #define SSL_F_SSL_SET_SESSION 195
2251 #define SSL_F_SSL_SET_SESSION_ID_CONTEXT 218
2252 #define SSL_F_SSL_SET_SESSION_TICKET_EXT 294
2253 #define SSL_F_SSL_SET_TRUST 228
2254 #define SSL_F_SSL_SET_WFD 196
2255 #define SSL_F_SSL_SHUTDOWN 224
2256 #define SSL_F_SSL_SRP_CTX_INIT 313
2257 #define SSL_F_SSL_UNDEFINED_CONST_FUNCTION 243
2258 #define SSL_F_SSL_UNDEFINED_FUNCTION 197
2259 #define SSL_F_SSL_UNDEFINED_VOID_FUNCTION 244
2260 #define SSL_F_SSL_USE_CERTIFICATE 198
2261 #define SSL_F_SSL_USE_CERTIFICATE_ASN1 199
2262 #define SSL_F_SSL_USE_CERTIFICATE_FILE 200
2263 #define SSL_F_SSL_USE_PRIVATEKEY 201
2264 #define SSL_F_SSL_USE_PRIVATEKEY_ASN1 202
2265 #define SSL_F_SSL_USE_PRIVATEKEY_FILE 203
2266 #define SSL_F_SSL_USE_PSK_IDENTITY_HINT 273
2267 #define SSL_F_SSL_USE_RSAPRIVATEKEY 204
2268 #define SSL_F_SSL_USE_RSAPRIVATEKEY_ASN1 205
2269 #define SSL_F_SSL_USE_RSAPRIVATEKEY_FILE 206
2270 #define SSL_F_SSL_VERIFY_CERT_CHAIN 207
2271 #define SSL_F_SSL_WRITE 208
2272 #define SSL_F_TLS1_CERT_VERIFY_MAC 286
2273 #define SSL_F_TLS1_CHANGE_CIPHER_STATE 209
2274 #define SSL_F_TLS1_CHECK_SERVERHELLO_TLSEXT 274
2275 #define SSL_F_TLS1_ENC 210
2276 #define SSL_F_TLS1_EXPORT_KEYING_MATERIAL 314
2277 #define SSL_F_TLS1_HEARTBEAT 315
2278 #define SSL_F_TLS1_PREPARE_CLIENTHELLO_TLSEXT 275
2279 #define SSL_F_TLS1_PREPARE_SERVERHELLO_TLSEXT 276
2280 #define SSL_F_TLS1_PRF 284
2281 #define SSL_F_TLS1_SETUP_KEY_BLOCK 211
2282 #define SSL_F_WRITE_PENDING 212

2284 /* Reason codes. */
2285 #define SSL_R_APP_DATA_IN_HANDSHAKE 100
2286 #define SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT 272
2287 #define SSL_R_BAD_ALERT_RECORD 101
2288 #define SSL_R_BAD_AUTHENTICATION_TYPE 102
2289 #define SSL_R_BAD_CHANGE_CIPHER_SPEC 103
2290 #define SSL_R_BAD_CHECKSUM 104
2291 #define SSL_R_BAD_DATA_RETURNED_BY_CALLBACK 106
2292 #define SSL_R_BAD_DECOMPRESSION 107
2293 #define SSL_R_BAD_DH_G_LENGTH 108
2294 #define SSL_R_BAD_DH_PUB_KEY_LENGTH 109
2295 #define SSL_R_BAD_DH_P_LENGTH 110
2296 #define SSL_R_BAD_DIGEST_LENGTH 111
2297 #define SSL_R_BAD_DSA_SIGNATURE 112
2298 #define SSL_R_BAD_ECC_CERT 304
2299 #define SSL_R_BAD_ECDSA_SIGNATURE 305
2300 #define SSL_R_BAD_ECPOINT 306
2301 #define SSL_R_BAD_HANDSHAKE_LENGTH 332
2302 #define SSL_R_BAD_HELLO_REQUEST 105
2303 #define SSL_R_BAD_LENGTH 271
2304 #define SSL_R_BAD_MAC_DECODE 113
2305 #define SSL_R_BAD_MAC_LENGTH 333

new/usr/src/lib/openssl/include/openssl/ssl.h 36

2306 #define SSL_R_BAD_MESSAGE_TYPE 114
2307 #define SSL_R_BAD_PACKET_LENGTH 115
2308 #define SSL_R_BAD_PROTOCOL_VERSION_NUMBER 116
2309 #define SSL_R_BAD_PSK_IDENTITY_HINT_LENGTH 316
2310 #define SSL_R_BAD_RESPONSE_ARGUMENT 117
2311 #define SSL_R_BAD_RSA_DECRYPT 118
2312 #define SSL_R_BAD_RSA_ENCRYPT 119
2313 #define SSL_R_BAD_RSA_E_LENGTH 120
2314 #define SSL_R_BAD_RSA_MODULUS_LENGTH 121
2315 #define SSL_R_BAD_RSA_SIGNATURE 122
2316 #define SSL_R_BAD_SIGNATURE 123
2317 #define SSL_R_BAD_SRP_A_LENGTH 347
2318 #define SSL_R_BAD_SRP_B_LENGTH 348
2319 #define SSL_R_BAD_SRP_G_LENGTH 349
2320 #define SSL_R_BAD_SRP_N_LENGTH 350
2321 #define SSL_R_BAD_SRP_S_LENGTH 351
2322 #define SSL_R_BAD_SRTP_MKI_VALUE 352
2323 #define SSL_R_BAD_SRTP_PROTECTION_PROFILE_LIST 353
2324 #define SSL_R_BAD_SSL_FILETYPE 124
2325 #define SSL_R_BAD_SSL_SESSION_ID_LENGTH 125
2326 #define SSL_R_BAD_STATE 126
2327 #define SSL_R_BAD_WRITE_RETRY 127
2328 #define SSL_R_BIO_NOT_SET 128
2329 #define SSL_R_BLOCK_CIPHER_PAD_IS_WRONG 129
2330 #define SSL_R_BN_LIB 130
2331 #define SSL_R_CA_DN_LENGTH_MISMATCH 131
2332 #define SSL_R_CA_DN_TOO_LONG 132
2333 #define SSL_R_CCS_RECEIVED_EARLY 133
2334 #define SSL_R_CERTIFICATE_VERIFY_FAILED 134
2335 #define SSL_R_CERT_LENGTH_MISMATCH 135
2336 #define SSL_R_CHALLENGE_IS_DIFFERENT 136
2337 #define SSL_R_CIPHER_CODE_WRONG_LENGTH 137
2338 #define SSL_R_CIPHER_OR_HASH_UNAVAILABLE 138
2339 #define SSL_R_CIPHER_TABLE_SRC_ERROR 139
2340 #define SSL_R_CLIENTHELLO_TLSEXT 226
2341 #define SSL_R_COMPRESSED_LENGTH_TOO_LONG 140
2342 #define SSL_R_COMPRESSION_DISABLED 343
2343 #define SSL_R_COMPRESSION_FAILURE 141
2344 #define SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE 307
2345 #define SSL_R_COMPRESSION_LIBRARY_ERROR 142
2346 #define SSL_R_CONNECTION_ID_IS_DIFFERENT 143
2347 #define SSL_R_CONNECTION_TYPE_NOT_SET 144
2348 #define SSL_R_COOKIE_MISMATCH 308
2349 #define SSL_R_DATA_BETWEEN_CCS_AND_FINISHED 145
2350 #define SSL_R_DATA_LENGTH_TOO_LONG 146
2351 #define SSL_R_DECRYPTION_FAILED 147
2352 #define SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC 281
2353 #define SSL_R_DH_PUBLIC_VALUE_LENGTH_IS_WRONG 148
2354 #define SSL_R_DIGEST_CHECK_FAILED 149
2355 #define SSL_R_DTLS_MESSAGE_TOO_BIG 334
2356 #define SSL_R_DUPLICATE_COMPRESSION_ID 309
2357 #define SSL_R_ECC_CERT_NOT_FOR_KEY_AGREEMENT 317
2358 #define SSL_R_ECC_CERT_NOT_FOR_SIGNING 318
2359 #define SSL_R_ECC_CERT_SHOULD_HAVE_RSA_SIGNATURE 322
2360 #define SSL_R_ECC_CERT_SHOULD_HAVE_SHA1_SIGNATURE 323
2361 #define SSL_R_ECGROUP_TOO_LARGE_FOR_CIPHER 310
2362 #define SSL_R_EMPTY_SRTP_PROTECTION_PROFILE_LIST 354
2363 #define SSL_R_ENCRYPTED_LENGTH_TOO_LONG 150
2364 #define SSL_R_ERROR_GENERATING_TMP_RSA_KEY 282
2365 #define SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST 151
2366 #define SSL_R_EXCESSIVE_MESSAGE_SIZE 152
2367 #define SSL_R_EXTRA_DATA_IN_MESSAGE 153
2368 #define SSL_R_GOT_A_FIN_BEFORE_A_CCS 154
2369 #define SSL_R_GOT_NEXT_PROTO_BEFORE_A_CCS 355
2370 #define SSL_R_GOT_NEXT_PROTO_WITHOUT_EXTENSION 356
2371 #define SSL_R_HTTPS_PROXY_REQUEST 155

new/usr/src/lib/openssl/include/openssl/ssl.h 37

2372 #define SSL_R_HTTP_REQUEST 156
2373 #define SSL_R_ILLEGAL_PADDING 283
2374 #define SSL_R_INCONSISTENT_COMPRESSION 340
2375 #define SSL_R_INVALID_CHALLENGE_LENGTH 158
2376 #define SSL_R_INVALID_COMMAND 280
2377 #define SSL_R_INVALID_COMPRESSION_ALGORITHM 341
2378 #define SSL_R_INVALID_PURPOSE 278
2379 #define SSL_R_INVALID_SRP_USERNAME 357
2380 #define SSL_R_INVALID_STATUS_RESPONSE 328
2381 #define SSL_R_INVALID_TICKET_KEYS_LENGTH 325
2382 #define SSL_R_INVALID_TRUST 279
2383 #define SSL_R_KEY_ARG_TOO_LONG 284
2384 #define SSL_R_KRB5 285
2385 #define SSL_R_KRB5_C_CC_PRINC 286
2386 #define SSL_R_KRB5_C_GET_CRED 287
2387 #define SSL_R_KRB5_C_INIT 288
2388 #define SSL_R_KRB5_C_MK_REQ 289
2389 #define SSL_R_KRB5_S_BAD_TICKET 290
2390 #define SSL_R_KRB5_S_INIT 291
2391 #define SSL_R_KRB5_S_RD_REQ 292
2392 #define SSL_R_KRB5_S_TKT_EXPIRED 293
2393 #define SSL_R_KRB5_S_TKT_NYV 294
2394 #define SSL_R_KRB5_S_TKT_SKEW 295
2395 #define SSL_R_LENGTH_MISMATCH 159
2396 #define SSL_R_LENGTH_TOO_SHORT 160
2397 #define SSL_R_LIBRARY_BUG 274
2398 #define SSL_R_LIBRARY_HAS_NO_CIPHERS 161
2399 #define SSL_R_MESSAGE_TOO_LONG 296
2400 #define SSL_R_MISSING_DH_DSA_CERT 162
2401 #define SSL_R_MISSING_DH_KEY 163
2402 #define SSL_R_MISSING_DH_RSA_CERT 164
2403 #define SSL_R_MISSING_DSA_SIGNING_CERT 165
2404 #define SSL_R_MISSING_EXPORT_TMP_DH_KEY 166
2405 #define SSL_R_MISSING_EXPORT_TMP_RSA_KEY 167
2406 #define SSL_R_MISSING_RSA_CERTIFICATE 168
2407 #define SSL_R_MISSING_RSA_ENCRYPTING_CERT 169
2408 #define SSL_R_MISSING_RSA_SIGNING_CERT 170
2409 #define SSL_R_MISSING_SRP_PARAM 358
2410 #define SSL_R_MISSING_TMP_DH_KEY 171
2411 #define SSL_R_MISSING_TMP_ECDH_KEY 311
2412 #define SSL_R_MISSING_TMP_RSA_KEY 172
2413 #define SSL_R_MISSING_TMP_RSA_PKEY 173
2414 #define SSL_R_MISSING_VERIFY_MESSAGE 174
2415 #define SSL_R_MULTIPLE_SGC_RESTARTS 346
2416 #define SSL_R_NON_SSLV2_INITIAL_PACKET 175
2417 #define SSL_R_NO_CERTIFICATES_RETURNED 176
2418 #define SSL_R_NO_CERTIFICATE_ASSIGNED 177
2419 #define SSL_R_NO_CERTIFICATE_RETURNED 178
2420 #define SSL_R_NO_CERTIFICATE_SET 179
2421 #define SSL_R_NO_CERTIFICATE_SPECIFIED 180
2422 #define SSL_R_NO_CIPHERS_AVAILABLE 181
2423 #define SSL_R_NO_CIPHERS_PASSED 182
2424 #define SSL_R_NO_CIPHERS_SPECIFIED 183
2425 #define SSL_R_NO_CIPHER_LIST 184
2426 #define SSL_R_NO_CIPHER_MATCH 185
2427 #define SSL_R_NO_CLIENT_CERT_METHOD 331
2428 #define SSL_R_NO_CLIENT_CERT_RECEIVED 186
2429 #define SSL_R_NO_COMPRESSION_SPECIFIED 187
2430 #define SSL_R_NO_GOST_CERTIFICATE_SENT_BY_PEER 330
2431 #define SSL_R_NO_METHOD_SPECIFIED 188
2432 #define SSL_R_NO_PRIVATEKEY 189
2433 #define SSL_R_NO_PRIVATE_KEY_ASSIGNED 190
2434 #define SSL_R_NO_PROTOCOLS_AVAILABLE 191
2435 #define SSL_R_NO_PUBLICKEY 192
2436 #define SSL_R_NO_RENEGOTIATION 339
2437 #define SSL_R_NO_REQUIRED_DIGEST 324

new/usr/src/lib/openssl/include/openssl/ssl.h 38

2438 #define SSL_R_NO_SHARED_CIPHER 193
2439 #define SSL_R_NO_SRTP_PROFILES 359
2440 #define SSL_R_NO_VERIFY_CALLBACK 194
2441 #define SSL_R_NULL_SSL_CTX 195
2442 #define SSL_R_NULL_SSL_METHOD_PASSED 196
2443 #define SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED 197
2444 #define SSL_R_OLD_SESSION_COMPRESSION_ALGORITHM_NOT_RETURNED 344
2445 #define SSL_R_ONLY_TLS_ALLOWED_IN_FIPS_MODE 297
2446 #define SSL_R_OPAQUE_PRF_INPUT_TOO_LONG 327
2447 #define SSL_R_PACKET_LENGTH_TOO_LONG 198
2448 #define SSL_R_PARSE_TLSEXT 227
2449 #define SSL_R_PATH_TOO_LONG 270
2450 #define SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE 199
2451 #define SSL_R_PEER_ERROR 200
2452 #define SSL_R_PEER_ERROR_CERTIFICATE 201
2453 #define SSL_R_PEER_ERROR_NO_CERTIFICATE 202
2454 #define SSL_R_PEER_ERROR_NO_CIPHER 203
2455 #define SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE 204
2456 #define SSL_R_PRE_MAC_LENGTH_TOO_LONG 205
2457 #define SSL_R_PROBLEMS_MAPPING_CIPHER_FUNCTIONS 206
2458 #define SSL_R_PROTOCOL_IS_SHUTDOWN 207
2459 #define SSL_R_PSK_IDENTITY_NOT_FOUND 223
2460 #define SSL_R_PSK_NO_CLIENT_CB 224
2461 #define SSL_R_PSK_NO_SERVER_CB 225
2462 #define SSL_R_PUBLIC_KEY_ENCRYPT_ERROR 208
2463 #define SSL_R_PUBLIC_KEY_IS_NOT_RSA 209
2464 #define SSL_R_PUBLIC_KEY_NOT_RSA 210
2465 #define SSL_R_READ_BIO_NOT_SET 211
2466 #define SSL_R_READ_TIMEOUT_EXPIRED 312
2467 #define SSL_R_READ_WRONG_PACKET_TYPE 212
2468 #define SSL_R_RECORD_LENGTH_MISMATCH 213
2469 #define SSL_R_RECORD_TOO_LARGE 214
2470 #define SSL_R_RECORD_TOO_SMALL 298
2471 #define SSL_R_RENEGOTIATE_EXT_TOO_LONG 335
2472 #define SSL_R_RENEGOTIATION_ENCODING_ERR 336
2473 #define SSL_R_RENEGOTIATION_MISMATCH 337
2474 #define SSL_R_REQUIRED_CIPHER_MISSING 215
2475 #define SSL_R_REQUIRED_COMPRESSSION_ALGORITHM_MISSING 342
2476 #define SSL_R_REUSE_CERT_LENGTH_NOT_ZERO 216
2477 #define SSL_R_REUSE_CERT_TYPE_NOT_ZERO 217
2478 #define SSL_R_REUSE_CIPHER_LIST_NOT_ZERO 218
2479 #define SSL_R_SCSV_RECEIVED_WHEN_RENEGOTIATING 345
2480 #define SSL_R_SERVERHELLO_TLSEXT 275
2481 #define SSL_R_SESSION_ID_CONTEXT_UNINITIALIZED 277
2482 #define SSL_R_SHORT_READ 219
2483 #define SSL_R_SIGNATURE_ALGORITHMS_ERROR 360
2484 #define SSL_R_SIGNATURE_FOR_NON_SIGNING_CERTIFICATE 220
2485 #define SSL_R_SRP_A_CALC 361
2486 #define SSL_R_SRTP_COULD_NOT_ALLOCATE_PROFILES 362
2487 #define SSL_R_SRTP_PROTECTION_PROFILE_LIST_TOO_LONG 363
2488 #define SSL_R_SRTP_UNKNOWN_PROTECTION_PROFILE 364
2489 #define SSL_R_SSL23_DOING_SESSION_ID_REUSE 221
2490 #define SSL_R_SSL2_CONNECTION_ID_TOO_LONG 299
2491 #define SSL_R_SSL3_EXT_INVALID_ECPOINTFORMAT 321
2492 #define SSL_R_SSL3_EXT_INVALID_SERVERNAME 319
2493 #define SSL_R_SSL3_EXT_INVALID_SERVERNAME_TYPE 320
2494 #define SSL_R_SSL3_SESSION_ID_TOO_LONG 300
2495 #define SSL_R_SSL3_SESSION_ID_TOO_SHORT 222
2496 #define SSL_R_SSLV3_ALERT_BAD_CERTIFICATE 1042
2497 #define SSL_R_SSLV3_ALERT_BAD_RECORD_MAC 1020
2498 #define SSL_R_SSLV3_ALERT_CERTIFICATE_EXPIRED 1045
2499 #define SSL_R_SSLV3_ALERT_CERTIFICATE_REVOKED 1044
2500 #define SSL_R_SSLV3_ALERT_CERTIFICATE_UNKNOWN 1046
2501 #define SSL_R_SSLV3_ALERT_DECOMPRESSION_FAILURE 1030
2502 #define SSL_R_SSLV3_ALERT_HANDSHAKE_FAILURE 1040
2503 #define SSL_R_SSLV3_ALERT_ILLEGAL_PARAMETER 1047

new/usr/src/lib/openssl/include/openssl/ssl.h 39

2504 #define SSL_R_SSLV3_ALERT_NO_CERTIFICATE 1041
2505 #define SSL_R_SSLV3_ALERT_UNEXPECTED_MESSAGE 1010
2506 #define SSL_R_SSLV3_ALERT_UNSUPPORTED_CERTIFICATE 1043
2507 #define SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION 228
2508 #define SSL_R_SSL_HANDSHAKE_FAILURE 229
2509 #define SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS 230
2510 #define SSL_R_SSL_SESSION_ID_CALLBACK_FAILED 301
2511 #define SSL_R_SSL_SESSION_ID_CONFLICT 302
2512 #define SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG 273
2513 #define SSL_R_SSL_SESSION_ID_HAS_BAD_LENGTH 303
2514 #define SSL_R_SSL_SESSION_ID_IS_DIFFERENT 231
2515 #define SSL_R_TLSV1_ALERT_ACCESS_DENIED 1049
2516 #define SSL_R_TLSV1_ALERT_DECODE_ERROR 1050
2517 #define SSL_R_TLSV1_ALERT_DECRYPTION_FAILED 1021
2518 #define SSL_R_TLSV1_ALERT_DECRYPT_ERROR 1051
2519 #define SSL_R_TLSV1_ALERT_EXPORT_RESTRICTION 1060
2520 #define SSL_R_TLSV1_ALERT_INSUFFICIENT_SECURITY 1071
2521 #define SSL_R_TLSV1_ALERT_INTERNAL_ERROR 1080
2522 #define SSL_R_TLSV1_ALERT_NO_RENEGOTIATION 1100
2523 #define SSL_R_TLSV1_ALERT_PROTOCOL_VERSION 1070
2524 #define SSL_R_TLSV1_ALERT_RECORD_OVERFLOW 1022
2525 #define SSL_R_TLSV1_ALERT_UNKNOWN_CA 1048
2526 #define SSL_R_TLSV1_ALERT_USER_CANCELLED 1090
2527 #define SSL_R_TLSV1_BAD_CERTIFICATE_HASH_VALUE 1114
2528 #define SSL_R_TLSV1_BAD_CERTIFICATE_STATUS_RESPONSE 1113
2529 #define SSL_R_TLSV1_CERTIFICATE_UNOBTAINABLE 1111
2530 #define SSL_R_TLSV1_UNRECOGNIZED_NAME 1112
2531 #define SSL_R_TLSV1_UNSUPPORTED_EXTENSION 1110
2532 #define SSL_R_TLS_CLIENT_CERT_REQ_WITH_ANON_CIPHER 232
2533 #define SSL_R_TLS_HEARTBEAT_PEER_DOESNT_ACCEPT 365
2534 #define SSL_R_TLS_HEARTBEAT_PENDING 366
2535 #define SSL_R_TLS_ILLEGAL_EXPORTER_LABEL 367
2536 #define SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST 157
2537 #define SSL_R_TLS_PEER_DID_NOT_RESPOND_WITH_CERTIFICATE_LIST 233
2538 #define SSL_R_TLS_RSA_ENCRYPTED_VALUE_LENGTH_IS_WRONG 234
2539 #define SSL_R_TRIED_TO_USE_UNSUPPORTED_CIPHER 235
2540 #define SSL_R_UNABLE_TO_DECODE_DH_CERTS 236
2541 #define SSL_R_UNABLE_TO_DECODE_ECDH_CERTS 313
2542 #define SSL_R_UNABLE_TO_EXTRACT_PUBLIC_KEY 237
2543 #define SSL_R_UNABLE_TO_FIND_DH_PARAMETERS 238
2544 #define SSL_R_UNABLE_TO_FIND_ECDH_PARAMETERS 314
2545 #define SSL_R_UNABLE_TO_FIND_PUBLIC_KEY_PARAMETERS 239
2546 #define SSL_R_UNABLE_TO_FIND_SSL_METHOD 240
2547 #define SSL_R_UNABLE_TO_LOAD_SSL2_MD5_ROUTINES 241
2548 #define SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES 242
2549 #define SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES 243
2550 #define SSL_R_UNEXPECTED_MESSAGE 244
2551 #define SSL_R_UNEXPECTED_RECORD 245
2552 #define SSL_R_UNINITIALIZED 276
2553 #define SSL_R_UNKNOWN_ALERT_TYPE 246
2554 #define SSL_R_UNKNOWN_CERTIFICATE_TYPE 247
2555 #define SSL_R_UNKNOWN_CIPHER_RETURNED 248
2556 #define SSL_R_UNKNOWN_CIPHER_TYPE 249
2557 #define SSL_R_UNKNOWN_DIGEST 368
2558 #define SSL_R_UNKNOWN_KEY_EXCHANGE_TYPE 250
2559 #define SSL_R_UNKNOWN_PKEY_TYPE 251
2560 #define SSL_R_UNKNOWN_PROTOCOL 252
2561 #define SSL_R_UNKNOWN_REMOTE_ERROR_TYPE 253
2562 #define SSL_R_UNKNOWN_SSL_VERSION 254
2563 #define SSL_R_UNKNOWN_STATE 255
2564 #define SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED 338
2565 #define SSL_R_UNSUPPORTED_CIPHER 256
2566 #define SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM 257
2567 #define SSL_R_UNSUPPORTED_DIGEST_TYPE 326
2568 #define SSL_R_UNSUPPORTED_ELLIPTIC_CURVE 315
2569 #define SSL_R_UNSUPPORTED_PROTOCOL 258

new/usr/src/lib/openssl/include/openssl/ssl.h 40

2570 #define SSL_R_UNSUPPORTED_SSL_VERSION 259
2571 #define SSL_R_UNSUPPORTED_STATUS_TYPE 329
2572 #define SSL_R_USE_SRTP_NOT_NEGOTIATED 369
2573 #define SSL_R_WRITE_BIO_NOT_SET 260
2574 #define SSL_R_WRONG_CIPHER_RETURNED 261
2575 #define SSL_R_WRONG_MESSAGE_TYPE 262
2576 #define SSL_R_WRONG_NUMBER_OF_KEY_BITS 263
2577 #define SSL_R_WRONG_SIGNATURE_LENGTH 264
2578 #define SSL_R_WRONG_SIGNATURE_SIZE 265
2579 #define SSL_R_WRONG_SIGNATURE_TYPE 370
2580 #define SSL_R_WRONG_SSL_VERSION 266
2581 #define SSL_R_WRONG_VERSION_NUMBER 267
2582 #define SSL_R_X509_LIB 268
2583 #define SSL_R_X509_VERIFICATION_SETUP_PROBLEMS 269

2585 #ifdef __cplusplus
2586 }
2587 #endif
2588 #endif

new/usr/src/lib/openssl/include/openssl/ssl2.h 1

**
 10755 Fri May 30 18:31:22 2014
new/usr/src/lib/openssl/include/openssl/ssl2.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/ssl2.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_SSL2_H
60 #define HEADER_SSL2_H

new/usr/src/lib/openssl/include/openssl/ssl2.h 2

62 #ifdef __cplusplus
63 extern "C" {
64 #endif

66 /* Protocol Version Codes */
67 #define SSL2_VERSION 0x0002
68 #define SSL2_VERSION_MAJOR 0x00
69 #define SSL2_VERSION_MINOR 0x02
70 /* #define SSL2_CLIENT_VERSION 0x0002 */
71 /* #define SSL2_SERVER_VERSION 0x0002 */

73 /* Protocol Message Codes */
74 #define SSL2_MT_ERROR 0
75 #define SSL2_MT_CLIENT_HELLO 1
76 #define SSL2_MT_CLIENT_MASTER_KEY 2
77 #define SSL2_MT_CLIENT_FINISHED 3
78 #define SSL2_MT_SERVER_HELLO 4
79 #define SSL2_MT_SERVER_VERIFY 5
80 #define SSL2_MT_SERVER_FINISHED 6
81 #define SSL2_MT_REQUEST_CERTIFICATE 7
82 #define SSL2_MT_CLIENT_CERTIFICATE 8

84 /* Error Message Codes */
85 #define SSL2_PE_UNDEFINED_ERROR 0x0000
86 #define SSL2_PE_NO_CIPHER 0x0001
87 #define SSL2_PE_NO_CERTIFICATE 0x0002
88 #define SSL2_PE_BAD_CERTIFICATE 0x0004
89 #define SSL2_PE_UNSUPPORTED_CERTIFICATE_TYPE 0x0006

91 /* Cipher Kind Values */
92 #define SSL2_CK_NULL_WITH_MD5 0x02000000 /* v3 */
93 #define SSL2_CK_RC4_128_WITH_MD5 0x02010080
94 #define SSL2_CK_RC4_128_EXPORT40_WITH_MD5 0x02020080
95 #define SSL2_CK_RC2_128_CBC_WITH_MD5 0x02030080
96 #define SSL2_CK_RC2_128_CBC_EXPORT40_WITH_MD5 0x02040080
97 #define SSL2_CK_IDEA_128_CBC_WITH_MD5 0x02050080
98 #define SSL2_CK_DES_64_CBC_WITH_MD5 0x02060040
99 #define SSL2_CK_DES_64_CBC_WITH_SHA 0x02060140 /* v3 */
100 #define SSL2_CK_DES_192_EDE3_CBC_WITH_MD5 0x020700c0
101 #define SSL2_CK_DES_192_EDE3_CBC_WITH_SHA 0x020701c0 /* v3 */
102 #define SSL2_CK_RC4_64_WITH_MD5 0x02080080 /* MS hack */
103
104 #define SSL2_CK_DES_64_CFB64_WITH_MD5_1 0x02ff0800 /* SSLeay */
105 #define SSL2_CK_NULL 0x02ff0810 /* SSLeay */

107 #define SSL2_TXT_DES_64_CFB64_WITH_MD5_1 "DES-CFB-M1"
108 #define SSL2_TXT_NULL_WITH_MD5 "NULL-MD5"
109 #define SSL2_TXT_RC4_128_WITH_MD5 "RC4-MD5"
110 #define SSL2_TXT_RC4_128_EXPORT40_WITH_MD5 "EXP-RC4-MD5"
111 #define SSL2_TXT_RC2_128_CBC_WITH_MD5 "RC2-CBC-MD5"
112 #define SSL2_TXT_RC2_128_CBC_EXPORT40_WITH_MD5 "EXP-RC2-CBC-MD5"
113 #define SSL2_TXT_IDEA_128_CBC_WITH_MD5 "IDEA-CBC-MD5"
114 #define SSL2_TXT_DES_64_CBC_WITH_MD5 "DES-CBC-MD5"
115 #define SSL2_TXT_DES_64_CBC_WITH_SHA "DES-CBC-SHA"
116 #define SSL2_TXT_DES_192_EDE3_CBC_WITH_MD5 "DES-CBC3-MD5"
117 #define SSL2_TXT_DES_192_EDE3_CBC_WITH_SHA "DES-CBC3-SHA"
118 #define SSL2_TXT_RC4_64_WITH_MD5 "RC4-64-MD5"

120 #define SSL2_TXT_NULL "NULL"

122 /* Flags for the SSL_CIPHER.algorithm2 field */
123 #define SSL2_CF_5_BYTE_ENC 0x01
124 #define SSL2_CF_8_BYTE_ENC 0x02

126 /* Certificate Type Codes */
127 #define SSL2_CT_X509_CERTIFICATE 0x01

new/usr/src/lib/openssl/include/openssl/ssl2.h 3

129 /* Authentication Type Code */
130 #define SSL2_AT_MD5_WITH_RSA_ENCRYPTION 0x01

132 #define SSL2_MAX_SSL_SESSION_ID_LENGTH 32

134 /* Upper/Lower Bounds */
135 #define SSL2_MAX_MASTER_KEY_LENGTH_IN_BITS 256
136 #ifdef OPENSSL_SYS_MPE
137 #define SSL2_MAX_RECORD_LENGTH_2_BYTE_HEADER 29998u
138 #else
139 #define SSL2_MAX_RECORD_LENGTH_2_BYTE_HEADER 32767u /* 2^15-1 */
140 #endif
141 #define SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER 16383 /* 2^14-1 */

143 #define SSL2_CHALLENGE_LENGTH 16
144 /*#define SSL2_CHALLENGE_LENGTH 32 */
145 #define SSL2_MIN_CHALLENGE_LENGTH 16
146 #define SSL2_MAX_CHALLENGE_LENGTH 32
147 #define SSL2_CONNECTION_ID_LENGTH 16
148 #define SSL2_MAX_CONNECTION_ID_LENGTH 16
149 #define SSL2_SSL_SESSION_ID_LENGTH 16
150 #define SSL2_MAX_CERT_CHALLENGE_LENGTH 32
151 #define SSL2_MIN_CERT_CHALLENGE_LENGTH 16
152 #define SSL2_MAX_KEY_MATERIAL_LENGTH 24

154 #ifndef HEADER_SSL_LOCL_H
155 #define CERT char
156 #endif

158 #ifndef OPENSSL_NO_SSL_INTERN

160 typedef struct ssl2_state_st
161 {
162 int three_byte_header;
163 int clear_text; /* clear text */
164 int escape; /* not used in SSLv2 */
165 int ssl2_rollback; /* used if SSLv23 rolled back to SSLv2 */

167 /* non-blocking io info, used to make sure the same
168 * args were passwd */
169 unsigned int wnum; /* number of bytes sent so far */
170 int wpend_tot;
171 const unsigned char *wpend_buf;

173 int wpend_off; /* offset to data to write */
174 int wpend_len; /* number of bytes passwd to write */
175 int wpend_ret; /* number of bytes to return to caller */

177 /* buffer raw data */
178 int rbuf_left;
179 int rbuf_offs;
180 unsigned char *rbuf;
181 unsigned char *wbuf;

183 unsigned char *write_ptr;/* used to point to the start due to
184 * 2/3 byte header. */

186 unsigned int padding;
187 unsigned int rlength; /* passed to ssl2_enc */
188 int ract_data_length; /* Set when things are encrypted. */
189 unsigned int wlength; /* passed to ssl2_enc */
190 int wact_data_length; /* Set when things are decrypted. */
191 unsigned char *ract_data;
192 unsigned char *wact_data;
193 unsigned char *mac_data;

new/usr/src/lib/openssl/include/openssl/ssl2.h 4

195 unsigned char *read_key;
196 unsigned char *write_key;

198 /* Stuff specifically to do with this SSL session */
199 unsigned int challenge_length;
200 unsigned char challenge[SSL2_MAX_CHALLENGE_LENGTH];
201 unsigned int conn_id_length;
202 unsigned char conn_id[SSL2_MAX_CONNECTION_ID_LENGTH];
203 unsigned int key_material_length;
204 unsigned char key_material[SSL2_MAX_KEY_MATERIAL_LENGTH*2];

206 unsigned long read_sequence;
207 unsigned long write_sequence;

209 struct {
210 unsigned int conn_id_length;
211 unsigned int cert_type;
212 unsigned int cert_length;
213 unsigned int csl;
214 unsigned int clear;
215 unsigned int enc;
216 unsigned char ccl[SSL2_MAX_CERT_CHALLENGE_LENGTH];
217 unsigned int cipher_spec_length;
218 unsigned int session_id_length;
219 unsigned int clen;
220 unsigned int rlen;
221 } tmp;
222 } SSL2_STATE;

224 #endif

226 /* SSLv2 */
227 /* client */
228 #define SSL2_ST_SEND_CLIENT_HELLO_A (0x10|SSL_ST_CONNECT)
229 #define SSL2_ST_SEND_CLIENT_HELLO_B (0x11|SSL_ST_CONNECT)
230 #define SSL2_ST_GET_SERVER_HELLO_A (0x20|SSL_ST_CONNECT)
231 #define SSL2_ST_GET_SERVER_HELLO_B (0x21|SSL_ST_CONNECT)
232 #define SSL2_ST_SEND_CLIENT_MASTER_KEY_A (0x30|SSL_ST_CONNECT)
233 #define SSL2_ST_SEND_CLIENT_MASTER_KEY_B (0x31|SSL_ST_CONNECT)
234 #define SSL2_ST_SEND_CLIENT_FINISHED_A (0x40|SSL_ST_CONNECT)
235 #define SSL2_ST_SEND_CLIENT_FINISHED_B (0x41|SSL_ST_CONNECT)
236 #define SSL2_ST_SEND_CLIENT_CERTIFICATE_A (0x50|SSL_ST_CONNECT)
237 #define SSL2_ST_SEND_CLIENT_CERTIFICATE_B (0x51|SSL_ST_CONNECT)
238 #define SSL2_ST_SEND_CLIENT_CERTIFICATE_C (0x52|SSL_ST_CONNECT)
239 #define SSL2_ST_SEND_CLIENT_CERTIFICATE_D (0x53|SSL_ST_CONNECT)
240 #define SSL2_ST_GET_SERVER_VERIFY_A (0x60|SSL_ST_CONNECT)
241 #define SSL2_ST_GET_SERVER_VERIFY_B (0x61|SSL_ST_CONNECT)
242 #define SSL2_ST_GET_SERVER_FINISHED_A (0x70|SSL_ST_CONNECT)
243 #define SSL2_ST_GET_SERVER_FINISHED_B (0x71|SSL_ST_CONNECT)
244 #define SSL2_ST_CLIENT_START_ENCRYPTION (0x80|SSL_ST_CONNECT)
245 #define SSL2_ST_X509_GET_CLIENT_CERTIFICATE (0x90|SSL_ST_CONNECT)
246 /* server */
247 #define SSL2_ST_GET_CLIENT_HELLO_A (0x10|SSL_ST_ACCEPT)
248 #define SSL2_ST_GET_CLIENT_HELLO_B (0x11|SSL_ST_ACCEPT)
249 #define SSL2_ST_GET_CLIENT_HELLO_C (0x12|SSL_ST_ACCEPT)
250 #define SSL2_ST_SEND_SERVER_HELLO_A (0x20|SSL_ST_ACCEPT)
251 #define SSL2_ST_SEND_SERVER_HELLO_B (0x21|SSL_ST_ACCEPT)
252 #define SSL2_ST_GET_CLIENT_MASTER_KEY_A (0x30|SSL_ST_ACCEPT)
253 #define SSL2_ST_GET_CLIENT_MASTER_KEY_B (0x31|SSL_ST_ACCEPT)
254 #define SSL2_ST_SEND_SERVER_VERIFY_A (0x40|SSL_ST_ACCEPT)
255 #define SSL2_ST_SEND_SERVER_VERIFY_B (0x41|SSL_ST_ACCEPT)
256 #define SSL2_ST_SEND_SERVER_VERIFY_C (0x42|SSL_ST_ACCEPT)
257 #define SSL2_ST_GET_CLIENT_FINISHED_A (0x50|SSL_ST_ACCEPT)
258 #define SSL2_ST_GET_CLIENT_FINISHED_B (0x51|SSL_ST_ACCEPT)
259 #define SSL2_ST_SEND_SERVER_FINISHED_A (0x60|SSL_ST_ACCEPT)

new/usr/src/lib/openssl/include/openssl/ssl2.h 5

260 #define SSL2_ST_SEND_SERVER_FINISHED_B (0x61|SSL_ST_ACCEPT)
261 #define SSL2_ST_SEND_REQUEST_CERTIFICATE_A (0x70|SSL_ST_ACCEPT)
262 #define SSL2_ST_SEND_REQUEST_CERTIFICATE_B (0x71|SSL_ST_ACCEPT)
263 #define SSL2_ST_SEND_REQUEST_CERTIFICATE_C (0x72|SSL_ST_ACCEPT)
264 #define SSL2_ST_SEND_REQUEST_CERTIFICATE_D (0x73|SSL_ST_ACCEPT)
265 #define SSL2_ST_SERVER_START_ENCRYPTION (0x80|SSL_ST_ACCEPT)
266 #define SSL2_ST_X509_GET_SERVER_CERTIFICATE (0x90|SSL_ST_ACCEPT)

268 #ifdef __cplusplus
269 }
270 #endif
271 #endif

new/usr/src/lib/openssl/include/openssl/ssl23.h 1

**
 3744 Fri May 30 18:31:22 2014
new/usr/src/lib/openssl/include/openssl/ssl23.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/ssl23.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_SSL23_H
60 #define HEADER_SSL23_H

new/usr/src/lib/openssl/include/openssl/ssl23.h 2

62 #ifdef __cplusplus
63 extern "C" {
64 #endif

66 /*client */
67 /* write to server */
68 #define SSL23_ST_CW_CLNT_HELLO_A (0x210|SSL_ST_CONNECT)
69 #define SSL23_ST_CW_CLNT_HELLO_B (0x211|SSL_ST_CONNECT)
70 /* read from server */
71 #define SSL23_ST_CR_SRVR_HELLO_A (0x220|SSL_ST_CONNECT)
72 #define SSL23_ST_CR_SRVR_HELLO_B (0x221|SSL_ST_CONNECT)

74 /* server */
75 /* read from client */
76 #define SSL23_ST_SR_CLNT_HELLO_A (0x210|SSL_ST_ACCEPT)
77 #define SSL23_ST_SR_CLNT_HELLO_B (0x211|SSL_ST_ACCEPT)

79 #ifdef __cplusplus
80 }
81 #endif
82 #endif

new/usr/src/lib/openssl/include/openssl/ssl3.h 1

**
 27080 Fri May 30 18:31:22 2014
new/usr/src/lib/openssl/include/openssl/ssl3.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/ssl3.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/include/openssl/ssl3.h 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /* ==
112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
113 * ECC cipher suite support in OpenSSL originally developed by
114 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
115 */

117 #ifndef HEADER_SSL3_H
118 #define HEADER_SSL3_H

120 #ifndef OPENSSL_NO_COMP
121 #include <openssl/comp.h>
122 #endif
123 #include <openssl/buffer.h>
124 #include <openssl/evp.h>
125 #include <openssl/ssl.h>

127 #ifdef __cplusplus

new/usr/src/lib/openssl/include/openssl/ssl3.h 3

128 extern "C" {
129 #endif

131 /* Signalling cipher suite value: from draft-ietf-tls-renegotiation-03.txt */
132 #define SSL3_CK_SCSV 0x030000FF

134 #define SSL3_CK_RSA_NULL_MD5 0x03000001
135 #define SSL3_CK_RSA_NULL_SHA 0x03000002
136 #define SSL3_CK_RSA_RC4_40_MD5 0x03000003
137 #define SSL3_CK_RSA_RC4_128_MD5 0x03000004
138 #define SSL3_CK_RSA_RC4_128_SHA 0x03000005
139 #define SSL3_CK_RSA_RC2_40_MD5 0x03000006
140 #define SSL3_CK_RSA_IDEA_128_SHA 0x03000007
141 #define SSL3_CK_RSA_DES_40_CBC_SHA 0x03000008
142 #define SSL3_CK_RSA_DES_64_CBC_SHA 0x03000009
143 #define SSL3_CK_RSA_DES_192_CBC3_SHA 0x0300000A

145 #define SSL3_CK_DH_DSS_DES_40_CBC_SHA 0x0300000B
146 #define SSL3_CK_DH_DSS_DES_64_CBC_SHA 0x0300000C
147 #define SSL3_CK_DH_DSS_DES_192_CBC3_SHA 0x0300000D
148 #define SSL3_CK_DH_RSA_DES_40_CBC_SHA 0x0300000E
149 #define SSL3_CK_DH_RSA_DES_64_CBC_SHA 0x0300000F
150 #define SSL3_CK_DH_RSA_DES_192_CBC3_SHA 0x03000010

152 #define SSL3_CK_EDH_DSS_DES_40_CBC_SHA 0x03000011
153 #define SSL3_CK_EDH_DSS_DES_64_CBC_SHA 0x03000012
154 #define SSL3_CK_EDH_DSS_DES_192_CBC3_SHA 0x03000013
155 #define SSL3_CK_EDH_RSA_DES_40_CBC_SHA 0x03000014
156 #define SSL3_CK_EDH_RSA_DES_64_CBC_SHA 0x03000015
157 #define SSL3_CK_EDH_RSA_DES_192_CBC3_SHA 0x03000016

159 #define SSL3_CK_ADH_RC4_40_MD5 0x03000017
160 #define SSL3_CK_ADH_RC4_128_MD5 0x03000018
161 #define SSL3_CK_ADH_DES_40_CBC_SHA 0x03000019
162 #define SSL3_CK_ADH_DES_64_CBC_SHA 0x0300001A
163 #define SSL3_CK_ADH_DES_192_CBC_SHA 0x0300001B

165 #if 0
166 #define SSL3_CK_FZA_DMS_NULL_SHA 0x0300001C
167 #define SSL3_CK_FZA_DMS_FZA_SHA 0x0300001D
168 #if 0 /* Because it clashes with KRB5, is never used any more, and is sa
169 to remove according to David Hopwood <david.hopwood@zetnet.co.u
170 of the ietf-tls list */
171 #define SSL3_CK_FZA_DMS_RC4_SHA 0x0300001E
172 #endif
173 #endif

175 /* VRS Additional Kerberos5 entries
176 */
177 #define SSL3_CK_KRB5_DES_64_CBC_SHA 0x0300001E
178 #define SSL3_CK_KRB5_DES_192_CBC3_SHA 0x0300001F
179 #define SSL3_CK_KRB5_RC4_128_SHA 0x03000020
180 #define SSL3_CK_KRB5_IDEA_128_CBC_SHA 0x03000021
181 #define SSL3_CK_KRB5_DES_64_CBC_MD5 0x03000022
182 #define SSL3_CK_KRB5_DES_192_CBC3_MD5 0x03000023
183 #define SSL3_CK_KRB5_RC4_128_MD5 0x03000024
184 #define SSL3_CK_KRB5_IDEA_128_CBC_MD5 0x03000025

186 #define SSL3_CK_KRB5_DES_40_CBC_SHA 0x03000026
187 #define SSL3_CK_KRB5_RC2_40_CBC_SHA 0x03000027
188 #define SSL3_CK_KRB5_RC4_40_SHA 0x03000028
189 #define SSL3_CK_KRB5_DES_40_CBC_MD5 0x03000029
190 #define SSL3_CK_KRB5_RC2_40_CBC_MD5 0x0300002A
191 #define SSL3_CK_KRB5_RC4_40_MD5 0x0300002B

193 #define SSL3_TXT_RSA_NULL_MD5 "NULL-MD5"

new/usr/src/lib/openssl/include/openssl/ssl3.h 4

194 #define SSL3_TXT_RSA_NULL_SHA "NULL-SHA"
195 #define SSL3_TXT_RSA_RC4_40_MD5 "EXP-RC4-MD5"
196 #define SSL3_TXT_RSA_RC4_128_MD5 "RC4-MD5"
197 #define SSL3_TXT_RSA_RC4_128_SHA "RC4-SHA"
198 #define SSL3_TXT_RSA_RC2_40_MD5 "EXP-RC2-CBC-MD5"
199 #define SSL3_TXT_RSA_IDEA_128_SHA "IDEA-CBC-SHA"
200 #define SSL3_TXT_RSA_DES_40_CBC_SHA "EXP-DES-CBC-SHA"
201 #define SSL3_TXT_RSA_DES_64_CBC_SHA "DES-CBC-SHA"
202 #define SSL3_TXT_RSA_DES_192_CBC3_SHA "DES-CBC3-SHA"

204 #define SSL3_TXT_DH_DSS_DES_40_CBC_SHA "EXP-DH-DSS-DES-CBC-SHA"
205 #define SSL3_TXT_DH_DSS_DES_64_CBC_SHA "DH-DSS-DES-CBC-SHA"
206 #define SSL3_TXT_DH_DSS_DES_192_CBC3_SHA "DH-DSS-DES-CBC3-SHA"
207 #define SSL3_TXT_DH_RSA_DES_40_CBC_SHA "EXP-DH-RSA-DES-CBC-SHA"
208 #define SSL3_TXT_DH_RSA_DES_64_CBC_SHA "DH-RSA-DES-CBC-SHA"
209 #define SSL3_TXT_DH_RSA_DES_192_CBC3_SHA "DH-RSA-DES-CBC3-SHA"

211 #define SSL3_TXT_EDH_DSS_DES_40_CBC_SHA "EXP-EDH-DSS-DES-CBC-SHA"
212 #define SSL3_TXT_EDH_DSS_DES_64_CBC_SHA "EDH-DSS-DES-CBC-SHA"
213 #define SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA "EDH-DSS-DES-CBC3-SHA"
214 #define SSL3_TXT_EDH_RSA_DES_40_CBC_SHA "EXP-EDH-RSA-DES-CBC-SHA"
215 #define SSL3_TXT_EDH_RSA_DES_64_CBC_SHA "EDH-RSA-DES-CBC-SHA"
216 #define SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA "EDH-RSA-DES-CBC3-SHA"

218 #define SSL3_TXT_ADH_RC4_40_MD5 "EXP-ADH-RC4-MD5"
219 #define SSL3_TXT_ADH_RC4_128_MD5 "ADH-RC4-MD5"
220 #define SSL3_TXT_ADH_DES_40_CBC_SHA "EXP-ADH-DES-CBC-SHA"
221 #define SSL3_TXT_ADH_DES_64_CBC_SHA "ADH-DES-CBC-SHA"
222 #define SSL3_TXT_ADH_DES_192_CBC_SHA "ADH-DES-CBC3-SHA"

224 #if 0
225 #define SSL3_TXT_FZA_DMS_NULL_SHA "FZA-NULL-SHA"
226 #define SSL3_TXT_FZA_DMS_FZA_SHA "FZA-FZA-CBC-SHA"
227 #define SSL3_TXT_FZA_DMS_RC4_SHA "FZA-RC4-SHA"
228 #endif

230 #define SSL3_TXT_KRB5_DES_64_CBC_SHA "KRB5-DES-CBC-SHA"
231 #define SSL3_TXT_KRB5_DES_192_CBC3_SHA "KRB5-DES-CBC3-SHA"
232 #define SSL3_TXT_KRB5_RC4_128_SHA "KRB5-RC4-SHA"
233 #define SSL3_TXT_KRB5_IDEA_128_CBC_SHA "KRB5-IDEA-CBC-SHA"
234 #define SSL3_TXT_KRB5_DES_64_CBC_MD5 "KRB5-DES-CBC-MD5"
235 #define SSL3_TXT_KRB5_DES_192_CBC3_MD5 "KRB5-DES-CBC3-MD5"
236 #define SSL3_TXT_KRB5_RC4_128_MD5 "KRB5-RC4-MD5"
237 #define SSL3_TXT_KRB5_IDEA_128_CBC_MD5 "KRB5-IDEA-CBC-MD5"

239 #define SSL3_TXT_KRB5_DES_40_CBC_SHA "EXP-KRB5-DES-CBC-SHA"
240 #define SSL3_TXT_KRB5_RC2_40_CBC_SHA "EXP-KRB5-RC2-CBC-SHA"
241 #define SSL3_TXT_KRB5_RC4_40_SHA "EXP-KRB5-RC4-SHA"
242 #define SSL3_TXT_KRB5_DES_40_CBC_MD5 "EXP-KRB5-DES-CBC-MD5"
243 #define SSL3_TXT_KRB5_RC2_40_CBC_MD5 "EXP-KRB5-RC2-CBC-MD5"
244 #define SSL3_TXT_KRB5_RC4_40_MD5 "EXP-KRB5-RC4-MD5"

246 #define SSL3_SSL_SESSION_ID_LENGTH 32
247 #define SSL3_MAX_SSL_SESSION_ID_LENGTH 32

249 #define SSL3_MASTER_SECRET_SIZE 48
250 #define SSL3_RANDOM_SIZE 32
251 #define SSL3_SESSION_ID_SIZE 32
252 #define SSL3_RT_HEADER_LENGTH 5

254 #ifndef SSL3_ALIGN_PAYLOAD
255 /* Some will argue that this increases memory footprint, but it’s
256 * not actually true. Point is that malloc has to return at least
257 * 64-bit aligned pointers, meaning that allocating 5 bytes wastes
258 * 3 bytes in either case. Suggested pre-gaping simply moves these
259 * wasted bytes from the end of allocated region to its front,

new/usr/src/lib/openssl/include/openssl/ssl3.h 5

260 * but makes data payload aligned, which improves performance:-) */
261 # define SSL3_ALIGN_PAYLOAD 8
262 #else
263 # if (SSL3_ALIGN_PAYLOAD&(SSL3_ALIGN_PAYLOAD-1))!=0
264 # error "insane SSL3_ALIGN_PAYLOAD"
265 # undef SSL3_ALIGN_PAYLOAD
266 # endif
267 #endif

269 /* This is the maximum MAC (digest) size used by the SSL library.
270 * Currently maximum of 20 is used by SHA1, but we reserve for
271 * future extension for 512-bit hashes.
272 */

274 #define SSL3_RT_MAX_MD_SIZE 64

276 /* Maximum block size used in all ciphersuites. Currently 16 for AES.
277 */

279 #define SSL_RT_MAX_CIPHER_BLOCK_SIZE 16

281 #define SSL3_RT_MAX_EXTRA (16384)

283 /* Maximum plaintext length: defined by SSL/TLS standards */
284 #define SSL3_RT_MAX_PLAIN_LENGTH 16384
285 /* Maximum compression overhead: defined by SSL/TLS standards */
286 #define SSL3_RT_MAX_COMPRESSED_OVERHEAD 1024

288 /* The standards give a maximum encryption overhead of 1024 bytes.
289 * In practice the value is lower than this. The overhead is the maximum
290 * number of padding bytes (256) plus the mac size.
291 */
292 #define SSL3_RT_MAX_ENCRYPTED_OVERHEAD (256 + SSL3_RT_MAX_MD_SIZE)

294 /* OpenSSL currently only uses a padding length of at most one block so
295 * the send overhead is smaller.
296 */

298 #define SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD \
299 (SSL_RT_MAX_CIPHER_BLOCK_SIZE + SSL3_RT_MAX_MD_SIZE)

301 /* If compression isn’t used don’t include the compression overhead */

303 #ifdef OPENSSL_NO_COMP
304 #define SSL3_RT_MAX_COMPRESSED_LENGTH SSL3_RT_MAX_PLAIN_LENGTH
305 #else
306 #define SSL3_RT_MAX_COMPRESSED_LENGTH \
307 (SSL3_RT_MAX_PLAIN_LENGTH+SSL3_RT_MAX_COMPRESSED_OVERHEAD)
308 #endif
309 #define SSL3_RT_MAX_ENCRYPTED_LENGTH \
310 (SSL3_RT_MAX_ENCRYPTED_OVERHEAD+SSL3_RT_MAX_COMPRESSED_LENGTH)
311 #define SSL3_RT_MAX_PACKET_SIZE \
312 (SSL3_RT_MAX_ENCRYPTED_LENGTH+SSL3_RT_HEADER_LENGTH)

314 #define SSL3_MD_CLIENT_FINISHED_CONST "\x43\x4C\x4E\x54"
315 #define SSL3_MD_SERVER_FINISHED_CONST "\x53\x52\x56\x52"

317 #define SSL3_VERSION 0x0300
318 #define SSL3_VERSION_MAJOR 0x03
319 #define SSL3_VERSION_MINOR 0x00

321 #define SSL3_RT_CHANGE_CIPHER_SPEC 20
322 #define SSL3_RT_ALERT 21
323 #define SSL3_RT_HANDSHAKE 22
324 #define SSL3_RT_APPLICATION_DATA 23
325 #define TLS1_RT_HEARTBEAT 24

new/usr/src/lib/openssl/include/openssl/ssl3.h 6

327 #define SSL3_AL_WARNING 1
328 #define SSL3_AL_FATAL 2

330 #define SSL3_AD_CLOSE_NOTIFY 0
331 #define SSL3_AD_UNEXPECTED_MESSAGE 10 /* fatal */
332 #define SSL3_AD_BAD_RECORD_MAC 20 /* fatal */
333 #define SSL3_AD_DECOMPRESSION_FAILURE 30 /* fatal */
334 #define SSL3_AD_HANDSHAKE_FAILURE 40 /* fatal */
335 #define SSL3_AD_NO_CERTIFICATE 41
336 #define SSL3_AD_BAD_CERTIFICATE 42
337 #define SSL3_AD_UNSUPPORTED_CERTIFICATE 43
338 #define SSL3_AD_CERTIFICATE_REVOKED 44
339 #define SSL3_AD_CERTIFICATE_EXPIRED 45
340 #define SSL3_AD_CERTIFICATE_UNKNOWN 46
341 #define SSL3_AD_ILLEGAL_PARAMETER 47 /* fatal */

343 #define TLS1_HB_REQUEST 1
344 #define TLS1_HB_RESPONSE 2
345
346 #ifndef OPENSSL_NO_SSL_INTERN

348 typedef struct ssl3_record_st
349 {
350 /*r */ int type; /* type of record */
351 /*rw*/ unsigned int length; /* How many bytes available */
352 /*r */ unsigned int off; /* read/write offset into ’buf’ */
353 /*rw*/ unsigned char *data; /* pointer to the record data */
354 /*rw*/ unsigned char *input; /* where the decode bytes are */
355 /*r */ unsigned char *comp; /* only used with decompression - malloc()ed */
356 /*r */ unsigned long epoch; /* epoch number, needed by DTLS1 */
357 /*r */ unsigned char seq_num[8]; /* sequence number, needed by DTLS1 */
358 } SSL3_RECORD;

360 typedef struct ssl3_buffer_st
361 {
362 unsigned char *buf; /* at least SSL3_RT_MAX_PACKET_SIZE bytes,
363 * see ssl3_setup_buffers() */
364 size_t len; /* buffer size */
365 int offset; /* where to ’copy from’ */
366 int left; /* how many bytes left */
367 } SSL3_BUFFER;

369 #endif

371 #define SSL3_CT_RSA_SIGN 1
372 #define SSL3_CT_DSS_SIGN 2
373 #define SSL3_CT_RSA_FIXED_DH 3
374 #define SSL3_CT_DSS_FIXED_DH 4
375 #define SSL3_CT_RSA_EPHEMERAL_DH 5
376 #define SSL3_CT_DSS_EPHEMERAL_DH 6
377 #define SSL3_CT_FORTEZZA_DMS 20
378 /* SSL3_CT_NUMBER is used to size arrays and it must be large
379 * enough to contain all of the cert types defined either for
380 * SSLv3 and TLSv1.
381 */
382 #define SSL3_CT_NUMBER 9

385 #define SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS 0x0001
386 #define SSL3_FLAGS_DELAY_CLIENT_FINISHED 0x0002
387 #define SSL3_FLAGS_POP_BUFFER 0x0004
388 #define TLS1_FLAGS_TLS_PADDING_BUG 0x0008
389 #define TLS1_FLAGS_SKIP_CERT_VERIFY 0x0010
390 #define TLS1_FLAGS_KEEP_HANDSHAKE 0x0020
391

new/usr/src/lib/openssl/include/openssl/ssl3.h 7

392 /* SSL3_FLAGS_SGC_RESTART_DONE is set when we
393 * restart a handshake because of MS SGC and so prevents us
394 * from restarting the handshake in a loop. It’s reset on a
395 * renegotiation, so effectively limits the client to one restart
396 * per negotiation. This limits the possibility of a DDoS
397 * attack where the client handshakes in a loop using SGC to
398 * restart. Servers which permit renegotiation can still be
399 * effected, but we can’t prevent that.
400 */
401 #define SSL3_FLAGS_SGC_RESTART_DONE 0x0040

403 #ifndef OPENSSL_NO_SSL_INTERN

405 typedef struct ssl3_state_st
406 {
407 long flags;
408 int delay_buf_pop_ret;

410 unsigned char read_sequence[8];
411 int read_mac_secret_size;
412 unsigned char read_mac_secret[EVP_MAX_MD_SIZE];
413 unsigned char write_sequence[8];
414 int write_mac_secret_size;
415 unsigned char write_mac_secret[EVP_MAX_MD_SIZE];

417 unsigned char server_random[SSL3_RANDOM_SIZE];
418 unsigned char client_random[SSL3_RANDOM_SIZE];

420 /* flags for countermeasure against known-IV weakness */
421 int need_empty_fragments;
422 int empty_fragment_done;

424 /* The value of ’extra’ when the buffers were initialized */
425 int init_extra;

427 SSL3_BUFFER rbuf; /* read IO goes into here */
428 SSL3_BUFFER wbuf; /* write IO goes into here */

430 SSL3_RECORD rrec; /* each decoded record goes in here */
431 SSL3_RECORD wrec; /* goes out from here */

433 /* storage for Alert/Handshake protocol data received but not
434 * yet processed by ssl3_read_bytes: */
435 unsigned char alert_fragment[2];
436 unsigned int alert_fragment_len;
437 unsigned char handshake_fragment[4];
438 unsigned int handshake_fragment_len;

440 /* partial write - check the numbers match */
441 unsigned int wnum; /* number of bytes sent so far */
442 int wpend_tot; /* number bytes written */
443 int wpend_type;
444 int wpend_ret; /* number of bytes submitted */
445 const unsigned char *wpend_buf;

447 /* used during startup, digest all incoming/outgoing packets */
448 BIO *handshake_buffer;
449 /* When set of handshake digests is determined, buffer is hashed
450 * and freed and MD_CTX-es for all required digests are stored in
451 * this array */
452 EVP_MD_CTX **handshake_dgst;
453 /* this is set whenerver we see a change_cipher_spec message
454 * come in when we are not looking for one */
455 int change_cipher_spec;

457 int warn_alert;

new/usr/src/lib/openssl/include/openssl/ssl3.h 8

458 int fatal_alert;
459 /* we allow one fatal and one warning alert to be outstanding,
460 * send close alert via the warning alert */
461 int alert_dispatch;
462 unsigned char send_alert[2];

464 /* This flag is set when we should renegotiate ASAP, basically when
465 * there is no more data in the read or write buffers */
466 int renegotiate;
467 int total_renegotiations;
468 int num_renegotiations;

470 int in_read_app_data;

472 /* Opaque PRF input as used for the current handshake.
473 * These fields are used only if TLSEXT_TYPE_opaque_prf_input is defined
474 * (otherwise, they are merely present to improve binary compatibility)
475 void *client_opaque_prf_input;
476 size_t client_opaque_prf_input_len;
477 void *server_opaque_prf_input;
478 size_t server_opaque_prf_input_len;

480 struct {
481 /* actually only needs to be 16+20 */
482 unsigned char cert_verify_md[EVP_MAX_MD_SIZE*2];

484 /* actually only need to be 16+20 for SSLv3 and 12 for TLS */
485 unsigned char finish_md[EVP_MAX_MD_SIZE*2];
486 int finish_md_len;
487 unsigned char peer_finish_md[EVP_MAX_MD_SIZE*2];
488 int peer_finish_md_len;

490 unsigned long message_size;
491 int message_type;

493 /* used to hold the new cipher we are going to use */
494 const SSL_CIPHER *new_cipher;
495 #ifndef OPENSSL_NO_DH
496 DH *dh;
497 #endif

499 #ifndef OPENSSL_NO_ECDH
500 EC_KEY *ecdh; /* holds short lived ECDH key */
501 #endif

503 /* used when SSL_ST_FLUSH_DATA is entered */
504 int next_state;

506 int reuse_message;

508 /* used for certificate requests */
509 int cert_req;
510 int ctype_num;
511 char ctype[SSL3_CT_NUMBER];
512 STACK_OF(X509_NAME) *ca_names;

514 int use_rsa_tmp;

516 int key_block_length;
517 unsigned char *key_block;

519 const EVP_CIPHER *new_sym_enc;
520 const EVP_MD *new_hash;
521 int new_mac_pkey_type;
522 int new_mac_secret_size;
523 #ifndef OPENSSL_NO_COMP

new/usr/src/lib/openssl/include/openssl/ssl3.h 9

524 const SSL_COMP *new_compression;
525 #else
526 char *new_compression;
527 #endif
528 int cert_request;
529 } tmp;

531 /* Connection binding to prevent renegotiation attacks */
532 unsigned char previous_client_finished[EVP_MAX_MD_SIZE];
533 unsigned char previous_client_finished_len;
534 unsigned char previous_server_finished[EVP_MAX_MD_SIZE];
535 unsigned char previous_server_finished_len;
536 int send_connection_binding; /* TODOEKR */

538 #ifndef OPENSSL_NO_NEXTPROTONEG
539 /* Set if we saw the Next Protocol Negotiation extension from our peer.
540 int next_proto_neg_seen;
541 #endif

543 #ifndef OPENSSL_NO_TLSEXT
544 #ifndef OPENSSL_NO_EC
545 /* This is set to true if we believe that this is a version of Safari
546 * running on OS X 10.6 or newer. We wish to know this because Safari
547 * on 10.8 .. 10.8.3 has broken ECDHE-ECDSA support. */
548 char is_probably_safari;
549 #endif /* !OPENSSL_NO_EC */
550 #endif /* !OPENSSL_NO_TLSEXT */
551 } SSL3_STATE;

553 #endif

555 /* SSLv3 */
556 /*client */
557 /* extra state */
558 #define SSL3_ST_CW_FLUSH (0x100|SSL_ST_CONNECT)
559 #ifndef OPENSSL_NO_SCTP
560 #define DTLS1_SCTP_ST_CW_WRITE_SOCK (0x310|SSL_ST_CONNECT)
561 #define DTLS1_SCTP_ST_CR_READ_SOCK (0x320|SSL_ST_CONNECT)
562 #endif
563 /* write to server */
564 #define SSL3_ST_CW_CLNT_HELLO_A (0x110|SSL_ST_CONNECT)
565 #define SSL3_ST_CW_CLNT_HELLO_B (0x111|SSL_ST_CONNECT)
566 /* read from server */
567 #define SSL3_ST_CR_SRVR_HELLO_A (0x120|SSL_ST_CONNECT)
568 #define SSL3_ST_CR_SRVR_HELLO_B (0x121|SSL_ST_CONNECT)
569 #define DTLS1_ST_CR_HELLO_VERIFY_REQUEST_A (0x126|SSL_ST_CONNECT)
570 #define DTLS1_ST_CR_HELLO_VERIFY_REQUEST_B (0x127|SSL_ST_CONNECT)
571 #define SSL3_ST_CR_CERT_A (0x130|SSL_ST_CONNECT)
572 #define SSL3_ST_CR_CERT_B (0x131|SSL_ST_CONNECT)
573 #define SSL3_ST_CR_KEY_EXCH_A (0x140|SSL_ST_CONNECT)
574 #define SSL3_ST_CR_KEY_EXCH_B (0x141|SSL_ST_CONNECT)
575 #define SSL3_ST_CR_CERT_REQ_A (0x150|SSL_ST_CONNECT)
576 #define SSL3_ST_CR_CERT_REQ_B (0x151|SSL_ST_CONNECT)
577 #define SSL3_ST_CR_SRVR_DONE_A (0x160|SSL_ST_CONNECT)
578 #define SSL3_ST_CR_SRVR_DONE_B (0x161|SSL_ST_CONNECT)
579 /* write to server */
580 #define SSL3_ST_CW_CERT_A (0x170|SSL_ST_CONNECT)
581 #define SSL3_ST_CW_CERT_B (0x171|SSL_ST_CONNECT)
582 #define SSL3_ST_CW_CERT_C (0x172|SSL_ST_CONNECT)
583 #define SSL3_ST_CW_CERT_D (0x173|SSL_ST_CONNECT)
584 #define SSL3_ST_CW_KEY_EXCH_A (0x180|SSL_ST_CONNECT)
585 #define SSL3_ST_CW_KEY_EXCH_B (0x181|SSL_ST_CONNECT)
586 #define SSL3_ST_CW_CERT_VRFY_A (0x190|SSL_ST_CONNECT)
587 #define SSL3_ST_CW_CERT_VRFY_B (0x191|SSL_ST_CONNECT)
588 #define SSL3_ST_CW_CHANGE_A (0x1A0|SSL_ST_CONNECT)
589 #define SSL3_ST_CW_CHANGE_B (0x1A1|SSL_ST_CONNECT)

new/usr/src/lib/openssl/include/openssl/ssl3.h 10

590 #ifndef OPENSSL_NO_NEXTPROTONEG
591 #define SSL3_ST_CW_NEXT_PROTO_A (0x200|SSL_ST_CONNECT)
592 #define SSL3_ST_CW_NEXT_PROTO_B (0x201|SSL_ST_CONNECT)
593 #endif
594 #define SSL3_ST_CW_FINISHED_A (0x1B0|SSL_ST_CONNECT)
595 #define SSL3_ST_CW_FINISHED_B (0x1B1|SSL_ST_CONNECT)
596 /* read from server */
597 #define SSL3_ST_CR_CHANGE_A (0x1C0|SSL_ST_CONNECT)
598 #define SSL3_ST_CR_CHANGE_B (0x1C1|SSL_ST_CONNECT)
599 #define SSL3_ST_CR_FINISHED_A (0x1D0|SSL_ST_CONNECT)
600 #define SSL3_ST_CR_FINISHED_B (0x1D1|SSL_ST_CONNECT)
601 #define SSL3_ST_CR_SESSION_TICKET_A (0x1E0|SSL_ST_CONNECT)
602 #define SSL3_ST_CR_SESSION_TICKET_B (0x1E1|SSL_ST_CONNECT)
603 #define SSL3_ST_CR_CERT_STATUS_A (0x1F0|SSL_ST_CONNECT)
604 #define SSL3_ST_CR_CERT_STATUS_B (0x1F1|SSL_ST_CONNECT)

606 /* server */
607 /* extra state */
608 #define SSL3_ST_SW_FLUSH (0x100|SSL_ST_ACCEPT)
609 #ifndef OPENSSL_NO_SCTP
610 #define DTLS1_SCTP_ST_SW_WRITE_SOCK (0x310|SSL_ST_ACCEPT)
611 #define DTLS1_SCTP_ST_SR_READ_SOCK (0x320|SSL_ST_ACCEPT)
612 #endif
613 /* read from client */
614 /* Do not change the number values, they do matter */
615 #define SSL3_ST_SR_CLNT_HELLO_A (0x110|SSL_ST_ACCEPT)
616 #define SSL3_ST_SR_CLNT_HELLO_B (0x111|SSL_ST_ACCEPT)
617 #define SSL3_ST_SR_CLNT_HELLO_C (0x112|SSL_ST_ACCEPT)
618 /* write to client */
619 #define DTLS1_ST_SW_HELLO_VERIFY_REQUEST_A (0x113|SSL_ST_ACCEPT)
620 #define DTLS1_ST_SW_HELLO_VERIFY_REQUEST_B (0x114|SSL_ST_ACCEPT)
621 #define SSL3_ST_SW_HELLO_REQ_A (0x120|SSL_ST_ACCEPT)
622 #define SSL3_ST_SW_HELLO_REQ_B (0x121|SSL_ST_ACCEPT)
623 #define SSL3_ST_SW_HELLO_REQ_C (0x122|SSL_ST_ACCEPT)
624 #define SSL3_ST_SW_SRVR_HELLO_A (0x130|SSL_ST_ACCEPT)
625 #define SSL3_ST_SW_SRVR_HELLO_B (0x131|SSL_ST_ACCEPT)
626 #define SSL3_ST_SW_CERT_A (0x140|SSL_ST_ACCEPT)
627 #define SSL3_ST_SW_CERT_B (0x141|SSL_ST_ACCEPT)
628 #define SSL3_ST_SW_KEY_EXCH_A (0x150|SSL_ST_ACCEPT)
629 #define SSL3_ST_SW_KEY_EXCH_B (0x151|SSL_ST_ACCEPT)
630 #define SSL3_ST_SW_CERT_REQ_A (0x160|SSL_ST_ACCEPT)
631 #define SSL3_ST_SW_CERT_REQ_B (0x161|SSL_ST_ACCEPT)
632 #define SSL3_ST_SW_SRVR_DONE_A (0x170|SSL_ST_ACCEPT)
633 #define SSL3_ST_SW_SRVR_DONE_B (0x171|SSL_ST_ACCEPT)
634 /* read from client */
635 #define SSL3_ST_SR_CERT_A (0x180|SSL_ST_ACCEPT)
636 #define SSL3_ST_SR_CERT_B (0x181|SSL_ST_ACCEPT)
637 #define SSL3_ST_SR_KEY_EXCH_A (0x190|SSL_ST_ACCEPT)
638 #define SSL3_ST_SR_KEY_EXCH_B (0x191|SSL_ST_ACCEPT)
639 #define SSL3_ST_SR_CERT_VRFY_A (0x1A0|SSL_ST_ACCEPT)
640 #define SSL3_ST_SR_CERT_VRFY_B (0x1A1|SSL_ST_ACCEPT)
641 #define SSL3_ST_SR_CHANGE_A (0x1B0|SSL_ST_ACCEPT)
642 #define SSL3_ST_SR_CHANGE_B (0x1B1|SSL_ST_ACCEPT)
643 #ifndef OPENSSL_NO_NEXTPROTONEG
644 #define SSL3_ST_SR_NEXT_PROTO_A (0x210|SSL_ST_ACCEPT)
645 #define SSL3_ST_SR_NEXT_PROTO_B (0x211|SSL_ST_ACCEPT)
646 #endif
647 #define SSL3_ST_SR_FINISHED_A (0x1C0|SSL_ST_ACCEPT)
648 #define SSL3_ST_SR_FINISHED_B (0x1C1|SSL_ST_ACCEPT)
649 /* write to client */
650 #define SSL3_ST_SW_CHANGE_A (0x1D0|SSL_ST_ACCEPT)
651 #define SSL3_ST_SW_CHANGE_B (0x1D1|SSL_ST_ACCEPT)
652 #define SSL3_ST_SW_FINISHED_A (0x1E0|SSL_ST_ACCEPT)
653 #define SSL3_ST_SW_FINISHED_B (0x1E1|SSL_ST_ACCEPT)
654 #define SSL3_ST_SW_SESSION_TICKET_A (0x1F0|SSL_ST_ACCEPT)
655 #define SSL3_ST_SW_SESSION_TICKET_B (0x1F1|SSL_ST_ACCEPT)

new/usr/src/lib/openssl/include/openssl/ssl3.h 11

656 #define SSL3_ST_SW_CERT_STATUS_A (0x200|SSL_ST_ACCEPT)
657 #define SSL3_ST_SW_CERT_STATUS_B (0x201|SSL_ST_ACCEPT)

659 #define SSL3_MT_HELLO_REQUEST 0
660 #define SSL3_MT_CLIENT_HELLO 1
661 #define SSL3_MT_SERVER_HELLO 2
662 #define SSL3_MT_NEWSESSION_TICKET 4
663 #define SSL3_MT_CERTIFICATE 11
664 #define SSL3_MT_SERVER_KEY_EXCHANGE 12
665 #define SSL3_MT_CERTIFICATE_REQUEST 13
666 #define SSL3_MT_SERVER_DONE 14
667 #define SSL3_MT_CERTIFICATE_VERIFY 15
668 #define SSL3_MT_CLIENT_KEY_EXCHANGE 16
669 #define SSL3_MT_FINISHED 20
670 #define SSL3_MT_CERTIFICATE_STATUS 22
671 #ifndef OPENSSL_NO_NEXTPROTONEG
672 #define SSL3_MT_NEXT_PROTO 67
673 #endif
674 #define DTLS1_MT_HELLO_VERIFY_REQUEST 3

677 #define SSL3_MT_CCS 1

679 /* These are used when changing over to a new cipher */
680 #define SSL3_CC_READ 0x01
681 #define SSL3_CC_WRITE 0x02
682 #define SSL3_CC_CLIENT 0x10
683 #define SSL3_CC_SERVER 0x20
684 #define SSL3_CHANGE_CIPHER_CLIENT_WRITE (SSL3_CC_CLIENT|SSL3_CC_WRITE)
685 #define SSL3_CHANGE_CIPHER_SERVER_READ (SSL3_CC_SERVER|SSL3_CC_READ)
686 #define SSL3_CHANGE_CIPHER_CLIENT_READ (SSL3_CC_CLIENT|SSL3_CC_READ)
687 #define SSL3_CHANGE_CIPHER_SERVER_WRITE (SSL3_CC_SERVER|SSL3_CC_WRITE)

689 #ifdef __cplusplus
690 }
691 #endif
692 #endif

new/usr/src/lib/openssl/include/openssl/stack.h 1

**
 4412 Fri May 30 18:31:22 2014
new/usr/src/lib/openssl/include/openssl/stack.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/stack/stack.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_STACK_H
60 #define HEADER_STACK_H

new/usr/src/lib/openssl/include/openssl/stack.h 2

62 #ifdef __cplusplus
63 extern "C" {
64 #endif

66 typedef struct stack_st
67 {
68 int num;
69 char **data;
70 int sorted;

72 int num_alloc;
73 int (*comp)(const void *, const void *);
74 } _STACK; /* Use STACK_OF(...) instead */

76 #define M_sk_num(sk) ((sk) ? (sk)->num:-1)
77 #define M_sk_value(sk,n) ((sk) ? (sk)->data[n] : NULL)

79 int sk_num(const _STACK *);
80 void *sk_value(const _STACK *, int);

82 void *sk_set(_STACK *, int, void *);

84 _STACK *sk_new(int (*cmp)(const void *, const void *));
85 _STACK *sk_new_null(void);
86 void sk_free(_STACK *);
87 void sk_pop_free(_STACK *st, void (*func)(void *));
88 int sk_insert(_STACK *sk, void *data, int where);
89 void *sk_delete(_STACK *st, int loc);
90 void *sk_delete_ptr(_STACK *st, void *p);
91 int sk_find(_STACK *st, void *data);
92 int sk_find_ex(_STACK *st, void *data);
93 int sk_push(_STACK *st, void *data);
94 int sk_unshift(_STACK *st, void *data);
95 void *sk_shift(_STACK *st);
96 void *sk_pop(_STACK *st);
97 void sk_zero(_STACK *st);
98 int (*sk_set_cmp_func(_STACK *sk, int (*c)(const void *, const void *)))
99 (const void *, const void *);
100 _STACK *sk_dup(_STACK *st);
101 void sk_sort(_STACK *st);
102 int sk_is_sorted(const _STACK *st);

104 #ifdef __cplusplus
105 }
106 #endif

108 #endif

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 1

**
 292168 Fri May 30 18:31:23 2014
new/usr/src/lib/openssl/include/openssl/sunw_prefix.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #ifndef _SUNW_PREFIX_H
2 #define _SUNW_PREFIX_H

4 #pragma redefine_extname _CONF_add_string sunw__CONF_add_string
5 #pragma redefine_extname _CONF_free_data sunw__CONF_free_data
6 #pragma redefine_extname _CONF_get_section sunw__CONF_get_section
7 #pragma redefine_extname _CONF_get_section_values sunw__CONF_get_section_
8 #pragma redefine_extname _CONF_get_string sunw__CONF_get_string
9 #pragma redefine_extname _CONF_new_data sunw__CONF_new_data
10 #pragma redefine_extname _CONF_new_section sunw__CONF_new_section
11 #pragma redefine_extname _des_crypt sunw__des_crypt
12 #pragma redefine_extname _ossl_096_des_random_seed sunw__ossl_096_des_ran
13 #pragma redefine_extname _ossl_old_crypt sunw__ossl_old_crypt
14 #pragma redefine_extname _ossl_old_des_cbc_cksum sunw__ossl_old_des_cbc_c
15 #pragma redefine_extname _ossl_old_des_cbc_encrypt sunw__ossl_old_des_cbc
16 #pragma redefine_extname _ossl_old_des_cfb_encrypt sunw__ossl_old_des_cfb
17 #pragma redefine_extname _ossl_old_des_cfb64_encrypt sunw__ossl_old_des_c
18 #pragma redefine_extname _ossl_old_des_crypt sunw__ossl_old_des_crypt
19 #pragma redefine_extname _ossl_old_des_decrypt3 sunw__ossl_old_des_decryp
20 #pragma redefine_extname _ossl_old_des_ecb_encrypt sunw__ossl_old_des_ecb
21 #pragma redefine_extname _ossl_old_des_ecb3_encrypt sunw__ossl_old_des_ec
22 #pragma redefine_extname _ossl_old_des_ede3_cbc_encrypt sunw__ossl_old_de
23 #pragma redefine_extname _ossl_old_des_ede3_cfb64_encrypt sunw__ossl_old_
24 #pragma redefine_extname _ossl_old_des_ede3_ofb64_encrypt sunw__ossl_old_
25 #pragma redefine_extname _ossl_old_des_enc_read sunw__ossl_old_des_enc_re
26 #pragma redefine_extname _ossl_old_des_enc_write sunw__ossl_old_des_enc_w
27 #pragma redefine_extname _ossl_old_des_encrypt sunw__ossl_old_des_encrypt
28 #pragma redefine_extname _ossl_old_des_encrypt2 sunw__ossl_old_des_encryp
29 #pragma redefine_extname _ossl_old_des_encrypt3 sunw__ossl_old_des_encryp
30 #pragma redefine_extname _ossl_old_des_fcrypt sunw__ossl_old_des_fcrypt
31 #pragma redefine_extname _ossl_old_des_is_weak_key sunw__ossl_old_des_is_
32 #pragma redefine_extname _ossl_old_des_key_sched sunw__ossl_old_des_key_s
33 #pragma redefine_extname _ossl_old_des_ncbc_encrypt sunw__ossl_old_des_nc
34 #pragma redefine_extname _ossl_old_des_ofb_encrypt sunw__ossl_old_des_ofb
35 #pragma redefine_extname _ossl_old_des_ofb64_encrypt sunw__ossl_old_des_o
36 #pragma redefine_extname _ossl_old_des_options sunw__ossl_old_des_options
37 #pragma redefine_extname _ossl_old_des_pcbc_encrypt sunw__ossl_old_des_pc
38 #pragma redefine_extname _ossl_old_des_quad_cksum sunw__ossl_old_des_quad
39 #pragma redefine_extname _ossl_old_des_random_key sunw__ossl_old_des_rand
40 #pragma redefine_extname _ossl_old_des_random_seed sunw__ossl_old_des_ran
41 #pragma redefine_extname _ossl_old_des_read_2passwords sunw__ossl_old_des
42 #pragma redefine_extname _ossl_old_des_read_password sunw__ossl_old_des_r
43 #pragma redefine_extname _ossl_old_des_read_pw sunw__ossl_old_des_read_pw
44 #pragma redefine_extname _ossl_old_des_read_pw_string sunw__ossl_old_des_
45 #pragma redefine_extname _ossl_old_des_set_key sunw__ossl_old_des_set_key
46 #pragma redefine_extname _ossl_old_des_set_odd_parity sunw__ossl_old_des_
47 #pragma redefine_extname _ossl_old_des_string_to_2keys sunw__ossl_old_des
48 #pragma redefine_extname _ossl_old_des_string_to_key sunw__ossl_old_des_s
49 #pragma redefine_extname _ossl_old_des_xcbc_encrypt sunw__ossl_old_des_xc
50 #pragma redefine_extname _shadow_DES_rw_mode sunw__shadow_DES_rw_mode
51 #pragma redefine_extname a2d_ASN1_OBJECT sunw_a2d_ASN1_OBJECT
52 #pragma redefine_extname a2i_ASN1_ENUMERATED sunw_a2i_ASN1_ENUMERATED
53 #pragma redefine_extname a2i_ASN1_INTEGER sunw_a2i_ASN1_INTEGER
54 #pragma redefine_extname a2i_ASN1_STRING sunw_a2i_ASN1_STRING
55 #pragma redefine_extname a2i_GENERAL_NAME sunw_a2i_GENERAL_NAME
56 #pragma redefine_extname a2i_ipadd sunw_a2i_ipadd
57 #pragma redefine_extname a2i_IPADDRESS sunw_a2i_IPADDRESS
58 #pragma redefine_extname a2i_IPADDRESS_NC sunw_a2i_IPADDRESS_NC
59 #pragma redefine_extname ACCESS_DESCRIPTION_free sunw_ACCESS_DESCRIPTION_
60 #pragma redefine_extname ACCESS_DESCRIPTION_it sunw_ACCESS_DESCRIPTION_it
61 #pragma redefine_extname ACCESS_DESCRIPTION_new sunw_ACCESS_DESCRIPTION_n

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 2

62 #pragma redefine_extname AES_bi_ige_encrypt sunw_AES_bi_ige_encrypt
63 #pragma redefine_extname AES_cbc_encrypt sunw_AES_cbc_encrypt
64 #pragma redefine_extname AES_cfb1_encrypt sunw_AES_cfb1_encrypt
65 #pragma redefine_extname AES_cfb128_encrypt sunw_AES_cfb128_encrypt
66 #pragma redefine_extname AES_cfb8_encrypt sunw_AES_cfb8_encrypt
67 #pragma redefine_extname AES_ctr128_encrypt sunw_AES_ctr128_encrypt
68 #pragma redefine_extname AES_decrypt sunw_AES_decrypt
69 #pragma redefine_extname AES_ecb_encrypt sunw_AES_ecb_encrypt
70 #pragma redefine_extname AES_encrypt sunw_AES_encrypt
71 #pragma redefine_extname AES_ige_encrypt sunw_AES_ige_encrypt
72 #pragma redefine_extname AES_ofb128_encrypt sunw_AES_ofb128_encrypt
73 #pragma redefine_extname AES_options sunw_AES_options
74 #pragma redefine_extname AES_set_decrypt_key sunw_AES_set_decrypt_key
75 #pragma redefine_extname AES_set_encrypt_key sunw_AES_set_encrypt_key
76 #pragma redefine_extname AES_unwrap_key sunw_AES_unwrap_key
77 #pragma redefine_extname AES_version sunw_AES_version
78 #pragma redefine_extname AES_wrap_key sunw_AES_wrap_key
79 #pragma redefine_extname aesni_cbc_encrypt sunw_aesni_cbc_encrypt
80 #pragma redefine_extname aesni_cbc_sha1_enc sunw_aesni_cbc_sha1_enc
81 #pragma redefine_extname aesni_ccm64_decrypt_blocks sunw_aesni_ccm64_decr
82 #pragma redefine_extname aesni_ccm64_encrypt_blocks sunw_aesni_ccm64_encr
83 #pragma redefine_extname aesni_ctr32_encrypt_blocks sunw_aesni_ctr32_encr
84 #pragma redefine_extname aesni_decrypt sunw_aesni_decrypt
85 #pragma redefine_extname aesni_ecb_encrypt sunw_aesni_ecb_encrypt
86 #pragma redefine_extname aesni_encrypt sunw_aesni_encrypt
87 #pragma redefine_extname aesni_set_decrypt_key sunw_aesni_set_decrypt_key
88 #pragma redefine_extname aesni_set_encrypt_key sunw_aesni_set_encrypt_key
89 #pragma redefine_extname aesni_xts_decrypt sunw_aesni_xts_decrypt
90 #pragma redefine_extname aesni_xts_encrypt sunw_aesni_xts_encrypt
91 #pragma redefine_extname asn1_add_error sunw_asn1_add_error
92 #pragma redefine_extname ASN1_add_oid_module sunw_ASN1_add_oid_module
93 #pragma redefine_extname ASN1_ANY_it sunw_ASN1_ANY_it
94 #pragma redefine_extname ASN1_BIT_STRING_check sunw_ASN1_BIT_STRING_check
95 #pragma redefine_extname ASN1_BIT_STRING_free sunw_ASN1_BIT_STRING_free
96 #pragma redefine_extname ASN1_BIT_STRING_get_bit sunw_ASN1_BIT_STRING_get
97 #pragma redefine_extname ASN1_BIT_STRING_it sunw_ASN1_BIT_STRING_it
98 #pragma redefine_extname ASN1_BIT_STRING_name_print sunw_ASN1_BIT_STRING_
99 #pragma redefine_extname ASN1_BIT_STRING_new sunw_ASN1_BIT_STRING_new
100 #pragma redefine_extname ASN1_BIT_STRING_num_asc sunw_ASN1_BIT_STRING_num
101 #pragma redefine_extname ASN1_BIT_STRING_set sunw_ASN1_BIT_STRING_set
102 #pragma redefine_extname ASN1_BIT_STRING_set_asc sunw_ASN1_BIT_STRING_set
103 #pragma redefine_extname ASN1_BIT_STRING_set_bit sunw_ASN1_BIT_STRING_set
104 #pragma redefine_extname ASN1_BMPSTRING_free sunw_ASN1_BMPSTRING_free
105 #pragma redefine_extname ASN1_BMPSTRING_it sunw_ASN1_BMPSTRING_it
106 #pragma redefine_extname ASN1_BMPSTRING_new sunw_ASN1_BMPSTRING_new
107 #pragma redefine_extname ASN1_bn_print sunw_ASN1_bn_print
108 #pragma redefine_extname ASN1_BOOLEAN_it sunw_ASN1_BOOLEAN_it
109 #pragma redefine_extname ASN1_check_infinite_end sunw_ASN1_check_infinite
110 #pragma redefine_extname ASN1_const_check_infinite_end sunw_ASN1_const_ch
111 #pragma redefine_extname asn1_const_Finish sunw_asn1_const_Finish
112 #pragma redefine_extname ASN1_d2i_bio sunw_ASN1_d2i_bio
113 #pragma redefine_extname ASN1_d2i_fp sunw_ASN1_d2i_fp
114 #pragma redefine_extname ASN1_digest sunw_ASN1_digest
115 #pragma redefine_extname asn1_do_adb sunw_asn1_do_adb
116 #pragma redefine_extname asn1_do_lock sunw_asn1_do_lock
117 #pragma redefine_extname ASN1_dup sunw_ASN1_dup
118 #pragma redefine_extname asn1_enc_free sunw_asn1_enc_free
119 #pragma redefine_extname asn1_enc_init sunw_asn1_enc_init
120 #pragma redefine_extname asn1_enc_restore sunw_asn1_enc_restore
121 #pragma redefine_extname asn1_enc_save sunw_asn1_enc_save
122 #pragma redefine_extname ASN1_ENUMERATED_free sunw_ASN1_ENUMERATED_free
123 #pragma redefine_extname ASN1_ENUMERATED_get sunw_ASN1_ENUMERATED_get
124 #pragma redefine_extname ASN1_ENUMERATED_it sunw_ASN1_ENUMERATED_it
125 #pragma redefine_extname ASN1_ENUMERATED_new sunw_ASN1_ENUMERATED_new
126 #pragma redefine_extname ASN1_ENUMERATED_set sunw_ASN1_ENUMERATED_set
127 #pragma redefine_extname ASN1_ENUMERATED_to_BN sunw_ASN1_ENUMERATED_to_BN

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 3

128 #pragma redefine_extname asn1_ex_c2i sunw_asn1_ex_c2i
129 #pragma redefine_extname asn1_ex_i2c sunw_asn1_ex_i2c
130 #pragma redefine_extname ASN1_FBOOLEAN_it sunw_ASN1_FBOOLEAN_it
131 #pragma redefine_extname asn1_Finish sunw_asn1_Finish
132 #pragma redefine_extname ASN1_GENERALIZEDTIME_adj sunw_ASN1_GENERALIZEDTI
133 #pragma redefine_extname ASN1_GENERALIZEDTIME_check sunw_ASN1_GENERALIZED
134 #pragma redefine_extname ASN1_GENERALIZEDTIME_free sunw_ASN1_GENERALIZEDT
135 #pragma redefine_extname ASN1_GENERALIZEDTIME_it sunw_ASN1_GENERALIZEDTIM
136 #pragma redefine_extname ASN1_GENERALIZEDTIME_new sunw_ASN1_GENERALIZEDTI
137 #pragma redefine_extname ASN1_GENERALIZEDTIME_print sunw_ASN1_GENERALIZED
138 #pragma redefine_extname ASN1_GENERALIZEDTIME_set sunw_ASN1_GENERALIZEDTI
139 #pragma redefine_extname ASN1_GENERALIZEDTIME_set_string sunw_ASN1_GENERA
140 #pragma redefine_extname ASN1_GENERALSTRING_free sunw_ASN1_GENERALSTRING_
141 #pragma redefine_extname ASN1_GENERALSTRING_it sunw_ASN1_GENERALSTRING_it
142 #pragma redefine_extname ASN1_GENERALSTRING_new sunw_ASN1_GENERALSTRING_n
143 #pragma redefine_extname ASN1_generate_nconf sunw_ASN1_generate_nconf
144 #pragma redefine_extname ASN1_generate_v3 sunw_ASN1_generate_v3
145 #pragma redefine_extname asn1_get_choice_selector sunw_asn1_get_choice_se
146 #pragma redefine_extname asn1_get_field_ptr sunw_asn1_get_field_ptr
147 #pragma redefine_extname ASN1_get_object sunw_ASN1_get_object
148 #pragma redefine_extname asn1_GetSequence sunw_asn1_GetSequence
149 #pragma redefine_extname ASN1_i2d_bio sunw_ASN1_i2d_bio
150 #pragma redefine_extname ASN1_i2d_fp sunw_ASN1_i2d_fp
151 #pragma redefine_extname ASN1_IA5STRING_free sunw_ASN1_IA5STRING_free
152 #pragma redefine_extname ASN1_IA5STRING_it sunw_ASN1_IA5STRING_it
153 #pragma redefine_extname ASN1_IA5STRING_new sunw_ASN1_IA5STRING_new
154 #pragma redefine_extname ASN1_INTEGER_cmp sunw_ASN1_INTEGER_cmp
155 #pragma redefine_extname ASN1_INTEGER_dup sunw_ASN1_INTEGER_dup
156 #pragma redefine_extname ASN1_INTEGER_free sunw_ASN1_INTEGER_free
157 #pragma redefine_extname ASN1_INTEGER_get sunw_ASN1_INTEGER_get
158 #pragma redefine_extname ASN1_INTEGER_it sunw_ASN1_INTEGER_it
159 #pragma redefine_extname ASN1_INTEGER_new sunw_ASN1_INTEGER_new
160 #pragma redefine_extname ASN1_INTEGER_set sunw_ASN1_INTEGER_set
161 #pragma redefine_extname ASN1_INTEGER_to_BN sunw_ASN1_INTEGER_to_BN
162 #pragma redefine_extname ASN1_item_d2i sunw_ASN1_item_d2i
163 #pragma redefine_extname ASN1_item_d2i_bio sunw_ASN1_item_d2i_bio
164 #pragma redefine_extname ASN1_item_d2i_fp sunw_ASN1_item_d2i_fp
165 #pragma redefine_extname ASN1_item_digest sunw_ASN1_item_digest
166 #pragma redefine_extname ASN1_item_dup sunw_ASN1_item_dup
167 #pragma redefine_extname ASN1_item_ex_d2i sunw_ASN1_item_ex_d2i
168 #pragma redefine_extname ASN1_item_ex_free sunw_ASN1_item_ex_free
169 #pragma redefine_extname ASN1_item_ex_i2d sunw_ASN1_item_ex_i2d
170 #pragma redefine_extname ASN1_item_ex_new sunw_ASN1_item_ex_new
171 #pragma redefine_extname ASN1_item_free sunw_ASN1_item_free
172 #pragma redefine_extname ASN1_item_i2d sunw_ASN1_item_i2d
173 #pragma redefine_extname ASN1_item_i2d_bio sunw_ASN1_item_i2d_bio
174 #pragma redefine_extname ASN1_item_i2d_fp sunw_ASN1_item_i2d_fp
175 #pragma redefine_extname ASN1_item_ndef_i2d sunw_ASN1_item_ndef_i2d
176 #pragma redefine_extname ASN1_item_new sunw_ASN1_item_new
177 #pragma redefine_extname ASN1_item_pack sunw_ASN1_item_pack
178 #pragma redefine_extname ASN1_item_print sunw_ASN1_item_print
179 #pragma redefine_extname ASN1_item_sign sunw_ASN1_item_sign
180 #pragma redefine_extname ASN1_item_sign_ctx sunw_ASN1_item_sign_ctx
181 #pragma redefine_extname ASN1_item_unpack sunw_ASN1_item_unpack
182 #pragma redefine_extname ASN1_item_verify sunw_ASN1_item_verify
183 #pragma redefine_extname ASN1_mbstring_copy sunw_ASN1_mbstring_copy
184 #pragma redefine_extname ASN1_mbstring_ncopy sunw_ASN1_mbstring_ncopy
185 #pragma redefine_extname ASN1_NULL_free sunw_ASN1_NULL_free
186 #pragma redefine_extname ASN1_NULL_it sunw_ASN1_NULL_it
187 #pragma redefine_extname ASN1_NULL_new sunw_ASN1_NULL_new
188 #pragma redefine_extname ASN1_OBJECT_create sunw_ASN1_OBJECT_create
189 #pragma redefine_extname ASN1_OBJECT_free sunw_ASN1_OBJECT_free
190 #pragma redefine_extname ASN1_OBJECT_it sunw_ASN1_OBJECT_it
191 #pragma redefine_extname ASN1_OBJECT_new sunw_ASN1_OBJECT_new
192 #pragma redefine_extname ASN1_object_size sunw_ASN1_object_size
193 #pragma redefine_extname ASN1_OCTET_STRING_cmp sunw_ASN1_OCTET_STRING_cmp

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 4

194 #pragma redefine_extname ASN1_OCTET_STRING_dup sunw_ASN1_OCTET_STRING_dup
195 #pragma redefine_extname ASN1_OCTET_STRING_free sunw_ASN1_OCTET_STRING_fr
196 #pragma redefine_extname ASN1_OCTET_STRING_it sunw_ASN1_OCTET_STRING_it
197 #pragma redefine_extname ASN1_OCTET_STRING_NDEF_it sunw_ASN1_OCTET_STRING
198 #pragma redefine_extname ASN1_OCTET_STRING_new sunw_ASN1_OCTET_STRING_new
199 #pragma redefine_extname ASN1_OCTET_STRING_set sunw_ASN1_OCTET_STRING_set
200 #pragma redefine_extname ASN1_pack_string sunw_ASN1_pack_string
201 #pragma redefine_extname ASN1_parse sunw_ASN1_parse
202 #pragma redefine_extname ASN1_parse_dump sunw_ASN1_parse_dump
203 #pragma redefine_extname ASN1_PCTX_free sunw_ASN1_PCTX_free
204 #pragma redefine_extname ASN1_PCTX_get_cert_flags sunw_ASN1_PCTX_get_cert
205 #pragma redefine_extname ASN1_PCTX_get_flags sunw_ASN1_PCTX_get_flags
206 #pragma redefine_extname ASN1_PCTX_get_nm_flags sunw_ASN1_PCTX_get_nm_fla
207 #pragma redefine_extname ASN1_PCTX_get_oid_flags sunw_ASN1_PCTX_get_oid_f
208 #pragma redefine_extname ASN1_PCTX_get_str_flags sunw_ASN1_PCTX_get_str_f
209 #pragma redefine_extname ASN1_PCTX_new sunw_ASN1_PCTX_new
210 #pragma redefine_extname ASN1_PCTX_set_cert_flags sunw_ASN1_PCTX_set_cert
211 #pragma redefine_extname ASN1_PCTX_set_flags sunw_ASN1_PCTX_set_flags
212 #pragma redefine_extname ASN1_PCTX_set_nm_flags sunw_ASN1_PCTX_set_nm_fla
213 #pragma redefine_extname ASN1_PCTX_set_oid_flags sunw_ASN1_PCTX_set_oid_f
214 #pragma redefine_extname ASN1_PCTX_set_str_flags sunw_ASN1_PCTX_set_str_f
215 #pragma redefine_extname ASN1_primitive_free sunw_ASN1_primitive_free
216 #pragma redefine_extname ASN1_primitive_new sunw_ASN1_primitive_new
217 #pragma redefine_extname ASN1_PRINTABLE_free sunw_ASN1_PRINTABLE_free
218 #pragma redefine_extname ASN1_PRINTABLE_it sunw_ASN1_PRINTABLE_it
219 #pragma redefine_extname ASN1_PRINTABLE_new sunw_ASN1_PRINTABLE_new
220 #pragma redefine_extname ASN1_PRINTABLE_type sunw_ASN1_PRINTABLE_type
221 #pragma redefine_extname ASN1_PRINTABLESTRING_free sunw_ASN1_PRINTABLESTR
222 #pragma redefine_extname ASN1_PRINTABLESTRING_it sunw_ASN1_PRINTABLESTRIN
223 #pragma redefine_extname ASN1_PRINTABLESTRING_new sunw_ASN1_PRINTABLESTRI
224 #pragma redefine_extname ASN1_put_eoc sunw_ASN1_put_eoc
225 #pragma redefine_extname ASN1_put_object sunw_ASN1_put_object
226 #pragma redefine_extname ASN1_seq_pack sunw_ASN1_seq_pack
227 #pragma redefine_extname ASN1_seq_unpack sunw_ASN1_seq_unpack
228 #pragma redefine_extname ASN1_SEQUENCE_ANY_it sunw_ASN1_SEQUENCE_ANY_it
229 #pragma redefine_extname ASN1_SEQUENCE_it sunw_ASN1_SEQUENCE_it
230 #pragma redefine_extname ASN1_SET_ANY_it sunw_ASN1_SET_ANY_it
231 #pragma redefine_extname asn1_set_choice_selector sunw_asn1_set_choice_se
232 #pragma redefine_extname ASN1_sign sunw_ASN1_sign
233 #pragma redefine_extname ASN1_STRING_cmp sunw_ASN1_STRING_cmp
234 #pragma redefine_extname ASN1_STRING_copy sunw_ASN1_STRING_copy
235 #pragma redefine_extname ASN1_STRING_data sunw_ASN1_STRING_data
236 #pragma redefine_extname ASN1_STRING_dup sunw_ASN1_STRING_dup
237 #pragma redefine_extname ASN1_STRING_free sunw_ASN1_STRING_free
238 #pragma redefine_extname ASN1_STRING_get_default_mask sunw_ASN1_STRING_ge
239 #pragma redefine_extname ASN1_STRING_length sunw_ASN1_STRING_length
240 #pragma redefine_extname ASN1_STRING_length_set sunw_ASN1_STRING_length_s
241 #pragma redefine_extname ASN1_STRING_new sunw_ASN1_STRING_new
242 #pragma redefine_extname ASN1_STRING_print sunw_ASN1_STRING_print
243 #pragma redefine_extname ASN1_STRING_print_ex sunw_ASN1_STRING_print_ex
244 #pragma redefine_extname ASN1_STRING_print_ex_fp sunw_ASN1_STRING_print_e
245 #pragma redefine_extname ASN1_STRING_set sunw_ASN1_STRING_set
246 #pragma redefine_extname ASN1_STRING_set_by_NID sunw_ASN1_STRING_set_by_N
247 #pragma redefine_extname ASN1_STRING_set_default_mask sunw_ASN1_STRING_se
248 #pragma redefine_extname ASN1_STRING_set_default_mask_asc sunw_ASN1_STRIN
249 #pragma redefine_extname ASN1_STRING_set0 sunw_ASN1_STRING_set0
250 #pragma redefine_extname ASN1_STRING_TABLE_add sunw_ASN1_STRING_TABLE_add
251 #pragma redefine_extname ASN1_STRING_TABLE_cleanup sunw_ASN1_STRING_TABLE
252 #pragma redefine_extname ASN1_STRING_TABLE_get sunw_ASN1_STRING_TABLE_get
253 #pragma redefine_extname ASN1_STRING_to_UTF8 sunw_ASN1_STRING_to_UTF8
254 #pragma redefine_extname ASN1_STRING_type sunw_ASN1_STRING_type
255 #pragma redefine_extname ASN1_STRING_type_new sunw_ASN1_STRING_type_new
256 #pragma redefine_extname ASN1_T61STRING_free sunw_ASN1_T61STRING_free
257 #pragma redefine_extname ASN1_T61STRING_it sunw_ASN1_T61STRING_it
258 #pragma redefine_extname ASN1_T61STRING_new sunw_ASN1_T61STRING_new
259 #pragma redefine_extname ASN1_tag2bit sunw_ASN1_tag2bit

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 5

260 #pragma redefine_extname ASN1_tag2str sunw_ASN1_tag2str
261 #pragma redefine_extname ASN1_TBOOLEAN_it sunw_ASN1_TBOOLEAN_it
262 #pragma redefine_extname ASN1_template_d2i sunw_ASN1_template_d2i
263 #pragma redefine_extname ASN1_template_free sunw_ASN1_template_free
264 #pragma redefine_extname ASN1_template_i2d sunw_ASN1_template_i2d
265 #pragma redefine_extname ASN1_template_new sunw_ASN1_template_new
266 #pragma redefine_extname asn1_template_print_ctx sunw_asn1_template_print
267 #pragma redefine_extname ASN1_TIME_adj sunw_ASN1_TIME_adj
268 #pragma redefine_extname ASN1_TIME_check sunw_ASN1_TIME_check
269 #pragma redefine_extname ASN1_TIME_free sunw_ASN1_TIME_free
270 #pragma redefine_extname ASN1_TIME_it sunw_ASN1_TIME_it
271 #pragma redefine_extname ASN1_TIME_new sunw_ASN1_TIME_new
272 #pragma redefine_extname ASN1_TIME_print sunw_ASN1_TIME_print
273 #pragma redefine_extname ASN1_TIME_set sunw_ASN1_TIME_set
274 #pragma redefine_extname ASN1_TIME_set_string sunw_ASN1_TIME_set_string
275 #pragma redefine_extname ASN1_TIME_to_generalizedtime sunw_ASN1_TIME_to_g
276 #pragma redefine_extname ASN1_TYPE_cmp sunw_ASN1_TYPE_cmp
277 #pragma redefine_extname ASN1_TYPE_free sunw_ASN1_TYPE_free
278 #pragma redefine_extname ASN1_TYPE_get sunw_ASN1_TYPE_get
279 #pragma redefine_extname ASN1_TYPE_get_int_octetstring sunw_ASN1_TYPE_get
280 #pragma redefine_extname ASN1_TYPE_get_octetstring sunw_ASN1_TYPE_get_oct
281 #pragma redefine_extname ASN1_TYPE_new sunw_ASN1_TYPE_new
282 #pragma redefine_extname ASN1_TYPE_set sunw_ASN1_TYPE_set
283 #pragma redefine_extname ASN1_TYPE_set_int_octetstring sunw_ASN1_TYPE_set
284 #pragma redefine_extname ASN1_TYPE_set_octetstring sunw_ASN1_TYPE_set_oct
285 #pragma redefine_extname ASN1_TYPE_set1 sunw_ASN1_TYPE_set1
286 #pragma redefine_extname ASN1_UNIVERSALSTRING_free sunw_ASN1_UNIVERSALSTR
287 #pragma redefine_extname ASN1_UNIVERSALSTRING_it sunw_ASN1_UNIVERSALSTRIN
288 #pragma redefine_extname ASN1_UNIVERSALSTRING_new sunw_ASN1_UNIVERSALSTRI
289 #pragma redefine_extname ASN1_UNIVERSALSTRING_to_string sunw_ASN1_UNIVERS
290 #pragma redefine_extname ASN1_unpack_string sunw_ASN1_unpack_string
291 #pragma redefine_extname ASN1_UTCTIME_adj sunw_ASN1_UTCTIME_adj
292 #pragma redefine_extname ASN1_UTCTIME_check sunw_ASN1_UTCTIME_check
293 #pragma redefine_extname ASN1_UTCTIME_cmp_time_t sunw_ASN1_UTCTIME_cmp_ti
294 #pragma redefine_extname ASN1_UTCTIME_free sunw_ASN1_UTCTIME_free
295 #pragma redefine_extname ASN1_UTCTIME_it sunw_ASN1_UTCTIME_it
296 #pragma redefine_extname ASN1_UTCTIME_new sunw_ASN1_UTCTIME_new
297 #pragma redefine_extname ASN1_UTCTIME_print sunw_ASN1_UTCTIME_print
298 #pragma redefine_extname ASN1_UTCTIME_set sunw_ASN1_UTCTIME_set
299 #pragma redefine_extname ASN1_UTCTIME_set_string sunw_ASN1_UTCTIME_set_st
300 #pragma redefine_extname ASN1_UTF8STRING_free sunw_ASN1_UTF8STRING_free
301 #pragma redefine_extname ASN1_UTF8STRING_it sunw_ASN1_UTF8STRING_it
302 #pragma redefine_extname ASN1_UTF8STRING_new sunw_ASN1_UTF8STRING_new
303 #pragma redefine_extname ASN1_verify sunw_ASN1_verify
304 #pragma redefine_extname ASN1_version sunw_ASN1_version
305 #pragma redefine_extname ASN1_VISIBLESTRING_free sunw_ASN1_VISIBLESTRING_
306 #pragma redefine_extname ASN1_VISIBLESTRING_it sunw_ASN1_VISIBLESTRING_it
307 #pragma redefine_extname ASN1_VISIBLESTRING_new sunw_ASN1_VISIBLESTRING_n
308 #pragma redefine_extname AUTHORITY_INFO_ACCESS_free sunw_AUTHORITY_INFO_A
309 #pragma redefine_extname AUTHORITY_INFO_ACCESS_it sunw_AUTHORITY_INFO_ACC
310 #pragma redefine_extname AUTHORITY_INFO_ACCESS_new sunw_AUTHORITY_INFO_AC
311 #pragma redefine_extname AUTHORITY_KEYID_free sunw_AUTHORITY_KEYID_free
312 #pragma redefine_extname AUTHORITY_KEYID_it sunw_AUTHORITY_KEYID_it
313 #pragma redefine_extname AUTHORITY_KEYID_new sunw_AUTHORITY_KEYID_new
314 #pragma redefine_extname b2i_PrivateKey sunw_b2i_PrivateKey
315 #pragma redefine_extname b2i_PrivateKey_bio sunw_b2i_PrivateKey_bio
316 #pragma redefine_extname b2i_PublicKey sunw_b2i_PublicKey
317 #pragma redefine_extname b2i_PublicKey_bio sunw_b2i_PublicKey_bio
318 #pragma redefine_extname b2i_PVK_bio sunw_b2i_PVK_bio
319 #pragma redefine_extname BASIC_CONSTRAINTS_free sunw_BASIC_CONSTRAINTS_fr
320 #pragma redefine_extname BASIC_CONSTRAINTS_it sunw_BASIC_CONSTRAINTS_it
321 #pragma redefine_extname BASIC_CONSTRAINTS_new sunw_BASIC_CONSTRAINTS_new
322 #pragma redefine_extname BF_cbc_encrypt sunw_BF_cbc_encrypt
323 #pragma redefine_extname BF_cfb64_encrypt sunw_BF_cfb64_encrypt
324 #pragma redefine_extname BF_decrypt sunw_BF_decrypt
325 #pragma redefine_extname BF_ecb_encrypt sunw_BF_ecb_encrypt

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 6

326 #pragma redefine_extname BF_encrypt sunw_BF_encrypt
327 #pragma redefine_extname BF_ofb64_encrypt sunw_BF_ofb64_encrypt
328 #pragma redefine_extname BF_options sunw_BF_options
329 #pragma redefine_extname BF_set_key sunw_BF_set_key
330 #pragma redefine_extname BF_version sunw_BF_version
331 #pragma redefine_extname BIGNUM_it sunw_BIGNUM_it
332 #pragma redefine_extname BIO_accept sunw_BIO_accept
333 #pragma redefine_extname BIO_asn1_get_prefix sunw_BIO_asn1_get_prefix
334 #pragma redefine_extname BIO_asn1_get_suffix sunw_BIO_asn1_get_suffix
335 #pragma redefine_extname BIO_asn1_set_prefix sunw_BIO_asn1_set_prefix
336 #pragma redefine_extname BIO_asn1_set_suffix sunw_BIO_asn1_set_suffix
337 #pragma redefine_extname BIO_callback_ctrl sunw_BIO_callback_ctrl
338 #pragma redefine_extname BIO_clear_flags sunw_BIO_clear_flags
339 #pragma redefine_extname BIO_CONNECT_free sunw_BIO_CONNECT_free
340 #pragma redefine_extname BIO_CONNECT_new sunw_BIO_CONNECT_new
341 #pragma redefine_extname BIO_copy_next_retry sunw_BIO_copy_next_retry
342 #pragma redefine_extname BIO_ctrl sunw_BIO_ctrl
343 #pragma redefine_extname BIO_ctrl_get_read_request sunw_BIO_ctrl_get_read
344 #pragma redefine_extname BIO_ctrl_get_write_guarantee sunw_BIO_ctrl_get_w
345 #pragma redefine_extname BIO_ctrl_pending sunw_BIO_ctrl_pending
346 #pragma redefine_extname BIO_ctrl_reset_read_request sunw_BIO_ctrl_reset_
347 #pragma redefine_extname BIO_ctrl_wpending sunw_BIO_ctrl_wpending
348 #pragma redefine_extname BIO_debug_callback sunw_BIO_debug_callback
349 #pragma redefine_extname BIO_dgram_non_fatal_error sunw_BIO_dgram_non_fat
350 #pragma redefine_extname BIO_dump sunw_BIO_dump
351 #pragma redefine_extname BIO_dump_cb sunw_BIO_dump_cb
352 #pragma redefine_extname BIO_dump_fp sunw_BIO_dump_fp
353 #pragma redefine_extname BIO_dump_indent sunw_BIO_dump_indent
354 #pragma redefine_extname BIO_dump_indent_cb sunw_BIO_dump_indent_cb
355 #pragma redefine_extname BIO_dump_indent_fp sunw_BIO_dump_indent_fp
356 #pragma redefine_extname BIO_dup_chain sunw_BIO_dup_chain
357 #pragma redefine_extname BIO_f_asn1 sunw_BIO_f_asn1
358 #pragma redefine_extname BIO_f_base64 sunw_BIO_f_base64
359 #pragma redefine_extname BIO_f_buffer sunw_BIO_f_buffer
360 #pragma redefine_extname BIO_f_cipher sunw_BIO_f_cipher
361 #pragma redefine_extname BIO_f_md sunw_BIO_f_md
362 #pragma redefine_extname BIO_f_nbio_test sunw_BIO_f_nbio_test
363 #pragma redefine_extname BIO_f_null sunw_BIO_f_null
364 #pragma redefine_extname BIO_f_reliable sunw_BIO_f_reliable
365 #pragma redefine_extname BIO_fd_non_fatal_error sunw_BIO_fd_non_fatal_err
366 #pragma redefine_extname BIO_fd_should_retry sunw_BIO_fd_should_retry
367 #pragma redefine_extname BIO_find_type sunw_BIO_find_type
368 #pragma redefine_extname BIO_free sunw_BIO_free
369 #pragma redefine_extname BIO_free_all sunw_BIO_free_all
370 #pragma redefine_extname BIO_get_accept_socket sunw_BIO_get_accept_socket
371 #pragma redefine_extname BIO_get_callback sunw_BIO_get_callback
372 #pragma redefine_extname BIO_get_callback_arg sunw_BIO_get_callback_arg
373 #pragma redefine_extname BIO_get_ex_data sunw_BIO_get_ex_data
374 #pragma redefine_extname BIO_get_ex_new_index sunw_BIO_get_ex_new_index
375 #pragma redefine_extname BIO_get_host_ip sunw_BIO_get_host_ip
376 #pragma redefine_extname BIO_get_port sunw_BIO_get_port
377 #pragma redefine_extname BIO_get_retry_BIO sunw_BIO_get_retry_BIO
378 #pragma redefine_extname BIO_get_retry_reason sunw_BIO_get_retry_reason
379 #pragma redefine_extname BIO_gethostbyname sunw_BIO_gethostbyname
380 #pragma redefine_extname BIO_gets sunw_BIO_gets
381 #pragma redefine_extname BIO_indent sunw_BIO_indent
382 #pragma redefine_extname BIO_int_ctrl sunw_BIO_int_ctrl
383 #pragma redefine_extname BIO_method_name sunw_BIO_method_name
384 #pragma redefine_extname BIO_method_type sunw_BIO_method_type
385 #pragma redefine_extname BIO_new sunw_BIO_new
386 #pragma redefine_extname BIO_new_accept sunw_BIO_new_accept
387 #pragma redefine_extname BIO_new_bio_pair sunw_BIO_new_bio_pair
388 #pragma redefine_extname BIO_new_CMS sunw_BIO_new_CMS
389 #pragma redefine_extname BIO_new_connect sunw_BIO_new_connect
390 #pragma redefine_extname BIO_new_dgram sunw_BIO_new_dgram
391 #pragma redefine_extname BIO_new_fd sunw_BIO_new_fd

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 7

392 #pragma redefine_extname BIO_new_file sunw_BIO_new_file
393 #pragma redefine_extname BIO_new_fp sunw_BIO_new_fp
394 #pragma redefine_extname BIO_new_mem_buf sunw_BIO_new_mem_buf
395 #pragma redefine_extname BIO_new_NDEF sunw_BIO_new_NDEF
396 #pragma redefine_extname BIO_new_PKCS7 sunw_BIO_new_PKCS7
397 #pragma redefine_extname BIO_new_socket sunw_BIO_new_socket
398 #pragma redefine_extname BIO_next sunw_BIO_next
399 #pragma redefine_extname BIO_nread sunw_BIO_nread
400 #pragma redefine_extname BIO_nread0 sunw_BIO_nread0
401 #pragma redefine_extname BIO_number_read sunw_BIO_number_read
402 #pragma redefine_extname BIO_number_written sunw_BIO_number_written
403 #pragma redefine_extname BIO_nwrite sunw_BIO_nwrite
404 #pragma redefine_extname BIO_nwrite0 sunw_BIO_nwrite0
405 #pragma redefine_extname BIO_pop sunw_BIO_pop
406 #pragma redefine_extname BIO_printf sunw_BIO_printf
407 #pragma redefine_extname BIO_ptr_ctrl sunw_BIO_ptr_ctrl
408 #pragma redefine_extname BIO_push sunw_BIO_push
409 #pragma redefine_extname BIO_puts sunw_BIO_puts
410 #pragma redefine_extname BIO_read sunw_BIO_read
411 #pragma redefine_extname BIO_s_accept sunw_BIO_s_accept
412 #pragma redefine_extname BIO_s_bio sunw_BIO_s_bio
413 #pragma redefine_extname BIO_s_connect sunw_BIO_s_connect
414 #pragma redefine_extname BIO_s_datagram sunw_BIO_s_datagram
415 #pragma redefine_extname BIO_s_fd sunw_BIO_s_fd
416 #pragma redefine_extname BIO_s_file sunw_BIO_s_file
417 #pragma redefine_extname BIO_s_log sunw_BIO_s_log
418 #pragma redefine_extname BIO_s_mem sunw_BIO_s_mem
419 #pragma redefine_extname BIO_s_null sunw_BIO_s_null
420 #pragma redefine_extname BIO_s_socket sunw_BIO_s_socket
421 #pragma redefine_extname BIO_set sunw_BIO_set
422 #pragma redefine_extname BIO_set_callback sunw_BIO_set_callback
423 #pragma redefine_extname BIO_set_callback_arg sunw_BIO_set_callback_arg
424 #pragma redefine_extname BIO_set_cipher sunw_BIO_set_cipher
425 #pragma redefine_extname BIO_set_ex_data sunw_BIO_set_ex_data
426 #pragma redefine_extname BIO_set_flags sunw_BIO_set_flags
427 #pragma redefine_extname BIO_set_tcp_ndelay sunw_BIO_set_tcp_ndelay
428 #pragma redefine_extname BIO_snprintf sunw_BIO_snprintf
429 #pragma redefine_extname BIO_sock_cleanup sunw_BIO_sock_cleanup
430 #pragma redefine_extname BIO_sock_error sunw_BIO_sock_error
431 #pragma redefine_extname BIO_sock_init sunw_BIO_sock_init
432 #pragma redefine_extname BIO_sock_non_fatal_error sunw_BIO_sock_non_fatal
433 #pragma redefine_extname BIO_sock_should_retry sunw_BIO_sock_should_retry
434 #pragma redefine_extname BIO_socket_ioctl sunw_BIO_socket_ioctl
435 #pragma redefine_extname BIO_socket_nbio sunw_BIO_socket_nbio
436 #pragma redefine_extname BIO_test_flags sunw_BIO_test_flags
437 #pragma redefine_extname BIO_vfree sunw_BIO_vfree
438 #pragma redefine_extname BIO_vprintf sunw_BIO_vprintf
439 #pragma redefine_extname BIO_vsnprintf sunw_BIO_vsnprintf
440 #pragma redefine_extname BIO_write sunw_BIO_write
441 #pragma redefine_extname BN_add sunw_BN_add
442 #pragma redefine_extname bn_add_part_words sunw_bn_add_part_words
443 #pragma redefine_extname BN_add_word sunw_BN_add_word
444 #pragma redefine_extname bn_add_words sunw_bn_add_words
445 #pragma redefine_extname BN_asc2bn sunw_BN_asc2bn
446 #pragma redefine_extname BN_bin2bn sunw_BN_bin2bn
447 #pragma redefine_extname BN_BLINDING_convert sunw_BN_BLINDING_convert
448 #pragma redefine_extname BN_BLINDING_convert_ex sunw_BN_BLINDING_convert_
449 #pragma redefine_extname BN_BLINDING_create_param sunw_BN_BLINDING_create
450 #pragma redefine_extname BN_BLINDING_free sunw_BN_BLINDING_free
451 #pragma redefine_extname BN_BLINDING_get_flags sunw_BN_BLINDING_get_flags
452 #pragma redefine_extname BN_BLINDING_get_thread_id sunw_BN_BLINDING_get_t
453 #pragma redefine_extname BN_BLINDING_invert sunw_BN_BLINDING_invert
454 #pragma redefine_extname BN_BLINDING_invert_ex sunw_BN_BLINDING_invert_ex
455 #pragma redefine_extname BN_BLINDING_new sunw_BN_BLINDING_new
456 #pragma redefine_extname BN_BLINDING_set_flags sunw_BN_BLINDING_set_flags
457 #pragma redefine_extname BN_BLINDING_set_thread_id sunw_BN_BLINDING_set_t

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 8

458 #pragma redefine_extname BN_BLINDING_thread_id sunw_BN_BLINDING_thread_id
459 #pragma redefine_extname BN_BLINDING_update sunw_BN_BLINDING_update
460 #pragma redefine_extname BN_bn2bin sunw_BN_bn2bin
461 #pragma redefine_extname BN_bn2dec sunw_BN_bn2dec
462 #pragma redefine_extname BN_bn2hex sunw_BN_bn2hex
463 #pragma redefine_extname BN_bn2mpi sunw_BN_bn2mpi
464 #pragma redefine_extname BN_bntest_rand sunw_BN_bntest_rand
465 #pragma redefine_extname BN_clear sunw_BN_clear
466 #pragma redefine_extname BN_clear_bit sunw_BN_clear_bit
467 #pragma redefine_extname BN_clear_free sunw_BN_clear_free
468 #pragma redefine_extname BN_cmp sunw_BN_cmp
469 #pragma redefine_extname bn_cmp_part_words sunw_bn_cmp_part_words
470 #pragma redefine_extname bn_cmp_words sunw_bn_cmp_words
471 #pragma redefine_extname BN_consttime_swap sunw_BN_consttime_swap
472 #pragma redefine_extname BN_copy sunw_BN_copy
473 #pragma redefine_extname BN_CTX_end sunw_BN_CTX_end
474 #pragma redefine_extname BN_CTX_free sunw_BN_CTX_free
475 #pragma redefine_extname BN_CTX_get sunw_BN_CTX_get
476 #pragma redefine_extname BN_CTX_init sunw_BN_CTX_init
477 #pragma redefine_extname BN_CTX_new sunw_BN_CTX_new
478 #pragma redefine_extname BN_CTX_start sunw_BN_CTX_start
479 #pragma redefine_extname BN_dec2bn sunw_BN_dec2bn
480 #pragma redefine_extname BN_div sunw_BN_div
481 #pragma redefine_extname BN_div_recp sunw_BN_div_recp
482 #pragma redefine_extname BN_div_word sunw_BN_div_word
483 #pragma redefine_extname bn_div_words sunw_bn_div_words
484 #pragma redefine_extname BN_dup sunw_BN_dup
485 #pragma redefine_extname bn_dup_expand sunw_bn_dup_expand
486 #pragma redefine_extname BN_exp sunw_BN_exp
487 #pragma redefine_extname bn_expand2 sunw_bn_expand2
488 #pragma redefine_extname BN_free sunw_BN_free
489 #pragma redefine_extname BN_from_montgomery sunw_BN_from_montgomery
490 #pragma redefine_extname bn_gather5 sunw_bn_gather5
491 #pragma redefine_extname BN_gcd sunw_BN_gcd
492 #pragma redefine_extname BN_GENCB_call sunw_BN_GENCB_call
493 #pragma redefine_extname BN_generate_prime sunw_BN_generate_prime
494 #pragma redefine_extname BN_generate_prime_ex sunw_BN_generate_prime_ex
495 #pragma redefine_extname BN_get_params sunw_BN_get_params
496 #pragma redefine_extname BN_get_word sunw_BN_get_word
497 #pragma redefine_extname BN_get0_nist_prime_192 sunw_BN_get0_nist_prime_1
498 #pragma redefine_extname BN_get0_nist_prime_224 sunw_BN_get0_nist_prime_2
499 #pragma redefine_extname BN_get0_nist_prime_256 sunw_BN_get0_nist_prime_2
500 #pragma redefine_extname BN_get0_nist_prime_384 sunw_BN_get0_nist_prime_3
501 #pragma redefine_extname BN_get0_nist_prime_521 sunw_BN_get0_nist_prime_5
502 #pragma redefine_extname BN_GF2m_add sunw_BN_GF2m_add
503 #pragma redefine_extname BN_GF2m_arr2poly sunw_BN_GF2m_arr2poly
504 #pragma redefine_extname BN_GF2m_mod sunw_BN_GF2m_mod
505 #pragma redefine_extname BN_GF2m_mod_arr sunw_BN_GF2m_mod_arr
506 #pragma redefine_extname BN_GF2m_mod_div sunw_BN_GF2m_mod_div
507 #pragma redefine_extname BN_GF2m_mod_div_arr sunw_BN_GF2m_mod_div_arr
508 #pragma redefine_extname BN_GF2m_mod_exp sunw_BN_GF2m_mod_exp
509 #pragma redefine_extname BN_GF2m_mod_exp_arr sunw_BN_GF2m_mod_exp_arr
510 #pragma redefine_extname BN_GF2m_mod_inv sunw_BN_GF2m_mod_inv
511 #pragma redefine_extname BN_GF2m_mod_inv_arr sunw_BN_GF2m_mod_inv_arr
512 #pragma redefine_extname BN_GF2m_mod_mul sunw_BN_GF2m_mod_mul
513 #pragma redefine_extname BN_GF2m_mod_mul_arr sunw_BN_GF2m_mod_mul_arr
514 #pragma redefine_extname BN_GF2m_mod_solve_quad sunw_BN_GF2m_mod_solve_qu
515 #pragma redefine_extname BN_GF2m_mod_solve_quad_arr sunw_BN_GF2m_mod_solv
516 #pragma redefine_extname BN_GF2m_mod_sqr sunw_BN_GF2m_mod_sqr
517 #pragma redefine_extname BN_GF2m_mod_sqr_arr sunw_BN_GF2m_mod_sqr_arr
518 #pragma redefine_extname BN_GF2m_mod_sqrt sunw_BN_GF2m_mod_sqrt
519 #pragma redefine_extname BN_GF2m_mod_sqrt_arr sunw_BN_GF2m_mod_sqrt_arr
520 #pragma redefine_extname bn_GF2m_mul_2x2 sunw_bn_GF2m_mul_2x2
521 #pragma redefine_extname BN_GF2m_poly2arr sunw_BN_GF2m_poly2arr
522 #pragma redefine_extname BN_hex2bn sunw_BN_hex2bn
523 #pragma redefine_extname BN_init sunw_BN_init

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 9

524 #pragma redefine_extname BN_is_bit_set sunw_BN_is_bit_set
525 #pragma redefine_extname BN_is_prime sunw_BN_is_prime
526 #pragma redefine_extname BN_is_prime_ex sunw_BN_is_prime_ex
527 #pragma redefine_extname BN_is_prime_fasttest sunw_BN_is_prime_fasttest
528 #pragma redefine_extname BN_is_prime_fasttest_ex sunw_BN_is_prime_fasttes
529 #pragma redefine_extname BN_kronecker sunw_BN_kronecker
530 #pragma redefine_extname BN_lshift sunw_BN_lshift
531 #pragma redefine_extname BN_lshift1 sunw_BN_lshift1
532 #pragma redefine_extname BN_mask_bits sunw_BN_mask_bits
533 #pragma redefine_extname BN_mod_add sunw_BN_mod_add
534 #pragma redefine_extname BN_mod_add_quick sunw_BN_mod_add_quick
535 #pragma redefine_extname BN_mod_exp sunw_BN_mod_exp
536 #pragma redefine_extname BN_mod_exp_mont sunw_BN_mod_exp_mont
537 #pragma redefine_extname BN_mod_exp_mont_consttime sunw_BN_mod_exp_mont_c
538 #pragma redefine_extname BN_mod_exp_mont_word sunw_BN_mod_exp_mont_word
539 #pragma redefine_extname BN_mod_exp_recp sunw_BN_mod_exp_recp
540 #pragma redefine_extname BN_mod_exp_simple sunw_BN_mod_exp_simple
541 #pragma redefine_extname BN_mod_exp2_mont sunw_BN_mod_exp2_mont
542 #pragma redefine_extname BN_mod_inverse sunw_BN_mod_inverse
543 #pragma redefine_extname BN_mod_lshift sunw_BN_mod_lshift
544 #pragma redefine_extname BN_mod_lshift_quick sunw_BN_mod_lshift_quick
545 #pragma redefine_extname BN_mod_lshift1 sunw_BN_mod_lshift1
546 #pragma redefine_extname BN_mod_lshift1_quick sunw_BN_mod_lshift1_quick
547 #pragma redefine_extname BN_mod_mul sunw_BN_mod_mul
548 #pragma redefine_extname BN_mod_mul_montgomery sunw_BN_mod_mul_montgomery
549 #pragma redefine_extname BN_mod_mul_reciprocal sunw_BN_mod_mul_reciprocal
550 #pragma redefine_extname BN_mod_sqr sunw_BN_mod_sqr
551 #pragma redefine_extname BN_mod_sqrt sunw_BN_mod_sqrt
552 #pragma redefine_extname BN_mod_sub sunw_BN_mod_sub
553 #pragma redefine_extname BN_mod_sub_quick sunw_BN_mod_sub_quick
554 #pragma redefine_extname BN_mod_word sunw_BN_mod_word
555 #pragma redefine_extname BN_MONT_CTX_copy sunw_BN_MONT_CTX_copy
556 #pragma redefine_extname BN_MONT_CTX_free sunw_BN_MONT_CTX_free
557 #pragma redefine_extname BN_MONT_CTX_init sunw_BN_MONT_CTX_init
558 #pragma redefine_extname BN_MONT_CTX_new sunw_BN_MONT_CTX_new
559 #pragma redefine_extname BN_MONT_CTX_set sunw_BN_MONT_CTX_set
560 #pragma redefine_extname BN_MONT_CTX_set_locked sunw_BN_MONT_CTX_set_lock
561 #pragma redefine_extname BN_mpi2bn sunw_BN_mpi2bn
562 #pragma redefine_extname BN_mul sunw_BN_mul
563 #pragma redefine_extname bn_mul_add_words sunw_bn_mul_add_words
564 #pragma redefine_extname bn_mul_comba4 sunw_bn_mul_comba4
565 #pragma redefine_extname bn_mul_comba8 sunw_bn_mul_comba8
566 #pragma redefine_extname bn_mul_high sunw_bn_mul_high
567 #pragma redefine_extname bn_mul_low_normal sunw_bn_mul_low_normal
568 #pragma redefine_extname bn_mul_low_recursive sunw_bn_mul_low_recursive
569 #pragma redefine_extname bn_mul_mont sunw_bn_mul_mont
570 #pragma redefine_extname bn_mul_mont_gather5 sunw_bn_mul_mont_gather5
571 #pragma redefine_extname bn_mul_normal sunw_bn_mul_normal
572 #pragma redefine_extname bn_mul_part_recursive sunw_bn_mul_part_recursive
573 #pragma redefine_extname bn_mul_recursive sunw_bn_mul_recursive
574 #pragma redefine_extname BN_mul_word sunw_BN_mul_word
575 #pragma redefine_extname bn_mul_words sunw_bn_mul_words
576 #pragma redefine_extname BN_new sunw_BN_new
577 #pragma redefine_extname BN_nist_mod_192 sunw_BN_nist_mod_192
578 #pragma redefine_extname BN_nist_mod_224 sunw_BN_nist_mod_224
579 #pragma redefine_extname BN_nist_mod_256 sunw_BN_nist_mod_256
580 #pragma redefine_extname BN_nist_mod_384 sunw_BN_nist_mod_384
581 #pragma redefine_extname BN_nist_mod_521 sunw_BN_nist_mod_521
582 #pragma redefine_extname BN_nnmod sunw_BN_nnmod
583 #pragma redefine_extname BN_num_bits sunw_BN_num_bits
584 #pragma redefine_extname BN_num_bits_word sunw_BN_num_bits_word
585 #pragma redefine_extname BN_options sunw_BN_options
586 #pragma redefine_extname BN_print sunw_BN_print
587 #pragma redefine_extname BN_print_fp sunw_BN_print_fp
588 #pragma redefine_extname BN_pseudo_rand sunw_BN_pseudo_rand
589 #pragma redefine_extname BN_pseudo_rand_range sunw_BN_pseudo_rand_range

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 10

590 #pragma redefine_extname BN_rand sunw_BN_rand
591 #pragma redefine_extname BN_rand_range sunw_BN_rand_range
592 #pragma redefine_extname BN_reciprocal sunw_BN_reciprocal
593 #pragma redefine_extname BN_RECP_CTX_free sunw_BN_RECP_CTX_free
594 #pragma redefine_extname BN_RECP_CTX_init sunw_BN_RECP_CTX_init
595 #pragma redefine_extname BN_RECP_CTX_new sunw_BN_RECP_CTX_new
596 #pragma redefine_extname BN_RECP_CTX_set sunw_BN_RECP_CTX_set
597 #pragma redefine_extname BN_rshift sunw_BN_rshift
598 #pragma redefine_extname BN_rshift1 sunw_BN_rshift1
599 #pragma redefine_extname bn_scatter5 sunw_bn_scatter5
600 #pragma redefine_extname BN_set_bit sunw_BN_set_bit
601 #pragma redefine_extname BN_set_negative sunw_BN_set_negative
602 #pragma redefine_extname BN_set_params sunw_BN_set_params
603 #pragma redefine_extname BN_set_word sunw_BN_set_word
604 #pragma redefine_extname BN_sqr sunw_BN_sqr
605 #pragma redefine_extname bn_sqr_comba4 sunw_bn_sqr_comba4
606 #pragma redefine_extname bn_sqr_comba8 sunw_bn_sqr_comba8
607 #pragma redefine_extname bn_sqr_normal sunw_bn_sqr_normal
608 #pragma redefine_extname bn_sqr_recursive sunw_bn_sqr_recursive
609 #pragma redefine_extname bn_sqr_words sunw_bn_sqr_words
610 #pragma redefine_extname BN_sub sunw_BN_sub
611 #pragma redefine_extname bn_sub_part_words sunw_bn_sub_part_words
612 #pragma redefine_extname BN_sub_word sunw_BN_sub_word
613 #pragma redefine_extname bn_sub_words sunw_bn_sub_words
614 #pragma redefine_extname BN_swap sunw_BN_swap
615 #pragma redefine_extname BN_to_ASN1_ENUMERATED sunw_BN_to_ASN1_ENUMERATED
616 #pragma redefine_extname BN_to_ASN1_INTEGER sunw_BN_to_ASN1_INTEGER
617 #pragma redefine_extname BN_uadd sunw_BN_uadd
618 #pragma redefine_extname BN_ucmp sunw_BN_ucmp
619 #pragma redefine_extname BN_usub sunw_BN_usub
620 #pragma redefine_extname BN_value_one sunw_BN_value_one
621 #pragma redefine_extname BN_version sunw_BN_version
622 #pragma redefine_extname BN_X931_derive_prime_ex sunw_BN_X931_derive_prim
623 #pragma redefine_extname BN_X931_generate_prime_ex sunw_BN_X931_generate_
624 #pragma redefine_extname BN_X931_generate_Xpq sunw_BN_X931_generate_Xpq
625 #pragma redefine_extname bsaes_cbc_encrypt sunw_bsaes_cbc_encrypt
626 #pragma redefine_extname bsaes_ctr32_encrypt_blocks sunw_bsaes_ctr32_encr
627 #pragma redefine_extname bsaes_xts_decrypt sunw_bsaes_xts_decrypt
628 #pragma redefine_extname bsaes_xts_encrypt sunw_bsaes_xts_encrypt
629 #pragma redefine_extname BUF_MEM_free sunw_BUF_MEM_free
630 #pragma redefine_extname BUF_MEM_grow sunw_BUF_MEM_grow
631 #pragma redefine_extname BUF_MEM_grow_clean sunw_BUF_MEM_grow_clean
632 #pragma redefine_extname BUF_MEM_new sunw_BUF_MEM_new
633 #pragma redefine_extname BUF_memdup sunw_BUF_memdup
634 #pragma redefine_extname BUF_reverse sunw_BUF_reverse
635 #pragma redefine_extname BUF_strdup sunw_BUF_strdup
636 #pragma redefine_extname BUF_strlcat sunw_BUF_strlcat
637 #pragma redefine_extname BUF_strlcpy sunw_BUF_strlcpy
638 #pragma redefine_extname BUF_strndup sunw_BUF_strndup
639 #pragma redefine_extname c2i_ASN1_BIT_STRING sunw_c2i_ASN1_BIT_STRING
640 #pragma redefine_extname c2i_ASN1_INTEGER sunw_c2i_ASN1_INTEGER
641 #pragma redefine_extname c2i_ASN1_OBJECT sunw_c2i_ASN1_OBJECT
642 #pragma redefine_extname Camellia_cbc_encrypt sunw_Camellia_cbc_encrypt
643 #pragma redefine_extname Camellia_cfb1_encrypt sunw_Camellia_cfb1_encrypt
644 #pragma redefine_extname Camellia_cfb128_encrypt sunw_Camellia_cfb128_enc
645 #pragma redefine_extname Camellia_cfb8_encrypt sunw_Camellia_cfb8_encrypt
646 #pragma redefine_extname Camellia_ctr128_encrypt sunw_Camellia_ctr128_enc
647 #pragma redefine_extname Camellia_decrypt sunw_Camellia_decrypt
648 #pragma redefine_extname Camellia_DecryptBlock sunw_Camellia_DecryptBlock
649 #pragma redefine_extname Camellia_DecryptBlock_Rounds sunw_Camellia_Decry
650 #pragma redefine_extname Camellia_ecb_encrypt sunw_Camellia_ecb_encrypt
651 #pragma redefine_extname Camellia_Ekeygen sunw_Camellia_Ekeygen
652 #pragma redefine_extname Camellia_encrypt sunw_Camellia_encrypt
653 #pragma redefine_extname Camellia_EncryptBlock sunw_Camellia_EncryptBlock
654 #pragma redefine_extname Camellia_EncryptBlock_Rounds sunw_Camellia_Encry
655 #pragma redefine_extname Camellia_ofb128_encrypt sunw_Camellia_ofb128_enc

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 11

656 #pragma redefine_extname Camellia_set_key sunw_Camellia_set_key
657 #pragma redefine_extname CAMELLIA_version sunw_CAMELLIA_version
658 #pragma redefine_extname CAST_cbc_encrypt sunw_CAST_cbc_encrypt
659 #pragma redefine_extname CAST_cfb64_encrypt sunw_CAST_cfb64_encrypt
660 #pragma redefine_extname CAST_decrypt sunw_CAST_decrypt
661 #pragma redefine_extname CAST_ecb_encrypt sunw_CAST_ecb_encrypt
662 #pragma redefine_extname CAST_encrypt sunw_CAST_encrypt
663 #pragma redefine_extname CAST_ofb64_encrypt sunw_CAST_ofb64_encrypt
664 #pragma redefine_extname CAST_S_table0 sunw_CAST_S_table0
665 #pragma redefine_extname CAST_S_table1 sunw_CAST_S_table1
666 #pragma redefine_extname CAST_S_table2 sunw_CAST_S_table2
667 #pragma redefine_extname CAST_S_table3 sunw_CAST_S_table3
668 #pragma redefine_extname CAST_S_table4 sunw_CAST_S_table4
669 #pragma redefine_extname CAST_S_table5 sunw_CAST_S_table5
670 #pragma redefine_extname CAST_S_table6 sunw_CAST_S_table6
671 #pragma redefine_extname CAST_S_table7 sunw_CAST_S_table7
672 #pragma redefine_extname CAST_set_key sunw_CAST_set_key
673 #pragma redefine_extname CAST_version sunw_CAST_version
674 #pragma redefine_extname CBIGNUM_it sunw_CBIGNUM_it
675 #pragma redefine_extname CERTIFICATEPOLICIES_free sunw_CERTIFICATEPOLICIE
676 #pragma redefine_extname CERTIFICATEPOLICIES_it sunw_CERTIFICATEPOLICIES_
677 #pragma redefine_extname CERTIFICATEPOLICIES_new sunw_CERTIFICATEPOLICIES
678 #pragma redefine_extname check_defer sunw_check_defer
679 #pragma redefine_extname cmac_asn1_meth sunw_cmac_asn1_meth
680 #pragma redefine_extname CMAC_CTX_cleanup sunw_CMAC_CTX_cleanup
681 #pragma redefine_extname CMAC_CTX_copy sunw_CMAC_CTX_copy
682 #pragma redefine_extname CMAC_CTX_free sunw_CMAC_CTX_free
683 #pragma redefine_extname CMAC_CTX_get0_cipher_ctx sunw_CMAC_CTX_get0_ciph
684 #pragma redefine_extname CMAC_CTX_new sunw_CMAC_CTX_new
685 #pragma redefine_extname CMAC_Final sunw_CMAC_Final
686 #pragma redefine_extname CMAC_Init sunw_CMAC_Init
687 #pragma redefine_extname cmac_pkey_meth sunw_cmac_pkey_meth
688 #pragma redefine_extname CMAC_resume sunw_CMAC_resume
689 #pragma redefine_extname CMAC_Update sunw_CMAC_Update
690 #pragma redefine_extname CMS_add_simple_smimecap sunw_CMS_add_simple_smim
691 #pragma redefine_extname CMS_add_smimecap sunw_CMS_add_smimecap
692 #pragma redefine_extname CMS_add_standard_smimecap sunw_CMS_add_standard_
693 #pragma redefine_extname CMS_add0_cert sunw_CMS_add0_cert
694 #pragma redefine_extname CMS_add0_CertificateChoices sunw_CMS_add0_Certif
695 #pragma redefine_extname CMS_add0_crl sunw_CMS_add0_crl
696 #pragma redefine_extname CMS_add0_recipient_key sunw_CMS_add0_recipient_k
697 #pragma redefine_extname CMS_add0_recipient_password sunw_CMS_add0_recipi
698 #pragma redefine_extname CMS_add0_RevocationInfoChoice sunw_CMS_add0_Revo
699 #pragma redefine_extname CMS_add1_cert sunw_CMS_add1_cert
700 #pragma redefine_extname CMS_add1_crl sunw_CMS_add1_crl
701 #pragma redefine_extname CMS_add1_ReceiptRequest sunw_CMS_add1_ReceiptReq
702 #pragma redefine_extname CMS_add1_recipient_cert sunw_CMS_add1_recipient_
703 #pragma redefine_extname CMS_add1_signer sunw_CMS_add1_signer
704 #pragma redefine_extname CMS_Attributes_Sign_it sunw_CMS_Attributes_Sign_
705 #pragma redefine_extname CMS_Attributes_Verify_it sunw_CMS_Attributes_Ver
706 #pragma redefine_extname CMS_AuthenticatedData_it sunw_CMS_AuthenticatedD
707 #pragma redefine_extname CMS_CertificateChoices_it sunw_CMS_CertificateCh
708 #pragma redefine_extname CMS_compress sunw_CMS_compress
709 #pragma redefine_extname CMS_CompressedData_it sunw_CMS_CompressedData_it
710 #pragma redefine_extname cms_content_bio sunw_cms_content_bio
711 #pragma redefine_extname CMS_ContentInfo_free sunw_CMS_ContentInfo_free
712 #pragma redefine_extname CMS_ContentInfo_it sunw_CMS_ContentInfo_it
713 #pragma redefine_extname CMS_ContentInfo_new sunw_CMS_ContentInfo_new
714 #pragma redefine_extname CMS_ContentInfo_print_ctx sunw_CMS_ContentInfo_p
715 #pragma redefine_extname CMS_data sunw_CMS_data
716 #pragma redefine_extname cms_Data_create sunw_cms_Data_create
717 #pragma redefine_extname CMS_data_create sunw_CMS_data_create
718 #pragma redefine_extname CMS_dataFinal sunw_CMS_dataFinal
719 #pragma redefine_extname CMS_dataInit sunw_CMS_dataInit
720 #pragma redefine_extname CMS_decrypt sunw_CMS_decrypt
721 #pragma redefine_extname CMS_decrypt_set1_key sunw_CMS_decrypt_set1_key

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 12

722 #pragma redefine_extname CMS_decrypt_set1_password sunw_CMS_decrypt_set1_
723 #pragma redefine_extname CMS_decrypt_set1_pkey sunw_CMS_decrypt_set1_pkey
724 #pragma redefine_extname CMS_digest_create sunw_CMS_digest_create
725 #pragma redefine_extname CMS_digest_verify sunw_CMS_digest_verify
726 #pragma redefine_extname cms_DigestAlgorithm_find_ctx sunw_cms_DigestAlgo
727 #pragma redefine_extname cms_DigestAlgorithm_init_bio sunw_cms_DigestAlgo
728 #pragma redefine_extname cms_DigestAlgorithm_set sunw_cms_DigestAlgorithm
729 #pragma redefine_extname cms_DigestedData_create sunw_cms_DigestedData_cr
730 #pragma redefine_extname cms_DigestedData_do_final sunw_cms_DigestedData_
731 #pragma redefine_extname cms_DigestedData_init_bio sunw_cms_DigestedData_
732 #pragma redefine_extname CMS_DigestedData_it sunw_CMS_DigestedData_it
733 #pragma redefine_extname CMS_EncapsulatedContentInfo_it sunw_CMS_Encapsul
734 #pragma redefine_extname cms_encode_Receipt sunw_cms_encode_Receipt
735 #pragma redefine_extname CMS_encrypt sunw_CMS_encrypt
736 #pragma redefine_extname cms_EncryptedContent_init sunw_cms_EncryptedCont
737 #pragma redefine_extname cms_EncryptedContent_init_bio sunw_cms_Encrypted
738 #pragma redefine_extname CMS_EncryptedContentInfo_it sunw_CMS_EncryptedCo
739 #pragma redefine_extname CMS_EncryptedData_decrypt sunw_CMS_EncryptedData
740 #pragma redefine_extname CMS_EncryptedData_encrypt sunw_CMS_EncryptedData
741 #pragma redefine_extname cms_EncryptedData_init_bio sunw_cms_EncryptedDat
742 #pragma redefine_extname CMS_EncryptedData_it sunw_CMS_EncryptedData_it
743 #pragma redefine_extname CMS_EncryptedData_set1_key sunw_CMS_EncryptedDat
744 #pragma redefine_extname CMS_EnvelopedData_create sunw_CMS_EnvelopedData_
745 #pragma redefine_extname cms_EnvelopedData_init_bio sunw_cms_EnvelopedDat
746 #pragma redefine_extname CMS_EnvelopedData_it sunw_CMS_EnvelopedData_it
747 #pragma redefine_extname CMS_final sunw_CMS_final
748 #pragma redefine_extname CMS_get0_content sunw_CMS_get0_content
749 #pragma redefine_extname CMS_get0_eContentType sunw_CMS_get0_eContentType
750 #pragma redefine_extname cms_get0_enveloped sunw_cms_get0_enveloped
751 #pragma redefine_extname CMS_get0_RecipientInfos sunw_CMS_get0_RecipientI
752 #pragma redefine_extname CMS_get0_SignerInfos sunw_CMS_get0_SignerInfos
753 #pragma redefine_extname CMS_get0_signers sunw_CMS_get0_signers
754 #pragma redefine_extname CMS_get0_type sunw_CMS_get0_type
755 #pragma redefine_extname CMS_get1_certs sunw_CMS_get1_certs
756 #pragma redefine_extname CMS_get1_crls sunw_CMS_get1_crls
757 #pragma redefine_extname CMS_get1_ReceiptRequest sunw_CMS_get1_ReceiptReq
758 #pragma redefine_extname CMS_is_detached sunw_CMS_is_detached
759 #pragma redefine_extname CMS_IssuerAndSerialNumber_it sunw_CMS_IssuerAndS
760 #pragma redefine_extname CMS_KEKIdentifier_it sunw_CMS_KEKIdentifier_it
761 #pragma redefine_extname CMS_KEKRecipientInfo_it sunw_CMS_KEKRecipientInf
762 #pragma redefine_extname CMS_KeyAgreeRecipientIdentifier_it sunw_CMS_KeyA
763 #pragma redefine_extname CMS_KeyAgreeRecipientInfo_it sunw_CMS_KeyAgreeRe
764 #pragma redefine_extname CMS_KeyTransRecipientInfo_it sunw_CMS_KeyTransRe
765 #pragma redefine_extname cms_msgSigDigest_add1 sunw_cms_msgSigDigest_add1
766 #pragma redefine_extname CMS_OriginatorIdentifierOrKey_it sunw_CMS_Origin
767 #pragma redefine_extname CMS_OriginatorInfo_it sunw_CMS_OriginatorInfo_it
768 #pragma redefine_extname CMS_OriginatorPublicKey_it sunw_CMS_OriginatorPu
769 #pragma redefine_extname CMS_OtherCertificateFormat_it sunw_CMS_OtherCert
770 #pragma redefine_extname CMS_OtherKeyAttribute_it sunw_CMS_OtherKeyAttrib
771 #pragma redefine_extname CMS_OtherRecipientInfo_it sunw_CMS_OtherRecipien
772 #pragma redefine_extname CMS_OtherRevocationInfoFormat_it sunw_CMS_OtherR
773 #pragma redefine_extname CMS_PasswordRecipientInfo_it sunw_CMS_PasswordRe
774 #pragma redefine_extname CMS_Receipt_it sunw_CMS_Receipt_it
775 #pragma redefine_extname cms_Receipt_verify sunw_cms_Receipt_verify
776 #pragma redefine_extname CMS_ReceiptRequest_create0 sunw_CMS_ReceiptReque
777 #pragma redefine_extname CMS_ReceiptRequest_free sunw_CMS_ReceiptRequest_
778 #pragma redefine_extname CMS_ReceiptRequest_get0_values sunw_CMS_ReceiptR
779 #pragma redefine_extname CMS_ReceiptRequest_it sunw_CMS_ReceiptRequest_it
780 #pragma redefine_extname CMS_ReceiptRequest_new sunw_CMS_ReceiptRequest_n
781 #pragma redefine_extname CMS_ReceiptsFrom_it sunw_CMS_ReceiptsFrom_it
782 #pragma redefine_extname CMS_RecipientEncryptedKey_it sunw_CMS_RecipientE
783 #pragma redefine_extname CMS_RecipientInfo_decrypt sunw_CMS_RecipientInfo
784 #pragma redefine_extname CMS_RecipientInfo_it sunw_CMS_RecipientInfo_it
785 #pragma redefine_extname CMS_RecipientInfo_kekri_get0_id sunw_CMS_Recipie
786 #pragma redefine_extname CMS_RecipientInfo_kekri_id_cmp sunw_CMS_Recipien
787 #pragma redefine_extname CMS_RecipientInfo_ktri_cert_cmp sunw_CMS_Recipie

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 13

788 #pragma redefine_extname CMS_RecipientInfo_ktri_get0_algs sunw_CMS_Recipi
789 #pragma redefine_extname CMS_RecipientInfo_ktri_get0_signer_id sunw_CMS_R
790 #pragma redefine_extname cms_RecipientInfo_pwri_crypt sunw_cms_RecipientI
791 #pragma redefine_extname CMS_RecipientInfo_set0_key sunw_CMS_RecipientInf
792 #pragma redefine_extname CMS_RecipientInfo_set0_password sunw_CMS_Recipie
793 #pragma redefine_extname CMS_RecipientInfo_set0_pkey sunw_CMS_RecipientIn
794 #pragma redefine_extname CMS_RecipientInfo_type sunw_CMS_RecipientInfo_ty
795 #pragma redefine_extname CMS_RecipientKeyIdentifier_it sunw_CMS_Recipient
796 #pragma redefine_extname CMS_RevocationInfoChoice_it sunw_CMS_RevocationI
797 #pragma redefine_extname CMS_set_detached sunw_CMS_set_detached
798 #pragma redefine_extname CMS_set1_eContentType sunw_CMS_set1_eContentType
799 #pragma redefine_extname cms_set1_SignerIdentifier sunw_cms_set1_SignerId
800 #pragma redefine_extname CMS_set1_signers_certs sunw_CMS_set1_signers_cer
801 #pragma redefine_extname CMS_sign sunw_CMS_sign
802 #pragma redefine_extname CMS_sign_receipt sunw_CMS_sign_receipt
803 #pragma redefine_extname CMS_signed_add1_attr sunw_CMS_signed_add1_attr
804 #pragma redefine_extname CMS_signed_add1_attr_by_NID sunw_CMS_signed_add1
805 #pragma redefine_extname CMS_signed_add1_attr_by_OBJ sunw_CMS_signed_add1
806 #pragma redefine_extname CMS_signed_add1_attr_by_txt sunw_CMS_signed_add1
807 #pragma redefine_extname CMS_signed_delete_attr sunw_CMS_signed_delete_at
808 #pragma redefine_extname CMS_signed_get_attr sunw_CMS_signed_get_attr
809 #pragma redefine_extname CMS_signed_get_attr_by_NID sunw_CMS_signed_get_a
810 #pragma redefine_extname CMS_signed_get_attr_by_OBJ sunw_CMS_signed_get_a
811 #pragma redefine_extname CMS_signed_get_attr_count sunw_CMS_signed_get_at
812 #pragma redefine_extname CMS_signed_get0_data_by_OBJ sunw_CMS_signed_get0
813 #pragma redefine_extname cms_SignedData_final sunw_cms_SignedData_final
814 #pragma redefine_extname CMS_SignedData_init sunw_CMS_SignedData_init
815 #pragma redefine_extname cms_SignedData_init_bio sunw_cms_SignedData_init
816 #pragma redefine_extname CMS_SignedData_it sunw_CMS_SignedData_it
817 #pragma redefine_extname cms_SignerIdentifier_cert_cmp sunw_cms_SignerIde
818 #pragma redefine_extname cms_SignerIdentifier_get0_signer_id sunw_cms_Sig
819 #pragma redefine_extname CMS_SignerIdentifier_it sunw_CMS_SignerIdentifie
820 #pragma redefine_extname CMS_SignerInfo_cert_cmp sunw_CMS_SignerInfo_cert
821 #pragma redefine_extname CMS_SignerInfo_get0_algs sunw_CMS_SignerInfo_get
822 #pragma redefine_extname CMS_SignerInfo_get0_signer_id sunw_CMS_SignerInf
823 #pragma redefine_extname CMS_SignerInfo_it sunw_CMS_SignerInfo_it
824 #pragma redefine_extname CMS_SignerInfo_set1_signer_cert sunw_CMS_SignerI
825 #pragma redefine_extname CMS_SignerInfo_sign sunw_CMS_SignerInfo_sign
826 #pragma redefine_extname CMS_SignerInfo_verify sunw_CMS_SignerInfo_verify
827 #pragma redefine_extname CMS_SignerInfo_verify_content sunw_CMS_SignerInf
828 #pragma redefine_extname CMS_stream sunw_CMS_stream
829 #pragma redefine_extname CMS_uncompress sunw_CMS_uncompress
830 #pragma redefine_extname CMS_unsigned_add1_attr sunw_CMS_unsigned_add1_at
831 #pragma redefine_extname CMS_unsigned_add1_attr_by_NID sunw_CMS_unsigned_
832 #pragma redefine_extname CMS_unsigned_add1_attr_by_OBJ sunw_CMS_unsigned_
833 #pragma redefine_extname CMS_unsigned_add1_attr_by_txt sunw_CMS_unsigned_
834 #pragma redefine_extname CMS_unsigned_delete_attr sunw_CMS_unsigned_delet
835 #pragma redefine_extname CMS_unsigned_get_attr sunw_CMS_unsigned_get_attr
836 #pragma redefine_extname CMS_unsigned_get_attr_by_NID sunw_CMS_unsigned_g
837 #pragma redefine_extname CMS_unsigned_get_attr_by_OBJ sunw_CMS_unsigned_g
838 #pragma redefine_extname CMS_unsigned_get_attr_count sunw_CMS_unsigned_ge
839 #pragma redefine_extname CMS_unsigned_get0_data_by_OBJ sunw_CMS_unsigned_
840 #pragma redefine_extname CMS_verify sunw_CMS_verify
841 #pragma redefine_extname CMS_verify_receipt sunw_CMS_verify_receipt
842 #pragma redefine_extname COMP_compress_block sunw_COMP_compress_block
843 #pragma redefine_extname COMP_CTX_free sunw_COMP_CTX_free
844 #pragma redefine_extname COMP_CTX_new sunw_COMP_CTX_new
845 #pragma redefine_extname COMP_expand_block sunw_COMP_expand_block
846 #pragma redefine_extname COMP_rle sunw_COMP_rle
847 #pragma redefine_extname COMP_zlib sunw_COMP_zlib
848 #pragma redefine_extname COMP_zlib_cleanup sunw_COMP_zlib_cleanup
849 #pragma redefine_extname CONF_def_version sunw_CONF_def_version
850 #pragma redefine_extname CONF_dump_bio sunw_CONF_dump_bio
851 #pragma redefine_extname CONF_dump_fp sunw_CONF_dump_fp
852 #pragma redefine_extname CONF_free sunw_CONF_free
853 #pragma redefine_extname CONF_get_number sunw_CONF_get_number

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 14

854 #pragma redefine_extname CONF_get_section sunw_CONF_get_section
855 #pragma redefine_extname CONF_get_string sunw_CONF_get_string
856 #pragma redefine_extname CONF_get1_default_config_file sunw_CONF_get1_def
857 #pragma redefine_extname CONF_imodule_get_flags sunw_CONF_imodule_get_fla
858 #pragma redefine_extname CONF_imodule_get_module sunw_CONF_imodule_get_mo
859 #pragma redefine_extname CONF_imodule_get_name sunw_CONF_imodule_get_name
860 #pragma redefine_extname CONF_imodule_get_usr_data sunw_CONF_imodule_get_
861 #pragma redefine_extname CONF_imodule_get_value sunw_CONF_imodule_get_val
862 #pragma redefine_extname CONF_imodule_set_flags sunw_CONF_imodule_set_fla
863 #pragma redefine_extname CONF_imodule_set_usr_data sunw_CONF_imodule_set_
864 #pragma redefine_extname CONF_load sunw_CONF_load
865 #pragma redefine_extname CONF_load_bio sunw_CONF_load_bio
866 #pragma redefine_extname CONF_load_fp sunw_CONF_load_fp
867 #pragma redefine_extname CONF_module_add sunw_CONF_module_add
868 #pragma redefine_extname CONF_module_get_usr_data sunw_CONF_module_get_us
869 #pragma redefine_extname CONF_module_set_usr_data sunw_CONF_module_set_us
870 #pragma redefine_extname CONF_modules_finish sunw_CONF_modules_finish
871 #pragma redefine_extname CONF_modules_free sunw_CONF_modules_free
872 #pragma redefine_extname CONF_modules_load sunw_CONF_modules_load
873 #pragma redefine_extname CONF_modules_load_file sunw_CONF_modules_load_fi
874 #pragma redefine_extname CONF_modules_unload sunw_CONF_modules_unload
875 #pragma redefine_extname CONF_parse_list sunw_CONF_parse_list
876 #pragma redefine_extname CONF_set_default_method sunw_CONF_set_default_me
877 #pragma redefine_extname CONF_set_nconf sunw_CONF_set_nconf
878 #pragma redefine_extname CONF_version sunw_CONF_version
879 #pragma redefine_extname CRL_DIST_POINTS_free sunw_CRL_DIST_POINTS_free
880 #pragma redefine_extname CRL_DIST_POINTS_it sunw_CRL_DIST_POINTS_it
881 #pragma redefine_extname CRL_DIST_POINTS_new sunw_CRL_DIST_POINTS_new
882 #pragma redefine_extname CRYPTO_add_lock sunw_CRYPTO_add_lock
883 #pragma redefine_extname CRYPTO_cbc128_decrypt sunw_CRYPTO_cbc128_decrypt
884 #pragma redefine_extname CRYPTO_cbc128_encrypt sunw_CRYPTO_cbc128_encrypt
885 #pragma redefine_extname CRYPTO_ccm128_aad sunw_CRYPTO_ccm128_aad
886 #pragma redefine_extname CRYPTO_ccm128_decrypt sunw_CRYPTO_ccm128_decrypt
887 #pragma redefine_extname CRYPTO_ccm128_decrypt_ccm64 sunw_CRYPTO_ccm128_d
888 #pragma redefine_extname CRYPTO_ccm128_encrypt sunw_CRYPTO_ccm128_encrypt
889 #pragma redefine_extname CRYPTO_ccm128_encrypt_ccm64 sunw_CRYPTO_ccm128_e
890 #pragma redefine_extname CRYPTO_ccm128_init sunw_CRYPTO_ccm128_init
891 #pragma redefine_extname CRYPTO_ccm128_setiv sunw_CRYPTO_ccm128_setiv
892 #pragma redefine_extname CRYPTO_ccm128_tag sunw_CRYPTO_ccm128_tag
893 #pragma redefine_extname CRYPTO_cfb128_1_encrypt sunw_CRYPTO_cfb128_1_enc
894 #pragma redefine_extname CRYPTO_cfb128_8_encrypt sunw_CRYPTO_cfb128_8_enc
895 #pragma redefine_extname CRYPTO_cfb128_encrypt sunw_CRYPTO_cfb128_encrypt
896 #pragma redefine_extname CRYPTO_cleanup_all_ex_data sunw_CRYPTO_cleanup_a
897 #pragma redefine_extname CRYPTO_ctr128_encrypt sunw_CRYPTO_ctr128_encrypt
898 #pragma redefine_extname CRYPTO_ctr128_encrypt_ctr32 sunw_CRYPTO_ctr128_e
899 #pragma redefine_extname CRYPTO_cts128_decrypt sunw_CRYPTO_cts128_decrypt
900 #pragma redefine_extname CRYPTO_cts128_decrypt_block sunw_CRYPTO_cts128_d
901 #pragma redefine_extname CRYPTO_cts128_encrypt sunw_CRYPTO_cts128_encrypt
902 #pragma redefine_extname CRYPTO_cts128_encrypt_block sunw_CRYPTO_cts128_e
903 #pragma redefine_extname CRYPTO_dbg_free sunw_CRYPTO_dbg_free
904 #pragma redefine_extname CRYPTO_dbg_get_options sunw_CRYPTO_dbg_get_optio
905 #pragma redefine_extname CRYPTO_dbg_malloc sunw_CRYPTO_dbg_malloc
906 #pragma redefine_extname CRYPTO_dbg_realloc sunw_CRYPTO_dbg_realloc
907 #pragma redefine_extname CRYPTO_dbg_set_options sunw_CRYPTO_dbg_set_optio
908 #pragma redefine_extname CRYPTO_destroy_dynlockid sunw_CRYPTO_destroy_dyn
909 #pragma redefine_extname CRYPTO_dup_ex_data sunw_CRYPTO_dup_ex_data
910 #pragma redefine_extname CRYPTO_ex_data_new_class sunw_CRYPTO_ex_data_new
911 #pragma redefine_extname CRYPTO_free sunw_CRYPTO_free
912 #pragma redefine_extname CRYPTO_free_ex_data sunw_CRYPTO_free_ex_data
913 #pragma redefine_extname CRYPTO_free_locked sunw_CRYPTO_free_locked
914 #pragma redefine_extname CRYPTO_gcm128_aad sunw_CRYPTO_gcm128_aad
915 #pragma redefine_extname CRYPTO_gcm128_decrypt sunw_CRYPTO_gcm128_decrypt
916 #pragma redefine_extname CRYPTO_gcm128_decrypt_ctr32 sunw_CRYPTO_gcm128_d
917 #pragma redefine_extname CRYPTO_gcm128_encrypt sunw_CRYPTO_gcm128_encrypt
918 #pragma redefine_extname CRYPTO_gcm128_encrypt_ctr32 sunw_CRYPTO_gcm128_e
919 #pragma redefine_extname CRYPTO_gcm128_finish sunw_CRYPTO_gcm128_finish

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 15

920 #pragma redefine_extname CRYPTO_gcm128_init sunw_CRYPTO_gcm128_init
921 #pragma redefine_extname CRYPTO_gcm128_new sunw_CRYPTO_gcm128_new
922 #pragma redefine_extname CRYPTO_gcm128_release sunw_CRYPTO_gcm128_release
923 #pragma redefine_extname CRYPTO_gcm128_setiv sunw_CRYPTO_gcm128_setiv
924 #pragma redefine_extname CRYPTO_gcm128_tag sunw_CRYPTO_gcm128_tag
925 #pragma redefine_extname CRYPTO_get_add_lock_callback sunw_CRYPTO_get_add
926 #pragma redefine_extname CRYPTO_get_dynlock_create_callback sunw_CRYPTO_g
927 #pragma redefine_extname CRYPTO_get_dynlock_destroy_callback sunw_CRYPTO_
928 #pragma redefine_extname CRYPTO_get_dynlock_lock_callback sunw_CRYPTO_get
929 #pragma redefine_extname CRYPTO_get_dynlock_value sunw_CRYPTO_get_dynlock
930 #pragma redefine_extname CRYPTO_get_ex_data sunw_CRYPTO_get_ex_data
931 #pragma redefine_extname CRYPTO_get_ex_data_implementation sunw_CRYPTO_ge
932 #pragma redefine_extname CRYPTO_get_ex_new_index sunw_CRYPTO_get_ex_new_i
933 #pragma redefine_extname CRYPTO_get_id_callback sunw_CRYPTO_get_id_callba
934 #pragma redefine_extname CRYPTO_get_lock_name sunw_CRYPTO_get_lock_name
935 #pragma redefine_extname CRYPTO_get_locked_mem_ex_functions sunw_CRYPTO_g
936 #pragma redefine_extname CRYPTO_get_locked_mem_functions sunw_CRYPTO_get_
937 #pragma redefine_extname CRYPTO_get_locking_callback sunw_CRYPTO_get_lock
938 #pragma redefine_extname CRYPTO_get_mem_debug_functions sunw_CRYPTO_get_m
939 #pragma redefine_extname CRYPTO_get_mem_debug_options sunw_CRYPTO_get_mem
940 #pragma redefine_extname CRYPTO_get_mem_ex_functions sunw_CRYPTO_get_mem_
941 #pragma redefine_extname CRYPTO_get_mem_functions sunw_CRYPTO_get_mem_fun
942 #pragma redefine_extname CRYPTO_get_new_dynlockid sunw_CRYPTO_get_new_dyn
943 #pragma redefine_extname CRYPTO_get_new_lockid sunw_CRYPTO_get_new_lockid
944 #pragma redefine_extname CRYPTO_is_mem_check_on sunw_CRYPTO_is_mem_check_
945 #pragma redefine_extname CRYPTO_lock sunw_CRYPTO_lock
946 #pragma redefine_extname CRYPTO_malloc sunw_CRYPTO_malloc
947 #pragma redefine_extname CRYPTO_malloc_locked sunw_CRYPTO_malloc_locked
948 #pragma redefine_extname CRYPTO_mem_ctrl sunw_CRYPTO_mem_ctrl
949 #pragma redefine_extname CRYPTO_mem_leaks sunw_CRYPTO_mem_leaks
950 #pragma redefine_extname CRYPTO_mem_leaks_cb sunw_CRYPTO_mem_leaks_cb
951 #pragma redefine_extname CRYPTO_mem_leaks_fp sunw_CRYPTO_mem_leaks_fp
952 #pragma redefine_extname CRYPTO_memcmp sunw_CRYPTO_memcmp
953 #pragma redefine_extname CRYPTO_new_ex_data sunw_CRYPTO_new_ex_data
954 #pragma redefine_extname CRYPTO_nistcts128_decrypt sunw_CRYPTO_nistcts128
955 #pragma redefine_extname CRYPTO_nistcts128_decrypt_block sunw_CRYPTO_nist
956 #pragma redefine_extname CRYPTO_nistcts128_encrypt sunw_CRYPTO_nistcts128
957 #pragma redefine_extname CRYPTO_nistcts128_encrypt_block sunw_CRYPTO_nist
958 #pragma redefine_extname CRYPTO_num_locks sunw_CRYPTO_num_locks
959 #pragma redefine_extname CRYPTO_ofb128_encrypt sunw_CRYPTO_ofb128_encrypt
960 #pragma redefine_extname CRYPTO_pop_info sunw_CRYPTO_pop_info
961 #pragma redefine_extname CRYPTO_push_info_ sunw_CRYPTO_push_info_
962 #pragma redefine_extname CRYPTO_realloc sunw_CRYPTO_realloc
963 #pragma redefine_extname CRYPTO_realloc_clean sunw_CRYPTO_realloc_clean
964 #pragma redefine_extname CRYPTO_remalloc sunw_CRYPTO_remalloc
965 #pragma redefine_extname CRYPTO_remove_all_info sunw_CRYPTO_remove_all_in
966 #pragma redefine_extname CRYPTO_set_add_lock_callback sunw_CRYPTO_set_add
967 #pragma redefine_extname CRYPTO_set_dynlock_create_callback sunw_CRYPTO_s
968 #pragma redefine_extname CRYPTO_set_dynlock_destroy_callback sunw_CRYPTO_
969 #pragma redefine_extname CRYPTO_set_dynlock_lock_callback sunw_CRYPTO_set
970 #pragma redefine_extname CRYPTO_set_ex_data sunw_CRYPTO_set_ex_data
971 #pragma redefine_extname CRYPTO_set_ex_data_implementation sunw_CRYPTO_se
972 #pragma redefine_extname CRYPTO_set_id_callback sunw_CRYPTO_set_id_callba
973 #pragma redefine_extname CRYPTO_set_locked_mem_ex_functions sunw_CRYPTO_s
974 #pragma redefine_extname CRYPTO_set_locked_mem_functions sunw_CRYPTO_set_
975 #pragma redefine_extname CRYPTO_set_locking_callback sunw_CRYPTO_set_lock
976 #pragma redefine_extname CRYPTO_set_mem_debug_functions sunw_CRYPTO_set_m
977 #pragma redefine_extname CRYPTO_set_mem_debug_options sunw_CRYPTO_set_mem
978 #pragma redefine_extname CRYPTO_set_mem_ex_functions sunw_CRYPTO_set_mem_
979 #pragma redefine_extname CRYPTO_set_mem_functions sunw_CRYPTO_set_mem_fun
980 #pragma redefine_extname CRYPTO_strdup sunw_CRYPTO_strdup
981 #pragma redefine_extname CRYPTO_thread_id sunw_CRYPTO_thread_id
982 #pragma redefine_extname CRYPTO_THREADID_cmp sunw_CRYPTO_THREADID_cmp
983 #pragma redefine_extname CRYPTO_THREADID_cpy sunw_CRYPTO_THREADID_cpy
984 #pragma redefine_extname CRYPTO_THREADID_current sunw_CRYPTO_THREADID_cur
985 #pragma redefine_extname CRYPTO_THREADID_get_callback sunw_CRYPTO_THREADI

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 16

986 #pragma redefine_extname CRYPTO_THREADID_hash sunw_CRYPTO_THREADID_hash
987 #pragma redefine_extname CRYPTO_THREADID_set_callback sunw_CRYPTO_THREADI
988 #pragma redefine_extname CRYPTO_THREADID_set_numeric sunw_CRYPTO_THREADID
989 #pragma redefine_extname CRYPTO_THREADID_set_pointer sunw_CRYPTO_THREADID
990 #pragma redefine_extname CRYPTO_xts128_encrypt sunw_CRYPTO_xts128_encrypt
991 #pragma redefine_extname d2i_ACCESS_DESCRIPTION sunw_d2i_ACCESS_DESCRIPTI
992 #pragma redefine_extname d2i_ASN1_BIT_STRING sunw_d2i_ASN1_BIT_STRING
993 #pragma redefine_extname d2i_ASN1_BMPSTRING sunw_d2i_ASN1_BMPSTRING
994 #pragma redefine_extname d2i_ASN1_BOOLEAN sunw_d2i_ASN1_BOOLEAN
995 #pragma redefine_extname d2i_ASN1_bytes sunw_d2i_ASN1_bytes
996 #pragma redefine_extname d2i_ASN1_ENUMERATED sunw_d2i_ASN1_ENUMERATED
997 #pragma redefine_extname d2i_ASN1_GENERALIZEDTIME sunw_d2i_ASN1_GENERALIZ
998 #pragma redefine_extname d2i_ASN1_GENERALSTRING sunw_d2i_ASN1_GENERALSTRI
999 #pragma redefine_extname d2i_ASN1_IA5STRING sunw_d2i_ASN1_IA5STRING

1000 #pragma redefine_extname d2i_ASN1_INTEGER sunw_d2i_ASN1_INTEGER
1001 #pragma redefine_extname d2i_ASN1_NULL sunw_d2i_ASN1_NULL
1002 #pragma redefine_extname d2i_ASN1_OBJECT sunw_d2i_ASN1_OBJECT
1003 #pragma redefine_extname d2i_ASN1_OCTET_STRING sunw_d2i_ASN1_OCTET_STRING
1004 #pragma redefine_extname d2i_ASN1_PRINTABLE sunw_d2i_ASN1_PRINTABLE
1005 #pragma redefine_extname d2i_ASN1_PRINTABLESTRING sunw_d2i_ASN1_PRINTABLE
1006 #pragma redefine_extname d2i_ASN1_SEQUENCE_ANY sunw_d2i_ASN1_SEQUENCE_ANY
1007 #pragma redefine_extname d2i_ASN1_SET sunw_d2i_ASN1_SET
1008 #pragma redefine_extname d2i_ASN1_SET_ANY sunw_d2i_ASN1_SET_ANY
1009 #pragma redefine_extname d2i_ASN1_T61STRING sunw_d2i_ASN1_T61STRING
1010 #pragma redefine_extname d2i_ASN1_TIME sunw_d2i_ASN1_TIME
1011 #pragma redefine_extname d2i_ASN1_TYPE sunw_d2i_ASN1_TYPE
1012 #pragma redefine_extname d2i_ASN1_type_bytes sunw_d2i_ASN1_type_bytes
1013 #pragma redefine_extname d2i_ASN1_UINTEGER sunw_d2i_ASN1_UINTEGER
1014 #pragma redefine_extname d2i_ASN1_UNIVERSALSTRING sunw_d2i_ASN1_UNIVERSAL
1015 #pragma redefine_extname d2i_ASN1_UTCTIME sunw_d2i_ASN1_UTCTIME
1016 #pragma redefine_extname d2i_ASN1_UTF8STRING sunw_d2i_ASN1_UTF8STRING
1017 #pragma redefine_extname d2i_ASN1_VISIBLESTRING sunw_d2i_ASN1_VISIBLESTRI
1018 #pragma redefine_extname d2i_AUTHORITY_INFO_ACCESS sunw_d2i_AUTHORITY_INF
1019 #pragma redefine_extname d2i_AUTHORITY_KEYID sunw_d2i_AUTHORITY_KEYID
1020 #pragma redefine_extname d2i_AutoPrivateKey sunw_d2i_AutoPrivateKey
1021 #pragma redefine_extname d2i_BASIC_CONSTRAINTS sunw_d2i_BASIC_CONSTRAINTS
1022 #pragma redefine_extname d2i_CERTIFICATEPOLICIES sunw_d2i_CERTIFICATEPOLI
1023 #pragma redefine_extname d2i_CMS_bio sunw_d2i_CMS_bio
1024 #pragma redefine_extname d2i_CMS_ContentInfo sunw_d2i_CMS_ContentInfo
1025 #pragma redefine_extname d2i_CMS_ReceiptRequest sunw_d2i_CMS_ReceiptReque
1026 #pragma redefine_extname d2i_CRL_DIST_POINTS sunw_d2i_CRL_DIST_POINTS
1027 #pragma redefine_extname d2i_DHparams sunw_d2i_DHparams
1028 #pragma redefine_extname d2i_DIRECTORYSTRING sunw_d2i_DIRECTORYSTRING
1029 #pragma redefine_extname d2i_DISPLAYTEXT sunw_d2i_DISPLAYTEXT
1030 #pragma redefine_extname d2i_DIST_POINT sunw_d2i_DIST_POINT
1031 #pragma redefine_extname d2i_DIST_POINT_NAME sunw_d2i_DIST_POINT_NAME
1032 #pragma redefine_extname d2i_DSA_PUBKEY sunw_d2i_DSA_PUBKEY
1033 #pragma redefine_extname d2i_DSA_PUBKEY_bio sunw_d2i_DSA_PUBKEY_bio
1034 #pragma redefine_extname d2i_DSA_PUBKEY_fp sunw_d2i_DSA_PUBKEY_fp
1035 #pragma redefine_extname d2i_DSA_SIG sunw_d2i_DSA_SIG
1036 #pragma redefine_extname d2i_DSAparams sunw_d2i_DSAparams
1037 #pragma redefine_extname d2i_DSAPrivateKey sunw_d2i_DSAPrivateKey
1038 #pragma redefine_extname d2i_DSAPrivateKey_bio sunw_d2i_DSAPrivateKey_bio
1039 #pragma redefine_extname d2i_DSAPrivateKey_fp sunw_d2i_DSAPrivateKey_fp
1040 #pragma redefine_extname d2i_DSAPublicKey sunw_d2i_DSAPublicKey
1041 #pragma redefine_extname d2i_EDIPARTYNAME sunw_d2i_EDIPARTYNAME
1042 #pragma redefine_extname d2i_ESS_CERT_ID sunw_d2i_ESS_CERT_ID
1043 #pragma redefine_extname d2i_ESS_ISSUER_SERIAL sunw_d2i_ESS_ISSUER_SERIAL
1044 #pragma redefine_extname d2i_ESS_SIGNING_CERT sunw_d2i_ESS_SIGNING_CERT
1045 #pragma redefine_extname d2i_EXTENDED_KEY_USAGE sunw_d2i_EXTENDED_KEY_USA
1046 #pragma redefine_extname d2i_GENERAL_NAME sunw_d2i_GENERAL_NAME
1047 #pragma redefine_extname d2i_GENERAL_NAMES sunw_d2i_GENERAL_NAMES
1048 #pragma redefine_extname d2i_ISSUING_DIST_POINT sunw_d2i_ISSUING_DIST_POI
1049 #pragma redefine_extname d2i_KRB5_APREQ sunw_d2i_KRB5_APREQ
1050 #pragma redefine_extname d2i_KRB5_APREQBODY sunw_d2i_KRB5_APREQBODY
1051 #pragma redefine_extname d2i_KRB5_AUTHDATA sunw_d2i_KRB5_AUTHDATA

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 17

1052 #pragma redefine_extname d2i_KRB5_AUTHENT sunw_d2i_KRB5_AUTHENT
1053 #pragma redefine_extname d2i_KRB5_AUTHENTBODY sunw_d2i_KRB5_AUTHENTBODY
1054 #pragma redefine_extname d2i_KRB5_CHECKSUM sunw_d2i_KRB5_CHECKSUM
1055 #pragma redefine_extname d2i_KRB5_ENCDATA sunw_d2i_KRB5_ENCDATA
1056 #pragma redefine_extname d2i_KRB5_ENCKEY sunw_d2i_KRB5_ENCKEY
1057 #pragma redefine_extname d2i_KRB5_PRINCNAME sunw_d2i_KRB5_PRINCNAME
1058 #pragma redefine_extname d2i_KRB5_TICKET sunw_d2i_KRB5_TICKET
1059 #pragma redefine_extname d2i_KRB5_TKTBODY sunw_d2i_KRB5_TKTBODY
1060 #pragma redefine_extname d2i_NETSCAPE_CERT_SEQUENCE sunw_d2i_NETSCAPE_CER
1061 #pragma redefine_extname d2i_NETSCAPE_ENCRYPTED_PKEY sunw_d2i_NETSCAPE_EN
1062 #pragma redefine_extname d2i_NETSCAPE_PKEY sunw_d2i_NETSCAPE_PKEY
1063 #pragma redefine_extname d2i_Netscape_RSA sunw_d2i_Netscape_RSA
1064 #pragma redefine_extname d2i_NETSCAPE_SPKAC sunw_d2i_NETSCAPE_SPKAC
1065 #pragma redefine_extname d2i_NETSCAPE_SPKI sunw_d2i_NETSCAPE_SPKI
1066 #pragma redefine_extname d2i_NETSCAPE_X509 sunw_d2i_NETSCAPE_X509
1067 #pragma redefine_extname d2i_NOTICEREF sunw_d2i_NOTICEREF
1068 #pragma redefine_extname d2i_OCSP_BASICRESP sunw_d2i_OCSP_BASICRESP
1069 #pragma redefine_extname d2i_OCSP_CERTID sunw_d2i_OCSP_CERTID
1070 #pragma redefine_extname d2i_OCSP_CERTSTATUS sunw_d2i_OCSP_CERTSTATUS
1071 #pragma redefine_extname d2i_OCSP_CRLID sunw_d2i_OCSP_CRLID
1072 #pragma redefine_extname d2i_OCSP_ONEREQ sunw_d2i_OCSP_ONEREQ
1073 #pragma redefine_extname d2i_OCSP_REQINFO sunw_d2i_OCSP_REQINFO
1074 #pragma redefine_extname d2i_OCSP_REQUEST sunw_d2i_OCSP_REQUEST
1075 #pragma redefine_extname d2i_OCSP_RESPBYTES sunw_d2i_OCSP_RESPBYTES
1076 #pragma redefine_extname d2i_OCSP_RESPDATA sunw_d2i_OCSP_RESPDATA
1077 #pragma redefine_extname d2i_OCSP_RESPID sunw_d2i_OCSP_RESPID
1078 #pragma redefine_extname d2i_OCSP_RESPONSE sunw_d2i_OCSP_RESPONSE
1079 #pragma redefine_extname d2i_OCSP_REVOKEDINFO sunw_d2i_OCSP_REVOKEDINFO
1080 #pragma redefine_extname d2i_OCSP_SERVICELOC sunw_d2i_OCSP_SERVICELOC
1081 #pragma redefine_extname d2i_OCSP_SIGNATURE sunw_d2i_OCSP_SIGNATURE
1082 #pragma redefine_extname d2i_OCSP_SINGLERESP sunw_d2i_OCSP_SINGLERESP
1083 #pragma redefine_extname d2i_OTHERNAME sunw_d2i_OTHERNAME
1084 #pragma redefine_extname d2i_PBE2PARAM sunw_d2i_PBE2PARAM
1085 #pragma redefine_extname d2i_PBEPARAM sunw_d2i_PBEPARAM
1086 #pragma redefine_extname d2i_PBKDF2PARAM sunw_d2i_PBKDF2PARAM
1087 #pragma redefine_extname d2i_PKCS12 sunw_d2i_PKCS12
1088 #pragma redefine_extname d2i_PKCS12_BAGS sunw_d2i_PKCS12_BAGS
1089 #pragma redefine_extname d2i_PKCS12_bio sunw_d2i_PKCS12_bio
1090 #pragma redefine_extname d2i_PKCS12_fp sunw_d2i_PKCS12_fp
1091 #pragma redefine_extname d2i_PKCS12_MAC_DATA sunw_d2i_PKCS12_MAC_DATA
1092 #pragma redefine_extname d2i_PKCS12_SAFEBAG sunw_d2i_PKCS12_SAFEBAG
1093 #pragma redefine_extname d2i_PKCS7 sunw_d2i_PKCS7
1094 #pragma redefine_extname d2i_PKCS7_bio sunw_d2i_PKCS7_bio
1095 #pragma redefine_extname d2i_PKCS7_DIGEST sunw_d2i_PKCS7_DIGEST
1096 #pragma redefine_extname d2i_PKCS7_ENC_CONTENT sunw_d2i_PKCS7_ENC_CONTENT
1097 #pragma redefine_extname d2i_PKCS7_ENCRYPT sunw_d2i_PKCS7_ENCRYPT
1098 #pragma redefine_extname d2i_PKCS7_ENVELOPE sunw_d2i_PKCS7_ENVELOPE
1099 #pragma redefine_extname d2i_PKCS7_fp sunw_d2i_PKCS7_fp
1100 #pragma redefine_extname d2i_PKCS7_ISSUER_AND_SERIAL sunw_d2i_PKCS7_ISSUE
1101 #pragma redefine_extname d2i_PKCS7_RECIP_INFO sunw_d2i_PKCS7_RECIP_INFO
1102 #pragma redefine_extname d2i_PKCS7_SIGN_ENVELOPE sunw_d2i_PKCS7_SIGN_ENVE
1103 #pragma redefine_extname d2i_PKCS7_SIGNED sunw_d2i_PKCS7_SIGNED
1104 #pragma redefine_extname d2i_PKCS7_SIGNER_INFO sunw_d2i_PKCS7_SIGNER_INFO
1105 #pragma redefine_extname d2i_PKCS8_bio sunw_d2i_PKCS8_bio
1106 #pragma redefine_extname d2i_PKCS8_fp sunw_d2i_PKCS8_fp
1107 #pragma redefine_extname d2i_PKCS8_PRIV_KEY_INFO sunw_d2i_PKCS8_PRIV_KEY_
1108 #pragma redefine_extname d2i_PKCS8_PRIV_KEY_INFO_bio sunw_d2i_PKCS8_PRIV_
1109 #pragma redefine_extname d2i_PKCS8_PRIV_KEY_INFO_fp sunw_d2i_PKCS8_PRIV_K
1110 #pragma redefine_extname d2i_PKCS8PrivateKey_bio sunw_d2i_PKCS8PrivateKey
1111 #pragma redefine_extname d2i_PKCS8PrivateKey_fp sunw_d2i_PKCS8PrivateKey_
1112 #pragma redefine_extname d2i_PKEY_USAGE_PERIOD sunw_d2i_PKEY_USAGE_PERIOD
1113 #pragma redefine_extname d2i_POLICYINFO sunw_d2i_POLICYINFO
1114 #pragma redefine_extname d2i_POLICYQUALINFO sunw_d2i_POLICYQUALINFO
1115 #pragma redefine_extname d2i_PrivateKey sunw_d2i_PrivateKey
1116 #pragma redefine_extname d2i_PrivateKey_bio sunw_d2i_PrivateKey_bio
1117 #pragma redefine_extname d2i_PrivateKey_fp sunw_d2i_PrivateKey_fp

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 18

1118 #pragma redefine_extname d2i_PROXY_CERT_INFO_EXTENSION sunw_d2i_PROXY_CER
1119 #pragma redefine_extname d2i_PROXY_POLICY sunw_d2i_PROXY_POLICY
1120 #pragma redefine_extname d2i_PUBKEY sunw_d2i_PUBKEY
1121 #pragma redefine_extname d2i_PUBKEY_bio sunw_d2i_PUBKEY_bio
1122 #pragma redefine_extname d2i_PUBKEY_fp sunw_d2i_PUBKEY_fp
1123 #pragma redefine_extname d2i_PublicKey sunw_d2i_PublicKey
1124 #pragma redefine_extname d2i_RSA_NET sunw_d2i_RSA_NET
1125 #pragma redefine_extname d2i_RSA_PSS_PARAMS sunw_d2i_RSA_PSS_PARAMS
1126 #pragma redefine_extname d2i_RSA_PUBKEY sunw_d2i_RSA_PUBKEY
1127 #pragma redefine_extname d2i_RSA_PUBKEY_bio sunw_d2i_RSA_PUBKEY_bio
1128 #pragma redefine_extname d2i_RSA_PUBKEY_fp sunw_d2i_RSA_PUBKEY_fp
1129 #pragma redefine_extname d2i_RSAPrivateKey sunw_d2i_RSAPrivateKey
1130 #pragma redefine_extname d2i_RSAPrivateKey_bio sunw_d2i_RSAPrivateKey_bio
1131 #pragma redefine_extname d2i_RSAPrivateKey_fp sunw_d2i_RSAPrivateKey_fp
1132 #pragma redefine_extname d2i_RSAPublicKey sunw_d2i_RSAPublicKey
1133 #pragma redefine_extname d2i_RSAPublicKey_bio sunw_d2i_RSAPublicKey_bio
1134 #pragma redefine_extname d2i_RSAPublicKey_fp sunw_d2i_RSAPublicKey_fp
1135 #pragma redefine_extname d2i_SXNET sunw_d2i_SXNET
1136 #pragma redefine_extname d2i_SXNETID sunw_d2i_SXNETID
1137 #pragma redefine_extname d2i_TS_ACCURACY sunw_d2i_TS_ACCURACY
1138 #pragma redefine_extname d2i_TS_MSG_IMPRINT sunw_d2i_TS_MSG_IMPRINT
1139 #pragma redefine_extname d2i_TS_MSG_IMPRINT_bio sunw_d2i_TS_MSG_IMPRINT_b
1140 #pragma redefine_extname d2i_TS_MSG_IMPRINT_fp sunw_d2i_TS_MSG_IMPRINT_fp
1141 #pragma redefine_extname d2i_TS_REQ sunw_d2i_TS_REQ
1142 #pragma redefine_extname d2i_TS_REQ_bio sunw_d2i_TS_REQ_bio
1143 #pragma redefine_extname d2i_TS_REQ_fp sunw_d2i_TS_REQ_fp
1144 #pragma redefine_extname d2i_TS_RESP sunw_d2i_TS_RESP
1145 #pragma redefine_extname d2i_TS_RESP_bio sunw_d2i_TS_RESP_bio
1146 #pragma redefine_extname d2i_TS_RESP_fp sunw_d2i_TS_RESP_fp
1147 #pragma redefine_extname d2i_TS_STATUS_INFO sunw_d2i_TS_STATUS_INFO
1148 #pragma redefine_extname d2i_TS_TST_INFO sunw_d2i_TS_TST_INFO
1149 #pragma redefine_extname d2i_TS_TST_INFO_bio sunw_d2i_TS_TST_INFO_bio
1150 #pragma redefine_extname d2i_TS_TST_INFO_fp sunw_d2i_TS_TST_INFO_fp
1151 #pragma redefine_extname d2i_USERNOTICE sunw_d2i_USERNOTICE
1152 #pragma redefine_extname d2i_X509 sunw_d2i_X509
1153 #pragma redefine_extname d2i_X509_ALGOR sunw_d2i_X509_ALGOR
1154 #pragma redefine_extname d2i_X509_ALGORS sunw_d2i_X509_ALGORS
1155 #pragma redefine_extname d2i_X509_ATTRIBUTE sunw_d2i_X509_ATTRIBUTE
1156 #pragma redefine_extname d2i_X509_AUX sunw_d2i_X509_AUX
1157 #pragma redefine_extname d2i_X509_bio sunw_d2i_X509_bio
1158 #pragma redefine_extname d2i_X509_CERT_AUX sunw_d2i_X509_CERT_AUX
1159 #pragma redefine_extname d2i_X509_CERT_PAIR sunw_d2i_X509_CERT_PAIR
1160 #pragma redefine_extname d2i_X509_CINF sunw_d2i_X509_CINF
1161 #pragma redefine_extname d2i_X509_CRL sunw_d2i_X509_CRL
1162 #pragma redefine_extname d2i_X509_CRL_bio sunw_d2i_X509_CRL_bio
1163 #pragma redefine_extname d2i_X509_CRL_fp sunw_d2i_X509_CRL_fp
1164 #pragma redefine_extname d2i_X509_CRL_INFO sunw_d2i_X509_CRL_INFO
1165 #pragma redefine_extname d2i_X509_EXTENSION sunw_d2i_X509_EXTENSION
1166 #pragma redefine_extname d2i_X509_EXTENSIONS sunw_d2i_X509_EXTENSIONS
1167 #pragma redefine_extname d2i_X509_fp sunw_d2i_X509_fp
1168 #pragma redefine_extname d2i_X509_NAME sunw_d2i_X509_NAME
1169 #pragma redefine_extname d2i_X509_NAME_ENTRY sunw_d2i_X509_NAME_ENTRY
1170 #pragma redefine_extname d2i_X509_PKEY sunw_d2i_X509_PKEY
1171 #pragma redefine_extname d2i_X509_PUBKEY sunw_d2i_X509_PUBKEY
1172 #pragma redefine_extname d2i_X509_REQ sunw_d2i_X509_REQ
1173 #pragma redefine_extname d2i_X509_REQ_bio sunw_d2i_X509_REQ_bio
1174 #pragma redefine_extname d2i_X509_REQ_fp sunw_d2i_X509_REQ_fp
1175 #pragma redefine_extname d2i_X509_REQ_INFO sunw_d2i_X509_REQ_INFO
1176 #pragma redefine_extname d2i_X509_REVOKED sunw_d2i_X509_REVOKED
1177 #pragma redefine_extname d2i_X509_SIG sunw_d2i_X509_SIG
1178 #pragma redefine_extname d2i_X509_VAL sunw_d2i_X509_VAL
1179 #pragma redefine_extname default_pctx sunw_default_pctx
1180 #pragma redefine_extname DES_cbc_cksum sunw_DES_cbc_cksum
1181 #pragma redefine_extname DES_cbc_encrypt sunw_DES_cbc_encrypt
1182 #pragma redefine_extname DES_cfb_encrypt sunw_DES_cfb_encrypt
1183 #pragma redefine_extname DES_cfb64_encrypt sunw_DES_cfb64_encrypt

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 19

1184 #pragma redefine_extname DES_check_key_parity sunw_DES_check_key_parity
1185 #pragma redefine_extname DES_crypt sunw_DES_crypt
1186 #pragma redefine_extname DES_decrypt3 sunw_DES_decrypt3
1187 #pragma redefine_extname DES_ecb_encrypt sunw_DES_ecb_encrypt
1188 #pragma redefine_extname DES_ecb3_encrypt sunw_DES_ecb3_encrypt
1189 #pragma redefine_extname DES_ede3_cbc_encrypt sunw_DES_ede3_cbc_encrypt
1190 #pragma redefine_extname DES_ede3_cbcm_encrypt sunw_DES_ede3_cbcm_encrypt
1191 #pragma redefine_extname DES_ede3_cfb_encrypt sunw_DES_ede3_cfb_encrypt
1192 #pragma redefine_extname DES_ede3_cfb64_encrypt sunw_DES_ede3_cfb64_encry
1193 #pragma redefine_extname DES_ede3_ofb64_encrypt sunw_DES_ede3_ofb64_encry
1194 #pragma redefine_extname DES_enc_read sunw_DES_enc_read
1195 #pragma redefine_extname DES_enc_write sunw_DES_enc_write
1196 #pragma redefine_extname DES_encrypt1 sunw_DES_encrypt1
1197 #pragma redefine_extname DES_encrypt2 sunw_DES_encrypt2
1198 #pragma redefine_extname DES_encrypt3 sunw_DES_encrypt3
1199 #pragma redefine_extname DES_fcrypt sunw_DES_fcrypt
1200 #pragma redefine_extname DES_is_weak_key sunw_DES_is_weak_key
1201 #pragma redefine_extname DES_key_sched sunw_DES_key_sched
1202 #pragma redefine_extname DES_ncbc_encrypt sunw_DES_ncbc_encrypt
1203 #pragma redefine_extname DES_ofb_encrypt sunw_DES_ofb_encrypt
1204 #pragma redefine_extname DES_ofb64_encrypt sunw_DES_ofb64_encrypt
1205 #pragma redefine_extname DES_options sunw_DES_options
1206 #pragma redefine_extname DES_pcbc_encrypt sunw_DES_pcbc_encrypt
1207 #pragma redefine_extname DES_quad_cksum sunw_DES_quad_cksum
1208 #pragma redefine_extname DES_random_key sunw_DES_random_key
1209 #pragma redefine_extname DES_read_2passwords sunw_DES_read_2passwords
1210 #pragma redefine_extname DES_read_password sunw_DES_read_password
1211 #pragma redefine_extname DES_set_key sunw_DES_set_key
1212 #pragma redefine_extname DES_set_key_checked sunw_DES_set_key_checked
1213 #pragma redefine_extname DES_set_key_unchecked sunw_DES_set_key_unchecked
1214 #pragma redefine_extname DES_set_odd_parity sunw_DES_set_odd_parity
1215 #pragma redefine_extname DES_SPtrans sunw_DES_SPtrans
1216 #pragma redefine_extname DES_string_to_2keys sunw_DES_string_to_2keys
1217 #pragma redefine_extname DES_string_to_key sunw_DES_string_to_key
1218 #pragma redefine_extname DES_xcbc_encrypt sunw_DES_xcbc_encrypt
1219 #pragma redefine_extname dh_asn1_meth sunw_dh_asn1_meth
1220 #pragma redefine_extname DH_check sunw_DH_check
1221 #pragma redefine_extname DH_check_pub_key sunw_DH_check_pub_key
1222 #pragma redefine_extname DH_compute_key sunw_DH_compute_key
1223 #pragma redefine_extname DH_free sunw_DH_free
1224 #pragma redefine_extname DH_generate_key sunw_DH_generate_key
1225 #pragma redefine_extname DH_generate_parameters sunw_DH_generate_paramete
1226 #pragma redefine_extname DH_generate_parameters_ex sunw_DH_generate_param
1227 #pragma redefine_extname DH_get_default_method sunw_DH_get_default_method
1228 #pragma redefine_extname DH_get_ex_data sunw_DH_get_ex_data
1229 #pragma redefine_extname DH_get_ex_new_index sunw_DH_get_ex_new_index
1230 #pragma redefine_extname DH_new sunw_DH_new
1231 #pragma redefine_extname DH_new_method sunw_DH_new_method
1232 #pragma redefine_extname DH_OpenSSL sunw_DH_OpenSSL
1233 #pragma redefine_extname dh_pkey_meth sunw_dh_pkey_meth
1234 #pragma redefine_extname DH_set_default_method sunw_DH_set_default_method
1235 #pragma redefine_extname DH_set_ex_data sunw_DH_set_ex_data
1236 #pragma redefine_extname DH_set_method sunw_DH_set_method
1237 #pragma redefine_extname DH_size sunw_DH_size
1238 #pragma redefine_extname DH_up_ref sunw_DH_up_ref
1239 #pragma redefine_extname DH_version sunw_DH_version
1240 #pragma redefine_extname DHparams_dup sunw_DHparams_dup
1241 #pragma redefine_extname DHparams_it sunw_DHparams_it
1242 #pragma redefine_extname DHparams_print sunw_DHparams_print
1243 #pragma redefine_extname DHparams_print_fp sunw_DHparams_print_fp
1244 #pragma redefine_extname DIRECTORYSTRING_free sunw_DIRECTORYSTRING_free
1245 #pragma redefine_extname DIRECTORYSTRING_it sunw_DIRECTORYSTRING_it
1246 #pragma redefine_extname DIRECTORYSTRING_new sunw_DIRECTORYSTRING_new
1247 #pragma redefine_extname DISPLAYTEXT_free sunw_DISPLAYTEXT_free
1248 #pragma redefine_extname DISPLAYTEXT_it sunw_DISPLAYTEXT_it
1249 #pragma redefine_extname DISPLAYTEXT_new sunw_DISPLAYTEXT_new

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 20

1250 #pragma redefine_extname DIST_POINT_free sunw_DIST_POINT_free
1251 #pragma redefine_extname DIST_POINT_it sunw_DIST_POINT_it
1252 #pragma redefine_extname DIST_POINT_NAME_free sunw_DIST_POINT_NAME_free
1253 #pragma redefine_extname DIST_POINT_NAME_it sunw_DIST_POINT_NAME_it
1254 #pragma redefine_extname DIST_POINT_NAME_new sunw_DIST_POINT_NAME_new
1255 #pragma redefine_extname DIST_POINT_new sunw_DIST_POINT_new
1256 #pragma redefine_extname DIST_POINT_set_dpname sunw_DIST_POINT_set_dpname
1257 #pragma redefine_extname dsa_asn1_meths sunw_dsa_asn1_meths
1258 #pragma redefine_extname dsa_builtin_paramgen sunw_dsa_builtin_paramgen
1259 #pragma redefine_extname DSA_do_sign sunw_DSA_do_sign
1260 #pragma redefine_extname DSA_do_verify sunw_DSA_do_verify
1261 #pragma redefine_extname DSA_dup_DH sunw_DSA_dup_DH
1262 #pragma redefine_extname DSA_free sunw_DSA_free
1263 #pragma redefine_extname DSA_generate_key sunw_DSA_generate_key
1264 #pragma redefine_extname DSA_generate_parameters sunw_DSA_generate_parame
1265 #pragma redefine_extname DSA_generate_parameters_ex sunw_DSA_generate_par
1266 #pragma redefine_extname DSA_get_default_method sunw_DSA_get_default_meth
1267 #pragma redefine_extname DSA_get_ex_data sunw_DSA_get_ex_data
1268 #pragma redefine_extname DSA_get_ex_new_index sunw_DSA_get_ex_new_index
1269 #pragma redefine_extname DSA_new sunw_DSA_new
1270 #pragma redefine_extname DSA_new_method sunw_DSA_new_method
1271 #pragma redefine_extname DSA_OpenSSL sunw_DSA_OpenSSL
1272 #pragma redefine_extname dsa_pkey_meth sunw_dsa_pkey_meth
1273 #pragma redefine_extname DSA_print sunw_DSA_print
1274 #pragma redefine_extname DSA_print_fp sunw_DSA_print_fp
1275 #pragma redefine_extname dsa_pub_internal_it sunw_dsa_pub_internal_it
1276 #pragma redefine_extname DSA_set_default_method sunw_DSA_set_default_meth
1277 #pragma redefine_extname DSA_set_ex_data sunw_DSA_set_ex_data
1278 #pragma redefine_extname DSA_set_method sunw_DSA_set_method
1279 #pragma redefine_extname DSA_SIG_free sunw_DSA_SIG_free
1280 #pragma redefine_extname DSA_SIG_it sunw_DSA_SIG_it
1281 #pragma redefine_extname DSA_SIG_new sunw_DSA_SIG_new
1282 #pragma redefine_extname DSA_sign sunw_DSA_sign
1283 #pragma redefine_extname DSA_sign_setup sunw_DSA_sign_setup
1284 #pragma redefine_extname DSA_size sunw_DSA_size
1285 #pragma redefine_extname DSA_up_ref sunw_DSA_up_ref
1286 #pragma redefine_extname DSA_verify sunw_DSA_verify
1287 #pragma redefine_extname DSA_version sunw_DSA_version
1288 #pragma redefine_extname DSAparams_dup sunw_DSAparams_dup
1289 #pragma redefine_extname DSAparams_it sunw_DSAparams_it
1290 #pragma redefine_extname DSAparams_print sunw_DSAparams_print
1291 #pragma redefine_extname DSAparams_print_fp sunw_DSAparams_print_fp
1292 #pragma redefine_extname DSAPrivateKey_it sunw_DSAPrivateKey_it
1293 #pragma redefine_extname DSAPublicKey_it sunw_DSAPublicKey_it
1294 #pragma redefine_extname DSO_bind_func sunw_DSO_bind_func
1295 #pragma redefine_extname DSO_bind_var sunw_DSO_bind_var
1296 #pragma redefine_extname DSO_convert_filename sunw_DSO_convert_filename
1297 #pragma redefine_extname DSO_ctrl sunw_DSO_ctrl
1298 #pragma redefine_extname DSO_flags sunw_DSO_flags
1299 #pragma redefine_extname DSO_free sunw_DSO_free
1300 #pragma redefine_extname DSO_get_default_method sunw_DSO_get_default_meth
1301 #pragma redefine_extname DSO_get_filename sunw_DSO_get_filename
1302 #pragma redefine_extname DSO_get_loaded_filename sunw_DSO_get_loaded_file
1303 #pragma redefine_extname DSO_get_method sunw_DSO_get_method
1304 #pragma redefine_extname DSO_global_lookup sunw_DSO_global_lookup
1305 #pragma redefine_extname DSO_load sunw_DSO_load
1306 #pragma redefine_extname DSO_merge sunw_DSO_merge
1307 #pragma redefine_extname DSO_METHOD_beos sunw_DSO_METHOD_beos
1308 #pragma redefine_extname DSO_METHOD_dl sunw_DSO_METHOD_dl
1309 #pragma redefine_extname DSO_METHOD_dlfcn sunw_DSO_METHOD_dlfcn
1310 #pragma redefine_extname DSO_METHOD_null sunw_DSO_METHOD_null
1311 #pragma redefine_extname DSO_METHOD_openssl sunw_DSO_METHOD_openssl
1312 #pragma redefine_extname DSO_METHOD_vms sunw_DSO_METHOD_vms
1313 #pragma redefine_extname DSO_METHOD_win32 sunw_DSO_METHOD_win32
1314 #pragma redefine_extname DSO_new sunw_DSO_new
1315 #pragma redefine_extname DSO_new_method sunw_DSO_new_method

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 21

1316 #pragma redefine_extname DSO_pathbyaddr sunw_DSO_pathbyaddr
1317 #pragma redefine_extname DSO_set_default_method sunw_DSO_set_default_meth
1318 #pragma redefine_extname DSO_set_filename sunw_DSO_set_filename
1319 #pragma redefine_extname DSO_set_method sunw_DSO_set_method
1320 #pragma redefine_extname DSO_set_name_converter sunw_DSO_set_name_convert
1321 #pragma redefine_extname DSO_up_ref sunw_DSO_up_ref
1322 #pragma redefine_extname EDIPARTYNAME_free sunw_EDIPARTYNAME_free
1323 #pragma redefine_extname EDIPARTYNAME_it sunw_EDIPARTYNAME_it
1324 #pragma redefine_extname EDIPARTYNAME_new sunw_EDIPARTYNAME_new
1325 #pragma redefine_extname ENGINE_add sunw_ENGINE_add
1326 #pragma redefine_extname ENGINE_add_conf_module sunw_ENGINE_add_conf_modu
1327 #pragma redefine_extname ENGINE_by_id sunw_ENGINE_by_id
1328 #pragma redefine_extname ENGINE_cleanup sunw_ENGINE_cleanup
1329 #pragma redefine_extname engine_cleanup_add_first sunw_engine_cleanup_add
1330 #pragma redefine_extname engine_cleanup_add_last sunw_engine_cleanup_add_
1331 #pragma redefine_extname ENGINE_cmd_is_executable sunw_ENGINE_cmd_is_exec
1332 #pragma redefine_extname ENGINE_ctrl sunw_ENGINE_ctrl
1333 #pragma redefine_extname ENGINE_ctrl_cmd sunw_ENGINE_ctrl_cmd
1334 #pragma redefine_extname ENGINE_ctrl_cmd_string sunw_ENGINE_ctrl_cmd_stri
1335 #pragma redefine_extname ENGINE_finish sunw_ENGINE_finish
1336 #pragma redefine_extname ENGINE_free sunw_ENGINE_free
1337 #pragma redefine_extname engine_free_util sunw_engine_free_util
1338 #pragma redefine_extname ENGINE_get_cipher sunw_ENGINE_get_cipher
1339 #pragma redefine_extname ENGINE_get_cipher_engine sunw_ENGINE_get_cipher_
1340 #pragma redefine_extname ENGINE_get_ciphers sunw_ENGINE_get_ciphers
1341 #pragma redefine_extname ENGINE_get_cmd_defns sunw_ENGINE_get_cmd_defns
1342 #pragma redefine_extname ENGINE_get_ctrl_function sunw_ENGINE_get_ctrl_fu
1343 #pragma redefine_extname ENGINE_get_default_DH sunw_ENGINE_get_default_DH
1344 #pragma redefine_extname ENGINE_get_default_DSA sunw_ENGINE_get_default_D
1345 #pragma redefine_extname ENGINE_get_default_ECDH sunw_ENGINE_get_default_
1346 #pragma redefine_extname ENGINE_get_default_ECDSA sunw_ENGINE_get_default
1347 #pragma redefine_extname ENGINE_get_default_RAND sunw_ENGINE_get_default_
1348 #pragma redefine_extname ENGINE_get_default_RSA sunw_ENGINE_get_default_R
1349 #pragma redefine_extname ENGINE_get_destroy_function sunw_ENGINE_get_dest
1350 #pragma redefine_extname ENGINE_get_DH sunw_ENGINE_get_DH
1351 #pragma redefine_extname ENGINE_get_digest sunw_ENGINE_get_digest
1352 #pragma redefine_extname ENGINE_get_digest_engine sunw_ENGINE_get_digest_
1353 #pragma redefine_extname ENGINE_get_digests sunw_ENGINE_get_digests
1354 #pragma redefine_extname ENGINE_get_DSA sunw_ENGINE_get_DSA
1355 #pragma redefine_extname ENGINE_get_ECDH sunw_ENGINE_get_ECDH
1356 #pragma redefine_extname ENGINE_get_ECDSA sunw_ENGINE_get_ECDSA
1357 #pragma redefine_extname ENGINE_get_ex_data sunw_ENGINE_get_ex_data
1358 #pragma redefine_extname ENGINE_get_ex_new_index sunw_ENGINE_get_ex_new_i
1359 #pragma redefine_extname ENGINE_get_finish_function sunw_ENGINE_get_finis
1360 #pragma redefine_extname ENGINE_get_first sunw_ENGINE_get_first
1361 #pragma redefine_extname ENGINE_get_flags sunw_ENGINE_get_flags
1362 #pragma redefine_extname ENGINE_get_id sunw_ENGINE_get_id
1363 #pragma redefine_extname ENGINE_get_init_function sunw_ENGINE_get_init_fu
1364 #pragma redefine_extname ENGINE_get_last sunw_ENGINE_get_last
1365 #pragma redefine_extname ENGINE_get_load_privkey_function sunw_ENGINE_get
1366 #pragma redefine_extname ENGINE_get_load_pubkey_function sunw_ENGINE_get_
1367 #pragma redefine_extname ENGINE_get_name sunw_ENGINE_get_name
1368 #pragma redefine_extname ENGINE_get_next sunw_ENGINE_get_next
1369 #pragma redefine_extname ENGINE_get_pkey_asn1_meth sunw_ENGINE_get_pkey_a
1370 #pragma redefine_extname ENGINE_get_pkey_asn1_meth_engine sunw_ENGINE_get
1371 #pragma redefine_extname ENGINE_get_pkey_asn1_meth_str sunw_ENGINE_get_pk
1372 #pragma redefine_extname ENGINE_get_pkey_asn1_meths sunw_ENGINE_get_pkey_
1373 #pragma redefine_extname ENGINE_get_pkey_meth sunw_ENGINE_get_pkey_meth
1374 #pragma redefine_extname ENGINE_get_pkey_meth_engine sunw_ENGINE_get_pkey
1375 #pragma redefine_extname ENGINE_get_pkey_meths sunw_ENGINE_get_pkey_meths
1376 #pragma redefine_extname ENGINE_get_prev sunw_ENGINE_get_prev
1377 #pragma redefine_extname ENGINE_get_RAND sunw_ENGINE_get_RAND
1378 #pragma redefine_extname ENGINE_get_RSA sunw_ENGINE_get_RSA
1379 #pragma redefine_extname ENGINE_get_ssl_client_cert_function sunw_ENGINE_
1380 #pragma redefine_extname ENGINE_get_static_state sunw_ENGINE_get_static_s
1381 #pragma redefine_extname ENGINE_get_STORE sunw_ENGINE_get_STORE

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 22

1382 #pragma redefine_extname ENGINE_get_table_flags sunw_ENGINE_get_table_fla
1383 #pragma redefine_extname ENGINE_init sunw_ENGINE_init
1384 #pragma redefine_extname ENGINE_load_builtin_engines sunw_ENGINE_load_bui
1385 #pragma redefine_extname ENGINE_load_cryptodev sunw_ENGINE_load_cryptodev
1386 #pragma redefine_extname ENGINE_load_dynamic sunw_ENGINE_load_dynamic
1387 #pragma redefine_extname ENGINE_load_openssl sunw_ENGINE_load_openssl
1388 #pragma redefine_extname ENGINE_load_pk11 sunw_ENGINE_load_pk11
1389 #pragma redefine_extname ENGINE_load_private_key sunw_ENGINE_load_private
1390 #pragma redefine_extname ENGINE_load_public_key sunw_ENGINE_load_public_k
1391 #pragma redefine_extname ENGINE_load_rdrand sunw_ENGINE_load_rdrand
1392 #pragma redefine_extname ENGINE_load_rsax sunw_ENGINE_load_rsax
1393 #pragma redefine_extname ENGINE_load_ssl_client_cert sunw_ENGINE_load_ssl
1394 #pragma redefine_extname ENGINE_new sunw_ENGINE_new
1395 #pragma redefine_extname ENGINE_pkey_asn1_find_str sunw_ENGINE_pkey_asn1_
1396 #pragma redefine_extname engine_pkey_asn1_meths_free sunw_engine_pkey_asn
1397 #pragma redefine_extname engine_pkey_meths_free sunw_engine_pkey_meths_fr
1398 #pragma redefine_extname ENGINE_register_all_ciphers sunw_ENGINE_register
1399 #pragma redefine_extname ENGINE_register_all_complete sunw_ENGINE_registe
1400 #pragma redefine_extname ENGINE_register_all_DH sunw_ENGINE_register_all_
1401 #pragma redefine_extname ENGINE_register_all_digests sunw_ENGINE_register
1402 #pragma redefine_extname ENGINE_register_all_DSA sunw_ENGINE_register_all
1403 #pragma redefine_extname ENGINE_register_all_ECDH sunw_ENGINE_register_al
1404 #pragma redefine_extname ENGINE_register_all_ECDSA sunw_ENGINE_register_a
1405 #pragma redefine_extname ENGINE_register_all_pkey_asn1_meths sunw_ENGINE_
1406 #pragma redefine_extname ENGINE_register_all_pkey_meths sunw_ENGINE_regis
1407 #pragma redefine_extname ENGINE_register_all_RAND sunw_ENGINE_register_al
1408 #pragma redefine_extname ENGINE_register_all_RSA sunw_ENGINE_register_all
1409 #pragma redefine_extname ENGINE_register_all_STORE sunw_ENGINE_register_a
1410 #pragma redefine_extname ENGINE_register_ciphers sunw_ENGINE_register_cip
1411 #pragma redefine_extname ENGINE_register_complete sunw_ENGINE_register_co
1412 #pragma redefine_extname ENGINE_register_DH sunw_ENGINE_register_DH
1413 #pragma redefine_extname ENGINE_register_digests sunw_ENGINE_register_dig
1414 #pragma redefine_extname ENGINE_register_DSA sunw_ENGINE_register_DSA
1415 #pragma redefine_extname ENGINE_register_ECDH sunw_ENGINE_register_ECDH
1416 #pragma redefine_extname ENGINE_register_ECDSA sunw_ENGINE_register_ECDSA
1417 #pragma redefine_extname ENGINE_register_pkey_asn1_meths sunw_ENGINE_regi
1418 #pragma redefine_extname ENGINE_register_pkey_meths sunw_ENGINE_register_
1419 #pragma redefine_extname ENGINE_register_RAND sunw_ENGINE_register_RAND
1420 #pragma redefine_extname ENGINE_register_RSA sunw_ENGINE_register_RSA
1421 #pragma redefine_extname ENGINE_register_STORE sunw_ENGINE_register_STORE
1422 #pragma redefine_extname ENGINE_remove sunw_ENGINE_remove
1423 #pragma redefine_extname engine_set_all_null sunw_engine_set_all_null
1424 #pragma redefine_extname ENGINE_set_ciphers sunw_ENGINE_set_ciphers
1425 #pragma redefine_extname ENGINE_set_cmd_defns sunw_ENGINE_set_cmd_defns
1426 #pragma redefine_extname ENGINE_set_ctrl_function sunw_ENGINE_set_ctrl_fu
1427 #pragma redefine_extname ENGINE_set_default sunw_ENGINE_set_default
1428 #pragma redefine_extname ENGINE_set_default_ciphers sunw_ENGINE_set_defau
1429 #pragma redefine_extname ENGINE_set_default_DH sunw_ENGINE_set_default_DH
1430 #pragma redefine_extname ENGINE_set_default_digests sunw_ENGINE_set_defau
1431 #pragma redefine_extname ENGINE_set_default_DSA sunw_ENGINE_set_default_D
1432 #pragma redefine_extname ENGINE_set_default_ECDH sunw_ENGINE_set_default_
1433 #pragma redefine_extname ENGINE_set_default_ECDSA sunw_ENGINE_set_default
1434 #pragma redefine_extname ENGINE_set_default_pkey_asn1_meths sunw_ENGINE_s
1435 #pragma redefine_extname ENGINE_set_default_pkey_meths sunw_ENGINE_set_de
1436 #pragma redefine_extname ENGINE_set_default_RAND sunw_ENGINE_set_default_
1437 #pragma redefine_extname ENGINE_set_default_RSA sunw_ENGINE_set_default_R
1438 #pragma redefine_extname ENGINE_set_default_string sunw_ENGINE_set_defaul
1439 #pragma redefine_extname ENGINE_set_destroy_function sunw_ENGINE_set_dest
1440 #pragma redefine_extname ENGINE_set_DH sunw_ENGINE_set_DH
1441 #pragma redefine_extname ENGINE_set_digests sunw_ENGINE_set_digests
1442 #pragma redefine_extname ENGINE_set_DSA sunw_ENGINE_set_DSA
1443 #pragma redefine_extname ENGINE_set_ECDH sunw_ENGINE_set_ECDH
1444 #pragma redefine_extname ENGINE_set_ECDSA sunw_ENGINE_set_ECDSA
1445 #pragma redefine_extname ENGINE_set_ex_data sunw_ENGINE_set_ex_data
1446 #pragma redefine_extname ENGINE_set_finish_function sunw_ENGINE_set_finis
1447 #pragma redefine_extname ENGINE_set_flags sunw_ENGINE_set_flags

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 23

1448 #pragma redefine_extname ENGINE_set_id sunw_ENGINE_set_id
1449 #pragma redefine_extname ENGINE_set_init_function sunw_ENGINE_set_init_fu
1450 #pragma redefine_extname ENGINE_set_load_privkey_function sunw_ENGINE_set
1451 #pragma redefine_extname ENGINE_set_load_pubkey_function sunw_ENGINE_set_
1452 #pragma redefine_extname ENGINE_set_load_ssl_client_cert_function sunw_EN
1453 #pragma redefine_extname ENGINE_set_name sunw_ENGINE_set_name
1454 #pragma redefine_extname ENGINE_set_pkey_asn1_meths sunw_ENGINE_set_pkey_
1455 #pragma redefine_extname ENGINE_set_pkey_meths sunw_ENGINE_set_pkey_meths
1456 #pragma redefine_extname ENGINE_set_RAND sunw_ENGINE_set_RAND
1457 #pragma redefine_extname ENGINE_set_RSA sunw_ENGINE_set_RSA
1458 #pragma redefine_extname ENGINE_set_STORE sunw_ENGINE_set_STORE
1459 #pragma redefine_extname ENGINE_set_table_flags sunw_ENGINE_set_table_fla
1460 #pragma redefine_extname engine_table_cleanup sunw_engine_table_cleanup
1461 #pragma redefine_extname engine_table_doall sunw_engine_table_doall
1462 #pragma redefine_extname engine_table_register sunw_engine_table_register
1463 #pragma redefine_extname engine_table_select sunw_engine_table_select
1464 #pragma redefine_extname engine_table_unregister sunw_engine_table_unregi
1465 #pragma redefine_extname engine_unlocked_finish sunw_engine_unlocked_fini
1466 #pragma redefine_extname engine_unlocked_init sunw_engine_unlocked_init
1467 #pragma redefine_extname ENGINE_unregister_ciphers sunw_ENGINE_unregister
1468 #pragma redefine_extname ENGINE_unregister_DH sunw_ENGINE_unregister_DH
1469 #pragma redefine_extname ENGINE_unregister_digests sunw_ENGINE_unregister
1470 #pragma redefine_extname ENGINE_unregister_DSA sunw_ENGINE_unregister_DSA
1471 #pragma redefine_extname ENGINE_unregister_ECDH sunw_ENGINE_unregister_EC
1472 #pragma redefine_extname ENGINE_unregister_ECDSA sunw_ENGINE_unregister_E
1473 #pragma redefine_extname ENGINE_unregister_pkey_asn1_meths sunw_ENGINE_un
1474 #pragma redefine_extname ENGINE_unregister_pkey_meths sunw_ENGINE_unregis
1475 #pragma redefine_extname ENGINE_unregister_RAND sunw_ENGINE_unregister_RA
1476 #pragma redefine_extname ENGINE_unregister_RSA sunw_ENGINE_unregister_RSA
1477 #pragma redefine_extname ENGINE_unregister_STORE sunw_ENGINE_unregister_S
1478 #pragma redefine_extname ENGINE_up_ref sunw_ENGINE_up_ref
1479 #pragma redefine_extname ERR_add_error_data sunw_ERR_add_error_data
1480 #pragma redefine_extname ERR_add_error_vdata sunw_ERR_add_error_vdata
1481 #pragma redefine_extname ERR_clear_error sunw_ERR_clear_error
1482 #pragma redefine_extname ERR_error_string sunw_ERR_error_string
1483 #pragma redefine_extname ERR_error_string_n sunw_ERR_error_string_n
1484 #pragma redefine_extname ERR_free_strings sunw_ERR_free_strings
1485 #pragma redefine_extname ERR_func_error_string sunw_ERR_func_error_string
1486 #pragma redefine_extname ERR_get_err_state_table sunw_ERR_get_err_state_t
1487 #pragma redefine_extname ERR_get_error sunw_ERR_get_error
1488 #pragma redefine_extname ERR_get_error_line sunw_ERR_get_error_line
1489 #pragma redefine_extname ERR_get_error_line_data sunw_ERR_get_error_line_
1490 #pragma redefine_extname ERR_get_implementation sunw_ERR_get_implementati
1491 #pragma redefine_extname ERR_get_next_error_library sunw_ERR_get_next_err
1492 #pragma redefine_extname ERR_get_state sunw_ERR_get_state
1493 #pragma redefine_extname ERR_get_string_table sunw_ERR_get_string_table
1494 #pragma redefine_extname ERR_lib_error_string sunw_ERR_lib_error_string
1495 #pragma redefine_extname ERR_load_ASN1_strings sunw_ERR_load_ASN1_strings
1496 #pragma redefine_extname ERR_load_BIO_strings sunw_ERR_load_BIO_strings
1497 #pragma redefine_extname ERR_load_BN_strings sunw_ERR_load_BN_strings
1498 #pragma redefine_extname ERR_load_BUF_strings sunw_ERR_load_BUF_strings
1499 #pragma redefine_extname ERR_load_CMS_strings sunw_ERR_load_CMS_strings
1500 #pragma redefine_extname ERR_load_COMP_strings sunw_ERR_load_COMP_strings
1501 #pragma redefine_extname ERR_load_CONF_strings sunw_ERR_load_CONF_strings
1502 #pragma redefine_extname ERR_load_crypto_strings sunw_ERR_load_crypto_str
1503 #pragma redefine_extname ERR_load_CRYPTO_strings sunw_ERR_load_CRYPTO_str
1504 #pragma redefine_extname ERR_load_DH_strings sunw_ERR_load_DH_strings
1505 #pragma redefine_extname ERR_load_DSA_strings sunw_ERR_load_DSA_strings
1506 #pragma redefine_extname ERR_load_DSO_strings sunw_ERR_load_DSO_strings
1507 #pragma redefine_extname ERR_load_ENGINE_strings sunw_ERR_load_ENGINE_str
1508 #pragma redefine_extname ERR_load_ERR_strings sunw_ERR_load_ERR_strings
1509 #pragma redefine_extname ERR_load_EVP_strings sunw_ERR_load_EVP_strings
1510 #pragma redefine_extname ERR_load_OBJ_strings sunw_ERR_load_OBJ_strings
1511 #pragma redefine_extname ERR_load_OCSP_strings sunw_ERR_load_OCSP_strings
1512 #pragma redefine_extname ERR_load_PEM_strings sunw_ERR_load_PEM_strings
1513 #pragma redefine_extname ERR_load_PKCS12_strings sunw_ERR_load_PKCS12_str

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 24

1514 #pragma redefine_extname ERR_load_PKCS7_strings sunw_ERR_load_PKCS7_strin
1515 #pragma redefine_extname ERR_load_RAND_strings sunw_ERR_load_RAND_strings
1516 #pragma redefine_extname ERR_load_RSA_strings sunw_ERR_load_RSA_strings
1517 #pragma redefine_extname ERR_load_strings sunw_ERR_load_strings
1518 #pragma redefine_extname ERR_load_TS_strings sunw_ERR_load_TS_strings
1519 #pragma redefine_extname ERR_load_UI_strings sunw_ERR_load_UI_strings
1520 #pragma redefine_extname ERR_load_X509_strings sunw_ERR_load_X509_strings
1521 #pragma redefine_extname ERR_load_X509V3_strings sunw_ERR_load_X509V3_str
1522 #pragma redefine_extname ERR_peek_error sunw_ERR_peek_error
1523 #pragma redefine_extname ERR_peek_error_line sunw_ERR_peek_error_line
1524 #pragma redefine_extname ERR_peek_error_line_data sunw_ERR_peek_error_lin
1525 #pragma redefine_extname ERR_peek_last_error sunw_ERR_peek_last_error
1526 #pragma redefine_extname ERR_peek_last_error_line sunw_ERR_peek_last_erro
1527 #pragma redefine_extname ERR_peek_last_error_line_data sunw_ERR_peek_last
1528 #pragma redefine_extname ERR_pk11_error sunw_ERR_pk11_error
1529 #pragma redefine_extname ERR_pop_to_mark sunw_ERR_pop_to_mark
1530 #pragma redefine_extname ERR_print_errors sunw_ERR_print_errors
1531 #pragma redefine_extname ERR_print_errors_cb sunw_ERR_print_errors_cb
1532 #pragma redefine_extname ERR_print_errors_fp sunw_ERR_print_errors_fp
1533 #pragma redefine_extname ERR_put_error sunw_ERR_put_error
1534 #pragma redefine_extname ERR_reason_error_string sunw_ERR_reason_error_st
1535 #pragma redefine_extname ERR_release_err_state_table sunw_ERR_release_err
1536 #pragma redefine_extname ERR_remove_state sunw_ERR_remove_state
1537 #pragma redefine_extname ERR_remove_thread_state sunw_ERR_remove_thread_s
1538 #pragma redefine_extname ERR_set_error_data sunw_ERR_set_error_data
1539 #pragma redefine_extname ERR_set_implementation sunw_ERR_set_implementati
1540 #pragma redefine_extname ERR_set_mark sunw_ERR_set_mark
1541 #pragma redefine_extname ERR_unload_strings sunw_ERR_unload_strings
1542 #pragma redefine_extname ESS_CERT_ID_dup sunw_ESS_CERT_ID_dup
1543 #pragma redefine_extname ESS_CERT_ID_free sunw_ESS_CERT_ID_free
1544 #pragma redefine_extname ESS_CERT_ID_it sunw_ESS_CERT_ID_it
1545 #pragma redefine_extname ESS_CERT_ID_new sunw_ESS_CERT_ID_new
1546 #pragma redefine_extname ESS_ISSUER_SERIAL_dup sunw_ESS_ISSUER_SERIAL_dup
1547 #pragma redefine_extname ESS_ISSUER_SERIAL_free sunw_ESS_ISSUER_SERIAL_fr
1548 #pragma redefine_extname ESS_ISSUER_SERIAL_it sunw_ESS_ISSUER_SERIAL_it
1549 #pragma redefine_extname ESS_ISSUER_SERIAL_new sunw_ESS_ISSUER_SERIAL_new
1550 #pragma redefine_extname ESS_SIGNING_CERT_dup sunw_ESS_SIGNING_CERT_dup
1551 #pragma redefine_extname ESS_SIGNING_CERT_free sunw_ESS_SIGNING_CERT_free
1552 #pragma redefine_extname ESS_SIGNING_CERT_it sunw_ESS_SIGNING_CERT_it
1553 #pragma redefine_extname ESS_SIGNING_CERT_new sunw_ESS_SIGNING_CERT_new
1554 #pragma redefine_extname EVP_add_alg_module sunw_EVP_add_alg_module
1555 #pragma redefine_extname EVP_add_cipher sunw_EVP_add_cipher
1556 #pragma redefine_extname EVP_add_digest sunw_EVP_add_digest
1557 #pragma redefine_extname EVP_aes_128_cbc sunw_EVP_aes_128_cbc
1558 #pragma redefine_extname EVP_aes_128_cbc_hmac_sha1 sunw_EVP_aes_128_cbc_h
1559 #pragma redefine_extname EVP_aes_128_ccm sunw_EVP_aes_128_ccm
1560 #pragma redefine_extname EVP_aes_128_cfb sunw_EVP_aes_128_cfb
1561 #pragma redefine_extname EVP_aes_128_cfb1 sunw_EVP_aes_128_cfb1
1562 #pragma redefine_extname EVP_aes_128_cfb128 sunw_EVP_aes_128_cfb128
1563 #pragma redefine_extname EVP_aes_128_cfb8 sunw_EVP_aes_128_cfb8
1564 #pragma redefine_extname EVP_aes_128_ctr sunw_EVP_aes_128_ctr
1565 #pragma redefine_extname EVP_aes_128_ecb sunw_EVP_aes_128_ecb
1566 #pragma redefine_extname EVP_aes_128_gcm sunw_EVP_aes_128_gcm
1567 #pragma redefine_extname EVP_aes_128_ofb sunw_EVP_aes_128_ofb
1568 #pragma redefine_extname EVP_aes_128_xts sunw_EVP_aes_128_xts
1569 #pragma redefine_extname EVP_aes_192_cbc sunw_EVP_aes_192_cbc
1570 #pragma redefine_extname EVP_aes_192_ccm sunw_EVP_aes_192_ccm
1571 #pragma redefine_extname EVP_aes_192_cfb sunw_EVP_aes_192_cfb
1572 #pragma redefine_extname EVP_aes_192_cfb1 sunw_EVP_aes_192_cfb1
1573 #pragma redefine_extname EVP_aes_192_cfb128 sunw_EVP_aes_192_cfb128
1574 #pragma redefine_extname EVP_aes_192_cfb8 sunw_EVP_aes_192_cfb8
1575 #pragma redefine_extname EVP_aes_192_ctr sunw_EVP_aes_192_ctr
1576 #pragma redefine_extname EVP_aes_192_ecb sunw_EVP_aes_192_ecb
1577 #pragma redefine_extname EVP_aes_192_gcm sunw_EVP_aes_192_gcm
1578 #pragma redefine_extname EVP_aes_192_ofb sunw_EVP_aes_192_ofb
1579 #pragma redefine_extname EVP_aes_256_cbc sunw_EVP_aes_256_cbc

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 25

1580 #pragma redefine_extname EVP_aes_256_cbc_hmac_sha1 sunw_EVP_aes_256_cbc_h
1581 #pragma redefine_extname EVP_aes_256_ccm sunw_EVP_aes_256_ccm
1582 #pragma redefine_extname EVP_aes_256_cfb sunw_EVP_aes_256_cfb
1583 #pragma redefine_extname EVP_aes_256_cfb1 sunw_EVP_aes_256_cfb1
1584 #pragma redefine_extname EVP_aes_256_cfb128 sunw_EVP_aes_256_cfb128
1585 #pragma redefine_extname EVP_aes_256_cfb8 sunw_EVP_aes_256_cfb8
1586 #pragma redefine_extname EVP_aes_256_ctr sunw_EVP_aes_256_ctr
1587 #pragma redefine_extname EVP_aes_256_ecb sunw_EVP_aes_256_ecb
1588 #pragma redefine_extname EVP_aes_256_gcm sunw_EVP_aes_256_gcm
1589 #pragma redefine_extname EVP_aes_256_ofb sunw_EVP_aes_256_ofb
1590 #pragma redefine_extname EVP_aes_256_xts sunw_EVP_aes_256_xts
1591 #pragma redefine_extname EVP_bf_cbc sunw_EVP_bf_cbc
1592 #pragma redefine_extname EVP_bf_cfb sunw_EVP_bf_cfb
1593 #pragma redefine_extname EVP_bf_cfb64 sunw_EVP_bf_cfb64
1594 #pragma redefine_extname EVP_bf_ecb sunw_EVP_bf_ecb
1595 #pragma redefine_extname EVP_bf_ofb sunw_EVP_bf_ofb
1596 #pragma redefine_extname EVP_BytesToKey sunw_EVP_BytesToKey
1597 #pragma redefine_extname EVP_camellia_128_cbc sunw_EVP_camellia_128_cbc
1598 #pragma redefine_extname EVP_camellia_128_cfb1 sunw_EVP_camellia_128_cfb1
1599 #pragma redefine_extname EVP_camellia_128_cfb128 sunw_EVP_camellia_128_cf
1600 #pragma redefine_extname EVP_camellia_128_cfb8 sunw_EVP_camellia_128_cfb8
1601 #pragma redefine_extname EVP_camellia_128_ecb sunw_EVP_camellia_128_ecb
1602 #pragma redefine_extname EVP_camellia_128_ofb sunw_EVP_camellia_128_ofb
1603 #pragma redefine_extname EVP_camellia_192_cbc sunw_EVP_camellia_192_cbc
1604 #pragma redefine_extname EVP_camellia_192_cfb1 sunw_EVP_camellia_192_cfb1
1605 #pragma redefine_extname EVP_camellia_192_cfb128 sunw_EVP_camellia_192_cf
1606 #pragma redefine_extname EVP_camellia_192_cfb8 sunw_EVP_camellia_192_cfb8
1607 #pragma redefine_extname EVP_camellia_192_ecb sunw_EVP_camellia_192_ecb
1608 #pragma redefine_extname EVP_camellia_192_ofb sunw_EVP_camellia_192_ofb
1609 #pragma redefine_extname EVP_camellia_256_cbc sunw_EVP_camellia_256_cbc
1610 #pragma redefine_extname EVP_camellia_256_cfb1 sunw_EVP_camellia_256_cfb1
1611 #pragma redefine_extname EVP_camellia_256_cfb128 sunw_EVP_camellia_256_cf
1612 #pragma redefine_extname EVP_camellia_256_cfb8 sunw_EVP_camellia_256_cfb8
1613 #pragma redefine_extname EVP_camellia_256_ecb sunw_EVP_camellia_256_ecb
1614 #pragma redefine_extname EVP_camellia_256_ofb sunw_EVP_camellia_256_ofb
1615 #pragma redefine_extname EVP_cast5_cbc sunw_EVP_cast5_cbc
1616 #pragma redefine_extname EVP_cast5_cfb sunw_EVP_cast5_cfb
1617 #pragma redefine_extname EVP_cast5_cfb64 sunw_EVP_cast5_cfb64
1618 #pragma redefine_extname EVP_cast5_ecb sunw_EVP_cast5_ecb
1619 #pragma redefine_extname EVP_cast5_ofb sunw_EVP_cast5_ofb
1620 #pragma redefine_extname EVP_Cipher sunw_EVP_Cipher
1621 #pragma redefine_extname EVP_CIPHER_asn1_to_param sunw_EVP_CIPHER_asn1_to
1622 #pragma redefine_extname EVP_CIPHER_block_size sunw_EVP_CIPHER_block_size
1623 #pragma redefine_extname EVP_CIPHER_CTX_block_size sunw_EVP_CIPHER_CTX_bl
1624 #pragma redefine_extname EVP_CIPHER_CTX_cipher sunw_EVP_CIPHER_CTX_cipher
1625 #pragma redefine_extname EVP_CIPHER_CTX_cleanup sunw_EVP_CIPHER_CTX_clean
1626 #pragma redefine_extname EVP_CIPHER_CTX_clear_flags sunw_EVP_CIPHER_CTX_c
1627 #pragma redefine_extname EVP_CIPHER_CTX_copy sunw_EVP_CIPHER_CTX_copy
1628 #pragma redefine_extname EVP_CIPHER_CTX_ctrl sunw_EVP_CIPHER_CTX_ctrl
1629 #pragma redefine_extname EVP_CIPHER_CTX_flags sunw_EVP_CIPHER_CTX_flags
1630 #pragma redefine_extname EVP_CIPHER_CTX_free sunw_EVP_CIPHER_CTX_free
1631 #pragma redefine_extname EVP_CIPHER_CTX_get_app_data sunw_EVP_CIPHER_CTX_
1632 #pragma redefine_extname EVP_CIPHER_CTX_init sunw_EVP_CIPHER_CTX_init
1633 #pragma redefine_extname EVP_CIPHER_CTX_iv_length sunw_EVP_CIPHER_CTX_iv_
1634 #pragma redefine_extname EVP_CIPHER_CTX_key_length sunw_EVP_CIPHER_CTX_ke
1635 #pragma redefine_extname EVP_CIPHER_CTX_new sunw_EVP_CIPHER_CTX_new
1636 #pragma redefine_extname EVP_CIPHER_CTX_nid sunw_EVP_CIPHER_CTX_nid
1637 #pragma redefine_extname EVP_CIPHER_CTX_rand_key sunw_EVP_CIPHER_CTX_rand
1638 #pragma redefine_extname EVP_CIPHER_CTX_set_app_data sunw_EVP_CIPHER_CTX_
1639 #pragma redefine_extname EVP_CIPHER_CTX_set_flags sunw_EVP_CIPHER_CTX_set
1640 #pragma redefine_extname EVP_CIPHER_CTX_set_key_length sunw_EVP_CIPHER_CT
1641 #pragma redefine_extname EVP_CIPHER_CTX_set_padding sunw_EVP_CIPHER_CTX_s
1642 #pragma redefine_extname EVP_CIPHER_CTX_test_flags sunw_EVP_CIPHER_CTX_te
1643 #pragma redefine_extname EVP_CIPHER_do_all sunw_EVP_CIPHER_do_all
1644 #pragma redefine_extname EVP_CIPHER_do_all_sorted sunw_EVP_CIPHER_do_all_
1645 #pragma redefine_extname EVP_CIPHER_flags sunw_EVP_CIPHER_flags

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 26

1646 #pragma redefine_extname EVP_CIPHER_get_asn1_iv sunw_EVP_CIPHER_get_asn1_
1647 #pragma redefine_extname EVP_CIPHER_iv_length sunw_EVP_CIPHER_iv_length
1648 #pragma redefine_extname EVP_CIPHER_key_length sunw_EVP_CIPHER_key_length
1649 #pragma redefine_extname EVP_CIPHER_nid sunw_EVP_CIPHER_nid
1650 #pragma redefine_extname EVP_CIPHER_param_to_asn1 sunw_EVP_CIPHER_param_t
1651 #pragma redefine_extname EVP_CIPHER_set_asn1_iv sunw_EVP_CIPHER_set_asn1_
1652 #pragma redefine_extname EVP_CIPHER_type sunw_EVP_CIPHER_type
1653 #pragma redefine_extname EVP_CipherFinal sunw_EVP_CipherFinal
1654 #pragma redefine_extname EVP_CipherFinal_ex sunw_EVP_CipherFinal_ex
1655 #pragma redefine_extname EVP_CipherInit sunw_EVP_CipherInit
1656 #pragma redefine_extname EVP_CipherInit_ex sunw_EVP_CipherInit_ex
1657 #pragma redefine_extname EVP_CipherUpdate sunw_EVP_CipherUpdate
1658 #pragma redefine_extname EVP_cleanup sunw_EVP_cleanup
1659 #pragma redefine_extname EVP_DecodeBlock sunw_EVP_DecodeBlock
1660 #pragma redefine_extname EVP_DecodeFinal sunw_EVP_DecodeFinal
1661 #pragma redefine_extname EVP_DecodeInit sunw_EVP_DecodeInit
1662 #pragma redefine_extname EVP_DecodeUpdate sunw_EVP_DecodeUpdate
1663 #pragma redefine_extname EVP_DecryptFinal sunw_EVP_DecryptFinal
1664 #pragma redefine_extname EVP_DecryptFinal_ex sunw_EVP_DecryptFinal_ex
1665 #pragma redefine_extname EVP_DecryptInit sunw_EVP_DecryptInit
1666 #pragma redefine_extname EVP_DecryptInit_ex sunw_EVP_DecryptInit_ex
1667 #pragma redefine_extname EVP_DecryptUpdate sunw_EVP_DecryptUpdate
1668 #pragma redefine_extname EVP_des_cbc sunw_EVP_des_cbc
1669 #pragma redefine_extname EVP_des_cfb sunw_EVP_des_cfb
1670 #pragma redefine_extname EVP_des_cfb1 sunw_EVP_des_cfb1
1671 #pragma redefine_extname EVP_des_cfb64 sunw_EVP_des_cfb64
1672 #pragma redefine_extname EVP_des_cfb8 sunw_EVP_des_cfb8
1673 #pragma redefine_extname EVP_des_ecb sunw_EVP_des_ecb
1674 #pragma redefine_extname EVP_des_ede sunw_EVP_des_ede
1675 #pragma redefine_extname EVP_des_ede_cbc sunw_EVP_des_ede_cbc
1676 #pragma redefine_extname EVP_des_ede_cfb sunw_EVP_des_ede_cfb
1677 #pragma redefine_extname EVP_des_ede_cfb64 sunw_EVP_des_ede_cfb64
1678 #pragma redefine_extname EVP_des_ede_ecb sunw_EVP_des_ede_ecb
1679 #pragma redefine_extname EVP_des_ede_ofb sunw_EVP_des_ede_ofb
1680 #pragma redefine_extname EVP_des_ede3 sunw_EVP_des_ede3
1681 #pragma redefine_extname EVP_des_ede3_cbc sunw_EVP_des_ede3_cbc
1682 #pragma redefine_extname EVP_des_ede3_cfb sunw_EVP_des_ede3_cfb
1683 #pragma redefine_extname EVP_des_ede3_cfb1 sunw_EVP_des_ede3_cfb1
1684 #pragma redefine_extname EVP_des_ede3_cfb64 sunw_EVP_des_ede3_cfb64
1685 #pragma redefine_extname EVP_des_ede3_cfb8 sunw_EVP_des_ede3_cfb8
1686 #pragma redefine_extname EVP_des_ede3_ecb sunw_EVP_des_ede3_ecb
1687 #pragma redefine_extname EVP_des_ede3_ofb sunw_EVP_des_ede3_ofb
1688 #pragma redefine_extname EVP_des_ofb sunw_EVP_des_ofb
1689 #pragma redefine_extname EVP_desx_cbc sunw_EVP_desx_cbc
1690 #pragma redefine_extname EVP_Digest sunw_EVP_Digest
1691 #pragma redefine_extname EVP_DigestFinal sunw_EVP_DigestFinal
1692 #pragma redefine_extname EVP_DigestFinal_ex sunw_EVP_DigestFinal_ex
1693 #pragma redefine_extname EVP_DigestInit sunw_EVP_DigestInit
1694 #pragma redefine_extname EVP_DigestInit_ex sunw_EVP_DigestInit_ex
1695 #pragma redefine_extname EVP_DigestSignFinal sunw_EVP_DigestSignFinal
1696 #pragma redefine_extname EVP_DigestSignInit sunw_EVP_DigestSignInit
1697 #pragma redefine_extname EVP_DigestUpdate sunw_EVP_DigestUpdate
1698 #pragma redefine_extname EVP_DigestVerifyFinal sunw_EVP_DigestVerifyFinal
1699 #pragma redefine_extname EVP_DigestVerifyInit sunw_EVP_DigestVerifyInit
1700 #pragma redefine_extname EVP_dss sunw_EVP_dss
1701 #pragma redefine_extname EVP_dss1 sunw_EVP_dss1
1702 #pragma redefine_extname EVP_ecdsa sunw_EVP_ecdsa
1703 #pragma redefine_extname EVP_enc_null sunw_EVP_enc_null
1704 #pragma redefine_extname EVP_EncodeBlock sunw_EVP_EncodeBlock
1705 #pragma redefine_extname EVP_EncodeFinal sunw_EVP_EncodeFinal
1706 #pragma redefine_extname EVP_EncodeInit sunw_EVP_EncodeInit
1707 #pragma redefine_extname EVP_EncodeUpdate sunw_EVP_EncodeUpdate
1708 #pragma redefine_extname EVP_EncryptFinal sunw_EVP_EncryptFinal
1709 #pragma redefine_extname EVP_EncryptFinal_ex sunw_EVP_EncryptFinal_ex
1710 #pragma redefine_extname EVP_EncryptInit sunw_EVP_EncryptInit
1711 #pragma redefine_extname EVP_EncryptInit_ex sunw_EVP_EncryptInit_ex

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 27

1712 #pragma redefine_extname EVP_EncryptUpdate sunw_EVP_EncryptUpdate
1713 #pragma redefine_extname EVP_get_cipherbyname sunw_EVP_get_cipherbyname
1714 #pragma redefine_extname EVP_get_digestbyname sunw_EVP_get_digestbyname
1715 #pragma redefine_extname EVP_get_pw_prompt sunw_EVP_get_pw_prompt
1716 #pragma redefine_extname EVP_MD_block_size sunw_EVP_MD_block_size
1717 #pragma redefine_extname EVP_MD_CTX_cleanup sunw_EVP_MD_CTX_cleanup
1718 #pragma redefine_extname EVP_MD_CTX_clear_flags sunw_EVP_MD_CTX_clear_fla
1719 #pragma redefine_extname EVP_MD_CTX_copy sunw_EVP_MD_CTX_copy
1720 #pragma redefine_extname EVP_MD_CTX_copy_ex sunw_EVP_MD_CTX_copy_ex
1721 #pragma redefine_extname EVP_MD_CTX_create sunw_EVP_MD_CTX_create
1722 #pragma redefine_extname EVP_MD_CTX_destroy sunw_EVP_MD_CTX_destroy
1723 #pragma redefine_extname EVP_MD_CTX_init sunw_EVP_MD_CTX_init
1724 #pragma redefine_extname EVP_MD_CTX_md sunw_EVP_MD_CTX_md
1725 #pragma redefine_extname EVP_MD_CTX_set_flags sunw_EVP_MD_CTX_set_flags
1726 #pragma redefine_extname EVP_MD_CTX_test_flags sunw_EVP_MD_CTX_test_flags
1727 #pragma redefine_extname EVP_MD_do_all sunw_EVP_MD_do_all
1728 #pragma redefine_extname EVP_MD_do_all_sorted sunw_EVP_MD_do_all_sorted
1729 #pragma redefine_extname EVP_MD_flags sunw_EVP_MD_flags
1730 #pragma redefine_extname EVP_md_null sunw_EVP_md_null
1731 #pragma redefine_extname EVP_MD_pkey_type sunw_EVP_MD_pkey_type
1732 #pragma redefine_extname EVP_MD_size sunw_EVP_MD_size
1733 #pragma redefine_extname EVP_MD_type sunw_EVP_MD_type
1734 #pragma redefine_extname EVP_md2 sunw_EVP_md2
1735 #pragma redefine_extname EVP_md4 sunw_EVP_md4
1736 #pragma redefine_extname EVP_md5 sunw_EVP_md5
1737 #pragma redefine_extname EVP_OpenFinal sunw_EVP_OpenFinal
1738 #pragma redefine_extname EVP_OpenInit sunw_EVP_OpenInit
1739 #pragma redefine_extname EVP_PBE_alg_add sunw_EVP_PBE_alg_add
1740 #pragma redefine_extname EVP_PBE_alg_add_type sunw_EVP_PBE_alg_add_type
1741 #pragma redefine_extname EVP_PBE_CipherInit sunw_EVP_PBE_CipherInit
1742 #pragma redefine_extname EVP_PBE_cleanup sunw_EVP_PBE_cleanup
1743 #pragma redefine_extname EVP_PBE_find sunw_EVP_PBE_find
1744 #pragma redefine_extname EVP_PKCS82PKEY sunw_EVP_PKCS82PKEY
1745 #pragma redefine_extname EVP_PKEY_add1_attr sunw_EVP_PKEY_add1_attr
1746 #pragma redefine_extname EVP_PKEY_add1_attr_by_NID sunw_EVP_PKEY_add1_att
1747 #pragma redefine_extname EVP_PKEY_add1_attr_by_OBJ sunw_EVP_PKEY_add1_att
1748 #pragma redefine_extname EVP_PKEY_add1_attr_by_txt sunw_EVP_PKEY_add1_att
1749 #pragma redefine_extname EVP_PKEY_asn1_add_alias sunw_EVP_PKEY_asn1_add_a
1750 #pragma redefine_extname EVP_PKEY_asn1_add0 sunw_EVP_PKEY_asn1_add0
1751 #pragma redefine_extname EVP_PKEY_asn1_copy sunw_EVP_PKEY_asn1_copy
1752 #pragma redefine_extname EVP_PKEY_asn1_find sunw_EVP_PKEY_asn1_find
1753 #pragma redefine_extname EVP_PKEY_asn1_find_str sunw_EVP_PKEY_asn1_find_s
1754 #pragma redefine_extname EVP_PKEY_asn1_free sunw_EVP_PKEY_asn1_free
1755 #pragma redefine_extname EVP_PKEY_asn1_get_count sunw_EVP_PKEY_asn1_get_c
1756 #pragma redefine_extname EVP_PKEY_asn1_get0 sunw_EVP_PKEY_asn1_get0
1757 #pragma redefine_extname EVP_PKEY_asn1_get0_info sunw_EVP_PKEY_asn1_get0_
1758 #pragma redefine_extname EVP_PKEY_asn1_new sunw_EVP_PKEY_asn1_new
1759 #pragma redefine_extname EVP_PKEY_asn1_set_ctrl sunw_EVP_PKEY_asn1_set_ct
1760 #pragma redefine_extname EVP_PKEY_asn1_set_free sunw_EVP_PKEY_asn1_set_fr
1761 #pragma redefine_extname EVP_PKEY_asn1_set_param sunw_EVP_PKEY_asn1_set_p
1762 #pragma redefine_extname EVP_PKEY_asn1_set_private sunw_EVP_PKEY_asn1_set
1763 #pragma redefine_extname EVP_PKEY_asn1_set_public sunw_EVP_PKEY_asn1_set_
1764 #pragma redefine_extname EVP_PKEY_assign sunw_EVP_PKEY_assign
1765 #pragma redefine_extname EVP_PKEY_base_id sunw_EVP_PKEY_base_id
1766 #pragma redefine_extname EVP_PKEY_bits sunw_EVP_PKEY_bits
1767 #pragma redefine_extname EVP_PKEY_cmp sunw_EVP_PKEY_cmp
1768 #pragma redefine_extname EVP_PKEY_cmp_parameters sunw_EVP_PKEY_cmp_parame
1769 #pragma redefine_extname EVP_PKEY_copy_parameters sunw_EVP_PKEY_copy_para
1770 #pragma redefine_extname EVP_PKEY_CTX_ctrl sunw_EVP_PKEY_CTX_ctrl
1771 #pragma redefine_extname EVP_PKEY_CTX_ctrl_str sunw_EVP_PKEY_CTX_ctrl_str
1772 #pragma redefine_extname EVP_PKEY_CTX_dup sunw_EVP_PKEY_CTX_dup
1773 #pragma redefine_extname EVP_PKEY_CTX_free sunw_EVP_PKEY_CTX_free
1774 #pragma redefine_extname EVP_PKEY_CTX_get_app_data sunw_EVP_PKEY_CTX_get_
1775 #pragma redefine_extname EVP_PKEY_CTX_get_cb sunw_EVP_PKEY_CTX_get_cb
1776 #pragma redefine_extname EVP_PKEY_CTX_get_data sunw_EVP_PKEY_CTX_get_data
1777 #pragma redefine_extname EVP_PKEY_CTX_get_keygen_info sunw_EVP_PKEY_CTX_g

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 28

1778 #pragma redefine_extname EVP_PKEY_CTX_get_operation sunw_EVP_PKEY_CTX_get
1779 #pragma redefine_extname EVP_PKEY_CTX_get0_peerkey sunw_EVP_PKEY_CTX_get0
1780 #pragma redefine_extname EVP_PKEY_CTX_get0_pkey sunw_EVP_PKEY_CTX_get0_pk
1781 #pragma redefine_extname EVP_PKEY_CTX_new sunw_EVP_PKEY_CTX_new
1782 #pragma redefine_extname EVP_PKEY_CTX_new_id sunw_EVP_PKEY_CTX_new_id
1783 #pragma redefine_extname EVP_PKEY_CTX_set_app_data sunw_EVP_PKEY_CTX_set_
1784 #pragma redefine_extname EVP_PKEY_CTX_set_cb sunw_EVP_PKEY_CTX_set_cb
1785 #pragma redefine_extname EVP_PKEY_CTX_set_data sunw_EVP_PKEY_CTX_set_data
1786 #pragma redefine_extname EVP_PKEY_CTX_set0_keygen_info sunw_EVP_PKEY_CTX_
1787 #pragma redefine_extname EVP_PKEY_decrypt sunw_EVP_PKEY_decrypt
1788 #pragma redefine_extname EVP_PKEY_decrypt_init sunw_EVP_PKEY_decrypt_init
1789 #pragma redefine_extname EVP_PKEY_decrypt_old sunw_EVP_PKEY_decrypt_old
1790 #pragma redefine_extname EVP_PKEY_delete_attr sunw_EVP_PKEY_delete_attr
1791 #pragma redefine_extname EVP_PKEY_derive sunw_EVP_PKEY_derive
1792 #pragma redefine_extname EVP_PKEY_derive_init sunw_EVP_PKEY_derive_init
1793 #pragma redefine_extname EVP_PKEY_derive_set_peer sunw_EVP_PKEY_derive_se
1794 #pragma redefine_extname EVP_PKEY_encrypt sunw_EVP_PKEY_encrypt
1795 #pragma redefine_extname EVP_PKEY_encrypt_init sunw_EVP_PKEY_encrypt_init
1796 #pragma redefine_extname EVP_PKEY_encrypt_old sunw_EVP_PKEY_encrypt_old
1797 #pragma redefine_extname EVP_PKEY_free sunw_EVP_PKEY_free
1798 #pragma redefine_extname EVP_PKEY_get_attr sunw_EVP_PKEY_get_attr
1799 #pragma redefine_extname EVP_PKEY_get_attr_by_NID sunw_EVP_PKEY_get_attr_
1800 #pragma redefine_extname EVP_PKEY_get_attr_by_OBJ sunw_EVP_PKEY_get_attr_
1801 #pragma redefine_extname EVP_PKEY_get_attr_count sunw_EVP_PKEY_get_attr_c
1802 #pragma redefine_extname EVP_PKEY_get_default_digest_nid sunw_EVP_PKEY_ge
1803 #pragma redefine_extname EVP_PKEY_get0 sunw_EVP_PKEY_get0
1804 #pragma redefine_extname EVP_PKEY_get0_asn1 sunw_EVP_PKEY_get0_asn1
1805 #pragma redefine_extname EVP_PKEY_get1_DH sunw_EVP_PKEY_get1_DH
1806 #pragma redefine_extname EVP_PKEY_get1_DSA sunw_EVP_PKEY_get1_DSA
1807 #pragma redefine_extname EVP_PKEY_get1_RSA sunw_EVP_PKEY_get1_RSA
1808 #pragma redefine_extname EVP_PKEY_id sunw_EVP_PKEY_id
1809 #pragma redefine_extname EVP_PKEY_keygen sunw_EVP_PKEY_keygen
1810 #pragma redefine_extname EVP_PKEY_keygen_init sunw_EVP_PKEY_keygen_init
1811 #pragma redefine_extname EVP_PKEY_meth_add0 sunw_EVP_PKEY_meth_add0
1812 #pragma redefine_extname EVP_PKEY_meth_copy sunw_EVP_PKEY_meth_copy
1813 #pragma redefine_extname EVP_PKEY_meth_find sunw_EVP_PKEY_meth_find
1814 #pragma redefine_extname EVP_PKEY_meth_free sunw_EVP_PKEY_meth_free
1815 #pragma redefine_extname EVP_PKEY_meth_get0_info sunw_EVP_PKEY_meth_get0_
1816 #pragma redefine_extname EVP_PKEY_meth_new sunw_EVP_PKEY_meth_new
1817 #pragma redefine_extname EVP_PKEY_meth_set_cleanup sunw_EVP_PKEY_meth_set
1818 #pragma redefine_extname EVP_PKEY_meth_set_copy sunw_EVP_PKEY_meth_set_co
1819 #pragma redefine_extname EVP_PKEY_meth_set_ctrl sunw_EVP_PKEY_meth_set_ct
1820 #pragma redefine_extname EVP_PKEY_meth_set_decrypt sunw_EVP_PKEY_meth_set
1821 #pragma redefine_extname EVP_PKEY_meth_set_derive sunw_EVP_PKEY_meth_set_
1822 #pragma redefine_extname EVP_PKEY_meth_set_encrypt sunw_EVP_PKEY_meth_set
1823 #pragma redefine_extname EVP_PKEY_meth_set_init sunw_EVP_PKEY_meth_set_in
1824 #pragma redefine_extname EVP_PKEY_meth_set_keygen sunw_EVP_PKEY_meth_set_
1825 #pragma redefine_extname EVP_PKEY_meth_set_paramgen sunw_EVP_PKEY_meth_se
1826 #pragma redefine_extname EVP_PKEY_meth_set_sign sunw_EVP_PKEY_meth_set_si
1827 #pragma redefine_extname EVP_PKEY_meth_set_signctx sunw_EVP_PKEY_meth_set
1828 #pragma redefine_extname EVP_PKEY_meth_set_verify sunw_EVP_PKEY_meth_set_
1829 #pragma redefine_extname EVP_PKEY_meth_set_verify_recover sunw_EVP_PKEY_m
1830 #pragma redefine_extname EVP_PKEY_meth_set_verifyctx sunw_EVP_PKEY_meth_s
1831 #pragma redefine_extname EVP_PKEY_missing_parameters sunw_EVP_PKEY_missin
1832 #pragma redefine_extname EVP_PKEY_new sunw_EVP_PKEY_new
1833 #pragma redefine_extname EVP_PKEY_new_mac_key sunw_EVP_PKEY_new_mac_key
1834 #pragma redefine_extname EVP_PKEY_paramgen sunw_EVP_PKEY_paramgen
1835 #pragma redefine_extname EVP_PKEY_paramgen_init sunw_EVP_PKEY_paramgen_in
1836 #pragma redefine_extname EVP_PKEY_print_params sunw_EVP_PKEY_print_params
1837 #pragma redefine_extname EVP_PKEY_print_private sunw_EVP_PKEY_print_priva
1838 #pragma redefine_extname EVP_PKEY_print_public sunw_EVP_PKEY_print_public
1839 #pragma redefine_extname EVP_PKEY_save_parameters sunw_EVP_PKEY_save_para
1840 #pragma redefine_extname evp_pkey_set_cb_translate sunw_evp_pkey_set_cb_t
1841 #pragma redefine_extname EVP_PKEY_set_type sunw_EVP_PKEY_set_type
1842 #pragma redefine_extname EVP_PKEY_set_type_str sunw_EVP_PKEY_set_type_str
1843 #pragma redefine_extname EVP_PKEY_set1_DH sunw_EVP_PKEY_set1_DH

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 29

1844 #pragma redefine_extname EVP_PKEY_set1_DSA sunw_EVP_PKEY_set1_DSA
1845 #pragma redefine_extname EVP_PKEY_set1_RSA sunw_EVP_PKEY_set1_RSA
1846 #pragma redefine_extname EVP_PKEY_sign sunw_EVP_PKEY_sign
1847 #pragma redefine_extname EVP_PKEY_sign_init sunw_EVP_PKEY_sign_init
1848 #pragma redefine_extname EVP_PKEY_size sunw_EVP_PKEY_size
1849 #pragma redefine_extname EVP_PKEY_type sunw_EVP_PKEY_type
1850 #pragma redefine_extname EVP_PKEY_verify sunw_EVP_PKEY_verify
1851 #pragma redefine_extname EVP_PKEY_verify_init sunw_EVP_PKEY_verify_init
1852 #pragma redefine_extname EVP_PKEY_verify_recover sunw_EVP_PKEY_verify_rec
1853 #pragma redefine_extname EVP_PKEY_verify_recover_init sunw_EVP_PKEY_verif
1854 #pragma redefine_extname EVP_PKEY2PKCS8 sunw_EVP_PKEY2PKCS8
1855 #pragma redefine_extname EVP_PKEY2PKCS8_broken sunw_EVP_PKEY2PKCS8_broken
1856 #pragma redefine_extname EVP_rc2_40_cbc sunw_EVP_rc2_40_cbc
1857 #pragma redefine_extname EVP_rc2_64_cbc sunw_EVP_rc2_64_cbc
1858 #pragma redefine_extname EVP_rc2_cbc sunw_EVP_rc2_cbc
1859 #pragma redefine_extname EVP_rc2_cfb sunw_EVP_rc2_cfb
1860 #pragma redefine_extname EVP_rc2_cfb64 sunw_EVP_rc2_cfb64
1861 #pragma redefine_extname EVP_rc2_ecb sunw_EVP_rc2_ecb
1862 #pragma redefine_extname EVP_rc2_ofb sunw_EVP_rc2_ofb
1863 #pragma redefine_extname EVP_rc4 sunw_EVP_rc4
1864 #pragma redefine_extname EVP_rc4_40 sunw_EVP_rc4_40
1865 #pragma redefine_extname EVP_rc4_hmac_md5 sunw_EVP_rc4_hmac_md5
1866 #pragma redefine_extname EVP_read_pw_string sunw_EVP_read_pw_string
1867 #pragma redefine_extname EVP_read_pw_string_min sunw_EVP_read_pw_string_m
1868 #pragma redefine_extname EVP_ripemd160 sunw_EVP_ripemd160
1869 #pragma redefine_extname EVP_SealFinal sunw_EVP_SealFinal
1870 #pragma redefine_extname EVP_SealInit sunw_EVP_SealInit
1871 #pragma redefine_extname EVP_set_pw_prompt sunw_EVP_set_pw_prompt
1872 #pragma redefine_extname EVP_sha sunw_EVP_sha
1873 #pragma redefine_extname EVP_sha1 sunw_EVP_sha1
1874 #pragma redefine_extname EVP_sha224 sunw_EVP_sha224
1875 #pragma redefine_extname EVP_sha256 sunw_EVP_sha256
1876 #pragma redefine_extname EVP_sha384 sunw_EVP_sha384
1877 #pragma redefine_extname EVP_sha512 sunw_EVP_sha512
1878 #pragma redefine_extname EVP_SignFinal sunw_EVP_SignFinal
1879 #pragma redefine_extname EVP_VerifyFinal sunw_EVP_VerifyFinal
1880 #pragma redefine_extname EVP_version sunw_EVP_version
1881 #pragma redefine_extname EXTENDED_KEY_USAGE_free sunw_EXTENDED_KEY_USAGE_
1882 #pragma redefine_extname EXTENDED_KEY_USAGE_it sunw_EXTENDED_KEY_USAGE_it
1883 #pragma redefine_extname EXTENDED_KEY_USAGE_new sunw_EXTENDED_KEY_USAGE_n
1884 #pragma redefine_extname fcrypt_body sunw_fcrypt_body
1885 #pragma redefine_extname FIPS_mode sunw_FIPS_mode
1886 #pragma redefine_extname FIPS_mode_set sunw_FIPS_mode_set
1887 #pragma redefine_extname gcm_ghash_4bit sunw_gcm_ghash_4bit
1888 #pragma redefine_extname gcm_ghash_4bit_mmx sunw_gcm_ghash_4bit_mmx
1889 #pragma redefine_extname gcm_ghash_4bit_x86 sunw_gcm_ghash_4bit_x86
1890 #pragma redefine_extname gcm_ghash_clmul sunw_gcm_ghash_clmul
1891 #pragma redefine_extname gcm_gmult_4bit sunw_gcm_gmult_4bit
1892 #pragma redefine_extname gcm_gmult_4bit_mmx sunw_gcm_gmult_4bit_mmx
1893 #pragma redefine_extname gcm_gmult_4bit_x86 sunw_gcm_gmult_4bit_x86
1894 #pragma redefine_extname gcm_gmult_clmul sunw_gcm_gmult_clmul
1895 #pragma redefine_extname gcm_init_clmul sunw_gcm_init_clmul
1896 #pragma redefine_extname GENERAL_NAME_cmp sunw_GENERAL_NAME_cmp
1897 #pragma redefine_extname GENERAL_NAME_dup sunw_GENERAL_NAME_dup
1898 #pragma redefine_extname GENERAL_NAME_free sunw_GENERAL_NAME_free
1899 #pragma redefine_extname GENERAL_NAME_get0_otherName sunw_GENERAL_NAME_ge
1900 #pragma redefine_extname GENERAL_NAME_get0_value sunw_GENERAL_NAME_get0_v
1901 #pragma redefine_extname GENERAL_NAME_it sunw_GENERAL_NAME_it
1902 #pragma redefine_extname GENERAL_NAME_new sunw_GENERAL_NAME_new
1903 #pragma redefine_extname GENERAL_NAME_print sunw_GENERAL_NAME_print
1904 #pragma redefine_extname GENERAL_NAME_set0_othername sunw_GENERAL_NAME_se
1905 #pragma redefine_extname GENERAL_NAME_set0_value sunw_GENERAL_NAME_set0_v
1906 #pragma redefine_extname GENERAL_NAMES_free sunw_GENERAL_NAMES_free
1907 #pragma redefine_extname GENERAL_NAMES_it sunw_GENERAL_NAMES_it
1908 #pragma redefine_extname GENERAL_NAMES_new sunw_GENERAL_NAMES_new
1909 #pragma redefine_extname GENERAL_SUBTREE_free sunw_GENERAL_SUBTREE_free

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 30

1910 #pragma redefine_extname GENERAL_SUBTREE_it sunw_GENERAL_SUBTREE_it
1911 #pragma redefine_extname GENERAL_SUBTREE_new sunw_GENERAL_SUBTREE_new
1912 #pragma redefine_extname get_rfc2409_prime_1024 sunw_get_rfc2409_prime_10
1913 #pragma redefine_extname get_rfc2409_prime_768 sunw_get_rfc2409_prime_768
1914 #pragma redefine_extname get_rfc3526_prime_1536 sunw_get_rfc3526_prime_15
1915 #pragma redefine_extname get_rfc3526_prime_2048 sunw_get_rfc3526_prime_20
1916 #pragma redefine_extname get_rfc3526_prime_3072 sunw_get_rfc3526_prime_30
1917 #pragma redefine_extname get_rfc3526_prime_4096 sunw_get_rfc3526_prime_40
1918 #pragma redefine_extname get_rfc3526_prime_6144 sunw_get_rfc3526_prime_61
1919 #pragma redefine_extname get_rfc3526_prime_8192 sunw_get_rfc3526_prime_81
1920 #pragma redefine_extname hex_to_string sunw_hex_to_string
1921 #pragma redefine_extname HMAC sunw_HMAC
1922 #pragma redefine_extname hmac_asn1_meth sunw_hmac_asn1_meth
1923 #pragma redefine_extname HMAC_CTX_cleanup sunw_HMAC_CTX_cleanup
1924 #pragma redefine_extname HMAC_CTX_copy sunw_HMAC_CTX_copy
1925 #pragma redefine_extname HMAC_CTX_init sunw_HMAC_CTX_init
1926 #pragma redefine_extname HMAC_CTX_set_flags sunw_HMAC_CTX_set_flags
1927 #pragma redefine_extname HMAC_Final sunw_HMAC_Final
1928 #pragma redefine_extname HMAC_Init sunw_HMAC_Init
1929 #pragma redefine_extname HMAC_Init_ex sunw_HMAC_Init_ex
1930 #pragma redefine_extname hmac_pkey_meth sunw_hmac_pkey_meth
1931 #pragma redefine_extname HMAC_Update sunw_HMAC_Update
1932 #pragma redefine_extname i2a_ACCESS_DESCRIPTION sunw_i2a_ACCESS_DESCRIPTI
1933 #pragma redefine_extname i2a_ASN1_ENUMERATED sunw_i2a_ASN1_ENUMERATED
1934 #pragma redefine_extname i2a_ASN1_INTEGER sunw_i2a_ASN1_INTEGER
1935 #pragma redefine_extname i2a_ASN1_OBJECT sunw_i2a_ASN1_OBJECT
1936 #pragma redefine_extname i2a_ASN1_STRING sunw_i2a_ASN1_STRING
1937 #pragma redefine_extname i2b_PrivateKey_bio sunw_i2b_PrivateKey_bio
1938 #pragma redefine_extname i2b_PublicKey_bio sunw_i2b_PublicKey_bio
1939 #pragma redefine_extname i2b_PVK_bio sunw_i2b_PVK_bio
1940 #pragma redefine_extname i2c_ASN1_BIT_STRING sunw_i2c_ASN1_BIT_STRING
1941 #pragma redefine_extname i2c_ASN1_INTEGER sunw_i2c_ASN1_INTEGER
1942 #pragma redefine_extname i2d_ACCESS_DESCRIPTION sunw_i2d_ACCESS_DESCRIPTI
1943 #pragma redefine_extname i2d_ASN1_bio_stream sunw_i2d_ASN1_bio_stream
1944 #pragma redefine_extname i2d_ASN1_BIT_STRING sunw_i2d_ASN1_BIT_STRING
1945 #pragma redefine_extname i2d_ASN1_BMPSTRING sunw_i2d_ASN1_BMPSTRING
1946 #pragma redefine_extname i2d_ASN1_BOOLEAN sunw_i2d_ASN1_BOOLEAN
1947 #pragma redefine_extname i2d_ASN1_bytes sunw_i2d_ASN1_bytes
1948 #pragma redefine_extname i2d_ASN1_ENUMERATED sunw_i2d_ASN1_ENUMERATED
1949 #pragma redefine_extname i2d_ASN1_GENERALIZEDTIME sunw_i2d_ASN1_GENERALIZ
1950 #pragma redefine_extname i2d_ASN1_GENERALSTRING sunw_i2d_ASN1_GENERALSTRI
1951 #pragma redefine_extname i2d_ASN1_IA5STRING sunw_i2d_ASN1_IA5STRING
1952 #pragma redefine_extname i2d_ASN1_INTEGER sunw_i2d_ASN1_INTEGER
1953 #pragma redefine_extname i2d_ASN1_NULL sunw_i2d_ASN1_NULL
1954 #pragma redefine_extname i2d_ASN1_OBJECT sunw_i2d_ASN1_OBJECT
1955 #pragma redefine_extname i2d_ASN1_OCTET_STRING sunw_i2d_ASN1_OCTET_STRING
1956 #pragma redefine_extname i2d_ASN1_PRINTABLE sunw_i2d_ASN1_PRINTABLE
1957 #pragma redefine_extname i2d_ASN1_PRINTABLESTRING sunw_i2d_ASN1_PRINTABLE
1958 #pragma redefine_extname i2d_ASN1_SEQUENCE_ANY sunw_i2d_ASN1_SEQUENCE_ANY
1959 #pragma redefine_extname i2d_ASN1_SET sunw_i2d_ASN1_SET
1960 #pragma redefine_extname i2d_ASN1_SET_ANY sunw_i2d_ASN1_SET_ANY
1961 #pragma redefine_extname i2d_ASN1_T61STRING sunw_i2d_ASN1_T61STRING
1962 #pragma redefine_extname i2d_ASN1_TIME sunw_i2d_ASN1_TIME
1963 #pragma redefine_extname i2d_ASN1_TYPE sunw_i2d_ASN1_TYPE
1964 #pragma redefine_extname i2d_ASN1_UNIVERSALSTRING sunw_i2d_ASN1_UNIVERSAL
1965 #pragma redefine_extname i2d_ASN1_UTCTIME sunw_i2d_ASN1_UTCTIME
1966 #pragma redefine_extname i2d_ASN1_UTF8STRING sunw_i2d_ASN1_UTF8STRING
1967 #pragma redefine_extname i2d_ASN1_VISIBLESTRING sunw_i2d_ASN1_VISIBLESTRI
1968 #pragma redefine_extname i2d_AUTHORITY_INFO_ACCESS sunw_i2d_AUTHORITY_INF
1969 #pragma redefine_extname i2d_AUTHORITY_KEYID sunw_i2d_AUTHORITY_KEYID
1970 #pragma redefine_extname i2d_BASIC_CONSTRAINTS sunw_i2d_BASIC_CONSTRAINTS
1971 #pragma redefine_extname i2d_CERTIFICATEPOLICIES sunw_i2d_CERTIFICATEPOLI
1972 #pragma redefine_extname i2d_CMS_bio sunw_i2d_CMS_bio
1973 #pragma redefine_extname i2d_CMS_bio_stream sunw_i2d_CMS_bio_stream
1974 #pragma redefine_extname i2d_CMS_ContentInfo sunw_i2d_CMS_ContentInfo
1975 #pragma redefine_extname i2d_CMS_ReceiptRequest sunw_i2d_CMS_ReceiptReque

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 31

1976 #pragma redefine_extname i2d_CRL_DIST_POINTS sunw_i2d_CRL_DIST_POINTS
1977 #pragma redefine_extname i2d_DHparams sunw_i2d_DHparams
1978 #pragma redefine_extname i2d_DIRECTORYSTRING sunw_i2d_DIRECTORYSTRING
1979 #pragma redefine_extname i2d_DISPLAYTEXT sunw_i2d_DISPLAYTEXT
1980 #pragma redefine_extname i2d_DIST_POINT sunw_i2d_DIST_POINT
1981 #pragma redefine_extname i2d_DIST_POINT_NAME sunw_i2d_DIST_POINT_NAME
1982 #pragma redefine_extname i2d_DSA_PUBKEY sunw_i2d_DSA_PUBKEY
1983 #pragma redefine_extname i2d_DSA_PUBKEY_bio sunw_i2d_DSA_PUBKEY_bio
1984 #pragma redefine_extname i2d_DSA_PUBKEY_fp sunw_i2d_DSA_PUBKEY_fp
1985 #pragma redefine_extname i2d_DSA_SIG sunw_i2d_DSA_SIG
1986 #pragma redefine_extname i2d_DSAparams sunw_i2d_DSAparams
1987 #pragma redefine_extname i2d_DSAPrivateKey sunw_i2d_DSAPrivateKey
1988 #pragma redefine_extname i2d_DSAPrivateKey_bio sunw_i2d_DSAPrivateKey_bio
1989 #pragma redefine_extname i2d_DSAPrivateKey_fp sunw_i2d_DSAPrivateKey_fp
1990 #pragma redefine_extname i2d_DSAPublicKey sunw_i2d_DSAPublicKey
1991 #pragma redefine_extname i2d_EDIPARTYNAME sunw_i2d_EDIPARTYNAME
1992 #pragma redefine_extname i2d_ESS_CERT_ID sunw_i2d_ESS_CERT_ID
1993 #pragma redefine_extname i2d_ESS_ISSUER_SERIAL sunw_i2d_ESS_ISSUER_SERIAL
1994 #pragma redefine_extname i2d_ESS_SIGNING_CERT sunw_i2d_ESS_SIGNING_CERT
1995 #pragma redefine_extname i2d_EXTENDED_KEY_USAGE sunw_i2d_EXTENDED_KEY_USA
1996 #pragma redefine_extname i2d_GENERAL_NAME sunw_i2d_GENERAL_NAME
1997 #pragma redefine_extname i2d_GENERAL_NAMES sunw_i2d_GENERAL_NAMES
1998 #pragma redefine_extname i2d_ISSUING_DIST_POINT sunw_i2d_ISSUING_DIST_POI
1999 #pragma redefine_extname i2d_KRB5_APREQ sunw_i2d_KRB5_APREQ
2000 #pragma redefine_extname i2d_KRB5_APREQBODY sunw_i2d_KRB5_APREQBODY
2001 #pragma redefine_extname i2d_KRB5_AUTHDATA sunw_i2d_KRB5_AUTHDATA
2002 #pragma redefine_extname i2d_KRB5_AUTHENT sunw_i2d_KRB5_AUTHENT
2003 #pragma redefine_extname i2d_KRB5_AUTHENTBODY sunw_i2d_KRB5_AUTHENTBODY
2004 #pragma redefine_extname i2d_KRB5_CHECKSUM sunw_i2d_KRB5_CHECKSUM
2005 #pragma redefine_extname i2d_KRB5_ENCDATA sunw_i2d_KRB5_ENCDATA
2006 #pragma redefine_extname i2d_KRB5_ENCKEY sunw_i2d_KRB5_ENCKEY
2007 #pragma redefine_extname i2d_KRB5_PRINCNAME sunw_i2d_KRB5_PRINCNAME
2008 #pragma redefine_extname i2d_KRB5_TICKET sunw_i2d_KRB5_TICKET
2009 #pragma redefine_extname i2d_KRB5_TKTBODY sunw_i2d_KRB5_TKTBODY
2010 #pragma redefine_extname i2d_NETSCAPE_CERT_SEQUENCE sunw_i2d_NETSCAPE_CER
2011 #pragma redefine_extname i2d_NETSCAPE_ENCRYPTED_PKEY sunw_i2d_NETSCAPE_EN
2012 #pragma redefine_extname i2d_NETSCAPE_PKEY sunw_i2d_NETSCAPE_PKEY
2013 #pragma redefine_extname i2d_Netscape_RSA sunw_i2d_Netscape_RSA
2014 #pragma redefine_extname i2d_NETSCAPE_SPKAC sunw_i2d_NETSCAPE_SPKAC
2015 #pragma redefine_extname i2d_NETSCAPE_SPKI sunw_i2d_NETSCAPE_SPKI
2016 #pragma redefine_extname i2d_NETSCAPE_X509 sunw_i2d_NETSCAPE_X509
2017 #pragma redefine_extname i2d_NOTICEREF sunw_i2d_NOTICEREF
2018 #pragma redefine_extname i2d_OCSP_BASICRESP sunw_i2d_OCSP_BASICRESP
2019 #pragma redefine_extname i2d_OCSP_CERTID sunw_i2d_OCSP_CERTID
2020 #pragma redefine_extname i2d_OCSP_CERTSTATUS sunw_i2d_OCSP_CERTSTATUS
2021 #pragma redefine_extname i2d_OCSP_CRLID sunw_i2d_OCSP_CRLID
2022 #pragma redefine_extname i2d_OCSP_ONEREQ sunw_i2d_OCSP_ONEREQ
2023 #pragma redefine_extname i2d_OCSP_REQINFO sunw_i2d_OCSP_REQINFO
2024 #pragma redefine_extname i2d_OCSP_REQUEST sunw_i2d_OCSP_REQUEST
2025 #pragma redefine_extname i2d_OCSP_RESPBYTES sunw_i2d_OCSP_RESPBYTES
2026 #pragma redefine_extname i2d_OCSP_RESPDATA sunw_i2d_OCSP_RESPDATA
2027 #pragma redefine_extname i2d_OCSP_RESPID sunw_i2d_OCSP_RESPID
2028 #pragma redefine_extname i2d_OCSP_RESPONSE sunw_i2d_OCSP_RESPONSE
2029 #pragma redefine_extname i2d_OCSP_REVOKEDINFO sunw_i2d_OCSP_REVOKEDINFO
2030 #pragma redefine_extname i2d_OCSP_SERVICELOC sunw_i2d_OCSP_SERVICELOC
2031 #pragma redefine_extname i2d_OCSP_SIGNATURE sunw_i2d_OCSP_SIGNATURE
2032 #pragma redefine_extname i2d_OCSP_SINGLERESP sunw_i2d_OCSP_SINGLERESP
2033 #pragma redefine_extname i2d_OTHERNAME sunw_i2d_OTHERNAME
2034 #pragma redefine_extname i2d_PBE2PARAM sunw_i2d_PBE2PARAM
2035 #pragma redefine_extname i2d_PBEPARAM sunw_i2d_PBEPARAM
2036 #pragma redefine_extname i2d_PBKDF2PARAM sunw_i2d_PBKDF2PARAM
2037 #pragma redefine_extname i2d_PKCS12 sunw_i2d_PKCS12
2038 #pragma redefine_extname i2d_PKCS12_BAGS sunw_i2d_PKCS12_BAGS
2039 #pragma redefine_extname i2d_PKCS12_bio sunw_i2d_PKCS12_bio
2040 #pragma redefine_extname i2d_PKCS12_fp sunw_i2d_PKCS12_fp
2041 #pragma redefine_extname i2d_PKCS12_MAC_DATA sunw_i2d_PKCS12_MAC_DATA

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 32

2042 #pragma redefine_extname i2d_PKCS12_SAFEBAG sunw_i2d_PKCS12_SAFEBAG
2043 #pragma redefine_extname i2d_PKCS7 sunw_i2d_PKCS7
2044 #pragma redefine_extname i2d_PKCS7_bio sunw_i2d_PKCS7_bio
2045 #pragma redefine_extname i2d_PKCS7_bio_stream sunw_i2d_PKCS7_bio_stream
2046 #pragma redefine_extname i2d_PKCS7_DIGEST sunw_i2d_PKCS7_DIGEST
2047 #pragma redefine_extname i2d_PKCS7_ENC_CONTENT sunw_i2d_PKCS7_ENC_CONTENT
2048 #pragma redefine_extname i2d_PKCS7_ENCRYPT sunw_i2d_PKCS7_ENCRYPT
2049 #pragma redefine_extname i2d_PKCS7_ENVELOPE sunw_i2d_PKCS7_ENVELOPE
2050 #pragma redefine_extname i2d_PKCS7_fp sunw_i2d_PKCS7_fp
2051 #pragma redefine_extname i2d_PKCS7_ISSUER_AND_SERIAL sunw_i2d_PKCS7_ISSUE
2052 #pragma redefine_extname i2d_PKCS7_NDEF sunw_i2d_PKCS7_NDEF
2053 #pragma redefine_extname i2d_PKCS7_RECIP_INFO sunw_i2d_PKCS7_RECIP_INFO
2054 #pragma redefine_extname i2d_PKCS7_SIGN_ENVELOPE sunw_i2d_PKCS7_SIGN_ENVE
2055 #pragma redefine_extname i2d_PKCS7_SIGNED sunw_i2d_PKCS7_SIGNED
2056 #pragma redefine_extname i2d_PKCS7_SIGNER_INFO sunw_i2d_PKCS7_SIGNER_INFO
2057 #pragma redefine_extname i2d_PKCS8_bio sunw_i2d_PKCS8_bio
2058 #pragma redefine_extname i2d_PKCS8_fp sunw_i2d_PKCS8_fp
2059 #pragma redefine_extname i2d_PKCS8_PRIV_KEY_INFO sunw_i2d_PKCS8_PRIV_KEY_
2060 #pragma redefine_extname i2d_PKCS8_PRIV_KEY_INFO_bio sunw_i2d_PKCS8_PRIV_
2061 #pragma redefine_extname i2d_PKCS8_PRIV_KEY_INFO_fp sunw_i2d_PKCS8_PRIV_K
2062 #pragma redefine_extname i2d_PKCS8PrivateKey_bio sunw_i2d_PKCS8PrivateKey
2063 #pragma redefine_extname i2d_PKCS8PrivateKey_fp sunw_i2d_PKCS8PrivateKey_
2064 #pragma redefine_extname i2d_PKCS8PrivateKey_nid_bio sunw_i2d_PKCS8Privat
2065 #pragma redefine_extname i2d_PKCS8PrivateKey_nid_fp sunw_i2d_PKCS8Private
2066 #pragma redefine_extname i2d_PKCS8PrivateKeyInfo_bio sunw_i2d_PKCS8Privat
2067 #pragma redefine_extname i2d_PKCS8PrivateKeyInfo_fp sunw_i2d_PKCS8Private
2068 #pragma redefine_extname i2d_PKEY_USAGE_PERIOD sunw_i2d_PKEY_USAGE_PERIOD
2069 #pragma redefine_extname i2d_POLICYINFO sunw_i2d_POLICYINFO
2070 #pragma redefine_extname i2d_POLICYQUALINFO sunw_i2d_POLICYQUALINFO
2071 #pragma redefine_extname i2d_PrivateKey sunw_i2d_PrivateKey
2072 #pragma redefine_extname i2d_PrivateKey_bio sunw_i2d_PrivateKey_bio
2073 #pragma redefine_extname i2d_PrivateKey_fp sunw_i2d_PrivateKey_fp
2074 #pragma redefine_extname i2d_PROXY_CERT_INFO_EXTENSION sunw_i2d_PROXY_CER
2075 #pragma redefine_extname i2d_PROXY_POLICY sunw_i2d_PROXY_POLICY
2076 #pragma redefine_extname i2d_PUBKEY sunw_i2d_PUBKEY
2077 #pragma redefine_extname i2d_PUBKEY_bio sunw_i2d_PUBKEY_bio
2078 #pragma redefine_extname i2d_PUBKEY_fp sunw_i2d_PUBKEY_fp
2079 #pragma redefine_extname i2d_PublicKey sunw_i2d_PublicKey
2080 #pragma redefine_extname i2d_RSA_NET sunw_i2d_RSA_NET
2081 #pragma redefine_extname i2d_RSA_PSS_PARAMS sunw_i2d_RSA_PSS_PARAMS
2082 #pragma redefine_extname i2d_RSA_PUBKEY sunw_i2d_RSA_PUBKEY
2083 #pragma redefine_extname i2d_RSA_PUBKEY_bio sunw_i2d_RSA_PUBKEY_bio
2084 #pragma redefine_extname i2d_RSA_PUBKEY_fp sunw_i2d_RSA_PUBKEY_fp
2085 #pragma redefine_extname i2d_RSAPrivateKey sunw_i2d_RSAPrivateKey
2086 #pragma redefine_extname i2d_RSAPrivateKey_bio sunw_i2d_RSAPrivateKey_bio
2087 #pragma redefine_extname i2d_RSAPrivateKey_fp sunw_i2d_RSAPrivateKey_fp
2088 #pragma redefine_extname i2d_RSAPublicKey sunw_i2d_RSAPublicKey
2089 #pragma redefine_extname i2d_RSAPublicKey_bio sunw_i2d_RSAPublicKey_bio
2090 #pragma redefine_extname i2d_RSAPublicKey_fp sunw_i2d_RSAPublicKey_fp
2091 #pragma redefine_extname i2d_SXNET sunw_i2d_SXNET
2092 #pragma redefine_extname i2d_SXNETID sunw_i2d_SXNETID
2093 #pragma redefine_extname i2d_TS_ACCURACY sunw_i2d_TS_ACCURACY
2094 #pragma redefine_extname i2d_TS_MSG_IMPRINT sunw_i2d_TS_MSG_IMPRINT
2095 #pragma redefine_extname i2d_TS_MSG_IMPRINT_bio sunw_i2d_TS_MSG_IMPRINT_b
2096 #pragma redefine_extname i2d_TS_MSG_IMPRINT_fp sunw_i2d_TS_MSG_IMPRINT_fp
2097 #pragma redefine_extname i2d_TS_REQ sunw_i2d_TS_REQ
2098 #pragma redefine_extname i2d_TS_REQ_bio sunw_i2d_TS_REQ_bio
2099 #pragma redefine_extname i2d_TS_REQ_fp sunw_i2d_TS_REQ_fp
2100 #pragma redefine_extname i2d_TS_RESP sunw_i2d_TS_RESP
2101 #pragma redefine_extname i2d_TS_RESP_bio sunw_i2d_TS_RESP_bio
2102 #pragma redefine_extname i2d_TS_RESP_fp sunw_i2d_TS_RESP_fp
2103 #pragma redefine_extname i2d_TS_STATUS_INFO sunw_i2d_TS_STATUS_INFO
2104 #pragma redefine_extname i2d_TS_TST_INFO sunw_i2d_TS_TST_INFO
2105 #pragma redefine_extname i2d_TS_TST_INFO_bio sunw_i2d_TS_TST_INFO_bio
2106 #pragma redefine_extname i2d_TS_TST_INFO_fp sunw_i2d_TS_TST_INFO_fp
2107 #pragma redefine_extname i2d_USERNOTICE sunw_i2d_USERNOTICE

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 33

2108 #pragma redefine_extname i2d_X509 sunw_i2d_X509
2109 #pragma redefine_extname i2d_X509_ALGOR sunw_i2d_X509_ALGOR
2110 #pragma redefine_extname i2d_X509_ALGORS sunw_i2d_X509_ALGORS
2111 #pragma redefine_extname i2d_X509_ATTRIBUTE sunw_i2d_X509_ATTRIBUTE
2112 #pragma redefine_extname i2d_X509_AUX sunw_i2d_X509_AUX
2113 #pragma redefine_extname i2d_X509_bio sunw_i2d_X509_bio
2114 #pragma redefine_extname i2d_X509_CERT_AUX sunw_i2d_X509_CERT_AUX
2115 #pragma redefine_extname i2d_X509_CERT_PAIR sunw_i2d_X509_CERT_PAIR
2116 #pragma redefine_extname i2d_X509_CINF sunw_i2d_X509_CINF
2117 #pragma redefine_extname i2d_X509_CRL sunw_i2d_X509_CRL
2118 #pragma redefine_extname i2d_X509_CRL_bio sunw_i2d_X509_CRL_bio
2119 #pragma redefine_extname i2d_X509_CRL_fp sunw_i2d_X509_CRL_fp
2120 #pragma redefine_extname i2d_X509_CRL_INFO sunw_i2d_X509_CRL_INFO
2121 #pragma redefine_extname i2d_X509_EXTENSION sunw_i2d_X509_EXTENSION
2122 #pragma redefine_extname i2d_X509_EXTENSIONS sunw_i2d_X509_EXTENSIONS
2123 #pragma redefine_extname i2d_X509_fp sunw_i2d_X509_fp
2124 #pragma redefine_extname i2d_X509_NAME sunw_i2d_X509_NAME
2125 #pragma redefine_extname i2d_X509_NAME_ENTRY sunw_i2d_X509_NAME_ENTRY
2126 #pragma redefine_extname i2d_X509_PKEY sunw_i2d_X509_PKEY
2127 #pragma redefine_extname i2d_X509_PUBKEY sunw_i2d_X509_PUBKEY
2128 #pragma redefine_extname i2d_X509_REQ sunw_i2d_X509_REQ
2129 #pragma redefine_extname i2d_X509_REQ_bio sunw_i2d_X509_REQ_bio
2130 #pragma redefine_extname i2d_X509_REQ_fp sunw_i2d_X509_REQ_fp
2131 #pragma redefine_extname i2d_X509_REQ_INFO sunw_i2d_X509_REQ_INFO
2132 #pragma redefine_extname i2d_X509_REVOKED sunw_i2d_X509_REVOKED
2133 #pragma redefine_extname i2d_X509_SIG sunw_i2d_X509_SIG
2134 #pragma redefine_extname i2d_X509_VAL sunw_i2d_X509_VAL
2135 #pragma redefine_extname i2s_ASN1_ENUMERATED sunw_i2s_ASN1_ENUMERATED
2136 #pragma redefine_extname i2s_ASN1_ENUMERATED_TABLE sunw_i2s_ASN1_ENUMERAT
2137 #pragma redefine_extname i2s_ASN1_INTEGER sunw_i2s_ASN1_INTEGER
2138 #pragma redefine_extname i2s_ASN1_OCTET_STRING sunw_i2s_ASN1_OCTET_STRING
2139 #pragma redefine_extname i2t_ASN1_OBJECT sunw_i2t_ASN1_OBJECT
2140 #pragma redefine_extname i2v_ASN1_BIT_STRING sunw_i2v_ASN1_BIT_STRING
2141 #pragma redefine_extname i2v_GENERAL_NAME sunw_i2v_GENERAL_NAME
2142 #pragma redefine_extname i2v_GENERAL_NAMES sunw_i2v_GENERAL_NAMES
2143 #pragma redefine_extname int_rsa_verify sunw_int_rsa_verify
2144 #pragma redefine_extname ISSUING_DIST_POINT_free sunw_ISSUING_DIST_POINT_
2145 #pragma redefine_extname ISSUING_DIST_POINT_it sunw_ISSUING_DIST_POINT_it
2146 #pragma redefine_extname ISSUING_DIST_POINT_new sunw_ISSUING_DIST_POINT_n
2147 #pragma redefine_extname KRB5_APREQ_free sunw_KRB5_APREQ_free
2148 #pragma redefine_extname KRB5_APREQ_it sunw_KRB5_APREQ_it
2149 #pragma redefine_extname KRB5_APREQ_new sunw_KRB5_APREQ_new
2150 #pragma redefine_extname KRB5_APREQBODY_free sunw_KRB5_APREQBODY_free
2151 #pragma redefine_extname KRB5_APREQBODY_it sunw_KRB5_APREQBODY_it
2152 #pragma redefine_extname KRB5_APREQBODY_new sunw_KRB5_APREQBODY_new
2153 #pragma redefine_extname KRB5_AUTHDATA_free sunw_KRB5_AUTHDATA_free
2154 #pragma redefine_extname KRB5_AUTHDATA_it sunw_KRB5_AUTHDATA_it
2155 #pragma redefine_extname KRB5_AUTHDATA_new sunw_KRB5_AUTHDATA_new
2156 #pragma redefine_extname KRB5_AUTHENT_free sunw_KRB5_AUTHENT_free
2157 #pragma redefine_extname KRB5_AUTHENT_it sunw_KRB5_AUTHENT_it
2158 #pragma redefine_extname KRB5_AUTHENT_new sunw_KRB5_AUTHENT_new
2159 #pragma redefine_extname KRB5_AUTHENTBODY_free sunw_KRB5_AUTHENTBODY_free
2160 #pragma redefine_extname KRB5_AUTHENTBODY_it sunw_KRB5_AUTHENTBODY_it
2161 #pragma redefine_extname KRB5_AUTHENTBODY_new sunw_KRB5_AUTHENTBODY_new
2162 #pragma redefine_extname KRB5_CHECKSUM_free sunw_KRB5_CHECKSUM_free
2163 #pragma redefine_extname KRB5_CHECKSUM_it sunw_KRB5_CHECKSUM_it
2164 #pragma redefine_extname KRB5_CHECKSUM_new sunw_KRB5_CHECKSUM_new
2165 #pragma redefine_extname KRB5_ENCDATA_free sunw_KRB5_ENCDATA_free
2166 #pragma redefine_extname KRB5_ENCDATA_it sunw_KRB5_ENCDATA_it
2167 #pragma redefine_extname KRB5_ENCDATA_new sunw_KRB5_ENCDATA_new
2168 #pragma redefine_extname KRB5_ENCKEY_free sunw_KRB5_ENCKEY_free
2169 #pragma redefine_extname KRB5_ENCKEY_it sunw_KRB5_ENCKEY_it
2170 #pragma redefine_extname KRB5_ENCKEY_new sunw_KRB5_ENCKEY_new
2171 #pragma redefine_extname KRB5_PRINCNAME_free sunw_KRB5_PRINCNAME_free
2172 #pragma redefine_extname KRB5_PRINCNAME_it sunw_KRB5_PRINCNAME_it
2173 #pragma redefine_extname KRB5_PRINCNAME_new sunw_KRB5_PRINCNAME_new

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 34

2174 #pragma redefine_extname KRB5_TICKET_free sunw_KRB5_TICKET_free
2175 #pragma redefine_extname KRB5_TICKET_it sunw_KRB5_TICKET_it
2176 #pragma redefine_extname KRB5_TICKET_new sunw_KRB5_TICKET_new
2177 #pragma redefine_extname KRB5_TKTBODY_free sunw_KRB5_TKTBODY_free
2178 #pragma redefine_extname KRB5_TKTBODY_it sunw_KRB5_TKTBODY_it
2179 #pragma redefine_extname KRB5_TKTBODY_new sunw_KRB5_TKTBODY_new
2180 #pragma redefine_extname level_add_node sunw_level_add_node
2181 #pragma redefine_extname level_find_node sunw_level_find_node
2182 #pragma redefine_extname lh_delete sunw_lh_delete
2183 #pragma redefine_extname lh_doall sunw_lh_doall
2184 #pragma redefine_extname lh_doall_arg sunw_lh_doall_arg
2185 #pragma redefine_extname lh_free sunw_lh_free
2186 #pragma redefine_extname lh_insert sunw_lh_insert
2187 #pragma redefine_extname lh_new sunw_lh_new
2188 #pragma redefine_extname lh_node_stats sunw_lh_node_stats
2189 #pragma redefine_extname lh_node_stats_bio sunw_lh_node_stats_bio
2190 #pragma redefine_extname lh_node_usage_stats sunw_lh_node_usage_stats
2191 #pragma redefine_extname lh_node_usage_stats_bio sunw_lh_node_usage_stats
2192 #pragma redefine_extname lh_num_items sunw_lh_num_items
2193 #pragma redefine_extname lh_retrieve sunw_lh_retrieve
2194 #pragma redefine_extname lh_stats sunw_lh_stats
2195 #pragma redefine_extname lh_stats_bio sunw_lh_stats_bio
2196 #pragma redefine_extname lh_strhash sunw_lh_strhash
2197 #pragma redefine_extname lh_version sunw_lh_version
2198 #pragma redefine_extname LONG_it sunw_LONG_it
2199 #pragma redefine_extname MD2 sunw_MD2
2200 #pragma redefine_extname MD2_Final sunw_MD2_Final
2201 #pragma redefine_extname MD2_Init sunw_MD2_Init
2202 #pragma redefine_extname MD2_options sunw_MD2_options
2203 #pragma redefine_extname MD2_Update sunw_MD2_Update
2204 #pragma redefine_extname MD2_version sunw_MD2_version
2205 #pragma redefine_extname MD4 sunw_MD4
2206 #pragma redefine_extname md4_block_data_order sunw_md4_block_data_order
2207 #pragma redefine_extname MD4_Final sunw_MD4_Final
2208 #pragma redefine_extname MD4_Init sunw_MD4_Init
2209 #pragma redefine_extname MD4_Transform sunw_MD4_Transform
2210 #pragma redefine_extname MD4_Update sunw_MD4_Update
2211 #pragma redefine_extname MD4_version sunw_MD4_version
2212 #pragma redefine_extname MD5 sunw_MD5
2213 #pragma redefine_extname md5_block_asm_data_order sunw_md5_block_asm_data
2214 #pragma redefine_extname MD5_Final sunw_MD5_Final
2215 #pragma redefine_extname MD5_Init sunw_MD5_Init
2216 #pragma redefine_extname MD5_Transform sunw_MD5_Transform
2217 #pragma redefine_extname MD5_Update sunw_MD5_Update
2218 #pragma redefine_extname MD5_version sunw_MD5_version
2219 #pragma redefine_extname mod_exp_512 sunw_mod_exp_512
2220 #pragma redefine_extname name_cmp sunw_name_cmp
2221 #pragma redefine_extname NAME_CONSTRAINTS_check sunw_NAME_CONSTRAINTS_che
2222 #pragma redefine_extname NAME_CONSTRAINTS_free sunw_NAME_CONSTRAINTS_free
2223 #pragma redefine_extname NAME_CONSTRAINTS_it sunw_NAME_CONSTRAINTS_it
2224 #pragma redefine_extname NAME_CONSTRAINTS_new sunw_NAME_CONSTRAINTS_new
2225 #pragma redefine_extname NCONF_default sunw_NCONF_default
2226 #pragma redefine_extname NCONF_dump_bio sunw_NCONF_dump_bio
2227 #pragma redefine_extname NCONF_dump_fp sunw_NCONF_dump_fp
2228 #pragma redefine_extname NCONF_free sunw_NCONF_free
2229 #pragma redefine_extname NCONF_free_data sunw_NCONF_free_data
2230 #pragma redefine_extname NCONF_get_number_e sunw_NCONF_get_number_e
2231 #pragma redefine_extname NCONF_get_section sunw_NCONF_get_section
2232 #pragma redefine_extname NCONF_get_string sunw_NCONF_get_string
2233 #pragma redefine_extname NCONF_load sunw_NCONF_load
2234 #pragma redefine_extname NCONF_load_bio sunw_NCONF_load_bio
2235 #pragma redefine_extname NCONF_load_fp sunw_NCONF_load_fp
2236 #pragma redefine_extname NCONF_new sunw_NCONF_new
2237 #pragma redefine_extname NCONF_WIN32 sunw_NCONF_WIN32
2238 #pragma redefine_extname NETSCAPE_CERT_SEQUENCE_free sunw_NETSCAPE_CERT_S
2239 #pragma redefine_extname NETSCAPE_CERT_SEQUENCE_it sunw_NETSCAPE_CERT_SEQ

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 35

2240 #pragma redefine_extname NETSCAPE_CERT_SEQUENCE_new sunw_NETSCAPE_CERT_SE
2241 #pragma redefine_extname NETSCAPE_ENCRYPTED_PKEY_free sunw_NETSCAPE_ENCRY
2242 #pragma redefine_extname NETSCAPE_ENCRYPTED_PKEY_it sunw_NETSCAPE_ENCRYPT
2243 #pragma redefine_extname NETSCAPE_ENCRYPTED_PKEY_new sunw_NETSCAPE_ENCRYP
2244 #pragma redefine_extname NETSCAPE_PKEY_free sunw_NETSCAPE_PKEY_free
2245 #pragma redefine_extname NETSCAPE_PKEY_it sunw_NETSCAPE_PKEY_it
2246 #pragma redefine_extname NETSCAPE_PKEY_new sunw_NETSCAPE_PKEY_new
2247 #pragma redefine_extname NETSCAPE_SPKAC_free sunw_NETSCAPE_SPKAC_free
2248 #pragma redefine_extname NETSCAPE_SPKAC_it sunw_NETSCAPE_SPKAC_it
2249 #pragma redefine_extname NETSCAPE_SPKAC_new sunw_NETSCAPE_SPKAC_new
2250 #pragma redefine_extname NETSCAPE_SPKI_b64_decode sunw_NETSCAPE_SPKI_b64_
2251 #pragma redefine_extname NETSCAPE_SPKI_b64_encode sunw_NETSCAPE_SPKI_b64_
2252 #pragma redefine_extname NETSCAPE_SPKI_free sunw_NETSCAPE_SPKI_free
2253 #pragma redefine_extname NETSCAPE_SPKI_get_pubkey sunw_NETSCAPE_SPKI_get_
2254 #pragma redefine_extname NETSCAPE_SPKI_it sunw_NETSCAPE_SPKI_it
2255 #pragma redefine_extname NETSCAPE_SPKI_new sunw_NETSCAPE_SPKI_new
2256 #pragma redefine_extname NETSCAPE_SPKI_print sunw_NETSCAPE_SPKI_print
2257 #pragma redefine_extname NETSCAPE_SPKI_set_pubkey sunw_NETSCAPE_SPKI_set_
2258 #pragma redefine_extname NETSCAPE_SPKI_sign sunw_NETSCAPE_SPKI_sign
2259 #pragma redefine_extname NETSCAPE_SPKI_verify sunw_NETSCAPE_SPKI_verify
2260 #pragma redefine_extname NETSCAPE_X509_free sunw_NETSCAPE_X509_free
2261 #pragma redefine_extname NETSCAPE_X509_it sunw_NETSCAPE_X509_it
2262 #pragma redefine_extname NETSCAPE_X509_new sunw_NETSCAPE_X509_new
2263 #pragma redefine_extname NOTICEREF_free sunw_NOTICEREF_free
2264 #pragma redefine_extname NOTICEREF_it sunw_NOTICEREF_it
2265 #pragma redefine_extname NOTICEREF_new sunw_NOTICEREF_new
2266 #pragma redefine_extname OBJ_add_object sunw_OBJ_add_object
2267 #pragma redefine_extname OBJ_add_sigid sunw_OBJ_add_sigid
2268 #pragma redefine_extname OBJ_bsearch_ sunw_OBJ_bsearch_
2269 #pragma redefine_extname OBJ_bsearch_ex_ sunw_OBJ_bsearch_ex_
2270 #pragma redefine_extname OBJ_cleanup sunw_OBJ_cleanup
2271 #pragma redefine_extname OBJ_cmp sunw_OBJ_cmp
2272 #pragma redefine_extname OBJ_create sunw_OBJ_create
2273 #pragma redefine_extname OBJ_create_objects sunw_OBJ_create_objects
2274 #pragma redefine_extname OBJ_dup sunw_OBJ_dup
2275 #pragma redefine_extname OBJ_find_sigid_algs sunw_OBJ_find_sigid_algs
2276 #pragma redefine_extname OBJ_find_sigid_by_algs sunw_OBJ_find_sigid_by_al
2277 #pragma redefine_extname OBJ_ln2nid sunw_OBJ_ln2nid
2278 #pragma redefine_extname OBJ_NAME_add sunw_OBJ_NAME_add
2279 #pragma redefine_extname OBJ_NAME_cleanup sunw_OBJ_NAME_cleanup
2280 #pragma redefine_extname OBJ_NAME_do_all sunw_OBJ_NAME_do_all
2281 #pragma redefine_extname OBJ_NAME_do_all_sorted sunw_OBJ_NAME_do_all_sort
2282 #pragma redefine_extname OBJ_NAME_get sunw_OBJ_NAME_get
2283 #pragma redefine_extname OBJ_NAME_init sunw_OBJ_NAME_init
2284 #pragma redefine_extname OBJ_NAME_new_index sunw_OBJ_NAME_new_index
2285 #pragma redefine_extname OBJ_NAME_remove sunw_OBJ_NAME_remove
2286 #pragma redefine_extname OBJ_new_nid sunw_OBJ_new_nid
2287 #pragma redefine_extname OBJ_nid2ln sunw_OBJ_nid2ln
2288 #pragma redefine_extname OBJ_nid2obj sunw_OBJ_nid2obj
2289 #pragma redefine_extname OBJ_nid2sn sunw_OBJ_nid2sn
2290 #pragma redefine_extname OBJ_obj2nid sunw_OBJ_obj2nid
2291 #pragma redefine_extname OBJ_obj2txt sunw_OBJ_obj2txt
2292 #pragma redefine_extname OBJ_sigid_free sunw_OBJ_sigid_free
2293 #pragma redefine_extname OBJ_sn2nid sunw_OBJ_sn2nid
2294 #pragma redefine_extname OBJ_txt2nid sunw_OBJ_txt2nid
2295 #pragma redefine_extname OBJ_txt2obj sunw_OBJ_txt2obj
2296 #pragma redefine_extname OCSP_accept_responses_new sunw_OCSP_accept_respo
2297 #pragma redefine_extname OCSP_archive_cutoff_new sunw_OCSP_archive_cutoff
2298 #pragma redefine_extname OCSP_basic_add1_cert sunw_OCSP_basic_add1_cert
2299 #pragma redefine_extname OCSP_basic_add1_nonce sunw_OCSP_basic_add1_nonce
2300 #pragma redefine_extname OCSP_basic_add1_status sunw_OCSP_basic_add1_stat
2301 #pragma redefine_extname OCSP_basic_sign sunw_OCSP_basic_sign
2302 #pragma redefine_extname OCSP_basic_verify sunw_OCSP_basic_verify
2303 #pragma redefine_extname OCSP_BASICRESP_add_ext sunw_OCSP_BASICRESP_add_e
2304 #pragma redefine_extname OCSP_BASICRESP_add1_ext_i2d sunw_OCSP_BASICRESP_
2305 #pragma redefine_extname OCSP_BASICRESP_delete_ext sunw_OCSP_BASICRESP_de

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 36

2306 #pragma redefine_extname OCSP_BASICRESP_free sunw_OCSP_BASICRESP_free
2307 #pragma redefine_extname OCSP_BASICRESP_get_ext sunw_OCSP_BASICRESP_get_e
2308 #pragma redefine_extname OCSP_BASICRESP_get_ext_by_critical sunw_OCSP_BAS
2309 #pragma redefine_extname OCSP_BASICRESP_get_ext_by_NID sunw_OCSP_BASICRES
2310 #pragma redefine_extname OCSP_BASICRESP_get_ext_by_OBJ sunw_OCSP_BASICRES
2311 #pragma redefine_extname OCSP_BASICRESP_get_ext_count sunw_OCSP_BASICRESP
2312 #pragma redefine_extname OCSP_BASICRESP_get1_ext_d2i sunw_OCSP_BASICRESP_
2313 #pragma redefine_extname OCSP_BASICRESP_it sunw_OCSP_BASICRESP_it
2314 #pragma redefine_extname OCSP_BASICRESP_new sunw_OCSP_BASICRESP_new
2315 #pragma redefine_extname OCSP_cert_id_new sunw_OCSP_cert_id_new
2316 #pragma redefine_extname OCSP_cert_status_str sunw_OCSP_cert_status_str
2317 #pragma redefine_extname OCSP_cert_to_id sunw_OCSP_cert_to_id
2318 #pragma redefine_extname OCSP_CERTID_dup sunw_OCSP_CERTID_dup
2319 #pragma redefine_extname OCSP_CERTID_free sunw_OCSP_CERTID_free
2320 #pragma redefine_extname OCSP_CERTID_it sunw_OCSP_CERTID_it
2321 #pragma redefine_extname OCSP_CERTID_new sunw_OCSP_CERTID_new
2322 #pragma redefine_extname OCSP_CERTSTATUS_free sunw_OCSP_CERTSTATUS_free
2323 #pragma redefine_extname OCSP_CERTSTATUS_it sunw_OCSP_CERTSTATUS_it
2324 #pragma redefine_extname OCSP_CERTSTATUS_new sunw_OCSP_CERTSTATUS_new
2325 #pragma redefine_extname OCSP_check_nonce sunw_OCSP_check_nonce
2326 #pragma redefine_extname OCSP_check_validity sunw_OCSP_check_validity
2327 #pragma redefine_extname OCSP_copy_nonce sunw_OCSP_copy_nonce
2328 #pragma redefine_extname OCSP_crl_reason_str sunw_OCSP_crl_reason_str
2329 #pragma redefine_extname OCSP_CRLID_free sunw_OCSP_CRLID_free
2330 #pragma redefine_extname OCSP_CRLID_it sunw_OCSP_CRLID_it
2331 #pragma redefine_extname OCSP_crlID_new sunw_OCSP_crlID_new
2332 #pragma redefine_extname OCSP_CRLID_new sunw_OCSP_CRLID_new
2333 #pragma redefine_extname OCSP_id_cmp sunw_OCSP_id_cmp
2334 #pragma redefine_extname OCSP_id_get0_info sunw_OCSP_id_get0_info
2335 #pragma redefine_extname OCSP_id_issuer_cmp sunw_OCSP_id_issuer_cmp
2336 #pragma redefine_extname OCSP_ONEREQ_add_ext sunw_OCSP_ONEREQ_add_ext
2337 #pragma redefine_extname OCSP_ONEREQ_add1_ext_i2d sunw_OCSP_ONEREQ_add1_e
2338 #pragma redefine_extname OCSP_ONEREQ_delete_ext sunw_OCSP_ONEREQ_delete_e
2339 #pragma redefine_extname OCSP_ONEREQ_free sunw_OCSP_ONEREQ_free
2340 #pragma redefine_extname OCSP_ONEREQ_get_ext sunw_OCSP_ONEREQ_get_ext
2341 #pragma redefine_extname OCSP_ONEREQ_get_ext_by_critical sunw_OCSP_ONEREQ
2342 #pragma redefine_extname OCSP_ONEREQ_get_ext_by_NID sunw_OCSP_ONEREQ_get_
2343 #pragma redefine_extname OCSP_ONEREQ_get_ext_by_OBJ sunw_OCSP_ONEREQ_get_
2344 #pragma redefine_extname OCSP_ONEREQ_get_ext_count sunw_OCSP_ONEREQ_get_e
2345 #pragma redefine_extname OCSP_onereq_get0_id sunw_OCSP_onereq_get0_id
2346 #pragma redefine_extname OCSP_ONEREQ_get1_ext_d2i sunw_OCSP_ONEREQ_get1_e
2347 #pragma redefine_extname OCSP_ONEREQ_it sunw_OCSP_ONEREQ_it
2348 #pragma redefine_extname OCSP_ONEREQ_new sunw_OCSP_ONEREQ_new
2349 #pragma redefine_extname OCSP_parse_url sunw_OCSP_parse_url
2350 #pragma redefine_extname OCSP_REQ_CTX_add1_header sunw_OCSP_REQ_CTX_add1_
2351 #pragma redefine_extname OCSP_REQ_CTX_free sunw_OCSP_REQ_CTX_free
2352 #pragma redefine_extname OCSP_REQ_CTX_set1_req sunw_OCSP_REQ_CTX_set1_req
2353 #pragma redefine_extname OCSP_REQINFO_free sunw_OCSP_REQINFO_free
2354 #pragma redefine_extname OCSP_REQINFO_it sunw_OCSP_REQINFO_it
2355 #pragma redefine_extname OCSP_REQINFO_new sunw_OCSP_REQINFO_new
2356 #pragma redefine_extname OCSP_REQUEST_add_ext sunw_OCSP_REQUEST_add_ext
2357 #pragma redefine_extname OCSP_request_add0_id sunw_OCSP_request_add0_id
2358 #pragma redefine_extname OCSP_request_add1_cert sunw_OCSP_request_add1_ce
2359 #pragma redefine_extname OCSP_REQUEST_add1_ext_i2d sunw_OCSP_REQUEST_add1
2360 #pragma redefine_extname OCSP_request_add1_nonce sunw_OCSP_request_add1_n
2361 #pragma redefine_extname OCSP_REQUEST_delete_ext sunw_OCSP_REQUEST_delete
2362 #pragma redefine_extname OCSP_REQUEST_free sunw_OCSP_REQUEST_free
2363 #pragma redefine_extname OCSP_REQUEST_get_ext sunw_OCSP_REQUEST_get_ext
2364 #pragma redefine_extname OCSP_REQUEST_get_ext_by_critical sunw_OCSP_REQUE
2365 #pragma redefine_extname OCSP_REQUEST_get_ext_by_NID sunw_OCSP_REQUEST_ge
2366 #pragma redefine_extname OCSP_REQUEST_get_ext_by_OBJ sunw_OCSP_REQUEST_ge
2367 #pragma redefine_extname OCSP_REQUEST_get_ext_count sunw_OCSP_REQUEST_get
2368 #pragma redefine_extname OCSP_REQUEST_get1_ext_d2i sunw_OCSP_REQUEST_get1
2369 #pragma redefine_extname OCSP_request_is_signed sunw_OCSP_request_is_sign
2370 #pragma redefine_extname OCSP_REQUEST_it sunw_OCSP_REQUEST_it
2371 #pragma redefine_extname OCSP_REQUEST_new sunw_OCSP_REQUEST_new

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 37

2372 #pragma redefine_extname OCSP_request_onereq_count sunw_OCSP_request_oner
2373 #pragma redefine_extname OCSP_request_onereq_get0 sunw_OCSP_request_onere
2374 #pragma redefine_extname OCSP_REQUEST_print sunw_OCSP_REQUEST_print
2375 #pragma redefine_extname OCSP_request_set1_name sunw_OCSP_request_set1_na
2376 #pragma redefine_extname OCSP_request_sign sunw_OCSP_request_sign
2377 #pragma redefine_extname OCSP_request_verify sunw_OCSP_request_verify
2378 #pragma redefine_extname OCSP_resp_count sunw_OCSP_resp_count
2379 #pragma redefine_extname OCSP_resp_find sunw_OCSP_resp_find
2380 #pragma redefine_extname OCSP_resp_find_status sunw_OCSP_resp_find_status
2381 #pragma redefine_extname OCSP_resp_get0 sunw_OCSP_resp_get0
2382 #pragma redefine_extname OCSP_RESPBYTES_free sunw_OCSP_RESPBYTES_free
2383 #pragma redefine_extname OCSP_RESPBYTES_it sunw_OCSP_RESPBYTES_it
2384 #pragma redefine_extname OCSP_RESPBYTES_new sunw_OCSP_RESPBYTES_new
2385 #pragma redefine_extname OCSP_RESPDATA_free sunw_OCSP_RESPDATA_free
2386 #pragma redefine_extname OCSP_RESPDATA_it sunw_OCSP_RESPDATA_it
2387 #pragma redefine_extname OCSP_RESPDATA_new sunw_OCSP_RESPDATA_new
2388 #pragma redefine_extname OCSP_RESPID_free sunw_OCSP_RESPID_free
2389 #pragma redefine_extname OCSP_RESPID_it sunw_OCSP_RESPID_it
2390 #pragma redefine_extname OCSP_RESPID_new sunw_OCSP_RESPID_new
2391 #pragma redefine_extname OCSP_response_create sunw_OCSP_response_create
2392 #pragma redefine_extname OCSP_RESPONSE_free sunw_OCSP_RESPONSE_free
2393 #pragma redefine_extname OCSP_response_get1_basic sunw_OCSP_response_get1
2394 #pragma redefine_extname OCSP_RESPONSE_it sunw_OCSP_RESPONSE_it
2395 #pragma redefine_extname OCSP_RESPONSE_new sunw_OCSP_RESPONSE_new
2396 #pragma redefine_extname OCSP_RESPONSE_print sunw_OCSP_RESPONSE_print
2397 #pragma redefine_extname OCSP_response_status sunw_OCSP_response_status
2398 #pragma redefine_extname OCSP_response_status_str sunw_OCSP_response_stat
2399 #pragma redefine_extname OCSP_REVOKEDINFO_free sunw_OCSP_REVOKEDINFO_free
2400 #pragma redefine_extname OCSP_REVOKEDINFO_it sunw_OCSP_REVOKEDINFO_it
2401 #pragma redefine_extname OCSP_REVOKEDINFO_new sunw_OCSP_REVOKEDINFO_new
2402 #pragma redefine_extname OCSP_sendreq_bio sunw_OCSP_sendreq_bio
2403 #pragma redefine_extname OCSP_sendreq_nbio sunw_OCSP_sendreq_nbio
2404 #pragma redefine_extname OCSP_sendreq_new sunw_OCSP_sendreq_new
2405 #pragma redefine_extname OCSP_SERVICELOC_free sunw_OCSP_SERVICELOC_free
2406 #pragma redefine_extname OCSP_SERVICELOC_it sunw_OCSP_SERVICELOC_it
2407 #pragma redefine_extname OCSP_SERVICELOC_new sunw_OCSP_SERVICELOC_new
2408 #pragma redefine_extname OCSP_SIGNATURE_free sunw_OCSP_SIGNATURE_free
2409 #pragma redefine_extname OCSP_SIGNATURE_it sunw_OCSP_SIGNATURE_it
2410 #pragma redefine_extname OCSP_SIGNATURE_new sunw_OCSP_SIGNATURE_new
2411 #pragma redefine_extname OCSP_single_get0_status sunw_OCSP_single_get0_st
2412 #pragma redefine_extname OCSP_SINGLERESP_add_ext sunw_OCSP_SINGLERESP_add
2413 #pragma redefine_extname OCSP_SINGLERESP_add1_ext_i2d sunw_OCSP_SINGLERES
2414 #pragma redefine_extname OCSP_SINGLERESP_delete_ext sunw_OCSP_SINGLERESP_
2415 #pragma redefine_extname OCSP_SINGLERESP_free sunw_OCSP_SINGLERESP_free
2416 #pragma redefine_extname OCSP_SINGLERESP_get_ext sunw_OCSP_SINGLERESP_get
2417 #pragma redefine_extname OCSP_SINGLERESP_get_ext_by_critical sunw_OCSP_SI
2418 #pragma redefine_extname OCSP_SINGLERESP_get_ext_by_NID sunw_OCSP_SINGLER
2419 #pragma redefine_extname OCSP_SINGLERESP_get_ext_by_OBJ sunw_OCSP_SINGLER
2420 #pragma redefine_extname OCSP_SINGLERESP_get_ext_count sunw_OCSP_SINGLERE
2421 #pragma redefine_extname OCSP_SINGLERESP_get1_ext_d2i sunw_OCSP_SINGLERES
2422 #pragma redefine_extname OCSP_SINGLERESP_it sunw_OCSP_SINGLERESP_it
2423 #pragma redefine_extname OCSP_SINGLERESP_new sunw_OCSP_SINGLERESP_new
2424 #pragma redefine_extname OCSP_url_svcloc_new sunw_OCSP_url_svcloc_new
2425 #pragma redefine_extname OPENSSL_add_all_algorithms_conf sunw_OPENSSL_add
2426 #pragma redefine_extname OPENSSL_add_all_algorithms_noconf sunw_OPENSSL_a
2427 #pragma redefine_extname OpenSSL_add_all_ciphers sunw_OpenSSL_add_all_cip
2428 #pragma redefine_extname OpenSSL_add_all_digests sunw_OpenSSL_add_all_dig
2429 #pragma redefine_extname OPENSSL_asc2uni sunw_OPENSSL_asc2uni
2430 #pragma redefine_extname OPENSSL_atomic_add sunw_OPENSSL_atomic_add
2431 #pragma redefine_extname OPENSSL_cleanse sunw_OPENSSL_cleanse
2432 #pragma redefine_extname OPENSSL_config sunw_OPENSSL_config
2433 #pragma redefine_extname OPENSSL_cpuid_setup sunw_OPENSSL_cpuid_setup
2434 #pragma redefine_extname OPENSSL_DIR_end sunw_OPENSSL_DIR_end
2435 #pragma redefine_extname OPENSSL_DIR_read sunw_OPENSSL_DIR_read
2436 #pragma redefine_extname OPENSSL_far_spin sunw_OPENSSL_far_spin
2437 #pragma redefine_extname OPENSSL_gmtime sunw_OPENSSL_gmtime

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 38

2438 #pragma redefine_extname OPENSSL_gmtime_adj sunw_OPENSSL_gmtime_adj
2439 #pragma redefine_extname OPENSSL_ia32cap_P sunw_OPENSSL_ia32cap_P
2440 #pragma redefine_extname OPENSSL_ia32_cpuid sunw_OPENSSL_ia32_cpuid
2441 #pragma redefine_extname OPENSSL_ia32_rdrand sunw_OPENSSL_ia32_rdrand
2442 #pragma redefine_extname OPENSSL_ia32cap_loc sunw_OPENSSL_ia32cap_loc
2443 #pragma redefine_extname OPENSSL_indirect_call sunw_OPENSSL_indirect_call
2444 #pragma redefine_extname OPENSSL_init sunw_OPENSSL_init
2445 #pragma redefine_extname OPENSSL_instrument_halt sunw_OPENSSL_instrument_
2446 #pragma redefine_extname OPENSSL_isservice sunw_OPENSSL_isservice
2447 #pragma redefine_extname OPENSSL_issetugid sunw_OPENSSL_issetugid
2448 #pragma redefine_extname OPENSSL_load_builtin_modules sunw_OPENSSL_load_b
2449 #pragma redefine_extname OPENSSL_memcmp sunw_OPENSSL_memcmp
2450 #pragma redefine_extname OPENSSL_no_config sunw_OPENSSL_no_config
2451 #pragma redefine_extname OPENSSL_rdtsc sunw_OPENSSL_rdtsc
2452 #pragma redefine_extname OPENSSL_showfatal sunw_OPENSSL_showfatal
2453 #pragma redefine_extname OPENSSL_stderr sunw_OPENSSL_stderr
2454 #pragma redefine_extname OPENSSL_strcasecmp sunw_OPENSSL_strcasecmp
2455 #pragma redefine_extname OPENSSL_strncasecmp sunw_OPENSSL_strncasecmp
2456 #pragma redefine_extname OPENSSL_uni2asc sunw_OPENSSL_uni2asc
2457 #pragma redefine_extname OPENSSL_wipe_cpu sunw_OPENSSL_wipe_cpu
2458 #pragma redefine_extname OpenSSLDie sunw_OpenSSLDie
2459 #pragma redefine_extname OSSL_DES_version sunw_OSSL_DES_version
2460 #pragma redefine_extname OSSL_libdes_version sunw_OSSL_libdes_version
2461 #pragma redefine_extname OTHERNAME_cmp sunw_OTHERNAME_cmp
2462 #pragma redefine_extname OTHERNAME_free sunw_OTHERNAME_free
2463 #pragma redefine_extname OTHERNAME_it sunw_OTHERNAME_it
2464 #pragma redefine_extname OTHERNAME_new sunw_OTHERNAME_new
2465 #pragma redefine_extname PBE2PARAM_free sunw_PBE2PARAM_free
2466 #pragma redefine_extname PBE2PARAM_it sunw_PBE2PARAM_it
2467 #pragma redefine_extname PBE2PARAM_new sunw_PBE2PARAM_new
2468 #pragma redefine_extname PBEPARAM_free sunw_PBEPARAM_free
2469 #pragma redefine_extname PBEPARAM_it sunw_PBEPARAM_it
2470 #pragma redefine_extname PBEPARAM_new sunw_PBEPARAM_new
2471 #pragma redefine_extname PBKDF2PARAM_free sunw_PBKDF2PARAM_free
2472 #pragma redefine_extname PBKDF2PARAM_it sunw_PBKDF2PARAM_it
2473 #pragma redefine_extname PBKDF2PARAM_new sunw_PBKDF2PARAM_new
2474 #pragma redefine_extname PEM_ASN1_read sunw_PEM_ASN1_read
2475 #pragma redefine_extname PEM_ASN1_read_bio sunw_PEM_ASN1_read_bio
2476 #pragma redefine_extname PEM_ASN1_write sunw_PEM_ASN1_write
2477 #pragma redefine_extname PEM_ASN1_write_bio sunw_PEM_ASN1_write_bio
2478 #pragma redefine_extname PEM_bytes_read_bio sunw_PEM_bytes_read_bio
2479 #pragma redefine_extname pem_check_suffix sunw_pem_check_suffix
2480 #pragma redefine_extname PEM_def_callback sunw_PEM_def_callback
2481 #pragma redefine_extname PEM_dek_info sunw_PEM_dek_info
2482 #pragma redefine_extname PEM_do_header sunw_PEM_do_header
2483 #pragma redefine_extname PEM_get_EVP_CIPHER_INFO sunw_PEM_get_EVP_CIPHER_
2484 #pragma redefine_extname PEM_proc_type sunw_PEM_proc_type
2485 #pragma redefine_extname PEM_read sunw_PEM_read
2486 #pragma redefine_extname PEM_read_bio sunw_PEM_read_bio
2487 #pragma redefine_extname PEM_read_bio_CMS sunw_PEM_read_bio_CMS
2488 #pragma redefine_extname PEM_read_bio_DHparams sunw_PEM_read_bio_DHparams
2489 #pragma redefine_extname PEM_read_bio_DSA_PUBKEY sunw_PEM_read_bio_DSA_PU
2490 #pragma redefine_extname PEM_read_bio_DSAparams sunw_PEM_read_bio_DSApara
2491 #pragma redefine_extname PEM_read_bio_DSAPrivateKey sunw_PEM_read_bio_DSA
2492 #pragma redefine_extname PEM_read_bio_NETSCAPE_CERT_SEQUENCE sunw_PEM_rea
2493 #pragma redefine_extname PEM_read_bio_Parameters sunw_PEM_read_bio_Parame
2494 #pragma redefine_extname PEM_read_bio_PKCS7 sunw_PEM_read_bio_PKCS7
2495 #pragma redefine_extname PEM_read_bio_PKCS8 sunw_PEM_read_bio_PKCS8
2496 #pragma redefine_extname PEM_read_bio_PKCS8_PRIV_KEY_INFO sunw_PEM_read_b
2497 #pragma redefine_extname PEM_read_bio_PrivateKey sunw_PEM_read_bio_Privat
2498 #pragma redefine_extname PEM_read_bio_PUBKEY sunw_PEM_read_bio_PUBKEY
2499 #pragma redefine_extname PEM_read_bio_RSA_PUBKEY sunw_PEM_read_bio_RSA_PU
2500 #pragma redefine_extname PEM_read_bio_RSAPrivateKey sunw_PEM_read_bio_RSA
2501 #pragma redefine_extname PEM_read_bio_RSAPublicKey sunw_PEM_read_bio_RSAP
2502 #pragma redefine_extname PEM_read_bio_X509 sunw_PEM_read_bio_X509
2503 #pragma redefine_extname PEM_read_bio_X509_AUX sunw_PEM_read_bio_X509_AUX

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 39

2504 #pragma redefine_extname PEM_read_bio_X509_CERT_PAIR sunw_PEM_read_bio_X5
2505 #pragma redefine_extname PEM_read_bio_X509_CRL sunw_PEM_read_bio_X509_CRL
2506 #pragma redefine_extname PEM_read_bio_X509_REQ sunw_PEM_read_bio_X509_REQ
2507 #pragma redefine_extname PEM_read_CMS sunw_PEM_read_CMS
2508 #pragma redefine_extname PEM_read_DHparams sunw_PEM_read_DHparams
2509 #pragma redefine_extname PEM_read_DSA_PUBKEY sunw_PEM_read_DSA_PUBKEY
2510 #pragma redefine_extname PEM_read_DSAparams sunw_PEM_read_DSAparams
2511 #pragma redefine_extname PEM_read_DSAPrivateKey sunw_PEM_read_DSAPrivateK
2512 #pragma redefine_extname PEM_read_NETSCAPE_CERT_SEQUENCE sunw_PEM_read_NE
2513 #pragma redefine_extname PEM_read_PKCS7 sunw_PEM_read_PKCS7
2514 #pragma redefine_extname PEM_read_PKCS8 sunw_PEM_read_PKCS8
2515 #pragma redefine_extname PEM_read_PKCS8_PRIV_KEY_INFO sunw_PEM_read_PKCS8
2516 #pragma redefine_extname PEM_read_PrivateKey sunw_PEM_read_PrivateKey
2517 #pragma redefine_extname PEM_read_PUBKEY sunw_PEM_read_PUBKEY
2518 #pragma redefine_extname PEM_read_RSA_PUBKEY sunw_PEM_read_RSA_PUBKEY
2519 #pragma redefine_extname PEM_read_RSAPrivateKey sunw_PEM_read_RSAPrivateK
2520 #pragma redefine_extname PEM_read_RSAPublicKey sunw_PEM_read_RSAPublicKey
2521 #pragma redefine_extname PEM_read_X509 sunw_PEM_read_X509
2522 #pragma redefine_extname PEM_read_X509_AUX sunw_PEM_read_X509_AUX
2523 #pragma redefine_extname PEM_read_X509_CERT_PAIR sunw_PEM_read_X509_CERT_
2524 #pragma redefine_extname PEM_read_X509_CRL sunw_PEM_read_X509_CRL
2525 #pragma redefine_extname PEM_read_X509_REQ sunw_PEM_read_X509_REQ
2526 #pragma redefine_extname PEM_SealFinal sunw_PEM_SealFinal
2527 #pragma redefine_extname PEM_SealInit sunw_PEM_SealInit
2528 #pragma redefine_extname PEM_SealUpdate sunw_PEM_SealUpdate
2529 #pragma redefine_extname PEM_SignFinal sunw_PEM_SignFinal
2530 #pragma redefine_extname PEM_SignInit sunw_PEM_SignInit
2531 #pragma redefine_extname PEM_SignUpdate sunw_PEM_SignUpdate
2532 #pragma redefine_extname PEM_version sunw_PEM_version
2533 #pragma redefine_extname PEM_write sunw_PEM_write
2534 #pragma redefine_extname PEM_write_bio sunw_PEM_write_bio
2535 #pragma redefine_extname PEM_write_bio_ASN1_stream sunw_PEM_write_bio_ASN
2536 #pragma redefine_extname PEM_write_bio_CMS sunw_PEM_write_bio_CMS
2537 #pragma redefine_extname PEM_write_bio_CMS_stream sunw_PEM_write_bio_CMS_
2538 #pragma redefine_extname PEM_write_bio_DHparams sunw_PEM_write_bio_DHpara
2539 #pragma redefine_extname PEM_write_bio_DSA_PUBKEY sunw_PEM_write_bio_DSA_
2540 #pragma redefine_extname PEM_write_bio_DSAparams sunw_PEM_write_bio_DSApa
2541 #pragma redefine_extname PEM_write_bio_DSAPrivateKey sunw_PEM_write_bio_D
2542 #pragma redefine_extname PEM_write_bio_NETSCAPE_CERT_SEQUENCE sunw_PEM_wr
2543 #pragma redefine_extname PEM_write_bio_Parameters sunw_PEM_write_bio_Para
2544 #pragma redefine_extname PEM_write_bio_PKCS7 sunw_PEM_write_bio_PKCS7
2545 #pragma redefine_extname PEM_write_bio_PKCS7_stream sunw_PEM_write_bio_PK
2546 #pragma redefine_extname PEM_write_bio_PKCS8 sunw_PEM_write_bio_PKCS8
2547 #pragma redefine_extname PEM_write_bio_PKCS8_PRIV_KEY_INFO sunw_PEM_write
2548 #pragma redefine_extname PEM_write_bio_PKCS8PrivateKey sunw_PEM_write_bio
2549 #pragma redefine_extname PEM_write_bio_PKCS8PrivateKey_nid sunw_PEM_write
2550 #pragma redefine_extname PEM_write_bio_PrivateKey sunw_PEM_write_bio_Priv
2551 #pragma redefine_extname PEM_write_bio_PUBKEY sunw_PEM_write_bio_PUBKEY
2552 #pragma redefine_extname PEM_write_bio_RSA_PUBKEY sunw_PEM_write_bio_RSA_
2553 #pragma redefine_extname PEM_write_bio_RSAPrivateKey sunw_PEM_write_bio_R
2554 #pragma redefine_extname PEM_write_bio_RSAPublicKey sunw_PEM_write_bio_RS
2555 #pragma redefine_extname PEM_write_bio_X509 sunw_PEM_write_bio_X509
2556 #pragma redefine_extname PEM_write_bio_X509_AUX sunw_PEM_write_bio_X509_A
2557 #pragma redefine_extname PEM_write_bio_X509_CERT_PAIR sunw_PEM_write_bio_
2558 #pragma redefine_extname PEM_write_bio_X509_CRL sunw_PEM_write_bio_X509_C
2559 #pragma redefine_extname PEM_write_bio_X509_REQ sunw_PEM_write_bio_X509_R
2560 #pragma redefine_extname PEM_write_bio_X509_REQ_NEW sunw_PEM_write_bio_X5
2561 #pragma redefine_extname PEM_write_CMS sunw_PEM_write_CMS
2562 #pragma redefine_extname PEM_write_DHparams sunw_PEM_write_DHparams
2563 #pragma redefine_extname PEM_write_DSA_PUBKEY sunw_PEM_write_DSA_PUBKEY
2564 #pragma redefine_extname PEM_write_DSAparams sunw_PEM_write_DSAparams
2565 #pragma redefine_extname PEM_write_DSAPrivateKey sunw_PEM_write_DSAPrivat
2566 #pragma redefine_extname PEM_write_NETSCAPE_CERT_SEQUENCE sunw_PEM_write_
2567 #pragma redefine_extname PEM_write_PKCS7 sunw_PEM_write_PKCS7
2568 #pragma redefine_extname PEM_write_PKCS8 sunw_PEM_write_PKCS8
2569 #pragma redefine_extname PEM_write_PKCS8_PRIV_KEY_INFO sunw_PEM_write_PKC

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 40

2570 #pragma redefine_extname PEM_write_PKCS8PrivateKey sunw_PEM_write_PKCS8Pr
2571 #pragma redefine_extname PEM_write_PKCS8PrivateKey_nid sunw_PEM_write_PKC
2572 #pragma redefine_extname PEM_write_PrivateKey sunw_PEM_write_PrivateKey
2573 #pragma redefine_extname PEM_write_PUBKEY sunw_PEM_write_PUBKEY
2574 #pragma redefine_extname PEM_write_RSA_PUBKEY sunw_PEM_write_RSA_PUBKEY
2575 #pragma redefine_extname PEM_write_RSAPrivateKey sunw_PEM_write_RSAPrivat
2576 #pragma redefine_extname PEM_write_RSAPublicKey sunw_PEM_write_RSAPublicK
2577 #pragma redefine_extname PEM_write_X509 sunw_PEM_write_X509
2578 #pragma redefine_extname PEM_write_X509_AUX sunw_PEM_write_X509_AUX
2579 #pragma redefine_extname PEM_write_X509_CERT_PAIR sunw_PEM_write_X509_CER
2580 #pragma redefine_extname PEM_write_X509_CRL sunw_PEM_write_X509_CRL
2581 #pragma redefine_extname PEM_write_X509_REQ sunw_PEM_write_X509_REQ
2582 #pragma redefine_extname PEM_write_X509_REQ_NEW sunw_PEM_write_X509_REQ_N
2583 #pragma redefine_extname PEM_X509_INFO_read sunw_PEM_X509_INFO_read
2584 #pragma redefine_extname PEM_X509_INFO_read_bio sunw_PEM_X509_INFO_read_b
2585 #pragma redefine_extname PEM_X509_INFO_write_bio sunw_PEM_X509_INFO_write
2586 #pragma redefine_extname pitem_free sunw_pitem_free
2587 #pragma redefine_extname pitem_new sunw_pitem_new
2588 #pragma redefine_extname PK11_DH sunw_PK11_DH
2589 #pragma redefine_extname PK11_DSA sunw_PK11_DSA
2590 #pragma redefine_extname PK11_RSA sunw_PK11_RSA
2591 #pragma redefine_extname PK11err_add_data sunw_PK11err_add_data
2592 #pragma redefine_extname pk11_active_add sunw_pk11_active_add
2593 #pragma redefine_extname pk11_active_delete sunw_pk11_active_delete
2594 #pragma redefine_extname pk11_active_remove sunw_pk11_active_remove
2595 #pragma redefine_extname pk11_destroy_dh_key_objects sunw_pk11_destroy_dh
2596 #pragma redefine_extname pk11_destroy_dh_object sunw_pk11_destroy_dh_obje
2597 #pragma redefine_extname pk11_destroy_dsa_key_objects sunw_pk11_destroy_d
2598 #pragma redefine_extname pk11_destroy_dsa_object_priv sunw_pk11_destroy_d
2599 #pragma redefine_extname pk11_destroy_dsa_object_pub sunw_pk11_destroy_ds
2600 #pragma redefine_extname pk11_destroy_rsa_key_objects sunw_pk11_destroy_r
2601 #pragma redefine_extname pk11_destroy_rsa_object_priv sunw_pk11_destroy_r
2602 #pragma redefine_extname pk11_destroy_rsa_object_pub sunw_pk11_destroy_rs
2603 #pragma redefine_extname pk11_free_active_list sunw_pk11_free_active_list
2604 #pragma redefine_extname pk11_get_session sunw_pk11_get_session
2605 #pragma redefine_extname pk11_load_privkey sunw_pk11_load_privkey
2606 #pragma redefine_extname pk11_load_pubkey sunw_pk11_load_pubkey
2607 #pragma redefine_extname pk11_return_session sunw_pk11_return_session
2608 #pragma redefine_extname PKCS1_MGF1 sunw_PKCS1_MGF1
2609 #pragma redefine_extname PKCS12_add_cert sunw_PKCS12_add_cert
2610 #pragma redefine_extname PKCS12_add_CSPName_asc sunw_PKCS12_add_CSPName_a
2611 #pragma redefine_extname PKCS12_add_friendlyname_asc sunw_PKCS12_add_frie
2612 #pragma redefine_extname PKCS12_add_friendlyname_uni sunw_PKCS12_add_frie
2613 #pragma redefine_extname PKCS12_add_key sunw_PKCS12_add_key
2614 #pragma redefine_extname PKCS12_add_localkeyid sunw_PKCS12_add_localkeyid
2615 #pragma redefine_extname PKCS12_add_safe sunw_PKCS12_add_safe
2616 #pragma redefine_extname PKCS12_add_safes sunw_PKCS12_add_safes
2617 #pragma redefine_extname PKCS12_AUTHSAFES_it sunw_PKCS12_AUTHSAFES_it
2618 #pragma redefine_extname PKCS12_BAGS_free sunw_PKCS12_BAGS_free
2619 #pragma redefine_extname PKCS12_BAGS_it sunw_PKCS12_BAGS_it
2620 #pragma redefine_extname PKCS12_BAGS_new sunw_PKCS12_BAGS_new
2621 #pragma redefine_extname PKCS12_certbag2x509 sunw_PKCS12_certbag2x509
2622 #pragma redefine_extname PKCS12_certbag2x509crl sunw_PKCS12_certbag2x509c
2623 #pragma redefine_extname PKCS12_create sunw_PKCS12_create
2624 #pragma redefine_extname PKCS12_decrypt_skey sunw_PKCS12_decrypt_skey
2625 #pragma redefine_extname PKCS12_free sunw_PKCS12_free
2626 #pragma redefine_extname PKCS12_gen_mac sunw_PKCS12_gen_mac
2627 #pragma redefine_extname PKCS12_get_attr_gen sunw_PKCS12_get_attr_gen
2628 #pragma redefine_extname PKCS12_get_friendlyname sunw_PKCS12_get_friendly
2629 #pragma redefine_extname PKCS12_init sunw_PKCS12_init
2630 #pragma redefine_extname PKCS12_it sunw_PKCS12_it
2631 #pragma redefine_extname PKCS12_item_decrypt_d2i sunw_PKCS12_item_decrypt
2632 #pragma redefine_extname PKCS12_item_i2d_encrypt sunw_PKCS12_item_i2d_enc
2633 #pragma redefine_extname PKCS12_item_pack_safebag sunw_PKCS12_item_pack_s
2634 #pragma redefine_extname PKCS12_key_gen_asc sunw_PKCS12_key_gen_asc
2635 #pragma redefine_extname PKCS12_key_gen_uni sunw_PKCS12_key_gen_uni

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 41

2636 #pragma redefine_extname PKCS12_MAC_DATA_free sunw_PKCS12_MAC_DATA_free
2637 #pragma redefine_extname PKCS12_MAC_DATA_it sunw_PKCS12_MAC_DATA_it
2638 #pragma redefine_extname PKCS12_MAC_DATA_new sunw_PKCS12_MAC_DATA_new
2639 #pragma redefine_extname PKCS12_MAKE_KEYBAG sunw_PKCS12_MAKE_KEYBAG
2640 #pragma redefine_extname PKCS12_MAKE_SHKEYBAG sunw_PKCS12_MAKE_SHKEYBAG
2641 #pragma redefine_extname PKCS12_new sunw_PKCS12_new
2642 #pragma redefine_extname PKCS12_newpass sunw_PKCS12_newpass
2643 #pragma redefine_extname PKCS12_pack_authsafes sunw_PKCS12_pack_authsafes
2644 #pragma redefine_extname PKCS12_pack_p7data sunw_PKCS12_pack_p7data
2645 #pragma redefine_extname PKCS12_pack_p7encdata sunw_PKCS12_pack_p7encdata
2646 #pragma redefine_extname PKCS12_parse sunw_PKCS12_parse
2647 #pragma redefine_extname PKCS12_PBE_add sunw_PKCS12_PBE_add
2648 #pragma redefine_extname PKCS12_pbe_crypt sunw_PKCS12_pbe_crypt
2649 #pragma redefine_extname PKCS12_PBE_keyivgen sunw_PKCS12_PBE_keyivgen
2650 #pragma redefine_extname PKCS12_SAFEBAG_free sunw_PKCS12_SAFEBAG_free
2651 #pragma redefine_extname PKCS12_SAFEBAG_it sunw_PKCS12_SAFEBAG_it
2652 #pragma redefine_extname PKCS12_SAFEBAG_new sunw_PKCS12_SAFEBAG_new
2653 #pragma redefine_extname PKCS12_SAFEBAGS_it sunw_PKCS12_SAFEBAGS_it
2654 #pragma redefine_extname PKCS12_set_mac sunw_PKCS12_set_mac
2655 #pragma redefine_extname PKCS12_setup_mac sunw_PKCS12_setup_mac
2656 #pragma redefine_extname PKCS12_unpack_authsafes sunw_PKCS12_unpack_auths
2657 #pragma redefine_extname PKCS12_unpack_p7data sunw_PKCS12_unpack_p7data
2658 #pragma redefine_extname PKCS12_unpack_p7encdata sunw_PKCS12_unpack_p7enc
2659 #pragma redefine_extname PKCS12_verify_mac sunw_PKCS12_verify_mac
2660 #pragma redefine_extname PKCS12_x5092certbag sunw_PKCS12_x5092certbag
2661 #pragma redefine_extname PKCS12_x509crl2certbag sunw_PKCS12_x509crl2certb
2662 #pragma redefine_extname PKCS5_PBE_add sunw_PKCS5_PBE_add
2663 #pragma redefine_extname PKCS5_PBE_keyivgen sunw_PKCS5_PBE_keyivgen
2664 #pragma redefine_extname PKCS5_pbe_set sunw_PKCS5_pbe_set
2665 #pragma redefine_extname PKCS5_pbe_set0_algor sunw_PKCS5_pbe_set0_algor
2666 #pragma redefine_extname PKCS5_pbe2_set sunw_PKCS5_pbe2_set
2667 #pragma redefine_extname PKCS5_pbe2_set_iv sunw_PKCS5_pbe2_set_iv
2668 #pragma redefine_extname PKCS5_PBKDF2_HMAC sunw_PKCS5_PBKDF2_HMAC
2669 #pragma redefine_extname PKCS5_PBKDF2_HMAC_SHA1 sunw_PKCS5_PBKDF2_HMAC_SH
2670 #pragma redefine_extname PKCS5_pbkdf2_set sunw_PKCS5_pbkdf2_set
2671 #pragma redefine_extname PKCS5_v2_PBE_keyivgen sunw_PKCS5_v2_PBE_keyivgen
2672 #pragma redefine_extname PKCS5_v2_PBKDF2_keyivgen sunw_PKCS5_v2_PBKDF2_ke
2673 #pragma redefine_extname PKCS7_add_attrib_content_type sunw_PKCS7_add_att
2674 #pragma redefine_extname PKCS7_add_attrib_smimecap sunw_PKCS7_add_attrib_
2675 #pragma redefine_extname PKCS7_add_attribute sunw_PKCS7_add_attribute
2676 #pragma redefine_extname PKCS7_add_certificate sunw_PKCS7_add_certificate
2677 #pragma redefine_extname PKCS7_add_crl sunw_PKCS7_add_crl
2678 #pragma redefine_extname PKCS7_add_recipient sunw_PKCS7_add_recipient
2679 #pragma redefine_extname PKCS7_add_recipient_info sunw_PKCS7_add_recipien
2680 #pragma redefine_extname PKCS7_add_signature sunw_PKCS7_add_signature
2681 #pragma redefine_extname PKCS7_add_signed_attribute sunw_PKCS7_add_signed
2682 #pragma redefine_extname PKCS7_add_signer sunw_PKCS7_add_signer
2683 #pragma redefine_extname PKCS7_add0_attrib_signing_time sunw_PKCS7_add0_a
2684 #pragma redefine_extname PKCS7_add1_attrib_digest sunw_PKCS7_add1_attrib_
2685 #pragma redefine_extname PKCS7_ATTR_SIGN_it sunw_PKCS7_ATTR_SIGN_it
2686 #pragma redefine_extname PKCS7_ATTR_VERIFY_it sunw_PKCS7_ATTR_VERIFY_it
2687 #pragma redefine_extname PKCS7_cert_from_signer_info sunw_PKCS7_cert_from
2688 #pragma redefine_extname PKCS7_content_new sunw_PKCS7_content_new
2689 #pragma redefine_extname PKCS7_ctrl sunw_PKCS7_ctrl
2690 #pragma redefine_extname PKCS7_dataDecode sunw_PKCS7_dataDecode
2691 #pragma redefine_extname PKCS7_dataFinal sunw_PKCS7_dataFinal
2692 #pragma redefine_extname PKCS7_dataInit sunw_PKCS7_dataInit
2693 #pragma redefine_extname PKCS7_dataVerify sunw_PKCS7_dataVerify
2694 #pragma redefine_extname PKCS7_decrypt sunw_PKCS7_decrypt
2695 #pragma redefine_extname PKCS7_DIGEST_free sunw_PKCS7_DIGEST_free
2696 #pragma redefine_extname PKCS7_digest_from_attributes sunw_PKCS7_digest_f
2697 #pragma redefine_extname PKCS7_DIGEST_it sunw_PKCS7_DIGEST_it
2698 #pragma redefine_extname PKCS7_DIGEST_new sunw_PKCS7_DIGEST_new
2699 #pragma redefine_extname PKCS7_dup sunw_PKCS7_dup
2700 #pragma redefine_extname PKCS7_ENC_CONTENT_free sunw_PKCS7_ENC_CONTENT_fr
2701 #pragma redefine_extname PKCS7_ENC_CONTENT_it sunw_PKCS7_ENC_CONTENT_it

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 42

2702 #pragma redefine_extname PKCS7_ENC_CONTENT_new sunw_PKCS7_ENC_CONTENT_new
2703 #pragma redefine_extname PKCS7_encrypt sunw_PKCS7_encrypt
2704 #pragma redefine_extname PKCS7_ENCRYPT_free sunw_PKCS7_ENCRYPT_free
2705 #pragma redefine_extname PKCS7_ENCRYPT_it sunw_PKCS7_ENCRYPT_it
2706 #pragma redefine_extname PKCS7_ENCRYPT_new sunw_PKCS7_ENCRYPT_new
2707 #pragma redefine_extname PKCS7_ENVELOPE_free sunw_PKCS7_ENVELOPE_free
2708 #pragma redefine_extname PKCS7_ENVELOPE_it sunw_PKCS7_ENVELOPE_it
2709 #pragma redefine_extname PKCS7_ENVELOPE_new sunw_PKCS7_ENVELOPE_new
2710 #pragma redefine_extname PKCS7_final sunw_PKCS7_final
2711 #pragma redefine_extname PKCS7_free sunw_PKCS7_free
2712 #pragma redefine_extname PKCS7_get_attribute sunw_PKCS7_get_attribute
2713 #pragma redefine_extname PKCS7_get_issuer_and_serial sunw_PKCS7_get_issue
2714 #pragma redefine_extname PKCS7_get_signed_attribute sunw_PKCS7_get_signed
2715 #pragma redefine_extname PKCS7_get_signer_info sunw_PKCS7_get_signer_info
2716 #pragma redefine_extname PKCS7_get_smimecap sunw_PKCS7_get_smimecap
2717 #pragma redefine_extname PKCS7_get0_signers sunw_PKCS7_get0_signers
2718 #pragma redefine_extname PKCS7_ISSUER_AND_SERIAL_digest sunw_PKCS7_ISSUER
2719 #pragma redefine_extname PKCS7_ISSUER_AND_SERIAL_free sunw_PKCS7_ISSUER_A
2720 #pragma redefine_extname PKCS7_ISSUER_AND_SERIAL_it sunw_PKCS7_ISSUER_AND
2721 #pragma redefine_extname PKCS7_ISSUER_AND_SERIAL_new sunw_PKCS7_ISSUER_AN
2722 #pragma redefine_extname PKCS7_it sunw_PKCS7_it
2723 #pragma redefine_extname PKCS7_new sunw_PKCS7_new
2724 #pragma redefine_extname PKCS7_print_ctx sunw_PKCS7_print_ctx
2725 #pragma redefine_extname PKCS7_RECIP_INFO_free sunw_PKCS7_RECIP_INFO_free
2726 #pragma redefine_extname PKCS7_RECIP_INFO_get0_alg sunw_PKCS7_RECIP_INFO_
2727 #pragma redefine_extname PKCS7_RECIP_INFO_it sunw_PKCS7_RECIP_INFO_it
2728 #pragma redefine_extname PKCS7_RECIP_INFO_new sunw_PKCS7_RECIP_INFO_new
2729 #pragma redefine_extname PKCS7_RECIP_INFO_set sunw_PKCS7_RECIP_INFO_set
2730 #pragma redefine_extname PKCS7_set_attributes sunw_PKCS7_set_attributes
2731 #pragma redefine_extname PKCS7_set_cipher sunw_PKCS7_set_cipher
2732 #pragma redefine_extname PKCS7_set_content sunw_PKCS7_set_content
2733 #pragma redefine_extname PKCS7_set_digest sunw_PKCS7_set_digest
2734 #pragma redefine_extname PKCS7_set_signed_attributes sunw_PKCS7_set_signe
2735 #pragma redefine_extname PKCS7_set_type sunw_PKCS7_set_type
2736 #pragma redefine_extname PKCS7_set0_type_other sunw_PKCS7_set0_type_other
2737 #pragma redefine_extname PKCS7_sign sunw_PKCS7_sign
2738 #pragma redefine_extname PKCS7_sign_add_signer sunw_PKCS7_sign_add_signer
2739 #pragma redefine_extname PKCS7_SIGN_ENVELOPE_free sunw_PKCS7_SIGN_ENVELOP
2740 #pragma redefine_extname PKCS7_SIGN_ENVELOPE_it sunw_PKCS7_SIGN_ENVELOPE_
2741 #pragma redefine_extname PKCS7_SIGN_ENVELOPE_new sunw_PKCS7_SIGN_ENVELOPE
2742 #pragma redefine_extname PKCS7_signatureVerify sunw_PKCS7_signatureVerify
2743 #pragma redefine_extname PKCS7_SIGNED_free sunw_PKCS7_SIGNED_free
2744 #pragma redefine_extname PKCS7_SIGNED_it sunw_PKCS7_SIGNED_it
2745 #pragma redefine_extname PKCS7_SIGNED_new sunw_PKCS7_SIGNED_new
2746 #pragma redefine_extname PKCS7_SIGNER_INFO_free sunw_PKCS7_SIGNER_INFO_fr
2747 #pragma redefine_extname PKCS7_SIGNER_INFO_get0_algs sunw_PKCS7_SIGNER_IN
2748 #pragma redefine_extname PKCS7_SIGNER_INFO_it sunw_PKCS7_SIGNER_INFO_it
2749 #pragma redefine_extname PKCS7_SIGNER_INFO_new sunw_PKCS7_SIGNER_INFO_new
2750 #pragma redefine_extname PKCS7_SIGNER_INFO_set sunw_PKCS7_SIGNER_INFO_set
2751 #pragma redefine_extname PKCS7_SIGNER_INFO_sign sunw_PKCS7_SIGNER_INFO_si
2752 #pragma redefine_extname PKCS7_simple_smimecap sunw_PKCS7_simple_smimecap
2753 #pragma redefine_extname PKCS7_stream sunw_PKCS7_stream
2754 #pragma redefine_extname PKCS7_to_TS_TST_INFO sunw_PKCS7_to_TS_TST_INFO
2755 #pragma redefine_extname PKCS7_verify sunw_PKCS7_verify
2756 #pragma redefine_extname PKCS8_add_keyusage sunw_PKCS8_add_keyusage
2757 #pragma redefine_extname PKCS8_decrypt sunw_PKCS8_decrypt
2758 #pragma redefine_extname PKCS8_encrypt sunw_PKCS8_encrypt
2759 #pragma redefine_extname PKCS8_pkey_get0 sunw_PKCS8_pkey_get0
2760 #pragma redefine_extname PKCS8_pkey_set0 sunw_PKCS8_pkey_set0
2761 #pragma redefine_extname PKCS8_PRIV_KEY_INFO_free sunw_PKCS8_PRIV_KEY_INF
2762 #pragma redefine_extname PKCS8_PRIV_KEY_INFO_it sunw_PKCS8_PRIV_KEY_INFO_
2763 #pragma redefine_extname PKCS8_PRIV_KEY_INFO_new sunw_PKCS8_PRIV_KEY_INFO
2764 #pragma redefine_extname PKCS8_set_broken sunw_PKCS8_set_broken
2765 #pragma redefine_extname PKEY_USAGE_PERIOD_free sunw_PKEY_USAGE_PERIOD_fr
2766 #pragma redefine_extname PKEY_USAGE_PERIOD_it sunw_PKEY_USAGE_PERIOD_it
2767 #pragma redefine_extname PKEY_USAGE_PERIOD_new sunw_PKEY_USAGE_PERIOD_new

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 43

2768 #pragma redefine_extname policy_cache_find_data sunw_policy_cache_find_da
2769 #pragma redefine_extname policy_cache_free sunw_policy_cache_free
2770 #pragma redefine_extname policy_cache_set sunw_policy_cache_set
2771 #pragma redefine_extname policy_cache_set_mapping sunw_policy_cache_set_m
2772 #pragma redefine_extname POLICY_CONSTRAINTS_free sunw_POLICY_CONSTRAINTS_
2773 #pragma redefine_extname POLICY_CONSTRAINTS_it sunw_POLICY_CONSTRAINTS_it
2774 #pragma redefine_extname POLICY_CONSTRAINTS_new sunw_POLICY_CONSTRAINTS_n
2775 #pragma redefine_extname policy_data_free sunw_policy_data_free
2776 #pragma redefine_extname policy_data_new sunw_policy_data_new
2777 #pragma redefine_extname POLICY_MAPPING_free sunw_POLICY_MAPPING_free
2778 #pragma redefine_extname POLICY_MAPPING_it sunw_POLICY_MAPPING_it
2779 #pragma redefine_extname POLICY_MAPPING_new sunw_POLICY_MAPPING_new
2780 #pragma redefine_extname POLICY_MAPPINGS_it sunw_POLICY_MAPPINGS_it
2781 #pragma redefine_extname policy_node_cmp_new sunw_policy_node_cmp_new
2782 #pragma redefine_extname policy_node_free sunw_policy_node_free
2783 #pragma redefine_extname policy_node_match sunw_policy_node_match
2784 #pragma redefine_extname POLICYINFO_free sunw_POLICYINFO_free
2785 #pragma redefine_extname POLICYINFO_it sunw_POLICYINFO_it
2786 #pragma redefine_extname POLICYINFO_new sunw_POLICYINFO_new
2787 #pragma redefine_extname POLICYQUALINFO_free sunw_POLICYQUALINFO_free
2788 #pragma redefine_extname POLICYQUALINFO_it sunw_POLICYQUALINFO_it
2789 #pragma redefine_extname POLICYQUALINFO_new sunw_POLICYQUALINFO_new
2790 #pragma redefine_extname pqueue_find sunw_pqueue_find
2791 #pragma redefine_extname pqueue_free sunw_pqueue_free
2792 #pragma redefine_extname pqueue_insert sunw_pqueue_insert
2793 #pragma redefine_extname pqueue_iterator sunw_pqueue_iterator
2794 #pragma redefine_extname pqueue_new sunw_pqueue_new
2795 #pragma redefine_extname pqueue_next sunw_pqueue_next
2796 #pragma redefine_extname pqueue_peek sunw_pqueue_peek
2797 #pragma redefine_extname pqueue_pop sunw_pqueue_pop
2798 #pragma redefine_extname pqueue_print sunw_pqueue_print
2799 #pragma redefine_extname pqueue_size sunw_pqueue_size
2800 #pragma redefine_extname private_AES_set_decrypt_key sunw_private_AES_set
2801 #pragma redefine_extname private_AES_set_encrypt_key sunw_private_AES_set
2802 #pragma redefine_extname private_Camellia_set_key sunw_private_Camellia_s
2803 #pragma redefine_extname private_RC4_set_key sunw_private_RC4_set_key
2804 #pragma redefine_extname PROXY_CERT_INFO_EXTENSION_free sunw_PROXY_CERT_I
2805 #pragma redefine_extname PROXY_CERT_INFO_EXTENSION_it sunw_PROXY_CERT_INF
2806 #pragma redefine_extname PROXY_CERT_INFO_EXTENSION_new sunw_PROXY_CERT_IN
2807 #pragma redefine_extname PROXY_POLICY_free sunw_PROXY_POLICY_free
2808 #pragma redefine_extname PROXY_POLICY_it sunw_PROXY_POLICY_it
2809 #pragma redefine_extname PROXY_POLICY_new sunw_PROXY_POLICY_new
2810 #pragma redefine_extname RAND_add sunw_RAND_add
2811 #pragma redefine_extname RAND_bytes sunw_RAND_bytes
2812 #pragma redefine_extname RAND_cleanup sunw_RAND_cleanup
2813 #pragma redefine_extname RAND_egd sunw_RAND_egd
2814 #pragma redefine_extname RAND_egd_bytes sunw_RAND_egd_bytes
2815 #pragma redefine_extname RAND_file_name sunw_RAND_file_name
2816 #pragma redefine_extname RAND_get_rand_method sunw_RAND_get_rand_method
2817 #pragma redefine_extname RAND_load_file sunw_RAND_load_file
2818 #pragma redefine_extname RAND_poll sunw_RAND_poll
2819 #pragma redefine_extname RAND_pseudo_bytes sunw_RAND_pseudo_bytes
2820 #pragma redefine_extname RAND_query_egd_bytes sunw_RAND_query_egd_bytes
2821 #pragma redefine_extname RAND_seed sunw_RAND_seed
2822 #pragma redefine_extname RAND_set_rand_engine sunw_RAND_set_rand_engine
2823 #pragma redefine_extname RAND_set_rand_method sunw_RAND_set_rand_method
2824 #pragma redefine_extname RAND_SSLeay sunw_RAND_SSLeay
2825 #pragma redefine_extname rand_ssleay_meth sunw_rand_ssleay_meth
2826 #pragma redefine_extname RAND_status sunw_RAND_status
2827 #pragma redefine_extname RAND_version sunw_RAND_version
2828 #pragma redefine_extname RAND_write_file sunw_RAND_write_file
2829 #pragma redefine_extname RC2_cbc_encrypt sunw_RC2_cbc_encrypt
2830 #pragma redefine_extname RC2_cfb64_encrypt sunw_RC2_cfb64_encrypt
2831 #pragma redefine_extname RC2_decrypt sunw_RC2_decrypt
2832 #pragma redefine_extname RC2_ecb_encrypt sunw_RC2_ecb_encrypt
2833 #pragma redefine_extname RC2_encrypt sunw_RC2_encrypt

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 44

2834 #pragma redefine_extname RC2_ofb64_encrypt sunw_RC2_ofb64_encrypt
2835 #pragma redefine_extname RC2_set_key sunw_RC2_set_key
2836 #pragma redefine_extname RC2_version sunw_RC2_version
2837 #pragma redefine_extname RC4 sunw_RC4
2838 #pragma redefine_extname rc4_md5_enc sunw_rc4_md5_enc
2839 #pragma redefine_extname RC4_options sunw_RC4_options
2840 #pragma redefine_extname RC4_set_key sunw_RC4_set_key
2841 #pragma redefine_extname RIPEMD160 sunw_RIPEMD160
2842 #pragma redefine_extname ripemd160_block_asm_data_order sunw_ripemd160_bl
2843 #pragma redefine_extname ripemd160_block_data_order sunw_ripemd160_block_
2844 #pragma redefine_extname RIPEMD160_Final sunw_RIPEMD160_Final
2845 #pragma redefine_extname RIPEMD160_Init sunw_RIPEMD160_Init
2846 #pragma redefine_extname RIPEMD160_Transform sunw_RIPEMD160_Transform
2847 #pragma redefine_extname RIPEMD160_Update sunw_RIPEMD160_Update
2848 #pragma redefine_extname RMD160_version sunw_RMD160_version
2849 #pragma redefine_extname rsa_asn1_meths sunw_rsa_asn1_meths
2850 #pragma redefine_extname RSA_blinding_off sunw_RSA_blinding_off
2851 #pragma redefine_extname RSA_blinding_on sunw_RSA_blinding_on
2852 #pragma redefine_extname RSA_check_key sunw_RSA_check_key
2853 #pragma redefine_extname RSA_flags sunw_RSA_flags
2854 #pragma redefine_extname RSA_free sunw_RSA_free
2855 #pragma redefine_extname RSA_generate_key sunw_RSA_generate_key
2856 #pragma redefine_extname RSA_generate_key_ex sunw_RSA_generate_key_ex
2857 #pragma redefine_extname RSA_get_default_method sunw_RSA_get_default_meth
2858 #pragma redefine_extname RSA_get_ex_data sunw_RSA_get_ex_data
2859 #pragma redefine_extname RSA_get_ex_new_index sunw_RSA_get_ex_new_index
2860 #pragma redefine_extname RSA_get_method sunw_RSA_get_method
2861 #pragma redefine_extname RSA_memory_lock sunw_RSA_memory_lock
2862 #pragma redefine_extname RSA_new sunw_RSA_new
2863 #pragma redefine_extname RSA_new_method sunw_RSA_new_method
2864 #pragma redefine_extname RSA_null_method sunw_RSA_null_method
2865 #pragma redefine_extname RSA_padding_add_none sunw_RSA_padding_add_none
2866 #pragma redefine_extname RSA_padding_add_PKCS1_OAEP sunw_RSA_padding_add_
2867 #pragma redefine_extname RSA_padding_add_PKCS1_PSS sunw_RSA_padding_add_P
2868 #pragma redefine_extname RSA_padding_add_PKCS1_PSS_mgf1 sunw_RSA_padding_
2869 #pragma redefine_extname RSA_padding_add_PKCS1_type_1 sunw_RSA_padding_ad
2870 #pragma redefine_extname RSA_padding_add_PKCS1_type_2 sunw_RSA_padding_ad
2871 #pragma redefine_extname RSA_padding_add_SSLv23 sunw_RSA_padding_add_SSLv
2872 #pragma redefine_extname RSA_padding_add_X931 sunw_RSA_padding_add_X931
2873 #pragma redefine_extname RSA_padding_check_none sunw_RSA_padding_check_no
2874 #pragma redefine_extname RSA_padding_check_PKCS1_OAEP sunw_RSA_padding_ch
2875 #pragma redefine_extname RSA_padding_check_PKCS1_type_1 sunw_RSA_padding_
2876 #pragma redefine_extname RSA_padding_check_PKCS1_type_2 sunw_RSA_padding_
2877 #pragma redefine_extname RSA_padding_check_SSLv23 sunw_RSA_padding_check_
2878 #pragma redefine_extname RSA_padding_check_X931 sunw_RSA_padding_check_X9
2879 #pragma redefine_extname RSA_PKCS1_SSLeay sunw_RSA_PKCS1_SSLeay
2880 #pragma redefine_extname rsa_pkey_meth sunw_rsa_pkey_meth
2881 #pragma redefine_extname RSA_print sunw_RSA_print
2882 #pragma redefine_extname RSA_print_fp sunw_RSA_print_fp
2883 #pragma redefine_extname RSA_private_decrypt sunw_RSA_private_decrypt
2884 #pragma redefine_extname RSA_private_encrypt sunw_RSA_private_encrypt
2885 #pragma redefine_extname RSA_PSS_PARAMS_free sunw_RSA_PSS_PARAMS_free
2886 #pragma redefine_extname RSA_PSS_PARAMS_it sunw_RSA_PSS_PARAMS_it
2887 #pragma redefine_extname RSA_PSS_PARAMS_new sunw_RSA_PSS_PARAMS_new
2888 #pragma redefine_extname RSA_public_decrypt sunw_RSA_public_decrypt
2889 #pragma redefine_extname RSA_public_encrypt sunw_RSA_public_encrypt
2890 #pragma redefine_extname RSA_set_default_method sunw_RSA_set_default_meth
2891 #pragma redefine_extname RSA_set_ex_data sunw_RSA_set_ex_data
2892 #pragma redefine_extname RSA_set_method sunw_RSA_set_method
2893 #pragma redefine_extname RSA_setup_blinding sunw_RSA_setup_blinding
2894 #pragma redefine_extname RSA_sign sunw_RSA_sign
2895 #pragma redefine_extname RSA_sign_ASN1_OCTET_STRING sunw_RSA_sign_ASN1_OC
2896 #pragma redefine_extname RSA_size sunw_RSA_size
2897 #pragma redefine_extname RSA_up_ref sunw_RSA_up_ref
2898 #pragma redefine_extname RSA_verify sunw_RSA_verify
2899 #pragma redefine_extname RSA_verify_ASN1_OCTET_STRING sunw_RSA_verify_ASN

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 45

2900 #pragma redefine_extname RSA_verify_PKCS1_PSS sunw_RSA_verify_PKCS1_PSS
2901 #pragma redefine_extname RSA_verify_PKCS1_PSS_mgf1 sunw_RSA_verify_PKCS1_
2902 #pragma redefine_extname RSA_version sunw_RSA_version
2903 #pragma redefine_extname RSA_X931_hash_id sunw_RSA_X931_hash_id
2904 #pragma redefine_extname RSAPrivateKey_dup sunw_RSAPrivateKey_dup
2905 #pragma redefine_extname RSAPrivateKey_it sunw_RSAPrivateKey_it
2906 #pragma redefine_extname RSAPublicKey_dup sunw_RSAPublicKey_dup
2907 #pragma redefine_extname RSAPublicKey_it sunw_RSAPublicKey_it
2908 #pragma redefine_extname s2i_ASN1_INTEGER sunw_s2i_ASN1_INTEGER
2909 #pragma redefine_extname s2i_ASN1_OCTET_STRING sunw_s2i_ASN1_OCTET_STRING
2910 #pragma redefine_extname SHA sunw_SHA
2911 #pragma redefine_extname SHA_Final sunw_SHA_Final
2912 #pragma redefine_extname SHA_Init sunw_SHA_Init
2913 #pragma redefine_extname SHA_Transform sunw_SHA_Transform
2914 #pragma redefine_extname SHA_Update sunw_SHA_Update
2915 #pragma redefine_extname SHA_version sunw_SHA_version
2916 #pragma redefine_extname SHA1 sunw_SHA1
2917 #pragma redefine_extname sha1_block_data_order sunw_sha1_block_data_order
2918 #pragma redefine_extname SHA1_Final sunw_SHA1_Final
2919 #pragma redefine_extname SHA1_Init sunw_SHA1_Init
2920 #pragma redefine_extname SHA1_Transform sunw_SHA1_Transform
2921 #pragma redefine_extname SHA1_Update sunw_SHA1_Update
2922 #pragma redefine_extname SHA1_version sunw_SHA1_version
2923 #pragma redefine_extname SHA224 sunw_SHA224
2924 #pragma redefine_extname SHA224_Final sunw_SHA224_Final
2925 #pragma redefine_extname SHA224_Init sunw_SHA224_Init
2926 #pragma redefine_extname SHA224_Update sunw_SHA224_Update
2927 #pragma redefine_extname SHA256 sunw_SHA256
2928 #pragma redefine_extname sha256_block_data_order sunw_sha256_block_data_o
2929 #pragma redefine_extname SHA256_Final sunw_SHA256_Final
2930 #pragma redefine_extname SHA256_Init sunw_SHA256_Init
2931 #pragma redefine_extname SHA256_Transform sunw_SHA256_Transform
2932 #pragma redefine_extname SHA256_Update sunw_SHA256_Update
2933 #pragma redefine_extname SHA256_version sunw_SHA256_version
2934 #pragma redefine_extname SHA384 sunw_SHA384
2935 #pragma redefine_extname SHA384_Final sunw_SHA384_Final
2936 #pragma redefine_extname SHA384_Init sunw_SHA384_Init
2937 #pragma redefine_extname SHA384_Update sunw_SHA384_Update
2938 #pragma redefine_extname SHA512 sunw_SHA512
2939 #pragma redefine_extname sha512_block_data_order sunw_sha512_block_data_o
2940 #pragma redefine_extname SHA512_Final sunw_SHA512_Final
2941 #pragma redefine_extname SHA512_Init sunw_SHA512_Init
2942 #pragma redefine_extname SHA512_Transform sunw_SHA512_Transform
2943 #pragma redefine_extname SHA512_Update sunw_SHA512_Update
2944 #pragma redefine_extname SHA512_version sunw_SHA512_version
2945 #pragma redefine_extname sk_delete sunw_sk_delete
2946 #pragma redefine_extname sk_delete_ptr sunw_sk_delete_ptr
2947 #pragma redefine_extname sk_dup sunw_sk_dup
2948 #pragma redefine_extname sk_find sunw_sk_find
2949 #pragma redefine_extname sk_find_ex sunw_sk_find_ex
2950 #pragma redefine_extname sk_free sunw_sk_free
2951 #pragma redefine_extname sk_insert sunw_sk_insert
2952 #pragma redefine_extname sk_is_sorted sunw_sk_is_sorted
2953 #pragma redefine_extname sk_new sunw_sk_new
2954 #pragma redefine_extname sk_new_null sunw_sk_new_null
2955 #pragma redefine_extname sk_num sunw_sk_num
2956 #pragma redefine_extname sk_pop sunw_sk_pop
2957 #pragma redefine_extname sk_pop_free sunw_sk_pop_free
2958 #pragma redefine_extname sk_push sunw_sk_push
2959 #pragma redefine_extname sk_set sunw_sk_set
2960 #pragma redefine_extname sk_set_cmp_func sunw_sk_set_cmp_func
2961 #pragma redefine_extname sk_shift sunw_sk_shift
2962 #pragma redefine_extname sk_sort sunw_sk_sort
2963 #pragma redefine_extname sk_unshift sunw_sk_unshift
2964 #pragma redefine_extname sk_value sunw_sk_value
2965 #pragma redefine_extname sk_zero sunw_sk_zero

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 46

2966 #pragma redefine_extname SMIME_crlf_copy sunw_SMIME_crlf_copy
2967 #pragma redefine_extname SMIME_read_ASN1 sunw_SMIME_read_ASN1
2968 #pragma redefine_extname SMIME_read_CMS sunw_SMIME_read_CMS
2969 #pragma redefine_extname SMIME_read_PKCS7 sunw_SMIME_read_PKCS7
2970 #pragma redefine_extname SMIME_text sunw_SMIME_text
2971 #pragma redefine_extname SMIME_write_ASN1 sunw_SMIME_write_ASN1
2972 #pragma redefine_extname SMIME_write_CMS sunw_SMIME_write_CMS
2973 #pragma redefine_extname SMIME_write_PKCS7 sunw_SMIME_write_PKCS7
2974 #pragma redefine_extname solaris_locking_setup sunw_solaris_locking_setup
2975 #pragma redefine_extname SRP_Calc_A sunw_SRP_Calc_A
2976 #pragma redefine_extname SRP_Calc_B sunw_SRP_Calc_B
2977 #pragma redefine_extname SRP_Calc_client_key sunw_SRP_Calc_client_key
2978 #pragma redefine_extname SRP_Calc_server_key sunw_SRP_Calc_server_key
2979 #pragma redefine_extname SRP_Calc_u sunw_SRP_Calc_u
2980 #pragma redefine_extname SRP_Calc_x sunw_SRP_Calc_x
2981 #pragma redefine_extname SRP_check_known_gN_param sunw_SRP_check_known_gN
2982 #pragma redefine_extname SRP_create_verifier sunw_SRP_create_verifier
2983 #pragma redefine_extname SRP_create_verifier_BN sunw_SRP_create_verifier_
2984 #pragma redefine_extname SRP_get_default_gN sunw_SRP_get_default_gN
2985 #pragma redefine_extname SRP_VBASE_free sunw_SRP_VBASE_free
2986 #pragma redefine_extname SRP_VBASE_get_by_user sunw_SRP_VBASE_get_by_user
2987 #pragma redefine_extname SRP_VBASE_init sunw_SRP_VBASE_init
2988 #pragma redefine_extname SRP_VBASE_new sunw_SRP_VBASE_new
2989 #pragma redefine_extname SRP_Verify_A_mod_N sunw_SRP_Verify_A_mod_N
2990 #pragma redefine_extname SRP_Verify_B_mod_N sunw_SRP_Verify_B_mod_N
2991 #pragma redefine_extname SSLeay sunw_SSLeay
2992 #pragma redefine_extname SSLeay_version sunw_SSLeay_version
2993 #pragma redefine_extname STACK_version sunw_STACK_version
2994 #pragma redefine_extname string_to_hex sunw_string_to_hex
2995 #pragma redefine_extname SXNET_add_id_asc sunw_SXNET_add_id_asc
2996 #pragma redefine_extname SXNET_add_id_INTEGER sunw_SXNET_add_id_INTEGER
2997 #pragma redefine_extname SXNET_add_id_ulong sunw_SXNET_add_id_ulong
2998 #pragma redefine_extname SXNET_free sunw_SXNET_free
2999 #pragma redefine_extname SXNET_get_id_asc sunw_SXNET_get_id_asc
3000 #pragma redefine_extname SXNET_get_id_INTEGER sunw_SXNET_get_id_INTEGER
3001 #pragma redefine_extname SXNET_get_id_ulong sunw_SXNET_get_id_ulong
3002 #pragma redefine_extname SXNET_it sunw_SXNET_it
3003 #pragma redefine_extname SXNET_new sunw_SXNET_new
3004 #pragma redefine_extname SXNETID_free sunw_SXNETID_free
3005 #pragma redefine_extname SXNETID_it sunw_SXNETID_it
3006 #pragma redefine_extname SXNETID_new sunw_SXNETID_new
3007 #pragma redefine_extname tree_find_sk sunw_tree_find_sk
3008 #pragma redefine_extname TS_ACCURACY_dup sunw_TS_ACCURACY_dup
3009 #pragma redefine_extname TS_ACCURACY_free sunw_TS_ACCURACY_free
3010 #pragma redefine_extname TS_ACCURACY_get_micros sunw_TS_ACCURACY_get_micr
3011 #pragma redefine_extname TS_ACCURACY_get_millis sunw_TS_ACCURACY_get_mill
3012 #pragma redefine_extname TS_ACCURACY_get_seconds sunw_TS_ACCURACY_get_sec
3013 #pragma redefine_extname TS_ACCURACY_it sunw_TS_ACCURACY_it
3014 #pragma redefine_extname TS_ACCURACY_new sunw_TS_ACCURACY_new
3015 #pragma redefine_extname TS_ACCURACY_set_micros sunw_TS_ACCURACY_set_micr
3016 #pragma redefine_extname TS_ACCURACY_set_millis sunw_TS_ACCURACY_set_mill
3017 #pragma redefine_extname TS_ACCURACY_set_seconds sunw_TS_ACCURACY_set_sec
3018 #pragma redefine_extname TS_ASN1_INTEGER_print_bio sunw_TS_ASN1_INTEGER_p
3019 #pragma redefine_extname TS_CONF_get_tsa_section sunw_TS_CONF_get_tsa_sec
3020 #pragma redefine_extname TS_CONF_load_cert sunw_TS_CONF_load_cert
3021 #pragma redefine_extname TS_CONF_load_certs sunw_TS_CONF_load_certs
3022 #pragma redefine_extname TS_CONF_load_key sunw_TS_CONF_load_key
3023 #pragma redefine_extname TS_CONF_set_accuracy sunw_TS_CONF_set_accuracy
3024 #pragma redefine_extname TS_CONF_set_certs sunw_TS_CONF_set_certs
3025 #pragma redefine_extname TS_CONF_set_clock_precision_digits sunw_TS_CONF_
3026 #pragma redefine_extname TS_CONF_set_crypto_device sunw_TS_CONF_set_crypt
3027 #pragma redefine_extname TS_CONF_set_def_policy sunw_TS_CONF_set_def_poli
3028 #pragma redefine_extname TS_CONF_set_default_engine sunw_TS_CONF_set_defa
3029 #pragma redefine_extname TS_CONF_set_digests sunw_TS_CONF_set_digests
3030 #pragma redefine_extname TS_CONF_set_ess_cert_id_chain sunw_TS_CONF_set_e
3031 #pragma redefine_extname TS_CONF_set_ordering sunw_TS_CONF_set_ordering

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 47

3032 #pragma redefine_extname TS_CONF_set_policies sunw_TS_CONF_set_policies
3033 #pragma redefine_extname TS_CONF_set_serial sunw_TS_CONF_set_serial
3034 #pragma redefine_extname TS_CONF_set_signer_cert sunw_TS_CONF_set_signer_
3035 #pragma redefine_extname TS_CONF_set_signer_key sunw_TS_CONF_set_signer_k
3036 #pragma redefine_extname TS_CONF_set_tsa_name sunw_TS_CONF_set_tsa_name
3037 #pragma redefine_extname TS_ext_print_bio sunw_TS_ext_print_bio
3038 #pragma redefine_extname TS_MSG_IMPRINT_dup sunw_TS_MSG_IMPRINT_dup
3039 #pragma redefine_extname TS_MSG_IMPRINT_free sunw_TS_MSG_IMPRINT_free
3040 #pragma redefine_extname TS_MSG_IMPRINT_get_algo sunw_TS_MSG_IMPRINT_get_
3041 #pragma redefine_extname TS_MSG_IMPRINT_get_msg sunw_TS_MSG_IMPRINT_get_m
3042 #pragma redefine_extname TS_MSG_IMPRINT_it sunw_TS_MSG_IMPRINT_it
3043 #pragma redefine_extname TS_MSG_IMPRINT_new sunw_TS_MSG_IMPRINT_new
3044 #pragma redefine_extname TS_MSG_IMPRINT_print_bio sunw_TS_MSG_IMPRINT_pri
3045 #pragma redefine_extname TS_MSG_IMPRINT_set_algo sunw_TS_MSG_IMPRINT_set_
3046 #pragma redefine_extname TS_MSG_IMPRINT_set_msg sunw_TS_MSG_IMPRINT_set_m
3047 #pragma redefine_extname TS_OBJ_print_bio sunw_TS_OBJ_print_bio
3048 #pragma redefine_extname TS_REQ_add_ext sunw_TS_REQ_add_ext
3049 #pragma redefine_extname TS_REQ_delete_ext sunw_TS_REQ_delete_ext
3050 #pragma redefine_extname TS_REQ_dup sunw_TS_REQ_dup
3051 #pragma redefine_extname TS_REQ_ext_free sunw_TS_REQ_ext_free
3052 #pragma redefine_extname TS_REQ_free sunw_TS_REQ_free
3053 #pragma redefine_extname TS_REQ_get_cert_req sunw_TS_REQ_get_cert_req
3054 #pragma redefine_extname TS_REQ_get_ext sunw_TS_REQ_get_ext
3055 #pragma redefine_extname TS_REQ_get_ext_by_critical sunw_TS_REQ_get_ext_b
3056 #pragma redefine_extname TS_REQ_get_ext_by_NID sunw_TS_REQ_get_ext_by_NID
3057 #pragma redefine_extname TS_REQ_get_ext_by_OBJ sunw_TS_REQ_get_ext_by_OBJ
3058 #pragma redefine_extname TS_REQ_get_ext_count sunw_TS_REQ_get_ext_count
3059 #pragma redefine_extname TS_REQ_get_ext_d2i sunw_TS_REQ_get_ext_d2i
3060 #pragma redefine_extname TS_REQ_get_exts sunw_TS_REQ_get_exts
3061 #pragma redefine_extname TS_REQ_get_msg_imprint sunw_TS_REQ_get_msg_impri
3062 #pragma redefine_extname TS_REQ_get_nonce sunw_TS_REQ_get_nonce
3063 #pragma redefine_extname TS_REQ_get_policy_id sunw_TS_REQ_get_policy_id
3064 #pragma redefine_extname TS_REQ_get_version sunw_TS_REQ_get_version
3065 #pragma redefine_extname TS_REQ_it sunw_TS_REQ_it
3066 #pragma redefine_extname TS_REQ_new sunw_TS_REQ_new
3067 #pragma redefine_extname TS_REQ_print_bio sunw_TS_REQ_print_bio
3068 #pragma redefine_extname TS_REQ_set_cert_req sunw_TS_REQ_set_cert_req
3069 #pragma redefine_extname TS_REQ_set_msg_imprint sunw_TS_REQ_set_msg_impri
3070 #pragma redefine_extname TS_REQ_set_nonce sunw_TS_REQ_set_nonce
3071 #pragma redefine_extname TS_REQ_set_policy_id sunw_TS_REQ_set_policy_id
3072 #pragma redefine_extname TS_REQ_set_version sunw_TS_REQ_set_version
3073 #pragma redefine_extname TS_REQ_to_TS_VERIFY_CTX sunw_TS_REQ_to_TS_VERIFY
3074 #pragma redefine_extname TS_RESP_create_response sunw_TS_RESP_create_resp
3075 #pragma redefine_extname TS_RESP_CTX_add_failure_info sunw_TS_RESP_CTX_ad
3076 #pragma redefine_extname TS_RESP_CTX_add_flags sunw_TS_RESP_CTX_add_flags
3077 #pragma redefine_extname TS_RESP_CTX_add_md sunw_TS_RESP_CTX_add_md
3078 #pragma redefine_extname TS_RESP_CTX_add_policy sunw_TS_RESP_CTX_add_poli
3079 #pragma redefine_extname TS_RESP_CTX_free sunw_TS_RESP_CTX_free
3080 #pragma redefine_extname TS_RESP_CTX_get_request sunw_TS_RESP_CTX_get_req
3081 #pragma redefine_extname TS_RESP_CTX_get_tst_info sunw_TS_RESP_CTX_get_ts
3082 #pragma redefine_extname TS_RESP_CTX_new sunw_TS_RESP_CTX_new
3083 #pragma redefine_extname TS_RESP_CTX_set_accuracy sunw_TS_RESP_CTX_set_ac
3084 #pragma redefine_extname TS_RESP_CTX_set_certs sunw_TS_RESP_CTX_set_certs
3085 #pragma redefine_extname TS_RESP_CTX_set_clock_precision_digits sunw_TS_R
3086 #pragma redefine_extname TS_RESP_CTX_set_def_policy sunw_TS_RESP_CTX_set_
3087 #pragma redefine_extname TS_RESP_CTX_set_extension_cb sunw_TS_RESP_CTX_se
3088 #pragma redefine_extname TS_RESP_CTX_set_serial_cb sunw_TS_RESP_CTX_set_s
3089 #pragma redefine_extname TS_RESP_CTX_set_signer_cert sunw_TS_RESP_CTX_set
3090 #pragma redefine_extname TS_RESP_CTX_set_signer_key sunw_TS_RESP_CTX_set_
3091 #pragma redefine_extname TS_RESP_CTX_set_status_info sunw_TS_RESP_CTX_set
3092 #pragma redefine_extname TS_RESP_CTX_set_status_info_cond sunw_TS_RESP_CT
3093 #pragma redefine_extname TS_RESP_CTX_set_time_cb sunw_TS_RESP_CTX_set_tim
3094 #pragma redefine_extname TS_RESP_dup sunw_TS_RESP_dup
3095 #pragma redefine_extname TS_RESP_free sunw_TS_RESP_free
3096 #pragma redefine_extname TS_RESP_get_status_info sunw_TS_RESP_get_status_
3097 #pragma redefine_extname TS_RESP_get_token sunw_TS_RESP_get_token

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 48

3098 #pragma redefine_extname TS_RESP_get_tst_info sunw_TS_RESP_get_tst_info
3099 #pragma redefine_extname TS_RESP_it sunw_TS_RESP_it
3100 #pragma redefine_extname TS_RESP_new sunw_TS_RESP_new
3101 #pragma redefine_extname TS_RESP_print_bio sunw_TS_RESP_print_bio
3102 #pragma redefine_extname TS_RESP_set_status_info sunw_TS_RESP_set_status_
3103 #pragma redefine_extname TS_RESP_set_tst_info sunw_TS_RESP_set_tst_info
3104 #pragma redefine_extname TS_RESP_verify_response sunw_TS_RESP_verify_resp
3105 #pragma redefine_extname TS_RESP_verify_signature sunw_TS_RESP_verify_sig
3106 #pragma redefine_extname TS_RESP_verify_token sunw_TS_RESP_verify_token
3107 #pragma redefine_extname TS_STATUS_INFO_dup sunw_TS_STATUS_INFO_dup
3108 #pragma redefine_extname TS_STATUS_INFO_free sunw_TS_STATUS_INFO_free
3109 #pragma redefine_extname TS_STATUS_INFO_it sunw_TS_STATUS_INFO_it
3110 #pragma redefine_extname TS_STATUS_INFO_new sunw_TS_STATUS_INFO_new
3111 #pragma redefine_extname TS_STATUS_INFO_print_bio sunw_TS_STATUS_INFO_pri
3112 #pragma redefine_extname TS_TST_INFO_add_ext sunw_TS_TST_INFO_add_ext
3113 #pragma redefine_extname TS_TST_INFO_delete_ext sunw_TS_TST_INFO_delete_e
3114 #pragma redefine_extname TS_TST_INFO_dup sunw_TS_TST_INFO_dup
3115 #pragma redefine_extname TS_TST_INFO_ext_free sunw_TS_TST_INFO_ext_free
3116 #pragma redefine_extname TS_TST_INFO_free sunw_TS_TST_INFO_free
3117 #pragma redefine_extname TS_TST_INFO_get_accuracy sunw_TS_TST_INFO_get_ac
3118 #pragma redefine_extname TS_TST_INFO_get_ext sunw_TS_TST_INFO_get_ext
3119 #pragma redefine_extname TS_TST_INFO_get_ext_by_critical sunw_TS_TST_INFO
3120 #pragma redefine_extname TS_TST_INFO_get_ext_by_NID sunw_TS_TST_INFO_get_
3121 #pragma redefine_extname TS_TST_INFO_get_ext_by_OBJ sunw_TS_TST_INFO_get_
3122 #pragma redefine_extname TS_TST_INFO_get_ext_count sunw_TS_TST_INFO_get_e
3123 #pragma redefine_extname TS_TST_INFO_get_ext_d2i sunw_TS_TST_INFO_get_ext
3124 #pragma redefine_extname TS_TST_INFO_get_exts sunw_TS_TST_INFO_get_exts
3125 #pragma redefine_extname TS_TST_INFO_get_msg_imprint sunw_TS_TST_INFO_get
3126 #pragma redefine_extname TS_TST_INFO_get_nonce sunw_TS_TST_INFO_get_nonce
3127 #pragma redefine_extname TS_TST_INFO_get_ordering sunw_TS_TST_INFO_get_or
3128 #pragma redefine_extname TS_TST_INFO_get_policy_id sunw_TS_TST_INFO_get_p
3129 #pragma redefine_extname TS_TST_INFO_get_serial sunw_TS_TST_INFO_get_seri
3130 #pragma redefine_extname TS_TST_INFO_get_time sunw_TS_TST_INFO_get_time
3131 #pragma redefine_extname TS_TST_INFO_get_tsa sunw_TS_TST_INFO_get_tsa
3132 #pragma redefine_extname TS_TST_INFO_get_version sunw_TS_TST_INFO_get_ver
3133 #pragma redefine_extname TS_TST_INFO_it sunw_TS_TST_INFO_it
3134 #pragma redefine_extname TS_TST_INFO_new sunw_TS_TST_INFO_new
3135 #pragma redefine_extname TS_TST_INFO_print_bio sunw_TS_TST_INFO_print_bio
3136 #pragma redefine_extname TS_TST_INFO_set_accuracy sunw_TS_TST_INFO_set_ac
3137 #pragma redefine_extname TS_TST_INFO_set_msg_imprint sunw_TS_TST_INFO_set
3138 #pragma redefine_extname TS_TST_INFO_set_nonce sunw_TS_TST_INFO_set_nonce
3139 #pragma redefine_extname TS_TST_INFO_set_ordering sunw_TS_TST_INFO_set_or
3140 #pragma redefine_extname TS_TST_INFO_set_policy_id sunw_TS_TST_INFO_set_p
3141 #pragma redefine_extname TS_TST_INFO_set_serial sunw_TS_TST_INFO_set_seri
3142 #pragma redefine_extname TS_TST_INFO_set_time sunw_TS_TST_INFO_set_time
3143 #pragma redefine_extname TS_TST_INFO_set_tsa sunw_TS_TST_INFO_set_tsa
3144 #pragma redefine_extname TS_TST_INFO_set_version sunw_TS_TST_INFO_set_ver
3145 #pragma redefine_extname TS_VERIFY_CTX_cleanup sunw_TS_VERIFY_CTX_cleanup
3146 #pragma redefine_extname TS_VERIFY_CTX_free sunw_TS_VERIFY_CTX_free
3147 #pragma redefine_extname TS_VERIFY_CTX_init sunw_TS_VERIFY_CTX_init
3148 #pragma redefine_extname TS_VERIFY_CTX_new sunw_TS_VERIFY_CTX_new
3149 #pragma redefine_extname TS_X509_ALGOR_print_bio sunw_TS_X509_ALGOR_print
3150 #pragma redefine_extname TXT_DB_create_index sunw_TXT_DB_create_index
3151 #pragma redefine_extname TXT_DB_free sunw_TXT_DB_free
3152 #pragma redefine_extname TXT_DB_get_by_index sunw_TXT_DB_get_by_index
3153 #pragma redefine_extname TXT_DB_insert sunw_TXT_DB_insert
3154 #pragma redefine_extname TXT_DB_read sunw_TXT_DB_read
3155 #pragma redefine_extname TXT_DB_version sunw_TXT_DB_version
3156 #pragma redefine_extname TXT_DB_write sunw_TXT_DB_write
3157 #pragma redefine_extname UI_add_error_string sunw_UI_add_error_string
3158 #pragma redefine_extname UI_add_info_string sunw_UI_add_info_string
3159 #pragma redefine_extname UI_add_input_boolean sunw_UI_add_input_boolean
3160 #pragma redefine_extname UI_add_input_string sunw_UI_add_input_string
3161 #pragma redefine_extname UI_add_user_data sunw_UI_add_user_data
3162 #pragma redefine_extname UI_add_verify_string sunw_UI_add_verify_string
3163 #pragma redefine_extname UI_construct_prompt sunw_UI_construct_prompt

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 49

3164 #pragma redefine_extname UI_create_method sunw_UI_create_method
3165 #pragma redefine_extname UI_ctrl sunw_UI_ctrl
3166 #pragma redefine_extname UI_destroy_method sunw_UI_destroy_method
3167 #pragma redefine_extname UI_dup_error_string sunw_UI_dup_error_string
3168 #pragma redefine_extname UI_dup_info_string sunw_UI_dup_info_string
3169 #pragma redefine_extname UI_dup_input_boolean sunw_UI_dup_input_boolean
3170 #pragma redefine_extname UI_dup_input_string sunw_UI_dup_input_string
3171 #pragma redefine_extname UI_dup_verify_string sunw_UI_dup_verify_string
3172 #pragma redefine_extname UI_free sunw_UI_free
3173 #pragma redefine_extname UI_get_default_method sunw_UI_get_default_method
3174 #pragma redefine_extname UI_get_ex_data sunw_UI_get_ex_data
3175 #pragma redefine_extname UI_get_ex_new_index sunw_UI_get_ex_new_index
3176 #pragma redefine_extname UI_get_input_flags sunw_UI_get_input_flags
3177 #pragma redefine_extname UI_get_method sunw_UI_get_method
3178 #pragma redefine_extname UI_get_result_maxsize sunw_UI_get_result_maxsize
3179 #pragma redefine_extname UI_get_result_minsize sunw_UI_get_result_minsize
3180 #pragma redefine_extname UI_get_string_type sunw_UI_get_string_type
3181 #pragma redefine_extname UI_get0_action_string sunw_UI_get0_action_string
3182 #pragma redefine_extname UI_get0_output_string sunw_UI_get0_output_string
3183 #pragma redefine_extname UI_get0_result sunw_UI_get0_result
3184 #pragma redefine_extname UI_get0_result_string sunw_UI_get0_result_string
3185 #pragma redefine_extname UI_get0_test_string sunw_UI_get0_test_string
3186 #pragma redefine_extname UI_get0_user_data sunw_UI_get0_user_data
3187 #pragma redefine_extname UI_method_get_closer sunw_UI_method_get_closer
3188 #pragma redefine_extname UI_method_get_flusher sunw_UI_method_get_flusher
3189 #pragma redefine_extname UI_method_get_opener sunw_UI_method_get_opener
3190 #pragma redefine_extname UI_method_get_prompt_constructor sunw_UI_method_
3191 #pragma redefine_extname UI_method_get_reader sunw_UI_method_get_reader
3192 #pragma redefine_extname UI_method_get_writer sunw_UI_method_get_writer
3193 #pragma redefine_extname UI_method_set_closer sunw_UI_method_set_closer
3194 #pragma redefine_extname UI_method_set_flusher sunw_UI_method_set_flusher
3195 #pragma redefine_extname UI_method_set_opener sunw_UI_method_set_opener
3196 #pragma redefine_extname UI_method_set_prompt_constructor sunw_UI_method_
3197 #pragma redefine_extname UI_method_set_reader sunw_UI_method_set_reader
3198 #pragma redefine_extname UI_method_set_writer sunw_UI_method_set_writer
3199 #pragma redefine_extname UI_new sunw_UI_new
3200 #pragma redefine_extname UI_new_method sunw_UI_new_method
3201 #pragma redefine_extname UI_OpenSSL sunw_UI_OpenSSL
3202 #pragma redefine_extname UI_process sunw_UI_process
3203 #pragma redefine_extname UI_set_default_method sunw_UI_set_default_method
3204 #pragma redefine_extname UI_set_ex_data sunw_UI_set_ex_data
3205 #pragma redefine_extname UI_set_method sunw_UI_set_method
3206 #pragma redefine_extname UI_set_result sunw_UI_set_result
3207 #pragma redefine_extname UI_UTIL_read_pw sunw_UI_UTIL_read_pw
3208 #pragma redefine_extname UI_UTIL_read_pw_string sunw_UI_UTIL_read_pw_stri
3209 #pragma redefine_extname USERNOTICE_free sunw_USERNOTICE_free
3210 #pragma redefine_extname USERNOTICE_it sunw_USERNOTICE_it
3211 #pragma redefine_extname USERNOTICE_new sunw_USERNOTICE_new
3212 #pragma redefine_extname UTF8_getc sunw_UTF8_getc
3213 #pragma redefine_extname UTF8_putc sunw_UTF8_putc
3214 #pragma redefine_extname v2i_ASN1_BIT_STRING sunw_v2i_ASN1_BIT_STRING
3215 #pragma redefine_extname v2i_GENERAL_NAME sunw_v2i_GENERAL_NAME
3216 #pragma redefine_extname v2i_GENERAL_NAME_ex sunw_v2i_GENERAL_NAME_ex
3217 #pragma redefine_extname v2i_GENERAL_NAMES sunw_v2i_GENERAL_NAMES
3218 #pragma redefine_extname v3_akey_id sunw_v3_akey_id
3219 #pragma redefine_extname v3_alt sunw_v3_alt
3220 #pragma redefine_extname v3_bcons sunw_v3_bcons
3221 #pragma redefine_extname v3_cpols sunw_v3_cpols
3222 #pragma redefine_extname v3_crl_hold sunw_v3_crl_hold
3223 #pragma redefine_extname v3_crl_invdate sunw_v3_crl_invdate
3224 #pragma redefine_extname v3_crl_num sunw_v3_crl_num
3225 #pragma redefine_extname v3_crl_reason sunw_v3_crl_reason
3226 #pragma redefine_extname v3_crld sunw_v3_crld
3227 #pragma redefine_extname v3_delta_crl sunw_v3_delta_crl
3228 #pragma redefine_extname v3_ext_ku sunw_v3_ext_ku
3229 #pragma redefine_extname v3_freshest_crl sunw_v3_freshest_crl

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 50

3230 #pragma redefine_extname v3_idp sunw_v3_idp
3231 #pragma redefine_extname v3_info sunw_v3_info
3232 #pragma redefine_extname v3_inhibit_anyp sunw_v3_inhibit_anyp
3233 #pragma redefine_extname v3_key_usage sunw_v3_key_usage
3234 #pragma redefine_extname v3_name_constraints sunw_v3_name_constraints
3235 #pragma redefine_extname v3_ns_ia5_list sunw_v3_ns_ia5_list
3236 #pragma redefine_extname v3_nscert sunw_v3_nscert
3237 #pragma redefine_extname v3_ocsp_accresp sunw_v3_ocsp_accresp
3238 #pragma redefine_extname v3_ocsp_acutoff sunw_v3_ocsp_acutoff
3239 #pragma redefine_extname v3_ocsp_crlid sunw_v3_ocsp_crlid
3240 #pragma redefine_extname v3_ocsp_nocheck sunw_v3_ocsp_nocheck
3241 #pragma redefine_extname v3_ocsp_nonce sunw_v3_ocsp_nonce
3242 #pragma redefine_extname v3_ocsp_serviceloc sunw_v3_ocsp_serviceloc
3243 #pragma redefine_extname v3_pci sunw_v3_pci
3244 #pragma redefine_extname v3_pkey_usage_period sunw_v3_pkey_usage_period
3245 #pragma redefine_extname v3_policy_constraints sunw_v3_policy_constraints
3246 #pragma redefine_extname v3_policy_mappings sunw_v3_policy_mappings
3247 #pragma redefine_extname v3_sinfo sunw_v3_sinfo
3248 #pragma redefine_extname v3_skey_id sunw_v3_skey_id
3249 #pragma redefine_extname v3_sxnet sunw_v3_sxnet
3250 #pragma redefine_extname vpaes_cbc_encrypt sunw_vpaes_cbc_encrypt
3251 #pragma redefine_extname vpaes_decrypt sunw_vpaes_decrypt
3252 #pragma redefine_extname vpaes_encrypt sunw_vpaes_encrypt
3253 #pragma redefine_extname vpaes_set_decrypt_key sunw_vpaes_set_decrypt_key
3254 #pragma redefine_extname vpaes_set_encrypt_key sunw_vpaes_set_encrypt_key
3255 #pragma redefine_extname X509_add_ext sunw_X509_add_ext
3256 #pragma redefine_extname X509_add1_ext_i2d sunw_X509_add1_ext_i2d
3257 #pragma redefine_extname X509_add1_reject_object sunw_X509_add1_reject_ob
3258 #pragma redefine_extname X509_add1_trust_object sunw_X509_add1_trust_obje
3259 #pragma redefine_extname X509_ALGOR_dup sunw_X509_ALGOR_dup
3260 #pragma redefine_extname X509_ALGOR_free sunw_X509_ALGOR_free
3261 #pragma redefine_extname X509_ALGOR_get0 sunw_X509_ALGOR_get0
3262 #pragma redefine_extname X509_ALGOR_it sunw_X509_ALGOR_it
3263 #pragma redefine_extname X509_ALGOR_new sunw_X509_ALGOR_new
3264 #pragma redefine_extname X509_ALGOR_set_md sunw_X509_ALGOR_set_md
3265 #pragma redefine_extname X509_ALGOR_set0 sunw_X509_ALGOR_set0
3266 #pragma redefine_extname X509_ALGORS_it sunw_X509_ALGORS_it
3267 #pragma redefine_extname X509_alias_get0 sunw_X509_alias_get0
3268 #pragma redefine_extname X509_alias_set1 sunw_X509_alias_set1
3269 #pragma redefine_extname X509_ATTRIBUTE_count sunw_X509_ATTRIBUTE_count
3270 #pragma redefine_extname X509_ATTRIBUTE_create sunw_X509_ATTRIBUTE_create
3271 #pragma redefine_extname X509_ATTRIBUTE_create_by_NID sunw_X509_ATTRIBUTE
3272 #pragma redefine_extname X509_ATTRIBUTE_create_by_OBJ sunw_X509_ATTRIBUTE
3273 #pragma redefine_extname X509_ATTRIBUTE_create_by_txt sunw_X509_ATTRIBUTE
3274 #pragma redefine_extname X509_ATTRIBUTE_dup sunw_X509_ATTRIBUTE_dup
3275 #pragma redefine_extname X509_ATTRIBUTE_free sunw_X509_ATTRIBUTE_free
3276 #pragma redefine_extname X509_ATTRIBUTE_get0_data sunw_X509_ATTRIBUTE_get
3277 #pragma redefine_extname X509_ATTRIBUTE_get0_object sunw_X509_ATTRIBUTE_g
3278 #pragma redefine_extname X509_ATTRIBUTE_get0_type sunw_X509_ATTRIBUTE_get
3279 #pragma redefine_extname X509_ATTRIBUTE_it sunw_X509_ATTRIBUTE_it
3280 #pragma redefine_extname X509_ATTRIBUTE_new sunw_X509_ATTRIBUTE_new
3281 #pragma redefine_extname X509_ATTRIBUTE_SET_it sunw_X509_ATTRIBUTE_SET_it
3282 #pragma redefine_extname X509_ATTRIBUTE_set1_data sunw_X509_ATTRIBUTE_set
3283 #pragma redefine_extname X509_ATTRIBUTE_set1_object sunw_X509_ATTRIBUTE_s
3284 #pragma redefine_extname X509_CERT_AUX_free sunw_X509_CERT_AUX_free
3285 #pragma redefine_extname X509_CERT_AUX_it sunw_X509_CERT_AUX_it
3286 #pragma redefine_extname X509_CERT_AUX_new sunw_X509_CERT_AUX_new
3287 #pragma redefine_extname X509_CERT_AUX_print sunw_X509_CERT_AUX_print
3288 #pragma redefine_extname X509_CERT_PAIR_free sunw_X509_CERT_PAIR_free
3289 #pragma redefine_extname X509_CERT_PAIR_it sunw_X509_CERT_PAIR_it
3290 #pragma redefine_extname X509_CERT_PAIR_new sunw_X509_CERT_PAIR_new
3291 #pragma redefine_extname X509_certificate_type sunw_X509_certificate_type
3292 #pragma redefine_extname X509_check_akid sunw_X509_check_akid
3293 #pragma redefine_extname X509_check_ca sunw_X509_check_ca
3294 #pragma redefine_extname X509_check_issued sunw_X509_check_issued
3295 #pragma redefine_extname X509_check_private_key sunw_X509_check_private_k

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 51

3296 #pragma redefine_extname X509_check_purpose sunw_X509_check_purpose
3297 #pragma redefine_extname X509_check_trust sunw_X509_check_trust
3298 #pragma redefine_extname X509_CINF_free sunw_X509_CINF_free
3299 #pragma redefine_extname X509_CINF_it sunw_X509_CINF_it
3300 #pragma redefine_extname X509_CINF_new sunw_X509_CINF_new
3301 #pragma redefine_extname X509_cmp sunw_X509_cmp
3302 #pragma redefine_extname X509_cmp_current_time sunw_X509_cmp_current_time
3303 #pragma redefine_extname X509_cmp_time sunw_X509_cmp_time
3304 #pragma redefine_extname X509_CRL_add_ext sunw_X509_CRL_add_ext
3305 #pragma redefine_extname X509_CRL_add0_revoked sunw_X509_CRL_add0_revoked
3306 #pragma redefine_extname X509_CRL_add1_ext_i2d sunw_X509_CRL_add1_ext_i2d
3307 #pragma redefine_extname X509_CRL_cmp sunw_X509_CRL_cmp
3308 #pragma redefine_extname X509_CRL_delete_ext sunw_X509_CRL_delete_ext
3309 #pragma redefine_extname X509_CRL_digest sunw_X509_CRL_digest
3310 #pragma redefine_extname X509_CRL_dup sunw_X509_CRL_dup
3311 #pragma redefine_extname X509_CRL_free sunw_X509_CRL_free
3312 #pragma redefine_extname X509_CRL_get_ext sunw_X509_CRL_get_ext
3313 #pragma redefine_extname X509_CRL_get_ext_by_critical sunw_X509_CRL_get_e
3314 #pragma redefine_extname X509_CRL_get_ext_by_NID sunw_X509_CRL_get_ext_by
3315 #pragma redefine_extname X509_CRL_get_ext_by_OBJ sunw_X509_CRL_get_ext_by
3316 #pragma redefine_extname X509_CRL_get_ext_count sunw_X509_CRL_get_ext_cou
3317 #pragma redefine_extname X509_CRL_get_ext_d2i sunw_X509_CRL_get_ext_d2i
3318 #pragma redefine_extname X509_CRL_get_meth_data sunw_X509_CRL_get_meth_da
3319 #pragma redefine_extname X509_CRL_get0_by_cert sunw_X509_CRL_get0_by_cert
3320 #pragma redefine_extname X509_CRL_get0_by_serial sunw_X509_CRL_get0_by_se
3321 #pragma redefine_extname X509_CRL_INFO_free sunw_X509_CRL_INFO_free
3322 #pragma redefine_extname X509_CRL_INFO_it sunw_X509_CRL_INFO_it
3323 #pragma redefine_extname X509_CRL_INFO_new sunw_X509_CRL_INFO_new
3324 #pragma redefine_extname X509_CRL_it sunw_X509_CRL_it
3325 #pragma redefine_extname X509_CRL_match sunw_X509_CRL_match
3326 #pragma redefine_extname X509_CRL_METHOD_free sunw_X509_CRL_METHOD_free
3327 #pragma redefine_extname X509_CRL_METHOD_new sunw_X509_CRL_METHOD_new
3328 #pragma redefine_extname X509_CRL_new sunw_X509_CRL_new
3329 #pragma redefine_extname X509_CRL_print sunw_X509_CRL_print
3330 #pragma redefine_extname X509_CRL_print_fp sunw_X509_CRL_print_fp
3331 #pragma redefine_extname X509_CRL_set_default_method sunw_X509_CRL_set_de
3332 #pragma redefine_extname X509_CRL_set_issuer_name sunw_X509_CRL_set_issue
3333 #pragma redefine_extname X509_CRL_set_lastUpdate sunw_X509_CRL_set_lastUp
3334 #pragma redefine_extname X509_CRL_set_meth_data sunw_X509_CRL_set_meth_da
3335 #pragma redefine_extname X509_CRL_set_nextUpdate sunw_X509_CRL_set_nextUp
3336 #pragma redefine_extname X509_CRL_set_version sunw_X509_CRL_set_version
3337 #pragma redefine_extname X509_CRL_sign sunw_X509_CRL_sign
3338 #pragma redefine_extname X509_CRL_sign_ctx sunw_X509_CRL_sign_ctx
3339 #pragma redefine_extname X509_CRL_sort sunw_X509_CRL_sort
3340 #pragma redefine_extname X509_CRL_verify sunw_X509_CRL_verify
3341 #pragma redefine_extname X509_delete_ext sunw_X509_delete_ext
3342 #pragma redefine_extname X509_digest sunw_X509_digest
3343 #pragma redefine_extname x509_dir_lookup sunw_x509_dir_lookup
3344 #pragma redefine_extname X509_dup sunw_X509_dup
3345 #pragma redefine_extname X509_email_free sunw_X509_email_free
3346 #pragma redefine_extname X509_EXTENSION_create_by_NID sunw_X509_EXTENSION
3347 #pragma redefine_extname X509_EXTENSION_create_by_OBJ sunw_X509_EXTENSION
3348 #pragma redefine_extname X509_EXTENSION_dup sunw_X509_EXTENSION_dup
3349 #pragma redefine_extname X509_EXTENSION_free sunw_X509_EXTENSION_free
3350 #pragma redefine_extname X509_EXTENSION_get_critical sunw_X509_EXTENSION_
3351 #pragma redefine_extname X509_EXTENSION_get_data sunw_X509_EXTENSION_get_
3352 #pragma redefine_extname X509_EXTENSION_get_object sunw_X509_EXTENSION_ge
3353 #pragma redefine_extname X509_EXTENSION_it sunw_X509_EXTENSION_it
3354 #pragma redefine_extname X509_EXTENSION_new sunw_X509_EXTENSION_new
3355 #pragma redefine_extname X509_EXTENSION_set_critical sunw_X509_EXTENSION_
3356 #pragma redefine_extname X509_EXTENSION_set_data sunw_X509_EXTENSION_set_
3357 #pragma redefine_extname X509_EXTENSION_set_object sunw_X509_EXTENSION_se
3358 #pragma redefine_extname X509_EXTENSIONS_it sunw_X509_EXTENSIONS_it
3359 #pragma redefine_extname x509_file_lookup sunw_x509_file_lookup
3360 #pragma redefine_extname X509_find_by_issuer_and_serial sunw_X509_find_by
3361 #pragma redefine_extname X509_find_by_subject sunw_X509_find_by_subject

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 52

3362 #pragma redefine_extname X509_free sunw_X509_free
3363 #pragma redefine_extname X509_get_default_cert_area sunw_X509_get_default
3364 #pragma redefine_extname X509_get_default_cert_dir sunw_X509_get_default_
3365 #pragma redefine_extname X509_get_default_cert_dir_env sunw_X509_get_defa
3366 #pragma redefine_extname X509_get_default_cert_file sunw_X509_get_default
3367 #pragma redefine_extname X509_get_default_cert_file_env sunw_X509_get_def
3368 #pragma redefine_extname X509_get_default_private_dir sunw_X509_get_defau
3369 #pragma redefine_extname X509_get_ex_data sunw_X509_get_ex_data
3370 #pragma redefine_extname X509_get_ex_new_index sunw_X509_get_ex_new_index
3371 #pragma redefine_extname X509_get_ext sunw_X509_get_ext
3372 #pragma redefine_extname X509_get_ext_by_critical sunw_X509_get_ext_by_cr
3373 #pragma redefine_extname X509_get_ext_by_NID sunw_X509_get_ext_by_NID
3374 #pragma redefine_extname X509_get_ext_by_OBJ sunw_X509_get_ext_by_OBJ
3375 #pragma redefine_extname X509_get_ext_count sunw_X509_get_ext_count
3376 #pragma redefine_extname X509_get_ext_d2i sunw_X509_get_ext_d2i
3377 #pragma redefine_extname X509_get_issuer_name sunw_X509_get_issuer_name
3378 #pragma redefine_extname X509_get_pubkey sunw_X509_get_pubkey
3379 #pragma redefine_extname X509_get_pubkey_parameters sunw_X509_get_pubkey_
3380 #pragma redefine_extname X509_get_serialNumber sunw_X509_get_serialNumber
3381 #pragma redefine_extname X509_get_subject_name sunw_X509_get_subject_name
3382 #pragma redefine_extname X509_get0_pubkey_bitstr sunw_X509_get0_pubkey_bi
3383 #pragma redefine_extname X509_get1_email sunw_X509_get1_email
3384 #pragma redefine_extname X509_get1_ocsp sunw_X509_get1_ocsp
3385 #pragma redefine_extname X509_gmtime_adj sunw_X509_gmtime_adj
3386 #pragma redefine_extname X509_INFO_free sunw_X509_INFO_free
3387 #pragma redefine_extname X509_INFO_new sunw_X509_INFO_new
3388 #pragma redefine_extname X509_issuer_and_serial_cmp sunw_X509_issuer_and_
3389 #pragma redefine_extname X509_issuer_and_serial_hash sunw_X509_issuer_and
3390 #pragma redefine_extname X509_issuer_name_cmp sunw_X509_issuer_name_cmp
3391 #pragma redefine_extname X509_issuer_name_hash sunw_X509_issuer_name_hash
3392 #pragma redefine_extname X509_issuer_name_hash_old sunw_X509_issuer_name_
3393 #pragma redefine_extname X509_it sunw_X509_it
3394 #pragma redefine_extname X509_keyid_get0 sunw_X509_keyid_get0
3395 #pragma redefine_extname X509_keyid_set1 sunw_X509_keyid_set1
3396 #pragma redefine_extname X509_load_cert_crl_file sunw_X509_load_cert_crl_
3397 #pragma redefine_extname X509_load_cert_file sunw_X509_load_cert_file
3398 #pragma redefine_extname X509_load_crl_file sunw_X509_load_crl_file
3399 #pragma redefine_extname X509_LOOKUP_by_alias sunw_X509_LOOKUP_by_alias
3400 #pragma redefine_extname X509_LOOKUP_by_fingerprint sunw_X509_LOOKUP_by_f
3401 #pragma redefine_extname X509_LOOKUP_by_issuer_serial sunw_X509_LOOKUP_by
3402 #pragma redefine_extname X509_LOOKUP_by_subject sunw_X509_LOOKUP_by_subje
3403 #pragma redefine_extname X509_LOOKUP_ctrl sunw_X509_LOOKUP_ctrl
3404 #pragma redefine_extname X509_LOOKUP_file sunw_X509_LOOKUP_file
3405 #pragma redefine_extname X509_LOOKUP_free sunw_X509_LOOKUP_free
3406 #pragma redefine_extname X509_LOOKUP_hash_dir sunw_X509_LOOKUP_hash_dir
3407 #pragma redefine_extname X509_LOOKUP_init sunw_X509_LOOKUP_init
3408 #pragma redefine_extname X509_LOOKUP_new sunw_X509_LOOKUP_new
3409 #pragma redefine_extname X509_LOOKUP_shutdown sunw_X509_LOOKUP_shutdown
3410 #pragma redefine_extname X509_NAME_add_entry sunw_X509_NAME_add_entry
3411 #pragma redefine_extname X509_NAME_add_entry_by_NID sunw_X509_NAME_add_en
3412 #pragma redefine_extname X509_NAME_add_entry_by_OBJ sunw_X509_NAME_add_en
3413 #pragma redefine_extname X509_NAME_add_entry_by_txt sunw_X509_NAME_add_en
3414 #pragma redefine_extname X509_NAME_cmp sunw_X509_NAME_cmp
3415 #pragma redefine_extname X509_NAME_delete_entry sunw_X509_NAME_delete_ent
3416 #pragma redefine_extname X509_NAME_digest sunw_X509_NAME_digest
3417 #pragma redefine_extname X509_NAME_dup sunw_X509_NAME_dup
3418 #pragma redefine_extname X509_NAME_ENTRIES_it sunw_X509_NAME_ENTRIES_it
3419 #pragma redefine_extname X509_NAME_entry_count sunw_X509_NAME_entry_count
3420 #pragma redefine_extname X509_NAME_ENTRY_create_by_NID sunw_X509_NAME_ENT
3421 #pragma redefine_extname X509_NAME_ENTRY_create_by_OBJ sunw_X509_NAME_ENT
3422 #pragma redefine_extname X509_NAME_ENTRY_create_by_txt sunw_X509_NAME_ENT
3423 #pragma redefine_extname X509_NAME_ENTRY_dup sunw_X509_NAME_ENTRY_dup
3424 #pragma redefine_extname X509_NAME_ENTRY_free sunw_X509_NAME_ENTRY_free
3425 #pragma redefine_extname X509_NAME_ENTRY_get_data sunw_X509_NAME_ENTRY_ge
3426 #pragma redefine_extname X509_NAME_ENTRY_get_object sunw_X509_NAME_ENTRY_
3427 #pragma redefine_extname X509_NAME_ENTRY_it sunw_X509_NAME_ENTRY_it

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 53

3428 #pragma redefine_extname X509_NAME_ENTRY_new sunw_X509_NAME_ENTRY_new
3429 #pragma redefine_extname X509_NAME_ENTRY_set_data sunw_X509_NAME_ENTRY_se
3430 #pragma redefine_extname X509_NAME_ENTRY_set_object sunw_X509_NAME_ENTRY_
3431 #pragma redefine_extname x509_name_ff sunw_x509_name_ff
3432 #pragma redefine_extname X509_NAME_free sunw_X509_NAME_free
3433 #pragma redefine_extname X509_NAME_get_entry sunw_X509_NAME_get_entry
3434 #pragma redefine_extname X509_NAME_get_index_by_NID sunw_X509_NAME_get_in
3435 #pragma redefine_extname X509_NAME_get_index_by_OBJ sunw_X509_NAME_get_in
3436 #pragma redefine_extname X509_NAME_get_text_by_NID sunw_X509_NAME_get_tex
3437 #pragma redefine_extname X509_NAME_get_text_by_OBJ sunw_X509_NAME_get_tex
3438 #pragma redefine_extname X509_NAME_hash sunw_X509_NAME_hash
3439 #pragma redefine_extname X509_NAME_hash_old sunw_X509_NAME_hash_old
3440 #pragma redefine_extname X509_NAME_INTERNAL_it sunw_X509_NAME_INTERNAL_it
3441 #pragma redefine_extname X509_NAME_it sunw_X509_NAME_it
3442 #pragma redefine_extname X509_NAME_new sunw_X509_NAME_new
3443 #pragma redefine_extname X509_NAME_oneline sunw_X509_NAME_oneline
3444 #pragma redefine_extname X509_NAME_print sunw_X509_NAME_print
3445 #pragma redefine_extname X509_NAME_print_ex sunw_X509_NAME_print_ex
3446 #pragma redefine_extname X509_NAME_print_ex_fp sunw_X509_NAME_print_ex_fp
3447 #pragma redefine_extname X509_NAME_set sunw_X509_NAME_set
3448 #pragma redefine_extname X509_new sunw_X509_new
3449 #pragma redefine_extname X509_OBJECT_free_contents sunw_X509_OBJECT_free_
3450 #pragma redefine_extname X509_OBJECT_idx_by_subject sunw_X509_OBJECT_idx_
3451 #pragma redefine_extname X509_OBJECT_retrieve_by_subject sunw_X509_OBJECT
3452 #pragma redefine_extname X509_OBJECT_retrieve_match sunw_X509_OBJECT_retr
3453 #pragma redefine_extname X509_OBJECT_up_ref_count sunw_X509_OBJECT_up_ref
3454 #pragma redefine_extname X509_ocspid_print sunw_X509_ocspid_print
3455 #pragma redefine_extname X509_PKEY_free sunw_X509_PKEY_free
3456 #pragma redefine_extname X509_PKEY_new sunw_X509_PKEY_new
3457 #pragma redefine_extname X509_policy_check sunw_X509_policy_check
3458 #pragma redefine_extname X509_policy_level_get0_node sunw_X509_policy_lev
3459 #pragma redefine_extname X509_policy_level_node_count sunw_X509_policy_le
3460 #pragma redefine_extname X509_policy_node_get0_parent sunw_X509_policy_no
3461 #pragma redefine_extname X509_policy_node_get0_policy sunw_X509_policy_no
3462 #pragma redefine_extname X509_policy_node_get0_qualifiers sunw_X509_polic
3463 #pragma redefine_extname X509_POLICY_NODE_print sunw_X509_POLICY_NODE_pri
3464 #pragma redefine_extname X509_policy_tree_free sunw_X509_policy_tree_free
3465 #pragma redefine_extname X509_policy_tree_get0_level sunw_X509_policy_tre
3466 #pragma redefine_extname X509_policy_tree_get0_policies sunw_X509_policy_
3467 #pragma redefine_extname X509_policy_tree_get0_user_policies sunw_X509_po
3468 #pragma redefine_extname X509_policy_tree_level_count sunw_X509_policy_tr
3469 #pragma redefine_extname X509_print sunw_X509_print
3470 #pragma redefine_extname X509_print_ex sunw_X509_print_ex
3471 #pragma redefine_extname X509_print_ex_fp sunw_X509_print_ex_fp
3472 #pragma redefine_extname X509_print_fp sunw_X509_print_fp
3473 #pragma redefine_extname X509_pubkey_digest sunw_X509_pubkey_digest
3474 #pragma redefine_extname X509_PUBKEY_free sunw_X509_PUBKEY_free
3475 #pragma redefine_extname X509_PUBKEY_get sunw_X509_PUBKEY_get
3476 #pragma redefine_extname X509_PUBKEY_get0_param sunw_X509_PUBKEY_get0_par
3477 #pragma redefine_extname X509_PUBKEY_it sunw_X509_PUBKEY_it
3478 #pragma redefine_extname X509_PUBKEY_new sunw_X509_PUBKEY_new
3479 #pragma redefine_extname X509_PUBKEY_set sunw_X509_PUBKEY_set
3480 #pragma redefine_extname X509_PUBKEY_set0_param sunw_X509_PUBKEY_set0_par
3481 #pragma redefine_extname X509_PURPOSE_add sunw_X509_PURPOSE_add
3482 #pragma redefine_extname X509_PURPOSE_cleanup sunw_X509_PURPOSE_cleanup
3483 #pragma redefine_extname X509_PURPOSE_get_by_id sunw_X509_PURPOSE_get_by_
3484 #pragma redefine_extname X509_PURPOSE_get_by_sname sunw_X509_PURPOSE_get_
3485 #pragma redefine_extname X509_PURPOSE_get_count sunw_X509_PURPOSE_get_cou
3486 #pragma redefine_extname X509_PURPOSE_get_id sunw_X509_PURPOSE_get_id
3487 #pragma redefine_extname X509_PURPOSE_get_trust sunw_X509_PURPOSE_get_tru
3488 #pragma redefine_extname X509_PURPOSE_get0 sunw_X509_PURPOSE_get0
3489 #pragma redefine_extname X509_PURPOSE_get0_name sunw_X509_PURPOSE_get0_na
3490 #pragma redefine_extname X509_PURPOSE_get0_sname sunw_X509_PURPOSE_get0_s
3491 #pragma redefine_extname X509_PURPOSE_set sunw_X509_PURPOSE_set
3492 #pragma redefine_extname X509_reject_clear sunw_X509_reject_clear
3493 #pragma redefine_extname X509_REQ_add_extensions sunw_X509_REQ_add_extens

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 54

3494 #pragma redefine_extname X509_REQ_add_extensions_nid sunw_X509_REQ_add_ex
3495 #pragma redefine_extname X509_REQ_add1_attr sunw_X509_REQ_add1_attr
3496 #pragma redefine_extname X509_REQ_add1_attr_by_NID sunw_X509_REQ_add1_att
3497 #pragma redefine_extname X509_REQ_add1_attr_by_OBJ sunw_X509_REQ_add1_att
3498 #pragma redefine_extname X509_REQ_add1_attr_by_txt sunw_X509_REQ_add1_att
3499 #pragma redefine_extname X509_REQ_check_private_key sunw_X509_REQ_check_p
3500 #pragma redefine_extname X509_REQ_delete_attr sunw_X509_REQ_delete_attr
3501 #pragma redefine_extname X509_REQ_digest sunw_X509_REQ_digest
3502 #pragma redefine_extname X509_REQ_dup sunw_X509_REQ_dup
3503 #pragma redefine_extname X509_REQ_extension_nid sunw_X509_REQ_extension_n
3504 #pragma redefine_extname X509_REQ_free sunw_X509_REQ_free
3505 #pragma redefine_extname X509_REQ_get_attr sunw_X509_REQ_get_attr
3506 #pragma redefine_extname X509_REQ_get_attr_by_NID sunw_X509_REQ_get_attr_
3507 #pragma redefine_extname X509_REQ_get_attr_by_OBJ sunw_X509_REQ_get_attr_
3508 #pragma redefine_extname X509_REQ_get_attr_count sunw_X509_REQ_get_attr_c
3509 #pragma redefine_extname X509_REQ_get_extension_nids sunw_X509_REQ_get_ex
3510 #pragma redefine_extname X509_REQ_get_extensions sunw_X509_REQ_get_extens
3511 #pragma redefine_extname X509_REQ_get_pubkey sunw_X509_REQ_get_pubkey
3512 #pragma redefine_extname X509_REQ_get1_email sunw_X509_REQ_get1_email
3513 #pragma redefine_extname X509_REQ_INFO_free sunw_X509_REQ_INFO_free
3514 #pragma redefine_extname X509_REQ_INFO_it sunw_X509_REQ_INFO_it
3515 #pragma redefine_extname X509_REQ_INFO_new sunw_X509_REQ_INFO_new
3516 #pragma redefine_extname X509_REQ_it sunw_X509_REQ_it
3517 #pragma redefine_extname X509_REQ_new sunw_X509_REQ_new
3518 #pragma redefine_extname X509_REQ_print sunw_X509_REQ_print
3519 #pragma redefine_extname X509_REQ_print_ex sunw_X509_REQ_print_ex
3520 #pragma redefine_extname X509_REQ_print_fp sunw_X509_REQ_print_fp
3521 #pragma redefine_extname X509_REQ_set_extension_nids sunw_X509_REQ_set_ex
3522 #pragma redefine_extname X509_REQ_set_pubkey sunw_X509_REQ_set_pubkey
3523 #pragma redefine_extname X509_REQ_set_subject_name sunw_X509_REQ_set_subj
3524 #pragma redefine_extname X509_REQ_set_version sunw_X509_REQ_set_version
3525 #pragma redefine_extname X509_REQ_sign sunw_X509_REQ_sign
3526 #pragma redefine_extname X509_REQ_sign_ctx sunw_X509_REQ_sign_ctx
3527 #pragma redefine_extname X509_REQ_to_X509 sunw_X509_REQ_to_X509
3528 #pragma redefine_extname X509_REQ_verify sunw_X509_REQ_verify
3529 #pragma redefine_extname X509_REVOKED_add_ext sunw_X509_REVOKED_add_ext
3530 #pragma redefine_extname X509_REVOKED_add1_ext_i2d sunw_X509_REVOKED_add1
3531 #pragma redefine_extname X509_REVOKED_delete_ext sunw_X509_REVOKED_delete
3532 #pragma redefine_extname X509_REVOKED_free sunw_X509_REVOKED_free
3533 #pragma redefine_extname X509_REVOKED_get_ext sunw_X509_REVOKED_get_ext
3534 #pragma redefine_extname X509_REVOKED_get_ext_by_critical sunw_X509_REVOK
3535 #pragma redefine_extname X509_REVOKED_get_ext_by_NID sunw_X509_REVOKED_ge
3536 #pragma redefine_extname X509_REVOKED_get_ext_by_OBJ sunw_X509_REVOKED_ge
3537 #pragma redefine_extname X509_REVOKED_get_ext_count sunw_X509_REVOKED_get
3538 #pragma redefine_extname X509_REVOKED_get_ext_d2i sunw_X509_REVOKED_get_e
3539 #pragma redefine_extname X509_REVOKED_it sunw_X509_REVOKED_it
3540 #pragma redefine_extname X509_REVOKED_new sunw_X509_REVOKED_new
3541 #pragma redefine_extname X509_REVOKED_set_revocationDate sunw_X509_REVOKE
3542 #pragma redefine_extname X509_REVOKED_set_serialNumber sunw_X509_REVOKED_
3543 #pragma redefine_extname X509_set_ex_data sunw_X509_set_ex_data
3544 #pragma redefine_extname X509_set_issuer_name sunw_X509_set_issuer_name
3545 #pragma redefine_extname X509_set_notAfter sunw_X509_set_notAfter
3546 #pragma redefine_extname X509_set_notBefore sunw_X509_set_notBefore
3547 #pragma redefine_extname X509_set_pubkey sunw_X509_set_pubkey
3548 #pragma redefine_extname X509_set_serialNumber sunw_X509_set_serialNumber
3549 #pragma redefine_extname X509_set_subject_name sunw_X509_set_subject_name
3550 #pragma redefine_extname X509_set_version sunw_X509_set_version
3551 #pragma redefine_extname X509_SIG_free sunw_X509_SIG_free
3552 #pragma redefine_extname X509_SIG_it sunw_X509_SIG_it
3553 #pragma redefine_extname X509_SIG_new sunw_X509_SIG_new
3554 #pragma redefine_extname X509_sign sunw_X509_sign
3555 #pragma redefine_extname X509_sign_ctx sunw_X509_sign_ctx
3556 #pragma redefine_extname X509_signature_dump sunw_X509_signature_dump
3557 #pragma redefine_extname X509_signature_print sunw_X509_signature_print
3558 #pragma redefine_extname X509_STORE_add_cert sunw_X509_STORE_add_cert
3559 #pragma redefine_extname X509_STORE_add_crl sunw_X509_STORE_add_crl

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 55

3560 #pragma redefine_extname X509_STORE_add_lookup sunw_X509_STORE_add_lookup
3561 #pragma redefine_extname X509_STORE_CTX_cleanup sunw_X509_STORE_CTX_clean
3562 #pragma redefine_extname X509_STORE_CTX_free sunw_X509_STORE_CTX_free
3563 #pragma redefine_extname X509_STORE_CTX_get_chain sunw_X509_STORE_CTX_get
3564 #pragma redefine_extname X509_STORE_CTX_get_current_cert sunw_X509_STORE_
3565 #pragma redefine_extname X509_STORE_CTX_get_error sunw_X509_STORE_CTX_get
3566 #pragma redefine_extname X509_STORE_CTX_get_error_depth sunw_X509_STORE_C
3567 #pragma redefine_extname X509_STORE_CTX_get_ex_data sunw_X509_STORE_CTX_g
3568 #pragma redefine_extname X509_STORE_CTX_get_ex_new_index sunw_X509_STORE_
3569 #pragma redefine_extname X509_STORE_CTX_get_explicit_policy sunw_X509_STO
3570 #pragma redefine_extname X509_STORE_CTX_get0_current_crl sunw_X509_STORE_
3571 #pragma redefine_extname X509_STORE_CTX_get0_current_issuer sunw_X509_STO
3572 #pragma redefine_extname X509_STORE_CTX_get0_param sunw_X509_STORE_CTX_ge
3573 #pragma redefine_extname X509_STORE_CTX_get0_parent_ctx sunw_X509_STORE_C
3574 #pragma redefine_extname X509_STORE_CTX_get0_policy_tree sunw_X509_STORE_
3575 #pragma redefine_extname X509_STORE_CTX_get1_chain sunw_X509_STORE_CTX_ge
3576 #pragma redefine_extname X509_STORE_CTX_get1_issuer sunw_X509_STORE_CTX_g
3577 #pragma redefine_extname X509_STORE_CTX_init sunw_X509_STORE_CTX_init
3578 #pragma redefine_extname X509_STORE_CTX_new sunw_X509_STORE_CTX_new
3579 #pragma redefine_extname X509_STORE_CTX_purpose_inherit sunw_X509_STORE_C
3580 #pragma redefine_extname X509_STORE_CTX_set_cert sunw_X509_STORE_CTX_set_
3581 #pragma redefine_extname X509_STORE_CTX_set_chain sunw_X509_STORE_CTX_set
3582 #pragma redefine_extname X509_STORE_CTX_set_default sunw_X509_STORE_CTX_s
3583 #pragma redefine_extname X509_STORE_CTX_set_depth sunw_X509_STORE_CTX_set
3584 #pragma redefine_extname X509_STORE_CTX_set_error sunw_X509_STORE_CTX_set
3585 #pragma redefine_extname X509_STORE_CTX_set_ex_data sunw_X509_STORE_CTX_s
3586 #pragma redefine_extname X509_STORE_CTX_set_flags sunw_X509_STORE_CTX_set
3587 #pragma redefine_extname X509_STORE_CTX_set_purpose sunw_X509_STORE_CTX_s
3588 #pragma redefine_extname X509_STORE_CTX_set_time sunw_X509_STORE_CTX_set_
3589 #pragma redefine_extname X509_STORE_CTX_set_trust sunw_X509_STORE_CTX_set
3590 #pragma redefine_extname X509_STORE_CTX_set_verify_cb sunw_X509_STORE_CTX
3591 #pragma redefine_extname X509_STORE_CTX_set0_crls sunw_X509_STORE_CTX_set
3592 #pragma redefine_extname X509_STORE_CTX_set0_param sunw_X509_STORE_CTX_se
3593 #pragma redefine_extname X509_STORE_CTX_trusted_stack sunw_X509_STORE_CTX
3594 #pragma redefine_extname X509_STORE_free sunw_X509_STORE_free
3595 #pragma redefine_extname X509_STORE_get_by_subject sunw_X509_STORE_get_by
3596 #pragma redefine_extname X509_STORE_get1_certs sunw_X509_STORE_get1_certs
3597 #pragma redefine_extname X509_STORE_get1_crls sunw_X509_STORE_get1_crls
3598 #pragma redefine_extname X509_STORE_load_locations sunw_X509_STORE_load_l
3599 #pragma redefine_extname X509_STORE_new sunw_X509_STORE_new
3600 #pragma redefine_extname X509_STORE_set_default_paths sunw_X509_STORE_set
3601 #pragma redefine_extname X509_STORE_set_depth sunw_X509_STORE_set_depth
3602 #pragma redefine_extname X509_STORE_set_flags sunw_X509_STORE_set_flags
3603 #pragma redefine_extname X509_STORE_set_purpose sunw_X509_STORE_set_purpo
3604 #pragma redefine_extname X509_STORE_set_trust sunw_X509_STORE_set_trust
3605 #pragma redefine_extname X509_STORE_set_verify_cb sunw_X509_STORE_set_ver
3606 #pragma redefine_extname X509_STORE_set1_param sunw_X509_STORE_set1_param
3607 #pragma redefine_extname X509_subject_name_cmp sunw_X509_subject_name_cmp
3608 #pragma redefine_extname X509_subject_name_hash sunw_X509_subject_name_ha
3609 #pragma redefine_extname X509_subject_name_hash_old sunw_X509_subject_nam
3610 #pragma redefine_extname X509_supported_extension sunw_X509_supported_ext
3611 #pragma redefine_extname X509_time_adj sunw_X509_time_adj
3612 #pragma redefine_extname X509_time_adj_ex sunw_X509_time_adj_ex
3613 #pragma redefine_extname X509_to_X509_REQ sunw_X509_to_X509_REQ
3614 #pragma redefine_extname X509_TRUST_add sunw_X509_TRUST_add
3615 #pragma redefine_extname X509_TRUST_cleanup sunw_X509_TRUST_cleanup
3616 #pragma redefine_extname X509_trust_clear sunw_X509_trust_clear
3617 #pragma redefine_extname X509_TRUST_get_by_id sunw_X509_TRUST_get_by_id
3618 #pragma redefine_extname X509_TRUST_get_count sunw_X509_TRUST_get_count
3619 #pragma redefine_extname X509_TRUST_get_flags sunw_X509_TRUST_get_flags
3620 #pragma redefine_extname X509_TRUST_get_trust sunw_X509_TRUST_get_trust
3621 #pragma redefine_extname X509_TRUST_get0 sunw_X509_TRUST_get0
3622 #pragma redefine_extname X509_TRUST_get0_name sunw_X509_TRUST_get0_name
3623 #pragma redefine_extname X509_TRUST_set sunw_X509_TRUST_set
3624 #pragma redefine_extname X509_TRUST_set_default sunw_X509_TRUST_set_defau
3625 #pragma redefine_extname X509_VAL_free sunw_X509_VAL_free

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 56

3626 #pragma redefine_extname X509_VAL_it sunw_X509_VAL_it
3627 #pragma redefine_extname X509_VAL_new sunw_X509_VAL_new
3628 #pragma redefine_extname X509_verify sunw_X509_verify
3629 #pragma redefine_extname X509_verify_cert sunw_X509_verify_cert
3630 #pragma redefine_extname X509_verify_cert_error_string sunw_X509_verify_c
3631 #pragma redefine_extname X509_VERIFY_PARAM_add0_policy sunw_X509_VERIFY_P
3632 #pragma redefine_extname X509_VERIFY_PARAM_add0_table sunw_X509_VERIFY_PA
3633 #pragma redefine_extname X509_VERIFY_PARAM_clear_flags sunw_X509_VERIFY_P
3634 #pragma redefine_extname X509_VERIFY_PARAM_free sunw_X509_VERIFY_PARAM_fr
3635 #pragma redefine_extname X509_VERIFY_PARAM_get_depth sunw_X509_VERIFY_PAR
3636 #pragma redefine_extname X509_VERIFY_PARAM_get_flags sunw_X509_VERIFY_PAR
3637 #pragma redefine_extname X509_VERIFY_PARAM_inherit sunw_X509_VERIFY_PARAM
3638 #pragma redefine_extname X509_VERIFY_PARAM_lookup sunw_X509_VERIFY_PARAM_
3639 #pragma redefine_extname X509_VERIFY_PARAM_new sunw_X509_VERIFY_PARAM_new
3640 #pragma redefine_extname X509_VERIFY_PARAM_set_depth sunw_X509_VERIFY_PAR
3641 #pragma redefine_extname X509_VERIFY_PARAM_set_flags sunw_X509_VERIFY_PAR
3642 #pragma redefine_extname X509_VERIFY_PARAM_set_purpose sunw_X509_VERIFY_P
3643 #pragma redefine_extname X509_VERIFY_PARAM_set_time sunw_X509_VERIFY_PARA
3644 #pragma redefine_extname X509_VERIFY_PARAM_set_trust sunw_X509_VERIFY_PAR
3645 #pragma redefine_extname X509_VERIFY_PARAM_set1 sunw_X509_VERIFY_PARAM_se
3646 #pragma redefine_extname X509_VERIFY_PARAM_set1_name sunw_X509_VERIFY_PAR
3647 #pragma redefine_extname X509_VERIFY_PARAM_set1_policies sunw_X509_VERIFY
3648 #pragma redefine_extname X509_VERIFY_PARAM_table_cleanup sunw_X509_VERIFY
3649 #pragma redefine_extname X509_version sunw_X509_version
3650 #pragma redefine_extname X509at_add1_attr sunw_X509at_add1_attr
3651 #pragma redefine_extname X509at_add1_attr_by_NID sunw_X509at_add1_attr_by
3652 #pragma redefine_extname X509at_add1_attr_by_OBJ sunw_X509at_add1_attr_by
3653 #pragma redefine_extname X509at_add1_attr_by_txt sunw_X509at_add1_attr_by
3654 #pragma redefine_extname X509at_delete_attr sunw_X509at_delete_attr
3655 #pragma redefine_extname X509at_get_attr sunw_X509at_get_attr
3656 #pragma redefine_extname X509at_get_attr_by_NID sunw_X509at_get_attr_by_N
3657 #pragma redefine_extname X509at_get_attr_by_OBJ sunw_X509at_get_attr_by_O
3658 #pragma redefine_extname X509at_get_attr_count sunw_X509at_get_attr_count
3659 #pragma redefine_extname X509at_get0_data_by_OBJ sunw_X509at_get0_data_by
3660 #pragma redefine_extname X509v3_add_ext sunw_X509v3_add_ext
3661 #pragma redefine_extname X509V3_add_standard_extensions sunw_X509V3_add_s
3662 #pragma redefine_extname X509V3_add_value sunw_X509V3_add_value
3663 #pragma redefine_extname X509V3_add_value_bool sunw_X509V3_add_value_bool
3664 #pragma redefine_extname X509V3_add_value_bool_nf sunw_X509V3_add_value_b
3665 #pragma redefine_extname X509V3_add_value_int sunw_X509V3_add_value_int
3666 #pragma redefine_extname X509V3_add_value_uchar sunw_X509V3_add_value_uch
3667 #pragma redefine_extname X509V3_add1_i2d sunw_X509V3_add1_i2d
3668 #pragma redefine_extname X509V3_conf_free sunw_X509V3_conf_free
3669 #pragma redefine_extname X509v3_delete_ext sunw_X509v3_delete_ext
3670 #pragma redefine_extname X509V3_EXT_add sunw_X509V3_EXT_add
3671 #pragma redefine_extname X509V3_EXT_add_alias sunw_X509V3_EXT_add_alias
3672 #pragma redefine_extname X509V3_EXT_add_conf sunw_X509V3_EXT_add_conf
3673 #pragma redefine_extname X509V3_EXT_add_list sunw_X509V3_EXT_add_list
3674 #pragma redefine_extname X509V3_EXT_add_nconf sunw_X509V3_EXT_add_nconf
3675 #pragma redefine_extname X509V3_EXT_add_nconf_sk sunw_X509V3_EXT_add_ncon
3676 #pragma redefine_extname X509V3_EXT_cleanup sunw_X509V3_EXT_cleanup
3677 #pragma redefine_extname X509V3_EXT_conf sunw_X509V3_EXT_conf
3678 #pragma redefine_extname X509V3_EXT_conf_nid sunw_X509V3_EXT_conf_nid
3679 #pragma redefine_extname X509V3_EXT_CRL_add_conf sunw_X509V3_EXT_CRL_add_
3680 #pragma redefine_extname X509V3_EXT_CRL_add_nconf sunw_X509V3_EXT_CRL_add
3681 #pragma redefine_extname X509V3_EXT_d2i sunw_X509V3_EXT_d2i
3682 #pragma redefine_extname X509V3_EXT_get sunw_X509V3_EXT_get
3683 #pragma redefine_extname X509V3_EXT_get_nid sunw_X509V3_EXT_get_nid
3684 #pragma redefine_extname X509V3_EXT_i2d sunw_X509V3_EXT_i2d
3685 #pragma redefine_extname X509V3_EXT_nconf sunw_X509V3_EXT_nconf
3686 #pragma redefine_extname X509V3_EXT_nconf_nid sunw_X509V3_EXT_nconf_nid
3687 #pragma redefine_extname X509V3_EXT_print sunw_X509V3_EXT_print
3688 #pragma redefine_extname X509V3_EXT_print_fp sunw_X509V3_EXT_print_fp
3689 #pragma redefine_extname X509V3_EXT_REQ_add_conf sunw_X509V3_EXT_REQ_add_
3690 #pragma redefine_extname X509V3_EXT_REQ_add_nconf sunw_X509V3_EXT_REQ_add
3691 #pragma redefine_extname X509V3_EXT_val_prn sunw_X509V3_EXT_val_prn

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 57

3692 #pragma redefine_extname X509V3_extensions_print sunw_X509V3_extensions_p
3693 #pragma redefine_extname X509V3_get_d2i sunw_X509V3_get_d2i
3694 #pragma redefine_extname X509v3_get_ext sunw_X509v3_get_ext
3695 #pragma redefine_extname X509v3_get_ext_by_critical sunw_X509v3_get_ext_b
3696 #pragma redefine_extname X509v3_get_ext_by_NID sunw_X509v3_get_ext_by_NID
3697 #pragma redefine_extname X509v3_get_ext_by_OBJ sunw_X509v3_get_ext_by_OBJ
3698 #pragma redefine_extname X509v3_get_ext_count sunw_X509v3_get_ext_count
3699 #pragma redefine_extname X509V3_get_section sunw_X509V3_get_section
3700 #pragma redefine_extname X509V3_get_string sunw_X509V3_get_string
3701 #pragma redefine_extname X509V3_get_value_bool sunw_X509V3_get_value_bool
3702 #pragma redefine_extname X509V3_get_value_int sunw_X509V3_get_value_int
3703 #pragma redefine_extname X509V3_NAME_from_section sunw_X509V3_NAME_from_s
3704 #pragma redefine_extname X509V3_parse_list sunw_X509V3_parse_list
3705 #pragma redefine_extname X509V3_section_free sunw_X509V3_section_free
3706 #pragma redefine_extname X509V3_set_conf_lhash sunw_X509V3_set_conf_lhash
3707 #pragma redefine_extname X509V3_set_ctx sunw_X509V3_set_ctx
3708 #pragma redefine_extname X509V3_set_nconf sunw_X509V3_set_nconf
3709 #pragma redefine_extname X509V3_string_free sunw_X509V3_string_free
3710 #pragma redefine_extname ZLONG_it sunw_ZLONG_it
3711 #pragma redefine_extname BIO_f_ssl sunw_BIO_f_ssl
3712 #pragma redefine_extname BIO_new_buffer_ssl_connect sunw_BIO_new_buffer_s
3713 #pragma redefine_extname BIO_new_ssl sunw_BIO_new_ssl
3714 #pragma redefine_extname BIO_new_ssl_connect sunw_BIO_new_ssl_connect
3715 #pragma redefine_extname BIO_ssl_copy_session_id sunw_BIO_ssl_copy_sessio
3716 #pragma redefine_extname BIO_ssl_shutdown sunw_BIO_ssl_shutdown
3717 #pragma redefine_extname d2i_SSL_SESSION sunw_d2i_SSL_SESSION
3718 #pragma redefine_extname do_dtls1_write sunw_do_dtls1_write
3719 #pragma redefine_extname dtls1_accept sunw_dtls1_accept
3720 #pragma redefine_extname dtls1_buffer_message sunw_dtls1_buffer_message
3721 #pragma redefine_extname dtls1_check_timeout_num sunw_dtls1_check_timeout
3722 #pragma redefine_extname dtls1_clear sunw_dtls1_clear
3723 #pragma redefine_extname dtls1_clear_record_buffer sunw_dtls1_clear_recor
3724 #pragma redefine_extname dtls1_client_hello sunw_dtls1_client_hello
3725 #pragma redefine_extname dtls1_connect sunw_dtls1_connect
3726 #pragma redefine_extname dtls1_ctrl sunw_dtls1_ctrl
3727 #pragma redefine_extname dtls1_default_timeout sunw_dtls1_default_timeout
3728 #pragma redefine_extname dtls1_dispatch_alert sunw_dtls1_dispatch_alert
3729 #pragma redefine_extname dtls1_do_write sunw_dtls1_do_write
3730 #pragma redefine_extname dtls1_double_timeout sunw_dtls1_double_timeout
3731 #pragma redefine_extname dtls1_enc sunw_dtls1_enc
3732 #pragma redefine_extname dtls1_free sunw_dtls1_free
3733 #pragma redefine_extname dtls1_get_ccs_header sunw_dtls1_get_ccs_header
3734 #pragma redefine_extname dtls1_get_cipher sunw_dtls1_get_cipher
3735 #pragma redefine_extname dtls1_get_message sunw_dtls1_get_message
3736 #pragma redefine_extname dtls1_get_message_header sunw_dtls1_get_message_
3737 #pragma redefine_extname dtls1_get_queue_priority sunw_dtls1_get_queue_pr
3738 #pragma redefine_extname dtls1_get_record sunw_dtls1_get_record
3739 #pragma redefine_extname dtls1_get_timeout sunw_dtls1_get_timeout
3740 #pragma redefine_extname dtls1_handle_timeout sunw_dtls1_handle_timeout
3741 #pragma redefine_extname dtls1_heartbeat sunw_dtls1_heartbeat
3742 #pragma redefine_extname dtls1_is_timer_expired sunw_dtls1_is_timer_expir
3743 #pragma redefine_extname dtls1_listen sunw_dtls1_listen
3744 #pragma redefine_extname dtls1_min_mtu sunw_dtls1_min_mtu
3745 #pragma redefine_extname dtls1_new sunw_dtls1_new
3746 #pragma redefine_extname dtls1_output_cert_chain sunw_dtls1_output_cert_c
3747 #pragma redefine_extname dtls1_process_heartbeat sunw_dtls1_process_heart
3748 #pragma redefine_extname dtls1_read_bytes sunw_dtls1_read_bytes
3749 #pragma redefine_extname dtls1_read_failed sunw_dtls1_read_failed
3750 #pragma redefine_extname dtls1_reset_seq_numbers sunw_dtls1_reset_seq_num
3751 #pragma redefine_extname dtls1_retransmit_buffered_messages sunw_dtls1_re
3752 #pragma redefine_extname dtls1_retransmit_message sunw_dtls1_retransmit_m
3753 #pragma redefine_extname dtls1_send_certificate_request sunw_dtls1_send_c
3754 #pragma redefine_extname dtls1_send_change_cipher_spec sunw_dtls1_send_ch
3755 #pragma redefine_extname dtls1_send_client_certificate sunw_dtls1_send_cl
3756 #pragma redefine_extname dtls1_send_client_key_exchange sunw_dtls1_send_c
3757 #pragma redefine_extname dtls1_send_client_verify sunw_dtls1_send_client_

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 58

3758 #pragma redefine_extname dtls1_send_finished sunw_dtls1_send_finished
3759 #pragma redefine_extname dtls1_send_hello_request sunw_dtls1_send_hello_r
3760 #pragma redefine_extname dtls1_send_newsession_ticket sunw_dtls1_send_new
3761 #pragma redefine_extname dtls1_send_server_certificate sunw_dtls1_send_se
3762 #pragma redefine_extname dtls1_send_server_done sunw_dtls1_send_server_do
3763 #pragma redefine_extname dtls1_send_server_hello sunw_dtls1_send_server_h
3764 #pragma redefine_extname dtls1_send_server_key_exchange sunw_dtls1_send_s
3765 #pragma redefine_extname dtls1_set_message_header sunw_dtls1_set_message_
3766 #pragma redefine_extname dtls1_shutdown sunw_dtls1_shutdown
3767 #pragma redefine_extname dtls1_start_timer sunw_dtls1_start_timer
3768 #pragma redefine_extname dtls1_stop_timer sunw_dtls1_stop_timer
3769 #pragma redefine_extname dtls1_version_str sunw_dtls1_version_str
3770 #pragma redefine_extname dtls1_write_app_data_bytes sunw_dtls1_write_app_
3771 #pragma redefine_extname dtls1_write_bytes sunw_dtls1_write_bytes
3772 #pragma redefine_extname DTLSv1_client_method sunw_DTLSv1_client_method
3773 #pragma redefine_extname DTLSv1_enc_data sunw_DTLSv1_enc_data
3774 #pragma redefine_extname DTLSv1_method sunw_DTLSv1_method
3775 #pragma redefine_extname DTLSv1_server_method sunw_DTLSv1_server_method
3776 #pragma redefine_extname ERR_load_SSL_strings sunw_ERR_load_SSL_strings
3777 #pragma redefine_extname i2d_SSL_SESSION sunw_i2d_SSL_SESSION
3778 #pragma redefine_extname n_ssl3_mac sunw_n_ssl3_mac
3779 #pragma redefine_extname OBJ_bsearch_ssl_cipher_id sunw_OBJ_bsearch_ssl_c
3780 #pragma redefine_extname PEM_read_bio_SSL_SESSION sunw_PEM_read_bio_SSL_S
3781 #pragma redefine_extname PEM_read_SSL_SESSION sunw_PEM_read_SSL_SESSION
3782 #pragma redefine_extname PEM_write_bio_SSL_SESSION sunw_PEM_write_bio_SSL
3783 #pragma redefine_extname PEM_write_SSL_SESSION sunw_PEM_write_SSL_SESSION
3784 #pragma redefine_extname SRP_Calc_A_param sunw_SRP_Calc_A_param
3785 #pragma redefine_extname SRP_generate_client_master_secret sunw_SRP_gener
3786 #pragma redefine_extname SRP_generate_server_master_secret sunw_SRP_gener
3787 #pragma redefine_extname SSL_accept sunw_SSL_accept
3788 #pragma redefine_extname SSL_add_client_CA sunw_SSL_add_client_CA
3789 #pragma redefine_extname ssl_add_clienthello_renegotiate_ext sunw_ssl_add
3790 #pragma redefine_extname ssl_add_clienthello_tlsext sunw_ssl_add_clienthe
3791 #pragma redefine_extname ssl_add_clienthello_use_srtp_ext sunw_ssl_add_cl
3792 #pragma redefine_extname SSL_add_dir_cert_subjects_to_stack sunw_SSL_add_
3793 #pragma redefine_extname SSL_add_file_cert_subjects_to_stack sunw_SSL_add
3794 #pragma redefine_extname ssl_add_serverhello_renegotiate_ext sunw_ssl_add
3795 #pragma redefine_extname ssl_add_serverhello_tlsext sunw_ssl_add_serverhe
3796 #pragma redefine_extname ssl_add_serverhello_use_srtp_ext sunw_ssl_add_se
3797 #pragma redefine_extname SSL_alert_desc_string sunw_SSL_alert_desc_string
3798 #pragma redefine_extname SSL_alert_desc_string_long sunw_SSL_alert_desc_s
3799 #pragma redefine_extname SSL_alert_type_string sunw_SSL_alert_type_string
3800 #pragma redefine_extname SSL_alert_type_string_long sunw_SSL_alert_type_s
3801 #pragma redefine_extname ssl_bad_method sunw_ssl_bad_method
3802 #pragma redefine_extname ssl_bytes_to_cipher_list sunw_ssl_bytes_to_ciphe
3803 #pragma redefine_extname SSL_cache_hit sunw_SSL_cache_hit
3804 #pragma redefine_extname SSL_callback_ctrl sunw_SSL_callback_ctrl
3805 #pragma redefine_extname ssl_cert_dup sunw_ssl_cert_dup
3806 #pragma redefine_extname ssl_cert_free sunw_ssl_cert_free
3807 #pragma redefine_extname ssl_cert_inst sunw_ssl_cert_inst
3808 #pragma redefine_extname ssl_cert_new sunw_ssl_cert_new
3809 #pragma redefine_extname ssl_cert_type sunw_ssl_cert_type
3810 #pragma redefine_extname ssl_check_clienthello_tlsext_early sunw_ssl_chec
3811 #pragma redefine_extname ssl_check_clienthello_tlsext_late sunw_ssl_check
3812 #pragma redefine_extname SSL_check_private_key sunw_SSL_check_private_key
3813 #pragma redefine_extname ssl_check_serverhello_tlsext sunw_ssl_check_serv
3814 #pragma redefine_extname SSL_CIPHER_description sunw_SSL_CIPHER_descripti
3815 #pragma redefine_extname SSL_CIPHER_get_bits sunw_SSL_CIPHER_get_bits
3816 #pragma redefine_extname ssl_cipher_get_evp sunw_ssl_cipher_get_evp
3817 #pragma redefine_extname SSL_CIPHER_get_id sunw_SSL_CIPHER_get_id
3818 #pragma redefine_extname SSL_CIPHER_get_name sunw_SSL_CIPHER_get_name
3819 #pragma redefine_extname SSL_CIPHER_get_version sunw_SSL_CIPHER_get_versi
3820 #pragma redefine_extname ssl_cipher_id_cmp sunw_ssl_cipher_id_cmp
3821 #pragma redefine_extname ssl_cipher_list_to_bytes sunw_ssl_cipher_list_to
3822 #pragma redefine_extname ssl_cipher_ptr_id_cmp sunw_ssl_cipher_ptr_id_cmp
3823 #pragma redefine_extname SSL_clear sunw_SSL_clear

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 59

3824 #pragma redefine_extname ssl_clear_bad_session sunw_ssl_clear_bad_session
3825 #pragma redefine_extname ssl_clear_cipher_ctx sunw_ssl_clear_cipher_ctx
3826 #pragma redefine_extname ssl_clear_hash_ctx sunw_ssl_clear_hash_ctx
3827 #pragma redefine_extname SSL_COMP_add_compression_method sunw_SSL_COMP_ad
3828 #pragma redefine_extname SSL_COMP_get_compression_methods sunw_SSL_COMP_g
3829 #pragma redefine_extname SSL_COMP_get_name sunw_SSL_COMP_get_name
3830 #pragma redefine_extname SSL_connect sunw_SSL_connect
3831 #pragma redefine_extname SSL_copy_session_id sunw_SSL_copy_session_id
3832 #pragma redefine_extname ssl_create_cipher_list sunw_ssl_create_cipher_li
3833 #pragma redefine_extname SSL_ctrl sunw_SSL_ctrl
3834 #pragma redefine_extname SSL_CTX_add_client_CA sunw_SSL_CTX_add_client_CA
3835 #pragma redefine_extname SSL_CTX_add_session sunw_SSL_CTX_add_session
3836 #pragma redefine_extname SSL_CTX_callback_ctrl sunw_SSL_CTX_callback_ctrl
3837 #pragma redefine_extname SSL_CTX_check_private_key sunw_SSL_CTX_check_pri
3838 #pragma redefine_extname SSL_CTX_ctrl sunw_SSL_CTX_ctrl
3839 #pragma redefine_extname SSL_CTX_flush_sessions sunw_SSL_CTX_flush_sessio
3840 #pragma redefine_extname SSL_CTX_free sunw_SSL_CTX_free
3841 #pragma redefine_extname SSL_CTX_get_cert_store sunw_SSL_CTX_get_cert_sto
3842 #pragma redefine_extname SSL_CTX_get_client_CA_list sunw_SSL_CTX_get_clie
3843 #pragma redefine_extname SSL_CTX_get_client_cert_cb sunw_SSL_CTX_get_clie
3844 #pragma redefine_extname SSL_CTX_get_ex_data sunw_SSL_CTX_get_ex_data
3845 #pragma redefine_extname SSL_CTX_get_ex_new_index sunw_SSL_CTX_get_ex_new
3846 #pragma redefine_extname SSL_CTX_get_info_callback sunw_SSL_CTX_get_info_
3847 #pragma redefine_extname SSL_CTX_get_quiet_shutdown sunw_SSL_CTX_get_quie
3848 #pragma redefine_extname SSL_CTX_get_timeout sunw_SSL_CTX_get_timeout
3849 #pragma redefine_extname SSL_CTX_get_verify_callback sunw_SSL_CTX_get_ver
3850 #pragma redefine_extname SSL_CTX_get_verify_depth sunw_SSL_CTX_get_verify
3851 #pragma redefine_extname SSL_CTX_get_verify_mode sunw_SSL_CTX_get_verify_
3852 #pragma redefine_extname SSL_CTX_load_verify_locations sunw_SSL_CTX_load_
3853 #pragma redefine_extname SSL_CTX_new sunw_SSL_CTX_new
3854 #pragma redefine_extname SSL_CTX_remove_session sunw_SSL_CTX_remove_sessi
3855 #pragma redefine_extname SSL_CTX_sess_get_get_cb sunw_SSL_CTX_sess_get_ge
3856 #pragma redefine_extname SSL_CTX_sess_get_new_cb sunw_SSL_CTX_sess_get_ne
3857 #pragma redefine_extname SSL_CTX_sess_get_remove_cb sunw_SSL_CTX_sess_get
3858 #pragma redefine_extname SSL_CTX_sess_set_get_cb sunw_SSL_CTX_sess_set_ge
3859 #pragma redefine_extname SSL_CTX_sess_set_new_cb sunw_SSL_CTX_sess_set_ne
3860 #pragma redefine_extname SSL_CTX_sess_set_remove_cb sunw_SSL_CTX_sess_set
3861 #pragma redefine_extname SSL_CTX_sessions sunw_SSL_CTX_sessions
3862 #pragma redefine_extname SSL_CTX_set_cert_store sunw_SSL_CTX_set_cert_sto
3863 #pragma redefine_extname SSL_CTX_set_cert_verify_callback sunw_SSL_CTX_se
3864 #pragma redefine_extname SSL_CTX_set_cipher_list sunw_SSL_CTX_set_cipher_
3865 #pragma redefine_extname SSL_CTX_set_client_CA_list sunw_SSL_CTX_set_clie
3866 #pragma redefine_extname SSL_CTX_set_client_cert_cb sunw_SSL_CTX_set_clie
3867 #pragma redefine_extname SSL_CTX_set_client_cert_engine sunw_SSL_CTX_set_
3868 #pragma redefine_extname SSL_CTX_set_cookie_generate_cb sunw_SSL_CTX_set_
3869 #pragma redefine_extname SSL_CTX_set_cookie_verify_cb sunw_SSL_CTX_set_co
3870 #pragma redefine_extname SSL_CTX_set_default_passwd_cb sunw_SSL_CTX_set_d
3871 #pragma redefine_extname SSL_CTX_set_default_passwd_cb_userdata sunw_SSL_
3872 #pragma redefine_extname SSL_CTX_set_default_verify_paths sunw_SSL_CTX_se
3873 #pragma redefine_extname SSL_CTX_set_ex_data sunw_SSL_CTX_set_ex_data
3874 #pragma redefine_extname SSL_CTX_set_generate_session_id sunw_SSL_CTX_set
3875 #pragma redefine_extname SSL_CTX_set_info_callback sunw_SSL_CTX_set_info_
3876 #pragma redefine_extname SSL_CTX_set_msg_callback sunw_SSL_CTX_set_msg_ca
3877 #pragma redefine_extname SSL_CTX_set_next_proto_select_cb sunw_SSL_CTX_se
3878 #pragma redefine_extname SSL_CTX_set_next_protos_advertised_cb sunw_SSL_C
3879 #pragma redefine_extname SSL_CTX_set_psk_client_callback sunw_SSL_CTX_set
3880 #pragma redefine_extname SSL_CTX_set_psk_server_callback sunw_SSL_CTX_set
3881 #pragma redefine_extname SSL_CTX_set_purpose sunw_SSL_CTX_set_purpose
3882 #pragma redefine_extname SSL_CTX_set_quiet_shutdown sunw_SSL_CTX_set_quie
3883 #pragma redefine_extname SSL_CTX_set_session_id_context sunw_SSL_CTX_set_
3884 #pragma redefine_extname SSL_CTX_set_srp_cb_arg sunw_SSL_CTX_set_srp_cb_a
3885 #pragma redefine_extname SSL_CTX_set_srp_client_pwd_callback sunw_SSL_CTX
3886 #pragma redefine_extname SSL_CTX_set_srp_password sunw_SSL_CTX_set_srp_pa
3887 #pragma redefine_extname SSL_CTX_set_srp_strength sunw_SSL_CTX_set_srp_st
3888 #pragma redefine_extname SSL_CTX_set_srp_username sunw_SSL_CTX_set_srp_us
3889 #pragma redefine_extname SSL_CTX_set_srp_username_callback sunw_SSL_CTX_s

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 60

3890 #pragma redefine_extname SSL_CTX_set_srp_verify_param_callback sunw_SSL_C
3891 #pragma redefine_extname SSL_CTX_set_ssl_version sunw_SSL_CTX_set_ssl_ver
3892 #pragma redefine_extname SSL_CTX_set_timeout sunw_SSL_CTX_set_timeout
3893 #pragma redefine_extname SSL_CTX_set_tlsext_use_srtp sunw_SSL_CTX_set_tls
3894 #pragma redefine_extname SSL_CTX_set_tmp_dh_callback sunw_SSL_CTX_set_tmp
3895 #pragma redefine_extname SSL_CTX_set_tmp_rsa_callback sunw_SSL_CTX_set_tm
3896 #pragma redefine_extname SSL_CTX_set_trust sunw_SSL_CTX_set_trust
3897 #pragma redefine_extname SSL_CTX_set_verify sunw_SSL_CTX_set_verify
3898 #pragma redefine_extname SSL_CTX_set_verify_depth sunw_SSL_CTX_set_verify
3899 #pragma redefine_extname SSL_CTX_set1_param sunw_SSL_CTX_set1_param
3900 #pragma redefine_extname SSL_CTX_SRP_CTX_free sunw_SSL_CTX_SRP_CTX_free
3901 #pragma redefine_extname SSL_CTX_SRP_CTX_init sunw_SSL_CTX_SRP_CTX_init
3902 #pragma redefine_extname SSL_CTX_use_certificate sunw_SSL_CTX_use_certifi
3903 #pragma redefine_extname SSL_CTX_use_certificate_ASN1 sunw_SSL_CTX_use_ce
3904 #pragma redefine_extname SSL_CTX_use_certificate_chain_file sunw_SSL_CTX_
3905 #pragma redefine_extname SSL_CTX_use_certificate_file sunw_SSL_CTX_use_ce
3906 #pragma redefine_extname SSL_CTX_use_PrivateKey sunw_SSL_CTX_use_PrivateK
3907 #pragma redefine_extname SSL_CTX_use_PrivateKey_ASN1 sunw_SSL_CTX_use_Pri
3908 #pragma redefine_extname SSL_CTX_use_PrivateKey_file sunw_SSL_CTX_use_Pri
3909 #pragma redefine_extname SSL_CTX_use_psk_identity_hint sunw_SSL_CTX_use_p
3910 #pragma redefine_extname SSL_CTX_use_RSAPrivateKey sunw_SSL_CTX_use_RSAPr
3911 #pragma redefine_extname SSL_CTX_use_RSAPrivateKey_ASN1 sunw_SSL_CTX_use_
3912 #pragma redefine_extname SSL_CTX_use_RSAPrivateKey_file sunw_SSL_CTX_use_
3913 #pragma redefine_extname ssl_do_client_cert_cb sunw_ssl_do_client_cert_cb
3914 #pragma redefine_extname SSL_do_handshake sunw_SSL_do_handshake
3915 #pragma redefine_extname SSL_dup sunw_SSL_dup
3916 #pragma redefine_extname SSL_dup_CA_list sunw_SSL_dup_CA_list
3917 #pragma redefine_extname SSL_export_keying_material sunw_SSL_export_keyin
3918 #pragma redefine_extname ssl_fill_hello_random sunw_ssl_fill_hello_random
3919 #pragma redefine_extname SSL_free sunw_SSL_free
3920 #pragma redefine_extname ssl_free_wbio_buffer sunw_ssl_free_wbio_buffer
3921 #pragma redefine_extname ssl_get_algorithm2 sunw_ssl_get_algorithm2
3922 #pragma redefine_extname SSL_get_certificate sunw_SSL_get_certificate
3923 #pragma redefine_extname SSL_get_cipher_list sunw_SSL_get_cipher_list
3924 #pragma redefine_extname SSL_get_ciphers sunw_SSL_get_ciphers
3925 #pragma redefine_extname ssl_get_ciphers_by_id sunw_ssl_get_ciphers_by_id
3926 #pragma redefine_extname SSL_get_client_CA_list sunw_SSL_get_client_CA_li
3927 #pragma redefine_extname SSL_get_current_cipher sunw_SSL_get_current_ciph
3928 #pragma redefine_extname SSL_get_current_compression sunw_SSL_get_current
3929 #pragma redefine_extname SSL_get_current_expansion sunw_SSL_get_current_e
3930 #pragma redefine_extname SSL_get_default_timeout sunw_SSL_get_default_tim
3931 #pragma redefine_extname SSL_get_error sunw_SSL_get_error
3932 #pragma redefine_extname SSL_get_ex_data sunw_SSL_get_ex_data
3933 #pragma redefine_extname SSL_get_ex_data_X509_STORE_CTX_idx sunw_SSL_get_
3934 #pragma redefine_extname SSL_get_ex_new_index sunw_SSL_get_ex_new_index
3935 #pragma redefine_extname SSL_get_fd sunw_SSL_get_fd
3936 #pragma redefine_extname SSL_get_finished sunw_SSL_get_finished
3937 #pragma redefine_extname ssl_get_handshake_digest sunw_ssl_get_handshake_
3938 #pragma redefine_extname SSL_get_info_callback sunw_SSL_get_info_callback
3939 #pragma redefine_extname ssl_get_new_session sunw_ssl_get_new_session
3940 #pragma redefine_extname SSL_get_peer_cert_chain sunw_SSL_get_peer_cert_c
3941 #pragma redefine_extname SSL_get_peer_certificate sunw_SSL_get_peer_certi
3942 #pragma redefine_extname SSL_get_peer_finished sunw_SSL_get_peer_finished
3943 #pragma redefine_extname ssl_get_prev_session sunw_ssl_get_prev_session
3944 #pragma redefine_extname SSL_get_privatekey sunw_SSL_get_privatekey
3945 #pragma redefine_extname SSL_get_psk_identity sunw_SSL_get_psk_identity
3946 #pragma redefine_extname SSL_get_psk_identity_hint sunw_SSL_get_psk_ident
3947 #pragma redefine_extname SSL_get_quiet_shutdown sunw_SSL_get_quiet_shutdo
3948 #pragma redefine_extname SSL_get_rbio sunw_SSL_get_rbio
3949 #pragma redefine_extname SSL_get_read_ahead sunw_SSL_get_read_ahead
3950 #pragma redefine_extname SSL_get_rfd sunw_SSL_get_rfd
3951 #pragma redefine_extname SSL_get_selected_srtp_profile sunw_SSL_get_selec
3952 #pragma redefine_extname ssl_get_server_send_cert sunw_ssl_get_server_sen
3953 #pragma redefine_extname ssl_get_server_send_pkey sunw_ssl_get_server_sen
3954 #pragma redefine_extname SSL_get_servername sunw_SSL_get_servername
3955 #pragma redefine_extname SSL_get_servername_type sunw_SSL_get_servername_

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 61

3956 #pragma redefine_extname SSL_get_session sunw_SSL_get_session
3957 #pragma redefine_extname SSL_get_shared_ciphers sunw_SSL_get_shared_ciphe
3958 #pragma redefine_extname SSL_get_shutdown sunw_SSL_get_shutdown
3959 #pragma redefine_extname ssl_get_sign_pkey sunw_ssl_get_sign_pkey
3960 #pragma redefine_extname SSL_get_srp_g sunw_SSL_get_srp_g
3961 #pragma redefine_extname SSL_get_srp_N sunw_SSL_get_srp_N
3962 #pragma redefine_extname SSL_get_srp_userinfo sunw_SSL_get_srp_userinfo
3963 #pragma redefine_extname SSL_get_srp_username sunw_SSL_get_srp_username
3964 #pragma redefine_extname SSL_get_srtp_profiles sunw_SSL_get_srtp_profiles
3965 #pragma redefine_extname SSL_get_SSL_CTX sunw_SSL_get_SSL_CTX
3966 #pragma redefine_extname SSL_get_ssl_method sunw_SSL_get_ssl_method
3967 #pragma redefine_extname SSL_get_verify_callback sunw_SSL_get_verify_call
3968 #pragma redefine_extname SSL_get_verify_depth sunw_SSL_get_verify_depth
3969 #pragma redefine_extname SSL_get_verify_mode sunw_SSL_get_verify_mode
3970 #pragma redefine_extname SSL_get_verify_result sunw_SSL_get_verify_result
3971 #pragma redefine_extname SSL_get_version sunw_SSL_get_version
3972 #pragma redefine_extname SSL_get_wbio sunw_SSL_get_wbio
3973 #pragma redefine_extname SSL_get_wfd sunw_SSL_get_wfd
3974 #pragma redefine_extname SSL_get0_next_proto_negotiated sunw_SSL_get0_nex
3975 #pragma redefine_extname SSL_get1_session sunw_SSL_get1_session
3976 #pragma redefine_extname SSL_has_matching_session_id sunw_SSL_has_matchin
3977 #pragma redefine_extname ssl_init_wbio_buffer sunw_ssl_init_wbio_buffer
3978 #pragma redefine_extname SSL_library_init sunw_SSL_library_init
3979 #pragma redefine_extname ssl_load_ciphers sunw_ssl_load_ciphers
3980 #pragma redefine_extname SSL_load_client_CA_file sunw_SSL_load_client_CA_
3981 #pragma redefine_extname SSL_load_error_strings sunw_SSL_load_error_strin
3982 #pragma redefine_extname SSL_new sunw_SSL_new
3983 #pragma redefine_extname ssl_ok sunw_ssl_ok
3984 #pragma redefine_extname ssl_parse_clienthello_renegotiate_ext sunw_ssl_p
3985 #pragma redefine_extname ssl_parse_clienthello_tlsext sunw_ssl_parse_clie
3986 #pragma redefine_extname ssl_parse_clienthello_use_srtp_ext sunw_ssl_pars
3987 #pragma redefine_extname ssl_parse_serverhello_renegotiate_ext sunw_ssl_p
3988 #pragma redefine_extname ssl_parse_serverhello_tlsext sunw_ssl_parse_serv
3989 #pragma redefine_extname ssl_parse_serverhello_use_srtp_ext sunw_ssl_pars
3990 #pragma redefine_extname SSL_peek sunw_SSL_peek
3991 #pragma redefine_extname SSL_pending sunw_SSL_pending
3992 #pragma redefine_extname ssl_prepare_clienthello_tlsext sunw_ssl_prepare_
3993 #pragma redefine_extname ssl_prepare_serverhello_tlsext sunw_ssl_prepare_
3994 #pragma redefine_extname SSL_read sunw_SSL_read
3995 #pragma redefine_extname SSL_renegotiate sunw_SSL_renegotiate
3996 #pragma redefine_extname SSL_renegotiate_abbreviated sunw_SSL_renegotiate
3997 #pragma redefine_extname SSL_renegotiate_pending sunw_SSL_renegotiate_pen
3998 #pragma redefine_extname ssl_replace_hash sunw_ssl_replace_hash
3999 #pragma redefine_extname SSL_rstate_string sunw_SSL_rstate_string
4000 #pragma redefine_extname SSL_rstate_string_long sunw_SSL_rstate_string_lo
4001 #pragma redefine_extname SSL_select_next_proto sunw_SSL_select_next_proto
4002 #pragma redefine_extname ssl_sess_cert_free sunw_ssl_sess_cert_free
4003 #pragma redefine_extname ssl_sess_cert_new sunw_ssl_sess_cert_new
4004 #pragma redefine_extname SSL_SESSION_free sunw_SSL_SESSION_free
4005 #pragma redefine_extname SSL_SESSION_get_compress_id sunw_SSL_SESSION_get
4006 #pragma redefine_extname SSL_SESSION_get_ex_data sunw_SSL_SESSION_get_ex_
4007 #pragma redefine_extname SSL_SESSION_get_ex_new_index sunw_SSL_SESSION_ge
4008 #pragma redefine_extname SSL_SESSION_get_id sunw_SSL_SESSION_get_id
4009 #pragma redefine_extname SSL_SESSION_get_time sunw_SSL_SESSION_get_time
4010 #pragma redefine_extname SSL_SESSION_get_timeout sunw_SSL_SESSION_get_tim
4011 #pragma redefine_extname SSL_SESSION_get0_peer sunw_SSL_SESSION_get0_peer
4012 #pragma redefine_extname SSL_SESSION_new sunw_SSL_SESSION_new
4013 #pragma redefine_extname SSL_SESSION_print sunw_SSL_SESSION_print
4014 #pragma redefine_extname SSL_SESSION_print_fp sunw_SSL_SESSION_print_fp
4015 #pragma redefine_extname SSL_SESSION_set_ex_data sunw_SSL_SESSION_set_ex_
4016 #pragma redefine_extname SSL_SESSION_set_time sunw_SSL_SESSION_set_time
4017 #pragma redefine_extname SSL_SESSION_set_timeout sunw_SSL_SESSION_set_tim
4018 #pragma redefine_extname SSL_SESSION_set1_id_context sunw_SSL_SESSION_set
4019 #pragma redefine_extname SSL_set_accept_state sunw_SSL_set_accept_state
4020 #pragma redefine_extname SSL_set_bio sunw_SSL_set_bio
4021 #pragma redefine_extname ssl_set_cert_masks sunw_ssl_set_cert_masks

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 62

4022 #pragma redefine_extname SSL_set_cipher_list sunw_SSL_set_cipher_list
4023 #pragma redefine_extname SSL_set_client_CA_list sunw_SSL_set_client_CA_li
4024 #pragma redefine_extname SSL_set_connect_state sunw_SSL_set_connect_state
4025 #pragma redefine_extname SSL_set_debug sunw_SSL_set_debug
4026 #pragma redefine_extname SSL_set_ex_data sunw_SSL_set_ex_data
4027 #pragma redefine_extname SSL_set_fd sunw_SSL_set_fd
4028 #pragma redefine_extname SSL_set_generate_session_id sunw_SSL_set_generat
4029 #pragma redefine_extname SSL_set_info_callback sunw_SSL_set_info_callback
4030 #pragma redefine_extname SSL_set_msg_callback sunw_SSL_set_msg_callback
4031 #pragma redefine_extname ssl_set_peer_cert_type sunw_ssl_set_peer_cert_ty
4032 #pragma redefine_extname SSL_set_psk_client_callback sunw_SSL_set_psk_cli
4033 #pragma redefine_extname SSL_set_psk_server_callback sunw_SSL_set_psk_ser
4034 #pragma redefine_extname SSL_set_purpose sunw_SSL_set_purpose
4035 #pragma redefine_extname SSL_set_quiet_shutdown sunw_SSL_set_quiet_shutdo
4036 #pragma redefine_extname SSL_set_read_ahead sunw_SSL_set_read_ahead
4037 #pragma redefine_extname SSL_set_rfd sunw_SSL_set_rfd
4038 #pragma redefine_extname SSL_set_session sunw_SSL_set_session
4039 #pragma redefine_extname SSL_set_session_id_context sunw_SSL_set_session_
4040 #pragma redefine_extname SSL_set_session_secret_cb sunw_SSL_set_session_s
4041 #pragma redefine_extname SSL_set_session_ticket_ext sunw_SSL_set_session_
4042 #pragma redefine_extname SSL_set_session_ticket_ext_cb sunw_SSL_set_sessi
4043 #pragma redefine_extname SSL_set_shutdown sunw_SSL_set_shutdown
4044 #pragma redefine_extname SSL_set_srp_server_param sunw_SSL_set_srp_server
4045 #pragma redefine_extname SSL_set_srp_server_param_pw sunw_SSL_set_srp_ser
4046 #pragma redefine_extname SSL_set_SSL_CTX sunw_SSL_set_SSL_CTX
4047 #pragma redefine_extname SSL_set_ssl_method sunw_SSL_set_ssl_method
4048 #pragma redefine_extname SSL_set_state sunw_SSL_set_state
4049 #pragma redefine_extname SSL_set_tlsext_use_srtp sunw_SSL_set_tlsext_use_
4050 #pragma redefine_extname SSL_set_tmp_dh_callback sunw_SSL_set_tmp_dh_call
4051 #pragma redefine_extname SSL_set_tmp_rsa_callback sunw_SSL_set_tmp_rsa_ca
4052 #pragma redefine_extname SSL_set_trust sunw_SSL_set_trust
4053 #pragma redefine_extname SSL_set_verify sunw_SSL_set_verify
4054 #pragma redefine_extname SSL_set_verify_depth sunw_SSL_set_verify_depth
4055 #pragma redefine_extname SSL_set_verify_result sunw_SSL_set_verify_result
4056 #pragma redefine_extname SSL_set_wfd sunw_SSL_set_wfd
4057 #pragma redefine_extname SSL_set1_param sunw_SSL_set1_param
4058 #pragma redefine_extname SSL_shutdown sunw_SSL_shutdown
4059 #pragma redefine_extname SSL_SRP_CTX_free sunw_SSL_SRP_CTX_free
4060 #pragma redefine_extname SSL_SRP_CTX_init sunw_SSL_SRP_CTX_init
4061 #pragma redefine_extname SSL_srp_server_param_with_username sunw_SSL_srp_
4062 #pragma redefine_extname SSL_state sunw_SSL_state
4063 #pragma redefine_extname SSL_state_string sunw_SSL_state_string
4064 #pragma redefine_extname SSL_state_string_long sunw_SSL_state_string_long
4065 #pragma redefine_extname ssl_undefined_const_function sunw_ssl_undefined_
4066 #pragma redefine_extname ssl_undefined_function sunw_ssl_undefined_functi
4067 #pragma redefine_extname ssl_undefined_void_function sunw_ssl_undefined_v
4068 #pragma redefine_extname ssl_update_cache sunw_ssl_update_cache
4069 #pragma redefine_extname SSL_use_certificate sunw_SSL_use_certificate
4070 #pragma redefine_extname SSL_use_certificate_ASN1 sunw_SSL_use_certificat
4071 #pragma redefine_extname SSL_use_certificate_file sunw_SSL_use_certificat
4072 #pragma redefine_extname SSL_use_PrivateKey sunw_SSL_use_PrivateKey
4073 #pragma redefine_extname SSL_use_PrivateKey_ASN1 sunw_SSL_use_PrivateKey_
4074 #pragma redefine_extname SSL_use_PrivateKey_file sunw_SSL_use_PrivateKey_
4075 #pragma redefine_extname SSL_use_psk_identity_hint sunw_SSL_use_psk_ident
4076 #pragma redefine_extname SSL_use_RSAPrivateKey sunw_SSL_use_RSAPrivateKey
4077 #pragma redefine_extname SSL_use_RSAPrivateKey_ASN1 sunw_SSL_use_RSAPriva
4078 #pragma redefine_extname SSL_use_RSAPrivateKey_file sunw_SSL_use_RSAPriva
4079 #pragma redefine_extname ssl_verify_alarm_type sunw_ssl_verify_alarm_type
4080 #pragma redefine_extname ssl_verify_cert_chain sunw_ssl_verify_cert_chain
4081 #pragma redefine_extname SSL_version sunw_SSL_version
4082 #pragma redefine_extname SSL_version_str sunw_SSL_version_str
4083 #pragma redefine_extname SSL_want sunw_SSL_want
4084 #pragma redefine_extname SSL_write sunw_SSL_write
4085 #pragma redefine_extname ssl2_accept sunw_ssl2_accept
4086 #pragma redefine_extname ssl2_callback_ctrl sunw_ssl2_callback_ctrl
4087 #pragma redefine_extname ssl2_ciphers sunw_ssl2_ciphers

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 63

4088 #pragma redefine_extname ssl2_clear sunw_ssl2_clear
4089 #pragma redefine_extname ssl2_connect sunw_ssl2_connect
4090 #pragma redefine_extname ssl2_ctrl sunw_ssl2_ctrl
4091 #pragma redefine_extname ssl2_ctx_callback_ctrl sunw_ssl2_ctx_callback_ct
4092 #pragma redefine_extname ssl2_ctx_ctrl sunw_ssl2_ctx_ctrl
4093 #pragma redefine_extname ssl2_default_timeout sunw_ssl2_default_timeout
4094 #pragma redefine_extname ssl2_do_write sunw_ssl2_do_write
4095 #pragma redefine_extname ssl2_enc sunw_ssl2_enc
4096 #pragma redefine_extname ssl2_enc_init sunw_ssl2_enc_init
4097 #pragma redefine_extname ssl2_free sunw_ssl2_free
4098 #pragma redefine_extname ssl2_generate_key_material sunw_ssl2_generate_ke
4099 #pragma redefine_extname ssl2_get_cipher sunw_ssl2_get_cipher
4100 #pragma redefine_extname ssl2_get_cipher_by_char sunw_ssl2_get_cipher_by_
4101 #pragma redefine_extname ssl2_mac sunw_ssl2_mac
4102 #pragma redefine_extname ssl2_new sunw_ssl2_new
4103 #pragma redefine_extname ssl2_num_ciphers sunw_ssl2_num_ciphers
4104 #pragma redefine_extname ssl2_part_read sunw_ssl2_part_read
4105 #pragma redefine_extname ssl2_peek sunw_ssl2_peek
4106 #pragma redefine_extname ssl2_pending sunw_ssl2_pending
4107 #pragma redefine_extname ssl2_put_cipher_by_char sunw_ssl2_put_cipher_by_
4108 #pragma redefine_extname ssl2_read sunw_ssl2_read
4109 #pragma redefine_extname ssl2_return_error sunw_ssl2_return_error
4110 #pragma redefine_extname ssl2_set_certificate sunw_ssl2_set_certificate
4111 #pragma redefine_extname ssl2_shutdown sunw_ssl2_shutdown
4112 #pragma redefine_extname ssl2_version_str sunw_ssl2_version_str
4113 #pragma redefine_extname ssl2_write sunw_ssl2_write
4114 #pragma redefine_extname ssl2_write_error sunw_ssl2_write_error
4115 #pragma redefine_extname ssl23_accept sunw_ssl23_accept
4116 #pragma redefine_extname ssl23_connect sunw_ssl23_connect
4117 #pragma redefine_extname ssl23_default_timeout sunw_ssl23_default_timeout
4118 #pragma redefine_extname ssl23_get_cipher sunw_ssl23_get_cipher
4119 #pragma redefine_extname ssl23_get_cipher_by_char sunw_ssl23_get_cipher_b
4120 #pragma redefine_extname ssl23_get_client_hello sunw_ssl23_get_client_hel
4121 #pragma redefine_extname ssl23_num_ciphers sunw_ssl23_num_ciphers
4122 #pragma redefine_extname ssl23_peek sunw_ssl23_peek
4123 #pragma redefine_extname ssl23_put_cipher_by_char sunw_ssl23_put_cipher_b
4124 #pragma redefine_extname ssl23_read sunw_ssl23_read
4125 #pragma redefine_extname ssl23_read_bytes sunw_ssl23_read_bytes
4126 #pragma redefine_extname ssl23_write sunw_ssl23_write
4127 #pragma redefine_extname ssl23_write_bytes sunw_ssl23_write_bytes
4128 #pragma redefine_extname ssl3_accept sunw_ssl3_accept
4129 #pragma redefine_extname ssl3_alert_code sunw_ssl3_alert_code
4130 #pragma redefine_extname ssl3_callback_ctrl sunw_ssl3_callback_ctrl
4131 #pragma redefine_extname ssl3_cbc_copy_mac sunw_ssl3_cbc_copy_mac
4132 #pragma redefine_extname ssl3_cbc_digest_record sunw_ssl3_cbc_digest_reco
4133 #pragma redefine_extname ssl3_cbc_record_digest_supported sunw_ssl3_cbc_r
4134 #pragma redefine_extname ssl3_cbc_remove_padding sunw_ssl3_cbc_remove_pad
4135 #pragma redefine_extname ssl3_cert_verify_mac sunw_ssl3_cert_verify_mac
4136 #pragma redefine_extname ssl3_change_cipher_state sunw_ssl3_change_cipher
4137 #pragma redefine_extname ssl3_check_cert_and_algorithm sunw_ssl3_check_ce
4138 #pragma redefine_extname ssl3_check_client_hello sunw_ssl3_check_client_h
4139 #pragma redefine_extname ssl3_check_finished sunw_ssl3_check_finished
4140 #pragma redefine_extname ssl3_choose_cipher sunw_ssl3_choose_cipher
4141 #pragma redefine_extname ssl3_ciphers sunw_ssl3_ciphers
4142 #pragma redefine_extname ssl3_cleanup_key_block sunw_ssl3_cleanup_key_blo
4143 #pragma redefine_extname ssl3_clear sunw_ssl3_clear
4144 #pragma redefine_extname ssl3_client_hello sunw_ssl3_client_hello
4145 #pragma redefine_extname ssl3_comp_find sunw_ssl3_comp_find
4146 #pragma redefine_extname ssl3_connect sunw_ssl3_connect
4147 #pragma redefine_extname ssl3_ctrl sunw_ssl3_ctrl
4148 #pragma redefine_extname ssl3_ctx_callback_ctrl sunw_ssl3_ctx_callback_ct
4149 #pragma redefine_extname ssl3_ctx_ctrl sunw_ssl3_ctx_ctrl
4150 #pragma redefine_extname ssl3_default_timeout sunw_ssl3_default_timeout
4151 #pragma redefine_extname ssl3_digest_cached_records sunw_ssl3_digest_cach
4152 #pragma redefine_extname ssl3_dispatch_alert sunw_ssl3_dispatch_alert
4153 #pragma redefine_extname ssl3_do_change_cipher_spec sunw_ssl3_do_change_c

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 64

4154 #pragma redefine_extname ssl3_do_compress sunw_ssl3_do_compress
4155 #pragma redefine_extname ssl3_do_uncompress sunw_ssl3_do_uncompress
4156 #pragma redefine_extname ssl3_do_write sunw_ssl3_do_write
4157 #pragma redefine_extname ssl3_enc sunw_ssl3_enc
4158 #pragma redefine_extname ssl3_final_finish_mac sunw_ssl3_final_finish_mac
4159 #pragma redefine_extname ssl3_finish_mac sunw_ssl3_finish_mac
4160 #pragma redefine_extname ssl3_free sunw_ssl3_free
4161 #pragma redefine_extname ssl3_free_digest_list sunw_ssl3_free_digest_list
4162 #pragma redefine_extname ssl3_generate_master_secret sunw_ssl3_generate_m
4163 #pragma redefine_extname ssl3_get_cert_status sunw_ssl3_get_cert_status
4164 #pragma redefine_extname ssl3_get_cert_verify sunw_ssl3_get_cert_verify
4165 #pragma redefine_extname ssl3_get_certificate_request sunw_ssl3_get_certi
4166 #pragma redefine_extname ssl3_get_cipher sunw_ssl3_get_cipher
4167 #pragma redefine_extname ssl3_get_cipher_by_char sunw_ssl3_get_cipher_by_
4168 #pragma redefine_extname ssl3_get_client_certificate sunw_ssl3_get_client
4169 #pragma redefine_extname ssl3_get_client_hello sunw_ssl3_get_client_hello
4170 #pragma redefine_extname ssl3_get_client_key_exchange sunw_ssl3_get_clien
4171 #pragma redefine_extname ssl3_get_finished sunw_ssl3_get_finished
4172 #pragma redefine_extname ssl3_get_key_exchange sunw_ssl3_get_key_exchange
4173 #pragma redefine_extname ssl3_get_message sunw_ssl3_get_message
4174 #pragma redefine_extname ssl3_get_new_session_ticket sunw_ssl3_get_new_se
4175 #pragma redefine_extname ssl3_get_next_proto sunw_ssl3_get_next_proto
4176 #pragma redefine_extname ssl3_get_req_cert_type sunw_ssl3_get_req_cert_ty
4177 #pragma redefine_extname ssl3_get_server_certificate sunw_ssl3_get_server
4178 #pragma redefine_extname ssl3_get_server_done sunw_ssl3_get_server_done
4179 #pragma redefine_extname ssl3_get_server_hello sunw_ssl3_get_server_hello
4180 #pragma redefine_extname ssl3_init_finished_mac sunw_ssl3_init_finished_m
4181 #pragma redefine_extname ssl3_new sunw_ssl3_new
4182 #pragma redefine_extname ssl3_num_ciphers sunw_ssl3_num_ciphers
4183 #pragma redefine_extname ssl3_output_cert_chain sunw_ssl3_output_cert_cha
4184 #pragma redefine_extname ssl3_peek sunw_ssl3_peek
4185 #pragma redefine_extname ssl3_pending sunw_ssl3_pending
4186 #pragma redefine_extname ssl3_put_cipher_by_char sunw_ssl3_put_cipher_by_
4187 #pragma redefine_extname ssl3_read sunw_ssl3_read
4188 #pragma redefine_extname ssl3_read_bytes sunw_ssl3_read_bytes
4189 #pragma redefine_extname ssl3_read_n sunw_ssl3_read_n
4190 #pragma redefine_extname ssl3_record_sequence_update sunw_ssl3_record_seq
4191 #pragma redefine_extname ssl3_release_read_buffer sunw_ssl3_release_read_
4192 #pragma redefine_extname ssl3_release_write_buffer sunw_ssl3_release_writ
4193 #pragma redefine_extname ssl3_renegotiate sunw_ssl3_renegotiate
4194 #pragma redefine_extname ssl3_renegotiate_check sunw_ssl3_renegotiate_che
4195 #pragma redefine_extname ssl3_send_alert sunw_ssl3_send_alert
4196 #pragma redefine_extname ssl3_send_cert_status sunw_ssl3_send_cert_status
4197 #pragma redefine_extname ssl3_send_certificate_request sunw_ssl3_send_cer
4198 #pragma redefine_extname ssl3_send_change_cipher_spec sunw_ssl3_send_chan
4199 #pragma redefine_extname ssl3_send_client_certificate sunw_ssl3_send_clie
4200 #pragma redefine_extname ssl3_send_client_key_exchange sunw_ssl3_send_cli
4201 #pragma redefine_extname ssl3_send_client_verify sunw_ssl3_send_client_ve
4202 #pragma redefine_extname ssl3_send_finished sunw_ssl3_send_finished
4203 #pragma redefine_extname ssl3_send_hello_request sunw_ssl3_send_hello_req
4204 #pragma redefine_extname ssl3_send_newsession_ticket sunw_ssl3_send_newse
4205 #pragma redefine_extname ssl3_send_next_proto sunw_ssl3_send_next_proto
4206 #pragma redefine_extname ssl3_send_server_certificate sunw_ssl3_send_serv
4207 #pragma redefine_extname ssl3_send_server_done sunw_ssl3_send_server_done
4208 #pragma redefine_extname ssl3_send_server_hello sunw_ssl3_send_server_hel
4209 #pragma redefine_extname ssl3_send_server_key_exchange sunw_ssl3_send_ser
4210 #pragma redefine_extname ssl3_setup_buffers sunw_ssl3_setup_buffers
4211 #pragma redefine_extname ssl3_setup_key_block sunw_ssl3_setup_key_block
4212 #pragma redefine_extname ssl3_setup_read_buffer sunw_ssl3_setup_read_buff
4213 #pragma redefine_extname ssl3_setup_write_buffer sunw_ssl3_setup_write_bu
4214 #pragma redefine_extname ssl3_shutdown sunw_ssl3_shutdown
4215 #pragma redefine_extname ssl3_undef_enc_method sunw_ssl3_undef_enc_method
4216 #pragma redefine_extname ssl3_version_str sunw_ssl3_version_str
4217 #pragma redefine_extname ssl3_write sunw_ssl3_write
4218 #pragma redefine_extname ssl3_write_bytes sunw_ssl3_write_bytes
4219 #pragma redefine_extname ssl3_write_pending sunw_ssl3_write_pending

new/usr/src/lib/openssl/include/openssl/sunw_prefix.h 65

4220 #pragma redefine_extname SSLv2_client_method sunw_SSLv2_client_method
4221 #pragma redefine_extname SSLv2_method sunw_SSLv2_method
4222 #pragma redefine_extname SSLv2_server_method sunw_SSLv2_server_method
4223 #pragma redefine_extname SSLv23_client_method sunw_SSLv23_client_method
4224 #pragma redefine_extname SSLv23_method sunw_SSLv23_method
4225 #pragma redefine_extname SSLv23_server_method sunw_SSLv23_server_method
4226 #pragma redefine_extname SSLv3_client_method sunw_SSLv3_client_method
4227 #pragma redefine_extname SSLv3_enc_data sunw_SSLv3_enc_data
4228 #pragma redefine_extname SSLv3_method sunw_SSLv3_method
4229 #pragma redefine_extname SSLv3_server_method sunw_SSLv3_server_method
4230 #pragma redefine_extname tls1_alert_code sunw_tls1_alert_code
4231 #pragma redefine_extname tls1_cbc_remove_padding sunw_tls1_cbc_remove_pad
4232 #pragma redefine_extname tls1_cert_verify_mac sunw_tls1_cert_verify_mac
4233 #pragma redefine_extname tls1_change_cipher_state sunw_tls1_change_cipher
4234 #pragma redefine_extname tls1_clear sunw_tls1_clear
4235 #pragma redefine_extname tls1_default_timeout sunw_tls1_default_timeout
4236 #pragma redefine_extname tls1_enc sunw_tls1_enc
4237 #pragma redefine_extname tls1_export_keying_material sunw_tls1_export_key
4238 #pragma redefine_extname tls1_final_finish_mac sunw_tls1_final_finish_mac
4239 #pragma redefine_extname tls1_free sunw_tls1_free
4240 #pragma redefine_extname tls1_generate_master_secret sunw_tls1_generate_m
4241 #pragma redefine_extname tls1_heartbeat sunw_tls1_heartbeat
4242 #pragma redefine_extname tls1_mac sunw_tls1_mac
4243 #pragma redefine_extname tls1_new sunw_tls1_new
4244 #pragma redefine_extname tls1_process_heartbeat sunw_tls1_process_heartbe
4245 #pragma redefine_extname tls1_process_sigalgs sunw_tls1_process_sigalgs
4246 #pragma redefine_extname tls1_process_ticket sunw_tls1_process_ticket
4247 #pragma redefine_extname tls1_setup_key_block sunw_tls1_setup_key_block
4248 #pragma redefine_extname tls1_version_str sunw_tls1_version_str
4249 #pragma redefine_extname tls12_get_hash sunw_tls12_get_hash
4250 #pragma redefine_extname tls12_get_req_sig_algs sunw_tls12_get_req_sig_al
4251 #pragma redefine_extname tls12_get_sigandhash sunw_tls12_get_sigandhash
4252 #pragma redefine_extname tls12_get_sigid sunw_tls12_get_sigid
4253 #pragma redefine_extname TLSv1_1_client_method sunw_TLSv1_1_client_method
4254 #pragma redefine_extname TLSv1_1_method sunw_TLSv1_1_method
4255 #pragma redefine_extname TLSv1_1_server_method sunw_TLSv1_1_server_method
4256 #pragma redefine_extname TLSv1_2_client_method sunw_TLSv1_2_client_method
4257 #pragma redefine_extname TLSv1_2_method sunw_TLSv1_2_method
4258 #pragma redefine_extname TLSv1_2_server_method sunw_TLSv1_2_server_method
4259 #pragma redefine_extname TLSv1_client_method sunw_TLSv1_client_method
4260 #pragma redefine_extname TLSv1_enc_data sunw_TLSv1_enc_data
4261 #pragma redefine_extname TLSv1_method sunw_TLSv1_method
4262 #pragma redefine_extname TLSv1_server_method sunw_TLSv1_server_method

4264 #endif /* _SUNW_PREFIX_H */

new/usr/src/lib/openssl/include/openssl/symhacks.h 1

**
 24302 Fri May 30 18:31:23 2014
new/usr/src/lib/openssl/include/openssl/symhacks.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 #ifndef HEADER_SYMHACKS_H
56 #define HEADER_SYMHACKS_H

58 #include <openssl/e_os2.h>

60 /* Hacks to solve the problem with linkers incapable of handling very long
61 symbol names. In the case of VMS, the limit is 31 characters on VMS for

new/usr/src/lib/openssl/include/openssl/symhacks.h 2

62 VAX. */
63 /* Note that this affects util/libeay.num and util/ssleay.num... you may
64 change those manually, but that’s not recommended, as those files are
65 controlled centrally and updated on Unix, and the central definition
66 may disagree with yours, which in turn may come with shareable library
67 incompatibilities. */
68 #ifdef OPENSSL_SYS_VMS

70 /* Hack a long name in crypto/ex_data.c */
71 #undef CRYPTO_get_ex_data_implementation
72 #define CRYPTO_get_ex_data_implementation CRYPTO_get_ex_data_impl
73 #undef CRYPTO_set_ex_data_implementation
74 #define CRYPTO_set_ex_data_implementation CRYPTO_set_ex_data_impl

76 /* Hack a long name in crypto/asn1/a_mbstr.c */
77 #undef ASN1_STRING_set_default_mask_asc
78 #define ASN1_STRING_set_default_mask_asc ASN1_STRING_set_def_mask_asc

80 #if 0 /* No longer needed, since safestack macro magic does the job */
81 /* Hack the names created with DECLARE_ASN1_SET_OF(PKCS7_SIGNER_INFO) */
82 #undef i2d_ASN1_SET_OF_PKCS7_SIGNER_INFO
83 #define i2d_ASN1_SET_OF_PKCS7_SIGNER_INFO i2d_ASN1_SET_OF_PKCS7_SIGINF
84 #undef d2i_ASN1_SET_OF_PKCS7_SIGNER_INFO
85 #define d2i_ASN1_SET_OF_PKCS7_SIGNER_INFO d2i_ASN1_SET_OF_PKCS7_SIGINF
86 #endif

88 #if 0 /* No longer needed, since safestack macro magic does the job */
89 /* Hack the names created with DECLARE_ASN1_SET_OF(PKCS7_RECIP_INFO) */
90 #undef i2d_ASN1_SET_OF_PKCS7_RECIP_INFO
91 #define i2d_ASN1_SET_OF_PKCS7_RECIP_INFO i2d_ASN1_SET_OF_PKCS7_RECINF
92 #undef d2i_ASN1_SET_OF_PKCS7_RECIP_INFO
93 #define d2i_ASN1_SET_OF_PKCS7_RECIP_INFO d2i_ASN1_SET_OF_PKCS7_RECINF
94 #endif

96 #if 0 /* No longer needed, since safestack macro magic does the job */
97 /* Hack the names created with DECLARE_ASN1_SET_OF(ACCESS_DESCRIPTION) */
98 #undef i2d_ASN1_SET_OF_ACCESS_DESCRIPTION
99 #define i2d_ASN1_SET_OF_ACCESS_DESCRIPTION i2d_ASN1_SET_OF_ACC_DESC
100 #undef d2i_ASN1_SET_OF_ACCESS_DESCRIPTION
101 #define d2i_ASN1_SET_OF_ACCESS_DESCRIPTION d2i_ASN1_SET_OF_ACC_DESC
102 #endif

104 /* Hack the names created with DECLARE_PEM_rw(NETSCAPE_CERT_SEQUENCE) */
105 #undef PEM_read_NETSCAPE_CERT_SEQUENCE
106 #define PEM_read_NETSCAPE_CERT_SEQUENCE PEM_read_NS_CERT_SEQ
107 #undef PEM_write_NETSCAPE_CERT_SEQUENCE
108 #define PEM_write_NETSCAPE_CERT_SEQUENCE PEM_write_NS_CERT_SEQ
109 #undef PEM_read_bio_NETSCAPE_CERT_SEQUENCE
110 #define PEM_read_bio_NETSCAPE_CERT_SEQUENCE PEM_read_bio_NS_CERT_SEQ
111 #undef PEM_write_bio_NETSCAPE_CERT_SEQUENCE
112 #define PEM_write_bio_NETSCAPE_CERT_SEQUENCE PEM_write_bio_NS_CERT_SEQ
113 #undef PEM_write_cb_bio_NETSCAPE_CERT_SEQUENCE
114 #define PEM_write_cb_bio_NETSCAPE_CERT_SEQUENCE PEM_write_cb_bio_NS_CERT_SEQ

116 /* Hack the names created with DECLARE_PEM_rw(PKCS8_PRIV_KEY_INFO) */
117 #undef PEM_read_PKCS8_PRIV_KEY_INFO
118 #define PEM_read_PKCS8_PRIV_KEY_INFO PEM_read_P8_PRIV_KEY_INFO
119 #undef PEM_write_PKCS8_PRIV_KEY_INFO
120 #define PEM_write_PKCS8_PRIV_KEY_INFO PEM_write_P8_PRIV_KEY_INFO
121 #undef PEM_read_bio_PKCS8_PRIV_KEY_INFO
122 #define PEM_read_bio_PKCS8_PRIV_KEY_INFO PEM_read_bio_P8_PRIV_KEY_INFO
123 #undef PEM_write_bio_PKCS8_PRIV_KEY_INFO
124 #define PEM_write_bio_PKCS8_PRIV_KEY_INFO PEM_write_bio_P8_PRIV_KEY_INFO
125 #undef PEM_write_cb_bio_PKCS8_PRIV_KEY_INFO
126 #define PEM_write_cb_bio_PKCS8_PRIV_KEY_INFO PEM_wrt_cb_bio_P8_PRIV_KEY_INFO

new/usr/src/lib/openssl/include/openssl/symhacks.h 3

128 /* Hack other PEM names */
129 #undef PEM_write_bio_PKCS8PrivateKey_nid
130 #define PEM_write_bio_PKCS8PrivateKey_nid PEM_write_bio_PKCS8PrivKey_nid

132 /* Hack some long X509 names */
133 #undef X509_REVOKED_get_ext_by_critical
134 #define X509_REVOKED_get_ext_by_critical X509_REVOKED_get_ext_by_critic
135 #undef X509_policy_tree_get0_user_policies
136 #define X509_policy_tree_get0_user_policies X509_pcy_tree_get0_usr_policies
137 #undef X509_policy_node_get0_qualifiers
138 #define X509_policy_node_get0_qualifiers X509_pcy_node_get0_qualifiers
139 #undef X509_STORE_CTX_get_explicit_policy
140 #define X509_STORE_CTX_get_explicit_policy X509_STORE_CTX_get_expl_policy
141 #undef X509_STORE_CTX_get0_current_issuer
142 #define X509_STORE_CTX_get0_current_issuer X509_STORE_CTX_get0_cur_issuer

144 /* Hack some long CRYPTO names */
145 #undef CRYPTO_set_dynlock_destroy_callback
146 #define CRYPTO_set_dynlock_destroy_callback CRYPTO_set_dynlock_destroy_cb
147 #undef CRYPTO_set_dynlock_create_callback
148 #define CRYPTO_set_dynlock_create_callback CRYPTO_set_dynlock_create_cb
149 #undef CRYPTO_set_dynlock_lock_callback
150 #define CRYPTO_set_dynlock_lock_callback CRYPTO_set_dynlock_lock_cb
151 #undef CRYPTO_get_dynlock_lock_callback
152 #define CRYPTO_get_dynlock_lock_callback CRYPTO_get_dynlock_lock_cb
153 #undef CRYPTO_get_dynlock_destroy_callback
154 #define CRYPTO_get_dynlock_destroy_callback CRYPTO_get_dynlock_destroy_cb
155 #undef CRYPTO_get_dynlock_create_callback
156 #define CRYPTO_get_dynlock_create_callback CRYPTO_get_dynlock_create_cb
157 #undef CRYPTO_set_locked_mem_ex_functions
158 #define CRYPTO_set_locked_mem_ex_functions CRYPTO_set_locked_mem_ex_funcs
159 #undef CRYPTO_get_locked_mem_ex_functions
160 #define CRYPTO_get_locked_mem_ex_functions CRYPTO_get_locked_mem_ex_funcs

162 /* Hack some long SSL names */
163 #undef SSL_CTX_set_default_verify_paths
164 #define SSL_CTX_set_default_verify_paths SSL_CTX_set_def_verify_paths
165 #undef SSL_get_ex_data_X509_STORE_CTX_idx
166 #define SSL_get_ex_data_X509_STORE_CTX_idx SSL_get_ex_d_X509_STORE_CTX_idx
167 #undef SSL_add_file_cert_subjects_to_stack
168 #define SSL_add_file_cert_subjects_to_stack SSL_add_file_cert_subjs_to_stk
169 #undef SSL_add_dir_cert_subjects_to_stack
170 #define SSL_add_dir_cert_subjects_to_stack SSL_add_dir_cert_subjs_to_stk
171 #undef SSL_CTX_use_certificate_chain_file
172 #define SSL_CTX_use_certificate_chain_file SSL_CTX_use_cert_chain_file
173 #undef SSL_CTX_set_cert_verify_callback
174 #define SSL_CTX_set_cert_verify_callback SSL_CTX_set_cert_verify_cb
175 #undef SSL_CTX_set_default_passwd_cb_userdata
176 #define SSL_CTX_set_default_passwd_cb_userdata SSL_CTX_set_def_passwd_cb_ud
177 #undef SSL_COMP_get_compression_methods
178 #define SSL_COMP_get_compression_methods SSL_COMP_get_compress_methods
179 #undef ssl_add_clienthello_renegotiate_ext
180 #define ssl_add_clienthello_renegotiate_ext ssl_add_clienthello_reneg_ext
181 #undef ssl_add_serverhello_renegotiate_ext
182 #define ssl_add_serverhello_renegotiate_ext ssl_add_serverhello_reneg_ext
183 #undef ssl_parse_clienthello_renegotiate_ext
184 #define ssl_parse_clienthello_renegotiate_ext ssl_parse_clienthello_reneg_ext
185 #undef ssl_parse_serverhello_renegotiate_ext
186 #define ssl_parse_serverhello_renegotiate_ext ssl_parse_serverhello_reneg_ext
187 #undef SSL_srp_server_param_with_username
188 #define SSL_srp_server_param_with_username SSL_srp_server_param_with_un
189 #undef SSL_CTX_set_srp_client_pwd_callback
190 #define SSL_CTX_set_srp_client_pwd_callback SSL_CTX_set_srp_client_pwd_cb
191 #undef SSL_CTX_set_srp_verify_param_callback
192 #define SSL_CTX_set_srp_verify_param_callback SSL_CTX_set_srp_vfy_param_cb
193 #undef SSL_CTX_set_srp_username_callback

new/usr/src/lib/openssl/include/openssl/symhacks.h 4

194 #define SSL_CTX_set_srp_username_callback SSL_CTX_set_srp_un_cb
195 #undef ssl_add_clienthello_use_srtp_ext
196 #define ssl_add_clienthello_use_srtp_ext ssl_add_clihello_use_srtp_ext
197 #undef ssl_add_serverhello_use_srtp_ext
198 #define ssl_add_serverhello_use_srtp_ext ssl_add_serhello_use_srtp_ext
199 #undef ssl_parse_clienthello_use_srtp_ext
200 #define ssl_parse_clienthello_use_srtp_ext ssl_parse_clihello_use_srtp_ext
201 #undef ssl_parse_serverhello_use_srtp_ext
202 #define ssl_parse_serverhello_use_srtp_ext ssl_parse_serhello_use_srtp_ext
203 #undef SSL_CTX_set_next_protos_advertised_cb
204 #define SSL_CTX_set_next_protos_advertised_cb SSL_CTX_set_next_protos_adv_cb
205 #undef SSL_CTX_set_next_proto_select_cb
206 #define SSL_CTX_set_next_proto_select_cb SSL_CTX_set_next_proto_sel_cb
207 #undef ssl3_cbc_record_digest_supported
208 #define ssl3_cbc_record_digest_supported ssl3_cbc_record_digest_support
209 #undef ssl_check_clienthello_tlsext_late
210 #define ssl_check_clienthello_tlsext_late ssl_check_clihello_tlsext_late
211 #undef ssl_check_clienthello_tlsext_early
212 #define ssl_check_clienthello_tlsext_early ssl_check_clihello_tlsext_early

214 /* Hack some long ENGINE names */
215 #undef ENGINE_get_default_BN_mod_exp_crt
216 #define ENGINE_get_default_BN_mod_exp_crt ENGINE_get_def_BN_mod_exp_crt
217 #undef ENGINE_set_default_BN_mod_exp_crt
218 #define ENGINE_set_default_BN_mod_exp_crt ENGINE_set_def_BN_mod_exp_crt
219 #undef ENGINE_set_load_privkey_function
220 #define ENGINE_set_load_privkey_function ENGINE_set_load_privkey_fn
221 #undef ENGINE_get_load_privkey_function
222 #define ENGINE_get_load_privkey_function ENGINE_get_load_privkey_fn
223 #undef ENGINE_unregister_pkey_asn1_meths
224 #define ENGINE_unregister_pkey_asn1_meths ENGINE_unreg_pkey_asn1_meths
225 #undef ENGINE_register_all_pkey_asn1_meths
226 #define ENGINE_register_all_pkey_asn1_meths ENGINE_reg_all_pkey_asn1_meths
227 #undef ENGINE_set_default_pkey_asn1_meths
228 #define ENGINE_set_default_pkey_asn1_meths ENGINE_set_def_pkey_asn1_meths
229 #undef ENGINE_get_pkey_asn1_meth_engine
230 #define ENGINE_get_pkey_asn1_meth_engine ENGINE_get_pkey_asn1_meth_eng
231 #undef ENGINE_set_load_ssl_client_cert_function
232 #define ENGINE_set_load_ssl_client_cert_function \
233 ENGINE_set_ld_ssl_clnt_cert_fn
234 #undef ENGINE_get_ssl_client_cert_function
235 #define ENGINE_get_ssl_client_cert_function ENGINE_get_ssl_client_cert_fn

237 /* Hack some long OCSP names */
238 #undef OCSP_REQUEST_get_ext_by_critical
239 #define OCSP_REQUEST_get_ext_by_critical OCSP_REQUEST_get_ext_by_crit
240 #undef OCSP_BASICRESP_get_ext_by_critical
241 #define OCSP_BASICRESP_get_ext_by_critical OCSP_BASICRESP_get_ext_by_crit
242 #undef OCSP_SINGLERESP_get_ext_by_critical
243 #define OCSP_SINGLERESP_get_ext_by_critical OCSP_SINGLERESP_get_ext_by_crit

245 /* Hack some long DES names */
246 #undef _ossl_old_des_ede3_cfb64_encrypt
247 #define _ossl_old_des_ede3_cfb64_encrypt _ossl_odes_ede3_cfb64_encrypt
248 #undef _ossl_old_des_ede3_ofb64_encrypt
249 #define _ossl_old_des_ede3_ofb64_encrypt _ossl_odes_ede3_ofb64_encrypt

251 /* Hack some long EVP names */
252 #undef OPENSSL_add_all_algorithms_noconf
253 #define OPENSSL_add_all_algorithms_noconf OPENSSL_add_all_algo_noconf
254 #undef OPENSSL_add_all_algorithms_conf
255 #define OPENSSL_add_all_algorithms_conf OPENSSL_add_all_algo_conf
256 #undef EVP_PKEY_meth_set_verify_recover
257 #define EVP_PKEY_meth_set_verify_recover EVP_PKEY_meth_set_vrfy_recover

259 /* Hack some long EC names */

new/usr/src/lib/openssl/include/openssl/symhacks.h 5

260 #undef EC_GROUP_set_point_conversion_form
261 #define EC_GROUP_set_point_conversion_form EC_GROUP_set_point_conv_form
262 #undef EC_GROUP_get_point_conversion_form
263 #define EC_GROUP_get_point_conversion_form EC_GROUP_get_point_conv_form
264 #undef EC_GROUP_clear_free_all_extra_data
265 #define EC_GROUP_clear_free_all_extra_data EC_GROUP_clr_free_all_xtra_data
266 #undef EC_KEY_set_public_key_affine_coordinates
267 #define EC_KEY_set_public_key_affine_coordinates \
268 EC_KEY_set_pub_key_aff_coords
269 #undef EC_POINT_set_Jprojective_coordinates_GFp
270 #define EC_POINT_set_Jprojective_coordinates_GFp \
271 EC_POINT_set_Jproj_coords_GFp
272 #undef EC_POINT_get_Jprojective_coordinates_GFp
273 #define EC_POINT_get_Jprojective_coordinates_GFp \
274 EC_POINT_get_Jproj_coords_GFp
275 #undef EC_POINT_set_affine_coordinates_GFp
276 #define EC_POINT_set_affine_coordinates_GFp EC_POINT_set_affine_coords_GFp
277 #undef EC_POINT_get_affine_coordinates_GFp
278 #define EC_POINT_get_affine_coordinates_GFp EC_POINT_get_affine_coords_GFp
279 #undef EC_POINT_set_compressed_coordinates_GFp
280 #define EC_POINT_set_compressed_coordinates_GFp EC_POINT_set_compr_coords_GFp
281 #undef EC_POINT_set_affine_coordinates_GF2m
282 #define EC_POINT_set_affine_coordinates_GF2m EC_POINT_set_affine_coords_GF2m
283 #undef EC_POINT_get_affine_coordinates_GF2m
284 #define EC_POINT_get_affine_coordinates_GF2m EC_POINT_get_affine_coords_GF2m
285 #undef EC_POINT_set_compressed_coordinates_GF2m
286 #define EC_POINT_set_compressed_coordinates_GF2m \
287 EC_POINT_set_compr_coords_GF2m
288 #undef ec_GF2m_simple_group_clear_finish
289 #define ec_GF2m_simple_group_clear_finish ec_GF2m_simple_grp_clr_finish
290 #undef ec_GF2m_simple_group_check_discriminant
291 #define ec_GF2m_simple_group_check_discriminant ec_GF2m_simple_grp_chk_discrim
292 #undef ec_GF2m_simple_point_clear_finish
293 #define ec_GF2m_simple_point_clear_finish ec_GF2m_simple_pt_clr_finish
294 #undef ec_GF2m_simple_point_set_to_infinity
295 #define ec_GF2m_simple_point_set_to_infinity ec_GF2m_simple_pt_set_to_inf
296 #undef ec_GF2m_simple_points_make_affine
297 #define ec_GF2m_simple_points_make_affine ec_GF2m_simple_pts_make_affine
298 #undef ec_GF2m_simple_point_set_affine_coordinates
299 #define ec_GF2m_simple_point_set_affine_coordinates \
300 ec_GF2m_smp_pt_set_af_coords
301 #undef ec_GF2m_simple_point_get_affine_coordinates
302 #define ec_GF2m_simple_point_get_affine_coordinates \
303 ec_GF2m_smp_pt_get_af_coords
304 #undef ec_GF2m_simple_set_compressed_coordinates
305 #define ec_GF2m_simple_set_compressed_coordinates \
306 ec_GF2m_smp_set_compr_coords
307 #undef ec_GFp_simple_group_set_curve_GFp
308 #define ec_GFp_simple_group_set_curve_GFp ec_GFp_simple_grp_set_curve_GFp
309 #undef ec_GFp_simple_group_get_curve_GFp
310 #define ec_GFp_simple_group_get_curve_GFp ec_GFp_simple_grp_get_curve_GFp
311 #undef ec_GFp_simple_group_clear_finish
312 #define ec_GFp_simple_group_clear_finish ec_GFp_simple_grp_clear_finish
313 #undef ec_GFp_simple_group_set_generator
314 #define ec_GFp_simple_group_set_generator ec_GFp_simple_grp_set_generator
315 #undef ec_GFp_simple_group_get0_generator
316 #define ec_GFp_simple_group_get0_generator ec_GFp_simple_grp_gt0_generator
317 #undef ec_GFp_simple_group_get_cofactor
318 #define ec_GFp_simple_group_get_cofactor ec_GFp_simple_grp_get_cofactor
319 #undef ec_GFp_simple_point_clear_finish
320 #define ec_GFp_simple_point_clear_finish ec_GFp_simple_pt_clear_finish
321 #undef ec_GFp_simple_point_set_to_infinity
322 #define ec_GFp_simple_point_set_to_infinity ec_GFp_simple_pt_set_to_inf
323 #undef ec_GFp_simple_points_make_affine
324 #define ec_GFp_simple_points_make_affine ec_GFp_simple_pts_make_affine
325 #undef ec_GFp_simple_set_Jprojective_coordinates_GFp

new/usr/src/lib/openssl/include/openssl/symhacks.h 6

326 #define ec_GFp_simple_set_Jprojective_coordinates_GFp \
327 ec_GFp_smp_set_Jproj_coords_GFp
328 #undef ec_GFp_simple_get_Jprojective_coordinates_GFp
329 #define ec_GFp_simple_get_Jprojective_coordinates_GFp \
330 ec_GFp_smp_get_Jproj_coords_GFp
331 #undef ec_GFp_simple_point_set_affine_coordinates_GFp
332 #define ec_GFp_simple_point_set_affine_coordinates_GFp \
333 ec_GFp_smp_pt_set_af_coords_GFp
334 #undef ec_GFp_simple_point_get_affine_coordinates_GFp
335 #define ec_GFp_simple_point_get_affine_coordinates_GFp \
336 ec_GFp_smp_pt_get_af_coords_GFp
337 #undef ec_GFp_simple_set_compressed_coordinates_GFp
338 #define ec_GFp_simple_set_compressed_coordinates_GFp \
339 ec_GFp_smp_set_compr_coords_GFp
340 #undef ec_GFp_simple_point_set_affine_coordinates
341 #define ec_GFp_simple_point_set_affine_coordinates \
342 ec_GFp_smp_pt_set_af_coords
343 #undef ec_GFp_simple_point_get_affine_coordinates
344 #define ec_GFp_simple_point_get_affine_coordinates \
345 ec_GFp_smp_pt_get_af_coords
346 #undef ec_GFp_simple_set_compressed_coordinates
347 #define ec_GFp_simple_set_compressed_coordinates \
348 ec_GFp_smp_set_compr_coords
349 #undef ec_GFp_simple_group_check_discriminant
350 #define ec_GFp_simple_group_check_discriminant ec_GFp_simple_grp_chk_discrim

352 /* Hack som long STORE names */
353 #undef STORE_method_set_initialise_function
354 #define STORE_method_set_initialise_function STORE_meth_set_initialise_fn
355 #undef STORE_method_set_cleanup_function
356 #define STORE_method_set_cleanup_function STORE_meth_set_cleanup_fn
357 #undef STORE_method_set_generate_function
358 #define STORE_method_set_generate_function STORE_meth_set_generate_fn
359 #undef STORE_method_set_modify_function
360 #define STORE_method_set_modify_function STORE_meth_set_modify_fn
361 #undef STORE_method_set_revoke_function
362 #define STORE_method_set_revoke_function STORE_meth_set_revoke_fn
363 #undef STORE_method_set_delete_function
364 #define STORE_method_set_delete_function STORE_meth_set_delete_fn
365 #undef STORE_method_set_list_start_function
366 #define STORE_method_set_list_start_function STORE_meth_set_list_start_fn
367 #undef STORE_method_set_list_next_function
368 #define STORE_method_set_list_next_function STORE_meth_set_list_next_fn
369 #undef STORE_method_set_list_end_function
370 #define STORE_method_set_list_end_function STORE_meth_set_list_end_fn
371 #undef STORE_method_set_update_store_function
372 #define STORE_method_set_update_store_function STORE_meth_set_update_store_fn
373 #undef STORE_method_set_lock_store_function
374 #define STORE_method_set_lock_store_function STORE_meth_set_lock_store_fn
375 #undef STORE_method_set_unlock_store_function
376 #define STORE_method_set_unlock_store_function STORE_meth_set_unlock_store_fn
377 #undef STORE_method_get_initialise_function
378 #define STORE_method_get_initialise_function STORE_meth_get_initialise_fn
379 #undef STORE_method_get_cleanup_function
380 #define STORE_method_get_cleanup_function STORE_meth_get_cleanup_fn
381 #undef STORE_method_get_generate_function
382 #define STORE_method_get_generate_function STORE_meth_get_generate_fn
383 #undef STORE_method_get_modify_function
384 #define STORE_method_get_modify_function STORE_meth_get_modify_fn
385 #undef STORE_method_get_revoke_function
386 #define STORE_method_get_revoke_function STORE_meth_get_revoke_fn
387 #undef STORE_method_get_delete_function
388 #define STORE_method_get_delete_function STORE_meth_get_delete_fn
389 #undef STORE_method_get_list_start_function
390 #define STORE_method_get_list_start_function STORE_meth_get_list_start_fn
391 #undef STORE_method_get_list_next_function

new/usr/src/lib/openssl/include/openssl/symhacks.h 7

392 #define STORE_method_get_list_next_function STORE_meth_get_list_next_fn
393 #undef STORE_method_get_list_end_function
394 #define STORE_method_get_list_end_function STORE_meth_get_list_end_fn
395 #undef STORE_method_get_update_store_function
396 #define STORE_method_get_update_store_function STORE_meth_get_update_store_fn
397 #undef STORE_method_get_lock_store_function
398 #define STORE_method_get_lock_store_function STORE_meth_get_lock_store_fn
399 #undef STORE_method_get_unlock_store_function
400 #define STORE_method_get_unlock_store_function STORE_meth_get_unlock_store_fn

402 /* Hack some long TS names */
403 #undef TS_RESP_CTX_set_status_info_cond
404 #define TS_RESP_CTX_set_status_info_cond TS_RESP_CTX_set_stat_info_cond
405 #undef TS_RESP_CTX_set_clock_precision_digits
406 #define TS_RESP_CTX_set_clock_precision_digits TS_RESP_CTX_set_clk_prec_digits
407 #undef TS_CONF_set_clock_precision_digits
408 #define TS_CONF_set_clock_precision_digits TS_CONF_set_clk_prec_digits

410 /* Hack some long CMS names */
411 #undef CMS_RecipientInfo_ktri_get0_algs
412 #define CMS_RecipientInfo_ktri_get0_algs CMS_RecipInfo_ktri_get0_algs
413 #undef CMS_RecipientInfo_ktri_get0_signer_id
414 #define CMS_RecipientInfo_ktri_get0_signer_id CMS_RecipInfo_ktri_get0_sigr_id
415 #undef CMS_OtherRevocationInfoFormat_it
416 #define CMS_OtherRevocationInfoFormat_it CMS_OtherRevocInfoFormat_it
417 #undef CMS_KeyAgreeRecipientIdentifier_it
418 #define CMS_KeyAgreeRecipientIdentifier_it CMS_KeyAgreeRecipIdentifier_it
419 #undef CMS_OriginatorIdentifierOrKey_it
420 #define CMS_OriginatorIdentifierOrKey_it CMS_OriginatorIdOrKey_it
421 #undef cms_SignerIdentifier_get0_signer_id
422 #define cms_SignerIdentifier_get0_signer_id cms_SignerId_get0_signer_id

424 /* Hack some long DTLS1 names */
425 #undef dtls1_retransmit_buffered_messages
426 #define dtls1_retransmit_buffered_messages dtls1_retransmit_buffered_msgs

428 /* Hack some long SRP names */
429 #undef SRP_generate_server_master_secret
430 #define SRP_generate_server_master_secret SRP_gen_server_master_secret
431 #undef SRP_generate_client_master_secret
432 #define SRP_generate_client_master_secret SRP_gen_client_master_secret

434 /* Hack some long UI names */
435 #undef UI_method_get_prompt_constructor
436 #define UI_method_get_prompt_constructor UI_method_get_prompt_constructr
437 #undef UI_method_set_prompt_constructor
438 #define UI_method_set_prompt_constructor UI_method_set_prompt_constructr

440 #endif /* defined OPENSSL_SYS_VMS */

443 /* Case insensitive linking causes problems.... */
444 #if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_OS2)
445 #undef ERR_load_CRYPTO_strings
446 #define ERR_load_CRYPTO_strings ERR_load_CRYPTOlib_strings
447 #undef OCSP_crlID_new
448 #define OCSP_crlID_new OCSP_crlID2_new

450 #undef d2i_ECPARAMETERS
451 #define d2i_ECPARAMETERS d2i_UC_ECPARAMETERS
452 #undef i2d_ECPARAMETERS
453 #define i2d_ECPARAMETERS i2d_UC_ECPARAMETERS
454 #undef d2i_ECPKPARAMETERS
455 #define d2i_ECPKPARAMETERS d2i_UC_ECPKPARAMETERS
456 #undef i2d_ECPKPARAMETERS
457 #define i2d_ECPKPARAMETERS i2d_UC_ECPKPARAMETERS

new/usr/src/lib/openssl/include/openssl/symhacks.h 8

459 /* These functions do not seem to exist! However, I’m paranoid...
460 Original command in x509v3.h:
461 These functions are being redefined in another directory,
462 and clash when the linker is case-insensitive, so let’s
463 hide them a little, by giving them an extra ’o’ at the
464 beginning of the name... */
465 #undef X509v3_cleanup_extensions
466 #define X509v3_cleanup_extensions oX509v3_cleanup_extensions
467 #undef X509v3_add_extension
468 #define X509v3_add_extension oX509v3_add_extension
469 #undef X509v3_add_netscape_extensions
470 #define X509v3_add_netscape_extensions oX509v3_add_netscape_extensions
471 #undef X509v3_add_standard_extensions
472 #define X509v3_add_standard_extensions oX509v3_add_standard_extensions

474 /* This one clashes with CMS_data_create */
475 #undef cms_Data_create
476 #define cms_Data_create priv_cms_Data_create

478 #endif

481 #endif /* ! defined HEADER_VMS_IDHACKS_H */

new/usr/src/lib/openssl/include/openssl/tls1.h 1

**
 35294 Fri May 30 18:31:23 2014
new/usr/src/lib/openssl/include/openssl/tls1.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/tls1.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/include/openssl/tls1.h 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /* ==
112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
113 *
114 * Portions of the attached software ("Contribution") are developed by
115 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
116 *
117 * The Contribution is licensed pursuant to the OpenSSL open source
118 * license provided above.
119 *
120 * ECC cipher suite support in OpenSSL originally written by
121 * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
122 *
123 */
124 /* ==
125 * Copyright 2005 Nokia. All rights reserved.
126 *
127 * The portions of the attached software ("Contribution") is developed by

new/usr/src/lib/openssl/include/openssl/tls1.h 3

128 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
129 * license.
130 *
131 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
132 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
133 * support (see RFC 4279) to OpenSSL.
134 *
135 * No patent licenses or other rights except those expressly stated in
136 * the OpenSSL open source license shall be deemed granted or received
137 * expressly, by implication, estoppel, or otherwise.
138 *
139 * No assurances are provided by Nokia that the Contribution does not
140 * infringe the patent or other intellectual property rights of any third
141 * party or that the license provides you with all the necessary rights
142 * to make use of the Contribution.
143 *
144 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
145 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
146 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
147 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
148 * OTHERWISE.
149 */

151 #ifndef HEADER_TLS1_H
152 #define HEADER_TLS1_H

154 #include <openssl/buffer.h>

156 #ifdef __cplusplus
157 extern "C" {
158 #endif

160 #define TLS1_ALLOW_EXPERIMENTAL_CIPHERSUITES 0

162 #define TLS1_2_VERSION 0x0303
163 #define TLS1_2_VERSION_MAJOR 0x03
164 #define TLS1_2_VERSION_MINOR 0x03

166 #define TLS1_1_VERSION 0x0302
167 #define TLS1_1_VERSION_MAJOR 0x03
168 #define TLS1_1_VERSION_MINOR 0x02

170 #define TLS1_VERSION 0x0301
171 #define TLS1_VERSION_MAJOR 0x03
172 #define TLS1_VERSION_MINOR 0x01

174 #define TLS1_get_version(s) \
175 ((s->version >> 8) == TLS1_VERSION_MAJOR ? s->version : 0)

177 #define TLS1_get_client_version(s) \
178 ((s->client_version >> 8) == TLS1_VERSION_MAJOR ? s->client_vers

180 #define TLS1_AD_DECRYPTION_FAILED 21
181 #define TLS1_AD_RECORD_OVERFLOW 22
182 #define TLS1_AD_UNKNOWN_CA 48 /* fatal */
183 #define TLS1_AD_ACCESS_DENIED 49 /* fatal */
184 #define TLS1_AD_DECODE_ERROR 50 /* fatal */
185 #define TLS1_AD_DECRYPT_ERROR 51
186 #define TLS1_AD_EXPORT_RESTRICTION 60 /* fatal */
187 #define TLS1_AD_PROTOCOL_VERSION 70 /* fatal */
188 #define TLS1_AD_INSUFFICIENT_SECURITY 71 /* fatal */
189 #define TLS1_AD_INTERNAL_ERROR 80 /* fatal */
190 #define TLS1_AD_USER_CANCELLED 90
191 #define TLS1_AD_NO_RENEGOTIATION 100
192 /* codes 110-114 are from RFC3546 */
193 #define TLS1_AD_UNSUPPORTED_EXTENSION 110

new/usr/src/lib/openssl/include/openssl/tls1.h 4

194 #define TLS1_AD_CERTIFICATE_UNOBTAINABLE 111
195 #define TLS1_AD_UNRECOGNIZED_NAME 112
196 #define TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE 113
197 #define TLS1_AD_BAD_CERTIFICATE_HASH_VALUE 114
198 #define TLS1_AD_UNKNOWN_PSK_IDENTITY 115 /* fatal */

200 /* ExtensionType values from RFC3546 / RFC4366 / RFC6066 */
201 #define TLSEXT_TYPE_server_name 0
202 #define TLSEXT_TYPE_max_fragment_length 1
203 #define TLSEXT_TYPE_client_certificate_url 2
204 #define TLSEXT_TYPE_trusted_ca_keys 3
205 #define TLSEXT_TYPE_truncated_hmac 4
206 #define TLSEXT_TYPE_status_request 5
207 /* ExtensionType values from RFC4681 */
208 #define TLSEXT_TYPE_user_mapping 6

210 /* ExtensionType values from RFC5878 */
211 #define TLSEXT_TYPE_client_authz 7
212 #define TLSEXT_TYPE_server_authz 8

214 /* ExtensionType values from RFC6091 */
215 #define TLSEXT_TYPE_cert_type 9

217 /* ExtensionType values from RFC4492 */
218 #define TLSEXT_TYPE_elliptic_curves 10
219 #define TLSEXT_TYPE_ec_point_formats 11

221 /* ExtensionType value from RFC5054 */
222 #define TLSEXT_TYPE_srp 12

224 /* ExtensionType values from RFC5246 */
225 #define TLSEXT_TYPE_signature_algorithms 13

227 /* ExtensionType value from RFC5764 */
228 #define TLSEXT_TYPE_use_srtp 14

230 /* ExtensionType value from RFC5620 */
231 #define TLSEXT_TYPE_heartbeat 15

233 /* ExtensionType value for TLS padding extension.
234 * http://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-va
235 * http://tools.ietf.org/html/draft-agl-tls-padding-03
236 */
237 #define TLSEXT_TYPE_padding 21

239 /* ExtensionType value from RFC4507 */
240 #define TLSEXT_TYPE_session_ticket 35

242 /* ExtensionType value from draft-rescorla-tls-opaque-prf-input-00.txt */
243 #if 0 /* will have to be provided externally for now ,
244 * i.e. build with -DTLSEXT_TYPE_opaque_prf_input=38183
245 * using whatever extension number you’d like to try */
246 # define TLSEXT_TYPE_opaque_prf_input ?? */
247 #endif

249 /* Temporary extension type */
250 #define TLSEXT_TYPE_renegotiate 0xff01

252 #ifndef OPENSSL_NO_NEXTPROTONEG
253 /* This is not an IANA defined extension number */
254 #define TLSEXT_TYPE_next_proto_neg 13172
255 #endif

257 /* NameType value from RFC 3546 */
258 #define TLSEXT_NAMETYPE_host_name 0
259 /* status request value from RFC 3546 */

new/usr/src/lib/openssl/include/openssl/tls1.h 5

260 #define TLSEXT_STATUSTYPE_ocsp 1

262 /* ECPointFormat values from draft-ietf-tls-ecc-12 */
263 #define TLSEXT_ECPOINTFORMAT_first 0
264 #define TLSEXT_ECPOINTFORMAT_uncompressed 0
265 #define TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime 1
266 #define TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 2
267 #define TLSEXT_ECPOINTFORMAT_last 2

269 /* Signature and hash algorithms from RFC 5246 */

271 #define TLSEXT_signature_anonymous 0
272 #define TLSEXT_signature_rsa 1
273 #define TLSEXT_signature_dsa 2
274 #define TLSEXT_signature_ecdsa 3

276 #define TLSEXT_hash_none 0
277 #define TLSEXT_hash_md5 1
278 #define TLSEXT_hash_sha1 2
279 #define TLSEXT_hash_sha224 3
280 #define TLSEXT_hash_sha256 4
281 #define TLSEXT_hash_sha384 5
282 #define TLSEXT_hash_sha512 6

284 #ifndef OPENSSL_NO_TLSEXT

286 #define TLSEXT_MAXLEN_host_name 255

288 const char *SSL_get_servername(const SSL *s, const int type);
289 int SSL_get_servername_type(const SSL *s);
290 /* SSL_export_keying_material exports a value derived from the master secret,
291 * as specified in RFC 5705. It writes |olen| bytes to |out| given a label and
292 * optional context. (Since a zero length context is allowed, the |use_context|
293 * flag controls whether a context is included.)
294 *
295 * It returns 1 on success and zero otherwise.
296 */
297 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
298 const char *label, size_t llen, const unsigned char *p, size_t plen,
299 int use_context);

301 #define SSL_set_tlsext_host_name(s,name) \
302 SSL_ctrl(s,SSL_CTRL_SET_TLSEXT_HOSTNAME,TLSEXT_NAMETYPE_host_name,(char *)name)

304 #define SSL_set_tlsext_debug_callback(ssl, cb) \
305 SSL_callback_ctrl(ssl,SSL_CTRL_SET_TLSEXT_DEBUG_CB,(void (*)(void))cb)

307 #define SSL_set_tlsext_debug_arg(ssl, arg) \
308 SSL_ctrl(ssl,SSL_CTRL_SET_TLSEXT_DEBUG_ARG,0, (void *)arg)

310 #define SSL_set_tlsext_status_type(ssl, type) \
311 SSL_ctrl(ssl,SSL_CTRL_SET_TLSEXT_STATUS_REQ_TYPE,type, NULL)

313 #define SSL_get_tlsext_status_exts(ssl, arg) \
314 SSL_ctrl(ssl,SSL_CTRL_GET_TLSEXT_STATUS_REQ_EXTS,0, (void *)arg)

316 #define SSL_set_tlsext_status_exts(ssl, arg) \
317 SSL_ctrl(ssl,SSL_CTRL_SET_TLSEXT_STATUS_REQ_EXTS,0, (void *)arg)

319 #define SSL_get_tlsext_status_ids(ssl, arg) \
320 SSL_ctrl(ssl,SSL_CTRL_GET_TLSEXT_STATUS_REQ_IDS,0, (void *)arg)

322 #define SSL_set_tlsext_status_ids(ssl, arg) \
323 SSL_ctrl(ssl,SSL_CTRL_SET_TLSEXT_STATUS_REQ_IDS,0, (void *)arg)

325 #define SSL_get_tlsext_status_ocsp_resp(ssl, arg) \

new/usr/src/lib/openssl/include/openssl/tls1.h 6

326 SSL_ctrl(ssl,SSL_CTRL_GET_TLSEXT_STATUS_REQ_OCSP_RESP,0, (void *)arg)

328 #define SSL_set_tlsext_status_ocsp_resp(ssl, arg, arglen) \
329 SSL_ctrl(ssl,SSL_CTRL_SET_TLSEXT_STATUS_REQ_OCSP_RESP,arglen, (void *)arg)

331 #define SSL_CTX_set_tlsext_servername_callback(ctx, cb) \
332 SSL_CTX_callback_ctrl(ctx,SSL_CTRL_SET_TLSEXT_SERVERNAME_CB,(void (*)(void))cb)

334 #define SSL_TLSEXT_ERR_OK 0
335 #define SSL_TLSEXT_ERR_ALERT_WARNING 1
336 #define SSL_TLSEXT_ERR_ALERT_FATAL 2
337 #define SSL_TLSEXT_ERR_NOACK 3

339 #define SSL_CTX_set_tlsext_servername_arg(ctx, arg) \
340 SSL_CTX_ctrl(ctx,SSL_CTRL_SET_TLSEXT_SERVERNAME_ARG,0, (void *)arg)

342 #define SSL_CTX_get_tlsext_ticket_keys(ctx, keys, keylen) \
343 SSL_CTX_ctrl((ctx),SSL_CTRL_GET_TLSEXT_TICKET_KEYS,(keylen),(keys))
344 #define SSL_CTX_set_tlsext_ticket_keys(ctx, keys, keylen) \
345 SSL_CTX_ctrl((ctx),SSL_CTRL_SET_TLSEXT_TICKET_KEYS,(keylen),(keys))

347 #define SSL_CTX_set_tlsext_status_cb(ssl, cb) \
348 SSL_CTX_callback_ctrl(ssl,SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB,(void (*)(void))cb)

350 #define SSL_CTX_set_tlsext_status_arg(ssl, arg) \
351 SSL_CTX_ctrl(ssl,SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB_ARG,0, (void *)arg)

353 #define SSL_set_tlsext_opaque_prf_input(s, src, len) \
354 SSL_ctrl(s,SSL_CTRL_SET_TLSEXT_OPAQUE_PRF_INPUT, len, src)
355 #define SSL_CTX_set_tlsext_opaque_prf_input_callback(ctx, cb) \
356 SSL_CTX_callback_ctrl(ctx,SSL_CTRL_SET_TLSEXT_OPAQUE_PRF_INPUT_CB, (void (*)(voi
357 #define SSL_CTX_set_tlsext_opaque_prf_input_callback_arg(ctx, arg) \
358 SSL_CTX_ctrl(ctx,SSL_CTRL_SET_TLSEXT_OPAQUE_PRF_INPUT_CB_ARG, 0, arg)

360 #define SSL_CTX_set_tlsext_ticket_key_cb(ssl, cb) \
361 SSL_CTX_callback_ctrl(ssl,SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB,(void (*)(void))cb)

363 #ifndef OPENSSL_NO_HEARTBEATS
364 #define SSL_TLSEXT_HB_ENABLED 0x01
365 #define SSL_TLSEXT_HB_DONT_SEND_REQUESTS 0x02
366 #define SSL_TLSEXT_HB_DONT_RECV_REQUESTS 0x04

368 #define SSL_get_tlsext_heartbeat_pending(ssl) \
369 SSL_ctrl((ssl),SSL_CTRL_GET_TLS_EXT_HEARTBEAT_PENDING,0,NULL)
370 #define SSL_set_tlsext_heartbeat_no_requests(ssl, arg) \
371 SSL_ctrl((ssl),SSL_CTRL_SET_TLS_EXT_HEARTBEAT_NO_REQUESTS,arg,NULL)
372 #endif
373 #endif

375 /* PSK ciphersuites from 4279 */
376 #define TLS1_CK_PSK_WITH_RC4_128_SHA 0x0300008A
377 #define TLS1_CK_PSK_WITH_3DES_EDE_CBC_SHA 0x0300008B
378 #define TLS1_CK_PSK_WITH_AES_128_CBC_SHA 0x0300008C
379 #define TLS1_CK_PSK_WITH_AES_256_CBC_SHA 0x0300008D

381 /* Additional TLS ciphersuites from expired Internet Draft
382 * draft-ietf-tls-56-bit-ciphersuites-01.txt
383 * (available if TLS1_ALLOW_EXPERIMENTAL_CIPHERSUITES is defined, see
384 * s3_lib.c). We actually treat them like SSL 3.0 ciphers, which we probably
385 * shouldn’t. Note that the first two are actually not in the IDs. */
386 #define TLS1_CK_RSA_EXPORT1024_WITH_RC4_56_MD5 0x03000060 /* not in ID
387 #define TLS1_CK_RSA_EXPORT1024_WITH_RC2_CBC_56_MD5 0x03000061 /* not in ID
388 #define TLS1_CK_RSA_EXPORT1024_WITH_DES_CBC_SHA 0x03000062
389 #define TLS1_CK_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA 0x03000063
390 #define TLS1_CK_RSA_EXPORT1024_WITH_RC4_56_SHA 0x03000064
391 #define TLS1_CK_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA 0x03000065

new/usr/src/lib/openssl/include/openssl/tls1.h 7

392 #define TLS1_CK_DHE_DSS_WITH_RC4_128_SHA 0x03000066

394 /* AES ciphersuites from RFC3268 */

396 #define TLS1_CK_RSA_WITH_AES_128_SHA 0x0300002F
397 #define TLS1_CK_DH_DSS_WITH_AES_128_SHA 0x03000030
398 #define TLS1_CK_DH_RSA_WITH_AES_128_SHA 0x03000031
399 #define TLS1_CK_DHE_DSS_WITH_AES_128_SHA 0x03000032
400 #define TLS1_CK_DHE_RSA_WITH_AES_128_SHA 0x03000033
401 #define TLS1_CK_ADH_WITH_AES_128_SHA 0x03000034

403 #define TLS1_CK_RSA_WITH_AES_256_SHA 0x03000035
404 #define TLS1_CK_DH_DSS_WITH_AES_256_SHA 0x03000036
405 #define TLS1_CK_DH_RSA_WITH_AES_256_SHA 0x03000037
406 #define TLS1_CK_DHE_DSS_WITH_AES_256_SHA 0x03000038
407 #define TLS1_CK_DHE_RSA_WITH_AES_256_SHA 0x03000039
408 #define TLS1_CK_ADH_WITH_AES_256_SHA 0x0300003A

410 /* TLS v1.2 ciphersuites */
411 #define TLS1_CK_RSA_WITH_NULL_SHA256 0x0300003B
412 #define TLS1_CK_RSA_WITH_AES_128_SHA256 0x0300003C
413 #define TLS1_CK_RSA_WITH_AES_256_SHA256 0x0300003D
414 #define TLS1_CK_DH_DSS_WITH_AES_128_SHA256 0x0300003E
415 #define TLS1_CK_DH_RSA_WITH_AES_128_SHA256 0x0300003F
416 #define TLS1_CK_DHE_DSS_WITH_AES_128_SHA256 0x03000040

418 /* Camellia ciphersuites from RFC4132 */
419 #define TLS1_CK_RSA_WITH_CAMELLIA_128_CBC_SHA 0x03000041
420 #define TLS1_CK_DH_DSS_WITH_CAMELLIA_128_CBC_SHA 0x03000042
421 #define TLS1_CK_DH_RSA_WITH_CAMELLIA_128_CBC_SHA 0x03000043
422 #define TLS1_CK_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA 0x03000044
423 #define TLS1_CK_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA 0x03000045
424 #define TLS1_CK_ADH_WITH_CAMELLIA_128_CBC_SHA 0x03000046

426 /* TLS v1.2 ciphersuites */
427 #define TLS1_CK_DHE_RSA_WITH_AES_128_SHA256 0x03000067
428 #define TLS1_CK_DH_DSS_WITH_AES_256_SHA256 0x03000068
429 #define TLS1_CK_DH_RSA_WITH_AES_256_SHA256 0x03000069
430 #define TLS1_CK_DHE_DSS_WITH_AES_256_SHA256 0x0300006A
431 #define TLS1_CK_DHE_RSA_WITH_AES_256_SHA256 0x0300006B
432 #define TLS1_CK_ADH_WITH_AES_128_SHA256 0x0300006C
433 #define TLS1_CK_ADH_WITH_AES_256_SHA256 0x0300006D

435 /* Camellia ciphersuites from RFC4132 */
436 #define TLS1_CK_RSA_WITH_CAMELLIA_256_CBC_SHA 0x03000084
437 #define TLS1_CK_DH_DSS_WITH_CAMELLIA_256_CBC_SHA 0x03000085
438 #define TLS1_CK_DH_RSA_WITH_CAMELLIA_256_CBC_SHA 0x03000086
439 #define TLS1_CK_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA 0x03000087
440 #define TLS1_CK_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA 0x03000088
441 #define TLS1_CK_ADH_WITH_CAMELLIA_256_CBC_SHA 0x03000089

443 /* SEED ciphersuites from RFC4162 */
444 #define TLS1_CK_RSA_WITH_SEED_SHA 0x03000096
445 #define TLS1_CK_DH_DSS_WITH_SEED_SHA 0x03000097
446 #define TLS1_CK_DH_RSA_WITH_SEED_SHA 0x03000098
447 #define TLS1_CK_DHE_DSS_WITH_SEED_SHA 0x03000099
448 #define TLS1_CK_DHE_RSA_WITH_SEED_SHA 0x0300009A
449 #define TLS1_CK_ADH_WITH_SEED_SHA 0x0300009B

451 /* TLS v1.2 GCM ciphersuites from RFC5288 */
452 #define TLS1_CK_RSA_WITH_AES_128_GCM_SHA256 0x0300009C
453 #define TLS1_CK_RSA_WITH_AES_256_GCM_SHA384 0x0300009D
454 #define TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256 0x0300009E
455 #define TLS1_CK_DHE_RSA_WITH_AES_256_GCM_SHA384 0x0300009F
456 #define TLS1_CK_DH_RSA_WITH_AES_128_GCM_SHA256 0x030000A0
457 #define TLS1_CK_DH_RSA_WITH_AES_256_GCM_SHA384 0x030000A1

new/usr/src/lib/openssl/include/openssl/tls1.h 8

458 #define TLS1_CK_DHE_DSS_WITH_AES_128_GCM_SHA256 0x030000A2
459 #define TLS1_CK_DHE_DSS_WITH_AES_256_GCM_SHA384 0x030000A3
460 #define TLS1_CK_DH_DSS_WITH_AES_128_GCM_SHA256 0x030000A4
461 #define TLS1_CK_DH_DSS_WITH_AES_256_GCM_SHA384 0x030000A5
462 #define TLS1_CK_ADH_WITH_AES_128_GCM_SHA256 0x030000A6
463 #define TLS1_CK_ADH_WITH_AES_256_GCM_SHA384 0x030000A7

465 /* ECC ciphersuites from draft-ietf-tls-ecc-12.txt with changes soon to be in dr
466 #define TLS1_CK_ECDH_ECDSA_WITH_NULL_SHA 0x0300C001
467 #define TLS1_CK_ECDH_ECDSA_WITH_RC4_128_SHA 0x0300C002
468 #define TLS1_CK_ECDH_ECDSA_WITH_DES_192_CBC3_SHA 0x0300C003
469 #define TLS1_CK_ECDH_ECDSA_WITH_AES_128_CBC_SHA 0x0300C004
470 #define TLS1_CK_ECDH_ECDSA_WITH_AES_256_CBC_SHA 0x0300C005

472 #define TLS1_CK_ECDHE_ECDSA_WITH_NULL_SHA 0x0300C006
473 #define TLS1_CK_ECDHE_ECDSA_WITH_RC4_128_SHA 0x0300C007
474 #define TLS1_CK_ECDHE_ECDSA_WITH_DES_192_CBC3_SHA 0x0300C008
475 #define TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0x0300C009
476 #define TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0x0300C00A

478 #define TLS1_CK_ECDH_RSA_WITH_NULL_SHA 0x0300C00B
479 #define TLS1_CK_ECDH_RSA_WITH_RC4_128_SHA 0x0300C00C
480 #define TLS1_CK_ECDH_RSA_WITH_DES_192_CBC3_SHA 0x0300C00D
481 #define TLS1_CK_ECDH_RSA_WITH_AES_128_CBC_SHA 0x0300C00E
482 #define TLS1_CK_ECDH_RSA_WITH_AES_256_CBC_SHA 0x0300C00F

484 #define TLS1_CK_ECDHE_RSA_WITH_NULL_SHA 0x0300C010
485 #define TLS1_CK_ECDHE_RSA_WITH_RC4_128_SHA 0x0300C011
486 #define TLS1_CK_ECDHE_RSA_WITH_DES_192_CBC3_SHA 0x0300C012
487 #define TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA 0x0300C013
488 #define TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA 0x0300C014

490 #define TLS1_CK_ECDH_anon_WITH_NULL_SHA 0x0300C015
491 #define TLS1_CK_ECDH_anon_WITH_RC4_128_SHA 0x0300C016
492 #define TLS1_CK_ECDH_anon_WITH_DES_192_CBC3_SHA 0x0300C017
493 #define TLS1_CK_ECDH_anon_WITH_AES_128_CBC_SHA 0x0300C018
494 #define TLS1_CK_ECDH_anon_WITH_AES_256_CBC_SHA 0x0300C019

496 /* SRP ciphersuites from RFC 5054 */
497 #define TLS1_CK_SRP_SHA_WITH_3DES_EDE_CBC_SHA 0x0300C01A
498 #define TLS1_CK_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA 0x0300C01B
499 #define TLS1_CK_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA 0x0300C01C
500 #define TLS1_CK_SRP_SHA_WITH_AES_128_CBC_SHA 0x0300C01D
501 #define TLS1_CK_SRP_SHA_RSA_WITH_AES_128_CBC_SHA 0x0300C01E
502 #define TLS1_CK_SRP_SHA_DSS_WITH_AES_128_CBC_SHA 0x0300C01F
503 #define TLS1_CK_SRP_SHA_WITH_AES_256_CBC_SHA 0x0300C020
504 #define TLS1_CK_SRP_SHA_RSA_WITH_AES_256_CBC_SHA 0x0300C021
505 #define TLS1_CK_SRP_SHA_DSS_WITH_AES_256_CBC_SHA 0x0300C022

507 /* ECDH HMAC based ciphersuites from RFC5289 */

509 #define TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256 0x0300C023
510 #define TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384 0x0300C024
511 #define TLS1_CK_ECDH_ECDSA_WITH_AES_128_SHA256 0x0300C025
512 #define TLS1_CK_ECDH_ECDSA_WITH_AES_256_SHA384 0x0300C026
513 #define TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256 0x0300C027
514 #define TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384 0x0300C028
515 #define TLS1_CK_ECDH_RSA_WITH_AES_128_SHA256 0x0300C029
516 #define TLS1_CK_ECDH_RSA_WITH_AES_256_SHA384 0x0300C02A

518 /* ECDH GCM based ciphersuites from RFC5289 */
519 #define TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0x0300C02B
520 #define TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0x0300C02C
521 #define TLS1_CK_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 0x0300C02D
522 #define TLS1_CK_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 0x0300C02E
523 #define TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256 0x0300C02F

new/usr/src/lib/openssl/include/openssl/tls1.h 9

524 #define TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0x0300C030
525 #define TLS1_CK_ECDH_RSA_WITH_AES_128_GCM_SHA256 0x0300C031
526 #define TLS1_CK_ECDH_RSA_WITH_AES_256_GCM_SHA384 0x0300C032

528 /* XXX
529 * Inconsistency alert:
530 * The OpenSSL names of ciphers with ephemeral DH here include the string
531 * "DHE", while elsewhere it has always been "EDH".
532 * (The alias for the list of all such ciphers also is "EDH".)
533 * The specifications speak of "EDH"; maybe we should allow both forms
534 * for everything. */
535 #define TLS1_TXT_RSA_EXPORT1024_WITH_RC4_56_MD5 "EXP1024-RC4-MD5"
536 #define TLS1_TXT_RSA_EXPORT1024_WITH_RC2_CBC_56_MD5 "EXP1024-RC2-CBC-MD5"
537 #define TLS1_TXT_RSA_EXPORT1024_WITH_DES_CBC_SHA "EXP1024-DES-CBC-SHA"
538 #define TLS1_TXT_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA "EXP1024-DHE-DSS-DES-CBC
539 #define TLS1_TXT_RSA_EXPORT1024_WITH_RC4_56_SHA "EXP1024-RC4-SHA"
540 #define TLS1_TXT_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA "EXP1024-DHE-DSS-RC4-SHA
541 #define TLS1_TXT_DHE_DSS_WITH_RC4_128_SHA "DHE-DSS-RC4-SHA"

543 /* AES ciphersuites from RFC3268 */
544 #define TLS1_TXT_RSA_WITH_AES_128_SHA "AES128-SHA"
545 #define TLS1_TXT_DH_DSS_WITH_AES_128_SHA "DH-DSS-AES128-SHA"
546 #define TLS1_TXT_DH_RSA_WITH_AES_128_SHA "DH-RSA-AES128-SHA"
547 #define TLS1_TXT_DHE_DSS_WITH_AES_128_SHA "DHE-DSS-AES128-SHA"
548 #define TLS1_TXT_DHE_RSA_WITH_AES_128_SHA "DHE-RSA-AES128-SHA"
549 #define TLS1_TXT_ADH_WITH_AES_128_SHA "ADH-AES128-SHA"

551 #define TLS1_TXT_RSA_WITH_AES_256_SHA "AES256-SHA"
552 #define TLS1_TXT_DH_DSS_WITH_AES_256_SHA "DH-DSS-AES256-SHA"
553 #define TLS1_TXT_DH_RSA_WITH_AES_256_SHA "DH-RSA-AES256-SHA"
554 #define TLS1_TXT_DHE_DSS_WITH_AES_256_SHA "DHE-DSS-AES256-SHA"
555 #define TLS1_TXT_DHE_RSA_WITH_AES_256_SHA "DHE-RSA-AES256-SHA"
556 #define TLS1_TXT_ADH_WITH_AES_256_SHA "ADH-AES256-SHA"

558 /* ECC ciphersuites from draft-ietf-tls-ecc-01.txt (Mar 15, 2001) */
559 #define TLS1_TXT_ECDH_ECDSA_WITH_NULL_SHA "ECDH-ECDSA-NULL-SHA"
560 #define TLS1_TXT_ECDH_ECDSA_WITH_RC4_128_SHA "ECDH-ECDSA-RC4-SHA"
561 #define TLS1_TXT_ECDH_ECDSA_WITH_DES_192_CBC3_SHA "ECDH-ECDSA-DES-CBC3-SHA
562 #define TLS1_TXT_ECDH_ECDSA_WITH_AES_128_CBC_SHA "ECDH-ECDSA-AES128-SHA"
563 #define TLS1_TXT_ECDH_ECDSA_WITH_AES_256_CBC_SHA "ECDH-ECDSA-AES256-SHA"

565 #define TLS1_TXT_ECDHE_ECDSA_WITH_NULL_SHA "ECDHE-ECDSA-NULL-SHA"
566 #define TLS1_TXT_ECDHE_ECDSA_WITH_RC4_128_SHA "ECDHE-ECDSA-RC4-SHA"
567 #define TLS1_TXT_ECDHE_ECDSA_WITH_DES_192_CBC3_SHA "ECDHE-ECDSA-DES-CBC3-SH
568 #define TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA "ECDHE-ECDSA-AES128-SHA"
569 #define TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA "ECDHE-ECDSA-AES256-SHA"

571 #define TLS1_TXT_ECDH_RSA_WITH_NULL_SHA "ECDH-RSA-NULL-SHA"
572 #define TLS1_TXT_ECDH_RSA_WITH_RC4_128_SHA "ECDH-RSA-RC4-SHA"
573 #define TLS1_TXT_ECDH_RSA_WITH_DES_192_CBC3_SHA "ECDH-RSA-DES-CBC3-SHA"
574 #define TLS1_TXT_ECDH_RSA_WITH_AES_128_CBC_SHA "ECDH-RSA-AES128-SHA"
575 #define TLS1_TXT_ECDH_RSA_WITH_AES_256_CBC_SHA "ECDH-RSA-AES256-SHA"

577 #define TLS1_TXT_ECDHE_RSA_WITH_NULL_SHA "ECDHE-RSA-NULL-SHA"
578 #define TLS1_TXT_ECDHE_RSA_WITH_RC4_128_SHA "ECDHE-RSA-RC4-SHA"
579 #define TLS1_TXT_ECDHE_RSA_WITH_DES_192_CBC3_SHA "ECDHE-RSA-DES-CBC3-SHA"
580 #define TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA "ECDHE-RSA-AES128-SHA"
581 #define TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA "ECDHE-RSA-AES256-SHA"

583 #define TLS1_TXT_ECDH_anon_WITH_NULL_SHA "AECDH-NULL-SHA"
584 #define TLS1_TXT_ECDH_anon_WITH_RC4_128_SHA "AECDH-RC4-SHA"
585 #define TLS1_TXT_ECDH_anon_WITH_DES_192_CBC3_SHA "AECDH-DES-CBC3-SHA"
586 #define TLS1_TXT_ECDH_anon_WITH_AES_128_CBC_SHA "AECDH-AES128-SHA"
587 #define TLS1_TXT_ECDH_anon_WITH_AES_256_CBC_SHA "AECDH-AES256-SHA"

589 /* PSK ciphersuites from RFC 4279 */

new/usr/src/lib/openssl/include/openssl/tls1.h 10

590 #define TLS1_TXT_PSK_WITH_RC4_128_SHA "PSK-RC4-SHA"
591 #define TLS1_TXT_PSK_WITH_3DES_EDE_CBC_SHA "PSK-3DES-EDE-CBC-SHA"
592 #define TLS1_TXT_PSK_WITH_AES_128_CBC_SHA "PSK-AES128-CBC-SHA"
593 #define TLS1_TXT_PSK_WITH_AES_256_CBC_SHA "PSK-AES256-CBC-SHA"

595 /* SRP ciphersuite from RFC 5054 */
596 #define TLS1_TXT_SRP_SHA_WITH_3DES_EDE_CBC_SHA "SRP-3DES-EDE-CBC-SHA"
597 #define TLS1_TXT_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA "SRP-RSA-3DES-EDE-CBC-SH
598 #define TLS1_TXT_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA "SRP-DSS-3DES-EDE-CBC-SH
599 #define TLS1_TXT_SRP_SHA_WITH_AES_128_CBC_SHA "SRP-AES-128-CBC-SHA"
600 #define TLS1_TXT_SRP_SHA_RSA_WITH_AES_128_CBC_SHA "SRP-RSA-AES-128-CBC-SHA
601 #define TLS1_TXT_SRP_SHA_DSS_WITH_AES_128_CBC_SHA "SRP-DSS-AES-128-CBC-SHA
602 #define TLS1_TXT_SRP_SHA_WITH_AES_256_CBC_SHA "SRP-AES-256-CBC-SHA"
603 #define TLS1_TXT_SRP_SHA_RSA_WITH_AES_256_CBC_SHA "SRP-RSA-AES-256-CBC-SHA
604 #define TLS1_TXT_SRP_SHA_DSS_WITH_AES_256_CBC_SHA "SRP-DSS-AES-256-CBC-SHA

606 /* Camellia ciphersuites from RFC4132 */
607 #define TLS1_TXT_RSA_WITH_CAMELLIA_128_CBC_SHA "CAMELLIA128-SHA"
608 #define TLS1_TXT_DH_DSS_WITH_CAMELLIA_128_CBC_SHA "DH-DSS-CAMELLIA128-SHA"
609 #define TLS1_TXT_DH_RSA_WITH_CAMELLIA_128_CBC_SHA "DH-RSA-CAMELLIA128-SHA"
610 #define TLS1_TXT_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA "DHE-DSS-CAMELLIA128-SHA
611 #define TLS1_TXT_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA "DHE-RSA-CAMELLIA128-SHA
612 #define TLS1_TXT_ADH_WITH_CAMELLIA_128_CBC_SHA "ADH-CAMELLIA128-SHA"

614 #define TLS1_TXT_RSA_WITH_CAMELLIA_256_CBC_SHA "CAMELLIA256-SHA"
615 #define TLS1_TXT_DH_DSS_WITH_CAMELLIA_256_CBC_SHA "DH-DSS-CAMELLIA256-SHA"
616 #define TLS1_TXT_DH_RSA_WITH_CAMELLIA_256_CBC_SHA "DH-RSA-CAMELLIA256-SHA"
617 #define TLS1_TXT_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA "DHE-DSS-CAMELLIA256-SHA
618 #define TLS1_TXT_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA "DHE-RSA-CAMELLIA256-SHA
619 #define TLS1_TXT_ADH_WITH_CAMELLIA_256_CBC_SHA "ADH-CAMELLIA256-SHA"

621 /* SEED ciphersuites from RFC4162 */
622 #define TLS1_TXT_RSA_WITH_SEED_SHA "SEED-SHA"
623 #define TLS1_TXT_DH_DSS_WITH_SEED_SHA "DH-DSS-SEED-SHA"
624 #define TLS1_TXT_DH_RSA_WITH_SEED_SHA "DH-RSA-SEED-SHA"
625 #define TLS1_TXT_DHE_DSS_WITH_SEED_SHA "DHE-DSS-SEED-SHA"
626 #define TLS1_TXT_DHE_RSA_WITH_SEED_SHA "DHE-RSA-SEED-SHA"
627 #define TLS1_TXT_ADH_WITH_SEED_SHA "ADH-SEED-SHA"

629 /* TLS v1.2 ciphersuites */
630 #define TLS1_TXT_RSA_WITH_NULL_SHA256 "NULL-SHA256"
631 #define TLS1_TXT_RSA_WITH_AES_128_SHA256 "AES128-SHA256"
632 #define TLS1_TXT_RSA_WITH_AES_256_SHA256 "AES256-SHA256"
633 #define TLS1_TXT_DH_DSS_WITH_AES_128_SHA256 "DH-DSS-AES128-SHA256"
634 #define TLS1_TXT_DH_RSA_WITH_AES_128_SHA256 "DH-RSA-AES128-SHA256"
635 #define TLS1_TXT_DHE_DSS_WITH_AES_128_SHA256 "DHE-DSS-AES128-SHA256"
636 #define TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256 "DHE-RSA-AES128-SHA256"
637 #define TLS1_TXT_DH_DSS_WITH_AES_256_SHA256 "DH-DSS-AES256-SHA256"
638 #define TLS1_TXT_DH_RSA_WITH_AES_256_SHA256 "DH-RSA-AES256-SHA256"
639 #define TLS1_TXT_DHE_DSS_WITH_AES_256_SHA256 "DHE-DSS-AES256-SHA256"
640 #define TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256 "DHE-RSA-AES256-SHA256"
641 #define TLS1_TXT_ADH_WITH_AES_128_SHA256 "ADH-AES128-SHA256"
642 #define TLS1_TXT_ADH_WITH_AES_256_SHA256 "ADH-AES256-SHA256"

644 /* TLS v1.2 GCM ciphersuites from RFC5288 */
645 #define TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256 "AES128-GCM-SHA256"
646 #define TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384 "AES256-GCM-SHA384"
647 #define TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256 "DHE-RSA-AES128-GCM-SHA2
648 #define TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384 "DHE-RSA-AES256-GCM-SHA3
649 #define TLS1_TXT_DH_RSA_WITH_AES_128_GCM_SHA256 "DH-RSA-AES128-GCM-SHA25
650 #define TLS1_TXT_DH_RSA_WITH_AES_256_GCM_SHA384 "DH-RSA-AES256-GCM-SHA38
651 #define TLS1_TXT_DHE_DSS_WITH_AES_128_GCM_SHA256 "DHE-DSS-AES128-GCM-SHA2
652 #define TLS1_TXT_DHE_DSS_WITH_AES_256_GCM_SHA384 "DHE-DSS-AES256-GCM-SHA3
653 #define TLS1_TXT_DH_DSS_WITH_AES_128_GCM_SHA256 "DH-DSS-AES128-GCM-SHA25
654 #define TLS1_TXT_DH_DSS_WITH_AES_256_GCM_SHA384 "DH-DSS-AES256-GCM-SHA38
655 #define TLS1_TXT_ADH_WITH_AES_128_GCM_SHA256 "ADH-AES128-GCM-SHA256"

new/usr/src/lib/openssl/include/openssl/tls1.h 11

656 #define TLS1_TXT_ADH_WITH_AES_256_GCM_SHA384 "ADH-AES256-GCM-SHA384"

658 /* ECDH HMAC based ciphersuites from RFC5289 */

660 #define TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256 "ECDHE-ECDSA-AES128-SHA256"
661 #define TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384 "ECDHE-ECDSA-AES256-SHA384"
662 #define TLS1_TXT_ECDH_ECDSA_WITH_AES_128_SHA256 "ECDH-ECDSA-AES128-SHA256"
663 #define TLS1_TXT_ECDH_ECDSA_WITH_AES_256_SHA384 "ECDH-ECDSA-AES256-SHA384"
664 #define TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256 "ECDHE-RSA-AES128-SHA256"
665 #define TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384 "ECDHE-RSA-AES256-SHA384"
666 #define TLS1_TXT_ECDH_RSA_WITH_AES_128_SHA256 "ECDH-RSA-AES128-SHA256"
667 #define TLS1_TXT_ECDH_RSA_WITH_AES_256_SHA384 "ECDH-RSA-AES256-SHA384"

669 /* ECDH GCM based ciphersuites from RFC5289 */
670 #define TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 "ECDHE-ECDSA-AES128-GCM-
671 #define TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 "ECDHE-ECDSA-AES256-GCM-
672 #define TLS1_TXT_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 "ECDH-ECDSA-AES128-GCM-S
673 #define TLS1_TXT_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 "ECDH-ECDSA-AES256-GCM-S
674 #define TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256 "ECDHE-RSA-AES128-GCM-SH
675 #define TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384 "ECDHE-RSA-AES256-GCM-SH
676 #define TLS1_TXT_ECDH_RSA_WITH_AES_128_GCM_SHA256 "ECDH-RSA-AES128-GCM-SHA
677 #define TLS1_TXT_ECDH_RSA_WITH_AES_256_GCM_SHA384 "ECDH-RSA-AES256-GCM-SHA

679 #define TLS_CT_RSA_SIGN 1
680 #define TLS_CT_DSS_SIGN 2
681 #define TLS_CT_RSA_FIXED_DH 3
682 #define TLS_CT_DSS_FIXED_DH 4
683 #define TLS_CT_ECDSA_SIGN 64
684 #define TLS_CT_RSA_FIXED_ECDH 65
685 #define TLS_CT_ECDSA_FIXED_ECDH 66
686 #define TLS_CT_GOST94_SIGN 21
687 #define TLS_CT_GOST01_SIGN 22
688 /* when correcting this number, correct also SSL3_CT_NUMBER in ssl3.h (see
689 * comment there) */
690 #define TLS_CT_NUMBER 9

692 #define TLS1_FINISH_MAC_LENGTH 12

694 #define TLS_MD_MAX_CONST_SIZE 20
695 #define TLS_MD_CLIENT_FINISH_CONST "client finished"
696 #define TLS_MD_CLIENT_FINISH_CONST_SIZE 15
697 #define TLS_MD_SERVER_FINISH_CONST "server finished"
698 #define TLS_MD_SERVER_FINISH_CONST_SIZE 15
699 #define TLS_MD_SERVER_WRITE_KEY_CONST "server write key"
700 #define TLS_MD_SERVER_WRITE_KEY_CONST_SIZE 16
701 #define TLS_MD_KEY_EXPANSION_CONST "key expansion"
702 #define TLS_MD_KEY_EXPANSION_CONST_SIZE 13
703 #define TLS_MD_CLIENT_WRITE_KEY_CONST "client write key"
704 #define TLS_MD_CLIENT_WRITE_KEY_CONST_SIZE 16
705 #define TLS_MD_SERVER_WRITE_KEY_CONST "server write key"
706 #define TLS_MD_SERVER_WRITE_KEY_CONST_SIZE 16
707 #define TLS_MD_IV_BLOCK_CONST "IV block"
708 #define TLS_MD_IV_BLOCK_CONST_SIZE 8
709 #define TLS_MD_MASTER_SECRET_CONST "master secret"
710 #define TLS_MD_MASTER_SECRET_CONST_SIZE 13

712 #ifdef CHARSET_EBCDIC
713 #undef TLS_MD_CLIENT_FINISH_CONST
714 #define TLS_MD_CLIENT_FINISH_CONST "\x63\x6c\x69\x65\x6e\x74\x20\x66\x69\x6e\
715 #undef TLS_MD_SERVER_FINISH_CONST
716 #define TLS_MD_SERVER_FINISH_CONST "\x73\x65\x72\x76\x65\x72\x20\x66\x69\x6e\
717 #undef TLS_MD_SERVER_WRITE_KEY_CONST
718 #define TLS_MD_SERVER_WRITE_KEY_CONST "\x73\x65\x72\x76\x65\x72\x20\x77\x72\x69\
719 #undef TLS_MD_KEY_EXPANSION_CONST
720 #define TLS_MD_KEY_EXPANSION_CONST "\x6b\x65\x79\x20\x65\x78\x70\x61\x6e\x73\
721 #undef TLS_MD_CLIENT_WRITE_KEY_CONST

new/usr/src/lib/openssl/include/openssl/tls1.h 12

722 #define TLS_MD_CLIENT_WRITE_KEY_CONST "\x63\x6c\x69\x65\x6e\x74\x20\x77\x72\x69\
723 #undef TLS_MD_SERVER_WRITE_KEY_CONST
724 #define TLS_MD_SERVER_WRITE_KEY_CONST "\x73\x65\x72\x76\x65\x72\x20\x77\x72\x69\
725 #undef TLS_MD_IV_BLOCK_CONST
726 #define TLS_MD_IV_BLOCK_CONST "\x49\x56\x20\x62\x6c\x6f\x63\x6b" /*IV b
727 #undef TLS_MD_MASTER_SECRET_CONST
728 #define TLS_MD_MASTER_SECRET_CONST "\x6d\x61\x73\x74\x65\x72\x20\x73\x65\x63\
729 #endif

731 /* TLS Session Ticket extension struct */
732 struct tls_session_ticket_ext_st
733 {
734 unsigned short length;
735 void *data;
736 };

738 #ifdef __cplusplus
739 }
740 #endif
741 #endif

new/usr/src/lib/openssl/include/openssl/ts.h 1

**
 31006 Fri May 30 18:31:23 2014
new/usr/src/lib/openssl/include/openssl/ts.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ts/ts.h */
2 /* Written by Zoltan Glozik (zglozik@opentsa.org) for the OpenSSL
3 * project 2002, 2003, 2004.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #ifndef HEADER_TS_H
60 #define HEADER_TS_H

new/usr/src/lib/openssl/include/openssl/ts.h 2

62 #include <openssl/opensslconf.h>
63 #include <openssl/symhacks.h>
64 #ifndef OPENSSL_NO_BUFFER
65 #include <openssl/buffer.h>
66 #endif
67 #ifndef OPENSSL_NO_EVP
68 #include <openssl/evp.h>
69 #endif
70 #ifndef OPENSSL_NO_BIO
71 #include <openssl/bio.h>
72 #endif
73 #include <openssl/stack.h>
74 #include <openssl/asn1.h>
75 #include <openssl/safestack.h>

77 #ifndef OPENSSL_NO_RSA
78 #include <openssl/rsa.h>
79 #endif

81 #ifndef OPENSSL_NO_DSA
82 #include <openssl/dsa.h>
83 #endif

85 #ifndef OPENSSL_NO_DH
86 #include <openssl/dh.h>
87 #endif

89 #ifdef __cplusplus
90 extern "C" {
91 #endif

93 #ifdef WIN32
94 /* Under Win32 this is defined in wincrypt.h */
95 #undef X509_NAME
96 #endif

98 #include <openssl/x509.h>
99 #include <openssl/x509v3.h>

101 /*
102 MessageImprint ::= SEQUENCE {
103 hashAlgorithm AlgorithmIdentifier,
104 hashedMessage OCTET STRING }
105 */

107 typedef struct TS_msg_imprint_st
108 {
109 X509_ALGOR *hash_algo;
110 ASN1_OCTET_STRING *hashed_msg;
111 } TS_MSG_IMPRINT;

113 /*
114 TimeStampReq ::= SEQUENCE {
115 version INTEGER { v1(1) },
116 messageImprint MessageImprint,
117 --a hash algorithm OID and the hash value of the data to be
118 --time-stamped
119 reqPolicy TSAPolicyId OPTIONAL,
120 nonce INTEGER OPTIONAL,
121 certReq BOOLEAN DEFAULT FALSE,
122 extensions [0] IMPLICIT Extensions OPTIONAL }
123 */

125 typedef struct TS_req_st
126 {
127 ASN1_INTEGER *version;

new/usr/src/lib/openssl/include/openssl/ts.h 3

128 TS_MSG_IMPRINT *msg_imprint;
129 ASN1_OBJECT *policy_id; /* OPTIONAL */
130 ASN1_INTEGER *nonce; /* OPTIONAL */
131 ASN1_BOOLEAN cert_req; /* DEFAULT FALSE */
132 STACK_OF(X509_EXTENSION) *extensions; /* [0] OPTIONAL */
133 } TS_REQ;

135 /*
136 Accuracy ::= SEQUENCE {
137 seconds INTEGER OPTIONAL,
138 millis [0] INTEGER (1..999) OPTIONAL,
139 micros [1] INTEGER (1..999) OPTIONAL }
140 */

142 typedef struct TS_accuracy_st
143 {
144 ASN1_INTEGER *seconds;
145 ASN1_INTEGER *millis;
146 ASN1_INTEGER *micros;
147 } TS_ACCURACY;

149 /*
150 TSTInfo ::= SEQUENCE {
151 version INTEGER { v1(1) },
152 policy TSAPolicyId,
153 messageImprint MessageImprint,
154 -- MUST have the same value as the similar field in
155 -- TimeStampReq
156 serialNumber INTEGER,
157 -- Time-Stamping users MUST be ready to accommodate integers
158 -- up to 160 bits.
159 genTime GeneralizedTime,
160 accuracy Accuracy OPTIONAL,
161 ordering BOOLEAN DEFAULT FALSE,
162 nonce INTEGER OPTIONAL,
163 -- MUST be present if the similar field was present
164 -- in TimeStampReq. In that case it MUST have the same value.
165 tsa [0] GeneralName OPTIONAL,
166 extensions [1] IMPLICIT Extensions OPTIONAL }
167 */

169 typedef struct TS_tst_info_st
170 {
171 ASN1_INTEGER *version;
172 ASN1_OBJECT *policy_id;
173 TS_MSG_IMPRINT *msg_imprint;
174 ASN1_INTEGER *serial;
175 ASN1_GENERALIZEDTIME *time;
176 TS_ACCURACY *accuracy;
177 ASN1_BOOLEAN ordering;
178 ASN1_INTEGER *nonce;
179 GENERAL_NAME *tsa;
180 STACK_OF(X509_EXTENSION) *extensions;
181 } TS_TST_INFO;

183 /*
184 PKIStatusInfo ::= SEQUENCE {
185 status PKIStatus,
186 statusString PKIFreeText OPTIONAL,
187 failInfo PKIFailureInfo OPTIONAL }

189 From RFC 1510 - section 3.1.1:
190 PKIFreeText ::= SEQUENCE SIZE (1..MAX) OF UTF8String
191 -- text encoded as UTF-8 String (note: each UTF8String SHOULD
192 -- include an RFC 1766 language tag to indicate the language
193 -- of the contained text)

new/usr/src/lib/openssl/include/openssl/ts.h 4

194 */

196 /* Possible values for status. See ts_resp_print.c && ts_resp_verify.c. */

198 #define TS_STATUS_GRANTED 0
199 #define TS_STATUS_GRANTED_WITH_MODS 1
200 #define TS_STATUS_REJECTION 2
201 #define TS_STATUS_WAITING 3
202 #define TS_STATUS_REVOCATION_WARNING 4
203 #define TS_STATUS_REVOCATION_NOTIFICATION 5

205 /* Possible values for failure_info. See ts_resp_print.c && ts_resp_verify.c */

207 #define TS_INFO_BAD_ALG 0
208 #define TS_INFO_BAD_REQUEST 2
209 #define TS_INFO_BAD_DATA_FORMAT 5
210 #define TS_INFO_TIME_NOT_AVAILABLE 14
211 #define TS_INFO_UNACCEPTED_POLICY 15
212 #define TS_INFO_UNACCEPTED_EXTENSION 16
213 #define TS_INFO_ADD_INFO_NOT_AVAILABLE 17
214 #define TS_INFO_SYSTEM_FAILURE 25

216 typedef struct TS_status_info_st
217 {
218 ASN1_INTEGER *status;
219 STACK_OF(ASN1_UTF8STRING) *text;
220 ASN1_BIT_STRING *failure_info;
221 } TS_STATUS_INFO;

223 DECLARE_STACK_OF(ASN1_UTF8STRING)
224 DECLARE_ASN1_SET_OF(ASN1_UTF8STRING)

226 /*
227 TimeStampResp ::= SEQUENCE {
228 status PKIStatusInfo,
229 timeStampToken TimeStampToken OPTIONAL }
230 */

232 typedef struct TS_resp_st
233 {
234 TS_STATUS_INFO *status_info;
235 PKCS7 *token;
236 TS_TST_INFO *tst_info;
237 } TS_RESP;

239 /* The structure below would belong to the ESS component. */

241 /*
242 IssuerSerial ::= SEQUENCE {
243 issuer GeneralNames,
244 serialNumber CertificateSerialNumber
245 }
246 */

248 typedef struct ESS_issuer_serial
249 {
250 STACK_OF(GENERAL_NAME) *issuer;
251 ASN1_INTEGER *serial;
252 } ESS_ISSUER_SERIAL;

254 /*
255 ESSCertID ::= SEQUENCE {
256 certHash Hash,
257 issuerSerial IssuerSerial OPTIONAL
258 }
259 */

new/usr/src/lib/openssl/include/openssl/ts.h 5

261 typedef struct ESS_cert_id
262 {
263 ASN1_OCTET_STRING *hash; /* Always SHA-1 digest. */
264 ESS_ISSUER_SERIAL *issuer_serial;
265 } ESS_CERT_ID;

267 DECLARE_STACK_OF(ESS_CERT_ID)
268 DECLARE_ASN1_SET_OF(ESS_CERT_ID)

270 /*
271 SigningCertificate ::= SEQUENCE {
272 certs SEQUENCE OF ESSCertID,
273 policies SEQUENCE OF PolicyInformation OPTIONAL
274 }
275 */

277 typedef struct ESS_signing_cert
278 {
279 STACK_OF(ESS_CERT_ID) *cert_ids;
280 STACK_OF(POLICYINFO) *policy_info;
281 } ESS_SIGNING_CERT;

284 TS_REQ *TS_REQ_new(void);
285 void TS_REQ_free(TS_REQ *a);
286 int i2d_TS_REQ(const TS_REQ *a, unsigned char **pp);
287 TS_REQ *d2i_TS_REQ(TS_REQ **a, const unsigned char **pp, long length);

289 TS_REQ *TS_REQ_dup(TS_REQ *a);

291 TS_REQ *d2i_TS_REQ_fp(FILE *fp, TS_REQ **a);
292 int i2d_TS_REQ_fp(FILE *fp, TS_REQ *a);
293 TS_REQ *d2i_TS_REQ_bio(BIO *fp, TS_REQ **a);
294 int i2d_TS_REQ_bio(BIO *fp, TS_REQ *a);

296 TS_MSG_IMPRINT *TS_MSG_IMPRINT_new(void);
297 void TS_MSG_IMPRINT_free(TS_MSG_IMPRINT *a);
298 int i2d_TS_MSG_IMPRINT(const TS_MSG_IMPRINT *a, unsigned char **pp);
299 TS_MSG_IMPRINT *d2i_TS_MSG_IMPRINT(TS_MSG_IMPRINT **a,
300 const unsigned char **pp, long length);

302 TS_MSG_IMPRINT *TS_MSG_IMPRINT_dup(TS_MSG_IMPRINT *a);

304 TS_MSG_IMPRINT *d2i_TS_MSG_IMPRINT_fp(FILE *fp, TS_MSG_IMPRINT **a);
305 int i2d_TS_MSG_IMPRINT_fp(FILE *fp, TS_MSG_IMPRINT *a);
306 TS_MSG_IMPRINT *d2i_TS_MSG_IMPRINT_bio(BIO *fp, TS_MSG_IMPRINT **a);
307 int i2d_TS_MSG_IMPRINT_bio(BIO *fp, TS_MSG_IMPRINT *a);

309 TS_RESP *TS_RESP_new(void);
310 void TS_RESP_free(TS_RESP *a);
311 int i2d_TS_RESP(const TS_RESP *a, unsigned char **pp);
312 TS_RESP *d2i_TS_RESP(TS_RESP **a, const unsigned char **pp, long length);
313 TS_TST_INFO *PKCS7_to_TS_TST_INFO(PKCS7 *token);
314 TS_RESP *TS_RESP_dup(TS_RESP *a);

316 TS_RESP *d2i_TS_RESP_fp(FILE *fp, TS_RESP **a);
317 int i2d_TS_RESP_fp(FILE *fp, TS_RESP *a);
318 TS_RESP *d2i_TS_RESP_bio(BIO *fp, TS_RESP **a);
319 int i2d_TS_RESP_bio(BIO *fp, TS_RESP *a);

321 TS_STATUS_INFO *TS_STATUS_INFO_new(void);
322 void TS_STATUS_INFO_free(TS_STATUS_INFO *a);
323 int i2d_TS_STATUS_INFO(const TS_STATUS_INFO *a, unsigned char **pp);
324 TS_STATUS_INFO *d2i_TS_STATUS_INFO(TS_STATUS_INFO **a,
325 const unsigned char **pp, long length);

new/usr/src/lib/openssl/include/openssl/ts.h 6

326 TS_STATUS_INFO *TS_STATUS_INFO_dup(TS_STATUS_INFO *a);

328 TS_TST_INFO *TS_TST_INFO_new(void);
329 void TS_TST_INFO_free(TS_TST_INFO *a);
330 int i2d_TS_TST_INFO(const TS_TST_INFO *a, unsigned char **pp);
331 TS_TST_INFO *d2i_TS_TST_INFO(TS_TST_INFO **a, const unsigned char **pp,
332 long length);
333 TS_TST_INFO *TS_TST_INFO_dup(TS_TST_INFO *a);

335 TS_TST_INFO *d2i_TS_TST_INFO_fp(FILE *fp, TS_TST_INFO **a);
336 int i2d_TS_TST_INFO_fp(FILE *fp, TS_TST_INFO *a);
337 TS_TST_INFO *d2i_TS_TST_INFO_bio(BIO *fp, TS_TST_INFO **a);
338 int i2d_TS_TST_INFO_bio(BIO *fp, TS_TST_INFO *a);

340 TS_ACCURACY *TS_ACCURACY_new(void);
341 void TS_ACCURACY_free(TS_ACCURACY *a);
342 int i2d_TS_ACCURACY(const TS_ACCURACY *a, unsigned char **pp);
343 TS_ACCURACY *d2i_TS_ACCURACY(TS_ACCURACY **a, const unsigned char **pp,
344 long length);
345 TS_ACCURACY *TS_ACCURACY_dup(TS_ACCURACY *a);

347 ESS_ISSUER_SERIAL *ESS_ISSUER_SERIAL_new(void);
348 void ESS_ISSUER_SERIAL_free(ESS_ISSUER_SERIAL *a);
349 int i2d_ESS_ISSUER_SERIAL(const ESS_ISSUER_SERIAL *a,
350 unsigned char **pp);
351 ESS_ISSUER_SERIAL *d2i_ESS_ISSUER_SERIAL(ESS_ISSUER_SERIAL **a,
352 const unsigned char **pp, long length);
353 ESS_ISSUER_SERIAL *ESS_ISSUER_SERIAL_dup(ESS_ISSUER_SERIAL *a);

355 ESS_CERT_ID *ESS_CERT_ID_new(void);
356 void ESS_CERT_ID_free(ESS_CERT_ID *a);
357 int i2d_ESS_CERT_ID(const ESS_CERT_ID *a, unsigned char **pp);
358 ESS_CERT_ID *d2i_ESS_CERT_ID(ESS_CERT_ID **a, const unsigned char **pp,
359 long length);
360 ESS_CERT_ID *ESS_CERT_ID_dup(ESS_CERT_ID *a);

362 ESS_SIGNING_CERT *ESS_SIGNING_CERT_new(void);
363 void ESS_SIGNING_CERT_free(ESS_SIGNING_CERT *a);
364 int i2d_ESS_SIGNING_CERT(const ESS_SIGNING_CERT *a,
365 unsigned char **pp);
366 ESS_SIGNING_CERT *d2i_ESS_SIGNING_CERT(ESS_SIGNING_CERT **a,
367 const unsigned char **pp, long length);
368 ESS_SIGNING_CERT *ESS_SIGNING_CERT_dup(ESS_SIGNING_CERT *a);

370 void ERR_load_TS_strings(void);

372 int TS_REQ_set_version(TS_REQ *a, long version);
373 long TS_REQ_get_version(const TS_REQ *a);

375 int TS_REQ_set_msg_imprint(TS_REQ *a, TS_MSG_IMPRINT *msg_imprint);
376 TS_MSG_IMPRINT *TS_REQ_get_msg_imprint(TS_REQ *a);

378 int TS_MSG_IMPRINT_set_algo(TS_MSG_IMPRINT *a, X509_ALGOR *alg);
379 X509_ALGOR *TS_MSG_IMPRINT_get_algo(TS_MSG_IMPRINT *a);

381 int TS_MSG_IMPRINT_set_msg(TS_MSG_IMPRINT *a, unsigned char *d, int len);
382 ASN1_OCTET_STRING *TS_MSG_IMPRINT_get_msg(TS_MSG_IMPRINT *a);

384 int TS_REQ_set_policy_id(TS_REQ *a, ASN1_OBJECT *policy);
385 ASN1_OBJECT *TS_REQ_get_policy_id(TS_REQ *a);

387 int TS_REQ_set_nonce(TS_REQ *a, const ASN1_INTEGER *nonce);
388 const ASN1_INTEGER *TS_REQ_get_nonce(const TS_REQ *a);

390 int TS_REQ_set_cert_req(TS_REQ *a, int cert_req);
391 int TS_REQ_get_cert_req(const TS_REQ *a);

new/usr/src/lib/openssl/include/openssl/ts.h 7

393 STACK_OF(X509_EXTENSION) *TS_REQ_get_exts(TS_REQ *a);
394 void TS_REQ_ext_free(TS_REQ *a);
395 int TS_REQ_get_ext_count(TS_REQ *a);
396 int TS_REQ_get_ext_by_NID(TS_REQ *a, int nid, int lastpos);
397 int TS_REQ_get_ext_by_OBJ(TS_REQ *a, ASN1_OBJECT *obj, int lastpos);
398 int TS_REQ_get_ext_by_critical(TS_REQ *a, int crit, int lastpos);
399 X509_EXTENSION *TS_REQ_get_ext(TS_REQ *a, int loc);
400 X509_EXTENSION *TS_REQ_delete_ext(TS_REQ *a, int loc);
401 int TS_REQ_add_ext(TS_REQ *a, X509_EXTENSION *ex, int loc);
402 void *TS_REQ_get_ext_d2i(TS_REQ *a, int nid, int *crit, int *idx);

404 /* Function declarations for TS_REQ defined in ts/ts_req_print.c */

406 int TS_REQ_print_bio(BIO *bio, TS_REQ *a);

408 /* Function declarations for TS_RESP defined in ts/ts_resp_utils.c */

410 int TS_RESP_set_status_info(TS_RESP *a, TS_STATUS_INFO *info);
411 TS_STATUS_INFO *TS_RESP_get_status_info(TS_RESP *a);

413 /* Caller loses ownership of PKCS7 and TS_TST_INFO objects. */
414 void TS_RESP_set_tst_info(TS_RESP *a, PKCS7 *p7, TS_TST_INFO *tst_info);
415 PKCS7 *TS_RESP_get_token(TS_RESP *a);
416 TS_TST_INFO *TS_RESP_get_tst_info(TS_RESP *a);

418 int TS_TST_INFO_set_version(TS_TST_INFO *a, long version);
419 long TS_TST_INFO_get_version(const TS_TST_INFO *a);

421 int TS_TST_INFO_set_policy_id(TS_TST_INFO *a, ASN1_OBJECT *policy_id);
422 ASN1_OBJECT *TS_TST_INFO_get_policy_id(TS_TST_INFO *a);

424 int TS_TST_INFO_set_msg_imprint(TS_TST_INFO *a, TS_MSG_IMPRINT *msg_imprint);
425 TS_MSG_IMPRINT *TS_TST_INFO_get_msg_imprint(TS_TST_INFO *a);

427 int TS_TST_INFO_set_serial(TS_TST_INFO *a, const ASN1_INTEGER *serial);
428 const ASN1_INTEGER *TS_TST_INFO_get_serial(const TS_TST_INFO *a);

430 int TS_TST_INFO_set_time(TS_TST_INFO *a, const ASN1_GENERALIZEDTIME *gtime);
431 const ASN1_GENERALIZEDTIME *TS_TST_INFO_get_time(const TS_TST_INFO *a);

433 int TS_TST_INFO_set_accuracy(TS_TST_INFO *a, TS_ACCURACY *accuracy);
434 TS_ACCURACY *TS_TST_INFO_get_accuracy(TS_TST_INFO *a);

436 int TS_ACCURACY_set_seconds(TS_ACCURACY *a, const ASN1_INTEGER *seconds);
437 const ASN1_INTEGER *TS_ACCURACY_get_seconds(const TS_ACCURACY *a);

439 int TS_ACCURACY_set_millis(TS_ACCURACY *a, const ASN1_INTEGER *millis);
440 const ASN1_INTEGER *TS_ACCURACY_get_millis(const TS_ACCURACY *a);

442 int TS_ACCURACY_set_micros(TS_ACCURACY *a, const ASN1_INTEGER *micros);
443 const ASN1_INTEGER *TS_ACCURACY_get_micros(const TS_ACCURACY *a);

445 int TS_TST_INFO_set_ordering(TS_TST_INFO *a, int ordering);
446 int TS_TST_INFO_get_ordering(const TS_TST_INFO *a);

448 int TS_TST_INFO_set_nonce(TS_TST_INFO *a, const ASN1_INTEGER *nonce);
449 const ASN1_INTEGER *TS_TST_INFO_get_nonce(const TS_TST_INFO *a);

451 int TS_TST_INFO_set_tsa(TS_TST_INFO *a, GENERAL_NAME *tsa);
452 GENERAL_NAME *TS_TST_INFO_get_tsa(TS_TST_INFO *a);

454 STACK_OF(X509_EXTENSION) *TS_TST_INFO_get_exts(TS_TST_INFO *a);
455 void TS_TST_INFO_ext_free(TS_TST_INFO *a);
456 int TS_TST_INFO_get_ext_count(TS_TST_INFO *a);
457 int TS_TST_INFO_get_ext_by_NID(TS_TST_INFO *a, int nid, int lastpos);

new/usr/src/lib/openssl/include/openssl/ts.h 8

458 int TS_TST_INFO_get_ext_by_OBJ(TS_TST_INFO *a, ASN1_OBJECT *obj, int lastpos);
459 int TS_TST_INFO_get_ext_by_critical(TS_TST_INFO *a, int crit, int lastpos);
460 X509_EXTENSION *TS_TST_INFO_get_ext(TS_TST_INFO *a, int loc);
461 X509_EXTENSION *TS_TST_INFO_delete_ext(TS_TST_INFO *a, int loc);
462 int TS_TST_INFO_add_ext(TS_TST_INFO *a, X509_EXTENSION *ex, int loc);
463 void *TS_TST_INFO_get_ext_d2i(TS_TST_INFO *a, int nid, int *crit, int *idx);

465 /* Declarations related to response generation, defined in ts/ts_resp_sign.c. */

467 /* Optional flags for response generation. */

469 /* Don’t include the TSA name in response. */
470 #define TS_TSA_NAME 0x01

472 /* Set ordering to true in response. */
473 #define TS_ORDERING 0x02

475 /*
476 * Include the signer certificate and the other specified certificates in
477 * the ESS signing certificate attribute beside the PKCS7 signed data.
478 * Only the signer certificates is included by default.
479 */
480 #define TS_ESS_CERT_ID_CHAIN 0x04

482 /* Forward declaration. */
483 struct TS_resp_ctx;

485 /* This must return a unique number less than 160 bits long. */
486 typedef ASN1_INTEGER *(*TS_serial_cb)(struct TS_resp_ctx *, void *);

488 /* This must return the seconds and microseconds since Jan 1, 1970 in
489 the sec and usec variables allocated by the caller.
490 Return non-zero for success and zero for failure. */
491 typedef int (*TS_time_cb)(struct TS_resp_ctx *, void *, long *sec, long *usec);

493 /* This must process the given extension.
494 * It can modify the TS_TST_INFO object of the context.
495 * Return values: !0 (processed), 0 (error, it must set the
496 * status info/failure info of the response).
497 */
498 typedef int (*TS_extension_cb)(struct TS_resp_ctx *, X509_EXTENSION *, void *);

500 typedef struct TS_resp_ctx
501 {
502 X509 *signer_cert;
503 EVP_PKEY *signer_key;
504 STACK_OF(X509) *certs; /* Certs to include in signed data. */
505 STACK_OF(ASN1_OBJECT) *policies; /* Acceptable policies. */
506 ASN1_OBJECT *default_policy; /* It may appear in policies, too. */
507 STACK_OF(EVP_MD) *mds; /* Acceptable message digests. */
508 ASN1_INTEGER *seconds; /* accuracy, 0 means not specified. */
509 ASN1_INTEGER *millis; /* accuracy, 0 means not specified. */
510 ASN1_INTEGER *micros; /* accuracy, 0 means not specified. */
511 unsigned clock_precision_digits; /* fraction of seconds in
512 time stamp token. */
513 unsigned flags; /* Optional info, see values above. */

515 /* Callback functions. */
516 TS_serial_cb serial_cb;
517 void *serial_cb_data; /* User data for serial_cb. */
518
519 TS_time_cb time_cb;
520 void *time_cb_data; /* User data for time_cb. */
521
522 TS_extension_cb extension_cb;
523 void *extension_cb_data; /* User data for extension_cb. */

new/usr/src/lib/openssl/include/openssl/ts.h 9

525 /* These members are used only while creating the response. */
526 TS_REQ *request;
527 TS_RESP *response;
528 TS_TST_INFO *tst_info;
529 } TS_RESP_CTX;

531 DECLARE_STACK_OF(EVP_MD)
532 DECLARE_ASN1_SET_OF(EVP_MD)

534 /* Creates a response context that can be used for generating responses. */
535 TS_RESP_CTX *TS_RESP_CTX_new(void);
536 void TS_RESP_CTX_free(TS_RESP_CTX *ctx);

538 /* This parameter must be set. */
539 int TS_RESP_CTX_set_signer_cert(TS_RESP_CTX *ctx, X509 *signer);

541 /* This parameter must be set. */
542 int TS_RESP_CTX_set_signer_key(TS_RESP_CTX *ctx, EVP_PKEY *key);

544 /* This parameter must be set. */
545 int TS_RESP_CTX_set_def_policy(TS_RESP_CTX *ctx, ASN1_OBJECT *def_policy);

547 /* No additional certs are included in the response by default. */
548 int TS_RESP_CTX_set_certs(TS_RESP_CTX *ctx, STACK_OF(X509) *certs);

550 /* Adds a new acceptable policy, only the default policy
551 is accepted by default. */
552 int TS_RESP_CTX_add_policy(TS_RESP_CTX *ctx, ASN1_OBJECT *policy);

554 /* Adds a new acceptable message digest. Note that no message digests
555 are accepted by default. The md argument is shared with the caller. */
556 int TS_RESP_CTX_add_md(TS_RESP_CTX *ctx, const EVP_MD *md);

558 /* Accuracy is not included by default. */
559 int TS_RESP_CTX_set_accuracy(TS_RESP_CTX *ctx,
560 int secs, int millis, int micros);

562 /* Clock precision digits, i.e. the number of decimal digits:
563 ’0’ means sec, ’3’ msec, ’6’ usec, and so on. Default is 0. */
564 int TS_RESP_CTX_set_clock_precision_digits(TS_RESP_CTX *ctx,
565 unsigned clock_precision_digits);
566 /* At most we accept usec precision. */
567 #define TS_MAX_CLOCK_PRECISION_DIGITS 6

569 /* No flags are set by default. */
570 void TS_RESP_CTX_add_flags(TS_RESP_CTX *ctx, int flags);

572 /* Default callback always returns a constant. */
573 void TS_RESP_CTX_set_serial_cb(TS_RESP_CTX *ctx, TS_serial_cb cb, void *data);

575 /* Default callback uses the gettimeofday() and gmtime() system calls. */
576 void TS_RESP_CTX_set_time_cb(TS_RESP_CTX *ctx, TS_time_cb cb, void *data);

578 /* Default callback rejects all extensions. The extension callback is called
579 * when the TS_TST_INFO object is already set up and not signed yet. */
580 /* FIXME: extension handling is not tested yet. */
581 void TS_RESP_CTX_set_extension_cb(TS_RESP_CTX *ctx,
582 TS_extension_cb cb, void *data);

584 /* The following methods can be used in the callbacks. */
585 int TS_RESP_CTX_set_status_info(TS_RESP_CTX *ctx,
586 int status, const char *text);

588 /* Sets the status info only if it is still TS_STATUS_GRANTED. */
589 int TS_RESP_CTX_set_status_info_cond(TS_RESP_CTX *ctx,

new/usr/src/lib/openssl/include/openssl/ts.h 10

590 int status, const char *text);

592 int TS_RESP_CTX_add_failure_info(TS_RESP_CTX *ctx, int failure);

594 /* The get methods below can be used in the extension callback. */
595 TS_REQ *TS_RESP_CTX_get_request(TS_RESP_CTX *ctx);

597 TS_TST_INFO *TS_RESP_CTX_get_tst_info(TS_RESP_CTX *ctx);

599 /*
600 * Creates the signed TS_TST_INFO and puts it in TS_RESP.
601 * In case of errors it sets the status info properly.
602 * Returns NULL only in case of memory allocation/fatal error.
603 */
604 TS_RESP *TS_RESP_create_response(TS_RESP_CTX *ctx, BIO *req_bio);

606 /*
607 * Declarations related to response verification,
608 * they are defined in ts/ts_resp_verify.c.
609 */

611 int TS_RESP_verify_signature(PKCS7 *token, STACK_OF(X509) *certs,
612 X509_STORE *store, X509 **signer_out);

614 /* Context structure for the generic verify method. */

616 /* Verify the signer’s certificate and the signature of the response. */
617 #define TS_VFY_SIGNATURE (1u << 0)
618 /* Verify the version number of the response. */
619 #define TS_VFY_VERSION (1u << 1)
620 /* Verify if the policy supplied by the user matches the policy of the TSA. */
621 #define TS_VFY_POLICY (1u << 2)
622 /* Verify the message imprint provided by the user. This flag should not be
623 specified with TS_VFY_DATA. */
624 #define TS_VFY_IMPRINT (1u << 3)
625 /* Verify the message imprint computed by the verify method from the user
626 provided data and the MD algorithm of the response. This flag should not be
627 specified with TS_VFY_IMPRINT. */
628 #define TS_VFY_DATA (1u << 4)
629 /* Verify the nonce value. */
630 #define TS_VFY_NONCE (1u << 5)
631 /* Verify if the TSA name field matches the signer certificate. */
632 #define TS_VFY_SIGNER (1u << 6)
633 /* Verify if the TSA name field equals to the user provided name. */
634 #define TS_VFY_TSA_NAME (1u << 7)

636 /* You can use the following convenience constants. */
637 #define TS_VFY_ALL_IMPRINT (TS_VFY_SIGNATURE \
638 | TS_VFY_VERSION \
639 | TS_VFY_POLICY \
640 | TS_VFY_IMPRINT \
641 | TS_VFY_NONCE \
642 | TS_VFY_SIGNER \
643 | TS_VFY_TSA_NAME)
644 #define TS_VFY_ALL_DATA (TS_VFY_SIGNATURE \
645 | TS_VFY_VERSION \
646 | TS_VFY_POLICY \
647 | TS_VFY_DATA \
648 | TS_VFY_NONCE \
649 | TS_VFY_SIGNER \
650 | TS_VFY_TSA_NAME)

652 typedef struct TS_verify_ctx
653 {
654 /* Set this to the union of TS_VFY_... flags you want to carry out. */
655 unsigned flags;

new/usr/src/lib/openssl/include/openssl/ts.h 11

657 /* Must be set only with TS_VFY_SIGNATURE. certs is optional. */
658 X509_STORE *store;
659 STACK_OF(X509) *certs;

661 /* Must be set only with TS_VFY_POLICY. */
662 ASN1_OBJECT *policy;

664 /* Must be set only with TS_VFY_IMPRINT. If md_alg is NULL,
665 the algorithm from the response is used. */
666 X509_ALGOR *md_alg;
667 unsigned char *imprint;
668 unsigned imprint_len;

670 /* Must be set only with TS_VFY_DATA. */
671 BIO *data;

673 /* Must be set only with TS_VFY_TSA_NAME. */
674 ASN1_INTEGER *nonce;

676 /* Must be set only with TS_VFY_TSA_NAME. */
677 GENERAL_NAME *tsa_name;
678 } TS_VERIFY_CTX;

680 int TS_RESP_verify_response(TS_VERIFY_CTX *ctx, TS_RESP *response);
681 int TS_RESP_verify_token(TS_VERIFY_CTX *ctx, PKCS7 *token);

683 /*
684 * Declarations related to response verification context,
685 * they are defined in ts/ts_verify_ctx.c.
686 */

688 /* Set all fields to zero. */
689 TS_VERIFY_CTX *TS_VERIFY_CTX_new(void);
690 void TS_VERIFY_CTX_init(TS_VERIFY_CTX *ctx);
691 void TS_VERIFY_CTX_free(TS_VERIFY_CTX *ctx);
692 void TS_VERIFY_CTX_cleanup(TS_VERIFY_CTX *ctx);

694 /*
695 * If ctx is NULL, it allocates and returns a new object, otherwise
696 * it returns ctx. It initialises all the members as follows:
697 * flags = TS_VFY_ALL_IMPRINT & ~(TS_VFY_TSA_NAME | TS_VFY_SIGNATURE)
698 * certs = NULL
699 * store = NULL
700 * policy = policy from the request or NULL if absent (in this case
701 * TS_VFY_POLICY is cleared from flags as well)
702 * md_alg = MD algorithm from request
703 * imprint, imprint_len = imprint from request
704 * data = NULL
705 * nonce, nonce_len = nonce from the request or NULL if absent (in this case
706 * TS_VFY_NONCE is cleared from flags as well)
707 * tsa_name = NULL
708 * Important: after calling this method TS_VFY_SIGNATURE should be added!
709 */
710 TS_VERIFY_CTX *TS_REQ_to_TS_VERIFY_CTX(TS_REQ *req, TS_VERIFY_CTX *ctx);

712 /* Function declarations for TS_RESP defined in ts/ts_resp_print.c */

714 int TS_RESP_print_bio(BIO *bio, TS_RESP *a);
715 int TS_STATUS_INFO_print_bio(BIO *bio, TS_STATUS_INFO *a);
716 int TS_TST_INFO_print_bio(BIO *bio, TS_TST_INFO *a);

718 /* Common utility functions defined in ts/ts_lib.c */

720 int TS_ASN1_INTEGER_print_bio(BIO *bio, const ASN1_INTEGER *num);
721 int TS_OBJ_print_bio(BIO *bio, const ASN1_OBJECT *obj);

new/usr/src/lib/openssl/include/openssl/ts.h 12

722 int TS_ext_print_bio(BIO *bio, const STACK_OF(X509_EXTENSION) *extensions);
723 int TS_X509_ALGOR_print_bio(BIO *bio, const X509_ALGOR *alg);
724 int TS_MSG_IMPRINT_print_bio(BIO *bio, TS_MSG_IMPRINT *msg);

726 /* Function declarations for handling configuration options,
727 defined in ts/ts_conf.c */

729 X509 *TS_CONF_load_cert(const char *file);
730 STACK_OF(X509) *TS_CONF_load_certs(const char *file);
731 EVP_PKEY *TS_CONF_load_key(const char *file, const char *pass);
732 const char *TS_CONF_get_tsa_section(CONF *conf, const char *section);
733 int TS_CONF_set_serial(CONF *conf, const char *section, TS_serial_cb cb,
734 TS_RESP_CTX *ctx);
735 int TS_CONF_set_crypto_device(CONF *conf, const char *section,
736 const char *device);
737 int TS_CONF_set_default_engine(const char *name);
738 int TS_CONF_set_signer_cert(CONF *conf, const char *section,
739 const char *cert, TS_RESP_CTX *ctx);
740 int TS_CONF_set_certs(CONF *conf, const char *section, const char *certs,
741 TS_RESP_CTX *ctx);
742 int TS_CONF_set_signer_key(CONF *conf, const char *section,
743 const char *key, const char *pass, TS_RESP_CTX *ctx);
744 int TS_CONF_set_def_policy(CONF *conf, const char *section,
745 const char *policy, TS_RESP_CTX *ctx);
746 int TS_CONF_set_policies(CONF *conf, const char *section, TS_RESP_CTX *ctx);
747 int TS_CONF_set_digests(CONF *conf, const char *section, TS_RESP_CTX *ctx);
748 int TS_CONF_set_accuracy(CONF *conf, const char *section, TS_RESP_CTX *ctx);
749 int TS_CONF_set_clock_precision_digits(CONF *conf, const char *section,
750 TS_RESP_CTX *ctx);
751 int TS_CONF_set_ordering(CONF *conf, const char *section, TS_RESP_CTX *ctx);
752 int TS_CONF_set_tsa_name(CONF *conf, const char *section, TS_RESP_CTX *ctx);
753 int TS_CONF_set_ess_cert_id_chain(CONF *conf, const char *section,
754 TS_RESP_CTX *ctx);

756 /* -- */
757 /* BEGIN ERROR CODES */
758 /* The following lines are auto generated by the script mkerr.pl. Any changes
759 * made after this point may be overwritten when the script is next run.
760 */
761 void ERR_load_TS_strings(void);

763 /* Error codes for the TS functions. */

765 /* Function codes. */
766 #define TS_F_D2I_TS_RESP 147
767 #define TS_F_DEF_SERIAL_CB 110
768 #define TS_F_DEF_TIME_CB 111
769 #define TS_F_ESS_ADD_SIGNING_CERT 112
770 #define TS_F_ESS_CERT_ID_NEW_INIT 113
771 #define TS_F_ESS_SIGNING_CERT_NEW_INIT 114
772 #define TS_F_INT_TS_RESP_VERIFY_TOKEN 149
773 #define TS_F_PKCS7_TO_TS_TST_INFO 148
774 #define TS_F_TS_ACCURACY_SET_MICROS 115
775 #define TS_F_TS_ACCURACY_SET_MILLIS 116
776 #define TS_F_TS_ACCURACY_SET_SECONDS 117
777 #define TS_F_TS_CHECK_IMPRINTS 100
778 #define TS_F_TS_CHECK_NONCES 101
779 #define TS_F_TS_CHECK_POLICY 102
780 #define TS_F_TS_CHECK_SIGNING_CERTS 103
781 #define TS_F_TS_CHECK_STATUS_INFO 104
782 #define TS_F_TS_COMPUTE_IMPRINT 145
783 #define TS_F_TS_CONF_SET_DEFAULT_ENGINE 146
784 #define TS_F_TS_GET_STATUS_TEXT 105
785 #define TS_F_TS_MSG_IMPRINT_SET_ALGO 118
786 #define TS_F_TS_REQ_SET_MSG_IMPRINT 119
787 #define TS_F_TS_REQ_SET_NONCE 120

new/usr/src/lib/openssl/include/openssl/ts.h 13

788 #define TS_F_TS_REQ_SET_POLICY_ID 121
789 #define TS_F_TS_RESP_CREATE_RESPONSE 122
790 #define TS_F_TS_RESP_CREATE_TST_INFO 123
791 #define TS_F_TS_RESP_CTX_ADD_FAILURE_INFO 124
792 #define TS_F_TS_RESP_CTX_ADD_MD 125
793 #define TS_F_TS_RESP_CTX_ADD_POLICY 126
794 #define TS_F_TS_RESP_CTX_NEW 127
795 #define TS_F_TS_RESP_CTX_SET_ACCURACY 128
796 #define TS_F_TS_RESP_CTX_SET_CERTS 129
797 #define TS_F_TS_RESP_CTX_SET_DEF_POLICY 130
798 #define TS_F_TS_RESP_CTX_SET_SIGNER_CERT 131
799 #define TS_F_TS_RESP_CTX_SET_STATUS_INFO 132
800 #define TS_F_TS_RESP_GET_POLICY 133
801 #define TS_F_TS_RESP_SET_GENTIME_WITH_PRECISION 134
802 #define TS_F_TS_RESP_SET_STATUS_INFO 135
803 #define TS_F_TS_RESP_SET_TST_INFO 150
804 #define TS_F_TS_RESP_SIGN 136
805 #define TS_F_TS_RESP_VERIFY_SIGNATURE 106
806 #define TS_F_TS_RESP_VERIFY_TOKEN 107
807 #define TS_F_TS_TST_INFO_SET_ACCURACY 137
808 #define TS_F_TS_TST_INFO_SET_MSG_IMPRINT 138
809 #define TS_F_TS_TST_INFO_SET_NONCE 139
810 #define TS_F_TS_TST_INFO_SET_POLICY_ID 140
811 #define TS_F_TS_TST_INFO_SET_SERIAL 141
812 #define TS_F_TS_TST_INFO_SET_TIME 142
813 #define TS_F_TS_TST_INFO_SET_TSA 143
814 #define TS_F_TS_VERIFY 108
815 #define TS_F_TS_VERIFY_CERT 109
816 #define TS_F_TS_VERIFY_CTX_NEW 144

818 /* Reason codes. */
819 #define TS_R_BAD_PKCS7_TYPE 132
820 #define TS_R_BAD_TYPE 133
821 #define TS_R_CERTIFICATE_VERIFY_ERROR 100
822 #define TS_R_COULD_NOT_SET_ENGINE 127
823 #define TS_R_COULD_NOT_SET_TIME 115
824 #define TS_R_D2I_TS_RESP_INT_FAILED 128
825 #define TS_R_DETACHED_CONTENT 134
826 #define TS_R_ESS_ADD_SIGNING_CERT_ERROR 116
827 #define TS_R_ESS_SIGNING_CERTIFICATE_ERROR 101
828 #define TS_R_INVALID_NULL_POINTER 102
829 #define TS_R_INVALID_SIGNER_CERTIFICATE_PURPOSE 117
830 #define TS_R_MESSAGE_IMPRINT_MISMATCH 103
831 #define TS_R_NONCE_MISMATCH 104
832 #define TS_R_NONCE_NOT_RETURNED 105
833 #define TS_R_NO_CONTENT 106
834 #define TS_R_NO_TIME_STAMP_TOKEN 107
835 #define TS_R_PKCS7_ADD_SIGNATURE_ERROR 118
836 #define TS_R_PKCS7_ADD_SIGNED_ATTR_ERROR 119
837 #define TS_R_PKCS7_TO_TS_TST_INFO_FAILED 129
838 #define TS_R_POLICY_MISMATCH 108
839 #define TS_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE 120
840 #define TS_R_RESPONSE_SETUP_ERROR 121
841 #define TS_R_SIGNATURE_FAILURE 109
842 #define TS_R_THERE_MUST_BE_ONE_SIGNER 110
843 #define TS_R_TIME_SYSCALL_ERROR 122
844 #define TS_R_TOKEN_NOT_PRESENT 130
845 #define TS_R_TOKEN_PRESENT 131
846 #define TS_R_TSA_NAME_MISMATCH 111
847 #define TS_R_TSA_UNTRUSTED 112
848 #define TS_R_TST_INFO_SETUP_ERROR 123
849 #define TS_R_TS_DATASIGN 124
850 #define TS_R_UNACCEPTABLE_POLICY 125
851 #define TS_R_UNSUPPORTED_MD_ALGORITHM 126
852 #define TS_R_UNSUPPORTED_VERSION 113
853 #define TS_R_WRONG_CONTENT_TYPE 114

new/usr/src/lib/openssl/include/openssl/ts.h 14

855 #ifdef __cplusplus
856 }
857 #endif
858 #endif

new/usr/src/lib/openssl/include/openssl/txt_db.h 1

**
 4481 Fri May 30 18:31:23 2014
new/usr/src/lib/openssl/include/openssl/txt_db.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/txt_db/txt_db.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_TXT_DB_H
60 #define HEADER_TXT_DB_H

new/usr/src/lib/openssl/include/openssl/txt_db.h 2

62 #include <openssl/opensslconf.h>
63 #ifndef OPENSSL_NO_BIO
64 #include <openssl/bio.h>
65 #endif
66 #include <openssl/stack.h>
67 #include <openssl/lhash.h>

69 #define DB_ERROR_OK 0
70 #define DB_ERROR_MALLOC 1
71 #define DB_ERROR_INDEX_CLASH 2
72 #define DB_ERROR_INDEX_OUT_OF_RANGE 3
73 #define DB_ERROR_NO_INDEX 4
74 #define DB_ERROR_INSERT_INDEX_CLASH 5

76 #ifdef __cplusplus
77 extern "C" {
78 #endif

80 typedef OPENSSL_STRING *OPENSSL_PSTRING;
81 DECLARE_SPECIAL_STACK_OF(OPENSSL_PSTRING, OPENSSL_STRING)

83 typedef struct txt_db_st
84 {
85 int num_fields;
86 STACK_OF(OPENSSL_PSTRING) *data;
87 LHASH_OF(OPENSSL_STRING) **index;
88 int (**qual)(OPENSSL_STRING *);
89 long error;
90 long arg1;
91 long arg2;
92 OPENSSL_STRING *arg_row;
93 } TXT_DB;

95 #ifndef OPENSSL_NO_BIO
96 TXT_DB *TXT_DB_read(BIO *in, int num);
97 long TXT_DB_write(BIO *out, TXT_DB *db);
98 #else
99 TXT_DB *TXT_DB_read(char *in, int num);
100 long TXT_DB_write(char *out, TXT_DB *db);
101 #endif
102 int TXT_DB_create_index(TXT_DB *db,int field,int (*qual)(OPENSSL_STRING *),
103 LHASH_HASH_FN_TYPE hash, LHASH_COMP_FN_TYPE cmp);
104 void TXT_DB_free(TXT_DB *db);
105 OPENSSL_STRING *TXT_DB_get_by_index(TXT_DB *db, int idx, OPENSSL_STRING *value);
106 int TXT_DB_insert(TXT_DB *db, OPENSSL_STRING *value);

108 #ifdef __cplusplus
109 }
110 #endif

112 #endif

new/usr/src/lib/openssl/include/openssl/ui.h 1

**
 16656 Fri May 30 18:31:23 2014
new/usr/src/lib/openssl/include/openssl/ui.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ui/ui.h -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #ifndef HEADER_UI_H
60 #define HEADER_UI_H

new/usr/src/lib/openssl/include/openssl/ui.h 2

62 #ifndef OPENSSL_NO_DEPRECATED
63 #include <openssl/crypto.h>
64 #endif
65 #include <openssl/safestack.h>
66 #include <openssl/ossl_typ.h>

68 #ifdef __cplusplus
69 extern "C" {
70 #endif

72 /* Declared already in ossl_typ.h */
73 /* typedef struct ui_st UI; */
74 /* typedef struct ui_method_st UI_METHOD; */

77 /* All the following functions return -1 or NULL on error and in some cases
78 (UI_process()) -2 if interrupted or in some other way cancelled.
79 When everything is fine, they return 0, a positive value or a non-NULL
80 pointer, all depending on their purpose. */

82 /* Creators and destructor. */
83 UI *UI_new(void);
84 UI *UI_new_method(const UI_METHOD *method);
85 void UI_free(UI *ui);

87 /* The following functions are used to add strings to be printed and prompt
88 strings to prompt for data. The names are UI_{add,dup}_<function>_string
89 and UI_{add,dup}_input_boolean.

91 UI_{add,dup}_<function>_string have the following meanings:
92 add add a text or prompt string. The pointers given to these
93 functions are used verbatim, no copying is done.
94 dup make a copy of the text or prompt string, then add the copy
95 to the collection of strings in the user interface.
96 <function>
97 The function is a name for the functionality that the given
98 string shall be used for. It can be one of:
99 input use the string as data prompt.
100 verify use the string as verification prompt. This
101 is used to verify a previous input.
102 info use the string for informational output.
103 error use the string for error output.
104 Honestly, there’s currently no difference between info and error for the
105 moment.

107 UI_{add,dup}_input_boolean have the same semantics for "add" and "dup",
108 and are typically used when one wants to prompt for a yes/no response.

111 All of the functions in this group take a UI and a prompt string.
112 The string input and verify addition functions also take a flag argument,
113 a buffer for the result to end up with, a minimum input size and a maximum
114 input size (the result buffer MUST be large enough to be able to contain
115 the maximum number of characters). Additionally, the verify addition
116 functions takes another buffer to compare the result against.
117 The boolean input functions take an action description string (which should
118 be safe to ignore if the expected user action is obvious, for example with
119 a dialog box with an OK button and a Cancel button), a string of acceptable
120 characters to mean OK and to mean Cancel. The two last strings are checked
121 to make sure they don’t have common characters. Additionally, the same
122 flag argument as for the string input is taken, as well as a result buffer.
123 The result buffer is required to be at least one byte long. Depending on
124 the answer, the first character from the OK or the Cancel character strings
125 will be stored in the first byte of the result buffer. No NUL will be
126 added, so the result is *not* a string.

new/usr/src/lib/openssl/include/openssl/ui.h 3

128 On success, the all return an index of the added information. That index
129 is usefull when retrieving results with UI_get0_result(). */
130 int UI_add_input_string(UI *ui, const char *prompt, int flags,
131 char *result_buf, int minsize, int maxsize);
132 int UI_dup_input_string(UI *ui, const char *prompt, int flags,
133 char *result_buf, int minsize, int maxsize);
134 int UI_add_verify_string(UI *ui, const char *prompt, int flags,
135 char *result_buf, int minsize, int maxsize, const char *test_buf);
136 int UI_dup_verify_string(UI *ui, const char *prompt, int flags,
137 char *result_buf, int minsize, int maxsize, const char *test_buf);
138 int UI_add_input_boolean(UI *ui, const char *prompt, const char *action_desc,
139 const char *ok_chars, const char *cancel_chars,
140 int flags, char *result_buf);
141 int UI_dup_input_boolean(UI *ui, const char *prompt, const char *action_desc,
142 const char *ok_chars, const char *cancel_chars,
143 int flags, char *result_buf);
144 int UI_add_info_string(UI *ui, const char *text);
145 int UI_dup_info_string(UI *ui, const char *text);
146 int UI_add_error_string(UI *ui, const char *text);
147 int UI_dup_error_string(UI *ui, const char *text);

149 /* These are the possible flags. They can be or’ed together. */
150 /* Use to have echoing of input */
151 #define UI_INPUT_FLAG_ECHO 0x01
152 /* Use a default password. Where that password is found is completely
153 up to the application, it might for example be in the user data set
154 with UI_add_user_data(). It is not recommended to have more than
155 one input in each UI being marked with this flag, or the application
156 might get confused. */
157 #define UI_INPUT_FLAG_DEFAULT_PWD 0x02

159 /* The user of these routines may want to define flags of their own. The core
160 UI won’t look at those, but will pass them on to the method routines. They
161 must use higher bits so they don’t get confused with the UI bits above.
162 UI_INPUT_FLAG_USER_BASE tells which is the lowest bit to use. A good
163 example of use is this:

165 #define MY_UI_FLAG1 (0x01 << UI_INPUT_FLAG_USER_BASE)

167 */
168 #define UI_INPUT_FLAG_USER_BASE 16

171 /* The following function helps construct a prompt. object_desc is a
172 textual short description of the object, for example "pass phrase",
173 and object_name is the name of the object (might be a card name or
174 a file name.
175 The returned string shall always be allocated on the heap with
176 OPENSSL_malloc(), and need to be free’d with OPENSSL_free().

178 If the ui_method doesn’t contain a pointer to a user-defined prompt
179 constructor, a default string is built, looking like this:

181 "Enter {object_desc} for {object_name}:"

183 So, if object_desc has the value "pass phrase" and object_name has
184 the value "foo.key", the resulting string is:

186 "Enter pass phrase for foo.key:"
187 */
188 char *UI_construct_prompt(UI *ui_method,
189 const char *object_desc, const char *object_name);

192 /* The following function is used to store a pointer to user-specific data.
193 Any previous such pointer will be returned and replaced.

new/usr/src/lib/openssl/include/openssl/ui.h 4

195 For callback purposes, this function makes a lot more sense than using
196 ex_data, since the latter requires that different parts of OpenSSL or
197 applications share the same ex_data index.

199 Note that the UI_OpenSSL() method completely ignores the user data.
200 Other methods may not, however. */
201 void *UI_add_user_data(UI *ui, void *user_data);
202 /* We need a user data retrieving function as well. */
203 void *UI_get0_user_data(UI *ui);

205 /* Return the result associated with a prompt given with the index i. */
206 const char *UI_get0_result(UI *ui, int i);

208 /* When all strings have been added, process the whole thing. */
209 int UI_process(UI *ui);

211 /* Give a user interface parametrised control commands. This can be used to
212 send down an integer, a data pointer or a function pointer, as well as
213 be used to get information from a UI. */
214 int UI_ctrl(UI *ui, int cmd, long i, void *p, void (*f)(void));

216 /* The commands */
217 /* Use UI_CONTROL_PRINT_ERRORS with the value 1 to have UI_process print the
218 OpenSSL error stack before printing any info or added error messages and
219 before any prompting. */
220 #define UI_CTRL_PRINT_ERRORS 1
221 /* Check if a UI_process() is possible to do again with the same instance of
222 a user interface. This makes UI_ctrl() return 1 if it is redoable, and 0
223 if not. */
224 #define UI_CTRL_IS_REDOABLE 2

227 /* Some methods may use extra data */
228 #define UI_set_app_data(s,arg) UI_set_ex_data(s,0,arg)
229 #define UI_get_app_data(s) UI_get_ex_data(s,0)
230 int UI_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
231 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);
232 int UI_set_ex_data(UI *r,int idx,void *arg);
233 void *UI_get_ex_data(UI *r, int idx);

235 /* Use specific methods instead of the built-in one */
236 void UI_set_default_method(const UI_METHOD *meth);
237 const UI_METHOD *UI_get_default_method(void);
238 const UI_METHOD *UI_get_method(UI *ui);
239 const UI_METHOD *UI_set_method(UI *ui, const UI_METHOD *meth);

241 /* The method with all the built-in thingies */
242 UI_METHOD *UI_OpenSSL(void);

245 /* ---------- For method writers ---------- */
246 /* A method contains a number of functions that implement the low level
247 of the User Interface. The functions are:

249 an opener This function starts a session, maybe by opening
250 a channel to a tty, or by opening a window.
251 a writer This function is called to write a given string,
252 maybe to the tty, maybe as a field label in a
253 window.
254 a flusher This function is called to flush everything that
255 has been output so far. It can be used to actually
256 display a dialog box after it has been built.
257 a reader This function is called to read a given prompt,
258 maybe from the tty, maybe from a field in a
259 window. Note that it’s called wth all string

new/usr/src/lib/openssl/include/openssl/ui.h 5

260 structures, not only the prompt ones, so it must
261 check such things itself.
262 a closer This function closes the session, maybe by closing
263 the channel to the tty, or closing the window.

265 All these functions are expected to return:

267 0 on error.
268 1 on success.
269 -1 on out-of-band events, for example if some prompting has
270 been canceled (by pressing Ctrl-C, for example). This is
271 only checked when returned by the flusher or the reader.

273 The way this is used, the opener is first called, then the writer for all
274 strings, then the flusher, then the reader for all strings and finally the
275 closer. Note that if you want to prompt from a terminal or other command
276 line interface, the best is to have the reader also write the prompts
277 instead of having the writer do it. If you want to prompt from a dialog
278 box, the writer can be used to build up the contents of the box, and the
279 flusher to actually display the box and run the event loop until all data
280 has been given, after which the reader only grabs the given data and puts
281 them back into the UI strings.

283 All method functions take a UI as argument. Additionally, the writer and
284 the reader take a UI_STRING.
285 */

287 /* The UI_STRING type is the data structure that contains all the needed info
288 about a string or a prompt, including test data for a verification prompt.
289 */
290 typedef struct ui_string_st UI_STRING;
291 DECLARE_STACK_OF(UI_STRING)

293 /* The different types of strings that are currently supported.
294 This is only needed by method authors. */
295 enum UI_string_types
296 {
297 UIT_NONE=0,
298 UIT_PROMPT, /* Prompt for a string */
299 UIT_VERIFY, /* Prompt for a string and verify */
300 UIT_BOOLEAN, /* Prompt for a yes/no response */
301 UIT_INFO, /* Send info to the user */
302 UIT_ERROR /* Send an error message to the user */
303 };

305 /* Create and manipulate methods */
306 UI_METHOD *UI_create_method(char *name);
307 void UI_destroy_method(UI_METHOD *ui_method);
308 int UI_method_set_opener(UI_METHOD *method, int (*opener)(UI *ui));
309 int UI_method_set_writer(UI_METHOD *method, int (*writer)(UI *ui, UI_STRING *uis
310 int UI_method_set_flusher(UI_METHOD *method, int (*flusher)(UI *ui));
311 int UI_method_set_reader(UI_METHOD *method, int (*reader)(UI *ui, UI_STRING *uis
312 int UI_method_set_closer(UI_METHOD *method, int (*closer)(UI *ui));
313 int UI_method_set_prompt_constructor(UI_METHOD *method, char *(*prompt_construct
314 int (*UI_method_get_opener(UI_METHOD *method))(UI*);
315 int (*UI_method_get_writer(UI_METHOD *method))(UI*,UI_STRING*);
316 int (*UI_method_get_flusher(UI_METHOD *method))(UI*);
317 int (*UI_method_get_reader(UI_METHOD *method))(UI*,UI_STRING*);
318 int (*UI_method_get_closer(UI_METHOD *method))(UI*);
319 char * (*UI_method_get_prompt_constructor(UI_METHOD *method))(UI*, const char*,

321 /* The following functions are helpers for method writers to access relevant
322 data from a UI_STRING. */

324 /* Return type of the UI_STRING */
325 enum UI_string_types UI_get_string_type(UI_STRING *uis);

new/usr/src/lib/openssl/include/openssl/ui.h 6

326 /* Return input flags of the UI_STRING */
327 int UI_get_input_flags(UI_STRING *uis);
328 /* Return the actual string to output (the prompt, info or error) */
329 const char *UI_get0_output_string(UI_STRING *uis);
330 /* Return the optional action string to output (the boolean promtp instruction)
331 const char *UI_get0_action_string(UI_STRING *uis);
332 /* Return the result of a prompt */
333 const char *UI_get0_result_string(UI_STRING *uis);
334 /* Return the string to test the result against. Only useful with verifies. */
335 const char *UI_get0_test_string(UI_STRING *uis);
336 /* Return the required minimum size of the result */
337 int UI_get_result_minsize(UI_STRING *uis);
338 /* Return the required maximum size of the result */
339 int UI_get_result_maxsize(UI_STRING *uis);
340 /* Set the result of a UI_STRING. */
341 int UI_set_result(UI *ui, UI_STRING *uis, const char *result);

344 /* A couple of popular utility functions */
345 int UI_UTIL_read_pw_string(char *buf,int length,const char *prompt,int verify);
346 int UI_UTIL_read_pw(char *buf,char *buff,int size,const char *prompt,int verify)

349 /* BEGIN ERROR CODES */
350 /* The following lines are auto generated by the script mkerr.pl. Any changes
351 * made after this point may be overwritten when the script is next run.
352 */
353 void ERR_load_UI_strings(void);

355 /* Error codes for the UI functions. */

357 /* Function codes. */
358 #define UI_F_GENERAL_ALLOCATE_BOOLEAN 108
359 #define UI_F_GENERAL_ALLOCATE_PROMPT 109
360 #define UI_F_GENERAL_ALLOCATE_STRING 100
361 #define UI_F_UI_CTRL 111
362 #define UI_F_UI_DUP_ERROR_STRING 101
363 #define UI_F_UI_DUP_INFO_STRING 102
364 #define UI_F_UI_DUP_INPUT_BOOLEAN 110
365 #define UI_F_UI_DUP_INPUT_STRING 103
366 #define UI_F_UI_DUP_VERIFY_STRING 106
367 #define UI_F_UI_GET0_RESULT 107
368 #define UI_F_UI_NEW_METHOD 104
369 #define UI_F_UI_SET_RESULT 105

371 /* Reason codes. */
372 #define UI_R_COMMON_OK_AND_CANCEL_CHARACTERS 104
373 #define UI_R_INDEX_TOO_LARGE 102
374 #define UI_R_INDEX_TOO_SMALL 103
375 #define UI_R_NO_RESULT_BUFFER 105
376 #define UI_R_RESULT_TOO_LARGE 100
377 #define UI_R_RESULT_TOO_SMALL 101
378 #define UI_R_UNKNOWN_CONTROL_COMMAND 106

380 #ifdef __cplusplus
381 }
382 #endif
383 #endif

new/usr/src/lib/openssl/include/openssl/ui_compat.h 1

**
 3439 Fri May 30 18:31:24 2014
new/usr/src/lib/openssl/include/openssl/ui_compat.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ui/ui.h -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #ifndef HEADER_UI_COMPAT_H
60 #define HEADER_UI_COMPAT_H

new/usr/src/lib/openssl/include/openssl/ui_compat.h 2

62 #include <openssl/opensslconf.h>
63 #include <openssl/ui.h>

65 #ifdef __cplusplus
66 extern "C" {
67 #endif

69 /* The following functions were previously part of the DES section,
70 and are provided here for backward compatibility reasons. */

72 #define des_read_pw_string(b,l,p,v) \
73 _ossl_old_des_read_pw_string((b),(l),(p),(v))
74 #define des_read_pw(b,bf,s,p,v) \
75 _ossl_old_des_read_pw((b),(bf),(s),(p),(v))

77 int _ossl_old_des_read_pw_string(char *buf,int length,const char *prompt,int ver
78 int _ossl_old_des_read_pw(char *buf,char *buff,int size,const char *prompt,int v

80 #ifdef __cplusplus
81 }
82 #endif
83 #endif

new/usr/src/lib/openssl/include/openssl/x509.h 1

**
 45041 Fri May 30 18:31:24 2014
new/usr/src/lib/openssl/include/openssl/x509.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60 * ECDH support in OpenSSL originally developed by
61 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.

new/usr/src/lib/openssl/include/openssl/x509.h 2

62 */

64 #ifndef HEADER_X509_H
65 #define HEADER_X509_H

67 #include <openssl/e_os2.h>
68 #include <openssl/symhacks.h>
69 #ifndef OPENSSL_NO_BUFFER
70 #include <openssl/buffer.h>
71 #endif
72 #ifndef OPENSSL_NO_EVP
73 #include <openssl/evp.h>
74 #endif
75 #ifndef OPENSSL_NO_BIO
76 #include <openssl/bio.h>
77 #endif
78 #include <openssl/stack.h>
79 #include <openssl/asn1.h>
80 #include <openssl/safestack.h>

82 #ifndef OPENSSL_NO_EC
83 #include <openssl/ec.h>
84 #endif

86 #ifndef OPENSSL_NO_ECDSA
87 #include <openssl/ecdsa.h>
88 #endif

90 #ifndef OPENSSL_NO_ECDH
91 #include <openssl/ecdh.h>
92 #endif

94 #ifndef OPENSSL_NO_DEPRECATED
95 #ifndef OPENSSL_NO_RSA
96 #include <openssl/rsa.h>
97 #endif
98 #ifndef OPENSSL_NO_DSA
99 #include <openssl/dsa.h>
100 #endif
101 #ifndef OPENSSL_NO_DH
102 #include <openssl/dh.h>
103 #endif
104 #endif

106 #ifndef OPENSSL_NO_SHA
107 #include <openssl/sha.h>
108 #endif
109 #include <openssl/ossl_typ.h>

111 #ifdef __cplusplus
112 extern "C" {
113 #endif

115 #ifdef OPENSSL_SYS_WIN32
116 /* Under Win32 these are defined in wincrypt.h */
117 #undef X509_NAME
118 #undef X509_CERT_PAIR
119 #undef X509_EXTENSIONS
120 #endif

122 #define X509_FILETYPE_PEM 1
123 #define X509_FILETYPE_ASN1 2
124 #define X509_FILETYPE_DEFAULT 3

126 #define X509v3_KU_DIGITAL_SIGNATURE 0x0080
127 #define X509v3_KU_NON_REPUDIATION 0x0040

new/usr/src/lib/openssl/include/openssl/x509.h 3

128 #define X509v3_KU_KEY_ENCIPHERMENT 0x0020
129 #define X509v3_KU_DATA_ENCIPHERMENT 0x0010
130 #define X509v3_KU_KEY_AGREEMENT 0x0008
131 #define X509v3_KU_KEY_CERT_SIGN 0x0004
132 #define X509v3_KU_CRL_SIGN 0x0002
133 #define X509v3_KU_ENCIPHER_ONLY 0x0001
134 #define X509v3_KU_DECIPHER_ONLY 0x8000
135 #define X509v3_KU_UNDEF 0xffff

137 typedef struct X509_objects_st
138 {
139 int nid;
140 int (*a2i)(void);
141 int (*i2a)(void);
142 } X509_OBJECTS;

144 struct X509_algor_st
145 {
146 ASN1_OBJECT *algorithm;
147 ASN1_TYPE *parameter;
148 } /* X509_ALGOR */;

150 DECLARE_ASN1_SET_OF(X509_ALGOR)

152 typedef STACK_OF(X509_ALGOR) X509_ALGORS;

154 typedef struct X509_val_st
155 {
156 ASN1_TIME *notBefore;
157 ASN1_TIME *notAfter;
158 } X509_VAL;

160 struct X509_pubkey_st
161 {
162 X509_ALGOR *algor;
163 ASN1_BIT_STRING *public_key;
164 EVP_PKEY *pkey;
165 };

167 typedef struct X509_sig_st
168 {
169 X509_ALGOR *algor;
170 ASN1_OCTET_STRING *digest;
171 } X509_SIG;

173 typedef struct X509_name_entry_st
174 {
175 ASN1_OBJECT *object;
176 ASN1_STRING *value;
177 int set;
178 int size; /* temp variable */
179 } X509_NAME_ENTRY;

181 DECLARE_STACK_OF(X509_NAME_ENTRY)
182 DECLARE_ASN1_SET_OF(X509_NAME_ENTRY)

184 /* we always keep X509_NAMEs in 2 forms. */
185 struct X509_name_st
186 {
187 STACK_OF(X509_NAME_ENTRY) *entries;
188 int modified; /* true if ’bytes’ needs to be built */
189 #ifndef OPENSSL_NO_BUFFER
190 BUF_MEM *bytes;
191 #else
192 char *bytes;
193 #endif

new/usr/src/lib/openssl/include/openssl/x509.h 4

194 /* unsigned long hash; Keep the hash around for lookups */
195 unsigned char *canon_enc;
196 int canon_enclen;
197 } /* X509_NAME */;

199 DECLARE_STACK_OF(X509_NAME)

201 #define X509_EX_V_NETSCAPE_HACK 0x8000
202 #define X509_EX_V_INIT 0x0001
203 typedef struct X509_extension_st
204 {
205 ASN1_OBJECT *object;
206 ASN1_BOOLEAN critical;
207 ASN1_OCTET_STRING *value;
208 } X509_EXTENSION;

210 typedef STACK_OF(X509_EXTENSION) X509_EXTENSIONS;

212 DECLARE_STACK_OF(X509_EXTENSION)
213 DECLARE_ASN1_SET_OF(X509_EXTENSION)

215 /* a sequence of these are used */
216 typedef struct x509_attributes_st
217 {
218 ASN1_OBJECT *object;
219 int single; /* 0 for a set, 1 for a single item (which is wrong) */
220 union {
221 char *ptr;
222 /* 0 */ STACK_OF(ASN1_TYPE) *set;
223 /* 1 */ ASN1_TYPE *single;
224 } value;
225 } X509_ATTRIBUTE;

227 DECLARE_STACK_OF(X509_ATTRIBUTE)
228 DECLARE_ASN1_SET_OF(X509_ATTRIBUTE)

231 typedef struct X509_req_info_st
232 {
233 ASN1_ENCODING enc;
234 ASN1_INTEGER *version;
235 X509_NAME *subject;
236 X509_PUBKEY *pubkey;
237 /* d=2 hl=2 l= 0 cons: cont: 00 */
238 STACK_OF(X509_ATTRIBUTE) *attributes; /* [0] */
239 } X509_REQ_INFO;

241 typedef struct X509_req_st
242 {
243 X509_REQ_INFO *req_info;
244 X509_ALGOR *sig_alg;
245 ASN1_BIT_STRING *signature;
246 int references;
247 } X509_REQ;

249 typedef struct x509_cinf_st
250 {
251 ASN1_INTEGER *version; /* [0] default of v1 */
252 ASN1_INTEGER *serialNumber;
253 X509_ALGOR *signature;
254 X509_NAME *issuer;
255 X509_VAL *validity;
256 X509_NAME *subject;
257 X509_PUBKEY *key;
258 ASN1_BIT_STRING *issuerUID; /* [1] optional in v2 */
259 ASN1_BIT_STRING *subjectUID; /* [2] optional in v2 */

new/usr/src/lib/openssl/include/openssl/x509.h 5

260 STACK_OF(X509_EXTENSION) *extensions; /* [3] optional in v3 */
261 ASN1_ENCODING enc;
262 } X509_CINF;

264 /* This stuff is certificate "auxiliary info"
265 * it contains details which are useful in certificate
266 * stores and databases. When used this is tagged onto
267 * the end of the certificate itself
268 */

270 typedef struct x509_cert_aux_st
271 {
272 STACK_OF(ASN1_OBJECT) *trust; /* trusted uses */
273 STACK_OF(ASN1_OBJECT) *reject; /* rejected uses */
274 ASN1_UTF8STRING *alias; /* "friendly name" */
275 ASN1_OCTET_STRING *keyid; /* key id of private key */
276 STACK_OF(X509_ALGOR) *other; /* other unspecified info */
277 } X509_CERT_AUX;

279 struct x509_st
280 {
281 X509_CINF *cert_info;
282 X509_ALGOR *sig_alg;
283 ASN1_BIT_STRING *signature;
284 int valid;
285 int references;
286 char *name;
287 CRYPTO_EX_DATA ex_data;
288 /* These contain copies of various extension values */
289 long ex_pathlen;
290 long ex_pcpathlen;
291 unsigned long ex_flags;
292 unsigned long ex_kusage;
293 unsigned long ex_xkusage;
294 unsigned long ex_nscert;
295 ASN1_OCTET_STRING *skid;
296 AUTHORITY_KEYID *akid;
297 X509_POLICY_CACHE *policy_cache;
298 STACK_OF(DIST_POINT) *crldp;
299 STACK_OF(GENERAL_NAME) *altname;
300 NAME_CONSTRAINTS *nc;
301 #ifndef OPENSSL_NO_RFC3779
302 STACK_OF(IPAddressFamily) *rfc3779_addr;
303 struct ASIdentifiers_st *rfc3779_asid;
304 #endif
305 #ifndef OPENSSL_NO_SHA
306 unsigned char sha1_hash[SHA_DIGEST_LENGTH];
307 #endif
308 X509_CERT_AUX *aux;
309 } /* X509 */;

311 DECLARE_STACK_OF(X509)
312 DECLARE_ASN1_SET_OF(X509)

314 /* This is used for a table of trust checking functions */

316 typedef struct x509_trust_st {
317 int trust;
318 int flags;
319 int (*check_trust)(struct x509_trust_st *, X509 *, int);
320 char *name;
321 int arg1;
322 void *arg2;
323 } X509_TRUST;

325 DECLARE_STACK_OF(X509_TRUST)

new/usr/src/lib/openssl/include/openssl/x509.h 6

327 typedef struct x509_cert_pair_st {
328 X509 *forward;
329 X509 *reverse;
330 } X509_CERT_PAIR;

332 /* standard trust ids */

334 #define X509_TRUST_DEFAULT -1 /* Only valid in purpose settings */

336 #define X509_TRUST_COMPAT 1
337 #define X509_TRUST_SSL_CLIENT 2
338 #define X509_TRUST_SSL_SERVER 3
339 #define X509_TRUST_EMAIL 4
340 #define X509_TRUST_OBJECT_SIGN 5
341 #define X509_TRUST_OCSP_SIGN 6
342 #define X509_TRUST_OCSP_REQUEST 7
343 #define X509_TRUST_TSA 8

345 /* Keep these up to date! */
346 #define X509_TRUST_MIN 1
347 #define X509_TRUST_MAX 8

350 /* trust_flags values */
351 #define X509_TRUST_DYNAMIC 1
352 #define X509_TRUST_DYNAMIC_NAME 2

354 /* check_trust return codes */

356 #define X509_TRUST_TRUSTED 1
357 #define X509_TRUST_REJECTED 2
358 #define X509_TRUST_UNTRUSTED 3

360 /* Flags for X509_print_ex() */

362 #define X509_FLAG_COMPAT 0
363 #define X509_FLAG_NO_HEADER 1L
364 #define X509_FLAG_NO_VERSION (1L << 1)
365 #define X509_FLAG_NO_SERIAL (1L << 2)
366 #define X509_FLAG_NO_SIGNAME (1L << 3)
367 #define X509_FLAG_NO_ISSUER (1L << 4)
368 #define X509_FLAG_NO_VALIDITY (1L << 5)
369 #define X509_FLAG_NO_SUBJECT (1L << 6)
370 #define X509_FLAG_NO_PUBKEY (1L << 7)
371 #define X509_FLAG_NO_EXTENSIONS (1L << 8)
372 #define X509_FLAG_NO_SIGDUMP (1L << 9)
373 #define X509_FLAG_NO_AUX (1L << 10)
374 #define X509_FLAG_NO_ATTRIBUTES (1L << 11)

376 /* Flags specific to X509_NAME_print_ex() */

378 /* The field separator information */

380 #define XN_FLAG_SEP_MASK (0xf << 16)

382 #define XN_FLAG_COMPAT 0 /* Traditional SSLeay: use old X
383 #define XN_FLAG_SEP_COMMA_PLUS (1 << 16) /* RFC2253 ,+ */
384 #define XN_FLAG_SEP_CPLUS_SPC (2 << 16) /* ,+ spaced: more readable */
385 #define XN_FLAG_SEP_SPLUS_SPC (3 << 16) /* ;+ spaced */
386 #define XN_FLAG_SEP_MULTILINE (4 << 16) /* One line per field */

388 #define XN_FLAG_DN_REV (1 << 20) /* Reverse DN order */

390 /* How the field name is shown */

new/usr/src/lib/openssl/include/openssl/x509.h 7

392 #define XN_FLAG_FN_MASK (0x3 << 21)

394 #define XN_FLAG_FN_SN 0 /* Object short name */
395 #define XN_FLAG_FN_LN (1 << 21) /* Object long name */
396 #define XN_FLAG_FN_OID (2 << 21) /* Always use OIDs */
397 #define XN_FLAG_FN_NONE (3 << 21) /* No field names */

399 #define XN_FLAG_SPC_EQ (1 << 23) /* Put spaces round ’=’ */

401 /* This determines if we dump fields we don’t recognise:
402 * RFC2253 requires this.
403 */

405 #define XN_FLAG_DUMP_UNKNOWN_FIELDS (1 << 24)

407 #define XN_FLAG_FN_ALIGN (1 << 25) /* Align field names to 20 chara

409 /* Complete set of RFC2253 flags */

411 #define XN_FLAG_RFC2253 (ASN1_STRFLGS_RFC2253 | \
412 XN_FLAG_SEP_COMMA_PLUS | \
413 XN_FLAG_DN_REV | \
414 XN_FLAG_FN_SN | \
415 XN_FLAG_DUMP_UNKNOWN_FIELDS)

417 /* readable oneline form */

419 #define XN_FLAG_ONELINE (ASN1_STRFLGS_RFC2253 | \
420 ASN1_STRFLGS_ESC_QUOTE | \
421 XN_FLAG_SEP_CPLUS_SPC | \
422 XN_FLAG_SPC_EQ | \
423 XN_FLAG_FN_SN)

425 /* readable multiline form */

427 #define XN_FLAG_MULTILINE (ASN1_STRFLGS_ESC_CTRL | \
428 ASN1_STRFLGS_ESC_MSB | \
429 XN_FLAG_SEP_MULTILINE | \
430 XN_FLAG_SPC_EQ | \
431 XN_FLAG_FN_LN | \
432 XN_FLAG_FN_ALIGN)

434 struct x509_revoked_st
435 {
436 ASN1_INTEGER *serialNumber;
437 ASN1_TIME *revocationDate;
438 STACK_OF(X509_EXTENSION) /* optional */ *extensions;
439 /* Set up if indirect CRL */
440 STACK_OF(GENERAL_NAME) *issuer;
441 /* Revocation reason */
442 int reason;
443 int sequence; /* load sequence */
444 };

446 DECLARE_STACK_OF(X509_REVOKED)
447 DECLARE_ASN1_SET_OF(X509_REVOKED)

449 typedef struct X509_crl_info_st
450 {
451 ASN1_INTEGER *version;
452 X509_ALGOR *sig_alg;
453 X509_NAME *issuer;
454 ASN1_TIME *lastUpdate;
455 ASN1_TIME *nextUpdate;
456 STACK_OF(X509_REVOKED) *revoked;
457 STACK_OF(X509_EXTENSION) /* [0] */ *extensions;

new/usr/src/lib/openssl/include/openssl/x509.h 8

458 ASN1_ENCODING enc;
459 } X509_CRL_INFO;

461 struct X509_crl_st
462 {
463 /* actual signature */
464 X509_CRL_INFO *crl;
465 X509_ALGOR *sig_alg;
466 ASN1_BIT_STRING *signature;
467 int references;
468 int flags;
469 /* Copies of various extensions */
470 AUTHORITY_KEYID *akid;
471 ISSUING_DIST_POINT *idp;
472 /* Convenient breakdown of IDP */
473 int idp_flags;
474 int idp_reasons;
475 /* CRL and base CRL numbers for delta processing */
476 ASN1_INTEGER *crl_number;
477 ASN1_INTEGER *base_crl_number;
478 #ifndef OPENSSL_NO_SHA
479 unsigned char sha1_hash[SHA_DIGEST_LENGTH];
480 #endif
481 STACK_OF(GENERAL_NAMES) *issuers;
482 const X509_CRL_METHOD *meth;
483 void *meth_data;
484 } /* X509_CRL */;

486 DECLARE_STACK_OF(X509_CRL)
487 DECLARE_ASN1_SET_OF(X509_CRL)

489 typedef struct private_key_st
490 {
491 int version;
492 /* The PKCS#8 data types */
493 X509_ALGOR *enc_algor;
494 ASN1_OCTET_STRING *enc_pkey; /* encrypted pub key */

496 /* When decrypted, the following will not be NULL */
497 EVP_PKEY *dec_pkey;

499 /* used to encrypt and decrypt */
500 int key_length;
501 char *key_data;
502 int key_free; /* true if we should auto free key_data */

504 /* expanded version of ’enc_algor’ */
505 EVP_CIPHER_INFO cipher;

507 int references;
508 } X509_PKEY;

510 #ifndef OPENSSL_NO_EVP
511 typedef struct X509_info_st
512 {
513 X509 *x509;
514 X509_CRL *crl;
515 X509_PKEY *x_pkey;

517 EVP_CIPHER_INFO enc_cipher;
518 int enc_len;
519 char *enc_data;

521 int references;
522 } X509_INFO;

new/usr/src/lib/openssl/include/openssl/x509.h 9

524 DECLARE_STACK_OF(X509_INFO)
525 #endif

527 /* The next 2 structures and their 8 routines were sent to me by
528 * Pat Richard <patr@x509.com> and are used to manipulate
529 * Netscapes spki structures - useful if you are writing a CA web page
530 */
531 typedef struct Netscape_spkac_st
532 {
533 X509_PUBKEY *pubkey;
534 ASN1_IA5STRING *challenge; /* challenge sent in atlas >= PR2 */
535 } NETSCAPE_SPKAC;

537 typedef struct Netscape_spki_st
538 {
539 NETSCAPE_SPKAC *spkac; /* signed public key and challenge */
540 X509_ALGOR *sig_algor;
541 ASN1_BIT_STRING *signature;
542 } NETSCAPE_SPKI;

544 /* Netscape certificate sequence structure */
545 typedef struct Netscape_certificate_sequence
546 {
547 ASN1_OBJECT *type;
548 STACK_OF(X509) *certs;
549 } NETSCAPE_CERT_SEQUENCE;

551 /* Unused (and iv length is wrong)
552 typedef struct CBCParameter_st
553 {
554 unsigned char iv[8];
555 } CBC_PARAM;
556 */

558 /* Password based encryption structure */

560 typedef struct PBEPARAM_st {
561 ASN1_OCTET_STRING *salt;
562 ASN1_INTEGER *iter;
563 } PBEPARAM;

565 /* Password based encryption V2 structures */

567 typedef struct PBE2PARAM_st {
568 X509_ALGOR *keyfunc;
569 X509_ALGOR *encryption;
570 } PBE2PARAM;

572 typedef struct PBKDF2PARAM_st {
573 ASN1_TYPE *salt; /* Usually OCTET STRING but could be anything */
574 ASN1_INTEGER *iter;
575 ASN1_INTEGER *keylength;
576 X509_ALGOR *prf;
577 } PBKDF2PARAM;

580 /* PKCS#8 private key info structure */

582 struct pkcs8_priv_key_info_st
583 {
584 int broken; /* Flag for various broken formats */
585 #define PKCS8_OK 0
586 #define PKCS8_NO_OCTET 1
587 #define PKCS8_EMBEDDED_PARAM 2
588 #define PKCS8_NS_DB 3
589 #define PKCS8_NEG_PRIVKEY 4

new/usr/src/lib/openssl/include/openssl/x509.h 10

590 ASN1_INTEGER *version;
591 X509_ALGOR *pkeyalg;
592 ASN1_TYPE *pkey; /* Should be OCTET STRING but some are broken */
593 STACK_OF(X509_ATTRIBUTE) *attributes;
594 };

596 #ifdef __cplusplus
597 }
598 #endif

600 #include <openssl/x509_vfy.h>
601 #include <openssl/pkcs7.h>

603 #ifdef __cplusplus
604 extern "C" {
605 #endif

607 #define X509_EXT_PACK_UNKNOWN 1
608 #define X509_EXT_PACK_STRING 2

610 #define X509_get_version(x) ASN1_INTEGER_get((x)->cert_info->version)
611 /* #define X509_get_serialNumber(x) ((x)->cert_info->serialNumber) */
612 #define X509_get_notBefore(x) ((x)->cert_info->validity->notBefore)
613 #define X509_get_notAfter(x) ((x)->cert_info->validity->notAfter)
614 #define X509_extract_key(x) X509_get_pubkey(x) /*****/
615 #define X509_REQ_get_version(x) ASN1_INTEGER_get((x)->req_info->version)
616 #define X509_REQ_get_subject_name(x) ((x)->req_info->subject)
617 #define X509_REQ_extract_key(a) X509_REQ_get_pubkey(a)
618 #define X509_name_cmp(a,b) X509_NAME_cmp((a),(b))
619 #define X509_get_signature_type(x) EVP_PKEY_type(OBJ_obj2nid((x)->sig_al

621 #define X509_CRL_get_version(x) ASN1_INTEGER_get((x)->crl->version)
622 #define X509_CRL_get_lastUpdate(x) ((x)->crl->lastUpdate)
623 #define X509_CRL_get_nextUpdate(x) ((x)->crl->nextUpdate)
624 #define X509_CRL_get_issuer(x) ((x)->crl->issuer)
625 #define X509_CRL_get_REVOKED(x) ((x)->crl->revoked)

627 void X509_CRL_set_default_method(const X509_CRL_METHOD *meth);
628 X509_CRL_METHOD *X509_CRL_METHOD_new(
629 int (*crl_init)(X509_CRL *crl),
630 int (*crl_free)(X509_CRL *crl),
631 int (*crl_lookup)(X509_CRL *crl, X509_REVOKED **ret,
632 ASN1_INTEGER *ser, X509_NAME *issuer),
633 int (*crl_verify)(X509_CRL *crl, EVP_PKEY *pk));
634 void X509_CRL_METHOD_free(X509_CRL_METHOD *m);

636 void X509_CRL_set_meth_data(X509_CRL *crl, void *dat);
637 void *X509_CRL_get_meth_data(X509_CRL *crl);

639 /* This one is only used so that a binary form can output, as in
640 * i2d_X509_NAME(X509_get_X509_PUBKEY(x),&buf) */
641 #define X509_get_X509_PUBKEY(x) ((x)->cert_info->key)

644 const char *X509_verify_cert_error_string(long n);

646 #ifndef OPENSSL_NO_EVP
647 int X509_verify(X509 *a, EVP_PKEY *r);

649 int X509_REQ_verify(X509_REQ *a, EVP_PKEY *r);
650 int X509_CRL_verify(X509_CRL *a, EVP_PKEY *r);
651 int NETSCAPE_SPKI_verify(NETSCAPE_SPKI *a, EVP_PKEY *r);

653 NETSCAPE_SPKI * NETSCAPE_SPKI_b64_decode(const char *str, int len);
654 char * NETSCAPE_SPKI_b64_encode(NETSCAPE_SPKI *x);
655 EVP_PKEY *NETSCAPE_SPKI_get_pubkey(NETSCAPE_SPKI *x);

new/usr/src/lib/openssl/include/openssl/x509.h 11

656 int NETSCAPE_SPKI_set_pubkey(NETSCAPE_SPKI *x, EVP_PKEY *pkey);

658 int NETSCAPE_SPKI_print(BIO *out, NETSCAPE_SPKI *spki);

660 int X509_signature_dump(BIO *bp,const ASN1_STRING *sig, int indent);
661 int X509_signature_print(BIO *bp,X509_ALGOR *alg, ASN1_STRING *sig);

663 int X509_sign(X509 *x, EVP_PKEY *pkey, const EVP_MD *md);
664 int X509_sign_ctx(X509 *x, EVP_MD_CTX *ctx);
665 int X509_REQ_sign(X509_REQ *x, EVP_PKEY *pkey, const EVP_MD *md);
666 int X509_REQ_sign_ctx(X509_REQ *x, EVP_MD_CTX *ctx);
667 int X509_CRL_sign(X509_CRL *x, EVP_PKEY *pkey, const EVP_MD *md);
668 int X509_CRL_sign_ctx(X509_CRL *x, EVP_MD_CTX *ctx);
669 int NETSCAPE_SPKI_sign(NETSCAPE_SPKI *x, EVP_PKEY *pkey, const EVP_MD *md);

671 int X509_pubkey_digest(const X509 *data,const EVP_MD *type,
672 unsigned char *md, unsigned int *len);
673 int X509_digest(const X509 *data,const EVP_MD *type,
674 unsigned char *md, unsigned int *len);
675 int X509_CRL_digest(const X509_CRL *data,const EVP_MD *type,
676 unsigned char *md, unsigned int *len);
677 int X509_REQ_digest(const X509_REQ *data,const EVP_MD *type,
678 unsigned char *md, unsigned int *len);
679 int X509_NAME_digest(const X509_NAME *data,const EVP_MD *type,
680 unsigned char *md, unsigned int *len);
681 #endif

683 #ifndef OPENSSL_NO_FP_API
684 X509 *d2i_X509_fp(FILE *fp, X509 **x509);
685 int i2d_X509_fp(FILE *fp,X509 *x509);
686 X509_CRL *d2i_X509_CRL_fp(FILE *fp,X509_CRL **crl);
687 int i2d_X509_CRL_fp(FILE *fp,X509_CRL *crl);
688 X509_REQ *d2i_X509_REQ_fp(FILE *fp,X509_REQ **req);
689 int i2d_X509_REQ_fp(FILE *fp,X509_REQ *req);
690 #ifndef OPENSSL_NO_RSA
691 RSA *d2i_RSAPrivateKey_fp(FILE *fp,RSA **rsa);
692 int i2d_RSAPrivateKey_fp(FILE *fp,RSA *rsa);
693 RSA *d2i_RSAPublicKey_fp(FILE *fp,RSA **rsa);
694 int i2d_RSAPublicKey_fp(FILE *fp,RSA *rsa);
695 RSA *d2i_RSA_PUBKEY_fp(FILE *fp,RSA **rsa);
696 int i2d_RSA_PUBKEY_fp(FILE *fp,RSA *rsa);
697 #endif
698 #ifndef OPENSSL_NO_DSA
699 DSA *d2i_DSA_PUBKEY_fp(FILE *fp, DSA **dsa);
700 int i2d_DSA_PUBKEY_fp(FILE *fp, DSA *dsa);
701 DSA *d2i_DSAPrivateKey_fp(FILE *fp, DSA **dsa);
702 int i2d_DSAPrivateKey_fp(FILE *fp, DSA *dsa);
703 #endif
704 #ifndef OPENSSL_NO_EC
705 EC_KEY *d2i_EC_PUBKEY_fp(FILE *fp, EC_KEY **eckey);
706 int i2d_EC_PUBKEY_fp(FILE *fp, EC_KEY *eckey);
707 EC_KEY *d2i_ECPrivateKey_fp(FILE *fp, EC_KEY **eckey);
708 int i2d_ECPrivateKey_fp(FILE *fp, EC_KEY *eckey);
709 #endif
710 X509_SIG *d2i_PKCS8_fp(FILE *fp,X509_SIG **p8);
711 int i2d_PKCS8_fp(FILE *fp,X509_SIG *p8);
712 PKCS8_PRIV_KEY_INFO *d2i_PKCS8_PRIV_KEY_INFO_fp(FILE *fp,
713 PKCS8_PRIV_KEY_INFO **p8inf);
714 int i2d_PKCS8_PRIV_KEY_INFO_fp(FILE *fp,PKCS8_PRIV_KEY_INFO *p8inf);
715 int i2d_PKCS8PrivateKeyInfo_fp(FILE *fp, EVP_PKEY *key);
716 int i2d_PrivateKey_fp(FILE *fp, EVP_PKEY *pkey);
717 EVP_PKEY *d2i_PrivateKey_fp(FILE *fp, EVP_PKEY **a);
718 int i2d_PUBKEY_fp(FILE *fp, EVP_PKEY *pkey);
719 EVP_PKEY *d2i_PUBKEY_fp(FILE *fp, EVP_PKEY **a);
720 #endif

new/usr/src/lib/openssl/include/openssl/x509.h 12

722 #ifndef OPENSSL_NO_BIO
723 X509 *d2i_X509_bio(BIO *bp,X509 **x509);
724 int i2d_X509_bio(BIO *bp,X509 *x509);
725 X509_CRL *d2i_X509_CRL_bio(BIO *bp,X509_CRL **crl);
726 int i2d_X509_CRL_bio(BIO *bp,X509_CRL *crl);
727 X509_REQ *d2i_X509_REQ_bio(BIO *bp,X509_REQ **req);
728 int i2d_X509_REQ_bio(BIO *bp,X509_REQ *req);
729 #ifndef OPENSSL_NO_RSA
730 RSA *d2i_RSAPrivateKey_bio(BIO *bp,RSA **rsa);
731 int i2d_RSAPrivateKey_bio(BIO *bp,RSA *rsa);
732 RSA *d2i_RSAPublicKey_bio(BIO *bp,RSA **rsa);
733 int i2d_RSAPublicKey_bio(BIO *bp,RSA *rsa);
734 RSA *d2i_RSA_PUBKEY_bio(BIO *bp,RSA **rsa);
735 int i2d_RSA_PUBKEY_bio(BIO *bp,RSA *rsa);
736 #endif
737 #ifndef OPENSSL_NO_DSA
738 DSA *d2i_DSA_PUBKEY_bio(BIO *bp, DSA **dsa);
739 int i2d_DSA_PUBKEY_bio(BIO *bp, DSA *dsa);
740 DSA *d2i_DSAPrivateKey_bio(BIO *bp, DSA **dsa);
741 int i2d_DSAPrivateKey_bio(BIO *bp, DSA *dsa);
742 #endif
743 #ifndef OPENSSL_NO_EC
744 EC_KEY *d2i_EC_PUBKEY_bio(BIO *bp, EC_KEY **eckey);
745 int i2d_EC_PUBKEY_bio(BIO *bp, EC_KEY *eckey);
746 EC_KEY *d2i_ECPrivateKey_bio(BIO *bp, EC_KEY **eckey);
747 int i2d_ECPrivateKey_bio(BIO *bp, EC_KEY *eckey);
748 #endif
749 X509_SIG *d2i_PKCS8_bio(BIO *bp,X509_SIG **p8);
750 int i2d_PKCS8_bio(BIO *bp,X509_SIG *p8);
751 PKCS8_PRIV_KEY_INFO *d2i_PKCS8_PRIV_KEY_INFO_bio(BIO *bp,
752 PKCS8_PRIV_KEY_INFO **p8inf);
753 int i2d_PKCS8_PRIV_KEY_INFO_bio(BIO *bp,PKCS8_PRIV_KEY_INFO *p8inf);
754 int i2d_PKCS8PrivateKeyInfo_bio(BIO *bp, EVP_PKEY *key);
755 int i2d_PrivateKey_bio(BIO *bp, EVP_PKEY *pkey);
756 EVP_PKEY *d2i_PrivateKey_bio(BIO *bp, EVP_PKEY **a);
757 int i2d_PUBKEY_bio(BIO *bp, EVP_PKEY *pkey);
758 EVP_PKEY *d2i_PUBKEY_bio(BIO *bp, EVP_PKEY **a);
759 #endif

761 X509 *X509_dup(X509 *x509);
762 X509_ATTRIBUTE *X509_ATTRIBUTE_dup(X509_ATTRIBUTE *xa);
763 X509_EXTENSION *X509_EXTENSION_dup(X509_EXTENSION *ex);
764 X509_CRL *X509_CRL_dup(X509_CRL *crl);
765 X509_REQ *X509_REQ_dup(X509_REQ *req);
766 X509_ALGOR *X509_ALGOR_dup(X509_ALGOR *xn);
767 int X509_ALGOR_set0(X509_ALGOR *alg, ASN1_OBJECT *aobj, int ptype, void *pval);
768 void X509_ALGOR_get0(ASN1_OBJECT **paobj, int *pptype, void **ppval,
769 X509_ALGOR *algor);
770 void X509_ALGOR_set_md(X509_ALGOR *alg, const EVP_MD *md);

772 X509_NAME *X509_NAME_dup(X509_NAME *xn);
773 X509_NAME_ENTRY *X509_NAME_ENTRY_dup(X509_NAME_ENTRY *ne);

775 int X509_cmp_time(const ASN1_TIME *s, time_t *t);
776 int X509_cmp_current_time(const ASN1_TIME *s);
777 ASN1_TIME * X509_time_adj(ASN1_TIME *s, long adj, time_t *t);
778 ASN1_TIME * X509_time_adj_ex(ASN1_TIME *s,
779 int offset_day, long offset_sec, time_t *t);
780 ASN1_TIME * X509_gmtime_adj(ASN1_TIME *s, long adj);

782 const char * X509_get_default_cert_area(void);
783 const char * X509_get_default_cert_dir(void);
784 const char * X509_get_default_cert_file(void);
785 const char * X509_get_default_cert_dir_env(void);
786 const char * X509_get_default_cert_file_env(void);
787 const char * X509_get_default_private_dir(void);

new/usr/src/lib/openssl/include/openssl/x509.h 13

789 X509_REQ * X509_to_X509_REQ(X509 *x, EVP_PKEY *pkey, const EVP_MD *md);
790 X509 * X509_REQ_to_X509(X509_REQ *r, int days,EVP_PKEY *pkey);

792 DECLARE_ASN1_FUNCTIONS(X509_ALGOR)
793 DECLARE_ASN1_ENCODE_FUNCTIONS(X509_ALGORS, X509_ALGORS, X509_ALGORS)
794 DECLARE_ASN1_FUNCTIONS(X509_VAL)

796 DECLARE_ASN1_FUNCTIONS(X509_PUBKEY)

798 int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey);
799 EVP_PKEY * X509_PUBKEY_get(X509_PUBKEY *key);
800 int X509_get_pubkey_parameters(EVP_PKEY *pkey,
801 STACK_OF(X509) *chain);
802 int i2d_PUBKEY(EVP_PKEY *a,unsigned char **pp);
803 EVP_PKEY * d2i_PUBKEY(EVP_PKEY **a,const unsigned char **pp,
804 long length);
805 #ifndef OPENSSL_NO_RSA
806 int i2d_RSA_PUBKEY(RSA *a,unsigned char **pp);
807 RSA * d2i_RSA_PUBKEY(RSA **a,const unsigned char **pp,
808 long length);
809 #endif
810 #ifndef OPENSSL_NO_DSA
811 int i2d_DSA_PUBKEY(DSA *a,unsigned char **pp);
812 DSA * d2i_DSA_PUBKEY(DSA **a,const unsigned char **pp,
813 long length);
814 #endif
815 #ifndef OPENSSL_NO_EC
816 int i2d_EC_PUBKEY(EC_KEY *a, unsigned char **pp);
817 EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp,
818 long length);
819 #endif

821 DECLARE_ASN1_FUNCTIONS(X509_SIG)
822 DECLARE_ASN1_FUNCTIONS(X509_REQ_INFO)
823 DECLARE_ASN1_FUNCTIONS(X509_REQ)

825 DECLARE_ASN1_FUNCTIONS(X509_ATTRIBUTE)
826 X509_ATTRIBUTE *X509_ATTRIBUTE_create(int nid, int atrtype, void *value);

828 DECLARE_ASN1_FUNCTIONS(X509_EXTENSION)
829 DECLARE_ASN1_ENCODE_FUNCTIONS(X509_EXTENSIONS, X509_EXTENSIONS, X509_EXTENSIONS)

831 DECLARE_ASN1_FUNCTIONS(X509_NAME_ENTRY)

833 DECLARE_ASN1_FUNCTIONS(X509_NAME)

835 int X509_NAME_set(X509_NAME **xn, X509_NAME *name);

837 DECLARE_ASN1_FUNCTIONS(X509_CINF)

839 DECLARE_ASN1_FUNCTIONS(X509)
840 DECLARE_ASN1_FUNCTIONS(X509_CERT_AUX)

842 DECLARE_ASN1_FUNCTIONS(X509_CERT_PAIR)

844 int X509_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
845 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);
846 int X509_set_ex_data(X509 *r, int idx, void *arg);
847 void *X509_get_ex_data(X509 *r, int idx);
848 int i2d_X509_AUX(X509 *a,unsigned char **pp);
849 X509 * d2i_X509_AUX(X509 **a,const unsigned char **pp,long length);

851 int X509_alias_set1(X509 *x, unsigned char *name, int len);
852 int X509_keyid_set1(X509 *x, unsigned char *id, int len);
853 unsigned char * X509_alias_get0(X509 *x, int *len);

new/usr/src/lib/openssl/include/openssl/x509.h 14

854 unsigned char * X509_keyid_get0(X509 *x, int *len);
855 int (*X509_TRUST_set_default(int (*trust)(int , X509 *, int)))(int, X509 *, int)
856 int X509_TRUST_set(int *t, int trust);
857 int X509_add1_trust_object(X509 *x, ASN1_OBJECT *obj);
858 int X509_add1_reject_object(X509 *x, ASN1_OBJECT *obj);
859 void X509_trust_clear(X509 *x);
860 void X509_reject_clear(X509 *x);

862 DECLARE_ASN1_FUNCTIONS(X509_REVOKED)
863 DECLARE_ASN1_FUNCTIONS(X509_CRL_INFO)
864 DECLARE_ASN1_FUNCTIONS(X509_CRL)

866 int X509_CRL_add0_revoked(X509_CRL *crl, X509_REVOKED *rev);
867 int X509_CRL_get0_by_serial(X509_CRL *crl,
868 X509_REVOKED **ret, ASN1_INTEGER *serial);
869 int X509_CRL_get0_by_cert(X509_CRL *crl, X509_REVOKED **ret, X509 *x);

871 X509_PKEY * X509_PKEY_new(void);
872 void X509_PKEY_free(X509_PKEY *a);
873 int i2d_X509_PKEY(X509_PKEY *a,unsigned char **pp);
874 X509_PKEY * d2i_X509_PKEY(X509_PKEY **a,const unsigned char **pp,long length

876 DECLARE_ASN1_FUNCTIONS(NETSCAPE_SPKI)
877 DECLARE_ASN1_FUNCTIONS(NETSCAPE_SPKAC)
878 DECLARE_ASN1_FUNCTIONS(NETSCAPE_CERT_SEQUENCE)

880 #ifndef OPENSSL_NO_EVP
881 X509_INFO * X509_INFO_new(void);
882 void X509_INFO_free(X509_INFO *a);
883 char * X509_NAME_oneline(X509_NAME *a,char *buf,int size);

885 int ASN1_verify(i2d_of_void *i2d, X509_ALGOR *algor1,
886 ASN1_BIT_STRING *signature,char *data,EVP_PKEY *pkey);

888 int ASN1_digest(i2d_of_void *i2d,const EVP_MD *type,char *data,
889 unsigned char *md,unsigned int *len);

891 int ASN1_sign(i2d_of_void *i2d, X509_ALGOR *algor1,
892 X509_ALGOR *algor2, ASN1_BIT_STRING *signature,
893 char *data,EVP_PKEY *pkey, const EVP_MD *type);

895 int ASN1_item_digest(const ASN1_ITEM *it,const EVP_MD *type,void *data,
896 unsigned char *md,unsigned int *len);

898 int ASN1_item_verify(const ASN1_ITEM *it, X509_ALGOR *algor1,
899 ASN1_BIT_STRING *signature,void *data,EVP_PKEY *pkey);

901 int ASN1_item_sign(const ASN1_ITEM *it, X509_ALGOR *algor1, X509_ALGOR *algor2,
902 ASN1_BIT_STRING *signature,
903 void *data, EVP_PKEY *pkey, const EVP_MD *type);
904 int ASN1_item_sign_ctx(const ASN1_ITEM *it,
905 X509_ALGOR *algor1, X509_ALGOR *algor2,
906 ASN1_BIT_STRING *signature, void *asn, EVP_MD_CTX *ctx);
907 #endif

909 int X509_set_version(X509 *x,long version);
910 int X509_set_serialNumber(X509 *x, ASN1_INTEGER *serial);
911 ASN1_INTEGER * X509_get_serialNumber(X509 *x);
912 int X509_set_issuer_name(X509 *x, X509_NAME *name);
913 X509_NAME * X509_get_issuer_name(X509 *a);
914 int X509_set_subject_name(X509 *x, X509_NAME *name);
915 X509_NAME * X509_get_subject_name(X509 *a);
916 int X509_set_notBefore(X509 *x, const ASN1_TIME *tm);
917 int X509_set_notAfter(X509 *x, const ASN1_TIME *tm);
918 int X509_set_pubkey(X509 *x, EVP_PKEY *pkey);
919 EVP_PKEY * X509_get_pubkey(X509 *x);

new/usr/src/lib/openssl/include/openssl/x509.h 15

920 ASN1_BIT_STRING * X509_get0_pubkey_bitstr(const X509 *x);
921 int X509_certificate_type(X509 *x,EVP_PKEY *pubkey /* optional */);

923 int X509_REQ_set_version(X509_REQ *x,long version);
924 int X509_REQ_set_subject_name(X509_REQ *req,X509_NAME *name);
925 int X509_REQ_set_pubkey(X509_REQ *x, EVP_PKEY *pkey);
926 EVP_PKEY * X509_REQ_get_pubkey(X509_REQ *req);
927 int X509_REQ_extension_nid(int nid);
928 int * X509_REQ_get_extension_nids(void);
929 void X509_REQ_set_extension_nids(int *nids);
930 STACK_OF(X509_EXTENSION) *X509_REQ_get_extensions(X509_REQ *req);
931 int X509_REQ_add_extensions_nid(X509_REQ *req, STACK_OF(X509_EXTENSION) *exts,
932 int nid);
933 int X509_REQ_add_extensions(X509_REQ *req, STACK_OF(X509_EXTENSION) *exts);
934 int X509_REQ_get_attr_count(const X509_REQ *req);
935 int X509_REQ_get_attr_by_NID(const X509_REQ *req, int nid,
936 int lastpos);
937 int X509_REQ_get_attr_by_OBJ(const X509_REQ *req, ASN1_OBJECT *obj,
938 int lastpos);
939 X509_ATTRIBUTE *X509_REQ_get_attr(const X509_REQ *req, int loc);
940 X509_ATTRIBUTE *X509_REQ_delete_attr(X509_REQ *req, int loc);
941 int X509_REQ_add1_attr(X509_REQ *req, X509_ATTRIBUTE *attr);
942 int X509_REQ_add1_attr_by_OBJ(X509_REQ *req,
943 const ASN1_OBJECT *obj, int type,
944 const unsigned char *bytes, int len);
945 int X509_REQ_add1_attr_by_NID(X509_REQ *req,
946 int nid, int type,
947 const unsigned char *bytes, int len);
948 int X509_REQ_add1_attr_by_txt(X509_REQ *req,
949 const char *attrname, int type,
950 const unsigned char *bytes, int len);

952 int X509_CRL_set_version(X509_CRL *x, long version);
953 int X509_CRL_set_issuer_name(X509_CRL *x, X509_NAME *name);
954 int X509_CRL_set_lastUpdate(X509_CRL *x, const ASN1_TIME *tm);
955 int X509_CRL_set_nextUpdate(X509_CRL *x, const ASN1_TIME *tm);
956 int X509_CRL_sort(X509_CRL *crl);

958 int X509_REVOKED_set_serialNumber(X509_REVOKED *x, ASN1_INTEGER *serial);
959 int X509_REVOKED_set_revocationDate(X509_REVOKED *r, ASN1_TIME *tm);

961 int X509_REQ_check_private_key(X509_REQ *x509,EVP_PKEY *pkey);

963 int X509_check_private_key(X509 *x509,EVP_PKEY *pkey);

965 int X509_issuer_and_serial_cmp(const X509 *a, const X509 *b);
966 unsigned long X509_issuer_and_serial_hash(X509 *a);

968 int X509_issuer_name_cmp(const X509 *a, const X509 *b);
969 unsigned long X509_issuer_name_hash(X509 *a);

971 int X509_subject_name_cmp(const X509 *a, const X509 *b);
972 unsigned long X509_subject_name_hash(X509 *x);

974 #ifndef OPENSSL_NO_MD5
975 unsigned long X509_issuer_name_hash_old(X509 *a);
976 unsigned long X509_subject_name_hash_old(X509 *x);
977 #endif

979 int X509_cmp(const X509 *a, const X509 *b);
980 int X509_NAME_cmp(const X509_NAME *a, const X509_NAME *b);
981 unsigned long X509_NAME_hash(X509_NAME *x);
982 unsigned long X509_NAME_hash_old(X509_NAME *x);

984 int X509_CRL_cmp(const X509_CRL *a, const X509_CRL *b);
985 int X509_CRL_match(const X509_CRL *a, const X509_CRL *b);

new/usr/src/lib/openssl/include/openssl/x509.h 16

986 #ifndef OPENSSL_NO_FP_API
987 int X509_print_ex_fp(FILE *bp,X509 *x, unsigned long nmflag, unsigne
988 int X509_print_fp(FILE *bp,X509 *x);
989 int X509_CRL_print_fp(FILE *bp,X509_CRL *x);
990 int X509_REQ_print_fp(FILE *bp,X509_REQ *req);
991 int X509_NAME_print_ex_fp(FILE *fp, X509_NAME *nm, int indent, unsigned long fla
992 #endif

994 #ifndef OPENSSL_NO_BIO
995 int X509_NAME_print(BIO *bp, X509_NAME *name, int obase);
996 int X509_NAME_print_ex(BIO *out, X509_NAME *nm, int indent, unsigned long flags)
997 int X509_print_ex(BIO *bp,X509 *x, unsigned long nmflag, unsigned lo
998 int X509_print(BIO *bp,X509 *x);
999 int X509_ocspid_print(BIO *bp,X509 *x);

1000 int X509_CERT_AUX_print(BIO *bp,X509_CERT_AUX *x, int indent);
1001 int X509_CRL_print(BIO *bp,X509_CRL *x);
1002 int X509_REQ_print_ex(BIO *bp, X509_REQ *x, unsigned long nmflag, un
1003 int X509_REQ_print(BIO *bp,X509_REQ *req);
1004 #endif

1006 int X509_NAME_entry_count(X509_NAME *name);
1007 int X509_NAME_get_text_by_NID(X509_NAME *name, int nid,
1008 char *buf,int len);
1009 int X509_NAME_get_text_by_OBJ(X509_NAME *name, ASN1_OBJECT *obj,
1010 char *buf,int len);

1012 /* NOTE: you should be passsing -1, not 0 as lastpos. The functions that use
1013 * lastpos, search after that position on. */
1014 int X509_NAME_get_index_by_NID(X509_NAME *name,int nid,int lastpos);
1015 int X509_NAME_get_index_by_OBJ(X509_NAME *name,ASN1_OBJECT *obj,
1016 int lastpos);
1017 X509_NAME_ENTRY *X509_NAME_get_entry(X509_NAME *name, int loc);
1018 X509_NAME_ENTRY *X509_NAME_delete_entry(X509_NAME *name, int loc);
1019 int X509_NAME_add_entry(X509_NAME *name,X509_NAME_ENTRY *ne,
1020 int loc, int set);
1021 int X509_NAME_add_entry_by_OBJ(X509_NAME *name, ASN1_OBJECT *obj, int type,
1022 unsigned char *bytes, int len, int loc, int set);
1023 int X509_NAME_add_entry_by_NID(X509_NAME *name, int nid, int type,
1024 unsigned char *bytes, int len, int loc, int set);
1025 X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_txt(X509_NAME_ENTRY **ne,
1026 const char *field, int type, const unsigned char *bytes, int len
1027 X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_NID(X509_NAME_ENTRY **ne, int nid,
1028 int type,unsigned char *bytes, int len);
1029 int X509_NAME_add_entry_by_txt(X509_NAME *name, const char *field, int type,
1030 const unsigned char *bytes, int len, int loc, int set);
1031 X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_OBJ(X509_NAME_ENTRY **ne,
1032 ASN1_OBJECT *obj, int type,const unsigned char *bytes,
1033 int len);
1034 int X509_NAME_ENTRY_set_object(X509_NAME_ENTRY *ne,
1035 ASN1_OBJECT *obj);
1036 int X509_NAME_ENTRY_set_data(X509_NAME_ENTRY *ne, int type,
1037 const unsigned char *bytes, int len);
1038 ASN1_OBJECT * X509_NAME_ENTRY_get_object(X509_NAME_ENTRY *ne);
1039 ASN1_STRING * X509_NAME_ENTRY_get_data(X509_NAME_ENTRY *ne);

1041 int X509v3_get_ext_count(const STACK_OF(X509_EXTENSION) *x);
1042 int X509v3_get_ext_by_NID(const STACK_OF(X509_EXTENSION) *x,
1043 int nid, int lastpos);
1044 int X509v3_get_ext_by_OBJ(const STACK_OF(X509_EXTENSION) *x,
1045 ASN1_OBJECT *obj,int lastpos);
1046 int X509v3_get_ext_by_critical(const STACK_OF(X509_EXTENSION) *x,
1047 int crit, int lastpos);
1048 X509_EXTENSION *X509v3_get_ext(const STACK_OF(X509_EXTENSION) *x, int loc);
1049 X509_EXTENSION *X509v3_delete_ext(STACK_OF(X509_EXTENSION) *x, int loc);
1050 STACK_OF(X509_EXTENSION) *X509v3_add_ext(STACK_OF(X509_EXTENSION) **x,
1051 X509_EXTENSION *ex, int loc);

new/usr/src/lib/openssl/include/openssl/x509.h 17

1053 int X509_get_ext_count(X509 *x);
1054 int X509_get_ext_by_NID(X509 *x, int nid, int lastpos);
1055 int X509_get_ext_by_OBJ(X509 *x,ASN1_OBJECT *obj,int lastpos);
1056 int X509_get_ext_by_critical(X509 *x, int crit, int lastpos);
1057 X509_EXTENSION *X509_get_ext(X509 *x, int loc);
1058 X509_EXTENSION *X509_delete_ext(X509 *x, int loc);
1059 int X509_add_ext(X509 *x, X509_EXTENSION *ex, int loc);
1060 void * X509_get_ext_d2i(X509 *x, int nid, int *crit, int *idx);
1061 int X509_add1_ext_i2d(X509 *x, int nid, void *value, int crit,
1062 unsigned long flags);

1064 int X509_CRL_get_ext_count(X509_CRL *x);
1065 int X509_CRL_get_ext_by_NID(X509_CRL *x, int nid, int lastpos);
1066 int X509_CRL_get_ext_by_OBJ(X509_CRL *x,ASN1_OBJECT *obj,int lastpos
1067 int X509_CRL_get_ext_by_critical(X509_CRL *x, int crit, int lastpos)
1068 X509_EXTENSION *X509_CRL_get_ext(X509_CRL *x, int loc);
1069 X509_EXTENSION *X509_CRL_delete_ext(X509_CRL *x, int loc);
1070 int X509_CRL_add_ext(X509_CRL *x, X509_EXTENSION *ex, int loc);
1071 void * X509_CRL_get_ext_d2i(X509_CRL *x, int nid, int *crit, int *idx);
1072 int X509_CRL_add1_ext_i2d(X509_CRL *x, int nid, void *value, int cri
1073 unsigned long flags);

1075 int X509_REVOKED_get_ext_count(X509_REVOKED *x);
1076 int X509_REVOKED_get_ext_by_NID(X509_REVOKED *x, int nid, int lastpo
1077 int X509_REVOKED_get_ext_by_OBJ(X509_REVOKED *x,ASN1_OBJECT *obj,int
1078 int X509_REVOKED_get_ext_by_critical(X509_REVOKED *x, int crit, int
1079 X509_EXTENSION *X509_REVOKED_get_ext(X509_REVOKED *x, int loc);
1080 X509_EXTENSION *X509_REVOKED_delete_ext(X509_REVOKED *x, int loc);
1081 int X509_REVOKED_add_ext(X509_REVOKED *x, X509_EXTENSION *ex, int lo
1082 void * X509_REVOKED_get_ext_d2i(X509_REVOKED *x, int nid, int *crit, in
1083 int X509_REVOKED_add1_ext_i2d(X509_REVOKED *x, int nid, void *value,
1084 unsigned long flags);

1086 X509_EXTENSION *X509_EXTENSION_create_by_NID(X509_EXTENSION **ex,
1087 int nid, int crit, ASN1_OCTET_STRING *data);
1088 X509_EXTENSION *X509_EXTENSION_create_by_OBJ(X509_EXTENSION **ex,
1089 ASN1_OBJECT *obj,int crit,ASN1_OCTET_STRING *data);
1090 int X509_EXTENSION_set_object(X509_EXTENSION *ex,ASN1_OBJECT *obj);
1091 int X509_EXTENSION_set_critical(X509_EXTENSION *ex, int crit);
1092 int X509_EXTENSION_set_data(X509_EXTENSION *ex,
1093 ASN1_OCTET_STRING *data);
1094 ASN1_OBJECT * X509_EXTENSION_get_object(X509_EXTENSION *ex);
1095 ASN1_OCTET_STRING *X509_EXTENSION_get_data(X509_EXTENSION *ne);
1096 int X509_EXTENSION_get_critical(X509_EXTENSION *ex);

1098 int X509at_get_attr_count(const STACK_OF(X509_ATTRIBUTE) *x);
1099 int X509at_get_attr_by_NID(const STACK_OF(X509_ATTRIBUTE) *x, int nid,
1100 int lastpos);
1101 int X509at_get_attr_by_OBJ(const STACK_OF(X509_ATTRIBUTE) *sk, ASN1_OBJECT *obj,
1102 int lastpos);
1103 X509_ATTRIBUTE *X509at_get_attr(const STACK_OF(X509_ATTRIBUTE) *x, int loc);
1104 X509_ATTRIBUTE *X509at_delete_attr(STACK_OF(X509_ATTRIBUTE) *x, int loc);
1105 STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr(STACK_OF(X509_ATTRIBUTE) **x,
1106 X509_ATTRIBUTE *attr);
1107 STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr_by_OBJ(STACK_OF(X509_ATTRIBUTE) **x,
1108 const ASN1_OBJECT *obj, int type,
1109 const unsigned char *bytes, int len);
1110 STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr_by_NID(STACK_OF(X509_ATTRIBUTE) **x,
1111 int nid, int type,
1112 const unsigned char *bytes, int len);
1113 STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr_by_txt(STACK_OF(X509_ATTRIBUTE) **x,
1114 const char *attrname, int type,
1115 const unsigned char *bytes, int len);
1116 void *X509at_get0_data_by_OBJ(STACK_OF(X509_ATTRIBUTE) *x,
1117 ASN1_OBJECT *obj, int lastpos, int type);

new/usr/src/lib/openssl/include/openssl/x509.h 18

1118 X509_ATTRIBUTE *X509_ATTRIBUTE_create_by_NID(X509_ATTRIBUTE **attr, int nid,
1119 int atrtype, const void *data, int len);
1120 X509_ATTRIBUTE *X509_ATTRIBUTE_create_by_OBJ(X509_ATTRIBUTE **attr,
1121 const ASN1_OBJECT *obj, int atrtype, const void *data, int len);
1122 X509_ATTRIBUTE *X509_ATTRIBUTE_create_by_txt(X509_ATTRIBUTE **attr,
1123 const char *atrname, int type, const unsigned char *bytes, int l
1124 int X509_ATTRIBUTE_set1_object(X509_ATTRIBUTE *attr, const ASN1_OBJECT *obj);
1125 int X509_ATTRIBUTE_set1_data(X509_ATTRIBUTE *attr, int attrtype, const void *dat
1126 void *X509_ATTRIBUTE_get0_data(X509_ATTRIBUTE *attr, int idx,
1127 int atrtype, void *data);
1128 int X509_ATTRIBUTE_count(X509_ATTRIBUTE *attr);
1129 ASN1_OBJECT *X509_ATTRIBUTE_get0_object(X509_ATTRIBUTE *attr);
1130 ASN1_TYPE *X509_ATTRIBUTE_get0_type(X509_ATTRIBUTE *attr, int idx);

1132 int EVP_PKEY_get_attr_count(const EVP_PKEY *key);
1133 int EVP_PKEY_get_attr_by_NID(const EVP_PKEY *key, int nid,
1134 int lastpos);
1135 int EVP_PKEY_get_attr_by_OBJ(const EVP_PKEY *key, ASN1_OBJECT *obj,
1136 int lastpos);
1137 X509_ATTRIBUTE *EVP_PKEY_get_attr(const EVP_PKEY *key, int loc);
1138 X509_ATTRIBUTE *EVP_PKEY_delete_attr(EVP_PKEY *key, int loc);
1139 int EVP_PKEY_add1_attr(EVP_PKEY *key, X509_ATTRIBUTE *attr);
1140 int EVP_PKEY_add1_attr_by_OBJ(EVP_PKEY *key,
1141 const ASN1_OBJECT *obj, int type,
1142 const unsigned char *bytes, int len);
1143 int EVP_PKEY_add1_attr_by_NID(EVP_PKEY *key,
1144 int nid, int type,
1145 const unsigned char *bytes, int len);
1146 int EVP_PKEY_add1_attr_by_txt(EVP_PKEY *key,
1147 const char *attrname, int type,
1148 const unsigned char *bytes, int len);

1150 int X509_verify_cert(X509_STORE_CTX *ctx);

1152 /* lookup a cert from a X509 STACK */
1153 X509 *X509_find_by_issuer_and_serial(STACK_OF(X509) *sk,X509_NAME *name,
1154 ASN1_INTEGER *serial);
1155 X509 *X509_find_by_subject(STACK_OF(X509) *sk,X509_NAME *name);

1157 DECLARE_ASN1_FUNCTIONS(PBEPARAM)
1158 DECLARE_ASN1_FUNCTIONS(PBE2PARAM)
1159 DECLARE_ASN1_FUNCTIONS(PBKDF2PARAM)

1161 int PKCS5_pbe_set0_algor(X509_ALGOR *algor, int alg, int iter,
1162 const unsigned char *salt, int saltlen);

1164 X509_ALGOR *PKCS5_pbe_set(int alg, int iter,
1165 const unsigned char *salt, int saltlen);
1166 X509_ALGOR *PKCS5_pbe2_set(const EVP_CIPHER *cipher, int iter,
1167 unsigned char *salt, int saltlen);
1168 X509_ALGOR *PKCS5_pbe2_set_iv(const EVP_CIPHER *cipher, int iter,
1169 unsigned char *salt, int saltlen,
1170 unsigned char *aiv, int prf_nid);

1172 X509_ALGOR *PKCS5_pbkdf2_set(int iter, unsigned char *salt, int saltlen,
1173 int prf_nid, int keylen);

1175 /* PKCS#8 utilities */

1177 DECLARE_ASN1_FUNCTIONS(PKCS8_PRIV_KEY_INFO)

1179 EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8);
1180 PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey);
1181 PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8_broken(EVP_PKEY *pkey, int broken);
1182 PKCS8_PRIV_KEY_INFO *PKCS8_set_broken(PKCS8_PRIV_KEY_INFO *p8, int broken);

new/usr/src/lib/openssl/include/openssl/x509.h 19

1184 int PKCS8_pkey_set0(PKCS8_PRIV_KEY_INFO *priv, ASN1_OBJECT *aobj,
1185 int version, int ptype, void *pval,
1186 unsigned char *penc, int penclen);
1187 int PKCS8_pkey_get0(ASN1_OBJECT **ppkalg,
1188 const unsigned char **pk, int *ppklen,
1189 X509_ALGOR **pa,
1190 PKCS8_PRIV_KEY_INFO *p8);

1192 int X509_PUBKEY_set0_param(X509_PUBKEY *pub, ASN1_OBJECT *aobj,
1193 int ptype, void *pval,
1194 unsigned char *penc, int penclen);
1195 int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg,
1196 const unsigned char **pk, int *ppklen,
1197 X509_ALGOR **pa,
1198 X509_PUBKEY *pub);

1200 int X509_check_trust(X509 *x, int id, int flags);
1201 int X509_TRUST_get_count(void);
1202 X509_TRUST * X509_TRUST_get0(int idx);
1203 int X509_TRUST_get_by_id(int id);
1204 int X509_TRUST_add(int id, int flags, int (*ck)(X509_TRUST *, X509 *, int),
1205 char *name, int arg1, void *arg2);
1206 void X509_TRUST_cleanup(void);
1207 int X509_TRUST_get_flags(X509_TRUST *xp);
1208 char *X509_TRUST_get0_name(X509_TRUST *xp);
1209 int X509_TRUST_get_trust(X509_TRUST *xp);

1211 /* BEGIN ERROR CODES */
1212 /* The following lines are auto generated by the script mkerr.pl. Any changes
1213 * made after this point may be overwritten when the script is next run.
1214 */
1215 void ERR_load_X509_strings(void);

1217 /* Error codes for the X509 functions. */

1219 /* Function codes. */
1220 #define X509_F_ADD_CERT_DIR 100
1221 #define X509_F_BY_FILE_CTRL 101
1222 #define X509_F_CHECK_POLICY 145
1223 #define X509_F_DIR_CTRL 102
1224 #define X509_F_GET_CERT_BY_SUBJECT 103
1225 #define X509_F_NETSCAPE_SPKI_B64_DECODE 129
1226 #define X509_F_NETSCAPE_SPKI_B64_ENCODE 130
1227 #define X509_F_X509AT_ADD1_ATTR 135
1228 #define X509_F_X509V3_ADD_EXT 104
1229 #define X509_F_X509_ATTRIBUTE_CREATE_BY_NID 136
1230 #define X509_F_X509_ATTRIBUTE_CREATE_BY_OBJ 137
1231 #define X509_F_X509_ATTRIBUTE_CREATE_BY_TXT 140
1232 #define X509_F_X509_ATTRIBUTE_GET0_DATA 139
1233 #define X509_F_X509_ATTRIBUTE_SET1_DATA 138
1234 #define X509_F_X509_CHECK_PRIVATE_KEY 128
1235 #define X509_F_X509_CRL_PRINT_FP 147
1236 #define X509_F_X509_EXTENSION_CREATE_BY_NID 108
1237 #define X509_F_X509_EXTENSION_CREATE_BY_OBJ 109
1238 #define X509_F_X509_GET_PUBKEY_PARAMETERS 110
1239 #define X509_F_X509_LOAD_CERT_CRL_FILE 132
1240 #define X509_F_X509_LOAD_CERT_FILE 111
1241 #define X509_F_X509_LOAD_CRL_FILE 112
1242 #define X509_F_X509_NAME_ADD_ENTRY 113
1243 #define X509_F_X509_NAME_ENTRY_CREATE_BY_NID 114
1244 #define X509_F_X509_NAME_ENTRY_CREATE_BY_TXT 131
1245 #define X509_F_X509_NAME_ENTRY_SET_OBJECT 115
1246 #define X509_F_X509_NAME_ONELINE 116
1247 #define X509_F_X509_NAME_PRINT 117
1248 #define X509_F_X509_PRINT_EX_FP 118
1249 #define X509_F_X509_PUBKEY_GET 119

new/usr/src/lib/openssl/include/openssl/x509.h 20

1250 #define X509_F_X509_PUBKEY_SET 120
1251 #define X509_F_X509_REQ_CHECK_PRIVATE_KEY 144
1252 #define X509_F_X509_REQ_PRINT_EX 121
1253 #define X509_F_X509_REQ_PRINT_FP 122
1254 #define X509_F_X509_REQ_TO_X509 123
1255 #define X509_F_X509_STORE_ADD_CERT 124
1256 #define X509_F_X509_STORE_ADD_CRL 125
1257 #define X509_F_X509_STORE_CTX_GET1_ISSUER 146
1258 #define X509_F_X509_STORE_CTX_INIT 143
1259 #define X509_F_X509_STORE_CTX_NEW 142
1260 #define X509_F_X509_STORE_CTX_PURPOSE_INHERIT 134
1261 #define X509_F_X509_TO_X509_REQ 126
1262 #define X509_F_X509_TRUST_ADD 133
1263 #define X509_F_X509_TRUST_SET 141
1264 #define X509_F_X509_VERIFY_CERT 127

1266 /* Reason codes. */
1267 #define X509_R_BAD_X509_FILETYPE 100
1268 #define X509_R_BASE64_DECODE_ERROR 118
1269 #define X509_R_CANT_CHECK_DH_KEY 114
1270 #define X509_R_CERT_ALREADY_IN_HASH_TABLE 101
1271 #define X509_R_ERR_ASN1_LIB 102
1272 #define X509_R_INVALID_DIRECTORY 113
1273 #define X509_R_INVALID_FIELD_NAME 119
1274 #define X509_R_INVALID_TRUST 123
1275 #define X509_R_KEY_TYPE_MISMATCH 115
1276 #define X509_R_KEY_VALUES_MISMATCH 116
1277 #define X509_R_LOADING_CERT_DIR 103
1278 #define X509_R_LOADING_DEFAULTS 104
1279 #define X509_R_METHOD_NOT_SUPPORTED 124
1280 #define X509_R_NO_CERT_SET_FOR_US_TO_VERIFY 105
1281 #define X509_R_PUBLIC_KEY_DECODE_ERROR 125
1282 #define X509_R_PUBLIC_KEY_ENCODE_ERROR 126
1283 #define X509_R_SHOULD_RETRY 106
1284 #define X509_R_UNABLE_TO_FIND_PARAMETERS_IN_CHAIN 107
1285 #define X509_R_UNABLE_TO_GET_CERTS_PUBLIC_KEY 108
1286 #define X509_R_UNKNOWN_KEY_TYPE 117
1287 #define X509_R_UNKNOWN_NID 109
1288 #define X509_R_UNKNOWN_PURPOSE_ID 121
1289 #define X509_R_UNKNOWN_TRUST_ID 120
1290 #define X509_R_UNSUPPORTED_ALGORITHM 111
1291 #define X509_R_WRONG_LOOKUP_TYPE 112
1292 #define X509_R_WRONG_TYPE 122

1294 #ifdef __cplusplus
1295 }
1296 #endif
1297 #endif

new/usr/src/lib/openssl/include/openssl/x509_vfy.h 1

**
 22526 Fri May 30 18:31:24 2014
new/usr/src/lib/openssl/include/openssl/x509_vfy.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509_vfy.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef HEADER_X509_H
60 #include <openssl/x509.h>
61 /* openssl/x509.h ends up #include-ing this file at about the only

new/usr/src/lib/openssl/include/openssl/x509_vfy.h 2

62 * appropriate moment. */
63 #endif

65 #ifndef HEADER_X509_VFY_H
66 #define HEADER_X509_VFY_H

68 #include <openssl/opensslconf.h>
69 #ifndef OPENSSL_NO_LHASH
70 #include <openssl/lhash.h>
71 #endif
72 #include <openssl/bio.h>
73 #include <openssl/crypto.h>
74 #include <openssl/symhacks.h>

76 #ifdef __cplusplus
77 extern "C" {
78 #endif

80 #if 0
81 /* Outer object */
82 typedef struct x509_hash_dir_st
83 {
84 int num_dirs;
85 char **dirs;
86 int *dirs_type;
87 int num_dirs_alloced;
88 } X509_HASH_DIR_CTX;
89 #endif

91 typedef struct x509_file_st
92 {
93 int num_paths; /* number of paths to files or directories */
94 int num_alloced;
95 char **paths; /* the list of paths or directories */
96 int *path_type;
97 } X509_CERT_FILE_CTX;

99 /*******************************/
100 /*
101 SSL_CTX -> X509_STORE
102 -> X509_LOOKUP
103 ->X509_LOOKUP_METHOD
104 -> X509_LOOKUP
105 ->X509_LOOKUP_METHOD
106
107 SSL -> X509_STORE_CTX
108 ->X509_STORE

110 The X509_STORE holds the tables etc for verification stuff.
111 A X509_STORE_CTX is used while validating a single certificate.
112 The X509_STORE has X509_LOOKUPs for looking up certs.
113 The X509_STORE then calls a function to actually verify the
114 certificate chain.
115 */

117 #define X509_LU_RETRY -1
118 #define X509_LU_FAIL 0
119 #define X509_LU_X509 1
120 #define X509_LU_CRL 2
121 #define X509_LU_PKEY 3

123 typedef struct x509_object_st
124 {
125 /* one of the above types */
126 int type;
127 union {

new/usr/src/lib/openssl/include/openssl/x509_vfy.h 3

128 char *ptr;
129 X509 *x509;
130 X509_CRL *crl;
131 EVP_PKEY *pkey;
132 } data;
133 } X509_OBJECT;

135 typedef struct x509_lookup_st X509_LOOKUP;

137 DECLARE_STACK_OF(X509_LOOKUP)
138 DECLARE_STACK_OF(X509_OBJECT)

140 /* This is a static that defines the function interface */
141 typedef struct x509_lookup_method_st
142 {
143 const char *name;
144 int (*new_item)(X509_LOOKUP *ctx);
145 void (*free)(X509_LOOKUP *ctx);
146 int (*init)(X509_LOOKUP *ctx);
147 int (*shutdown)(X509_LOOKUP *ctx);
148 int (*ctrl)(X509_LOOKUP *ctx,int cmd,const char *argc,long argl,
149 char **ret);
150 int (*get_by_subject)(X509_LOOKUP *ctx,int type,X509_NAME *name,
151 X509_OBJECT *ret);
152 int (*get_by_issuer_serial)(X509_LOOKUP *ctx,int type,X509_NAME *name,
153 ASN1_INTEGER *serial,X509_OBJECT *ret);
154 int (*get_by_fingerprint)(X509_LOOKUP *ctx,int type,
155 unsigned char *bytes,int len,
156 X509_OBJECT *ret);
157 int (*get_by_alias)(X509_LOOKUP *ctx,int type,char *str,int len,
158 X509_OBJECT *ret);
159 } X509_LOOKUP_METHOD;

161 /* This structure hold all parameters associated with a verify operation
162 * by including an X509_VERIFY_PARAM structure in related structures the
163 * parameters used can be customized
164 */

166 typedef struct X509_VERIFY_PARAM_st
167 {
168 char *name;
169 time_t check_time; /* Time to use */
170 unsigned long inh_flags; /* Inheritance flags */
171 unsigned long flags; /* Various verify flags */
172 int purpose; /* purpose to check untrusted certificates */
173 int trust; /* trust setting to check */
174 int depth; /* Verify depth */
175 STACK_OF(ASN1_OBJECT) *policies; /* Permissible policies */
176 } X509_VERIFY_PARAM;

178 DECLARE_STACK_OF(X509_VERIFY_PARAM)

180 /* This is used to hold everything. It is used for all certificate
181 * validation. Once we have a certificate chain, the ’verify’
182 * function is then called to actually check the cert chain. */
183 struct x509_store_st
184 {
185 /* The following is a cache of trusted certs */
186 int cache; /* if true, stash any hits */
187 STACK_OF(X509_OBJECT) *objs; /* Cache of all objects */

189 /* These are external lookup methods */
190 STACK_OF(X509_LOOKUP) *get_cert_methods;

192 X509_VERIFY_PARAM *param;

new/usr/src/lib/openssl/include/openssl/x509_vfy.h 4

194 /* Callbacks for various operations */
195 int (*verify)(X509_STORE_CTX *ctx); /* called to verify a certificat
196 int (*verify_cb)(int ok,X509_STORE_CTX *ctx); /* error callback */
197 int (*get_issuer)(X509 **issuer, X509_STORE_CTX *ctx, X509 *x); /* get i
198 int (*check_issued)(X509_STORE_CTX *ctx, X509 *x, X509 *issuer); /* chec
199 int (*check_revocation)(X509_STORE_CTX *ctx); /* Check revocation status
200 int (*get_crl)(X509_STORE_CTX *ctx, X509_CRL **crl, X509 *x); /* retriev
201 int (*check_crl)(X509_STORE_CTX *ctx, X509_CRL *crl); /* Check CRL valid
202 int (*cert_crl)(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x); /* Check c
203 STACK_OF(X509) * (*lookup_certs)(X509_STORE_CTX *ctx, X509_NAME *nm);
204 STACK_OF(X509_CRL) * (*lookup_crls)(X509_STORE_CTX *ctx, X509_NAME *nm);
205 int (*cleanup)(X509_STORE_CTX *ctx);

207 CRYPTO_EX_DATA ex_data;
208 int references;
209 } /* X509_STORE */;

211 int X509_STORE_set_depth(X509_STORE *store, int depth);

213 #define X509_STORE_set_verify_cb_func(ctx,func) ((ctx)->verify_cb=(func))
214 #define X509_STORE_set_verify_func(ctx,func) ((ctx)->verify=(func))

216 /* This is the functions plus an instance of the local variables. */
217 struct x509_lookup_st
218 {
219 int init; /* have we been started */
220 int skip; /* don’t use us. */
221 X509_LOOKUP_METHOD *method; /* the functions */
222 char *method_data; /* method data */

224 X509_STORE *store_ctx; /* who owns us */
225 } /* X509_LOOKUP */;

227 /* This is a used when verifying cert chains. Since the
228 * gathering of the cert chain can take some time (and have to be
229 * ’retried’, this needs to be kept and passed around. */
230 struct x509_store_ctx_st /* X509_STORE_CTX */
231 {
232 X509_STORE *ctx;
233 int current_method; /* used when looking up certs */

235 /* The following are set by the caller */
236 X509 *cert; /* The cert to check */
237 STACK_OF(X509) *untrusted; /* chain of X509s - untrusted - passed i
238 STACK_OF(X509_CRL) *crls; /* set of CRLs passed in */

240 X509_VERIFY_PARAM *param;
241 void *other_ctx; /* Other info for use with get_issuer() */

243 /* Callbacks for various operations */
244 int (*verify)(X509_STORE_CTX *ctx); /* called to verify a certificat
245 int (*verify_cb)(int ok,X509_STORE_CTX *ctx); /* error callbac
246 int (*get_issuer)(X509 **issuer, X509_STORE_CTX *ctx, X509 *x); /* get i
247 int (*check_issued)(X509_STORE_CTX *ctx, X509 *x, X509 *issuer); /* chec
248 int (*check_revocation)(X509_STORE_CTX *ctx); /* Check revocation status
249 int (*get_crl)(X509_STORE_CTX *ctx, X509_CRL **crl, X509 *x); /* retriev
250 int (*check_crl)(X509_STORE_CTX *ctx, X509_CRL *crl); /* Check CRL valid
251 int (*cert_crl)(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x); /* Check c
252 int (*check_policy)(X509_STORE_CTX *ctx);
253 STACK_OF(X509) * (*lookup_certs)(X509_STORE_CTX *ctx, X509_NAME *nm);
254 STACK_OF(X509_CRL) * (*lookup_crls)(X509_STORE_CTX *ctx, X509_NAME *nm);
255 int (*cleanup)(X509_STORE_CTX *ctx);

257 /* The following is built up */
258 int valid; /* if 0, rebuild chain */
259 int last_untrusted; /* index of last untrusted cert */

new/usr/src/lib/openssl/include/openssl/x509_vfy.h 5

260 STACK_OF(X509) *chain; /* chain of X509s - built up and trusted
261 X509_POLICY_TREE *tree; /* Valid policy tree */

263 int explicit_policy; /* Require explicit policy value */

265 /* When something goes wrong, this is why */
266 int error_depth;
267 int error;
268 X509 *current_cert;
269 X509 *current_issuer; /* cert currently being tested as valid issuer *
270 X509_CRL *current_crl; /* current CRL */

272 int current_crl_score; /* score of current CRL */
273 unsigned int current_reasons; /* Reason mask */

275 X509_STORE_CTX *parent; /* For CRL path validation: parent context */

277 CRYPTO_EX_DATA ex_data;
278 } /* X509_STORE_CTX */;

280 void X509_STORE_CTX_set_depth(X509_STORE_CTX *ctx, int depth);

282 #define X509_STORE_CTX_set_app_data(ctx,data) \
283 X509_STORE_CTX_set_ex_data(ctx,0,data)
284 #define X509_STORE_CTX_get_app_data(ctx) \
285 X509_STORE_CTX_get_ex_data(ctx,0)

287 #define X509_L_FILE_LOAD 1
288 #define X509_L_ADD_DIR 2

290 #define X509_LOOKUP_load_file(x,name,type) \
291 X509_LOOKUP_ctrl((x),X509_L_FILE_LOAD,(name),(long)(type),NULL)

293 #define X509_LOOKUP_add_dir(x,name,type) \
294 X509_LOOKUP_ctrl((x),X509_L_ADD_DIR,(name),(long)(type),NULL)

296 #define X509_V_OK 0
297 /* illegal error (for uninitialized values, to avoid X509_V_OK): 1 */

299 #define X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT 2
300 #define X509_V_ERR_UNABLE_TO_GET_CRL 3
301 #define X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE 4
302 #define X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE 5
303 #define X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY 6
304 #define X509_V_ERR_CERT_SIGNATURE_FAILURE 7
305 #define X509_V_ERR_CRL_SIGNATURE_FAILURE 8
306 #define X509_V_ERR_CERT_NOT_YET_VALID 9
307 #define X509_V_ERR_CERT_HAS_EXPIRED 10
308 #define X509_V_ERR_CRL_NOT_YET_VALID 11
309 #define X509_V_ERR_CRL_HAS_EXPIRED 12
310 #define X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD 13
311 #define X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD 14
312 #define X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD 15
313 #define X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD 16
314 #define X509_V_ERR_OUT_OF_MEM 17
315 #define X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT 18
316 #define X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN 19
317 #define X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY 20
318 #define X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE 21
319 #define X509_V_ERR_CERT_CHAIN_TOO_LONG 22
320 #define X509_V_ERR_CERT_REVOKED 23
321 #define X509_V_ERR_INVALID_CA 24
322 #define X509_V_ERR_PATH_LENGTH_EXCEEDED 25
323 #define X509_V_ERR_INVALID_PURPOSE 26
324 #define X509_V_ERR_CERT_UNTRUSTED 27
325 #define X509_V_ERR_CERT_REJECTED 28

new/usr/src/lib/openssl/include/openssl/x509_vfy.h 6

326 /* These are ’informational’ when looking for issuer cert */
327 #define X509_V_ERR_SUBJECT_ISSUER_MISMATCH 29
328 #define X509_V_ERR_AKID_SKID_MISMATCH 30
329 #define X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH 31
330 #define X509_V_ERR_KEYUSAGE_NO_CERTSIGN 32

332 #define X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER 33
333 #define X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION 34
334 #define X509_V_ERR_KEYUSAGE_NO_CRL_SIGN 35
335 #define X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION 36
336 #define X509_V_ERR_INVALID_NON_CA 37
337 #define X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED 38
338 #define X509_V_ERR_KEYUSAGE_NO_DIGITAL_SIGNATURE 39
339 #define X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED 40

341 #define X509_V_ERR_INVALID_EXTENSION 41
342 #define X509_V_ERR_INVALID_POLICY_EXTENSION 42
343 #define X509_V_ERR_NO_EXPLICIT_POLICY 43
344 #define X509_V_ERR_DIFFERENT_CRL_SCOPE 44
345 #define X509_V_ERR_UNSUPPORTED_EXTENSION_FEATURE 45

347 #define X509_V_ERR_UNNESTED_RESOURCE 46

349 #define X509_V_ERR_PERMITTED_VIOLATION 47
350 #define X509_V_ERR_EXCLUDED_VIOLATION 48
351 #define X509_V_ERR_SUBTREE_MINMAX 49
352 #define X509_V_ERR_UNSUPPORTED_CONSTRAINT_TYPE 51
353 #define X509_V_ERR_UNSUPPORTED_CONSTRAINT_SYNTAX 52
354 #define X509_V_ERR_UNSUPPORTED_NAME_SYNTAX 53
355 #define X509_V_ERR_CRL_PATH_VALIDATION_ERROR 54

357 /* The application is not happy */
358 #define X509_V_ERR_APPLICATION_VERIFICATION 50

360 /* Certificate verify flags */

362 /* Send issuer+subject checks to verify_cb */
363 #define X509_V_FLAG_CB_ISSUER_CHECK 0x1
364 /* Use check time instead of current time */
365 #define X509_V_FLAG_USE_CHECK_TIME 0x2
366 /* Lookup CRLs */
367 #define X509_V_FLAG_CRL_CHECK 0x4
368 /* Lookup CRLs for whole chain */
369 #define X509_V_FLAG_CRL_CHECK_ALL 0x8
370 /* Ignore unhandled critical extensions */
371 #define X509_V_FLAG_IGNORE_CRITICAL 0x10
372 /* Disable workarounds for broken certificates */
373 #define X509_V_FLAG_X509_STRICT 0x20
374 /* Enable proxy certificate validation */
375 #define X509_V_FLAG_ALLOW_PROXY_CERTS 0x40
376 /* Enable policy checking */
377 #define X509_V_FLAG_POLICY_CHECK 0x80
378 /* Policy variable require-explicit-policy */
379 #define X509_V_FLAG_EXPLICIT_POLICY 0x100
380 /* Policy variable inhibit-any-policy */
381 #define X509_V_FLAG_INHIBIT_ANY 0x200
382 /* Policy variable inhibit-policy-mapping */
383 #define X509_V_FLAG_INHIBIT_MAP 0x400
384 /* Notify callback that policy is OK */
385 #define X509_V_FLAG_NOTIFY_POLICY 0x800
386 /* Extended CRL features such as indirect CRLs, alternate CRL signing keys */
387 #define X509_V_FLAG_EXTENDED_CRL_SUPPORT 0x1000
388 /* Delta CRL support */
389 #define X509_V_FLAG_USE_DELTAS 0x2000
390 /* Check selfsigned CA signature */
391 #define X509_V_FLAG_CHECK_SS_SIGNATURE 0x4000

new/usr/src/lib/openssl/include/openssl/x509_vfy.h 7

393 /* Allow partial chains if at least one certificate is in trusted store */
394 #define X509_V_FLAG_PARTIAL_CHAIN 0x80000

396 #define X509_VP_FLAG_DEFAULT 0x1
397 #define X509_VP_FLAG_OVERWRITE 0x2
398 #define X509_VP_FLAG_RESET_FLAGS 0x4
399 #define X509_VP_FLAG_LOCKED 0x8
400 #define X509_VP_FLAG_ONCE 0x10

402 /* Internal use: mask of policy related options */
403 #define X509_V_FLAG_POLICY_MASK (X509_V_FLAG_POLICY_CHECK \
404 | X509_V_FLAG_EXPLICIT_POLICY \
405 | X509_V_FLAG_INHIBIT_ANY \
406 | X509_V_FLAG_INHIBIT_MAP)

408 int X509_OBJECT_idx_by_subject(STACK_OF(X509_OBJECT) *h, int type,
409 X509_NAME *name);
410 X509_OBJECT *X509_OBJECT_retrieve_by_subject(STACK_OF(X509_OBJECT) *h,int type,X
411 X509_OBJECT *X509_OBJECT_retrieve_match(STACK_OF(X509_OBJECT) *h, X509_OBJECT *x
412 void X509_OBJECT_up_ref_count(X509_OBJECT *a);
413 void X509_OBJECT_free_contents(X509_OBJECT *a);
414 X509_STORE *X509_STORE_new(void);
415 void X509_STORE_free(X509_STORE *v);

417 STACK_OF(X509)* X509_STORE_get1_certs(X509_STORE_CTX *st, X509_NAME *nm);
418 STACK_OF(X509_CRL)* X509_STORE_get1_crls(X509_STORE_CTX *st, X509_NAME *nm);
419 int X509_STORE_set_flags(X509_STORE *ctx, unsigned long flags);
420 int X509_STORE_set_purpose(X509_STORE *ctx, int purpose);
421 int X509_STORE_set_trust(X509_STORE *ctx, int trust);
422 int X509_STORE_set1_param(X509_STORE *ctx, X509_VERIFY_PARAM *pm);

424 void X509_STORE_set_verify_cb(X509_STORE *ctx,
425 int (*verify_cb)(int, X509_STORE_CTX *));

427 X509_STORE_CTX *X509_STORE_CTX_new(void);

429 int X509_STORE_CTX_get1_issuer(X509 **issuer, X509_STORE_CTX *ctx, X509 *x);

431 void X509_STORE_CTX_free(X509_STORE_CTX *ctx);
432 int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store,
433 X509 *x509, STACK_OF(X509) *chain);
434 void X509_STORE_CTX_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk);
435 void X509_STORE_CTX_cleanup(X509_STORE_CTX *ctx);

437 X509_LOOKUP *X509_STORE_add_lookup(X509_STORE *v, X509_LOOKUP_METHOD *m);

439 X509_LOOKUP_METHOD *X509_LOOKUP_hash_dir(void);
440 X509_LOOKUP_METHOD *X509_LOOKUP_file(void);

442 int X509_STORE_add_cert(X509_STORE *ctx, X509 *x);
443 int X509_STORE_add_crl(X509_STORE *ctx, X509_CRL *x);

445 int X509_STORE_get_by_subject(X509_STORE_CTX *vs,int type,X509_NAME *name,
446 X509_OBJECT *ret);

448 int X509_LOOKUP_ctrl(X509_LOOKUP *ctx, int cmd, const char *argc,
449 long argl, char **ret);

451 #ifndef OPENSSL_NO_STDIO
452 int X509_load_cert_file(X509_LOOKUP *ctx, const char *file, int type);
453 int X509_load_crl_file(X509_LOOKUP *ctx, const char *file, int type);
454 int X509_load_cert_crl_file(X509_LOOKUP *ctx, const char *file, int type);
455 #endif

new/usr/src/lib/openssl/include/openssl/x509_vfy.h 8

458 X509_LOOKUP *X509_LOOKUP_new(X509_LOOKUP_METHOD *method);
459 void X509_LOOKUP_free(X509_LOOKUP *ctx);
460 int X509_LOOKUP_init(X509_LOOKUP *ctx);
461 int X509_LOOKUP_by_subject(X509_LOOKUP *ctx, int type, X509_NAME *name,
462 X509_OBJECT *ret);
463 int X509_LOOKUP_by_issuer_serial(X509_LOOKUP *ctx, int type, X509_NAME *name,
464 ASN1_INTEGER *serial, X509_OBJECT *ret);
465 int X509_LOOKUP_by_fingerprint(X509_LOOKUP *ctx, int type,
466 unsigned char *bytes, int len, X509_OBJECT *ret);
467 int X509_LOOKUP_by_alias(X509_LOOKUP *ctx, int type, char *str,
468 int len, X509_OBJECT *ret);
469 int X509_LOOKUP_shutdown(X509_LOOKUP *ctx);

471 #ifndef OPENSSL_NO_STDIO
472 int X509_STORE_load_locations (X509_STORE *ctx,
473 const char *file, const char *dir);
474 int X509_STORE_set_default_paths(X509_STORE *ctx);
475 #endif

477 int X509_STORE_CTX_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_fu
478 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);
479 int X509_STORE_CTX_set_ex_data(X509_STORE_CTX *ctx,int idx,void *data);
480 void * X509_STORE_CTX_get_ex_data(X509_STORE_CTX *ctx,int idx);
481 int X509_STORE_CTX_get_error(X509_STORE_CTX *ctx);
482 void X509_STORE_CTX_set_error(X509_STORE_CTX *ctx,int s);
483 int X509_STORE_CTX_get_error_depth(X509_STORE_CTX *ctx);
484 X509 * X509_STORE_CTX_get_current_cert(X509_STORE_CTX *ctx);
485 X509 *X509_STORE_CTX_get0_current_issuer(X509_STORE_CTX *ctx);
486 X509_CRL *X509_STORE_CTX_get0_current_crl(X509_STORE_CTX *ctx);
487 X509_STORE_CTX *X509_STORE_CTX_get0_parent_ctx(X509_STORE_CTX *ctx);
488 STACK_OF(X509) *X509_STORE_CTX_get_chain(X509_STORE_CTX *ctx);
489 STACK_OF(X509) *X509_STORE_CTX_get1_chain(X509_STORE_CTX *ctx);
490 void X509_STORE_CTX_set_cert(X509_STORE_CTX *c,X509 *x);
491 void X509_STORE_CTX_set_chain(X509_STORE_CTX *c,STACK_OF(X509) *sk);
492 void X509_STORE_CTX_set0_crls(X509_STORE_CTX *c,STACK_OF(X509_CRL) *sk);
493 int X509_STORE_CTX_set_purpose(X509_STORE_CTX *ctx, int purpose);
494 int X509_STORE_CTX_set_trust(X509_STORE_CTX *ctx, int trust);
495 int X509_STORE_CTX_purpose_inherit(X509_STORE_CTX *ctx, int def_purpose,
496 int purpose, int trust);
497 void X509_STORE_CTX_set_flags(X509_STORE_CTX *ctx, unsigned long flags);
498 void X509_STORE_CTX_set_time(X509_STORE_CTX *ctx, unsigned long flags,
499 time_t t);
500 void X509_STORE_CTX_set_verify_cb(X509_STORE_CTX *ctx,
501 int (*verify_cb)(int, X509_STORE_CTX *));
502
503 X509_POLICY_TREE *X509_STORE_CTX_get0_policy_tree(X509_STORE_CTX *ctx);
504 int X509_STORE_CTX_get_explicit_policy(X509_STORE_CTX *ctx);

506 X509_VERIFY_PARAM *X509_STORE_CTX_get0_param(X509_STORE_CTX *ctx);
507 void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param);
508 int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name);

510 /* X509_VERIFY_PARAM functions */

512 X509_VERIFY_PARAM *X509_VERIFY_PARAM_new(void);
513 void X509_VERIFY_PARAM_free(X509_VERIFY_PARAM *param);
514 int X509_VERIFY_PARAM_inherit(X509_VERIFY_PARAM *to,
515 const X509_VERIFY_PARAM *from);
516 int X509_VERIFY_PARAM_set1(X509_VERIFY_PARAM *to,
517 const X509_VERIFY_PARAM *from);
518 int X509_VERIFY_PARAM_set1_name(X509_VERIFY_PARAM *param, const char *name);
519 int X509_VERIFY_PARAM_set_flags(X509_VERIFY_PARAM *param, unsigned long flags);
520 int X509_VERIFY_PARAM_clear_flags(X509_VERIFY_PARAM *param,
521 unsigned long flags);
522 unsigned long X509_VERIFY_PARAM_get_flags(X509_VERIFY_PARAM *param);
523 int X509_VERIFY_PARAM_set_purpose(X509_VERIFY_PARAM *param, int purpose);

new/usr/src/lib/openssl/include/openssl/x509_vfy.h 9

524 int X509_VERIFY_PARAM_set_trust(X509_VERIFY_PARAM *param, int trust);
525 void X509_VERIFY_PARAM_set_depth(X509_VERIFY_PARAM *param, int depth);
526 void X509_VERIFY_PARAM_set_time(X509_VERIFY_PARAM *param, time_t t);
527 int X509_VERIFY_PARAM_add0_policy(X509_VERIFY_PARAM *param,
528 ASN1_OBJECT *policy);
529 int X509_VERIFY_PARAM_set1_policies(X509_VERIFY_PARAM *param,
530 STACK_OF(ASN1_OBJECT) *policies);
531 int X509_VERIFY_PARAM_get_depth(const X509_VERIFY_PARAM *param);

533 int X509_VERIFY_PARAM_add0_table(X509_VERIFY_PARAM *param);
534 const X509_VERIFY_PARAM *X509_VERIFY_PARAM_lookup(const char *name);
535 void X509_VERIFY_PARAM_table_cleanup(void);

537 int X509_policy_check(X509_POLICY_TREE **ptree, int *pexplicit_policy,
538 STACK_OF(X509) *certs,
539 STACK_OF(ASN1_OBJECT) *policy_oids,
540 unsigned int flags);

542 void X509_policy_tree_free(X509_POLICY_TREE *tree);

544 int X509_policy_tree_level_count(const X509_POLICY_TREE *tree);
545 X509_POLICY_LEVEL *
546 X509_policy_tree_get0_level(const X509_POLICY_TREE *tree, int i);

548 STACK_OF(X509_POLICY_NODE) *
549 X509_policy_tree_get0_policies(const X509_POLICY_TREE *tree);

551 STACK_OF(X509_POLICY_NODE) *
552 X509_policy_tree_get0_user_policies(const X509_POLICY_TREE *tree);

554 int X509_policy_level_node_count(X509_POLICY_LEVEL *level);

556 X509_POLICY_NODE *X509_policy_level_get0_node(X509_POLICY_LEVEL *level, int i);

558 const ASN1_OBJECT *X509_policy_node_get0_policy(const X509_POLICY_NODE *node);

560 STACK_OF(POLICYQUALINFO) *
561 X509_policy_node_get0_qualifiers(const X509_POLICY_NODE *node);
562 const X509_POLICY_NODE *
563 X509_policy_node_get0_parent(const X509_POLICY_NODE *node);

565 #ifdef __cplusplus
566 }
567 #endif
568 #endif

new/usr/src/lib/openssl/include/openssl/x509v3.h 1

**
 32713 Fri May 30 18:31:24 2014
new/usr/src/lib/openssl/include/openssl/x509v3.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* x509v3.h */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999-2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 #ifndef HEADER_X509V3_H
59 #define HEADER_X509V3_H

61 #include <openssl/bio.h>

new/usr/src/lib/openssl/include/openssl/x509v3.h 2

62 #include <openssl/x509.h>
63 #include <openssl/conf.h>

65 #ifdef __cplusplus
66 extern "C" {
67 #endif

69 /* Forward reference */
70 struct v3_ext_method;
71 struct v3_ext_ctx;

73 /* Useful typedefs */

75 typedef void * (*X509V3_EXT_NEW)(void);
76 typedef void (*X509V3_EXT_FREE)(void *);
77 typedef void * (*X509V3_EXT_D2I)(void *, const unsigned char ** , long);
78 typedef int (*X509V3_EXT_I2D)(void *, unsigned char **);
79 typedef STACK_OF(CONF_VALUE) *
80 (*X509V3_EXT_I2V)(const struct v3_ext_method *method, void *ext,
81 STACK_OF(CONF_VALUE) *extlist);
82 typedef void * (*X509V3_EXT_V2I)(const struct v3_ext_method *method,
83 struct v3_ext_ctx *ctx,
84 STACK_OF(CONF_VALUE) *values);
85 typedef char * (*X509V3_EXT_I2S)(const struct v3_ext_method *method, void *ext);
86 typedef void * (*X509V3_EXT_S2I)(const struct v3_ext_method *method,
87 struct v3_ext_ctx *ctx, const char *str);
88 typedef int (*X509V3_EXT_I2R)(const struct v3_ext_method *method, void *ext,
89 BIO *out, int indent);
90 typedef void * (*X509V3_EXT_R2I)(const struct v3_ext_method *method,
91 struct v3_ext_ctx *ctx, const char *str);

93 /* V3 extension structure */

95 struct v3_ext_method {
96 int ext_nid;
97 int ext_flags;
98 /* If this is set the following four fields are ignored */
99 ASN1_ITEM_EXP *it;
100 /* Old style ASN1 calls */
101 X509V3_EXT_NEW ext_new;
102 X509V3_EXT_FREE ext_free;
103 X509V3_EXT_D2I d2i;
104 X509V3_EXT_I2D i2d;

106 /* The following pair is used for string extensions */
107 X509V3_EXT_I2S i2s;
108 X509V3_EXT_S2I s2i;

110 /* The following pair is used for multi-valued extensions */
111 X509V3_EXT_I2V i2v;
112 X509V3_EXT_V2I v2i;

114 /* The following are used for raw extensions */
115 X509V3_EXT_I2R i2r;
116 X509V3_EXT_R2I r2i;

118 void *usr_data; /* Any extension specific data */
119 };

121 typedef struct X509V3_CONF_METHOD_st {
122 char * (*get_string)(void *db, char *section, char *value);
123 STACK_OF(CONF_VALUE) * (*get_section)(void *db, char *section);
124 void (*free_string)(void *db, char * string);
125 void (*free_section)(void *db, STACK_OF(CONF_VALUE) *section);
126 } X509V3_CONF_METHOD;

new/usr/src/lib/openssl/include/openssl/x509v3.h 3

128 /* Context specific info */
129 struct v3_ext_ctx {
130 #define CTX_TEST 0x1
131 int flags;
132 X509 *issuer_cert;
133 X509 *subject_cert;
134 X509_REQ *subject_req;
135 X509_CRL *crl;
136 X509V3_CONF_METHOD *db_meth;
137 void *db;
138 /* Maybe more here */
139 };

141 typedef struct v3_ext_method X509V3_EXT_METHOD;

143 DECLARE_STACK_OF(X509V3_EXT_METHOD)

145 /* ext_flags values */
146 #define X509V3_EXT_DYNAMIC 0x1
147 #define X509V3_EXT_CTX_DEP 0x2
148 #define X509V3_EXT_MULTILINE 0x4

150 typedef BIT_STRING_BITNAME ENUMERATED_NAMES;

152 typedef struct BASIC_CONSTRAINTS_st {
153 int ca;
154 ASN1_INTEGER *pathlen;
155 } BASIC_CONSTRAINTS;

158 typedef struct PKEY_USAGE_PERIOD_st {
159 ASN1_GENERALIZEDTIME *notBefore;
160 ASN1_GENERALIZEDTIME *notAfter;
161 } PKEY_USAGE_PERIOD;

163 typedef struct otherName_st {
164 ASN1_OBJECT *type_id;
165 ASN1_TYPE *value;
166 } OTHERNAME;

168 typedef struct EDIPartyName_st {
169 ASN1_STRING *nameAssigner;
170 ASN1_STRING *partyName;
171 } EDIPARTYNAME;

173 typedef struct GENERAL_NAME_st {

175 #define GEN_OTHERNAME 0
176 #define GEN_EMAIL 1
177 #define GEN_DNS 2
178 #define GEN_X400 3
179 #define GEN_DIRNAME 4
180 #define GEN_EDIPARTY 5
181 #define GEN_URI 6
182 #define GEN_IPADD 7
183 #define GEN_RID 8

185 int type;
186 union {
187 char *ptr;
188 OTHERNAME *otherName; /* otherName */
189 ASN1_IA5STRING *rfc822Name;
190 ASN1_IA5STRING *dNSName;
191 ASN1_TYPE *x400Address;
192 X509_NAME *directoryName;
193 EDIPARTYNAME *ediPartyName;

new/usr/src/lib/openssl/include/openssl/x509v3.h 4

194 ASN1_IA5STRING *uniformResourceIdentifier;
195 ASN1_OCTET_STRING *iPAddress;
196 ASN1_OBJECT *registeredID;

198 /* Old names */
199 ASN1_OCTET_STRING *ip; /* iPAddress */
200 X509_NAME *dirn; /* dirn */
201 ASN1_IA5STRING *ia5;/* rfc822Name, dNSName, uniformResourceIdentifier */
202 ASN1_OBJECT *rid; /* registeredID */
203 ASN1_TYPE *other; /* x400Address */
204 } d;
205 } GENERAL_NAME;

207 typedef STACK_OF(GENERAL_NAME) GENERAL_NAMES;

209 typedef struct ACCESS_DESCRIPTION_st {
210 ASN1_OBJECT *method;
211 GENERAL_NAME *location;
212 } ACCESS_DESCRIPTION;

214 typedef STACK_OF(ACCESS_DESCRIPTION) AUTHORITY_INFO_ACCESS;

216 typedef STACK_OF(ASN1_OBJECT) EXTENDED_KEY_USAGE;

218 DECLARE_STACK_OF(GENERAL_NAME)
219 DECLARE_ASN1_SET_OF(GENERAL_NAME)

221 DECLARE_STACK_OF(ACCESS_DESCRIPTION)
222 DECLARE_ASN1_SET_OF(ACCESS_DESCRIPTION)

224 typedef struct DIST_POINT_NAME_st {
225 int type;
226 union {
227 GENERAL_NAMES *fullname;
228 STACK_OF(X509_NAME_ENTRY) *relativename;
229 } name;
230 /* If relativename then this contains the full distribution point name */
231 X509_NAME *dpname;
232 } DIST_POINT_NAME;
233 /* All existing reasons */
234 #define CRLDP_ALL_REASONS 0x807f

236 #define CRL_REASON_NONE -1
237 #define CRL_REASON_UNSPECIFIED 0
238 #define CRL_REASON_KEY_COMPROMISE 1
239 #define CRL_REASON_CA_COMPROMISE 2
240 #define CRL_REASON_AFFILIATION_CHANGED 3
241 #define CRL_REASON_SUPERSEDED 4
242 #define CRL_REASON_CESSATION_OF_OPERATION 5
243 #define CRL_REASON_CERTIFICATE_HOLD 6
244 #define CRL_REASON_REMOVE_FROM_CRL 8
245 #define CRL_REASON_PRIVILEGE_WITHDRAWN 9
246 #define CRL_REASON_AA_COMPROMISE 10

248 struct DIST_POINT_st {
249 DIST_POINT_NAME *distpoint;
250 ASN1_BIT_STRING *reasons;
251 GENERAL_NAMES *CRLissuer;
252 int dp_reasons;
253 };

255 typedef STACK_OF(DIST_POINT) CRL_DIST_POINTS;

257 DECLARE_STACK_OF(DIST_POINT)
258 DECLARE_ASN1_SET_OF(DIST_POINT)

new/usr/src/lib/openssl/include/openssl/x509v3.h 5

260 struct AUTHORITY_KEYID_st {
261 ASN1_OCTET_STRING *keyid;
262 GENERAL_NAMES *issuer;
263 ASN1_INTEGER *serial;
264 };

266 /* Strong extranet structures */

268 typedef struct SXNET_ID_st {
269 ASN1_INTEGER *zone;
270 ASN1_OCTET_STRING *user;
271 } SXNETID;

273 DECLARE_STACK_OF(SXNETID)
274 DECLARE_ASN1_SET_OF(SXNETID)

276 typedef struct SXNET_st {
277 ASN1_INTEGER *version;
278 STACK_OF(SXNETID) *ids;
279 } SXNET;

281 typedef struct NOTICEREF_st {
282 ASN1_STRING *organization;
283 STACK_OF(ASN1_INTEGER) *noticenos;
284 } NOTICEREF;

286 typedef struct USERNOTICE_st {
287 NOTICEREF *noticeref;
288 ASN1_STRING *exptext;
289 } USERNOTICE;

291 typedef struct POLICYQUALINFO_st {
292 ASN1_OBJECT *pqualid;
293 union {
294 ASN1_IA5STRING *cpsuri;
295 USERNOTICE *usernotice;
296 ASN1_TYPE *other;
297 } d;
298 } POLICYQUALINFO;

300 DECLARE_STACK_OF(POLICYQUALINFO)
301 DECLARE_ASN1_SET_OF(POLICYQUALINFO)

303 typedef struct POLICYINFO_st {
304 ASN1_OBJECT *policyid;
305 STACK_OF(POLICYQUALINFO) *qualifiers;
306 } POLICYINFO;

308 typedef STACK_OF(POLICYINFO) CERTIFICATEPOLICIES;

310 DECLARE_STACK_OF(POLICYINFO)
311 DECLARE_ASN1_SET_OF(POLICYINFO)

313 typedef struct POLICY_MAPPING_st {
314 ASN1_OBJECT *issuerDomainPolicy;
315 ASN1_OBJECT *subjectDomainPolicy;
316 } POLICY_MAPPING;

318 DECLARE_STACK_OF(POLICY_MAPPING)

320 typedef STACK_OF(POLICY_MAPPING) POLICY_MAPPINGS;

322 typedef struct GENERAL_SUBTREE_st {
323 GENERAL_NAME *base;
324 ASN1_INTEGER *minimum;
325 ASN1_INTEGER *maximum;

new/usr/src/lib/openssl/include/openssl/x509v3.h 6

326 } GENERAL_SUBTREE;

328 DECLARE_STACK_OF(GENERAL_SUBTREE)

330 struct NAME_CONSTRAINTS_st {
331 STACK_OF(GENERAL_SUBTREE) *permittedSubtrees;
332 STACK_OF(GENERAL_SUBTREE) *excludedSubtrees;
333 };

335 typedef struct POLICY_CONSTRAINTS_st {
336 ASN1_INTEGER *requireExplicitPolicy;
337 ASN1_INTEGER *inhibitPolicyMapping;
338 } POLICY_CONSTRAINTS;

340 /* Proxy certificate structures, see RFC 3820 */
341 typedef struct PROXY_POLICY_st
342 {
343 ASN1_OBJECT *policyLanguage;
344 ASN1_OCTET_STRING *policy;
345 } PROXY_POLICY;

347 typedef struct PROXY_CERT_INFO_EXTENSION_st
348 {
349 ASN1_INTEGER *pcPathLengthConstraint;
350 PROXY_POLICY *proxyPolicy;
351 } PROXY_CERT_INFO_EXTENSION;

353 DECLARE_ASN1_FUNCTIONS(PROXY_POLICY)
354 DECLARE_ASN1_FUNCTIONS(PROXY_CERT_INFO_EXTENSION)

356 struct ISSUING_DIST_POINT_st
357 {
358 DIST_POINT_NAME *distpoint;
359 int onlyuser;
360 int onlyCA;
361 ASN1_BIT_STRING *onlysomereasons;
362 int indirectCRL;
363 int onlyattr;
364 };

366 /* Values in idp_flags field */
367 /* IDP present */
368 #define IDP_PRESENT 0x1
369 /* IDP values inconsistent */
370 #define IDP_INVALID 0x2
371 /* onlyuser true */
372 #define IDP_ONLYUSER 0x4
373 /* onlyCA true */
374 #define IDP_ONLYCA 0x8
375 /* onlyattr true */
376 #define IDP_ONLYATTR 0x10
377 /* indirectCRL true */
378 #define IDP_INDIRECT 0x20
379 /* onlysomereasons present */
380 #define IDP_REASONS 0x40

382 #define X509V3_conf_err(val) ERR_add_error_data(6, "section:", val->section, \
383 ",name:", val->name, ",value:", val->value);

385 #define X509V3_set_ctx_test(ctx) \
386 X509V3_set_ctx(ctx, NULL, NULL, NULL, NULL, CTX_TEST)
387 #define X509V3_set_ctx_nodb(ctx) (ctx)->db = NULL;

389 #define EXT_BITSTRING(nid, table) { nid, 0, ASN1_ITEM_ref(ASN1_BIT_STRING), \
390 0,0,0,0, \
391 0,0, \

new/usr/src/lib/openssl/include/openssl/x509v3.h 7

392 (X509V3_EXT_I2V)i2v_ASN1_BIT_STRING, \
393 (X509V3_EXT_V2I)v2i_ASN1_BIT_STRING, \
394 NULL, NULL, \
395 table}

397 #define EXT_IA5STRING(nid) { nid, 0, ASN1_ITEM_ref(ASN1_IA5STRING), \
398 0,0,0,0, \
399 (X509V3_EXT_I2S)i2s_ASN1_IA5STRING, \
400 (X509V3_EXT_S2I)s2i_ASN1_IA5STRING, \
401 0,0,0,0, \
402 NULL}

404 #define EXT_END { -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

407 /* X509_PURPOSE stuff */

409 #define EXFLAG_BCONS 0x1
410 #define EXFLAG_KUSAGE 0x2
411 #define EXFLAG_XKUSAGE 0x4
412 #define EXFLAG_NSCERT 0x8

414 #define EXFLAG_CA 0x10
415 /* Really self issued not necessarily self signed */
416 #define EXFLAG_SI 0x20
417 #define EXFLAG_SS 0x20
418 #define EXFLAG_V1 0x40
419 #define EXFLAG_INVALID 0x80
420 #define EXFLAG_SET 0x100
421 #define EXFLAG_CRITICAL 0x200
422 #define EXFLAG_PROXY 0x400

424 #define EXFLAG_INVALID_POLICY 0x800
425 #define EXFLAG_FRESHEST 0x1000

427 #define KU_DIGITAL_SIGNATURE 0x0080
428 #define KU_NON_REPUDIATION 0x0040
429 #define KU_KEY_ENCIPHERMENT 0x0020
430 #define KU_DATA_ENCIPHERMENT 0x0010
431 #define KU_KEY_AGREEMENT 0x0008
432 #define KU_KEY_CERT_SIGN 0x0004
433 #define KU_CRL_SIGN 0x0002
434 #define KU_ENCIPHER_ONLY 0x0001
435 #define KU_DECIPHER_ONLY 0x8000

437 #define NS_SSL_CLIENT 0x80
438 #define NS_SSL_SERVER 0x40
439 #define NS_SMIME 0x20
440 #define NS_OBJSIGN 0x10
441 #define NS_SSL_CA 0x04
442 #define NS_SMIME_CA 0x02
443 #define NS_OBJSIGN_CA 0x01
444 #define NS_ANY_CA (NS_SSL_CA|NS_SMIME_CA|NS_OBJSIGN_CA)

446 #define XKU_SSL_SERVER 0x1
447 #define XKU_SSL_CLIENT 0x2
448 #define XKU_SMIME 0x4
449 #define XKU_CODE_SIGN 0x8
450 #define XKU_SGC 0x10
451 #define XKU_OCSP_SIGN 0x20
452 #define XKU_TIMESTAMP 0x40
453 #define XKU_DVCS 0x80

455 #define X509_PURPOSE_DYNAMIC 0x1
456 #define X509_PURPOSE_DYNAMIC_NAME 0x2

new/usr/src/lib/openssl/include/openssl/x509v3.h 8

458 typedef struct x509_purpose_st {
459 int purpose;
460 int trust; /* Default trust ID */
461 int flags;
462 int (*check_purpose)(const struct x509_purpose_st *,
463 const X509 *, int);
464 char *name;
465 char *sname;
466 void *usr_data;
467 } X509_PURPOSE;

469 #define X509_PURPOSE_SSL_CLIENT 1
470 #define X509_PURPOSE_SSL_SERVER 2
471 #define X509_PURPOSE_NS_SSL_SERVER 3
472 #define X509_PURPOSE_SMIME_SIGN 4
473 #define X509_PURPOSE_SMIME_ENCRYPT 5
474 #define X509_PURPOSE_CRL_SIGN 6
475 #define X509_PURPOSE_ANY 7
476 #define X509_PURPOSE_OCSP_HELPER 8
477 #define X509_PURPOSE_TIMESTAMP_SIGN 9

479 #define X509_PURPOSE_MIN 1
480 #define X509_PURPOSE_MAX 9

482 /* Flags for X509V3_EXT_print() */

484 #define X509V3_EXT_UNKNOWN_MASK (0xfL << 16)
485 /* Return error for unknown extensions */
486 #define X509V3_EXT_DEFAULT 0
487 /* Print error for unknown extensions */
488 #define X509V3_EXT_ERROR_UNKNOWN (1L << 16)
489 /* ASN1 parse unknown extensions */
490 #define X509V3_EXT_PARSE_UNKNOWN (2L << 16)
491 /* BIO_dump unknown extensions */
492 #define X509V3_EXT_DUMP_UNKNOWN (3L << 16)

494 /* Flags for X509V3_add1_i2d */

496 #define X509V3_ADD_OP_MASK 0xfL
497 #define X509V3_ADD_DEFAULT 0L
498 #define X509V3_ADD_APPEND 1L
499 #define X509V3_ADD_REPLACE 2L
500 #define X509V3_ADD_REPLACE_EXISTING 3L
501 #define X509V3_ADD_KEEP_EXISTING 4L
502 #define X509V3_ADD_DELETE 5L
503 #define X509V3_ADD_SILENT 0x10

505 DECLARE_STACK_OF(X509_PURPOSE)

507 DECLARE_ASN1_FUNCTIONS(BASIC_CONSTRAINTS)

509 DECLARE_ASN1_FUNCTIONS(SXNET)
510 DECLARE_ASN1_FUNCTIONS(SXNETID)

512 int SXNET_add_id_asc(SXNET **psx, char *zone, char *user, int userlen);
513 int SXNET_add_id_ulong(SXNET **psx, unsigned long lzone, char *user, int userlen
514 int SXNET_add_id_INTEGER(SXNET **psx, ASN1_INTEGER *izone, char *user, int userl

516 ASN1_OCTET_STRING *SXNET_get_id_asc(SXNET *sx, char *zone);
517 ASN1_OCTET_STRING *SXNET_get_id_ulong(SXNET *sx, unsigned long lzone);
518 ASN1_OCTET_STRING *SXNET_get_id_INTEGER(SXNET *sx, ASN1_INTEGER *zone);

520 DECLARE_ASN1_FUNCTIONS(AUTHORITY_KEYID)

522 DECLARE_ASN1_FUNCTIONS(PKEY_USAGE_PERIOD)

new/usr/src/lib/openssl/include/openssl/x509v3.h 9

524 DECLARE_ASN1_FUNCTIONS(GENERAL_NAME)
525 GENERAL_NAME *GENERAL_NAME_dup(GENERAL_NAME *a);
526 int GENERAL_NAME_cmp(GENERAL_NAME *a, GENERAL_NAME *b);

530 ASN1_BIT_STRING *v2i_ASN1_BIT_STRING(X509V3_EXT_METHOD *method,
531 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval);
532 STACK_OF(CONF_VALUE) *i2v_ASN1_BIT_STRING(X509V3_EXT_METHOD *method,
533 ASN1_BIT_STRING *bits,
534 STACK_OF(CONF_VALUE) *extlist);

536 STACK_OF(CONF_VALUE) *i2v_GENERAL_NAME(X509V3_EXT_METHOD *method, GENERAL_NAME *
537 int GENERAL_NAME_print(BIO *out, GENERAL_NAME *gen);

539 DECLARE_ASN1_FUNCTIONS(GENERAL_NAMES)

541 STACK_OF(CONF_VALUE) *i2v_GENERAL_NAMES(X509V3_EXT_METHOD *method,
542 GENERAL_NAMES *gen, STACK_OF(CONF_VALUE) *extlist);
543 GENERAL_NAMES *v2i_GENERAL_NAMES(const X509V3_EXT_METHOD *method,
544 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval);

546 DECLARE_ASN1_FUNCTIONS(OTHERNAME)
547 DECLARE_ASN1_FUNCTIONS(EDIPARTYNAME)
548 int OTHERNAME_cmp(OTHERNAME *a, OTHERNAME *b);
549 void GENERAL_NAME_set0_value(GENERAL_NAME *a, int type, void *value);
550 void *GENERAL_NAME_get0_value(GENERAL_NAME *a, int *ptype);
551 int GENERAL_NAME_set0_othername(GENERAL_NAME *gen,
552 ASN1_OBJECT *oid, ASN1_TYPE *value);
553 int GENERAL_NAME_get0_otherName(GENERAL_NAME *gen,
554 ASN1_OBJECT **poid, ASN1_TYPE **pvalue);

556 char *i2s_ASN1_OCTET_STRING(X509V3_EXT_METHOD *method, ASN1_OCTET_STRING *ia5);
557 ASN1_OCTET_STRING *s2i_ASN1_OCTET_STRING(X509V3_EXT_METHOD *method, X509V3_CTX *

559 DECLARE_ASN1_FUNCTIONS(EXTENDED_KEY_USAGE)
560 int i2a_ACCESS_DESCRIPTION(BIO *bp, ACCESS_DESCRIPTION* a);

562 DECLARE_ASN1_FUNCTIONS(CERTIFICATEPOLICIES)
563 DECLARE_ASN1_FUNCTIONS(POLICYINFO)
564 DECLARE_ASN1_FUNCTIONS(POLICYQUALINFO)
565 DECLARE_ASN1_FUNCTIONS(USERNOTICE)
566 DECLARE_ASN1_FUNCTIONS(NOTICEREF)

568 DECLARE_ASN1_FUNCTIONS(CRL_DIST_POINTS)
569 DECLARE_ASN1_FUNCTIONS(DIST_POINT)
570 DECLARE_ASN1_FUNCTIONS(DIST_POINT_NAME)
571 DECLARE_ASN1_FUNCTIONS(ISSUING_DIST_POINT)

573 int DIST_POINT_set_dpname(DIST_POINT_NAME *dpn, X509_NAME *iname);

575 int NAME_CONSTRAINTS_check(X509 *x, NAME_CONSTRAINTS *nc);

577 DECLARE_ASN1_FUNCTIONS(ACCESS_DESCRIPTION)
578 DECLARE_ASN1_FUNCTIONS(AUTHORITY_INFO_ACCESS)

580 DECLARE_ASN1_ITEM(POLICY_MAPPING)
581 DECLARE_ASN1_ALLOC_FUNCTIONS(POLICY_MAPPING)
582 DECLARE_ASN1_ITEM(POLICY_MAPPINGS)

584 DECLARE_ASN1_ITEM(GENERAL_SUBTREE)
585 DECLARE_ASN1_ALLOC_FUNCTIONS(GENERAL_SUBTREE)

587 DECLARE_ASN1_ITEM(NAME_CONSTRAINTS)
588 DECLARE_ASN1_ALLOC_FUNCTIONS(NAME_CONSTRAINTS)

new/usr/src/lib/openssl/include/openssl/x509v3.h 10

590 DECLARE_ASN1_ALLOC_FUNCTIONS(POLICY_CONSTRAINTS)
591 DECLARE_ASN1_ITEM(POLICY_CONSTRAINTS)

593 GENERAL_NAME *a2i_GENERAL_NAME(GENERAL_NAME *out,
594 const X509V3_EXT_METHOD *method, X509V3_CTX *ctx,
595 int gen_type, char *value, int is_nc);

597 #ifdef HEADER_CONF_H
598 GENERAL_NAME *v2i_GENERAL_NAME(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx,
599 CONF_VALUE *cnf);
600 GENERAL_NAME *v2i_GENERAL_NAME_ex(GENERAL_NAME *out,
601 const X509V3_EXT_METHOD *method,
602 X509V3_CTX *ctx, CONF_VALUE *cnf, int is_nc);
603 void X509V3_conf_free(CONF_VALUE *val);

605 X509_EXTENSION *X509V3_EXT_nconf_nid(CONF *conf, X509V3_CTX *ctx, int ext_nid, c
606 X509_EXTENSION *X509V3_EXT_nconf(CONF *conf, X509V3_CTX *ctx, char *name, char *
607 int X509V3_EXT_add_nconf_sk(CONF *conf, X509V3_CTX *ctx, char *section, STACK_OF
608 int X509V3_EXT_add_nconf(CONF *conf, X509V3_CTX *ctx, char *section, X509 *cert)
609 int X509V3_EXT_REQ_add_nconf(CONF *conf, X509V3_CTX *ctx, char *section, X509_RE
610 int X509V3_EXT_CRL_add_nconf(CONF *conf, X509V3_CTX *ctx, char *section, X509_CR

612 X509_EXTENSION *X509V3_EXT_conf_nid(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx,
613 int ext_nid, char *value);
614 X509_EXTENSION *X509V3_EXT_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx,
615 char *name, char *value);
616 int X509V3_EXT_add_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx,
617 char *section, X509 *cert);
618 int X509V3_EXT_REQ_add_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx,
619 char *section, X509_REQ *req);
620 int X509V3_EXT_CRL_add_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx,
621 char *section, X509_CRL *crl);

623 int X509V3_add_value_bool_nf(char *name, int asn1_bool,
624 STACK_OF(CONF_VALUE) **extlist);
625 int X509V3_get_value_bool(CONF_VALUE *value, int *asn1_bool);
626 int X509V3_get_value_int(CONF_VALUE *value, ASN1_INTEGER **aint);
627 void X509V3_set_nconf(X509V3_CTX *ctx, CONF *conf);
628 void X509V3_set_conf_lhash(X509V3_CTX *ctx, LHASH_OF(CONF_VALUE) *lhash);
629 #endif

631 char * X509V3_get_string(X509V3_CTX *ctx, char *name, char *section);
632 STACK_OF(CONF_VALUE) * X509V3_get_section(X509V3_CTX *ctx, char *section);
633 void X509V3_string_free(X509V3_CTX *ctx, char *str);
634 void X509V3_section_free(X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *section);
635 void X509V3_set_ctx(X509V3_CTX *ctx, X509 *issuer, X509 *subject,
636 X509_REQ *req, X509_CRL *crl, int flags);

638 int X509V3_add_value(const char *name, const char *value,
639 STACK_OF(CONF_VALUE) **extlist);
640 int X509V3_add_value_uchar(const char *name, const unsigned char *value,
641 STACK_OF(CONF_VALUE) **extlist);
642 int X509V3_add_value_bool(const char *name, int asn1_bool,
643 STACK_OF(CONF_VALUE) **extlist);
644 int X509V3_add_value_int(const char *name, ASN1_INTEGER *aint,
645 STACK_OF(CONF_VALUE) **extlist);
646 char * i2s_ASN1_INTEGER(X509V3_EXT_METHOD *meth, ASN1_INTEGER *aint);
647 ASN1_INTEGER * s2i_ASN1_INTEGER(X509V3_EXT_METHOD *meth, char *value);
648 char * i2s_ASN1_ENUMERATED(X509V3_EXT_METHOD *meth, ASN1_ENUMERATED *aint);
649 char * i2s_ASN1_ENUMERATED_TABLE(X509V3_EXT_METHOD *meth, ASN1_ENUMERATED *aint)
650 int X509V3_EXT_add(X509V3_EXT_METHOD *ext);
651 int X509V3_EXT_add_list(X509V3_EXT_METHOD *extlist);
652 int X509V3_EXT_add_alias(int nid_to, int nid_from);
653 void X509V3_EXT_cleanup(void);

655 const X509V3_EXT_METHOD *X509V3_EXT_get(X509_EXTENSION *ext);

new/usr/src/lib/openssl/include/openssl/x509v3.h 11

656 const X509V3_EXT_METHOD *X509V3_EXT_get_nid(int nid);
657 int X509V3_add_standard_extensions(void);
658 STACK_OF(CONF_VALUE) *X509V3_parse_list(const char *line);
659 void *X509V3_EXT_d2i(X509_EXTENSION *ext);
660 void *X509V3_get_d2i(STACK_OF(X509_EXTENSION) *x, int nid, int *crit, int *idx);

663 X509_EXTENSION *X509V3_EXT_i2d(int ext_nid, int crit, void *ext_struc);
664 int X509V3_add1_i2d(STACK_OF(X509_EXTENSION) **x, int nid, void *value, int crit

666 char *hex_to_string(const unsigned char *buffer, long len);
667 unsigned char *string_to_hex(const char *str, long *len);
668 int name_cmp(const char *name, const char *cmp);

670 void X509V3_EXT_val_prn(BIO *out, STACK_OF(CONF_VALUE) *val, int indent,
671 int ml);
672 int X509V3_EXT_print(BIO *out, X509_EXTENSION *ext, unsigned long flag, int inde
673 int X509V3_EXT_print_fp(FILE *out, X509_EXTENSION *ext, int flag, int indent);

675 int X509V3_extensions_print(BIO *out, char *title, STACK_OF(X509_EXTENSION) *ext

677 int X509_check_ca(X509 *x);
678 int X509_check_purpose(X509 *x, int id, int ca);
679 int X509_supported_extension(X509_EXTENSION *ex);
680 int X509_PURPOSE_set(int *p, int purpose);
681 int X509_check_issued(X509 *issuer, X509 *subject);
682 int X509_check_akid(X509 *issuer, AUTHORITY_KEYID *akid);
683 int X509_PURPOSE_get_count(void);
684 X509_PURPOSE * X509_PURPOSE_get0(int idx);
685 int X509_PURPOSE_get_by_sname(char *sname);
686 int X509_PURPOSE_get_by_id(int id);
687 int X509_PURPOSE_add(int id, int trust, int flags,
688 int (*ck)(const X509_PURPOSE *, const X509 *, int),
689 char *name, char *sname, void *arg);
690 char *X509_PURPOSE_get0_name(X509_PURPOSE *xp);
691 char *X509_PURPOSE_get0_sname(X509_PURPOSE *xp);
692 int X509_PURPOSE_get_trust(X509_PURPOSE *xp);
693 void X509_PURPOSE_cleanup(void);
694 int X509_PURPOSE_get_id(X509_PURPOSE *);

696 STACK_OF(OPENSSL_STRING) *X509_get1_email(X509 *x);
697 STACK_OF(OPENSSL_STRING) *X509_REQ_get1_email(X509_REQ *x);
698 void X509_email_free(STACK_OF(OPENSSL_STRING) *sk);
699 STACK_OF(OPENSSL_STRING) *X509_get1_ocsp(X509 *x);

701 ASN1_OCTET_STRING *a2i_IPADDRESS(const char *ipasc);
702 ASN1_OCTET_STRING *a2i_IPADDRESS_NC(const char *ipasc);
703 int a2i_ipadd(unsigned char *ipout, const char *ipasc);
704 int X509V3_NAME_from_section(X509_NAME *nm, STACK_OF(CONF_VALUE)*dn_sk,
705 unsigned long chtype);

707 void X509_POLICY_NODE_print(BIO *out, X509_POLICY_NODE *node, int indent);
708 DECLARE_STACK_OF(X509_POLICY_NODE)

710 #ifndef OPENSSL_NO_RFC3779

712 typedef struct ASRange_st {
713 ASN1_INTEGER *min, *max;
714 } ASRange;

716 #define ASIdOrRange_id 0
717 #define ASIdOrRange_range 1

719 typedef struct ASIdOrRange_st {
720 int type;
721 union {

new/usr/src/lib/openssl/include/openssl/x509v3.h 12

722 ASN1_INTEGER *id;
723 ASRange *range;
724 } u;
725 } ASIdOrRange;

727 typedef STACK_OF(ASIdOrRange) ASIdOrRanges;
728 DECLARE_STACK_OF(ASIdOrRange)

730 #define ASIdentifierChoice_inherit 0
731 #define ASIdentifierChoice_asIdsOrRanges 1

733 typedef struct ASIdentifierChoice_st {
734 int type;
735 union {
736 ASN1_NULL *inherit;
737 ASIdOrRanges *asIdsOrRanges;
738 } u;
739 } ASIdentifierChoice;

741 typedef struct ASIdentifiers_st {
742 ASIdentifierChoice *asnum, *rdi;
743 } ASIdentifiers;

745 DECLARE_ASN1_FUNCTIONS(ASRange)
746 DECLARE_ASN1_FUNCTIONS(ASIdOrRange)
747 DECLARE_ASN1_FUNCTIONS(ASIdentifierChoice)
748 DECLARE_ASN1_FUNCTIONS(ASIdentifiers)

751 typedef struct IPAddressRange_st {
752 ASN1_BIT_STRING *min, *max;
753 } IPAddressRange;

755 #define IPAddressOrRange_addressPrefix 0
756 #define IPAddressOrRange_addressRange 1

758 typedef struct IPAddressOrRange_st {
759 int type;
760 union {
761 ASN1_BIT_STRING *addressPrefix;
762 IPAddressRange *addressRange;
763 } u;
764 } IPAddressOrRange;

766 typedef STACK_OF(IPAddressOrRange) IPAddressOrRanges;
767 DECLARE_STACK_OF(IPAddressOrRange)

769 #define IPAddressChoice_inherit 0
770 #define IPAddressChoice_addressesOrRanges 1

772 typedef struct IPAddressChoice_st {
773 int type;
774 union {
775 ASN1_NULL *inherit;
776 IPAddressOrRanges *addressesOrRanges;
777 } u;
778 } IPAddressChoice;

780 typedef struct IPAddressFamily_st {
781 ASN1_OCTET_STRING *addressFamily;
782 IPAddressChoice *ipAddressChoice;
783 } IPAddressFamily;

785 typedef STACK_OF(IPAddressFamily) IPAddrBlocks;
786 DECLARE_STACK_OF(IPAddressFamily)

new/usr/src/lib/openssl/include/openssl/x509v3.h 13

788 DECLARE_ASN1_FUNCTIONS(IPAddressRange)
789 DECLARE_ASN1_FUNCTIONS(IPAddressOrRange)
790 DECLARE_ASN1_FUNCTIONS(IPAddressChoice)
791 DECLARE_ASN1_FUNCTIONS(IPAddressFamily)

793 /*
794 * API tag for elements of the ASIdentifer SEQUENCE.
795 */
796 #define V3_ASID_ASNUM 0
797 #define V3_ASID_RDI 1

799 /*
800 * AFI values, assigned by IANA. It’d be nice to make the AFI
801 * handling code totally generic, but there are too many little things
802 * that would need to be defined for other address families for it to
803 * be worth the trouble.
804 */
805 #define IANA_AFI_IPV4 1
806 #define IANA_AFI_IPV6 2

808 /*
809 * Utilities to construct and extract values from RFC3779 extensions,
810 * since some of the encodings (particularly for IP address prefixes
811 * and ranges) are a bit tedious to work with directly.
812 */
813 int v3_asid_add_inherit(ASIdentifiers *asid, int which);
814 int v3_asid_add_id_or_range(ASIdentifiers *asid, int which,
815 ASN1_INTEGER *min, ASN1_INTEGER *max);
816 int v3_addr_add_inherit(IPAddrBlocks *addr,
817 const unsigned afi, const unsigned *safi);
818 int v3_addr_add_prefix(IPAddrBlocks *addr,
819 const unsigned afi, const unsigned *safi,
820 unsigned char *a, const int prefixlen);
821 int v3_addr_add_range(IPAddrBlocks *addr,
822 const unsigned afi, const unsigned *safi,
823 unsigned char *min, unsigned char *max);
824 unsigned v3_addr_get_afi(const IPAddressFamily *f);
825 int v3_addr_get_range(IPAddressOrRange *aor, const unsigned afi,
826 unsigned char *min, unsigned char *max,
827 const int length);

829 /*
830 * Canonical forms.
831 */
832 int v3_asid_is_canonical(ASIdentifiers *asid);
833 int v3_addr_is_canonical(IPAddrBlocks *addr);
834 int v3_asid_canonize(ASIdentifiers *asid);
835 int v3_addr_canonize(IPAddrBlocks *addr);

837 /*
838 * Tests for inheritance and containment.
839 */
840 int v3_asid_inherits(ASIdentifiers *asid);
841 int v3_addr_inherits(IPAddrBlocks *addr);
842 int v3_asid_subset(ASIdentifiers *a, ASIdentifiers *b);
843 int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b);

845 /*
846 * Check whether RFC 3779 extensions nest properly in chains.
847 */
848 int v3_asid_validate_path(X509_STORE_CTX *);
849 int v3_addr_validate_path(X509_STORE_CTX *);
850 int v3_asid_validate_resource_set(STACK_OF(X509) *chain,
851 ASIdentifiers *ext,
852 int allow_inheritance);
853 int v3_addr_validate_resource_set(STACK_OF(X509) *chain,

new/usr/src/lib/openssl/include/openssl/x509v3.h 14

854 IPAddrBlocks *ext,
855 int allow_inheritance);

857 #endif /* OPENSSL_NO_RFC3779 */

859 /* BEGIN ERROR CODES */
860 /* The following lines are auto generated by the script mkerr.pl. Any changes
861 * made after this point may be overwritten when the script is next run.
862 */
863 void ERR_load_X509V3_strings(void);

865 /* Error codes for the X509V3 functions. */

867 /* Function codes. */
868 #define X509V3_F_A2I_GENERAL_NAME 164
869 #define X509V3_F_ASIDENTIFIERCHOICE_CANONIZE 161
870 #define X509V3_F_ASIDENTIFIERCHOICE_IS_CANONICAL 162
871 #define X509V3_F_COPY_EMAIL 122
872 #define X509V3_F_COPY_ISSUER 123
873 #define X509V3_F_DO_DIRNAME 144
874 #define X509V3_F_DO_EXT_CONF 124
875 #define X509V3_F_DO_EXT_I2D 135
876 #define X509V3_F_DO_EXT_NCONF 151
877 #define X509V3_F_DO_I2V_NAME_CONSTRAINTS 148
878 #define X509V3_F_GNAMES_FROM_SECTNAME 156
879 #define X509V3_F_HEX_TO_STRING 111
880 #define X509V3_F_I2S_ASN1_ENUMERATED 121
881 #define X509V3_F_I2S_ASN1_IA5STRING 149
882 #define X509V3_F_I2S_ASN1_INTEGER 120
883 #define X509V3_F_I2V_AUTHORITY_INFO_ACCESS 138
884 #define X509V3_F_NOTICE_SECTION 132
885 #define X509V3_F_NREF_NOS 133
886 #define X509V3_F_POLICY_SECTION 131
887 #define X509V3_F_PROCESS_PCI_VALUE 150
888 #define X509V3_F_R2I_CERTPOL 130
889 #define X509V3_F_R2I_PCI 155
890 #define X509V3_F_S2I_ASN1_IA5STRING 100
891 #define X509V3_F_S2I_ASN1_INTEGER 108
892 #define X509V3_F_S2I_ASN1_OCTET_STRING 112
893 #define X509V3_F_S2I_ASN1_SKEY_ID 114
894 #define X509V3_F_S2I_SKEY_ID 115
895 #define X509V3_F_SET_DIST_POINT_NAME 158
896 #define X509V3_F_STRING_TO_HEX 113
897 #define X509V3_F_SXNET_ADD_ID_ASC 125
898 #define X509V3_F_SXNET_ADD_ID_INTEGER 126
899 #define X509V3_F_SXNET_ADD_ID_ULONG 127
900 #define X509V3_F_SXNET_GET_ID_ASC 128
901 #define X509V3_F_SXNET_GET_ID_ULONG 129
902 #define X509V3_F_V2I_ASIDENTIFIERS 163
903 #define X509V3_F_V2I_ASN1_BIT_STRING 101
904 #define X509V3_F_V2I_AUTHORITY_INFO_ACCESS 139
905 #define X509V3_F_V2I_AUTHORITY_KEYID 119
906 #define X509V3_F_V2I_BASIC_CONSTRAINTS 102
907 #define X509V3_F_V2I_CRLD 134
908 #define X509V3_F_V2I_EXTENDED_KEY_USAGE 103
909 #define X509V3_F_V2I_GENERAL_NAMES 118
910 #define X509V3_F_V2I_GENERAL_NAME_EX 117
911 #define X509V3_F_V2I_IDP 157
912 #define X509V3_F_V2I_IPADDRBLOCKS 159
913 #define X509V3_F_V2I_ISSUER_ALT 153
914 #define X509V3_F_V2I_NAME_CONSTRAINTS 147
915 #define X509V3_F_V2I_POLICY_CONSTRAINTS 146
916 #define X509V3_F_V2I_POLICY_MAPPINGS 145
917 #define X509V3_F_V2I_SUBJECT_ALT 154
918 #define X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL 160
919 #define X509V3_F_V3_GENERIC_EXTENSION 116

new/usr/src/lib/openssl/include/openssl/x509v3.h 15

920 #define X509V3_F_X509V3_ADD1_I2D 140
921 #define X509V3_F_X509V3_ADD_VALUE 105
922 #define X509V3_F_X509V3_EXT_ADD 104
923 #define X509V3_F_X509V3_EXT_ADD_ALIAS 106
924 #define X509V3_F_X509V3_EXT_CONF 107
925 #define X509V3_F_X509V3_EXT_I2D 136
926 #define X509V3_F_X509V3_EXT_NCONF 152
927 #define X509V3_F_X509V3_GET_SECTION 142
928 #define X509V3_F_X509V3_GET_STRING 143
929 #define X509V3_F_X509V3_GET_VALUE_BOOL 110
930 #define X509V3_F_X509V3_PARSE_LIST 109
931 #define X509V3_F_X509_PURPOSE_ADD 137
932 #define X509V3_F_X509_PURPOSE_SET 141

934 /* Reason codes. */
935 #define X509V3_R_BAD_IP_ADDRESS 118
936 #define X509V3_R_BAD_OBJECT 119
937 #define X509V3_R_BN_DEC2BN_ERROR 100
938 #define X509V3_R_BN_TO_ASN1_INTEGER_ERROR 101
939 #define X509V3_R_DIRNAME_ERROR 149
940 #define X509V3_R_DISTPOINT_ALREADY_SET 160
941 #define X509V3_R_DUPLICATE_ZONE_ID 133
942 #define X509V3_R_ERROR_CONVERTING_ZONE 131
943 #define X509V3_R_ERROR_CREATING_EXTENSION 144
944 #define X509V3_R_ERROR_IN_EXTENSION 128
945 #define X509V3_R_EXPECTED_A_SECTION_NAME 137
946 #define X509V3_R_EXTENSION_EXISTS 145
947 #define X509V3_R_EXTENSION_NAME_ERROR 115
948 #define X509V3_R_EXTENSION_NOT_FOUND 102
949 #define X509V3_R_EXTENSION_SETTING_NOT_SUPPORTED 103
950 #define X509V3_R_EXTENSION_VALUE_ERROR 116
951 #define X509V3_R_ILLEGAL_EMPTY_EXTENSION 151
952 #define X509V3_R_ILLEGAL_HEX_DIGIT 113
953 #define X509V3_R_INCORRECT_POLICY_SYNTAX_TAG 152
954 #define X509V3_R_INVALID_MULTIPLE_RDNS 161
955 #define X509V3_R_INVALID_ASNUMBER 162
956 #define X509V3_R_INVALID_ASRANGE 163
957 #define X509V3_R_INVALID_BOOLEAN_STRING 104
958 #define X509V3_R_INVALID_EXTENSION_STRING 105
959 #define X509V3_R_INVALID_INHERITANCE 165
960 #define X509V3_R_INVALID_IPADDRESS 166
961 #define X509V3_R_INVALID_NAME 106
962 #define X509V3_R_INVALID_NULL_ARGUMENT 107
963 #define X509V3_R_INVALID_NULL_NAME 108
964 #define X509V3_R_INVALID_NULL_VALUE 109
965 #define X509V3_R_INVALID_NUMBER 140
966 #define X509V3_R_INVALID_NUMBERS 141
967 #define X509V3_R_INVALID_OBJECT_IDENTIFIER 110
968 #define X509V3_R_INVALID_OPTION 138
969 #define X509V3_R_INVALID_POLICY_IDENTIFIER 134
970 #define X509V3_R_INVALID_PROXY_POLICY_SETTING 153
971 #define X509V3_R_INVALID_PURPOSE 146
972 #define X509V3_R_INVALID_SAFI 164
973 #define X509V3_R_INVALID_SECTION 135
974 #define X509V3_R_INVALID_SYNTAX 143
975 #define X509V3_R_ISSUER_DECODE_ERROR 126
976 #define X509V3_R_MISSING_VALUE 124
977 #define X509V3_R_NEED_ORGANIZATION_AND_NUMBERS 142
978 #define X509V3_R_NO_CONFIG_DATABASE 136
979 #define X509V3_R_NO_ISSUER_CERTIFICATE 121
980 #define X509V3_R_NO_ISSUER_DETAILS 127
981 #define X509V3_R_NO_POLICY_IDENTIFIER 139
982 #define X509V3_R_NO_PROXY_CERT_POLICY_LANGUAGE_DEFINED 154
983 #define X509V3_R_NO_PUBLIC_KEY 114
984 #define X509V3_R_NO_SUBJECT_DETAILS 125
985 #define X509V3_R_ODD_NUMBER_OF_DIGITS 112

new/usr/src/lib/openssl/include/openssl/x509v3.h 16

986 #define X509V3_R_OPERATION_NOT_DEFINED 148
987 #define X509V3_R_OTHERNAME_ERROR 147
988 #define X509V3_R_POLICY_LANGUAGE_ALREADY_DEFINED 155
989 #define X509V3_R_POLICY_PATH_LENGTH 156
990 #define X509V3_R_POLICY_PATH_LENGTH_ALREADY_DEFINED 157
991 #define X509V3_R_POLICY_SYNTAX_NOT_CURRENTLY_SUPPORTED 158
992 #define X509V3_R_POLICY_WHEN_PROXY_LANGUAGE_REQUIRES_NO_POLICY 159
993 #define X509V3_R_SECTION_NOT_FOUND 150
994 #define X509V3_R_UNABLE_TO_GET_ISSUER_DETAILS 122
995 #define X509V3_R_UNABLE_TO_GET_ISSUER_KEYID 123
996 #define X509V3_R_UNKNOWN_BIT_STRING_ARGUMENT 111
997 #define X509V3_R_UNKNOWN_EXTENSION 129
998 #define X509V3_R_UNKNOWN_EXTENSION_NAME 130
999 #define X509V3_R_UNKNOWN_OPTION 120

1000 #define X509V3_R_UNSUPPORTED_OPTION 117
1001 #define X509V3_R_UNSUPPORTED_TYPE 167
1002 #define X509V3_R_USER_TOO_LONG 132

1004 #ifdef __cplusplus
1005 }
1006 #endif
1007 #endif

new/usr/src/lib/openssl/include/pcy_int.h 1

**
 7003 Fri May 30 18:31:24 2014
new/usr/src/lib/openssl/include/pcy_int.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pcy_int.h */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2004.
4 */
5 /* ==
6 * Copyright (c) 2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 typedef struct X509_POLICY_DATA_st X509_POLICY_DATA;

new/usr/src/lib/openssl/include/pcy_int.h 2

62 DECLARE_STACK_OF(X509_POLICY_DATA)

64 /* Internal structures */

66 /* This structure and the field names correspond to the Policy ’node’ of
67 * RFC3280. NB this structure contains no pointers to parent or child
68 * data: X509_POLICY_NODE contains that. This means that the main policy data
69 * can be kept static and cached with the certificate.
70 */

72 struct X509_POLICY_DATA_st
73 {
74 unsigned int flags;
75 /* Policy OID and qualifiers for this data */
76 ASN1_OBJECT *valid_policy;
77 STACK_OF(POLICYQUALINFO) *qualifier_set;
78 STACK_OF(ASN1_OBJECT) *expected_policy_set;
79 };

81 /* X509_POLICY_DATA flags values */

83 /* This flag indicates the structure has been mapped using a policy mapping
84 * extension. If policy mapping is not active its references get deleted.
85 */

87 #define POLICY_DATA_FLAG_MAPPED 0x1

89 /* This flag indicates the data doesn’t correspond to a policy in Certificate
90 * Policies: it has been mapped to any policy.
91 */

93 #define POLICY_DATA_FLAG_MAPPED_ANY 0x2

95 /* AND with flags to see if any mapping has occurred */

97 #define POLICY_DATA_FLAG_MAP_MASK 0x3

99 /* qualifiers are shared and shouldn’t be freed */

101 #define POLICY_DATA_FLAG_SHARED_QUALIFIERS 0x4

103 /* Parent node is an extra node and should be freed */

105 #define POLICY_DATA_FLAG_EXTRA_NODE 0x8

107 /* Corresponding CertificatePolicies is critical */

109 #define POLICY_DATA_FLAG_CRITICAL 0x10

111 /* This structure is cached with a certificate */

113 struct X509_POLICY_CACHE_st {
114 /* anyPolicy data or NULL if no anyPolicy */
115 X509_POLICY_DATA *anyPolicy;
116 /* other policy data */
117 STACK_OF(X509_POLICY_DATA) *data;
118 /* If InhibitAnyPolicy present this is its value or -1 if absent. */
119 long any_skip;
120 /* If policyConstraints and requireExplicitPolicy present this is its
121 * value or -1 if absent.
122 */
123 long explicit_skip;
124 /* If policyConstraints and policyMapping present this is its
125 * value or -1 if absent.
126 */
127 long map_skip;

new/usr/src/lib/openssl/include/pcy_int.h 3

128 };

130 /*#define POLICY_CACHE_FLAG_CRITICAL POLICY_DATA_FLAG_CRITICAL*/

132 /* This structure represents the relationship between nodes */

134 struct X509_POLICY_NODE_st
135 {
136 /* node data this refers to */
137 const X509_POLICY_DATA *data;
138 /* Parent node */
139 X509_POLICY_NODE *parent;
140 /* Number of child nodes */
141 int nchild;
142 };

144 struct X509_POLICY_LEVEL_st
145 {
146 /* Cert for this level */
147 X509 *cert;
148 /* nodes at this level */
149 STACK_OF(X509_POLICY_NODE) *nodes;
150 /* anyPolicy node */
151 X509_POLICY_NODE *anyPolicy;
152 /* Extra data */
153 /*STACK_OF(X509_POLICY_DATA) *extra_data;*/
154 unsigned int flags;
155 };

157 struct X509_POLICY_TREE_st
158 {
159 /* This is the tree ’level’ data */
160 X509_POLICY_LEVEL *levels;
161 int nlevel;
162 /* Extra policy data when additional nodes (not from the certificate)
163 * are required.
164 */
165 STACK_OF(X509_POLICY_DATA) *extra_data;
166 /* This is the authority constained policy set */
167 STACK_OF(X509_POLICY_NODE) *auth_policies;
168 STACK_OF(X509_POLICY_NODE) *user_policies;
169 unsigned int flags;
170 };

172 /* Set if anyPolicy present in user policies */
173 #define POLICY_FLAG_ANY_POLICY 0x2

175 /* Useful macros */

177 #define node_data_critical(data) (data->flags & POLICY_DATA_FLAG_CRITICAL)
178 #define node_critical(node) node_data_critical(node->data)

180 /* Internal functions */

182 X509_POLICY_DATA *policy_data_new(POLICYINFO *policy, const ASN1_OBJECT *id,
183 int crit);
184 void policy_data_free(X509_POLICY_DATA *data);

186 X509_POLICY_DATA *policy_cache_find_data(const X509_POLICY_CACHE *cache,
187 const ASN1_OBJECT *id);
188 int policy_cache_set_mapping(X509 *x, POLICY_MAPPINGS *maps);

191 STACK_OF(X509_POLICY_NODE) *policy_node_cmp_new(void);

193 void policy_cache_init(void);

new/usr/src/lib/openssl/include/pcy_int.h 4

195 void policy_cache_free(X509_POLICY_CACHE *cache);

197 X509_POLICY_NODE *level_find_node(const X509_POLICY_LEVEL *level,
198 const X509_POLICY_NODE *parent,
199 const ASN1_OBJECT *id);

201 X509_POLICY_NODE *tree_find_sk(STACK_OF(X509_POLICY_NODE) *sk,
202 const ASN1_OBJECT *id);

204 X509_POLICY_NODE *level_add_node(X509_POLICY_LEVEL *level,
205 const X509_POLICY_DATA *data,
206 X509_POLICY_NODE *parent,
207 X509_POLICY_TREE *tree);
208 void policy_node_free(X509_POLICY_NODE *node);
209 int policy_node_match(const X509_POLICY_LEVEL *lvl,
210 const X509_POLICY_NODE *node, const ASN1_OBJECT *oid);

212 const X509_POLICY_CACHE *policy_cache_set(X509 *x);

new/usr/src/lib/openssl/include/pkcs11.h 1

**
 9279 Fri May 30 18:31:24 2014
new/usr/src/lib/openssl/include/pkcs11.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pkcs11.h include file for PKCS #11. */
2 /* $Revision: 1.4 $ */

4 /* License to copy and use this software is granted provided that it is
5 * identified as "RSA Security Inc. PKCS #11 Cryptographic Token Interface
6 * (Cryptoki)" in all material mentioning or referencing this software.

8 * License is also granted to make and use derivative works provided that
9 * such works are identified as "derived from the RSA Security Inc. PKCS #11
10 * Cryptographic Token Interface (Cryptoki)" in all material mentioning or
11 * referencing the derived work.

13 * RSA Security Inc. makes no representations concerning either the
14 * merchantability of this software or the suitability of this software for
15 * any particular purpose. It is provided "as is" without express or implied
16 * warranty of any kind.
17 */

19 #ifndef _PKCS11_H_
20 #define _PKCS11_H_ 1

22 #ifdef __cplusplus
23 extern "C" {
24 #endif

26 /* Before including this file (pkcs11.h) (or pkcs11t.h by
27 * itself), 6 platform-specific macros must be defined. These
28 * macros are described below, and typical definitions for them
29 * are also given. Be advised that these definitions can depend
30 * on both the platform and the compiler used (and possibly also
31 * on whether a Cryptoki library is linked statically or
32 * dynamically).
33 *
34 * In addition to defining these 6 macros, the packing convention
35 * for Cryptoki structures should be set. The Cryptoki
36 * convention on packing is that structures should be 1-byte
37 * aligned.
38 *
39 * If you’re using Microsoft Developer Studio 5.0 to produce
40 * Win32 stuff, this might be done by using the following
41 * preprocessor directive before including pkcs11.h or pkcs11t.h:
42 *
43 * #pragma pack(push, cryptoki, 1)
44 *
45 * and using the following preprocessor directive after including
46 * pkcs11.h or pkcs11t.h:
47 *
48 * #pragma pack(pop, cryptoki)
49 *
50 * If you’re using an earlier version of Microsoft Developer
51 * Studio to produce Win16 stuff, this might be done by using
52 * the following preprocessor directive before including
53 * pkcs11.h or pkcs11t.h:
54 *
55 * #pragma pack(1)
56 *
57 * In a UNIX environment, you’re on your own for this. You might
58 * not need to do (or be able to do!) anything.
59 *
60 *
61 * Now for the macros:

new/usr/src/lib/openssl/include/pkcs11.h 2

62 *
63 *
64 * 1. CK_PTR: The indirection string for making a pointer to an
65 * object. It can be used like this:
66 *
67 * typedef CK_BYTE CK_PTR CK_BYTE_PTR;
68 *
69 * If you’re using Microsoft Developer Studio 5.0 to produce
70 * Win32 stuff, it might be defined by:
71 *
72 * #define CK_PTR *
73 *
74 * If you’re using an earlier version of Microsoft Developer
75 * Studio to produce Win16 stuff, it might be defined by:
76 *
77 * #define CK_PTR far *
78 *
79 * In a typical UNIX environment, it might be defined by:
80 *
81 * #define CK_PTR *
82 *
83 *
84 * 2. CK_DEFINE_FUNCTION(returnType, name): A macro which makes
85 * an exportable Cryptoki library function definition out of a
86 * return type and a function name. It should be used in the
87 * following fashion to define the exposed Cryptoki functions in
88 * a Cryptoki library:
89 *
90 * CK_DEFINE_FUNCTION(CK_RV, C_Initialize)(
91 * CK_VOID_PTR pReserved
92 *)
93 * {
94 * ...
95 * }
96 *
97 * If you’re using Microsoft Developer Studio 5.0 to define a
98 * function in a Win32 Cryptoki .dll, it might be defined by:
99 *
100 * #define CK_DEFINE_FUNCTION(returnType, name) \
101 * returnType __declspec(dllexport) name
102 *
103 * If you’re using an earlier version of Microsoft Developer
104 * Studio to define a function in a Win16 Cryptoki .dll, it
105 * might be defined by:
106 *
107 * #define CK_DEFINE_FUNCTION(returnType, name) \
108 * returnType __export _far _pascal name
109 *
110 * In a UNIX environment, it might be defined by:
111 *
112 * #define CK_DEFINE_FUNCTION(returnType, name) \
113 * returnType name
114 *
115 *
116 * 3. CK_DECLARE_FUNCTION(returnType, name): A macro which makes
117 * an importable Cryptoki library function declaration out of a
118 * return type and a function name. It should be used in the
119 * following fashion:
120 *
121 * extern CK_DECLARE_FUNCTION(CK_RV, C_Initialize)(
122 * CK_VOID_PTR pReserved
123 *);
124 *
125 * If you’re using Microsoft Developer Studio 5.0 to declare a
126 * function in a Win32 Cryptoki .dll, it might be defined by:
127 *

new/usr/src/lib/openssl/include/pkcs11.h 3

128 * #define CK_DECLARE_FUNCTION(returnType, name) \
129 * returnType __declspec(dllimport) name
130 *
131 * If you’re using an earlier version of Microsoft Developer
132 * Studio to declare a function in a Win16 Cryptoki .dll, it
133 * might be defined by:
134 *
135 * #define CK_DECLARE_FUNCTION(returnType, name) \
136 * returnType __export _far _pascal name
137 *
138 * In a UNIX environment, it might be defined by:
139 *
140 * #define CK_DECLARE_FUNCTION(returnType, name) \
141 * returnType name
142 *
143 *
144 * 4. CK_DECLARE_FUNCTION_POINTER(returnType, name): A macro
145 * which makes a Cryptoki API function pointer declaration or
146 * function pointer type declaration out of a return type and a
147 * function name. It should be used in the following fashion:
148 *
149 * // Define funcPtr to be a pointer to a Cryptoki API function
150 * // taking arguments args and returning CK_RV.
151 * CK_DECLARE_FUNCTION_POINTER(CK_RV, funcPtr)(args);
152 *
153 * or
154 *
155 * // Define funcPtrType to be the type of a pointer to a
156 * // Cryptoki API function taking arguments args and returning
157 * // CK_RV, and then define funcPtr to be a variable of type
158 * // funcPtrType.
159 * typedef CK_DECLARE_FUNCTION_POINTER(CK_RV, funcPtrType)(args);
160 * funcPtrType funcPtr;
161 *
162 * If you’re using Microsoft Developer Studio 5.0 to access
163 * functions in a Win32 Cryptoki .dll, in might be defined by:
164 *
165 * #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
166 * returnType __declspec(dllimport) (* name)
167 *
168 * If you’re using an earlier version of Microsoft Developer
169 * Studio to access functions in a Win16 Cryptoki .dll, it might
170 * be defined by:
171 *
172 * #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
173 * returnType __export _far _pascal (* name)
174 *
175 * In a UNIX environment, it might be defined by:
176 *
177 * #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
178 * returnType (* name)
179 *
180 *
181 * 5. CK_CALLBACK_FUNCTION(returnType, name): A macro which makes
182 * a function pointer type for an application callback out of
183 * a return type for the callback and a name for the callback.
184 * It should be used in the following fashion:
185 *
186 * CK_CALLBACK_FUNCTION(CK_RV, myCallback)(args);
187 *
188 * to declare a function pointer, myCallback, to a callback
189 * which takes arguments args and returns a CK_RV. It can also
190 * be used like this:
191 *
192 * typedef CK_CALLBACK_FUNCTION(CK_RV, myCallbackType)(args);
193 * myCallbackType myCallback;

new/usr/src/lib/openssl/include/pkcs11.h 4

194 *
195 * If you’re using Microsoft Developer Studio 5.0 to do Win32
196 * Cryptoki development, it might be defined by:
197 *
198 * #define CK_CALLBACK_FUNCTION(returnType, name) \
199 * returnType (* name)
200 *
201 * If you’re using an earlier version of Microsoft Developer
202 * Studio to do Win16 development, it might be defined by:
203 *
204 * #define CK_CALLBACK_FUNCTION(returnType, name) \
205 * returnType _far _pascal (* name)
206 *
207 * In a UNIX environment, it might be defined by:
208 *
209 * #define CK_CALLBACK_FUNCTION(returnType, name) \
210 * returnType (* name)
211 *
212 *
213 * 6. NULL_PTR: This macro is the value of a NULL pointer.
214 *
215 * In any ANSI/ISO C environment (and in many others as well),
216 * this should best be defined by
217 *
218 * #ifndef NULL_PTR
219 * #define NULL_PTR 0
220 * #endif
221 */

224 /* All the various Cryptoki types and #define’d values are in the
225 * file pkcs11t.h. */
226 #include "pkcs11t.h"

228 #define __PASTE(x,y) x##y

231 /* ==
232 * Define the "extern" form of all the entry points.
233 * ==
234 */

236 #define CK_NEED_ARG_LIST 1
237 #define CK_PKCS11_FUNCTION_INFO(name) \
238 extern CK_DECLARE_FUNCTION(CK_RV, name)

240 /* pkcs11f.h has all the information about the Cryptoki
241 * function prototypes. */
242 #include "pkcs11f.h"

244 #undef CK_NEED_ARG_LIST
245 #undef CK_PKCS11_FUNCTION_INFO

248 /* ==
249 * Define the typedef form of all the entry points. That is, for
250 * each Cryptoki function C_XXX, define a type CK_C_XXX which is
251 * a pointer to that kind of function.
252 * ==
253 */

255 #define CK_NEED_ARG_LIST 1
256 #define CK_PKCS11_FUNCTION_INFO(name) \
257 typedef CK_DECLARE_FUNCTION_POINTER(CK_RV, __PASTE(CK_,name))

259 /* pkcs11f.h has all the information about the Cryptoki

new/usr/src/lib/openssl/include/pkcs11.h 5

260 * function prototypes. */
261 #include "pkcs11f.h"

263 #undef CK_NEED_ARG_LIST
264 #undef CK_PKCS11_FUNCTION_INFO

267 /* ==
268 * Define structed vector of entry points. A CK_FUNCTION_LIST
269 * contains a CK_VERSION indicating a library’s Cryptoki version
270 * and then a whole slew of function pointers to the routines in
271 * the library. This type was declared, but not defined, in
272 * pkcs11t.h.
273 * ==
274 */

276 #define CK_PKCS11_FUNCTION_INFO(name) \
277 __PASTE(CK_,name) name;
278
279 struct CK_FUNCTION_LIST {

281 CK_VERSION version; /* Cryptoki version */

283 /* Pile all the function pointers into the CK_FUNCTION_LIST. */
284 /* pkcs11f.h has all the information about the Cryptoki
285 * function prototypes. */
286 #include "pkcs11f.h"

288 };

290 #undef CK_PKCS11_FUNCTION_INFO

293 #undef __PASTE

295 #ifdef __cplusplus
296 }
297 #endif

299 #endif

new/usr/src/lib/openssl/include/pkcs11f.h 1

**
 28346 Fri May 30 18:31:24 2014
new/usr/src/lib/openssl/include/pkcs11f.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pkcs11f.h include file for PKCS #11. */
2 /* $Revision: 1.4 $ */

4 /* License to copy and use this software is granted provided that it is
5 * identified as "RSA Security Inc. PKCS #11 Cryptographic Token Interface
6 * (Cryptoki)" in all material mentioning or referencing this software.

8 * License is also granted to make and use derivative works provided that
9 * such works are identified as "derived from the RSA Security Inc. PKCS #11
10 * Cryptographic Token Interface (Cryptoki)" in all material mentioning or
11 * referencing the derived work.

13 * RSA Security Inc. makes no representations concerning either the
14 * merchantability of this software or the suitability of this software for
15 * any particular purpose. It is provided "as is" without express or implied
16 * warranty of any kind.
17 */

19 /* This header file contains pretty much everything about all the */
20 /* Cryptoki function prototypes. Because this information is */
21 /* used for more than just declaring function prototypes, the */
22 /* order of the functions appearing herein is important, and */
23 /* should not be altered. */

25 /* General-purpose */

27 /* C_Initialize initializes the Cryptoki library. */
28 CK_PKCS11_FUNCTION_INFO(C_Initialize)
29 #ifdef CK_NEED_ARG_LIST
30 (
31 CK_VOID_PTR pInitArgs /* if this is not NULL_PTR, it gets
32 * cast to CK_C_INITIALIZE_ARGS_PTR
33 * and dereferenced */
34);
35 #endif

38 /* C_Finalize indicates that an application is done with the
39 * Cryptoki library. */
40 CK_PKCS11_FUNCTION_INFO(C_Finalize)
41 #ifdef CK_NEED_ARG_LIST
42 (
43 CK_VOID_PTR pReserved /* reserved. Should be NULL_PTR */
44);
45 #endif

48 /* C_GetInfo returns general information about Cryptoki. */
49 CK_PKCS11_FUNCTION_INFO(C_GetInfo)
50 #ifdef CK_NEED_ARG_LIST
51 (
52 CK_INFO_PTR pInfo /* location that receives information */
53);
54 #endif

57 /* C_GetFunctionList returns the function list. */
58 CK_PKCS11_FUNCTION_INFO(C_GetFunctionList)
59 #ifdef CK_NEED_ARG_LIST
60 (
61 CK_FUNCTION_LIST_PTR_PTR ppFunctionList /* receives pointer to

new/usr/src/lib/openssl/include/pkcs11f.h 2

62 * function list */
63);
64 #endif

68 /* Slot and token management */

70 /* C_GetSlotList obtains a list of slots in the system. */
71 CK_PKCS11_FUNCTION_INFO(C_GetSlotList)
72 #ifdef CK_NEED_ARG_LIST
73 (
74 CK_BBOOL tokenPresent, /* only slots with tokens? */
75 CK_SLOT_ID_PTR pSlotList, /* receives array of slot IDs */
76 CK_ULONG_PTR pulCount /* receives number of slots */
77);
78 #endif

81 /* C_GetSlotInfo obtains information about a particular slot in
82 * the system. */
83 CK_PKCS11_FUNCTION_INFO(C_GetSlotInfo)
84 #ifdef CK_NEED_ARG_LIST
85 (
86 CK_SLOT_ID slotID, /* the ID of the slot */
87 CK_SLOT_INFO_PTR pInfo /* receives the slot information */
88);
89 #endif

92 /* C_GetTokenInfo obtains information about a particular token
93 * in the system. */
94 CK_PKCS11_FUNCTION_INFO(C_GetTokenInfo)
95 #ifdef CK_NEED_ARG_LIST
96 (
97 CK_SLOT_ID slotID, /* ID of the token’s slot */
98 CK_TOKEN_INFO_PTR pInfo /* receives the token information */
99);
100 #endif

103 /* C_GetMechanismList obtains a list of mechanism types
104 * supported by a token. */
105 CK_PKCS11_FUNCTION_INFO(C_GetMechanismList)
106 #ifdef CK_NEED_ARG_LIST
107 (
108 CK_SLOT_ID slotID, /* ID of token’s slot */
109 CK_MECHANISM_TYPE_PTR pMechanismList, /* gets mech. array */
110 CK_ULONG_PTR pulCount /* gets # of mechs. */
111);
112 #endif

115 /* C_GetMechanismInfo obtains information about a particular
116 * mechanism possibly supported by a token. */
117 CK_PKCS11_FUNCTION_INFO(C_GetMechanismInfo)
118 #ifdef CK_NEED_ARG_LIST
119 (
120 CK_SLOT_ID slotID, /* ID of the token’s slot */
121 CK_MECHANISM_TYPE type, /* type of mechanism */
122 CK_MECHANISM_INFO_PTR pInfo /* receives mechanism info */
123);
124 #endif

127 /* C_InitToken initializes a token. */

new/usr/src/lib/openssl/include/pkcs11f.h 3

128 CK_PKCS11_FUNCTION_INFO(C_InitToken)
129 #ifdef CK_NEED_ARG_LIST
130 /* pLabel changed from CK_CHAR_PTR to CK_UTF8CHAR_PTR for v2.10 */
131 (
132 CK_SLOT_ID slotID, /* ID of the token’s slot */
133 CK_UTF8CHAR_PTR pPin, /* the SO’s initial PIN */
134 CK_ULONG ulPinLen, /* length in bytes of the PIN */
135 CK_UTF8CHAR_PTR pLabel /* 32-byte token label (blank padded) */
136);
137 #endif

140 /* C_InitPIN initializes the normal user’s PIN. */
141 CK_PKCS11_FUNCTION_INFO(C_InitPIN)
142 #ifdef CK_NEED_ARG_LIST
143 (
144 CK_SESSION_HANDLE hSession, /* the session’s handle */
145 CK_UTF8CHAR_PTR pPin, /* the normal user’s PIN */
146 CK_ULONG ulPinLen /* length in bytes of the PIN */
147);
148 #endif

151 /* C_SetPIN modifies the PIN of the user who is logged in. */
152 CK_PKCS11_FUNCTION_INFO(C_SetPIN)
153 #ifdef CK_NEED_ARG_LIST
154 (
155 CK_SESSION_HANDLE hSession, /* the session’s handle */
156 CK_UTF8CHAR_PTR pOldPin, /* the old PIN */
157 CK_ULONG ulOldLen, /* length of the old PIN */
158 CK_UTF8CHAR_PTR pNewPin, /* the new PIN */
159 CK_ULONG ulNewLen /* length of the new PIN */
160);
161 #endif

165 /* Session management */

167 /* C_OpenSession opens a session between an application and a
168 * token. */
169 CK_PKCS11_FUNCTION_INFO(C_OpenSession)
170 #ifdef CK_NEED_ARG_LIST
171 (
172 CK_SLOT_ID slotID, /* the slot’s ID */
173 CK_FLAGS flags, /* from CK_SESSION_INFO */
174 CK_VOID_PTR pApplication, /* passed to callback */
175 CK_NOTIFY Notify, /* callback function */
176 CK_SESSION_HANDLE_PTR phSession /* gets session handle */
177);
178 #endif

181 /* C_CloseSession closes a session between an application and a
182 * token. */
183 CK_PKCS11_FUNCTION_INFO(C_CloseSession)
184 #ifdef CK_NEED_ARG_LIST
185 (
186 CK_SESSION_HANDLE hSession /* the session’s handle */
187);
188 #endif

191 /* C_CloseAllSessions closes all sessions with a token. */
192 CK_PKCS11_FUNCTION_INFO(C_CloseAllSessions)
193 #ifdef CK_NEED_ARG_LIST

new/usr/src/lib/openssl/include/pkcs11f.h 4

194 (
195 CK_SLOT_ID slotID /* the token’s slot */
196);
197 #endif

200 /* C_GetSessionInfo obtains information about the session. */
201 CK_PKCS11_FUNCTION_INFO(C_GetSessionInfo)
202 #ifdef CK_NEED_ARG_LIST
203 (
204 CK_SESSION_HANDLE hSession, /* the session’s handle */
205 CK_SESSION_INFO_PTR pInfo /* receives session info */
206);
207 #endif

210 /* C_GetOperationState obtains the state of the cryptographic operation
211 * in a session. */
212 CK_PKCS11_FUNCTION_INFO(C_GetOperationState)
213 #ifdef CK_NEED_ARG_LIST
214 (
215 CK_SESSION_HANDLE hSession, /* session’s handle */
216 CK_BYTE_PTR pOperationState, /* gets state */
217 CK_ULONG_PTR pulOperationStateLen /* gets state length */
218);
219 #endif

222 /* C_SetOperationState restores the state of the cryptographic
223 * operation in a session. */
224 CK_PKCS11_FUNCTION_INFO(C_SetOperationState)
225 #ifdef CK_NEED_ARG_LIST
226 (
227 CK_SESSION_HANDLE hSession, /* session’s handle */
228 CK_BYTE_PTR pOperationState, /* holds state */
229 CK_ULONG ulOperationStateLen, /* holds state length */
230 CK_OBJECT_HANDLE hEncryptionKey, /* en/decryption key */
231 CK_OBJECT_HANDLE hAuthenticationKey /* sign/verify key */
232);
233 #endif

236 /* C_Login logs a user into a token. */
237 CK_PKCS11_FUNCTION_INFO(C_Login)
238 #ifdef CK_NEED_ARG_LIST
239 (
240 CK_SESSION_HANDLE hSession, /* the session’s handle */
241 CK_USER_TYPE userType, /* the user type */
242 CK_UTF8CHAR_PTR pPin, /* the user’s PIN */
243 CK_ULONG ulPinLen /* the length of the PIN */
244);
245 #endif

248 /* C_Logout logs a user out from a token. */
249 CK_PKCS11_FUNCTION_INFO(C_Logout)
250 #ifdef CK_NEED_ARG_LIST
251 (
252 CK_SESSION_HANDLE hSession /* the session’s handle */
253);
254 #endif

258 /* Object management */

new/usr/src/lib/openssl/include/pkcs11f.h 5

260 /* C_CreateObject creates a new object. */
261 CK_PKCS11_FUNCTION_INFO(C_CreateObject)
262 #ifdef CK_NEED_ARG_LIST
263 (
264 CK_SESSION_HANDLE hSession, /* the session’s handle */
265 CK_ATTRIBUTE_PTR pTemplate, /* the object’s template */
266 CK_ULONG ulCount, /* attributes in template */
267 CK_OBJECT_HANDLE_PTR phObject /* gets new object’s handle. */
268);
269 #endif

272 /* C_CopyObject copies an object, creating a new object for the
273 * copy. */
274 CK_PKCS11_FUNCTION_INFO(C_CopyObject)
275 #ifdef CK_NEED_ARG_LIST
276 (
277 CK_SESSION_HANDLE hSession, /* the session’s handle */
278 CK_OBJECT_HANDLE hObject, /* the object’s handle */
279 CK_ATTRIBUTE_PTR pTemplate, /* template for new object */
280 CK_ULONG ulCount, /* attributes in template */
281 CK_OBJECT_HANDLE_PTR phNewObject /* receives handle of copy */
282);
283 #endif

286 /* C_DestroyObject destroys an object. */
287 CK_PKCS11_FUNCTION_INFO(C_DestroyObject)
288 #ifdef CK_NEED_ARG_LIST
289 (
290 CK_SESSION_HANDLE hSession, /* the session’s handle */
291 CK_OBJECT_HANDLE hObject /* the object’s handle */
292);
293 #endif

296 /* C_GetObjectSize gets the size of an object in bytes. */
297 CK_PKCS11_FUNCTION_INFO(C_GetObjectSize)
298 #ifdef CK_NEED_ARG_LIST
299 (
300 CK_SESSION_HANDLE hSession, /* the session’s handle */
301 CK_OBJECT_HANDLE hObject, /* the object’s handle */
302 CK_ULONG_PTR pulSize /* receives size of object */
303);
304 #endif

307 /* C_GetAttributeValue obtains the value of one or more object
308 * attributes. */
309 CK_PKCS11_FUNCTION_INFO(C_GetAttributeValue)
310 #ifdef CK_NEED_ARG_LIST
311 (
312 CK_SESSION_HANDLE hSession, /* the session’s handle */
313 CK_OBJECT_HANDLE hObject, /* the object’s handle */
314 CK_ATTRIBUTE_PTR pTemplate, /* specifies attrs; gets vals */
315 CK_ULONG ulCount /* attributes in template */
316);
317 #endif

320 /* C_SetAttributeValue modifies the value of one or more object
321 * attributes */
322 CK_PKCS11_FUNCTION_INFO(C_SetAttributeValue)
323 #ifdef CK_NEED_ARG_LIST
324 (
325 CK_SESSION_HANDLE hSession, /* the session’s handle */

new/usr/src/lib/openssl/include/pkcs11f.h 6

326 CK_OBJECT_HANDLE hObject, /* the object’s handle */
327 CK_ATTRIBUTE_PTR pTemplate, /* specifies attrs and values */
328 CK_ULONG ulCount /* attributes in template */
329);
330 #endif

333 /* C_FindObjectsInit initializes a search for token and session
334 * objects that match a template. */
335 CK_PKCS11_FUNCTION_INFO(C_FindObjectsInit)
336 #ifdef CK_NEED_ARG_LIST
337 (
338 CK_SESSION_HANDLE hSession, /* the session’s handle */
339 CK_ATTRIBUTE_PTR pTemplate, /* attribute values to match */
340 CK_ULONG ulCount /* attrs in search template */
341);
342 #endif

345 /* C_FindObjects continues a search for token and session
346 * objects that match a template, obtaining additional object
347 * handles. */
348 CK_PKCS11_FUNCTION_INFO(C_FindObjects)
349 #ifdef CK_NEED_ARG_LIST
350 (
351 CK_SESSION_HANDLE hSession, /* session’s handle */
352 CK_OBJECT_HANDLE_PTR phObject, /* gets obj. handles */
353 CK_ULONG ulMaxObjectCount, /* max handles to get */
354 CK_ULONG_PTR pulObjectCount /* actual # returned */
355);
356 #endif

359 /* C_FindObjectsFinal finishes a search for token and session
360 * objects. */
361 CK_PKCS11_FUNCTION_INFO(C_FindObjectsFinal)
362 #ifdef CK_NEED_ARG_LIST
363 (
364 CK_SESSION_HANDLE hSession /* the session’s handle */
365);
366 #endif

370 /* Encryption and decryption */

372 /* C_EncryptInit initializes an encryption operation. */
373 CK_PKCS11_FUNCTION_INFO(C_EncryptInit)
374 #ifdef CK_NEED_ARG_LIST
375 (
376 CK_SESSION_HANDLE hSession, /* the session’s handle */
377 CK_MECHANISM_PTR pMechanism, /* the encryption mechanism */
378 CK_OBJECT_HANDLE hKey /* handle of encryption key */
379);
380 #endif

383 /* C_Encrypt encrypts single-part data. */
384 CK_PKCS11_FUNCTION_INFO(C_Encrypt)
385 #ifdef CK_NEED_ARG_LIST
386 (
387 CK_SESSION_HANDLE hSession, /* session’s handle */
388 CK_BYTE_PTR pData, /* the plaintext data */
389 CK_ULONG ulDataLen, /* bytes of plaintext */
390 CK_BYTE_PTR pEncryptedData, /* gets ciphertext */
391 CK_ULONG_PTR pulEncryptedDataLen /* gets c-text size */

new/usr/src/lib/openssl/include/pkcs11f.h 7

392);
393 #endif

396 /* C_EncryptUpdate continues a multiple-part encryption
397 * operation. */
398 CK_PKCS11_FUNCTION_INFO(C_EncryptUpdate)
399 #ifdef CK_NEED_ARG_LIST
400 (
401 CK_SESSION_HANDLE hSession, /* session’s handle */
402 CK_BYTE_PTR pPart, /* the plaintext data */
403 CK_ULONG ulPartLen, /* plaintext data len */
404 CK_BYTE_PTR pEncryptedPart, /* gets ciphertext */
405 CK_ULONG_PTR pulEncryptedPartLen /* gets c-text size */
406);
407 #endif

410 /* C_EncryptFinal finishes a multiple-part encryption
411 * operation. */
412 CK_PKCS11_FUNCTION_INFO(C_EncryptFinal)
413 #ifdef CK_NEED_ARG_LIST
414 (
415 CK_SESSION_HANDLE hSession, /* session handle */
416 CK_BYTE_PTR pLastEncryptedPart, /* last c-text */
417 CK_ULONG_PTR pulLastEncryptedPartLen /* gets last size */
418);
419 #endif

422 /* C_DecryptInit initializes a decryption operation. */
423 CK_PKCS11_FUNCTION_INFO(C_DecryptInit)
424 #ifdef CK_NEED_ARG_LIST
425 (
426 CK_SESSION_HANDLE hSession, /* the session’s handle */
427 CK_MECHANISM_PTR pMechanism, /* the decryption mechanism */
428 CK_OBJECT_HANDLE hKey /* handle of decryption key */
429);
430 #endif

433 /* C_Decrypt decrypts encrypted data in a single part. */
434 CK_PKCS11_FUNCTION_INFO(C_Decrypt)
435 #ifdef CK_NEED_ARG_LIST
436 (
437 CK_SESSION_HANDLE hSession, /* session’s handle */
438 CK_BYTE_PTR pEncryptedData, /* ciphertext */
439 CK_ULONG ulEncryptedDataLen, /* ciphertext length */
440 CK_BYTE_PTR pData, /* gets plaintext */
441 CK_ULONG_PTR pulDataLen /* gets p-text size */
442);
443 #endif

446 /* C_DecryptUpdate continues a multiple-part decryption
447 * operation. */
448 CK_PKCS11_FUNCTION_INFO(C_DecryptUpdate)
449 #ifdef CK_NEED_ARG_LIST
450 (
451 CK_SESSION_HANDLE hSession, /* session’s handle */
452 CK_BYTE_PTR pEncryptedPart, /* encrypted data */
453 CK_ULONG ulEncryptedPartLen, /* input length */
454 CK_BYTE_PTR pPart, /* gets plaintext */
455 CK_ULONG_PTR pulPartLen /* p-text size */
456);
457 #endif

new/usr/src/lib/openssl/include/pkcs11f.h 8

460 /* C_DecryptFinal finishes a multiple-part decryption
461 * operation. */
462 CK_PKCS11_FUNCTION_INFO(C_DecryptFinal)
463 #ifdef CK_NEED_ARG_LIST
464 (
465 CK_SESSION_HANDLE hSession, /* the session’s handle */
466 CK_BYTE_PTR pLastPart, /* gets plaintext */
467 CK_ULONG_PTR pulLastPartLen /* p-text size */
468);
469 #endif

473 /* Message digesting */

475 /* C_DigestInit initializes a message-digesting operation. */
476 CK_PKCS11_FUNCTION_INFO(C_DigestInit)
477 #ifdef CK_NEED_ARG_LIST
478 (
479 CK_SESSION_HANDLE hSession, /* the session’s handle */
480 CK_MECHANISM_PTR pMechanism /* the digesting mechanism */
481);
482 #endif

485 /* C_Digest digests data in a single part. */
486 CK_PKCS11_FUNCTION_INFO(C_Digest)
487 #ifdef CK_NEED_ARG_LIST
488 (
489 CK_SESSION_HANDLE hSession, /* the session’s handle */
490 CK_BYTE_PTR pData, /* data to be digested */
491 CK_ULONG ulDataLen, /* bytes of data to digest */
492 CK_BYTE_PTR pDigest, /* gets the message digest */
493 CK_ULONG_PTR pulDigestLen /* gets digest length */
494);
495 #endif

498 /* C_DigestUpdate continues a multiple-part message-digesting
499 * operation. */
500 CK_PKCS11_FUNCTION_INFO(C_DigestUpdate)
501 #ifdef CK_NEED_ARG_LIST
502 (
503 CK_SESSION_HANDLE hSession, /* the session’s handle */
504 CK_BYTE_PTR pPart, /* data to be digested */
505 CK_ULONG ulPartLen /* bytes of data to be digested */
506);
507 #endif

510 /* C_DigestKey continues a multi-part message-digesting
511 * operation, by digesting the value of a secret key as part of
512 * the data already digested. */
513 CK_PKCS11_FUNCTION_INFO(C_DigestKey)
514 #ifdef CK_NEED_ARG_LIST
515 (
516 CK_SESSION_HANDLE hSession, /* the session’s handle */
517 CK_OBJECT_HANDLE hKey /* secret key to digest */
518);
519 #endif

522 /* C_DigestFinal finishes a multiple-part message-digesting
523 * operation. */

new/usr/src/lib/openssl/include/pkcs11f.h 9

524 CK_PKCS11_FUNCTION_INFO(C_DigestFinal)
525 #ifdef CK_NEED_ARG_LIST
526 (
527 CK_SESSION_HANDLE hSession, /* the session’s handle */
528 CK_BYTE_PTR pDigest, /* gets the message digest */
529 CK_ULONG_PTR pulDigestLen /* gets byte count of digest */
530);
531 #endif

535 /* Signing and MACing */

537 /* C_SignInit initializes a signature (private key encryption)
538 * operation, where the signature is (will be) an appendix to
539 * the data, and plaintext cannot be recovered from the
540 *signature. */
541 CK_PKCS11_FUNCTION_INFO(C_SignInit)
542 #ifdef CK_NEED_ARG_LIST
543 (
544 CK_SESSION_HANDLE hSession, /* the session’s handle */
545 CK_MECHANISM_PTR pMechanism, /* the signature mechanism */
546 CK_OBJECT_HANDLE hKey /* handle of signature key */
547);
548 #endif

551 /* C_Sign signs (encrypts with private key) data in a single
552 * part, where the signature is (will be) an appendix to the
553 * data, and plaintext cannot be recovered from the signature. */
554 CK_PKCS11_FUNCTION_INFO(C_Sign)
555 #ifdef CK_NEED_ARG_LIST
556 (
557 CK_SESSION_HANDLE hSession, /* the session’s handle */
558 CK_BYTE_PTR pData, /* the data to sign */
559 CK_ULONG ulDataLen, /* count of bytes to sign */
560 CK_BYTE_PTR pSignature, /* gets the signature */
561 CK_ULONG_PTR pulSignatureLen /* gets signature length */
562);
563 #endif

566 /* C_SignUpdate continues a multiple-part signature operation,
567 * where the signature is (will be) an appendix to the data,
568 * and plaintext cannot be recovered from the signature. */
569 CK_PKCS11_FUNCTION_INFO(C_SignUpdate)
570 #ifdef CK_NEED_ARG_LIST
571 (
572 CK_SESSION_HANDLE hSession, /* the session’s handle */
573 CK_BYTE_PTR pPart, /* the data to sign */
574 CK_ULONG ulPartLen /* count of bytes to sign */
575);
576 #endif

579 /* C_SignFinal finishes a multiple-part signature operation,
580 * returning the signature. */
581 CK_PKCS11_FUNCTION_INFO(C_SignFinal)
582 #ifdef CK_NEED_ARG_LIST
583 (
584 CK_SESSION_HANDLE hSession, /* the session’s handle */
585 CK_BYTE_PTR pSignature, /* gets the signature */
586 CK_ULONG_PTR pulSignatureLen /* gets signature length */
587);
588 #endif

new/usr/src/lib/openssl/include/pkcs11f.h 10

591 /* C_SignRecoverInit initializes a signature operation, where
592 * the data can be recovered from the signature. */
593 CK_PKCS11_FUNCTION_INFO(C_SignRecoverInit)
594 #ifdef CK_NEED_ARG_LIST
595 (
596 CK_SESSION_HANDLE hSession, /* the session’s handle */
597 CK_MECHANISM_PTR pMechanism, /* the signature mechanism */
598 CK_OBJECT_HANDLE hKey /* handle of the signature key */
599);
600 #endif

603 /* C_SignRecover signs data in a single operation, where the
604 * data can be recovered from the signature. */
605 CK_PKCS11_FUNCTION_INFO(C_SignRecover)
606 #ifdef CK_NEED_ARG_LIST
607 (
608 CK_SESSION_HANDLE hSession, /* the session’s handle */
609 CK_BYTE_PTR pData, /* the data to sign */
610 CK_ULONG ulDataLen, /* count of bytes to sign */
611 CK_BYTE_PTR pSignature, /* gets the signature */
612 CK_ULONG_PTR pulSignatureLen /* gets signature length */
613);
614 #endif

618 /* Verifying signatures and MACs */

620 /* C_VerifyInit initializes a verification operation, where the
621 * signature is an appendix to the data, and plaintext cannot
622 * cannot be recovered from the signature (e.g. DSA). */
623 CK_PKCS11_FUNCTION_INFO(C_VerifyInit)
624 #ifdef CK_NEED_ARG_LIST
625 (
626 CK_SESSION_HANDLE hSession, /* the session’s handle */
627 CK_MECHANISM_PTR pMechanism, /* the verification mechanism */
628 CK_OBJECT_HANDLE hKey /* verification key */
629);
630 #endif

633 /* C_Verify verifies a signature in a single-part operation,
634 * where the signature is an appendix to the data, and plaintext
635 * cannot be recovered from the signature. */
636 CK_PKCS11_FUNCTION_INFO(C_Verify)
637 #ifdef CK_NEED_ARG_LIST
638 (
639 CK_SESSION_HANDLE hSession, /* the session’s handle */
640 CK_BYTE_PTR pData, /* signed data */
641 CK_ULONG ulDataLen, /* length of signed data */
642 CK_BYTE_PTR pSignature, /* signature */
643 CK_ULONG ulSignatureLen /* signature length*/
644);
645 #endif

648 /* C_VerifyUpdate continues a multiple-part verification
649 * operation, where the signature is an appendix to the data,
650 * and plaintext cannot be recovered from the signature. */
651 CK_PKCS11_FUNCTION_INFO(C_VerifyUpdate)
652 #ifdef CK_NEED_ARG_LIST
653 (
654 CK_SESSION_HANDLE hSession, /* the session’s handle */
655 CK_BYTE_PTR pPart, /* signed data */

new/usr/src/lib/openssl/include/pkcs11f.h 11

656 CK_ULONG ulPartLen /* length of signed data */
657);
658 #endif

661 /* C_VerifyFinal finishes a multiple-part verification
662 * operation, checking the signature. */
663 CK_PKCS11_FUNCTION_INFO(C_VerifyFinal)
664 #ifdef CK_NEED_ARG_LIST
665 (
666 CK_SESSION_HANDLE hSession, /* the session’s handle */
667 CK_BYTE_PTR pSignature, /* signature to verify */
668 CK_ULONG ulSignatureLen /* signature length */
669);
670 #endif

673 /* C_VerifyRecoverInit initializes a signature verification
674 * operation, where the data is recovered from the signature. */
675 CK_PKCS11_FUNCTION_INFO(C_VerifyRecoverInit)
676 #ifdef CK_NEED_ARG_LIST
677 (
678 CK_SESSION_HANDLE hSession, /* the session’s handle */
679 CK_MECHANISM_PTR pMechanism, /* the verification mechanism */
680 CK_OBJECT_HANDLE hKey /* verification key */
681);
682 #endif

685 /* C_VerifyRecover verifies a signature in a single-part
686 * operation, where the data is recovered from the signature. */
687 CK_PKCS11_FUNCTION_INFO(C_VerifyRecover)
688 #ifdef CK_NEED_ARG_LIST
689 (
690 CK_SESSION_HANDLE hSession, /* the session’s handle */
691 CK_BYTE_PTR pSignature, /* signature to verify */
692 CK_ULONG ulSignatureLen, /* signature length */
693 CK_BYTE_PTR pData, /* gets signed data */
694 CK_ULONG_PTR pulDataLen /* gets signed data len */
695);
696 #endif

700 /* Dual-function cryptographic operations */

702 /* C_DigestEncryptUpdate continues a multiple-part digesting
703 * and encryption operation. */
704 CK_PKCS11_FUNCTION_INFO(C_DigestEncryptUpdate)
705 #ifdef CK_NEED_ARG_LIST
706 (
707 CK_SESSION_HANDLE hSession, /* session’s handle */
708 CK_BYTE_PTR pPart, /* the plaintext data */
709 CK_ULONG ulPartLen, /* plaintext length */
710 CK_BYTE_PTR pEncryptedPart, /* gets ciphertext */
711 CK_ULONG_PTR pulEncryptedPartLen /* gets c-text length */
712);
713 #endif

716 /* C_DecryptDigestUpdate continues a multiple-part decryption and
717 * digesting operation. */
718 CK_PKCS11_FUNCTION_INFO(C_DecryptDigestUpdate)
719 #ifdef CK_NEED_ARG_LIST
720 (
721 CK_SESSION_HANDLE hSession, /* session’s handle */

new/usr/src/lib/openssl/include/pkcs11f.h 12

722 CK_BYTE_PTR pEncryptedPart, /* ciphertext */
723 CK_ULONG ulEncryptedPartLen, /* ciphertext length */
724 CK_BYTE_PTR pPart, /* gets plaintext */
725 CK_ULONG_PTR pulPartLen /* gets plaintext len */
726);
727 #endif

730 /* C_SignEncryptUpdate continues a multiple-part signing and
731 * encryption operation. */
732 CK_PKCS11_FUNCTION_INFO(C_SignEncryptUpdate)
733 #ifdef CK_NEED_ARG_LIST
734 (
735 CK_SESSION_HANDLE hSession, /* session’s handle */
736 CK_BYTE_PTR pPart, /* the plaintext data */
737 CK_ULONG ulPartLen, /* plaintext length */
738 CK_BYTE_PTR pEncryptedPart, /* gets ciphertext */
739 CK_ULONG_PTR pulEncryptedPartLen /* gets c-text length */
740);
741 #endif

744 /* C_DecryptVerifyUpdate continues a multiple-part decryption and
745 * verify operation. */
746 CK_PKCS11_FUNCTION_INFO(C_DecryptVerifyUpdate)
747 #ifdef CK_NEED_ARG_LIST
748 (
749 CK_SESSION_HANDLE hSession, /* session’s handle */
750 CK_BYTE_PTR pEncryptedPart, /* ciphertext */
751 CK_ULONG ulEncryptedPartLen, /* ciphertext length */
752 CK_BYTE_PTR pPart, /* gets plaintext */
753 CK_ULONG_PTR pulPartLen /* gets p-text length */
754);
755 #endif

759 /* Key management */

761 /* C_GenerateKey generates a secret key, creating a new key
762 * object. */
763 CK_PKCS11_FUNCTION_INFO(C_GenerateKey)
764 #ifdef CK_NEED_ARG_LIST
765 (
766 CK_SESSION_HANDLE hSession, /* the session’s handle */
767 CK_MECHANISM_PTR pMechanism, /* key generation mech. */
768 CK_ATTRIBUTE_PTR pTemplate, /* template for new key */
769 CK_ULONG ulCount, /* # of attrs in template */
770 CK_OBJECT_HANDLE_PTR phKey /* gets handle of new key */
771);
772 #endif

775 /* C_GenerateKeyPair generates a public-key/private-key pair,
776 * creating new key objects. */
777 CK_PKCS11_FUNCTION_INFO(C_GenerateKeyPair)
778 #ifdef CK_NEED_ARG_LIST
779 (
780 CK_SESSION_HANDLE hSession, /* session
781 * handle */
782 CK_MECHANISM_PTR pMechanism, /* key-gen
783 * mech. */
784 CK_ATTRIBUTE_PTR pPublicKeyTemplate, /* template
785 * for pub.
786 * key */
787 CK_ULONG ulPublicKeyAttributeCount, /* # pub.

new/usr/src/lib/openssl/include/pkcs11f.h 13

788 * attrs. */
789 CK_ATTRIBUTE_PTR pPrivateKeyTemplate, /* template
790 * for priv.
791 * key */
792 CK_ULONG ulPrivateKeyAttributeCount, /* # priv.
793 * attrs. */
794 CK_OBJECT_HANDLE_PTR phPublicKey, /* gets pub.
795 * key
796 * handle */
797 CK_OBJECT_HANDLE_PTR phPrivateKey /* gets
798 * priv. key
799 * handle */
800);
801 #endif

804 /* C_WrapKey wraps (i.e., encrypts) a key. */
805 CK_PKCS11_FUNCTION_INFO(C_WrapKey)
806 #ifdef CK_NEED_ARG_LIST
807 (
808 CK_SESSION_HANDLE hSession, /* the session’s handle */
809 CK_MECHANISM_PTR pMechanism, /* the wrapping mechanism */
810 CK_OBJECT_HANDLE hWrappingKey, /* wrapping key */
811 CK_OBJECT_HANDLE hKey, /* key to be wrapped */
812 CK_BYTE_PTR pWrappedKey, /* gets wrapped key */
813 CK_ULONG_PTR pulWrappedKeyLen /* gets wrapped key size */
814);
815 #endif

818 /* C_UnwrapKey unwraps (decrypts) a wrapped key, creating a new
819 * key object. */
820 CK_PKCS11_FUNCTION_INFO(C_UnwrapKey)
821 #ifdef CK_NEED_ARG_LIST
822 (
823 CK_SESSION_HANDLE hSession, /* session’s handle */
824 CK_MECHANISM_PTR pMechanism, /* unwrapping mech. */
825 CK_OBJECT_HANDLE hUnwrappingKey, /* unwrapping key */
826 CK_BYTE_PTR pWrappedKey, /* the wrapped key */
827 CK_ULONG ulWrappedKeyLen, /* wrapped key len */
828 CK_ATTRIBUTE_PTR pTemplate, /* new key template */
829 CK_ULONG ulAttributeCount, /* template length */
830 CK_OBJECT_HANDLE_PTR phKey /* gets new handle */
831);
832 #endif

835 /* C_DeriveKey derives a key from a base key, creating a new key
836 * object. */
837 CK_PKCS11_FUNCTION_INFO(C_DeriveKey)
838 #ifdef CK_NEED_ARG_LIST
839 (
840 CK_SESSION_HANDLE hSession, /* session’s handle */
841 CK_MECHANISM_PTR pMechanism, /* key deriv. mech. */
842 CK_OBJECT_HANDLE hBaseKey, /* base key */
843 CK_ATTRIBUTE_PTR pTemplate, /* new key template */
844 CK_ULONG ulAttributeCount, /* template length */
845 CK_OBJECT_HANDLE_PTR phKey /* gets new handle */
846);
847 #endif

851 /* Random number generation */

853 /* C_SeedRandom mixes additional seed material into the token’s

new/usr/src/lib/openssl/include/pkcs11f.h 14

854 * random number generator. */
855 CK_PKCS11_FUNCTION_INFO(C_SeedRandom)
856 #ifdef CK_NEED_ARG_LIST
857 (
858 CK_SESSION_HANDLE hSession, /* the session’s handle */
859 CK_BYTE_PTR pSeed, /* the seed material */
860 CK_ULONG ulSeedLen /* length of seed material */
861);
862 #endif

865 /* C_GenerateRandom generates random data. */
866 CK_PKCS11_FUNCTION_INFO(C_GenerateRandom)
867 #ifdef CK_NEED_ARG_LIST
868 (
869 CK_SESSION_HANDLE hSession, /* the session’s handle */
870 CK_BYTE_PTR RandomData, /* receives the random data */
871 CK_ULONG ulRandomLen /* # of bytes to generate */
872);
873 #endif

877 /* Parallel function management */

879 /* C_GetFunctionStatus is a legacy function; it obtains an
880 * updated status of a function running in parallel with an
881 * application. */
882 CK_PKCS11_FUNCTION_INFO(C_GetFunctionStatus)
883 #ifdef CK_NEED_ARG_LIST
884 (
885 CK_SESSION_HANDLE hSession /* the session’s handle */
886);
887 #endif

890 /* C_CancelFunction is a legacy function; it cancels a function
891 * running in parallel. */
892 CK_PKCS11_FUNCTION_INFO(C_CancelFunction)
893 #ifdef CK_NEED_ARG_LIST
894 (
895 CK_SESSION_HANDLE hSession /* the session’s handle */
896);
897 #endif

901 /* Functions added in for Cryptoki Version 2.01 or later */

903 /* C_WaitForSlotEvent waits for a slot event (token insertion,
904 * removal, etc.) to occur. */
905 CK_PKCS11_FUNCTION_INFO(C_WaitForSlotEvent)
906 #ifdef CK_NEED_ARG_LIST
907 (
908 CK_FLAGS flags, /* blocking/nonblocking flag */
909 CK_SLOT_ID_PTR pSlot, /* location that receives the slot ID */
910 CK_VOID_PTR pRserved /* reserved. Should be NULL_PTR */
911);
912 #endif

new/usr/src/lib/openssl/include/pkcs11t.h 1

**
 69057 Fri May 30 18:31:24 2014
new/usr/src/lib/openssl/include/pkcs11t.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pkcs11t.h include file for PKCS #11. */
2 /* $Revision: 1.10 $ */

4 /* License to copy and use this software is granted provided that it is
5 * identified as "RSA Security Inc. PKCS #11 Cryptographic Token Interface
6 * (Cryptoki)" in all material mentioning or referencing this software.

8 * License is also granted to make and use derivative works provided that
9 * such works are identified as "derived from the RSA Security Inc. PKCS #11
10 * Cryptographic Token Interface (Cryptoki)" in all material mentioning or
11 * referencing the derived work.

13 * RSA Security Inc. makes no representations concerning either the
14 * merchantability of this software or the suitability of this software for
15 * any particular purpose. It is provided "as is" without express or implied
16 * warranty of any kind.
17 */

19 /* See top of pkcs11.h for information about the macros that
20 * must be defined and the structure-packing conventions that
21 * must be set before including this file. */

23 #ifndef _PKCS11T_H_
24 #define _PKCS11T_H_ 1

26 #define CRYPTOKI_VERSION_MAJOR 2
27 #define CRYPTOKI_VERSION_MINOR 20
28 #define CRYPTOKI_VERSION_AMENDMENT 3

30 #define CK_TRUE 1
31 #define CK_FALSE 0

33 #ifndef CK_DISABLE_TRUE_FALSE
34 #ifndef FALSE
35 #define FALSE CK_FALSE
36 #endif

38 #ifndef TRUE
39 #define TRUE CK_TRUE
40 #endif
41 #endif

43 /* an unsigned 8-bit value */
44 typedef unsigned char CK_BYTE;

46 /* an unsigned 8-bit character */
47 typedef CK_BYTE CK_CHAR;

49 /* an 8-bit UTF-8 character */
50 typedef CK_BYTE CK_UTF8CHAR;

52 /* a BYTE-sized Boolean flag */
53 typedef CK_BYTE CK_BBOOL;

55 /* an unsigned value, at least 32 bits long */
56 typedef unsigned long int CK_ULONG;

58 /* a signed value, the same size as a CK_ULONG */
59 /* CK_LONG is new for v2.0 */
60 typedef long int CK_LONG;

new/usr/src/lib/openssl/include/pkcs11t.h 2

62 /* at least 32 bits; each bit is a Boolean flag */
63 typedef CK_ULONG CK_FLAGS;

66 /* some special values for certain CK_ULONG variables */
67 #define CK_UNAVAILABLE_INFORMATION (~0UL)
68 #define CK_EFFECTIVELY_INFINITE 0

71 typedef CK_BYTE CK_PTR CK_BYTE_PTR;
72 typedef CK_CHAR CK_PTR CK_CHAR_PTR;
73 typedef CK_UTF8CHAR CK_PTR CK_UTF8CHAR_PTR;
74 typedef CK_ULONG CK_PTR CK_ULONG_PTR;
75 typedef void CK_PTR CK_VOID_PTR;

77 /* Pointer to a CK_VOID_PTR-- i.e., pointer to pointer to void */
78 typedef CK_VOID_PTR CK_PTR CK_VOID_PTR_PTR;

81 /* The following value is always invalid if used as a session */
82 /* handle or object handle */
83 #define CK_INVALID_HANDLE 0

86 typedef struct CK_VERSION {
87 CK_BYTE major; /* integer portion of version number */
88 CK_BYTE minor; /* 1/100ths portion of version number */
89 } CK_VERSION;

91 typedef CK_VERSION CK_PTR CK_VERSION_PTR;

94 typedef struct CK_INFO {
95 /* manufacturerID and libraryDecription have been changed from
96 * CK_CHAR to CK_UTF8CHAR for v2.10 */
97 CK_VERSION cryptokiVersion; /* Cryptoki interface ver */
98 CK_UTF8CHAR manufacturerID[32]; /* blank padded */
99 CK_FLAGS flags; /* must be zero */

101 /* libraryDescription and libraryVersion are new for v2.0 */
102 CK_UTF8CHAR libraryDescription[32]; /* blank padded */
103 CK_VERSION libraryVersion; /* version of library */
104 } CK_INFO;

106 typedef CK_INFO CK_PTR CK_INFO_PTR;

109 /* CK_NOTIFICATION enumerates the types of notifications that
110 * Cryptoki provides to an application */
111 /* CK_NOTIFICATION has been changed from an enum to a CK_ULONG
112 * for v2.0 */
113 typedef CK_ULONG CK_NOTIFICATION;
114 #define CKN_SURRENDER 0

116 /* The following notification is new for PKCS #11 v2.20 amendment 3 */
117 #define CKN_OTP_CHANGED 1

120 typedef CK_ULONG CK_SLOT_ID;

122 typedef CK_SLOT_ID CK_PTR CK_SLOT_ID_PTR;

125 /* CK_SLOT_INFO provides information about a slot */
126 typedef struct CK_SLOT_INFO {
127 /* slotDescription and manufacturerID have been changed from

new/usr/src/lib/openssl/include/pkcs11t.h 3

128 * CK_CHAR to CK_UTF8CHAR for v2.10 */
129 CK_UTF8CHAR slotDescription[64]; /* blank padded */
130 CK_UTF8CHAR manufacturerID[32]; /* blank padded */
131 CK_FLAGS flags;

133 /* hardwareVersion and firmwareVersion are new for v2.0 */
134 CK_VERSION hardwareVersion; /* version of hardware */
135 CK_VERSION firmwareVersion; /* version of firmware */
136 } CK_SLOT_INFO;

138 /* flags: bit flags that provide capabilities of the slot
139 * Bit Flag Mask Meaning
140 */
141 #define CKF_TOKEN_PRESENT 0x00000001 /* a token is there */
142 #define CKF_REMOVABLE_DEVICE 0x00000002 /* removable devices*/
143 #define CKF_HW_SLOT 0x00000004 /* hardware slot */

145 typedef CK_SLOT_INFO CK_PTR CK_SLOT_INFO_PTR;

148 /* CK_TOKEN_INFO provides information about a token */
149 typedef struct CK_TOKEN_INFO {
150 /* label, manufacturerID, and model have been changed from
151 * CK_CHAR to CK_UTF8CHAR for v2.10 */
152 CK_UTF8CHAR label[32]; /* blank padded */
153 CK_UTF8CHAR manufacturerID[32]; /* blank padded */
154 CK_UTF8CHAR model[16]; /* blank padded */
155 CK_CHAR serialNumber[16]; /* blank padded */
156 CK_FLAGS flags; /* see below */

158 /* ulMaxSessionCount, ulSessionCount, ulMaxRwSessionCount,
159 * ulRwSessionCount, ulMaxPinLen, and ulMinPinLen have all been
160 * changed from CK_USHORT to CK_ULONG for v2.0 */
161 CK_ULONG ulMaxSessionCount; /* max open sessions */
162 CK_ULONG ulSessionCount; /* sess. now open */
163 CK_ULONG ulMaxRwSessionCount; /* max R/W sessions */
164 CK_ULONG ulRwSessionCount; /* R/W sess. now open */
165 CK_ULONG ulMaxPinLen; /* in bytes */
166 CK_ULONG ulMinPinLen; /* in bytes */
167 CK_ULONG ulTotalPublicMemory; /* in bytes */
168 CK_ULONG ulFreePublicMemory; /* in bytes */
169 CK_ULONG ulTotalPrivateMemory; /* in bytes */
170 CK_ULONG ulFreePrivateMemory; /* in bytes */

172 /* hardwareVersion, firmwareVersion, and time are new for
173 * v2.0 */
174 CK_VERSION hardwareVersion; /* version of hardware */
175 CK_VERSION firmwareVersion; /* version of firmware */
176 CK_CHAR utcTime[16]; /* time */
177 } CK_TOKEN_INFO;

179 /* The flags parameter is defined as follows:
180 * Bit Flag Mask Meaning
181 */
182 #define CKF_RNG 0x00000001 /* has random #
183 * generator */
184 #define CKF_WRITE_PROTECTED 0x00000002 /* token is
185 * write-
186 * protected */
187 #define CKF_LOGIN_REQUIRED 0x00000004 /* user must
188 * login */
189 #define CKF_USER_PIN_INITIALIZED 0x00000008 /* normal user’s
190 * PIN is set */

192 /* CKF_RESTORE_KEY_NOT_NEEDED is new for v2.0. If it is set,
193 * that means that *every* time the state of cryptographic

new/usr/src/lib/openssl/include/pkcs11t.h 4

194 * operations of a session is successfully saved, all keys
195 * needed to continue those operations are stored in the state */
196 #define CKF_RESTORE_KEY_NOT_NEEDED 0x00000020

198 /* CKF_CLOCK_ON_TOKEN is new for v2.0. If it is set, that means
199 * that the token has some sort of clock. The time on that
200 * clock is returned in the token info structure */
201 #define CKF_CLOCK_ON_TOKEN 0x00000040

203 /* CKF_PROTECTED_AUTHENTICATION_PATH is new for v2.0. If it is
204 * set, that means that there is some way for the user to login
205 * without sending a PIN through the Cryptoki library itself */
206 #define CKF_PROTECTED_AUTHENTICATION_PATH 0x00000100

208 /* CKF_DUAL_CRYPTO_OPERATIONS is new for v2.0. If it is true,
209 * that means that a single session with the token can perform
210 * dual simultaneous cryptographic operations (digest and
211 * encrypt; decrypt and digest; sign and encrypt; and decrypt
212 * and sign) */
213 #define CKF_DUAL_CRYPTO_OPERATIONS 0x00000200

215 /* CKF_TOKEN_INITIALIZED if new for v2.10. If it is true, the
216 * token has been initialized using C_InitializeToken or an
217 * equivalent mechanism outside the scope of PKCS #11.
218 * Calling C_InitializeToken when this flag is set will cause
219 * the token to be reinitialized. */
220 #define CKF_TOKEN_INITIALIZED 0x00000400

222 /* CKF_SECONDARY_AUTHENTICATION if new for v2.10. If it is
223 * true, the token supports secondary authentication for
224 * private key objects. This flag is deprecated in v2.11 and
225 onwards. */
226 #define CKF_SECONDARY_AUTHENTICATION 0x00000800

228 /* CKF_USER_PIN_COUNT_LOW if new for v2.10. If it is true, an
229 * incorrect user login PIN has been entered at least once
230 * since the last successful authentication. */
231 #define CKF_USER_PIN_COUNT_LOW 0x00010000

233 /* CKF_USER_PIN_FINAL_TRY if new for v2.10. If it is true,
234 * supplying an incorrect user PIN will it to become locked. */
235 #define CKF_USER_PIN_FINAL_TRY 0x00020000

237 /* CKF_USER_PIN_LOCKED if new for v2.10. If it is true, the
238 * user PIN has been locked. User login to the token is not
239 * possible. */
240 #define CKF_USER_PIN_LOCKED 0x00040000

242 /* CKF_USER_PIN_TO_BE_CHANGED if new for v2.10. If it is true,
243 * the user PIN value is the default value set by token
244 * initialization or manufacturing, or the PIN has been
245 * expired by the card. */
246 #define CKF_USER_PIN_TO_BE_CHANGED 0x00080000

248 /* CKF_SO_PIN_COUNT_LOW if new for v2.10. If it is true, an
249 * incorrect SO login PIN has been entered at least once since
250 * the last successful authentication. */
251 #define CKF_SO_PIN_COUNT_LOW 0x00100000

253 /* CKF_SO_PIN_FINAL_TRY if new for v2.10. If it is true,
254 * supplying an incorrect SO PIN will it to become locked. */
255 #define CKF_SO_PIN_FINAL_TRY 0x00200000

257 /* CKF_SO_PIN_LOCKED if new for v2.10. If it is true, the SO
258 * PIN has been locked. SO login to the token is not possible.
259 */

new/usr/src/lib/openssl/include/pkcs11t.h 5

260 #define CKF_SO_PIN_LOCKED 0x00400000

262 /* CKF_SO_PIN_TO_BE_CHANGED if new for v2.10. If it is true,
263 * the SO PIN value is the default value set by token
264 * initialization or manufacturing, or the PIN has been
265 * expired by the card. */
266 #define CKF_SO_PIN_TO_BE_CHANGED 0x00800000

268 typedef CK_TOKEN_INFO CK_PTR CK_TOKEN_INFO_PTR;

271 /* CK_SESSION_HANDLE is a Cryptoki-assigned value that
272 * identifies a session */
273 typedef CK_ULONG CK_SESSION_HANDLE;

275 typedef CK_SESSION_HANDLE CK_PTR CK_SESSION_HANDLE_PTR;

278 /* CK_USER_TYPE enumerates the types of Cryptoki users */
279 /* CK_USER_TYPE has been changed from an enum to a CK_ULONG for
280 * v2.0 */
281 typedef CK_ULONG CK_USER_TYPE;
282 /* Security Officer */
283 #define CKU_SO 0
284 /* Normal user */
285 #define CKU_USER 1
286 /* Context specific (added in v2.20) */
287 #define CKU_CONTEXT_SPECIFIC 2

289 /* CK_STATE enumerates the session states */
290 /* CK_STATE has been changed from an enum to a CK_ULONG for
291 * v2.0 */
292 typedef CK_ULONG CK_STATE;
293 #define CKS_RO_PUBLIC_SESSION 0
294 #define CKS_RO_USER_FUNCTIONS 1
295 #define CKS_RW_PUBLIC_SESSION 2
296 #define CKS_RW_USER_FUNCTIONS 3
297 #define CKS_RW_SO_FUNCTIONS 4

300 /* CK_SESSION_INFO provides information about a session */
301 typedef struct CK_SESSION_INFO {
302 CK_SLOT_ID slotID;
303 CK_STATE state;
304 CK_FLAGS flags; /* see below */

306 /* ulDeviceError was changed from CK_USHORT to CK_ULONG for
307 * v2.0 */
308 CK_ULONG ulDeviceError; /* device-dependent error code */
309 } CK_SESSION_INFO;

311 /* The flags are defined in the following table:
312 * Bit Flag Mask Meaning
313 */
314 #define CKF_RW_SESSION 0x00000002 /* session is r/w */
315 #define CKF_SERIAL_SESSION 0x00000004 /* no parallel */

317 typedef CK_SESSION_INFO CK_PTR CK_SESSION_INFO_PTR;

320 /* CK_OBJECT_HANDLE is a token-specific identifier for an
321 * object */
322 typedef CK_ULONG CK_OBJECT_HANDLE;

324 typedef CK_OBJECT_HANDLE CK_PTR CK_OBJECT_HANDLE_PTR;

new/usr/src/lib/openssl/include/pkcs11t.h 6

327 /* CK_OBJECT_CLASS is a value that identifies the classes (or
328 * types) of objects that Cryptoki recognizes. It is defined
329 * as follows: */
330 /* CK_OBJECT_CLASS was changed from CK_USHORT to CK_ULONG for
331 * v2.0 */
332 typedef CK_ULONG CK_OBJECT_CLASS;

334 /* The following classes of objects are defined: */
335 /* CKO_HW_FEATURE is new for v2.10 */
336 /* CKO_DOMAIN_PARAMETERS is new for v2.11 */
337 /* CKO_MECHANISM is new for v2.20 */
338 #define CKO_DATA 0x00000000
339 #define CKO_CERTIFICATE 0x00000001
340 #define CKO_PUBLIC_KEY 0x00000002
341 #define CKO_PRIVATE_KEY 0x00000003
342 #define CKO_SECRET_KEY 0x00000004
343 #define CKO_HW_FEATURE 0x00000005
344 #define CKO_DOMAIN_PARAMETERS 0x00000006
345 #define CKO_MECHANISM 0x00000007

347 /* CKO_OTP_KEY is new for PKCS #11 v2.20 amendment 1 */
348 #define CKO_OTP_KEY 0x00000008

350 #define CKO_VENDOR_DEFINED 0x80000000

352 typedef CK_OBJECT_CLASS CK_PTR CK_OBJECT_CLASS_PTR;

354 /* CK_HW_FEATURE_TYPE is new for v2.10. CK_HW_FEATURE_TYPE is a
355 * value that identifies the hardware feature type of an object
356 * with CK_OBJECT_CLASS equal to CKO_HW_FEATURE. */
357 typedef CK_ULONG CK_HW_FEATURE_TYPE;

359 /* The following hardware feature types are defined */
360 /* CKH_USER_INTERFACE is new for v2.20 */
361 #define CKH_MONOTONIC_COUNTER 0x00000001
362 #define CKH_CLOCK 0x00000002
363 #define CKH_USER_INTERFACE 0x00000003
364 #define CKH_VENDOR_DEFINED 0x80000000

366 /* CK_KEY_TYPE is a value that identifies a key type */
367 /* CK_KEY_TYPE was changed from CK_USHORT to CK_ULONG for v2.0 */
368 typedef CK_ULONG CK_KEY_TYPE;

370 /* the following key types are defined: */
371 #define CKK_RSA 0x00000000
372 #define CKK_DSA 0x00000001
373 #define CKK_DH 0x00000002

375 /* CKK_ECDSA and CKK_KEA are new for v2.0 */
376 /* CKK_ECDSA is deprecated in v2.11, CKK_EC is preferred. */
377 #define CKK_ECDSA 0x00000003
378 #define CKK_EC 0x00000003
379 #define CKK_X9_42_DH 0x00000004
380 #define CKK_KEA 0x00000005

382 #define CKK_GENERIC_SECRET 0x00000010
383 #define CKK_RC2 0x00000011
384 #define CKK_RC4 0x00000012
385 #define CKK_DES 0x00000013
386 #define CKK_DES2 0x00000014
387 #define CKK_DES3 0x00000015

389 /* all these key types are new for v2.0 */
390 #define CKK_CAST 0x00000016
391 #define CKK_CAST3 0x00000017

new/usr/src/lib/openssl/include/pkcs11t.h 7

392 /* CKK_CAST5 is deprecated in v2.11, CKK_CAST128 is preferred. */
393 #define CKK_CAST5 0x00000018
394 #define CKK_CAST128 0x00000018
395 #define CKK_RC5 0x00000019
396 #define CKK_IDEA 0x0000001A
397 #define CKK_SKIPJACK 0x0000001B
398 #define CKK_BATON 0x0000001C
399 #define CKK_JUNIPER 0x0000001D
400 #define CKK_CDMF 0x0000001E
401 #define CKK_AES 0x0000001F

403 /* BlowFish and TwoFish are new for v2.20 */
404 #define CKK_BLOWFISH 0x00000020
405 #define CKK_TWOFISH 0x00000021

407 /* SecurID, HOTP, and ACTI are new for PKCS #11 v2.20 amendment 1 */
408 #define CKK_SECURID 0x00000022
409 #define CKK_HOTP 0x00000023
410 #define CKK_ACTI 0x00000024

412 /* Camellia is new for PKCS #11 v2.20 amendment 3 */
413 #define CKK_CAMELLIA 0x00000025
414 /* ARIA is new for PKCS #11 v2.20 amendment 3 */
415 #define CKK_ARIA 0x00000026

418 #define CKK_VENDOR_DEFINED 0x80000000

421 /* CK_CERTIFICATE_TYPE is a value that identifies a certificate
422 * type */
423 /* CK_CERTIFICATE_TYPE was changed from CK_USHORT to CK_ULONG
424 * for v2.0 */
425 typedef CK_ULONG CK_CERTIFICATE_TYPE;

427 /* The following certificate types are defined: */
428 /* CKC_X_509_ATTR_CERT is new for v2.10 */
429 /* CKC_WTLS is new for v2.20 */
430 #define CKC_X_509 0x00000000
431 #define CKC_X_509_ATTR_CERT 0x00000001
432 #define CKC_WTLS 0x00000002
433 #define CKC_VENDOR_DEFINED 0x80000000

436 /* CK_ATTRIBUTE_TYPE is a value that identifies an attribute
437 * type */
438 /* CK_ATTRIBUTE_TYPE was changed from CK_USHORT to CK_ULONG for
439 * v2.0 */
440 typedef CK_ULONG CK_ATTRIBUTE_TYPE;

442 /* The CKF_ARRAY_ATTRIBUTE flag identifies an attribute which
443 consists of an array of values. */
444 #define CKF_ARRAY_ATTRIBUTE 0x40000000

446 /* The following OTP-related defines are new for PKCS #11 v2.20 amendment 1
447 and relates to the CKA_OTP_FORMAT attribute */
448 #define CK_OTP_FORMAT_DECIMAL 0
449 #define CK_OTP_FORMAT_HEXADECIMAL 1
450 #define CK_OTP_FORMAT_ALPHANUMERIC 2
451 #define CK_OTP_FORMAT_BINARY 3

453 /* The following OTP-related defines are new for PKCS #11 v2.20 amendment 1
454 and relates to the CKA_OTP_..._REQUIREMENT attributes */
455 #define CK_OTP_PARAM_IGNORED 0
456 #define CK_OTP_PARAM_OPTIONAL 1
457 #define CK_OTP_PARAM_MANDATORY 2

new/usr/src/lib/openssl/include/pkcs11t.h 8

459 /* The following attribute types are defined: */
460 #define CKA_CLASS 0x00000000
461 #define CKA_TOKEN 0x00000001
462 #define CKA_PRIVATE 0x00000002
463 #define CKA_LABEL 0x00000003
464 #define CKA_APPLICATION 0x00000010
465 #define CKA_VALUE 0x00000011

467 /* CKA_OBJECT_ID is new for v2.10 */
468 #define CKA_OBJECT_ID 0x00000012

470 #define CKA_CERTIFICATE_TYPE 0x00000080
471 #define CKA_ISSUER 0x00000081
472 #define CKA_SERIAL_NUMBER 0x00000082

474 /* CKA_AC_ISSUER, CKA_OWNER, and CKA_ATTR_TYPES are new
475 * for v2.10 */
476 #define CKA_AC_ISSUER 0x00000083
477 #define CKA_OWNER 0x00000084
478 #define CKA_ATTR_TYPES 0x00000085

480 /* CKA_TRUSTED is new for v2.11 */
481 #define CKA_TRUSTED 0x00000086

483 /* CKA_CERTIFICATE_CATEGORY ...
484 * CKA_CHECK_VALUE are new for v2.20 */
485 #define CKA_CERTIFICATE_CATEGORY 0x00000087
486 #define CKA_JAVA_MIDP_SECURITY_DOMAIN 0x00000088
487 #define CKA_URL 0x00000089
488 #define CKA_HASH_OF_SUBJECT_PUBLIC_KEY 0x0000008A
489 #define CKA_HASH_OF_ISSUER_PUBLIC_KEY 0x0000008B
490 #define CKA_CHECK_VALUE 0x00000090

492 #define CKA_KEY_TYPE 0x00000100
493 #define CKA_SUBJECT 0x00000101
494 #define CKA_ID 0x00000102
495 #define CKA_SENSITIVE 0x00000103
496 #define CKA_ENCRYPT 0x00000104
497 #define CKA_DECRYPT 0x00000105
498 #define CKA_WRAP 0x00000106
499 #define CKA_UNWRAP 0x00000107
500 #define CKA_SIGN 0x00000108
501 #define CKA_SIGN_RECOVER 0x00000109
502 #define CKA_VERIFY 0x0000010A
503 #define CKA_VERIFY_RECOVER 0x0000010B
504 #define CKA_DERIVE 0x0000010C
505 #define CKA_START_DATE 0x00000110
506 #define CKA_END_DATE 0x00000111
507 #define CKA_MODULUS 0x00000120
508 #define CKA_MODULUS_BITS 0x00000121
509 #define CKA_PUBLIC_EXPONENT 0x00000122
510 #define CKA_PRIVATE_EXPONENT 0x00000123
511 #define CKA_PRIME_1 0x00000124
512 #define CKA_PRIME_2 0x00000125
513 #define CKA_EXPONENT_1 0x00000126
514 #define CKA_EXPONENT_2 0x00000127
515 #define CKA_COEFFICIENT 0x00000128
516 #define CKA_PRIME 0x00000130
517 #define CKA_SUBPRIME 0x00000131
518 #define CKA_BASE 0x00000132

520 /* CKA_PRIME_BITS and CKA_SUB_PRIME_BITS are new for v2.11 */
521 #define CKA_PRIME_BITS 0x00000133
522 #define CKA_SUBPRIME_BITS 0x00000134
523 #define CKA_SUB_PRIME_BITS CKA_SUBPRIME_BITS

new/usr/src/lib/openssl/include/pkcs11t.h 9

524 /* (To retain backwards-compatibility) */

526 #define CKA_VALUE_BITS 0x00000160
527 #define CKA_VALUE_LEN 0x00000161

529 /* CKA_EXTRACTABLE, CKA_LOCAL, CKA_NEVER_EXTRACTABLE,
530 * CKA_ALWAYS_SENSITIVE, CKA_MODIFIABLE, CKA_ECDSA_PARAMS,
531 * and CKA_EC_POINT are new for v2.0 */
532 #define CKA_EXTRACTABLE 0x00000162
533 #define CKA_LOCAL 0x00000163
534 #define CKA_NEVER_EXTRACTABLE 0x00000164
535 #define CKA_ALWAYS_SENSITIVE 0x00000165

537 /* CKA_KEY_GEN_MECHANISM is new for v2.11 */
538 #define CKA_KEY_GEN_MECHANISM 0x00000166

540 #define CKA_MODIFIABLE 0x00000170

542 /* CKA_ECDSA_PARAMS is deprecated in v2.11,
543 * CKA_EC_PARAMS is preferred. */
544 #define CKA_ECDSA_PARAMS 0x00000180
545 #define CKA_EC_PARAMS 0x00000180

547 #define CKA_EC_POINT 0x00000181

549 /* CKA_SECONDARY_AUTH, CKA_AUTH_PIN_FLAGS,
550 * are new for v2.10. Deprecated in v2.11 and onwards. */
551 #define CKA_SECONDARY_AUTH 0x00000200
552 #define CKA_AUTH_PIN_FLAGS 0x00000201

554 /* CKA_ALWAYS_AUTHENTICATE ...
555 * CKA_UNWRAP_TEMPLATE are new for v2.20 */
556 #define CKA_ALWAYS_AUTHENTICATE 0x00000202

558 #define CKA_WRAP_WITH_TRUSTED 0x00000210
559 #define CKA_WRAP_TEMPLATE (CKF_ARRAY_ATTRIBUTE|0x00000211)
560 #define CKA_UNWRAP_TEMPLATE (CKF_ARRAY_ATTRIBUTE|0x00000212)

562 /* CKA_OTP... atttributes are new for PKCS #11 v2.20 amendment 3. */
563 #define CKA_OTP_FORMAT 0x00000220
564 #define CKA_OTP_LENGTH 0x00000221
565 #define CKA_OTP_TIME_INTERVAL 0x00000222
566 #define CKA_OTP_USER_FRIENDLY_MODE 0x00000223
567 #define CKA_OTP_CHALLENGE_REQUIREMENT 0x00000224
568 #define CKA_OTP_TIME_REQUIREMENT 0x00000225
569 #define CKA_OTP_COUNTER_REQUIREMENT 0x00000226
570 #define CKA_OTP_PIN_REQUIREMENT 0x00000227
571 #define CKA_OTP_COUNTER 0x0000022E
572 #define CKA_OTP_TIME 0x0000022F
573 #define CKA_OTP_USER_IDENTIFIER 0x0000022A
574 #define CKA_OTP_SERVICE_IDENTIFIER 0x0000022B
575 #define CKA_OTP_SERVICE_LOGO 0x0000022C
576 #define CKA_OTP_SERVICE_LOGO_TYPE 0x0000022D

579 /* CKA_HW_FEATURE_TYPE, CKA_RESET_ON_INIT, and CKA_HAS_RESET
580 * are new for v2.10 */
581 #define CKA_HW_FEATURE_TYPE 0x00000300
582 #define CKA_RESET_ON_INIT 0x00000301
583 #define CKA_HAS_RESET 0x00000302

585 /* The following attributes are new for v2.20 */
586 #define CKA_PIXEL_X 0x00000400
587 #define CKA_PIXEL_Y 0x00000401
588 #define CKA_RESOLUTION 0x00000402
589 #define CKA_CHAR_ROWS 0x00000403

new/usr/src/lib/openssl/include/pkcs11t.h 10

590 #define CKA_CHAR_COLUMNS 0x00000404
591 #define CKA_COLOR 0x00000405
592 #define CKA_BITS_PER_PIXEL 0x00000406
593 #define CKA_CHAR_SETS 0x00000480
594 #define CKA_ENCODING_METHODS 0x00000481
595 #define CKA_MIME_TYPES 0x00000482
596 #define CKA_MECHANISM_TYPE 0x00000500
597 #define CKA_REQUIRED_CMS_ATTRIBUTES 0x00000501
598 #define CKA_DEFAULT_CMS_ATTRIBUTES 0x00000502
599 #define CKA_SUPPORTED_CMS_ATTRIBUTES 0x00000503
600 #define CKA_ALLOWED_MECHANISMS (CKF_ARRAY_ATTRIBUTE|0x00000600)

602 #define CKA_VENDOR_DEFINED 0x80000000

604 /* CK_ATTRIBUTE is a structure that includes the type, length
605 * and value of an attribute */
606 typedef struct CK_ATTRIBUTE {
607 CK_ATTRIBUTE_TYPE type;
608 CK_VOID_PTR pValue;

610 /* ulValueLen went from CK_USHORT to CK_ULONG for v2.0 */
611 CK_ULONG ulValueLen; /* in bytes */
612 } CK_ATTRIBUTE;

614 typedef CK_ATTRIBUTE CK_PTR CK_ATTRIBUTE_PTR;

617 /* CK_DATE is a structure that defines a date */
618 typedef struct CK_DATE{
619 CK_CHAR year[4]; /* the year ("1900" - "9999") */
620 CK_CHAR month[2]; /* the month ("01" - "12") */
621 CK_CHAR day[2]; /* the day ("01" - "31") */
622 } CK_DATE;

625 /* CK_MECHANISM_TYPE is a value that identifies a mechanism
626 * type */
627 /* CK_MECHANISM_TYPE was changed from CK_USHORT to CK_ULONG for
628 * v2.0 */
629 typedef CK_ULONG CK_MECHANISM_TYPE;

631 /* the following mechanism types are defined: */
632 #define CKM_RSA_PKCS_KEY_PAIR_GEN 0x00000000
633 #define CKM_RSA_PKCS 0x00000001
634 #define CKM_RSA_9796 0x00000002
635 #define CKM_RSA_X_509 0x00000003

637 /* CKM_MD2_RSA_PKCS, CKM_MD5_RSA_PKCS, and CKM_SHA1_RSA_PKCS
638 * are new for v2.0. They are mechanisms which hash and sign */
639 #define CKM_MD2_RSA_PKCS 0x00000004
640 #define CKM_MD5_RSA_PKCS 0x00000005
641 #define CKM_SHA1_RSA_PKCS 0x00000006

643 /* CKM_RIPEMD128_RSA_PKCS, CKM_RIPEMD160_RSA_PKCS, and
644 * CKM_RSA_PKCS_OAEP are new for v2.10 */
645 #define CKM_RIPEMD128_RSA_PKCS 0x00000007
646 #define CKM_RIPEMD160_RSA_PKCS 0x00000008
647 #define CKM_RSA_PKCS_OAEP 0x00000009

649 /* CKM_RSA_X9_31_KEY_PAIR_GEN, CKM_RSA_X9_31, CKM_SHA1_RSA_X9_31,
650 * CKM_RSA_PKCS_PSS, and CKM_SHA1_RSA_PKCS_PSS are new for v2.11 */
651 #define CKM_RSA_X9_31_KEY_PAIR_GEN 0x0000000A
652 #define CKM_RSA_X9_31 0x0000000B
653 #define CKM_SHA1_RSA_X9_31 0x0000000C
654 #define CKM_RSA_PKCS_PSS 0x0000000D
655 #define CKM_SHA1_RSA_PKCS_PSS 0x0000000E

new/usr/src/lib/openssl/include/pkcs11t.h 11

657 #define CKM_DSA_KEY_PAIR_GEN 0x00000010
658 #define CKM_DSA 0x00000011
659 #define CKM_DSA_SHA1 0x00000012
660 #define CKM_DH_PKCS_KEY_PAIR_GEN 0x00000020
661 #define CKM_DH_PKCS_DERIVE 0x00000021

663 /* CKM_X9_42_DH_KEY_PAIR_GEN, CKM_X9_42_DH_DERIVE,
664 * CKM_X9_42_DH_HYBRID_DERIVE, and CKM_X9_42_MQV_DERIVE are new for
665 * v2.11 */
666 #define CKM_X9_42_DH_KEY_PAIR_GEN 0x00000030
667 #define CKM_X9_42_DH_DERIVE 0x00000031
668 #define CKM_X9_42_DH_HYBRID_DERIVE 0x00000032
669 #define CKM_X9_42_MQV_DERIVE 0x00000033

671 /* CKM_SHA256/384/512 are new for v2.20 */
672 #define CKM_SHA256_RSA_PKCS 0x00000040
673 #define CKM_SHA384_RSA_PKCS 0x00000041
674 #define CKM_SHA512_RSA_PKCS 0x00000042
675 #define CKM_SHA256_RSA_PKCS_PSS 0x00000043
676 #define CKM_SHA384_RSA_PKCS_PSS 0x00000044
677 #define CKM_SHA512_RSA_PKCS_PSS 0x00000045

679 /* SHA-224 RSA mechanisms are new for PKCS #11 v2.20 amendment 3 */
680 #define CKM_SHA224_RSA_PKCS 0x00000046
681 #define CKM_SHA224_RSA_PKCS_PSS 0x00000047

683 #define CKM_RC2_KEY_GEN 0x00000100
684 #define CKM_RC2_ECB 0x00000101
685 #define CKM_RC2_CBC 0x00000102
686 #define CKM_RC2_MAC 0x00000103

688 /* CKM_RC2_MAC_GENERAL and CKM_RC2_CBC_PAD are new for v2.0 */
689 #define CKM_RC2_MAC_GENERAL 0x00000104
690 #define CKM_RC2_CBC_PAD 0x00000105

692 #define CKM_RC4_KEY_GEN 0x00000110
693 #define CKM_RC4 0x00000111
694 #define CKM_DES_KEY_GEN 0x00000120
695 #define CKM_DES_ECB 0x00000121
696 #define CKM_DES_CBC 0x00000122
697 #define CKM_DES_MAC 0x00000123

699 /* CKM_DES_MAC_GENERAL and CKM_DES_CBC_PAD are new for v2.0 */
700 #define CKM_DES_MAC_GENERAL 0x00000124
701 #define CKM_DES_CBC_PAD 0x00000125

703 #define CKM_DES2_KEY_GEN 0x00000130
704 #define CKM_DES3_KEY_GEN 0x00000131
705 #define CKM_DES3_ECB 0x00000132
706 #define CKM_DES3_CBC 0x00000133
707 #define CKM_DES3_MAC 0x00000134

709 /* CKM_DES3_MAC_GENERAL, CKM_DES3_CBC_PAD, CKM_CDMF_KEY_GEN,
710 * CKM_CDMF_ECB, CKM_CDMF_CBC, CKM_CDMF_MAC,
711 * CKM_CDMF_MAC_GENERAL, and CKM_CDMF_CBC_PAD are new for v2.0 */
712 #define CKM_DES3_MAC_GENERAL 0x00000135
713 #define CKM_DES3_CBC_PAD 0x00000136
714 #define CKM_CDMF_KEY_GEN 0x00000140
715 #define CKM_CDMF_ECB 0x00000141
716 #define CKM_CDMF_CBC 0x00000142
717 #define CKM_CDMF_MAC 0x00000143
718 #define CKM_CDMF_MAC_GENERAL 0x00000144
719 #define CKM_CDMF_CBC_PAD 0x00000145

721 /* the following four DES mechanisms are new for v2.20 */

new/usr/src/lib/openssl/include/pkcs11t.h 12

722 #define CKM_DES_OFB64 0x00000150
723 #define CKM_DES_OFB8 0x00000151
724 #define CKM_DES_CFB64 0x00000152
725 #define CKM_DES_CFB8 0x00000153

727 #define CKM_MD2 0x00000200

729 /* CKM_MD2_HMAC and CKM_MD2_HMAC_GENERAL are new for v2.0 */
730 #define CKM_MD2_HMAC 0x00000201
731 #define CKM_MD2_HMAC_GENERAL 0x00000202

733 #define CKM_MD5 0x00000210

735 /* CKM_MD5_HMAC and CKM_MD5_HMAC_GENERAL are new for v2.0 */
736 #define CKM_MD5_HMAC 0x00000211
737 #define CKM_MD5_HMAC_GENERAL 0x00000212

739 #define CKM_SHA_1 0x00000220

741 /* CKM_SHA_1_HMAC and CKM_SHA_1_HMAC_GENERAL are new for v2.0 */
742 #define CKM_SHA_1_HMAC 0x00000221
743 #define CKM_SHA_1_HMAC_GENERAL 0x00000222

745 /* CKM_RIPEMD128, CKM_RIPEMD128_HMAC,
746 * CKM_RIPEMD128_HMAC_GENERAL, CKM_RIPEMD160, CKM_RIPEMD160_HMAC,
747 * and CKM_RIPEMD160_HMAC_GENERAL are new for v2.10 */
748 #define CKM_RIPEMD128 0x00000230
749 #define CKM_RIPEMD128_HMAC 0x00000231
750 #define CKM_RIPEMD128_HMAC_GENERAL 0x00000232
751 #define CKM_RIPEMD160 0x00000240
752 #define CKM_RIPEMD160_HMAC 0x00000241
753 #define CKM_RIPEMD160_HMAC_GENERAL 0x00000242

755 /* CKM_SHA256/384/512 are new for v2.20 */
756 #define CKM_SHA256 0x00000250
757 #define CKM_SHA256_HMAC 0x00000251
758 #define CKM_SHA256_HMAC_GENERAL 0x00000252

760 /* SHA-224 is new for PKCS #11 v2.20 amendment 3 */
761 #define CKM_SHA224 0x00000255
762 #define CKM_SHA224_HMAC 0x00000256
763 #define CKM_SHA224_HMAC_GENERAL 0x00000257

765 #define CKM_SHA384 0x00000260
766 #define CKM_SHA384_HMAC 0x00000261
767 #define CKM_SHA384_HMAC_GENERAL 0x00000262
768 #define CKM_SHA512 0x00000270
769 #define CKM_SHA512_HMAC 0x00000271
770 #define CKM_SHA512_HMAC_GENERAL 0x00000272

772 /* SecurID is new for PKCS #11 v2.20 amendment 1 */
773 #define CKM_SECURID_KEY_GEN 0x00000280
774 #define CKM_SECURID 0x00000282

776 /* HOTP is new for PKCS #11 v2.20 amendment 1 */
777 #define CKM_HOTP_KEY_GEN 0x00000290
778 #define CKM_HOTP 0x00000291

780 /* ACTI is new for PKCS #11 v2.20 amendment 1 */
781 #define CKM_ACTI 0x000002A0
782 #define CKM_ACTI_KEY_GEN 0x000002A1

784 /* All of the following mechanisms are new for v2.0 */
785 /* Note that CAST128 and CAST5 are the same algorithm */
786 #define CKM_CAST_KEY_GEN 0x00000300
787 #define CKM_CAST_ECB 0x00000301

new/usr/src/lib/openssl/include/pkcs11t.h 13

788 #define CKM_CAST_CBC 0x00000302
789 #define CKM_CAST_MAC 0x00000303
790 #define CKM_CAST_MAC_GENERAL 0x00000304
791 #define CKM_CAST_CBC_PAD 0x00000305
792 #define CKM_CAST3_KEY_GEN 0x00000310
793 #define CKM_CAST3_ECB 0x00000311
794 #define CKM_CAST3_CBC 0x00000312
795 #define CKM_CAST3_MAC 0x00000313
796 #define CKM_CAST3_MAC_GENERAL 0x00000314
797 #define CKM_CAST3_CBC_PAD 0x00000315
798 #define CKM_CAST5_KEY_GEN 0x00000320
799 #define CKM_CAST128_KEY_GEN 0x00000320
800 #define CKM_CAST5_ECB 0x00000321
801 #define CKM_CAST128_ECB 0x00000321
802 #define CKM_CAST5_CBC 0x00000322
803 #define CKM_CAST128_CBC 0x00000322
804 #define CKM_CAST5_MAC 0x00000323
805 #define CKM_CAST128_MAC 0x00000323
806 #define CKM_CAST5_MAC_GENERAL 0x00000324
807 #define CKM_CAST128_MAC_GENERAL 0x00000324
808 #define CKM_CAST5_CBC_PAD 0x00000325
809 #define CKM_CAST128_CBC_PAD 0x00000325
810 #define CKM_RC5_KEY_GEN 0x00000330
811 #define CKM_RC5_ECB 0x00000331
812 #define CKM_RC5_CBC 0x00000332
813 #define CKM_RC5_MAC 0x00000333
814 #define CKM_RC5_MAC_GENERAL 0x00000334
815 #define CKM_RC5_CBC_PAD 0x00000335
816 #define CKM_IDEA_KEY_GEN 0x00000340
817 #define CKM_IDEA_ECB 0x00000341
818 #define CKM_IDEA_CBC 0x00000342
819 #define CKM_IDEA_MAC 0x00000343
820 #define CKM_IDEA_MAC_GENERAL 0x00000344
821 #define CKM_IDEA_CBC_PAD 0x00000345
822 #define CKM_GENERIC_SECRET_KEY_GEN 0x00000350
823 #define CKM_CONCATENATE_BASE_AND_KEY 0x00000360
824 #define CKM_CONCATENATE_BASE_AND_DATA 0x00000362
825 #define CKM_CONCATENATE_DATA_AND_BASE 0x00000363
826 #define CKM_XOR_BASE_AND_DATA 0x00000364
827 #define CKM_EXTRACT_KEY_FROM_KEY 0x00000365
828 #define CKM_SSL3_PRE_MASTER_KEY_GEN 0x00000370
829 #define CKM_SSL3_MASTER_KEY_DERIVE 0x00000371
830 #define CKM_SSL3_KEY_AND_MAC_DERIVE 0x00000372

832 /* CKM_SSL3_MASTER_KEY_DERIVE_DH, CKM_TLS_PRE_MASTER_KEY_GEN,
833 * CKM_TLS_MASTER_KEY_DERIVE, CKM_TLS_KEY_AND_MAC_DERIVE, and
834 * CKM_TLS_MASTER_KEY_DERIVE_DH are new for v2.11 */
835 #define CKM_SSL3_MASTER_KEY_DERIVE_DH 0x00000373
836 #define CKM_TLS_PRE_MASTER_KEY_GEN 0x00000374
837 #define CKM_TLS_MASTER_KEY_DERIVE 0x00000375
838 #define CKM_TLS_KEY_AND_MAC_DERIVE 0x00000376
839 #define CKM_TLS_MASTER_KEY_DERIVE_DH 0x00000377

841 /* CKM_TLS_PRF is new for v2.20 */
842 #define CKM_TLS_PRF 0x00000378

844 #define CKM_SSL3_MD5_MAC 0x00000380
845 #define CKM_SSL3_SHA1_MAC 0x00000381
846 #define CKM_MD5_KEY_DERIVATION 0x00000390
847 #define CKM_MD2_KEY_DERIVATION 0x00000391
848 #define CKM_SHA1_KEY_DERIVATION 0x00000392

850 /* CKM_SHA256/384/512 are new for v2.20 */
851 #define CKM_SHA256_KEY_DERIVATION 0x00000393
852 #define CKM_SHA384_KEY_DERIVATION 0x00000394
853 #define CKM_SHA512_KEY_DERIVATION 0x00000395

new/usr/src/lib/openssl/include/pkcs11t.h 14

855 /* SHA-224 key derivation is new for PKCS #11 v2.20 amendment 3 */
856 #define CKM_SHA224_KEY_DERIVATION 0x00000396

858 #define CKM_PBE_MD2_DES_CBC 0x000003A0
859 #define CKM_PBE_MD5_DES_CBC 0x000003A1
860 #define CKM_PBE_MD5_CAST_CBC 0x000003A2
861 #define CKM_PBE_MD5_CAST3_CBC 0x000003A3
862 #define CKM_PBE_MD5_CAST5_CBC 0x000003A4
863 #define CKM_PBE_MD5_CAST128_CBC 0x000003A4
864 #define CKM_PBE_SHA1_CAST5_CBC 0x000003A5
865 #define CKM_PBE_SHA1_CAST128_CBC 0x000003A5
866 #define CKM_PBE_SHA1_RC4_128 0x000003A6
867 #define CKM_PBE_SHA1_RC4_40 0x000003A7
868 #define CKM_PBE_SHA1_DES3_EDE_CBC 0x000003A8
869 #define CKM_PBE_SHA1_DES2_EDE_CBC 0x000003A9
870 #define CKM_PBE_SHA1_RC2_128_CBC 0x000003AA
871 #define CKM_PBE_SHA1_RC2_40_CBC 0x000003AB

873 /* CKM_PKCS5_PBKD2 is new for v2.10 */
874 #define CKM_PKCS5_PBKD2 0x000003B0

876 #define CKM_PBA_SHA1_WITH_SHA1_HMAC 0x000003C0

878 /* WTLS mechanisms are new for v2.20 */
879 #define CKM_WTLS_PRE_MASTER_KEY_GEN 0x000003D0
880 #define CKM_WTLS_MASTER_KEY_DERIVE 0x000003D1
881 #define CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC 0x000003D2
882 #define CKM_WTLS_PRF 0x000003D3
883 #define CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE 0x000003D4
884 #define CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE 0x000003D5

886 #define CKM_KEY_WRAP_LYNKS 0x00000400
887 #define CKM_KEY_WRAP_SET_OAEP 0x00000401

889 /* CKM_CMS_SIG is new for v2.20 */
890 #define CKM_CMS_SIG 0x00000500

892 /* CKM_KIP mechanisms are new for PKCS #11 v2.20 amendment 2 */
893 #define CKM_KIP_DERIVE 0x00000510
894 #define CKM_KIP_WRAP 0x00000511
895 #define CKM_KIP_MAC 0x00000512

897 /* Camellia is new for PKCS #11 v2.20 amendment 3 */
898 #define CKM_CAMELLIA_KEY_GEN 0x00000550
899 #define CKM_CAMELLIA_ECB 0x00000551
900 #define CKM_CAMELLIA_CBC 0x00000552
901 #define CKM_CAMELLIA_MAC 0x00000553
902 #define CKM_CAMELLIA_MAC_GENERAL 0x00000554
903 #define CKM_CAMELLIA_CBC_PAD 0x00000555
904 #define CKM_CAMELLIA_ECB_ENCRYPT_DATA 0x00000556
905 #define CKM_CAMELLIA_CBC_ENCRYPT_DATA 0x00000557
906 #define CKM_CAMELLIA_CTR 0x00000558

908 /* ARIA is new for PKCS #11 v2.20 amendment 3 */
909 #define CKM_ARIA_KEY_GEN 0x00000560
910 #define CKM_ARIA_ECB 0x00000561
911 #define CKM_ARIA_CBC 0x00000562
912 #define CKM_ARIA_MAC 0x00000563
913 #define CKM_ARIA_MAC_GENERAL 0x00000564
914 #define CKM_ARIA_CBC_PAD 0x00000565
915 #define CKM_ARIA_ECB_ENCRYPT_DATA 0x00000566
916 #define CKM_ARIA_CBC_ENCRYPT_DATA 0x00000567

918 /* Fortezza mechanisms */
919 #define CKM_SKIPJACK_KEY_GEN 0x00001000

new/usr/src/lib/openssl/include/pkcs11t.h 15

920 #define CKM_SKIPJACK_ECB64 0x00001001
921 #define CKM_SKIPJACK_CBC64 0x00001002
922 #define CKM_SKIPJACK_OFB64 0x00001003
923 #define CKM_SKIPJACK_CFB64 0x00001004
924 #define CKM_SKIPJACK_CFB32 0x00001005
925 #define CKM_SKIPJACK_CFB16 0x00001006
926 #define CKM_SKIPJACK_CFB8 0x00001007
927 #define CKM_SKIPJACK_WRAP 0x00001008
928 #define CKM_SKIPJACK_PRIVATE_WRAP 0x00001009
929 #define CKM_SKIPJACK_RELAYX 0x0000100a
930 #define CKM_KEA_KEY_PAIR_GEN 0x00001010
931 #define CKM_KEA_KEY_DERIVE 0x00001011
932 #define CKM_FORTEZZA_TIMESTAMP 0x00001020
933 #define CKM_BATON_KEY_GEN 0x00001030
934 #define CKM_BATON_ECB128 0x00001031
935 #define CKM_BATON_ECB96 0x00001032
936 #define CKM_BATON_CBC128 0x00001033
937 #define CKM_BATON_COUNTER 0x00001034
938 #define CKM_BATON_SHUFFLE 0x00001035
939 #define CKM_BATON_WRAP 0x00001036

941 /* CKM_ECDSA_KEY_PAIR_GEN is deprecated in v2.11,
942 * CKM_EC_KEY_PAIR_GEN is preferred */
943 #define CKM_ECDSA_KEY_PAIR_GEN 0x00001040
944 #define CKM_EC_KEY_PAIR_GEN 0x00001040

946 #define CKM_ECDSA 0x00001041
947 #define CKM_ECDSA_SHA1 0x00001042

949 /* CKM_ECDH1_DERIVE, CKM_ECDH1_COFACTOR_DERIVE, and CKM_ECMQV_DERIVE
950 * are new for v2.11 */
951 #define CKM_ECDH1_DERIVE 0x00001050
952 #define CKM_ECDH1_COFACTOR_DERIVE 0x00001051
953 #define CKM_ECMQV_DERIVE 0x00001052

955 #define CKM_JUNIPER_KEY_GEN 0x00001060
956 #define CKM_JUNIPER_ECB128 0x00001061
957 #define CKM_JUNIPER_CBC128 0x00001062
958 #define CKM_JUNIPER_COUNTER 0x00001063
959 #define CKM_JUNIPER_SHUFFLE 0x00001064
960 #define CKM_JUNIPER_WRAP 0x00001065
961 #define CKM_FASTHASH 0x00001070

963 /* CKM_AES_KEY_GEN, CKM_AES_ECB, CKM_AES_CBC, CKM_AES_MAC,
964 * CKM_AES_MAC_GENERAL, CKM_AES_CBC_PAD, CKM_DSA_PARAMETER_GEN,
965 * CKM_DH_PKCS_PARAMETER_GEN, and CKM_X9_42_DH_PARAMETER_GEN are
966 * new for v2.11 */
967 #define CKM_AES_KEY_GEN 0x00001080
968 #define CKM_AES_ECB 0x00001081
969 #define CKM_AES_CBC 0x00001082
970 #define CKM_AES_MAC 0x00001083
971 #define CKM_AES_MAC_GENERAL 0x00001084
972 #define CKM_AES_CBC_PAD 0x00001085

974 /* AES counter mode is new for PKCS #11 v2.20 amendment 3 */
975 #define CKM_AES_CTR 0x00001086

977 /* BlowFish and TwoFish are new for v2.20 */
978 #define CKM_BLOWFISH_KEY_GEN 0x00001090
979 #define CKM_BLOWFISH_CBC 0x00001091
980 #define CKM_TWOFISH_KEY_GEN 0x00001092
981 #define CKM_TWOFISH_CBC 0x00001093

984 /* CKM_xxx_ENCRYPT_DATA mechanisms are new for v2.20 */
985 #define CKM_DES_ECB_ENCRYPT_DATA 0x00001100

new/usr/src/lib/openssl/include/pkcs11t.h 16

986 #define CKM_DES_CBC_ENCRYPT_DATA 0x00001101
987 #define CKM_DES3_ECB_ENCRYPT_DATA 0x00001102
988 #define CKM_DES3_CBC_ENCRYPT_DATA 0x00001103
989 #define CKM_AES_ECB_ENCRYPT_DATA 0x00001104
990 #define CKM_AES_CBC_ENCRYPT_DATA 0x00001105

992 #define CKM_DSA_PARAMETER_GEN 0x00002000
993 #define CKM_DH_PKCS_PARAMETER_GEN 0x00002001
994 #define CKM_X9_42_DH_PARAMETER_GEN 0x00002002

996 #define CKM_VENDOR_DEFINED 0x80000000

998 typedef CK_MECHANISM_TYPE CK_PTR CK_MECHANISM_TYPE_PTR;

1001 /* CK_MECHANISM is a structure that specifies a particular
1002 * mechanism */
1003 typedef struct CK_MECHANISM {
1004 CK_MECHANISM_TYPE mechanism;
1005 CK_VOID_PTR pParameter;

1007 /* ulParameterLen was changed from CK_USHORT to CK_ULONG for
1008 * v2.0 */
1009 CK_ULONG ulParameterLen; /* in bytes */
1010 } CK_MECHANISM;

1012 typedef CK_MECHANISM CK_PTR CK_MECHANISM_PTR;

1015 /* CK_MECHANISM_INFO provides information about a particular
1016 * mechanism */
1017 typedef struct CK_MECHANISM_INFO {
1018 CK_ULONG ulMinKeySize;
1019 CK_ULONG ulMaxKeySize;
1020 CK_FLAGS flags;
1021 } CK_MECHANISM_INFO;

1023 /* The flags are defined as follows:
1024 * Bit Flag Mask Meaning */
1025 #define CKF_HW 0x00000001 /* performed by HW */

1027 /* The flags CKF_ENCRYPT, CKF_DECRYPT, CKF_DIGEST, CKF_SIGN,
1028 * CKG_SIGN_RECOVER, CKF_VERIFY, CKF_VERIFY_RECOVER,
1029 * CKF_GENERATE, CKF_GENERATE_KEY_PAIR, CKF_WRAP, CKF_UNWRAP,
1030 * and CKF_DERIVE are new for v2.0. They specify whether or not
1031 * a mechanism can be used for a particular task */
1032 #define CKF_ENCRYPT 0x00000100
1033 #define CKF_DECRYPT 0x00000200
1034 #define CKF_DIGEST 0x00000400
1035 #define CKF_SIGN 0x00000800
1036 #define CKF_SIGN_RECOVER 0x00001000
1037 #define CKF_VERIFY 0x00002000
1038 #define CKF_VERIFY_RECOVER 0x00004000
1039 #define CKF_GENERATE 0x00008000
1040 #define CKF_GENERATE_KEY_PAIR 0x00010000
1041 #define CKF_WRAP 0x00020000
1042 #define CKF_UNWRAP 0x00040000
1043 #define CKF_DERIVE 0x00080000

1045 /* CKF_EC_F_P, CKF_EC_F_2M, CKF_EC_ECPARAMETERS, CKF_EC_NAMEDCURVE,
1046 * CKF_EC_UNCOMPRESS, and CKF_EC_COMPRESS are new for v2.11. They
1047 * describe a token’s EC capabilities not available in mechanism
1048 * information. */
1049 #define CKF_EC_F_P 0x00100000
1050 #define CKF_EC_F_2M 0x00200000
1051 #define CKF_EC_ECPARAMETERS 0x00400000

new/usr/src/lib/openssl/include/pkcs11t.h 17

1052 #define CKF_EC_NAMEDCURVE 0x00800000
1053 #define CKF_EC_UNCOMPRESS 0x01000000
1054 #define CKF_EC_COMPRESS 0x02000000

1056 #define CKF_EXTENSION 0x80000000 /* FALSE for this version */

1058 typedef CK_MECHANISM_INFO CK_PTR CK_MECHANISM_INFO_PTR;

1061 /* CK_RV is a value that identifies the return value of a
1062 * Cryptoki function */
1063 /* CK_RV was changed from CK_USHORT to CK_ULONG for v2.0 */
1064 typedef CK_ULONG CK_RV;

1066 #define CKR_OK 0x00000000
1067 #define CKR_CANCEL 0x00000001
1068 #define CKR_HOST_MEMORY 0x00000002
1069 #define CKR_SLOT_ID_INVALID 0x00000003

1071 /* CKR_FLAGS_INVALID was removed for v2.0 */

1073 /* CKR_GENERAL_ERROR and CKR_FUNCTION_FAILED are new for v2.0 */
1074 #define CKR_GENERAL_ERROR 0x00000005
1075 #define CKR_FUNCTION_FAILED 0x00000006

1077 /* CKR_ARGUMENTS_BAD, CKR_NO_EVENT, CKR_NEED_TO_CREATE_THREADS,
1078 * and CKR_CANT_LOCK are new for v2.01 */
1079 #define CKR_ARGUMENTS_BAD 0x00000007
1080 #define CKR_NO_EVENT 0x00000008
1081 #define CKR_NEED_TO_CREATE_THREADS 0x00000009
1082 #define CKR_CANT_LOCK 0x0000000A

1084 #define CKR_ATTRIBUTE_READ_ONLY 0x00000010
1085 #define CKR_ATTRIBUTE_SENSITIVE 0x00000011
1086 #define CKR_ATTRIBUTE_TYPE_INVALID 0x00000012
1087 #define CKR_ATTRIBUTE_VALUE_INVALID 0x00000013
1088 #define CKR_DATA_INVALID 0x00000020
1089 #define CKR_DATA_LEN_RANGE 0x00000021
1090 #define CKR_DEVICE_ERROR 0x00000030
1091 #define CKR_DEVICE_MEMORY 0x00000031
1092 #define CKR_DEVICE_REMOVED 0x00000032
1093 #define CKR_ENCRYPTED_DATA_INVALID 0x00000040
1094 #define CKR_ENCRYPTED_DATA_LEN_RANGE 0x00000041
1095 #define CKR_FUNCTION_CANCELED 0x00000050
1096 #define CKR_FUNCTION_NOT_PARALLEL 0x00000051

1098 /* CKR_FUNCTION_NOT_SUPPORTED is new for v2.0 */
1099 #define CKR_FUNCTION_NOT_SUPPORTED 0x00000054

1101 #define CKR_KEY_HANDLE_INVALID 0x00000060

1103 /* CKR_KEY_SENSITIVE was removed for v2.0 */

1105 #define CKR_KEY_SIZE_RANGE 0x00000062
1106 #define CKR_KEY_TYPE_INCONSISTENT 0x00000063

1108 /* CKR_KEY_NOT_NEEDED, CKR_KEY_CHANGED, CKR_KEY_NEEDED,
1109 * CKR_KEY_INDIGESTIBLE, CKR_KEY_FUNCTION_NOT_PERMITTED,
1110 * CKR_KEY_NOT_WRAPPABLE, and CKR_KEY_UNEXTRACTABLE are new for
1111 * v2.0 */
1112 #define CKR_KEY_NOT_NEEDED 0x00000064
1113 #define CKR_KEY_CHANGED 0x00000065
1114 #define CKR_KEY_NEEDED 0x00000066
1115 #define CKR_KEY_INDIGESTIBLE 0x00000067
1116 #define CKR_KEY_FUNCTION_NOT_PERMITTED 0x00000068
1117 #define CKR_KEY_NOT_WRAPPABLE 0x00000069

new/usr/src/lib/openssl/include/pkcs11t.h 18

1118 #define CKR_KEY_UNEXTRACTABLE 0x0000006A

1120 #define CKR_MECHANISM_INVALID 0x00000070
1121 #define CKR_MECHANISM_PARAM_INVALID 0x00000071

1123 /* CKR_OBJECT_CLASS_INCONSISTENT and CKR_OBJECT_CLASS_INVALID
1124 * were removed for v2.0 */
1125 #define CKR_OBJECT_HANDLE_INVALID 0x00000082
1126 #define CKR_OPERATION_ACTIVE 0x00000090
1127 #define CKR_OPERATION_NOT_INITIALIZED 0x00000091
1128 #define CKR_PIN_INCORRECT 0x000000A0
1129 #define CKR_PIN_INVALID 0x000000A1
1130 #define CKR_PIN_LEN_RANGE 0x000000A2

1132 /* CKR_PIN_EXPIRED and CKR_PIN_LOCKED are new for v2.0 */
1133 #define CKR_PIN_EXPIRED 0x000000A3
1134 #define CKR_PIN_LOCKED 0x000000A4

1136 #define CKR_SESSION_CLOSED 0x000000B0
1137 #define CKR_SESSION_COUNT 0x000000B1
1138 #define CKR_SESSION_HANDLE_INVALID 0x000000B3
1139 #define CKR_SESSION_PARALLEL_NOT_SUPPORTED 0x000000B4
1140 #define CKR_SESSION_READ_ONLY 0x000000B5
1141 #define CKR_SESSION_EXISTS 0x000000B6

1143 /* CKR_SESSION_READ_ONLY_EXISTS and
1144 * CKR_SESSION_READ_WRITE_SO_EXISTS are new for v2.0 */
1145 #define CKR_SESSION_READ_ONLY_EXISTS 0x000000B7
1146 #define CKR_SESSION_READ_WRITE_SO_EXISTS 0x000000B8

1148 #define CKR_SIGNATURE_INVALID 0x000000C0
1149 #define CKR_SIGNATURE_LEN_RANGE 0x000000C1
1150 #define CKR_TEMPLATE_INCOMPLETE 0x000000D0
1151 #define CKR_TEMPLATE_INCONSISTENT 0x000000D1
1152 #define CKR_TOKEN_NOT_PRESENT 0x000000E0
1153 #define CKR_TOKEN_NOT_RECOGNIZED 0x000000E1
1154 #define CKR_TOKEN_WRITE_PROTECTED 0x000000E2
1155 #define CKR_UNWRAPPING_KEY_HANDLE_INVALID 0x000000F0
1156 #define CKR_UNWRAPPING_KEY_SIZE_RANGE 0x000000F1
1157 #define CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT 0x000000F2
1158 #define CKR_USER_ALREADY_LOGGED_IN 0x00000100
1159 #define CKR_USER_NOT_LOGGED_IN 0x00000101
1160 #define CKR_USER_PIN_NOT_INITIALIZED 0x00000102
1161 #define CKR_USER_TYPE_INVALID 0x00000103

1163 /* CKR_USER_ANOTHER_ALREADY_LOGGED_IN and CKR_USER_TOO_MANY_TYPES
1164 * are new to v2.01 */
1165 #define CKR_USER_ANOTHER_ALREADY_LOGGED_IN 0x00000104
1166 #define CKR_USER_TOO_MANY_TYPES 0x00000105

1168 #define CKR_WRAPPED_KEY_INVALID 0x00000110
1169 #define CKR_WRAPPED_KEY_LEN_RANGE 0x00000112
1170 #define CKR_WRAPPING_KEY_HANDLE_INVALID 0x00000113
1171 #define CKR_WRAPPING_KEY_SIZE_RANGE 0x00000114
1172 #define CKR_WRAPPING_KEY_TYPE_INCONSISTENT 0x00000115
1173 #define CKR_RANDOM_SEED_NOT_SUPPORTED 0x00000120

1175 /* These are new to v2.0 */
1176 #define CKR_RANDOM_NO_RNG 0x00000121

1178 /* These are new to v2.11 */
1179 #define CKR_DOMAIN_PARAMS_INVALID 0x00000130

1181 /* These are new to v2.0 */
1182 #define CKR_BUFFER_TOO_SMALL 0x00000150
1183 #define CKR_SAVED_STATE_INVALID 0x00000160

new/usr/src/lib/openssl/include/pkcs11t.h 19

1184 #define CKR_INFORMATION_SENSITIVE 0x00000170
1185 #define CKR_STATE_UNSAVEABLE 0x00000180

1187 /* These are new to v2.01 */
1188 #define CKR_CRYPTOKI_NOT_INITIALIZED 0x00000190
1189 #define CKR_CRYPTOKI_ALREADY_INITIALIZED 0x00000191
1190 #define CKR_MUTEX_BAD 0x000001A0
1191 #define CKR_MUTEX_NOT_LOCKED 0x000001A1

1193 /* The following return values are new for PKCS #11 v2.20 amendment 3 */
1194 #define CKR_NEW_PIN_MODE 0x000001B0
1195 #define CKR_NEXT_OTP 0x000001B1

1197 /* This is new to v2.20 */
1198 #define CKR_FUNCTION_REJECTED 0x00000200

1200 #define CKR_VENDOR_DEFINED 0x80000000

1203 /* CK_NOTIFY is an application callback that processes events */
1204 typedef CK_CALLBACK_FUNCTION(CK_RV, CK_NOTIFY)(
1205 CK_SESSION_HANDLE hSession, /* the session’s handle */
1206 CK_NOTIFICATION event,
1207 CK_VOID_PTR pApplication /* passed to C_OpenSession */
1208);

1211 /* CK_FUNCTION_LIST is a structure holding a Cryptoki spec
1212 * version and pointers of appropriate types to all the
1213 * Cryptoki functions */
1214 /* CK_FUNCTION_LIST is new for v2.0 */
1215 typedef struct CK_FUNCTION_LIST CK_FUNCTION_LIST;

1217 typedef CK_FUNCTION_LIST CK_PTR CK_FUNCTION_LIST_PTR;

1219 typedef CK_FUNCTION_LIST_PTR CK_PTR CK_FUNCTION_LIST_PTR_PTR;

1222 /* CK_CREATEMUTEX is an application callback for creating a
1223 * mutex object */
1224 typedef CK_CALLBACK_FUNCTION(CK_RV, CK_CREATEMUTEX)(
1225 CK_VOID_PTR_PTR ppMutex /* location to receive ptr to mutex */
1226);

1229 /* CK_DESTROYMUTEX is an application callback for destroying a
1230 * mutex object */
1231 typedef CK_CALLBACK_FUNCTION(CK_RV, CK_DESTROYMUTEX)(
1232 CK_VOID_PTR pMutex /* pointer to mutex */
1233);

1236 /* CK_LOCKMUTEX is an application callback for locking a mutex */
1237 typedef CK_CALLBACK_FUNCTION(CK_RV, CK_LOCKMUTEX)(
1238 CK_VOID_PTR pMutex /* pointer to mutex */
1239);

1242 /* CK_UNLOCKMUTEX is an application callback for unlocking a
1243 * mutex */
1244 typedef CK_CALLBACK_FUNCTION(CK_RV, CK_UNLOCKMUTEX)(
1245 CK_VOID_PTR pMutex /* pointer to mutex */
1246);

1249 /* CK_C_INITIALIZE_ARGS provides the optional arguments to

new/usr/src/lib/openssl/include/pkcs11t.h 20

1250 * C_Initialize */
1251 typedef struct CK_C_INITIALIZE_ARGS {
1252 CK_CREATEMUTEX CreateMutex;
1253 CK_DESTROYMUTEX DestroyMutex;
1254 CK_LOCKMUTEX LockMutex;
1255 CK_UNLOCKMUTEX UnlockMutex;
1256 CK_FLAGS flags;
1257 CK_VOID_PTR pReserved;
1258 } CK_C_INITIALIZE_ARGS;

1260 /* flags: bit flags that provide capabilities of the slot
1261 * Bit Flag Mask Meaning
1262 */
1263 #define CKF_LIBRARY_CANT_CREATE_OS_THREADS 0x00000001
1264 #define CKF_OS_LOCKING_OK 0x00000002

1266 typedef CK_C_INITIALIZE_ARGS CK_PTR CK_C_INITIALIZE_ARGS_PTR;

1269 /* additional flags for parameters to functions */

1271 /* CKF_DONT_BLOCK is for the function C_WaitForSlotEvent */
1272 #define CKF_DONT_BLOCK 1

1274 /* CK_RSA_PKCS_OAEP_MGF_TYPE is new for v2.10.
1275 * CK_RSA_PKCS_OAEP_MGF_TYPE is used to indicate the Message
1276 * Generation Function (MGF) applied to a message block when
1277 * formatting a message block for the PKCS #1 OAEP encryption
1278 * scheme. */
1279 typedef CK_ULONG CK_RSA_PKCS_MGF_TYPE;

1281 typedef CK_RSA_PKCS_MGF_TYPE CK_PTR CK_RSA_PKCS_MGF_TYPE_PTR;

1283 /* The following MGFs are defined */
1284 /* CKG_MGF1_SHA256, CKG_MGF1_SHA384, and CKG_MGF1_SHA512
1285 * are new for v2.20 */
1286 #define CKG_MGF1_SHA1 0x00000001
1287 #define CKG_MGF1_SHA256 0x00000002
1288 #define CKG_MGF1_SHA384 0x00000003
1289 #define CKG_MGF1_SHA512 0x00000004
1290 /* SHA-224 is new for PKCS #11 v2.20 amendment 3 */
1291 #define CKG_MGF1_SHA224 0x00000005

1293 /* CK_RSA_PKCS_OAEP_SOURCE_TYPE is new for v2.10.
1294 * CK_RSA_PKCS_OAEP_SOURCE_TYPE is used to indicate the source
1295 * of the encoding parameter when formatting a message block
1296 * for the PKCS #1 OAEP encryption scheme. */
1297 typedef CK_ULONG CK_RSA_PKCS_OAEP_SOURCE_TYPE;

1299 typedef CK_RSA_PKCS_OAEP_SOURCE_TYPE CK_PTR CK_RSA_PKCS_OAEP_SOURCE_TYPE_PTR;

1301 /* The following encoding parameter sources are defined */
1302 #define CKZ_DATA_SPECIFIED 0x00000001

1304 /* CK_RSA_PKCS_OAEP_PARAMS is new for v2.10.
1305 * CK_RSA_PKCS_OAEP_PARAMS provides the parameters to the
1306 * CKM_RSA_PKCS_OAEP mechanism. */
1307 typedef struct CK_RSA_PKCS_OAEP_PARAMS {
1308 CK_MECHANISM_TYPE hashAlg;
1309 CK_RSA_PKCS_MGF_TYPE mgf;
1310 CK_RSA_PKCS_OAEP_SOURCE_TYPE source;
1311 CK_VOID_PTR pSourceData;
1312 CK_ULONG ulSourceDataLen;
1313 } CK_RSA_PKCS_OAEP_PARAMS;

1315 typedef CK_RSA_PKCS_OAEP_PARAMS CK_PTR CK_RSA_PKCS_OAEP_PARAMS_PTR;

new/usr/src/lib/openssl/include/pkcs11t.h 21

1317 /* CK_RSA_PKCS_PSS_PARAMS is new for v2.11.
1318 * CK_RSA_PKCS_PSS_PARAMS provides the parameters to the
1319 * CKM_RSA_PKCS_PSS mechanism(s). */
1320 typedef struct CK_RSA_PKCS_PSS_PARAMS {
1321 CK_MECHANISM_TYPE hashAlg;
1322 CK_RSA_PKCS_MGF_TYPE mgf;
1323 CK_ULONG sLen;
1324 } CK_RSA_PKCS_PSS_PARAMS;

1326 typedef CK_RSA_PKCS_PSS_PARAMS CK_PTR CK_RSA_PKCS_PSS_PARAMS_PTR;

1328 /* CK_EC_KDF_TYPE is new for v2.11. */
1329 typedef CK_ULONG CK_EC_KDF_TYPE;

1331 /* The following EC Key Derivation Functions are defined */
1332 #define CKD_NULL 0x00000001
1333 #define CKD_SHA1_KDF 0x00000002

1335 /* CK_ECDH1_DERIVE_PARAMS is new for v2.11.
1336 * CK_ECDH1_DERIVE_PARAMS provides the parameters to the
1337 * CKM_ECDH1_DERIVE and CKM_ECDH1_COFACTOR_DERIVE mechanisms,
1338 * where each party contributes one key pair.
1339 */
1340 typedef struct CK_ECDH1_DERIVE_PARAMS {
1341 CK_EC_KDF_TYPE kdf;
1342 CK_ULONG ulSharedDataLen;
1343 CK_BYTE_PTR pSharedData;
1344 CK_ULONG ulPublicDataLen;
1345 CK_BYTE_PTR pPublicData;
1346 } CK_ECDH1_DERIVE_PARAMS;

1348 typedef CK_ECDH1_DERIVE_PARAMS CK_PTR CK_ECDH1_DERIVE_PARAMS_PTR;

1351 /* CK_ECDH2_DERIVE_PARAMS is new for v2.11.
1352 * CK_ECDH2_DERIVE_PARAMS provides the parameters to the
1353 * CKM_ECMQV_DERIVE mechanism, where each party contributes two key pairs. */
1354 typedef struct CK_ECDH2_DERIVE_PARAMS {
1355 CK_EC_KDF_TYPE kdf;
1356 CK_ULONG ulSharedDataLen;
1357 CK_BYTE_PTR pSharedData;
1358 CK_ULONG ulPublicDataLen;
1359 CK_BYTE_PTR pPublicData;
1360 CK_ULONG ulPrivateDataLen;
1361 CK_OBJECT_HANDLE hPrivateData;
1362 CK_ULONG ulPublicDataLen2;
1363 CK_BYTE_PTR pPublicData2;
1364 } CK_ECDH2_DERIVE_PARAMS;

1366 typedef CK_ECDH2_DERIVE_PARAMS CK_PTR CK_ECDH2_DERIVE_PARAMS_PTR;

1368 typedef struct CK_ECMQV_DERIVE_PARAMS {
1369 CK_EC_KDF_TYPE kdf;
1370 CK_ULONG ulSharedDataLen;
1371 CK_BYTE_PTR pSharedData;
1372 CK_ULONG ulPublicDataLen;
1373 CK_BYTE_PTR pPublicData;
1374 CK_ULONG ulPrivateDataLen;
1375 CK_OBJECT_HANDLE hPrivateData;
1376 CK_ULONG ulPublicDataLen2;
1377 CK_BYTE_PTR pPublicData2;
1378 CK_OBJECT_HANDLE publicKey;
1379 } CK_ECMQV_DERIVE_PARAMS;

1381 typedef CK_ECMQV_DERIVE_PARAMS CK_PTR CK_ECMQV_DERIVE_PARAMS_PTR;

new/usr/src/lib/openssl/include/pkcs11t.h 22

1383 /* Typedefs and defines for the CKM_X9_42_DH_KEY_PAIR_GEN and the
1384 * CKM_X9_42_DH_PARAMETER_GEN mechanisms (new for PKCS #11 v2.11) */
1385 typedef CK_ULONG CK_X9_42_DH_KDF_TYPE;
1386 typedef CK_X9_42_DH_KDF_TYPE CK_PTR CK_X9_42_DH_KDF_TYPE_PTR;

1388 /* The following X9.42 DH key derivation functions are defined
1389 (besides CKD_NULL already defined : */
1390 #define CKD_SHA1_KDF_ASN1 0x00000003
1391 #define CKD_SHA1_KDF_CONCATENATE 0x00000004

1393 /* CK_X9_42_DH1_DERIVE_PARAMS is new for v2.11.
1394 * CK_X9_42_DH1_DERIVE_PARAMS provides the parameters to the
1395 * CKM_X9_42_DH_DERIVE key derivation mechanism, where each party
1396 * contributes one key pair */
1397 typedef struct CK_X9_42_DH1_DERIVE_PARAMS {
1398 CK_X9_42_DH_KDF_TYPE kdf;
1399 CK_ULONG ulOtherInfoLen;
1400 CK_BYTE_PTR pOtherInfo;
1401 CK_ULONG ulPublicDataLen;
1402 CK_BYTE_PTR pPublicData;
1403 } CK_X9_42_DH1_DERIVE_PARAMS;

1405 typedef struct CK_X9_42_DH1_DERIVE_PARAMS CK_PTR CK_X9_42_DH1_DERIVE_PARAMS_PTR;

1407 /* CK_X9_42_DH2_DERIVE_PARAMS is new for v2.11.
1408 * CK_X9_42_DH2_DERIVE_PARAMS provides the parameters to the
1409 * CKM_X9_42_DH_HYBRID_DERIVE and CKM_X9_42_MQV_DERIVE key derivation
1410 * mechanisms, where each party contributes two key pairs */
1411 typedef struct CK_X9_42_DH2_DERIVE_PARAMS {
1412 CK_X9_42_DH_KDF_TYPE kdf;
1413 CK_ULONG ulOtherInfoLen;
1414 CK_BYTE_PTR pOtherInfo;
1415 CK_ULONG ulPublicDataLen;
1416 CK_BYTE_PTR pPublicData;
1417 CK_ULONG ulPrivateDataLen;
1418 CK_OBJECT_HANDLE hPrivateData;
1419 CK_ULONG ulPublicDataLen2;
1420 CK_BYTE_PTR pPublicData2;
1421 } CK_X9_42_DH2_DERIVE_PARAMS;

1423 typedef CK_X9_42_DH2_DERIVE_PARAMS CK_PTR CK_X9_42_DH2_DERIVE_PARAMS_PTR;

1425 typedef struct CK_X9_42_MQV_DERIVE_PARAMS {
1426 CK_X9_42_DH_KDF_TYPE kdf;
1427 CK_ULONG ulOtherInfoLen;
1428 CK_BYTE_PTR pOtherInfo;
1429 CK_ULONG ulPublicDataLen;
1430 CK_BYTE_PTR pPublicData;
1431 CK_ULONG ulPrivateDataLen;
1432 CK_OBJECT_HANDLE hPrivateData;
1433 CK_ULONG ulPublicDataLen2;
1434 CK_BYTE_PTR pPublicData2;
1435 CK_OBJECT_HANDLE publicKey;
1436 } CK_X9_42_MQV_DERIVE_PARAMS;

1438 typedef CK_X9_42_MQV_DERIVE_PARAMS CK_PTR CK_X9_42_MQV_DERIVE_PARAMS_PTR;

1440 /* CK_KEA_DERIVE_PARAMS provides the parameters to the
1441 * CKM_KEA_DERIVE mechanism */
1442 /* CK_KEA_DERIVE_PARAMS is new for v2.0 */
1443 typedef struct CK_KEA_DERIVE_PARAMS {
1444 CK_BBOOL isSender;
1445 CK_ULONG ulRandomLen;
1446 CK_BYTE_PTR pRandomA;
1447 CK_BYTE_PTR pRandomB;

new/usr/src/lib/openssl/include/pkcs11t.h 23

1448 CK_ULONG ulPublicDataLen;
1449 CK_BYTE_PTR pPublicData;
1450 } CK_KEA_DERIVE_PARAMS;

1452 typedef CK_KEA_DERIVE_PARAMS CK_PTR CK_KEA_DERIVE_PARAMS_PTR;

1455 /* CK_RC2_PARAMS provides the parameters to the CKM_RC2_ECB and
1456 * CKM_RC2_MAC mechanisms. An instance of CK_RC2_PARAMS just
1457 * holds the effective keysize */
1458 typedef CK_ULONG CK_RC2_PARAMS;

1460 typedef CK_RC2_PARAMS CK_PTR CK_RC2_PARAMS_PTR;

1463 /* CK_RC2_CBC_PARAMS provides the parameters to the CKM_RC2_CBC
1464 * mechanism */
1465 typedef struct CK_RC2_CBC_PARAMS {
1466 /* ulEffectiveBits was changed from CK_USHORT to CK_ULONG for
1467 * v2.0 */
1468 CK_ULONG ulEffectiveBits; /* effective bits (1-1024) */

1470 CK_BYTE iv[8]; /* IV for CBC mode */
1471 } CK_RC2_CBC_PARAMS;

1473 typedef CK_RC2_CBC_PARAMS CK_PTR CK_RC2_CBC_PARAMS_PTR;

1476 /* CK_RC2_MAC_GENERAL_PARAMS provides the parameters for the
1477 * CKM_RC2_MAC_GENERAL mechanism */
1478 /* CK_RC2_MAC_GENERAL_PARAMS is new for v2.0 */
1479 typedef struct CK_RC2_MAC_GENERAL_PARAMS {
1480 CK_ULONG ulEffectiveBits; /* effective bits (1-1024) */
1481 CK_ULONG ulMacLength; /* Length of MAC in bytes */
1482 } CK_RC2_MAC_GENERAL_PARAMS;

1484 typedef CK_RC2_MAC_GENERAL_PARAMS CK_PTR \
1485 CK_RC2_MAC_GENERAL_PARAMS_PTR;

1488 /* CK_RC5_PARAMS provides the parameters to the CKM_RC5_ECB and
1489 * CKM_RC5_MAC mechanisms */
1490 /* CK_RC5_PARAMS is new for v2.0 */
1491 typedef struct CK_RC5_PARAMS {
1492 CK_ULONG ulWordsize; /* wordsize in bits */
1493 CK_ULONG ulRounds; /* number of rounds */
1494 } CK_RC5_PARAMS;

1496 typedef CK_RC5_PARAMS CK_PTR CK_RC5_PARAMS_PTR;

1499 /* CK_RC5_CBC_PARAMS provides the parameters to the CKM_RC5_CBC
1500 * mechanism */
1501 /* CK_RC5_CBC_PARAMS is new for v2.0 */
1502 typedef struct CK_RC5_CBC_PARAMS {
1503 CK_ULONG ulWordsize; /* wordsize in bits */
1504 CK_ULONG ulRounds; /* number of rounds */
1505 CK_BYTE_PTR pIv; /* pointer to IV */
1506 CK_ULONG ulIvLen; /* length of IV in bytes */
1507 } CK_RC5_CBC_PARAMS;

1509 typedef CK_RC5_CBC_PARAMS CK_PTR CK_RC5_CBC_PARAMS_PTR;

1512 /* CK_RC5_MAC_GENERAL_PARAMS provides the parameters for the
1513 * CKM_RC5_MAC_GENERAL mechanism */

new/usr/src/lib/openssl/include/pkcs11t.h 24

1514 /* CK_RC5_MAC_GENERAL_PARAMS is new for v2.0 */
1515 typedef struct CK_RC5_MAC_GENERAL_PARAMS {
1516 CK_ULONG ulWordsize; /* wordsize in bits */
1517 CK_ULONG ulRounds; /* number of rounds */
1518 CK_ULONG ulMacLength; /* Length of MAC in bytes */
1519 } CK_RC5_MAC_GENERAL_PARAMS;

1521 typedef CK_RC5_MAC_GENERAL_PARAMS CK_PTR \
1522 CK_RC5_MAC_GENERAL_PARAMS_PTR;

1525 /* CK_MAC_GENERAL_PARAMS provides the parameters to most block
1526 * ciphers’ MAC_GENERAL mechanisms. Its value is the length of
1527 * the MAC */
1528 /* CK_MAC_GENERAL_PARAMS is new for v2.0 */
1529 typedef CK_ULONG CK_MAC_GENERAL_PARAMS;

1531 typedef CK_MAC_GENERAL_PARAMS CK_PTR CK_MAC_GENERAL_PARAMS_PTR;

1533 /* CK_DES/AES_ECB/CBC_ENCRYPT_DATA_PARAMS are new for v2.20 */
1534 typedef struct CK_DES_CBC_ENCRYPT_DATA_PARAMS {
1535 CK_BYTE iv[8];
1536 CK_BYTE_PTR pData;
1537 CK_ULONG length;
1538 } CK_DES_CBC_ENCRYPT_DATA_PARAMS;

1540 typedef CK_DES_CBC_ENCRYPT_DATA_PARAMS CK_PTR CK_DES_CBC_ENCRYPT_DATA_PARAMS_PTR

1542 typedef struct CK_AES_CBC_ENCRYPT_DATA_PARAMS {
1543 CK_BYTE iv[16];
1544 CK_BYTE_PTR pData;
1545 CK_ULONG length;
1546 } CK_AES_CBC_ENCRYPT_DATA_PARAMS;

1548 typedef CK_AES_CBC_ENCRYPT_DATA_PARAMS CK_PTR CK_AES_CBC_ENCRYPT_DATA_PARAMS_PTR

1550 /* CK_SKIPJACK_PRIVATE_WRAP_PARAMS provides the parameters to the
1551 * CKM_SKIPJACK_PRIVATE_WRAP mechanism */
1552 /* CK_SKIPJACK_PRIVATE_WRAP_PARAMS is new for v2.0 */
1553 typedef struct CK_SKIPJACK_PRIVATE_WRAP_PARAMS {
1554 CK_ULONG ulPasswordLen;
1555 CK_BYTE_PTR pPassword;
1556 CK_ULONG ulPublicDataLen;
1557 CK_BYTE_PTR pPublicData;
1558 CK_ULONG ulPAndGLen;
1559 CK_ULONG ulQLen;
1560 CK_ULONG ulRandomLen;
1561 CK_BYTE_PTR pRandomA;
1562 CK_BYTE_PTR pPrimeP;
1563 CK_BYTE_PTR pBaseG;
1564 CK_BYTE_PTR pSubprimeQ;
1565 } CK_SKIPJACK_PRIVATE_WRAP_PARAMS;

1567 typedef CK_SKIPJACK_PRIVATE_WRAP_PARAMS CK_PTR \
1568 CK_SKIPJACK_PRIVATE_WRAP_PTR;

1571 /* CK_SKIPJACK_RELAYX_PARAMS provides the parameters to the
1572 * CKM_SKIPJACK_RELAYX mechanism */
1573 /* CK_SKIPJACK_RELAYX_PARAMS is new for v2.0 */
1574 typedef struct CK_SKIPJACK_RELAYX_PARAMS {
1575 CK_ULONG ulOldWrappedXLen;
1576 CK_BYTE_PTR pOldWrappedX;
1577 CK_ULONG ulOldPasswordLen;
1578 CK_BYTE_PTR pOldPassword;
1579 CK_ULONG ulOldPublicDataLen;

new/usr/src/lib/openssl/include/pkcs11t.h 25

1580 CK_BYTE_PTR pOldPublicData;
1581 CK_ULONG ulOldRandomLen;
1582 CK_BYTE_PTR pOldRandomA;
1583 CK_ULONG ulNewPasswordLen;
1584 CK_BYTE_PTR pNewPassword;
1585 CK_ULONG ulNewPublicDataLen;
1586 CK_BYTE_PTR pNewPublicData;
1587 CK_ULONG ulNewRandomLen;
1588 CK_BYTE_PTR pNewRandomA;
1589 } CK_SKIPJACK_RELAYX_PARAMS;

1591 typedef CK_SKIPJACK_RELAYX_PARAMS CK_PTR \
1592 CK_SKIPJACK_RELAYX_PARAMS_PTR;

1595 typedef struct CK_PBE_PARAMS {
1596 CK_BYTE_PTR pInitVector;
1597 CK_UTF8CHAR_PTR pPassword;
1598 CK_ULONG ulPasswordLen;
1599 CK_BYTE_PTR pSalt;
1600 CK_ULONG ulSaltLen;
1601 CK_ULONG ulIteration;
1602 } CK_PBE_PARAMS;

1604 typedef CK_PBE_PARAMS CK_PTR CK_PBE_PARAMS_PTR;

1607 /* CK_KEY_WRAP_SET_OAEP_PARAMS provides the parameters to the
1608 * CKM_KEY_WRAP_SET_OAEP mechanism */
1609 /* CK_KEY_WRAP_SET_OAEP_PARAMS is new for v2.0 */
1610 typedef struct CK_KEY_WRAP_SET_OAEP_PARAMS {
1611 CK_BYTE bBC; /* block contents byte */
1612 CK_BYTE_PTR pX; /* extra data */
1613 CK_ULONG ulXLen; /* length of extra data in bytes */
1614 } CK_KEY_WRAP_SET_OAEP_PARAMS;

1616 typedef CK_KEY_WRAP_SET_OAEP_PARAMS CK_PTR \
1617 CK_KEY_WRAP_SET_OAEP_PARAMS_PTR;

1620 typedef struct CK_SSL3_RANDOM_DATA {
1621 CK_BYTE_PTR pClientRandom;
1622 CK_ULONG ulClientRandomLen;
1623 CK_BYTE_PTR pServerRandom;
1624 CK_ULONG ulServerRandomLen;
1625 } CK_SSL3_RANDOM_DATA;

1628 typedef struct CK_SSL3_MASTER_KEY_DERIVE_PARAMS {
1629 CK_SSL3_RANDOM_DATA RandomInfo;
1630 CK_VERSION_PTR pVersion;
1631 } CK_SSL3_MASTER_KEY_DERIVE_PARAMS;

1633 typedef struct CK_SSL3_MASTER_KEY_DERIVE_PARAMS CK_PTR \
1634 CK_SSL3_MASTER_KEY_DERIVE_PARAMS_PTR;

1637 typedef struct CK_SSL3_KEY_MAT_OUT {
1638 CK_OBJECT_HANDLE hClientMacSecret;
1639 CK_OBJECT_HANDLE hServerMacSecret;
1640 CK_OBJECT_HANDLE hClientKey;
1641 CK_OBJECT_HANDLE hServerKey;
1642 CK_BYTE_PTR pIVClient;
1643 CK_BYTE_PTR pIVServer;
1644 } CK_SSL3_KEY_MAT_OUT;

new/usr/src/lib/openssl/include/pkcs11t.h 26

1646 typedef CK_SSL3_KEY_MAT_OUT CK_PTR CK_SSL3_KEY_MAT_OUT_PTR;

1649 typedef struct CK_SSL3_KEY_MAT_PARAMS {
1650 CK_ULONG ulMacSizeInBits;
1651 CK_ULONG ulKeySizeInBits;
1652 CK_ULONG ulIVSizeInBits;
1653 CK_BBOOL bIsExport;
1654 CK_SSL3_RANDOM_DATA RandomInfo;
1655 CK_SSL3_KEY_MAT_OUT_PTR pReturnedKeyMaterial;
1656 } CK_SSL3_KEY_MAT_PARAMS;

1658 typedef CK_SSL3_KEY_MAT_PARAMS CK_PTR CK_SSL3_KEY_MAT_PARAMS_PTR;

1660 /* CK_TLS_PRF_PARAMS is new for version 2.20 */
1661 typedef struct CK_TLS_PRF_PARAMS {
1662 CK_BYTE_PTR pSeed;
1663 CK_ULONG ulSeedLen;
1664 CK_BYTE_PTR pLabel;
1665 CK_ULONG ulLabelLen;
1666 CK_BYTE_PTR pOutput;
1667 CK_ULONG_PTR pulOutputLen;
1668 } CK_TLS_PRF_PARAMS;

1670 typedef CK_TLS_PRF_PARAMS CK_PTR CK_TLS_PRF_PARAMS_PTR;

1672 /* WTLS is new for version 2.20 */
1673 typedef struct CK_WTLS_RANDOM_DATA {
1674 CK_BYTE_PTR pClientRandom;
1675 CK_ULONG ulClientRandomLen;
1676 CK_BYTE_PTR pServerRandom;
1677 CK_ULONG ulServerRandomLen;
1678 } CK_WTLS_RANDOM_DATA;

1680 typedef CK_WTLS_RANDOM_DATA CK_PTR CK_WTLS_RANDOM_DATA_PTR;

1682 typedef struct CK_WTLS_MASTER_KEY_DERIVE_PARAMS {
1683 CK_MECHANISM_TYPE DigestMechanism;
1684 CK_WTLS_RANDOM_DATA RandomInfo;
1685 CK_BYTE_PTR pVersion;
1686 } CK_WTLS_MASTER_KEY_DERIVE_PARAMS;

1688 typedef CK_WTLS_MASTER_KEY_DERIVE_PARAMS CK_PTR \
1689 CK_WTLS_MASTER_KEY_DERIVE_PARAMS_PTR;

1691 typedef struct CK_WTLS_PRF_PARAMS {
1692 CK_MECHANISM_TYPE DigestMechanism;
1693 CK_BYTE_PTR pSeed;
1694 CK_ULONG ulSeedLen;
1695 CK_BYTE_PTR pLabel;
1696 CK_ULONG ulLabelLen;
1697 CK_BYTE_PTR pOutput;
1698 CK_ULONG_PTR pulOutputLen;
1699 } CK_WTLS_PRF_PARAMS;

1701 typedef CK_WTLS_PRF_PARAMS CK_PTR CK_WTLS_PRF_PARAMS_PTR;

1703 typedef struct CK_WTLS_KEY_MAT_OUT {
1704 CK_OBJECT_HANDLE hMacSecret;
1705 CK_OBJECT_HANDLE hKey;
1706 CK_BYTE_PTR pIV;
1707 } CK_WTLS_KEY_MAT_OUT;

1709 typedef CK_WTLS_KEY_MAT_OUT CK_PTR CK_WTLS_KEY_MAT_OUT_PTR;

1711 typedef struct CK_WTLS_KEY_MAT_PARAMS {

new/usr/src/lib/openssl/include/pkcs11t.h 27

1712 CK_MECHANISM_TYPE DigestMechanism;
1713 CK_ULONG ulMacSizeInBits;
1714 CK_ULONG ulKeySizeInBits;
1715 CK_ULONG ulIVSizeInBits;
1716 CK_ULONG ulSequenceNumber;
1717 CK_BBOOL bIsExport;
1718 CK_WTLS_RANDOM_DATA RandomInfo;
1719 CK_WTLS_KEY_MAT_OUT_PTR pReturnedKeyMaterial;
1720 } CK_WTLS_KEY_MAT_PARAMS;

1722 typedef CK_WTLS_KEY_MAT_PARAMS CK_PTR CK_WTLS_KEY_MAT_PARAMS_PTR;

1724 /* CMS is new for version 2.20 */
1725 typedef struct CK_CMS_SIG_PARAMS {
1726 CK_OBJECT_HANDLE certificateHandle;
1727 CK_MECHANISM_PTR pSigningMechanism;
1728 CK_MECHANISM_PTR pDigestMechanism;
1729 CK_UTF8CHAR_PTR pContentType;
1730 CK_BYTE_PTR pRequestedAttributes;
1731 CK_ULONG ulRequestedAttributesLen;
1732 CK_BYTE_PTR pRequiredAttributes;
1733 CK_ULONG ulRequiredAttributesLen;
1734 } CK_CMS_SIG_PARAMS;

1736 typedef CK_CMS_SIG_PARAMS CK_PTR CK_CMS_SIG_PARAMS_PTR;

1738 typedef struct CK_KEY_DERIVATION_STRING_DATA {
1739 CK_BYTE_PTR pData;
1740 CK_ULONG ulLen;
1741 } CK_KEY_DERIVATION_STRING_DATA;

1743 typedef CK_KEY_DERIVATION_STRING_DATA CK_PTR \
1744 CK_KEY_DERIVATION_STRING_DATA_PTR;

1747 /* The CK_EXTRACT_PARAMS is used for the
1748 * CKM_EXTRACT_KEY_FROM_KEY mechanism. It specifies which bit
1749 * of the base key should be used as the first bit of the
1750 * derived key */
1751 /* CK_EXTRACT_PARAMS is new for v2.0 */
1752 typedef CK_ULONG CK_EXTRACT_PARAMS;

1754 typedef CK_EXTRACT_PARAMS CK_PTR CK_EXTRACT_PARAMS_PTR;

1756 /* CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE is new for v2.10.
1757 * CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE is used to
1758 * indicate the Pseudo-Random Function (PRF) used to generate
1759 * key bits using PKCS #5 PBKDF2. */
1760 typedef CK_ULONG CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE;

1762 typedef CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE CK_PTR CK_PKCS5_PBKD2_PSEUDO_

1764 /* The following PRFs are defined in PKCS #5 v2.0. */
1765 #define CKP_PKCS5_PBKD2_HMAC_SHA1 0x00000001

1768 /* CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE is new for v2.10.
1769 * CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE is used to indicate the
1770 * source of the salt value when deriving a key using PKCS #5
1771 * PBKDF2. */
1772 typedef CK_ULONG CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE;

1774 typedef CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE CK_PTR CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE

1776 /* The following salt value sources are defined in PKCS #5 v2.0. */
1777 #define CKZ_SALT_SPECIFIED 0x00000001

new/usr/src/lib/openssl/include/pkcs11t.h 28

1779 /* CK_PKCS5_PBKD2_PARAMS is new for v2.10.
1780 * CK_PKCS5_PBKD2_PARAMS is a structure that provides the
1781 * parameters to the CKM_PKCS5_PBKD2 mechanism. */
1782 typedef struct CK_PKCS5_PBKD2_PARAMS {
1783 CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE saltSource;
1784 CK_VOID_PTR pSaltSourceData;
1785 CK_ULONG ulSaltSourceDataLen;
1786 CK_ULONG iterations;
1787 CK_PKCS5_PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE prf;
1788 CK_VOID_PTR pPrfData;
1789 CK_ULONG ulPrfDataLen;
1790 CK_UTF8CHAR_PTR pPassword;
1791 CK_ULONG_PTR ulPasswordLen;
1792 } CK_PKCS5_PBKD2_PARAMS;

1794 typedef CK_PKCS5_PBKD2_PARAMS CK_PTR CK_PKCS5_PBKD2_PARAMS_PTR;

1796 /* All CK_OTP structs are new for PKCS #11 v2.20 amendment 3 */

1798 typedef CK_ULONG CK_OTP_PARAM_TYPE;
1799 typedef CK_OTP_PARAM_TYPE CK_PARAM_TYPE; /* B/w compatibility */

1801 typedef struct CK_OTP_PARAM {
1802 CK_OTP_PARAM_TYPE type;
1803 CK_VOID_PTR pValue;
1804 CK_ULONG ulValueLen;
1805 } CK_OTP_PARAM;

1807 typedef CK_OTP_PARAM CK_PTR CK_OTP_PARAM_PTR;

1809 typedef struct CK_OTP_PARAMS {
1810 CK_OTP_PARAM_PTR pParams;
1811 CK_ULONG ulCount;
1812 } CK_OTP_PARAMS;

1814 typedef CK_OTP_PARAMS CK_PTR CK_OTP_PARAMS_PTR;

1816 typedef struct CK_OTP_SIGNATURE_INFO {
1817 CK_OTP_PARAM_PTR pParams;
1818 CK_ULONG ulCount;
1819 } CK_OTP_SIGNATURE_INFO;

1821 typedef CK_OTP_SIGNATURE_INFO CK_PTR CK_OTP_SIGNATURE_INFO_PTR;

1823 /* The following OTP-related defines are new for PKCS #11 v2.20 amendment 1 */
1824 #define CK_OTP_VALUE 0
1825 #define CK_OTP_PIN 1
1826 #define CK_OTP_CHALLENGE 2
1827 #define CK_OTP_TIME 3
1828 #define CK_OTP_COUNTER 4
1829 #define CK_OTP_FLAGS 5
1830 #define CK_OTP_OUTPUT_LENGTH 6
1831 #define CK_OTP_OUTPUT_FORMAT 7

1833 /* The following OTP-related defines are new for PKCS #11 v2.20 amendment 1 */
1834 #define CKF_NEXT_OTP 0x00000001
1835 #define CKF_EXCLUDE_TIME 0x00000002
1836 #define CKF_EXCLUDE_COUNTER 0x00000004
1837 #define CKF_EXCLUDE_CHALLENGE 0x00000008
1838 #define CKF_EXCLUDE_PIN 0x00000010
1839 #define CKF_USER_FRIENDLY_OTP 0x00000020

1841 /* CK_KIP_PARAMS is new for PKCS #11 v2.20 amendment 2 */
1842 typedef struct CK_KIP_PARAMS {
1843 CK_MECHANISM_PTR pMechanism;

new/usr/src/lib/openssl/include/pkcs11t.h 29

1844 CK_OBJECT_HANDLE hKey;
1845 CK_BYTE_PTR pSeed;
1846 CK_ULONG ulSeedLen;
1847 } CK_KIP_PARAMS;

1849 typedef CK_KIP_PARAMS CK_PTR CK_KIP_PARAMS_PTR;

1851 /* CK_AES_CTR_PARAMS is new for PKCS #11 v2.20 amendment 3 */
1852 typedef struct CK_AES_CTR_PARAMS {
1853 CK_ULONG ulCounterBits;
1854 CK_BYTE cb[16];
1855 } CK_AES_CTR_PARAMS;

1857 typedef CK_AES_CTR_PARAMS CK_PTR CK_AES_CTR_PARAMS_PTR;

1859 /* CK_CAMELLIA_CTR_PARAMS is new for PKCS #11 v2.20 amendment 3 */
1860 typedef struct CK_CAMELLIA_CTR_PARAMS {
1861 CK_ULONG ulCounterBits;
1862 CK_BYTE cb[16];
1863 } CK_CAMELLIA_CTR_PARAMS;

1865 typedef CK_CAMELLIA_CTR_PARAMS CK_PTR CK_CAMELLIA_CTR_PARAMS_PTR;

1867 /* CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS is new for PKCS #11 v2.20 amendment 3 */
1868 typedef struct CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS {
1869 CK_BYTE iv[16];
1870 CK_BYTE_PTR pData;
1871 CK_ULONG length;
1872 } CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS;

1874 typedef CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS CK_PTR CK_CAMELLIA_CBC_ENCRYPT_DATA_

1876 /* CK_ARIA_CBC_ENCRYPT_DATA_PARAMS is new for PKCS #11 v2.20 amendment 3 */
1877 typedef struct CK_ARIA_CBC_ENCRYPT_DATA_PARAMS {
1878 CK_BYTE iv[16];
1879 CK_BYTE_PTR pData;
1880 CK_ULONG length;
1881 } CK_ARIA_CBC_ENCRYPT_DATA_PARAMS;

1883 typedef CK_ARIA_CBC_ENCRYPT_DATA_PARAMS CK_PTR CK_ARIA_CBC_ENCRYPT_DATA_PARAMS_P

1885 #endif

new/usr/src/lib/openssl/include/rand_lcl.h 1

**
 7394 Fri May 30 18:31:24 2014
new/usr/src/lib/openssl/include/rand_lcl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rand/rand_lcl.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/include/rand_lcl.h 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #ifndef HEADER_RAND_LCL_H
113 #define HEADER_RAND_LCL_H

115 #define ENTROPY_NEEDED 32 /* require 256 bits = 32 bytes of randomness */

118 #if !defined(USE_MD5_RAND) && !defined(USE_SHA1_RAND) && !defined(USE_MDC2_RAND)
119 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1)
120 #define USE_SHA1_RAND
121 #elif !defined(OPENSSL_NO_MD5)
122 #define USE_MD5_RAND
123 #elif !defined(OPENSSL_NO_MDC2) && !defined(OPENSSL_NO_DES)
124 #define USE_MDC2_RAND
125 #elif !defined(OPENSSL_NO_MD2)
126 #define USE_MD2_RAND
127 #else

new/usr/src/lib/openssl/include/rand_lcl.h 3

128 #error No message digest algorithm available
129 #endif
130 #endif

132 #include <openssl/evp.h>
133 #define MD_Update(a,b,c) EVP_DigestUpdate(a,b,c)
134 #define MD_Final(a,b) EVP_DigestFinal_ex(a,b,NULL)
135 #if defined(USE_MD5_RAND)
136 #include <openssl/md5.h>
137 #define MD_DIGEST_LENGTH MD5_DIGEST_LENGTH
138 #define MD_Init(a) EVP_DigestInit_ex(a,EVP_md5(), NULL)
139 #define MD(a,b,c) EVP_Digest(a,b,c,NULL,EVP_md5(), NULL)
140 #elif defined(USE_SHA1_RAND)
141 #include <openssl/sha.h>
142 #define MD_DIGEST_LENGTH SHA_DIGEST_LENGTH
143 #define MD_Init(a) EVP_DigestInit_ex(a,EVP_sha1(), NULL)
144 #define MD(a,b,c) EVP_Digest(a,b,c,NULL,EVP_sha1(), NULL)
145 #elif defined(USE_MDC2_RAND)
146 #include <openssl/mdc2.h>
147 #define MD_DIGEST_LENGTH MDC2_DIGEST_LENGTH
148 #define MD_Init(a) EVP_DigestInit_ex(a,EVP_mdc2(), NULL)
149 #define MD(a,b,c) EVP_Digest(a,b,c,NULL,EVP_mdc2(), NULL)
150 #elif defined(USE_MD2_RAND)
151 #include <openssl/md2.h>
152 #define MD_DIGEST_LENGTH MD2_DIGEST_LENGTH
153 #define MD_Init(a) EVP_DigestInit_ex(a,EVP_md2(), NULL)
154 #define MD(a,b,c) EVP_Digest(a,b,c,NULL,EVP_md2(), NULL)
155 #endif

158 #endif

new/usr/src/lib/openssl/include/rc2_locl.h 1

**
 6676 Fri May 30 18:31:24 2014
new/usr/src/lib/openssl/include/rc2_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rc2/rc2_locl.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #undef c2l
60 #define c2l(c,l) (l =((unsigned long)(*((c)++))) , \
61 l|=((unsigned long)(*((c)++)))<< 8L, \

new/usr/src/lib/openssl/include/rc2_locl.h 2

62 l|=((unsigned long)(*((c)++)))<<16L, \
63 l|=((unsigned long)(*((c)++)))<<24L)

65 /* NOTE - c is not incremented as per c2l */
66 #undef c2ln
67 #define c2ln(c,l1,l2,n) { \
68 c+=n; \
69 l1=l2=0; \
70 switch (n) { \
71 case 8: l2 =((unsigned long)(*(--(c))))<<24L; \
72 case 7: l2|=((unsigned long)(*(--(c))))<<16L; \
73 case 6: l2|=((unsigned long)(*(--(c))))<< 8L; \
74 case 5: l2|=((unsigned long)(*(--(c)))); \
75 case 4: l1 =((unsigned long)(*(--(c))))<<24L; \
76 case 3: l1|=((unsigned long)(*(--(c))))<<16L; \
77 case 2: l1|=((unsigned long)(*(--(c))))<< 8L; \
78 case 1: l1|=((unsigned long)(*(--(c)))); \
79 } \
80 }

82 #undef l2c
83 #define l2c(l,c) (*((c)++)=(unsigned char)(((l))&0xff), \
84 *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \
85 *((c)++)=(unsigned char)(((l)>>16L)&0xff), \
86 *((c)++)=(unsigned char)(((l)>>24L)&0xff))

88 /* NOTE - c is not incremented as per l2c */
89 #undef l2cn
90 #define l2cn(l1,l2,c,n) { \
91 c+=n; \
92 switch (n) { \
93 case 8: *(--(c))=(unsigned char)(((l2)>>24L)&0xff); \
94 case 7: *(--(c))=(unsigned char)(((l2)>>16L)&0xff); \
95 case 6: *(--(c))=(unsigned char)(((l2)>> 8L)&0xff); \
96 case 5: *(--(c))=(unsigned char)(((l2))&0xff); \
97 case 4: *(--(c))=(unsigned char)(((l1)>>24L)&0xff); \
98 case 3: *(--(c))=(unsigned char)(((l1)>>16L)&0xff); \
99 case 2: *(--(c))=(unsigned char)(((l1)>> 8L)&0xff); \
100 case 1: *(--(c))=(unsigned char)(((l1))&0xff); \
101 } \
102 }

104 /* NOTE - c is not incremented as per n2l */
105 #define n2ln(c,l1,l2,n) { \
106 c+=n; \
107 l1=l2=0; \
108 switch (n) { \
109 case 8: l2 =((unsigned long)(*(--(c)))) ; \
110 case 7: l2|=((unsigned long)(*(--(c))))<< 8; \
111 case 6: l2|=((unsigned long)(*(--(c))))<<16; \
112 case 5: l2|=((unsigned long)(*(--(c))))<<24; \
113 case 4: l1 =((unsigned long)(*(--(c)))) ; \
114 case 3: l1|=((unsigned long)(*(--(c))))<< 8; \
115 case 2: l1|=((unsigned long)(*(--(c))))<<16; \
116 case 1: l1|=((unsigned long)(*(--(c))))<<24; \
117 } \
118 }

120 /* NOTE - c is not incremented as per l2n */
121 #define l2nn(l1,l2,c,n) { \
122 c+=n; \
123 switch (n) { \
124 case 8: *(--(c))=(unsigned char)(((l2))&0xff); \
125 case 7: *(--(c))=(unsigned char)(((l2)>> 8)&0xff); \
126 case 6: *(--(c))=(unsigned char)(((l2)>>16)&0xff); \
127 case 5: *(--(c))=(unsigned char)(((l2)>>24)&0xff); \

new/usr/src/lib/openssl/include/rc2_locl.h 3

128 case 4: *(--(c))=(unsigned char)(((l1))&0xff); \
129 case 3: *(--(c))=(unsigned char)(((l1)>> 8)&0xff); \
130 case 2: *(--(c))=(unsigned char)(((l1)>>16)&0xff); \
131 case 1: *(--(c))=(unsigned char)(((l1)>>24)&0xff); \
132 } \
133 }

135 #undef n2l
136 #define n2l(c,l) (l =((unsigned long)(*((c)++)))<<24L, \
137 l|=((unsigned long)(*((c)++)))<<16L, \
138 l|=((unsigned long)(*((c)++)))<< 8L, \
139 l|=((unsigned long)(*((c)++))))

141 #undef l2n
142 #define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24L)&0xff), \
143 *((c)++)=(unsigned char)(((l)>>16L)&0xff), \
144 *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \
145 *((c)++)=(unsigned char)(((l))&0xff))

147 #define C_RC2(n) \
148 t=(x0+(x1& ~x3)+(x2&x3)+ *(p0++))&0xffff; \
149 x0=(t<<1)|(t>>15); \
150 t=(x1+(x2& ~x0)+(x3&x0)+ *(p0++))&0xffff; \
151 x1=(t<<2)|(t>>14); \
152 t=(x2+(x3& ~x1)+(x0&x1)+ *(p0++))&0xffff; \
153 x2=(t<<3)|(t>>13); \
154 t=(x3+(x0& ~x2)+(x1&x2)+ *(p0++))&0xffff; \
155 x3=(t<<5)|(t>>11);

new/usr/src/lib/openssl/include/rc4_locl.h 1

**
 114 Fri May 30 18:31:25 2014
new/usr/src/lib/openssl/include/rc4_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #ifndef HEADER_RC4_LOCL_H
2 #define HEADER_RC4_LOCL_H
3 #include <openssl/opensslconf.h>
4 #include <cryptlib.h>
5 #endif

new/usr/src/lib/openssl/include/rc5_locl.h 1

**
 7920 Fri May 30 18:31:25 2014
new/usr/src/lib/openssl/include/rc5_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rc5/rc5_locl.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdlib.h>

61 #undef c2l

new/usr/src/lib/openssl/include/rc5_locl.h 2

62 #define c2l(c,l) (l =((unsigned long)(*((c)++))) , \
63 l|=((unsigned long)(*((c)++)))<< 8L, \
64 l|=((unsigned long)(*((c)++)))<<16L, \
65 l|=((unsigned long)(*((c)++)))<<24L)

67 /* NOTE - c is not incremented as per c2l */
68 #undef c2ln
69 #define c2ln(c,l1,l2,n) { \
70 c+=n; \
71 l1=l2=0; \
72 switch (n) { \
73 case 8: l2 =((unsigned long)(*(--(c))))<<24L; \
74 case 7: l2|=((unsigned long)(*(--(c))))<<16L; \
75 case 6: l2|=((unsigned long)(*(--(c))))<< 8L; \
76 case 5: l2|=((unsigned long)(*(--(c)))); \
77 case 4: l1 =((unsigned long)(*(--(c))))<<24L; \
78 case 3: l1|=((unsigned long)(*(--(c))))<<16L; \
79 case 2: l1|=((unsigned long)(*(--(c))))<< 8L; \
80 case 1: l1|=((unsigned long)(*(--(c)))); \
81 } \
82 }

84 #undef l2c
85 #define l2c(l,c) (*((c)++)=(unsigned char)(((l))&0xff), \
86 *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \
87 *((c)++)=(unsigned char)(((l)>>16L)&0xff), \
88 *((c)++)=(unsigned char)(((l)>>24L)&0xff))

90 /* NOTE - c is not incremented as per l2c */
91 #undef l2cn
92 #define l2cn(l1,l2,c,n) { \
93 c+=n; \
94 switch (n) { \
95 case 8: *(--(c))=(unsigned char)(((l2)>>24L)&0xff); \
96 case 7: *(--(c))=(unsigned char)(((l2)>>16L)&0xff); \
97 case 6: *(--(c))=(unsigned char)(((l2)>> 8L)&0xff); \
98 case 5: *(--(c))=(unsigned char)(((l2))&0xff); \
99 case 4: *(--(c))=(unsigned char)(((l1)>>24L)&0xff); \
100 case 3: *(--(c))=(unsigned char)(((l1)>>16L)&0xff); \
101 case 2: *(--(c))=(unsigned char)(((l1)>> 8L)&0xff); \
102 case 1: *(--(c))=(unsigned char)(((l1))&0xff); \
103 } \
104 }

106 /* NOTE - c is not incremented as per n2l */
107 #define n2ln(c,l1,l2,n) { \
108 c+=n; \
109 l1=l2=0; \
110 switch (n) { \
111 case 8: l2 =((unsigned long)(*(--(c)))) ; \
112 case 7: l2|=((unsigned long)(*(--(c))))<< 8; \
113 case 6: l2|=((unsigned long)(*(--(c))))<<16; \
114 case 5: l2|=((unsigned long)(*(--(c))))<<24; \
115 case 4: l1 =((unsigned long)(*(--(c)))) ; \
116 case 3: l1|=((unsigned long)(*(--(c))))<< 8; \
117 case 2: l1|=((unsigned long)(*(--(c))))<<16; \
118 case 1: l1|=((unsigned long)(*(--(c))))<<24; \
119 } \
120 }

122 /* NOTE - c is not incremented as per l2n */
123 #define l2nn(l1,l2,c,n) { \
124 c+=n; \
125 switch (n) { \
126 case 8: *(--(c))=(unsigned char)(((l2))&0xff); \
127 case 7: *(--(c))=(unsigned char)(((l2)>> 8)&0xff); \

new/usr/src/lib/openssl/include/rc5_locl.h 3

128 case 6: *(--(c))=(unsigned char)(((l2)>>16)&0xff); \
129 case 5: *(--(c))=(unsigned char)(((l2)>>24)&0xff); \
130 case 4: *(--(c))=(unsigned char)(((l1))&0xff); \
131 case 3: *(--(c))=(unsigned char)(((l1)>> 8)&0xff); \
132 case 2: *(--(c))=(unsigned char)(((l1)>>16)&0xff); \
133 case 1: *(--(c))=(unsigned char)(((l1)>>24)&0xff); \
134 } \
135 }

137 #undef n2l
138 #define n2l(c,l) (l =((unsigned long)(*((c)++)))<<24L, \
139 l|=((unsigned long)(*((c)++)))<<16L, \
140 l|=((unsigned long)(*((c)++)))<< 8L, \
141 l|=((unsigned long)(*((c)++))))

143 #undef l2n
144 #define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24L)&0xff), \
145 *((c)++)=(unsigned char)(((l)>>16L)&0xff), \
146 *((c)++)=(unsigned char)(((l)>> 8L)&0xff), \
147 *((c)++)=(unsigned char)(((l))&0xff))

149 #if (defined(OPENSSL_SYS_WIN32) && defined(_MSC_VER)) || defined(__ICC)
150 #define ROTATE_l32(a,n) _lrotl(a,n)
151 #define ROTATE_r32(a,n) _lrotr(a,n)
152 #elif defined(__GNUC__) && __GNUC__>=2 && !defined(__STRICT_ANSI__) && !defined(
153 # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_
154 # define ROTATE_l32(a,n) ({ register unsigned int ret; \
155 asm ("roll %%cl,%0" \
156 : "=r"(ret) \
157 : "c"(n),"0"((unsigned int)(a))
158 : "cc"); \
159 ret; \
160 })
161 # define ROTATE_r32(a,n) ({ register unsigned int ret; \
162 asm ("rorl %%cl,%0" \
163 : "=r"(ret) \
164 : "c"(n),"0"((unsigned int)(a))
165 : "cc"); \
166 ret; \
167 })
168 # endif
169 #endif
170 #ifndef ROTATE_l32
171 #define ROTATE_l32(a,n) (((a)<<(n&0x1f))|(((a)&0xffffffff)>>(32-(n&0x1f))))
172 #endif
173 #ifndef ROTATE_r32
174 #define ROTATE_r32(a,n) (((a)<<(32-(n&0x1f)))|(((a)&0xffffffff)>>(n&0x1f)))
175 #endif

177 #define RC5_32_MASK 0xffffffffL

179 #define RC5_16_P 0xB7E1
180 #define RC5_16_Q 0x9E37
181 #define RC5_32_P 0xB7E15163L
182 #define RC5_32_Q 0x9E3779B9L
183 #define RC5_64_P 0xB7E151628AED2A6BLL
184 #define RC5_64_Q 0x9E3779B97F4A7C15LL

186 #define E_RC5_32(a,b,s,n) \
187 a^=b; \
188 a=ROTATE_l32(a,b); \
189 a+=s[n]; \
190 a&=RC5_32_MASK; \
191 b^=a; \
192 b=ROTATE_l32(b,a); \
193 b+=s[n+1]; \

new/usr/src/lib/openssl/include/rc5_locl.h 4

194 b&=RC5_32_MASK;

196 #define D_RC5_32(a,b,s,n) \
197 b-=s[n+1]; \
198 b&=RC5_32_MASK; \
199 b=ROTATE_r32(b,a); \
200 b^=a; \
201 a-=s[n]; \
202 a&=RC5_32_MASK; \
203 a=ROTATE_r32(a,b); \
204 a^=b;

new/usr/src/lib/openssl/include/rmd_locl.h 1

**
 5719 Fri May 30 18:31:25 2014
new/usr/src/lib/openssl/include/rmd_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ripemd/rmd_locl.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdlib.h>
60 #include <string.h>
61 #include <openssl/opensslconf.h>

new/usr/src/lib/openssl/include/rmd_locl.h 2

62 #include <openssl/ripemd.h>

64 #ifndef RIPEMD160_LONG_LOG2
65 #define RIPEMD160_LONG_LOG2 2 /* default to 32 bits */
66 #endif

68 /*
69 * DO EXAMINE COMMENTS IN crypto/md5/md5_locl.h & crypto/md5/md5_dgst.c
70 * FOR EXPLANATIONS ON FOLLOWING "CODE."
71 * <appro@fy.chalmers.se>
72 */
73 #ifdef RMD160_ASM
74 # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL
75 # define ripemd160_block_data_order ripemd160_block_asm_data_order
76 # endif
77 #endif

79 void ripemd160_block_data_order (RIPEMD160_CTX *c, const void *p,size_t num);

81 #define DATA_ORDER_IS_LITTLE_ENDIAN

83 #define HASH_LONG RIPEMD160_LONG
84 #define HASH_CTX RIPEMD160_CTX
85 #define HASH_CBLOCK RIPEMD160_CBLOCK
86 #define HASH_UPDATE RIPEMD160_Update
87 #define HASH_TRANSFORM RIPEMD160_Transform
88 #define HASH_FINAL RIPEMD160_Final
89 #define HASH_MAKE_STRING(c,s) do { \
90 unsigned long ll; \
91 ll=(c)->A; (void)HOST_l2c(ll,(s)); \
92 ll=(c)->B; (void)HOST_l2c(ll,(s)); \
93 ll=(c)->C; (void)HOST_l2c(ll,(s)); \
94 ll=(c)->D; (void)HOST_l2c(ll,(s)); \
95 ll=(c)->E; (void)HOST_l2c(ll,(s)); \
96 } while (0)
97 #define HASH_BLOCK_DATA_ORDER ripemd160_block_data_order

99 #include "md32_common.h"

101 #if 0
102 #define F1(x,y,z) ((x)^(y)^(z))
103 #define F2(x,y,z) (((x)&(y))|((~x)&z))
104 #define F3(x,y,z) (((x)|(~y))^(z))
105 #define F4(x,y,z) (((x)&(z))|((y)&(~(z))))
106 #define F5(x,y,z) ((x)^((y)|(~(z))))
107 #else
108 /*
109 * Transformed F2 and F4 are courtesy of Wei Dai <weidai@eskimo.com>
110 */
111 #define F1(x,y,z) ((x) ^ (y) ^ (z))
112 #define F2(x,y,z) ((((y) ^ (z)) & (x)) ^ (z))
113 #define F3(x,y,z) (((~(y)) | (x)) ^ (z))
114 #define F4(x,y,z) ((((x) ^ (y)) & (z)) ^ (y))
115 #define F5(x,y,z) (((~(z)) | (y)) ^ (x))
116 #endif

118 #define RIPEMD160_A 0x67452301L
119 #define RIPEMD160_B 0xEFCDAB89L
120 #define RIPEMD160_C 0x98BADCFEL
121 #define RIPEMD160_D 0x10325476L
122 #define RIPEMD160_E 0xC3D2E1F0L

124 #include "rmdconst.h"

126 #define RIP1(a,b,c,d,e,w,s) { \
127 a+=F1(b,c,d)+X(w); \

new/usr/src/lib/openssl/include/rmd_locl.h 3

128 a=ROTATE(a,s)+e; \
129 c=ROTATE(c,10); }

131 #define RIP2(a,b,c,d,e,w,s,K) { \
132 a+=F2(b,c,d)+X(w)+K; \
133 a=ROTATE(a,s)+e; \
134 c=ROTATE(c,10); }

136 #define RIP3(a,b,c,d,e,w,s,K) { \
137 a+=F3(b,c,d)+X(w)+K; \
138 a=ROTATE(a,s)+e; \
139 c=ROTATE(c,10); }

141 #define RIP4(a,b,c,d,e,w,s,K) { \
142 a+=F4(b,c,d)+X(w)+K; \
143 a=ROTATE(a,s)+e; \
144 c=ROTATE(c,10); }

146 #define RIP5(a,b,c,d,e,w,s,K) { \
147 a+=F5(b,c,d)+X(w)+K; \
148 a=ROTATE(a,s)+e; \
149 c=ROTATE(c,10); }

new/usr/src/lib/openssl/include/rmdconst.h 1

**
 8572 Fri May 30 18:31:25 2014
new/usr/src/lib/openssl/include/rmdconst.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ripemd/rmdconst.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 #define KL0 0x00000000L
59 #define KL1 0x5A827999L
60 #define KL2 0x6ED9EBA1L
61 #define KL3 0x8F1BBCDCL

new/usr/src/lib/openssl/include/rmdconst.h 2

62 #define KL4 0xA953FD4EL

64 #define KR0 0x50A28BE6L
65 #define KR1 0x5C4DD124L
66 #define KR2 0x6D703EF3L
67 #define KR3 0x7A6D76E9L
68 #define KR4 0x00000000L

70 #define WL00 0
71 #define SL00 11
72 #define WL01 1
73 #define SL01 14
74 #define WL02 2
75 #define SL02 15
76 #define WL03 3
77 #define SL03 12
78 #define WL04 4
79 #define SL04 5
80 #define WL05 5
81 #define SL05 8
82 #define WL06 6
83 #define SL06 7
84 #define WL07 7
85 #define SL07 9
86 #define WL08 8
87 #define SL08 11
88 #define WL09 9
89 #define SL09 13
90 #define WL10 10
91 #define SL10 14
92 #define WL11 11
93 #define SL11 15
94 #define WL12 12
95 #define SL12 6
96 #define WL13 13
97 #define SL13 7
98 #define WL14 14
99 #define SL14 9
100 #define WL15 15
101 #define SL15 8

103 #define WL16 7
104 #define SL16 7
105 #define WL17 4
106 #define SL17 6
107 #define WL18 13
108 #define SL18 8
109 #define WL19 1
110 #define SL19 13
111 #define WL20 10
112 #define SL20 11
113 #define WL21 6
114 #define SL21 9
115 #define WL22 15
116 #define SL22 7
117 #define WL23 3
118 #define SL23 15
119 #define WL24 12
120 #define SL24 7
121 #define WL25 0
122 #define SL25 12
123 #define WL26 9
124 #define SL26 15
125 #define WL27 5
126 #define SL27 9
127 #define WL28 2

new/usr/src/lib/openssl/include/rmdconst.h 3

128 #define SL28 11
129 #define WL29 14
130 #define SL29 7
131 #define WL30 11
132 #define SL30 13
133 #define WL31 8
134 #define SL31 12

136 #define WL32 3
137 #define SL32 11
138 #define WL33 10
139 #define SL33 13
140 #define WL34 14
141 #define SL34 6
142 #define WL35 4
143 #define SL35 7
144 #define WL36 9
145 #define SL36 14
146 #define WL37 15
147 #define SL37 9
148 #define WL38 8
149 #define SL38 13
150 #define WL39 1
151 #define SL39 15
152 #define WL40 2
153 #define SL40 14
154 #define WL41 7
155 #define SL41 8
156 #define WL42 0
157 #define SL42 13
158 #define WL43 6
159 #define SL43 6
160 #define WL44 13
161 #define SL44 5
162 #define WL45 11
163 #define SL45 12
164 #define WL46 5
165 #define SL46 7
166 #define WL47 12
167 #define SL47 5

169 #define WL48 1
170 #define SL48 11
171 #define WL49 9
172 #define SL49 12
173 #define WL50 11
174 #define SL50 14
175 #define WL51 10
176 #define SL51 15
177 #define WL52 0
178 #define SL52 14
179 #define WL53 8
180 #define SL53 15
181 #define WL54 12
182 #define SL54 9
183 #define WL55 4
184 #define SL55 8
185 #define WL56 13
186 #define SL56 9
187 #define WL57 3
188 #define SL57 14
189 #define WL58 7
190 #define SL58 5
191 #define WL59 15
192 #define SL59 6
193 #define WL60 14

new/usr/src/lib/openssl/include/rmdconst.h 4

194 #define SL60 8
195 #define WL61 5
196 #define SL61 6
197 #define WL62 6
198 #define SL62 5
199 #define WL63 2
200 #define SL63 12

202 #define WL64 4
203 #define SL64 9
204 #define WL65 0
205 #define SL65 15
206 #define WL66 5
207 #define SL66 5
208 #define WL67 9
209 #define SL67 11
210 #define WL68 7
211 #define SL68 6
212 #define WL69 12
213 #define SL69 8
214 #define WL70 2
215 #define SL70 13
216 #define WL71 10
217 #define SL71 12
218 #define WL72 14
219 #define SL72 5
220 #define WL73 1
221 #define SL73 12
222 #define WL74 3
223 #define SL74 13
224 #define WL75 8
225 #define SL75 14
226 #define WL76 11
227 #define SL76 11
228 #define WL77 6
229 #define SL77 8
230 #define WL78 15
231 #define SL78 5
232 #define WL79 13
233 #define SL79 6

235 #define WR00 5
236 #define SR00 8
237 #define WR01 14
238 #define SR01 9
239 #define WR02 7
240 #define SR02 9
241 #define WR03 0
242 #define SR03 11
243 #define WR04 9
244 #define SR04 13
245 #define WR05 2
246 #define SR05 15
247 #define WR06 11
248 #define SR06 15
249 #define WR07 4
250 #define SR07 5
251 #define WR08 13
252 #define SR08 7
253 #define WR09 6
254 #define SR09 7
255 #define WR10 15
256 #define SR10 8
257 #define WR11 8
258 #define SR11 11
259 #define WR12 1

new/usr/src/lib/openssl/include/rmdconst.h 5

260 #define SR12 14
261 #define WR13 10
262 #define SR13 14
263 #define WR14 3
264 #define SR14 12
265 #define WR15 12
266 #define SR15 6

268 #define WR16 6
269 #define SR16 9
270 #define WR17 11
271 #define SR17 13
272 #define WR18 3
273 #define SR18 15
274 #define WR19 7
275 #define SR19 7
276 #define WR20 0
277 #define SR20 12
278 #define WR21 13
279 #define SR21 8
280 #define WR22 5
281 #define SR22 9
282 #define WR23 10
283 #define SR23 11
284 #define WR24 14
285 #define SR24 7
286 #define WR25 15
287 #define SR25 7
288 #define WR26 8
289 #define SR26 12
290 #define WR27 12
291 #define SR27 7
292 #define WR28 4
293 #define SR28 6
294 #define WR29 9
295 #define SR29 15
296 #define WR30 1
297 #define SR30 13
298 #define WR31 2
299 #define SR31 11

301 #define WR32 15
302 #define SR32 9
303 #define WR33 5
304 #define SR33 7
305 #define WR34 1
306 #define SR34 15
307 #define WR35 3
308 #define SR35 11
309 #define WR36 7
310 #define SR36 8
311 #define WR37 14
312 #define SR37 6
313 #define WR38 6
314 #define SR38 6
315 #define WR39 9
316 #define SR39 14
317 #define WR40 11
318 #define SR40 12
319 #define WR41 8
320 #define SR41 13
321 #define WR42 12
322 #define SR42 5
323 #define WR43 2
324 #define SR43 14
325 #define WR44 10

new/usr/src/lib/openssl/include/rmdconst.h 6

326 #define SR44 13
327 #define WR45 0
328 #define SR45 13
329 #define WR46 4
330 #define SR46 7
331 #define WR47 13
332 #define SR47 5

334 #define WR48 8
335 #define SR48 15
336 #define WR49 6
337 #define SR49 5
338 #define WR50 4
339 #define SR50 8
340 #define WR51 1
341 #define SR51 11
342 #define WR52 3
343 #define SR52 14
344 #define WR53 11
345 #define SR53 14
346 #define WR54 15
347 #define SR54 6
348 #define WR55 0
349 #define SR55 14
350 #define WR56 5
351 #define SR56 6
352 #define WR57 12
353 #define SR57 9
354 #define WR58 2
355 #define SR58 12
356 #define WR59 13
357 #define SR59 9
358 #define WR60 9
359 #define SR60 12
360 #define WR61 7
361 #define SR61 5
362 #define WR62 10
363 #define SR62 15
364 #define WR63 14
365 #define SR63 8

367 #define WR64 12
368 #define SR64 8
369 #define WR65 15
370 #define SR65 5
371 #define WR66 10
372 #define SR66 12
373 #define WR67 4
374 #define SR67 9
375 #define WR68 1
376 #define SR68 12
377 #define WR69 5
378 #define SR69 5
379 #define WR70 8
380 #define SR70 14
381 #define WR71 7
382 #define SR71 6
383 #define WR72 6
384 #define SR72 8
385 #define WR73 2
386 #define SR73 13
387 #define WR74 13
388 #define SR74 6
389 #define WR75 14
390 #define SR75 5
391 #define WR76 0

new/usr/src/lib/openssl/include/rmdconst.h 7

392 #define SR76 15
393 #define WR77 3
394 #define SR77 13
395 #define WR78 9
396 #define SR78 11
397 #define WR79 11
398 #define SR79 11

new/usr/src/lib/openssl/include/rpc_des.h 1

**
 5616 Fri May 30 18:31:25 2014
new/usr/src/lib/openssl/include/rpc_des.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/rpc_des.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* @(#)des.h 2.2 88/08/10 4.0 RPCSRC; from 2.7 88/02/08 SMI */
60 /*
61 * Sun RPC is a product of Sun Microsystems, Inc. and is provided for

new/usr/src/lib/openssl/include/rpc_des.h 2

62 * unrestricted use provided that this legend is included on all tape
63 * media and as a part of the software program in whole or part. Users
64 * may copy or modify Sun RPC without charge, but are not authorized
65 * to license or distribute it to anyone else except as part of a product or
66 * program developed by the user.
67 *
68 * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
69 * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
70 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
71 *
72 * Sun RPC is provided with no support and without any obligation on the
73 * part of Sun Microsystems, Inc. to assist in its use, correction,
74 * modification or enhancement.
75 *
76 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
77 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
78 * OR ANY PART THEREOF.
79 *
80 * In no event will Sun Microsystems, Inc. be liable for any lost revenue
81 * or profits or other special, indirect and consequential damages, even if
82 * Sun has been advised of the possibility of such damages.
83 *
84 * Sun Microsystems, Inc.
85 * 2550 Garcia Avenue
86 * Mountain View, California 94043
87 */
88 /*
89 * Generic DES driver interface
90 * Keep this file hardware independent!
91 * Copyright (c) 1986 by Sun Microsystems, Inc.
92 */

94 #define DES_MAXLEN 65536 /* maximum # of bytes to encrypt */
95 #define DES_QUICKLEN 16 /* maximum # of bytes to encrypt quickly */

97 #ifdef HEADER_DES_H
98 #undef ENCRYPT
99 #undef DECRYPT
100 #endif

102 enum desdir { ENCRYPT, DECRYPT };
103 enum desmode { CBC, ECB };

105 /*
106 * parameters to ioctl call
107 */
108 struct desparams {
109 unsigned char des_key[8]; /* key (with low bit parity) */
110 enum desdir des_dir; /* direction */
111 enum desmode des_mode; /* mode */
112 unsigned char des_ivec[8]; /* input vector */
113 unsigned des_len; /* number of bytes to crypt */
114 union {
115 unsigned char UDES_data[DES_QUICKLEN];
116 unsigned char *UDES_buf;
117 } UDES;
118 # define des_data UDES.UDES_data /* direct data here if quick */
119 # define des_buf UDES.UDES_buf /* otherwise, pointer to data */
120 };

122 /*
123 * Encrypt an arbitrary sized buffer
124 */
125 #define DESIOCBLOCK _IOWR(’d’, 6, struct desparams)

127 /*

new/usr/src/lib/openssl/include/rpc_des.h 3

128 * Encrypt of small amount of data, quickly
129 */
130 #define DESIOCQUICK _IOWR(’d’, 7, struct desparams)

new/usr/src/lib/openssl/include/rsa_locl.h 1

**
 178 Fri May 30 18:31:25 2014
new/usr/src/lib/openssl/include/rsa_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 extern int int_rsa_verify(int dtype, const unsigned char *m, unsigned int m_len,
2 unsigned char *rm, size_t *prm_len,
3 const unsigned char *sigbuf, size_t siglen,
4 RSA *rsa);

new/usr/src/lib/openssl/include/seed_locl.h 1

**
 4438 Fri May 30 18:31:25 2014
new/usr/src/lib/openssl/include/seed_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2007 KISA(Korea Information Security Agency). All rights reserv
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Neither the name of author nor the names of its contributors may
10 * be used to endorse or promote products derived from this software
11 * without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 */
26 #ifndef HEADER_SEED_LOCL_H
27 #define HEADER_SEED_LOCL_H

29 #include "openssl/e_os2.h"
30 #include <openssl/seed.h>

33 #ifdef SEED_LONG /* need 32-bit type */
34 typedef unsigned long seed_word;
35 #else
36 typedef unsigned int seed_word;
37 #endif

40 #ifdef __cplusplus
41 extern "C" {
42 #endif

44 #define G_FUNC(v) \
45 SS[0][(unsigned char) (v) & 0xff] ^ SS[1][(unsigned char) ((v)>>8)
46 SS[2][(unsigned char)((v)>>16) & 0xff] ^ SS[3][(unsigned char)((v)>>24)

48 #define char2word(c, i) \
49 (i) = ((((seed_word)(c)[0]) << 24) | (((seed_word)(c)[1]) << 16) | (((se

51 #define word2char(l, c) \
52 *((c)+0) = (unsigned char)((l)>>24) & 0xff; \
53 *((c)+1) = (unsigned char)((l)>>16) & 0xff; \
54 *((c)+2) = (unsigned char)((l)>> 8) & 0xff; \
55 *((c)+3) = (unsigned char)((l)) & 0xff

57 #define KEYSCHEDULE_UPDATE0(T0, T1, X1, X2, X3, X4, KC) \
58 (T0) = (X3); \
59 (X3) = (((X3)<<8) ^ ((X4)>>24)) & 0xffffffff; \
60 (X4) = (((X4)<<8) ^ ((T0)>>24)) & 0xffffffff; \
61 (T0) = ((X1) + (X3) - (KC)) & 0xffffffff; \

new/usr/src/lib/openssl/include/seed_locl.h 2

62 (T1) = ((X2) + (KC) - (X4)) & 0xffffffff

64 #define KEYSCHEDULE_UPDATE1(T0, T1, X1, X2, X3, X4, KC) \
65 (T0) = (X1); \
66 (X1) = (((X1)>>8) ^ ((X2)<<24)) & 0xffffffff; \
67 (X2) = (((X2)>>8) ^ ((T0)<<24)) & 0xffffffff; \
68 (T0) = ((X1) + (X3) - (KC)) & 0xffffffff; \
69 (T1) = ((X2) + (KC) - (X4)) & 0xffffffff

71 #define KEYUPDATE_TEMP(T0, T1, K) \
72 (K)[0] = G_FUNC((T0)); \
73 (K)[1] = G_FUNC((T1))

75 #define XOR_SEEDBLOCK(DST, SRC) \
76 ((DST))[0] ^= ((SRC))[0]; \
77 ((DST))[1] ^= ((SRC))[1]; \
78 ((DST))[2] ^= ((SRC))[2]; \
79 ((DST))[3] ^= ((SRC))[3]

81 #define MOV_SEEDBLOCK(DST, SRC) \
82 ((DST))[0] = ((SRC))[0]; \
83 ((DST))[1] = ((SRC))[1]; \
84 ((DST))[2] = ((SRC))[2]; \
85 ((DST))[3] = ((SRC))[3]

87 # define CHAR2WORD(C, I) \
88 char2word((C), (I)[0]); \
89 char2word((C+4), (I)[1]); \
90 char2word((C+8), (I)[2]); \
91 char2word((C+12), (I)[3])

93 # define WORD2CHAR(I, C) \
94 word2char((I)[0], (C)); \
95 word2char((I)[1], (C+4)); \
96 word2char((I)[2], (C+8)); \
97 word2char((I)[3], (C+12))

99 # define E_SEED(T0, T1, X1, X2, X3, X4, rbase) \
100 (T0) = (X3) ^ (ks->data)[(rbase)]; \
101 (T1) = (X4) ^ (ks->data)[(rbase)+1]; \
102 (T1) ^= (T0); \
103 (T1) = G_FUNC((T1)); \
104 (T0) = ((T0) + (T1)) & 0xffffffff; \
105 (T0) = G_FUNC((T0)); \
106 (T1) = ((T1) + (T0)) & 0xffffffff; \
107 (T1) = G_FUNC((T1)); \
108 (T0) = ((T0) + (T1)) & 0xffffffff; \
109 (X1) ^= (T0); \
110 (X2) ^= (T1)

112 #ifdef __cplusplus
113 }
114 #endif

116 #endif /* HEADER_SEED_LOCL_H */

new/usr/src/lib/openssl/include/sha_locl.h 1

**
 15716 Fri May 30 18:31:25 2014
new/usr/src/lib/openssl/include/sha_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/sha/sha_locl.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdlib.h>
60 #include <string.h>

new/usr/src/lib/openssl/include/sha_locl.h 2

62 #include <openssl/opensslconf.h>
63 #include <openssl/sha.h>

65 #define DATA_ORDER_IS_BIG_ENDIAN

67 #define HASH_LONG SHA_LONG
68 #define HASH_CTX SHA_CTX
69 #define HASH_CBLOCK SHA_CBLOCK
70 #define HASH_MAKE_STRING(c,s) do { \
71 unsigned long ll; \
72 ll=(c)->h0; (void)HOST_l2c(ll,(s)); \
73 ll=(c)->h1; (void)HOST_l2c(ll,(s)); \
74 ll=(c)->h2; (void)HOST_l2c(ll,(s)); \
75 ll=(c)->h3; (void)HOST_l2c(ll,(s)); \
76 ll=(c)->h4; (void)HOST_l2c(ll,(s)); \
77 } while (0)

79 #if defined(SHA_0)

81 # define HASH_UPDATE SHA_Update
82 # define HASH_TRANSFORM SHA_Transform
83 # define HASH_FINAL SHA_Final
84 # define HASH_INIT SHA_Init
85 # define HASH_BLOCK_DATA_ORDER sha_block_data_order
86 # define Xupdate(a,ix,ia,ib,ic,id) (ix=(a)=(ia^ib^ic^id))

88 static void sha_block_data_order (SHA_CTX *c, const void *p,size_t num);

90 #elif defined(SHA_1)

92 # define HASH_UPDATE SHA1_Update
93 # define HASH_TRANSFORM SHA1_Transform
94 # define HASH_FINAL SHA1_Final
95 # define HASH_INIT SHA1_Init
96 # define HASH_BLOCK_DATA_ORDER sha1_block_data_order
97 # if defined(__MWERKS__) && defined(__MC68K__)
98 /* Metrowerks for Motorola fails otherwise:-(<appro@fy.chalmers.se> */
99 # define Xupdate(a,ix,ia,ib,ic,id) do { (a)=(ia^ib^ic^id); \
100 ix=(a)=ROTATE((a),1); \
101 } while (0)
102 # else
103 # define Xupdate(a,ix,ia,ib,ic,id) ((a)=(ia^ib^ic^id), \
104 ix=(a)=ROTATE((a),1) \
105)
106 # endif

108 #ifndef SHA1_ASM
109 static
110 #endif
111 void sha1_block_data_order (SHA_CTX *c, const void *p,size_t num);

113 #else
114 # error "Either SHA_0 or SHA_1 must be defined."
115 #endif

117 #include "md32_common.h"

119 #define INIT_DATA_h0 0x67452301UL
120 #define INIT_DATA_h1 0xefcdab89UL
121 #define INIT_DATA_h2 0x98badcfeUL
122 #define INIT_DATA_h3 0x10325476UL
123 #define INIT_DATA_h4 0xc3d2e1f0UL

125 #ifdef SHA_0
126 fips_md_init(SHA)
127 #else

new/usr/src/lib/openssl/include/sha_locl.h 3

128 fips_md_init_ctx(SHA1, SHA)
129 #endif
130 {
131 memset (c,0,sizeof(*c));
132 c->h0=INIT_DATA_h0;
133 c->h1=INIT_DATA_h1;
134 c->h2=INIT_DATA_h2;
135 c->h3=INIT_DATA_h3;
136 c->h4=INIT_DATA_h4;
137 return 1;
138 }

140 #define K_00_19 0x5a827999UL
141 #define K_20_39 0x6ed9eba1UL
142 #define K_40_59 0x8f1bbcdcUL
143 #define K_60_79 0xca62c1d6UL

145 /* As pointed out by Wei Dai <weidai@eskimo.com>, F() below can be
146 * simplified to the code in F_00_19. Wei attributes these optimisations
147 * to Peter Gutmann’s SHS code, and he attributes it to Rich Schroeppel.
148 * #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z)))
149 * I’ve just become aware of another tweak to be made, again from Wei Dai,
150 * in F_40_59, (x&a)|(y&a) -> (x|y)&a
151 */
152 #define F_00_19(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
153 #define F_20_39(b,c,d) ((b) ^ (c) ^ (d))
154 #define F_40_59(b,c,d) (((b) & (c)) | (((b)|(c)) & (d)))
155 #define F_60_79(b,c,d) F_20_39(b,c,d)

157 #ifndef OPENSSL_SMALL_FOOTPRINT

159 #define BODY_00_15(i,a,b,c,d,e,f,xi) \
160 (f)=xi+(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
161 (b)=ROTATE((b),30);

163 #define BODY_16_19(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
164 Xupdate(f,xi,xa,xb,xc,xd); \
165 (f)+=(e)+K_00_19+ROTATE((a),5)+F_00_19((b),(c),(d)); \
166 (b)=ROTATE((b),30);

168 #define BODY_20_31(i,a,b,c,d,e,f,xi,xa,xb,xc,xd) \
169 Xupdate(f,xi,xa,xb,xc,xd); \
170 (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
171 (b)=ROTATE((b),30);

173 #define BODY_32_39(i,a,b,c,d,e,f,xa,xb,xc,xd) \
174 Xupdate(f,xa,xa,xb,xc,xd); \
175 (f)+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
176 (b)=ROTATE((b),30);

178 #define BODY_40_59(i,a,b,c,d,e,f,xa,xb,xc,xd) \
179 Xupdate(f,xa,xa,xb,xc,xd); \
180 (f)+=(e)+K_40_59+ROTATE((a),5)+F_40_59((b),(c),(d)); \
181 (b)=ROTATE((b),30);

183 #define BODY_60_79(i,a,b,c,d,e,f,xa,xb,xc,xd) \
184 Xupdate(f,xa,xa,xb,xc,xd); \
185 (f)=xa+(e)+K_60_79+ROTATE((a),5)+F_60_79((b),(c),(d)); \
186 (b)=ROTATE((b),30);

188 #ifdef X
189 #undef X
190 #endif
191 #ifndef MD32_XARRAY
192 /*
193 * Originally X was an array. As it’s automatic it’s natural

new/usr/src/lib/openssl/include/sha_locl.h 4

194 * to expect RISC compiler to accomodate at least part of it in
195 * the register bank, isn’t it? Unfortunately not all compilers
196 * "find" this expectation reasonable:-(On order to make such
197 * compilers generate better code I replace X[] with a bunch of
198 * X0, X1, etc. See the function body below...
199 * <appro@fy.chalmers.se>
200 */
201 # define X(i) XX##i
202 #else
203 /*
204 * However! Some compilers (most notably HP C) get overwhelmed by
205 * that many local variables so that we have to have the way to
206 * fall down to the original behavior.
207 */
208 # define X(i) XX[i]
209 #endif

211 #if !defined(SHA_1) || !defined(SHA1_ASM)
212 static void HASH_BLOCK_DATA_ORDER (SHA_CTX *c, const void *p, size_t num)
213 {
214 const unsigned char *data=p;
215 register unsigned MD32_REG_T A,B,C,D,E,T,l;
216 #ifndef MD32_XARRAY
217 unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
218 XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15;
219 #else
220 SHA_LONG XX[16];
221 #endif

223 A=c->h0;
224 B=c->h1;
225 C=c->h2;
226 D=c->h3;
227 E=c->h4;

229 for (;;)
230 {
231 const union { long one; char little; } is_endian = {1};

233 if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)p%4)==0)
234 {
235 const SHA_LONG *W=(const SHA_LONG *)data;

237 X(0) = W[0]; X(1) = W[1];
238 BODY_00_15(0,A,B,C,D,E,T,X(0)); X(2) = W[2];
239 BODY_00_15(1,T,A,B,C,D,E,X(1)); X(3) = W[3];
240 BODY_00_15(2,E,T,A,B,C,D,X(2)); X(4) = W[4];
241 BODY_00_15(3,D,E,T,A,B,C,X(3)); X(5) = W[5];
242 BODY_00_15(4,C,D,E,T,A,B,X(4)); X(6) = W[6];
243 BODY_00_15(5,B,C,D,E,T,A,X(5)); X(7) = W[7];
244 BODY_00_15(6,A,B,C,D,E,T,X(6)); X(8) = W[8];
245 BODY_00_15(7,T,A,B,C,D,E,X(7)); X(9) = W[9];
246 BODY_00_15(8,E,T,A,B,C,D,X(8)); X(10) = W[10];
247 BODY_00_15(9,D,E,T,A,B,C,X(9)); X(11) = W[11];
248 BODY_00_15(10,C,D,E,T,A,B,X(10)); X(12) = W[12];
249 BODY_00_15(11,B,C,D,E,T,A,X(11)); X(13) = W[13];
250 BODY_00_15(12,A,B,C,D,E,T,X(12)); X(14) = W[14];
251 BODY_00_15(13,T,A,B,C,D,E,X(13)); X(15) = W[15];
252 BODY_00_15(14,E,T,A,B,C,D,X(14));
253 BODY_00_15(15,D,E,T,A,B,C,X(15));

255 data += SHA_CBLOCK;
256 }
257 else
258 {
259 (void)HOST_c2l(data,l); X(0)=l; (void)HOST_c2l(data,l);

new/usr/src/lib/openssl/include/sha_locl.h 5

260 BODY_00_15(0,A,B,C,D,E,T,X(0)); (void)HOST_c2l(data,l);
261 BODY_00_15(1,T,A,B,C,D,E,X(1)); (void)HOST_c2l(data,l);
262 BODY_00_15(2,E,T,A,B,C,D,X(2)); (void)HOST_c2l(data,l);
263 BODY_00_15(3,D,E,T,A,B,C,X(3)); (void)HOST_c2l(data,l);
264 BODY_00_15(4,C,D,E,T,A,B,X(4)); (void)HOST_c2l(data,l);
265 BODY_00_15(5,B,C,D,E,T,A,X(5)); (void)HOST_c2l(data,l);
266 BODY_00_15(6,A,B,C,D,E,T,X(6)); (void)HOST_c2l(data,l);
267 BODY_00_15(7,T,A,B,C,D,E,X(7)); (void)HOST_c2l(data,l);
268 BODY_00_15(8,E,T,A,B,C,D,X(8)); (void)HOST_c2l(data,l);
269 BODY_00_15(9,D,E,T,A,B,C,X(9)); (void)HOST_c2l(data,l);
270 BODY_00_15(10,C,D,E,T,A,B,X(10)); (void)HOST_c2l(data,l);
271 BODY_00_15(11,B,C,D,E,T,A,X(11)); (void)HOST_c2l(data,l);
272 BODY_00_15(12,A,B,C,D,E,T,X(12)); (void)HOST_c2l(data,l);
273 BODY_00_15(13,T,A,B,C,D,E,X(13)); (void)HOST_c2l(data,l);
274 BODY_00_15(14,E,T,A,B,C,D,X(14));
275 BODY_00_15(15,D,E,T,A,B,C,X(15));
276 }

278 BODY_16_19(16,C,D,E,T,A,B,X(0),X(0),X(2),X(8),X(13));
279 BODY_16_19(17,B,C,D,E,T,A,X(1),X(1),X(3),X(9),X(14));
280 BODY_16_19(18,A,B,C,D,E,T,X(2),X(2),X(4),X(10),X(15));
281 BODY_16_19(19,T,A,B,C,D,E,X(3),X(3),X(5),X(11),X(0));

283 BODY_20_31(20,E,T,A,B,C,D,X(4),X(4),X(6),X(12),X(1));
284 BODY_20_31(21,D,E,T,A,B,C,X(5),X(5),X(7),X(13),X(2));
285 BODY_20_31(22,C,D,E,T,A,B,X(6),X(6),X(8),X(14),X(3));
286 BODY_20_31(23,B,C,D,E,T,A,X(7),X(7),X(9),X(15),X(4));
287 BODY_20_31(24,A,B,C,D,E,T,X(8),X(8),X(10),X(0),X(5));
288 BODY_20_31(25,T,A,B,C,D,E,X(9),X(9),X(11),X(1),X(6));
289 BODY_20_31(26,E,T,A,B,C,D,X(10),X(10),X(12),X(2),X(7));
290 BODY_20_31(27,D,E,T,A,B,C,X(11),X(11),X(13),X(3),X(8));
291 BODY_20_31(28,C,D,E,T,A,B,X(12),X(12),X(14),X(4),X(9));
292 BODY_20_31(29,B,C,D,E,T,A,X(13),X(13),X(15),X(5),X(10));
293 BODY_20_31(30,A,B,C,D,E,T,X(14),X(14),X(0),X(6),X(11));
294 BODY_20_31(31,T,A,B,C,D,E,X(15),X(15),X(1),X(7),X(12));

296 BODY_32_39(32,E,T,A,B,C,D,X(0),X(2),X(8),X(13));
297 BODY_32_39(33,D,E,T,A,B,C,X(1),X(3),X(9),X(14));
298 BODY_32_39(34,C,D,E,T,A,B,X(2),X(4),X(10),X(15));
299 BODY_32_39(35,B,C,D,E,T,A,X(3),X(5),X(11),X(0));
300 BODY_32_39(36,A,B,C,D,E,T,X(4),X(6),X(12),X(1));
301 BODY_32_39(37,T,A,B,C,D,E,X(5),X(7),X(13),X(2));
302 BODY_32_39(38,E,T,A,B,C,D,X(6),X(8),X(14),X(3));
303 BODY_32_39(39,D,E,T,A,B,C,X(7),X(9),X(15),X(4));

305 BODY_40_59(40,C,D,E,T,A,B,X(8),X(10),X(0),X(5));
306 BODY_40_59(41,B,C,D,E,T,A,X(9),X(11),X(1),X(6));
307 BODY_40_59(42,A,B,C,D,E,T,X(10),X(12),X(2),X(7));
308 BODY_40_59(43,T,A,B,C,D,E,X(11),X(13),X(3),X(8));
309 BODY_40_59(44,E,T,A,B,C,D,X(12),X(14),X(4),X(9));
310 BODY_40_59(45,D,E,T,A,B,C,X(13),X(15),X(5),X(10));
311 BODY_40_59(46,C,D,E,T,A,B,X(14),X(0),X(6),X(11));
312 BODY_40_59(47,B,C,D,E,T,A,X(15),X(1),X(7),X(12));
313 BODY_40_59(48,A,B,C,D,E,T,X(0),X(2),X(8),X(13));
314 BODY_40_59(49,T,A,B,C,D,E,X(1),X(3),X(9),X(14));
315 BODY_40_59(50,E,T,A,B,C,D,X(2),X(4),X(10),X(15));
316 BODY_40_59(51,D,E,T,A,B,C,X(3),X(5),X(11),X(0));
317 BODY_40_59(52,C,D,E,T,A,B,X(4),X(6),X(12),X(1));
318 BODY_40_59(53,B,C,D,E,T,A,X(5),X(7),X(13),X(2));
319 BODY_40_59(54,A,B,C,D,E,T,X(6),X(8),X(14),X(3));
320 BODY_40_59(55,T,A,B,C,D,E,X(7),X(9),X(15),X(4));
321 BODY_40_59(56,E,T,A,B,C,D,X(8),X(10),X(0),X(5));
322 BODY_40_59(57,D,E,T,A,B,C,X(9),X(11),X(1),X(6));
323 BODY_40_59(58,C,D,E,T,A,B,X(10),X(12),X(2),X(7));
324 BODY_40_59(59,B,C,D,E,T,A,X(11),X(13),X(3),X(8));

new/usr/src/lib/openssl/include/sha_locl.h 6

326 BODY_60_79(60,A,B,C,D,E,T,X(12),X(14),X(4),X(9));
327 BODY_60_79(61,T,A,B,C,D,E,X(13),X(15),X(5),X(10));
328 BODY_60_79(62,E,T,A,B,C,D,X(14),X(0),X(6),X(11));
329 BODY_60_79(63,D,E,T,A,B,C,X(15),X(1),X(7),X(12));
330 BODY_60_79(64,C,D,E,T,A,B,X(0),X(2),X(8),X(13));
331 BODY_60_79(65,B,C,D,E,T,A,X(1),X(3),X(9),X(14));
332 BODY_60_79(66,A,B,C,D,E,T,X(2),X(4),X(10),X(15));
333 BODY_60_79(67,T,A,B,C,D,E,X(3),X(5),X(11),X(0));
334 BODY_60_79(68,E,T,A,B,C,D,X(4),X(6),X(12),X(1));
335 BODY_60_79(69,D,E,T,A,B,C,X(5),X(7),X(13),X(2));
336 BODY_60_79(70,C,D,E,T,A,B,X(6),X(8),X(14),X(3));
337 BODY_60_79(71,B,C,D,E,T,A,X(7),X(9),X(15),X(4));
338 BODY_60_79(72,A,B,C,D,E,T,X(8),X(10),X(0),X(5));
339 BODY_60_79(73,T,A,B,C,D,E,X(9),X(11),X(1),X(6));
340 BODY_60_79(74,E,T,A,B,C,D,X(10),X(12),X(2),X(7));
341 BODY_60_79(75,D,E,T,A,B,C,X(11),X(13),X(3),X(8));
342 BODY_60_79(76,C,D,E,T,A,B,X(12),X(14),X(4),X(9));
343 BODY_60_79(77,B,C,D,E,T,A,X(13),X(15),X(5),X(10));
344 BODY_60_79(78,A,B,C,D,E,T,X(14),X(0),X(6),X(11));
345 BODY_60_79(79,T,A,B,C,D,E,X(15),X(1),X(7),X(12));
346
347 c->h0=(c->h0+E)&0xffffffffL;
348 c->h1=(c->h1+T)&0xffffffffL;
349 c->h2=(c->h2+A)&0xffffffffL;
350 c->h3=(c->h3+B)&0xffffffffL;
351 c->h4=(c->h4+C)&0xffffffffL;

353 if (--num == 0) break;

355 A=c->h0;
356 B=c->h1;
357 C=c->h2;
358 D=c->h3;
359 E=c->h4;

361 }
362 }
363 #endif

365 #else /* OPENSSL_SMALL_FOOTPRINT */

367 #define BODY_00_15(xi) do { \
368 T=E+K_00_19+F_00_19(B,C,D); \
369 E=D, D=C, C=ROTATE(B,30), B=A; \
370 A=ROTATE(A,5)+T+xi; } while(0)

372 #define BODY_16_19(xa,xb,xc,xd) do { \
373 Xupdate(T,xa,xa,xb,xc,xd); \
374 T+=E+K_00_19+F_00_19(B,C,D); \
375 E=D, D=C, C=ROTATE(B,30), B=A; \
376 A=ROTATE(A,5)+T; } while(0)

378 #define BODY_20_39(xa,xb,xc,xd) do { \
379 Xupdate(T,xa,xa,xb,xc,xd); \
380 T+=E+K_20_39+F_20_39(B,C,D); \
381 E=D, D=C, C=ROTATE(B,30), B=A; \
382 A=ROTATE(A,5)+T; } while(0)

384 #define BODY_40_59(xa,xb,xc,xd) do { \
385 Xupdate(T,xa,xa,xb,xc,xd); \
386 T+=E+K_40_59+F_40_59(B,C,D); \
387 E=D, D=C, C=ROTATE(B,30), B=A; \
388 A=ROTATE(A,5)+T; } while(0)

390 #define BODY_60_79(xa,xb,xc,xd) do { \
391 Xupdate(T,xa,xa,xb,xc,xd); \

new/usr/src/lib/openssl/include/sha_locl.h 7

392 T=E+K_60_79+F_60_79(B,C,D); \
393 E=D, D=C, C=ROTATE(B,30), B=A; \
394 A=ROTATE(A,5)+T+xa; } while(0)

396 #if !defined(SHA_1) || !defined(SHA1_ASM)
397 static void HASH_BLOCK_DATA_ORDER (SHA_CTX *c, const void *p, size_t num)
398 {
399 const unsigned char *data=p;
400 register unsigned MD32_REG_T A,B,C,D,E,T,l;
401 int i;
402 SHA_LONG X[16];

404 A=c->h0;
405 B=c->h1;
406 C=c->h2;
407 D=c->h3;
408 E=c->h4;

410 for (;;)
411 {
412 for (i=0;i<16;i++)
413 { HOST_c2l(data,l); X[i]=l; BODY_00_15(X[i]); }
414 for (i=0;i<4;i++)
415 { BODY_16_19(X[i], X[i+2], X[i+8], X[(i+13)&15]); }
416 for (;i<24;i++)
417 { BODY_20_39(X[i&15], X[(i+2)&15], X[(i+8)&15],X[(i+13)&15]); }
418 for (i=0;i<20;i++)
419 { BODY_40_59(X[(i+8)&15],X[(i+10)&15],X[i&15], X[(i+5)&15]); }
420 for (i=4;i<24;i++)
421 { BODY_60_79(X[(i+8)&15],X[(i+10)&15],X[i&15], X[(i+5)&15]); }

423 c->h0=(c->h0+A)&0xffffffffL;
424 c->h1=(c->h1+B)&0xffffffffL;
425 c->h2=(c->h2+C)&0xffffffffL;
426 c->h3=(c->h3+D)&0xffffffffL;
427 c->h4=(c->h4+E)&0xffffffffL;

429 if (--num == 0) break;

431 A=c->h0;
432 B=c->h1;
433 C=c->h2;
434 D=c->h3;
435 E=c->h4;

437 }
438 }
439 #endif

441 #endif

new/usr/src/lib/openssl/include/spr.h 1

**
 10054 Fri May 30 18:31:25 2014
new/usr/src/lib/openssl/include/spr.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/spr.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 OPENSSL_GLOBAL const DES_LONG DES_SPtrans[8][64]={
60 {
61 /* nibble 0 */

new/usr/src/lib/openssl/include/spr.h 2

62 0x02080800L, 0x00080000L, 0x02000002L, 0x02080802L,
63 0x02000000L, 0x00080802L, 0x00080002L, 0x02000002L,
64 0x00080802L, 0x02080800L, 0x02080000L, 0x00000802L,
65 0x02000802L, 0x02000000L, 0x00000000L, 0x00080002L,
66 0x00080000L, 0x00000002L, 0x02000800L, 0x00080800L,
67 0x02080802L, 0x02080000L, 0x00000802L, 0x02000800L,
68 0x00000002L, 0x00000800L, 0x00080800L, 0x02080002L,
69 0x00000800L, 0x02000802L, 0x02080002L, 0x00000000L,
70 0x00000000L, 0x02080802L, 0x02000800L, 0x00080002L,
71 0x02080800L, 0x00080000L, 0x00000802L, 0x02000800L,
72 0x02080002L, 0x00000800L, 0x00080800L, 0x02000002L,
73 0x00080802L, 0x00000002L, 0x02000002L, 0x02080000L,
74 0x02080802L, 0x00080800L, 0x02080000L, 0x02000802L,
75 0x02000000L, 0x00000802L, 0x00080002L, 0x00000000L,
76 0x00080000L, 0x02000000L, 0x02000802L, 0x02080800L,
77 0x00000002L, 0x02080002L, 0x00000800L, 0x00080802L,
78 },{
79 /* nibble 1 */
80 0x40108010L, 0x00000000L, 0x00108000L, 0x40100000L,
81 0x40000010L, 0x00008010L, 0x40008000L, 0x00108000L,
82 0x00008000L, 0x40100010L, 0x00000010L, 0x40008000L,
83 0x00100010L, 0x40108000L, 0x40100000L, 0x00000010L,
84 0x00100000L, 0x40008010L, 0x40100010L, 0x00008000L,
85 0x00108010L, 0x40000000L, 0x00000000L, 0x00100010L,
86 0x40008010L, 0x00108010L, 0x40108000L, 0x40000010L,
87 0x40000000L, 0x00100000L, 0x00008010L, 0x40108010L,
88 0x00100010L, 0x40108000L, 0x40008000L, 0x00108010L,
89 0x40108010L, 0x00100010L, 0x40000010L, 0x00000000L,
90 0x40000000L, 0x00008010L, 0x00100000L, 0x40100010L,
91 0x00008000L, 0x40000000L, 0x00108010L, 0x40008010L,
92 0x40108000L, 0x00008000L, 0x00000000L, 0x40000010L,
93 0x00000010L, 0x40108010L, 0x00108000L, 0x40100000L,
94 0x40100010L, 0x00100000L, 0x00008010L, 0x40008000L,
95 0x40008010L, 0x00000010L, 0x40100000L, 0x00108000L,
96 },{
97 /* nibble 2 */
98 0x04000001L, 0x04040100L, 0x00000100L, 0x04000101L,
99 0x00040001L, 0x04000000L, 0x04000101L, 0x00040100L,
100 0x04000100L, 0x00040000L, 0x04040000L, 0x00000001L,
101 0x04040101L, 0x00000101L, 0x00000001L, 0x04040001L,
102 0x00000000L, 0x00040001L, 0x04040100L, 0x00000100L,
103 0x00000101L, 0x04040101L, 0x00040000L, 0x04000001L,
104 0x04040001L, 0x04000100L, 0x00040101L, 0x04040000L,
105 0x00040100L, 0x00000000L, 0x04000000L, 0x00040101L,
106 0x04040100L, 0x00000100L, 0x00000001L, 0x00040000L,
107 0x00000101L, 0x00040001L, 0x04040000L, 0x04000101L,
108 0x00000000L, 0x04040100L, 0x00040100L, 0x04040001L,
109 0x00040001L, 0x04000000L, 0x04040101L, 0x00000001L,
110 0x00040101L, 0x04000001L, 0x04000000L, 0x04040101L,
111 0x00040000L, 0x04000100L, 0x04000101L, 0x00040100L,
112 0x04000100L, 0x00000000L, 0x04040001L, 0x00000101L,
113 0x04000001L, 0x00040101L, 0x00000100L, 0x04040000L,
114 },{
115 /* nibble 3 */
116 0x00401008L, 0x10001000L, 0x00000008L, 0x10401008L,
117 0x00000000L, 0x10400000L, 0x10001008L, 0x00400008L,
118 0x10401000L, 0x10000008L, 0x10000000L, 0x00001008L,
119 0x10000008L, 0x00401008L, 0x00400000L, 0x10000000L,
120 0x10400008L, 0x00401000L, 0x00001000L, 0x00000008L,
121 0x00401000L, 0x10001008L, 0x10400000L, 0x00001000L,
122 0x00001008L, 0x00000000L, 0x00400008L, 0x10401000L,
123 0x10001000L, 0x10400008L, 0x10401008L, 0x00400000L,
124 0x10400008L, 0x00001008L, 0x00400000L, 0x10000008L,
125 0x00401000L, 0x10001000L, 0x00000008L, 0x10400000L,
126 0x10001008L, 0x00000000L, 0x00001000L, 0x00400008L,
127 0x00000000L, 0x10400008L, 0x10401000L, 0x00001000L,

new/usr/src/lib/openssl/include/spr.h 3

128 0x10000000L, 0x10401008L, 0x00401008L, 0x00400000L,
129 0x10401008L, 0x00000008L, 0x10001000L, 0x00401008L,
130 0x00400008L, 0x00401000L, 0x10400000L, 0x10001008L,
131 0x00001008L, 0x10000000L, 0x10000008L, 0x10401000L,
132 },{
133 /* nibble 4 */
134 0x08000000L, 0x00010000L, 0x00000400L, 0x08010420L,
135 0x08010020L, 0x08000400L, 0x00010420L, 0x08010000L,
136 0x00010000L, 0x00000020L, 0x08000020L, 0x00010400L,
137 0x08000420L, 0x08010020L, 0x08010400L, 0x00000000L,
138 0x00010400L, 0x08000000L, 0x00010020L, 0x00000420L,
139 0x08000400L, 0x00010420L, 0x00000000L, 0x08000020L,
140 0x00000020L, 0x08000420L, 0x08010420L, 0x00010020L,
141 0x08010000L, 0x00000400L, 0x00000420L, 0x08010400L,
142 0x08010400L, 0x08000420L, 0x00010020L, 0x08010000L,
143 0x00010000L, 0x00000020L, 0x08000020L, 0x08000400L,
144 0x08000000L, 0x00010400L, 0x08010420L, 0x00000000L,
145 0x00010420L, 0x08000000L, 0x00000400L, 0x00010020L,
146 0x08000420L, 0x00000400L, 0x00000000L, 0x08010420L,
147 0x08010020L, 0x08010400L, 0x00000420L, 0x00010000L,
148 0x00010400L, 0x08010020L, 0x08000400L, 0x00000420L,
149 0x00000020L, 0x00010420L, 0x08010000L, 0x08000020L,
150 },{
151 /* nibble 5 */
152 0x80000040L, 0x00200040L, 0x00000000L, 0x80202000L,
153 0x00200040L, 0x00002000L, 0x80002040L, 0x00200000L,
154 0x00002040L, 0x80202040L, 0x00202000L, 0x80000000L,
155 0x80002000L, 0x80000040L, 0x80200000L, 0x00202040L,
156 0x00200000L, 0x80002040L, 0x80200040L, 0x00000000L,
157 0x00002000L, 0x00000040L, 0x80202000L, 0x80200040L,
158 0x80202040L, 0x80200000L, 0x80000000L, 0x00002040L,
159 0x00000040L, 0x00202000L, 0x00202040L, 0x80002000L,
160 0x00002040L, 0x80000000L, 0x80002000L, 0x00202040L,
161 0x80202000L, 0x00200040L, 0x00000000L, 0x80002000L,
162 0x80000000L, 0x00002000L, 0x80200040L, 0x00200000L,
163 0x00200040L, 0x80202040L, 0x00202000L, 0x00000040L,
164 0x80202040L, 0x00202000L, 0x00200000L, 0x80002040L,
165 0x80000040L, 0x80200000L, 0x00202040L, 0x00000000L,
166 0x00002000L, 0x80000040L, 0x80002040L, 0x80202000L,
167 0x80200000L, 0x00002040L, 0x00000040L, 0x80200040L,
168 },{
169 /* nibble 6 */
170 0x00004000L, 0x00000200L, 0x01000200L, 0x01000004L,
171 0x01004204L, 0x00004004L, 0x00004200L, 0x00000000L,
172 0x01000000L, 0x01000204L, 0x00000204L, 0x01004000L,
173 0x00000004L, 0x01004200L, 0x01004000L, 0x00000204L,
174 0x01000204L, 0x00004000L, 0x00004004L, 0x01004204L,
175 0x00000000L, 0x01000200L, 0x01000004L, 0x00004200L,
176 0x01004004L, 0x00004204L, 0x01004200L, 0x00000004L,
177 0x00004204L, 0x01004004L, 0x00000200L, 0x01000000L,
178 0x00004204L, 0x01004000L, 0x01004004L, 0x00000204L,
179 0x00004000L, 0x00000200L, 0x01000000L, 0x01004004L,
180 0x01000204L, 0x00004204L, 0x00004200L, 0x00000000L,
181 0x00000200L, 0x01000004L, 0x00000004L, 0x01000200L,
182 0x00000000L, 0x01000204L, 0x01000200L, 0x00004200L,
183 0x00000204L, 0x00004000L, 0x01004204L, 0x01000000L,
184 0x01004200L, 0x00000004L, 0x00004004L, 0x01004204L,
185 0x01000004L, 0x01004200L, 0x01004000L, 0x00004004L,
186 },{
187 /* nibble 7 */
188 0x20800080L, 0x20820000L, 0x00020080L, 0x00000000L,
189 0x20020000L, 0x00800080L, 0x20800000L, 0x20820080L,
190 0x00000080L, 0x20000000L, 0x00820000L, 0x00020080L,
191 0x00820080L, 0x20020080L, 0x20000080L, 0x20800000L,
192 0x00020000L, 0x00820080L, 0x00800080L, 0x20020000L,
193 0x20820080L, 0x20000080L, 0x00000000L, 0x00820000L,

new/usr/src/lib/openssl/include/spr.h 4

194 0x20000000L, 0x00800000L, 0x20020080L, 0x20800080L,
195 0x00800000L, 0x00020000L, 0x20820000L, 0x00000080L,
196 0x00800000L, 0x00020000L, 0x20000080L, 0x20820080L,
197 0x00020080L, 0x20000000L, 0x00000000L, 0x00820000L,
198 0x20800080L, 0x20020080L, 0x20020000L, 0x00800080L,
199 0x20820000L, 0x00000080L, 0x00800080L, 0x20020000L,
200 0x20820080L, 0x00800000L, 0x20800000L, 0x20000080L,
201 0x00820000L, 0x00020080L, 0x20020080L, 0x20800000L,
202 0x00000080L, 0x20820000L, 0x00820080L, 0x00000000L,
203 0x20000000L, 0x20800080L, 0x00020000L, 0x00820080L,
204 }};

new/usr/src/lib/openssl/include/srp_grps.h 1

**
 18750 Fri May 30 18:31:25 2014
new/usr/src/lib/openssl/include/srp_grps.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* start of generated data */

3 static BN_ULONG bn_group_1024_value[] = {
4 bn_pack4(0x9FC6,0x1D2F,0xC0EB,0x06E3),
5 bn_pack4(0xFD51,0x38FE,0x8376,0x435B),
6 bn_pack4(0x2FD4,0xCBF4,0x976E,0xAA9A),
7 bn_pack4(0x68ED,0xBC3C,0x0572,0x6CC0),
8 bn_pack4(0xC529,0xF566,0x660E,0x57EC),
9 bn_pack4(0x8255,0x9B29,0x7BCF,0x1885),
10 bn_pack4(0xCE8E,0xF4AD,0x69B1,0x5D49),
11 bn_pack4(0x5DC7,0xD7B4,0x6154,0xD6B6),
12 bn_pack4(0x8E49,0x5C1D,0x6089,0xDAD1),
13 bn_pack4(0xE0D5,0xD8E2,0x50B9,0x8BE4),
14 bn_pack4(0x383B,0x4813,0xD692,0xC6E0),
15 bn_pack4(0xD674,0xDF74,0x96EA,0x81D3),
16 bn_pack4(0x9EA2,0x314C,0x9C25,0x6576),
17 bn_pack4(0x6072,0x6187,0x75FF,0x3C0B),
18 bn_pack4(0x9C33,0xF80A,0xFA8F,0xC5E8),
19 bn_pack4(0xEEAF,0x0AB9,0xADB3,0x8DD6)
20 };
21 static BIGNUM bn_group_1024 = {
22 bn_group_1024_value,
23 (sizeof bn_group_1024_value)/sizeof(BN_ULONG),
24 (sizeof bn_group_1024_value)/sizeof(BN_ULONG),
25 0,
26 BN_FLG_STATIC_DATA
27 };

29 static BN_ULONG bn_group_1536_value[] = {
30 bn_pack4(0xCF76,0xE3FE,0xD135,0xF9BB),
31 bn_pack4(0x1518,0x0F93,0x499A,0x234D),
32 bn_pack4(0x8CE7,0xA28C,0x2442,0xC6F3),
33 bn_pack4(0x5A02,0x1FFF,0x5E91,0x479E),
34 bn_pack4(0x7F8A,0x2FE9,0xB8B5,0x292E),
35 bn_pack4(0x837C,0x264A,0xE3A9,0xBEB8),
36 bn_pack4(0xE442,0x734A,0xF7CC,0xB7AE),
37 bn_pack4(0x6577,0x2E43,0x7D6C,0x7F8C),
38 bn_pack4(0xDB2F,0xD53D,0x24B7,0xC486),
39 bn_pack4(0x6EDF,0x0195,0x3934,0x9627),
40 bn_pack4(0x158B,0xFD3E,0x2B9C,0x8CF5),
41 bn_pack4(0x764E,0x3F4B,0x53DD,0x9DA1),
42 bn_pack4(0x4754,0x8381,0xDBC5,0xB1FC),
43 bn_pack4(0x9B60,0x9E0B,0xE3BA,0xB63D),
44 bn_pack4(0x8134,0xB1C8,0xB979,0x8914),
45 bn_pack4(0xDF02,0x8A7C,0xEC67,0xF0D0),
46 bn_pack4(0x80B6,0x55BB,0x9A22,0xE8DC),
47 bn_pack4(0x1558,0x903B,0xA0D0,0xF843),
48 bn_pack4(0x51C6,0xA94B,0xE460,0x7A29),
49 bn_pack4(0x5F4F,0x5F55,0x6E27,0xCBDE),
50 bn_pack4(0xBEEE,0xA961,0x4B19,0xCC4D),
51 bn_pack4(0xDBA5,0x1DF4,0x99AC,0x4C80),
52 bn_pack4(0xB1F1,0x2A86,0x17A4,0x7BBB),
53 bn_pack4(0x9DEF,0x3CAF,0xB939,0x277A)
54 };
55 static BIGNUM bn_group_1536 = {
56 bn_group_1536_value,
57 (sizeof bn_group_1536_value)/sizeof(BN_ULONG),
58 (sizeof bn_group_1536_value)/sizeof(BN_ULONG),
59 0,
60 BN_FLG_STATIC_DATA
61 };

new/usr/src/lib/openssl/include/srp_grps.h 2

63 static BN_ULONG bn_group_2048_value[] = {
64 bn_pack4(0x0FA7,0x111F,0x9E4A,0xFF73),
65 bn_pack4(0x9B65,0xE372,0xFCD6,0x8EF2),
66 bn_pack4(0x35DE,0x236D,0x525F,0x5475),
67 bn_pack4(0x94B5,0xC803,0xD89F,0x7AE4),
68 bn_pack4(0x71AE,0x35F8,0xE9DB,0xFBB6),
69 bn_pack4(0x2A56,0x98F3,0xA8D0,0xC382),
70 bn_pack4(0x9CCC,0x041C,0x7BC3,0x08D8),
71 bn_pack4(0xAF87,0x4E73,0x03CE,0x5329),
72 bn_pack4(0x6160,0x2790,0x04E5,0x7AE6),
73 bn_pack4(0x032C,0xFBDB,0xF52F,0xB378),
74 bn_pack4(0x5EA7,0x7A27,0x75D2,0xECFA),
75 bn_pack4(0x5445,0x23B5,0x24B0,0xD57D),
76 bn_pack4(0x5B9D,0x32E6,0x88F8,0x7748),
77 bn_pack4(0xF1D2,0xB907,0x8717,0x461A),
78 bn_pack4(0x76BD,0x207A,0x436C,0x6481),
79 bn_pack4(0xCA97,0xB43A,0x23FB,0x8016),
80 bn_pack4(0x1D28,0x1E44,0x6B14,0x773B),
81 bn_pack4(0x7359,0xD041,0xD5C3,0x3EA7),
82 bn_pack4(0xA80D,0x740A,0xDBF4,0xFF74),
83 bn_pack4(0x55F9,0x7993,0xEC97,0x5EEA),
84 bn_pack4(0x2918,0xA996,0x2F0B,0x93B8),
85 bn_pack4(0x661A,0x05FB,0xD5FA,0xAAE8),
86 bn_pack4(0xCF60,0x9517,0x9A16,0x3AB3),
87 bn_pack4(0xE808,0x3969,0xEDB7,0x67B0),
88 bn_pack4(0xCD7F,0x48A9,0xDA04,0xFD50),
89 bn_pack4(0xD523,0x12AB,0x4B03,0x310D),
90 bn_pack4(0x8193,0xE075,0x7767,0xA13D),
91 bn_pack4(0xA373,0x29CB,0xB4A0,0x99ED),
92 bn_pack4(0xFC31,0x9294,0x3DB5,0x6050),
93 bn_pack4(0xAF72,0xB665,0x1987,0xEE07),
94 bn_pack4(0xF166,0xDE5E,0x1389,0x582F),
95 bn_pack4(0xAC6B,0xDB41,0x324A,0x9A9B)
96 };
97 static BIGNUM bn_group_2048 = {
98 bn_group_2048_value,
99 (sizeof bn_group_2048_value)/sizeof(BN_ULONG),
100 (sizeof bn_group_2048_value)/sizeof(BN_ULONG),
101 0,
102 BN_FLG_STATIC_DATA
103 };

105 static BN_ULONG bn_group_3072_value[] = {
106 bn_pack4(0xFFFF,0xFFFF,0xFFFF,0xFFFF),
107 bn_pack4(0x4B82,0xD120,0xA93A,0xD2CA),
108 bn_pack4(0x43DB,0x5BFC,0xE0FD,0x108E),
109 bn_pack4(0x08E2,0x4FA0,0x74E5,0xAB31),
110 bn_pack4(0x7709,0x88C0,0xBAD9,0x46E2),
111 bn_pack4(0xBBE1,0x1757,0x7A61,0x5D6C),
112 bn_pack4(0x521F,0x2B18,0x177B,0x200C),
113 bn_pack4(0xD876,0x0273,0x3EC8,0x6A64),
114 bn_pack4(0xF12F,0xFA06,0xD98A,0x0864),
115 bn_pack4(0xCEE3,0xD226,0x1AD2,0xEE6B),
116 bn_pack4(0x1E8C,0x94E0,0x4A25,0x619D),
117 bn_pack4(0xABF5,0xAE8C,0xDB09,0x33D7),
118 bn_pack4(0xB397,0x0F85,0xA6E1,0xE4C7),
119 bn_pack4(0x8AEA,0x7157,0x5D06,0x0C7D),
120 bn_pack4(0xECFB,0x8504,0x58DB,0xEF0A),
121 bn_pack4(0xA855,0x21AB,0xDF1C,0xBA64),
122 bn_pack4(0xAD33,0x170D,0x0450,0x7A33),
123 bn_pack4(0x1572,0x8E5A,0x8AAA,0xC42D),
124 bn_pack4(0x15D2,0x2618,0x98FA,0x0510),
125 bn_pack4(0x3995,0x497C,0xEA95,0x6AE5),
126 bn_pack4(0xDE2B,0xCBF6,0x9558,0x1718),
127 bn_pack4(0xB5C5,0x5DF0,0x6F4C,0x52C9),

new/usr/src/lib/openssl/include/srp_grps.h 3

128 bn_pack4(0x9B27,0x83A2,0xEC07,0xA28F),
129 bn_pack4(0xE39E,0x772C,0x180E,0x8603),
130 bn_pack4(0x3290,0x5E46,0x2E36,0xCE3B),
131 bn_pack4(0xF174,0x6C08,0xCA18,0x217C),
132 bn_pack4(0x670C,0x354E,0x4ABC,0x9804),
133 bn_pack4(0x9ED5,0x2907,0x7096,0x966D),
134 bn_pack4(0x1C62,0xF356,0x2085,0x52BB),
135 bn_pack4(0x8365,0x5D23,0xDCA3,0xAD96),
136 bn_pack4(0x6916,0x3FA8,0xFD24,0xCF5F),
137 bn_pack4(0x98DA,0x4836,0x1C55,0xD39A),
138 bn_pack4(0xC200,0x7CB8,0xA163,0xBF05),
139 bn_pack4(0x4928,0x6651,0xECE4,0x5B3D),
140 bn_pack4(0xAE9F,0x2411,0x7C4B,0x1FE6),
141 bn_pack4(0xEE38,0x6BFB,0x5A89,0x9FA5),
142 bn_pack4(0x0BFF,0x5CB6,0xF406,0xB7ED),
143 bn_pack4(0xF44C,0x42E9,0xA637,0xED6B),
144 bn_pack4(0xE485,0xB576,0x625E,0x7EC6),
145 bn_pack4(0x4FE1,0x356D,0x6D51,0xC245),
146 bn_pack4(0x302B,0x0A6D,0xF25F,0x1437),
147 bn_pack4(0xEF95,0x19B3,0xCD3A,0x431B),
148 bn_pack4(0x514A,0x0879,0x8E34,0x04DD),
149 bn_pack4(0x020B,0xBEA6,0x3B13,0x9B22),
150 bn_pack4(0x2902,0x4E08,0x8A67,0xCC74),
151 bn_pack4(0xC4C6,0x628B,0x80DC,0x1CD1),
152 bn_pack4(0xC90F,0xDAA2,0x2168,0xC234),
153 bn_pack4(0xFFFF,0xFFFF,0xFFFF,0xFFFF)
154 };
155 static BIGNUM bn_group_3072 = {
156 bn_group_3072_value,
157 (sizeof bn_group_3072_value)/sizeof(BN_ULONG),
158 (sizeof bn_group_3072_value)/sizeof(BN_ULONG),
159 0,
160 BN_FLG_STATIC_DATA
161 };

163 static BN_ULONG bn_group_4096_value[] = {
164 bn_pack4(0xFFFF,0xFFFF,0xFFFF,0xFFFF),
165 bn_pack4(0x4DF4,0x35C9,0x3406,0x3199),
166 bn_pack4(0x86FF,0xB7DC,0x90A6,0xC08F),
167 bn_pack4(0x93B4,0xEA98,0x8D8F,0xDDC1),
168 bn_pack4(0xD006,0x9127,0xD5B0,0x5AA9),
169 bn_pack4(0xB81B,0xDD76,0x2170,0x481C),
170 bn_pack4(0x1F61,0x2970,0xCEE2,0xD7AF),
171 bn_pack4(0x233B,0xA186,0x515B,0xE7ED),
172 bn_pack4(0x99B2,0x964F,0xA090,0xC3A2),
173 bn_pack4(0x287C,0x5947,0x4E6B,0xC05D),
174 bn_pack4(0x2E8E,0xFC14,0x1FBE,0xCAA6),
175 bn_pack4(0xDBBB,0xC2DB,0x04DE,0x8EF9),
176 bn_pack4(0x2583,0xE9CA,0x2AD4,0x4CE8),
177 bn_pack4(0x1A94,0x6834,0xB615,0x0BDA),
178 bn_pack4(0x99C3,0x2718,0x6AF4,0xE23C),
179 bn_pack4(0x8871,0x9A10,0xBDBA,0x5B26),
180 bn_pack4(0x1A72,0x3C12,0xA787,0xE6D7),
181 bn_pack4(0x4B82,0xD120,0xA921,0x0801),
182 bn_pack4(0x43DB,0x5BFC,0xE0FD,0x108E),
183 bn_pack4(0x08E2,0x4FA0,0x74E5,0xAB31),
184 bn_pack4(0x7709,0x88C0,0xBAD9,0x46E2),
185 bn_pack4(0xBBE1,0x1757,0x7A61,0x5D6C),
186 bn_pack4(0x521F,0x2B18,0x177B,0x200C),
187 bn_pack4(0xD876,0x0273,0x3EC8,0x6A64),
188 bn_pack4(0xF12F,0xFA06,0xD98A,0x0864),
189 bn_pack4(0xCEE3,0xD226,0x1AD2,0xEE6B),
190 bn_pack4(0x1E8C,0x94E0,0x4A25,0x619D),
191 bn_pack4(0xABF5,0xAE8C,0xDB09,0x33D7),
192 bn_pack4(0xB397,0x0F85,0xA6E1,0xE4C7),
193 bn_pack4(0x8AEA,0x7157,0x5D06,0x0C7D),

new/usr/src/lib/openssl/include/srp_grps.h 4

194 bn_pack4(0xECFB,0x8504,0x58DB,0xEF0A),
195 bn_pack4(0xA855,0x21AB,0xDF1C,0xBA64),
196 bn_pack4(0xAD33,0x170D,0x0450,0x7A33),
197 bn_pack4(0x1572,0x8E5A,0x8AAA,0xC42D),
198 bn_pack4(0x15D2,0x2618,0x98FA,0x0510),
199 bn_pack4(0x3995,0x497C,0xEA95,0x6AE5),
200 bn_pack4(0xDE2B,0xCBF6,0x9558,0x1718),
201 bn_pack4(0xB5C5,0x5DF0,0x6F4C,0x52C9),
202 bn_pack4(0x9B27,0x83A2,0xEC07,0xA28F),
203 bn_pack4(0xE39E,0x772C,0x180E,0x8603),
204 bn_pack4(0x3290,0x5E46,0x2E36,0xCE3B),
205 bn_pack4(0xF174,0x6C08,0xCA18,0x217C),
206 bn_pack4(0x670C,0x354E,0x4ABC,0x9804),
207 bn_pack4(0x9ED5,0x2907,0x7096,0x966D),
208 bn_pack4(0x1C62,0xF356,0x2085,0x52BB),
209 bn_pack4(0x8365,0x5D23,0xDCA3,0xAD96),
210 bn_pack4(0x6916,0x3FA8,0xFD24,0xCF5F),
211 bn_pack4(0x98DA,0x4836,0x1C55,0xD39A),
212 bn_pack4(0xC200,0x7CB8,0xA163,0xBF05),
213 bn_pack4(0x4928,0x6651,0xECE4,0x5B3D),
214 bn_pack4(0xAE9F,0x2411,0x7C4B,0x1FE6),
215 bn_pack4(0xEE38,0x6BFB,0x5A89,0x9FA5),
216 bn_pack4(0x0BFF,0x5CB6,0xF406,0xB7ED),
217 bn_pack4(0xF44C,0x42E9,0xA637,0xED6B),
218 bn_pack4(0xE485,0xB576,0x625E,0x7EC6),
219 bn_pack4(0x4FE1,0x356D,0x6D51,0xC245),
220 bn_pack4(0x302B,0x0A6D,0xF25F,0x1437),
221 bn_pack4(0xEF95,0x19B3,0xCD3A,0x431B),
222 bn_pack4(0x514A,0x0879,0x8E34,0x04DD),
223 bn_pack4(0x020B,0xBEA6,0x3B13,0x9B22),
224 bn_pack4(0x2902,0x4E08,0x8A67,0xCC74),
225 bn_pack4(0xC4C6,0x628B,0x80DC,0x1CD1),
226 bn_pack4(0xC90F,0xDAA2,0x2168,0xC234),
227 bn_pack4(0xFFFF,0xFFFF,0xFFFF,0xFFFF)
228 };
229 static BIGNUM bn_group_4096 = {
230 bn_group_4096_value,
231 (sizeof bn_group_4096_value)/sizeof(BN_ULONG),
232 (sizeof bn_group_4096_value)/sizeof(BN_ULONG),
233 0,
234 BN_FLG_STATIC_DATA
235 };

237 static BN_ULONG bn_group_6144_value[] = {
238 bn_pack4(0xFFFF,0xFFFF,0xFFFF,0xFFFF),
239 bn_pack4(0xE694,0xF91E,0x6DCC,0x4024),
240 bn_pack4(0x12BF,0x2D5B,0x0B74,0x74D6),
241 bn_pack4(0x043E,0x8F66,0x3F48,0x60EE),
242 bn_pack4(0x387F,0xE8D7,0x6E3C,0x0468),
243 bn_pack4(0xDA56,0xC9EC,0x2EF2,0x9632),
244 bn_pack4(0xEB19,0xCCB1,0xA313,0xD55C),
245 bn_pack4(0xF550,0xAA3D,0x8A1F,0xBFF0),
246 bn_pack4(0x06A1,0xD58B,0xB7C5,0xDA76),
247 bn_pack4(0xA797,0x15EE,0xF29B,0xE328),
248 bn_pack4(0x14CC,0x5ED2,0x0F80,0x37E0),
249 bn_pack4(0xCC8F,0x6D7E,0xBF48,0xE1D8),
250 bn_pack4(0x4BD4,0x07B2,0x2B41,0x54AA),
251 bn_pack4(0x0F1D,0x45B7,0xFF58,0x5AC5),
252 bn_pack4(0x23A9,0x7A7E,0x36CC,0x88BE),
253 bn_pack4(0x59E7,0xC97F,0xBEC7,0xE8F3),
254 bn_pack4(0xB5A8,0x4031,0x900B,0x1C9E),
255 bn_pack4(0xD55E,0x702F,0x4698,0x0C82),
256 bn_pack4(0xF482,0xD7CE,0x6E74,0xFEF6),
257 bn_pack4(0xF032,0xEA15,0xD172,0x1D03),
258 bn_pack4(0x5983,0xCA01,0xC64B,0x92EC),
259 bn_pack4(0x6FB8,0xF401,0x378C,0xD2BF),

new/usr/src/lib/openssl/include/srp_grps.h 5

260 bn_pack4(0x3320,0x5151,0x2BD7,0xAF42),
261 bn_pack4(0xDB7F,0x1447,0xE6CC,0x254B),
262 bn_pack4(0x44CE,0x6CBA,0xCED4,0xBB1B),
263 bn_pack4(0xDA3E,0xDBEB,0xCF9B,0x14ED),
264 bn_pack4(0x1797,0x27B0,0x865A,0x8918),
265 bn_pack4(0xB06A,0x53ED,0x9027,0xD831),
266 bn_pack4(0xE5DB,0x382F,0x4130,0x01AE),
267 bn_pack4(0xF8FF,0x9406,0xAD9E,0x530E),
268 bn_pack4(0xC975,0x1E76,0x3DBA,0x37BD),
269 bn_pack4(0xC1D4,0xDCB2,0x6026,0x46DE),
270 bn_pack4(0x36C3,0xFAB4,0xD27C,0x7026),
271 bn_pack4(0x4DF4,0x35C9,0x3402,0x8492),
272 bn_pack4(0x86FF,0xB7DC,0x90A6,0xC08F),
273 bn_pack4(0x93B4,0xEA98,0x8D8F,0xDDC1),
274 bn_pack4(0xD006,0x9127,0xD5B0,0x5AA9),
275 bn_pack4(0xB81B,0xDD76,0x2170,0x481C),
276 bn_pack4(0x1F61,0x2970,0xCEE2,0xD7AF),
277 bn_pack4(0x233B,0xA186,0x515B,0xE7ED),
278 bn_pack4(0x99B2,0x964F,0xA090,0xC3A2),
279 bn_pack4(0x287C,0x5947,0x4E6B,0xC05D),
280 bn_pack4(0x2E8E,0xFC14,0x1FBE,0xCAA6),
281 bn_pack4(0xDBBB,0xC2DB,0x04DE,0x8EF9),
282 bn_pack4(0x2583,0xE9CA,0x2AD4,0x4CE8),
283 bn_pack4(0x1A94,0x6834,0xB615,0x0BDA),
284 bn_pack4(0x99C3,0x2718,0x6AF4,0xE23C),
285 bn_pack4(0x8871,0x9A10,0xBDBA,0x5B26),
286 bn_pack4(0x1A72,0x3C12,0xA787,0xE6D7),
287 bn_pack4(0x4B82,0xD120,0xA921,0x0801),
288 bn_pack4(0x43DB,0x5BFC,0xE0FD,0x108E),
289 bn_pack4(0x08E2,0x4FA0,0x74E5,0xAB31),
290 bn_pack4(0x7709,0x88C0,0xBAD9,0x46E2),
291 bn_pack4(0xBBE1,0x1757,0x7A61,0x5D6C),
292 bn_pack4(0x521F,0x2B18,0x177B,0x200C),
293 bn_pack4(0xD876,0x0273,0x3EC8,0x6A64),
294 bn_pack4(0xF12F,0xFA06,0xD98A,0x0864),
295 bn_pack4(0xCEE3,0xD226,0x1AD2,0xEE6B),
296 bn_pack4(0x1E8C,0x94E0,0x4A25,0x619D),
297 bn_pack4(0xABF5,0xAE8C,0xDB09,0x33D7),
298 bn_pack4(0xB397,0x0F85,0xA6E1,0xE4C7),
299 bn_pack4(0x8AEA,0x7157,0x5D06,0x0C7D),
300 bn_pack4(0xECFB,0x8504,0x58DB,0xEF0A),
301 bn_pack4(0xA855,0x21AB,0xDF1C,0xBA64),
302 bn_pack4(0xAD33,0x170D,0x0450,0x7A33),
303 bn_pack4(0x1572,0x8E5A,0x8AAA,0xC42D),
304 bn_pack4(0x15D2,0x2618,0x98FA,0x0510),
305 bn_pack4(0x3995,0x497C,0xEA95,0x6AE5),
306 bn_pack4(0xDE2B,0xCBF6,0x9558,0x1718),
307 bn_pack4(0xB5C5,0x5DF0,0x6F4C,0x52C9),
308 bn_pack4(0x9B27,0x83A2,0xEC07,0xA28F),
309 bn_pack4(0xE39E,0x772C,0x180E,0x8603),
310 bn_pack4(0x3290,0x5E46,0x2E36,0xCE3B),
311 bn_pack4(0xF174,0x6C08,0xCA18,0x217C),
312 bn_pack4(0x670C,0x354E,0x4ABC,0x9804),
313 bn_pack4(0x9ED5,0x2907,0x7096,0x966D),
314 bn_pack4(0x1C62,0xF356,0x2085,0x52BB),
315 bn_pack4(0x8365,0x5D23,0xDCA3,0xAD96),
316 bn_pack4(0x6916,0x3FA8,0xFD24,0xCF5F),
317 bn_pack4(0x98DA,0x4836,0x1C55,0xD39A),
318 bn_pack4(0xC200,0x7CB8,0xA163,0xBF05),
319 bn_pack4(0x4928,0x6651,0xECE4,0x5B3D),
320 bn_pack4(0xAE9F,0x2411,0x7C4B,0x1FE6),
321 bn_pack4(0xEE38,0x6BFB,0x5A89,0x9FA5),
322 bn_pack4(0x0BFF,0x5CB6,0xF406,0xB7ED),
323 bn_pack4(0xF44C,0x42E9,0xA637,0xED6B),
324 bn_pack4(0xE485,0xB576,0x625E,0x7EC6),
325 bn_pack4(0x4FE1,0x356D,0x6D51,0xC245),

new/usr/src/lib/openssl/include/srp_grps.h 6

326 bn_pack4(0x302B,0x0A6D,0xF25F,0x1437),
327 bn_pack4(0xEF95,0x19B3,0xCD3A,0x431B),
328 bn_pack4(0x514A,0x0879,0x8E34,0x04DD),
329 bn_pack4(0x020B,0xBEA6,0x3B13,0x9B22),
330 bn_pack4(0x2902,0x4E08,0x8A67,0xCC74),
331 bn_pack4(0xC4C6,0x628B,0x80DC,0x1CD1),
332 bn_pack4(0xC90F,0xDAA2,0x2168,0xC234),
333 bn_pack4(0xFFFF,0xFFFF,0xFFFF,0xFFFF)
334 };
335 static BIGNUM bn_group_6144 = {
336 bn_group_6144_value,
337 (sizeof bn_group_6144_value)/sizeof(BN_ULONG),
338 (sizeof bn_group_6144_value)/sizeof(BN_ULONG),
339 0,
340 BN_FLG_STATIC_DATA
341 };

343 static BN_ULONG bn_group_8192_value[] = {
344 bn_pack4(0xFFFF,0xFFFF,0xFFFF,0xFFFF),
345 bn_pack4(0x60C9,0x80DD,0x98ED,0xD3DF),
346 bn_pack4(0xC81F,0x56E8,0x80B9,0x6E71),
347 bn_pack4(0x9E30,0x50E2,0x7656,0x94DF),
348 bn_pack4(0x9558,0xE447,0x5677,0xE9AA),
349 bn_pack4(0xC919,0x0DA6,0xFC02,0x6E47),
350 bn_pack4(0x889A,0x002E,0xD5EE,0x382B),
351 bn_pack4(0x4009,0x438B,0x481C,0x6CD7),
352 bn_pack4(0x3590,0x46F4,0xEB87,0x9F92),
353 bn_pack4(0xFAF3,0x6BC3,0x1ECF,0xA268),
354 bn_pack4(0xB1D5,0x10BD,0x7EE7,0x4D73),
355 bn_pack4(0xF9AB,0x4819,0x5DED,0x7EA1),
356 bn_pack4(0x64F3,0x1CC5,0x0846,0x851D),
357 bn_pack4(0x4597,0xE899,0xA025,0x5DC1),
358 bn_pack4(0xDF31,0x0EE0,0x74AB,0x6A36),
359 bn_pack4(0x6D2A,0x13F8,0x3F44,0xF82D),
360 bn_pack4(0x062B,0x3CF5,0xB3A2,0x78A6),
361 bn_pack4(0x7968,0x3303,0xED5B,0xDD3A),
362 bn_pack4(0xFA9D,0x4B7F,0xA2C0,0x87E8),
363 bn_pack4(0x4BCB,0xC886,0x2F83,0x85DD),
364 bn_pack4(0x3473,0xFC64,0x6CEA,0x306B),
365 bn_pack4(0x13EB,0x57A8,0x1A23,0xF0C7),
366 bn_pack4(0x2222,0x2E04,0xA403,0x7C07),
367 bn_pack4(0xE3FD,0xB8BE,0xFC84,0x8AD9),
368 bn_pack4(0x238F,0x16CB,0xE39D,0x652D),
369 bn_pack4(0x3423,0xB474,0x2BF1,0xC978),
370 bn_pack4(0x3AAB,0x639C,0x5AE4,0xF568),
371 bn_pack4(0x2576,0xF693,0x6BA4,0x2466),
372 bn_pack4(0x741F,0xA7BF,0x8AFC,0x47ED),
373 bn_pack4(0x3BC8,0x32B6,0x8D9D,0xD300),
374 bn_pack4(0xD8BE,0xC4D0,0x73B9,0x31BA),
375 bn_pack4(0x3877,0x7CB6,0xA932,0xDF8C),
376 bn_pack4(0x74A3,0x926F,0x12FE,0xE5E4),
377 bn_pack4(0xE694,0xF91E,0x6DBE,0x1159),
378 bn_pack4(0x12BF,0x2D5B,0x0B74,0x74D6),
379 bn_pack4(0x043E,0x8F66,0x3F48,0x60EE),
380 bn_pack4(0x387F,0xE8D7,0x6E3C,0x0468),
381 bn_pack4(0xDA56,0xC9EC,0x2EF2,0x9632),
382 bn_pack4(0xEB19,0xCCB1,0xA313,0xD55C),
383 bn_pack4(0xF550,0xAA3D,0x8A1F,0xBFF0),
384 bn_pack4(0x06A1,0xD58B,0xB7C5,0xDA76),
385 bn_pack4(0xA797,0x15EE,0xF29B,0xE328),
386 bn_pack4(0x14CC,0x5ED2,0x0F80,0x37E0),
387 bn_pack4(0xCC8F,0x6D7E,0xBF48,0xE1D8),
388 bn_pack4(0x4BD4,0x07B2,0x2B41,0x54AA),
389 bn_pack4(0x0F1D,0x45B7,0xFF58,0x5AC5),
390 bn_pack4(0x23A9,0x7A7E,0x36CC,0x88BE),
391 bn_pack4(0x59E7,0xC97F,0xBEC7,0xE8F3),

new/usr/src/lib/openssl/include/srp_grps.h 7

392 bn_pack4(0xB5A8,0x4031,0x900B,0x1C9E),
393 bn_pack4(0xD55E,0x702F,0x4698,0x0C82),
394 bn_pack4(0xF482,0xD7CE,0x6E74,0xFEF6),
395 bn_pack4(0xF032,0xEA15,0xD172,0x1D03),
396 bn_pack4(0x5983,0xCA01,0xC64B,0x92EC),
397 bn_pack4(0x6FB8,0xF401,0x378C,0xD2BF),
398 bn_pack4(0x3320,0x5151,0x2BD7,0xAF42),
399 bn_pack4(0xDB7F,0x1447,0xE6CC,0x254B),
400 bn_pack4(0x44CE,0x6CBA,0xCED4,0xBB1B),
401 bn_pack4(0xDA3E,0xDBEB,0xCF9B,0x14ED),
402 bn_pack4(0x1797,0x27B0,0x865A,0x8918),
403 bn_pack4(0xB06A,0x53ED,0x9027,0xD831),
404 bn_pack4(0xE5DB,0x382F,0x4130,0x01AE),
405 bn_pack4(0xF8FF,0x9406,0xAD9E,0x530E),
406 bn_pack4(0xC975,0x1E76,0x3DBA,0x37BD),
407 bn_pack4(0xC1D4,0xDCB2,0x6026,0x46DE),
408 bn_pack4(0x36C3,0xFAB4,0xD27C,0x7026),
409 bn_pack4(0x4DF4,0x35C9,0x3402,0x8492),
410 bn_pack4(0x86FF,0xB7DC,0x90A6,0xC08F),
411 bn_pack4(0x93B4,0xEA98,0x8D8F,0xDDC1),
412 bn_pack4(0xD006,0x9127,0xD5B0,0x5AA9),
413 bn_pack4(0xB81B,0xDD76,0x2170,0x481C),
414 bn_pack4(0x1F61,0x2970,0xCEE2,0xD7AF),
415 bn_pack4(0x233B,0xA186,0x515B,0xE7ED),
416 bn_pack4(0x99B2,0x964F,0xA090,0xC3A2),
417 bn_pack4(0x287C,0x5947,0x4E6B,0xC05D),
418 bn_pack4(0x2E8E,0xFC14,0x1FBE,0xCAA6),
419 bn_pack4(0xDBBB,0xC2DB,0x04DE,0x8EF9),
420 bn_pack4(0x2583,0xE9CA,0x2AD4,0x4CE8),
421 bn_pack4(0x1A94,0x6834,0xB615,0x0BDA),
422 bn_pack4(0x99C3,0x2718,0x6AF4,0xE23C),
423 bn_pack4(0x8871,0x9A10,0xBDBA,0x5B26),
424 bn_pack4(0x1A72,0x3C12,0xA787,0xE6D7),
425 bn_pack4(0x4B82,0xD120,0xA921,0x0801),
426 bn_pack4(0x43DB,0x5BFC,0xE0FD,0x108E),
427 bn_pack4(0x08E2,0x4FA0,0x74E5,0xAB31),
428 bn_pack4(0x7709,0x88C0,0xBAD9,0x46E2),
429 bn_pack4(0xBBE1,0x1757,0x7A61,0x5D6C),
430 bn_pack4(0x521F,0x2B18,0x177B,0x200C),
431 bn_pack4(0xD876,0x0273,0x3EC8,0x6A64),
432 bn_pack4(0xF12F,0xFA06,0xD98A,0x0864),
433 bn_pack4(0xCEE3,0xD226,0x1AD2,0xEE6B),
434 bn_pack4(0x1E8C,0x94E0,0x4A25,0x619D),
435 bn_pack4(0xABF5,0xAE8C,0xDB09,0x33D7),
436 bn_pack4(0xB397,0x0F85,0xA6E1,0xE4C7),
437 bn_pack4(0x8AEA,0x7157,0x5D06,0x0C7D),
438 bn_pack4(0xECFB,0x8504,0x58DB,0xEF0A),
439 bn_pack4(0xA855,0x21AB,0xDF1C,0xBA64),
440 bn_pack4(0xAD33,0x170D,0x0450,0x7A33),
441 bn_pack4(0x1572,0x8E5A,0x8AAA,0xC42D),
442 bn_pack4(0x15D2,0x2618,0x98FA,0x0510),
443 bn_pack4(0x3995,0x497C,0xEA95,0x6AE5),
444 bn_pack4(0xDE2B,0xCBF6,0x9558,0x1718),
445 bn_pack4(0xB5C5,0x5DF0,0x6F4C,0x52C9),
446 bn_pack4(0x9B27,0x83A2,0xEC07,0xA28F),
447 bn_pack4(0xE39E,0x772C,0x180E,0x8603),
448 bn_pack4(0x3290,0x5E46,0x2E36,0xCE3B),
449 bn_pack4(0xF174,0x6C08,0xCA18,0x217C),
450 bn_pack4(0x670C,0x354E,0x4ABC,0x9804),
451 bn_pack4(0x9ED5,0x2907,0x7096,0x966D),
452 bn_pack4(0x1C62,0xF356,0x2085,0x52BB),
453 bn_pack4(0x8365,0x5D23,0xDCA3,0xAD96),
454 bn_pack4(0x6916,0x3FA8,0xFD24,0xCF5F),
455 bn_pack4(0x98DA,0x4836,0x1C55,0xD39A),
456 bn_pack4(0xC200,0x7CB8,0xA163,0xBF05),
457 bn_pack4(0x4928,0x6651,0xECE4,0x5B3D),

new/usr/src/lib/openssl/include/srp_grps.h 8

458 bn_pack4(0xAE9F,0x2411,0x7C4B,0x1FE6),
459 bn_pack4(0xEE38,0x6BFB,0x5A89,0x9FA5),
460 bn_pack4(0x0BFF,0x5CB6,0xF406,0xB7ED),
461 bn_pack4(0xF44C,0x42E9,0xA637,0xED6B),
462 bn_pack4(0xE485,0xB576,0x625E,0x7EC6),
463 bn_pack4(0x4FE1,0x356D,0x6D51,0xC245),
464 bn_pack4(0x302B,0x0A6D,0xF25F,0x1437),
465 bn_pack4(0xEF95,0x19B3,0xCD3A,0x431B),
466 bn_pack4(0x514A,0x0879,0x8E34,0x04DD),
467 bn_pack4(0x020B,0xBEA6,0x3B13,0x9B22),
468 bn_pack4(0x2902,0x4E08,0x8A67,0xCC74),
469 bn_pack4(0xC4C6,0x628B,0x80DC,0x1CD1),
470 bn_pack4(0xC90F,0xDAA2,0x2168,0xC234),
471 bn_pack4(0xFFFF,0xFFFF,0xFFFF,0xFFFF)
472 };
473 static BIGNUM bn_group_8192 = {
474 bn_group_8192_value,
475 (sizeof bn_group_8192_value)/sizeof(BN_ULONG),
476 (sizeof bn_group_8192_value)/sizeof(BN_ULONG),
477 0,
478 BN_FLG_STATIC_DATA
479 };

481 static BN_ULONG bn_generator_19_value[] = {19} ;
482 static BIGNUM bn_generator_19 = {
483 bn_generator_19_value,
484 1,
485 1,
486 0,
487 BN_FLG_STATIC_DATA
488 };
489 static BN_ULONG bn_generator_5_value[] = {5} ;
490 static BIGNUM bn_generator_5 = {
491 bn_generator_5_value,
492 1,
493 1,
494 0,
495 BN_FLG_STATIC_DATA
496 };
497 static BN_ULONG bn_generator_2_value[] = {2} ;
498 static BIGNUM bn_generator_2 = {
499 bn_generator_2_value,
500 1,
501 1,
502 0,
503 BN_FLG_STATIC_DATA
504 };

506 static SRP_gN knowngN[] = {
507 {"8192",&bn_generator_19 , &bn_group_8192},
508 {"6144",&bn_generator_5 , &bn_group_6144},
509 {"4096",&bn_generator_5 , &bn_group_4096},
510 {"3072",&bn_generator_5 , &bn_group_3072},
511 {"2048",&bn_generator_2 , &bn_group_2048},
512 {"1536",&bn_generator_2 , &bn_group_1536},
513 {"1024",&bn_generator_2 , &bn_group_1024},
514 };
515 #define KNOWN_GN_NUMBER sizeof(knowngN) / sizeof(SRP_gN)

517 /* end of generated data */

new/usr/src/lib/openssl/include/srp_lcl.h 1

**
 3121 Fri May 30 18:31:25 2014
new/usr/src/lib/openssl/include/srp_lcl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/srp/srp_lcl.h */
2 /* Written by Peter Sylvester (peter.sylvester@edelweb.fr)
3 * for the EdelKey project and contributed to the OpenSSL project 2004.
4 */
5 /* ==
6 * Copyright (c) 2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 #ifndef HEADER_SRP_LCL_H
59 #define HEADER_SRP_LCL_H

61 #include <openssl/srp.h>

new/usr/src/lib/openssl/include/srp_lcl.h 2

62 #include <openssl/sha.h>

64 #if 0
65 #define srp_bn_print(a) {fprintf(stderr, #a "="); BN_print_fp(stderr,a); \
66 fprintf(stderr,"\n");}
67 #else
68 #define srp_bn_print(a)
69 #endif

73 #ifdef __cplusplus
74 extern "C" {
75 #endif

79 #ifdef __cplusplus
80 }
81 #endif

83 #endif

new/usr/src/lib/openssl/include/ssl_locl.h 1

**
 42321 Fri May 30 18:31:25 2014
new/usr/src/lib/openssl/include/ssl_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/ssl_locl.h */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/include/ssl_locl.h 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /* ==
112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
113 * ECC cipher suite support in OpenSSL originally developed by
114 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
115 */
116 /* ==
117 * Copyright 2005 Nokia. All rights reserved.
118 *
119 * The portions of the attached software ("Contribution") is developed by
120 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
121 * license.
122 *
123 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
124 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
125 * support (see RFC 4279) to OpenSSL.
126 *
127 * No patent licenses or other rights except those expressly stated in

new/usr/src/lib/openssl/include/ssl_locl.h 3

128 * the OpenSSL open source license shall be deemed granted or received
129 * expressly, by implication, estoppel, or otherwise.
130 *
131 * No assurances are provided by Nokia that the Contribution does not
132 * infringe the patent or other intellectual property rights of any third
133 * party or that the license provides you with all the necessary rights
134 * to make use of the Contribution.
135 *
136 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
137 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
138 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
139 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
140 * OTHERWISE.
141 */

143 #ifndef HEADER_SSL_LOCL_H
144 #define HEADER_SSL_LOCL_H
145 #include <stdlib.h>
146 #include <time.h>
147 #include <string.h>
148 #include <errno.h>

150 #include "e_os.h"

152 #include <openssl/buffer.h>
153 #ifndef OPENSSL_NO_COMP
154 #include <openssl/comp.h>
155 #endif
156 #include <openssl/bio.h>
157 #include <openssl/stack.h>
158 #ifndef OPENSSL_NO_RSA
159 #include <openssl/rsa.h>
160 #endif
161 #ifndef OPENSSL_NO_DSA
162 #include <openssl/dsa.h>
163 #endif
164 #include <openssl/err.h>
165 #include <openssl/ssl.h>
166 #include <openssl/symhacks.h>

168 #ifdef OPENSSL_BUILD_SHLIBSSL
169 # undef OPENSSL_EXTERN
170 # define OPENSSL_EXTERN OPENSSL_EXPORT
171 #endif

173 #undef PKCS1_CHECK

175 #define c2l(c,l) (l = ((unsigned long)(*((c)++))) , \
176 l|=(((unsigned long)(*((c)++)))<< 8), \
177 l|=(((unsigned long)(*((c)++)))<<16), \
178 l|=(((unsigned long)(*((c)++)))<<24))

180 /* NOTE - c is not incremented as per c2l */
181 #define c2ln(c,l1,l2,n) { \
182 c+=n; \
183 l1=l2=0; \
184 switch (n) { \
185 case 8: l2 =((unsigned long)(*(--(c))))<<24; \
186 case 7: l2|=((unsigned long)(*(--(c))))<<16; \
187 case 6: l2|=((unsigned long)(*(--(c))))<< 8; \
188 case 5: l2|=((unsigned long)(*(--(c)))); \
189 case 4: l1 =((unsigned long)(*(--(c))))<<24; \
190 case 3: l1|=((unsigned long)(*(--(c))))<<16; \
191 case 2: l1|=((unsigned long)(*(--(c))))<< 8; \
192 case 1: l1|=((unsigned long)(*(--(c)))); \
193 } \

new/usr/src/lib/openssl/include/ssl_locl.h 4

194 }

196 #define l2c(l,c) (*((c)++)=(unsigned char)(((l))&0xff), \
197 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
198 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
199 *((c)++)=(unsigned char)(((l)>>24)&0xff))

201 #define n2l(c,l) (l =((unsigned long)(*((c)++)))<<24, \
202 l|=((unsigned long)(*((c)++)))<<16, \
203 l|=((unsigned long)(*((c)++)))<< 8, \
204 l|=((unsigned long)(*((c)++))))

206 #define l2n(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
207 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
208 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
209 *((c)++)=(unsigned char)(((l))&0xff))

211 #define l2n6(l,c) (*((c)++)=(unsigned char)(((l)>>40)&0xff), \
212 *((c)++)=(unsigned char)(((l)>>32)&0xff), \
213 *((c)++)=(unsigned char)(((l)>>24)&0xff), \
214 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
215 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
216 *((c)++)=(unsigned char)(((l))&0xff))

218 #define l2n8(l,c) (*((c)++)=(unsigned char)(((l)>>56)&0xff), \
219 *((c)++)=(unsigned char)(((l)>>48)&0xff), \
220 *((c)++)=(unsigned char)(((l)>>40)&0xff), \
221 *((c)++)=(unsigned char)(((l)>>32)&0xff), \
222 *((c)++)=(unsigned char)(((l)>>24)&0xff), \
223 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
224 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
225 *((c)++)=(unsigned char)(((l))&0xff))

227 #define n2l6(c,l) (l =((BN_ULLONG)(*((c)++)))<<40, \
228 l|=((BN_ULLONG)(*((c)++)))<<32, \
229 l|=((BN_ULLONG)(*((c)++)))<<24, \
230 l|=((BN_ULLONG)(*((c)++)))<<16, \
231 l|=((BN_ULLONG)(*((c)++)))<< 8, \
232 l|=((BN_ULLONG)(*((c)++))))

234 /* NOTE - c is not incremented as per l2c */
235 #define l2cn(l1,l2,c,n) { \
236 c+=n; \
237 switch (n) { \
238 case 8: *(--(c))=(unsigned char)(((l2)>>24)&0xff); \
239 case 7: *(--(c))=(unsigned char)(((l2)>>16)&0xff); \
240 case 6: *(--(c))=(unsigned char)(((l2)>> 8)&0xff); \
241 case 5: *(--(c))=(unsigned char)(((l2))&0xff); \
242 case 4: *(--(c))=(unsigned char)(((l1)>>24)&0xff); \
243 case 3: *(--(c))=(unsigned char)(((l1)>>16)&0xff); \
244 case 2: *(--(c))=(unsigned char)(((l1)>> 8)&0xff); \
245 case 1: *(--(c))=(unsigned char)(((l1))&0xff); \
246 } \
247 }

249 #define n2s(c,s) ((s=(((unsigned int)(c[0]))<< 8)| \
250 (((unsigned int)(c[1])))),c+=2)
251 #define s2n(s,c) ((c[0]=(unsigned char)(((s)>> 8)&0xff), \
252 c[1]=(unsigned char)(((s))&0xff)),c+=2)

254 #define n2l3(c,l) ((l =(((unsigned long)(c[0]))<<16)| \
255 (((unsigned long)(c[1]))<< 8)| \
256 (((unsigned long)(c[2])))),c+=3)

258 #define l2n3(l,c) ((c[0]=(unsigned char)(((l)>>16)&0xff), \
259 c[1]=(unsigned char)(((l)>> 8)&0xff), \

new/usr/src/lib/openssl/include/ssl_locl.h 5

260 c[2]=(unsigned char)(((l))&0xff)),c+=3)

262 /* LOCAL STUFF */

264 #define SSL_DECRYPT 0
265 #define SSL_ENCRYPT 1

267 #define TWO_BYTE_BIT 0x80
268 #define SEC_ESC_BIT 0x40
269 #define TWO_BYTE_MASK 0x7fff
270 #define THREE_BYTE_MASK 0x3fff

272 #define INC32(a) ((a)=((a)+1)&0xffffffffL)
273 #define DEC32(a) ((a)=((a)-1)&0xffffffffL)
274 #define MAX_MAC_SIZE 20 /* up from 16 for SSLv3 */

276 /*
277 * Define the Bitmasks for SSL_CIPHER.algorithms.
278 * This bits are used packed as dense as possible. If new methods/ciphers
279 * etc will be added, the bits a likely to change, so this information
280 * is for internal library use only, even though SSL_CIPHER.algorithms
281 * can be publicly accessed.
282 * Use the according functions for cipher management instead.
283 *
284 * The bit mask handling in the selection and sorting scheme in
285 * ssl_create_cipher_list() has only limited capabilities, reflecting
286 * that the different entities within are mutually exclusive:
287 * ONLY ONE BIT PER MASK CAN BE SET AT A TIME.
288 */

290 /* Bits for algorithm_mkey (key exchange algorithm) */
291 #define SSL_kRSA 0x00000001L /* RSA key exchange */
292 #define SSL_kDHr 0x00000002L /* DH cert, RSA CA cert */ /* no suc
293 #define SSL_kDHd 0x00000004L /* DH cert, DSA CA cert */ /* no suc
294 #define SSL_kEDH 0x00000008L /* tmp DH key no DH cert */
295 #define SSL_kKRB5 0x00000010L /* Kerberos5 key exchange */
296 #define SSL_kECDHr 0x00000020L /* ECDH cert, RSA CA cert */
297 #define SSL_kECDHe 0x00000040L /* ECDH cert, ECDSA CA cert */
298 #define SSL_kEECDH 0x00000080L /* ephemeral ECDH */
299 #define SSL_kPSK 0x00000100L /* PSK */
300 #define SSL_kGOST 0x00000200L /* GOST key exchange */
301 #define SSL_kSRP 0x00000400L /* SRP */

303 /* Bits for algorithm_auth (server authentication) */
304 #define SSL_aRSA 0x00000001L /* RSA auth */
305 #define SSL_aDSS 0x00000002L /* DSS auth */
306 #define SSL_aNULL 0x00000004L /* no auth (i.e. use ADH or AECDH) *
307 #define SSL_aDH 0x00000008L /* Fixed DH auth (kDHd or kDHr) */ /
308 #define SSL_aECDH 0x00000010L /* Fixed ECDH auth (kECDHe or kECDHr
309 #define SSL_aKRB5 0x00000020L /* KRB5 auth */
310 #define SSL_aECDSA 0x00000040L /* ECDSA auth*/
311 #define SSL_aPSK 0x00000080L /* PSK auth */
312 #define SSL_aGOST94 0x00000100L /* GOST R 34.10-94 s
313 #define SSL_aGOST01 0x00000200L /* GOST R 34.10-2001 signatu

316 /* Bits for algorithm_enc (symmetric encryption) */
317 #define SSL_DES 0x00000001L
318 #define SSL_3DES 0x00000002L
319 #define SSL_RC4 0x00000004L
320 #define SSL_RC2 0x00000008L
321 #define SSL_IDEA 0x00000010L
322 #define SSL_eNULL 0x00000020L
323 #define SSL_AES128 0x00000040L
324 #define SSL_AES256 0x00000080L
325 #define SSL_CAMELLIA128 0x00000100L

new/usr/src/lib/openssl/include/ssl_locl.h 6

326 #define SSL_CAMELLIA256 0x00000200L
327 #define SSL_eGOST2814789CNT 0x00000400L
328 #define SSL_SEED 0x00000800L
329 #define SSL_AES128GCM 0x00001000L
330 #define SSL_AES256GCM 0x00002000L

332 #define SSL_AES (SSL_AES128|SSL_AES256|SSL_AES128GCM|SSL_AES256G
333 #define SSL_CAMELLIA (SSL_CAMELLIA128|SSL_CAMELLIA256)

336 /* Bits for algorithm_mac (symmetric authentication) */

338 #define SSL_MD5 0x00000001L
339 #define SSL_SHA1 0x00000002L
340 #define SSL_GOST94 0x00000004L
341 #define SSL_GOST89MAC 0x00000008L
342 #define SSL_SHA256 0x00000010L
343 #define SSL_SHA384 0x00000020L
344 /* Not a real MAC, just an indication it is part of cipher */
345 #define SSL_AEAD 0x00000040L

347 /* Bits for algorithm_ssl (protocol version) */
348 #define SSL_SSLV2 0x00000001L
349 #define SSL_SSLV3 0x00000002L
350 #define SSL_TLSV1 SSL_SSLV3 /* for now */
351 #define SSL_TLSV1_2 0x00000004L

354 /* Bits for algorithm2 (handshake digests and other extra flags) */

356 #define SSL_HANDSHAKE_MAC_MD5 0x10
357 #define SSL_HANDSHAKE_MAC_SHA 0x20
358 #define SSL_HANDSHAKE_MAC_GOST94 0x40
359 #define SSL_HANDSHAKE_MAC_SHA256 0x80
360 #define SSL_HANDSHAKE_MAC_SHA384 0x100
361 #define SSL_HANDSHAKE_MAC_DEFAULT (SSL_HANDSHAKE_MAC_MD5 | SSL_HANDSHAKE_MAC_SHA

363 /* When adding new digest in the ssl_ciph.c and increment SSM_MD_NUM_IDX
364 * make sure to update this constant too */
365 #define SSL_MAX_DIGEST 6

367 #define TLS1_PRF_DGST_MASK (0xff << TLS1_PRF_DGST_SHIFT)

369 #define TLS1_PRF_DGST_SHIFT 10
370 #define TLS1_PRF_MD5 (SSL_HANDSHAKE_MAC_MD5 << TLS1_PRF_DGST_SHIFT)
371 #define TLS1_PRF_SHA1 (SSL_HANDSHAKE_MAC_SHA << TLS1_PRF_DGST_SHIFT)
372 #define TLS1_PRF_SHA256 (SSL_HANDSHAKE_MAC_SHA256 << TLS1_PRF_DGST_SHIFT)
373 #define TLS1_PRF_SHA384 (SSL_HANDSHAKE_MAC_SHA384 << TLS1_PRF_DGST_SHIFT)
374 #define TLS1_PRF_GOST94 (SSL_HANDSHAKE_MAC_GOST94 << TLS1_PRF_DGST_SHIFT)
375 #define TLS1_PRF (TLS1_PRF_MD5 | TLS1_PRF_SHA1)

377 /* Stream MAC for GOST ciphersuites from cryptopro draft
378 * (currently this also goes into algorithm2) */
379 #define TLS1_STREAM_MAC 0x04

383 /*
384 * Export and cipher strength information. For each cipher we have to decide
385 * whether it is exportable or not. This information is likely to change
386 * over time, since the export control rules are no static technical issue.
387 *
388 * Independent of the export flag the cipher strength is sorted into classes.
389 * SSL_EXP40 was denoting the 40bit US export limit of past times, which now
390 * is at 56bit (SSL_EXP56). If the exportable cipher class is going to change
391 * again (eg. to 64bit) the use of "SSL_EXP*" becomes blurred even more,

new/usr/src/lib/openssl/include/ssl_locl.h 7

392 * since SSL_EXP64 could be similar to SSL_LOW.
393 * For this reason SSL_MICRO and SSL_MINI macros are included to widen the
394 * namespace of SSL_LOW-SSL_HIGH to lower values. As development of speed
395 * and ciphers goes, another extension to SSL_SUPER and/or SSL_ULTRA would
396 * be possible.
397 */
398 #define SSL_EXP_MASK 0x00000003L
399 #define SSL_STRONG_MASK 0x000001fcL

401 #define SSL_NOT_EXP 0x00000001L
402 #define SSL_EXPORT 0x00000002L

404 #define SSL_STRONG_NONE 0x00000004L
405 #define SSL_EXP40 0x00000008L
406 #define SSL_MICRO (SSL_EXP40)
407 #define SSL_EXP56 0x00000010L
408 #define SSL_MINI (SSL_EXP56)
409 #define SSL_LOW 0x00000020L
410 #define SSL_MEDIUM 0x00000040L
411 #define SSL_HIGH 0x00000080L
412 #define SSL_FIPS 0x00000100L

414 /* we have used 000001ff - 23 bits left to go */

416 /*
417 * Macros to check the export status and cipher strength for export ciphers.
418 * Even though the macros for EXPORT and EXPORT40/56 have similar names,
419 * their meaning is different:
420 * *_EXPORT macros check the ’exportable’ status.
421 * *_EXPORT40/56 macros are used to check whether a certain cipher strength
422 * is given.
423 * Since the SSL_IS_EXPORT* and SSL_EXPORT* macros depend on the correct
424 * algorithm structure element to be passed (algorithms, algo_strength) and no
425 * typechecking can be done as they are all of type unsigned long, their
426 * direct usage is discouraged.
427 * Use the SSL_C_* macros instead.
428 */
429 #define SSL_IS_EXPORT(a) ((a)&SSL_EXPORT)
430 #define SSL_IS_EXPORT56(a) ((a)&SSL_EXP56)
431 #define SSL_IS_EXPORT40(a) ((a)&SSL_EXP40)
432 #define SSL_C_IS_EXPORT(c) SSL_IS_EXPORT((c)->algo_strength)
433 #define SSL_C_IS_EXPORT56(c) SSL_IS_EXPORT56((c)->algo_strength)
434 #define SSL_C_IS_EXPORT40(c) SSL_IS_EXPORT40((c)->algo_strength)

436 #define SSL_EXPORT_KEYLENGTH(a,s) (SSL_IS_EXPORT40(s) ? 5 : \
437 (a) == SSL_DES ? 8 : 7)
438 #define SSL_EXPORT_PKEYLENGTH(a) (SSL_IS_EXPORT40(a) ? 512 : 1024)
439 #define SSL_C_EXPORT_KEYLENGTH(c) SSL_EXPORT_KEYLENGTH((c)->algorithm_enc,
440 (c)->algo_strength)
441 #define SSL_C_EXPORT_PKEYLENGTH(c) SSL_EXPORT_PKEYLENGTH((c)->algo_strength

446 /* Mostly for SSLv3 */
447 #define SSL_PKEY_RSA_ENC 0
448 #define SSL_PKEY_RSA_SIGN 1
449 #define SSL_PKEY_DSA_SIGN 2
450 #define SSL_PKEY_DH_RSA 3
451 #define SSL_PKEY_DH_DSA 4
452 #define SSL_PKEY_ECC 5
453 #define SSL_PKEY_GOST94 6
454 #define SSL_PKEY_GOST01 7
455 #define SSL_PKEY_NUM 8

457 /* SSL_kRSA <- RSA_ENC | (RSA_TMP & RSA_SIGN) |

new/usr/src/lib/openssl/include/ssl_locl.h 8

458 * <- (EXPORT & (RSA_ENC | RSA_TMP) & RSA_SIGN)
459 * SSL_kDH <- DH_ENC & (RSA_ENC | RSA_SIGN | DSA_SIGN)
460 * SSL_kEDH <- RSA_ENC | RSA_SIGN | DSA_SIGN
461 * SSL_aRSA <- RSA_ENC | RSA_SIGN
462 * SSL_aDSS <- DSA_SIGN
463 */

465 /*
466 #define CERT_INVALID 0
467 #define CERT_PUBLIC_KEY 1
468 #define CERT_PRIVATE_KEY 2
469 */

471 #ifndef OPENSSL_NO_EC
472 /* From ECC-TLS draft, used in encoding the curve type in
473 * ECParameters
474 */
475 #define EXPLICIT_PRIME_CURVE_TYPE 1
476 #define EXPLICIT_CHAR2_CURVE_TYPE 2
477 #define NAMED_CURVE_TYPE 3
478 #endif /* OPENSSL_NO_EC */

480 typedef struct cert_pkey_st
481 {
482 X509 *x509;
483 EVP_PKEY *privatekey;
484 /* Digest to use when signing */
485 const EVP_MD *digest;
486 } CERT_PKEY;

488 typedef struct cert_st
489 {
490 /* Current active set */
491 CERT_PKEY *key; /* ALWAYS points to an element of the pkeys array
492 * Probably it would make more sense to store
493 * an index, not a pointer. */
494
495 /* The following masks are for the key and auth
496 * algorithms that are supported by the certs below */
497 int valid;
498 unsigned long mask_k;
499 unsigned long mask_a;
500 unsigned long export_mask_k;
501 unsigned long export_mask_a;
502 #ifndef OPENSSL_NO_RSA
503 RSA *rsa_tmp;
504 RSA *(*rsa_tmp_cb)(SSL *ssl,int is_export,int keysize);
505 #endif
506 #ifndef OPENSSL_NO_DH
507 DH *dh_tmp;
508 DH *(*dh_tmp_cb)(SSL *ssl,int is_export,int keysize);
509 #endif
510 #ifndef OPENSSL_NO_ECDH
511 EC_KEY *ecdh_tmp;
512 /* Callback for generating ephemeral ECDH keys */
513 EC_KEY *(*ecdh_tmp_cb)(SSL *ssl,int is_export,int keysize);
514 #endif

516 CERT_PKEY pkeys[SSL_PKEY_NUM];

518 int references; /* >1 only if SSL_copy_session_id is used */
519 } CERT;

522 typedef struct sess_cert_st
523 {

new/usr/src/lib/openssl/include/ssl_locl.h 9

524 STACK_OF(X509) *cert_chain; /* as received from peer (not for SSL2) */

526 /* The ’peer_...’ members are used only by clients. */
527 int peer_cert_type;

529 CERT_PKEY *peer_key; /* points to an element of peer_pkeys (never NULL!)
530 CERT_PKEY peer_pkeys[SSL_PKEY_NUM];
531 /* Obviously we don’t have the private keys of these,
532 * so maybe we shouldn’t even use the CERT_PKEY type here. */

534 #ifndef OPENSSL_NO_RSA
535 RSA *peer_rsa_tmp; /* not used for SSL 2 */
536 #endif
537 #ifndef OPENSSL_NO_DH
538 DH *peer_dh_tmp; /* not used for SSL 2 */
539 #endif
540 #ifndef OPENSSL_NO_ECDH
541 EC_KEY *peer_ecdh_tmp;
542 #endif

544 int references; /* actually always 1 at the moment */
545 } SESS_CERT;

548 /*#define MAC_DEBUG */

550 /*#define ERR_DEBUG */
551 /*#define ABORT_DEBUG */
552 /*#define PKT_DEBUG 1 */
553 /*#define DES_DEBUG */
554 /*#define DES_OFB_DEBUG */
555 /*#define SSL_DEBUG */
556 /*#define RSA_DEBUG */
557 /*#define IDEA_DEBUG */

559 #define FP_ICC (int (*)(const void *,const void *))
560 #define ssl_put_cipher_by_char(ssl,ciph,ptr) \
561 ((ssl)->method->put_cipher_by_char((ciph),(ptr)))
562 #define ssl_get_cipher_by_char(ssl,ptr) \
563 ((ssl)->method->get_cipher_by_char(ptr))

565 /* This is for the SSLv3/TLSv1.0 differences in crypto/hash stuff
566 * It is a bit of a mess of functions, but hell, think of it as
567 * an opaque structure :-) */
568 typedef struct ssl3_enc_method
569 {
570 int (*enc)(SSL *, int);
571 int (*mac)(SSL *, unsigned char *, int);
572 int (*setup_key_block)(SSL *);
573 int (*generate_master_secret)(SSL *, unsigned char *, unsigned char *, i
574 int (*change_cipher_state)(SSL *, int);
575 int (*final_finish_mac)(SSL *, const char *, int, unsigned char *);
576 int finish_mac_length;
577 int (*cert_verify_mac)(SSL *, int, unsigned char *);
578 const char *client_finished_label;
579 int client_finished_label_len;
580 const char *server_finished_label;
581 int server_finished_label_len;
582 int (*alert_value)(int);
583 int (*export_keying_material)(SSL *, unsigned char *, size_t,
584 const char *, size_t,
585 const unsigned char *, size_t,
586 int use_context);
587 } SSL3_ENC_METHOD;

589 #ifndef OPENSSL_NO_COMP

new/usr/src/lib/openssl/include/ssl_locl.h 10

590 /* Used for holding the relevant compression methods loaded into SSL_CTX */
591 typedef struct ssl3_comp_st
592 {
593 int comp_id; /* The identifier byte for this compression type */
594 char *name; /* Text name used for the compression type */
595 COMP_METHOD *method; /* The method :-) */
596 } SSL3_COMP;
597 #endif

599 #ifndef OPENSSL_NO_BUF_FREELISTS
600 typedef struct ssl3_buf_freelist_st
601 {
602 size_t chunklen;
603 unsigned int len;
604 struct ssl3_buf_freelist_entry_st *head;
605 } SSL3_BUF_FREELIST;

607 typedef struct ssl3_buf_freelist_entry_st
608 {
609 struct ssl3_buf_freelist_entry_st *next;
610 } SSL3_BUF_FREELIST_ENTRY;
611 #endif

613 extern SSL3_ENC_METHOD ssl3_undef_enc_method;
614 OPENSSL_EXTERN const SSL_CIPHER ssl2_ciphers[];
615 OPENSSL_EXTERN SSL_CIPHER ssl3_ciphers[];

618 SSL_METHOD *ssl_bad_method(int ver);

620 extern SSL3_ENC_METHOD TLSv1_enc_data;
621 extern SSL3_ENC_METHOD SSLv3_enc_data;
622 extern SSL3_ENC_METHOD DTLSv1_enc_data;

624 #define SSL_IS_DTLS(s) (s->method->version == DTLS1_VERSION)

626 #define IMPLEMENT_tls_meth_func(version, func_name, s_accept, s_connect, \
627 s_get_meth) \
628 const SSL_METHOD *func_name(void) \
629 { \
630 static const SSL_METHOD func_name##_data= { \
631 version, \
632 tls1_new, \
633 tls1_clear, \
634 tls1_free, \
635 s_accept, \
636 s_connect, \
637 ssl3_read, \
638 ssl3_peek, \
639 ssl3_write, \
640 ssl3_shutdown, \
641 ssl3_renegotiate, \
642 ssl3_renegotiate_check, \
643 ssl3_get_message, \
644 ssl3_read_bytes, \
645 ssl3_write_bytes, \
646 ssl3_dispatch_alert, \
647 ssl3_ctrl, \
648 ssl3_ctx_ctrl, \
649 ssl3_get_cipher_by_char, \
650 ssl3_put_cipher_by_char, \
651 ssl3_pending, \
652 ssl3_num_ciphers, \
653 ssl3_get_cipher, \
654 s_get_meth, \
655 tls1_default_timeout, \

new/usr/src/lib/openssl/include/ssl_locl.h 11

656 &TLSv1_enc_data, \
657 ssl_undefined_void_function, \
658 ssl3_callback_ctrl, \
659 ssl3_ctx_callback_ctrl, \
660 }; \
661 return &func_name##_data; \
662 }

664 #define IMPLEMENT_ssl3_meth_func(func_name, s_accept, s_connect, s_get_meth) \
665 const SSL_METHOD *func_name(void) \
666 { \
667 static const SSL_METHOD func_name##_data= { \
668 SSL3_VERSION, \
669 ssl3_new, \
670 ssl3_clear, \
671 ssl3_free, \
672 s_accept, \
673 s_connect, \
674 ssl3_read, \
675 ssl3_peek, \
676 ssl3_write, \
677 ssl3_shutdown, \
678 ssl3_renegotiate, \
679 ssl3_renegotiate_check, \
680 ssl3_get_message, \
681 ssl3_read_bytes, \
682 ssl3_write_bytes, \
683 ssl3_dispatch_alert, \
684 ssl3_ctrl, \
685 ssl3_ctx_ctrl, \
686 ssl3_get_cipher_by_char, \
687 ssl3_put_cipher_by_char, \
688 ssl3_pending, \
689 ssl3_num_ciphers, \
690 ssl3_get_cipher, \
691 s_get_meth, \
692 ssl3_default_timeout, \
693 &SSLv3_enc_data, \
694 ssl_undefined_void_function, \
695 ssl3_callback_ctrl, \
696 ssl3_ctx_callback_ctrl, \
697 }; \
698 return &func_name##_data; \
699 }

701 #define IMPLEMENT_ssl23_meth_func(func_name, s_accept, s_connect, s_get_meth) \
702 const SSL_METHOD *func_name(void) \
703 { \
704 static const SSL_METHOD func_name##_data= { \
705 TLS1_2_VERSION, \
706 tls1_new, \
707 tls1_clear, \
708 tls1_free, \
709 s_accept, \
710 s_connect, \
711 ssl23_read, \
712 ssl23_peek, \
713 ssl23_write, \
714 ssl_undefined_function, \
715 ssl_undefined_function, \
716 ssl_ok, \
717 ssl3_get_message, \
718 ssl3_read_bytes, \
719 ssl3_write_bytes, \
720 ssl3_dispatch_alert, \
721 ssl3_ctrl, \

new/usr/src/lib/openssl/include/ssl_locl.h 12

722 ssl3_ctx_ctrl, \
723 ssl23_get_cipher_by_char, \
724 ssl23_put_cipher_by_char, \
725 ssl_undefined_const_function, \
726 ssl23_num_ciphers, \
727 ssl23_get_cipher, \
728 s_get_meth, \
729 ssl23_default_timeout, \
730 &ssl3_undef_enc_method, \
731 ssl_undefined_void_function, \
732 ssl3_callback_ctrl, \
733 ssl3_ctx_callback_ctrl, \
734 }; \
735 return &func_name##_data; \
736 }

738 #define IMPLEMENT_ssl2_meth_func(func_name, s_accept, s_connect, s_get_meth) \
739 const SSL_METHOD *func_name(void) \
740 { \
741 static const SSL_METHOD func_name##_data= { \
742 SSL2_VERSION, \
743 ssl2_new, /* local */ \
744 ssl2_clear, /* local */ \
745 ssl2_free, /* local */ \
746 s_accept, \
747 s_connect, \
748 ssl2_read, \
749 ssl2_peek, \
750 ssl2_write, \
751 ssl2_shutdown, \
752 ssl_ok, /* NULL - renegotiate */ \
753 ssl_ok, /* NULL - check renegotiate */ \
754 NULL, /* NULL - ssl_get_message */ \
755 NULL, /* NULL - ssl_get_record */ \
756 NULL, /* NULL - ssl_write_bytes */ \
757 NULL, /* NULL - dispatch_alert */ \
758 ssl2_ctrl, /* local */ \
759 ssl2_ctx_ctrl, /* local */ \
760 ssl2_get_cipher_by_char, \
761 ssl2_put_cipher_by_char, \
762 ssl2_pending, \
763 ssl2_num_ciphers, \
764 ssl2_get_cipher, \
765 s_get_meth, \
766 ssl2_default_timeout, \
767 &ssl3_undef_enc_method, \
768 ssl_undefined_void_function, \
769 ssl2_callback_ctrl, /* local */ \
770 ssl2_ctx_callback_ctrl, /* local */ \
771 }; \
772 return &func_name##_data; \
773 }

775 #define IMPLEMENT_dtls1_meth_func(func_name, s_accept, s_connect, s_get_meth) \
776 const SSL_METHOD *func_name(void) \
777 { \
778 static const SSL_METHOD func_name##_data= { \
779 DTLS1_VERSION, \
780 dtls1_new, \
781 dtls1_clear, \
782 dtls1_free, \
783 s_accept, \
784 s_connect, \
785 ssl3_read, \
786 ssl3_peek, \
787 ssl3_write, \

new/usr/src/lib/openssl/include/ssl_locl.h 13

788 dtls1_shutdown, \
789 ssl3_renegotiate, \
790 ssl3_renegotiate_check, \
791 dtls1_get_message, \
792 dtls1_read_bytes, \
793 dtls1_write_app_data_bytes, \
794 dtls1_dispatch_alert, \
795 dtls1_ctrl, \
796 ssl3_ctx_ctrl, \
797 ssl3_get_cipher_by_char, \
798 ssl3_put_cipher_by_char, \
799 ssl3_pending, \
800 ssl3_num_ciphers, \
801 dtls1_get_cipher, \
802 s_get_meth, \
803 dtls1_default_timeout, \
804 &DTLSv1_enc_data, \
805 ssl_undefined_void_function, \
806 ssl3_callback_ctrl, \
807 ssl3_ctx_callback_ctrl, \
808 }; \
809 return &func_name##_data; \
810 }

812 void ssl_clear_cipher_ctx(SSL *s);
813 int ssl_clear_bad_session(SSL *s);
814 CERT *ssl_cert_new(void);
815 CERT *ssl_cert_dup(CERT *cert);
816 int ssl_cert_inst(CERT **o);
817 void ssl_cert_free(CERT *c);
818 SESS_CERT *ssl_sess_cert_new(void);
819 void ssl_sess_cert_free(SESS_CERT *sc);
820 int ssl_set_peer_cert_type(SESS_CERT *c, int type);
821 int ssl_get_new_session(SSL *s, int session);
822 int ssl_get_prev_session(SSL *s, unsigned char *session,int len, const unsigned
823 int ssl_cipher_id_cmp(const SSL_CIPHER *a,const SSL_CIPHER *b);
824 DECLARE_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER,
825 ssl_cipher_id);
826 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER * const *ap,
827 const SSL_CIPHER * const *bp);
828 STACK_OF(SSL_CIPHER) *ssl_bytes_to_cipher_list(SSL *s,unsigned char *p,int num,
829 STACK_OF(SSL_CIPHER) **skp);
830 int ssl_cipher_list_to_bytes(SSL *s,STACK_OF(SSL_CIPHER) *sk,unsigned char *p,
831 int (*put_cb)(const SSL_CIPHER *, unsigned char *))
832 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *meth,
833 STACK_OF(SSL_CIPHER) **pref,
834 STACK_OF(SSL_CIPHER) **sorted,
835 const char *rule_str);
836 void ssl_update_cache(SSL *s, int mode);
837 int ssl_cipher_get_evp(const SSL_SESSION *s,const EVP_CIPHER **enc,
838 const EVP_MD **md,int *mac_pkey_type,int *mac_secret_size
839 int ssl_get_handshake_digest(int i,long *mask,const EVP_MD **md);
840 int ssl_verify_cert_chain(SSL *s,STACK_OF(X509) *sk);
841 int ssl_undefined_function(SSL *s);
842 int ssl_undefined_void_function(void);
843 int ssl_undefined_const_function(const SSL *s);
844 CERT_PKEY *ssl_get_server_send_pkey(const SSL *s);
845 X509 *ssl_get_server_send_cert(const SSL *);
846 EVP_PKEY *ssl_get_sign_pkey(SSL *s,const SSL_CIPHER *c, const EVP_MD **pmd);
847 int ssl_cert_type(X509 *x,EVP_PKEY *pkey);
848 void ssl_set_cert_masks(CERT *c, const SSL_CIPHER *cipher);
849 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s);
850 int ssl_verify_alarm_type(long type);
851 void ssl_load_ciphers(void);
852 int ssl_fill_hello_random(SSL *s, int server, unsigned char *field, int len);

new/usr/src/lib/openssl/include/ssl_locl.h 14

854 int ssl2_enc_init(SSL *s, int client);
855 int ssl2_generate_key_material(SSL *s);
856 void ssl2_enc(SSL *s,int send_data);
857 void ssl2_mac(SSL *s,unsigned char *mac,int send_data);
858 const SSL_CIPHER *ssl2_get_cipher_by_char(const unsigned char *p);
859 int ssl2_put_cipher_by_char(const SSL_CIPHER *c,unsigned char *p);
860 int ssl2_part_read(SSL *s, unsigned long f, int i);
861 int ssl2_do_write(SSL *s);
862 int ssl2_set_certificate(SSL *s, int type, int len, const unsigned char *data);
863 void ssl2_return_error(SSL *s,int reason);
864 void ssl2_write_error(SSL *s);
865 int ssl2_num_ciphers(void);
866 const SSL_CIPHER *ssl2_get_cipher(unsigned int u);
867 int ssl2_new(SSL *s);
868 void ssl2_free(SSL *s);
869 int ssl2_accept(SSL *s);
870 int ssl2_connect(SSL *s);
871 int ssl2_read(SSL *s, void *buf, int len);
872 int ssl2_peek(SSL *s, void *buf, int len);
873 int ssl2_write(SSL *s, const void *buf, int len);
874 int ssl2_shutdown(SSL *s);
875 void ssl2_clear(SSL *s);
876 long ssl2_ctrl(SSL *s,int cmd, long larg, void *parg);
877 long ssl2_ctx_ctrl(SSL_CTX *s,int cmd, long larg, void *parg);
878 long ssl2_callback_ctrl(SSL *s,int cmd, void (*fp)(void));
879 long ssl2_ctx_callback_ctrl(SSL_CTX *s,int cmd, void (*fp)(void));
880 int ssl2_pending(const SSL *s);
881 long ssl2_default_timeout(void);

883 const SSL_CIPHER *ssl3_get_cipher_by_char(const unsigned char *p);
884 int ssl3_put_cipher_by_char(const SSL_CIPHER *c,unsigned char *p);
885 void ssl3_init_finished_mac(SSL *s);
886 int ssl3_send_server_certificate(SSL *s);
887 int ssl3_send_newsession_ticket(SSL *s);
888 int ssl3_send_cert_status(SSL *s);
889 int ssl3_get_finished(SSL *s,int state_a,int state_b);
890 int ssl3_setup_key_block(SSL *s);
891 int ssl3_send_change_cipher_spec(SSL *s,int state_a,int state_b);
892 int ssl3_change_cipher_state(SSL *s,int which);
893 void ssl3_cleanup_key_block(SSL *s);
894 int ssl3_do_write(SSL *s,int type);
895 int ssl3_send_alert(SSL *s,int level, int desc);
896 int ssl3_generate_master_secret(SSL *s, unsigned char *out,
897 unsigned char *p, int len);
898 int ssl3_get_req_cert_type(SSL *s,unsigned char *p);
899 long ssl3_get_message(SSL *s, int st1, int stn, int mt, long max, int *ok);
900 int ssl3_send_finished(SSL *s, int a, int b, const char *sender,int slen);
901 int ssl3_num_ciphers(void);
902 const SSL_CIPHER *ssl3_get_cipher(unsigned int u);
903 int ssl3_renegotiate(SSL *ssl);
904 int ssl3_renegotiate_check(SSL *ssl);
905 int ssl3_dispatch_alert(SSL *s);
906 int ssl3_read_bytes(SSL *s, int type, unsigned char *buf, int len, int peek);
907 int ssl3_write_bytes(SSL *s, int type, const void *buf, int len);
908 int ssl3_final_finish_mac(SSL *s, const char *sender, int slen,unsigned char *p)
909 int ssl3_cert_verify_mac(SSL *s, int md_nid, unsigned char *p);
910 void ssl3_finish_mac(SSL *s, const unsigned char *buf, int len);
911 int ssl3_enc(SSL *s, int send_data);
912 int n_ssl3_mac(SSL *ssl, unsigned char *md, int send_data);
913 void ssl3_free_digest_list(SSL *s);
914 unsigned long ssl3_output_cert_chain(SSL *s, X509 *x);
915 SSL_CIPHER *ssl3_choose_cipher(SSL *ssl,STACK_OF(SSL_CIPHER) *clnt,
916 STACK_OF(SSL_CIPHER) *srvr);
917 int ssl3_setup_buffers(SSL *s);
918 int ssl3_setup_read_buffer(SSL *s);
919 int ssl3_setup_write_buffer(SSL *s);

new/usr/src/lib/openssl/include/ssl_locl.h 15

920 int ssl3_release_read_buffer(SSL *s);
921 int ssl3_release_write_buffer(SSL *s);
922 int ssl3_digest_cached_records(SSL *s);
923 int ssl3_new(SSL *s);
924 void ssl3_free(SSL *s);
925 int ssl3_accept(SSL *s);
926 int ssl3_connect(SSL *s);
927 int ssl3_read(SSL *s, void *buf, int len);
928 int ssl3_peek(SSL *s, void *buf, int len);
929 int ssl3_write(SSL *s, const void *buf, int len);
930 int ssl3_shutdown(SSL *s);
931 void ssl3_clear(SSL *s);
932 long ssl3_ctrl(SSL *s,int cmd, long larg, void *parg);
933 long ssl3_ctx_ctrl(SSL_CTX *s,int cmd, long larg, void *parg);
934 long ssl3_callback_ctrl(SSL *s,int cmd, void (*fp)(void));
935 long ssl3_ctx_callback_ctrl(SSL_CTX *s,int cmd, void (*fp)(void));
936 int ssl3_pending(const SSL *s);

938 void ssl3_record_sequence_update(unsigned char *seq);
939 int ssl3_do_change_cipher_spec(SSL *ssl);
940 long ssl3_default_timeout(void);

942 int ssl23_num_ciphers(void);
943 const SSL_CIPHER *ssl23_get_cipher(unsigned int u);
944 int ssl23_read(SSL *s, void *buf, int len);
945 int ssl23_peek(SSL *s, void *buf, int len);
946 int ssl23_write(SSL *s, const void *buf, int len);
947 int ssl23_put_cipher_by_char(const SSL_CIPHER *c, unsigned char *p);
948 const SSL_CIPHER *ssl23_get_cipher_by_char(const unsigned char *p);
949 long ssl23_default_timeout(void);

951 long tls1_default_timeout(void);
952 int dtls1_do_write(SSL *s,int type);
953 int ssl3_read_n(SSL *s, int n, int max, int extend);
954 int dtls1_read_bytes(SSL *s, int type, unsigned char *buf, int len, int peek);
955 int ssl3_do_compress(SSL *ssl);
956 int ssl3_do_uncompress(SSL *ssl);
957 int ssl3_write_pending(SSL *s, int type, const unsigned char *buf,
958 unsigned int len);
959 unsigned char *dtls1_set_message_header(SSL *s,
960 unsigned char *p, unsigned char mt, unsigned long len,
961 unsigned long frag_off, unsigned long frag_len);

963 int dtls1_write_app_data_bytes(SSL *s, int type, const void *buf, int len);
964 int dtls1_write_bytes(SSL *s, int type, const void *buf, int len);

966 int dtls1_send_change_cipher_spec(SSL *s, int a, int b);
967 int dtls1_send_finished(SSL *s, int a, int b, const char *sender, int slen);
968 unsigned long dtls1_output_cert_chain(SSL *s, X509 *x);
969 int dtls1_read_failed(SSL *s, int code);
970 int dtls1_buffer_message(SSL *s, int ccs);
971 int dtls1_retransmit_message(SSL *s, unsigned short seq,
972 unsigned long frag_off, int *found);
973 int dtls1_get_queue_priority(unsigned short seq, int is_ccs);
974 int dtls1_retransmit_buffered_messages(SSL *s);
975 void dtls1_clear_record_buffer(SSL *s);
976 void dtls1_get_message_header(unsigned char *data, struct hm_header_st *msg_hdr)
977 void dtls1_get_ccs_header(unsigned char *data, struct ccs_header_st *ccs_hdr);
978 void dtls1_reset_seq_numbers(SSL *s, int rw);
979 long dtls1_default_timeout(void);
980 struct timeval* dtls1_get_timeout(SSL *s, struct timeval* timeleft);
981 int dtls1_check_timeout_num(SSL *s);
982 int dtls1_handle_timeout(SSL *s);
983 const SSL_CIPHER *dtls1_get_cipher(unsigned int u);
984 void dtls1_start_timer(SSL *s);
985 void dtls1_stop_timer(SSL *s);

new/usr/src/lib/openssl/include/ssl_locl.h 16

986 int dtls1_is_timer_expired(SSL *s);
987 void dtls1_double_timeout(SSL *s);
988 int dtls1_send_newsession_ticket(SSL *s);
989 unsigned int dtls1_min_mtu(void);

991 /* some client-only functions */
992 int ssl3_client_hello(SSL *s);
993 int ssl3_get_server_hello(SSL *s);
994 int ssl3_get_certificate_request(SSL *s);
995 int ssl3_get_new_session_ticket(SSL *s);
996 int ssl3_get_cert_status(SSL *s);
997 int ssl3_get_server_done(SSL *s);
998 int ssl3_send_client_verify(SSL *s);
999 int ssl3_send_client_certificate(SSL *s);

1000 int ssl_do_client_cert_cb(SSL *s, X509 **px509, EVP_PKEY **ppkey);
1001 int ssl3_send_client_key_exchange(SSL *s);
1002 int ssl3_get_key_exchange(SSL *s);
1003 int ssl3_get_server_certificate(SSL *s);
1004 int ssl3_check_cert_and_algorithm(SSL *s);
1005 #ifndef OPENSSL_NO_TLSEXT
1006 int ssl3_check_finished(SSL *s);
1007 # ifndef OPENSSL_NO_NEXTPROTONEG
1008 int ssl3_send_next_proto(SSL *s);
1009 # endif
1010 #endif

1012 int dtls1_client_hello(SSL *s);
1013 int dtls1_send_client_certificate(SSL *s);
1014 int dtls1_send_client_key_exchange(SSL *s);
1015 int dtls1_send_client_verify(SSL *s);

1017 /* some server-only functions */
1018 int ssl3_get_client_hello(SSL *s);
1019 int ssl3_send_server_hello(SSL *s);
1020 int ssl3_send_hello_request(SSL *s);
1021 int ssl3_send_server_key_exchange(SSL *s);
1022 int ssl3_send_certificate_request(SSL *s);
1023 int ssl3_send_server_done(SSL *s);
1024 int ssl3_check_client_hello(SSL *s);
1025 int ssl3_get_client_certificate(SSL *s);
1026 int ssl3_get_client_key_exchange(SSL *s);
1027 int ssl3_get_cert_verify(SSL *s);
1028 #ifndef OPENSSL_NO_NEXTPROTONEG
1029 int ssl3_get_next_proto(SSL *s);
1030 #endif

1032 int dtls1_send_hello_request(SSL *s);
1033 int dtls1_send_server_hello(SSL *s);
1034 int dtls1_send_server_certificate(SSL *s);
1035 int dtls1_send_server_key_exchange(SSL *s);
1036 int dtls1_send_certificate_request(SSL *s);
1037 int dtls1_send_server_done(SSL *s);

1041 int ssl23_accept(SSL *s);
1042 int ssl23_connect(SSL *s);
1043 int ssl23_read_bytes(SSL *s, int n);
1044 int ssl23_write_bytes(SSL *s);

1046 int tls1_new(SSL *s);
1047 void tls1_free(SSL *s);
1048 void tls1_clear(SSL *s);
1049 long tls1_ctrl(SSL *s,int cmd, long larg, void *parg);
1050 long tls1_callback_ctrl(SSL *s,int cmd, void (*fp)(void));

new/usr/src/lib/openssl/include/ssl_locl.h 17

1052 int dtls1_new(SSL *s);
1053 int dtls1_accept(SSL *s);
1054 int dtls1_connect(SSL *s);
1055 void dtls1_free(SSL *s);
1056 void dtls1_clear(SSL *s);
1057 long dtls1_ctrl(SSL *s,int cmd, long larg, void *parg);
1058 int dtls1_shutdown(SSL *s);

1060 long dtls1_get_message(SSL *s, int st1, int stn, int mt, long max, int *ok);
1061 int dtls1_get_record(SSL *s);
1062 int do_dtls1_write(SSL *s, int type, const unsigned char *buf,
1063 unsigned int len, int create_empty_fragement);
1064 int dtls1_dispatch_alert(SSL *s);
1065 int dtls1_enc(SSL *s, int snd);

1067 int ssl_init_wbio_buffer(SSL *s, int push);
1068 void ssl_free_wbio_buffer(SSL *s);

1070 int tls1_change_cipher_state(SSL *s, int which);
1071 int tls1_setup_key_block(SSL *s);
1072 int tls1_enc(SSL *s, int snd);
1073 int tls1_final_finish_mac(SSL *s,
1074 const char *str, int slen, unsigned char *p);
1075 int tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *p);
1076 int tls1_mac(SSL *ssl, unsigned char *md, int snd);
1077 int tls1_generate_master_secret(SSL *s, unsigned char *out,
1078 unsigned char *p, int len);
1079 int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
1080 const char *label, size_t llen,
1081 const unsigned char *p, size_t plen, int use_context);
1082 int tls1_alert_code(int code);
1083 int ssl3_alert_code(int code);
1084 int ssl_ok(SSL *s);

1086 #ifndef OPENSSL_NO_ECDH
1087 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s);
1088 #endif

1090 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n);

1092 #ifndef OPENSSL_NO_EC
1093 int tls1_ec_curve_id2nid(int curve_id);
1094 int tls1_ec_nid2curve_id(int nid);
1095 #endif /* OPENSSL_NO_EC */

1097 #ifndef OPENSSL_NO_TLSEXT
1098 unsigned char *ssl_add_clienthello_tlsext(SSL *s, unsigned char *p, unsigned cha
1099 unsigned char *ssl_add_serverhello_tlsext(SSL *s, unsigned char *p, unsigned cha
1100 int ssl_parse_clienthello_tlsext(SSL *s, unsigned char **data, unsigned char *d,
1101 int ssl_parse_serverhello_tlsext(SSL *s, unsigned char **data, unsigned char *d,
1102 int ssl_prepare_clienthello_tlsext(SSL *s);
1103 int ssl_prepare_serverhello_tlsext(SSL *s);
1104 int ssl_check_clienthello_tlsext_early(SSL *s);
1105 int ssl_check_clienthello_tlsext_late(SSL *s);
1106 int ssl_check_serverhello_tlsext(SSL *s);

1108 #ifndef OPENSSL_NO_HEARTBEATS
1109 int tls1_heartbeat(SSL *s);
1110 int dtls1_heartbeat(SSL *s);
1111 int tls1_process_heartbeat(SSL *s);
1112 int dtls1_process_heartbeat(SSL *s);
1113 #endif

1115 #ifdef OPENSSL_NO_SHA256
1116 #define tlsext_tick_md EVP_sha1
1117 #else

new/usr/src/lib/openssl/include/ssl_locl.h 18

1118 #define tlsext_tick_md EVP_sha256
1119 #endif
1120 int tls1_process_ticket(SSL *s, unsigned char *session_id, int len,
1121 const unsigned char *limit, SSL_SESSION **ret);

1123 int tls12_get_sigandhash(unsigned char *p, const EVP_PKEY *pk,
1124 const EVP_MD *md);
1125 int tls12_get_sigid(const EVP_PKEY *pk);
1126 const EVP_MD *tls12_get_hash(unsigned char hash_alg);

1128 #endif
1129 EVP_MD_CTX* ssl_replace_hash(EVP_MD_CTX **hash,const EVP_MD *md) ;
1130 void ssl_clear_hash_ctx(EVP_MD_CTX **hash);
1131 int ssl_add_serverhello_renegotiate_ext(SSL *s, unsigned char *p, int *len,
1132 int maxlen);
1133 int ssl_parse_serverhello_renegotiate_ext(SSL *s, unsigned char *d, int len,
1134 int *al);
1135 int ssl_add_clienthello_renegotiate_ext(SSL *s, unsigned char *p, int *len,
1136 int maxlen);
1137 int ssl_parse_clienthello_renegotiate_ext(SSL *s, unsigned char *d, int len,
1138 int *al);
1139 long ssl_get_algorithm2(SSL *s);
1140 int tls1_process_sigalgs(SSL *s, const unsigned char *data, int dsize);
1141 int tls12_get_req_sig_algs(SSL *s, unsigned char *p);

1143 int ssl_add_clienthello_use_srtp_ext(SSL *s, unsigned char *p, int *len, int max
1144 int ssl_parse_clienthello_use_srtp_ext(SSL *s, unsigned char *d, int len,int *al
1145 int ssl_add_serverhello_use_srtp_ext(SSL *s, unsigned char *p, int *len, int max
1146 int ssl_parse_serverhello_use_srtp_ext(SSL *s, unsigned char *d, int len,int *al

1148 /* s3_cbc.c */
1149 void ssl3_cbc_copy_mac(unsigned char* out,
1150 const SSL3_RECORD *rec,
1151 unsigned md_size,unsigned orig_len);
1152 int ssl3_cbc_remove_padding(const SSL* s,
1153 SSL3_RECORD *rec,
1154 unsigned block_size,
1155 unsigned mac_size);
1156 int tls1_cbc_remove_padding(const SSL* s,
1157 SSL3_RECORD *rec,
1158 unsigned block_size,
1159 unsigned mac_size);
1160 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx);
1161 void ssl3_cbc_digest_record(
1162 const EVP_MD_CTX *ctx,
1163 unsigned char* md_out,
1164 size_t* md_out_size,
1165 const unsigned char header[13],
1166 const unsigned char *data,
1167 size_t data_plus_mac_size,
1168 size_t data_plus_mac_plus_padding_size,
1169 const unsigned char *mac_secret,
1170 unsigned mac_secret_length,
1171 char is_sslv3);

1173 void tls_fips_digest_extra(
1174 const EVP_CIPHER_CTX *cipher_ctx, EVP_MD_CTX *mac_ctx,
1175 const unsigned char *data, size_t data_len, size_t orig_len);

1177 #endif

new/usr/src/lib/openssl/include/str_locl.h 1

**
 4794 Fri May 30 18:31:26 2014
new/usr/src/lib/openssl/include/str_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/store/str_locl.h -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
3 * project 2003.
4 */
5 /* ==
6 * Copyright (c) 2003 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #ifndef HEADER_STORE_LOCL_H
60 #define HEADER_STORE_LOCL_H

new/usr/src/lib/openssl/include/str_locl.h 2

62 #include <openssl/crypto.h>
63 #include <openssl/store.h>

65 #ifdef __cplusplus
66 extern "C" {
67 #endif

69 struct store_method_st
70 {
71 char *name;

73 /* All the functions return a positive integer or non-NULL for success
74 and 0, a negative integer or NULL for failure */

76 /* Initialise the STORE with private data */
77 STORE_INITIALISE_FUNC_PTR init;
78 /* Initialise the STORE with private data */
79 STORE_CLEANUP_FUNC_PTR clean;
80 /* Generate an object of a given type */
81 STORE_GENERATE_OBJECT_FUNC_PTR generate_object;
82 /* Get an object of a given type. This function isn’t really very
83 useful since the listing functions (below) can be used for the
84 same purpose and are much more general. */
85 STORE_GET_OBJECT_FUNC_PTR get_object;
86 /* Store an object of a given type. */
87 STORE_STORE_OBJECT_FUNC_PTR store_object;
88 /* Modify the attributes bound to an object of a given type. */
89 STORE_MODIFY_OBJECT_FUNC_PTR modify_object;
90 /* Revoke an object of a given type. */
91 STORE_HANDLE_OBJECT_FUNC_PTR revoke_object;
92 /* Delete an object of a given type. */
93 STORE_HANDLE_OBJECT_FUNC_PTR delete_object;
94 /* List a bunch of objects of a given type and with the associated
95 attributes. */
96 STORE_START_OBJECT_FUNC_PTR list_object_start;
97 STORE_NEXT_OBJECT_FUNC_PTR list_object_next;
98 STORE_END_OBJECT_FUNC_PTR list_object_end;
99 STORE_END_OBJECT_FUNC_PTR list_object_endp;
100 /* Store-level function to make any necessary update operations. */
101 STORE_GENERIC_FUNC_PTR update_store;
102 /* Store-level function to get exclusive access to the store. */
103 STORE_GENERIC_FUNC_PTR lock_store;
104 /* Store-level function to release exclusive access to the store. */
105 STORE_GENERIC_FUNC_PTR unlock_store;

107 /* Generic control function */
108 STORE_CTRL_FUNC_PTR ctrl;
109 };

111 struct store_st
112 {
113 const STORE_METHOD *meth;
114 /* functional reference if ’meth’ is ENGINE-provided */
115 ENGINE *engine;

117 CRYPTO_EX_DATA ex_data;
118 int references;
119 };
120 #ifdef __cplusplus
121 }
122 #endif

124 #endif

new/usr/src/lib/openssl/include/ui_locl.h 1

**
 5292 Fri May 30 18:31:26 2014
new/usr/src/lib/openssl/include/ui_locl.h
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ui/ui.h -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #ifndef HEADER_UI_LOCL_H
60 #define HEADER_UI_LOCL_H

new/usr/src/lib/openssl/include/ui_locl.h 2

62 #include <openssl/ui.h>
63 #include <openssl/crypto.h>

65 #ifdef _
66 #undef _
67 #endif

69 struct ui_method_st
70 {
71 char *name;

73 /* All the functions return 1 or non-NULL for success and 0 or NULL
74 for failure */

76 /* Open whatever channel for this, be it the console, an X window
77 or whatever.
78 This function should use the ex_data structure to save
79 intermediate data. */
80 int (*ui_open_session)(UI *ui);

82 int (*ui_write_string)(UI *ui, UI_STRING *uis);

84 /* Flush the output. If a GUI dialog box is used, this function can
85 be used to actually display it. */
86 int (*ui_flush)(UI *ui);

88 int (*ui_read_string)(UI *ui, UI_STRING *uis);

90 int (*ui_close_session)(UI *ui);

92 /* Construct a prompt in a user-defined manner. object_desc is a
93 textual short description of the object, for example "pass phrase",
94 and object_name is the name of the object (might be a card name or
95 a file name.
96 The returned string shall always be allocated on the heap with
97 OPENSSL_malloc(), and need to be free’d with OPENSSL_free(). */
98 char *(*ui_construct_prompt)(UI *ui, const char *object_desc,
99 const char *object_name);
100 };

102 struct ui_string_st
103 {
104 enum UI_string_types type; /* Input */
105 const char *out_string; /* Input */
106 int input_flags; /* Flags from the user */

108 /* The following parameters are completely irrelevant for UIT_INFO,
109 and can therefore be set to 0 or NULL */
110 char *result_buf; /* Input and Output: If not NULL, user-defined
111 with size in result_maxsize. Otherwise, it
112 may be allocated by the UI routine, meaning
113 result_minsize is going to be overwritten.*/
114 union
115 {
116 struct
117 {
118 int result_minsize; /* Input: minimum required
119 size of the result.
120 */
121 int result_maxsize; /* Input: maximum permitted
122 size of the result */

124 const char *test_buf; /* Input: test string to verify
125 against */
126 } string_data;
127 struct

new/usr/src/lib/openssl/include/ui_locl.h 3

128 {
129 const char *action_desc; /* Input */
130 const char *ok_chars; /* Input */
131 const char *cancel_chars; /* Input */
132 } boolean_data;
133 } _;

135 #define OUT_STRING_FREEABLE 0x01
136 int flags; /* flags for internal use */
137 };

139 struct ui_st
140 {
141 const UI_METHOD *meth;
142 STACK_OF(UI_STRING) *strings; /* We might want to prompt for more
143 than one thing at a time, and
144 with different echoing status. */
145 void *user_data;
146 CRYPTO_EX_DATA ex_data;

148 #define UI_FLAG_REDOABLE 0x0001
149 #define UI_FLAG_PRINT_ERRORS 0x0100
150 int flags;
151 };

153 #endif

new/usr/src/lib/openssl/libsunw_crypto/LPdir_unix.c 1

**
 3681 Fri May 30 18:31:26 2014
new/usr/src/lib/openssl/libsunw_crypto/LPdir_unix.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* $LP: LPlib/source/LPdir_unix.c,v 1.11 2004/09/23 22:07:22 _cvs_levitte Exp $
2 /*
3 * Copyright (c) 2004, Richard Levitte <richard@levitte.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */

28 #include <stddef.h>
29 #include <stdlib.h>
30 #include <limits.h>
31 #include <string.h>
32 #include <sys/types.h>
33 #include <dirent.h>
34 #include <errno.h>
35 #ifndef LPDIR_H
36 #include "LPdir.h"
37 #endif

39 /* The POSIXly macro for the maximum number of characters in a file path
40 is NAME_MAX. However, some operating systems use PATH_MAX instead.
41 Therefore, it seems natural to first check for PATH_MAX and use that,
42 and if it doesn’t exist, use NAME_MAX. */
43 #if defined(PATH_MAX)
44 # define LP_ENTRY_SIZE PATH_MAX
45 #elif defined(NAME_MAX)
46 # define LP_ENTRY_SIZE NAME_MAX
47 #endif

49 /* Of course, there’s the possibility that neither PATH_MAX nor NAME_MAX
50 exist. It’s also possible that NAME_MAX exists but is define to a
51 very small value (HP-UX offers 14), so we need to check if we got a
52 result, and if it meets a minimum standard, and create or change it
53 if not. */
54 #if !defined(LP_ENTRY_SIZE) || LP_ENTRY_SIZE<255
55 # undef LP_ENTRY_SIZE
56 # define LP_ENTRY_SIZE 255
57 #endif

59 struct LP_dir_context_st
60 {
61 DIR *dir;

new/usr/src/lib/openssl/libsunw_crypto/LPdir_unix.c 2

62 char entry_name[LP_ENTRY_SIZE+1];
63 };

65 const char *LP_find_file(LP_DIR_CTX **ctx, const char *directory)
66 {
67 struct dirent *direntry = NULL;

69 if (ctx == NULL || directory == NULL)
70 {
71 errno = EINVAL;
72 return 0;
73 }

75 errno = 0;
76 if (*ctx == NULL)
77 {
78 *ctx = (LP_DIR_CTX *)malloc(sizeof(LP_DIR_CTX));
79 if (*ctx == NULL)
80 {
81 errno = ENOMEM;
82 return 0;
83 }
84 memset(*ctx, ’\0’, sizeof(LP_DIR_CTX));

86 (*ctx)->dir = opendir(directory);
87 if ((*ctx)->dir == NULL)
88 {
89 int save_errno = errno; /* Probably not needed, but I’m paranoid */
90 free(*ctx);
91 *ctx = NULL;
92 errno = save_errno;
93 return 0;
94 }
95 }

97 direntry = readdir((*ctx)->dir);
98 if (direntry == NULL)
99 {
100 return 0;
101 }

103 strncpy((*ctx)->entry_name, direntry->d_name, sizeof((*ctx)->entry_name) - 1);
104 (*ctx)->entry_name[sizeof((*ctx)->entry_name) - 1] = ’\0’;
105 return (*ctx)->entry_name;
106 }

108 int LP_find_file_end(LP_DIR_CTX **ctx)
109 {
110 if (ctx != NULL && *ctx != NULL)
111 {
112 int ret = closedir((*ctx)->dir);

114 free(*ctx);
115 switch (ret)
116 {
117 case 0:
118 return 1;
119 case -1:
120 return 0;
121 default:
122 break;
123 }
124 }
125 errno = EINVAL;
126 return 0;
127 }

new/usr/src/lib/openssl/libsunw_crypto/LPdir_unix.c 3

new/usr/src/lib/openssl/libsunw_crypto/Makefile 1

**
 1414 Fri May 30 18:31:26 2014
new/usr/src/lib/openssl/libsunw_crypto/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #

27 include $(SRC)/lib/Makefile.lib

29 SUBDIRS = .WAIT $(MACH) $(BUILD64) $(MACH64)

31 # conditional assignments
32 all := TARGET= all
33 install := TARGET= install
34 clean := TARGET= clean
35 clobber := TARGET= clobber
36 lint := TARGET= lint
37 _msg := TARGET= _msg

39 .KEEP_STATE:

41 all install clean clobber lint: $(SUBDIRS)

43 _msg: $(MACH) $(MACH64)

46 $(ROOTHDRDIR)/%: %
47 $(INS.file)

49 $(ROOTHDRDIR):
50 $(INS.dir)

52 check: $(CHECKHDRS)

54 $(MACH) $(MACH64): FRC
55 @cd $@; pwd; $(MAKE) $(TARGET)

57 FRC:

new/usr/src/lib/openssl/libsunw_crypto/Makefile.com 1

**
 15722 Fri May 30 18:31:26 2014
new/usr/src/lib/openssl/libsunw_crypto/Makefile.com
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 LIBRARY= libsunw_crypto.a
27 VERS= .1

29 COMMON_OBJECTS = cpt_err.o \
30 cryptlib.o \
31 cversion.o \
32 ebcdic.o \
33 ex_data.o \
34 fips_ers.o \
35 mem_dbg.o \
36 mem.o \
37 o_dir.o \
38 o_fips.o \
39 o_init.o \
40 o_str.o \
41 o_time.o \
42 uid.o
43 OBJECTS += $(COMMON_OBJECTS)

45 # aes/*
46 AES_OBJECTS = aes_cfb.o \
47 aes_ctr.o \
48 aes_ecb.o \
49 aes_ige.o \
50 aes_misc.o \
51 aes_ofb.o \
52 aes_wrap.o
53 OBJECTS += $(AES_OBJECTS)

55 # asn1/*
56 ASN1_OBJECTS = a_bitstr.o \
57 a_bool.o \
58 a_bytes.o \
59 a_d2i_fp.o \
60 a_digest.o \
61 a_dup.o \

new/usr/src/lib/openssl/libsunw_crypto/Makefile.com 2

62 a_enum.o \
63 a_gentm.o \
64 a_i2d_fp.o \
65 a_int.o \
66 a_mbstr.o \
67 a_object.o \
68 a_octet.o \
69 a_print.o \
70 a_set.o \
71 a_sign.o \
72 a_strex.o \
73 a_strnid.o \
74 a_time.o \
75 a_type.o \
76 a_utctm.o \
77 a_utf8.o \
78 a_verify.o \
79 ameth_lib.o \
80 asn1_err.o \
81 asn1_gen.o \
82 asn1_lib.o \
83 asn1_par.o \
84 asn_mime.o \
85 asn_moid.o \
86 asn_pack.o \
87 bio_asn1.o \
88 bio_ndef.o \
89 d2i_pr.o \
90 d2i_pu.o \
91 evp_asn1.o \
92 f_enum.o \
93 f_int.o \
94 f_string.o \
95 i2d_pr.o \
96 i2d_pu.o \
97 n_pkey.o \
98 nsseq.o \
99 p5_pbe.o \
100 p5_pbev2.o \
101 p8_pkey.o \
102 t_bitst.o \
103 t_crl.o \
104 t_pkey.o \
105 t_req.o \
106 t_spki.o \
107 t_x509.o \
108 t_x509a.o \
109 tasn_dec.o \
110 tasn_enc.o \
111 tasn_fre.o \
112 tasn_new.o \
113 tasn_prn.o \
114 tasn_typ.o \
115 tasn_utl.o \
116 x_algor.o \
117 x_attrib.o \
118 x_bignum.o \
119 x_crl.o \
120 x_exten.o \
121 x_info.o \
122 x_long.o \
123 x_name.o \
124 x_nx509.o \
125 x_pkey.o \
126 x_pubkey.o \
127 x_req.o \

new/usr/src/lib/openssl/libsunw_crypto/Makefile.com 3

128 x_sig.o \
129 x_spki.o \
130 x_val.o \
131 x_x509.o \
132 x_x509a.o
133 OBJECTS += $(ASN1_OBJECTS)

135 # bf/*
136 BF_OBJECTS = bf_cfb64.o \
137 bf_ecb.o \
138 bf_ofb64.o \
139 bf_skey.o
140 OBJECTS += $(BF_OBJECTS)

142 # bio/*
143 BIO_OBJECTS = b_dump.o \
144 b_print.o \
145 b_sock.o \
146 bf_buff.o \
147 bf_nbio.o \
148 bf_null.o \
149 bio_cb.o \
150 bio_err.o \
151 bio_lib.o \
152 bss_acpt.o \
153 bss_bio.o \
154 bss_conn.o \
155 bss_dgram.o \
156 bss_fd.o \
157 bss_file.o \
158 bss_log.o \
159 bss_mem.o \
160 bss_null.o \
161 bss_sock.o
162 OBJECTS += $(BIO_OBJECTS)

164 # bn/*
165 BN_OBJECTS = bn_add.o \
166 bn_blind.o \
167 bn_const.o \
168 bn_ctx.o \
169 bn_depr.o \
170 bn_div.o \
171 bn_err.o \
172 bn_exp.o \
173 bn_exp2.o \
174 bn_gcd.o \
175 bn_gf2m.o \
176 bn_kron.o \
177 bn_lib.o \
178 bn_mod.o \
179 bn_mont.o \
180 bn_mpi.o \
181 bn_mul.o \
182 bn_nist.o \
183 bn_prime.o \
184 bn_print.o \
185 bn_rand.o \
186 bn_recp.o \
187 bn_shift.o \
188 bn_sqr.o \
189 bn_sqrt.o \
190 bn_word.o \
191 bn_x931p.o
192 OBJECTS += $(BN_OBJECTS)

new/usr/src/lib/openssl/libsunw_crypto/Makefile.com 4

194 # buffer/*
195 BUFFER_OBJECTS = buf_err.o \
196 buf_str.o \
197 buffer.o
198 OBJECTS += $(BUFFER_OBJECTS)

200 # camellia/*
201 CAMELLIA_OBJECTS = cmll_cfb.o \
202 cmll_ctr.o \
203 cmll_ecb.o \
204 cmll_ofb.o \
205 cmll_utl.o
206 OBJECTS += $(CAMELLIA_OBJECTS)

208 # cast/*
209 CAST_OBJECTS = c_cfb64.o \
210 c_ecb.o \
211 c_enc.o \
212 c_ofb64.o \
213 c_skey.o
214 OBJECTS += $(CAST_OBJECTS)

216 # cmac/*
217 CMAC_OBJECTS = cm_ameth.o \
218 cm_pmeth.o \
219 cmac.o
220 OBJECTS += $(CMAC_OBJECTS)

222 # cms/*
223 CMS_OBJECTS = cms_asn1.o \
224 cms_att.o \
225 cms_cd.o \
226 cms_dd.o \
227 cms_enc.o \
228 cms_env.o \
229 cms_err.o \
230 cms_ess.o \
231 cms_io.o \
232 cms_lib.o \
233 cms_pwri.o \
234 cms_sd.o \
235 cms_smime.o
236 OBJECTS += $(CMS_OBJECTS)

238 # comp/*
239 COMP_OBJECTS = c_rle.o \
240 c_zlib.o \
241 comp_err.o \
242 comp_lib.o
243 OBJECTS += $(COMP_OBJECTS)

245 # conf/*
246 CONF_OBJECTS = conf_api.o \
247 conf_def.o \
248 conf_err.o \
249 conf_lib.o \
250 conf_mall.o \
251 conf_mod.o \
252 conf_sap.o
253 OBJECTS += $(CONF_OBJECTS)

255 # des/*
256 DES_OBJECTS = cbc_cksm.o \
257 cbc_enc.o \
258 cfb_enc.o \
259 cfb64ede.o \

new/usr/src/lib/openssl/libsunw_crypto/Makefile.com 5

260 cfb64enc.o \
261 des_old.o \
262 des_old2.o \
263 ecb_enc.o \
264 ecb3_enc.o \
265 ede_cbcm_enc.o \
266 enc_read.o \
267 enc_writ.o \
268 fcrypt.o \
269 ofb_enc.o \
270 ofb64ede.o \
271 ofb64enc.o \
272 pcbc_enc.o \
273 qud_cksm.o \
274 rand_key.o \
275 read2pwd.o \
276 rpc_enc.o \
277 set_key.o \
278 str2key.o \
279 xcbc_enc.o
280 OBJECTS += $(DES_OBJECTS)

282 # dh/*
283 DH_OBJECTS = dh_ameth.o \
284 dh_asn1.o \
285 dh_check.o \
286 dh_depr.o \
287 dh_err.o \
288 dh_gen.o \
289 dh_key.o \
290 dh_lib.o \
291 dh_pmeth.o \
292 dh_prn.o
293 OBJECTS += $(DH_OBJECTS)

295 # dsa/*
296 DSA_OBJECTS = dsa_ameth.o \
297 dsa_asn1.o \
298 dsa_depr.o \
299 dsa_err.o \
300 dsa_gen.o \
301 dsa_key.o \
302 dsa_lib.o \
303 dsa_ossl.o \
304 dsa_pmeth.o \
305 dsa_prn.o \
306 dsa_sign.o \
307 dsa_vrf.o
308 OBJECTS += $(DSA_OBJECTS)

310 # dso/*
311 DSO_OBJECTS = dso_beos.o \
312 dso_dl.o \
313 dso_dlfcn.o \
314 dso_err.o \
315 dso_lib.o \
316 dso_null.o \
317 dso_openssl.o \
318 dso_vms.o \
319 dso_win32.o
320 OBJECTS += $(DSO_OBJECTS)

322 # engine/*
323 ENGINE_OBJECTS = eng_all.o \
324 eng_cnf.o \
325 eng_cryptodev.o \

new/usr/src/lib/openssl/libsunw_crypto/Makefile.com 6

326 eng_ctrl.o \
327 eng_dyn.o \
328 eng_err.o \
329 eng_fat.o \
330 eng_init.o \
331 eng_lib.o \
332 eng_list.o \
333 eng_openssl.o \
334 eng_pkey.o \
335 eng_rdrand.o \
336 eng_rsax.o \
337 eng_table.o \
338 hw_pk11.o \
339 hw_pk11_pub.o \
340 tb_asnmth.o \
341 tb_cipher.o \
342 tb_dh.o \
343 tb_digest.o \
344 tb_dsa.o \
345 tb_ecdh.o \
346 tb_ecdsa.o \
347 tb_pkmeth.o \
348 tb_rand.o \
349 tb_rsa.o \
350 tb_store.o
351 OBJECTS += $(ENGINE_OBJECTS)

353 # err/*
354 ERR_OBJECTS = err_all.o \
355 err_prn.o \
356 err.o
357 OBJECTS += $(ERR_OBJECTS)

359 # evp/*
360 EVP_OBJECTS = bio_b64.o \
361 bio_enc.o \
362 bio_md.o \
363 bio_ok.o \
364 c_all.o \
365 c_allc.o \
366 c_alld.o \
367 digest.o \
368 e_aes.o \
369 e_aes_cbc_hmac_sha1.o \
370 e_bf.o \
371 e_camellia.o \
372 e_cast.o \
373 e_des.o \
374 e_des3.o \
375 e_idea.o \
376 e_null.o \
377 e_old.o \
378 e_rc2.o \
379 e_rc4.o \
380 e_rc4_hmac_md5.o \
381 e_rc5.o \
382 e_seed.o \
383 e_xcbc_d.o \
384 encode.o \
385 evp_acnf.o \
386 evp_cnf.o \
387 evp_enc.o \
388 evp_err.o \
389 evp_fips.o \
390 evp_key.o \
391 evp_lib.o \

new/usr/src/lib/openssl/libsunw_crypto/Makefile.com 7

392 evp_pbe.o \
393 evp_pkey.o \
394 m_dss.o \
395 m_dss1.o \
396 m_ecdsa.o \
397 m_md2.o \
398 m_md4.o \
399 m_md5.o \
400 m_mdc2.o \
401 m_null.o \
402 m_ripemd.o \
403 m_sha.o \
404 m_sha1.o \
405 m_sigver.o \
406 m_wp.o \
407 names.o \
408 p5_crpt.o \
409 p5_crpt2.o \
410 p_dec.o \
411 p_enc.o \
412 p_lib.o \
413 p_open.o \
414 p_seal.o \
415 p_sign.o \
416 p_verify.o \
417 pmeth_fn.o \
418 pmeth_gn.o \
419 pmeth_lib.o
420 OBJECTS += $(EVP_OBJECTS)

422 # hmac/*
423 HMAC_OBJECTS = hm_ameth.o \
424 hm_pmeth.o \
425 hmac.o
426 OBJECTS += $(HMAC_OBJECTS)

428 # krb5/*
429 KRB5_OBJECTS = krb5_asn.o
430 OBJECTS += $(KRB5_OBJECTS)

432 # lhash/*
433 LHASH_OBJECTS = lh_stats.o \
434 lhash.o
435 OBJECTS += $(LHASH_OBJECTS)

437 # md2/*
438 MD2_OBJECTS = md2_dgst.o \
439 md2_one.o
440 OBJECTS += $(MD2_OBJECTS)

442 # md4/*
443 MD4_OBJECTS = md4_dgst.o \
444 md4_one.o
445 OBJECTS += $(MD4_OBJECTS)

447 # md5/*
448 MD5_OBJECTS = md5_dgst.o \
449 md5_one.o
450 OBJECTS += $(MD5_OBJECTS)

452 # modes/*
453 MODES_OBJECTS = cbc128.o \
454 ccm128.o \
455 cfb128.o \
456 ctr128.o \
457 cts128.o \

new/usr/src/lib/openssl/libsunw_crypto/Makefile.com 8

458 gcm128.o \
459 ofb128.o \
460 xts128.o
461 OBJECTS += $(MODES_OBJECTS)

463 # objects/*
464 OBJECTS_OBJECTS = o_names.o \
465 obj_dat.o \
466 obj_err.o \
467 obj_lib.o \
468 obj_xref.o
469 OBJECTS += $(OBJECTS_OBJECTS)

471 # ocsp/*
472 OCSP_OBJECTS = ocsp_asn.o \
473 ocsp_cl.o \
474 ocsp_err.o \
475 ocsp_ext.o \
476 ocsp_ht.o \
477 ocsp_lib.o \
478 ocsp_prn.o \
479 ocsp_srv.o \
480 ocsp_vfy.o
481 OBJECTS += $(OCSP_OBJECTS)

483 # pem/*
484 PEM_OBJECTS = pem_all.o \
485 pem_err.o \
486 pem_info.o \
487 pem_lib.o \
488 pem_oth.o \
489 pem_pk8.o \
490 pem_pkey.o \
491 pem_seal.o \
492 pem_sign.o \
493 pem_x509.o \
494 pem_xaux.o \
495 pvkfmt.o
496 OBJECTS += $(PEM_OBJECTS)

498 # pkcs12/*
499 PKCS12_OBJECTS = p12_add.o \
500 p12_asn.o \
501 p12_attr.o \
502 p12_crpt.o \
503 p12_crt.o \
504 p12_decr.o \
505 p12_init.o \
506 p12_key.o \
507 p12_kiss.o \
508 p12_mutl.o \
509 p12_npas.o \
510 p12_p8d.o \
511 p12_p8e.o \
512 p12_utl.o \
513 pk12err.o
514 OBJECTS += $(PKCS12_OBJECTS)

516 # pkcs7/*
517 PKCS7_OBJECTS = bio_pk7.o \
518 pk7_asn1.o \
519 pk7_attr.o \
520 pk7_doit.o \
521 pk7_lib.o \
522 pk7_mime.o \
523 pk7_smime.o \

new/usr/src/lib/openssl/libsunw_crypto/Makefile.com 9

524 pkcs7err.o
525 OBJECTS += $(PKCS7_OBJECTS)

527 # pqueue/*
528 PQUEUE_OBJECTS = pqueue.o
529 OBJECTS += $(PQUEUE_OBJECTS)

531 # rand/*
532 RAND_OBJECTS = md_rand.o \
533 rand_egd.o \
534 rand_err.o \
535 rand_lib.o \
536 rand_nw.o \
537 rand_os2.o \
538 rand_unix.o \
539 rand_win.o \
540 randfile.o
541 OBJECTS += $(RAND_OBJECTS)

543 # rc2/*
544 RC2_OBJECTS = rc2_cbc.o \
545 rc2_ecb.o \
546 rc2_skey.o \
547 rc2cfb64.o \
548 rc2ofb64.o
549 OBJECTS += $(RC2_OBJECTS)

551 # rc4/*
552 RC4_OBJECTS = rc4_utl.o
553 OBJECTS += $(RC4_OBJECTS)

555 # ripemd/*
556 RIPEMD_OBJECTS = rmd_dgst.o \
557 rmd_one.o
558 OBJECTS += $(RIPEMD_OBJECTS)

560 # rsa/*
561 RSA_OBJECTS = rsa_ameth.o \
562 rsa_asn1.o \
563 rsa_chk.o \
564 rsa_crpt.o \
565 rsa_depr.o \
566 rsa_eay.o \
567 rsa_err.o \
568 rsa_gen.o \
569 rsa_lib.o \
570 rsa_none.o \
571 rsa_null.o \
572 rsa_oaep.o \
573 rsa_pk1.o \
574 rsa_pmeth.o \
575 rsa_prn.o \
576 rsa_pss.o \
577 rsa_saos.o \
578 rsa_sign.o \
579 rsa_ssl.o \
580 rsa_x931.o
581 OBJECTS += $(RSA_OBJECTS)

583 # sha/*
584 SHA_OBJECTS = sha1_one.o \
585 sha1dgst.o \
586 sha256.o \
587 sha512.o \
588 sha_dgst.o \
589 sha_one.o

new/usr/src/lib/openssl/libsunw_crypto/Makefile.com 10

590 OBJECTS += $(SHA_OBJECTS)

592 # srp/*
593 SRP_OBJECTS = srp_lib.o \
594 srp_vfy.o
595 OBJECTS += $(SRP_OBJECTS)

597 # stack/*
598 STACK_OBJECTS = stack.o
599 OBJECTS += $(STACK_OBJECTS)

601 # ts/*
602 TS_OBJECTS = ts_asn1.o \
603 ts_conf.o \
604 ts_err.o \
605 ts_lib.o \
606 ts_req_print.o \
607 ts_req_utils.o \
608 ts_rsp_print.o \
609 ts_rsp_sign.o \
610 ts_rsp_utils.o \
611 ts_rsp_verify.o \
612 ts_verify_ctx.o
613 OBJECTS += $(TS_OBJECTS)

615 # txt_db/*
616 TXT_DB_OBJECTS = txt_db.o
617 OBJECTS += $(TXT_DB_OBJECTS)

619 # ui/*
620 UI_OBJECTS = ui_compat.o \
621 ui_err.o \
622 ui_lib.o \
623 ui_openssl.o \
624 ui_util.o
625 OBJECTS += $(UI_OBJECTS)

627 # x509/*
628 X509_OBJECTS = by_dir.o \
629 by_file.o \
630 x_all.o \
631 x509_att.o \
632 x509_cmp.o \
633 x509_d2.o \
634 x509_def.o \
635 x509_err.o \
636 x509_ext.o \
637 x509_lu.o \
638 x509_obj.o \
639 x509_r2x.o \
640 x509_req.o \
641 x509_set.o \
642 x509_trs.o \
643 x509_txt.o \
644 x509_v3.o \
645 x509_vfy.o \
646 x509_vpm.o \
647 x509cset.o \
648 x509name.o \
649 x509rset.o \
650 x509spki.o \
651 x509type.o
652 OBJECTS += $(X509_OBJECTS)

654 # x509v3/*
655 X509V3_OBJECTS = pcy_cache.o \

new/usr/src/lib/openssl/libsunw_crypto/Makefile.com 11

656 pcy_data.o \
657 pcy_lib.o \
658 pcy_map.o \
659 pcy_node.o \
660 pcy_tree.o \
661 v3_addr.o \
662 v3_akey.o \
663 v3_akeya.o \
664 v3_alt.o \
665 v3_asid.o \
666 v3_bcons.o \
667 v3_bitst.o \
668 v3_conf.o \
669 v3_cpols.o \
670 v3_crld.o \
671 v3_enum.o \
672 v3_extku.o \
673 v3_genn.o \
674 v3_ia5.o \
675 v3_info.o \
676 v3_int.o \
677 v3_lib.o \
678 v3_ncons.o \
679 v3_ocsp.o \
680 v3_pci.o \
681 v3_pcia.o \
682 v3_pcons.o \
683 v3_pku.o \
684 v3_pmaps.o \
685 v3_prn.o \
686 v3_purp.o \
687 v3_skey.o \
688 v3_sxnet.o \
689 v3_utl.o \
690 v3err.o
691 OBJECTS += $(X509V3_OBJECTS)

693 # include library definitions
694 include $(SRC)/lib/Makefile.lib

696 CLOBBERFILES += $(LIBLINKS)

698 LIBS = $(DYNLIB)

700 LDLIBS += -lsocket -lnsl -lc

702 LINTFLAGS = -uxn
703 LINTFLAGS64 = $(LINTFLAGS) -m64
704 LINTOUT= lint.out
705 LINTSRC = $(LINTLIB:%.ln=%)
706 ROOTLINTDIR = $(ROOTLIBDIR)
707 ROOTLINT = $(LINTSRC:%=$(ROOTLINTDIR)/%)

709 CPPFLAGS += -I.. \
710 -I$(SRC)/lib/openssl/include

712 CPPFLAGS += -D_REENTRANT
713 CPPFLAGS += -DOPENSSL_THREADS
714 CPPFLAGS += -DOPENSSL_PIC
715 CPPFLAGS += -DDSO_DLFCN
716 CPPFLAGS += -DHAVE_DLFCN_H
717 CPPFLAGS += -DSOLARIS_OPENSSL
718 CPPFLAGS += -DNO_WINDOWS_BRAINDEATH
719 CPPFLAGS += -DOPENSSL_BN_ASM_GF2m
720 CPPFLAGS += -DSHA1_ASM
721 CPPFLAGS += -DSHA256_ASM

new/usr/src/lib/openssl/libsunw_crypto/Makefile.com 12

722 CPPFLAGS += -DSHA512_ASM
723 CPPFLAGS += -DMD5_ASM
724 CPPFLAGS += -DAES_ASM
725 CPPFLAGS += -DVPAES_ASM
726 CPPFLAGS += -DGHASH_ASM
727 CPPFLAGS += -DVPAES_ASM
728 CPPFLAGS += -DOPENSSL_BN_ASM_MONT

730 CFLAGS += $(CCVERBOSE)

732 CERRWARN += -_gcc=-Wno-switch
733 CERRWARN += -erroff=E_CONST_PROMOTED_UNSIGNED_LONG
734 CERRWARN += -erroff=E_END_OF_LOOP_CODE_NOT_REACHED

736 $(LINTLIB) := LINTFLAGS = -nvx -I..
737 $(LINTLIB) := LINTFLAGS64 = -nvx -m64 -I..

739 BUILD.perl = $(PERL) $< elf $(PERL_CPPFLAGS) > $@

741 .KEEP_STATE:

743 all : $(LIBS)

745 lint : lintcheck

747 # include library targets
748 include $(SRC)/lib/Makefile.targ

750 pics/%.o: ../%.c
751 $(COMPILE.c) -o $@ $<
752 $(POST_PROCESS_O)

754 pics/%.o: ../aes/%.c
755 $(COMPILE.c) -o $@ $<
756 $(POST_PROCESS_O)

758 pics/%.o: ../asn1/%.c
759 $(COMPILE.c) -o $@ $<
760 $(POST_PROCESS_O)

762 pics/%.o: ../bf/%.c
763 $(COMPILE.c) -o $@ $<
764 $(POST_PROCESS_O)

766 pics/%.o: ../bio/%.c
767 $(COMPILE.c) -o $@ $<
768 $(POST_PROCESS_O)

770 pics/%.o: ../bn/%.c
771 $(COMPILE.c) -o $@ $<
772 $(POST_PROCESS_O)

774 pics/%.o: ../buffer/%.c
775 $(COMPILE.c) -o $@ $<
776 $(POST_PROCESS_O)

778 pics/%.o: ../camellia/%.c
779 $(COMPILE.c) -o $@ $<
780 $(POST_PROCESS_O)

782 pics/%.o: ../cast/%.c
783 $(COMPILE.c) -o $@ $<
784 $(POST_PROCESS_O)

786 pics/%.o: ../cmac/%.c
787 $(COMPILE.c) -o $@ $<

new/usr/src/lib/openssl/libsunw_crypto/Makefile.com 13

788 $(POST_PROCESS_O)

790 pics/%.o: ../cms/%.c
791 $(COMPILE.c) -o $@ $<
792 $(POST_PROCESS_O)

794 pics/%.o: ../comp/%.c
795 $(COMPILE.c) -o $@ $<
796 $(POST_PROCESS_O)

798 pics/%.o: ../conf/%.c
799 $(COMPILE.c) -o $@ $<
800 $(POST_PROCESS_O)

802 pics/%.o: ../des/%.c
803 $(COMPILE.c) -o $@ $<
804 $(POST_PROCESS_O)

806 pics/%.o: ../dh/%.c
807 $(COMPILE.c) -o $@ $<
808 $(POST_PROCESS_O)

810 pics/%.o: ../dsa/%.c
811 $(COMPILE.c) -o $@ $<
812 $(POST_PROCESS_O)

814 pics/%.o: ../dso/%.c
815 $(COMPILE.c) -o $@ $<
816 $(POST_PROCESS_O)

818 pics/%.o: ../engine/%.c
819 $(COMPILE.c) -o $@ $<
820 $(POST_PROCESS_O)

822 pics/%.o: ../err/%.c
823 $(COMPILE.c) -o $@ $<
824 $(POST_PROCESS_O)

826 pics/%.o: ../evp/%.c
827 $(COMPILE.c) -o $@ $<
828 $(POST_PROCESS_O)

830 pics/%.o: ../hmac/%.c
831 $(COMPILE.c) -o $@ $<
832 $(POST_PROCESS_O)

834 pics/%.o: ../krb5/%.c
835 $(COMPILE.c) -o $@ $<
836 $(POST_PROCESS_O)

838 pics/%.o: ../lhash/%.c
839 $(COMPILE.c) -o $@ $<
840 $(POST_PROCESS_O)

842 pics/%.o: ../md2/%.c
843 $(COMPILE.c) -o $@ $<
844 $(POST_PROCESS_O)

846 pics/%.o: ../md4/%.c
847 $(COMPILE.c) -o $@ $<
848 $(POST_PROCESS_O)

850 pics/%.o: ../md5/%.c
851 $(COMPILE.c) -o $@ $<
852 $(POST_PROCESS_O)

new/usr/src/lib/openssl/libsunw_crypto/Makefile.com 14

854 pics/%.o: ../modes/%.c
855 $(COMPILE.c) -o $@ $<
856 $(POST_PROCESS_O)

858 pics/%.o: ../objects/%.c
859 $(COMPILE.c) -o $@ $<
860 $(POST_PROCESS_O)

862 pics/%.o: ../ocsp/%.c
863 $(COMPILE.c) -o $@ $<
864 $(POST_PROCESS_O)

866 pics/%.o: ../pem/%.c
867 $(COMPILE.c) -o $@ $<
868 $(POST_PROCESS_O)

870 pics/%.o: ../pkcs12/%.c
871 $(COMPILE.c) -o $@ $<
872 $(POST_PROCESS_O)

874 pics/%.o: ../pkcs7/%.c
875 $(COMPILE.c) -o $@ $<
876 $(POST_PROCESS_O)

878 pics/%.o: ../pqueue/%.c
879 $(COMPILE.c) -o $@ $<
880 $(POST_PROCESS_O)

882 pics/%.o: ../rand/%.c
883 $(COMPILE.c) -o $@ $<
884 $(POST_PROCESS_O)

886 pics/%.o: ../rc2/%.c
887 $(COMPILE.c) -o $@ $<
888 $(POST_PROCESS_O)

890 pics/%.o: ../rc4/%.c
891 $(COMPILE.c) -o $@ $<
892 $(POST_PROCESS_O)

894 pics/%.o: ../ripemd/%.c
895 $(COMPILE.c) -o $@ $<
896 $(POST_PROCESS_O)

898 pics/%.o: ../rsa/%.c
899 $(COMPILE.c) -o $@ $<
900 $(POST_PROCESS_O)

902 pics/%.o: ../sha/%.c
903 $(COMPILE.c) -o $@ $<
904 $(POST_PROCESS_O)

906 pics/%.o: ../srp/%.c
907 $(COMPILE.c) -o $@ $<
908 $(POST_PROCESS_O)

910 pics/%.o: ../stack/%.c
911 $(COMPILE.c) -o $@ $<
912 $(POST_PROCESS_O)

914 pics/%.o: ../ts/%.c
915 $(COMPILE.c) -o $@ $<
916 $(POST_PROCESS_O)

918 pics/%.o: ../txt_db/%.c
919 $(COMPILE.c) -o $@ $<

new/usr/src/lib/openssl/libsunw_crypto/Makefile.com 15

920 $(POST_PROCESS_O)

922 pics/%.o: ../ui/%.c
923 $(COMPILE.c) -o $@ $<
924 $(POST_PROCESS_O)

926 pics/%.o: ../x509/%.c
927 $(COMPILE.c) -o $@ $<
928 $(POST_PROCESS_O)

930 pics/%.o: ../x509v3/%.c
931 $(COMPILE.c) -o $@ $<
932 $(POST_PROCESS_O)

934 pics/%.o: %.s
935 $(COMPILE.c) -o $@ $<

937 %.s: ../pl/%.pl
938 $(BUILD.perl)

940 $(ROOTLINTDIR)/%: ../%
941 $(INS.file)

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_cfb.c 1

**
 3588 Fri May 30 18:31:26 2014
new/usr/src/lib/openssl/libsunw_crypto/aes/aes_cfb.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/aes/aes_cfb.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 2002-2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */

52 #include <openssl/aes.h>
53 #include <openssl/modes.h>

55 /* The input and output encrypted as though 128bit cfb mode is being
56 * used. The extra state information to record how much of the
57 * 128bit block we have used is contained in *num;
58 */

60 void AES_cfb128_encrypt(const unsigned char *in, unsigned char *out,
61 size_t length, const AES_KEY *key,

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_cfb.c 2

62 unsigned char *ivec, int *num, const int enc) {

64 CRYPTO_cfb128_encrypt(in,out,length,key,ivec,num,enc,(block128_f)AES_enc
65 }

67 /* N.B. This expects the input to be packed, MS bit first */
68 void AES_cfb1_encrypt(const unsigned char *in, unsigned char *out,
69 size_t length, const AES_KEY *key,
70 unsigned char *ivec, int *num, const int enc)
71 {
72 CRYPTO_cfb128_1_encrypt(in,out,length,key,ivec,num,enc,(block128_f)AES_encry
73 }

75 void AES_cfb8_encrypt(const unsigned char *in, unsigned char *out,
76 size_t length, const AES_KEY *key,
77 unsigned char *ivec, int *num, const int enc)
78 {
79 CRYPTO_cfb128_8_encrypt(in,out,length,key,ivec,num,enc,(block128_f)AES_encry
80 }

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_ctr.c 1

**
 2880 Fri May 30 18:31:26 2014
new/usr/src/lib/openssl/libsunw_crypto/aes/aes_ctr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/aes/aes_ctr.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */

52 #include <openssl/aes.h>
53 #include <openssl/modes.h>

55 void AES_ctr128_encrypt(const unsigned char *in, unsigned char *out,
56 size_t length, const AES_KEY *key,
57 unsigned char ivec[AES_BLOCK_SIZE],
58 unsigned char ecount_buf[AES_BLOCK_SIZE],
59 unsigned int *num) {
60 CRYPTO_ctr128_encrypt(in,out,length,key,ivec,ecount_buf,num,(block128_f)
61 }

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_ctr.c 2

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_ecb.c 1

**
 2949 Fri May 30 18:31:26 2014
new/usr/src/lib/openssl/libsunw_crypto/aes/aes_ecb.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/aes/aes_ecb.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */

52 #ifndef AES_DEBUG
53 # ifndef NDEBUG
54 # define NDEBUG
55 # endif
56 #endif
57 #include <assert.h>

59 #include <openssl/aes.h>
60 #include "aes_locl.h"

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_ecb.c 2

62 void AES_ecb_encrypt(const unsigned char *in, unsigned char *out,
63 const AES_KEY *key, const int enc) {

65 assert(in && out && key);
66 assert((AES_ENCRYPT == enc)||(AES_DECRYPT == enc));

68 if (AES_ENCRYPT == enc)
69 AES_encrypt(in, out, key);
70 else
71 AES_decrypt(in, out, key);
72 }

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_ige.c 1

**
 9663 Fri May 30 18:31:26 2014
new/usr/src/lib/openssl/libsunw_crypto/aes/aes_ige.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/aes/aes_ige.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */

52 #include "cryptlib.h"

54 #include <openssl/aes.h>
55 #include "aes_locl.h"

57 #define N_WORDS (AES_BLOCK_SIZE / sizeof(unsigned long))
58 typedef struct {
59 unsigned long data[N_WORDS];
60 } aes_block_t;

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_ige.c 2

62 /* XXX: probably some better way to do this */
63 #if defined(__i386__) || defined(__x86_64__)
64 #define UNALIGNED_MEMOPS_ARE_FAST 1
65 #else
66 #define UNALIGNED_MEMOPS_ARE_FAST 0
67 #endif

69 #if UNALIGNED_MEMOPS_ARE_FAST
70 #define load_block(d, s) (d) = *(const aes_block_t *)(s)
71 #define store_block(d, s) *(aes_block_t *)(d) = (s)
72 #else
73 #define load_block(d, s) memcpy((d).data, (s), AES_BLOCK_SIZE)
74 #define store_block(d, s) memcpy((d), (s).data, AES_BLOCK_SIZE)
75 #endif

77 /* N.B. The IV for this mode is _twice_ the block size */

79 void AES_ige_encrypt(const unsigned char *in, unsigned char *out,
80 size_t length, const AES_KEY *key,
81 unsigned char *ivec, const int enc)
82 {
83 size_t n;
84 size_t len = length;

86 OPENSSL_assert(in && out && key && ivec);
87 OPENSSL_assert((AES_ENCRYPT == enc)||(AES_DECRYPT == enc));
88 OPENSSL_assert((length%AES_BLOCK_SIZE) == 0);

90 len = length / AES_BLOCK_SIZE;

92 if (AES_ENCRYPT == enc)
93 {
94 if (in != out &&
95 (UNALIGNED_MEMOPS_ARE_FAST || ((size_t)in|(size_t)out|(size_
96 {
97 aes_block_t *ivp = (aes_block_t *)ivec;
98 aes_block_t *iv2p = (aes_block_t *)(ivec + AES_BLOCK_SIZ

100 while (len)
101 {
102 aes_block_t *inp = (aes_block_t *)in;
103 aes_block_t *outp = (aes_block_t *)out;

105 for(n=0 ; n < N_WORDS; ++n)
106 outp->data[n] = inp->data[n] ^ ivp->data
107 AES_encrypt((unsigned char *)outp->data, (unsign
108 for(n=0 ; n < N_WORDS; ++n)
109 outp->data[n] ^= iv2p->data[n];
110 ivp = outp;
111 iv2p = inp;
112 --len;
113 in += AES_BLOCK_SIZE;
114 out += AES_BLOCK_SIZE;
115 }
116 memcpy(ivec, ivp->data, AES_BLOCK_SIZE);
117 memcpy(ivec + AES_BLOCK_SIZE, iv2p->data, AES_BLOCK_SIZE
118 }
119 else
120 {
121 aes_block_t tmp, tmp2;
122 aes_block_t iv;
123 aes_block_t iv2;

125 load_block(iv, ivec);
126 load_block(iv2, ivec + AES_BLOCK_SIZE);

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_ige.c 3

128 while (len)
129 {
130 load_block(tmp, in);
131 for(n=0 ; n < N_WORDS; ++n)
132 tmp2.data[n] = tmp.data[n] ^ iv.data[n];
133 AES_encrypt((unsigned char *)tmp2.data, (unsigne
134 for(n=0 ; n < N_WORDS; ++n)
135 tmp2.data[n] ^= iv2.data[n];
136 store_block(out, tmp2);
137 iv = tmp2;
138 iv2 = tmp;
139 --len;
140 in += AES_BLOCK_SIZE;
141 out += AES_BLOCK_SIZE;
142 }
143 memcpy(ivec, iv.data, AES_BLOCK_SIZE);
144 memcpy(ivec + AES_BLOCK_SIZE, iv2.data, AES_BLOCK_SIZE);
145 }
146 }
147 else
148 {
149 if (in != out &&
150 (UNALIGNED_MEMOPS_ARE_FAST || ((size_t)in|(size_t)out|(size_
151 {
152 aes_block_t *ivp = (aes_block_t *)ivec;
153 aes_block_t *iv2p = (aes_block_t *)(ivec + AES_BLOCK_SIZ

155 while (len)
156 {
157 aes_block_t tmp;
158 aes_block_t *inp = (aes_block_t *)in;
159 aes_block_t *outp = (aes_block_t *)out;

161 for(n=0 ; n < N_WORDS; ++n)
162 tmp.data[n] = inp->data[n] ^ iv2p->data[
163 AES_decrypt((unsigned char *)tmp.data, (unsigned
164 for(n=0 ; n < N_WORDS; ++n)
165 outp->data[n] ^= ivp->data[n];
166 ivp = inp;
167 iv2p = outp;
168 --len;
169 in += AES_BLOCK_SIZE;
170 out += AES_BLOCK_SIZE;
171 }
172 memcpy(ivec, ivp->data, AES_BLOCK_SIZE);
173 memcpy(ivec + AES_BLOCK_SIZE, iv2p->data, AES_BLOCK_SIZE
174 }
175 else
176 {
177 aes_block_t tmp, tmp2;
178 aes_block_t iv;
179 aes_block_t iv2;

181 load_block(iv, ivec);
182 load_block(iv2, ivec + AES_BLOCK_SIZE);

184 while (len)
185 {
186 load_block(tmp, in);
187 tmp2 = tmp;
188 for(n=0 ; n < N_WORDS; ++n)
189 tmp.data[n] ^= iv2.data[n];
190 AES_decrypt((unsigned char *)tmp.data, (unsigned
191 for(n=0 ; n < N_WORDS; ++n)
192 tmp.data[n] ^= iv.data[n];
193 store_block(out, tmp);

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_ige.c 4

194 iv = tmp2;
195 iv2 = tmp;
196 --len;
197 in += AES_BLOCK_SIZE;
198 out += AES_BLOCK_SIZE;
199 }
200 memcpy(ivec, iv.data, AES_BLOCK_SIZE);
201 memcpy(ivec + AES_BLOCK_SIZE, iv2.data, AES_BLOCK_SIZE);
202 }
203 }
204 }

206 /*
207 * Note that its effectively impossible to do biIGE in anything other
208 * than a single pass, so no provision is made for chaining.
209 */

211 /* N.B. The IV for this mode is _four times_ the block size */

213 void AES_bi_ige_encrypt(const unsigned char *in, unsigned char *out,
214 size_t length, const AES_KEY *ke
215 const AES_KEY *key2, const unsig
216 const int enc)
217 {
218 size_t n;
219 size_t len = length;
220 unsigned char tmp[AES_BLOCK_SIZE];
221 unsigned char tmp2[AES_BLOCK_SIZE];
222 unsigned char tmp3[AES_BLOCK_SIZE];
223 unsigned char prev[AES_BLOCK_SIZE];
224 const unsigned char *iv;
225 const unsigned char *iv2;

227 OPENSSL_assert(in && out && key && ivec);
228 OPENSSL_assert((AES_ENCRYPT == enc)||(AES_DECRYPT == enc));
229 OPENSSL_assert((length%AES_BLOCK_SIZE) == 0);

231 if (AES_ENCRYPT == enc)
232 {
233 /* XXX: Do a separate case for when in != out (strictly should
234 check for overlap, too) */

236 /* First the forward pass */
237 iv = ivec;
238 iv2 = ivec + AES_BLOCK_SIZE;
239 while (len >= AES_BLOCK_SIZE)
240 {
241 for(n=0 ; n < AES_BLOCK_SIZE ; ++n)
242 out[n] = in[n] ^ iv[n];
243 AES_encrypt(out, out, key);
244 for(n=0 ; n < AES_BLOCK_SIZE ; ++n)
245 out[n] ^= iv2[n];
246 iv = out;
247 memcpy(prev, in, AES_BLOCK_SIZE);
248 iv2 = prev;
249 len -= AES_BLOCK_SIZE;
250 in += AES_BLOCK_SIZE;
251 out += AES_BLOCK_SIZE;
252 }

254 /* And now backwards */
255 iv = ivec + AES_BLOCK_SIZE*2;
256 iv2 = ivec + AES_BLOCK_SIZE*3;
257 len = length;
258 while(len >= AES_BLOCK_SIZE)
259 {

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_ige.c 5

260 out -= AES_BLOCK_SIZE;
261 /* XXX: reduce copies by alternating between buffers */
262 memcpy(tmp, out, AES_BLOCK_SIZE);
263 for(n=0 ; n < AES_BLOCK_SIZE ; ++n)
264 out[n] ^= iv[n];
265 /* hexdump(stdout, "out ^ iv", out,
266 AES_encrypt(out, out, key);
267 /* hexdump(stdout,"enc", out, AES_B
268 /* hexdump(stdout,"iv2", iv2, AES_B
269 for(n=0 ; n < AES_BLOCK_SIZE ; ++n)
270 out[n] ^= iv2[n];
271 /* hexdump(stdout,"out", out, AES_B
272 iv = out;
273 memcpy(prev, tmp, AES_BLOCK_SIZE);
274 iv2 = prev;
275 len -= AES_BLOCK_SIZE;
276 }
277 }
278 else
279 {
280 /* First backwards */
281 iv = ivec + AES_BLOCK_SIZE*2;
282 iv2 = ivec + AES_BLOCK_SIZE*3;
283 in += length;
284 out += length;
285 while (len >= AES_BLOCK_SIZE)
286 {
287 in -= AES_BLOCK_SIZE;
288 out -= AES_BLOCK_SIZE;
289 memcpy(tmp, in, AES_BLOCK_SIZE);
290 memcpy(tmp2, in, AES_BLOCK_SIZE);
291 for(n=0 ; n < AES_BLOCK_SIZE ; ++n)
292 tmp[n] ^= iv2[n];
293 AES_decrypt(tmp, out, key);
294 for(n=0 ; n < AES_BLOCK_SIZE ; ++n)
295 out[n] ^= iv[n];
296 memcpy(tmp3, tmp2, AES_BLOCK_SIZE);
297 iv = tmp3;
298 iv2 = out;
299 len -= AES_BLOCK_SIZE;
300 }

302 /* And now forwards */
303 iv = ivec;
304 iv2 = ivec + AES_BLOCK_SIZE;
305 len = length;
306 while (len >= AES_BLOCK_SIZE)
307 {
308 memcpy(tmp, out, AES_BLOCK_SIZE);
309 memcpy(tmp2, out, AES_BLOCK_SIZE);
310 for(n=0 ; n < AES_BLOCK_SIZE ; ++n)
311 tmp[n] ^= iv2[n];
312 AES_decrypt(tmp, out, key);
313 for(n=0 ; n < AES_BLOCK_SIZE ; ++n)
314 out[n] ^= iv[n];
315 memcpy(tmp3, tmp2, AES_BLOCK_SIZE);
316 iv = tmp3;
317 iv2 = out;
318 len -= AES_BLOCK_SIZE;
319 in += AES_BLOCK_SIZE;
320 out += AES_BLOCK_SIZE;
321 }
322 }
323 }

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_misc.c 1

**
 3291 Fri May 30 18:31:26 2014
new/usr/src/lib/openssl/libsunw_crypto/aes/aes_misc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/aes/aes_misc.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */

52 #include <openssl/opensslv.h>
53 #include <openssl/crypto.h>
54 #include <openssl/aes.h>
55 #include "aes_locl.h"

57 const char AES_version[]="AES" OPENSSL_VERSION_PTEXT;

59 const char *AES_options(void) {
60 #ifdef FULL_UNROLL
61 return "aes(full)";

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_misc.c 2

62 #else
63 return "aes(partial)";
64 #endif
65 }

67 /* FIPS wrapper functions to block low level AES calls in FIPS mode */

69 int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
70 AES_KEY *key)
71 {
72 #ifdef OPENSSL_FIPS
73 fips_cipher_abort(AES);
74 #endif
75 return private_AES_set_encrypt_key(userKey, bits, key);
76 }

78 int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
79 AES_KEY *key)
80 {
81 #ifdef OPENSSL_FIPS
82 fips_cipher_abort(AES);
83 #endif
84 return private_AES_set_decrypt_key(userKey, bits, key);
85 }

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_ofb.c 1

**
 2793 Fri May 30 18:31:26 2014
new/usr/src/lib/openssl/libsunw_crypto/aes/aes_ofb.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/aes/aes_ofb.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 2002-2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */

52 #include <openssl/aes.h>
53 #include <openssl/modes.h>

55 void AES_ofb128_encrypt(const unsigned char *in, unsigned char *out,
56 size_t length, const AES_KEY *key,
57 unsigned char *ivec, int *num)
58 {
59 CRYPTO_ofb128_encrypt(in,out,length,key,ivec,num,(block128_f)AES_encrypt
60 }

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_wrap.c 1

**
 7677 Fri May 30 18:31:26 2014
new/usr/src/lib/openssl/libsunw_crypto/aes/aes_wrap.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/aes/aes_wrap.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

54 #include "cryptlib.h"
55 #include <openssl/aes.h>
56 #include <openssl/bio.h>

58 static const unsigned char default_iv[] = {
59 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6,
60 };

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_wrap.c 2

62 int AES_wrap_key(AES_KEY *key, const unsigned char *iv,
63 unsigned char *out,
64 const unsigned char *in, unsigned int inlen)
65 {
66 unsigned char *A, B[16], *R;
67 unsigned int i, j, t;
68 if ((inlen & 0x7) || (inlen < 8))
69 return -1;
70 A = B;
71 t = 1;
72 memcpy(out + 8, in, inlen);
73 if (!iv)
74 iv = default_iv;

76 memcpy(A, iv, 8);

78 for (j = 0; j < 6; j++)
79 {
80 R = out + 8;
81 for (i = 0; i < inlen; i += 8, t++, R += 8)
82 {
83 memcpy(B + 8, R, 8);
84 AES_encrypt(B, B, key);
85 A[7] ^= (unsigned char)(t & 0xff);
86 if (t > 0xff)
87 {
88 A[6] ^= (unsigned char)((t >> 8) & 0xff);
89 A[5] ^= (unsigned char)((t >> 16) & 0xff);
90 A[4] ^= (unsigned char)((t >> 24) & 0xff);
91 }
92 memcpy(R, B + 8, 8);
93 }
94 }
95 memcpy(out, A, 8);
96 return inlen + 8;
97 }

99 int AES_unwrap_key(AES_KEY *key, const unsigned char *iv,
100 unsigned char *out,
101 const unsigned char *in, unsigned int inlen)
102 {
103 unsigned char *A, B[16], *R;
104 unsigned int i, j, t;
105 inlen -= 8;
106 if (inlen & 0x7)
107 return -1;
108 if (inlen < 8)
109 return -1;
110 A = B;
111 t = 6 * (inlen >> 3);
112 memcpy(A, in, 8);
113 memcpy(out, in + 8, inlen);
114 for (j = 0; j < 6; j++)
115 {
116 R = out + inlen - 8;
117 for (i = 0; i < inlen; i += 8, t--, R -= 8)
118 {
119 A[7] ^= (unsigned char)(t & 0xff);
120 if (t > 0xff)
121 {
122 A[6] ^= (unsigned char)((t >> 8) & 0xff);
123 A[5] ^= (unsigned char)((t >> 16) & 0xff);
124 A[4] ^= (unsigned char)((t >> 24) & 0xff);
125 }
126 memcpy(B + 8, R, 8);
127 AES_decrypt(B, B, key);

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_wrap.c 3

128 memcpy(R, B + 8, 8);
129 }
130 }
131 if (!iv)
132 iv = default_iv;
133 if (memcmp(A, iv, 8))
134 {
135 OPENSSL_cleanse(out, inlen);
136 return 0;
137 }
138 return inlen;
139 }

141 #ifdef AES_WRAP_TEST

143 int AES_wrap_unwrap_test(const unsigned char *kek, int keybits,
144 const unsigned char *iv,
145 const unsigned char *eout,
146 const unsigned char *key, int keylen)
147 {
148 unsigned char *otmp = NULL, *ptmp = NULL;
149 int r, ret = 0;
150 AES_KEY wctx;
151 otmp = OPENSSL_malloc(keylen + 8);
152 ptmp = OPENSSL_malloc(keylen);
153 if (!otmp || !ptmp)
154 return 0;
155 if (AES_set_encrypt_key(kek, keybits, &wctx))
156 goto err;
157 r = AES_wrap_key(&wctx, iv, otmp, key, keylen);
158 if (r <= 0)
159 goto err;

161 if (eout && memcmp(eout, otmp, keylen))
162 goto err;
163
164 if (AES_set_decrypt_key(kek, keybits, &wctx))
165 goto err;
166 r = AES_unwrap_key(&wctx, iv, ptmp, otmp, r);

168 if (memcmp(key, ptmp, keylen))
169 goto err;

171 ret = 1;

173 err:
174 if (otmp)
175 OPENSSL_free(otmp);
176 if (ptmp)
177 OPENSSL_free(ptmp);

179 return ret;

181 }

185 int main(int argc, char **argv)
186 {

188 static const unsigned char kek[] = {
189 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
190 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
191 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
192 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
193 };

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_wrap.c 4

195 static const unsigned char key[] = {
196 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
197 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff,
198 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
199 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
200 };

202 static const unsigned char e1[] = {
203 0x1f, 0xa6, 0x8b, 0x0a, 0x81, 0x12, 0xb4, 0x47,
204 0xae, 0xf3, 0x4b, 0xd8, 0xfb, 0x5a, 0x7b, 0x82,
205 0x9d, 0x3e, 0x86, 0x23, 0x71, 0xd2, 0xcf, 0xe5
206 };

208 static const unsigned char e2[] = {
209 0x96, 0x77, 0x8b, 0x25, 0xae, 0x6c, 0xa4, 0x35,
210 0xf9, 0x2b, 0x5b, 0x97, 0xc0, 0x50, 0xae, 0xd2,
211 0x46, 0x8a, 0xb8, 0xa1, 0x7a, 0xd8, 0x4e, 0x5d
212 };

214 static const unsigned char e3[] = {
215 0x64, 0xe8, 0xc3, 0xf9, 0xce, 0x0f, 0x5b, 0xa2,
216 0x63, 0xe9, 0x77, 0x79, 0x05, 0x81, 0x8a, 0x2a,
217 0x93, 0xc8, 0x19, 0x1e, 0x7d, 0x6e, 0x8a, 0xe7
218 };

220 static const unsigned char e4[] = {
221 0x03, 0x1d, 0x33, 0x26, 0x4e, 0x15, 0xd3, 0x32,
222 0x68, 0xf2, 0x4e, 0xc2, 0x60, 0x74, 0x3e, 0xdc,
223 0xe1, 0xc6, 0xc7, 0xdd, 0xee, 0x72, 0x5a, 0x93,
224 0x6b, 0xa8, 0x14, 0x91, 0x5c, 0x67, 0x62, 0xd2
225 };

227 static const unsigned char e5[] = {
228 0xa8, 0xf9, 0xbc, 0x16, 0x12, 0xc6, 0x8b, 0x3f,
229 0xf6, 0xe6, 0xf4, 0xfb, 0xe3, 0x0e, 0x71, 0xe4,
230 0x76, 0x9c, 0x8b, 0x80, 0xa3, 0x2c, 0xb8, 0x95,
231 0x8c, 0xd5, 0xd1, 0x7d, 0x6b, 0x25, 0x4d, 0xa1
232 };

234 static const unsigned char e6[] = {
235 0x28, 0xc9, 0xf4, 0x04, 0xc4, 0xb8, 0x10, 0xf4,
236 0xcb, 0xcc, 0xb3, 0x5c, 0xfb, 0x87, 0xf8, 0x26,
237 0x3f, 0x57, 0x86, 0xe2, 0xd8, 0x0e, 0xd3, 0x26,
238 0xcb, 0xc7, 0xf0, 0xe7, 0x1a, 0x99, 0xf4, 0x3b,
239 0xfb, 0x98, 0x8b, 0x9b, 0x7a, 0x02, 0xdd, 0x21
240 };

242 AES_KEY wctx, xctx;
243 int ret;
244 ret = AES_wrap_unwrap_test(kek, 128, NULL, e1, key, 16);
245 fprintf(stderr, "Key test result %d\n", ret);
246 ret = AES_wrap_unwrap_test(kek, 192, NULL, e2, key, 16);
247 fprintf(stderr, "Key test result %d\n", ret);
248 ret = AES_wrap_unwrap_test(kek, 256, NULL, e3, key, 16);
249 fprintf(stderr, "Key test result %d\n", ret);
250 ret = AES_wrap_unwrap_test(kek, 192, NULL, e4, key, 24);
251 fprintf(stderr, "Key test result %d\n", ret);
252 ret = AES_wrap_unwrap_test(kek, 256, NULL, e5, key, 24);
253 fprintf(stderr, "Key test result %d\n", ret);
254 ret = AES_wrap_unwrap_test(kek, 256, NULL, e6, key, 32);
255 fprintf(stderr, "Key test result %d\n", ret);
256 }
257
258
259 #endif

new/usr/src/lib/openssl/libsunw_crypto/aes/aes_wrap.c 5

new/usr/src/lib/openssl/libsunw_crypto/amd64/Makefile 1

**
 2182 Fri May 30 18:31:27 2014
new/usr/src/lib/openssl/libsunw_crypto/amd64/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.

25 .KEEP_STATE:

27 # aes/*.s
28 ASM_SOURCES = x86_64cpuid.s \
29 aes-x86_64.s \
30 aesni-sha1-x86_64.s \
31 aesni-x86_64.s \
32 bsaes-x86_64.s \
33 vpaes-x86_64.s \
34 modexp512-x86_64.s \
35 x86_64-gf2m.s \
36 x86_64-mont.s \
37 x86_64-mont5.s \
38 cmll-x86_64.s \
39 md5-x86_64.s \
40 ghash-x86_64.s \
41 rc4-md5-x86_64.s \
42 rc4-x86_64.s \
43 sha1-x86_64.s \
44 sha256-x86_64.s \
45 sha512-x86_64.s

47 OBJECTS += $(ASM_SOURCES:%.s=%.o)

49 OBJECTS64 = bf_enc.o \
50 x86_64-gcc.o \
51 cmll_misc.o \
52 des_enc.o \
53 fcrypt_b.o

55 OBJECTS += $(OBJECTS64)

57 CLEANFILES += $(ASM_SOURCES)

59 include ../Makefile.com
60 include ../../../Makefile.lib.64

new/usr/src/lib/openssl/libsunw_crypto/amd64/Makefile 2

62 CPPFLAGS += -DL_ENDIAN
63 CPPFLAGS += -DOPENSSL_IA32_SSE2
64 CPPFLAGS += -DOPENSSL_BN_ASM_MONT5
65 CPPFLAGS += -DBSAES_ASM
66 CPPFLAGS += -DPK11_LIB_LOCATION=\"/usr/lib/64/libpkcs11.so.1\"

68 # OpenSSL interface is a mess
69 MAPFILES =

71 all: $(ROOTLIBDIR64) $(LIBS) $(LIBLINKS)

73 $(LIBLINKS): FRC
74 $(RM) $@; $(SYMLINK) $(DYNLIB) $@

76 $(ROOTLIBDIR64):
77 $(INS.dir)

79 # sha512-x86_64.pl generates both sha512-x86_64.s and sha256-x86_64.s
80 # sha256-x86_64.s is generated by default
81 sha256-x86_64.s: ../pl/sha512-x86_64.pl
82 $(PERL) ../pl/sha512-x86_64.pl elf $@

84 sha512-x86_64.s: ../pl/sha512-x86_64.pl
85 $(PERL) ../pl/sha512-x86_64.pl elf $@

87 install: all $(ROOTLIBS64) $(ROOTLINKS64)

89 FRC:

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_bitstr.c 1

**
 7281 Fri May 30 18:31:27 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_bitstr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_bitstr.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_bitstr.c 2

63 int ASN1_BIT_STRING_set(ASN1_BIT_STRING *x, unsigned char *d, int len)
64 { return M_ASN1_BIT_STRING_set(x, d, len); }

66 int i2c_ASN1_BIT_STRING(ASN1_BIT_STRING *a, unsigned char **pp)
67 {
68 int ret,j,bits,len;
69 unsigned char *p,*d;

71 if (a == NULL) return(0);

73 len=a->length;

75 if (len > 0)
76 {
77 if (a->flags & ASN1_STRING_FLAG_BITS_LEFT)
78 {
79 bits=(int)a->flags&0x07;
80 }
81 else
82 {
83 for (; len > 0; len--)
84 {
85 if (a->data[len-1]) break;
86 }
87 j=a->data[len-1];
88 if (j & 0x01) bits=0;
89 else if (j & 0x02) bits=1;
90 else if (j & 0x04) bits=2;
91 else if (j & 0x08) bits=3;
92 else if (j & 0x10) bits=4;
93 else if (j & 0x20) bits=5;
94 else if (j & 0x40) bits=6;
95 else if (j & 0x80) bits=7;
96 else bits=0; /* should not happen */
97 }
98 }
99 else
100 bits=0;

102 ret=1+len;
103 if (pp == NULL) return(ret);

105 p= *pp;

107 *(p++)=(unsigned char)bits;
108 d=a->data;
109 memcpy(p,d,len);
110 p+=len;
111 if (len > 0) p[-1]&=(0xff<<bits);
112 *pp=p;
113 return(ret);
114 }

116 ASN1_BIT_STRING *c2i_ASN1_BIT_STRING(ASN1_BIT_STRING **a,
117 const unsigned char **pp, long len)
118 {
119 ASN1_BIT_STRING *ret=NULL;
120 const unsigned char *p;
121 unsigned char *s;
122 int i;

124 if (len < 1)
125 {
126 i=ASN1_R_STRING_TOO_SHORT;
127 goto err;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_bitstr.c 3

128 }

130 if ((a == NULL) || ((*a) == NULL))
131 {
132 if ((ret=M_ASN1_BIT_STRING_new()) == NULL) return(NULL);
133 }
134 else
135 ret=(*a);

137 p= *pp;
138 i= *(p++);
139 /* We do this to preserve the settings. If we modify
140 * the settings, via the _set_bit function, we will recalculate
141 * on output */
142 ret->flags&= ~(ASN1_STRING_FLAG_BITS_LEFT|0x07); /* clear */
143 ret->flags|=(ASN1_STRING_FLAG_BITS_LEFT|(i&0x07)); /* set */

145 if (len-- > 1) /* using one because of the bits left byte */
146 {
147 s=(unsigned char *)OPENSSL_malloc((int)len);
148 if (s == NULL)
149 {
150 i=ERR_R_MALLOC_FAILURE;
151 goto err;
152 }
153 memcpy(s,p,(int)len);
154 s[len-1]&=(0xff<<i);
155 p+=len;
156 }
157 else
158 s=NULL;

160 ret->length=(int)len;
161 if (ret->data != NULL) OPENSSL_free(ret->data);
162 ret->data=s;
163 ret->type=V_ASN1_BIT_STRING;
164 if (a != NULL) (*a)=ret;
165 *pp=p;
166 return(ret);
167 err:
168 ASN1err(ASN1_F_C2I_ASN1_BIT_STRING,i);
169 if ((ret != NULL) && ((a == NULL) || (*a != ret)))
170 M_ASN1_BIT_STRING_free(ret);
171 return(NULL);
172 }

174 /* These next 2 functions from Goetz Babin-Ebell <babinebell@trustcenter.de>
175 */
176 int ASN1_BIT_STRING_set_bit(ASN1_BIT_STRING *a, int n, int value)
177 {
178 int w,v,iv;
179 unsigned char *c;

181 w=n/8;
182 v=1<<(7-(n&0x07));
183 iv= ~v;
184 if (!value) v=0;

186 if (a == NULL)
187 return 0;

189 a->flags&= ~(ASN1_STRING_FLAG_BITS_LEFT|0x07); /* clear, set on write */

191 if ((a->length < (w+1)) || (a->data == NULL))
192 {
193 if (!value) return(1); /* Don’t need to set */

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_bitstr.c 4

194 if (a->data == NULL)
195 c=(unsigned char *)OPENSSL_malloc(w+1);
196 else
197 c=(unsigned char *)OPENSSL_realloc_clean(a->data,
198 a->length,
199 w+1);
200 if (c == NULL)
201 {
202 ASN1err(ASN1_F_ASN1_BIT_STRING_SET_BIT,ERR_R_MALLOC_FAIL
203 return 0;
204 }
205 if (w+1-a->length > 0) memset(c+a->length, 0, w+1-a->length);
206 a->data=c;
207 a->length=w+1;
208 }
209 a->data[w]=((a->data[w])&iv)|v;
210 while ((a->length > 0) && (a->data[a->length-1] == 0))
211 a->length--;
212 return(1);
213 }

215 int ASN1_BIT_STRING_get_bit(ASN1_BIT_STRING *a, int n)
216 {
217 int w,v;

219 w=n/8;
220 v=1<<(7-(n&0x07));
221 if ((a == NULL) || (a->length < (w+1)) || (a->data == NULL))
222 return(0);
223 return((a->data[w]&v) != 0);
224 }

226 /*
227 * Checks if the given bit string contains only bits specified by
228 * the flags vector. Returns 0 if there is at least one bit set in ’a’
229 * which is not specified in ’flags’, 1 otherwise.
230 * ’len’ is the length of ’flags’.
231 */
232 int ASN1_BIT_STRING_check(ASN1_BIT_STRING *a,
233 unsigned char *flags, int flags_len)
234 {
235 int i, ok;
236 /* Check if there is one bit set at all. */
237 if (!a || !a->data) return 1;

239 /* Check each byte of the internal representation of the bit string. */
240 ok = 1;
241 for (i = 0; i < a->length && ok; ++i)
242 {
243 unsigned char mask = i < flags_len ? ~flags[i] : 0xff;
244 /* We are done if there is an unneeded bit set. */
245 ok = (a->data[i] & mask) == 0;
246 }
247 return ok;
248 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_bool.c 1

**
 4094 Fri May 30 18:31:27 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_bool.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_bool.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_bool.c 2

63 int i2d_ASN1_BOOLEAN(int a, unsigned char **pp)
64 {
65 int r;
66 unsigned char *p;

68 r=ASN1_object_size(0,1,V_ASN1_BOOLEAN);
69 if (pp == NULL) return(r);
70 p= *pp;

72 ASN1_put_object(&p,0,1,V_ASN1_BOOLEAN,V_ASN1_UNIVERSAL);
73 *(p++)= (unsigned char)a;
74 *pp=p;
75 return(r);
76 }

78 int d2i_ASN1_BOOLEAN(int *a, const unsigned char **pp, long length)
79 {
80 int ret= -1;
81 const unsigned char *p;
82 long len;
83 int inf,tag,xclass;
84 int i=0;

86 p= *pp;
87 inf=ASN1_get_object(&p,&len,&tag,&xclass,length);
88 if (inf & 0x80)
89 {
90 i=ASN1_R_BAD_OBJECT_HEADER;
91 goto err;
92 }

94 if (tag != V_ASN1_BOOLEAN)
95 {
96 i=ASN1_R_EXPECTING_A_BOOLEAN;
97 goto err;
98 }

100 if (len != 1)
101 {
102 i=ASN1_R_BOOLEAN_IS_WRONG_LENGTH;
103 goto err;
104 }
105 ret= (int)*(p++);
106 if (a != NULL) (*a)=ret;
107 *pp=p;
108 return(ret);
109 err:
110 ASN1err(ASN1_F_D2I_ASN1_BOOLEAN,i);
111 return(ret);
112 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_bytes.c 1

**
 7918 Fri May 30 18:31:27 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_bytes.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_bytes.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_bytes.c 2

63 static int asn1_collate_primitive(ASN1_STRING *a, ASN1_const_CTX *c);
64 /* type is a ’bitmap’ of acceptable string types.
65 */
66 ASN1_STRING *d2i_ASN1_type_bytes(ASN1_STRING **a, const unsigned char **pp,
67 long length, int type)
68 {
69 ASN1_STRING *ret=NULL;
70 const unsigned char *p;
71 unsigned char *s;
72 long len;
73 int inf,tag,xclass;
74 int i=0;

76 p= *pp;
77 inf=ASN1_get_object(&p,&len,&tag,&xclass,length);
78 if (inf & 0x80) goto err;

80 if (tag >= 32)
81 {
82 i=ASN1_R_TAG_VALUE_TOO_HIGH;
83 goto err;
84 }
85 if (!(ASN1_tag2bit(tag) & type))
86 {
87 i=ASN1_R_WRONG_TYPE;
88 goto err;
89 }

91 /* If a bit-string, exit early */
92 if (tag == V_ASN1_BIT_STRING)
93 return(d2i_ASN1_BIT_STRING(a,pp,length));

95 if ((a == NULL) || ((*a) == NULL))
96 {
97 if ((ret=ASN1_STRING_new()) == NULL) return(NULL);
98 }
99 else
100 ret=(*a);

102 if (len != 0)
103 {
104 s=(unsigned char *)OPENSSL_malloc((int)len+1);
105 if (s == NULL)
106 {
107 i=ERR_R_MALLOC_FAILURE;
108 goto err;
109 }
110 memcpy(s,p,(int)len);
111 s[len]=’\0’;
112 p+=len;
113 }
114 else
115 s=NULL;

117 if (ret->data != NULL) OPENSSL_free(ret->data);
118 ret->length=(int)len;
119 ret->data=s;
120 ret->type=tag;
121 if (a != NULL) (*a)=ret;
122 *pp=p;
123 return(ret);
124 err:
125 ASN1err(ASN1_F_D2I_ASN1_TYPE_BYTES,i);
126 if ((ret != NULL) && ((a == NULL) || (*a != ret)))
127 ASN1_STRING_free(ret);

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_bytes.c 3

128 return(NULL);
129 }

131 int i2d_ASN1_bytes(ASN1_STRING *a, unsigned char **pp, int tag, int xclass)
132 {
133 int ret,r,constructed;
134 unsigned char *p;

136 if (a == NULL) return(0);

138 if (tag == V_ASN1_BIT_STRING)
139 return(i2d_ASN1_BIT_STRING(a,pp));
140
141 ret=a->length;
142 r=ASN1_object_size(0,ret,tag);
143 if (pp == NULL) return(r);
144 p= *pp;

146 if ((tag == V_ASN1_SEQUENCE) || (tag == V_ASN1_SET))
147 constructed=1;
148 else
149 constructed=0;
150 ASN1_put_object(&p,constructed,ret,tag,xclass);
151 memcpy(p,a->data,a->length);
152 p+=a->length;
153 *pp= p;
154 return(r);
155 }

157 ASN1_STRING *d2i_ASN1_bytes(ASN1_STRING **a, const unsigned char **pp,
158 long length, int Ptag, int Pclass)
159 {
160 ASN1_STRING *ret=NULL;
161 const unsigned char *p;
162 unsigned char *s;
163 long len;
164 int inf,tag,xclass;
165 int i=0;

167 if ((a == NULL) || ((*a) == NULL))
168 {
169 if ((ret=ASN1_STRING_new()) == NULL) return(NULL);
170 }
171 else
172 ret=(*a);

174 p= *pp;
175 inf=ASN1_get_object(&p,&len,&tag,&xclass,length);
176 if (inf & 0x80)
177 {
178 i=ASN1_R_BAD_OBJECT_HEADER;
179 goto err;
180 }

182 if (tag != Ptag)
183 {
184 i=ASN1_R_WRONG_TAG;
185 goto err;
186 }

188 if (inf & V_ASN1_CONSTRUCTED)
189 {
190 ASN1_const_CTX c;

192 c.pp=pp;
193 c.p=p;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_bytes.c 4

194 c.inf=inf;
195 c.slen=len;
196 c.tag=Ptag;
197 c.xclass=Pclass;
198 c.max=(length == 0)?0:(p+length);
199 if (!asn1_collate_primitive(ret,&c))
200 goto err;
201 else
202 {
203 p=c.p;
204 }
205 }
206 else
207 {
208 if (len != 0)
209 {
210 if ((ret->length < len) || (ret->data == NULL))
211 {
212 if (ret->data != NULL) OPENSSL_free(ret->data);
213 s=(unsigned char *)OPENSSL_malloc((int)len + 1);
214 if (s == NULL)
215 {
216 i=ERR_R_MALLOC_FAILURE;
217 goto err;
218 }
219 }
220 else
221 s=ret->data;
222 memcpy(s,p,(int)len);
223 s[len] = ’\0’;
224 p+=len;
225 }
226 else
227 {
228 s=NULL;
229 if (ret->data != NULL) OPENSSL_free(ret->data);
230 }

232 ret->length=(int)len;
233 ret->data=s;
234 ret->type=Ptag;
235 }

237 if (a != NULL) (*a)=ret;
238 *pp=p;
239 return(ret);
240 err:
241 if ((ret != NULL) && ((a == NULL) || (*a != ret)))
242 ASN1_STRING_free(ret);
243 ASN1err(ASN1_F_D2I_ASN1_BYTES,i);
244 return(NULL);
245 }

248 /* We are about to parse 0..n d2i_ASN1_bytes objects, we are to collapse
249 * them into the one structure that is then returned */
250 /* There have been a few bug fixes for this function from
251 * Paul Keogh <paul.keogh@sse.ie>, many thanks to him */
252 static int asn1_collate_primitive(ASN1_STRING *a, ASN1_const_CTX *c)
253 {
254 ASN1_STRING *os=NULL;
255 BUF_MEM b;
256 int num;

258 b.length=0;
259 b.max=0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_bytes.c 5

260 b.data=NULL;

262 if (a == NULL)
263 {
264 c->error=ERR_R_PASSED_NULL_PARAMETER;
265 goto err;
266 }

268 num=0;
269 for (;;)
270 {
271 if (c->inf & 1)
272 {
273 c->eos=ASN1_const_check_infinite_end(&c->p,
274 (long)(c->max-c->p));
275 if (c->eos) break;
276 }
277 else
278 {
279 if (c->slen <= 0) break;
280 }

282 c->q=c->p;
283 if (d2i_ASN1_bytes(&os,&c->p,c->max-c->p,c->tag,c->xclass)
284 == NULL)
285 {
286 c->error=ERR_R_ASN1_LIB;
287 goto err;
288 }

290 if (!BUF_MEM_grow_clean(&b,num+os->length))
291 {
292 c->error=ERR_R_BUF_LIB;
293 goto err;
294 }
295 memcpy(&(b.data[num]),os->data,os->length);
296 if (!(c->inf & 1))
297 c->slen-=(c->p-c->q);
298 num+=os->length;
299 }

301 if (!asn1_const_Finish(c)) goto err;

303 a->length=num;
304 if (a->data != NULL) OPENSSL_free(a->data);
305 a->data=(unsigned char *)b.data;
306 if (os != NULL) ASN1_STRING_free(os);
307 return(1);
308 err:
309 ASN1err(ASN1_F_ASN1_COLLATE_PRIMITIVE,c->error);
310 if (os != NULL) ASN1_STRING_free(os);
311 if (b.data != NULL) OPENSSL_free(b.data);
312 return(0);
313 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_d2i_fp.c 1

**
 7624 Fri May 30 18:31:27 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_d2i_fp.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_d2i_fp.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <limits.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_d2i_fp.c 2

62 #include <openssl/buffer.h>
63 #include <openssl/asn1_mac.h>

65 static int asn1_d2i_read_bio(BIO *in, BUF_MEM **pb);

67 #ifndef NO_OLD_ASN1
68 #ifndef OPENSSL_NO_FP_API

70 void *ASN1_d2i_fp(void *(*xnew)(void), d2i_of_void *d2i, FILE *in, void **x)
71 {
72 BIO *b;
73 void *ret;

75 if ((b=BIO_new(BIO_s_file())) == NULL)
76 {
77 ASN1err(ASN1_F_ASN1_D2I_FP,ERR_R_BUF_LIB);
78 return(NULL);
79 }
80 BIO_set_fp(b,in,BIO_NOCLOSE);
81 ret=ASN1_d2i_bio(xnew,d2i,b,x);
82 BIO_free(b);
83 return(ret);
84 }
85 #endif

87 void *ASN1_d2i_bio(void *(*xnew)(void), d2i_of_void *d2i, BIO *in, void **x)
88 {
89 BUF_MEM *b = NULL;
90 const unsigned char *p;
91 void *ret=NULL;
92 int len;

94 len = asn1_d2i_read_bio(in, &b);
95 if(len < 0) goto err;

97 p=(unsigned char *)b->data;
98 ret=d2i(x,&p,len);
99 err:
100 if (b != NULL) BUF_MEM_free(b);
101 return(ret);
102 }

104 #endif

106 void *ASN1_item_d2i_bio(const ASN1_ITEM *it, BIO *in, void *x)
107 {
108 BUF_MEM *b = NULL;
109 const unsigned char *p;
110 void *ret=NULL;
111 int len;

113 len = asn1_d2i_read_bio(in, &b);
114 if(len < 0) goto err;

116 p=(const unsigned char *)b->data;
117 ret=ASN1_item_d2i(x,&p,len, it);
118 err:
119 if (b != NULL) BUF_MEM_free(b);
120 return(ret);
121 }

123 #ifndef OPENSSL_NO_FP_API
124 void *ASN1_item_d2i_fp(const ASN1_ITEM *it, FILE *in, void *x)
125 {
126 BIO *b;
127 char *ret;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_d2i_fp.c 3

129 if ((b=BIO_new(BIO_s_file())) == NULL)
130 {
131 ASN1err(ASN1_F_ASN1_ITEM_D2I_FP,ERR_R_BUF_LIB);
132 return(NULL);
133 }
134 BIO_set_fp(b,in,BIO_NOCLOSE);
135 ret=ASN1_item_d2i_bio(it,b,x);
136 BIO_free(b);
137 return(ret);
138 }
139 #endif

141 #define HEADER_SIZE 8
142 static int asn1_d2i_read_bio(BIO *in, BUF_MEM **pb)
143 {
144 BUF_MEM *b;
145 unsigned char *p;
146 int i;
147 ASN1_const_CTX c;
148 size_t want=HEADER_SIZE;
149 int eos=0;
150 size_t off=0;
151 size_t len=0;

153 b=BUF_MEM_new();
154 if (b == NULL)
155 {
156 ASN1err(ASN1_F_ASN1_D2I_READ_BIO,ERR_R_MALLOC_FAILURE);
157 return -1;
158 }

160 ERR_clear_error();
161 for (;;)
162 {
163 if (want >= (len-off))
164 {
165 want-=(len-off);

167 if (len + want < len || !BUF_MEM_grow_clean(b,len+want))
168 {
169 ASN1err(ASN1_F_ASN1_D2I_READ_BIO,ERR_R_MALLOC_FA
170 goto err;
171 }
172 i=BIO_read(in,&(b->data[len]),want);
173 if ((i < 0) && ((len-off) == 0))
174 {
175 ASN1err(ASN1_F_ASN1_D2I_READ_BIO,ASN1_R_NOT_ENOU
176 goto err;
177 }
178 if (i > 0)
179 {
180 if (len+i < len)
181 {
182 ASN1err(ASN1_F_ASN1_D2I_READ_BIO,ASN1_R_
183 goto err;
184 }
185 len+=i;
186 }
187 }
188 /* else data already loaded */

190 p=(unsigned char *)&(b->data[off]);
191 c.p=p;
192 c.inf=ASN1_get_object(&(c.p),&(c.slen),&(c.tag),&(c.xclass),
193 len-off);

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_d2i_fp.c 4

194 if (c.inf & 0x80)
195 {
196 unsigned long e;

198 e=ERR_GET_REASON(ERR_peek_error());
199 if (e != ASN1_R_TOO_LONG)
200 goto err;
201 else
202 ERR_clear_error(); /* clear error */
203 }
204 i=c.p-p;/* header length */
205 off+=i; /* end of data */

207 if (c.inf & 1)
208 {
209 /* no data body so go round again */
210 eos++;
211 if (eos < 0)
212 {
213 ASN1err(ASN1_F_ASN1_D2I_READ_BIO,ASN1_R_HEADER_T
214 goto err;
215 }
216 want=HEADER_SIZE;
217 }
218 else if (eos && (c.slen == 0) && (c.tag == V_ASN1_EOC))
219 {
220 /* eos value, so go back and read another header */
221 eos--;
222 if (eos <= 0)
223 break;
224 else
225 want=HEADER_SIZE;
226 }
227 else
228 {
229 /* suck in c.slen bytes of data */
230 want=c.slen;
231 if (want > (len-off))
232 {
233 want-=(len-off);
234 if (want > INT_MAX /* BIO_read takes an int leng
235 len+want < len)
236 {
237 ASN1err(ASN1_F_ASN1_D2I_READ_BIO
238 goto err;
239 }
240 if (!BUF_MEM_grow_clean(b,len+want))
241 {
242 ASN1err(ASN1_F_ASN1_D2I_READ_BIO,ERR_R_M
243 goto err;
244 }
245 while (want > 0)
246 {
247 i=BIO_read(in,&(b->data[len]),want);
248 if (i <= 0)
249 {
250 ASN1err(ASN1_F_ASN1_D2I_READ_BIO
251 ASN1_R_NOT_ENOUGH_DATA);
252 goto err;
253 }
254 /* This can’t overflow because
255 * |len+want| didn’t overflow. */
256 len+=i;
257 want-=i;
258 }
259 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_d2i_fp.c 5

260 if (off + c.slen < off)
261 {
262 ASN1err(ASN1_F_ASN1_D2I_READ_BIO,ASN1_R_TOO_LONG
263 goto err;
264 }
265 off+=c.slen;
266 if (eos <= 0)
267 {
268 break;
269 }
270 else
271 want=HEADER_SIZE;
272 }
273 }

275 if (off > INT_MAX)
276 {
277 ASN1err(ASN1_F_ASN1_D2I_READ_BIO,ASN1_R_TOO_LONG);
278 goto err;
279 }

281 *pb = b;
282 return off;
283 err:
284 if (b != NULL) BUF_MEM_free(b);
285 return -1;
286 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_digest.c 1

**
 4161 Fri May 30 18:31:27 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_digest.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_digest.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <time.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_digest.c 2

62 #include "cryptlib.h"

64 #ifndef NO_SYS_TYPES_H
65 # include <sys/types.h>
66 #endif

68 #include <openssl/err.h>
69 #include <openssl/evp.h>
70 #include <openssl/buffer.h>
71 #include <openssl/x509.h>

73 #ifndef NO_ASN1_OLD

75 int ASN1_digest(i2d_of_void *i2d, const EVP_MD *type, char *data,
76 unsigned char *md, unsigned int *len)
77 {
78 int i;
79 unsigned char *str,*p;

81 i=i2d(data,NULL);
82 if ((str=(unsigned char *)OPENSSL_malloc(i)) == NULL)
83 {
84 ASN1err(ASN1_F_ASN1_DIGEST,ERR_R_MALLOC_FAILURE);
85 return(0);
86 }
87 p=str;
88 i2d(data,&p);

90 if (!EVP_Digest(str, i, md, len, type, NULL))
91 return 0;
92 OPENSSL_free(str);
93 return(1);
94 }

96 #endif

99 int ASN1_item_digest(const ASN1_ITEM *it, const EVP_MD *type, void *asn,
100 unsigned char *md, unsigned int *len)
101 {
102 int i;
103 unsigned char *str = NULL;

105 i=ASN1_item_i2d(asn,&str, it);
106 if (!str) return(0);

108 if (!EVP_Digest(str, i, md, len, type, NULL))
109 return 0;
110 OPENSSL_free(str);
111 return(1);
112 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_dup.c 1

**
 4249 Fri May 30 18:31:27 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_dup.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_dup.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_dup.c 2

63 #ifndef NO_OLD_ASN1

65 void *ASN1_dup(i2d_of_void *i2d, d2i_of_void *d2i, void *x)
66 {
67 unsigned char *b,*p;
68 const unsigned char *p2;
69 int i;
70 char *ret;

72 if (x == NULL) return(NULL);

74 i=i2d(x,NULL);
75 b=OPENSSL_malloc(i+10);
76 if (b == NULL)
77 { ASN1err(ASN1_F_ASN1_DUP,ERR_R_MALLOC_FAILURE); return(NULL); }
78 p= b;
79 i=i2d(x,&p);
80 p2= b;
81 ret=d2i(NULL,&p2,i);
82 OPENSSL_free(b);
83 return(ret);
84 }

86 #endif

88 /* ASN1_ITEM version of dup: this follows the model above except we don’t need
89 * to allocate the buffer. At some point this could be rewritten to directly dup
90 * the underlying structure instead of doing and encode and decode.
91 */

93 void *ASN1_item_dup(const ASN1_ITEM *it, void *x)
94 {
95 unsigned char *b = NULL;
96 const unsigned char *p;
97 long i;
98 void *ret;

100 if (x == NULL) return(NULL);

102 i=ASN1_item_i2d(x,&b,it);
103 if (b == NULL)
104 { ASN1err(ASN1_F_ASN1_ITEM_DUP,ERR_R_MALLOC_FAILURE); return(NUL
105 p= b;
106 ret=ASN1_item_d2i(NULL,&p,i, it);
107 OPENSSL_free(b);
108 return(ret);
109 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_enum.c 1

**
 5617 Fri May 30 18:31:27 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_enum.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_enum.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_enum.c 2

62 #include <openssl/bn.h>

64 /*
65 * Code for ENUMERATED type: identical to INTEGER apart from a different tag.
66 * for comments on encoding see a_int.c
67 */

69 int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v)
70 {
71 int j,k;
72 unsigned int i;
73 unsigned char buf[sizeof(long)+1];
74 long d;

76 a->type=V_ASN1_ENUMERATED;
77 if (a->length < (int)(sizeof(long)+1))
78 {
79 if (a->data != NULL)
80 OPENSSL_free(a->data);
81 if ((a->data=(unsigned char *)OPENSSL_malloc(sizeof(long)+1)) !=
82 memset((char *)a->data,0,sizeof(long)+1);
83 }
84 if (a->data == NULL)
85 {
86 ASN1err(ASN1_F_ASN1_ENUMERATED_SET,ERR_R_MALLOC_FAILURE);
87 return(0);
88 }
89 d=v;
90 if (d < 0)
91 {
92 d= -d;
93 a->type=V_ASN1_NEG_ENUMERATED;
94 }

96 for (i=0; i<sizeof(long); i++)
97 {
98 if (d == 0) break;
99 buf[i]=(int)d&0xff;
100 d>>=8;
101 }
102 j=0;
103 for (k=i-1; k >=0; k--)
104 a->data[j++]=buf[k];
105 a->length=j;
106 return(1);
107 }

109 long ASN1_ENUMERATED_get(ASN1_ENUMERATED *a)
110 {
111 int neg=0,i;
112 long r=0;

114 if (a == NULL) return(0L);
115 i=a->type;
116 if (i == V_ASN1_NEG_ENUMERATED)
117 neg=1;
118 else if (i != V_ASN1_ENUMERATED)
119 return -1;
120
121 if (a->length > (int)sizeof(long))
122 {
123 /* hmm... a bit ugly */
124 return(0xffffffffL);
125 }
126 if (a->data == NULL)
127 return 0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_enum.c 3

129 for (i=0; i<a->length; i++)
130 {
131 r<<=8;
132 r|=(unsigned char)a->data[i];
133 }
134 if (neg) r= -r;
135 return(r);
136 }

138 ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(BIGNUM *bn, ASN1_ENUMERATED *ai)
139 {
140 ASN1_ENUMERATED *ret;
141 int len,j;

143 if (ai == NULL)
144 ret=M_ASN1_ENUMERATED_new();
145 else
146 ret=ai;
147 if (ret == NULL)
148 {
149 ASN1err(ASN1_F_BN_TO_ASN1_ENUMERATED,ERR_R_NESTED_ASN1_ERROR);
150 goto err;
151 }
152 if(BN_is_negative(bn)) ret->type = V_ASN1_NEG_ENUMERATED;
153 else ret->type=V_ASN1_ENUMERATED;
154 j=BN_num_bits(bn);
155 len=((j == 0)?0:((j/8)+1));
156 if (ret->length < len+4)
157 {
158 unsigned char *new_data=OPENSSL_realloc(ret->data, len+4);
159 if (!new_data)
160 {
161 ASN1err(ASN1_F_BN_TO_ASN1_ENUMERATED,ERR_R_MALLOC_FAILUR
162 goto err;
163 }
164 ret->data=new_data;
165 }

167 ret->length=BN_bn2bin(bn,ret->data);
168 return(ret);
169 err:
170 if (ret != ai) M_ASN1_ENUMERATED_free(ret);
171 return(NULL);
172 }

174 BIGNUM *ASN1_ENUMERATED_to_BN(ASN1_ENUMERATED *ai, BIGNUM *bn)
175 {
176 BIGNUM *ret;

178 if ((ret=BN_bin2bn(ai->data,ai->length,bn)) == NULL)
179 ASN1err(ASN1_F_ASN1_ENUMERATED_TO_BN,ASN1_R_BN_LIB);
180 else if(ai->type == V_ASN1_NEG_ENUMERATED) BN_set_negative(ret,1);
181 return(ret);
182 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_gentm.c 1

**
 7767 Fri May 30 18:31:27 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_gentm.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_gentm.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* GENERALIZEDTIME implementation, written by Steve Henson. Based on UTCTIME */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_gentm.c 2

62 #include <time.h>
63 #include "cryptlib.h"
64 #include "o_time.h"
65 #include <openssl/asn1.h>

67 #if 0

69 int i2d_ASN1_GENERALIZEDTIME(ASN1_GENERALIZEDTIME *a, unsigned char **pp)
70 {
71 #ifdef CHARSET_EBCDIC
72 /* KLUDGE! We convert to ascii before writing DER */
73 int len;
74 char tmp[24];
75 ASN1_STRING tmpstr = *(ASN1_STRING *)a;

77 len = tmpstr.length;
78 ebcdic2ascii(tmp, tmpstr.data, (len >= sizeof tmp) ? sizeof tmp : len);
79 tmpstr.data = tmp;

81 a = (ASN1_GENERALIZEDTIME *) &tmpstr;
82 #endif
83 return(i2d_ASN1_bytes((ASN1_STRING *)a,pp,
84 V_ASN1_GENERALIZEDTIME,V_ASN1_UNIVERSAL));
85 }

88 ASN1_GENERALIZEDTIME *d2i_ASN1_GENERALIZEDTIME(ASN1_GENERALIZEDTIME **a,
89 unsigned char **pp, long length)
90 {
91 ASN1_GENERALIZEDTIME *ret=NULL;

93 ret=(ASN1_GENERALIZEDTIME *)d2i_ASN1_bytes((ASN1_STRING **)a,pp,length,
94 V_ASN1_GENERALIZEDTIME,V_ASN1_UNIVERSAL);
95 if (ret == NULL)
96 {
97 ASN1err(ASN1_F_D2I_ASN1_GENERALIZEDTIME,ERR_R_NESTED_ASN1_ERROR)
98 return(NULL);
99 }
100 #ifdef CHARSET_EBCDIC
101 ascii2ebcdic(ret->data, ret->data, ret->length);
102 #endif
103 if (!ASN1_GENERALIZEDTIME_check(ret))
104 {
105 ASN1err(ASN1_F_D2I_ASN1_GENERALIZEDTIME,ASN1_R_INVALID_TIME_FORM
106 goto err;
107 }

109 return(ret);
110 err:
111 if ((ret != NULL) && ((a == NULL) || (*a != ret)))
112 M_ASN1_GENERALIZEDTIME_free(ret);
113 return(NULL);
114 }

116 #endif

118 int ASN1_GENERALIZEDTIME_check(ASN1_GENERALIZEDTIME *d)
119 {
120 static const int min[9]={ 0, 0, 1, 1, 0, 0, 0, 0, 0};
121 static const int max[9]={99, 99,12,31,23,59,59,12,59};
122 char *a;
123 int n,i,l,o;

125 if (d->type != V_ASN1_GENERALIZEDTIME) return(0);
126 l=d->length;
127 a=(char *)d->data;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_gentm.c 3

128 o=0;
129 /* GENERALIZEDTIME is similar to UTCTIME except the year is
130 * represented as YYYY. This stuff treats everything as a two digit
131 * field so make first two fields 00 to 99
132 */
133 if (l < 13) goto err;
134 for (i=0; i<7; i++)
135 {
136 if ((i == 6) && ((a[o] == ’Z’) ||
137 (a[o] == ’+’) || (a[o] == ’-’)))
138 { i++; break; }
139 if ((a[o] < ’0’) || (a[o] > ’9’)) goto err;
140 n= a[o]-’0’;
141 if (++o > l) goto err;

143 if ((a[o] < ’0’) || (a[o] > ’9’)) goto err;
144 n=(n*10)+ a[o]-’0’;
145 if (++o > l) goto err;

147 if ((n < min[i]) || (n > max[i])) goto err;
148 }
149 /* Optional fractional seconds: decimal point followed by one
150 * or more digits.
151 */
152 if (a[o] == ’.’)
153 {
154 if (++o > l) goto err;
155 i = o;
156 while ((a[o] >= ’0’) && (a[o] <= ’9’) && (o <= l))
157 o++;
158 /* Must have at least one digit after decimal point */
159 if (i == o) goto err;
160 }

162 if (a[o] == ’Z’)
163 o++;
164 else if ((a[o] == ’+’) || (a[o] == ’-’))
165 {
166 o++;
167 if (o+4 > l) goto err;
168 for (i=7; i<9; i++)
169 {
170 if ((a[o] < ’0’) || (a[o] > ’9’)) goto err;
171 n= a[o]-’0’;
172 o++;
173 if ((a[o] < ’0’) || (a[o] > ’9’)) goto err;
174 n=(n*10)+ a[o]-’0’;
175 if ((n < min[i]) || (n > max[i])) goto err;
176 o++;
177 }
178 }
179 else
180 {
181 /* Missing time zone information. */
182 goto err;
183 }
184 return(o == l);
185 err:
186 return(0);
187 }

189 int ASN1_GENERALIZEDTIME_set_string(ASN1_GENERALIZEDTIME *s, const char *str)
190 {
191 ASN1_GENERALIZEDTIME t;

193 t.type=V_ASN1_GENERALIZEDTIME;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_gentm.c 4

194 t.length=strlen(str);
195 t.data=(unsigned char *)str;
196 if (ASN1_GENERALIZEDTIME_check(&t))
197 {
198 if (s != NULL)
199 {
200 if (!ASN1_STRING_set((ASN1_STRING *)s,
201 (unsigned char *)str,t.length))
202 return 0;
203 s->type=V_ASN1_GENERALIZEDTIME;
204 }
205 return(1);
206 }
207 else
208 return(0);
209 }

211 ASN1_GENERALIZEDTIME *ASN1_GENERALIZEDTIME_set(ASN1_GENERALIZEDTIME *s,
212 time_t t)
213 {
214 return ASN1_GENERALIZEDTIME_adj(s, t, 0, 0);
215 }

217 ASN1_GENERALIZEDTIME *ASN1_GENERALIZEDTIME_adj(ASN1_GENERALIZEDTIME *s,
218 time_t t, int offset_day, long offset_sec)
219 {
220 char *p;
221 struct tm *ts;
222 struct tm data;
223 size_t len = 20;

225 if (s == NULL)
226 s=M_ASN1_GENERALIZEDTIME_new();
227 if (s == NULL)
228 return(NULL);

230 ts=OPENSSL_gmtime(&t, &data);
231 if (ts == NULL)
232 return(NULL);

234 if (offset_day || offset_sec)
235 {
236 if (!OPENSSL_gmtime_adj(ts, offset_day, offset_sec))
237 return NULL;
238 }

240 p=(char *)s->data;
241 if ((p == NULL) || ((size_t)s->length < len))
242 {
243 p=OPENSSL_malloc(len);
244 if (p == NULL)
245 {
246 ASN1err(ASN1_F_ASN1_GENERALIZEDTIME_ADJ,
247 ERR_R_MALLOC_FAILURE);
248 return(NULL);
249 }
250 if (s->data != NULL)
251 OPENSSL_free(s->data);
252 s->data=(unsigned char *)p;
253 }

255 BIO_snprintf(p,len,"%04d%02d%02d%02d%02d%02dZ",ts->tm_year + 1900,
256 ts->tm_mon+1,ts->tm_mday,ts->tm_hour,ts->tm_min,ts->tm_sec)
257 s->length=strlen(p);
258 s->type=V_ASN1_GENERALIZEDTIME;
259 #ifdef CHARSET_EBCDIC_not

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_gentm.c 5

260 ebcdic2ascii(s->data, s->data, s->length);
261 #endif
262 return(s);
263 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_i2d_fp.c 1

**
 4969 Fri May 30 18:31:27 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_i2d_fp.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_i2d_fp.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_i2d_fp.c 2

62 #include <openssl/asn1.h>

64 #ifndef NO_OLD_ASN1

66 #ifndef OPENSSL_NO_FP_API
67 int ASN1_i2d_fp(i2d_of_void *i2d, FILE *out, void *x)
68 {
69 BIO *b;
70 int ret;

72 if ((b=BIO_new(BIO_s_file())) == NULL)
73 {
74 ASN1err(ASN1_F_ASN1_I2D_FP,ERR_R_BUF_LIB);
75 return(0);
76 }
77 BIO_set_fp(b,out,BIO_NOCLOSE);
78 ret=ASN1_i2d_bio(i2d,b,x);
79 BIO_free(b);
80 return(ret);
81 }
82 #endif

84 int ASN1_i2d_bio(i2d_of_void *i2d, BIO *out, unsigned char *x)
85 {
86 char *b;
87 unsigned char *p;
88 int i,j=0,n,ret=1;

90 n=i2d(x,NULL);
91 b=(char *)OPENSSL_malloc(n);
92 if (b == NULL)
93 {
94 ASN1err(ASN1_F_ASN1_I2D_BIO,ERR_R_MALLOC_FAILURE);
95 return(0);
96 }

98 p=(unsigned char *)b;
99 i2d(x,&p);
100
101 for (;;)
102 {
103 i=BIO_write(out,&(b[j]),n);
104 if (i == n) break;
105 if (i <= 0)
106 {
107 ret=0;
108 break;
109 }
110 j+=i;
111 n-=i;
112 }
113 OPENSSL_free(b);
114 return(ret);
115 }

117 #endif

119 #ifndef OPENSSL_NO_FP_API
120 int ASN1_item_i2d_fp(const ASN1_ITEM *it, FILE *out, void *x)
121 {
122 BIO *b;
123 int ret;

125 if ((b=BIO_new(BIO_s_file())) == NULL)
126 {
127 ASN1err(ASN1_F_ASN1_ITEM_I2D_FP,ERR_R_BUF_LIB);

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_i2d_fp.c 3

128 return(0);
129 }
130 BIO_set_fp(b,out,BIO_NOCLOSE);
131 ret=ASN1_item_i2d_bio(it,b,x);
132 BIO_free(b);
133 return(ret);
134 }
135 #endif

137 int ASN1_item_i2d_bio(const ASN1_ITEM *it, BIO *out, void *x)
138 {
139 unsigned char *b = NULL;
140 int i,j=0,n,ret=1;

142 n = ASN1_item_i2d(x, &b, it);
143 if (b == NULL)
144 {
145 ASN1err(ASN1_F_ASN1_ITEM_I2D_BIO,ERR_R_MALLOC_FAILURE);
146 return(0);
147 }

149 for (;;)
150 {
151 i=BIO_write(out,&(b[j]),n);
152 if (i == n) break;
153 if (i <= 0)
154 {
155 ret=0;
156 break;
157 }
158 j+=i;
159 n-=i;
160 }
161 OPENSSL_free(b);
162 return(ret);
163 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_int.c 1

**
 11901 Fri May 30 18:31:27 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_int.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_int.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_int.c 2

62 #include <openssl/bn.h>

64 ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x)
65 { return M_ASN1_INTEGER_dup(x);}

67 int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
68 {
69 int neg, ret;
70 /* Compare signs */
71 neg = x->type & V_ASN1_NEG;
72 if (neg != (y->type & V_ASN1_NEG))
73 {
74 if (neg)
75 return -1;
76 else
77 return 1;
78 }

80 ret = ASN1_STRING_cmp(x, y);

82 if (neg)
83 return -ret;
84 else
85 return ret;
86 }
87

89 /*
90 * This converts an ASN1 INTEGER into its content encoding.
91 * The internal representation is an ASN1_STRING whose data is a big endian
92 * representation of the value, ignoring the sign. The sign is determined by
93 * the type: V_ASN1_INTEGER for positive and V_ASN1_NEG_INTEGER for negative.
94 *
95 * Positive integers are no problem: they are almost the same as the DER
96 * encoding, except if the first byte is >= 0x80 we need to add a zero pad.
97 *
98 * Negative integers are a bit trickier...
99 * The DER representation of negative integers is in 2s complement form.
100 * The internal form is converted by complementing each octet and finally
101 * adding one to the result. This can be done less messily with a little trick.
102 * If the internal form has trailing zeroes then they will become FF by the
103 * complement and 0 by the add one (due to carry) so just copy as many trailing
104 * zeros to the destination as there are in the source. The carry will add one
105 * to the last none zero octet: so complement this octet and add one and finally
106 * complement any left over until you get to the start of the string.
107 *
108 * Padding is a little trickier too. If the first bytes is > 0x80 then we pad
109 * with 0xff. However if the first byte is 0x80 and one of the following bytes
110 * is non-zero we pad with 0xff. The reason for this distinction is that 0x80
111 * followed by optional zeros isn’t padded.
112 */

114 int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
115 {
116 int pad=0,ret,i,neg;
117 unsigned char *p,*n,pb=0;

119 if (a == NULL) return(0);
120 neg=a->type & V_ASN1_NEG;
121 if (a->length == 0)
122 ret=1;
123 else
124 {
125 ret=a->length;
126 i=a->data[0];
127 if (!neg && (i > 127)) {

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_int.c 3

128 pad=1;
129 pb=0;
130 } else if(neg) {
131 if(i>128) {
132 pad=1;
133 pb=0xFF;
134 } else if(i == 128) {
135 /*
136 * Special case: if any other bytes non zero we pad:
137 * otherwise we don’t.
138 */
139 for(i = 1; i < a->length; i++) if(a->data[i]) {
140 pad=1;
141 pb=0xFF;
142 break;
143 }
144 }
145 }
146 ret+=pad;
147 }
148 if (pp == NULL) return(ret);
149 p= *pp;

151 if (pad) *(p++)=pb;
152 if (a->length == 0) *(p++)=0;
153 else if (!neg) memcpy(p,a->data,(unsigned int)a->length);
154 else {
155 /* Begin at the end of the encoding */
156 n=a->data + a->length - 1;
157 p += a->length - 1;
158 i = a->length;
159 /* Copy zeros to destination as long as source is zero */
160 while(!*n) {
161 *(p--) = 0;
162 n--;
163 i--;
164 }
165 /* Complement and increment next octet */
166 *(p--) = ((*(n--)) ^ 0xff) + 1;
167 i--;
168 /* Complement any octets left */
169 for(;i > 0; i--) *(p--) = *(n--) ^ 0xff;
170 }

172 *pp+=ret;
173 return(ret);
174 }

176 /* Convert just ASN1 INTEGER content octets to ASN1_INTEGER structure */

178 ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp,
179 long len)
180 {
181 ASN1_INTEGER *ret=NULL;
182 const unsigned char *p, *pend;
183 unsigned char *to,*s;
184 int i;

186 if ((a == NULL) || ((*a) == NULL))
187 {
188 if ((ret=M_ASN1_INTEGER_new()) == NULL) return(NULL);
189 ret->type=V_ASN1_INTEGER;
190 }
191 else
192 ret=(*a);

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_int.c 4

194 p= *pp;
195 pend = p + len;

197 /* We must OPENSSL_malloc stuff, even for 0 bytes otherwise it
198 * signifies a missing NULL parameter. */
199 s=(unsigned char *)OPENSSL_malloc((int)len+1);
200 if (s == NULL)
201 {
202 i=ERR_R_MALLOC_FAILURE;
203 goto err;
204 }
205 to=s;
206 if(!len) {
207 /* Strictly speaking this is an illegal INTEGER but we
208 * tolerate it.
209 */
210 ret->type=V_ASN1_INTEGER;
211 } else if (*p & 0x80) /* a negative number */
212 {
213 ret->type=V_ASN1_NEG_INTEGER;
214 if ((*p == 0xff) && (len != 1)) {
215 p++;
216 len--;
217 }
218 i = len;
219 p += i - 1;
220 to += i - 1;
221 while((!*p) && i) {
222 *(to--) = 0;
223 i--;
224 p--;
225 }
226 /* Special case: if all zeros then the number will be of
227 * the form FF followed by n zero bytes: this corresponds to
228 * 1 followed by n zero bytes. We’ve already written n zeros
229 * so we just append an extra one and set the first byte to
230 * a 1. This is treated separately because it is the only case
231 * where the number of bytes is larger than len.
232 */
233 if(!i) {
234 *s = 1;
235 s[len] = 0;
236 len++;
237 } else {
238 *(to--) = (*(p--) ^ 0xff) + 1;
239 i--;
240 for(;i > 0; i--) *(to--) = *(p--) ^ 0xff;
241 }
242 } else {
243 ret->type=V_ASN1_INTEGER;
244 if ((*p == 0) && (len != 1))
245 {
246 p++;
247 len--;
248 }
249 memcpy(s,p,(int)len);
250 }

252 if (ret->data != NULL) OPENSSL_free(ret->data);
253 ret->data=s;
254 ret->length=(int)len;
255 if (a != NULL) (*a)=ret;
256 *pp=pend;
257 return(ret);
258 err:
259 ASN1err(ASN1_F_C2I_ASN1_INTEGER,i);

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_int.c 5

260 if ((ret != NULL) && ((a == NULL) || (*a != ret)))
261 M_ASN1_INTEGER_free(ret);
262 return(NULL);
263 }

266 /* This is a version of d2i_ASN1_INTEGER that ignores the sign bit of
267 * ASN1 integers: some broken software can encode a positive INTEGER
268 * with its MSB set as negative (it doesn’t add a padding zero).
269 */

271 ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
272 long length)
273 {
274 ASN1_INTEGER *ret=NULL;
275 const unsigned char *p;
276 unsigned char *s;
277 long len;
278 int inf,tag,xclass;
279 int i;

281 if ((a == NULL) || ((*a) == NULL))
282 {
283 if ((ret=M_ASN1_INTEGER_new()) == NULL) return(NULL);
284 ret->type=V_ASN1_INTEGER;
285 }
286 else
287 ret=(*a);

289 p= *pp;
290 inf=ASN1_get_object(&p,&len,&tag,&xclass,length);
291 if (inf & 0x80)
292 {
293 i=ASN1_R_BAD_OBJECT_HEADER;
294 goto err;
295 }

297 if (tag != V_ASN1_INTEGER)
298 {
299 i=ASN1_R_EXPECTING_AN_INTEGER;
300 goto err;
301 }

303 /* We must OPENSSL_malloc stuff, even for 0 bytes otherwise it
304 * signifies a missing NULL parameter. */
305 s=(unsigned char *)OPENSSL_malloc((int)len+1);
306 if (s == NULL)
307 {
308 i=ERR_R_MALLOC_FAILURE;
309 goto err;
310 }
311 ret->type=V_ASN1_INTEGER;
312 if(len) {
313 if ((*p == 0) && (len != 1))
314 {
315 p++;
316 len--;
317 }
318 memcpy(s,p,(int)len);
319 p+=len;
320 }

322 if (ret->data != NULL) OPENSSL_free(ret->data);
323 ret->data=s;
324 ret->length=(int)len;
325 if (a != NULL) (*a)=ret;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_int.c 6

326 *pp=p;
327 return(ret);
328 err:
329 ASN1err(ASN1_F_D2I_ASN1_UINTEGER,i);
330 if ((ret != NULL) && ((a == NULL) || (*a != ret)))
331 M_ASN1_INTEGER_free(ret);
332 return(NULL);
333 }

335 int ASN1_INTEGER_set(ASN1_INTEGER *a, long v)
336 {
337 int j,k;
338 unsigned int i;
339 unsigned char buf[sizeof(long)+1];
340 long d;

342 a->type=V_ASN1_INTEGER;
343 if (a->length < (int)(sizeof(long)+1))
344 {
345 if (a->data != NULL)
346 OPENSSL_free(a->data);
347 if ((a->data=(unsigned char *)OPENSSL_malloc(sizeof(long)+1)) !=
348 memset((char *)a->data,0,sizeof(long)+1);
349 }
350 if (a->data == NULL)
351 {
352 ASN1err(ASN1_F_ASN1_INTEGER_SET,ERR_R_MALLOC_FAILURE);
353 return(0);
354 }
355 d=v;
356 if (d < 0)
357 {
358 d= -d;
359 a->type=V_ASN1_NEG_INTEGER;
360 }

362 for (i=0; i<sizeof(long); i++)
363 {
364 if (d == 0) break;
365 buf[i]=(int)d&0xff;
366 d>>=8;
367 }
368 j=0;
369 for (k=i-1; k >=0; k--)
370 a->data[j++]=buf[k];
371 a->length=j;
372 return(1);
373 }

375 long ASN1_INTEGER_get(const ASN1_INTEGER *a)
376 {
377 int neg=0,i;
378 long r=0;

380 if (a == NULL) return(0L);
381 i=a->type;
382 if (i == V_ASN1_NEG_INTEGER)
383 neg=1;
384 else if (i != V_ASN1_INTEGER)
385 return -1;
386
387 if (a->length > (int)sizeof(long))
388 {
389 /* hmm... a bit ugly, return all ones */
390 return -1;
391 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_int.c 7

392 if (a->data == NULL)
393 return 0;

395 for (i=0; i<a->length; i++)
396 {
397 r<<=8;
398 r|=(unsigned char)a->data[i];
399 }
400 if (neg) r= -r;
401 return(r);
402 }

404 ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai)
405 {
406 ASN1_INTEGER *ret;
407 int len,j;

409 if (ai == NULL)
410 ret=M_ASN1_INTEGER_new();
411 else
412 ret=ai;
413 if (ret == NULL)
414 {
415 ASN1err(ASN1_F_BN_TO_ASN1_INTEGER,ERR_R_NESTED_ASN1_ERROR);
416 goto err;
417 }
418 if (BN_is_negative(bn))
419 ret->type = V_ASN1_NEG_INTEGER;
420 else ret->type=V_ASN1_INTEGER;
421 j=BN_num_bits(bn);
422 len=((j == 0)?0:((j/8)+1));
423 if (ret->length < len+4)
424 {
425 unsigned char *new_data=OPENSSL_realloc(ret->data, len+4);
426 if (!new_data)
427 {
428 ASN1err(ASN1_F_BN_TO_ASN1_INTEGER,ERR_R_MALLOC_FAILURE);
429 goto err;
430 }
431 ret->data=new_data;
432 }
433 ret->length=BN_bn2bin(bn,ret->data);
434 /* Correct zero case */
435 if(!ret->length)
436 {
437 ret->data[0] = 0;
438 ret->length = 1;
439 }
440 return(ret);
441 err:
442 if (ret != ai) M_ASN1_INTEGER_free(ret);
443 return(NULL);
444 }

446 BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn)
447 {
448 BIGNUM *ret;

450 if ((ret=BN_bin2bn(ai->data,ai->length,bn)) == NULL)
451 ASN1err(ASN1_F_ASN1_INTEGER_TO_BN,ASN1_R_BN_LIB);
452 else if(ai->type == V_ASN1_NEG_INTEGER)
453 BN_set_negative(ret, 1);
454 return(ret);
455 }

457 IMPLEMENT_STACK_OF(ASN1_INTEGER)

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_int.c 8

458 IMPLEMENT_ASN1_SET_OF(ASN1_INTEGER)

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_mbstr.c 1

**
 11427 Fri May 30 18:31:27 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_mbstr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* a_mbstr.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <ctype.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_mbstr.c 2

62 #include <openssl/asn1.h>

64 static int traverse_string(const unsigned char *p, int len, int inform,
65 int (*rfunc)(unsigned long value, void *in), void *arg);
66 static int in_utf8(unsigned long value, void *arg);
67 static int out_utf8(unsigned long value, void *arg);
68 static int type_str(unsigned long value, void *arg);
69 static int cpy_asc(unsigned long value, void *arg);
70 static int cpy_bmp(unsigned long value, void *arg);
71 static int cpy_univ(unsigned long value, void *arg);
72 static int cpy_utf8(unsigned long value, void *arg);
73 static int is_printable(unsigned long value);

75 /* These functions take a string in UTF8, ASCII or multibyte form and
76 * a mask of permissible ASN1 string types. It then works out the minimal
77 * type (using the order Printable < IA5 < T61 < BMP < Universal < UTF8)
78 * and creates a string of the correct type with the supplied data.
79 * Yes this is horrible: it has to be :-(
80 * The ’ncopy’ form checks minimum and maximum size limits too.
81 */

83 int ASN1_mbstring_copy(ASN1_STRING **out, const unsigned char *in, int len,
84 int inform, unsigned long mask)
85 {
86 return ASN1_mbstring_ncopy(out, in, len, inform, mask, 0, 0);
87 }

89 int ASN1_mbstring_ncopy(ASN1_STRING **out, const unsigned char *in, int len,
90 int inform, unsigned long mask,
91 long minsize, long maxsize)
92 {
93 int str_type;
94 int ret;
95 char free_out;
96 int outform, outlen = 0;
97 ASN1_STRING *dest;
98 unsigned char *p;
99 int nchar;
100 char strbuf[32];
101 int (*cpyfunc)(unsigned long,void *) = NULL;
102 if(len == -1) len = strlen((const char *)in);
103 if(!mask) mask = DIRSTRING_TYPE;

105 /* First do a string check and work out the number of characters */
106 switch(inform) {

108 case MBSTRING_BMP:
109 if(len & 1) {
110 ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY,
111 ASN1_R_INVALID_BMPSTRING_LENGTH);
112 return -1;
113 }
114 nchar = len >> 1;
115 break;

117 case MBSTRING_UNIV:
118 if(len & 3) {
119 ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY,
120 ASN1_R_INVALID_UNIVERSALSTRING_LENGTH);
121 return -1;
122 }
123 nchar = len >> 2;
124 break;

126 case MBSTRING_UTF8:
127 nchar = 0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_mbstr.c 3

128 /* This counts the characters and does utf8 syntax checking */
129 ret = traverse_string(in, len, MBSTRING_UTF8, in_utf8, &nchar);
130 if(ret < 0) {
131 ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY,
132 ASN1_R_INVALID_UTF8STRING);
133 return -1;
134 }
135 break;

137 case MBSTRING_ASC:
138 nchar = len;
139 break;

141 default:
142 ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY, ASN1_R_UNKNOWN_FORMAT);
143 return -1;
144 }

146 if((minsize > 0) && (nchar < minsize)) {
147 ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY, ASN1_R_STRING_TOO_SHORT);
148 BIO_snprintf(strbuf, sizeof strbuf, "%ld", minsize);
149 ERR_add_error_data(2, "minsize=", strbuf);
150 return -1;
151 }

153 if((maxsize > 0) && (nchar > maxsize)) {
154 ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY, ASN1_R_STRING_TOO_LONG);
155 BIO_snprintf(strbuf, sizeof strbuf, "%ld", maxsize);
156 ERR_add_error_data(2, "maxsize=", strbuf);
157 return -1;
158 }

160 /* Now work out minimal type (if any) */
161 if(traverse_string(in, len, inform, type_str, &mask) < 0) {
162 ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY, ASN1_R_ILLEGAL_CHARACTERS);
163 return -1;
164 }

167 /* Now work out output format and string type */
168 outform = MBSTRING_ASC;
169 if(mask & B_ASN1_PRINTABLESTRING) str_type = V_ASN1_PRINTABLESTRING;
170 else if(mask & B_ASN1_IA5STRING) str_type = V_ASN1_IA5STRING;
171 else if(mask & B_ASN1_T61STRING) str_type = V_ASN1_T61STRING;
172 else if(mask & B_ASN1_BMPSTRING) {
173 str_type = V_ASN1_BMPSTRING;
174 outform = MBSTRING_BMP;
175 } else if(mask & B_ASN1_UNIVERSALSTRING) {
176 str_type = V_ASN1_UNIVERSALSTRING;
177 outform = MBSTRING_UNIV;
178 } else {
179 str_type = V_ASN1_UTF8STRING;
180 outform = MBSTRING_UTF8;
181 }
182 if(!out) return str_type;
183 if(*out) {
184 free_out = 0;
185 dest = *out;
186 if(dest->data) {
187 dest->length = 0;
188 OPENSSL_free(dest->data);
189 dest->data = NULL;
190 }
191 dest->type = str_type;
192 } else {
193 free_out = 1;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_mbstr.c 4

194 dest = ASN1_STRING_type_new(str_type);
195 if(!dest) {
196 ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY,
197 ERR_R_MALLOC_FAILURE);
198 return -1;
199 }
200 *out = dest;
201 }
202 /* If both the same type just copy across */
203 if(inform == outform) {
204 if(!ASN1_STRING_set(dest, in, len)) {
205 ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY,ERR_R_MALLOC_FAILURE)
206 return -1;
207 }
208 return str_type;
209 }

211 /* Work out how much space the destination will need */
212 switch(outform) {
213 case MBSTRING_ASC:
214 outlen = nchar;
215 cpyfunc = cpy_asc;
216 break;

218 case MBSTRING_BMP:
219 outlen = nchar << 1;
220 cpyfunc = cpy_bmp;
221 break;

223 case MBSTRING_UNIV:
224 outlen = nchar << 2;
225 cpyfunc = cpy_univ;
226 break;

228 case MBSTRING_UTF8:
229 outlen = 0;
230 traverse_string(in, len, inform, out_utf8, &outlen);
231 cpyfunc = cpy_utf8;
232 break;
233 }
234 if(!(p = OPENSSL_malloc(outlen + 1))) {
235 if(free_out) ASN1_STRING_free(dest);
236 ASN1err(ASN1_F_ASN1_MBSTRING_NCOPY,ERR_R_MALLOC_FAILURE);
237 return -1;
238 }
239 dest->length = outlen;
240 dest->data = p;
241 p[outlen] = 0;
242 traverse_string(in, len, inform, cpyfunc, &p);
243 return str_type;
244 }

246 /* This function traverses a string and passes the value of each character
247 * to an optional function along with a void * argument.
248 */

250 static int traverse_string(const unsigned char *p, int len, int inform,
251 int (*rfunc)(unsigned long value, void *in), void *arg)
252 {
253 unsigned long value;
254 int ret;
255 while(len) {
256 if(inform == MBSTRING_ASC) {
257 value = *p++;
258 len--;
259 } else if(inform == MBSTRING_BMP) {

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_mbstr.c 5

260 value = *p++ << 8;
261 value |= *p++;
262 len -= 2;
263 } else if(inform == MBSTRING_UNIV) {
264 value = ((unsigned long)*p++) << 24;
265 value |= ((unsigned long)*p++) << 16;
266 value |= *p++ << 8;
267 value |= *p++;
268 len -= 4;
269 } else {
270 ret = UTF8_getc(p, len, &value);
271 if(ret < 0) return -1;
272 len -= ret;
273 p += ret;
274 }
275 if(rfunc) {
276 ret = rfunc(value, arg);
277 if(ret <= 0) return ret;
278 }
279 }
280 return 1;
281 }

283 /* Various utility functions for traverse_string */

285 /* Just count number of characters */

287 static int in_utf8(unsigned long value, void *arg)
288 {
289 int *nchar;
290 nchar = arg;
291 (*nchar)++;
292 return 1;
293 }

295 /* Determine size of output as a UTF8 String */

297 static int out_utf8(unsigned long value, void *arg)
298 {
299 int *outlen;
300 outlen = arg;
301 *outlen += UTF8_putc(NULL, -1, value);
302 return 1;
303 }

305 /* Determine the "type" of a string: check each character against a
306 * supplied "mask".
307 */

309 static int type_str(unsigned long value, void *arg)
310 {
311 unsigned long types;
312 types = *((unsigned long *)arg);
313 if((types & B_ASN1_PRINTABLESTRING) && !is_printable(value))
314 types &= ~B_ASN1_PRINTABLESTRING;
315 if((types & B_ASN1_IA5STRING) && (value > 127))
316 types &= ~B_ASN1_IA5STRING;
317 if((types & B_ASN1_T61STRING) && (value > 0xff))
318 types &= ~B_ASN1_T61STRING;
319 if((types & B_ASN1_BMPSTRING) && (value > 0xffff))
320 types &= ~B_ASN1_BMPSTRING;
321 if(!types) return -1;
322 *((unsigned long *)arg) = types;
323 return 1;
324 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_mbstr.c 6

326 /* Copy one byte per character ASCII like strings */

328 static int cpy_asc(unsigned long value, void *arg)
329 {
330 unsigned char **p, *q;
331 p = arg;
332 q = *p;
333 *q = (unsigned char) value;
334 (*p)++;
335 return 1;
336 }

338 /* Copy two byte per character BMPStrings */

340 static int cpy_bmp(unsigned long value, void *arg)
341 {
342 unsigned char **p, *q;
343 p = arg;
344 q = *p;
345 *q++ = (unsigned char) ((value >> 8) & 0xff);
346 *q = (unsigned char) (value & 0xff);
347 *p += 2;
348 return 1;
349 }

351 /* Copy four byte per character UniversalStrings */

353 static int cpy_univ(unsigned long value, void *arg)
354 {
355 unsigned char **p, *q;
356 p = arg;
357 q = *p;
358 *q++ = (unsigned char) ((value >> 24) & 0xff);
359 *q++ = (unsigned char) ((value >> 16) & 0xff);
360 *q++ = (unsigned char) ((value >> 8) & 0xff);
361 *q = (unsigned char) (value & 0xff);
362 *p += 4;
363 return 1;
364 }

366 /* Copy to a UTF8String */

368 static int cpy_utf8(unsigned long value, void *arg)
369 {
370 unsigned char **p;
371 int ret;
372 p = arg;
373 /* We already know there is enough room so pass 0xff as the length */
374 ret = UTF8_putc(*p, 0xff, value);
375 *p += ret;
376 return 1;
377 }

379 /* Return 1 if the character is permitted in a PrintableString */
380 static int is_printable(unsigned long value)
381 {
382 int ch;
383 if(value > 0x7f) return 0;
384 ch = (int) value;
385 /* Note: we can’t use ’isalnum’ because certain accented
386 * characters may count as alphanumeric in some environments.
387 */
388 #ifndef CHARSET_EBCDIC
389 if((ch >= ’a’) && (ch <= ’z’)) return 1;
390 if((ch >= ’A’) && (ch <= ’Z’)) return 1;
391 if((ch >= ’0’) && (ch <= ’9’)) return 1;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_mbstr.c 7

392 if ((ch == ’ ’) || strchr("’()+,-./:=?", ch)) return 1;
393 #else /*CHARSET_EBCDIC*/
394 if((ch >= os_toascii[’a’]) && (ch <= os_toascii[’z’])) return 1;
395 if((ch >= os_toascii[’A’]) && (ch <= os_toascii[’Z’])) return 1;
396 if((ch >= os_toascii[’0’]) && (ch <= os_toascii[’9’])) return 1;
397 if ((ch == os_toascii[’ ’]) || strchr("’()+,-./:=?", os_toebcdic[ch])) r
398 #endif /*CHARSET_EBCDIC*/
399 return 0;
400 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_object.c 1

**
 10073 Fri May 30 18:31:27 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_object.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_object.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <limits.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_object.c 2

62 #include <openssl/buffer.h>
63 #include <openssl/asn1.h>
64 #include <openssl/objects.h>
65 #include <openssl/bn.h>

67 int i2d_ASN1_OBJECT(ASN1_OBJECT *a, unsigned char **pp)
68 {
69 unsigned char *p;
70 int objsize;

72 if ((a == NULL) || (a->data == NULL)) return(0);

74 objsize = ASN1_object_size(0,a->length,V_ASN1_OBJECT);
75 if (pp == NULL) return objsize;

77 p= *pp;
78 ASN1_put_object(&p,0,a->length,V_ASN1_OBJECT,V_ASN1_UNIVERSAL);
79 memcpy(p,a->data,a->length);
80 p+=a->length;

82 *pp=p;
83 return(objsize);
84 }

86 int a2d_ASN1_OBJECT(unsigned char *out, int olen, const char *buf, int num)
87 {
88 int i,first,len=0,c, use_bn;
89 char ftmp[24], *tmp = ftmp;
90 int tmpsize = sizeof ftmp;
91 const char *p;
92 unsigned long l;
93 BIGNUM *bl = NULL;

95 if (num == 0)
96 return(0);
97 else if (num == -1)
98 num=strlen(buf);

100 p=buf;
101 c= *(p++);
102 num--;
103 if ((c >= ’0’) && (c <= ’2’))
104 {
105 first= c-’0’;
106 }
107 else
108 {
109 ASN1err(ASN1_F_A2D_ASN1_OBJECT,ASN1_R_FIRST_NUM_TOO_LARGE);
110 goto err;
111 }

113 if (num <= 0)
114 {
115 ASN1err(ASN1_F_A2D_ASN1_OBJECT,ASN1_R_MISSING_SECOND_NUMBER);
116 goto err;
117 }
118 c= *(p++);
119 num--;
120 for (;;)
121 {
122 if (num <= 0) break;
123 if ((c != ’.’) && (c != ’ ’))
124 {
125 ASN1err(ASN1_F_A2D_ASN1_OBJECT,ASN1_R_INVALID_SEPARATOR)
126 goto err;
127 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_object.c 3

128 l=0;
129 use_bn = 0;
130 for (;;)
131 {
132 if (num <= 0) break;
133 num--;
134 c= *(p++);
135 if ((c == ’ ’) || (c == ’.’))
136 break;
137 if ((c < ’0’) || (c > ’9’))
138 {
139 ASN1err(ASN1_F_A2D_ASN1_OBJECT,ASN1_R_INVALID_DI
140 goto err;
141 }
142 if (!use_bn && l >= ((ULONG_MAX - 80) / 10L))
143 {
144 use_bn = 1;
145 if (!bl)
146 bl = BN_new();
147 if (!bl || !BN_set_word(bl, l))
148 goto err;
149 }
150 if (use_bn)
151 {
152 if (!BN_mul_word(bl, 10L)
153 || !BN_add_word(bl, c-’0’))
154 goto err;
155 }
156 else
157 l=l*10L+(long)(c-’0’);
158 }
159 if (len == 0)
160 {
161 if ((first < 2) && (l >= 40))
162 {
163 ASN1err(ASN1_F_A2D_ASN1_OBJECT,ASN1_R_SECOND_NUM
164 goto err;
165 }
166 if (use_bn)
167 {
168 if (!BN_add_word(bl, first * 40))
169 goto err;
170 }
171 else
172 l+=(long)first*40;
173 }
174 i=0;
175 if (use_bn)
176 {
177 int blsize;
178 blsize = BN_num_bits(bl);
179 blsize = (blsize + 6)/7;
180 if (blsize > tmpsize)
181 {
182 if (tmp != ftmp)
183 OPENSSL_free(tmp);
184 tmpsize = blsize + 32;
185 tmp = OPENSSL_malloc(tmpsize);
186 if (!tmp)
187 goto err;
188 }
189 while(blsize--)
190 tmp[i++] = (unsigned char)BN_div_word(bl, 0x80L)
191 }
192 else
193 {

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_object.c 4

194
195 for (;;)
196 {
197 tmp[i++]=(unsigned char)l&0x7f;
198 l>>=7L;
199 if (l == 0L) break;
200 }

202 }
203 if (out != NULL)
204 {
205 if (len+i > olen)
206 {
207 ASN1err(ASN1_F_A2D_ASN1_OBJECT,ASN1_R_BUFFER_TOO
208 goto err;
209 }
210 while (--i > 0)
211 out[len++]=tmp[i]|0x80;
212 out[len++]=tmp[0];
213 }
214 else
215 len+=i;
216 }
217 if (tmp != ftmp)
218 OPENSSL_free(tmp);
219 if (bl)
220 BN_free(bl);
221 return(len);
222 err:
223 if (tmp != ftmp)
224 OPENSSL_free(tmp);
225 if (bl)
226 BN_free(bl);
227 return(0);
228 }

230 int i2t_ASN1_OBJECT(char *buf, int buf_len, ASN1_OBJECT *a)
231 {
232 return OBJ_obj2txt(buf, buf_len, a, 0);
233 }

235 int i2a_ASN1_OBJECT(BIO *bp, ASN1_OBJECT *a)
236 {
237 char buf[80], *p = buf;
238 int i;

240 if ((a == NULL) || (a->data == NULL))
241 return(BIO_write(bp,"NULL",4));
242 i=i2t_ASN1_OBJECT(buf,sizeof buf,a);
243 if (i > (int)(sizeof(buf) - 1))
244 {
245 p = OPENSSL_malloc(i + 1);
246 if (!p)
247 return -1;
248 i2t_ASN1_OBJECT(p,i + 1,a);
249 }
250 if (i <= 0)
251 return BIO_write(bp, "<INVALID>", 9);
252 BIO_write(bp,p,i);
253 if (p != buf)
254 OPENSSL_free(p);
255 return(i);
256 }

258 ASN1_OBJECT *d2i_ASN1_OBJECT(ASN1_OBJECT **a, const unsigned char **pp,
259 long length)

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_object.c 5

260 {
261 const unsigned char *p;
262 long len;
263 int tag,xclass;
264 int inf,i;
265 ASN1_OBJECT *ret = NULL;
266 p= *pp;
267 inf=ASN1_get_object(&p,&len,&tag,&xclass,length);
268 if (inf & 0x80)
269 {
270 i=ASN1_R_BAD_OBJECT_HEADER;
271 goto err;
272 }

274 if (tag != V_ASN1_OBJECT)
275 {
276 i=ASN1_R_EXPECTING_AN_OBJECT;
277 goto err;
278 }
279 ret = c2i_ASN1_OBJECT(a, &p, len);
280 if(ret) *pp = p;
281 return ret;
282 err:
283 ASN1err(ASN1_F_D2I_ASN1_OBJECT,i);
284 return(NULL);
285 }
286 ASN1_OBJECT *c2i_ASN1_OBJECT(ASN1_OBJECT **a, const unsigned char **pp,
287 long len)
288 {
289 ASN1_OBJECT *ret=NULL;
290 const unsigned char *p;
291 unsigned char *data;
292 int i;
293 /* Sanity check OID encoding: can’t have leading 0x80 in
294 * subidentifiers, see: X.690 8.19.2
295 */
296 for (i = 0, p = *pp; i < len; i++, p++)
297 {
298 if (*p == 0x80 && (!i || !(p[-1] & 0x80)))
299 {
300 ASN1err(ASN1_F_C2I_ASN1_OBJECT,ASN1_R_INVALID_OBJECT_ENC
301 return NULL;
302 }
303 }

305 /* only the ASN1_OBJECTs from the ’table’ will have values
306 * for ->sn or ->ln */
307 if ((a == NULL) || ((*a) == NULL) ||
308 !((*a)->flags & ASN1_OBJECT_FLAG_DYNAMIC))
309 {
310 if ((ret=ASN1_OBJECT_new()) == NULL) return(NULL);
311 }
312 else ret=(*a);

314 p= *pp;
315 /* detach data from object */
316 data = (unsigned char *)ret->data;
317 ret->data = NULL;
318 /* once detached we can change it */
319 if ((data == NULL) || (ret->length < len))
320 {
321 ret->length=0;
322 if (data != NULL) OPENSSL_free(data);
323 data=(unsigned char *)OPENSSL_malloc(len ? (int)len : 1);
324 if (data == NULL)
325 { i=ERR_R_MALLOC_FAILURE; goto err; }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_object.c 6

326 ret->flags|=ASN1_OBJECT_FLAG_DYNAMIC_DATA;
327 }
328 memcpy(data,p,(int)len);
329 /* reattach data to object, after which it remains const */
330 ret->data =data;
331 ret->length=(int)len;
332 ret->sn=NULL;
333 ret->ln=NULL;
334 /* ret->flags=ASN1_OBJECT_FLAG_DYNAMIC; we know it is dynamic */
335 p+=len;

337 if (a != NULL) (*a)=ret;
338 *pp=p;
339 return(ret);
340 err:
341 ASN1err(ASN1_F_C2I_ASN1_OBJECT,i);
342 if ((ret != NULL) && ((a == NULL) || (*a != ret)))
343 ASN1_OBJECT_free(ret);
344 return(NULL);
345 }

347 ASN1_OBJECT *ASN1_OBJECT_new(void)
348 {
349 ASN1_OBJECT *ret;

351 ret=(ASN1_OBJECT *)OPENSSL_malloc(sizeof(ASN1_OBJECT));
352 if (ret == NULL)
353 {
354 ASN1err(ASN1_F_ASN1_OBJECT_NEW,ERR_R_MALLOC_FAILURE);
355 return(NULL);
356 }
357 ret->length=0;
358 ret->data=NULL;
359 ret->nid=0;
360 ret->sn=NULL;
361 ret->ln=NULL;
362 ret->flags=ASN1_OBJECT_FLAG_DYNAMIC;
363 return(ret);
364 }

366 void ASN1_OBJECT_free(ASN1_OBJECT *a)
367 {
368 if (a == NULL) return;
369 if (a->flags & ASN1_OBJECT_FLAG_DYNAMIC_STRINGS)
370 {
371 #ifndef CONST_STRICT /* disable purely for compile-time strict const checking. D
372 if (a->sn != NULL) OPENSSL_free((void *)a->sn);
373 if (a->ln != NULL) OPENSSL_free((void *)a->ln);
374 #endif
375 a->sn=a->ln=NULL;
376 }
377 if (a->flags & ASN1_OBJECT_FLAG_DYNAMIC_DATA)
378 {
379 if (a->data != NULL) OPENSSL_free((void *)a->data);
380 a->data=NULL;
381 a->length=0;
382 }
383 if (a->flags & ASN1_OBJECT_FLAG_DYNAMIC)
384 OPENSSL_free(a);
385 }

387 ASN1_OBJECT *ASN1_OBJECT_create(int nid, unsigned char *data, int len,
388 const char *sn, const char *ln)
389 {
390 ASN1_OBJECT o;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_object.c 7

392 o.sn=sn;
393 o.ln=ln;
394 o.data=data;
395 o.nid=nid;
396 o.length=len;
397 o.flags=ASN1_OBJECT_FLAG_DYNAMIC|ASN1_OBJECT_FLAG_DYNAMIC_STRINGS|
398 ASN1_OBJECT_FLAG_DYNAMIC_DATA;
399 return(OBJ_dup(&o));
400 }

402 IMPLEMENT_STACK_OF(ASN1_OBJECT)
403 IMPLEMENT_ASN1_SET_OF(ASN1_OBJECT)

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_octet.c 1

**
 3629 Fri May 30 18:31:28 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_octet.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_octet.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_octet.c 2

63 ASN1_OCTET_STRING *ASN1_OCTET_STRING_dup(const ASN1_OCTET_STRING *x)
64 { return M_ASN1_OCTET_STRING_dup(x); }

66 int ASN1_OCTET_STRING_cmp(const ASN1_OCTET_STRING *a, const ASN1_OCTET_STRING *b
67 { return M_ASN1_OCTET_STRING_cmp(a, b); }

69 int ASN1_OCTET_STRING_set(ASN1_OCTET_STRING *x, const unsigned char *d, int len)
70 { return M_ASN1_OCTET_STRING_set(x, d, len); }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_print.c 1

**
 4598 Fri May 30 18:31:28 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_print.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_print.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_print.c 2

63 int ASN1_PRINTABLE_type(const unsigned char *s, int len)
64 {
65 int c;
66 int ia5=0;
67 int t61=0;

69 if (len <= 0) len= -1;
70 if (s == NULL) return(V_ASN1_PRINTABLESTRING);

72 while ((*s) && (len-- != 0))
73 {
74 c= *(s++);
75 #ifndef CHARSET_EBCDIC
76 if (!(((c >= ’a’) && (c <= ’z’)) ||
77 ((c >= ’A’) && (c <= ’Z’)) ||
78 (c == ’ ’) ||
79 ((c >= ’0’) && (c <= ’9’)) ||
80 (c == ’ ’) || (c == ’\’’) ||
81 (c == ’(’) || (c == ’)’) ||
82 (c == ’+’) || (c == ’,’) ||
83 (c == ’-’) || (c == ’.’) ||
84 (c == ’/’) || (c == ’:’) ||
85 (c == ’=’) || (c == ’?’)))
86 ia5=1;
87 if (c&0x80)
88 t61=1;
89 #else
90 if (!isalnum(c) && (c != ’ ’) &&
91 strchr("’()+,-./:=?", c) == NULL)
92 ia5=1;
93 if (os_toascii[c] & 0x80)
94 t61=1;
95 #endif
96 }
97 if (t61) return(V_ASN1_T61STRING);
98 if (ia5) return(V_ASN1_IA5STRING);
99 return(V_ASN1_PRINTABLESTRING);
100 }

102 int ASN1_UNIVERSALSTRING_to_string(ASN1_UNIVERSALSTRING *s)
103 {
104 int i;
105 unsigned char *p;

107 if (s->type != V_ASN1_UNIVERSALSTRING) return(0);
108 if ((s->length%4) != 0) return(0);
109 p=s->data;
110 for (i=0; i<s->length; i+=4)
111 {
112 if ((p[0] != ’\0’) || (p[1] != ’\0’) || (p[2] != ’\0’))
113 break;
114 else
115 p+=4;
116 }
117 if (i < s->length) return(0);
118 p=s->data;
119 for (i=3; i<s->length; i+=4)
120 {
121 *(p++)=s->data[i];
122 }
123 *(p)=’\0’;
124 s->length/=4;
125 s->type=ASN1_PRINTABLE_type(s->data,s->length);
126 return(1);
127 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_print.c 3

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_set.c 1

**
 7735 Fri May 30 18:31:28 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_set.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_set.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1_mac.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_set.c 2

63 #ifndef NO_ASN1_OLD

65 typedef struct
66 {
67 unsigned char *pbData;
68 int cbData;
69 } MYBLOB;

71 /* SetBlobCmp
72 * This function compares two elements of SET_OF block
73 */
74 static int SetBlobCmp(const void *elem1, const void *elem2)
75 {
76 const MYBLOB *b1 = (const MYBLOB *)elem1;
77 const MYBLOB *b2 = (const MYBLOB *)elem2;
78 int r;

80 r = memcmp(b1->pbData, b2->pbData,
81 b1->cbData < b2->cbData ? b1->cbData : b2->cbData);
82 if(r != 0)
83 return r;
84 return b1->cbData-b2->cbData;
85 }

87 /* int is_set: if TRUE, then sort the contents (i.e. it isn’t a SEQUENCE) */
88 int i2d_ASN1_SET(STACK_OF(OPENSSL_BLOCK) *a, unsigned char **pp,
89 i2d_of_void *i2d, int ex_tag, int ex_class,
90 int is_set)
91 {
92 int ret=0,r;
93 int i;
94 unsigned char *p;
95 unsigned char *pStart, *pTempMem;
96 MYBLOB *rgSetBlob;
97 int totSize;

99 if (a == NULL) return(0);
100 for (i=sk_OPENSSL_BLOCK_num(a)-1; i>=0; i--)
101 ret+=i2d(sk_OPENSSL_BLOCK_value(a,i),NULL);
102 r=ASN1_object_size(1,ret,ex_tag);
103 if (pp == NULL) return(r);

105 p= *pp;
106 ASN1_put_object(&p,1,ret,ex_tag,ex_class);

108 /* Modified by gp@nsj.co.jp */
109 /* And then again by Ben */
110 /* And again by Steve */

112 if(!is_set || (sk_OPENSSL_BLOCK_num(a) < 2))
113 {
114 for (i=0; i<sk_OPENSSL_BLOCK_num(a); i++)
115 i2d(sk_OPENSSL_BLOCK_value(a,i),&p);

117 *pp=p;
118 return(r);
119 }

121 pStart = p; /* Catch the beg of Setblobs*/
122 /* In this array we will store the SET blobs */
123 rgSetBlob = OPENSSL_malloc(sk_OPENSSL_BLOCK_num(a) * sizeof(MYBL
124 if (rgSetBlob == NULL)
125 {
126 ASN1err(ASN1_F_I2D_ASN1_SET,ERR_R_MALLOC_FAILURE);
127 return(0);

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_set.c 3

128 }

130 for (i=0; i<sk_OPENSSL_BLOCK_num(a); i++)
131 {
132 rgSetBlob[i].pbData = p; /* catch each set encode blob */
133 i2d(sk_OPENSSL_BLOCK_value(a,i),&p);
134 rgSetBlob[i].cbData = p - rgSetBlob[i].pbData; /* Length of this
135 SetBlob
136 */
137 }
138 *pp=p;
139 totSize = p - pStart; /* This is the total size of all set blobs */

141 /* Now we have to sort the blobs. I am using a simple algo.
142 *Sort ptrs *Copy to temp-mem *Copy from temp-mem to user-mem*/
143 qsort(rgSetBlob, sk_OPENSSL_BLOCK_num(a), sizeof(MYBLOB), SetBlobCmp);
144 if (!(pTempMem = OPENSSL_malloc(totSize)))
145 {
146 ASN1err(ASN1_F_I2D_ASN1_SET,ERR_R_MALLOC_FAILURE);
147 return(0);
148 }

150 /* Copy to temp mem */
151 p = pTempMem;
152 for(i=0; i<sk_OPENSSL_BLOCK_num(a); ++i)
153 {
154 memcpy(p, rgSetBlob[i].pbData, rgSetBlob[i].cbData);
155 p += rgSetBlob[i].cbData;
156 }

158 /* Copy back to user mem*/
159 memcpy(pStart, pTempMem, totSize);
160 OPENSSL_free(pTempMem);
161 OPENSSL_free(rgSetBlob);

163 return(r);
164 }

166 STACK_OF(OPENSSL_BLOCK) *d2i_ASN1_SET(STACK_OF(OPENSSL_BLOCK) **a,
167 const unsigned char **pp,
168 long length, d2i_of_void *d2i,
169 void (*free_func)(OPENSSL_BLOCK), int ex_tag,
170 int ex_class)
171 {
172 ASN1_const_CTX c;
173 STACK_OF(OPENSSL_BLOCK) *ret=NULL;

175 if ((a == NULL) || ((*a) == NULL))
176 {
177 if ((ret=sk_OPENSSL_BLOCK_new_null()) == NULL)
178 {
179 ASN1err(ASN1_F_D2I_ASN1_SET,ERR_R_MALLOC_FAILURE);
180 goto err;
181 }
182 }
183 else
184 ret=(*a);

186 c.p= *pp;
187 c.max=(length == 0)?0:(c.p+length);

189 c.inf=ASN1_get_object(&c.p,&c.slen,&c.tag,&c.xclass,c.max-c.p);
190 if (c.inf & 0x80) goto err;
191 if (ex_class != c.xclass)
192 {
193 ASN1err(ASN1_F_D2I_ASN1_SET,ASN1_R_BAD_CLASS);

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_set.c 4

194 goto err;
195 }
196 if (ex_tag != c.tag)
197 {
198 ASN1err(ASN1_F_D2I_ASN1_SET,ASN1_R_BAD_TAG);
199 goto err;
200 }
201 if ((c.slen+c.p) > c.max)
202 {
203 ASN1err(ASN1_F_D2I_ASN1_SET,ASN1_R_LENGTH_ERROR);
204 goto err;
205 }
206 /* check for infinite constructed - it can be as long
207 * as the amount of data passed to us */
208 if (c.inf == (V_ASN1_CONSTRUCTED+1))
209 c.slen=length+ *pp-c.p;
210 c.max=c.p+c.slen;

212 while (c.p < c.max)
213 {
214 char *s;

216 if (M_ASN1_D2I_end_sequence()) break;
217 /* XXX: This was called with 4 arguments, incorrectly, it seems
218 if ((s=func(NULL,&c.p,c.slen,c.max-c.p)) == NULL) */
219 if ((s=d2i(NULL,&c.p,c.slen)) == NULL)
220 {
221 ASN1err(ASN1_F_D2I_ASN1_SET,ASN1_R_ERROR_PARSING_SET_ELE
222 asn1_add_error(*pp,(int)(c.p- *pp));
223 goto err;
224 }
225 if (!sk_OPENSSL_BLOCK_push(ret,s)) goto err;
226 }
227 if (a != NULL) (*a)=ret;
228 *pp=c.p;
229 return(ret);
230 err:
231 if ((ret != NULL) && ((a == NULL) || (*a != ret)))
232 {
233 if (free_func != NULL)
234 sk_OPENSSL_BLOCK_pop_free(ret,free_func);
235 else
236 sk_OPENSSL_BLOCK_free(ret);
237 }
238 return(NULL);
239 }

241 #endif

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_sign.c 1

**
 11424 Fri May 30 18:31:28 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_sign.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_sign.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_sign.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include <stdio.h>
113 #include <time.h>

115 #include "cryptlib.h"

117 #ifndef NO_SYS_TYPES_H
118 # include <sys/types.h>
119 #endif

121 #include <openssl/bn.h>
122 #include <openssl/evp.h>
123 #include <openssl/x509.h>
124 #include <openssl/objects.h>
125 #include <openssl/buffer.h>
126 #include "asn1_locl.h"

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_sign.c 3

128 #ifndef NO_ASN1_OLD

130 int ASN1_sign(i2d_of_void *i2d, X509_ALGOR *algor1, X509_ALGOR *algor2,
131 ASN1_BIT_STRING *signature, char *data, EVP_PKEY *pkey,
132 const EVP_MD *type)
133 {
134 EVP_MD_CTX ctx;
135 unsigned char *p,*buf_in=NULL,*buf_out=NULL;
136 int i,inl=0,outl=0,outll=0;
137 X509_ALGOR *a;

139 EVP_MD_CTX_init(&ctx);
140 for (i=0; i<2; i++)
141 {
142 if (i == 0)
143 a=algor1;
144 else
145 a=algor2;
146 if (a == NULL) continue;
147 if (type->pkey_type == NID_dsaWithSHA1)
148 {
149 /* special case: RFC 2459 tells us to omit ’parameters’
150 * with id-dsa-with-sha1 */
151 ASN1_TYPE_free(a->parameter);
152 a->parameter = NULL;
153 }
154 else if ((a->parameter == NULL) ||
155 (a->parameter->type != V_ASN1_NULL))
156 {
157 ASN1_TYPE_free(a->parameter);
158 if ((a->parameter=ASN1_TYPE_new()) == NULL) goto err;
159 a->parameter->type=V_ASN1_NULL;
160 }
161 ASN1_OBJECT_free(a->algorithm);
162 a->algorithm=OBJ_nid2obj(type->pkey_type);
163 if (a->algorithm == NULL)
164 {
165 ASN1err(ASN1_F_ASN1_SIGN,ASN1_R_UNKNOWN_OBJECT_TYPE);
166 goto err;
167 }
168 if (a->algorithm->length == 0)
169 {
170 ASN1err(ASN1_F_ASN1_SIGN,ASN1_R_THE_ASN1_OBJECT_IDENTIFI
171 goto err;
172 }
173 }
174 inl=i2d(data,NULL);
175 buf_in=(unsigned char *)OPENSSL_malloc((unsigned int)inl);
176 outll=outl=EVP_PKEY_size(pkey);
177 buf_out=(unsigned char *)OPENSSL_malloc((unsigned int)outl);
178 if ((buf_in == NULL) || (buf_out == NULL))
179 {
180 outl=0;
181 ASN1err(ASN1_F_ASN1_SIGN,ERR_R_MALLOC_FAILURE);
182 goto err;
183 }
184 p=buf_in;

186 i2d(data,&p);
187 if (!EVP_SignInit_ex(&ctx,type, NULL)
188 || !EVP_SignUpdate(&ctx,(unsigned char *)buf_in,inl)
189 || !EVP_SignFinal(&ctx,(unsigned char *)buf_out,
190 (unsigned int *)&outl,pkey))
191 {
192 outl=0;
193 ASN1err(ASN1_F_ASN1_SIGN,ERR_R_EVP_LIB);

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_sign.c 4

194 goto err;
195 }
196 if (signature->data != NULL) OPENSSL_free(signature->data);
197 signature->data=buf_out;
198 buf_out=NULL;
199 signature->length=outl;
200 /* In the interests of compatibility, I’ll make sure that
201 * the bit string has a ’not-used bits’ value of 0
202 */
203 signature->flags&= ~(ASN1_STRING_FLAG_BITS_LEFT|0x07);
204 signature->flags|=ASN1_STRING_FLAG_BITS_LEFT;
205 err:
206 EVP_MD_CTX_cleanup(&ctx);
207 if (buf_in != NULL)
208 { OPENSSL_cleanse((char *)buf_in,(unsigned int)inl); OPENSSL_fre
209 if (buf_out != NULL)
210 { OPENSSL_cleanse((char *)buf_out,outll); OPENSSL_free(buf_out);
211 return(outl);
212 }

214 #endif

216 int ASN1_item_sign(const ASN1_ITEM *it, X509_ALGOR *algor1, X509_ALGOR *algor2,
217 ASN1_BIT_STRING *signature, void *asn, EVP_PKEY *pkey,
218 const EVP_MD *type)
219 {
220 EVP_MD_CTX ctx;
221 EVP_MD_CTX_init(&ctx);
222 if (!EVP_DigestSignInit(&ctx, NULL, type, NULL, pkey))
223 {
224 EVP_MD_CTX_cleanup(&ctx);
225 return 0;
226 }
227 return ASN1_item_sign_ctx(it, algor1, algor2, signature, asn, &ctx);
228 }
229

231 int ASN1_item_sign_ctx(const ASN1_ITEM *it,
232 X509_ALGOR *algor1, X509_ALGOR *algor2,
233 ASN1_BIT_STRING *signature, void *asn, EVP_MD_CTX *ctx)
234 {
235 const EVP_MD *type;
236 EVP_PKEY *pkey;
237 unsigned char *buf_in=NULL,*buf_out=NULL;
238 size_t inl=0,outl=0,outll=0;
239 int signid, paramtype;
240 int rv;

242 type = EVP_MD_CTX_md(ctx);
243 pkey = EVP_PKEY_CTX_get0_pkey(ctx->pctx);

245 if (!type || !pkey)
246 {
247 ASN1err(ASN1_F_ASN1_ITEM_SIGN_CTX, ASN1_R_CONTEXT_NOT_INITIALISE
248 return 0;
249 }

251 if (pkey->ameth->item_sign)
252 {
253 rv = pkey->ameth->item_sign(ctx, it, asn, algor1, algor2,
254 signature);
255 if (rv == 1)
256 outl = signature->length;
257 /* Return value meanings:
258 * <=0: error.
259 * 1: method does everything.

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_sign.c 5

260 * 2: carry on as normal.
261 * 3: ASN1 method sets algorithm identifiers: just sign.
262 */
263 if (rv <= 0)
264 ASN1err(ASN1_F_ASN1_ITEM_SIGN_CTX, ERR_R_EVP_LIB);
265 if (rv <= 1)
266 goto err;
267 }
268 else
269 rv = 2;

271 if (rv == 2)
272 {
273 if (type->flags & EVP_MD_FLAG_PKEY_METHOD_SIGNATURE)
274 {
275 if (!pkey->ameth ||
276 !OBJ_find_sigid_by_algs(&signid,
277 EVP_MD_nid(type),
278 pkey->ameth->pkey_id))
279 {
280 ASN1err(ASN1_F_ASN1_ITEM_SIGN_CTX,
281 ASN1_R_DIGEST_AND_KEY_TYPE_NOT_SUPPORTED
282 return 0;
283 }
284 }
285 else
286 signid = type->pkey_type;

288 if (pkey->ameth->pkey_flags & ASN1_PKEY_SIGPARAM_NULL)
289 paramtype = V_ASN1_NULL;
290 else
291 paramtype = V_ASN1_UNDEF;

293 if (algor1)
294 X509_ALGOR_set0(algor1, OBJ_nid2obj(signid), paramtype,
295 if (algor2)
296 X509_ALGOR_set0(algor2, OBJ_nid2obj(signid), paramtype,

298 }

300 inl=ASN1_item_i2d(asn,&buf_in, it);
301 outll=outl=EVP_PKEY_size(pkey);
302 buf_out=OPENSSL_malloc((unsigned int)outl);
303 if ((buf_in == NULL) || (buf_out == NULL))
304 {
305 outl=0;
306 ASN1err(ASN1_F_ASN1_ITEM_SIGN_CTX,ERR_R_MALLOC_FAILURE);
307 goto err;
308 }

310 if (!EVP_DigestSignUpdate(ctx, buf_in, inl)
311 || !EVP_DigestSignFinal(ctx, buf_out, &outl))
312 {
313 outl=0;
314 ASN1err(ASN1_F_ASN1_ITEM_SIGN_CTX,ERR_R_EVP_LIB);
315 goto err;
316 }
317 if (signature->data != NULL) OPENSSL_free(signature->data);
318 signature->data=buf_out;
319 buf_out=NULL;
320 signature->length=outl;
321 /* In the interests of compatibility, I’ll make sure that
322 * the bit string has a ’not-used bits’ value of 0
323 */
324 signature->flags&= ~(ASN1_STRING_FLAG_BITS_LEFT|0x07);
325 signature->flags|=ASN1_STRING_FLAG_BITS_LEFT;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_sign.c 6

326 err:
327 EVP_MD_CTX_cleanup(ctx);
328 if (buf_in != NULL)
329 { OPENSSL_cleanse((char *)buf_in,(unsigned int)inl); OPENSSL_fre
330 if (buf_out != NULL)
331 { OPENSSL_cleanse((char *)buf_out,outll); OPENSSL_free(buf_out);
332 return(outl);
333 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strex.c 1

**
 15846 Fri May 30 18:31:28 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strex.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* a_strex.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <string.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strex.c 2

62 #include <openssl/crypto.h>
63 #include <openssl/x509.h>
64 #include <openssl/asn1.h>

66 #include "charmap.h"

68 /* ASN1_STRING_print_ex() and X509_NAME_print_ex().
69 * Enhanced string and name printing routines handling
70 * multibyte characters, RFC2253 and a host of other
71 * options.
72 */

75 #define CHARTYPE_BS_ESC (ASN1_STRFLGS_ESC_2253 | CHARTYPE_FIRST_ESC_2253

77 #define ESC_FLAGS (ASN1_STRFLGS_ESC_2253 | \
78 ASN1_STRFLGS_ESC_QUOTE | \
79 ASN1_STRFLGS_ESC_CTRL | \
80 ASN1_STRFLGS_ESC_MSB)

83 /* Three IO functions for sending data to memory, a BIO and
84 * and a FILE pointer.
85 */
86 #if 0 /* never used */
87 static int send_mem_chars(void *arg, const void *buf, int len)
88 {
89 unsigned char **out = arg;
90 if(!out) return 1;
91 memcpy(*out, buf, len);
92 *out += len;
93 return 1;
94 }
95 #endif

97 static int send_bio_chars(void *arg, const void *buf, int len)
98 {
99 if(!arg) return 1;
100 if(BIO_write(arg, buf, len) != len) return 0;
101 return 1;
102 }

104 static int send_fp_chars(void *arg, const void *buf, int len)
105 {
106 if(!arg) return 1;
107 if(fwrite(buf, 1, len, arg) != (unsigned int)len) return 0;
108 return 1;
109 }

111 typedef int char_io(void *arg, const void *buf, int len);

113 /* This function handles display of
114 * strings, one character at a time.
115 * It is passed an unsigned long for each
116 * character because it could come from 2 or even
117 * 4 byte forms.
118 */

120 static int do_esc_char(unsigned long c, unsigned char flags, char *do_quotes, ch
121 {
122 unsigned char chflgs, chtmp;
123 char tmphex[HEX_SIZE(long)+3];

125 if(c > 0xffffffffL)
126 return -1;
127 if(c > 0xffff) {

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strex.c 3

128 BIO_snprintf(tmphex, sizeof tmphex, "\\W%08lX", c);
129 if(!io_ch(arg, tmphex, 10)) return -1;
130 return 10;
131 }
132 if(c > 0xff) {
133 BIO_snprintf(tmphex, sizeof tmphex, "\\U%04lX", c);
134 if(!io_ch(arg, tmphex, 6)) return -1;
135 return 6;
136 }
137 chtmp = (unsigned char)c;
138 if(chtmp > 0x7f) chflgs = flags & ASN1_STRFLGS_ESC_MSB;
139 else chflgs = char_type[chtmp] & flags;
140 if(chflgs & CHARTYPE_BS_ESC) {
141 /* If we don’t escape with quotes, signal we need quotes */
142 if(chflgs & ASN1_STRFLGS_ESC_QUOTE) {
143 if(do_quotes) *do_quotes = 1;
144 if(!io_ch(arg, &chtmp, 1)) return -1;
145 return 1;
146 }
147 if(!io_ch(arg, "\\", 1)) return -1;
148 if(!io_ch(arg, &chtmp, 1)) return -1;
149 return 2;
150 }
151 if(chflgs & (ASN1_STRFLGS_ESC_CTRL|ASN1_STRFLGS_ESC_MSB)) {
152 BIO_snprintf(tmphex, 11, "\\%02X", chtmp);
153 if(!io_ch(arg, tmphex, 3)) return -1;
154 return 3;
155 }
156 /* If we get this far and do any escaping at all must escape
157 * the escape character itself: backslash.
158 */
159 if (chtmp == ’\\’ && flags & ESC_FLAGS) {
160 if(!io_ch(arg, "\\\\", 2)) return -1;
161 return 2;
162 }
163 if(!io_ch(arg, &chtmp, 1)) return -1;
164 return 1;
165 }

167 #define BUF_TYPE_WIDTH_MASK 0x7
168 #define BUF_TYPE_CONVUTF8 0x8

170 /* This function sends each character in a buffer to
171 * do_esc_char(). It interprets the content formats
172 * and converts to or from UTF8 as appropriate.
173 */

175 static int do_buf(unsigned char *buf, int buflen,
176 int type, unsigned char flags, char *quotes, char_io *io
177 {
178 int i, outlen, len;
179 unsigned char orflags, *p, *q;
180 unsigned long c;
181 p = buf;
182 q = buf + buflen;
183 outlen = 0;
184 while(p != q) {
185 if(p == buf && flags & ASN1_STRFLGS_ESC_2253) orflags = CHARTYPE
186 else orflags = 0;
187 switch(type & BUF_TYPE_WIDTH_MASK) {
188 case 4:
189 c = ((unsigned long)*p++) << 24;
190 c |= ((unsigned long)*p++) << 16;
191 c |= ((unsigned long)*p++) << 8;
192 c |= *p++;
193 break;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strex.c 4

195 case 2:
196 c = ((unsigned long)*p++) << 8;
197 c |= *p++;
198 break;

200 case 1:
201 c = *p++;
202 break;
203
204 case 0:
205 i = UTF8_getc(p, buflen, &c);
206 if(i < 0) return -1; /* Invalid UTF8String */
207 p += i;
208 break;
209 default:
210 return -1; /* invalid width */
211 }
212 if (p == q && flags & ASN1_STRFLGS_ESC_2253) orflags = CHARTYPE_
213 if(type & BUF_TYPE_CONVUTF8) {
214 unsigned char utfbuf[6];
215 int utflen;
216 utflen = UTF8_putc(utfbuf, sizeof utfbuf, c);
217 for(i = 0; i < utflen; i++) {
218 /* We don’t need to worry about setting orflags
219 * because if utflen==1 its value will be correc
220 * otherwise each character will be > 0x7f and s
221 * character will never be escaped on first and
222 */
223 len = do_esc_char(utfbuf[i], (unsigned char)(fla
224 if(len < 0) return -1;
225 outlen += len;
226 }
227 } else {
228 len = do_esc_char(c, (unsigned char)(flags | orflags), q
229 if(len < 0) return -1;
230 outlen += len;
231 }
232 }
233 return outlen;
234 }

236 /* This function hex dumps a buffer of characters */

238 static int do_hex_dump(char_io *io_ch, void *arg, unsigned char *buf, int buflen
239 {
240 static const char hexdig[] = "0123456789ABCDEF";
241 unsigned char *p, *q;
242 char hextmp[2];
243 if(arg) {
244 p = buf;
245 q = buf + buflen;
246 while(p != q) {
247 hextmp[0] = hexdig[*p >> 4];
248 hextmp[1] = hexdig[*p & 0xf];
249 if(!io_ch(arg, hextmp, 2)) return -1;
250 p++;
251 }
252 }
253 return buflen << 1;
254 }

256 /* "dump" a string. This is done when the type is unknown,
257 * or the flags request it. We can either dump the content
258 * octets or the entire DER encoding. This uses the RFC2253
259 * #01234 format.

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strex.c 5

260 */

262 static int do_dump(unsigned long lflags, char_io *io_ch, void *arg, ASN1_STRING
263 {
264 /* Placing the ASN1_STRING in a temp ASN1_TYPE allows
265 * the DER encoding to readily obtained
266 */
267 ASN1_TYPE t;
268 unsigned char *der_buf, *p;
269 int outlen, der_len;

271 if(!io_ch(arg, "#", 1)) return -1;
272 /* If we don’t dump DER encoding just dump content octets */
273 if(!(lflags & ASN1_STRFLGS_DUMP_DER)) {
274 outlen = do_hex_dump(io_ch, arg, str->data, str->length);
275 if(outlen < 0) return -1;
276 return outlen + 1;
277 }
278 t.type = str->type;
279 t.value.ptr = (char *)str;
280 der_len = i2d_ASN1_TYPE(&t, NULL);
281 der_buf = OPENSSL_malloc(der_len);
282 if(!der_buf) return -1;
283 p = der_buf;
284 i2d_ASN1_TYPE(&t, &p);
285 outlen = do_hex_dump(io_ch, arg, der_buf, der_len);
286 OPENSSL_free(der_buf);
287 if(outlen < 0) return -1;
288 return outlen + 1;
289 }

291 /* Lookup table to convert tags to character widths,
292 * 0 = UTF8 encoded, -1 is used for non string types
293 * otherwise it is the number of bytes per character
294 */

296 static const signed char tag2nbyte[] = {
297 -1, -1, -1, -1, -1, /* 0-4 */
298 -1, -1, -1, -1, -1, /* 5-9 */
299 -1, -1, 0, -1, /* 10-13 */
300 -1, -1, -1, -1, /* 15-17 */
301 -1, 1, 1, /* 18-20 */
302 -1, 1, 1, 1, /* 21-24 */
303 -1, 1, -1, /* 25-27 */
304 4, -1, 2 /* 28-30 */
305 };

307 /* This is the main function, print out an
308 * ASN1_STRING taking note of various escape
309 * and display options. Returns number of
310 * characters written or -1 if an error
311 * occurred.
312 */

314 static int do_print_ex(char_io *io_ch, void *arg, unsigned long lflags, ASN1_STR
315 {
316 int outlen, len;
317 int type;
318 char quotes;
319 unsigned char flags;
320 quotes = 0;
321 /* Keep a copy of escape flags */
322 flags = (unsigned char)(lflags & ESC_FLAGS);

324 type = str->type;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strex.c 6

326 outlen = 0;

329 if(lflags & ASN1_STRFLGS_SHOW_TYPE) {
330 const char *tagname;
331 tagname = ASN1_tag2str(type);
332 outlen += strlen(tagname);
333 if(!io_ch(arg, tagname, outlen) || !io_ch(arg, ":", 1)) return -
334 outlen++;
335 }

337 /* Decide what to do with type, either dump content or display it */

339 /* Dump everything */
340 if(lflags & ASN1_STRFLGS_DUMP_ALL) type = -1;
341 /* Ignore the string type */
342 else if(lflags & ASN1_STRFLGS_IGNORE_TYPE) type = 1;
343 else {
344 /* Else determine width based on type */
345 if((type > 0) && (type < 31)) type = tag2nbyte[type];
346 else type = -1;
347 if((type == -1) && !(lflags & ASN1_STRFLGS_DUMP_UNKNOWN)) type =
348 }

350 if(type == -1) {
351 len = do_dump(lflags, io_ch, arg, str);
352 if(len < 0) return -1;
353 outlen += len;
354 return outlen;
355 }

357 if(lflags & ASN1_STRFLGS_UTF8_CONVERT) {
358 /* Note: if string is UTF8 and we want
359 * to convert to UTF8 then we just interpret
360 * it as 1 byte per character to avoid converting
361 * twice.
362 */
363 if(!type) type = 1;
364 else type |= BUF_TYPE_CONVUTF8;
365 }

367 len = do_buf(str->data, str->length, type, flags, "es, io_ch, NULL);
368 if(len < 0) return -1;
369 outlen += len;
370 if(quotes) outlen += 2;
371 if(!arg) return outlen;
372 if(quotes && !io_ch(arg, "\"", 1)) return -1;
373 if(do_buf(str->data, str->length, type, flags, NULL, io_ch, arg) < 0)
374 return -1;
375 if(quotes && !io_ch(arg, "\"", 1)) return -1;
376 return outlen;
377 }

379 /* Used for line indenting: print ’indent’ spaces */

381 static int do_indent(char_io *io_ch, void *arg, int indent)
382 {
383 int i;
384 for(i = 0; i < indent; i++)
385 if(!io_ch(arg, " ", 1)) return 0;
386 return 1;
387 }

389 #define FN_WIDTH_LN 25
390 #define FN_WIDTH_SN 10

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strex.c 7

392 static int do_name_ex(char_io *io_ch, void *arg, X509_NAME *n,
393 int indent, unsigned long flags)
394 {
395 int i, prev = -1, orflags, cnt;
396 int fn_opt, fn_nid;
397 ASN1_OBJECT *fn;
398 ASN1_STRING *val;
399 X509_NAME_ENTRY *ent;
400 char objtmp[80];
401 const char *objbuf;
402 int outlen, len;
403 char *sep_dn, *sep_mv, *sep_eq;
404 int sep_dn_len, sep_mv_len, sep_eq_len;
405 if(indent < 0) indent = 0;
406 outlen = indent;
407 if(!do_indent(io_ch, arg, indent)) return -1;
408 switch (flags & XN_FLAG_SEP_MASK)
409 {
410 case XN_FLAG_SEP_MULTILINE:
411 sep_dn = "\n";
412 sep_dn_len = 1;
413 sep_mv = " + ";
414 sep_mv_len = 3;
415 break;

417 case XN_FLAG_SEP_COMMA_PLUS:
418 sep_dn = ",";
419 sep_dn_len = 1;
420 sep_mv = "+";
421 sep_mv_len = 1;
422 indent = 0;
423 break;

425 case XN_FLAG_SEP_CPLUS_SPC:
426 sep_dn = ", ";
427 sep_dn_len = 2;
428 sep_mv = " + ";
429 sep_mv_len = 3;
430 indent = 0;
431 break;

433 case XN_FLAG_SEP_SPLUS_SPC:
434 sep_dn = "; ";
435 sep_dn_len = 2;
436 sep_mv = " + ";
437 sep_mv_len = 3;
438 indent = 0;
439 break;

441 default:
442 return -1;
443 }

445 if(flags & XN_FLAG_SPC_EQ) {
446 sep_eq = " = ";
447 sep_eq_len = 3;
448 } else {
449 sep_eq = "=";
450 sep_eq_len = 1;
451 }

453 fn_opt = flags & XN_FLAG_FN_MASK;

455 cnt = X509_NAME_entry_count(n);
456 for(i = 0; i < cnt; i++) {
457 if(flags & XN_FLAG_DN_REV)

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strex.c 8

458 ent = X509_NAME_get_entry(n, cnt - i - 1);
459 else ent = X509_NAME_get_entry(n, i);
460 if(prev != -1) {
461 if(prev == ent->set) {
462 if(!io_ch(arg, sep_mv, sep_mv_len)) return -1;
463 outlen += sep_mv_len;
464 } else {
465 if(!io_ch(arg, sep_dn, sep_dn_len)) return -1;
466 outlen += sep_dn_len;
467 if(!do_indent(io_ch, arg, indent)) return -1;
468 outlen += indent;
469 }
470 }
471 prev = ent->set;
472 fn = X509_NAME_ENTRY_get_object(ent);
473 val = X509_NAME_ENTRY_get_data(ent);
474 fn_nid = OBJ_obj2nid(fn);
475 if(fn_opt != XN_FLAG_FN_NONE) {
476 int objlen, fld_len;
477 if((fn_opt == XN_FLAG_FN_OID) || (fn_nid==NID_undef)) {
478 OBJ_obj2txt(objtmp, sizeof objtmp, fn, 1);
479 fld_len = 0; /* XXX: what should this be? */
480 objbuf = objtmp;
481 } else {
482 if(fn_opt == XN_FLAG_FN_SN) {
483 fld_len = FN_WIDTH_SN;
484 objbuf = OBJ_nid2sn(fn_nid);
485 } else if(fn_opt == XN_FLAG_FN_LN) {
486 fld_len = FN_WIDTH_LN;
487 objbuf = OBJ_nid2ln(fn_nid);
488 } else {
489 fld_len = 0; /* XXX: what should this be
490 objbuf = "";
491 }
492 }
493 objlen = strlen(objbuf);
494 if(!io_ch(arg, objbuf, objlen)) return -1;
495 if ((objlen < fld_len) && (flags & XN_FLAG_FN_ALIGN)) {
496 if (!do_indent(io_ch, arg, fld_len - objlen)) re
497 outlen += fld_len - objlen;
498 }
499 if(!io_ch(arg, sep_eq, sep_eq_len)) return -1;
500 outlen += objlen + sep_eq_len;
501 }
502 /* If the field name is unknown then fix up the DER dump
503 * flag. We might want to limit this further so it will
504 * DER dump on anything other than a few ’standard’ fields.
505 */
506 if((fn_nid == NID_undef) && (flags & XN_FLAG_DUMP_UNKNOWN_FIELDS
507 orflags = ASN1_STRFLGS_DUMP_ALL;
508 else orflags = 0;
509
510 len = do_print_ex(io_ch, arg, flags | orflags, val);
511 if(len < 0) return -1;
512 outlen += len;
513 }
514 return outlen;
515 }

517 /* Wrappers round the main functions */

519 int X509_NAME_print_ex(BIO *out, X509_NAME *nm, int indent, unsigned long flags)
520 {
521 if(flags == XN_FLAG_COMPAT)
522 return X509_NAME_print(out, nm, indent);
523 return do_name_ex(send_bio_chars, out, nm, indent, flags);

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strex.c 9

524 }

526 #ifndef OPENSSL_NO_FP_API
527 int X509_NAME_print_ex_fp(FILE *fp, X509_NAME *nm, int indent, unsigned long fla
528 {
529 if(flags == XN_FLAG_COMPAT)
530 {
531 BIO *btmp;
532 int ret;
533 btmp = BIO_new_fp(fp, BIO_NOCLOSE);
534 if(!btmp) return -1;
535 ret = X509_NAME_print(btmp, nm, indent);
536 BIO_free(btmp);
537 return ret;
538 }
539 return do_name_ex(send_fp_chars, fp, nm, indent, flags);
540 }
541 #endif

543 int ASN1_STRING_print_ex(BIO *out, ASN1_STRING *str, unsigned long flags)
544 {
545 return do_print_ex(send_bio_chars, out, flags, str);
546 }

548 #ifndef OPENSSL_NO_FP_API
549 int ASN1_STRING_print_ex_fp(FILE *fp, ASN1_STRING *str, unsigned long flags)
550 {
551 return do_print_ex(send_fp_chars, fp, flags, str);
552 }
553 #endif

555 /* Utility function: convert any string type to UTF8, returns number of bytes
556 * in output string or a negative error code
557 */

559 int ASN1_STRING_to_UTF8(unsigned char **out, ASN1_STRING *in)
560 {
561 ASN1_STRING stmp, *str = &stmp;
562 int mbflag, type, ret;
563 if(!in) return -1;
564 type = in->type;
565 if((type < 0) || (type > 30)) return -1;
566 mbflag = tag2nbyte[type];
567 if(mbflag == -1) return -1;
568 mbflag |= MBSTRING_FLAG;
569 stmp.data = NULL;
570 stmp.length = 0;
571 ret = ASN1_mbstring_copy(&str, in->data, in->length, mbflag, B_ASN1_UTF8
572 if(ret < 0) return ret;
573 *out = stmp.data;
574 return stmp.length;
575 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strnid.c 1

**
 9393 Fri May 30 18:31:28 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strnid.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* a_strnid.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <ctype.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strnid.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/objects.h>

66 static STACK_OF(ASN1_STRING_TABLE) *stable = NULL;
67 static void st_free(ASN1_STRING_TABLE *tbl);
68 static int sk_table_cmp(const ASN1_STRING_TABLE * const *a,
69 const ASN1_STRING_TABLE * const *b);

72 /* This is the global mask for the mbstring functions: this is use to
73 * mask out certain types (such as BMPString and UTF8String) because
74 * certain software (e.g. Netscape) has problems with them.
75 */

77 static unsigned long global_mask = 0xFFFFFFFFL;

79 void ASN1_STRING_set_default_mask(unsigned long mask)
80 {
81 global_mask = mask;
82 }

84 unsigned long ASN1_STRING_get_default_mask(void)
85 {
86 return global_mask;
87 }

89 /* This function sets the default to various "flavours" of configuration.
90 * based on an ASCII string. Currently this is:
91 * MASK:XXXX : a numerical mask value.
92 * nobmp : Don’t use BMPStrings (just Printable, T61).
93 * pkix : PKIX recommendation in RFC2459.
94 * utf8only : only use UTF8Strings (RFC2459 recommendation for 2004).
95 * default: the default value, Printable, T61, BMP.
96 */

98 int ASN1_STRING_set_default_mask_asc(const char *p)
99 {
100 unsigned long mask;
101 char *end;
102 if(!strncmp(p, "MASK:", 5)) {
103 if(!p[5]) return 0;
104 mask = strtoul(p + 5, &end, 0);
105 if(*end) return 0;
106 } else if(!strcmp(p, "nombstr"))
107 mask = ~((unsigned long)(B_ASN1_BMPSTRING|B_ASN1_UTF8ST
108 else if(!strcmp(p, "pkix"))
109 mask = ~((unsigned long)B_ASN1_T61STRING);
110 else if(!strcmp(p, "utf8only")) mask = B_ASN1_UTF8STRING;
111 else if(!strcmp(p, "default"))
112 mask = 0xFFFFFFFFL;
113 else return 0;
114 ASN1_STRING_set_default_mask(mask);
115 return 1;
116 }

118 /* The following function generates an ASN1_STRING based on limits in a table.
119 * Frequently the types and length of an ASN1_STRING are restricted by a
120 * corresponding OID. For example certificates and certificate requests.
121 */

123 ASN1_STRING *ASN1_STRING_set_by_NID(ASN1_STRING **out, const unsigned char *in,
124 int inlen, int inform, int nid)
125 {
126 ASN1_STRING_TABLE *tbl;
127 ASN1_STRING *str = NULL;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strnid.c 3

128 unsigned long mask;
129 int ret;
130 if(!out) out = &str;
131 tbl = ASN1_STRING_TABLE_get(nid);
132 if(tbl) {
133 mask = tbl->mask;
134 if(!(tbl->flags & STABLE_NO_MASK)) mask &= global_mask;
135 ret = ASN1_mbstring_ncopy(out, in, inlen, inform, mask,
136 tbl->minsize, tbl->maxsize);
137 } else ret = ASN1_mbstring_copy(out, in, inlen, inform, DIRSTRING_TYPE &
138 if(ret <= 0) return NULL;
139 return *out;
140 }

142 /* Now the tables and helper functions for the string table:
143 */

145 /* size limits: this stuff is taken straight from RFC3280 */

147 #define ub_name 32768
148 #define ub_common_name 64
149 #define ub_locality_name 128
150 #define ub_state_name 128
151 #define ub_organization_name 64
152 #define ub_organization_unit_name 64
153 #define ub_title 64
154 #define ub_email_address 128
155 #define ub_serial_number 64

158 /* This table must be kept in NID order */

160 static const ASN1_STRING_TABLE tbl_standard[] = {
161 {NID_commonName, 1, ub_common_name, DIRSTRING_TYPE, 0},
162 {NID_countryName, 2, 2, B_ASN1_PRINTABLESTRING, STABLE_NO_MASK},
163 {NID_localityName, 1, ub_locality_name, DIRSTRING_TYPE, 0},
164 {NID_stateOrProvinceName, 1, ub_state_name, DIRSTRING_TYPE, 0},
165 {NID_organizationName, 1, ub_organization_name, DIRSTRING_TYPE, 0},
166 {NID_organizationalUnitName, 1, ub_organization_unit_name, DIRSTRING_TYPE, 0}
167 {NID_pkcs9_emailAddress, 1, ub_email_address, B_ASN1_IA5STRING, STABLE_NO
168 {NID_pkcs9_unstructuredName, 1, -1, PKCS9STRING_TYPE, 0},
169 {NID_pkcs9_challengePassword, 1, -1, PKCS9STRING_TYPE, 0},
170 {NID_pkcs9_unstructuredAddress, 1, -1, DIRSTRING_TYPE, 0},
171 {NID_givenName, 1, ub_name, DIRSTRING_TYPE, 0},
172 {NID_surname, 1, ub_name, DIRSTRING_TYPE, 0},
173 {NID_initials, 1, ub_name, DIRSTRING_TYPE, 0},
174 {NID_serialNumber, 1, ub_serial_number, B_ASN1_PRINTABLESTRING, STA
175 {NID_friendlyName, -1, -1, B_ASN1_BMPSTRING, STABLE_NO_MASK},
176 {NID_name, 1, ub_name, DIRSTRING_TYPE, 0},
177 {NID_dnQualifier, -1, -1, B_ASN1_PRINTABLESTRING, STABLE_NO_MASK},
178 {NID_domainComponent, 1, -1, B_ASN1_IA5STRING, STABLE_NO_MASK},
179 {NID_ms_csp_name, -1, -1, B_ASN1_BMPSTRING, STABLE_NO_MASK}
180 };

182 static int sk_table_cmp(const ASN1_STRING_TABLE * const *a,
183 const ASN1_STRING_TABLE * const *b)
184 {
185 return (*a)->nid - (*b)->nid;
186 }

188 DECLARE_OBJ_BSEARCH_CMP_FN(ASN1_STRING_TABLE, ASN1_STRING_TABLE, table);

190 static int table_cmp(const ASN1_STRING_TABLE *a, const ASN1_STRING_TABLE *b)
191 {
192 return a->nid - b->nid;
193 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strnid.c 4

195 IMPLEMENT_OBJ_BSEARCH_CMP_FN(ASN1_STRING_TABLE, ASN1_STRING_TABLE, table);

197 ASN1_STRING_TABLE *ASN1_STRING_TABLE_get(int nid)
198 {
199 int idx;
200 ASN1_STRING_TABLE *ttmp;
201 ASN1_STRING_TABLE fnd;
202 fnd.nid = nid;
203 ttmp = OBJ_bsearch_table(&fnd, tbl_standard,
204 sizeof(tbl_standard)/sizeof(ASN1_STRING_TABLE));
205 if(ttmp) return ttmp;
206 if(!stable) return NULL;
207 idx = sk_ASN1_STRING_TABLE_find(stable, &fnd);
208 if(idx < 0) return NULL;
209 return sk_ASN1_STRING_TABLE_value(stable, idx);
210 }
211
212 int ASN1_STRING_TABLE_add(int nid,
213 long minsize, long maxsize, unsigned long mask,
214 unsigned long flags)
215 {
216 ASN1_STRING_TABLE *tmp;
217 char new_nid = 0;
218 flags &= ~STABLE_FLAGS_MALLOC;
219 if(!stable) stable = sk_ASN1_STRING_TABLE_new(sk_table_cmp);
220 if(!stable) {
221 ASN1err(ASN1_F_ASN1_STRING_TABLE_ADD, ERR_R_MALLOC_FAILURE);
222 return 0;
223 }
224 if(!(tmp = ASN1_STRING_TABLE_get(nid))) {
225 tmp = OPENSSL_malloc(sizeof(ASN1_STRING_TABLE));
226 if(!tmp) {
227 ASN1err(ASN1_F_ASN1_STRING_TABLE_ADD,
228 ERR_R_MALLOC_FAILURE);
229 return 0;
230 }
231 tmp->flags = flags | STABLE_FLAGS_MALLOC;
232 tmp->nid = nid;
233 new_nid = 1;
234 } else tmp->flags = (tmp->flags & STABLE_FLAGS_MALLOC) | flags;
235 if(minsize != -1) tmp->minsize = minsize;
236 if(maxsize != -1) tmp->maxsize = maxsize;
237 tmp->mask = mask;
238 if(new_nid) sk_ASN1_STRING_TABLE_push(stable, tmp);
239 return 1;
240 }

242 void ASN1_STRING_TABLE_cleanup(void)
243 {
244 STACK_OF(ASN1_STRING_TABLE) *tmp;
245 tmp = stable;
246 if(!tmp) return;
247 stable = NULL;
248 sk_ASN1_STRING_TABLE_pop_free(tmp, st_free);
249 }

251 static void st_free(ASN1_STRING_TABLE *tbl)
252 {
253 if(tbl->flags & STABLE_FLAGS_MALLOC) OPENSSL_free(tbl);
254 }

257 IMPLEMENT_STACK_OF(ASN1_STRING_TABLE)

259 #ifdef STRING_TABLE_TEST

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_strnid.c 5

261 main()
262 {
263 ASN1_STRING_TABLE *tmp;
264 int i, last_nid = -1;

266 for (tmp = tbl_standard, i = 0;
267 i < sizeof(tbl_standard)/sizeof(ASN1_STRING_TABLE); i++, tmp++)
268 {
269 if (tmp->nid < last_nid)
270 {
271 last_nid = 0;
272 break;
273 }
274 last_nid = tmp->nid;
275 }

277 if (last_nid != 0)
278 {
279 printf("Table order OK\n");
280 exit(0);
281 }

283 for (tmp = tbl_standard, i = 0;
284 i < sizeof(tbl_standard)/sizeof(ASN1_STRING_TABLE); i++, tmp++)
285 printf("Index %d, NID %d, Name=%s\n", i, tmp->nid,
286 OBJ_nid2ln(tmp->nid));

288 }

290 #endif

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_time.c 1

**
 5904 Fri May 30 18:31:28 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_time.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_time.c */
2 /* ==
3 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * licensing@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

57 /* This is an implementation of the ASN1 Time structure which is:
58 * Time ::= CHOICE {
59 * utcTime UTCTime,
60 * generalTime GeneralizedTime }
61 * written by Steve Henson.

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_time.c 2

62 */

64 #include <stdio.h>
65 #include <time.h>
66 #include "cryptlib.h"
67 #include "o_time.h"
68 #include <openssl/asn1t.h>

70 IMPLEMENT_ASN1_MSTRING(ASN1_TIME, B_ASN1_TIME)

72 IMPLEMENT_ASN1_FUNCTIONS(ASN1_TIME)

74 #if 0
75 int i2d_ASN1_TIME(ASN1_TIME *a, unsigned char **pp)
76 {
77 #ifdef CHARSET_EBCDIC
78 /* KLUDGE! We convert to ascii before writing DER */
79 char tmp[24];
80 ASN1_STRING tmpstr;

82 if(a->type == V_ASN1_UTCTIME || a->type == V_ASN1_GENERALIZEDTIME) {
83 int len;

85 tmpstr = *(ASN1_STRING *)a;
86 len = tmpstr.length;
87 ebcdic2ascii(tmp, tmpstr.data, (len >= sizeof tmp) ? sizeof tmp : le
88 tmpstr.data = tmp;
89 a = (ASN1_GENERALIZEDTIME *) &tmpstr;
90 }
91 #endif
92 if(a->type == V_ASN1_UTCTIME || a->type == V_ASN1_GENERALIZEDTIME)
93 return(i2d_ASN1_bytes((ASN1_STRING *)a,pp,
94 a->type ,V_ASN1_UNIVERSAL));
95 ASN1err(ASN1_F_I2D_ASN1_TIME,ASN1_R_EXPECTING_A_TIME);
96 return -1;
97 }
98 #endif

101 ASN1_TIME *ASN1_TIME_set(ASN1_TIME *s, time_t t)
102 {
103 return ASN1_TIME_adj(s, t, 0, 0);
104 }

106 ASN1_TIME *ASN1_TIME_adj(ASN1_TIME *s, time_t t,
107 int offset_day, long offset_sec)
108 {
109 struct tm *ts;
110 struct tm data;

112 ts=OPENSSL_gmtime(&t,&data);
113 if (ts == NULL)
114 {
115 ASN1err(ASN1_F_ASN1_TIME_ADJ, ASN1_R_ERROR_GETTING_TIME);
116 return NULL;
117 }
118 if (offset_day || offset_sec)
119 {
120 if (!OPENSSL_gmtime_adj(ts, offset_day, offset_sec))
121 return NULL;
122 }
123 if((ts->tm_year >= 50) && (ts->tm_year < 150))
124 return ASN1_UTCTIME_adj(s, t, offset_day, offset_sec);
125 return ASN1_GENERALIZEDTIME_adj(s, t, offset_day, offset_sec);
126 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_time.c 3

128 int ASN1_TIME_check(ASN1_TIME *t)
129 {
130 if (t->type == V_ASN1_GENERALIZEDTIME)
131 return ASN1_GENERALIZEDTIME_check(t);
132 else if (t->type == V_ASN1_UTCTIME)
133 return ASN1_UTCTIME_check(t);
134 return 0;
135 }

137 /* Convert an ASN1_TIME structure to GeneralizedTime */
138 ASN1_GENERALIZEDTIME *ASN1_TIME_to_generalizedtime(ASN1_TIME *t, ASN1_GENERALIZE
139 {
140 ASN1_GENERALIZEDTIME *ret;
141 char *str;
142 int newlen;

144 if (!ASN1_TIME_check(t)) return NULL;

146 if (!out || !*out)
147 {
148 if (!(ret = ASN1_GENERALIZEDTIME_new ()))
149 return NULL;
150 if (out) *out = ret;
151 }
152 else ret = *out;

154 /* If already GeneralizedTime just copy across */
155 if (t->type == V_ASN1_GENERALIZEDTIME)
156 {
157 if(!ASN1_STRING_set(ret, t->data, t->length))
158 return NULL;
159 return ret;
160 }

162 /* grow the string */
163 if (!ASN1_STRING_set(ret, NULL, t->length + 2))
164 return NULL;
165 /* ASN1_STRING_set() allocated ’len + 1’ bytes. */
166 newlen = t->length + 2 + 1;
167 str = (char *)ret->data;
168 /* Work out the century and prepend */
169 if (t->data[0] >= ’5’) BUF_strlcpy(str, "19", newlen);
170 else BUF_strlcpy(str, "20", newlen);

172 BUF_strlcat(str, (char *)t->data, newlen);

174 return ret;
175 }

177 int ASN1_TIME_set_string(ASN1_TIME *s, const char *str)
178 {
179 ASN1_TIME t;

181 t.length = strlen(str);
182 t.data = (unsigned char *)str;
183 t.flags = 0;
184
185 t.type = V_ASN1_UTCTIME;

187 if (!ASN1_TIME_check(&t))
188 {
189 t.type = V_ASN1_GENERALIZEDTIME;
190 if (!ASN1_TIME_check(&t))
191 return 0;
192 }
193

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_time.c 4

194 if (s && !ASN1_STRING_copy((ASN1_STRING *)s, (ASN1_STRING *)&t))
195 return 0;

197 return 1;
198 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_type.c 1

**
 5285 Fri May 30 18:31:28 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_type.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_type.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_type.c 2

62 #include <openssl/objects.h>

64 int ASN1_TYPE_get(ASN1_TYPE *a)
65 {
66 if ((a->value.ptr != NULL) || (a->type == V_ASN1_NULL))
67 return(a->type);
68 else
69 return(0);
70 }

72 void ASN1_TYPE_set(ASN1_TYPE *a, int type, void *value)
73 {
74 if (a->value.ptr != NULL)
75 {
76 ASN1_TYPE **tmp_a = &a;
77 ASN1_primitive_free((ASN1_VALUE **)tmp_a, NULL);
78 }
79 a->type=type;
80 if (type == V_ASN1_BOOLEAN)
81 a->value.boolean = value ? 0xff : 0;
82 else
83 a->value.ptr=value;
84 }

86 int ASN1_TYPE_set1(ASN1_TYPE *a, int type, const void *value)
87 {
88 if (!value || (type == V_ASN1_BOOLEAN))
89 {
90 void *p = (void *)value;
91 ASN1_TYPE_set(a, type, p);
92 }
93 else if (type == V_ASN1_OBJECT)
94 {
95 ASN1_OBJECT *odup;
96 odup = OBJ_dup(value);
97 if (!odup)
98 return 0;
99 ASN1_TYPE_set(a, type, odup);
100 }
101 else
102 {
103 ASN1_STRING *sdup;
104 sdup = ASN1_STRING_dup(value);
105 if (!sdup)
106 return 0;
107 ASN1_TYPE_set(a, type, sdup);
108 }
109 return 1;
110 }

112 IMPLEMENT_STACK_OF(ASN1_TYPE)
113 IMPLEMENT_ASN1_SET_OF(ASN1_TYPE)

115 /* Returns 0 if they are equal, != 0 otherwise. */
116 int ASN1_TYPE_cmp(ASN1_TYPE *a, ASN1_TYPE *b)
117 {
118 int result = -1;

120 if (!a || !b || a->type != b->type) return -1;

122 switch (a->type)
123 {
124 case V_ASN1_OBJECT:
125 result = OBJ_cmp(a->value.object, b->value.object);
126 break;
127 case V_ASN1_NULL:

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_type.c 3

128 result = 0; /* They do not have content. */
129 break;
130 case V_ASN1_INTEGER:
131 case V_ASN1_NEG_INTEGER:
132 case V_ASN1_ENUMERATED:
133 case V_ASN1_NEG_ENUMERATED:
134 case V_ASN1_BIT_STRING:
135 case V_ASN1_OCTET_STRING:
136 case V_ASN1_SEQUENCE:
137 case V_ASN1_SET:
138 case V_ASN1_NUMERICSTRING:
139 case V_ASN1_PRINTABLESTRING:
140 case V_ASN1_T61STRING:
141 case V_ASN1_VIDEOTEXSTRING:
142 case V_ASN1_IA5STRING:
143 case V_ASN1_UTCTIME:
144 case V_ASN1_GENERALIZEDTIME:
145 case V_ASN1_GRAPHICSTRING:
146 case V_ASN1_VISIBLESTRING:
147 case V_ASN1_GENERALSTRING:
148 case V_ASN1_UNIVERSALSTRING:
149 case V_ASN1_BMPSTRING:
150 case V_ASN1_UTF8STRING:
151 case V_ASN1_OTHER:
152 default:
153 result = ASN1_STRING_cmp((ASN1_STRING *) a->value.ptr,
154 (ASN1_STRING *) b->value.ptr);
155 break;
156 }

158 return result;
159 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_utctm.c 1

**
 8822 Fri May 30 18:31:28 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_utctm.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_utctm.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <time.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_utctm.c 2

62 #include "o_time.h"
63 #include <openssl/asn1.h>

65 #if 0
66 int i2d_ASN1_UTCTIME(ASN1_UTCTIME *a, unsigned char **pp)
67 {
68 #ifndef CHARSET_EBCDIC
69 return(i2d_ASN1_bytes((ASN1_STRING *)a,pp,
70 V_ASN1_UTCTIME,V_ASN1_UNIVERSAL));
71 #else
72 /* KLUDGE! We convert to ascii before writing DER */
73 int len;
74 char tmp[24];
75 ASN1_STRING x = *(ASN1_STRING *)a;

77 len = x.length;
78 ebcdic2ascii(tmp, x.data, (len >= sizeof tmp) ? sizeof tmp : len);
79 x.data = tmp;
80 return i2d_ASN1_bytes(&x, pp, V_ASN1_UTCTIME,V_ASN1_UNIVERSAL);
81 #endif
82 }

85 ASN1_UTCTIME *d2i_ASN1_UTCTIME(ASN1_UTCTIME **a, unsigned char **pp,
86 long length)
87 {
88 ASN1_UTCTIME *ret=NULL;

90 ret=(ASN1_UTCTIME *)d2i_ASN1_bytes((ASN1_STRING **)a,pp,length,
91 V_ASN1_UTCTIME,V_ASN1_UNIVERSAL);
92 if (ret == NULL)
93 {
94 ASN1err(ASN1_F_D2I_ASN1_UTCTIME,ERR_R_NESTED_ASN1_ERROR);
95 return(NULL);
96 }
97 #ifdef CHARSET_EBCDIC
98 ascii2ebcdic(ret->data, ret->data, ret->length);
99 #endif
100 if (!ASN1_UTCTIME_check(ret))
101 {
102 ASN1err(ASN1_F_D2I_ASN1_UTCTIME,ASN1_R_INVALID_TIME_FORMAT);
103 goto err;
104 }

106 return(ret);
107 err:
108 if ((ret != NULL) && ((a == NULL) || (*a != ret)))
109 M_ASN1_UTCTIME_free(ret);
110 return(NULL);
111 }

113 #endif

115 int ASN1_UTCTIME_check(ASN1_UTCTIME *d)
116 {
117 static const int min[8]={ 0, 1, 1, 0, 0, 0, 0, 0};
118 static const int max[8]={99,12,31,23,59,59,12,59};
119 char *a;
120 int n,i,l,o;

122 if (d->type != V_ASN1_UTCTIME) return(0);
123 l=d->length;
124 a=(char *)d->data;
125 o=0;

127 if (l < 11) goto err;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_utctm.c 3

128 for (i=0; i<6; i++)
129 {
130 if ((i == 5) && ((a[o] == ’Z’) ||
131 (a[o] == ’+’) || (a[o] == ’-’)))
132 { i++; break; }
133 if ((a[o] < ’0’) || (a[o] > ’9’)) goto err;
134 n= a[o]-’0’;
135 if (++o > l) goto err;

137 if ((a[o] < ’0’) || (a[o] > ’9’)) goto err;
138 n=(n*10)+ a[o]-’0’;
139 if (++o > l) goto err;

141 if ((n < min[i]) || (n > max[i])) goto err;
142 }
143 if (a[o] == ’Z’)
144 o++;
145 else if ((a[o] == ’+’) || (a[o] == ’-’))
146 {
147 o++;
148 if (o+4 > l) goto err;
149 for (i=6; i<8; i++)
150 {
151 if ((a[o] < ’0’) || (a[o] > ’9’)) goto err;
152 n= a[o]-’0’;
153 o++;
154 if ((a[o] < ’0’) || (a[o] > ’9’)) goto err;
155 n=(n*10)+ a[o]-’0’;
156 if ((n < min[i]) || (n > max[i])) goto err;
157 o++;
158 }
159 }
160 return(o == l);
161 err:
162 return(0);
163 }

165 int ASN1_UTCTIME_set_string(ASN1_UTCTIME *s, const char *str)
166 {
167 ASN1_UTCTIME t;

169 t.type=V_ASN1_UTCTIME;
170 t.length=strlen(str);
171 t.data=(unsigned char *)str;
172 if (ASN1_UTCTIME_check(&t))
173 {
174 if (s != NULL)
175 {
176 if (!ASN1_STRING_set((ASN1_STRING *)s,
177 (unsigned char *)str,t.length))
178 return 0;
179 s->type = V_ASN1_UTCTIME;
180 }
181 return(1);
182 }
183 else
184 return(0);
185 }

187 ASN1_UTCTIME *ASN1_UTCTIME_set(ASN1_UTCTIME *s, time_t t)
188 {
189 return ASN1_UTCTIME_adj(s, t, 0, 0);
190 }

192 ASN1_UTCTIME *ASN1_UTCTIME_adj(ASN1_UTCTIME *s, time_t t,
193 int offset_day, long offset_sec)

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_utctm.c 4

194 {
195 char *p;
196 struct tm *ts;
197 struct tm data;
198 size_t len = 20;

200 if (s == NULL)
201 s=M_ASN1_UTCTIME_new();
202 if (s == NULL)
203 return(NULL);

205 ts=OPENSSL_gmtime(&t, &data);
206 if (ts == NULL)
207 return(NULL);

209 if (offset_day || offset_sec)
210 {
211 if (!OPENSSL_gmtime_adj(ts, offset_day, offset_sec))
212 return NULL;
213 }

215 if((ts->tm_year < 50) || (ts->tm_year >= 150))
216 return NULL;

218 p=(char *)s->data;
219 if ((p == NULL) || ((size_t)s->length < len))
220 {
221 p=OPENSSL_malloc(len);
222 if (p == NULL)
223 {
224 ASN1err(ASN1_F_ASN1_UTCTIME_ADJ,ERR_R_MALLOC_FAILURE);
225 return(NULL);
226 }
227 if (s->data != NULL)
228 OPENSSL_free(s->data);
229 s->data=(unsigned char *)p;
230 }

232 BIO_snprintf(p,len,"%02d%02d%02d%02d%02d%02dZ",ts->tm_year%100,
233 ts->tm_mon+1,ts->tm_mday,ts->tm_hour,ts->tm_min,ts->tm_sec)
234 s->length=strlen(p);
235 s->type=V_ASN1_UTCTIME;
236 #ifdef CHARSET_EBCDIC_not
237 ebcdic2ascii(s->data, s->data, s->length);
238 #endif
239 return(s);
240 }

243 int ASN1_UTCTIME_cmp_time_t(const ASN1_UTCTIME *s, time_t t)
244 {
245 struct tm *tm;
246 struct tm data;
247 int offset;
248 int year;

250 #define g2(p) (((p)[0]-’0’)*10+(p)[1]-’0’)

252 if (s->data[12] == ’Z’)
253 offset=0;
254 else
255 {
256 offset = g2(s->data+13)*60+g2(s->data+15);
257 if (s->data[12] == ’-’)
258 offset = -offset;
259 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_utctm.c 5

261 t -= offset*60; /* FIXME: may overflow in extreme cases */

263 tm = OPENSSL_gmtime(&t, &data);
264
265 #define return_cmp(a,b) if ((a)<(b)) return -1; else if ((a)>(b)) return 1
266 year = g2(s->data);
267 if (year < 50)
268 year += 100;
269 return_cmp(year, tm->tm_year);
270 return_cmp(g2(s->data+2) - 1, tm->tm_mon);
271 return_cmp(g2(s->data+4), tm->tm_mday);
272 return_cmp(g2(s->data+6), tm->tm_hour);
273 return_cmp(g2(s->data+8), tm->tm_min);
274 return_cmp(g2(s->data+10), tm->tm_sec);
275 #undef g2
276 #undef return_cmp

278 return 0;
279 }

282 #if 0
283 time_t ASN1_UTCTIME_get(const ASN1_UTCTIME *s)
284 {
285 struct tm tm;
286 int offset;

288 memset(&tm,’\0’,sizeof tm);

290 #define g2(p) (((p)[0]-’0’)*10+(p)[1]-’0’)
291 tm.tm_year=g2(s->data);
292 if(tm.tm_year < 50)
293 tm.tm_year+=100;
294 tm.tm_mon=g2(s->data+2)-1;
295 tm.tm_mday=g2(s->data+4);
296 tm.tm_hour=g2(s->data+6);
297 tm.tm_min=g2(s->data+8);
298 tm.tm_sec=g2(s->data+10);
299 if(s->data[12] == ’Z’)
300 offset=0;
301 else
302 {
303 offset=g2(s->data+13)*60+g2(s->data+15);
304 if(s->data[12] == ’-’)
305 offset= -offset;
306 }
307 #undef g2

309 return mktime(&tm)-offset*60; /* FIXME: mktime assumes the current timez
310 * instead of UTC, and unless we rewrite O
311 * in Lisp we cannot locally change the ti
312 * without possibly interfering with other
313 * of the program. timegm, which uses UTC,
314 * non-standard.
315 * Also time_t is inappropriate for genera
316 * UTC times because it may a 32 bit type.
317 }
318 #endif

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_utf8.c 1

**
 7870 Fri May 30 18:31:28 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_utf8.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_utf8.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_utf8.c 2

64 /* UTF8 utilities */

66 /* This parses a UTF8 string one character at a time. It is passed a pointer
67 * to the string and the length of the string. It sets ’value’ to the value of
68 * the current character. It returns the number of characters read or a
69 * negative error code:
70 * -1 = string too short
71 * -2 = illegal character
72 * -3 = subsequent characters not of the form 10xxxxxx
73 * -4 = character encoded incorrectly (not minimal length).
74 */

76 int UTF8_getc(const unsigned char *str, int len, unsigned long *val)
77 {
78 const unsigned char *p;
79 unsigned long value;
80 int ret;
81 if(len <= 0) return 0;
82 p = str;

84 /* Check syntax and work out the encoded value (if correct) */
85 if((*p & 0x80) == 0) {
86 value = *p++ & 0x7f;
87 ret = 1;
88 } else if((*p & 0xe0) == 0xc0) {
89 if(len < 2) return -1;
90 if((p[1] & 0xc0) != 0x80) return -3;
91 value = (*p++ & 0x1f) << 6;
92 value |= *p++ & 0x3f;
93 if(value < 0x80) return -4;
94 ret = 2;
95 } else if((*p & 0xf0) == 0xe0) {
96 if(len < 3) return -1;
97 if(((p[1] & 0xc0) != 0x80)
98 || ((p[2] & 0xc0) != 0x80)) return -3;
99 value = (*p++ & 0xf) << 12;
100 value |= (*p++ & 0x3f) << 6;
101 value |= *p++ & 0x3f;
102 if(value < 0x800) return -4;
103 ret = 3;
104 } else if((*p & 0xf8) == 0xf0) {
105 if(len < 4) return -1;
106 if(((p[1] & 0xc0) != 0x80)
107 || ((p[2] & 0xc0) != 0x80)
108 || ((p[3] & 0xc0) != 0x80)) return -3;
109 value = ((unsigned long)(*p++ & 0x7)) << 18;
110 value |= (*p++ & 0x3f) << 12;
111 value |= (*p++ & 0x3f) << 6;
112 value |= *p++ & 0x3f;
113 if(value < 0x10000) return -4;
114 ret = 4;
115 } else if((*p & 0xfc) == 0xf8) {
116 if(len < 5) return -1;
117 if(((p[1] & 0xc0) != 0x80)
118 || ((p[2] & 0xc0) != 0x80)
119 || ((p[3] & 0xc0) != 0x80)
120 || ((p[4] & 0xc0) != 0x80)) return -3;
121 value = ((unsigned long)(*p++ & 0x3)) << 24;
122 value |= ((unsigned long)(*p++ & 0x3f)) << 18;
123 value |= ((unsigned long)(*p++ & 0x3f)) << 12;
124 value |= (*p++ & 0x3f) << 6;
125 value |= *p++ & 0x3f;
126 if(value < 0x200000) return -4;
127 ret = 5;

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_utf8.c 3

128 } else if((*p & 0xfe) == 0xfc) {
129 if(len < 6) return -1;
130 if(((p[1] & 0xc0) != 0x80)
131 || ((p[2] & 0xc0) != 0x80)
132 || ((p[3] & 0xc0) != 0x80)
133 || ((p[4] & 0xc0) != 0x80)
134 || ((p[5] & 0xc0) != 0x80)) return -3;
135 value = ((unsigned long)(*p++ & 0x1)) << 30;
136 value |= ((unsigned long)(*p++ & 0x3f)) << 24;
137 value |= ((unsigned long)(*p++ & 0x3f)) << 18;
138 value |= ((unsigned long)(*p++ & 0x3f)) << 12;
139 value |= (*p++ & 0x3f) << 6;
140 value |= *p++ & 0x3f;
141 if(value < 0x4000000) return -4;
142 ret = 6;
143 } else return -2;
144 *val = value;
145 return ret;
146 }

148 /* This takes a character ’value’ and writes the UTF8 encoded value in
149 * ’str’ where ’str’ is a buffer containing ’len’ characters. Returns
150 * the number of characters written or -1 if ’len’ is too small. ’str’ can
151 * be set to NULL in which case it just returns the number of characters.
152 * It will need at most 6 characters.
153 */

155 int UTF8_putc(unsigned char *str, int len, unsigned long value)
156 {
157 if(!str) len = 6; /* Maximum we will need */
158 else if(len <= 0) return -1;
159 if(value < 0x80) {
160 if(str) *str = (unsigned char)value;
161 return 1;
162 }
163 if(value < 0x800) {
164 if(len < 2) return -1;
165 if(str) {
166 *str++ = (unsigned char)(((value >> 6) & 0x1f) | 0xc0);
167 *str = (unsigned char)((value & 0x3f) | 0x80);
168 }
169 return 2;
170 }
171 if(value < 0x10000) {
172 if(len < 3) return -1;
173 if(str) {
174 *str++ = (unsigned char)(((value >> 12) & 0xf) | 0xe0);
175 *str++ = (unsigned char)(((value >> 6) & 0x3f) | 0x80);
176 *str = (unsigned char)((value & 0x3f) | 0x80);
177 }
178 return 3;
179 }
180 if(value < 0x200000) {
181 if(len < 4) return -1;
182 if(str) {
183 *str++ = (unsigned char)(((value >> 18) & 0x7) | 0xf0);
184 *str++ = (unsigned char)(((value >> 12) & 0x3f) | 0x80);
185 *str++ = (unsigned char)(((value >> 6) & 0x3f) | 0x80);
186 *str = (unsigned char)((value & 0x3f) | 0x80);
187 }
188 return 4;
189 }
190 if(value < 0x4000000) {
191 if(len < 5) return -1;
192 if(str) {
193 *str++ = (unsigned char)(((value >> 24) & 0x3) | 0xf8);

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_utf8.c 4

194 *str++ = (unsigned char)(((value >> 18) & 0x3f) | 0x80);
195 *str++ = (unsigned char)(((value >> 12) & 0x3f) | 0x80);
196 *str++ = (unsigned char)(((value >> 6) & 0x3f) | 0x80);
197 *str = (unsigned char)((value & 0x3f) | 0x80);
198 }
199 return 5;
200 }
201 if(len < 6) return -1;
202 if(str) {
203 *str++ = (unsigned char)(((value >> 30) & 0x1) | 0xfc);
204 *str++ = (unsigned char)(((value >> 24) & 0x3f) | 0x80);
205 *str++ = (unsigned char)(((value >> 18) & 0x3f) | 0x80);
206 *str++ = (unsigned char)(((value >> 12) & 0x3f) | 0x80);
207 *str++ = (unsigned char)(((value >> 6) & 0x3f) | 0x80);
208 *str = (unsigned char)((value & 0x3f) | 0x80);
209 }
210 return 6;
211 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_verify.c 1

**
 6935 Fri May 30 18:31:28 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/a_verify.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/a_verify.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <time.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_verify.c 2

62 #include "cryptlib.h"
63 #include "asn1_locl.h"

65 #ifndef NO_SYS_TYPES_H
66 # include <sys/types.h>
67 #endif

69 #include <openssl/bn.h>
70 #include <openssl/x509.h>
71 #include <openssl/objects.h>
72 #include <openssl/buffer.h>
73 #include <openssl/evp.h>

75 #ifndef NO_ASN1_OLD

77 int ASN1_verify(i2d_of_void *i2d, X509_ALGOR *a, ASN1_BIT_STRING *signature,
78 char *data, EVP_PKEY *pkey)
79 {
80 EVP_MD_CTX ctx;
81 const EVP_MD *type;
82 unsigned char *p,*buf_in=NULL;
83 int ret= -1,i,inl;

85 EVP_MD_CTX_init(&ctx);
86 i=OBJ_obj2nid(a->algorithm);
87 type=EVP_get_digestbyname(OBJ_nid2sn(i));
88 if (type == NULL)
89 {
90 ASN1err(ASN1_F_ASN1_VERIFY,ASN1_R_UNKNOWN_MESSAGE_DIGEST_ALGORIT
91 goto err;
92 }
93
94 inl=i2d(data,NULL);
95 buf_in=OPENSSL_malloc((unsigned int)inl);
96 if (buf_in == NULL)
97 {
98 ASN1err(ASN1_F_ASN1_VERIFY,ERR_R_MALLOC_FAILURE);
99 goto err;
100 }
101 p=buf_in;

103 i2d(data,&p);
104 if (!EVP_VerifyInit_ex(&ctx,type, NULL)
105 || !EVP_VerifyUpdate(&ctx,(unsigned char *)buf_in,inl))
106 {
107 ASN1err(ASN1_F_ASN1_VERIFY,ERR_R_EVP_LIB);
108 ret=0;
109 goto err;
110 }

112 OPENSSL_cleanse(buf_in,(unsigned int)inl);
113 OPENSSL_free(buf_in);

115 if (EVP_VerifyFinal(&ctx,(unsigned char *)signature->data,
116 (unsigned int)signature->length,pkey) <= 0)
117 {
118 ASN1err(ASN1_F_ASN1_VERIFY,ERR_R_EVP_LIB);
119 ret=0;
120 goto err;
121 }
122 /* we don’t need to zero the ’ctx’ because we just checked
123 * public information */
124 /* memset(&ctx,0,sizeof(ctx)); */
125 ret=1;
126 err:
127 EVP_MD_CTX_cleanup(&ctx);

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_verify.c 3

128 return(ret);
129 }

131 #endif

134 int ASN1_item_verify(const ASN1_ITEM *it, X509_ALGOR *a,
135 ASN1_BIT_STRING *signature, void *asn, EVP_PKEY *pkey)
136 {
137 EVP_MD_CTX ctx;
138 unsigned char *buf_in=NULL;
139 int ret= -1,inl;

141 int mdnid, pknid;

143 if (!pkey)
144 {
145 ASN1err(ASN1_F_ASN1_ITEM_VERIFY, ERR_R_PASSED_NULL_PARAMETER);
146 return -1;
147 }

149 EVP_MD_CTX_init(&ctx);

151 /* Convert signature OID into digest and public key OIDs */
152 if (!OBJ_find_sigid_algs(OBJ_obj2nid(a->algorithm), &mdnid, &pknid))
153 {
154 ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ASN1_R_UNKNOWN_SIGNATURE_ALGORIT
155 goto err;
156 }
157 if (mdnid == NID_undef)
158 {
159 if (!pkey->ameth || !pkey->ameth->item_verify)
160 {
161 ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ASN1_R_UNKNOWN_SIGNATURE
162 goto err;
163 }
164 ret = pkey->ameth->item_verify(&ctx, it, asn, a,
165 signature, pkey);
166 /* Return value of 2 means carry on, anything else means we
167 * exit straight away: either a fatal error of the underlying
168 * verification routine handles all verification.
169 */
170 if (ret != 2)
171 goto err;
172 ret = -1;
173 }
174 else
175 {
176 const EVP_MD *type;
177 type=EVP_get_digestbynid(mdnid);
178 if (type == NULL)
179 {
180 ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ASN1_R_UNKNOWN_MESSAGE_D
181 goto err;
182 }

184 /* Check public key OID matches public key type */
185 if (EVP_PKEY_type(pknid) != pkey->ameth->pkey_id)
186 {
187 ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ASN1_R_WRONG_PUBLIC_KEY_
188 goto err;
189 }

191 if (!EVP_DigestVerifyInit(&ctx, NULL, type, NULL, pkey))
192 {
193 ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ERR_R_EVP_LIB);

new/usr/src/lib/openssl/libsunw_crypto/asn1/a_verify.c 4

194 ret=0;
195 goto err;
196 }

198 }

200 inl = ASN1_item_i2d(asn, &buf_in, it);
201
202 if (buf_in == NULL)
203 {
204 ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ERR_R_MALLOC_FAILURE);
205 goto err;
206 }

208 if (!EVP_DigestVerifyUpdate(&ctx,buf_in,inl))
209 {
210 ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ERR_R_EVP_LIB);
211 ret=0;
212 goto err;
213 }

215 OPENSSL_cleanse(buf_in,(unsigned int)inl);
216 OPENSSL_free(buf_in);

218 if (EVP_DigestVerifyFinal(&ctx,signature->data,
219 (size_t)signature->length) <= 0)
220 {
221 ASN1err(ASN1_F_ASN1_ITEM_VERIFY,ERR_R_EVP_LIB);
222 ret=0;
223 goto err;
224 }
225 /* we don’t need to zero the ’ctx’ because we just checked
226 * public information */
227 /* memset(&ctx,0,sizeof(ctx)); */
228 ret=1;
229 err:
230 EVP_MD_CTX_cleanup(&ctx);
231 return(ret);
232 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/ameth_lib.c 1

**
 12257 Fri May 30 18:31:28 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/ameth_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2 * project 2006.
3 */
4 /* ==
5 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ==
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */

58 #include <stdio.h>
59 #include "cryptlib.h"
60 #include <openssl/asn1t.h>
61 #include <openssl/x509.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/ameth_lib.c 2

62 #ifndef OPENSSL_NO_ENGINE
63 #include <openssl/engine.h>
64 #endif
65 #include "asn1_locl.h"

67 extern const EVP_PKEY_ASN1_METHOD rsa_asn1_meths[];
68 extern const EVP_PKEY_ASN1_METHOD dsa_asn1_meths[];
69 extern const EVP_PKEY_ASN1_METHOD dh_asn1_meth;
70 extern const EVP_PKEY_ASN1_METHOD eckey_asn1_meth;
71 extern const EVP_PKEY_ASN1_METHOD hmac_asn1_meth;
72 extern const EVP_PKEY_ASN1_METHOD cmac_asn1_meth;

74 /* Keep this sorted in type order !! */
75 static const EVP_PKEY_ASN1_METHOD *standard_methods[] =
76 {
77 #ifndef OPENSSL_NO_RSA
78 &rsa_asn1_meths[0],
79 &rsa_asn1_meths[1],
80 #endif
81 #ifndef OPENSSL_NO_DH
82 &dh_asn1_meth,
83 #endif
84 #ifndef OPENSSL_NO_DSA
85 &dsa_asn1_meths[0],
86 &dsa_asn1_meths[1],
87 &dsa_asn1_meths[2],
88 &dsa_asn1_meths[3],
89 &dsa_asn1_meths[4],
90 #endif
91 #ifndef OPENSSL_NO_EC
92 &eckey_asn1_meth,
93 #endif
94 &hmac_asn1_meth,
95 &cmac_asn1_meth
96 };

98 typedef int sk_cmp_fn_type(const char * const *a, const char * const *b);
99 DECLARE_STACK_OF(EVP_PKEY_ASN1_METHOD)
100 static STACK_OF(EVP_PKEY_ASN1_METHOD) *app_methods = NULL;

104 #ifdef TEST
105 void main()
106 {
107 int i;
108 for (i = 0;
109 i < sizeof(standard_methods)/sizeof(EVP_PKEY_ASN1_METHOD *);
110 i++)
111 fprintf(stderr, "Number %d id=%d (%s)\n", i,
112 standard_methods[i]->pkey_id,
113 OBJ_nid2sn(standard_methods[i]->pkey_id));
114 }
115 #endif

117 DECLARE_OBJ_BSEARCH_CMP_FN(const EVP_PKEY_ASN1_METHOD *,
118 const EVP_PKEY_ASN1_METHOD *, ameth);

120 static int ameth_cmp(const EVP_PKEY_ASN1_METHOD * const *a,
121 const EVP_PKEY_ASN1_METHOD * const *b)
122 {
123 return ((*a)->pkey_id - (*b)->pkey_id);
124 }

126 IMPLEMENT_OBJ_BSEARCH_CMP_FN(const EVP_PKEY_ASN1_METHOD *,
127 const EVP_PKEY_ASN1_METHOD *, ameth);

new/usr/src/lib/openssl/libsunw_crypto/asn1/ameth_lib.c 3

129 int EVP_PKEY_asn1_get_count(void)
130 {
131 int num = sizeof(standard_methods)/sizeof(EVP_PKEY_ASN1_METHOD *);
132 if (app_methods)
133 num += sk_EVP_PKEY_ASN1_METHOD_num(app_methods);
134 return num;
135 }

137 const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_get0(int idx)
138 {
139 int num = sizeof(standard_methods)/sizeof(EVP_PKEY_ASN1_METHOD *);
140 if (idx < 0)
141 return NULL;
142 if (idx < num)
143 return standard_methods[idx];
144 idx -= num;
145 return sk_EVP_PKEY_ASN1_METHOD_value(app_methods, idx);
146 }

148 static const EVP_PKEY_ASN1_METHOD *pkey_asn1_find(int type)
149 {
150 EVP_PKEY_ASN1_METHOD tmp;
151 const EVP_PKEY_ASN1_METHOD *t = &tmp, **ret;
152 tmp.pkey_id = type;
153 if (app_methods)
154 {
155 int idx;
156 idx = sk_EVP_PKEY_ASN1_METHOD_find(app_methods, &tmp);
157 if (idx >= 0)
158 return sk_EVP_PKEY_ASN1_METHOD_value(app_methods, idx);
159 }
160 ret = OBJ_bsearch_ameth(&t, standard_methods,
161 sizeof(standard_methods)
162 /sizeof(EVP_PKEY_ASN1_METHOD *));
163 if (!ret || !*ret)
164 return NULL;
165 return *ret;
166 }

168 /* Find an implementation of an ASN1 algorithm. If ’pe’ is not NULL
169 * also search through engines and set *pe to a functional reference
170 * to the engine implementing ’type’ or NULL if no engine implements
171 * it.
172 */

174 const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_find(ENGINE **pe, int type)
175 {
176 const EVP_PKEY_ASN1_METHOD *t;

178 for (;;)
179 {
180 t = pkey_asn1_find(type);
181 if (!t || !(t->pkey_flags & ASN1_PKEY_ALIAS))
182 break;
183 type = t->pkey_base_id;
184 }
185 if (pe)
186 {
187 #ifndef OPENSSL_NO_ENGINE
188 ENGINE *e;
189 /* type will contain the final unaliased type */
190 e = ENGINE_get_pkey_asn1_meth_engine(type);
191 if (e)
192 {
193 *pe = e;

new/usr/src/lib/openssl/libsunw_crypto/asn1/ameth_lib.c 4

194 return ENGINE_get_pkey_asn1_meth(e, type);
195 }
196 #endif
197 *pe = NULL;
198 }
199 return t;
200 }

202 const EVP_PKEY_ASN1_METHOD *EVP_PKEY_asn1_find_str(ENGINE **pe,
203 const char *str, int len)
204 {
205 int i;
206 const EVP_PKEY_ASN1_METHOD *ameth;
207 if (len == -1)
208 len = strlen(str);
209 if (pe)
210 {
211 #ifndef OPENSSL_NO_ENGINE
212 ENGINE *e;
213 ameth = ENGINE_pkey_asn1_find_str(&e, str, len);
214 if (ameth)
215 {
216 /* Convert structural into
217 * functional reference
218 */
219 if (!ENGINE_init(e))
220 ameth = NULL;
221 ENGINE_free(e);
222 *pe = e;
223 return ameth;
224 }
225 #endif
226 *pe = NULL;
227 }
228 for (i = 0; i < EVP_PKEY_asn1_get_count(); i++)
229 {
230 ameth = EVP_PKEY_asn1_get0(i);
231 if (ameth->pkey_flags & ASN1_PKEY_ALIAS)
232 continue;
233 if (((int)strlen(ameth->pem_str) == len) &&
234 !strncasecmp(ameth->pem_str, str, len))
235 return ameth;
236 }
237 return NULL;
238 }

240 int EVP_PKEY_asn1_add0(const EVP_PKEY_ASN1_METHOD *ameth)
241 {
242 if (app_methods == NULL)
243 {
244 app_methods = sk_EVP_PKEY_ASN1_METHOD_new(ameth_cmp);
245 if (!app_methods)
246 return 0;
247 }
248 if (!sk_EVP_PKEY_ASN1_METHOD_push(app_methods, ameth))
249 return 0;
250 sk_EVP_PKEY_ASN1_METHOD_sort(app_methods);
251 return 1;
252 }

254 int EVP_PKEY_asn1_add_alias(int to, int from)
255 {
256 EVP_PKEY_ASN1_METHOD *ameth;
257 ameth = EVP_PKEY_asn1_new(from, ASN1_PKEY_ALIAS, NULL, NULL);
258 if (!ameth)
259 return 0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/ameth_lib.c 5

260 ameth->pkey_base_id = to;
261 return EVP_PKEY_asn1_add0(ameth);
262 }

264 int EVP_PKEY_asn1_get0_info(int *ppkey_id, int *ppkey_base_id, int *ppkey_flags,
265 const char **pinfo, const char **ppem_str,
266 const EVP_PKEY_ASN1_METHOD *ameth)
267 {
268 if (!ameth)
269 return 0;
270 if (ppkey_id)
271 *ppkey_id = ameth->pkey_id;
272 if (ppkey_base_id)
273 *ppkey_base_id = ameth->pkey_base_id;
274 if (ppkey_flags)
275 *ppkey_flags = ameth->pkey_flags;
276 if (pinfo)
277 *pinfo = ameth->info;
278 if (ppem_str)
279 *ppem_str = ameth->pem_str;
280 return 1;
281 }

283 const EVP_PKEY_ASN1_METHOD* EVP_PKEY_get0_asn1(EVP_PKEY *pkey)
284 {
285 return pkey->ameth;
286 }

288 EVP_PKEY_ASN1_METHOD* EVP_PKEY_asn1_new(int id, int flags,
289 const char *pem_str, const char *info)
290 {
291 EVP_PKEY_ASN1_METHOD *ameth;
292 ameth = OPENSSL_malloc(sizeof(EVP_PKEY_ASN1_METHOD));
293 if (!ameth)
294 return NULL;

296 memset(ameth, 0, sizeof(EVP_PKEY_ASN1_METHOD));

298 ameth->pkey_id = id;
299 ameth->pkey_base_id = id;
300 ameth->pkey_flags = flags | ASN1_PKEY_DYNAMIC;

302 if (info)
303 {
304 ameth->info = BUF_strdup(info);
305 if (!ameth->info)
306 goto err;
307 }
308 else
309 ameth->info = NULL;

311 if (pem_str)
312 {
313 ameth->pem_str = BUF_strdup(pem_str);
314 if (!ameth->pem_str)
315 goto err;
316 }
317 else
318 ameth->pem_str = NULL;

320 ameth->pub_decode = 0;
321 ameth->pub_encode = 0;
322 ameth->pub_cmp = 0;
323 ameth->pub_print = 0;

325 ameth->priv_decode = 0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/ameth_lib.c 6

326 ameth->priv_encode = 0;
327 ameth->priv_print = 0;

329 ameth->old_priv_encode = 0;
330 ameth->old_priv_decode = 0;

332 ameth->item_verify = 0;
333 ameth->item_sign = 0;

335 ameth->pkey_size = 0;
336 ameth->pkey_bits = 0;

338 ameth->param_decode = 0;
339 ameth->param_encode = 0;
340 ameth->param_missing = 0;
341 ameth->param_copy = 0;
342 ameth->param_cmp = 0;
343 ameth->param_print = 0;

345 ameth->pkey_free = 0;
346 ameth->pkey_ctrl = 0;

348 return ameth;

350 err:

352 EVP_PKEY_asn1_free(ameth);
353 return NULL;

355 }

357 void EVP_PKEY_asn1_copy(EVP_PKEY_ASN1_METHOD *dst,
358 const EVP_PKEY_ASN1_METHOD *src)
359 {

361 dst->pub_decode = src->pub_decode;
362 dst->pub_encode = src->pub_encode;
363 dst->pub_cmp = src->pub_cmp;
364 dst->pub_print = src->pub_print;

366 dst->priv_decode = src->priv_decode;
367 dst->priv_encode = src->priv_encode;
368 dst->priv_print = src->priv_print;

370 dst->old_priv_encode = src->old_priv_encode;
371 dst->old_priv_decode = src->old_priv_decode;

373 dst->pkey_size = src->pkey_size;
374 dst->pkey_bits = src->pkey_bits;

376 dst->param_decode = src->param_decode;
377 dst->param_encode = src->param_encode;
378 dst->param_missing = src->param_missing;
379 dst->param_copy = src->param_copy;
380 dst->param_cmp = src->param_cmp;
381 dst->param_print = src->param_print;

383 dst->pkey_free = src->pkey_free;
384 dst->pkey_ctrl = src->pkey_ctrl;

386 dst->item_sign = src->item_sign;
387 dst->item_verify = src->item_verify;

389 }

391 void EVP_PKEY_asn1_free(EVP_PKEY_ASN1_METHOD *ameth)

new/usr/src/lib/openssl/libsunw_crypto/asn1/ameth_lib.c 7

392 {
393 if (ameth && (ameth->pkey_flags & ASN1_PKEY_DYNAMIC))
394 {
395 if (ameth->pem_str)
396 OPENSSL_free(ameth->pem_str);
397 if (ameth->info)
398 OPENSSL_free(ameth->info);
399 OPENSSL_free(ameth);
400 }
401 }

403 void EVP_PKEY_asn1_set_public(EVP_PKEY_ASN1_METHOD *ameth,
404 int (*pub_decode)(EVP_PKEY *pk, X509_PUBKEY *pub),
405 int (*pub_encode)(X509_PUBKEY *pub, const EVP_PKEY *pk),
406 int (*pub_cmp)(const EVP_PKEY *a, const EVP_PKEY *b),
407 int (*pub_print)(BIO *out, const EVP_PKEY *pkey, int indent,
408 ASN1_PCTX *pctx),
409 int (*pkey_size)(const EVP_PKEY *pk),
410 int (*pkey_bits)(const EVP_PKEY *pk))
411 {
412 ameth->pub_decode = pub_decode;
413 ameth->pub_encode = pub_encode;
414 ameth->pub_cmp = pub_cmp;
415 ameth->pub_print = pub_print;
416 ameth->pkey_size = pkey_size;
417 ameth->pkey_bits = pkey_bits;
418 }

420 void EVP_PKEY_asn1_set_private(EVP_PKEY_ASN1_METHOD *ameth,
421 int (*priv_decode)(EVP_PKEY *pk, PKCS8_PRIV_KEY_INFO *p8inf),
422 int (*priv_encode)(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pk),
423 int (*priv_print)(BIO *out, const EVP_PKEY *pkey, int indent,
424 ASN1_PCTX *pctx))
425 {
426 ameth->priv_decode = priv_decode;
427 ameth->priv_encode = priv_encode;
428 ameth->priv_print = priv_print;
429 }

431 void EVP_PKEY_asn1_set_param(EVP_PKEY_ASN1_METHOD *ameth,
432 int (*param_decode)(EVP_PKEY *pkey,
433 const unsigned char **pder, int derlen),
434 int (*param_encode)(const EVP_PKEY *pkey, unsigned char **pder),
435 int (*param_missing)(const EVP_PKEY *pk),
436 int (*param_copy)(EVP_PKEY *to, const EVP_PKEY *from),
437 int (*param_cmp)(const EVP_PKEY *a, const EVP_PKEY *b),
438 int (*param_print)(BIO *out, const EVP_PKEY *pkey, int indent,
439 ASN1_PCTX *pctx))
440 {
441 ameth->param_decode = param_decode;
442 ameth->param_encode = param_encode;
443 ameth->param_missing = param_missing;
444 ameth->param_copy = param_copy;
445 ameth->param_cmp = param_cmp;
446 ameth->param_print = param_print;
447 }

449 void EVP_PKEY_asn1_set_free(EVP_PKEY_ASN1_METHOD *ameth,
450 void (*pkey_free)(EVP_PKEY *pkey))
451 {
452 ameth->pkey_free = pkey_free;
453 }

455 void EVP_PKEY_asn1_set_ctrl(EVP_PKEY_ASN1_METHOD *ameth,
456 int (*pkey_ctrl)(EVP_PKEY *pkey, int op,
457 long arg1, void *arg2))

new/usr/src/lib/openssl/libsunw_crypto/asn1/ameth_lib.c 8

458 {
459 ameth->pkey_ctrl = pkey_ctrl;
460 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_err.c 1

**
 18220 Fri May 30 18:31:29 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/asn1_err.c */
2 /* ==
3 * Copyright (c) 1999-2011 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/asn1.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_ASN1,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_ASN1,0,reason)

71 static ERR_STRING_DATA ASN1_str_functs[]=
72 {
73 {ERR_FUNC(ASN1_F_A2D_ASN1_OBJECT), "a2d_ASN1_OBJECT"},
74 {ERR_FUNC(ASN1_F_A2I_ASN1_ENUMERATED), "a2i_ASN1_ENUMERATED"},
75 {ERR_FUNC(ASN1_F_A2I_ASN1_INTEGER), "a2i_ASN1_INTEGER"},
76 {ERR_FUNC(ASN1_F_A2I_ASN1_STRING), "a2i_ASN1_STRING"},
77 {ERR_FUNC(ASN1_F_APPEND_EXP), "APPEND_EXP"},
78 {ERR_FUNC(ASN1_F_ASN1_BIT_STRING_SET_BIT), "ASN1_BIT_STRING_set_bit"},
79 {ERR_FUNC(ASN1_F_ASN1_CB), "ASN1_CB"},
80 {ERR_FUNC(ASN1_F_ASN1_CHECK_TLEN), "ASN1_CHECK_TLEN"},
81 {ERR_FUNC(ASN1_F_ASN1_COLLATE_PRIMITIVE), "ASN1_COLLATE_PRIMITIVE"},
82 {ERR_FUNC(ASN1_F_ASN1_COLLECT), "ASN1_COLLECT"},
83 {ERR_FUNC(ASN1_F_ASN1_D2I_EX_PRIMITIVE), "ASN1_D2I_EX_PRIMITIVE"},
84 {ERR_FUNC(ASN1_F_ASN1_D2I_FP), "ASN1_d2i_fp"},
85 {ERR_FUNC(ASN1_F_ASN1_D2I_READ_BIO), "ASN1_D2I_READ_BIO"},
86 {ERR_FUNC(ASN1_F_ASN1_DIGEST), "ASN1_digest"},
87 {ERR_FUNC(ASN1_F_ASN1_DO_ADB), "ASN1_DO_ADB"},
88 {ERR_FUNC(ASN1_F_ASN1_DUP), "ASN1_dup"},
89 {ERR_FUNC(ASN1_F_ASN1_ENUMERATED_SET), "ASN1_ENUMERATED_set"},
90 {ERR_FUNC(ASN1_F_ASN1_ENUMERATED_TO_BN), "ASN1_ENUMERATED_to_BN"},
91 {ERR_FUNC(ASN1_F_ASN1_EX_C2I), "ASN1_EX_C2I"},
92 {ERR_FUNC(ASN1_F_ASN1_FIND_END), "ASN1_FIND_END"},
93 {ERR_FUNC(ASN1_F_ASN1_GENERALIZEDTIME_ADJ), "ASN1_GENERALIZEDTIME_adj"},
94 {ERR_FUNC(ASN1_F_ASN1_GENERALIZEDTIME_SET), "ASN1_GENERALIZEDTIME_set"},
95 {ERR_FUNC(ASN1_F_ASN1_GENERATE_V3), "ASN1_generate_v3"},
96 {ERR_FUNC(ASN1_F_ASN1_GET_OBJECT), "ASN1_get_object"},
97 {ERR_FUNC(ASN1_F_ASN1_HEADER_NEW), "ASN1_HEADER_NEW"},
98 {ERR_FUNC(ASN1_F_ASN1_I2D_BIO), "ASN1_i2d_bio"},
99 {ERR_FUNC(ASN1_F_ASN1_I2D_FP), "ASN1_i2d_fp"},
100 {ERR_FUNC(ASN1_F_ASN1_INTEGER_SET), "ASN1_INTEGER_set"},
101 {ERR_FUNC(ASN1_F_ASN1_INTEGER_TO_BN), "ASN1_INTEGER_to_BN"},
102 {ERR_FUNC(ASN1_F_ASN1_ITEM_D2I_FP), "ASN1_item_d2i_fp"},
103 {ERR_FUNC(ASN1_F_ASN1_ITEM_DUP), "ASN1_item_dup"},
104 {ERR_FUNC(ASN1_F_ASN1_ITEM_EX_COMBINE_NEW), "ASN1_ITEM_EX_COMBINE_NEW"},
105 {ERR_FUNC(ASN1_F_ASN1_ITEM_EX_D2I), "ASN1_ITEM_EX_D2I"},
106 {ERR_FUNC(ASN1_F_ASN1_ITEM_I2D_BIO), "ASN1_item_i2d_bio"},
107 {ERR_FUNC(ASN1_F_ASN1_ITEM_I2D_FP), "ASN1_item_i2d_fp"},
108 {ERR_FUNC(ASN1_F_ASN1_ITEM_PACK), "ASN1_item_pack"},
109 {ERR_FUNC(ASN1_F_ASN1_ITEM_SIGN), "ASN1_item_sign"},
110 {ERR_FUNC(ASN1_F_ASN1_ITEM_SIGN_CTX), "ASN1_item_sign_ctx"},
111 {ERR_FUNC(ASN1_F_ASN1_ITEM_UNPACK), "ASN1_item_unpack"},
112 {ERR_FUNC(ASN1_F_ASN1_ITEM_VERIFY), "ASN1_item_verify"},
113 {ERR_FUNC(ASN1_F_ASN1_MBSTRING_NCOPY), "ASN1_mbstring_ncopy"},
114 {ERR_FUNC(ASN1_F_ASN1_OBJECT_NEW), "ASN1_OBJECT_new"},
115 {ERR_FUNC(ASN1_F_ASN1_OUTPUT_DATA), "ASN1_OUTPUT_DATA"},
116 {ERR_FUNC(ASN1_F_ASN1_PACK_STRING), "ASN1_pack_string"},
117 {ERR_FUNC(ASN1_F_ASN1_PCTX_NEW), "ASN1_PCTX_new"},
118 {ERR_FUNC(ASN1_F_ASN1_PKCS5_PBE_SET), "ASN1_PKCS5_PBE_SET"},
119 {ERR_FUNC(ASN1_F_ASN1_SEQ_PACK), "ASN1_seq_pack"},
120 {ERR_FUNC(ASN1_F_ASN1_SEQ_UNPACK), "ASN1_seq_unpack"},
121 {ERR_FUNC(ASN1_F_ASN1_SIGN), "ASN1_sign"},
122 {ERR_FUNC(ASN1_F_ASN1_STR2TYPE), "ASN1_STR2TYPE"},
123 {ERR_FUNC(ASN1_F_ASN1_STRING_SET), "ASN1_STRING_set"},
124 {ERR_FUNC(ASN1_F_ASN1_STRING_TABLE_ADD), "ASN1_STRING_TABLE_add"},
125 {ERR_FUNC(ASN1_F_ASN1_STRING_TYPE_NEW), "ASN1_STRING_type_new"},
126 {ERR_FUNC(ASN1_F_ASN1_TEMPLATE_EX_D2I), "ASN1_TEMPLATE_EX_D2I"},
127 {ERR_FUNC(ASN1_F_ASN1_TEMPLATE_NEW), "ASN1_TEMPLATE_NEW"},

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_err.c 3

128 {ERR_FUNC(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I), "ASN1_TEMPLATE_NOEXP_D2I"},
129 {ERR_FUNC(ASN1_F_ASN1_TIME_ADJ), "ASN1_TIME_adj"},
130 {ERR_FUNC(ASN1_F_ASN1_TIME_SET), "ASN1_TIME_set"},
131 {ERR_FUNC(ASN1_F_ASN1_TYPE_GET_INT_OCTETSTRING), "ASN1_TYPE_get_int_octet
132 {ERR_FUNC(ASN1_F_ASN1_TYPE_GET_OCTETSTRING), "ASN1_TYPE_get_octetstring"},
133 {ERR_FUNC(ASN1_F_ASN1_UNPACK_STRING), "ASN1_unpack_string"},
134 {ERR_FUNC(ASN1_F_ASN1_UTCTIME_ADJ), "ASN1_UTCTIME_adj"},
135 {ERR_FUNC(ASN1_F_ASN1_UTCTIME_SET), "ASN1_UTCTIME_set"},
136 {ERR_FUNC(ASN1_F_ASN1_VERIFY), "ASN1_verify"},
137 {ERR_FUNC(ASN1_F_B64_READ_ASN1), "B64_READ_ASN1"},
138 {ERR_FUNC(ASN1_F_B64_WRITE_ASN1), "B64_WRITE_ASN1"},
139 {ERR_FUNC(ASN1_F_BIO_NEW_NDEF), "BIO_new_NDEF"},
140 {ERR_FUNC(ASN1_F_BITSTR_CB), "BITSTR_CB"},
141 {ERR_FUNC(ASN1_F_BN_TO_ASN1_ENUMERATED), "BN_to_ASN1_ENUMERATED"},
142 {ERR_FUNC(ASN1_F_BN_TO_ASN1_INTEGER), "BN_to_ASN1_INTEGER"},
143 {ERR_FUNC(ASN1_F_C2I_ASN1_BIT_STRING), "c2i_ASN1_BIT_STRING"},
144 {ERR_FUNC(ASN1_F_C2I_ASN1_INTEGER), "c2i_ASN1_INTEGER"},
145 {ERR_FUNC(ASN1_F_C2I_ASN1_OBJECT), "c2i_ASN1_OBJECT"},
146 {ERR_FUNC(ASN1_F_COLLECT_DATA), "COLLECT_DATA"},
147 {ERR_FUNC(ASN1_F_D2I_ASN1_BIT_STRING), "D2I_ASN1_BIT_STRING"},
148 {ERR_FUNC(ASN1_F_D2I_ASN1_BOOLEAN), "d2i_ASN1_BOOLEAN"},
149 {ERR_FUNC(ASN1_F_D2I_ASN1_BYTES), "d2i_ASN1_bytes"},
150 {ERR_FUNC(ASN1_F_D2I_ASN1_GENERALIZEDTIME), "D2I_ASN1_GENERALIZEDTIME"},
151 {ERR_FUNC(ASN1_F_D2I_ASN1_HEADER), "D2I_ASN1_HEADER"},
152 {ERR_FUNC(ASN1_F_D2I_ASN1_INTEGER), "D2I_ASN1_INTEGER"},
153 {ERR_FUNC(ASN1_F_D2I_ASN1_OBJECT), "d2i_ASN1_OBJECT"},
154 {ERR_FUNC(ASN1_F_D2I_ASN1_SET), "d2i_ASN1_SET"},
155 {ERR_FUNC(ASN1_F_D2I_ASN1_TYPE_BYTES), "d2i_ASN1_type_bytes"},
156 {ERR_FUNC(ASN1_F_D2I_ASN1_UINTEGER), "d2i_ASN1_UINTEGER"},
157 {ERR_FUNC(ASN1_F_D2I_ASN1_UTCTIME), "D2I_ASN1_UTCTIME"},
158 {ERR_FUNC(ASN1_F_D2I_AUTOPRIVATEKEY), "d2i_AutoPrivateKey"},
159 {ERR_FUNC(ASN1_F_D2I_NETSCAPE_RSA), "d2i_Netscape_RSA"},
160 {ERR_FUNC(ASN1_F_D2I_NETSCAPE_RSA_2), "D2I_NETSCAPE_RSA_2"},
161 {ERR_FUNC(ASN1_F_D2I_PRIVATEKEY), "d2i_PrivateKey"},
162 {ERR_FUNC(ASN1_F_D2I_PUBLICKEY), "d2i_PublicKey"},
163 {ERR_FUNC(ASN1_F_D2I_RSA_NET), "d2i_RSA_NET"},
164 {ERR_FUNC(ASN1_F_D2I_RSA_NET_2), "D2I_RSA_NET_2"},
165 {ERR_FUNC(ASN1_F_D2I_X509), "D2I_X509"},
166 {ERR_FUNC(ASN1_F_D2I_X509_CINF), "D2I_X509_CINF"},
167 {ERR_FUNC(ASN1_F_D2I_X509_PKEY), "d2i_X509_PKEY"},
168 {ERR_FUNC(ASN1_F_I2D_ASN1_BIO_STREAM), "i2d_ASN1_bio_stream"},
169 {ERR_FUNC(ASN1_F_I2D_ASN1_SET), "i2d_ASN1_SET"},
170 {ERR_FUNC(ASN1_F_I2D_ASN1_TIME), "I2D_ASN1_TIME"},
171 {ERR_FUNC(ASN1_F_I2D_DSA_PUBKEY), "i2d_DSA_PUBKEY"},
172 {ERR_FUNC(ASN1_F_I2D_EC_PUBKEY), "i2d_EC_PUBKEY"},
173 {ERR_FUNC(ASN1_F_I2D_PRIVATEKEY), "i2d_PrivateKey"},
174 {ERR_FUNC(ASN1_F_I2D_PUBLICKEY), "i2d_PublicKey"},
175 {ERR_FUNC(ASN1_F_I2D_RSA_NET), "i2d_RSA_NET"},
176 {ERR_FUNC(ASN1_F_I2D_RSA_PUBKEY), "i2d_RSA_PUBKEY"},
177 {ERR_FUNC(ASN1_F_LONG_C2I), "LONG_C2I"},
178 {ERR_FUNC(ASN1_F_OID_MODULE_INIT), "OID_MODULE_INIT"},
179 {ERR_FUNC(ASN1_F_PARSE_TAGGING), "PARSE_TAGGING"},
180 {ERR_FUNC(ASN1_F_PKCS5_PBE2_SET_IV), "PKCS5_pbe2_set_iv"},
181 {ERR_FUNC(ASN1_F_PKCS5_PBE_SET), "PKCS5_pbe_set"},
182 {ERR_FUNC(ASN1_F_PKCS5_PBE_SET0_ALGOR), "PKCS5_pbe_set0_algor"},
183 {ERR_FUNC(ASN1_F_PKCS5_PBKDF2_SET), "PKCS5_pbkdf2_set"},
184 {ERR_FUNC(ASN1_F_SMIME_READ_ASN1), "SMIME_read_ASN1"},
185 {ERR_FUNC(ASN1_F_SMIME_TEXT), "SMIME_text"},
186 {ERR_FUNC(ASN1_F_X509_CINF_NEW), "X509_CINF_NEW"},
187 {ERR_FUNC(ASN1_F_X509_CRL_ADD0_REVOKED), "X509_CRL_add0_revoked"},
188 {ERR_FUNC(ASN1_F_X509_INFO_NEW), "X509_INFO_new"},
189 {ERR_FUNC(ASN1_F_X509_NAME_ENCODE), "X509_NAME_ENCODE"},
190 {ERR_FUNC(ASN1_F_X509_NAME_EX_D2I), "X509_NAME_EX_D2I"},
191 {ERR_FUNC(ASN1_F_X509_NAME_EX_NEW), "X509_NAME_EX_NEW"},
192 {ERR_FUNC(ASN1_F_X509_NEW), "X509_NEW"},
193 {ERR_FUNC(ASN1_F_X509_PKEY_NEW), "X509_PKEY_new"},

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_err.c 4

194 {0,NULL}
195 };

197 static ERR_STRING_DATA ASN1_str_reasons[]=
198 {
199 {ERR_REASON(ASN1_R_ADDING_OBJECT) ,"adding object"},
200 {ERR_REASON(ASN1_R_ASN1_PARSE_ERROR) ,"asn1 parse error"},
201 {ERR_REASON(ASN1_R_ASN1_SIG_PARSE_ERROR) ,"asn1 sig parse error"},
202 {ERR_REASON(ASN1_R_AUX_ERROR) ,"aux error"},
203 {ERR_REASON(ASN1_R_BAD_CLASS) ,"bad class"},
204 {ERR_REASON(ASN1_R_BAD_OBJECT_HEADER) ,"bad object header"},
205 {ERR_REASON(ASN1_R_BAD_PASSWORD_READ) ,"bad password read"},
206 {ERR_REASON(ASN1_R_BAD_TAG) ,"bad tag"},
207 {ERR_REASON(ASN1_R_BMPSTRING_IS_WRONG_LENGTH),"bmpstring is wrong length"},
208 {ERR_REASON(ASN1_R_BN_LIB) ,"bn lib"},
209 {ERR_REASON(ASN1_R_BOOLEAN_IS_WRONG_LENGTH),"boolean is wrong length"},
210 {ERR_REASON(ASN1_R_BUFFER_TOO_SMALL) ,"buffer too small"},
211 {ERR_REASON(ASN1_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER),"cipher has no object identi
212 {ERR_REASON(ASN1_R_CONTEXT_NOT_INITIALISED),"context not initialised"},
213 {ERR_REASON(ASN1_R_DATA_IS_WRONG) ,"data is wrong"},
214 {ERR_REASON(ASN1_R_DECODE_ERROR) ,"decode error"},
215 {ERR_REASON(ASN1_R_DECODING_ERROR) ,"decoding error"},
216 {ERR_REASON(ASN1_R_DEPTH_EXCEEDED) ,"depth exceeded"},
217 {ERR_REASON(ASN1_R_DIGEST_AND_KEY_TYPE_NOT_SUPPORTED),"digest and key type not s
218 {ERR_REASON(ASN1_R_ENCODE_ERROR) ,"encode error"},
219 {ERR_REASON(ASN1_R_ERROR_GETTING_TIME) ,"error getting time"},
220 {ERR_REASON(ASN1_R_ERROR_LOADING_SECTION),"error loading section"},
221 {ERR_REASON(ASN1_R_ERROR_PARSING_SET_ELEMENT),"error parsing set element"},
222 {ERR_REASON(ASN1_R_ERROR_SETTING_CIPHER_PARAMS),"error setting cipher params"},
223 {ERR_REASON(ASN1_R_EXPECTING_AN_INTEGER) ,"expecting an integer"},
224 {ERR_REASON(ASN1_R_EXPECTING_AN_OBJECT) ,"expecting an object"},
225 {ERR_REASON(ASN1_R_EXPECTING_A_BOOLEAN) ,"expecting a boolean"},
226 {ERR_REASON(ASN1_R_EXPECTING_A_TIME) ,"expecting a time"},
227 {ERR_REASON(ASN1_R_EXPLICIT_LENGTH_MISMATCH),"explicit length mismatch"},
228 {ERR_REASON(ASN1_R_EXPLICIT_TAG_NOT_CONSTRUCTED),"explicit tag not constructed"}
229 {ERR_REASON(ASN1_R_FIELD_MISSING) ,"field missing"},
230 {ERR_REASON(ASN1_R_FIRST_NUM_TOO_LARGE) ,"first num too large"},
231 {ERR_REASON(ASN1_R_HEADER_TOO_LONG) ,"header too long"},
232 {ERR_REASON(ASN1_R_ILLEGAL_BITSTRING_FORMAT),"illegal bitstring format"},
233 {ERR_REASON(ASN1_R_ILLEGAL_BOOLEAN) ,"illegal boolean"},
234 {ERR_REASON(ASN1_R_ILLEGAL_CHARACTERS) ,"illegal characters"},
235 {ERR_REASON(ASN1_R_ILLEGAL_FORMAT) ,"illegal format"},
236 {ERR_REASON(ASN1_R_ILLEGAL_HEX) ,"illegal hex"},
237 {ERR_REASON(ASN1_R_ILLEGAL_IMPLICIT_TAG) ,"illegal implicit tag"},
238 {ERR_REASON(ASN1_R_ILLEGAL_INTEGER) ,"illegal integer"},
239 {ERR_REASON(ASN1_R_ILLEGAL_NESTED_TAGGING),"illegal nested tagging"},
240 {ERR_REASON(ASN1_R_ILLEGAL_NULL) ,"illegal null"},
241 {ERR_REASON(ASN1_R_ILLEGAL_NULL_VALUE) ,"illegal null value"},
242 {ERR_REASON(ASN1_R_ILLEGAL_OBJECT) ,"illegal object"},
243 {ERR_REASON(ASN1_R_ILLEGAL_OPTIONAL_ANY) ,"illegal optional any"},
244 {ERR_REASON(ASN1_R_ILLEGAL_OPTIONS_ON_ITEM_TEMPLATE),"illegal options on item te
245 {ERR_REASON(ASN1_R_ILLEGAL_TAGGED_ANY) ,"illegal tagged any"},
246 {ERR_REASON(ASN1_R_ILLEGAL_TIME_VALUE) ,"illegal time value"},
247 {ERR_REASON(ASN1_R_INTEGER_NOT_ASCII_FORMAT),"integer not ascii format"},
248 {ERR_REASON(ASN1_R_INTEGER_TOO_LARGE_FOR_LONG),"integer too large for long"},
249 {ERR_REASON(ASN1_R_INVALID_BMPSTRING_LENGTH),"invalid bmpstring length"},
250 {ERR_REASON(ASN1_R_INVALID_DIGIT) ,"invalid digit"},
251 {ERR_REASON(ASN1_R_INVALID_MIME_TYPE) ,"invalid mime type"},
252 {ERR_REASON(ASN1_R_INVALID_MODIFIER) ,"invalid modifier"},
253 {ERR_REASON(ASN1_R_INVALID_NUMBER) ,"invalid number"},
254 {ERR_REASON(ASN1_R_INVALID_OBJECT_ENCODING),"invalid object encoding"},
255 {ERR_REASON(ASN1_R_INVALID_SEPARATOR) ,"invalid separator"},
256 {ERR_REASON(ASN1_R_INVALID_TIME_FORMAT) ,"invalid time format"},
257 {ERR_REASON(ASN1_R_INVALID_UNIVERSALSTRING_LENGTH),"invalid universalstring leng
258 {ERR_REASON(ASN1_R_INVALID_UTF8STRING) ,"invalid utf8string"},
259 {ERR_REASON(ASN1_R_IV_TOO_LARGE) ,"iv too large"},

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_err.c 5

260 {ERR_REASON(ASN1_R_LENGTH_ERROR) ,"length error"},
261 {ERR_REASON(ASN1_R_LIST_ERROR) ,"list error"},
262 {ERR_REASON(ASN1_R_MIME_NO_CONTENT_TYPE) ,"mime no content type"},
263 {ERR_REASON(ASN1_R_MIME_PARSE_ERROR) ,"mime parse error"},
264 {ERR_REASON(ASN1_R_MIME_SIG_PARSE_ERROR) ,"mime sig parse error"},
265 {ERR_REASON(ASN1_R_MISSING_EOC) ,"missing eoc"},
266 {ERR_REASON(ASN1_R_MISSING_SECOND_NUMBER),"missing second number"},
267 {ERR_REASON(ASN1_R_MISSING_VALUE) ,"missing value"},
268 {ERR_REASON(ASN1_R_MSTRING_NOT_UNIVERSAL),"mstring not universal"},
269 {ERR_REASON(ASN1_R_MSTRING_WRONG_TAG) ,"mstring wrong tag"},
270 {ERR_REASON(ASN1_R_NESTED_ASN1_STRING) ,"nested asn1 string"},
271 {ERR_REASON(ASN1_R_NON_HEX_CHARACTERS) ,"non hex characters"},
272 {ERR_REASON(ASN1_R_NOT_ASCII_FORMAT) ,"not ascii format"},
273 {ERR_REASON(ASN1_R_NOT_ENOUGH_DATA) ,"not enough data"},
274 {ERR_REASON(ASN1_R_NO_CONTENT_TYPE) ,"no content type"},
275 {ERR_REASON(ASN1_R_NO_DEFAULT_DIGEST) ,"no default digest"},
276 {ERR_REASON(ASN1_R_NO_MATCHING_CHOICE_TYPE),"no matching choice type"},
277 {ERR_REASON(ASN1_R_NO_MULTIPART_BODY_FAILURE),"no multipart body failure"},
278 {ERR_REASON(ASN1_R_NO_MULTIPART_BOUNDARY),"no multipart boundary"},
279 {ERR_REASON(ASN1_R_NO_SIG_CONTENT_TYPE) ,"no sig content type"},
280 {ERR_REASON(ASN1_R_NULL_IS_WRONG_LENGTH) ,"null is wrong length"},
281 {ERR_REASON(ASN1_R_OBJECT_NOT_ASCII_FORMAT),"object not ascii format"},
282 {ERR_REASON(ASN1_R_ODD_NUMBER_OF_CHARS) ,"odd number of chars"},
283 {ERR_REASON(ASN1_R_PRIVATE_KEY_HEADER_MISSING),"private key header missing"},
284 {ERR_REASON(ASN1_R_SECOND_NUMBER_TOO_LARGE),"second number too large"},
285 {ERR_REASON(ASN1_R_SEQUENCE_LENGTH_MISMATCH),"sequence length mismatch"},
286 {ERR_REASON(ASN1_R_SEQUENCE_NOT_CONSTRUCTED),"sequence not constructed"},
287 {ERR_REASON(ASN1_R_SEQUENCE_OR_SET_NEEDS_CONFIG),"sequence or set needs config"}
288 {ERR_REASON(ASN1_R_SHORT_LINE) ,"short line"},
289 {ERR_REASON(ASN1_R_SIG_INVALID_MIME_TYPE),"sig invalid mime type"},
290 {ERR_REASON(ASN1_R_STREAMING_NOT_SUPPORTED),"streaming not supported"},
291 {ERR_REASON(ASN1_R_STRING_TOO_LONG) ,"string too long"},
292 {ERR_REASON(ASN1_R_STRING_TOO_SHORT) ,"string too short"},
293 {ERR_REASON(ASN1_R_TAG_VALUE_TOO_HIGH) ,"tag value too high"},
294 {ERR_REASON(ASN1_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD),"the asn
295 {ERR_REASON(ASN1_R_TIME_NOT_ASCII_FORMAT),"time not ascii format"},
296 {ERR_REASON(ASN1_R_TOO_LONG) ,"too long"},
297 {ERR_REASON(ASN1_R_TYPE_NOT_CONSTRUCTED) ,"type not constructed"},
298 {ERR_REASON(ASN1_R_UNABLE_TO_DECODE_RSA_KEY),"unable to decode rsa key"},
299 {ERR_REASON(ASN1_R_UNABLE_TO_DECODE_RSA_PRIVATE_KEY),"unable to decode rsa priva
300 {ERR_REASON(ASN1_R_UNEXPECTED_EOC) ,"unexpected eoc"},
301 {ERR_REASON(ASN1_R_UNIVERSALSTRING_IS_WRONG_LENGTH),"universalstring is wrong le
302 {ERR_REASON(ASN1_R_UNKNOWN_FORMAT) ,"unknown format"},
303 {ERR_REASON(ASN1_R_UNKNOWN_MESSAGE_DIGEST_ALGORITHM),"unknown message digest alg
304 {ERR_REASON(ASN1_R_UNKNOWN_OBJECT_TYPE) ,"unknown object type"},
305 {ERR_REASON(ASN1_R_UNKNOWN_PUBLIC_KEY_TYPE),"unknown public key type"},
306 {ERR_REASON(ASN1_R_UNKNOWN_SIGNATURE_ALGORITHM),"unknown signature algorithm"},
307 {ERR_REASON(ASN1_R_UNKNOWN_TAG) ,"unknown tag"},
308 {ERR_REASON(ASN1_R_UNKOWN_FORMAT) ,"unknown format"},
309 {ERR_REASON(ASN1_R_UNSUPPORTED_ANY_DEFINED_BY_TYPE),"unsupported any defined by
310 {ERR_REASON(ASN1_R_UNSUPPORTED_CIPHER) ,"unsupported cipher"},
311 {ERR_REASON(ASN1_R_UNSUPPORTED_ENCRYPTION_ALGORITHM),"unsupported encryption alg
312 {ERR_REASON(ASN1_R_UNSUPPORTED_PUBLIC_KEY_TYPE),"unsupported public key type"},
313 {ERR_REASON(ASN1_R_UNSUPPORTED_TYPE) ,"unsupported type"},
314 {ERR_REASON(ASN1_R_WRONG_PUBLIC_KEY_TYPE),"wrong public key type"},
315 {ERR_REASON(ASN1_R_WRONG_TAG) ,"wrong tag"},
316 {ERR_REASON(ASN1_R_WRONG_TYPE) ,"wrong type"},
317 {0,NULL}
318 };

320 #endif

322 void ERR_load_ASN1_strings(void)
323 {
324 #ifndef OPENSSL_NO_ERR

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_err.c 6

326 if (ERR_func_error_string(ASN1_str_functs[0].error) == NULL)
327 {
328 ERR_load_strings(0,ASN1_str_functs);
329 ERR_load_strings(0,ASN1_str_reasons);
330 }
331 #endif
332 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_gen.c 1

**
 21101 Fri May 30 18:31:29 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_gen.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* asn1_gen.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2002.
4 */
5 /* ==
6 * Copyright (c) 2002 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include "cryptlib.h"
60 #include <openssl/asn1.h>
61 #include <openssl/x509v3.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_gen.c 2

63 #define ASN1_GEN_FLAG 0x10000
64 #define ASN1_GEN_FLAG_IMP (ASN1_GEN_FLAG|1)
65 #define ASN1_GEN_FLAG_EXP (ASN1_GEN_FLAG|2)
66 #define ASN1_GEN_FLAG_TAG (ASN1_GEN_FLAG|3)
67 #define ASN1_GEN_FLAG_BITWRAP (ASN1_GEN_FLAG|4)
68 #define ASN1_GEN_FLAG_OCTWRAP (ASN1_GEN_FLAG|5)
69 #define ASN1_GEN_FLAG_SEQWRAP (ASN1_GEN_FLAG|6)
70 #define ASN1_GEN_FLAG_SETWRAP (ASN1_GEN_FLAG|7)
71 #define ASN1_GEN_FLAG_FORMAT (ASN1_GEN_FLAG|8)

73 #define ASN1_GEN_STR(str,val) {str, sizeof(str) - 1, val}

75 #define ASN1_FLAG_EXP_MAX 20

77 /* Input formats */

79 /* ASCII: default */
80 #define ASN1_GEN_FORMAT_ASCII 1
81 /* UTF8 */
82 #define ASN1_GEN_FORMAT_UTF8 2
83 /* Hex */
84 #define ASN1_GEN_FORMAT_HEX 3
85 /* List of bits */
86 #define ASN1_GEN_FORMAT_BITLIST 4

89 struct tag_name_st
90 {
91 const char *strnam;
92 int len;
93 int tag;
94 };

96 typedef struct
97 {
98 int exp_tag;
99 int exp_class;
100 int exp_constructed;
101 int exp_pad;
102 long exp_len;
103 } tag_exp_type;

105 typedef struct
106 {
107 int imp_tag;
108 int imp_class;
109 int utype;
110 int format;
111 const char *str;
112 tag_exp_type exp_list[ASN1_FLAG_EXP_MAX];
113 int exp_count;
114 } tag_exp_arg;

116 static int bitstr_cb(const char *elem, int len, void *bitstr);
117 static int asn1_cb(const char *elem, int len, void *bitstr);
118 static int append_exp(tag_exp_arg *arg, int exp_tag, int exp_class, int exp_cons
119 static int parse_tagging(const char *vstart, int vlen, int *ptag, int *pclass);
120 static ASN1_TYPE *asn1_multi(int utype, const char *section, X509V3_CTX *cnf);
121 static ASN1_TYPE *asn1_str2type(const char *str, int format, int utype);
122 static int asn1_str2tag(const char *tagstr, int len);

124 ASN1_TYPE *ASN1_generate_nconf(char *str, CONF *nconf)
125 {
126 X509V3_CTX cnf;

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_gen.c 3

128 if (!nconf)
129 return ASN1_generate_v3(str, NULL);

131 X509V3_set_nconf(&cnf, nconf);
132 return ASN1_generate_v3(str, &cnf);
133 }

135 ASN1_TYPE *ASN1_generate_v3(char *str, X509V3_CTX *cnf)
136 {
137 ASN1_TYPE *ret;
138 tag_exp_arg asn1_tags;
139 tag_exp_type *etmp;

141 int i, len;

143 unsigned char *orig_der = NULL, *new_der = NULL;
144 const unsigned char *cpy_start;
145 unsigned char *p;
146 const unsigned char *cp;
147 int cpy_len;
148 long hdr_len;
149 int hdr_constructed = 0, hdr_tag, hdr_class;
150 int r;

152 asn1_tags.imp_tag = -1;
153 asn1_tags.imp_class = -1;
154 asn1_tags.format = ASN1_GEN_FORMAT_ASCII;
155 asn1_tags.exp_count = 0;
156 if (CONF_parse_list(str, ’,’, 1, asn1_cb, &asn1_tags) != 0)
157 return NULL;

159 if ((asn1_tags.utype == V_ASN1_SEQUENCE) || (asn1_tags.utype == V_ASN1_S
160 {
161 if (!cnf)
162 {
163 ASN1err(ASN1_F_ASN1_GENERATE_V3, ASN1_R_SEQUENCE_OR_SET_
164 return NULL;
165 }
166 ret = asn1_multi(asn1_tags.utype, asn1_tags.str, cnf);
167 }
168 else
169 ret = asn1_str2type(asn1_tags.str, asn1_tags.format, asn1_tags.u

171 if (!ret)
172 return NULL;

174 /* If no tagging return base type */
175 if ((asn1_tags.imp_tag == -1) && (asn1_tags.exp_count == 0))
176 return ret;

178 /* Generate the encoding */
179 cpy_len = i2d_ASN1_TYPE(ret, &orig_der);
180 ASN1_TYPE_free(ret);
181 ret = NULL;
182 /* Set point to start copying for modified encoding */
183 cpy_start = orig_der;

185 /* Do we need IMPLICIT tagging? */
186 if (asn1_tags.imp_tag != -1)
187 {
188 /* If IMPLICIT we will replace the underlying tag */
189 /* Skip existing tag+len */
190 r = ASN1_get_object(&cpy_start, &hdr_len, &hdr_tag, &hdr_class,
191 if (r & 0x80)
192 goto err;
193 /* Update copy length */

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_gen.c 4

194 cpy_len -= cpy_start - orig_der;
195 /* For IMPLICIT tagging the length should match the
196 * original length and constructed flag should be
197 * consistent.
198 */
199 if (r & 0x1)
200 {
201 /* Indefinite length constructed */
202 hdr_constructed = 2;
203 hdr_len = 0;
204 }
205 else
206 /* Just retain constructed flag */
207 hdr_constructed = r & V_ASN1_CONSTRUCTED;
208 /* Work out new length with IMPLICIT tag: ignore constructed
209 * because it will mess up if indefinite length
210 */
211 len = ASN1_object_size(0, hdr_len, asn1_tags.imp_tag);
212 }
213 else
214 len = cpy_len;

216 /* Work out length in any EXPLICIT, starting from end */

218 for(i = 0, etmp = asn1_tags.exp_list + asn1_tags.exp_count - 1; i < asn1
219 {
220 /* Content length: number of content octets + any padding */
221 len += etmp->exp_pad;
222 etmp->exp_len = len;
223 /* Total object length: length including new header */
224 len = ASN1_object_size(0, len, etmp->exp_tag);
225 }

227 /* Allocate buffer for new encoding */

229 new_der = OPENSSL_malloc(len);
230 if (!new_der)
231 goto err;

233 /* Generate tagged encoding */

235 p = new_der;

237 /* Output explicit tags first */

239 for (i = 0, etmp = asn1_tags.exp_list; i < asn1_tags.exp_count; i++, etm
240 {
241 ASN1_put_object(&p, etmp->exp_constructed, etmp->exp_len,
242 etmp->exp_tag, etmp->exp_class);
243 if (etmp->exp_pad)
244 *p++ = 0;
245 }

247 /* If IMPLICIT, output tag */

249 if (asn1_tags.imp_tag != -1)
250 {
251 if (asn1_tags.imp_class == V_ASN1_UNIVERSAL
252 && (asn1_tags.imp_tag == V_ASN1_SEQUENCE
253 || asn1_tags.imp_tag == V_ASN1_SET))
254 hdr_constructed = V_ASN1_CONSTRUCTED;
255 ASN1_put_object(&p, hdr_constructed, hdr_len,
256 asn1_tags.imp_tag, asn1_tags.imp_class);
257 }

259 /* Copy across original encoding */

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_gen.c 5

260 memcpy(p, cpy_start, cpy_len);

262 cp = new_der;

264 /* Obtain new ASN1_TYPE structure */
265 ret = d2i_ASN1_TYPE(NULL, &cp, len);

267 err:
268 if (orig_der)
269 OPENSSL_free(orig_der);
270 if (new_der)
271 OPENSSL_free(new_der);

273 return ret;

275 }

277 static int asn1_cb(const char *elem, int len, void *bitstr)
278 {
279 tag_exp_arg *arg = bitstr;
280 int i;
281 int utype;
282 int vlen = 0;
283 const char *p, *vstart = NULL;

285 int tmp_tag, tmp_class;

287 for(i = 0, p = elem; i < len; p++, i++)
288 {
289 /* Look for the ’:’ in name value pairs */
290 if (*p == ’:’)
291 {
292 vstart = p + 1;
293 vlen = len - (vstart - elem);
294 len = p - elem;
295 break;
296 }
297 }

299 utype = asn1_str2tag(elem, len);

301 if (utype == -1)
302 {
303 ASN1err(ASN1_F_ASN1_CB, ASN1_R_UNKNOWN_TAG);
304 ERR_add_error_data(2, "tag=", elem);
305 return -1;
306 }

308 /* If this is not a modifier mark end of string and exit */
309 if (!(utype & ASN1_GEN_FLAG))
310 {
311 arg->utype = utype;
312 arg->str = vstart;
313 /* If no value and not end of string, error */
314 if (!vstart && elem[len])
315 {
316 ASN1err(ASN1_F_ASN1_CB, ASN1_R_MISSING_VALUE);
317 return -1;
318 }
319 return 0;
320 }

322 switch(utype)
323 {

325 case ASN1_GEN_FLAG_IMP:

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_gen.c 6

326 /* Check for illegal multiple IMPLICIT tagging */
327 if (arg->imp_tag != -1)
328 {
329 ASN1err(ASN1_F_ASN1_CB, ASN1_R_ILLEGAL_NESTED_TAGGING);
330 return -1;
331 }
332 if (!parse_tagging(vstart, vlen, &arg->imp_tag, &arg->imp_class)
333 return -1;
334 break;

336 case ASN1_GEN_FLAG_EXP:

338 if (!parse_tagging(vstart, vlen, &tmp_tag, &tmp_class))
339 return -1;
340 if (!append_exp(arg, tmp_tag, tmp_class, 1, 0, 0))
341 return -1;
342 break;

344 case ASN1_GEN_FLAG_SEQWRAP:
345 if (!append_exp(arg, V_ASN1_SEQUENCE, V_ASN1_UNIVERSAL, 1, 0, 1)
346 return -1;
347 break;

349 case ASN1_GEN_FLAG_SETWRAP:
350 if (!append_exp(arg, V_ASN1_SET, V_ASN1_UNIVERSAL, 1, 0, 1))
351 return -1;
352 break;

354 case ASN1_GEN_FLAG_BITWRAP:
355 if (!append_exp(arg, V_ASN1_BIT_STRING, V_ASN1_UNIVERSAL, 0, 1,
356 return -1;
357 break;

359 case ASN1_GEN_FLAG_OCTWRAP:
360 if (!append_exp(arg, V_ASN1_OCTET_STRING, V_ASN1_UNIVERSAL, 0, 0
361 return -1;
362 break;

364 case ASN1_GEN_FLAG_FORMAT:
365 if (!strncmp(vstart, "ASCII", 5))
366 arg->format = ASN1_GEN_FORMAT_ASCII;
367 else if (!strncmp(vstart, "UTF8", 4))
368 arg->format = ASN1_GEN_FORMAT_UTF8;
369 else if (!strncmp(vstart, "HEX", 3))
370 arg->format = ASN1_GEN_FORMAT_HEX;
371 else if (!strncmp(vstart, "BITLIST", 3))
372 arg->format = ASN1_GEN_FORMAT_BITLIST;
373 else
374 {
375 ASN1err(ASN1_F_ASN1_CB, ASN1_R_UNKOWN_FORMAT);
376 return -1;
377 }
378 break;

380 }

382 return 1;

384 }

386 static int parse_tagging(const char *vstart, int vlen, int *ptag, int *pclass)
387 {
388 char erch[2];
389 long tag_num;
390 char *eptr;
391 if (!vstart)

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_gen.c 7

392 return 0;
393 tag_num = strtoul(vstart, &eptr, 10);
394 /* Check we haven’t gone past max length: should be impossible */
395 if (eptr && *eptr && (eptr > vstart + vlen))
396 return 0;
397 if (tag_num < 0)
398 {
399 ASN1err(ASN1_F_PARSE_TAGGING, ASN1_R_INVALID_NUMBER);
400 return 0;
401 }
402 *ptag = tag_num;
403 /* If we have non numeric characters, parse them */
404 if (eptr)
405 vlen -= eptr - vstart;
406 else
407 vlen = 0;
408 if (vlen)
409 {
410 switch (*eptr)
411 {

413 case ’U’:
414 *pclass = V_ASN1_UNIVERSAL;
415 break;

417 case ’A’:
418 *pclass = V_ASN1_APPLICATION;
419 break;

421 case ’P’:
422 *pclass = V_ASN1_PRIVATE;
423 break;

425 case ’C’:
426 *pclass = V_ASN1_CONTEXT_SPECIFIC;
427 break;

429 default:
430 erch[0] = *eptr;
431 erch[1] = 0;
432 ASN1err(ASN1_F_PARSE_TAGGING, ASN1_R_INVALID_MODIFIER);
433 ERR_add_error_data(2, "Char=", erch);
434 return 0;
435 break;

437 }
438 }
439 else
440 *pclass = V_ASN1_CONTEXT_SPECIFIC;

442 return 1;

444 }

446 /* Handle multiple types: SET and SEQUENCE */

448 static ASN1_TYPE *asn1_multi(int utype, const char *section, X509V3_CTX *cnf)
449 {
450 ASN1_TYPE *ret = NULL;
451 STACK_OF(ASN1_TYPE) *sk = NULL;
452 STACK_OF(CONF_VALUE) *sect = NULL;
453 unsigned char *der = NULL;
454 int derlen;
455 int i;
456 sk = sk_ASN1_TYPE_new_null();
457 if (!sk)

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_gen.c 8

458 goto bad;
459 if (section)
460 {
461 if (!cnf)
462 goto bad;
463 sect = X509V3_get_section(cnf, (char *)section);
464 if (!sect)
465 goto bad;
466 for (i = 0; i < sk_CONF_VALUE_num(sect); i++)
467 {
468 ASN1_TYPE *typ = ASN1_generate_v3(sk_CONF_VALUE_value(se
469 if (!typ)
470 goto bad;
471 if (!sk_ASN1_TYPE_push(sk, typ))
472 goto bad;
473 }
474 }

476 /* Now we has a STACK of the components, convert to the correct form */

478 if (utype == V_ASN1_SET)
479 derlen = i2d_ASN1_SET_ANY(sk, &der);
480 else
481 derlen = i2d_ASN1_SEQUENCE_ANY(sk, &der);

483 if (derlen < 0)
484 goto bad;

486 if (!(ret = ASN1_TYPE_new()))
487 goto bad;

489 if (!(ret->value.asn1_string = ASN1_STRING_type_new(utype)))
490 goto bad;

492 ret->type = utype;

494 ret->value.asn1_string->data = der;
495 ret->value.asn1_string->length = derlen;

497 der = NULL;

499 bad:

501 if (der)
502 OPENSSL_free(der);

504 if (sk)
505 sk_ASN1_TYPE_pop_free(sk, ASN1_TYPE_free);
506 if (sect)
507 X509V3_section_free(cnf, sect);

509 return ret;
510 }

512 static int append_exp(tag_exp_arg *arg, int exp_tag, int exp_class, int exp_cons
513 {
514 tag_exp_type *exp_tmp;
515 /* Can only have IMPLICIT if permitted */
516 if ((arg->imp_tag != -1) && !imp_ok)
517 {
518 ASN1err(ASN1_F_APPEND_EXP, ASN1_R_ILLEGAL_IMPLICIT_TAG);
519 return 0;
520 }

522 if (arg->exp_count == ASN1_FLAG_EXP_MAX)
523 {

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_gen.c 9

524 ASN1err(ASN1_F_APPEND_EXP, ASN1_R_DEPTH_EXCEEDED);
525 return 0;
526 }

528 exp_tmp = &arg->exp_list[arg->exp_count++];

530 /* If IMPLICIT set tag to implicit value then
531 * reset implicit tag since it has been used.
532 */
533 if (arg->imp_tag != -1)
534 {
535 exp_tmp->exp_tag = arg->imp_tag;
536 exp_tmp->exp_class = arg->imp_class;
537 arg->imp_tag = -1;
538 arg->imp_class = -1;
539 }
540 else
541 {
542 exp_tmp->exp_tag = exp_tag;
543 exp_tmp->exp_class = exp_class;
544 }
545 exp_tmp->exp_constructed = exp_constructed;
546 exp_tmp->exp_pad = exp_pad;

548 return 1;
549 }

552 static int asn1_str2tag(const char *tagstr, int len)
553 {
554 unsigned int i;
555 static const struct tag_name_st *tntmp, tnst [] = {
556 ASN1_GEN_STR("BOOL", V_ASN1_BOOLEAN),
557 ASN1_GEN_STR("BOOLEAN", V_ASN1_BOOLEAN),
558 ASN1_GEN_STR("NULL", V_ASN1_NULL),
559 ASN1_GEN_STR("INT", V_ASN1_INTEGER),
560 ASN1_GEN_STR("INTEGER", V_ASN1_INTEGER),
561 ASN1_GEN_STR("ENUM", V_ASN1_ENUMERATED),
562 ASN1_GEN_STR("ENUMERATED", V_ASN1_ENUMERATED),
563 ASN1_GEN_STR("OID", V_ASN1_OBJECT),
564 ASN1_GEN_STR("OBJECT", V_ASN1_OBJECT),
565 ASN1_GEN_STR("UTCTIME", V_ASN1_UTCTIME),
566 ASN1_GEN_STR("UTC", V_ASN1_UTCTIME),
567 ASN1_GEN_STR("GENERALIZEDTIME", V_ASN1_GENERALIZEDTIME),
568 ASN1_GEN_STR("GENTIME", V_ASN1_GENERALIZEDTIME),
569 ASN1_GEN_STR("OCT", V_ASN1_OCTET_STRING),
570 ASN1_GEN_STR("OCTETSTRING", V_ASN1_OCTET_STRING),
571 ASN1_GEN_STR("BITSTR", V_ASN1_BIT_STRING),
572 ASN1_GEN_STR("BITSTRING", V_ASN1_BIT_STRING),
573 ASN1_GEN_STR("UNIVERSALSTRING", V_ASN1_UNIVERSALSTRING),
574 ASN1_GEN_STR("UNIV", V_ASN1_UNIVERSALSTRING),
575 ASN1_GEN_STR("IA5", V_ASN1_IA5STRING),
576 ASN1_GEN_STR("IA5STRING", V_ASN1_IA5STRING),
577 ASN1_GEN_STR("UTF8", V_ASN1_UTF8STRING),
578 ASN1_GEN_STR("UTF8String", V_ASN1_UTF8STRING),
579 ASN1_GEN_STR("BMP", V_ASN1_BMPSTRING),
580 ASN1_GEN_STR("BMPSTRING", V_ASN1_BMPSTRING),
581 ASN1_GEN_STR("VISIBLESTRING", V_ASN1_VISIBLESTRING),
582 ASN1_GEN_STR("VISIBLE", V_ASN1_VISIBLESTRING),
583 ASN1_GEN_STR("PRINTABLESTRING", V_ASN1_PRINTABLESTRING),
584 ASN1_GEN_STR("PRINTABLE", V_ASN1_PRINTABLESTRING),
585 ASN1_GEN_STR("T61", V_ASN1_T61STRING),
586 ASN1_GEN_STR("T61STRING", V_ASN1_T61STRING),
587 ASN1_GEN_STR("TELETEXSTRING", V_ASN1_T61STRING),
588 ASN1_GEN_STR("GeneralString", V_ASN1_GENERALSTRING),
589 ASN1_GEN_STR("GENSTR", V_ASN1_GENERALSTRING),

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_gen.c 10

590 ASN1_GEN_STR("NUMERIC", V_ASN1_NUMERICSTRING),
591 ASN1_GEN_STR("NUMERICSTRING", V_ASN1_NUMERICSTRING),

593 /* Special cases */
594 ASN1_GEN_STR("SEQUENCE", V_ASN1_SEQUENCE),
595 ASN1_GEN_STR("SEQ", V_ASN1_SEQUENCE),
596 ASN1_GEN_STR("SET", V_ASN1_SET),
597 /* type modifiers */
598 /* Explicit tag */
599 ASN1_GEN_STR("EXP", ASN1_GEN_FLAG_EXP),
600 ASN1_GEN_STR("EXPLICIT", ASN1_GEN_FLAG_EXP),
601 /* Implicit tag */
602 ASN1_GEN_STR("IMP", ASN1_GEN_FLAG_IMP),
603 ASN1_GEN_STR("IMPLICIT", ASN1_GEN_FLAG_IMP),
604 /* OCTET STRING wrapper */
605 ASN1_GEN_STR("OCTWRAP", ASN1_GEN_FLAG_OCTWRAP),
606 /* SEQUENCE wrapper */
607 ASN1_GEN_STR("SEQWRAP", ASN1_GEN_FLAG_SEQWRAP),
608 /* SET wrapper */
609 ASN1_GEN_STR("SETWRAP", ASN1_GEN_FLAG_SETWRAP),
610 /* BIT STRING wrapper */
611 ASN1_GEN_STR("BITWRAP", ASN1_GEN_FLAG_BITWRAP),
612 ASN1_GEN_STR("FORM", ASN1_GEN_FLAG_FORMAT),
613 ASN1_GEN_STR("FORMAT", ASN1_GEN_FLAG_FORMAT),
614 };

616 if (len == -1)
617 len = strlen(tagstr);
618
619 tntmp = tnst;
620 for (i = 0; i < sizeof(tnst) / sizeof(struct tag_name_st); i++, tntmp++)
621 {
622 if ((len == tntmp->len) && !strncmp(tntmp->strnam, tagstr, len))
623 return tntmp->tag;
624 }
625
626 return -1;
627 }

629 static ASN1_TYPE *asn1_str2type(const char *str, int format, int utype)
630 {
631 ASN1_TYPE *atmp = NULL;

633 CONF_VALUE vtmp;

635 unsigned char *rdata;
636 long rdlen;

638 int no_unused = 1;

640 if (!(atmp = ASN1_TYPE_new()))
641 {
642 ASN1err(ASN1_F_ASN1_STR2TYPE, ERR_R_MALLOC_FAILURE);
643 return NULL;
644 }

646 if (!str)
647 str = "";

649 switch(utype)
650 {

652 case V_ASN1_NULL:
653 if (str && *str)
654 {
655 ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_NULL_VALUE)

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_gen.c 11

656 goto bad_form;
657 }
658 break;
659
660 case V_ASN1_BOOLEAN:
661 if (format != ASN1_GEN_FORMAT_ASCII)
662 {
663 ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_NOT_ASCII_FORMAT);
664 goto bad_form;
665 }
666 vtmp.name = NULL;
667 vtmp.section = NULL;
668 vtmp.value = (char *)str;
669 if (!X509V3_get_value_bool(&vtmp, &atmp->value.boolean))
670 {
671 ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_BOOLEAN);
672 goto bad_str;
673 }
674 break;

676 case V_ASN1_INTEGER:
677 case V_ASN1_ENUMERATED:
678 if (format != ASN1_GEN_FORMAT_ASCII)
679 {
680 ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_INTEGER_NOT_ASCII_F
681 goto bad_form;
682 }
683 if (!(atmp->value.integer = s2i_ASN1_INTEGER(NULL, (char *)str))
684 {
685 ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_INTEGER);
686 goto bad_str;
687 }
688 break;

690 case V_ASN1_OBJECT:
691 if (format != ASN1_GEN_FORMAT_ASCII)
692 {
693 ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_OBJECT_NOT_ASCII_FO
694 goto bad_form;
695 }
696 if (!(atmp->value.object = OBJ_txt2obj(str, 0)))
697 {
698 ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_OBJECT);
699 goto bad_str;
700 }
701 break;

703 case V_ASN1_UTCTIME:
704 case V_ASN1_GENERALIZEDTIME:
705 if (format != ASN1_GEN_FORMAT_ASCII)
706 {
707 ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_TIME_NOT_ASCII_FORM
708 goto bad_form;
709 }
710 if (!(atmp->value.asn1_string = ASN1_STRING_new()))
711 {
712 ASN1err(ASN1_F_ASN1_STR2TYPE, ERR_R_MALLOC_FAILURE);
713 goto bad_str;
714 }
715 if (!ASN1_STRING_set(atmp->value.asn1_string, str, -1))
716 {
717 ASN1err(ASN1_F_ASN1_STR2TYPE, ERR_R_MALLOC_FAILURE);
718 goto bad_str;
719 }
720 atmp->value.asn1_string->type = utype;
721 if (!ASN1_TIME_check(atmp->value.asn1_string))

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_gen.c 12

722 {
723 ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_TIME_VALUE)
724 goto bad_str;
725 }

727 break;

729 case V_ASN1_BMPSTRING:
730 case V_ASN1_PRINTABLESTRING:
731 case V_ASN1_IA5STRING:
732 case V_ASN1_T61STRING:
733 case V_ASN1_UTF8STRING:
734 case V_ASN1_VISIBLESTRING:
735 case V_ASN1_UNIVERSALSTRING:
736 case V_ASN1_GENERALSTRING:
737 case V_ASN1_NUMERICSTRING:

739 if (format == ASN1_GEN_FORMAT_ASCII)
740 format = MBSTRING_ASC;
741 else if (format == ASN1_GEN_FORMAT_UTF8)
742 format = MBSTRING_UTF8;
743 else
744 {
745 ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_FORMAT);
746 goto bad_form;
747 }

750 if (ASN1_mbstring_copy(&atmp->value.asn1_string, (unsigned char
751 -1, format, ASN1_tag2bit(utype))
752 {
753 ASN1err(ASN1_F_ASN1_STR2TYPE, ERR_R_MALLOC_FAILURE);
754 goto bad_str;
755 }
756

758 break;

760 case V_ASN1_BIT_STRING:

762 case V_ASN1_OCTET_STRING:

764 if (!(atmp->value.asn1_string = ASN1_STRING_new()))
765 {
766 ASN1err(ASN1_F_ASN1_STR2TYPE, ERR_R_MALLOC_FAILURE);
767 goto bad_form;
768 }

770 if (format == ASN1_GEN_FORMAT_HEX)
771 {

773 if (!(rdata = string_to_hex((char *)str, &rdlen)))
774 {
775 ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_HEX
776 goto bad_str;
777 }

779 atmp->value.asn1_string->data = rdata;
780 atmp->value.asn1_string->length = rdlen;
781 atmp->value.asn1_string->type = utype;

783 }
784 else if (format == ASN1_GEN_FORMAT_ASCII)
785 ASN1_STRING_set(atmp->value.asn1_string, str, -1);
786 else if ((format == ASN1_GEN_FORMAT_BITLIST) && (utype == V_ASN1
787 {

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_gen.c 13

788 if (!CONF_parse_list(str, ’,’, 1, bitstr_cb, atmp->value
789 {
790 ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_LIST_ERROR)
791 goto bad_str;
792 }
793 no_unused = 0;
794
795 }
796 else
797 {
798 ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_ILLEGAL_BITSTRING_F
799 goto bad_form;
800 }

802 if ((utype == V_ASN1_BIT_STRING) && no_unused)
803 {
804 atmp->value.asn1_string->flags
805 &= ~(ASN1_STRING_FLAG_BITS_LEFT|0x07);
806 atmp->value.asn1_string->flags
807 |= ASN1_STRING_FLAG_BITS_LEFT;
808 }

811 break;

813 default:
814 ASN1err(ASN1_F_ASN1_STR2TYPE, ASN1_R_UNSUPPORTED_TYPE);
815 goto bad_str;
816 break;
817 }

820 atmp->type = utype;
821 return atmp;

824 bad_str:
825 ERR_add_error_data(2, "string=", str);
826 bad_form:

828 ASN1_TYPE_free(atmp);
829 return NULL;

831 }

833 static int bitstr_cb(const char *elem, int len, void *bitstr)
834 {
835 long bitnum;
836 char *eptr;
837 if (!elem)
838 return 0;
839 bitnum = strtoul(elem, &eptr, 10);
840 if (eptr && *eptr && (eptr != elem + len))
841 return 0;
842 if (bitnum < 0)
843 {
844 ASN1err(ASN1_F_BITSTR_CB, ASN1_R_INVALID_NUMBER);
845 return 0;
846 }
847 if (!ASN1_BIT_STRING_set_bit(bitstr, bitnum, 1))
848 {
849 ASN1err(ASN1_F_BITSTR_CB, ERR_R_MALLOC_FAILURE);
850 return 0;
851 }
852 return 1;
853 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_gen.c 14

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_lib.c 1

**
 11031 Fri May 30 18:31:29 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/asn1_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <limits.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_lib.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/asn1_mac.h>

65 static int asn1_get_length(const unsigned char **pp,int *inf,long *rl,int max);
66 static void asn1_put_length(unsigned char **pp, int length);
67 const char ASN1_version[]="ASN.1" OPENSSL_VERSION_PTEXT;

69 static int _asn1_check_infinite_end(const unsigned char **p, long len)
70 {
71 /* If there is 0 or 1 byte left, the length check should pick
72 * things up */
73 if (len <= 0)
74 return(1);
75 else if ((len >= 2) && ((*p)[0] == 0) && ((*p)[1] == 0))
76 {
77 (*p)+=2;
78 return(1);
79 }
80 return(0);
81 }

83 int ASN1_check_infinite_end(unsigned char **p, long len)
84 {
85 return _asn1_check_infinite_end((const unsigned char **)p, len);
86 }

88 int ASN1_const_check_infinite_end(const unsigned char **p, long len)
89 {
90 return _asn1_check_infinite_end(p, len);
91 }

94 int ASN1_get_object(const unsigned char **pp, long *plength, int *ptag,
95 int *pclass, long omax)
96 {
97 int i,ret;
98 long l;
99 const unsigned char *p= *pp;
100 int tag,xclass,inf;
101 long max=omax;

103 if (!max) goto err;
104 ret=(*p&V_ASN1_CONSTRUCTED);
105 xclass=(*p&V_ASN1_PRIVATE);
106 i= *p&V_ASN1_PRIMITIVE_TAG;
107 if (i == V_ASN1_PRIMITIVE_TAG)
108 { /* high-tag */
109 p++;
110 if (--max == 0) goto err;
111 l=0;
112 while (*p&0x80)
113 {
114 l<<=7L;
115 l|= *(p++)&0x7f;
116 if (--max == 0) goto err;
117 if (l > (INT_MAX >> 7L)) goto err;
118 }
119 l<<=7L;
120 l|= *(p++)&0x7f;
121 tag=(int)l;
122 if (--max == 0) goto err;
123 }
124 else
125 {
126 tag=i;
127 p++;

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_lib.c 3

128 if (--max == 0) goto err;
129 }
130 *ptag=tag;
131 *pclass=xclass;
132 if (!asn1_get_length(&p,&inf,plength,(int)max)) goto err;

134 #if 0
135 fprintf(stderr,"p=%d + *plength=%ld > omax=%ld + *pp=%d (%d > %d)\n",
136 (int)p,*plength,omax,(int)*pp,(int)(p+ *plength),
137 (int)(omax+ *pp));

139 #endif
140 if (*plength > (omax - (p - *pp)))
141 {
142 ASN1err(ASN1_F_ASN1_GET_OBJECT,ASN1_R_TOO_LONG);
143 /* Set this so that even if things are not long enough
144 * the values are set correctly */
145 ret|=0x80;
146 }
147 *pp=p;
148 return(ret|inf);
149 err:
150 ASN1err(ASN1_F_ASN1_GET_OBJECT,ASN1_R_HEADER_TOO_LONG);
151 return(0x80);
152 }

154 static int asn1_get_length(const unsigned char **pp, int *inf, long *rl, int max
155 {
156 const unsigned char *p= *pp;
157 unsigned long ret=0;
158 unsigned int i;

160 if (max-- < 1) return(0);
161 if (*p == 0x80)
162 {
163 *inf=1;
164 ret=0;
165 p++;
166 }
167 else
168 {
169 *inf=0;
170 i= *p&0x7f;
171 if (*(p++) & 0x80)
172 {
173 if (i > sizeof(long))
174 return 0;
175 if (max-- == 0) return(0);
176 while (i-- > 0)
177 {
178 ret<<=8L;
179 ret|= *(p++);
180 if (max-- == 0) return(0);
181 }
182 }
183 else
184 ret=i;
185 }
186 if (ret > LONG_MAX)
187 return 0;
188 *pp=p;
189 *rl=(long)ret;
190 return(1);
191 }

193 /* class 0 is constructed

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_lib.c 4

194 * constructed == 2 for indefinite length constructed */
195 void ASN1_put_object(unsigned char **pp, int constructed, int length, int tag,
196 int xclass)
197 {
198 unsigned char *p= *pp;
199 int i, ttag;

201 i=(constructed)?V_ASN1_CONSTRUCTED:0;
202 i|=(xclass&V_ASN1_PRIVATE);
203 if (tag < 31)
204 *(p++)=i|(tag&V_ASN1_PRIMITIVE_TAG);
205 else
206 {
207 *(p++)=i|V_ASN1_PRIMITIVE_TAG;
208 for(i = 0, ttag = tag; ttag > 0; i++) ttag >>=7;
209 ttag = i;
210 while(i-- > 0)
211 {
212 p[i] = tag & 0x7f;
213 if(i != (ttag - 1)) p[i] |= 0x80;
214 tag >>= 7;
215 }
216 p += ttag;
217 }
218 if (constructed == 2)
219 *(p++)=0x80;
220 else
221 asn1_put_length(&p,length);
222 *pp=p;
223 }

225 int ASN1_put_eoc(unsigned char **pp)
226 {
227 unsigned char *p = *pp;
228 *p++ = 0;
229 *p++ = 0;
230 *pp = p;
231 return 2;
232 }

234 static void asn1_put_length(unsigned char **pp, int length)
235 {
236 unsigned char *p= *pp;
237 int i,l;
238 if (length <= 127)
239 *(p++)=(unsigned char)length;
240 else
241 {
242 l=length;
243 for (i=0; l > 0; i++)
244 l>>=8;
245 *(p++)=i|0x80;
246 l=i;
247 while (i-- > 0)
248 {
249 p[i]=length&0xff;
250 length>>=8;
251 }
252 p+=l;
253 }
254 *pp=p;
255 }

257 int ASN1_object_size(int constructed, int length, int tag)
258 {
259 int ret;

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_lib.c 5

261 ret=length;
262 ret++;
263 if (tag >= 31)
264 {
265 while (tag > 0)
266 {
267 tag>>=7;
268 ret++;
269 }
270 }
271 if (constructed == 2)
272 return ret + 3;
273 ret++;
274 if (length > 127)
275 {
276 while (length > 0)
277 {
278 length>>=8;
279 ret++;
280 }
281 }
282 return(ret);
283 }

285 static int _asn1_Finish(ASN1_const_CTX *c)
286 {
287 if ((c->inf == (1|V_ASN1_CONSTRUCTED)) && (!c->eos))
288 {
289 if (!ASN1_const_check_infinite_end(&c->p,c->slen))
290 {
291 c->error=ERR_R_MISSING_ASN1_EOS;
292 return(0);
293 }
294 }
295 if (((c->slen != 0) && !(c->inf & 1)) ||
296 ((c->slen < 0) && (c->inf & 1)))
297 {
298 c->error=ERR_R_ASN1_LENGTH_MISMATCH;
299 return(0);
300 }
301 return(1);
302 }

304 int asn1_Finish(ASN1_CTX *c)
305 {
306 return _asn1_Finish((ASN1_const_CTX *)c);
307 }

309 int asn1_const_Finish(ASN1_const_CTX *c)
310 {
311 return _asn1_Finish(c);
312 }

314 int asn1_GetSequence(ASN1_const_CTX *c, long *length)
315 {
316 const unsigned char *q;

318 q=c->p;
319 c->inf=ASN1_get_object(&(c->p),&(c->slen),&(c->tag),&(c->xclass),
320 *length);
321 if (c->inf & 0x80)
322 {
323 c->error=ERR_R_BAD_GET_ASN1_OBJECT_CALL;
324 return(0);
325 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_lib.c 6

326 if (c->tag != V_ASN1_SEQUENCE)
327 {
328 c->error=ERR_R_EXPECTING_AN_ASN1_SEQUENCE;
329 return(0);
330 }
331 (*length)-=(c->p-q);
332 if (c->max && (*length < 0))
333 {
334 c->error=ERR_R_ASN1_LENGTH_MISMATCH;
335 return(0);
336 }
337 if (c->inf == (1|V_ASN1_CONSTRUCTED))
338 c->slen= *length+ *(c->pp)-c->p;
339 c->eos=0;
340 return(1);
341 }

343 int ASN1_STRING_copy(ASN1_STRING *dst, const ASN1_STRING *str)
344 {
345 if (str == NULL)
346 return 0;
347 dst->type = str->type;
348 if (!ASN1_STRING_set(dst,str->data,str->length))
349 return 0;
350 dst->flags = str->flags;
351 return 1;
352 }

354 ASN1_STRING *ASN1_STRING_dup(const ASN1_STRING *str)
355 {
356 ASN1_STRING *ret;
357 if (!str)
358 return NULL;
359 ret=ASN1_STRING_new();
360 if (!ret)
361 return NULL;
362 if (!ASN1_STRING_copy(ret,str))
363 {
364 ASN1_STRING_free(ret);
365 return NULL;
366 }
367 return ret;
368 }

370 int ASN1_STRING_set(ASN1_STRING *str, const void *_data, int len)
371 {
372 unsigned char *c;
373 const char *data=_data;

375 if (len < 0)
376 {
377 if (data == NULL)
378 return(0);
379 else
380 len=strlen(data);
381 }
382 if ((str->length < len) || (str->data == NULL))
383 {
384 c=str->data;
385 if (c == NULL)
386 str->data=OPENSSL_malloc(len+1);
387 else
388 str->data=OPENSSL_realloc(c,len+1);

390 if (str->data == NULL)
391 {

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_lib.c 7

392 ASN1err(ASN1_F_ASN1_STRING_SET,ERR_R_MALLOC_FAILURE);
393 str->data=c;
394 return(0);
395 }
396 }
397 str->length=len;
398 if (data != NULL)
399 {
400 memcpy(str->data,data,len);
401 /* an allowance for strings :-) */
402 str->data[len]=’\0’;
403 }
404 return(1);
405 }

407 void ASN1_STRING_set0(ASN1_STRING *str, void *data, int len)
408 {
409 if (str->data)
410 OPENSSL_free(str->data);
411 str->data = data;
412 str->length = len;
413 }

415 ASN1_STRING *ASN1_STRING_new(void)
416 {
417 return(ASN1_STRING_type_new(V_ASN1_OCTET_STRING));
418 }

421 ASN1_STRING *ASN1_STRING_type_new(int type)
422 {
423 ASN1_STRING *ret;

425 ret=(ASN1_STRING *)OPENSSL_malloc(sizeof(ASN1_STRING));
426 if (ret == NULL)
427 {
428 ASN1err(ASN1_F_ASN1_STRING_TYPE_NEW,ERR_R_MALLOC_FAILURE);
429 return(NULL);
430 }
431 ret->length=0;
432 ret->type=type;
433 ret->data=NULL;
434 ret->flags=0;
435 return(ret);
436 }

438 void ASN1_STRING_free(ASN1_STRING *a)
439 {
440 if (a == NULL) return;
441 if (a->data && !(a->flags & ASN1_STRING_FLAG_NDEF))
442 OPENSSL_free(a->data);
443 OPENSSL_free(a);
444 }

446 int ASN1_STRING_cmp(const ASN1_STRING *a, const ASN1_STRING *b)
447 {
448 int i;

450 i=(a->length-b->length);
451 if (i == 0)
452 {
453 i=memcmp(a->data,b->data,a->length);
454 if (i == 0)
455 return(a->type-b->type);
456 else
457 return(i);

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_lib.c 8

458 }
459 else
460 return(i);
461 }

463 void asn1_add_error(const unsigned char *address, int offset)
464 {
465 char buf1[DECIMAL_SIZE(address)+1],buf2[DECIMAL_SIZE(offset)+1];

467 BIO_snprintf(buf1,sizeof buf1,"%lu",(unsigned long)address);
468 BIO_snprintf(buf2,sizeof buf2,"%d",offset);
469 ERR_add_error_data(4,"address=",buf1," offset=",buf2);
470 }

472 int ASN1_STRING_length(const ASN1_STRING *x)
473 { return M_ASN1_STRING_length(x); }

475 void ASN1_STRING_length_set(ASN1_STRING *x, int len)
476 { M_ASN1_STRING_length_set(x, len); return; }

478 int ASN1_STRING_type(ASN1_STRING *x)
479 { return M_ASN1_STRING_type(x); }

481 unsigned char * ASN1_STRING_data(ASN1_STRING *x)
482 { return M_ASN1_STRING_data(x); }

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_par.c 1

**
 11666 Fri May 30 18:31:29 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_par.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/asn1_par.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_par.c 2

62 #include <openssl/objects.h>
63 #include <openssl/asn1.h>

65 static int asn1_print_info(BIO *bp, int tag, int xclass,int constructed,
66 int indent);
67 static int asn1_parse2(BIO *bp, const unsigned char **pp, long length,
68 int offset, int depth, int indent, int dump);
69 static int asn1_print_info(BIO *bp, int tag, int xclass, int constructed,
70 int indent)
71 {
72 static const char fmt[]="%-18s";
73 char str[128];
74 const char *p;

76 if (constructed & V_ASN1_CONSTRUCTED)
77 p="cons: ";
78 else
79 p="prim: ";
80 if (BIO_write(bp,p,6) < 6) goto err;
81 BIO_indent(bp,indent,128);

83 p=str;
84 if ((xclass & V_ASN1_PRIVATE) == V_ASN1_PRIVATE)
85 BIO_snprintf(str,sizeof str,"priv [%d] ",tag);
86 else if ((xclass & V_ASN1_CONTEXT_SPECIFIC) == V_ASN1_CONTEXT_SPECIFIC)
87 BIO_snprintf(str,sizeof str,"cont [%d]",tag);
88 else if ((xclass & V_ASN1_APPLICATION) == V_ASN1_APPLICATION)
89 BIO_snprintf(str,sizeof str,"appl [%d]",tag);
90 else if (tag > 30)
91 BIO_snprintf(str,sizeof str,"<ASN1 %d>",tag);
92 else
93 p = ASN1_tag2str(tag);

95 if (BIO_printf(bp,fmt,p) <= 0)
96 goto err;
97 return(1);
98 err:
99 return(0);
100 }

102 int ASN1_parse(BIO *bp, const unsigned char *pp, long len, int indent)
103 {
104 return(asn1_parse2(bp,&pp,len,0,0,indent,0));
105 }

107 int ASN1_parse_dump(BIO *bp, const unsigned char *pp, long len, int indent, int
108 {
109 return(asn1_parse2(bp,&pp,len,0,0,indent,dump));
110 }

112 static int asn1_parse2(BIO *bp, const unsigned char **pp, long length, int offse
113 int depth, int indent, int dump)
114 {
115 const unsigned char *p,*ep,*tot,*op,*opp;
116 long len;
117 int tag,xclass,ret=0;
118 int nl,hl,j,r;
119 ASN1_OBJECT *o=NULL;
120 ASN1_OCTET_STRING *os=NULL;
121 /* ASN1_BMPSTRING *bmp=NULL;*/
122 int dump_indent;

124 #if 0
125 dump_indent = indent;
126 #else
127 dump_indent = 6; /* Because we know BIO_dump_indent() */

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_par.c 3

128 #endif
129 p= *pp;
130 tot=p+length;
131 op=p-1;
132 while ((p < tot) && (op < p))
133 {
134 op=p;
135 j=ASN1_get_object(&p,&len,&tag,&xclass,length);
136 #ifdef LINT
137 j=j;
138 #endif
139 if (j & 0x80)
140 {
141 if (BIO_write(bp,"Error in encoding\n",18) <= 0)
142 goto end;
143 ret=0;
144 goto end;
145 }
146 hl=(p-op);
147 length-=hl;
148 /* if j == 0x21 it is a constructed indefinite length object */
149 if (BIO_printf(bp,"%5ld:",(long)offset+(long)(op- *pp))
150 <= 0) goto end;

152 if (j != (V_ASN1_CONSTRUCTED | 1))
153 {
154 if (BIO_printf(bp,"d=%-2d hl=%ld l=%4ld ",
155 depth,(long)hl,len) <= 0)
156 goto end;
157 }
158 else
159 {
160 if (BIO_printf(bp,"d=%-2d hl=%ld l=inf ",
161 depth,(long)hl) <= 0)
162 goto end;
163 }
164 if (!asn1_print_info(bp,tag,xclass,j,(indent)?depth:0))
165 goto end;
166 if (j & V_ASN1_CONSTRUCTED)
167 {
168 ep=p+len;
169 if (BIO_write(bp,"\n",1) <= 0) goto end;
170 if (len > length)
171 {
172 BIO_printf(bp,
173 "length is greater than %ld\n",length);
174 ret=0;
175 goto end;
176 }
177 if ((j == 0x21) && (len == 0))
178 {
179 for (;;)
180 {
181 r=asn1_parse2(bp,&p,(long)(tot-p),
182 offset+(p - *pp),depth+1,
183 indent,dump);
184 if (r == 0) { ret=0; goto end; }
185 if ((r == 2) || (p >= tot)) break;
186 }
187 }
188 else
189 while (p < ep)
190 {
191 r=asn1_parse2(bp,&p,(long)len,
192 offset+(p - *pp),depth+1,
193 indent,dump);

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_par.c 4

194 if (r == 0) { ret=0; goto end; }
195 }
196 }
197 else if (xclass != 0)
198 {
199 p+=len;
200 if (BIO_write(bp,"\n",1) <= 0) goto end;
201 }
202 else
203 {
204 nl=0;
205 if ((tag == V_ASN1_PRINTABLESTRING) ||
206 (tag == V_ASN1_T61STRING) ||
207 (tag == V_ASN1_IA5STRING) ||
208 (tag == V_ASN1_VISIBLESTRING) ||
209 (tag == V_ASN1_NUMERICSTRING) ||
210 (tag == V_ASN1_UTF8STRING) ||
211 (tag == V_ASN1_UTCTIME) ||
212 (tag == V_ASN1_GENERALIZEDTIME))
213 {
214 if (BIO_write(bp,":",1) <= 0) goto end;
215 if ((len > 0) &&
216 BIO_write(bp,(const char *)p,(int)len)
217 != (int)len)
218 goto end;
219 }
220 else if (tag == V_ASN1_OBJECT)
221 {
222 opp=op;
223 if (d2i_ASN1_OBJECT(&o,&opp,len+hl) != NULL)
224 {
225 if (BIO_write(bp,":",1) <= 0) goto end;
226 i2a_ASN1_OBJECT(bp,o);
227 }
228 else
229 {
230 if (BIO_write(bp,":BAD OBJECT",11) <= 0)
231 goto end;
232 }
233 }
234 else if (tag == V_ASN1_BOOLEAN)
235 {
236 int ii;

238 opp=op;
239 ii=d2i_ASN1_BOOLEAN(NULL,&opp,len+hl);
240 if (ii < 0)
241 {
242 if (BIO_write(bp,"Bad boolean\n",12) <=
243 goto end;
244 }
245 BIO_printf(bp,":%d",ii);
246 }
247 else if (tag == V_ASN1_BMPSTRING)
248 {
249 /* do the BMP thang */
250 }
251 else if (tag == V_ASN1_OCTET_STRING)
252 {
253 int i,printable=1;

255 opp=op;
256 os=d2i_ASN1_OCTET_STRING(NULL,&opp,len+hl);
257 if (os != NULL && os->length > 0)
258 {
259 opp = os->data;

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_par.c 5

260 /* testing whether the octet string is
261 * printable */
262 for (i=0; i<os->length; i++)
263 {
264 if (((opp[i] < ’ ’) &&
265 (opp[i] != ’\n’) &&
266 (opp[i] != ’\r’) &&
267 (opp[i] != ’\t’)) ||
268 (opp[i] > ’~’))
269 {
270 printable=0;
271 break;
272 }
273 }
274 if (printable)
275 /* printable string */
276 {
277 if (BIO_write(bp,":",1) <= 0)
278 goto end;
279 if (BIO_write(bp,(const char *)o
280 os->length) <= 0)
281 goto end;
282 }
283 else if (!dump)
284 /* not printable => print octet string
285 * as hex dump */
286 {
287 if (BIO_write(bp,"[HEX DUMP]:",1
288 goto end;
289 for (i=0; i<os->length; i++)
290 {
291 if (BIO_printf(bp,"%02X"
292 , opp[i]) <= 0)
293 goto end;
294 }
295 }
296 else
297 /* print the normal dump */
298 {
299 if (!nl)
300 {
301 if (BIO_write(bp,"\n",1)
302 goto end;
303 }
304 if (BIO_dump_indent(bp,
305 (const char *)opp,
306 ((dump == -1 || dump >
307 os->length)?os->length:d
308 dump_indent) <= 0)
309 goto end;
310 nl=1;
311 }
312 }
313 if (os != NULL)
314 {
315 M_ASN1_OCTET_STRING_free(os);
316 os=NULL;
317 }
318 }
319 else if (tag == V_ASN1_INTEGER)
320 {
321 ASN1_INTEGER *bs;
322 int i;

324 opp=op;
325 bs=d2i_ASN1_INTEGER(NULL,&opp,len+hl);

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_par.c 6

326 if (bs != NULL)
327 {
328 if (BIO_write(bp,":",1) <= 0) goto end;
329 if (bs->type == V_ASN1_NEG_INTEGER)
330 if (BIO_write(bp,"-",1) <= 0)
331 goto end;
332 for (i=0; i<bs->length; i++)
333 {
334 if (BIO_printf(bp,"%02X",
335 bs->data[i]) <= 0)
336 goto end;
337 }
338 if (bs->length == 0)
339 {
340 if (BIO_write(bp,"00",2) <= 0)
341 goto end;
342 }
343 }
344 else
345 {
346 if (BIO_write(bp,"BAD INTEGER",11) <= 0)
347 goto end;
348 }
349 M_ASN1_INTEGER_free(bs);
350 }
351 else if (tag == V_ASN1_ENUMERATED)
352 {
353 ASN1_ENUMERATED *bs;
354 int i;

356 opp=op;
357 bs=d2i_ASN1_ENUMERATED(NULL,&opp,len+hl);
358 if (bs != NULL)
359 {
360 if (BIO_write(bp,":",1) <= 0) goto end;
361 if (bs->type == V_ASN1_NEG_ENUMERATED)
362 if (BIO_write(bp,"-",1) <= 0)
363 goto end;
364 for (i=0; i<bs->length; i++)
365 {
366 if (BIO_printf(bp,"%02X",
367 bs->data[i]) <= 0)
368 goto end;
369 }
370 if (bs->length == 0)
371 {
372 if (BIO_write(bp,"00",2) <= 0)
373 goto end;
374 }
375 }
376 else
377 {
378 if (BIO_write(bp,"BAD ENUMERATED",11) <=
379 goto end;
380 }
381 M_ASN1_ENUMERATED_free(bs);
382 }
383 else if (len > 0 && dump)
384 {
385 if (!nl)
386 {
387 if (BIO_write(bp,"\n",1) <= 0)
388 goto end;
389 }
390 if (BIO_dump_indent(bp,(const char *)p,
391 ((dump == -1 || dump > len)?len:dump),

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn1_par.c 7

392 dump_indent) <= 0)
393 goto end;
394 nl=1;
395 }

397 if (!nl)
398 {
399 if (BIO_write(bp,"\n",1) <= 0) goto end;
400 }
401 p+=len;
402 if ((tag == V_ASN1_EOC) && (xclass == 0))
403 {
404 ret=2; /* End of sequence */
405 goto end;
406 }
407 }
408 length-=len;
409 }
410 ret=1;
411 end:
412 if (o != NULL) ASN1_OBJECT_free(o);
413 if (os != NULL) M_ASN1_OCTET_STRING_free(os);
414 *pp=p;
415 return(ret);
416 }

418 const char *ASN1_tag2str(int tag)
419 {
420 static const char * const tag2str[] = {
421 "EOC", "BOOLEAN", "INTEGER", "BIT STRING", "OCTET STRING", /* 0-4 */
422 "NULL", "OBJECT", "OBJECT DESCRIPTOR", "EXTERNAL", "REAL", /* 5-9 */
423 "ENUMERATED", "<ASN1 11>", "UTF8STRING", "<ASN1 13>", /* 10-13 */
424 "<ASN1 14>", "<ASN1 15>", "SEQUENCE", "SET", /* 15-17 */
425 "NUMERICSTRING", "PRINTABLESTRING", "T61STRING", /* 18-20 */
426 "VIDEOTEXSTRING", "IA5STRING", "UTCTIME","GENERALIZEDTIME", /* 21-24 */
427 "GRAPHICSTRING", "VISIBLESTRING", "GENERALSTRING", /* 25-27 */
428 "UNIVERSALSTRING", "<ASN1 29>", "BMPSTRING" /* 28-30 */
429 };

431 if((tag == V_ASN1_NEG_INTEGER) || (tag == V_ASN1_NEG_ENUMERATED))
432 tag &= ~0x100;

434 if(tag < 0 || tag > 30) return "(unknown)";
435 return tag2str[tag];
436 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c 1

**
 24648 Fri May 30 18:31:29 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* asn_mime.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 1999-2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 */

55 #include <stdio.h>
56 #include <ctype.h>
57 #include "cryptlib.h"
58 #include <openssl/rand.h>
59 #include <openssl/x509.h>
60 #include <openssl/asn1.h>
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c 2

62 #include "asn1_locl.h"

64 /* Generalised MIME like utilities for streaming ASN1. Although many
65 * have a PKCS7/CMS like flavour others are more general purpose.
66 */

68 /* MIME format structures
69 * Note that all are translated to lower case apart from
70 * parameter values. Quotes are stripped off
71 */

73 typedef struct {
74 char *param_name; /* Param name e.g. "micalg" */
75 char *param_value; /* Param value e.g. "sha1" */
76 } MIME_PARAM;

78 DECLARE_STACK_OF(MIME_PARAM)
79 IMPLEMENT_STACK_OF(MIME_PARAM)

81 typedef struct {
82 char *name; /* Name of line e.g. "content-type" */
83 char *value; /* Value of line e.g. "text/plain" */
84 STACK_OF(MIME_PARAM) *params; /* Zero or more parameters */
85 } MIME_HEADER;

87 DECLARE_STACK_OF(MIME_HEADER)
88 IMPLEMENT_STACK_OF(MIME_HEADER)

90 static int asn1_output_data(BIO *out, BIO *data, ASN1_VALUE *val, int flags,
91 const ASN1_ITEM *it);
92 static char * strip_ends(char *name);
93 static char * strip_start(char *name);
94 static char * strip_end(char *name);
95 static MIME_HEADER *mime_hdr_new(char *name, char *value);
96 static int mime_hdr_addparam(MIME_HEADER *mhdr, char *name, char *value);
97 static STACK_OF(MIME_HEADER) *mime_parse_hdr(BIO *bio);
98 static int mime_hdr_cmp(const MIME_HEADER * const *a,
99 const MIME_HEADER * const *b);
100 static int mime_param_cmp(const MIME_PARAM * const *a,
101 const MIME_PARAM * const *b);
102 static void mime_param_free(MIME_PARAM *param);
103 static int mime_bound_check(char *line, int linelen, char *bound, int blen);
104 static int multi_split(BIO *bio, char *bound, STACK_OF(BIO) **ret);
105 static int strip_eol(char *linebuf, int *plen);
106 static MIME_HEADER *mime_hdr_find(STACK_OF(MIME_HEADER) *hdrs, char *name);
107 static MIME_PARAM *mime_param_find(MIME_HEADER *hdr, char *name);
108 static void mime_hdr_free(MIME_HEADER *hdr);

110 #define MAX_SMLEN 1024
111 #define mime_debug(x) /* x */

113 /* Output an ASN1 structure in BER format streaming if necessary */

115 int i2d_ASN1_bio_stream(BIO *out, ASN1_VALUE *val, BIO *in, int flags,
116 const ASN1_ITEM *it)
117 {
118 /* If streaming create stream BIO and copy all content through it */
119 if (flags & SMIME_STREAM)
120 {
121 BIO *bio, *tbio;
122 bio = BIO_new_NDEF(out, val, it);
123 if (!bio)
124 {
125 ASN1err(ASN1_F_I2D_ASN1_BIO_STREAM,ERR_R_MALLOC_FAILURE)
126 return 0;
127 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c 3

128 SMIME_crlf_copy(in, bio, flags);
129 (void)BIO_flush(bio);
130 /* Free up successive BIOs until we hit the old output BIO */
131 do
132 {
133 tbio = BIO_pop(bio);
134 BIO_free(bio);
135 bio = tbio;
136 } while (bio != out);
137 }
138 /* else just write out ASN1 structure which will have all content
139 * stored internally
140 */
141 else
142 ASN1_item_i2d_bio(it, out, val);
143 return 1;
144 }

146 /* Base 64 read and write of ASN1 structure */

148 static int B64_write_ASN1(BIO *out, ASN1_VALUE *val, BIO *in, int flags,
149 const ASN1_ITEM *it)
150 {
151 BIO *b64;
152 int r;
153 b64 = BIO_new(BIO_f_base64());
154 if(!b64)
155 {
156 ASN1err(ASN1_F_B64_WRITE_ASN1,ERR_R_MALLOC_FAILURE);
157 return 0;
158 }
159 /* prepend the b64 BIO so all data is base64 encoded.
160 */
161 out = BIO_push(b64, out);
162 r = i2d_ASN1_bio_stream(out, val, in, flags, it);
163 (void)BIO_flush(out);
164 BIO_pop(out);
165 BIO_free(b64);
166 return r;
167 }

169 /* Streaming ASN1 PEM write */

171 int PEM_write_bio_ASN1_stream(BIO *out, ASN1_VALUE *val, BIO *in, int flags,
172 const char *hdr,
173 const ASN1_ITEM *it)
174 {
175 int r;
176 BIO_printf(out, "-----BEGIN %s-----\n", hdr);
177 r = B64_write_ASN1(out, val, in, flags, it);
178 BIO_printf(out, "-----END %s-----\n", hdr);
179 return r;
180 }

182 static ASN1_VALUE *b64_read_asn1(BIO *bio, const ASN1_ITEM *it)
183 {
184 BIO *b64;
185 ASN1_VALUE *val;
186 if(!(b64 = BIO_new(BIO_f_base64()))) {
187 ASN1err(ASN1_F_B64_READ_ASN1,ERR_R_MALLOC_FAILURE);
188 return 0;
189 }
190 bio = BIO_push(b64, bio);
191 val = ASN1_item_d2i_bio(it, bio, NULL);
192 if(!val)
193 ASN1err(ASN1_F_B64_READ_ASN1,ASN1_R_DECODE_ERROR);

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c 4

194 (void)BIO_flush(bio);
195 bio = BIO_pop(bio);
196 BIO_free(b64);
197 return val;
198 }

200 /* Generate the MIME "micalg" parameter from RFC3851, RFC4490 */

202 static int asn1_write_micalg(BIO *out, STACK_OF(X509_ALGOR) *mdalgs)
203 {
204 const EVP_MD *md;
205 int i, have_unknown = 0, write_comma, ret = 0, md_nid;
206 have_unknown = 0;
207 write_comma = 0;
208 for (i = 0; i < sk_X509_ALGOR_num(mdalgs); i++)
209 {
210 if (write_comma)
211 BIO_write(out, ",", 1);
212 write_comma = 1;
213 md_nid = OBJ_obj2nid(sk_X509_ALGOR_value(mdalgs, i)->algorithm);
214 md = EVP_get_digestbynid(md_nid);
215 if (md && md->md_ctrl)
216 {
217 int rv;
218 char *micstr;
219 rv = md->md_ctrl(NULL, EVP_MD_CTRL_MICALG, 0, &micstr);
220 if (rv > 0)
221 {
222 BIO_puts(out, micstr);
223 OPENSSL_free(micstr);
224 continue;
225 }
226 if (rv != -2)
227 goto err;
228 }
229 switch(md_nid)
230 {
231 case NID_sha1:
232 BIO_puts(out, "sha1");
233 break;

235 case NID_md5:
236 BIO_puts(out, "md5");
237 break;

239 case NID_sha256:
240 BIO_puts(out, "sha-256");
241 break;

243 case NID_sha384:
244 BIO_puts(out, "sha-384");
245 break;

247 case NID_sha512:
248 BIO_puts(out, "sha-512");
249 break;

251 case NID_id_GostR3411_94:
252 BIO_puts(out, "gostr3411-94");
253 goto err;
254 break;

256 default:
257 if (have_unknown)
258 write_comma = 0;
259 else

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c 5

260 {
261 BIO_puts(out, "unknown");
262 have_unknown = 1;
263 }
264 break;

266 }
267 }

269 ret = 1;
270 err:

272 return ret;

274 }

276 /* SMIME sender */

278 int SMIME_write_ASN1(BIO *bio, ASN1_VALUE *val, BIO *data, int flags,
279 int ctype_nid, int econt_nid,
280 STACK_OF(X509_ALGOR) *mdalgs,
281 const ASN1_ITEM *it)
282 {
283 char bound[33], c;
284 int i;
285 const char *mime_prefix, *mime_eol, *cname = "smime.p7m";
286 const char *msg_type=NULL;
287 if (flags & SMIME_OLDMIME)
288 mime_prefix = "application/x-pkcs7-";
289 else
290 mime_prefix = "application/pkcs7-";

292 if (flags & SMIME_CRLFEOL)
293 mime_eol = "\r\n";
294 else
295 mime_eol = "\n";
296 if((flags & SMIME_DETACHED) && data) {
297 /* We want multipart/signed */
298 /* Generate a random boundary */
299 RAND_pseudo_bytes((unsigned char *)bound, 32);
300 for(i = 0; i < 32; i++) {
301 c = bound[i] & 0xf;
302 if(c < 10) c += ’0’;
303 else c += ’A’ - 10;
304 bound[i] = c;
305 }
306 bound[32] = 0;
307 BIO_printf(bio, "MIME-Version: 1.0%s", mime_eol);
308 BIO_printf(bio, "Content-Type: multipart/signed;");
309 BIO_printf(bio, " protocol=\"%ssignature\";", mime_prefix);
310 BIO_puts(bio, " micalg=\"");
311 asn1_write_micalg(bio, mdalgs);
312 BIO_printf(bio, "\"; boundary=\"----%s\"%s%s",
313 bound, mime_eol, mime_eol);
314 BIO_printf(bio, "This is an S/MIME signed message%s%s",
315 mime_eol, mime_eol);
316 /* Now write out the first part */
317 BIO_printf(bio, "------%s%s", bound, mime_eol);
318 if (!asn1_output_data(bio, data, val, flags, it))
319 return 0;
320 BIO_printf(bio, "%s------%s%s", mime_eol, bound, mime_eol);

322 /* Headers for signature */

324 BIO_printf(bio, "Content-Type: %ssignature;", mime_prefix);
325 BIO_printf(bio, " name=\"smime.p7s\"%s", mime_eol);

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c 6

326 BIO_printf(bio, "Content-Transfer-Encoding: base64%s",
327 mime_eol);
328 BIO_printf(bio, "Content-Disposition: attachment;");
329 BIO_printf(bio, " filename=\"smime.p7s\"%s%s",
330 mime_eol, mime_eol);
331 B64_write_ASN1(bio, val, NULL, 0, it);
332 BIO_printf(bio,"%s------%s--%s%s", mime_eol, bound,
333 mime_eol, mime_eol);
334 return 1;
335 }

337 /* Determine smime-type header */

339 if (ctype_nid == NID_pkcs7_enveloped)
340 msg_type = "enveloped-data";
341 else if (ctype_nid == NID_pkcs7_signed)
342 {
343 if (econt_nid == NID_id_smime_ct_receipt)
344 msg_type = "signed-receipt";
345 else if (sk_X509_ALGOR_num(mdalgs) >= 0)
346 msg_type = "signed-data";
347 else
348 msg_type = "certs-only";
349 }
350 else if (ctype_nid == NID_id_smime_ct_compressedData)
351 {
352 msg_type = "compressed-data";
353 cname = "smime.p7z";
354 }
355 /* MIME headers */
356 BIO_printf(bio, "MIME-Version: 1.0%s", mime_eol);
357 BIO_printf(bio, "Content-Disposition: attachment;");
358 BIO_printf(bio, " filename=\"%s\"%s", cname, mime_eol);
359 BIO_printf(bio, "Content-Type: %smime;", mime_prefix);
360 if (msg_type)
361 BIO_printf(bio, " smime-type=%s;", msg_type);
362 BIO_printf(bio, " name=\"%s\"%s", cname, mime_eol);
363 BIO_printf(bio, "Content-Transfer-Encoding: base64%s%s",
364 mime_eol, mime_eol);
365 if (!B64_write_ASN1(bio, val, data, flags, it))
366 return 0;
367 BIO_printf(bio, "%s", mime_eol);
368 return 1;
369 }

371 /* Handle output of ASN1 data */

374 static int asn1_output_data(BIO *out, BIO *data, ASN1_VALUE *val, int flags,
375 const ASN1_ITEM *it)
376 {
377 BIO *tmpbio;
378 const ASN1_AUX *aux = it->funcs;
379 ASN1_STREAM_ARG sarg;
380 int rv = 1;

382 /* If data is not deteched or resigning then the output BIO is
383 * already set up to finalise when it is written through.
384 */
385 if (!(flags & SMIME_DETACHED) || (flags & PKCS7_REUSE_DIGEST))
386 {
387 SMIME_crlf_copy(data, out, flags);
388 return 1;
389 }

391 if (!aux || !aux->asn1_cb)

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c 7

392 {
393 ASN1err(ASN1_F_ASN1_OUTPUT_DATA,
394 ASN1_R_STREAMING_NOT_SUPPORTED);
395 return 0;
396 }

398 sarg.out = out;
399 sarg.ndef_bio = NULL;
400 sarg.boundary = NULL;

402 /* Let ASN1 code prepend any needed BIOs */

404 if (aux->asn1_cb(ASN1_OP_DETACHED_PRE, &val, it, &sarg) <= 0)
405 return 0;

407 /* Copy data across, passing through filter BIOs for processing */
408 SMIME_crlf_copy(data, sarg.ndef_bio, flags);

410 /* Finalize structure */
411 if (aux->asn1_cb(ASN1_OP_DETACHED_POST, &val, it, &sarg) <= 0)
412 rv = 0;

414 /* Now remove any digests prepended to the BIO */

416 while (sarg.ndef_bio != out)
417 {
418 tmpbio = BIO_pop(sarg.ndef_bio);
419 BIO_free(sarg.ndef_bio);
420 sarg.ndef_bio = tmpbio;
421 }

423 return rv;

425 }

427 /* SMIME reader: handle multipart/signed and opaque signing.
428 * in multipart case the content is placed in a memory BIO
429 * pointed to by "bcont". In opaque this is set to NULL
430 */

432 ASN1_VALUE *SMIME_read_ASN1(BIO *bio, BIO **bcont, const ASN1_ITEM *it)
433 {
434 BIO *asnin;
435 STACK_OF(MIME_HEADER) *headers = NULL;
436 STACK_OF(BIO) *parts = NULL;
437 MIME_HEADER *hdr;
438 MIME_PARAM *prm;
439 ASN1_VALUE *val;
440 int ret;

442 if(bcont) *bcont = NULL;

444 if (!(headers = mime_parse_hdr(bio))) {
445 ASN1err(ASN1_F_SMIME_READ_ASN1,ASN1_R_MIME_PARSE_ERROR);
446 return NULL;
447 }

449 if(!(hdr = mime_hdr_find(headers, "content-type")) || !hdr->value) {
450 sk_MIME_HEADER_pop_free(headers, mime_hdr_free);
451 ASN1err(ASN1_F_SMIME_READ_ASN1, ASN1_R_NO_CONTENT_TYPE);
452 return NULL;
453 }

455 /* Handle multipart/signed */

457 if(!strcmp(hdr->value, "multipart/signed")) {

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c 8

458 /* Split into two parts */
459 prm = mime_param_find(hdr, "boundary");
460 if(!prm || !prm->param_value) {
461 sk_MIME_HEADER_pop_free(headers, mime_hdr_free);
462 ASN1err(ASN1_F_SMIME_READ_ASN1, ASN1_R_NO_MULTIPART_BOUN
463 return NULL;
464 }
465 ret = multi_split(bio, prm->param_value, &parts);
466 sk_MIME_HEADER_pop_free(headers, mime_hdr_free);
467 if(!ret || (sk_BIO_num(parts) != 2)) {
468 ASN1err(ASN1_F_SMIME_READ_ASN1, ASN1_R_NO_MULTIPART_BODY
469 sk_BIO_pop_free(parts, BIO_vfree);
470 return NULL;
471 }

473 /* Parse the signature piece */
474 asnin = sk_BIO_value(parts, 1);

476 if (!(headers = mime_parse_hdr(asnin))) {
477 ASN1err(ASN1_F_SMIME_READ_ASN1,ASN1_R_MIME_SIG_PARSE_ERR
478 sk_BIO_pop_free(parts, BIO_vfree);
479 return NULL;
480 }

482 /* Get content type */

484 if(!(hdr = mime_hdr_find(headers, "content-type")) ||
485 !hdr->value) {
486 sk_MIME_HEADER_pop_free(headers, mime_hdr_free);
487 ASN1err(ASN1_F_SMIME_READ_ASN1, ASN1_R_NO_SIG_CONTENT_TY
488 return NULL;
489 }

491 if(strcmp(hdr->value, "application/x-pkcs7-signature") &&
492 strcmp(hdr->value, "application/pkcs7-signature")) {
493 ASN1err(ASN1_F_SMIME_READ_ASN1,ASN1_R_SIG_INVALID_MIME_T
494 ERR_add_error_data(2, "type: ", hdr->value);
495 sk_MIME_HEADER_pop_free(headers, mime_hdr_free);
496 sk_BIO_pop_free(parts, BIO_vfree);
497 return NULL;
498 }
499 sk_MIME_HEADER_pop_free(headers, mime_hdr_free);
500 /* Read in ASN1 */
501 if(!(val = b64_read_asn1(asnin, it))) {
502 ASN1err(ASN1_F_SMIME_READ_ASN1,ASN1_R_ASN1_SIG_PARSE_ERR
503 sk_BIO_pop_free(parts, BIO_vfree);
504 return NULL;
505 }

507 if(bcont) {
508 *bcont = sk_BIO_value(parts, 0);
509 BIO_free(asnin);
510 sk_BIO_free(parts);
511 } else sk_BIO_pop_free(parts, BIO_vfree);
512 return val;
513 }
514
515 /* OK, if not multipart/signed try opaque signature */

517 if (strcmp (hdr->value, "application/x-pkcs7-mime") &&
518 strcmp (hdr->value, "application/pkcs7-mime")) {
519 ASN1err(ASN1_F_SMIME_READ_ASN1,ASN1_R_INVALID_MIME_TYPE);
520 ERR_add_error_data(2, "type: ", hdr->value);
521 sk_MIME_HEADER_pop_free(headers, mime_hdr_free);
522 return NULL;
523 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c 9

525 sk_MIME_HEADER_pop_free(headers, mime_hdr_free);
526
527 if(!(val = b64_read_asn1(bio, it))) {
528 ASN1err(ASN1_F_SMIME_READ_ASN1, ASN1_R_ASN1_PARSE_ERROR);
529 return NULL;
530 }
531 return val;

533 }

535 /* Copy text from one BIO to another making the output CRLF at EOL */
536 int SMIME_crlf_copy(BIO *in, BIO *out, int flags)
537 {
538 BIO *bf;
539 char eol;
540 int len;
541 char linebuf[MAX_SMLEN];
542 /* Buffer output so we don’t write one line at a time. This is
543 * useful when streaming as we don’t end up with one OCTET STRING
544 * per line.
545 */
546 bf = BIO_new(BIO_f_buffer());
547 if (!bf)
548 return 0;
549 out = BIO_push(bf, out);
550 if(flags & SMIME_BINARY)
551 {
552 while((len = BIO_read(in, linebuf, MAX_SMLEN)) > 0)
553 BIO_write(out, linebuf, len);
554 }
555 else
556 {
557 if(flags & SMIME_TEXT)
558 BIO_printf(out, "Content-Type: text/plain\r\n\r\n");
559 while ((len = BIO_gets(in, linebuf, MAX_SMLEN)) > 0)
560 {
561 eol = strip_eol(linebuf, &len);
562 if (len)
563 BIO_write(out, linebuf, len);
564 if(eol) BIO_write(out, "\r\n", 2);
565 }
566 }
567 (void)BIO_flush(out);
568 BIO_pop(out);
569 BIO_free(bf);
570 return 1;
571 }

573 /* Strip off headers if they are text/plain */
574 int SMIME_text(BIO *in, BIO *out)
575 {
576 char iobuf[4096];
577 int len;
578 STACK_OF(MIME_HEADER) *headers;
579 MIME_HEADER *hdr;

581 if (!(headers = mime_parse_hdr(in))) {
582 ASN1err(ASN1_F_SMIME_TEXT,ASN1_R_MIME_PARSE_ERROR);
583 return 0;
584 }
585 if(!(hdr = mime_hdr_find(headers, "content-type")) || !hdr->value) {
586 ASN1err(ASN1_F_SMIME_TEXT,ASN1_R_MIME_NO_CONTENT_TYPE);
587 sk_MIME_HEADER_pop_free(headers, mime_hdr_free);
588 return 0;
589 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c 10

590 if (strcmp (hdr->value, "text/plain")) {
591 ASN1err(ASN1_F_SMIME_TEXT,ASN1_R_INVALID_MIME_TYPE);
592 ERR_add_error_data(2, "type: ", hdr->value);
593 sk_MIME_HEADER_pop_free(headers, mime_hdr_free);
594 return 0;
595 }
596 sk_MIME_HEADER_pop_free(headers, mime_hdr_free);
597 while ((len = BIO_read(in, iobuf, sizeof(iobuf))) > 0)
598 BIO_write(out, iobuf, len);
599 if (len < 0)
600 return 0;
601 return 1;
602 }

604 /* Split a multipart/XXX message body into component parts: result is
605 * canonical parts in a STACK of bios
606 */

608 static int multi_split(BIO *bio, char *bound, STACK_OF(BIO) **ret)
609 {
610 char linebuf[MAX_SMLEN];
611 int len, blen;
612 int eol = 0, next_eol = 0;
613 BIO *bpart = NULL;
614 STACK_OF(BIO) *parts;
615 char state, part, first;

617 blen = strlen(bound);
618 part = 0;
619 state = 0;
620 first = 1;
621 parts = sk_BIO_new_null();
622 *ret = parts;
623 while ((len = BIO_gets(bio, linebuf, MAX_SMLEN)) > 0) {
624 state = mime_bound_check(linebuf, len, bound, blen);
625 if(state == 1) {
626 first = 1;
627 part++;
628 } else if(state == 2) {
629 sk_BIO_push(parts, bpart);
630 return 1;
631 } else if(part) {
632 /* Strip CR+LF from linebuf */
633 next_eol = strip_eol(linebuf, &len);
634 if(first) {
635 first = 0;
636 if(bpart) sk_BIO_push(parts, bpart);
637 bpart = BIO_new(BIO_s_mem());
638 BIO_set_mem_eof_return(bpart, 0);
639 } else if (eol)
640 BIO_write(bpart, "\r\n", 2);
641 eol = next_eol;
642 if (len)
643 BIO_write(bpart, linebuf, len);
644 }
645 }
646 return 0;
647 }

649 /* This is the big one: parse MIME header lines up to message body */

651 #define MIME_INVALID 0
652 #define MIME_START 1
653 #define MIME_TYPE 2
654 #define MIME_NAME 3
655 #define MIME_VALUE 4

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c 11

656 #define MIME_QUOTE 5
657 #define MIME_COMMENT 6

660 static STACK_OF(MIME_HEADER) *mime_parse_hdr(BIO *bio)
661 {
662 char *p, *q, c;
663 char *ntmp;
664 char linebuf[MAX_SMLEN];
665 MIME_HEADER *mhdr = NULL;
666 STACK_OF(MIME_HEADER) *headers;
667 int len, state, save_state = 0;

669 headers = sk_MIME_HEADER_new(mime_hdr_cmp);
670 while ((len = BIO_gets(bio, linebuf, MAX_SMLEN)) > 0) {
671 /* If whitespace at line start then continuation line */
672 if(mhdr && isspace((unsigned char)linebuf[0])) state = MIME_NAME;
673 else state = MIME_START;
674 ntmp = NULL;
675 /* Go through all characters */
676 for(p = linebuf, q = linebuf; (c = *p) && (c!=’\r’) && (c!=’\n’); p++) {

678 /* State machine to handle MIME headers
679 * if this looks horrible that’s because it *is*
680 */

682 switch(state) {
683 case MIME_START:
684 if(c == ’:’) {
685 state = MIME_TYPE;
686 *p = 0;
687 ntmp = strip_ends(q);
688 q = p + 1;
689 }
690 break;

692 case MIME_TYPE:
693 if(c == ’;’) {
694 mime_debug("Found End Value\n");
695 *p = 0;
696 mhdr = mime_hdr_new(ntmp, strip_ends(q));
697 sk_MIME_HEADER_push(headers, mhdr);
698 ntmp = NULL;
699 q = p + 1;
700 state = MIME_NAME;
701 } else if(c == ’(’) {
702 save_state = state;
703 state = MIME_COMMENT;
704 }
705 break;

707 case MIME_COMMENT:
708 if(c == ’)’) {
709 state = save_state;
710 }
711 break;

713 case MIME_NAME:
714 if(c == ’=’) {
715 state = MIME_VALUE;
716 *p = 0;
717 ntmp = strip_ends(q);
718 q = p + 1;
719 }
720 break ;

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c 12

722 case MIME_VALUE:
723 if(c == ’;’) {
724 state = MIME_NAME;
725 *p = 0;
726 mime_hdr_addparam(mhdr, ntmp, strip_ends(q));
727 ntmp = NULL;
728 q = p + 1;
729 } else if (c == ’"’) {
730 mime_debug("Found Quote\n");
731 state = MIME_QUOTE;
732 } else if(c == ’(’) {
733 save_state = state;
734 state = MIME_COMMENT;
735 }
736 break;

738 case MIME_QUOTE:
739 if(c == ’"’) {
740 mime_debug("Found Match Quote\n");
741 state = MIME_VALUE;
742 }
743 break;
744 }
745 }

747 if(state == MIME_TYPE) {
748 mhdr = mime_hdr_new(ntmp, strip_ends(q));
749 sk_MIME_HEADER_push(headers, mhdr);
750 } else if(state == MIME_VALUE)
751 mime_hdr_addparam(mhdr, ntmp, strip_ends(q));
752 if(p == linebuf) break; /* Blank line means end of headers */
753 }

755 return headers;

757 }

759 static char *strip_ends(char *name)
760 {
761 return strip_end(strip_start(name));
762 }

764 /* Strip a parameter of whitespace from start of param */
765 static char *strip_start(char *name)
766 {
767 char *p, c;
768 /* Look for first non white space or quote */
769 for(p = name; (c = *p) ;p++) {
770 if(c == ’"’) {
771 /* Next char is start of string if non null */
772 if(p[1]) return p + 1;
773 /* Else null string */
774 return NULL;
775 }
776 if(!isspace((unsigned char)c)) return p;
777 }
778 return NULL;
779 }

781 /* As above but strip from end of string : maybe should handle brackets? */
782 static char *strip_end(char *name)
783 {
784 char *p, c;
785 if(!name) return NULL;
786 /* Look for first non white space or quote */
787 for(p = name + strlen(name) - 1; p >= name ;p--) {

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c 13

788 c = *p;
789 if(c == ’"’) {
790 if(p - 1 == name) return NULL;
791 *p = 0;
792 return name;
793 }
794 if(isspace((unsigned char)c)) *p = 0;
795 else return name;
796 }
797 return NULL;
798 }

800 static MIME_HEADER *mime_hdr_new(char *name, char *value)
801 {
802 MIME_HEADER *mhdr;
803 char *tmpname, *tmpval, *p;
804 int c;
805 if(name) {
806 if(!(tmpname = BUF_strdup(name))) return NULL;
807 for(p = tmpname ; *p; p++) {
808 c = (unsigned char)*p;
809 if(isupper(c)) {
810 c = tolower(c);
811 *p = c;
812 }
813 }
814 } else tmpname = NULL;
815 if(value) {
816 if(!(tmpval = BUF_strdup(value))) return NULL;
817 for(p = tmpval ; *p; p++) {
818 c = (unsigned char)*p;
819 if(isupper(c)) {
820 c = tolower(c);
821 *p = c;
822 }
823 }
824 } else tmpval = NULL;
825 mhdr = (MIME_HEADER *) OPENSSL_malloc(sizeof(MIME_HEADER));
826 if(!mhdr) return NULL;
827 mhdr->name = tmpname;
828 mhdr->value = tmpval;
829 if(!(mhdr->params = sk_MIME_PARAM_new(mime_param_cmp))) return NULL;
830 return mhdr;
831 }
832
833 static int mime_hdr_addparam(MIME_HEADER *mhdr, char *name, char *value)
834 {
835 char *tmpname, *tmpval, *p;
836 int c;
837 MIME_PARAM *mparam;
838 if(name) {
839 tmpname = BUF_strdup(name);
840 if(!tmpname) return 0;
841 for(p = tmpname ; *p; p++) {
842 c = (unsigned char)*p;
843 if(isupper(c)) {
844 c = tolower(c);
845 *p = c;
846 }
847 }
848 } else tmpname = NULL;
849 if(value) {
850 tmpval = BUF_strdup(value);
851 if(!tmpval) return 0;
852 } else tmpval = NULL;
853 /* Parameter values are case sensitive so leave as is */

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c 14

854 mparam = (MIME_PARAM *) OPENSSL_malloc(sizeof(MIME_PARAM));
855 if(!mparam) return 0;
856 mparam->param_name = tmpname;
857 mparam->param_value = tmpval;
858 sk_MIME_PARAM_push(mhdr->params, mparam);
859 return 1;
860 }

862 static int mime_hdr_cmp(const MIME_HEADER * const *a,
863 const MIME_HEADER * const *b)
864 {
865 if (!(*a)->name || !(*b)->name)
866 return !!(*a)->name - !!(*b)->name;

868 return(strcmp((*a)->name, (*b)->name));
869 }

871 static int mime_param_cmp(const MIME_PARAM * const *a,
872 const MIME_PARAM * const *b)
873 {
874 if (!(*a)->param_name || !(*b)->param_name)
875 return !!(*a)->param_name - !!(*b)->param_name;
876 return(strcmp((*a)->param_name, (*b)->param_name));
877 }

879 /* Find a header with a given name (if possible) */

881 static MIME_HEADER *mime_hdr_find(STACK_OF(MIME_HEADER) *hdrs, char *name)
882 {
883 MIME_HEADER htmp;
884 int idx;
885 htmp.name = name;
886 idx = sk_MIME_HEADER_find(hdrs, &htmp);
887 if(idx < 0) return NULL;
888 return sk_MIME_HEADER_value(hdrs, idx);
889 }

891 static MIME_PARAM *mime_param_find(MIME_HEADER *hdr, char *name)
892 {
893 MIME_PARAM param;
894 int idx;
895 param.param_name = name;
896 idx = sk_MIME_PARAM_find(hdr->params, ¶m);
897 if(idx < 0) return NULL;
898 return sk_MIME_PARAM_value(hdr->params, idx);
899 }

901 static void mime_hdr_free(MIME_HEADER *hdr)
902 {
903 if(hdr->name) OPENSSL_free(hdr->name);
904 if(hdr->value) OPENSSL_free(hdr->value);
905 if(hdr->params) sk_MIME_PARAM_pop_free(hdr->params, mime_param_free);
906 OPENSSL_free(hdr);
907 }

909 static void mime_param_free(MIME_PARAM *param)
910 {
911 if(param->param_name) OPENSSL_free(param->param_name);
912 if(param->param_value) OPENSSL_free(param->param_value);
913 OPENSSL_free(param);
914 }

916 /* Check for a multipart boundary. Returns:
917 * 0 : no boundary
918 * 1 : part boundary
919 * 2 : final boundary

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_mime.c 15

920 */
921 static int mime_bound_check(char *line, int linelen, char *bound, int blen)
922 {
923 if(linelen == -1) linelen = strlen(line);
924 if(blen == -1) blen = strlen(bound);
925 /* Quickly eliminate if line length too short */
926 if(blen + 2 > linelen) return 0;
927 /* Check for part boundary */
928 if(!strncmp(line, "--", 2) && !strncmp(line + 2, bound, blen)) {
929 if(!strncmp(line + blen + 2, "--", 2)) return 2;
930 else return 1;
931 }
932 return 0;
933 }

935 static int strip_eol(char *linebuf, int *plen)
936 {
937 int len = *plen;
938 char *p, c;
939 int is_eol = 0;
940 p = linebuf + len - 1;
941 for (p = linebuf + len - 1; len > 0; len--, p--)
942 {
943 c = *p;
944 if (c == ’\n’)
945 is_eol = 1;
946 else if (c != ’\r’)
947 break;
948 }
949 *plen = len;
950 return is_eol;
951 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_moid.c 1

**
 4618 Fri May 30 18:31:29 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_moid.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* asn_moid.c */
2 /* Written by Stephen Henson (steve@openssl.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001-2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <ctype.h>
61 #include <openssl/crypto.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_moid.c 2

62 #include "cryptlib.h"
63 #include <openssl/conf.h>
64 #include <openssl/dso.h>
65 #include <openssl/x509.h>

67 /* Simple ASN1 OID module: add all objects in a given section */

69 static int do_create(char *value, char *name);

71 static int oid_module_init(CONF_IMODULE *md, const CONF *cnf)
72 {
73 int i;
74 const char *oid_section;
75 STACK_OF(CONF_VALUE) *sktmp;
76 CONF_VALUE *oval;
77 oid_section = CONF_imodule_get_value(md);
78 if(!(sktmp = NCONF_get_section(cnf, oid_section)))
79 {
80 ASN1err(ASN1_F_OID_MODULE_INIT, ASN1_R_ERROR_LOADING_SECTION);
81 return 0;
82 }
83 for(i = 0; i < sk_CONF_VALUE_num(sktmp); i++)
84 {
85 oval = sk_CONF_VALUE_value(sktmp, i);
86 if(!do_create(oval->value, oval->name))
87 {
88 ASN1err(ASN1_F_OID_MODULE_INIT, ASN1_R_ADDING_OBJECT);
89 return 0;
90 }
91 }
92 return 1;
93 }

95 static void oid_module_finish(CONF_IMODULE *md)
96 {
97 OBJ_cleanup();
98 }

100 void ASN1_add_oid_module(void)
101 {
102 CONF_module_add("oid_section", oid_module_init, oid_module_finish);
103 }

105 /* Create an OID based on a name value pair. Accept two formats.
106 * shortname = 1.2.3.4
107 * shortname = some long name, 1.2.3.4
108 */

111 static int do_create(char *value, char *name)
112 {
113 int nid;
114 ASN1_OBJECT *oid;
115 char *ln, *ostr, *p, *lntmp;
116 p = strrchr(value, ’,’);
117 if (!p)
118 {
119 ln = name;
120 ostr = value;
121 }
122 else
123 {
124 ln = NULL;
125 ostr = p + 1;
126 if (!*ostr)
127 return 0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_moid.c 3

128 while(isspace((unsigned char)*ostr)) ostr++;
129 }

131 nid = OBJ_create(ostr, name, ln);

133 if (nid == NID_undef)
134 return 0;

136 if (p)
137 {
138 ln = value;
139 while(isspace((unsigned char)*ln)) ln++;
140 p--;
141 while(isspace((unsigned char)*p))
142 {
143 if (p == ln)
144 return 0;
145 p--;
146 }
147 p++;
148 lntmp = OPENSSL_malloc((p - ln) + 1);
149 if (lntmp == NULL)
150 return 0;
151 memcpy(lntmp, ln, p - ln);
152 lntmp[p - ln] = 0;
153 oid = OBJ_nid2obj(nid);
154 oid->ln = lntmp;
155 }

157 return 1;
158 }
159
160

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_pack.c 1

**
 5939 Fri May 30 18:31:29 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_pack.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* asn_pack.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_pack.c 2

63 #ifndef NO_ASN1_OLD

65 /* ASN1 packing and unpacking functions */

67 /* Turn an ASN1 encoded SEQUENCE OF into a STACK of structures */

69 STACK_OF(OPENSSL_BLOCK) *ASN1_seq_unpack(const unsigned char *buf, int len,
70 d2i_of_void *d2i, void (*free_func)(OPENSSL_BLOCK))
71 {
72 STACK_OF(OPENSSL_BLOCK) *sk;
73 const unsigned char *pbuf;
74 pbuf = buf;
75 if (!(sk = d2i_ASN1_SET(NULL, &pbuf, len, d2i, free_func,
76 V_ASN1_SEQUENCE, V_ASN1_UNIVERSAL)))
77 ASN1err(ASN1_F_ASN1_SEQ_UNPACK,ASN1_R_DECODE_ERROR);
78 return sk;
79 }

81 /* Turn a STACK structures into an ASN1 encoded SEQUENCE OF structure in a
82 * OPENSSL_malloc’ed buffer
83 */

85 unsigned char *ASN1_seq_pack(STACK_OF(OPENSSL_BLOCK) *safes, i2d_of_void *i2d,
86 unsigned char **buf, int *len)
87 {
88 int safelen;
89 unsigned char *safe, *p;
90 if (!(safelen = i2d_ASN1_SET(safes, NULL, i2d, V_ASN1_SEQUENCE,
91 V_ASN1_UNIVERSAL, IS_SEQUENCE))) {
92 ASN1err(ASN1_F_ASN1_SEQ_PACK,ASN1_R_ENCODE_ERROR);
93 return NULL;
94 }
95 if (!(safe = OPENSSL_malloc (safelen))) {
96 ASN1err(ASN1_F_ASN1_SEQ_PACK,ERR_R_MALLOC_FAILURE);
97 return NULL;
98 }
99 p = safe;
100 i2d_ASN1_SET(safes, &p, i2d, V_ASN1_SEQUENCE, V_ASN1_UNIVERSAL,
101 IS_SEQUENCE);
102 if (len) *len = safelen;
103 if (buf) *buf = safe;
104 return safe;
105 }

107 /* Extract an ASN1 object from an ASN1_STRING */

109 void *ASN1_unpack_string(ASN1_STRING *oct, d2i_of_void *d2i)
110 {
111 const unsigned char *p;
112 char *ret;

114 p = oct->data;
115 if(!(ret = d2i(NULL, &p, oct->length)))
116 ASN1err(ASN1_F_ASN1_UNPACK_STRING,ASN1_R_DECODE_ERROR);
117 return ret;
118 }

120 /* Pack an ASN1 object into an ASN1_STRING */

122 ASN1_STRING *ASN1_pack_string(void *obj, i2d_of_void *i2d, ASN1_STRING **oct)
123 {
124 unsigned char *p;
125 ASN1_STRING *octmp;

127 if (!oct || !*oct) {

new/usr/src/lib/openssl/libsunw_crypto/asn1/asn_pack.c 3

128 if (!(octmp = ASN1_STRING_new ())) {
129 ASN1err(ASN1_F_ASN1_PACK_STRING,ERR_R_MALLOC_FAILURE);
130 return NULL;
131 }
132 if (oct) *oct = octmp;
133 } else octmp = *oct;
134
135 if (!(octmp->length = i2d(obj, NULL))) {
136 ASN1err(ASN1_F_ASN1_PACK_STRING,ASN1_R_ENCODE_ERROR);
137 return NULL;
138 }
139 if (!(p = OPENSSL_malloc (octmp->length))) {
140 ASN1err(ASN1_F_ASN1_PACK_STRING,ERR_R_MALLOC_FAILURE);
141 return NULL;
142 }
143 octmp->data = p;
144 i2d (obj, &p);
145 return octmp;
146 }

148 #endif

150 /* ASN1_ITEM versions of the above */

152 ASN1_STRING *ASN1_item_pack(void *obj, const ASN1_ITEM *it, ASN1_STRING **oct)
153 {
154 ASN1_STRING *octmp;

156 if (!oct || !*oct) {
157 if (!(octmp = ASN1_STRING_new ())) {
158 ASN1err(ASN1_F_ASN1_ITEM_PACK,ERR_R_MALLOC_FAILURE);
159 return NULL;
160 }
161 if (oct) *oct = octmp;
162 } else octmp = *oct;

164 if(octmp->data) {
165 OPENSSL_free(octmp->data);
166 octmp->data = NULL;
167 }
168
169 if (!(octmp->length = ASN1_item_i2d(obj, &octmp->data, it))) {
170 ASN1err(ASN1_F_ASN1_ITEM_PACK,ASN1_R_ENCODE_ERROR);
171 return NULL;
172 }
173 if (!octmp->data) {
174 ASN1err(ASN1_F_ASN1_ITEM_PACK,ERR_R_MALLOC_FAILURE);
175 return NULL;
176 }
177 return octmp;
178 }

180 /* Extract an ASN1 object from an ASN1_STRING */

182 void *ASN1_item_unpack(ASN1_STRING *oct, const ASN1_ITEM *it)
183 {
184 const unsigned char *p;
185 void *ret;

187 p = oct->data;
188 if(!(ret = ASN1_item_d2i(NULL, &p, oct->length, it)))
189 ASN1err(ASN1_F_ASN1_ITEM_UNPACK,ASN1_R_DECODE_ERROR);
190 return ret;
191 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/bio_asn1.c 1

**
 11758 Fri May 30 18:31:29 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/bio_asn1.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* bio_asn1.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 /* Experimental ASN1 BIO. When written through the data is converted
60 * to an ASN1 string type: default is OCTET STRING. Additional functions
61 * can be provided to add prefix and suffix data.

new/usr/src/lib/openssl/libsunw_crypto/asn1/bio_asn1.c 2

62 */

64 #include <string.h>
65 #include <openssl/bio.h>
66 #include <openssl/asn1.h>

68 /* Must be large enough for biggest tag+length */
69 #define DEFAULT_ASN1_BUF_SIZE 20

71 typedef enum
72 {
73 ASN1_STATE_START,
74 ASN1_STATE_PRE_COPY,
75 ASN1_STATE_HEADER,
76 ASN1_STATE_HEADER_COPY,
77 ASN1_STATE_DATA_COPY,
78 ASN1_STATE_POST_COPY,
79 ASN1_STATE_DONE
80 } asn1_bio_state_t;

82 typedef struct BIO_ASN1_EX_FUNCS_st
83 {
84 asn1_ps_func *ex_func;
85 asn1_ps_func *ex_free_func;
86 } BIO_ASN1_EX_FUNCS;

88 typedef struct BIO_ASN1_BUF_CTX_t
89 {
90 /* Internal state */
91 asn1_bio_state_t state;
92 /* Internal buffer */
93 unsigned char *buf;
94 /* Size of buffer */
95 int bufsize;
96 /* Current position in buffer */
97 int bufpos;
98 /* Current buffer length */
99 int buflen;
100 /* Amount of data to copy */
101 int copylen;
102 /* Class and tag to use */
103 int asn1_class, asn1_tag;
104 asn1_ps_func *prefix, *prefix_free, *suffix, *suffix_free;
105 /* Extra buffer for prefix and suffix data */
106 unsigned char *ex_buf;
107 int ex_len;
108 int ex_pos;
109 void *ex_arg;
110 } BIO_ASN1_BUF_CTX;

113 static int asn1_bio_write(BIO *h, const char *buf,int num);
114 static int asn1_bio_read(BIO *h, char *buf, int size);
115 static int asn1_bio_puts(BIO *h, const char *str);
116 static int asn1_bio_gets(BIO *h, char *str, int size);
117 static long asn1_bio_ctrl(BIO *h, int cmd, long arg1, void *arg2);
118 static int asn1_bio_new(BIO *h);
119 static int asn1_bio_free(BIO *data);
120 static long asn1_bio_callback_ctrl(BIO *h, int cmd, bio_info_cb *fp);

122 static int asn1_bio_init(BIO_ASN1_BUF_CTX *ctx, int size);
123 static int asn1_bio_flush_ex(BIO *b, BIO_ASN1_BUF_CTX *ctx,
124 asn1_ps_func *cleanup, asn1_bio_state_t next);
125 static int asn1_bio_setup_ex(BIO *b, BIO_ASN1_BUF_CTX *ctx,
126 asn1_ps_func *setup,
127 asn1_bio_state_t ex_state,

new/usr/src/lib/openssl/libsunw_crypto/asn1/bio_asn1.c 3

128 asn1_bio_state_t other_state);

130 static BIO_METHOD methods_asn1=
131 {
132 BIO_TYPE_ASN1,
133 "asn1",
134 asn1_bio_write,
135 asn1_bio_read,
136 asn1_bio_puts,
137 asn1_bio_gets,
138 asn1_bio_ctrl,
139 asn1_bio_new,
140 asn1_bio_free,
141 asn1_bio_callback_ctrl,
142 };

144 BIO_METHOD *BIO_f_asn1(void)
145 {
146 return(&methods_asn1);
147 }

150 static int asn1_bio_new(BIO *b)
151 {
152 BIO_ASN1_BUF_CTX *ctx;
153 ctx = OPENSSL_malloc(sizeof(BIO_ASN1_BUF_CTX));
154 if (!ctx)
155 return 0;
156 if (!asn1_bio_init(ctx, DEFAULT_ASN1_BUF_SIZE))
157 return 0;
158 b->init = 1;
159 b->ptr = (char *)ctx;
160 b->flags = 0;
161 return 1;
162 }

164 static int asn1_bio_init(BIO_ASN1_BUF_CTX *ctx, int size)
165 {
166 ctx->buf = OPENSSL_malloc(size);
167 if (!ctx->buf)
168 return 0;
169 ctx->bufsize = size;
170 ctx->bufpos = 0;
171 ctx->buflen = 0;
172 ctx->copylen = 0;
173 ctx->asn1_class = V_ASN1_UNIVERSAL;
174 ctx->asn1_tag = V_ASN1_OCTET_STRING;
175 ctx->ex_buf = 0;
176 ctx->ex_pos = 0;
177 ctx->ex_len = 0;
178 ctx->state = ASN1_STATE_START;
179 return 1;
180 }

182 static int asn1_bio_free(BIO *b)
183 {
184 BIO_ASN1_BUF_CTX *ctx;
185 ctx = (BIO_ASN1_BUF_CTX *) b->ptr;
186 if (ctx == NULL)
187 return 0;
188 if (ctx->buf)
189 OPENSSL_free(ctx->buf);
190 OPENSSL_free(ctx);
191 b->init = 0;
192 b->ptr = NULL;
193 b->flags = 0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/bio_asn1.c 4

194 return 1;
195 }

197 static int asn1_bio_write(BIO *b, const char *in , int inl)
198 {
199 BIO_ASN1_BUF_CTX *ctx;
200 int wrmax, wrlen, ret;
201 unsigned char *p;
202 if (!in || (inl < 0) || (b->next_bio == NULL))
203 return 0;
204 ctx = (BIO_ASN1_BUF_CTX *) b->ptr;
205 if (ctx == NULL)
206 return 0;

208 wrlen = 0;
209 ret = -1;

211 for(;;)
212 {
213 switch (ctx->state)
214 {

216 /* Setup prefix data, call it */
217 case ASN1_STATE_START:
218 if (!asn1_bio_setup_ex(b, ctx, ctx->prefix,
219 ASN1_STATE_PRE_COPY, ASN1_STATE_HEADER))
220 return 0;
221 break;

223 /* Copy any pre data first */
224 case ASN1_STATE_PRE_COPY:

226 ret = asn1_bio_flush_ex(b, ctx, ctx->prefix_free,
227 ASN1_STATE_HEADER);

229 if (ret <= 0)
230 goto done;

232 break;

234 case ASN1_STATE_HEADER:
235 ctx->buflen =
236 ASN1_object_size(0, inl, ctx->asn1_tag) - inl;
237 OPENSSL_assert(ctx->buflen <= ctx->bufsize);
238 p = ctx->buf;
239 ASN1_put_object(&p, 0, inl,
240 ctx->asn1_tag, ctx->asn1_class);
241 ctx->copylen = inl;
242 ctx->state = ASN1_STATE_HEADER_COPY;

244 break;

246 case ASN1_STATE_HEADER_COPY:
247 ret = BIO_write(b->next_bio,
248 ctx->buf + ctx->bufpos, ctx->buflen);
249 if (ret <= 0)
250 goto done;

252 ctx->buflen -= ret;
253 if (ctx->buflen)
254 ctx->bufpos += ret;
255 else
256 {
257 ctx->bufpos = 0;
258 ctx->state = ASN1_STATE_DATA_COPY;
259 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/bio_asn1.c 5

261 break;

263 case ASN1_STATE_DATA_COPY:

265 if (inl > ctx->copylen)
266 wrmax = ctx->copylen;
267 else
268 wrmax = inl;
269 ret = BIO_write(b->next_bio, in, wrmax);
270 if (ret <= 0)
271 break;
272 wrlen += ret;
273 ctx->copylen -= ret;
274 in += ret;
275 inl -= ret;

277 if (ctx->copylen == 0)
278 ctx->state = ASN1_STATE_HEADER;

280 if (inl == 0)
281 goto done;

283 break;

285 default:
286 BIO_clear_retry_flags(b);
287 return 0;

289 }

291 }

293 done:
294 BIO_clear_retry_flags(b);
295 BIO_copy_next_retry(b);

297 return (wrlen > 0) ? wrlen : ret;

299 }

301 static int asn1_bio_flush_ex(BIO *b, BIO_ASN1_BUF_CTX *ctx,
302 asn1_ps_func *cleanup, asn1_bio_state_t next)
303 {
304 int ret;
305 if (ctx->ex_len <= 0)
306 return 1;
307 for(;;)
308 {
309 ret = BIO_write(b->next_bio, ctx->ex_buf + ctx->ex_pos,
310 ctx->ex_len);
311 if (ret <= 0)
312 break;
313 ctx->ex_len -= ret;
314 if (ctx->ex_len > 0)
315 ctx->ex_pos += ret;
316 else
317 {
318 if(cleanup)
319 cleanup(b, &ctx->ex_buf, &ctx->ex_len,
320 &ctx->ex_arg);
321 ctx->state = next;
322 ctx->ex_pos = 0;
323 break;
324 }
325 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/bio_asn1.c 6

326 return ret;
327 }

329 static int asn1_bio_setup_ex(BIO *b, BIO_ASN1_BUF_CTX *ctx,
330 asn1_ps_func *setup,
331 asn1_bio_state_t ex_state,
332 asn1_bio_state_t other_state)
333 {
334 if (setup && !setup(b, &ctx->ex_buf, &ctx->ex_len, &ctx->ex_arg))
335 {
336 BIO_clear_retry_flags(b);
337 return 0;
338 }
339 if (ctx->ex_len > 0)
340 ctx->state = ex_state;
341 else
342 ctx->state = other_state;
343 return 1;
344 }

346 static int asn1_bio_read(BIO *b, char *in , int inl)
347 {
348 if (!b->next_bio)
349 return 0;
350 return BIO_read(b->next_bio, in , inl);
351 }

353 static int asn1_bio_puts(BIO *b, const char *str)
354 {
355 return asn1_bio_write(b, str, strlen(str));
356 }

358 static int asn1_bio_gets(BIO *b, char *str, int size)
359 {
360 if (!b->next_bio)
361 return 0;
362 return BIO_gets(b->next_bio, str , size);
363 }

365 static long asn1_bio_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp)
366 {
367 if (b->next_bio == NULL) return(0);
368 return BIO_callback_ctrl(b->next_bio,cmd,fp);
369 }

371 static long asn1_bio_ctrl(BIO *b, int cmd, long arg1, void *arg2)
372 {
373 BIO_ASN1_BUF_CTX *ctx;
374 BIO_ASN1_EX_FUNCS *ex_func;
375 long ret = 1;
376 ctx = (BIO_ASN1_BUF_CTX *) b->ptr;
377 if (ctx == NULL)
378 return 0;
379 switch(cmd)
380 {

382 case BIO_C_SET_PREFIX:
383 ex_func = arg2;
384 ctx->prefix = ex_func->ex_func;
385 ctx->prefix_free = ex_func->ex_free_func;
386 break;

388 case BIO_C_GET_PREFIX:
389 ex_func = arg2;
390 ex_func->ex_func = ctx->prefix;
391 ex_func->ex_free_func = ctx->prefix_free;

new/usr/src/lib/openssl/libsunw_crypto/asn1/bio_asn1.c 7

392 break;

394 case BIO_C_SET_SUFFIX:
395 ex_func = arg2;
396 ctx->suffix = ex_func->ex_func;
397 ctx->suffix_free = ex_func->ex_free_func;
398 break;

400 case BIO_C_GET_SUFFIX:
401 ex_func = arg2;
402 ex_func->ex_func = ctx->suffix;
403 ex_func->ex_free_func = ctx->suffix_free;
404 break;

406 case BIO_C_SET_EX_ARG:
407 ctx->ex_arg = arg2;
408 break;

410 case BIO_C_GET_EX_ARG:
411 *(void **)arg2 = ctx->ex_arg;
412 break;

414 case BIO_CTRL_FLUSH:
415 if (!b->next_bio)
416 return 0;

418 /* Call post function if possible */
419 if (ctx->state == ASN1_STATE_HEADER)
420 {
421 if (!asn1_bio_setup_ex(b, ctx, ctx->suffix,
422 ASN1_STATE_POST_COPY, ASN1_STATE_DONE))
423 return 0;
424 }

426 if (ctx->state == ASN1_STATE_POST_COPY)
427 {
428 ret = asn1_bio_flush_ex(b, ctx, ctx->suffix_free,
429 ASN1_STATE_DONE);
430 if (ret <= 0)
431 return ret;
432 }

434 if (ctx->state == ASN1_STATE_DONE)
435 return BIO_ctrl(b->next_bio, cmd, arg1, arg2);
436 else
437 {
438 BIO_clear_retry_flags(b);
439 return 0;
440 }
441 break;

444 default:
445 if (!b->next_bio)
446 return 0;
447 return BIO_ctrl(b->next_bio, cmd, arg1, arg2);

449 }

451 return ret;
452 }

454 static int asn1_bio_set_ex(BIO *b, int cmd,
455 asn1_ps_func *ex_func, asn1_ps_func *ex_free_func)
456 {
457 BIO_ASN1_EX_FUNCS extmp;

new/usr/src/lib/openssl/libsunw_crypto/asn1/bio_asn1.c 8

458 extmp.ex_func = ex_func;
459 extmp.ex_free_func = ex_free_func;
460 return BIO_ctrl(b, cmd, 0, &extmp);
461 }

463 static int asn1_bio_get_ex(BIO *b, int cmd,
464 asn1_ps_func **ex_func, asn1_ps_func **ex_free_func)
465 {
466 BIO_ASN1_EX_FUNCS extmp;
467 int ret;
468 ret = BIO_ctrl(b, cmd, 0, &extmp);
469 if (ret > 0)
470 {
471 *ex_func = extmp.ex_func;
472 *ex_free_func = extmp.ex_free_func;
473 }
474 return ret;
475 }

477 int BIO_asn1_set_prefix(BIO *b, asn1_ps_func *prefix, asn1_ps_func *prefix_free)
478 {
479 return asn1_bio_set_ex(b, BIO_C_SET_PREFIX, prefix, prefix_free);
480 }

482 int BIO_asn1_get_prefix(BIO *b, asn1_ps_func **pprefix, asn1_ps_func **pprefix_f
483 {
484 return asn1_bio_get_ex(b, BIO_C_GET_PREFIX, pprefix, pprefix_free);
485 }

487 int BIO_asn1_set_suffix(BIO *b, asn1_ps_func *suffix, asn1_ps_func *suffix_free)
488 {
489 return asn1_bio_set_ex(b, BIO_C_SET_SUFFIX, suffix, suffix_free);
490 }

492 int BIO_asn1_get_suffix(BIO *b, asn1_ps_func **psuffix, asn1_ps_func **psuffix_f
493 {
494 return asn1_bio_get_ex(b, BIO_C_GET_SUFFIX, psuffix, psuffix_free);
495 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/bio_ndef.c 1

**
 6972 Fri May 30 18:31:29 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/bio_ndef.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* bio_ndef.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 */

55 #include <openssl/asn1.h>
56 #include <openssl/asn1t.h>
57 #include <openssl/bio.h>
58 #include <openssl/err.h>

60 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/bio_ndef.c 2

62 /* Experimental NDEF ASN1 BIO support routines */

64 /* The usage is quite simple, initialize an ASN1 structure,
65 * get a BIO from it then any data written through the BIO
66 * will end up translated to approptiate format on the fly.
67 * The data is streamed out and does *not* need to be
68 * all held in memory at once.
69 *
70 * When the BIO is flushed the output is finalized and any
71 * signatures etc written out.
72 *
73 * The BIO is a ’proper’ BIO and can handle non blocking I/O
74 * correctly.
75 *
76 * The usage is simple. The implementation is *not*...
77 */

79 /* BIO support data stored in the ASN1 BIO ex_arg */

81 typedef struct ndef_aux_st
82 {
83 /* ASN1 structure this BIO refers to */
84 ASN1_VALUE *val;
85 const ASN1_ITEM *it;
86 /* Top of the BIO chain */
87 BIO *ndef_bio;
88 /* Output BIO */
89 BIO *out;
90 /* Boundary where content is inserted */
91 unsigned char **boundary;
92 /* DER buffer start */
93 unsigned char *derbuf;
94 } NDEF_SUPPORT;

96 static int ndef_prefix(BIO *b, unsigned char **pbuf, int *plen, void *parg);
97 static int ndef_prefix_free(BIO *b, unsigned char **pbuf, int *plen, void *parg)
98 static int ndef_suffix(BIO *b, unsigned char **pbuf, int *plen, void *parg);
99 static int ndef_suffix_free(BIO *b, unsigned char **pbuf, int *plen, void *parg)

101 BIO *BIO_new_NDEF(BIO *out, ASN1_VALUE *val, const ASN1_ITEM *it)
102 {
103 NDEF_SUPPORT *ndef_aux = NULL;
104 BIO *asn_bio = NULL;
105 const ASN1_AUX *aux = it->funcs;
106 ASN1_STREAM_ARG sarg;

108 if (!aux || !aux->asn1_cb)
109 {
110 ASN1err(ASN1_F_BIO_NEW_NDEF, ASN1_R_STREAMING_NOT_SUPPORTED);
111 return NULL;
112 }
113 ndef_aux = OPENSSL_malloc(sizeof(NDEF_SUPPORT));
114 asn_bio = BIO_new(BIO_f_asn1());

116 /* ASN1 bio needs to be next to output BIO */

118 out = BIO_push(asn_bio, out);

120 if (!ndef_aux || !asn_bio || !out)
121 goto err;

123 BIO_asn1_set_prefix(asn_bio, ndef_prefix, ndef_prefix_free);
124 BIO_asn1_set_suffix(asn_bio, ndef_suffix, ndef_suffix_free);

126 /* Now let callback prepend any digest, cipher etc BIOs
127 * ASN1 structure needs.

new/usr/src/lib/openssl/libsunw_crypto/asn1/bio_ndef.c 3

128 */

130 sarg.out = out;
131 sarg.ndef_bio = NULL;
132 sarg.boundary = NULL;

134 if (aux->asn1_cb(ASN1_OP_STREAM_PRE, &val, it, &sarg) <= 0)
135 goto err;

137 ndef_aux->val = val;
138 ndef_aux->it = it;
139 ndef_aux->ndef_bio = sarg.ndef_bio;
140 ndef_aux->boundary = sarg.boundary;
141 ndef_aux->out = out;

143 BIO_ctrl(asn_bio, BIO_C_SET_EX_ARG, 0, ndef_aux);

145 return sarg.ndef_bio;

147 err:
148 if (asn_bio)
149 BIO_free(asn_bio);
150 if (ndef_aux)
151 OPENSSL_free(ndef_aux);
152 return NULL;
153 }

155 static int ndef_prefix(BIO *b, unsigned char **pbuf, int *plen, void *parg)
156 {
157 NDEF_SUPPORT *ndef_aux;
158 unsigned char *p;
159 int derlen;

161 if (!parg)
162 return 0;

164 ndef_aux = *(NDEF_SUPPORT **)parg;

166 derlen = ASN1_item_ndef_i2d(ndef_aux->val, NULL, ndef_aux->it);
167 p = OPENSSL_malloc(derlen);
168 ndef_aux->derbuf = p;
169 *pbuf = p;
170 derlen = ASN1_item_ndef_i2d(ndef_aux->val, &p, ndef_aux->it);

172 if (!*ndef_aux->boundary)
173 return 0;

175 *plen = *ndef_aux->boundary - *pbuf;

177 return 1;
178 }

180 static int ndef_prefix_free(BIO *b, unsigned char **pbuf, int *plen, void *parg)
181 {
182 NDEF_SUPPORT *ndef_aux;

184 if (!parg)
185 return 0;

187 ndef_aux = *(NDEF_SUPPORT **)parg;

189 if (ndef_aux->derbuf)
190 OPENSSL_free(ndef_aux->derbuf);

192 ndef_aux->derbuf = NULL;
193 *pbuf = NULL;

new/usr/src/lib/openssl/libsunw_crypto/asn1/bio_ndef.c 4

194 *plen = 0;
195 return 1;
196 }

198 static int ndef_suffix_free(BIO *b, unsigned char **pbuf, int *plen, void *parg)
199 {
200 NDEF_SUPPORT **pndef_aux = (NDEF_SUPPORT **)parg;
201 if (!ndef_prefix_free(b, pbuf, plen, parg))
202 return 0;
203 OPENSSL_free(*pndef_aux);
204 *pndef_aux = NULL;
205 return 1;
206 }

208 static int ndef_suffix(BIO *b, unsigned char **pbuf, int *plen, void *parg)
209 {
210 NDEF_SUPPORT *ndef_aux;
211 unsigned char *p;
212 int derlen;
213 const ASN1_AUX *aux;
214 ASN1_STREAM_ARG sarg;

216 if (!parg)
217 return 0;

219 ndef_aux = *(NDEF_SUPPORT **)parg;

221 aux = ndef_aux->it->funcs;

223 /* Finalize structures */
224 sarg.ndef_bio = ndef_aux->ndef_bio;
225 sarg.out = ndef_aux->out;
226 sarg.boundary = ndef_aux->boundary;
227 if (aux->asn1_cb(ASN1_OP_STREAM_POST,
228 &ndef_aux->val, ndef_aux->it, &sarg) <= 0)
229 return 0;

231 derlen = ASN1_item_ndef_i2d(ndef_aux->val, NULL, ndef_aux->it);
232 p = OPENSSL_malloc(derlen);
233 ndef_aux->derbuf = p;
234 *pbuf = p;
235 derlen = ASN1_item_ndef_i2d(ndef_aux->val, &p, ndef_aux->it);

237 if (!*ndef_aux->boundary)
238 return 0;
239 *pbuf = *ndef_aux->boundary;
240 *plen = derlen - (*ndef_aux->boundary - ndef_aux->derbuf);

242 return 1;
243 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/d2i_pr.c 1

**
 5863 Fri May 30 18:31:29 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/d2i_pr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/d2i_pr.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/d2i_pr.c 2

62 #include <openssl/evp.h>
63 #include <openssl/objects.h>
64 #ifndef OPENSSL_NO_ENGINE
65 #include <openssl/engine.h>
66 #endif
67 #include <openssl/x509.h>
68 #include <openssl/asn1.h>
69 #include "asn1_locl.h"

71 EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **a, const unsigned char **pp,
72 long length)
73 {
74 EVP_PKEY *ret;

76 if ((a == NULL) || (*a == NULL))
77 {
78 if ((ret=EVP_PKEY_new()) == NULL)
79 {
80 ASN1err(ASN1_F_D2I_PRIVATEKEY,ERR_R_EVP_LIB);
81 return(NULL);
82 }
83 }
84 else
85 {
86 ret= *a;
87 #ifndef OPENSSL_NO_ENGINE
88 if (ret->engine)
89 {
90 ENGINE_finish(ret->engine);
91 ret->engine = NULL;
92 }
93 #endif
94 }

96 if (!EVP_PKEY_set_type(ret, type))
97 {
98 ASN1err(ASN1_F_D2I_PRIVATEKEY,ASN1_R_UNKNOWN_PUBLIC_KEY_TYPE);
99 goto err;
100 }

102 if (!ret->ameth->old_priv_decode ||
103 !ret->ameth->old_priv_decode(ret, pp, length))
104 {
105 if (ret->ameth->priv_decode)
106 {
107 PKCS8_PRIV_KEY_INFO *p8=NULL;
108 p8=d2i_PKCS8_PRIV_KEY_INFO(NULL,pp,length);
109 if (!p8) goto err;
110 EVP_PKEY_free(ret);
111 ret = EVP_PKCS82PKEY(p8);
112 PKCS8_PRIV_KEY_INFO_free(p8);

114 }
115 else
116 {
117 ASN1err(ASN1_F_D2I_PRIVATEKEY,ERR_R_ASN1_LIB);
118 goto err;
119 }
120 }
121 if (a != NULL) (*a)=ret;
122 return(ret);
123 err:
124 if ((ret != NULL) && ((a == NULL) || (*a != ret))) EVP_PKEY_free(ret);
125 return(NULL);
126 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/d2i_pr.c 3

128 /* This works like d2i_PrivateKey() except it automatically works out the type *

130 EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **a, const unsigned char **pp,
131 long length)
132 {
133 STACK_OF(ASN1_TYPE) *inkey;
134 const unsigned char *p;
135 int keytype;
136 p = *pp;
137 /* Dirty trick: read in the ASN1 data into a STACK_OF(ASN1_TYPE):
138 * by analyzing it we can determine the passed structure: this
139 * assumes the input is surrounded by an ASN1 SEQUENCE.
140 */
141 inkey = d2i_ASN1_SEQUENCE_ANY(NULL, &p, length);
142 /* Since we only need to discern "traditional format" RSA and DSA
143 * keys we can just count the elements.
144 */
145 if(sk_ASN1_TYPE_num(inkey) == 6)
146 keytype = EVP_PKEY_DSA;
147 else if (sk_ASN1_TYPE_num(inkey) == 4)
148 keytype = EVP_PKEY_EC;
149 else if (sk_ASN1_TYPE_num(inkey) == 3)
150 { /* This seems to be PKCS8, not traditional format */
151 PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL,p
152 EVP_PKEY *ret;

154 sk_ASN1_TYPE_pop_free(inkey, ASN1_TYPE_free);
155 if (!p8)
156 {
157 ASN1err(ASN1_F_D2I_AUTOPRIVATEKEY,ASN1_R_UNSUPPO
158 return NULL;
159 }
160 ret = EVP_PKCS82PKEY(p8);
161 PKCS8_PRIV_KEY_INFO_free(p8);
162 if (a) {
163 *a = ret;
164 }
165 return ret;
166 }
167 else keytype = EVP_PKEY_RSA;
168 sk_ASN1_TYPE_pop_free(inkey, ASN1_TYPE_free);
169 return d2i_PrivateKey(keytype, a, pp, length);
170 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/d2i_pu.c 1

**
 4854 Fri May 30 18:31:29 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/d2i_pu.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/d2i_pu.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/d2i_pu.c 2

62 #include <openssl/evp.h>
63 #include <openssl/objects.h>
64 #include <openssl/asn1.h>
65 #ifndef OPENSSL_NO_RSA
66 #include <openssl/rsa.h>
67 #endif
68 #ifndef OPENSSL_NO_DSA
69 #include <openssl/dsa.h>
70 #endif
71 #ifndef OPENSSL_NO_EC
72 #include <openssl/ec.h>
73 #endif

75 EVP_PKEY *d2i_PublicKey(int type, EVP_PKEY **a, const unsigned char **pp,
76 long length)
77 {
78 EVP_PKEY *ret;

80 if ((a == NULL) || (*a == NULL))
81 {
82 if ((ret=EVP_PKEY_new()) == NULL)
83 {
84 ASN1err(ASN1_F_D2I_PUBLICKEY,ERR_R_EVP_LIB);
85 return(NULL);
86 }
87 }
88 else ret= *a;

90 if (!EVP_PKEY_set_type(ret, type))
91 {
92 ASN1err(ASN1_F_D2I_PUBLICKEY,ERR_R_EVP_LIB);
93 goto err;
94 }

96 switch (EVP_PKEY_id(ret))
97 {
98 #ifndef OPENSSL_NO_RSA
99 case EVP_PKEY_RSA:
100 if ((ret->pkey.rsa=d2i_RSAPublicKey(NULL,
101 (const unsigned char **)pp,length)) == NULL) /* TMP UGLY
102 {
103 ASN1err(ASN1_F_D2I_PUBLICKEY,ERR_R_ASN1_LIB);
104 goto err;
105 }
106 break;
107 #endif
108 #ifndef OPENSSL_NO_DSA
109 case EVP_PKEY_DSA:
110 if (!d2i_DSAPublicKey(&(ret->pkey.dsa),
111 (const unsigned char **)pp,length)) /* TMP UGLY CAST */
112 {
113 ASN1err(ASN1_F_D2I_PUBLICKEY,ERR_R_ASN1_LIB);
114 goto err;
115 }
116 break;
117 #endif
118 #ifndef OPENSSL_NO_EC
119 case EVP_PKEY_EC:
120 if (!o2i_ECPublicKey(&(ret->pkey.ec),
121 (const unsigned char **)pp, length))
122 {
123 ASN1err(ASN1_F_D2I_PUBLICKEY, ERR_R_ASN1_LIB);
124 goto err;
125 }
126 break;
127 #endif

new/usr/src/lib/openssl/libsunw_crypto/asn1/d2i_pu.c 3

128 default:
129 ASN1err(ASN1_F_D2I_PUBLICKEY,ASN1_R_UNKNOWN_PUBLIC_KEY_TYPE);
130 goto err;
131 /* break; */
132 }
133 if (a != NULL) (*a)=ret;
134 return(ret);
135 err:
136 if ((ret != NULL) && ((a == NULL) || (*a != ret))) EVP_PKEY_free(ret);
137 return(NULL);
138 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/evp_asn1.c 1

**
 6252 Fri May 30 18:31:29 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/evp_asn1.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/evp_asn1.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/evp_asn1.c 2

62 #include <openssl/asn1_mac.h>

64 int ASN1_TYPE_set_octetstring(ASN1_TYPE *a, unsigned char *data, int len)
65 {
66 ASN1_STRING *os;

68 if ((os=M_ASN1_OCTET_STRING_new()) == NULL) return(0);
69 if (!M_ASN1_OCTET_STRING_set(os,data,len)) return(0);
70 ASN1_TYPE_set(a,V_ASN1_OCTET_STRING,os);
71 return(1);
72 }

74 /* int max_len: for returned value */
75 int ASN1_TYPE_get_octetstring(ASN1_TYPE *a, unsigned char *data,
76 int max_len)
77 {
78 int ret,num;
79 unsigned char *p;

81 if ((a->type != V_ASN1_OCTET_STRING) || (a->value.octet_string == NULL))
82 {
83 ASN1err(ASN1_F_ASN1_TYPE_GET_OCTETSTRING,ASN1_R_DATA_IS_WRONG);
84 return(-1);
85 }
86 p=M_ASN1_STRING_data(a->value.octet_string);
87 ret=M_ASN1_STRING_length(a->value.octet_string);
88 if (ret < max_len)
89 num=ret;
90 else
91 num=max_len;
92 memcpy(data,p,num);
93 return(ret);
94 }

96 int ASN1_TYPE_set_int_octetstring(ASN1_TYPE *a, long num, unsigned char *data,
97 int len)
98 {
99 int n,size;
100 ASN1_OCTET_STRING os,*osp;
101 ASN1_INTEGER in;
102 unsigned char *p;
103 unsigned char buf[32]; /* when they have 256bit longs,
104 * I’ll be in trouble */
105 in.data=buf;
106 in.length=32;
107 os.data=data;
108 os.type=V_ASN1_OCTET_STRING;
109 os.length=len;
110 ASN1_INTEGER_set(&in,num);
111 n = i2d_ASN1_INTEGER(&in,NULL);
112 n+=M_i2d_ASN1_OCTET_STRING(&os,NULL);

114 size=ASN1_object_size(1,n,V_ASN1_SEQUENCE);

116 if ((osp=ASN1_STRING_new()) == NULL) return(0);
117 /* Grow the ’string’ */
118 if (!ASN1_STRING_set(osp,NULL,size))
119 {
120 ASN1_STRING_free(osp);
121 return(0);
122 }

124 M_ASN1_STRING_length_set(osp, size);
125 p=M_ASN1_STRING_data(osp);

127 ASN1_put_object(&p,1,n,V_ASN1_SEQUENCE,V_ASN1_UNIVERSAL);

new/usr/src/lib/openssl/libsunw_crypto/asn1/evp_asn1.c 3

128 i2d_ASN1_INTEGER(&in,&p);
129 M_i2d_ASN1_OCTET_STRING(&os,&p);

131 ASN1_TYPE_set(a,V_ASN1_SEQUENCE,osp);
132 return(1);
133 }

135 /* we return the actual length..., num may be missing, in which
136 * case, set it to zero */
137 /* int max_len: for returned value */
138 int ASN1_TYPE_get_int_octetstring(ASN1_TYPE *a, long *num, unsigned char *data,
139 int max_len)
140 {
141 int ret= -1,n;
142 ASN1_INTEGER *ai=NULL;
143 ASN1_OCTET_STRING *os=NULL;
144 const unsigned char *p;
145 long length;
146 ASN1_const_CTX c;

148 if ((a->type != V_ASN1_SEQUENCE) || (a->value.sequence == NULL))
149 {
150 goto err;
151 }
152 p=M_ASN1_STRING_data(a->value.sequence);
153 length=M_ASN1_STRING_length(a->value.sequence);

155 c.pp= &p;
156 c.p=p;
157 c.max=p+length;
158 c.error=ASN1_R_DATA_IS_WRONG;

160 M_ASN1_D2I_start_sequence();
161 c.q=c.p;
162 if ((ai=d2i_ASN1_INTEGER(NULL,&c.p,c.slen)) == NULL) goto err;
163 c.slen-=(c.p-c.q);
164 c.q=c.p;
165 if ((os=d2i_ASN1_OCTET_STRING(NULL,&c.p,c.slen)) == NULL) goto err;
166 c.slen-=(c.p-c.q);
167 if (!M_ASN1_D2I_end_sequence()) goto err;

169 if (num != NULL)
170 *num=ASN1_INTEGER_get(ai);

172 ret=M_ASN1_STRING_length(os);
173 if (max_len > ret)
174 n=ret;
175 else
176 n=max_len;

178 if (data != NULL)
179 memcpy(data,M_ASN1_STRING_data(os),n);
180 if (0)
181 {
182 err:
183 ASN1err(ASN1_F_ASN1_TYPE_GET_INT_OCTETSTRING,ASN1_R_DATA_IS_WRON
184 }
185 if (os != NULL) M_ASN1_OCTET_STRING_free(os);
186 if (ai != NULL) M_ASN1_INTEGER_free(ai);
187 return(ret);
188 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/f_enum.c 1

**
 5967 Fri May 30 18:31:30 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/f_enum.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/f_enum.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/f_enum.c 2

62 #include <openssl/asn1.h>

64 /* Based on a_int.c: equivalent ENUMERATED functions */

66 int i2a_ASN1_ENUMERATED(BIO *bp, ASN1_ENUMERATED *a)
67 {
68 int i,n=0;
69 static const char *h="0123456789ABCDEF";
70 char buf[2];

72 if (a == NULL) return(0);

74 if (a->length == 0)
75 {
76 if (BIO_write(bp,"00",2) != 2) goto err;
77 n=2;
78 }
79 else
80 {
81 for (i=0; i<a->length; i++)
82 {
83 if ((i != 0) && (i%35 == 0))
84 {
85 if (BIO_write(bp,"\\\n",2) != 2) goto err;
86 n+=2;
87 }
88 buf[0]=h[((unsigned char)a->data[i]>>4)&0x0f];
89 buf[1]=h[((unsigned char)a->data[i])&0x0f];
90 if (BIO_write(bp,buf,2) != 2) goto err;
91 n+=2;
92 }
93 }
94 return(n);
95 err:
96 return(-1);
97 }

99 int a2i_ASN1_ENUMERATED(BIO *bp, ASN1_ENUMERATED *bs, char *buf, int size)
100 {
101 int ret=0;
102 int i,j,k,m,n,again,bufsize;
103 unsigned char *s=NULL,*sp;
104 unsigned char *bufp;
105 int num=0,slen=0,first=1;

107 bs->type=V_ASN1_ENUMERATED;

109 bufsize=BIO_gets(bp,buf,size);
110 for (;;)
111 {
112 if (bufsize < 1) goto err_sl;
113 i=bufsize;
114 if (buf[i-1] == ’\n’) buf[--i]=’\0’;
115 if (i == 0) goto err_sl;
116 if (buf[i-1] == ’\r’) buf[--i]=’\0’;
117 if (i == 0) goto err_sl;
118 again=(buf[i-1] == ’\\’);

120 for (j=0; j<i; j++)
121 {
122 if (!(((buf[j] >= ’0’) && (buf[j] <= ’9’)) ||
123 ((buf[j] >= ’a’) && (buf[j] <= ’f’)) ||
124 ((buf[j] >= ’A’) && (buf[j] <= ’F’))))
125 {
126 i=j;
127 break;

new/usr/src/lib/openssl/libsunw_crypto/asn1/f_enum.c 3

128 }
129 }
130 buf[i]=’\0’;
131 /* We have now cleared all the crap off the end of the
132 * line */
133 if (i < 2) goto err_sl;

135 bufp=(unsigned char *)buf;
136 if (first)
137 {
138 first=0;
139 if ((bufp[0] == ’0’) && (buf[1] == ’0’))
140 {
141 bufp+=2;
142 i-=2;
143 }
144 }
145 k=0;
146 i-=again;
147 if (i%2 != 0)
148 {
149 ASN1err(ASN1_F_A2I_ASN1_ENUMERATED,ASN1_R_ODD_NUMBER_OF_
150 goto err;
151 }
152 i/=2;
153 if (num+i > slen)
154 {
155 if (s == NULL)
156 sp=(unsigned char *)OPENSSL_malloc(
157 (unsigned int)num+i*2);
158 else
159 sp=(unsigned char *)OPENSSL_realloc(s,
160 (unsigned int)num+i*2);
161 if (sp == NULL)
162 {
163 ASN1err(ASN1_F_A2I_ASN1_ENUMERATED,ERR_R_MALLOC_
164 if (s != NULL) OPENSSL_free(s);
165 goto err;
166 }
167 s=sp;
168 slen=num+i*2;
169 }
170 for (j=0; j<i; j++,k+=2)
171 {
172 for (n=0; n<2; n++)
173 {
174 m=bufp[k+n];
175 if ((m >= ’0’) && (m <= ’9’))
176 m-=’0’;
177 else if ((m >= ’a’) && (m <= ’f’))
178 m=m-’a’+10;
179 else if ((m >= ’A’) && (m <= ’F’))
180 m=m-’A’+10;
181 else
182 {
183 ASN1err(ASN1_F_A2I_ASN1_ENUMERATED,ASN1_
184 goto err;
185 }
186 s[num+j]<<=4;
187 s[num+j]|=m;
188 }
189 }
190 num+=i;
191 if (again)
192 bufsize=BIO_gets(bp,buf,size);
193 else

new/usr/src/lib/openssl/libsunw_crypto/asn1/f_enum.c 4

194 break;
195 }
196 bs->length=num;
197 bs->data=s;
198 ret=1;
199 err:
200 if (0)
201 {
202 err_sl:
203 ASN1err(ASN1_F_A2I_ASN1_ENUMERATED,ASN1_R_SHORT_LINE);
204 }
205 return(ret);
206 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/f_int.c 1

**
 6222 Fri May 30 18:31:30 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/f_int.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/f_int.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/f_int.c 2

62 #include <openssl/asn1.h>

64 int i2a_ASN1_INTEGER(BIO *bp, ASN1_INTEGER *a)
65 {
66 int i,n=0;
67 static const char *h="0123456789ABCDEF";
68 char buf[2];

70 if (a == NULL) return(0);

72 if (a->type & V_ASN1_NEG)
73 {
74 if (BIO_write(bp, "-", 1) != 1) goto err;
75 n = 1;
76 }

78 if (a->length == 0)
79 {
80 if (BIO_write(bp,"00",2) != 2) goto err;
81 n += 2;
82 }
83 else
84 {
85 for (i=0; i<a->length; i++)
86 {
87 if ((i != 0) && (i%35 == 0))
88 {
89 if (BIO_write(bp,"\\\n",2) != 2) goto err;
90 n+=2;
91 }
92 buf[0]=h[((unsigned char)a->data[i]>>4)&0x0f];
93 buf[1]=h[((unsigned char)a->data[i])&0x0f];
94 if (BIO_write(bp,buf,2) != 2) goto err;
95 n+=2;
96 }
97 }
98 return(n);
99 err:
100 return(-1);
101 }

103 int a2i_ASN1_INTEGER(BIO *bp, ASN1_INTEGER *bs, char *buf, int size)
104 {
105 int ret=0;
106 int i,j,k,m,n,again,bufsize;
107 unsigned char *s=NULL,*sp;
108 unsigned char *bufp;
109 int num=0,slen=0,first=1;

111 bs->type=V_ASN1_INTEGER;

113 bufsize=BIO_gets(bp,buf,size);
114 for (;;)
115 {
116 if (bufsize < 1) goto err_sl;
117 i=bufsize;
118 if (buf[i-1] == ’\n’) buf[--i]=’\0’;
119 if (i == 0) goto err_sl;
120 if (buf[i-1] == ’\r’) buf[--i]=’\0’;
121 if (i == 0) goto err_sl;
122 again=(buf[i-1] == ’\\’);

124 for (j=0; j<i; j++)
125 {
126 #ifndef CHARSET_EBCDIC
127 if (!(((buf[j] >= ’0’) && (buf[j] <= ’9’)) ||

new/usr/src/lib/openssl/libsunw_crypto/asn1/f_int.c 3

128 ((buf[j] >= ’a’) && (buf[j] <= ’f’)) ||
129 ((buf[j] >= ’A’) && (buf[j] <= ’F’))))
130 #else
131 /* This #ifdef is not strictly necessary, since
132 * the characters A...F a...f 0...9 are contiguous
133 * (yes, even in EBCDIC - but not the whole alphabet).
134 * Nevertheless, isxdigit() is faster.
135 */
136 if (!isxdigit(buf[j]))
137 #endif
138 {
139 i=j;
140 break;
141 }
142 }
143 buf[i]=’\0’;
144 /* We have now cleared all the crap off the end of the
145 * line */
146 if (i < 2) goto err_sl;

148 bufp=(unsigned char *)buf;
149 if (first)
150 {
151 first=0;
152 if ((bufp[0] == ’0’) && (buf[1] == ’0’))
153 {
154 bufp+=2;
155 i-=2;
156 }
157 }
158 k=0;
159 i-=again;
160 if (i%2 != 0)
161 {
162 ASN1err(ASN1_F_A2I_ASN1_INTEGER,ASN1_R_ODD_NUMBER_OF_CHA
163 goto err;
164 }
165 i/=2;
166 if (num+i > slen)
167 {
168 if (s == NULL)
169 sp=(unsigned char *)OPENSSL_malloc(
170 (unsigned int)num+i*2);
171 else
172 sp=OPENSSL_realloc_clean(s,slen,num+i*2);
173 if (sp == NULL)
174 {
175 ASN1err(ASN1_F_A2I_ASN1_INTEGER,ERR_R_MALLOC_FAI
176 if (s != NULL) OPENSSL_free(s);
177 goto err;
178 }
179 s=sp;
180 slen=num+i*2;
181 }
182 for (j=0; j<i; j++,k+=2)
183 {
184 for (n=0; n<2; n++)
185 {
186 m=bufp[k+n];
187 if ((m >= ’0’) && (m <= ’9’))
188 m-=’0’;
189 else if ((m >= ’a’) && (m <= ’f’))
190 m=m-’a’+10;
191 else if ((m >= ’A’) && (m <= ’F’))
192 m=m-’A’+10;
193 else

new/usr/src/lib/openssl/libsunw_crypto/asn1/f_int.c 4

194 {
195 ASN1err(ASN1_F_A2I_ASN1_INTEGER,ASN1_R_N
196 goto err;
197 }
198 s[num+j]<<=4;
199 s[num+j]|=m;
200 }
201 }
202 num+=i;
203 if (again)
204 bufsize=BIO_gets(bp,buf,size);
205 else
206 break;
207 }
208 bs->length=num;
209 bs->data=s;
210 ret=1;
211 err:
212 if (0)
213 {
214 err_sl:
215 ASN1err(ASN1_F_A2I_ASN1_INTEGER,ASN1_R_SHORT_LINE);
216 }
217 return(ret);
218 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/f_string.c 1

**
 6081 Fri May 30 18:31:30 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/f_string.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/f_string.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/f_string.c 2

62 #include <openssl/asn1.h>

64 int i2a_ASN1_STRING(BIO *bp, ASN1_STRING *a, int type)
65 {
66 int i,n=0;
67 static const char *h="0123456789ABCDEF";
68 char buf[2];

70 if (a == NULL) return(0);

72 if (a->length == 0)
73 {
74 if (BIO_write(bp,"0",1) != 1) goto err;
75 n=1;
76 }
77 else
78 {
79 for (i=0; i<a->length; i++)
80 {
81 if ((i != 0) && (i%35 == 0))
82 {
83 if (BIO_write(bp,"\\\n",2) != 2) goto err;
84 n+=2;
85 }
86 buf[0]=h[((unsigned char)a->data[i]>>4)&0x0f];
87 buf[1]=h[((unsigned char)a->data[i])&0x0f];
88 if (BIO_write(bp,buf,2) != 2) goto err;
89 n+=2;
90 }
91 }
92 return(n);
93 err:
94 return(-1);
95 }

97 int a2i_ASN1_STRING(BIO *bp, ASN1_STRING *bs, char *buf, int size)
98 {
99 int ret=0;
100 int i,j,k,m,n,again,bufsize;
101 unsigned char *s=NULL,*sp;
102 unsigned char *bufp;
103 int num=0,slen=0,first=1;

105 bufsize=BIO_gets(bp,buf,size);
106 for (;;)
107 {
108 if (bufsize < 1)
109 {
110 if (first)
111 break;
112 else
113 goto err_sl;
114 }
115 first=0;

117 i=bufsize;
118 if (buf[i-1] == ’\n’) buf[--i]=’\0’;
119 if (i == 0) goto err_sl;
120 if (buf[i-1] == ’\r’) buf[--i]=’\0’;
121 if (i == 0) goto err_sl;
122 again=(buf[i-1] == ’\\’);

124 for (j=i-1; j>0; j--)
125 {
126 #ifndef CHARSET_EBCDIC
127 if (!(((buf[j] >= ’0’) && (buf[j] <= ’9’)) ||

new/usr/src/lib/openssl/libsunw_crypto/asn1/f_string.c 3

128 ((buf[j] >= ’a’) && (buf[j] <= ’f’)) ||
129 ((buf[j] >= ’A’) && (buf[j] <= ’F’))))
130 #else
131 /* This #ifdef is not strictly necessary, since
132 * the characters A...F a...f 0...9 are contiguous
133 * (yes, even in EBCDIC - but not the whole alphabet).
134 * Nevertheless, isxdigit() is faster.
135 */
136 if (!isxdigit(buf[j]))
137 #endif
138 {
139 i=j;
140 break;
141 }
142 }
143 buf[i]=’\0’;
144 /* We have now cleared all the crap off the end of the
145 * line */
146 if (i < 2) goto err_sl;

148 bufp=(unsigned char *)buf;

150 k=0;
151 i-=again;
152 if (i%2 != 0)
153 {
154 ASN1err(ASN1_F_A2I_ASN1_STRING,ASN1_R_ODD_NUMBER_OF_CHAR
155 goto err;
156 }
157 i/=2;
158 if (num+i > slen)
159 {
160 if (s == NULL)
161 sp=(unsigned char *)OPENSSL_malloc(
162 (unsigned int)num+i*2);
163 else
164 sp=(unsigned char *)OPENSSL_realloc(s,
165 (unsigned int)num+i*2);
166 if (sp == NULL)
167 {
168 ASN1err(ASN1_F_A2I_ASN1_STRING,ERR_R_MALLOC_FAIL
169 if (s != NULL) OPENSSL_free(s);
170 goto err;
171 }
172 s=sp;
173 slen=num+i*2;
174 }
175 for (j=0; j<i; j++,k+=2)
176 {
177 for (n=0; n<2; n++)
178 {
179 m=bufp[k+n];
180 if ((m >= ’0’) && (m <= ’9’))
181 m-=’0’;
182 else if ((m >= ’a’) && (m <= ’f’))
183 m=m-’a’+10;
184 else if ((m >= ’A’) && (m <= ’F’))
185 m=m-’A’+10;
186 else
187 {
188 ASN1err(ASN1_F_A2I_ASN1_STRING,ASN1_R_NO
189 goto err;
190 }
191 s[num+j]<<=4;
192 s[num+j]|=m;
193 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/f_string.c 4

194 }
195 num+=i;
196 if (again)
197 bufsize=BIO_gets(bp,buf,size);
198 else
199 break;
200 }
201 bs->length=num;
202 bs->data=s;
203 ret=1;
204 err:
205 if (0)
206 {
207 err_sl:
208 ASN1err(ASN1_F_A2I_ASN1_STRING,ASN1_R_SHORT_LINE);
209 }
210 return(ret);
211 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/i2d_pr.c 1

**
 3731 Fri May 30 18:31:30 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/i2d_pr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/i2d_pr.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/i2d_pr.c 2

62 #include <openssl/x509.h>
63 #include "asn1_locl.h"

65 int i2d_PrivateKey(EVP_PKEY *a, unsigned char **pp)
66 {
67 if (a->ameth && a->ameth->old_priv_encode)
68 {
69 return a->ameth->old_priv_encode(a, pp);
70 }
71 if (a->ameth && a->ameth->priv_encode) {
72 PKCS8_PRIV_KEY_INFO *p8 = EVP_PKEY2PKCS8(a);
73 int ret = i2d_PKCS8_PRIV_KEY_INFO(p8,pp);
74 PKCS8_PRIV_KEY_INFO_free(p8);
75 return ret;
76 }
77 ASN1err(ASN1_F_I2D_PRIVATEKEY,ASN1_R_UNSUPPORTED_PUBLIC_KEY_TYPE);
78 return(-1);
79 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/i2d_pu.c 1

**
 3935 Fri May 30 18:31:30 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/i2d_pu.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/i2d_pu.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/i2d_pu.c 2

62 #include <openssl/evp.h>
63 #include <openssl/objects.h>
64 #ifndef OPENSSL_NO_RSA
65 #include <openssl/rsa.h>
66 #endif
67 #ifndef OPENSSL_NO_DSA
68 #include <openssl/dsa.h>
69 #endif
70 #ifndef OPENSSL_NO_EC
71 #include <openssl/ec.h>
72 #endif

74 int i2d_PublicKey(EVP_PKEY *a, unsigned char **pp)
75 {
76 switch (a->type)
77 {
78 #ifndef OPENSSL_NO_RSA
79 case EVP_PKEY_RSA:
80 return(i2d_RSAPublicKey(a->pkey.rsa,pp));
81 #endif
82 #ifndef OPENSSL_NO_DSA
83 case EVP_PKEY_DSA:
84 return(i2d_DSAPublicKey(a->pkey.dsa,pp));
85 #endif
86 #ifndef OPENSSL_NO_EC
87 case EVP_PKEY_EC:
88 return(i2o_ECPublicKey(a->pkey.ec, pp));
89 #endif
90 default:
91 ASN1err(ASN1_F_I2D_PUBLICKEY,ASN1_R_UNSUPPORTED_PUBLIC_KEY_TYPE)
92 return(-1);
93 }
94 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/n_pkey.c 1

**
 10589 Fri May 30 18:31:30 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/n_pkey.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/n_pkey.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #ifndef OPENSSL_NO_RSA

new/usr/src/lib/openssl/libsunw_crypto/asn1/n_pkey.c 2

62 #include <openssl/rsa.h>
63 #include <openssl/objects.h>
64 #include <openssl/asn1t.h>
65 #include <openssl/asn1_mac.h>
66 #include <openssl/evp.h>
67 #include <openssl/x509.h>

70 #ifndef OPENSSL_NO_RC4

72 typedef struct netscape_pkey_st
73 {
74 long version;
75 X509_ALGOR *algor;
76 ASN1_OCTET_STRING *private_key;
77 } NETSCAPE_PKEY;

79 typedef struct netscape_encrypted_pkey_st
80 {
81 ASN1_OCTET_STRING *os;
82 /* This is the same structure as DigestInfo so use it:
83 * although this isn’t really anything to do with
84 * digests.
85 */
86 X509_SIG *enckey;
87 } NETSCAPE_ENCRYPTED_PKEY;

90 ASN1_BROKEN_SEQUENCE(NETSCAPE_ENCRYPTED_PKEY) = {
91 ASN1_SIMPLE(NETSCAPE_ENCRYPTED_PKEY, os, ASN1_OCTET_STRING),
92 ASN1_SIMPLE(NETSCAPE_ENCRYPTED_PKEY, enckey, X509_SIG)
93 } ASN1_BROKEN_SEQUENCE_END(NETSCAPE_ENCRYPTED_PKEY)

95 DECLARE_ASN1_FUNCTIONS_const(NETSCAPE_ENCRYPTED_PKEY)
96 DECLARE_ASN1_ENCODE_FUNCTIONS_const(NETSCAPE_ENCRYPTED_PKEY,NETSCAPE_ENCRYPTED_P
97 IMPLEMENT_ASN1_FUNCTIONS_const(NETSCAPE_ENCRYPTED_PKEY)

99 ASN1_SEQUENCE(NETSCAPE_PKEY) = {
100 ASN1_SIMPLE(NETSCAPE_PKEY, version, LONG),
101 ASN1_SIMPLE(NETSCAPE_PKEY, algor, X509_ALGOR),
102 ASN1_SIMPLE(NETSCAPE_PKEY, private_key, ASN1_OCTET_STRING)
103 } ASN1_SEQUENCE_END(NETSCAPE_PKEY)

105 DECLARE_ASN1_FUNCTIONS_const(NETSCAPE_PKEY)
106 DECLARE_ASN1_ENCODE_FUNCTIONS_const(NETSCAPE_PKEY,NETSCAPE_PKEY)
107 IMPLEMENT_ASN1_FUNCTIONS_const(NETSCAPE_PKEY)

109 static RSA *d2i_RSA_NET_2(RSA **a, ASN1_OCTET_STRING *os,
110 int (*cb)(char *buf, int len, const char *prompt,
111 int verify),
112 int sgckey);

114 int i2d_Netscape_RSA(const RSA *a, unsigned char **pp,
115 int (*cb)(char *buf, int len, const char *prompt,
116 int verify))
117 {
118 return i2d_RSA_NET(a, pp, cb, 0);
119 }

121 int i2d_RSA_NET(const RSA *a, unsigned char **pp,
122 int (*cb)(char *buf, int len, const char *prompt, int verify),
123 int sgckey)
124 {
125 int i, j, ret = 0;
126 int rsalen, pkeylen, olen;
127 NETSCAPE_PKEY *pkey = NULL;

new/usr/src/lib/openssl/libsunw_crypto/asn1/n_pkey.c 3

128 NETSCAPE_ENCRYPTED_PKEY *enckey = NULL;
129 unsigned char buf[256],*zz;
130 unsigned char key[EVP_MAX_KEY_LENGTH];
131 EVP_CIPHER_CTX ctx;
132 EVP_CIPHER_CTX_init(&ctx);

134 if (a == NULL) return(0);

136 if ((pkey=NETSCAPE_PKEY_new()) == NULL) goto err;
137 if ((enckey=NETSCAPE_ENCRYPTED_PKEY_new()) == NULL) goto err;
138 pkey->version = 0;

140 pkey->algor->algorithm=OBJ_nid2obj(NID_rsaEncryption);
141 if ((pkey->algor->parameter=ASN1_TYPE_new()) == NULL) goto err;
142 pkey->algor->parameter->type=V_ASN1_NULL;

144 rsalen = i2d_RSAPrivateKey(a, NULL);

146 /* Fake some octet strings just for the initial length
147 * calculation.
148 */

150 pkey->private_key->length=rsalen;

152 pkeylen=i2d_NETSCAPE_PKEY(pkey,NULL);

154 enckey->enckey->digest->length = pkeylen;

156 enckey->os->length = 11; /* "private-key" */

158 enckey->enckey->algor->algorithm=OBJ_nid2obj(NID_rc4);
159 if ((enckey->enckey->algor->parameter=ASN1_TYPE_new()) == NULL) goto err
160 enckey->enckey->algor->parameter->type=V_ASN1_NULL;

162 if (pp == NULL)
163 {
164 olen = i2d_NETSCAPE_ENCRYPTED_PKEY(enckey, NULL);
165 NETSCAPE_PKEY_free(pkey);
166 NETSCAPE_ENCRYPTED_PKEY_free(enckey);
167 return olen;
168 }

171 /* Since its RC4 encrypted length is actual length */
172 if ((zz=(unsigned char *)OPENSSL_malloc(rsalen)) == NULL)
173 {
174 ASN1err(ASN1_F_I2D_RSA_NET,ERR_R_MALLOC_FAILURE);
175 goto err;
176 }

178 pkey->private_key->data = zz;
179 /* Write out private key encoding */
180 i2d_RSAPrivateKey(a,&zz);

182 if ((zz=OPENSSL_malloc(pkeylen)) == NULL)
183 {
184 ASN1err(ASN1_F_I2D_RSA_NET,ERR_R_MALLOC_FAILURE);
185 goto err;
186 }

188 if (!ASN1_STRING_set(enckey->os, "private-key", -1))
189 {
190 ASN1err(ASN1_F_I2D_RSA_NET,ERR_R_MALLOC_FAILURE);
191 goto err;
192 }
193 enckey->enckey->digest->data = zz;

new/usr/src/lib/openssl/libsunw_crypto/asn1/n_pkey.c 4

194 i2d_NETSCAPE_PKEY(pkey,&zz);

196 /* Wipe the private key encoding */
197 OPENSSL_cleanse(pkey->private_key->data, rsalen);
198
199 if (cb == NULL)
200 cb=EVP_read_pw_string;
201 i=cb((char *)buf,256,"Enter Private Key password:",1);
202 if (i != 0)
203 {
204 ASN1err(ASN1_F_I2D_RSA_NET,ASN1_R_BAD_PASSWORD_READ);
205 goto err;
206 }
207 i = strlen((char *)buf);
208 /* If the key is used for SGC the algorithm is modified a little. */
209 if(sgckey) {
210 if (!EVP_Digest(buf, i, buf, NULL, EVP_md5(), NULL))
211 goto err;
212 memcpy(buf + 16, "SGCKEYSALT", 10);
213 i = 26;
214 }

216 if (!EVP_BytesToKey(EVP_rc4(),EVP_md5(),NULL,buf,i,1,key,NULL))
217 goto err;
218 OPENSSL_cleanse(buf,256);

220 /* Encrypt private key in place */
221 zz = enckey->enckey->digest->data;
222 if (!EVP_EncryptInit_ex(&ctx,EVP_rc4(),NULL,key,NULL))
223 goto err;
224 if (!EVP_EncryptUpdate(&ctx,zz,&i,zz,pkeylen))
225 goto err;
226 if (!EVP_EncryptFinal_ex(&ctx,zz + i,&j))
227 goto err;

229 ret = i2d_NETSCAPE_ENCRYPTED_PKEY(enckey, pp);
230 err:
231 EVP_CIPHER_CTX_cleanup(&ctx);
232 NETSCAPE_ENCRYPTED_PKEY_free(enckey);
233 NETSCAPE_PKEY_free(pkey);
234 return(ret);
235 }

238 RSA *d2i_Netscape_RSA(RSA **a, const unsigned char **pp, long length,
239 int (*cb)(char *buf, int len, const char *prompt,
240 int verify))
241 {
242 return d2i_RSA_NET(a, pp, length, cb, 0);
243 }

245 RSA *d2i_RSA_NET(RSA **a, const unsigned char **pp, long length,
246 int (*cb)(char *buf, int len, const char *prompt, int verify),
247 int sgckey)
248 {
249 RSA *ret=NULL;
250 const unsigned char *p;
251 NETSCAPE_ENCRYPTED_PKEY *enckey = NULL;

253 p = *pp;

255 enckey = d2i_NETSCAPE_ENCRYPTED_PKEY(NULL, &p, length);
256 if(!enckey) {
257 ASN1err(ASN1_F_D2I_RSA_NET,ASN1_R_DECODING_ERROR);
258 return NULL;
259 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/n_pkey.c 5

261 if ((enckey->os->length != 11) || (strncmp("private-key",
262 (char *)enckey->os->data,11) != 0))
263 {
264 ASN1err(ASN1_F_D2I_RSA_NET,ASN1_R_PRIVATE_KEY_HEADER_MISSING);
265 NETSCAPE_ENCRYPTED_PKEY_free(enckey);
266 return NULL;
267 }
268 if (OBJ_obj2nid(enckey->enckey->algor->algorithm) != NID_rc4)
269 {
270 ASN1err(ASN1_F_D2I_RSA_NET,ASN1_R_UNSUPPORTED_ENCRYPTION_ALGORIT
271 goto err;
272 }
273 if (cb == NULL)
274 cb=EVP_read_pw_string;
275 if ((ret=d2i_RSA_NET_2(a, enckey->enckey->digest,cb, sgckey)) == NULL) g

277 *pp = p;

279 err:
280 NETSCAPE_ENCRYPTED_PKEY_free(enckey);
281 return ret;

283 }

285 static RSA *d2i_RSA_NET_2(RSA **a, ASN1_OCTET_STRING *os,
286 int (*cb)(char *buf, int len, const char *prompt,
287 int verify), int sgckey)
288 {
289 NETSCAPE_PKEY *pkey=NULL;
290 RSA *ret=NULL;
291 int i,j;
292 unsigned char buf[256];
293 const unsigned char *zz;
294 unsigned char key[EVP_MAX_KEY_LENGTH];
295 EVP_CIPHER_CTX ctx;
296 EVP_CIPHER_CTX_init(&ctx);

298 i=cb((char *)buf,256,"Enter Private Key password:",0);
299 if (i != 0)
300 {
301 ASN1err(ASN1_F_D2I_RSA_NET_2,ASN1_R_BAD_PASSWORD_READ);
302 goto err;
303 }

305 i = strlen((char *)buf);
306 if(sgckey){
307 if (!EVP_Digest(buf, i, buf, NULL, EVP_md5(), NULL))
308 goto err;
309 memcpy(buf + 16, "SGCKEYSALT", 10);
310 i = 26;
311 }
312
313 if (!EVP_BytesToKey(EVP_rc4(),EVP_md5(),NULL,buf,i,1,key,NULL))
314 goto err;
315 OPENSSL_cleanse(buf,256);

317 if (!EVP_DecryptInit_ex(&ctx,EVP_rc4(),NULL, key,NULL))
318 goto err;
319 if (!EVP_DecryptUpdate(&ctx,os->data,&i,os->data,os->length))
320 goto err;
321 if (!EVP_DecryptFinal_ex(&ctx,&(os->data[i]),&j))
322 goto err;
323 os->length=i+j;

325 zz=os->data;

new/usr/src/lib/openssl/libsunw_crypto/asn1/n_pkey.c 6

327 if ((pkey=d2i_NETSCAPE_PKEY(NULL,&zz,os->length)) == NULL)
328 {
329 ASN1err(ASN1_F_D2I_RSA_NET_2,ASN1_R_UNABLE_TO_DECODE_RSA_PRIVATE
330 goto err;
331 }
332
333 zz=pkey->private_key->data;
334 if ((ret=d2i_RSAPrivateKey(a,&zz,pkey->private_key->length)) == NULL)
335 {
336 ASN1err(ASN1_F_D2I_RSA_NET_2,ASN1_R_UNABLE_TO_DECODE_RSA_KEY);
337 goto err;
338 }
339 err:
340 EVP_CIPHER_CTX_cleanup(&ctx);
341 NETSCAPE_PKEY_free(pkey);
342 return(ret);
343 }

345 #endif /* OPENSSL_NO_RC4 */

347 #else /* !OPENSSL_NO_RSA */

349 # if PEDANTIC
350 static void *dummy=&dummy;
351 # endif

353 #endif

new/usr/src/lib/openssl/libsunw_crypto/asn1/nsseq.c 1

**
 3489 Fri May 30 18:31:30 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/nsseq.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* nsseq.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/nsseq.c 2

62 #include <openssl/x509.h>
63 #include <openssl/objects.h>

65 static int nsseq_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
66 void *exarg)
67 {
68 if(operation == ASN1_OP_NEW_POST) {
69 NETSCAPE_CERT_SEQUENCE *nsseq;
70 nsseq = (NETSCAPE_CERT_SEQUENCE *)*pval;
71 nsseq->type = OBJ_nid2obj(NID_netscape_cert_sequence);
72 }
73 return 1;
74 }

76 /* Netscape certificate sequence structure */

78 ASN1_SEQUENCE_cb(NETSCAPE_CERT_SEQUENCE, nsseq_cb) = {
79 ASN1_SIMPLE(NETSCAPE_CERT_SEQUENCE, type, ASN1_OBJECT),
80 ASN1_EXP_SEQUENCE_OF_OPT(NETSCAPE_CERT_SEQUENCE, certs, X509, 0)
81 } ASN1_SEQUENCE_END_cb(NETSCAPE_CERT_SEQUENCE, NETSCAPE_CERT_SEQUENCE)

83 IMPLEMENT_ASN1_FUNCTIONS(NETSCAPE_CERT_SEQUENCE)

new/usr/src/lib/openssl/libsunw_crypto/asn1/p5_pbe.c 1

**
 4709 Fri May 30 18:31:30 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/p5_pbe.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p5_pbe.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/p5_pbe.c 2

62 #include <openssl/x509.h>
63 #include <openssl/rand.h>

65 /* PKCS#5 password based encryption structure */

67 ASN1_SEQUENCE(PBEPARAM) = {
68 ASN1_SIMPLE(PBEPARAM, salt, ASN1_OCTET_STRING),
69 ASN1_SIMPLE(PBEPARAM, iter, ASN1_INTEGER)
70 } ASN1_SEQUENCE_END(PBEPARAM)

72 IMPLEMENT_ASN1_FUNCTIONS(PBEPARAM)

75 /* Set an algorithm identifier for a PKCS#5 PBE algorithm */

77 int PKCS5_pbe_set0_algor(X509_ALGOR *algor, int alg, int iter,
78 const unsigned char *salt, int saltlen)
79 {
80 PBEPARAM *pbe=NULL;
81 ASN1_STRING *pbe_str=NULL;
82 unsigned char *sstr;

84 pbe = PBEPARAM_new();
85 if (!pbe)
86 {
87 ASN1err(ASN1_F_PKCS5_PBE_SET0_ALGOR,ERR_R_MALLOC_FAILURE);
88 goto err;
89 }
90 if(iter <= 0)
91 iter = PKCS5_DEFAULT_ITER;
92 if (!ASN1_INTEGER_set(pbe->iter, iter))
93 {
94 ASN1err(ASN1_F_PKCS5_PBE_SET0_ALGOR,ERR_R_MALLOC_FAILURE);
95 goto err;
96 }
97 if (!saltlen)
98 saltlen = PKCS5_SALT_LEN;
99 if (!ASN1_STRING_set(pbe->salt, NULL, saltlen))
100 {
101 ASN1err(ASN1_F_PKCS5_PBE_SET0_ALGOR,ERR_R_MALLOC_FAILURE);
102 goto err;
103 }
104 sstr = ASN1_STRING_data(pbe->salt);
105 if (salt)
106 memcpy(sstr, salt, saltlen);
107 else if (RAND_pseudo_bytes(sstr, saltlen) < 0)
108 goto err;

110 if(!ASN1_item_pack(pbe, ASN1_ITEM_rptr(PBEPARAM), &pbe_str))
111 {
112 ASN1err(ASN1_F_PKCS5_PBE_SET0_ALGOR,ERR_R_MALLOC_FAILURE);
113 goto err;
114 }

116 PBEPARAM_free(pbe);
117 pbe = NULL;

119 if (X509_ALGOR_set0(algor, OBJ_nid2obj(alg), V_ASN1_SEQUENCE, pbe_str))
120 return 1;

122 err:
123 if (pbe != NULL)
124 PBEPARAM_free(pbe);
125 if (pbe_str != NULL)
126 ASN1_STRING_free(pbe_str);
127 return 0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/p5_pbe.c 3

128 }

130 /* Return an algorithm identifier for a PKCS#5 PBE algorithm */

132 X509_ALGOR *PKCS5_pbe_set(int alg, int iter,
133 const unsigned char *salt, int saltlen)
134 {
135 X509_ALGOR *ret;
136 ret = X509_ALGOR_new();
137 if (!ret)
138 {
139 ASN1err(ASN1_F_PKCS5_PBE_SET,ERR_R_MALLOC_FAILURE);
140 return NULL;
141 }

143 if (PKCS5_pbe_set0_algor(ret, alg, iter, salt, saltlen))
144 return ret;

146 X509_ALGOR_free(ret);
147 return NULL;
148 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/p5_pbev2.c 1

**
 8023 Fri May 30 18:31:30 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/p5_pbev2.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p5_pbev2.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999-2004.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/p5_pbev2.c 2

62 #include <openssl/x509.h>
63 #include <openssl/rand.h>

65 /* PKCS#5 v2.0 password based encryption structures */

67 ASN1_SEQUENCE(PBE2PARAM) = {
68 ASN1_SIMPLE(PBE2PARAM, keyfunc, X509_ALGOR),
69 ASN1_SIMPLE(PBE2PARAM, encryption, X509_ALGOR)
70 } ASN1_SEQUENCE_END(PBE2PARAM)

72 IMPLEMENT_ASN1_FUNCTIONS(PBE2PARAM)

74 ASN1_SEQUENCE(PBKDF2PARAM) = {
75 ASN1_SIMPLE(PBKDF2PARAM, salt, ASN1_ANY),
76 ASN1_SIMPLE(PBKDF2PARAM, iter, ASN1_INTEGER),
77 ASN1_OPT(PBKDF2PARAM, keylength, ASN1_INTEGER),
78 ASN1_OPT(PBKDF2PARAM, prf, X509_ALGOR)
79 } ASN1_SEQUENCE_END(PBKDF2PARAM)

81 IMPLEMENT_ASN1_FUNCTIONS(PBKDF2PARAM)

83 /* Return an algorithm identifier for a PKCS#5 v2.0 PBE algorithm:
84 * yes I know this is horrible!
85 *
86 * Extended version to allow application supplied PRF NID and IV.
87 */

89 X509_ALGOR *PKCS5_pbe2_set_iv(const EVP_CIPHER *cipher, int iter,
90 unsigned char *salt, int saltlen,
91 unsigned char *aiv, int prf_nid)
92 {
93 X509_ALGOR *scheme = NULL, *kalg = NULL, *ret = NULL;
94 int alg_nid, keylen;
95 EVP_CIPHER_CTX ctx;
96 unsigned char iv[EVP_MAX_IV_LENGTH];
97 PBE2PARAM *pbe2 = NULL;
98 ASN1_OBJECT *obj;

100 alg_nid = EVP_CIPHER_type(cipher);
101 if(alg_nid == NID_undef) {
102 ASN1err(ASN1_F_PKCS5_PBE2_SET_IV,
103 ASN1_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER);
104 goto err;
105 }
106 obj = OBJ_nid2obj(alg_nid);

108 if(!(pbe2 = PBE2PARAM_new())) goto merr;

110 /* Setup the AlgorithmIdentifier for the encryption scheme */
111 scheme = pbe2->encryption;

113 scheme->algorithm = obj;
114 if(!(scheme->parameter = ASN1_TYPE_new())) goto merr;

116 /* Create random IV */
117 if (EVP_CIPHER_iv_length(cipher))
118 {
119 if (aiv)
120 memcpy(iv, aiv, EVP_CIPHER_iv_length(cipher));
121 else if (RAND_pseudo_bytes(iv, EVP_CIPHER_iv_length(cipher)) < 0
122 goto err;
123 }

125 EVP_CIPHER_CTX_init(&ctx);

127 /* Dummy cipherinit to just setup the IV, and PRF */

new/usr/src/lib/openssl/libsunw_crypto/asn1/p5_pbev2.c 3

128 if (!EVP_CipherInit_ex(&ctx, cipher, NULL, NULL, iv, 0))
129 goto err;
130 if(EVP_CIPHER_param_to_asn1(&ctx, scheme->parameter) < 0) {
131 ASN1err(ASN1_F_PKCS5_PBE2_SET_IV,
132 ASN1_R_ERROR_SETTING_CIPHER_PARAMS);
133 EVP_CIPHER_CTX_cleanup(&ctx);
134 goto err;
135 }
136 /* If prf NID unspecified see if cipher has a preference.
137 * An error is OK here: just means use default PRF.
138 */
139 if ((prf_nid == -1) &&
140 EVP_CIPHER_CTX_ctrl(&ctx, EVP_CTRL_PBE_PRF_NID, 0, &prf_nid) <= 0)
141 {
142 ERR_clear_error();
143 prf_nid = NID_hmacWithSHA1;
144 }
145 EVP_CIPHER_CTX_cleanup(&ctx);

147 /* If its RC2 then we’d better setup the key length */

149 if(alg_nid == NID_rc2_cbc)
150 keylen = EVP_CIPHER_key_length(cipher);
151 else
152 keylen = -1;

154 /* Setup keyfunc */

156 X509_ALGOR_free(pbe2->keyfunc);

158 pbe2->keyfunc = PKCS5_pbkdf2_set(iter, salt, saltlen, prf_nid, keylen);

160 if (!pbe2->keyfunc)
161 goto merr;

163 /* Now set up top level AlgorithmIdentifier */

165 if(!(ret = X509_ALGOR_new())) goto merr;
166 if(!(ret->parameter = ASN1_TYPE_new())) goto merr;

168 ret->algorithm = OBJ_nid2obj(NID_pbes2);

170 /* Encode PBE2PARAM into parameter */

172 if(!ASN1_item_pack(pbe2, ASN1_ITEM_rptr(PBE2PARAM),
173 &ret->parameter->value.sequence)) goto merr;
174 ret->parameter->type = V_ASN1_SEQUENCE;

176 PBE2PARAM_free(pbe2);
177 pbe2 = NULL;

179 return ret;

181 merr:
182 ASN1err(ASN1_F_PKCS5_PBE2_SET_IV,ERR_R_MALLOC_FAILURE);

184 err:
185 PBE2PARAM_free(pbe2);
186 /* Note ’scheme’ is freed as part of pbe2 */
187 X509_ALGOR_free(kalg);
188 X509_ALGOR_free(ret);

190 return NULL;

192 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/p5_pbev2.c 4

194 X509_ALGOR *PKCS5_pbe2_set(const EVP_CIPHER *cipher, int iter,
195 unsigned char *salt, int saltlen)
196 {
197 return PKCS5_pbe2_set_iv(cipher, iter, salt, saltlen, NULL, -1);
198 }

200 X509_ALGOR *PKCS5_pbkdf2_set(int iter, unsigned char *salt, int saltlen,
201 int prf_nid, int keylen)
202 {
203 X509_ALGOR *keyfunc = NULL;
204 PBKDF2PARAM *kdf = NULL;
205 ASN1_OCTET_STRING *osalt = NULL;

207 if(!(kdf = PBKDF2PARAM_new()))
208 goto merr;
209 if(!(osalt = M_ASN1_OCTET_STRING_new()))
210 goto merr;

212 kdf->salt->value.octet_string = osalt;
213 kdf->salt->type = V_ASN1_OCTET_STRING;

215 if (!saltlen)
216 saltlen = PKCS5_SALT_LEN;
217 if (!(osalt->data = OPENSSL_malloc (saltlen)))
218 goto merr;

220 osalt->length = saltlen;

222 if (salt)
223 memcpy (osalt->data, salt, saltlen);
224 else if (RAND_pseudo_bytes (osalt->data, saltlen) < 0)
225 goto merr;

227 if(iter <= 0)
228 iter = PKCS5_DEFAULT_ITER;

230 if(!ASN1_INTEGER_set(kdf->iter, iter))
231 goto merr;

233 /* If have a key len set it up */

235 if(keylen > 0)
236 {
237 if(!(kdf->keylength = M_ASN1_INTEGER_new()))
238 goto merr;
239 if(!ASN1_INTEGER_set (kdf->keylength, keylen))
240 goto merr;
241 }

243 /* prf can stay NULL if we are using hmacWithSHA1 */
244 if (prf_nid > 0 && prf_nid != NID_hmacWithSHA1)
245 {
246 kdf->prf = X509_ALGOR_new();
247 if (!kdf->prf)
248 goto merr;
249 X509_ALGOR_set0(kdf->prf, OBJ_nid2obj(prf_nid),
250 V_ASN1_NULL, NULL);
251 }

253 /* Finally setup the keyfunc structure */

255 keyfunc = X509_ALGOR_new();
256 if (!keyfunc)
257 goto merr;

259 keyfunc->algorithm = OBJ_nid2obj(NID_id_pbkdf2);

new/usr/src/lib/openssl/libsunw_crypto/asn1/p5_pbev2.c 5

261 /* Encode PBKDF2PARAM into parameter of pbe2 */

263 if(!(keyfunc->parameter = ASN1_TYPE_new()))
264 goto merr;

266 if(!ASN1_item_pack(kdf, ASN1_ITEM_rptr(PBKDF2PARAM),
267 &keyfunc->parameter->value.sequence))
268 goto merr;
269 keyfunc->parameter->type = V_ASN1_SEQUENCE;

271 PBKDF2PARAM_free(kdf);
272 return keyfunc;

274 merr:
275 ASN1err(ASN1_F_PKCS5_PBKDF2_SET,ERR_R_MALLOC_FAILURE);
276 PBKDF2PARAM_free(kdf);
277 X509_ALGOR_free(keyfunc);
278 return NULL;
279 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/p8_pkey.c 1

**
 5103 Fri May 30 18:31:30 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/p8_pkey.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p8_pkey.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/p8_pkey.c 2

62 #include <openssl/x509.h>

64 /* Minor tweak to operation: zero private key data */
65 static int pkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
66 void *exarg)
67 {
68 /* Since the structure must still be valid use ASN1_OP_FREE_PRE */
69 if(operation == ASN1_OP_FREE_PRE) {
70 PKCS8_PRIV_KEY_INFO *key = (PKCS8_PRIV_KEY_INFO *)*pval;
71 if (key->pkey->value.octet_string)
72 OPENSSL_cleanse(key->pkey->value.octet_string->data,
73 key->pkey->value.octet_string->length);
74 }
75 return 1;
76 }

78 ASN1_SEQUENCE_cb(PKCS8_PRIV_KEY_INFO, pkey_cb) = {
79 ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, version, ASN1_INTEGER),
80 ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkeyalg, X509_ALGOR),
81 ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkey, ASN1_ANY),
82 ASN1_IMP_SET_OF_OPT(PKCS8_PRIV_KEY_INFO, attributes, X509_ATTRIBUTE, 0)
83 } ASN1_SEQUENCE_END_cb(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO)

85 IMPLEMENT_ASN1_FUNCTIONS(PKCS8_PRIV_KEY_INFO)

87 int PKCS8_pkey_set0(PKCS8_PRIV_KEY_INFO *priv, ASN1_OBJECT *aobj,
88 int version,
89 int ptype, void *pval,
90 unsigned char *penc, int penclen)
91 {
92 unsigned char **ppenc = NULL;
93 if (version >= 0)
94 {
95 if (!ASN1_INTEGER_set(priv->version, version))
96 return 0;
97 }
98 if (penc)
99 {
100 int pmtype;
101 ASN1_OCTET_STRING *oct;
102 oct = ASN1_OCTET_STRING_new();
103 if (!oct)
104 return 0;
105 oct->data = penc;
106 ppenc = &oct->data;
107 oct->length = penclen;
108 if (priv->broken == PKCS8_NO_OCTET)
109 pmtype = V_ASN1_SEQUENCE;
110 else
111 pmtype = V_ASN1_OCTET_STRING;
112 ASN1_TYPE_set(priv->pkey, pmtype, oct);
113 }
114 if (!X509_ALGOR_set0(priv->pkeyalg, aobj, ptype, pval))
115 {
116 /* If call fails do not swallow ’enc’ */
117 if (ppenc)
118 *ppenc = NULL;
119 return 0;
120 }
121 return 1;
122 }

124 int PKCS8_pkey_get0(ASN1_OBJECT **ppkalg,
125 const unsigned char **pk, int *ppklen,
126 X509_ALGOR **pa,
127 PKCS8_PRIV_KEY_INFO *p8)

new/usr/src/lib/openssl/libsunw_crypto/asn1/p8_pkey.c 3

128 {
129 if (ppkalg)
130 *ppkalg = p8->pkeyalg->algorithm;
131 if(p8->pkey->type == V_ASN1_OCTET_STRING)
132 {
133 p8->broken = PKCS8_OK;
134 if (pk)
135 {
136 *pk = p8->pkey->value.octet_string->data;
137 *ppklen = p8->pkey->value.octet_string->length;
138 }
139 }
140 else if (p8->pkey->type == V_ASN1_SEQUENCE)
141 {
142 p8->broken = PKCS8_NO_OCTET;
143 if (pk)
144 {
145 *pk = p8->pkey->value.sequence->data;
146 *ppklen = p8->pkey->value.sequence->length;
147 }
148 }
149 else
150 return 0;
151 if (pa)
152 *pa = p8->pkeyalg;
153 return 1;
154 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_bitst.c 1

**
 3746 Fri May 30 18:31:30 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/t_bitst.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* t_bitst.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/conf.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_bitst.c 2

62 #include <openssl/x509v3.h>

64 int ASN1_BIT_STRING_name_print(BIO *out, ASN1_BIT_STRING *bs,
65 BIT_STRING_BITNAME *tbl, int indent)
66 {
67 BIT_STRING_BITNAME *bnam;
68 char first = 1;
69 BIO_printf(out, "%*s", indent, "");
70 for(bnam = tbl; bnam->lname; bnam++) {
71 if(ASN1_BIT_STRING_get_bit(bs, bnam->bitnum)) {
72 if(!first) BIO_puts(out, ", ");
73 BIO_puts(out, bnam->lname);
74 first = 0;
75 }
76 }
77 BIO_puts(out, "\n");
78 return 1;
79 }

81 int ASN1_BIT_STRING_set_asc(ASN1_BIT_STRING *bs, char *name, int value,
82 BIT_STRING_BITNAME *tbl)
83 {
84 int bitnum;
85 bitnum = ASN1_BIT_STRING_num_asc(name, tbl);
86 if(bitnum < 0) return 0;
87 if(bs) {
88 if(!ASN1_BIT_STRING_set_bit(bs, bitnum, value))
89 return 0;
90 }
91 return 1;
92 }

94 int ASN1_BIT_STRING_num_asc(char *name, BIT_STRING_BITNAME *tbl)
95 {
96 BIT_STRING_BITNAME *bnam;
97 for(bnam = tbl; bnam->lname; bnam++) {
98 if(!strcmp(bnam->sname, name) ||
99 !strcmp(bnam->lname, name)) return bnam->bitnum;
100 }
101 return -1;
102 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_crl.c 1

**
 4715 Fri May 30 18:31:30 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/t_crl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* t_crl.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_crl.c 2

62 #include <openssl/bn.h>
63 #include <openssl/objects.h>
64 #include <openssl/x509.h>
65 #include <openssl/x509v3.h>

67 #ifndef OPENSSL_NO_FP_API
68 int X509_CRL_print_fp(FILE *fp, X509_CRL *x)
69 {
70 BIO *b;
71 int ret;

73 if ((b=BIO_new(BIO_s_file())) == NULL)
74 {
75 X509err(X509_F_X509_CRL_PRINT_FP,ERR_R_BUF_LIB);
76 return(0);
77 }
78 BIO_set_fp(b,fp,BIO_NOCLOSE);
79 ret=X509_CRL_print(b, x);
80 BIO_free(b);
81 return(ret);
82 }
83 #endif

85 int X509_CRL_print(BIO *out, X509_CRL *x)
86 {
87 STACK_OF(X509_REVOKED) *rev;
88 X509_REVOKED *r;
89 long l;
90 int i;
91 char *p;

93 BIO_printf(out, "Certificate Revocation List (CRL):\n");
94 l = X509_CRL_get_version(x);
95 BIO_printf(out, "%8sVersion %lu (0x%lx)\n", "", l+1, l);
96 i = OBJ_obj2nid(x->sig_alg->algorithm);
97 X509_signature_print(out, x->sig_alg, NULL);
98 p=X509_NAME_oneline(X509_CRL_get_issuer(x),NULL,0);
99 BIO_printf(out,"%8sIssuer: %s\n","",p);
100 OPENSSL_free(p);
101 BIO_printf(out,"%8sLast Update: ","");
102 ASN1_TIME_print(out,X509_CRL_get_lastUpdate(x));
103 BIO_printf(out,"\n%8sNext Update: ","");
104 if (X509_CRL_get_nextUpdate(x))
105 ASN1_TIME_print(out,X509_CRL_get_nextUpdate(x));
106 else BIO_printf(out,"NONE");
107 BIO_printf(out,"\n");

109 X509V3_extensions_print(out, "CRL extensions",
110 x->crl->extensions, 0, 8);

112 rev = X509_CRL_get_REVOKED(x);

114 if(sk_X509_REVOKED_num(rev) > 0)
115 BIO_printf(out, "Revoked Certificates:\n");
116 else BIO_printf(out, "No Revoked Certificates.\n");

118 for(i = 0; i < sk_X509_REVOKED_num(rev); i++) {
119 r = sk_X509_REVOKED_value(rev, i);
120 BIO_printf(out," Serial Number: ");
121 i2a_ASN1_INTEGER(out,r->serialNumber);
122 BIO_printf(out,"\n Revocation Date: ");
123 ASN1_TIME_print(out,r->revocationDate);
124 BIO_printf(out,"\n");
125 X509V3_extensions_print(out, "CRL entry extensions",
126 r->extensions, 0, 8);
127 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_crl.c 3

128 X509_signature_print(out, x->sig_alg, x->signature);

130 return 1;

132 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_pkey.c 1

**
 4314 Fri May 30 18:31:31 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/t_pkey.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/t_pkey.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/objects.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_pkey.c 2

62 #include <openssl/buffer.h>
63 #include <openssl/bn.h>

65 int ASN1_bn_print(BIO *bp, const char *number, const BIGNUM *num,
66 unsigned char *buf, int off)
67 {
68 int n,i;
69 const char *neg;

71 if (num == NULL) return(1);
72 neg = (BN_is_negative(num))?"-":"";
73 if(!BIO_indent(bp,off,128))
74 return 0;
75 if (BN_is_zero(num))
76 {
77 if (BIO_printf(bp, "%s 0\n", number) <= 0)
78 return 0;
79 return 1;
80 }

82 if (BN_num_bytes(num) <= BN_BYTES)
83 {
84 if (BIO_printf(bp,"%s %s%lu (%s0x%lx)\n",number,neg,
85 (unsigned long)num->d[0],neg,(unsigned long)num->d[0])
86 <= 0) return(0);
87 }
88 else
89 {
90 buf[0]=0;
91 if (BIO_printf(bp,"%s%s",number,
92 (neg[0] == ’-’)?" (Negative)":"") <= 0)
93 return(0);
94 n=BN_bn2bin(num,&buf[1]);
95
96 if (buf[1] & 0x80)
97 n++;
98 else buf++;

100 for (i=0; i<n; i++)
101 {
102 if ((i%15) == 0)
103 {
104 if(BIO_puts(bp,"\n") <= 0
105 || !BIO_indent(bp,off+4,128))
106 return 0;
107 }
108 if (BIO_printf(bp,"%02x%s",buf[i],((i+1) == n)?"":":")
109 <= 0) return(0);
110 }
111 if (BIO_write(bp,"\n",1) <= 0) return(0);
112 }
113 return(1);
114 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_req.c 1

**
 8136 Fri May 30 18:31:31 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/t_req.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/t_req.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_req.c 2

62 #include <openssl/bn.h>
63 #include <openssl/objects.h>
64 #include <openssl/x509.h>
65 #include <openssl/x509v3.h>
66 #ifndef OPENSSL_NO_RSA
67 #include <openssl/rsa.h>
68 #endif
69 #ifndef OPENSSL_NO_DSA
70 #include <openssl/dsa.h>
71 #endif

73 #ifndef OPENSSL_NO_FP_API
74 int X509_REQ_print_fp(FILE *fp, X509_REQ *x)
75 {
76 BIO *b;
77 int ret;

79 if ((b=BIO_new(BIO_s_file())) == NULL)
80 {
81 X509err(X509_F_X509_REQ_PRINT_FP,ERR_R_BUF_LIB);
82 return(0);
83 }
84 BIO_set_fp(b,fp,BIO_NOCLOSE);
85 ret=X509_REQ_print(b, x);
86 BIO_free(b);
87 return(ret);
88 }
89 #endif

91 int X509_REQ_print_ex(BIO *bp, X509_REQ *x, unsigned long nmflags, unsigned long
92 {
93 unsigned long l;
94 int i;
95 const char *neg;
96 X509_REQ_INFO *ri;
97 EVP_PKEY *pkey;
98 STACK_OF(X509_ATTRIBUTE) *sk;
99 STACK_OF(X509_EXTENSION) *exts;
100 char mlch = ’ ’;
101 int nmindent = 0;

103 if((nmflags & XN_FLAG_SEP_MASK) == XN_FLAG_SEP_MULTILINE) {
104 mlch = ’\n’;
105 nmindent = 12;
106 }

108 if(nmflags == X509_FLAG_COMPAT)
109 nmindent = 16;

112 ri=x->req_info;
113 if(!(cflag & X509_FLAG_NO_HEADER))
114 {
115 if (BIO_write(bp,"Certificate Request:\n",21) <= 0) goto err;
116 if (BIO_write(bp," Data:\n",10) <= 0) goto err;
117 }
118 if(!(cflag & X509_FLAG_NO_VERSION))
119 {
120 neg=(ri->version->type == V_ASN1_NEG_INTEGER)?"-":"";
121 l=0;
122 for (i=0; i<ri->version->length; i++)
123 { l<<=8; l+=ri->version->data[i]; }
124 if(BIO_printf(bp,"%8sVersion: %s%lu (%s0x%lx)\n","",neg,l,neg,
125 l) <= 0)
126 goto err;
127 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_req.c 3

128 if(!(cflag & X509_FLAG_NO_SUBJECT))
129 {
130 if (BIO_printf(bp," Subject:%c",mlch) <= 0) goto err;
131 if (X509_NAME_print_ex(bp,ri->subject,nmindent, nmflags) < 0) go
132 if (BIO_write(bp,"\n",1) <= 0) goto err;
133 }
134 if(!(cflag & X509_FLAG_NO_PUBKEY))
135 {
136 if (BIO_write(bp," Subject Public Key Info:\n",33) <= 0)
137 goto err;
138 if (BIO_printf(bp,"%12sPublic Key Algorithm: ","") <= 0)
139 goto err;
140 if (i2a_ASN1_OBJECT(bp, ri->pubkey->algor->algorithm) <= 0)
141 goto err;
142 if (BIO_puts(bp, "\n") <= 0)
143 goto err;

145 pkey=X509_REQ_get_pubkey(x);
146 if (pkey == NULL)
147 {
148 BIO_printf(bp,"%12sUnable to load Public Key\n","");
149 ERR_print_errors(bp);
150 }
151 else
152 {
153 EVP_PKEY_print_public(bp, pkey, 16, NULL);
154 EVP_PKEY_free(pkey);
155 }
156 }

158 if(!(cflag & X509_FLAG_NO_ATTRIBUTES))
159 {
160 /* may not be */
161 if(BIO_printf(bp,"%8sAttributes:\n","") <= 0)
162 goto err;

164 sk=x->req_info->attributes;
165 if (sk_X509_ATTRIBUTE_num(sk) == 0)
166 {
167 if(BIO_printf(bp,"%12sa0:00\n","") <= 0)
168 goto err;
169 }
170 else
171 {
172 for (i=0; i<sk_X509_ATTRIBUTE_num(sk); i++)
173 {
174 ASN1_TYPE *at;
175 X509_ATTRIBUTE *a;
176 ASN1_BIT_STRING *bs=NULL;
177 ASN1_TYPE *t;
178 int j,type=0,count=1,ii=0;

180 a=sk_X509_ATTRIBUTE_value(sk,i);
181 if(X509_REQ_extension_nid(OBJ_obj2nid(a->object)
182 continue
183 if(BIO_printf(bp,"%12s","") <= 0)
184 goto err;
185 if ((j=i2a_ASN1_OBJECT(bp,a->object)) > 0)
186 {
187 if (a->single)
188 {
189 t=a->value.single;
190 type=t->type;
191 bs=t->value.bit_string;
192 }
193 else

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_req.c 4

194 {
195 ii=0;
196 count=sk_ASN1_TYPE_num(a->value.set);
197 get_next:
198 at=sk_ASN1_TYPE_value(a->value.set,ii);
199 type=at->type;
200 bs=at->value.asn1_string;
201 }
202 }
203 for (j=25-j; j>0; j--)
204 if (BIO_write(bp," ",1) != 1) goto err;
205 if (BIO_puts(bp,":") <= 0) goto err;
206 if ((type == V_ASN1_PRINTABLESTRING) ||
207 (type == V_ASN1_T61STRING) ||
208 (type == V_ASN1_IA5STRING))
209 {
210 if (BIO_write(bp,(char *)bs->data,bs->le
211 != bs->length)
212 goto err;
213 BIO_puts(bp,"\n");
214 }
215 else
216 {
217 BIO_puts(bp,"unable to print attribute\n
218 }
219 if (++ii < count) goto get_next;
220 }
221 }
222 }
223 if(!(cflag & X509_FLAG_NO_EXTENSIONS))
224 {
225 exts = X509_REQ_get_extensions(x);
226 if(exts)
227 {
228 BIO_printf(bp,"%8sRequested Extensions:\n","");
229 for (i=0; i<sk_X509_EXTENSION_num(exts); i++)
230 {
231 ASN1_OBJECT *obj;
232 X509_EXTENSION *ex;
233 int j;
234 ex=sk_X509_EXTENSION_value(exts, i);
235 if (BIO_printf(bp,"%12s","") <= 0) goto err;
236 obj=X509_EXTENSION_get_object(ex);
237 i2a_ASN1_OBJECT(bp,obj);
238 j=X509_EXTENSION_get_critical(ex);
239 if (BIO_printf(bp,": %s\n",j?"critical":"") <= 0
240 goto err;
241 if(!X509V3_EXT_print(bp, ex, cflag, 16))
242 {
243 BIO_printf(bp, "%16s", "");
244 M_ASN1_OCTET_STRING_print(bp,ex->value);
245 }
246 if (BIO_write(bp,"\n",1) <= 0) goto err;
247 }
248 sk_X509_EXTENSION_pop_free(exts, X509_EXTENSION_free);
249 }
250 }

252 if(!(cflag & X509_FLAG_NO_SIGDUMP))
253 {
254 if(!X509_signature_print(bp, x->sig_alg, x->signature)) goto err
255 }

257 return(1);
258 err:
259 X509err(X509_F_X509_REQ_PRINT_EX,ERR_R_BUF_LIB);

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_req.c 5

260 return(0);
261 }

263 int X509_REQ_print(BIO *bp, X509_REQ *x)
264 {
265 return X509_REQ_print_ex(bp, x, XN_FLAG_COMPAT, X509_FLAG_COMPAT);
266 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_spki.c 1

**
 3978 Fri May 30 18:31:31 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/t_spki.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* t_spki.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/x509.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_spki.c 2

62 #include <openssl/asn1.h>
63 #ifndef OPENSSL_NO_RSA
64 #include <openssl/rsa.h>
65 #endif
66 #ifndef OPENSSL_NO_DSA
67 #include <openssl/dsa.h>
68 #endif
69 #include <openssl/bn.h>

71 /* Print out an SPKI */

73 int NETSCAPE_SPKI_print(BIO *out, NETSCAPE_SPKI *spki)
74 {
75 EVP_PKEY *pkey;
76 ASN1_IA5STRING *chal;
77 int i, n;
78 char *s;
79 BIO_printf(out, "Netscape SPKI:\n");
80 i=OBJ_obj2nid(spki->spkac->pubkey->algor->algorithm);
81 BIO_printf(out," Public Key Algorithm: %s\n",
82 (i == NID_undef)?"UNKNOWN":OBJ_nid2ln(i));
83 pkey = X509_PUBKEY_get(spki->spkac->pubkey);
84 if(!pkey) BIO_printf(out, " Unable to load public key\n");
85 else
86 {
87 EVP_PKEY_print_public(out, pkey, 4, NULL);
88 EVP_PKEY_free(pkey);
89 }
90 chal = spki->spkac->challenge;
91 if(chal->length)
92 BIO_printf(out, " Challenge String: %s\n", chal->data);
93 i=OBJ_obj2nid(spki->sig_algor->algorithm);
94 BIO_printf(out," Signature Algorithm: %s",
95 (i == NID_undef)?"UNKNOWN":OBJ_nid2ln(i));

97 n=spki->signature->length;
98 s=(char *)spki->signature->data;
99 for (i=0; i<n; i++)
100 {
101 if ((i%18) == 0) BIO_write(out,"\n ",7);
102 BIO_printf(out,"%02x%s",(unsigned char)s[i],
103 ((i+1) == n)?"":":");
104 }
105 BIO_write(out,"\n",1);
106 return 1;
107 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_x509.c 1

**
 13725 Fri May 30 18:31:31 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/t_x509.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/t_x509.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_x509.c 2

62 #include <openssl/bn.h>
63 #ifndef OPENSSL_NO_RSA
64 #include <openssl/rsa.h>
65 #endif
66 #ifndef OPENSSL_NO_DSA
67 #include <openssl/dsa.h>
68 #endif
69 #ifndef OPENSSL_NO_EC
70 #include <openssl/ec.h>
71 #endif
72 #include <openssl/objects.h>
73 #include <openssl/x509.h>
74 #include <openssl/x509v3.h>
75 #include "asn1_locl.h"

77 #ifndef OPENSSL_NO_FP_API
78 int X509_print_fp(FILE *fp, X509 *x)
79 {
80 return X509_print_ex_fp(fp, x, XN_FLAG_COMPAT, X509_FLAG_COMPAT);
81 }

83 int X509_print_ex_fp(FILE *fp, X509 *x, unsigned long nmflag, unsigned long cfla
84 {
85 BIO *b;
86 int ret;

88 if ((b=BIO_new(BIO_s_file())) == NULL)
89 {
90 X509err(X509_F_X509_PRINT_EX_FP,ERR_R_BUF_LIB);
91 return(0);
92 }
93 BIO_set_fp(b,fp,BIO_NOCLOSE);
94 ret=X509_print_ex(b, x, nmflag, cflag);
95 BIO_free(b);
96 return(ret);
97 }
98 #endif

100 int X509_print(BIO *bp, X509 *x)
101 {
102 return X509_print_ex(bp, x, XN_FLAG_COMPAT, X509_FLAG_COMPAT);
103 }

105 int X509_print_ex(BIO *bp, X509 *x, unsigned long nmflags, unsigned long cflag)
106 {
107 long l;
108 int ret=0,i;
109 char *m=NULL,mlch = ’ ’;
110 int nmindent = 0;
111 X509_CINF *ci;
112 ASN1_INTEGER *bs;
113 EVP_PKEY *pkey=NULL;
114 const char *neg;

116 if((nmflags & XN_FLAG_SEP_MASK) == XN_FLAG_SEP_MULTILINE) {
117 mlch = ’\n’;
118 nmindent = 12;
119 }

121 if(nmflags == X509_FLAG_COMPAT)
122 nmindent = 16;

124 ci=x->cert_info;
125 if(!(cflag & X509_FLAG_NO_HEADER))
126 {
127 if (BIO_write(bp,"Certificate:\n",13) <= 0) goto err;

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_x509.c 3

128 if (BIO_write(bp," Data:\n",10) <= 0) goto err;
129 }
130 if(!(cflag & X509_FLAG_NO_VERSION))
131 {
132 l=X509_get_version(x);
133 if (BIO_printf(bp,"%8sVersion: %lu (0x%lx)\n","",l+1,l) <= 0) go
134 }
135 if(!(cflag & X509_FLAG_NO_SERIAL))
136 {

138 if (BIO_write(bp," Serial Number:",22) <= 0) goto err;

140 bs=X509_get_serialNumber(x);
141 if (bs->length <= (int)sizeof(long))
142 {
143 l=ASN1_INTEGER_get(bs);
144 if (bs->type == V_ASN1_NEG_INTEGER)
145 {
146 l= -l;
147 neg="-";
148 }
149 else
150 neg="";
151 if (BIO_printf(bp," %s%lu (%s0x%lx)\n",neg,l,neg,l) <= 0
152 goto err;
153 }
154 else
155 {
156 neg=(bs->type == V_ASN1_NEG_INTEGER)?" (Negative)":"";
157 if (BIO_printf(bp,"\n%12s%s","",neg) <= 0) goto err;

159 for (i=0; i<bs->length; i++)
160 {
161 if (BIO_printf(bp,"%02x%c",bs->data[i],
162 ((i+1 == bs->length)?’\n’:’:’)) <= 0)
163 goto err;
164 }
165 }

167 }

169 if(!(cflag & X509_FLAG_NO_SIGNAME))
170 {
171 if(X509_signature_print(bp, x->sig_alg, NULL) <= 0)
172 goto err;
173 #if 0
174 if (BIO_printf(bp,"%8sSignature Algorithm: ","") <= 0)
175 goto err;
176 if (i2a_ASN1_OBJECT(bp, ci->signature->algorithm) <= 0)
177 goto err;
178 if (BIO_puts(bp, "\n") <= 0)
179 goto err;
180 #endif
181 }

183 if(!(cflag & X509_FLAG_NO_ISSUER))
184 {
185 if (BIO_printf(bp," Issuer:%c",mlch) <= 0) goto err;
186 if (X509_NAME_print_ex(bp,X509_get_issuer_name(x),nmindent, nmfl
187 if (BIO_write(bp,"\n",1) <= 0) goto err;
188 }
189 if(!(cflag & X509_FLAG_NO_VALIDITY))
190 {
191 if (BIO_write(bp," Validity\n",17) <= 0) goto err;
192 if (BIO_write(bp," Not Before: ",24) <= 0) goto err;
193 if (!ASN1_TIME_print(bp,X509_get_notBefore(x))) goto err;

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_x509.c 4

194 if (BIO_write(bp,"\n Not After : ",25) <= 0) goto err
195 if (!ASN1_TIME_print(bp,X509_get_notAfter(x))) goto err;
196 if (BIO_write(bp,"\n",1) <= 0) goto err;
197 }
198 if(!(cflag & X509_FLAG_NO_SUBJECT))
199 {
200 if (BIO_printf(bp," Subject:%c",mlch) <= 0) goto err;
201 if (X509_NAME_print_ex(bp,X509_get_subject_name(x),nmindent, nmf
202 if (BIO_write(bp,"\n",1) <= 0) goto err;
203 }
204 if(!(cflag & X509_FLAG_NO_PUBKEY))
205 {
206 if (BIO_write(bp," Subject Public Key Info:\n",33) <= 0)
207 goto err;
208 if (BIO_printf(bp,"%12sPublic Key Algorithm: ","") <= 0)
209 goto err;
210 if (i2a_ASN1_OBJECT(bp, ci->key->algor->algorithm) <= 0)
211 goto err;
212 if (BIO_puts(bp, "\n") <= 0)
213 goto err;

215 pkey=X509_get_pubkey(x);
216 if (pkey == NULL)
217 {
218 BIO_printf(bp,"%12sUnable to load Public Key\n","");
219 ERR_print_errors(bp);
220 }
221 else
222 {
223 EVP_PKEY_print_public(bp, pkey, 16, NULL);
224 EVP_PKEY_free(pkey);
225 }
226 }

228 if (!(cflag & X509_FLAG_NO_EXTENSIONS))
229 X509V3_extensions_print(bp, "X509v3 extensions",
230 ci->extensions, cflag, 8);

232 if(!(cflag & X509_FLAG_NO_SIGDUMP))
233 {
234 if(X509_signature_print(bp, x->sig_alg, x->signature) <= 0) goto
235 }
236 if(!(cflag & X509_FLAG_NO_AUX))
237 {
238 if (!X509_CERT_AUX_print(bp, x->aux, 0)) goto err;
239 }
240 ret=1;
241 err:
242 if (m != NULL) OPENSSL_free(m);
243 return(ret);
244 }

246 int X509_ocspid_print (BIO *bp, X509 *x)
247 {
248 unsigned char *der=NULL ;
249 unsigned char *dertmp;
250 int derlen;
251 int i;
252 unsigned char SHA1md[SHA_DIGEST_LENGTH];

254 /* display the hash of the subject as it would appear
255 in OCSP requests */
256 if (BIO_printf(bp," Subject OCSP hash: ") <= 0)
257 goto err;
258 derlen = i2d_X509_NAME(x->cert_info->subject, NULL);
259 if ((der = dertmp = (unsigned char *)OPENSSL_malloc (derlen)) == NULL)

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_x509.c 5

260 goto err;
261 i2d_X509_NAME(x->cert_info->subject, &dertmp);

263 if (!EVP_Digest(der, derlen, SHA1md, NULL, EVP_sha1(), NULL))
264 goto err;
265 for (i=0; i < SHA_DIGEST_LENGTH; i++)
266 {
267 if (BIO_printf(bp,"%02X",SHA1md[i]) <= 0) goto err;
268 }
269 OPENSSL_free (der);
270 der=NULL;

272 /* display the hash of the public key as it would appear
273 in OCSP requests */
274 if (BIO_printf(bp,"\n Public key OCSP hash: ") <= 0)
275 goto err;

277 if (!EVP_Digest(x->cert_info->key->public_key->data,
278 x->cert_info->key->public_key->length,
279 SHA1md, NULL, EVP_sha1(), NULL))
280 goto err;
281 for (i=0; i < SHA_DIGEST_LENGTH; i++)
282 {
283 if (BIO_printf(bp,"%02X",SHA1md[i]) <= 0)
284 goto err;
285 }
286 BIO_printf(bp,"\n");

288 return (1);
289 err:
290 if (der != NULL) OPENSSL_free(der);
291 return(0);
292 }

294 int X509_signature_dump(BIO *bp, const ASN1_STRING *sig, int indent)
295 {
296 const unsigned char *s;
297 int i, n;

299 n=sig->length;
300 s=sig->data;
301 for (i=0; i<n; i++)
302 {
303 if ((i%18) == 0)
304 {
305 if (BIO_write(bp,"\n",1) <= 0) return 0;
306 if (BIO_indent(bp, indent, indent) <= 0) return 0;
307 }
308 if (BIO_printf(bp,"%02x%s",s[i],
309 ((i+1) == n)?"":":") <= 0) return 0;
310 }
311 if (BIO_write(bp,"\n",1) != 1) return 0;

313 return 1;
314 }

316 int X509_signature_print(BIO *bp, X509_ALGOR *sigalg, ASN1_STRING *sig)
317 {
318 int sig_nid;
319 if (BIO_puts(bp," Signature Algorithm: ") <= 0) return 0;
320 if (i2a_ASN1_OBJECT(bp, sigalg->algorithm) <= 0) return 0;

322 sig_nid = OBJ_obj2nid(sigalg->algorithm);
323 if (sig_nid != NID_undef)
324 {
325 int pkey_nid, dig_nid;

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_x509.c 6

326 const EVP_PKEY_ASN1_METHOD *ameth;
327 if (OBJ_find_sigid_algs(sig_nid, &dig_nid, &pkey_nid))
328 {
329 ameth = EVP_PKEY_asn1_find(NULL, pkey_nid);
330 if (ameth && ameth->sig_print)
331 return ameth->sig_print(bp, sigalg, sig, 9, 0);
332 }
333 }
334 if (sig)
335 return X509_signature_dump(bp, sig, 9);
336 else if (BIO_puts(bp, "\n") <= 0)
337 return 0;
338 return 1;
339 }

341 int ASN1_STRING_print(BIO *bp, const ASN1_STRING *v)
342 {
343 int i,n;
344 char buf[80];
345 const char *p;

347 if (v == NULL) return(0);
348 n=0;
349 p=(const char *)v->data;
350 for (i=0; i<v->length; i++)
351 {
352 if ((p[i] > ’~’) || ((p[i] < ’ ’) &&
353 (p[i] != ’\n’) && (p[i] != ’\r’)))
354 buf[n]=’.’;
355 else
356 buf[n]=p[i];
357 n++;
358 if (n >= 80)
359 {
360 if (BIO_write(bp,buf,n) <= 0)
361 return(0);
362 n=0;
363 }
364 }
365 if (n > 0)
366 if (BIO_write(bp,buf,n) <= 0)
367 return(0);
368 return(1);
369 }

371 int ASN1_TIME_print(BIO *bp, const ASN1_TIME *tm)
372 {
373 if(tm->type == V_ASN1_UTCTIME) return ASN1_UTCTIME_print(bp, tm);
374 if(tm->type == V_ASN1_GENERALIZEDTIME)
375 return ASN1_GENERALIZEDTIME_print(bp, tm);
376 BIO_write(bp,"Bad time value",14);
377 return(0);
378 }

380 static const char *mon[12]=
381 {
382 "Jan","Feb","Mar","Apr","May","Jun",
383 "Jul","Aug","Sep","Oct","Nov","Dec"
384 };

386 int ASN1_GENERALIZEDTIME_print(BIO *bp, const ASN1_GENERALIZEDTIME *tm)
387 {
388 char *v;
389 int gmt=0;
390 int i;
391 int y=0,M=0,d=0,h=0,m=0,s=0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_x509.c 7

392 char *f = NULL;
393 int f_len = 0;

395 i=tm->length;
396 v=(char *)tm->data;

398 if (i < 12) goto err;
399 if (v[i-1] == ’Z’) gmt=1;
400 for (i=0; i<12; i++)
401 if ((v[i] > ’9’) || (v[i] < ’0’)) goto err;
402 y= (v[0]-’0’)*1000+(v[1]-’0’)*100 + (v[2]-’0’)*10+(v[3]-’0’);
403 M= (v[4]-’0’)*10+(v[5]-’0’);
404 if ((M > 12) || (M < 1)) goto err;
405 d= (v[6]-’0’)*10+(v[7]-’0’);
406 h= (v[8]-’0’)*10+(v[9]-’0’);
407 m= (v[10]-’0’)*10+(v[11]-’0’);
408 if (tm->length >= 14 &&
409 (v[12] >= ’0’) && (v[12] <= ’9’) &&
410 (v[13] >= ’0’) && (v[13] <= ’9’))
411 {
412 s= (v[12]-’0’)*10+(v[13]-’0’);
413 /* Check for fractions of seconds. */
414 if (tm->length >= 15 && v[14] == ’.’)
415 {
416 int l = tm->length;
417 f = &v[14]; /* The decimal point. */
418 f_len = 1;
419 while (14 + f_len < l && f[f_len] >= ’0’ && f[f_len] <=
420 ++f_len;
421 }
422 }

424 if (BIO_printf(bp,"%s %2d %02d:%02d:%02d%.*s %d%s",
425 mon[M-1],d,h,m,s,f_len,f,y,(gmt)?" GMT":"") <= 0)
426 return(0);
427 else
428 return(1);
429 err:
430 BIO_write(bp,"Bad time value",14);
431 return(0);
432 }

434 int ASN1_UTCTIME_print(BIO *bp, const ASN1_UTCTIME *tm)
435 {
436 const char *v;
437 int gmt=0;
438 int i;
439 int y=0,M=0,d=0,h=0,m=0,s=0;

441 i=tm->length;
442 v=(const char *)tm->data;

444 if (i < 10) goto err;
445 if (v[i-1] == ’Z’) gmt=1;
446 for (i=0; i<10; i++)
447 if ((v[i] > ’9’) || (v[i] < ’0’)) goto err;
448 y= (v[0]-’0’)*10+(v[1]-’0’);
449 if (y < 50) y+=100;
450 M= (v[2]-’0’)*10+(v[3]-’0’);
451 if ((M > 12) || (M < 1)) goto err;
452 d= (v[4]-’0’)*10+(v[5]-’0’);
453 h= (v[6]-’0’)*10+(v[7]-’0’);
454 m= (v[8]-’0’)*10+(v[9]-’0’);
455 if (tm->length >=12 &&
456 (v[10] >= ’0’) && (v[10] <= ’9’) &&
457 (v[11] >= ’0’) && (v[11] <= ’9’))

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_x509.c 8

458 s= (v[10]-’0’)*10+(v[11]-’0’);

460 if (BIO_printf(bp,"%s %2d %02d:%02d:%02d %d%s",
461 mon[M-1],d,h,m,s,y+1900,(gmt)?" GMT":"") <= 0)
462 return(0);
463 else
464 return(1);
465 err:
466 BIO_write(bp,"Bad time value",14);
467 return(0);
468 }

470 int X509_NAME_print(BIO *bp, X509_NAME *name, int obase)
471 {
472 char *s,*c,*b;
473 int ret=0,l,i;

475 l=80-2-obase;

477 b=X509_NAME_oneline(name,NULL,0);
478 if (!*b)
479 {
480 OPENSSL_free(b);
481 return 1;
482 }
483 s=b+1; /* skip the first slash */

485 c=s;
486 for (;;)
487 {
488 #ifndef CHARSET_EBCDIC
489 if (((*s == ’/’) &&
490 ((s[1] >= ’A’) && (s[1] <= ’Z’) && (
491 (s[2] == ’=’) ||
492 ((s[2] >= ’A’) && (s[2] <= ’Z’) &&
493 (s[3] == ’=’))
494))) ||
495 (*s == ’\0’))
496 #else
497 if (((*s == ’/’) &&
498 (isupper(s[1]) && (
499 (s[2] == ’=’) ||
500 (isupper(s[2]) &&
501 (s[3] == ’=’))
502))) ||
503 (*s == ’\0’))
504 #endif
505 {
506 i=s-c;
507 if (BIO_write(bp,c,i) != i) goto err;
508 c=s+1; /* skip following slash */
509 if (*s != ’\0’)
510 {
511 if (BIO_write(bp,", ",2) != 2) goto err;
512 }
513 l--;
514 }
515 if (*s == ’\0’) break;
516 s++;
517 l--;
518 }
519
520 ret=1;
521 if (0)
522 {
523 err:

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_x509.c 9

524 X509err(X509_F_X509_NAME_PRINT,ERR_R_BUF_LIB);
525 }
526 OPENSSL_free(b);
527 return(ret);
528 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_x509a.c 1

**
 4169 Fri May 30 18:31:31 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/t_x509a.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* t_x509a.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/t_x509a.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/x509.h>

65 /* X509_CERT_AUX and string set routines
66 */

68 int X509_CERT_AUX_print(BIO *out, X509_CERT_AUX *aux, int indent)
69 {
70 char oidstr[80], first;
71 int i;
72 if(!aux) return 1;
73 if(aux->trust) {
74 first = 1;
75 BIO_printf(out, "%*sTrusted Uses:\n%*s",
76 indent, "", indent + 2, "");
77 for(i = 0; i < sk_ASN1_OBJECT_num(aux->trust); i++) {
78 if(!first) BIO_puts(out, ", ");
79 else first = 0;
80 OBJ_obj2txt(oidstr, sizeof oidstr,
81 sk_ASN1_OBJECT_value(aux->trust, i), 0);
82 BIO_puts(out, oidstr);
83 }
84 BIO_puts(out, "\n");
85 } else BIO_printf(out, "%*sNo Trusted Uses.\n", indent, "");
86 if(aux->reject) {
87 first = 1;
88 BIO_printf(out, "%*sRejected Uses:\n%*s",
89 indent, "", indent + 2, "");
90 for(i = 0; i < sk_ASN1_OBJECT_num(aux->reject); i++) {
91 if(!first) BIO_puts(out, ", ");
92 else first = 0;
93 OBJ_obj2txt(oidstr, sizeof oidstr,
94 sk_ASN1_OBJECT_value(aux->reject, i), 0);
95 BIO_puts(out, oidstr);
96 }
97 BIO_puts(out, "\n");
98 } else BIO_printf(out, "%*sNo Rejected Uses.\n", indent, "");
99 if(aux->alias) BIO_printf(out, "%*sAlias: %s\n", indent, "",
100 aux->alias->data);
101 if(aux->keyid) {
102 BIO_printf(out, "%*sKey Id: ", indent, "");
103 for(i = 0; i < aux->keyid->length; i++)
104 BIO_printf(out, "%s%02X",
105 i ? ":" : "",
106 aux->keyid->data[i]);
107 BIO_write(out,"\n",1);
108 }
109 return 1;
110 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 1

**
 32086 Fri May 30 18:31:31 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* tasn_dec.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include <stddef.h>
61 #include <string.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/asn1t.h>
64 #include <openssl/objects.h>
65 #include <openssl/buffer.h>
66 #include <openssl/err.h>

68 static int asn1_check_eoc(const unsigned char **in, long len);
69 static int asn1_find_end(const unsigned char **in, long len, char inf);

71 static int asn1_collect(BUF_MEM *buf, const unsigned char **in, long len,
72 char inf, int tag, int aclass, int depth);

74 static int collect_data(BUF_MEM *buf, const unsigned char **p, long plen);

76 static int asn1_check_tlen(long *olen, int *otag, unsigned char *oclass,
77 char *inf, char *cst,
78 const unsigned char **in, long len,
79 int exptag, int expclass, char opt,
80 ASN1_TLC *ctx);

82 static int asn1_template_ex_d2i(ASN1_VALUE **pval,
83 const unsigned char **in, long len,
84 const ASN1_TEMPLATE *tt, char opt,
85 ASN1_TLC *ctx);
86 static int asn1_template_noexp_d2i(ASN1_VALUE **val,
87 const unsigned char **in, long len,
88 const ASN1_TEMPLATE *tt, char opt,
89 ASN1_TLC *ctx);
90 static int asn1_d2i_ex_primitive(ASN1_VALUE **pval,
91 const unsigned char **in, long len,
92 const ASN1_ITEM *it,
93 int tag, int aclass, char opt, ASN1_TLC *ctx);

95 /* Table to convert tags to bit values, used for MSTRING type */
96 static const unsigned long tag2bit[32] = {
97 0, 0, 0, B_ASN1_BIT_STRING, /* tags 0 - 3 */
98 B_ASN1_OCTET_STRING, 0, 0, B_ASN1_UNKNOWN,/* tags 4- 7 */
99 B_ASN1_UNKNOWN, B_ASN1_UNKNOWN, B_ASN1_UNKNOWN, B_ASN1_UNKNOWN,/* tags 8-11 */
100 B_ASN1_UTF8STRING,B_ASN1_UNKNOWN,B_ASN1_UNKNOWN,B_ASN1_UNKNOWN,/* tags 12-15 */
101 B_ASN1_SEQUENCE,0,B_ASN1_NUMERICSTRING,B_ASN1_PRINTABLESTRING, /* tags 16-19 */
102 B_ASN1_T61STRING,B_ASN1_VIDEOTEXSTRING,B_ASN1_IA5STRING, /* tags 20-22 */
103 B_ASN1_UTCTIME, B_ASN1_GENERALIZEDTIME, /* tags 23-24 */
104 B_ASN1_GRAPHICSTRING,B_ASN1_ISO64STRING,B_ASN1_GENERALSTRING, /* tags 25-27 */
105 B_ASN1_UNIVERSALSTRING,B_ASN1_UNKNOWN,B_ASN1_BMPSTRING,B_ASN1_UNKNOWN, /* tags 2
106 };

108 unsigned long ASN1_tag2bit(int tag)
109 {
110 if ((tag < 0) || (tag > 30)) return 0;
111 return tag2bit[tag];
112 }

114 /* Macro to initialize and invalidate the cache */

116 #define asn1_tlc_clear(c) if (c) (c)->valid = 0
117 /* Version to avoid compiler warning about ’c’ always non-NULL */
118 #define asn1_tlc_clear_nc(c) (c)->valid = 0

120 /* Decode an ASN1 item, this currently behaves just
121 * like a standard ’d2i’ function. ’in’ points to
122 * a buffer to read the data from, in future we will
123 * have more advanced versions that can input data
124 * a piece at a time and this will simply be a special
125 * case.
126 */

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 3

128 ASN1_VALUE *ASN1_item_d2i(ASN1_VALUE **pval,
129 const unsigned char **in, long len, const ASN1_ITEM *it)
130 {
131 ASN1_TLC c;
132 ASN1_VALUE *ptmpval = NULL;
133 if (!pval)
134 pval = &ptmpval;
135 asn1_tlc_clear_nc(&c);
136 if (ASN1_item_ex_d2i(pval, in, len, it, -1, 0, 0, &c) > 0)
137 return *pval;
138 return NULL;
139 }

141 int ASN1_template_d2i(ASN1_VALUE **pval,
142 const unsigned char **in, long len, const ASN1_TEMPLATE *tt)
143 {
144 ASN1_TLC c;
145 asn1_tlc_clear_nc(&c);
146 return asn1_template_ex_d2i(pval, in, len, tt, 0, &c);
147 }

150 /* Decode an item, taking care of IMPLICIT tagging, if any.
151 * If ’opt’ set and tag mismatch return -1 to handle OPTIONAL
152 */

154 int ASN1_item_ex_d2i(ASN1_VALUE **pval, const unsigned char **in, long len,
155 const ASN1_ITEM *it,
156 int tag, int aclass, char opt, ASN1_TLC *ctx)
157 {
158 const ASN1_TEMPLATE *tt, *errtt = NULL;
159 const ASN1_COMPAT_FUNCS *cf;
160 const ASN1_EXTERN_FUNCS *ef;
161 const ASN1_AUX *aux = it->funcs;
162 ASN1_aux_cb *asn1_cb;
163 const unsigned char *p = NULL, *q;
164 unsigned char *wp=NULL; /* BIG FAT WARNING! BREAKS CONST WHERE USED */
165 unsigned char imphack = 0, oclass;
166 char seq_eoc, seq_nolen, cst, isopt;
167 long tmplen;
168 int i;
169 int otag;
170 int ret = 0;
171 ASN1_VALUE **pchptr, *ptmpval;
172 if (!pval)
173 return 0;
174 if (aux && aux->asn1_cb)
175 asn1_cb = aux->asn1_cb;
176 else asn1_cb = 0;

178 switch(it->itype)
179 {
180 case ASN1_ITYPE_PRIMITIVE:
181 if (it->templates)
182 {
183 /* tagging or OPTIONAL is currently illegal on an item
184 * template because the flags can’t get passed down.
185 * In practice this isn’t a problem: we include the
186 * relevant flags from the item template in the
187 * template itself.
188 */
189 if ((tag != -1) || opt)
190 {
191 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I,
192 ASN1_R_ILLEGAL_OPTIONS_ON_ITEM_TEMPLATE);
193 goto err;

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 4

194 }
195 return asn1_template_ex_d2i(pval, in, len,
196 it->templates, opt, ctx);
197 }
198 return asn1_d2i_ex_primitive(pval, in, len, it,
199 tag, aclass, opt, ctx);
200 break;

202 case ASN1_ITYPE_MSTRING:
203 p = *in;
204 /* Just read in tag and class */
205 ret = asn1_check_tlen(NULL, &otag, &oclass, NULL, NULL,
206 &p, len, -1, 0, 1, ctx);
207 if (!ret)
208 {
209 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I,
210 ERR_R_NESTED_ASN1_ERROR);
211 goto err;
212 }

214 /* Must be UNIVERSAL class */
215 if (oclass != V_ASN1_UNIVERSAL)
216 {
217 /* If OPTIONAL, assume this is OK */
218 if (opt) return -1;
219 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I,
220 ASN1_R_MSTRING_NOT_UNIVERSAL);
221 goto err;
222 }
223 /* Check tag matches bit map */
224 if (!(ASN1_tag2bit(otag) & it->utype))
225 {
226 /* If OPTIONAL, assume this is OK */
227 if (opt)
228 return -1;
229 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I,
230 ASN1_R_MSTRING_WRONG_TAG);
231 goto err;
232 }
233 return asn1_d2i_ex_primitive(pval, in, len,
234 it, otag, 0, 0, ctx);

236 case ASN1_ITYPE_EXTERN:
237 /* Use new style d2i */
238 ef = it->funcs;
239 return ef->asn1_ex_d2i(pval, in, len,
240 it, tag, aclass, opt, ctx);

242 case ASN1_ITYPE_COMPAT:
243 /* we must resort to old style evil hackery */
244 cf = it->funcs;

246 /* If OPTIONAL see if it is there */
247 if (opt)
248 {
249 int exptag;
250 p = *in;
251 if (tag == -1)
252 exptag = it->utype;
253 else exptag = tag;
254 /* Don’t care about anything other than presence
255 * of expected tag */

257 ret = asn1_check_tlen(NULL, NULL, NULL, NULL, NULL,
258 &p, len, exptag, aclass, 1, ctx);
259 if (!ret)

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 5

260 {
261 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I,
262 ERR_R_NESTED_ASN1_ERROR);
263 goto err;
264 }
265 if (ret == -1)
266 return -1;
267 }

269 /* This is the old style evil hack IMPLICIT handling:
270 * since the underlying code is expecting a tag and
271 * class other than the one present we change the
272 * buffer temporarily then change it back afterwards.
273 * This doesn’t and never did work for tags > 30.
274 *
275 * Yes this is *horrible* but it is only needed for
276 * old style d2i which will hopefully not be around
277 * for much longer.
278 * FIXME: should copy the buffer then modify it so
279 * the input buffer can be const: we should *always*
280 * copy because the old style d2i might modify the
281 * buffer.
282 */

284 if (tag != -1)
285 {
286 wp = *(unsigned char **)in;
287 imphack = *wp;
288 if (p == NULL)
289 {
290 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I,
291 ERR_R_NESTED_ASN1_ERROR);
292 goto err;
293 }
294 *wp = (unsigned char)((*p & V_ASN1_CONSTRUCTED)
295 | it->utype);
296 }

298 ptmpval = cf->asn1_d2i(pval, in, len);

300 if (tag != -1)
301 *wp = imphack;

303 if (ptmpval)
304 return 1;

306 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I, ERR_R_NESTED_ASN1_ERROR);
307 goto err;

310 case ASN1_ITYPE_CHOICE:
311 if (asn1_cb && !asn1_cb(ASN1_OP_D2I_PRE, pval, it, NULL))
312 goto auxerr;

314 /* Allocate structure */
315 if (!*pval && !ASN1_item_ex_new(pval, it))
316 {
317 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I,
318 ERR_R_NESTED_ASN1_ERROR);
319 goto err;
320 }
321 /* CHOICE type, try each possibility in turn */
322 p = *in;
323 for (i = 0, tt=it->templates; i < it->tcount; i++, tt++)
324 {
325 pchptr = asn1_get_field_ptr(pval, tt);

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 6

326 /* We mark field as OPTIONAL so its absence
327 * can be recognised.
328 */
329 ret = asn1_template_ex_d2i(pchptr, &p, len, tt, 1, ctx);
330 /* If field not present, try the next one */
331 if (ret == -1)
332 continue;
333 /* If positive return, read OK, break loop */
334 if (ret > 0)
335 break;
336 /* Otherwise must be an ASN1 parsing error */
337 errtt = tt;
338 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I,
339 ERR_R_NESTED_ASN1_ERROR);
340 goto err;
341 }

343 /* Did we fall off the end without reading anything? */
344 if (i == it->tcount)
345 {
346 /* If OPTIONAL, this is OK */
347 if (opt)
348 {
349 /* Free and zero it */
350 ASN1_item_ex_free(pval, it);
351 return -1;
352 }
353 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I,
354 ASN1_R_NO_MATCHING_CHOICE_TYPE);
355 goto err;
356 }

358 asn1_set_choice_selector(pval, i, it);
359 *in = p;
360 if (asn1_cb && !asn1_cb(ASN1_OP_D2I_POST, pval, it, NULL))
361 goto auxerr;
362 return 1;

364 case ASN1_ITYPE_NDEF_SEQUENCE:
365 case ASN1_ITYPE_SEQUENCE:
366 p = *in;
367 tmplen = len;

369 /* If no IMPLICIT tagging set to SEQUENCE, UNIVERSAL */
370 if (tag == -1)
371 {
372 tag = V_ASN1_SEQUENCE;
373 aclass = V_ASN1_UNIVERSAL;
374 }
375 /* Get SEQUENCE length and update len, p */
376 ret = asn1_check_tlen(&len, NULL, NULL, &seq_eoc, &cst,
377 &p, len, tag, aclass, opt, ctx);
378 if (!ret)
379 {
380 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I,
381 ERR_R_NESTED_ASN1_ERROR);
382 goto err;
383 }
384 else if (ret == -1)
385 return -1;
386 if (aux && (aux->flags & ASN1_AFLG_BROKEN))
387 {
388 len = tmplen - (p - *in);
389 seq_nolen = 1;
390 }
391 /* If indefinite we don’t do a length check */

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 7

392 else seq_nolen = seq_eoc;
393 if (!cst)
394 {
395 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I,
396 ASN1_R_SEQUENCE_NOT_CONSTRUCTED);
397 goto err;
398 }

400 if (!*pval && !ASN1_item_ex_new(pval, it))
401 {
402 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I,
403 ERR_R_NESTED_ASN1_ERROR);
404 goto err;
405 }

407 if (asn1_cb && !asn1_cb(ASN1_OP_D2I_PRE, pval, it, NULL))
408 goto auxerr;

410 /* Get each field entry */
411 for (i = 0, tt = it->templates; i < it->tcount; i++, tt++)
412 {
413 const ASN1_TEMPLATE *seqtt;
414 ASN1_VALUE **pseqval;
415 seqtt = asn1_do_adb(pval, tt, 1);
416 if (!seqtt)
417 goto err;
418 pseqval = asn1_get_field_ptr(pval, seqtt);
419 /* Have we ran out of data? */
420 if (!len)
421 break;
422 q = p;
423 if (asn1_check_eoc(&p, len))
424 {
425 if (!seq_eoc)
426 {
427 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I,
428 ASN1_R_UNEXPECTED_EOC);
429 goto err;
430 }
431 len -= p - q;
432 seq_eoc = 0;
433 q = p;
434 break;
435 }
436 /* This determines the OPTIONAL flag value. The field
437 * cannot be omitted if it is the last of a SEQUENCE
438 * and there is still data to be read. This isn’t
439 * strictly necessary but it increases efficiency in
440 * some cases.
441 */
442 if (i == (it->tcount - 1))
443 isopt = 0;
444 else isopt = (char)(seqtt->flags & ASN1_TFLG_OPTIONAL);
445 /* attempt to read in field, allowing each to be
446 * OPTIONAL */

448 ret = asn1_template_ex_d2i(pseqval, &p, len,
449 seqtt, isopt, ctx);
450 if (!ret)
451 {
452 errtt = seqtt;
453 goto err;
454 }
455 else if (ret == -1)
456 {
457 /* OPTIONAL component absent.

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 8

458 * Free and zero the field.
459 */
460 ASN1_template_free(pseqval, seqtt);
461 continue;
462 }
463 /* Update length */
464 len -= p - q;
465 }

467 /* Check for EOC if expecting one */
468 if (seq_eoc && !asn1_check_eoc(&p, len))
469 {
470 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I, ASN1_R_MISSING_EOC);
471 goto err;
472 }
473 /* Check all data read */
474 if (!seq_nolen && len)
475 {
476 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I,
477 ASN1_R_SEQUENCE_LENGTH_MISMATCH);
478 goto err;
479 }

481 /* If we get here we’ve got no more data in the SEQUENCE,
482 * however we may not have read all fields so check all
483 * remaining are OPTIONAL and clear any that are.
484 */
485 for (; i < it->tcount; tt++, i++)
486 {
487 const ASN1_TEMPLATE *seqtt;
488 seqtt = asn1_do_adb(pval, tt, 1);
489 if (!seqtt)
490 goto err;
491 if (seqtt->flags & ASN1_TFLG_OPTIONAL)
492 {
493 ASN1_VALUE **pseqval;
494 pseqval = asn1_get_field_ptr(pval, seqtt);
495 ASN1_template_free(pseqval, seqtt);
496 }
497 else
498 {
499 errtt = seqtt;
500 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I,
501 ASN1_R_FIELD_MISSING);
502 goto err;
503 }
504 }
505 /* Save encoding */
506 if (!asn1_enc_save(pval, *in, p - *in, it))
507 goto auxerr;
508 *in = p;
509 if (asn1_cb && !asn1_cb(ASN1_OP_D2I_POST, pval, it, NULL))
510 goto auxerr;
511 return 1;

513 default:
514 return 0;
515 }
516 auxerr:
517 ASN1err(ASN1_F_ASN1_ITEM_EX_D2I, ASN1_R_AUX_ERROR);
518 err:
519 ASN1_item_ex_free(pval, it);
520 if (errtt)
521 ERR_add_error_data(4, "Field=", errtt->field_name,
522 ", Type=", it->sname);
523 else

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 9

524 ERR_add_error_data(2, "Type=", it->sname);
525 return 0;
526 }

528 /* Templates are handled with two separate functions.
529 * One handles any EXPLICIT tag and the other handles the rest.
530 */

532 static int asn1_template_ex_d2i(ASN1_VALUE **val,
533 const unsigned char **in, long inlen,
534 const ASN1_TEMPLATE *tt, char opt,
535 ASN1_TLC *ctx)
536 {
537 int flags, aclass;
538 int ret;
539 long len;
540 const unsigned char *p, *q;
541 char exp_eoc;
542 if (!val)
543 return 0;
544 flags = tt->flags;
545 aclass = flags & ASN1_TFLG_TAG_CLASS;

547 p = *in;

549 /* Check if EXPLICIT tag expected */
550 if (flags & ASN1_TFLG_EXPTAG)
551 {
552 char cst;
553 /* Need to work out amount of data available to the inner
554 * content and where it starts: so read in EXPLICIT header to
555 * get the info.
556 */
557 ret = asn1_check_tlen(&len, NULL, NULL, &exp_eoc, &cst,
558 &p, inlen, tt->tag, aclass, opt, ctx);
559 q = p;
560 if (!ret)
561 {
562 ASN1err(ASN1_F_ASN1_TEMPLATE_EX_D2I,
563 ERR_R_NESTED_ASN1_ERROR);
564 return 0;
565 }
566 else if (ret == -1)
567 return -1;
568 if (!cst)
569 {
570 ASN1err(ASN1_F_ASN1_TEMPLATE_EX_D2I,
571 ASN1_R_EXPLICIT_TAG_NOT_CONSTRUCTED);
572 return 0;
573 }
574 /* We’ve found the field so it can’t be OPTIONAL now */
575 ret = asn1_template_noexp_d2i(val, &p, len, tt, 0, ctx);
576 if (!ret)
577 {
578 ASN1err(ASN1_F_ASN1_TEMPLATE_EX_D2I,
579 ERR_R_NESTED_ASN1_ERROR);
580 return 0;
581 }
582 /* We read the field in OK so update length */
583 len -= p - q;
584 if (exp_eoc)
585 {
586 /* If NDEF we must have an EOC here */
587 if (!asn1_check_eoc(&p, len))
588 {
589 ASN1err(ASN1_F_ASN1_TEMPLATE_EX_D2I,

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 10

590 ASN1_R_MISSING_EOC);
591 goto err;
592 }
593 }
594 else
595 {
596 /* Otherwise we must hit the EXPLICIT tag end or its
597 * an error */
598 if (len)
599 {
600 ASN1err(ASN1_F_ASN1_TEMPLATE_EX_D2I,
601 ASN1_R_EXPLICIT_LENGTH_MISMATCH);
602 goto err;
603 }
604 }
605 }
606 else
607 return asn1_template_noexp_d2i(val, in, inlen,
608 tt, opt, ctx);

610 *in = p;
611 return 1;

613 err:
614 ASN1_template_free(val, tt);
615 return 0;
616 }

618 static int asn1_template_noexp_d2i(ASN1_VALUE **val,
619 const unsigned char **in, long len,
620 const ASN1_TEMPLATE *tt, char opt,
621 ASN1_TLC *ctx)
622 {
623 int flags, aclass;
624 int ret;
625 const unsigned char *p, *q;
626 if (!val)
627 return 0;
628 flags = tt->flags;
629 aclass = flags & ASN1_TFLG_TAG_CLASS;

631 p = *in;
632 q = p;

634 if (flags & ASN1_TFLG_SK_MASK)
635 {
636 /* SET OF, SEQUENCE OF */
637 int sktag, skaclass;
638 char sk_eoc;
639 /* First work out expected inner tag value */
640 if (flags & ASN1_TFLG_IMPTAG)
641 {
642 sktag = tt->tag;
643 skaclass = aclass;
644 }
645 else
646 {
647 skaclass = V_ASN1_UNIVERSAL;
648 if (flags & ASN1_TFLG_SET_OF)
649 sktag = V_ASN1_SET;
650 else
651 sktag = V_ASN1_SEQUENCE;
652 }
653 /* Get the tag */
654 ret = asn1_check_tlen(&len, NULL, NULL, &sk_eoc, NULL,
655 &p, len, sktag, skaclass, opt, ctx);

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 11

656 if (!ret)
657 {
658 ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I,
659 ERR_R_NESTED_ASN1_ERROR);
660 return 0;
661 }
662 else if (ret == -1)
663 return -1;
664 if (!*val)
665 *val = (ASN1_VALUE *)sk_new_null();
666 else
667 {
668 /* We’ve got a valid STACK: free up any items present */
669 STACK_OF(ASN1_VALUE) *sktmp
670 = (STACK_OF(ASN1_VALUE) *)*val;
671 ASN1_VALUE *vtmp;
672 while(sk_ASN1_VALUE_num(sktmp) > 0)
673 {
674 vtmp = sk_ASN1_VALUE_pop(sktmp);
675 ASN1_item_ex_free(&vtmp,
676 ASN1_ITEM_ptr(tt->item));
677 }
678 }
679
680 if (!*val)
681 {
682 ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I,
683 ERR_R_MALLOC_FAILURE);
684 goto err;
685 }

687 /* Read as many items as we can */
688 while(len > 0)
689 {
690 ASN1_VALUE *skfield;
691 q = p;
692 /* See if EOC found */
693 if (asn1_check_eoc(&p, len))
694 {
695 if (!sk_eoc)
696 {
697 ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I,
698 ASN1_R_UNEXPECTED_EOC);
699 goto err;
700 }
701 len -= p - q;
702 sk_eoc = 0;
703 break;
704 }
705 skfield = NULL;
706 if (!ASN1_item_ex_d2i(&skfield, &p, len,
707 ASN1_ITEM_ptr(tt->item),
708 -1, 0, 0, ctx))
709 {
710 ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I,
711 ERR_R_NESTED_ASN1_ERROR);
712 goto err;
713 }
714 len -= p - q;
715 if (!sk_ASN1_VALUE_push((STACK_OF(ASN1_VALUE) *)*val,
716 skfield))
717 {
718 ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I,
719 ERR_R_MALLOC_FAILURE);
720 goto err;
721 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 12

722 }
723 if (sk_eoc)
724 {
725 ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I, ASN1_R_MISSING_E
726 goto err;
727 }
728 }
729 else if (flags & ASN1_TFLG_IMPTAG)
730 {
731 /* IMPLICIT tagging */
732 ret = ASN1_item_ex_d2i(val, &p, len,
733 ASN1_ITEM_ptr(tt->item), tt->tag, aclass, opt, ctx);
734 if (!ret)
735 {
736 ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I,
737 ERR_R_NESTED_ASN1_ERROR);
738 goto err;
739 }
740 else if (ret == -1)
741 return -1;
742 }
743 else
744 {
745 /* Nothing special */
746 ret = ASN1_item_ex_d2i(val, &p, len, ASN1_ITEM_ptr(tt->item),
747 -1, 0, opt, ctx);
748 if (!ret)
749 {
750 ASN1err(ASN1_F_ASN1_TEMPLATE_NOEXP_D2I,
751 ERR_R_NESTED_ASN1_ERROR);
752 goto err;
753 }
754 else if (ret == -1)
755 return -1;
756 }

758 *in = p;
759 return 1;

761 err:
762 ASN1_template_free(val, tt);
763 return 0;
764 }

766 static int asn1_d2i_ex_primitive(ASN1_VALUE **pval,
767 const unsigned char **in, long inlen,
768 const ASN1_ITEM *it,
769 int tag, int aclass, char opt, ASN1_TLC *ctx)
770 {
771 int ret = 0, utype;
772 long plen;
773 char cst, inf, free_cont = 0;
774 const unsigned char *p;
775 BUF_MEM buf;
776 const unsigned char *cont = NULL;
777 long len;
778 if (!pval)
779 {
780 ASN1err(ASN1_F_ASN1_D2I_EX_PRIMITIVE, ASN1_R_ILLEGAL_NULL);
781 return 0; /* Should never happen */
782 }

784 if (it->itype == ASN1_ITYPE_MSTRING)
785 {
786 utype = tag;
787 tag = -1;

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 13

788 }
789 else
790 utype = it->utype;

792 if (utype == V_ASN1_ANY)
793 {
794 /* If type is ANY need to figure out type from tag */
795 unsigned char oclass;
796 if (tag >= 0)
797 {
798 ASN1err(ASN1_F_ASN1_D2I_EX_PRIMITIVE,
799 ASN1_R_ILLEGAL_TAGGED_ANY);
800 return 0;
801 }
802 if (opt)
803 {
804 ASN1err(ASN1_F_ASN1_D2I_EX_PRIMITIVE,
805 ASN1_R_ILLEGAL_OPTIONAL_ANY);
806 return 0;
807 }
808 p = *in;
809 ret = asn1_check_tlen(NULL, &utype, &oclass, NULL, NULL,
810 &p, inlen, -1, 0, 0, ctx);
811 if (!ret)
812 {
813 ASN1err(ASN1_F_ASN1_D2I_EX_PRIMITIVE,
814 ERR_R_NESTED_ASN1_ERROR);
815 return 0;
816 }
817 if (oclass != V_ASN1_UNIVERSAL)
818 utype = V_ASN1_OTHER;
819 }
820 if (tag == -1)
821 {
822 tag = utype;
823 aclass = V_ASN1_UNIVERSAL;
824 }
825 p = *in;
826 /* Check header */
827 ret = asn1_check_tlen(&plen, NULL, NULL, &inf, &cst,
828 &p, inlen, tag, aclass, opt, ctx);
829 if (!ret)
830 {
831 ASN1err(ASN1_F_ASN1_D2I_EX_PRIMITIVE, ERR_R_NESTED_ASN1_ERROR);
832 return 0;
833 }
834 else if (ret == -1)
835 return -1;
836 ret = 0;
837 /* SEQUENCE, SET and "OTHER" are left in encoded form */
838 if ((utype == V_ASN1_SEQUENCE)
839 || (utype == V_ASN1_SET) || (utype == V_ASN1_OTHER))
840 {
841 /* Clear context cache for type OTHER because the auto clear
842 * when we have a exact match wont work
843 */
844 if (utype == V_ASN1_OTHER)
845 {
846 asn1_tlc_clear(ctx);
847 }
848 /* SEQUENCE and SET must be constructed */
849 else if (!cst)
850 {
851 ASN1err(ASN1_F_ASN1_D2I_EX_PRIMITIVE,
852 ASN1_R_TYPE_NOT_CONSTRUCTED);
853 return 0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 14

854 }

856 cont = *in;
857 /* If indefinite length constructed find the real end */
858 if (inf)
859 {
860 if (!asn1_find_end(&p, plen, inf))
861 goto err;
862 len = p - cont;
863 }
864 else
865 {
866 len = p - cont + plen;
867 p += plen;
868 buf.data = NULL;
869 }
870 }
871 else if (cst)
872 {
873 buf.length = 0;
874 buf.max = 0;
875 buf.data = NULL;
876 /* Should really check the internal tags are correct but
877 * some things may get this wrong. The relevant specs
878 * say that constructed string types should be OCTET STRINGs
879 * internally irrespective of the type. So instead just check
880 * for UNIVERSAL class and ignore the tag.
881 */
882 if (!asn1_collect(&buf, &p, plen, inf, -1, V_ASN1_UNIVERSAL, 0))
883 {
884 free_cont = 1;
885 goto err;
886 }
887 len = buf.length;
888 /* Append a final null to string */
889 if (!BUF_MEM_grow_clean(&buf, len + 1))
890 {
891 ASN1err(ASN1_F_ASN1_D2I_EX_PRIMITIVE,
892 ERR_R_MALLOC_FAILURE);
893 return 0;
894 }
895 buf.data[len] = 0;
896 cont = (const unsigned char *)buf.data;
897 free_cont = 1;
898 }
899 else
900 {
901 cont = p;
902 len = plen;
903 p += plen;
904 }

906 /* We now have content length and type: translate into a structure */
907 if (!asn1_ex_c2i(pval, cont, len, utype, &free_cont, it))
908 goto err;

910 *in = p;
911 ret = 1;
912 err:
913 if (free_cont && buf.data) OPENSSL_free(buf.data);
914 return ret;
915 }

917 /* Translate ASN1 content octets into a structure */

919 int asn1_ex_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len,

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 15

920 int utype, char *free_cont, const ASN1_ITEM *it)
921 {
922 ASN1_VALUE **opval = NULL;
923 ASN1_STRING *stmp;
924 ASN1_TYPE *typ = NULL;
925 int ret = 0;
926 const ASN1_PRIMITIVE_FUNCS *pf;
927 ASN1_INTEGER **tint;
928 pf = it->funcs;

930 if (pf && pf->prim_c2i)
931 return pf->prim_c2i(pval, cont, len, utype, free_cont, it);
932 /* If ANY type clear type and set pointer to internal value */
933 if (it->utype == V_ASN1_ANY)
934 {
935 if (!*pval)
936 {
937 typ = ASN1_TYPE_new();
938 if (typ == NULL)
939 goto err;
940 *pval = (ASN1_VALUE *)typ;
941 }
942 else
943 typ = (ASN1_TYPE *)*pval;

945 if (utype != typ->type)
946 ASN1_TYPE_set(typ, utype, NULL);
947 opval = pval;
948 pval = &typ->value.asn1_value;
949 }
950 switch(utype)
951 {
952 case V_ASN1_OBJECT:
953 if (!c2i_ASN1_OBJECT((ASN1_OBJECT **)pval, &cont, len))
954 goto err;
955 break;

957 case V_ASN1_NULL:
958 if (len)
959 {
960 ASN1err(ASN1_F_ASN1_EX_C2I,
961 ASN1_R_NULL_IS_WRONG_LENGTH);
962 goto err;
963 }
964 *pval = (ASN1_VALUE *)1;
965 break;

967 case V_ASN1_BOOLEAN:
968 if (len != 1)
969 {
970 ASN1err(ASN1_F_ASN1_EX_C2I,
971 ASN1_R_BOOLEAN_IS_WRONG_LENGTH);
972 goto err;
973 }
974 else
975 {
976 ASN1_BOOLEAN *tbool;
977 tbool = (ASN1_BOOLEAN *)pval;
978 *tbool = *cont;
979 }
980 break;

982 case V_ASN1_BIT_STRING:
983 if (!c2i_ASN1_BIT_STRING((ASN1_BIT_STRING **)pval, &cont, len))
984 goto err;
985 break;

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 16

987 case V_ASN1_INTEGER:
988 case V_ASN1_NEG_INTEGER:
989 case V_ASN1_ENUMERATED:
990 case V_ASN1_NEG_ENUMERATED:
991 tint = (ASN1_INTEGER **)pval;
992 if (!c2i_ASN1_INTEGER(tint, &cont, len))
993 goto err;
994 /* Fixup type to match the expected form */
995 (*tint)->type = utype | ((*tint)->type & V_ASN1_NEG);
996 break;

998 case V_ASN1_OCTET_STRING:
999 case V_ASN1_NUMERICSTRING:

1000 case V_ASN1_PRINTABLESTRING:
1001 case V_ASN1_T61STRING:
1002 case V_ASN1_VIDEOTEXSTRING:
1003 case V_ASN1_IA5STRING:
1004 case V_ASN1_UTCTIME:
1005 case V_ASN1_GENERALIZEDTIME:
1006 case V_ASN1_GRAPHICSTRING:
1007 case V_ASN1_VISIBLESTRING:
1008 case V_ASN1_GENERALSTRING:
1009 case V_ASN1_UNIVERSALSTRING:
1010 case V_ASN1_BMPSTRING:
1011 case V_ASN1_UTF8STRING:
1012 case V_ASN1_OTHER:
1013 case V_ASN1_SET:
1014 case V_ASN1_SEQUENCE:
1015 default:
1016 if (utype == V_ASN1_BMPSTRING && (len & 1))
1017 {
1018 ASN1err(ASN1_F_ASN1_EX_C2I,
1019 ASN1_R_BMPSTRING_IS_WRONG_LENGTH);
1020 goto err;
1021 }
1022 if (utype == V_ASN1_UNIVERSALSTRING && (len & 3))
1023 {
1024 ASN1err(ASN1_F_ASN1_EX_C2I,
1025 ASN1_R_UNIVERSALSTRING_IS_WRONG_LENGTH);
1026 goto err;
1027 }
1028 /* All based on ASN1_STRING and handled the same */
1029 if (!*pval)
1030 {
1031 stmp = ASN1_STRING_type_new(utype);
1032 if (!stmp)
1033 {
1034 ASN1err(ASN1_F_ASN1_EX_C2I,
1035 ERR_R_MALLOC_FAILURE);
1036 goto err;
1037 }
1038 *pval = (ASN1_VALUE *)stmp;
1039 }
1040 else
1041 {
1042 stmp = (ASN1_STRING *)*pval;
1043 stmp->type = utype;
1044 }
1045 /* If we’ve already allocated a buffer use it */
1046 if (*free_cont)
1047 {
1048 if (stmp->data)
1049 OPENSSL_free(stmp->data);
1050 stmp->data = (unsigned char *)cont; /* UGLY CAST! RL */
1051 stmp->length = len;

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 17

1052 *free_cont = 0;
1053 }
1054 else
1055 {
1056 if (!ASN1_STRING_set(stmp, cont, len))
1057 {
1058 ASN1err(ASN1_F_ASN1_EX_C2I,
1059 ERR_R_MALLOC_FAILURE);
1060 ASN1_STRING_free(stmp);
1061 *pval = NULL;
1062 goto err;
1063 }
1064 }
1065 break;
1066 }
1067 /* If ASN1_ANY and NULL type fix up value */
1068 if (typ && (utype == V_ASN1_NULL))
1069 typ->value.ptr = NULL;

1071 ret = 1;
1072 err:
1073 if (!ret)
1074 {
1075 ASN1_TYPE_free(typ);
1076 if (opval)
1077 *opval = NULL;
1078 }
1079 return ret;
1080 }

1083 /* This function finds the end of an ASN1 structure when passed its maximum
1084 * length, whether it is indefinite length and a pointer to the content.
1085 * This is more efficient than calling asn1_collect because it does not
1086 * recurse on each indefinite length header.
1087 */

1089 static int asn1_find_end(const unsigned char **in, long len, char inf)
1090 {
1091 int expected_eoc;
1092 long plen;
1093 const unsigned char *p = *in, *q;
1094 /* If not indefinite length constructed just add length */
1095 if (inf == 0)
1096 {
1097 *in += len;
1098 return 1;
1099 }
1100 expected_eoc = 1;
1101 /* Indefinite length constructed form. Find the end when enough EOCs
1102 * are found. If more indefinite length constructed headers
1103 * are encountered increment the expected eoc count otherwise just
1104 * skip to the end of the data.
1105 */
1106 while (len > 0)
1107 {
1108 if(asn1_check_eoc(&p, len))
1109 {
1110 expected_eoc--;
1111 if (expected_eoc == 0)
1112 break;
1113 len -= 2;
1114 continue;
1115 }
1116 q = p;
1117 /* Just read in a header: only care about the length */

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 18

1118 if(!asn1_check_tlen(&plen, NULL, NULL, &inf, NULL, &p, len,
1119 -1, 0, 0, NULL))
1120 {
1121 ASN1err(ASN1_F_ASN1_FIND_END, ERR_R_NESTED_ASN1_ERROR);
1122 return 0;
1123 }
1124 if (inf)
1125 expected_eoc++;
1126 else
1127 p += plen;
1128 len -= p - q;
1129 }
1130 if (expected_eoc)
1131 {
1132 ASN1err(ASN1_F_ASN1_FIND_END, ASN1_R_MISSING_EOC);
1133 return 0;
1134 }
1135 *in = p;
1136 return 1;
1137 }
1138 /* This function collects the asn1 data from a constructred string
1139 * type into a buffer. The values of ’in’ and ’len’ should refer
1140 * to the contents of the constructed type and ’inf’ should be set
1141 * if it is indefinite length.
1142 */

1144 #ifndef ASN1_MAX_STRING_NEST
1145 /* This determines how many levels of recursion are permitted in ASN1
1146 * string types. If it is not limited stack overflows can occur. If set
1147 * to zero no recursion is allowed at all. Although zero should be adequate
1148 * examples exist that require a value of 1. So 5 should be more than enough.
1149 */
1150 #define ASN1_MAX_STRING_NEST 5
1151 #endif

1154 static int asn1_collect(BUF_MEM *buf, const unsigned char **in, long len,
1155 char inf, int tag, int aclass, int depth)
1156 {
1157 const unsigned char *p, *q;
1158 long plen;
1159 char cst, ininf;
1160 p = *in;
1161 inf &= 1;
1162 /* If no buffer and not indefinite length constructed just pass over
1163 * the encoded data */
1164 if (!buf && !inf)
1165 {
1166 *in += len;
1167 return 1;
1168 }
1169 while(len > 0)
1170 {
1171 q = p;
1172 /* Check for EOC */
1173 if (asn1_check_eoc(&p, len))
1174 {
1175 /* EOC is illegal outside indefinite length
1176 * constructed form */
1177 if (!inf)
1178 {
1179 ASN1err(ASN1_F_ASN1_COLLECT,
1180 ASN1_R_UNEXPECTED_EOC);
1181 return 0;
1182 }
1183 inf = 0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 19

1184 break;
1185 }

1187 if (!asn1_check_tlen(&plen, NULL, NULL, &ininf, &cst, &p,
1188 len, tag, aclass, 0, NULL))
1189 {
1190 ASN1err(ASN1_F_ASN1_COLLECT, ERR_R_NESTED_ASN1_ERROR);
1191 return 0;
1192 }

1194 /* If indefinite length constructed update max length */
1195 if (cst)
1196 {
1197 if (depth >= ASN1_MAX_STRING_NEST)
1198 {
1199 ASN1err(ASN1_F_ASN1_COLLECT,
1200 ASN1_R_NESTED_ASN1_STRING);
1201 return 0;
1202 }
1203 if (!asn1_collect(buf, &p, plen, ininf, tag, aclass,
1204 depth + 1))
1205 return 0;
1206 }
1207 else if (plen && !collect_data(buf, &p, plen))
1208 return 0;
1209 len -= p - q;
1210 }
1211 if (inf)
1212 {
1213 ASN1err(ASN1_F_ASN1_COLLECT, ASN1_R_MISSING_EOC);
1214 return 0;
1215 }
1216 *in = p;
1217 return 1;
1218 }

1220 static int collect_data(BUF_MEM *buf, const unsigned char **p, long plen)
1221 {
1222 int len;
1223 if (buf)
1224 {
1225 len = buf->length;
1226 if (!BUF_MEM_grow_clean(buf, len + plen))
1227 {
1228 ASN1err(ASN1_F_COLLECT_DATA, ERR_R_MALLOC_FAILURE);
1229 return 0;
1230 }
1231 memcpy(buf->data + len, *p, plen);
1232 }
1233 *p += plen;
1234 return 1;
1235 }

1237 /* Check for ASN1 EOC and swallow it if found */

1239 static int asn1_check_eoc(const unsigned char **in, long len)
1240 {
1241 const unsigned char *p;
1242 if (len < 2) return 0;
1243 p = *in;
1244 if (!p[0] && !p[1])
1245 {
1246 *in += 2;
1247 return 1;
1248 }
1249 return 0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 20

1250 }

1252 /* Check an ASN1 tag and length: a bit like ASN1_get_object
1253 * but it sets the length for indefinite length constructed
1254 * form, we don’t know the exact length but we can set an
1255 * upper bound to the amount of data available minus the
1256 * header length just read.
1257 */

1259 static int asn1_check_tlen(long *olen, int *otag, unsigned char *oclass,
1260 char *inf, char *cst,
1261 const unsigned char **in, long len,
1262 int exptag, int expclass, char opt,
1263 ASN1_TLC *ctx)
1264 {
1265 int i;
1266 int ptag, pclass;
1267 long plen;
1268 const unsigned char *p, *q;
1269 p = *in;
1270 q = p;

1272 if (ctx && ctx->valid)
1273 {
1274 i = ctx->ret;
1275 plen = ctx->plen;
1276 pclass = ctx->pclass;
1277 ptag = ctx->ptag;
1278 p += ctx->hdrlen;
1279 }
1280 else
1281 {
1282 i = ASN1_get_object(&p, &plen, &ptag, &pclass, len);
1283 if (ctx)
1284 {
1285 ctx->ret = i;
1286 ctx->plen = plen;
1287 ctx->pclass = pclass;
1288 ctx->ptag = ptag;
1289 ctx->hdrlen = p - q;
1290 ctx->valid = 1;
1291 /* If definite length, and no error, length +
1292 * header can’t exceed total amount of data available.
1293 */
1294 if (!(i & 0x81) && ((plen + ctx->hdrlen) > len))
1295 {
1296 ASN1err(ASN1_F_ASN1_CHECK_TLEN,
1297 ASN1_R_TOO_LONG);
1298 asn1_tlc_clear(ctx);
1299 return 0;
1300 }
1301 }
1302 }

1304 if (i & 0x80)
1305 {
1306 ASN1err(ASN1_F_ASN1_CHECK_TLEN, ASN1_R_BAD_OBJECT_HEADER);
1307 asn1_tlc_clear(ctx);
1308 return 0;
1309 }
1310 if (exptag >= 0)
1311 {
1312 if ((exptag != ptag) || (expclass != pclass))
1313 {
1314 /* If type is OPTIONAL, not an error:
1315 * indicate missing type.

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_dec.c 21

1316 */
1317 if (opt) return -1;
1318 asn1_tlc_clear(ctx);
1319 ASN1err(ASN1_F_ASN1_CHECK_TLEN, ASN1_R_WRONG_TAG);
1320 return 0;
1321 }
1322 /* We have a tag and class match:
1323 * assume we are going to do something with it */
1324 asn1_tlc_clear(ctx);
1325 }

1327 if (i & 1)
1328 plen = len - (p - q);

1330 if (inf)
1331 *inf = i & 1;

1333 if (cst)
1334 *cst = i & V_ASN1_CONSTRUCTED;

1336 if (olen)
1337 *olen = plen;

1339 if (oclass)
1340 *oclass = pclass;

1342 if (otag)
1343 *otag = ptag;

1345 *in = p;
1346 return 1;
1347 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_enc.c 1

**
 18091 Fri May 30 18:31:31 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* tasn_enc.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000-2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include <stddef.h>
61 #include <string.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_enc.c 2

62 #include "cryptlib.h"
63 #include <openssl/asn1.h>
64 #include <openssl/asn1t.h>
65 #include <openssl/objects.h>

67 static int asn1_i2d_ex_primitive(ASN1_VALUE **pval, unsigned char **out,
68 const ASN1_ITEM *it,
69 int tag, int aclass);
70 static int asn1_set_seq_out(STACK_OF(ASN1_VALUE) *sk, unsigned char **out,
71 int skcontlen, const ASN1_ITEM *item,
72 int do_sort, int iclass);
73 static int asn1_template_ex_i2d(ASN1_VALUE **pval, unsigned char **out,
74 const ASN1_TEMPLATE *tt,
75 int tag, int aclass);
76 static int asn1_item_flags_i2d(ASN1_VALUE *val, unsigned char **out,
77 const ASN1_ITEM *it, int flags);

79 /* Top level i2d equivalents: the ’ndef’ variant instructs the encoder
80 * to use indefinite length constructed encoding, where appropriate
81 */

83 int ASN1_item_ndef_i2d(ASN1_VALUE *val, unsigned char **out,
84 const ASN1_ITEM *it)
85 {
86 return asn1_item_flags_i2d(val, out, it, ASN1_TFLG_NDEF);
87 }

89 int ASN1_item_i2d(ASN1_VALUE *val, unsigned char **out, const ASN1_ITEM *it)
90 {
91 return asn1_item_flags_i2d(val, out, it, 0);
92 }

94 /* Encode an ASN1 item, this is use by the
95 * standard ’i2d’ function. ’out’ points to
96 * a buffer to output the data to.
97 *
98 * The new i2d has one additional feature. If the output
99 * buffer is NULL (i.e. *out == NULL) then a buffer is
100 * allocated and populated with the encoding.
101 */

103 static int asn1_item_flags_i2d(ASN1_VALUE *val, unsigned char **out,
104 const ASN1_ITEM *it, int flags)
105 {
106 if (out && !*out)
107 {
108 unsigned char *p, *buf;
109 int len;
110 len = ASN1_item_ex_i2d(&val, NULL, it, -1, flags);
111 if (len <= 0)
112 return len;
113 buf = OPENSSL_malloc(len);
114 if (!buf)
115 return -1;
116 p = buf;
117 ASN1_item_ex_i2d(&val, &p, it, -1, flags);
118 *out = buf;
119 return len;
120 }

122 return ASN1_item_ex_i2d(&val, out, it, -1, flags);
123 }

125 /* Encode an item, taking care of IMPLICIT tagging (if any).
126 * This function performs the normal item handling: it can be
127 * used in external types.

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_enc.c 3

128 */

130 int ASN1_item_ex_i2d(ASN1_VALUE **pval, unsigned char **out,
131 const ASN1_ITEM *it, int tag, int aclass)
132 {
133 const ASN1_TEMPLATE *tt = NULL;
134 unsigned char *p = NULL;
135 int i, seqcontlen, seqlen, ndef = 1;
136 const ASN1_COMPAT_FUNCS *cf;
137 const ASN1_EXTERN_FUNCS *ef;
138 const ASN1_AUX *aux = it->funcs;
139 ASN1_aux_cb *asn1_cb = 0;

141 if ((it->itype != ASN1_ITYPE_PRIMITIVE) && !*pval)
142 return 0;

144 if (aux && aux->asn1_cb)
145 asn1_cb = aux->asn1_cb;

147 switch(it->itype)
148 {

150 case ASN1_ITYPE_PRIMITIVE:
151 if (it->templates)
152 return asn1_template_ex_i2d(pval, out, it->templates,
153 tag, aclass);
154 return asn1_i2d_ex_primitive(pval, out, it, tag, aclass);
155 break;

157 case ASN1_ITYPE_MSTRING:
158 return asn1_i2d_ex_primitive(pval, out, it, -1, aclass);

160 case ASN1_ITYPE_CHOICE:
161 if (asn1_cb && !asn1_cb(ASN1_OP_I2D_PRE, pval, it, NULL))
162 return 0;
163 i = asn1_get_choice_selector(pval, it);
164 if ((i >= 0) && (i < it->tcount))
165 {
166 ASN1_VALUE **pchval;
167 const ASN1_TEMPLATE *chtt;
168 chtt = it->templates + i;
169 pchval = asn1_get_field_ptr(pval, chtt);
170 return asn1_template_ex_i2d(pchval, out, chtt,
171 -1, aclass);
172 }
173 /* Fixme: error condition if selector out of range */
174 if (asn1_cb && !asn1_cb(ASN1_OP_I2D_POST, pval, it, NULL))
175 return 0;
176 break;

178 case ASN1_ITYPE_EXTERN:
179 /* If new style i2d it does all the work */
180 ef = it->funcs;
181 return ef->asn1_ex_i2d(pval, out, it, tag, aclass);

183 case ASN1_ITYPE_COMPAT:
184 /* old style hackery... */
185 cf = it->funcs;
186 if (out)
187 p = *out;
188 i = cf->asn1_i2d(*pval, out);
189 /* Fixup for IMPLICIT tag: note this messes up for tags > 30,
190 * but so did the old code. Tags > 30 are very rare anyway.
191 */
192 if (out && (tag != -1))
193 *p = aclass | tag | (*p & V_ASN1_CONSTRUCTED);

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_enc.c 4

194 return i;
195
196 case ASN1_ITYPE_NDEF_SEQUENCE:
197 /* Use indefinite length constructed if requested */
198 if (aclass & ASN1_TFLG_NDEF) ndef = 2;
199 /* fall through */

201 case ASN1_ITYPE_SEQUENCE:
202 i = asn1_enc_restore(&seqcontlen, out, pval, it);
203 /* An error occurred */
204 if (i < 0)
205 return 0;
206 /* We have a valid cached encoding... */
207 if (i > 0)
208 return seqcontlen;
209 /* Otherwise carry on */
210 seqcontlen = 0;
211 /* If no IMPLICIT tagging set to SEQUENCE, UNIVERSAL */
212 if (tag == -1)
213 {
214 tag = V_ASN1_SEQUENCE;
215 /* Retain any other flags in aclass */
216 aclass = (aclass & ~ASN1_TFLG_TAG_CLASS)
217 | V_ASN1_UNIVERSAL;
218 }
219 if (asn1_cb && !asn1_cb(ASN1_OP_I2D_PRE, pval, it, NULL))
220 return 0;
221 /* First work out sequence content length */
222 for (i = 0, tt = it->templates; i < it->tcount; tt++, i++)
223 {
224 const ASN1_TEMPLATE *seqtt;
225 ASN1_VALUE **pseqval;
226 seqtt = asn1_do_adb(pval, tt, 1);
227 if (!seqtt)
228 return 0;
229 pseqval = asn1_get_field_ptr(pval, seqtt);
230 /* FIXME: check for errors in enhanced version */
231 seqcontlen += asn1_template_ex_i2d(pseqval, NULL, seqtt,
232 -1, aclass);
233 }

235 seqlen = ASN1_object_size(ndef, seqcontlen, tag);
236 if (!out)
237 return seqlen;
238 /* Output SEQUENCE header */
239 ASN1_put_object(out, ndef, seqcontlen, tag, aclass);
240 for (i = 0, tt = it->templates; i < it->tcount; tt++, i++)
241 {
242 const ASN1_TEMPLATE *seqtt;
243 ASN1_VALUE **pseqval;
244 seqtt = asn1_do_adb(pval, tt, 1);
245 if (!seqtt)
246 return 0;
247 pseqval = asn1_get_field_ptr(pval, seqtt);
248 /* FIXME: check for errors in enhanced version */
249 asn1_template_ex_i2d(pseqval, out, seqtt, -1, aclass);
250 }
251 if (ndef == 2)
252 ASN1_put_eoc(out);
253 if (asn1_cb && !asn1_cb(ASN1_OP_I2D_POST, pval, it, NULL))
254 return 0;
255 return seqlen;

257 default:
258 return 0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_enc.c 5

260 }
261 return 0;
262 }

264 int ASN1_template_i2d(ASN1_VALUE **pval, unsigned char **out,
265 const ASN1_TEMPLATE *tt)
266 {
267 return asn1_template_ex_i2d(pval, out, tt, -1, 0);
268 }

270 static int asn1_template_ex_i2d(ASN1_VALUE **pval, unsigned char **out,
271 const ASN1_TEMPLATE *tt, int tag, int iclass)
272 {
273 int i, ret, flags, ttag, tclass, ndef;
274 flags = tt->flags;
275 /* Work out tag and class to use: tagging may come
276 * either from the template or the arguments, not both
277 * because this would create ambiguity. Additionally
278 * the iclass argument may contain some additional flags
279 * which should be noted and passed down to other levels.
280 */
281 if (flags & ASN1_TFLG_TAG_MASK)
282 {
283 /* Error if argument and template tagging */
284 if (tag != -1)
285 /* FIXME: error code here */
286 return -1;
287 /* Get tagging from template */
288 ttag = tt->tag;
289 tclass = flags & ASN1_TFLG_TAG_CLASS;
290 }
291 else if (tag != -1)
292 {
293 /* No template tagging, get from arguments */
294 ttag = tag;
295 tclass = iclass & ASN1_TFLG_TAG_CLASS;
296 }
297 else
298 {
299 ttag = -1;
300 tclass = 0;
301 }
302 /*
303 * Remove any class mask from iflag.
304 */
305 iclass &= ~ASN1_TFLG_TAG_CLASS;

307 /* At this point ’ttag’ contains the outer tag to use,
308 * ’tclass’ is the class and iclass is any flags passed
309 * to this function.
310 */

312 /* if template and arguments require ndef, use it */
313 if ((flags & ASN1_TFLG_NDEF) && (iclass & ASN1_TFLG_NDEF))
314 ndef = 2;
315 else ndef = 1;

317 if (flags & ASN1_TFLG_SK_MASK)
318 {
319 /* SET OF, SEQUENCE OF */
320 STACK_OF(ASN1_VALUE) *sk = (STACK_OF(ASN1_VALUE) *)*pval;
321 int isset, sktag, skaclass;
322 int skcontlen, sklen;
323 ASN1_VALUE *skitem;

325 if (!*pval)

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_enc.c 6

326 return 0;

328 if (flags & ASN1_TFLG_SET_OF)
329 {
330 isset = 1;
331 /* 2 means we reorder */
332 if (flags & ASN1_TFLG_SEQUENCE_OF)
333 isset = 2;
334 }
335 else isset = 0;

337 /* Work out inner tag value: if EXPLICIT
338 * or no tagging use underlying type.
339 */
340 if ((ttag != -1) && !(flags & ASN1_TFLG_EXPTAG))
341 {
342 sktag = ttag;
343 skaclass = tclass;
344 }
345 else
346 {
347 skaclass = V_ASN1_UNIVERSAL;
348 if (isset)
349 sktag = V_ASN1_SET;
350 else sktag = V_ASN1_SEQUENCE;
351 }

353 /* Determine total length of items */
354 skcontlen = 0;
355 for (i = 0; i < sk_ASN1_VALUE_num(sk); i++)
356 {
357 skitem = sk_ASN1_VALUE_value(sk, i);
358 skcontlen += ASN1_item_ex_i2d(&skitem, NULL,
359 ASN1_ITEM_ptr(tt->item),
360 -1, iclass);
361 }
362 sklen = ASN1_object_size(ndef, skcontlen, sktag);
363 /* If EXPLICIT need length of surrounding tag */
364 if (flags & ASN1_TFLG_EXPTAG)
365 ret = ASN1_object_size(ndef, sklen, ttag);
366 else ret = sklen;

368 if (!out)
369 return ret;

371 /* Now encode this lot... */
372 /* EXPLICIT tag */
373 if (flags & ASN1_TFLG_EXPTAG)
374 ASN1_put_object(out, ndef, sklen, ttag, tclass);
375 /* SET or SEQUENCE and IMPLICIT tag */
376 ASN1_put_object(out, ndef, skcontlen, sktag, skaclass);
377 /* And the stuff itself */
378 asn1_set_seq_out(sk, out, skcontlen, ASN1_ITEM_ptr(tt->item),
379 isset, iclass);
380 if (ndef == 2)
381 {
382 ASN1_put_eoc(out);
383 if (flags & ASN1_TFLG_EXPTAG)
384 ASN1_put_eoc(out);
385 }

387 return ret;
388 }

390 if (flags & ASN1_TFLG_EXPTAG)
391 {

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_enc.c 7

392 /* EXPLICIT tagging */
393 /* Find length of tagged item */
394 i = ASN1_item_ex_i2d(pval, NULL, ASN1_ITEM_ptr(tt->item),
395 -1, iclass);
396 if (!i)
397 return 0;
398 /* Find length of EXPLICIT tag */
399 ret = ASN1_object_size(ndef, i, ttag);
400 if (out)
401 {
402 /* Output tag and item */
403 ASN1_put_object(out, ndef, i, ttag, tclass);
404 ASN1_item_ex_i2d(pval, out, ASN1_ITEM_ptr(tt->item),
405 -1, iclass);
406 if (ndef == 2)
407 ASN1_put_eoc(out);
408 }
409 return ret;
410 }

412 /* Either normal or IMPLICIT tagging: combine class and flags */
413 return ASN1_item_ex_i2d(pval, out, ASN1_ITEM_ptr(tt->item),
414 ttag, tclass | iclass);

416 }

418 /* Temporary structure used to hold DER encoding of items for SET OF */

420 typedef struct {
421 unsigned char *data;
422 int length;
423 ASN1_VALUE *field;
424 } DER_ENC;

426 static int der_cmp(const void *a, const void *b)
427 {
428 const DER_ENC *d1 = a, *d2 = b;
429 int cmplen, i;
430 cmplen = (d1->length < d2->length) ? d1->length : d2->length;
431 i = memcmp(d1->data, d2->data, cmplen);
432 if (i)
433 return i;
434 return d1->length - d2->length;
435 }

437 /* Output the content octets of SET OF or SEQUENCE OF */

439 static int asn1_set_seq_out(STACK_OF(ASN1_VALUE) *sk, unsigned char **out,
440 int skcontlen, const ASN1_ITEM *item,
441 int do_sort, int iclass)
442 {
443 int i;
444 ASN1_VALUE *skitem;
445 unsigned char *tmpdat = NULL, *p = NULL;
446 DER_ENC *derlst = NULL, *tder;
447 if (do_sort)
448 {
449 /* Don’t need to sort less than 2 items */
450 if (sk_ASN1_VALUE_num(sk) < 2)
451 do_sort = 0;
452 else
453 {
454 derlst = OPENSSL_malloc(sk_ASN1_VALUE_num(sk)
455 * sizeof(*derlst));
456 tmpdat = OPENSSL_malloc(skcontlen);
457 if (!derlst || !tmpdat)

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_enc.c 8

458 return 0;
459 }
460 }
461 /* If not sorting just output each item */
462 if (!do_sort)
463 {
464 for (i = 0; i < sk_ASN1_VALUE_num(sk); i++)
465 {
466 skitem = sk_ASN1_VALUE_value(sk, i);
467 ASN1_item_ex_i2d(&skitem, out, item, -1, iclass);
468 }
469 return 1;
470 }
471 p = tmpdat;

473 /* Doing sort: build up a list of each member’s DER encoding */
474 for (i = 0, tder = derlst; i < sk_ASN1_VALUE_num(sk); i++, tder++)
475 {
476 skitem = sk_ASN1_VALUE_value(sk, i);
477 tder->data = p;
478 tder->length = ASN1_item_ex_i2d(&skitem, &p, item, -1, iclass);
479 tder->field = skitem;
480 }

482 /* Now sort them */
483 qsort(derlst, sk_ASN1_VALUE_num(sk), sizeof(*derlst), der_cmp);
484 /* Output sorted DER encoding */
485 p = *out;
486 for (i = 0, tder = derlst; i < sk_ASN1_VALUE_num(sk); i++, tder++)
487 {
488 memcpy(p, tder->data, tder->length);
489 p += tder->length;
490 }
491 *out = p;
492 /* If do_sort is 2 then reorder the STACK */
493 if (do_sort == 2)
494 {
495 for (i = 0, tder = derlst; i < sk_ASN1_VALUE_num(sk);
496 i++, tder++)
497 (void)sk_ASN1_VALUE_set(sk, i, tder->field);
498 }
499 OPENSSL_free(derlst);
500 OPENSSL_free(tmpdat);
501 return 1;
502 }

504 static int asn1_i2d_ex_primitive(ASN1_VALUE **pval, unsigned char **out,
505 const ASN1_ITEM *it, int tag, int aclass)
506 {
507 int len;
508 int utype;
509 int usetag;
510 int ndef = 0;

512 utype = it->utype;

514 /* Get length of content octets and maybe find
515 * out the underlying type.
516 */

518 len = asn1_ex_i2c(pval, NULL, &utype, it);

520 /* If SEQUENCE, SET or OTHER then header is
521 * included in pseudo content octets so don’t
522 * include tag+length. We need to check here
523 * because the call to asn1_ex_i2c() could change

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_enc.c 9

524 * utype.
525 */
526 if ((utype == V_ASN1_SEQUENCE) || (utype == V_ASN1_SET) ||
527 (utype == V_ASN1_OTHER))
528 usetag = 0;
529 else usetag = 1;

531 /* -1 means omit type */

533 if (len == -1)
534 return 0;

536 /* -2 return is special meaning use ndef */
537 if (len == -2)
538 {
539 ndef = 2;
540 len = 0;
541 }

543 /* If not implicitly tagged get tag from underlying type */
544 if (tag == -1) tag = utype;

546 /* Output tag+length followed by content octets */
547 if (out)
548 {
549 if (usetag)
550 ASN1_put_object(out, ndef, len, tag, aclass);
551 asn1_ex_i2c(pval, *out, &utype, it);
552 if (ndef)
553 ASN1_put_eoc(out);
554 else
555 *out += len;
556 }

558 if (usetag)
559 return ASN1_object_size(ndef, len, tag);
560 return len;
561 }

563 /* Produce content octets from a structure */

565 int asn1_ex_i2c(ASN1_VALUE **pval, unsigned char *cout, int *putype,
566 const ASN1_ITEM *it)
567 {
568 ASN1_BOOLEAN *tbool = NULL;
569 ASN1_STRING *strtmp;
570 ASN1_OBJECT *otmp;
571 int utype;
572 const unsigned char *cont;
573 unsigned char c;
574 int len;
575 const ASN1_PRIMITIVE_FUNCS *pf;
576 pf = it->funcs;
577 if (pf && pf->prim_i2c)
578 return pf->prim_i2c(pval, cout, putype, it);

580 /* Should type be omitted? */
581 if ((it->itype != ASN1_ITYPE_PRIMITIVE)
582 || (it->utype != V_ASN1_BOOLEAN))
583 {
584 if (!*pval) return -1;
585 }

587 if (it->itype == ASN1_ITYPE_MSTRING)
588 {
589 /* If MSTRING type set the underlying type */

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_enc.c 10

590 strtmp = (ASN1_STRING *)*pval;
591 utype = strtmp->type;
592 *putype = utype;
593 }
594 else if (it->utype == V_ASN1_ANY)
595 {
596 /* If ANY set type and pointer to value */
597 ASN1_TYPE *typ;
598 typ = (ASN1_TYPE *)*pval;
599 utype = typ->type;
600 *putype = utype;
601 pval = &typ->value.asn1_value;
602 }
603 else utype = *putype;

605 switch(utype)
606 {
607 case V_ASN1_OBJECT:
608 otmp = (ASN1_OBJECT *)*pval;
609 cont = otmp->data;
610 len = otmp->length;
611 break;

613 case V_ASN1_NULL:
614 cont = NULL;
615 len = 0;
616 break;

618 case V_ASN1_BOOLEAN:
619 tbool = (ASN1_BOOLEAN *)pval;
620 if (*tbool == -1)
621 return -1;
622 if (it->utype != V_ASN1_ANY)
623 {
624 /* Default handling if value == size field then omit */
625 if (*tbool && (it->size > 0))
626 return -1;
627 if (!*tbool && !it->size)
628 return -1;
629 }
630 c = (unsigned char)*tbool;
631 cont = &c;
632 len = 1;
633 break;

635 case V_ASN1_BIT_STRING:
636 return i2c_ASN1_BIT_STRING((ASN1_BIT_STRING *)*pval,
637 cout ? &cout : NULL);
638 break;

640 case V_ASN1_INTEGER:
641 case V_ASN1_NEG_INTEGER:
642 case V_ASN1_ENUMERATED:
643 case V_ASN1_NEG_ENUMERATED:
644 /* These are all have the same content format
645 * as ASN1_INTEGER
646 */
647 return i2c_ASN1_INTEGER((ASN1_INTEGER *)*pval,
648 cout ? &cout : NULL);
649 break;

651 case V_ASN1_OCTET_STRING:
652 case V_ASN1_NUMERICSTRING:
653 case V_ASN1_PRINTABLESTRING:
654 case V_ASN1_T61STRING:
655 case V_ASN1_VIDEOTEXSTRING:

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_enc.c 11

656 case V_ASN1_IA5STRING:
657 case V_ASN1_UTCTIME:
658 case V_ASN1_GENERALIZEDTIME:
659 case V_ASN1_GRAPHICSTRING:
660 case V_ASN1_VISIBLESTRING:
661 case V_ASN1_GENERALSTRING:
662 case V_ASN1_UNIVERSALSTRING:
663 case V_ASN1_BMPSTRING:
664 case V_ASN1_UTF8STRING:
665 case V_ASN1_SEQUENCE:
666 case V_ASN1_SET:
667 default:
668 /* All based on ASN1_STRING and handled the same */
669 strtmp = (ASN1_STRING *)*pval;
670 /* Special handling for NDEF */
671 if ((it->size == ASN1_TFLG_NDEF)
672 && (strtmp->flags & ASN1_STRING_FLAG_NDEF))
673 {
674 if (cout)
675 {
676 strtmp->data = cout;
677 strtmp->length = 0;
678 }
679 /* Special return code */
680 return -2;
681 }
682 cont = strtmp->data;
683 len = strtmp->length;

685 break;

687 }
688 if (cout && len)
689 memcpy(cout, cont, len);
690 return len;
691 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_fre.c 1

**
 6924 Fri May 30 18:31:31 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_fre.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* tasn_fre.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include <stddef.h>
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_fre.c 2

62 #include <openssl/asn1t.h>
63 #include <openssl/objects.h>

65 static void asn1_item_combine_free(ASN1_VALUE **pval, const ASN1_ITEM *it, int c

67 /* Free up an ASN1 structure */

69 void ASN1_item_free(ASN1_VALUE *val, const ASN1_ITEM *it)
70 {
71 asn1_item_combine_free(&val, it, 0);
72 }

74 void ASN1_item_ex_free(ASN1_VALUE **pval, const ASN1_ITEM *it)
75 {
76 asn1_item_combine_free(pval, it, 0);
77 }

79 static void asn1_item_combine_free(ASN1_VALUE **pval, const ASN1_ITEM *it, int c
80 {
81 const ASN1_TEMPLATE *tt = NULL, *seqtt;
82 const ASN1_EXTERN_FUNCS *ef;
83 const ASN1_COMPAT_FUNCS *cf;
84 const ASN1_AUX *aux = it->funcs;
85 ASN1_aux_cb *asn1_cb;
86 int i;
87 if (!pval)
88 return;
89 if ((it->itype != ASN1_ITYPE_PRIMITIVE) && !*pval)
90 return;
91 if (aux && aux->asn1_cb)
92 asn1_cb = aux->asn1_cb;
93 else
94 asn1_cb = 0;

96 switch(it->itype)
97 {

99 case ASN1_ITYPE_PRIMITIVE:
100 if (it->templates)
101 ASN1_template_free(pval, it->templates);
102 else
103 ASN1_primitive_free(pval, it);
104 break;

106 case ASN1_ITYPE_MSTRING:
107 ASN1_primitive_free(pval, it);
108 break;

110 case ASN1_ITYPE_CHOICE:
111 if (asn1_cb)
112 {
113 i = asn1_cb(ASN1_OP_FREE_PRE, pval, it, NULL);
114 if (i == 2)
115 return;
116 }
117 i = asn1_get_choice_selector(pval, it);
118 if ((i >= 0) && (i < it->tcount))
119 {
120 ASN1_VALUE **pchval;
121 tt = it->templates + i;
122 pchval = asn1_get_field_ptr(pval, tt);
123 ASN1_template_free(pchval, tt);
124 }
125 if (asn1_cb)
126 asn1_cb(ASN1_OP_FREE_POST, pval, it, NULL);
127 if (!combine)

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_fre.c 3

128 {
129 OPENSSL_free(*pval);
130 *pval = NULL;
131 }
132 break;

134 case ASN1_ITYPE_COMPAT:
135 cf = it->funcs;
136 if (cf && cf->asn1_free)
137 cf->asn1_free(*pval);
138 break;

140 case ASN1_ITYPE_EXTERN:
141 ef = it->funcs;
142 if (ef && ef->asn1_ex_free)
143 ef->asn1_ex_free(pval, it);
144 break;

146 case ASN1_ITYPE_NDEF_SEQUENCE:
147 case ASN1_ITYPE_SEQUENCE:
148 if (asn1_do_lock(pval, -1, it) > 0)
149 return;
150 if (asn1_cb)
151 {
152 i = asn1_cb(ASN1_OP_FREE_PRE, pval, it, NULL);
153 if (i == 2)
154 return;
155 }
156 asn1_enc_free(pval, it);
157 /* If we free up as normal we will invalidate any
158 * ANY DEFINED BY field and we wont be able to
159 * determine the type of the field it defines. So
160 * free up in reverse order.
161 */
162 tt = it->templates + it->tcount - 1;
163 for (i = 0; i < it->tcount; tt--, i++)
164 {
165 ASN1_VALUE **pseqval;
166 seqtt = asn1_do_adb(pval, tt, 0);
167 if (!seqtt)
168 continue;
169 pseqval = asn1_get_field_ptr(pval, seqtt);
170 ASN1_template_free(pseqval, seqtt);
171 }
172 if (asn1_cb)
173 asn1_cb(ASN1_OP_FREE_POST, pval, it, NULL);
174 if (!combine)
175 {
176 OPENSSL_free(*pval);
177 *pval = NULL;
178 }
179 break;
180 }
181 }

183 void ASN1_template_free(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt)
184 {
185 int i;
186 if (tt->flags & ASN1_TFLG_SK_MASK)
187 {
188 STACK_OF(ASN1_VALUE) *sk = (STACK_OF(ASN1_VALUE) *)*pval;
189 for (i = 0; i < sk_ASN1_VALUE_num(sk); i++)
190 {
191 ASN1_VALUE *vtmp;
192 vtmp = sk_ASN1_VALUE_value(sk, i);
193 asn1_item_combine_free(&vtmp, ASN1_ITEM_ptr(tt->item),

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_fre.c 4

194 0);
195 }
196 sk_ASN1_VALUE_free(sk);
197 *pval = NULL;
198 }
199 else
200 asn1_item_combine_free(pval, ASN1_ITEM_ptr(tt->item),
201 tt->flags & ASN1_TFLG_COMBINE);
202 }

204 void ASN1_primitive_free(ASN1_VALUE **pval, const ASN1_ITEM *it)
205 {
206 int utype;
207 if (it)
208 {
209 const ASN1_PRIMITIVE_FUNCS *pf;
210 pf = it->funcs;
211 if (pf && pf->prim_free)
212 {
213 pf->prim_free(pval, it);
214 return;
215 }
216 }
217 /* Special case: if ’it’ is NULL free contents of ASN1_TYPE */
218 if (!it)
219 {
220 ASN1_TYPE *typ = (ASN1_TYPE *)*pval;
221 utype = typ->type;
222 pval = &typ->value.asn1_value;
223 if (!*pval)
224 return;
225 }
226 else if (it->itype == ASN1_ITYPE_MSTRING)
227 {
228 utype = -1;
229 if (!*pval)
230 return;
231 }
232 else
233 {
234 utype = it->utype;
235 if ((utype != V_ASN1_BOOLEAN) && !*pval)
236 return;
237 }

239 switch(utype)
240 {
241 case V_ASN1_OBJECT:
242 ASN1_OBJECT_free((ASN1_OBJECT *)*pval);
243 break;

245 case V_ASN1_BOOLEAN:
246 if (it)
247 *(ASN1_BOOLEAN *)pval = it->size;
248 else
249 *(ASN1_BOOLEAN *)pval = -1;
250 return;

252 case V_ASN1_NULL:
253 break;

255 case V_ASN1_ANY:
256 ASN1_primitive_free(pval, NULL);
257 OPENSSL_free(*pval);
258 break;

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_fre.c 5

260 default:
261 ASN1_STRING_free((ASN1_STRING *)*pval);
262 *pval = NULL;
263 break;
264 }
265 *pval = NULL;
266 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_new.c 1

**
 9503 Fri May 30 18:31:31 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_new.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* tasn_new.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000-2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include <stddef.h>
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_new.c 2

62 #include <openssl/objects.h>
63 #include <openssl/err.h>
64 #include <openssl/asn1t.h>
65 #include <string.h>

67 static int asn1_item_ex_combine_new(ASN1_VALUE **pval, const ASN1_ITEM *it,
68 int combine);
69 static void asn1_item_clear(ASN1_VALUE **pval, const ASN1_ITEM *it);
70 static void asn1_template_clear(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt);
71 static void asn1_primitive_clear(ASN1_VALUE **pval, const ASN1_ITEM *it);

73 ASN1_VALUE *ASN1_item_new(const ASN1_ITEM *it)
74 {
75 ASN1_VALUE *ret = NULL;
76 if (ASN1_item_ex_new(&ret, it) > 0)
77 return ret;
78 return NULL;
79 }

81 /* Allocate an ASN1 structure */

83 int ASN1_item_ex_new(ASN1_VALUE **pval, const ASN1_ITEM *it)
84 {
85 return asn1_item_ex_combine_new(pval, it, 0);
86 }

88 static int asn1_item_ex_combine_new(ASN1_VALUE **pval, const ASN1_ITEM *it,
89 int combine)
90 {
91 const ASN1_TEMPLATE *tt = NULL;
92 const ASN1_COMPAT_FUNCS *cf;
93 const ASN1_EXTERN_FUNCS *ef;
94 const ASN1_AUX *aux = it->funcs;
95 ASN1_aux_cb *asn1_cb;
96 ASN1_VALUE **pseqval;
97 int i;
98 if (aux && aux->asn1_cb)
99 asn1_cb = aux->asn1_cb;
100 else
101 asn1_cb = 0;

103 if (!combine) *pval = NULL;

105 #ifdef CRYPTO_MDEBUG
106 if (it->sname)
107 CRYPTO_push_info(it->sname);
108 #endif

110 switch(it->itype)
111 {

113 case ASN1_ITYPE_EXTERN:
114 ef = it->funcs;
115 if (ef && ef->asn1_ex_new)
116 {
117 if (!ef->asn1_ex_new(pval, it))
118 goto memerr;
119 }
120 break;

122 case ASN1_ITYPE_COMPAT:
123 cf = it->funcs;
124 if (cf && cf->asn1_new) {
125 *pval = cf->asn1_new();
126 if (!*pval)
127 goto memerr;

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_new.c 3

128 }
129 break;

131 case ASN1_ITYPE_PRIMITIVE:
132 if (it->templates)
133 {
134 if (!ASN1_template_new(pval, it->templates))
135 goto memerr;
136 }
137 else if (!ASN1_primitive_new(pval, it))
138 goto memerr;
139 break;

141 case ASN1_ITYPE_MSTRING:
142 if (!ASN1_primitive_new(pval, it))
143 goto memerr;
144 break;

146 case ASN1_ITYPE_CHOICE:
147 if (asn1_cb)
148 {
149 i = asn1_cb(ASN1_OP_NEW_PRE, pval, it, NULL);
150 if (!i)
151 goto auxerr;
152 if (i==2)
153 {
154 #ifdef CRYPTO_MDEBUG
155 if (it->sname)
156 CRYPTO_pop_info();
157 #endif
158 return 1;
159 }
160 }
161 if (!combine)
162 {
163 *pval = OPENSSL_malloc(it->size);
164 if (!*pval)
165 goto memerr;
166 memset(*pval, 0, it->size);
167 }
168 asn1_set_choice_selector(pval, -1, it);
169 if (asn1_cb && !asn1_cb(ASN1_OP_NEW_POST, pval, it, NULL))
170 goto auxerr;
171 break;

173 case ASN1_ITYPE_NDEF_SEQUENCE:
174 case ASN1_ITYPE_SEQUENCE:
175 if (asn1_cb)
176 {
177 i = asn1_cb(ASN1_OP_NEW_PRE, pval, it, NULL);
178 if (!i)
179 goto auxerr;
180 if (i==2)
181 {
182 #ifdef CRYPTO_MDEBUG
183 if (it->sname)
184 CRYPTO_pop_info();
185 #endif
186 return 1;
187 }
188 }
189 if (!combine)
190 {
191 *pval = OPENSSL_malloc(it->size);
192 if (!*pval)
193 goto memerr;

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_new.c 4

194 memset(*pval, 0, it->size);
195 asn1_do_lock(pval, 0, it);
196 asn1_enc_init(pval, it);
197 }
198 for (i = 0, tt = it->templates; i < it->tcount; tt++, i++)
199 {
200 pseqval = asn1_get_field_ptr(pval, tt);
201 if (!ASN1_template_new(pseqval, tt))
202 goto memerr;
203 }
204 if (asn1_cb && !asn1_cb(ASN1_OP_NEW_POST, pval, it, NULL))
205 goto auxerr;
206 break;
207 }
208 #ifdef CRYPTO_MDEBUG
209 if (it->sname) CRYPTO_pop_info();
210 #endif
211 return 1;

213 memerr:
214 ASN1err(ASN1_F_ASN1_ITEM_EX_COMBINE_NEW, ERR_R_MALLOC_FAILURE);
215 #ifdef CRYPTO_MDEBUG
216 if (it->sname) CRYPTO_pop_info();
217 #endif
218 return 0;

220 auxerr:
221 ASN1err(ASN1_F_ASN1_ITEM_EX_COMBINE_NEW, ASN1_R_AUX_ERROR);
222 ASN1_item_ex_free(pval, it);
223 #ifdef CRYPTO_MDEBUG
224 if (it->sname) CRYPTO_pop_info();
225 #endif
226 return 0;

228 }

230 static void asn1_item_clear(ASN1_VALUE **pval, const ASN1_ITEM *it)
231 {
232 const ASN1_EXTERN_FUNCS *ef;

234 switch(it->itype)
235 {

237 case ASN1_ITYPE_EXTERN:
238 ef = it->funcs;
239 if (ef && ef->asn1_ex_clear)
240 ef->asn1_ex_clear(pval, it);
241 else *pval = NULL;
242 break;

245 case ASN1_ITYPE_PRIMITIVE:
246 if (it->templates)
247 asn1_template_clear(pval, it->templates);
248 else
249 asn1_primitive_clear(pval, it);
250 break;

252 case ASN1_ITYPE_MSTRING:
253 asn1_primitive_clear(pval, it);
254 break;

256 case ASN1_ITYPE_COMPAT:
257 case ASN1_ITYPE_CHOICE:
258 case ASN1_ITYPE_SEQUENCE:
259 case ASN1_ITYPE_NDEF_SEQUENCE:

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_new.c 5

260 *pval = NULL;
261 break;
262 }
263 }

266 int ASN1_template_new(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt)
267 {
268 const ASN1_ITEM *it = ASN1_ITEM_ptr(tt->item);
269 int ret;
270 if (tt->flags & ASN1_TFLG_OPTIONAL)
271 {
272 asn1_template_clear(pval, tt);
273 return 1;
274 }
275 /* If ANY DEFINED BY nothing to do */

277 if (tt->flags & ASN1_TFLG_ADB_MASK)
278 {
279 *pval = NULL;
280 return 1;
281 }
282 #ifdef CRYPTO_MDEBUG
283 if (tt->field_name)
284 CRYPTO_push_info(tt->field_name);
285 #endif
286 /* If SET OF or SEQUENCE OF, its a STACK */
287 if (tt->flags & ASN1_TFLG_SK_MASK)
288 {
289 STACK_OF(ASN1_VALUE) *skval;
290 skval = sk_ASN1_VALUE_new_null();
291 if (!skval)
292 {
293 ASN1err(ASN1_F_ASN1_TEMPLATE_NEW, ERR_R_MALLOC_FAILURE);
294 ret = 0;
295 goto done;
296 }
297 *pval = (ASN1_VALUE *)skval;
298 ret = 1;
299 goto done;
300 }
301 /* Otherwise pass it back to the item routine */
302 ret = asn1_item_ex_combine_new(pval, it, tt->flags & ASN1_TFLG_COMBINE);
303 done:
304 #ifdef CRYPTO_MDEBUG
305 if (it->sname)
306 CRYPTO_pop_info();
307 #endif
308 return ret;
309 }

311 static void asn1_template_clear(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt)
312 {
313 /* If ADB or STACK just NULL the field */
314 if (tt->flags & (ASN1_TFLG_ADB_MASK|ASN1_TFLG_SK_MASK))
315 *pval = NULL;
316 else
317 asn1_item_clear(pval, ASN1_ITEM_ptr(tt->item));
318 }

321 /* NB: could probably combine most of the real XXX_new() behaviour and junk
322 * all the old functions.
323 */

325 int ASN1_primitive_new(ASN1_VALUE **pval, const ASN1_ITEM *it)

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_new.c 6

326 {
327 ASN1_TYPE *typ;
328 ASN1_STRING *str;
329 int utype;

331 if (it && it->funcs)
332 {
333 const ASN1_PRIMITIVE_FUNCS *pf = it->funcs;
334 if (pf->prim_new)
335 return pf->prim_new(pval, it);
336 }

338 if (!it || (it->itype == ASN1_ITYPE_MSTRING))
339 utype = -1;
340 else
341 utype = it->utype;
342 switch(utype)
343 {
344 case V_ASN1_OBJECT:
345 *pval = (ASN1_VALUE *)OBJ_nid2obj(NID_undef);
346 return 1;

348 case V_ASN1_BOOLEAN:
349 *(ASN1_BOOLEAN *)pval = it->size;
350 return 1;

352 case V_ASN1_NULL:
353 *pval = (ASN1_VALUE *)1;
354 return 1;

356 case V_ASN1_ANY:
357 typ = OPENSSL_malloc(sizeof(ASN1_TYPE));
358 if (!typ)
359 return 0;
360 typ->value.ptr = NULL;
361 typ->type = -1;
362 *pval = (ASN1_VALUE *)typ;
363 break;

365 default:
366 str = ASN1_STRING_type_new(utype);
367 if (it->itype == ASN1_ITYPE_MSTRING && str)
368 str->flags |= ASN1_STRING_FLAG_MSTRING;
369 *pval = (ASN1_VALUE *)str;
370 break;
371 }
372 if (*pval)
373 return 1;
374 return 0;
375 }

377 static void asn1_primitive_clear(ASN1_VALUE **pval, const ASN1_ITEM *it)
378 {
379 int utype;
380 if (it && it->funcs)
381 {
382 const ASN1_PRIMITIVE_FUNCS *pf = it->funcs;
383 if (pf->prim_clear)
384 pf->prim_clear(pval, it);
385 else
386 *pval = NULL;
387 return;
388 }
389 if (!it || (it->itype == ASN1_ITYPE_MSTRING))
390 utype = -1;
391 else

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_new.c 7

392 utype = it->utype;
393 if (utype == V_ASN1_BOOLEAN)
394 *(ASN1_BOOLEAN *)pval = it->size;
395 else *pval = NULL;
396 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_prn.c 1

**
 14498 Fri May 30 18:31:31 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_prn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* tasn_prn.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000,2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include <stddef.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_prn.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/asn1t.h>
64 #include <openssl/objects.h>
65 #include <openssl/buffer.h>
66 #include <openssl/err.h>
67 #include <openssl/x509v3.h>
68 #include "asn1_locl.h"

70 /* Print routines.
71 */

73 /* ASN1_PCTX routines */

75 ASN1_PCTX default_pctx =
76 {
77 ASN1_PCTX_FLAGS_SHOW_ABSENT, /* flags */
78 0, /* nm_flags */
79 0, /* cert_flags */
80 0, /* oid_flags */
81 0 /* str_flags */
82 };
83

85 ASN1_PCTX *ASN1_PCTX_new(void)
86 {
87 ASN1_PCTX *ret;
88 ret = OPENSSL_malloc(sizeof(ASN1_PCTX));
89 if (ret == NULL)
90 {
91 ASN1err(ASN1_F_ASN1_PCTX_NEW, ERR_R_MALLOC_FAILURE);
92 return NULL;
93 }
94 ret->flags = 0;
95 ret->nm_flags = 0;
96 ret->cert_flags = 0;
97 ret->oid_flags = 0;
98 ret->str_flags = 0;
99 return ret;
100 }

102 void ASN1_PCTX_free(ASN1_PCTX *p)
103 {
104 OPENSSL_free(p);
105 }

107 unsigned long ASN1_PCTX_get_flags(ASN1_PCTX *p)
108 {
109 return p->flags;
110 }

112 void ASN1_PCTX_set_flags(ASN1_PCTX *p, unsigned long flags)
113 {
114 p->flags = flags;
115 }

117 unsigned long ASN1_PCTX_get_nm_flags(ASN1_PCTX *p)
118 {
119 return p->nm_flags;
120 }

122 void ASN1_PCTX_set_nm_flags(ASN1_PCTX *p, unsigned long flags)
123 {
124 p->nm_flags = flags;
125 }

127 unsigned long ASN1_PCTX_get_cert_flags(ASN1_PCTX *p)

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_prn.c 3

128 {
129 return p->cert_flags;
130 }

132 void ASN1_PCTX_set_cert_flags(ASN1_PCTX *p, unsigned long flags)
133 {
134 p->cert_flags = flags;
135 }

137 unsigned long ASN1_PCTX_get_oid_flags(ASN1_PCTX *p)
138 {
139 return p->oid_flags;
140 }

142 void ASN1_PCTX_set_oid_flags(ASN1_PCTX *p, unsigned long flags)
143 {
144 p->oid_flags = flags;
145 }

147 unsigned long ASN1_PCTX_get_str_flags(ASN1_PCTX *p)
148 {
149 return p->str_flags;
150 }

152 void ASN1_PCTX_set_str_flags(ASN1_PCTX *p, unsigned long flags)
153 {
154 p->str_flags = flags;
155 }

157 /* Main print routines */

159 static int asn1_item_print_ctx(BIO *out, ASN1_VALUE **fld, int indent,
160 const ASN1_ITEM *it,
161 const char *fname, const char *sname,
162 int nohdr, const ASN1_PCTX *pctx);

164 int asn1_template_print_ctx(BIO *out, ASN1_VALUE **fld, int indent,
165 const ASN1_TEMPLATE *tt, const ASN1_PCTX *pctx);

167 static int asn1_primitive_print(BIO *out, ASN1_VALUE **fld,
168 const ASN1_ITEM *it, int indent,
169 const char *fname, const char *sname,
170 const ASN1_PCTX *pctx);

172 static int asn1_print_fsname(BIO *out, int indent,
173 const char *fname, const char *sname,
174 const ASN1_PCTX *pctx);

176 int ASN1_item_print(BIO *out, ASN1_VALUE *ifld, int indent,
177 const ASN1_ITEM *it, const ASN1_PCTX *pctx)
178 {
179 const char *sname;
180 if (pctx == NULL)
181 pctx = &default_pctx;
182 if (pctx->flags & ASN1_PCTX_FLAGS_NO_STRUCT_NAME)
183 sname = NULL;
184 else
185 sname = it->sname;
186 return asn1_item_print_ctx(out, &ifld, indent, it,
187 NULL, sname, 0, pctx);
188 }

190 static int asn1_item_print_ctx(BIO *out, ASN1_VALUE **fld, int indent,
191 const ASN1_ITEM *it,
192 const char *fname, const char *sname,
193 int nohdr, const ASN1_PCTX *pctx)

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_prn.c 4

194 {
195 const ASN1_TEMPLATE *tt;
196 const ASN1_EXTERN_FUNCS *ef;
197 ASN1_VALUE **tmpfld;
198 const ASN1_AUX *aux = it->funcs;
199 ASN1_aux_cb *asn1_cb;
200 ASN1_PRINT_ARG parg;
201 int i;
202 if (aux && aux->asn1_cb)
203 {
204 parg.out = out;
205 parg.indent = indent;
206 parg.pctx = pctx;
207 asn1_cb = aux->asn1_cb;
208 }
209 else asn1_cb = 0;

211 if(*fld == NULL)
212 {
213 if (pctx->flags & ASN1_PCTX_FLAGS_SHOW_ABSENT)
214 {
215 if (!nohdr && !asn1_print_fsname(out, indent,
216 fname, sname, pctx))
217 return 0;
218 if (BIO_puts(out, "<ABSENT>\n") <= 0)
219 return 0;
220 }
221 return 1;
222 }

224 switch(it->itype)
225 {
226 case ASN1_ITYPE_PRIMITIVE:
227 if(it->templates)
228 {
229 if (!asn1_template_print_ctx(out, fld, indent,
230 it->templates, pctx))
231 return 0;
232 }
233 /* fall thru */
234 case ASN1_ITYPE_MSTRING:
235 if (!asn1_primitive_print(out, fld, it,
236 indent, fname, sname,pctx))
237 return 0;
238 break;

240 case ASN1_ITYPE_EXTERN:
241 if (!nohdr && !asn1_print_fsname(out, indent, fname, sname, pctx
242 return 0;
243 /* Use new style print routine if possible */
244 ef = it->funcs;
245 if (ef && ef->asn1_ex_print)
246 {
247 i = ef->asn1_ex_print(out, fld, indent, "", pctx);
248 if (!i)
249 return 0;
250 if ((i == 2) && (BIO_puts(out, "\n") <= 0))
251 return 0;
252 return 1;
253 }
254 else if (sname &&
255 BIO_printf(out, ":EXTERNAL TYPE %s\n", sname) <= 0)
256 return 0;
257 break;

259 case ASN1_ITYPE_CHOICE:

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_prn.c 5

260 #if 0
261 if (!nohdr && !asn1_print_fsname(out, indent, fname, sname, pctx
262 return 0;
263 #endif
264 /* CHOICE type, get selector */
265 i = asn1_get_choice_selector(fld, it);
266 /* This should never happen... */
267 if((i < 0) || (i >= it->tcount))
268 {
269 if (BIO_printf(out,
270 "ERROR: selector [%d] invalid\n", i) <= 0)
271 return 0;
272 return 1;
273 }
274 tt = it->templates + i;
275 tmpfld = asn1_get_field_ptr(fld, tt);
276 if (!asn1_template_print_ctx(out, tmpfld, indent, tt, pctx))
277 return 0;
278 break;

280 case ASN1_ITYPE_SEQUENCE:
281 case ASN1_ITYPE_NDEF_SEQUENCE:
282 if (!nohdr && !asn1_print_fsname(out, indent, fname, sname, pctx
283 return 0;
284 if (fname || sname)
285 {
286 if (pctx->flags & ASN1_PCTX_FLAGS_SHOW_SEQUENCE)
287 {
288 if (BIO_puts(out, " {\n") <= 0)
289 return 0;
290 }
291 else
292 {
293 if (BIO_puts(out, "\n") <= 0)
294 return 0;
295 }
296 }

298 if (asn1_cb)
299 {
300 i = asn1_cb(ASN1_OP_PRINT_PRE, fld, it, &parg);
301 if (i == 0)
302 return 0;
303 if (i == 2)
304 return 1;
305 }

307 /* Print each field entry */
308 for(i = 0, tt = it->templates; i < it->tcount; i++, tt++)
309 {
310 const ASN1_TEMPLATE *seqtt;
311 seqtt = asn1_do_adb(fld, tt, 1);
312 tmpfld = asn1_get_field_ptr(fld, seqtt);
313 if (!asn1_template_print_ctx(out, tmpfld,
314 indent + 2, seqtt, pctx))
315 return 0;
316 }
317 if (pctx->flags & ASN1_PCTX_FLAGS_SHOW_SEQUENCE)
318 {
319 if (BIO_printf(out, "%*s}\n", indent, "") < 0)
320 return 0;
321 }

323 if (asn1_cb)
324 {
325 i = asn1_cb(ASN1_OP_PRINT_POST, fld, it, &parg);

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_prn.c 6

326 if (i == 0)
327 return 0;
328 }
329 break;

331 default:
332 BIO_printf(out, "Unprocessed type %d\n", it->itype);
333 return 0;
334 }

336 return 1;
337 }

339 int asn1_template_print_ctx(BIO *out, ASN1_VALUE **fld, int indent,
340 const ASN1_TEMPLATE *tt, const ASN1_PCTX *pctx)
341 {
342 int i, flags;
343 const char *sname, *fname;
344 flags = tt->flags;
345 if(pctx->flags & ASN1_PCTX_FLAGS_SHOW_FIELD_STRUCT_NAME)
346 sname = ASN1_ITEM_ptr(tt->item)->sname;
347 else
348 sname = NULL;
349 if(pctx->flags & ASN1_PCTX_FLAGS_NO_FIELD_NAME)
350 fname = NULL;
351 else
352 fname = tt->field_name;
353 if(flags & ASN1_TFLG_SK_MASK)
354 {
355 char *tname;
356 ASN1_VALUE *skitem;
357 STACK_OF(ASN1_VALUE) *stack;

359 /* SET OF, SEQUENCE OF */
360 if (fname)
361 {
362 if(pctx->flags & ASN1_PCTX_FLAGS_SHOW_SSOF)
363 {
364 if(flags & ASN1_TFLG_SET_OF)
365 tname = "SET";
366 else
367 tname = "SEQUENCE";
368 if (BIO_printf(out, "%*s%s OF %s {\n",
369 indent, "", tname, tt->field_name) <= 0)
370 return 0;
371 }
372 else if (BIO_printf(out, "%*s%s:\n", indent, "",
373 fname) <= 0)
374 return 0;
375 }
376 stack = (STACK_OF(ASN1_VALUE) *)*fld;
377 for(i = 0; i < sk_ASN1_VALUE_num(stack); i++)
378 {
379 if ((i > 0) && (BIO_puts(out, "\n") <= 0))
380 return 0;

382 skitem = sk_ASN1_VALUE_value(stack, i);
383 if (!asn1_item_print_ctx(out, &skitem, indent + 2,
384 ASN1_ITEM_ptr(tt->item), NULL, NULL, 1, pctx))
385 return 0;
386 }
387 if (!i && BIO_printf(out, "%*s<EMPTY>\n", indent + 2, "") <= 0)
388 return 0;
389 if(pctx->flags & ASN1_PCTX_FLAGS_SHOW_SEQUENCE)
390 {
391 if (BIO_printf(out, "%*s}\n", indent, "") <= 0)

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_prn.c 7

392 return 0;
393 }
394 return 1;
395 }
396 return asn1_item_print_ctx(out, fld, indent, ASN1_ITEM_ptr(tt->item),
397 fname, sname, 0, pctx);
398 }

400 static int asn1_print_fsname(BIO *out, int indent,
401 const char *fname, const char *sname,
402 const ASN1_PCTX *pctx)
403 {
404 static char spaces[] = " ";
405 const int nspaces = sizeof(spaces) - 1;

407 #if 0
408 if (!sname && !fname)
409 return 1;
410 #endif

412 while (indent > nspaces)
413 {
414 if (BIO_write(out, spaces, nspaces) != nspaces)
415 return 0;
416 indent -= nspaces;
417 }
418 if (BIO_write(out, spaces, indent) != indent)
419 return 0;
420 if (pctx->flags & ASN1_PCTX_FLAGS_NO_STRUCT_NAME)
421 sname = NULL;
422 if (pctx->flags & ASN1_PCTX_FLAGS_NO_FIELD_NAME)
423 fname = NULL;
424 if (!sname && !fname)
425 return 1;
426 if (fname)
427 {
428 if (BIO_puts(out, fname) <= 0)
429 return 0;
430 }
431 if (sname)
432 {
433 if (fname)
434 {
435 if (BIO_printf(out, " (%s)", sname) <= 0)
436 return 0;
437 }
438 else
439 {
440 if (BIO_puts(out, sname) <= 0)
441 return 0;
442 }
443 }
444 if (BIO_write(out, ": ", 2) != 2)
445 return 0;
446 return 1;
447 }

449 static int asn1_print_boolean_ctx(BIO *out, int boolval,
450 const ASN1_PCTX *pctx)
451 {
452 const char *str;
453 switch (boolval)
454 {
455 case -1:
456 str = "BOOL ABSENT";
457 break;

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_prn.c 8

459 case 0:
460 str = "FALSE";
461 break;

463 default:
464 str = "TRUE";
465 break;

467 }

469 if (BIO_puts(out, str) <= 0)
470 return 0;
471 return 1;

473 }

475 static int asn1_print_integer_ctx(BIO *out, ASN1_INTEGER *str,
476 const ASN1_PCTX *pctx)
477 {
478 char *s;
479 int ret = 1;
480 s = i2s_ASN1_INTEGER(NULL, str);
481 if (BIO_puts(out, s) <= 0)
482 ret = 0;
483 OPENSSL_free(s);
484 return ret;
485 }

487 static int asn1_print_oid_ctx(BIO *out, const ASN1_OBJECT *oid,
488 const ASN1_PCTX *pctx)
489 {
490 char objbuf[80];
491 const char *ln;
492 ln = OBJ_nid2ln(OBJ_obj2nid(oid));
493 if(!ln)
494 ln = "";
495 OBJ_obj2txt(objbuf, sizeof objbuf, oid, 1);
496 if (BIO_printf(out, "%s (%s)", ln, objbuf) <= 0)
497 return 0;
498 return 1;
499 }

501 static int asn1_print_obstring_ctx(BIO *out, ASN1_STRING *str, int indent,
502 const ASN1_PCTX *pctx)
503 {
504 if (str->type == V_ASN1_BIT_STRING)
505 {
506 if (BIO_printf(out, " (%ld unused bits)\n",
507 str->flags & 0x7) <= 0)
508 return 0;
509 }
510 else if (BIO_puts(out, "\n") <= 0)
511 return 0;
512 if ((str->length > 0)
513 && BIO_dump_indent(out, (char *)str->data, str->length,
514 indent + 2) <= 0)
515 return 0;
516 return 1;
517 }

519 static int asn1_primitive_print(BIO *out, ASN1_VALUE **fld,
520 const ASN1_ITEM *it, int indent,
521 const char *fname, const char *sname,
522 const ASN1_PCTX *pctx)
523 {

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_prn.c 9

524 long utype;
525 ASN1_STRING *str;
526 int ret = 1, needlf = 1;
527 const char *pname;
528 const ASN1_PRIMITIVE_FUNCS *pf;
529 pf = it->funcs;
530 if (!asn1_print_fsname(out, indent, fname, sname, pctx))
531 return 0;
532 if (pf && pf->prim_print)
533 return pf->prim_print(out, fld, it, indent, pctx);
534 str = (ASN1_STRING *)*fld;
535 if (it->itype == ASN1_ITYPE_MSTRING)
536 utype = str->type & ~V_ASN1_NEG;
537 else
538 utype = it->utype;
539 if (utype == V_ASN1_ANY)
540 {
541 ASN1_TYPE *atype = (ASN1_TYPE *)*fld;
542 utype = atype->type;
543 fld = &atype->value.asn1_value;
544 str = (ASN1_STRING *)*fld;
545 if (pctx->flags & ASN1_PCTX_FLAGS_NO_ANY_TYPE)
546 pname = NULL;
547 else
548 pname = ASN1_tag2str(utype);
549 }
550 else
551 {
552 if (pctx->flags & ASN1_PCTX_FLAGS_SHOW_TYPE)
553 pname = ASN1_tag2str(utype);
554 else
555 pname = NULL;
556 }

558 if (utype == V_ASN1_NULL)
559 {
560 if (BIO_puts(out, "NULL\n") <= 0)
561 return 0;
562 return 1;
563 }

565 if (pname)
566 {
567 if (BIO_puts(out, pname) <= 0)
568 return 0;
569 if (BIO_puts(out, ":") <= 0)
570 return 0;
571 }

573 switch (utype)
574 {
575 case V_ASN1_BOOLEAN:
576 {
577 int boolval = *(int *)fld;
578 if (boolval == -1)
579 boolval = it->size;
580 ret = asn1_print_boolean_ctx(out, boolval, pctx);
581 }
582 break;

584 case V_ASN1_INTEGER:
585 case V_ASN1_ENUMERATED:
586 ret = asn1_print_integer_ctx(out, str, pctx);
587 break;

589 case V_ASN1_UTCTIME:

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_prn.c 10

590 ret = ASN1_UTCTIME_print(out, str);
591 break;

593 case V_ASN1_GENERALIZEDTIME:
594 ret = ASN1_GENERALIZEDTIME_print(out, str);
595 break;

597 case V_ASN1_OBJECT:
598 ret = asn1_print_oid_ctx(out, (const ASN1_OBJECT *)*fld, pctx);
599 break;

601 case V_ASN1_OCTET_STRING:
602 case V_ASN1_BIT_STRING:
603 ret = asn1_print_obstring_ctx(out, str, indent, pctx);
604 needlf = 0;
605 break;

607 case V_ASN1_SEQUENCE:
608 case V_ASN1_SET:
609 case V_ASN1_OTHER:
610 if (BIO_puts(out, "\n") <= 0)
611 return 0;
612 if (ASN1_parse_dump(out, str->data, str->length,
613 indent, 0) <= 0)
614 ret = 0;
615 needlf = 0;
616 break;

618 default:
619 ret = ASN1_STRING_print_ex(out, str, pctx->str_flags);

621 }
622 if (!ret)
623 return 0;
624 if (needlf && BIO_puts(out, "\n") <= 0)
625 return 0;
626 return 1;
627 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_typ.c 1

**
 5551 Fri May 30 18:31:31 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_typ.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* tasn_typ.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 #include <stdio.h>
59 #include <openssl/asn1.h>
60 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_typ.c 2

62 /* Declarations for string types */

65 IMPLEMENT_ASN1_TYPE(ASN1_INTEGER)
66 IMPLEMENT_ASN1_FUNCTIONS(ASN1_INTEGER)

68 IMPLEMENT_ASN1_TYPE(ASN1_ENUMERATED)
69 IMPLEMENT_ASN1_FUNCTIONS(ASN1_ENUMERATED)

71 IMPLEMENT_ASN1_TYPE(ASN1_BIT_STRING)
72 IMPLEMENT_ASN1_FUNCTIONS(ASN1_BIT_STRING)

74 IMPLEMENT_ASN1_TYPE(ASN1_OCTET_STRING)
75 IMPLEMENT_ASN1_FUNCTIONS(ASN1_OCTET_STRING)

77 IMPLEMENT_ASN1_TYPE(ASN1_NULL)
78 IMPLEMENT_ASN1_FUNCTIONS(ASN1_NULL)

80 IMPLEMENT_ASN1_TYPE(ASN1_OBJECT)

82 IMPLEMENT_ASN1_TYPE(ASN1_UTF8STRING)
83 IMPLEMENT_ASN1_FUNCTIONS(ASN1_UTF8STRING)

85 IMPLEMENT_ASN1_TYPE(ASN1_PRINTABLESTRING)
86 IMPLEMENT_ASN1_FUNCTIONS(ASN1_PRINTABLESTRING)

88 IMPLEMENT_ASN1_TYPE(ASN1_T61STRING)
89 IMPLEMENT_ASN1_FUNCTIONS(ASN1_T61STRING)

91 IMPLEMENT_ASN1_TYPE(ASN1_IA5STRING)
92 IMPLEMENT_ASN1_FUNCTIONS(ASN1_IA5STRING)

94 IMPLEMENT_ASN1_TYPE(ASN1_GENERALSTRING)
95 IMPLEMENT_ASN1_FUNCTIONS(ASN1_GENERALSTRING)

97 IMPLEMENT_ASN1_TYPE(ASN1_UTCTIME)
98 IMPLEMENT_ASN1_FUNCTIONS(ASN1_UTCTIME)

100 IMPLEMENT_ASN1_TYPE(ASN1_GENERALIZEDTIME)
101 IMPLEMENT_ASN1_FUNCTIONS(ASN1_GENERALIZEDTIME)

103 IMPLEMENT_ASN1_TYPE(ASN1_VISIBLESTRING)
104 IMPLEMENT_ASN1_FUNCTIONS(ASN1_VISIBLESTRING)

106 IMPLEMENT_ASN1_TYPE(ASN1_UNIVERSALSTRING)
107 IMPLEMENT_ASN1_FUNCTIONS(ASN1_UNIVERSALSTRING)

109 IMPLEMENT_ASN1_TYPE(ASN1_BMPSTRING)
110 IMPLEMENT_ASN1_FUNCTIONS(ASN1_BMPSTRING)

112 IMPLEMENT_ASN1_TYPE(ASN1_ANY)

114 /* Just swallow an ASN1_SEQUENCE in an ASN1_STRING */
115 IMPLEMENT_ASN1_TYPE(ASN1_SEQUENCE)

117 IMPLEMENT_ASN1_FUNCTIONS_fname(ASN1_TYPE, ASN1_ANY, ASN1_TYPE)

119 /* Multistring types */

121 IMPLEMENT_ASN1_MSTRING(ASN1_PRINTABLE, B_ASN1_PRINTABLE)
122 IMPLEMENT_ASN1_FUNCTIONS_name(ASN1_STRING, ASN1_PRINTABLE)

124 IMPLEMENT_ASN1_MSTRING(DISPLAYTEXT, B_ASN1_DISPLAYTEXT)
125 IMPLEMENT_ASN1_FUNCTIONS_name(ASN1_STRING, DISPLAYTEXT)

127 IMPLEMENT_ASN1_MSTRING(DIRECTORYSTRING, B_ASN1_DIRECTORYSTRING)

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_typ.c 3

128 IMPLEMENT_ASN1_FUNCTIONS_name(ASN1_STRING, DIRECTORYSTRING)

130 /* Three separate BOOLEAN type: normal, DEFAULT TRUE and DEFAULT FALSE */
131 IMPLEMENT_ASN1_TYPE_ex(ASN1_BOOLEAN, ASN1_BOOLEAN, -1)
132 IMPLEMENT_ASN1_TYPE_ex(ASN1_TBOOLEAN, ASN1_BOOLEAN, 1)
133 IMPLEMENT_ASN1_TYPE_ex(ASN1_FBOOLEAN, ASN1_BOOLEAN, 0)

135 /* Special, OCTET STRING with indefinite length constructed support */

137 IMPLEMENT_ASN1_TYPE_ex(ASN1_OCTET_STRING_NDEF, ASN1_OCTET_STRING, ASN1_TFLG_NDEF

139 ASN1_ITEM_TEMPLATE(ASN1_SEQUENCE_ANY) =
140 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, ASN1_SEQUENCE_ANY, ASN1_
141 ASN1_ITEM_TEMPLATE_END(ASN1_SEQUENCE_ANY)

143 ASN1_ITEM_TEMPLATE(ASN1_SET_ANY) =
144 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SET_OF, 0, ASN1_SET_ANY, ASN1_ANY)
145 ASN1_ITEM_TEMPLATE_END(ASN1_SET_ANY)

147 IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(ASN1_SEQUENCE_ANY, ASN1_SEQUENCE_ANY
148 IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(ASN1_SEQUENCE_ANY, ASN1_SET_ANY, ASN

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_utl.c 1

**
 7803 Fri May 30 18:31:32 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_utl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* tasn_utl.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000-2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include <stddef.h>
61 #include <string.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_utl.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/asn1t.h>
64 #include <openssl/objects.h>
65 #include <openssl/err.h>

67 /* Utility functions for manipulating fields and offsets */

69 /* Add ’offset’ to ’addr’ */
70 #define offset2ptr(addr, offset) (void *)(((char *) addr) + offset)

72 /* Given an ASN1_ITEM CHOICE type return
73 * the selector value
74 */

76 int asn1_get_choice_selector(ASN1_VALUE **pval, const ASN1_ITEM *it)
77 {
78 int *sel = offset2ptr(*pval, it->utype);
79 return *sel;
80 }

82 /* Given an ASN1_ITEM CHOICE type set
83 * the selector value, return old value.
84 */

86 int asn1_set_choice_selector(ASN1_VALUE **pval, int value, const ASN1_ITEM *it)
87 {
88 int *sel, ret;
89 sel = offset2ptr(*pval, it->utype);
90 ret = *sel;
91 *sel = value;
92 return ret;
93 }

95 /* Do reference counting. The value ’op’ decides what to do.
96 * if it is +1 then the count is incremented. If op is 0 count is
97 * set to 1. If op is -1 count is decremented and the return value
98 * is the current refrence count or 0 if no reference count exists.
99 */

101 int asn1_do_lock(ASN1_VALUE **pval, int op, const ASN1_ITEM *it)
102 {
103 const ASN1_AUX *aux;
104 int *lck, ret;
105 if ((it->itype != ASN1_ITYPE_SEQUENCE)
106 && (it->itype != ASN1_ITYPE_NDEF_SEQUENCE))
107 return 0;
108 aux = it->funcs;
109 if (!aux || !(aux->flags & ASN1_AFLG_REFCOUNT))
110 return 0;
111 lck = offset2ptr(*pval, aux->ref_offset);
112 if (op == 0)
113 {
114 *lck = 1;
115 return 1;
116 }
117 ret = CRYPTO_add(lck, op, aux->ref_lock);
118 #ifdef REF_PRINT
119 fprintf(stderr, "%s: Reference Count: %d\n", it->sname, *lck);
120 #endif
121 #ifdef REF_CHECK
122 if (ret < 0)
123 fprintf(stderr, "%s, bad reference count\n", it->sname);
124 #endif
125 return ret;
126 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_utl.c 3

128 static ASN1_ENCODING *asn1_get_enc_ptr(ASN1_VALUE **pval, const ASN1_ITEM *it)
129 {
130 const ASN1_AUX *aux;
131 if (!pval || !*pval)
132 return NULL;
133 aux = it->funcs;
134 if (!aux || !(aux->flags & ASN1_AFLG_ENCODING))
135 return NULL;
136 return offset2ptr(*pval, aux->enc_offset);
137 }

139 void asn1_enc_init(ASN1_VALUE **pval, const ASN1_ITEM *it)
140 {
141 ASN1_ENCODING *enc;
142 enc = asn1_get_enc_ptr(pval, it);
143 if (enc)
144 {
145 enc->enc = NULL;
146 enc->len = 0;
147 enc->modified = 1;
148 }
149 }

151 void asn1_enc_free(ASN1_VALUE **pval, const ASN1_ITEM *it)
152 {
153 ASN1_ENCODING *enc;
154 enc = asn1_get_enc_ptr(pval, it);
155 if (enc)
156 {
157 if (enc->enc)
158 OPENSSL_free(enc->enc);
159 enc->enc = NULL;
160 enc->len = 0;
161 enc->modified = 1;
162 }
163 }

165 int asn1_enc_save(ASN1_VALUE **pval, const unsigned char *in, int inlen,
166 const ASN1_ITEM *it)
167 {
168 ASN1_ENCODING *enc;
169 enc = asn1_get_enc_ptr(pval, it);
170 if (!enc)
171 return 1;

173 if (enc->enc)
174 OPENSSL_free(enc->enc);
175 enc->enc = OPENSSL_malloc(inlen);
176 if (!enc->enc)
177 return 0;
178 memcpy(enc->enc, in, inlen);
179 enc->len = inlen;
180 enc->modified = 0;

182 return 1;
183 }
184
185 int asn1_enc_restore(int *len, unsigned char **out, ASN1_VALUE **pval,
186 const ASN1_ITEM *it)
187 {
188 ASN1_ENCODING *enc;
189 enc = asn1_get_enc_ptr(pval, it);
190 if (!enc || enc->modified)
191 return 0;
192 if (out)
193 {

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_utl.c 4

194 memcpy(*out, enc->enc, enc->len);
195 *out += enc->len;
196 }
197 if (len)
198 *len = enc->len;
199 return 1;
200 }

202 /* Given an ASN1_TEMPLATE get a pointer to a field */
203 ASN1_VALUE ** asn1_get_field_ptr(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt)
204 {
205 ASN1_VALUE **pvaltmp;
206 if (tt->flags & ASN1_TFLG_COMBINE)
207 return pval;
208 pvaltmp = offset2ptr(*pval, tt->offset);
209 /* NOTE for BOOLEAN types the field is just a plain
210 * int so we can’t return int **, so settle for
211 * (int *).
212 */
213 return pvaltmp;
214 }

216 /* Handle ANY DEFINED BY template, find the selector, look up
217 * the relevant ASN1_TEMPLATE in the table and return it.
218 */

220 const ASN1_TEMPLATE *asn1_do_adb(ASN1_VALUE **pval, const ASN1_TEMPLATE *tt,
221 int nullerr)
222 {
223 const ASN1_ADB *adb;
224 const ASN1_ADB_TABLE *atbl;
225 long selector;
226 ASN1_VALUE **sfld;
227 int i;
228 if (!(tt->flags & ASN1_TFLG_ADB_MASK))
229 return tt;

231 /* Else ANY DEFINED BY ... get the table */
232 adb = ASN1_ADB_ptr(tt->item);

234 /* Get the selector field */
235 sfld = offset2ptr(*pval, adb->offset);

237 /* Check if NULL */
238 if (!sfld)
239 {
240 if (!adb->null_tt)
241 goto err;
242 return adb->null_tt;
243 }

245 /* Convert type to a long:
246 * NB: don’t check for NID_undef here because it
247 * might be a legitimate value in the table
248 */
249 if (tt->flags & ASN1_TFLG_ADB_OID)
250 selector = OBJ_obj2nid((ASN1_OBJECT *)*sfld);
251 else
252 selector = ASN1_INTEGER_get((ASN1_INTEGER *)*sfld);

254 /* Try to find matching entry in table
255 * Maybe should check application types first to
256 * allow application override? Might also be useful
257 * to have a flag which indicates table is sorted and
258 * we can do a binary search. For now stick to a
259 * linear search.

new/usr/src/lib/openssl/libsunw_crypto/asn1/tasn_utl.c 5

260 */

262 for (atbl = adb->tbl, i = 0; i < adb->tblcount; i++, atbl++)
263 if (atbl->value == selector)
264 return &atbl->tt;

266 /* FIXME: need to search application table too */

268 /* No match, return default type */
269 if (!adb->default_tt)
270 goto err;
271 return adb->default_tt;
272
273 err:
274 /* FIXME: should log the value or OID of unsupported type */
275 if (nullerr)
276 ASN1err(ASN1_F_ASN1_DO_ADB,
277 ASN1_R_UNSUPPORTED_ANY_DEFINED_BY_TYPE);
278 return NULL;
279 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_algor.c 1

**
 4609 Fri May 30 18:31:32 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_algor.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* x_algor.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stddef.h>
60 #include <openssl/x509.h>
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_algor.c 2

62 #include <openssl/asn1t.h>

64 ASN1_SEQUENCE(X509_ALGOR) = {
65 ASN1_SIMPLE(X509_ALGOR, algorithm, ASN1_OBJECT),
66 ASN1_OPT(X509_ALGOR, parameter, ASN1_ANY)
67 } ASN1_SEQUENCE_END(X509_ALGOR)

69 ASN1_ITEM_TEMPLATE(X509_ALGORS) =
70 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, algorithms, X509_ALGOR)
71 ASN1_ITEM_TEMPLATE_END(X509_ALGORS)

73 IMPLEMENT_ASN1_FUNCTIONS(X509_ALGOR)
74 IMPLEMENT_ASN1_ENCODE_FUNCTIONS_fname(X509_ALGORS, X509_ALGORS, X509_ALGORS)
75 IMPLEMENT_ASN1_DUP_FUNCTION(X509_ALGOR)

77 IMPLEMENT_STACK_OF(X509_ALGOR)
78 IMPLEMENT_ASN1_SET_OF(X509_ALGOR)

80 int X509_ALGOR_set0(X509_ALGOR *alg, ASN1_OBJECT *aobj, int ptype, void *pval)
81 {
82 if (!alg)
83 return 0;
84 if (ptype != V_ASN1_UNDEF)
85 {
86 if (alg->parameter == NULL)
87 alg->parameter = ASN1_TYPE_new();
88 if (alg->parameter == NULL)
89 return 0;
90 }
91 if (alg)
92 {
93 if (alg->algorithm)
94 ASN1_OBJECT_free(alg->algorithm);
95 alg->algorithm = aobj;
96 }
97 if (ptype == 0)
98 return 1;
99 if (ptype == V_ASN1_UNDEF)
100 {
101 if (alg->parameter)
102 {
103 ASN1_TYPE_free(alg->parameter);
104 alg->parameter = NULL;
105 }
106 }
107 else
108 ASN1_TYPE_set(alg->parameter, ptype, pval);
109 return 1;
110 }

112 void X509_ALGOR_get0(ASN1_OBJECT **paobj, int *pptype, void **ppval,
113 X509_ALGOR *algor)
114 {
115 if (paobj)
116 *paobj = algor->algorithm;
117 if (pptype)
118 {
119 if (algor->parameter == NULL)
120 {
121 *pptype = V_ASN1_UNDEF;
122 return;
123 }
124 else
125 *pptype = algor->parameter->type;
126 if (ppval)
127 *ppval = algor->parameter->value.ptr;

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_algor.c 3

128 }
129 }

131 /* Set up an X509_ALGOR DigestAlgorithmIdentifier from an EVP_MD */

133 void X509_ALGOR_set_md(X509_ALGOR *alg, const EVP_MD *md)
134 {
135 int param_type;

137 if (md->flags & EVP_MD_FLAG_DIGALGID_ABSENT)
138 param_type = V_ASN1_UNDEF;
139 else
140 param_type = V_ASN1_NULL;

142 X509_ALGOR_set0(alg, OBJ_nid2obj(EVP_MD_type(md)), param_type, NULL);

144 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_attrib.c 1

**
 4897 Fri May 30 18:31:32 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_attrib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/x_attrib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/objects.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_attrib.c 2

62 #include <openssl/asn1t.h>
63 #include <openssl/x509.h>

65 /* X509_ATTRIBUTE: this has the following form:
66 *
67 * typedef struct x509_attributes_st
68 * {
69 * ASN1_OBJECT *object;
70 * int single;
71 * union {
72 * char *ptr;
73 * STACK_OF(ASN1_TYPE) *set;
74 * ASN1_TYPE *single;
75 * } value;
76 * } X509_ATTRIBUTE;
77 *
78 * this needs some extra thought because the CHOICE type is
79 * merged with the main structure and because the value can
80 * be anything at all we *must* try the SET OF first because
81 * the ASN1_ANY type will swallow anything including the whole
82 * SET OF structure.
83 */

85 ASN1_CHOICE(X509_ATTRIBUTE_SET) = {
86 ASN1_SET_OF(X509_ATTRIBUTE, value.set, ASN1_ANY),
87 ASN1_SIMPLE(X509_ATTRIBUTE, value.single, ASN1_ANY)
88 } ASN1_CHOICE_END_selector(X509_ATTRIBUTE, X509_ATTRIBUTE_SET, single)

90 ASN1_SEQUENCE(X509_ATTRIBUTE) = {
91 ASN1_SIMPLE(X509_ATTRIBUTE, object, ASN1_OBJECT),
92 /* CHOICE type merged with parent */
93 ASN1_EX_COMBINE(0, 0, X509_ATTRIBUTE_SET)
94 } ASN1_SEQUENCE_END(X509_ATTRIBUTE)

96 IMPLEMENT_ASN1_FUNCTIONS(X509_ATTRIBUTE)
97 IMPLEMENT_ASN1_DUP_FUNCTION(X509_ATTRIBUTE)

99 X509_ATTRIBUTE *X509_ATTRIBUTE_create(int nid, int atrtype, void *value)
100 {
101 X509_ATTRIBUTE *ret=NULL;
102 ASN1_TYPE *val=NULL;

104 if ((ret=X509_ATTRIBUTE_new()) == NULL)
105 return(NULL);
106 ret->object=OBJ_nid2obj(nid);
107 ret->single=0;
108 if ((ret->value.set=sk_ASN1_TYPE_new_null()) == NULL) goto err;
109 if ((val=ASN1_TYPE_new()) == NULL) goto err;
110 if (!sk_ASN1_TYPE_push(ret->value.set,val)) goto err;

112 ASN1_TYPE_set(val,atrtype,value);
113 return(ret);
114 err:
115 if (ret != NULL) X509_ATTRIBUTE_free(ret);
116 if (val != NULL) ASN1_TYPE_free(val);
117 return(NULL);
118 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_bignum.c 1

**
 4780 Fri May 30 18:31:32 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_bignum.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* x_bignum.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_bignum.c 2

62 #include <openssl/bn.h>

64 /* Custom primitive type for BIGNUM handling. This reads in an ASN1_INTEGER as a
65 * BIGNUM directly. Currently it ignores the sign which isn’t a problem since al
66 * BIGNUMs used are non negative and anything that looks negative is normally du
67 * to an encoding error.
68 */

70 #define BN_SENSITIVE 1

72 static int bn_new(ASN1_VALUE **pval, const ASN1_ITEM *it);
73 static void bn_free(ASN1_VALUE **pval, const ASN1_ITEM *it);

75 static int bn_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype, const ASN
76 static int bn_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len, int uty

78 static ASN1_PRIMITIVE_FUNCS bignum_pf = {
79 NULL, 0,
80 bn_new,
81 bn_free,
82 0,
83 bn_c2i,
84 bn_i2c
85 };

87 ASN1_ITEM_start(BIGNUM)
88 ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &bignum_pf, 0, "BIGNUM"
89 ASN1_ITEM_end(BIGNUM)

91 ASN1_ITEM_start(CBIGNUM)
92 ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &bignum_pf, BN_SENSITIVE,
93 ASN1_ITEM_end(CBIGNUM)

95 static int bn_new(ASN1_VALUE **pval, const ASN1_ITEM *it)
96 {
97 *pval = (ASN1_VALUE *)BN_new();
98 if(*pval) return 1;
99 else return 0;
100 }

102 static void bn_free(ASN1_VALUE **pval, const ASN1_ITEM *it)
103 {
104 if(!*pval) return;
105 if(it->size & BN_SENSITIVE) BN_clear_free((BIGNUM *)*pval);
106 else BN_free((BIGNUM *)*pval);
107 *pval = NULL;
108 }

110 static int bn_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype, const ASN
111 {
112 BIGNUM *bn;
113 int pad;
114 if(!*pval) return -1;
115 bn = (BIGNUM *)*pval;
116 /* If MSB set in an octet we need a padding byte */
117 if(BN_num_bits(bn) & 0x7) pad = 0;
118 else pad = 1;
119 if(cont) {
120 if(pad) *cont++ = 0;
121 BN_bn2bin(bn, cont);
122 }
123 return pad + BN_num_bytes(bn);
124 }

126 static int bn_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len,
127 int utype, char *free_cont, const ASN1_ITEM *it)

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_bignum.c 3

128 {
129 BIGNUM *bn;
130 if(!*pval) bn_new(pval, it);
131 bn = (BIGNUM *)*pval;
132 if(!BN_bin2bn(cont, len, bn)) {
133 bn_free(pval, it);
134 return 0;
135 }
136 return 1;
137 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_crl.c 1

**
 14438 Fri May 30 18:31:32 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_crl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/x_crl.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include "asn1_locl.h"

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_crl.c 2

62 #include <openssl/asn1t.h>
63 #include <openssl/x509.h>
64 #include <openssl/x509v3.h>

66 static int X509_REVOKED_cmp(const X509_REVOKED * const *a,
67 const X509_REVOKED * const *b);
68 static void setup_idp(X509_CRL *crl, ISSUING_DIST_POINT *idp);

70 ASN1_SEQUENCE(X509_REVOKED) = {
71 ASN1_SIMPLE(X509_REVOKED,serialNumber, ASN1_INTEGER),
72 ASN1_SIMPLE(X509_REVOKED,revocationDate, ASN1_TIME),
73 ASN1_SEQUENCE_OF_OPT(X509_REVOKED,extensions, X509_EXTENSION)
74 } ASN1_SEQUENCE_END(X509_REVOKED)

76 static int def_crl_verify(X509_CRL *crl, EVP_PKEY *r);
77 static int def_crl_lookup(X509_CRL *crl,
78 X509_REVOKED **ret, ASN1_INTEGER *serial, X509_NAME *issuer);

80 static X509_CRL_METHOD int_crl_meth =
81 {
82 0,
83 0,0,
84 def_crl_lookup,
85 def_crl_verify
86 };

88 static const X509_CRL_METHOD *default_crl_method = &int_crl_meth;

90 /* The X509_CRL_INFO structure needs a bit of customisation.
91 * Since we cache the original encoding the signature wont be affected by
92 * reordering of the revoked field.
93 */
94 static int crl_inf_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
95 void *exarg)
96 {
97 X509_CRL_INFO *a = (X509_CRL_INFO *)*pval;

99 if(!a || !a->revoked) return 1;
100 switch(operation) {
101 /* Just set cmp function here. We don’t sort because that
102 * would affect the output of X509_CRL_print().
103 */
104 case ASN1_OP_D2I_POST:
105 (void)sk_X509_REVOKED_set_cmp_func(a->revoked,X509_REVOKED_cmp);
106 break;
107 }
108 return 1;
109 }

112 ASN1_SEQUENCE_enc(X509_CRL_INFO, enc, crl_inf_cb) = {
113 ASN1_OPT(X509_CRL_INFO, version, ASN1_INTEGER),
114 ASN1_SIMPLE(X509_CRL_INFO, sig_alg, X509_ALGOR),
115 ASN1_SIMPLE(X509_CRL_INFO, issuer, X509_NAME),
116 ASN1_SIMPLE(X509_CRL_INFO, lastUpdate, ASN1_TIME),
117 ASN1_OPT(X509_CRL_INFO, nextUpdate, ASN1_TIME),
118 ASN1_SEQUENCE_OF_OPT(X509_CRL_INFO, revoked, X509_REVOKED),
119 ASN1_EXP_SEQUENCE_OF_OPT(X509_CRL_INFO, extensions, X509_EXTENSION, 0)
120 } ASN1_SEQUENCE_END_enc(X509_CRL_INFO, X509_CRL_INFO)

122 /* Set CRL entry issuer according to CRL certificate issuer extension.
123 * Check for unhandled critical CRL entry extensions.
124 */

126 static int crl_set_issuers(X509_CRL *crl)
127 {

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_crl.c 3

129 int i, j;
130 GENERAL_NAMES *gens, *gtmp;
131 STACK_OF(X509_REVOKED) *revoked;

133 revoked = X509_CRL_get_REVOKED(crl);

135 gens = NULL;
136 for (i = 0; i < sk_X509_REVOKED_num(revoked); i++)
137 {
138 X509_REVOKED *rev = sk_X509_REVOKED_value(revoked, i);
139 STACK_OF(X509_EXTENSION) *exts;
140 ASN1_ENUMERATED *reason;
141 X509_EXTENSION *ext;
142 gtmp = X509_REVOKED_get_ext_d2i(rev,
143 NID_certificate_issuer,
144 &j, NULL);
145 if (!gtmp && (j != -1))
146 {
147 crl->flags |= EXFLAG_INVALID;
148 return 1;
149 }

151 if (gtmp)
152 {
153 gens = gtmp;
154 if (!crl->issuers)
155 {
156 crl->issuers = sk_GENERAL_NAMES_new_null();
157 if (!crl->issuers)
158 return 0;
159 }
160 if (!sk_GENERAL_NAMES_push(crl->issuers, gtmp))
161 return 0;
162 }
163 rev->issuer = gens;

165 reason = X509_REVOKED_get_ext_d2i(rev, NID_crl_reason,
166 &j, NULL);
167 if (!reason && (j != -1))
168 {
169 crl->flags |= EXFLAG_INVALID;
170 return 1;
171 }

173 if (reason)
174 {
175 rev->reason = ASN1_ENUMERATED_get(reason);
176 ASN1_ENUMERATED_free(reason);
177 }
178 else
179 rev->reason = CRL_REASON_NONE;

181 /* Check for critical CRL entry extensions */

183 exts = rev->extensions;

185 for (j = 0; j < sk_X509_EXTENSION_num(exts); j++)
186 {
187 ext = sk_X509_EXTENSION_value(exts, j);
188 if (ext->critical > 0)
189 {
190 if (OBJ_obj2nid(ext->object) ==
191 NID_certificate_issuer)
192 continue;
193 crl->flags |= EXFLAG_CRITICAL;

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_crl.c 4

194 break;
195 }
196 }

199 }

201 return 1;

203 }

205 /* The X509_CRL structure needs a bit of customisation. Cache some extensions
206 * and hash of the whole CRL.
207 */
208 static int crl_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
209 void *exarg)
210 {
211 X509_CRL *crl = (X509_CRL *)*pval;
212 STACK_OF(X509_EXTENSION) *exts;
213 X509_EXTENSION *ext;
214 int idx;

216 switch(operation)
217 {
218 case ASN1_OP_NEW_POST:
219 crl->idp = NULL;
220 crl->akid = NULL;
221 crl->flags = 0;
222 crl->idp_flags = 0;
223 crl->idp_reasons = CRLDP_ALL_REASONS;
224 crl->meth = default_crl_method;
225 crl->meth_data = NULL;
226 crl->issuers = NULL;
227 crl->crl_number = NULL;
228 crl->base_crl_number = NULL;
229 break;

231 case ASN1_OP_D2I_POST:
232 #ifndef OPENSSL_NO_SHA
233 X509_CRL_digest(crl, EVP_sha1(), crl->sha1_hash, NULL);
234 #endif
235 crl->idp = X509_CRL_get_ext_d2i(crl,
236 NID_issuing_distribution_point, NULL, NULL);
237 if (crl->idp)
238 setup_idp(crl, crl->idp);

240 crl->akid = X509_CRL_get_ext_d2i(crl,
241 NID_authority_key_identifier, NULL, NULL);

243 crl->crl_number = X509_CRL_get_ext_d2i(crl,
244 NID_crl_number, NULL, NULL);

246 crl->base_crl_number = X509_CRL_get_ext_d2i(crl,
247 NID_delta_crl, NULL, NULL);
248 /* Delta CRLs must have CRL number */
249 if (crl->base_crl_number && !crl->crl_number)
250 crl->flags |= EXFLAG_INVALID;

252 /* See if we have any unhandled critical CRL extensions and
253 * indicate this in a flag. We only currently handle IDP so
254 * anything else critical sets the flag.
255 *
256 * This code accesses the X509_CRL structure directly:
257 * applications shouldn’t do this.
258 */

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_crl.c 5

260 exts = crl->crl->extensions;

262 for (idx = 0; idx < sk_X509_EXTENSION_num(exts); idx++)
263 {
264 int nid;
265 ext = sk_X509_EXTENSION_value(exts, idx);
266 nid = OBJ_obj2nid(ext->object);
267 if (nid == NID_freshest_crl)
268 crl->flags |= EXFLAG_FRESHEST;
269 if (ext->critical > 0)
270 {
271 /* We handle IDP and deltas */
272 if ((nid == NID_issuing_distribution_point)
273 || (nid == NID_delta_crl))
274 break;;
275 crl->flags |= EXFLAG_CRITICAL;
276 break;
277 }
278 }

281 if (!crl_set_issuers(crl))
282 return 0;

284 if (crl->meth->crl_init)
285 {
286 if (crl->meth->crl_init(crl) == 0)
287 return 0;
288 }
289 break;

291 case ASN1_OP_FREE_POST:
292 if (crl->meth->crl_free)
293 {
294 if (!crl->meth->crl_free(crl))
295 return 0;
296 }
297 if (crl->akid)
298 AUTHORITY_KEYID_free(crl->akid);
299 if (crl->idp)
300 ISSUING_DIST_POINT_free(crl->idp);
301 ASN1_INTEGER_free(crl->crl_number);
302 ASN1_INTEGER_free(crl->base_crl_number);
303 sk_GENERAL_NAMES_pop_free(crl->issuers, GENERAL_NAMES_free);
304 break;
305 }
306 return 1;
307 }

309 /* Convert IDP into a more convenient form */

311 static void setup_idp(X509_CRL *crl, ISSUING_DIST_POINT *idp)
312 {
313 int idp_only = 0;
314 /* Set various flags according to IDP */
315 crl->idp_flags |= IDP_PRESENT;
316 if (idp->onlyuser > 0)
317 {
318 idp_only++;
319 crl->idp_flags |= IDP_ONLYUSER;
320 }
321 if (idp->onlyCA > 0)
322 {
323 idp_only++;
324 crl->idp_flags |= IDP_ONLYCA;
325 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_crl.c 6

326 if (idp->onlyattr > 0)
327 {
328 idp_only++;
329 crl->idp_flags |= IDP_ONLYATTR;
330 }

332 if (idp_only > 1)
333 crl->idp_flags |= IDP_INVALID;

335 if (idp->indirectCRL > 0)
336 crl->idp_flags |= IDP_INDIRECT;

338 if (idp->onlysomereasons)
339 {
340 crl->idp_flags |= IDP_REASONS;
341 if (idp->onlysomereasons->length > 0)
342 crl->idp_reasons = idp->onlysomereasons->data[0];
343 if (idp->onlysomereasons->length > 1)
344 crl->idp_reasons |=
345 (idp->onlysomereasons->data[1] << 8);
346 crl->idp_reasons &= CRLDP_ALL_REASONS;
347 }

349 DIST_POINT_set_dpname(idp->distpoint, X509_CRL_get_issuer(crl));
350 }

352 ASN1_SEQUENCE_ref(X509_CRL, crl_cb, CRYPTO_LOCK_X509_CRL) = {
353 ASN1_SIMPLE(X509_CRL, crl, X509_CRL_INFO),
354 ASN1_SIMPLE(X509_CRL, sig_alg, X509_ALGOR),
355 ASN1_SIMPLE(X509_CRL, signature, ASN1_BIT_STRING)
356 } ASN1_SEQUENCE_END_ref(X509_CRL, X509_CRL)

358 IMPLEMENT_ASN1_FUNCTIONS(X509_REVOKED)
359 IMPLEMENT_ASN1_FUNCTIONS(X509_CRL_INFO)
360 IMPLEMENT_ASN1_FUNCTIONS(X509_CRL)
361 IMPLEMENT_ASN1_DUP_FUNCTION(X509_CRL)

363 static int X509_REVOKED_cmp(const X509_REVOKED * const *a,
364 const X509_REVOKED * const *b)
365 {
366 return(ASN1_STRING_cmp(
367 (ASN1_STRING *)(*a)->serialNumber,
368 (ASN1_STRING *)(*b)->serialNumber));
369 }

371 int X509_CRL_add0_revoked(X509_CRL *crl, X509_REVOKED *rev)
372 {
373 X509_CRL_INFO *inf;
374 inf = crl->crl;
375 if(!inf->revoked)
376 inf->revoked = sk_X509_REVOKED_new(X509_REVOKED_cmp);
377 if(!inf->revoked || !sk_X509_REVOKED_push(inf->revoked, rev)) {
378 ASN1err(ASN1_F_X509_CRL_ADD0_REVOKED, ERR_R_MALLOC_FAILURE);
379 return 0;
380 }
381 inf->enc.modified = 1;
382 return 1;
383 }

385 int X509_CRL_verify(X509_CRL *crl, EVP_PKEY *r)
386 {
387 if (crl->meth->crl_verify)
388 return crl->meth->crl_verify(crl, r);
389 return 0;
390 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_crl.c 7

392 int X509_CRL_get0_by_serial(X509_CRL *crl,
393 X509_REVOKED **ret, ASN1_INTEGER *serial)
394 {
395 if (crl->meth->crl_lookup)
396 return crl->meth->crl_lookup(crl, ret, serial, NULL);
397 return 0;
398 }

400 int X509_CRL_get0_by_cert(X509_CRL *crl, X509_REVOKED **ret, X509 *x)
401 {
402 if (crl->meth->crl_lookup)
403 return crl->meth->crl_lookup(crl, ret,
404 X509_get_serialNumber(x),
405 X509_get_issuer_name(x));
406 return 0;
407 }

409 static int def_crl_verify(X509_CRL *crl, EVP_PKEY *r)
410 {
411 return(ASN1_item_verify(ASN1_ITEM_rptr(X509_CRL_INFO),
412 crl->sig_alg, crl->signature,crl->crl,r));
413 }

415 static int crl_revoked_issuer_match(X509_CRL *crl, X509_NAME *nm,
416 X509_REVOKED *rev)
417 {
418 int i;

420 if (!rev->issuer)
421 {
422 if (!nm)
423 return 1;
424 if (!X509_NAME_cmp(nm, X509_CRL_get_issuer(crl)))
425 return 1;
426 return 0;
427 }

429 if (!nm)
430 nm = X509_CRL_get_issuer(crl);

432 for (i = 0; i < sk_GENERAL_NAME_num(rev->issuer); i++)
433 {
434 GENERAL_NAME *gen = sk_GENERAL_NAME_value(rev->issuer, i);
435 if (gen->type != GEN_DIRNAME)
436 continue;
437 if (!X509_NAME_cmp(nm, gen->d.directoryName))
438 return 1;
439 }
440 return 0;

442 }

444 static int def_crl_lookup(X509_CRL *crl,
445 X509_REVOKED **ret, ASN1_INTEGER *serial, X509_NAME *issuer)
446 {
447 X509_REVOKED rtmp, *rev;
448 int idx;
449 rtmp.serialNumber = serial;
450 /* Sort revoked into serial number order if not already sorted.
451 * Do this under a lock to avoid race condition.
452 */
453 if (!sk_X509_REVOKED_is_sorted(crl->crl->revoked))
454 {
455 CRYPTO_w_lock(CRYPTO_LOCK_X509_CRL);
456 sk_X509_REVOKED_sort(crl->crl->revoked);
457 CRYPTO_w_unlock(CRYPTO_LOCK_X509_CRL);

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_crl.c 8

458 }
459 idx = sk_X509_REVOKED_find(crl->crl->revoked, &rtmp);
460 if(idx < 0)
461 return 0;
462 /* Need to look for matching name */
463 for(;idx < sk_X509_REVOKED_num(crl->crl->revoked); idx++)
464 {
465 rev = sk_X509_REVOKED_value(crl->crl->revoked, idx);
466 if (ASN1_INTEGER_cmp(rev->serialNumber, serial))
467 return 0;
468 if (crl_revoked_issuer_match(crl, issuer, rev))
469 {
470 if (ret)
471 *ret = rev;
472 if (rev->reason == CRL_REASON_REMOVE_FROM_CRL)
473 return 2;
474 return 1;
475 }
476 }
477 return 0;
478 }

480 void X509_CRL_set_default_method(const X509_CRL_METHOD *meth)
481 {
482 if (meth == NULL)
483 default_crl_method = &int_crl_meth;
484 else
485 default_crl_method = meth;
486 }

488 X509_CRL_METHOD *X509_CRL_METHOD_new(
489 int (*crl_init)(X509_CRL *crl),
490 int (*crl_free)(X509_CRL *crl),
491 int (*crl_lookup)(X509_CRL *crl, X509_REVOKED **ret,
492 ASN1_INTEGER *ser, X509_NAME *issuer),
493 int (*crl_verify)(X509_CRL *crl, EVP_PKEY *pk))
494 {
495 X509_CRL_METHOD *m;
496 m = OPENSSL_malloc(sizeof(X509_CRL_METHOD));
497 if (!m)
498 return NULL;
499 m->crl_init = crl_init;
500 m->crl_free = crl_free;
501 m->crl_lookup = crl_lookup;
502 m->crl_verify = crl_verify;
503 m->flags = X509_CRL_METHOD_DYNAMIC;
504 return m;
505 }

507 void X509_CRL_METHOD_free(X509_CRL_METHOD *m)
508 {
509 if (!(m->flags & X509_CRL_METHOD_DYNAMIC))
510 return;
511 OPENSSL_free(m);
512 }

514 void X509_CRL_set_meth_data(X509_CRL *crl, void *dat)
515 {
516 crl->meth_data = dat;
517 }

519 void *X509_CRL_get_meth_data(X509_CRL *crl)
520 {
521 return crl->meth_data;
522 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_crl.c 9

524 IMPLEMENT_STACK_OF(X509_REVOKED)
525 IMPLEMENT_ASN1_SET_OF(X509_REVOKED)
526 IMPLEMENT_STACK_OF(X509_CRL)
527 IMPLEMENT_ASN1_SET_OF(X509_CRL)

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_exten.c 1

**
 3392 Fri May 30 18:31:32 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_exten.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* x_exten.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stddef.h>
60 #include <openssl/x509.h>
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_exten.c 2

62 #include <openssl/asn1t.h>

64 ASN1_SEQUENCE(X509_EXTENSION) = {
65 ASN1_SIMPLE(X509_EXTENSION, object, ASN1_OBJECT),
66 ASN1_OPT(X509_EXTENSION, critical, ASN1_BOOLEAN),
67 ASN1_SIMPLE(X509_EXTENSION, value, ASN1_OCTET_STRING)
68 } ASN1_SEQUENCE_END(X509_EXTENSION)

70 ASN1_ITEM_TEMPLATE(X509_EXTENSIONS) =
71 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, Extension, X509_EXTENSIO
72 ASN1_ITEM_TEMPLATE_END(X509_EXTENSIONS)

74 IMPLEMENT_ASN1_FUNCTIONS(X509_EXTENSION)
75 IMPLEMENT_ASN1_ENCODE_FUNCTIONS_fname(X509_EXTENSIONS, X509_EXTENSIONS, X509_EXT
76 IMPLEMENT_ASN1_DUP_FUNCTION(X509_EXTENSION)

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_info.c 1

**
 4261 Fri May 30 18:31:32 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_info.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/x_info.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_info.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/x509.h>

65 X509_INFO *X509_INFO_new(void)
66 {
67 X509_INFO *ret=NULL;

69 ret=(X509_INFO *)OPENSSL_malloc(sizeof(X509_INFO));
70 if (ret == NULL)
71 {
72 ASN1err(ASN1_F_X509_INFO_NEW,ERR_R_MALLOC_FAILURE);
73 return(NULL);
74 }
75
76 ret->enc_cipher.cipher=NULL;
77 ret->enc_len=0;
78 ret->enc_data=NULL;
79
80 ret->references=1;
81 ret->x509=NULL;
82 ret->crl=NULL;
83 ret->x_pkey=NULL;
84 return(ret);
85 }

87 void X509_INFO_free(X509_INFO *x)
88 {
89 int i;

91 if (x == NULL) return;

93 i=CRYPTO_add(&x->references,-1,CRYPTO_LOCK_X509_INFO);
94 #ifdef REF_PRINT
95 REF_PRINT("X509_INFO",x);
96 #endif
97 if (i > 0) return;
98 #ifdef REF_CHECK
99 if (i < 0)
100 {
101 fprintf(stderr,"X509_INFO_free, bad reference count\n");
102 abort();
103 }
104 #endif

106 if (x->x509 != NULL) X509_free(x->x509);
107 if (x->crl != NULL) X509_CRL_free(x->crl);
108 if (x->x_pkey != NULL) X509_PKEY_free(x->x_pkey);
109 if (x->enc_data != NULL) OPENSSL_free(x->enc_data);
110 OPENSSL_free(x);
111 }

113 IMPLEMENT_STACK_OF(X509_INFO)

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_long.c 1

**
 5845 Fri May 30 18:31:32 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_long.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* x_long.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_long.c 2

62 #include <openssl/bn.h>

64 /* Custom primitive type for long handling. This converts between an ASN1_INTEGE
65 * and a long directly.
66 */

69 static int long_new(ASN1_VALUE **pval, const ASN1_ITEM *it);
70 static void long_free(ASN1_VALUE **pval, const ASN1_ITEM *it);

72 static int long_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype, const A
73 static int long_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len, int u
74 static int long_print(BIO *out, ASN1_VALUE **pval, const ASN1_ITEM *it, int inde

76 static ASN1_PRIMITIVE_FUNCS long_pf = {
77 NULL, 0,
78 long_new,
79 long_free,
80 long_free, /* Clear should set to initial value */
81 long_c2i,
82 long_i2c,
83 long_print
84 };

86 ASN1_ITEM_start(LONG)
87 ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &long_pf, ASN1_LONG_UNDEF
88 ASN1_ITEM_end(LONG)

90 ASN1_ITEM_start(ZLONG)
91 ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &long_pf, 0, "ZLONG"
92 ASN1_ITEM_end(ZLONG)

94 static int long_new(ASN1_VALUE **pval, const ASN1_ITEM *it)
95 {
96 *(long *)pval = it->size;
97 return 1;
98 }

100 static void long_free(ASN1_VALUE **pval, const ASN1_ITEM *it)
101 {
102 *(long *)pval = it->size;
103 }

105 static int long_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype, const A
106 {
107 long ltmp;
108 unsigned long utmp;
109 int clen, pad, i;
110 /* this exists to bypass broken gcc optimization */
111 char *cp = (char *)pval;

113 /* use memcpy, because we may not be long aligned */
114 memcpy(<mp, cp, sizeof(long));

116 if(ltmp == it->size) return -1;
117 /* Convert the long to positive: we subtract one if negative so
118 * we can cleanly handle the padding if only the MSB of the leading
119 * octet is set.
120 */
121 if(ltmp < 0) utmp = -ltmp - 1;
122 else utmp = ltmp;
123 clen = BN_num_bits_word(utmp);
124 /* If MSB of leading octet set we need to pad */
125 if(!(clen & 0x7)) pad = 1;
126 else pad = 0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_long.c 3

128 /* Convert number of bits to number of octets */
129 clen = (clen + 7) >> 3;

131 if(cont) {
132 if(pad) *cont++ = (ltmp < 0) ? 0xff : 0;
133 for(i = clen - 1; i >= 0; i--) {
134 cont[i] = (unsigned char)(utmp & 0xff);
135 if(ltmp < 0) cont[i] ^= 0xff;
136 utmp >>= 8;
137 }
138 }
139 return clen + pad;
140 }

142 static int long_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len,
143 int utype, char *free_cont, const ASN1_ITEM *it)
144 {
145 int neg, i;
146 long ltmp;
147 unsigned long utmp = 0;
148 char *cp = (char *)pval;
149 if(len > (int)sizeof(long)) {
150 ASN1err(ASN1_F_LONG_C2I, ASN1_R_INTEGER_TOO_LARGE_FOR_LONG);
151 return 0;
152 }
153 /* Is it negative? */
154 if(len && (cont[0] & 0x80)) neg = 1;
155 else neg = 0;
156 utmp = 0;
157 for(i = 0; i < len; i++) {
158 utmp <<= 8;
159 if(neg) utmp |= cont[i] ^ 0xff;
160 else utmp |= cont[i];
161 }
162 ltmp = (long)utmp;
163 if(neg) {
164 ltmp++;
165 ltmp = -ltmp;
166 }
167 if(ltmp == it->size) {
168 ASN1err(ASN1_F_LONG_C2I, ASN1_R_INTEGER_TOO_LARGE_FOR_LONG);
169 return 0;
170 }
171 memcpy(cp, <mp, sizeof(long));
172 return 1;
173 }

175 static int long_print(BIO *out, ASN1_VALUE **pval, const ASN1_ITEM *it,
176 int indent, const ASN1_PCTX *pctx)
177 {
178 return BIO_printf(out, "%ld\n", *(long *)pval);
179 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_name.c 1

**
 14703 Fri May 30 18:31:32 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_name.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/x_name.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <ctype.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_name.c 2

62 #include <openssl/asn1t.h>
63 #include <openssl/x509.h>
64 #include "asn1_locl.h"

66 typedef STACK_OF(X509_NAME_ENTRY) STACK_OF_X509_NAME_ENTRY;
67 DECLARE_STACK_OF(STACK_OF_X509_NAME_ENTRY)

69 static int x509_name_ex_d2i(ASN1_VALUE **val,
70 const unsigned char **in, long len,
71 const ASN1_ITEM *it,
72 int tag, int aclass, char opt, ASN1_TLC *ctx);

74 static int x509_name_ex_i2d(ASN1_VALUE **val, unsigned char **out,
75 const ASN1_ITEM *it, int tag, int aclass);
76 static int x509_name_ex_new(ASN1_VALUE **val, const ASN1_ITEM *it);
77 static void x509_name_ex_free(ASN1_VALUE **val, const ASN1_ITEM *it);

79 static int x509_name_encode(X509_NAME *a);
80 static int x509_name_canon(X509_NAME *a);
81 static int asn1_string_canon(ASN1_STRING *out, ASN1_STRING *in);
82 static int i2d_name_canon(STACK_OF(STACK_OF_X509_NAME_ENTRY) *intname,
83 unsigned char **in);

86 static int x509_name_ex_print(BIO *out, ASN1_VALUE **pval,
87 int indent,
88 const char *fname,
89 const ASN1_PCTX *pctx);

91 ASN1_SEQUENCE(X509_NAME_ENTRY) = {
92 ASN1_SIMPLE(X509_NAME_ENTRY, object, ASN1_OBJECT),
93 ASN1_SIMPLE(X509_NAME_ENTRY, value, ASN1_PRINTABLE)
94 } ASN1_SEQUENCE_END(X509_NAME_ENTRY)

96 IMPLEMENT_ASN1_FUNCTIONS(X509_NAME_ENTRY)
97 IMPLEMENT_ASN1_DUP_FUNCTION(X509_NAME_ENTRY)

99 /* For the "Name" type we need a SEQUENCE OF { SET OF X509_NAME_ENTRY }
100 * so declare two template wrappers for this
101 */

103 ASN1_ITEM_TEMPLATE(X509_NAME_ENTRIES) =
104 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SET_OF, 0, RDNS, X509_NAME_ENTRY)
105 ASN1_ITEM_TEMPLATE_END(X509_NAME_ENTRIES)

107 ASN1_ITEM_TEMPLATE(X509_NAME_INTERNAL) =
108 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, Name, X509_NAME_ENTRIES)
109 ASN1_ITEM_TEMPLATE_END(X509_NAME_INTERNAL)

111 /* Normally that’s where it would end: we’d have two nested STACK structures
112 * representing the ASN1. Unfortunately X509_NAME uses a completely different
113 * form and caches encodings so we have to process the internal form and convert
114 * to the external form.
115 */

117 const ASN1_EXTERN_FUNCS x509_name_ff = {
118 NULL,
119 x509_name_ex_new,
120 x509_name_ex_free,
121 0, /* Default clear behaviour is OK */
122 x509_name_ex_d2i,
123 x509_name_ex_i2d,
124 x509_name_ex_print
125 };

127 IMPLEMENT_EXTERN_ASN1(X509_NAME, V_ASN1_SEQUENCE, x509_name_ff)

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_name.c 3

129 IMPLEMENT_ASN1_FUNCTIONS(X509_NAME)
130 IMPLEMENT_ASN1_DUP_FUNCTION(X509_NAME)

132 static int x509_name_ex_new(ASN1_VALUE **val, const ASN1_ITEM *it)
133 {
134 X509_NAME *ret = NULL;
135 ret = OPENSSL_malloc(sizeof(X509_NAME));
136 if(!ret) goto memerr;
137 if ((ret->entries=sk_X509_NAME_ENTRY_new_null()) == NULL)
138 goto memerr;
139 if((ret->bytes = BUF_MEM_new()) == NULL) goto memerr;
140 ret->canon_enc = NULL;
141 ret->canon_enclen = 0;
142 ret->modified=1;
143 *val = (ASN1_VALUE *)ret;
144 return 1;

146 memerr:
147 ASN1err(ASN1_F_X509_NAME_EX_NEW, ERR_R_MALLOC_FAILURE);
148 if (ret)
149 {
150 if (ret->entries)
151 sk_X509_NAME_ENTRY_free(ret->entries);
152 OPENSSL_free(ret);
153 }
154 return 0;
155 }

157 static void x509_name_ex_free(ASN1_VALUE **pval, const ASN1_ITEM *it)
158 {
159 X509_NAME *a;
160 if(!pval || !*pval)
161 return;
162 a = (X509_NAME *)*pval;

164 BUF_MEM_free(a->bytes);
165 sk_X509_NAME_ENTRY_pop_free(a->entries,X509_NAME_ENTRY_free);
166 if (a->canon_enc)
167 OPENSSL_free(a->canon_enc);
168 OPENSSL_free(a);
169 *pval = NULL;
170 }

172 static int x509_name_ex_d2i(ASN1_VALUE **val,
173 const unsigned char **in, long len, const ASN1_ITEM *it,
174 int tag, int aclass, char opt, ASN1_TLC *ctx)
175 {
176 const unsigned char *p = *in, *q;
177 union { STACK_OF(STACK_OF_X509_NAME_ENTRY) *s;
178 ASN1_VALUE *a; } intname = {NULL};
179 union { X509_NAME *x; ASN1_VALUE *a; } nm = {NULL};
180 int i, j, ret;
181 STACK_OF(X509_NAME_ENTRY) *entries;
182 X509_NAME_ENTRY *entry;
183 q = p;

185 /* Get internal representation of Name */
186 ret = ASN1_item_ex_d2i(&intname.a,
187 &p, len, ASN1_ITEM_rptr(X509_NAME_INTERNAL),
188 tag, aclass, opt, ctx);
189
190 if(ret <= 0) return ret;

192 if(*val) x509_name_ex_free(val, NULL);
193 if(!x509_name_ex_new(&nm.a, NULL)) goto err;

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_name.c 4

194 /* We’ve decoded it: now cache encoding */
195 if(!BUF_MEM_grow(nm.x->bytes, p - q)) goto err;
196 memcpy(nm.x->bytes->data, q, p - q);

198 /* Convert internal representation to X509_NAME structure */
199 for(i = 0; i < sk_STACK_OF_X509_NAME_ENTRY_num(intname.s); i++) {
200 entries = sk_STACK_OF_X509_NAME_ENTRY_value(intname.s, i);
201 for(j = 0; j < sk_X509_NAME_ENTRY_num(entries); j++) {
202 entry = sk_X509_NAME_ENTRY_value(entries, j);
203 entry->set = i;
204 if(!sk_X509_NAME_ENTRY_push(nm.x->entries, entry))
205 goto err;
206 }
207 sk_X509_NAME_ENTRY_free(entries);
208 }
209 sk_STACK_OF_X509_NAME_ENTRY_free(intname.s);
210 ret = x509_name_canon(nm.x);
211 if (!ret)
212 goto err;
213 nm.x->modified = 0;
214 *val = nm.a;
215 *in = p;
216 return ret;
217 err:
218 if (nm.x != NULL)
219 X509_NAME_free(nm.x);
220 ASN1err(ASN1_F_X509_NAME_EX_D2I, ERR_R_NESTED_ASN1_ERROR);
221 return 0;
222 }

224 static int x509_name_ex_i2d(ASN1_VALUE **val, unsigned char **out, const ASN1_IT
225 {
226 int ret;
227 X509_NAME *a = (X509_NAME *)*val;
228 if(a->modified) {
229 ret = x509_name_encode(a);
230 if(ret < 0)
231 return ret;
232 ret = x509_name_canon(a);
233 if(ret < 0)
234 return ret;
235 }
236 ret = a->bytes->length;
237 if(out != NULL) {
238 memcpy(*out,a->bytes->data,ret);
239 *out+=ret;
240 }
241 return ret;
242 }

244 static void local_sk_X509_NAME_ENTRY_free(STACK_OF(X509_NAME_ENTRY) *ne)
245 {
246 sk_X509_NAME_ENTRY_free(ne);
247 }

249 static void local_sk_X509_NAME_ENTRY_pop_free(STACK_OF(X509_NAME_ENTRY) *ne)
250 {
251 sk_X509_NAME_ENTRY_pop_free(ne, X509_NAME_ENTRY_free);
252 }

254 static int x509_name_encode(X509_NAME *a)
255 {
256 union { STACK_OF(STACK_OF_X509_NAME_ENTRY) *s;
257 ASN1_VALUE *a; } intname = {NULL};
258 int len;
259 unsigned char *p;

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_name.c 5

260 STACK_OF(X509_NAME_ENTRY) *entries = NULL;
261 X509_NAME_ENTRY *entry;
262 int i, set = -1;
263 intname.s = sk_STACK_OF_X509_NAME_ENTRY_new_null();
264 if(!intname.s) goto memerr;
265 for(i = 0; i < sk_X509_NAME_ENTRY_num(a->entries); i++) {
266 entry = sk_X509_NAME_ENTRY_value(a->entries, i);
267 if(entry->set != set) {
268 entries = sk_X509_NAME_ENTRY_new_null();
269 if(!entries) goto memerr;
270 if(!sk_STACK_OF_X509_NAME_ENTRY_push(intname.s,
271 entries))
272 goto memerr;
273 set = entry->set;
274 }
275 if(!sk_X509_NAME_ENTRY_push(entries, entry)) goto memerr;
276 }
277 len = ASN1_item_ex_i2d(&intname.a, NULL,
278 ASN1_ITEM_rptr(X509_NAME_INTERNAL), -1, -1);
279 if (!BUF_MEM_grow(a->bytes,len)) goto memerr;
280 p=(unsigned char *)a->bytes->data;
281 ASN1_item_ex_i2d(&intname.a,
282 &p, ASN1_ITEM_rptr(X509_NAME_INTERNAL), -1, -1);
283 sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname.s,
284 local_sk_X509_NAME_ENTRY_free);
285 a->modified = 0;
286 return len;
287 memerr:
288 sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname.s,
289 local_sk_X509_NAME_ENTRY_free);
290 ASN1err(ASN1_F_X509_NAME_ENCODE, ERR_R_MALLOC_FAILURE);
291 return -1;
292 }

294 static int x509_name_ex_print(BIO *out, ASN1_VALUE **pval,
295 int indent,
296 const char *fname,
297 const ASN1_PCTX *pctx)
298 {
299 if (X509_NAME_print_ex(out, (X509_NAME *)*pval,
300 indent, pctx->nm_flags) <= 0)
301 return 0;
302 return 2;
303 }

305 /* This function generates the canonical encoding of the Name structure.
306 * In it all strings are converted to UTF8, leading, trailing and
307 * multiple spaces collapsed, converted to lower case and the leading
308 * SEQUENCE header removed.
309 *
310 * In future we could also normalize the UTF8 too.
311 *
312 * By doing this comparison of Name structures can be rapidly
313 * perfomed by just using memcmp() of the canonical encoding.
314 * By omitting the leading SEQUENCE name constraints of type
315 * dirName can also be checked with a simple memcmp().
316 */

318 static int x509_name_canon(X509_NAME *a)
319 {
320 unsigned char *p;
321 STACK_OF(STACK_OF_X509_NAME_ENTRY) *intname = NULL;
322 STACK_OF(X509_NAME_ENTRY) *entries = NULL;
323 X509_NAME_ENTRY *entry, *tmpentry = NULL;
324 int i, set = -1, ret = 0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_name.c 6

326 if (a->canon_enc)
327 {
328 OPENSSL_free(a->canon_enc);
329 a->canon_enc = NULL;
330 }
331 /* Special case: empty X509_NAME => null encoding */
332 if (sk_X509_NAME_ENTRY_num(a->entries) == 0)
333 {
334 a->canon_enclen = 0;
335 return 1;
336 }
337 intname = sk_STACK_OF_X509_NAME_ENTRY_new_null();
338 if(!intname)
339 goto err;
340 for(i = 0; i < sk_X509_NAME_ENTRY_num(a->entries); i++)
341 {
342 entry = sk_X509_NAME_ENTRY_value(a->entries, i);
343 if(entry->set != set)
344 {
345 entries = sk_X509_NAME_ENTRY_new_null();
346 if(!entries)
347 goto err;
348 if(!sk_STACK_OF_X509_NAME_ENTRY_push(intname, entries))
349 goto err;
350 set = entry->set;
351 }
352 tmpentry = X509_NAME_ENTRY_new();
353 tmpentry->object = OBJ_dup(entry->object);
354 if (!asn1_string_canon(tmpentry->value, entry->value))
355 goto err;
356 if(!sk_X509_NAME_ENTRY_push(entries, tmpentry))
357 goto err;
358 tmpentry = NULL;
359 }

361 /* Finally generate encoding */

363 a->canon_enclen = i2d_name_canon(intname, NULL);

365 p = OPENSSL_malloc(a->canon_enclen);

367 if (!p)
368 goto err;

370 a->canon_enc = p;

372 i2d_name_canon(intname, &p);

374 ret = 1;

376 err:

378 if (tmpentry)
379 X509_NAME_ENTRY_free(tmpentry);
380 if (intname)
381 sk_STACK_OF_X509_NAME_ENTRY_pop_free(intname,
382 local_sk_X509_NAME_ENTRY_pop_free);
383 return ret;
384 }

386 /* Bitmap of all the types of string that will be canonicalized. */

388 #define ASN1_MASK_CANON \
389 (B_ASN1_UTF8STRING | B_ASN1_BMPSTRING | B_ASN1_UNIVERSALSTRING \
390 | B_ASN1_PRINTABLESTRING | B_ASN1_T61STRING | B_ASN1_IA5STRING \
391 | B_ASN1_VISIBLESTRING)

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_name.c 7

392

394 static int asn1_string_canon(ASN1_STRING *out, ASN1_STRING *in)
395 {
396 unsigned char *to, *from;
397 int len, i;

399 /* If type not in bitmask just copy string across */
400 if (!(ASN1_tag2bit(in->type) & ASN1_MASK_CANON))
401 {
402 if (!ASN1_STRING_copy(out, in))
403 return 0;
404 return 1;
405 }

407 out->type = V_ASN1_UTF8STRING;
408 out->length = ASN1_STRING_to_UTF8(&out->data, in);
409 if (out->length == -1)
410 return 0;

412 to = out->data;
413 from = to;

415 len = out->length;

417 /* Convert string in place to canonical form.
418 * Ultimately we may need to handle a wider range of characters
419 * but for now ignore anything with MSB set and rely on the
420 * isspace() and tolower() functions.
421 */

423 /* Ignore leading spaces */
424 while((len > 0) && !(*from & 0x80) && isspace(*from))
425 {
426 from++;
427 len--;
428 }

430 to = from + len - 1;

432 /* Ignore trailing spaces */
433 while ((len > 0) && !(*to & 0x80) && isspace(*to))
434 {
435 to--;
436 len--;
437 }

439 to = out->data;

441 i = 0;
442 while(i < len)
443 {
444 /* If MSB set just copy across */
445 if (*from & 0x80)
446 {
447 *to++ = *from++;
448 i++;
449 }
450 /* Collapse multiple spaces */
451 else if (isspace(*from))
452 {
453 /* Copy one space across */
454 *to++ = ’ ’;
455 /* Ignore subsequent spaces. Note: don’t need to
456 * check len here because we know the last
457 * character is a non-space so we can’t overflow.

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_name.c 8

458 */
459 do
460 {
461 from++;
462 i++;
463 }
464 while(!(*from & 0x80) && isspace(*from));
465 }
466 else
467 {
468 *to++ = tolower(*from);
469 from++;
470 i++;
471 }
472 }

474 out->length = to - out->data;

476 return 1;

478 }

480 static int i2d_name_canon(STACK_OF(STACK_OF_X509_NAME_ENTRY) *_intname,
481 unsigned char **in)
482 {
483 int i, len, ltmp;
484 ASN1_VALUE *v;
485 STACK_OF(ASN1_VALUE) *intname = (STACK_OF(ASN1_VALUE) *)_intname;

487 len = 0;
488 for (i = 0; i < sk_ASN1_VALUE_num(intname); i++)
489 {
490 v = sk_ASN1_VALUE_value(intname, i);
491 ltmp = ASN1_item_ex_i2d(&v, in,
492 ASN1_ITEM_rptr(X509_NAME_ENTRIES), -1, -1);
493 if (ltmp < 0)
494 return ltmp;
495 len += ltmp;
496 }
497 return len;
498 }

500 int X509_NAME_set(X509_NAME **xn, X509_NAME *name)
501 {
502 X509_NAME *in;

504 if (!xn || !name) return(0);

506 if (*xn != name)
507 {
508 in=X509_NAME_dup(name);
509 if (in != NULL)
510 {
511 X509_NAME_free(*xn);
512 *xn=in;
513 }
514 }
515 return(*xn != NULL);
516 }
517
518 IMPLEMENT_STACK_OF(X509_NAME_ENTRY)
519 IMPLEMENT_ASN1_SET_OF(X509_NAME_ENTRY)

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_nx509.c 1

**
 3084 Fri May 30 18:31:32 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_nx509.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* x_nx509.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2005.
4 */
5 /* ==
6 * Copyright (c) 2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stddef.h>
60 #include <openssl/x509.h>
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_nx509.c 2

62 #include <openssl/asn1t.h>

64 /* Old netscape certificate wrapper format */

66 ASN1_SEQUENCE(NETSCAPE_X509) = {
67 ASN1_SIMPLE(NETSCAPE_X509, header, ASN1_OCTET_STRING),
68 ASN1_OPT(NETSCAPE_X509, cert, X509)
69 } ASN1_SEQUENCE_END(NETSCAPE_X509)

71 IMPLEMENT_ASN1_FUNCTIONS(NETSCAPE_X509)

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_pkey.c 1

**
 5436 Fri May 30 18:31:32 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_pkey.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/x_pkey.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_pkey.c 2

62 #include <openssl/objects.h>
63 #include <openssl/asn1_mac.h>
64 #include <openssl/x509.h>

66 /* need to implement */
67 int i2d_X509_PKEY(X509_PKEY *a, unsigned char **pp)
68 {
69 return(0);
70 }

72 X509_PKEY *d2i_X509_PKEY(X509_PKEY **a, const unsigned char **pp, long length)
73 {
74 int i;
75 M_ASN1_D2I_vars(a,X509_PKEY *,X509_PKEY_new);

77 M_ASN1_D2I_Init();
78 M_ASN1_D2I_start_sequence();
79 M_ASN1_D2I_get_x(X509_ALGOR,ret->enc_algor,d2i_X509_ALGOR);
80 M_ASN1_D2I_get_x(ASN1_OCTET_STRING,ret->enc_pkey,d2i_ASN1_OCTET_STRING);

82 ret->cipher.cipher=EVP_get_cipherbyname(
83 OBJ_nid2ln(OBJ_obj2nid(ret->enc_algor->algorithm)));
84 if (ret->cipher.cipher == NULL)
85 {
86 c.error=ASN1_R_UNSUPPORTED_CIPHER;
87 c.line=__LINE__;
88 goto err;
89 }
90 if (ret->enc_algor->parameter->type == V_ASN1_OCTET_STRING)
91 {
92 i=ret->enc_algor->parameter->value.octet_string->length;
93 if (i > EVP_MAX_IV_LENGTH)
94 {
95 c.error=ASN1_R_IV_TOO_LARGE;
96 c.line=__LINE__;
97 goto err;
98 }
99 memcpy(ret->cipher.iv,
100 ret->enc_algor->parameter->value.octet_string->data,i);
101 }
102 else
103 memset(ret->cipher.iv,0,EVP_MAX_IV_LENGTH);
104 M_ASN1_D2I_Finish(a,X509_PKEY_free,ASN1_F_D2I_X509_PKEY);
105 }

107 X509_PKEY *X509_PKEY_new(void)
108 {
109 X509_PKEY *ret=NULL;
110 ASN1_CTX c;

112 M_ASN1_New_Malloc(ret,X509_PKEY);
113 ret->version=0;
114 M_ASN1_New(ret->enc_algor,X509_ALGOR_new);
115 M_ASN1_New(ret->enc_pkey,M_ASN1_OCTET_STRING_new);
116 ret->dec_pkey=NULL;
117 ret->key_length=0;
118 ret->key_data=NULL;
119 ret->key_free=0;
120 ret->cipher.cipher=NULL;
121 memset(ret->cipher.iv,0,EVP_MAX_IV_LENGTH);
122 ret->references=1;
123 return(ret);
124 M_ASN1_New_Error(ASN1_F_X509_PKEY_NEW);
125 }

127 void X509_PKEY_free(X509_PKEY *x)

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_pkey.c 3

128 {
129 int i;

131 if (x == NULL) return;

133 i=CRYPTO_add(&x->references,-1,CRYPTO_LOCK_X509_PKEY);
134 #ifdef REF_PRINT
135 REF_PRINT("X509_PKEY",x);
136 #endif
137 if (i > 0) return;
138 #ifdef REF_CHECK
139 if (i < 0)
140 {
141 fprintf(stderr,"X509_PKEY_free, bad reference count\n");
142 abort();
143 }
144 #endif

146 if (x->enc_algor != NULL) X509_ALGOR_free(x->enc_algor);
147 if (x->enc_pkey != NULL) M_ASN1_OCTET_STRING_free(x->enc_pkey);
148 if (x->dec_pkey != NULL)EVP_PKEY_free(x->dec_pkey);
149 if ((x->key_data != NULL) && (x->key_free)) OPENSSL_free(x->key_data);
150 OPENSSL_free(x);
151 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_pubkey.c 1

**
 9514 Fri May 30 18:31:32 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_pubkey.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/x_pubkey.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_pubkey.c 2

62 #include <openssl/x509.h>
63 #include "asn1_locl.h"
64 #ifndef OPENSSL_NO_RSA
65 #include <openssl/rsa.h>
66 #endif
67 #ifndef OPENSSL_NO_DSA
68 #include <openssl/dsa.h>
69 #endif

71 /* Minor tweak to operation: free up EVP_PKEY */
72 static int pubkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
73 void *exarg)
74 {
75 if (operation == ASN1_OP_FREE_POST)
76 {
77 X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval;
78 EVP_PKEY_free(pubkey->pkey);
79 }
80 return 1;
81 }

83 ASN1_SEQUENCE_cb(X509_PUBKEY, pubkey_cb) = {
84 ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR),
85 ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING)
86 } ASN1_SEQUENCE_END_cb(X509_PUBKEY, X509_PUBKEY)

88 IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY)

90 int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey)
91 {
92 X509_PUBKEY *pk=NULL;

94 if (x == NULL) return(0);

96 if ((pk=X509_PUBKEY_new()) == NULL) goto error;

98 if (pkey->ameth)
99 {
100 if (pkey->ameth->pub_encode)
101 {
102 if (!pkey->ameth->pub_encode(pk, pkey))
103 {
104 X509err(X509_F_X509_PUBKEY_SET,
105 X509_R_PUBLIC_KEY_ENCODE_ERROR);
106 goto error;
107 }
108 }
109 else
110 {
111 X509err(X509_F_X509_PUBKEY_SET,
112 X509_R_METHOD_NOT_SUPPORTED);
113 goto error;
114 }
115 }
116 else
117 {
118 X509err(X509_F_X509_PUBKEY_SET,X509_R_UNSUPPORTED_ALGORITHM);
119 goto error;
120 }

122 if (*x != NULL)
123 X509_PUBKEY_free(*x);

125 *x=pk;

127 return 1;

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_pubkey.c 3

128 error:
129 if (pk != NULL) X509_PUBKEY_free(pk);
130 return 0;
131 }

133 EVP_PKEY *X509_PUBKEY_get(X509_PUBKEY *key)
134 {
135 EVP_PKEY *ret=NULL;

137 if (key == NULL) goto error;

139 if (key->pkey != NULL)
140 {
141 CRYPTO_add(&key->pkey->references, 1, CRYPTO_LOCK_EVP_PKEY);
142 return key->pkey;
143 }

145 if (key->public_key == NULL) goto error;

147 if ((ret = EVP_PKEY_new()) == NULL)
148 {
149 X509err(X509_F_X509_PUBKEY_GET, ERR_R_MALLOC_FAILURE);
150 goto error;
151 }

153 if (!EVP_PKEY_set_type(ret, OBJ_obj2nid(key->algor->algorithm)))
154 {
155 X509err(X509_F_X509_PUBKEY_GET,X509_R_UNSUPPORTED_ALGORITHM);
156 goto error;
157 }

159 if (ret->ameth->pub_decode)
160 {
161 if (!ret->ameth->pub_decode(ret, key))
162 {
163 X509err(X509_F_X509_PUBKEY_GET,
164 X509_R_PUBLIC_KEY_DECODE_ERROR);
165 goto error;
166 }
167 }
168 else
169 {
170 X509err(X509_F_X509_PUBKEY_GET, X509_R_METHOD_NOT_SUPPORTED);
171 goto error;
172 }

174 /* Check to see if another thread set key->pkey first */
175 CRYPTO_w_lock(CRYPTO_LOCK_EVP_PKEY);
176 if (key->pkey)
177 {
178 CRYPTO_w_unlock(CRYPTO_LOCK_EVP_PKEY);
179 EVP_PKEY_free(ret);
180 ret = key->pkey;
181 }
182 else
183 {
184 key->pkey = ret;
185 CRYPTO_w_unlock(CRYPTO_LOCK_EVP_PKEY);
186 }
187 CRYPTO_add(&ret->references, 1, CRYPTO_LOCK_EVP_PKEY);

189 return ret;

191 error:
192 if (ret != NULL)
193 EVP_PKEY_free(ret);

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_pubkey.c 4

194 return(NULL);
195 }

197 /* Now two pseudo ASN1 routines that take an EVP_PKEY structure
198 * and encode or decode as X509_PUBKEY
199 */

201 EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp,
202 long length)
203 {
204 X509_PUBKEY *xpk;
205 EVP_PKEY *pktmp;
206 xpk = d2i_X509_PUBKEY(NULL, pp, length);
207 if(!xpk) return NULL;
208 pktmp = X509_PUBKEY_get(xpk);
209 X509_PUBKEY_free(xpk);
210 if(!pktmp) return NULL;
211 if(a)
212 {
213 EVP_PKEY_free(*a);
214 *a = pktmp;
215 }
216 return pktmp;
217 }

219 int i2d_PUBKEY(EVP_PKEY *a, unsigned char **pp)
220 {
221 X509_PUBKEY *xpk=NULL;
222 int ret;
223 if(!a) return 0;
224 if(!X509_PUBKEY_set(&xpk, a)) return 0;
225 ret = i2d_X509_PUBKEY(xpk, pp);
226 X509_PUBKEY_free(xpk);
227 return ret;
228 }

230 /* The following are equivalents but which return RSA and DSA
231 * keys
232 */
233 #ifndef OPENSSL_NO_RSA
234 RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp,
235 long length)
236 {
237 EVP_PKEY *pkey;
238 RSA *key;
239 const unsigned char *q;
240 q = *pp;
241 pkey = d2i_PUBKEY(NULL, &q, length);
242 if (!pkey) return NULL;
243 key = EVP_PKEY_get1_RSA(pkey);
244 EVP_PKEY_free(pkey);
245 if (!key) return NULL;
246 *pp = q;
247 if (a)
248 {
249 RSA_free(*a);
250 *a = key;
251 }
252 return key;
253 }

255 int i2d_RSA_PUBKEY(RSA *a, unsigned char **pp)
256 {
257 EVP_PKEY *pktmp;
258 int ret;
259 if (!a) return 0;

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_pubkey.c 5

260 pktmp = EVP_PKEY_new();
261 if (!pktmp)
262 {
263 ASN1err(ASN1_F_I2D_RSA_PUBKEY, ERR_R_MALLOC_FAILURE);
264 return 0;
265 }
266 EVP_PKEY_set1_RSA(pktmp, a);
267 ret = i2d_PUBKEY(pktmp, pp);
268 EVP_PKEY_free(pktmp);
269 return ret;
270 }
271 #endif

273 #ifndef OPENSSL_NO_DSA
274 DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp,
275 long length)
276 {
277 EVP_PKEY *pkey;
278 DSA *key;
279 const unsigned char *q;
280 q = *pp;
281 pkey = d2i_PUBKEY(NULL, &q, length);
282 if (!pkey) return NULL;
283 key = EVP_PKEY_get1_DSA(pkey);
284 EVP_PKEY_free(pkey);
285 if (!key) return NULL;
286 *pp = q;
287 if (a)
288 {
289 DSA_free(*a);
290 *a = key;
291 }
292 return key;
293 }

295 int i2d_DSA_PUBKEY(DSA *a, unsigned char **pp)
296 {
297 EVP_PKEY *pktmp;
298 int ret;
299 if(!a) return 0;
300 pktmp = EVP_PKEY_new();
301 if(!pktmp)
302 {
303 ASN1err(ASN1_F_I2D_DSA_PUBKEY, ERR_R_MALLOC_FAILURE);
304 return 0;
305 }
306 EVP_PKEY_set1_DSA(pktmp, a);
307 ret = i2d_PUBKEY(pktmp, pp);
308 EVP_PKEY_free(pktmp);
309 return ret;
310 }
311 #endif

313 #ifndef OPENSSL_NO_EC
314 EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length)
315 {
316 EVP_PKEY *pkey;
317 EC_KEY *key;
318 const unsigned char *q;
319 q = *pp;
320 pkey = d2i_PUBKEY(NULL, &q, length);
321 if (!pkey) return(NULL);
322 key = EVP_PKEY_get1_EC_KEY(pkey);
323 EVP_PKEY_free(pkey);
324 if (!key) return(NULL);
325 *pp = q;

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_pubkey.c 6

326 if (a)
327 {
328 EC_KEY_free(*a);
329 *a = key;
330 }
331 return(key);
332 }

334 int i2d_EC_PUBKEY(EC_KEY *a, unsigned char **pp)
335 {
336 EVP_PKEY *pktmp;
337 int ret;
338 if (!a) return(0);
339 if ((pktmp = EVP_PKEY_new()) == NULL)
340 {
341 ASN1err(ASN1_F_I2D_EC_PUBKEY, ERR_R_MALLOC_FAILURE);
342 return(0);
343 }
344 EVP_PKEY_set1_EC_KEY(pktmp, a);
345 ret = i2d_PUBKEY(pktmp, pp);
346 EVP_PKEY_free(pktmp);
347 return(ret);
348 }
349 #endif

351 int X509_PUBKEY_set0_param(X509_PUBKEY *pub, ASN1_OBJECT *aobj,
352 int ptype, void *pval,
353 unsigned char *penc, int penclen)
354 {
355 if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval))
356 return 0;
357 if (penc)
358 {
359 if (pub->public_key->data)
360 OPENSSL_free(pub->public_key->data);
361 pub->public_key->data = penc;
362 pub->public_key->length = penclen;
363 /* Set number of unused bits to zero */
364 pub->public_key->flags&= ~(ASN1_STRING_FLAG_BITS_LEFT|0x07);
365 pub->public_key->flags|=ASN1_STRING_FLAG_BITS_LEFT;
366 }
367 return 1;
368 }

370 int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg,
371 const unsigned char **pk, int *ppklen,
372 X509_ALGOR **pa,
373 X509_PUBKEY *pub)
374 {
375 if (ppkalg)
376 *ppkalg = pub->algor->algorithm;
377 if (pk)
378 {
379 *pk = pub->public_key->data;
380 *ppklen = pub->public_key->length;
381 }
382 if (pa)
383 *pa = pub->algor;
384 return 1;
385 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_req.c 1

**
 5068 Fri May 30 18:31:32 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_req.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/x_req.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_req.c 2

62 #include <openssl/x509.h>

64 /* X509_REQ_INFO is handled in an unusual way to get round
65 * invalid encodings. Some broken certificate requests don’t
66 * encode the attributes field if it is empty. This is in
67 * violation of PKCS#10 but we need to tolerate it. We do
68 * this by making the attributes field OPTIONAL then using
69 * the callback to initialise it to an empty STACK.
70 *
71 * This means that the field will be correctly encoded unless
72 * we NULL out the field.
73 *
74 * As a result we no longer need the req_kludge field because
75 * the information is now contained in the attributes field:
76 * 1. If it is NULL then it’s the invalid omission.
77 * 2. If it is empty it is the correct encoding.
78 * 3. If it is not empty then some attributes are present.
79 *
80 */

82 static int rinf_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
83 void *exarg)
84 {
85 X509_REQ_INFO *rinf = (X509_REQ_INFO *)*pval;

87 if(operation == ASN1_OP_NEW_POST) {
88 rinf->attributes = sk_X509_ATTRIBUTE_new_null();
89 if(!rinf->attributes) return 0;
90 }
91 return 1;
92 }

94 ASN1_SEQUENCE_enc(X509_REQ_INFO, enc, rinf_cb) = {
95 ASN1_SIMPLE(X509_REQ_INFO, version, ASN1_INTEGER),
96 ASN1_SIMPLE(X509_REQ_INFO, subject, X509_NAME),
97 ASN1_SIMPLE(X509_REQ_INFO, pubkey, X509_PUBKEY),
98 /* This isn’t really OPTIONAL but it gets round invalid
99 * encodings
100 */
101 ASN1_IMP_SET_OF_OPT(X509_REQ_INFO, attributes, X509_ATTRIBUTE, 0)
102 } ASN1_SEQUENCE_END_enc(X509_REQ_INFO, X509_REQ_INFO)

104 IMPLEMENT_ASN1_FUNCTIONS(X509_REQ_INFO)

106 ASN1_SEQUENCE_ref(X509_REQ, 0, CRYPTO_LOCK_X509_REQ) = {
107 ASN1_SIMPLE(X509_REQ, req_info, X509_REQ_INFO),
108 ASN1_SIMPLE(X509_REQ, sig_alg, X509_ALGOR),
109 ASN1_SIMPLE(X509_REQ, signature, ASN1_BIT_STRING)
110 } ASN1_SEQUENCE_END_ref(X509_REQ, X509_REQ)

112 IMPLEMENT_ASN1_FUNCTIONS(X509_REQ)
113 IMPLEMENT_ASN1_DUP_FUNCTION(X509_REQ)

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_sig.c 1

**
 3478 Fri May 30 18:31:33 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_sig.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/x_sig.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_sig.c 2

62 #include <openssl/x509.h>

64 ASN1_SEQUENCE(X509_SIG) = {
65 ASN1_SIMPLE(X509_SIG, algor, X509_ALGOR),
66 ASN1_SIMPLE(X509_SIG, digest, ASN1_OCTET_STRING)
67 } ASN1_SEQUENCE_END(X509_SIG)

69 IMPLEMENT_ASN1_FUNCTIONS(X509_SIG)

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_spki.c 1

**
 3914 Fri May 30 18:31:33 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_spki.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/x_spki.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* This module was send to me my Pat Richards <patr@x509.com> who
60 * wrote it. It is under my Copyright with his permission
61 */

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_spki.c 2

63 #include <stdio.h>
64 #include "cryptlib.h"
65 #include <openssl/x509.h>
66 #include <openssl/asn1t.h>

68 ASN1_SEQUENCE(NETSCAPE_SPKAC) = {
69 ASN1_SIMPLE(NETSCAPE_SPKAC, pubkey, X509_PUBKEY),
70 ASN1_SIMPLE(NETSCAPE_SPKAC, challenge, ASN1_IA5STRING)
71 } ASN1_SEQUENCE_END(NETSCAPE_SPKAC)

73 IMPLEMENT_ASN1_FUNCTIONS(NETSCAPE_SPKAC)

75 ASN1_SEQUENCE(NETSCAPE_SPKI) = {
76 ASN1_SIMPLE(NETSCAPE_SPKI, spkac, NETSCAPE_SPKAC),
77 ASN1_SIMPLE(NETSCAPE_SPKI, sig_algor, X509_ALGOR),
78 ASN1_SIMPLE(NETSCAPE_SPKI, signature, ASN1_BIT_STRING)
79 } ASN1_SEQUENCE_END(NETSCAPE_SPKI)

81 IMPLEMENT_ASN1_FUNCTIONS(NETSCAPE_SPKI)

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_val.c 1

**
 3475 Fri May 30 18:31:33 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_val.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/x_val.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_val.c 2

62 #include <openssl/x509.h>

64 ASN1_SEQUENCE(X509_VAL) = {
65 ASN1_SIMPLE(X509_VAL, notBefore, ASN1_TIME),
66 ASN1_SIMPLE(X509_VAL, notAfter, ASN1_TIME)
67 } ASN1_SEQUENCE_END(X509_VAL)

69 IMPLEMENT_ASN1_FUNCTIONS(X509_VAL)

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_x509.c 1

**
 6915 Fri May 30 18:31:33 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_x509.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/x_x509.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_x509.c 2

62 #include <openssl/asn1t.h>
63 #include <openssl/x509.h>
64 #include <openssl/x509v3.h>

66 ASN1_SEQUENCE_enc(X509_CINF, enc, 0) = {
67 ASN1_EXP_OPT(X509_CINF, version, ASN1_INTEGER, 0),
68 ASN1_SIMPLE(X509_CINF, serialNumber, ASN1_INTEGER),
69 ASN1_SIMPLE(X509_CINF, signature, X509_ALGOR),
70 ASN1_SIMPLE(X509_CINF, issuer, X509_NAME),
71 ASN1_SIMPLE(X509_CINF, validity, X509_VAL),
72 ASN1_SIMPLE(X509_CINF, subject, X509_NAME),
73 ASN1_SIMPLE(X509_CINF, key, X509_PUBKEY),
74 ASN1_IMP_OPT(X509_CINF, issuerUID, ASN1_BIT_STRING, 1),
75 ASN1_IMP_OPT(X509_CINF, subjectUID, ASN1_BIT_STRING, 2),
76 ASN1_EXP_SEQUENCE_OF_OPT(X509_CINF, extensions, X509_EXTENSION, 3)
77 } ASN1_SEQUENCE_END_enc(X509_CINF, X509_CINF)

79 IMPLEMENT_ASN1_FUNCTIONS(X509_CINF)
80 /* X509 top level structure needs a bit of customisation */

82 extern void policy_cache_free(X509_POLICY_CACHE *cache);

84 static int x509_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
85 void *exarg)
86 {
87 X509 *ret = (X509 *)*pval;

89 switch(operation) {

91 case ASN1_OP_NEW_POST:
92 ret->valid=0;
93 ret->name = NULL;
94 ret->ex_flags = 0;
95 ret->ex_pathlen = -1;
96 ret->skid = NULL;
97 ret->akid = NULL;
98 #ifndef OPENSSL_NO_RFC3779
99 ret->rfc3779_addr = NULL;
100 ret->rfc3779_asid = NULL;
101 #endif
102 ret->aux = NULL;
103 ret->crldp = NULL;
104 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_X509, ret, &ret->ex_data);
105 break;

107 case ASN1_OP_D2I_POST:
108 if (ret->name != NULL) OPENSSL_free(ret->name);
109 ret->name=X509_NAME_oneline(ret->cert_info->subject,NULL,0);
110 break;

112 case ASN1_OP_FREE_POST:
113 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509, ret, &ret->ex_data);
114 X509_CERT_AUX_free(ret->aux);
115 ASN1_OCTET_STRING_free(ret->skid);
116 AUTHORITY_KEYID_free(ret->akid);
117 CRL_DIST_POINTS_free(ret->crldp);
118 policy_cache_free(ret->policy_cache);
119 GENERAL_NAMES_free(ret->altname);
120 NAME_CONSTRAINTS_free(ret->nc);
121 #ifndef OPENSSL_NO_RFC3779
122 sk_IPAddressFamily_pop_free(ret->rfc3779_addr, IPAddressFamily_f
123 ASIdentifiers_free(ret->rfc3779_asid);
124 #endif

126 if (ret->name != NULL) OPENSSL_free(ret->name);
127 break;

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_x509.c 3

129 }

131 return 1;

133 }

135 ASN1_SEQUENCE_ref(X509, x509_cb, CRYPTO_LOCK_X509) = {
136 ASN1_SIMPLE(X509, cert_info, X509_CINF),
137 ASN1_SIMPLE(X509, sig_alg, X509_ALGOR),
138 ASN1_SIMPLE(X509, signature, ASN1_BIT_STRING)
139 } ASN1_SEQUENCE_END_ref(X509, X509)

141 IMPLEMENT_ASN1_FUNCTIONS(X509)
142 IMPLEMENT_ASN1_DUP_FUNCTION(X509)

144 int X509_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
145 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func)
146 {
147 return CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_X509, argl, argp,
148 new_func, dup_func, free_func);
149 }

151 int X509_set_ex_data(X509 *r, int idx, void *arg)
152 {
153 return(CRYPTO_set_ex_data(&r->ex_data,idx,arg));
154 }

156 void *X509_get_ex_data(X509 *r, int idx)
157 {
158 return(CRYPTO_get_ex_data(&r->ex_data,idx));
159 }

161 /* X509_AUX ASN1 routines. X509_AUX is the name given to
162 * a certificate with extra info tagged on the end. Since these
163 * functions set how a certificate is trusted they should only
164 * be used when the certificate comes from a reliable source
165 * such as local storage.
166 *
167 */

169 X509 *d2i_X509_AUX(X509 **a, const unsigned char **pp, long length)
170 {
171 const unsigned char *q;
172 X509 *ret;
173 /* Save start position */
174 q = *pp;
175 ret = d2i_X509(a, pp, length);
176 /* If certificate unreadable then forget it */
177 if(!ret) return NULL;
178 /* update length */
179 length -= *pp - q;
180 if(!length) return ret;
181 if(!d2i_X509_CERT_AUX(&ret->aux, pp, length)) goto err;
182 return ret;
183 err:
184 X509_free(ret);
185 return NULL;
186 }

188 int i2d_X509_AUX(X509 *a, unsigned char **pp)
189 {
190 int length;
191 length = i2d_X509(a, pp);
192 if(a) length += i2d_X509_CERT_AUX(a->aux, pp);
193 return length;

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_x509.c 4

194 }

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_x509a.c 1

**
 5947 Fri May 30 18:31:33 2014
new/usr/src/lib/openssl/libsunw_crypto/asn1/x_x509a.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* a_x509a.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_x509a.c 2

62 #include <openssl/asn1t.h>
63 #include <openssl/x509.h>

65 /* X509_CERT_AUX routines. These are used to encode additional
66 * user modifiable data about a certificate. This data is
67 * appended to the X509 encoding when the *_X509_AUX routines
68 * are used. This means that the "traditional" X509 routines
69 * will simply ignore the extra data.
70 */

72 static X509_CERT_AUX *aux_get(X509 *x);

74 ASN1_SEQUENCE(X509_CERT_AUX) = {
75 ASN1_SEQUENCE_OF_OPT(X509_CERT_AUX, trust, ASN1_OBJECT),
76 ASN1_IMP_SEQUENCE_OF_OPT(X509_CERT_AUX, reject, ASN1_OBJECT, 0),
77 ASN1_OPT(X509_CERT_AUX, alias, ASN1_UTF8STRING),
78 ASN1_OPT(X509_CERT_AUX, keyid, ASN1_OCTET_STRING),
79 ASN1_IMP_SEQUENCE_OF_OPT(X509_CERT_AUX, other, X509_ALGOR, 1)
80 } ASN1_SEQUENCE_END(X509_CERT_AUX)

82 IMPLEMENT_ASN1_FUNCTIONS(X509_CERT_AUX)

84 static X509_CERT_AUX *aux_get(X509 *x)
85 {
86 if(!x) return NULL;
87 if(!x->aux && !(x->aux = X509_CERT_AUX_new())) return NULL;
88 return x->aux;
89 }

91 int X509_alias_set1(X509 *x, unsigned char *name, int len)
92 {
93 X509_CERT_AUX *aux;
94 if (!name)
95 {
96 if (!x || !x->aux || !x->aux->alias)
97 return 1;
98 ASN1_UTF8STRING_free(x->aux->alias);
99 x->aux->alias = NULL;
100 return 1;
101 }
102 if(!(aux = aux_get(x))) return 0;
103 if(!aux->alias && !(aux->alias = ASN1_UTF8STRING_new())) return 0;
104 return ASN1_STRING_set(aux->alias, name, len);
105 }

107 int X509_keyid_set1(X509 *x, unsigned char *id, int len)
108 {
109 X509_CERT_AUX *aux;
110 if (!id)
111 {
112 if (!x || !x->aux || !x->aux->keyid)
113 return 1;
114 ASN1_OCTET_STRING_free(x->aux->keyid);
115 x->aux->keyid = NULL;
116 return 1;
117 }
118 if(!(aux = aux_get(x))) return 0;
119 if(!aux->keyid && !(aux->keyid = ASN1_OCTET_STRING_new())) return 0;
120 return ASN1_STRING_set(aux->keyid, id, len);
121 }

123 unsigned char *X509_alias_get0(X509 *x, int *len)
124 {
125 if(!x->aux || !x->aux->alias) return NULL;
126 if(len) *len = x->aux->alias->length;
127 return x->aux->alias->data;

new/usr/src/lib/openssl/libsunw_crypto/asn1/x_x509a.c 3

128 }

130 unsigned char *X509_keyid_get0(X509 *x, int *len)
131 {
132 if(!x->aux || !x->aux->keyid) return NULL;
133 if(len) *len = x->aux->keyid->length;
134 return x->aux->keyid->data;
135 }

137 int X509_add1_trust_object(X509 *x, ASN1_OBJECT *obj)
138 {
139 X509_CERT_AUX *aux;
140 ASN1_OBJECT *objtmp;
141 if(!(objtmp = OBJ_dup(obj))) return 0;
142 if(!(aux = aux_get(x))) return 0;
143 if(!aux->trust
144 && !(aux->trust = sk_ASN1_OBJECT_new_null())) return 0;
145 return sk_ASN1_OBJECT_push(aux->trust, objtmp);
146 }

148 int X509_add1_reject_object(X509 *x, ASN1_OBJECT *obj)
149 {
150 X509_CERT_AUX *aux;
151 ASN1_OBJECT *objtmp;
152 if(!(objtmp = OBJ_dup(obj))) return 0;
153 if(!(aux = aux_get(x))) return 0;
154 if(!aux->reject
155 && !(aux->reject = sk_ASN1_OBJECT_new_null())) return 0;
156 return sk_ASN1_OBJECT_push(aux->reject, objtmp);
157 }

159 void X509_trust_clear(X509 *x)
160 {
161 if(x->aux && x->aux->trust) {
162 sk_ASN1_OBJECT_pop_free(x->aux->trust, ASN1_OBJECT_free);
163 x->aux->trust = NULL;
164 }
165 }

167 void X509_reject_clear(X509 *x)
168 {
169 if(x->aux && x->aux->reject) {
170 sk_ASN1_OBJECT_pop_free(x->aux->reject, ASN1_OBJECT_free);
171 x->aux->reject = NULL;
172 }
173 }

175 ASN1_SEQUENCE(X509_CERT_PAIR) = {
176 ASN1_EXP_OPT(X509_CERT_PAIR, forward, X509, 0),
177 ASN1_EXP_OPT(X509_CERT_PAIR, reverse, X509, 1)
178 } ASN1_SEQUENCE_END(X509_CERT_PAIR)

180 IMPLEMENT_ASN1_FUNCTIONS(X509_CERT_PAIR)

new/usr/src/lib/openssl/libsunw_crypto/bf/bf_cfb64.c 1

**
 4458 Fri May 30 18:31:33 2014
new/usr/src/lib/openssl/libsunw_crypto/bf/bf_cfb64.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bf/bf_cfb64.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/blowfish.h>
60 #include "bf_locl.h"

new/usr/src/lib/openssl/libsunw_crypto/bf/bf_cfb64.c 2

62 /* The input and output encrypted as though 64bit cfb mode is being
63 * used. The extra state information to record how much of the
64 * 64bit block we have used is contained in *num;
65 */

67 void BF_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length,
68 const BF_KEY *schedule, unsigned char *ivec, int *num, int encrypt)
69 {
70 register BF_LONG v0,v1,t;
71 register int n= *num;
72 register long l=length;
73 BF_LONG ti[2];
74 unsigned char *iv,c,cc;

76 iv=(unsigned char *)ivec;
77 if (encrypt)
78 {
79 while (l--)
80 {
81 if (n == 0)
82 {
83 n2l(iv,v0); ti[0]=v0;
84 n2l(iv,v1); ti[1]=v1;
85 BF_encrypt((BF_LONG *)ti,schedule);
86 iv=(unsigned char *)ivec;
87 t=ti[0]; l2n(t,iv);
88 t=ti[1]; l2n(t,iv);
89 iv=(unsigned char *)ivec;
90 }
91 c= *(in++)^iv[n];
92 *(out++)=c;
93 iv[n]=c;
94 n=(n+1)&0x07;
95 }
96 }
97 else
98 {
99 while (l--)
100 {
101 if (n == 0)
102 {
103 n2l(iv,v0); ti[0]=v0;
104 n2l(iv,v1); ti[1]=v1;
105 BF_encrypt((BF_LONG *)ti,schedule);
106 iv=(unsigned char *)ivec;
107 t=ti[0]; l2n(t,iv);
108 t=ti[1]; l2n(t,iv);
109 iv=(unsigned char *)ivec;
110 }
111 cc= *(in++);
112 c=iv[n];
113 iv[n]=cc;
114 *(out++)=c^cc;
115 n=(n+1)&0x07;
116 }
117 }
118 v0=v1=ti[0]=ti[1]=t=c=cc=0;
119 *num=n;
120 }

new/usr/src/lib/openssl/libsunw_crypto/bf/bf_ecb.c 1

**
 4004 Fri May 30 18:31:33 2014
new/usr/src/lib/openssl/libsunw_crypto/bf/bf_ecb.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bf/bf_ecb.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/blowfish.h>
60 #include "bf_locl.h"
61 #include <openssl/opensslv.h>

new/usr/src/lib/openssl/libsunw_crypto/bf/bf_ecb.c 2

63 /* Blowfish as implemented from ’Blowfish: Springer-Verlag paper’
64 * (From LECTURE NOTES IN COMPUTER SCIENCE 809, FAST SOFTWARE ENCRYPTION,
65 * CAMBRIDGE SECURITY WORKSHOP, CAMBRIDGE, U.K., DECEMBER 9-11, 1993)
66 */

68 const char BF_version[]="Blowfish" OPENSSL_VERSION_PTEXT;

70 const char *BF_options(void)
71 {
72 #ifdef BF_PTR
73 return("blowfish(ptr)");
74 #elif defined(BF_PTR2)
75 return("blowfish(ptr2)");
76 #else
77 return("blowfish(idx)");
78 #endif
79 }

81 void BF_ecb_encrypt(const unsigned char *in, unsigned char *out,
82 const BF_KEY *key, int encrypt)
83 {
84 BF_LONG l,d[2];

86 n2l(in,l); d[0]=l;
87 n2l(in,l); d[1]=l;
88 if (encrypt)
89 BF_encrypt(d,key);
90 else
91 BF_decrypt(d,key);
92 l=d[0]; l2n(l,out);
93 l=d[1]; l2n(l,out);
94 l=d[0]=d[1]=0;
95 }

new/usr/src/lib/openssl/libsunw_crypto/bf/bf_enc.c 1

**
 7681 Fri May 30 18:31:33 2014
new/usr/src/lib/openssl/libsunw_crypto/bf/bf_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bf/bf_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/blowfish.h>
60 #include "bf_locl.h"

new/usr/src/lib/openssl/libsunw_crypto/bf/bf_enc.c 2

62 /* Blowfish as implemented from ’Blowfish: Springer-Verlag paper’
63 * (From LECTURE NOTES IN COMPUTER SCIENCE 809, FAST SOFTWARE ENCRYPTION,
64 * CAMBRIDGE SECURITY WORKSHOP, CAMBRIDGE, U.K., DECEMBER 9-11, 1993)
65 */

67 #if (BF_ROUNDS != 16) && (BF_ROUNDS != 20)
68 #error If you set BF_ROUNDS to some value other than 16 or 20, you will have \
69 to modify the code.
70 #endif

72 void BF_encrypt(BF_LONG *data, const BF_KEY *key)
73 {
74 #ifndef BF_PTR2
75 register BF_LONG l,r;
76 register const BF_LONG *p,*s;

78 p=key->P;
79 s= &(key->S[0]);
80 l=data[0];
81 r=data[1];

83 l^=p[0];
84 BF_ENC(r,l,s,p[1]);
85 BF_ENC(l,r,s,p[2]);
86 BF_ENC(r,l,s,p[3]);
87 BF_ENC(l,r,s,p[4]);
88 BF_ENC(r,l,s,p[5]);
89 BF_ENC(l,r,s,p[6]);
90 BF_ENC(r,l,s,p[7]);
91 BF_ENC(l,r,s,p[8]);
92 BF_ENC(r,l,s,p[9]);
93 BF_ENC(l,r,s,p[10]);
94 BF_ENC(r,l,s,p[11]);
95 BF_ENC(l,r,s,p[12]);
96 BF_ENC(r,l,s,p[13]);
97 BF_ENC(l,r,s,p[14]);
98 BF_ENC(r,l,s,p[15]);
99 BF_ENC(l,r,s,p[16]);
100 #if BF_ROUNDS == 20
101 BF_ENC(r,l,s,p[17]);
102 BF_ENC(l,r,s,p[18]);
103 BF_ENC(r,l,s,p[19]);
104 BF_ENC(l,r,s,p[20]);
105 #endif
106 r^=p[BF_ROUNDS+1];

108 data[1]=l&0xffffffffL;
109 data[0]=r&0xffffffffL;
110 #else
111 register BF_LONG l,r,t,*k;

113 l=data[0];
114 r=data[1];
115 k=(BF_LONG*)key;

117 l^=k[0];
118 BF_ENC(r,l,k, 1);
119 BF_ENC(l,r,k, 2);
120 BF_ENC(r,l,k, 3);
121 BF_ENC(l,r,k, 4);
122 BF_ENC(r,l,k, 5);
123 BF_ENC(l,r,k, 6);
124 BF_ENC(r,l,k, 7);
125 BF_ENC(l,r,k, 8);
126 BF_ENC(r,l,k, 9);
127 BF_ENC(l,r,k,10);

new/usr/src/lib/openssl/libsunw_crypto/bf/bf_enc.c 3

128 BF_ENC(r,l,k,11);
129 BF_ENC(l,r,k,12);
130 BF_ENC(r,l,k,13);
131 BF_ENC(l,r,k,14);
132 BF_ENC(r,l,k,15);
133 BF_ENC(l,r,k,16);
134 #if BF_ROUNDS == 20
135 BF_ENC(r,l,k,17);
136 BF_ENC(l,r,k,18);
137 BF_ENC(r,l,k,19);
138 BF_ENC(l,r,k,20);
139 #endif
140 r^=k[BF_ROUNDS+1];

142 data[1]=l&0xffffffffL;
143 data[0]=r&0xffffffffL;
144 #endif
145 }

147 #ifndef BF_DEFAULT_OPTIONS

149 void BF_decrypt(BF_LONG *data, const BF_KEY *key)
150 {
151 #ifndef BF_PTR2
152 register BF_LONG l,r;
153 register const BF_LONG *p,*s;

155 p=key->P;
156 s= &(key->S[0]);
157 l=data[0];
158 r=data[1];

160 l^=p[BF_ROUNDS+1];
161 #if BF_ROUNDS == 20
162 BF_ENC(r,l,s,p[20]);
163 BF_ENC(l,r,s,p[19]);
164 BF_ENC(r,l,s,p[18]);
165 BF_ENC(l,r,s,p[17]);
166 #endif
167 BF_ENC(r,l,s,p[16]);
168 BF_ENC(l,r,s,p[15]);
169 BF_ENC(r,l,s,p[14]);
170 BF_ENC(l,r,s,p[13]);
171 BF_ENC(r,l,s,p[12]);
172 BF_ENC(l,r,s,p[11]);
173 BF_ENC(r,l,s,p[10]);
174 BF_ENC(l,r,s,p[9]);
175 BF_ENC(r,l,s,p[8]);
176 BF_ENC(l,r,s,p[7]);
177 BF_ENC(r,l,s,p[6]);
178 BF_ENC(l,r,s,p[5]);
179 BF_ENC(r,l,s,p[4]);
180 BF_ENC(l,r,s,p[3]);
181 BF_ENC(r,l,s,p[2]);
182 BF_ENC(l,r,s,p[1]);
183 r^=p[0];

185 data[1]=l&0xffffffffL;
186 data[0]=r&0xffffffffL;
187 #else
188 register BF_LONG l,r,t,*k;

190 l=data[0];
191 r=data[1];
192 k=(BF_LONG *)key;

new/usr/src/lib/openssl/libsunw_crypto/bf/bf_enc.c 4

194 l^=k[BF_ROUNDS+1];
195 #if BF_ROUNDS == 20
196 BF_ENC(r,l,k,20);
197 BF_ENC(l,r,k,19);
198 BF_ENC(r,l,k,18);
199 BF_ENC(l,r,k,17);
200 #endif
201 BF_ENC(r,l,k,16);
202 BF_ENC(l,r,k,15);
203 BF_ENC(r,l,k,14);
204 BF_ENC(l,r,k,13);
205 BF_ENC(r,l,k,12);
206 BF_ENC(l,r,k,11);
207 BF_ENC(r,l,k,10);
208 BF_ENC(l,r,k, 9);
209 BF_ENC(r,l,k, 8);
210 BF_ENC(l,r,k, 7);
211 BF_ENC(r,l,k, 6);
212 BF_ENC(l,r,k, 5);
213 BF_ENC(r,l,k, 4);
214 BF_ENC(l,r,k, 3);
215 BF_ENC(r,l,k, 2);
216 BF_ENC(l,r,k, 1);
217 r^=k[0];

219 data[1]=l&0xffffffffL;
220 data[0]=r&0xffffffffL;
221 #endif
222 }

224 void BF_cbc_encrypt(const unsigned char *in, unsigned char *out, long length,
225 const BF_KEY *schedule, unsigned char *ivec, int encrypt)
226 {
227 register BF_LONG tin0,tin1;
228 register BF_LONG tout0,tout1,xor0,xor1;
229 register long l=length;
230 BF_LONG tin[2];

232 if (encrypt)
233 {
234 n2l(ivec,tout0);
235 n2l(ivec,tout1);
236 ivec-=8;
237 for (l-=8; l>=0; l-=8)
238 {
239 n2l(in,tin0);
240 n2l(in,tin1);
241 tin0^=tout0;
242 tin1^=tout1;
243 tin[0]=tin0;
244 tin[1]=tin1;
245 BF_encrypt(tin,schedule);
246 tout0=tin[0];
247 tout1=tin[1];
248 l2n(tout0,out);
249 l2n(tout1,out);
250 }
251 if (l != -8)
252 {
253 n2ln(in,tin0,tin1,l+8);
254 tin0^=tout0;
255 tin1^=tout1;
256 tin[0]=tin0;
257 tin[1]=tin1;
258 BF_encrypt(tin,schedule);
259 tout0=tin[0];

new/usr/src/lib/openssl/libsunw_crypto/bf/bf_enc.c 5

260 tout1=tin[1];
261 l2n(tout0,out);
262 l2n(tout1,out);
263 }
264 l2n(tout0,ivec);
265 l2n(tout1,ivec);
266 }
267 else
268 {
269 n2l(ivec,xor0);
270 n2l(ivec,xor1);
271 ivec-=8;
272 for (l-=8; l>=0; l-=8)
273 {
274 n2l(in,tin0);
275 n2l(in,tin1);
276 tin[0]=tin0;
277 tin[1]=tin1;
278 BF_decrypt(tin,schedule);
279 tout0=tin[0]^xor0;
280 tout1=tin[1]^xor1;
281 l2n(tout0,out);
282 l2n(tout1,out);
283 xor0=tin0;
284 xor1=tin1;
285 }
286 if (l != -8)
287 {
288 n2l(in,tin0);
289 n2l(in,tin1);
290 tin[0]=tin0;
291 tin[1]=tin1;
292 BF_decrypt(tin,schedule);
293 tout0=tin[0]^xor0;
294 tout1=tin[1]^xor1;
295 l2nn(tout0,tout1,out,l+8);
296 xor0=tin0;
297 xor1=tin1;
298 }
299 l2n(xor0,ivec);
300 l2n(xor1,ivec);
301 }
302 tin0=tin1=tout0=tout1=xor0=xor1=0;
303 tin[0]=tin[1]=0;
304 }

306 #endif

new/usr/src/lib/openssl/libsunw_crypto/bf/bf_ofb64.c 1

**
 4197 Fri May 30 18:31:33 2014
new/usr/src/lib/openssl/libsunw_crypto/bf/bf_ofb64.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bf/bf_ofb64.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/blowfish.h>
60 #include "bf_locl.h"

new/usr/src/lib/openssl/libsunw_crypto/bf/bf_ofb64.c 2

62 /* The input and output encrypted as though 64bit ofb mode is being
63 * used. The extra state information to record how much of the
64 * 64bit block we have used is contained in *num;
65 */
66 void BF_ofb64_encrypt(const unsigned char *in, unsigned char *out, long length,
67 const BF_KEY *schedule, unsigned char *ivec, int *num)
68 {
69 register BF_LONG v0,v1,t;
70 register int n= *num;
71 register long l=length;
72 unsigned char d[8];
73 register char *dp;
74 BF_LONG ti[2];
75 unsigned char *iv;
76 int save=0;

78 iv=(unsigned char *)ivec;
79 n2l(iv,v0);
80 n2l(iv,v1);
81 ti[0]=v0;
82 ti[1]=v1;
83 dp=(char *)d;
84 l2n(v0,dp);
85 l2n(v1,dp);
86 while (l--)
87 {
88 if (n == 0)
89 {
90 BF_encrypt((BF_LONG *)ti,schedule);
91 dp=(char *)d;
92 t=ti[0]; l2n(t,dp);
93 t=ti[1]; l2n(t,dp);
94 save++;
95 }
96 *(out++)= *(in++)^d[n];
97 n=(n+1)&0x07;
98 }
99 if (save)
100 {
101 v0=ti[0];
102 v1=ti[1];
103 iv=(unsigned char *)ivec;
104 l2n(v0,iv);
105 l2n(v1,iv);
106 }
107 t=v0=v1=ti[0]=ti[1]=0;
108 *num=n;
109 }

new/usr/src/lib/openssl/libsunw_crypto/bf/bf_skey.c 1

**
 4233 Fri May 30 18:31:33 2014
new/usr/src/lib/openssl/libsunw_crypto/bf/bf_skey.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bf/bf_skey.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <string.h>
61 #include <openssl/crypto.h>

new/usr/src/lib/openssl/libsunw_crypto/bf/bf_skey.c 2

62 #include <openssl/blowfish.h>
63 #include "bf_locl.h"
64 #include "bf_pi.h"

66 void BF_set_key(BF_KEY *key, int len, const unsigned char *data)
67 #ifdef OPENSSL_FIPS
68 {
69 fips_cipher_abort(BLOWFISH);
70 private_BF_set_key(key, len, data);
71 }
72 void private_BF_set_key(BF_KEY *key, int len, const unsigned char *data)
73 #endif
74 {
75 int i;
76 BF_LONG *p,ri,in[2];
77 const unsigned char *d,*end;

80 memcpy(key,&bf_init,sizeof(BF_KEY));
81 p=key->P;

83 if (len > ((BF_ROUNDS+2)*4)) len=(BF_ROUNDS+2)*4;

85 d=data;
86 end= &(data[len]);
87 for (i=0; i<(BF_ROUNDS+2); i++)
88 {
89 ri= *(d++);
90 if (d >= end) d=data;

92 ri<<=8;
93 ri|= *(d++);
94 if (d >= end) d=data;

96 ri<<=8;
97 ri|= *(d++);
98 if (d >= end) d=data;

100 ri<<=8;
101 ri|= *(d++);
102 if (d >= end) d=data;

104 p[i]^=ri;
105 }

107 in[0]=0L;
108 in[1]=0L;
109 for (i=0; i<(BF_ROUNDS+2); i+=2)
110 {
111 BF_encrypt(in,key);
112 p[i]=in[0];
113 p[i+1]=in[1];
114 }

116 p=key->S;
117 for (i=0; i<4*256; i+=2)
118 {
119 BF_encrypt(in,key);
120 p[i]=in[0];
121 p[i+1]=in[1];
122 }
123 }

new/usr/src/lib/openssl/libsunw_crypto/bio/b_dump.c 1

**
 6175 Fri May 30 18:31:33 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/b_dump.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/b_dump.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /*
60 * Stolen from tjh’s ssl/ssl_trc.c stuff.
61 */

new/usr/src/lib/openssl/libsunw_crypto/bio/b_dump.c 2

63 #include <stdio.h>
64 #include "cryptlib.h"
65 #include "bio_lcl.h"

67 #define TRUNCATE
68 #define DUMP_WIDTH 16
69 #define DUMP_WIDTH_LESS_INDENT(i) (DUMP_WIDTH-((i-(i>6?6:i)+3)/4))

71 int BIO_dump_cb(int (*cb)(const void *data, size_t len, void *u),
72 void *u, const char *s, int len)
73 {
74 return BIO_dump_indent_cb(cb, u, s, len, 0);
75 }

77 int BIO_dump_indent_cb(int (*cb)(const void *data, size_t len, void *u),
78 void *u, const char *s, int len, int indent)
79 {
80 int ret=0;
81 char buf[288+1],tmp[20],str[128+1];
82 int i,j,rows,trc;
83 unsigned char ch;
84 int dump_width;

86 trc=0;

88 #ifdef TRUNCATE
89 for(; (len > 0) && ((s[len-1] == ’ ’) || (s[len-1] == ’\0’)); len--)
90 trc++;
91 #endif

93 if (indent < 0)
94 indent = 0;
95 if (indent)
96 {
97 if (indent > 128) indent=128;
98 memset(str,’ ’,indent);
99 }
100 str[indent]=’\0’;

102 dump_width=DUMP_WIDTH_LESS_INDENT(indent);
103 rows=(len/dump_width);
104 if ((rows*dump_width)<len)
105 rows++;
106 for(i=0;i<rows;i++)
107 {
108 buf[0]=’\0’; /* start with empty string */
109 BUF_strlcpy(buf,str,sizeof buf);
110 BIO_snprintf(tmp,sizeof tmp,"%04x - ",i*dump_width);
111 BUF_strlcat(buf,tmp,sizeof buf);
112 for(j=0;j<dump_width;j++)
113 {
114 if (((i*dump_width)+j)>=len)
115 {
116 BUF_strlcat(buf," ",sizeof buf);
117 }
118 else
119 {
120 ch=((unsigned char)*(s+i*dump_width+j)) & 0xff;
121 BIO_snprintf(tmp,sizeof tmp,"%02x%c",ch,
122 j==7?’-’:’ ’);
123 BUF_strlcat(buf,tmp,sizeof buf);
124 }
125 }
126 BUF_strlcat(buf," ",sizeof buf);
127 for(j=0;j<dump_width;j++)

new/usr/src/lib/openssl/libsunw_crypto/bio/b_dump.c 3

128 {
129 if (((i*dump_width)+j)>=len)
130 break;
131 ch=((unsigned char)*(s+i*dump_width+j)) & 0xff;
132 #ifndef CHARSET_EBCDIC
133 BIO_snprintf(tmp,sizeof tmp,"%c",
134 ((ch>=’ ’)&&(ch<=’~’))?ch:’.’);
135 #else
136 BIO_snprintf(tmp,sizeof tmp,"%c",
137 ((ch>=os_toascii[’ ’])&&(ch<=os_toascii[’~’]))
138 ? os_toebcdic[ch]
139 : ’.’);
140 #endif
141 BUF_strlcat(buf,tmp,sizeof buf);
142 }
143 BUF_strlcat(buf,"\n",sizeof buf);
144 /* if this is the last call then update the ddt_dump thing so
145 * that we will move the selection point in the debug window
146 */
147 ret+=cb((void *)buf,strlen(buf),u);
148 }
149 #ifdef TRUNCATE
150 if (trc > 0)
151 {
152 BIO_snprintf(buf,sizeof buf,"%s%04x - <SPACES/NULS>\n",str,
153 len+trc);
154 ret+=cb((void *)buf,strlen(buf),u);
155 }
156 #endif
157 return(ret);
158 }

160 #ifndef OPENSSL_NO_FP_API
161 static int write_fp(const void *data, size_t len, void *fp)
162 {
163 return UP_fwrite(data, len, 1, fp);
164 }
165 int BIO_dump_fp(FILE *fp, const char *s, int len)
166 {
167 return BIO_dump_cb(write_fp, fp, s, len);
168 }
169 int BIO_dump_indent_fp(FILE *fp, const char *s, int len, int indent)
170 {
171 return BIO_dump_indent_cb(write_fp, fp, s, len, indent);
172 }
173 #endif

175 static int write_bio(const void *data, size_t len, void *bp)
176 {
177 return BIO_write((BIO *)bp, (const char *)data, len);
178 }
179 int BIO_dump(BIO *bp, const char *s, int len)
180 {
181 return BIO_dump_cb(write_bio, bp, s, len);
182 }
183 int BIO_dump_indent(BIO *bp, const char *s, int len, int indent)
184 {
185 return BIO_dump_indent_cb(write_bio, bp, s, len, indent);
186 }

new/usr/src/lib/openssl/libsunw_crypto/bio/b_print.c 1

**
 23669 Fri May 30 18:31:33 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/b_print.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/b_print.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* disable assert() unless BIO_DEBUG has been defined */
60 #ifndef BIO_DEBUG
61 # ifndef NDEBUG

new/usr/src/lib/openssl/libsunw_crypto/bio/b_print.c 2

62 # define NDEBUG
63 # endif
64 #endif

66 /*
67 * Stolen from tjh’s ssl/ssl_trc.c stuff.
68 */

70 #include <stdio.h>
71 #include <string.h>
72 #include <ctype.h>
73 #include <assert.h>
74 #include <limits.h>
75 #include "cryptlib.h"
76 #ifndef NO_SYS_TYPES_H
77 #include <sys/types.h>
78 #endif
79 #include <openssl/bn.h> /* To get BN_LLONG properly defined */
80 #include <openssl/bio.h>

82 #if defined(BN_LLONG) || defined(SIXTY_FOUR_BIT)
83 # ifndef HAVE_LONG_LONG
84 # define HAVE_LONG_LONG 1
85 # endif
86 #endif

88 /***/

90 /*
91 * Copyright Patrick Powell 1995
92 * This code is based on code written by Patrick Powell <papowell@astart.com>
93 * It may be used for any purpose as long as this notice remains intact
94 * on all source code distributions.
95 */

97 /*
98 * This code contains numerious changes and enhancements which were
99 * made by lots of contributors over the last years to Patrick Powell’s
100 * original code:
101 *
102 * o Patrick Powell <papowell@astart.com> (1995)
103 * o Brandon Long <blong@fiction.net> (1996, for Mutt)
104 * o Thomas Roessler <roessler@guug.de> (1998, for Mutt)
105 * o Michael Elkins <me@cs.hmc.edu> (1998, for Mutt)
106 * o Andrew Tridgell <tridge@samba.org> (1998, for Samba)
107 * o Luke Mewburn <lukem@netbsd.org> (1999, for LukemFTP)
108 * o Ralf S. Engelschall <rse@engelschall.com> (1999, for Pth)
109 * o ... (for OpenSSL)
110 */

112 #ifdef HAVE_LONG_DOUBLE
113 #define LDOUBLE long double
114 #else
115 #define LDOUBLE double
116 #endif

118 #ifdef HAVE_LONG_LONG
119 # if defined(_WIN32) && !defined(__GNUC__)
120 # define LLONG __int64
121 # else
122 # define LLONG long long
123 # endif
124 #else
125 #define LLONG long
126 #endif

new/usr/src/lib/openssl/libsunw_crypto/bio/b_print.c 3

128 static void fmtstr (char **, char **, size_t *, size_t *,
129 const char *, int, int, int);
130 static void fmtint (char **, char **, size_t *, size_t *,
131 LLONG, int, int, int, int);
132 static void fmtfp (char **, char **, size_t *, size_t *,
133 LDOUBLE, int, int, int);
134 static void doapr_outch (char **, char **, size_t *, size_t *, int);
135 static void _dopr(char **sbuffer, char **buffer,
136 size_t *maxlen, size_t *retlen, int *truncated,
137 const char *format, va_list args);

139 /* format read states */
140 #define DP_S_DEFAULT 0
141 #define DP_S_FLAGS 1
142 #define DP_S_MIN 2
143 #define DP_S_DOT 3
144 #define DP_S_MAX 4
145 #define DP_S_MOD 5
146 #define DP_S_CONV 6
147 #define DP_S_DONE 7

149 /* format flags - Bits */
150 #define DP_F_MINUS (1 << 0)
151 #define DP_F_PLUS (1 << 1)
152 #define DP_F_SPACE (1 << 2)
153 #define DP_F_NUM (1 << 3)
154 #define DP_F_ZERO (1 << 4)
155 #define DP_F_UP (1 << 5)
156 #define DP_F_UNSIGNED (1 << 6)

158 /* conversion flags */
159 #define DP_C_SHORT 1
160 #define DP_C_LONG 2
161 #define DP_C_LDOUBLE 3
162 #define DP_C_LLONG 4

164 /* some handy macros */
165 #define char_to_int(p) (p - ’0’)
166 #define OSSL_MAX(p,q) ((p >= q) ? p : q)

168 static void
169 _dopr(
170 char **sbuffer,
171 char **buffer,
172 size_t *maxlen,
173 size_t *retlen,
174 int *truncated,
175 const char *format,
176 va_list args)
177 {
178 char ch;
179 LLONG value;
180 LDOUBLE fvalue;
181 char *strvalue;
182 int min;
183 int max;
184 int state;
185 int flags;
186 int cflags;
187 size_t currlen;

189 state = DP_S_DEFAULT;
190 flags = currlen = cflags = min = 0;
191 max = -1;
192 ch = *format++;

new/usr/src/lib/openssl/libsunw_crypto/bio/b_print.c 4

194 while (state != DP_S_DONE) {
195 if (ch == ’\0’ || (buffer == NULL && currlen >= *maxlen))
196 state = DP_S_DONE;

198 switch (state) {
199 case DP_S_DEFAULT:
200 if (ch == ’%’)
201 state = DP_S_FLAGS;
202 else
203 doapr_outch(sbuffer,buffer, &currlen, maxlen, ch);
204 ch = *format++;
205 break;
206 case DP_S_FLAGS:
207 switch (ch) {
208 case ’-’:
209 flags |= DP_F_MINUS;
210 ch = *format++;
211 break;
212 case ’+’:
213 flags |= DP_F_PLUS;
214 ch = *format++;
215 break;
216 case ’ ’:
217 flags |= DP_F_SPACE;
218 ch = *format++;
219 break;
220 case ’#’:
221 flags |= DP_F_NUM;
222 ch = *format++;
223 break;
224 case ’0’:
225 flags |= DP_F_ZERO;
226 ch = *format++;
227 break;
228 default:
229 state = DP_S_MIN;
230 break;
231 }
232 break;
233 case DP_S_MIN:
234 if (isdigit((unsigned char)ch)) {
235 min = 10 * min + char_to_int(ch);
236 ch = *format++;
237 } else if (ch == ’*’) {
238 min = va_arg(args, int);
239 ch = *format++;
240 state = DP_S_DOT;
241 } else
242 state = DP_S_DOT;
243 break;
244 case DP_S_DOT:
245 if (ch == ’.’) {
246 state = DP_S_MAX;
247 ch = *format++;
248 } else
249 state = DP_S_MOD;
250 break;
251 case DP_S_MAX:
252 if (isdigit((unsigned char)ch)) {
253 if (max < 0)
254 max = 0;
255 max = 10 * max + char_to_int(ch);
256 ch = *format++;
257 } else if (ch == ’*’) {
258 max = va_arg(args, int);
259 ch = *format++;

new/usr/src/lib/openssl/libsunw_crypto/bio/b_print.c 5

260 state = DP_S_MOD;
261 } else
262 state = DP_S_MOD;
263 break;
264 case DP_S_MOD:
265 switch (ch) {
266 case ’h’:
267 cflags = DP_C_SHORT;
268 ch = *format++;
269 break;
270 case ’l’:
271 if (*format == ’l’) {
272 cflags = DP_C_LLONG;
273 format++;
274 } else
275 cflags = DP_C_LONG;
276 ch = *format++;
277 break;
278 case ’q’:
279 cflags = DP_C_LLONG;
280 ch = *format++;
281 break;
282 case ’L’:
283 cflags = DP_C_LDOUBLE;
284 ch = *format++;
285 break;
286 default:
287 break;
288 }
289 state = DP_S_CONV;
290 break;
291 case DP_S_CONV:
292 switch (ch) {
293 case ’d’:
294 case ’i’:
295 switch (cflags) {
296 case DP_C_SHORT:
297 value = (short int)va_arg(args, int);
298 break;
299 case DP_C_LONG:
300 value = va_arg(args, long int);
301 break;
302 case DP_C_LLONG:
303 value = va_arg(args, LLONG);
304 break;
305 default:
306 value = va_arg(args, int);
307 break;
308 }
309 fmtint(sbuffer, buffer, &currlen, maxlen,
310 value, 10, min, max, flags);
311 break;
312 case ’X’:
313 flags |= DP_F_UP;
314 /* FALLTHROUGH */
315 case ’x’:
316 case ’o’:
317 case ’u’:
318 flags |= DP_F_UNSIGNED;
319 switch (cflags) {
320 case DP_C_SHORT:
321 value = (unsigned short int)va_arg(args, unsigned int);
322 break;
323 case DP_C_LONG:
324 value = (LLONG) va_arg(args,
325 unsigned long int);

new/usr/src/lib/openssl/libsunw_crypto/bio/b_print.c 6

326 break;
327 case DP_C_LLONG:
328 value = va_arg(args, unsigned LLONG);
329 break;
330 default:
331 value = (LLONG) va_arg(args,
332 unsigned int);
333 break;
334 }
335 fmtint(sbuffer, buffer, &currlen, maxlen, value,
336 ch == ’o’ ? 8 : (ch == ’u’ ? 10 : 16),
337 min, max, flags);
338 break;
339 case ’f’:
340 if (cflags == DP_C_LDOUBLE)
341 fvalue = va_arg(args, LDOUBLE);
342 else
343 fvalue = va_arg(args, double);
344 fmtfp(sbuffer, buffer, &currlen, maxlen,
345 fvalue, min, max, flags);
346 break;
347 case ’E’:
348 flags |= DP_F_UP;
349 case ’e’:
350 if (cflags == DP_C_LDOUBLE)
351 fvalue = va_arg(args, LDOUBLE);
352 else
353 fvalue = va_arg(args, double);
354 break;
355 case ’G’:
356 flags |= DP_F_UP;
357 case ’g’:
358 if (cflags == DP_C_LDOUBLE)
359 fvalue = va_arg(args, LDOUBLE);
360 else
361 fvalue = va_arg(args, double);
362 break;
363 case ’c’:
364 doapr_outch(sbuffer, buffer, &currlen, maxlen,
365 va_arg(args, int));
366 break;
367 case ’s’:
368 strvalue = va_arg(args, char *);
369 if (max < 0) {
370 if (buffer)
371 max = INT_MAX;
372 else
373 max = *maxlen;
374 }
375 fmtstr(sbuffer, buffer, &currlen, maxlen, strvalue,
376 flags, min, max);
377 break;
378 case ’p’:
379 value = (long)va_arg(args, void *);
380 fmtint(sbuffer, buffer, &currlen, maxlen,
381 value, 16, min, max, flags|DP_F_NUM);
382 break;
383 case ’n’: /* XXX */
384 if (cflags == DP_C_SHORT) {
385 short int *num;
386 num = va_arg(args, short int *);
387 *num = currlen;
388 } else if (cflags == DP_C_LONG) { /* XXX */
389 long int *num;
390 num = va_arg(args, long int *);
391 *num = (long int) currlen;

new/usr/src/lib/openssl/libsunw_crypto/bio/b_print.c 7

392 } else if (cflags == DP_C_LLONG) { /* XXX */
393 LLONG *num;
394 num = va_arg(args, LLONG *);
395 *num = (LLONG) currlen;
396 } else {
397 int *num;
398 num = va_arg(args, int *);
399 *num = currlen;
400 }
401 break;
402 case ’%’:
403 doapr_outch(sbuffer, buffer, &currlen, maxlen, ch);
404 break;
405 case ’w’:
406 /* not supported yet, treat as next char */
407 ch = *format++;
408 break;
409 default:
410 /* unknown, skip */
411 break;
412 }
413 ch = *format++;
414 state = DP_S_DEFAULT;
415 flags = cflags = min = 0;
416 max = -1;
417 break;
418 case DP_S_DONE:
419 break;
420 default:
421 break;
422 }
423 }
424 *truncated = (currlen > *maxlen - 1);
425 if (*truncated)
426 currlen = *maxlen - 1;
427 doapr_outch(sbuffer, buffer, &currlen, maxlen, ’\0’);
428 *retlen = currlen - 1;
429 return;
430 }

432 static void
433 fmtstr(
434 char **sbuffer,
435 char **buffer,
436 size_t *currlen,
437 size_t *maxlen,
438 const char *value,
439 int flags,
440 int min,
441 int max)
442 {
443 int padlen, strln;
444 int cnt = 0;

446 if (value == 0)
447 value = "<NULL>";
448 for (strln = 0; value[strln]; ++strln)
449 ;
450 padlen = min - strln;
451 if (padlen < 0)
452 padlen = 0;
453 if (flags & DP_F_MINUS)
454 padlen = -padlen;

456 while ((padlen > 0) && (cnt < max)) {
457 doapr_outch(sbuffer, buffer, currlen, maxlen, ’ ’);

new/usr/src/lib/openssl/libsunw_crypto/bio/b_print.c 8

458 --padlen;
459 ++cnt;
460 }
461 while (*value && (cnt < max)) {
462 doapr_outch(sbuffer, buffer, currlen, maxlen, *value++);
463 ++cnt;
464 }
465 while ((padlen < 0) && (cnt < max)) {
466 doapr_outch(sbuffer, buffer, currlen, maxlen, ’ ’);
467 ++padlen;
468 ++cnt;
469 }
470 }

472 static void
473 fmtint(
474 char **sbuffer,
475 char **buffer,
476 size_t *currlen,
477 size_t *maxlen,
478 LLONG value,
479 int base,
480 int min,
481 int max,
482 int flags)
483 {
484 int signvalue = 0;
485 const char *prefix = "";
486 unsigned LLONG uvalue;
487 char convert[DECIMAL_SIZE(value)+3];
488 int place = 0;
489 int spadlen = 0;
490 int zpadlen = 0;
491 int caps = 0;

493 if (max < 0)
494 max = 0;
495 uvalue = value;
496 if (!(flags & DP_F_UNSIGNED)) {
497 if (value < 0) {
498 signvalue = ’-’;
499 uvalue = -value;
500 } else if (flags & DP_F_PLUS)
501 signvalue = ’+’;
502 else if (flags & DP_F_SPACE)
503 signvalue = ’ ’;
504 }
505 if (flags & DP_F_NUM) {
506 if (base == 8) prefix = "0";
507 if (base == 16) prefix = "0x";
508 }
509 if (flags & DP_F_UP)
510 caps = 1;
511 do {
512 convert[place++] =
513 (caps ? "0123456789ABCDEF" : "0123456789abcdef")
514 [uvalue % (unsigned) base];
515 uvalue = (uvalue / (unsigned) base);
516 } while (uvalue && (place < (int)sizeof(convert)));
517 if (place == sizeof(convert))
518 place--;
519 convert[place] = 0;

521 zpadlen = max - place;
522 spadlen = min - OSSL_MAX(max, place) - (signvalue ? 1 : 0) - strlen(prefix);
523 if (zpadlen < 0)

new/usr/src/lib/openssl/libsunw_crypto/bio/b_print.c 9

524 zpadlen = 0;
525 if (spadlen < 0)
526 spadlen = 0;
527 if (flags & DP_F_ZERO) {
528 zpadlen = OSSL_MAX(zpadlen, spadlen);
529 spadlen = 0;
530 }
531 if (flags & DP_F_MINUS)
532 spadlen = -spadlen;

534 /* spaces */
535 while (spadlen > 0) {
536 doapr_outch(sbuffer, buffer, currlen, maxlen, ’ ’);
537 --spadlen;
538 }

540 /* sign */
541 if (signvalue)
542 doapr_outch(sbuffer, buffer, currlen, maxlen, signvalue);

544 /* prefix */
545 while (*prefix) {
546 doapr_outch(sbuffer, buffer, currlen, maxlen, *prefix);
547 prefix++;
548 }

550 /* zeros */
551 if (zpadlen > 0) {
552 while (zpadlen > 0) {
553 doapr_outch(sbuffer, buffer, currlen, maxlen, ’0’);
554 --zpadlen;
555 }
556 }
557 /* digits */
558 while (place > 0)
559 doapr_outch(sbuffer, buffer, currlen, maxlen, convert[--place]);

561 /* left justified spaces */
562 while (spadlen < 0) {
563 doapr_outch(sbuffer, buffer, currlen, maxlen, ’ ’);
564 ++spadlen;
565 }
566 return;
567 }

569 static LDOUBLE
570 abs_val(LDOUBLE value)
571 {
572 LDOUBLE result = value;
573 if (value < 0)
574 result = -value;
575 return result;
576 }

578 static LDOUBLE
579 pow_10(int in_exp)
580 {
581 LDOUBLE result = 1;
582 while (in_exp) {
583 result *= 10;
584 in_exp--;
585 }
586 return result;
587 }

589 static long

new/usr/src/lib/openssl/libsunw_crypto/bio/b_print.c 10

590 roundv(LDOUBLE value)
591 {
592 long intpart;
593 intpart = (long) value;
594 value = value - intpart;
595 if (value >= 0.5)
596 intpart++;
597 return intpart;
598 }

600 static void
601 fmtfp(
602 char **sbuffer,
603 char **buffer,
604 size_t *currlen,
605 size_t *maxlen,
606 LDOUBLE fvalue,
607 int min,
608 int max,
609 int flags)
610 {
611 int signvalue = 0;
612 LDOUBLE ufvalue;
613 char iconvert[20];
614 char fconvert[20];
615 int iplace = 0;
616 int fplace = 0;
617 int padlen = 0;
618 int zpadlen = 0;
619 int caps = 0;
620 long intpart;
621 long fracpart;
622 long max10;

624 if (max < 0)
625 max = 6;
626 ufvalue = abs_val(fvalue);
627 if (fvalue < 0)
628 signvalue = ’-’;
629 else if (flags & DP_F_PLUS)
630 signvalue = ’+’;
631 else if (flags & DP_F_SPACE)
632 signvalue = ’ ’;

634 intpart = (long)ufvalue;

636 /* sorry, we only support 9 digits past the decimal because of our
637 conversion method */
638 if (max > 9)
639 max = 9;

641 /* we "cheat" by converting the fractional part to integer by
642 multiplying by a factor of 10 */
643 max10 = roundv(pow_10(max));
644 fracpart = roundv(pow_10(max) * (ufvalue - intpart));

646 if (fracpart >= max10) {
647 intpart++;
648 fracpart -= max10;
649 }

651 /* convert integer part */
652 do {
653 iconvert[iplace++] =
654 (caps ? "0123456789ABCDEF"
655 : "0123456789abcdef")[intpart % 10];

new/usr/src/lib/openssl/libsunw_crypto/bio/b_print.c 11

656 intpart = (intpart / 10);
657 } while (intpart && (iplace < (int)sizeof(iconvert)));
658 if (iplace == sizeof iconvert)
659 iplace--;
660 iconvert[iplace] = 0;

662 /* convert fractional part */
663 do {
664 fconvert[fplace++] =
665 (caps ? "0123456789ABCDEF"
666 : "0123456789abcdef")[fracpart % 10];
667 fracpart = (fracpart / 10);
668 } while (fplace < max);
669 if (fplace == sizeof fconvert)
670 fplace--;
671 fconvert[fplace] = 0;

673 /* -1 for decimal point, another -1 if we are printing a sign */
674 padlen = min - iplace - max - 1 - ((signvalue) ? 1 : 0);
675 zpadlen = max - fplace;
676 if (zpadlen < 0)
677 zpadlen = 0;
678 if (padlen < 0)
679 padlen = 0;
680 if (flags & DP_F_MINUS)
681 padlen = -padlen;

683 if ((flags & DP_F_ZERO) && (padlen > 0)) {
684 if (signvalue) {
685 doapr_outch(sbuffer, buffer, currlen, maxlen, signvalue);
686 --padlen;
687 signvalue = 0;
688 }
689 while (padlen > 0) {
690 doapr_outch(sbuffer, buffer, currlen, maxlen, ’0’);
691 --padlen;
692 }
693 }
694 while (padlen > 0) {
695 doapr_outch(sbuffer, buffer, currlen, maxlen, ’ ’);
696 --padlen;
697 }
698 if (signvalue)
699 doapr_outch(sbuffer, buffer, currlen, maxlen, signvalue);

701 while (iplace > 0)
702 doapr_outch(sbuffer, buffer, currlen, maxlen, iconvert[--iplace]);

704 /*
705 * Decimal point. This should probably use locale to find the correct
706 * char to print out.
707 */
708 if (max > 0 || (flags & DP_F_NUM)) {
709 doapr_outch(sbuffer, buffer, currlen, maxlen, ’.’);

711 while (fplace > 0)
712 doapr_outch(sbuffer, buffer, currlen, maxlen, fconvert[--fplace]);
713 }
714 while (zpadlen > 0) {
715 doapr_outch(sbuffer, buffer, currlen, maxlen, ’0’);
716 --zpadlen;
717 }

719 while (padlen < 0) {
720 doapr_outch(sbuffer, buffer, currlen, maxlen, ’ ’);
721 ++padlen;

new/usr/src/lib/openssl/libsunw_crypto/bio/b_print.c 12

722 }
723 }

725 static void
726 doapr_outch(
727 char **sbuffer,
728 char **buffer,
729 size_t *currlen,
730 size_t *maxlen,
731 int c)
732 {
733 /* If we haven’t at least one buffer, someone has doe a big booboo */
734 assert(*sbuffer != NULL || buffer != NULL);

736 if (buffer) {
737 while (*currlen >= *maxlen) {
738 if (*buffer == NULL) {
739 if (*maxlen == 0)
740 *maxlen = 1024;
741 *buffer = OPENSSL_malloc(*maxlen);
742 if (*currlen > 0) {
743 assert(*sbuffer != NULL);
744 memcpy(*buffer, *sbuffer, *currlen);
745 }
746 *sbuffer = NULL;
747 } else {
748 *maxlen += 1024;
749 *buffer = OPENSSL_realloc(*buffer, *maxlen);
750 }
751 }
752 /* What to do if *buffer is NULL? */
753 assert(*sbuffer != NULL || *buffer != NULL);
754 }

756 if (*currlen < *maxlen) {
757 if (*sbuffer)
758 (*sbuffer)[(*currlen)++] = (char)c;
759 else
760 (*buffer)[(*currlen)++] = (char)c;
761 }

763 return;
764 }

766 /***/

768 int BIO_printf (BIO *bio, const char *format, ...)
769 {
770 va_list args;
771 int ret;

773 va_start(args, format);

775 ret = BIO_vprintf(bio, format, args);

777 va_end(args);
778 return(ret);
779 }

781 int BIO_vprintf (BIO *bio, const char *format, va_list args)
782 {
783 int ret;
784 size_t retlen;
785 char hugebuf[1024*2]; /* Was previously 10k, which is unreasonable
786 in small-stack environments, like threads
787 or DOS programs. */

new/usr/src/lib/openssl/libsunw_crypto/bio/b_print.c 13

788 char *hugebufp = hugebuf;
789 size_t hugebufsize = sizeof(hugebuf);
790 char *dynbuf = NULL;
791 int ignored;

793 dynbuf = NULL;
794 CRYPTO_push_info("doapr()");
795 _dopr(&hugebufp, &dynbuf, &hugebufsize,
796 &retlen, &ignored, format, args);
797 if (dynbuf)
798 {
799 ret=BIO_write(bio, dynbuf, (int)retlen);
800 OPENSSL_free(dynbuf);
801 }
802 else
803 {
804 ret=BIO_write(bio, hugebuf, (int)retlen);
805 }
806 CRYPTO_pop_info();
807 return(ret);
808 }

810 /* As snprintf is not available everywhere, we provide our own implementation.
811 * This function has nothing to do with BIOs, but it’s closely related
812 * to BIO_printf, and we need *some* name prefix ...
813 * (XXX the function should be renamed, but to what?) */
814 int BIO_snprintf(char *buf, size_t n, const char *format, ...)
815 {
816 va_list args;
817 int ret;

819 va_start(args, format);

821 ret = BIO_vsnprintf(buf, n, format, args);

823 va_end(args);
824 return(ret);
825 }

827 int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args)
828 {
829 size_t retlen;
830 int truncated;

832 _dopr(&buf, NULL, &n, &retlen, &truncated, format, args);

834 if (truncated)
835 /* In case of truncation, return -1 like traditional snprintf.
836 * (Current drafts for ISO/IEC 9899 say snprintf should return
837 * the number of characters that would have been written,
838 * had the buffer been large enough.) */
839 return -1;
840 else
841 return (retlen <= INT_MAX) ? (int)retlen : -1;
842 }

new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c 1

**
 24078 Fri May 30 18:31:34 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/b_sock.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <errno.h>

new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c 2

62 #define USE_SOCKETS
63 #include "cryptlib.h"
64 #include <openssl/bio.h>
65 #if defined(OPENSSL_SYS_NETWARE) && defined(NETWARE_BSDSOCK)
66 #include <netdb.h>
67 #if defined(NETWARE_CLIB)
68 #include <sys/ioctl.h>
69 NETDB_DEFINE_CONTEXT
70 #endif
71 #endif

73 #ifndef OPENSSL_NO_SOCK

75 #include <openssl/dso.h>

77 #define SOCKET_PROTOCOL IPPROTO_TCP

79 #ifdef SO_MAXCONN
80 #define MAX_LISTEN SO_MAXCONN
81 #elif defined(SOMAXCONN)
82 #define MAX_LISTEN SOMAXCONN
83 #else
84 #define MAX_LISTEN 32
85 #endif

87 #if defined(OPENSSL_SYS_WINDOWS) || (defined(OPENSSL_SYS_NETWARE) && !defined(NE
88 static int wsa_init_done=0;
89 #endif

91 /*
92 * WSAAPI specifier is required to make indirect calls to run-time
93 * linked WinSock 2 functions used in this module, to be specific
94 * [get|free]addrinfo and getnameinfo. This is because WinSock uses
95 * uses non-C calling convention, __stdcall vs. __cdecl, on x86
96 * Windows. On non-WinSock platforms WSAAPI needs to be void.
97 */
98 #ifndef WSAAPI
99 #define WSAAPI
100 #endif

102 #if 0
103 static unsigned long BIO_ghbn_hits=0L;
104 static unsigned long BIO_ghbn_miss=0L;

106 #define GHBN_NUM 4
107 static struct ghbn_cache_st
108 {
109 char name[129];
110 struct hostent *ent;
111 unsigned long order;
112 } ghbn_cache[GHBN_NUM];
113 #endif

115 static int get_ip(const char *str,unsigned char *ip);
116 #if 0
117 static void ghbn_free(struct hostent *a);
118 static struct hostent *ghbn_dup(struct hostent *a);
119 #endif
120 int BIO_get_host_ip(const char *str, unsigned char *ip)
121 {
122 int i;
123 int err = 1;
124 int locked = 0;
125 struct hostent *he;

127 i=get_ip(str,ip);

new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c 3

128 if (i < 0)
129 {
130 BIOerr(BIO_F_BIO_GET_HOST_IP,BIO_R_INVALID_IP_ADDRESS);
131 goto err;
132 }

134 /* At this point, we have something that is most probably correct
135 in some way, so let’s init the socket. */
136 if (BIO_sock_init() != 1)
137 return 0; /* don’t generate another error code here */

139 /* If the string actually contained an IP address, we need not do
140 anything more */
141 if (i > 0) return(1);

143 /* do a gethostbyname */
144 CRYPTO_w_lock(CRYPTO_LOCK_GETHOSTBYNAME);
145 locked = 1;
146 he=BIO_gethostbyname(str);
147 if (he == NULL)
148 {
149 BIOerr(BIO_F_BIO_GET_HOST_IP,BIO_R_BAD_HOSTNAME_LOOKUP);
150 goto err;
151 }

153 /* cast to short because of win16 winsock definition */
154 if ((short)he->h_addrtype != AF_INET)
155 {
156 BIOerr(BIO_F_BIO_GET_HOST_IP,BIO_R_GETHOSTBYNAME_ADDR_IS_NOT_AF_
157 goto err;
158 }
159 for (i=0; i<4; i++)
160 ip[i]=he->h_addr_list[0][i];
161 err = 0;

163 err:
164 if (locked)
165 CRYPTO_w_unlock(CRYPTO_LOCK_GETHOSTBYNAME);
166 if (err)
167 {
168 ERR_add_error_data(2,"host=",str);
169 return 0;
170 }
171 else
172 return 1;
173 }

175 int BIO_get_port(const char *str, unsigned short *port_ptr)
176 {
177 int i;
178 struct servent *s;

180 if (str == NULL)
181 {
182 BIOerr(BIO_F_BIO_GET_PORT,BIO_R_NO_PORT_DEFINED);
183 return(0);
184 }
185 i=atoi(str);
186 if (i != 0)
187 *port_ptr=(unsigned short)i;
188 else
189 {
190 CRYPTO_w_lock(CRYPTO_LOCK_GETSERVBYNAME);
191 /* Note: under VMS with SOCKETSHR, it seems like the first
192 * parameter is ’char *’, instead of ’const char *’
193 */

new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c 4

194 #ifndef CONST_STRICT
195 s=getservbyname((char *)str,"tcp");
196 #else
197 s=getservbyname(str,"tcp");
198 #endif
199 if(s != NULL)
200 *port_ptr=ntohs((unsigned short)s->s_port);
201 CRYPTO_w_unlock(CRYPTO_LOCK_GETSERVBYNAME);
202 if(s == NULL)
203 {
204 if (strcmp(str,"http") == 0)
205 *port_ptr=80;
206 else if (strcmp(str,"telnet") == 0)
207 *port_ptr=23;
208 else if (strcmp(str,"socks") == 0)
209 *port_ptr=1080;
210 else if (strcmp(str,"https") == 0)
211 *port_ptr=443;
212 else if (strcmp(str,"ssl") == 0)
213 *port_ptr=443;
214 else if (strcmp(str,"ftp") == 0)
215 *port_ptr=21;
216 else if (strcmp(str,"gopher") == 0)
217 *port_ptr=70;
218 #if 0
219 else if (strcmp(str,"wais") == 0)
220 *port_ptr=21;
221 #endif
222 else
223 {
224 SYSerr(SYS_F_GETSERVBYNAME,get_last_socket_error
225 ERR_add_error_data(3,"service=’",str,"’");
226 return(0);
227 }
228 }
229 }
230 return(1);
231 }

233 int BIO_sock_error(int sock)
234 {
235 int j,i;
236 int size;
237
238 #if defined(OPENSSL_SYS_BEOS_R5)
239 return 0;
240 #endif
241
242 size=sizeof(int);
243 /* Note: under Windows the third parameter is of type (char *)
244 * whereas under other systems it is (void *) if you don’t have
245 * a cast it will choke the compiler: if you do have a cast then
246 * you can either go for (char *) or (void *).
247 */
248 i=getsockopt(sock,SOL_SOCKET,SO_ERROR,(void *)&j,(void *)&size);
249 if (i < 0)
250 return(1);
251 else
252 return(j);
253 }

255 #if 0
256 long BIO_ghbn_ctrl(int cmd, int iarg, char *parg)
257 {
258 int i;
259 char **p;

new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c 5

261 switch (cmd)
262 {
263 case BIO_GHBN_CTRL_HITS:
264 return(BIO_ghbn_hits);
265 /* break; */
266 case BIO_GHBN_CTRL_MISSES:
267 return(BIO_ghbn_miss);
268 /* break; */
269 case BIO_GHBN_CTRL_CACHE_SIZE:
270 return(GHBN_NUM);
271 /* break; */
272 case BIO_GHBN_CTRL_GET_ENTRY:
273 if ((iarg >= 0) && (iarg <GHBN_NUM) &&
274 (ghbn_cache[iarg].order > 0))
275 {
276 p=(char **)parg;
277 if (p == NULL) return(0);
278 *p=ghbn_cache[iarg].name;
279 ghbn_cache[iarg].name[128]=’\0’;
280 return(1);
281 }
282 return(0);
283 /* break; */
284 case BIO_GHBN_CTRL_FLUSH:
285 for (i=0; i<GHBN_NUM; i++)
286 ghbn_cache[i].order=0;
287 break;
288 default:
289 return(0);
290 }
291 return(1);
292 }
293 #endif

295 #if 0
296 static struct hostent *ghbn_dup(struct hostent *a)
297 {
298 struct hostent *ret;
299 int i,j;

301 MemCheck_off();
302 ret=(struct hostent *)OPENSSL_malloc(sizeof(struct hostent));
303 if (ret == NULL) return(NULL);
304 memset(ret,0,sizeof(struct hostent));

306 for (i=0; a->h_aliases[i] != NULL; i++)
307 ;
308 i++;
309 ret->h_aliases = (char **)OPENSSL_malloc(i*sizeof(char *));
310 if (ret->h_aliases == NULL)
311 goto err;
312 memset(ret->h_aliases, 0, i*sizeof(char *));

314 for (i=0; a->h_addr_list[i] != NULL; i++)
315 ;
316 i++;
317 ret->h_addr_list=(char **)OPENSSL_malloc(i*sizeof(char *));
318 if (ret->h_addr_list == NULL)
319 goto err;
320 memset(ret->h_addr_list, 0, i*sizeof(char *));

322 j=strlen(a->h_name)+1;
323 if ((ret->h_name=OPENSSL_malloc(j)) == NULL) goto err;
324 memcpy((char *)ret->h_name,a->h_name,j);
325 for (i=0; a->h_aliases[i] != NULL; i++)

new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c 6

326 {
327 j=strlen(a->h_aliases[i])+1;
328 if ((ret->h_aliases[i]=OPENSSL_malloc(j)) == NULL) goto err;
329 memcpy(ret->h_aliases[i],a->h_aliases[i],j);
330 }
331 ret->h_length=a->h_length;
332 ret->h_addrtype=a->h_addrtype;
333 for (i=0; a->h_addr_list[i] != NULL; i++)
334 {
335 if ((ret->h_addr_list[i]=OPENSSL_malloc(a->h_length)) == NULL)
336 goto err;
337 memcpy(ret->h_addr_list[i],a->h_addr_list[i],a->h_length);
338 }
339 if (0)
340 {
341 err:
342 if (ret != NULL)
343 ghbn_free(ret);
344 ret=NULL;
345 }
346 MemCheck_on();
347 return(ret);
348 }

350 static void ghbn_free(struct hostent *a)
351 {
352 int i;

354 if(a == NULL)
355 return;

357 if (a->h_aliases != NULL)
358 {
359 for (i=0; a->h_aliases[i] != NULL; i++)
360 OPENSSL_free(a->h_aliases[i]);
361 OPENSSL_free(a->h_aliases);
362 }
363 if (a->h_addr_list != NULL)
364 {
365 for (i=0; a->h_addr_list[i] != NULL; i++)
366 OPENSSL_free(a->h_addr_list[i]);
367 OPENSSL_free(a->h_addr_list);
368 }
369 if (a->h_name != NULL) OPENSSL_free(a->h_name);
370 OPENSSL_free(a);
371 }

373 #endif

375 struct hostent *BIO_gethostbyname(const char *name)
376 {
377 #if 1
378 /* Caching gethostbyname() results forever is wrong,
379 * so we have to let the true gethostbyname() worry about this */
380 #if (defined(NETWARE_BSDSOCK) && !defined(__NOVELL_LIBC__))
381 return gethostbyname((char*)name);
382 #else
383 return gethostbyname(name);
384 #endif
385 #else
386 struct hostent *ret;
387 int i,lowi=0,j;
388 unsigned long low= (unsigned long)-1;

391 # if 0

new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c 7

392 /* It doesn’t make sense to use locking here: The function interface
393 * is not thread-safe, because threads can never be sure when
394 * some other thread destroys the data they were given a pointer to.
395 */
396 CRYPTO_w_lock(CRYPTO_LOCK_GETHOSTBYNAME);
397 # endif
398 j=strlen(name);
399 if (j < 128)
400 {
401 for (i=0; i<GHBN_NUM; i++)
402 {
403 if (low > ghbn_cache[i].order)
404 {
405 low=ghbn_cache[i].order;
406 lowi=i;
407 }
408 if (ghbn_cache[i].order > 0)
409 {
410 if (strncmp(name,ghbn_cache[i].name,128) == 0)
411 break;
412 }
413 }
414 }
415 else
416 i=GHBN_NUM;

418 if (i == GHBN_NUM) /* no hit*/
419 {
420 BIO_ghbn_miss++;
421 /* Note: under VMS with SOCKETSHR, it seems like the first
422 * parameter is ’char *’, instead of ’const char *’
423 */
424 # ifndef CONST_STRICT
425 ret=gethostbyname((char *)name);
426 # else
427 ret=gethostbyname(name);
428 # endif

430 if (ret == NULL)
431 goto end;
432 if (j > 128) /* too big to cache */
433 {
434 # if 0
435 /* If we were trying to make this function thread-safe (
436 * is bound to fail), we’d have to give up in this case
437 * (or allocate more memory). */
438 ret = NULL;
439 # endif
440 goto end;
441 }

443 /* else add to cache */
444 if (ghbn_cache[lowi].ent != NULL)
445 ghbn_free(ghbn_cache[lowi].ent); /* XXX not thread-safe
446 ghbn_cache[lowi].name[0] = ’\0’;

448 if((ret=ghbn_cache[lowi].ent=ghbn_dup(ret)) == NULL)
449 {
450 BIOerr(BIO_F_BIO_GETHOSTBYNAME,ERR_R_MALLOC_FAILURE);
451 goto end;
452 }
453 strncpy(ghbn_cache[lowi].name,name,128);
454 ghbn_cache[lowi].order=BIO_ghbn_miss+BIO_ghbn_hits;
455 }
456 else
457 {

new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c 8

458 BIO_ghbn_hits++;
459 ret= ghbn_cache[i].ent;
460 ghbn_cache[i].order=BIO_ghbn_miss+BIO_ghbn_hits;
461 }
462 end:
463 # if 0
464 CRYPTO_w_unlock(CRYPTO_LOCK_GETHOSTBYNAME);
465 # endif
466 return(ret);
467 #endif
468 }

471 int BIO_sock_init(void)
472 {
473 #ifdef OPENSSL_SYS_WINDOWS
474 static struct WSAData wsa_state;

476 if (!wsa_init_done)
477 {
478 int err;
479
480 wsa_init_done=1;
481 memset(&wsa_state,0,sizeof(wsa_state));
482 /* Not making wsa_state available to the rest of the
483 * code is formally wrong. But the structures we use
484 * are [beleived to be] invariable among Winsock DLLs,
485 * while API availability is [expected to be] probed
486 * at run-time with DSO_global_lookup. */
487 if (WSAStartup(0x0202,&wsa_state)!=0)
488 {
489 err=WSAGetLastError();
490 SYSerr(SYS_F_WSASTARTUP,err);
491 BIOerr(BIO_F_BIO_SOCK_INIT,BIO_R_WSASTARTUP);
492 return(-1);
493 }
494 }
495 #endif /* OPENSSL_SYS_WINDOWS */
496 #ifdef WATT32
497 extern int _watt_do_exit;
498 _watt_do_exit = 0; /* don’t make sock_init() call exit() */
499 if (sock_init())
500 return (-1);
501 #endif

503 #if defined(OPENSSL_SYS_NETWARE) && !defined(NETWARE_BSDSOCK)
504 WORD wVerReq;
505 WSADATA wsaData;
506 int err;

508 if (!wsa_init_done)
509 {
510 wsa_init_done=1;
511 wVerReq = MAKEWORD(2, 0);
512 err = WSAStartup(wVerReq,&wsaData);
513 if (err != 0)
514 {
515 SYSerr(SYS_F_WSASTARTUP,err);
516 BIOerr(BIO_F_BIO_SOCK_INIT,BIO_R_WSASTARTUP);
517 return(-1);
518 }
519 }
520 #endif

522 return(1);
523 }

new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c 9

525 void BIO_sock_cleanup(void)
526 {
527 #ifdef OPENSSL_SYS_WINDOWS
528 if (wsa_init_done)
529 {
530 wsa_init_done=0;
531 #if 0 /* this call is claimed to be non-present in Winsock2 */
532 WSACancelBlockingCall();
533 #endif
534 WSACleanup();
535 }
536 #elif defined(OPENSSL_SYS_NETWARE) && !defined(NETWARE_BSDSOCK)
537 if (wsa_init_done)
538 {
539 wsa_init_done=0;
540 WSACleanup();
541 }
542 #endif
543 }

545 #if !defined(OPENSSL_SYS_VMS) || __VMS_VER >= 70000000

547 int BIO_socket_ioctl(int fd, long type, void *arg)
548 {
549 int i;

551 #ifdef __DJGPP__
552 i=ioctlsocket(fd,type,(char *)arg);
553 #else
554 # if defined(OPENSSL_SYS_VMS)
555 /* 2011-02-18 SMS.
556 * VMS ioctl() can’t tolerate a 64-bit "void *arg", but we
557 * observe that all the consumers pass in an "unsigned long *",
558 * so we arrange a local copy with a short pointer, and use
559 * that, instead.
560 */
561 # if __INITIAL_POINTER_SIZE == 64
562 # define ARG arg_32p
563 # pragma pointer_size save
564 # pragma pointer_size 32
565 unsigned long arg_32;
566 unsigned long *arg_32p;
567 # pragma pointer_size restore
568 arg_32p = &arg_32;
569 arg_32 = *((unsigned long *) arg);
570 # else /* __INITIAL_POINTER_SIZE == 64 */
571 # define ARG arg
572 # endif /* __INITIAL_POINTER_SIZE == 64 [else] */
573 # else /* defined(OPENSSL_SYS_VMS) */
574 # define ARG arg
575 # endif /* defined(OPENSSL_SYS_VMS) [else] */

577 i=ioctlsocket(fd,type,ARG);
578 #endif /* __DJGPP__ */
579 if (i < 0)
580 SYSerr(SYS_F_IOCTLSOCKET,get_last_socket_error());
581 return(i);
582 }
583 #endif /* __VMS_VER */

585 /* The reason I have implemented this instead of using sscanf is because
586 * Visual C 1.52c gives an unresolved external when linking a DLL :-(*/
587 static int get_ip(const char *str, unsigned char ip[4])
588 {
589 unsigned int tmp[4];

new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c 10

590 int num=0,c,ok=0;

592 tmp[0]=tmp[1]=tmp[2]=tmp[3]=0;

594 for (;;)
595 {
596 c= *(str++);
597 if ((c >= ’0’) && (c <= ’9’))
598 {
599 ok=1;
600 tmp[num]=tmp[num]*10+c-’0’;
601 if (tmp[num] > 255) return(0);
602 }
603 else if (c == ’.’)
604 {
605 if (!ok) return(-1);
606 if (num == 3) return(0);
607 num++;
608 ok=0;
609 }
610 else if (c == ’\0’ && (num == 3) && ok)
611 break;
612 else
613 return(0);
614 }
615 ip[0]=tmp[0];
616 ip[1]=tmp[1];
617 ip[2]=tmp[2];
618 ip[3]=tmp[3];
619 return(1);
620 }

622 int BIO_get_accept_socket(char *host, int bind_mode)
623 {
624 int ret=0;
625 union {
626 struct sockaddr sa;
627 struct sockaddr_in sa_in;
628 #if OPENSSL_USE_IPV6
629 struct sockaddr_in6 sa_in6;
630 #endif
631 } server,client;
632 int s=INVALID_SOCKET,cs,addrlen;
633 unsigned char ip[4];
634 unsigned short port;
635 char *str=NULL,*e;
636 char *h,*p;
637 unsigned long l;
638 int err_num;

640 if (BIO_sock_init() != 1) return(INVALID_SOCKET);

642 if ((str=BUF_strdup(host)) == NULL) return(INVALID_SOCKET);

644 h=p=NULL;
645 h=str;
646 for (e=str; *e; e++)
647 {
648 if (*e == ’:’)
649 {
650 p=e;
651 }
652 else if (*e == ’/’)
653 {
654 *e=’\0’;
655 break;

new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c 11

656 }
657 }
658 if (p) *p++=’\0’; /* points at last ’:’, ’::port’ is special [see
659 else p=h,h=NULL;

661 #ifdef EAI_FAMILY
662 do {
663 static union { void *p;
664 int (WSAAPI *f)(const char *,const char *,
665 const struct addrinfo *,
666 struct addrinfo **);
667 } p_getaddrinfo = {NULL};
668 static union { void *p;
669 void (WSAAPI *f)(struct addrinfo *);
670 } p_freeaddrinfo = {NULL};
671 struct addrinfo *res,hint;

673 if (p_getaddrinfo.p==NULL)
674 {
675 if ((p_getaddrinfo.p=DSO_global_lookup("getaddrinfo"))==NULL ||
676 (p_freeaddrinfo.p=DSO_global_lookup("freeaddrinfo"))==NULL)
677 p_getaddrinfo.p=(void*)-1;
678 }
679 if (p_getaddrinfo.p==(void *)-1) break;

681 /* ’::port’ enforces IPv6 wildcard listener. Some OSes,
682 * e.g. Solaris, default to IPv6 without any hint. Also
683 * note that commonly IPv6 wildchard socket can service
684 * IPv4 connections just as well... */
685 memset(&hint,0,sizeof(hint));
686 hint.ai_flags = AI_PASSIVE;
687 if (h)
688 {
689 if (strchr(h,’:’))
690 {
691 if (h[1]==’\0’) h=NULL;
692 #if OPENSSL_USE_IPV6
693 hint.ai_family = AF_INET6;
694 #else
695 h=NULL;
696 #endif
697 }
698 else if (h[0]==’*’ && h[1]==’\0’)
699 {
700 hint.ai_family = AF_INET;
701 h=NULL;
702 }
703 }

705 if ((*p_getaddrinfo.f)(h,p,&hint,&res)) break;

707 addrlen = res->ai_addrlen<=sizeof(server) ?
708 res->ai_addrlen :
709 sizeof(server);
710 memcpy(&server, res->ai_addr, addrlen);

712 (*p_freeaddrinfo.f)(res);
713 goto again;
714 } while (0);
715 #endif

717 if (!BIO_get_port(p,&port)) goto err;

719 memset((char *)&server,0,sizeof(server));
720 server.sa_in.sin_family=AF_INET;
721 server.sa_in.sin_port=htons(port);

new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c 12

722 addrlen = sizeof(server.sa_in);

724 if (h == NULL || strcmp(h,"*") == 0)
725 server.sa_in.sin_addr.s_addr=INADDR_ANY;
726 else
727 {
728 if (!BIO_get_host_ip(h,&(ip[0]))) goto err;
729 l=(unsigned long)
730 ((unsigned long)ip[0]<<24L)|
731 ((unsigned long)ip[1]<<16L)|
732 ((unsigned long)ip[2]<< 8L)|
733 ((unsigned long)ip[3]);
734 server.sa_in.sin_addr.s_addr=htonl(l);
735 }

737 again:
738 s=socket(server.sa.sa_family,SOCK_STREAM,SOCKET_PROTOCOL);
739 if (s == INVALID_SOCKET)
740 {
741 SYSerr(SYS_F_SOCKET,get_last_socket_error());
742 ERR_add_error_data(3,"port=’",host,"’");
743 BIOerr(BIO_F_BIO_GET_ACCEPT_SOCKET,BIO_R_UNABLE_TO_CREATE_SOCKET
744 goto err;
745 }

747 #ifdef SO_REUSEADDR
748 if (bind_mode == BIO_BIND_REUSEADDR)
749 {
750 int i=1;

752 ret=setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(char *)&i,sizeof(i));
753 bind_mode=BIO_BIND_NORMAL;
754 }
755 #endif
756 if (bind(s,&server.sa,addrlen) == -1)
757 {
758 #ifdef SO_REUSEADDR
759 err_num=get_last_socket_error();
760 if ((bind_mode == BIO_BIND_REUSEADDR_IF_UNUSED) &&
761 #ifdef OPENSSL_SYS_WINDOWS
762 /* Some versions of Windows define EADDRINUSE to
763 * a dummy value.
764 */
765 (err_num == WSAEADDRINUSE))
766 #else
767 (err_num == EADDRINUSE))
768 #endif
769 {
770 client = server;
771 if (h == NULL || strcmp(h,"*") == 0)
772 {
773 #if OPENSSL_USE_IPV6
774 if (client.sa.sa_family == AF_INET6)
775 {
776 memset(&client.sa_in6.sin6_addr,0,sizeof
777 client.sa_in6.sin6_addr.s6_addr[15]=1;
778 }
779 else
780 #endif
781 if (client.sa.sa_family == AF_INET)
782 {
783 client.sa_in.sin_addr.s_addr=htonl(0x7F0
784 }
785 else goto err;
786 }
787 cs=socket(client.sa.sa_family,SOCK_STREAM,SOCKET_PROTOCO

new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c 13

788 if (cs != INVALID_SOCKET)
789 {
790 int ii;
791 ii=connect(cs,&client.sa,addrlen);
792 closesocket(cs);
793 if (ii == INVALID_SOCKET)
794 {
795 bind_mode=BIO_BIND_REUSEADDR;
796 closesocket(s);
797 goto again;
798 }
799 /* else error */
800 }
801 /* else error */
802 }
803 #endif
804 SYSerr(SYS_F_BIND,err_num);
805 ERR_add_error_data(3,"port=’",host,"’");
806 BIOerr(BIO_F_BIO_GET_ACCEPT_SOCKET,BIO_R_UNABLE_TO_BIND_SOCKET);
807 goto err;
808 }
809 if (listen(s,MAX_LISTEN) == -1)
810 {
811 SYSerr(SYS_F_BIND,get_last_socket_error());
812 ERR_add_error_data(3,"port=’",host,"’");
813 BIOerr(BIO_F_BIO_GET_ACCEPT_SOCKET,BIO_R_UNABLE_TO_LISTEN_SOCKET
814 goto err;
815 }
816 ret=1;
817 err:
818 if (str != NULL) OPENSSL_free(str);
819 if ((ret == 0) && (s != INVALID_SOCKET))
820 {
821 closesocket(s);
822 s= INVALID_SOCKET;
823 }
824 return(s);
825 }

827 int BIO_accept(int sock, char **addr)
828 {
829 int ret=INVALID_SOCKET;
830 unsigned long l;
831 unsigned short port;
832 char *p;

834 struct {
835 /*
836 * As for following union. Trouble is that there are platforms
837 * that have socklen_t and there are platforms that don’t, on
838 * some platforms socklen_t is int and on some size_t. So what
839 * one can do? One can cook #ifdef spaghetti, which is nothing
840 * but masochistic. Or one can do union between int and size_t.
841 * One naturally does it primarily for 64-bit platforms where
842 * sizeof(int) != sizeof(size_t). But would it work? Note that
843 * if size_t member is initialized to 0, then later int member
844 * assignment naturally does the job on little-endian platforms
845 * regardless accept’s expectations! What about big-endians?
846 * If accept expects int*, then it works, and if size_t*, then
847 * length value would appear as unreasonably large. But this
848 * won’t prevent it from filling in the address structure. The
849 * trouble of course would be if accept returns more data than
850 * actual buffer can accomodate and overwrite stack... That’s
851 * where early OPENSSL_assert comes into picture. Besides, the
852 * only 64-bit big-endian platform found so far that expects
853 * size_t* is HP-UX, where stack grows towards higher address.

new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c 14

854 * <appro>
855 */
856 union { size_t s; int i; } len;
857 union {
858 struct sockaddr sa;
859 struct sockaddr_in sa_in;
860 #if OPENSSL_USE_IPV6
861 struct sockaddr_in6 sa_in6;
862 #endif
863 } from;
864 } sa;

866 sa.len.s=0;
867 sa.len.i=sizeof(sa.from);
868 memset(&sa.from,0,sizeof(sa.from));
869 ret=accept(sock,&sa.from.sa,(void *)&sa.len);
870 if (sizeof(sa.len.i)!=sizeof(sa.len.s) && sa.len.i==0)
871 {
872 OPENSSL_assert(sa.len.s<=sizeof(sa.from));
873 sa.len.i = (int)sa.len.s;
874 /* use sa.len.i from this point */
875 }
876 if (ret == INVALID_SOCKET)
877 {
878 if(BIO_sock_should_retry(ret)) return -2;
879 SYSerr(SYS_F_ACCEPT,get_last_socket_error());
880 BIOerr(BIO_F_BIO_ACCEPT,BIO_R_ACCEPT_ERROR);
881 goto end;
882 }

884 if (addr == NULL) goto end;

886 #ifdef EAI_FAMILY
887 do {
888 char h[NI_MAXHOST],s[NI_MAXSERV];
889 size_t nl;
890 static union { void *p;
891 int (WSAAPI *f)(const struct sockaddr *,size_t/*socklen_
892 char *,size_t,char *,size_t,int);
893 } p_getnameinfo = {NULL};
894 /* 2nd argument to getnameinfo is specified to
895 * be socklen_t. Unfortunately there is a number
896 * of environments where socklen_t is not defined.
897 * As it’s passed by value, it’s safe to pass it
898 * as size_t... <appro> */

900 if (p_getnameinfo.p==NULL)
901 {
902 if ((p_getnameinfo.p=DSO_global_lookup("getnameinfo"))==NULL)
903 p_getnameinfo.p=(void*)-1;
904 }
905 if (p_getnameinfo.p==(void *)-1) break;

907 if ((*p_getnameinfo.f)(&sa.from.sa,sa.len.i,h,sizeof(h),s,sizeof(s),
908 NI_NUMERICHOST|NI_NUMERICSERV)) break;
909 nl = strlen(h)+strlen(s)+2;
910 p = *addr;
911 if (p) { *p = ’\0’; p = OPENSSL_realloc(p,nl); }
912 else { p = OPENSSL_malloc(nl); }
913 if (p==NULL)
914 {
915 BIOerr(BIO_F_BIO_ACCEPT,ERR_R_MALLOC_FAILURE);
916 goto end;
917 }
918 *addr = p;
919 BIO_snprintf(*addr,nl,"%s:%s",h,s);

new/usr/src/lib/openssl/libsunw_crypto/bio/b_sock.c 15

920 goto end;
921 } while(0);
922 #endif
923 if (sa.from.sa.sa_family != AF_INET) goto end;
924 l=ntohl(sa.from.sa_in.sin_addr.s_addr);
925 port=ntohs(sa.from.sa_in.sin_port);
926 if (*addr == NULL)
927 {
928 if ((p=OPENSSL_malloc(24)) == NULL)
929 {
930 BIOerr(BIO_F_BIO_ACCEPT,ERR_R_MALLOC_FAILURE);
931 goto end;
932 }
933 *addr=p;
934 }
935 BIO_snprintf(*addr,24,"%d.%d.%d.%d:%d",
936 (unsigned char)(l>>24L)&0xff,
937 (unsigned char)(l>>16L)&0xff,
938 (unsigned char)(l>> 8L)&0xff,
939 (unsigned char)(l)&0xff,
940 port);
941 end:
942 return(ret);
943 }

945 int BIO_set_tcp_ndelay(int s, int on)
946 {
947 int ret=0;
948 #if defined(TCP_NODELAY) && (defined(IPPROTO_TCP) || defined(SOL_TCP))
949 int opt;

951 #ifdef SOL_TCP
952 opt=SOL_TCP;
953 #else
954 #ifdef IPPROTO_TCP
955 opt=IPPROTO_TCP;
956 #endif
957 #endif
958
959 ret=setsockopt(s,opt,TCP_NODELAY,(char *)&on,sizeof(on));
960 #endif
961 return(ret == 0);
962 }

964 int BIO_socket_nbio(int s, int mode)
965 {
966 int ret= -1;
967 int l;

969 l=mode;
970 #ifdef FIONBIO
971 ret=BIO_socket_ioctl(s,FIONBIO,&l);
972 #endif
973 return(ret == 0);
974 }
975 #endif

new/usr/src/lib/openssl/libsunw_crypto/bio/bf_buff.c 1

**
 12420 Fri May 30 18:31:34 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bf_buff.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bf_buff.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <errno.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/bio/bf_buff.c 2

62 #include <openssl/bio.h>

64 static int buffer_write(BIO *h, const char *buf,int num);
65 static int buffer_read(BIO *h, char *buf, int size);
66 static int buffer_puts(BIO *h, const char *str);
67 static int buffer_gets(BIO *h, char *str, int size);
68 static long buffer_ctrl(BIO *h, int cmd, long arg1, void *arg2);
69 static int buffer_new(BIO *h);
70 static int buffer_free(BIO *data);
71 static long buffer_callback_ctrl(BIO *h, int cmd, bio_info_cb *fp);
72 #define DEFAULT_BUFFER_SIZE 4096

74 static BIO_METHOD methods_buffer=
75 {
76 BIO_TYPE_BUFFER,
77 "buffer",
78 buffer_write,
79 buffer_read,
80 buffer_puts,
81 buffer_gets,
82 buffer_ctrl,
83 buffer_new,
84 buffer_free,
85 buffer_callback_ctrl,
86 };

88 BIO_METHOD *BIO_f_buffer(void)
89 {
90 return(&methods_buffer);
91 }

93 static int buffer_new(BIO *bi)
94 {
95 BIO_F_BUFFER_CTX *ctx;

97 ctx=(BIO_F_BUFFER_CTX *)OPENSSL_malloc(sizeof(BIO_F_BUFFER_CTX));
98 if (ctx == NULL) return(0);
99 ctx->ibuf=(char *)OPENSSL_malloc(DEFAULT_BUFFER_SIZE);
100 if (ctx->ibuf == NULL) { OPENSSL_free(ctx); return(0); }
101 ctx->obuf=(char *)OPENSSL_malloc(DEFAULT_BUFFER_SIZE);
102 if (ctx->obuf == NULL) { OPENSSL_free(ctx->ibuf); OPENSSL_free(ctx); ret
103 ctx->ibuf_size=DEFAULT_BUFFER_SIZE;
104 ctx->obuf_size=DEFAULT_BUFFER_SIZE;
105 ctx->ibuf_len=0;
106 ctx->ibuf_off=0;
107 ctx->obuf_len=0;
108 ctx->obuf_off=0;

110 bi->init=1;
111 bi->ptr=(char *)ctx;
112 bi->flags=0;
113 return(1);
114 }

116 static int buffer_free(BIO *a)
117 {
118 BIO_F_BUFFER_CTX *b;

120 if (a == NULL) return(0);
121 b=(BIO_F_BUFFER_CTX *)a->ptr;
122 if (b->ibuf != NULL) OPENSSL_free(b->ibuf);
123 if (b->obuf != NULL) OPENSSL_free(b->obuf);
124 OPENSSL_free(a->ptr);
125 a->ptr=NULL;
126 a->init=0;
127 a->flags=0;

new/usr/src/lib/openssl/libsunw_crypto/bio/bf_buff.c 3

128 return(1);
129 }
130
131 static int buffer_read(BIO *b, char *out, int outl)
132 {
133 int i,num=0;
134 BIO_F_BUFFER_CTX *ctx;

136 if (out == NULL) return(0);
137 ctx=(BIO_F_BUFFER_CTX *)b->ptr;

139 if ((ctx == NULL) || (b->next_bio == NULL)) return(0);
140 num=0;
141 BIO_clear_retry_flags(b);

143 start:
144 i=ctx->ibuf_len;
145 /* If there is stuff left over, grab it */
146 if (i != 0)
147 {
148 if (i > outl) i=outl;
149 memcpy(out,&(ctx->ibuf[ctx->ibuf_off]),i);
150 ctx->ibuf_off+=i;
151 ctx->ibuf_len-=i;
152 num+=i;
153 if (outl == i) return(num);
154 outl-=i;
155 out+=i;
156 }

158 /* We may have done a partial read. try to do more.
159 * We have nothing in the buffer.
160 * If we get an error and have read some data, just return it
161 * and let them retry to get the error again.
162 * copy direct to parent address space */
163 if (outl > ctx->ibuf_size)
164 {
165 for (;;)
166 {
167 i=BIO_read(b->next_bio,out,outl);
168 if (i <= 0)
169 {
170 BIO_copy_next_retry(b);
171 if (i < 0) return((num > 0)?num:i);
172 if (i == 0) return(num);
173 }
174 num+=i;
175 if (outl == i) return(num);
176 out+=i;
177 outl-=i;
178 }
179 }
180 /* else */

182 /* we are going to be doing some buffering */
183 i=BIO_read(b->next_bio,ctx->ibuf,ctx->ibuf_size);
184 if (i <= 0)
185 {
186 BIO_copy_next_retry(b);
187 if (i < 0) return((num > 0)?num:i);
188 if (i == 0) return(num);
189 }
190 ctx->ibuf_off=0;
191 ctx->ibuf_len=i;

193 /* Lets re-read using ourselves :-) */

new/usr/src/lib/openssl/libsunw_crypto/bio/bf_buff.c 4

194 goto start;
195 }

197 static int buffer_write(BIO *b, const char *in, int inl)
198 {
199 int i,num=0;
200 BIO_F_BUFFER_CTX *ctx;

202 if ((in == NULL) || (inl <= 0)) return(0);
203 ctx=(BIO_F_BUFFER_CTX *)b->ptr;
204 if ((ctx == NULL) || (b->next_bio == NULL)) return(0);

206 BIO_clear_retry_flags(b);
207 start:
208 i=ctx->obuf_size-(ctx->obuf_len+ctx->obuf_off);
209 /* add to buffer and return */
210 if (i >= inl)
211 {
212 memcpy(&(ctx->obuf[ctx->obuf_off+ctx->obuf_len]),in,inl);
213 ctx->obuf_len+=inl;
214 return(num+inl);
215 }
216 /* else */
217 /* stuff already in buffer, so add to it first, then flush */
218 if (ctx->obuf_len != 0)
219 {
220 if (i > 0) /* lets fill it up if we can */
221 {
222 memcpy(&(ctx->obuf[ctx->obuf_off+ctx->obuf_len]),in,i);
223 in+=i;
224 inl-=i;
225 num+=i;
226 ctx->obuf_len+=i;
227 }
228 /* we now have a full buffer needing flushing */
229 for (;;)
230 {
231 i=BIO_write(b->next_bio,&(ctx->obuf[ctx->obuf_off]),
232 ctx->obuf_len);
233 if (i <= 0)
234 {
235 BIO_copy_next_retry(b);

237 if (i < 0) return((num > 0)?num:i);
238 if (i == 0) return(num);
239 }
240 ctx->obuf_off+=i;
241 ctx->obuf_len-=i;
242 if (ctx->obuf_len == 0) break;
243 }
244 }
245 /* we only get here if the buffer has been flushed and we
246 * still have stuff to write */
247 ctx->obuf_off=0;

249 /* we now have inl bytes to write */
250 while (inl >= ctx->obuf_size)
251 {
252 i=BIO_write(b->next_bio,in,inl);
253 if (i <= 0)
254 {
255 BIO_copy_next_retry(b);
256 if (i < 0) return((num > 0)?num:i);
257 if (i == 0) return(num);
258 }
259 num+=i;

new/usr/src/lib/openssl/libsunw_crypto/bio/bf_buff.c 5

260 in+=i;
261 inl-=i;
262 if (inl == 0) return(num);
263 }

265 /* copy the rest into the buffer since we have only a small
266 * amount left */
267 goto start;
268 }

270 static long buffer_ctrl(BIO *b, int cmd, long num, void *ptr)
271 {
272 BIO *dbio;
273 BIO_F_BUFFER_CTX *ctx;
274 long ret=1;
275 char *p1,*p2;
276 int r,i,*ip;
277 int ibs,obs;

279 ctx=(BIO_F_BUFFER_CTX *)b->ptr;

281 switch (cmd)
282 {
283 case BIO_CTRL_RESET:
284 ctx->ibuf_off=0;
285 ctx->ibuf_len=0;
286 ctx->obuf_off=0;
287 ctx->obuf_len=0;
288 if (b->next_bio == NULL) return(0);
289 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
290 break;
291 case BIO_CTRL_INFO:
292 ret=(long)ctx->obuf_len;
293 break;
294 case BIO_C_GET_BUFF_NUM_LINES:
295 ret=0;
296 p1=ctx->ibuf;
297 for (i=0; i<ctx->ibuf_len; i++)
298 {
299 if (p1[ctx->ibuf_off + i] == ’\n’) ret++;
300 }
301 break;
302 case BIO_CTRL_WPENDING:
303 ret=(long)ctx->obuf_len;
304 if (ret == 0)
305 {
306 if (b->next_bio == NULL) return(0);
307 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
308 }
309 break;
310 case BIO_CTRL_PENDING:
311 ret=(long)ctx->ibuf_len;
312 if (ret == 0)
313 {
314 if (b->next_bio == NULL) return(0);
315 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
316 }
317 break;
318 case BIO_C_SET_BUFF_READ_DATA:
319 if (num > ctx->ibuf_size)
320 {
321 p1=OPENSSL_malloc((int)num);
322 if (p1 == NULL) goto malloc_error;
323 if (ctx->ibuf != NULL) OPENSSL_free(ctx->ibuf);
324 ctx->ibuf=p1;
325 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bf_buff.c 6

326 ctx->ibuf_off=0;
327 ctx->ibuf_len=(int)num;
328 memcpy(ctx->ibuf,ptr,(int)num);
329 ret=1;
330 break;
331 case BIO_C_SET_BUFF_SIZE:
332 if (ptr != NULL)
333 {
334 ip=(int *)ptr;
335 if (*ip == 0)
336 {
337 ibs=(int)num;
338 obs=ctx->obuf_size;
339 }
340 else /* if (*ip == 1) */
341 {
342 ibs=ctx->ibuf_size;
343 obs=(int)num;
344 }
345 }
346 else
347 {
348 ibs=(int)num;
349 obs=(int)num;
350 }
351 p1=ctx->ibuf;
352 p2=ctx->obuf;
353 if ((ibs > DEFAULT_BUFFER_SIZE) && (ibs != ctx->ibuf_size))
354 {
355 p1=(char *)OPENSSL_malloc((int)num);
356 if (p1 == NULL) goto malloc_error;
357 }
358 if ((obs > DEFAULT_BUFFER_SIZE) && (obs != ctx->obuf_size))
359 {
360 p2=(char *)OPENSSL_malloc((int)num);
361 if (p2 == NULL)
362 {
363 if (p1 != ctx->ibuf) OPENSSL_free(p1);
364 goto malloc_error;
365 }
366 }
367 if (ctx->ibuf != p1)
368 {
369 OPENSSL_free(ctx->ibuf);
370 ctx->ibuf=p1;
371 ctx->ibuf_off=0;
372 ctx->ibuf_len=0;
373 ctx->ibuf_size=ibs;
374 }
375 if (ctx->obuf != p2)
376 {
377 OPENSSL_free(ctx->obuf);
378 ctx->obuf=p2;
379 ctx->obuf_off=0;
380 ctx->obuf_len=0;
381 ctx->obuf_size=obs;
382 }
383 break;
384 case BIO_C_DO_STATE_MACHINE:
385 if (b->next_bio == NULL) return(0);
386 BIO_clear_retry_flags(b);
387 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
388 BIO_copy_next_retry(b);
389 break;

391 case BIO_CTRL_FLUSH:

new/usr/src/lib/openssl/libsunw_crypto/bio/bf_buff.c 7

392 if (b->next_bio == NULL) return(0);
393 if (ctx->obuf_len <= 0)
394 {
395 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
396 break;
397 }

399 for (;;)
400 {
401 BIO_clear_retry_flags(b);
402 if (ctx->obuf_len > 0)
403 {
404 r=BIO_write(b->next_bio,
405 &(ctx->obuf[ctx->obuf_off]),
406 ctx->obuf_len);
407 #if 0
408 fprintf(stderr,"FLUSH [%3d] %3d -> %3d\n",ctx->obuf_off,ctx->obuf_len,r);
409 #endif
410 BIO_copy_next_retry(b);
411 if (r <= 0) return((long)r);
412 ctx->obuf_off+=r;
413 ctx->obuf_len-=r;
414 }
415 else
416 {
417 ctx->obuf_len=0;
418 ctx->obuf_off=0;
419 ret=1;
420 break;
421 }
422 }
423 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
424 break;
425 case BIO_CTRL_DUP:
426 dbio=(BIO *)ptr;
427 if (!BIO_set_read_buffer_size(dbio,ctx->ibuf_size) ||
428 !BIO_set_write_buffer_size(dbio,ctx->obuf_size))
429 ret=0;
430 break;
431 default:
432 if (b->next_bio == NULL) return(0);
433 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
434 break;
435 }
436 return(ret);
437 malloc_error:
438 BIOerr(BIO_F_BUFFER_CTRL,ERR_R_MALLOC_FAILURE);
439 return(0);
440 }

442 static long buffer_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp)
443 {
444 long ret=1;

446 if (b->next_bio == NULL) return(0);
447 switch (cmd)
448 {
449 default:
450 ret=BIO_callback_ctrl(b->next_bio,cmd,fp);
451 break;
452 }
453 return(ret);
454 }

456 static int buffer_gets(BIO *b, char *buf, int size)
457 {

new/usr/src/lib/openssl/libsunw_crypto/bio/bf_buff.c 8

458 BIO_F_BUFFER_CTX *ctx;
459 int num=0,i,flag;
460 char *p;

462 ctx=(BIO_F_BUFFER_CTX *)b->ptr;
463 size--; /* reserve space for a ’\0’ */
464 BIO_clear_retry_flags(b);

466 for (;;)
467 {
468 if (ctx->ibuf_len > 0)
469 {
470 p= &(ctx->ibuf[ctx->ibuf_off]);
471 flag=0;
472 for (i=0; (i<ctx->ibuf_len) && (i<size); i++)
473 {
474 *(buf++)=p[i];
475 if (p[i] == ’\n’)
476 {
477 flag=1;
478 i++;
479 break;
480 }
481 }
482 num+=i;
483 size-=i;
484 ctx->ibuf_len-=i;
485 ctx->ibuf_off+=i;
486 if (flag || size == 0)
487 {
488 *buf=’\0’;
489 return(num);
490 }
491 }
492 else /* read another chunk */
493 {
494 i=BIO_read(b->next_bio,ctx->ibuf,ctx->ibuf_size);
495 if (i <= 0)
496 {
497 BIO_copy_next_retry(b);
498 *buf=’\0’;
499 if (i < 0) return((num > 0)?num:i);
500 if (i == 0) return(num);
501 }
502 ctx->ibuf_len=i;
503 ctx->ibuf_off=0;
504 }
505 }
506 }

508 static int buffer_puts(BIO *b, const char *str)
509 {
510 return(buffer_write(b,str,strlen(str)));
511 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bf_nbio.c 1

**
 6486 Fri May 30 18:31:34 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bf_nbio.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bf_nbio.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <errno.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/bio/bf_nbio.c 2

62 #include <openssl/rand.h>
63 #include <openssl/bio.h>

65 /* BIO_put and BIO_get both add to the digest,
66 * BIO_gets returns the digest */

68 static int nbiof_write(BIO *h,const char *buf,int num);
69 static int nbiof_read(BIO *h,char *buf,int size);
70 static int nbiof_puts(BIO *h,const char *str);
71 static int nbiof_gets(BIO *h,char *str,int size);
72 static long nbiof_ctrl(BIO *h,int cmd,long arg1,void *arg2);
73 static int nbiof_new(BIO *h);
74 static int nbiof_free(BIO *data);
75 static long nbiof_callback_ctrl(BIO *h,int cmd,bio_info_cb *fp);
76 typedef struct nbio_test_st
77 {
78 /* only set if we sent a ’should retry’ error */
79 int lrn;
80 int lwn;
81 } NBIO_TEST;

83 static BIO_METHOD methods_nbiof=
84 {
85 BIO_TYPE_NBIO_TEST,
86 "non-blocking IO test filter",
87 nbiof_write,
88 nbiof_read,
89 nbiof_puts,
90 nbiof_gets,
91 nbiof_ctrl,
92 nbiof_new,
93 nbiof_free,
94 nbiof_callback_ctrl,
95 };

97 BIO_METHOD *BIO_f_nbio_test(void)
98 {
99 return(&methods_nbiof);
100 }

102 static int nbiof_new(BIO *bi)
103 {
104 NBIO_TEST *nt;

106 if (!(nt=(NBIO_TEST *)OPENSSL_malloc(sizeof(NBIO_TEST)))) return(0);
107 nt->lrn= -1;
108 nt->lwn= -1;
109 bi->ptr=(char *)nt;
110 bi->init=1;
111 bi->flags=0;
112 return(1);
113 }

115 static int nbiof_free(BIO *a)
116 {
117 if (a == NULL) return(0);
118 if (a->ptr != NULL)
119 OPENSSL_free(a->ptr);
120 a->ptr=NULL;
121 a->init=0;
122 a->flags=0;
123 return(1);
124 }
125
126 static int nbiof_read(BIO *b, char *out, int outl)
127 {

new/usr/src/lib/openssl/libsunw_crypto/bio/bf_nbio.c 3

128 int ret=0;
129 #if 1
130 int num;
131 unsigned char n;
132 #endif

134 if (out == NULL) return(0);
135 if (b->next_bio == NULL) return(0);

137 BIO_clear_retry_flags(b);
138 #if 1
139 RAND_pseudo_bytes(&n,1);
140 num=(n&0x07);

142 if (outl > num) outl=num;

144 if (num == 0)
145 {
146 ret= -1;
147 BIO_set_retry_read(b);
148 }
149 else
150 #endif
151 {
152 ret=BIO_read(b->next_bio,out,outl);
153 if (ret < 0)
154 BIO_copy_next_retry(b);
155 }
156 return(ret);
157 }

159 static int nbiof_write(BIO *b, const char *in, int inl)
160 {
161 NBIO_TEST *nt;
162 int ret=0;
163 int num;
164 unsigned char n;

166 if ((in == NULL) || (inl <= 0)) return(0);
167 if (b->next_bio == NULL) return(0);
168 nt=(NBIO_TEST *)b->ptr;

170 BIO_clear_retry_flags(b);

172 #if 1
173 if (nt->lwn > 0)
174 {
175 num=nt->lwn;
176 nt->lwn=0;
177 }
178 else
179 {
180 RAND_pseudo_bytes(&n,1);
181 num=(n&7);
182 }

184 if (inl > num) inl=num;

186 if (num == 0)
187 {
188 ret= -1;
189 BIO_set_retry_write(b);
190 }
191 else
192 #endif
193 {

new/usr/src/lib/openssl/libsunw_crypto/bio/bf_nbio.c 4

194 ret=BIO_write(b->next_bio,in,inl);
195 if (ret < 0)
196 {
197 BIO_copy_next_retry(b);
198 nt->lwn=inl;
199 }
200 }
201 return(ret);
202 }

204 static long nbiof_ctrl(BIO *b, int cmd, long num, void *ptr)
205 {
206 long ret;

208 if (b->next_bio == NULL) return(0);
209 switch (cmd)
210 {
211 case BIO_C_DO_STATE_MACHINE:
212 BIO_clear_retry_flags(b);
213 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
214 BIO_copy_next_retry(b);
215 break;
216 case BIO_CTRL_DUP:
217 ret=0L;
218 break;
219 default:
220 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
221 break;
222 }
223 return(ret);
224 }

226 static long nbiof_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp)
227 {
228 long ret=1;

230 if (b->next_bio == NULL) return(0);
231 switch (cmd)
232 {
233 default:
234 ret=BIO_callback_ctrl(b->next_bio,cmd,fp);
235 break;
236 }
237 return(ret);
238 }

240 static int nbiof_gets(BIO *bp, char *buf, int size)
241 {
242 if (bp->next_bio == NULL) return(0);
243 return(BIO_gets(bp->next_bio,buf,size));
244 }

247 static int nbiof_puts(BIO *bp, const char *str)
248 {
249 if (bp->next_bio == NULL) return(0);
250 return(BIO_puts(bp->next_bio,str));
251 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bf_null.c 1

**
 5613 Fri May 30 18:31:34 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bf_null.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bf_null.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <errno.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/bio/bf_null.c 2

62 #include <openssl/bio.h>

64 /* BIO_put and BIO_get both add to the digest,
65 * BIO_gets returns the digest */

67 static int nullf_write(BIO *h, const char *buf, int num);
68 static int nullf_read(BIO *h, char *buf, int size);
69 static int nullf_puts(BIO *h, const char *str);
70 static int nullf_gets(BIO *h, char *str, int size);
71 static long nullf_ctrl(BIO *h, int cmd, long arg1, void *arg2);
72 static int nullf_new(BIO *h);
73 static int nullf_free(BIO *data);
74 static long nullf_callback_ctrl(BIO *h, int cmd, bio_info_cb *fp);
75 static BIO_METHOD methods_nullf=
76 {
77 BIO_TYPE_NULL_FILTER,
78 "NULL filter",
79 nullf_write,
80 nullf_read,
81 nullf_puts,
82 nullf_gets,
83 nullf_ctrl,
84 nullf_new,
85 nullf_free,
86 nullf_callback_ctrl,
87 };

89 BIO_METHOD *BIO_f_null(void)
90 {
91 return(&methods_nullf);
92 }

94 static int nullf_new(BIO *bi)
95 {
96 bi->init=1;
97 bi->ptr=NULL;
98 bi->flags=0;
99 return(1);
100 }

102 static int nullf_free(BIO *a)
103 {
104 if (a == NULL) return(0);
105 /* a->ptr=NULL;
106 a->init=0;
107 a->flags=0;*/
108 return(1);
109 }
110
111 static int nullf_read(BIO *b, char *out, int outl)
112 {
113 int ret=0;
114
115 if (out == NULL) return(0);
116 if (b->next_bio == NULL) return(0);
117 ret=BIO_read(b->next_bio,out,outl);
118 BIO_clear_retry_flags(b);
119 BIO_copy_next_retry(b);
120 return(ret);
121 }

123 static int nullf_write(BIO *b, const char *in, int inl)
124 {
125 int ret=0;

127 if ((in == NULL) || (inl <= 0)) return(0);

new/usr/src/lib/openssl/libsunw_crypto/bio/bf_null.c 3

128 if (b->next_bio == NULL) return(0);
129 ret=BIO_write(b->next_bio,in,inl);
130 BIO_clear_retry_flags(b);
131 BIO_copy_next_retry(b);
132 return(ret);
133 }

135 static long nullf_ctrl(BIO *b, int cmd, long num, void *ptr)
136 {
137 long ret;

139 if (b->next_bio == NULL) return(0);
140 switch(cmd)
141 {
142 case BIO_C_DO_STATE_MACHINE:
143 BIO_clear_retry_flags(b);
144 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
145 BIO_copy_next_retry(b);
146 break;
147 case BIO_CTRL_DUP:
148 ret=0L;
149 break;
150 default:
151 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
152 }
153 return(ret);
154 }

156 static long nullf_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp)
157 {
158 long ret=1;

160 if (b->next_bio == NULL) return(0);
161 switch (cmd)
162 {
163 default:
164 ret=BIO_callback_ctrl(b->next_bio,cmd,fp);
165 break;
166 }
167 return(ret);
168 }

170 static int nullf_gets(BIO *bp, char *buf, int size)
171 {
172 if (bp->next_bio == NULL) return(0);
173 return(BIO_gets(bp->next_bio,buf,size));
174 }

177 static int nullf_puts(BIO *bp, const char *str)
178 {
179 if (bp->next_bio == NULL) return(0);
180 return(BIO_puts(bp->next_bio,str));
181 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_cb.c 1

**
 5467 Fri May 30 18:31:34 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bio_cb.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bio_cb.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <string.h>
61 #include <stdlib.h>

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_cb.c 2

62 #include "cryptlib.h"
63 #include <openssl/bio.h>
64 #include <openssl/err.h>

66 long MS_CALLBACK BIO_debug_callback(BIO *bio, int cmd, const char *argp,
67 int argi, long argl, long ret)
68 {
69 BIO *b;
70 MS_STATIC char buf[256];
71 char *p;
72 long r=1;
73 size_t p_maxlen;

75 if (BIO_CB_RETURN & cmd)
76 r=ret;

78 BIO_snprintf(buf,sizeof buf,"BIO[%08lX]:",(unsigned long)bio);
79 p= &(buf[14]);
80 p_maxlen = sizeof buf - 14;
81 switch (cmd)
82 {
83 case BIO_CB_FREE:
84 BIO_snprintf(p,p_maxlen,"Free - %s\n",bio->method->name);
85 break;
86 case BIO_CB_READ:
87 if (bio->method->type & BIO_TYPE_DESCRIPTOR)
88 BIO_snprintf(p,p_maxlen,"read(%d,%lu) - %s fd=%d\n",
89 bio->num,(unsigned long)argi,
90 bio->method->name,bio->num);
91 else
92 BIO_snprintf(p,p_maxlen,"read(%d,%lu) - %s\n",
93 bio->num,(unsigned long)argi,
94 bio->method->name);
95 break;
96 case BIO_CB_WRITE:
97 if (bio->method->type & BIO_TYPE_DESCRIPTOR)
98 BIO_snprintf(p,p_maxlen,"write(%d,%lu) - %s fd=%d\n",
99 bio->num,(unsigned long)argi,
100 bio->method->name,bio->num);
101 else
102 BIO_snprintf(p,p_maxlen,"write(%d,%lu) - %s\n",
103 bio->num,(unsigned long)argi,
104 bio->method->name);
105 break;
106 case BIO_CB_PUTS:
107 BIO_snprintf(p,p_maxlen,"puts() - %s\n",bio->method->name);
108 break;
109 case BIO_CB_GETS:
110 BIO_snprintf(p,p_maxlen,"gets(%lu) - %s\n",(unsigned long)argi,b
111 break;
112 case BIO_CB_CTRL:
113 BIO_snprintf(p,p_maxlen,"ctrl(%lu) - %s\n",(unsigned long)argi,b
114 break;
115 case BIO_CB_RETURN|BIO_CB_READ:
116 BIO_snprintf(p,p_maxlen,"read return %ld\n",ret);
117 break;
118 case BIO_CB_RETURN|BIO_CB_WRITE:
119 BIO_snprintf(p,p_maxlen,"write return %ld\n",ret);
120 break;
121 case BIO_CB_RETURN|BIO_CB_GETS:
122 BIO_snprintf(p,p_maxlen,"gets return %ld\n",ret);
123 break;
124 case BIO_CB_RETURN|BIO_CB_PUTS:
125 BIO_snprintf(p,p_maxlen,"puts return %ld\n",ret);
126 break;
127 case BIO_CB_RETURN|BIO_CB_CTRL:

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_cb.c 3

128 BIO_snprintf(p,p_maxlen,"ctrl return %ld\n",ret);
129 break;
130 default:
131 BIO_snprintf(p,p_maxlen,"bio callback - unknown type (%d)\n",cmd
132 break;
133 }

135 b=(BIO *)bio->cb_arg;
136 if (b != NULL)
137 BIO_write(b,buf,strlen(buf));
138 #if !defined(OPENSSL_NO_STDIO) && !defined(OPENSSL_SYS_WIN16)
139 else
140 fputs(buf,stderr);
141 #endif
142 return(r);
143 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_err.c 1

**
 6891 Fri May 30 18:31:34 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bio_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bio_err.c */
2 /* ==
3 * Copyright (c) 1999-2011 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/bio.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_BIO,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_BIO,0,reason)

71 static ERR_STRING_DATA BIO_str_functs[]=
72 {
73 {ERR_FUNC(BIO_F_ACPT_STATE), "ACPT_STATE"},
74 {ERR_FUNC(BIO_F_BIO_ACCEPT), "BIO_accept"},
75 {ERR_FUNC(BIO_F_BIO_BER_GET_HEADER), "BIO_BER_GET_HEADER"},
76 {ERR_FUNC(BIO_F_BIO_CALLBACK_CTRL), "BIO_callback_ctrl"},
77 {ERR_FUNC(BIO_F_BIO_CTRL), "BIO_ctrl"},
78 {ERR_FUNC(BIO_F_BIO_GETHOSTBYNAME), "BIO_gethostbyname"},
79 {ERR_FUNC(BIO_F_BIO_GETS), "BIO_gets"},
80 {ERR_FUNC(BIO_F_BIO_GET_ACCEPT_SOCKET), "BIO_get_accept_socket"},
81 {ERR_FUNC(BIO_F_BIO_GET_HOST_IP), "BIO_get_host_ip"},
82 {ERR_FUNC(BIO_F_BIO_GET_PORT), "BIO_get_port"},
83 {ERR_FUNC(BIO_F_BIO_MAKE_PAIR), "BIO_MAKE_PAIR"},
84 {ERR_FUNC(BIO_F_BIO_NEW), "BIO_new"},
85 {ERR_FUNC(BIO_F_BIO_NEW_FILE), "BIO_new_file"},
86 {ERR_FUNC(BIO_F_BIO_NEW_MEM_BUF), "BIO_new_mem_buf"},
87 {ERR_FUNC(BIO_F_BIO_NREAD), "BIO_nread"},
88 {ERR_FUNC(BIO_F_BIO_NREAD0), "BIO_nread0"},
89 {ERR_FUNC(BIO_F_BIO_NWRITE), "BIO_nwrite"},
90 {ERR_FUNC(BIO_F_BIO_NWRITE0), "BIO_nwrite0"},
91 {ERR_FUNC(BIO_F_BIO_PUTS), "BIO_puts"},
92 {ERR_FUNC(BIO_F_BIO_READ), "BIO_read"},
93 {ERR_FUNC(BIO_F_BIO_SOCK_INIT), "BIO_sock_init"},
94 {ERR_FUNC(BIO_F_BIO_WRITE), "BIO_write"},
95 {ERR_FUNC(BIO_F_BUFFER_CTRL), "BUFFER_CTRL"},
96 {ERR_FUNC(BIO_F_CONN_CTRL), "CONN_CTRL"},
97 {ERR_FUNC(BIO_F_CONN_STATE), "CONN_STATE"},
98 {ERR_FUNC(BIO_F_DGRAM_SCTP_READ), "DGRAM_SCTP_READ"},
99 {ERR_FUNC(BIO_F_FILE_CTRL), "FILE_CTRL"},
100 {ERR_FUNC(BIO_F_FILE_READ), "FILE_READ"},
101 {ERR_FUNC(BIO_F_LINEBUFFER_CTRL), "LINEBUFFER_CTRL"},
102 {ERR_FUNC(BIO_F_MEM_READ), "MEM_READ"},
103 {ERR_FUNC(BIO_F_MEM_WRITE), "MEM_WRITE"},
104 {ERR_FUNC(BIO_F_SSL_NEW), "SSL_new"},
105 {ERR_FUNC(BIO_F_WSASTARTUP), "WSASTARTUP"},
106 {0,NULL}
107 };

109 static ERR_STRING_DATA BIO_str_reasons[]=
110 {
111 {ERR_REASON(BIO_R_ACCEPT_ERROR) ,"accept error"},
112 {ERR_REASON(BIO_R_BAD_FOPEN_MODE) ,"bad fopen mode"},
113 {ERR_REASON(BIO_R_BAD_HOSTNAME_LOOKUP) ,"bad hostname lookup"},
114 {ERR_REASON(BIO_R_BROKEN_PIPE) ,"broken pipe"},
115 {ERR_REASON(BIO_R_CONNECT_ERROR) ,"connect error"},
116 {ERR_REASON(BIO_R_EOF_ON_MEMORY_BIO) ,"EOF on memory BIO"},
117 {ERR_REASON(BIO_R_ERROR_SETTING_NBIO) ,"error setting nbio"},
118 {ERR_REASON(BIO_R_ERROR_SETTING_NBIO_ON_ACCEPTED_SOCKET),"error setting nbio on
119 {ERR_REASON(BIO_R_ERROR_SETTING_NBIO_ON_ACCEPT_SOCKET),"error setting nbio on ac
120 {ERR_REASON(BIO_R_GETHOSTBYNAME_ADDR_IS_NOT_AF_INET),"gethostbyname addr is not
121 {ERR_REASON(BIO_R_INVALID_ARGUMENT) ,"invalid argument"},
122 {ERR_REASON(BIO_R_INVALID_IP_ADDRESS) ,"invalid ip address"},
123 {ERR_REASON(BIO_R_IN_USE) ,"in use"},
124 {ERR_REASON(BIO_R_KEEPALIVE) ,"keepalive"},
125 {ERR_REASON(BIO_R_NBIO_CONNECT_ERROR) ,"nbio connect error"},
126 {ERR_REASON(BIO_R_NO_ACCEPT_PORT_SPECIFIED),"no accept port specified"},
127 {ERR_REASON(BIO_R_NO_HOSTNAME_SPECIFIED) ,"no hostname specified"},

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_err.c 3

128 {ERR_REASON(BIO_R_NO_PORT_DEFINED) ,"no port defined"},
129 {ERR_REASON(BIO_R_NO_PORT_SPECIFIED) ,"no port specified"},
130 {ERR_REASON(BIO_R_NO_SUCH_FILE) ,"no such file"},
131 {ERR_REASON(BIO_R_NULL_PARAMETER) ,"null parameter"},
132 {ERR_REASON(BIO_R_TAG_MISMATCH) ,"tag mismatch"},
133 {ERR_REASON(BIO_R_UNABLE_TO_BIND_SOCKET) ,"unable to bind socket"},
134 {ERR_REASON(BIO_R_UNABLE_TO_CREATE_SOCKET),"unable to create socket"},
135 {ERR_REASON(BIO_R_UNABLE_TO_LISTEN_SOCKET),"unable to listen socket"},
136 {ERR_REASON(BIO_R_UNINITIALIZED) ,"uninitialized"},
137 {ERR_REASON(BIO_R_UNSUPPORTED_METHOD) ,"unsupported method"},
138 {ERR_REASON(BIO_R_WRITE_TO_READ_ONLY_BIO),"write to read only BIO"},
139 {ERR_REASON(BIO_R_WSASTARTUP) ,"WSAStartup"},
140 {0,NULL}
141 };

143 #endif

145 void ERR_load_BIO_strings(void)
146 {
147 #ifndef OPENSSL_NO_ERR

149 if (ERR_func_error_string(BIO_str_functs[0].error) == NULL)
150 {
151 ERR_load_strings(0,BIO_str_functs);
152 ERR_load_strings(0,BIO_str_reasons);
153 }
154 #endif
155 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_lib.c 1

**
 13124 Fri May 30 18:31:34 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bio_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bio_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <errno.h>
61 #include <openssl/crypto.h>

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_lib.c 2

62 #include "cryptlib.h"
63 #include <openssl/bio.h>
64 #include <openssl/stack.h>

66 BIO *BIO_new(BIO_METHOD *method)
67 {
68 BIO *ret=NULL;

70 ret=(BIO *)OPENSSL_malloc(sizeof(BIO));
71 if (ret == NULL)
72 {
73 BIOerr(BIO_F_BIO_NEW,ERR_R_MALLOC_FAILURE);
74 return(NULL);
75 }
76 if (!BIO_set(ret,method))
77 {
78 OPENSSL_free(ret);
79 ret=NULL;
80 }
81 return(ret);
82 }

84 int BIO_set(BIO *bio, BIO_METHOD *method)
85 {
86 bio->method=method;
87 bio->callback=NULL;
88 bio->cb_arg=NULL;
89 bio->init=0;
90 bio->shutdown=1;
91 bio->flags=0;
92 bio->retry_reason=0;
93 bio->num=0;
94 bio->ptr=NULL;
95 bio->prev_bio=NULL;
96 bio->next_bio=NULL;
97 bio->references=1;
98 bio->num_read=0L;
99 bio->num_write=0L;
100 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_BIO, bio, &bio->ex_data);
101 if (method->create != NULL)
102 if (!method->create(bio))
103 {
104 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_BIO, bio,
105 &bio->ex_data);
106 return(0);
107 }
108 return(1);
109 }

111 int BIO_free(BIO *a)
112 {
113 int i;

115 if (a == NULL) return(0);

117 i=CRYPTO_add(&a->references,-1,CRYPTO_LOCK_BIO);
118 #ifdef REF_PRINT
119 REF_PRINT("BIO",a);
120 #endif
121 if (i > 0) return(1);
122 #ifdef REF_CHECK
123 if (i < 0)
124 {
125 fprintf(stderr,"BIO_free, bad reference count\n");
126 abort();
127 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_lib.c 3

128 #endif
129 if ((a->callback != NULL) &&
130 ((i=(int)a->callback(a,BIO_CB_FREE,NULL,0,0L,1L)) <= 0))
131 return(i);

133 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_BIO, a, &a->ex_data);

135 if ((a->method == NULL) || (a->method->destroy == NULL)) return(1);
136 a->method->destroy(a);
137 OPENSSL_free(a);
138 return(1);
139 }

141 void BIO_vfree(BIO *a)
142 { BIO_free(a); }

144 void BIO_clear_flags(BIO *b, int flags)
145 {
146 b->flags &= ~flags;
147 }

149 int BIO_test_flags(const BIO *b, int flags)
150 {
151 return (b->flags & flags);
152 }

154 void BIO_set_flags(BIO *b, int flags)
155 {
156 b->flags |= flags;
157 }

159 long (*BIO_get_callback(const BIO *b))(struct bio_st *,int,const char *,int, lon
160 {
161 return b->callback;
162 }

164 void BIO_set_callback(BIO *b, long (*cb)(struct bio_st *,int,const char *,int, l
165 {
166 b->callback = cb;
167 }

169 void BIO_set_callback_arg(BIO *b, char *arg)
170 {
171 b->cb_arg = arg;
172 }

174 char * BIO_get_callback_arg(const BIO *b)
175 {
176 return b->cb_arg;
177 }

179 const char * BIO_method_name(const BIO *b)
180 {
181 return b->method->name;
182 }

184 int BIO_method_type(const BIO *b)
185 {
186 return b->method->type;
187 }

190 int BIO_read(BIO *b, void *out, int outl)
191 {
192 int i;
193 long (*cb)(BIO *,int,const char *,int,long,long);

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_lib.c 4

195 if ((b == NULL) || (b->method == NULL) || (b->method->bread == NULL))
196 {
197 BIOerr(BIO_F_BIO_READ,BIO_R_UNSUPPORTED_METHOD);
198 return(-2);
199 }

201 cb=b->callback;
202 if ((cb != NULL) &&
203 ((i=(int)cb(b,BIO_CB_READ,out,outl,0L,1L)) <= 0))
204 return(i);

206 if (!b->init)
207 {
208 BIOerr(BIO_F_BIO_READ,BIO_R_UNINITIALIZED);
209 return(-2);
210 }

212 i=b->method->bread(b,out,outl);

214 if (i > 0) b->num_read+=(unsigned long)i;

216 if (cb != NULL)
217 i=(int)cb(b,BIO_CB_READ|BIO_CB_RETURN,out,outl,
218 0L,(long)i);
219 return(i);
220 }

222 int BIO_write(BIO *b, const void *in, int inl)
223 {
224 int i;
225 long (*cb)(BIO *,int,const char *,int,long,long);

227 if (b == NULL)
228 return(0);

230 cb=b->callback;
231 if ((b->method == NULL) || (b->method->bwrite == NULL))
232 {
233 BIOerr(BIO_F_BIO_WRITE,BIO_R_UNSUPPORTED_METHOD);
234 return(-2);
235 }

237 if ((cb != NULL) &&
238 ((i=(int)cb(b,BIO_CB_WRITE,in,inl,0L,1L)) <= 0))
239 return(i);

241 if (!b->init)
242 {
243 BIOerr(BIO_F_BIO_WRITE,BIO_R_UNINITIALIZED);
244 return(-2);
245 }

247 i=b->method->bwrite(b,in,inl);

249 if (i > 0) b->num_write+=(unsigned long)i;

251 if (cb != NULL)
252 i=(int)cb(b,BIO_CB_WRITE|BIO_CB_RETURN,in,inl,
253 0L,(long)i);
254 return(i);
255 }

257 int BIO_puts(BIO *b, const char *in)
258 {
259 int i;

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_lib.c 5

260 long (*cb)(BIO *,int,const char *,int,long,long);

262 if ((b == NULL) || (b->method == NULL) || (b->method->bputs == NULL))
263 {
264 BIOerr(BIO_F_BIO_PUTS,BIO_R_UNSUPPORTED_METHOD);
265 return(-2);
266 }

268 cb=b->callback;

270 if ((cb != NULL) &&
271 ((i=(int)cb(b,BIO_CB_PUTS,in,0,0L,1L)) <= 0))
272 return(i);

274 if (!b->init)
275 {
276 BIOerr(BIO_F_BIO_PUTS,BIO_R_UNINITIALIZED);
277 return(-2);
278 }

280 i=b->method->bputs(b,in);

282 if (i > 0) b->num_write+=(unsigned long)i;

284 if (cb != NULL)
285 i=(int)cb(b,BIO_CB_PUTS|BIO_CB_RETURN,in,0,
286 0L,(long)i);
287 return(i);
288 }

290 int BIO_gets(BIO *b, char *in, int inl)
291 {
292 int i;
293 long (*cb)(BIO *,int,const char *,int,long,long);

295 if ((b == NULL) || (b->method == NULL) || (b->method->bgets == NULL))
296 {
297 BIOerr(BIO_F_BIO_GETS,BIO_R_UNSUPPORTED_METHOD);
298 return(-2);
299 }

301 cb=b->callback;

303 if ((cb != NULL) &&
304 ((i=(int)cb(b,BIO_CB_GETS,in,inl,0L,1L)) <= 0))
305 return(i);

307 if (!b->init)
308 {
309 BIOerr(BIO_F_BIO_GETS,BIO_R_UNINITIALIZED);
310 return(-2);
311 }

313 i=b->method->bgets(b,in,inl);

315 if (cb != NULL)
316 i=(int)cb(b,BIO_CB_GETS|BIO_CB_RETURN,in,inl,
317 0L,(long)i);
318 return(i);
319 }

321 int BIO_indent(BIO *b,int indent,int max)
322 {
323 if(indent < 0)
324 indent=0;
325 if(indent > max)

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_lib.c 6

326 indent=max;
327 while(indent--)
328 if(BIO_puts(b," ") != 1)
329 return 0;
330 return 1;
331 }

333 long BIO_int_ctrl(BIO *b, int cmd, long larg, int iarg)
334 {
335 int i;

337 i=iarg;
338 return(BIO_ctrl(b,cmd,larg,(char *)&i));
339 }

341 char *BIO_ptr_ctrl(BIO *b, int cmd, long larg)
342 {
343 char *p=NULL;

345 if (BIO_ctrl(b,cmd,larg,(char *)&p) <= 0)
346 return(NULL);
347 else
348 return(p);
349 }

351 long BIO_ctrl(BIO *b, int cmd, long larg, void *parg)
352 {
353 long ret;
354 long (*cb)(BIO *,int,const char *,int,long,long);

356 if (b == NULL) return(0);

358 if ((b->method == NULL) || (b->method->ctrl == NULL))
359 {
360 BIOerr(BIO_F_BIO_CTRL,BIO_R_UNSUPPORTED_METHOD);
361 return(-2);
362 }

364 cb=b->callback;

366 if ((cb != NULL) &&
367 ((ret=cb(b,BIO_CB_CTRL,parg,cmd,larg,1L)) <= 0))
368 return(ret);

370 ret=b->method->ctrl(b,cmd,larg,parg);

372 if (cb != NULL)
373 ret=cb(b,BIO_CB_CTRL|BIO_CB_RETURN,parg,cmd,
374 larg,ret);
375 return(ret);
376 }

378 long BIO_callback_ctrl(BIO *b, int cmd, void (*fp)(struct bio_st *, int, const c
379 {
380 long ret;
381 long (*cb)(BIO *,int,const char *,int,long,long);

383 if (b == NULL) return(0);

385 if ((b->method == NULL) || (b->method->callback_ctrl == NULL))
386 {
387 BIOerr(BIO_F_BIO_CALLBACK_CTRL,BIO_R_UNSUPPORTED_METHOD);
388 return(-2);
389 }

391 cb=b->callback;

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_lib.c 7

393 if ((cb != NULL) &&
394 ((ret=cb(b,BIO_CB_CTRL,(void *)&fp,cmd,0,1L)) <= 0))
395 return(ret);

397 ret=b->method->callback_ctrl(b,cmd,fp);

399 if (cb != NULL)
400 ret=cb(b,BIO_CB_CTRL|BIO_CB_RETURN,(void *)&fp,cmd,
401 0,ret);
402 return(ret);
403 }

405 /* It is unfortunate to duplicate in functions what the BIO_(w)pending macros
406 * do; but those macros have inappropriate return type, and for interfacing
407 * from other programming languages, C macros aren’t much of a help anyway. */
408 size_t BIO_ctrl_pending(BIO *bio)
409 {
410 return BIO_ctrl(bio, BIO_CTRL_PENDING, 0, NULL);
411 }

413 size_t BIO_ctrl_wpending(BIO *bio)
414 {
415 return BIO_ctrl(bio, BIO_CTRL_WPENDING, 0, NULL);
416 }

419 /* put the ’bio’ on the end of b’s list of operators */
420 BIO *BIO_push(BIO *b, BIO *bio)
421 {
422 BIO *lb;

424 if (b == NULL) return(bio);
425 lb=b;
426 while (lb->next_bio != NULL)
427 lb=lb->next_bio;
428 lb->next_bio=bio;
429 if (bio != NULL)
430 bio->prev_bio=lb;
431 /* called to do internal processing */
432 BIO_ctrl(b,BIO_CTRL_PUSH,0,lb);
433 return(b);
434 }

436 /* Remove the first and return the rest */
437 BIO *BIO_pop(BIO *b)
438 {
439 BIO *ret;

441 if (b == NULL) return(NULL);
442 ret=b->next_bio;

444 BIO_ctrl(b,BIO_CTRL_POP,0,b);

446 if (b->prev_bio != NULL)
447 b->prev_bio->next_bio=b->next_bio;
448 if (b->next_bio != NULL)
449 b->next_bio->prev_bio=b->prev_bio;

451 b->next_bio=NULL;
452 b->prev_bio=NULL;
453 return(ret);
454 }

456 BIO *BIO_get_retry_BIO(BIO *bio, int *reason)
457 {

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_lib.c 8

458 BIO *b,*last;

460 b=last=bio;
461 for (;;)
462 {
463 if (!BIO_should_retry(b)) break;
464 last=b;
465 b=b->next_bio;
466 if (b == NULL) break;
467 }
468 if (reason != NULL) *reason=last->retry_reason;
469 return(last);
470 }

472 int BIO_get_retry_reason(BIO *bio)
473 {
474 return(bio->retry_reason);
475 }

477 BIO *BIO_find_type(BIO *bio, int type)
478 {
479 int mt,mask;

481 if(!bio) return NULL;
482 mask=type&0xff;
483 do {
484 if (bio->method != NULL)
485 {
486 mt=bio->method->type;

488 if (!mask)
489 {
490 if (mt & type) return(bio);
491 }
492 else if (mt == type)
493 return(bio);
494 }
495 bio=bio->next_bio;
496 } while (bio != NULL);
497 return(NULL);
498 }

500 BIO *BIO_next(BIO *b)
501 {
502 if(!b) return NULL;
503 return b->next_bio;
504 }

506 void BIO_free_all(BIO *bio)
507 {
508 BIO *b;
509 int ref;

511 while (bio != NULL)
512 {
513 b=bio;
514 ref=b->references;
515 bio=bio->next_bio;
516 BIO_free(b);
517 /* Since ref count > 1, don’t free anyone else. */
518 if (ref > 1) break;
519 }
520 }

522 BIO *BIO_dup_chain(BIO *in)
523 {

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_lib.c 9

524 BIO *ret=NULL,*eoc=NULL,*bio,*new_bio;

526 for (bio=in; bio != NULL; bio=bio->next_bio)
527 {
528 if ((new_bio=BIO_new(bio->method)) == NULL) goto err;
529 new_bio->callback=bio->callback;
530 new_bio->cb_arg=bio->cb_arg;
531 new_bio->init=bio->init;
532 new_bio->shutdown=bio->shutdown;
533 new_bio->flags=bio->flags;

535 /* This will let SSL_s_sock() work with stdin/stdout */
536 new_bio->num=bio->num;

538 if (!BIO_dup_state(bio,(char *)new_bio))
539 {
540 BIO_free(new_bio);
541 goto err;
542 }

544 /* copy app data */
545 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_BIO, &new_bio->ex_data,
546 &bio->ex_data))
547 goto err;

549 if (ret == NULL)
550 {
551 eoc=new_bio;
552 ret=eoc;
553 }
554 else
555 {
556 BIO_push(eoc,new_bio);
557 eoc=new_bio;
558 }
559 }
560 return(ret);
561 err:
562 if (ret != NULL)
563 BIO_free(ret);
564 return(NULL);
565 }

567 void BIO_copy_next_retry(BIO *b)
568 {
569 BIO_set_flags(b,BIO_get_retry_flags(b->next_bio));
570 b->retry_reason=b->next_bio->retry_reason;
571 }

573 int BIO_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
574 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func)
575 {
576 return CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_BIO, argl, argp,
577 new_func, dup_func, free_func);
578 }

580 int BIO_set_ex_data(BIO *bio, int idx, void *data)
581 {
582 return(CRYPTO_set_ex_data(&(bio->ex_data),idx,data));
583 }

585 void *BIO_get_ex_data(BIO *bio, int idx)
586 {
587 return(CRYPTO_get_ex_data(&(bio->ex_data),idx));
588 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bio_lib.c 10

590 unsigned long BIO_number_read(BIO *bio)
591 {
592 if(bio) return bio->num_read;
593 return 0;
594 }

596 unsigned long BIO_number_written(BIO *bio)
597 {
598 if(bio) return bio->num_write;
599 return 0;
600 }

602 IMPLEMENT_STACK_OF(BIO)

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_acpt.c 1

**
 10895 Fri May 30 18:31:34 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bss_acpt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bss_acpt.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <errno.h>
61 #define USE_SOCKETS

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_acpt.c 2

62 #include "cryptlib.h"
63 #include <openssl/bio.h>

65 #ifndef OPENSSL_NO_SOCK

67 #ifdef OPENSSL_SYS_WIN16
68 #define SOCKET_PROTOCOL 0 /* more microsoft stupidity */
69 #else
70 #define SOCKET_PROTOCOL IPPROTO_TCP
71 #endif

73 #if (defined(OPENSSL_SYS_VMS) && __VMS_VER < 70000000)
74 /* FIONBIO used as a switch to enable ioctl, and that isn’t in VMS < 7.0 */
75 #undef FIONBIO
76 #endif

78 typedef struct bio_accept_st
79 {
80 int state;
81 char *param_addr;

83 int accept_sock;
84 int accept_nbio;

86 char *addr;
87 int nbio;
88 /* If 0, it means normal, if 1, do a connect on bind failure,
89 * and if there is no-one listening, bind with SO_REUSEADDR.
90 * If 2, always use SO_REUSEADDR. */
91 int bind_mode;
92 BIO *bio_chain;
93 } BIO_ACCEPT;

95 static int acpt_write(BIO *h, const char *buf, int num);
96 static int acpt_read(BIO *h, char *buf, int size);
97 static int acpt_puts(BIO *h, const char *str);
98 static long acpt_ctrl(BIO *h, int cmd, long arg1, void *arg2);
99 static int acpt_new(BIO *h);
100 static int acpt_free(BIO *data);
101 static int acpt_state(BIO *b, BIO_ACCEPT *c);
102 static void acpt_close_socket(BIO *data);
103 static BIO_ACCEPT *BIO_ACCEPT_new(void);
104 static void BIO_ACCEPT_free(BIO_ACCEPT *a);

106 #define ACPT_S_BEFORE 1
107 #define ACPT_S_GET_ACCEPT_SOCKET 2
108 #define ACPT_S_OK 3

110 static BIO_METHOD methods_acceptp=
111 {
112 BIO_TYPE_ACCEPT,
113 "socket accept",
114 acpt_write,
115 acpt_read,
116 acpt_puts,
117 NULL, /* connect_gets, */
118 acpt_ctrl,
119 acpt_new,
120 acpt_free,
121 NULL,
122 };

124 BIO_METHOD *BIO_s_accept(void)
125 {
126 return(&methods_acceptp);
127 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_acpt.c 3

129 static int acpt_new(BIO *bi)
130 {
131 BIO_ACCEPT *ba;

133 bi->init=0;
134 bi->num=INVALID_SOCKET;
135 bi->flags=0;
136 if ((ba=BIO_ACCEPT_new()) == NULL)
137 return(0);
138 bi->ptr=(char *)ba;
139 ba->state=ACPT_S_BEFORE;
140 bi->shutdown=1;
141 return(1);
142 }

144 static BIO_ACCEPT *BIO_ACCEPT_new(void)
145 {
146 BIO_ACCEPT *ret;

148 if ((ret=(BIO_ACCEPT *)OPENSSL_malloc(sizeof(BIO_ACCEPT))) == NULL)
149 return(NULL);

151 memset(ret,0,sizeof(BIO_ACCEPT));
152 ret->accept_sock=INVALID_SOCKET;
153 ret->bind_mode=BIO_BIND_NORMAL;
154 return(ret);
155 }

157 static void BIO_ACCEPT_free(BIO_ACCEPT *a)
158 {
159 if(a == NULL)
160 return;

162 if (a->param_addr != NULL) OPENSSL_free(a->param_addr);
163 if (a->addr != NULL) OPENSSL_free(a->addr);
164 if (a->bio_chain != NULL) BIO_free(a->bio_chain);
165 OPENSSL_free(a);
166 }

168 static void acpt_close_socket(BIO *bio)
169 {
170 BIO_ACCEPT *c;

172 c=(BIO_ACCEPT *)bio->ptr;
173 if (c->accept_sock != INVALID_SOCKET)
174 {
175 shutdown(c->accept_sock,2);
176 closesocket(c->accept_sock);
177 c->accept_sock=INVALID_SOCKET;
178 bio->num=INVALID_SOCKET;
179 }
180 }

182 static int acpt_free(BIO *a)
183 {
184 BIO_ACCEPT *data;

186 if (a == NULL) return(0);
187 data=(BIO_ACCEPT *)a->ptr;
188
189 if (a->shutdown)
190 {
191 acpt_close_socket(a);
192 BIO_ACCEPT_free(data);
193 a->ptr=NULL;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_acpt.c 4

194 a->flags=0;
195 a->init=0;
196 }
197 return(1);
198 }
199
200 static int acpt_state(BIO *b, BIO_ACCEPT *c)
201 {
202 BIO *bio=NULL,*dbio;
203 int s= -1;
204 int i;

206 again:
207 switch (c->state)
208 {
209 case ACPT_S_BEFORE:
210 if (c->param_addr == NULL)
211 {
212 BIOerr(BIO_F_ACPT_STATE,BIO_R_NO_ACCEPT_PORT_SPECIFIED);
213 return(-1);
214 }
215 s=BIO_get_accept_socket(c->param_addr,c->bind_mode);
216 if (s == INVALID_SOCKET)
217 return(-1);

219 if (c->accept_nbio)
220 {
221 if (!BIO_socket_nbio(s,1))
222 {
223 closesocket(s);
224 BIOerr(BIO_F_ACPT_STATE,BIO_R_ERROR_SETTING_NBIO
225 return(-1);
226 }
227 }
228 c->accept_sock=s;
229 b->num=s;
230 c->state=ACPT_S_GET_ACCEPT_SOCKET;
231 return(1);
232 /* break; */
233 case ACPT_S_GET_ACCEPT_SOCKET:
234 if (b->next_bio != NULL)
235 {
236 c->state=ACPT_S_OK;
237 goto again;
238 }
239 BIO_clear_retry_flags(b);
240 b->retry_reason=0;
241 i=BIO_accept(c->accept_sock,&(c->addr));

243 /* -2 return means we should retry */
244 if(i == -2)
245 {
246 BIO_set_retry_special(b);
247 b->retry_reason=BIO_RR_ACCEPT;
248 return -1;
249 }

251 if (i < 0) return(i);

253 bio=BIO_new_socket(i,BIO_CLOSE);
254 if (bio == NULL) goto err;

256 BIO_set_callback(bio,BIO_get_callback(b));
257 BIO_set_callback_arg(bio,BIO_get_callback_arg(b));

259 if (c->nbio)

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_acpt.c 5

260 {
261 if (!BIO_socket_nbio(i,1))
262 {
263 BIOerr(BIO_F_ACPT_STATE,BIO_R_ERROR_SETTING_NBIO
264 goto err;
265 }
266 }

268 /* If the accept BIO has an bio_chain, we dup it and
269 * put the new socket at the end. */
270 if (c->bio_chain != NULL)
271 {
272 if ((dbio=BIO_dup_chain(c->bio_chain)) == NULL)
273 goto err;
274 if (!BIO_push(dbio,bio)) goto err;
275 bio=dbio;
276 }
277 if (BIO_push(b,bio) == NULL) goto err;

279 c->state=ACPT_S_OK;
280 return(1);
281 err:
282 if (bio != NULL)
283 BIO_free(bio);
284 else if (s >= 0)
285 closesocket(s);
286 return(0);
287 /* break; */
288 case ACPT_S_OK:
289 if (b->next_bio == NULL)
290 {
291 c->state=ACPT_S_GET_ACCEPT_SOCKET;
292 goto again;
293 }
294 return(1);
295 /* break; */
296 default:
297 return(0);
298 /* break; */
299 }

301 }

303 static int acpt_read(BIO *b, char *out, int outl)
304 {
305 int ret=0;
306 BIO_ACCEPT *data;

308 BIO_clear_retry_flags(b);
309 data=(BIO_ACCEPT *)b->ptr;

311 while (b->next_bio == NULL)
312 {
313 ret=acpt_state(b,data);
314 if (ret <= 0) return(ret);
315 }

317 ret=BIO_read(b->next_bio,out,outl);
318 BIO_copy_next_retry(b);
319 return(ret);
320 }

322 static int acpt_write(BIO *b, const char *in, int inl)
323 {
324 int ret;
325 BIO_ACCEPT *data;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_acpt.c 6

327 BIO_clear_retry_flags(b);
328 data=(BIO_ACCEPT *)b->ptr;

330 while (b->next_bio == NULL)
331 {
332 ret=acpt_state(b,data);
333 if (ret <= 0) return(ret);
334 }

336 ret=BIO_write(b->next_bio,in,inl);
337 BIO_copy_next_retry(b);
338 return(ret);
339 }

341 static long acpt_ctrl(BIO *b, int cmd, long num, void *ptr)
342 {
343 int *ip;
344 long ret=1;
345 BIO_ACCEPT *data;
346 char **pp;

348 data=(BIO_ACCEPT *)b->ptr;

350 switch (cmd)
351 {
352 case BIO_CTRL_RESET:
353 ret=0;
354 data->state=ACPT_S_BEFORE;
355 acpt_close_socket(b);
356 b->flags=0;
357 break;
358 case BIO_C_DO_STATE_MACHINE:
359 /* use this one to start the connection */
360 ret=(long)acpt_state(b,data);
361 break;
362 case BIO_C_SET_ACCEPT:
363 if (ptr != NULL)
364 {
365 if (num == 0)
366 {
367 b->init=1;
368 if (data->param_addr != NULL)
369 OPENSSL_free(data->param_addr);
370 data->param_addr=BUF_strdup(ptr);
371 }
372 else if (num == 1)
373 {
374 data->accept_nbio=(ptr != NULL);
375 }
376 else if (num == 2)
377 {
378 if (data->bio_chain != NULL)
379 BIO_free(data->bio_chain);
380 data->bio_chain=(BIO *)ptr;
381 }
382 }
383 break;
384 case BIO_C_SET_NBIO:
385 data->nbio=(int)num;
386 break;
387 case BIO_C_SET_FD:
388 b->init=1;
389 b->num= *((int *)ptr);
390 data->accept_sock=b->num;
391 data->state=ACPT_S_GET_ACCEPT_SOCKET;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_acpt.c 7

392 b->shutdown=(int)num;
393 b->init=1;
394 break;
395 case BIO_C_GET_FD:
396 if (b->init)
397 {
398 ip=(int *)ptr;
399 if (ip != NULL)
400 *ip=data->accept_sock;
401 ret=data->accept_sock;
402 }
403 else
404 ret= -1;
405 break;
406 case BIO_C_GET_ACCEPT:
407 if (b->init)
408 {
409 if (ptr != NULL)
410 {
411 pp=(char **)ptr;
412 *pp=data->param_addr;
413 }
414 else
415 ret= -1;
416 }
417 else
418 ret= -1;
419 break;
420 case BIO_CTRL_GET_CLOSE:
421 ret=b->shutdown;
422 break;
423 case BIO_CTRL_SET_CLOSE:
424 b->shutdown=(int)num;
425 break;
426 case BIO_CTRL_PENDING:
427 case BIO_CTRL_WPENDING:
428 ret=0;
429 break;
430 case BIO_CTRL_FLUSH:
431 break;
432 case BIO_C_SET_BIND_MODE:
433 data->bind_mode=(int)num;
434 break;
435 case BIO_C_GET_BIND_MODE:
436 ret=(long)data->bind_mode;
437 break;
438 case BIO_CTRL_DUP:
439 /* dbio=(BIO *)ptr;
440 if (data->param_port) EAY EAY
441 BIO_set_port(dbio,data->param_port);
442 if (data->param_hostname)
443 BIO_set_hostname(dbio,data->param_hostname);
444 BIO_set_nbio(dbio,data->nbio); */
445 break;

447 default:
448 ret=0;
449 break;
450 }
451 return(ret);
452 }

454 static int acpt_puts(BIO *bp, const char *str)
455 {
456 int n,ret;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_acpt.c 8

458 n=strlen(str);
459 ret=acpt_write(bp,str,n);
460 return(ret);
461 }

463 BIO *BIO_new_accept(char *str)
464 {
465 BIO *ret;

467 ret=BIO_new(BIO_s_accept());
468 if (ret == NULL) return(NULL);
469 if (BIO_set_accept_port(ret,str))
470 return(ret);
471 else
472 {
473 BIO_free(ret);
474 return(NULL);
475 }
476 }

478 #endif

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c 1

**
 19049 Fri May 30 18:31:34 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bss_bio.c -*- Mode: C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* Special method for a BIO where the other endpoint is also a BIO
57 * of this kind, handled by the same thread (i.e. the "peer" is actually
58 * ourselves, wearing a different hat).
59 * Such "BIO pairs" are mainly for using the SSL library with I/O interfaces
60 * for which no specific BIO method is available.
61 * See ssl/ssltest.c for some hints on how this can be used. */

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c 2

63 /* BIO_DEBUG implies BIO_PAIR_DEBUG */
64 #ifdef BIO_DEBUG
65 # ifndef BIO_PAIR_DEBUG
66 # define BIO_PAIR_DEBUG
67 # endif
68 #endif

70 /* disable assert() unless BIO_PAIR_DEBUG has been defined */
71 #ifndef BIO_PAIR_DEBUG
72 # ifndef NDEBUG
73 # define NDEBUG
74 # endif
75 #endif

77 #include <assert.h>
78 #include <limits.h>
79 #include <stdlib.h>
80 #include <string.h>

82 #include <openssl/bio.h>
83 #include <openssl/err.h>
84 #include <openssl/crypto.h>

86 #include "e_os.h"

88 /* VxWorks defines SSIZE_MAX with an empty value causing compile errors */
89 #if defined(OPENSSL_SYS_VXWORKS)
90 # undef SSIZE_MAX
91 #endif
92 #ifndef SSIZE_MAX
93 # define SSIZE_MAX INT_MAX
94 #endif

96 static int bio_new(BIO *bio);
97 static int bio_free(BIO *bio);
98 static int bio_read(BIO *bio, char *buf, int size);
99 static int bio_write(BIO *bio, const char *buf, int num);
100 static long bio_ctrl(BIO *bio, int cmd, long num, void *ptr);
101 static int bio_puts(BIO *bio, const char *str);

103 static int bio_make_pair(BIO *bio1, BIO *bio2);
104 static void bio_destroy_pair(BIO *bio);

106 static BIO_METHOD methods_biop =
107 {
108 BIO_TYPE_BIO,
109 "BIO pair",
110 bio_write,
111 bio_read,
112 bio_puts,
113 NULL /* no bio_gets */,
114 bio_ctrl,
115 bio_new,
116 bio_free,
117 NULL /* no bio_callback_ctrl */
118 };

120 BIO_METHOD *BIO_s_bio(void)
121 {
122 return &methods_biop;
123 }

125 struct bio_bio_st
126 {
127 BIO *peer; /* NULL if buf == NULL.

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c 3

128 * If peer != NULL, then peer->ptr is also a bio_bio_st,
129 * and its "peer" member points back to us.
130 * peer != NULL iff init != 0 in the BIO. */
131
132 /* This is for what we write (i.e. reading uses peer’s struct): */
133 int closed; /* valid iff peer != NULL */
134 size_t len; /* valid iff buf != NULL; 0 if peer == NULL */
135 size_t offset; /* valid iff buf != NULL; 0 if len == 0 */
136 size_t size;
137 char *buf; /* "size" elements (if != NULL) */

139 size_t request; /* valid iff peer != NULL; 0 if len != 0,
140 * otherwise set by peer to number of bytes
141 * it (unsuccessfully) tried to read,
142 * never more than buffer space (size-len) warrants. */
143 };

145 static int bio_new(BIO *bio)
146 {
147 struct bio_bio_st *b;
148
149 b = OPENSSL_malloc(sizeof *b);
150 if (b == NULL)
151 return 0;

153 b->peer = NULL;
154 b->size = 17*1024; /* enough for one TLS record (just a default) */
155 b->buf = NULL;

157 bio->ptr = b;
158 return 1;
159 }

162 static int bio_free(BIO *bio)
163 {
164 struct bio_bio_st *b;

166 if (bio == NULL)
167 return 0;
168 b = bio->ptr;

170 assert(b != NULL);

172 if (b->peer)
173 bio_destroy_pair(bio);
174
175 if (b->buf != NULL)
176 {
177 OPENSSL_free(b->buf);
178 }

180 OPENSSL_free(b);

182 return 1;
183 }

187 static int bio_read(BIO *bio, char *buf, int size_)
188 {
189 size_t size = size_;
190 size_t rest;
191 struct bio_bio_st *b, *peer_b;

193 BIO_clear_retry_flags(bio);

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c 4

195 if (!bio->init)
196 return 0;

198 b = bio->ptr;
199 assert(b != NULL);
200 assert(b->peer != NULL);
201 peer_b = b->peer->ptr;
202 assert(peer_b != NULL);
203 assert(peer_b->buf != NULL);

205 peer_b->request = 0; /* will be set in "retry_read" situation */

207 if (buf == NULL || size == 0)
208 return 0;

210 if (peer_b->len == 0)
211 {
212 if (peer_b->closed)
213 return 0; /* writer has closed, and no data is left */
214 else
215 {
216 BIO_set_retry_read(bio); /* buffer is empty */
217 if (size <= peer_b->size)
218 peer_b->request = size;
219 else
220 /* don’t ask for more than the peer can
221 * deliver in one write */
222 peer_b->request = peer_b->size;
223 return -1;
224 }
225 }

227 /* we can read */
228 if (peer_b->len < size)
229 size = peer_b->len;

231 /* now read "size" bytes */
232
233 rest = size;
234
235 assert(rest > 0);
236 do /* one or two iterations */
237 {
238 size_t chunk;
239
240 assert(rest <= peer_b->len);
241 if (peer_b->offset + rest <= peer_b->size)
242 chunk = rest;
243 else
244 /* wrap around ring buffer */
245 chunk = peer_b->size - peer_b->offset;
246 assert(peer_b->offset + chunk <= peer_b->size);
247
248 memcpy(buf, peer_b->buf + peer_b->offset, chunk);
249
250 peer_b->len -= chunk;
251 if (peer_b->len)
252 {
253 peer_b->offset += chunk;
254 assert(peer_b->offset <= peer_b->size);
255 if (peer_b->offset == peer_b->size)
256 peer_b->offset = 0;
257 buf += chunk;
258 }
259 else

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c 5

260 {
261 /* buffer now empty, no need to advance "buf" */
262 assert(chunk == rest);
263 peer_b->offset = 0;
264 }
265 rest -= chunk;
266 }
267 while (rest);
268
269 return size;
270 }

272 /* non-copying interface: provide pointer to available data in buffer
273 * bio_nread0: return number of available bytes
274 * bio_nread: also advance index
275 * (example usage: bio_nread0(), read from buffer, bio_nread()
276 * or just bio_nread(), read from buffer)
277 */
278 /* WARNING: The non-copying interface is largely untested as of yet
279 * and may contain bugs. */
280 static ossl_ssize_t bio_nread0(BIO *bio, char **buf)
281 {
282 struct bio_bio_st *b, *peer_b;
283 ossl_ssize_t num;
284
285 BIO_clear_retry_flags(bio);

287 if (!bio->init)
288 return 0;
289
290 b = bio->ptr;
291 assert(b != NULL);
292 assert(b->peer != NULL);
293 peer_b = b->peer->ptr;
294 assert(peer_b != NULL);
295 assert(peer_b->buf != NULL);
296
297 peer_b->request = 0;
298
299 if (peer_b->len == 0)
300 {
301 char dummy;
302
303 /* avoid code duplication -- nothing available for reading */
304 return bio_read(bio, &dummy, 1); /* returns 0 or -1 */
305 }

307 num = peer_b->len;
308 if (peer_b->size < peer_b->offset + num)
309 /* no ring buffer wrap-around for non-copying interface */
310 num = peer_b->size - peer_b->offset;
311 assert(num > 0);

313 if (buf != NULL)
314 *buf = peer_b->buf + peer_b->offset;
315 return num;
316 }

318 static ossl_ssize_t bio_nread(BIO *bio, char **buf, size_t num_)
319 {
320 struct bio_bio_st *b, *peer_b;
321 ossl_ssize_t num, available;

323 if (num_ > SSIZE_MAX)
324 num = SSIZE_MAX;
325 else

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c 6

326 num = (ossl_ssize_t)num_;

328 available = bio_nread0(bio, buf);
329 if (num > available)
330 num = available;
331 if (num <= 0)
332 return num;

334 b = bio->ptr;
335 peer_b = b->peer->ptr;

337 peer_b->len -= num;
338 if (peer_b->len)
339 {
340 peer_b->offset += num;
341 assert(peer_b->offset <= peer_b->size);
342 if (peer_b->offset == peer_b->size)
343 peer_b->offset = 0;
344 }
345 else
346 peer_b->offset = 0;

348 return num;
349 }

352 static int bio_write(BIO *bio, const char *buf, int num_)
353 {
354 size_t num = num_;
355 size_t rest;
356 struct bio_bio_st *b;

358 BIO_clear_retry_flags(bio);

360 if (!bio->init || buf == NULL || num == 0)
361 return 0;

363 b = bio->ptr;
364 assert(b != NULL);
365 assert(b->peer != NULL);
366 assert(b->buf != NULL);

368 b->request = 0;
369 if (b->closed)
370 {
371 /* we already closed */
372 BIOerr(BIO_F_BIO_WRITE, BIO_R_BROKEN_PIPE);
373 return -1;
374 }

376 assert(b->len <= b->size);

378 if (b->len == b->size)
379 {
380 BIO_set_retry_write(bio); /* buffer is full */
381 return -1;
382 }

384 /* we can write */
385 if (num > b->size - b->len)
386 num = b->size - b->len;
387
388 /* now write "num" bytes */

390 rest = num;
391

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c 7

392 assert(rest > 0);
393 do /* one or two iterations */
394 {
395 size_t write_offset;
396 size_t chunk;

398 assert(b->len + rest <= b->size);

400 write_offset = b->offset + b->len;
401 if (write_offset >= b->size)
402 write_offset -= b->size;
403 /* b->buf[write_offset] is the first byte we can write to. */

405 if (write_offset + rest <= b->size)
406 chunk = rest;
407 else
408 /* wrap around ring buffer */
409 chunk = b->size - write_offset;
410
411 memcpy(b->buf + write_offset, buf, chunk);
412
413 b->len += chunk;

415 assert(b->len <= b->size);
416
417 rest -= chunk;
418 buf += chunk;
419 }
420 while (rest);

422 return num;
423 }

425 /* non-copying interface: provide pointer to region to write to
426 * bio_nwrite0: check how much space is available
427 * bio_nwrite: also increase length
428 * (example usage: bio_nwrite0(), write to buffer, bio_nwrite()
429 * or just bio_nwrite(), write to buffer)
430 */
431 static ossl_ssize_t bio_nwrite0(BIO *bio, char **buf)
432 {
433 struct bio_bio_st *b;
434 size_t num;
435 size_t write_offset;

437 BIO_clear_retry_flags(bio);

439 if (!bio->init)
440 return 0;

442 b = bio->ptr;
443 assert(b != NULL);
444 assert(b->peer != NULL);
445 assert(b->buf != NULL);

447 b->request = 0;
448 if (b->closed)
449 {
450 BIOerr(BIO_F_BIO_NWRITE0, BIO_R_BROKEN_PIPE);
451 return -1;
452 }

454 assert(b->len <= b->size);

456 if (b->len == b->size)
457 {

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c 8

458 BIO_set_retry_write(bio);
459 return -1;
460 }

462 num = b->size - b->len;
463 write_offset = b->offset + b->len;
464 if (write_offset >= b->size)
465 write_offset -= b->size;
466 if (write_offset + num > b->size)
467 /* no ring buffer wrap-around for non-copying interface
468 * (to fulfil the promise by BIO_ctrl_get_write_guarantee,
469 * BIO_nwrite may have to be called twice) */
470 num = b->size - write_offset;

472 if (buf != NULL)
473 *buf = b->buf + write_offset;
474 assert(write_offset + num <= b->size);

476 return num;
477 }

479 static ossl_ssize_t bio_nwrite(BIO *bio, char **buf, size_t num_)
480 {
481 struct bio_bio_st *b;
482 ossl_ssize_t num, space;

484 if (num_ > SSIZE_MAX)
485 num = SSIZE_MAX;
486 else
487 num = (ossl_ssize_t)num_;

489 space = bio_nwrite0(bio, buf);
490 if (num > space)
491 num = space;
492 if (num <= 0)
493 return num;
494 b = bio->ptr;
495 assert(b != NULL);
496 b->len += num;
497 assert(b->len <= b->size);

499 return num;
500 }

503 static long bio_ctrl(BIO *bio, int cmd, long num, void *ptr)
504 {
505 long ret;
506 struct bio_bio_st *b = bio->ptr;
507
508 assert(b != NULL);

510 switch (cmd)
511 {
512 /* specific CTRL codes */

514 case BIO_C_SET_WRITE_BUF_SIZE:
515 if (b->peer)
516 {
517 BIOerr(BIO_F_BIO_CTRL, BIO_R_IN_USE);
518 ret = 0;
519 }
520 else if (num == 0)
521 {
522 BIOerr(BIO_F_BIO_CTRL, BIO_R_INVALID_ARGUMENT);
523 ret = 0;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c 9

524 }
525 else
526 {
527 size_t new_size = num;

529 if (b->size != new_size)
530 {
531 if (b->buf)
532 {
533 OPENSSL_free(b->buf);
534 b->buf = NULL;
535 }
536 b->size = new_size;
537 }
538 ret = 1;
539 }
540 break;

542 case BIO_C_GET_WRITE_BUF_SIZE:
543 ret = (long) b->size;
544 break;

546 case BIO_C_MAKE_BIO_PAIR:
547 {
548 BIO *other_bio = ptr;
549
550 if (bio_make_pair(bio, other_bio))
551 ret = 1;
552 else
553 ret = 0;
554 }
555 break;
556
557 case BIO_C_DESTROY_BIO_PAIR:
558 /* Affects both BIOs in the pair -- call just once!
559 * Or let BIO_free(bio1); BIO_free(bio2); do the job. */
560 bio_destroy_pair(bio);
561 ret = 1;
562 break;

564 case BIO_C_GET_WRITE_GUARANTEE:
565 /* How many bytes can the caller feed to the next write
566 * without having to keep any? */
567 if (b->peer == NULL || b->closed)
568 ret = 0;
569 else
570 ret = (long) b->size - b->len;
571 break;

573 case BIO_C_GET_READ_REQUEST:
574 /* If the peer unsuccessfully tried to read, how many bytes
575 * were requested? (As with BIO_CTRL_PENDING, that number
576 * can usually be treated as boolean.) */
577 ret = (long) b->request;
578 break;

580 case BIO_C_RESET_READ_REQUEST:
581 /* Reset request. (Can be useful after read attempts
582 * at the other side that are meant to be non-blocking,
583 * e.g. when probing SSL_read to see if any data is
584 * available.) */
585 b->request = 0;
586 ret = 1;
587 break;

589 case BIO_C_SHUTDOWN_WR:

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c 10

590 /* similar to shutdown(..., SHUT_WR) */
591 b->closed = 1;
592 ret = 1;
593 break;

595 case BIO_C_NREAD0:
596 /* prepare for non-copying read */
597 ret = (long) bio_nread0(bio, ptr);
598 break;
599
600 case BIO_C_NREAD:
601 /* non-copying read */
602 ret = (long) bio_nread(bio, ptr, (size_t) num);
603 break;
604
605 case BIO_C_NWRITE0:
606 /* prepare for non-copying write */
607 ret = (long) bio_nwrite0(bio, ptr);
608 break;

610 case BIO_C_NWRITE:
611 /* non-copying write */
612 ret = (long) bio_nwrite(bio, ptr, (size_t) num);
613 break;
614

616 /* standard CTRL codes follow */

618 case BIO_CTRL_RESET:
619 if (b->buf != NULL)
620 {
621 b->len = 0;
622 b->offset = 0;
623 }
624 ret = 0;
625 break;

627 case BIO_CTRL_GET_CLOSE:
628 ret = bio->shutdown;
629 break;

631 case BIO_CTRL_SET_CLOSE:
632 bio->shutdown = (int) num;
633 ret = 1;
634 break;

636 case BIO_CTRL_PENDING:
637 if (b->peer != NULL)
638 {
639 struct bio_bio_st *peer_b = b->peer->ptr;
640
641 ret = (long) peer_b->len;
642 }
643 else
644 ret = 0;
645 break;

647 case BIO_CTRL_WPENDING:
648 if (b->buf != NULL)
649 ret = (long) b->len;
650 else
651 ret = 0;
652 break;

654 case BIO_CTRL_DUP:
655 /* See BIO_dup_chain for circumstances we have to expect. */

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c 11

656 {
657 BIO *other_bio = ptr;
658 struct bio_bio_st *other_b;
659
660 assert(other_bio != NULL);
661 other_b = other_bio->ptr;
662 assert(other_b != NULL);
663
664 assert(other_b->buf == NULL); /* other_bio is always fresh */

666 other_b->size = b->size;
667 }

669 ret = 1;
670 break;

672 case BIO_CTRL_FLUSH:
673 ret = 1;
674 break;

676 case BIO_CTRL_EOF:
677 {
678 BIO *other_bio = ptr;
679
680 if (other_bio)
681 {
682 struct bio_bio_st *other_b = other_bio->ptr;
683
684 assert(other_b != NULL);
685 ret = other_b->len == 0 && other_b->closed;
686 }
687 else
688 ret = 1;
689 }
690 break;

692 default:
693 ret = 0;
694 }
695 return ret;
696 }

698 static int bio_puts(BIO *bio, const char *str)
699 {
700 return bio_write(bio, str, strlen(str));
701 }

704 static int bio_make_pair(BIO *bio1, BIO *bio2)
705 {
706 struct bio_bio_st *b1, *b2;

708 assert(bio1 != NULL);
709 assert(bio2 != NULL);

711 b1 = bio1->ptr;
712 b2 = bio2->ptr;
713
714 if (b1->peer != NULL || b2->peer != NULL)
715 {
716 BIOerr(BIO_F_BIO_MAKE_PAIR, BIO_R_IN_USE);
717 return 0;
718 }
719
720 if (b1->buf == NULL)
721 {

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c 12

722 b1->buf = OPENSSL_malloc(b1->size);
723 if (b1->buf == NULL)
724 {
725 BIOerr(BIO_F_BIO_MAKE_PAIR, ERR_R_MALLOC_FAILURE);
726 return 0;
727 }
728 b1->len = 0;
729 b1->offset = 0;
730 }
731
732 if (b2->buf == NULL)
733 {
734 b2->buf = OPENSSL_malloc(b2->size);
735 if (b2->buf == NULL)
736 {
737 BIOerr(BIO_F_BIO_MAKE_PAIR, ERR_R_MALLOC_FAILURE);
738 return 0;
739 }
740 b2->len = 0;
741 b2->offset = 0;
742 }
743
744 b1->peer = bio2;
745 b1->closed = 0;
746 b1->request = 0;
747 b2->peer = bio1;
748 b2->closed = 0;
749 b2->request = 0;

751 bio1->init = 1;
752 bio2->init = 1;

754 return 1;
755 }

757 static void bio_destroy_pair(BIO *bio)
758 {
759 struct bio_bio_st *b = bio->ptr;

761 if (b != NULL)
762 {
763 BIO *peer_bio = b->peer;

765 if (peer_bio != NULL)
766 {
767 struct bio_bio_st *peer_b = peer_bio->ptr;

769 assert(peer_b != NULL);
770 assert(peer_b->peer == bio);

772 peer_b->peer = NULL;
773 peer_bio->init = 0;
774 assert(peer_b->buf != NULL);
775 peer_b->len = 0;
776 peer_b->offset = 0;
777
778 b->peer = NULL;
779 bio->init = 0;
780 assert(b->buf != NULL);
781 b->len = 0;
782 b->offset = 0;
783 }
784 }
785 }
786

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c 13

788 /* Exported convenience functions */
789 int BIO_new_bio_pair(BIO **bio1_p, size_t writebuf1,
790 BIO **bio2_p, size_t writebuf2)
791 {
792 BIO *bio1 = NULL, *bio2 = NULL;
793 long r;
794 int ret = 0;

796 bio1 = BIO_new(BIO_s_bio());
797 if (bio1 == NULL)
798 goto err;
799 bio2 = BIO_new(BIO_s_bio());
800 if (bio2 == NULL)
801 goto err;

803 if (writebuf1)
804 {
805 r = BIO_set_write_buf_size(bio1, writebuf1);
806 if (!r)
807 goto err;
808 }
809 if (writebuf2)
810 {
811 r = BIO_set_write_buf_size(bio2, writebuf2);
812 if (!r)
813 goto err;
814 }

816 r = BIO_make_bio_pair(bio1, bio2);
817 if (!r)
818 goto err;
819 ret = 1;

821 err:
822 if (ret == 0)
823 {
824 if (bio1)
825 {
826 BIO_free(bio1);
827 bio1 = NULL;
828 }
829 if (bio2)
830 {
831 BIO_free(bio2);
832 bio2 = NULL;
833 }
834 }

836 *bio1_p = bio1;
837 *bio2_p = bio2;
838 return ret;
839 }

841 size_t BIO_ctrl_get_write_guarantee(BIO *bio)
842 {
843 return BIO_ctrl(bio, BIO_C_GET_WRITE_GUARANTEE, 0, NULL);
844 }

846 size_t BIO_ctrl_get_read_request(BIO *bio)
847 {
848 return BIO_ctrl(bio, BIO_C_GET_READ_REQUEST, 0, NULL);
849 }

851 int BIO_ctrl_reset_read_request(BIO *bio)
852 {
853 return (BIO_ctrl(bio, BIO_C_RESET_READ_REQUEST, 0, NULL) != 0);

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c 14

854 }

857 /* BIO_nread0/nread/nwrite0/nwrite are available only for BIO pairs for now
858 * (conceivably some other BIOs could allow non-copying reads and writes too.)
859 */
860 int BIO_nread0(BIO *bio, char **buf)
861 {
862 long ret;

864 if (!bio->init)
865 {
866 BIOerr(BIO_F_BIO_NREAD0, BIO_R_UNINITIALIZED);
867 return -2;
868 }

870 ret = BIO_ctrl(bio, BIO_C_NREAD0, 0, buf);
871 if (ret > INT_MAX)
872 return INT_MAX;
873 else
874 return (int) ret;
875 }

877 int BIO_nread(BIO *bio, char **buf, int num)
878 {
879 int ret;

881 if (!bio->init)
882 {
883 BIOerr(BIO_F_BIO_NREAD, BIO_R_UNINITIALIZED);
884 return -2;
885 }

887 ret = (int) BIO_ctrl(bio, BIO_C_NREAD, num, buf);
888 if (ret > 0)
889 bio->num_read += ret;
890 return ret;
891 }

893 int BIO_nwrite0(BIO *bio, char **buf)
894 {
895 long ret;

897 if (!bio->init)
898 {
899 BIOerr(BIO_F_BIO_NWRITE0, BIO_R_UNINITIALIZED);
900 return -2;
901 }

903 ret = BIO_ctrl(bio, BIO_C_NWRITE0, 0, buf);
904 if (ret > INT_MAX)
905 return INT_MAX;
906 else
907 return (int) ret;
908 }

910 int BIO_nwrite(BIO *bio, char **buf, int num)
911 {
912 int ret;

914 if (!bio->init)
915 {
916 BIOerr(BIO_F_BIO_NWRITE, BIO_R_UNINITIALIZED);
917 return -2;
918 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_bio.c 15

920 ret = BIO_ctrl(bio, BIO_C_NWRITE, num, buf);
921 if (ret > 0)
922 bio->num_write += ret;
923 return ret;
924 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_conn.c 1

**
 14935 Fri May 30 18:31:34 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bss_conn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bss_conn.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <errno.h>
61 #define USE_SOCKETS

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_conn.c 2

62 #include "cryptlib.h"
63 #include <openssl/bio.h>

65 #ifndef OPENSSL_NO_SOCK

67 #ifdef OPENSSL_SYS_WIN16
68 #define SOCKET_PROTOCOL 0 /* more microsoft stupidity */
69 #else
70 #define SOCKET_PROTOCOL IPPROTO_TCP
71 #endif

73 #if (defined(OPENSSL_SYS_VMS) && __VMS_VER < 70000000)
74 /* FIONBIO used as a switch to enable ioctl, and that isn’t in VMS < 7.0 */
75 #undef FIONBIO
76 #endif

79 typedef struct bio_connect_st
80 {
81 int state;

83 char *param_hostname;
84 char *param_port;
85 int nbio;

87 unsigned char ip[4];
88 unsigned short port;

90 struct sockaddr_in them;

92 /* int socket; this will be kept in bio->num so that it is
93 * compatible with the bss_sock bio */

95 /* called when the connection is initially made
96 * callback(BIO,state,ret); The callback should return
97 * ’ret’. state is for compatibility with the ssl info_callback */
98 int (*info_callback)(const BIO *bio,int state,int ret);
99 } BIO_CONNECT;

101 static int conn_write(BIO *h, const char *buf, int num);
102 static int conn_read(BIO *h, char *buf, int size);
103 static int conn_puts(BIO *h, const char *str);
104 static long conn_ctrl(BIO *h, int cmd, long arg1, void *arg2);
105 static int conn_new(BIO *h);
106 static int conn_free(BIO *data);
107 static long conn_callback_ctrl(BIO *h, int cmd, bio_info_cb *);

109 static int conn_state(BIO *b, BIO_CONNECT *c);
110 static void conn_close_socket(BIO *data);
111 BIO_CONNECT *BIO_CONNECT_new(void);
112 void BIO_CONNECT_free(BIO_CONNECT *a);

114 static BIO_METHOD methods_connectp=
115 {
116 BIO_TYPE_CONNECT,
117 "socket connect",
118 conn_write,
119 conn_read,
120 conn_puts,
121 NULL, /* connect_gets, */
122 conn_ctrl,
123 conn_new,
124 conn_free,
125 conn_callback_ctrl,
126 };

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_conn.c 3

128 static int conn_state(BIO *b, BIO_CONNECT *c)
129 {
130 int ret= -1,i;
131 unsigned long l;
132 char *p,*q;
133 int (*cb)(const BIO *,int,int)=NULL;

135 if (c->info_callback != NULL)
136 cb=c->info_callback;

138 for (;;)
139 {
140 switch (c->state)
141 {
142 case BIO_CONN_S_BEFORE:
143 p=c->param_hostname;
144 if (p == NULL)
145 {
146 BIOerr(BIO_F_CONN_STATE,BIO_R_NO_HOSTNAME_SPECIF
147 goto exit_loop;
148 }
149 for (; *p != ’\0’; p++)
150 {
151 if ((*p == ’:’) || (*p == ’/’)) break;
152 }

154 i= *p;
155 if ((i == ’:’) || (i == ’/’))
156 {

158 *(p++)=’\0’;
159 if (i == ’:’)
160 {
161 for (q=p; *q; q++)
162 if (*q == ’/’)
163 {
164 *q=’\0’;
165 break;
166 }
167 if (c->param_port != NULL)
168 OPENSSL_free(c->param_port);
169 c->param_port=BUF_strdup(p);
170 }
171 }

173 if (c->param_port == NULL)
174 {
175 BIOerr(BIO_F_CONN_STATE,BIO_R_NO_PORT_SPECIFIED)
176 ERR_add_error_data(2,"host=",c->param_hostname);
177 goto exit_loop;
178 }
179 c->state=BIO_CONN_S_GET_IP;
180 break;

182 case BIO_CONN_S_GET_IP:
183 if (BIO_get_host_ip(c->param_hostname,&(c->ip[0])) <= 0)
184 goto exit_loop;
185 c->state=BIO_CONN_S_GET_PORT;
186 break;

188 case BIO_CONN_S_GET_PORT:
189 if (c->param_port == NULL)
190 {
191 /* abort(); */
192 goto exit_loop;
193 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_conn.c 4

194 else if (BIO_get_port(c->param_port,&c->port) <= 0)
195 goto exit_loop;
196 c->state=BIO_CONN_S_CREATE_SOCKET;
197 break;

199 case BIO_CONN_S_CREATE_SOCKET:
200 /* now setup address */
201 memset((char *)&c->them,0,sizeof(c->them));
202 c->them.sin_family=AF_INET;
203 c->them.sin_port=htons((unsigned short)c->port);
204 l=(unsigned long)
205 ((unsigned long)c->ip[0]<<24L)|
206 ((unsigned long)c->ip[1]<<16L)|
207 ((unsigned long)c->ip[2]<< 8L)|
208 ((unsigned long)c->ip[3]);
209 c->them.sin_addr.s_addr=htonl(l);
210 c->state=BIO_CONN_S_CREATE_SOCKET;

212 ret=socket(AF_INET,SOCK_STREAM,SOCKET_PROTOCOL);
213 if (ret == INVALID_SOCKET)
214 {
215 SYSerr(SYS_F_SOCKET,get_last_socket_error());
216 ERR_add_error_data(4,"host=",c->param_hostname,
217 ":",c->param_port);
218 BIOerr(BIO_F_CONN_STATE,BIO_R_UNABLE_TO_CREATE_S
219 goto exit_loop;
220 }
221 b->num=ret;
222 c->state=BIO_CONN_S_NBIO;
223 break;

225 case BIO_CONN_S_NBIO:
226 if (c->nbio)
227 {
228 if (!BIO_socket_nbio(b->num,1))
229 {
230 BIOerr(BIO_F_CONN_STATE,BIO_R_ERROR_SETT
231 ERR_add_error_data(4,"host=",
232 c->param_hostname,
233 ":",c->param_port);
234 goto exit_loop;
235 }
236 }
237 c->state=BIO_CONN_S_CONNECT;

239 #if defined(SO_KEEPALIVE) && !defined(OPENSSL_SYS_MPE)
240 i=1;
241 i=setsockopt(b->num,SOL_SOCKET,SO_KEEPALIVE,(char *)&i,s
242 if (i < 0)
243 {
244 SYSerr(SYS_F_SOCKET,get_last_socket_error());
245 ERR_add_error_data(4,"host=",c->param_hostname,
246 ":",c->param_port);
247 BIOerr(BIO_F_CONN_STATE,BIO_R_KEEPALIVE);
248 goto exit_loop;
249 }
250 #endif
251 break;

253 case BIO_CONN_S_CONNECT:
254 BIO_clear_retry_flags(b);
255 ret=connect(b->num,
256 (struct sockaddr *)&c->them,
257 sizeof(c->them));
258 b->retry_reason=0;
259 if (ret < 0)

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_conn.c 5

260 {
261 if (BIO_sock_should_retry(ret))
262 {
263 BIO_set_retry_special(b);
264 c->state=BIO_CONN_S_BLOCKED_CONNECT;
265 b->retry_reason=BIO_RR_CONNECT;
266 }
267 else
268 {
269 SYSerr(SYS_F_CONNECT,get_last_socket_err
270 ERR_add_error_data(4,"host=",
271 c->param_hostname,
272 ":",c->param_port);
273 BIOerr(BIO_F_CONN_STATE,BIO_R_CONNECT_ER
274 }
275 goto exit_loop;
276 }
277 else
278 c->state=BIO_CONN_S_OK;
279 break;

281 case BIO_CONN_S_BLOCKED_CONNECT:
282 i=BIO_sock_error(b->num);
283 if (i)
284 {
285 BIO_clear_retry_flags(b);
286 SYSerr(SYS_F_CONNECT,i);
287 ERR_add_error_data(4,"host=",
288 c->param_hostname,
289 ":",c->param_port);
290 BIOerr(BIO_F_CONN_STATE,BIO_R_NBIO_CONNECT_ERROR
291 ret=0;
292 goto exit_loop;
293 }
294 else
295 c->state=BIO_CONN_S_OK;
296 break;

298 case BIO_CONN_S_OK:
299 ret=1;
300 goto exit_loop;
301 default:
302 /* abort(); */
303 goto exit_loop;
304 }

306 if (cb != NULL)
307 {
308 if (!(ret=cb((BIO *)b,c->state,ret)))
309 goto end;
310 }
311 }

313 /* Loop does not exit */
314 exit_loop:
315 if (cb != NULL)
316 ret=cb((BIO *)b,c->state,ret);
317 end:
318 return(ret);
319 }

321 BIO_CONNECT *BIO_CONNECT_new(void)
322 {
323 BIO_CONNECT *ret;

325 if ((ret=(BIO_CONNECT *)OPENSSL_malloc(sizeof(BIO_CONNECT))) == NULL)

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_conn.c 6

326 return(NULL);
327 ret->state=BIO_CONN_S_BEFORE;
328 ret->param_hostname=NULL;
329 ret->param_port=NULL;
330 ret->info_callback=NULL;
331 ret->nbio=0;
332 ret->ip[0]=0;
333 ret->ip[1]=0;
334 ret->ip[2]=0;
335 ret->ip[3]=0;
336 ret->port=0;
337 memset((char *)&ret->them,0,sizeof(ret->them));
338 return(ret);
339 }

341 void BIO_CONNECT_free(BIO_CONNECT *a)
342 {
343 if(a == NULL)
344 return;

346 if (a->param_hostname != NULL)
347 OPENSSL_free(a->param_hostname);
348 if (a->param_port != NULL)
349 OPENSSL_free(a->param_port);
350 OPENSSL_free(a);
351 }

353 BIO_METHOD *BIO_s_connect(void)
354 {
355 return(&methods_connectp);
356 }

358 static int conn_new(BIO *bi)
359 {
360 bi->init=0;
361 bi->num=INVALID_SOCKET;
362 bi->flags=0;
363 if ((bi->ptr=(char *)BIO_CONNECT_new()) == NULL)
364 return(0);
365 else
366 return(1);
367 }

369 static void conn_close_socket(BIO *bio)
370 {
371 BIO_CONNECT *c;

373 c=(BIO_CONNECT *)bio->ptr;
374 if (bio->num != INVALID_SOCKET)
375 {
376 /* Only do a shutdown if things were established */
377 if (c->state == BIO_CONN_S_OK)
378 shutdown(bio->num,2);
379 closesocket(bio->num);
380 bio->num=INVALID_SOCKET;
381 }
382 }

384 static int conn_free(BIO *a)
385 {
386 BIO_CONNECT *data;

388 if (a == NULL) return(0);
389 data=(BIO_CONNECT *)a->ptr;
390
391 if (a->shutdown)

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_conn.c 7

392 {
393 conn_close_socket(a);
394 BIO_CONNECT_free(data);
395 a->ptr=NULL;
396 a->flags=0;
397 a->init=0;
398 }
399 return(1);
400 }
401
402 static int conn_read(BIO *b, char *out, int outl)
403 {
404 int ret=0;
405 BIO_CONNECT *data;

407 data=(BIO_CONNECT *)b->ptr;
408 if (data->state != BIO_CONN_S_OK)
409 {
410 ret=conn_state(b,data);
411 if (ret <= 0)
412 return(ret);
413 }

415 if (out != NULL)
416 {
417 clear_socket_error();
418 ret=readsocket(b->num,out,outl);
419 BIO_clear_retry_flags(b);
420 if (ret <= 0)
421 {
422 if (BIO_sock_should_retry(ret))
423 BIO_set_retry_read(b);
424 }
425 }
426 return(ret);
427 }

429 static int conn_write(BIO *b, const char *in, int inl)
430 {
431 int ret;
432 BIO_CONNECT *data;

434 data=(BIO_CONNECT *)b->ptr;
435 if (data->state != BIO_CONN_S_OK)
436 {
437 ret=conn_state(b,data);
438 if (ret <= 0) return(ret);
439 }

441 clear_socket_error();
442 ret=writesocket(b->num,in,inl);
443 BIO_clear_retry_flags(b);
444 if (ret <= 0)
445 {
446 if (BIO_sock_should_retry(ret))
447 BIO_set_retry_write(b);
448 }
449 return(ret);
450 }

452 static long conn_ctrl(BIO *b, int cmd, long num, void *ptr)
453 {
454 BIO *dbio;
455 int *ip;
456 const char **pptr;
457 long ret=1;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_conn.c 8

458 BIO_CONNECT *data;

460 data=(BIO_CONNECT *)b->ptr;

462 switch (cmd)
463 {
464 case BIO_CTRL_RESET:
465 ret=0;
466 data->state=BIO_CONN_S_BEFORE;
467 conn_close_socket(b);
468 b->flags=0;
469 break;
470 case BIO_C_DO_STATE_MACHINE:
471 /* use this one to start the connection */
472 if (data->state != BIO_CONN_S_OK)
473 ret=(long)conn_state(b,data);
474 else
475 ret=1;
476 break;
477 case BIO_C_GET_CONNECT:
478 if (ptr != NULL)
479 {
480 pptr=(const char **)ptr;
481 if (num == 0)
482 {
483 *pptr=data->param_hostname;

485 }
486 else if (num == 1)
487 {
488 *pptr=data->param_port;
489 }
490 else if (num == 2)
491 {
492 *pptr= (char *)&(data->ip[0]);
493 }
494 else if (num == 3)
495 {
496 *((int *)ptr)=data->port;
497 }
498 if ((!b->init) || (ptr == NULL))
499 *pptr="not initialized";
500 ret=1;
501 }
502 break;
503 case BIO_C_SET_CONNECT:
504 if (ptr != NULL)
505 {
506 b->init=1;
507 if (num == 0)
508 {
509 if (data->param_hostname != NULL)
510 OPENSSL_free(data->param_hostname);
511 data->param_hostname=BUF_strdup(ptr);
512 }
513 else if (num == 1)
514 {
515 if (data->param_port != NULL)
516 OPENSSL_free(data->param_port);
517 data->param_port=BUF_strdup(ptr);
518 }
519 else if (num == 2)
520 {
521 char buf[16];
522 unsigned char *p = ptr;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_conn.c 9

524 BIO_snprintf(buf,sizeof buf,"%d.%d.%d.%d",
525 p[0],p[1],p[2],p[3]);
526 if (data->param_hostname != NULL)
527 OPENSSL_free(data->param_hostname);
528 data->param_hostname=BUF_strdup(buf);
529 memcpy(&(data->ip[0]),ptr,4);
530 }
531 else if (num == 3)
532 {
533 char buf[DECIMAL_SIZE(int)+1];

535 BIO_snprintf(buf,sizeof buf,"%d",*(int *)ptr);
536 if (data->param_port != NULL)
537 OPENSSL_free(data->param_port);
538 data->param_port=BUF_strdup(buf);
539 data->port= *(int *)ptr;
540 }
541 }
542 break;
543 case BIO_C_SET_NBIO:
544 data->nbio=(int)num;
545 break;
546 case BIO_C_GET_FD:
547 if (b->init)
548 {
549 ip=(int *)ptr;
550 if (ip != NULL)
551 *ip=b->num;
552 ret=b->num;
553 }
554 else
555 ret= -1;
556 break;
557 case BIO_CTRL_GET_CLOSE:
558 ret=b->shutdown;
559 break;
560 case BIO_CTRL_SET_CLOSE:
561 b->shutdown=(int)num;
562 break;
563 case BIO_CTRL_PENDING:
564 case BIO_CTRL_WPENDING:
565 ret=0;
566 break;
567 case BIO_CTRL_FLUSH:
568 break;
569 case BIO_CTRL_DUP:
570 {
571 dbio=(BIO *)ptr;
572 if (data->param_port)
573 BIO_set_conn_port(dbio,data->param_port);
574 if (data->param_hostname)
575 BIO_set_conn_hostname(dbio,data->param_hostname);
576 BIO_set_nbio(dbio,data->nbio);
577 /* FIXME: the cast of the function seems unlikely to be a good i
578 (void)BIO_set_info_callback(dbio,(bio_info_cb *)data->info_callb
579 }
580 break;
581 case BIO_CTRL_SET_CALLBACK:
582 {
583 #if 0 /* FIXME: Should this be used? -- Richard Levitte */
584 BIOerr(BIO_F_CONN_CTRL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
585 ret = -1;
586 #else
587 ret=0;
588 #endif
589 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_conn.c 10

590 break;
591 case BIO_CTRL_GET_CALLBACK:
592 {
593 int (**fptr)(const BIO *bio,int state,int xret);

595 fptr=(int (**)(const BIO *bio,int state,int xret))ptr;
596 *fptr=data->info_callback;
597 }
598 break;
599 default:
600 ret=0;
601 break;
602 }
603 return(ret);
604 }

606 static long conn_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp)
607 {
608 long ret=1;
609 BIO_CONNECT *data;

611 data=(BIO_CONNECT *)b->ptr;

613 switch (cmd)
614 {
615 case BIO_CTRL_SET_CALLBACK:
616 {
617 data->info_callback=(int (*)(const struct bio_st *, int, int))fp
618 }
619 break;
620 default:
621 ret=0;
622 break;
623 }
624 return(ret);
625 }

627 static int conn_puts(BIO *bp, const char *str)
628 {
629 int n,ret;

631 n=strlen(str);
632 ret=conn_write(bp,str,n);
633 return(ret);
634 }

636 BIO *BIO_new_connect(char *str)
637 {
638 BIO *ret;

640 ret=BIO_new(BIO_s_connect());
641 if (ret == NULL) return(NULL);
642 if (BIO_set_conn_hostname(ret,str))
643 return(ret);
644 else
645 {
646 BIO_free(ret);
647 return(NULL);
648 }
649 }

651 #endif

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 1

**
 47447 Fri May 30 18:31:34 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bio_dgram.c */
2 /*
3 * DTLS implementation written by Nagendra Modadugu
4 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
5 */
6 /* ==
7 * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * openssl-core@OpenSSL.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 2

62 #include <errno.h>
63 #define USE_SOCKETS
64 #include "cryptlib.h"

66 #include <openssl/bio.h>
67 #ifndef OPENSSL_NO_DGRAM

69 #if defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VMS)
70 #include <sys/timeb.h>
71 #endif

73 #ifndef OPENSSL_NO_SCTP
74 #include <netinet/sctp.h>
75 #include <fcntl.h>
76 #define OPENSSL_SCTP_DATA_CHUNK_TYPE 0x00
77 #define OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE 0xc0
78 #endif

80 #if defined(OPENSSL_SYS_LINUX) && !defined(IP_MTU)
81 #define IP_MTU 14 /* linux is lame */
82 #endif

84 #if defined(__FreeBSD__) && defined(IN6_IS_ADDR_V4MAPPED)
85 /* Standard definition causes type-punning problems. */
86 #undef IN6_IS_ADDR_V4MAPPED
87 #define s6_addr32 __u6_addr.__u6_addr32
88 #define IN6_IS_ADDR_V4MAPPED(a) \
89 (((a)->s6_addr32[0] == 0) && \
90 ((a)->s6_addr32[1] == 0) && \
91 ((a)->s6_addr32[2] == htonl(0x0000ffff)))
92 #endif

94 #ifdef WATT32
95 #define sock_write SockWrite /* Watt-32 uses same names */
96 #define sock_read SockRead
97 #define sock_puts SockPuts
98 #endif

100 static int dgram_write(BIO *h, const char *buf, int num);
101 static int dgram_read(BIO *h, char *buf, int size);
102 static int dgram_puts(BIO *h, const char *str);
103 static long dgram_ctrl(BIO *h, int cmd, long arg1, void *arg2);
104 static int dgram_new(BIO *h);
105 static int dgram_free(BIO *data);
106 static int dgram_clear(BIO *bio);

108 #ifndef OPENSSL_NO_SCTP
109 static int dgram_sctp_write(BIO *h, const char *buf, int num);
110 static int dgram_sctp_read(BIO *h, char *buf, int size);
111 static int dgram_sctp_puts(BIO *h, const char *str);
112 static long dgram_sctp_ctrl(BIO *h, int cmd, long arg1, void *arg2);
113 static int dgram_sctp_new(BIO *h);
114 static int dgram_sctp_free(BIO *data);
115 #ifdef SCTP_AUTHENTICATION_EVENT
116 static void dgram_sctp_handle_auth_free_key_event(BIO *b, union sctp_notificatio
117 #endif
118 #endif

120 static int BIO_dgram_should_retry(int s);

122 static void get_current_time(struct timeval *t);

124 static BIO_METHOD methods_dgramp=
125 {
126 BIO_TYPE_DGRAM,
127 "datagram socket",

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 3

128 dgram_write,
129 dgram_read,
130 dgram_puts,
131 NULL, /* dgram_gets, */
132 dgram_ctrl,
133 dgram_new,
134 dgram_free,
135 NULL,
136 };

138 #ifndef OPENSSL_NO_SCTP
139 static BIO_METHOD methods_dgramp_sctp=
140 {
141 BIO_TYPE_DGRAM_SCTP,
142 "datagram sctp socket",
143 dgram_sctp_write,
144 dgram_sctp_read,
145 dgram_sctp_puts,
146 NULL, /* dgram_gets, */
147 dgram_sctp_ctrl,
148 dgram_sctp_new,
149 dgram_sctp_free,
150 NULL,
151 };
152 #endif

154 typedef struct bio_dgram_data_st
155 {
156 union {
157 struct sockaddr sa;
158 struct sockaddr_in sa_in;
159 #if OPENSSL_USE_IPV6
160 struct sockaddr_in6 sa_in6;
161 #endif
162 } peer;
163 unsigned int connected;
164 unsigned int _errno;
165 unsigned int mtu;
166 struct timeval next_timeout;
167 struct timeval socket_timeout;
168 } bio_dgram_data;

170 #ifndef OPENSSL_NO_SCTP
171 typedef struct bio_dgram_sctp_save_message_st
172 {
173 BIO *bio;
174 char *data;
175 int length;
176 } bio_dgram_sctp_save_message;

178 typedef struct bio_dgram_sctp_data_st
179 {
180 union {
181 struct sockaddr sa;
182 struct sockaddr_in sa_in;
183 #if OPENSSL_USE_IPV6
184 struct sockaddr_in6 sa_in6;
185 #endif
186 } peer;
187 unsigned int connected;
188 unsigned int _errno;
189 unsigned int mtu;
190 struct bio_dgram_sctp_sndinfo sndinfo;
191 struct bio_dgram_sctp_rcvinfo rcvinfo;
192 struct bio_dgram_sctp_prinfo prinfo;
193 void (*handle_notifications)(BIO *bio, void *context, void *buf);

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 4

194 void* notification_context;
195 int in_handshake;
196 int ccs_rcvd;
197 int ccs_sent;
198 int save_shutdown;
199 int peer_auth_tested;
200 bio_dgram_sctp_save_message saved_message;
201 } bio_dgram_sctp_data;
202 #endif

204 BIO_METHOD *BIO_s_datagram(void)
205 {
206 return(&methods_dgramp);
207 }

209 BIO *BIO_new_dgram(int fd, int close_flag)
210 {
211 BIO *ret;

213 ret=BIO_new(BIO_s_datagram());
214 if (ret == NULL) return(NULL);
215 BIO_set_fd(ret,fd,close_flag);
216 return(ret);
217 }

219 static int dgram_new(BIO *bi)
220 {
221 bio_dgram_data *data = NULL;

223 bi->init=0;
224 bi->num=0;
225 data = OPENSSL_malloc(sizeof(bio_dgram_data));
226 if (data == NULL)
227 return 0;
228 memset(data, 0x00, sizeof(bio_dgram_data));
229 bi->ptr = data;

231 bi->flags=0;
232 return(1);
233 }

235 static int dgram_free(BIO *a)
236 {
237 bio_dgram_data *data;

239 if (a == NULL) return(0);
240 if (! dgram_clear(a))
241 return 0;

243 data = (bio_dgram_data *)a->ptr;
244 if(data != NULL) OPENSSL_free(data);

246 return(1);
247 }

249 static int dgram_clear(BIO *a)
250 {
251 if (a == NULL) return(0);
252 if (a->shutdown)
253 {
254 if (a->init)
255 {
256 SHUTDOWN2(a->num);
257 }
258 a->init=0;
259 a->flags=0;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 5

260 }
261 return(1);
262 }

264 static void dgram_adjust_rcv_timeout(BIO *b)
265 {
266 #if defined(SO_RCVTIMEO)
267 bio_dgram_data *data = (bio_dgram_data *)b->ptr;
268 union { size_t s; int i; } sz = {0};

270 /* Is a timer active? */
271 if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0)
272 {
273 struct timeval timenow, timeleft;

275 /* Read current socket timeout */
276 #ifdef OPENSSL_SYS_WINDOWS
277 int timeout;

279 sz.i = sizeof(timeout);
280 if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
281 (void*)&timeout, &sz.i) < 0)
282 { perror("getsockopt"); }
283 else
284 {
285 data->socket_timeout.tv_sec = timeout / 1000;
286 data->socket_timeout.tv_usec = (timeout % 1000) * 1000;
287 }
288 #else
289 sz.i = sizeof(data->socket_timeout);
290 if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
291 &(data->socket_timeout), (void *
292 { perror("getsockopt"); }
293 else if (sizeof(sz.s)!=sizeof(sz.i) && sz.i==0)
294 OPENSSL_assert(sz.s<=sizeof(data->socket_timeout));
295 #endif

297 /* Get current time */
298 get_current_time(&timenow);

300 /* Calculate time left until timer expires */
301 memcpy(&timeleft, &(data->next_timeout), sizeof(struct timeval))
302 timeleft.tv_sec -= timenow.tv_sec;
303 timeleft.tv_usec -= timenow.tv_usec;
304 if (timeleft.tv_usec < 0)
305 {
306 timeleft.tv_sec--;
307 timeleft.tv_usec += 1000000;
308 }

310 if (timeleft.tv_sec < 0)
311 {
312 timeleft.tv_sec = 0;
313 timeleft.tv_usec = 1;
314 }

316 /* Adjust socket timeout if next handhake message timer
317 * will expire earlier.
318 */
319 if ((data->socket_timeout.tv_sec == 0 && data->socket_timeout.tv
320 (data->socket_timeout.tv_sec > timeleft.tv_sec) ||
321 (data->socket_timeout.tv_sec == timeleft.tv_sec &&
322 data->socket_timeout.tv_usec >= timeleft.tv_usec))
323 {
324 #ifdef OPENSSL_SYS_WINDOWS
325 timeout = timeleft.tv_sec * 1000 + timeleft.tv_usec / 10

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 6

326 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
327 (void*)&timeout, sizeof(timeo
328 { perror("setsockopt"); }
329 #else
330 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &timele
331 sizeof(struct timeval))
332 { perror("setsockopt"); }
333 #endif
334 }
335 }
336 #endif
337 }

339 static void dgram_reset_rcv_timeout(BIO *b)
340 {
341 #if defined(SO_RCVTIMEO)
342 bio_dgram_data *data = (bio_dgram_data *)b->ptr;

344 /* Is a timer active? */
345 if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0)
346 {
347 #ifdef OPENSSL_SYS_WINDOWS
348 int timeout = data->socket_timeout.tv_sec * 1000 +
349 data->socket_timeout.tv_usec / 1000;
350 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
351 (void*)&timeout, sizeof(timeout)) < 0
352 { perror("setsockopt"); }
353 #else
354 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &(data->socket_
355 sizeof(struct timeval)) < 0)
356 { perror("setsockopt"); }
357 #endif
358 }
359 #endif
360 }

362 static int dgram_read(BIO *b, char *out, int outl)
363 {
364 int ret=0;
365 bio_dgram_data *data = (bio_dgram_data *)b->ptr;

367 struct {
368 /*
369 * See commentary in b_sock.c. <appro>
370 */
371 union { size_t s; int i; } len;
372 union {
373 struct sockaddr sa;
374 struct sockaddr_in sa_in;
375 #if OPENSSL_USE_IPV6
376 struct sockaddr_in6 sa_in6;
377 #endif
378 } peer;
379 } sa;

381 sa.len.s=0;
382 sa.len.i=sizeof(sa.peer);

384 if (out != NULL)
385 {
386 clear_socket_error();
387 memset(&sa.peer, 0x00, sizeof(sa.peer));
388 dgram_adjust_rcv_timeout(b);
389 ret=recvfrom(b->num,out,outl,0,&sa.peer.sa,(void *)&sa.len);
390 if (sizeof(sa.len.i)!=sizeof(sa.len.s) && sa.len.i==0)
391 {

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 7

392 OPENSSL_assert(sa.len.s<=sizeof(sa.peer));
393 sa.len.i = (int)sa.len.s;
394 }

396 if (! data->connected && ret >= 0)
397 BIO_ctrl(b, BIO_CTRL_DGRAM_SET_PEER, 0, &sa.peer);

399 BIO_clear_retry_flags(b);
400 if (ret < 0)
401 {
402 if (BIO_dgram_should_retry(ret))
403 {
404 BIO_set_retry_read(b);
405 data->_errno = get_last_socket_error();
406 }
407 }

409 dgram_reset_rcv_timeout(b);
410 }
411 return(ret);
412 }

414 static int dgram_write(BIO *b, const char *in, int inl)
415 {
416 int ret;
417 bio_dgram_data *data = (bio_dgram_data *)b->ptr;
418 clear_socket_error();

420 if (data->connected)
421 ret=writesocket(b->num,in,inl);
422 else
423 {
424 int peerlen = sizeof(data->peer);

426 if (data->peer.sa.sa_family == AF_INET)
427 peerlen = sizeof(data->peer.sa_in);
428 #if OPENSSL_USE_IPV6
429 else if (data->peer.sa.sa_family == AF_INET6)
430 peerlen = sizeof(data->peer.sa_in6);
431 #endif
432 #if defined(NETWARE_CLIB) && defined(NETWARE_BSDSOCK)
433 ret=sendto(b->num, (char *)in, inl, 0, &data->peer.sa, peerlen);
434 #else
435 ret=sendto(b->num, in, inl, 0, &data->peer.sa, peerlen);
436 #endif
437 }

439 BIO_clear_retry_flags(b);
440 if (ret <= 0)
441 {
442 if (BIO_dgram_should_retry(ret))
443 {
444 BIO_set_retry_write(b);
445 data->_errno = get_last_socket_error();

447 #if 0 /* higher layers are responsible for querying MTU, if necessary */
448 if (data->_errno == EMSGSIZE)
449 /* retrieve the new MTU */
450 BIO_ctrl(b, BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
451 #endif
452 }
453 }
454 return(ret);
455 }

457 static long dgram_ctrl(BIO *b, int cmd, long num, void *ptr)

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 8

458 {
459 long ret=1;
460 int *ip;
461 struct sockaddr *to = NULL;
462 bio_dgram_data *data = NULL;
463 #if defined(OPENSSL_SYS_LINUX) && (defined(IP_MTU_DISCOVER) || defined(IP_MTU))
464 int sockopt_val = 0;
465 socklen_t sockopt_len; /* assume that system supporting IP_MTU is
466 * modern enough to define socklen_t */
467 socklen_t addr_len;
468 union {
469 struct sockaddr sa;
470 struct sockaddr_in s4;
471 #if OPENSSL_USE_IPV6
472 struct sockaddr_in6 s6;
473 #endif
474 } addr;
475 #endif

477 data = (bio_dgram_data *)b->ptr;

479 switch (cmd)
480 {
481 case BIO_CTRL_RESET:
482 num=0;
483 case BIO_C_FILE_SEEK:
484 ret=0;
485 break;
486 case BIO_C_FILE_TELL:
487 case BIO_CTRL_INFO:
488 ret=0;
489 break;
490 case BIO_C_SET_FD:
491 dgram_clear(b);
492 b->num= *((int *)ptr);
493 b->shutdown=(int)num;
494 b->init=1;
495 break;
496 case BIO_C_GET_FD:
497 if (b->init)
498 {
499 ip=(int *)ptr;
500 if (ip != NULL) *ip=b->num;
501 ret=b->num;
502 }
503 else
504 ret= -1;
505 break;
506 case BIO_CTRL_GET_CLOSE:
507 ret=b->shutdown;
508 break;
509 case BIO_CTRL_SET_CLOSE:
510 b->shutdown=(int)num;
511 break;
512 case BIO_CTRL_PENDING:
513 case BIO_CTRL_WPENDING:
514 ret=0;
515 break;
516 case BIO_CTRL_DUP:
517 case BIO_CTRL_FLUSH:
518 ret=1;
519 break;
520 case BIO_CTRL_DGRAM_CONNECT:
521 to = (struct sockaddr *)ptr;
522 #if 0
523 if (connect(b->num, to, sizeof(struct sockaddr)) < 0)

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 9

524 { perror("connect"); ret = 0; }
525 else
526 {
527 #endif
528 switch (to->sa_family)
529 {
530 case AF_INET:
531 memcpy(&data->peer,to,sizeof(data->peer.
532 break;
533 #if OPENSSL_USE_IPV6
534 case AF_INET6:
535 memcpy(&data->peer,to,sizeof(data->peer.
536 break;
537 #endif
538 default:
539 memcpy(&data->peer,to,sizeof(data->peer.
540 break;
541 }
542 #if 0
543 }
544 #endif
545 break;
546 /* (Linux)kernel sets DF bit on outgoing IP packets */
547 case BIO_CTRL_DGRAM_MTU_DISCOVER:
548 #if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU_DISCOVER) && defined(IP_PMTUDIS
549 addr_len = (socklen_t)sizeof(addr);
550 memset((void *)&addr, 0, sizeof(addr));
551 if (getsockname(b->num, &addr.sa, &addr_len) < 0)
552 {
553 ret = 0;
554 break;
555 }
556 switch (addr.sa.sa_family)
557 {
558 case AF_INET:
559 sockopt_val = IP_PMTUDISC_DO;
560 if ((ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVE
561 &sockopt_val, sizeof(sockopt_val))) < 0)
562 perror("setsockopt");
563 break;
564 #if OPENSSL_USE_IPV6 && defined(IPV6_MTU_DISCOVER) && defined(IPV6_PMTUDISC_DO)
565 case AF_INET6:
566 sockopt_val = IPV6_PMTUDISC_DO;
567 if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DIS
568 &sockopt_val, sizeof(sockopt_val))) < 0)
569 perror("setsockopt");
570 break;
571 #endif
572 default:
573 ret = -1;
574 break;
575 }
576 ret = -1;
577 #else
578 break;
579 #endif
580 case BIO_CTRL_DGRAM_QUERY_MTU:
581 #if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU)
582 addr_len = (socklen_t)sizeof(addr);
583 memset((void *)&addr, 0, sizeof(addr));
584 if (getsockname(b->num, &addr.sa, &addr_len) < 0)
585 {
586 ret = 0;
587 break;
588 }
589 sockopt_len = sizeof(sockopt_val);

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 10

590 switch (addr.sa.sa_family)
591 {
592 case AF_INET:
593 if ((ret = getsockopt(b->num, IPPROTO_IP, IP_MTU, (void
594 &sockopt_len)) < 0 || sockopt_val < 0)
595 {
596 ret = 0;
597 }
598 else
599 {
600 /* we assume that the transport protocol is UDP
601 * IP options are used.
602 */
603 data->mtu = sockopt_val - 8 - 20;
604 ret = data->mtu;
605 }
606 break;
607 #if OPENSSL_USE_IPV6 && defined(IPV6_MTU)
608 case AF_INET6:
609 if ((ret = getsockopt(b->num, IPPROTO_IPV6, IPV6_MTU, (v
610 &sockopt_len)) < 0 || sockopt_val < 0)
611 {
612 ret = 0;
613 }
614 else
615 {
616 /* we assume that the transport protocol is UDP
617 * IPV6 options are used.
618 */
619 data->mtu = sockopt_val - 8 - 40;
620 ret = data->mtu;
621 }
622 break;
623 #endif
624 default:
625 ret = 0;
626 break;
627 }
628 #else
629 ret = 0;
630 #endif
631 break;
632 case BIO_CTRL_DGRAM_GET_FALLBACK_MTU:
633 switch (data->peer.sa.sa_family)
634 {
635 case AF_INET:
636 ret = 576 - 20 - 8;
637 break;
638 #if OPENSSL_USE_IPV6
639 case AF_INET6:
640 #ifdef IN6_IS_ADDR_V4MAPPED
641 if (IN6_IS_ADDR_V4MAPPED(&data->peer.sa_in6.sin6
642 ret = 576 - 20 - 8;
643 else
644 #endif
645 ret = 1280 - 40 - 8;
646 break;
647 #endif
648 default:
649 ret = 576 - 20 - 8;
650 break;
651 }
652 break;
653 case BIO_CTRL_DGRAM_GET_MTU:
654 return data->mtu;
655 break;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 11

656 case BIO_CTRL_DGRAM_SET_MTU:
657 data->mtu = num;
658 ret = num;
659 break;
660 case BIO_CTRL_DGRAM_SET_CONNECTED:
661 to = (struct sockaddr *)ptr;

663 if (to != NULL)
664 {
665 data->connected = 1;
666 switch (to->sa_family)
667 {
668 case AF_INET:
669 memcpy(&data->peer,to,sizeof(data->peer.
670 break;
671 #if OPENSSL_USE_IPV6
672 case AF_INET6:
673 memcpy(&data->peer,to,sizeof(data->peer.
674 break;
675 #endif
676 default:
677 memcpy(&data->peer,to,sizeof(data->peer.
678 break;
679 }
680 }
681 else
682 {
683 data->connected = 0;
684 memset(&(data->peer), 0x00, sizeof(data->peer));
685 }
686 break;
687 case BIO_CTRL_DGRAM_GET_PEER:
688 switch (data->peer.sa.sa_family)
689 {
690 case AF_INET:
691 ret=sizeof(data->peer.sa_in);
692 break;
693 #if OPENSSL_USE_IPV6
694 case AF_INET6:
695 ret=sizeof(data->peer.sa_in6);
696 break;
697 #endif
698 default:
699 ret=sizeof(data->peer.sa);
700 break;
701 }
702 if (num==0 || num>ret)
703 num=ret;
704 memcpy(ptr,&data->peer,(ret=num));
705 break;
706 case BIO_CTRL_DGRAM_SET_PEER:
707 to = (struct sockaddr *) ptr;
708 switch (to->sa_family)
709 {
710 case AF_INET:
711 memcpy(&data->peer,to,sizeof(data->peer.sa_in));
712 break;
713 #if OPENSSL_USE_IPV6
714 case AF_INET6:
715 memcpy(&data->peer,to,sizeof(data->peer.sa_in6))
716 break;
717 #endif
718 default:
719 memcpy(&data->peer,to,sizeof(data->peer.sa));
720 break;
721 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 12

722 break;
723 case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
724 memcpy(&(data->next_timeout), ptr, sizeof(struct timeval));
725 break;
726 #if defined(SO_RCVTIMEO)
727 case BIO_CTRL_DGRAM_SET_RECV_TIMEOUT:
728 #ifdef OPENSSL_SYS_WINDOWS
729 {
730 struct timeval *tv = (struct timeval *)ptr;
731 int timeout = tv->tv_sec * 1000 + tv->tv_usec/1000;
732 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
733 (void*)&timeout, sizeof(timeout)) < 0)
734 { perror("setsockopt"); ret = -1; }
735 }
736 #else
737 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, ptr,
738 sizeof(struct timeval)) < 0)
739 { perror("setsockopt"); ret = -1; }
740 #endif
741 break;
742 case BIO_CTRL_DGRAM_GET_RECV_TIMEOUT:
743 {
744 union { size_t s; int i; } sz = {0};
745 #ifdef OPENSSL_SYS_WINDOWS
746 int timeout;
747 struct timeval *tv = (struct timeval *)ptr;

749 sz.i = sizeof(timeout);
750 if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
751 (void*)&timeout, &sz.i) < 0)
752 { perror("getsockopt"); ret = -1; }
753 else
754 {
755 tv->tv_sec = timeout / 1000;
756 tv->tv_usec = (timeout % 1000) * 1000;
757 ret = sizeof(*tv);
758 }
759 #else
760 sz.i = sizeof(struct timeval);
761 if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
762 ptr, (void *)&sz) < 0)
763 { perror("getsockopt"); ret = -1; }
764 else if (sizeof(sz.s)!=sizeof(sz.i) && sz.i==0)
765 {
766 OPENSSL_assert(sz.s<=sizeof(struct timeval));
767 ret = (int)sz.s;
768 }
769 else
770 ret = sz.i;
771 #endif
772 }
773 break;
774 #endif
775 #if defined(SO_SNDTIMEO)
776 case BIO_CTRL_DGRAM_SET_SEND_TIMEOUT:
777 #ifdef OPENSSL_SYS_WINDOWS
778 {
779 struct timeval *tv = (struct timeval *)ptr;
780 int timeout = tv->tv_sec * 1000 + tv->tv_usec/1000;
781 if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
782 (void*)&timeout, sizeof(timeout)) < 0)
783 { perror("setsockopt"); ret = -1; }
784 }
785 #else
786 if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, ptr,
787 sizeof(struct timeval)) < 0)

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 13

788 { perror("setsockopt"); ret = -1; }
789 #endif
790 break;
791 case BIO_CTRL_DGRAM_GET_SEND_TIMEOUT:
792 {
793 union { size_t s; int i; } sz = {0};
794 #ifdef OPENSSL_SYS_WINDOWS
795 int timeout;
796 struct timeval *tv = (struct timeval *)ptr;

798 sz.i = sizeof(timeout);
799 if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
800 (void*)&timeout, &sz.i) < 0)
801 { perror("getsockopt"); ret = -1; }
802 else
803 {
804 tv->tv_sec = timeout / 1000;
805 tv->tv_usec = (timeout % 1000) * 1000;
806 ret = sizeof(*tv);
807 }
808 #else
809 sz.i = sizeof(struct timeval);
810 if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
811 ptr, (void *)&sz) < 0)
812 { perror("getsockopt"); ret = -1; }
813 else if (sizeof(sz.s)!=sizeof(sz.i) && sz.i==0)
814 {
815 OPENSSL_assert(sz.s<=sizeof(struct timeval));
816 ret = (int)sz.s;
817 }
818 else
819 ret = sz.i;
820 #endif
821 }
822 break;
823 #endif
824 case BIO_CTRL_DGRAM_GET_SEND_TIMER_EXP:
825 /* fall-through */
826 case BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP:
827 #ifdef OPENSSL_SYS_WINDOWS
828 if (data->_errno == WSAETIMEDOUT)
829 #else
830 if (data->_errno == EAGAIN)
831 #endif
832 {
833 ret = 1;
834 data->_errno = 0;
835 }
836 else
837 ret = 0;
838 break;
839 #ifdef EMSGSIZE
840 case BIO_CTRL_DGRAM_MTU_EXCEEDED:
841 if (data->_errno == EMSGSIZE)
842 {
843 ret = 1;
844 data->_errno = 0;
845 }
846 else
847 ret = 0;
848 break;
849 #endif
850 default:
851 ret=0;
852 break;
853 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 14

854 return(ret);
855 }

857 static int dgram_puts(BIO *bp, const char *str)
858 {
859 int n,ret;

861 n=strlen(str);
862 ret=dgram_write(bp,str,n);
863 return(ret);
864 }

866 #ifndef OPENSSL_NO_SCTP
867 BIO_METHOD *BIO_s_datagram_sctp(void)
868 {
869 return(&methods_dgramp_sctp);
870 }

872 BIO *BIO_new_dgram_sctp(int fd, int close_flag)
873 {
874 BIO *bio;
875 int ret, optval = 20000;
876 int auth_data = 0, auth_forward = 0;
877 unsigned char *p;
878 struct sctp_authchunk auth;
879 struct sctp_authchunks *authchunks;
880 socklen_t sockopt_len;
881 #ifdef SCTP_AUTHENTICATION_EVENT
882 #ifdef SCTP_EVENT
883 struct sctp_event event;
884 #else
885 struct sctp_event_subscribe event;
886 #endif
887 #endif

889 bio=BIO_new(BIO_s_datagram_sctp());
890 if (bio == NULL) return(NULL);
891 BIO_set_fd(bio,fd,close_flag);

893 /* Activate SCTP-AUTH for DATA and FORWARD-TSN chunks */
894 auth.sauth_chunk = OPENSSL_SCTP_DATA_CHUNK_TYPE;
895 ret = setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth, sizeof(struct
896 OPENSSL_assert(ret >= 0);
897 auth.sauth_chunk = OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE;
898 ret = setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth, sizeof(struct
899 OPENSSL_assert(ret >= 0);

901 /* Test if activation was successful. When using accept(),
902 * SCTP-AUTH has to be activated for the listening socket
903 * already, otherwise the connected socket won’t use it. */
904 sockopt_len = (socklen_t)(sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t));
905 authchunks = OPENSSL_malloc(sockopt_len);
906 memset(authchunks, 0, sizeof(sockopt_len));
907 ret = getsockopt(fd, IPPROTO_SCTP, SCTP_LOCAL_AUTH_CHUNKS, authchunks, &
908 OPENSSL_assert(ret >= 0);

910 for (p = (unsigned char*) authchunks->gauth_chunks;
911 p < (unsigned char*) authchunks + sockopt_len;
912 p += sizeof(uint8_t))
913 {
914 if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE) auth_data = 1;
915 if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE) auth_forward
916 }
917
918 OPENSSL_free(authchunks);

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 15

920 OPENSSL_assert(auth_data);
921 OPENSSL_assert(auth_forward);

923 #ifdef SCTP_AUTHENTICATION_EVENT
924 #ifdef SCTP_EVENT
925 memset(&event, 0, sizeof(struct sctp_event));
926 event.se_assoc_id = 0;
927 event.se_type = SCTP_AUTHENTICATION_EVENT;
928 event.se_on = 1;
929 ret = setsockopt(fd, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(struct sct
930 OPENSSL_assert(ret >= 0);
931 #else
932 sockopt_len = (socklen_t) sizeof(struct sctp_event_subscribe);
933 ret = getsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event, &sockopt_len);
934 OPENSSL_assert(ret >= 0);

936 event.sctp_authentication_event = 1;

938 ret = setsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event, sizeof(struct sc
939 OPENSSL_assert(ret >= 0);
940 #endif
941 #endif

943 /* Disable partial delivery by setting the min size
944 * larger than the max record size of 2^14 + 2048 + 13
945 */
946 ret = setsockopt(fd, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT, &optval,
947 OPENSSL_assert(ret >= 0);

949 return(bio);
950 }

952 int BIO_dgram_is_sctp(BIO *bio)
953 {
954 return (BIO_method_type(bio) == BIO_TYPE_DGRAM_SCTP);
955 }

957 static int dgram_sctp_new(BIO *bi)
958 {
959 bio_dgram_sctp_data *data = NULL;

961 bi->init=0;
962 bi->num=0;
963 data = OPENSSL_malloc(sizeof(bio_dgram_sctp_data));
964 if (data == NULL)
965 return 0;
966 memset(data, 0x00, sizeof(bio_dgram_sctp_data));
967 #ifdef SCTP_PR_SCTP_NONE
968 data->prinfo.pr_policy = SCTP_PR_SCTP_NONE;
969 #endif
970 bi->ptr = data;

972 bi->flags=0;
973 return(1);
974 }

976 static int dgram_sctp_free(BIO *a)
977 {
978 bio_dgram_sctp_data *data;

980 if (a == NULL) return(0);
981 if (! dgram_clear(a))
982 return 0;

984 data = (bio_dgram_sctp_data *)a->ptr;
985 if(data != NULL) OPENSSL_free(data);

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 16

987 return(1);
988 }

990 #ifdef SCTP_AUTHENTICATION_EVENT
991 void dgram_sctp_handle_auth_free_key_event(BIO *b, union sctp_notification *snp)
992 {
993 int ret;
994 struct sctp_authkey_event* authkeyevent = &snp->sn_auth_event;

996 if (authkeyevent->auth_indication == SCTP_AUTH_FREE_KEY)
997 {
998 struct sctp_authkeyid authkeyid;

1000 /* delete key */
1001 authkeyid.scact_keynumber = authkeyevent->auth_keynumber;
1002 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY,
1003 &authkeyid, sizeof(struct sctp_authkeyid));
1004 }
1005 }
1006 #endif

1008 static int dgram_sctp_read(BIO *b, char *out, int outl)
1009 {
1010 int ret = 0, n = 0, i, optval;
1011 socklen_t optlen;
1012 bio_dgram_sctp_data *data = (bio_dgram_sctp_data *)b->ptr;
1013 union sctp_notification *snp;
1014 struct msghdr msg;
1015 struct iovec iov;
1016 struct cmsghdr *cmsg;
1017 char cmsgbuf[512];

1019 if (out != NULL)
1020 {
1021 clear_socket_error();

1023 do
1024 {
1025 memset(&data->rcvinfo, 0x00, sizeof(struct bio_dgram_sct
1026 iov.iov_base = out;
1027 iov.iov_len = outl;
1028 msg.msg_name = NULL;
1029 msg.msg_namelen = 0;
1030 msg.msg_iov = &iov;
1031 msg.msg_iovlen = 1;
1032 msg.msg_control = cmsgbuf;
1033 msg.msg_controllen = 512;
1034 msg.msg_flags = 0;
1035 n = recvmsg(b->num, &msg, 0);

1037 if (msg.msg_controllen > 0)
1038 {
1039 for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CM
1040 {
1041 if (cmsg->cmsg_level != IPPROTO_SCTP)
1042 continue;
1043 #ifdef SCTP_RCVINFO
1044 if (cmsg->cmsg_type == SCTP_RCVINFO)
1045 {
1046 struct sctp_rcvinfo *rcvinfo;

1048 rcvinfo = (struct sctp_rcvinfo *
1049 data->rcvinfo.rcv_sid = rcvinfo-
1050 data->rcvinfo.rcv_ssn = rcvinfo-
1051 data->rcvinfo.rcv_flags = rcvinf

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 17

1052 data->rcvinfo.rcv_ppid = rcvinfo
1053 data->rcvinfo.rcv_tsn = rcvinfo-
1054 data->rcvinfo.rcv_cumtsn = rcvin
1055 data->rcvinfo.rcv_context = rcvi
1056 }
1057 #endif
1058 #ifdef SCTP_SNDRCV
1059 if (cmsg->cmsg_type == SCTP_SNDRCV)
1060 {
1061 struct sctp_sndrcvinfo *sndrcvin

1063 sndrcvinfo = (struct sctp_sndrcv
1064 data->rcvinfo.rcv_sid = sndrcvin
1065 data->rcvinfo.rcv_ssn = sndrcvin
1066 data->rcvinfo.rcv_flags = sndrcv
1067 data->rcvinfo.rcv_ppid = sndrcvi
1068 data->rcvinfo.rcv_tsn = sndrcvin
1069 data->rcvinfo.rcv_cumtsn = sndrc
1070 data->rcvinfo.rcv_context = sndr
1071 }
1072 #endif
1073 }
1074 }

1076 if (n <= 0)
1077 {
1078 if (n < 0)
1079 ret = n;
1080 break;
1081 }

1083 if (msg.msg_flags & MSG_NOTIFICATION)
1084 {
1085 snp = (union sctp_notification*) out;
1086 if (snp->sn_header.sn_type == SCTP_SENDER_DRY_EV
1087 {
1088 #ifdef SCTP_EVENT
1089 struct sctp_event event;
1090 #else
1091 struct sctp_event_subscribe event;
1092 socklen_t eventsize;
1093 #endif
1094 /* If a message has been delayed until t
1095 * is dry, it can be sent now.
1096 */
1097 if (data->saved_message.length > 0)
1098 {
1099 dgram_sctp_write(data->saved_mes
1100 data->saved_mes
1101 OPENSSL_free(data->saved_message
1102 data->saved_message.length = 0;
1103 }

1105 /* disable sender dry event */
1106 #ifdef SCTP_EVENT
1107 memset(&event, 0, sizeof(struct sctp_eve
1108 event.se_assoc_id = 0;
1109 event.se_type = SCTP_SENDER_DRY_EVENT;
1110 event.se_on = 0;
1111 i = setsockopt(b->num, IPPROTO_SCTP, SCT
1112 OPENSSL_assert(i >= 0);
1113 #else
1114 eventsize = sizeof(struct sctp_event_sub
1115 i = getsockopt(b->num, IPPROTO_SCTP, SCT
1116 OPENSSL_assert(i >= 0);

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 18

1118 event.sctp_sender_dry_event = 0;

1120 i = setsockopt(b->num, IPPROTO_SCTP, SCT
1121 OPENSSL_assert(i >= 0);
1122 #endif
1123 }

1125 #ifdef SCTP_AUTHENTICATION_EVENT
1126 if (snp->sn_header.sn_type == SCTP_AUTHENTICATIO
1127 dgram_sctp_handle_auth_free_key_event(b,
1128 #endif

1130 if (data->handle_notifications != NULL)
1131 data->handle_notifications(b, data->noti

1133 memset(out, 0, outl);
1134 }
1135 else
1136 ret += n;
1137 }
1138 while ((msg.msg_flags & MSG_NOTIFICATION) && (msg.msg_flags & MS

1140 if (ret > 0 && !(msg.msg_flags & MSG_EOR))
1141 {
1142 /* Partial message read, this should never happen! */

1144 /* The buffer was too small, this means the peer sent
1145 * a message that was larger than allowed. */
1146 if (ret == outl)
1147 return -1;

1149 /* Test if socket buffer can handle max record
1150 * size (2^14 + 2048 + 13)
1151 */
1152 optlen = (socklen_t) sizeof(int);
1153 ret = getsockopt(b->num, SOL_SOCKET, SO_RCVBUF, &optval,
1154 OPENSSL_assert(ret >= 0);
1155 OPENSSL_assert(optval >= 18445);

1157 /* Test if SCTP doesn’t partially deliver below
1158 * max record size (2^14 + 2048 + 13)
1159 */
1160 optlen = (socklen_t) sizeof(int);
1161 ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_PARTIAL_DELI
1162 &optval, &optlen);
1163 OPENSSL_assert(ret >= 0);
1164 OPENSSL_assert(optval >= 18445);

1166 /* Partially delivered notification??? Probably a bug...
1167 OPENSSL_assert(!(msg.msg_flags & MSG_NOTIFICATION));

1169 /* Everything seems ok till now, so it’s most likely
1170 * a message dropped by PR-SCTP.
1171 */
1172 memset(out, 0, outl);
1173 BIO_set_retry_read(b);
1174 return -1;
1175 }

1177 BIO_clear_retry_flags(b);
1178 if (ret < 0)
1179 {
1180 if (BIO_dgram_should_retry(ret))
1181 {
1182 BIO_set_retry_read(b);
1183 data->_errno = get_last_socket_error();

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 19

1184 }
1185 }

1187 /* Test if peer uses SCTP-AUTH before continuing */
1188 if (!data->peer_auth_tested)
1189 {
1190 int ii, auth_data = 0, auth_forward = 0;
1191 unsigned char *p;
1192 struct sctp_authchunks *authchunks;

1194 optlen = (socklen_t)(sizeof(sctp_assoc_t) + 256 * sizeof
1195 authchunks = OPENSSL_malloc(optlen);
1196 memset(authchunks, 0, sizeof(optlen));
1197 ii = getsockopt(b->num, IPPROTO_SCTP, SCTP_PEER_AUTH_CHU
1198 OPENSSL_assert(ii >= 0);

1200 for (p = (unsigned char*) authchunks->gauth_chunks;
1201 p < (unsigned char*) authchunks + optlen;
1202 p += sizeof(uint8_t))
1203 {
1204 if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE) auth_dat
1205 if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYP
1206 }

1208 OPENSSL_free(authchunks);

1210 if (!auth_data || !auth_forward)
1211 {
1212 BIOerr(BIO_F_DGRAM_SCTP_READ,BIO_R_CONNECT_ERROR
1213 return -1;
1214 }

1216 data->peer_auth_tested = 1;
1217 }
1218 }
1219 return(ret);
1220 }

1222 static int dgram_sctp_write(BIO *b, const char *in, int inl)
1223 {
1224 int ret;
1225 bio_dgram_sctp_data *data = (bio_dgram_sctp_data *)b->ptr;
1226 struct bio_dgram_sctp_sndinfo *sinfo = &(data->sndinfo);
1227 struct bio_dgram_sctp_prinfo *pinfo = &(data->prinfo);
1228 struct bio_dgram_sctp_sndinfo handshake_sinfo;
1229 struct iovec iov[1];
1230 struct msghdr msg;
1231 struct cmsghdr *cmsg;
1232 #if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO)
1233 char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo)) + CMSG_SPACE(sizeof
1234 struct sctp_sndinfo *sndinfo;
1235 struct sctp_prinfo *prinfo;
1236 #else
1237 char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
1238 struct sctp_sndrcvinfo *sndrcvinfo;
1239 #endif

1241 clear_socket_error();

1243 /* If we’re send anything else than application data,
1244 * disable all user parameters and flags.
1245 */
1246 if (in[0] != 23) {
1247 memset(&handshake_sinfo, 0x00, sizeof(struct bio_dgram_sctp_sndi
1248 #ifdef SCTP_SACK_IMMEDIATELY
1249 handshake_sinfo.snd_flags = SCTP_SACK_IMMEDIATELY;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 20

1250 #endif
1251 sinfo = &handshake_sinfo;
1252 }

1254 /* If we have to send a shutdown alert message and the
1255 * socket is not dry yet, we have to save it and send it
1256 * as soon as the socket gets dry.
1257 */
1258 if (data->save_shutdown && !BIO_dgram_sctp_wait_for_dry(b))
1259 {
1260 data->saved_message.bio = b;
1261 data->saved_message.length = inl;
1262 data->saved_message.data = OPENSSL_malloc(inl);
1263 memcpy(data->saved_message.data, in, inl);
1264 return inl;
1265 }

1267 iov[0].iov_base = (char *)in;
1268 iov[0].iov_len = inl;
1269 msg.msg_name = NULL;
1270 msg.msg_namelen = 0;
1271 msg.msg_iov = iov;
1272 msg.msg_iovlen = 1;
1273 msg.msg_control = (caddr_t)cmsgbuf;
1274 msg.msg_controllen = 0;
1275 msg.msg_flags = 0;
1276 #if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO)
1277 cmsg = (struct cmsghdr *)cmsgbuf;
1278 cmsg->cmsg_level = IPPROTO_SCTP;
1279 cmsg->cmsg_type = SCTP_SNDINFO;
1280 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndinfo));
1281 sndinfo = (struct sctp_sndinfo *)CMSG_DATA(cmsg);
1282 memset(sndinfo, 0, sizeof(struct sctp_sndinfo));
1283 sndinfo->snd_sid = sinfo->snd_sid;
1284 sndinfo->snd_flags = sinfo->snd_flags;
1285 sndinfo->snd_ppid = sinfo->snd_ppid;
1286 sndinfo->snd_context = sinfo->snd_context;
1287 msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndinfo));

1289 cmsg = (struct cmsghdr *)&cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo)
1290 cmsg->cmsg_level = IPPROTO_SCTP;
1291 cmsg->cmsg_type = SCTP_PRINFO;
1292 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_prinfo));
1293 prinfo = (struct sctp_prinfo *)CMSG_DATA(cmsg);
1294 memset(prinfo, 0, sizeof(struct sctp_prinfo));
1295 prinfo->pr_policy = pinfo->pr_policy;
1296 prinfo->pr_value = pinfo->pr_value;
1297 msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_prinfo));
1298 #else
1299 cmsg = (struct cmsghdr *)cmsgbuf;
1300 cmsg->cmsg_level = IPPROTO_SCTP;
1301 cmsg->cmsg_type = SCTP_SNDRCV;
1302 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
1303 sndrcvinfo = (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
1304 memset(sndrcvinfo, 0, sizeof(struct sctp_sndrcvinfo));
1305 sndrcvinfo->sinfo_stream = sinfo->snd_sid;
1306 sndrcvinfo->sinfo_flags = sinfo->snd_flags;
1307 #ifdef __FreeBSD__
1308 sndrcvinfo->sinfo_flags |= pinfo->pr_policy;
1309 #endif
1310 sndrcvinfo->sinfo_ppid = sinfo->snd_ppid;
1311 sndrcvinfo->sinfo_context = sinfo->snd_context;
1312 sndrcvinfo->sinfo_timetolive = pinfo->pr_value;
1313 msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndrcvinfo));
1314 #endif

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 21

1316 ret = sendmsg(b->num, &msg, 0);

1318 BIO_clear_retry_flags(b);
1319 if (ret <= 0)
1320 {
1321 if (BIO_dgram_should_retry(ret))
1322 {
1323 BIO_set_retry_write(b);
1324 data->_errno = get_last_socket_error();
1325 }
1326 }
1327 return(ret);
1328 }

1330 static long dgram_sctp_ctrl(BIO *b, int cmd, long num, void *ptr)
1331 {
1332 long ret=1;
1333 bio_dgram_sctp_data *data = NULL;
1334 socklen_t sockopt_len = 0;
1335 struct sctp_authkeyid authkeyid;
1336 struct sctp_authkey *authkey;

1338 data = (bio_dgram_sctp_data *)b->ptr;

1340 switch (cmd)
1341 {
1342 case BIO_CTRL_DGRAM_QUERY_MTU:
1343 /* Set to maximum (2^14)
1344 * and ignore user input to enable transport
1345 * protocol fragmentation.
1346 * Returns always 2^14.
1347 */
1348 data->mtu = 16384;
1349 ret = data->mtu;
1350 break;
1351 case BIO_CTRL_DGRAM_SET_MTU:
1352 /* Set to maximum (2^14)
1353 * and ignore input to enable transport
1354 * protocol fragmentation.
1355 * Returns always 2^14.
1356 */
1357 data->mtu = 16384;
1358 ret = data->mtu;
1359 break;
1360 case BIO_CTRL_DGRAM_SET_CONNECTED:
1361 case BIO_CTRL_DGRAM_CONNECT:
1362 /* Returns always -1. */
1363 ret = -1;
1364 break;
1365 case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
1366 /* SCTP doesn’t need the DTLS timer
1367 * Returns always 1.
1368 */
1369 break;
1370 case BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE:
1371 if (num > 0)
1372 data->in_handshake = 1;
1373 else
1374 data->in_handshake = 0;

1376 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_NODELAY, &data->in_h
1377 break;
1378 case BIO_CTRL_DGRAM_SCTP_ADD_AUTH_KEY:
1379 /* New shared key for SCTP AUTH.
1380 * Returns 0 on success, -1 otherwise.
1381 */

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 22

1383 /* Get active key */
1384 sockopt_len = sizeof(struct sctp_authkeyid);
1385 ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &au
1386 if (ret < 0) break;

1388 /* Add new key */
1389 sockopt_len = sizeof(struct sctp_authkey) + 64 * sizeof(uint8_t)
1390 authkey = OPENSSL_malloc(sockopt_len);
1391 memset(authkey, 0x00, sockopt_len);
1392 authkey->sca_keynumber = authkeyid.scact_keynumber + 1;
1393 #ifndef __FreeBSD__
1394 /* This field is missing in FreeBSD 8.2 and earlier,
1395 * and FreeBSD 8.3 and higher work without it.
1396 */
1397 authkey->sca_keylength = 64;
1398 #endif
1399 memcpy(&authkey->sca_key[0], ptr, 64 * sizeof(uint8_t));

1401 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_KEY, authkey, s
1402 if (ret < 0) break;

1404 /* Reset active key */
1405 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
1406 &authkeyid, sizeof(struct sctp_authkeyid));
1407 if (ret < 0) break;

1409 break;
1410 case BIO_CTRL_DGRAM_SCTP_NEXT_AUTH_KEY:
1411 /* Returns 0 on success, -1 otherwise. */

1413 /* Get active key */
1414 sockopt_len = sizeof(struct sctp_authkeyid);
1415 ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &au
1416 if (ret < 0) break;

1418 /* Set active key */
1419 authkeyid.scact_keynumber = authkeyid.scact_keynumber + 1;
1420 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
1421 &authkeyid, sizeof(struct sctp_authkeyid));
1422 if (ret < 0) break;

1424 /* CCS has been sent, so remember that and fall through
1425 * to check if we need to deactivate an old key
1426 */
1427 data->ccs_sent = 1;

1429 case BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD:
1430 /* Returns 0 on success, -1 otherwise. */

1432 /* Has this command really been called or is this just a fall-th
1433 if (cmd == BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD)
1434 data->ccs_rcvd = 1;

1436 /* CSS has been both, received and sent, so deactivate an old ke
1437 if (data->ccs_rcvd == 1 && data->ccs_sent == 1)
1438 {
1439 /* Get active key */
1440 sockopt_len = sizeof(struct sctp_authkeyid);
1441 ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_
1442 if (ret < 0) break;

1444 /* Deactivate key or delete second last key if
1445 * SCTP_AUTHENTICATION_EVENT is not available.
1446 */
1447 authkeyid.scact_keynumber = authkeyid.scact_keynumber -

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 23

1448 #ifdef SCTP_AUTH_DEACTIVATE_KEY
1449 sockopt_len = sizeof(struct sctp_authkeyid);
1450 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DEACTIV
1451 &authkeyid, sockopt_len);
1452 if (ret < 0) break;
1453 #endif
1454 #ifndef SCTP_AUTHENTICATION_EVENT
1455 if (authkeyid.scact_keynumber > 0)
1456 {
1457 authkeyid.scact_keynumber = authkeyid.scact_keyn
1458 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH
1459 &authkeyid, sizeof(struct sctp_authkey
1460 if (ret < 0) break;
1461 }
1462 #endif

1464 data->ccs_rcvd = 0;
1465 data->ccs_sent = 0;
1466 }
1467 break;
1468 case BIO_CTRL_DGRAM_SCTP_GET_SNDINFO:
1469 /* Returns the size of the copied struct. */
1470 if (num > (long) sizeof(struct bio_dgram_sctp_sndinfo))
1471 num = sizeof(struct bio_dgram_sctp_sndinfo);

1473 memcpy(ptr, &(data->sndinfo), num);
1474 ret = num;
1475 break;
1476 case BIO_CTRL_DGRAM_SCTP_SET_SNDINFO:
1477 /* Returns the size of the copied struct. */
1478 if (num > (long) sizeof(struct bio_dgram_sctp_sndinfo))
1479 num = sizeof(struct bio_dgram_sctp_sndinfo);

1481 memcpy(&(data->sndinfo), ptr, num);
1482 break;
1483 case BIO_CTRL_DGRAM_SCTP_GET_RCVINFO:
1484 /* Returns the size of the copied struct. */
1485 if (num > (long) sizeof(struct bio_dgram_sctp_rcvinfo))
1486 num = sizeof(struct bio_dgram_sctp_rcvinfo);

1488 memcpy(ptr, &data->rcvinfo, num);

1490 ret = num;
1491 break;
1492 case BIO_CTRL_DGRAM_SCTP_SET_RCVINFO:
1493 /* Returns the size of the copied struct. */
1494 if (num > (long) sizeof(struct bio_dgram_sctp_rcvinfo))
1495 num = sizeof(struct bio_dgram_sctp_rcvinfo);

1497 memcpy(&(data->rcvinfo), ptr, num);
1498 break;
1499 case BIO_CTRL_DGRAM_SCTP_GET_PRINFO:
1500 /* Returns the size of the copied struct. */
1501 if (num > (long) sizeof(struct bio_dgram_sctp_prinfo))
1502 num = sizeof(struct bio_dgram_sctp_prinfo);

1504 memcpy(ptr, &(data->prinfo), num);
1505 ret = num;
1506 break;
1507 case BIO_CTRL_DGRAM_SCTP_SET_PRINFO:
1508 /* Returns the size of the copied struct. */
1509 if (num > (long) sizeof(struct bio_dgram_sctp_prinfo))
1510 num = sizeof(struct bio_dgram_sctp_prinfo);

1512 memcpy(&(data->prinfo), ptr, num);
1513 break;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 24

1514 case BIO_CTRL_DGRAM_SCTP_SAVE_SHUTDOWN:
1515 /* Returns always 1. */
1516 if (num > 0)
1517 data->save_shutdown = 1;
1518 else
1519 data->save_shutdown = 0;
1520 break;

1522 default:
1523 /* Pass to default ctrl function to
1524 * process SCTP unspecific commands
1525 */
1526 ret=dgram_ctrl(b, cmd, num, ptr);
1527 break;
1528 }
1529 return(ret);
1530 }

1532 int BIO_dgram_sctp_notification_cb(BIO *b,
1533 void (*handle_notifications)(BIO *bio, void *
1534 void *context)
1535 {
1536 bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;

1538 if (handle_notifications != NULL)
1539 {
1540 data->handle_notifications = handle_notifications;
1541 data->notification_context = context;
1542 }
1543 else
1544 return -1;

1546 return 0;
1547 }

1549 int BIO_dgram_sctp_wait_for_dry(BIO *b)
1550 {
1551 int is_dry = 0;
1552 int n, sockflags, ret;
1553 union sctp_notification snp;
1554 struct msghdr msg;
1555 struct iovec iov;
1556 #ifdef SCTP_EVENT
1557 struct sctp_event event;
1558 #else
1559 struct sctp_event_subscribe event;
1560 socklen_t eventsize;
1561 #endif
1562 bio_dgram_sctp_data *data = (bio_dgram_sctp_data *)b->ptr;

1564 /* set sender dry event */
1565 #ifdef SCTP_EVENT
1566 memset(&event, 0, sizeof(struct sctp_event));
1567 event.se_assoc_id = 0;
1568 event.se_type = SCTP_SENDER_DRY_EVENT;
1569 event.se_on = 1;
1570 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(struct
1571 #else
1572 eventsize = sizeof(struct sctp_event_subscribe);
1573 ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, &eventsize);
1574 if (ret < 0)
1575 return -1;
1576
1577 event.sctp_sender_dry_event = 1;
1578
1579 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, sizeof(struc

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 25

1580 #endif
1581 if (ret < 0)
1582 return -1;

1584 /* peek for notification */
1585 memset(&snp, 0x00, sizeof(union sctp_notification));
1586 iov.iov_base = (char *)&snp;
1587 iov.iov_len = sizeof(union sctp_notification);
1588 msg.msg_name = NULL;
1589 msg.msg_namelen = 0;
1590 msg.msg_iov = &iov;
1591 msg.msg_iovlen = 1;
1592 msg.msg_control = NULL;
1593 msg.msg_controllen = 0;
1594 msg.msg_flags = 0;

1596 n = recvmsg(b->num, &msg, MSG_PEEK);
1597 if (n <= 0)
1598 {
1599 if ((n < 0) && (get_last_socket_error() != EAGAIN) && (get_last_
1600 return -1;
1601 else
1602 return 0;
1603 }

1605 /* if we find a notification, process it and try again if necessary */
1606 while (msg.msg_flags & MSG_NOTIFICATION)
1607 {
1608 memset(&snp, 0x00, sizeof(union sctp_notification));
1609 iov.iov_base = (char *)&snp;
1610 iov.iov_len = sizeof(union sctp_notification);
1611 msg.msg_name = NULL;
1612 msg.msg_namelen = 0;
1613 msg.msg_iov = &iov;
1614 msg.msg_iovlen = 1;
1615 msg.msg_control = NULL;
1616 msg.msg_controllen = 0;
1617 msg.msg_flags = 0;

1619 n = recvmsg(b->num, &msg, 0);
1620 if (n <= 0)
1621 {
1622 if ((n < 0) && (get_last_socket_error() != EAGAIN) && (g
1623 return -1;
1624 else
1625 return is_dry;
1626 }
1627
1628 if (snp.sn_header.sn_type == SCTP_SENDER_DRY_EVENT)
1629 {
1630 is_dry = 1;

1632 /* disable sender dry event */
1633 #ifdef SCTP_EVENT
1634 memset(&event, 0, sizeof(struct sctp_event));
1635 event.se_assoc_id = 0;
1636 event.se_type = SCTP_SENDER_DRY_EVENT;
1637 event.se_on = 0;
1638 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &even
1639 #else
1640 eventsize = (socklen_t) sizeof(struct sctp_event_subscri
1641 ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &eve
1642 if (ret < 0)
1643 return -1;

1645 event.sctp_sender_dry_event = 0;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 26

1647 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &eve
1648 #endif
1649 if (ret < 0)
1650 return -1;
1651 }

1653 #ifdef SCTP_AUTHENTICATION_EVENT
1654 if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
1655 dgram_sctp_handle_auth_free_key_event(b, &snp);
1656 #endif

1658 if (data->handle_notifications != NULL)
1659 data->handle_notifications(b, data->notification_context

1661 /* found notification, peek again */
1662 memset(&snp, 0x00, sizeof(union sctp_notification));
1663 iov.iov_base = (char *)&snp;
1664 iov.iov_len = sizeof(union sctp_notification);
1665 msg.msg_name = NULL;
1666 msg.msg_namelen = 0;
1667 msg.msg_iov = &iov;
1668 msg.msg_iovlen = 1;
1669 msg.msg_control = NULL;
1670 msg.msg_controllen = 0;
1671 msg.msg_flags = 0;

1673 /* if we have seen the dry already, don’t wait */
1674 if (is_dry)
1675 {
1676 sockflags = fcntl(b->num, F_GETFL, 0);
1677 fcntl(b->num, F_SETFL, O_NONBLOCK);
1678 }

1680 n = recvmsg(b->num, &msg, MSG_PEEK);

1682 if (is_dry)
1683 {
1684 fcntl(b->num, F_SETFL, sockflags);
1685 }

1687 if (n <= 0)
1688 {
1689 if ((n < 0) && (get_last_socket_error() != EAGAIN) && (g
1690 return -1;
1691 else
1692 return is_dry;
1693 }
1694 }

1696 /* read anything else */
1697 return is_dry;
1698 }

1700 int BIO_dgram_sctp_msg_waiting(BIO *b)
1701 {
1702 int n, sockflags;
1703 union sctp_notification snp;
1704 struct msghdr msg;
1705 struct iovec iov;
1706 bio_dgram_sctp_data *data = (bio_dgram_sctp_data *)b->ptr;

1708 /* Check if there are any messages waiting to be read */
1709 do
1710 {
1711 memset(&snp, 0x00, sizeof(union sctp_notification));

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 27

1712 iov.iov_base = (char *)&snp;
1713 iov.iov_len = sizeof(union sctp_notification);
1714 msg.msg_name = NULL;
1715 msg.msg_namelen = 0;
1716 msg.msg_iov = &iov;
1717 msg.msg_iovlen = 1;
1718 msg.msg_control = NULL;
1719 msg.msg_controllen = 0;
1720 msg.msg_flags = 0;

1722 sockflags = fcntl(b->num, F_GETFL, 0);
1723 fcntl(b->num, F_SETFL, O_NONBLOCK);
1724 n = recvmsg(b->num, &msg, MSG_PEEK);
1725 fcntl(b->num, F_SETFL, sockflags);

1727 /* if notification, process and try again */
1728 if (n > 0 && (msg.msg_flags & MSG_NOTIFICATION))
1729 {
1730 #ifdef SCTP_AUTHENTICATION_EVENT
1731 if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
1732 dgram_sctp_handle_auth_free_key_event(b, &snp);
1733 #endif

1735 memset(&snp, 0x00, sizeof(union sctp_notification));
1736 iov.iov_base = (char *)&snp;
1737 iov.iov_len = sizeof(union sctp_notification);
1738 msg.msg_name = NULL;
1739 msg.msg_namelen = 0;
1740 msg.msg_iov = &iov;
1741 msg.msg_iovlen = 1;
1742 msg.msg_control = NULL;
1743 msg.msg_controllen = 0;
1744 msg.msg_flags = 0;
1745 n = recvmsg(b->num, &msg, 0);

1747 if (data->handle_notifications != NULL)
1748 data->handle_notifications(b, data->notification
1749 }

1751 } while (n > 0 && (msg.msg_flags & MSG_NOTIFICATION));

1753 /* Return 1 if there is a message to be read, return 0 otherwise. */
1754 if (n > 0)
1755 return 1;
1756 else
1757 return 0;
1758 }

1760 static int dgram_sctp_puts(BIO *bp, const char *str)
1761 {
1762 int n,ret;

1764 n=strlen(str);
1765 ret=dgram_sctp_write(bp,str,n);
1766 return(ret);
1767 }
1768 #endif

1770 static int BIO_dgram_should_retry(int i)
1771 {
1772 int err;

1774 if ((i == 0) || (i == -1))
1775 {
1776 err=get_last_socket_error();

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 28

1778 #if defined(OPENSSL_SYS_WINDOWS)
1779 /* If the socket return value (i) is -1
1780 * and err is unexpectedly 0 at this point,
1781 * the error code was overwritten by
1782 * another system call before this error
1783 * handling is called.
1784 */
1785 #endif

1787 return(BIO_dgram_non_fatal_error(err));
1788 }
1789 return(0);
1790 }

1792 int BIO_dgram_non_fatal_error(int err)
1793 {
1794 switch (err)
1795 {
1796 #if defined(OPENSSL_SYS_WINDOWS)
1797 # if defined(WSAEWOULDBLOCK)
1798 case WSAEWOULDBLOCK:
1799 # endif

1801 # if 0 /* This appears to always be an error */
1802 # if defined(WSAENOTCONN)
1803 case WSAENOTCONN:
1804 # endif
1805 # endif
1806 #endif

1808 #ifdef EWOULDBLOCK
1809 # ifdef WSAEWOULDBLOCK
1810 # if WSAEWOULDBLOCK != EWOULDBLOCK
1811 case EWOULDBLOCK:
1812 # endif
1813 # else
1814 case EWOULDBLOCK:
1815 # endif
1816 #endif

1818 #ifdef EINTR
1819 case EINTR:
1820 #endif

1822 #ifdef EAGAIN
1823 #if EWOULDBLOCK != EAGAIN
1824 case EAGAIN:
1825 # endif
1826 #endif

1828 #ifdef EPROTO
1829 case EPROTO:
1830 #endif

1832 #ifdef EINPROGRESS
1833 case EINPROGRESS:
1834 #endif

1836 #ifdef EALREADY
1837 case EALREADY:
1838 #endif

1840 return(1);
1841 /* break; */
1842 default:
1843 break;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_dgram.c 29

1844 }
1845 return(0);
1846 }

1848 static void get_current_time(struct timeval *t)
1849 {
1850 #ifdef OPENSSL_SYS_WIN32
1851 struct _timeb tb;
1852 _ftime(&tb);
1853 t->tv_sec = (long)tb.time;
1854 t->tv_usec = (long)tb.millitm * 1000;
1855 #elif defined(OPENSSL_SYS_VMS)
1856 struct timeb tb;
1857 ftime(&tb);
1858 t->tv_sec = (long)tb.time;
1859 t->tv_usec = (long)tb.millitm * 1000;
1860 #else
1861 gettimeofday(t, NULL);
1862 #endif
1863 }

1865 #endif

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_fd.c 1

**
 7710 Fri May 30 18:31:35 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bss_fd.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bss_fd.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <errno.h>
61 #define USE_SOCKETS

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_fd.c 2

62 #include "cryptlib.h"

64 #if defined(OPENSSL_NO_POSIX_IO)
65 /*
66 * One can argue that one should implement dummy placeholder for
67 * BIO_s_fd here...
68 */
69 #else
70 /*
71 * As for unconditional usage of "UPLINK" interface in this module.
72 * Trouble is that unlike Unix file descriptors [which are indexes
73 * in kernel-side per-process table], corresponding descriptors on
74 * platforms which require "UPLINK" interface seem to be indexes
75 * in a user-land, non-global table. Well, in fact they are indexes
76 * in stdio _iob[], and recall that _iob[] was the very reason why
77 * "UPLINK" interface was introduced in first place. But one way on
78 * another. Neither libcrypto or libssl use this BIO meaning that
79 * file descriptors can only be provided by application. Therefore
80 * "UPLINK" calls are due...
81 */
82 #include "bio_lcl.h"

84 static int fd_write(BIO *h, const char *buf, int num);
85 static int fd_read(BIO *h, char *buf, int size);
86 static int fd_puts(BIO *h, const char *str);
87 static int fd_gets(BIO *h, char *buf, int size);
88 static long fd_ctrl(BIO *h, int cmd, long arg1, void *arg2);
89 static int fd_new(BIO *h);
90 static int fd_free(BIO *data);
91 int BIO_fd_should_retry(int s);

93 static BIO_METHOD methods_fdp=
94 {
95 BIO_TYPE_FD,"file descriptor",
96 fd_write,
97 fd_read,
98 fd_puts,
99 fd_gets,
100 fd_ctrl,
101 fd_new,
102 fd_free,
103 NULL,
104 };

106 BIO_METHOD *BIO_s_fd(void)
107 {
108 return(&methods_fdp);
109 }

111 BIO *BIO_new_fd(int fd,int close_flag)
112 {
113 BIO *ret;
114 ret=BIO_new(BIO_s_fd());
115 if (ret == NULL) return(NULL);
116 BIO_set_fd(ret,fd,close_flag);
117 return(ret);
118 }

120 static int fd_new(BIO *bi)
121 {
122 bi->init=0;
123 bi->num=-1;
124 bi->ptr=NULL;
125 bi->flags=BIO_FLAGS_UPLINK; /* essentially redundant */
126 return(1);
127 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_fd.c 3

129 static int fd_free(BIO *a)
130 {
131 if (a == NULL) return(0);
132 if (a->shutdown)
133 {
134 if (a->init)
135 {
136 UP_close(a->num);
137 }
138 a->init=0;
139 a->flags=BIO_FLAGS_UPLINK;
140 }
141 return(1);
142 }
143
144 static int fd_read(BIO *b, char *out,int outl)
145 {
146 int ret=0;

148 if (out != NULL)
149 {
150 clear_sys_error();
151 ret=UP_read(b->num,out,outl);
152 BIO_clear_retry_flags(b);
153 if (ret <= 0)
154 {
155 if (BIO_fd_should_retry(ret))
156 BIO_set_retry_read(b);
157 }
158 }
159 return(ret);
160 }

162 static int fd_write(BIO *b, const char *in, int inl)
163 {
164 int ret;
165 clear_sys_error();
166 ret=UP_write(b->num,in,inl);
167 BIO_clear_retry_flags(b);
168 if (ret <= 0)
169 {
170 if (BIO_fd_should_retry(ret))
171 BIO_set_retry_write(b);
172 }
173 return(ret);
174 }

176 static long fd_ctrl(BIO *b, int cmd, long num, void *ptr)
177 {
178 long ret=1;
179 int *ip;

181 switch (cmd)
182 {
183 case BIO_CTRL_RESET:
184 num=0;
185 case BIO_C_FILE_SEEK:
186 ret=(long)UP_lseek(b->num,num,0);
187 break;
188 case BIO_C_FILE_TELL:
189 case BIO_CTRL_INFO:
190 ret=(long)UP_lseek(b->num,0,1);
191 break;
192 case BIO_C_SET_FD:
193 fd_free(b);

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_fd.c 4

194 b->num= *((int *)ptr);
195 b->shutdown=(int)num;
196 b->init=1;
197 break;
198 case BIO_C_GET_FD:
199 if (b->init)
200 {
201 ip=(int *)ptr;
202 if (ip != NULL) *ip=b->num;
203 ret=b->num;
204 }
205 else
206 ret= -1;
207 break;
208 case BIO_CTRL_GET_CLOSE:
209 ret=b->shutdown;
210 break;
211 case BIO_CTRL_SET_CLOSE:
212 b->shutdown=(int)num;
213 break;
214 case BIO_CTRL_PENDING:
215 case BIO_CTRL_WPENDING:
216 ret=0;
217 break;
218 case BIO_CTRL_DUP:
219 case BIO_CTRL_FLUSH:
220 ret=1;
221 break;
222 default:
223 ret=0;
224 break;
225 }
226 return(ret);
227 }

229 static int fd_puts(BIO *bp, const char *str)
230 {
231 int n,ret;

233 n=strlen(str);
234 ret=fd_write(bp,str,n);
235 return(ret);
236 }

238 static int fd_gets(BIO *bp, char *buf, int size)
239 {
240 int ret=0;
241 char *ptr=buf;
242 char *end=buf+size-1;

244 while ((ptr < end) && (fd_read(bp, ptr, 1) > 0) && (ptr[0] != ’\n’))
245 ptr++;

247 ptr[0]=’\0’;

249 if (buf[0] != ’\0’)
250 ret=strlen(buf);
251 return(ret);
252 }

254 int BIO_fd_should_retry(int i)
255 {
256 int err;

258 if ((i == 0) || (i == -1))
259 {

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_fd.c 5

260 err=get_last_sys_error();

262 #if defined(OPENSSL_SYS_WINDOWS) && 0 /* more microsoft stupidity? perhaps not?
263 if ((i == -1) && (err == 0))
264 return(1);
265 #endif

267 return(BIO_fd_non_fatal_error(err));
268 }
269 return(0);
270 }

272 int BIO_fd_non_fatal_error(int err)
273 {
274 switch (err)
275 {

277 #ifdef EWOULDBLOCK
278 # ifdef WSAEWOULDBLOCK
279 # if WSAEWOULDBLOCK != EWOULDBLOCK
280 case EWOULDBLOCK:
281 # endif
282 # else
283 case EWOULDBLOCK:
284 # endif
285 #endif

287 #if defined(ENOTCONN)
288 case ENOTCONN:
289 #endif

291 #ifdef EINTR
292 case EINTR:
293 #endif

295 #ifdef EAGAIN
296 #if EWOULDBLOCK != EAGAIN
297 case EAGAIN:
298 # endif
299 #endif

301 #ifdef EPROTO
302 case EPROTO:
303 #endif

305 #ifdef EINPROGRESS
306 case EINPROGRESS:
307 #endif

309 #ifdef EALREADY
310 case EALREADY:
311 #endif
312 return(1);
313 /* break; */
314 default:
315 break;
316 }
317 return(0);
318 }
319 #endif

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_file.c 1

**
 13244 Fri May 30 18:31:35 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bss_file.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bss_file.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /*
60 * 03-Dec-1997 rdenny@dc3.com Fix bug preventing use of stdin/stdout
61 * with binary data (e.g. asn1parse -inform DER < xxx) under

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_file.c 2

62 * Windows
63 */

65 #ifndef HEADER_BSS_FILE_C
66 #define HEADER_BSS_FILE_C

68 #if defined(__linux) || defined(__sun) || defined(__hpux)
69 /* Following definition aliases fopen to fopen64 on above mentioned
70 * platforms. This makes it possible to open and sequentially access
71 * files larger than 2GB from 32-bit application. It does not allow to
72 * traverse them beyond 2GB with fseek/ftell, but on the other hand *no*
73 * 32-bit platform permits that, not with fseek/ftell. Not to mention
74 * that breaking 2GB limit for seeking would require surgery to *our*
75 * API. But sequential access suffices for practical cases when you
76 * can run into large files, such as fingerprinting, so we can let API
77 * alone. For reference, the list of 32-bit platforms which allow for
78 * sequential access of large files without extra "magic" comprise *BSD,
79 * Darwin, IRIX...
80 */
81 #ifndef _FILE_OFFSET_BITS
82 #define _FILE_OFFSET_BITS 64
83 #endif
84 #endif

86 #include <stdio.h>
87 #include <errno.h>
88 #include "cryptlib.h"
89 #include "bio_lcl.h"
90 #include <openssl/err.h>

92 #if defined(OPENSSL_SYS_NETWARE) && defined(NETWARE_CLIB)
93 #include <nwfileio.h>
94 #endif

96 #if !defined(OPENSSL_NO_STDIO)

98 static int MS_CALLBACK file_write(BIO *h, const char *buf, int num);
99 static int MS_CALLBACK file_read(BIO *h, char *buf, int size);
100 static int MS_CALLBACK file_puts(BIO *h, const char *str);
101 static int MS_CALLBACK file_gets(BIO *h, char *str, int size);
102 static long MS_CALLBACK file_ctrl(BIO *h, int cmd, long arg1, void *arg2);
103 static int MS_CALLBACK file_new(BIO *h);
104 static int MS_CALLBACK file_free(BIO *data);
105 static BIO_METHOD methods_filep=
106 {
107 BIO_TYPE_FILE,
108 "FILE pointer",
109 file_write,
110 file_read,
111 file_puts,
112 file_gets,
113 file_ctrl,
114 file_new,
115 file_free,
116 NULL,
117 };

119 BIO *BIO_new_file(const char *filename, const char *mode)
120 {
121 BIO *ret;
122 FILE *file=NULL;

124 #if defined(_WIN32) && defined(CP_UTF8)
125 int sz, len_0 = (int)strlen(filename)+1;
126 DWORD flags;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_file.c 3

128 /*
129 * Basically there are three cases to cover: a) filename is
130 * pure ASCII string; b) actual UTF-8 encoded string and
131 * c) locale-ized string, i.e. one containing 8-bit
132 * characters that are meaningful in current system locale.
133 * If filename is pure ASCII or real UTF-8 encoded string,
134 * MultiByteToWideChar succeeds and _wfopen works. If
135 * filename is locale-ized string, chances are that
136 * MultiByteToWideChar fails reporting
137 * ERROR_NO_UNICODE_TRANSLATION, in which case we fall
138 * back to fopen...
139 */
140 if ((sz=MultiByteToWideChar(CP_UTF8,(flags=MB_ERR_INVALID_CHARS),
141 filename,len_0,NULL,0))>0 ||
142 (GetLastError()==ERROR_INVALID_FLAGS &&
143 (sz=MultiByteToWideChar(CP_UTF8,(flags=0),
144 filename,len_0,NULL,0))>0)
145)
146 {
147 WCHAR wmode[8];
148 WCHAR *wfilename = _alloca(sz*sizeof(WCHAR));

150 if (MultiByteToWideChar(CP_UTF8,flags,
151 filename,len_0,wfilename,sz) &&
152 MultiByteToWideChar(CP_UTF8,0,mode,strlen(mode)+1,
153 wmode,sizeof(wmode)/sizeof(wmode[0])) &&
154 (file=_wfopen(wfilename,wmode))==NULL &&
155 (errno==ENOENT || errno==EBADF)
156) /* UTF-8 decode succeeded, but no file, filename
157 * could still have been locale-ized... */
158 file = fopen(filename,mode);
159 }
160 else if (GetLastError()==ERROR_NO_UNICODE_TRANSLATION)
161 {
162 file = fopen(filename,mode);
163 }
164 #else
165 file=fopen(filename,mode);
166 #endif
167 if (file == NULL)
168 {
169 SYSerr(SYS_F_FOPEN,get_last_sys_error());
170 ERR_add_error_data(5,"fopen(’",filename,"’,’",mode,"’)");
171 if (errno == ENOENT)
172 BIOerr(BIO_F_BIO_NEW_FILE,BIO_R_NO_SUCH_FILE);
173 else
174 BIOerr(BIO_F_BIO_NEW_FILE,ERR_R_SYS_LIB);
175 return(NULL);
176 }
177 if ((ret=BIO_new(BIO_s_file())) == NULL)
178 {
179 fclose(file);
180 return(NULL);
181 }

183 BIO_clear_flags(ret,BIO_FLAGS_UPLINK); /* we did fopen -> we disengage U
184 BIO_set_fp(ret,file,BIO_CLOSE);
185 return(ret);
186 }

188 BIO *BIO_new_fp(FILE *stream, int close_flag)
189 {
190 BIO *ret;

192 if ((ret=BIO_new(BIO_s_file())) == NULL)
193 return(NULL);

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_file.c 4

195 BIO_set_flags(ret,BIO_FLAGS_UPLINK); /* redundant, left for documentatio
196 BIO_set_fp(ret,stream,close_flag);
197 return(ret);
198 }

200 BIO_METHOD *BIO_s_file(void)
201 {
202 return(&methods_filep);
203 }

205 static int MS_CALLBACK file_new(BIO *bi)
206 {
207 bi->init=0;
208 bi->num=0;
209 bi->ptr=NULL;
210 bi->flags=BIO_FLAGS_UPLINK; /* default to UPLINK */
211 return(1);
212 }

214 static int MS_CALLBACK file_free(BIO *a)
215 {
216 if (a == NULL) return(0);
217 if (a->shutdown)
218 {
219 if ((a->init) && (a->ptr != NULL))
220 {
221 if (a->flags&BIO_FLAGS_UPLINK)
222 UP_fclose (a->ptr);
223 else
224 fclose (a->ptr);
225 a->ptr=NULL;
226 a->flags=BIO_FLAGS_UPLINK;
227 }
228 a->init=0;
229 }
230 return(1);
231 }
232
233 static int MS_CALLBACK file_read(BIO *b, char *out, int outl)
234 {
235 int ret=0;

237 if (b->init && (out != NULL))
238 {
239 if (b->flags&BIO_FLAGS_UPLINK)
240 ret=UP_fread(out,1,(int)outl,b->ptr);
241 else
242 ret=fread(out,1,(int)outl,(FILE *)b->ptr);
243 if(ret == 0 && (b->flags&BIO_FLAGS_UPLINK)?UP_ferror((FILE *)b->
244 {
245 SYSerr(SYS_F_FREAD,get_last_sys_error());
246 BIOerr(BIO_F_FILE_READ,ERR_R_SYS_LIB);
247 ret=-1;
248 }
249 }
250 return(ret);
251 }

253 static int MS_CALLBACK file_write(BIO *b, const char *in, int inl)
254 {
255 int ret=0;

257 if (b->init && (in != NULL))
258 {
259 if (b->flags&BIO_FLAGS_UPLINK)

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_file.c 5

260 ret=UP_fwrite(in,(int)inl,1,b->ptr);
261 else
262 ret=fwrite(in,(int)inl,1,(FILE *)b->ptr);
263 if (ret)
264 ret=inl;
265 /* ret=fwrite(in,1,(int)inl,(FILE *)b->ptr); */
266 /* according to Tim Hudson <tjh@cryptsoft.com>, the commented
267 * out version above can cause ’inl’ write calls under
268 * some stupid stdio implementations (VMS) */
269 }
270 return(ret);
271 }

273 static long MS_CALLBACK file_ctrl(BIO *b, int cmd, long num, void *ptr)
274 {
275 long ret=1;
276 FILE *fp=(FILE *)b->ptr;
277 FILE **fpp;
278 char p[4];

280 switch (cmd)
281 {
282 case BIO_C_FILE_SEEK:
283 case BIO_CTRL_RESET:
284 if (b->flags&BIO_FLAGS_UPLINK)
285 ret=(long)UP_fseek(b->ptr,num,0);
286 else
287 ret=(long)fseek(fp,num,0);
288 break;
289 case BIO_CTRL_EOF:
290 if (b->flags&BIO_FLAGS_UPLINK)
291 ret=(long)UP_feof(fp);
292 else
293 ret=(long)feof(fp);
294 break;
295 case BIO_C_FILE_TELL:
296 case BIO_CTRL_INFO:
297 if (b->flags&BIO_FLAGS_UPLINK)
298 ret=UP_ftell(b->ptr);
299 else
300 ret=ftell(fp);
301 break;
302 case BIO_C_SET_FILE_PTR:
303 file_free(b);
304 b->shutdown=(int)num&BIO_CLOSE;
305 b->ptr=ptr;
306 b->init=1;
307 #if BIO_FLAGS_UPLINK!=0
308 #if defined(__MINGW32__) && defined(__MSVCRT__) && !defined(_IOB_ENTRIES)
309 #define _IOB_ENTRIES 20
310 #endif
311 #if defined(_IOB_ENTRIES)
312 /* Safety net to catch purely internal BIO_set_fp calls */
313 if ((size_t)ptr >= (size_t)stdin &&
314 (size_t)ptr < (size_t)(stdin+_IOB_ENTRIES))
315 BIO_clear_flags(b,BIO_FLAGS_UPLINK);
316 #endif
317 #endif
318 #ifdef UP_fsetmod
319 if (b->flags&BIO_FLAGS_UPLINK)
320 UP_fsetmod(b->ptr,(char)((num&BIO_FP_TEXT)?’t’:’b’));
321 else
322 #endif
323 {
324 #if defined(OPENSSL_SYS_WINDOWS)
325 int fd = _fileno((FILE*)ptr);

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_file.c 6

326 if (num & BIO_FP_TEXT)
327 _setmode(fd,_O_TEXT);
328 else
329 _setmode(fd,_O_BINARY);
330 #elif defined(OPENSSL_SYS_NETWARE) && defined(NETWARE_CLIB)
331 int fd = fileno((FILE*)ptr);
332 /* Under CLib there are differences in file modes */
333 if (num & BIO_FP_TEXT)
334 setmode(fd,O_TEXT);
335 else
336 setmode(fd,O_BINARY);
337 #elif defined(OPENSSL_SYS_MSDOS)
338 int fd = fileno((FILE*)ptr);
339 /* Set correct text/binary mode */
340 if (num & BIO_FP_TEXT)
341 _setmode(fd,_O_TEXT);
342 /* Dangerous to set stdin/stdout to raw (unless redirected) */
343 else
344 {
345 if (fd == STDIN_FILENO || fd == STDOUT_FILENO)
346 {
347 if (isatty(fd) <= 0)
348 _setmode(fd,_O_BINARY);
349 }
350 else
351 _setmode(fd,_O_BINARY);
352 }
353 #elif defined(OPENSSL_SYS_OS2) || defined(OPENSSL_SYS_WIN32_CYGWIN)
354 int fd = fileno((FILE*)ptr);
355 if (num & BIO_FP_TEXT)
356 setmode(fd, O_TEXT);
357 else
358 setmode(fd, O_BINARY);
359 #endif
360 }
361 break;
362 case BIO_C_SET_FILENAME:
363 file_free(b);
364 b->shutdown=(int)num&BIO_CLOSE;
365 if (num & BIO_FP_APPEND)
366 {
367 if (num & BIO_FP_READ)
368 BUF_strlcpy(p,"a+",sizeof p);
369 else BUF_strlcpy(p,"a",sizeof p);
370 }
371 else if ((num & BIO_FP_READ) && (num & BIO_FP_WRITE))
372 BUF_strlcpy(p,"r+",sizeof p);
373 else if (num & BIO_FP_WRITE)
374 BUF_strlcpy(p,"w",sizeof p);
375 else if (num & BIO_FP_READ)
376 BUF_strlcpy(p,"r",sizeof p);
377 else
378 {
379 BIOerr(BIO_F_FILE_CTRL,BIO_R_BAD_FOPEN_MODE);
380 ret=0;
381 break;
382 }
383 #if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSS
384 if (!(num & BIO_FP_TEXT))
385 strcat(p,"b");
386 else
387 strcat(p,"t");
388 #endif
389 #if defined(OPENSSL_SYS_NETWARE)
390 if (!(num & BIO_FP_TEXT))
391 strcat(p,"b");

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_file.c 7

392 else
393 strcat(p,"t");
394 #endif
395 fp=fopen(ptr,p);
396 if (fp == NULL)
397 {
398 SYSerr(SYS_F_FOPEN,get_last_sys_error());
399 ERR_add_error_data(5,"fopen(’",ptr,"’,’",p,"’)");
400 BIOerr(BIO_F_FILE_CTRL,ERR_R_SYS_LIB);
401 ret=0;
402 break;
403 }
404 b->ptr=fp;
405 b->init=1;
406 BIO_clear_flags(b,BIO_FLAGS_UPLINK); /* we did fopen -> we disen
407 break;
408 case BIO_C_GET_FILE_PTR:
409 /* the ptr parameter is actually a FILE ** in this case. */
410 if (ptr != NULL)
411 {
412 fpp=(FILE **)ptr;
413 *fpp=(FILE *)b->ptr;
414 }
415 break;
416 case BIO_CTRL_GET_CLOSE:
417 ret=(long)b->shutdown;
418 break;
419 case BIO_CTRL_SET_CLOSE:
420 b->shutdown=(int)num;
421 break;
422 case BIO_CTRL_FLUSH:
423 if (b->flags&BIO_FLAGS_UPLINK)
424 UP_fflush(b->ptr);
425 else
426 fflush((FILE *)b->ptr);
427 break;
428 case BIO_CTRL_DUP:
429 ret=1;
430 break;

432 case BIO_CTRL_WPENDING:
433 case BIO_CTRL_PENDING:
434 case BIO_CTRL_PUSH:
435 case BIO_CTRL_POP:
436 default:
437 ret=0;
438 break;
439 }
440 return(ret);
441 }

443 static int MS_CALLBACK file_gets(BIO *bp, char *buf, int size)
444 {
445 int ret=0;

447 buf[0]=’\0’;
448 if (bp->flags&BIO_FLAGS_UPLINK)
449 {
450 if (!UP_fgets(buf,size,bp->ptr))
451 goto err;
452 }
453 else
454 {
455 if (!fgets(buf,size,(FILE *)bp->ptr))
456 goto err;
457 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_file.c 8

458 if (buf[0] != ’\0’)
459 ret=strlen(buf);
460 err:
461 return(ret);
462 }

464 static int MS_CALLBACK file_puts(BIO *bp, const char *str)
465 {
466 int n,ret;

468 n=strlen(str);
469 ret=file_write(bp,str,n);
470 return(ret);
471 }

473 #endif /* OPENSSL_NO_STDIO */

475 #endif /* HEADER_BSS_FILE_C */

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_log.c 1

**
 10274 Fri May 30 18:31:35 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bss_log.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bss_log.c */
2 /* ==
3 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * licensing@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /*
57 Why BIO_s_log?

59 BIO_s_log is useful for system daemons (or services under NT).
60 It is one-way BIO, it sends all stuff to syslogd (on system that
61 commonly use that), or event log (on NT), or OPCOM (on OpenVMS).

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_log.c 2

63 */

66 #include <stdio.h>
67 #include <errno.h>

69 #include "cryptlib.h"

71 #if defined(OPENSSL_SYS_WINCE)
72 #elif defined(OPENSSL_SYS_WIN32)
73 #elif defined(OPENSSL_SYS_VMS)
74 # include <opcdef.h>
75 # include <descrip.h>
76 # include <lib$routines.h>
77 # include <starlet.h>
78 /* Some compiler options may mask the declaration of "_malloc32". */
79 # if __INITIAL_POINTER_SIZE && defined _ANSI_C_SOURCE
80 # if __INITIAL_POINTER_SIZE == 64
81 # pragma pointer_size save
82 # pragma pointer_size 32
83 void * _malloc32 (__size_t);
84 # pragma pointer_size restore
85 # endif /* __INITIAL_POINTER_SIZE == 64 */
86 # endif /* __INITIAL_POINTER_SIZE && defined _ANSI_C_SOURCE */
87 #elif defined(__ultrix)
88 # include <sys/syslog.h>
89 #elif defined(OPENSSL_SYS_NETWARE)
90 # define NO_SYSLOG
91 #elif (!defined(MSDOS) || defined(WATT32)) && !defined(OPENSSL_SYS_VXWORKS) && !
92 # include <syslog.h>
93 #endif

95 #include <openssl/buffer.h>
96 #include <openssl/err.h>

98 #ifndef NO_SYSLOG

100 #if defined(OPENSSL_SYS_WIN32)
101 #define LOG_EMERG 0
102 #define LOG_ALERT 1
103 #define LOG_CRIT 2
104 #define LOG_ERR 3
105 #define LOG_WARNING 4
106 #define LOG_NOTICE 5
107 #define LOG_INFO 6
108 #define LOG_DEBUG 7

110 #define LOG_DAEMON (3<<3)
111 #elif defined(OPENSSL_SYS_VMS)
112 /* On VMS, we don’t really care about these, but we need them to compile */
113 #define LOG_EMERG 0
114 #define LOG_ALERT 1
115 #define LOG_CRIT 2
116 #define LOG_ERR 3
117 #define LOG_WARNING 4
118 #define LOG_NOTICE 5
119 #define LOG_INFO 6
120 #define LOG_DEBUG 7

122 #define LOG_DAEMON OPC$M_NM_NTWORK
123 #endif

125 static int MS_CALLBACK slg_write(BIO *h, const char *buf, int num);
126 static int MS_CALLBACK slg_puts(BIO *h, const char *str);
127 static long MS_CALLBACK slg_ctrl(BIO *h, int cmd, long arg1, void *arg2);

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_log.c 3

128 static int MS_CALLBACK slg_new(BIO *h);
129 static int MS_CALLBACK slg_free(BIO *data);
130 static void xopenlog(BIO* bp, char* name, int level);
131 static void xsyslog(BIO* bp, int priority, const char* string);
132 static void xcloselog(BIO* bp);

134 static BIO_METHOD methods_slg=
135 {
136 BIO_TYPE_MEM,"syslog",
137 slg_write,
138 NULL,
139 slg_puts,
140 NULL,
141 slg_ctrl,
142 slg_new,
143 slg_free,
144 NULL,
145 };

147 BIO_METHOD *BIO_s_log(void)
148 {
149 return(&methods_slg);
150 }

152 static int MS_CALLBACK slg_new(BIO *bi)
153 {
154 bi->init=1;
155 bi->num=0;
156 bi->ptr=NULL;
157 xopenlog(bi, "application", LOG_DAEMON);
158 return(1);
159 }

161 static int MS_CALLBACK slg_free(BIO *a)
162 {
163 if (a == NULL) return(0);
164 xcloselog(a);
165 return(1);
166 }
167
168 static int MS_CALLBACK slg_write(BIO *b, const char *in, int inl)
169 {
170 int ret= inl;
171 char* buf;
172 char* pp;
173 int priority, i;
174 static const struct
175 {
176 int strl;
177 char str[10];
178 int log_level;
179 }
180 mapping[] =
181 {
182 { 6, "PANIC ", LOG_EMERG },
183 { 6, "EMERG ", LOG_EMERG },
184 { 4, "EMR ", LOG_EMERG },
185 { 6, "ALERT ", LOG_ALERT },
186 { 4, "ALR ", LOG_ALERT },
187 { 5, "CRIT ", LOG_CRIT },
188 { 4, "CRI ", LOG_CRIT },
189 { 6, "ERROR ", LOG_ERR },
190 { 4, "ERR ", LOG_ERR },
191 { 8, "WARNING ", LOG_WARNING },
192 { 5, "WARN ", LOG_WARNING },
193 { 4, "WAR ", LOG_WARNING },

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_log.c 4

194 { 7, "NOTICE ", LOG_NOTICE },
195 { 5, "NOTE ", LOG_NOTICE },
196 { 4, "NOT ", LOG_NOTICE },
197 { 5, "INFO ", LOG_INFO },
198 { 4, "INF ", LOG_INFO },
199 { 6, "DEBUG ", LOG_DEBUG },
200 { 4, "DBG ", LOG_DEBUG },
201 { 0, "", LOG_ERR } /* The default */
202 };

204 if((buf= (char *)OPENSSL_malloc(inl+ 1)) == NULL){
205 return(0);
206 }
207 strncpy(buf, in, inl);
208 buf[inl]= ’\0’;

210 i = 0;
211 while(strncmp(buf, mapping[i].str, mapping[i].strl) != 0) i++;
212 priority = mapping[i].log_level;
213 pp = buf + mapping[i].strl;

215 xsyslog(b, priority, pp);

217 OPENSSL_free(buf);
218 return(ret);
219 }

221 static long MS_CALLBACK slg_ctrl(BIO *b, int cmd, long num, void *ptr)
222 {
223 switch (cmd)
224 {
225 case BIO_CTRL_SET:
226 xcloselog(b);
227 xopenlog(b, ptr, num);
228 break;
229 default:
230 break;
231 }
232 return(0);
233 }

235 static int MS_CALLBACK slg_puts(BIO *bp, const char *str)
236 {
237 int n,ret;

239 n=strlen(str);
240 ret=slg_write(bp,str,n);
241 return(ret);
242 }

244 #if defined(OPENSSL_SYS_WIN32)

246 static void xopenlog(BIO* bp, char* name, int level)
247 {
248 if (check_winnt())
249 bp->ptr = RegisterEventSourceA(NULL,name);
250 else
251 bp->ptr = NULL;
252 }

254 static void xsyslog(BIO *bp, int priority, const char *string)
255 {
256 LPCSTR lpszStrings[2];
257 WORD evtype= EVENTLOG_ERROR_TYPE;
258 char pidbuf[DECIMAL_SIZE(DWORD)+4];

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_log.c 5

260 if (bp->ptr == NULL)
261 return;

263 switch (priority)
264 {
265 case LOG_EMERG:
266 case LOG_ALERT:
267 case LOG_CRIT:
268 case LOG_ERR:
269 evtype = EVENTLOG_ERROR_TYPE;
270 break;
271 case LOG_WARNING:
272 evtype = EVENTLOG_WARNING_TYPE;
273 break;
274 case LOG_NOTICE:
275 case LOG_INFO:
276 case LOG_DEBUG:
277 evtype = EVENTLOG_INFORMATION_TYPE;
278 break;
279 default: /* Should never happen, but set it
280 as error anyway. */
281 evtype = EVENTLOG_ERROR_TYPE;
282 break;
283 }

285 sprintf(pidbuf, "[%u] ", GetCurrentProcessId());
286 lpszStrings[0] = pidbuf;
287 lpszStrings[1] = string;

289 ReportEventA(bp->ptr, evtype, 0, 1024, NULL, 2, 0,
290 lpszStrings, NULL);
291 }
292
293 static void xcloselog(BIO* bp)
294 {
295 if(bp->ptr)
296 DeregisterEventSource((HANDLE)(bp->ptr));
297 bp->ptr= NULL;
298 }

300 #elif defined(OPENSSL_SYS_VMS)

302 static int VMS_OPC_target = LOG_DAEMON;

304 static void xopenlog(BIO* bp, char* name, int level)
305 {
306 VMS_OPC_target = level;
307 }

309 static void xsyslog(BIO *bp, int priority, const char *string)
310 {
311 struct dsc$descriptor_s opc_dsc;

313 /* Arrange 32-bit pointer to opcdef buffer and malloc(), if needed. */
314 #if __INITIAL_POINTER_SIZE == 64
315 # pragma pointer_size save
316 # pragma pointer_size 32
317 # define OPCDEF_TYPE __char_ptr32
318 # define OPCDEF_MALLOC _malloc32
319 #else /* __INITIAL_POINTER_SIZE == 64 */
320 # define OPCDEF_TYPE char *
321 # define OPCDEF_MALLOC OPENSSL_malloc
322 #endif /* __INITIAL_POINTER_SIZE == 64 [else] */

324 struct opcdef *opcdef_p;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_log.c 6

326 #if __INITIAL_POINTER_SIZE == 64
327 # pragma pointer_size restore
328 #endif /* __INITIAL_POINTER_SIZE == 64 */

330 char buf[10240];
331 unsigned int len;
332 struct dsc$descriptor_s buf_dsc;
333 $DESCRIPTOR(fao_cmd, "!AZ: !AZ");
334 char *priority_tag;

336 switch (priority)
337 {
338 case LOG_EMERG: priority_tag = "Emergency"; break;
339 case LOG_ALERT: priority_tag = "Alert"; break;
340 case LOG_CRIT: priority_tag = "Critical"; break;
341 case LOG_ERR: priority_tag = "Error"; break;
342 case LOG_WARNING: priority_tag = "Warning"; break;
343 case LOG_NOTICE: priority_tag = "Notice"; break;
344 case LOG_INFO: priority_tag = "Info"; break;
345 case LOG_DEBUG: priority_tag = "DEBUG"; break;
346 }

348 buf_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
349 buf_dsc.dsc$b_class = DSC$K_CLASS_S;
350 buf_dsc.dsc$a_pointer = buf;
351 buf_dsc.dsc$w_length = sizeof(buf) - 1;

353 lib$sys_fao(&fao_cmd, &len, &buf_dsc, priority_tag, string);

355 /* We know there’s an 8-byte header. That’s documented. */
356 opcdef_p = OPCDEF_MALLOC(8+ len);
357 opcdef_p->opc$b_ms_type = OPC$_RQ_RQST;
358 memcpy(opcdef_p->opc$z_ms_target_classes, &VMS_OPC_target, 3);
359 opcdef_p->opc$l_ms_rqstid = 0;
360 memcpy(&opcdef_p->opc$l_ms_text, buf, len);

362 opc_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
363 opc_dsc.dsc$b_class = DSC$K_CLASS_S;
364 opc_dsc.dsc$a_pointer = (OPCDEF_TYPE) opcdef_p;
365 opc_dsc.dsc$w_length = len + 8;

367 sys$sndopr(opc_dsc, 0);

369 OPENSSL_free(opcdef_p);
370 }

372 static void xcloselog(BIO* bp)
373 {
374 }

376 #else /* Unix/Watt32 */

378 static void xopenlog(BIO* bp, char* name, int level)
379 {
380 #ifdef WATT32 /* djgpp/DOS */
381 openlog(name, LOG_PID|LOG_CONS|LOG_NDELAY, level);
382 #else
383 openlog(name, LOG_PID|LOG_CONS, level);
384 #endif
385 }

387 static void xsyslog(BIO *bp, int priority, const char *string)
388 {
389 syslog(priority, "%s", string);
390 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_log.c 7

392 static void xcloselog(BIO* bp)
393 {
394 closelog();
395 }

397 #endif /* Unix */

399 #endif /* NO_SYSLOG */

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_mem.c 1

**
 7795 Fri May 30 18:31:35 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bss_mem.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bss_mem.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <errno.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_mem.c 2

62 #include <openssl/bio.h>

64 static int mem_write(BIO *h, const char *buf, int num);
65 static int mem_read(BIO *h, char *buf, int size);
66 static int mem_puts(BIO *h, const char *str);
67 static int mem_gets(BIO *h, char *str, int size);
68 static long mem_ctrl(BIO *h, int cmd, long arg1, void *arg2);
69 static int mem_new(BIO *h);
70 static int mem_free(BIO *data);
71 static BIO_METHOD mem_method=
72 {
73 BIO_TYPE_MEM,
74 "memory buffer",
75 mem_write,
76 mem_read,
77 mem_puts,
78 mem_gets,
79 mem_ctrl,
80 mem_new,
81 mem_free,
82 NULL,
83 };

85 /* bio->num is used to hold the value to return on ’empty’, if it is
86 * 0, should_retry is not set */

88 BIO_METHOD *BIO_s_mem(void)
89 {
90 return(&mem_method);
91 }

93 BIO *BIO_new_mem_buf(void *buf, int len)
94 {
95 BIO *ret;
96 BUF_MEM *b;
97 size_t sz;

99 if (!buf) {
100 BIOerr(BIO_F_BIO_NEW_MEM_BUF,BIO_R_NULL_PARAMETER);
101 return NULL;
102 }
103 sz = (len<0) ? strlen(buf) : (size_t)len;
104 if(!(ret = BIO_new(BIO_s_mem()))) return NULL;
105 b = (BUF_MEM *)ret->ptr;
106 b->data = buf;
107 b->length = sz;
108 b->max = sz;
109 ret->flags |= BIO_FLAGS_MEM_RDONLY;
110 /* Since this is static data retrying wont help */
111 ret->num = 0;
112 return ret;
113 }

115 static int mem_new(BIO *bi)
116 {
117 BUF_MEM *b;

119 if ((b=BUF_MEM_new()) == NULL)
120 return(0);
121 bi->shutdown=1;
122 bi->init=1;
123 bi->num= -1;
124 bi->ptr=(char *)b;
125 return(1);
126 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_mem.c 3

128 static int mem_free(BIO *a)
129 {
130 if (a == NULL) return(0);
131 if (a->shutdown)
132 {
133 if ((a->init) && (a->ptr != NULL))
134 {
135 BUF_MEM *b;
136 b = (BUF_MEM *)a->ptr;
137 if(a->flags & BIO_FLAGS_MEM_RDONLY) b->data = NULL;
138 BUF_MEM_free(b);
139 a->ptr=NULL;
140 }
141 }
142 return(1);
143 }
144
145 static int mem_read(BIO *b, char *out, int outl)
146 {
147 int ret= -1;
148 BUF_MEM *bm;

150 bm=(BUF_MEM *)b->ptr;
151 BIO_clear_retry_flags(b);
152 ret=(outl >=0 && (size_t)outl > bm->length)?(int)bm->length:outl;
153 if ((out != NULL) && (ret > 0)) {
154 memcpy(out,bm->data,ret);
155 bm->length-=ret;
156 if(b->flags & BIO_FLAGS_MEM_RDONLY) bm->data += ret;
157 else {
158 memmove(&(bm->data[0]),&(bm->data[ret]),bm->length);
159 }
160 } else if (bm->length == 0)
161 {
162 ret = b->num;
163 if (ret != 0)
164 BIO_set_retry_read(b);
165 }
166 return(ret);
167 }

169 static int mem_write(BIO *b, const char *in, int inl)
170 {
171 int ret= -1;
172 int blen;
173 BUF_MEM *bm;

175 bm=(BUF_MEM *)b->ptr;
176 if (in == NULL)
177 {
178 BIOerr(BIO_F_MEM_WRITE,BIO_R_NULL_PARAMETER);
179 goto end;
180 }

182 if(b->flags & BIO_FLAGS_MEM_RDONLY) {
183 BIOerr(BIO_F_MEM_WRITE,BIO_R_WRITE_TO_READ_ONLY_BIO);
184 goto end;
185 }

187 BIO_clear_retry_flags(b);
188 blen=bm->length;
189 if (BUF_MEM_grow_clean(bm,blen+inl) != (blen+inl))
190 goto end;
191 memcpy(&(bm->data[blen]),in,inl);
192 ret=inl;
193 end:

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_mem.c 4

194 return(ret);
195 }

197 static long mem_ctrl(BIO *b, int cmd, long num, void *ptr)
198 {
199 long ret=1;
200 char **pptr;

202 BUF_MEM *bm=(BUF_MEM *)b->ptr;

204 switch (cmd)
205 {
206 case BIO_CTRL_RESET:
207 if (bm->data != NULL)
208 {
209 /* For read only case reset to the start again */
210 if(b->flags & BIO_FLAGS_MEM_RDONLY)
211 {
212 bm->data -= bm->max - bm->length;
213 bm->length = bm->max;
214 }
215 else
216 {
217 memset(bm->data,0,bm->max);
218 bm->length=0;
219 }
220 }
221 break;
222 case BIO_CTRL_EOF:
223 ret=(long)(bm->length == 0);
224 break;
225 case BIO_C_SET_BUF_MEM_EOF_RETURN:
226 b->num=(int)num;
227 break;
228 case BIO_CTRL_INFO:
229 ret=(long)bm->length;
230 if (ptr != NULL)
231 {
232 pptr=(char **)ptr;
233 *pptr=(char *)&(bm->data[0]);
234 }
235 break;
236 case BIO_C_SET_BUF_MEM:
237 mem_free(b);
238 b->shutdown=(int)num;
239 b->ptr=ptr;
240 break;
241 case BIO_C_GET_BUF_MEM_PTR:
242 if (ptr != NULL)
243 {
244 pptr=(char **)ptr;
245 *pptr=(char *)bm;
246 }
247 break;
248 case BIO_CTRL_GET_CLOSE:
249 ret=(long)b->shutdown;
250 break;
251 case BIO_CTRL_SET_CLOSE:
252 b->shutdown=(int)num;
253 break;

255 case BIO_CTRL_WPENDING:
256 ret=0L;
257 break;
258 case BIO_CTRL_PENDING:
259 ret=(long)bm->length;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_mem.c 5

260 break;
261 case BIO_CTRL_DUP:
262 case BIO_CTRL_FLUSH:
263 ret=1;
264 break;
265 case BIO_CTRL_PUSH:
266 case BIO_CTRL_POP:
267 default:
268 ret=0;
269 break;
270 }
271 return(ret);
272 }

274 static int mem_gets(BIO *bp, char *buf, int size)
275 {
276 int i,j;
277 int ret= -1;
278 char *p;
279 BUF_MEM *bm=(BUF_MEM *)bp->ptr;

281 BIO_clear_retry_flags(bp);
282 j=bm->length;
283 if ((size-1) < j) j=size-1;
284 if (j <= 0)
285 {
286 *buf=’\0’;
287 return 0;
288 }
289 p=bm->data;
290 for (i=0; i<j; i++)
291 {
292 if (p[i] == ’\n’)
293 {
294 i++;
295 break;
296 }
297 }

299 /*
300 * i is now the max num of bytes to copy, either j or up to
301 * and including the first newline
302 */

304 i=mem_read(bp,buf,i);
305 if (i > 0) buf[i]=’\0’;
306 ret=i;
307 return(ret);
308 }

310 static int mem_puts(BIO *bp, const char *str)
311 {
312 int n,ret;

314 n=strlen(str);
315 ret=mem_write(bp,str,n);
316 /* memory semantics is that it will always work */
317 return(ret);
318 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_null.c 1

**
 4724 Fri May 30 18:31:35 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bss_null.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bss_null.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <errno.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_null.c 2

62 #include <openssl/bio.h>

64 static int null_write(BIO *h, const char *buf, int num);
65 static int null_read(BIO *h, char *buf, int size);
66 static int null_puts(BIO *h, const char *str);
67 static int null_gets(BIO *h, char *str, int size);
68 static long null_ctrl(BIO *h, int cmd, long arg1, void *arg2);
69 static int null_new(BIO *h);
70 static int null_free(BIO *data);
71 static BIO_METHOD null_method=
72 {
73 BIO_TYPE_NULL,
74 "NULL",
75 null_write,
76 null_read,
77 null_puts,
78 null_gets,
79 null_ctrl,
80 null_new,
81 null_free,
82 NULL,
83 };

85 BIO_METHOD *BIO_s_null(void)
86 {
87 return(&null_method);
88 }

90 static int null_new(BIO *bi)
91 {
92 bi->init=1;
93 bi->num=0;
94 bi->ptr=(NULL);
95 return(1);
96 }

98 static int null_free(BIO *a)
99 {
100 if (a == NULL) return(0);
101 return(1);
102 }
103
104 static int null_read(BIO *b, char *out, int outl)
105 {
106 return(0);
107 }

109 static int null_write(BIO *b, const char *in, int inl)
110 {
111 return(inl);
112 }

114 static long null_ctrl(BIO *b, int cmd, long num, void *ptr)
115 {
116 long ret=1;

118 switch (cmd)
119 {
120 case BIO_CTRL_RESET:
121 case BIO_CTRL_EOF:
122 case BIO_CTRL_SET:
123 case BIO_CTRL_SET_CLOSE:
124 case BIO_CTRL_FLUSH:
125 case BIO_CTRL_DUP:
126 ret=1;
127 break;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_null.c 3

128 case BIO_CTRL_GET_CLOSE:
129 case BIO_CTRL_INFO:
130 case BIO_CTRL_GET:
131 case BIO_CTRL_PENDING:
132 case BIO_CTRL_WPENDING:
133 default:
134 ret=0;
135 break;
136 }
137 return(ret);
138 }

140 static int null_gets(BIO *bp, char *buf, int size)
141 {
142 return(0);
143 }

145 static int null_puts(BIO *bp, const char *str)
146 {
147 if (str == NULL) return(0);
148 return(strlen(str));
149 }

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_sock.c 1

**
 6851 Fri May 30 18:31:35 2014
new/usr/src/lib/openssl/libsunw_crypto/bio/bss_sock.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bio/bss_sock.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <errno.h>
61 #define USE_SOCKETS

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_sock.c 2

62 #include "cryptlib.h"

64 #ifndef OPENSSL_NO_SOCK

66 #include <openssl/bio.h>

68 #ifdef WATT32
69 #define sock_write SockWrite /* Watt-32 uses same names */
70 #define sock_read SockRead
71 #define sock_puts SockPuts
72 #endif

74 static int sock_write(BIO *h, const char *buf, int num);
75 static int sock_read(BIO *h, char *buf, int size);
76 static int sock_puts(BIO *h, const char *str);
77 static long sock_ctrl(BIO *h, int cmd, long arg1, void *arg2);
78 static int sock_new(BIO *h);
79 static int sock_free(BIO *data);
80 int BIO_sock_should_retry(int s);

82 static BIO_METHOD methods_sockp=
83 {
84 BIO_TYPE_SOCKET,
85 "socket",
86 sock_write,
87 sock_read,
88 sock_puts,
89 NULL, /* sock_gets, */
90 sock_ctrl,
91 sock_new,
92 sock_free,
93 NULL,
94 };

96 BIO_METHOD *BIO_s_socket(void)
97 {
98 return(&methods_sockp);
99 }

101 BIO *BIO_new_socket(int fd, int close_flag)
102 {
103 BIO *ret;

105 ret=BIO_new(BIO_s_socket());
106 if (ret == NULL) return(NULL);
107 BIO_set_fd(ret,fd,close_flag);
108 return(ret);
109 }

111 static int sock_new(BIO *bi)
112 {
113 bi->init=0;
114 bi->num=0;
115 bi->ptr=NULL;
116 bi->flags=0;
117 return(1);
118 }

120 static int sock_free(BIO *a)
121 {
122 if (a == NULL) return(0);
123 if (a->shutdown)
124 {
125 if (a->init)
126 {
127 SHUTDOWN2(a->num);

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_sock.c 3

128 }
129 a->init=0;
130 a->flags=0;
131 }
132 return(1);
133 }
134
135 static int sock_read(BIO *b, char *out, int outl)
136 {
137 int ret=0;

139 if (out != NULL)
140 {
141 clear_socket_error();
142 ret=readsocket(b->num,out,outl);
143 BIO_clear_retry_flags(b);
144 if (ret <= 0)
145 {
146 if (BIO_sock_should_retry(ret))
147 BIO_set_retry_read(b);
148 }
149 }
150 return(ret);
151 }

153 static int sock_write(BIO *b, const char *in, int inl)
154 {
155 int ret;
156
157 clear_socket_error();
158 ret=writesocket(b->num,in,inl);
159 BIO_clear_retry_flags(b);
160 if (ret <= 0)
161 {
162 if (BIO_sock_should_retry(ret))
163 BIO_set_retry_write(b);
164 }
165 return(ret);
166 }

168 static long sock_ctrl(BIO *b, int cmd, long num, void *ptr)
169 {
170 long ret=1;
171 int *ip;

173 switch (cmd)
174 {
175 case BIO_C_SET_FD:
176 sock_free(b);
177 b->num= *((int *)ptr);
178 b->shutdown=(int)num;
179 b->init=1;
180 break;
181 case BIO_C_GET_FD:
182 if (b->init)
183 {
184 ip=(int *)ptr;
185 if (ip != NULL) *ip=b->num;
186 ret=b->num;
187 }
188 else
189 ret= -1;
190 break;
191 case BIO_CTRL_GET_CLOSE:
192 ret=b->shutdown;
193 break;

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_sock.c 4

194 case BIO_CTRL_SET_CLOSE:
195 b->shutdown=(int)num;
196 break;
197 case BIO_CTRL_DUP:
198 case BIO_CTRL_FLUSH:
199 ret=1;
200 break;
201 default:
202 ret=0;
203 break;
204 }
205 return(ret);
206 }

208 static int sock_puts(BIO *bp, const char *str)
209 {
210 int n,ret;

212 n=strlen(str);
213 ret=sock_write(bp,str,n);
214 return(ret);
215 }

217 int BIO_sock_should_retry(int i)
218 {
219 int err;

221 if ((i == 0) || (i == -1))
222 {
223 err=get_last_socket_error();

225 #if defined(OPENSSL_SYS_WINDOWS) && 0 /* more microsoft stupidity? perhaps not?
226 if ((i == -1) && (err == 0))
227 return(1);
228 #endif

230 return(BIO_sock_non_fatal_error(err));
231 }
232 return(0);
233 }

235 int BIO_sock_non_fatal_error(int err)
236 {
237 switch (err)
238 {
239 #if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_NETWARE)
240 # if defined(WSAEWOULDBLOCK)
241 case WSAEWOULDBLOCK:
242 # endif

244 # if 0 /* This appears to always be an error */
245 # if defined(WSAENOTCONN)
246 case WSAENOTCONN:
247 # endif
248 # endif
249 #endif

251 #ifdef EWOULDBLOCK
252 # ifdef WSAEWOULDBLOCK
253 # if WSAEWOULDBLOCK != EWOULDBLOCK
254 case EWOULDBLOCK:
255 # endif
256 # else
257 case EWOULDBLOCK:
258 # endif
259 #endif

new/usr/src/lib/openssl/libsunw_crypto/bio/bss_sock.c 5

261 #if defined(ENOTCONN)
262 case ENOTCONN:
263 #endif

265 #ifdef EINTR
266 case EINTR:
267 #endif

269 #ifdef EAGAIN
270 # if EWOULDBLOCK != EAGAIN
271 case EAGAIN:
272 # endif
273 #endif

275 #ifdef EPROTO
276 case EPROTO:
277 #endif

279 #ifdef EINPROGRESS
280 case EINPROGRESS:
281 #endif

283 #ifdef EALREADY
284 case EALREADY:
285 #endif
286 return(1);
287 /* break; */
288 default:
289 break;
290 }
291 return(0);
292 }

294 #endif /* #ifndef OPENSSL_NO_SOCK */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_add.c 1

**
 6864 Fri May 30 18:31:35 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_add.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_add.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include "bn_lcl.h"

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_add.c 2

63 /* r can == a or b */
64 int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
65 {
66 const BIGNUM *tmp;
67 int a_neg = a->neg, ret;

69 bn_check_top(a);
70 bn_check_top(b);

72 /* a + b a+b
73 * a + -b a-b
74 * -a + b b-a
75 * -a + -b -(a+b)
76 */
77 if (a_neg ^ b->neg)
78 {
79 /* only one is negative */
80 if (a_neg)
81 { tmp=a; a=b; b=tmp; }

83 /* we are now a - b */

85 if (BN_ucmp(a,b) < 0)
86 {
87 if (!BN_usub(r,b,a)) return(0);
88 r->neg=1;
89 }
90 else
91 {
92 if (!BN_usub(r,a,b)) return(0);
93 r->neg=0;
94 }
95 return(1);
96 }

98 ret = BN_uadd(r,a,b);
99 r->neg = a_neg;
100 bn_check_top(r);
101 return ret;
102 }

104 /* unsigned add of b to a */
105 int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
106 {
107 int max,min,dif;
108 BN_ULONG *ap,*bp,*rp,carry,t1,t2;
109 const BIGNUM *tmp;

111 bn_check_top(a);
112 bn_check_top(b);

114 if (a->top < b->top)
115 { tmp=a; a=b; b=tmp; }
116 max = a->top;
117 min = b->top;
118 dif = max - min;

120 if (bn_wexpand(r,max+1) == NULL)
121 return 0;

123 r->top=max;

126 ap=a->d;
127 bp=b->d;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_add.c 3

128 rp=r->d;

130 carry=bn_add_words(rp,ap,bp,min);
131 rp+=min;
132 ap+=min;
133 bp+=min;

135 if (carry)
136 {
137 while (dif)
138 {
139 dif--;
140 t1 = *(ap++);
141 t2 = (t1+1) & BN_MASK2;
142 *(rp++) = t2;
143 if (t2)
144 {
145 carry=0;
146 break;
147 }
148 }
149 if (carry)
150 {
151 /* carry != 0 => dif == 0 */
152 *rp = 1;
153 r->top++;
154 }
155 }
156 if (dif && rp != ap)
157 while (dif--)
158 /* copy remaining words if ap != rp */
159 *(rp++) = *(ap++);
160 r->neg = 0;
161 bn_check_top(r);
162 return 1;
163 }

165 /* unsigned subtraction of b from a, a must be larger than b. */
166 int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
167 {
168 int max,min,dif;
169 register BN_ULONG t1,t2,*ap,*bp,*rp;
170 int i,carry;
171 #if defined(IRIX_CC_BUG) && !defined(LINT)
172 int dummy;
173 #endif

175 bn_check_top(a);
176 bn_check_top(b);

178 max = a->top;
179 min = b->top;
180 dif = max - min;

182 if (dif < 0) /* hmm... should not be happening */
183 {
184 BNerr(BN_F_BN_USUB,BN_R_ARG2_LT_ARG3);
185 return(0);
186 }

188 if (bn_wexpand(r,max) == NULL) return(0);

190 ap=a->d;
191 bp=b->d;
192 rp=r->d;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_add.c 4

194 #if 1
195 carry=0;
196 for (i = min; i != 0; i--)
197 {
198 t1= *(ap++);
199 t2= *(bp++);
200 if (carry)
201 {
202 carry=(t1 <= t2);
203 t1=(t1-t2-1)&BN_MASK2;
204 }
205 else
206 {
207 carry=(t1 < t2);
208 t1=(t1-t2)&BN_MASK2;
209 }
210 #if defined(IRIX_CC_BUG) && !defined(LINT)
211 dummy=t1;
212 #endif
213 *(rp++)=t1&BN_MASK2;
214 }
215 #else
216 carry=bn_sub_words(rp,ap,bp,min);
217 ap+=min;
218 bp+=min;
219 rp+=min;
220 #endif
221 if (carry) /* subtracted */
222 {
223 if (!dif)
224 /* error: a < b */
225 return 0;
226 while (dif)
227 {
228 dif--;
229 t1 = *(ap++);
230 t2 = (t1-1)&BN_MASK2;
231 *(rp++) = t2;
232 if (t1)
233 break;
234 }
235 }
236 #if 0
237 memcpy(rp,ap,sizeof(*rp)*(max-i));
238 #else
239 if (rp != ap)
240 {
241 for (;;)
242 {
243 if (!dif--) break;
244 rp[0]=ap[0];
245 if (!dif--) break;
246 rp[1]=ap[1];
247 if (!dif--) break;
248 rp[2]=ap[2];
249 if (!dif--) break;
250 rp[3]=ap[3];
251 rp+=4;
252 ap+=4;
253 }
254 }
255 #endif

257 r->top=max;
258 r->neg=0;
259 bn_correct_top(r);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_add.c 5

260 return(1);
261 }

263 int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
264 {
265 int max;
266 int add=0,neg=0;
267 const BIGNUM *tmp;

269 bn_check_top(a);
270 bn_check_top(b);

272 /* a - b a-b
273 * a - -b a+b
274 * -a - b -(a+b)
275 * -a - -b b-a
276 */
277 if (a->neg)
278 {
279 if (b->neg)
280 { tmp=a; a=b; b=tmp; }
281 else
282 { add=1; neg=1; }
283 }
284 else
285 {
286 if (b->neg) { add=1; neg=0; }
287 }

289 if (add)
290 {
291 if (!BN_uadd(r,a,b)) return(0);
292 r->neg=neg;
293 return(1);
294 }

296 /* We are actually doing a - b :-) */

298 max=(a->top > b->top)?a->top:b->top;
299 if (bn_wexpand(r,max) == NULL) return(0);
300 if (BN_ucmp(a,b) < 0)
301 {
302 if (!BN_usub(r,b,a)) return(0);
303 r->neg=1;
304 }
305 else
306 {
307 if (!BN_usub(r,a,b)) return(0);
308 r->neg=0;
309 }
310 bn_check_top(r);
311 return(1);
312 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 1

**
 23202 Fri May 30 18:31:35 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_asm.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef BN_DEBUG
60 # undef NDEBUG /* avoid conflicting definitions */
61 # define NDEBUG

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 2

62 #endif

64 #include <stdio.h>
65 #include <assert.h>
66 #include "cryptlib.h"
67 #include "bn_lcl.h"

69 #if defined(BN_LLONG) || defined(BN_UMULT_HIGH)

71 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
72 {
73 BN_ULONG c1=0;

75 assert(num >= 0);
76 if (num <= 0) return(c1);

78 #ifndef OPENSSL_SMALL_FOOTPRINT
79 while (num&~3)
80 {
81 mul_add(rp[0],ap[0],w,c1);
82 mul_add(rp[1],ap[1],w,c1);
83 mul_add(rp[2],ap[2],w,c1);
84 mul_add(rp[3],ap[3],w,c1);
85 ap+=4; rp+=4; num-=4;
86 }
87 #endif
88 while (num)
89 {
90 mul_add(rp[0],ap[0],w,c1);
91 ap++; rp++; num--;
92 }
93
94 return(c1);
95 }

97 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
98 {
99 BN_ULONG c1=0;

101 assert(num >= 0);
102 if (num <= 0) return(c1);

104 #ifndef OPENSSL_SMALL_FOOTPRINT
105 while (num&~3)
106 {
107 mul(rp[0],ap[0],w,c1);
108 mul(rp[1],ap[1],w,c1);
109 mul(rp[2],ap[2],w,c1);
110 mul(rp[3],ap[3],w,c1);
111 ap+=4; rp+=4; num-=4;
112 }
113 #endif
114 while (num)
115 {
116 mul(rp[0],ap[0],w,c1);
117 ap++; rp++; num--;
118 }
119 return(c1);
120 }

122 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
123 {
124 assert(n >= 0);
125 if (n <= 0) return;

127 #ifndef OPENSSL_SMALL_FOOTPRINT

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 3

128 while (n&~3)
129 {
130 sqr(r[0],r[1],a[0]);
131 sqr(r[2],r[3],a[1]);
132 sqr(r[4],r[5],a[2]);
133 sqr(r[6],r[7],a[3]);
134 a+=4; r+=8; n-=4;
135 }
136 #endif
137 while (n)
138 {
139 sqr(r[0],r[1],a[0]);
140 a++; r+=2; n--;
141 }
142 }

144 #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */

146 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
147 {
148 BN_ULONG c=0;
149 BN_ULONG bl,bh;

151 assert(num >= 0);
152 if (num <= 0) return((BN_ULONG)0);

154 bl=LBITS(w);
155 bh=HBITS(w);

157 #ifndef OPENSSL_SMALL_FOOTPRINT
158 while (num&~3)
159 {
160 mul_add(rp[0],ap[0],bl,bh,c);
161 mul_add(rp[1],ap[1],bl,bh,c);
162 mul_add(rp[2],ap[2],bl,bh,c);
163 mul_add(rp[3],ap[3],bl,bh,c);
164 ap+=4; rp+=4; num-=4;
165 }
166 #endif
167 while (num)
168 {
169 mul_add(rp[0],ap[0],bl,bh,c);
170 ap++; rp++; num--;
171 }
172 return(c);
173 }

175 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
176 {
177 BN_ULONG carry=0;
178 BN_ULONG bl,bh;

180 assert(num >= 0);
181 if (num <= 0) return((BN_ULONG)0);

183 bl=LBITS(w);
184 bh=HBITS(w);

186 #ifndef OPENSSL_SMALL_FOOTPRINT
187 while (num&~3)
188 {
189 mul(rp[0],ap[0],bl,bh,carry);
190 mul(rp[1],ap[1],bl,bh,carry);
191 mul(rp[2],ap[2],bl,bh,carry);
192 mul(rp[3],ap[3],bl,bh,carry);
193 ap+=4; rp+=4; num-=4;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 4

194 }
195 #endif
196 while (num)
197 {
198 mul(rp[0],ap[0],bl,bh,carry);
199 ap++; rp++; num--;
200 }
201 return(carry);
202 }

204 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
205 {
206 assert(n >= 0);
207 if (n <= 0) return;

209 #ifndef OPENSSL_SMALL_FOOTPRINT
210 while (n&~3)
211 {
212 sqr64(r[0],r[1],a[0]);
213 sqr64(r[2],r[3],a[1]);
214 sqr64(r[4],r[5],a[2]);
215 sqr64(r[6],r[7],a[3]);
216 a+=4; r+=8; n-=4;
217 }
218 #endif
219 while (n)
220 {
221 sqr64(r[0],r[1],a[0]);
222 a++; r+=2; n--;
223 }
224 }

226 #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */

228 #if defined(BN_LLONG) && defined(BN_DIV2W)

230 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
231 {
232 return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d));
233 }

235 #else

237 /* Divide h,l by d and return the result. */
238 /* I need to test this some more :-(*/
239 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
240 {
241 BN_ULONG dh,dl,q,ret=0,th,tl,t;
242 int i,count=2;

244 if (d == 0) return(BN_MASK2);

246 i=BN_num_bits_word(d);
247 assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i));

249 i=BN_BITS2-i;
250 if (h >= d) h-=d;

252 if (i)
253 {
254 d<<=i;
255 h=(h<<i)|(l>>(BN_BITS2-i));
256 l<<=i;
257 }
258 dh=(d&BN_MASK2h)>>BN_BITS4;
259 dl=(d&BN_MASK2l);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 5

260 for (;;)
261 {
262 if ((h>>BN_BITS4) == dh)
263 q=BN_MASK2l;
264 else
265 q=h/dh;

267 th=q*dh;
268 tl=dl*q;
269 for (;;)
270 {
271 t=h-th;
272 if ((t&BN_MASK2h) ||
273 ((tl) <= (
274 (t<<BN_BITS4)|
275 ((l&BN_MASK2h)>>BN_BITS4))))
276 break;
277 q--;
278 th-=dh;
279 tl-=dl;
280 }
281 t=(tl>>BN_BITS4);
282 tl=(tl<<BN_BITS4)&BN_MASK2h;
283 th+=t;

285 if (l < tl) th++;
286 l-=tl;
287 if (h < th)
288 {
289 h+=d;
290 q--;
291 }
292 h-=th;

294 if (--count == 0) break;

296 ret=q<<BN_BITS4;
297 h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2;
298 l=(l&BN_MASK2l)<<BN_BITS4;
299 }
300 ret|=q;
301 return(ret);
302 }
303 #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */

305 #ifdef BN_LLONG
306 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
307 {
308 BN_ULLONG ll=0;

310 assert(n >= 0);
311 if (n <= 0) return((BN_ULONG)0);

313 #ifndef OPENSSL_SMALL_FOOTPRINT
314 while (n&~3)
315 {
316 ll+=(BN_ULLONG)a[0]+b[0];
317 r[0]=(BN_ULONG)ll&BN_MASK2;
318 ll>>=BN_BITS2;
319 ll+=(BN_ULLONG)a[1]+b[1];
320 r[1]=(BN_ULONG)ll&BN_MASK2;
321 ll>>=BN_BITS2;
322 ll+=(BN_ULLONG)a[2]+b[2];
323 r[2]=(BN_ULONG)ll&BN_MASK2;
324 ll>>=BN_BITS2;
325 ll+=(BN_ULLONG)a[3]+b[3];

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 6

326 r[3]=(BN_ULONG)ll&BN_MASK2;
327 ll>>=BN_BITS2;
328 a+=4; b+=4; r+=4; n-=4;
329 }
330 #endif
331 while (n)
332 {
333 ll+=(BN_ULLONG)a[0]+b[0];
334 r[0]=(BN_ULONG)ll&BN_MASK2;
335 ll>>=BN_BITS2;
336 a++; b++; r++; n--;
337 }
338 return((BN_ULONG)ll);
339 }
340 #else /* !BN_LLONG */
341 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
342 {
343 BN_ULONG c,l,t;

345 assert(n >= 0);
346 if (n <= 0) return((BN_ULONG)0);

348 c=0;
349 #ifndef OPENSSL_SMALL_FOOTPRINT
350 while (n&~3)
351 {
352 t=a[0];
353 t=(t+c)&BN_MASK2;
354 c=(t < c);
355 l=(t+b[0])&BN_MASK2;
356 c+=(l < t);
357 r[0]=l;
358 t=a[1];
359 t=(t+c)&BN_MASK2;
360 c=(t < c);
361 l=(t+b[1])&BN_MASK2;
362 c+=(l < t);
363 r[1]=l;
364 t=a[2];
365 t=(t+c)&BN_MASK2;
366 c=(t < c);
367 l=(t+b[2])&BN_MASK2;
368 c+=(l < t);
369 r[2]=l;
370 t=a[3];
371 t=(t+c)&BN_MASK2;
372 c=(t < c);
373 l=(t+b[3])&BN_MASK2;
374 c+=(l < t);
375 r[3]=l;
376 a+=4; b+=4; r+=4; n-=4;
377 }
378 #endif
379 while(n)
380 {
381 t=a[0];
382 t=(t+c)&BN_MASK2;
383 c=(t < c);
384 l=(t+b[0])&BN_MASK2;
385 c+=(l < t);
386 r[0]=l;
387 a++; b++; r++; n--;
388 }
389 return((BN_ULONG)c);
390 }
391 #endif /* !BN_LLONG */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 7

393 BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
394 {
395 BN_ULONG t1,t2;
396 int c=0;

398 assert(n >= 0);
399 if (n <= 0) return((BN_ULONG)0);

401 #ifndef OPENSSL_SMALL_FOOTPRINT
402 while (n&~3)
403 {
404 t1=a[0]; t2=b[0];
405 r[0]=(t1-t2-c)&BN_MASK2;
406 if (t1 != t2) c=(t1 < t2);
407 t1=a[1]; t2=b[1];
408 r[1]=(t1-t2-c)&BN_MASK2;
409 if (t1 != t2) c=(t1 < t2);
410 t1=a[2]; t2=b[2];
411 r[2]=(t1-t2-c)&BN_MASK2;
412 if (t1 != t2) c=(t1 < t2);
413 t1=a[3]; t2=b[3];
414 r[3]=(t1-t2-c)&BN_MASK2;
415 if (t1 != t2) c=(t1 < t2);
416 a+=4; b+=4; r+=4; n-=4;
417 }
418 #endif
419 while (n)
420 {
421 t1=a[0]; t2=b[0];
422 r[0]=(t1-t2-c)&BN_MASK2;
423 if (t1 != t2) c=(t1 < t2);
424 a++; b++; r++; n--;
425 }
426 return(c);
427 }

429 #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)

431 #undef bn_mul_comba8
432 #undef bn_mul_comba4
433 #undef bn_sqr_comba8
434 #undef bn_sqr_comba4

436 /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
437 /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
438 /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
439 /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0)

441 #ifdef BN_LLONG
442 #define mul_add_c(a,b,c0,c1,c2) \
443 t=(BN_ULLONG)a*b; \
444 t1=(BN_ULONG)Lw(t); \
445 t2=(BN_ULONG)Hw(t); \
446 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
447 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;

449 #define mul_add_c2(a,b,c0,c1,c2) \
450 t=(BN_ULLONG)a*b; \
451 tt=(t+t)&BN_MASK; \
452 if (tt < t) c2++; \
453 t1=(BN_ULONG)Lw(tt); \
454 t2=(BN_ULONG)Hw(tt); \
455 c0=(c0+t1)&BN_MASK2; \
456 if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
457 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 8

459 #define sqr_add_c(a,i,c0,c1,c2) \
460 t=(BN_ULLONG)a[i]*a[i]; \
461 t1=(BN_ULONG)Lw(t); \
462 t2=(BN_ULONG)Hw(t); \
463 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
464 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;

466 #define sqr_add_c2(a,i,j,c0,c1,c2) \
467 mul_add_c2((a)[i],(a)[j],c0,c1,c2)

469 #elif defined(BN_UMULT_LOHI)

471 #define mul_add_c(a,b,c0,c1,c2) { \
472 BN_ULONG ta=(a),tb=(b); \
473 BN_UMULT_LOHI(t1,t2,ta,tb); \
474 c0 += t1; t2 += (c0<t1)?1:0; \
475 c1 += t2; c2 += (c1<t2)?1:0; \
476 }

478 #define mul_add_c2(a,b,c0,c1,c2) { \
479 BN_ULONG ta=(a),tb=(b),t0; \
480 BN_UMULT_LOHI(t0,t1,ta,tb); \
481 t2 = t1+t1; c2 += (t2<t1)?1:0; \
482 t1 = t0+t0; t2 += (t1<t0)?1:0; \
483 c0 += t1; t2 += (c0<t1)?1:0; \
484 c1 += t2; c2 += (c1<t2)?1:0; \
485 }

487 #define sqr_add_c(a,i,c0,c1,c2) { \
488 BN_ULONG ta=(a)[i]; \
489 BN_UMULT_LOHI(t1,t2,ta,ta); \
490 c0 += t1; t2 += (c0<t1)?1:0; \
491 c1 += t2; c2 += (c1<t2)?1:0; \
492 }

494 #define sqr_add_c2(a,i,j,c0,c1,c2) \
495 mul_add_c2((a)[i],(a)[j],c0,c1,c2)

497 #elif defined(BN_UMULT_HIGH)

499 #define mul_add_c(a,b,c0,c1,c2) { \
500 BN_ULONG ta=(a),tb=(b); \
501 t1 = ta * tb; \
502 t2 = BN_UMULT_HIGH(ta,tb); \
503 c0 += t1; t2 += (c0<t1)?1:0; \
504 c1 += t2; c2 += (c1<t2)?1:0; \
505 }

507 #define mul_add_c2(a,b,c0,c1,c2) { \
508 BN_ULONG ta=(a),tb=(b),t0; \
509 t1 = BN_UMULT_HIGH(ta,tb); \
510 t0 = ta * tb; \
511 t2 = t1+t1; c2 += (t2<t1)?1:0; \
512 t1 = t0+t0; t2 += (t1<t0)?1:0; \
513 c0 += t1; t2 += (c0<t1)?1:0; \
514 c1 += t2; c2 += (c1<t2)?1:0; \
515 }

517 #define sqr_add_c(a,i,c0,c1,c2) { \
518 BN_ULONG ta=(a)[i]; \
519 t1 = ta * ta; \
520 t2 = BN_UMULT_HIGH(ta,ta); \
521 c0 += t1; t2 += (c0<t1)?1:0; \
522 c1 += t2; c2 += (c1<t2)?1:0; \
523 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 9

525 #define sqr_add_c2(a,i,j,c0,c1,c2) \
526 mul_add_c2((a)[i],(a)[j],c0,c1,c2)

528 #else /* !BN_LLONG */
529 #define mul_add_c(a,b,c0,c1,c2) \
530 t1=LBITS(a); t2=HBITS(a); \
531 bl=LBITS(b); bh=HBITS(b); \
532 mul64(t1,t2,bl,bh); \
533 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
534 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;

536 #define mul_add_c2(a,b,c0,c1,c2) \
537 t1=LBITS(a); t2=HBITS(a); \
538 bl=LBITS(b); bh=HBITS(b); \
539 mul64(t1,t2,bl,bh); \
540 if (t2 & BN_TBIT) c2++; \
541 t2=(t2+t2)&BN_MASK2; \
542 if (t1 & BN_TBIT) t2++; \
543 t1=(t1+t1)&BN_MASK2; \
544 c0=(c0+t1)&BN_MASK2; \
545 if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
546 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;

548 #define sqr_add_c(a,i,c0,c1,c2) \
549 sqr64(t1,t2,(a)[i]); \
550 c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
551 c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;

553 #define sqr_add_c2(a,i,j,c0,c1,c2) \
554 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
555 #endif /* !BN_LLONG */

557 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
558 {
559 #ifdef BN_LLONG
560 BN_ULLONG t;
561 #else
562 BN_ULONG bl,bh;
563 #endif
564 BN_ULONG t1,t2;
565 BN_ULONG c1,c2,c3;

567 c1=0;
568 c2=0;
569 c3=0;
570 mul_add_c(a[0],b[0],c1,c2,c3);
571 r[0]=c1;
572 c1=0;
573 mul_add_c(a[0],b[1],c2,c3,c1);
574 mul_add_c(a[1],b[0],c2,c3,c1);
575 r[1]=c2;
576 c2=0;
577 mul_add_c(a[2],b[0],c3,c1,c2);
578 mul_add_c(a[1],b[1],c3,c1,c2);
579 mul_add_c(a[0],b[2],c3,c1,c2);
580 r[2]=c3;
581 c3=0;
582 mul_add_c(a[0],b[3],c1,c2,c3);
583 mul_add_c(a[1],b[2],c1,c2,c3);
584 mul_add_c(a[2],b[1],c1,c2,c3);
585 mul_add_c(a[3],b[0],c1,c2,c3);
586 r[3]=c1;
587 c1=0;
588 mul_add_c(a[4],b[0],c2,c3,c1);
589 mul_add_c(a[3],b[1],c2,c3,c1);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 10

590 mul_add_c(a[2],b[2],c2,c3,c1);
591 mul_add_c(a[1],b[3],c2,c3,c1);
592 mul_add_c(a[0],b[4],c2,c3,c1);
593 r[4]=c2;
594 c2=0;
595 mul_add_c(a[0],b[5],c3,c1,c2);
596 mul_add_c(a[1],b[4],c3,c1,c2);
597 mul_add_c(a[2],b[3],c3,c1,c2);
598 mul_add_c(a[3],b[2],c3,c1,c2);
599 mul_add_c(a[4],b[1],c3,c1,c2);
600 mul_add_c(a[5],b[0],c3,c1,c2);
601 r[5]=c3;
602 c3=0;
603 mul_add_c(a[6],b[0],c1,c2,c3);
604 mul_add_c(a[5],b[1],c1,c2,c3);
605 mul_add_c(a[4],b[2],c1,c2,c3);
606 mul_add_c(a[3],b[3],c1,c2,c3);
607 mul_add_c(a[2],b[4],c1,c2,c3);
608 mul_add_c(a[1],b[5],c1,c2,c3);
609 mul_add_c(a[0],b[6],c1,c2,c3);
610 r[6]=c1;
611 c1=0;
612 mul_add_c(a[0],b[7],c2,c3,c1);
613 mul_add_c(a[1],b[6],c2,c3,c1);
614 mul_add_c(a[2],b[5],c2,c3,c1);
615 mul_add_c(a[3],b[4],c2,c3,c1);
616 mul_add_c(a[4],b[3],c2,c3,c1);
617 mul_add_c(a[5],b[2],c2,c3,c1);
618 mul_add_c(a[6],b[1],c2,c3,c1);
619 mul_add_c(a[7],b[0],c2,c3,c1);
620 r[7]=c2;
621 c2=0;
622 mul_add_c(a[7],b[1],c3,c1,c2);
623 mul_add_c(a[6],b[2],c3,c1,c2);
624 mul_add_c(a[5],b[3],c3,c1,c2);
625 mul_add_c(a[4],b[4],c3,c1,c2);
626 mul_add_c(a[3],b[5],c3,c1,c2);
627 mul_add_c(a[2],b[6],c3,c1,c2);
628 mul_add_c(a[1],b[7],c3,c1,c2);
629 r[8]=c3;
630 c3=0;
631 mul_add_c(a[2],b[7],c1,c2,c3);
632 mul_add_c(a[3],b[6],c1,c2,c3);
633 mul_add_c(a[4],b[5],c1,c2,c3);
634 mul_add_c(a[5],b[4],c1,c2,c3);
635 mul_add_c(a[6],b[3],c1,c2,c3);
636 mul_add_c(a[7],b[2],c1,c2,c3);
637 r[9]=c1;
638 c1=0;
639 mul_add_c(a[7],b[3],c2,c3,c1);
640 mul_add_c(a[6],b[4],c2,c3,c1);
641 mul_add_c(a[5],b[5],c2,c3,c1);
642 mul_add_c(a[4],b[6],c2,c3,c1);
643 mul_add_c(a[3],b[7],c2,c3,c1);
644 r[10]=c2;
645 c2=0;
646 mul_add_c(a[4],b[7],c3,c1,c2);
647 mul_add_c(a[5],b[6],c3,c1,c2);
648 mul_add_c(a[6],b[5],c3,c1,c2);
649 mul_add_c(a[7],b[4],c3,c1,c2);
650 r[11]=c3;
651 c3=0;
652 mul_add_c(a[7],b[5],c1,c2,c3);
653 mul_add_c(a[6],b[6],c1,c2,c3);
654 mul_add_c(a[5],b[7],c1,c2,c3);
655 r[12]=c1;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 11

656 c1=0;
657 mul_add_c(a[6],b[7],c2,c3,c1);
658 mul_add_c(a[7],b[6],c2,c3,c1);
659 r[13]=c2;
660 c2=0;
661 mul_add_c(a[7],b[7],c3,c1,c2);
662 r[14]=c3;
663 r[15]=c1;
664 }

666 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
667 {
668 #ifdef BN_LLONG
669 BN_ULLONG t;
670 #else
671 BN_ULONG bl,bh;
672 #endif
673 BN_ULONG t1,t2;
674 BN_ULONG c1,c2,c3;

676 c1=0;
677 c2=0;
678 c3=0;
679 mul_add_c(a[0],b[0],c1,c2,c3);
680 r[0]=c1;
681 c1=0;
682 mul_add_c(a[0],b[1],c2,c3,c1);
683 mul_add_c(a[1],b[0],c2,c3,c1);
684 r[1]=c2;
685 c2=0;
686 mul_add_c(a[2],b[0],c3,c1,c2);
687 mul_add_c(a[1],b[1],c3,c1,c2);
688 mul_add_c(a[0],b[2],c3,c1,c2);
689 r[2]=c3;
690 c3=0;
691 mul_add_c(a[0],b[3],c1,c2,c3);
692 mul_add_c(a[1],b[2],c1,c2,c3);
693 mul_add_c(a[2],b[1],c1,c2,c3);
694 mul_add_c(a[3],b[0],c1,c2,c3);
695 r[3]=c1;
696 c1=0;
697 mul_add_c(a[3],b[1],c2,c3,c1);
698 mul_add_c(a[2],b[2],c2,c3,c1);
699 mul_add_c(a[1],b[3],c2,c3,c1);
700 r[4]=c2;
701 c2=0;
702 mul_add_c(a[2],b[3],c3,c1,c2);
703 mul_add_c(a[3],b[2],c3,c1,c2);
704 r[5]=c3;
705 c3=0;
706 mul_add_c(a[3],b[3],c1,c2,c3);
707 r[6]=c1;
708 r[7]=c2;
709 }

711 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
712 {
713 #ifdef BN_LLONG
714 BN_ULLONG t,tt;
715 #else
716 BN_ULONG bl,bh;
717 #endif
718 BN_ULONG t1,t2;
719 BN_ULONG c1,c2,c3;

721 c1=0;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 12

722 c2=0;
723 c3=0;
724 sqr_add_c(a,0,c1,c2,c3);
725 r[0]=c1;
726 c1=0;
727 sqr_add_c2(a,1,0,c2,c3,c1);
728 r[1]=c2;
729 c2=0;
730 sqr_add_c(a,1,c3,c1,c2);
731 sqr_add_c2(a,2,0,c3,c1,c2);
732 r[2]=c3;
733 c3=0;
734 sqr_add_c2(a,3,0,c1,c2,c3);
735 sqr_add_c2(a,2,1,c1,c2,c3);
736 r[3]=c1;
737 c1=0;
738 sqr_add_c(a,2,c2,c3,c1);
739 sqr_add_c2(a,3,1,c2,c3,c1);
740 sqr_add_c2(a,4,0,c2,c3,c1);
741 r[4]=c2;
742 c2=0;
743 sqr_add_c2(a,5,0,c3,c1,c2);
744 sqr_add_c2(a,4,1,c3,c1,c2);
745 sqr_add_c2(a,3,2,c3,c1,c2);
746 r[5]=c3;
747 c3=0;
748 sqr_add_c(a,3,c1,c2,c3);
749 sqr_add_c2(a,4,2,c1,c2,c3);
750 sqr_add_c2(a,5,1,c1,c2,c3);
751 sqr_add_c2(a,6,0,c1,c2,c3);
752 r[6]=c1;
753 c1=0;
754 sqr_add_c2(a,7,0,c2,c3,c1);
755 sqr_add_c2(a,6,1,c2,c3,c1);
756 sqr_add_c2(a,5,2,c2,c3,c1);
757 sqr_add_c2(a,4,3,c2,c3,c1);
758 r[7]=c2;
759 c2=0;
760 sqr_add_c(a,4,c3,c1,c2);
761 sqr_add_c2(a,5,3,c3,c1,c2);
762 sqr_add_c2(a,6,2,c3,c1,c2);
763 sqr_add_c2(a,7,1,c3,c1,c2);
764 r[8]=c3;
765 c3=0;
766 sqr_add_c2(a,7,2,c1,c2,c3);
767 sqr_add_c2(a,6,3,c1,c2,c3);
768 sqr_add_c2(a,5,4,c1,c2,c3);
769 r[9]=c1;
770 c1=0;
771 sqr_add_c(a,5,c2,c3,c1);
772 sqr_add_c2(a,6,4,c2,c3,c1);
773 sqr_add_c2(a,7,3,c2,c3,c1);
774 r[10]=c2;
775 c2=0;
776 sqr_add_c2(a,7,4,c3,c1,c2);
777 sqr_add_c2(a,6,5,c3,c1,c2);
778 r[11]=c3;
779 c3=0;
780 sqr_add_c(a,6,c1,c2,c3);
781 sqr_add_c2(a,7,5,c1,c2,c3);
782 r[12]=c1;
783 c1=0;
784 sqr_add_c2(a,7,6,c2,c3,c1);
785 r[13]=c2;
786 c2=0;
787 sqr_add_c(a,7,c3,c1,c2);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 13

788 r[14]=c3;
789 r[15]=c1;
790 }

792 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
793 {
794 #ifdef BN_LLONG
795 BN_ULLONG t,tt;
796 #else
797 BN_ULONG bl,bh;
798 #endif
799 BN_ULONG t1,t2;
800 BN_ULONG c1,c2,c3;

802 c1=0;
803 c2=0;
804 c3=0;
805 sqr_add_c(a,0,c1,c2,c3);
806 r[0]=c1;
807 c1=0;
808 sqr_add_c2(a,1,0,c2,c3,c1);
809 r[1]=c2;
810 c2=0;
811 sqr_add_c(a,1,c3,c1,c2);
812 sqr_add_c2(a,2,0,c3,c1,c2);
813 r[2]=c3;
814 c3=0;
815 sqr_add_c2(a,3,0,c1,c2,c3);
816 sqr_add_c2(a,2,1,c1,c2,c3);
817 r[3]=c1;
818 c1=0;
819 sqr_add_c(a,2,c2,c3,c1);
820 sqr_add_c2(a,3,1,c2,c3,c1);
821 r[4]=c2;
822 c2=0;
823 sqr_add_c2(a,3,2,c3,c1,c2);
824 r[5]=c3;
825 c3=0;
826 sqr_add_c(a,3,c1,c2,c3);
827 r[6]=c1;
828 r[7]=c2;
829 }

831 #ifdef OPENSSL_NO_ASM
832 #ifdef OPENSSL_BN_ASM_MONT
833 #include <alloca.h>
834 /*
835 * This is essentially reference implementation, which may or may not
836 * result in performance improvement. E.g. on IA-32 this routine was
837 * observed to give 40% faster rsa1024 private key operations and 10%
838 * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
839 * by 10% and *worsens* rsa4096 sign by 15%. Once again, it’s a
840 * reference implementation, one to be used as starting point for
841 * platform-specific assembler. Mentioned numbers apply to compiler
842 * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
843 * can vary not only from platform to platform, but even for compiler
844 * versions. Assembler vs. assembler improvement coefficients can
845 * [and are known to] differ and are to be documented elsewhere.
846 */
847 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_U
848 {
849 BN_ULONG c0,c1,ml,*tp,n0;
850 #ifdef mul64
851 BN_ULONG mh;
852 #endif
853 volatile BN_ULONG *vp;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 14

854 int i=0,j;

856 #if 0 /* template for platform-specific implementation */
857 if (ap==bp) return bn_sqr_mont(rp,ap,np,n0p,num);
858 #endif
859 vp = tp = alloca((num+2)*sizeof(BN_ULONG));

861 n0 = *n0p;

863 c0 = 0;
864 ml = bp[0];
865 #ifdef mul64
866 mh = HBITS(ml);
867 ml = LBITS(ml);
868 for (j=0;j<num;++j)
869 mul(tp[j],ap[j],ml,mh,c0);
870 #else
871 for (j=0;j<num;++j)
872 mul(tp[j],ap[j],ml,c0);
873 #endif

875 tp[num] = c0;
876 tp[num+1] = 0;
877 goto enter;

879 for(i=0;i<num;i++)
880 {
881 c0 = 0;
882 ml = bp[i];
883 #ifdef mul64
884 mh = HBITS(ml);
885 ml = LBITS(ml);
886 for (j=0;j<num;++j)
887 mul_add(tp[j],ap[j],ml,mh,c0);
888 #else
889 for (j=0;j<num;++j)
890 mul_add(tp[j],ap[j],ml,c0);
891 #endif
892 c1 = (tp[num] + c0)&BN_MASK2;
893 tp[num] = c1;
894 tp[num+1] = (c1<c0?1:0);
895 enter:
896 c1 = tp[0];
897 ml = (c1*n0)&BN_MASK2;
898 c0 = 0;
899 #ifdef mul64
900 mh = HBITS(ml);
901 ml = LBITS(ml);
902 mul_add(c1,np[0],ml,mh,c0);
903 #else
904 mul_add(c1,ml,np[0],c0);
905 #endif
906 for(j=1;j<num;j++)
907 {
908 c1 = tp[j];
909 #ifdef mul64
910 mul_add(c1,np[j],ml,mh,c0);
911 #else
912 mul_add(c1,ml,np[j],c0);
913 #endif
914 tp[j-1] = c1&BN_MASK2;
915 }
916 c1 = (tp[num] + c0)&BN_MASK2;
917 tp[num-1] = c1;
918 tp[num] = tp[num+1] + (c1<c0?1:0);
919 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 15

921 if (tp[num]!=0 || tp[num-1]>=np[num-1])
922 {
923 c0 = bn_sub_words(rp,tp,np,num);
924 if (tp[num]!=0 || c0==0)
925 {
926 for(i=0;i<num+2;i++) vp[i] = 0;
927 return 1;
928 }
929 }
930 for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0;
931 vp[num] = 0;
932 vp[num+1] = 0;
933 return 1;
934 }
935 #else
936 /*
937 * Return value of 0 indicates that multiplication/convolution was not
938 * performed to signal the caller to fall down to alternative/original
939 * code-path.
940 */
941 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_U
942 { return 0; }
943 #endif /* OPENSSL_BN_ASM_MONT */
944 #endif

946 #else /* !BN_MUL_COMBA */

948 /* hmm... is it faster just to do a multiply? */
949 #undef bn_sqr_comba4
950 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
951 {
952 BN_ULONG t[8];
953 bn_sqr_normal(r,a,4,t);
954 }

956 #undef bn_sqr_comba8
957 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
958 {
959 BN_ULONG t[16];
960 bn_sqr_normal(r,a,8,t);
961 }

963 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
964 {
965 r[4]=bn_mul_words(&(r[0]),a,4,b[0]);
966 r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]);
967 r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]);
968 r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]);
969 }

971 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
972 {
973 r[8]=bn_mul_words(&(r[0]),a,8,b[0]);
974 r[9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
975 r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
976 r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
977 r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
978 r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
979 r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
980 r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
981 }

983 #ifdef OPENSSL_NO_ASM
984 #ifdef OPENSSL_BN_ASM_MONT
985 #include <alloca.h>

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_asm.c 16

986 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_U
987 {
988 BN_ULONG c0,c1,*tp,n0=*n0p;
989 volatile BN_ULONG *vp;
990 int i=0,j;

992 vp = tp = alloca((num+2)*sizeof(BN_ULONG));

994 for(i=0;i<=num;i++) tp[i]=0;

996 for(i=0;i<num;i++)
997 {
998 c0 = bn_mul_add_words(tp,ap,num,bp[i]);
999 c1 = (tp[num] + c0)&BN_MASK2;

1000 tp[num] = c1;
1001 tp[num+1] = (c1<c0?1:0);

1003 c0 = bn_mul_add_words(tp,np,num,tp[0]*n0);
1004 c1 = (tp[num] + c0)&BN_MASK2;
1005 tp[num] = c1;
1006 tp[num+1] += (c1<c0?1:0);
1007 for(j=0;j<=num;j++) tp[j]=tp[j+1];
1008 }

1010 if (tp[num]!=0 || tp[num-1]>=np[num-1])
1011 {
1012 c0 = bn_sub_words(rp,tp,np,num);
1013 if (tp[num]!=0 || c0==0)
1014 {
1015 for(i=0;i<num+2;i++) vp[i] = 0;
1016 return 1;
1017 }
1018 }
1019 for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0;
1020 vp[num] = 0;
1021 vp[num+1] = 0;
1022 return 1;
1023 }
1024 #else
1025 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_U
1026 { return 0; }
1027 #endif /* OPENSSL_BN_ASM_MONT */
1028 #endif

1030 #endif /* !BN_MUL_COMBA */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_blind.c 1

**
 11467 Fri May 30 18:31:35 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_blind.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_blind.c */
2 /* ==
3 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
56 * All rights reserved.
57 *
58 * This package is an SSL implementation written
59 * by Eric Young (eay@cryptsoft.com).
60 * The implementation was written so as to conform with Netscapes SSL.
61 *

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_blind.c 2

62 * This library is free for commercial and non-commercial use as long as
63 * the following conditions are aheared to. The following conditions
64 * apply to all code found in this distribution, be it the RC4, RSA,
65 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
66 * included with this distribution is covered by the same copyright terms
67 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
68 *
69 * Copyright remains Eric Young’s, and as such any Copyright notices in
70 * the code are not to be removed.
71 * If this package is used in a product, Eric Young should be given attribution
72 * as the author of the parts of the library used.
73 * This can be in the form of a textual message at program startup or
74 * in documentation (online or textual) provided with the package.
75 *
76 * Redistribution and use in source and binary forms, with or without
77 * modification, are permitted provided that the following conditions
78 * are met:
79 * 1. Redistributions of source code must retain the copyright
80 * notice, this list of conditions and the following disclaimer.
81 * 2. Redistributions in binary form must reproduce the above copyright
82 * notice, this list of conditions and the following disclaimer in the
83 * documentation and/or other materials provided with the distribution.
84 * 3. All advertising materials mentioning features or use of this software
85 * must display the following acknowledgement:
86 * "This product includes cryptographic software written by
87 * Eric Young (eay@cryptsoft.com)"
88 * The word ’cryptographic’ can be left out if the rouines from the library
89 * being used are not cryptographic related :-).
90 * 4. If you include any Windows specific code (or a derivative thereof) from
91 * the apps directory (application code) you must include an acknowledgement:
92 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
93 *
94 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
95 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
96 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
97 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
98 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
99 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
100 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 * SUCH DAMAGE.
105 *
106 * The licence and distribution terms for any publically available version or
107 * derivative of this code cannot be changed. i.e. this code cannot simply be
108 * copied and put under another distribution licence
109 * [including the GNU Public Licence.]
110 */

112 #include <stdio.h>
113 #include "cryptlib.h"
114 #include "bn_lcl.h"

116 #define BN_BLINDING_COUNTER 32

118 struct bn_blinding_st
119 {
120 BIGNUM *A;
121 BIGNUM *Ai;
122 BIGNUM *e;
123 BIGNUM *mod; /* just a reference */
124 #ifndef OPENSSL_NO_DEPRECATED
125 unsigned long thread_id; /* added in OpenSSL 0.9.6j and 0.9.7b;
126 * used only by crypto/rsa/rsa_eay.c, rsa_lib.c
127 #endif

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_blind.c 3

128 CRYPTO_THREADID tid;
129 int counter;
130 unsigned long flags;
131 BN_MONT_CTX *m_ctx;
132 int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
133 const BIGNUM *m, BN_CTX *ctx,
134 BN_MONT_CTX *m_ctx);
135 };

137 BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod)
138 {
139 BN_BLINDING *ret=NULL;

141 bn_check_top(mod);

143 if ((ret=(BN_BLINDING *)OPENSSL_malloc(sizeof(BN_BLINDING))) == NULL)
144 {
145 BNerr(BN_F_BN_BLINDING_NEW,ERR_R_MALLOC_FAILURE);
146 return(NULL);
147 }
148 memset(ret,0,sizeof(BN_BLINDING));
149 if (A != NULL)
150 {
151 if ((ret->A = BN_dup(A)) == NULL) goto err;
152 }
153 if (Ai != NULL)
154 {
155 if ((ret->Ai = BN_dup(Ai)) == NULL) goto err;
156 }

158 /* save a copy of mod in the BN_BLINDING structure */
159 if ((ret->mod = BN_dup(mod)) == NULL) goto err;
160 if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0)
161 BN_set_flags(ret->mod, BN_FLG_CONSTTIME);

163 /* Set the counter to the special value -1
164 * to indicate that this is never-used fresh blinding
165 * that does not need updating before first use. */
166 ret->counter = -1;
167 CRYPTO_THREADID_current(&ret->tid);
168 return(ret);
169 err:
170 if (ret != NULL) BN_BLINDING_free(ret);
171 return(NULL);
172 }

174 void BN_BLINDING_free(BN_BLINDING *r)
175 {
176 if(r == NULL)
177 return;

179 if (r->A != NULL) BN_free(r->A);
180 if (r->Ai != NULL) BN_free(r->Ai);
181 if (r->e != NULL) BN_free(r->e);
182 if (r->mod != NULL) BN_free(r->mod);
183 OPENSSL_free(r);
184 }

186 int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx)
187 {
188 int ret=0;

190 if ((b->A == NULL) || (b->Ai == NULL))
191 {
192 BNerr(BN_F_BN_BLINDING_UPDATE,BN_R_NOT_INITIALIZED);
193 goto err;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_blind.c 4

194 }

196 if (b->counter == -1)
197 b->counter = 0;

199 if (++b->counter == BN_BLINDING_COUNTER && b->e != NULL &&
200 !(b->flags & BN_BLINDING_NO_RECREATE))
201 {
202 /* re-create blinding parameters */
203 if (!BN_BLINDING_create_param(b, NULL, NULL, ctx, NULL, NULL))
204 goto err;
205 }
206 else if (!(b->flags & BN_BLINDING_NO_UPDATE))
207 {
208 if (!BN_mod_mul(b->A,b->A,b->A,b->mod,ctx)) goto err;
209 if (!BN_mod_mul(b->Ai,b->Ai,b->Ai,b->mod,ctx)) goto err;
210 }

212 ret=1;
213 err:
214 if (b->counter == BN_BLINDING_COUNTER)
215 b->counter = 0;
216 return(ret);
217 }

219 int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx)
220 {
221 return BN_BLINDING_convert_ex(n, NULL, b, ctx);
222 }

224 int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *ctx)
225 {
226 int ret = 1;

228 bn_check_top(n);

230 if ((b->A == NULL) || (b->Ai == NULL))
231 {
232 BNerr(BN_F_BN_BLINDING_CONVERT_EX,BN_R_NOT_INITIALIZED);
233 return(0);
234 }

236 if (b->counter == -1)
237 /* Fresh blinding, doesn’t need updating. */
238 b->counter = 0;
239 else if (!BN_BLINDING_update(b,ctx))
240 return(0);

242 if (r != NULL)
243 {
244 if (!BN_copy(r, b->Ai)) ret=0;
245 }

247 if (!BN_mod_mul(n,n,b->A,b->mod,ctx)) ret=0;
248
249 return ret;
250 }

252 int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx)
253 {
254 return BN_BLINDING_invert_ex(n, NULL, b, ctx);
255 }

257 int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, BN_CTX *ct
258 {
259 int ret;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_blind.c 5

261 bn_check_top(n);

263 if (r != NULL)
264 ret = BN_mod_mul(n, n, r, b->mod, ctx);
265 else
266 {
267 if (b->Ai == NULL)
268 {
269 BNerr(BN_F_BN_BLINDING_INVERT_EX,BN_R_NOT_INITIALIZED);
270 return(0);
271 }
272 ret = BN_mod_mul(n, n, b->Ai, b->mod, ctx);
273 }

275 bn_check_top(n);
276 return(ret);
277 }

279 #ifndef OPENSSL_NO_DEPRECATED
280 unsigned long BN_BLINDING_get_thread_id(const BN_BLINDING *b)
281 {
282 return b->thread_id;
283 }

285 void BN_BLINDING_set_thread_id(BN_BLINDING *b, unsigned long n)
286 {
287 b->thread_id = n;
288 }
289 #endif

291 CRYPTO_THREADID *BN_BLINDING_thread_id(BN_BLINDING *b)
292 {
293 return &b->tid;
294 }

296 unsigned long BN_BLINDING_get_flags(const BN_BLINDING *b)
297 {
298 return b->flags;
299 }

301 void BN_BLINDING_set_flags(BN_BLINDING *b, unsigned long flags)
302 {
303 b->flags = flags;
304 }

306 BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b,
307 const BIGNUM *e, BIGNUM *m, BN_CTX *ctx,
308 int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
309 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx),
310 BN_MONT_CTX *m_ctx)
311 {
312 int retry_counter = 32;
313 BN_BLINDING *ret = NULL;

315 if (b == NULL)
316 ret = BN_BLINDING_new(NULL, NULL, m);
317 else
318 ret = b;

320 if (ret == NULL)
321 goto err;

323 if (ret->A == NULL && (ret->A = BN_new()) == NULL)
324 goto err;
325 if (ret->Ai == NULL && (ret->Ai = BN_new()) == NULL)

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_blind.c 6

326 goto err;

328 if (e != NULL)
329 {
330 if (ret->e != NULL)
331 BN_free(ret->e);
332 ret->e = BN_dup(e);
333 }
334 if (ret->e == NULL)
335 goto err;

337 if (bn_mod_exp != NULL)
338 ret->bn_mod_exp = bn_mod_exp;
339 if (m_ctx != NULL)
340 ret->m_ctx = m_ctx;

342 do {
343 if (!BN_rand_range(ret->A, ret->mod)) goto err;
344 if (BN_mod_inverse(ret->Ai, ret->A, ret->mod, ctx) == NULL)
345 {
346 /* this should almost never happen for good RSA keys */
347 unsigned long error = ERR_peek_last_error();
348 if (ERR_GET_REASON(error) == BN_R_NO_INVERSE)
349 {
350 if (retry_counter-- == 0)
351 {
352 BNerr(BN_F_BN_BLINDING_CREATE_PARAM,
353 BN_R_TOO_MANY_ITERATIONS);
354 goto err;
355 }
356 ERR_clear_error();
357 }
358 else
359 goto err;
360 }
361 else
362 break;
363 } while (1);

365 if (ret->bn_mod_exp != NULL && ret->m_ctx != NULL)
366 {
367 if (!ret->bn_mod_exp(ret->A, ret->A, ret->e, ret->mod, ctx, ret-
368 goto err;
369 }
370 else
371 {
372 if (!BN_mod_exp(ret->A, ret->A, ret->e, ret->mod, ctx))
373 goto err;
374 }

376 return ret;
377 err:
378 if (b == NULL && ret != NULL)
379 {
380 BN_BLINDING_free(ret);
381 ret = NULL;
382 }

384 return ret;
385 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_const.c 1

**
 20632 Fri May 30 18:31:35 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_const.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/knownprimes.c */
2 /* Insert boilerplate */

4 #include <openssl/bn.h>

6 /* "First Oakley Default Group" from RFC2409, section 6.1.
7 *
8 * The prime is: 2^768 - 2 ^704 - 1 + 2^64 * { [2^638 pi] + 149686 }
9 *
10 * RFC2409 specifies a generator of 2.
11 * RFC2412 specifies a generator of of 22.
12 */

14 BIGNUM *get_rfc2409_prime_768(BIGNUM *bn)
15 {
16 static const unsigned char RFC2409_PRIME_768[]={
17 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
18 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
19 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
20 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
21 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
22 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
23 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
24 0xA6,0x3A,0x36,0x20,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
25 };
26 return BN_bin2bn(RFC2409_PRIME_768,sizeof(RFC2409_PRIME_768),bn);
27 }

29 /* "Second Oakley Default Group" from RFC2409, section 6.2.
30 *
31 * The prime is: 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
32 *
33 * RFC2409 specifies a generator of 2.
34 * RFC2412 specifies a generator of 22.
35 */

37 BIGNUM *get_rfc2409_prime_1024(BIGNUM *bn)
38 {
39 static const unsigned char RFC2409_PRIME_1024[]={
40 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
41 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
42 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
43 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
44 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
45 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
46 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
47 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
48 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
49 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE6,0x53,0x81,
50 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
51 };
52 return BN_bin2bn(RFC2409_PRIME_1024,sizeof(RFC2409_PRIME_1024),bn);
53 }

55 /* "1536-bit MODP Group" from RFC3526, Section 2.
56 *
57 * The prime is: 2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 }
58 *
59 * RFC3526 specifies a generator of 2.
60 * RFC2312 specifies a generator of 22.
61 */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_const.c 2

63 BIGNUM *get_rfc3526_prime_1536(BIGNUM *bn)
64 {
65 static const unsigned char RFC3526_PRIME_1536[]={
66 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
67 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
68 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
69 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
70 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
71 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
72 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
73 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
74 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
75 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
76 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
77 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
78 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
79 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
80 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
81 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
82 };
83 return BN_bin2bn(RFC3526_PRIME_1536,sizeof(RFC3526_PRIME_1536),bn);
84 }

86 /* "2048-bit MODP Group" from RFC3526, Section 3.
87 *
88 * The prime is: 2^2048 - 2^1984 - 1 + 2^64 * { [2^1918 pi] + 124476 }
89 *
90 * RFC3526 specifies a generator of 2.
91 */

93 BIGNUM *get_rfc3526_prime_2048(BIGNUM *bn)
94 {
95 static const unsigned char RFC3526_PRIME_2048[]={
96 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
97 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
98 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
99 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
100 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
101 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
102 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
103 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
104 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
105 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
106 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
107 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
108 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
109 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
110 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
111 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B,
112 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2,
113 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9,
114 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C,
115 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10,
116 0x15,0x72,0x8E,0x5A,0x8A,0xAC,0xAA,0x68,0xFF,0xFF,0xFF,0xFF,
117 0xFF,0xFF,0xFF,0xFF,
118 };
119 return BN_bin2bn(RFC3526_PRIME_2048,sizeof(RFC3526_PRIME_2048),bn);
120 }

122 /* "3072-bit MODP Group" from RFC3526, Section 4.
123 *
124 * The prime is: 2^3072 - 2^3008 - 1 + 2^64 * { [2^2942 pi] + 1690314 }
125 *
126 * RFC3526 specifies a generator of 2.
127 */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_const.c 3

129 BIGNUM *get_rfc3526_prime_3072(BIGNUM *bn)
130 {
131 static const unsigned char RFC3526_PRIME_3072[]={
132 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
133 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
134 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
135 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
136 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
137 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
138 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
139 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
140 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
141 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
142 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
143 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
144 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
145 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
146 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
147 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B,
148 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2,
149 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9,
150 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C,
151 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10,
152 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D,
153 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64,
154 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57,
155 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7,
156 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0,
157 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B,
158 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73,
159 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C,
160 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0,
161 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31,
162 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20,
163 0xA9,0x3A,0xD2,0xCA,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
164 };
165 return BN_bin2bn(RFC3526_PRIME_3072,sizeof(RFC3526_PRIME_3072),bn);
166 }

168 /* "4096-bit MODP Group" from RFC3526, Section 5.
169 *
170 * The prime is: 2^4096 - 2^4032 - 1 + 2^64 * { [2^3966 pi] + 240904 }
171 *
172 * RFC3526 specifies a generator of 2.
173 */

175 BIGNUM *get_rfc3526_prime_4096(BIGNUM *bn)
176 {
177 static const unsigned char RFC3526_PRIME_4096[]={
178 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
179 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
180 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
181 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
182 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
183 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
184 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
185 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
186 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
187 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
188 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
189 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
190 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
191 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
192 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
193 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B,

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_const.c 4

194 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2,
195 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9,
196 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C,
197 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10,
198 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D,
199 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64,
200 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57,
201 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7,
202 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0,
203 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B,
204 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73,
205 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C,
206 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0,
207 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31,
208 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20,
209 0xA9,0x21,0x08,0x01,0x1A,0x72,0x3C,0x12,0xA7,0x87,0xE6,0xD7,
210 0x88,0x71,0x9A,0x10,0xBD,0xBA,0x5B,0x26,0x99,0xC3,0x27,0x18,
211 0x6A,0xF4,0xE2,0x3C,0x1A,0x94,0x68,0x34,0xB6,0x15,0x0B,0xDA,
212 0x25,0x83,0xE9,0xCA,0x2A,0xD4,0x4C,0xE8,0xDB,0xBB,0xC2,0xDB,
213 0x04,0xDE,0x8E,0xF9,0x2E,0x8E,0xFC,0x14,0x1F,0xBE,0xCA,0xA6,
214 0x28,0x7C,0x59,0x47,0x4E,0x6B,0xC0,0x5D,0x99,0xB2,0x96,0x4F,
215 0xA0,0x90,0xC3,0xA2,0x23,0x3B,0xA1,0x86,0x51,0x5B,0xE7,0xED,
216 0x1F,0x61,0x29,0x70,0xCE,0xE2,0xD7,0xAF,0xB8,0x1B,0xDD,0x76,
217 0x21,0x70,0x48,0x1C,0xD0,0x06,0x91,0x27,0xD5,0xB0,0x5A,0xA9,
218 0x93,0xB4,0xEA,0x98,0x8D,0x8F,0xDD,0xC1,0x86,0xFF,0xB7,0xDC,
219 0x90,0xA6,0xC0,0x8F,0x4D,0xF4,0x35,0xC9,0x34,0x06,0x31,0x99,
220 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
221 };
222 return BN_bin2bn(RFC3526_PRIME_4096,sizeof(RFC3526_PRIME_4096),bn);
223 }

225 /* "6144-bit MODP Group" from RFC3526, Section 6.
226 *
227 * The prime is: 2^6144 - 2^6080 - 1 + 2^64 * { [2^6014 pi] + 929484 }
228 *
229 * RFC3526 specifies a generator of 2.
230 */

232 BIGNUM *get_rfc3526_prime_6144(BIGNUM *bn)
233 {
234 static const unsigned char RFC3526_PRIME_6144[]={
235 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
236 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
237 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
238 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
239 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
240 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
241 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
242 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
243 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
244 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
245 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
246 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
247 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
248 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
249 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
250 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B,
251 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2,
252 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9,
253 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C,
254 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10,
255 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D,
256 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64,
257 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57,
258 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7,
259 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0,

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_const.c 5

260 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B,
261 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73,
262 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C,
263 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0,
264 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31,
265 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20,
266 0xA9,0x21,0x08,0x01,0x1A,0x72,0x3C,0x12,0xA7,0x87,0xE6,0xD7,
267 0x88,0x71,0x9A,0x10,0xBD,0xBA,0x5B,0x26,0x99,0xC3,0x27,0x18,
268 0x6A,0xF4,0xE2,0x3C,0x1A,0x94,0x68,0x34,0xB6,0x15,0x0B,0xDA,
269 0x25,0x83,0xE9,0xCA,0x2A,0xD4,0x4C,0xE8,0xDB,0xBB,0xC2,0xDB,
270 0x04,0xDE,0x8E,0xF9,0x2E,0x8E,0xFC,0x14,0x1F,0xBE,0xCA,0xA6,
271 0x28,0x7C,0x59,0x47,0x4E,0x6B,0xC0,0x5D,0x99,0xB2,0x96,0x4F,
272 0xA0,0x90,0xC3,0xA2,0x23,0x3B,0xA1,0x86,0x51,0x5B,0xE7,0xED,
273 0x1F,0x61,0x29,0x70,0xCE,0xE2,0xD7,0xAF,0xB8,0x1B,0xDD,0x76,
274 0x21,0x70,0x48,0x1C,0xD0,0x06,0x91,0x27,0xD5,0xB0,0x5A,0xA9,
275 0x93,0xB4,0xEA,0x98,0x8D,0x8F,0xDD,0xC1,0x86,0xFF,0xB7,0xDC,
276 0x90,0xA6,0xC0,0x8F,0x4D,0xF4,0x35,0xC9,0x34,0x02,0x84,0x92,
277 0x36,0xC3,0xFA,0xB4,0xD2,0x7C,0x70,0x26,0xC1,0xD4,0xDC,0xB2,
278 0x60,0x26,0x46,0xDE,0xC9,0x75,0x1E,0x76,0x3D,0xBA,0x37,0xBD,
279 0xF8,0xFF,0x94,0x06,0xAD,0x9E,0x53,0x0E,0xE5,0xDB,0x38,0x2F,
280 0x41,0x30,0x01,0xAE,0xB0,0x6A,0x53,0xED,0x90,0x27,0xD8,0x31,
281 0x17,0x97,0x27,0xB0,0x86,0x5A,0x89,0x18,0xDA,0x3E,0xDB,0xEB,
282 0xCF,0x9B,0x14,0xED,0x44,0xCE,0x6C,0xBA,0xCE,0xD4,0xBB,0x1B,
283 0xDB,0x7F,0x14,0x47,0xE6,0xCC,0x25,0x4B,0x33,0x20,0x51,0x51,
284 0x2B,0xD7,0xAF,0x42,0x6F,0xB8,0xF4,0x01,0x37,0x8C,0xD2,0xBF,
285 0x59,0x83,0xCA,0x01,0xC6,0x4B,0x92,0xEC,0xF0,0x32,0xEA,0x15,
286 0xD1,0x72,0x1D,0x03,0xF4,0x82,0xD7,0xCE,0x6E,0x74,0xFE,0xF6,
287 0xD5,0x5E,0x70,0x2F,0x46,0x98,0x0C,0x82,0xB5,0xA8,0x40,0x31,
288 0x90,0x0B,0x1C,0x9E,0x59,0xE7,0xC9,0x7F,0xBE,0xC7,0xE8,0xF3,
289 0x23,0xA9,0x7A,0x7E,0x36,0xCC,0x88,0xBE,0x0F,0x1D,0x45,0xB7,
290 0xFF,0x58,0x5A,0xC5,0x4B,0xD4,0x07,0xB2,0x2B,0x41,0x54,0xAA,
291 0xCC,0x8F,0x6D,0x7E,0xBF,0x48,0xE1,0xD8,0x14,0xCC,0x5E,0xD2,
292 0x0F,0x80,0x37,0xE0,0xA7,0x97,0x15,0xEE,0xF2,0x9B,0xE3,0x28,
293 0x06,0xA1,0xD5,0x8B,0xB7,0xC5,0xDA,0x76,0xF5,0x50,0xAA,0x3D,
294 0x8A,0x1F,0xBF,0xF0,0xEB,0x19,0xCC,0xB1,0xA3,0x13,0xD5,0x5C,
295 0xDA,0x56,0xC9,0xEC,0x2E,0xF2,0x96,0x32,0x38,0x7F,0xE8,0xD7,
296 0x6E,0x3C,0x04,0x68,0x04,0x3E,0x8F,0x66,0x3F,0x48,0x60,0xEE,
297 0x12,0xBF,0x2D,0x5B,0x0B,0x74,0x74,0xD6,0xE6,0x94,0xF9,0x1E,
298 0x6D,0xCC,0x40,0x24,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
299 };
300 return BN_bin2bn(RFC3526_PRIME_6144,sizeof(RFC3526_PRIME_6144),bn);
301 }

303 /* "8192-bit MODP Group" from RFC3526, Section 7.
304 *
305 * The prime is: 2^8192 - 2^8128 - 1 + 2^64 * { [2^8062 pi] + 4743158 }
306 *
307 * RFC3526 specifies a generator of 2.
308 */

310 BIGNUM *get_rfc3526_prime_8192(BIGNUM *bn)
311 {
312 static const unsigned char RFC3526_PRIME_8192[]={
313 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
314 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
315 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
316 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
317 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
318 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
319 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
320 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
321 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
322 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
323 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
324 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
325 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_const.c 6

326 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
327 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
328 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B,
329 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2,
330 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9,
331 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C,
332 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10,
333 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D,
334 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64,
335 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57,
336 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7,
337 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0,
338 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B,
339 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73,
340 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C,
341 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0,
342 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31,
343 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20,
344 0xA9,0x21,0x08,0x01,0x1A,0x72,0x3C,0x12,0xA7,0x87,0xE6,0xD7,
345 0x88,0x71,0x9A,0x10,0xBD,0xBA,0x5B,0x26,0x99,0xC3,0x27,0x18,
346 0x6A,0xF4,0xE2,0x3C,0x1A,0x94,0x68,0x34,0xB6,0x15,0x0B,0xDA,
347 0x25,0x83,0xE9,0xCA,0x2A,0xD4,0x4C,0xE8,0xDB,0xBB,0xC2,0xDB,
348 0x04,0xDE,0x8E,0xF9,0x2E,0x8E,0xFC,0x14,0x1F,0xBE,0xCA,0xA6,
349 0x28,0x7C,0x59,0x47,0x4E,0x6B,0xC0,0x5D,0x99,0xB2,0x96,0x4F,
350 0xA0,0x90,0xC3,0xA2,0x23,0x3B,0xA1,0x86,0x51,0x5B,0xE7,0xED,
351 0x1F,0x61,0x29,0x70,0xCE,0xE2,0xD7,0xAF,0xB8,0x1B,0xDD,0x76,
352 0x21,0x70,0x48,0x1C,0xD0,0x06,0x91,0x27,0xD5,0xB0,0x5A,0xA9,
353 0x93,0xB4,0xEA,0x98,0x8D,0x8F,0xDD,0xC1,0x86,0xFF,0xB7,0xDC,
354 0x90,0xA6,0xC0,0x8F,0x4D,0xF4,0x35,0xC9,0x34,0x02,0x84,0x92,
355 0x36,0xC3,0xFA,0xB4,0xD2,0x7C,0x70,0x26,0xC1,0xD4,0xDC,0xB2,
356 0x60,0x26,0x46,0xDE,0xC9,0x75,0x1E,0x76,0x3D,0xBA,0x37,0xBD,
357 0xF8,0xFF,0x94,0x06,0xAD,0x9E,0x53,0x0E,0xE5,0xDB,0x38,0x2F,
358 0x41,0x30,0x01,0xAE,0xB0,0x6A,0x53,0xED,0x90,0x27,0xD8,0x31,
359 0x17,0x97,0x27,0xB0,0x86,0x5A,0x89,0x18,0xDA,0x3E,0xDB,0xEB,
360 0xCF,0x9B,0x14,0xED,0x44,0xCE,0x6C,0xBA,0xCE,0xD4,0xBB,0x1B,
361 0xDB,0x7F,0x14,0x47,0xE6,0xCC,0x25,0x4B,0x33,0x20,0x51,0x51,
362 0x2B,0xD7,0xAF,0x42,0x6F,0xB8,0xF4,0x01,0x37,0x8C,0xD2,0xBF,
363 0x59,0x83,0xCA,0x01,0xC6,0x4B,0x92,0xEC,0xF0,0x32,0xEA,0x15,
364 0xD1,0x72,0x1D,0x03,0xF4,0x82,0xD7,0xCE,0x6E,0x74,0xFE,0xF6,
365 0xD5,0x5E,0x70,0x2F,0x46,0x98,0x0C,0x82,0xB5,0xA8,0x40,0x31,
366 0x90,0x0B,0x1C,0x9E,0x59,0xE7,0xC9,0x7F,0xBE,0xC7,0xE8,0xF3,
367 0x23,0xA9,0x7A,0x7E,0x36,0xCC,0x88,0xBE,0x0F,0x1D,0x45,0xB7,
368 0xFF,0x58,0x5A,0xC5,0x4B,0xD4,0x07,0xB2,0x2B,0x41,0x54,0xAA,
369 0xCC,0x8F,0x6D,0x7E,0xBF,0x48,0xE1,0xD8,0x14,0xCC,0x5E,0xD2,
370 0x0F,0x80,0x37,0xE0,0xA7,0x97,0x15,0xEE,0xF2,0x9B,0xE3,0x28,
371 0x06,0xA1,0xD5,0x8B,0xB7,0xC5,0xDA,0x76,0xF5,0x50,0xAA,0x3D,
372 0x8A,0x1F,0xBF,0xF0,0xEB,0x19,0xCC,0xB1,0xA3,0x13,0xD5,0x5C,
373 0xDA,0x56,0xC9,0xEC,0x2E,0xF2,0x96,0x32,0x38,0x7F,0xE8,0xD7,
374 0x6E,0x3C,0x04,0x68,0x04,0x3E,0x8F,0x66,0x3F,0x48,0x60,0xEE,
375 0x12,0xBF,0x2D,0x5B,0x0B,0x74,0x74,0xD6,0xE6,0x94,0xF9,0x1E,
376 0x6D,0xBE,0x11,0x59,0x74,0xA3,0x92,0x6F,0x12,0xFE,0xE5,0xE4,
377 0x38,0x77,0x7C,0xB6,0xA9,0x32,0xDF,0x8C,0xD8,0xBE,0xC4,0xD0,
378 0x73,0xB9,0x31,0xBA,0x3B,0xC8,0x32,0xB6,0x8D,0x9D,0xD3,0x00,
379 0x74,0x1F,0xA7,0xBF,0x8A,0xFC,0x47,0xED,0x25,0x76,0xF6,0x93,
380 0x6B,0xA4,0x24,0x66,0x3A,0xAB,0x63,0x9C,0x5A,0xE4,0xF5,0x68,
381 0x34,0x23,0xB4,0x74,0x2B,0xF1,0xC9,0x78,0x23,0x8F,0x16,0xCB,
382 0xE3,0x9D,0x65,0x2D,0xE3,0xFD,0xB8,0xBE,0xFC,0x84,0x8A,0xD9,
383 0x22,0x22,0x2E,0x04,0xA4,0x03,0x7C,0x07,0x13,0xEB,0x57,0xA8,
384 0x1A,0x23,0xF0,0xC7,0x34,0x73,0xFC,0x64,0x6C,0xEA,0x30,0x6B,
385 0x4B,0xCB,0xC8,0x86,0x2F,0x83,0x85,0xDD,0xFA,0x9D,0x4B,0x7F,
386 0xA2,0xC0,0x87,0xE8,0x79,0x68,0x33,0x03,0xED,0x5B,0xDD,0x3A,
387 0x06,0x2B,0x3C,0xF5,0xB3,0xA2,0x78,0xA6,0x6D,0x2A,0x13,0xF8,
388 0x3F,0x44,0xF8,0x2D,0xDF,0x31,0x0E,0xE0,0x74,0xAB,0x6A,0x36,
389 0x45,0x97,0xE8,0x99,0xA0,0x25,0x5D,0xC1,0x64,0xF3,0x1C,0xC5,
390 0x08,0x46,0x85,0x1D,0xF9,0xAB,0x48,0x19,0x5D,0xED,0x7E,0xA1,
391 0xB1,0xD5,0x10,0xBD,0x7E,0xE7,0x4D,0x73,0xFA,0xF3,0x6B,0xC3,

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_const.c 7

392 0x1E,0xCF,0xA2,0x68,0x35,0x90,0x46,0xF4,0xEB,0x87,0x9F,0x92,
393 0x40,0x09,0x43,0x8B,0x48,0x1C,0x6C,0xD7,0x88,0x9A,0x00,0x2E,
394 0xD5,0xEE,0x38,0x2B,0xC9,0x19,0x0D,0xA6,0xFC,0x02,0x6E,0x47,
395 0x95,0x58,0xE4,0x47,0x56,0x77,0xE9,0xAA,0x9E,0x30,0x50,0xE2,
396 0x76,0x56,0x94,0xDF,0xC8,0x1F,0x56,0xE8,0x80,0xB9,0x6E,0x71,
397 0x60,0xC9,0x80,0xDD,0x98,0xED,0xD3,0xDF,0xFF,0xFF,0xFF,0xFF,
398 0xFF,0xFF,0xFF,0xFF,
399 };
400 return BN_bin2bn(RFC3526_PRIME_8192,sizeof(RFC3526_PRIME_8192),bn);
401 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_ctx.c 1

**
 11809 Fri May 30 18:31:35 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_ctx.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_ctx.c */
2 /* Written by Ulf Moeller for the OpenSSL project. */
3 /* ==
4 * Copyright (c) 1998-2004 The OpenSSL Project. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 *
18 * 3. All advertising materials mentioning features or use of this
19 * software must display the following acknowledgment:
20 * "This product includes software developed by the OpenSSL Project
21 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
22 *
23 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
24 * endorse or promote products derived from this software without
25 * prior written permission. For written permission, please contact
26 * openssl-core@openssl.org.
27 *
28 * 5. Products derived from this software may not be called "OpenSSL"
29 * nor may "OpenSSL" appear in their names without prior written
30 * permission of the OpenSSL Project.
31 *
32 * 6. Redistributions of any form whatsoever must retain the following
33 * acknowledgment:
34 * "This product includes software developed by the OpenSSL Project
35 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
38 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
40 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
41 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
43 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
44 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
45 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
46 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
48 * OF THE POSSIBILITY OF SUCH DAMAGE.
49 * ==
50 *
51 * This product includes cryptographic software written by Eric Young
52 * (eay@cryptsoft.com). This product includes software written by Tim
53 * Hudson (tjh@cryptsoft.com).
54 *
55 */

57 #if !defined(BN_CTX_DEBUG) && !defined(BN_DEBUG)
58 #ifndef NDEBUG
59 #define NDEBUG
60 #endif
61 #endif

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_ctx.c 2

63 #include <stdio.h>
64 #include <assert.h>

66 #include "cryptlib.h"
67 #include "bn_lcl.h"

69 /* TODO list
70 *
71 * 1. Check a bunch of "(words+1)" type hacks in various bignum functions and
72 * check they can be safely removed.
73 * - Check +1 and other ugliness in BN_from_montgomery()
74 *
75 * 2. Consider allowing a BN_new_ex() that, at least, lets you specify an
76 * appropriate ’block’ size that will be honoured by bn_expand_internal() to
77 * prevent piddly little reallocations. OTOH, profiling bignum expansions in
78 * BN_CTX doesn’t show this to be a big issue.
79 */

81 /* How many bignums are in each "pool item"; */
82 #define BN_CTX_POOL_SIZE 16
83 /* The stack frame info is resizing, set a first-time expansion size; */
84 #define BN_CTX_START_FRAMES 32

86 /***********/
87 /* BN_POOL */
88 /***********/

90 /* A bundle of bignums that can be linked with other bundles */
91 typedef struct bignum_pool_item
92 {
93 /* The bignum values */
94 BIGNUM vals[BN_CTX_POOL_SIZE];
95 /* Linked-list admin */
96 struct bignum_pool_item *prev, *next;
97 } BN_POOL_ITEM;
98 /* A linked-list of bignums grouped in bundles */
99 typedef struct bignum_pool
100 {
101 /* Linked-list admin */
102 BN_POOL_ITEM *head, *current, *tail;
103 /* Stack depth and allocation size */
104 unsigned used, size;
105 } BN_POOL;
106 static void BN_POOL_init(BN_POOL *);
107 static void BN_POOL_finish(BN_POOL *);
108 #ifndef OPENSSL_NO_DEPRECATED
109 static void BN_POOL_reset(BN_POOL *);
110 #endif
111 static BIGNUM * BN_POOL_get(BN_POOL *);
112 static void BN_POOL_release(BN_POOL *, unsigned int);

114 /************/
115 /* BN_STACK */
116 /************/

118 /* A wrapper to manage the "stack frames" */
119 typedef struct bignum_ctx_stack
120 {
121 /* Array of indexes into the bignum stack */
122 unsigned int *indexes;
123 /* Number of stack frames, and the size of the allocated array */
124 unsigned int depth, size;
125 } BN_STACK;
126 static void BN_STACK_init(BN_STACK *);
127 static void BN_STACK_finish(BN_STACK *);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_ctx.c 3

128 #ifndef OPENSSL_NO_DEPRECATED
129 static void BN_STACK_reset(BN_STACK *);
130 #endif
131 static int BN_STACK_push(BN_STACK *, unsigned int);
132 static unsigned int BN_STACK_pop(BN_STACK *);

134 /**********/
135 /* BN_CTX */
136 /**********/

138 /* The opaque BN_CTX type */
139 struct bignum_ctx
140 {
141 /* The bignum bundles */
142 BN_POOL pool;
143 /* The "stack frames", if you will */
144 BN_STACK stack;
145 /* The number of bignums currently assigned */
146 unsigned int used;
147 /* Depth of stack overflow */
148 int err_stack;
149 /* Block "gets" until an "end" (compatibility behaviour) */
150 int too_many;
151 };

153 /* Enable this to find BN_CTX bugs */
154 #ifdef BN_CTX_DEBUG
155 static const char *ctxdbg_cur = NULL;
156 static void ctxdbg(BN_CTX *ctx)
157 {
158 unsigned int bnidx = 0, fpidx = 0;
159 BN_POOL_ITEM *item = ctx->pool.head;
160 BN_STACK *stack = &ctx->stack;
161 fprintf(stderr,"(%08x): ", (unsigned int)ctx);
162 while(bnidx < ctx->used)
163 {
164 fprintf(stderr,"%03x ", item->vals[bnidx++ % BN_CTX_POOL_SIZE].d
165 if(!(bnidx % BN_CTX_POOL_SIZE))
166 item = item->next;
167 }
168 fprintf(stderr,"\n");
169 bnidx = 0;
170 fprintf(stderr," : ");
171 while(fpidx < stack->depth)
172 {
173 while(bnidx++ < stack->indexes[fpidx])
174 fprintf(stderr," ");
175 fprintf(stderr,"^^^ ");
176 bnidx++;
177 fpidx++;
178 }
179 fprintf(stderr,"\n");
180 }
181 #define CTXDBG_ENTRY(str, ctx) do { \
182 ctxdbg_cur = (str); \
183 fprintf(stderr,"Starting %s\n", ctxdbg_cur); \
184 ctxdbg(ctx); \
185 } while(0)
186 #define CTXDBG_EXIT(ctx) do { \
187 fprintf(stderr,"Ending %s\n", ctxdbg_cur); \
188 ctxdbg(ctx); \
189 } while(0)
190 #define CTXDBG_RET(ctx,ret)
191 #else
192 #define CTXDBG_ENTRY(str, ctx)
193 #define CTXDBG_EXIT(ctx)

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_ctx.c 4

194 #define CTXDBG_RET(ctx,ret)
195 #endif

197 /* This function is an evil legacy and should not be used. This implementation
198 * is WYSIWYG, though I’ve done my best. */
199 #ifndef OPENSSL_NO_DEPRECATED
200 void BN_CTX_init(BN_CTX *ctx)
201 {
202 /* Assume the caller obtained the context via BN_CTX_new() and so is
203 * trying to reset it for use. Nothing else makes sense, least of all
204 * binary compatibility from a time when they could declare a static
205 * variable. */
206 BN_POOL_reset(&ctx->pool);
207 BN_STACK_reset(&ctx->stack);
208 ctx->used = 0;
209 ctx->err_stack = 0;
210 ctx->too_many = 0;
211 }
212 #endif

214 BN_CTX *BN_CTX_new(void)
215 {
216 BN_CTX *ret = OPENSSL_malloc(sizeof(BN_CTX));
217 if(!ret)
218 {
219 BNerr(BN_F_BN_CTX_NEW,ERR_R_MALLOC_FAILURE);
220 return NULL;
221 }
222 /* Initialise the structure */
223 BN_POOL_init(&ret->pool);
224 BN_STACK_init(&ret->stack);
225 ret->used = 0;
226 ret->err_stack = 0;
227 ret->too_many = 0;
228 return ret;
229 }

231 void BN_CTX_free(BN_CTX *ctx)
232 {
233 if (ctx == NULL)
234 return;
235 #ifdef BN_CTX_DEBUG
236 {
237 BN_POOL_ITEM *pool = ctx->pool.head;
238 fprintf(stderr,"BN_CTX_free, stack-size=%d, pool-bignums=%d\n",
239 ctx->stack.size, ctx->pool.size);
240 fprintf(stderr,"dmaxs: ");
241 while(pool) {
242 unsigned loop = 0;
243 while(loop < BN_CTX_POOL_SIZE)
244 fprintf(stderr,"%02x ", pool->vals[loop++].dmax);
245 pool = pool->next;
246 }
247 fprintf(stderr,"\n");
248 }
249 #endif
250 BN_STACK_finish(&ctx->stack);
251 BN_POOL_finish(&ctx->pool);
252 OPENSSL_free(ctx);
253 }

255 void BN_CTX_start(BN_CTX *ctx)
256 {
257 CTXDBG_ENTRY("BN_CTX_start", ctx);
258 /* If we’re already overflowing ... */
259 if(ctx->err_stack || ctx->too_many)

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_ctx.c 5

260 ctx->err_stack++;
261 /* (Try to) get a new frame pointer */
262 else if(!BN_STACK_push(&ctx->stack, ctx->used))
263 {
264 BNerr(BN_F_BN_CTX_START,BN_R_TOO_MANY_TEMPORARY_VARIABLES);
265 ctx->err_stack++;
266 }
267 CTXDBG_EXIT(ctx);
268 }

270 void BN_CTX_end(BN_CTX *ctx)
271 {
272 CTXDBG_ENTRY("BN_CTX_end", ctx);
273 if(ctx->err_stack)
274 ctx->err_stack--;
275 else
276 {
277 unsigned int fp = BN_STACK_pop(&ctx->stack);
278 /* Does this stack frame have anything to release? */
279 if(fp < ctx->used)
280 BN_POOL_release(&ctx->pool, ctx->used - fp);
281 ctx->used = fp;
282 /* Unjam "too_many" in case "get" had failed */
283 ctx->too_many = 0;
284 }
285 CTXDBG_EXIT(ctx);
286 }

288 BIGNUM *BN_CTX_get(BN_CTX *ctx)
289 {
290 BIGNUM *ret;
291 CTXDBG_ENTRY("BN_CTX_get", ctx);
292 if(ctx->err_stack || ctx->too_many) return NULL;
293 if((ret = BN_POOL_get(&ctx->pool)) == NULL)
294 {
295 /* Setting too_many prevents repeated "get" attempts from
296 * cluttering the error stack. */
297 ctx->too_many = 1;
298 BNerr(BN_F_BN_CTX_GET,BN_R_TOO_MANY_TEMPORARY_VARIABLES);
299 return NULL;
300 }
301 /* OK, make sure the returned bignum is "zero" */
302 BN_zero(ret);
303 ctx->used++;
304 CTXDBG_RET(ctx, ret);
305 return ret;
306 }

308 /************/
309 /* BN_STACK */
310 /************/

312 static void BN_STACK_init(BN_STACK *st)
313 {
314 st->indexes = NULL;
315 st->depth = st->size = 0;
316 }

318 static void BN_STACK_finish(BN_STACK *st)
319 {
320 if(st->size) OPENSSL_free(st->indexes);
321 }

323 #ifndef OPENSSL_NO_DEPRECATED
324 static void BN_STACK_reset(BN_STACK *st)
325 {

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_ctx.c 6

326 st->depth = 0;
327 }
328 #endif

330 static int BN_STACK_push(BN_STACK *st, unsigned int idx)
331 {
332 if(st->depth == st->size)
333 /* Need to expand */
334 {
335 unsigned int newsize = (st->size ?
336 (st->size * 3 / 2) : BN_CTX_START_FRAMES);
337 unsigned int *newitems = OPENSSL_malloc(newsize *
338 sizeof(unsigned int));
339 if(!newitems) return 0;
340 if(st->depth)
341 memcpy(newitems, st->indexes, st->depth *
342 sizeof(unsigned int));
343 if(st->size) OPENSSL_free(st->indexes);
344 st->indexes = newitems;
345 st->size = newsize;
346 }
347 st->indexes[(st->depth)++] = idx;
348 return 1;
349 }

351 static unsigned int BN_STACK_pop(BN_STACK *st)
352 {
353 return st->indexes[--(st->depth)];
354 }

356 /***********/
357 /* BN_POOL */
358 /***********/

360 static void BN_POOL_init(BN_POOL *p)
361 {
362 p->head = p->current = p->tail = NULL;
363 p->used = p->size = 0;
364 }

366 static void BN_POOL_finish(BN_POOL *p)
367 {
368 while(p->head)
369 {
370 unsigned int loop = 0;
371 BIGNUM *bn = p->head->vals;
372 while(loop++ < BN_CTX_POOL_SIZE)
373 {
374 if(bn->d) BN_clear_free(bn);
375 bn++;
376 }
377 p->current = p->head->next;
378 OPENSSL_free(p->head);
379 p->head = p->current;
380 }
381 }

383 #ifndef OPENSSL_NO_DEPRECATED
384 static void BN_POOL_reset(BN_POOL *p)
385 {
386 BN_POOL_ITEM *item = p->head;
387 while(item)
388 {
389 unsigned int loop = 0;
390 BIGNUM *bn = item->vals;
391 while(loop++ < BN_CTX_POOL_SIZE)

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_ctx.c 7

392 {
393 if(bn->d) BN_clear(bn);
394 bn++;
395 }
396 item = item->next;
397 }
398 p->current = p->head;
399 p->used = 0;
400 }
401 #endif

403 static BIGNUM *BN_POOL_get(BN_POOL *p)
404 {
405 if(p->used == p->size)
406 {
407 BIGNUM *bn;
408 unsigned int loop = 0;
409 BN_POOL_ITEM *item = OPENSSL_malloc(sizeof(BN_POOL_ITEM));
410 if(!item) return NULL;
411 /* Initialise the structure */
412 bn = item->vals;
413 while(loop++ < BN_CTX_POOL_SIZE)
414 BN_init(bn++);
415 item->prev = p->tail;
416 item->next = NULL;
417 /* Link it in */
418 if(!p->head)
419 p->head = p->current = p->tail = item;
420 else
421 {
422 p->tail->next = item;
423 p->tail = item;
424 p->current = item;
425 }
426 p->size += BN_CTX_POOL_SIZE;
427 p->used++;
428 /* Return the first bignum from the new pool */
429 return item->vals;
430 }
431 if(!p->used)
432 p->current = p->head;
433 else if((p->used % BN_CTX_POOL_SIZE) == 0)
434 p->current = p->current->next;
435 return p->current->vals + ((p->used++) % BN_CTX_POOL_SIZE);
436 }

438 static void BN_POOL_release(BN_POOL *p, unsigned int num)
439 {
440 unsigned int offset = (p->used - 1) % BN_CTX_POOL_SIZE;
441 p->used -= num;
442 while(num--)
443 {
444 bn_check_top(p->current->vals + offset);
445 if(!offset)
446 {
447 offset = BN_CTX_POOL_SIZE - 1;
448 p->current = p->current->prev;
449 }
450 else
451 offset--;
452 }
453 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_depr.c 1

**
 4031 Fri May 30 18:31:36 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_depr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_depr.c */
2 /* ==
3 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* Support for deprecated functions goes here - static linkage will only slurp
57 * this code if applications are using them directly. */

59 #include <stdio.h>
60 #include <time.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_depr.c 2

62 #include "bn_lcl.h"
63 #include <openssl/rand.h>

65 static void *dummy=&dummy;

67 #ifndef OPENSSL_NO_DEPRECATED
68 BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe,
69 const BIGNUM *add, const BIGNUM *rem,
70 void (*callback)(int,int,void *), void *cb_arg)
71 {
72 BN_GENCB cb;
73 BIGNUM *rnd=NULL;
74 int found = 0;

76 BN_GENCB_set_old(&cb, callback, cb_arg);

78 if (ret == NULL)
79 {
80 if ((rnd=BN_new()) == NULL) goto err;
81 }
82 else
83 rnd=ret;
84 if(!BN_generate_prime_ex(rnd, bits, safe, add, rem, &cb))
85 goto err;

87 /* we have a prime :-) */
88 found = 1;
89 err:
90 if (!found && (ret == NULL) && (rnd != NULL)) BN_free(rnd);
91 return(found ? rnd : NULL);
92 }

94 int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int,int,void *),
95 BN_CTX *ctx_passed, void *cb_arg)
96 {
97 BN_GENCB cb;
98 BN_GENCB_set_old(&cb, callback, cb_arg);
99 return BN_is_prime_ex(a, checks, ctx_passed, &cb);
100 }

102 int BN_is_prime_fasttest(const BIGNUM *a, int checks,
103 void (*callback)(int,int,void *),
104 BN_CTX *ctx_passed, void *cb_arg,
105 int do_trial_division)
106 {
107 BN_GENCB cb;
108 BN_GENCB_set_old(&cb, callback, cb_arg);
109 return BN_is_prime_fasttest_ex(a, checks, ctx_passed,
110 do_trial_division, &cb);
111 }
112 #endif

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_div.c 1

**
 12610 Fri May 30 18:31:36 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_div.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_div.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/bn.h>
61 #include <cryptlib.h>

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_div.c 2

62 #include <bn_lcl.h>

65 /* The old slow way */
66 #if 0
67 int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
68 BN_CTX *ctx)
69 {
70 int i,nm,nd;
71 int ret = 0;
72 BIGNUM *D;

74 bn_check_top(m);
75 bn_check_top(d);
76 if (BN_is_zero(d))
77 {
78 BNerr(BN_F_BN_DIV,BN_R_DIV_BY_ZERO);
79 return(0);
80 }

82 if (BN_ucmp(m,d) < 0)
83 {
84 if (rem != NULL)
85 { if (BN_copy(rem,m) == NULL) return(0); }
86 if (dv != NULL) BN_zero(dv);
87 return(1);
88 }

90 BN_CTX_start(ctx);
91 D = BN_CTX_get(ctx);
92 if (dv == NULL) dv = BN_CTX_get(ctx);
93 if (rem == NULL) rem = BN_CTX_get(ctx);
94 if (D == NULL || dv == NULL || rem == NULL)
95 goto end;

97 nd=BN_num_bits(d);
98 nm=BN_num_bits(m);
99 if (BN_copy(D,d) == NULL) goto end;
100 if (BN_copy(rem,m) == NULL) goto end;

102 /* The next 2 are needed so we can do a dv->d[0]|=1 later
103 * since BN_lshift1 will only work once there is a value :-) */
104 BN_zero(dv);
105 if(bn_wexpand(dv,1) == NULL) goto end;
106 dv->top=1;

108 if (!BN_lshift(D,D,nm-nd)) goto end;
109 for (i=nm-nd; i>=0; i--)
110 {
111 if (!BN_lshift1(dv,dv)) goto end;
112 if (BN_ucmp(rem,D) >= 0)
113 {
114 dv->d[0]|=1;
115 if (!BN_usub(rem,rem,D)) goto end;
116 }
117 /* CAN IMPROVE (and have now :=) */
118 if (!BN_rshift1(D,D)) goto end;
119 }
120 rem->neg=BN_is_zero(rem)?0:m->neg;
121 dv->neg=m->neg^d->neg;
122 ret = 1;
123 end:
124 BN_CTX_end(ctx);
125 return(ret);
126 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_div.c 3

128 #else

130 #if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \
131 && !defined(PEDANTIC) && !defined(BN_DIV3W)
132 # if defined(__GNUC__) && __GNUC__>=2
133 # if defined(__i386) || defined (__i386__)
134 /*
135 * There were two reasons for implementing this template:
136 * - GNU C generates a call to a function (__udivdi3 to be exact)
137 * in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
138 * understand why...);
139 * - divl doesn’t only calculate quotient, but also leaves
140 * remainder in %edx which we can definitely use here:-)
141 *
142 * <appro@fy.chalmers.se>
143 */
144 #undef bn_div_words
145 # define bn_div_words(n0,n1,d0) \
146 ({ __asm volatile (\
147 "divl %4" \
148 : "=a"(q), "=d"(rem) \
149 : "a"(n1), "d"(n0), "g"(d0) \
150 : "cc"); \
151 q; \
152 })
153 # define REMAINDER_IS_ALREADY_CALCULATED
154 # elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG)
155 /*
156 * Same story here, but it’s 128-bit by 64-bit division. Wow!
157 * <appro@fy.chalmers.se>
158 */
159 # undef bn_div_words
160 # define bn_div_words(n0,n1,d0) \
161 ({ __asm volatile (\
162 "divq %4" \
163 : "=a"(q), "=d"(rem) \
164 : "a"(n1), "d"(n0), "g"(d0) \
165 : "cc"); \
166 q; \
167 })
168 # define REMAINDER_IS_ALREADY_CALCULATED
169 # endif /* __<cpu> */
170 # endif /* __GNUC__ */
171 #endif /* OPENSSL_NO_ASM */

174 /* BN_div computes dv := num / divisor, rounding towards
175 * zero, and sets up rm such that dv*divisor + rm = num holds.
176 * Thus:
177 * dv->neg == num->neg ^ divisor->neg (unless the result is zero)
178 * rm->neg == num->neg (unless the remainder is zero)
179 * If ’dv’ or ’rm’ is NULL, the respective value is not returned.
180 */
181 int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
182 BN_CTX *ctx)
183 {
184 int norm_shift,i,loop;
185 BIGNUM *tmp,wnum,*snum,*sdiv,*res;
186 BN_ULONG *resp,*wnump;
187 BN_ULONG d0,d1;
188 int num_n,div_n;
189 int no_branch=0;

191 /* Invalid zero-padding would have particularly bad consequences
192 * in the case of ’num’, so don’t just rely on bn_check_top() for this o
193 * (bn_check_top() works only for BN_DEBUG builds) */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_div.c 4

194 if (num->top > 0 && num->d[num->top - 1] == 0)
195 {
196 BNerr(BN_F_BN_DIV,BN_R_NOT_INITIALIZED);
197 return 0;
198 }

200 bn_check_top(num);

202 if ((BN_get_flags(num, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(divisor,
203 {
204 no_branch=1;
205 }

207 bn_check_top(dv);
208 bn_check_top(rm);
209 /* bn_check_top(num); */ /* ’num’ has been checked already */
210 bn_check_top(divisor);

212 if (BN_is_zero(divisor))
213 {
214 BNerr(BN_F_BN_DIV,BN_R_DIV_BY_ZERO);
215 return(0);
216 }

218 if (!no_branch && BN_ucmp(num,divisor) < 0)
219 {
220 if (rm != NULL)
221 { if (BN_copy(rm,num) == NULL) return(0); }
222 if (dv != NULL) BN_zero(dv);
223 return(1);
224 }

226 BN_CTX_start(ctx);
227 tmp=BN_CTX_get(ctx);
228 snum=BN_CTX_get(ctx);
229 sdiv=BN_CTX_get(ctx);
230 if (dv == NULL)
231 res=BN_CTX_get(ctx);
232 else res=dv;
233 if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL)
234 goto err;

236 /* First we normalise the numbers */
237 norm_shift=BN_BITS2-((BN_num_bits(divisor))%BN_BITS2);
238 if (!(BN_lshift(sdiv,divisor,norm_shift))) goto err;
239 sdiv->neg=0;
240 norm_shift+=BN_BITS2;
241 if (!(BN_lshift(snum,num,norm_shift))) goto err;
242 snum->neg=0;

244 if (no_branch)
245 {
246 /* Since we don’t know whether snum is larger than sdiv,
247 * we pad snum with enough zeroes without changing its
248 * value.
249 */
250 if (snum->top <= sdiv->top+1)
251 {
252 if (bn_wexpand(snum, sdiv->top + 2) == NULL) goto err;
253 for (i = snum->top; i < sdiv->top + 2; i++) snum->d[i] =
254 snum->top = sdiv->top + 2;
255 }
256 else
257 {
258 if (bn_wexpand(snum, snum->top + 1) == NULL) goto err;
259 snum->d[snum->top] = 0;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_div.c 5

260 snum->top ++;
261 }
262 }

264 div_n=sdiv->top;
265 num_n=snum->top;
266 loop=num_n-div_n;
267 /* Lets setup a ’window’ into snum
268 * This is the part that corresponds to the current
269 * ’area’ being divided */
270 wnum.neg = 0;
271 wnum.d = &(snum->d[loop]);
272 wnum.top = div_n;
273 /* only needed when BN_ucmp messes up the values between top and max */
274 wnum.dmax = snum->dmax - loop; /* so we don’t step out of bounds */

276 /* Get the top 2 words of sdiv */
277 /* div_n=sdiv->top; */
278 d0=sdiv->d[div_n-1];
279 d1=(div_n == 1)?0:sdiv->d[div_n-2];

281 /* pointer to the ’top’ of snum */
282 wnump= &(snum->d[num_n-1]);

284 /* Setup to ’res’ */
285 res->neg= (num->neg^divisor->neg);
286 if (!bn_wexpand(res,(loop+1))) goto err;
287 res->top=loop-no_branch;
288 resp= &(res->d[loop-1]);

290 /* space for temp */
291 if (!bn_wexpand(tmp,(div_n+1))) goto err;

293 if (!no_branch)
294 {
295 if (BN_ucmp(&wnum,sdiv) >= 0)
296 {
297 /* If BN_DEBUG_RAND is defined BN_ucmp changes (via
298 * bn_pollute) the const bignum arguments =>
299 * clean the values between top and max again */
300 bn_clear_top2max(&wnum);
301 bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n);
302 *resp=1;
303 }
304 else
305 res->top--;
306 }

308 /* if res->top == 0 then clear the neg value otherwise decrease
309 * the resp pointer */
310 if (res->top == 0)
311 res->neg = 0;
312 else
313 resp--;

315 for (i=0; i<loop-1; i++, wnump--, resp--)
316 {
317 BN_ULONG q,l0;
318 /* the first part of the loop uses the top two words of
319 * snum and sdiv to calculate a BN_ULONG q such that
320 * | wnum - sdiv * q | < sdiv */
321 #if defined(BN_DIV3W) && !defined(OPENSSL_NO_ASM)
322 BN_ULONG bn_div_3_words(BN_ULONG*,BN_ULONG,BN_ULONG);
323 q=bn_div_3_words(wnump,d1,d0);
324 #else
325 BN_ULONG n0,n1,rem=0;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_div.c 6

327 n0=wnump[0];
328 n1=wnump[-1];
329 if (n0 == d0)
330 q=BN_MASK2;
331 else /* n0 < d0 */
332 {
333 #ifdef BN_LLONG
334 BN_ULLONG t2;

336 #if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words)
337 q=(BN_ULONG)(((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0);
338 #else
339 q=bn_div_words(n0,n1,d0);
340 #ifdef BN_DEBUG_LEVITTE
341 fprintf(stderr,"DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\
342 X) -> 0x%08X\n",
343 n0, n1, d0, q);
344 #endif
345 #endif

347 #ifndef REMAINDER_IS_ALREADY_CALCULATED
348 /*
349 * rem doesn’t have to be BN_ULLONG. The least we
350 * know it’s less that d0, isn’t it?
351 */
352 rem=(n1-q*d0)&BN_MASK2;
353 #endif
354 t2=(BN_ULLONG)d1*q;

356 for (;;)
357 {
358 if (t2 <= ((((BN_ULLONG)rem)<<BN_BITS2)|wnump[-2
359 break;
360 q--;
361 rem += d0;
362 if (rem < d0) break; /* don’t let rem overflow *
363 t2 -= d1;
364 }
365 #else /* !BN_LLONG */
366 BN_ULONG t2l,t2h;

368 q=bn_div_words(n0,n1,d0);
369 #ifdef BN_DEBUG_LEVITTE
370 fprintf(stderr,"DEBUG: bn_div_words(0x%08X,0x%08X,0x%08\
371 X) -> 0x%08X\n",
372 n0, n1, d0, q);
373 #endif
374 #ifndef REMAINDER_IS_ALREADY_CALCULATED
375 rem=(n1-q*d0)&BN_MASK2;
376 #endif

378 #if defined(BN_UMULT_LOHI)
379 BN_UMULT_LOHI(t2l,t2h,d1,q);
380 #elif defined(BN_UMULT_HIGH)
381 t2l = d1 * q;
382 t2h = BN_UMULT_HIGH(d1,q);
383 #else
384 {
385 BN_ULONG ql, qh;
386 t2l=LBITS(d1); t2h=HBITS(d1);
387 ql =LBITS(q); qh =HBITS(q);
388 mul64(t2l,t2h,ql,qh); /* t2=(BN_ULLONG)d1*q; */
389 }
390 #endif

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_div.c 7

392 for (;;)
393 {
394 if ((t2h < rem) ||
395 ((t2h == rem) && (t2l <= wnump[-2])))
396 break;
397 q--;
398 rem += d0;
399 if (rem < d0) break; /* don’t let rem overflow *
400 if (t2l < d1) t2h--; t2l -= d1;
401 }
402 #endif /* !BN_LLONG */
403 }
404 #endif /* !BN_DIV3W */

406 l0=bn_mul_words(tmp->d,sdiv->d,div_n,q);
407 tmp->d[div_n]=l0;
408 wnum.d--;
409 /* ingore top values of the bignums just sub the two
410 * BN_ULONG arrays with bn_sub_words */
411 if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n+1))
412 {
413 /* Note: As we have considered only the leading
414 * two BN_ULONGs in the calculation of q, sdiv * q
415 * might be greater than wnum (but then (q-1) * sdiv
416 * is less or equal than wnum)
417 */
418 q--;
419 if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n))
420 /* we can’t have an overflow here (assuming
421 * that q != 0, but if q == 0 then tmp is
422 * zero anyway) */
423 (*wnump)++;
424 }
425 /* store part of the result */
426 *resp = q;
427 }
428 bn_correct_top(snum);
429 if (rm != NULL)
430 {
431 /* Keep a copy of the neg flag in num because if rm==num
432 * BN_rshift() will overwrite it.
433 */
434 int neg = num->neg;
435 BN_rshift(rm,snum,norm_shift);
436 if (!BN_is_zero(rm))
437 rm->neg = neg;
438 bn_check_top(rm);
439 }
440 if (no_branch) bn_correct_top(res);
441 BN_CTX_end(ctx);
442 return(1);
443 err:
444 bn_check_top(rm);
445 BN_CTX_end(ctx);
446 return(0);
447 }
448 #endif

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_err.c 1

**
 6580 Fri May 30 18:31:36 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_err.c */
2 /* ==
3 * Copyright (c) 1999-2007 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/bn.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_BN,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_BN,0,reason)

71 static ERR_STRING_DATA BN_str_functs[]=
72 {
73 {ERR_FUNC(BN_F_BNRAND), "BNRAND"},
74 {ERR_FUNC(BN_F_BN_BLINDING_CONVERT_EX), "BN_BLINDING_convert_ex"},
75 {ERR_FUNC(BN_F_BN_BLINDING_CREATE_PARAM), "BN_BLINDING_create_param"},
76 {ERR_FUNC(BN_F_BN_BLINDING_INVERT_EX), "BN_BLINDING_invert_ex"},
77 {ERR_FUNC(BN_F_BN_BLINDING_NEW), "BN_BLINDING_new"},
78 {ERR_FUNC(BN_F_BN_BLINDING_UPDATE), "BN_BLINDING_update"},
79 {ERR_FUNC(BN_F_BN_BN2DEC), "BN_bn2dec"},
80 {ERR_FUNC(BN_F_BN_BN2HEX), "BN_bn2hex"},
81 {ERR_FUNC(BN_F_BN_CTX_GET), "BN_CTX_get"},
82 {ERR_FUNC(BN_F_BN_CTX_NEW), "BN_CTX_new"},
83 {ERR_FUNC(BN_F_BN_CTX_START), "BN_CTX_start"},
84 {ERR_FUNC(BN_F_BN_DIV), "BN_div"},
85 {ERR_FUNC(BN_F_BN_DIV_NO_BRANCH), "BN_div_no_branch"},
86 {ERR_FUNC(BN_F_BN_DIV_RECP), "BN_div_recp"},
87 {ERR_FUNC(BN_F_BN_EXP), "BN_exp"},
88 {ERR_FUNC(BN_F_BN_EXPAND2), "bn_expand2"},
89 {ERR_FUNC(BN_F_BN_EXPAND_INTERNAL), "BN_EXPAND_INTERNAL"},
90 {ERR_FUNC(BN_F_BN_GF2M_MOD), "BN_GF2m_mod"},
91 {ERR_FUNC(BN_F_BN_GF2M_MOD_EXP), "BN_GF2m_mod_exp"},
92 {ERR_FUNC(BN_F_BN_GF2M_MOD_MUL), "BN_GF2m_mod_mul"},
93 {ERR_FUNC(BN_F_BN_GF2M_MOD_SOLVE_QUAD), "BN_GF2m_mod_solve_quad"},
94 {ERR_FUNC(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR), "BN_GF2m_mod_solve_quad_arr"},
95 {ERR_FUNC(BN_F_BN_GF2M_MOD_SQR), "BN_GF2m_mod_sqr"},
96 {ERR_FUNC(BN_F_BN_GF2M_MOD_SQRT), "BN_GF2m_mod_sqrt"},
97 {ERR_FUNC(BN_F_BN_MOD_EXP2_MONT), "BN_mod_exp2_mont"},
98 {ERR_FUNC(BN_F_BN_MOD_EXP_MONT), "BN_mod_exp_mont"},
99 {ERR_FUNC(BN_F_BN_MOD_EXP_MONT_CONSTTIME), "BN_mod_exp_mont_consttime"},
100 {ERR_FUNC(BN_F_BN_MOD_EXP_MONT_WORD), "BN_mod_exp_mont_word"},
101 {ERR_FUNC(BN_F_BN_MOD_EXP_RECP), "BN_mod_exp_recp"},
102 {ERR_FUNC(BN_F_BN_MOD_EXP_SIMPLE), "BN_mod_exp_simple"},
103 {ERR_FUNC(BN_F_BN_MOD_INVERSE), "BN_mod_inverse"},
104 {ERR_FUNC(BN_F_BN_MOD_INVERSE_NO_BRANCH), "BN_mod_inverse_no_branch"},
105 {ERR_FUNC(BN_F_BN_MOD_LSHIFT_QUICK), "BN_mod_lshift_quick"},
106 {ERR_FUNC(BN_F_BN_MOD_MUL_RECIPROCAL), "BN_mod_mul_reciprocal"},
107 {ERR_FUNC(BN_F_BN_MOD_SQRT), "BN_mod_sqrt"},
108 {ERR_FUNC(BN_F_BN_MPI2BN), "BN_mpi2bn"},
109 {ERR_FUNC(BN_F_BN_NEW), "BN_new"},
110 {ERR_FUNC(BN_F_BN_RAND), "BN_rand"},
111 {ERR_FUNC(BN_F_BN_RAND_RANGE), "BN_rand_range"},
112 {ERR_FUNC(BN_F_BN_USUB), "BN_usub"},
113 {0,NULL}
114 };

116 static ERR_STRING_DATA BN_str_reasons[]=
117 {
118 {ERR_REASON(BN_R_ARG2_LT_ARG3) ,"arg2 lt arg3"},
119 {ERR_REASON(BN_R_BAD_RECIPROCAL) ,"bad reciprocal"},
120 {ERR_REASON(BN_R_BIGNUM_TOO_LONG) ,"bignum too long"},
121 {ERR_REASON(BN_R_CALLED_WITH_EVEN_MODULUS),"called with even modulus"},
122 {ERR_REASON(BN_R_DIV_BY_ZERO) ,"div by zero"},
123 {ERR_REASON(BN_R_ENCODING_ERROR) ,"encoding error"},
124 {ERR_REASON(BN_R_EXPAND_ON_STATIC_BIGNUM_DATA),"expand on static bignum data"},
125 {ERR_REASON(BN_R_INPUT_NOT_REDUCED) ,"input not reduced"},
126 {ERR_REASON(BN_R_INVALID_LENGTH) ,"invalid length"},
127 {ERR_REASON(BN_R_INVALID_RANGE) ,"invalid range"},

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_err.c 3

128 {ERR_REASON(BN_R_NOT_A_SQUARE) ,"not a square"},
129 {ERR_REASON(BN_R_NOT_INITIALIZED) ,"not initialized"},
130 {ERR_REASON(BN_R_NO_INVERSE) ,"no inverse"},
131 {ERR_REASON(BN_R_NO_SOLUTION) ,"no solution"},
132 {ERR_REASON(BN_R_P_IS_NOT_PRIME) ,"p is not prime"},
133 {ERR_REASON(BN_R_TOO_MANY_ITERATIONS) ,"too many iterations"},
134 {ERR_REASON(BN_R_TOO_MANY_TEMPORARY_VARIABLES),"too many temporary variables"},
135 {0,NULL}
136 };

138 #endif

140 void ERR_load_BN_strings(void)
141 {
142 #ifndef OPENSSL_NO_ERR

144 if (ERR_func_error_string(BN_str_functs[0].error) == NULL)
145 {
146 ERR_load_strings(0,BN_str_functs);
147 ERR_load_strings(0,BN_str_reasons);
148 }
149 #endif
150 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 1

**
 29573 Fri May 30 18:31:36 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_exp.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

113 #include "cryptlib.h"
114 #include "bn_lcl.h"

116 #include <stdlib.h>
117 #ifdef _WIN32
118 # include <malloc.h>
119 # ifndef alloca
120 # define alloca _alloca
121 # endif
122 #elif defined(__GNUC__)
123 # ifndef alloca
124 # define alloca(s) __builtin_alloca((s))
125 # endif
126 #endif

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 3

128 /* maximum precomputation table size for *variable* sliding windows */
129 #define TABLE_SIZE 32

131 /* this one works - simple but works */
132 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
133 {
134 int i,bits,ret=0;
135 BIGNUM *v,*rr;

137 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
138 {
139 /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
140 BNerr(BN_F_BN_EXP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
141 return -1;
142 }

144 BN_CTX_start(ctx);
145 if ((r == a) || (r == p))
146 rr = BN_CTX_get(ctx);
147 else
148 rr = r;
149 v = BN_CTX_get(ctx);
150 if (rr == NULL || v == NULL) goto err;

152 if (BN_copy(v,a) == NULL) goto err;
153 bits=BN_num_bits(p);

155 if (BN_is_odd(p))
156 { if (BN_copy(rr,a) == NULL) goto err; }
157 else { if (!BN_one(rr)) goto err; }

159 for (i=1; i<bits; i++)
160 {
161 if (!BN_sqr(v,v,ctx)) goto err;
162 if (BN_is_bit_set(p,i))
163 {
164 if (!BN_mul(rr,rr,v,ctx)) goto err;
165 }
166 }
167 ret=1;
168 err:
169 if (r != rr) BN_copy(r,rr);
170 BN_CTX_end(ctx);
171 bn_check_top(r);
172 return(ret);
173 }

176 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
177 BN_CTX *ctx)
178 {
179 int ret;

181 bn_check_top(a);
182 bn_check_top(p);
183 bn_check_top(m);

185 /* For even modulus m = 2^k*m_odd, it might make sense to compute
186 * a^p mod m_odd and a^p mod 2^k separately (with Montgomery
187 * exponentiation for the odd part), using appropriate exponent
188 * reductions, and combine the results using the CRT.
189 *
190 * For now, we use Montgomery only if the modulus is odd; otherwise,
191 * exponentiation using the reciprocal-based quick remaindering
192 * algorithm is used.
193 *

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 4

194 * (Timing obtained with expspeed.c [computations a^p mod m
195 * where a, p, m are of the same length: 256, 512, 1024, 2048,
196 * 4096, 8192 bits], compared to the running time of the
197 * standard algorithm:
198 *
199 * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration
200 * 55 .. 77 % [UltraSparc processor, but
201 * debug-solaris-sparcv8-gcc conf.]
202 *
203 * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration
204 * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gc
205 *
206 * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
207 * at 2048 and more bits, but at 512 and 1024 bits, it was
208 * slower even than the standard algorithm!
209 *
210 * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
211 * should be obtained when the new Montgomery reduction code
212 * has been integrated into OpenSSL.)
213 */

215 #define MONT_MUL_MOD
216 #define MONT_EXP_WORD
217 #define RECP_MUL_MOD

219 #ifdef MONT_MUL_MOD
220 /* I have finally been able to take out this pre-condition of
221 * the top bit being set. It was caused by an error in BN_div
222 * with negatives. There was also another problem when for a^b%m
223 * a >= m. eay 07-May-97 */
224 /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */

226 if (BN_is_odd(m))
227 {
228 # ifdef MONT_EXP_WORD
229 if (a->top == 1 && !a->neg && (BN_get_flags(p, BN_FLG_CONSTTIME)
230 {
231 BN_ULONG A = a->d[0];
232 ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL);
233 }
234 else
235 # endif
236 ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL);
237 }
238 else
239 #endif
240 #ifdef RECP_MUL_MOD
241 { ret=BN_mod_exp_recp(r,a,p,m,ctx); }
242 #else
243 { ret=BN_mod_exp_simple(r,a,p,m,ctx); }
244 #endif

246 bn_check_top(r);
247 return(ret);
248 }

251 int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
252 const BIGNUM *m, BN_CTX *ctx)
253 {
254 int i,j,bits,ret=0,wstart,wend,window,wvalue;
255 int start=1;
256 BIGNUM *aa;
257 /* Table of variables obtained from ’ctx’ */
258 BIGNUM *val[TABLE_SIZE];
259 BN_RECP_CTX recp;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 5

261 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
262 {
263 /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
264 BNerr(BN_F_BN_MOD_EXP_RECP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
265 return -1;
266 }

268 bits=BN_num_bits(p);

270 if (bits == 0)
271 {
272 ret = BN_one(r);
273 return ret;
274 }

276 BN_CTX_start(ctx);
277 aa = BN_CTX_get(ctx);
278 val[0] = BN_CTX_get(ctx);
279 if(!aa || !val[0]) goto err;

281 BN_RECP_CTX_init(&recp);
282 if (m->neg)
283 {
284 /* ignore sign of ’m’ */
285 if (!BN_copy(aa, m)) goto err;
286 aa->neg = 0;
287 if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err;
288 }
289 else
290 {
291 if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err;
292 }

294 if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */
295 if (BN_is_zero(val[0]))
296 {
297 BN_zero(r);
298 ret = 1;
299 goto err;
300 }

302 window = BN_window_bits_for_exponent_size(bits);
303 if (window > 1)
304 {
305 if (!BN_mod_mul_reciprocal(aa,val[0],val[0],&recp,ctx))
306 goto err; /* 2 */
307 j=1<<(window-1);
308 for (i=1; i<j; i++)
309 {
310 if(((val[i] = BN_CTX_get(ctx)) == NULL) ||
311 !BN_mod_mul_reciprocal(val[i],val[i-1],
312 aa,&recp,ctx))
313 goto err;
314 }
315 }
316
317 start=1; /* This is used to avoid multiplication etc
318 * when there is only the value ’1’ in the
319 * buffer. */
320 wvalue=0; /* The ’value’ of the window */
321 wstart=bits-1; /* The top bit of the window */
322 wend=0; /* The bottom bit of the window */

324 if (!BN_one(r)) goto err;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 6

326 for (;;)
327 {
328 if (BN_is_bit_set(p,wstart) == 0)
329 {
330 if (!start)
331 if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx))
332 goto err;
333 if (wstart == 0) break;
334 wstart--;
335 continue;
336 }
337 /* We now have wstart on a ’set’ bit, we now need to work out
338 * how bit a window to do. To do this we need to scan
339 * forward until the last set bit before the end of the
340 * window */
341 j=wstart;
342 wvalue=1;
343 wend=0;
344 for (i=1; i<window; i++)
345 {
346 if (wstart-i < 0) break;
347 if (BN_is_bit_set(p,wstart-i))
348 {
349 wvalue<<=(i-wend);
350 wvalue|=1;
351 wend=i;
352 }
353 }

355 /* wend is the size of the current window */
356 j=wend+1;
357 /* add the ’bytes above’ */
358 if (!start)
359 for (i=0; i<j; i++)
360 {
361 if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx))
362 goto err;
363 }
364
365 /* wvalue will be an odd number < 2^window */
366 if (!BN_mod_mul_reciprocal(r,r,val[wvalue>>1],&recp,ctx))
367 goto err;

369 /* move the ’window’ down further */
370 wstart-=wend+1;
371 wvalue=0;
372 start=0;
373 if (wstart < 0) break;
374 }
375 ret=1;
376 err:
377 BN_CTX_end(ctx);
378 BN_RECP_CTX_free(&recp);
379 bn_check_top(r);
380 return(ret);
381 }

384 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
385 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
386 {
387 int i,j,bits,ret=0,wstart,wend,window,wvalue;
388 int start=1;
389 BIGNUM *d,*r;
390 const BIGNUM *aa;
391 /* Table of variables obtained from ’ctx’ */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 7

392 BIGNUM *val[TABLE_SIZE];
393 BN_MONT_CTX *mont=NULL;

395 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
396 {
397 return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
398 }

400 bn_check_top(a);
401 bn_check_top(p);
402 bn_check_top(m);

404 if (!BN_is_odd(m))
405 {
406 BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS);
407 return(0);
408 }
409 bits=BN_num_bits(p);
410 if (bits == 0)
411 {
412 ret = BN_one(rr);
413 return ret;
414 }

416 BN_CTX_start(ctx);
417 d = BN_CTX_get(ctx);
418 r = BN_CTX_get(ctx);
419 val[0] = BN_CTX_get(ctx);
420 if (!d || !r || !val[0]) goto err;

422 /* If this is not done, things will break in the montgomery
423 * part */

425 if (in_mont != NULL)
426 mont=in_mont;
427 else
428 {
429 if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
430 if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
431 }

433 if (a->neg || BN_ucmp(a,m) >= 0)
434 {
435 if (!BN_nnmod(val[0],a,m,ctx))
436 goto err;
437 aa= val[0];
438 }
439 else
440 aa=a;
441 if (BN_is_zero(aa))
442 {
443 BN_zero(rr);
444 ret = 1;
445 goto err;
446 }
447 if (!BN_to_montgomery(val[0],aa,mont,ctx)) goto err; /* 1 */

449 window = BN_window_bits_for_exponent_size(bits);
450 if (window > 1)
451 {
452 if (!BN_mod_mul_montgomery(d,val[0],val[0],mont,ctx)) goto err;
453 j=1<<(window-1);
454 for (i=1; i<j; i++)
455 {
456 if(((val[i] = BN_CTX_get(ctx)) == NULL) ||
457 !BN_mod_mul_montgomery(val[i],val[i-1],

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 8

458 d,mont,ctx))
459 goto err;
460 }
461 }

463 start=1; /* This is used to avoid multiplication etc
464 * when there is only the value ’1’ in the
465 * buffer. */
466 wvalue=0; /* The ’value’ of the window */
467 wstart=bits-1; /* The top bit of the window */
468 wend=0; /* The bottom bit of the window */

470 if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err;
471 for (;;)
472 {
473 if (BN_is_bit_set(p,wstart) == 0)
474 {
475 if (!start)
476 {
477 if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
478 goto err;
479 }
480 if (wstart == 0) break;
481 wstart--;
482 continue;
483 }
484 /* We now have wstart on a ’set’ bit, we now need to work out
485 * how bit a window to do. To do this we need to scan
486 * forward until the last set bit before the end of the
487 * window */
488 j=wstart;
489 wvalue=1;
490 wend=0;
491 for (i=1; i<window; i++)
492 {
493 if (wstart-i < 0) break;
494 if (BN_is_bit_set(p,wstart-i))
495 {
496 wvalue<<=(i-wend);
497 wvalue|=1;
498 wend=i;
499 }
500 }

502 /* wend is the size of the current window */
503 j=wend+1;
504 /* add the ’bytes above’ */
505 if (!start)
506 for (i=0; i<j; i++)
507 {
508 if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
509 goto err;
510 }
511
512 /* wvalue will be an odd number < 2^window */
513 if (!BN_mod_mul_montgomery(r,r,val[wvalue>>1],mont,ctx))
514 goto err;

516 /* move the ’window’ down further */
517 wstart-=wend+1;
518 wvalue=0;
519 start=0;
520 if (wstart < 0) break;
521 }
522 if (!BN_from_montgomery(rr,r,mont,ctx)) goto err;
523 ret=1;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 9

524 err:
525 if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
526 BN_CTX_end(ctx);
527 bn_check_top(rr);
528 return(ret);
529 }

532 /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layou
533 * so that accessing any of these table values shows the same access pattern as
534 * as cache lines are concerned. The following functions are used to transfer a
535 * from/to that table. */

537 static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, unsigned char
538 {
539 size_t i, j;

541 if (top > b->top)
542 top = b->top; /* this works because ’buf’ is explicitly zeroed *
543 for (i = 0, j=idx; i < top * sizeof b->d[0]; i++, j+=width)
544 {
545 buf[j] = ((unsigned char*)b->d)[i];
546 }

548 return 1;
549 }

551 static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf
552 {
553 size_t i, j;

555 if (bn_wexpand(b, top) == NULL)
556 return 0;

558 for (i=0, j=idx; i < top * sizeof b->d[0]; i++, j+=width)
559 {
560 ((unsigned char*)b->d)[i] = buf[j];
561 }

563 b->top = top;
564 bn_correct_top(b);
565 return 1;
566 }

568 /* Given a pointer value, compute the next address that is a cache line multiple
569 #define MOD_EXP_CTIME_ALIGN(x_) \
570 ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)

572 /* This variant of BN_mod_exp_mont() uses fixed windows and the special
573 * precomputation memory layout to limit data-dependency to a minimum
574 * to protect secret exponents (cf. the hyper-threading timing attacks
575 * pointed out by Colin Percival,
576 * http://www.daemonology.net/hyperthreading-considered-harmful/)
577 */
578 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
579 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
580 {
581 int i,bits,ret=0,window,wvalue;
582 int top;
583 BN_MONT_CTX *mont=NULL;

585 int numPowers;
586 unsigned char *powerbufFree=NULL;
587 int powerbufLen = 0;
588 unsigned char *powerbuf=NULL;
589 BIGNUM tmp, am;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 10

591 bn_check_top(a);
592 bn_check_top(p);
593 bn_check_top(m);

595 top = m->top;

597 if (!(m->d[0] & 1))
598 {
599 BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME,BN_R_CALLED_WITH_EVEN_MODUL
600 return(0);
601 }
602 bits=BN_num_bits(p);
603 if (bits == 0)
604 {
605 ret = BN_one(rr);
606 return ret;
607 }

609 BN_CTX_start(ctx);

611 /* Allocate a montgomery context if it was not supplied by the caller.
612 * If this is not done, things will break in the montgomery part.
613 */
614 if (in_mont != NULL)
615 mont=in_mont;
616 else
617 {
618 if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
619 if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
620 }

622 /* Get the window size to use with size of p. */
623 window = BN_window_bits_for_ctime_exponent_size(bits);
624 #if defined(OPENSSL_BN_ASM_MONT5)
625 if (window==6 && bits<=1024) window=5; /* ~5% improvement of 2048-bit R
626 #endif

628 /* Allocate a buffer large enough to hold all of the pre-computed
629 * powers of am, am itself and tmp.
630 */
631 numPowers = 1 << window;
632 powerbufLen = sizeof(m->d[0])*(top*numPowers +
633 ((2*top)>numPowers?(2*top):numPowers));
634 #ifdef alloca
635 if (powerbufLen < 3072)
636 powerbufFree = alloca(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_W
637 else
638 #endif
639 if ((powerbufFree=(unsigned char*)OPENSSL_malloc(powerbufLen+MOD_EXP_CTI
640 goto err;
641
642 powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
643 memset(powerbuf, 0, powerbufLen);

645 #ifdef alloca
646 if (powerbufLen < 3072)
647 powerbufFree = NULL;
648 #endif

650 /* lay down tmp and am right after powers table */
651 tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0])*top*numPowers);
652 am.d = tmp.d + top;
653 tmp.top = am.top = 0;
654 tmp.dmax = am.dmax = top;
655 tmp.neg = am.neg = 0;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 11

656 tmp.flags = am.flags = BN_FLG_STATIC_DATA;

658 /* prepare a^0 in Montgomery domain */
659 #if 1
660 if (!BN_to_montgomery(&tmp,BN_value_one(),mont,ctx)) goto err;
661 #else
662 tmp.d[0] = (0-m->d[0])&BN_MASK2; /* 2^(top*BN_BITS2) - m */
663 for (i=1;i<top;i++)
664 tmp.d[i] = (~m->d[i])&BN_MASK2;
665 tmp.top = top;
666 #endif

668 /* prepare a^1 in Montgomery domain */
669 if (a->neg || BN_ucmp(a,m) >= 0)
670 {
671 if (!BN_mod(&am,a,m,ctx)) goto err;
672 if (!BN_to_montgomery(&am,&am,mont,ctx)) goto err;
673 }
674 else if (!BN_to_montgomery(&am,a,mont,ctx)) goto err;

676 #if defined(OPENSSL_BN_ASM_MONT5)
677 /* This optimization uses ideas from http://eprint.iacr.org/2011/239,
678 * specifically optimization of cache-timing attack countermeasures
679 * and pre-computation optimization. */

681 /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
682 * 512-bit RSA is hardly relevant, we omit it to spare size... */
683 if (window==5)
684 {
685 void bn_mul_mont_gather5(BN_ULONG *rp,const BN_ULONG *ap,
686 const void *table,const BN_ULONG *np,
687 const BN_ULONG *n0,int num,int power);
688 void bn_scatter5(const BN_ULONG *inp,size_t num,
689 void *table,size_t power);
690 void bn_gather5(BN_ULONG *out,size_t num,
691 void *table,size_t power);

693 BN_ULONG *np=mont->N.d, *n0=mont->n0;

695 /* BN_to_montgomery can contaminate words above .top
696 * [in BN_DEBUG[_DEBUG] build]... */
697 for (i=am.top; i<top; i++) am.d[i]=0;
698 for (i=tmp.top; i<top; i++) tmp.d[i]=0;

700 bn_scatter5(tmp.d,top,powerbuf,0);
701 bn_scatter5(am.d,am.top,powerbuf,1);
702 bn_mul_mont(tmp.d,am.d,am.d,np,n0,top);
703 bn_scatter5(tmp.d,top,powerbuf,2);

705 #if 0
706 for (i=3; i<32; i++)
707 {
708 /* Calculate a^i = a^(i-1) * a */
709 bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1);
710 bn_scatter5(tmp.d,top,powerbuf,i);
711 }
712 #else
713 /* same as above, but uses squaring for 1/2 of operations */
714 for (i=4; i<32; i*=2)
715 {
716 bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
717 bn_scatter5(tmp.d,top,powerbuf,i);
718 }
719 for (i=3; i<8; i+=2)
720 {
721 int j;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 12

722 bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1);
723 bn_scatter5(tmp.d,top,powerbuf,i);
724 for (j=2*i; j<32; j*=2)
725 {
726 bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
727 bn_scatter5(tmp.d,top,powerbuf,j);
728 }
729 }
730 for (; i<16; i+=2)
731 {
732 bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1);
733 bn_scatter5(tmp.d,top,powerbuf,i);
734 bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
735 bn_scatter5(tmp.d,top,powerbuf,2*i);
736 }
737 for (; i<32; i+=2)
738 {
739 bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1);
740 bn_scatter5(tmp.d,top,powerbuf,i);
741 }
742 #endif
743 bits--;
744 for (wvalue=0, i=bits%5; i>=0; i--,bits--)
745 wvalue = (wvalue<<1)+BN_is_bit_set(p,bits);
746 bn_gather5(tmp.d,top,powerbuf,wvalue);

748 /* Scan the exponent one window at a time starting from the most
749 * significant bits.
750 */
751 while (bits >= 0)
752 {
753 for (wvalue=0, i=0; i<5; i++,bits--)
754 wvalue = (wvalue<<1)+BN_is_bit_set(p,bits);

756 bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
757 bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
758 bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
759 bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
760 bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top);
761 bn_mul_mont_gather5(tmp.d,tmp.d,powerbuf,np,n0,top,wvalue);
762 }

764 tmp.top=top;
765 bn_correct_top(&tmp);
766 }
767 else
768 #endif
769 {
770 if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, numPowers)) go
771 if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, numPowers)) go

773 /* If the window size is greater than 1, then calculate
774 * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
775 * (even powers could instead be computed as (a^(i/2))^2
776 * to use the slight performance advantage of sqr over mul).
777 */
778 if (window > 1)
779 {
780 if (!BN_mod_mul_montgomery(&tmp,&am,&am,mont,ctx)) goto err
781 if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2, numPow
782 for (i=3; i<numPowers; i++)
783 {
784 /* Calculate a^i = a^(i-1) * a */
785 if (!BN_mod_mul_montgomery(&tmp,&am,&tmp,mont,ctx))
786 goto err;
787 if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 13

788 }
789 }

791 bits--;
792 for (wvalue=0, i=bits%window; i>=0; i--,bits--)
793 wvalue = (wvalue<<1)+BN_is_bit_set(p,bits);
794 if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp,top,powerbuf,wvalue,numPowers))
795
796 /* Scan the exponent one window at a time starting from the most
797 * significant bits.
798 */
799 while (bits >= 0)
800 {
801 wvalue=0; /* The ’value’ of the window */
802
803 /* Scan the window, squaring the result as we go */
804 for (i=0; i<window; i++,bits--)
805 {
806 if (!BN_mod_mul_montgomery(&tmp,&tmp,&tmp,mont,ctx))
807 wvalue = (wvalue<<1)+BN_is_bit_set(p,bits);
808 }
809
810 /* Fetch the appropriate pre-computed value from the pre-buf */
811 if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue,

813 /* Multiply the result into the intermediate result */
814 if (!BN_mod_mul_montgomery(&tmp,&tmp,&am,mont,ctx)) goto err;
815 }
816 }

818 /* Convert the final result from montgomery to standard format */
819 if (!BN_from_montgomery(rr,&tmp,mont,ctx)) goto err;
820 ret=1;
821 err:
822 if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
823 if (powerbuf!=NULL)
824 {
825 OPENSSL_cleanse(powerbuf,powerbufLen);
826 if (powerbufFree) OPENSSL_free(powerbufFree);
827 }
828 BN_CTX_end(ctx);
829 return(ret);
830 }

832 int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
833 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
834 {
835 BN_MONT_CTX *mont = NULL;
836 int b, bits, ret=0;
837 int r_is_one;
838 BN_ULONG w, next_w;
839 BIGNUM *d, *r, *t;
840 BIGNUM *swap_tmp;
841 #define BN_MOD_MUL_WORD(r, w, m) \
842 (BN_mul_word(r, (w)) && \
843 (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \
844 (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_
845 /* BN_MOD_MUL_WORD is only used with ’w’ large,
846 * so the BN_ucmp test is probably more overhead
847 * than always using BN_mod (which uses BN_copy if
848 * a similar test returns true). */
849 /* We can use BN_mod and do not need BN_nnmod because our
850 * accumulator is never negative (the result of BN_mod does
851 * not depend on the sign of the modulus).
852 */
853 #define BN_TO_MONTGOMERY_WORD(r, w, mont) \

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 14

854 (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))

856 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
857 {
858 /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
859 BNerr(BN_F_BN_MOD_EXP_MONT_WORD,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLE
860 return -1;
861 }

863 bn_check_top(p);
864 bn_check_top(m);

866 if (!BN_is_odd(m))
867 {
868 BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS);
869 return(0);
870 }
871 if (m->top == 1)
872 a %= m->d[0]; /* make sure that ’a’ is reduced */

874 bits = BN_num_bits(p);
875 if (bits == 0)
876 {
877 ret = BN_one(rr);
878 return ret;
879 }
880 if (a == 0)
881 {
882 BN_zero(rr);
883 ret = 1;
884 return ret;
885 }

887 BN_CTX_start(ctx);
888 d = BN_CTX_get(ctx);
889 r = BN_CTX_get(ctx);
890 t = BN_CTX_get(ctx);
891 if (d == NULL || r == NULL || t == NULL) goto err;

893 if (in_mont != NULL)
894 mont=in_mont;
895 else
896 {
897 if ((mont = BN_MONT_CTX_new()) == NULL) goto err;
898 if (!BN_MONT_CTX_set(mont, m, ctx)) goto err;
899 }

901 r_is_one = 1; /* except for Montgomery factor */

903 /* bits-1 >= 0 */

905 /* The result is accumulated in the product r*w. */
906 w = a; /* bit ’bits-1’ of ’p’ is always set */
907 for (b = bits-2; b >= 0; b--)
908 {
909 /* First, square r*w. */
910 next_w = w*w;
911 if ((next_w/w) != w) /* overflow */
912 {
913 if (r_is_one)
914 {
915 if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err
916 r_is_one = 0;
917 }
918 else
919 {

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 15

920 if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
921 }
922 next_w = 1;
923 }
924 w = next_w;
925 if (!r_is_one)
926 {
927 if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err
928 }

930 /* Second, multiply r*w by ’a’ if exponent bit is set. */
931 if (BN_is_bit_set(p, b))
932 {
933 next_w = w*a;
934 if ((next_w/a) != w) /* overflow */
935 {
936 if (r_is_one)
937 {
938 if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
939 r_is_one = 0;
940 }
941 else
942 {
943 if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
944 }
945 next_w = a;
946 }
947 w = next_w;
948 }
949 }

951 /* Finally, set r:=r*w. */
952 if (w != 1)
953 {
954 if (r_is_one)
955 {
956 if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err;
957 r_is_one = 0;
958 }
959 else
960 {
961 if (!BN_MOD_MUL_WORD(r, w, m)) goto err;
962 }
963 }

965 if (r_is_one) /* can happen only if a == 1*/
966 {
967 if (!BN_one(rr)) goto err;
968 }
969 else
970 {
971 if (!BN_from_montgomery(rr, r, mont, ctx)) goto err;
972 }
973 ret = 1;
974 err:
975 if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
976 BN_CTX_end(ctx);
977 bn_check_top(rr);
978 return(ret);
979 }

982 /* The old fallback, simple version :-) */
983 int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
984 const BIGNUM *m, BN_CTX *ctx)
985 {

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 16

986 int i,j,bits,ret=0,wstart,wend,window,wvalue;
987 int start=1;
988 BIGNUM *d;
989 /* Table of variables obtained from ’ctx’ */
990 BIGNUM *val[TABLE_SIZE];

992 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)
993 {
994 /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
995 BNerr(BN_F_BN_MOD_EXP_SIMPLE,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
996 return -1;
997 }

999 bits=BN_num_bits(p);

1001 if (bits == 0)
1002 {
1003 ret = BN_one(r);
1004 return ret;
1005 }

1007 BN_CTX_start(ctx);
1008 d = BN_CTX_get(ctx);
1009 val[0] = BN_CTX_get(ctx);
1010 if(!d || !val[0]) goto err;

1012 if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */
1013 if (BN_is_zero(val[0]))
1014 {
1015 BN_zero(r);
1016 ret = 1;
1017 goto err;
1018 }

1020 window = BN_window_bits_for_exponent_size(bits);
1021 if (window > 1)
1022 {
1023 if (!BN_mod_mul(d,val[0],val[0],m,ctx))
1024 goto err; /* 2 */
1025 j=1<<(window-1);
1026 for (i=1; i<j; i++)
1027 {
1028 if(((val[i] = BN_CTX_get(ctx)) == NULL) ||
1029 !BN_mod_mul(val[i],val[i-1],d,m,ctx))
1030 goto err;
1031 }
1032 }

1034 start=1; /* This is used to avoid multiplication etc
1035 * when there is only the value ’1’ in the
1036 * buffer. */
1037 wvalue=0; /* The ’value’ of the window */
1038 wstart=bits-1; /* The top bit of the window */
1039 wend=0; /* The bottom bit of the window */

1041 if (!BN_one(r)) goto err;

1043 for (;;)
1044 {
1045 if (BN_is_bit_set(p,wstart) == 0)
1046 {
1047 if (!start)
1048 if (!BN_mod_mul(r,r,r,m,ctx))
1049 goto err;
1050 if (wstart == 0) break;
1051 wstart--;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp.c 17

1052 continue;
1053 }
1054 /* We now have wstart on a ’set’ bit, we now need to work out
1055 * how bit a window to do. To do this we need to scan
1056 * forward until the last set bit before the end of the
1057 * window */
1058 j=wstart;
1059 wvalue=1;
1060 wend=0;
1061 for (i=1; i<window; i++)
1062 {
1063 if (wstart-i < 0) break;
1064 if (BN_is_bit_set(p,wstart-i))
1065 {
1066 wvalue<<=(i-wend);
1067 wvalue|=1;
1068 wend=i;
1069 }
1070 }

1072 /* wend is the size of the current window */
1073 j=wend+1;
1074 /* add the ’bytes above’ */
1075 if (!start)
1076 for (i=0; i<j; i++)
1077 {
1078 if (!BN_mod_mul(r,r,r,m,ctx))
1079 goto err;
1080 }
1081
1082 /* wvalue will be an odd number < 2^window */
1083 if (!BN_mod_mul(r,r,val[wvalue>>1],m,ctx))
1084 goto err;

1086 /* move the ’window’ down further */
1087 wstart-=wend+1;
1088 wvalue=0;
1089 start=0;
1090 if (wstart < 0) break;
1091 }
1092 ret=1;
1093 err:
1094 BN_CTX_end(ctx);
1095 bn_check_top(r);
1096 return(ret);
1097 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp2.c 1

**
 10140 Fri May 30 18:31:36 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp2.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_exp2.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp2.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include <stdio.h>
113 #include "cryptlib.h"
114 #include "bn_lcl.h"

116 #define TABLE_SIZE 32

118 int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
119 const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
120 BN_CTX *ctx, BN_MONT_CTX *in_mont)
121 {
122 int i,j,bits,b,bits1,bits2,ret=0,wpos1,wpos2,window1,window2,wvalue1,wva
123 int r_is_one=1;
124 BIGNUM *d,*r;
125 const BIGNUM *a_mod_m;
126 /* Tables of variables obtained from ’ctx’ */
127 BIGNUM *val1[TABLE_SIZE], *val2[TABLE_SIZE];

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp2.c 3

128 BN_MONT_CTX *mont=NULL;

130 bn_check_top(a1);
131 bn_check_top(p1);
132 bn_check_top(a2);
133 bn_check_top(p2);
134 bn_check_top(m);

136 if (!(m->d[0] & 1))
137 {
138 BNerr(BN_F_BN_MOD_EXP2_MONT,BN_R_CALLED_WITH_EVEN_MODULUS);
139 return(0);
140 }
141 bits1=BN_num_bits(p1);
142 bits2=BN_num_bits(p2);
143 if ((bits1 == 0) && (bits2 == 0))
144 {
145 ret = BN_one(rr);
146 return ret;
147 }
148
149 bits=(bits1 > bits2)?bits1:bits2;

151 BN_CTX_start(ctx);
152 d = BN_CTX_get(ctx);
153 r = BN_CTX_get(ctx);
154 val1[0] = BN_CTX_get(ctx);
155 val2[0] = BN_CTX_get(ctx);
156 if(!d || !r || !val1[0] || !val2[0]) goto err;

158 if (in_mont != NULL)
159 mont=in_mont;
160 else
161 {
162 if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
163 if (!BN_MONT_CTX_set(mont,m,ctx)) goto err;
164 }

166 window1 = BN_window_bits_for_exponent_size(bits1);
167 window2 = BN_window_bits_for_exponent_size(bits2);

169 /*
170 * Build table for a1: val1[i] := a1^(2*i + 1) mod m for i = 0 .. 2^(
171 */
172 if (a1->neg || BN_ucmp(a1,m) >= 0)
173 {
174 if (!BN_mod(val1[0],a1,m,ctx))
175 goto err;
176 a_mod_m = val1[0];
177 }
178 else
179 a_mod_m = a1;
180 if (BN_is_zero(a_mod_m))
181 {
182 BN_zero(rr);
183 ret = 1;
184 goto err;
185 }

187 if (!BN_to_montgomery(val1[0],a_mod_m,mont,ctx)) goto err;
188 if (window1 > 1)
189 {
190 if (!BN_mod_mul_montgomery(d,val1[0],val1[0],mont,ctx)) goto err

192 j=1<<(window1-1);
193 for (i=1; i<j; i++)

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp2.c 4

194 {
195 if(((val1[i] = BN_CTX_get(ctx)) == NULL) ||
196 !BN_mod_mul_montgomery(val1[i],val1[i-1]
197 d,mont,ctx))
198 goto err;
199 }
200 }

203 /*
204 * Build table for a2: val2[i] := a2^(2*i + 1) mod m for i = 0 .. 2^(
205 */
206 if (a2->neg || BN_ucmp(a2,m) >= 0)
207 {
208 if (!BN_mod(val2[0],a2,m,ctx))
209 goto err;
210 a_mod_m = val2[0];
211 }
212 else
213 a_mod_m = a2;
214 if (BN_is_zero(a_mod_m))
215 {
216 BN_zero(rr);
217 ret = 1;
218 goto err;
219 }
220 if (!BN_to_montgomery(val2[0],a_mod_m,mont,ctx)) goto err;
221 if (window2 > 1)
222 {
223 if (!BN_mod_mul_montgomery(d,val2[0],val2[0],mont,ctx)) goto err

225 j=1<<(window2-1);
226 for (i=1; i<j; i++)
227 {
228 if(((val2[i] = BN_CTX_get(ctx)) == NULL) ||
229 !BN_mod_mul_montgomery(val2[i],val2[i-1]
230 d,mont,ctx))
231 goto err;
232 }
233 }

236 /* Now compute the power product, using independent windows. */
237 r_is_one=1;
238 wvalue1=0; /* The ’value’ of the first window */
239 wvalue2=0; /* The ’value’ of the second window */
240 wpos1=0; /* If wvalue1 > 0, the bottom bit of the first window */
241 wpos2=0; /* If wvalue2 > 0, the bottom bit of the second window */

243 if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err;
244 for (b=bits-1; b>=0; b--)
245 {
246 if (!r_is_one)
247 {
248 if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
249 goto err;
250 }
251
252 if (!wvalue1)
253 if (BN_is_bit_set(p1, b))
254 {
255 /* consider bits b-window1+1 .. b for this windo
256 i = b-window1+1;
257 while (!BN_is_bit_set(p1, i)) /* works for i<0 *
258 i++;
259 wpos1 = i;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_exp2.c 5

260 wvalue1 = 1;
261 for (i = b-1; i >= wpos1; i--)
262 {
263 wvalue1 <<= 1;
264 if (BN_is_bit_set(p1, i))
265 wvalue1++;
266 }
267 }
268
269 if (!wvalue2)
270 if (BN_is_bit_set(p2, b))
271 {
272 /* consider bits b-window2+1 .. b for this windo
273 i = b-window2+1;
274 while (!BN_is_bit_set(p2, i))
275 i++;
276 wpos2 = i;
277 wvalue2 = 1;
278 for (i = b-1; i >= wpos2; i--)
279 {
280 wvalue2 <<= 1;
281 if (BN_is_bit_set(p2, i))
282 wvalue2++;
283 }
284 }

286 if (wvalue1 && b == wpos1)
287 {
288 /* wvalue1 is odd and < 2^window1 */
289 if (!BN_mod_mul_montgomery(r,r,val1[wvalue1>>1],mont,ctx
290 goto err;
291 wvalue1 = 0;
292 r_is_one = 0;
293 }
294
295 if (wvalue2 && b == wpos2)
296 {
297 /* wvalue2 is odd and < 2^window2 */
298 if (!BN_mod_mul_montgomery(r,r,val2[wvalue2>>1],mont,ctx
299 goto err;
300 wvalue2 = 0;
301 r_is_one = 0;
302 }
303 }
304 if (!BN_from_montgomery(rr,r,mont,ctx))
305 goto err;
306 ret=1;
307 err:
308 if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
309 BN_CTX_end(ctx);
310 bn_check_top(rr);
311 return(ret);
312 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gcd.c 1

**
 17485 Fri May 30 18:31:36 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gcd.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_gcd.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gcd.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include "cryptlib.h"
113 #include "bn_lcl.h"

115 static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);

117 int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
118 {
119 BIGNUM *a,*b,*t;
120 int ret=0;

122 bn_check_top(in_a);
123 bn_check_top(in_b);

125 BN_CTX_start(ctx);
126 a = BN_CTX_get(ctx);
127 b = BN_CTX_get(ctx);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gcd.c 3

128 if (a == NULL || b == NULL) goto err;

130 if (BN_copy(a,in_a) == NULL) goto err;
131 if (BN_copy(b,in_b) == NULL) goto err;
132 a->neg = 0;
133 b->neg = 0;

135 if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; }
136 t=euclid(a,b);
137 if (t == NULL) goto err;

139 if (BN_copy(r,t) == NULL) goto err;
140 ret=1;
141 err:
142 BN_CTX_end(ctx);
143 bn_check_top(r);
144 return(ret);
145 }

147 static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
148 {
149 BIGNUM *t;
150 int shifts=0;

152 bn_check_top(a);
153 bn_check_top(b);

155 /* 0 <= b <= a */
156 while (!BN_is_zero(b))
157 {
158 /* 0 < b <= a */

160 if (BN_is_odd(a))
161 {
162 if (BN_is_odd(b))
163 {
164 if (!BN_sub(a,a,b)) goto err;
165 if (!BN_rshift1(a,a)) goto err;
166 if (BN_cmp(a,b) < 0)
167 { t=a; a=b; b=t; }
168 }
169 else /* a odd - b even */
170 {
171 if (!BN_rshift1(b,b)) goto err;
172 if (BN_cmp(a,b) < 0)
173 { t=a; a=b; b=t; }
174 }
175 }
176 else /* a is even */
177 {
178 if (BN_is_odd(b))
179 {
180 if (!BN_rshift1(a,a)) goto err;
181 if (BN_cmp(a,b) < 0)
182 { t=a; a=b; b=t; }
183 }
184 else /* a even - b even */
185 {
186 if (!BN_rshift1(a,a)) goto err;
187 if (!BN_rshift1(b,b)) goto err;
188 shifts++;
189 }
190 }
191 /* 0 <= b <= a */
192 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gcd.c 4

194 if (shifts)
195 {
196 if (!BN_lshift(a,a,shifts)) goto err;
197 }
198 bn_check_top(a);
199 return(a);
200 err:
201 return(NULL);
202 }

205 /* solves ax == 1 (mod n) */
206 static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
207 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);

209 BIGNUM *BN_mod_inverse(BIGNUM *in,
210 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
211 {
212 BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
213 BIGNUM *ret=NULL;
214 int sign;

216 if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(n, BN_FLG_
217 {
218 return BN_mod_inverse_no_branch(in, a, n, ctx);
219 }

221 bn_check_top(a);
222 bn_check_top(n);

224 BN_CTX_start(ctx);
225 A = BN_CTX_get(ctx);
226 B = BN_CTX_get(ctx);
227 X = BN_CTX_get(ctx);
228 D = BN_CTX_get(ctx);
229 M = BN_CTX_get(ctx);
230 Y = BN_CTX_get(ctx);
231 T = BN_CTX_get(ctx);
232 if (T == NULL) goto err;

234 if (in == NULL)
235 R=BN_new();
236 else
237 R=in;
238 if (R == NULL) goto err;

240 BN_one(X);
241 BN_zero(Y);
242 if (BN_copy(B,a) == NULL) goto err;
243 if (BN_copy(A,n) == NULL) goto err;
244 A->neg = 0;
245 if (B->neg || (BN_ucmp(B, A) >= 0))
246 {
247 if (!BN_nnmod(B, B, A, ctx)) goto err;
248 }
249 sign = -1;
250 /* From B = a mod |n|, A = |n| it follows that
251 *
252 * 0 <= B < A,
253 * -sign*X*a == B (mod |n|),
254 * sign*Y*a == A (mod |n|).
255 */

257 if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048)))
258 {
259 /* Binary inversion algorithm; requires odd modulus.

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gcd.c 5

260 * This is faster than the general algorithm if the modulus
261 * is sufficiently small (about 400 .. 500 bits on 32-bit
262 * sytems, but much more on 64-bit systems) */
263 int shift;
264
265 while (!BN_is_zero(B))
266 {
267 /*
268 * 0 < B < |n|,
269 * 0 < A <= |n|,
270 * (1) -sign*X*a == B (mod |n|),
271 * (2) sign*Y*a == A (mod |n|)
272 */

274 /* Now divide B by the maximum possible power of two i
275 * and divide X by the same value mod |n|.
276 * When we’re done, (1) still holds. */
277 shift = 0;
278 while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
279 {
280 shift++;
281
282 if (BN_is_odd(X))
283 {
284 if (!BN_uadd(X, X, n)) goto err;
285 }
286 /* now X is even, so we can easily divide it by
287 if (!BN_rshift1(X, X)) goto err;
288 }
289 if (shift > 0)
290 {
291 if (!BN_rshift(B, B, shift)) goto err;
292 }

295 /* Same for A and Y. Afterwards, (2) still holds. */
296 shift = 0;
297 while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
298 {
299 shift++;
300
301 if (BN_is_odd(Y))
302 {
303 if (!BN_uadd(Y, Y, n)) goto err;
304 }
305 /* now Y is even */
306 if (!BN_rshift1(Y, Y)) goto err;
307 }
308 if (shift > 0)
309 {
310 if (!BN_rshift(A, A, shift)) goto err;
311 }

313
314 /* We still have (1) and (2).
315 * Both A and B are odd.
316 * The following computations ensure that
317 *
318 * 0 <= B < |n|,
319 * 0 < A < |n|,
320 * (1) -sign*X*a == B (mod |n|),
321 * (2) sign*Y*a == A (mod |n|),
322 *
323 * and that either A or B is even in the next iterat
324 */
325 if (BN_ucmp(B, A) >= 0)

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gcd.c 6

326 {
327 /* -sign*(X + Y)*a == B - A (mod |n|) */
328 if (!BN_uadd(X, X, Y)) goto err;
329 /* NB: we could use BN_mod_add_quick(X, X, Y, n)
330 * actually makes the algorithm slower */
331 if (!BN_usub(B, B, A)) goto err;
332 }
333 else
334 {
335 /* sign*(X + Y)*a == A - B (mod |n|) */
336 if (!BN_uadd(Y, Y, X)) goto err;
337 /* as above, BN_mod_add_quick(Y, Y, X, n) would
338 if (!BN_usub(A, A, B)) goto err;
339 }
340 }
341 }
342 else
343 {
344 /* general inversion algorithm */

346 while (!BN_is_zero(B))
347 {
348 BIGNUM *tmp;
349
350 /*
351 * 0 < B < A,
352 * (*) -sign*X*a == B (mod |n|),
353 * sign*Y*a == A (mod |n|)
354 */
355
356 /* (D, M) := (A/B, A%B) ... */
357 if (BN_num_bits(A) == BN_num_bits(B))
358 {
359 if (!BN_one(D)) goto err;
360 if (!BN_sub(M,A,B)) goto err;
361 }
362 else if (BN_num_bits(A) == BN_num_bits(B) + 1)
363 {
364 /* A/B is 1, 2, or 3 */
365 if (!BN_lshift1(T,B)) goto err;
366 if (BN_ucmp(A,T) < 0)
367 {
368 /* A < 2*B, so D=1 */
369 if (!BN_one(D)) goto err;
370 if (!BN_sub(M,A,B)) goto err;
371 }
372 else
373 {
374 /* A >= 2*B, so D=2 or D=3 */
375 if (!BN_sub(M,A,T)) goto err;
376 if (!BN_add(D,T,B)) goto err; /* use D (
377 if (BN_ucmp(A,D) < 0)
378 {
379 /* A < 3*B, so D=2 */
380 if (!BN_set_word(D,2)) goto err;
381 /* M (= A - 2*B) already has the
382 }
383 else
384 {
385 /* only D=3 remains */
386 if (!BN_set_word(D,3)) goto err;
387 /* currently M = A - 2*B, but
388 if (!BN_sub(M,M,B)) goto err;
389 }
390 }
391 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gcd.c 7

392 else
393 {
394 if (!BN_div(D,M,A,B,ctx)) goto err;
395 }
396
397 /* Now
398 * A = D*B + M;
399 * thus we have
400 * (**) sign*Y*a == D*B + M (mod |n|).
401 */
402
403 tmp=A; /* keep the BIGNUM object, the value does not mat
404
405 /* (A, B) := (B, A mod B) ... */
406 A=B;
407 B=M;
408 /* ... so we have 0 <= B < A again */
409
410 /* Since the former M is now B and the former B is
411 * (**) translates into
412 * sign*Y*a == D*A + B (mod |n|),
413 * i.e.
414 * sign*Y*a - D*A == B (mod |n|).
415 * Similarly, (*) translates into
416 * -sign*X*a == A (mod |n|).
417 *
418 * Thus,
419 * sign*Y*a + D*sign*X*a == B (mod |n|),
420 * i.e.
421 * sign*(Y + D*X)*a == B (mod |n|).
422 *
423 * So if we set (X, Y, sign) := (Y + D*X, X, -sign), w
424 * -sign*X*a == B (mod |n|),
425 * sign*Y*a == A (mod |n|).
426 * Note that X and Y stay non-negative all the time.
427 */
428
429 /* most of the time D is very small, so we can optimize
430 if (BN_is_one(D))
431 {
432 if (!BN_add(tmp,X,Y)) goto err;
433 }
434 else
435 {
436 if (BN_is_word(D,2))
437 {
438 if (!BN_lshift1(tmp,X)) goto err;
439 }
440 else if (BN_is_word(D,4))
441 {
442 if (!BN_lshift(tmp,X,2)) goto err;
443 }
444 else if (D->top == 1)
445 {
446 if (!BN_copy(tmp,X)) goto err;
447 if (!BN_mul_word(tmp,D->d[0])) goto err;
448 }
449 else
450 {
451 if (!BN_mul(tmp,D,X,ctx)) goto err;
452 }
453 if (!BN_add(tmp,tmp,Y)) goto err;
454 }
455
456 M=Y; /* keep the BIGNUM object, the value does not matte
457 Y=X;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gcd.c 8

458 X=tmp;
459 sign = -sign;
460 }
461 }
462
463 /*
464 * The while loop (Euclid’s algorithm) ends when
465 * A == gcd(a,n);
466 * we have
467 * sign*Y*a == A (mod |n|),
468 * where Y is non-negative.
469 */

471 if (sign < 0)
472 {
473 if (!BN_sub(Y,n,Y)) goto err;
474 }
475 /* Now Y*a == A (mod |n|). */
476

478 if (BN_is_one(A))
479 {
480 /* Y*a == 1 (mod |n|) */
481 if (!Y->neg && BN_ucmp(Y,n) < 0)
482 {
483 if (!BN_copy(R,Y)) goto err;
484 }
485 else
486 {
487 if (!BN_nnmod(R,Y,n,ctx)) goto err;
488 }
489 }
490 else
491 {
492 BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);
493 goto err;
494 }
495 ret=R;
496 err:
497 if ((ret == NULL) && (in == NULL)) BN_free(R);
498 BN_CTX_end(ctx);
499 bn_check_top(ret);
500 return(ret);
501 }

504 /* BN_mod_inverse_no_branch is a special version of BN_mod_inverse.
505 * It does not contain branches that may leak sensitive information.
506 */
507 static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
508 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
509 {
510 BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
511 BIGNUM local_A, local_B;
512 BIGNUM *pA, *pB;
513 BIGNUM *ret=NULL;
514 int sign;

516 bn_check_top(a);
517 bn_check_top(n);

519 BN_CTX_start(ctx);
520 A = BN_CTX_get(ctx);
521 B = BN_CTX_get(ctx);
522 X = BN_CTX_get(ctx);
523 D = BN_CTX_get(ctx);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gcd.c 9

524 M = BN_CTX_get(ctx);
525 Y = BN_CTX_get(ctx);
526 T = BN_CTX_get(ctx);
527 if (T == NULL) goto err;

529 if (in == NULL)
530 R=BN_new();
531 else
532 R=in;
533 if (R == NULL) goto err;

535 BN_one(X);
536 BN_zero(Y);
537 if (BN_copy(B,a) == NULL) goto err;
538 if (BN_copy(A,n) == NULL) goto err;
539 A->neg = 0;

541 if (B->neg || (BN_ucmp(B, A) >= 0))
542 {
543 /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked
544 * BN_div_no_branch will be called eventually.
545 */
546 pB = &local_B;
547 BN_with_flags(pB, B, BN_FLG_CONSTTIME);
548 if (!BN_nnmod(B, pB, A, ctx)) goto err;
549 }
550 sign = -1;
551 /* From B = a mod |n|, A = |n| it follows that
552 *
553 * 0 <= B < A,
554 * -sign*X*a == B (mod |n|),
555 * sign*Y*a == A (mod |n|).
556 */

558 while (!BN_is_zero(B))
559 {
560 BIGNUM *tmp;
561
562 /*
563 * 0 < B < A,
564 * (*) -sign*X*a == B (mod |n|),
565 * sign*Y*a == A (mod |n|)
566 */

568 /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked
569 * BN_div_no_branch will be called eventually.
570 */
571 pA = &local_A;
572 BN_with_flags(pA, A, BN_FLG_CONSTTIME);
573
574 /* (D, M) := (A/B, A%B) ... */
575 if (!BN_div(D,M,pA,B,ctx)) goto err;
576
577 /* Now
578 * A = D*B + M;
579 * thus we have
580 * (**) sign*Y*a == D*B + M (mod |n|).
581 */
582
583 tmp=A; /* keep the BIGNUM object, the value does not matter */
584
585 /* (A, B) := (B, A mod B) ... */
586 A=B;
587 B=M;
588 /* ... so we have 0 <= B < A again */
589

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gcd.c 10

590 /* Since the former M is now B and the former B is now A,
591 * (**) translates into
592 * sign*Y*a == D*A + B (mod |n|),
593 * i.e.
594 * sign*Y*a - D*A == B (mod |n|).
595 * Similarly, (*) translates into
596 * -sign*X*a == A (mod |n|).
597 *
598 * Thus,
599 * sign*Y*a + D*sign*X*a == B (mod |n|),
600 * i.e.
601 * sign*(Y + D*X)*a == B (mod |n|).
602 *
603 * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive
604 * -sign*X*a == B (mod |n|),
605 * sign*Y*a == A (mod |n|).
606 * Note that X and Y stay non-negative all the time.
607 */
608
609 if (!BN_mul(tmp,D,X,ctx)) goto err;
610 if (!BN_add(tmp,tmp,Y)) goto err;

612 M=Y; /* keep the BIGNUM object, the value does not matter */
613 Y=X;
614 X=tmp;
615 sign = -sign;
616 }
617
618 /*
619 * The while loop (Euclid’s algorithm) ends when
620 * A == gcd(a,n);
621 * we have
622 * sign*Y*a == A (mod |n|),
623 * where Y is non-negative.
624 */

626 if (sign < 0)
627 {
628 if (!BN_sub(Y,n,Y)) goto err;
629 }
630 /* Now Y*a == A (mod |n|). */

632 if (BN_is_one(A))
633 {
634 /* Y*a == 1 (mod |n|) */
635 if (!Y->neg && BN_ucmp(Y,n) < 0)
636 {
637 if (!BN_copy(R,Y)) goto err;
638 }
639 else
640 {
641 if (!BN_nnmod(R,Y,n,ctx)) goto err;
642 }
643 }
644 else
645 {
646 BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH,BN_R_NO_INVERSE);
647 goto err;
648 }
649 ret=R;
650 err:
651 if ((ret == NULL) && (in == NULL)) BN_free(R);
652 BN_CTX_end(ctx);
653 bn_check_top(ret);
654 return(ret);
655 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gcd.c 11

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 1

**
 29676 Fri May 30 18:31:36 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_gf2m.c */
2 /* ==
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */

30 /* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply! In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */

37 /* ==
38 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in
49 * the documentation and/or other materials provided with the
50 * distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 * software must display the following acknowledgment:
54 * "This product includes software developed by the OpenSSL Project
55 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 * endorse or promote products derived from this software without
59 * prior written permission. For written permission, please contact
60 * openssl-core@openssl.org.
61 *

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 2

62 * 5. Products derived from this software may not be called "OpenSSL"
63 * nor may "OpenSSL" appear in their names without prior written
64 * permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 * acknowledgment:
68 * "This product includes software developed by the OpenSSL Project
69 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ==
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com). This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */

91 #include <assert.h>
92 #include <limits.h>
93 #include <stdio.h>
94 #include "cryptlib.h"
95 #include "bn_lcl.h"

97 #ifndef OPENSSL_NO_EC2M

99 /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. *
100 #define MAX_ITERATIONS 50

102 static const BN_ULONG SQR_tb[16] =
103 { 0, 1, 4, 5, 16, 17, 20, 21,
104 64, 65, 68, 69, 80, 81, 84, 85 };
105 /* Platform-specific macros to accelerate squaring. */
106 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
107 #define SQR1(w) \
108 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
109 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
110 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
111 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
112 #define SQR0(w) \
113 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
114 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
115 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
116 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
117 #endif
118 #ifdef THIRTY_TWO_BIT
119 #define SQR1(w) \
120 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
121 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
122 #define SQR0(w) \
123 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
124 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
125 #endif

127 #if !defined(OPENSSL_BN_ASM_GF2m)

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 3

128 /* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
129 * result is a polynomial r with degree < 2 * BN_BITS - 1
130 * The caller MUST ensure that the variables have the right amount
131 * of space allocated.
132 */
133 #ifdef THIRTY_TWO_BIT
134 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const
135 {
136 register BN_ULONG h, l, s;
137 BN_ULONG tab[8], top2b = a >> 30;
138 register BN_ULONG a1, a2, a4;

140 a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;

142 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
143 tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;

145 s = tab[b & 0x7]; l = s;
146 s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
147 s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
148 s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
149 s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
150 s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
151 s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
152 s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
153 s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
154 s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
155 s = tab[b >> 30]; l ^= s << 30; h ^= s >> 2;

157 /* compensate for the top two bits of a */

159 if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
160 if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }

162 *r1 = h; *r0 = l;
163 }
164 #endif
165 #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
166 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const
167 {
168 register BN_ULONG h, l, s;
169 BN_ULONG tab[16], top3b = a >> 61;
170 register BN_ULONG a1, a2, a4, a8;

172 a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 <<

174 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2
175 tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2
176 tab[8] = a8; tab[9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2
177 tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2

179 s = tab[b & 0xF]; l = s;
180 s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
181 s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
182 s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
183 s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
184 s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
185 s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
186 s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
187 s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
188 s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
189 s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
190 s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
191 s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
192 s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
193 s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 4

194 s = tab[b >> 60]; l ^= s << 60; h ^= s >> 4;

196 /* compensate for the top three bits of a */

198 if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
199 if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
200 if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }

202 *r1 = h; *r0 = l;
203 }
204 #endif

206 /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
207 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
208 * The caller MUST ensure that the variables have the right amount
209 * of space allocated.
210 */
211 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, c
212 {
213 BN_ULONG m1, m0;
214 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
215 bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
216 bn_GF2m_mul_1x1(r+1, r, a0, b0);
217 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
218 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
219 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
220 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
221 }
222 #else
223 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULON
224 #endif

226 /* Add polynomials a and b and store result in r; r could be a or b, a and b
227 * could be equal; r is the bitwise XOR of a and b.
228 */
229 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
230 {
231 int i;
232 const BIGNUM *at, *bt;

234 bn_check_top(a);
235 bn_check_top(b);

237 if (a->top < b->top) { at = b; bt = a; }
238 else { at = a; bt = b; }

240 if(bn_wexpand(r, at->top) == NULL)
241 return 0;

243 for (i = 0; i < bt->top; i++)
244 {
245 r->d[i] = at->d[i] ^ bt->d[i];
246 }
247 for (; i < at->top; i++)
248 {
249 r->d[i] = at->d[i];
250 }
251
252 r->top = at->top;
253 bn_correct_top(r);
254
255 return 1;
256 }

259 /* Some functions allow for representation of the irreducible polynomials

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 5

260 * as an int[], say p. The irreducible f(t) is then of the form:
261 * t^p[0] + t^p[1] + ... + t^p[k]
262 * where m = p[0] > p[1] > ... > p[k] = 0.
263 */

266 /* Performs modular reduction of a and store result in r. r could be a. */
267 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
268 {
269 int j, k;
270 int n, dN, d0, d1;
271 BN_ULONG zz, *z;

273 bn_check_top(a);

275 if (!p[0])
276 {
277 /* reduction mod 1 => return 0 */
278 BN_zero(r);
279 return 1;
280 }

282 /* Since the algorithm does reduction in the r value, if a != r, copy
283 * the contents of a into r so we can do reduction in r.
284 */
285 if (a != r)
286 {
287 if (!bn_wexpand(r, a->top)) return 0;
288 for (j = 0; j < a->top; j++)
289 {
290 r->d[j] = a->d[j];
291 }
292 r->top = a->top;
293 }
294 z = r->d;

296 /* start reduction */
297 dN = p[0] / BN_BITS2;
298 for (j = r->top - 1; j > dN;)
299 {
300 zz = z[j];
301 if (z[j] == 0) { j--; continue; }
302 z[j] = 0;

304 for (k = 1; p[k] != 0; k++)
305 {
306 /* reducing component t^p[k] */
307 n = p[0] - p[k];
308 d0 = n % BN_BITS2; d1 = BN_BITS2 - d0;
309 n /= BN_BITS2;
310 z[j-n] ^= (zz>>d0);
311 if (d0) z[j-n-1] ^= (zz<<d1);
312 }

314 /* reducing component t^0 */
315 n = dN;
316 d0 = p[0] % BN_BITS2;
317 d1 = BN_BITS2 - d0;
318 z[j-n] ^= (zz >> d0);
319 if (d0) z[j-n-1] ^= (zz << d1);
320 }

322 /* final round of reduction */
323 while (j == dN)
324 {

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 6

326 d0 = p[0] % BN_BITS2;
327 zz = z[dN] >> d0;
328 if (zz == 0) break;
329 d1 = BN_BITS2 - d0;
330
331 /* clear up the top d1 bits */
332 if (d0)
333 z[dN] = (z[dN] << d1) >> d1;
334 else
335 z[dN] = 0;
336 z[0] ^= zz; /* reduction t^0 component */

338 for (k = 1; p[k] != 0; k++)
339 {
340 BN_ULONG tmp_ulong;

342 /* reducing component t^p[k]*/
343 n = p[k] / BN_BITS2;
344 d0 = p[k] % BN_BITS2;
345 d1 = BN_BITS2 - d0;
346 z[n] ^= (zz << d0);
347 tmp_ulong = zz >> d1;
348 if (d0 && tmp_ulong)
349 z[n+1] ^= tmp_ulong;
350 }

352
353 }

355 bn_correct_top(r);
356 return 1;
357 }

359 /* Performs modular reduction of a by p and store result in r. r could be a.
360 *
361 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
362 * function is only provided for convenience; for best performance, use the
363 * BN_GF2m_mod_arr function.
364 */
365 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
366 {
367 int ret = 0;
368 int arr[6];
369 bn_check_top(a);
370 bn_check_top(p);
371 ret = BN_GF2m_poly2arr(p, arr, sizeof(arr)/sizeof(arr[0]));
372 if (!ret || ret > (int)(sizeof(arr)/sizeof(arr[0])))
373 {
374 BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
375 return 0;
376 }
377 ret = BN_GF2m_mod_arr(r, a, arr);
378 bn_check_top(r);
379 return ret;
380 }

383 /* Compute the product of two polynomials a and b, reduce modulo p, and store
384 * the result in r. r could be a or b; a could be b.
385 */
386 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const i
387 {
388 int zlen, i, j, k, ret = 0;
389 BIGNUM *s;
390 BN_ULONG x1, x0, y1, y0, zz[4];

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 7

392 bn_check_top(a);
393 bn_check_top(b);

395 if (a == b)
396 {
397 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
398 }

400 BN_CTX_start(ctx);
401 if ((s = BN_CTX_get(ctx)) == NULL) goto err;
402
403 zlen = a->top + b->top + 4;
404 if (!bn_wexpand(s, zlen)) goto err;
405 s->top = zlen;

407 for (i = 0; i < zlen; i++) s->d[i] = 0;

409 for (j = 0; j < b->top; j += 2)
410 {
411 y0 = b->d[j];
412 y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
413 for (i = 0; i < a->top; i += 2)
414 {
415 x0 = a->d[i];
416 x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
417 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
418 for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
419 }
420 }

422 bn_correct_top(s);
423 if (BN_GF2m_mod_arr(r, s, p))
424 ret = 1;
425 bn_check_top(r);

427 err:
428 BN_CTX_end(ctx);
429 return ret;
430 }

432 /* Compute the product of two polynomials a and b, reduce modulo p, and store
433 * the result in r. r could be a or b; a could equal b.
434 *
435 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrap
436 * function is only provided for convenience; for best performance, use the
437 * BN_GF2m_mod_mul_arr function.
438 */
439 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNU
440 {
441 int ret = 0;
442 const int max = BN_num_bits(p) + 1;
443 int *arr=NULL;
444 bn_check_top(a);
445 bn_check_top(b);
446 bn_check_top(p);
447 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
448 ret = BN_GF2m_poly2arr(p, arr, max);
449 if (!ret || ret > max)
450 {
451 BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
452 goto err;
453 }
454 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
455 bn_check_top(r);
456 err:
457 if (arr) OPENSSL_free(arr);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 8

458 return ret;
459 }

462 /* Square a, reduce the result mod p, and store it in a. r could be a. */
463 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *c
464 {
465 int i, ret = 0;
466 BIGNUM *s;

468 bn_check_top(a);
469 BN_CTX_start(ctx);
470 if ((s = BN_CTX_get(ctx)) == NULL) return 0;
471 if (!bn_wexpand(s, 2 * a->top)) goto err;

473 for (i = a->top - 1; i >= 0; i--)
474 {
475 s->d[2*i+1] = SQR1(a->d[i]);
476 s->d[2*i] = SQR0(a->d[i]);
477 }

479 s->top = 2 * a->top;
480 bn_correct_top(s);
481 if (!BN_GF2m_mod_arr(r, s, p)) goto err;
482 bn_check_top(r);
483 ret = 1;
484 err:
485 BN_CTX_end(ctx);
486 return ret;
487 }

489 /* Square a, reduce the result mod p, and store it in a. r could be a.
490 *
491 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrap
492 * function is only provided for convenience; for best performance, use the
493 * BN_GF2m_mod_sqr_arr function.
494 */
495 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx
496 {
497 int ret = 0;
498 const int max = BN_num_bits(p) + 1;
499 int *arr=NULL;

501 bn_check_top(a);
502 bn_check_top(p);
503 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
504 ret = BN_GF2m_poly2arr(p, arr, max);
505 if (!ret || ret > max)
506 {
507 BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
508 goto err;
509 }
510 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
511 bn_check_top(r);
512 err:
513 if (arr) OPENSSL_free(arr);
514 return ret;
515 }

518 /* Invert a, reduce modulo p, and store the result in r. r could be a.
519 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
520 * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
521 * of Elliptic Curve Cryptography Over Binary Fields".
522 */
523 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 9

524 {
525 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
526 int ret = 0;

528 bn_check_top(a);
529 bn_check_top(p);

531 BN_CTX_start(ctx);
532
533 if ((b = BN_CTX_get(ctx))==NULL) goto err;
534 if ((c = BN_CTX_get(ctx))==NULL) goto err;
535 if ((u = BN_CTX_get(ctx))==NULL) goto err;
536 if ((v = BN_CTX_get(ctx))==NULL) goto err;

538 if (!BN_GF2m_mod(u, a, p)) goto err;
539 if (BN_is_zero(u)) goto err;

541 if (!BN_copy(v, p)) goto err;
542 #if 0
543 if (!BN_one(b)) goto err;

545 while (1)
546 {
547 while (!BN_is_odd(u))
548 {
549 if (BN_is_zero(u)) goto err;
550 if (!BN_rshift1(u, u)) goto err;
551 if (BN_is_odd(b))
552 {
553 if (!BN_GF2m_add(b, b, p)) goto err;
554 }
555 if (!BN_rshift1(b, b)) goto err;
556 }

558 if (BN_abs_is_word(u, 1)) break;

560 if (BN_num_bits(u) < BN_num_bits(v))
561 {
562 tmp = u; u = v; v = tmp;
563 tmp = b; b = c; c = tmp;
564 }
565
566 if (!BN_GF2m_add(u, u, v)) goto err;
567 if (!BN_GF2m_add(b, b, c)) goto err;
568 }
569 #else
570 {
571 int i, ubits = BN_num_bits(u),
572 vbits = BN_num_bits(v), /* v is copy of p */
573 top = p->top;
574 BN_ULONG *udp,*bdp,*vdp,*cdp;

576 bn_wexpand(u,top); udp = u->d;
577 for (i=u->top;i<top;i++) udp[i] = 0;
578 u->top = top;
579 bn_wexpand(b,top); bdp = b->d;
580 bdp[0] = 1;
581 for (i=1;i<top;i++) bdp[i] = 0;
582 b->top = top;
583 bn_wexpand(c,top); cdp = c->d;
584 for (i=0;i<top;i++) cdp[i] = 0;
585 c->top = top;
586 vdp = v->d; /* It pays off to "cache" *->d pointers, because
587 * it allows optimizer to be more aggressive.
588 * But we don’t have to "cache" p->d, because *p
589 * is declared ’const’... */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 10

590 while (1)
591 {
592 while (ubits && !(udp[0]&1))
593 {
594 BN_ULONG u0,u1,b0,b1,mask;

596 u0 = udp[0];
597 b0 = bdp[0];
598 mask = (BN_ULONG)0-(b0&1);
599 b0 ^= p->d[0]&mask;
600 for (i=0;i<top-1;i++)
601 {
602 u1 = udp[i+1];
603 udp[i] = ((u0>>1)|(u1<<(BN_BITS2-1)))&BN_MASK2;
604 u0 = u1;
605 b1 = bdp[i+1]^(p->d[i+1]&mask);
606 bdp[i] = ((b0>>1)|(b1<<(BN_BITS2-1)))&BN_MASK2;
607 b0 = b1;
608 }
609 udp[i] = u0>>1;
610 bdp[i] = b0>>1;
611 ubits--;
612 }

614 if (ubits<=BN_BITS2 && udp[0]==1) break;

616 if (ubits<vbits)
617 {
618 i = ubits; ubits = vbits; vbits = i;
619 tmp = u; u = v; v = tmp;
620 tmp = b; b = c; c = tmp;
621 udp = vdp; vdp = v->d;
622 bdp = cdp; cdp = c->d;
623 }
624 for(i=0;i<top;i++)
625 {
626 udp[i] ^= vdp[i];
627 bdp[i] ^= cdp[i];
628 }
629 if (ubits==vbits)
630 {
631 BN_ULONG ul;
632 int utop = (ubits-1)/BN_BITS2;

634 while ((ul=udp[utop])==0 && utop) utop--;
635 ubits = utop*BN_BITS2 + BN_num_bits_word(ul);
636 }
637 }
638 bn_correct_top(b);
639 }
640 #endif

642 if (!BN_copy(r, b)) goto err;
643 bn_check_top(r);
644 ret = 1;

646 err:
647 #ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */
648 bn_correct_top(c);
649 bn_correct_top(u);
650 bn_correct_top(v);
651 #endif
652 BN_CTX_end(ctx);
653 return ret;
654 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 11

656 /* Invert xx, reduce modulo p, and store the result in r. r could be xx.
657 *
658 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
659 * function is only provided for convenience; for best performance, use the
660 * BN_GF2m_mod_inv function.
661 */
662 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx)
663 {
664 BIGNUM *field;
665 int ret = 0;

667 bn_check_top(xx);
668 BN_CTX_start(ctx);
669 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
670 if (!BN_GF2m_arr2poly(p, field)) goto err;
671
672 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
673 bn_check_top(r);

675 err:
676 BN_CTX_end(ctx);
677 return ret;
678 }

681 #ifndef OPENSSL_SUN_GF2M_DIV
682 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
683 * or y, x could equal y.
684 */
685 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p
686 {
687 BIGNUM *xinv = NULL;
688 int ret = 0;

690 bn_check_top(y);
691 bn_check_top(x);
692 bn_check_top(p);

694 BN_CTX_start(ctx);
695 xinv = BN_CTX_get(ctx);
696 if (xinv == NULL) goto err;
697
698 if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
699 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
700 bn_check_top(r);
701 ret = 1;

703 err:
704 BN_CTX_end(ctx);
705 return ret;
706 }
707 #else
708 /* Divide y by x, reduce modulo p, and store the result in r. r could be x
709 * or y, x could equal y.
710 * Uses algorithm Modular_Division_GF(2^m) from
711 * Chang-Shantz, S. "From Euclid’s GCD to Montgomery Multiplication to
712 * the Great Divide".
713 */
714 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p
715 {
716 BIGNUM *a, *b, *u, *v;
717 int ret = 0;

719 bn_check_top(y);
720 bn_check_top(x);
721 bn_check_top(p);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 12

723 BN_CTX_start(ctx);
724
725 a = BN_CTX_get(ctx);
726 b = BN_CTX_get(ctx);
727 u = BN_CTX_get(ctx);
728 v = BN_CTX_get(ctx);
729 if (v == NULL) goto err;

731 /* reduce x and y mod p */
732 if (!BN_GF2m_mod(u, y, p)) goto err;
733 if (!BN_GF2m_mod(a, x, p)) goto err;
734 if (!BN_copy(b, p)) goto err;
735
736 while (!BN_is_odd(a))
737 {
738 if (!BN_rshift1(a, a)) goto err;
739 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
740 if (!BN_rshift1(u, u)) goto err;
741 }

743 do
744 {
745 if (BN_GF2m_cmp(b, a) > 0)
746 {
747 if (!BN_GF2m_add(b, b, a)) goto err;
748 if (!BN_GF2m_add(v, v, u)) goto err;
749 do
750 {
751 if (!BN_rshift1(b, b)) goto err;
752 if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) got
753 if (!BN_rshift1(v, v)) goto err;
754 } while (!BN_is_odd(b));
755 }
756 else if (BN_abs_is_word(a, 1))
757 break;
758 else
759 {
760 if (!BN_GF2m_add(a, a, b)) goto err;
761 if (!BN_GF2m_add(u, u, v)) goto err;
762 do
763 {
764 if (!BN_rshift1(a, a)) goto err;
765 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) got
766 if (!BN_rshift1(u, u)) goto err;
767 } while (!BN_is_odd(a));
768 }
769 } while (1);

771 if (!BN_copy(r, u)) goto err;
772 bn_check_top(r);
773 ret = 1;

775 err:
776 BN_CTX_end(ctx);
777 return ret;
778 }
779 #endif

781 /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
782 * or yy, xx could equal yy.
783 *
784 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
785 * function is only provided for convenience; for best performance, use the
786 * BN_GF2m_mod_div function.
787 */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 13

788 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const int
789 {
790 BIGNUM *field;
791 int ret = 0;

793 bn_check_top(yy);
794 bn_check_top(xx);

796 BN_CTX_start(ctx);
797 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
798 if (!BN_GF2m_arr2poly(p, field)) goto err;
799
800 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
801 bn_check_top(r);

803 err:
804 BN_CTX_end(ctx);
805 return ret;
806 }

809 /* Compute the bth power of a, reduce modulo p, and store
810 * the result in r. r could be a.
811 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
812 */
813 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const i
814 {
815 int ret = 0, i, n;
816 BIGNUM *u;

818 bn_check_top(a);
819 bn_check_top(b);

821 if (BN_is_zero(b))
822 return(BN_one(r));

824 if (BN_abs_is_word(b, 1))
825 return (BN_copy(r, a) != NULL);

827 BN_CTX_start(ctx);
828 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
829
830 if (!BN_GF2m_mod_arr(u, a, p)) goto err;
831
832 n = BN_num_bits(b) - 1;
833 for (i = n - 1; i >= 0; i--)
834 {
835 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
836 if (BN_is_bit_set(b, i))
837 {
838 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
839 }
840 }
841 if (!BN_copy(r, u)) goto err;
842 bn_check_top(r);
843 ret = 1;
844 err:
845 BN_CTX_end(ctx);
846 return ret;
847 }

849 /* Compute the bth power of a, reduce modulo p, and store
850 * the result in r. r could be a.
851 *
852 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrap
853 * function is only provided for convenience; for best performance, use the

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 14

854 * BN_GF2m_mod_exp_arr function.
855 */
856 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p
857 {
858 int ret = 0;
859 const int max = BN_num_bits(p) + 1;
860 int *arr=NULL;
861 bn_check_top(a);
862 bn_check_top(b);
863 bn_check_top(p);
864 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
865 ret = BN_GF2m_poly2arr(p, arr, max);
866 if (!ret || ret > max)
867 {
868 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
869 goto err;
870 }
871 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
872 bn_check_top(r);
873 err:
874 if (arr) OPENSSL_free(arr);
875 return ret;
876 }

878 /* Compute the square root of a, reduce modulo p, and store
879 * the result in r. r could be a.
880 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
881 */
882 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *
883 {
884 int ret = 0;
885 BIGNUM *u;

887 bn_check_top(a);

889 if (!p[0])
890 {
891 /* reduction mod 1 => return 0 */
892 BN_zero(r);
893 return 1;
894 }

896 BN_CTX_start(ctx);
897 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
898
899 if (!BN_set_bit(u, p[0] - 1)) goto err;
900 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
901 bn_check_top(r);

903 err:
904 BN_CTX_end(ctx);
905 return ret;
906 }

908 /* Compute the square root of a, reduce modulo p, and store
909 * the result in r. r could be a.
910 *
911 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wra
912 * function is only provided for convenience; for best performance, use the
913 * BN_GF2m_mod_sqrt_arr function.
914 */
915 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
916 {
917 int ret = 0;
918 const int max = BN_num_bits(p) + 1;
919 int *arr=NULL;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 15

920 bn_check_top(a);
921 bn_check_top(p);
922 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL) goto err;
923 ret = BN_GF2m_poly2arr(p, arr, max);
924 if (!ret || ret > max)
925 {
926 BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
927 goto err;
928 }
929 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
930 bn_check_top(r);
931 err:
932 if (arr) OPENSSL_free(arr);
933 return ret;
934 }

936 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
937 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
938 */
939 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], BN_CT
940 {
941 int ret = 0, count = 0, j;
942 BIGNUM *a, *z, *rho, *w, *w2, *tmp;

944 bn_check_top(a_);

946 if (!p[0])
947 {
948 /* reduction mod 1 => return 0 */
949 BN_zero(r);
950 return 1;
951 }

953 BN_CTX_start(ctx);
954 a = BN_CTX_get(ctx);
955 z = BN_CTX_get(ctx);
956 w = BN_CTX_get(ctx);
957 if (w == NULL) goto err;

959 if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
960
961 if (BN_is_zero(a))
962 {
963 BN_zero(r);
964 ret = 1;
965 goto err;
966 }

968 if (p[0] & 0x1) /* m is odd */
969 {
970 /* compute half-trace of a */
971 if (!BN_copy(z, a)) goto err;
972 for (j = 1; j <= (p[0] - 1) / 2; j++)
973 {
974 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
975 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
976 if (!BN_GF2m_add(z, z, a)) goto err;
977 }
978
979 }
980 else /* m is even */
981 {
982 rho = BN_CTX_get(ctx);
983 w2 = BN_CTX_get(ctx);
984 tmp = BN_CTX_get(ctx);
985 if (tmp == NULL) goto err;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 16

986 do
987 {
988 if (!BN_rand(rho, p[0], 0, 0)) goto err;
989 if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
990 BN_zero(z);
991 if (!BN_copy(w, rho)) goto err;
992 for (j = 1; j <= p[0] - 1; j++)
993 {
994 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err
995 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto er
996 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) go
997 if (!BN_GF2m_add(z, z, tmp)) goto err;
998 if (!BN_GF2m_add(w, w2, rho)) goto err;
999 }

1000 count++;
1001 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1002 if (BN_is_zero(w))
1003 {
1004 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITER
1005 goto err;
1006 }
1007 }
1008
1009 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
1010 if (!BN_GF2m_add(w, z, w)) goto err;
1011 if (BN_GF2m_cmp(w, a))
1012 {
1013 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1014 goto err;
1015 }

1017 if (!BN_copy(r, z)) goto err;
1018 bn_check_top(r);

1020 ret = 1;

1022 err:
1023 BN_CTX_end(ctx);
1024 return ret;
1025 }

1027 /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
1028 *
1029 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; th
1030 * function is only provided for convenience; for best performance, use the
1031 * BN_GF2m_mod_solve_quad_arr function.
1032 */
1033 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *
1034 {
1035 int ret = 0;
1036 const int max = BN_num_bits(p) + 1;
1037 int *arr=NULL;
1038 bn_check_top(a);
1039 bn_check_top(p);
1040 if ((arr = (int *)OPENSSL_malloc(sizeof(int) *
1041 max)) == NULL) goto err;
1042 ret = BN_GF2m_poly2arr(p, arr, max);
1043 if (!ret || ret > max)
1044 {
1045 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
1046 goto err;
1047 }
1048 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1049 bn_check_top(r);
1050 err:
1051 if (arr) OPENSSL_free(arr);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_gf2m.c 17

1052 return ret;
1053 }

1055 /* Convert the bit-string representation of a polynomial
1056 * (\sum_{i=0}^n a_i * x^i) into an array of integers corresponding
1057 * to the bits with non-zero coefficient. Array is terminated with -1.
1058 * Up to max elements of the array will be filled. Return value is total
1059 * number of array elements that would be filled if array was large enough.
1060 */
1061 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1062 {
1063 int i, j, k = 0;
1064 BN_ULONG mask;

1066 if (BN_is_zero(a))
1067 return 0;

1069 for (i = a->top - 1; i >= 0; i--)
1070 {
1071 if (!a->d[i])
1072 /* skip word if a->d[i] == 0 */
1073 continue;
1074 mask = BN_TBIT;
1075 for (j = BN_BITS2 - 1; j >= 0; j--)
1076 {
1077 if (a->d[i] & mask)
1078 {
1079 if (k < max) p[k] = BN_BITS2 * i + j;
1080 k++;
1081 }
1082 mask >>= 1;
1083 }
1084 }

1086 if (k < max) {
1087 p[k] = -1;
1088 k++;
1089 }

1091 return k;
1092 }

1094 /* Convert the coefficient array representation of a polynomial to a
1095 * bit-string. The array must be terminated by -1.
1096 */
1097 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1098 {
1099 int i;

1101 bn_check_top(a);
1102 BN_zero(a);
1103 for (i = 0; p[i] != -1; i++)
1104 {
1105 if (BN_set_bit(a, p[i]) == 0)
1106 return 0;
1107 }
1108 bn_check_top(a);

1110 return 1;
1111 }

1113 #endif

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_kron.c 1

**
 5119 Fri May 30 18:31:36 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_kron.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_kron.c */
2 /* ==
3 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 #include "cryptlib.h"
57 #include "bn_lcl.h"

59 /* least significant word */
60 #define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0])

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_kron.c 2

62 /* Returns -2 for errors because both -1 and 0 are valid results. */
63 int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
64 {
65 int i;
66 int ret = -2; /* avoid ’uninitialized’ warning */
67 int err = 0;
68 BIGNUM *A, *B, *tmp;
69 /* In ’tab’, only odd-indexed entries are relevant:
70 * For any odd BIGNUM n,
71 * tab[BN_lsw(n) & 7]
72 * is $(-1)^{(n^2-1)/8}$ (using TeX notation).
73 * Note that the sign of n does not matter.
74 */
75 static const int tab[8] = {0, 1, 0, -1, 0, -1, 0, 1};

77 bn_check_top(a);
78 bn_check_top(b);

80 BN_CTX_start(ctx);
81 A = BN_CTX_get(ctx);
82 B = BN_CTX_get(ctx);
83 if (B == NULL) goto end;
84
85 err = !BN_copy(A, a);
86 if (err) goto end;
87 err = !BN_copy(B, b);
88 if (err) goto end;

90 /*
91 * Kronecker symbol, imlemented according to Henri Cohen,
92 * "A Course in Computational Algebraic Number Theory"
93 * (algorithm 1.4.10).
94 */

96 /* Cohen’s step 1: */

98 if (BN_is_zero(B))
99 {
100 ret = BN_abs_is_word(A, 1);
101 goto end;
102 }
103
104 /* Cohen’s step 2: */

106 if (!BN_is_odd(A) && !BN_is_odd(B))
107 {
108 ret = 0;
109 goto end;
110 }

112 /* now B is non-zero */
113 i = 0;
114 while (!BN_is_bit_set(B, i))
115 i++;
116 err = !BN_rshift(B, B, i);
117 if (err) goto end;
118 if (i & 1)
119 {
120 /* i is odd */
121 /* (thus B was even, thus A must be odd!) */

123 /* set ’ret’ to $(-1)^{(A^2-1)/8}$ */
124 ret = tab[BN_lsw(A) & 7];
125 }
126 else
127 {

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_kron.c 3

128 /* i is even */
129 ret = 1;
130 }
131
132 if (B->neg)
133 {
134 B->neg = 0;
135 if (A->neg)
136 ret = -ret;
137 }

139 /* now B is positive and odd, so what remains to be done is
140 * to compute the Jacobi symbol (A/B) and multiply it by ’ret’ */

142 while (1)
143 {
144 /* Cohen’s step 3: */

146 /* B is positive and odd */

148 if (BN_is_zero(A))
149 {
150 ret = BN_is_one(B) ? ret : 0;
151 goto end;
152 }

154 /* now A is non-zero */
155 i = 0;
156 while (!BN_is_bit_set(A, i))
157 i++;
158 err = !BN_rshift(A, A, i);
159 if (err) goto end;
160 if (i & 1)
161 {
162 /* i is odd */
163 /* multiply ’ret’ by $(-1)^{(B^2-1)/8}$ */
164 ret = ret * tab[BN_lsw(B) & 7];
165 }
166
167 /* Cohen’s step 4: */
168 /* multiply ’ret’ by $(-1)^{(A-1)(B-1)/4}$ */
169 if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2)
170 ret = -ret;
171
172 /* (A, B) := (B mod |A|, |A|) */
173 err = !BN_nnmod(B, B, A, ctx);
174 if (err) goto end;
175 tmp = A; A = B; B = tmp;
176 tmp->neg = 0;
177 }
178 end:
179 BN_CTX_end(ctx);
180 if (err)
181 return -2;
182 else
183 return ret;
184 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_lib.c 1

**
 19540 Fri May 30 18:31:36 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef BN_DEBUG
60 # undef NDEBUG /* avoid conflicting definitions */
61 # define NDEBUG

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_lib.c 2

62 #endif

64 #include <assert.h>
65 #include <limits.h>
66 #include <stdio.h>
67 #include "cryptlib.h"
68 #include "bn_lcl.h"

70 const char BN_version[]="Big Number" OPENSSL_VERSION_PTEXT;

72 /* This stuff appears to be completely unused, so is deprecated */
73 #ifndef OPENSSL_NO_DEPRECATED
74 /* For a 32 bit machine
75 * 2 - 4 == 128
76 * 3 - 8 == 256
77 * 4 - 16 == 512
78 * 5 - 32 == 1024
79 * 6 - 64 == 2048
80 * 7 - 128 == 4096
81 * 8 - 256 == 8192
82 */
83 static int bn_limit_bits=0;
84 static int bn_limit_num=8; /* (1<<bn_limit_bits) */
85 static int bn_limit_bits_low=0;
86 static int bn_limit_num_low=8; /* (1<<bn_limit_bits_low) */
87 static int bn_limit_bits_high=0;
88 static int bn_limit_num_high=8; /* (1<<bn_limit_bits_high) */
89 static int bn_limit_bits_mont=0;
90 static int bn_limit_num_mont=8; /* (1<<bn_limit_bits_mont) */

92 void BN_set_params(int mult, int high, int low, int mont)
93 {
94 if (mult >= 0)
95 {
96 if (mult > (int)(sizeof(int)*8)-1)
97 mult=sizeof(int)*8-1;
98 bn_limit_bits=mult;
99 bn_limit_num=1<<mult;
100 }
101 if (high >= 0)
102 {
103 if (high > (int)(sizeof(int)*8)-1)
104 high=sizeof(int)*8-1;
105 bn_limit_bits_high=high;
106 bn_limit_num_high=1<<high;
107 }
108 if (low >= 0)
109 {
110 if (low > (int)(sizeof(int)*8)-1)
111 low=sizeof(int)*8-1;
112 bn_limit_bits_low=low;
113 bn_limit_num_low=1<<low;
114 }
115 if (mont >= 0)
116 {
117 if (mont > (int)(sizeof(int)*8)-1)
118 mont=sizeof(int)*8-1;
119 bn_limit_bits_mont=mont;
120 bn_limit_num_mont=1<<mont;
121 }
122 }

124 int BN_get_params(int which)
125 {
126 if (which == 0) return(bn_limit_bits);
127 else if (which == 1) return(bn_limit_bits_high);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_lib.c 3

128 else if (which == 2) return(bn_limit_bits_low);
129 else if (which == 3) return(bn_limit_bits_mont);
130 else return(0);
131 }
132 #endif

134 const BIGNUM *BN_value_one(void)
135 {
136 static const BN_ULONG data_one=1L;
137 static const BIGNUM const_one={(BN_ULONG *)&data_one,1,1,0,BN_FLG_STATIC

139 return(&const_one);
140 }

142 int BN_num_bits_word(BN_ULONG l)
143 {
144 static const unsigned char bits[256]={
145 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,
146 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
147 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
148 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
149 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
150 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
151 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
152 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
153 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
154 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
155 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
156 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
157 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
158 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
159 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
160 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
161 };

163 #if defined(SIXTY_FOUR_BIT_LONG)
164 if (l & 0xffffffff00000000L)
165 {
166 if (l & 0xffff000000000000L)
167 {
168 if (l & 0xff00000000000000L)
169 {
170 return(bits[(int)(l>>56)]+56);
171 }
172 else return(bits[(int)(l>>48)]+48);
173 }
174 else
175 {
176 if (l & 0x0000ff0000000000L)
177 {
178 return(bits[(int)(l>>40)]+40);
179 }
180 else return(bits[(int)(l>>32)]+32);
181 }
182 }
183 else
184 #else
185 #ifdef SIXTY_FOUR_BIT
186 if (l & 0xffffffff00000000LL)
187 {
188 if (l & 0xffff000000000000LL)
189 {
190 if (l & 0xff00000000000000LL)
191 {
192 return(bits[(int)(l>>56)]+56);
193 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_lib.c 4

194 else return(bits[(int)(l>>48)]+48);
195 }
196 else
197 {
198 if (l & 0x0000ff0000000000LL)
199 {
200 return(bits[(int)(l>>40)]+40);
201 }
202 else return(bits[(int)(l>>32)]+32);
203 }
204 }
205 else
206 #endif
207 #endif
208 {
209 #if defined(THIRTY_TWO_BIT) || defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT
210 if (l & 0xffff0000L)
211 {
212 if (l & 0xff000000L)
213 return(bits[(int)(l>>24L)]+24);
214 else return(bits[(int)(l>>16L)]+16);
215 }
216 else
217 #endif
218 {
219 #if defined(THIRTY_TWO_BIT) || defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT
220 if (l & 0xff00L)
221 return(bits[(int)(l>>8)]+8);
222 else
223 #endif
224 return(bits[(int)(l)]);
225 }
226 }
227 }

229 int BN_num_bits(const BIGNUM *a)
230 {
231 int i = a->top - 1;
232 bn_check_top(a);

234 if (BN_is_zero(a)) return 0;
235 return ((i*BN_BITS2) + BN_num_bits_word(a->d[i]));
236 }

238 void BN_clear_free(BIGNUM *a)
239 {
240 int i;

242 if (a == NULL) return;
243 bn_check_top(a);
244 if (a->d != NULL)
245 {
246 OPENSSL_cleanse(a->d,a->dmax*sizeof(a->d[0]));
247 if (!(BN_get_flags(a,BN_FLG_STATIC_DATA)))
248 OPENSSL_free(a->d);
249 }
250 i=BN_get_flags(a,BN_FLG_MALLOCED);
251 OPENSSL_cleanse(a,sizeof(BIGNUM));
252 if (i)
253 OPENSSL_free(a);
254 }

256 void BN_free(BIGNUM *a)
257 {
258 if (a == NULL) return;
259 bn_check_top(a);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_lib.c 5

260 if ((a->d != NULL) && !(BN_get_flags(a,BN_FLG_STATIC_DATA)))
261 OPENSSL_free(a->d);
262 if (a->flags & BN_FLG_MALLOCED)
263 OPENSSL_free(a);
264 else
265 {
266 #ifndef OPENSSL_NO_DEPRECATED
267 a->flags|=BN_FLG_FREE;
268 #endif
269 a->d = NULL;
270 }
271 }

273 void BN_init(BIGNUM *a)
274 {
275 memset(a,0,sizeof(BIGNUM));
276 bn_check_top(a);
277 }

279 BIGNUM *BN_new(void)
280 {
281 BIGNUM *ret;

283 if ((ret=(BIGNUM *)OPENSSL_malloc(sizeof(BIGNUM))) == NULL)
284 {
285 BNerr(BN_F_BN_NEW,ERR_R_MALLOC_FAILURE);
286 return(NULL);
287 }
288 ret->flags=BN_FLG_MALLOCED;
289 ret->top=0;
290 ret->neg=0;
291 ret->dmax=0;
292 ret->d=NULL;
293 bn_check_top(ret);
294 return(ret);
295 }

297 /* This is used both by bn_expand2() and bn_dup_expand() */
298 /* The caller MUST check that words > b->dmax before calling this */
299 static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words)
300 {
301 BN_ULONG *A,*a = NULL;
302 const BN_ULONG *B;
303 int i;

305 bn_check_top(b);

307 if (words > (INT_MAX/(4*BN_BITS2)))
308 {
309 BNerr(BN_F_BN_EXPAND_INTERNAL,BN_R_BIGNUM_TOO_LONG);
310 return NULL;
311 }
312 if (BN_get_flags(b,BN_FLG_STATIC_DATA))
313 {
314 BNerr(BN_F_BN_EXPAND_INTERNAL,BN_R_EXPAND_ON_STATIC_BIGNUM_DATA)
315 return(NULL);
316 }
317 a=A=(BN_ULONG *)OPENSSL_malloc(sizeof(BN_ULONG)*words);
318 if (A == NULL)
319 {
320 BNerr(BN_F_BN_EXPAND_INTERNAL,ERR_R_MALLOC_FAILURE);
321 return(NULL);
322 }
323 #if 1
324 B=b->d;
325 /* Check if the previous number needs to be copied */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_lib.c 6

326 if (B != NULL)
327 {
328 for (i=b->top>>2; i>0; i--,A+=4,B+=4)
329 {
330 /*
331 * The fact that the loop is unrolled
332 * 4-wise is a tribute to Intel. It’s
333 * the one that doesn’t have enough
334 * registers to accomodate more data.
335 * I’d unroll it 8-wise otherwise:-)
336 *
337 * <appro@fy.chalmers.se>
338 */
339 BN_ULONG a0,a1,a2,a3;
340 a0=B[0]; a1=B[1]; a2=B[2]; a3=B[3];
341 A[0]=a0; A[1]=a1; A[2]=a2; A[3]=a3;
342 }
343 switch (b->top&3)
344 {
345 case 3: A[2]=B[2];
346 case 2: A[1]=B[1];
347 case 1: A[0]=B[0];
348 case 0: /* workaround for ultrix cc: without ’case 0’, the optim
349 * the switch table by doing a=top&3; a--; goto jump_tab
350 * which fails for top== 0 */
351 ;
352 }
353 }

355 #else
356 memset(A,0,sizeof(BN_ULONG)*words);
357 memcpy(A,b->d,sizeof(b->d[0])*b->top);
358 #endif
359
360 return(a);
361 }

363 /* This is an internal function that can be used instead of bn_expand2()
364 * when there is a need to copy BIGNUMs instead of only expanding the
365 * data part, while still expanding them.
366 * Especially useful when needing to expand BIGNUMs that are declared
367 * ’const’ and should therefore not be changed.
368 * The reason to use this instead of a BN_dup() followed by a bn_expand2()
369 * is memory allocation overhead. A BN_dup() followed by a bn_expand2()
370 * will allocate new memory for the BIGNUM data twice, and free it once,
371 * while bn_dup_expand() makes sure allocation is made only once.
372 */

374 #ifndef OPENSSL_NO_DEPRECATED
375 BIGNUM *bn_dup_expand(const BIGNUM *b, int words)
376 {
377 BIGNUM *r = NULL;

379 bn_check_top(b);

381 /* This function does not work if
382 * words <= b->dmax && top < words
383 * because BN_dup() does not preserve ’dmax’!
384 * (But bn_dup_expand() is not used anywhere yet.)
385 */

387 if (words > b->dmax)
388 {
389 BN_ULONG *a = bn_expand_internal(b, words);

391 if (a)

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_lib.c 7

392 {
393 r = BN_new();
394 if (r)
395 {
396 r->top = b->top;
397 r->dmax = words;
398 r->neg = b->neg;
399 r->d = a;
400 }
401 else
402 {
403 /* r == NULL, BN_new failure */
404 OPENSSL_free(a);
405 }
406 }
407 /* If a == NULL, there was an error in allocation in
408 bn_expand_internal(), and NULL should be returned */
409 }
410 else
411 {
412 r = BN_dup(b);
413 }

415 bn_check_top(r);
416 return r;
417 }
418 #endif

420 /* This is an internal function that should not be used in applications.
421 * It ensures that ’b’ has enough room for a ’words’ word number
422 * and initialises any unused part of b->d with leading zeros.
423 * It is mostly used by the various BIGNUM routines. If there is an error,
424 * NULL is returned. If not, ’b’ is returned. */

426 BIGNUM *bn_expand2(BIGNUM *b, int words)
427 {
428 bn_check_top(b);

430 if (words > b->dmax)
431 {
432 BN_ULONG *a = bn_expand_internal(b, words);
433 if(!a) return NULL;
434 if(b->d) OPENSSL_free(b->d);
435 b->d=a;
436 b->dmax=words;
437 }

439 /* None of this should be necessary because of what b->top means! */
440 #if 0
441 /* NB: bn_wexpand() calls this only if the BIGNUM really has to grow */
442 if (b->top < b->dmax)
443 {
444 int i;
445 BN_ULONG *A = &(b->d[b->top]);
446 for (i=(b->dmax - b->top)>>3; i>0; i--,A+=8)
447 {
448 A[0]=0; A[1]=0; A[2]=0; A[3]=0;
449 A[4]=0; A[5]=0; A[6]=0; A[7]=0;
450 }
451 for (i=(b->dmax - b->top)&7; i>0; i--,A++)
452 A[0]=0;
453 assert(A == &(b->d[b->dmax]));
454 }
455 #endif
456 bn_check_top(b);
457 return b;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_lib.c 8

458 }

460 BIGNUM *BN_dup(const BIGNUM *a)
461 {
462 BIGNUM *t;

464 if (a == NULL) return NULL;
465 bn_check_top(a);

467 t = BN_new();
468 if (t == NULL) return NULL;
469 if(!BN_copy(t, a))
470 {
471 BN_free(t);
472 return NULL;
473 }
474 bn_check_top(t);
475 return t;
476 }

478 BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b)
479 {
480 int i;
481 BN_ULONG *A;
482 const BN_ULONG *B;

484 bn_check_top(b);

486 if (a == b) return(a);
487 if (bn_wexpand(a,b->top) == NULL) return(NULL);

489 #if 1
490 A=a->d;
491 B=b->d;
492 for (i=b->top>>2; i>0; i--,A+=4,B+=4)
493 {
494 BN_ULONG a0,a1,a2,a3;
495 a0=B[0]; a1=B[1]; a2=B[2]; a3=B[3];
496 A[0]=a0; A[1]=a1; A[2]=a2; A[3]=a3;
497 }
498 switch (b->top&3)
499 {
500 case 3: A[2]=B[2];
501 case 2: A[1]=B[1];
502 case 1: A[0]=B[0];
503 case 0: ; /* ultrix cc workaround, see comments in bn_expand_int
504 }
505 #else
506 memcpy(a->d,b->d,sizeof(b->d[0])*b->top);
507 #endif

509 a->top=b->top;
510 a->neg=b->neg;
511 bn_check_top(a);
512 return(a);
513 }

515 void BN_swap(BIGNUM *a, BIGNUM *b)
516 {
517 int flags_old_a, flags_old_b;
518 BN_ULONG *tmp_d;
519 int tmp_top, tmp_dmax, tmp_neg;
520
521 bn_check_top(a);
522 bn_check_top(b);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_lib.c 9

524 flags_old_a = a->flags;
525 flags_old_b = b->flags;

527 tmp_d = a->d;
528 tmp_top = a->top;
529 tmp_dmax = a->dmax;
530 tmp_neg = a->neg;
531
532 a->d = b->d;
533 a->top = b->top;
534 a->dmax = b->dmax;
535 a->neg = b->neg;
536
537 b->d = tmp_d;
538 b->top = tmp_top;
539 b->dmax = tmp_dmax;
540 b->neg = tmp_neg;
541
542 a->flags = (flags_old_a & BN_FLG_MALLOCED) | (flags_old_b & BN_FLG_STATI
543 b->flags = (flags_old_b & BN_FLG_MALLOCED) | (flags_old_a & BN_FLG_STATI
544 bn_check_top(a);
545 bn_check_top(b);
546 }

548 void BN_clear(BIGNUM *a)
549 {
550 bn_check_top(a);
551 if (a->d != NULL)
552 memset(a->d,0,a->dmax*sizeof(a->d[0]));
553 a->top=0;
554 a->neg=0;
555 }

557 BN_ULONG BN_get_word(const BIGNUM *a)
558 {
559 if (a->top > 1)
560 return BN_MASK2;
561 else if (a->top == 1)
562 return a->d[0];
563 /* a->top == 0 */
564 return 0;
565 }

567 int BN_set_word(BIGNUM *a, BN_ULONG w)
568 {
569 bn_check_top(a);
570 if (bn_expand(a,(int)sizeof(BN_ULONG)*8) == NULL) return(0);
571 a->neg = 0;
572 a->d[0] = w;
573 a->top = (w ? 1 : 0);
574 bn_check_top(a);
575 return(1);
576 }

578 BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
579 {
580 unsigned int i,m;
581 unsigned int n;
582 BN_ULONG l;
583 BIGNUM *bn = NULL;

585 if (ret == NULL)
586 ret = bn = BN_new();
587 if (ret == NULL) return(NULL);
588 bn_check_top(ret);
589 l=0;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_lib.c 10

590 n=len;
591 if (n == 0)
592 {
593 ret->top=0;
594 return(ret);
595 }
596 i=((n-1)/BN_BYTES)+1;
597 m=((n-1)%(BN_BYTES));
598 if (bn_wexpand(ret, (int)i) == NULL)
599 {
600 if (bn) BN_free(bn);
601 return NULL;
602 }
603 ret->top=i;
604 ret->neg=0;
605 while (n--)
606 {
607 l=(l<<8L)| *(s++);
608 if (m-- == 0)
609 {
610 ret->d[--i]=l;
611 l=0;
612 m=BN_BYTES-1;
613 }
614 }
615 /* need to call this due to clear byte at top if avoiding
616 * having the top bit set (-ve number) */
617 bn_correct_top(ret);
618 return(ret);
619 }

621 /* ignore negative */
622 int BN_bn2bin(const BIGNUM *a, unsigned char *to)
623 {
624 int n,i;
625 BN_ULONG l;

627 bn_check_top(a);
628 n=i=BN_num_bytes(a);
629 while (i--)
630 {
631 l=a->d[i/BN_BYTES];
632 *(to++)=(unsigned char)(l>>(8*(i%BN_BYTES)))&0xff;
633 }
634 return(n);
635 }

637 int BN_ucmp(const BIGNUM *a, const BIGNUM *b)
638 {
639 int i;
640 BN_ULONG t1,t2,*ap,*bp;

642 bn_check_top(a);
643 bn_check_top(b);

645 i=a->top-b->top;
646 if (i != 0) return(i);
647 ap=a->d;
648 bp=b->d;
649 for (i=a->top-1; i>=0; i--)
650 {
651 t1= ap[i];
652 t2= bp[i];
653 if (t1 != t2)
654 return((t1 > t2) ? 1 : -1);
655 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_lib.c 11

656 return(0);
657 }

659 int BN_cmp(const BIGNUM *a, const BIGNUM *b)
660 {
661 int i;
662 int gt,lt;
663 BN_ULONG t1,t2;

665 if ((a == NULL) || (b == NULL))
666 {
667 if (a != NULL)
668 return(-1);
669 else if (b != NULL)
670 return(1);
671 else
672 return(0);
673 }

675 bn_check_top(a);
676 bn_check_top(b);

678 if (a->neg != b->neg)
679 {
680 if (a->neg)
681 return(-1);
682 else return(1);
683 }
684 if (a->neg == 0)
685 { gt=1; lt= -1; }
686 else { gt= -1; lt=1; }

688 if (a->top > b->top) return(gt);
689 if (a->top < b->top) return(lt);
690 for (i=a->top-1; i>=0; i--)
691 {
692 t1=a->d[i];
693 t2=b->d[i];
694 if (t1 > t2) return(gt);
695 if (t1 < t2) return(lt);
696 }
697 return(0);
698 }

700 int BN_set_bit(BIGNUM *a, int n)
701 {
702 int i,j,k;

704 if (n < 0)
705 return 0;

707 i=n/BN_BITS2;
708 j=n%BN_BITS2;
709 if (a->top <= i)
710 {
711 if (bn_wexpand(a,i+1) == NULL) return(0);
712 for(k=a->top; k<i+1; k++)
713 a->d[k]=0;
714 a->top=i+1;
715 }

717 a->d[i]|=(((BN_ULONG)1)<<j);
718 bn_check_top(a);
719 return(1);
720 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_lib.c 12

722 int BN_clear_bit(BIGNUM *a, int n)
723 {
724 int i,j;

726 bn_check_top(a);
727 if (n < 0) return 0;

729 i=n/BN_BITS2;
730 j=n%BN_BITS2;
731 if (a->top <= i) return(0);

733 a->d[i]&=(~(((BN_ULONG)1)<<j));
734 bn_correct_top(a);
735 return(1);
736 }

738 int BN_is_bit_set(const BIGNUM *a, int n)
739 {
740 int i,j;

742 bn_check_top(a);
743 if (n < 0) return 0;
744 i=n/BN_BITS2;
745 j=n%BN_BITS2;
746 if (a->top <= i) return 0;
747 return (int)(((a->d[i])>>j)&((BN_ULONG)1));
748 }

750 int BN_mask_bits(BIGNUM *a, int n)
751 {
752 int b,w;

754 bn_check_top(a);
755 if (n < 0) return 0;

757 w=n/BN_BITS2;
758 b=n%BN_BITS2;
759 if (w >= a->top) return 0;
760 if (b == 0)
761 a->top=w;
762 else
763 {
764 a->top=w+1;
765 a->d[w]&= ~(BN_MASK2<<b);
766 }
767 bn_correct_top(a);
768 return(1);
769 }

771 void BN_set_negative(BIGNUM *a, int b)
772 {
773 if (b && !BN_is_zero(a))
774 a->neg = 1;
775 else
776 a->neg = 0;
777 }

779 int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n)
780 {
781 int i;
782 BN_ULONG aa,bb;

784 aa=a[n-1];
785 bb=b[n-1];
786 if (aa != bb) return((aa > bb)?1:-1);
787 for (i=n-2; i>=0; i--)

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_lib.c 13

788 {
789 aa=a[i];
790 bb=b[i];
791 if (aa != bb) return((aa > bb)?1:-1);
792 }
793 return(0);
794 }

796 /* Here follows a specialised variants of bn_cmp_words(). It has the
797 property of performing the operation on arrays of different sizes.
798 The sizes of those arrays is expressed through cl, which is the
799 common length (basicall, min(len(a),len(b))), and dl, which is the
800 delta between the two lengths, calculated as len(a)-len(b).
801 All lengths are the number of BN_ULONGs... */

803 int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b,
804 int cl, int dl)
805 {
806 int n,i;
807 n = cl-1;

809 if (dl < 0)
810 {
811 for (i=dl; i<0; i++)
812 {
813 if (b[n-i] != 0)
814 return -1; /* a < b */
815 }
816 }
817 if (dl > 0)
818 {
819 for (i=dl; i>0; i--)
820 {
821 if (a[n+i] != 0)
822 return 1; /* a > b */
823 }
824 }
825 return bn_cmp_words(a,b,cl);
826 }

828 /*
829 * Constant-time conditional swap of a and b.
830 * a and b are swapped if condition is not 0. The code assumes that at most one
831 * nwords is the number of words to swap. The code assumes that at least nwords
832 * and that no more than nwords are used by either a or b.
833 * a and b cannot be the same number
834 */
835 void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords)
836 {
837 BN_ULONG t;
838 int i;

840 bn_wcheck_size(a, nwords);
841 bn_wcheck_size(b, nwords);

843 assert(a != b);
844 assert((condition & (condition - 1)) == 0);
845 assert(sizeof(BN_ULONG) >= sizeof(int));

847 condition = ((condition - 1) >> (BN_BITS2 - 1)) - 1;

849 t = (a->top^b->top) & condition;
850 a->top ^= t;
851 b->top ^= t;

853 #define BN_CONSTTIME_SWAP(ind) \

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_lib.c 14

854 do { \
855 t = (a->d[ind] ^ b->d[ind]) & condition; \
856 a->d[ind] ^= t; \
857 b->d[ind] ^= t; \
858 } while (0)

861 switch (nwords) {
862 default:
863 for (i = 10; i < nwords; i++)
864 BN_CONSTTIME_SWAP(i);
865 /* Fallthrough */
866 case 10: BN_CONSTTIME_SWAP(9); /* Fallthrough */
867 case 9: BN_CONSTTIME_SWAP(8); /* Fallthrough */
868 case 8: BN_CONSTTIME_SWAP(7); /* Fallthrough */
869 case 7: BN_CONSTTIME_SWAP(6); /* Fallthrough */
870 case 6: BN_CONSTTIME_SWAP(5); /* Fallthrough */
871 case 5: BN_CONSTTIME_SWAP(4); /* Fallthrough */
872 case 4: BN_CONSTTIME_SWAP(3); /* Fallthrough */
873 case 3: BN_CONSTTIME_SWAP(2); /* Fallthrough */
874 case 2: BN_CONSTTIME_SWAP(1); /* Fallthrough */
875 case 1: BN_CONSTTIME_SWAP(0);
876 }
877 #undef BN_CONSTTIME_SWAP
878 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mod.c 1

**
 9723 Fri May 30 18:31:36 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mod.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_mod.c */
2 /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
3 * for the OpenSSL project. */
4 /* ==
5 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * openssl-core@openssl.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ==
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */
57 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
58 * All rights reserved.
59 *
60 * This package is an SSL implementation written
61 * by Eric Young (eay@cryptsoft.com).

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mod.c 2

62 * The implementation was written so as to conform with Netscapes SSL.
63 *
64 * This library is free for commercial and non-commercial use as long as
65 * the following conditions are aheared to. The following conditions
66 * apply to all code found in this distribution, be it the RC4, RSA,
67 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
68 * included with this distribution is covered by the same copyright terms
69 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
70 *
71 * Copyright remains Eric Young’s, and as such any Copyright notices in
72 * the code are not to be removed.
73 * If this package is used in a product, Eric Young should be given attribution
74 * as the author of the parts of the library used.
75 * This can be in the form of a textual message at program startup or
76 * in documentation (online or textual) provided with the package.
77 *
78 * Redistribution and use in source and binary forms, with or without
79 * modification, are permitted provided that the following conditions
80 * are met:
81 * 1. Redistributions of source code must retain the copyright
82 * notice, this list of conditions and the following disclaimer.
83 * 2. Redistributions in binary form must reproduce the above copyright
84 * notice, this list of conditions and the following disclaimer in the
85 * documentation and/or other materials provided with the distribution.
86 * 3. All advertising materials mentioning features or use of this software
87 * must display the following acknowledgement:
88 * "This product includes cryptographic software written by
89 * Eric Young (eay@cryptsoft.com)"
90 * The word ’cryptographic’ can be left out if the rouines from the library
91 * being used are not cryptographic related :-).
92 * 4. If you include any Windows specific code (or a derivative thereof) from
93 * the apps directory (application code) you must include an acknowledgement:
94 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
95 *
96 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
97 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
98 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
99 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
100 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
101 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
102 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
103 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
104 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
105 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
106 * SUCH DAMAGE.
107 *
108 * The licence and distribution terms for any publically available version or
109 * derivative of this code cannot be changed. i.e. this code cannot simply be
110 * copied and put under another distribution licence
111 * [including the GNU Public Licence.]
112 */

114 #include "cryptlib.h"
115 #include "bn_lcl.h"

118 #if 0 /* now just a #define */
119 int BN_mod(BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx)
120 {
121 return(BN_div(NULL,rem,m,d,ctx));
122 /* note that rem->neg == m->neg (unless the remainder is zero) */
123 }
124 #endif

127 int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx)

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mod.c 3

128 {
129 /* like BN_mod, but returns non-negative remainder
130 * (i.e., 0 <= r < |d| always holds) */

132 if (!(BN_mod(r,m,d,ctx)))
133 return 0;
134 if (!r->neg)
135 return 1;
136 /* now -|d| < r < 0, so we have to set r := r + |d| */
137 return (d->neg ? BN_sub : BN_add)(r, r, d);
138 }

141 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_
142 {
143 if (!BN_add(r, a, b)) return 0;
144 return BN_nnmod(r, r, m, ctx);
145 }

148 /* BN_mod_add variant that may be used if both a and b are non-negative
149 * and less than m */
150 int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *
151 {
152 if (!BN_uadd(r, a, b)) return 0;
153 if (BN_ucmp(r, m) >= 0)
154 return BN_usub(r, r, m);
155 return 1;
156 }

159 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_
160 {
161 if (!BN_sub(r, a, b)) return 0;
162 return BN_nnmod(r, r, m, ctx);
163 }

166 /* BN_mod_sub variant that may be used if both a and b are non-negative
167 * and less than m */
168 int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *
169 {
170 if (!BN_sub(r, a, b)) return 0;
171 if (r->neg)
172 return BN_add(r, r, m);
173 return 1;
174 }

177 /* slow but works */
178 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
179 BN_CTX *ctx)
180 {
181 BIGNUM *t;
182 int ret=0;

184 bn_check_top(a);
185 bn_check_top(b);
186 bn_check_top(m);

188 BN_CTX_start(ctx);
189 if ((t = BN_CTX_get(ctx)) == NULL) goto err;
190 if (a == b)
191 { if (!BN_sqr(t,a,ctx)) goto err; }
192 else
193 { if (!BN_mul(t,a,b,ctx)) goto err; }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mod.c 4

194 if (!BN_nnmod(r,t,m,ctx)) goto err;
195 bn_check_top(r);
196 ret=1;
197 err:
198 BN_CTX_end(ctx);
199 return(ret);
200 }

203 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx)
204 {
205 if (!BN_sqr(r, a, ctx)) return 0;
206 /* r->neg == 0, thus we don’t need BN_nnmod */
207 return BN_mod(r, r, m, ctx);
208 }

211 int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx)
212 {
213 if (!BN_lshift1(r, a)) return 0;
214 bn_check_top(r);
215 return BN_nnmod(r, r, m, ctx);
216 }

219 /* BN_mod_lshift1 variant that may be used if a is non-negative
220 * and less than m */
221 int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m)
222 {
223 if (!BN_lshift1(r, a)) return 0;
224 bn_check_top(r);
225 if (BN_cmp(r, m) >= 0)
226 return BN_sub(r, r, m);
227 return 1;
228 }

231 int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ct
232 {
233 BIGNUM *abs_m = NULL;
234 int ret;

236 if (!BN_nnmod(r, a, m, ctx)) return 0;

238 if (m->neg)
239 {
240 abs_m = BN_dup(m);
241 if (abs_m == NULL) return 0;
242 abs_m->neg = 0;
243 }
244
245 ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m));
246 bn_check_top(r);

248 if (abs_m)
249 BN_free(abs_m);
250 return ret;
251 }

254 /* BN_mod_lshift variant that may be used if a is non-negative
255 * and less than m */
256 int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m)
257 {
258 if (r != a)
259 {

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mod.c 5

260 if (BN_copy(r, a) == NULL) return 0;
261 }

263 while (n > 0)
264 {
265 int max_shift;
266
267 /* 0 < r < m */
268 max_shift = BN_num_bits(m) - BN_num_bits(r);
269 /* max_shift >= 0 */

271 if (max_shift < 0)
272 {
273 BNerr(BN_F_BN_MOD_LSHIFT_QUICK, BN_R_INPUT_NOT_REDUCED);
274 return 0;
275 }

277 if (max_shift > n)
278 max_shift = n;

280 if (max_shift)
281 {
282 if (!BN_lshift(r, r, max_shift)) return 0;
283 n -= max_shift;
284 }
285 else
286 {
287 if (!BN_lshift1(r, r)) return 0;
288 --n;
289 }

291 /* BN_num_bits(r) <= BN_num_bits(m) */

293 if (BN_cmp(r, m) >= 0)
294 {
295 if (!BN_sub(r, r, m)) return 0;
296 }
297 }
298 bn_check_top(r);
299
300 return 1;
301 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mont.c 1

**
 14690 Fri May 30 18:31:36 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mont.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_mont.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mont.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 /*
113 * Details about Montgomery multiplication algorithms can be found at
114 * http://security.ece.orst.edu/publications.html, e.g.
115 * http://security.ece.orst.edu/koc/papers/j37acmon.pdf and
116 * sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf
117 */

119 #include <stdio.h>
120 #include "cryptlib.h"
121 #include "bn_lcl.h"

123 #define MONT_WORD /* use the faster word-based algorithm */

125 #ifdef MONT_WORD
126 static int BN_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont);
127 #endif

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mont.c 3

129 int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
130 BN_MONT_CTX *mont, BN_CTX *ctx)
131 {
132 BIGNUM *tmp;
133 int ret=0;
134 #if defined(OPENSSL_BN_ASM_MONT) && defined(MONT_WORD)
135 int num = mont->N.top;

137 if (num>1 && a->top==num && b->top==num)
138 {
139 if (bn_wexpand(r,num) == NULL) return(0);
140 if (bn_mul_mont(r->d,a->d,b->d,mont->N.d,mont->n0,num))
141 {
142 r->neg = a->neg^b->neg;
143 r->top = num;
144 bn_correct_top(r);
145 return(1);
146 }
147 }
148 #endif

150 BN_CTX_start(ctx);
151 tmp = BN_CTX_get(ctx);
152 if (tmp == NULL) goto err;

154 bn_check_top(tmp);
155 if (a == b)
156 {
157 if (!BN_sqr(tmp,a,ctx)) goto err;
158 }
159 else
160 {
161 if (!BN_mul(tmp,a,b,ctx)) goto err;
162 }
163 /* reduce from aRR to aR */
164 #ifdef MONT_WORD
165 if (!BN_from_montgomery_word(r,tmp,mont)) goto err;
166 #else
167 if (!BN_from_montgomery(r,tmp,mont,ctx)) goto err;
168 #endif
169 bn_check_top(r);
170 ret=1;
171 err:
172 BN_CTX_end(ctx);
173 return(ret);
174 }

176 #ifdef MONT_WORD
177 static int BN_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont)
178 {
179 BIGNUM *n;
180 BN_ULONG *ap,*np,*rp,n0,v,carry;
181 int nl,max,i;

183 n= &(mont->N);
184 nl=n->top;
185 if (nl == 0) { ret->top=0; return(1); }

187 max=(2*nl); /* carry is stored separately */
188 if (bn_wexpand(r,max) == NULL) return(0);

190 r->neg^=n->neg;
191 np=n->d;
192 rp=r->d;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mont.c 4

194 /* clear the top words of T */
195 #if 1
196 for (i=r->top; i<max; i++) /* memset? XXX */
197 rp[i]=0;
198 #else
199 memset(&(rp[r->top]),0,(max-r->top)*sizeof(BN_ULONG));
200 #endif

202 r->top=max;
203 n0=mont->n0[0];

205 #ifdef BN_COUNT
206 fprintf(stderr,"word BN_from_montgomery_word %d * %d\n",nl,nl);
207 #endif
208 for (carry=0, i=0; i<nl; i++, rp++)
209 {
210 #ifdef __TANDEM
211 {
212 long long t1;
213 long long t2;
214 long long t3;
215 t1 = rp[0] * (n0 & 0177777);
216 t2 = 037777600000l;
217 t2 = n0 & t2;
218 t3 = rp[0] & 0177777;
219 t2 = (t3 * t2) & BN_MASK2;
220 t1 = t1 + t2;
221 v=bn_mul_add_words(rp,np,nl,(BN_ULONG) t1);
222 }
223 #else
224 v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);
225 #endif
226 v = (v+carry+rp[nl])&BN_MASK2;
227 carry |= (v != rp[nl]);
228 carry &= (v <= rp[nl]);
229 rp[nl]=v;
230 }

232 if (bn_wexpand(ret,nl) == NULL) return(0);
233 ret->top=nl;
234 ret->neg=r->neg;

236 rp=ret->d;
237 ap=&(r->d[nl]);

239 #define BRANCH_FREE 1
240 #if BRANCH_FREE
241 {
242 BN_ULONG *nrp;
243 size_t m;

245 v=bn_sub_words(rp,ap,np,nl)-carry;
246 /* if subtraction result is real, then
247 * trick unconditional memcpy below to perform in-place
248 * "refresh" instead of actual copy. */
249 m=(0-(size_t)v);
250 nrp=(BN_ULONG *)(((PTR_SIZE_INT)rp&~m)|((PTR_SIZE_INT)ap&m));

252 for (i=0,nl-=4; i<nl; i+=4)
253 {
254 BN_ULONG t1,t2,t3,t4;
255
256 t1=nrp[i+0];
257 t2=nrp[i+1];
258 t3=nrp[i+2]; ap[i+0]=0;
259 t4=nrp[i+3]; ap[i+1]=0;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mont.c 5

260 rp[i+0]=t1; ap[i+2]=0;
261 rp[i+1]=t2; ap[i+3]=0;
262 rp[i+2]=t3;
263 rp[i+3]=t4;
264 }
265 for (nl+=4; i<nl; i++)
266 rp[i]=nrp[i], ap[i]=0;
267 }
268 #else
269 if (bn_sub_words (rp,ap,np,nl)-carry)
270 memcpy(rp,ap,nl*sizeof(BN_ULONG));
271 #endif
272 bn_correct_top(r);
273 bn_correct_top(ret);
274 bn_check_top(ret);

276 return(1);
277 }
278 #endif /* MONT_WORD */

280 int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont,
281 BN_CTX *ctx)
282 {
283 int retn=0;
284 #ifdef MONT_WORD
285 BIGNUM *t;

287 BN_CTX_start(ctx);
288 if ((t = BN_CTX_get(ctx)) && BN_copy(t,a))
289 retn = BN_from_montgomery_word(ret,t,mont);
290 BN_CTX_end(ctx);
291 #else /* !MONT_WORD */
292 BIGNUM *t1,*t2;

294 BN_CTX_start(ctx);
295 t1 = BN_CTX_get(ctx);
296 t2 = BN_CTX_get(ctx);
297 if (t1 == NULL || t2 == NULL) goto err;
298
299 if (!BN_copy(t1,a)) goto err;
300 BN_mask_bits(t1,mont->ri);

302 if (!BN_mul(t2,t1,&mont->Ni,ctx)) goto err;
303 BN_mask_bits(t2,mont->ri);

305 if (!BN_mul(t1,t2,&mont->N,ctx)) goto err;
306 if (!BN_add(t2,a,t1)) goto err;
307 if (!BN_rshift(ret,t2,mont->ri)) goto err;

309 if (BN_ucmp(ret, &(mont->N)) >= 0)
310 {
311 if (!BN_usub(ret,ret,&(mont->N))) goto err;
312 }
313 retn=1;
314 bn_check_top(ret);
315 err:
316 BN_CTX_end(ctx);
317 #endif /* MONT_WORD */
318 return(retn);
319 }

321 BN_MONT_CTX *BN_MONT_CTX_new(void)
322 {
323 BN_MONT_CTX *ret;

325 if ((ret=(BN_MONT_CTX *)OPENSSL_malloc(sizeof(BN_MONT_CTX))) == NULL)

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mont.c 6

326 return(NULL);

328 BN_MONT_CTX_init(ret);
329 ret->flags=BN_FLG_MALLOCED;
330 return(ret);
331 }

333 void BN_MONT_CTX_init(BN_MONT_CTX *ctx)
334 {
335 ctx->ri=0;
336 BN_init(&(ctx->RR));
337 BN_init(&(ctx->N));
338 BN_init(&(ctx->Ni));
339 ctx->n0[0] = ctx->n0[1] = 0;
340 ctx->flags=0;
341 }

343 void BN_MONT_CTX_free(BN_MONT_CTX *mont)
344 {
345 if(mont == NULL)
346 return;

348 BN_free(&(mont->RR));
349 BN_free(&(mont->N));
350 BN_free(&(mont->Ni));
351 if (mont->flags & BN_FLG_MALLOCED)
352 OPENSSL_free(mont);
353 }

355 int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx)
356 {
357 int ret = 0;
358 BIGNUM *Ri,*R;

360 BN_CTX_start(ctx);
361 if((Ri = BN_CTX_get(ctx)) == NULL) goto err;
362 R= &(mont->RR); /* grab RR as a temp */
363 if (!BN_copy(&(mont->N),mod)) goto err; /* Set N */
364 mont->N.neg = 0;

366 #ifdef MONT_WORD
367 {
368 BIGNUM tmod;
369 BN_ULONG buf[2];

371 BN_init(&tmod);
372 tmod.d=buf;
373 tmod.dmax=2;
374 tmod.neg=0;

376 mont->ri=(BN_num_bits(mod)+(BN_BITS2-1))/BN_BITS2*BN_BITS2;

378 #if defined(OPENSSL_BN_ASM_MONT) && (BN_BITS2<=32)
379 /* Only certain BN_BITS2<=32 platforms actually make use of
380 * n0[1], and we could use the #else case (with a shorter R
381 * value) for the others. However, currently only the assembler
382 * files do know which is which. */

384 BN_zero(R);
385 if (!(BN_set_bit(R,2*BN_BITS2))) goto err;

387 tmod.top=0;
388 if ((buf[0] = mod->d[0])) tmod.top=1;
389 if ((buf[1] = mod->top>1 ? mod->d[1] : 0)) tmod.top=2;

391 if ((BN_mod_inverse(Ri,R,&tmod,ctx)) == NULL)

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mont.c 7

392 goto err;
393 if (!BN_lshift(Ri,Ri,2*BN_BITS2)) goto err; /* R*Ri */
394 if (!BN_is_zero(Ri))
395 {
396 if (!BN_sub_word(Ri,1)) goto err;
397 }
398 else /* if N mod word size == 1 */
399 {
400 if (bn_expand(Ri,(int)sizeof(BN_ULONG)*2) == NULL)
401 goto err;
402 /* Ri-- (mod double word size) */
403 Ri->neg=0;
404 Ri->d[0]=BN_MASK2;
405 Ri->d[1]=BN_MASK2;
406 Ri->top=2;
407 }
408 if (!BN_div(Ri,NULL,Ri,&tmod,ctx)) goto err;
409 /* Ni = (R*Ri-1)/N,
410 * keep only couple of least significant words: */
411 mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0;
412 mont->n0[1] = (Ri->top > 1) ? Ri->d[1] : 0;
413 #else
414 BN_zero(R);
415 if (!(BN_set_bit(R,BN_BITS2))) goto err; /* R */

417 buf[0]=mod->d[0]; /* tmod = N mod word size */
418 buf[1]=0;
419 tmod.top = buf[0] != 0 ? 1 : 0;
420 /* Ri = R^-1 mod N*/
421 if ((BN_mod_inverse(Ri,R,&tmod,ctx)) == NULL)
422 goto err;
423 if (!BN_lshift(Ri,Ri,BN_BITS2)) goto err; /* R*Ri */
424 if (!BN_is_zero(Ri))
425 {
426 if (!BN_sub_word(Ri,1)) goto err;
427 }
428 else /* if N mod word size == 1 */
429 {
430 if (!BN_set_word(Ri,BN_MASK2)) goto err; /* Ri-- (mod w
431 }
432 if (!BN_div(Ri,NULL,Ri,&tmod,ctx)) goto err;
433 /* Ni = (R*Ri-1)/N,
434 * keep only least significant word: */
435 mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0;
436 mont->n0[1] = 0;
437 #endif
438 }
439 #else /* !MONT_WORD */
440 { /* bignum version */
441 mont->ri=BN_num_bits(&mont->N);
442 BN_zero(R);
443 if (!BN_set_bit(R,mont->ri)) goto err; /* R = 2^ri */
444 /* Ri = R^-1 mod N*/
445 if ((BN_mod_inverse(Ri,R,&mont->N,ctx)) == NULL)
446 goto err;
447 if (!BN_lshift(Ri,Ri,mont->ri)) goto err; /* R*Ri */
448 if (!BN_sub_word(Ri,1)) goto err;
449 /* Ni = (R*Ri-1) / N */
450 if (!BN_div(&(mont->Ni),NULL,Ri,&mont->N,ctx)) goto err;
451 }
452 #endif

454 /* setup RR for conversions */
455 BN_zero(&(mont->RR));
456 if (!BN_set_bit(&(mont->RR),mont->ri*2)) goto err;
457 if (!BN_mod(&(mont->RR),&(mont->RR),&(mont->N),ctx)) goto err;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mont.c 8

459 ret = 1;
460 err:
461 BN_CTX_end(ctx);
462 return ret;
463 }

465 BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from)
466 {
467 if (to == from) return(to);

469 if (!BN_copy(&(to->RR),&(from->RR))) return NULL;
470 if (!BN_copy(&(to->N),&(from->N))) return NULL;
471 if (!BN_copy(&(to->Ni),&(from->Ni))) return NULL;
472 to->ri=from->ri;
473 to->n0[0]=from->n0[0];
474 to->n0[1]=from->n0[1];
475 return(to);
476 }

478 BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, int lock,
479 const BIGNUM *mod, BN_CTX *ctx)
480 {
481 int got_write_lock = 0;
482 BN_MONT_CTX *ret;

484 CRYPTO_r_lock(lock);
485 if (!*pmont)
486 {
487 CRYPTO_r_unlock(lock);
488 CRYPTO_w_lock(lock);
489 got_write_lock = 1;

491 if (!*pmont)
492 {
493 ret = BN_MONT_CTX_new();
494 if (ret && !BN_MONT_CTX_set(ret, mod, ctx))
495 BN_MONT_CTX_free(ret);
496 else
497 *pmont = ret;
498 }
499 }
500
501 ret = *pmont;
502
503 if (got_write_lock)
504 CRYPTO_w_unlock(lock);
505 else
506 CRYPTO_r_unlock(lock);
507
508 return ret;
509 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mpi.c 1

**
 4364 Fri May 30 18:31:37 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mpi.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_mpi.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include "bn_lcl.h"

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mpi.c 2

63 int BN_bn2mpi(const BIGNUM *a, unsigned char *d)
64 {
65 int bits;
66 int num=0;
67 int ext=0;
68 long l;

70 bits=BN_num_bits(a);
71 num=(bits+7)/8;
72 if (bits > 0)
73 {
74 ext=((bits & 0x07) == 0);
75 }
76 if (d == NULL)
77 return(num+4+ext);

79 l=num+ext;
80 d[0]=(unsigned char)(l>>24)&0xff;
81 d[1]=(unsigned char)(l>>16)&0xff;
82 d[2]=(unsigned char)(l>> 8)&0xff;
83 d[3]=(unsigned char)(l)&0xff;
84 if (ext) d[4]=0;
85 num=BN_bn2bin(a,&(d[4+ext]));
86 if (a->neg)
87 d[4]|=0x80;
88 return(num+4+ext);
89 }

91 BIGNUM *BN_mpi2bn(const unsigned char *d, int n, BIGNUM *a)
92 {
93 long len;
94 int neg=0;

96 if (n < 4)
97 {
98 BNerr(BN_F_BN_MPI2BN,BN_R_INVALID_LENGTH);
99 return(NULL);
100 }
101 len=((long)d[0]<<24)|((long)d[1]<<16)|((int)d[2]<<8)|(int)d[3];
102 if ((len+4) != n)
103 {
104 BNerr(BN_F_BN_MPI2BN,BN_R_ENCODING_ERROR);
105 return(NULL);
106 }

108 if (a == NULL) a=BN_new();
109 if (a == NULL) return(NULL);

111 if (len == 0)
112 {
113 a->neg=0;
114 a->top=0;
115 return(a);
116 }
117 d+=4;
118 if ((*d) & 0x80)
119 neg=1;
120 if (BN_bin2bn(d,(int)len,a) == NULL)
121 return(NULL);
122 a->neg=neg;
123 if (neg)
124 {
125 BN_clear_bit(a,BN_num_bits(a)-1);
126 }
127 bn_check_top(a);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mpi.c 3

128 return(a);
129 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 1

**
 25370 Fri May 30 18:31:37 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_mul.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #ifndef BN_DEBUG
60 # undef NDEBUG /* avoid conflicting definitions */
61 # define NDEBUG

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 2

62 #endif

64 #include <stdio.h>
65 #include <assert.h>
66 #include "cryptlib.h"
67 #include "bn_lcl.h"

69 #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
70 /* Here follows specialised variants of bn_add_words() and
71 bn_sub_words(). They have the property performing operations on
72 arrays of different sizes. The sizes of those arrays is expressed through
73 cl, which is the common length (basicall, min(len(a),len(b))), and dl,
74 which is the delta between the two lengths, calculated as len(a)-len(b).
75 All lengths are the number of BN_ULONGs... For the operations that require
76 a result array as parameter, it must have the length cl+abs(dl).
77 These functions should probably end up in bn_asm.c as soon as there are
78 assembler counterparts for the systems that use assembler files. */

80 BN_ULONG bn_sub_part_words(BN_ULONG *r,
81 const BN_ULONG *a, const BN_ULONG *b,
82 int cl, int dl)
83 {
84 BN_ULONG c, t;

86 assert(cl >= 0);
87 c = bn_sub_words(r, a, b, cl);

89 if (dl == 0)
90 return c;

92 r += cl;
93 a += cl;
94 b += cl;

96 if (dl < 0)
97 {
98 #ifdef BN_COUNT
99 fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n"
100 #endif
101 for (;;)
102 {
103 t = b[0];
104 r[0] = (0-t-c)&BN_MASK2;
105 if (t != 0) c=1;
106 if (++dl >= 0) break;

108 t = b[1];
109 r[1] = (0-t-c)&BN_MASK2;
110 if (t != 0) c=1;
111 if (++dl >= 0) break;

113 t = b[2];
114 r[2] = (0-t-c)&BN_MASK2;
115 if (t != 0) c=1;
116 if (++dl >= 0) break;

118 t = b[3];
119 r[3] = (0-t-c)&BN_MASK2;
120 if (t != 0) c=1;
121 if (++dl >= 0) break;

123 b += 4;
124 r += 4;
125 }
126 }
127 else

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 3

128 {
129 int save_dl = dl;
130 #ifdef BN_COUNT
131 fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n"
132 #endif
133 while(c)
134 {
135 t = a[0];
136 r[0] = (t-c)&BN_MASK2;
137 if (t != 0) c=0;
138 if (--dl <= 0) break;

140 t = a[1];
141 r[1] = (t-c)&BN_MASK2;
142 if (t != 0) c=0;
143 if (--dl <= 0) break;

145 t = a[2];
146 r[2] = (t-c)&BN_MASK2;
147 if (t != 0) c=0;
148 if (--dl <= 0) break;

150 t = a[3];
151 r[3] = (t-c)&BN_MASK2;
152 if (t != 0) c=0;
153 if (--dl <= 0) break;

155 save_dl = dl;
156 a += 4;
157 r += 4;
158 }
159 if (dl > 0)
160 {
161 #ifdef BN_COUNT
162 fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c
163 #endif
164 if (save_dl > dl)
165 {
166 switch (save_dl - dl)
167 {
168 case 1:
169 r[1] = a[1];
170 if (--dl <= 0) break;
171 case 2:
172 r[2] = a[2];
173 if (--dl <= 0) break;
174 case 3:
175 r[3] = a[3];
176 if (--dl <= 0) break;
177 }
178 a += 4;
179 r += 4;
180 }
181 }
182 if (dl > 0)
183 {
184 #ifdef BN_COUNT
185 fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, co
186 #endif
187 for(;;)
188 {
189 r[0] = a[0];
190 if (--dl <= 0) break;
191 r[1] = a[1];
192 if (--dl <= 0) break;
193 r[2] = a[2];

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 4

194 if (--dl <= 0) break;
195 r[3] = a[3];
196 if (--dl <= 0) break;

198 a += 4;
199 r += 4;
200 }
201 }
202 }
203 return c;
204 }
205 #endif

207 BN_ULONG bn_add_part_words(BN_ULONG *r,
208 const BN_ULONG *a, const BN_ULONG *b,
209 int cl, int dl)
210 {
211 BN_ULONG c, l, t;

213 assert(cl >= 0);
214 c = bn_add_words(r, a, b, cl);

216 if (dl == 0)
217 return c;

219 r += cl;
220 a += cl;
221 b += cl;

223 if (dl < 0)
224 {
225 int save_dl = dl;
226 #ifdef BN_COUNT
227 fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n"
228 #endif
229 while (c)
230 {
231 l=(c+b[0])&BN_MASK2;
232 c=(l < c);
233 r[0]=l;
234 if (++dl >= 0) break;

236 l=(c+b[1])&BN_MASK2;
237 c=(l < c);
238 r[1]=l;
239 if (++dl >= 0) break;

241 l=(c+b[2])&BN_MASK2;
242 c=(l < c);
243 r[2]=l;
244 if (++dl >= 0) break;

246 l=(c+b[3])&BN_MASK2;
247 c=(l < c);
248 r[3]=l;
249 if (++dl >= 0) break;

251 save_dl = dl;
252 b+=4;
253 r+=4;
254 }
255 if (dl < 0)
256 {
257 #ifdef BN_COUNT
258 fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c
259 #endif

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 5

260 if (save_dl < dl)
261 {
262 switch (dl - save_dl)
263 {
264 case 1:
265 r[1] = b[1];
266 if (++dl >= 0) break;
267 case 2:
268 r[2] = b[2];
269 if (++dl >= 0) break;
270 case 3:
271 r[3] = b[3];
272 if (++dl >= 0) break;
273 }
274 b += 4;
275 r += 4;
276 }
277 }
278 if (dl < 0)
279 {
280 #ifdef BN_COUNT
281 fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, co
282 #endif
283 for(;;)
284 {
285 r[0] = b[0];
286 if (++dl >= 0) break;
287 r[1] = b[1];
288 if (++dl >= 0) break;
289 r[2] = b[2];
290 if (++dl >= 0) break;
291 r[3] = b[3];
292 if (++dl >= 0) break;

294 b += 4;
295 r += 4;
296 }
297 }
298 }
299 else
300 {
301 int save_dl = dl;
302 #ifdef BN_COUNT
303 fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl
304 #endif
305 while (c)
306 {
307 t=(a[0]+c)&BN_MASK2;
308 c=(t < c);
309 r[0]=t;
310 if (--dl <= 0) break;

312 t=(a[1]+c)&BN_MASK2;
313 c=(t < c);
314 r[1]=t;
315 if (--dl <= 0) break;

317 t=(a[2]+c)&BN_MASK2;
318 c=(t < c);
319 r[2]=t;
320 if (--dl <= 0) break;

322 t=(a[3]+c)&BN_MASK2;
323 c=(t < c);
324 r[3]=t;
325 if (--dl <= 0) break;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 6

327 save_dl = dl;
328 a+=4;
329 r+=4;
330 }
331 #ifdef BN_COUNT
332 fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n"
333 #endif
334 if (dl > 0)
335 {
336 if (save_dl > dl)
337 {
338 switch (save_dl - dl)
339 {
340 case 1:
341 r[1] = a[1];
342 if (--dl <= 0) break;
343 case 2:
344 r[2] = a[2];
345 if (--dl <= 0) break;
346 case 3:
347 r[3] = a[3];
348 if (--dl <= 0) break;
349 }
350 a += 4;
351 r += 4;
352 }
353 }
354 if (dl > 0)
355 {
356 #ifdef BN_COUNT
357 fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, co
358 #endif
359 for(;;)
360 {
361 r[0] = a[0];
362 if (--dl <= 0) break;
363 r[1] = a[1];
364 if (--dl <= 0) break;
365 r[2] = a[2];
366 if (--dl <= 0) break;
367 r[3] = a[3];
368 if (--dl <= 0) break;

370 a += 4;
371 r += 4;
372 }
373 }
374 }
375 return c;
376 }

378 #ifdef BN_RECURSION
379 /* Karatsuba recursive multiplication algorithm
380 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */

382 /* r is 2*n2 words in size,
383 * a and b are both n2 words in size.
384 * n2 must be a power of 2.
385 * We multiply and return the result.
386 * t must be 2*n2 words in size
387 * We calculate
388 * a[0]*b[0]
389 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
390 * a[1]*b[1]
391 */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 7

392 /* dnX may not be positive, but n2/2+dnX has to be */
393 void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
394 int dna, int dnb, BN_ULONG *t)
395 {
396 int n=n2/2,c1,c2;
397 int tna=n+dna, tnb=n+dnb;
398 unsigned int neg,zero;
399 BN_ULONG ln,lo,*p;

401 # ifdef BN_COUNT
402 fprintf(stderr," bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb);
403 # endif
404 # ifdef BN_MUL_COMBA
405 # if 0
406 if (n2 == 4)
407 {
408 bn_mul_comba4(r,a,b);
409 return;
410 }
411 # endif
412 /* Only call bn_mul_comba 8 if n2 == 8 and the
413 * two arrays are complete [steve]
414 */
415 if (n2 == 8 && dna == 0 && dnb == 0)
416 {
417 bn_mul_comba8(r,a,b);
418 return;
419 }
420 # endif /* BN_MUL_COMBA */
421 /* Else do normal multiply */
422 if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
423 {
424 bn_mul_normal(r,a,n2+dna,b,n2+dnb);
425 if ((dna + dnb) < 0)
426 memset(&r[2*n2 + dna + dnb], 0,
427 sizeof(BN_ULONG) * -(dna + dnb));
428 return;
429 }
430 /* r=(a[0]-a[1])*(b[1]-b[0]) */
431 c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
432 c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
433 zero=neg=0;
434 switch (c1*3+c2)
435 {
436 case -4:
437 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
438 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
439 break;
440 case -3:
441 zero=1;
442 break;
443 case -2:
444 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
445 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
446 neg=1;
447 break;
448 case -1:
449 case 0:
450 case 1:
451 zero=1;
452 break;
453 case 2:
454 bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
455 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
456 neg=1;
457 break;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 8

458 case 3:
459 zero=1;
460 break;
461 case 4:
462 bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
463 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
464 break;
465 }

467 # ifdef BN_MUL_COMBA
468 if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take
469 extra args to do this well */
470 {
471 if (!zero)
472 bn_mul_comba4(&(t[n2]),t,&(t[n]));
473 else
474 memset(&(t[n2]),0,8*sizeof(BN_ULONG));
475
476 bn_mul_comba4(r,a,b);
477 bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
478 }
479 else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could
480 take extra args to do this
481 well */
482 {
483 if (!zero)
484 bn_mul_comba8(&(t[n2]),t,&(t[n]));
485 else
486 memset(&(t[n2]),0,16*sizeof(BN_ULONG));
487
488 bn_mul_comba8(r,a,b);
489 bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
490 }
491 else
492 # endif /* BN_MUL_COMBA */
493 {
494 p= &(t[n2*2]);
495 if (!zero)
496 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
497 else
498 memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
499 bn_mul_recursive(r,a,b,n,0,0,p);
500 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p);
501 }

503 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
504 * r[10] holds (a[0]*b[0])
505 * r[32] holds (b[1]*b[1])
506 */

508 c1=(int)(bn_add_words(t,r,&(r[n2]),n2));

510 if (neg) /* if t[32] is negative */
511 {
512 c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
513 }
514 else
515 {
516 /* Might have a carry */
517 c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
518 }

520 /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
521 * r[10] holds (a[0]*b[0])
522 * r[32] holds (b[1]*b[1])
523 * c1 holds the carry bits

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 9

524 */
525 c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
526 if (c1)
527 {
528 p= &(r[n+n2]);
529 lo= *p;
530 ln=(lo+c1)&BN_MASK2;
531 *p=ln;

533 /* The overflow will stop before we over write
534 * words we should not overwrite */
535 if (ln < (BN_ULONG)c1)
536 {
537 do {
538 p++;
539 lo= *p;
540 ln=(lo+1)&BN_MASK2;
541 *p=ln;
542 } while (ln == 0);
543 }
544 }
545 }

547 /* n+tn is the word length
548 * t needs to be n*4 is size, as does r */
549 /* tnX may not be negative but less than n */
550 void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
551 int tna, int tnb, BN_ULONG *t)
552 {
553 int i,j,n2=n*2;
554 int c1,c2,neg;
555 BN_ULONG ln,lo,*p;

557 # ifdef BN_COUNT
558 fprintf(stderr," bn_mul_part_recursive (%d%+d) * (%d%+d)\n",
559 n, tna, n, tnb);
560 # endif
561 if (n < 8)
562 {
563 bn_mul_normal(r,a,n+tna,b,n+tnb);
564 return;
565 }

567 /* r=(a[0]-a[1])*(b[1]-b[0]) */
568 c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
569 c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
570 neg=0;
571 switch (c1*3+c2)
572 {
573 case -4:
574 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
575 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
576 break;
577 case -3:
578 /* break; */
579 case -2:
580 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
581 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
582 neg=1;
583 break;
584 case -1:
585 case 0:
586 case 1:
587 /* break; */
588 case 2:
589 bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 10

590 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
591 neg=1;
592 break;
593 case 3:
594 /* break; */
595 case 4:
596 bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
597 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
598 break;
599 }
600 /* The zero case isn’t yet implemented here. The speedup
601 would probably be negligible. */
602 # if 0
603 if (n == 4)
604 {
605 bn_mul_comba4(&(t[n2]),t,&(t[n]));
606 bn_mul_comba4(r,a,b);
607 bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
608 memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
609 }
610 else
611 # endif
612 if (n == 8)
613 {
614 bn_mul_comba8(&(t[n2]),t,&(t[n]));
615 bn_mul_comba8(r,a,b);
616 bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
617 memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb));
618 }
619 else
620 {
621 p= &(t[n2*2]);
622 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
623 bn_mul_recursive(r,a,b,n,0,0,p);
624 i=n/2;
625 /* If there is only a bottom half to the number,
626 * just do it */
627 if (tna > tnb)
628 j = tna - i;
629 else
630 j = tnb - i;
631 if (j == 0)
632 {
633 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),
634 i,tna-i,tnb-i,p);
635 memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
636 }
637 else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
638 {
639 bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
640 i,tna-i,tnb-i,p);
641 memset(&(r[n2+tna+tnb]),0,
642 sizeof(BN_ULONG)*(n2-tna-tnb));
643 }
644 else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
645 {
646 memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
647 if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
648 && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
649 {
650 bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
651 }
652 else
653 {
654 for (;;)
655 {

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 11

656 i/=2;
657 /* these simplified conditions work
658 * exclusively because difference
659 * between tna and tnb is 1 or 0 */
660 if (i < tna || i < tnb)
661 {
662 bn_mul_part_recursive(&(r[n2]),
663 &(a[n]),&(b[n]),
664 i,tna-i,tnb-i,p);
665 break;
666 }
667 else if (i == tna || i == tnb)
668 {
669 bn_mul_recursive(&(r[n2]),
670 &(a[n]),&(b[n]),
671 i,tna-i,tnb-i,p);
672 break;
673 }
674 }
675 }
676 }
677 }

679 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
680 * r[10] holds (a[0]*b[0])
681 * r[32] holds (b[1]*b[1])
682 */

684 c1=(int)(bn_add_words(t,r,&(r[n2]),n2));

686 if (neg) /* if t[32] is negative */
687 {
688 c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
689 }
690 else
691 {
692 /* Might have a carry */
693 c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
694 }

696 /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
697 * r[10] holds (a[0]*b[0])
698 * r[32] holds (b[1]*b[1])
699 * c1 holds the carry bits
700 */
701 c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
702 if (c1)
703 {
704 p= &(r[n+n2]);
705 lo= *p;
706 ln=(lo+c1)&BN_MASK2;
707 *p=ln;

709 /* The overflow will stop before we over write
710 * words we should not overwrite */
711 if (ln < (BN_ULONG)c1)
712 {
713 do {
714 p++;
715 lo= *p;
716 ln=(lo+1)&BN_MASK2;
717 *p=ln;
718 } while (ln == 0);
719 }
720 }
721 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 12

723 /* a and b must be the same size, which is n2.
724 * r needs to be n2 words and t needs to be n2*2
725 */
726 void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
727 BN_ULONG *t)
728 {
729 int n=n2/2;

731 # ifdef BN_COUNT
732 fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2);
733 # endif

735 bn_mul_recursive(r,a,b,n,0,0,&(t[0]));
736 if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
737 {
738 bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
739 bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
740 bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
741 bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
742 }
743 else
744 {
745 bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
746 bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
747 bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
748 bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
749 }
750 }

752 /* a and b must be the same size, which is n2.
753 * r needs to be n2 words and t needs to be n2*2
754 * l is the low words of the output.
755 * t needs to be n2*3
756 */
757 void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
758 BN_ULONG *t)
759 {
760 int i,n;
761 int c1,c2;
762 int neg,oneg,zero;
763 BN_ULONG ll,lc,*lp,*mp;

765 # ifdef BN_COUNT
766 fprintf(stderr," bn_mul_high %d * %d\n",n2,n2);
767 # endif
768 n=n2/2;

770 /* Calculate (al-ah)*(bh-bl) */
771 neg=zero=0;
772 c1=bn_cmp_words(&(a[0]),&(a[n]),n);
773 c2=bn_cmp_words(&(b[n]),&(b[0]),n);
774 switch (c1*3+c2)
775 {
776 case -4:
777 bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
778 bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
779 break;
780 case -3:
781 zero=1;
782 break;
783 case -2:
784 bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
785 bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
786 neg=1;
787 break;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 13

788 case -1:
789 case 0:
790 case 1:
791 zero=1;
792 break;
793 case 2:
794 bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
795 bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
796 neg=1;
797 break;
798 case 3:
799 zero=1;
800 break;
801 case 4:
802 bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
803 bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
804 break;
805 }
806
807 oneg=neg;
808 /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
809 /* r[10] = (a[1]*b[1]) */
810 # ifdef BN_MUL_COMBA
811 if (n == 8)
812 {
813 bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
814 bn_mul_comba8(r,&(a[n]),&(b[n]));
815 }
816 else
817 # endif
818 {
819 bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2]));
820 bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2]));
821 }

823 /* s0 == low(al*bl)
824 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
825 * We know s0 and s1 so the only unknown is high(al*bl)
826 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
827 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
828 */
829 if (l != NULL)
830 {
831 lp= &(t[n2+n]);
832 c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
833 }
834 else
835 {
836 c1=0;
837 lp= &(r[0]);
838 }

840 if (neg)
841 neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
842 else
843 {
844 bn_add_words(&(t[n2]),lp,&(t[0]),n);
845 neg=0;
846 }

848 if (l != NULL)
849 {
850 bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
851 }
852 else
853 {

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 14

854 lp= &(t[n2+n]);
855 mp= &(t[n2]);
856 for (i=0; i<n; i++)
857 lp[i]=((~mp[i])+1)&BN_MASK2;
858 }

860 /* s[0] = low(al*bl)
861 * t[3] = high(al*bl)
862 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
863 * r[10] = (a[1]*b[1])
864 */
865 /* R[10] = al*bl
866 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
867 * R[32] = ah*bh
868 */
869 /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
870 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
871 * R[3]=r[1]+(carry/borrow)
872 */
873 if (l != NULL)
874 {
875 lp= &(t[n2]);
876 c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
877 }
878 else
879 {
880 lp= &(t[n2+n]);
881 c1=0;
882 }
883 c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n));
884 if (oneg)
885 c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
886 else
887 c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));

889 c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
890 c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
891 if (oneg)
892 c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
893 else
894 c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
895
896 if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
897 {
898 i=0;
899 if (c1 > 0)
900 {
901 lc=c1;
902 do {
903 ll=(r[i]+lc)&BN_MASK2;
904 r[i++]=ll;
905 lc=(lc > ll);
906 } while (lc);
907 }
908 else
909 {
910 lc= -c1;
911 do {
912 ll=r[i];
913 r[i++]=(ll-lc)&BN_MASK2;
914 lc=(lc > ll);
915 } while (lc);
916 }
917 }
918 if (c2 != 0) /* Add starting at r[1] */
919 {

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 15

920 i=n;
921 if (c2 > 0)
922 {
923 lc=c2;
924 do {
925 ll=(r[i]+lc)&BN_MASK2;
926 r[i++]=ll;
927 lc=(lc > ll);
928 } while (lc);
929 }
930 else
931 {
932 lc= -c2;
933 do {
934 ll=r[i];
935 r[i++]=(ll-lc)&BN_MASK2;
936 lc=(lc > ll);
937 } while (lc);
938 }
939 }
940 }
941 #endif /* BN_RECURSION */

943 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
944 {
945 int ret=0;
946 int top,al,bl;
947 BIGNUM *rr;
948 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
949 int i;
950 #endif
951 #ifdef BN_RECURSION
952 BIGNUM *t=NULL;
953 int j=0,k;
954 #endif

956 #ifdef BN_COUNT
957 fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top);
958 #endif

960 bn_check_top(a);
961 bn_check_top(b);
962 bn_check_top(r);

964 al=a->top;
965 bl=b->top;

967 if ((al == 0) || (bl == 0))
968 {
969 BN_zero(r);
970 return(1);
971 }
972 top=al+bl;

974 BN_CTX_start(ctx);
975 if ((r == a) || (r == b))
976 {
977 if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
978 }
979 else
980 rr = r;
981 rr->neg=a->neg^b->neg;

983 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
984 i = al-bl;
985 #endif

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 16

986 #ifdef BN_MUL_COMBA
987 if (i == 0)
988 {
989 # if 0
990 if (al == 4)
991 {
992 if (bn_wexpand(rr,8) == NULL) goto err;
993 rr->top=8;
994 bn_mul_comba4(rr->d,a->d,b->d);
995 goto end;
996 }
997 # endif
998 if (al == 8)
999 {

1000 if (bn_wexpand(rr,16) == NULL) goto err;
1001 rr->top=16;
1002 bn_mul_comba8(rr->d,a->d,b->d);
1003 goto end;
1004 }
1005 }
1006 #endif /* BN_MUL_COMBA */
1007 #ifdef BN_RECURSION
1008 if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
1009 {
1010 if (i >= -1 && i <= 1)
1011 {
1012 /* Find out the power of two lower or equal
1013 to the longest of the two numbers */
1014 if (i >= 0)
1015 {
1016 j = BN_num_bits_word((BN_ULONG)al);
1017 }
1018 if (i == -1)
1019 {
1020 j = BN_num_bits_word((BN_ULONG)bl);
1021 }
1022 j = 1<<(j-1);
1023 assert(j <= al || j <= bl);
1024 k = j+j;
1025 t = BN_CTX_get(ctx);
1026 if (t == NULL)
1027 goto err;
1028 if (al > j || bl > j)
1029 {
1030 if (bn_wexpand(t,k*4) == NULL) goto err;
1031 if (bn_wexpand(rr,k*4) == NULL) goto err;
1032 bn_mul_part_recursive(rr->d,a->d,b->d,
1033 j,al-j,bl-j,t->d);
1034 }
1035 else /* al <= j || bl <= j */
1036 {
1037 if (bn_wexpand(t,k*2) == NULL) goto err;
1038 if (bn_wexpand(rr,k*2) == NULL) goto err;
1039 bn_mul_recursive(rr->d,a->d,b->d,
1040 j,al-j,bl-j,t->d);
1041 }
1042 rr->top=top;
1043 goto end;
1044 }
1045 #if 0
1046 if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
1047 {
1048 BIGNUM *tmp_bn = (BIGNUM *)b;
1049 if (bn_wexpand(tmp_bn,al) == NULL) goto err;
1050 tmp_bn->d[bl]=0;
1051 bl++;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 17

1052 i--;
1053 }
1054 else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
1055 {
1056 BIGNUM *tmp_bn = (BIGNUM *)a;
1057 if (bn_wexpand(tmp_bn,bl) == NULL) goto err;
1058 tmp_bn->d[al]=0;
1059 al++;
1060 i++;
1061 }
1062 if (i == 0)
1063 {
1064 /* symmetric and > 4 */
1065 /* 16 or larger */
1066 j=BN_num_bits_word((BN_ULONG)al);
1067 j=1<<(j-1);
1068 k=j+j;
1069 t = BN_CTX_get(ctx);
1070 if (al == j) /* exact multiple */
1071 {
1072 if (bn_wexpand(t,k*2) == NULL) goto err;
1073 if (bn_wexpand(rr,k*2) == NULL) goto err;
1074 bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
1075 }
1076 else
1077 {
1078 if (bn_wexpand(t,k*4) == NULL) goto err;
1079 if (bn_wexpand(rr,k*4) == NULL) goto err;
1080 bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->
1081 }
1082 rr->top=top;
1083 goto end;
1084 }
1085 #endif
1086 }
1087 #endif /* BN_RECURSION */
1088 if (bn_wexpand(rr,top) == NULL) goto err;
1089 rr->top=top;
1090 bn_mul_normal(rr->d,a->d,al,b->d,bl);

1092 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
1093 end:
1094 #endif
1095 bn_correct_top(rr);
1096 if (r != rr) BN_copy(r,rr);
1097 ret=1;
1098 err:
1099 bn_check_top(r);
1100 BN_CTX_end(ctx);
1101 return(ret);
1102 }

1104 void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
1105 {
1106 BN_ULONG *rr;

1108 #ifdef BN_COUNT
1109 fprintf(stderr," bn_mul_normal %d * %d\n",na,nb);
1110 #endif

1112 if (na < nb)
1113 {
1114 int itmp;
1115 BN_ULONG *ltmp;

1117 itmp=na; na=nb; nb=itmp;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_mul.c 18

1118 ltmp=a; a=b; b=ltmp;

1120 }
1121 rr= &(r[na]);
1122 if (nb <= 0)
1123 {
1124 (void)bn_mul_words(r,a,na,0);
1125 return;
1126 }
1127 else
1128 rr[0]=bn_mul_words(r,a,na,b[0]);

1130 for (;;)
1131 {
1132 if (--nb <= 0) return;
1133 rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
1134 if (--nb <= 0) return;
1135 rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
1136 if (--nb <= 0) return;
1137 rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
1138 if (--nb <= 0) return;
1139 rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
1140 rr+=4;
1141 r+=4;
1142 b+=4;
1143 }
1144 }

1146 void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
1147 {
1148 #ifdef BN_COUNT
1149 fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n);
1150 #endif
1151 bn_mul_words(r,a,n,b[0]);

1153 for (;;)
1154 {
1155 if (--n <= 0) return;
1156 bn_mul_add_words(&(r[1]),a,n,b[1]);
1157 if (--n <= 0) return;
1158 bn_mul_add_words(&(r[2]),a,n,b[2]);
1159 if (--n <= 0) return;
1160 bn_mul_add_words(&(r[3]),a,n,b[3]);
1161 if (--n <= 0) return;
1162 bn_mul_add_words(&(r[4]),a,n,b[4]);
1163 r+=4;
1164 b+=4;
1165 }
1166 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 1

**
 33077 Fri May 30 18:31:37 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_nist.c */
2 /*
3 * Written by Nils Larsch for the OpenSSL project
4 */
5 /* ==
6 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include "bn_lcl.h"
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 2

63 #define BN_NIST_192_TOP (192+BN_BITS2-1)/BN_BITS2
64 #define BN_NIST_224_TOP (224+BN_BITS2-1)/BN_BITS2
65 #define BN_NIST_256_TOP (256+BN_BITS2-1)/BN_BITS2
66 #define BN_NIST_384_TOP (384+BN_BITS2-1)/BN_BITS2
67 #define BN_NIST_521_TOP (521+BN_BITS2-1)/BN_BITS2

69 /* pre-computed tables are "carry-less" values of modulus*(i+1) */
70 #if BN_BITS2 == 64
71 static const BN_ULONG _nist_p_192[][BN_NIST_192_TOP] = {
72 {0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFEULL,0xFFFFFFFFFFFFFFFFULL},
73 {0xFFFFFFFFFFFFFFFEULL,0xFFFFFFFFFFFFFFFDULL,0xFFFFFFFFFFFFFFFFULL},
74 {0xFFFFFFFFFFFFFFFDULL,0xFFFFFFFFFFFFFFFCULL,0xFFFFFFFFFFFFFFFFULL}
75 };
76 static const BN_ULONG _nist_p_192_sqr[] = {
77 0x0000000000000001ULL,0x0000000000000002ULL,0x0000000000000001ULL,
78 0xFFFFFFFFFFFFFFFEULL,0xFFFFFFFFFFFFFFFDULL,0xFFFFFFFFFFFFFFFFULL
79 };
80 static const BN_ULONG _nist_p_224[][BN_NIST_224_TOP] = {
81 {0x0000000000000001ULL,0xFFFFFFFF00000000ULL,
82 0xFFFFFFFFFFFFFFFFULL,0x00000000FFFFFFFFULL},
83 {0x0000000000000002ULL,0xFFFFFFFE00000000ULL,
84 0xFFFFFFFFFFFFFFFFULL,0x00000001FFFFFFFFULL} /* this one is "carry-full
85 };
86 static const BN_ULONG _nist_p_224_sqr[] = {
87 0x0000000000000001ULL,0xFFFFFFFE00000000ULL,
88 0xFFFFFFFFFFFFFFFFULL,0x0000000200000000ULL,
89 0x0000000000000000ULL,0xFFFFFFFFFFFFFFFEULL,
90 0xFFFFFFFFFFFFFFFFULL
91 };
92 static const BN_ULONG _nist_p_256[][BN_NIST_256_TOP] = {
93 {0xFFFFFFFFFFFFFFFFULL,0x00000000FFFFFFFFULL,
94 0x0000000000000000ULL,0xFFFFFFFF00000001ULL},
95 {0xFFFFFFFFFFFFFFFEULL,0x00000001FFFFFFFFULL,
96 0x0000000000000000ULL,0xFFFFFFFE00000002ULL},
97 {0xFFFFFFFFFFFFFFFDULL,0x00000002FFFFFFFFULL,
98 0x0000000000000000ULL,0xFFFFFFFD00000003ULL},
99 {0xFFFFFFFFFFFFFFFCULL,0x00000003FFFFFFFFULL,
100 0x0000000000000000ULL,0xFFFFFFFC00000004ULL},
101 {0xFFFFFFFFFFFFFFFBULL,0x00000004FFFFFFFFULL,
102 0x0000000000000000ULL,0xFFFFFFFB00000005ULL},
103 };
104 static const BN_ULONG _nist_p_256_sqr[] = {
105 0x0000000000000001ULL,0xFFFFFFFE00000000ULL,
106 0xFFFFFFFFFFFFFFFFULL,0x00000001FFFFFFFEULL,
107 0x00000001FFFFFFFEULL,0x00000001FFFFFFFEULL,
108 0xFFFFFFFE00000001ULL,0xFFFFFFFE00000002ULL
109 };
110 static const BN_ULONG _nist_p_384[][BN_NIST_384_TOP] = {
111 {0x00000000FFFFFFFFULL,0xFFFFFFFF00000000ULL,0xFFFFFFFFFFFFFFFEULL,
112 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL},
113 {0x00000001FFFFFFFEULL,0xFFFFFFFE00000000ULL,0xFFFFFFFFFFFFFFFDULL,
114 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL},
115 {0x00000002FFFFFFFDULL,0xFFFFFFFD00000000ULL,0xFFFFFFFFFFFFFFFCULL,
116 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL},
117 {0x00000003FFFFFFFCULL,0xFFFFFFFC00000000ULL,0xFFFFFFFFFFFFFFFBULL,
118 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL},
119 {0x00000004FFFFFFFBULL,0xFFFFFFFB00000000ULL,0xFFFFFFFFFFFFFFFAULL,
120 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL},
121 };
122 static const BN_ULONG _nist_p_384_sqr[] = {
123 0xFFFFFFFE00000001ULL,0x0000000200000000ULL,0xFFFFFFFE00000000ULL,
124 0x0000000200000000ULL,0x0000000000000001ULL,0x0000000000000000ULL,
125 0x00000001FFFFFFFEULL,0xFFFFFFFE00000000ULL,0xFFFFFFFFFFFFFFFDULL,
126 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL
127 };

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 3

128 static const BN_ULONG _nist_p_521[] =
129 {0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,
130 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,
131 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,
132 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,
133 0x00000000000001FFULL};
134 static const BN_ULONG _nist_p_521_sqr[] = {
135 0x0000000000000001ULL,0x0000000000000000ULL,0x0000000000000000ULL,
136 0x0000000000000000ULL,0x0000000000000000ULL,0x0000000000000000ULL,
137 0x0000000000000000ULL,0x0000000000000000ULL,0xFFFFFFFFFFFFFC00ULL,
138 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,
139 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,
140 0xFFFFFFFFFFFFFFFFULL,0x000000000003FFFFULL
141 };
142 #elif BN_BITS2 == 32
143 static const BN_ULONG _nist_p_192[][BN_NIST_192_TOP] = {
144 {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFE,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF},
145 {0xFFFFFFFE,0xFFFFFFFF,0xFFFFFFFD,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF},
146 {0xFFFFFFFD,0xFFFFFFFF,0xFFFFFFFC,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}
147 };
148 static const BN_ULONG _nist_p_192_sqr[] = {
149 0x00000001,0x00000000,0x00000002,0x00000000,0x00000001,0x00000000,
150 0xFFFFFFFE,0xFFFFFFFF,0xFFFFFFFD,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF
151 };
152 static const BN_ULONG _nist_p_224[][BN_NIST_224_TOP] = {
153 {0x00000001,0x00000000,0x00000000,0xFFFFFFFF,
154 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF},
155 {0x00000002,0x00000000,0x00000000,0xFFFFFFFE,
156 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}
157 };
158 static const BN_ULONG _nist_p_224_sqr[] = {
159 0x00000001,0x00000000,0x00000000,0xFFFFFFFE,
160 0xFFFFFFFF,0xFFFFFFFF,0x00000000,0x00000002,
161 0x00000000,0x00000000,0xFFFFFFFE,0xFFFFFFFF,
162 0xFFFFFFFF,0xFFFFFFFF
163 };
164 static const BN_ULONG _nist_p_256[][BN_NIST_256_TOP] = {
165 {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0x00000000,
166 0x00000000,0x00000000,0x00000001,0xFFFFFFFF},
167 {0xFFFFFFFE,0xFFFFFFFF,0xFFFFFFFF,0x00000001,
168 0x00000000,0x00000000,0x00000002,0xFFFFFFFE},
169 {0xFFFFFFFD,0xFFFFFFFF,0xFFFFFFFF,0x00000002,
170 0x00000000,0x00000000,0x00000003,0xFFFFFFFD},
171 {0xFFFFFFFC,0xFFFFFFFF,0xFFFFFFFF,0x00000003,
172 0x00000000,0x00000000,0x00000004,0xFFFFFFFC},
173 {0xFFFFFFFB,0xFFFFFFFF,0xFFFFFFFF,0x00000004,
174 0x00000000,0x00000000,0x00000005,0xFFFFFFFB},
175 };
176 static const BN_ULONG _nist_p_256_sqr[] = {
177 0x00000001,0x00000000,0x00000000,0xFFFFFFFE,
178 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFE,0x00000001,
179 0xFFFFFFFE,0x00000001,0xFFFFFFFE,0x00000001,
180 0x00000001,0xFFFFFFFE,0x00000002,0xFFFFFFFE
181 };
182 static const BN_ULONG _nist_p_384[][BN_NIST_384_TOP] = {
183 {0xFFFFFFFF,0x00000000,0x00000000,0xFFFFFFFF,0xFFFFFFFE,0xFFFFFFFF,
184 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF},
185 {0xFFFFFFFE,0x00000001,0x00000000,0xFFFFFFFE,0xFFFFFFFD,0xFFFFFFFF,
186 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF},
187 {0xFFFFFFFD,0x00000002,0x00000000,0xFFFFFFFD,0xFFFFFFFC,0xFFFFFFFF,
188 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF},
189 {0xFFFFFFFC,0x00000003,0x00000000,0xFFFFFFFC,0xFFFFFFFB,0xFFFFFFFF,
190 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF},
191 {0xFFFFFFFB,0x00000004,0x00000000,0xFFFFFFFB,0xFFFFFFFA,0xFFFFFFFF,
192 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF},
193 };

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 4

194 static const BN_ULONG _nist_p_384_sqr[] = {
195 0x00000001,0xFFFFFFFE,0x00000000,0x00000002,0x00000000,0xFFFFFFFE,
196 0x00000000,0x00000002,0x00000001,0x00000000,0x00000000,0x00000000,
197 0xFFFFFFFE,0x00000001,0x00000000,0xFFFFFFFE,0xFFFFFFFD,0xFFFFFFFF,
198 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF
199 };
200 static const BN_ULONG _nist_p_521[] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,
201 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,
202 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,
203 0xFFFFFFFF,0x000001FF};
204 static const BN_ULONG _nist_p_521_sqr[] = {
205 0x00000001,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
206 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
207 0x00000000,0x00000000,0x00000000,0x00000000,0xFFFFFC00,0xFFFFFFFF,
208 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,
209 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,
210 0xFFFFFFFF,0xFFFFFFFF,0x0003FFFF
211 };
212 #else
213 #error "unsupported BN_BITS2"
214 #endif

217 static const BIGNUM _bignum_nist_p_192 =
218 {
219 (BN_ULONG *)_nist_p_192[0],
220 BN_NIST_192_TOP,
221 BN_NIST_192_TOP,
222 0,
223 BN_FLG_STATIC_DATA
224 };

226 static const BIGNUM _bignum_nist_p_224 =
227 {
228 (BN_ULONG *)_nist_p_224[0],
229 BN_NIST_224_TOP,
230 BN_NIST_224_TOP,
231 0,
232 BN_FLG_STATIC_DATA
233 };

235 static const BIGNUM _bignum_nist_p_256 =
236 {
237 (BN_ULONG *)_nist_p_256[0],
238 BN_NIST_256_TOP,
239 BN_NIST_256_TOP,
240 0,
241 BN_FLG_STATIC_DATA
242 };

244 static const BIGNUM _bignum_nist_p_384 =
245 {
246 (BN_ULONG *)_nist_p_384[0],
247 BN_NIST_384_TOP,
248 BN_NIST_384_TOP,
249 0,
250 BN_FLG_STATIC_DATA
251 };

253 static const BIGNUM _bignum_nist_p_521 =
254 {
255 (BN_ULONG *)_nist_p_521,
256 BN_NIST_521_TOP,
257 BN_NIST_521_TOP,
258 0,
259 BN_FLG_STATIC_DATA

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 5

260 };

263 const BIGNUM *BN_get0_nist_prime_192(void)
264 {
265 return &_bignum_nist_p_192;
266 }

268 const BIGNUM *BN_get0_nist_prime_224(void)
269 {
270 return &_bignum_nist_p_224;
271 }

273 const BIGNUM *BN_get0_nist_prime_256(void)
274 {
275 return &_bignum_nist_p_256;
276 }

278 const BIGNUM *BN_get0_nist_prime_384(void)
279 {
280 return &_bignum_nist_p_384;
281 }

283 const BIGNUM *BN_get0_nist_prime_521(void)
284 {
285 return &_bignum_nist_p_521;
286 }

289 static void nist_cp_bn_0(BN_ULONG *dst, const BN_ULONG *src, int top, int max)
290 {
291 int i;

293 #ifdef BN_DEBUG
294 OPENSSL_assert(top <= max);
295 #endif
296 for (i = 0; i < top; i++)
297 dst[i] = src[i];
298 for (; i < max; i++)
299 dst[i] = 0;
300 }

302 static void nist_cp_bn(BN_ULONG *dst, const BN_ULONG *src, int top)
303 {
304 int i;

306 for (i = 0; i < top; i++)
307 dst[i] = src[i];
308 }

310 #if BN_BITS2 == 64
311 #define bn_cp_64(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0;
312 #define bn_64_set_0(to, n) (to)[n] = (BN_ULONG)0;
313 /*
314 * two following macros are implemented under assumption that they
315 * are called in a sequence with *ascending* n, i.e. as they are...
316 */
317 #define bn_cp_32_naked(to, n, from, m) (((n)&1)?(to[(n)/2]|=((m)&1)?(from[(m)/2
318 :(to[(n)/2] =((m)&1)?(from[(m)/2
319 #define bn_32_set_0(to, n) (((n)&1)?(to[(n)/2]&=BN_MASK2l):(to[(n)/
320 #define bn_cp_32(to,n,from,m) ((m)>=0)?bn_cp_32_naked(to,n,from,m):bn_
321 # if defined(L_ENDIAN)
322 # if defined(__arch64__)
323 # define NIST_INT64 long
324 # else
325 # define NIST_INT64 long long

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 6

326 # endif
327 # endif
328 #else
329 #define bn_cp_64(to, n, from, m) \
330 { \
331 bn_cp_32(to, (n)*2, from, (m)*2); \
332 bn_cp_32(to, (n)*2+1, from, (m)*2+1); \
333 }
334 #define bn_64_set_0(to, n) \
335 { \
336 bn_32_set_0(to, (n)*2); \
337 bn_32_set_0(to, (n)*2+1); \
338 }
339 #define bn_cp_32(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0;
340 #define bn_32_set_0(to, n) (to)[n] = (BN_ULONG)0;
341 # if defined(_WIN32) && !defined(__GNUC__)
342 # define NIST_INT64 __int64
343 # elif defined(BN_LLONG)
344 # define NIST_INT64 long long
345 # endif
346 #endif /* BN_BITS2 != 64 */

348 #define nist_set_192(to, from, a1, a2, a3) \
349 { \
350 bn_cp_64(to, 0, from, (a3) - 3) \
351 bn_cp_64(to, 1, from, (a2) - 3) \
352 bn_cp_64(to, 2, from, (a1) - 3) \
353 }

355 int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *field,
356 BN_CTX *ctx)
357 {
358 int top = a->top, i;
359 int carry;
360 register BN_ULONG *r_d, *a_d = a->d;
361 union {
362 BN_ULONG bn[BN_NIST_192_TOP];
363 unsigned int ui[BN_NIST_192_TOP*sizeof(BN_ULONG)/sizeof(unsig
364 } buf;
365 BN_ULONG c_d[BN_NIST_192_TOP],
366 *res;
367 PTR_SIZE_INT mask;
368 static const BIGNUM _bignum_nist_p_192_sqr = {
369 (BN_ULONG *)_nist_p_192_sqr,
370 sizeof(_nist_p_192_sqr)/sizeof(_nist_p_192_sqr[0]),
371 sizeof(_nist_p_192_sqr)/sizeof(_nist_p_192_sqr[0]),
372 0,BN_FLG_STATIC_DATA };

374 field = &_bignum_nist_p_192; /* just to make sure */

376 if (BN_is_negative(a) || BN_ucmp(a,&_bignum_nist_p_192_sqr)>=0)
377 return BN_nnmod(r, a, field, ctx);

379 i = BN_ucmp(field, a);
380 if (i == 0)
381 {
382 BN_zero(r);
383 return 1;
384 }
385 else if (i > 0)
386 return (r == a) ? 1 : (BN_copy(r ,a) != NULL);

388 if (r != a)
389 {
390 if (!bn_wexpand(r, BN_NIST_192_TOP))
391 return 0;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 7

392 r_d = r->d;
393 nist_cp_bn(r_d, a_d, BN_NIST_192_TOP);
394 }
395 else
396 r_d = a_d;

398 nist_cp_bn_0(buf.bn, a_d + BN_NIST_192_TOP, top - BN_NIST_192_TOP, BN_NI

400 #if defined(NIST_INT64)
401 {
402 NIST_INT64 acc; /* accumulator */
403 unsigned int *rp=(unsigned int *)r_d;
404 const unsigned int *bp=(const unsigned int *)buf.ui;

406 acc = rp[0]; acc += bp[3*2-6];
407 acc += bp[5*2-6]; rp[0] = (unsigned int)acc; acc >>= 32;

409 acc += rp[1]; acc += bp[3*2-5];
410 acc += bp[5*2-5]; rp[1] = (unsigned int)acc; acc >>= 32;

412 acc += rp[2]; acc += bp[3*2-6];
413 acc += bp[4*2-6];
414 acc += bp[5*2-6]; rp[2] = (unsigned int)acc; acc >>= 32;

416 acc += rp[3]; acc += bp[3*2-5];
417 acc += bp[4*2-5];
418 acc += bp[5*2-5]; rp[3] = (unsigned int)acc; acc >>= 32;

420 acc += rp[4]; acc += bp[4*2-6];
421 acc += bp[5*2-6]; rp[4] = (unsigned int)acc; acc >>= 32;

423 acc += rp[5]; acc += bp[4*2-5];
424 acc += bp[5*2-5]; rp[5] = (unsigned int)acc;

426 carry = (int)(acc>>32);
427 }
428 #else
429 {
430 BN_ULONG t_d[BN_NIST_192_TOP];

432 nist_set_192(t_d, buf.bn, 0, 3, 3);
433 carry = (int)bn_add_words(r_d, r_d, t_d, BN_NIST_192_TOP);
434 nist_set_192(t_d, buf.bn, 4, 4, 0);
435 carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_192_TOP);
436 nist_set_192(t_d, buf.bn, 5, 5, 5)
437 carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_192_TOP);
438 }
439 #endif
440 if (carry > 0)
441 carry = (int)bn_sub_words(r_d,r_d,_nist_p_192[carry-1],BN_NIST_1
442 else
443 carry = 1;

445 /*
446 * we need ’if (carry==0 || result>=modulus) result-=modulus;’
447 * as comparison implies subtraction, we can write
448 * ’tmp=result-modulus; if (!carry || !borrow) result=tmp;’
449 * this is what happens below, but without explicit if:-) a.
450 */
451 mask = 0-(PTR_SIZE_INT)bn_sub_words(c_d,r_d,_nist_p_192[0],BN_NIST_192_
452 mask &= 0-(PTR_SIZE_INT)carry;
453 res = c_d;
454 res = (BN_ULONG *)
455 (((PTR_SIZE_INT)res&~mask) | ((PTR_SIZE_INT)r_d&mask));
456 nist_cp_bn(r_d, res, BN_NIST_192_TOP);
457 r->top = BN_NIST_192_TOP;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 8

458 bn_correct_top(r);

460 return 1;
461 }

463 typedef BN_ULONG (*bn_addsub_f)(BN_ULONG *,const BN_ULONG *,const BN_ULONG *,int

465 #define nist_set_224(to, from, a1, a2, a3, a4, a5, a6, a7) \
466 { \
467 bn_cp_32(to, 0, from, (a7) - 7) \
468 bn_cp_32(to, 1, from, (a6) - 7) \
469 bn_cp_32(to, 2, from, (a5) - 7) \
470 bn_cp_32(to, 3, from, (a4) - 7) \
471 bn_cp_32(to, 4, from, (a3) - 7) \
472 bn_cp_32(to, 5, from, (a2) - 7) \
473 bn_cp_32(to, 6, from, (a1) - 7) \
474 }

476 int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *field,
477 BN_CTX *ctx)
478 {
479 int top = a->top, i;
480 int carry;
481 BN_ULONG *r_d, *a_d = a->d;
482 union {
483 BN_ULONG bn[BN_NIST_224_TOP];
484 unsigned int ui[BN_NIST_224_TOP*sizeof(BN_ULONG)/sizeof(unsig
485 } buf;
486 BN_ULONG c_d[BN_NIST_224_TOP],
487 *res;
488 PTR_SIZE_INT mask;
489 union { bn_addsub_f f; PTR_SIZE_INT p; } u;
490 static const BIGNUM _bignum_nist_p_224_sqr = {
491 (BN_ULONG *)_nist_p_224_sqr,
492 sizeof(_nist_p_224_sqr)/sizeof(_nist_p_224_sqr[0]),
493 sizeof(_nist_p_224_sqr)/sizeof(_nist_p_224_sqr[0]),
494 0,BN_FLG_STATIC_DATA };

497 field = &_bignum_nist_p_224; /* just to make sure */

499 if (BN_is_negative(a) || BN_ucmp(a,&_bignum_nist_p_224_sqr)>=0)
500 return BN_nnmod(r, a, field, ctx);

502 i = BN_ucmp(field, a);
503 if (i == 0)
504 {
505 BN_zero(r);
506 return 1;
507 }
508 else if (i > 0)
509 return (r == a)? 1 : (BN_copy(r ,a) != NULL);

511 if (r != a)
512 {
513 if (!bn_wexpand(r, BN_NIST_224_TOP))
514 return 0;
515 r_d = r->d;
516 nist_cp_bn(r_d, a_d, BN_NIST_224_TOP);
517 }
518 else
519 r_d = a_d;

521 #if BN_BITS2==64
522 /* copy upper 256 bits of 448 bit number ... */
523 nist_cp_bn_0(c_d, a_d + (BN_NIST_224_TOP-1), top - (BN_NIST_224_TOP-1),

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 9

524 /* ... and right shift by 32 to obtain upper 224 bits */
525 nist_set_224(buf.bn, c_d, 14, 13, 12, 11, 10, 9, 8);
526 /* truncate lower part to 224 bits too */
527 r_d[BN_NIST_224_TOP-1] &= BN_MASK2l;
528 #else
529 nist_cp_bn_0(buf.bn, a_d + BN_NIST_224_TOP, top - BN_NIST_224_TOP, BN_NI
530 #endif

532 #if defined(NIST_INT64) && BN_BITS2!=64
533 {
534 NIST_INT64 acc; /* accumulator */
535 unsigned int *rp=(unsigned int *)r_d;
536 const unsigned int *bp=(const unsigned int *)buf.ui;

538 acc = rp[0]; acc -= bp[7-7];
539 acc -= bp[11-7]; rp[0] = (unsigned int)acc; acc >>= 32;

541 acc += rp[1]; acc -= bp[8-7];
542 acc -= bp[12-7]; rp[1] = (unsigned int)acc; acc >>= 32;

544 acc += rp[2]; acc -= bp[9-7];
545 acc -= bp[13-7]; rp[2] = (unsigned int)acc; acc >>= 32;

547 acc += rp[3]; acc += bp[7-7];
548 acc += bp[11-7];
549 acc -= bp[10-7]; rp[3] = (unsigned int)acc; acc>>= 32;

551 acc += rp[4]; acc += bp[8-7];
552 acc += bp[12-7];
553 acc -= bp[11-7]; rp[4] = (unsigned int)acc; acc >>= 32;

555 acc += rp[5]; acc += bp[9-7];
556 acc += bp[13-7];
557 acc -= bp[12-7]; rp[5] = (unsigned int)acc; acc >>= 32;

559 acc += rp[6]; acc += bp[10-7];
560 acc -= bp[13-7]; rp[6] = (unsigned int)acc;

562 carry = (int)(acc>>32);
563 # if BN_BITS2==64
564 rp[7] = carry;
565 # endif
566 }
567 #else
568 {
569 BN_ULONG t_d[BN_NIST_224_TOP];

571 nist_set_224(t_d, buf.bn, 10, 9, 8, 7, 0, 0, 0);
572 carry = (int)bn_add_words(r_d, r_d, t_d, BN_NIST_224_TOP);
573 nist_set_224(t_d, buf.bn, 0, 13, 12, 11, 0, 0, 0);
574 carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_224_TOP);
575 nist_set_224(t_d, buf.bn, 13, 12, 11, 10, 9, 8, 7);
576 carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_224_TOP);
577 nist_set_224(t_d, buf.bn, 0, 0, 0, 0, 13, 12, 11);
578 carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_224_TOP);

580 #if BN_BITS2==64
581 carry = (int)(r_d[BN_NIST_224_TOP-1]>>32);
582 #endif
583 }
584 #endif
585 u.f = bn_sub_words;
586 if (carry > 0)
587 {
588 carry = (int)bn_sub_words(r_d,r_d,_nist_p_224[carry-1],BN_NIST_2
589 #if BN_BITS2==64

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 10

590 carry=(int)(~(r_d[BN_NIST_224_TOP-1]>>32))&1;
591 #endif
592 }
593 else if (carry < 0)
594 {
595 /* it’s a bit more comlicated logic in this case.
596 * if bn_add_words yields no carry, then result
597 * has to be adjusted by unconditionally *adding*
598 * the modulus. but if it does, then result has
599 * to be compared to the modulus and conditionally
600 * adjusted by *subtracting* the latter. */
601 carry = (int)bn_add_words(r_d,r_d,_nist_p_224[-carry-1],BN_NIST_
602 mask = 0-(PTR_SIZE_INT)carry;
603 u.p = ((PTR_SIZE_INT)bn_sub_words&mask) |
604 ((PTR_SIZE_INT)bn_add_words&~mask);
605 }
606 else
607 carry = 1;

609 /* otherwise it’s effectively same as in BN_nist_mod_192... */
610 mask = 0-(PTR_SIZE_INT)(*u.f)(c_d,r_d,_nist_p_224[0],BN_NIST_224_TOP);
611 mask &= 0-(PTR_SIZE_INT)carry;
612 res = c_d;
613 res = (BN_ULONG *)(((PTR_SIZE_INT)res&~mask) |
614 ((PTR_SIZE_INT)r_d&mask));
615 nist_cp_bn(r_d, res, BN_NIST_224_TOP);
616 r->top = BN_NIST_224_TOP;
617 bn_correct_top(r);

619 return 1;
620 }

622 #define nist_set_256(to, from, a1, a2, a3, a4, a5, a6, a7, a8) \
623 { \
624 bn_cp_32(to, 0, from, (a8) - 8) \
625 bn_cp_32(to, 1, from, (a7) - 8) \
626 bn_cp_32(to, 2, from, (a6) - 8) \
627 bn_cp_32(to, 3, from, (a5) - 8) \
628 bn_cp_32(to, 4, from, (a4) - 8) \
629 bn_cp_32(to, 5, from, (a3) - 8) \
630 bn_cp_32(to, 6, from, (a2) - 8) \
631 bn_cp_32(to, 7, from, (a1) - 8) \
632 }

634 int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *field,
635 BN_CTX *ctx)
636 {
637 int i, top = a->top;
638 int carry = 0;
639 register BN_ULONG *a_d = a->d, *r_d;
640 union {
641 BN_ULONG bn[BN_NIST_256_TOP];
642 unsigned int ui[BN_NIST_256_TOP*sizeof(BN_ULONG)/sizeof(unsigned
643 } buf;
644 BN_ULONG c_d[BN_NIST_256_TOP],
645 *res;
646 PTR_SIZE_INT mask;
647 union { bn_addsub_f f; PTR_SIZE_INT p; } u;
648 static const BIGNUM _bignum_nist_p_256_sqr = {
649 (BN_ULONG *)_nist_p_256_sqr,
650 sizeof(_nist_p_256_sqr)/sizeof(_nist_p_256_sqr[0]),
651 sizeof(_nist_p_256_sqr)/sizeof(_nist_p_256_sqr[0]),
652 0,BN_FLG_STATIC_DATA };

654 field = &_bignum_nist_p_256; /* just to make sure */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 11

656 if (BN_is_negative(a) || BN_ucmp(a,&_bignum_nist_p_256_sqr)>=0)
657 return BN_nnmod(r, a, field, ctx);

659 i = BN_ucmp(field, a);
660 if (i == 0)
661 {
662 BN_zero(r);
663 return 1;
664 }
665 else if (i > 0)
666 return (r == a)? 1 : (BN_copy(r ,a) != NULL);

668 if (r != a)
669 {
670 if (!bn_wexpand(r, BN_NIST_256_TOP))
671 return 0;
672 r_d = r->d;
673 nist_cp_bn(r_d, a_d, BN_NIST_256_TOP);
674 }
675 else
676 r_d = a_d;

678 nist_cp_bn_0(buf.bn, a_d + BN_NIST_256_TOP, top - BN_NIST_256_TOP, BN_NI

680 #if defined(NIST_INT64)
681 {
682 NIST_INT64 acc; /* accumulator */
683 unsigned int *rp=(unsigned int *)r_d;
684 const unsigned int *bp=(const unsigned int *)buf.ui;

686 acc = rp[0]; acc += bp[8-8];
687 acc += bp[9-8];
688 acc -= bp[11-8];
689 acc -= bp[12-8];
690 acc -= bp[13-8];
691 acc -= bp[14-8]; rp[0] = (unsigned int)acc; acc >>= 32;

693 acc += rp[1]; acc += bp[9-8];
694 acc += bp[10-8];
695 acc -= bp[12-8];
696 acc -= bp[13-8];
697 acc -= bp[14-8];
698 acc -= bp[15-8]; rp[1] = (unsigned int)acc; acc >>= 32;

700 acc += rp[2]; acc += bp[10-8];
701 acc += bp[11-8];
702 acc -= bp[13-8];
703 acc -= bp[14-8];
704 acc -= bp[15-8]; rp[2] = (unsigned int)acc; acc >>= 32;

706 acc += rp[3]; acc += bp[11-8];
707 acc += bp[11-8];
708 acc += bp[12-8];
709 acc += bp[12-8];
710 acc += bp[13-8];
711 acc -= bp[15-8];
712 acc -= bp[8-8];
713 acc -= bp[9-8]; rp[3] = (unsigned int)acc; acc >>= 32;

715 acc += rp[4]; acc += bp[12-8];
716 acc += bp[12-8];
717 acc += bp[13-8];
718 acc += bp[13-8];
719 acc += bp[14-8];
720 acc -= bp[9-8];
721 acc -= bp[10-8]; rp[4] = (unsigned int)acc; acc >>= 32;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 12

723 acc += rp[5]; acc += bp[13-8];
724 acc += bp[13-8];
725 acc += bp[14-8];
726 acc += bp[14-8];
727 acc += bp[15-8];
728 acc -= bp[10-8];
729 acc -= bp[11-8]; rp[5] = (unsigned int)acc; acc >>= 32;

731 acc += rp[6]; acc += bp[14-8];
732 acc += bp[14-8];
733 acc += bp[15-8];
734 acc += bp[15-8];
735 acc += bp[14-8];
736 acc += bp[13-8];
737 acc -= bp[8-8];
738 acc -= bp[9-8]; rp[6] = (unsigned int)acc; acc >>= 32;

740 acc += rp[7]; acc += bp[15-8];
741 acc += bp[15-8];
742 acc += bp[15-8];
743 acc += bp[8 -8];
744 acc -= bp[10-8];
745 acc -= bp[11-8];
746 acc -= bp[12-8];
747 acc -= bp[13-8]; rp[7] = (unsigned int)acc;

749 carry = (int)(acc>>32);
750 }
751 #else
752 {
753 BN_ULONG t_d[BN_NIST_256_TOP];

755 /*S1*/
756 nist_set_256(t_d, buf.bn, 15, 14, 13, 12, 11, 0, 0, 0);
757 /*S2*/
758 nist_set_256(c_d, buf.bn, 0, 15, 14, 13, 12, 0, 0, 0);
759 carry = (int)bn_add_words(t_d, t_d, c_d, BN_NIST_256_TOP);
760 /* left shift */
761 {
762 register BN_ULONG *ap,t,c;
763 ap = t_d;
764 c=0;
765 for (i = BN_NIST_256_TOP; i != 0; --i)
766 {
767 t= *ap;
768 *(ap++)=((t<<1)|c)&BN_MASK2;
769 c=(t & BN_TBIT)?1:0;
770 }
771 carry <<= 1;
772 carry |= c;
773 }
774 carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_256_TOP);
775 /*S3*/
776 nist_set_256(t_d, buf.bn, 15, 14, 0, 0, 0, 10, 9, 8);
777 carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_256_TOP);
778 /*S4*/
779 nist_set_256(t_d, buf.bn, 8, 13, 15, 14, 13, 11, 10, 9);
780 carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_256_TOP);
781 /*D1*/
782 nist_set_256(t_d, buf.bn, 10, 8, 0, 0, 0, 13, 12, 11);
783 carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP);
784 /*D2*/
785 nist_set_256(t_d, buf.bn, 11, 9, 0, 0, 15, 14, 13, 12);
786 carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP);
787 /*D3*/

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 13

788 nist_set_256(t_d, buf.bn, 12, 0, 10, 9, 8, 15, 14, 13);
789 carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP);
790 /*D4*/
791 nist_set_256(t_d, buf.bn, 13, 0, 11, 10, 9, 0, 15, 14);
792 carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP);

794 }
795 #endif
796 /* see BN_nist_mod_224 for explanation */
797 u.f = bn_sub_words;
798 if (carry > 0)
799 carry = (int)bn_sub_words(r_d,r_d,_nist_p_256[carry-1],BN_NIST_2
800 else if (carry < 0)
801 {
802 carry = (int)bn_add_words(r_d,r_d,_nist_p_256[-carry-1],BN_NIST_
803 mask = 0-(PTR_SIZE_INT)carry;
804 u.p = ((PTR_SIZE_INT)bn_sub_words&mask) |
805 ((PTR_SIZE_INT)bn_add_words&~mask);
806 }
807 else
808 carry = 1;

810 mask = 0-(PTR_SIZE_INT)(*u.f)(c_d,r_d,_nist_p_256[0],BN_NIST_256_TOP);
811 mask &= 0-(PTR_SIZE_INT)carry;
812 res = c_d;
813 res = (BN_ULONG *)(((PTR_SIZE_INT)res&~mask) |
814 ((PTR_SIZE_INT)r_d&mask));
815 nist_cp_bn(r_d, res, BN_NIST_256_TOP);
816 r->top = BN_NIST_256_TOP;
817 bn_correct_top(r);

819 return 1;
820 }

822 #define nist_set_384(to,from,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12) \
823 { \
824 bn_cp_32(to, 0, from, (a12) - 12) \
825 bn_cp_32(to, 1, from, (a11) - 12) \
826 bn_cp_32(to, 2, from, (a10) - 12) \
827 bn_cp_32(to, 3, from, (a9) - 12) \
828 bn_cp_32(to, 4, from, (a8) - 12) \
829 bn_cp_32(to, 5, from, (a7) - 12) \
830 bn_cp_32(to, 6, from, (a6) - 12) \
831 bn_cp_32(to, 7, from, (a5) - 12) \
832 bn_cp_32(to, 8, from, (a4) - 12) \
833 bn_cp_32(to, 9, from, (a3) - 12) \
834 bn_cp_32(to, 10, from, (a2) - 12) \
835 bn_cp_32(to, 11, from, (a1) - 12) \
836 }

838 int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *field,
839 BN_CTX *ctx)
840 {
841 int i, top = a->top;
842 int carry = 0;
843 register BN_ULONG *r_d, *a_d = a->d;
844 union {
845 BN_ULONG bn[BN_NIST_384_TOP];
846 unsigned int ui[BN_NIST_384_TOP*sizeof(BN_ULONG)/sizeof(unsigned
847 } buf;
848 BN_ULONG c_d[BN_NIST_384_TOP],
849 *res;
850 PTR_SIZE_INT mask;
851 union { bn_addsub_f f; PTR_SIZE_INT p; } u;
852 static const BIGNUM _bignum_nist_p_384_sqr = {
853 (BN_ULONG *)_nist_p_384_sqr,

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 14

854 sizeof(_nist_p_384_sqr)/sizeof(_nist_p_384_sqr[0]),
855 sizeof(_nist_p_384_sqr)/sizeof(_nist_p_384_sqr[0]),
856 0,BN_FLG_STATIC_DATA };

859 field = &_bignum_nist_p_384; /* just to make sure */

861 if (BN_is_negative(a) || BN_ucmp(a,&_bignum_nist_p_384_sqr)>=0)
862 return BN_nnmod(r, a, field, ctx);

864 i = BN_ucmp(field, a);
865 if (i == 0)
866 {
867 BN_zero(r);
868 return 1;
869 }
870 else if (i > 0)
871 return (r == a)? 1 : (BN_copy(r ,a) != NULL);

873 if (r != a)
874 {
875 if (!bn_wexpand(r, BN_NIST_384_TOP))
876 return 0;
877 r_d = r->d;
878 nist_cp_bn(r_d, a_d, BN_NIST_384_TOP);
879 }
880 else
881 r_d = a_d;

883 nist_cp_bn_0(buf.bn, a_d + BN_NIST_384_TOP, top - BN_NIST_384_TOP, BN_NI

885 #if defined(NIST_INT64)
886 {
887 NIST_INT64 acc; /* accumulator */
888 unsigned int *rp=(unsigned int *)r_d;
889 const unsigned int *bp=(const unsigned int *)buf.ui;

891 acc = rp[0]; acc += bp[12-12];
892 acc += bp[21-12];
893 acc += bp[20-12];
894 acc -= bp[23-12]; rp[0] = (unsigned int)acc; acc >>= 32;

896 acc += rp[1]; acc += bp[13-12];
897 acc += bp[22-12];
898 acc += bp[23-12];
899 acc -= bp[12-12];
900 acc -= bp[20-12]; rp[1] = (unsigned int)acc; acc >>= 32;

902 acc += rp[2]; acc += bp[14-12];
903 acc += bp[23-12];
904 acc -= bp[13-12];
905 acc -= bp[21-12]; rp[2] = (unsigned int)acc; acc >>= 32;

907 acc += rp[3]; acc += bp[15-12];
908 acc += bp[12-12];
909 acc += bp[20-12];
910 acc += bp[21-12];
911 acc -= bp[14-12];
912 acc -= bp[22-12];
913 acc -= bp[23-12]; rp[3] = (unsigned int)acc; acc >>= 32;

915 acc += rp[4]; acc += bp[21-12];
916 acc += bp[21-12];
917 acc += bp[16-12];
918 acc += bp[13-12];
919 acc += bp[12-12];

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 15

920 acc += bp[20-12];
921 acc += bp[22-12];
922 acc -= bp[15-12];
923 acc -= bp[23-12];
924 acc -= bp[23-12]; rp[4] = (unsigned int)acc; acc >>= 32;

926 acc += rp[5]; acc += bp[22-12];
927 acc += bp[22-12];
928 acc += bp[17-12];
929 acc += bp[14-12];
930 acc += bp[13-12];
931 acc += bp[21-12];
932 acc += bp[23-12];
933 acc -= bp[16-12]; rp[5] = (unsigned int)acc; acc >>= 32;
934
935 acc += rp[6]; acc += bp[23-12];
936 acc += bp[23-12];
937 acc += bp[18-12];
938 acc += bp[15-12];
939 acc += bp[14-12];
940 acc += bp[22-12];
941 acc -= bp[17-12]; rp[6] = (unsigned int)acc; acc >>= 32;
942
943 acc += rp[7]; acc += bp[19-12];
944 acc += bp[16-12];
945 acc += bp[15-12];
946 acc += bp[23-12];
947 acc -= bp[18-12]; rp[7] = (unsigned int)acc; acc >>= 32;
948
949 acc += rp[8]; acc += bp[20-12];
950 acc += bp[17-12];
951 acc += bp[16-12];
952 acc -= bp[19-12]; rp[8] = (unsigned int)acc; acc >>= 32;
953
954 acc += rp[9]; acc += bp[21-12];
955 acc += bp[18-12];
956 acc += bp[17-12];
957 acc -= bp[20-12]; rp[9] = (unsigned int)acc; acc >>= 32;
958
959 acc += rp[10]; acc += bp[22-12];
960 acc += bp[19-12];
961 acc += bp[18-12];
962 acc -= bp[21-12]; rp[10] = (unsigned int)acc; acc >>= 32
963
964 acc += rp[11]; acc += bp[23-12];
965 acc += bp[20-12];
966 acc += bp[19-12];
967 acc -= bp[22-12]; rp[11] = (unsigned int)acc;

969 carry = (int)(acc>>32);
970 }
971 #else
972 {
973 BN_ULONG t_d[BN_NIST_384_TOP];

975 /*S1*/
976 nist_set_256(t_d, buf.bn, 0, 0, 0, 0, 0, 23-4, 22-4, 21-4);
977 /* left shift */
978 {
979 register BN_ULONG *ap,t,c;
980 ap = t_d;
981 c=0;
982 for (i = 3; i != 0; --i)
983 {
984 t= *ap;
985 *(ap++)=((t<<1)|c)&BN_MASK2;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 16

986 c=(t & BN_TBIT)?1:0;
987 }
988 *ap=c;
989 }
990 carry = (int)bn_add_words(r_d+(128/BN_BITS2), r_d+(128/BN_BITS2),
991 t_d, BN_NIST_256_TOP);
992 /*S2 */
993 carry += (int)bn_add_words(r_d, r_d, buf.bn, BN_NIST_384_TOP);
994 /*S3*/
995 nist_set_384(t_d,buf.bn,20,19,18,17,16,15,14,13,12,23,22,21);
996 carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP);
997 /*S4*/
998 nist_set_384(t_d,buf.bn,19,18,17,16,15,14,13,12,20,0,23,0);
999 carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP);

1000 /*S5*/
1001 nist_set_384(t_d, buf.bn,0,0,0,0,23,22,21,20,0,0,0,0);
1002 carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP);
1003 /*S6*/
1004 nist_set_384(t_d,buf.bn,0,0,0,0,0,0,23,22,21,0,0,20);
1005 carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP);
1006 /*D1*/
1007 nist_set_384(t_d,buf.bn,22,21,20,19,18,17,16,15,14,13,12,23);
1008 carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP);
1009 /*D2*/
1010 nist_set_384(t_d,buf.bn,0,0,0,0,0,0,0,23,22,21,20,0);
1011 carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP);
1012 /*D3*/
1013 nist_set_384(t_d,buf.bn,0,0,0,0,0,0,0,23,23,0,0,0);
1014 carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP);

1016 }
1017 #endif
1018 /* see BN_nist_mod_224 for explanation */
1019 u.f = bn_sub_words;
1020 if (carry > 0)
1021 carry = (int)bn_sub_words(r_d,r_d,_nist_p_384[carry-1],BN_NIST_3
1022 else if (carry < 0)
1023 {
1024 carry = (int)bn_add_words(r_d,r_d,_nist_p_384[-carry-1],BN_NIST_
1025 mask = 0-(PTR_SIZE_INT)carry;
1026 u.p = ((PTR_SIZE_INT)bn_sub_words&mask) |
1027 ((PTR_SIZE_INT)bn_add_words&~mask);
1028 }
1029 else
1030 carry = 1;

1032 mask = 0-(PTR_SIZE_INT)(*u.f)(c_d,r_d,_nist_p_384[0],BN_NIST_384_TOP);
1033 mask &= 0-(PTR_SIZE_INT)carry;
1034 res = c_d;
1035 res = (BN_ULONG *)(((PTR_SIZE_INT)res&~mask) |
1036 ((PTR_SIZE_INT)r_d&mask));
1037 nist_cp_bn(r_d, res, BN_NIST_384_TOP);
1038 r->top = BN_NIST_384_TOP;
1039 bn_correct_top(r);

1041 return 1;
1042 }

1044 #define BN_NIST_521_RSHIFT (521%BN_BITS2)
1045 #define BN_NIST_521_LSHIFT (BN_BITS2-BN_NIST_521_RSHIFT)
1046 #define BN_NIST_521_TOP_MASK ((BN_ULONG)BN_MASK2>>BN_NIST_521_LSHIFT)

1048 int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *field,
1049 BN_CTX *ctx)
1050 {
1051 int top = a->top, i;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_nist.c 17

1052 BN_ULONG *r_d, *a_d = a->d,
1053 t_d[BN_NIST_521_TOP],
1054 val,tmp,*res;
1055 PTR_SIZE_INT mask;
1056 static const BIGNUM _bignum_nist_p_521_sqr = {
1057 (BN_ULONG *)_nist_p_521_sqr,
1058 sizeof(_nist_p_521_sqr)/sizeof(_nist_p_521_sqr[0]),
1059 sizeof(_nist_p_521_sqr)/sizeof(_nist_p_521_sqr[0]),
1060 0,BN_FLG_STATIC_DATA };

1062 field = &_bignum_nist_p_521; /* just to make sure */

1064 if (BN_is_negative(a) || BN_ucmp(a,&_bignum_nist_p_521_sqr)>=0)
1065 return BN_nnmod(r, a, field, ctx);

1067 i = BN_ucmp(field, a);
1068 if (i == 0)
1069 {
1070 BN_zero(r);
1071 return 1;
1072 }
1073 else if (i > 0)
1074 return (r == a)? 1 : (BN_copy(r ,a) != NULL);

1076 if (r != a)
1077 {
1078 if (!bn_wexpand(r,BN_NIST_521_TOP))
1079 return 0;
1080 r_d = r->d;
1081 nist_cp_bn(r_d,a_d, BN_NIST_521_TOP);
1082 }
1083 else
1084 r_d = a_d;

1086 /* upper 521 bits, copy ... */
1087 nist_cp_bn_0(t_d,a_d + (BN_NIST_521_TOP-1), top - (BN_NIST_521_TOP-1),BN
1088 /* ... and right shift */
1089 for (val=t_d[0],i=0; i<BN_NIST_521_TOP-1; i++)
1090 {
1091 tmp = val>>BN_NIST_521_RSHIFT;
1092 val = t_d[i+1];
1093 t_d[i] = (tmp | val<<BN_NIST_521_LSHIFT) & BN_MASK2;
1094 }
1095 t_d[i] = val>>BN_NIST_521_RSHIFT;
1096 /* lower 521 bits */
1097 r_d[i] &= BN_NIST_521_TOP_MASK;

1099 bn_add_words(r_d,r_d,t_d,BN_NIST_521_TOP);
1100 mask = 0-(PTR_SIZE_INT)bn_sub_words(t_d,r_d,_nist_p_521,BN_NIST_521_TOP)
1101 res = t_d;
1102 res = (BN_ULONG *)(((PTR_SIZE_INT)res&~mask) |
1103 ((PTR_SIZE_INT)r_d&mask));
1104 nist_cp_bn(r_d,res,BN_NIST_521_TOP);
1105 r->top = BN_NIST_521_TOP;
1106 bn_correct_top(r);

1108 return 1;
1109 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_prime.c 1

**
 14208 Fri May 30 18:31:37 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_prime.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_prime.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_prime.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include <stdio.h>
113 #include <time.h>
114 #include "cryptlib.h"
115 #include "bn_lcl.h"
116 #include <openssl/rand.h>

118 /* NB: these functions have been "upgraded", the deprecated versions (which are
119 * compatibility wrappers using these functions) are in bn_depr.c.
120 * - Geoff
121 */

123 /* The quick sieve algorithm approach to weeding out primes is
124 * Philip Zimmermann’s, as implemented in PGP. I have had a read of
125 * his comments and implemented my own version.
126 */
127 #include "bn_prime.h"

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_prime.c 3

129 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
130 const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
131 static int probable_prime(BIGNUM *rnd, int bits);
132 static int probable_prime_dh(BIGNUM *rnd, int bits,
133 const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
134 static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
135 const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);

137 int BN_GENCB_call(BN_GENCB *cb, int a, int b)
138 {
139 /* No callback means continue */
140 if(!cb) return 1;
141 switch(cb->ver)
142 {
143 case 1:
144 /* Deprecated-style callbacks */
145 if(!cb->cb.cb_1)
146 return 1;
147 cb->cb.cb_1(a, b, cb->arg);
148 return 1;
149 case 2:
150 /* New-style callbacks */
151 return cb->cb.cb_2(a, b, cb);
152 default:
153 break;
154 }
155 /* Unrecognised callback type */
156 return 0;
157 }

159 int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
160 const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
161 {
162 BIGNUM *t;
163 int found=0;
164 int i,j,c1=0;
165 BN_CTX *ctx;
166 int checks = BN_prime_checks_for_size(bits);

168 ctx=BN_CTX_new();
169 if (ctx == NULL) goto err;
170 BN_CTX_start(ctx);
171 t = BN_CTX_get(ctx);
172 if(!t) goto err;
173 loop:
174 /* make a random number and set the top and bottom bits */
175 if (add == NULL)
176 {
177 if (!probable_prime(ret,bits)) goto err;
178 }
179 else
180 {
181 if (safe)
182 {
183 if (!probable_prime_dh_safe(ret,bits,add,rem,ctx))
184 goto err;
185 }
186 else
187 {
188 if (!probable_prime_dh(ret,bits,add,rem,ctx))
189 goto err;
190 }
191 }
192 /* if (BN_mod_word(ret,(BN_ULONG)3) == 1) goto loop; */
193 if(!BN_GENCB_call(cb, 0, c1++))

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_prime.c 4

194 /* aborted */
195 goto err;

197 if (!safe)
198 {
199 i=BN_is_prime_fasttest_ex(ret,checks,ctx,0,cb);
200 if (i == -1) goto err;
201 if (i == 0) goto loop;
202 }
203 else
204 {
205 /* for "safe prime" generation,
206 * check that (p-1)/2 is prime.
207 * Since a prime is odd, We just
208 * need to divide by 2 */
209 if (!BN_rshift1(t,ret)) goto err;

211 for (i=0; i<checks; i++)
212 {
213 j=BN_is_prime_fasttest_ex(ret,1,ctx,0,cb);
214 if (j == -1) goto err;
215 if (j == 0) goto loop;

217 j=BN_is_prime_fasttest_ex(t,1,ctx,0,cb);
218 if (j == -1) goto err;
219 if (j == 0) goto loop;

221 if(!BN_GENCB_call(cb, 2, c1-1))
222 goto err;
223 /* We have a safe prime test pass */
224 }
225 }
226 /* we have a prime :-) */
227 found = 1;
228 err:
229 if (ctx != NULL)
230 {
231 BN_CTX_end(ctx);
232 BN_CTX_free(ctx);
233 }
234 bn_check_top(ret);
235 return found;
236 }

238 int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, BN_GENCB *cb
239 {
240 return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
241 }

243 int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
244 int do_trial_division, BN_GENCB *cb)
245 {
246 int i, j, ret = -1;
247 int k;
248 BN_CTX *ctx = NULL;
249 BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
250 BN_MONT_CTX *mont = NULL;
251 const BIGNUM *A = NULL;

253 if (BN_cmp(a, BN_value_one()) <= 0)
254 return 0;
255
256 if (checks == BN_prime_checks)
257 checks = BN_prime_checks_for_size(BN_num_bits(a));

259 /* first look for small factors */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_prime.c 5

260 if (!BN_is_odd(a))
261 /* a is even => a is prime if and only if a == 2 */
262 return BN_is_word(a, 2);
263 if (do_trial_division)
264 {
265 for (i = 1; i < NUMPRIMES; i++)
266 if (BN_mod_word(a, primes[i]) == 0)
267 return 0;
268 if(!BN_GENCB_call(cb, 1, -1))
269 goto err;
270 }

272 if (ctx_passed != NULL)
273 ctx = ctx_passed;
274 else
275 if ((ctx=BN_CTX_new()) == NULL)
276 goto err;
277 BN_CTX_start(ctx);

279 /* A := abs(a) */
280 if (a->neg)
281 {
282 BIGNUM *t;
283 if ((t = BN_CTX_get(ctx)) == NULL) goto err;
284 BN_copy(t, a);
285 t->neg = 0;
286 A = t;
287 }
288 else
289 A = a;
290 A1 = BN_CTX_get(ctx);
291 A1_odd = BN_CTX_get(ctx);
292 check = BN_CTX_get(ctx);
293 if (check == NULL) goto err;

295 /* compute A1 := A - 1 */
296 if (!BN_copy(A1, A))
297 goto err;
298 if (!BN_sub_word(A1, 1))
299 goto err;
300 if (BN_is_zero(A1))
301 {
302 ret = 0;
303 goto err;
304 }

306 /* write A1 as A1_odd * 2^k */
307 k = 1;
308 while (!BN_is_bit_set(A1, k))
309 k++;
310 if (!BN_rshift(A1_odd, A1, k))
311 goto err;

313 /* Montgomery setup for computations mod A */
314 mont = BN_MONT_CTX_new();
315 if (mont == NULL)
316 goto err;
317 if (!BN_MONT_CTX_set(mont, A, ctx))
318 goto err;
319
320 for (i = 0; i < checks; i++)
321 {
322 if (!BN_pseudo_rand_range(check, A1))
323 goto err;
324 if (!BN_add_word(check, 1))
325 goto err;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_prime.c 6

326 /* now 1 <= check < A */

328 j = witness(check, A, A1, A1_odd, k, ctx, mont);
329 if (j == -1) goto err;
330 if (j)
331 {
332 ret=0;
333 goto err;
334 }
335 if(!BN_GENCB_call(cb, 1, i))
336 goto err;
337 }
338 ret=1;
339 err:
340 if (ctx != NULL)
341 {
342 BN_CTX_end(ctx);
343 if (ctx_passed == NULL)
344 BN_CTX_free(ctx);
345 }
346 if (mont != NULL)
347 BN_MONT_CTX_free(mont);

349 return(ret);
350 }

352 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
353 const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont)
354 {
355 if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a
356 return -1;
357 if (BN_is_one(w))
358 return 0; /* probably prime */
359 if (BN_cmp(w, a1) == 0)
360 return 0; /* w == -1 (mod a), ’a’ is probably prime */
361 while (--k)
362 {
363 if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
364 return -1;
365 if (BN_is_one(w))
366 return 1; /* ’a’ is composite, otherwise a previous ’w’
367 * have been == -1 (mod ’a’) */
368 if (BN_cmp(w, a1) == 0)
369 return 0; /* w == -1 (mod a), ’a’ is probably prime */
370 }
371 /* If we get here, ’w’ is the (a-1)/2-th power of the original ’w’,
372 * and it is neither -1 nor +1 -- so ’a’ cannot be prime */
373 bn_check_top(w);
374 return 1;
375 }

377 static int probable_prime(BIGNUM *rnd, int bits)
378 {
379 int i;
380 prime_t mods[NUMPRIMES];
381 BN_ULONG delta,maxdelta;

383 again:
384 if (!BN_rand(rnd,bits,1,1)) return(0);
385 /* we now have a random number ’rand’ to test. */
386 for (i=1; i<NUMPRIMES; i++)
387 mods[i]=(prime_t)BN_mod_word(rnd,(BN_ULONG)primes[i]);
388 maxdelta=BN_MASK2 - primes[NUMPRIMES-1];
389 delta=0;
390 loop: for (i=1; i<NUMPRIMES; i++)
391 {

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_prime.c 7

392 /* check that rnd is not a prime and also
393 * that gcd(rnd-1,primes) == 1 (except for 2) */
394 if (((mods[i]+delta)%primes[i]) <= 1)
395 {
396 delta+=2;
397 if (delta > maxdelta) goto again;
398 goto loop;
399 }
400 }
401 if (!BN_add_word(rnd,delta)) return(0);
402 bn_check_top(rnd);
403 return(1);
404 }

406 static int probable_prime_dh(BIGNUM *rnd, int bits,
407 const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx)
408 {
409 int i,ret=0;
410 BIGNUM *t1;

412 BN_CTX_start(ctx);
413 if ((t1 = BN_CTX_get(ctx)) == NULL) goto err;

415 if (!BN_rand(rnd,bits,0,1)) goto err;

417 /* we need ((rnd-rem) % add) == 0 */

419 if (!BN_mod(t1,rnd,add,ctx)) goto err;
420 if (!BN_sub(rnd,rnd,t1)) goto err;
421 if (rem == NULL)
422 { if (!BN_add_word(rnd,1)) goto err; }
423 else
424 { if (!BN_add(rnd,rnd,rem)) goto err; }

426 /* we now have a random number ’rand’ to test. */

428 loop: for (i=1; i<NUMPRIMES; i++)
429 {
430 /* check that rnd is a prime */
431 if (BN_mod_word(rnd,(BN_ULONG)primes[i]) <= 1)
432 {
433 if (!BN_add(rnd,rnd,add)) goto err;
434 goto loop;
435 }
436 }
437 ret=1;
438 err:
439 BN_CTX_end(ctx);
440 bn_check_top(rnd);
441 return(ret);
442 }

444 static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
445 const BIGNUM *rem, BN_CTX *ctx)
446 {
447 int i,ret=0;
448 BIGNUM *t1,*qadd,*q;

450 bits--;
451 BN_CTX_start(ctx);
452 t1 = BN_CTX_get(ctx);
453 q = BN_CTX_get(ctx);
454 qadd = BN_CTX_get(ctx);
455 if (qadd == NULL) goto err;

457 if (!BN_rshift1(qadd,padd)) goto err;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_prime.c 8

458
459 if (!BN_rand(q,bits,0,1)) goto err;

461 /* we need ((rnd-rem) % add) == 0 */
462 if (!BN_mod(t1,q,qadd,ctx)) goto err;
463 if (!BN_sub(q,q,t1)) goto err;
464 if (rem == NULL)
465 { if (!BN_add_word(q,1)) goto err; }
466 else
467 {
468 if (!BN_rshift1(t1,rem)) goto err;
469 if (!BN_add(q,q,t1)) goto err;
470 }

472 /* we now have a random number ’rand’ to test. */
473 if (!BN_lshift1(p,q)) goto err;
474 if (!BN_add_word(p,1)) goto err;

476 loop: for (i=1; i<NUMPRIMES; i++)
477 {
478 /* check that p and q are prime */
479 /* check that for p and q
480 * gcd(p-1,primes) == 1 (except for 2) */
481 if ((BN_mod_word(p,(BN_ULONG)primes[i]) == 0) ||
482 (BN_mod_word(q,(BN_ULONG)primes[i]) == 0))
483 {
484 if (!BN_add(p,p,padd)) goto err;
485 if (!BN_add(q,q,qadd)) goto err;
486 goto loop;
487 }
488 }
489 ret=1;
490 err:
491 BN_CTX_end(ctx);
492 bn_check_top(p);
493 return(ret);
494 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_print.c 1

**
 8857 Fri May 30 18:31:37 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_print.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_print.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <ctype.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_print.c 2

62 #include <openssl/buffer.h>
63 #include "bn_lcl.h"

65 static const char Hex[]="0123456789ABCDEF";

67 /* Must ’OPENSSL_free’ the returned data */
68 char *BN_bn2hex(const BIGNUM *a)
69 {
70 int i,j,v,z=0;
71 char *buf;
72 char *p;

74 buf=(char *)OPENSSL_malloc(a->top*BN_BYTES*2+2);
75 if (buf == NULL)
76 {
77 BNerr(BN_F_BN_BN2HEX,ERR_R_MALLOC_FAILURE);
78 goto err;
79 }
80 p=buf;
81 if (a->neg) *(p++)=’-’;
82 if (BN_is_zero(a)) *(p++)=’0’;
83 for (i=a->top-1; i >=0; i--)
84 {
85 for (j=BN_BITS2-8; j >= 0; j-=8)
86 {
87 /* strip leading zeros */
88 v=((int)(a->d[i]>>(long)j))&0xff;
89 if (z || (v != 0))
90 {
91 *(p++)=Hex[v>>4];
92 *(p++)=Hex[v&0x0f];
93 z=1;
94 }
95 }
96 }
97 *p=’\0’;
98 err:
99 return(buf);
100 }

102 /* Must ’OPENSSL_free’ the returned data */
103 char *BN_bn2dec(const BIGNUM *a)
104 {
105 int i=0,num, ok = 0;
106 char *buf=NULL;
107 char *p;
108 BIGNUM *t=NULL;
109 BN_ULONG *bn_data=NULL,*lp;

111 /* get an upper bound for the length of the decimal integer
112 * num <= (BN_num_bits(a) + 1) * log(2)
113 * <= 3 * BN_num_bits(a) * 0.1001 + log(2) + 1 (rounding error)
114 * <= BN_num_bits(a)/10 + BN_num_bits/1000 + 1 + 1
115 */
116 i=BN_num_bits(a)*3;
117 num=(i/10+i/1000+1)+1;
118 bn_data=(BN_ULONG *)OPENSSL_malloc((num/BN_DEC_NUM+1)*sizeof(BN_ULONG));
119 buf=(char *)OPENSSL_malloc(num+3);
120 if ((buf == NULL) || (bn_data == NULL))
121 {
122 BNerr(BN_F_BN_BN2DEC,ERR_R_MALLOC_FAILURE);
123 goto err;
124 }
125 if ((t=BN_dup(a)) == NULL) goto err;

127 #define BUF_REMAIN (num+3 - (size_t)(p - buf))

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_print.c 3

128 p=buf;
129 lp=bn_data;
130 if (BN_is_zero(t))
131 {
132 *(p++)=’0’;
133 *(p++)=’\0’;
134 }
135 else
136 {
137 if (BN_is_negative(t))
138 *p++ = ’-’;

140 i=0;
141 while (!BN_is_zero(t))
142 {
143 *lp=BN_div_word(t,BN_DEC_CONV);
144 lp++;
145 }
146 lp--;
147 /* We now have a series of blocks, BN_DEC_NUM chars
148 * in length, where the last one needs truncation.
149 * The blocks need to be reversed in order. */
150 BIO_snprintf(p,BUF_REMAIN,BN_DEC_FMT1,*lp);
151 while (*p) p++;
152 while (lp != bn_data)
153 {
154 lp--;
155 BIO_snprintf(p,BUF_REMAIN,BN_DEC_FMT2,*lp);
156 while (*p) p++;
157 }
158 }
159 ok = 1;
160 err:
161 if (bn_data != NULL) OPENSSL_free(bn_data);
162 if (t != NULL) BN_free(t);
163 if (!ok && buf)
164 {
165 OPENSSL_free(buf);
166 buf = NULL;
167 }

169 return(buf);
170 }

172 int BN_hex2bn(BIGNUM **bn, const char *a)
173 {
174 BIGNUM *ret=NULL;
175 BN_ULONG l=0;
176 int neg=0,h,m,i,j,k,c;
177 int num;

179 if ((a == NULL) || (*a == ’\0’)) return(0);

181 if (*a == ’-’) { neg=1; a++; }

183 for (i=0; isxdigit((unsigned char) a[i]); i++)
184 ;

186 num=i+neg;
187 if (bn == NULL) return(num);

189 /* a is the start of the hex digits, and it is ’i’ long */
190 if (*bn == NULL)
191 {
192 if ((ret=BN_new()) == NULL) return(0);
193 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_print.c 4

194 else
195 {
196 ret= *bn;
197 BN_zero(ret);
198 }

200 /* i is the number of hex digests; */
201 if (bn_expand(ret,i*4) == NULL) goto err;

203 j=i; /* least significant ’hex’ */
204 m=0;
205 h=0;
206 while (j > 0)
207 {
208 m=((BN_BYTES*2) <= j)?(BN_BYTES*2):j;
209 l=0;
210 for (;;)
211 {
212 c=a[j-m];
213 if ((c >= ’0’) && (c <= ’9’)) k=c-’0’;
214 else if ((c >= ’a’) && (c <= ’f’)) k=c-’a’+10;
215 else if ((c >= ’A’) && (c <= ’F’)) k=c-’A’+10;
216 else k=0; /* paranoia */
217 l=(l<<4)|k;

219 if (--m <= 0)
220 {
221 ret->d[h++]=l;
222 break;
223 }
224 }
225 j-=(BN_BYTES*2);
226 }
227 ret->top=h;
228 bn_correct_top(ret);
229 ret->neg=neg;

231 *bn=ret;
232 bn_check_top(ret);
233 return(num);
234 err:
235 if (*bn == NULL) BN_free(ret);
236 return(0);
237 }

239 int BN_dec2bn(BIGNUM **bn, const char *a)
240 {
241 BIGNUM *ret=NULL;
242 BN_ULONG l=0;
243 int neg=0,i,j;
244 int num;

246 if ((a == NULL) || (*a == ’\0’)) return(0);
247 if (*a == ’-’) { neg=1; a++; }

249 for (i=0; isdigit((unsigned char) a[i]); i++)
250 ;

252 num=i+neg;
253 if (bn == NULL) return(num);

255 /* a is the start of the digits, and it is ’i’ long.
256 * We chop it into BN_DEC_NUM digits at a time */
257 if (*bn == NULL)
258 {
259 if ((ret=BN_new()) == NULL) return(0);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_print.c 5

260 }
261 else
262 {
263 ret= *bn;
264 BN_zero(ret);
265 }

267 /* i is the number of digests, a bit of an over expand; */
268 if (bn_expand(ret,i*4) == NULL) goto err;

270 j=BN_DEC_NUM-(i%BN_DEC_NUM);
271 if (j == BN_DEC_NUM) j=0;
272 l=0;
273 while (*a)
274 {
275 l*=10;
276 l+= *a-’0’;
277 a++;
278 if (++j == BN_DEC_NUM)
279 {
280 BN_mul_word(ret,BN_DEC_CONV);
281 BN_add_word(ret,l);
282 l=0;
283 j=0;
284 }
285 }
286 ret->neg=neg;

288 bn_correct_top(ret);
289 *bn=ret;
290 bn_check_top(ret);
291 return(num);
292 err:
293 if (*bn == NULL) BN_free(ret);
294 return(0);
295 }

297 int BN_asc2bn(BIGNUM **bn, const char *a)
298 {
299 const char *p = a;
300 if (*p == ’-’)
301 p++;

303 if (p[0] == ’0’ && (p[1] == ’X’ || p[1] == ’x’))
304 {
305 if (!BN_hex2bn(bn, p + 2))
306 return 0;
307 }
308 else
309 {
310 if (!BN_dec2bn(bn, p))
311 return 0;
312 }
313 if (*a == ’-’)
314 (*bn)->neg = 1;
315 return 1;
316 }

318 #ifndef OPENSSL_NO_BIO
319 #ifndef OPENSSL_NO_FP_API
320 int BN_print_fp(FILE *fp, const BIGNUM *a)
321 {
322 BIO *b;
323 int ret;

325 if ((b=BIO_new(BIO_s_file())) == NULL)

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_print.c 6

326 return(0);
327 BIO_set_fp(b,fp,BIO_NOCLOSE);
328 ret=BN_print(b,a);
329 BIO_free(b);
330 return(ret);
331 }
332 #endif

334 int BN_print(BIO *bp, const BIGNUM *a)
335 {
336 int i,j,v,z=0;
337 int ret=0;

339 if ((a->neg) && (BIO_write(bp,"-",1) != 1)) goto end;
340 if (BN_is_zero(a) && (BIO_write(bp,"0",1) != 1)) goto end;
341 for (i=a->top-1; i >=0; i--)
342 {
343 for (j=BN_BITS2-4; j >= 0; j-=4)
344 {
345 /* strip leading zeros */
346 v=((int)(a->d[i]>>(long)j))&0x0f;
347 if (z || (v != 0))
348 {
349 if (BIO_write(bp,&(Hex[v]),1) != 1)
350 goto end;
351 z=1;
352 }
353 }
354 }
355 ret=1;
356 end:
357 return(ret);
358 }
359 #endif

361 char *BN_options(void)
362 {
363 static int init=0;
364 static char data[16];

366 if (!init)
367 {
368 init++;
369 #ifdef BN_LLONG
370 BIO_snprintf(data,sizeof data,"bn(%d,%d)",
371 (int)sizeof(BN_ULLONG)*8,(int)sizeof(BN_ULONG)*8);
372 #else
373 BIO_snprintf(data,sizeof data,"bn(%d,%d)",
374 (int)sizeof(BN_ULONG)*8,(int)sizeof(BN_ULONG)*8);
375 #endif
376 }
377 return(data);
378 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_rand.c 1

**
 9388 Fri May 30 18:31:37 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_rand.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_rand.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_rand.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include <stdio.h>
113 #include <time.h>
114 #include "cryptlib.h"
115 #include "bn_lcl.h"
116 #include <openssl/rand.h>

118 static int bnrand(int pseudorand, BIGNUM *rnd, int bits, int top, int bottom)
119 {
120 unsigned char *buf=NULL;
121 int ret=0,bit,bytes,mask;
122 time_t tim;

124 if (bits == 0)
125 {
126 BN_zero(rnd);
127 return 1;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_rand.c 3

128 }

130 bytes=(bits+7)/8;
131 bit=(bits-1)%8;
132 mask=0xff<<(bit+1);

134 buf=(unsigned char *)OPENSSL_malloc(bytes);
135 if (buf == NULL)
136 {
137 BNerr(BN_F_BNRAND,ERR_R_MALLOC_FAILURE);
138 goto err;
139 }

141 /* make a random number and set the top and bottom bits */
142 time(&tim);
143 RAND_add(&tim,sizeof(tim),0.0);

145 if (pseudorand)
146 {
147 if (RAND_pseudo_bytes(buf, bytes) == -1)
148 goto err;
149 }
150 else
151 {
152 if (RAND_bytes(buf, bytes) <= 0)
153 goto err;
154 }

156 #if 1
157 if (pseudorand == 2)
158 {
159 /* generate patterns that are more likely to trigger BN
160 library bugs */
161 int i;
162 unsigned char c;

164 for (i = 0; i < bytes; i++)
165 {
166 RAND_pseudo_bytes(&c, 1);
167 if (c >= 128 && i > 0)
168 buf[i] = buf[i-1];
169 else if (c < 42)
170 buf[i] = 0;
171 else if (c < 84)
172 buf[i] = 255;
173 }
174 }
175 #endif

177 if (top != -1)
178 {
179 if (top)
180 {
181 if (bit == 0)
182 {
183 buf[0]=1;
184 buf[1]|=0x80;
185 }
186 else
187 {
188 buf[0]|=(3<<(bit-1));
189 }
190 }
191 else
192 {
193 buf[0]|=(1<<bit);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_rand.c 4

194 }
195 }
196 buf[0] &= ~mask;
197 if (bottom) /* set bottom bit if requested */
198 buf[bytes-1]|=1;
199 if (!BN_bin2bn(buf,bytes,rnd)) goto err;
200 ret=1;
201 err:
202 if (buf != NULL)
203 {
204 OPENSSL_cleanse(buf,bytes);
205 OPENSSL_free(buf);
206 }
207 bn_check_top(rnd);
208 return(ret);
209 }

211 int BN_rand(BIGNUM *rnd, int bits, int top, int bottom)
212 {
213 return bnrand(0, rnd, bits, top, bottom);
214 }

216 int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom)
217 {
218 return bnrand(1, rnd, bits, top, bottom);
219 }

221 #if 1
222 int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom)
223 {
224 return bnrand(2, rnd, bits, top, bottom);
225 }
226 #endif

229 /* random number r: 0 <= r < range */
230 static int bn_rand_range(int pseudo, BIGNUM *r, const BIGNUM *range)
231 {
232 int (*bn_rand)(BIGNUM *, int, int, int) = pseudo ? BN_pseudo_rand : BN_r
233 int n;
234 int count = 100;

236 if (range->neg || BN_is_zero(range))
237 {
238 BNerr(BN_F_BN_RAND_RANGE, BN_R_INVALID_RANGE);
239 return 0;
240 }

242 n = BN_num_bits(range); /* n > 0 */

244 /* BN_is_bit_set(range, n - 1) always holds */

246 if (n == 1)
247 BN_zero(r);
248 else if (!BN_is_bit_set(range, n - 2) && !BN_is_bit_set(range, n - 3))
249 {
250 /* range = 100..._2,
251 * so 3*range (= 11..._2) is exactly one bit longer than rang
252 do
253 {
254 if (!bn_rand(r, n + 1, -1, 0)) return 0;
255 /* If r < 3*range, use r := r MOD range
256 * (which is either r, r - range, or r - 2*range).
257 * Otherwise, iterate once more.
258 * Since 3*range = 11..._2, each iteration succeeds wit
259 * probability >= .75. */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_rand.c 5

260 if (BN_cmp(r ,range) >= 0)
261 {
262 if (!BN_sub(r, r, range)) return 0;
263 if (BN_cmp(r, range) >= 0)
264 if (!BN_sub(r, r, range)) return 0;
265 }

267 if (!--count)
268 {
269 BNerr(BN_F_BN_RAND_RANGE, BN_R_TOO_MANY_ITERATIO
270 return 0;
271 }
272
273 }
274 while (BN_cmp(r, range) >= 0);
275 }
276 else
277 {
278 do
279 {
280 /* range = 11..._2 or range = 101..._2 */
281 if (!bn_rand(r, n, -1, 0)) return 0;

283 if (!--count)
284 {
285 BNerr(BN_F_BN_RAND_RANGE, BN_R_TOO_MANY_ITERATIO
286 return 0;
287 }
288 }
289 while (BN_cmp(r, range) >= 0);
290 }

292 bn_check_top(r);
293 return 1;
294 }

297 int BN_rand_range(BIGNUM *r, const BIGNUM *range)
298 {
299 return bn_rand_range(0, r, range);
300 }

302 int BN_pseudo_rand_range(BIGNUM *r, const BIGNUM *range)
303 {
304 return bn_rand_range(1, r, range);
305 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_recp.c 1

**
 6772 Fri May 30 18:31:37 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_recp.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_recp.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include "bn_lcl.h"

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_recp.c 2

63 void BN_RECP_CTX_init(BN_RECP_CTX *recp)
64 {
65 BN_init(&(recp->N));
66 BN_init(&(recp->Nr));
67 recp->num_bits=0;
68 recp->flags=0;
69 }

71 BN_RECP_CTX *BN_RECP_CTX_new(void)
72 {
73 BN_RECP_CTX *ret;

75 if ((ret=(BN_RECP_CTX *)OPENSSL_malloc(sizeof(BN_RECP_CTX))) == NULL)
76 return(NULL);

78 BN_RECP_CTX_init(ret);
79 ret->flags=BN_FLG_MALLOCED;
80 return(ret);
81 }

83 void BN_RECP_CTX_free(BN_RECP_CTX *recp)
84 {
85 if(recp == NULL)
86 return;

88 BN_free(&(recp->N));
89 BN_free(&(recp->Nr));
90 if (recp->flags & BN_FLG_MALLOCED)
91 OPENSSL_free(recp);
92 }

94 int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx)
95 {
96 if (!BN_copy(&(recp->N),d)) return 0;
97 BN_zero(&(recp->Nr));
98 recp->num_bits=BN_num_bits(d);
99 recp->shift=0;
100 return(1);
101 }

103 int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
104 BN_RECP_CTX *recp, BN_CTX *ctx)
105 {
106 int ret=0;
107 BIGNUM *a;
108 const BIGNUM *ca;

110 BN_CTX_start(ctx);
111 if ((a = BN_CTX_get(ctx)) == NULL) goto err;
112 if (y != NULL)
113 {
114 if (x == y)
115 { if (!BN_sqr(a,x,ctx)) goto err; }
116 else
117 { if (!BN_mul(a,x,y,ctx)) goto err; }
118 ca = a;
119 }
120 else
121 ca=x; /* Just do the mod */

123 ret = BN_div_recp(NULL,r,ca,recp,ctx);
124 err:
125 BN_CTX_end(ctx);
126 bn_check_top(r);
127 return(ret);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_recp.c 3

128 }

130 int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
131 BN_RECP_CTX *recp, BN_CTX *ctx)
132 {
133 int i,j,ret=0;
134 BIGNUM *a,*b,*d,*r;

136 BN_CTX_start(ctx);
137 a=BN_CTX_get(ctx);
138 b=BN_CTX_get(ctx);
139 if (dv != NULL)
140 d=dv;
141 else
142 d=BN_CTX_get(ctx);
143 if (rem != NULL)
144 r=rem;
145 else
146 r=BN_CTX_get(ctx);
147 if (a == NULL || b == NULL || d == NULL || r == NULL) goto err;

149 if (BN_ucmp(m,&(recp->N)) < 0)
150 {
151 BN_zero(d);
152 if (!BN_copy(r,m)) return 0;
153 BN_CTX_end(ctx);
154 return(1);
155 }

157 /* We want the remainder
158 * Given input of ABCDEF / ab
159 * we need multiply ABCDEF by 3 digests of the reciprocal of ab
160 *
161 */

163 /* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */
164 i=BN_num_bits(m);
165 j=recp->num_bits<<1;
166 if (j>i) i=j;

168 /* Nr := round(2^i / N) */
169 if (i != recp->shift)
170 recp->shift=BN_reciprocal(&(recp->Nr),&(recp->N),
171 i,ctx); /* BN_reciprocal returns i, or -1 for an error *
172 if (recp->shift == -1) goto err;

174 /* d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i - BN_num_bi
175 * = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i - BN_
176 * <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
177 * = |m/N|
178 */
179 if (!BN_rshift(a,m,recp->num_bits)) goto err;
180 if (!BN_mul(b,a,&(recp->Nr),ctx)) goto err;
181 if (!BN_rshift(d,b,i-recp->num_bits)) goto err;
182 d->neg=0;

184 if (!BN_mul(b,&(recp->N),d,ctx)) goto err;
185 if (!BN_usub(r,m,b)) goto err;
186 r->neg=0;

188 #if 1
189 j=0;
190 while (BN_ucmp(r,&(recp->N)) >= 0)
191 {
192 if (j++ > 2)
193 {

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_recp.c 4

194 BNerr(BN_F_BN_DIV_RECP,BN_R_BAD_RECIPROCAL);
195 goto err;
196 }
197 if (!BN_usub(r,r,&(recp->N))) goto err;
198 if (!BN_add_word(d,1)) goto err;
199 }
200 #endif

202 r->neg=BN_is_zero(r)?0:m->neg;
203 d->neg=m->neg^recp->N.neg;
204 ret=1;
205 err:
206 BN_CTX_end(ctx);
207 bn_check_top(dv);
208 bn_check_top(rem);
209 return(ret);
210 }

212 /* len is the expected size of the result
213 * We actually calculate with an extra word of precision, so
214 * we can do faster division if the remainder is not required.
215 */
216 /* r := 2^len / m */
217 int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx)
218 {
219 int ret= -1;
220 BIGNUM *t;

222 BN_CTX_start(ctx);
223 if((t = BN_CTX_get(ctx)) == NULL) goto err;

225 if (!BN_set_bit(t,len)) goto err;

227 if (!BN_div(r,NULL,t,m,ctx)) goto err;

229 ret=len;
230 err:
231 bn_check_top(r);
232 BN_CTX_end(ctx);
233 return(ret);
234 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_shift.c 1

**
 5648 Fri May 30 18:31:37 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_shift.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_shift.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include "bn_lcl.h"

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_shift.c 2

63 int BN_lshift1(BIGNUM *r, const BIGNUM *a)
64 {
65 register BN_ULONG *ap,*rp,t,c;
66 int i;

68 bn_check_top(r);
69 bn_check_top(a);

71 if (r != a)
72 {
73 r->neg=a->neg;
74 if (bn_wexpand(r,a->top+1) == NULL) return(0);
75 r->top=a->top;
76 }
77 else
78 {
79 if (bn_wexpand(r,a->top+1) == NULL) return(0);
80 }
81 ap=a->d;
82 rp=r->d;
83 c=0;
84 for (i=0; i<a->top; i++)
85 {
86 t= *(ap++);
87 *(rp++)=((t<<1)|c)&BN_MASK2;
88 c=(t & BN_TBIT)?1:0;
89 }
90 if (c)
91 {
92 *rp=1;
93 r->top++;
94 }
95 bn_check_top(r);
96 return(1);
97 }

99 int BN_rshift1(BIGNUM *r, const BIGNUM *a)
100 {
101 BN_ULONG *ap,*rp,t,c;
102 int i,j;

104 bn_check_top(r);
105 bn_check_top(a);

107 if (BN_is_zero(a))
108 {
109 BN_zero(r);
110 return(1);
111 }
112 i = a->top;
113 ap= a->d;
114 j = i-(ap[i-1]==1);
115 if (a != r)
116 {
117 if (bn_wexpand(r,j) == NULL) return(0);
118 r->neg=a->neg;
119 }
120 rp=r->d;
121 t=ap[--i];
122 c=(t&1)?BN_TBIT:0;
123 if (t>>=1) rp[i]=t;
124 while (i>0)
125 {
126 t=ap[--i];
127 rp[i]=((t>>1)&BN_MASK2)|c;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_shift.c 3

128 c=(t&1)?BN_TBIT:0;
129 }
130 r->top=j;
131 bn_check_top(r);
132 return(1);
133 }

135 int BN_lshift(BIGNUM *r, const BIGNUM *a, int n)
136 {
137 int i,nw,lb,rb;
138 BN_ULONG *t,*f;
139 BN_ULONG l;

141 bn_check_top(r);
142 bn_check_top(a);

144 r->neg=a->neg;
145 nw=n/BN_BITS2;
146 if (bn_wexpand(r,a->top+nw+1) == NULL) return(0);
147 lb=n%BN_BITS2;
148 rb=BN_BITS2-lb;
149 f=a->d;
150 t=r->d;
151 t[a->top+nw]=0;
152 if (lb == 0)
153 for (i=a->top-1; i>=0; i--)
154 t[nw+i]=f[i];
155 else
156 for (i=a->top-1; i>=0; i--)
157 {
158 l=f[i];
159 t[nw+i+1]|=(l>>rb)&BN_MASK2;
160 t[nw+i]=(l<<lb)&BN_MASK2;
161 }
162 memset(t,0,nw*sizeof(t[0]));
163 /* for (i=0; i<nw; i++)
164 t[i]=0;*/
165 r->top=a->top+nw+1;
166 bn_correct_top(r);
167 bn_check_top(r);
168 return(1);
169 }

171 int BN_rshift(BIGNUM *r, const BIGNUM *a, int n)
172 {
173 int i,j,nw,lb,rb;
174 BN_ULONG *t,*f;
175 BN_ULONG l,tmp;

177 bn_check_top(r);
178 bn_check_top(a);

180 nw=n/BN_BITS2;
181 rb=n%BN_BITS2;
182 lb=BN_BITS2-rb;
183 if (nw >= a->top || a->top == 0)
184 {
185 BN_zero(r);
186 return(1);
187 }
188 i = (BN_num_bits(a)-n+(BN_BITS2-1))/BN_BITS2;
189 if (r != a)
190 {
191 r->neg=a->neg;
192 if (bn_wexpand(r,i) == NULL) return(0);
193 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_shift.c 4

194 else
195 {
196 if (n == 0)
197 return 1; /* or the copying loop will go berserk */
198 }

200 f= &(a->d[nw]);
201 t=r->d;
202 j=a->top-nw;
203 r->top=i;

205 if (rb == 0)
206 {
207 for (i=j; i != 0; i--)
208 *(t++)= *(f++);
209 }
210 else
211 {
212 l= *(f++);
213 for (i=j-1; i != 0; i--)
214 {
215 tmp =(l>>rb)&BN_MASK2;
216 l= *(f++);
217 *(t++) =(tmp|(l<<lb))&BN_MASK2;
218 }
219 if ((l = (l>>rb)&BN_MASK2)) *(t) = l;
220 }
221 bn_check_top(r);
222 return(1);
223 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_sqr.c 1

**
 7530 Fri May 30 18:31:37 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_sqr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_sqr.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include "bn_lcl.h"

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_sqr.c 2

63 /* r must not be a */
64 /* I’ve just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96 */
65 int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx)
66 {
67 int max,al;
68 int ret = 0;
69 BIGNUM *tmp,*rr;

71 #ifdef BN_COUNT
72 fprintf(stderr,"BN_sqr %d * %d\n",a->top,a->top);
73 #endif
74 bn_check_top(a);

76 al=a->top;
77 if (al <= 0)
78 {
79 r->top=0;
80 return 1;
81 }

83 BN_CTX_start(ctx);
84 rr=(a != r) ? r : BN_CTX_get(ctx);
85 tmp=BN_CTX_get(ctx);
86 if (!rr || !tmp) goto err;

88 max = 2 * al; /* Non-zero (from above) */
89 if (bn_wexpand(rr,max) == NULL) goto err;

91 if (al == 4)
92 {
93 #ifndef BN_SQR_COMBA
94 BN_ULONG t[8];
95 bn_sqr_normal(rr->d,a->d,4,t);
96 #else
97 bn_sqr_comba4(rr->d,a->d);
98 #endif
99 }
100 else if (al == 8)
101 {
102 #ifndef BN_SQR_COMBA
103 BN_ULONG t[16];
104 bn_sqr_normal(rr->d,a->d,8,t);
105 #else
106 bn_sqr_comba8(rr->d,a->d);
107 #endif
108 }
109 else
110 {
111 #if defined(BN_RECURSION)
112 if (al < BN_SQR_RECURSIVE_SIZE_NORMAL)
113 {
114 BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL*2];
115 bn_sqr_normal(rr->d,a->d,al,t);
116 }
117 else
118 {
119 int j,k;

121 j=BN_num_bits_word((BN_ULONG)al);
122 j=1<<(j-1);
123 k=j+j;
124 if (al == j)
125 {
126 if (bn_wexpand(tmp,k*2) == NULL) goto err;
127 bn_sqr_recursive(rr->d,a->d,al,tmp->d);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_sqr.c 3

128 }
129 else
130 {
131 if (bn_wexpand(tmp,max) == NULL) goto err;
132 bn_sqr_normal(rr->d,a->d,al,tmp->d);
133 }
134 }
135 #else
136 if (bn_wexpand(tmp,max) == NULL) goto err;
137 bn_sqr_normal(rr->d,a->d,al,tmp->d);
138 #endif
139 }

141 rr->neg=0;
142 /* If the most-significant half of the top word of ’a’ is zero, then
143 * the square of ’a’ will max-1 words. */
144 if(a->d[al - 1] == (a->d[al - 1] & BN_MASK2l))
145 rr->top = max - 1;
146 else
147 rr->top = max;
148 if (rr != r) BN_copy(r,rr);
149 ret = 1;
150 err:
151 bn_check_top(rr);
152 bn_check_top(tmp);
153 BN_CTX_end(ctx);
154 return(ret);
155 }

157 /* tmp must have 2*n words */
158 void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp)
159 {
160 int i,j,max;
161 const BN_ULONG *ap;
162 BN_ULONG *rp;

164 max=n*2;
165 ap=a;
166 rp=r;
167 rp[0]=rp[max-1]=0;
168 rp++;
169 j=n;

171 if (--j > 0)
172 {
173 ap++;
174 rp[j]=bn_mul_words(rp,ap,j,ap[-1]);
175 rp+=2;
176 }

178 for (i=n-2; i>0; i--)
179 {
180 j--;
181 ap++;
182 rp[j]=bn_mul_add_words(rp,ap,j,ap[-1]);
183 rp+=2;
184 }

186 bn_add_words(r,r,r,max);

188 /* There will not be a carry */

190 bn_sqr_words(tmp,a,n);

192 bn_add_words(r,r,tmp,max);
193 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_sqr.c 4

195 #ifdef BN_RECURSION
196 /* r is 2*n words in size,
197 * a and b are both n words in size. (There’s not actually a ’b’ here ...)
198 * n must be a power of 2.
199 * We multiply and return the result.
200 * t must be 2*n words in size
201 * We calculate
202 * a[0]*b[0]
203 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
204 * a[1]*b[1]
205 */
206 void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t)
207 {
208 int n=n2/2;
209 int zero,c1;
210 BN_ULONG ln,lo,*p;

212 #ifdef BN_COUNT
213 fprintf(stderr," bn_sqr_recursive %d * %d\n",n2,n2);
214 #endif
215 if (n2 == 4)
216 {
217 #ifndef BN_SQR_COMBA
218 bn_sqr_normal(r,a,4,t);
219 #else
220 bn_sqr_comba4(r,a);
221 #endif
222 return;
223 }
224 else if (n2 == 8)
225 {
226 #ifndef BN_SQR_COMBA
227 bn_sqr_normal(r,a,8,t);
228 #else
229 bn_sqr_comba8(r,a);
230 #endif
231 return;
232 }
233 if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL)
234 {
235 bn_sqr_normal(r,a,n2,t);
236 return;
237 }
238 /* r=(a[0]-a[1])*(a[1]-a[0]) */
239 c1=bn_cmp_words(a,&(a[n]),n);
240 zero=0;
241 if (c1 > 0)
242 bn_sub_words(t,a,&(a[n]),n);
243 else if (c1 < 0)
244 bn_sub_words(t,&(a[n]),a,n);
245 else
246 zero=1;

248 /* The result will always be negative unless it is zero */
249 p= &(t[n2*2]);

251 if (!zero)
252 bn_sqr_recursive(&(t[n2]),t,n,p);
253 else
254 memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
255 bn_sqr_recursive(r,a,n,p);
256 bn_sqr_recursive(&(r[n2]),&(a[n]),n,p);

258 /* t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero
259 * r[10] holds (a[0]*b[0])

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_sqr.c 5

260 * r[32] holds (b[1]*b[1])
261 */

263 c1=(int)(bn_add_words(t,r,&(r[n2]),n2));

265 /* t[32] is negative */
266 c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));

268 /* t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1])
269 * r[10] holds (a[0]*a[0])
270 * r[32] holds (a[1]*a[1])
271 * c1 holds the carry bits
272 */
273 c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
274 if (c1)
275 {
276 p= &(r[n+n2]);
277 lo= *p;
278 ln=(lo+c1)&BN_MASK2;
279 *p=ln;

281 /* The overflow will stop before we over write
282 * words we should not overwrite */
283 if (ln < (BN_ULONG)c1)
284 {
285 do {
286 p++;
287 lo= *p;
288 ln=(lo+1)&BN_MASK2;
289 *p=ln;
290 } while (ln == 0);
291 }
292 }
293 }
294 #endif

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_sqrt.c 1

**
 10005 Fri May 30 18:31:37 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_sqrt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_sqrt.c */
2 /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
3 * and Bodo Moeller for the OpenSSL project. */
4 /* ==
5 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * openssl-core@openssl.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ==
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */

58 #include "cryptlib.h"
59 #include "bn_lcl.h"

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_sqrt.c 2

62 BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
63 /* Returns ’ret’ such that
64 * ret^2 == a (mod p),
65 * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
66 * in Algebraic Computational Number Theory", algorithm 1.5.1).
67 * ’p’ must be prime!
68 */
69 {
70 BIGNUM *ret = in;
71 int err = 1;
72 int r;
73 BIGNUM *A, *b, *q, *t, *x, *y;
74 int e, i, j;
75
76 if (!BN_is_odd(p) || BN_abs_is_word(p, 1))
77 {
78 if (BN_abs_is_word(p, 2))
79 {
80 if (ret == NULL)
81 ret = BN_new();
82 if (ret == NULL)
83 goto end;
84 if (!BN_set_word(ret, BN_is_bit_set(a, 0)))
85 {
86 if (ret != in)
87 BN_free(ret);
88 return NULL;
89 }
90 bn_check_top(ret);
91 return ret;
92 }

94 BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
95 return(NULL);
96 }

98 if (BN_is_zero(a) || BN_is_one(a))
99 {
100 if (ret == NULL)
101 ret = BN_new();
102 if (ret == NULL)
103 goto end;
104 if (!BN_set_word(ret, BN_is_one(a)))
105 {
106 if (ret != in)
107 BN_free(ret);
108 return NULL;
109 }
110 bn_check_top(ret);
111 return ret;
112 }

114 BN_CTX_start(ctx);
115 A = BN_CTX_get(ctx);
116 b = BN_CTX_get(ctx);
117 q = BN_CTX_get(ctx);
118 t = BN_CTX_get(ctx);
119 x = BN_CTX_get(ctx);
120 y = BN_CTX_get(ctx);
121 if (y == NULL) goto end;
122
123 if (ret == NULL)
124 ret = BN_new();
125 if (ret == NULL) goto end;

127 /* A = a mod p */

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_sqrt.c 3

128 if (!BN_nnmod(A, a, p, ctx)) goto end;

130 /* now write |p| - 1 as 2^e*q where q is odd */
131 e = 1;
132 while (!BN_is_bit_set(p, e))
133 e++;
134 /* we’ll set q later (if needed) */

136 if (e == 1)
137 {
138 /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse
139 * modulo (|p|-1)/2, and square roots can be computed
140 * directly by modular exponentiation.
141 * We have
142 * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
143 * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
144 */
145 if (!BN_rshift(q, p, 2)) goto end;
146 q->neg = 0;
147 if (!BN_add_word(q, 1)) goto end;
148 if (!BN_mod_exp(ret, A, q, p, ctx)) goto end;
149 err = 0;
150 goto vrfy;
151 }
152
153 if (e == 2)
154 {
155 /* |p| == 5 (mod 8)
156 *
157 * In this case 2 is always a non-square since
158 * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
159 * So if a really is a square, then 2*a is a non-square.
160 * Thus for
161 * b := (2*a)^((|p|-5)/8),
162 * i := (2*a)*b^2
163 * we have
164 * i^2 = (2*a)^((1 + (|p|-5)/4)*2)
165 * = (2*a)^((p-1)/2)
166 * = -1;
167 * so if we set
168 * x := a*b*(i-1),
169 * then
170 * x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
171 * = a^2 * b^2 * (-2*i)
172 * = a*(-i)*(2*a*b^2)
173 * = a*(-i)*i
174 * = a.
175 *
176 * (This is due to A.O.L. Atkin,
177 * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=n
178 * November 1992.)
179 */

181 /* t := 2*a */
182 if (!BN_mod_lshift1_quick(t, A, p)) goto end;

184 /* b := (2*a)^((|p|-5)/8) */
185 if (!BN_rshift(q, p, 3)) goto end;
186 q->neg = 0;
187 if (!BN_mod_exp(b, t, q, p, ctx)) goto end;

189 /* y := b^2 */
190 if (!BN_mod_sqr(y, b, p, ctx)) goto end;

192 /* t := (2*a)*b^2 - 1*/
193 if (!BN_mod_mul(t, t, y, p, ctx)) goto end;

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_sqrt.c 4

194 if (!BN_sub_word(t, 1)) goto end;

196 /* x = a*b*t */
197 if (!BN_mod_mul(x, A, b, p, ctx)) goto end;
198 if (!BN_mod_mul(x, x, t, p, ctx)) goto end;

200 if (!BN_copy(ret, x)) goto end;
201 err = 0;
202 goto vrfy;
203 }
204
205 /* e > 2, so we really have to use the Tonelli/Shanks algorithm.
206 * First, find some y that is not a square. */
207 if (!BN_copy(q, p)) goto end; /* use ’q’ as temp */
208 q->neg = 0;
209 i = 2;
210 do
211 {
212 /* For efficiency, try small numbers first;
213 * if this fails, try random numbers.
214 */
215 if (i < 22)
216 {
217 if (!BN_set_word(y, i)) goto end;
218 }
219 else
220 {
221 if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end;
222 if (BN_ucmp(y, p) >= 0)
223 {
224 if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto e
225 }
226 /* now 0 <= y < |p| */
227 if (BN_is_zero(y))
228 if (!BN_set_word(y, i)) goto end;
229 }
230
231 r = BN_kronecker(y, q, ctx); /* here ’q’ is |p| */
232 if (r < -1) goto end;
233 if (r == 0)
234 {
235 /* m divides p */
236 BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
237 goto end;
238 }
239 }
240 while (r == 1 && ++i < 82);
241
242 if (r != -1)
243 {
244 /* Many rounds and still no non-square -- this is more likely
245 * a bug than just bad luck.
246 * Even if p is not prime, we should have found some y
247 * such that r == -1.
248 */
249 BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
250 goto end;
251 }

253 /* Here’s our actual ’q’: */
254 if (!BN_rshift(q, q, e)) goto end;

256 /* Now that we have some non-square, we can find an element
257 * of order 2^e by computing its q’th power. */
258 if (!BN_mod_exp(y, y, q, p, ctx)) goto end;
259 if (BN_is_one(y))

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_sqrt.c 5

260 {
261 BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
262 goto end;
263 }

265 /* Now we know that (if p is indeed prime) there is an integer
266 * k, 0 <= k < 2^e, such that
267 *
268 * a^q * y^k == 1 (mod p).
269 *
270 * As a^q is a square and y is not, k must be even.
271 * q+1 is even, too, so there is an element
272 *
273 * X := a^((q+1)/2) * y^(k/2),
274 *
275 * and it satisfies
276 *
277 * X^2 = a^q * a * y^k
278 * = a,
279 *
280 * so it is the square root that we are looking for.
281 */
282
283 /* t := (q-1)/2 (note that q is odd) */
284 if (!BN_rshift1(t, q)) goto end;
285
286 /* x := a^((q-1)/2) */
287 if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
288 {
289 if (!BN_nnmod(t, A, p, ctx)) goto end;
290 if (BN_is_zero(t))
291 {
292 /* special case: a == 0 (mod p) */
293 BN_zero(ret);
294 err = 0;
295 goto end;
296 }
297 else
298 if (!BN_one(x)) goto end;
299 }
300 else
301 {
302 if (!BN_mod_exp(x, A, t, p, ctx)) goto end;
303 if (BN_is_zero(x))
304 {
305 /* special case: a == 0 (mod p) */
306 BN_zero(ret);
307 err = 0;
308 goto end;
309 }
310 }

312 /* b := a*x^2 (= a^q) */
313 if (!BN_mod_sqr(b, x, p, ctx)) goto end;
314 if (!BN_mod_mul(b, b, A, p, ctx)) goto end;
315
316 /* x := a*x (= a^((q+1)/2)) */
317 if (!BN_mod_mul(x, x, A, p, ctx)) goto end;

319 while (1)
320 {
321 /* Now b is a^q * y^k for some even k (0 <= k < 2^E
322 * where E refers to the original value of e, which we
323 * don’t keep in a variable), and x is a^((q+1)/2) * y^(k/2)
324 *
325 * We have a*b = x^2,

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_sqrt.c 6

326 * y^2^(e-1) = -1,
327 * b^2^(e-1) = 1.
328 */

330 if (BN_is_one(b))
331 {
332 if (!BN_copy(ret, x)) goto end;
333 err = 0;
334 goto vrfy;
335 }

338 /* find smallest i such that b^(2^i) = 1 */
339 i = 1;
340 if (!BN_mod_sqr(t, b, p, ctx)) goto end;
341 while (!BN_is_one(t))
342 {
343 i++;
344 if (i == e)
345 {
346 BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
347 goto end;
348 }
349 if (!BN_mod_mul(t, t, t, p, ctx)) goto end;
350 }
351

353 /* t := y^2^(e - i - 1) */
354 if (!BN_copy(t, y)) goto end;
355 for (j = e - i - 1; j > 0; j--)
356 {
357 if (!BN_mod_sqr(t, t, p, ctx)) goto end;
358 }
359 if (!BN_mod_mul(y, t, t, p, ctx)) goto end;
360 if (!BN_mod_mul(x, x, t, p, ctx)) goto end;
361 if (!BN_mod_mul(b, b, y, p, ctx)) goto end;
362 e = i;
363 }

365 vrfy:
366 if (!err)
367 {
368 /* verify the result -- the input might have been not a square
369 * (test added in 0.9.8) */
370
371 if (!BN_mod_sqr(x, ret, p, ctx))
372 err = 1;
373
374 if (!err && 0 != BN_cmp(x, A))
375 {
376 BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
377 err = 1;
378 }
379 }

381 end:
382 if (err)
383 {
384 if (ret != NULL && ret != in)
385 {
386 BN_clear_free(ret);
387 }
388 ret = NULL;
389 }
390 BN_CTX_end(ctx);
391 bn_check_top(ret);

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_sqrt.c 7

392 return ret;
393 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_word.c 1

**
 6005 Fri May 30 18:31:37 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_word.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/bn/bn_word.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include "bn_lcl.h"

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_word.c 2

63 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w)
64 {
65 #ifndef BN_LLONG
66 BN_ULONG ret=0;
67 #else
68 BN_ULLONG ret=0;
69 #endif
70 int i;

72 if (w == 0)
73 return (BN_ULONG)-1;

75 bn_check_top(a);
76 w&=BN_MASK2;
77 for (i=a->top-1; i>=0; i--)
78 {
79 #ifndef BN_LLONG
80 ret=((ret<<BN_BITS4)|((a->d[i]>>BN_BITS4)&BN_MASK2l))%w;
81 ret=((ret<<BN_BITS4)|(a->d[i]&BN_MASK2l))%w;
82 #else
83 ret=(BN_ULLONG)(((ret<<(BN_ULLONG)BN_BITS2)|a->d[i])%
84 (BN_ULLONG)w);
85 #endif
86 }
87 return((BN_ULONG)ret);
88 }

90 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w)
91 {
92 BN_ULONG ret = 0;
93 int i, j;

95 bn_check_top(a);
96 w &= BN_MASK2;

98 if (!w)
99 /* actually this an error (division by zero) */
100 return (BN_ULONG)-1;
101 if (a->top == 0)
102 return 0;

104 /* normalize input (so bn_div_words doesn’t complain) */
105 j = BN_BITS2 - BN_num_bits_word(w);
106 w <<= j;
107 if (!BN_lshift(a, a, j))
108 return (BN_ULONG)-1;

110 for (i=a->top-1; i>=0; i--)
111 {
112 BN_ULONG l,d;
113
114 l=a->d[i];
115 d=bn_div_words(ret,l,w);
116 ret=(l-((d*w)&BN_MASK2))&BN_MASK2;
117 a->d[i]=d;
118 }
119 if ((a->top > 0) && (a->d[a->top-1] == 0))
120 a->top--;
121 ret >>= j;
122 bn_check_top(a);
123 return(ret);
124 }

126 int BN_add_word(BIGNUM *a, BN_ULONG w)
127 {

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_word.c 3

128 BN_ULONG l;
129 int i;

131 bn_check_top(a);
132 w &= BN_MASK2;

134 /* degenerate case: w is zero */
135 if (!w) return 1;
136 /* degenerate case: a is zero */
137 if(BN_is_zero(a)) return BN_set_word(a, w);
138 /* handle ’a’ when negative */
139 if (a->neg)
140 {
141 a->neg=0;
142 i=BN_sub_word(a,w);
143 if (!BN_is_zero(a))
144 a->neg=!(a->neg);
145 return(i);
146 }
147 for (i=0;w!=0 && i<a->top;i++)
148 {
149 a->d[i] = l = (a->d[i]+w)&BN_MASK2;
150 w = (w>l)?1:0;
151 }
152 if (w && i==a->top)
153 {
154 if (bn_wexpand(a,a->top+1) == NULL) return 0;
155 a->top++;
156 a->d[i]=w;
157 }
158 bn_check_top(a);
159 return(1);
160 }

162 int BN_sub_word(BIGNUM *a, BN_ULONG w)
163 {
164 int i;

166 bn_check_top(a);
167 w &= BN_MASK2;

169 /* degenerate case: w is zero */
170 if (!w) return 1;
171 /* degenerate case: a is zero */
172 if(BN_is_zero(a))
173 {
174 i = BN_set_word(a,w);
175 if (i != 0)
176 BN_set_negative(a, 1);
177 return i;
178 }
179 /* handle ’a’ when negative */
180 if (a->neg)
181 {
182 a->neg=0;
183 i=BN_add_word(a,w);
184 a->neg=1;
185 return(i);
186 }

188 if ((a->top == 1) && (a->d[0] < w))
189 {
190 a->d[0]=w-a->d[0];
191 a->neg=1;
192 return(1);
193 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_word.c 4

194 i=0;
195 for (;;)
196 {
197 if (a->d[i] >= w)
198 {
199 a->d[i]-=w;
200 break;
201 }
202 else
203 {
204 a->d[i]=(a->d[i]-w)&BN_MASK2;
205 i++;
206 w=1;
207 }
208 }
209 if ((a->d[i] == 0) && (i == (a->top-1)))
210 a->top--;
211 bn_check_top(a);
212 return(1);
213 }

215 int BN_mul_word(BIGNUM *a, BN_ULONG w)
216 {
217 BN_ULONG ll;

219 bn_check_top(a);
220 w&=BN_MASK2;
221 if (a->top)
222 {
223 if (w == 0)
224 BN_zero(a);
225 else
226 {
227 ll=bn_mul_words(a->d,a->d,a->top,w);
228 if (ll)
229 {
230 if (bn_wexpand(a,a->top+1) == NULL) return(0);
231 a->d[a->top++]=ll;
232 }
233 }
234 }
235 bn_check_top(a);
236 return(1);
237 }

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_x931p.c 1

**
 6929 Fri May 30 18:31:37 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/bn_x931p.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* bn_x931p.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2005.
4 */
5 /* ==
6 * Copyright (c) 2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_x931p.c 2

62 /* X9.31 routines for prime derivation */

64 /* X9.31 prime derivation. This is used to generate the primes pi
65 * (p1, p2, q1, q2) from a parameter Xpi by checking successive odd
66 * integers.
67 */

69 static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx,
70 BN_GENCB *cb)
71 {
72 int i = 0;
73 if (!BN_copy(pi, Xpi))
74 return 0;
75 if (!BN_is_odd(pi) && !BN_add_word(pi, 1))
76 return 0;
77 for(;;)
78 {
79 i++;
80 BN_GENCB_call(cb, 0, i);
81 /* NB 27 MR is specificed in X9.31 */
82 if (BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb))
83 break;
84 if (!BN_add_word(pi, 2))
85 return 0;
86 }
87 BN_GENCB_call(cb, 2, i);
88 return 1;
89 }

91 /* This is the main X9.31 prime derivation function. From parameters
92 * Xp1, Xp2 and Xp derive the prime p. If the parameters p1 or p2 are
93 * not NULL they will be returned too: this is needed for testing.
94 */

96 int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
97 const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2,
98 const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
99 {
100 int ret = 0;

102 BIGNUM *t, *p1p2, *pm1;

104 /* Only even e supported */
105 if (!BN_is_odd(e))
106 return 0;

108 BN_CTX_start(ctx);
109 if (!p1)
110 p1 = BN_CTX_get(ctx);

112 if (!p2)
113 p2 = BN_CTX_get(ctx);

115 t = BN_CTX_get(ctx);

117 p1p2 = BN_CTX_get(ctx);

119 pm1 = BN_CTX_get(ctx);

121 if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
122 goto err;

124 if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
125 goto err;

127 if (!BN_mul(p1p2, p1, p2, ctx))

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_x931p.c 3

128 goto err;

130 /* First set p to value of Rp */

132 if (!BN_mod_inverse(p, p2, p1, ctx))
133 goto err;

135 if (!BN_mul(p, p, p2, ctx))
136 goto err;

138 if (!BN_mod_inverse(t, p1, p2, ctx))
139 goto err;

141 if (!BN_mul(t, t, p1, ctx))
142 goto err;

144 if (!BN_sub(p, p, t))
145 goto err;

147 if (p->neg && !BN_add(p, p, p1p2))
148 goto err;

150 /* p now equals Rp */

152 if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
153 goto err;

155 if (!BN_add(p, p, Xp))
156 goto err;

158 /* p now equals Yp0 */

160 for (;;)
161 {
162 int i = 1;
163 BN_GENCB_call(cb, 0, i++);
164 if (!BN_copy(pm1, p))
165 goto err;
166 if (!BN_sub_word(pm1, 1))
167 goto err;
168 if (!BN_gcd(t, pm1, e, ctx))
169 goto err;
170 if (BN_is_one(t)
171 /* X9.31 specifies 8 MR and 1 Lucas test or any prime test
172 * offering similar or better guarantees 50 MR is considerably
173 * better.
174 */
175 && BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb))
176 break;
177 if (!BN_add(p, p, p1p2))
178 goto err;
179 }

181 BN_GENCB_call(cb, 3, 0);

183 ret = 1;

185 err:

187 BN_CTX_end(ctx);

189 return ret;
190 }

192 /* Generate pair of paramters Xp, Xq for X9.31 prime generation.
193 * Note: nbits paramter is sum of number of bits in both.

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_x931p.c 4

194 */

196 int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx)
197 {
198 BIGNUM *t;
199 int i;
200 /* Number of bits for each prime is of the form
201 * 512+128s for s = 0, 1, ...
202 */
203 if ((nbits < 1024) || (nbits & 0xff))
204 return 0;
205 nbits >>= 1;
206 /* The random value Xp must be between sqrt(2) * 2^(nbits-1) and
207 * 2^nbits - 1. By setting the top two bits we ensure that the lower
208 * bound is exceeded.
209 */
210 if (!BN_rand(Xp, nbits, 1, 0))
211 return 0;

213 BN_CTX_start(ctx);
214 t = BN_CTX_get(ctx);

216 for (i = 0; i < 1000; i++)
217 {
218 if (!BN_rand(Xq, nbits, 1, 0))
219 return 0;
220 /* Check that |Xp - Xq| > 2^(nbits - 100) */
221 BN_sub(t, Xp, Xq);
222 if (BN_num_bits(t) > (nbits - 100))
223 break;
224 }

226 BN_CTX_end(ctx);

228 if (i < 1000)
229 return 1;

231 return 0;

233 }

235 /* Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1
236 * and Xp2 only ’p’ needs to be non-NULL. If any of the others are not NULL
237 * the relevant parameter will be stored in it.
238 *
239 * Due to the fact that |Xp - Xq| > 2^(nbits - 100) must be satisfied Xp and Xq
240 * are generated using the previous function and supplied as input.
241 */

243 int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
244 BIGNUM *Xp1, BIGNUM *Xp2,
245 const BIGNUM *Xp,
246 const BIGNUM *e, BN_CTX *ctx,
247 BN_GENCB *cb)
248 {
249 int ret = 0;

251 BN_CTX_start(ctx);
252 if (!Xp1)
253 Xp1 = BN_CTX_get(ctx);
254 if (!Xp2)
255 Xp2 = BN_CTX_get(ctx);

257 if (!BN_rand(Xp1, 101, 0, 0))
258 goto error;
259 if (!BN_rand(Xp2, 101, 0, 0))

new/usr/src/lib/openssl/libsunw_crypto/bn/bn_x931p.c 5

260 goto error;
261 if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb))
262 goto error;

264 ret = 1;

266 error:
267 BN_CTX_end(ctx);

269 return ret;

271 }

new/usr/src/lib/openssl/libsunw_crypto/bn/x86_64-gcc.c 1

**
 13609 Fri May 30 18:31:38 2014
new/usr/src/lib/openssl/libsunw_crypto/bn/x86_64-gcc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #include <bn_lcl.h>
2 #if !(defined(__GNUC__) && __GNUC__>=2)
3 # include "bn_asm.c" /* kind of dirty hack for Sun Studio */
4 #else
5 /*
6 * x86_64 BIGNUM accelerator version 0.1, December 2002.
7 *
8 * Implemented by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
9 * project.
10 *
11 * Rights for redistribution and usage in source and binary forms are
12 * granted according to the OpenSSL license. Warranty of any kind is
13 * disclaimed.
14 *
15 * Q. Version 0.1? It doesn’t sound like Andy, he used to assign real
16 * versions, like 1.0...
17 * A. Well, that’s because this code is basically a quick-n-dirty
18 * proof-of-concept hack. As you can see it’s implemented with
19 * inline assembler, which means that you’re bound to GCC and that
20 * there might be enough room for further improvement.
21 *
22 * Q. Why inline assembler?
23 * A. x86_64 features own ABI which I’m not familiar with. This is
24 * why I decided to let the compiler take care of subroutine
25 * prologue/epilogue as well as register allocation. For reference.
26 * Win64 implements different ABI for AMD64, different from Linux.
27 *
28 * Q. How much faster does it get?
29 * A. ’apps/openssl speed rsa dsa’ output with no-asm:
30 *
31 * sign verify sign/s verify/s
32 * rsa 512 bits 0.0006s 0.0001s 1683.8 18456.2
33 * rsa 1024 bits 0.0028s 0.0002s 356.0 6407.0
34 * rsa 2048 bits 0.0172s 0.0005s 58.0 1957.8
35 * rsa 4096 bits 0.1155s 0.0018s 8.7 555.6
36 * sign verify sign/s verify/s
37 * dsa 512 bits 0.0005s 0.0006s 2100.8 1768.3
38 * dsa 1024 bits 0.0014s 0.0018s 692.3 559.2
39 * dsa 2048 bits 0.0049s 0.0061s 204.7 165.0
40 *
41 * ’apps/openssl speed rsa dsa’ output with this module:
42 *
43 * sign verify sign/s verify/s
44 * rsa 512 bits 0.0004s 0.0000s 2767.1 33297.9
45 * rsa 1024 bits 0.0012s 0.0001s 867.4 14674.7
46 * rsa 2048 bits 0.0061s 0.0002s 164.0 5270.0
47 * rsa 4096 bits 0.0384s 0.0006s 26.1 1650.8
48 * sign verify sign/s verify/s
49 * dsa 512 bits 0.0002s 0.0003s 4442.2 3786.3
50 * dsa 1024 bits 0.0005s 0.0007s 1835.1 1497.4
51 * dsa 2048 bits 0.0016s 0.0020s 620.4 504.6
52 *
53 * For the reference. IA-32 assembler implementation performs
54 * very much like 64-bit code compiled with no-asm on the same
55 * machine.
56 */

58 #ifdef _WIN64
59 #define BN_ULONG unsigned long long
60 #else
61 #define BN_ULONG unsigned long

new/usr/src/lib/openssl/libsunw_crypto/bn/x86_64-gcc.c 2

62 #endif

64 #undef mul
65 #undef mul_add
66 #undef sqr

68 /*
69 * "m"(a), "+m"(r) is the way to favor DirectPath µ-code;
70 * "g"(0) let the compiler to decide where does it
71 * want to keep the value of zero;
72 */
73 #define mul_add(r,a,word,carry) do { \
74 register BN_ULONG high,low; \
75 __asm__ ("mulq %3" \
76 : "=a"(low),"=d"(high) \
77 : "a"(word),"m"(a) \
78 : "cc"); \
79 __asm__ ("addq %2,%0; adcq %3,%1" \
80 : "+r"(carry),"+d"(high)\
81 : "a"(low),"g"(0) \
82 : "cc"); \
83 __asm__ ("addq %2,%0; adcq %3,%1" \
84 : "+m"(r),"+d"(high) \
85 : "r"(carry),"g"(0) \
86 : "cc"); \
87 carry=high; \
88 } while (0)

90 #define mul(r,a,word,carry) do { \
91 register BN_ULONG high,low; \
92 __asm__ ("mulq %3" \
93 : "=a"(low),"=d"(high) \
94 : "a"(word),"g"(a) \
95 : "cc"); \
96 __asm__ ("addq %2,%0; adcq %3,%1" \
97 : "+r"(carry),"+d"(high)\
98 : "a"(low),"g"(0) \
99 : "cc"); \
100 (r)=carry, carry=high; \
101 } while (0)

103 #define sqr(r0,r1,a) \
104 __asm__ ("mulq %2" \
105 : "=a"(r0),"=d"(r1) \
106 : "a"(a) \
107 : "cc");

109 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
110 {
111 BN_ULONG c1=0;

113 if (num <= 0) return(c1);

115 while (num&~3)
116 {
117 mul_add(rp[0],ap[0],w,c1);
118 mul_add(rp[1],ap[1],w,c1);
119 mul_add(rp[2],ap[2],w,c1);
120 mul_add(rp[3],ap[3],w,c1);
121 ap+=4; rp+=4; num-=4;
122 }
123 if (num)
124 {
125 mul_add(rp[0],ap[0],w,c1); if (--num==0) return c1;
126 mul_add(rp[1],ap[1],w,c1); if (--num==0) return c1;
127 mul_add(rp[2],ap[2],w,c1); return c1;

new/usr/src/lib/openssl/libsunw_crypto/bn/x86_64-gcc.c 3

128 }
129
130 return(c1);
131 }

133 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
134 {
135 BN_ULONG c1=0;

137 if (num <= 0) return(c1);

139 while (num&~3)
140 {
141 mul(rp[0],ap[0],w,c1);
142 mul(rp[1],ap[1],w,c1);
143 mul(rp[2],ap[2],w,c1);
144 mul(rp[3],ap[3],w,c1);
145 ap+=4; rp+=4; num-=4;
146 }
147 if (num)
148 {
149 mul(rp[0],ap[0],w,c1); if (--num == 0) return c1;
150 mul(rp[1],ap[1],w,c1); if (--num == 0) return c1;
151 mul(rp[2],ap[2],w,c1);
152 }
153 return(c1);
154 }

156 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
157 {
158 if (n <= 0) return;

160 while (n&~3)
161 {
162 sqr(r[0],r[1],a[0]);
163 sqr(r[2],r[3],a[1]);
164 sqr(r[4],r[5],a[2]);
165 sqr(r[6],r[7],a[3]);
166 a+=4; r+=8; n-=4;
167 }
168 if (n)
169 {
170 sqr(r[0],r[1],a[0]); if (--n == 0) return;
171 sqr(r[2],r[3],a[1]); if (--n == 0) return;
172 sqr(r[4],r[5],a[2]);
173 }
174 }

176 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
177 { BN_ULONG ret,waste;

179 __asm__ ("divq %4"
180 : "=a"(ret),"=d"(waste)
181 : "a"(l),"d"(h),"g"(d)
182 : "cc");

184 return ret;
185 }

187 BN_ULONG bn_add_words (BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int
188 { BN_ULONG ret=0,i=0;

190 if (n <= 0) return 0;

192 __asm__ (
193 " subq %2,%2 \n"

new/usr/src/lib/openssl/libsunw_crypto/bn/x86_64-gcc.c 4

194 ".p2align 4 \n"
195 "1: movq (%4,%2,8),%0 \n"
196 " adcq (%5,%2,8),%0 \n"
197 " movq %0,(%3,%2,8) \n"
198 " leaq 1(%2),%2 \n"
199 " loop 1b \n"
200 " sbbq %0,%0 \n"
201 : "=&a"(ret),"+c"(n),"=&r"(i)
202 : "r"(rp),"r"(ap),"r"(bp)
203 : "cc"
204);

206 return ret&1;
207 }

209 #ifndef SIMICS
210 BN_ULONG bn_sub_words (BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int
211 { BN_ULONG ret=0,i=0;

213 if (n <= 0) return 0;

215 __asm__ (
216 " subq %2,%2 \n"
217 ".p2align 4 \n"
218 "1: movq (%4,%2,8),%0 \n"
219 " sbbq (%5,%2,8),%0 \n"
220 " movq %0,(%3,%2,8) \n"
221 " leaq 1(%2),%2 \n"
222 " loop 1b \n"
223 " sbbq %0,%0 \n"
224 : "=&a"(ret),"+c"(n),"=&r"(i)
225 : "r"(rp),"r"(ap),"r"(bp)
226 : "cc"
227);

229 return ret&1;
230 }
231 #else
232 /* Simics 1.4<7 has buggy sbbq:-(*/
233 #define BN_MASK2 0xffffffffffffffffL
234 BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
235 {
236 BN_ULONG t1,t2;
237 int c=0;

239 if (n <= 0) return((BN_ULONG)0);

241 for (;;)
242 {
243 t1=a[0]; t2=b[0];
244 r[0]=(t1-t2-c)&BN_MASK2;
245 if (t1 != t2) c=(t1 < t2);
246 if (--n <= 0) break;

248 t1=a[1]; t2=b[1];
249 r[1]=(t1-t2-c)&BN_MASK2;
250 if (t1 != t2) c=(t1 < t2);
251 if (--n <= 0) break;

253 t1=a[2]; t2=b[2];
254 r[2]=(t1-t2-c)&BN_MASK2;
255 if (t1 != t2) c=(t1 < t2);
256 if (--n <= 0) break;

258 t1=a[3]; t2=b[3];
259 r[3]=(t1-t2-c)&BN_MASK2;

new/usr/src/lib/openssl/libsunw_crypto/bn/x86_64-gcc.c 5

260 if (t1 != t2) c=(t1 < t2);
261 if (--n <= 0) break;

263 a+=4;
264 b+=4;
265 r+=4;
266 }
267 return(c);
268 }
269 #endif

271 /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
272 /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
273 /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
274 /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0)

276 #if 0
277 /* original macros are kept for reference purposes */
278 #define mul_add_c(a,b,c0,c1,c2) { \
279 BN_ULONG ta=(a),tb=(b); \
280 t1 = ta * tb; \
281 t2 = BN_UMULT_HIGH(ta,tb); \
282 c0 += t1; t2 += (c0<t1)?1:0; \
283 c1 += t2; c2 += (c1<t2)?1:0; \
284 }

286 #define mul_add_c2(a,b,c0,c1,c2) { \
287 BN_ULONG ta=(a),tb=(b),t0; \
288 t1 = BN_UMULT_HIGH(ta,tb); \
289 t0 = ta * tb; \
290 t2 = t1+t1; c2 += (t2<t1)?1:0; \
291 t1 = t0+t0; t2 += (t1<t0)?1:0; \
292 c0 += t1; t2 += (c0<t1)?1:0; \
293 c1 += t2; c2 += (c1<t2)?1:0; \
294 }
295 #else
296 #define mul_add_c(a,b,c0,c1,c2) do { \
297 __asm__ ("mulq %3" \
298 : "=a"(t1),"=d"(t2) \
299 : "a"(a),"m"(b) \
300 : "cc"); \
301 __asm__ ("addq %2,%0; adcq %3,%1" \
302 : "+r"(c0),"+d"(t2) \
303 : "a"(t1),"g"(0) \
304 : "cc"); \
305 __asm__ ("addq %2,%0; adcq %3,%1" \
306 : "+r"(c1),"+r"(c2) \
307 : "d"(t2),"g"(0) \
308 : "cc"); \
309 } while (0)

311 #define sqr_add_c(a,i,c0,c1,c2) do { \
312 __asm__ ("mulq %2" \
313 : "=a"(t1),"=d"(t2) \
314 : "a"(a[i]) \
315 : "cc"); \
316 __asm__ ("addq %2,%0; adcq %3,%1" \
317 : "+r"(c0),"+d"(t2) \
318 : "a"(t1),"g"(0) \
319 : "cc"); \
320 __asm__ ("addq %2,%0; adcq %3,%1" \
321 : "+r"(c1),"+r"(c2) \
322 : "d"(t2),"g"(0) \
323 : "cc"); \
324 } while (0)

new/usr/src/lib/openssl/libsunw_crypto/bn/x86_64-gcc.c 6

326 #define mul_add_c2(a,b,c0,c1,c2) do { \
327 __asm__ ("mulq %3" \
328 : "=a"(t1),"=d"(t2) \
329 : "a"(a),"m"(b) \
330 : "cc"); \
331 __asm__ ("addq %0,%0; adcq %2,%1" \
332 : "+d"(t2),"+r"(c2) \
333 : "g"(0) \
334 : "cc"); \
335 __asm__ ("addq %0,%0; adcq %2,%1" \
336 : "+a"(t1),"+d"(t2) \
337 : "g"(0) \
338 : "cc"); \
339 __asm__ ("addq %2,%0; adcq %3,%1" \
340 : "+r"(c0),"+d"(t2) \
341 : "a"(t1),"g"(0) \
342 : "cc"); \
343 __asm__ ("addq %2,%0; adcq %3,%1" \
344 : "+r"(c1),"+r"(c2) \
345 : "d"(t2),"g"(0) \
346 : "cc"); \
347 } while (0)
348 #endif

350 #define sqr_add_c2(a,i,j,c0,c1,c2) \
351 mul_add_c2((a)[i],(a)[j],c0,c1,c2)

353 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
354 {
355 BN_ULONG t1,t2;
356 BN_ULONG c1,c2,c3;

358 c1=0;
359 c2=0;
360 c3=0;
361 mul_add_c(a[0],b[0],c1,c2,c3);
362 r[0]=c1;
363 c1=0;
364 mul_add_c(a[0],b[1],c2,c3,c1);
365 mul_add_c(a[1],b[0],c2,c3,c1);
366 r[1]=c2;
367 c2=0;
368 mul_add_c(a[2],b[0],c3,c1,c2);
369 mul_add_c(a[1],b[1],c3,c1,c2);
370 mul_add_c(a[0],b[2],c3,c1,c2);
371 r[2]=c3;
372 c3=0;
373 mul_add_c(a[0],b[3],c1,c2,c3);
374 mul_add_c(a[1],b[2],c1,c2,c3);
375 mul_add_c(a[2],b[1],c1,c2,c3);
376 mul_add_c(a[3],b[0],c1,c2,c3);
377 r[3]=c1;
378 c1=0;
379 mul_add_c(a[4],b[0],c2,c3,c1);
380 mul_add_c(a[3],b[1],c2,c3,c1);
381 mul_add_c(a[2],b[2],c2,c3,c1);
382 mul_add_c(a[1],b[3],c2,c3,c1);
383 mul_add_c(a[0],b[4],c2,c3,c1);
384 r[4]=c2;
385 c2=0;
386 mul_add_c(a[0],b[5],c3,c1,c2);
387 mul_add_c(a[1],b[4],c3,c1,c2);
388 mul_add_c(a[2],b[3],c3,c1,c2);
389 mul_add_c(a[3],b[2],c3,c1,c2);
390 mul_add_c(a[4],b[1],c3,c1,c2);
391 mul_add_c(a[5],b[0],c3,c1,c2);

new/usr/src/lib/openssl/libsunw_crypto/bn/x86_64-gcc.c 7

392 r[5]=c3;
393 c3=0;
394 mul_add_c(a[6],b[0],c1,c2,c3);
395 mul_add_c(a[5],b[1],c1,c2,c3);
396 mul_add_c(a[4],b[2],c1,c2,c3);
397 mul_add_c(a[3],b[3],c1,c2,c3);
398 mul_add_c(a[2],b[4],c1,c2,c3);
399 mul_add_c(a[1],b[5],c1,c2,c3);
400 mul_add_c(a[0],b[6],c1,c2,c3);
401 r[6]=c1;
402 c1=0;
403 mul_add_c(a[0],b[7],c2,c3,c1);
404 mul_add_c(a[1],b[6],c2,c3,c1);
405 mul_add_c(a[2],b[5],c2,c3,c1);
406 mul_add_c(a[3],b[4],c2,c3,c1);
407 mul_add_c(a[4],b[3],c2,c3,c1);
408 mul_add_c(a[5],b[2],c2,c3,c1);
409 mul_add_c(a[6],b[1],c2,c3,c1);
410 mul_add_c(a[7],b[0],c2,c3,c1);
411 r[7]=c2;
412 c2=0;
413 mul_add_c(a[7],b[1],c3,c1,c2);
414 mul_add_c(a[6],b[2],c3,c1,c2);
415 mul_add_c(a[5],b[3],c3,c1,c2);
416 mul_add_c(a[4],b[4],c3,c1,c2);
417 mul_add_c(a[3],b[5],c3,c1,c2);
418 mul_add_c(a[2],b[6],c3,c1,c2);
419 mul_add_c(a[1],b[7],c3,c1,c2);
420 r[8]=c3;
421 c3=0;
422 mul_add_c(a[2],b[7],c1,c2,c3);
423 mul_add_c(a[3],b[6],c1,c2,c3);
424 mul_add_c(a[4],b[5],c1,c2,c3);
425 mul_add_c(a[5],b[4],c1,c2,c3);
426 mul_add_c(a[6],b[3],c1,c2,c3);
427 mul_add_c(a[7],b[2],c1,c2,c3);
428 r[9]=c1;
429 c1=0;
430 mul_add_c(a[7],b[3],c2,c3,c1);
431 mul_add_c(a[6],b[4],c2,c3,c1);
432 mul_add_c(a[5],b[5],c2,c3,c1);
433 mul_add_c(a[4],b[6],c2,c3,c1);
434 mul_add_c(a[3],b[7],c2,c3,c1);
435 r[10]=c2;
436 c2=0;
437 mul_add_c(a[4],b[7],c3,c1,c2);
438 mul_add_c(a[5],b[6],c3,c1,c2);
439 mul_add_c(a[6],b[5],c3,c1,c2);
440 mul_add_c(a[7],b[4],c3,c1,c2);
441 r[11]=c3;
442 c3=0;
443 mul_add_c(a[7],b[5],c1,c2,c3);
444 mul_add_c(a[6],b[6],c1,c2,c3);
445 mul_add_c(a[5],b[7],c1,c2,c3);
446 r[12]=c1;
447 c1=0;
448 mul_add_c(a[6],b[7],c2,c3,c1);
449 mul_add_c(a[7],b[6],c2,c3,c1);
450 r[13]=c2;
451 c2=0;
452 mul_add_c(a[7],b[7],c3,c1,c2);
453 r[14]=c3;
454 r[15]=c1;
455 }

457 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)

new/usr/src/lib/openssl/libsunw_crypto/bn/x86_64-gcc.c 8

458 {
459 BN_ULONG t1,t2;
460 BN_ULONG c1,c2,c3;

462 c1=0;
463 c2=0;
464 c3=0;
465 mul_add_c(a[0],b[0],c1,c2,c3);
466 r[0]=c1;
467 c1=0;
468 mul_add_c(a[0],b[1],c2,c3,c1);
469 mul_add_c(a[1],b[0],c2,c3,c1);
470 r[1]=c2;
471 c2=0;
472 mul_add_c(a[2],b[0],c3,c1,c2);
473 mul_add_c(a[1],b[1],c3,c1,c2);
474 mul_add_c(a[0],b[2],c3,c1,c2);
475 r[2]=c3;
476 c3=0;
477 mul_add_c(a[0],b[3],c1,c2,c3);
478 mul_add_c(a[1],b[2],c1,c2,c3);
479 mul_add_c(a[2],b[1],c1,c2,c3);
480 mul_add_c(a[3],b[0],c1,c2,c3);
481 r[3]=c1;
482 c1=0;
483 mul_add_c(a[3],b[1],c2,c3,c1);
484 mul_add_c(a[2],b[2],c2,c3,c1);
485 mul_add_c(a[1],b[3],c2,c3,c1);
486 r[4]=c2;
487 c2=0;
488 mul_add_c(a[2],b[3],c3,c1,c2);
489 mul_add_c(a[3],b[2],c3,c1,c2);
490 r[5]=c3;
491 c3=0;
492 mul_add_c(a[3],b[3],c1,c2,c3);
493 r[6]=c1;
494 r[7]=c2;
495 }

497 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
498 {
499 BN_ULONG t1,t2;
500 BN_ULONG c1,c2,c3;

502 c1=0;
503 c2=0;
504 c3=0;
505 sqr_add_c(a,0,c1,c2,c3);
506 r[0]=c1;
507 c1=0;
508 sqr_add_c2(a,1,0,c2,c3,c1);
509 r[1]=c2;
510 c2=0;
511 sqr_add_c(a,1,c3,c1,c2);
512 sqr_add_c2(a,2,0,c3,c1,c2);
513 r[2]=c3;
514 c3=0;
515 sqr_add_c2(a,3,0,c1,c2,c3);
516 sqr_add_c2(a,2,1,c1,c2,c3);
517 r[3]=c1;
518 c1=0;
519 sqr_add_c(a,2,c2,c3,c1);
520 sqr_add_c2(a,3,1,c2,c3,c1);
521 sqr_add_c2(a,4,0,c2,c3,c1);
522 r[4]=c2;
523 c2=0;

new/usr/src/lib/openssl/libsunw_crypto/bn/x86_64-gcc.c 9

524 sqr_add_c2(a,5,0,c3,c1,c2);
525 sqr_add_c2(a,4,1,c3,c1,c2);
526 sqr_add_c2(a,3,2,c3,c1,c2);
527 r[5]=c3;
528 c3=0;
529 sqr_add_c(a,3,c1,c2,c3);
530 sqr_add_c2(a,4,2,c1,c2,c3);
531 sqr_add_c2(a,5,1,c1,c2,c3);
532 sqr_add_c2(a,6,0,c1,c2,c3);
533 r[6]=c1;
534 c1=0;
535 sqr_add_c2(a,7,0,c2,c3,c1);
536 sqr_add_c2(a,6,1,c2,c3,c1);
537 sqr_add_c2(a,5,2,c2,c3,c1);
538 sqr_add_c2(a,4,3,c2,c3,c1);
539 r[7]=c2;
540 c2=0;
541 sqr_add_c(a,4,c3,c1,c2);
542 sqr_add_c2(a,5,3,c3,c1,c2);
543 sqr_add_c2(a,6,2,c3,c1,c2);
544 sqr_add_c2(a,7,1,c3,c1,c2);
545 r[8]=c3;
546 c3=0;
547 sqr_add_c2(a,7,2,c1,c2,c3);
548 sqr_add_c2(a,6,3,c1,c2,c3);
549 sqr_add_c2(a,5,4,c1,c2,c3);
550 r[9]=c1;
551 c1=0;
552 sqr_add_c(a,5,c2,c3,c1);
553 sqr_add_c2(a,6,4,c2,c3,c1);
554 sqr_add_c2(a,7,3,c2,c3,c1);
555 r[10]=c2;
556 c2=0;
557 sqr_add_c2(a,7,4,c3,c1,c2);
558 sqr_add_c2(a,6,5,c3,c1,c2);
559 r[11]=c3;
560 c3=0;
561 sqr_add_c(a,6,c1,c2,c3);
562 sqr_add_c2(a,7,5,c1,c2,c3);
563 r[12]=c1;
564 c1=0;
565 sqr_add_c2(a,7,6,c2,c3,c1);
566 r[13]=c2;
567 c2=0;
568 sqr_add_c(a,7,c3,c1,c2);
569 r[14]=c3;
570 r[15]=c1;
571 }

573 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
574 {
575 BN_ULONG t1,t2;
576 BN_ULONG c1,c2,c3;

578 c1=0;
579 c2=0;
580 c3=0;
581 sqr_add_c(a,0,c1,c2,c3);
582 r[0]=c1;
583 c1=0;
584 sqr_add_c2(a,1,0,c2,c3,c1);
585 r[1]=c2;
586 c2=0;
587 sqr_add_c(a,1,c3,c1,c2);
588 sqr_add_c2(a,2,0,c3,c1,c2);
589 r[2]=c3;

new/usr/src/lib/openssl/libsunw_crypto/bn/x86_64-gcc.c 10

590 c3=0;
591 sqr_add_c2(a,3,0,c1,c2,c3);
592 sqr_add_c2(a,2,1,c1,c2,c3);
593 r[3]=c1;
594 c1=0;
595 sqr_add_c(a,2,c2,c3,c1);
596 sqr_add_c2(a,3,1,c2,c3,c1);
597 r[4]=c2;
598 c2=0;
599 sqr_add_c2(a,3,2,c3,c1,c2);
600 r[5]=c3;
601 c3=0;
602 sqr_add_c(a,3,c1,c2,c3);
603 r[6]=c1;
604 r[7]=c2;
605 }
606 #endif

new/usr/src/lib/openssl/libsunw_crypto/buffer/buf_err.c 1

**
 3720 Fri May 30 18:31:38 2014
new/usr/src/lib/openssl/libsunw_crypto/buffer/buf_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/buffer/buf_err.c */
2 /* ==
3 * Copyright (c) 1999-2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/buffer/buf_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/buffer.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_BUF,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_BUF,0,reason)

71 static ERR_STRING_DATA BUF_str_functs[]=
72 {
73 {ERR_FUNC(BUF_F_BUF_MEMDUP), "BUF_memdup"},
74 {ERR_FUNC(BUF_F_BUF_MEM_GROW), "BUF_MEM_grow"},
75 {ERR_FUNC(BUF_F_BUF_MEM_GROW_CLEAN), "BUF_MEM_grow_clean"},
76 {ERR_FUNC(BUF_F_BUF_MEM_NEW), "BUF_MEM_new"},
77 {ERR_FUNC(BUF_F_BUF_STRDUP), "BUF_strdup"},
78 {ERR_FUNC(BUF_F_BUF_STRNDUP), "BUF_strndup"},
79 {0,NULL}
80 };

82 static ERR_STRING_DATA BUF_str_reasons[]=
83 {
84 {0,NULL}
85 };

87 #endif

89 void ERR_load_BUF_strings(void)
90 {
91 #ifndef OPENSSL_NO_ERR

93 if (ERR_func_error_string(BUF_str_functs[0].error) == NULL)
94 {
95 ERR_load_strings(0,BUF_str_functs);
96 ERR_load_strings(0,BUF_str_reasons);
97 }
98 #endif
99 }

new/usr/src/lib/openssl/libsunw_crypto/buffer/buf_str.c 1

**
 4266 Fri May 30 18:31:38 2014
new/usr/src/lib/openssl/libsunw_crypto/buffer/buf_str.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/buffer/buffer.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_crypto/buffer/buf_str.c 2

63 char *BUF_strdup(const char *str)
64 {
65 if (str == NULL) return(NULL);
66 return BUF_strndup(str, strlen(str));
67 }

69 char *BUF_strndup(const char *str, size_t siz)
70 {
71 char *ret;

73 if (str == NULL) return(NULL);

75 ret=OPENSSL_malloc(siz+1);
76 if (ret == NULL)
77 {
78 BUFerr(BUF_F_BUF_STRNDUP,ERR_R_MALLOC_FAILURE);
79 return(NULL);
80 }
81 BUF_strlcpy(ret,str,siz+1);
82 return(ret);
83 }

85 void *BUF_memdup(const void *data, size_t siz)
86 {
87 void *ret;

89 if (data == NULL) return(NULL);

91 ret=OPENSSL_malloc(siz);
92 if (ret == NULL)
93 {
94 BUFerr(BUF_F_BUF_MEMDUP,ERR_R_MALLOC_FAILURE);
95 return(NULL);
96 }
97 return memcpy(ret, data, siz);
98 }

100 size_t BUF_strlcpy(char *dst, const char *src, size_t size)
101 {
102 size_t l = 0;
103 for(; size > 1 && *src; size--)
104 {
105 *dst++ = *src++;
106 l++;
107 }
108 if (size)
109 *dst = ’\0’;
110 return l + strlen(src);
111 }

113 size_t BUF_strlcat(char *dst, const char *src, size_t size)
114 {
115 size_t l = 0;
116 for(; size > 0 && *dst; size--, dst++)
117 l++;
118 return l + BUF_strlcpy(dst, src, size);
119 }

new/usr/src/lib/openssl/libsunw_crypto/buffer/buffer.c 1

**
 5831 Fri May 30 18:31:38 2014
new/usr/src/lib/openssl/libsunw_crypto/buffer/buffer.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/buffer/buffer.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_crypto/buffer/buffer.c 2

63 /* LIMIT_BEFORE_EXPANSION is the maximum n such that (n+3)/3*4 < 2**31. That
64 * function is applied in several functions in this file and this limit ensures
65 * that the result fits in an int. */
66 #define LIMIT_BEFORE_EXPANSION 0x5ffffffc

68 BUF_MEM *BUF_MEM_new(void)
69 {
70 BUF_MEM *ret;

72 ret=OPENSSL_malloc(sizeof(BUF_MEM));
73 if (ret == NULL)
74 {
75 BUFerr(BUF_F_BUF_MEM_NEW,ERR_R_MALLOC_FAILURE);
76 return(NULL);
77 }
78 ret->length=0;
79 ret->max=0;
80 ret->data=NULL;
81 return(ret);
82 }

84 void BUF_MEM_free(BUF_MEM *a)
85 {
86 if(a == NULL)
87 return;

89 if (a->data != NULL)
90 {
91 memset(a->data,0,(unsigned int)a->max);
92 OPENSSL_free(a->data);
93 }
94 OPENSSL_free(a);
95 }

97 int BUF_MEM_grow(BUF_MEM *str, size_t len)
98 {
99 char *ret;
100 size_t n;

102 if (str->length >= len)
103 {
104 str->length=len;
105 return(len);
106 }
107 if (str->max >= len)
108 {
109 memset(&str->data[str->length],0,len-str->length);
110 str->length=len;
111 return(len);
112 }
113 /* This limit is sufficient to ensure (len+3)/3*4 < 2**31 */
114 if (len > LIMIT_BEFORE_EXPANSION)
115 {
116 BUFerr(BUF_F_BUF_MEM_GROW,ERR_R_MALLOC_FAILURE);
117 return 0;
118 }
119 n=(len+3)/3*4;
120 if (str->data == NULL)
121 ret=OPENSSL_malloc(n);
122 else
123 ret=OPENSSL_realloc(str->data,n);
124 if (ret == NULL)
125 {
126 BUFerr(BUF_F_BUF_MEM_GROW,ERR_R_MALLOC_FAILURE);
127 len=0;

new/usr/src/lib/openssl/libsunw_crypto/buffer/buffer.c 3

128 }
129 else
130 {
131 str->data=ret;
132 str->max=n;
133 memset(&str->data[str->length],0,len-str->length);
134 str->length=len;
135 }
136 return(len);
137 }

139 int BUF_MEM_grow_clean(BUF_MEM *str, size_t len)
140 {
141 char *ret;
142 size_t n;

144 if (str->length >= len)
145 {
146 memset(&str->data[len],0,str->length-len);
147 str->length=len;
148 return(len);
149 }
150 if (str->max >= len)
151 {
152 memset(&str->data[str->length],0,len-str->length);
153 str->length=len;
154 return(len);
155 }
156 /* This limit is sufficient to ensure (len+3)/3*4 < 2**31 */
157 if (len > LIMIT_BEFORE_EXPANSION)
158 {
159 BUFerr(BUF_F_BUF_MEM_GROW_CLEAN,ERR_R_MALLOC_FAILURE);
160 return 0;
161 }
162 n=(len+3)/3*4;
163 if (str->data == NULL)
164 ret=OPENSSL_malloc(n);
165 else
166 ret=OPENSSL_realloc_clean(str->data,str->max,n);
167 if (ret == NULL)
168 {
169 BUFerr(BUF_F_BUF_MEM_GROW_CLEAN,ERR_R_MALLOC_FAILURE);
170 len=0;
171 }
172 else
173 {
174 str->data=ret;
175 str->max=n;
176 memset(&str->data[str->length],0,len-str->length);
177 str->length=len;
178 }
179 return(len);
180 }

182 void BUF_reverse(unsigned char *out, const unsigned char *in, size_t size)
183 {
184 size_t i;
185 if (in)
186 {
187 out += size - 1;
188 for (i = 0; i < size; i++)
189 *out-- = *in++;
190 }
191 else
192 {
193 unsigned char *q;

new/usr/src/lib/openssl/libsunw_crypto/buffer/buffer.c 4

194 char c;
195 q = out + size - 1;
196 for (i = 0; i < size/2; i++)
197 {
198 c = *q;
199 *q-- = *out;
200 *out++ = c;
201 }
202 }
203 }

new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_cfb.c 1

**
 6802 Fri May 30 18:31:38 2014
new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_cfb.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/camellia/camellia_cfb.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */
51 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
52 * All rights reserved.
53 *
54 * This package is an SSL implementation written
55 * by Eric Young (eay@cryptsoft.com).
56 * The implementation was written so as to conform with Netscapes SSL.
57 *
58 * This library is free for commercial and non-commercial use as long as
59 * the following conditions are aheared to. The following conditions
60 * apply to all code found in this distribution, be it the RC4, RSA,
61 * lhash, DES, etc., code; not just the SSL code. The SSL documentation

new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_cfb.c 2

62 * included with this distribution is covered by the same copyright terms
63 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
64 *
65 * Copyright remains Eric Young’s, and as such any Copyright notices in
66 * the code are not to be removed.
67 * If this package is used in a product, Eric Young should be given attribution
68 * as the author of the parts of the library used.
69 * This can be in the form of a textual message at program startup or
70 * in documentation (online or textual) provided with the package.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the copyright
76 * notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 * notice, this list of conditions and the following disclaimer in the
79 * documentation and/or other materials provided with the distribution.
80 * 3. All advertising materials mentioning features or use of this software
81 * must display the following acknowledgement:
82 * "This product includes cryptographic software written by
83 * Eric Young (eay@cryptsoft.com)"
84 * The word ’cryptographic’ can be left out if the rouines from the library
85 * being used are not cryptographic related :-).
86 * 4. If you include any Windows specific code (or a derivative thereof) from
87 * the apps directory (application code) you must include an acknowledgement:
88 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
89 *
90 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
91 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
92 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
93 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
94 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
95 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
96 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
97 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
98 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
99 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
100 * SUCH DAMAGE.
101 *
102 * The licence and distribution terms for any publically available version or
103 * derivative of this code cannot be changed. i.e. this code cannot simply be
104 * copied and put under another distribution licence
105 * [including the GNU Public Licence.]
106 */

108 #include <openssl/opensslconf.h>
109 #include <openssl/camellia.h>
110 #include <openssl/modes.h>

113 /* The input and output encrypted as though 128bit cfb mode is being
114 * used. The extra state information to record how much of the
115 * 128bit block we have used is contained in *num;
116 */

118 void Camellia_cfb128_encrypt(const unsigned char *in, unsigned char *out,
119 size_t length, const CAMELLIA_KEY *key,
120 unsigned char *ivec, int *num, const int enc)
121 {

123 CRYPTO_cfb128_encrypt(in,out,length,key,ivec,num,enc,(block128_f)Camelli
124 }

126 /* N.B. This expects the input to be packed, MS bit first */
127 void Camellia_cfb1_encrypt(const unsigned char *in, unsigned char *out,

new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_cfb.c 3

128 size_t length, const CAMELLIA_KEY *key,
129 unsigned char *ivec, int *num, const int enc)
130 {
131 CRYPTO_cfb128_1_encrypt(in,out,length,key,ivec,num,enc,(block128_f)Camel
132 }

134 void Camellia_cfb8_encrypt(const unsigned char *in, unsigned char *out,
135 size_t length, const CAMELLIA_KEY *key,
136 unsigned char *ivec, int *num, const int enc)
137 {
138 CRYPTO_cfb128_8_encrypt(in,out,length,key,ivec,num,enc,(block128_f)Camel
139 }

new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_ctr.c 1

**
 2912 Fri May 30 18:31:38 2014
new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_ctr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/camellia/camellia_ctr.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */

52 #include <openssl/camellia.h>
53 #include <openssl/modes.h>

55 void Camellia_ctr128_encrypt(const unsigned char *in, unsigned char *out,
56 size_t length, const CAMELLIA_KEY *key,
57 unsigned char ivec[CAMELLIA_BLOCK_SIZE],
58 unsigned char ecount_buf[CAMELLIA_BLOCK_SIZE],
59 unsigned int *num)
60 {

new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_ctr.c 2

62 CRYPTO_ctr128_encrypt(in,out,length,key,ivec,ecount_buf,num,(block128_f)
63 }

new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_ecb.c 1

**
 2990 Fri May 30 18:31:38 2014
new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_ecb.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/camellia/camellia_ecb.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */

52 #ifndef CAMELLIA_DEBUG
53 # ifndef NDEBUG
54 # define NDEBUG
55 # endif
56 #endif
57 #include <assert.h>

59 #include <openssl/camellia.h>
60 #include "cmll_locl.h"

new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_ecb.c 2

62 void Camellia_ecb_encrypt(const unsigned char *in, unsigned char *out,
63 const CAMELLIA_KEY *key, const int enc)
64 {

66 assert(in && out && key);
67 assert((CAMELLIA_ENCRYPT == enc)||(CAMELLIA_DECRYPT == enc));

69 if (CAMELLIA_ENCRYPT == enc)
70 Camellia_encrypt(in, out, key);
71 else
72 Camellia_decrypt(in, out, key);
73 }

new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_misc.c 1

**
 3336 Fri May 30 18:31:38 2014
new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_misc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/camellia/camellia_misc.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */
51
52 #include <openssl/opensslv.h>
53 #include <openssl/crypto.h>
54 #include <openssl/camellia.h>
55 #include "cmll_locl.h"

57 const char CAMELLIA_version[]="CAMELLIA" OPENSSL_VERSION_PTEXT;

59 int private_Camellia_set_key(const unsigned char *userKey, const int bits,
60 CAMELLIA_KEY *key)
61 {

new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_misc.c 2

62 if(!userKey || !key)
63 return -1;
64 if(bits != 128 && bits != 192 && bits != 256)
65 return -2;
66 key->grand_rounds = Camellia_Ekeygen(bits , userKey, key->u.rd_key);
67 return 0;
68 }

70 void Camellia_encrypt(const unsigned char *in, unsigned char *out,
71 const CAMELLIA_KEY *key)
72 {
73 Camellia_EncryptBlock_Rounds(key->grand_rounds, in , key->u.rd_key , out
74 }

76 void Camellia_decrypt(const unsigned char *in, unsigned char *out,
77 const CAMELLIA_KEY *key)
78 {
79 Camellia_DecryptBlock_Rounds(key->grand_rounds, in , key->u.rd_key , out
80 }

new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_ofb.c 1

**
 6175 Fri May 30 18:31:38 2014
new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_ofb.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/camellia/camellia_ofb.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */
51 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
52 * All rights reserved.
53 *
54 * This package is an SSL implementation written
55 * by Eric Young (eay@cryptsoft.com).
56 * The implementation was written so as to conform with Netscapes SSL.
57 *
58 * This library is free for commercial and non-commercial use as long as
59 * the following conditions are aheared to. The following conditions
60 * apply to all code found in this distribution, be it the RC4, RSA,
61 * lhash, DES, etc., code; not just the SSL code. The SSL documentation

new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_ofb.c 2

62 * included with this distribution is covered by the same copyright terms
63 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
64 *
65 * Copyright remains Eric Young’s, and as such any Copyright notices in
66 * the code are not to be removed.
67 * If this package is used in a product, Eric Young should be given attribution
68 * as the author of the parts of the library used.
69 * This can be in the form of a textual message at program startup or
70 * in documentation (online or textual) provided with the package.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the copyright
76 * notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 * notice, this list of conditions and the following disclaimer in the
79 * documentation and/or other materials provided with the distribution.
80 * 3. All advertising materials mentioning features or use of this software
81 * must display the following acknowledgement:
82 * "This product includes cryptographic software written by
83 * Eric Young (eay@cryptsoft.com)"
84 * The word ’cryptographic’ can be left out if the rouines from the library
85 * being used are not cryptographic related :-).
86 * 4. If you include any Windows specific code (or a derivative thereof) from
87 * the apps directory (application code) you must include an acknowledgement:
88 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
89 *
90 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
91 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
92 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
93 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
94 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
95 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
96 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
97 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
98 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
99 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
100 * SUCH DAMAGE.
101 *
102 * The licence and distribution terms for any publically available version or
103 * derivative of this code cannot be changed. i.e. this code cannot simply be
104 * copied and put under another distribution licence
105 * [including the GNU Public Licence.]
106 */

108 #include <openssl/camellia.h>
109 #include <openssl/modes.h>

111 /* The input and output encrypted as though 128bit ofb mode is being
112 * used. The extra state information to record how much of the
113 * 128bit block we have used is contained in *num;
114 */
115 void Camellia_ofb128_encrypt(const unsigned char *in, unsigned char *out,
116 size_t length, const CAMELLIA_KEY *key,
117 unsigned char *ivec, int *num) {
118 CRYPTO_ofb128_encrypt(in,out,length,key,ivec,num,(block128_f)Camellia_en
119 }

new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_utl.c 1

**
 2841 Fri May 30 18:31:38 2014
new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_utl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/camellia/cmll_utl.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 2011 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */
51
52 #include <openssl/opensslv.h>
53 #include <openssl/crypto.h>
54 #include <openssl/camellia.h>
55 #include "cmll_locl.h"

57 int Camellia_set_key(const unsigned char *userKey, const int bits,
58 CAMELLIA_KEY *key)
59 {
60 #ifdef OPENSSL_FIPS
61 fips_cipher_abort(Camellia);

new/usr/src/lib/openssl/libsunw_crypto/camellia/cmll_utl.c 2

62 #endif
63 return private_Camellia_set_key(userKey, bits, key);
64 }

new/usr/src/lib/openssl/libsunw_crypto/cast/c_cfb64.c 1

**
 4378 Fri May 30 18:31:38 2014
new/usr/src/lib/openssl/libsunw_crypto/cast/c_cfb64.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cast/c_cfb64.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/cast.h>
60 #include "cast_lcl.h"

new/usr/src/lib/openssl/libsunw_crypto/cast/c_cfb64.c 2

62 /* The input and output encrypted as though 64bit cfb mode is being
63 * used. The extra state information to record how much of the
64 * 64bit block we have used is contained in *num;
65 */

67 void CAST_cfb64_encrypt(const unsigned char *in, unsigned char *out,
68 long length, const CAST_KEY *schedule, unsigned char *iv
69 int *num, int enc)
70 {
71 register CAST_LONG v0,v1,t;
72 register int n= *num;
73 register long l=length;
74 CAST_LONG ti[2];
75 unsigned char *iv,c,cc;

77 iv=ivec;
78 if (enc)
79 {
80 while (l--)
81 {
82 if (n == 0)
83 {
84 n2l(iv,v0); ti[0]=v0;
85 n2l(iv,v1); ti[1]=v1;
86 CAST_encrypt((CAST_LONG *)ti,schedule);
87 iv=ivec;
88 t=ti[0]; l2n(t,iv);
89 t=ti[1]; l2n(t,iv);
90 iv=ivec;
91 }
92 c= *(in++)^iv[n];
93 *(out++)=c;
94 iv[n]=c;
95 n=(n+1)&0x07;
96 }
97 }
98 else
99 {
100 while (l--)
101 {
102 if (n == 0)
103 {
104 n2l(iv,v0); ti[0]=v0;
105 n2l(iv,v1); ti[1]=v1;
106 CAST_encrypt((CAST_LONG *)ti,schedule);
107 iv=ivec;
108 t=ti[0]; l2n(t,iv);
109 t=ti[1]; l2n(t,iv);
110 iv=ivec;
111 }
112 cc= *(in++);
113 c=iv[n];
114 iv[n]=cc;
115 *(out++)=c^cc;
116 n=(n+1)&0x07;
117 }
118 }
119 v0=v1=ti[0]=ti[1]=t=c=cc=0;
120 *num=n;
121 }

new/usr/src/lib/openssl/libsunw_crypto/cast/c_ecb.c 1

**
 3620 Fri May 30 18:31:38 2014
new/usr/src/lib/openssl/libsunw_crypto/cast/c_ecb.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cast/c_ecb.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/cast.h>
60 #include "cast_lcl.h"
61 #include <openssl/opensslv.h>

new/usr/src/lib/openssl/libsunw_crypto/cast/c_ecb.c 2

63 const char CAST_version[]="CAST" OPENSSL_VERSION_PTEXT;

65 void CAST_ecb_encrypt(const unsigned char *in, unsigned char *out,
66 const CAST_KEY *ks, int enc)
67 {
68 CAST_LONG l,d[2];

70 n2l(in,l); d[0]=l;
71 n2l(in,l); d[1]=l;
72 if (enc)
73 CAST_encrypt(d,ks);
74 else
75 CAST_decrypt(d,ks);
76 l=d[0]; l2n(l,out);
77 l=d[1]; l2n(l,out);
78 l=d[0]=d[1]=0;
79 }

new/usr/src/lib/openssl/libsunw_crypto/cast/c_enc.c 1

**
 5971 Fri May 30 18:31:39 2014
new/usr/src/lib/openssl/libsunw_crypto/cast/c_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cast/c_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/cast.h>
60 #include <cast_lcl.h>

new/usr/src/lib/openssl/libsunw_crypto/cast/c_enc.c 2

62 void CAST_encrypt(CAST_LONG *data, const CAST_KEY *key)
63 {
64 register CAST_LONG l,r,t;
65 register const CAST_LONG *k;

67 k= &(key->data[0]);
68 l=data[0];
69 r=data[1];

71 E_CAST(0,k,l,r,+,^,-);
72 E_CAST(1,k,r,l,^,-,+);
73 E_CAST(2,k,l,r,-,+,^);
74 E_CAST(3,k,r,l,+,^,-);
75 E_CAST(4,k,l,r,^,-,+);
76 E_CAST(5,k,r,l,-,+,^);
77 E_CAST(6,k,l,r,+,^,-);
78 E_CAST(7,k,r,l,^,-,+);
79 E_CAST(8,k,l,r,-,+,^);
80 E_CAST(9,k,r,l,+,^,-);
81 E_CAST(10,k,l,r,^,-,+);
82 E_CAST(11,k,r,l,-,+,^);
83 if(!key->short_key)
84 {
85 E_CAST(12,k,l,r,+,^,-);
86 E_CAST(13,k,r,l,^,-,+);
87 E_CAST(14,k,l,r,-,+,^);
88 E_CAST(15,k,r,l,+,^,-);
89 }

91 data[1]=l&0xffffffffL;
92 data[0]=r&0xffffffffL;
93 }

95 void CAST_decrypt(CAST_LONG *data, const CAST_KEY *key)
96 {
97 register CAST_LONG l,r,t;
98 register const CAST_LONG *k;

100 k= &(key->data[0]);
101 l=data[0];
102 r=data[1];

104 if(!key->short_key)
105 {
106 E_CAST(15,k,l,r,+,^,-);
107 E_CAST(14,k,r,l,-,+,^);
108 E_CAST(13,k,l,r,^,-,+);
109 E_CAST(12,k,r,l,+,^,-);
110 }
111 E_CAST(11,k,l,r,-,+,^);
112 E_CAST(10,k,r,l,^,-,+);
113 E_CAST(9,k,l,r,+,^,-);
114 E_CAST(8,k,r,l,-,+,^);
115 E_CAST(7,k,l,r,^,-,+);
116 E_CAST(6,k,r,l,+,^,-);
117 E_CAST(5,k,l,r,-,+,^);
118 E_CAST(4,k,r,l,^,-,+);
119 E_CAST(3,k,l,r,+,^,-);
120 E_CAST(2,k,r,l,-,+,^);
121 E_CAST(1,k,l,r,^,-,+);
122 E_CAST(0,k,r,l,+,^,-);

124 data[1]=l&0xffffffffL;
125 data[0]=r&0xffffffffL;
126 }

new/usr/src/lib/openssl/libsunw_crypto/cast/c_enc.c 3

128 void CAST_cbc_encrypt(const unsigned char *in, unsigned char *out, long length,
129 const CAST_KEY *ks, unsigned char *iv, int enc)
130 {
131 register CAST_LONG tin0,tin1;
132 register CAST_LONG tout0,tout1,xor0,xor1;
133 register long l=length;
134 CAST_LONG tin[2];

136 if (enc)
137 {
138 n2l(iv,tout0);
139 n2l(iv,tout1);
140 iv-=8;
141 for (l-=8; l>=0; l-=8)
142 {
143 n2l(in,tin0);
144 n2l(in,tin1);
145 tin0^=tout0;
146 tin1^=tout1;
147 tin[0]=tin0;
148 tin[1]=tin1;
149 CAST_encrypt(tin,ks);
150 tout0=tin[0];
151 tout1=tin[1];
152 l2n(tout0,out);
153 l2n(tout1,out);
154 }
155 if (l != -8)
156 {
157 n2ln(in,tin0,tin1,l+8);
158 tin0^=tout0;
159 tin1^=tout1;
160 tin[0]=tin0;
161 tin[1]=tin1;
162 CAST_encrypt(tin,ks);
163 tout0=tin[0];
164 tout1=tin[1];
165 l2n(tout0,out);
166 l2n(tout1,out);
167 }
168 l2n(tout0,iv);
169 l2n(tout1,iv);
170 }
171 else
172 {
173 n2l(iv,xor0);
174 n2l(iv,xor1);
175 iv-=8;
176 for (l-=8; l>=0; l-=8)
177 {
178 n2l(in,tin0);
179 n2l(in,tin1);
180 tin[0]=tin0;
181 tin[1]=tin1;
182 CAST_decrypt(tin,ks);
183 tout0=tin[0]^xor0;
184 tout1=tin[1]^xor1;
185 l2n(tout0,out);
186 l2n(tout1,out);
187 xor0=tin0;
188 xor1=tin1;
189 }
190 if (l != -8)
191 {
192 n2l(in,tin0);
193 n2l(in,tin1);

new/usr/src/lib/openssl/libsunw_crypto/cast/c_enc.c 4

194 tin[0]=tin0;
195 tin[1]=tin1;
196 CAST_decrypt(tin,ks);
197 tout0=tin[0]^xor0;
198 tout1=tin[1]^xor1;
199 l2nn(tout0,tout1,out,l+8);
200 xor0=tin0;
201 xor1=tin1;
202 }
203 l2n(xor0,iv);
204 l2n(xor1,iv);
205 }
206 tin0=tin1=tout0=tout1=xor0=xor1=0;
207 tin[0]=tin[1]=0;
208 }

new/usr/src/lib/openssl/libsunw_crypto/cast/c_ofb64.c 1

**
 4172 Fri May 30 18:31:39 2014
new/usr/src/lib/openssl/libsunw_crypto/cast/c_ofb64.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cast/c_ofb64.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/cast.h>
60 #include "cast_lcl.h"

new/usr/src/lib/openssl/libsunw_crypto/cast/c_ofb64.c 2

62 /* The input and output encrypted as though 64bit ofb mode is being
63 * used. The extra state information to record how much of the
64 * 64bit block we have used is contained in *num;
65 */
66 void CAST_ofb64_encrypt(const unsigned char *in, unsigned char *out,
67 long length, const CAST_KEY *schedule, unsigned char *iv
68 int *num)
69 {
70 register CAST_LONG v0,v1,t;
71 register int n= *num;
72 register long l=length;
73 unsigned char d[8];
74 register char *dp;
75 CAST_LONG ti[2];
76 unsigned char *iv;
77 int save=0;

79 iv=ivec;
80 n2l(iv,v0);
81 n2l(iv,v1);
82 ti[0]=v0;
83 ti[1]=v1;
84 dp=(char *)d;
85 l2n(v0,dp);
86 l2n(v1,dp);
87 while (l--)
88 {
89 if (n == 0)
90 {
91 CAST_encrypt((CAST_LONG *)ti,schedule);
92 dp=(char *)d;
93 t=ti[0]; l2n(t,dp);
94 t=ti[1]; l2n(t,dp);
95 save++;
96 }
97 *(out++)= *(in++)^d[n];
98 n=(n+1)&0x07;
99 }
100 if (save)
101 {
102 v0=ti[0];
103 v1=ti[1];
104 iv=ivec;
105 l2n(v0,iv);
106 l2n(v1,iv);
107 }
108 t=v0=v1=ti[0]=ti[1]=0;
109 *num=n;
110 }

new/usr/src/lib/openssl/libsunw_crypto/cast/c_skey.c 1

**
 6675 Fri May 30 18:31:39 2014
new/usr/src/lib/openssl/libsunw_crypto/cast/c_skey.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cast/c_skey.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/crypto.h>
60 #include <openssl/cast.h>
61 #include <cast_lcl.h>

new/usr/src/lib/openssl/libsunw_crypto/cast/c_skey.c 2

62 #include <cast_s.h>

64 #define CAST_exp(l,A,a,n) \
65 A[n/4]=l; \
66 a[n+3]=(l)&0xff; \
67 a[n+2]=(l>> 8)&0xff; \
68 a[n+1]=(l>>16)&0xff; \
69 a[n+0]=(l>>24)&0xff;

71 #define S4 CAST_S_table4
72 #define S5 CAST_S_table5
73 #define S6 CAST_S_table6
74 #define S7 CAST_S_table7
75 void CAST_set_key(CAST_KEY *key, int len, const unsigned char *data)
76 #ifdef OPENSSL_FIPS
77 {
78 fips_cipher_abort(CAST);
79 private_CAST_set_key(key, len, data);
80 }
81 void private_CAST_set_key(CAST_KEY *key, int len, const unsigned char *data)
82 #endif
83 {
84 CAST_LONG x[16];
85 CAST_LONG z[16];
86 CAST_LONG k[32];
87 CAST_LONG X[4],Z[4];
88 CAST_LONG l,*K;
89 int i;

91 for (i=0; i<16; i++) x[i]=0;
92 if (len > 16) len=16;
93 for (i=0; i<len; i++)
94 x[i]=data[i];
95 if(len <= 10)
96 key->short_key=1;
97 else
98 key->short_key=0;

100 K= &k[0];
101 X[0]=((x[0]<<24)|(x[1]<<16)|(x[2]<<8)|x[3])&0xffffffffL;
102 X[1]=((x[4]<<24)|(x[5]<<16)|(x[6]<<8)|x[7])&0xffffffffL;
103 X[2]=((x[8]<<24)|(x[9]<<16)|(x[10]<<8)|x[11])&0xffffffffL;
104 X[3]=((x[12]<<24)|(x[13]<<16)|(x[14]<<8)|x[15])&0xffffffffL;

106 for (;;)
107 {
108 l=X[0]^S4[x[13]]^S5[x[15]]^S6[x[12]]^S7[x[14]]^S6[x[8]];
109 CAST_exp(l,Z,z, 0);
110 l=X[2]^S4[z[0]]^S5[z[2]]^S6[z[1]]^S7[z[3]]^S7[x[10]];
111 CAST_exp(l,Z,z, 4);
112 l=X[3]^S4[z[7]]^S5[z[6]]^S6[z[5]]^S7[z[4]]^S4[x[9]];
113 CAST_exp(l,Z,z, 8);
114 l=X[1]^S4[z[10]]^S5[z[9]]^S6[z[11]]^S7[z[8]]^S5[x[11]];
115 CAST_exp(l,Z,z,12);

117 K[0]= S4[z[8]]^S5[z[9]]^S6[z[7]]^S7[z[6]]^S4[z[2]];
118 K[1]= S4[z[10]]^S5[z[11]]^S6[z[5]]^S7[z[4]]^S5[z[6]];
119 K[2]= S4[z[12]]^S5[z[13]]^S6[z[3]]^S7[z[2]]^S6[z[9]];
120 K[3]= S4[z[14]]^S5[z[15]]^S6[z[1]]^S7[z[0]]^S7[z[12]];

122 l=Z[2]^S4[z[5]]^S5[z[7]]^S6[z[4]]^S7[z[6]]^S6[z[0]];
123 CAST_exp(l,X,x, 0);
124 l=Z[0]^S4[x[0]]^S5[x[2]]^S6[x[1]]^S7[x[3]]^S7[z[2]];
125 CAST_exp(l,X,x, 4);
126 l=Z[1]^S4[x[7]]^S5[x[6]]^S6[x[5]]^S7[x[4]]^S4[z[1]];
127 CAST_exp(l,X,x, 8);

new/usr/src/lib/openssl/libsunw_crypto/cast/c_skey.c 3

128 l=Z[3]^S4[x[10]]^S5[x[9]]^S6[x[11]]^S7[x[8]]^S5[z[3]];
129 CAST_exp(l,X,x,12);

131 K[4]= S4[x[3]]^S5[x[2]]^S6[x[12]]^S7[x[13]]^S4[x[8]];
132 K[5]= S4[x[1]]^S5[x[0]]^S6[x[14]]^S7[x[15]]^S5[x[13]];
133 K[6]= S4[x[7]]^S5[x[6]]^S6[x[8]]^S7[x[9]]^S6[x[3]];
134 K[7]= S4[x[5]]^S5[x[4]]^S6[x[10]]^S7[x[11]]^S7[x[7]];

136 l=X[0]^S4[x[13]]^S5[x[15]]^S6[x[12]]^S7[x[14]]^S6[x[8]];
137 CAST_exp(l,Z,z, 0);
138 l=X[2]^S4[z[0]]^S5[z[2]]^S6[z[1]]^S7[z[3]]^S7[x[10]];
139 CAST_exp(l,Z,z, 4);
140 l=X[3]^S4[z[7]]^S5[z[6]]^S6[z[5]]^S7[z[4]]^S4[x[9]];
141 CAST_exp(l,Z,z, 8);
142 l=X[1]^S4[z[10]]^S5[z[9]]^S6[z[11]]^S7[z[8]]^S5[x[11]];
143 CAST_exp(l,Z,z,12);

145 K[8]= S4[z[3]]^S5[z[2]]^S6[z[12]]^S7[z[13]]^S4[z[9]];
146 K[9]= S4[z[1]]^S5[z[0]]^S6[z[14]]^S7[z[15]]^S5[z[12]];
147 K[10]= S4[z[7]]^S5[z[6]]^S6[z[8]]^S7[z[9]]^S6[z[2]];
148 K[11]= S4[z[5]]^S5[z[4]]^S6[z[10]]^S7[z[11]]^S7[z[6]];

150 l=Z[2]^S4[z[5]]^S5[z[7]]^S6[z[4]]^S7[z[6]]^S6[z[0]];
151 CAST_exp(l,X,x, 0);
152 l=Z[0]^S4[x[0]]^S5[x[2]]^S6[x[1]]^S7[x[3]]^S7[z[2]];
153 CAST_exp(l,X,x, 4);
154 l=Z[1]^S4[x[7]]^S5[x[6]]^S6[x[5]]^S7[x[4]]^S4[z[1]];
155 CAST_exp(l,X,x, 8);
156 l=Z[3]^S4[x[10]]^S5[x[9]]^S6[x[11]]^S7[x[8]]^S5[z[3]];
157 CAST_exp(l,X,x,12);

159 K[12]= S4[x[8]]^S5[x[9]]^S6[x[7]]^S7[x[6]]^S4[x[3]];
160 K[13]= S4[x[10]]^S5[x[11]]^S6[x[5]]^S7[x[4]]^S5[x[7]];
161 K[14]= S4[x[12]]^S5[x[13]]^S6[x[3]]^S7[x[2]]^S6[x[8]];
162 K[15]= S4[x[14]]^S5[x[15]]^S6[x[1]]^S7[x[0]]^S7[x[13]];
163 if (K != k) break;
164 K+=16;
165 }

167 for (i=0; i<16; i++)
168 {
169 key->data[i*2]=k[i];
170 key->data[i*2+1]=((k[i+16])+16)&0x1f;
171 }
172 }

new/usr/src/lib/openssl/libsunw_crypto/cmac/cm_ameth.c 1

**
 3192 Fri May 30 18:31:39 2014
new/usr/src/lib/openssl/libsunw_crypto/cmac/cm_ameth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2 * project 2010.
3 */
4 /* ==
5 * Copyright (c) 2010 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ==
51 */

53 #include <stdio.h>
54 #include "cryptlib.h"
55 #include <openssl/evp.h>
56 #include <openssl/cmac.h>
57 #include "asn1_locl.h"

59 /* CMAC "ASN1" method. This is just here to indicate the
60 * maximum CMAC output length and to free up a CMAC
61 * key.

new/usr/src/lib/openssl/libsunw_crypto/cmac/cm_ameth.c 2

62 */

64 static int cmac_size(const EVP_PKEY *pkey)
65 {
66 return EVP_MAX_BLOCK_LENGTH;
67 }

69 static void cmac_key_free(EVP_PKEY *pkey)
70 {
71 CMAC_CTX *cmctx = (CMAC_CTX *)pkey->pkey.ptr;
72 if (cmctx)
73 CMAC_CTX_free(cmctx);
74 }

76 const EVP_PKEY_ASN1_METHOD cmac_asn1_meth =
77 {
78 EVP_PKEY_CMAC,
79 EVP_PKEY_CMAC,
80 0,

82 "CMAC",
83 "OpenSSL CMAC method",

85 0,0,0,0,

87 0,0,0,

89 cmac_size,
90 0,
91 0,0,0,0,0,0,0,

93 cmac_key_free,
94 0,
95 0,0
96 };

new/usr/src/lib/openssl/libsunw_crypto/cmac/cm_pmeth.c 1

**
 5564 Fri May 30 18:31:39 2014
new/usr/src/lib/openssl/libsunw_crypto/cmac/cm_pmeth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2 * project 2010.
3 */
4 /* ==
5 * Copyright (c) 2010 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ==
51 */

53 #include <stdio.h>
54 #include "cryptlib.h"
55 #include <openssl/x509.h>
56 #include <openssl/x509v3.h>
57 #include <openssl/evp.h>
58 #include <openssl/cmac.h>
59 #include "evp_locl.h"

61 /* The context structure and "key" is simply a CMAC_CTX */

new/usr/src/lib/openssl/libsunw_crypto/cmac/cm_pmeth.c 2

63 static int pkey_cmac_init(EVP_PKEY_CTX *ctx)
64 {
65 ctx->data = CMAC_CTX_new();
66 if (!ctx->data)
67 return 0;
68 ctx->keygen_info_count = 0;
69 return 1;
70 }

72 static int pkey_cmac_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src)
73 {
74 if (!pkey_cmac_init(dst))
75 return 0;
76 if (!CMAC_CTX_copy(dst->data, src->data))
77 return 0;
78 return 1;
79 }

81 static void pkey_cmac_cleanup(EVP_PKEY_CTX *ctx)
82 {
83 CMAC_CTX_free(ctx->data);
84 }

86 static int pkey_cmac_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
87 {
88 CMAC_CTX *cmkey = CMAC_CTX_new();
89 CMAC_CTX *cmctx = ctx->data;
90 if (!cmkey)
91 return 0;
92 if (!CMAC_CTX_copy(cmkey, cmctx))
93 {
94 CMAC_CTX_free(cmkey);
95 return 0;
96 }
97 EVP_PKEY_assign(pkey, EVP_PKEY_CMAC, cmkey);
98
99 return 1;
100 }

102 static int int_update(EVP_MD_CTX *ctx,const void *data,size_t count)
103 {
104 if (!CMAC_Update(ctx->pctx->data, data, count))
105 return 0;
106 return 1;
107 }

109 static int cmac_signctx_init(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx)
110 {
111 EVP_MD_CTX_set_flags(mctx, EVP_MD_CTX_FLAG_NO_INIT);
112 mctx->update = int_update;
113 return 1;
114 }

116 static int cmac_signctx(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen,
117 EVP_MD_CTX *mctx)
118 {
119 return CMAC_Final(ctx->data, sig, siglen);
120 }

122 static int pkey_cmac_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
123 {
124 CMAC_CTX *cmctx = ctx->data;
125 switch (type)
126 {

new/usr/src/lib/openssl/libsunw_crypto/cmac/cm_pmeth.c 3

128 case EVP_PKEY_CTRL_SET_MAC_KEY:
129 if (!p2 || p1 < 0)
130 return 0;
131 if (!CMAC_Init(cmctx, p2, p1, NULL, NULL))
132 return 0;
133 break;

135 case EVP_PKEY_CTRL_CIPHER:
136 if (!CMAC_Init(cmctx, NULL, 0, p2, ctx->engine))
137 return 0;
138 break;

140 case EVP_PKEY_CTRL_MD:
141 if (ctx->pkey && !CMAC_CTX_copy(ctx->data,
142 (CMAC_CTX *)ctx->pkey->pkey.ptr))
143 return 0;
144 if (!CMAC_Init(cmctx, NULL, 0, NULL, NULL))
145 return 0;
146 break;

148 default:
149 return -2;

151 }
152 return 1;
153 }

155 static int pkey_cmac_ctrl_str(EVP_PKEY_CTX *ctx,
156 const char *type, const char *value)
157 {
158 if (!value)
159 {
160 return 0;
161 }
162 if (!strcmp(type, "key"))
163 {
164 void *p = (void *)value;
165 return pkey_cmac_ctrl(ctx, EVP_PKEY_CTRL_SET_MAC_KEY,
166 strlen(p), p);
167 }
168 if (!strcmp(type, "cipher"))
169 {
170 const EVP_CIPHER *c;
171 c = EVP_get_cipherbyname(value);
172 if (!c)
173 return 0;
174 return pkey_cmac_ctrl(ctx, EVP_PKEY_CTRL_CIPHER, -1, (void *)c);
175 }
176 if (!strcmp(type, "hexkey"))
177 {
178 unsigned char *key;
179 int r;
180 long keylen;
181 key = string_to_hex(value, &keylen);
182 if (!key)
183 return 0;
184 r = pkey_cmac_ctrl(ctx, EVP_PKEY_CTRL_SET_MAC_KEY, keylen, key);
185 OPENSSL_free(key);
186 return r;
187 }
188 return -2;
189 }

191 const EVP_PKEY_METHOD cmac_pkey_meth =
192 {
193 EVP_PKEY_CMAC,

new/usr/src/lib/openssl/libsunw_crypto/cmac/cm_pmeth.c 4

194 EVP_PKEY_FLAG_SIGCTX_CUSTOM,
195 pkey_cmac_init,
196 pkey_cmac_copy,
197 pkey_cmac_cleanup,

199 0, 0,

201 0,
202 pkey_cmac_keygen,

204 0, 0,

206 0, 0,

208 0,0,

210 cmac_signctx_init,
211 cmac_signctx,

213 0,0,

215 0,0,

217 0,0,

219 0,0,

221 pkey_cmac_ctrl,
222 pkey_cmac_ctrl_str

224 };

new/usr/src/lib/openssl/libsunw_crypto/cmac/cmac.c 1

**
 8810 Fri May 30 18:31:39 2014
new/usr/src/lib/openssl/libsunw_crypto/cmac/cmac.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cmac/cmac.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2010 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

54 #include <stdio.h>
55 #include <stdlib.h>
56 #include <string.h>
57 #include "cryptlib.h"
58 #include <openssl/cmac.h>

60 #ifdef OPENSSL_FIPS
61 #include <openssl/fips.h>

new/usr/src/lib/openssl/libsunw_crypto/cmac/cmac.c 2

62 #endif

64 struct CMAC_CTX_st
65 {
66 /* Cipher context to use */
67 EVP_CIPHER_CTX cctx;
68 /* Keys k1 and k2 */
69 unsigned char k1[EVP_MAX_BLOCK_LENGTH];
70 unsigned char k2[EVP_MAX_BLOCK_LENGTH];
71 /* Temporary block */
72 unsigned char tbl[EVP_MAX_BLOCK_LENGTH];
73 /* Last (possibly partial) block */
74 unsigned char last_block[EVP_MAX_BLOCK_LENGTH];
75 /* Number of bytes in last block: -1 means context not initialised */
76 int nlast_block;
77 };

80 /* Make temporary keys K1 and K2 */

82 static void make_kn(unsigned char *k1, unsigned char *l, int bl)
83 {
84 int i;
85 /* Shift block to left, including carry */
86 for (i = 0; i < bl; i++)
87 {
88 k1[i] = l[i] << 1;
89 if (i < bl - 1 && l[i + 1] & 0x80)
90 k1[i] |= 1;
91 }
92 /* If MSB set fixup with R */
93 if (l[0] & 0x80)
94 k1[bl - 1] ^= bl == 16 ? 0x87 : 0x1b;
95 }

97 CMAC_CTX *CMAC_CTX_new(void)
98 {
99 CMAC_CTX *ctx;
100 ctx = OPENSSL_malloc(sizeof(CMAC_CTX));
101 if (!ctx)
102 return NULL;
103 EVP_CIPHER_CTX_init(&ctx->cctx);
104 ctx->nlast_block = -1;
105 return ctx;
106 }

108 void CMAC_CTX_cleanup(CMAC_CTX *ctx)
109 {
110 #ifdef OPENSSL_FIPS
111 if (FIPS_mode() && !ctx->cctx.engine)
112 {
113 FIPS_cmac_ctx_cleanup(ctx);
114 return;
115 }
116 #endif
117 EVP_CIPHER_CTX_cleanup(&ctx->cctx);
118 OPENSSL_cleanse(ctx->tbl, EVP_MAX_BLOCK_LENGTH);
119 OPENSSL_cleanse(ctx->k1, EVP_MAX_BLOCK_LENGTH);
120 OPENSSL_cleanse(ctx->k2, EVP_MAX_BLOCK_LENGTH);
121 OPENSSL_cleanse(ctx->last_block, EVP_MAX_BLOCK_LENGTH);
122 ctx->nlast_block = -1;
123 }

125 EVP_CIPHER_CTX *CMAC_CTX_get0_cipher_ctx(CMAC_CTX *ctx)
126 {
127 return &ctx->cctx;

new/usr/src/lib/openssl/libsunw_crypto/cmac/cmac.c 3

128 }

130 void CMAC_CTX_free(CMAC_CTX *ctx)
131 {
132 CMAC_CTX_cleanup(ctx);
133 OPENSSL_free(ctx);
134 }

136 int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in)
137 {
138 int bl;
139 if (in->nlast_block == -1)
140 return 0;
141 if (!EVP_CIPHER_CTX_copy(&out->cctx, &in->cctx))
142 return 0;
143 bl = EVP_CIPHER_CTX_block_size(&in->cctx);
144 memcpy(out->k1, in->k1, bl);
145 memcpy(out->k2, in->k2, bl);
146 memcpy(out->tbl, in->tbl, bl);
147 memcpy(out->last_block, in->last_block, bl);
148 out->nlast_block = in->nlast_block;
149 return 1;
150 }

152 int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t keylen,
153 const EVP_CIPHER *cipher, ENGINE *impl)
154 {
155 static unsigned char zero_iv[EVP_MAX_BLOCK_LENGTH];
156 #ifdef OPENSSL_FIPS
157 if (FIPS_mode())
158 {
159 /* If we have an ENGINE need to allow non FIPS */
160 if ((impl || ctx->cctx.engine)
161 && !(ctx->cctx.flags & EVP_CIPH_FLAG_NON_FIPS_ALLOW))

163 {
164 EVPerr(EVP_F_CMAC_INIT, EVP_R_DISABLED_FOR_FIPS);
165 return 0;
166 }
167 /* Other algorithm blocking will be done in FIPS_cmac_init,
168 * via FIPS_cipherinit().
169 */
170 if (!impl && !ctx->cctx.engine)
171 return FIPS_cmac_init(ctx, key, keylen, cipher, NULL);
172 }
173 #endif
174 /* All zeros means restart */
175 if (!key && !cipher && !impl && keylen == 0)
176 {
177 /* Not initialised */
178 if (ctx->nlast_block == -1)
179 return 0;
180 if (!EVP_EncryptInit_ex(&ctx->cctx, NULL, NULL, NULL, zero_iv))
181 return 0;
182 memset(ctx->tbl, 0, EVP_CIPHER_CTX_block_size(&ctx->cctx));
183 ctx->nlast_block = 0;
184 return 1;
185 }
186 /* Initialiase context */
187 if (cipher && !EVP_EncryptInit_ex(&ctx->cctx, cipher, impl, NULL, NULL))
188 return 0;
189 /* Non-NULL key means initialisation complete */
190 if (key)
191 {
192 int bl;
193 if (!EVP_CIPHER_CTX_cipher(&ctx->cctx))

new/usr/src/lib/openssl/libsunw_crypto/cmac/cmac.c 4

194 return 0;
195 if (!EVP_CIPHER_CTX_set_key_length(&ctx->cctx, keylen))
196 return 0;
197 if (!EVP_EncryptInit_ex(&ctx->cctx, NULL, NULL, key, zero_iv))
198 return 0;
199 bl = EVP_CIPHER_CTX_block_size(&ctx->cctx);
200 if (!EVP_Cipher(&ctx->cctx, ctx->tbl, zero_iv, bl))
201 return 0;
202 make_kn(ctx->k1, ctx->tbl, bl);
203 make_kn(ctx->k2, ctx->k1, bl);
204 OPENSSL_cleanse(ctx->tbl, bl);
205 /* Reset context again ready for first data block */
206 if (!EVP_EncryptInit_ex(&ctx->cctx, NULL, NULL, NULL, zero_iv))
207 return 0;
208 /* Zero tbl so resume works */
209 memset(ctx->tbl, 0, bl);
210 ctx->nlast_block = 0;
211 }
212 return 1;
213 }

215 int CMAC_Update(CMAC_CTX *ctx, const void *in, size_t dlen)
216 {
217 const unsigned char *data = in;
218 size_t bl;
219 #ifdef OPENSSL_FIPS
220 if (FIPS_mode() && !ctx->cctx.engine)
221 return FIPS_cmac_update(ctx, in, dlen);
222 #endif
223 if (ctx->nlast_block == -1)
224 return 0;
225 if (dlen == 0)
226 return 1;
227 bl = EVP_CIPHER_CTX_block_size(&ctx->cctx);
228 /* Copy into partial block if we need to */
229 if (ctx->nlast_block > 0)
230 {
231 size_t nleft;
232 nleft = bl - ctx->nlast_block;
233 if (dlen < nleft)
234 nleft = dlen;
235 memcpy(ctx->last_block + ctx->nlast_block, data, nleft);
236 dlen -= nleft;
237 ctx->nlast_block += nleft;
238 /* If no more to process return */
239 if (dlen == 0)
240 return 1;
241 data += nleft;
242 /* Else not final block so encrypt it */
243 if (!EVP_Cipher(&ctx->cctx, ctx->tbl, ctx->last_block,bl))
244 return 0;
245 }
246 /* Encrypt all but one of the complete blocks left */
247 while(dlen > bl)
248 {
249 if (!EVP_Cipher(&ctx->cctx, ctx->tbl, data, bl))
250 return 0;
251 dlen -= bl;
252 data += bl;
253 }
254 /* Copy any data left to last block buffer */
255 memcpy(ctx->last_block, data, dlen);
256 ctx->nlast_block = dlen;
257 return 1;

259 }

new/usr/src/lib/openssl/libsunw_crypto/cmac/cmac.c 5

261 int CMAC_Final(CMAC_CTX *ctx, unsigned char *out, size_t *poutlen)
262 {
263 int i, bl, lb;
264 #ifdef OPENSSL_FIPS
265 if (FIPS_mode() && !ctx->cctx.engine)
266 return FIPS_cmac_final(ctx, out, poutlen);
267 #endif
268 if (ctx->nlast_block == -1)
269 return 0;
270 bl = EVP_CIPHER_CTX_block_size(&ctx->cctx);
271 *poutlen = (size_t)bl;
272 if (!out)
273 return 1;
274 lb = ctx->nlast_block;
275 /* Is last block complete? */
276 if (lb == bl)
277 {
278 for (i = 0; i < bl; i++)
279 out[i] = ctx->last_block[i] ^ ctx->k1[i];
280 }
281 else
282 {
283 ctx->last_block[lb] = 0x80;
284 if (bl - lb > 1)
285 memset(ctx->last_block + lb + 1, 0, bl - lb - 1);
286 for (i = 0; i < bl; i++)
287 out[i] = ctx->last_block[i] ^ ctx->k2[i];
288 }
289 if (!EVP_Cipher(&ctx->cctx, out, out, bl))
290 {
291 OPENSSL_cleanse(out, bl);
292 return 0;
293 }
294 return 1;
295 }

297 int CMAC_resume(CMAC_CTX *ctx)
298 {
299 if (ctx->nlast_block == -1)
300 return 0;
301 /* The buffer "tbl" containes the last fully encrypted block
302 * which is the last IV (or all zeroes if no last encrypted block).
303 * The last block has not been modified since CMAC_final().
304 * So reinitliasing using the last decrypted block will allow
305 * CMAC to continue after calling CMAC_Final().
306 */
307 return EVP_EncryptInit_ex(&ctx->cctx, NULL, NULL, NULL, ctx->tbl);
308 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_asn1.c 1

**
 16758 Fri May 30 18:31:39 2014
new/usr/src/lib/openssl/libsunw_crypto/cms/cms_asn1.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cms/cms_asn1.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

54 #include <openssl/asn1t.h>
55 #include <openssl/pem.h>
56 #include <openssl/x509v3.h>
57 #include <openssl/cms.h>
58 #include <cms_lcl.h>

61 ASN1_SEQUENCE(CMS_IssuerAndSerialNumber) = {

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_asn1.c 2

62 ASN1_SIMPLE(CMS_IssuerAndSerialNumber, issuer, X509_NAME),
63 ASN1_SIMPLE(CMS_IssuerAndSerialNumber, serialNumber, ASN1_INTEGER)
64 } ASN1_SEQUENCE_END(CMS_IssuerAndSerialNumber)

66 ASN1_SEQUENCE(CMS_OtherCertificateFormat) = {
67 ASN1_SIMPLE(CMS_OtherCertificateFormat, otherCertFormat, ASN1_OBJECT),
68 ASN1_OPT(CMS_OtherCertificateFormat, otherCert, ASN1_ANY)
69 } ASN1_SEQUENCE_END(CMS_OtherCertificateFormat)

71 ASN1_CHOICE(CMS_CertificateChoices) = {
72 ASN1_SIMPLE(CMS_CertificateChoices, d.certificate, X509),
73 ASN1_IMP(CMS_CertificateChoices, d.extendedCertificate, ASN1_SEQUENCE, 0
74 ASN1_IMP(CMS_CertificateChoices, d.v1AttrCert, ASN1_SEQUENCE, 1),
75 ASN1_IMP(CMS_CertificateChoices, d.v2AttrCert, ASN1_SEQUENCE, 2),
76 ASN1_IMP(CMS_CertificateChoices, d.other, CMS_OtherCertificateFormat, 3)
77 } ASN1_CHOICE_END(CMS_CertificateChoices)

79 ASN1_CHOICE(CMS_SignerIdentifier) = {
80 ASN1_SIMPLE(CMS_SignerIdentifier, d.issuerAndSerialNumber, CMS_IssuerAnd
81 ASN1_IMP(CMS_SignerIdentifier, d.subjectKeyIdentifier, ASN1_OCTET_STRING
82 } ASN1_CHOICE_END(CMS_SignerIdentifier)

84 ASN1_NDEF_SEQUENCE(CMS_EncapsulatedContentInfo) = {
85 ASN1_SIMPLE(CMS_EncapsulatedContentInfo, eContentType, ASN1_OBJECT),
86 ASN1_NDEF_EXP_OPT(CMS_EncapsulatedContentInfo, eContent, ASN1_OCTET_STRI
87 } ASN1_NDEF_SEQUENCE_END(CMS_EncapsulatedContentInfo)

89 /* Minor tweak to operation: free up signer key, cert */
90 static int cms_si_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
91 void *exarg)
92 {
93 if(operation == ASN1_OP_FREE_POST)
94 {
95 CMS_SignerInfo *si = (CMS_SignerInfo *)*pval;
96 if (si->pkey)
97 EVP_PKEY_free(si->pkey);
98 if (si->signer)
99 X509_free(si->signer);
100 }
101 return 1;
102 }

104 ASN1_SEQUENCE_cb(CMS_SignerInfo, cms_si_cb) = {
105 ASN1_SIMPLE(CMS_SignerInfo, version, LONG),
106 ASN1_SIMPLE(CMS_SignerInfo, sid, CMS_SignerIdentifier),
107 ASN1_SIMPLE(CMS_SignerInfo, digestAlgorithm, X509_ALGOR),
108 ASN1_IMP_SET_OF_OPT(CMS_SignerInfo, signedAttrs, X509_ATTRIBUTE, 0),
109 ASN1_SIMPLE(CMS_SignerInfo, signatureAlgorithm, X509_ALGOR),
110 ASN1_SIMPLE(CMS_SignerInfo, signature, ASN1_OCTET_STRING),
111 ASN1_IMP_SET_OF_OPT(CMS_SignerInfo, unsignedAttrs, X509_ATTRIBUTE, 1)
112 } ASN1_SEQUENCE_END_cb(CMS_SignerInfo, CMS_SignerInfo)

114 ASN1_SEQUENCE(CMS_OtherRevocationInfoFormat) = {
115 ASN1_SIMPLE(CMS_OtherRevocationInfoFormat, otherRevInfoFormat, ASN1_OBJE
116 ASN1_OPT(CMS_OtherRevocationInfoFormat, otherRevInfo, ASN1_ANY)
117 } ASN1_SEQUENCE_END(CMS_OtherRevocationInfoFormat)

119 ASN1_CHOICE(CMS_RevocationInfoChoice) = {
120 ASN1_SIMPLE(CMS_RevocationInfoChoice, d.crl, X509_CRL),
121 ASN1_IMP(CMS_RevocationInfoChoice, d.other, CMS_OtherRevocationInfoForma
122 } ASN1_CHOICE_END(CMS_RevocationInfoChoice)

124 ASN1_NDEF_SEQUENCE(CMS_SignedData) = {
125 ASN1_SIMPLE(CMS_SignedData, version, LONG),
126 ASN1_SET_OF(CMS_SignedData, digestAlgorithms, X509_ALGOR),
127 ASN1_SIMPLE(CMS_SignedData, encapContentInfo, CMS_EncapsulatedContentInf

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_asn1.c 3

128 ASN1_IMP_SET_OF_OPT(CMS_SignedData, certificates, CMS_CertificateChoices
129 ASN1_IMP_SET_OF_OPT(CMS_SignedData, crls, CMS_RevocationInfoChoice, 1),
130 ASN1_SET_OF(CMS_SignedData, signerInfos, CMS_SignerInfo)
131 } ASN1_NDEF_SEQUENCE_END(CMS_SignedData)

133 ASN1_SEQUENCE(CMS_OriginatorInfo) = {
134 ASN1_IMP_SET_OF_OPT(CMS_OriginatorInfo, certificates, CMS_CertificateCho
135 ASN1_IMP_SET_OF_OPT(CMS_OriginatorInfo, crls, CMS_RevocationInfoChoice,
136 } ASN1_SEQUENCE_END(CMS_OriginatorInfo)

138 ASN1_NDEF_SEQUENCE(CMS_EncryptedContentInfo) = {
139 ASN1_SIMPLE(CMS_EncryptedContentInfo, contentType, ASN1_OBJECT),
140 ASN1_SIMPLE(CMS_EncryptedContentInfo, contentEncryptionAlgorithm, X509_A
141 ASN1_IMP_OPT(CMS_EncryptedContentInfo, encryptedContent, ASN1_OCTET_STRI
142 } ASN1_NDEF_SEQUENCE_END(CMS_EncryptedContentInfo)

144 ASN1_SEQUENCE(CMS_KeyTransRecipientInfo) = {
145 ASN1_SIMPLE(CMS_KeyTransRecipientInfo, version, LONG),
146 ASN1_SIMPLE(CMS_KeyTransRecipientInfo, rid, CMS_SignerIdentifier),
147 ASN1_SIMPLE(CMS_KeyTransRecipientInfo, keyEncryptionAlgorithm, X509_ALGO
148 ASN1_SIMPLE(CMS_KeyTransRecipientInfo, encryptedKey, ASN1_OCTET_STRING)
149 } ASN1_SEQUENCE_END(CMS_KeyTransRecipientInfo)

151 ASN1_SEQUENCE(CMS_OtherKeyAttribute) = {
152 ASN1_SIMPLE(CMS_OtherKeyAttribute, keyAttrId, ASN1_OBJECT),
153 ASN1_OPT(CMS_OtherKeyAttribute, keyAttr, ASN1_ANY)
154 } ASN1_SEQUENCE_END(CMS_OtherKeyAttribute)

156 ASN1_SEQUENCE(CMS_RecipientKeyIdentifier) = {
157 ASN1_SIMPLE(CMS_RecipientKeyIdentifier, subjectKeyIdentifier, ASN1_OCTET
158 ASN1_OPT(CMS_RecipientKeyIdentifier, date, ASN1_GENERALIZEDTIME),
159 ASN1_OPT(CMS_RecipientKeyIdentifier, other, CMS_OtherKeyAttribute)
160 } ASN1_SEQUENCE_END(CMS_RecipientKeyIdentifier)

162 ASN1_CHOICE(CMS_KeyAgreeRecipientIdentifier) = {
163 ASN1_SIMPLE(CMS_KeyAgreeRecipientIdentifier, d.issuerAndSerialNumber, CMS_Issu
164 ASN1_IMP(CMS_KeyAgreeRecipientIdentifier, d.rKeyId, CMS_RecipientKeyIdentifier
165 } ASN1_CHOICE_END(CMS_KeyAgreeRecipientIdentifier)

167 ASN1_SEQUENCE(CMS_RecipientEncryptedKey) = {
168 ASN1_SIMPLE(CMS_RecipientEncryptedKey, rid, CMS_KeyAgreeRecipientIdentif
169 ASN1_SIMPLE(CMS_RecipientEncryptedKey, encryptedKey, ASN1_OCTET_STRING)
170 } ASN1_SEQUENCE_END(CMS_RecipientEncryptedKey)

172 ASN1_SEQUENCE(CMS_OriginatorPublicKey) = {
173 ASN1_SIMPLE(CMS_OriginatorPublicKey, algorithm, X509_ALGOR),
174 ASN1_SIMPLE(CMS_OriginatorPublicKey, publicKey, ASN1_BIT_STRING)
175 } ASN1_SEQUENCE_END(CMS_OriginatorPublicKey)

177 ASN1_CHOICE(CMS_OriginatorIdentifierOrKey) = {
178 ASN1_SIMPLE(CMS_OriginatorIdentifierOrKey, d.issuerAndSerialNumber, CMS_Issuer
179 ASN1_IMP(CMS_OriginatorIdentifierOrKey, d.subjectKeyIdentifier, ASN1_OCTET_STR
180 ASN1_IMP(CMS_OriginatorIdentifierOrKey, d.originatorKey, CMS_OriginatorPublicK
181 } ASN1_CHOICE_END(CMS_OriginatorIdentifierOrKey)

183 ASN1_SEQUENCE(CMS_KeyAgreeRecipientInfo) = {
184 ASN1_SIMPLE(CMS_KeyAgreeRecipientInfo, version, LONG),
185 ASN1_EXP(CMS_KeyAgreeRecipientInfo, originator, CMS_OriginatorIdentifier
186 ASN1_EXP_OPT(CMS_KeyAgreeRecipientInfo, ukm, ASN1_OCTET_STRING, 1),
187 ASN1_SIMPLE(CMS_KeyAgreeRecipientInfo, keyEncryptionAlgorithm, X509_ALGO
188 ASN1_SEQUENCE_OF(CMS_KeyAgreeRecipientInfo, recipientEncryptedKeys, CMS_
189 } ASN1_SEQUENCE_END(CMS_KeyAgreeRecipientInfo)

191 ASN1_SEQUENCE(CMS_KEKIdentifier) = {
192 ASN1_SIMPLE(CMS_KEKIdentifier, keyIdentifier, ASN1_OCTET_STRING),
193 ASN1_OPT(CMS_KEKIdentifier, date, ASN1_GENERALIZEDTIME),

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_asn1.c 4

194 ASN1_OPT(CMS_KEKIdentifier, other, CMS_OtherKeyAttribute)
195 } ASN1_SEQUENCE_END(CMS_KEKIdentifier)

197 ASN1_SEQUENCE(CMS_KEKRecipientInfo) = {
198 ASN1_SIMPLE(CMS_KEKRecipientInfo, version, LONG),
199 ASN1_SIMPLE(CMS_KEKRecipientInfo, kekid, CMS_KEKIdentifier),
200 ASN1_SIMPLE(CMS_KEKRecipientInfo, keyEncryptionAlgorithm, X509_ALGOR),
201 ASN1_SIMPLE(CMS_KEKRecipientInfo, encryptedKey, ASN1_OCTET_STRING)
202 } ASN1_SEQUENCE_END(CMS_KEKRecipientInfo)

204 ASN1_SEQUENCE(CMS_PasswordRecipientInfo) = {
205 ASN1_SIMPLE(CMS_PasswordRecipientInfo, version, LONG),
206 ASN1_IMP_OPT(CMS_PasswordRecipientInfo, keyDerivationAlgorithm, X509_ALG
207 ASN1_SIMPLE(CMS_PasswordRecipientInfo, keyEncryptionAlgorithm, X509_ALGO
208 ASN1_SIMPLE(CMS_PasswordRecipientInfo, encryptedKey, ASN1_OCTET_STRING)
209 } ASN1_SEQUENCE_END(CMS_PasswordRecipientInfo)

211 ASN1_SEQUENCE(CMS_OtherRecipientInfo) = {
212 ASN1_SIMPLE(CMS_OtherRecipientInfo, oriType, ASN1_OBJECT),
213 ASN1_OPT(CMS_OtherRecipientInfo, oriValue, ASN1_ANY)
214 } ASN1_SEQUENCE_END(CMS_OtherRecipientInfo)

216 /* Free up RecipientInfo additional data */
217 static int cms_ri_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
218 void *exarg)
219 {
220 if(operation == ASN1_OP_FREE_PRE)
221 {
222 CMS_RecipientInfo *ri = (CMS_RecipientInfo *)*pval;
223 if (ri->type == CMS_RECIPINFO_TRANS)
224 {
225 CMS_KeyTransRecipientInfo *ktri = ri->d.ktri;
226 if (ktri->pkey)
227 EVP_PKEY_free(ktri->pkey);
228 if (ktri->recip)
229 X509_free(ktri->recip);
230 }
231 else if (ri->type == CMS_RECIPINFO_KEK)
232 {
233 CMS_KEKRecipientInfo *kekri = ri->d.kekri;
234 if (kekri->key)
235 {
236 OPENSSL_cleanse(kekri->key, kekri->keylen);
237 OPENSSL_free(kekri->key);
238 }
239 }
240 else if (ri->type == CMS_RECIPINFO_PASS)
241 {
242 CMS_PasswordRecipientInfo *pwri = ri->d.pwri;
243 if (pwri->pass)
244 {
245 OPENSSL_cleanse(pwri->pass, pwri->passlen);
246 OPENSSL_free(pwri->pass);
247 }
248 }
249 }
250 return 1;
251 }

253 ASN1_CHOICE_cb(CMS_RecipientInfo, cms_ri_cb) = {
254 ASN1_SIMPLE(CMS_RecipientInfo, d.ktri, CMS_KeyTransRecipientInfo),
255 ASN1_IMP(CMS_RecipientInfo, d.kari, CMS_KeyAgreeRecipientInfo, 1),
256 ASN1_IMP(CMS_RecipientInfo, d.kekri, CMS_KEKRecipientInfo, 2),
257 ASN1_IMP(CMS_RecipientInfo, d.pwri, CMS_PasswordRecipientInfo, 3),
258 ASN1_IMP(CMS_RecipientInfo, d.ori, CMS_OtherRecipientInfo, 4)
259 } ASN1_CHOICE_END_cb(CMS_RecipientInfo, CMS_RecipientInfo, type)

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_asn1.c 5

261 ASN1_NDEF_SEQUENCE(CMS_EnvelopedData) = {
262 ASN1_SIMPLE(CMS_EnvelopedData, version, LONG),
263 ASN1_IMP_OPT(CMS_EnvelopedData, originatorInfo, CMS_OriginatorInfo, 0),
264 ASN1_SET_OF(CMS_EnvelopedData, recipientInfos, CMS_RecipientInfo),
265 ASN1_SIMPLE(CMS_EnvelopedData, encryptedContentInfo, CMS_EncryptedConten
266 ASN1_IMP_SET_OF_OPT(CMS_EnvelopedData, unprotectedAttrs, X509_ATTRIBUTE,
267 } ASN1_NDEF_SEQUENCE_END(CMS_EnvelopedData)

269 ASN1_NDEF_SEQUENCE(CMS_DigestedData) = {
270 ASN1_SIMPLE(CMS_DigestedData, version, LONG),
271 ASN1_SIMPLE(CMS_DigestedData, digestAlgorithm, X509_ALGOR),
272 ASN1_SIMPLE(CMS_DigestedData, encapContentInfo, CMS_EncapsulatedContentI
273 ASN1_SIMPLE(CMS_DigestedData, digest, ASN1_OCTET_STRING)
274 } ASN1_NDEF_SEQUENCE_END(CMS_DigestedData)

276 ASN1_NDEF_SEQUENCE(CMS_EncryptedData) = {
277 ASN1_SIMPLE(CMS_EncryptedData, version, LONG),
278 ASN1_SIMPLE(CMS_EncryptedData, encryptedContentInfo, CMS_EncryptedConten
279 ASN1_IMP_SET_OF_OPT(CMS_EncryptedData, unprotectedAttrs, X509_ATTRIBUTE,
280 } ASN1_NDEF_SEQUENCE_END(CMS_EncryptedData)

282 ASN1_NDEF_SEQUENCE(CMS_AuthenticatedData) = {
283 ASN1_SIMPLE(CMS_AuthenticatedData, version, LONG),
284 ASN1_IMP_OPT(CMS_AuthenticatedData, originatorInfo, CMS_OriginatorInfo,
285 ASN1_SET_OF(CMS_AuthenticatedData, recipientInfos, CMS_RecipientInfo),
286 ASN1_SIMPLE(CMS_AuthenticatedData, macAlgorithm, X509_ALGOR),
287 ASN1_IMP(CMS_AuthenticatedData, digestAlgorithm, X509_ALGOR, 1),
288 ASN1_SIMPLE(CMS_AuthenticatedData, encapContentInfo, CMS_EncapsulatedCon
289 ASN1_IMP_SET_OF_OPT(CMS_AuthenticatedData, authAttrs, X509_ALGOR, 2),
290 ASN1_SIMPLE(CMS_AuthenticatedData, mac, ASN1_OCTET_STRING),
291 ASN1_IMP_SET_OF_OPT(CMS_AuthenticatedData, unauthAttrs, X509_ALGOR, 3)
292 } ASN1_NDEF_SEQUENCE_END(CMS_AuthenticatedData)

294 ASN1_NDEF_SEQUENCE(CMS_CompressedData) = {
295 ASN1_SIMPLE(CMS_CompressedData, version, LONG),
296 ASN1_SIMPLE(CMS_CompressedData, compressionAlgorithm, X509_ALGOR),
297 ASN1_SIMPLE(CMS_CompressedData, encapContentInfo, CMS_EncapsulatedConten
298 } ASN1_NDEF_SEQUENCE_END(CMS_CompressedData)

300 /* This is the ANY DEFINED BY table for the top level ContentInfo structure */

302 ASN1_ADB_TEMPLATE(cms_default) = ASN1_EXP(CMS_ContentInfo, d.other, ASN1_ANY, 0)

304 ASN1_ADB(CMS_ContentInfo) = {
305 ADB_ENTRY(NID_pkcs7_data, ASN1_NDEF_EXP(CMS_ContentInfo, d.data, ASN1_OC
306 ADB_ENTRY(NID_pkcs7_signed, ASN1_NDEF_EXP(CMS_ContentInfo, d.signedData,
307 ADB_ENTRY(NID_pkcs7_enveloped, ASN1_NDEF_EXP(CMS_ContentInfo, d.envelope
308 ADB_ENTRY(NID_pkcs7_digest, ASN1_NDEF_EXP(CMS_ContentInfo, d.digestedDat
309 ADB_ENTRY(NID_pkcs7_encrypted, ASN1_NDEF_EXP(CMS_ContentInfo, d.encrypte
310 ADB_ENTRY(NID_id_smime_ct_authData, ASN1_NDEF_EXP(CMS_ContentInfo, d.aut
311 ADB_ENTRY(NID_id_smime_ct_compressedData, ASN1_NDEF_EXP(CMS_ContentInfo,
312 } ASN1_ADB_END(CMS_ContentInfo, 0, contentType, 0, &cms_default_tt, NULL);

314 /* CMS streaming support */
315 static int cms_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
316 void *exarg)
317 {
318 ASN1_STREAM_ARG *sarg = exarg;
319 CMS_ContentInfo *cms = NULL;
320 if (pval)
321 cms = (CMS_ContentInfo *)*pval;
322 else
323 return 1;
324 switch(operation)
325 {

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_asn1.c 6

327 case ASN1_OP_STREAM_PRE:
328 if (CMS_stream(&sarg->boundary, cms) <= 0)
329 return 0;
330 case ASN1_OP_DETACHED_PRE:
331 sarg->ndef_bio = CMS_dataInit(cms, sarg->out);
332 if (!sarg->ndef_bio)
333 return 0;
334 break;

336 case ASN1_OP_STREAM_POST:
337 case ASN1_OP_DETACHED_POST:
338 if (CMS_dataFinal(cms, sarg->ndef_bio) <= 0)
339 return 0;
340 break;

342 }
343 return 1;
344 }

346 ASN1_NDEF_SEQUENCE_cb(CMS_ContentInfo, cms_cb) = {
347 ASN1_SIMPLE(CMS_ContentInfo, contentType, ASN1_OBJECT),
348 ASN1_ADB_OBJECT(CMS_ContentInfo)
349 } ASN1_NDEF_SEQUENCE_END_cb(CMS_ContentInfo, CMS_ContentInfo)

351 /* Specials for signed attributes */

353 /* When signing attributes we want to reorder them to match the sorted
354 * encoding.
355 */

357 ASN1_ITEM_TEMPLATE(CMS_Attributes_Sign) =
358 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SET_ORDER, 0, CMS_ATTRIBUTES, X509_ATTRI
359 ASN1_ITEM_TEMPLATE_END(CMS_Attributes_Sign)

361 /* When verifying attributes we need to use the received order. So
362 * we use SEQUENCE OF and tag it to SET OF
363 */

365 ASN1_ITEM_TEMPLATE(CMS_Attributes_Verify) =
366 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF | ASN1_TFLG_IMPTAG | ASN1_TF
367 V_ASN1_SET, CMS_ATTRIBUTES, X509_ATTRIBUTE)
368 ASN1_ITEM_TEMPLATE_END(CMS_Attributes_Verify)

372 ASN1_CHOICE(CMS_ReceiptsFrom) = {
373 ASN1_IMP(CMS_ReceiptsFrom, d.allOrFirstTier, LONG, 0),
374 ASN1_IMP_SEQUENCE_OF(CMS_ReceiptsFrom, d.receiptList, GENERAL_NAMES, 1)
375 } ASN1_CHOICE_END(CMS_ReceiptsFrom)

377 ASN1_SEQUENCE(CMS_ReceiptRequest) = {
378 ASN1_SIMPLE(CMS_ReceiptRequest, signedContentIdentifier, ASN1_OCTET_STRING),
379 ASN1_SIMPLE(CMS_ReceiptRequest, receiptsFrom, CMS_ReceiptsFrom),
380 ASN1_SEQUENCE_OF(CMS_ReceiptRequest, receiptsTo, GENERAL_NAMES)
381 } ASN1_SEQUENCE_END(CMS_ReceiptRequest)

383 ASN1_SEQUENCE(CMS_Receipt) = {
384 ASN1_SIMPLE(CMS_Receipt, version, LONG),
385 ASN1_SIMPLE(CMS_Receipt, contentType, ASN1_OBJECT),
386 ASN1_SIMPLE(CMS_Receipt, signedContentIdentifier, ASN1_OCTET_STRING),
387 ASN1_SIMPLE(CMS_Receipt, originatorSignatureValue, ASN1_OCTET_STRING)
388 } ASN1_SEQUENCE_END(CMS_Receipt)

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_att.c 1

**
 6087 Fri May 30 18:31:39 2014
new/usr/src/lib/openssl/libsunw_crypto/cms/cms_att.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cms/cms_att.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

54 #include <openssl/asn1t.h>
55 #include <openssl/pem.h>
56 #include <openssl/x509v3.h>
57 #include <openssl/err.h>
58 #include <openssl/cms.h>
59 #include <cms_lcl.h>

61 /* CMS SignedData Attribute utilities */

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_att.c 2

63 int CMS_signed_get_attr_count(const CMS_SignerInfo *si)
64 {
65 return X509at_get_attr_count(si->signedAttrs);
66 }

68 int CMS_signed_get_attr_by_NID(const CMS_SignerInfo *si, int nid,
69 int lastpos)
70 {
71 return X509at_get_attr_by_NID(si->signedAttrs, nid, lastpos);
72 }

74 int CMS_signed_get_attr_by_OBJ(const CMS_SignerInfo *si, ASN1_OBJECT *obj,
75 int lastpos)
76 {
77 return X509at_get_attr_by_OBJ(si->signedAttrs, obj, lastpos);
78 }

80 X509_ATTRIBUTE *CMS_signed_get_attr(const CMS_SignerInfo *si, int loc)
81 {
82 return X509at_get_attr(si->signedAttrs, loc);
83 }

85 X509_ATTRIBUTE *CMS_signed_delete_attr(CMS_SignerInfo *si, int loc)
86 {
87 return X509at_delete_attr(si->signedAttrs, loc);
88 }

90 int CMS_signed_add1_attr(CMS_SignerInfo *si, X509_ATTRIBUTE *attr)
91 {
92 if(X509at_add1_attr(&si->signedAttrs, attr)) return 1;
93 return 0;
94 }

96 int CMS_signed_add1_attr_by_OBJ(CMS_SignerInfo *si,
97 const ASN1_OBJECT *obj, int type,
98 const void *bytes, int len)
99 {
100 if(X509at_add1_attr_by_OBJ(&si->signedAttrs, obj,
101 type, bytes, len)) return 1;
102 return 0;
103 }

105 int CMS_signed_add1_attr_by_NID(CMS_SignerInfo *si,
106 int nid, int type,
107 const void *bytes, int len)
108 {
109 if(X509at_add1_attr_by_NID(&si->signedAttrs, nid,
110 type, bytes, len)) return 1;
111 return 0;
112 }

114 int CMS_signed_add1_attr_by_txt(CMS_SignerInfo *si,
115 const char *attrname, int type,
116 const void *bytes, int len)
117 {
118 if(X509at_add1_attr_by_txt(&si->signedAttrs, attrname,
119 type, bytes, len)) return 1;
120 return 0;
121 }

123 void *CMS_signed_get0_data_by_OBJ(CMS_SignerInfo *si, ASN1_OBJECT *oid,
124 int lastpos, int type)
125 {
126 return X509at_get0_data_by_OBJ(si->signedAttrs, oid, lastpos, type);
127 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_att.c 3

129 int CMS_unsigned_get_attr_count(const CMS_SignerInfo *si)
130 {
131 return X509at_get_attr_count(si->unsignedAttrs);
132 }

134 int CMS_unsigned_get_attr_by_NID(const CMS_SignerInfo *si, int nid,
135 int lastpos)
136 {
137 return X509at_get_attr_by_NID(si->unsignedAttrs, nid, lastpos);
138 }

140 int CMS_unsigned_get_attr_by_OBJ(const CMS_SignerInfo *si, ASN1_OBJECT *obj,
141 int lastpos)
142 {
143 return X509at_get_attr_by_OBJ(si->unsignedAttrs, obj, lastpos);
144 }

146 X509_ATTRIBUTE *CMS_unsigned_get_attr(const CMS_SignerInfo *si, int loc)
147 {
148 return X509at_get_attr(si->unsignedAttrs, loc);
149 }

151 X509_ATTRIBUTE *CMS_unsigned_delete_attr(CMS_SignerInfo *si, int loc)
152 {
153 return X509at_delete_attr(si->unsignedAttrs, loc);
154 }

156 int CMS_unsigned_add1_attr(CMS_SignerInfo *si, X509_ATTRIBUTE *attr)
157 {
158 if(X509at_add1_attr(&si->unsignedAttrs, attr)) return 1;
159 return 0;
160 }

162 int CMS_unsigned_add1_attr_by_OBJ(CMS_SignerInfo *si,
163 const ASN1_OBJECT *obj, int type,
164 const void *bytes, int len)
165 {
166 if(X509at_add1_attr_by_OBJ(&si->unsignedAttrs, obj,
167 type, bytes, len)) return 1;
168 return 0;
169 }

171 int CMS_unsigned_add1_attr_by_NID(CMS_SignerInfo *si,
172 int nid, int type,
173 const void *bytes, int len)
174 {
175 if(X509at_add1_attr_by_NID(&si->unsignedAttrs, nid,
176 type, bytes, len)) return 1;
177 return 0;
178 }

180 int CMS_unsigned_add1_attr_by_txt(CMS_SignerInfo *si,
181 const char *attrname, int type,
182 const void *bytes, int len)
183 {
184 if(X509at_add1_attr_by_txt(&si->unsignedAttrs, attrname,
185 type, bytes, len)) return 1;
186 return 0;
187 }

189 void *CMS_unsigned_get0_data_by_OBJ(CMS_SignerInfo *si, ASN1_OBJECT *oid,
190 int lastpos, int type)
191 {
192 return X509at_get0_data_by_OBJ(si->unsignedAttrs, oid, lastpos, type);
193 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_att.c 4

195 /* Specific attribute cases */

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_cd.c 1

**
 4371 Fri May 30 18:31:39 2014
new/usr/src/lib/openssl/libsunw_crypto/cms/cms_cd.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cms/cms_cd.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

54 #include "cryptlib.h"
55 #include <openssl/asn1t.h>
56 #include <openssl/pem.h>
57 #include <openssl/x509v3.h>
58 #include <openssl/err.h>
59 #include <openssl/cms.h>
60 #include <openssl/bio.h>
61 #ifndef OPENSSL_NO_COMP

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_cd.c 2

62 #include <openssl/comp.h>
63 #endif
64 #include "cms_lcl.h"

66 DECLARE_ASN1_ITEM(CMS_CompressedData)

68 #ifdef ZLIB

70 /* CMS CompressedData Utilities */

72 CMS_ContentInfo *cms_CompressedData_create(int comp_nid)
73 {
74 CMS_ContentInfo *cms;
75 CMS_CompressedData *cd;
76 /* Will need something cleverer if there is ever more than one
77 * compression algorithm or parameters have some meaning...
78 */
79 if (comp_nid != NID_zlib_compression)
80 {
81 CMSerr(CMS_F_CMS_COMPRESSEDDATA_CREATE,
82 CMS_R_UNSUPPORTED_COMPRESSION_ALGORITHM);
83 return NULL;
84 }
85 cms = CMS_ContentInfo_new();
86 if (!cms)
87 return NULL;

89 cd = M_ASN1_new_of(CMS_CompressedData);

91 if (!cd)
92 goto err;

94 cms->contentType = OBJ_nid2obj(NID_id_smime_ct_compressedData);
95 cms->d.compressedData = cd;

97 cd->version = 0;

99 X509_ALGOR_set0(cd->compressionAlgorithm,
100 OBJ_nid2obj(NID_zlib_compression),
101 V_ASN1_UNDEF, NULL);

103 cd->encapContentInfo->eContentType = OBJ_nid2obj(NID_pkcs7_data);

105 return cms;

107 err:

109 if (cms)
110 CMS_ContentInfo_free(cms);

112 return NULL;
113 }

115 BIO *cms_CompressedData_init_bio(CMS_ContentInfo *cms)
116 {
117 CMS_CompressedData *cd;
118 ASN1_OBJECT *compoid;
119 if (OBJ_obj2nid(cms->contentType) != NID_id_smime_ct_compressedData)
120 {
121 CMSerr(CMS_F_CMS_COMPRESSEDDATA_INIT_BIO,
122 CMS_R_CONTENT_TYPE_NOT_COMPRESSED_DATA);
123 return NULL;
124 }
125 cd = cms->d.compressedData;
126 X509_ALGOR_get0(&compoid, NULL, NULL, cd->compressionAlgorithm);
127 if (OBJ_obj2nid(compoid) != NID_zlib_compression)

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_cd.c 3

128 {
129 CMSerr(CMS_F_CMS_COMPRESSEDDATA_INIT_BIO,
130 CMS_R_UNSUPPORTED_COMPRESSION_ALGORITHM);
131 return NULL;
132 }
133 return BIO_new(BIO_f_zlib());
134 }

136 #endif

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_dd.c 1

**
 4334 Fri May 30 18:31:39 2014
new/usr/src/lib/openssl/libsunw_crypto/cms/cms_dd.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cms/cms_dd.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

54 #include "cryptlib.h"
55 #include <openssl/asn1t.h>
56 #include <openssl/pem.h>
57 #include <openssl/x509v3.h>
58 #include <openssl/err.h>
59 #include <openssl/cms.h>
60 #include "cms_lcl.h"

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_dd.c 2

62 DECLARE_ASN1_ITEM(CMS_DigestedData)

64 /* CMS DigestedData Utilities */

66 CMS_ContentInfo *cms_DigestedData_create(const EVP_MD *md)
67 {
68 CMS_ContentInfo *cms;
69 CMS_DigestedData *dd;
70 cms = CMS_ContentInfo_new();
71 if (!cms)
72 return NULL;

74 dd = M_ASN1_new_of(CMS_DigestedData);

76 if (!dd)
77 goto err;

79 cms->contentType = OBJ_nid2obj(NID_pkcs7_digest);
80 cms->d.digestedData = dd;

82 dd->version = 0;
83 dd->encapContentInfo->eContentType = OBJ_nid2obj(NID_pkcs7_data);

85 cms_DigestAlgorithm_set(dd->digestAlgorithm, md);

87 return cms;

89 err:

91 if (cms)
92 CMS_ContentInfo_free(cms);

94 return NULL;
95 }

97 BIO *cms_DigestedData_init_bio(CMS_ContentInfo *cms)
98 {
99 CMS_DigestedData *dd;
100 dd = cms->d.digestedData;
101 return cms_DigestAlgorithm_init_bio(dd->digestAlgorithm);
102 }

104 int cms_DigestedData_do_final(CMS_ContentInfo *cms, BIO *chain, int verify)
105 {
106 EVP_MD_CTX mctx;
107 unsigned char md[EVP_MAX_MD_SIZE];
108 unsigned int mdlen;
109 int r = 0;
110 CMS_DigestedData *dd;
111 EVP_MD_CTX_init(&mctx);

113 dd = cms->d.digestedData;

115 if (!cms_DigestAlgorithm_find_ctx(&mctx, chain, dd->digestAlgorithm))
116 goto err;

118 if (EVP_DigestFinal_ex(&mctx, md, &mdlen) <= 0)
119 goto err;

121 if (verify)
122 {
123 if (mdlen != (unsigned int)dd->digest->length)
124 {
125 CMSerr(CMS_F_CMS_DIGESTEDDATA_DO_FINAL,
126 CMS_R_MESSAGEDIGEST_WRONG_LENGTH);
127 goto err;

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_dd.c 3

128 }

130 if (memcmp(md, dd->digest->data, mdlen))
131 CMSerr(CMS_F_CMS_DIGESTEDDATA_DO_FINAL,
132 CMS_R_VERIFICATION_FAILURE);
133 else
134 r = 1;
135 }
136 else
137 {
138 if (!ASN1_STRING_set(dd->digest, md, mdlen))
139 goto err;
140 r = 1;
141 }

143 err:
144 EVP_MD_CTX_cleanup(&mctx);

146 return r;

148 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_enc.c 1

**
 7649 Fri May 30 18:31:39 2014
new/usr/src/lib/openssl/libsunw_crypto/cms/cms_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cms/cms_enc.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

54 #include "cryptlib.h"
55 #include <openssl/asn1t.h>
56 #include <openssl/pem.h>
57 #include <openssl/x509v3.h>
58 #include <openssl/err.h>
59 #include <openssl/cms.h>
60 #include <openssl/rand.h>
61 #include "cms_lcl.h"

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_enc.c 2

63 /* CMS EncryptedData Utilities */

65 DECLARE_ASN1_ITEM(CMS_EncryptedData)

67 /* Return BIO based on EncryptedContentInfo and key */

69 BIO *cms_EncryptedContent_init_bio(CMS_EncryptedContentInfo *ec)
70 {
71 BIO *b;
72 EVP_CIPHER_CTX *ctx;
73 const EVP_CIPHER *ciph;
74 X509_ALGOR *calg = ec->contentEncryptionAlgorithm;
75 unsigned char iv[EVP_MAX_IV_LENGTH], *piv = NULL;
76 unsigned char *tkey = NULL;
77 size_t tkeylen = 0;

79 int ok = 0;

81 int enc, keep_key = 0;

83 enc = ec->cipher ? 1 : 0;

85 b = BIO_new(BIO_f_cipher());
86 if (!b)
87 {
88 CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO,
89 ERR_R_MALLOC_FAILURE);
90 return NULL;
91 }

93 BIO_get_cipher_ctx(b, &ctx);

95 if (enc)
96 {
97 ciph = ec->cipher;
98 /* If not keeping key set cipher to NULL so subsequent calls
99 * decrypt.
100 */
101 if (ec->key)
102 ec->cipher = NULL;
103 }
104 else
105 {
106 ciph = EVP_get_cipherbyobj(calg->algorithm);

108 if (!ciph)
109 {
110 CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO,
111 CMS_R_UNKNOWN_CIPHER);
112 goto err;
113 }
114 }

116 if (EVP_CipherInit_ex(ctx, ciph, NULL, NULL, NULL, enc) <= 0)
117 {
118 CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO,
119 CMS_R_CIPHER_INITIALISATION_ERROR);
120 goto err;
121 }

123 if (enc)
124 {
125 int ivlen;
126 calg->algorithm = OBJ_nid2obj(EVP_CIPHER_CTX_type(ctx));
127 /* Generate a random IV if we need one */

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_enc.c 3

128 ivlen = EVP_CIPHER_CTX_iv_length(ctx);
129 if (ivlen > 0)
130 {
131 if (RAND_pseudo_bytes(iv, ivlen) <= 0)
132 goto err;
133 piv = iv;
134 }
135 }
136 else if (EVP_CIPHER_asn1_to_param(ctx, calg->parameter) <= 0)
137 {
138 CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO,
139 CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR);
140 goto err;
141 }
142 tkeylen = EVP_CIPHER_CTX_key_length(ctx);
143 /* Generate random session key */
144 if (!enc || !ec->key)
145 {
146 tkey = OPENSSL_malloc(tkeylen);
147 if (!tkey)
148 {
149 CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO,
150 ERR_R_MALLOC_FAILURE);
151 goto err;
152 }
153 if (EVP_CIPHER_CTX_rand_key(ctx, tkey) <= 0)
154 goto err;
155 }

157 if (!ec->key)
158 {
159 ec->key = tkey;
160 ec->keylen = tkeylen;
161 tkey = NULL;
162 if (enc)
163 keep_key = 1;
164 else
165 ERR_clear_error();
166
167 }

169 if (ec->keylen != tkeylen)
170 {
171 /* If necessary set key length */
172 if (EVP_CIPHER_CTX_set_key_length(ctx, ec->keylen) <= 0)
173 {
174 /* Only reveal failure if debugging so we don’t
175 * leak information which may be useful in MMA.
176 */
177 if (enc || ec->debug)
178 {
179 CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO,
180 CMS_R_INVALID_KEY_LENGTH);
181 goto err;
182 }
183 else
184 {
185 /* Use random key */
186 OPENSSL_cleanse(ec->key, ec->keylen);
187 OPENSSL_free(ec->key);
188 ec->key = tkey;
189 ec->keylen = tkeylen;
190 tkey = NULL;
191 ERR_clear_error();
192 }
193 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_enc.c 4

194 }

196 if (EVP_CipherInit_ex(ctx, NULL, NULL, ec->key, piv, enc) <= 0)
197 {
198 CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO,
199 CMS_R_CIPHER_INITIALISATION_ERROR);
200 goto err;
201 }

203 if (piv)
204 {
205 calg->parameter = ASN1_TYPE_new();
206 if (!calg->parameter)
207 {
208 CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO,
209 ERR_R_MALLOC_FAILURE);
210 goto err;
211 }
212 if (EVP_CIPHER_param_to_asn1(ctx, calg->parameter) <= 0)
213 {
214 CMSerr(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO,
215 CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR);
216 goto err;
217 }
218 }
219 ok = 1;

221 err:
222 if (ec->key && !keep_key)
223 {
224 OPENSSL_cleanse(ec->key, ec->keylen);
225 OPENSSL_free(ec->key);
226 ec->key = NULL;
227 }
228 if (tkey)
229 {
230 OPENSSL_cleanse(tkey, tkeylen);
231 OPENSSL_free(tkey);
232 }
233 if (ok)
234 return b;
235 BIO_free(b);
236 return NULL;
237 }

239 int cms_EncryptedContent_init(CMS_EncryptedContentInfo *ec,
240 const EVP_CIPHER *cipher,
241 const unsigned char *key, size_t keylen)
242 {
243 ec->cipher = cipher;
244 if (key)
245 {
246 ec->key = OPENSSL_malloc(keylen);
247 if (!ec->key)
248 return 0;
249 memcpy(ec->key, key, keylen);
250 }
251 ec->keylen = keylen;
252 if (cipher)
253 ec->contentType = OBJ_nid2obj(NID_pkcs7_data);
254 return 1;
255 }

257 int CMS_EncryptedData_set1_key(CMS_ContentInfo *cms, const EVP_CIPHER *ciph,
258 const unsigned char *key, size_t keylen)
259 {

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_enc.c 5

260 CMS_EncryptedContentInfo *ec;
261 if (!key || !keylen)
262 {
263 CMSerr(CMS_F_CMS_ENCRYPTEDDATA_SET1_KEY, CMS_R_NO_KEY);
264 return 0;
265 }
266 if (ciph)
267 {
268 cms->d.encryptedData = M_ASN1_new_of(CMS_EncryptedData);
269 if (!cms->d.encryptedData)
270 {
271 CMSerr(CMS_F_CMS_ENCRYPTEDDATA_SET1_KEY,
272 ERR_R_MALLOC_FAILURE);
273 return 0;
274 }
275 cms->contentType = OBJ_nid2obj(NID_pkcs7_encrypted);
276 cms->d.encryptedData->version = 0;
277 }
278 else if (OBJ_obj2nid(cms->contentType) != NID_pkcs7_encrypted)
279 {
280 CMSerr(CMS_F_CMS_ENCRYPTEDDATA_SET1_KEY,
281 CMS_R_NOT_ENCRYPTED_DATA);
282 return 0;
283 }
284 ec = cms->d.encryptedData->encryptedContentInfo;
285 return cms_EncryptedContent_init(ec, ciph, key, keylen);
286 }

288 BIO *cms_EncryptedData_init_bio(CMS_ContentInfo *cms)
289 {
290 CMS_EncryptedData *enc = cms->d.encryptedData;
291 if (enc->encryptedContentInfo->cipher && enc->unprotectedAttrs)
292 enc->version = 2;
293 return cms_EncryptedContent_init_bio(enc->encryptedContentInfo);
294 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_env.c 1

**
 19170 Fri May 30 18:31:39 2014
new/usr/src/lib/openssl/libsunw_crypto/cms/cms_env.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cms/cms_env.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

54 #include "cryptlib.h"
55 #include <openssl/asn1t.h>
56 #include <openssl/pem.h>
57 #include <openssl/x509v3.h>
58 #include <openssl/err.h>
59 #include <openssl/cms.h>
60 #include <openssl/rand.h>
61 #include <openssl/aes.h>

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_env.c 2

62 #include "cms_lcl.h"
63 #include "asn1_locl.h"

65 /* CMS EnvelopedData Utilities */

67 DECLARE_ASN1_ITEM(CMS_EnvelopedData)
68 DECLARE_ASN1_ITEM(CMS_KeyTransRecipientInfo)
69 DECLARE_ASN1_ITEM(CMS_KEKRecipientInfo)
70 DECLARE_ASN1_ITEM(CMS_OtherKeyAttribute)

72 DECLARE_STACK_OF(CMS_RecipientInfo)

74 CMS_EnvelopedData *cms_get0_enveloped(CMS_ContentInfo *cms)
75 {
76 if (OBJ_obj2nid(cms->contentType) != NID_pkcs7_enveloped)
77 {
78 CMSerr(CMS_F_CMS_GET0_ENVELOPED,
79 CMS_R_CONTENT_TYPE_NOT_ENVELOPED_DATA);
80 return NULL;
81 }
82 return cms->d.envelopedData;
83 }

85 static CMS_EnvelopedData *cms_enveloped_data_init(CMS_ContentInfo *cms)
86 {
87 if (cms->d.other == NULL)
88 {
89 cms->d.envelopedData = M_ASN1_new_of(CMS_EnvelopedData);
90 if (!cms->d.envelopedData)
91 {
92 CMSerr(CMS_F_CMS_ENVELOPED_DATA_INIT,
93 ERR_R_MALLOC_FAILURE);
94 return NULL;
95 }
96 cms->d.envelopedData->version = 0;
97 cms->d.envelopedData->encryptedContentInfo->contentType =
98 OBJ_nid2obj(NID_pkcs7_data);
99 ASN1_OBJECT_free(cms->contentType);
100 cms->contentType = OBJ_nid2obj(NID_pkcs7_enveloped);
101 return cms->d.envelopedData;
102 }
103 return cms_get0_enveloped(cms);
104 }

106 STACK_OF(CMS_RecipientInfo) *CMS_get0_RecipientInfos(CMS_ContentInfo *cms)
107 {
108 CMS_EnvelopedData *env;
109 env = cms_get0_enveloped(cms);
110 if (!env)
111 return NULL;
112 return env->recipientInfos;
113 }

115 int CMS_RecipientInfo_type(CMS_RecipientInfo *ri)
116 {
117 return ri->type;
118 }

120 CMS_ContentInfo *CMS_EnvelopedData_create(const EVP_CIPHER *cipher)
121 {
122 CMS_ContentInfo *cms;
123 CMS_EnvelopedData *env;
124 cms = CMS_ContentInfo_new();
125 if (!cms)
126 goto merr;
127 env = cms_enveloped_data_init(cms);

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_env.c 3

128 if (!env)
129 goto merr;
130 if (!cms_EncryptedContent_init(env->encryptedContentInfo,
131 cipher, NULL, 0))
132 goto merr;
133 return cms;
134 merr:
135 if (cms)
136 CMS_ContentInfo_free(cms);
137 CMSerr(CMS_F_CMS_ENVELOPEDDATA_CREATE, ERR_R_MALLOC_FAILURE);
138 return NULL;
139 }

141 /* Key Transport Recipient Info (KTRI) routines */

143 /* Add a recipient certificate. For now only handle key transport.
144 * If we ever handle key agreement will need updating.
145 */

147 CMS_RecipientInfo *CMS_add1_recipient_cert(CMS_ContentInfo *cms,
148 X509 *recip, unsigned int flags)
149 {
150 CMS_RecipientInfo *ri = NULL;
151 CMS_KeyTransRecipientInfo *ktri;
152 CMS_EnvelopedData *env;
153 EVP_PKEY *pk = NULL;
154 int i, type;
155 env = cms_get0_enveloped(cms);
156 if (!env)
157 goto err;

159 /* Initialize recipient info */
160 ri = M_ASN1_new_of(CMS_RecipientInfo);
161 if (!ri)
162 goto merr;

164 /* Initialize and add key transport recipient info */

166 ri->d.ktri = M_ASN1_new_of(CMS_KeyTransRecipientInfo);
167 if (!ri->d.ktri)
168 goto merr;
169 ri->type = CMS_RECIPINFO_TRANS;

171 ktri = ri->d.ktri;

173 X509_check_purpose(recip, -1, -1);
174 pk = X509_get_pubkey(recip);
175 if (!pk)
176 {
177 CMSerr(CMS_F_CMS_ADD1_RECIPIENT_CERT,
178 CMS_R_ERROR_GETTING_PUBLIC_KEY);
179 goto err;
180 }
181 CRYPTO_add(&recip->references, 1, CRYPTO_LOCK_X509);
182 ktri->pkey = pk;
183 ktri->recip = recip;

185 if (flags & CMS_USE_KEYID)
186 {
187 ktri->version = 2;
188 type = CMS_RECIPINFO_KEYIDENTIFIER;
189 }
190 else
191 {
192 ktri->version = 0;
193 type = CMS_RECIPINFO_ISSUER_SERIAL;

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_env.c 4

194 }

196 /* Not a typo: RecipientIdentifier and SignerIdentifier are the
197 * same structure.
198 */

200 if (!cms_set1_SignerIdentifier(ktri->rid, recip, type))
201 goto err;

203 if (pk->ameth && pk->ameth->pkey_ctrl)
204 {
205 i = pk->ameth->pkey_ctrl(pk, ASN1_PKEY_CTRL_CMS_ENVELOPE,
206 0, ri);
207 if (i == -2)
208 {
209 CMSerr(CMS_F_CMS_ADD1_RECIPIENT_CERT,
210 CMS_R_NOT_SUPPORTED_FOR_THIS_KEY_TYPE);
211 goto err;
212 }
213 if (i <= 0)
214 {
215 CMSerr(CMS_F_CMS_ADD1_RECIPIENT_CERT,
216 CMS_R_CTRL_FAILURE);
217 goto err;
218 }
219 }

221 if (!sk_CMS_RecipientInfo_push(env->recipientInfos, ri))
222 goto merr;

224 return ri;

226 merr:
227 CMSerr(CMS_F_CMS_ADD1_RECIPIENT_CERT, ERR_R_MALLOC_FAILURE);
228 err:
229 if (ri)
230 M_ASN1_free_of(ri, CMS_RecipientInfo);
231 return NULL;

233 }

235 int CMS_RecipientInfo_ktri_get0_algs(CMS_RecipientInfo *ri,
236 EVP_PKEY **pk, X509 **recip,
237 X509_ALGOR **palg)
238 {
239 CMS_KeyTransRecipientInfo *ktri;
240 if (ri->type != CMS_RECIPINFO_TRANS)
241 {
242 CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_GET0_ALGS,
243 CMS_R_NOT_KEY_TRANSPORT);
244 return 0;
245 }

247 ktri = ri->d.ktri;

249 if (pk)
250 *pk = ktri->pkey;
251 if (recip)
252 *recip = ktri->recip;
253 if (palg)
254 *palg = ktri->keyEncryptionAlgorithm;
255 return 1;
256 }

258 int CMS_RecipientInfo_ktri_get0_signer_id(CMS_RecipientInfo *ri,
259 ASN1_OCTET_STRING **keyid,

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_env.c 5

260 X509_NAME **issuer, ASN1_INTEGER **sno)
261 {
262 CMS_KeyTransRecipientInfo *ktri;
263 if (ri->type != CMS_RECIPINFO_TRANS)
264 {
265 CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_GET0_SIGNER_ID,
266 CMS_R_NOT_KEY_TRANSPORT);
267 return 0;
268 }
269 ktri = ri->d.ktri;

271 return cms_SignerIdentifier_get0_signer_id(ktri->rid,
272 keyid, issuer, sno);
273 }

275 int CMS_RecipientInfo_ktri_cert_cmp(CMS_RecipientInfo *ri, X509 *cert)
276 {
277 if (ri->type != CMS_RECIPINFO_TRANS)
278 {
279 CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_CERT_CMP,
280 CMS_R_NOT_KEY_TRANSPORT);
281 return -2;
282 }
283 return cms_SignerIdentifier_cert_cmp(ri->d.ktri->rid, cert);
284 }

286 int CMS_RecipientInfo_set0_pkey(CMS_RecipientInfo *ri, EVP_PKEY *pkey)
287 {
288 if (ri->type != CMS_RECIPINFO_TRANS)
289 {
290 CMSerr(CMS_F_CMS_RECIPIENTINFO_SET0_PKEY,
291 CMS_R_NOT_KEY_TRANSPORT);
292 return 0;
293 }
294 ri->d.ktri->pkey = pkey;
295 return 1;
296 }

298 /* Encrypt content key in key transport recipient info */

300 static int cms_RecipientInfo_ktri_encrypt(CMS_ContentInfo *cms,
301 CMS_RecipientInfo *ri)
302 {
303 CMS_KeyTransRecipientInfo *ktri;
304 CMS_EncryptedContentInfo *ec;
305 EVP_PKEY_CTX *pctx = NULL;
306 unsigned char *ek = NULL;
307 size_t eklen;

309 int ret = 0;

311 if (ri->type != CMS_RECIPINFO_TRANS)
312 {
313 CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_ENCRYPT,
314 CMS_R_NOT_KEY_TRANSPORT);
315 return 0;
316 }
317 ktri = ri->d.ktri;
318 ec = cms->d.envelopedData->encryptedContentInfo;

320 pctx = EVP_PKEY_CTX_new(ktri->pkey, NULL);
321 if (!pctx)
322 return 0;

324 if (EVP_PKEY_encrypt_init(pctx) <= 0)
325 goto err;

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_env.c 6

327 if (EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_ENCRYPT,
328 EVP_PKEY_CTRL_CMS_ENCRYPT, 0, ri) <= 0)
329 {
330 CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_ENCRYPT, CMS_R_CTRL_ERROR);
331 goto err;
332 }

334 if (EVP_PKEY_encrypt(pctx, NULL, &eklen, ec->key, ec->keylen) <= 0)
335 goto err;

337 ek = OPENSSL_malloc(eklen);

339 if (ek == NULL)
340 {
341 CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_ENCRYPT,
342 ERR_R_MALLOC_FAILURE);
343 goto err;
344 }

346 if (EVP_PKEY_encrypt(pctx, ek, &eklen, ec->key, ec->keylen) <= 0)
347 goto err;

349 ASN1_STRING_set0(ktri->encryptedKey, ek, eklen);
350 ek = NULL;

352 ret = 1;

354 err:
355 if (pctx)
356 EVP_PKEY_CTX_free(pctx);
357 if (ek)
358 OPENSSL_free(ek);
359 return ret;

361 }

363 /* Decrypt content key from KTRI */

365 static int cms_RecipientInfo_ktri_decrypt(CMS_ContentInfo *cms,
366 CMS_RecipientInfo *ri)
367 {
368 CMS_KeyTransRecipientInfo *ktri = ri->d.ktri;
369 EVP_PKEY_CTX *pctx = NULL;
370 unsigned char *ek = NULL;
371 size_t eklen;
372 int ret = 0;
373 CMS_EncryptedContentInfo *ec;
374 ec = cms->d.envelopedData->encryptedContentInfo;

376 if (ktri->pkey == NULL)
377 {
378 CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_DECRYPT,
379 CMS_R_NO_PRIVATE_KEY);
380 return 0;
381 }

383 pctx = EVP_PKEY_CTX_new(ktri->pkey, NULL);
384 if (!pctx)
385 return 0;

387 if (EVP_PKEY_decrypt_init(pctx) <= 0)
388 goto err;

390 if (EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_DECRYPT,
391 EVP_PKEY_CTRL_CMS_DECRYPT, 0, ri) <= 0)

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_env.c 7

392 {
393 CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_DECRYPT, CMS_R_CTRL_ERROR);
394 goto err;
395 }

397 if (EVP_PKEY_decrypt(pctx, NULL, &eklen,
398 ktri->encryptedKey->data,
399 ktri->encryptedKey->length) <= 0)
400 goto err;

402 ek = OPENSSL_malloc(eklen);

404 if (ek == NULL)
405 {
406 CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_DECRYPT,
407 ERR_R_MALLOC_FAILURE);
408 goto err;
409 }

411 if (EVP_PKEY_decrypt(pctx, ek, &eklen,
412 ktri->encryptedKey->data,
413 ktri->encryptedKey->length) <= 0)
414 {
415 CMSerr(CMS_F_CMS_RECIPIENTINFO_KTRI_DECRYPT, CMS_R_CMS_LIB);
416 goto err;
417 }

419 ret = 1;

421 if (ec->key)
422 {
423 OPENSSL_cleanse(ec->key, ec->keylen);
424 OPENSSL_free(ec->key);
425 }

427 ec->key = ek;
428 ec->keylen = eklen;

430 err:
431 if (pctx)
432 EVP_PKEY_CTX_free(pctx);
433 if (!ret && ek)
434 OPENSSL_free(ek);

436 return ret;
437 }

439 /* Key Encrypted Key (KEK) RecipientInfo routines */

441 int CMS_RecipientInfo_kekri_id_cmp(CMS_RecipientInfo *ri,
442 const unsigned char *id, size_t idlen)
443 {
444 ASN1_OCTET_STRING tmp_os;
445 CMS_KEKRecipientInfo *kekri;
446 if (ri->type != CMS_RECIPINFO_KEK)
447 {
448 CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_ID_CMP, CMS_R_NOT_KEK);
449 return -2;
450 }
451 kekri = ri->d.kekri;
452 tmp_os.type = V_ASN1_OCTET_STRING;
453 tmp_os.flags = 0;
454 tmp_os.data = (unsigned char *)id;
455 tmp_os.length = (int)idlen;
456 return ASN1_OCTET_STRING_cmp(&tmp_os, kekri->kekid->keyIdentifier);
457 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_env.c 8

459 /* For now hard code AES key wrap info */

461 static size_t aes_wrap_keylen(int nid)
462 {
463 switch (nid)
464 {
465 case NID_id_aes128_wrap:
466 return 16;

468 case NID_id_aes192_wrap:
469 return 24;

471 case NID_id_aes256_wrap:
472 return 32;

474 default:
475 return 0;
476 }
477 }

479 CMS_RecipientInfo *CMS_add0_recipient_key(CMS_ContentInfo *cms, int nid,
480 unsigned char *key, size_t keylen,
481 unsigned char *id, size_t idlen,
482 ASN1_GENERALIZEDTIME *date,
483 ASN1_OBJECT *otherTypeId,
484 ASN1_TYPE *otherType)
485 {
486 CMS_RecipientInfo *ri = NULL;
487 CMS_EnvelopedData *env;
488 CMS_KEKRecipientInfo *kekri;
489 env = cms_get0_enveloped(cms);
490 if (!env)
491 goto err;

493 if (nid == NID_undef)
494 {
495 switch (keylen)
496 {
497 case 16:
498 nid = NID_id_aes128_wrap;
499 break;

501 case 24:
502 nid = NID_id_aes192_wrap;
503 break;

505 case 32:
506 nid = NID_id_aes256_wrap;
507 break;

509 default:
510 CMSerr(CMS_F_CMS_ADD0_RECIPIENT_KEY,
511 CMS_R_INVALID_KEY_LENGTH);
512 goto err;
513 }

515 }
516 else
517 {

519 size_t exp_keylen = aes_wrap_keylen(nid);

521 if (!exp_keylen)
522 {
523 CMSerr(CMS_F_CMS_ADD0_RECIPIENT_KEY,

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_env.c 9

524 CMS_R_UNSUPPORTED_KEK_ALGORITHM);
525 goto err;
526 }

528 if (keylen != exp_keylen)
529 {
530 CMSerr(CMS_F_CMS_ADD0_RECIPIENT_KEY,
531 CMS_R_INVALID_KEY_LENGTH);
532 goto err;
533 }

535 }

537 /* Initialize recipient info */
538 ri = M_ASN1_new_of(CMS_RecipientInfo);
539 if (!ri)
540 goto merr;

542 ri->d.kekri = M_ASN1_new_of(CMS_KEKRecipientInfo);
543 if (!ri->d.kekri)
544 goto merr;
545 ri->type = CMS_RECIPINFO_KEK;

547 kekri = ri->d.kekri;

549 if (otherTypeId)
550 {
551 kekri->kekid->other = M_ASN1_new_of(CMS_OtherKeyAttribute);
552 if (kekri->kekid->other == NULL)
553 goto merr;
554 }

556 if (!sk_CMS_RecipientInfo_push(env->recipientInfos, ri))
557 goto merr;

560 /* After this point no calls can fail */

562 kekri->version = 4;

564 kekri->key = key;
565 kekri->keylen = keylen;

567 ASN1_STRING_set0(kekri->kekid->keyIdentifier, id, idlen);

569 kekri->kekid->date = date;

571 if (kekri->kekid->other)
572 {
573 kekri->kekid->other->keyAttrId = otherTypeId;
574 kekri->kekid->other->keyAttr = otherType;
575 }

577 X509_ALGOR_set0(kekri->keyEncryptionAlgorithm,
578 OBJ_nid2obj(nid), V_ASN1_UNDEF, NULL);

580 return ri;

582 merr:
583 CMSerr(CMS_F_CMS_ADD0_RECIPIENT_KEY, ERR_R_MALLOC_FAILURE);
584 err:
585 if (ri)
586 M_ASN1_free_of(ri, CMS_RecipientInfo);
587 return NULL;

589 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_env.c 10

591 int CMS_RecipientInfo_kekri_get0_id(CMS_RecipientInfo *ri,
592 X509_ALGOR **palg,
593 ASN1_OCTET_STRING **pid,
594 ASN1_GENERALIZEDTIME **pdate,
595 ASN1_OBJECT **potherid,
596 ASN1_TYPE **pothertype)
597 {
598 CMS_KEKIdentifier *rkid;
599 if (ri->type != CMS_RECIPINFO_KEK)
600 {
601 CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_GET0_ID, CMS_R_NOT_KEK);
602 return 0;
603 }
604 rkid = ri->d.kekri->kekid;
605 if (palg)
606 *palg = ri->d.kekri->keyEncryptionAlgorithm;
607 if (pid)
608 *pid = rkid->keyIdentifier;
609 if (pdate)
610 *pdate = rkid->date;
611 if (potherid)
612 {
613 if (rkid->other)
614 *potherid = rkid->other->keyAttrId;
615 else
616 *potherid = NULL;
617 }
618 if (pothertype)
619 {
620 if (rkid->other)
621 *pothertype = rkid->other->keyAttr;
622 else
623 *pothertype = NULL;
624 }
625 return 1;
626 }

628 int CMS_RecipientInfo_set0_key(CMS_RecipientInfo *ri,
629 unsigned char *key, size_t keylen)
630 {
631 CMS_KEKRecipientInfo *kekri;
632 if (ri->type != CMS_RECIPINFO_KEK)
633 {
634 CMSerr(CMS_F_CMS_RECIPIENTINFO_SET0_KEY, CMS_R_NOT_KEK);
635 return 0;
636 }

638 kekri = ri->d.kekri;
639 kekri->key = key;
640 kekri->keylen = keylen;
641 return 1;
642 }

645 /* Encrypt content key in KEK recipient info */

647 static int cms_RecipientInfo_kekri_encrypt(CMS_ContentInfo *cms,
648 CMS_RecipientInfo *ri)
649 {
650 CMS_EncryptedContentInfo *ec;
651 CMS_KEKRecipientInfo *kekri;
652 AES_KEY actx;
653 unsigned char *wkey = NULL;
654 int wkeylen;
655 int r = 0;

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_env.c 11

657 ec = cms->d.envelopedData->encryptedContentInfo;

659 kekri = ri->d.kekri;

661 if (!kekri->key)
662 {
663 CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_ENCRYPT, CMS_R_NO_KEY);
664 return 0;
665 }

667 if (AES_set_encrypt_key(kekri->key, kekri->keylen << 3, &actx))
668 {
669 CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_ENCRYPT,
670 CMS_R_ERROR_SETTING_KEY);
671 goto err;
672 }

674 wkey = OPENSSL_malloc(ec->keylen + 8);

676 if (!wkey)
677 {
678 CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_ENCRYPT,
679 ERR_R_MALLOC_FAILURE);
680 goto err;
681 }

683 wkeylen = AES_wrap_key(&actx, NULL, wkey, ec->key, ec->keylen);

685 if (wkeylen <= 0)
686 {
687 CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_ENCRYPT, CMS_R_WRAP_ERROR);
688 goto err;
689 }

691 ASN1_STRING_set0(kekri->encryptedKey, wkey, wkeylen);

693 r = 1;

695 err:

697 if (!r && wkey)
698 OPENSSL_free(wkey);
699 OPENSSL_cleanse(&actx, sizeof(actx));

701 return r;

703 }

705 /* Decrypt content key in KEK recipient info */

707 static int cms_RecipientInfo_kekri_decrypt(CMS_ContentInfo *cms,
708 CMS_RecipientInfo *ri)
709 {
710 CMS_EncryptedContentInfo *ec;
711 CMS_KEKRecipientInfo *kekri;
712 AES_KEY actx;
713 unsigned char *ukey = NULL;
714 int ukeylen;
715 int r = 0, wrap_nid;

717 ec = cms->d.envelopedData->encryptedContentInfo;

719 kekri = ri->d.kekri;

721 if (!kekri->key)

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_env.c 12

722 {
723 CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT, CMS_R_NO_KEY);
724 return 0;
725 }

727 wrap_nid = OBJ_obj2nid(kekri->keyEncryptionAlgorithm->algorithm);
728 if (aes_wrap_keylen(wrap_nid) != kekri->keylen)
729 {
730 CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT,
731 CMS_R_INVALID_KEY_LENGTH);
732 return 0;
733 }

735 /* If encrypted key length is invalid don’t bother */

737 if (kekri->encryptedKey->length < 16)
738 {
739 CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT,
740 CMS_R_INVALID_ENCRYPTED_KEY_LENGTH);
741 goto err;
742 }

744 if (AES_set_decrypt_key(kekri->key, kekri->keylen << 3, &actx))
745 {
746 CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT,
747 CMS_R_ERROR_SETTING_KEY);
748 goto err;
749 }

751 ukey = OPENSSL_malloc(kekri->encryptedKey->length - 8);

753 if (!ukey)
754 {
755 CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT,
756 ERR_R_MALLOC_FAILURE);
757 goto err;
758 }

760 ukeylen = AES_unwrap_key(&actx, NULL, ukey,
761 kekri->encryptedKey->data,
762 kekri->encryptedKey->length);

764 if (ukeylen <= 0)
765 {
766 CMSerr(CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT,
767 CMS_R_UNWRAP_ERROR);
768 goto err;
769 }

771 ec->key = ukey;
772 ec->keylen = ukeylen;

774 r = 1;

776 err:

778 if (!r && ukey)
779 OPENSSL_free(ukey);
780 OPENSSL_cleanse(&actx, sizeof(actx));

782 return r;

784 }

786 int CMS_RecipientInfo_decrypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri)
787 {

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_env.c 13

788 switch(ri->type)
789 {
790 case CMS_RECIPINFO_TRANS:
791 return cms_RecipientInfo_ktri_decrypt(cms, ri);

793 case CMS_RECIPINFO_KEK:
794 return cms_RecipientInfo_kekri_decrypt(cms, ri);

796 case CMS_RECIPINFO_PASS:
797 return cms_RecipientInfo_pwri_crypt(cms, ri, 0);

799 default:
800 CMSerr(CMS_F_CMS_RECIPIENTINFO_DECRYPT,
801 CMS_R_UNSUPPORTED_RECPIENTINFO_TYPE);
802 return 0;
803 }
804 }

806 BIO *cms_EnvelopedData_init_bio(CMS_ContentInfo *cms)
807 {
808 CMS_EncryptedContentInfo *ec;
809 STACK_OF(CMS_RecipientInfo) *rinfos;
810 CMS_RecipientInfo *ri;
811 int i, r, ok = 0;
812 BIO *ret;

814 /* Get BIO first to set up key */

816 ec = cms->d.envelopedData->encryptedContentInfo;
817 ret = cms_EncryptedContent_init_bio(ec);

819 /* If error or no cipher end of processing */

821 if (!ret || !ec->cipher)
822 return ret;

824 /* Now encrypt content key according to each RecipientInfo type */

826 rinfos = cms->d.envelopedData->recipientInfos;

828 for (i = 0; i < sk_CMS_RecipientInfo_num(rinfos); i++)
829 {
830 ri = sk_CMS_RecipientInfo_value(rinfos, i);

832 switch (ri->type)
833 {
834 case CMS_RECIPINFO_TRANS:
835 r = cms_RecipientInfo_ktri_encrypt(cms, ri);
836 break;

838 case CMS_RECIPINFO_KEK:
839 r = cms_RecipientInfo_kekri_encrypt(cms, ri);
840 break;

842 case CMS_RECIPINFO_PASS:
843 r = cms_RecipientInfo_pwri_crypt(cms, ri, 1);
844 break;

846 default:
847 CMSerr(CMS_F_CMS_ENVELOPEDDATA_INIT_BIO,
848 CMS_R_UNSUPPORTED_RECIPIENT_TYPE);
849 goto err;
850 }

852 if (r <= 0)
853 {

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_env.c 14

854 CMSerr(CMS_F_CMS_ENVELOPEDDATA_INIT_BIO,
855 CMS_R_ERROR_SETTING_RECIPIENTINFO);
856 goto err;
857 }
858 }

860 ok = 1;

862 err:
863 ec->cipher = NULL;
864 if (ec->key)
865 {
866 OPENSSL_cleanse(ec->key, ec->keylen);
867 OPENSSL_free(ec->key);
868 ec->key = NULL;
869 ec->keylen = 0;
870 }
871 if (ok)
872 return ret;
873 BIO_free(ret);
874 return NULL;

876 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_err.c 1

**
 13890 Fri May 30 18:31:40 2014
new/usr/src/lib/openssl/libsunw_crypto/cms/cms_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cms/cms_err.c */
2 /* ==
3 * Copyright (c) 1999-2009 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/cms.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_CMS,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_CMS,0,reason)

71 static ERR_STRING_DATA CMS_str_functs[]=
72 {
73 {ERR_FUNC(CMS_F_CHECK_CONTENT), "CHECK_CONTENT"},
74 {ERR_FUNC(CMS_F_CMS_ADD0_CERT), "CMS_add0_cert"},
75 {ERR_FUNC(CMS_F_CMS_ADD0_RECIPIENT_KEY), "CMS_add0_recipient_key"},
76 {ERR_FUNC(CMS_F_CMS_ADD0_RECIPIENT_PASSWORD), "CMS_add0_recipient_password"},
77 {ERR_FUNC(CMS_F_CMS_ADD1_RECEIPTREQUEST), "CMS_add1_ReceiptRequest"},
78 {ERR_FUNC(CMS_F_CMS_ADD1_RECIPIENT_CERT), "CMS_add1_recipient_cert"},
79 {ERR_FUNC(CMS_F_CMS_ADD1_SIGNER), "CMS_add1_signer"},
80 {ERR_FUNC(CMS_F_CMS_ADD1_SIGNINGTIME), "CMS_ADD1_SIGNINGTIME"},
81 {ERR_FUNC(CMS_F_CMS_COMPRESS), "CMS_compress"},
82 {ERR_FUNC(CMS_F_CMS_COMPRESSEDDATA_CREATE), "cms_CompressedData_create"},
83 {ERR_FUNC(CMS_F_CMS_COMPRESSEDDATA_INIT_BIO), "cms_CompressedData_init_bio"},
84 {ERR_FUNC(CMS_F_CMS_COPY_CONTENT), "CMS_COPY_CONTENT"},
85 {ERR_FUNC(CMS_F_CMS_COPY_MESSAGEDIGEST), "CMS_COPY_MESSAGEDIGEST"},
86 {ERR_FUNC(CMS_F_CMS_DATA), "CMS_data"},
87 {ERR_FUNC(CMS_F_CMS_DATAFINAL), "CMS_dataFinal"},
88 {ERR_FUNC(CMS_F_CMS_DATAINIT), "CMS_dataInit"},
89 {ERR_FUNC(CMS_F_CMS_DECRYPT), "CMS_decrypt"},
90 {ERR_FUNC(CMS_F_CMS_DECRYPT_SET1_KEY), "CMS_decrypt_set1_key"},
91 {ERR_FUNC(CMS_F_CMS_DECRYPT_SET1_PASSWORD), "CMS_decrypt_set1_password"},
92 {ERR_FUNC(CMS_F_CMS_DECRYPT_SET1_PKEY), "CMS_decrypt_set1_pkey"},
93 {ERR_FUNC(CMS_F_CMS_DIGESTALGORITHM_FIND_CTX), "cms_DigestAlgorithm_find_ctx"},
94 {ERR_FUNC(CMS_F_CMS_DIGESTALGORITHM_INIT_BIO), "cms_DigestAlgorithm_init_bio"},
95 {ERR_FUNC(CMS_F_CMS_DIGESTEDDATA_DO_FINAL), "cms_DigestedData_do_final"},
96 {ERR_FUNC(CMS_F_CMS_DIGEST_VERIFY), "CMS_digest_verify"},
97 {ERR_FUNC(CMS_F_CMS_ENCODE_RECEIPT), "cms_encode_Receipt"},
98 {ERR_FUNC(CMS_F_CMS_ENCRYPT), "CMS_encrypt"},
99 {ERR_FUNC(CMS_F_CMS_ENCRYPTEDCONTENT_INIT_BIO), "cms_EncryptedContent_init_bio"}
100 {ERR_FUNC(CMS_F_CMS_ENCRYPTEDDATA_DECRYPT), "CMS_EncryptedData_decrypt"},
101 {ERR_FUNC(CMS_F_CMS_ENCRYPTEDDATA_ENCRYPT), "CMS_EncryptedData_encrypt"},
102 {ERR_FUNC(CMS_F_CMS_ENCRYPTEDDATA_SET1_KEY), "CMS_EncryptedData_set1_key"},
103 {ERR_FUNC(CMS_F_CMS_ENVELOPEDDATA_CREATE), "CMS_EnvelopedData_create"},
104 {ERR_FUNC(CMS_F_CMS_ENVELOPEDDATA_INIT_BIO), "cms_EnvelopedData_init_bio"},
105 {ERR_FUNC(CMS_F_CMS_ENVELOPED_DATA_INIT), "CMS_ENVELOPED_DATA_INIT"},
106 {ERR_FUNC(CMS_F_CMS_FINAL), "CMS_final"},
107 {ERR_FUNC(CMS_F_CMS_GET0_CERTIFICATE_CHOICES), "CMS_GET0_CERTIFICATE_CHOICES"},
108 {ERR_FUNC(CMS_F_CMS_GET0_CONTENT), "CMS_get0_content"},
109 {ERR_FUNC(CMS_F_CMS_GET0_ECONTENT_TYPE), "CMS_GET0_ECONTENT_TYPE"},
110 {ERR_FUNC(CMS_F_CMS_GET0_ENVELOPED), "cms_get0_enveloped"},
111 {ERR_FUNC(CMS_F_CMS_GET0_REVOCATION_CHOICES), "CMS_GET0_REVOCATION_CHOICES"},
112 {ERR_FUNC(CMS_F_CMS_GET0_SIGNED), "CMS_GET0_SIGNED"},
113 {ERR_FUNC(CMS_F_CMS_MSGSIGDIGEST_ADD1), "cms_msgSigDigest_add1"},
114 {ERR_FUNC(CMS_F_CMS_RECEIPTREQUEST_CREATE0), "CMS_ReceiptRequest_create0"},
115 {ERR_FUNC(CMS_F_CMS_RECEIPT_VERIFY), "cms_Receipt_verify"},
116 {ERR_FUNC(CMS_F_CMS_RECIPIENTINFO_DECRYPT), "CMS_RecipientInfo_decrypt"},
117 {ERR_FUNC(CMS_F_CMS_RECIPIENTINFO_KEKRI_DECRYPT), "CMS_RECIPIENTINFO_KEKRI
118 {ERR_FUNC(CMS_F_CMS_RECIPIENTINFO_KEKRI_ENCRYPT), "CMS_RECIPIENTINFO_KEKRI
119 {ERR_FUNC(CMS_F_CMS_RECIPIENTINFO_KEKRI_GET0_ID), "CMS_RecipientInfo_kekri
120 {ERR_FUNC(CMS_F_CMS_RECIPIENTINFO_KEKRI_ID_CMP), "CMS_RecipientInfo_kekri
121 {ERR_FUNC(CMS_F_CMS_RECIPIENTINFO_KTRI_CERT_CMP), "CMS_RecipientInfo_ktri_
122 {ERR_FUNC(CMS_F_CMS_RECIPIENTINFO_KTRI_DECRYPT), "CMS_RECIPIENTINFO_KTRI_
123 {ERR_FUNC(CMS_F_CMS_RECIPIENTINFO_KTRI_ENCRYPT), "CMS_RECIPIENTINFO_KTRI_
124 {ERR_FUNC(CMS_F_CMS_RECIPIENTINFO_KTRI_GET0_ALGS), "CMS_RecipientInfo_ktri_
125 {ERR_FUNC(CMS_F_CMS_RECIPIENTINFO_KTRI_GET0_SIGNER_ID), "CMS_RecipientInfo_ktri_
126 {ERR_FUNC(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT), "cms_RecipientInfo_pwri_crypt"},
127 {ERR_FUNC(CMS_F_CMS_RECIPIENTINFO_SET0_KEY), "CMS_RecipientInfo_set0_key"},

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_err.c 3

128 {ERR_FUNC(CMS_F_CMS_RECIPIENTINFO_SET0_PASSWORD), "CMS_RecipientInfo_set0_
129 {ERR_FUNC(CMS_F_CMS_RECIPIENTINFO_SET0_PKEY), "CMS_RecipientInfo_set0_pkey"},
130 {ERR_FUNC(CMS_F_CMS_SET1_SIGNERIDENTIFIER), "cms_set1_SignerIdentifier"},
131 {ERR_FUNC(CMS_F_CMS_SET_DETACHED), "CMS_set_detached"},
132 {ERR_FUNC(CMS_F_CMS_SIGN), "CMS_sign"},
133 {ERR_FUNC(CMS_F_CMS_SIGNED_DATA_INIT), "CMS_SIGNED_DATA_INIT"},
134 {ERR_FUNC(CMS_F_CMS_SIGNERINFO_CONTENT_SIGN), "CMS_SIGNERINFO_CONTENT_SIGN"},
135 {ERR_FUNC(CMS_F_CMS_SIGNERINFO_SIGN), "CMS_SignerInfo_sign"},
136 {ERR_FUNC(CMS_F_CMS_SIGNERINFO_VERIFY), "CMS_SignerInfo_verify"},
137 {ERR_FUNC(CMS_F_CMS_SIGNERINFO_VERIFY_CERT), "CMS_SIGNERINFO_VERIFY_CERT"},
138 {ERR_FUNC(CMS_F_CMS_SIGNERINFO_VERIFY_CONTENT), "CMS_SignerInfo_verify_content"}
139 {ERR_FUNC(CMS_F_CMS_SIGN_RECEIPT), "CMS_sign_receipt"},
140 {ERR_FUNC(CMS_F_CMS_STREAM), "CMS_stream"},
141 {ERR_FUNC(CMS_F_CMS_UNCOMPRESS), "CMS_uncompress"},
142 {ERR_FUNC(CMS_F_CMS_VERIFY), "CMS_verify"},
143 {0,NULL}
144 };

146 static ERR_STRING_DATA CMS_str_reasons[]=
147 {
148 {ERR_REASON(CMS_R_ADD_SIGNER_ERROR) ,"add signer error"},
149 {ERR_REASON(CMS_R_CERTIFICATE_ALREADY_PRESENT),"certificate already present"},
150 {ERR_REASON(CMS_R_CERTIFICATE_HAS_NO_KEYID),"certificate has no keyid"},
151 {ERR_REASON(CMS_R_CERTIFICATE_VERIFY_ERROR),"certificate verify error"},
152 {ERR_REASON(CMS_R_CIPHER_INITIALISATION_ERROR),"cipher initialisation error"},
153 {ERR_REASON(CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR),"cipher parameter initi
154 {ERR_REASON(CMS_R_CMS_DATAFINAL_ERROR) ,"cms datafinal error"},
155 {ERR_REASON(CMS_R_CMS_LIB) ,"cms lib"},
156 {ERR_REASON(CMS_R_CONTENTIDENTIFIER_MISMATCH),"contentidentifier mismatch"},
157 {ERR_REASON(CMS_R_CONTENT_NOT_FOUND) ,"content not found"},
158 {ERR_REASON(CMS_R_CONTENT_TYPE_MISMATCH) ,"content type mismatch"},
159 {ERR_REASON(CMS_R_CONTENT_TYPE_NOT_COMPRESSED_DATA),"content type not compressed
160 {ERR_REASON(CMS_R_CONTENT_TYPE_NOT_ENVELOPED_DATA),"content type not enveloped d
161 {ERR_REASON(CMS_R_CONTENT_TYPE_NOT_SIGNED_DATA),"content type not signed data"},
162 {ERR_REASON(CMS_R_CONTENT_VERIFY_ERROR) ,"content verify error"},
163 {ERR_REASON(CMS_R_CTRL_ERROR) ,"ctrl error"},
164 {ERR_REASON(CMS_R_CTRL_FAILURE) ,"ctrl failure"},
165 {ERR_REASON(CMS_R_DECRYPT_ERROR) ,"decrypt error"},
166 {ERR_REASON(CMS_R_DIGEST_ERROR) ,"digest error"},
167 {ERR_REASON(CMS_R_ERROR_GETTING_PUBLIC_KEY),"error getting public key"},
168 {ERR_REASON(CMS_R_ERROR_READING_MESSAGEDIGEST_ATTRIBUTE),"error reading messaged
169 {ERR_REASON(CMS_R_ERROR_SETTING_KEY) ,"error setting key"},
170 {ERR_REASON(CMS_R_ERROR_SETTING_RECIPIENTINFO),"error setting recipientinfo"},
171 {ERR_REASON(CMS_R_INVALID_ENCRYPTED_KEY_LENGTH),"invalid encrypted key length"},
172 {ERR_REASON(CMS_R_INVALID_KEY_ENCRYPTION_PARAMETER),"invalid key encryption para
173 {ERR_REASON(CMS_R_INVALID_KEY_LENGTH) ,"invalid key length"},
174 {ERR_REASON(CMS_R_MD_BIO_INIT_ERROR) ,"md bio init error"},
175 {ERR_REASON(CMS_R_MESSAGEDIGEST_ATTRIBUTE_WRONG_LENGTH),"messagedigest attribute
176 {ERR_REASON(CMS_R_MESSAGEDIGEST_WRONG_LENGTH),"messagedigest wrong length"},
177 {ERR_REASON(CMS_R_MSGSIGDIGEST_ERROR) ,"msgsigdigest error"},
178 {ERR_REASON(CMS_R_MSGSIGDIGEST_VERIFICATION_FAILURE),"msgsigdigest verification
179 {ERR_REASON(CMS_R_MSGSIGDIGEST_WRONG_LENGTH),"msgsigdigest wrong length"},
180 {ERR_REASON(CMS_R_NEED_ONE_SIGNER) ,"need one signer"},
181 {ERR_REASON(CMS_R_NOT_A_SIGNED_RECEIPT) ,"not a signed receipt"},
182 {ERR_REASON(CMS_R_NOT_ENCRYPTED_DATA) ,"not encrypted data"},
183 {ERR_REASON(CMS_R_NOT_KEK) ,"not kek"},
184 {ERR_REASON(CMS_R_NOT_KEY_TRANSPORT) ,"not key transport"},
185 {ERR_REASON(CMS_R_NOT_PWRI) ,"not pwri"},
186 {ERR_REASON(CMS_R_NOT_SUPPORTED_FOR_THIS_KEY_TYPE),"not supported for this key t
187 {ERR_REASON(CMS_R_NO_CIPHER) ,"no cipher"},
188 {ERR_REASON(CMS_R_NO_CONTENT) ,"no content"},
189 {ERR_REASON(CMS_R_NO_CONTENT_TYPE) ,"no content type"},
190 {ERR_REASON(CMS_R_NO_DEFAULT_DIGEST) ,"no default digest"},
191 {ERR_REASON(CMS_R_NO_DIGEST_SET) ,"no digest set"},
192 {ERR_REASON(CMS_R_NO_KEY) ,"no key"},
193 {ERR_REASON(CMS_R_NO_KEY_OR_CERT) ,"no key or cert"},

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_err.c 4

194 {ERR_REASON(CMS_R_NO_MATCHING_DIGEST) ,"no matching digest"},
195 {ERR_REASON(CMS_R_NO_MATCHING_RECIPIENT) ,"no matching recipient"},
196 {ERR_REASON(CMS_R_NO_MATCHING_SIGNATURE) ,"no matching signature"},
197 {ERR_REASON(CMS_R_NO_MSGSIGDIGEST) ,"no msgsigdigest"},
198 {ERR_REASON(CMS_R_NO_PASSWORD) ,"no password"},
199 {ERR_REASON(CMS_R_NO_PRIVATE_KEY) ,"no private key"},
200 {ERR_REASON(CMS_R_NO_PUBLIC_KEY) ,"no public key"},
201 {ERR_REASON(CMS_R_NO_RECEIPT_REQUEST) ,"no receipt request"},
202 {ERR_REASON(CMS_R_NO_SIGNERS) ,"no signers"},
203 {ERR_REASON(CMS_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE),"private key does not
204 {ERR_REASON(CMS_R_RECEIPT_DECODE_ERROR) ,"receipt decode error"},
205 {ERR_REASON(CMS_R_RECIPIENT_ERROR) ,"recipient error"},
206 {ERR_REASON(CMS_R_SIGNER_CERTIFICATE_NOT_FOUND),"signer certificate not found"},
207 {ERR_REASON(CMS_R_SIGNFINAL_ERROR) ,"signfinal error"},
208 {ERR_REASON(CMS_R_SMIME_TEXT_ERROR) ,"smime text error"},
209 {ERR_REASON(CMS_R_STORE_INIT_ERROR) ,"store init error"},
210 {ERR_REASON(CMS_R_TYPE_NOT_COMPRESSED_DATA),"type not compressed data"},
211 {ERR_REASON(CMS_R_TYPE_NOT_DATA) ,"type not data"},
212 {ERR_REASON(CMS_R_TYPE_NOT_DIGESTED_DATA),"type not digested data"},
213 {ERR_REASON(CMS_R_TYPE_NOT_ENCRYPTED_DATA),"type not encrypted data"},
214 {ERR_REASON(CMS_R_TYPE_NOT_ENVELOPED_DATA),"type not enveloped data"},
215 {ERR_REASON(CMS_R_UNABLE_TO_FINALIZE_CONTEXT),"unable to finalize context"},
216 {ERR_REASON(CMS_R_UNKNOWN_CIPHER) ,"unknown cipher"},
217 {ERR_REASON(CMS_R_UNKNOWN_DIGEST_ALGORIHM),"unknown digest algorihm"},
218 {ERR_REASON(CMS_R_UNKNOWN_ID) ,"unknown id"},
219 {ERR_REASON(CMS_R_UNSUPPORTED_COMPRESSION_ALGORITHM),"unsupported compression al
220 {ERR_REASON(CMS_R_UNSUPPORTED_CONTENT_TYPE),"unsupported content type"},
221 {ERR_REASON(CMS_R_UNSUPPORTED_KEK_ALGORITHM),"unsupported kek algorithm"},
222 {ERR_REASON(CMS_R_UNSUPPORTED_KEY_ENCRYPTION_ALGORITHM),"unsupported key encrypt
223 {ERR_REASON(CMS_R_UNSUPPORTED_RECIPIENT_TYPE),"unsupported recipient type"},
224 {ERR_REASON(CMS_R_UNSUPPORTED_RECPIENTINFO_TYPE),"unsupported recpientinfo type"
225 {ERR_REASON(CMS_R_UNSUPPORTED_TYPE) ,"unsupported type"},
226 {ERR_REASON(CMS_R_UNWRAP_ERROR) ,"unwrap error"},
227 {ERR_REASON(CMS_R_UNWRAP_FAILURE) ,"unwrap failure"},
228 {ERR_REASON(CMS_R_VERIFICATION_FAILURE) ,"verification failure"},
229 {ERR_REASON(CMS_R_WRAP_ERROR) ,"wrap error"},
230 {0,NULL}
231 };

233 #endif

235 void ERR_load_CMS_strings(void)
236 {
237 #ifndef OPENSSL_NO_ERR

239 if (ERR_func_error_string(CMS_str_functs[0].error) == NULL)
240 {
241 ERR_load_strings(0,CMS_str_functs);
242 ERR_load_strings(0,CMS_str_reasons);
243 }
244 #endif
245 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_ess.c 1

**
 10443 Fri May 30 18:31:40 2014
new/usr/src/lib/openssl/libsunw_crypto/cms/cms_ess.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cms/cms_ess.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

54 #include "cryptlib.h"
55 #include <openssl/asn1t.h>
56 #include <openssl/pem.h>
57 #include <openssl/rand.h>
58 #include <openssl/x509v3.h>
59 #include <openssl/err.h>
60 #include <openssl/cms.h>
61 #include "cms_lcl.h"

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_ess.c 2

63 DECLARE_ASN1_ITEM(CMS_ReceiptRequest)
64 DECLARE_ASN1_ITEM(CMS_Receipt)

66 IMPLEMENT_ASN1_FUNCTIONS(CMS_ReceiptRequest)

68 /* ESS services: for now just Signed Receipt related */

70 int CMS_get1_ReceiptRequest(CMS_SignerInfo *si, CMS_ReceiptRequest **prr)
71 {
72 ASN1_STRING *str;
73 CMS_ReceiptRequest *rr = NULL;
74 if (prr)
75 *prr = NULL;
76 str = CMS_signed_get0_data_by_OBJ(si,
77 OBJ_nid2obj(NID_id_smime_aa_receiptRequest),
78 -3, V_ASN1_SEQUENCE);
79 if (!str)
80 return 0;

82 rr = ASN1_item_unpack(str, ASN1_ITEM_rptr(CMS_ReceiptRequest));
83 if (!rr)
84 return -1;
85 if (prr)
86 *prr = rr;
87 else
88 CMS_ReceiptRequest_free(rr);
89 return 1;
90 }

92 CMS_ReceiptRequest *CMS_ReceiptRequest_create0(unsigned char *id, int idlen,
93 int allorfirst,
94 STACK_OF(GENERAL_NAMES) *receiptList,
95 STACK_OF(GENERAL_NAMES) *receiptsTo)
96 {
97 CMS_ReceiptRequest *rr = NULL;

99 rr = CMS_ReceiptRequest_new();
100 if (!rr)
101 goto merr;
102 if (id)
103 ASN1_STRING_set0(rr->signedContentIdentifier, id, idlen);
104 else
105 {
106 if (!ASN1_STRING_set(rr->signedContentIdentifier, NULL, 32))
107 goto merr;
108 if (RAND_pseudo_bytes(rr->signedContentIdentifier->data, 32)
109 <= 0)
110 goto err;
111 }

113 sk_GENERAL_NAMES_pop_free(rr->receiptsTo, GENERAL_NAMES_free);
114 rr->receiptsTo = receiptsTo;

116 if (receiptList)
117 {
118 rr->receiptsFrom->type = 1;
119 rr->receiptsFrom->d.receiptList = receiptList;
120 }
121 else
122 {
123 rr->receiptsFrom->type = 0;
124 rr->receiptsFrom->d.allOrFirstTier = allorfirst;
125 }

127 return rr;

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_ess.c 3

129 merr:
130 CMSerr(CMS_F_CMS_RECEIPTREQUEST_CREATE0, ERR_R_MALLOC_FAILURE);

132 err:
133 if (rr)
134 CMS_ReceiptRequest_free(rr);

136 return NULL;
137
138 }

140 int CMS_add1_ReceiptRequest(CMS_SignerInfo *si, CMS_ReceiptRequest *rr)
141 {
142 unsigned char *rrder = NULL;
143 int rrderlen, r = 0;

145 rrderlen = i2d_CMS_ReceiptRequest(rr, &rrder);
146 if (rrderlen < 0)
147 goto merr;

149 if (!CMS_signed_add1_attr_by_NID(si, NID_id_smime_aa_receiptRequest,
150 V_ASN1_SEQUENCE, rrder, rrderlen))
151 goto merr;

153 r = 1;

155 merr:
156 if (!r)
157 CMSerr(CMS_F_CMS_ADD1_RECEIPTREQUEST, ERR_R_MALLOC_FAILURE);

159 if (rrder)
160 OPENSSL_free(rrder);

162 return r;
163
164 }

166 void CMS_ReceiptRequest_get0_values(CMS_ReceiptRequest *rr,
167 ASN1_STRING **pcid,
168 int *pallorfirst,
169 STACK_OF(GENERAL_NAMES) **plist,
170 STACK_OF(GENERAL_NAMES) **prto)
171 {
172 if (pcid)
173 *pcid = rr->signedContentIdentifier;
174 if (rr->receiptsFrom->type == 0)
175 {
176 if (pallorfirst)
177 *pallorfirst = (int)rr->receiptsFrom->d.allOrFirstTier;
178 if (plist)
179 *plist = NULL;
180 }
181 else
182 {
183 if (pallorfirst)
184 *pallorfirst = -1;
185 if (plist)
186 *plist = rr->receiptsFrom->d.receiptList;
187 }
188 if (prto)
189 *prto = rr->receiptsTo;
190 }

192 /* Digest a SignerInfo structure for msgSigDigest attribute processing */

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_ess.c 4

194 static int cms_msgSigDigest(CMS_SignerInfo *si,
195 unsigned char *dig, unsigned int *diglen)
196 {
197 const EVP_MD *md;
198 md = EVP_get_digestbyobj(si->digestAlgorithm->algorithm);
199 if (md == NULL)
200 return 0;
201 if (!ASN1_item_digest(ASN1_ITEM_rptr(CMS_Attributes_Verify), md,
202 si->signedAttrs, dig, diglen))
203 return 0;
204 return 1;
205 }

207 /* Add a msgSigDigest attribute to a SignerInfo */

209 int cms_msgSigDigest_add1(CMS_SignerInfo *dest, CMS_SignerInfo *src)
210 {
211 unsigned char dig[EVP_MAX_MD_SIZE];
212 unsigned int diglen;
213 if (!cms_msgSigDigest(src, dig, &diglen))
214 {
215 CMSerr(CMS_F_CMS_MSGSIGDIGEST_ADD1, CMS_R_MSGSIGDIGEST_ERROR);
216 return 0;
217 }
218 if (!CMS_signed_add1_attr_by_NID(dest, NID_id_smime_aa_msgSigDigest,
219 V_ASN1_OCTET_STRING, dig, diglen))
220 {
221 CMSerr(CMS_F_CMS_MSGSIGDIGEST_ADD1, ERR_R_MALLOC_FAILURE);
222 return 0;
223 }
224 return 1;
225 }

227 /* Verify signed receipt after it has already passed normal CMS verify */

229 int cms_Receipt_verify(CMS_ContentInfo *cms, CMS_ContentInfo *req_cms)
230 {
231 int r = 0, i;
232 CMS_ReceiptRequest *rr = NULL;
233 CMS_Receipt *rct = NULL;
234 STACK_OF(CMS_SignerInfo) *sis, *osis;
235 CMS_SignerInfo *si, *osi = NULL;
236 ASN1_OCTET_STRING *msig, **pcont;
237 ASN1_OBJECT *octype;
238 unsigned char dig[EVP_MAX_MD_SIZE];
239 unsigned int diglen;

241 /* Get SignerInfos, also checks SignedData content type */
242 osis = CMS_get0_SignerInfos(req_cms);
243 sis = CMS_get0_SignerInfos(cms);
244 if (!osis || !sis)
245 goto err;

247 if (sk_CMS_SignerInfo_num(sis) != 1)
248 {
249 CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_NEED_ONE_SIGNER);
250 goto err;
251 }

253 /* Check receipt content type */
254 if (OBJ_obj2nid(CMS_get0_eContentType(cms)) != NID_id_smime_ct_receipt)
255 {
256 CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_NOT_A_SIGNED_RECEIPT);
257 goto err;
258 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_ess.c 5

260 /* Extract and decode receipt content */
261 pcont = CMS_get0_content(cms);
262 if (!pcont || !*pcont)
263 {
264 CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_NO_CONTENT);
265 goto err;
266 }

268 rct = ASN1_item_unpack(*pcont, ASN1_ITEM_rptr(CMS_Receipt));

270 if (!rct)
271 {
272 CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_RECEIPT_DECODE_ERROR);
273 goto err;
274 }

276 /* Locate original request */

278 for (i = 0; i < sk_CMS_SignerInfo_num(osis); i++)
279 {
280 osi = sk_CMS_SignerInfo_value(osis, i);
281 if (!ASN1_STRING_cmp(osi->signature,
282 rct->originatorSignatureValue))
283 break;
284 }

286 if (i == sk_CMS_SignerInfo_num(osis))
287 {
288 CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_NO_MATCHING_SIGNATURE);
289 goto err;
290 }

292 si = sk_CMS_SignerInfo_value(sis, 0);

294 /* Get msgSigDigest value and compare */

296 msig = CMS_signed_get0_data_by_OBJ(si,
297 OBJ_nid2obj(NID_id_smime_aa_msgSigDigest),
298 -3, V_ASN1_OCTET_STRING);

300 if (!msig)
301 {
302 CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_NO_MSGSIGDIGEST);
303 goto err;
304 }

306 if (!cms_msgSigDigest(osi, dig, &diglen))
307 {
308 CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_MSGSIGDIGEST_ERROR);
309 goto err;
310 }

312 if (diglen != (unsigned int)msig->length)
313 {
314 CMSerr(CMS_F_CMS_RECEIPT_VERIFY,
315 CMS_R_MSGSIGDIGEST_WRONG_LENGTH);
316 goto err;
317 }

319 if (memcmp(dig, msig->data, diglen))
320 {
321 CMSerr(CMS_F_CMS_RECEIPT_VERIFY,
322 CMS_R_MSGSIGDIGEST_VERIFICATION_FAILURE);
323 goto err;
324 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_ess.c 6

326 /* Compare content types */

328 octype = CMS_signed_get0_data_by_OBJ(osi,
329 OBJ_nid2obj(NID_pkcs9_contentType),
330 -3, V_ASN1_OBJECT);
331 if (!octype)
332 {
333 CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_NO_CONTENT_TYPE);
334 goto err;
335 }

337 /* Compare details in receipt request */

339 if (OBJ_cmp(octype, rct->contentType))
340 {
341 CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_CONTENT_TYPE_MISMATCH);
342 goto err;
343 }

345 /* Get original receipt request details */

347 if (CMS_get1_ReceiptRequest(osi, &rr) <= 0)
348 {
349 CMSerr(CMS_F_CMS_RECEIPT_VERIFY, CMS_R_NO_RECEIPT_REQUEST);
350 goto err;
351 }

353 if (ASN1_STRING_cmp(rr->signedContentIdentifier,
354 rct->signedContentIdentifier))
355 {
356 CMSerr(CMS_F_CMS_RECEIPT_VERIFY,
357 CMS_R_CONTENTIDENTIFIER_MISMATCH);
358 goto err;
359 }

361 r = 1;

363 err:
364 if (rr)
365 CMS_ReceiptRequest_free(rr);
366 if (rct)
367 M_ASN1_free_of(rct, CMS_Receipt);

369 return r;

371 }

373 /* Encode a Receipt into an OCTET STRING read for including into content of
374 * a SignedData ContentInfo.
375 */

377 ASN1_OCTET_STRING *cms_encode_Receipt(CMS_SignerInfo *si)
378 {
379 CMS_Receipt rct;
380 CMS_ReceiptRequest *rr = NULL;
381 ASN1_OBJECT *ctype;
382 ASN1_OCTET_STRING *os = NULL;

384 /* Get original receipt request */

386 /* Get original receipt request details */

388 if (CMS_get1_ReceiptRequest(si, &rr) <= 0)
389 {
390 CMSerr(CMS_F_CMS_ENCODE_RECEIPT, CMS_R_NO_RECEIPT_REQUEST);
391 goto err;

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_ess.c 7

392 }

394 /* Get original content type */

396 ctype = CMS_signed_get0_data_by_OBJ(si,
397 OBJ_nid2obj(NID_pkcs9_contentType),
398 -3, V_ASN1_OBJECT);
399 if (!ctype)
400 {
401 CMSerr(CMS_F_CMS_ENCODE_RECEIPT, CMS_R_NO_CONTENT_TYPE);
402 goto err;
403 }

405 rct.version = 1;
406 rct.contentType = ctype;
407 rct.signedContentIdentifier = rr->signedContentIdentifier;
408 rct.originatorSignatureValue = si->signature;

410 os = ASN1_item_pack(&rct, ASN1_ITEM_rptr(CMS_Receipt), NULL);

412 err:
413 if (rr)
414 CMS_ReceiptRequest_free(rr);

416 return os;

418 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_io.c 1

**
 4666 Fri May 30 18:31:40 2014
new/usr/src/lib/openssl/libsunw_crypto/cms/cms_io.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cms/cms_io.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

54 #include <openssl/asn1t.h>
55 #include <openssl/x509.h>
56 #include <openssl/err.h>
57 #include <openssl/pem.h>
58 #include <openssl/cms.h>
59 #include <cms_lcl.h>

61 int CMS_stream(unsigned char ***boundary, CMS_ContentInfo *cms)

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_io.c 2

62 {
63 ASN1_OCTET_STRING **pos;
64 pos = CMS_get0_content(cms);
65 if (!pos)
66 return 0;
67 if (!*pos)
68 *pos = ASN1_OCTET_STRING_new();
69 if (*pos)
70 {
71 (*pos)->flags |= ASN1_STRING_FLAG_NDEF;
72 (*pos)->flags &= ~ASN1_STRING_FLAG_CONT;
73 *boundary = &(*pos)->data;
74 return 1;
75 }
76 CMSerr(CMS_F_CMS_STREAM, ERR_R_MALLOC_FAILURE);
77 return 0;
78 }

80 CMS_ContentInfo *d2i_CMS_bio(BIO *bp, CMS_ContentInfo **cms)
81 {
82 return ASN1_item_d2i_bio(ASN1_ITEM_rptr(CMS_ContentInfo), bp, cms);
83 }

85 int i2d_CMS_bio(BIO *bp, CMS_ContentInfo *cms)
86 {
87 return ASN1_item_i2d_bio(ASN1_ITEM_rptr(CMS_ContentInfo), bp, cms);
88 }

90 IMPLEMENT_PEM_rw_const(CMS, CMS_ContentInfo, PEM_STRING_CMS, CMS_ContentInfo)

92 BIO *BIO_new_CMS(BIO *out, CMS_ContentInfo *cms)
93 {
94 return BIO_new_NDEF(out, (ASN1_VALUE *)cms,
95 ASN1_ITEM_rptr(CMS_ContentInfo));
96 }

98 /* CMS wrappers round generalised stream and MIME routines */

100 int i2d_CMS_bio_stream(BIO *out, CMS_ContentInfo *cms, BIO *in, int flags)
101 {
102 return i2d_ASN1_bio_stream(out, (ASN1_VALUE *)cms, in, flags,
103 ASN1_ITEM_rptr(CMS_ContentInfo));
104 }

106 int PEM_write_bio_CMS_stream(BIO *out, CMS_ContentInfo *cms, BIO *in, int flags)
107 {
108 return PEM_write_bio_ASN1_stream(out, (ASN1_VALUE *) cms, in, flags,
109 "CMS",
110 ASN1_ITEM_rptr(CMS_ContentInfo));
111 }

113 int SMIME_write_CMS(BIO *bio, CMS_ContentInfo *cms, BIO *data, int flags)
114 {
115 STACK_OF(X509_ALGOR) *mdalgs;
116 int ctype_nid = OBJ_obj2nid(cms->contentType);
117 int econt_nid = OBJ_obj2nid(CMS_get0_eContentType(cms));
118 if (ctype_nid == NID_pkcs7_signed)
119 mdalgs = cms->d.signedData->digestAlgorithms;
120 else
121 mdalgs = NULL;

123 return SMIME_write_ASN1(bio, (ASN1_VALUE *)cms, data, flags,
124 ctype_nid, econt_nid, mdalgs,
125 ASN1_ITEM_rptr(CMS_ContentInfo));
126 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_io.c 3

128 CMS_ContentInfo *SMIME_read_CMS(BIO *bio, BIO **bcont)
129 {
130 return (CMS_ContentInfo *)SMIME_read_ASN1(bio, bcont,
131 ASN1_ITEM_rptr(CMS_ContentInfo));
132 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_lib.c 1

**
 15329 Fri May 30 18:31:40 2014
new/usr/src/lib/openssl/libsunw_crypto/cms/cms_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cms/cms_lib.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

54 #include <openssl/asn1t.h>
55 #include <openssl/x509.h>
56 #include <openssl/err.h>
57 #include <openssl/pem.h>
58 #include <openssl/bio.h>
59 #include <openssl/asn1.h>
60 #include <openssl/cms.h>
61 #include <cms_lcl.h>

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_lib.c 2

63 IMPLEMENT_ASN1_FUNCTIONS(CMS_ContentInfo)
64 IMPLEMENT_ASN1_PRINT_FUNCTION(CMS_ContentInfo)

66 DECLARE_ASN1_ITEM(CMS_CertificateChoices)
67 DECLARE_ASN1_ITEM(CMS_RevocationInfoChoice)
68 DECLARE_STACK_OF(CMS_CertificateChoices)
69 DECLARE_STACK_OF(CMS_RevocationInfoChoice)

71 const ASN1_OBJECT *CMS_get0_type(CMS_ContentInfo *cms)
72 {
73 return cms->contentType;
74 }

76 CMS_ContentInfo *cms_Data_create(void)
77 {
78 CMS_ContentInfo *cms;
79 cms = CMS_ContentInfo_new();
80 if (cms)
81 {
82 cms->contentType = OBJ_nid2obj(NID_pkcs7_data);
83 /* Never detached */
84 CMS_set_detached(cms, 0);
85 }
86 return cms;
87 }

89 BIO *cms_content_bio(CMS_ContentInfo *cms)
90 {
91 ASN1_OCTET_STRING **pos = CMS_get0_content(cms);
92 if (!pos)
93 return NULL;
94 /* If content detached data goes nowhere: create NULL BIO */
95 if (!*pos)
96 return BIO_new(BIO_s_null());
97 /* If content not detached and created return memory BIO
98 */
99 if (!*pos || ((*pos)->flags == ASN1_STRING_FLAG_CONT))
100 return BIO_new(BIO_s_mem());
101 /* Else content was read in: return read only BIO for it */
102 return BIO_new_mem_buf((*pos)->data, (*pos)->length);
103 }

105 BIO *CMS_dataInit(CMS_ContentInfo *cms, BIO *icont)
106 {
107 BIO *cmsbio, *cont;
108 if (icont)
109 cont = icont;
110 else
111 cont = cms_content_bio(cms);
112 if (!cont)
113 {
114 CMSerr(CMS_F_CMS_DATAINIT, CMS_R_NO_CONTENT);
115 return NULL;
116 }
117 switch (OBJ_obj2nid(cms->contentType))
118 {

120 case NID_pkcs7_data:
121 return cont;

123 case NID_pkcs7_signed:
124 cmsbio = cms_SignedData_init_bio(cms);
125 break;

127 case NID_pkcs7_digest:

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_lib.c 3

128 cmsbio = cms_DigestedData_init_bio(cms);
129 break;
130 #ifdef ZLIB
131 case NID_id_smime_ct_compressedData:
132 cmsbio = cms_CompressedData_init_bio(cms);
133 break;
134 #endif

136 case NID_pkcs7_encrypted:
137 cmsbio = cms_EncryptedData_init_bio(cms);
138 break;

140 case NID_pkcs7_enveloped:
141 cmsbio = cms_EnvelopedData_init_bio(cms);
142 break;

144 default:
145 CMSerr(CMS_F_CMS_DATAINIT, CMS_R_UNSUPPORTED_TYPE);
146 return NULL;
147 }

149 if (cmsbio)
150 return BIO_push(cmsbio, cont);

152 if (!icont)
153 BIO_free(cont);
154 return NULL;

156 }

158 int CMS_dataFinal(CMS_ContentInfo *cms, BIO *cmsbio)
159 {
160 ASN1_OCTET_STRING **pos = CMS_get0_content(cms);
161 if (!pos)
162 return 0;
163 /* If ebmedded content find memory BIO and set content */
164 if (*pos && ((*pos)->flags & ASN1_STRING_FLAG_CONT))
165 {
166 BIO *mbio;
167 unsigned char *cont;
168 long contlen;
169 mbio = BIO_find_type(cmsbio, BIO_TYPE_MEM);
170 if (!mbio)
171 {
172 CMSerr(CMS_F_CMS_DATAFINAL, CMS_R_CONTENT_NOT_FOUND);
173 return 0;
174 }
175 contlen = BIO_get_mem_data(mbio, &cont);
176 /* Set bio as read only so its content can’t be clobbered */
177 BIO_set_flags(mbio, BIO_FLAGS_MEM_RDONLY);
178 BIO_set_mem_eof_return(mbio, 0);
179 ASN1_STRING_set0(*pos, cont, contlen);
180 (*pos)->flags &= ~ASN1_STRING_FLAG_CONT;
181 }

183 switch (OBJ_obj2nid(cms->contentType))
184 {

186 case NID_pkcs7_data:
187 case NID_pkcs7_enveloped:
188 case NID_pkcs7_encrypted:
189 case NID_id_smime_ct_compressedData:
190 /* Nothing to do */
191 return 1;

193 case NID_pkcs7_signed:

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_lib.c 4

194 return cms_SignedData_final(cms, cmsbio);

196 case NID_pkcs7_digest:
197 return cms_DigestedData_do_final(cms, cmsbio, 0);

199 default:
200 CMSerr(CMS_F_CMS_DATAFINAL, CMS_R_UNSUPPORTED_TYPE);
201 return 0;
202 }
203 }

205 /* Return an OCTET STRING pointer to content. This allows it to
206 * be accessed or set later.
207 */

209 ASN1_OCTET_STRING **CMS_get0_content(CMS_ContentInfo *cms)
210 {
211 switch (OBJ_obj2nid(cms->contentType))
212 {

214 case NID_pkcs7_data:
215 return &cms->d.data;

217 case NID_pkcs7_signed:
218 return &cms->d.signedData->encapContentInfo->eContent;

220 case NID_pkcs7_enveloped:
221 return &cms->d.envelopedData->encryptedContentInfo->encryptedCon

223 case NID_pkcs7_digest:
224 return &cms->d.digestedData->encapContentInfo->eContent;

226 case NID_pkcs7_encrypted:
227 return &cms->d.encryptedData->encryptedContentInfo->encryptedCon

229 case NID_id_smime_ct_authData:
230 return &cms->d.authenticatedData->encapContentInfo->eContent;

232 case NID_id_smime_ct_compressedData:
233 return &cms->d.compressedData->encapContentInfo->eContent;

235 default:
236 if (cms->d.other->type == V_ASN1_OCTET_STRING)
237 return &cms->d.other->value.octet_string;
238 CMSerr(CMS_F_CMS_GET0_CONTENT, CMS_R_UNSUPPORTED_CONTENT_TYPE);
239 return NULL;

241 }
242 }

244 /* Return an ASN1_OBJECT pointer to content type. This allows it to
245 * be accessed or set later.
246 */

248 static ASN1_OBJECT **cms_get0_econtent_type(CMS_ContentInfo *cms)
249 {
250 switch (OBJ_obj2nid(cms->contentType))
251 {

253 case NID_pkcs7_signed:
254 return &cms->d.signedData->encapContentInfo->eContentType;

256 case NID_pkcs7_enveloped:
257 return &cms->d.envelopedData->encryptedContentInfo->contentType;

259 case NID_pkcs7_digest:

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_lib.c 5

260 return &cms->d.digestedData->encapContentInfo->eContentType;

262 case NID_pkcs7_encrypted:
263 return &cms->d.encryptedData->encryptedContentInfo->contentType;

265 case NID_id_smime_ct_authData:
266 return &cms->d.authenticatedData->encapContentInfo->eContentType

268 case NID_id_smime_ct_compressedData:
269 return &cms->d.compressedData->encapContentInfo->eContentType;

271 default:
272 CMSerr(CMS_F_CMS_GET0_ECONTENT_TYPE,
273 CMS_R_UNSUPPORTED_CONTENT_TYPE);
274 return NULL;

276 }
277 }

279 const ASN1_OBJECT *CMS_get0_eContentType(CMS_ContentInfo *cms)
280 {
281 ASN1_OBJECT **petype;
282 petype = cms_get0_econtent_type(cms);
283 if (petype)
284 return *petype;
285 return NULL;
286 }

288 int CMS_set1_eContentType(CMS_ContentInfo *cms, const ASN1_OBJECT *oid)
289 {
290 ASN1_OBJECT **petype, *etype;
291 petype = cms_get0_econtent_type(cms);
292 if (!petype)
293 return 0;
294 if (!oid)
295 return 1;
296 etype = OBJ_dup(oid);
297 if (!etype)
298 return 0;
299 ASN1_OBJECT_free(*petype);
300 *petype = etype;
301 return 1;
302 }

304 int CMS_is_detached(CMS_ContentInfo *cms)
305 {
306 ASN1_OCTET_STRING **pos;
307 pos = CMS_get0_content(cms);
308 if (!pos)
309 return -1;
310 if (*pos)
311 return 0;
312 return 1;
313 }

315 int CMS_set_detached(CMS_ContentInfo *cms, int detached)
316 {
317 ASN1_OCTET_STRING **pos;
318 pos = CMS_get0_content(cms);
319 if (!pos)
320 return 0;
321 if (detached)
322 {
323 if (*pos)
324 {
325 ASN1_OCTET_STRING_free(*pos);

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_lib.c 6

326 *pos = NULL;
327 }
328 return 1;
329 }
330 if (!*pos)
331 *pos = ASN1_OCTET_STRING_new();
332 if (*pos)
333 {
334 /* NB: special flag to show content is created and not
335 * read in.
336 */
337 (*pos)->flags |= ASN1_STRING_FLAG_CONT;
338 return 1;
339 }
340 CMSerr(CMS_F_CMS_SET_DETACHED, ERR_R_MALLOC_FAILURE);
341 return 0;
342 }

344 /* Set up an X509_ALGOR DigestAlgorithmIdentifier from an EVP_MD */

346 void cms_DigestAlgorithm_set(X509_ALGOR *alg, const EVP_MD *md)
347 {
348 int param_type;

350 if (md->flags & EVP_MD_FLAG_DIGALGID_ABSENT)
351 param_type = V_ASN1_UNDEF;
352 else
353 param_type = V_ASN1_NULL;

355 X509_ALGOR_set0(alg, OBJ_nid2obj(EVP_MD_type(md)), param_type, NULL);

357 }

359 /* Create a digest BIO from an X509_ALGOR structure */

361 BIO *cms_DigestAlgorithm_init_bio(X509_ALGOR *digestAlgorithm)
362 {
363 BIO *mdbio = NULL;
364 ASN1_OBJECT *digestoid;
365 const EVP_MD *digest;
366 X509_ALGOR_get0(&digestoid, NULL, NULL, digestAlgorithm);
367 digest = EVP_get_digestbyobj(digestoid);
368 if (!digest)
369 {
370 CMSerr(CMS_F_CMS_DIGESTALGORITHM_INIT_BIO,
371 CMS_R_UNKNOWN_DIGEST_ALGORIHM);
372 goto err;
373 }
374 mdbio = BIO_new(BIO_f_md());
375 if (!mdbio || !BIO_set_md(mdbio, digest))
376 {
377 CMSerr(CMS_F_CMS_DIGESTALGORITHM_INIT_BIO,
378 CMS_R_MD_BIO_INIT_ERROR);
379 goto err;
380 }
381 return mdbio;
382 err:
383 if (mdbio)
384 BIO_free(mdbio);
385 return NULL;
386 }

388 /* Locate a message digest content from a BIO chain based on SignerInfo */

390 int cms_DigestAlgorithm_find_ctx(EVP_MD_CTX *mctx, BIO *chain,
391 X509_ALGOR *mdalg)

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_lib.c 7

392 {
393 int nid;
394 ASN1_OBJECT *mdoid;
395 X509_ALGOR_get0(&mdoid, NULL, NULL, mdalg);
396 nid = OBJ_obj2nid(mdoid);
397 /* Look for digest type to match signature */
398 for (;;)
399 {
400 EVP_MD_CTX *mtmp;
401 chain = BIO_find_type(chain, BIO_TYPE_MD);
402 if (chain == NULL)
403 {
404 CMSerr(CMS_F_CMS_DIGESTALGORITHM_FIND_CTX,
405 CMS_R_NO_MATCHING_DIGEST);
406 return 0;
407 }
408 BIO_get_md_ctx(chain, &mtmp);
409 if (EVP_MD_CTX_type(mtmp) == nid
410 /* Workaround for broken implementations that use signature
411 * algorithm OID instead of digest.
412 */
413 || EVP_MD_pkey_type(EVP_MD_CTX_md(mtmp)) == nid)
414 return EVP_MD_CTX_copy_ex(mctx, mtmp);
415 chain = BIO_next(chain);
416 }
417 }

419 static STACK_OF(CMS_CertificateChoices) **cms_get0_certificate_choices(CMS_Conte
420 {
421 switch (OBJ_obj2nid(cms->contentType))
422 {

424 case NID_pkcs7_signed:
425 return &cms->d.signedData->certificates;

427 case NID_pkcs7_enveloped:
428 return &cms->d.envelopedData->originatorInfo->certificates;

430 default:
431 CMSerr(CMS_F_CMS_GET0_CERTIFICATE_CHOICES,
432 CMS_R_UNSUPPORTED_CONTENT_TYPE);
433 return NULL;

435 }
436 }

438 CMS_CertificateChoices *CMS_add0_CertificateChoices(CMS_ContentInfo *cms)
439 {
440 STACK_OF(CMS_CertificateChoices) **pcerts;
441 CMS_CertificateChoices *cch;
442 pcerts = cms_get0_certificate_choices(cms);
443 if (!pcerts)
444 return NULL;
445 if (!*pcerts)
446 *pcerts = sk_CMS_CertificateChoices_new_null();
447 if (!*pcerts)
448 return NULL;
449 cch = M_ASN1_new_of(CMS_CertificateChoices);
450 if (!cch)
451 return NULL;
452 if (!sk_CMS_CertificateChoices_push(*pcerts, cch))
453 {
454 M_ASN1_free_of(cch, CMS_CertificateChoices);
455 return NULL;
456 }
457 return cch;

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_lib.c 8

458 }

460 int CMS_add0_cert(CMS_ContentInfo *cms, X509 *cert)
461 {
462 CMS_CertificateChoices *cch;
463 STACK_OF(CMS_CertificateChoices) **pcerts;
464 int i;
465 pcerts = cms_get0_certificate_choices(cms);
466 if (!pcerts)
467 return 0;
468 for (i = 0; i < sk_CMS_CertificateChoices_num(*pcerts); i++)
469 {
470 cch = sk_CMS_CertificateChoices_value(*pcerts, i);
471 if (cch->type == CMS_CERTCHOICE_CERT)
472 {
473 if (!X509_cmp(cch->d.certificate, cert))
474 {
475 CMSerr(CMS_F_CMS_ADD0_CERT,
476 CMS_R_CERTIFICATE_ALREADY_PRESENT);
477 return 0;
478 }
479 }
480 }
481 cch = CMS_add0_CertificateChoices(cms);
482 if (!cch)
483 return 0;
484 cch->type = CMS_CERTCHOICE_CERT;
485 cch->d.certificate = cert;
486 return 1;
487 }

489 int CMS_add1_cert(CMS_ContentInfo *cms, X509 *cert)
490 {
491 int r;
492 r = CMS_add0_cert(cms, cert);
493 if (r > 0)
494 CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
495 return r;
496 }

498 static STACK_OF(CMS_RevocationInfoChoice) **cms_get0_revocation_choices(CMS_Cont
499 {
500 switch (OBJ_obj2nid(cms->contentType))
501 {

503 case NID_pkcs7_signed:
504 return &cms->d.signedData->crls;

506 case NID_pkcs7_enveloped:
507 return &cms->d.envelopedData->originatorInfo->crls;

509 default:
510 CMSerr(CMS_F_CMS_GET0_REVOCATION_CHOICES,
511 CMS_R_UNSUPPORTED_CONTENT_TYPE);
512 return NULL;

514 }
515 }

517 CMS_RevocationInfoChoice *CMS_add0_RevocationInfoChoice(CMS_ContentInfo *cms)
518 {
519 STACK_OF(CMS_RevocationInfoChoice) **pcrls;
520 CMS_RevocationInfoChoice *rch;
521 pcrls = cms_get0_revocation_choices(cms);
522 if (!pcrls)
523 return NULL;

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_lib.c 9

524 if (!*pcrls)
525 *pcrls = sk_CMS_RevocationInfoChoice_new_null();
526 if (!*pcrls)
527 return NULL;
528 rch = M_ASN1_new_of(CMS_RevocationInfoChoice);
529 if (!rch)
530 return NULL;
531 if (!sk_CMS_RevocationInfoChoice_push(*pcrls, rch))
532 {
533 M_ASN1_free_of(rch, CMS_RevocationInfoChoice);
534 return NULL;
535 }
536 return rch;
537 }

539 int CMS_add0_crl(CMS_ContentInfo *cms, X509_CRL *crl)
540 {
541 CMS_RevocationInfoChoice *rch;
542 rch = CMS_add0_RevocationInfoChoice(cms);
543 if (!rch)
544 return 0;
545 rch->type = CMS_REVCHOICE_CRL;
546 rch->d.crl = crl;
547 return 1;
548 }

550 int CMS_add1_crl(CMS_ContentInfo *cms, X509_CRL *crl)
551 {
552 int r;
553 r = CMS_add0_crl(cms, crl);
554 if (r > 0)
555 CRYPTO_add(&crl->references, 1, CRYPTO_LOCK_X509_CRL);
556 return r;
557 }

559 STACK_OF(X509) *CMS_get1_certs(CMS_ContentInfo *cms)
560 {
561 STACK_OF(X509) *certs = NULL;
562 CMS_CertificateChoices *cch;
563 STACK_OF(CMS_CertificateChoices) **pcerts;
564 int i;
565 pcerts = cms_get0_certificate_choices(cms);
566 if (!pcerts)
567 return NULL;
568 for (i = 0; i < sk_CMS_CertificateChoices_num(*pcerts); i++)
569 {
570 cch = sk_CMS_CertificateChoices_value(*pcerts, i);
571 if (cch->type == 0)
572 {
573 if (!certs)
574 {
575 certs = sk_X509_new_null();
576 if (!certs)
577 return NULL;
578 }
579 if (!sk_X509_push(certs, cch->d.certificate))
580 {
581 sk_X509_pop_free(certs, X509_free);
582 return NULL;
583 }
584 CRYPTO_add(&cch->d.certificate->references,
585 1, CRYPTO_LOCK_X509);
586 }
587 }
588 return certs;

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_lib.c 10

590 }

592 STACK_OF(X509_CRL) *CMS_get1_crls(CMS_ContentInfo *cms)
593 {
594 STACK_OF(X509_CRL) *crls = NULL;
595 STACK_OF(CMS_RevocationInfoChoice) **pcrls;
596 CMS_RevocationInfoChoice *rch;
597 int i;
598 pcrls = cms_get0_revocation_choices(cms);
599 if (!pcrls)
600 return NULL;
601 for (i = 0; i < sk_CMS_RevocationInfoChoice_num(*pcrls); i++)
602 {
603 rch = sk_CMS_RevocationInfoChoice_value(*pcrls, i);
604 if (rch->type == 0)
605 {
606 if (!crls)
607 {
608 crls = sk_X509_CRL_new_null();
609 if (!crls)
610 return NULL;
611 }
612 if (!sk_X509_CRL_push(crls, rch->d.crl))
613 {
614 sk_X509_CRL_pop_free(crls, X509_CRL_free);
615 return NULL;
616 }
617 CRYPTO_add(&rch->d.crl->references,
618 1, CRYPTO_LOCK_X509_CRL);
619 }
620 }
621 return crls;
622 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_pwri.c 1

**
 11946 Fri May 30 18:31:40 2014
new/usr/src/lib/openssl/libsunw_crypto/cms/cms_pwri.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cms/cms_pwri.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2009 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

54 #include "cryptlib.h"
55 #include <openssl/asn1t.h>
56 #include <openssl/pem.h>
57 #include <openssl/x509v3.h>
58 #include <openssl/err.h>
59 #include <openssl/cms.h>
60 #include <openssl/rand.h>
61 #include <openssl/aes.h>

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_pwri.c 2

62 #include "cms_lcl.h"
63 #include "asn1_locl.h"

65 int CMS_RecipientInfo_set0_password(CMS_RecipientInfo *ri,
66 unsigned char *pass, ossl_ssize_t passlen)
67 {
68 CMS_PasswordRecipientInfo *pwri;
69 if (ri->type != CMS_RECIPINFO_PASS)
70 {
71 CMSerr(CMS_F_CMS_RECIPIENTINFO_SET0_PASSWORD, CMS_R_NOT_PWRI);
72 return 0;
73 }

75 pwri = ri->d.pwri;
76 pwri->pass = pass;
77 if (pass && passlen < 0)
78 passlen = strlen((char *)pass);
79 pwri->passlen = passlen;
80 return 1;
81 }

83 CMS_RecipientInfo *CMS_add0_recipient_password(CMS_ContentInfo *cms,
84 int iter, int wrap_nid, int pbe_nid,
85 unsigned char *pass,
86 ossl_ssize_t passlen,
87 const EVP_CIPHER *kekciph)
88 {
89 CMS_RecipientInfo *ri = NULL;
90 CMS_EnvelopedData *env;
91 CMS_PasswordRecipientInfo *pwri;
92 EVP_CIPHER_CTX ctx;
93 X509_ALGOR *encalg = NULL;
94 unsigned char iv[EVP_MAX_IV_LENGTH];
95 int ivlen;
96 env = cms_get0_enveloped(cms);
97 if (!env)
98 goto err;

100 if (wrap_nid <= 0)
101 wrap_nid = NID_id_alg_PWRI_KEK;

103 if (pbe_nid <= 0)
104 pbe_nid = NID_id_pbkdf2;

106 /* Get from enveloped data */
107 if (kekciph == NULL)
108 kekciph = env->encryptedContentInfo->cipher;

110 if (kekciph == NULL)
111 {
112 CMSerr(CMS_F_CMS_ADD0_RECIPIENT_PASSWORD, CMS_R_NO_CIPHER);
113 return NULL;
114 }
115 if (wrap_nid != NID_id_alg_PWRI_KEK)
116 {
117 CMSerr(CMS_F_CMS_ADD0_RECIPIENT_PASSWORD,
118 CMS_R_UNSUPPORTED_KEY_ENCRYPTION_ALGORITHM);
119 return NULL;
120 }

122 /* Setup algorithm identifier for cipher */
123 encalg = X509_ALGOR_new();
124 EVP_CIPHER_CTX_init(&ctx);

126 if (EVP_EncryptInit_ex(&ctx, kekciph, NULL, NULL, NULL) <= 0)
127 {

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_pwri.c 3

128 CMSerr(CMS_F_CMS_ADD0_RECIPIENT_PASSWORD, ERR_R_EVP_LIB);
129 goto err;
130 }

132 ivlen = EVP_CIPHER_CTX_iv_length(&ctx);

134 if (ivlen > 0)
135 {
136 if (RAND_pseudo_bytes(iv, ivlen) <= 0)
137 goto err;
138 if (EVP_EncryptInit_ex(&ctx, NULL, NULL, NULL, iv) <= 0)
139 {
140 CMSerr(CMS_F_CMS_ADD0_RECIPIENT_PASSWORD,
141 ERR_R_EVP_LIB);
142 goto err;
143 }
144 encalg->parameter = ASN1_TYPE_new();
145 if (!encalg->parameter)
146 {
147 CMSerr(CMS_F_CMS_ADD0_RECIPIENT_PASSWORD,
148 ERR_R_MALLOC_FAILURE);
149 goto err;
150 }
151 if (EVP_CIPHER_param_to_asn1(&ctx, encalg->parameter) <= 0)
152 {
153 CMSerr(CMS_F_CMS_ADD0_RECIPIENT_PASSWORD,
154 CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR);
155 goto err;
156 }
157 }

160 encalg->algorithm = OBJ_nid2obj(EVP_CIPHER_CTX_type(&ctx));

162 EVP_CIPHER_CTX_cleanup(&ctx);

164 /* Initialize recipient info */
165 ri = M_ASN1_new_of(CMS_RecipientInfo);
166 if (!ri)
167 goto merr;

169 ri->d.pwri = M_ASN1_new_of(CMS_PasswordRecipientInfo);
170 if (!ri->d.pwri)
171 goto merr;
172 ri->type = CMS_RECIPINFO_PASS;

174 pwri = ri->d.pwri;
175 /* Since this is overwritten, free up empty structure already there */
176 X509_ALGOR_free(pwri->keyEncryptionAlgorithm);
177 pwri->keyEncryptionAlgorithm = X509_ALGOR_new();
178 if (!pwri->keyEncryptionAlgorithm)
179 goto merr;
180 pwri->keyEncryptionAlgorithm->algorithm = OBJ_nid2obj(wrap_nid);
181 pwri->keyEncryptionAlgorithm->parameter = ASN1_TYPE_new();
182 if (!pwri->keyEncryptionAlgorithm->parameter)
183 goto merr;

185 if(!ASN1_item_pack(encalg, ASN1_ITEM_rptr(X509_ALGOR),
186 &pwri->keyEncryptionAlgorithm->parameter->value.sequence))
187 goto merr;
188 pwri->keyEncryptionAlgorithm->parameter->type = V_ASN1_SEQUENCE;

190 X509_ALGOR_free(encalg);
191 encalg = NULL;

193 /* Setup PBE algorithm */

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_pwri.c 4

195 pwri->keyDerivationAlgorithm = PKCS5_pbkdf2_set(iter, NULL, 0, -1, -1);

197 if (!pwri->keyDerivationAlgorithm)
198 goto err;

200 CMS_RecipientInfo_set0_password(ri, pass, passlen);
201 pwri->version = 0;

203 if (!sk_CMS_RecipientInfo_push(env->recipientInfos, ri))
204 goto merr;

206 return ri;

208 merr:
209 CMSerr(CMS_F_CMS_ADD0_RECIPIENT_PASSWORD, ERR_R_MALLOC_FAILURE);
210 err:
211 EVP_CIPHER_CTX_cleanup(&ctx);
212 if (ri)
213 M_ASN1_free_of(ri, CMS_RecipientInfo);
214 if (encalg)
215 X509_ALGOR_free(encalg);
216 return NULL;

218 }

220 /* This is an implementation of the key wrapping mechanism in RFC3211,
221 * at some point this should go into EVP.
222 */

224 static int kek_unwrap_key(unsigned char *out, size_t *outlen,
225 const unsigned char *in, size_t inlen, EVP_CIPHER_CTX *ctx)
226 {
227 size_t blocklen = EVP_CIPHER_CTX_block_size(ctx);
228 unsigned char *tmp;
229 int outl, rv = 0;
230 if (inlen < 2 * blocklen)
231 {
232 /* too small */
233 return 0;
234 }
235 if (inlen % blocklen)
236 {
237 /* Invalid size */
238 return 0;
239 }
240 tmp = OPENSSL_malloc(inlen);
241 /* setup IV by decrypting last two blocks */
242 EVP_DecryptUpdate(ctx, tmp + inlen - 2 * blocklen, &outl,
243 in + inlen - 2 * blocklen, blocklen * 2);
244 /* Do a decrypt of last decrypted block to set IV to correct value
245 * output it to start of buffer so we don’t corrupt decrypted block
246 * this works because buffer is at least two block lengths long.
247 */
248 EVP_DecryptUpdate(ctx, tmp, &outl,
249 tmp + inlen - blocklen, blocklen);
250 /* Can now decrypt first n - 1 blocks */
251 EVP_DecryptUpdate(ctx, tmp, &outl, in, inlen - blocklen);

253 /* Reset IV to original value */
254 EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, NULL);
255 /* Decrypt again */
256 EVP_DecryptUpdate(ctx, tmp, &outl, tmp, inlen);
257 /* Check check bytes */
258 if (((tmp[1] ^ tmp[4]) & (tmp[2] ^ tmp[5]) & (tmp[3] ^ tmp[6])) != 0xff)
259 {

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_pwri.c 5

260 /* Check byte failure */
261 goto err;
262 }
263 if (inlen < (size_t)(tmp[0] - 4))
264 {
265 /* Invalid length value */
266 goto err;
267 }
268 *outlen = (size_t)tmp[0];
269 memcpy(out, tmp + 4, *outlen);
270 rv = 1;
271 err:
272 OPENSSL_cleanse(tmp, inlen);
273 OPENSSL_free(tmp);
274 return rv;

276 }

278 static int kek_wrap_key(unsigned char *out, size_t *outlen,
279 const unsigned char *in, size_t inlen, EVP_CIPHER_CTX *ctx)
280 {
281 size_t blocklen = EVP_CIPHER_CTX_block_size(ctx);
282 size_t olen;
283 int dummy;
284 /* First decide length of output buffer: need header and round up to
285 * multiple of block length.
286 */
287 olen = (inlen + 4 + blocklen - 1)/blocklen;
288 olen *= blocklen;
289 if (olen < 2 * blocklen)
290 {
291 /* Key too small */
292 return 0;
293 }
294 if (inlen > 0xFF)
295 {
296 /* Key too large */
297 return 0;
298 }
299 if (out)
300 {
301 /* Set header */
302 out[0] = (unsigned char)inlen;
303 out[1] = in[0] ^ 0xFF;
304 out[2] = in[1] ^ 0xFF;
305 out[3] = in[2] ^ 0xFF;
306 memcpy(out + 4, in, inlen);
307 /* Add random padding to end */
308 if (olen > inlen + 4)
309 RAND_pseudo_bytes(out + 4 + inlen, olen - 4 - inlen);
310 /* Encrypt twice */
311 EVP_EncryptUpdate(ctx, out, &dummy, out, olen);
312 EVP_EncryptUpdate(ctx, out, &dummy, out, olen);
313 }

315 *outlen = olen;

317 return 1;
318 }

320 /* Encrypt/Decrypt content key in PWRI recipient info */

322 int cms_RecipientInfo_pwri_crypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri,
323 int en_de)
324 {
325 CMS_EncryptedContentInfo *ec;

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_pwri.c 6

326 CMS_PasswordRecipientInfo *pwri;
327 const unsigned char *p = NULL;
328 int plen;
329 int r = 0;
330 X509_ALGOR *algtmp, *kekalg = NULL;
331 EVP_CIPHER_CTX kekctx;
332 const EVP_CIPHER *kekcipher;
333 unsigned char *key = NULL;
334 size_t keylen;

336 ec = cms->d.envelopedData->encryptedContentInfo;

338 pwri = ri->d.pwri;
339 EVP_CIPHER_CTX_init(&kekctx);

341 if (!pwri->pass)
342 {
343 CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT, CMS_R_NO_PASSWORD);
344 return 0;
345 }
346 algtmp = pwri->keyEncryptionAlgorithm;

348 if (!algtmp || OBJ_obj2nid(algtmp->algorithm) != NID_id_alg_PWRI_KEK)
349 {
350 CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT,
351 CMS_R_UNSUPPORTED_KEY_ENCRYPTION_ALGORITHM);
352 return 0;
353 }

355 if (algtmp->parameter->type == V_ASN1_SEQUENCE)
356 {
357 p = algtmp->parameter->value.sequence->data;
358 plen = algtmp->parameter->value.sequence->length;
359 kekalg = d2i_X509_ALGOR(NULL, &p, plen);
360 }
361 if (kekalg == NULL)
362 {
363 CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT,
364 CMS_R_INVALID_KEY_ENCRYPTION_PARAMETER);
365 return 0;
366 }

368 kekcipher = EVP_get_cipherbyobj(kekalg->algorithm);
369
370 if(!kekcipher)
371 {
372 CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT,
373 CMS_R_UNKNOWN_CIPHER);
374 goto err;
375 }

377 /* Fixup cipher based on AlgorithmIdentifier to set IV etc */
378 if (!EVP_CipherInit_ex(&kekctx, kekcipher, NULL, NULL, NULL, en_de))
379 goto err;
380 EVP_CIPHER_CTX_set_padding(&kekctx, 0);
381 if(EVP_CIPHER_asn1_to_param(&kekctx, kekalg->parameter) < 0)
382 {
383 CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT,
384 CMS_R_CIPHER_PARAMETER_INITIALISATION_ERROR);
385 goto err;
386 }

388 algtmp = pwri->keyDerivationAlgorithm;

390 /* Finish password based key derivation to setup key in "ctx" */

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_pwri.c 7

392 if (EVP_PBE_CipherInit(algtmp->algorithm,
393 (char *)pwri->pass, pwri->passlen,
394 algtmp->parameter, &kekctx, en_de) < 0)
395 {
396 CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT, ERR_R_EVP_LIB);
397 goto err;
398 }

400 /* Finally wrap/unwrap the key */

402 if (en_de)
403 {

405 if (!kek_wrap_key(NULL, &keylen, ec->key, ec->keylen, &kekctx))
406 goto err;

408 key = OPENSSL_malloc(keylen);

410 if (!key)
411 goto err;

413 if (!kek_wrap_key(key, &keylen, ec->key, ec->keylen, &kekctx))
414 goto err;
415 pwri->encryptedKey->data = key;
416 pwri->encryptedKey->length = keylen;
417 }
418 else
419 {
420 key = OPENSSL_malloc(pwri->encryptedKey->length);

422 if (!key)
423 {
424 CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT,
425 ERR_R_MALLOC_FAILURE);
426 goto err;
427 }
428 if (!kek_unwrap_key(key, &keylen,
429 pwri->encryptedKey->data,
430 pwri->encryptedKey->length, &kekctx))
431 {
432 CMSerr(CMS_F_CMS_RECIPIENTINFO_PWRI_CRYPT,
433 CMS_R_UNWRAP_FAILURE);
434 goto err;
435 }

437 ec->key = key;
438 ec->keylen = keylen;

440 }

442 r = 1;

444 err:

446 EVP_CIPHER_CTX_cleanup(&kekctx);

448 if (!r && key)
449 OPENSSL_free(key);
450 X509_ALGOR_free(kekalg);

452 return r;

454 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 1

**
 23140 Fri May 30 18:31:40 2014
new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cms/cms_sd.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

54 #include "cryptlib.h"
55 #include <openssl/asn1t.h>
56 #include <openssl/pem.h>
57 #include <openssl/x509v3.h>
58 #include <openssl/err.h>
59 #include <openssl/cms.h>
60 #include "cms_lcl.h"
61 #include "asn1_locl.h"

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 2

63 /* CMS SignedData Utilities */

65 DECLARE_ASN1_ITEM(CMS_SignedData)

67 static CMS_SignedData *cms_get0_signed(CMS_ContentInfo *cms)
68 {
69 if (OBJ_obj2nid(cms->contentType) != NID_pkcs7_signed)
70 {
71 CMSerr(CMS_F_CMS_GET0_SIGNED, CMS_R_CONTENT_TYPE_NOT_SIGNED_DATA
72 return NULL;
73 }
74 return cms->d.signedData;
75 }

77 static CMS_SignedData *cms_signed_data_init(CMS_ContentInfo *cms)
78 {
79 if (cms->d.other == NULL)
80 {
81 cms->d.signedData = M_ASN1_new_of(CMS_SignedData);
82 if (!cms->d.signedData)
83 {
84 CMSerr(CMS_F_CMS_SIGNED_DATA_INIT, ERR_R_MALLOC_FAILURE)
85 return NULL;
86 }
87 cms->d.signedData->version = 1;
88 cms->d.signedData->encapContentInfo->eContentType =
89 OBJ_nid2obj(NID_pkcs7_data);
90 cms->d.signedData->encapContentInfo->partial = 1;
91 ASN1_OBJECT_free(cms->contentType);
92 cms->contentType = OBJ_nid2obj(NID_pkcs7_signed);
93 return cms->d.signedData;
94 }
95 return cms_get0_signed(cms);
96 }

98 /* Just initialize SignedData e.g. for certs only structure */

100 int CMS_SignedData_init(CMS_ContentInfo *cms)
101 {
102 if (cms_signed_data_init(cms))
103 return 1;
104 else
105 return 0;
106 }

108 /* Check structures and fixup version numbers (if necessary) */

110 static void cms_sd_set_version(CMS_SignedData *sd)
111 {
112 int i;
113 CMS_CertificateChoices *cch;
114 CMS_RevocationInfoChoice *rch;
115 CMS_SignerInfo *si;

117 for (i = 0; i < sk_CMS_CertificateChoices_num(sd->certificates); i++)
118 {
119 cch = sk_CMS_CertificateChoices_value(sd->certificates, i);
120 if (cch->type == CMS_CERTCHOICE_OTHER)
121 {
122 if (sd->version < 5)
123 sd->version = 5;
124 }
125 else if (cch->type == CMS_CERTCHOICE_V2ACERT)
126 {
127 if (sd->version < 4)

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 3

128 sd->version = 4;
129 }
130 else if (cch->type == CMS_CERTCHOICE_V1ACERT)
131 {
132 if (sd->version < 3)
133 sd->version = 3;
134 }
135 }

137 for (i = 0; i < sk_CMS_RevocationInfoChoice_num(sd->crls); i++)
138 {
139 rch = sk_CMS_RevocationInfoChoice_value(sd->crls, i);
140 if (rch->type == CMS_REVCHOICE_OTHER)
141 {
142 if (sd->version < 5)
143 sd->version = 5;
144 }
145 }

147 if ((OBJ_obj2nid(sd->encapContentInfo->eContentType) != NID_pkcs7_data)
148 && (sd->version < 3))
149 sd->version = 3;

151 for (i = 0; i < sk_CMS_SignerInfo_num(sd->signerInfos); i++)
152 {
153 si = sk_CMS_SignerInfo_value(sd->signerInfos, i);
154 if (si->sid->type == CMS_SIGNERINFO_KEYIDENTIFIER)
155 {
156 if (si->version < 3)
157 si->version = 3;
158 if (sd->version < 3)
159 sd->version = 3;
160 }
161 else
162 sd->version = 1;
163 }

165 if (sd->version < 1)
166 sd->version = 1;

168 }
169
170 /* Copy an existing messageDigest value */

172 static int cms_copy_messageDigest(CMS_ContentInfo *cms, CMS_SignerInfo *si)
173 {
174 STACK_OF(CMS_SignerInfo) *sinfos;
175 CMS_SignerInfo *sitmp;
176 int i;
177 sinfos = CMS_get0_SignerInfos(cms);
178 for (i = 0; i < sk_CMS_SignerInfo_num(sinfos); i++)
179 {
180 ASN1_OCTET_STRING *messageDigest;
181 sitmp = sk_CMS_SignerInfo_value(sinfos, i);
182 if (sitmp == si)
183 continue;
184 if (CMS_signed_get_attr_count(sitmp) < 0)
185 continue;
186 if (OBJ_cmp(si->digestAlgorithm->algorithm,
187 sitmp->digestAlgorithm->algorithm))
188 continue;
189 messageDigest = CMS_signed_get0_data_by_OBJ(sitmp,
190 OBJ_nid2obj(NID_pkcs9_messageDigest),
191 -3, V_ASN1_OCTET_STRING);
192 if (!messageDigest)
193 {

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 4

194 CMSerr(CMS_F_CMS_COPY_MESSAGEDIGEST,
195 CMS_R_ERROR_READING_MESSAGEDIGEST_ATTRIBUTE);
196 return 0;
197 }

199 if (CMS_signed_add1_attr_by_NID(si, NID_pkcs9_messageDigest,
200 V_ASN1_OCTET_STRING,
201 messageDigest, -1))
202 return 1;
203 else
204 return 0;
205 }
206 CMSerr(CMS_F_CMS_COPY_MESSAGEDIGEST, CMS_R_NO_MATCHING_DIGEST);
207 return 0;
208 }

210 int cms_set1_SignerIdentifier(CMS_SignerIdentifier *sid, X509 *cert, int type)
211 {
212 switch(type)
213 {
214 case CMS_SIGNERINFO_ISSUER_SERIAL:
215 sid->d.issuerAndSerialNumber =
216 M_ASN1_new_of(CMS_IssuerAndSerialNumber);
217 if (!sid->d.issuerAndSerialNumber)
218 goto merr;
219 if (!X509_NAME_set(&sid->d.issuerAndSerialNumber->issuer,
220 X509_get_issuer_name(cert)))
221 goto merr;
222 if (!ASN1_STRING_copy(
223 sid->d.issuerAndSerialNumber->serialNumber,
224 X509_get_serialNumber(cert)))
225 goto merr;
226 break;

228 case CMS_SIGNERINFO_KEYIDENTIFIER:
229 if (!cert->skid)
230 {
231 CMSerr(CMS_F_CMS_SET1_SIGNERIDENTIFIER,
232 CMS_R_CERTIFICATE_HAS_NO_KEYID);
233 return 0;
234 }
235 sid->d.subjectKeyIdentifier = ASN1_STRING_dup(cert->skid);
236 if (!sid->d.subjectKeyIdentifier)
237 goto merr;
238 break;

240 default:
241 CMSerr(CMS_F_CMS_SET1_SIGNERIDENTIFIER, CMS_R_UNKNOWN_ID);
242 return 0;
243 }

245 sid->type = type;

247 return 1;

249 merr:
250 CMSerr(CMS_F_CMS_SET1_SIGNERIDENTIFIER, ERR_R_MALLOC_FAILURE);
251 return 0;

253 }

255 int cms_SignerIdentifier_get0_signer_id(CMS_SignerIdentifier *sid,
256 ASN1_OCTET_STRING **keyid,
257 X509_NAME **issuer, ASN1_INTEGER **sno)
258 {
259 if (sid->type == CMS_SIGNERINFO_ISSUER_SERIAL)

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 5

260 {
261 if (issuer)
262 *issuer = sid->d.issuerAndSerialNumber->issuer;
263 if (sno)
264 *sno = sid->d.issuerAndSerialNumber->serialNumber;
265 }
266 else if (sid->type == CMS_SIGNERINFO_KEYIDENTIFIER)
267 {
268 if (keyid)
269 *keyid = sid->d.subjectKeyIdentifier;
270 }
271 else
272 return 0;
273 return 1;
274 }

276 int cms_SignerIdentifier_cert_cmp(CMS_SignerIdentifier *sid, X509 *cert)
277 {
278 int ret;
279 if (sid->type == CMS_SIGNERINFO_ISSUER_SERIAL)
280 {
281 ret = X509_NAME_cmp(sid->d.issuerAndSerialNumber->issuer,
282 X509_get_issuer_name(cert));
283 if (ret)
284 return ret;
285 return ASN1_INTEGER_cmp(sid->d.issuerAndSerialNumber->serialNumb
286 X509_get_serialNumber(cert));
287 }
288 else if (sid->type == CMS_SIGNERINFO_KEYIDENTIFIER)
289 {
290 X509_check_purpose(cert, -1, -1);
291 if (!cert->skid)
292 return -1;
293 return ASN1_OCTET_STRING_cmp(sid->d.subjectKeyIdentifier,
294 cert->skid);
295 }
296 else
297 return -1;
298 }

300 CMS_SignerInfo *CMS_add1_signer(CMS_ContentInfo *cms,
301 X509 *signer, EVP_PKEY *pk, const EVP_MD *md,
302 unsigned int flags)
303 {
304 CMS_SignedData *sd;
305 CMS_SignerInfo *si = NULL;
306 X509_ALGOR *alg;
307 int i, type;
308 if(!X509_check_private_key(signer, pk))
309 {
310 CMSerr(CMS_F_CMS_ADD1_SIGNER,
311 CMS_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE);
312 return NULL;
313 }
314 sd = cms_signed_data_init(cms);
315 if (!sd)
316 goto err;
317 si = M_ASN1_new_of(CMS_SignerInfo);
318 if (!si)
319 goto merr;
320 X509_check_purpose(signer, -1, -1);

322 CRYPTO_add(&pk->references, 1, CRYPTO_LOCK_EVP_PKEY);
323 CRYPTO_add(&signer->references, 1, CRYPTO_LOCK_X509);

325 si->pkey = pk;

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 6

326 si->signer = signer;

328 if (flags & CMS_USE_KEYID)
329 {
330 si->version = 3;
331 if (sd->version < 3)
332 sd->version = 3;
333 type = CMS_SIGNERINFO_KEYIDENTIFIER;
334 }
335 else
336 {
337 type = CMS_SIGNERINFO_ISSUER_SERIAL;
338 si->version = 1;
339 }

341 if (!cms_set1_SignerIdentifier(si->sid, signer, type))
342 goto err;

344 if (md == NULL)
345 {
346 int def_nid;
347 if (EVP_PKEY_get_default_digest_nid(pk, &def_nid) <= 0)
348 goto err;
349 md = EVP_get_digestbynid(def_nid);
350 if (md == NULL)
351 {
352 CMSerr(CMS_F_CMS_ADD1_SIGNER, CMS_R_NO_DEFAULT_DIGEST);
353 goto err;
354 }
355 }

357 if (!md)
358 {
359 CMSerr(CMS_F_CMS_ADD1_SIGNER, CMS_R_NO_DIGEST_SET);
360 goto err;
361 }

363 cms_DigestAlgorithm_set(si->digestAlgorithm, md);

365 /* See if digest is present in digestAlgorithms */
366 for (i = 0; i < sk_X509_ALGOR_num(sd->digestAlgorithms); i++)
367 {
368 ASN1_OBJECT *aoid;
369 alg = sk_X509_ALGOR_value(sd->digestAlgorithms, i);
370 X509_ALGOR_get0(&aoid, NULL, NULL, alg);
371 if (OBJ_obj2nid(aoid) == EVP_MD_type(md))
372 break;
373 }

375 if (i == sk_X509_ALGOR_num(sd->digestAlgorithms))
376 {
377 alg = X509_ALGOR_new();
378 if (!alg)
379 goto merr;
380 cms_DigestAlgorithm_set(alg, md);
381 if (!sk_X509_ALGOR_push(sd->digestAlgorithms, alg))
382 {
383 X509_ALGOR_free(alg);
384 goto merr;
385 }
386 }

388 if (pk->ameth && pk->ameth->pkey_ctrl)
389 {
390 i = pk->ameth->pkey_ctrl(pk, ASN1_PKEY_CTRL_CMS_SIGN,
391 0, si);

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 7

392 if (i == -2)
393 {
394 CMSerr(CMS_F_CMS_ADD1_SIGNER,
395 CMS_R_NOT_SUPPORTED_FOR_THIS_KEY_TYPE);
396 goto err;
397 }
398 if (i <= 0)
399 {
400 CMSerr(CMS_F_CMS_ADD1_SIGNER, CMS_R_CTRL_FAILURE);
401 goto err;
402 }
403 }

405 if (!(flags & CMS_NOATTR))
406 {
407 /* Initialialize signed attributes strutucture so other
408 * attributes such as signing time etc are added later
409 * even if we add none here.
410 */
411 if (!si->signedAttrs)
412 {
413 si->signedAttrs = sk_X509_ATTRIBUTE_new_null();
414 if (!si->signedAttrs)
415 goto merr;
416 }

418 if (!(flags & CMS_NOSMIMECAP))
419 {
420 STACK_OF(X509_ALGOR) *smcap = NULL;
421 i = CMS_add_standard_smimecap(&smcap);
422 if (i)
423 i = CMS_add_smimecap(si, smcap);
424 sk_X509_ALGOR_pop_free(smcap, X509_ALGOR_free);
425 if (!i)
426 goto merr;
427 }
428 if (flags & CMS_REUSE_DIGEST)
429 {
430 if (!cms_copy_messageDigest(cms, si))
431 goto err;
432 if (!(flags & CMS_PARTIAL) &&
433 !CMS_SignerInfo_sign(si))
434 goto err;
435 }
436 }

438 if (!(flags & CMS_NOCERTS))
439 {
440 /* NB ignore -1 return for duplicate cert */
441 if (!CMS_add1_cert(cms, signer))
442 goto merr;
443 }

445 if (!sd->signerInfos)
446 sd->signerInfos = sk_CMS_SignerInfo_new_null();
447 if (!sd->signerInfos ||
448 !sk_CMS_SignerInfo_push(sd->signerInfos, si))
449 goto merr;

451 return si;

453 merr:
454 CMSerr(CMS_F_CMS_ADD1_SIGNER, ERR_R_MALLOC_FAILURE);
455 err:
456 if (si)
457 M_ASN1_free_of(si, CMS_SignerInfo);

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 8

458 return NULL;

460 }

462 static int cms_add1_signingTime(CMS_SignerInfo *si, ASN1_TIME *t)
463 {
464 ASN1_TIME *tt;
465 int r = 0;
466 if (t)
467 tt = t;
468 else
469 tt = X509_gmtime_adj(NULL, 0);

471 if (!tt)
472 goto merr;

474 if (CMS_signed_add1_attr_by_NID(si, NID_pkcs9_signingTime,
475 tt->type, tt, -1) <= 0)
476 goto merr;

478 r = 1;

480 merr:

482 if (!t)
483 ASN1_TIME_free(tt);

485 if (!r)
486 CMSerr(CMS_F_CMS_ADD1_SIGNINGTIME, ERR_R_MALLOC_FAILURE);

488 return r;

490 }

492 STACK_OF(CMS_SignerInfo) *CMS_get0_SignerInfos(CMS_ContentInfo *cms)
493 {
494 CMS_SignedData *sd;
495 sd = cms_get0_signed(cms);
496 if (!sd)
497 return NULL;
498 return sd->signerInfos;
499 }

501 STACK_OF(X509) *CMS_get0_signers(CMS_ContentInfo *cms)
502 {
503 STACK_OF(X509) *signers = NULL;
504 STACK_OF(CMS_SignerInfo) *sinfos;
505 CMS_SignerInfo *si;
506 int i;
507 sinfos = CMS_get0_SignerInfos(cms);
508 for (i = 0; i < sk_CMS_SignerInfo_num(sinfos); i++)
509 {
510 si = sk_CMS_SignerInfo_value(sinfos, i);
511 if (si->signer)
512 {
513 if (!signers)
514 {
515 signers = sk_X509_new_null();
516 if (!signers)
517 return NULL;
518 }
519 if (!sk_X509_push(signers, si->signer))
520 {
521 sk_X509_free(signers);
522 return NULL;
523 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 9

524 }
525 }
526 return signers;
527 }

529 void CMS_SignerInfo_set1_signer_cert(CMS_SignerInfo *si, X509 *signer)
530 {
531 if (signer)
532 {
533 CRYPTO_add(&signer->references, 1, CRYPTO_LOCK_X509);
534 if (si->pkey)
535 EVP_PKEY_free(si->pkey);
536 si->pkey = X509_get_pubkey(signer);
537 }
538 if (si->signer)
539 X509_free(si->signer);
540 si->signer = signer;
541 }

543 int CMS_SignerInfo_get0_signer_id(CMS_SignerInfo *si,
544 ASN1_OCTET_STRING **keyid,
545 X509_NAME **issuer, ASN1_INTEGER **sno)
546 {
547 return cms_SignerIdentifier_get0_signer_id(si->sid, keyid, issuer, sno);
548 }

550 int CMS_SignerInfo_cert_cmp(CMS_SignerInfo *si, X509 *cert)
551 {
552 return cms_SignerIdentifier_cert_cmp(si->sid, cert);
553 }

555 int CMS_set1_signers_certs(CMS_ContentInfo *cms, STACK_OF(X509) *scerts,
556 unsigned int flags)
557 {
558 CMS_SignedData *sd;
559 CMS_SignerInfo *si;
560 CMS_CertificateChoices *cch;
561 STACK_OF(CMS_CertificateChoices) *certs;
562 X509 *x;
563 int i, j;
564 int ret = 0;
565 sd = cms_get0_signed(cms);
566 if (!sd)
567 return -1;
568 certs = sd->certificates;
569 for (i = 0; i < sk_CMS_SignerInfo_num(sd->signerInfos); i++)
570 {
571 si = sk_CMS_SignerInfo_value(sd->signerInfos, i);
572 if (si->signer)
573 continue;

575 for (j = 0; j < sk_X509_num(scerts); j++)
576 {
577 x = sk_X509_value(scerts, j);
578 if (CMS_SignerInfo_cert_cmp(si, x) == 0)
579 {
580 CMS_SignerInfo_set1_signer_cert(si, x);
581 ret++;
582 break;
583 }
584 }

586 if (si->signer || (flags & CMS_NOINTERN))
587 continue;

589 for (j = 0; j < sk_CMS_CertificateChoices_num(certs); j++)

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 10

590 {
591 cch = sk_CMS_CertificateChoices_value(certs, j);
592 if (cch->type != 0)
593 continue;
594 x = cch->d.certificate;
595 if (CMS_SignerInfo_cert_cmp(si, x) == 0)
596 {
597 CMS_SignerInfo_set1_signer_cert(si, x);
598 ret++;
599 break;
600 }
601 }
602 }
603 return ret;
604 }

606 void CMS_SignerInfo_get0_algs(CMS_SignerInfo *si, EVP_PKEY **pk, X509 **signer,
607 X509_ALGOR **pdig, X509_ALGOR **psig)
608 {
609 if (pk)
610 *pk = si->pkey;
611 if (signer)
612 *signer = si->signer;
613 if (pdig)
614 *pdig = si->digestAlgorithm;
615 if (psig)
616 *psig = si->signatureAlgorithm;
617 }

619 static int cms_SignerInfo_content_sign(CMS_ContentInfo *cms,
620 CMS_SignerInfo *si, BIO *chain)
621 {
622 EVP_MD_CTX mctx;
623 int r = 0;
624 EVP_MD_CTX_init(&mctx);

627 if (!si->pkey)
628 {
629 CMSerr(CMS_F_CMS_SIGNERINFO_CONTENT_SIGN, CMS_R_NO_PRIVATE_KEY);
630 return 0;
631 }

633 if (!cms_DigestAlgorithm_find_ctx(&mctx, chain, si->digestAlgorithm))
634 goto err;

636 /* If any signed attributes calculate and add messageDigest attribute */

638 if (CMS_signed_get_attr_count(si) >= 0)
639 {
640 ASN1_OBJECT *ctype =
641 cms->d.signedData->encapContentInfo->eContentType;
642 unsigned char md[EVP_MAX_MD_SIZE];
643 unsigned int mdlen;
644 if (!EVP_DigestFinal_ex(&mctx, md, &mdlen))
645 goto err;
646 if (!CMS_signed_add1_attr_by_NID(si, NID_pkcs9_messageDigest,
647 V_ASN1_OCTET_STRING,
648 md, mdlen))
649 goto err;
650 /* Copy content type across */
651 if (CMS_signed_add1_attr_by_NID(si, NID_pkcs9_contentType,
652 V_ASN1_OBJECT, ctype, -1) <= 0)
653 goto err;
654 if (!CMS_SignerInfo_sign(si))
655 goto err;

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 11

656 }
657 else
658 {
659 unsigned char *sig;
660 unsigned int siglen;
661 sig = OPENSSL_malloc(EVP_PKEY_size(si->pkey));
662 if (!sig)
663 {
664 CMSerr(CMS_F_CMS_SIGNERINFO_CONTENT_SIGN,
665 ERR_R_MALLOC_FAILURE);
666 goto err;
667 }
668 if (!EVP_SignFinal(&mctx, sig, &siglen, si->pkey))
669 {
670 CMSerr(CMS_F_CMS_SIGNERINFO_CONTENT_SIGN,
671 CMS_R_SIGNFINAL_ERROR);
672 OPENSSL_free(sig);
673 goto err;
674 }
675 ASN1_STRING_set0(si->signature, sig, siglen);
676 }

678 r = 1;

680 err:
681 EVP_MD_CTX_cleanup(&mctx);
682 return r;

684 }

686 int cms_SignedData_final(CMS_ContentInfo *cms, BIO *chain)
687 {
688 STACK_OF(CMS_SignerInfo) *sinfos;
689 CMS_SignerInfo *si;
690 int i;
691 sinfos = CMS_get0_SignerInfos(cms);
692 for (i = 0; i < sk_CMS_SignerInfo_num(sinfos); i++)
693 {
694 si = sk_CMS_SignerInfo_value(sinfos, i);
695 if (!cms_SignerInfo_content_sign(cms, si, chain))
696 return 0;
697 }
698 cms->d.signedData->encapContentInfo->partial = 0;
699 return 1;
700 }

702 int CMS_SignerInfo_sign(CMS_SignerInfo *si)
703 {
704 EVP_MD_CTX mctx;
705 EVP_PKEY_CTX *pctx;
706 unsigned char *abuf = NULL;
707 int alen;
708 size_t siglen;
709 const EVP_MD *md = NULL;

711 md = EVP_get_digestbyobj(si->digestAlgorithm->algorithm);
712 if (md == NULL)
713 return 0;

715 EVP_MD_CTX_init(&mctx);

717 if (CMS_signed_get_attr_by_NID(si, NID_pkcs9_signingTime, -1) < 0)
718 {
719 if (!cms_add1_signingTime(si, NULL))
720 goto err;
721 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 12

723 if (EVP_DigestSignInit(&mctx, &pctx, md, NULL, si->pkey) <= 0)
724 goto err;

726 if (EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_SIGN,
727 EVP_PKEY_CTRL_CMS_SIGN, 0, si) <= 0)
728 {
729 CMSerr(CMS_F_CMS_SIGNERINFO_SIGN, CMS_R_CTRL_ERROR);
730 goto err;
731 }

733 alen = ASN1_item_i2d((ASN1_VALUE *)si->signedAttrs,&abuf,
734 ASN1_ITEM_rptr(CMS_Attributes_Sign));
735 if(!abuf)
736 goto err;
737 if (EVP_DigestSignUpdate(&mctx, abuf, alen) <= 0)
738 goto err;
739 if (EVP_DigestSignFinal(&mctx, NULL, &siglen) <= 0)
740 goto err;
741 OPENSSL_free(abuf);
742 abuf = OPENSSL_malloc(siglen);
743 if(!abuf)
744 goto err;
745 if (EVP_DigestSignFinal(&mctx, abuf, &siglen) <= 0)
746 goto err;

748 if (EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_SIGN,
749 EVP_PKEY_CTRL_CMS_SIGN, 1, si) <= 0)
750 {
751 CMSerr(CMS_F_CMS_SIGNERINFO_SIGN, CMS_R_CTRL_ERROR);
752 goto err;
753 }

755 EVP_MD_CTX_cleanup(&mctx);

757 ASN1_STRING_set0(si->signature, abuf, siglen);

759 return 1;

761 err:
762 if (abuf)
763 OPENSSL_free(abuf);
764 EVP_MD_CTX_cleanup(&mctx);
765 return 0;

767 }

769 int CMS_SignerInfo_verify(CMS_SignerInfo *si)
770 {
771 EVP_MD_CTX mctx;
772 EVP_PKEY_CTX *pctx;
773 unsigned char *abuf = NULL;
774 int alen, r = -1;
775 const EVP_MD *md = NULL;

777 if (!si->pkey)
778 {
779 CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY, CMS_R_NO_PUBLIC_KEY);
780 return -1;
781 }

783 md = EVP_get_digestbyobj(si->digestAlgorithm->algorithm);
784 if (md == NULL)
785 return -1;
786 EVP_MD_CTX_init(&mctx);
787 if (EVP_DigestVerifyInit(&mctx, &pctx, md, NULL, si->pkey) <= 0)

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 13

788 goto err;

790 alen = ASN1_item_i2d((ASN1_VALUE *)si->signedAttrs,&abuf,
791 ASN1_ITEM_rptr(CMS_Attributes_Verify));
792 if(!abuf)
793 goto err;
794 r = EVP_DigestVerifyUpdate(&mctx, abuf, alen);
795 OPENSSL_free(abuf);
796 if (r <= 0)
797 {
798 r = -1;
799 goto err;
800 }
801 r = EVP_DigestVerifyFinal(&mctx,
802 si->signature->data, si->signature->length);
803 if (r <= 0)
804 CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY, CMS_R_VERIFICATION_FAILURE);
805 err:
806 EVP_MD_CTX_cleanup(&mctx);
807 return r;
808 }

810 /* Create a chain of digest BIOs from a CMS ContentInfo */

812 BIO *cms_SignedData_init_bio(CMS_ContentInfo *cms)
813 {
814 int i;
815 CMS_SignedData *sd;
816 BIO *chain = NULL;
817 sd = cms_get0_signed(cms);
818 if (!sd)
819 return NULL;
820 if (cms->d.signedData->encapContentInfo->partial)
821 cms_sd_set_version(sd);
822 for (i = 0; i < sk_X509_ALGOR_num(sd->digestAlgorithms); i++)
823 {
824 X509_ALGOR *digestAlgorithm;
825 BIO *mdbio;
826 digestAlgorithm = sk_X509_ALGOR_value(sd->digestAlgorithms, i);
827 mdbio = cms_DigestAlgorithm_init_bio(digestAlgorithm);
828 if (!mdbio)
829 goto err;
830 if (chain)
831 BIO_push(chain, mdbio);
832 else
833 chain = mdbio;
834 }
835 return chain;
836 err:
837 if (chain)
838 BIO_free_all(chain);
839 return NULL;
840 }

842 int CMS_SignerInfo_verify_content(CMS_SignerInfo *si, BIO *chain)
843 {
844 ASN1_OCTET_STRING *os = NULL;
845 EVP_MD_CTX mctx;
846 int r = -1;
847 EVP_MD_CTX_init(&mctx);
848 /* If we have any signed attributes look for messageDigest value */
849 if (CMS_signed_get_attr_count(si) >= 0)
850 {
851 os = CMS_signed_get0_data_by_OBJ(si,
852 OBJ_nid2obj(NID_pkcs9_messageDigest),
853 -3, V_ASN1_OCTET_STRING);

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 14

854 if (!os)
855 {
856 CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CONTENT,
857 CMS_R_ERROR_READING_MESSAGEDIGEST_ATTRIBUTE);
858 goto err;
859 }
860 }

862 if (!cms_DigestAlgorithm_find_ctx(&mctx, chain, si->digestAlgorithm))
863 goto err;

865 /* If messageDigest found compare it */

867 if (os)
868 {
869 unsigned char mval[EVP_MAX_MD_SIZE];
870 unsigned int mlen;
871 if (EVP_DigestFinal_ex(&mctx, mval, &mlen) <= 0)
872 {
873 CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CONTENT,
874 CMS_R_UNABLE_TO_FINALIZE_CONTEXT);
875 goto err;
876 }
877 if (mlen != (unsigned int)os->length)
878 {
879 CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CONTENT,
880 CMS_R_MESSAGEDIGEST_ATTRIBUTE_WRONG_LENGTH);
881 goto err;
882 }

884 if (memcmp(mval, os->data, mlen))
885 {
886 CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CONTENT,
887 CMS_R_VERIFICATION_FAILURE);
888 r = 0;
889 }
890 else
891 r = 1;
892 }
893 else
894 {
895 r = EVP_VerifyFinal(&mctx, si->signature->data,
896 si->signature->length, si->pkey);
897 if (r <= 0)
898 {
899 CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CONTENT,
900 CMS_R_VERIFICATION_FAILURE);
901 r = 0;
902 }
903 }

905 err:
906 EVP_MD_CTX_cleanup(&mctx);
907 return r;

909 }

911 int CMS_add_smimecap(CMS_SignerInfo *si, STACK_OF(X509_ALGOR) *algs)
912 {
913 unsigned char *smder = NULL;
914 int smderlen, r;
915 smderlen = i2d_X509_ALGORS(algs, &smder);
916 if (smderlen <= 0)
917 return 0;
918 r = CMS_signed_add1_attr_by_NID(si, NID_SMIMECapabilities,
919 V_ASN1_SEQUENCE, smder, smderlen);

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 15

920 OPENSSL_free(smder);
921 return r;
922 }

924 int CMS_add_simple_smimecap(STACK_OF(X509_ALGOR) **algs,
925 int algnid, int keysize)
926 {
927 X509_ALGOR *alg;
928 ASN1_INTEGER *key = NULL;
929 if (keysize > 0)
930 {
931 key = ASN1_INTEGER_new();
932 if (!key || !ASN1_INTEGER_set(key, keysize))
933 return 0;
934 }
935 alg = X509_ALGOR_new();
936 if (!alg)
937 {
938 if (key)
939 ASN1_INTEGER_free(key);
940 return 0;
941 }
942
943 X509_ALGOR_set0(alg, OBJ_nid2obj(algnid),
944 key ? V_ASN1_INTEGER : V_ASN1_UNDEF, key);
945 if (!*algs)
946 *algs = sk_X509_ALGOR_new_null();
947 if (!*algs || !sk_X509_ALGOR_push(*algs, alg))
948 {
949 X509_ALGOR_free(alg);
950 return 0;
951 }
952 return 1;
953 }

955 /* Check to see if a cipher exists and if so add S/MIME capabilities */

957 static int cms_add_cipher_smcap(STACK_OF(X509_ALGOR) **sk, int nid, int arg)
958 {
959 if (EVP_get_cipherbynid(nid))
960 return CMS_add_simple_smimecap(sk, nid, arg);
961 return 1;
962 }

964 static int cms_add_digest_smcap(STACK_OF(X509_ALGOR) **sk, int nid, int arg)
965 {
966 if (EVP_get_digestbynid(nid))
967 return CMS_add_simple_smimecap(sk, nid, arg);
968 return 1;
969 }

971 int CMS_add_standard_smimecap(STACK_OF(X509_ALGOR) **smcap)
972 {
973 if (!cms_add_cipher_smcap(smcap, NID_aes_256_cbc, -1)
974 || !cms_add_digest_smcap(smcap, NID_id_GostR3411_94, -1)
975 || !cms_add_cipher_smcap(smcap, NID_id_Gost28147_89, -1)
976 || !cms_add_cipher_smcap(smcap, NID_aes_192_cbc, -1)
977 || !cms_add_cipher_smcap(smcap, NID_aes_128_cbc, -1)
978 || !cms_add_cipher_smcap(smcap, NID_des_ede3_cbc, -1)
979 || !cms_add_cipher_smcap(smcap, NID_rc2_cbc, 128)
980 || !cms_add_cipher_smcap(smcap, NID_rc2_cbc, 64)
981 || !cms_add_cipher_smcap(smcap, NID_des_cbc, -1)
982 || !cms_add_cipher_smcap(smcap, NID_rc2_cbc, 40))
983 return 0;
984 return 1;
985 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_sd.c 16

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_smime.c 1

**
 19452 Fri May 30 18:31:40 2014
new/usr/src/lib/openssl/libsunw_crypto/cms/cms_smime.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cms/cms_smime.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

54 #include "cryptlib.h"
55 #include <openssl/asn1t.h>
56 #include <openssl/x509.h>
57 #include <openssl/x509v3.h>
58 #include <openssl/err.h>
59 #include <openssl/cms.h>
60 #include "cms_lcl.h"

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_smime.c 2

62 static int cms_copy_content(BIO *out, BIO *in, unsigned int flags)
63 {
64 unsigned char buf[4096];
65 int r = 0, i;
66 BIO *tmpout = NULL;

68 if (out == NULL)
69 tmpout = BIO_new(BIO_s_null());
70 else if (flags & CMS_TEXT)
71 {
72 tmpout = BIO_new(BIO_s_mem());
73 BIO_set_mem_eof_return(tmpout, 0);
74 }
75 else
76 tmpout = out;

78 if(!tmpout)
79 {
80 CMSerr(CMS_F_CMS_COPY_CONTENT,ERR_R_MALLOC_FAILURE);
81 goto err;
82 }

84 /* Read all content through chain to process digest, decrypt etc */
85 for (;;)
86 {
87 i=BIO_read(in,buf,sizeof(buf));
88 if (i <= 0)
89 {
90 if (BIO_method_type(in) == BIO_TYPE_CIPHER)
91 {
92 if (!BIO_get_cipher_status(in))
93 goto err;
94 }
95 if (i < 0)
96 goto err;
97 break;
98 }
99
100 if (tmpout && (BIO_write(tmpout, buf, i) != i))
101 goto err;
102 }

104 if(flags & CMS_TEXT)
105 {
106 if(!SMIME_text(tmpout, out))
107 {
108 CMSerr(CMS_F_CMS_COPY_CONTENT,CMS_R_SMIME_TEXT_ERROR);
109 goto err;
110 }
111 }

113 r = 1;

115 err:
116 if (tmpout && (tmpout != out))
117 BIO_free(tmpout);
118 return r;

120 }

122 static int check_content(CMS_ContentInfo *cms)
123 {
124 ASN1_OCTET_STRING **pos = CMS_get0_content(cms);
125 if (!pos || !*pos)
126 {
127 CMSerr(CMS_F_CHECK_CONTENT, CMS_R_NO_CONTENT);

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_smime.c 3

128 return 0;
129 }
130 return 1;
131 }

133 static void do_free_upto(BIO *f, BIO *upto)
134 {
135 if (upto)
136 {
137 BIO *tbio;
138 do
139 {
140 tbio = BIO_pop(f);
141 BIO_free(f);
142 f = tbio;
143 }
144 while (f != upto);
145 }
146 else
147 BIO_free_all(f);
148 }

150 int CMS_data(CMS_ContentInfo *cms, BIO *out, unsigned int flags)
151 {
152 BIO *cont;
153 int r;
154 if (OBJ_obj2nid(CMS_get0_type(cms)) != NID_pkcs7_data)
155 {
156 CMSerr(CMS_F_CMS_DATA, CMS_R_TYPE_NOT_DATA);
157 return 0;
158 }
159 cont = CMS_dataInit(cms, NULL);
160 if (!cont)
161 return 0;
162 r = cms_copy_content(out, cont, flags);
163 BIO_free_all(cont);
164 return r;
165 }

167 CMS_ContentInfo *CMS_data_create(BIO *in, unsigned int flags)
168 {
169 CMS_ContentInfo *cms;
170 cms = cms_Data_create();
171 if (!cms)
172 return NULL;

174 if ((flags & CMS_STREAM) || CMS_final(cms, in, NULL, flags))
175 return cms;

177 CMS_ContentInfo_free(cms);

179 return NULL;
180 }

182 int CMS_digest_verify(CMS_ContentInfo *cms, BIO *dcont, BIO *out,
183 unsigned int flags)
184 {
185 BIO *cont;
186 int r;
187 if (OBJ_obj2nid(CMS_get0_type(cms)) != NID_pkcs7_digest)
188 {
189 CMSerr(CMS_F_CMS_DIGEST_VERIFY, CMS_R_TYPE_NOT_DIGESTED_DATA);
190 return 0;
191 }

193 if (!dcont && !check_content(cms))

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_smime.c 4

194 return 0;

196 cont = CMS_dataInit(cms, dcont);
197 if (!cont)
198 return 0;
199 r = cms_copy_content(out, cont, flags);
200 if (r)
201 r = cms_DigestedData_do_final(cms, cont, 1);
202 do_free_upto(cont, dcont);
203 return r;
204 }

206 CMS_ContentInfo *CMS_digest_create(BIO *in, const EVP_MD *md,
207 unsigned int flags)
208 {
209 CMS_ContentInfo *cms;
210 if (!md)
211 md = EVP_sha1();
212 cms = cms_DigestedData_create(md);
213 if (!cms)
214 return NULL;

216 if(!(flags & CMS_DETACHED))
217 CMS_set_detached(cms, 0);

219 if ((flags & CMS_STREAM) || CMS_final(cms, in, NULL, flags))
220 return cms;

222 CMS_ContentInfo_free(cms);
223 return NULL;
224 }

226 int CMS_EncryptedData_decrypt(CMS_ContentInfo *cms,
227 const unsigned char *key, size_t keylen,
228 BIO *dcont, BIO *out, unsigned int flags)
229 {
230 BIO *cont;
231 int r;
232 if (OBJ_obj2nid(CMS_get0_type(cms)) != NID_pkcs7_encrypted)
233 {
234 CMSerr(CMS_F_CMS_ENCRYPTEDDATA_DECRYPT,
235 CMS_R_TYPE_NOT_ENCRYPTED_DATA);
236 return 0;
237 }

239 if (!dcont && !check_content(cms))
240 return 0;

242 if (CMS_EncryptedData_set1_key(cms, NULL, key, keylen) <= 0)
243 return 0;
244 cont = CMS_dataInit(cms, dcont);
245 if (!cont)
246 return 0;
247 r = cms_copy_content(out, cont, flags);
248 do_free_upto(cont, dcont);
249 return r;
250 }

252 CMS_ContentInfo *CMS_EncryptedData_encrypt(BIO *in, const EVP_CIPHER *cipher,
253 const unsigned char *key, size_t keylen,
254 unsigned int flags)
255 {
256 CMS_ContentInfo *cms;
257 if (!cipher)
258 {
259 CMSerr(CMS_F_CMS_ENCRYPTEDDATA_ENCRYPT, CMS_R_NO_CIPHER);

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_smime.c 5

260 return NULL;
261 }
262 cms = CMS_ContentInfo_new();
263 if (!cms)
264 return NULL;
265 if (!CMS_EncryptedData_set1_key(cms, cipher, key, keylen))
266 return NULL;

268 if(!(flags & CMS_DETACHED))
269 CMS_set_detached(cms, 0);

271 if ((flags & (CMS_STREAM|CMS_PARTIAL))
272 || CMS_final(cms, in, NULL, flags))
273 return cms;

275 CMS_ContentInfo_free(cms);
276 return NULL;
277 }

279 static int cms_signerinfo_verify_cert(CMS_SignerInfo *si,
280 X509_STORE *store,
281 STACK_OF(X509) *certs,
282 STACK_OF(X509_CRL) *crls,
283 unsigned int flags)
284 {
285 X509_STORE_CTX ctx;
286 X509 *signer;
287 int i, j, r = 0;
288 CMS_SignerInfo_get0_algs(si, NULL, &signer, NULL, NULL);
289 if (!X509_STORE_CTX_init(&ctx, store, signer, certs))
290 {
291 CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CERT,
292 CMS_R_STORE_INIT_ERROR);
293 goto err;
294 }
295 X509_STORE_CTX_set_default(&ctx, "smime_sign");
296 if (crls)
297 X509_STORE_CTX_set0_crls(&ctx, crls);

299 i = X509_verify_cert(&ctx);
300 if (i <= 0)
301 {
302 j = X509_STORE_CTX_get_error(&ctx);
303 CMSerr(CMS_F_CMS_SIGNERINFO_VERIFY_CERT,
304 CMS_R_CERTIFICATE_VERIFY_ERROR);
305 ERR_add_error_data(2, "Verify error:",
306 X509_verify_cert_error_string(j));
307 goto err;
308 }
309 r = 1;
310 err:
311 X509_STORE_CTX_cleanup(&ctx);
312 return r;

314 }

316 int CMS_verify(CMS_ContentInfo *cms, STACK_OF(X509) *certs,
317 X509_STORE *store, BIO *dcont, BIO *out, unsigned int flags)
318 {
319 CMS_SignerInfo *si;
320 STACK_OF(CMS_SignerInfo) *sinfos;
321 STACK_OF(X509) *cms_certs = NULL;
322 STACK_OF(X509_CRL) *crls = NULL;
323 X509 *signer;
324 int i, scount = 0, ret = 0;
325 BIO *cmsbio = NULL, *tmpin = NULL;

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_smime.c 6

327 if (!dcont && !check_content(cms))
328 return 0;

330 /* Attempt to find all signer certificates */

332 sinfos = CMS_get0_SignerInfos(cms);

334 if (sk_CMS_SignerInfo_num(sinfos) <= 0)
335 {
336 CMSerr(CMS_F_CMS_VERIFY, CMS_R_NO_SIGNERS);
337 goto err;
338 }

340 for (i = 0; i < sk_CMS_SignerInfo_num(sinfos); i++)
341 {
342 si = sk_CMS_SignerInfo_value(sinfos, i);
343 CMS_SignerInfo_get0_algs(si, NULL, &signer, NULL, NULL);
344 if (signer)
345 scount++;
346 }

348 if (scount != sk_CMS_SignerInfo_num(sinfos))
349 scount += CMS_set1_signers_certs(cms, certs, flags);

351 if (scount != sk_CMS_SignerInfo_num(sinfos))
352 {
353 CMSerr(CMS_F_CMS_VERIFY, CMS_R_SIGNER_CERTIFICATE_NOT_FOUND);
354 goto err;
355 }

357 /* Attempt to verify all signers certs */

359 if (!(flags & CMS_NO_SIGNER_CERT_VERIFY))
360 {
361 cms_certs = CMS_get1_certs(cms);
362 if (!(flags & CMS_NOCRL))
363 crls = CMS_get1_crls(cms);
364 for (i = 0; i < sk_CMS_SignerInfo_num(sinfos); i++)
365 {
366 si = sk_CMS_SignerInfo_value(sinfos, i);
367 if (!cms_signerinfo_verify_cert(si, store,
368 cms_certs, crls, flags))
369 goto err;
370 }
371 }

373 /* Attempt to verify all SignerInfo signed attribute signatures */

375 if (!(flags & CMS_NO_ATTR_VERIFY))
376 {
377 for (i = 0; i < sk_CMS_SignerInfo_num(sinfos); i++)
378 {
379 si = sk_CMS_SignerInfo_value(sinfos, i);
380 if (CMS_signed_get_attr_count(si) < 0)
381 continue;
382 if (CMS_SignerInfo_verify(si) <= 0)
383 goto err;
384 }
385 }

387 /* Performance optimization: if the content is a memory BIO then
388 * store its contents in a temporary read only memory BIO. This
389 * avoids potentially large numbers of slow copies of data which will
390 * occur when reading from a read write memory BIO when signatures
391 * are calculated.

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_smime.c 7

392 */

394 if (dcont && (BIO_method_type(dcont) == BIO_TYPE_MEM))
395 {
396 char *ptr;
397 long len;
398 len = BIO_get_mem_data(dcont, &ptr);
399 tmpin = BIO_new_mem_buf(ptr, len);
400 if (tmpin == NULL)
401 {
402 CMSerr(CMS_F_CMS_VERIFY,ERR_R_MALLOC_FAILURE);
403 return 0;
404 }
405 }
406 else
407 tmpin = dcont;
408

410 cmsbio=CMS_dataInit(cms, tmpin);
411 if (!cmsbio)
412 goto err;

414 if (!cms_copy_content(out, cmsbio, flags))
415 goto err;

417 if (!(flags & CMS_NO_CONTENT_VERIFY))
418 {
419 for (i = 0; i < sk_CMS_SignerInfo_num(sinfos); i++)
420 {
421 si = sk_CMS_SignerInfo_value(sinfos, i);
422 if (CMS_SignerInfo_verify_content(si, cmsbio) <= 0)
423 {
424 CMSerr(CMS_F_CMS_VERIFY,
425 CMS_R_CONTENT_VERIFY_ERROR);
426 goto err;
427 }
428 }
429 }

431 ret = 1;

433 err:
434
435 if (dcont && (tmpin == dcont))
436 do_free_upto(cmsbio, dcont);
437 else
438 BIO_free_all(cmsbio);

440 if (cms_certs)
441 sk_X509_pop_free(cms_certs, X509_free);
442 if (crls)
443 sk_X509_CRL_pop_free(crls, X509_CRL_free);

445 return ret;
446 }

448 int CMS_verify_receipt(CMS_ContentInfo *rcms, CMS_ContentInfo *ocms,
449 STACK_OF(X509) *certs,
450 X509_STORE *store, unsigned int flags)
451 {
452 int r;
453 flags &= ~(CMS_DETACHED|CMS_TEXT);
454 r = CMS_verify(rcms, certs, store, NULL, NULL, flags);
455 if (r <= 0)
456 return r;
457 return cms_Receipt_verify(rcms, ocms);

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_smime.c 8

458 }

460 CMS_ContentInfo *CMS_sign(X509 *signcert, EVP_PKEY *pkey, STACK_OF(X509) *certs,
461 BIO *data, unsigned int flags)
462 {
463 CMS_ContentInfo *cms;
464 int i;

466 cms = CMS_ContentInfo_new();
467 if (!cms || !CMS_SignedData_init(cms))
468 goto merr;

470 if (pkey && !CMS_add1_signer(cms, signcert, pkey, NULL, flags))
471 {
472 CMSerr(CMS_F_CMS_SIGN, CMS_R_ADD_SIGNER_ERROR);
473 goto err;
474 }

476 for (i = 0; i < sk_X509_num(certs); i++)
477 {
478 X509 *x = sk_X509_value(certs, i);
479 if (!CMS_add1_cert(cms, x))
480 goto merr;
481 }

483 if(!(flags & CMS_DETACHED))
484 CMS_set_detached(cms, 0);

486 if ((flags & (CMS_STREAM|CMS_PARTIAL))
487 || CMS_final(cms, data, NULL, flags))
488 return cms;
489 else
490 goto err;

492 merr:
493 CMSerr(CMS_F_CMS_SIGN, ERR_R_MALLOC_FAILURE);

495 err:
496 if (cms)
497 CMS_ContentInfo_free(cms);
498 return NULL;
499 }

501 CMS_ContentInfo *CMS_sign_receipt(CMS_SignerInfo *si,
502 X509 *signcert, EVP_PKEY *pkey,
503 STACK_OF(X509) *certs,
504 unsigned int flags)
505 {
506 CMS_SignerInfo *rct_si;
507 CMS_ContentInfo *cms = NULL;
508 ASN1_OCTET_STRING **pos, *os;
509 BIO *rct_cont = NULL;
510 int r = 0;

512 flags &= ~(CMS_STREAM|CMS_TEXT);
513 /* Not really detached but avoids content being allocated */
514 flags |= CMS_PARTIAL|CMS_BINARY|CMS_DETACHED;
515 if (!pkey || !signcert)
516 {
517 CMSerr(CMS_F_CMS_SIGN_RECEIPT, CMS_R_NO_KEY_OR_CERT);
518 return NULL;
519 }

521 /* Initialize signed data */

523 cms = CMS_sign(NULL, NULL, certs, NULL, flags);

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_smime.c 9

524 if (!cms)
525 goto err;

527 /* Set inner content type to signed receipt */
528 if (!CMS_set1_eContentType(cms, OBJ_nid2obj(NID_id_smime_ct_receipt)))
529 goto err;

531 rct_si = CMS_add1_signer(cms, signcert, pkey, NULL, flags);
532 if (!rct_si)
533 {
534 CMSerr(CMS_F_CMS_SIGN_RECEIPT, CMS_R_ADD_SIGNER_ERROR);
535 goto err;
536 }

538 os = cms_encode_Receipt(si);

540 if (!os)
541 goto err;

543 /* Set content to digest */
544 rct_cont = BIO_new_mem_buf(os->data, os->length);
545 if (!rct_cont)
546 goto err;

548 /* Add msgSigDigest attribute */

550 if (!cms_msgSigDigest_add1(rct_si, si))
551 goto err;

553 /* Finalize structure */
554 if (!CMS_final(cms, rct_cont, NULL, flags))
555 goto err;

557 /* Set embedded content */
558 pos = CMS_get0_content(cms);
559 *pos = os;

561 r = 1;

563 err:
564 if (rct_cont)
565 BIO_free(rct_cont);
566 if (r)
567 return cms;
568 CMS_ContentInfo_free(cms);
569 return NULL;

571 }

573 CMS_ContentInfo *CMS_encrypt(STACK_OF(X509) *certs, BIO *data,
574 const EVP_CIPHER *cipher, unsigned int flags)
575 {
576 CMS_ContentInfo *cms;
577 int i;
578 X509 *recip;
579 cms = CMS_EnvelopedData_create(cipher);
580 if (!cms)
581 goto merr;
582 for (i = 0; i < sk_X509_num(certs); i++)
583 {
584 recip = sk_X509_value(certs, i);
585 if (!CMS_add1_recipient_cert(cms, recip, flags))
586 {
587 CMSerr(CMS_F_CMS_ENCRYPT, CMS_R_RECIPIENT_ERROR);
588 goto err;
589 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_smime.c 10

590 }

592 if(!(flags & CMS_DETACHED))
593 CMS_set_detached(cms, 0);

595 if ((flags & (CMS_STREAM|CMS_PARTIAL))
596 || CMS_final(cms, data, NULL, flags))
597 return cms;
598 else
599 goto err;

601 merr:
602 CMSerr(CMS_F_CMS_ENCRYPT, ERR_R_MALLOC_FAILURE);
603 err:
604 if (cms)
605 CMS_ContentInfo_free(cms);
606 return NULL;
607 }

609 int CMS_decrypt_set1_pkey(CMS_ContentInfo *cms, EVP_PKEY *pk, X509 *cert)
610 {
611 STACK_OF(CMS_RecipientInfo) *ris;
612 CMS_RecipientInfo *ri;
613 int i, r;
614 int debug = 0;
615 ris = CMS_get0_RecipientInfos(cms);
616 if (ris)
617 debug = cms->d.envelopedData->encryptedContentInfo->debug;
618 for (i = 0; i < sk_CMS_RecipientInfo_num(ris); i++)
619 {
620 ri = sk_CMS_RecipientInfo_value(ris, i);
621 if (CMS_RecipientInfo_type(ri) != CMS_RECIPINFO_TRANS)
622 continue;
623 /* If we have a cert try matching RecipientInfo
624 * otherwise try them all.
625 */
626 if (!cert || (CMS_RecipientInfo_ktri_cert_cmp(ri, cert) == 0))
627 {
628 CMS_RecipientInfo_set0_pkey(ri, pk);
629 r = CMS_RecipientInfo_decrypt(cms, ri);
630 CMS_RecipientInfo_set0_pkey(ri, NULL);
631 if (cert)
632 {
633 /* If not debugging clear any error and
634 * return success to avoid leaking of
635 * information useful to MMA
636 */
637 if (!debug)
638 {
639 ERR_clear_error();
640 return 1;
641 }
642 if (r > 0)
643 return 1;
644 CMSerr(CMS_F_CMS_DECRYPT_SET1_PKEY,
645 CMS_R_DECRYPT_ERROR);
646 return 0;
647 }
648 /* If no cert and not debugging don’t leave loop
649 * after first successful decrypt. Always attempt
650 * to decrypt all recipients to avoid leaking timing
651 * of a successful decrypt.
652 */
653 else if (r > 0 && debug)
654 return 1;
655 }

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_smime.c 11

656 }
657 /* If no cert and not debugging always return success */
658 if (!cert && !debug)
659 {
660 ERR_clear_error();
661 return 1;
662 }

664 CMSerr(CMS_F_CMS_DECRYPT_SET1_PKEY, CMS_R_NO_MATCHING_RECIPIENT);
665 return 0;

667 }

669 int CMS_decrypt_set1_key(CMS_ContentInfo *cms,
670 unsigned char *key, size_t keylen,
671 unsigned char *id, size_t idlen)
672 {
673 STACK_OF(CMS_RecipientInfo) *ris;
674 CMS_RecipientInfo *ri;
675 int i, r;
676 ris = CMS_get0_RecipientInfos(cms);
677 for (i = 0; i < sk_CMS_RecipientInfo_num(ris); i++)
678 {
679 ri = sk_CMS_RecipientInfo_value(ris, i);
680 if (CMS_RecipientInfo_type(ri) != CMS_RECIPINFO_KEK)
681 continue;

683 /* If we have an id try matching RecipientInfo
684 * otherwise try them all.
685 */
686 if (!id || (CMS_RecipientInfo_kekri_id_cmp(ri, id, idlen) == 0))
687 {
688 CMS_RecipientInfo_set0_key(ri, key, keylen);
689 r = CMS_RecipientInfo_decrypt(cms, ri);
690 CMS_RecipientInfo_set0_key(ri, NULL, 0);
691 if (r > 0)
692 return 1;
693 if (id)
694 {
695 CMSerr(CMS_F_CMS_DECRYPT_SET1_KEY,
696 CMS_R_DECRYPT_ERROR);
697 return 0;
698 }
699 ERR_clear_error();
700 }
701 }

703 CMSerr(CMS_F_CMS_DECRYPT_SET1_KEY, CMS_R_NO_MATCHING_RECIPIENT);
704 return 0;

706 }

708 int CMS_decrypt_set1_password(CMS_ContentInfo *cms,
709 unsigned char *pass, ossl_ssize_t passlen)
710 {
711 STACK_OF(CMS_RecipientInfo) *ris;
712 CMS_RecipientInfo *ri;
713 int i, r;
714 ris = CMS_get0_RecipientInfos(cms);
715 for (i = 0; i < sk_CMS_RecipientInfo_num(ris); i++)
716 {
717 ri = sk_CMS_RecipientInfo_value(ris, i);
718 if (CMS_RecipientInfo_type(ri) != CMS_RECIPINFO_PASS)
719 continue;
720 CMS_RecipientInfo_set0_password(ri, pass, passlen);
721 r = CMS_RecipientInfo_decrypt(cms, ri);

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_smime.c 12

722 CMS_RecipientInfo_set0_password(ri, NULL, 0);
723 if (r > 0)
724 return 1;
725 }

727 CMSerr(CMS_F_CMS_DECRYPT_SET1_PASSWORD, CMS_R_NO_MATCHING_RECIPIENT);
728 return 0;

730 }
731
732 int CMS_decrypt(CMS_ContentInfo *cms, EVP_PKEY *pk, X509 *cert,
733 BIO *dcont, BIO *out,
734 unsigned int flags)
735 {
736 int r;
737 BIO *cont;
738 if (OBJ_obj2nid(CMS_get0_type(cms)) != NID_pkcs7_enveloped)
739 {
740 CMSerr(CMS_F_CMS_DECRYPT, CMS_R_TYPE_NOT_ENVELOPED_DATA);
741 return 0;
742 }
743 if (!dcont && !check_content(cms))
744 return 0;
745 if (flags & CMS_DEBUG_DECRYPT)
746 cms->d.envelopedData->encryptedContentInfo->debug = 1;
747 else
748 cms->d.envelopedData->encryptedContentInfo->debug = 0;
749 if (!pk && !cert && !dcont && !out)
750 return 1;
751 if (pk && !CMS_decrypt_set1_pkey(cms, pk, cert))
752 return 0;
753 cont = CMS_dataInit(cms, dcont);
754 if (!cont)
755 return 0;
756 r = cms_copy_content(out, cont, flags);
757 do_free_upto(cont, dcont);
758 return r;
759 }

761 int CMS_final(CMS_ContentInfo *cms, BIO *data, BIO *dcont, unsigned int flags)
762 {
763 BIO *cmsbio;
764 int ret = 0;
765 if (!(cmsbio = CMS_dataInit(cms, dcont)))
766 {
767 CMSerr(CMS_F_CMS_FINAL,ERR_R_MALLOC_FAILURE);
768 return 0;
769 }

771 SMIME_crlf_copy(data, cmsbio, flags);

773 (void)BIO_flush(cmsbio);

776 if (!CMS_dataFinal(cms, cmsbio))
777 {
778 CMSerr(CMS_F_CMS_FINAL,CMS_R_CMS_DATAFINAL_ERROR);
779 goto err;
780 }

782 ret = 1;

784 err:
785 do_free_upto(cmsbio, dcont);

787 return ret;

new/usr/src/lib/openssl/libsunw_crypto/cms/cms_smime.c 13

789 }

791 #ifdef ZLIB

793 int CMS_uncompress(CMS_ContentInfo *cms, BIO *dcont, BIO *out,
794 unsigned int flags)
795 {
796 BIO *cont;
797 int r;
798 if (OBJ_obj2nid(CMS_get0_type(cms)) != NID_id_smime_ct_compressedData)
799 {
800 CMSerr(CMS_F_CMS_UNCOMPRESS,
801 CMS_R_TYPE_NOT_COMPRESSED_DATA);
802 return 0;
803 }

805 if (!dcont && !check_content(cms))
806 return 0;

808 cont = CMS_dataInit(cms, dcont);
809 if (!cont)
810 return 0;
811 r = cms_copy_content(out, cont, flags);
812 do_free_upto(cont, dcont);
813 return r;
814 }

816 CMS_ContentInfo *CMS_compress(BIO *in, int comp_nid, unsigned int flags)
817 {
818 CMS_ContentInfo *cms;
819 if (comp_nid <= 0)
820 comp_nid = NID_zlib_compression;
821 cms = cms_CompressedData_create(comp_nid);
822 if (!cms)
823 return NULL;

825 if(!(flags & CMS_DETACHED))
826 CMS_set_detached(cms, 0);

828 if ((flags & CMS_STREAM) || CMS_final(cms, in, NULL, flags))
829 return cms;

831 CMS_ContentInfo_free(cms);
832 return NULL;
833 }

835 #else

837 int CMS_uncompress(CMS_ContentInfo *cms, BIO *dcont, BIO *out,
838 unsigned int flags)
839 {
840 CMSerr(CMS_F_CMS_UNCOMPRESS, CMS_R_UNSUPPORTED_COMPRESSION_ALGORITHM);
841 return 0;
842 }

844 CMS_ContentInfo *CMS_compress(BIO *in, int comp_nid, unsigned int flags)
845 {
846 CMSerr(CMS_F_CMS_COMPRESS, CMS_R_UNSUPPORTED_COMPRESSION_ALGORITHM);
847 return NULL;
848 }

850 #endif

new/usr/src/lib/openssl/libsunw_crypto/comp/c_rle.c 1

**
 1151 Fri May 30 18:31:40 2014
new/usr/src/lib/openssl/libsunw_crypto/comp/c_rle.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <openssl/objects.h>
5 #include <openssl/comp.h>

7 static int rle_compress_block(COMP_CTX *ctx, unsigned char *out,
8 unsigned int olen, unsigned char *in, unsigned int ilen);
9 static int rle_expand_block(COMP_CTX *ctx, unsigned char *out,
10 unsigned int olen, unsigned char *in, unsigned int ilen);

12 static COMP_METHOD rle_method={
13 NID_rle_compression,
14 LN_rle_compression,
15 NULL,
16 NULL,
17 rle_compress_block,
18 rle_expand_block,
19 NULL,
20 NULL,
21 };

23 COMP_METHOD *COMP_rle(void)
24 {
25 return(&rle_method);
26 }

28 static int rle_compress_block(COMP_CTX *ctx, unsigned char *out,
29 unsigned int olen, unsigned char *in, unsigned int ilen)
30 {
31 /* int i; */

33 if (ilen == 0 || olen < (ilen-1))
34 {
35 /* ZZZZZZZZZZZZZZZZZZZZZZ */
36 return(-1);
37 }

39 *(out++)=0;
40 memcpy(out,in,ilen);
41 return(ilen+1);
42 }

44 static int rle_expand_block(COMP_CTX *ctx, unsigned char *out,
45 unsigned int olen, unsigned char *in, unsigned int ilen)
46 {
47 int i;

49 if (olen < (ilen-1))
50 {
51 /* ZZZZZZZZZZZZZZZZZZZZZZ */
52 return(-1);
53 }

55 i= *(in++);
56 if (i == 0)
57 {
58 memcpy(out,in,ilen-1);
59 }
60 return(ilen-1);
61 }

new/usr/src/lib/openssl/libsunw_crypto/comp/c_rle.c 2

new/usr/src/lib/openssl/libsunw_crypto/comp/c_zlib.c 1

**
 18005 Fri May 30 18:31:40 2014
new/usr/src/lib/openssl/libsunw_crypto/comp/c_zlib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <openssl/objects.h>
5 #include <openssl/comp.h>
6 #include <openssl/err.h>

8 COMP_METHOD *COMP_zlib(void);

10 static COMP_METHOD zlib_method_nozlib={
11 NID_undef,
12 "(undef)",
13 NULL,
14 NULL,
15 NULL,
16 NULL,
17 NULL,
18 NULL,
19 };

21 #ifndef ZLIB
22 #undef ZLIB_SHARED
23 #else

25 #include <zlib.h>

27 static int zlib_stateful_init(COMP_CTX *ctx);
28 static void zlib_stateful_finish(COMP_CTX *ctx);
29 static int zlib_stateful_compress_block(COMP_CTX *ctx, unsigned char *out,
30 unsigned int olen, unsigned char *in, unsigned int ilen);
31 static int zlib_stateful_expand_block(COMP_CTX *ctx, unsigned char *out,
32 unsigned int olen, unsigned char *in, unsigned int ilen);

35 /* memory allocations functions for zlib intialization */
36 static void* zlib_zalloc(void* opaque, unsigned int no, unsigned int size)
37 {
38 void *p;
39
40 p=OPENSSL_malloc(no*size);
41 if (p)
42 memset(p, 0, no*size);
43 return p;
44 }

47 static void zlib_zfree(void* opaque, void* address)
48 {
49 OPENSSL_free(address);
50 }

52 #if 0
53 static int zlib_compress_block(COMP_CTX *ctx, unsigned char *out,
54 unsigned int olen, unsigned char *in, unsigned int ilen);
55 static int zlib_expand_block(COMP_CTX *ctx, unsigned char *out,
56 unsigned int olen, unsigned char *in, unsigned int ilen);

58 static int zz_uncompress(Bytef *dest, uLongf *destLen, const Bytef *source,
59 uLong sourceLen);

61 static COMP_METHOD zlib_stateless_method={

new/usr/src/lib/openssl/libsunw_crypto/comp/c_zlib.c 2

62 NID_zlib_compression,
63 LN_zlib_compression,
64 NULL,
65 NULL,
66 zlib_compress_block,
67 zlib_expand_block,
68 NULL,
69 NULL,
70 };
71 #endif

73 static COMP_METHOD zlib_stateful_method={
74 NID_zlib_compression,
75 LN_zlib_compression,
76 zlib_stateful_init,
77 zlib_stateful_finish,
78 zlib_stateful_compress_block,
79 zlib_stateful_expand_block,
80 NULL,
81 NULL,
82 };

84 /*
85 * When OpenSSL is built on Windows, we do not want to require that
86 * the ZLIB.DLL be available in order for the OpenSSL DLLs to
87 * work. Therefore, all ZLIB routines are loaded at run time
88 * and we do not link to a .LIB file when ZLIB_SHARED is set.
89 */
90 #if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32)
91 # include <windows.h>
92 #endif /* !(OPENSSL_SYS_WINDOWS || OPENSSL_SYS_WIN32) */

94 #ifdef ZLIB_SHARED
95 #include <openssl/dso.h>

97 /* Function pointers */
98 typedef int (*compress_ft)(Bytef *dest,uLongf *destLen,
99 const Bytef *source, uLong sourceLen);
100 typedef int (*inflateEnd_ft)(z_streamp strm);
101 typedef int (*inflate_ft)(z_streamp strm, int flush);
102 typedef int (*inflateInit__ft)(z_streamp strm,
103 const char * version, int stream_size);
104 typedef int (*deflateEnd_ft)(z_streamp strm);
105 typedef int (*deflate_ft)(z_streamp strm, int flush);
106 typedef int (*deflateInit__ft)(z_streamp strm, int level,
107 const char * version, int stream_size);
108 typedef const char * (*zError__ft)(int err);
109 static compress_ft p_compress=NULL;
110 static inflateEnd_ft p_inflateEnd=NULL;
111 static inflate_ft p_inflate=NULL;
112 static inflateInit__ft p_inflateInit_=NULL;
113 static deflateEnd_ft p_deflateEnd=NULL;
114 static deflate_ft p_deflate=NULL;
115 static deflateInit__ft p_deflateInit_=NULL;
116 static zError__ft p_zError=NULL;

118 static int zlib_loaded = 0; /* only attempt to init func pts once */
119 static DSO *zlib_dso = NULL;

121 #define compress p_compress
122 #define inflateEnd p_inflateEnd
123 #define inflate p_inflate
124 #define inflateInit_ p_inflateInit_
125 #define deflateEnd p_deflateEnd
126 #define deflate p_deflate
127 #define deflateInit_ p_deflateInit_

new/usr/src/lib/openssl/libsunw_crypto/comp/c_zlib.c 3

128 #define zError p_zError
129 #endif /* ZLIB_SHARED */

131 struct zlib_state
132 {
133 z_stream istream;
134 z_stream ostream;
135 };

137 static int zlib_stateful_ex_idx = -1;

139 static int zlib_stateful_init(COMP_CTX *ctx)
140 {
141 int err;
142 struct zlib_state *state =
143 (struct zlib_state *)OPENSSL_malloc(sizeof(struct zlib_state));

145 if (state == NULL)
146 goto err;

148 state->istream.zalloc = zlib_zalloc;
149 state->istream.zfree = zlib_zfree;
150 state->istream.opaque = Z_NULL;
151 state->istream.next_in = Z_NULL;
152 state->istream.next_out = Z_NULL;
153 state->istream.avail_in = 0;
154 state->istream.avail_out = 0;
155 err = inflateInit_(&state->istream,
156 ZLIB_VERSION, sizeof(z_stream));
157 if (err != Z_OK)
158 goto err;

160 state->ostream.zalloc = zlib_zalloc;
161 state->ostream.zfree = zlib_zfree;
162 state->ostream.opaque = Z_NULL;
163 state->ostream.next_in = Z_NULL;
164 state->ostream.next_out = Z_NULL;
165 state->ostream.avail_in = 0;
166 state->ostream.avail_out = 0;
167 err = deflateInit_(&state->ostream,Z_DEFAULT_COMPRESSION,
168 ZLIB_VERSION, sizeof(z_stream));
169 if (err != Z_OK)
170 goto err;

172 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_COMP,ctx,&ctx->ex_data);
173 CRYPTO_set_ex_data(&ctx->ex_data,zlib_stateful_ex_idx,state);
174 return 1;
175 err:
176 if (state) OPENSSL_free(state);
177 return 0;
178 }

180 static void zlib_stateful_finish(COMP_CTX *ctx)
181 {
182 struct zlib_state *state =
183 (struct zlib_state *)CRYPTO_get_ex_data(&ctx->ex_data,
184 zlib_stateful_ex_idx);
185 inflateEnd(&state->istream);
186 deflateEnd(&state->ostream);
187 OPENSSL_free(state);
188 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_COMP,ctx,&ctx->ex_data);
189 }

191 static int zlib_stateful_compress_block(COMP_CTX *ctx, unsigned char *out,
192 unsigned int olen, unsigned char *in, unsigned int ilen)
193 {

new/usr/src/lib/openssl/libsunw_crypto/comp/c_zlib.c 4

194 int err = Z_OK;
195 struct zlib_state *state =
196 (struct zlib_state *)CRYPTO_get_ex_data(&ctx->ex_data,
197 zlib_stateful_ex_idx);

199 if (state == NULL)
200 return -1;

202 state->ostream.next_in = in;
203 state->ostream.avail_in = ilen;
204 state->ostream.next_out = out;
205 state->ostream.avail_out = olen;
206 if (ilen > 0)
207 err = deflate(&state->ostream, Z_SYNC_FLUSH);
208 if (err != Z_OK)
209 return -1;
210 #ifdef DEBUG_ZLIB
211 fprintf(stderr,"compress(%4d)->%4d %s\n",
212 ilen,olen - state->ostream.avail_out,
213 (ilen != olen - state->ostream.avail_out)?"zlib":"clear");
214 #endif
215 return olen - state->ostream.avail_out;
216 }

218 static int zlib_stateful_expand_block(COMP_CTX *ctx, unsigned char *out,
219 unsigned int olen, unsigned char *in, unsigned int ilen)
220 {
221 int err = Z_OK;

223 struct zlib_state *state =
224 (struct zlib_state *)CRYPTO_get_ex_data(&ctx->ex_data,
225 zlib_stateful_ex_idx);

227 if (state == NULL)
228 return 0;

230 state->istream.next_in = in;
231 state->istream.avail_in = ilen;
232 state->istream.next_out = out;
233 state->istream.avail_out = olen;
234 if (ilen > 0)
235 err = inflate(&state->istream, Z_SYNC_FLUSH);
236 if (err != Z_OK)
237 return -1;
238 #ifdef DEBUG_ZLIB
239 fprintf(stderr,"expand(%4d)->%4d %s\n",
240 ilen,olen - state->istream.avail_out,
241 (ilen != olen - state->istream.avail_out)?"zlib":"clear");
242 #endif
243 return olen - state->istream.avail_out;
244 }

246 #if 0
247 static int zlib_compress_block(COMP_CTX *ctx, unsigned char *out,
248 unsigned int olen, unsigned char *in, unsigned int ilen)
249 {
250 unsigned long l;
251 int i;
252 int clear=1;

254 if (ilen > 128)
255 {
256 out[0]=1;
257 l=olen-1;
258 i=compress(&(out[1]),&l,in,(unsigned long)ilen);
259 if (i != Z_OK)

new/usr/src/lib/openssl/libsunw_crypto/comp/c_zlib.c 5

260 return(-1);
261 if (ilen > l)
262 {
263 clear=0;
264 l++;
265 }
266 }
267 if (clear)
268 {
269 out[0]=0;
270 memcpy(&(out[1]),in,ilen);
271 l=ilen+1;
272 }
273 #ifdef DEBUG_ZLIB
274 fprintf(stderr,"compress(%4d)->%4d %s\n",
275 ilen,(int)l,(clear)?"clear":"zlib");
276 #endif
277 return((int)l);
278 }

280 static int zlib_expand_block(COMP_CTX *ctx, unsigned char *out,
281 unsigned int olen, unsigned char *in, unsigned int ilen)
282 {
283 unsigned long l;
284 int i;

286 if (in[0])
287 {
288 l=olen;
289 i=zz_uncompress(out,&l,&(in[1]),(unsigned long)ilen-1);
290 if (i != Z_OK)
291 return(-1);
292 }
293 else
294 {
295 memcpy(out,&(in[1]),ilen-1);
296 l=ilen-1;
297 }
298 #ifdef DEBUG_ZLIB
299 fprintf(stderr,"expand (%4d)->%4d %s\n",
300 ilen,(int)l,in[0]?"zlib":"clear");
301 #endif
302 return((int)l);
303 }

305 static int zz_uncompress (Bytef *dest, uLongf *destLen, const Bytef *source,
306 uLong sourceLen)
307 {
308 z_stream stream;
309 int err;

311 stream.next_in = (Bytef*)source;
312 stream.avail_in = (uInt)sourceLen;
313 /* Check for source > 64K on 16-bit machine: */
314 if ((uLong)stream.avail_in != sourceLen) return Z_BUF_ERROR;

316 stream.next_out = dest;
317 stream.avail_out = (uInt)*destLen;
318 if ((uLong)stream.avail_out != *destLen) return Z_BUF_ERROR;

320 stream.zalloc = (alloc_func)0;
321 stream.zfree = (free_func)0;

323 err = inflateInit_(&stream,
324 ZLIB_VERSION, sizeof(z_stream));
325 if (err != Z_OK) return err;

new/usr/src/lib/openssl/libsunw_crypto/comp/c_zlib.c 6

327 err = inflate(&stream, Z_FINISH);
328 if (err != Z_STREAM_END) {
329 inflateEnd(&stream);
330 return err;
331 }
332 *destLen = stream.total_out;

334 err = inflateEnd(&stream);
335 return err;
336 }
337 #endif

339 #endif

341 COMP_METHOD *COMP_zlib(void)
342 {
343 COMP_METHOD *meth = &zlib_method_nozlib;

345 #ifdef ZLIB_SHARED
346 if (!zlib_loaded)
347 {
348 #if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32)
349 zlib_dso = DSO_load(NULL, "ZLIB1", NULL, 0);
350 #else
351 zlib_dso = DSO_load(NULL, "z", NULL, 0);
352 #endif
353 if (zlib_dso != NULL)
354 {
355 p_compress
356 = (compress_ft) DSO_bind_func(zlib_dso,
357 "compress");
358 p_inflateEnd
359 = (inflateEnd_ft) DSO_bind_func(zlib_dso,
360 "inflateEnd");
361 p_inflate
362 = (inflate_ft) DSO_bind_func(zlib_dso,
363 "inflate");
364 p_inflateInit_
365 = (inflateInit__ft) DSO_bind_func(zlib_dso,
366 "inflateInit_");
367 p_deflateEnd
368 = (deflateEnd_ft) DSO_bind_func(zlib_dso,
369 "deflateEnd");
370 p_deflate
371 = (deflate_ft) DSO_bind_func(zlib_dso,
372 "deflate");
373 p_deflateInit_
374 = (deflateInit__ft) DSO_bind_func(zlib_dso,
375 "deflateInit_");
376 p_zError
377 = (zError__ft) DSO_bind_func(zlib_dso,
378 "zError");

380 if (p_compress && p_inflateEnd && p_inflate
381 && p_inflateInit_ && p_deflateEnd
382 && p_deflate && p_deflateInit_ && p_zError)
383 zlib_loaded++;
384 }
385 }

387 #endif
388 #ifdef ZLIB_SHARED
389 if (zlib_loaded)
390 #endif
391 #if defined(ZLIB) || defined(ZLIB_SHARED)

new/usr/src/lib/openssl/libsunw_crypto/comp/c_zlib.c 7

392 {
393 /* init zlib_stateful_ex_idx here so that in a multi-process
394 * application it’s enough to intialize openssl before forking
395 * (idx will be inherited in all the children) */
396 if (zlib_stateful_ex_idx == -1)
397 {
398 CRYPTO_w_lock(CRYPTO_LOCK_COMP);
399 if (zlib_stateful_ex_idx == -1)
400 zlib_stateful_ex_idx =
401 CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_
402 0,NULL,NULL,NULL,NULL);
403 CRYPTO_w_unlock(CRYPTO_LOCK_COMP);
404 if (zlib_stateful_ex_idx == -1)
405 goto err;
406 }
407
408 meth = &zlib_stateful_method;
409 }
410 err:
411 #endif

413 return(meth);
414 }

416 void COMP_zlib_cleanup(void)
417 {
418 #ifdef ZLIB_SHARED
419 if (zlib_dso)
420 DSO_free(zlib_dso);
421 #endif
422 }

424 #ifdef ZLIB

426 /* Zlib based compression/decompression filter BIO */

428 typedef struct
429 {
430 unsigned char *ibuf; /* Input buffer */
431 int ibufsize; /* Buffer size */
432 z_stream zin; /* Input decompress context */
433 unsigned char *obuf; /* Output buffer */
434 int obufsize; /* Output buffer size */
435 unsigned char *optr; /* Position in output buffer */
436 int ocount; /* Amount of data in output buffer */
437 int odone; /* deflate EOF */
438 int comp_level; /* Compression level to use */
439 z_stream zout; /* Output compression context */
440 } BIO_ZLIB_CTX;

442 #define ZLIB_DEFAULT_BUFSIZE 1024

444 static int bio_zlib_new(BIO *bi);
445 static int bio_zlib_free(BIO *bi);
446 static int bio_zlib_read(BIO *b, char *out, int outl);
447 static int bio_zlib_write(BIO *b, const char *in, int inl);
448 static long bio_zlib_ctrl(BIO *b, int cmd, long num, void *ptr);
449 static long bio_zlib_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp);

451 static BIO_METHOD bio_meth_zlib =
452 {
453 BIO_TYPE_COMP,
454 "zlib",
455 bio_zlib_write,
456 bio_zlib_read,
457 NULL,

new/usr/src/lib/openssl/libsunw_crypto/comp/c_zlib.c 8

458 NULL,
459 bio_zlib_ctrl,
460 bio_zlib_new,
461 bio_zlib_free,
462 bio_zlib_callback_ctrl
463 };

465 BIO_METHOD *BIO_f_zlib(void)
466 {
467 return &bio_meth_zlib;
468 }

471 static int bio_zlib_new(BIO *bi)
472 {
473 BIO_ZLIB_CTX *ctx;
474 #ifdef ZLIB_SHARED
475 (void)COMP_zlib();
476 if (!zlib_loaded)
477 {
478 COMPerr(COMP_F_BIO_ZLIB_NEW, COMP_R_ZLIB_NOT_SUPPORTED);
479 return 0;
480 }
481 #endif
482 ctx = OPENSSL_malloc(sizeof(BIO_ZLIB_CTX));
483 if(!ctx)
484 {
485 COMPerr(COMP_F_BIO_ZLIB_NEW, ERR_R_MALLOC_FAILURE);
486 return 0;
487 }
488 ctx->ibuf = NULL;
489 ctx->obuf = NULL;
490 ctx->ibufsize = ZLIB_DEFAULT_BUFSIZE;
491 ctx->obufsize = ZLIB_DEFAULT_BUFSIZE;
492 ctx->zin.zalloc = Z_NULL;
493 ctx->zin.zfree = Z_NULL;
494 ctx->zin.next_in = NULL;
495 ctx->zin.avail_in = 0;
496 ctx->zin.next_out = NULL;
497 ctx->zin.avail_out = 0;
498 ctx->zout.zalloc = Z_NULL;
499 ctx->zout.zfree = Z_NULL;
500 ctx->zout.next_in = NULL;
501 ctx->zout.avail_in = 0;
502 ctx->zout.next_out = NULL;
503 ctx->zout.avail_out = 0;
504 ctx->odone = 0;
505 ctx->comp_level = Z_DEFAULT_COMPRESSION;
506 bi->init = 1;
507 bi->ptr = (char *)ctx;
508 bi->flags = 0;
509 return 1;
510 }

512 static int bio_zlib_free(BIO *bi)
513 {
514 BIO_ZLIB_CTX *ctx;
515 if(!bi) return 0;
516 ctx = (BIO_ZLIB_CTX *)bi->ptr;
517 if(ctx->ibuf)
518 {
519 /* Destroy decompress context */
520 inflateEnd(&ctx->zin);
521 OPENSSL_free(ctx->ibuf);
522 }
523 if(ctx->obuf)

new/usr/src/lib/openssl/libsunw_crypto/comp/c_zlib.c 9

524 {
525 /* Destroy compress context */
526 deflateEnd(&ctx->zout);
527 OPENSSL_free(ctx->obuf);
528 }
529 OPENSSL_free(ctx);
530 bi->ptr = NULL;
531 bi->init = 0;
532 bi->flags = 0;
533 return 1;
534 }

536 static int bio_zlib_read(BIO *b, char *out, int outl)
537 {
538 BIO_ZLIB_CTX *ctx;
539 int ret;
540 z_stream *zin;
541 if(!out || !outl) return 0;
542 ctx = (BIO_ZLIB_CTX *)b->ptr;
543 zin = &ctx->zin;
544 BIO_clear_retry_flags(b);
545 if(!ctx->ibuf)
546 {
547 ctx->ibuf = OPENSSL_malloc(ctx->ibufsize);
548 if(!ctx->ibuf)
549 {
550 COMPerr(COMP_F_BIO_ZLIB_READ, ERR_R_MALLOC_FAILURE);
551 return 0;
552 }
553 inflateInit(zin);
554 zin->next_in = ctx->ibuf;
555 zin->avail_in = 0;
556 }

558 /* Copy output data directly to supplied buffer */
559 zin->next_out = (unsigned char *)out;
560 zin->avail_out = (unsigned int)outl;
561 for(;;)
562 {
563 /* Decompress while data available */
564 while(zin->avail_in)
565 {
566 ret = inflate(zin, 0);
567 if((ret != Z_OK) && (ret != Z_STREAM_END))
568 {
569 COMPerr(COMP_F_BIO_ZLIB_READ,
570 COMP_R_ZLIB_INFLATE_ERROR);
571 ERR_add_error_data(2, "zlib error:",
572 zError(ret));
573 return 0;
574 }
575 /* If EOF or we’ve read everything then return */
576 if((ret == Z_STREAM_END) || !zin->avail_out)
577 return outl - zin->avail_out;
578 }

580 /* No data in input buffer try to read some in,
581 * if an error then return the total data read.
582 */
583 ret = BIO_read(b->next_bio, ctx->ibuf, ctx->ibufsize);
584 if(ret <= 0)
585 {
586 /* Total data read */
587 int tot = outl - zin->avail_out;
588 BIO_copy_next_retry(b);
589 if(ret < 0) return (tot > 0) ? tot : ret;

new/usr/src/lib/openssl/libsunw_crypto/comp/c_zlib.c 10

590 return tot;
591 }
592 zin->avail_in = ret;
593 zin->next_in = ctx->ibuf;
594 }
595 }

597 static int bio_zlib_write(BIO *b, const char *in, int inl)
598 {
599 BIO_ZLIB_CTX *ctx;
600 int ret;
601 z_stream *zout;
602 if(!in || !inl) return 0;
603 ctx = (BIO_ZLIB_CTX *)b->ptr;
604 if(ctx->odone) return 0;
605 zout = &ctx->zout;
606 BIO_clear_retry_flags(b);
607 if(!ctx->obuf)
608 {
609 ctx->obuf = OPENSSL_malloc(ctx->obufsize);
610 /* Need error here */
611 if(!ctx->obuf)
612 {
613 COMPerr(COMP_F_BIO_ZLIB_WRITE, ERR_R_MALLOC_FAILURE);
614 return 0;
615 }
616 ctx->optr = ctx->obuf;
617 ctx->ocount = 0;
618 deflateInit(zout, ctx->comp_level);
619 zout->next_out = ctx->obuf;
620 zout->avail_out = ctx->obufsize;
621 }
622 /* Obtain input data directly from supplied buffer */
623 zout->next_in = (void *)in;
624 zout->avail_in = inl;
625 for(;;)
626 {
627 /* If data in output buffer write it first */
628 while(ctx->ocount) {
629 ret = BIO_write(b->next_bio, ctx->optr, ctx->ocount);
630 if(ret <= 0)
631 {
632 /* Total data written */
633 int tot = inl - zout->avail_in;
634 BIO_copy_next_retry(b);
635 if(ret < 0) return (tot > 0) ? tot : ret;
636 return tot;
637 }
638 ctx->optr += ret;
639 ctx->ocount -= ret;
640 }

642 /* Have we consumed all supplied data? */
643 if(!zout->avail_in)
644 return inl;

646 /* Compress some more */

648 /* Reset buffer */
649 ctx->optr = ctx->obuf;
650 zout->next_out = ctx->obuf;
651 zout->avail_out = ctx->obufsize;
652 /* Compress some more */
653 ret = deflate(zout, 0);
654 if(ret != Z_OK)
655 {

new/usr/src/lib/openssl/libsunw_crypto/comp/c_zlib.c 11

656 COMPerr(COMP_F_BIO_ZLIB_WRITE,
657 COMP_R_ZLIB_DEFLATE_ERROR);
658 ERR_add_error_data(2, "zlib error:", zError(ret));
659 return 0;
660 }
661 ctx->ocount = ctx->obufsize - zout->avail_out;
662 }
663 }

665 static int bio_zlib_flush(BIO *b)
666 {
667 BIO_ZLIB_CTX *ctx;
668 int ret;
669 z_stream *zout;
670 ctx = (BIO_ZLIB_CTX *)b->ptr;
671 /* If no data written or already flush show success */
672 if(!ctx->obuf || (ctx->odone && !ctx->ocount)) return 1;
673 zout = &ctx->zout;
674 BIO_clear_retry_flags(b);
675 /* No more input data */
676 zout->next_in = NULL;
677 zout->avail_in = 0;
678 for(;;)
679 {
680 /* If data in output buffer write it first */
681 while(ctx->ocount)
682 {
683 ret = BIO_write(b->next_bio, ctx->optr, ctx->ocount);
684 if(ret <= 0)
685 {
686 BIO_copy_next_retry(b);
687 return ret;
688 }
689 ctx->optr += ret;
690 ctx->ocount -= ret;
691 }
692 if(ctx->odone) return 1;

694 /* Compress some more */

696 /* Reset buffer */
697 ctx->optr = ctx->obuf;
698 zout->next_out = ctx->obuf;
699 zout->avail_out = ctx->obufsize;
700 /* Compress some more */
701 ret = deflate(zout, Z_FINISH);
702 if(ret == Z_STREAM_END) ctx->odone = 1;
703 else if(ret != Z_OK)
704 {
705 COMPerr(COMP_F_BIO_ZLIB_FLUSH,
706 COMP_R_ZLIB_DEFLATE_ERROR);
707 ERR_add_error_data(2, "zlib error:", zError(ret));
708 return 0;
709 }
710 ctx->ocount = ctx->obufsize - zout->avail_out;
711 }
712 }

714 static long bio_zlib_ctrl(BIO *b, int cmd, long num, void *ptr)
715 {
716 BIO_ZLIB_CTX *ctx;
717 int ret, *ip;
718 int ibs, obs;
719 if(!b->next_bio) return 0;
720 ctx = (BIO_ZLIB_CTX *)b->ptr;
721 switch (cmd)

new/usr/src/lib/openssl/libsunw_crypto/comp/c_zlib.c 12

722 {

724 case BIO_CTRL_RESET:
725 ctx->ocount = 0;
726 ctx->odone = 0;
727 ret = 1;
728 break;

730 case BIO_CTRL_FLUSH:
731 ret = bio_zlib_flush(b);
732 if (ret > 0)
733 ret = BIO_flush(b->next_bio);
734 break;

736 case BIO_C_SET_BUFF_SIZE:
737 ibs = -1;
738 obs = -1;
739 if (ptr != NULL)
740 {
741 ip = ptr;
742 if (*ip == 0)
743 ibs = (int) num;
744 else
745 obs = (int) num;
746 }
747 else
748 {
749 ibs = (int)num;
750 obs = ibs;
751 }

753 if (ibs != -1)
754 {
755 if (ctx->ibuf)
756 {
757 OPENSSL_free(ctx->ibuf);
758 ctx->ibuf = NULL;
759 }
760 ctx->ibufsize = ibs;
761 }

763 if (obs != -1)
764 {
765 if (ctx->obuf)
766 {
767 OPENSSL_free(ctx->obuf);
768 ctx->obuf = NULL;
769 }
770 ctx->obufsize = obs;
771 }
772 ret = 1;
773 break;

775 case BIO_C_DO_STATE_MACHINE:
776 BIO_clear_retry_flags(b);
777 ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
778 BIO_copy_next_retry(b);
779 break;

781 default:
782 ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
783 break;

785 }

787 return ret;

new/usr/src/lib/openssl/libsunw_crypto/comp/c_zlib.c 13

788 }

791 static long bio_zlib_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp)
792 {
793 if(!b->next_bio)
794 return 0;
795 return
796 BIO_callback_ctrl(b->next_bio, cmd, fp);
797 }

799 #endif

new/usr/src/lib/openssl/libsunw_crypto/comp/comp_err.c 1

**
 3838 Fri May 30 18:31:40 2014
new/usr/src/lib/openssl/libsunw_crypto/comp/comp_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/comp/comp_err.c */
2 /* ==
3 * Copyright (c) 1999-2007 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/comp/comp_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/comp.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_COMP,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_COMP,0,reason)

71 static ERR_STRING_DATA COMP_str_functs[]=
72 {
73 {ERR_FUNC(COMP_F_BIO_ZLIB_FLUSH), "BIO_ZLIB_FLUSH"},
74 {ERR_FUNC(COMP_F_BIO_ZLIB_NEW), "BIO_ZLIB_NEW"},
75 {ERR_FUNC(COMP_F_BIO_ZLIB_READ), "BIO_ZLIB_READ"},
76 {ERR_FUNC(COMP_F_BIO_ZLIB_WRITE), "BIO_ZLIB_WRITE"},
77 {0,NULL}
78 };

80 static ERR_STRING_DATA COMP_str_reasons[]=
81 {
82 {ERR_REASON(COMP_R_ZLIB_DEFLATE_ERROR) ,"zlib deflate error"},
83 {ERR_REASON(COMP_R_ZLIB_INFLATE_ERROR) ,"zlib inflate error"},
84 {ERR_REASON(COMP_R_ZLIB_NOT_SUPPORTED) ,"zlib not supported"},
85 {0,NULL}
86 };

88 #endif

90 void ERR_load_COMP_strings(void)
91 {
92 #ifndef OPENSSL_NO_ERR

94 if (ERR_func_error_string(COMP_str_functs[0].error) == NULL)
95 {
96 ERR_load_strings(0,COMP_str_functs);
97 ERR_load_strings(0,COMP_str_reasons);
98 }
99 #endif
100 }

new/usr/src/lib/openssl/libsunw_crypto/comp/comp_lib.c 1

**
 1276 Fri May 30 18:31:40 2014
new/usr/src/lib/openssl/libsunw_crypto/comp/comp_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <openssl/objects.h>
5 #include <openssl/comp.h>

7 COMP_CTX *COMP_CTX_new(COMP_METHOD *meth)
8 {
9 COMP_CTX *ret;

11 if ((ret=(COMP_CTX *)OPENSSL_malloc(sizeof(COMP_CTX))) == NULL)
12 {
13 /* ZZZZZZZZZZZZZZZZ */
14 return(NULL);
15 }
16 memset(ret,0,sizeof(COMP_CTX));
17 ret->meth=meth;
18 if ((ret->meth->init != NULL) && !ret->meth->init(ret))
19 {
20 OPENSSL_free(ret);
21 ret=NULL;
22 }
23 return(ret);
24 }

26 void COMP_CTX_free(COMP_CTX *ctx)
27 {
28 if(ctx == NULL)
29 return;

31 if (ctx->meth->finish != NULL)
32 ctx->meth->finish(ctx);

34 OPENSSL_free(ctx);
35 }

37 int COMP_compress_block(COMP_CTX *ctx, unsigned char *out, int olen,
38 unsigned char *in, int ilen)
39 {
40 int ret;
41 if (ctx->meth->compress == NULL)
42 {
43 /* ZZZZZZZZZZZZZZZZZ */
44 return(-1);
45 }
46 ret=ctx->meth->compress(ctx,out,olen,in,ilen);
47 if (ret > 0)
48 {
49 ctx->compress_in+=ilen;
50 ctx->compress_out+=ret;
51 }
52 return(ret);
53 }

55 int COMP_expand_block(COMP_CTX *ctx, unsigned char *out, int olen,
56 unsigned char *in, int ilen)
57 {
58 int ret;

60 if (ctx->meth->expand == NULL)
61 {

new/usr/src/lib/openssl/libsunw_crypto/comp/comp_lib.c 2

62 /* ZZZZZZZZZZZZZZZZZ */
63 return(-1);
64 }
65 ret=ctx->meth->expand(ctx,out,olen,in,ilen);
66 if (ret > 0)
67 {
68 ctx->expand_in+=ilen;
69 ctx->expand_out+=ret;
70 }
71 return(ret);
72 }

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_api.c 1

**
 8520 Fri May 30 18:31:41 2014
new/usr/src/lib/openssl/libsunw_crypto/conf/conf_api.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* conf_api.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* Part of the code in here was originally in conf.c, which is now removed */

61 #ifndef CONF_DEBUG

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_api.c 2

62 # undef NDEBUG /* avoid conflicting definitions */
63 # define NDEBUG
64 #endif

66 #include <assert.h>
67 #include <stdlib.h>
68 #include <string.h>
69 #include <openssl/conf.h>
70 #include <openssl/conf_api.h>
71 #include "e_os.h"

73 static void value_free_hash_doall_arg(CONF_VALUE *a,
74 LHASH_OF(CONF_VALUE) *conf);
75 static void value_free_stack_doall(CONF_VALUE *a);
76 static IMPLEMENT_LHASH_DOALL_ARG_FN(value_free_hash, CONF_VALUE,
77 LHASH_OF(CONF_VALUE))
78 static IMPLEMENT_LHASH_DOALL_FN(value_free_stack, CONF_VALUE)

80 /* Up until OpenSSL 0.9.5a, this was get_section */
81 CONF_VALUE *_CONF_get_section(const CONF *conf, const char *section)
82 {
83 CONF_VALUE *v,vv;

85 if ((conf == NULL) || (section == NULL)) return(NULL);
86 vv.name=NULL;
87 vv.section=(char *)section;
88 v=lh_CONF_VALUE_retrieve(conf->data,&vv);
89 return(v);
90 }

92 /* Up until OpenSSL 0.9.5a, this was CONF_get_section */
93 STACK_OF(CONF_VALUE) *_CONF_get_section_values(const CONF *conf,
94 const char *section)
95 {
96 CONF_VALUE *v;

98 v=_CONF_get_section(conf,section);
99 if (v != NULL)
100 return((STACK_OF(CONF_VALUE) *)v->value);
101 else
102 return(NULL);
103 }

105 int _CONF_add_string(CONF *conf, CONF_VALUE *section, CONF_VALUE *value)
106 {
107 CONF_VALUE *v = NULL;
108 STACK_OF(CONF_VALUE) *ts;

110 ts = (STACK_OF(CONF_VALUE) *)section->value;

112 value->section=section->section;
113 if (!sk_CONF_VALUE_push(ts,value))
114 {
115 return 0;
116 }

118 v = lh_CONF_VALUE_insert(conf->data, value);
119 if (v != NULL)
120 {
121 (void)sk_CONF_VALUE_delete_ptr(ts,v);
122 OPENSSL_free(v->name);
123 OPENSSL_free(v->value);
124 OPENSSL_free(v);
125 }
126 return 1;
127 }

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_api.c 3

129 char *_CONF_get_string(const CONF *conf, const char *section, const char *name)
130 {
131 CONF_VALUE *v,vv;
132 char *p;

134 if (name == NULL) return(NULL);
135 if (conf != NULL)
136 {
137 if (section != NULL)
138 {
139 vv.name=(char *)name;
140 vv.section=(char *)section;
141 v=lh_CONF_VALUE_retrieve(conf->data,&vv);
142 if (v != NULL) return(v->value);
143 if (strcmp(section,"ENV") == 0)
144 {
145 p=getenv(name);
146 if (p != NULL) return(p);
147 }
148 }
149 vv.section="default";
150 vv.name=(char *)name;
151 v=lh_CONF_VALUE_retrieve(conf->data,&vv);
152 if (v != NULL)
153 return(v->value);
154 else
155 return(NULL);
156 }
157 else
158 return(getenv(name));
159 }

161 #if 0 /* There’s no way to provide error checking with this function, so
162 force implementors of the higher levels to get a string and read
163 the number themselves. */
164 long _CONF_get_number(CONF *conf, char *section, char *name)
165 {
166 char *str;
167 long ret=0;

169 str=_CONF_get_string(conf,section,name);
170 if (str == NULL) return(0);
171 for (;;)
172 {
173 if (conf->meth->is_number(conf, *str))
174 ret=ret*10+conf->meth->to_int(conf, *str);
175 else
176 return(ret);
177 str++;
178 }
179 }
180 #endif

182 static unsigned long conf_value_hash(const CONF_VALUE *v)
183 {
184 return (lh_strhash(v->section)<<2)^lh_strhash(v->name);
185 }
186 static IMPLEMENT_LHASH_HASH_FN(conf_value, CONF_VALUE)

188 static int conf_value_cmp(const CONF_VALUE *a, const CONF_VALUE *b)
189 {
190 int i;

192 if (a->section != b->section)
193 {

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_api.c 4

194 i=strcmp(a->section,b->section);
195 if (i) return(i);
196 }

198 if ((a->name != NULL) && (b->name != NULL))
199 {
200 i=strcmp(a->name,b->name);
201 return(i);
202 }
203 else if (a->name == b->name)
204 return(0);
205 else
206 return((a->name == NULL)?-1:1);
207 }
208 static IMPLEMENT_LHASH_COMP_FN(conf_value, CONF_VALUE)

210 int _CONF_new_data(CONF *conf)
211 {
212 if (conf == NULL)
213 {
214 return 0;
215 }
216 if (conf->data == NULL)
217 if ((conf->data = lh_CONF_VALUE_new()) == NULL)
218 {
219 return 0;
220 }
221 return 1;
222 }

224 void _CONF_free_data(CONF *conf)
225 {
226 if (conf == NULL || conf->data == NULL) return;

228 lh_CONF_VALUE_down_load(conf->data)=0; /* evil thing to make
229 * sure the ’OPENSSL_free()’ works as
230 * expected */
231 lh_CONF_VALUE_doall_arg(conf->data,
232 LHASH_DOALL_ARG_FN(value_free_hash),
233 LHASH_OF(CONF_VALUE), conf->data);

235 /* We now have only ’section’ entries in the hash table.
236 * Due to problems with */

238 lh_CONF_VALUE_doall(conf->data, LHASH_DOALL_FN(value_free_stack));
239 lh_CONF_VALUE_free(conf->data);
240 }

242 static void value_free_hash_doall_arg(CONF_VALUE *a, LHASH_OF(CONF_VALUE) *conf)
243 {
244 if (a->name != NULL)
245 (void)lh_CONF_VALUE_delete(conf,a);
246 }

248 static void value_free_stack_doall(CONF_VALUE *a)
249 {
250 CONF_VALUE *vv;
251 STACK_OF(CONF_VALUE) *sk;
252 int i;

254 if (a->name != NULL) return;

256 sk=(STACK_OF(CONF_VALUE) *)a->value;
257 for (i=sk_CONF_VALUE_num(sk)-1; i>=0; i--)
258 {
259 vv=sk_CONF_VALUE_value(sk,i);

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_api.c 5

260 OPENSSL_free(vv->value);
261 OPENSSL_free(vv->name);
262 OPENSSL_free(vv);
263 }
264 if (sk != NULL) sk_CONF_VALUE_free(sk);
265 OPENSSL_free(a->section);
266 OPENSSL_free(a);
267 }

269 /* Up until OpenSSL 0.9.5a, this was new_section */
270 CONF_VALUE *_CONF_new_section(CONF *conf, const char *section)
271 {
272 STACK_OF(CONF_VALUE) *sk=NULL;
273 int ok=0,i;
274 CONF_VALUE *v=NULL,*vv;

276 if ((sk=sk_CONF_VALUE_new_null()) == NULL)
277 goto err;
278 if ((v=OPENSSL_malloc(sizeof(CONF_VALUE))) == NULL)
279 goto err;
280 i=strlen(section)+1;
281 if ((v->section=OPENSSL_malloc(i)) == NULL)
282 goto err;

284 memcpy(v->section,section,i);
285 v->name=NULL;
286 v->value=(char *)sk;
287
288 vv=lh_CONF_VALUE_insert(conf->data,v);
289 OPENSSL_assert(vv == NULL);
290 ok=1;
291 err:
292 if (!ok)
293 {
294 if (sk != NULL) sk_CONF_VALUE_free(sk);
295 if (v != NULL) OPENSSL_free(v);
296 v=NULL;
297 }
298 return(v);
299 }

301 IMPLEMENT_STACK_OF(CONF_VALUE)

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_def.c 1

**
 16121 Fri May 30 18:31:41 2014
new/usr/src/lib/openssl/libsunw_crypto/conf/conf_def.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/conf/conf.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* Part of the code in here was originally in conf.c, which is now removed */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_def.c 2

62 #include <string.h>
63 #include "cryptlib.h"
64 #include <openssl/stack.h>
65 #include <openssl/lhash.h>
66 #include <openssl/conf.h>
67 #include <openssl/conf_api.h>
68 #include "conf_def.h"
69 #include <openssl/buffer.h>
70 #include <openssl/err.h>

72 static char *eat_ws(CONF *conf, char *p);
73 static char *eat_alpha_numeric(CONF *conf, char *p);
74 static void clear_comments(CONF *conf, char *p);
75 static int str_copy(CONF *conf,char *section,char **to, char *from);
76 static char *scan_quote(CONF *conf, char *p);
77 static char *scan_dquote(CONF *conf, char *p);
78 #define scan_esc(conf,p) (((IS_EOF((conf),(p)[1]))?((p)+1):((p)+2)))

80 static CONF *def_create(CONF_METHOD *meth);
81 static int def_init_default(CONF *conf);
82 static int def_init_WIN32(CONF *conf);
83 static int def_destroy(CONF *conf);
84 static int def_destroy_data(CONF *conf);
85 static int def_load(CONF *conf, const char *name, long *eline);
86 static int def_load_bio(CONF *conf, BIO *bp, long *eline);
87 static int def_dump(const CONF *conf, BIO *bp);
88 static int def_is_number(const CONF *conf, char c);
89 static int def_to_int(const CONF *conf, char c);

91 const char CONF_def_version[]="CONF_def" OPENSSL_VERSION_PTEXT;

93 static CONF_METHOD default_method = {
94 "OpenSSL default",
95 def_create,
96 def_init_default,
97 def_destroy,
98 def_destroy_data,
99 def_load_bio,
100 def_dump,
101 def_is_number,
102 def_to_int,
103 def_load
104 };

106 static CONF_METHOD WIN32_method = {
107 "WIN32",
108 def_create,
109 def_init_WIN32,
110 def_destroy,
111 def_destroy_data,
112 def_load_bio,
113 def_dump,
114 def_is_number,
115 def_to_int,
116 def_load
117 };

119 CONF_METHOD *NCONF_default()
120 {
121 return &default_method;
122 }
123 CONF_METHOD *NCONF_WIN32()
124 {
125 return &WIN32_method;
126 }

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_def.c 3

128 static CONF *def_create(CONF_METHOD *meth)
129 {
130 CONF *ret;

132 ret = OPENSSL_malloc(sizeof(CONF) + sizeof(unsigned short *));
133 if (ret)
134 if (meth->init(ret) == 0)
135 {
136 OPENSSL_free(ret);
137 ret = NULL;
138 }
139 return ret;
140 }
141
142 static int def_init_default(CONF *conf)
143 {
144 if (conf == NULL)
145 return 0;

147 conf->meth = &default_method;
148 conf->meth_data = CONF_type_default;
149 conf->data = NULL;

151 return 1;
152 }

154 static int def_init_WIN32(CONF *conf)
155 {
156 if (conf == NULL)
157 return 0;

159 conf->meth = &WIN32_method;
160 conf->meth_data = (void *)CONF_type_win32;
161 conf->data = NULL;

163 return 1;
164 }

166 static int def_destroy(CONF *conf)
167 {
168 if (def_destroy_data(conf))
169 {
170 OPENSSL_free(conf);
171 return 1;
172 }
173 return 0;
174 }

176 static int def_destroy_data(CONF *conf)
177 {
178 if (conf == NULL)
179 return 0;
180 _CONF_free_data(conf);
181 return 1;
182 }

184 static int def_load(CONF *conf, const char *name, long *line)
185 {
186 int ret;
187 BIO *in=NULL;

189 #ifdef OPENSSL_SYS_VMS
190 in=BIO_new_file(name, "r");
191 #else
192 in=BIO_new_file(name, "rb");
193 #endif

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_def.c 4

194 if (in == NULL)
195 {
196 if (ERR_GET_REASON(ERR_peek_last_error()) == BIO_R_NO_SUCH_FILE)
197 CONFerr(CONF_F_DEF_LOAD,CONF_R_NO_SUCH_FILE);
198 else
199 CONFerr(CONF_F_DEF_LOAD,ERR_R_SYS_LIB);
200 return 0;
201 }

203 ret = def_load_bio(conf, in, line);
204 BIO_free(in);

206 return ret;
207 }

209 static int def_load_bio(CONF *conf, BIO *in, long *line)
210 {
211 /* The macro BUFSIZE conflicts with a system macro in VxWorks */
212 #define CONFBUFSIZE 512
213 int bufnum=0,i,ii;
214 BUF_MEM *buff=NULL;
215 char *s,*p,*end;
216 int again;
217 long eline=0;
218 char btmp[DECIMAL_SIZE(eline)+1];
219 CONF_VALUE *v=NULL,*tv;
220 CONF_VALUE *sv=NULL;
221 char *section=NULL,*buf;
222 char *start,*psection,*pname;
223 void *h = (void *)(conf->data);

225 if ((buff=BUF_MEM_new()) == NULL)
226 {
227 CONFerr(CONF_F_DEF_LOAD_BIO,ERR_R_BUF_LIB);
228 goto err;
229 }

231 section=(char *)OPENSSL_malloc(10);
232 if (section == NULL)
233 {
234 CONFerr(CONF_F_DEF_LOAD_BIO,ERR_R_MALLOC_FAILURE);
235 goto err;
236 }
237 BUF_strlcpy(section,"default",10);

239 if (_CONF_new_data(conf) == 0)
240 {
241 CONFerr(CONF_F_DEF_LOAD_BIO,ERR_R_MALLOC_FAILURE);
242 goto err;
243 }

245 sv=_CONF_new_section(conf,section);
246 if (sv == NULL)
247 {
248 CONFerr(CONF_F_DEF_LOAD_BIO,
249 CONF_R_UNABLE_TO_CREATE_NEW_SECTION);
250 goto err;
251 }

253 bufnum=0;
254 again=0;
255 for (;;)
256 {
257 if (!BUF_MEM_grow(buff,bufnum+CONFBUFSIZE))
258 {
259 CONFerr(CONF_F_DEF_LOAD_BIO,ERR_R_BUF_LIB);

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_def.c 5

260 goto err;
261 }
262 p= &(buff->data[bufnum]);
263 *p=’\0’;
264 BIO_gets(in, p, CONFBUFSIZE-1);
265 p[CONFBUFSIZE-1]=’\0’;
266 ii=i=strlen(p);
267 if (i == 0 && !again) break;
268 again=0;
269 while (i > 0)
270 {
271 if ((p[i-1] != ’\r’) && (p[i-1] != ’\n’))
272 break;
273 else
274 i--;
275 }
276 /* we removed some trailing stuff so there is a new
277 * line on the end. */
278 if (ii && i == ii)
279 again=1; /* long line */
280 else
281 {
282 p[i]=’\0’;
283 eline++; /* another input line */
284 }

286 /* we now have a line with trailing \r\n removed */

288 /* i is the number of bytes */
289 bufnum+=i;

291 v=NULL;
292 /* check for line continuation */
293 if (bufnum >= 1)
294 {
295 /* If we have bytes and the last char ’\\’ and
296 * second last char is not ’\\’ */
297 p= &(buff->data[bufnum-1]);
298 if (IS_ESC(conf,p[0]) &&
299 ((bufnum <= 1) || !IS_ESC(conf,p[-1])))
300 {
301 bufnum--;
302 again=1;
303 }
304 }
305 if (again) continue;
306 bufnum=0;
307 buf=buff->data;

309 clear_comments(conf, buf);
310 s=eat_ws(conf, buf);
311 if (IS_EOF(conf,*s)) continue; /* blank line */
312 if (*s == ’[’)
313 {
314 char *ss;

316 s++;
317 start=eat_ws(conf, s);
318 ss=start;
319 again:
320 end=eat_alpha_numeric(conf, ss);
321 p=eat_ws(conf, end);
322 if (*p != ’]’)
323 {
324 if (*p != ’\0’)
325 {

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_def.c 6

326 ss=p;
327 goto again;
328 }
329 CONFerr(CONF_F_DEF_LOAD_BIO,
330 CONF_R_MISSING_CLOSE_SQUARE_BRACKET);
331 goto err;
332 }
333 *end=’\0’;
334 if (!str_copy(conf,NULL,§ion,start)) goto err;
335 if ((sv=_CONF_get_section(conf,section)) == NULL)
336 sv=_CONF_new_section(conf,section);
337 if (sv == NULL)
338 {
339 CONFerr(CONF_F_DEF_LOAD_BIO,
340 CONF_R_UNABLE_TO_CREATE_NEW_SECTION);
341 goto err;
342 }
343 continue;
344 }
345 else
346 {
347 pname=s;
348 psection=NULL;
349 end=eat_alpha_numeric(conf, s);
350 if ((end[0] == ’:’) && (end[1] == ’:’))
351 {
352 *end=’\0’;
353 end+=2;
354 psection=pname;
355 pname=end;
356 end=eat_alpha_numeric(conf, end);
357 }
358 p=eat_ws(conf, end);
359 if (*p != ’=’)
360 {
361 CONFerr(CONF_F_DEF_LOAD_BIO,
362 CONF_R_MISSING_EQUAL_SIGN);
363 goto err;
364 }
365 *end=’\0’;
366 p++;
367 start=eat_ws(conf, p);
368 while (!IS_EOF(conf,*p))
369 p++;
370 p--;
371 while ((p != start) && (IS_WS(conf,*p)))
372 p--;
373 p++;
374 *p=’\0’;

376 if (!(v=(CONF_VALUE *)OPENSSL_malloc(sizeof(CONF_VALUE))
377 {
378 CONFerr(CONF_F_DEF_LOAD_BIO,
379 ERR_R_MALLOC_FAILURE);
380 goto err;
381 }
382 if (psection == NULL) psection=section;
383 v->name=(char *)OPENSSL_malloc(strlen(pname)+1);
384 v->value=NULL;
385 if (v->name == NULL)
386 {
387 CONFerr(CONF_F_DEF_LOAD_BIO,
388 ERR_R_MALLOC_FAILURE);
389 goto err;
390 }
391 BUF_strlcpy(v->name,pname,strlen(pname)+1);

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_def.c 7

392 if (!str_copy(conf,psection,&(v->value),start)) goto err

394 if (strcmp(psection,section) != 0)
395 {
396 if ((tv=_CONF_get_section(conf,psection))
397 == NULL)
398 tv=_CONF_new_section(conf,psection);
399 if (tv == NULL)
400 {
401 CONFerr(CONF_F_DEF_LOAD_BIO,
402 CONF_R_UNABLE_TO_CREATE_NEW_SECTION);
403 goto err;
404 }
405 }
406 else
407 tv=sv;
408 #if 1
409 if (_CONF_add_string(conf, tv, v) == 0)
410 {
411 CONFerr(CONF_F_DEF_LOAD_BIO,
412 ERR_R_MALLOC_FAILURE);
413 goto err;
414 }
415 #else
416 v->section=tv->section;
417 if (!sk_CONF_VALUE_push(ts,v))
418 {
419 CONFerr(CONF_F_DEF_LOAD_BIO,
420 ERR_R_MALLOC_FAILURE);
421 goto err;
422 }
423 vv=(CONF_VALUE *)lh_insert(conf->data,v);
424 if (vv != NULL)
425 {
426 sk_CONF_VALUE_delete_ptr(ts,vv);
427 OPENSSL_free(vv->name);
428 OPENSSL_free(vv->value);
429 OPENSSL_free(vv);
430 }
431 #endif
432 v=NULL;
433 }
434 }
435 if (buff != NULL) BUF_MEM_free(buff);
436 if (section != NULL) OPENSSL_free(section);
437 return(1);
438 err:
439 if (buff != NULL) BUF_MEM_free(buff);
440 if (section != NULL) OPENSSL_free(section);
441 if (line != NULL) *line=eline;
442 BIO_snprintf(btmp,sizeof btmp,"%ld",eline);
443 ERR_add_error_data(2,"line ",btmp);
444 if ((h != conf->data) && (conf->data != NULL))
445 {
446 CONF_free(conf->data);
447 conf->data=NULL;
448 }
449 if (v != NULL)
450 {
451 if (v->name != NULL) OPENSSL_free(v->name);
452 if (v->value != NULL) OPENSSL_free(v->value);
453 if (v != NULL) OPENSSL_free(v);
454 }
455 return(0);
456 }

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_def.c 8

458 static void clear_comments(CONF *conf, char *p)
459 {
460 for (;;)
461 {
462 if (IS_FCOMMENT(conf,*p))
463 {
464 *p=’\0’;
465 return;
466 }
467 if (!IS_WS(conf,*p))
468 {
469 break;
470 }
471 p++;
472 }

474 for (;;)
475 {
476 if (IS_COMMENT(conf,*p))
477 {
478 *p=’\0’;
479 return;
480 }
481 if (IS_DQUOTE(conf,*p))
482 {
483 p=scan_dquote(conf, p);
484 continue;
485 }
486 if (IS_QUOTE(conf,*p))
487 {
488 p=scan_quote(conf, p);
489 continue;
490 }
491 if (IS_ESC(conf,*p))
492 {
493 p=scan_esc(conf,p);
494 continue;
495 }
496 if (IS_EOF(conf,*p))
497 return;
498 else
499 p++;
500 }
501 }

503 static int str_copy(CONF *conf, char *section, char **pto, char *from)
504 {
505 int q,r,rr=0,to=0,len=0;
506 char *s,*e,*rp,*p,*rrp,*np,*cp,v;
507 BUF_MEM *buf;

509 if ((buf=BUF_MEM_new()) == NULL) return(0);

511 len=strlen(from)+1;
512 if (!BUF_MEM_grow(buf,len)) goto err;

514 for (;;)
515 {
516 if (IS_QUOTE(conf,*from))
517 {
518 q= *from;
519 from++;
520 while (!IS_EOF(conf,*from) && (*from != q))
521 {
522 if (IS_ESC(conf,*from))
523 {

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_def.c 9

524 from++;
525 if (IS_EOF(conf,*from)) break;
526 }
527 buf->data[to++]= *(from++);
528 }
529 if (*from == q) from++;
530 }
531 else if (IS_DQUOTE(conf,*from))
532 {
533 q= *from;
534 from++;
535 while (!IS_EOF(conf,*from))
536 {
537 if (*from == q)
538 {
539 if (*(from+1) == q)
540 {
541 from++;
542 }
543 else
544 {
545 break;
546 }
547 }
548 buf->data[to++]= *(from++);
549 }
550 if (*from == q) from++;
551 }
552 else if (IS_ESC(conf,*from))
553 {
554 from++;
555 v= *(from++);
556 if (IS_EOF(conf,v)) break;
557 else if (v == ’r’) v=’\r’;
558 else if (v == ’n’) v=’\n’;
559 else if (v == ’b’) v=’\b’;
560 else if (v == ’t’) v=’\t’;
561 buf->data[to++]= v;
562 }
563 else if (IS_EOF(conf,*from))
564 break;
565 else if (*from == ’$’)
566 {
567 /* try to expand it */
568 rrp=NULL;
569 s= &(from[1]);
570 if (*s == ’{’)
571 q=’}’;
572 else if (*s == ’(’)
573 q=’)’;
574 else q=0;

576 if (q) s++;
577 cp=section;
578 e=np=s;
579 while (IS_ALPHA_NUMERIC(conf,*e))
580 e++;
581 if ((e[0] == ’:’) && (e[1] == ’:’))
582 {
583 cp=np;
584 rrp=e;
585 rr= *e;
586 *rrp=’\0’;
587 e+=2;
588 np=e;
589 while (IS_ALPHA_NUMERIC(conf,*e))

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_def.c 10

590 e++;
591 }
592 r= *e;
593 *e=’\0’;
594 rp=e;
595 if (q)
596 {
597 if (r != q)
598 {
599 CONFerr(CONF_F_STR_COPY,CONF_R_NO_CLOSE_
600 goto err;
601 }
602 e++;
603 }
604 /* So at this point we have
605 * np which is the start of the name string which is
606 * ’\0’ terminated.
607 * cp which is the start of the section string which is
608 * ’\0’ terminated.
609 * e is the ’next point after’.
610 * r and rr are the chars replaced by the ’\0’
611 * rp and rrp is where ’r’ and ’rr’ came from.
612 */
613 p=_CONF_get_string(conf,cp,np);
614 if (rrp != NULL) *rrp=rr;
615 *rp=r;
616 if (p == NULL)
617 {
618 CONFerr(CONF_F_STR_COPY,CONF_R_VARIABLE_HAS_NO_V
619 goto err;
620 }
621 BUF_MEM_grow_clean(buf,(strlen(p)+buf->length-(e-from)))
622 while (*p)
623 buf->data[to++]= *(p++);

625 /* Since we change the pointer ’from’, we also have
626 to change the perceived length of the string it
627 points at. /RL */
628 len -= e-from;
629 from=e;

631 /* In case there were no braces or parenthesis around
632 the variable reference, we have to put back the
633 character that was replaced with a ’\0’. /RL */
634 *rp = r;
635 }
636 else
637 buf->data[to++]= *(from++);
638 }
639 buf->data[to]=’\0’;
640 if (*pto != NULL) OPENSSL_free(*pto);
641 *pto=buf->data;
642 OPENSSL_free(buf);
643 return(1);
644 err:
645 if (buf != NULL) BUF_MEM_free(buf);
646 return(0);
647 }

649 static char *eat_ws(CONF *conf, char *p)
650 {
651 while (IS_WS(conf,*p) && (!IS_EOF(conf,*p)))
652 p++;
653 return(p);
654 }

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_def.c 11

656 static char *eat_alpha_numeric(CONF *conf, char *p)
657 {
658 for (;;)
659 {
660 if (IS_ESC(conf,*p))
661 {
662 p=scan_esc(conf,p);
663 continue;
664 }
665 if (!IS_ALPHA_NUMERIC_PUNCT(conf,*p))
666 return(p);
667 p++;
668 }
669 }

671 static char *scan_quote(CONF *conf, char *p)
672 {
673 int q= *p;

675 p++;
676 while (!(IS_EOF(conf,*p)) && (*p != q))
677 {
678 if (IS_ESC(conf,*p))
679 {
680 p++;
681 if (IS_EOF(conf,*p)) return(p);
682 }
683 p++;
684 }
685 if (*p == q) p++;
686 return(p);
687 }

690 static char *scan_dquote(CONF *conf, char *p)
691 {
692 int q= *p;

694 p++;
695 while (!(IS_EOF(conf,*p)))
696 {
697 if (*p == q)
698 {
699 if (*(p+1) == q)
700 {
701 p++;
702 }
703 else
704 {
705 break;
706 }
707 }
708 p++;
709 }
710 if (*p == q) p++;
711 return(p);
712 }

714 static void dump_value_doall_arg(CONF_VALUE *a, BIO *out)
715 {
716 if (a->name)
717 BIO_printf(out, "[%s] %s=%s\n", a->section, a->name, a->value);
718 else
719 BIO_printf(out, "[[%s]]\n", a->section);
720 }

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_def.c 12

722 static IMPLEMENT_LHASH_DOALL_ARG_FN(dump_value, CONF_VALUE, BIO)

724 static int def_dump(const CONF *conf, BIO *out)
725 {
726 lh_CONF_VALUE_doall_arg(conf->data, LHASH_DOALL_ARG_FN(dump_value),
727 BIO, out);
728 return 1;
729 }

731 static int def_is_number(const CONF *conf, char c)
732 {
733 return IS_NUMBER(conf,c);
734 }

736 static int def_to_int(const CONF *conf, char c)
737 {
738 return c - ’0’;
739 }

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_err.c 1

**
 5638 Fri May 30 18:31:41 2014
new/usr/src/lib/openssl/libsunw_crypto/conf/conf_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/conf/conf_err.c */
2 /* ==
3 * Copyright (c) 1999-2007 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/conf.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_CONF,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_CONF,0,reason)

71 static ERR_STRING_DATA CONF_str_functs[]=
72 {
73 {ERR_FUNC(CONF_F_CONF_DUMP_FP), "CONF_dump_fp"},
74 {ERR_FUNC(CONF_F_CONF_LOAD), "CONF_load"},
75 {ERR_FUNC(CONF_F_CONF_LOAD_BIO), "CONF_load_bio"},
76 {ERR_FUNC(CONF_F_CONF_LOAD_FP), "CONF_load_fp"},
77 {ERR_FUNC(CONF_F_CONF_MODULES_LOAD), "CONF_modules_load"},
78 {ERR_FUNC(CONF_F_CONF_PARSE_LIST), "CONF_parse_list"},
79 {ERR_FUNC(CONF_F_DEF_LOAD), "DEF_LOAD"},
80 {ERR_FUNC(CONF_F_DEF_LOAD_BIO), "DEF_LOAD_BIO"},
81 {ERR_FUNC(CONF_F_MODULE_INIT), "MODULE_INIT"},
82 {ERR_FUNC(CONF_F_MODULE_LOAD_DSO), "MODULE_LOAD_DSO"},
83 {ERR_FUNC(CONF_F_MODULE_RUN), "MODULE_RUN"},
84 {ERR_FUNC(CONF_F_NCONF_DUMP_BIO), "NCONF_dump_bio"},
85 {ERR_FUNC(CONF_F_NCONF_DUMP_FP), "NCONF_dump_fp"},
86 {ERR_FUNC(CONF_F_NCONF_GET_NUMBER), "NCONF_get_number"},
87 {ERR_FUNC(CONF_F_NCONF_GET_NUMBER_E), "NCONF_get_number_e"},
88 {ERR_FUNC(CONF_F_NCONF_GET_SECTION), "NCONF_get_section"},
89 {ERR_FUNC(CONF_F_NCONF_GET_STRING), "NCONF_get_string"},
90 {ERR_FUNC(CONF_F_NCONF_LOAD), "NCONF_load"},
91 {ERR_FUNC(CONF_F_NCONF_LOAD_BIO), "NCONF_load_bio"},
92 {ERR_FUNC(CONF_F_NCONF_LOAD_FP), "NCONF_load_fp"},
93 {ERR_FUNC(CONF_F_NCONF_NEW), "NCONF_new"},
94 {ERR_FUNC(CONF_F_STR_COPY), "STR_COPY"},
95 {0,NULL}
96 };

98 static ERR_STRING_DATA CONF_str_reasons[]=
99 {
100 {ERR_REASON(CONF_R_ERROR_LOADING_DSO) ,"error loading dso"},
101 {ERR_REASON(CONF_R_LIST_CANNOT_BE_NULL) ,"list cannot be null"},
102 {ERR_REASON(CONF_R_MISSING_CLOSE_SQUARE_BRACKET),"missing close square bracket"}
103 {ERR_REASON(CONF_R_MISSING_EQUAL_SIGN) ,"missing equal sign"},
104 {ERR_REASON(CONF_R_MISSING_FINISH_FUNCTION),"missing finish function"},
105 {ERR_REASON(CONF_R_MISSING_INIT_FUNCTION),"missing init function"},
106 {ERR_REASON(CONF_R_MODULE_INITIALIZATION_ERROR),"module initialization error"},
107 {ERR_REASON(CONF_R_NO_CLOSE_BRACE) ,"no close brace"},
108 {ERR_REASON(CONF_R_NO_CONF) ,"no conf"},
109 {ERR_REASON(CONF_R_NO_CONF_OR_ENVIRONMENT_VARIABLE),"no conf or environment vari
110 {ERR_REASON(CONF_R_NO_SECTION) ,"no section"},
111 {ERR_REASON(CONF_R_NO_SUCH_FILE) ,"no such file"},
112 {ERR_REASON(CONF_R_NO_VALUE) ,"no value"},
113 {ERR_REASON(CONF_R_UNABLE_TO_CREATE_NEW_SECTION),"unable to create new section"}
114 {ERR_REASON(CONF_R_UNKNOWN_MODULE_NAME) ,"unknown module name"},
115 {ERR_REASON(CONF_R_VARIABLE_HAS_NO_VALUE),"variable has no value"},
116 {0,NULL}
117 };

119 #endif

121 void ERR_load_CONF_strings(void)
122 {
123 #ifndef OPENSSL_NO_ERR

125 if (ERR_func_error_string(CONF_str_functs[0].error) == NULL)
126 {
127 ERR_load_strings(0,CONF_str_functs);

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_err.c 3

128 ERR_load_strings(0,CONF_str_reasons);
129 }
130 #endif
131 }

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_lib.c 1

**
 9523 Fri May 30 18:31:41 2014
new/usr/src/lib/openssl/libsunw_crypto/conf/conf_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* conf_lib.c */
2 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <openssl/crypto.h>
61 #include <openssl/err.h>

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_lib.c 2

62 #include <openssl/conf.h>
63 #include <openssl/conf_api.h>
64 #include <openssl/lhash.h>

66 const char CONF_version[]="CONF" OPENSSL_VERSION_PTEXT;

68 static CONF_METHOD *default_CONF_method=NULL;

70 /* Init a ’CONF’ structure from an old LHASH */

72 void CONF_set_nconf(CONF *conf, LHASH_OF(CONF_VALUE) *hash)
73 {
74 if (default_CONF_method == NULL)
75 default_CONF_method = NCONF_default();

77 default_CONF_method->init(conf);
78 conf->data = hash;
79 }

81 /* The following section contains the "CONF classic" functions,
82 rewritten in terms of the new CONF interface. */

84 int CONF_set_default_method(CONF_METHOD *meth)
85 {
86 default_CONF_method = meth;
87 return 1;
88 }

90 LHASH_OF(CONF_VALUE) *CONF_load(LHASH_OF(CONF_VALUE) *conf, const char *file,
91 long *eline)
92 {
93 LHASH_OF(CONF_VALUE) *ltmp;
94 BIO *in=NULL;

96 #ifdef OPENSSL_SYS_VMS
97 in=BIO_new_file(file, "r");
98 #else
99 in=BIO_new_file(file, "rb");
100 #endif
101 if (in == NULL)
102 {
103 CONFerr(CONF_F_CONF_LOAD,ERR_R_SYS_LIB);
104 return NULL;
105 }

107 ltmp = CONF_load_bio(conf, in, eline);
108 BIO_free(in);

110 return ltmp;
111 }

113 #ifndef OPENSSL_NO_FP_API
114 LHASH_OF(CONF_VALUE) *CONF_load_fp(LHASH_OF(CONF_VALUE) *conf, FILE *fp,
115 long *eline)
116 {
117 BIO *btmp;
118 LHASH_OF(CONF_VALUE) *ltmp;
119 if(!(btmp = BIO_new_fp(fp, BIO_NOCLOSE))) {
120 CONFerr(CONF_F_CONF_LOAD_FP,ERR_R_BUF_LIB);
121 return NULL;
122 }
123 ltmp = CONF_load_bio(conf, btmp, eline);
124 BIO_free(btmp);
125 return ltmp;
126 }
127 #endif

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_lib.c 3

129 LHASH_OF(CONF_VALUE) *CONF_load_bio(LHASH_OF(CONF_VALUE) *conf, BIO *bp,
130 long *eline)
131 {
132 CONF ctmp;
133 int ret;

135 CONF_set_nconf(&ctmp, conf);

137 ret = NCONF_load_bio(&ctmp, bp, eline);
138 if (ret)
139 return ctmp.data;
140 return NULL;
141 }

143 STACK_OF(CONF_VALUE) *CONF_get_section(LHASH_OF(CONF_VALUE) *conf,
144 const char *section)
145 {
146 if (conf == NULL)
147 {
148 return NULL;
149 }
150 else
151 {
152 CONF ctmp;
153 CONF_set_nconf(&ctmp, conf);
154 return NCONF_get_section(&ctmp, section);
155 }
156 }

158 char *CONF_get_string(LHASH_OF(CONF_VALUE) *conf,const char *group,
159 const char *name)
160 {
161 if (conf == NULL)
162 {
163 return NCONF_get_string(NULL, group, name);
164 }
165 else
166 {
167 CONF ctmp;
168 CONF_set_nconf(&ctmp, conf);
169 return NCONF_get_string(&ctmp, group, name);
170 }
171 }

173 long CONF_get_number(LHASH_OF(CONF_VALUE) *conf,const char *group,
174 const char *name)
175 {
176 int status;
177 long result = 0;

179 if (conf == NULL)
180 {
181 status = NCONF_get_number_e(NULL, group, name, &result);
182 }
183 else
184 {
185 CONF ctmp;
186 CONF_set_nconf(&ctmp, conf);
187 status = NCONF_get_number_e(&ctmp, group, name, &result);
188 }

190 if (status == 0)
191 {
192 /* This function does not believe in errors... */
193 ERR_clear_error();

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_lib.c 4

194 }
195 return result;
196 }

198 void CONF_free(LHASH_OF(CONF_VALUE) *conf)
199 {
200 CONF ctmp;
201 CONF_set_nconf(&ctmp, conf);
202 NCONF_free_data(&ctmp);
203 }

205 #ifndef OPENSSL_NO_FP_API
206 int CONF_dump_fp(LHASH_OF(CONF_VALUE) *conf, FILE *out)
207 {
208 BIO *btmp;
209 int ret;

211 if(!(btmp = BIO_new_fp(out, BIO_NOCLOSE))) {
212 CONFerr(CONF_F_CONF_DUMP_FP,ERR_R_BUF_LIB);
213 return 0;
214 }
215 ret = CONF_dump_bio(conf, btmp);
216 BIO_free(btmp);
217 return ret;
218 }
219 #endif

221 int CONF_dump_bio(LHASH_OF(CONF_VALUE) *conf, BIO *out)
222 {
223 CONF ctmp;
224 CONF_set_nconf(&ctmp, conf);
225 return NCONF_dump_bio(&ctmp, out);
226 }

228 /* The following section contains the "New CONF" functions. They are
229 completely centralised around a new CONF structure that may contain
230 basically anything, but at least a method pointer and a table of data.
231 These functions are also written in terms of the bridge functions used
232 by the "CONF classic" functions, for consistency. */

234 CONF *NCONF_new(CONF_METHOD *meth)
235 {
236 CONF *ret;

238 if (meth == NULL)
239 meth = NCONF_default();

241 ret = meth->create(meth);
242 if (ret == NULL)
243 {
244 CONFerr(CONF_F_NCONF_NEW,ERR_R_MALLOC_FAILURE);
245 return(NULL);
246 }

248 return ret;
249 }

251 void NCONF_free(CONF *conf)
252 {
253 if (conf == NULL)
254 return;
255 conf->meth->destroy(conf);
256 }

258 void NCONF_free_data(CONF *conf)
259 {

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_lib.c 5

260 if (conf == NULL)
261 return;
262 conf->meth->destroy_data(conf);
263 }

265 int NCONF_load(CONF *conf, const char *file, long *eline)
266 {
267 if (conf == NULL)
268 {
269 CONFerr(CONF_F_NCONF_LOAD,CONF_R_NO_CONF);
270 return 0;
271 }

273 return conf->meth->load(conf, file, eline);
274 }

276 #ifndef OPENSSL_NO_FP_API
277 int NCONF_load_fp(CONF *conf, FILE *fp,long *eline)
278 {
279 BIO *btmp;
280 int ret;
281 if(!(btmp = BIO_new_fp(fp, BIO_NOCLOSE)))
282 {
283 CONFerr(CONF_F_NCONF_LOAD_FP,ERR_R_BUF_LIB);
284 return 0;
285 }
286 ret = NCONF_load_bio(conf, btmp, eline);
287 BIO_free(btmp);
288 return ret;
289 }
290 #endif

292 int NCONF_load_bio(CONF *conf, BIO *bp,long *eline)
293 {
294 if (conf == NULL)
295 {
296 CONFerr(CONF_F_NCONF_LOAD_BIO,CONF_R_NO_CONF);
297 return 0;
298 }

300 return conf->meth->load_bio(conf, bp, eline);
301 }

303 STACK_OF(CONF_VALUE) *NCONF_get_section(const CONF *conf,const char *section)
304 {
305 if (conf == NULL)
306 {
307 CONFerr(CONF_F_NCONF_GET_SECTION,CONF_R_NO_CONF);
308 return NULL;
309 }

311 if (section == NULL)
312 {
313 CONFerr(CONF_F_NCONF_GET_SECTION,CONF_R_NO_SECTION);
314 return NULL;
315 }

317 return _CONF_get_section_values(conf, section);
318 }

320 char *NCONF_get_string(const CONF *conf,const char *group,const char *name)
321 {
322 char *s = _CONF_get_string(conf, group, name);

324 /* Since we may get a value from an environment variable even
325 if conf is NULL, let’s check the value first */

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_lib.c 6

326 if (s) return s;

328 if (conf == NULL)
329 {
330 CONFerr(CONF_F_NCONF_GET_STRING,
331 CONF_R_NO_CONF_OR_ENVIRONMENT_VARIABLE);
332 return NULL;
333 }
334 CONFerr(CONF_F_NCONF_GET_STRING,
335 CONF_R_NO_VALUE);
336 ERR_add_error_data(4,"group=",group," name=",name);
337 return NULL;
338 }

340 int NCONF_get_number_e(const CONF *conf,const char *group,const char *name,
341 long *result)
342 {
343 char *str;

345 if (result == NULL)
346 {
347 CONFerr(CONF_F_NCONF_GET_NUMBER_E,ERR_R_PASSED_NULL_PARAMETER);
348 return 0;
349 }

351 str = NCONF_get_string(conf,group,name);

353 if (str == NULL)
354 return 0;

356 for (*result = 0;conf->meth->is_number(conf, *str);)
357 {
358 *result = (*result)*10 + conf->meth->to_int(conf, *str);
359 str++;
360 }

362 return 1;
363 }

365 #ifndef OPENSSL_NO_FP_API
366 int NCONF_dump_fp(const CONF *conf, FILE *out)
367 {
368 BIO *btmp;
369 int ret;
370 if(!(btmp = BIO_new_fp(out, BIO_NOCLOSE))) {
371 CONFerr(CONF_F_NCONF_DUMP_FP,ERR_R_BUF_LIB);
372 return 0;
373 }
374 ret = NCONF_dump_bio(conf, btmp);
375 BIO_free(btmp);
376 return ret;
377 }
378 #endif

380 int NCONF_dump_bio(const CONF *conf, BIO *out)
381 {
382 if (conf == NULL)
383 {
384 CONFerr(CONF_F_NCONF_DUMP_BIO,CONF_R_NO_CONF);
385 return 0;
386 }

388 return conf->meth->dump(conf, out);
389 }

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_lib.c 7

392 /* This function should be avoided */
393 #if 0
394 long NCONF_get_number(CONF *conf,char *group,char *name)
395 {
396 int status;
397 long ret=0;

399 status = NCONF_get_number_e(conf, group, name, &ret);
400 if (status == 0)
401 {
402 /* This function does not believe in errors... */
403 ERR_get_error();
404 }
405 return ret;
406 }
407 #endif

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_mall.c 1

**
 3191 Fri May 30 18:31:41 2014
new/usr/src/lib/openssl/libsunw_crypto/conf/conf_mall.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* conf_mall.c */
2 /* Written by Stephen Henson (steve@openssl.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <openssl/crypto.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_mall.c 2

62 #include <openssl/conf.h>
63 #include <openssl/dso.h>
64 #include <openssl/x509.h>
65 #include <openssl/asn1.h>
66 #ifndef OPENSSL_NO_ENGINE
67 #include <openssl/engine.h>
68 #endif

70 /* Load all OpenSSL builtin modules */

72 void OPENSSL_load_builtin_modules(void)
73 {
74 /* Add builtin modules here */
75 ASN1_add_oid_module();
76 #ifndef OPENSSL_NO_ENGINE
77 ENGINE_add_conf_module();
78 #endif
79 EVP_add_alg_module();
80 }

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_mod.c 1

**
 14388 Fri May 30 18:31:41 2014
new/usr/src/lib/openssl/libsunw_crypto/conf/conf_mod.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* conf_mod.c */
2 /* Written by Stephen Henson (steve@openssl.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <ctype.h>
61 #include <openssl/crypto.h>

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_mod.c 2

62 #include "cryptlib.h"
63 #include <openssl/conf.h>
64 #include <openssl/dso.h>
65 #include <openssl/x509.h>

68 #define DSO_mod_init_name "OPENSSL_init"
69 #define DSO_mod_finish_name "OPENSSL_finish"

72 /* This structure contains a data about supported modules.
73 * entries in this table correspond to either dynamic or
74 * static modules.
75 */

77 struct conf_module_st
78 {
79 /* DSO of this module or NULL if static */
80 DSO *dso;
81 /* Name of the module */
82 char *name;
83 /* Init function */
84 conf_init_func *init;
85 /* Finish function */
86 conf_finish_func *finish;
87 /* Number of successfully initialized modules */
88 int links;
89 void *usr_data;
90 };

93 /* This structure contains information about modules that have been
94 * successfully initialized. There may be more than one entry for a
95 * given module.
96 */

98 struct conf_imodule_st
99 {
100 CONF_MODULE *pmod;
101 char *name;
102 char *value;
103 unsigned long flags;
104 void *usr_data;
105 };

107 static STACK_OF(CONF_MODULE) *supported_modules = NULL;
108 static STACK_OF(CONF_IMODULE) *initialized_modules = NULL;

110 static void module_free(CONF_MODULE *md);
111 static void module_finish(CONF_IMODULE *imod);
112 static int module_run(const CONF *cnf, char *name, char *value,
113 unsigned long flags);
114 static CONF_MODULE *module_add(DSO *dso, const char *name,
115 conf_init_func *ifunc, conf_finish_func *ffunc);
116 static CONF_MODULE *module_find(char *name);
117 static int module_init(CONF_MODULE *pmod, char *name, char *value,
118 const CONF *cnf);
119 static CONF_MODULE *module_load_dso(const CONF *cnf, char *name, char *value,
120 unsigned

122 /* Main function: load modules from a CONF structure */

124 int CONF_modules_load(const CONF *cnf, const char *appname,
125 unsigned long flags)
126 {
127 STACK_OF(CONF_VALUE) *values;

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_mod.c 3

128 CONF_VALUE *vl;
129 char *vsection = NULL;

131 int ret, i;

133 if (!cnf)
134 return 1;

136 if (appname)
137 vsection = NCONF_get_string(cnf, NULL, appname);

139 if (!appname || (!vsection && (flags & CONF_MFLAGS_DEFAULT_SECTION)))
140 vsection = NCONF_get_string(cnf, NULL, "openssl_conf");

142 if (!vsection)
143 {
144 ERR_clear_error();
145 return 1;
146 }

148 values = NCONF_get_section(cnf, vsection);

150 if (!values)
151 return 0;

153 for (i = 0; i < sk_CONF_VALUE_num(values); i++)
154 {
155 vl = sk_CONF_VALUE_value(values, i);
156 ret = module_run(cnf, vl->name, vl->value, flags);
157 if (ret <= 0)
158 if(!(flags & CONF_MFLAGS_IGNORE_ERRORS))
159 return ret;
160 }

162 return 1;

164 }

166 int CONF_modules_load_file(const char *filename, const char *appname,
167 unsigned long flags)
168 {
169 char *file = NULL;
170 CONF *conf = NULL;
171 int ret = 0;
172 conf = NCONF_new(NULL);
173 if (!conf)
174 goto err;

176 if (filename == NULL)
177 {
178 file = CONF_get1_default_config_file();
179 if (!file)
180 goto err;
181 }
182 else
183 file = (char *)filename;

185 if (NCONF_load(conf, file, NULL) <= 0)
186 {
187 if ((flags & CONF_MFLAGS_IGNORE_MISSING_FILE) &&
188 (ERR_GET_REASON(ERR_peek_last_error()) == CONF_R_NO_SUCH_FILE)
189 {
190 ERR_clear_error();
191 ret = 1;
192 }
193 goto err;

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_mod.c 4

194 }

196 ret = CONF_modules_load(conf, appname, flags);

198 err:
199 if (filename == NULL)
200 OPENSSL_free(file);
201 NCONF_free(conf);

203 return ret;
204 }

206 static int module_run(const CONF *cnf, char *name, char *value,
207 unsigned long flags)
208 {
209 CONF_MODULE *md;
210 int ret;

212 md = module_find(name);

214 /* Module not found: try to load DSO */
215 if (!md && !(flags & CONF_MFLAGS_NO_DSO))
216 md = module_load_dso(cnf, name, value, flags);

218 if (!md)
219 {
220 if (!(flags & CONF_MFLAGS_SILENT))
221 {
222 CONFerr(CONF_F_MODULE_RUN, CONF_R_UNKNOWN_MODULE_NAME);
223 ERR_add_error_data(2, "module=", name);
224 }
225 return -1;
226 }

228 ret = module_init(md, name, value, cnf);

230 if (ret <= 0)
231 {
232 if (!(flags & CONF_MFLAGS_SILENT))
233 {
234 char rcode[DECIMAL_SIZE(ret)+1];
235 CONFerr(CONF_F_MODULE_RUN, CONF_R_MODULE_INITIALIZATION_
236 BIO_snprintf(rcode, sizeof rcode, "%-8d", ret);
237 ERR_add_error_data(6, "module=", name, ", value=", value
238 }
239 }

241 return ret;
242 }

244 /* Load a module from a DSO */
245 static CONF_MODULE *module_load_dso(const CONF *cnf, char *name, char *value,
246 unsigned long flags)
247 {
248 DSO *dso = NULL;
249 conf_init_func *ifunc;
250 conf_finish_func *ffunc;
251 char *path = NULL;
252 int errcode = 0;
253 CONF_MODULE *md;
254 /* Look for alternative path in module section */
255 path = NCONF_get_string(cnf, value, "path");
256 if (!path)
257 {
258 ERR_clear_error();
259 path = name;

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_mod.c 5

260 }
261 dso = DSO_load(NULL, path, NULL, 0);
262 if (!dso)
263 {
264 errcode = CONF_R_ERROR_LOADING_DSO;
265 goto err;
266 }
267 ifunc = (conf_init_func *)DSO_bind_func(dso, DSO_mod_init_name);
268 if (!ifunc)
269 {
270 errcode = CONF_R_MISSING_INIT_FUNCTION;
271 goto err;
272 }
273 ffunc = (conf_finish_func *)DSO_bind_func(dso, DSO_mod_finish_name);
274 /* All OK, add module */
275 md = module_add(dso, name, ifunc, ffunc);

277 if (!md)
278 goto err;

280 return md;

282 err:
283 if (dso)
284 DSO_free(dso);
285 CONFerr(CONF_F_MODULE_LOAD_DSO, errcode);
286 ERR_add_error_data(4, "module=", name, ", path=", path);
287 return NULL;
288 }

290 /* add module to list */
291 static CONF_MODULE *module_add(DSO *dso, const char *name,
292 conf_init_func *ifunc, conf_finish_func *ffunc)
293 {
294 CONF_MODULE *tmod = NULL;
295 if (supported_modules == NULL)
296 supported_modules = sk_CONF_MODULE_new_null();
297 if (supported_modules == NULL)
298 return NULL;
299 tmod = OPENSSL_malloc(sizeof(CONF_MODULE));
300 if (tmod == NULL)
301 return NULL;

303 tmod->dso = dso;
304 tmod->name = BUF_strdup(name);
305 tmod->init = ifunc;
306 tmod->finish = ffunc;
307 tmod->links = 0;

309 if (!sk_CONF_MODULE_push(supported_modules, tmod))
310 {
311 OPENSSL_free(tmod);
312 return NULL;
313 }

315 return tmod;
316 }

318 /* Find a module from the list. We allow module names of the
319 * form modname.XXXX to just search for modname to allow the
320 * same module to be initialized more than once.
321 */

323 static CONF_MODULE *module_find(char *name)
324 {
325 CONF_MODULE *tmod;

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_mod.c 6

326 int i, nchar;
327 char *p;
328 p = strrchr(name, ’.’);

330 if (p)
331 nchar = p - name;
332 else
333 nchar = strlen(name);

335 for (i = 0; i < sk_CONF_MODULE_num(supported_modules); i++)
336 {
337 tmod = sk_CONF_MODULE_value(supported_modules, i);
338 if (!strncmp(tmod->name, name, nchar))
339 return tmod;
340 }

342 return NULL;

344 }

346 /* initialize a module */
347 static int module_init(CONF_MODULE *pmod, char *name, char *value,
348 const CONF *cnf)
349 {
350 int ret = 1;
351 int init_called = 0;
352 CONF_IMODULE *imod = NULL;

354 /* Otherwise add initialized module to list */
355 imod = OPENSSL_malloc(sizeof(CONF_IMODULE));
356 if (!imod)
357 goto err;

359 imod->pmod = pmod;
360 imod->name = BUF_strdup(name);
361 imod->value = BUF_strdup(value);
362 imod->usr_data = NULL;

364 if (!imod->name || !imod->value)
365 goto memerr;

367 /* Try to initialize module */
368 if(pmod->init)
369 {
370 ret = pmod->init(imod, cnf);
371 init_called = 1;
372 /* Error occurred, exit */
373 if (ret <= 0)
374 goto err;
375 }

377 if (initialized_modules == NULL)
378 {
379 initialized_modules = sk_CONF_IMODULE_new_null();
380 if (!initialized_modules)
381 {
382 CONFerr(CONF_F_MODULE_INIT, ERR_R_MALLOC_FAILURE);
383 goto err;
384 }
385 }

387 if (!sk_CONF_IMODULE_push(initialized_modules, imod))
388 {
389 CONFerr(CONF_F_MODULE_INIT, ERR_R_MALLOC_FAILURE);
390 goto err;
391 }

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_mod.c 7

393 pmod->links++;

395 return ret;

397 err:

399 /* We’ve started the module so we’d better finish it */
400 if (pmod->finish && init_called)
401 pmod->finish(imod);

403 memerr:
404 if (imod)
405 {
406 if (imod->name)
407 OPENSSL_free(imod->name);
408 if (imod->value)
409 OPENSSL_free(imod->value);
410 OPENSSL_free(imod);
411 }

413 return -1;

415 }

417 /* Unload any dynamic modules that have a link count of zero:
418 * i.e. have no active initialized modules. If ’all’ is set
419 * then all modules are unloaded including static ones.
420 */

422 void CONF_modules_unload(int all)
423 {
424 int i;
425 CONF_MODULE *md;
426 CONF_modules_finish();
427 /* unload modules in reverse order */
428 for (i = sk_CONF_MODULE_num(supported_modules) - 1; i >= 0; i--)
429 {
430 md = sk_CONF_MODULE_value(supported_modules, i);
431 /* If static or in use and ’all’ not set ignore it */
432 if (((md->links > 0) || !md->dso) && !all)
433 continue;
434 /* Since we’re working in reverse this is OK */
435 (void)sk_CONF_MODULE_delete(supported_modules, i);
436 module_free(md);
437 }
438 if (sk_CONF_MODULE_num(supported_modules) == 0)
439 {
440 sk_CONF_MODULE_free(supported_modules);
441 supported_modules = NULL;
442 }
443 }

445 /* unload a single module */
446 static void module_free(CONF_MODULE *md)
447 {
448 if (md->dso)
449 DSO_free(md->dso);
450 OPENSSL_free(md->name);
451 OPENSSL_free(md);
452 }

454 /* finish and free up all modules instances */

456 void CONF_modules_finish(void)
457 {

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_mod.c 8

458 CONF_IMODULE *imod;
459 while (sk_CONF_IMODULE_num(initialized_modules) > 0)
460 {
461 imod = sk_CONF_IMODULE_pop(initialized_modules);
462 module_finish(imod);
463 }
464 sk_CONF_IMODULE_free(initialized_modules);
465 initialized_modules = NULL;
466 }

468 /* finish a module instance */

470 static void module_finish(CONF_IMODULE *imod)
471 {
472 if (imod->pmod->finish)
473 imod->pmod->finish(imod);
474 imod->pmod->links--;
475 OPENSSL_free(imod->name);
476 OPENSSL_free(imod->value);
477 OPENSSL_free(imod);
478 }

480 /* Add a static module to OpenSSL */

482 int CONF_module_add(const char *name, conf_init_func *ifunc,
483 conf_finish_func *ffunc)
484 {
485 if (module_add(NULL, name, ifunc, ffunc))
486 return 1;
487 else
488 return 0;
489 }

491 void CONF_modules_free(void)
492 {
493 CONF_modules_finish();
494 CONF_modules_unload(1);
495 }

497 /* Utility functions */

499 const char *CONF_imodule_get_name(const CONF_IMODULE *md)
500 {
501 return md->name;
502 }

504 const char *CONF_imodule_get_value(const CONF_IMODULE *md)
505 {
506 return md->value;
507 }

509 void *CONF_imodule_get_usr_data(const CONF_IMODULE *md)
510 {
511 return md->usr_data;
512 }

514 void CONF_imodule_set_usr_data(CONF_IMODULE *md, void *usr_data)
515 {
516 md->usr_data = usr_data;
517 }

519 CONF_MODULE *CONF_imodule_get_module(const CONF_IMODULE *md)
520 {
521 return md->pmod;
522 }

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_mod.c 9

524 unsigned long CONF_imodule_get_flags(const CONF_IMODULE *md)
525 {
526 return md->flags;
527 }

529 void CONF_imodule_set_flags(CONF_IMODULE *md, unsigned long flags)
530 {
531 md->flags = flags;
532 }

534 void *CONF_module_get_usr_data(CONF_MODULE *pmod)
535 {
536 return pmod->usr_data;
537 }

539 void CONF_module_set_usr_data(CONF_MODULE *pmod, void *usr_data)
540 {
541 pmod->usr_data = usr_data;
542 }

544 /* Return default config file name */

546 char *CONF_get1_default_config_file(void)
547 {
548 char *file;
549 int len;

551 file = getenv("OPENSSL_CONF");
552 if (file)
553 return BUF_strdup(file);

555 len = strlen(X509_get_default_cert_area());
556 #ifndef OPENSSL_SYS_VMS
557 len++;
558 #endif
559 len += strlen(OPENSSL_CONF);

561 file = OPENSSL_malloc(len + 1);

563 if (!file)
564 return NULL;
565 BUF_strlcpy(file,X509_get_default_cert_area(),len + 1);
566 #ifndef OPENSSL_SYS_VMS
567 BUF_strlcat(file,"/",len + 1);
568 #endif
569 BUF_strlcat(file,OPENSSL_CONF,len + 1);

571 return file;
572 }

574 /* This function takes a list separated by ’sep’ and calls the
575 * callback function giving the start and length of each member
576 * optionally stripping leading and trailing whitespace. This can
577 * be used to parse comma separated lists for example.
578 */

580 int CONF_parse_list(const char *list_, int sep, int nospc,
581 int (*list_cb)(const char *elem, int len, void *usr), void *arg)
582 {
583 int ret;
584 const char *lstart, *tmpend, *p;

586 if(list_ == NULL)
587 {
588 CONFerr(CONF_F_CONF_PARSE_LIST, CONF_R_LIST_CANNOT_BE_NULL);
589 return 0;

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_mod.c 10

590 }

592 lstart = list_;
593 for(;;)
594 {
595 if (nospc)
596 {
597 while(*lstart && isspace((unsigned char)*lstart))
598 lstart++;
599 }
600 p = strchr(lstart, sep);
601 if (p == lstart || !*lstart)
602 ret = list_cb(NULL, 0, arg);
603 else
604 {
605 if (p)
606 tmpend = p - 1;
607 else
608 tmpend = lstart + strlen(lstart) - 1;
609 if (nospc)
610 {
611 while(isspace((unsigned char)*tmpend))
612 tmpend--;
613 }
614 ret = list_cb(lstart, tmpend - lstart + 1, arg);
615 }
616 if (ret <= 0)
617 return ret;
618 if (p == NULL)
619 return 1;
620 lstart = p + 1;
621 }
622 }

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_sap.c 1

**
 3901 Fri May 30 18:31:41 2014
new/usr/src/lib/openssl/libsunw_crypto/conf/conf_sap.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* conf_sap.c */
2 /* Written by Stephen Henson (steve@openssl.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <openssl/crypto.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/conf/conf_sap.c 2

62 #include <openssl/conf.h>
63 #include <openssl/dso.h>
64 #include <openssl/x509.h>
65 #include <openssl/asn1.h>
66 #ifndef OPENSSL_NO_ENGINE
67 #include <openssl/engine.h>
68 #endif

70 /* This is the automatic configuration loader: it is called automatically by
71 * OpenSSL when any of a number of standard initialisation functions are called,
72 * unless this is overridden by calling OPENSSL_no_config()
73 */

75 static int openssl_configured = 0;

77 void OPENSSL_config(const char *config_name)
78 {
79 if (openssl_configured)
80 return;

82 OPENSSL_load_builtin_modules();
83 #ifndef OPENSSL_NO_ENGINE
84 /* Need to load ENGINEs */
85 ENGINE_load_builtin_engines();
86 #endif
87 /* Add others here? */

90 ERR_clear_error();
91 if (CONF_modules_load_file(NULL, config_name,
92 CONF_MFLAGS_DEFAULT_SECTION|CONF_MFLAGS_IGNORE_MISSING_FILE) <= 0)
93 {
94 BIO *bio_err;
95 ERR_load_crypto_strings();
96 if ((bio_err=BIO_new_fp(stderr, BIO_NOCLOSE)) != NULL)
97 {
98 BIO_printf(bio_err,"Auto configuration failed\n");
99 ERR_print_errors(bio_err);
100 BIO_free(bio_err);
101 }
102 exit(1);
103 }

105 return;
106 }

108 void OPENSSL_no_config()
109 {
110 openssl_configured = 1;
111 }

new/usr/src/lib/openssl/libsunw_crypto/cpt_err.c 1

**
 4215 Fri May 30 18:31:41 2014
new/usr/src/lib/openssl/libsunw_crypto/cpt_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cpt_err.c */
2 /* ==
3 * Copyright (c) 1999-2011 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/cpt_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/crypto.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_CRYPTO,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_CRYPTO,0,reason)

71 static ERR_STRING_DATA CRYPTO_str_functs[]=
72 {
73 {ERR_FUNC(CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX), "CRYPTO_get_ex_new_index"},
74 {ERR_FUNC(CRYPTO_F_CRYPTO_GET_NEW_DYNLOCKID), "CRYPTO_get_new_dynlockid"},
75 {ERR_FUNC(CRYPTO_F_CRYPTO_GET_NEW_LOCKID), "CRYPTO_get_new_lockid"},
76 {ERR_FUNC(CRYPTO_F_CRYPTO_SET_EX_DATA), "CRYPTO_set_ex_data"},
77 {ERR_FUNC(CRYPTO_F_DEF_ADD_INDEX), "DEF_ADD_INDEX"},
78 {ERR_FUNC(CRYPTO_F_DEF_GET_CLASS), "DEF_GET_CLASS"},
79 {ERR_FUNC(CRYPTO_F_FIPS_MODE_SET), "FIPS_mode_set"},
80 {ERR_FUNC(CRYPTO_F_INT_DUP_EX_DATA), "INT_DUP_EX_DATA"},
81 {ERR_FUNC(CRYPTO_F_INT_FREE_EX_DATA), "INT_FREE_EX_DATA"},
82 {ERR_FUNC(CRYPTO_F_INT_NEW_EX_DATA), "INT_NEW_EX_DATA"},
83 {0,NULL}
84 };

86 static ERR_STRING_DATA CRYPTO_str_reasons[]=
87 {
88 {ERR_REASON(CRYPTO_R_FIPS_MODE_NOT_SUPPORTED),"fips mode not supported"},
89 {ERR_REASON(CRYPTO_R_NO_DYNLOCK_CREATE_CALLBACK),"no dynlock create callback"},
90 {0,NULL}
91 };

93 #endif

95 void ERR_load_CRYPTO_strings(void)
96 {
97 #ifndef OPENSSL_NO_ERR

99 if (ERR_func_error_string(CRYPTO_str_functs[0].error) == NULL)
100 {
101 ERR_load_strings(0,CRYPTO_str_functs);
102 ERR_load_strings(0,CRYPTO_str_reasons);
103 }
104 #endif
105 }

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 1

**
 28445 Fri May 30 18:31:41 2014
new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cryptlib.c */
2 /* ==
3 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
56 * All rights reserved.
57 *
58 * This package is an SSL implementation written
59 * by Eric Young (eay@cryptsoft.com).
60 * The implementation was written so as to conform with Netscapes SSL.
61 *

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 2

62 * This library is free for commercial and non-commercial use as long as
63 * the following conditions are aheared to. The following conditions
64 * apply to all code found in this distribution, be it the RC4, RSA,
65 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
66 * included with this distribution is covered by the same copyright terms
67 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
68 *
69 * Copyright remains Eric Young’s, and as such any Copyright notices in
70 * the code are not to be removed.
71 * If this package is used in a product, Eric Young should be given attribution
72 * as the author of the parts of the library used.
73 * This can be in the form of a textual message at program startup or
74 * in documentation (online or textual) provided with the package.
75 *
76 * Redistribution and use in source and binary forms, with or without
77 * modification, are permitted provided that the following conditions
78 * are met:
79 * 1. Redistributions of source code must retain the copyright
80 * notice, this list of conditions and the following disclaimer.
81 * 2. Redistributions in binary form must reproduce the above copyright
82 * notice, this list of conditions and the following disclaimer in the
83 * documentation and/or other materials provided with the distribution.
84 * 3. All advertising materials mentioning features or use of this software
85 * must display the following acknowledgement:
86 * "This product includes cryptographic software written by
87 * Eric Young (eay@cryptsoft.com)"
88 * The word ’cryptographic’ can be left out if the rouines from the library
89 * being used are not cryptographic related :-).
90 * 4. If you include any Windows specific code (or a derivative thereof) from
91 * the apps directory (application code) you must include an acknowledgement:
92 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
93 *
94 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
95 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
96 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
97 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
98 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
99 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
100 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 * SUCH DAMAGE.
105 *
106 * The licence and distribution terms for any publically available version or
107 * derivative of this code cannot be changed. i.e. this code cannot simply be
108 * copied and put under another distribution licence
109 * [including the GNU Public Licence.]
110 */
111 /* ==
112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
113 * ECDH support in OpenSSL originally developed by
114 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
115 */

117 #include "cryptlib.h"
118 #include <openssl/safestack.h>
119 #include <pthread.h>

121 #if defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_WIN16)
122 static double SSLeay_MSVC5_hack=0.0; /* and for VC1.5 */
123 #endif

125 DECLARE_STACK_OF(CRYPTO_dynlock)

127 /* real #defines in crypto.h, keep these upto date */

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 3

128 static const char* const lock_names[CRYPTO_NUM_LOCKS] =
129 {
130 "<<ERROR>>",
131 "err",
132 "ex_data",
133 "x509",
134 "x509_info",
135 "x509_pkey",
136 "x509_crl",
137 "x509_req",
138 "dsa",
139 "rsa",
140 "evp_pkey",
141 "x509_store",
142 "ssl_ctx",
143 "ssl_cert",
144 "ssl_session",
145 "ssl_sess_cert",
146 "ssl",
147 "ssl_method",
148 "rand",
149 "rand2",
150 "debug_malloc",
151 "BIO",
152 "gethostbyname",
153 "getservbyname",
154 "readdir",
155 "RSA_blinding",
156 "dh",
157 "debug_malloc2",
158 "dso",
159 "dynlock",
160 "engine",
161 "ui",
162 "ecdsa",
163 "ec",
164 "ecdh",
165 "bn",
166 "ec_pre_comp",
167 "store",
168 "comp",
169 "fips",
170 "fips2",
171 #if CRYPTO_NUM_LOCKS != 41
172 # error "Inconsistency between crypto.h and cryptlib.c"
173 #endif
174 };

176 /* This is for applications to allocate new type names in the non-dynamic
177 array of lock names. These are numbered with positive numbers. */
178 static STACK_OF(OPENSSL_STRING) *app_locks=NULL;

180 /* For applications that want a more dynamic way of handling threads, the
181 following stack is used. These are externally numbered with negative
182 numbers. */
183 static STACK_OF(CRYPTO_dynlock) *dyn_locks=NULL;

185 static pthread_mutex_t *solaris_openssl_locks;

187 static void (MS_FAR *locking_callback)(int mode,int type,
188 const char *file,int line)=0;
189 static int (MS_FAR *add_lock_callback)(int *pointer,int amount,
190 int type,const char *file,int line)=0;
191 #ifndef OPENSSL_NO_DEPRECATED
192 static unsigned long (MS_FAR *id_callback)(void)=0;
193 #endif

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 4

194 static void (MS_FAR *threadid_callback)(CRYPTO_THREADID *)=0;
195 static struct CRYPTO_dynlock_value *(MS_FAR *dynlock_create_callback)
196 (const char *file,int line)=0;
197 static void (MS_FAR *dynlock_lock_callback)(int mode,
198 struct CRYPTO_dynlock_value *l, const char *file,int line)=0;
199 static void (MS_FAR *dynlock_destroy_callback)(struct CRYPTO_dynlock_value *l,
200 const char *file,int line)=0;

202 int CRYPTO_get_new_lockid(char *name)
203 {
204 char *str;
205 int i;

207 #if defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_WIN16)
208 /* A hack to make Visual C++ 5.0 work correctly when linking as
209 * a DLL using /MT. Without this, the application cannot use
210 * any floating point printf’s.
211 * It also seems to be needed for Visual C 1.5 (win16) */
212 SSLeay_MSVC5_hack=(double)name[0]*(double)name[1];
213 #endif

215 if ((app_locks == NULL) && ((app_locks=sk_OPENSSL_STRING_new_null()) ==
216 {
217 CRYPTOerr(CRYPTO_F_CRYPTO_GET_NEW_LOCKID,ERR_R_MALLOC_FAILURE);
218 return(0);
219 }
220 if ((str=BUF_strdup(name)) == NULL)
221 {
222 CRYPTOerr(CRYPTO_F_CRYPTO_GET_NEW_LOCKID,ERR_R_MALLOC_FAILURE);
223 return(0);
224 }
225 i=sk_OPENSSL_STRING_push(app_locks,str);
226 if (!i)
227 OPENSSL_free(str);
228 else
229 i+=CRYPTO_NUM_LOCKS; /* gap of one :-) */
230 return(i);
231 }

233 int CRYPTO_num_locks(void)
234 {
235 return CRYPTO_NUM_LOCKS;
236 }

238 int CRYPTO_get_new_dynlockid(void)
239 {
240 int i = 0;
241 CRYPTO_dynlock *pointer = NULL;

243 if (dynlock_create_callback == NULL)
244 {
245 CRYPTOerr(CRYPTO_F_CRYPTO_GET_NEW_DYNLOCKID,CRYPTO_R_NO_DYNLOCK_
246 return(0);
247 }
248 CRYPTO_w_lock(CRYPTO_LOCK_DYNLOCK);
249 if ((dyn_locks == NULL)
250 && ((dyn_locks=sk_CRYPTO_dynlock_new_null()) == NULL))
251 {
252 CRYPTO_w_unlock(CRYPTO_LOCK_DYNLOCK);
253 CRYPTOerr(CRYPTO_F_CRYPTO_GET_NEW_DYNLOCKID,ERR_R_MALLOC_FAILURE
254 return(0);
255 }
256 CRYPTO_w_unlock(CRYPTO_LOCK_DYNLOCK);

258 pointer = (CRYPTO_dynlock *)OPENSSL_malloc(sizeof(CRYPTO_dynlock));
259 if (pointer == NULL)

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 5

260 {
261 CRYPTOerr(CRYPTO_F_CRYPTO_GET_NEW_DYNLOCKID,ERR_R_MALLOC_FAILURE
262 return(0);
263 }
264 pointer->references = 1;
265 pointer->data = dynlock_create_callback(__FILE__,__LINE__);
266 if (pointer->data == NULL)
267 {
268 OPENSSL_free(pointer);
269 CRYPTOerr(CRYPTO_F_CRYPTO_GET_NEW_DYNLOCKID,ERR_R_MALLOC_FAILURE
270 return(0);
271 }

273 CRYPTO_w_lock(CRYPTO_LOCK_DYNLOCK);
274 /* First, try to find an existing empty slot */
275 i=sk_CRYPTO_dynlock_find(dyn_locks,NULL);
276 /* If there was none, push, thereby creating a new one */
277 if (i == -1)
278 /* Since sk_push() returns the number of items on the
279 stack, not the location of the pushed item, we need
280 to transform the returned number into a position,
281 by decreasing it. */
282 i=sk_CRYPTO_dynlock_push(dyn_locks,pointer) - 1;
283 else
284 /* If we found a place with a NULL pointer, put our pointer
285 in it. */
286 (void)sk_CRYPTO_dynlock_set(dyn_locks,i,pointer);
287 CRYPTO_w_unlock(CRYPTO_LOCK_DYNLOCK);

289 if (i == -1)
290 {
291 dynlock_destroy_callback(pointer->data,__FILE__,__LINE__);
292 OPENSSL_free(pointer);
293 }
294 else
295 i += 1; /* to avoid 0 */
296 return -i;
297 }

299 void CRYPTO_destroy_dynlockid(int i)
300 {
301 CRYPTO_dynlock *pointer = NULL;
302 if (i)
303 i = -i-1;
304 if (dynlock_destroy_callback == NULL)
305 return;

307 CRYPTO_w_lock(CRYPTO_LOCK_DYNLOCK);

309 if (dyn_locks == NULL || i >= sk_CRYPTO_dynlock_num(dyn_locks))
310 {
311 CRYPTO_w_unlock(CRYPTO_LOCK_DYNLOCK);
312 return;
313 }
314 pointer = sk_CRYPTO_dynlock_value(dyn_locks, i);
315 if (pointer != NULL)
316 {
317 --pointer->references;
318 #ifdef REF_CHECK
319 if (pointer->references < 0)
320 {
321 fprintf(stderr,"CRYPTO_destroy_dynlockid, bad reference
322 abort();
323 }
324 else
325 #endif

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 6

326 if (pointer->references <= 0)
327 {
328 (void)sk_CRYPTO_dynlock_set(dyn_locks, i, NULL);
329 }
330 else
331 pointer = NULL;
332 }
333 CRYPTO_w_unlock(CRYPTO_LOCK_DYNLOCK);

335 if (pointer)
336 {
337 dynlock_destroy_callback(pointer->data,__FILE__,__LINE__);
338 OPENSSL_free(pointer);
339 }
340 }

342 struct CRYPTO_dynlock_value *CRYPTO_get_dynlock_value(int i)
343 {
344 CRYPTO_dynlock *pointer = NULL;
345 if (i)
346 i = -i-1;

348 CRYPTO_w_lock(CRYPTO_LOCK_DYNLOCK);

350 if (dyn_locks != NULL && i < sk_CRYPTO_dynlock_num(dyn_locks))
351 pointer = sk_CRYPTO_dynlock_value(dyn_locks, i);
352 if (pointer)
353 pointer->references++;

355 CRYPTO_w_unlock(CRYPTO_LOCK_DYNLOCK);

357 if (pointer)
358 return pointer->data;
359 return NULL;
360 }

362 struct CRYPTO_dynlock_value *(*CRYPTO_get_dynlock_create_callback(void))
363 (const char *file,int line)
364 {
365 return(dynlock_create_callback);
366 }

368 void (*CRYPTO_get_dynlock_lock_callback(void))(int mode,
369 struct CRYPTO_dynlock_value *l, const char *file,int line)
370 {
371 return(dynlock_lock_callback);
372 }

374 void (*CRYPTO_get_dynlock_destroy_callback(void))
375 (struct CRYPTO_dynlock_value *l, const char *file,int line)
376 {
377 return(dynlock_destroy_callback);
378 }

380 void CRYPTO_set_dynlock_create_callback(struct CRYPTO_dynlock_value *(*func)
381 (const char *file, int line))
382 {
383 dynlock_create_callback=func;
384 }

386 void CRYPTO_set_dynlock_lock_callback(void (*func)(int mode,
387 struct CRYPTO_dynlock_value *l, const char *file, int line))
388 {
389 dynlock_lock_callback=func;
390 }

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 7

392 void CRYPTO_set_dynlock_destroy_callback(void (*func)
393 (struct CRYPTO_dynlock_value *l, const char *file, int line))
394 {
395 dynlock_destroy_callback=func;
396 }

399 void (*CRYPTO_get_locking_callback(void))(int mode,int type,const char *file,
400 int line)
401 {
402 return(locking_callback);
403 }

405 int (*CRYPTO_get_add_lock_callback(void))(int *num,int mount,int type,
406 const char *file,int line)
407 {
408 return(add_lock_callback);
409 }

411 /*
412 * This is the locking callback function which all applications will be
413 * using when CRYPTO_lock() is called.
414 */
415 static void solaris_locking_callback(int mode, int type, const char *file,
416 int line)
417 {
418 if (mode & CRYPTO_LOCK)
419 {
420 pthread_mutex_lock(&solaris_openssl_locks[type]);
421 }
422 else
423 {
424 pthread_mutex_unlock(&solaris_openssl_locks[type]);
425 }
426 }

429 /*
430 * This function is called when a child process is forked to setup its own
431 * global locking callback function ptr and mutexes.
432 */
433 static void solaris_fork_child(void)
434 {
435 /*
436 * clear locking_callback to indicate that locks should
437 * be reinitialized.
438 */
439 locking_callback = NULL;
440 solaris_locking_setup();
441 }

443 /*
444 * This function allocates and initializes the global mutex array, and
445 * sets the locking callback.
446 */
447 void solaris_locking_setup()
448 {
449 int i;
450 int num_locks;

452 /* locking callback is already setup. Nothing to do */
453 if (locking_callback != NULL)
454 {
455 return;
456 }

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 8

458 /*
459 * Set atfork handler so that child can setup its own mutexes and
460 * locking callbacks when it is forked
461 */
462 (void) pthread_atfork(NULL, NULL, solaris_fork_child);

464 /* allocate locks needed by OpenSSL */
465 num_locks = CRYPTO_num_locks();
466 solaris_openssl_locks =
467 OPENSSL_malloc(sizeof (pthread_mutex_t) * num_locks);
468 if (solaris_openssl_locks == NULL)
469 {
470 fprintf(stderr,
471 "solaris_locking_setup: memory allocation failure.\n");
472 abort();
473 }

475 /* initialize openssl mutexes */
476 for (i = 0; i < num_locks; i++)
477 {
478 pthread_mutex_init(&solaris_openssl_locks[i], NULL);
479 }
480 locking_callback = solaris_locking_callback;

482 }

484 void CRYPTO_set_locking_callback(void (*func)(int mode,int type,
485 const char *file,int line))
486 {
487 /* Calling this here ensures initialisation before any threads
488 * are started.
489 */
490 OPENSSL_init();

492 /*
493 * we now setup our own locking callback and mutexes, and disallow
494 * setting of another locking callback.
495 */
496 }

498 void CRYPTO_set_add_lock_callback(int (*func)(int *num,int mount,int type,
499 const char *file,int line))
500 {
501 add_lock_callback=func;
502 }

504 /* the memset() here and in set_pointer() seem overkill, but for the sake of
505 * CRYPTO_THREADID_cmp() this avoids any platform silliness that might cause two
506 * "equal" THREADID structs to not be memcmp()-identical. */
507 void CRYPTO_THREADID_set_numeric(CRYPTO_THREADID *id, unsigned long val)
508 {
509 memset(id, 0, sizeof(*id));
510 id->val = val;
511 }

513 static const unsigned char hash_coeffs[] = { 3, 5, 7, 11, 13, 17, 19, 23 };
514 void CRYPTO_THREADID_set_pointer(CRYPTO_THREADID *id, void *ptr)
515 {
516 unsigned char *dest = (void *)&id->val;
517 unsigned int accum = 0;
518 unsigned char dnum = sizeof(id->val);

520 memset(id, 0, sizeof(*id));
521 id->ptr = ptr;
522 if (sizeof(id->val) >= sizeof(id->ptr))
523 {

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 9

524 /* ’ptr’ can be embedded in ’val’ without loss of uniqueness */
525 id->val = (unsigned long)id->ptr;
526 return;
527 }
528 /* hash ptr ==> val. Each byte of ’val’ gets the mod-256 total of a
529 * linear function over the bytes in ’ptr’, the co-efficients of which
530 * are a sequence of low-primes (hash_coeffs is an 8-element cycle) -
531 * the starting prime for the sequence varies for each byte of ’val’
532 * (unique polynomials unless pointers are >64-bit). For added spice,
533 * the totals accumulate rather than restarting from zero, and the index
534 * of the ’val’ byte is added each time (position dependence). If I was
535 * a black-belt, I’d scan big-endian pointers in reverse to give
536 * low-order bits more play, but this isn’t crypto and I’d prefer nobody
537 * mistake it as such. Plus I’m lazy. */
538 while (dnum--)
539 {
540 const unsigned char *src = (void *)&id->ptr;
541 unsigned char snum = sizeof(id->ptr);
542 while (snum--)
543 accum += *(src++) * hash_coeffs[(snum + dnum) & 7];
544 accum += dnum;
545 *(dest++) = accum & 255;
546 }
547 }

549 int CRYPTO_THREADID_set_callback(void (*func)(CRYPTO_THREADID *))
550 {
551 if (threadid_callback)
552 return 0;
553 threadid_callback = func;
554 return 1;
555 }

557 void (*CRYPTO_THREADID_get_callback(void))(CRYPTO_THREADID *)
558 {
559 return threadid_callback;
560 }

562 void CRYPTO_THREADID_current(CRYPTO_THREADID *id)
563 {
564 if (threadid_callback)
565 {
566 threadid_callback(id);
567 return;
568 }
569 #ifndef OPENSSL_NO_DEPRECATED
570 /* If the deprecated callback was set, fall back to that */
571 if (id_callback)
572 {
573 CRYPTO_THREADID_set_numeric(id, id_callback());
574 return;
575 }
576 #endif
577 /* Else pick a backup */
578 #ifdef OPENSSL_SYS_WIN16
579 CRYPTO_THREADID_set_numeric(id, (unsigned long)GetCurrentTask());
580 #elif defined(OPENSSL_SYS_WIN32)
581 CRYPTO_THREADID_set_numeric(id, (unsigned long)GetCurrentThreadId());
582 #elif defined(OPENSSL_SYS_BEOS)
583 CRYPTO_THREADID_set_numeric(id, (unsigned long)find_thread(NULL));
584 #else
585 /* For everything else, default to using the address of ’errno’ */
586 CRYPTO_THREADID_set_pointer(id, (void*)&errno);
587 #endif
588 }

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 10

590 int CRYPTO_THREADID_cmp(const CRYPTO_THREADID *a, const CRYPTO_THREADID *b)
591 {
592 return memcmp(a, b, sizeof(*a));
593 }

595 void CRYPTO_THREADID_cpy(CRYPTO_THREADID *dest, const CRYPTO_THREADID *src)
596 {
597 memcpy(dest, src, sizeof(*src));
598 }

600 unsigned long CRYPTO_THREADID_hash(const CRYPTO_THREADID *id)
601 {
602 return id->val;
603 }

605 #ifndef OPENSSL_NO_DEPRECATED
606 unsigned long (*CRYPTO_get_id_callback(void))(void)
607 {
608 return(id_callback);
609 }

611 void CRYPTO_set_id_callback(unsigned long (*func)(void))
612 {
613 id_callback=func;
614 }

616 unsigned long CRYPTO_thread_id(void)
617 {
618 unsigned long ret=0;

620 if (id_callback == NULL)
621 {
622 #ifdef OPENSSL_SYS_WIN16
623 ret=(unsigned long)GetCurrentTask();
624 #elif defined(OPENSSL_SYS_WIN32)
625 ret=(unsigned long)GetCurrentThreadId();
626 #elif defined(GETPID_IS_MEANINGLESS)
627 ret=1L;
628 #elif defined(OPENSSL_SYS_BEOS)
629 ret=(unsigned long)find_thread(NULL);
630 #else
631 ret=(unsigned long)getpid();
632 #endif
633 }
634 else
635 ret=id_callback();
636 return(ret);
637 }
638 #endif

640 void CRYPTO_lock(int mode, int type, const char *file, int line)
641 {
642 #ifdef LOCK_DEBUG
643 {
644 CRYPTO_THREADID id;
645 char *rw_text,*operation_text;

647 if (mode & CRYPTO_LOCK)
648 operation_text="lock ";
649 else if (mode & CRYPTO_UNLOCK)
650 operation_text="unlock";
651 else
652 operation_text="ERROR ";

654 if (mode & CRYPTO_READ)
655 rw_text="r";

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 11

656 else if (mode & CRYPTO_WRITE)
657 rw_text="w";
658 else
659 rw_text="ERROR";

661 CRYPTO_THREADID_current(&id);
662 fprintf(stderr,"lock:%08lx:(%s)%s %-18s %s:%d\n",
663 CRYPTO_THREADID_hash(&id), rw_text, operation_text,
664 CRYPTO_get_lock_name(type), file, line);
665 }
666 #endif
667 if (type < 0)
668 {
669 if (dynlock_lock_callback != NULL)
670 {
671 struct CRYPTO_dynlock_value *pointer
672 = CRYPTO_get_dynlock_value(type);

674 OPENSSL_assert(pointer != NULL);

676 dynlock_lock_callback(mode, pointer, file, line);

678 CRYPTO_destroy_dynlockid(type);
679 }
680 }
681 else
682 if (locking_callback != NULL)
683 locking_callback(mode,type,file,line);
684 }

686 int CRYPTO_add_lock(int *pointer, int amount, int type, const char *file,
687 int line)
688 {
689 int ret = 0;

691 if (add_lock_callback != NULL)
692 {
693 #ifdef LOCK_DEBUG
694 int before= *pointer;
695 #endif

697 ret=add_lock_callback(pointer,amount,type,file,line);
698 #ifdef LOCK_DEBUG
699 {
700 CRYPTO_THREADID id;
701 CRYPTO_THREADID_current(&id);
702 fprintf(stderr,"ladd:%08lx:%2d+%2d->%2d %-18s %s:%d\n",
703 CRYPTO_THREADID_hash(&id), before,amount,ret,
704 CRYPTO_get_lock_name(type),
705 file,line);
706 }
707 #endif
708 }
709 else
710 {
711 CRYPTO_lock(CRYPTO_LOCK|CRYPTO_WRITE,type,file,line);

713 ret= *pointer+amount;
714 #ifdef LOCK_DEBUG
715 {
716 CRYPTO_THREADID id;
717 CRYPTO_THREADID_current(&id);
718 fprintf(stderr,"ladd:%08lx:%2d+%2d->%2d %-18s %s:%d\n",
719 CRYPTO_THREADID_hash(&id),
720 *pointer,amount,ret,
721 CRYPTO_get_lock_name(type),

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 12

722 file,line);
723 }
724 #endif
725 *pointer=ret;
726 CRYPTO_lock(CRYPTO_UNLOCK|CRYPTO_WRITE,type,file,line);
727 }
728 return(ret);
729 }

731 const char *CRYPTO_get_lock_name(int type)
732 {
733 if (type < 0)
734 return("dynamic");
735 else if (type < CRYPTO_NUM_LOCKS)
736 return(lock_names[type]);
737 else if (type-CRYPTO_NUM_LOCKS > sk_OPENSSL_STRING_num(app_locks))
738 return("ERROR");
739 else
740 return(sk_OPENSSL_STRING_value(app_locks,type-CRYPTO_NUM_LOCKS))
741 }

743 #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
744 defined(__INTEL__) || \
745 defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined

747 unsigned int OPENSSL_ia32cap_P[2];
748 unsigned long *OPENSSL_ia32cap_loc(void)
749 { if (sizeof(long)==4)
750 /*
751 * If 32-bit application pulls address of OPENSSL_ia32cap_P[0]
752 * clear second element to maintain the illusion that vector
753 * is 32-bit.
754 */
755 OPENSSL_ia32cap_P[1]=0;
756 return (unsigned long *)OPENSSL_ia32cap_P;
757 }

759 #if defined(OPENSSL_CPUID_OBJ) && !defined(OPENSSL_NO_ASM) && !defined(I386_ONLY
760 #define OPENSSL_CPUID_SETUP
761 #if defined(_WIN32)
762 typedef unsigned __int64 IA32CAP;
763 #else
764 typedef unsigned long long IA32CAP;
765 #endif
766 void OPENSSL_cpuid_setup(void)
767 { static int trigger=0;
768 IA32CAP OPENSSL_ia32_cpuid(void);
769 IA32CAP vec;
770 char *env;

772 if (trigger) return;

774 trigger=1;
775 if ((env=getenv("OPENSSL_ia32cap"))) {
776 int off = (env[0]==’~’)?1:0;
777 #if defined(_WIN32)
778 if (!sscanf(env+off,"%I64i",&vec)) vec = strtoul(env+off,NULL,0);
779 #else
780 if (!sscanf(env+off,"%lli",(long long *)&vec)) vec = strtoul(env+off,NUL
781 #endif
782 if (off) vec = OPENSSL_ia32_cpuid()&~vec;
783 }
784 else
785 vec = OPENSSL_ia32_cpuid();

787 /*

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 13

788 * |(1<<10) sets a reserved bit to signal that variable
789 * was initialized already... This is to avoid interference
790 * with cpuid snippets in ELF .init segment.
791 */
792 OPENSSL_ia32cap_P[0] = (unsigned int)vec|(1<<10);
793 OPENSSL_ia32cap_P[1] = (unsigned int)(vec>>32);
794 }
795 #endif

797 #else
798 unsigned long *OPENSSL_ia32cap_loc(void) { return NULL; }
799 #endif
800 int OPENSSL_NONPIC_relocated = 0;
801 #if !defined(OPENSSL_CPUID_SETUP) && !defined(OPENSSL_CPUID_OBJ)
802 void OPENSSL_cpuid_setup(void) {}
803 #endif

805 #if (defined(_WIN32) || defined(__CYGWIN__)) && defined(_WINDLL)
806 #ifdef __CYGWIN__
807 /* pick DLL_[PROCESS|THREAD]_[ATTACH|DETACH] definitions */
808 #include <windows.h>
809 /* this has side-effect of _WIN32 getting defined, which otherwise
810 * is mutually exclusive with __CYGWIN__... */
811 #endif

813 /* All we really need to do is remove the ’error’ state when a thread
814 * detaches */

816 BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason,
817 LPVOID lpvReserved)
818 {
819 switch(fdwReason)
820 {
821 case DLL_PROCESS_ATTACH:
822 OPENSSL_cpuid_setup();
823 #if defined(_WIN32_WINNT)
824 {
825 IMAGE_DOS_HEADER *dos_header = (IMAGE_DOS_HEADER *)hinstDLL;
826 IMAGE_NT_HEADERS *nt_headers;

828 if (dos_header->e_magic==IMAGE_DOS_SIGNATURE)
829 {
830 nt_headers = (IMAGE_NT_HEADERS *)((char *)dos_header
831 + dos_header->e_lfanew);
832 if (nt_headers->Signature==IMAGE_NT_SIGNATURE &&
833 hinstDLL!=(HINSTANCE)(nt_headers->OptionalHeader.Ima
834 OPENSSL_NONPIC_relocated=1;
835 }
836 }
837 #endif
838 break;
839 case DLL_THREAD_ATTACH:
840 break;
841 case DLL_THREAD_DETACH:
842 break;
843 case DLL_PROCESS_DETACH:
844 break;
845 }
846 return(TRUE);
847 }
848 #endif

850 #if defined(_WIN32) && !defined(__CYGWIN__)
851 #include <tchar.h>
852 #include <signal.h>
853 #ifdef __WATCOMC__

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 14

854 #if defined(_UNICODE) || defined(__UNICODE__)
855 #define _vsntprintf _vsnwprintf
856 #else
857 #define _vsntprintf _vsnprintf
858 #endif
859 #endif
860 #ifdef _MSC_VER
861 #define alloca _alloca
862 #endif

864 #if defined(_WIN32_WINNT) && _WIN32_WINNT>=0x0333
865 int OPENSSL_isservice(void)
866 { HWINSTA h;
867 DWORD len;
868 WCHAR *name;
869 static union { void *p; int (*f)(void); } _OPENSSL_isservice = { NULL };

871 if (_OPENSSL_isservice.p == NULL) {
872 HANDLE h = GetModuleHandle(NULL);
873 if (h != NULL)
874 _OPENSSL_isservice.p = GetProcAddress(h,"_OPENSSL_isservice");
875 if (_OPENSSL_isservice.p == NULL)
876 _OPENSSL_isservice.p = (void *)-1;
877 }

879 if (_OPENSSL_isservice.p != (void *)-1)
880 return (*_OPENSSL_isservice.f)();

882 (void)GetDesktopWindow(); /* return value is ignored */

884 h = GetProcessWindowStation();
885 if (h==NULL) return -1;

887 if (GetUserObjectInformationW (h,UOI_NAME,NULL,0,&len) ||
888 GetLastError() != ERROR_INSUFFICIENT_BUFFER)
889 return -1;

891 if (len>512) return -1; /* paranoia */
892 len++,len&=~1; /* paranoia */
893 name=(WCHAR *)alloca(len+sizeof(WCHAR));
894 if (!GetUserObjectInformationW (h,UOI_NAME,name,len,&len))
895 return -1;

897 len++,len&=~1; /* paranoia */
898 name[len/sizeof(WCHAR)]=L’\0’; /* paranoia */
899 #if 1
900 /* This doesn’t cover "interactive" services [working with real
901 * WinSta0’s] nor programs started non-interactively by Task
902 * Scheduler [those are working with SAWinSta]. */
903 if (wcsstr(name,L"Service-0x")) return 1;
904 #else
905 /* This covers all non-interactive programs such as services. */
906 if (!wcsstr(name,L"WinSta0")) return 1;
907 #endif
908 else return 0;
909 }
910 #else
911 int OPENSSL_isservice(void) { return 0; }
912 #endif

914 void OPENSSL_showfatal (const char *fmta,...)
915 { va_list ap;
916 TCHAR buf[256];
917 const TCHAR *fmt;
918 #ifdef STD_ERROR_HANDLE /* what a dirty trick! */
919 HANDLE h;

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 15

921 if ((h=GetStdHandle(STD_ERROR_HANDLE)) != NULL &&
922 GetFileType(h)!=FILE_TYPE_UNKNOWN)
923 { /* must be console application */
924 va_start (ap,fmta);
925 vfprintf (stderr,fmta,ap);
926 va_end (ap);
927 return;
928 }
929 #endif

931 if (sizeof(TCHAR)==sizeof(char))
932 fmt=(const TCHAR *)fmta;
933 else do
934 { int keepgoing;
935 size_t len_0=strlen(fmta)+1,i;
936 WCHAR *fmtw;

938 fmtw = (WCHAR *)alloca(len_0*sizeof(WCHAR));
939 if (fmtw == NULL) { fmt=(const TCHAR *)L"no stack?"; break; }

941 #ifndef OPENSSL_NO_MULTIBYTE
942 if (!MultiByteToWideChar(CP_ACP,0,fmta,len_0,fmtw,len_0))
943 #endif
944 for (i=0;i<len_0;i++) fmtw[i]=(WCHAR)fmta[i];

946 for (i=0;i<len_0;i++)
947 { if (fmtw[i]==L’%’) do
948 { keepgoing=0;
949 switch (fmtw[i+1])
950 { case L’0’: case L’1’: case L’2’: case L’3’: case L’4’:
951 case L’5’: case L’6’: case L’7’: case L’8’: case L’9’:
952 case L’.’: case L’*’:
953 case L’-’: i++; keepgoing=1; break;
954 case L’s’: fmtw[i+1]=L’S’; break;
955 case L’S’: fmtw[i+1]=L’s’; break;
956 case L’c’: fmtw[i+1]=L’C’; break;
957 case L’C’: fmtw[i+1]=L’c’; break;
958 }
959 } while (keepgoing);
960 }
961 fmt = (const TCHAR *)fmtw;
962 } while (0);

964 va_start (ap,fmta);
965 _vsntprintf (buf,sizeof(buf)/sizeof(TCHAR)-1,fmt,ap);
966 buf [sizeof(buf)/sizeof(TCHAR)-1] = _T(’\0’);
967 va_end (ap);

969 #if defined(_WIN32_WINNT) && _WIN32_WINNT>=0x0333
970 /* this -------------v--- guards NT-specific calls */
971 if (check_winnt() && OPENSSL_isservice() > 0)
972 { HANDLE h = RegisterEventSource(0,_T("OPENSSL"));
973 const TCHAR *pmsg=buf;
974 ReportEvent(h,EVENTLOG_ERROR_TYPE,0,0,0,1,0,&pmsg,0);
975 DeregisterEventSource(h);
976 }
977 else
978 #endif
979 MessageBox (NULL,buf,_T("OpenSSL: FATAL"),MB_OK|MB_ICONSTOP);
980 }
981 #else
982 void OPENSSL_showfatal (const char *fmta,...)
983 { va_list ap;

985 va_start (ap,fmta);

new/usr/src/lib/openssl/libsunw_crypto/cryptlib.c 16

986 vfprintf (stderr,fmta,ap);
987 va_end (ap);
988 }
989 int OPENSSL_isservice (void) { return 0; }
990 #endif

992 void OpenSSLDie(const char *file,int line,const char *assertion)
993 {
994 OPENSSL_showfatal(
995 "%s(%d): OpenSSL internal error, assertion failed: %s\n",
996 file,line,assertion);
997 #if !defined(_WIN32) || defined(__CYGWIN__)
998 abort();
999 #else

1000 /* Win32 abort() customarily shows a dialog, but we just did that... */
1001 raise(SIGABRT);
1002 _exit(3);
1003 #endif
1004 }

1006 void *OPENSSL_stderr(void) { return stderr; }

1008 int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len)
1009 {
1010 size_t i;
1011 const unsigned char *a = in_a;
1012 const unsigned char *b = in_b;
1013 unsigned char x = 0;

1015 for (i = 0; i < len; i++)
1016 x |= a[i] ^ b[i];

1018 return x;
1019 }

new/usr/src/lib/openssl/libsunw_crypto/cversion.c 1

**
 4248 Fri May 30 18:31:41 2014
new/usr/src/lib/openssl/libsunw_crypto/cversion.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/cversion.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include "cryptlib.h"

61 #ifndef NO_WINDOWS_BRAINDEATH

new/usr/src/lib/openssl/libsunw_crypto/cversion.c 2

62 #include "buildinf.h"
63 #endif

65 const char *SSLeay_version(int t)
66 {
67 if (t == SSLEAY_VERSION)
68 return OPENSSL_VERSION_TEXT;
69 if (t == SSLEAY_BUILT_ON)
70 {
71 #ifdef DATE
72 static char buf[sizeof(DATE)+11];

74 BIO_snprintf(buf,sizeof buf,"built on: %s",DATE);
75 return(buf);
76 #else
77 return("built on: date not available");
78 #endif
79 }
80 if (t == SSLEAY_CFLAGS)
81 {
82 #ifdef CFLAGS
83 static char buf[sizeof(CFLAGS)+11];

85 BIO_snprintf(buf,sizeof buf,"compiler: %s",CFLAGS);
86 return(buf);
87 #else
88 return("compiler: information not available");
89 #endif
90 }
91 if (t == SSLEAY_PLATFORM)
92 {
93 #ifdef PLATFORM
94 static char buf[sizeof(PLATFORM)+11];

96 BIO_snprintf(buf,sizeof buf,"platform: %s", PLATFORM);
97 return(buf);
98 #else
99 return("platform: information not available");
100 #endif
101 }
102 if (t == SSLEAY_DIR)
103 {
104 #ifdef OPENSSLDIR
105 return "OPENSSLDIR: \"" OPENSSLDIR "\"";
106 #else
107 return "OPENSSLDIR: N/A";
108 #endif
109 }
110 return("not available");
111 }

113 unsigned long SSLeay(void)
114 {
115 return(SSLEAY_VERSION_NUMBER);
116 }

new/usr/src/lib/openssl/libsunw_crypto/des/cbc_cksm.c 1

**
 4294 Fri May 30 18:31:41 2014
new/usr/src/lib/openssl/libsunw_crypto/des/cbc_cksm.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/cbc_cksm.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include "des_locl.h"

61 DES_LONG DES_cbc_cksum(const unsigned char *in, DES_cblock *output,

new/usr/src/lib/openssl/libsunw_crypto/des/cbc_cksm.c 2

62 long length, DES_key_schedule *schedule,
63 const_DES_cblock *ivec)
64 {
65 register DES_LONG tout0,tout1,tin0,tin1;
66 register long l=length;
67 DES_LONG tin[2];
68 unsigned char *out = &(*output)[0];
69 const unsigned char *iv = &(*ivec)[0];

71 c2l(iv,tout0);
72 c2l(iv,tout1);
73 for (; l>0; l-=8)
74 {
75 if (l >= 8)
76 {
77 c2l(in,tin0);
78 c2l(in,tin1);
79 }
80 else
81 c2ln(in,tin0,tin1,l);
82
83 tin0^=tout0; tin[0]=tin0;
84 tin1^=tout1; tin[1]=tin1;
85 DES_encrypt1((DES_LONG *)tin,schedule,DES_ENCRYPT);
86 /* fix 15/10/91 eay - thanks to keithr@sco.COM */
87 tout0=tin[0];
88 tout1=tin[1];
89 }
90 if (out != NULL)
91 {
92 l2c(tout0,out);
93 l2c(tout1,out);
94 }
95 tout0=tin0=tin1=tin[0]=tin[1]=0;
96 /*
97 Transform the data in tout1 so that it will
98 match the return value that the MIT Kerberos
99 mit_des_cbc_cksum API returns.
100 */
101 tout1 = ((tout1 >> 24L) & 0x000000FF)
102 | ((tout1 >> 8L) & 0x0000FF00)
103 | ((tout1 << 8L) & 0x00FF0000)
104 | ((tout1 << 24L) & 0xFF000000);
105 return(tout1);
106 }

new/usr/src/lib/openssl/libsunw_crypto/des/cbc_enc.c 1

**
 3276 Fri May 30 18:31:41 2014
new/usr/src/lib/openssl/libsunw_crypto/des/cbc_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/cbc_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #define CBC_ENC_C__DONT_UPDATE_IV

61 #include "ncbc_enc.c" /* des_cbc_encrypt */

new/usr/src/lib/openssl/libsunw_crypto/des/cbc_enc.c 2

new/usr/src/lib/openssl/libsunw_crypto/des/cfb64ede.c 1

**
 6962 Fri May 30 18:31:42 2014
new/usr/src/lib/openssl/libsunw_crypto/des/cfb64ede.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/cfb64ede.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include "des_locl.h"
60 #include "e_os.h"

new/usr/src/lib/openssl/libsunw_crypto/des/cfb64ede.c 2

62 /* The input and output encrypted as though 64bit cfb mode is being
63 * used. The extra state information to record how much of the
64 * 64bit block we have used is contained in *num;
65 */

67 void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
68 long length, DES_key_schedule *ks1,
69 DES_key_schedule *ks2, DES_key_schedule *ks3,
70 DES_cblock *ivec, int *num, int enc)
71 {
72 register DES_LONG v0,v1;
73 register long l=length;
74 register int n= *num;
75 DES_LONG ti[2];
76 unsigned char *iv,c,cc;

78 iv=&(*ivec)[0];
79 if (enc)
80 {
81 while (l--)
82 {
83 if (n == 0)
84 {
85 c2l(iv,v0);
86 c2l(iv,v1);

88 ti[0]=v0;
89 ti[1]=v1;
90 DES_encrypt3(ti,ks1,ks2,ks3);
91 v0=ti[0];
92 v1=ti[1];

94 iv = &(*ivec)[0];
95 l2c(v0,iv);
96 l2c(v1,iv);
97 iv = &(*ivec)[0];
98 }
99 c= *(in++)^iv[n];
100 *(out++)=c;
101 iv[n]=c;
102 n=(n+1)&0x07;
103 }
104 }
105 else
106 {
107 while (l--)
108 {
109 if (n == 0)
110 {
111 c2l(iv,v0);
112 c2l(iv,v1);

114 ti[0]=v0;
115 ti[1]=v1;
116 DES_encrypt3(ti,ks1,ks2,ks3);
117 v0=ti[0];
118 v1=ti[1];

120 iv = &(*ivec)[0];
121 l2c(v0,iv);
122 l2c(v1,iv);
123 iv = &(*ivec)[0];
124 }
125 cc= *(in++);
126 c=iv[n];
127 iv[n]=cc;

new/usr/src/lib/openssl/libsunw_crypto/des/cfb64ede.c 3

128 *(out++)=c^cc;
129 n=(n+1)&0x07;
130 }
131 }
132 v0=v1=ti[0]=ti[1]=c=cc=0;
133 *num=n;
134 }

136 #ifdef undef /* MACRO */
137 void DES_ede2_cfb64_encrypt(unsigned char *in, unsigned char *out, long length,
138 DES_key_schedule ks1, DES_key_schedule ks2, DES_cblock (*ivec),
139 int *num, int enc)
140 {
141 DES_ede3_cfb64_encrypt(in,out,length,ks1,ks2,ks1,ivec,num,enc);
142 }
143 #endif

145 /* This is compatible with the single key CFB-r for DES, even thought that’s
146 * not what EVP needs.
147 */

149 void DES_ede3_cfb_encrypt(const unsigned char *in,unsigned char *out,
150 int numbits,long length,DES_key_schedule *ks1,
151 DES_key_schedule *ks2,DES_key_schedule *ks3,
152 DES_cblock *ivec,int enc)
153 {
154 register DES_LONG d0,d1,v0,v1;
155 register unsigned long l=length,n=((unsigned int)numbits+7)/8;
156 register int num=numbits,i;
157 DES_LONG ti[2];
158 unsigned char *iv;
159 unsigned char ovec[16];

161 if (num > 64) return;
162 iv = &(*ivec)[0];
163 c2l(iv,v0);
164 c2l(iv,v1);
165 if (enc)
166 {
167 while (l >= n)
168 {
169 l-=n;
170 ti[0]=v0;
171 ti[1]=v1;
172 DES_encrypt3(ti,ks1,ks2,ks3);
173 c2ln(in,d0,d1,n);
174 in+=n;
175 d0^=ti[0];
176 d1^=ti[1];
177 l2cn(d0,d1,out,n);
178 out+=n;
179 /* 30-08-94 - eay - changed because l>>32 and
180 * l<<32 are bad under gcc :-(*/
181 if (num == 32)
182 { v0=v1; v1=d0; }
183 else if (num == 64)
184 { v0=d0; v1=d1; }
185 else
186 {
187 iv=&ovec[0];
188 l2c(v0,iv);
189 l2c(v1,iv);
190 l2c(d0,iv);
191 l2c(d1,iv);
192 /* shift ovec left most of the bits... */
193 memmove(ovec,ovec+num/8,8+(num%8 ? 1 : 0));

new/usr/src/lib/openssl/libsunw_crypto/des/cfb64ede.c 4

194 /* now the remaining bits */
195 if(num%8 != 0)
196 for(i=0 ; i < 8 ; ++i)
197 {
198 ovec[i]<<=num%8;
199 ovec[i]|=ovec[i+1]>>(8-num%8);
200 }
201 iv=&ovec[0];
202 c2l(iv,v0);
203 c2l(iv,v1);
204 }
205 }
206 }
207 else
208 {
209 while (l >= n)
210 {
211 l-=n;
212 ti[0]=v0;
213 ti[1]=v1;
214 DES_encrypt3(ti,ks1,ks2,ks3);
215 c2ln(in,d0,d1,n);
216 in+=n;
217 /* 30-08-94 - eay - changed because l>>32 and
218 * l<<32 are bad under gcc :-(*/
219 if (num == 32)
220 { v0=v1; v1=d0; }
221 else if (num == 64)
222 { v0=d0; v1=d1; }
223 else
224 {
225 iv=&ovec[0];
226 l2c(v0,iv);
227 l2c(v1,iv);
228 l2c(d0,iv);
229 l2c(d1,iv);
230 /* shift ovec left most of the bits... */
231 memmove(ovec,ovec+num/8,8+(num%8 ? 1 : 0));
232 /* now the remaining bits */
233 if(num%8 != 0)
234 for(i=0 ; i < 8 ; ++i)
235 {
236 ovec[i]<<=num%8;
237 ovec[i]|=ovec[i+1]>>(8-num%8);
238 }
239 iv=&ovec[0];
240 c2l(iv,v0);
241 c2l(iv,v1);
242 }
243 d0^=ti[0];
244 d1^=ti[1];
245 l2cn(d0,d1,out,n);
246 out+=n;
247 }
248 }
249 iv = &(*ivec)[0];
250 l2c(v0,iv);
251 l2c(v1,iv);
252 v0=v1=d0=d1=ti[0]=ti[1]=0;
253 }

new/usr/src/lib/openssl/libsunw_crypto/des/cfb64enc.c 1

**
 4408 Fri May 30 18:31:42 2014
new/usr/src/lib/openssl/libsunw_crypto/des/cfb64enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/cfb64enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include "des_locl.h"

61 /* The input and output encrypted as though 64bit cfb mode is being

new/usr/src/lib/openssl/libsunw_crypto/des/cfb64enc.c 2

62 * used. The extra state information to record how much of the
63 * 64bit block we have used is contained in *num;
64 */

66 void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
67 long length, DES_key_schedule *schedule,
68 DES_cblock *ivec, int *num, int enc)
69 {
70 register DES_LONG v0,v1;
71 register long l=length;
72 register int n= *num;
73 DES_LONG ti[2];
74 unsigned char *iv,c,cc;

76 iv = &(*ivec)[0];
77 if (enc)
78 {
79 while (l--)
80 {
81 if (n == 0)
82 {
83 c2l(iv,v0); ti[0]=v0;
84 c2l(iv,v1); ti[1]=v1;
85 DES_encrypt1(ti,schedule,DES_ENCRYPT);
86 iv = &(*ivec)[0];
87 v0=ti[0]; l2c(v0,iv);
88 v0=ti[1]; l2c(v0,iv);
89 iv = &(*ivec)[0];
90 }
91 c= *(in++)^iv[n];
92 *(out++)=c;
93 iv[n]=c;
94 n=(n+1)&0x07;
95 }
96 }
97 else
98 {
99 while (l--)
100 {
101 if (n == 0)
102 {
103 c2l(iv,v0); ti[0]=v0;
104 c2l(iv,v1); ti[1]=v1;
105 DES_encrypt1(ti,schedule,DES_ENCRYPT);
106 iv = &(*ivec)[0];
107 v0=ti[0]; l2c(v0,iv);
108 v0=ti[1]; l2c(v0,iv);
109 iv = &(*ivec)[0];
110 }
111 cc= *(in++);
112 c=iv[n];
113 iv[n]=cc;
114 *(out++)=c^cc;
115 n=(n+1)&0x07;
116 }
117 }
118 v0=v1=ti[0]=ti[1]=c=cc=0;
119 *num=n;
120 }

new/usr/src/lib/openssl/libsunw_crypto/des/cfb_enc.c 1

**
 6154 Fri May 30 18:31:42 2014
new/usr/src/lib/openssl/libsunw_crypto/des/cfb_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/cfb_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include "e_os.h"
60 #include "des_locl.h"
61 #include <assert.h>

new/usr/src/lib/openssl/libsunw_crypto/des/cfb_enc.c 2

63 /* The input and output are loaded in multiples of 8 bits.
64 * What this means is that if you hame numbits=12 and length=2
65 * the first 12 bits will be retrieved from the first byte and half
66 * the second. The second 12 bits will come from the 3rd and half the 4th
67 * byte.
68 */
69 /* Until Aug 1 2003 this function did not correctly implement CFB-r, so it
70 * will not be compatible with any encryption prior to that date. Ben. */
71 void DES_cfb_encrypt(const unsigned char *in, unsigned char *out, int numbits,
72 long length, DES_key_schedule *schedule, DES_cblock *ivec,
73 int enc)
74 {
75 register DES_LONG d0,d1,v0,v1;
76 register unsigned long l=length;
77 register int num=numbits/8,n=(numbits+7)/8,i,rem=numbits%8;
78 DES_LONG ti[2];
79 unsigned char *iv;
80 #ifndef L_ENDIAN
81 unsigned char ovec[16];
82 #else
83 unsigned int sh[4];
84 unsigned char *ovec=(unsigned char *)sh;

86 /* I kind of count that compiler optimizes away this assertioni,*/
87 assert (sizeof(sh[0])==4); /* as this holds true for all, */
88 /* but 16-bit platforms... */
89
90 #endif

92 if (numbits<=0 || numbits > 64) return;
93 iv = &(*ivec)[0];
94 c2l(iv,v0);
95 c2l(iv,v1);
96 if (enc)
97 {
98 while (l >= (unsigned long)n)
99 {
100 l-=n;
101 ti[0]=v0;
102 ti[1]=v1;
103 DES_encrypt1((DES_LONG *)ti,schedule,DES_ENCRYPT);
104 c2ln(in,d0,d1,n);
105 in+=n;
106 d0^=ti[0];
107 d1^=ti[1];
108 l2cn(d0,d1,out,n);
109 out+=n;
110 /* 30-08-94 - eay - changed because l>>32 and
111 * l<<32 are bad under gcc :-(*/
112 if (numbits == 32)
113 { v0=v1; v1=d0; }
114 else if (numbits == 64)
115 { v0=d0; v1=d1; }
116 else
117 {
118 #ifndef L_ENDIAN
119 iv=&ovec[0];
120 l2c(v0,iv);
121 l2c(v1,iv);
122 l2c(d0,iv);
123 l2c(d1,iv);
124 #else
125 sh[0]=v0, sh[1]=v1, sh[2]=d0, sh[3]=d1;
126 #endif
127 if (rem==0)

new/usr/src/lib/openssl/libsunw_crypto/des/cfb_enc.c 3

128 memmove(ovec,ovec+num,8);
129 else
130 for(i=0 ; i < 8 ; ++i)
131 ovec[i]=ovec[i+num]<<rem |
132 ovec[i+num+1]>>(8-rem);
133 #ifdef L_ENDIAN
134 v0=sh[0], v1=sh[1];
135 #else
136 iv=&ovec[0];
137 c2l(iv,v0);
138 c2l(iv,v1);
139 #endif
140 }
141 }
142 }
143 else
144 {
145 while (l >= (unsigned long)n)
146 {
147 l-=n;
148 ti[0]=v0;
149 ti[1]=v1;
150 DES_encrypt1((DES_LONG *)ti,schedule,DES_ENCRYPT);
151 c2ln(in,d0,d1,n);
152 in+=n;
153 /* 30-08-94 - eay - changed because l>>32 and
154 * l<<32 are bad under gcc :-(*/
155 if (numbits == 32)
156 { v0=v1; v1=d0; }
157 else if (numbits == 64)
158 { v0=d0; v1=d1; }
159 else
160 {
161 #ifndef L_ENDIAN
162 iv=&ovec[0];
163 l2c(v0,iv);
164 l2c(v1,iv);
165 l2c(d0,iv);
166 l2c(d1,iv);
167 #else
168 sh[0]=v0, sh[1]=v1, sh[2]=d0, sh[3]=d1;
169 #endif
170 if (rem==0)
171 memmove(ovec,ovec+num,8);
172 else
173 for(i=0 ; i < 8 ; ++i)
174 ovec[i]=ovec[i+num]<<rem |
175 ovec[i+num+1]>>(8-rem);
176 #ifdef L_ENDIAN
177 v0=sh[0], v1=sh[1];
178 #else
179 iv=&ovec[0];
180 c2l(iv,v0);
181 c2l(iv,v1);
182 #endif
183 }
184 d0^=ti[0];
185 d1^=ti[1];
186 l2cn(d0,d1,out,n);
187 out+=n;
188 }
189 }
190 iv = &(*ivec)[0];
191 l2c(v0,iv);
192 l2c(v1,iv);
193 v0=v1=d0=d1=ti[0]=ti[1]=0;

new/usr/src/lib/openssl/libsunw_crypto/des/cfb_enc.c 4

194 }

new/usr/src/lib/openssl/libsunw_crypto/des/des_enc.c 1

**
 10528 Fri May 30 18:31:42 2014
new/usr/src/lib/openssl/libsunw_crypto/des/des_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/des_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <des_locl.h>
60 #include <spr.h>

new/usr/src/lib/openssl/libsunw_crypto/des/des_enc.c 2

62 void DES_encrypt1(DES_LONG *data, DES_key_schedule *ks, int enc)
63 {
64 register DES_LONG l,r,t,u;
65 #ifdef DES_PTR
66 register const unsigned char *des_SP=(const unsigned char *)DES_SPtrans;
67 #endif
68 #ifndef DES_UNROLL
69 register int i;
70 #endif
71 register DES_LONG *s;

73 r=data[0];
74 l=data[1];

76 IP(r,l);
77 /* Things have been modified so that the initial rotate is
78 * done outside the loop. This required the
79 * DES_SPtrans values in sp.h to be rotated 1 bit to the right.
80 * One perl script later and things have a 5% speed up on a sparc2.
81 * Thanks to Richard Outerbridge <71755.204@CompuServe.COM>
82 * for pointing this out. */
83 /* clear the top bits on machines with 8byte longs */
84 /* shift left by 2 */
85 r=ROTATE(r,29)&0xffffffffL;
86 l=ROTATE(l,29)&0xffffffffL;

88 s=ks->ks->deslong;
89 /* I don’t know if it is worth the effort of loop unrolling the
90 * inner loop */
91 if (enc)
92 {
93 #ifdef DES_UNROLL
94 D_ENCRYPT(l,r, 0); /* 1 */
95 D_ENCRYPT(r,l, 2); /* 2 */
96 D_ENCRYPT(l,r, 4); /* 3 */
97 D_ENCRYPT(r,l, 6); /* 4 */
98 D_ENCRYPT(l,r, 8); /* 5 */
99 D_ENCRYPT(r,l,10); /* 6 */
100 D_ENCRYPT(l,r,12); /* 7 */
101 D_ENCRYPT(r,l,14); /* 8 */
102 D_ENCRYPT(l,r,16); /* 9 */
103 D_ENCRYPT(r,l,18); /* 10 */
104 D_ENCRYPT(l,r,20); /* 11 */
105 D_ENCRYPT(r,l,22); /* 12 */
106 D_ENCRYPT(l,r,24); /* 13 */
107 D_ENCRYPT(r,l,26); /* 14 */
108 D_ENCRYPT(l,r,28); /* 15 */
109 D_ENCRYPT(r,l,30); /* 16 */
110 #else
111 for (i=0; i<32; i+=4)
112 {
113 D_ENCRYPT(l,r,i+0); /* 1 */
114 D_ENCRYPT(r,l,i+2); /* 2 */
115 }
116 #endif
117 }
118 else
119 {
120 #ifdef DES_UNROLL
121 D_ENCRYPT(l,r,30); /* 16 */
122 D_ENCRYPT(r,l,28); /* 15 */
123 D_ENCRYPT(l,r,26); /* 14 */
124 D_ENCRYPT(r,l,24); /* 13 */
125 D_ENCRYPT(l,r,22); /* 12 */
126 D_ENCRYPT(r,l,20); /* 11 */
127 D_ENCRYPT(l,r,18); /* 10 */

new/usr/src/lib/openssl/libsunw_crypto/des/des_enc.c 3

128 D_ENCRYPT(r,l,16); /* 9 */
129 D_ENCRYPT(l,r,14); /* 8 */
130 D_ENCRYPT(r,l,12); /* 7 */
131 D_ENCRYPT(l,r,10); /* 6 */
132 D_ENCRYPT(r,l, 8); /* 5 */
133 D_ENCRYPT(l,r, 6); /* 4 */
134 D_ENCRYPT(r,l, 4); /* 3 */
135 D_ENCRYPT(l,r, 2); /* 2 */
136 D_ENCRYPT(r,l, 0); /* 1 */
137 #else
138 for (i=30; i>0; i-=4)
139 {
140 D_ENCRYPT(l,r,i-0); /* 16 */
141 D_ENCRYPT(r,l,i-2); /* 15 */
142 }
143 #endif
144 }

146 /* rotate and clear the top bits on machines with 8byte longs */
147 l=ROTATE(l,3)&0xffffffffL;
148 r=ROTATE(r,3)&0xffffffffL;

150 FP(r,l);
151 data[0]=l;
152 data[1]=r;
153 l=r=t=u=0;
154 }

156 void DES_encrypt2(DES_LONG *data, DES_key_schedule *ks, int enc)
157 {
158 register DES_LONG l,r,t,u;
159 #ifdef DES_PTR
160 register const unsigned char *des_SP=(const unsigned char *)DES_SPtrans;
161 #endif
162 #ifndef DES_UNROLL
163 register int i;
164 #endif
165 register DES_LONG *s;

167 r=data[0];
168 l=data[1];

170 /* Things have been modified so that the initial rotate is
171 * done outside the loop. This required the
172 * DES_SPtrans values in sp.h to be rotated 1 bit to the right.
173 * One perl script later and things have a 5% speed up on a sparc2.
174 * Thanks to Richard Outerbridge <71755.204@CompuServe.COM>
175 * for pointing this out. */
176 /* clear the top bits on machines with 8byte longs */
177 r=ROTATE(r,29)&0xffffffffL;
178 l=ROTATE(l,29)&0xffffffffL;

180 s=ks->ks->deslong;
181 /* I don’t know if it is worth the effort of loop unrolling the
182 * inner loop */
183 if (enc)
184 {
185 #ifdef DES_UNROLL
186 D_ENCRYPT(l,r, 0); /* 1 */
187 D_ENCRYPT(r,l, 2); /* 2 */
188 D_ENCRYPT(l,r, 4); /* 3 */
189 D_ENCRYPT(r,l, 6); /* 4 */
190 D_ENCRYPT(l,r, 8); /* 5 */
191 D_ENCRYPT(r,l,10); /* 6 */
192 D_ENCRYPT(l,r,12); /* 7 */
193 D_ENCRYPT(r,l,14); /* 8 */

new/usr/src/lib/openssl/libsunw_crypto/des/des_enc.c 4

194 D_ENCRYPT(l,r,16); /* 9 */
195 D_ENCRYPT(r,l,18); /* 10 */
196 D_ENCRYPT(l,r,20); /* 11 */
197 D_ENCRYPT(r,l,22); /* 12 */
198 D_ENCRYPT(l,r,24); /* 13 */
199 D_ENCRYPT(r,l,26); /* 14 */
200 D_ENCRYPT(l,r,28); /* 15 */
201 D_ENCRYPT(r,l,30); /* 16 */
202 #else
203 for (i=0; i<32; i+=4)
204 {
205 D_ENCRYPT(l,r,i+0); /* 1 */
206 D_ENCRYPT(r,l,i+2); /* 2 */
207 }
208 #endif
209 }
210 else
211 {
212 #ifdef DES_UNROLL
213 D_ENCRYPT(l,r,30); /* 16 */
214 D_ENCRYPT(r,l,28); /* 15 */
215 D_ENCRYPT(l,r,26); /* 14 */
216 D_ENCRYPT(r,l,24); /* 13 */
217 D_ENCRYPT(l,r,22); /* 12 */
218 D_ENCRYPT(r,l,20); /* 11 */
219 D_ENCRYPT(l,r,18); /* 10 */
220 D_ENCRYPT(r,l,16); /* 9 */
221 D_ENCRYPT(l,r,14); /* 8 */
222 D_ENCRYPT(r,l,12); /* 7 */
223 D_ENCRYPT(l,r,10); /* 6 */
224 D_ENCRYPT(r,l, 8); /* 5 */
225 D_ENCRYPT(l,r, 6); /* 4 */
226 D_ENCRYPT(r,l, 4); /* 3 */
227 D_ENCRYPT(l,r, 2); /* 2 */
228 D_ENCRYPT(r,l, 0); /* 1 */
229 #else
230 for (i=30; i>0; i-=4)
231 {
232 D_ENCRYPT(l,r,i-0); /* 16 */
233 D_ENCRYPT(r,l,i-2); /* 15 */
234 }
235 #endif
236 }
237 /* rotate and clear the top bits on machines with 8byte longs */
238 data[0]=ROTATE(l,3)&0xffffffffL;
239 data[1]=ROTATE(r,3)&0xffffffffL;
240 l=r=t=u=0;
241 }

243 void DES_encrypt3(DES_LONG *data, DES_key_schedule *ks1,
244 DES_key_schedule *ks2, DES_key_schedule *ks3)
245 {
246 register DES_LONG l,r;

248 l=data[0];
249 r=data[1];
250 IP(l,r);
251 data[0]=l;
252 data[1]=r;
253 DES_encrypt2((DES_LONG *)data,ks1,DES_ENCRYPT);
254 DES_encrypt2((DES_LONG *)data,ks2,DES_DECRYPT);
255 DES_encrypt2((DES_LONG *)data,ks3,DES_ENCRYPT);
256 l=data[0];
257 r=data[1];
258 FP(r,l);
259 data[0]=l;

new/usr/src/lib/openssl/libsunw_crypto/des/des_enc.c 5

260 data[1]=r;
261 }

263 void DES_decrypt3(DES_LONG *data, DES_key_schedule *ks1,
264 DES_key_schedule *ks2, DES_key_schedule *ks3)
265 {
266 register DES_LONG l,r;

268 l=data[0];
269 r=data[1];
270 IP(l,r);
271 data[0]=l;
272 data[1]=r;
273 DES_encrypt2((DES_LONG *)data,ks3,DES_DECRYPT);
274 DES_encrypt2((DES_LONG *)data,ks2,DES_ENCRYPT);
275 DES_encrypt2((DES_LONG *)data,ks1,DES_DECRYPT);
276 l=data[0];
277 r=data[1];
278 FP(r,l);
279 data[0]=l;
280 data[1]=r;
281 }

283 #ifndef DES_DEFAULT_OPTIONS

285 #undef CBC_ENC_C__DONT_UPDATE_IV
286 #include "ncbc_enc.c" /* DES_ncbc_encrypt */

288 void DES_ede3_cbc_encrypt(const unsigned char *input, unsigned char *output,
289 long length, DES_key_schedule *ks1,
290 DES_key_schedule *ks2, DES_key_schedule *ks3,
291 DES_cblock *ivec, int enc)
292 {
293 register DES_LONG tin0,tin1;
294 register DES_LONG tout0,tout1,xor0,xor1;
295 register const unsigned char *in;
296 unsigned char *out;
297 register long l=length;
298 DES_LONG tin[2];
299 unsigned char *iv;

301 in=input;
302 out=output;
303 iv = &(*ivec)[0];

305 if (enc)
306 {
307 c2l(iv,tout0);
308 c2l(iv,tout1);
309 for (l-=8; l>=0; l-=8)
310 {
311 c2l(in,tin0);
312 c2l(in,tin1);
313 tin0^=tout0;
314 tin1^=tout1;

316 tin[0]=tin0;
317 tin[1]=tin1;
318 DES_encrypt3((DES_LONG *)tin,ks1,ks2,ks3);
319 tout0=tin[0];
320 tout1=tin[1];

322 l2c(tout0,out);
323 l2c(tout1,out);
324 }
325 if (l != -8)

new/usr/src/lib/openssl/libsunw_crypto/des/des_enc.c 6

326 {
327 c2ln(in,tin0,tin1,l+8);
328 tin0^=tout0;
329 tin1^=tout1;

331 tin[0]=tin0;
332 tin[1]=tin1;
333 DES_encrypt3((DES_LONG *)tin,ks1,ks2,ks3);
334 tout0=tin[0];
335 tout1=tin[1];

337 l2c(tout0,out);
338 l2c(tout1,out);
339 }
340 iv = &(*ivec)[0];
341 l2c(tout0,iv);
342 l2c(tout1,iv);
343 }
344 else
345 {
346 register DES_LONG t0,t1;

348 c2l(iv,xor0);
349 c2l(iv,xor1);
350 for (l-=8; l>=0; l-=8)
351 {
352 c2l(in,tin0);
353 c2l(in,tin1);

355 t0=tin0;
356 t1=tin1;

358 tin[0]=tin0;
359 tin[1]=tin1;
360 DES_decrypt3((DES_LONG *)tin,ks1,ks2,ks3);
361 tout0=tin[0];
362 tout1=tin[1];

364 tout0^=xor0;
365 tout1^=xor1;
366 l2c(tout0,out);
367 l2c(tout1,out);
368 xor0=t0;
369 xor1=t1;
370 }
371 if (l != -8)
372 {
373 c2l(in,tin0);
374 c2l(in,tin1);
375
376 t0=tin0;
377 t1=tin1;

379 tin[0]=tin0;
380 tin[1]=tin1;
381 DES_decrypt3((DES_LONG *)tin,ks1,ks2,ks3);
382 tout0=tin[0];
383 tout1=tin[1];
384
385 tout0^=xor0;
386 tout1^=xor1;
387 l2cn(tout0,tout1,out,l+8);
388 xor0=t0;
389 xor1=t1;
390 }

new/usr/src/lib/openssl/libsunw_crypto/des/des_enc.c 7

392 iv = &(*ivec)[0];
393 l2c(xor0,iv);
394 l2c(xor1,iv);
395 }
396 tin0=tin1=tout0=tout1=xor0=xor1=0;
397 tin[0]=tin[1]=0;
398 }

400 #endif /* DES_DEFAULT_OPTIONS */

new/usr/src/lib/openssl/libsunw_crypto/des/des_old.c 1

**
 10729 Fri May 30 18:31:42 2014
new/usr/src/lib/openssl/libsunw_crypto/des/des_old.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/des_old.c -*- mode:C; c-file-style: "eay" -*- */

3 /* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
4 *
5 * The function names in here are deprecated and are only present to
6 * provide an interface compatible with libdes. OpenSSL now provides
7 * functions where "des_" has been replaced with "DES_" in the names,
8 * to make it possible to make incompatible changes that are needed
9 * for C type security and other stuff.
10 *
11 * Please consider starting to use the DES_ functions rather than the
12 * des_ ones. The des_ functions will dissapear completely before
13 * OpenSSL 1.0!
14 *
15 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
16 */

18 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
19 * project 2001.
20 */
21 /* ==
22 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
23 *
24 * Redistribution and use in source and binary forms, with or without
25 * modification, are permitted provided that the following conditions
26 * are met:
27 *
28 * 1. Redistributions of source code must retain the above copyright
29 * notice, this list of conditions and the following disclaimer.
30 *
31 * 2. Redistributions in binary form must reproduce the above copyright
32 * notice, this list of conditions and the following disclaimer in
33 * the documentation and/or other materials provided with the
34 * distribution.
35 *
36 * 3. All advertising materials mentioning features or use of this
37 * software must display the following acknowledgment:
38 * "This product includes software developed by the OpenSSL Project
39 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
40 *
41 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
42 * endorse or promote products derived from this software without
43 * prior written permission. For written permission, please contact
44 * openssl-core@openssl.org.
45 *
46 * 5. Products derived from this software may not be called "OpenSSL"
47 * nor may "OpenSSL" appear in their names without prior written
48 * permission of the OpenSSL Project.
49 *
50 * 6. Redistributions of any form whatsoever must retain the following
51 * acknowledgment:
52 * "This product includes software developed by the OpenSSL Project
53 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
56 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
59 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
60 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

new/usr/src/lib/openssl/libsunw_crypto/des/des_old.c 2

62 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
64 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
66 * OF THE POSSIBILITY OF SUCH DAMAGE.
67 * ==
68 *
69 * This product includes cryptographic software written by Eric Young
70 * (eay@cryptsoft.com). This product includes software written by Tim
71 * Hudson (tjh@cryptsoft.com).
72 *
73 */

75 #define OPENSSL_DES_LIBDES_COMPATIBILITY
76 #include <openssl/des.h>
77 #include <openssl/rand.h>

79 const char *_ossl_old_des_options(void)
80 {
81 return DES_options();
82 }
83 void _ossl_old_des_ecb3_encrypt(_ossl_old_des_cblock *input,_ossl_old_des_cblock
84 des_key_schedule ks1,des_key_schedule ks2,
85 des_key_schedule ks3, int enc)
86 {
87 DES_ecb3_encrypt((const_DES_cblock *)input, output,
88 (DES_key_schedule *)ks1, (DES_key_schedule *)ks2,
89 (DES_key_schedule *)ks3, enc);
90 }
91 DES_LONG _ossl_old_des_cbc_cksum(_ossl_old_des_cblock *input,_ossl_old_des_cbloc
92 long length,des_key_schedule schedule,_ossl_old_des_cblock *ivec)
93 {
94 return DES_cbc_cksum((unsigned char *)input, output, length,
95 (DES_key_schedule *)schedule, ivec);
96 }
97 void _ossl_old_des_cbc_encrypt(_ossl_old_des_cblock *input,_ossl_old_des_cblock
98 des_key_schedule schedule,_ossl_old_des_cblock *ivec,int enc)
99 {
100 DES_cbc_encrypt((unsigned char *)input, (unsigned char *)output,
101 length, (DES_key_schedule *)schedule, ivec, enc);
102 }
103 void _ossl_old_des_ncbc_encrypt(_ossl_old_des_cblock *input,_ossl_old_des_cblock
104 des_key_schedule schedule,_ossl_old_des_cblock *ivec,int enc)
105 {
106 DES_ncbc_encrypt((unsigned char *)input, (unsigned char *)output,
107 length, (DES_key_schedule *)schedule, ivec, enc);
108 }
109 void _ossl_old_des_xcbc_encrypt(_ossl_old_des_cblock *input,_ossl_old_des_cblock
110 des_key_schedule schedule,_ossl_old_des_cblock *ivec,
111 _ossl_old_des_cblock *inw,_ossl_old_des_cblock *outw,int enc)
112 {
113 DES_xcbc_encrypt((unsigned char *)input, (unsigned char *)output,
114 length, (DES_key_schedule *)schedule, ivec, inw, outw, enc);
115 }
116 void _ossl_old_des_cfb_encrypt(unsigned char *in,unsigned char *out,int numbits,
117 long length,des_key_schedule schedule,_ossl_old_des_cblock *ivec,int enc
118 {
119 DES_cfb_encrypt(in, out, numbits, length,
120 (DES_key_schedule *)schedule, ivec, enc);
121 }
122 void _ossl_old_des_ecb_encrypt(_ossl_old_des_cblock *input,_ossl_old_des_cblock
123 des_key_schedule ks,int enc)
124 {
125 DES_ecb_encrypt(input, output, (DES_key_schedule *)ks, enc);
126 }
127 void _ossl_old_des_encrypt(DES_LONG *data,des_key_schedule ks, int enc)

new/usr/src/lib/openssl/libsunw_crypto/des/des_old.c 3

128 {
129 DES_encrypt1(data, (DES_key_schedule *)ks, enc);
130 }
131 void _ossl_old_des_encrypt2(DES_LONG *data,des_key_schedule ks, int enc)
132 {
133 DES_encrypt2(data, (DES_key_schedule *)ks, enc);
134 }
135 void _ossl_old_des_encrypt3(DES_LONG *data, des_key_schedule ks1,
136 des_key_schedule ks2, des_key_schedule ks3)
137 {
138 DES_encrypt3(data, (DES_key_schedule *)ks1, (DES_key_schedule *)ks2,
139 (DES_key_schedule *)ks3);
140 }
141 void _ossl_old_des_decrypt3(DES_LONG *data, des_key_schedule ks1,
142 des_key_schedule ks2, des_key_schedule ks3)
143 {
144 DES_decrypt3(data, (DES_key_schedule *)ks1, (DES_key_schedule *)ks2,
145 (DES_key_schedule *)ks3);
146 }
147 void _ossl_old_des_ede3_cbc_encrypt(_ossl_old_des_cblock *input, _ossl_old_des_c
148 long length, des_key_schedule ks1, des_key_schedule ks2,
149 des_key_schedule ks3, _ossl_old_des_cblock *ivec, int enc)
150 {
151 DES_ede3_cbc_encrypt((unsigned char *)input, (unsigned char *)output,
152 length, (DES_key_schedule *)ks1, (DES_key_schedule *)ks2,
153 (DES_key_schedule *)ks3, ivec, enc);
154 }
155 void _ossl_old_des_ede3_cfb64_encrypt(unsigned char *in, unsigned char *out,
156 long length, des_key_schedule ks1, des_key_schedule ks2,
157 des_key_schedule ks3, _ossl_old_des_cblock *ivec, int *num, int enc)
158 {
159 DES_ede3_cfb64_encrypt(in, out, length,
160 (DES_key_schedule *)ks1, (DES_key_schedule *)ks2,
161 (DES_key_schedule *)ks3, ivec, num, enc);
162 }
163 void _ossl_old_des_ede3_ofb64_encrypt(unsigned char *in, unsigned char *out,
164 long length, des_key_schedule ks1, des_key_schedule ks2,
165 des_key_schedule ks3, _ossl_old_des_cblock *ivec, int *num)
166 {
167 DES_ede3_ofb64_encrypt(in, out, length,
168 (DES_key_schedule *)ks1, (DES_key_schedule *)ks2,
169 (DES_key_schedule *)ks3, ivec, num);
170 }

172 #if 0 /* broken code, preserved just in case anyone specifically looks for this
173 void _ossl_old_des_xwhite_in2out(_ossl_old_des_cblock (*des_key), _ossl_old_des_
174 _ossl_old_des_cblock (*out_white))
175 {
176 DES_xwhite_in2out(des_key, in_white, out_white);
177 }
178 #endif

180 int _ossl_old_des_enc_read(int fd,char *buf,int len,des_key_schedule sched,
181 _ossl_old_des_cblock *iv)
182 {
183 return DES_enc_read(fd, buf, len, (DES_key_schedule *)sched, iv);
184 }
185 int _ossl_old_des_enc_write(int fd,char *buf,int len,des_key_schedule sched,
186 _ossl_old_des_cblock *iv)
187 {
188 return DES_enc_write(fd, buf, len, (DES_key_schedule *)sched, iv);
189 }
190 char *_ossl_old_des_fcrypt(const char *buf,const char *salt, char *ret)
191 {
192 return DES_fcrypt(buf, salt, ret);
193 }

new/usr/src/lib/openssl/libsunw_crypto/des/des_old.c 4

194 char *_ossl_old_des_crypt(const char *buf,const char *salt)
195 {
196 return DES_crypt(buf, salt);
197 }
198 char *_ossl_old_crypt(const char *buf,const char *salt)
199 {
200 return DES_crypt(buf, salt);
201 }
202 void _ossl_old_des_ofb_encrypt(unsigned char *in,unsigned char *out,
203 int numbits,long length,des_key_schedule schedule,_ossl_old_des_cblock *
204 {
205 DES_ofb_encrypt(in, out, numbits, length, (DES_key_schedule *)schedule,
206 ivec);
207 }
208 void _ossl_old_des_pcbc_encrypt(_ossl_old_des_cblock *input,_ossl_old_des_cblock
209 des_key_schedule schedule,_ossl_old_des_cblock *ivec,int enc)
210 {
211 DES_pcbc_encrypt((unsigned char *)input, (unsigned char *)output,
212 length, (DES_key_schedule *)schedule, ivec, enc);
213 }
214 DES_LONG _ossl_old_des_quad_cksum(_ossl_old_des_cblock *input,_ossl_old_des_cblo
215 long length,int out_count,_ossl_old_des_cblock *seed)
216 {
217 return DES_quad_cksum((unsigned char *)input, output, length,
218 out_count, seed);
219 }
220 void _ossl_old_des_random_seed(_ossl_old_des_cblock key)
221 {
222 RAND_seed(key, sizeof(_ossl_old_des_cblock));
223 }
224 void _ossl_old_des_random_key(_ossl_old_des_cblock ret)
225 {
226 DES_random_key((DES_cblock *)ret);
227 }
228 int _ossl_old_des_read_password(_ossl_old_des_cblock *key, const char *prompt,
229 int verify)
230 {
231 return DES_read_password(key, prompt, verify);
232 }
233 int _ossl_old_des_read_2passwords(_ossl_old_des_cblock *key1, _ossl_old_des_cblo
234 const char *prompt, int verify)
235 {
236 return DES_read_2passwords(key1, key2, prompt, verify);
237 }
238 void _ossl_old_des_set_odd_parity(_ossl_old_des_cblock *key)
239 {
240 DES_set_odd_parity(key);
241 }
242 int _ossl_old_des_is_weak_key(_ossl_old_des_cblock *key)
243 {
244 return DES_is_weak_key(key);
245 }
246 int _ossl_old_des_set_key(_ossl_old_des_cblock *key,des_key_schedule schedule)
247 {
248 return DES_set_key(key, (DES_key_schedule *)schedule);
249 }
250 int _ossl_old_des_key_sched(_ossl_old_des_cblock *key,des_key_schedule schedule)
251 {
252 return DES_key_sched(key, (DES_key_schedule *)schedule);
253 }
254 void _ossl_old_des_string_to_key(char *str,_ossl_old_des_cblock *key)
255 {
256 DES_string_to_key(str, key);
257 }
258 void _ossl_old_des_string_to_2keys(char *str,_ossl_old_des_cblock *key1,_ossl_ol
259 {

new/usr/src/lib/openssl/libsunw_crypto/des/des_old.c 5

260 DES_string_to_2keys(str, key1, key2);
261 }
262 void _ossl_old_des_cfb64_encrypt(unsigned char *in, unsigned char *out, long len
263 des_key_schedule schedule, _ossl_old_des_cblock *ivec, int *num, int enc
264 {
265 DES_cfb64_encrypt(in, out, length, (DES_key_schedule *)schedule,
266 ivec, num, enc);
267 }
268 void _ossl_old_des_ofb64_encrypt(unsigned char *in, unsigned char *out, long len
269 des_key_schedule schedule, _ossl_old_des_cblock *ivec, int *num)
270 {
271 DES_ofb64_encrypt(in, out, length, (DES_key_schedule *)schedule,
272 ivec, num);
273 }

new/usr/src/lib/openssl/libsunw_crypto/des/des_old2.c 1

**
 3597 Fri May 30 18:31:42 2014
new/usr/src/lib/openssl/libsunw_crypto/des/des_old2.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/des_old.c -*- mode:C; c-file-style: "eay" -*- */

3 /* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
4 *
5 * The function names in here are deprecated and are only present to
6 * provide an interface compatible with OpenSSL 0.9.6c. OpenSSL now
7 * provides functions where "des_" has been replaced with "DES_" in
8 * the names, to make it possible to make incompatible changes that
9 * are needed for C type security and other stuff.
10 *
11 * Please consider starting to use the DES_ functions rather than the
12 * des_ ones. The des_ functions will dissapear completely before
13 * OpenSSL 1.0!
14 *
15 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
16 */

18 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
19 * project 2001.
20 */
21 /* ==
22 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
23 *
24 * Redistribution and use in source and binary forms, with or without
25 * modification, are permitted provided that the following conditions
26 * are met:
27 *
28 * 1. Redistributions of source code must retain the above copyright
29 * notice, this list of conditions and the following disclaimer.
30 *
31 * 2. Redistributions in binary form must reproduce the above copyright
32 * notice, this list of conditions and the following disclaimer in
33 * the documentation and/or other materials provided with the
34 * distribution.
35 *
36 * 3. All advertising materials mentioning features or use of this
37 * software must display the following acknowledgment:
38 * "This product includes software developed by the OpenSSL Project
39 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
40 *
41 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
42 * endorse or promote products derived from this software without
43 * prior written permission. For written permission, please contact
44 * openssl-core@openssl.org.
45 *
46 * 5. Products derived from this software may not be called "OpenSSL"
47 * nor may "OpenSSL" appear in their names without prior written
48 * permission of the OpenSSL Project.
49 *
50 * 6. Redistributions of any form whatsoever must retain the following
51 * acknowledgment:
52 * "This product includes software developed by the OpenSSL Project
53 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
56 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
59 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
60 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
61 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

new/usr/src/lib/openssl/libsunw_crypto/des/des_old2.c 2

62 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
64 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
66 * OF THE POSSIBILITY OF SUCH DAMAGE.
67 * ==
68 *
69 * This product includes cryptographic software written by Eric Young
70 * (eay@cryptsoft.com). This product includes software written by Tim
71 * Hudson (tjh@cryptsoft.com).
72 *
73 */

75 #undef OPENSSL_DES_LIBDES_COMPATIBILITY
76 #include <openssl/des.h>
77 #include <openssl/rand.h>

79 void _ossl_096_des_random_seed(DES_cblock *key)
80 {
81 RAND_seed(key, sizeof(DES_cblock));
82 }

new/usr/src/lib/openssl/libsunw_crypto/des/ecb3_enc.c 1

**
 3694 Fri May 30 18:31:42 2014
new/usr/src/lib/openssl/libsunw_crypto/des/ecb3_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/ecb3_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include "des_locl.h"

61 void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,

new/usr/src/lib/openssl/libsunw_crypto/des/ecb3_enc.c 2

62 DES_key_schedule *ks1, DES_key_schedule *ks2,
63 DES_key_schedule *ks3,
64 int enc)
65 {
66 register DES_LONG l0,l1;
67 DES_LONG ll[2];
68 const unsigned char *in = &(*input)[0];
69 unsigned char *out = &(*output)[0];

71 c2l(in,l0);
72 c2l(in,l1);
73 ll[0]=l0;
74 ll[1]=l1;
75 if (enc)
76 DES_encrypt3(ll,ks1,ks2,ks3);
77 else
78 DES_decrypt3(ll,ks1,ks2,ks3);
79 l0=ll[0];
80 l1=ll[1];
81 l2c(l0,out);
82 l2c(l1,out);
83 }

new/usr/src/lib/openssl/libsunw_crypto/des/ecb_enc.c 1

**
 4391 Fri May 30 18:31:42 2014
new/usr/src/lib/openssl/libsunw_crypto/des/ecb_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/ecb_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include "des_locl.h"
60 #include "des_ver.h"
61 #include <openssl/opensslv.h>

new/usr/src/lib/openssl/libsunw_crypto/des/ecb_enc.c 2

62 #include <openssl/bio.h>

64 OPENSSL_GLOBAL const char libdes_version[]="libdes" OPENSSL_VERSION_PTEXT;
65 OPENSSL_GLOBAL const char DES_version[]="DES" OPENSSL_VERSION_PTEXT;

67 const char *DES_options(void)
68 {
69 static int init=1;
70 static char buf[32];

72 if (init)
73 {
74 const char *ptr,*unroll,*risc,*size;

76 #ifdef DES_PTR
77 ptr="ptr";
78 #else
79 ptr="idx";
80 #endif
81 #if defined(DES_RISC1) || defined(DES_RISC2)
82 #ifdef DES_RISC1
83 risc="risc1";
84 #endif
85 #ifdef DES_RISC2
86 risc="risc2";
87 #endif
88 #else
89 risc="cisc";
90 #endif
91 #ifdef DES_UNROLL
92 unroll="16";
93 #else
94 unroll="2";
95 #endif
96 if (sizeof(DES_LONG) != sizeof(long))
97 size="int";
98 else
99 size="long";
100 BIO_snprintf(buf,sizeof buf,"des(%s,%s,%s,%s)",ptr,risc,unroll,
101 size);
102 init=0;
103 }
104 return(buf);
105 }
106

108 void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
109 DES_key_schedule *ks, int enc)
110 {
111 register DES_LONG l;
112 DES_LONG ll[2];
113 const unsigned char *in = &(*input)[0];
114 unsigned char *out = &(*output)[0];

116 c2l(in,l); ll[0]=l;
117 c2l(in,l); ll[1]=l;
118 DES_encrypt1(ll,ks,enc);
119 l=ll[0]; l2c(l,out);
120 l=ll[1]; l2c(l,out);
121 l=ll[0]=ll[1]=0;
122 }

new/usr/src/lib/openssl/libsunw_crypto/des/ede_cbcm_enc.c 1

**
 5241 Fri May 30 18:31:42 2014
new/usr/src/lib/openssl/libsunw_crypto/des/ede_cbcm_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ede_cbcm_enc.c */
2 /* Written by Ben Laurie <ben@algroup.co.uk> for the OpenSSL
3 * project 13 Feb 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 /*

61 This is an implementation of Triple DES Cipher Block Chaining with Output

new/usr/src/lib/openssl/libsunw_crypto/des/ede_cbcm_enc.c 2

62 Feedback Masking, by Coppersmith, Johnson and Matyas, (IBM and Certicom).

64 Note that there is a known attack on this by Biham and Knudsen but it takes
65 a lot of work:

67 http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1998/CS/CS0928.ps.gz

69 */

71 #include <openssl/opensslconf.h> /* To see if OPENSSL_NO_DESCBCM is defined */

73 #ifndef OPENSSL_NO_DESCBCM
74 #include "des_locl.h"

76 void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
77 long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
78 DES_key_schedule *ks3, DES_cblock *ivec1, DES_cblock *ivec2,
79 int enc)
80 {
81 register DES_LONG tin0,tin1;
82 register DES_LONG tout0,tout1,xor0,xor1,m0,m1;
83 register long l=length;
84 DES_LONG tin[2];
85 unsigned char *iv1,*iv2;

87 iv1 = &(*ivec1)[0];
88 iv2 = &(*ivec2)[0];

90 if (enc)
91 {
92 c2l(iv1,m0);
93 c2l(iv1,m1);
94 c2l(iv2,tout0);
95 c2l(iv2,tout1);
96 for (l-=8; l>=-7; l-=8)
97 {
98 tin[0]=m0;
99 tin[1]=m1;
100 DES_encrypt1(tin,ks3,1);
101 m0=tin[0];
102 m1=tin[1];

104 if(l < 0)
105 {
106 c2ln(in,tin0,tin1,l+8);
107 }
108 else
109 {
110 c2l(in,tin0);
111 c2l(in,tin1);
112 }
113 tin0^=tout0;
114 tin1^=tout1;

116 tin[0]=tin0;
117 tin[1]=tin1;
118 DES_encrypt1(tin,ks1,1);
119 tin[0]^=m0;
120 tin[1]^=m1;
121 DES_encrypt1(tin,ks2,0);
122 tin[0]^=m0;
123 tin[1]^=m1;
124 DES_encrypt1(tin,ks1,1);
125 tout0=tin[0];
126 tout1=tin[1];

new/usr/src/lib/openssl/libsunw_crypto/des/ede_cbcm_enc.c 3

128 l2c(tout0,out);
129 l2c(tout1,out);
130 }
131 iv1=&(*ivec1)[0];
132 l2c(m0,iv1);
133 l2c(m1,iv1);

135 iv2=&(*ivec2)[0];
136 l2c(tout0,iv2);
137 l2c(tout1,iv2);
138 }
139 else
140 {
141 register DES_LONG t0,t1;

143 c2l(iv1,m0);
144 c2l(iv1,m1);
145 c2l(iv2,xor0);
146 c2l(iv2,xor1);
147 for (l-=8; l>=-7; l-=8)
148 {
149 tin[0]=m0;
150 tin[1]=m1;
151 DES_encrypt1(tin,ks3,1);
152 m0=tin[0];
153 m1=tin[1];

155 c2l(in,tin0);
156 c2l(in,tin1);

158 t0=tin0;
159 t1=tin1;

161 tin[0]=tin0;
162 tin[1]=tin1;
163 DES_encrypt1(tin,ks1,0);
164 tin[0]^=m0;
165 tin[1]^=m1;
166 DES_encrypt1(tin,ks2,1);
167 tin[0]^=m0;
168 tin[1]^=m1;
169 DES_encrypt1(tin,ks1,0);
170 tout0=tin[0];
171 tout1=tin[1];

173 tout0^=xor0;
174 tout1^=xor1;
175 if(l < 0)
176 {
177 l2cn(tout0,tout1,out,l+8);
178 }
179 else
180 {
181 l2c(tout0,out);
182 l2c(tout1,out);
183 }
184 xor0=t0;
185 xor1=t1;
186 }

188 iv1=&(*ivec1)[0];
189 l2c(m0,iv1);
190 l2c(m1,iv1);

192 iv2=&(*ivec2)[0];
193 l2c(xor0,iv2);

new/usr/src/lib/openssl/libsunw_crypto/des/ede_cbcm_enc.c 4

194 l2c(xor1,iv2);
195 }
196 tin0=tin1=tout0=tout1=xor0=xor1=0;
197 tin[0]=tin[1]=0;
198 }
199 #endif

new/usr/src/lib/openssl/libsunw_crypto/des/enc_read.c 1

**
 7558 Fri May 30 18:31:42 2014
new/usr/src/lib/openssl/libsunw_crypto/des/enc_read.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/enc_read.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <errno.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/des/enc_read.c 2

62 #include "des_locl.h"

64 /* This has some uglies in it but it works - even over sockets. */
65 /*extern int errno;*/
66 OPENSSL_IMPLEMENT_GLOBAL(int,DES_rw_mode,DES_PCBC_MODE)

69 /*
70 * WARNINGS:
71 *
72 * - The data format used by DES_enc_write() and DES_enc_read()
73 * has a cryptographic weakness: When asked to write more
74 * than MAXWRITE bytes, DES_enc_write will split the data
75 * into several chunks that are all encrypted
76 * using the same IV. So don’t use these functions unless you
77 * are sure you know what you do (in which case you might
78 * not want to use them anyway).
79 *
80 * - This code cannot handle non-blocking sockets.
81 *
82 * - This function uses an internal state and thus cannot be
83 * used on multiple files.
84 */

87 int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched,
88 DES_cblock *iv)
89 {
90 #if defined(OPENSSL_NO_POSIX_IO)
91 return(0);
92 #else
93 /* data to be unencrypted */
94 int net_num=0;
95 static unsigned char *net=NULL;
96 /* extra unencrypted data
97 * for when a block of 100 comes in but is des_read one byte at
98 * a time. */
99 static unsigned char *unnet=NULL;
100 static int unnet_start=0;
101 static int unnet_left=0;
102 static unsigned char *tmpbuf=NULL;
103 int i;
104 long num=0,rnum;
105 unsigned char *p;

107 if (tmpbuf == NULL)
108 {
109 tmpbuf=OPENSSL_malloc(BSIZE);
110 if (tmpbuf == NULL) return(-1);
111 }
112 if (net == NULL)
113 {
114 net=OPENSSL_malloc(BSIZE);
115 if (net == NULL) return(-1);
116 }
117 if (unnet == NULL)
118 {
119 unnet=OPENSSL_malloc(BSIZE);
120 if (unnet == NULL) return(-1);
121 }
122 /* left over data from last decrypt */
123 if (unnet_left != 0)
124 {
125 if (unnet_left < len)
126 {
127 /* we still still need more data but will return

new/usr/src/lib/openssl/libsunw_crypto/des/enc_read.c 3

128 * with the number of bytes we have - should always
129 * check the return value */
130 memcpy(buf,&(unnet[unnet_start]),
131 unnet_left);
132 /* eay 26/08/92 I had the next 2 lines
133 * reversed :-(*/
134 i=unnet_left;
135 unnet_start=unnet_left=0;
136 }
137 else
138 {
139 memcpy(buf,&(unnet[unnet_start]),len);
140 unnet_start+=len;
141 unnet_left-=len;
142 i=len;
143 }
144 return(i);
145 }

147 /* We need to get more data. */
148 if (len > MAXWRITE) len=MAXWRITE;

150 /* first - get the length */
151 while (net_num < HDRSIZE)
152 {
153 #ifndef OPENSSL_SYS_WIN32
154 i=read(fd,(void *)&(net[net_num]),HDRSIZE-net_num);
155 #else
156 i=_read(fd,(void *)&(net[net_num]),HDRSIZE-net_num);
157 #endif
158 #ifdef EINTR
159 if ((i == -1) && (errno == EINTR)) continue;
160 #endif
161 if (i <= 0) return(0);
162 net_num+=i;
163 }

165 /* we now have at net_num bytes in net */
166 p=net;
167 /* num=0; */
168 n2l(p,num);
169 /* num should be rounded up to the next group of eight
170 * we make sure that we have read a multiple of 8 bytes from the net.
171 */
172 if ((num > MAXWRITE) || (num < 0)) /* error */
173 return(-1);
174 rnum=(num < 8)?8:((num+7)/8*8);

176 net_num=0;
177 while (net_num < rnum)
178 {
179 #ifndef OPENSSL_SYS_WIN32
180 i=read(fd,(void *)&(net[net_num]),rnum-net_num);
181 #else
182 i=_read(fd,(void *)&(net[net_num]),rnum-net_num);
183 #endif
184 #ifdef EINTR
185 if ((i == -1) && (errno == EINTR)) continue;
186 #endif
187 if (i <= 0) return(0);
188 net_num+=i;
189 }

191 /* Check if there will be data left over. */
192 if (len < num)
193 {

new/usr/src/lib/openssl/libsunw_crypto/des/enc_read.c 4

194 if (DES_rw_mode & DES_PCBC_MODE)
195 DES_pcbc_encrypt(net,unnet,num,sched,iv,DES_DECRYPT);
196 else
197 DES_cbc_encrypt(net,unnet,num,sched,iv,DES_DECRYPT);
198 memcpy(buf,unnet,len);
199 unnet_start=len;
200 unnet_left=num-len;

202 /* The following line is done because we return num
203 * as the number of bytes read. */
204 num=len;
205 }
206 else
207 {
208 /* >output is a multiple of 8 byes, if len < rnum
209 * >we must be careful. The user must be aware that this
210 * >routine will write more bytes than he asked for.
211 * >The length of the buffer must be correct.
212 * FIXED - Should be ok now 18-9-90 - eay */
213 if (len < rnum)
214 {

216 if (DES_rw_mode & DES_PCBC_MODE)
217 DES_pcbc_encrypt(net,tmpbuf,num,sched,iv,
218 DES_DECRYPT);
219 else
220 DES_cbc_encrypt(net,tmpbuf,num,sched,iv,
221 DES_DECRYPT);

223 /* eay 26/08/92 fix a bug that returned more
224 * bytes than you asked for (returned len bytes :-(*/
225 memcpy(buf,tmpbuf,num);
226 }
227 else
228 {
229 if (DES_rw_mode & DES_PCBC_MODE)
230 DES_pcbc_encrypt(net,buf,num,sched,iv,
231 DES_DECRYPT);
232 else
233 DES_cbc_encrypt(net,buf,num,sched,iv,
234 DES_DECRYPT);
235 }
236 }
237 return num;
238 #endif /* OPENSSL_NO_POSIX_IO */
239 }

new/usr/src/lib/openssl/libsunw_crypto/des/enc_writ.c 1

**
 5758 Fri May 30 18:31:42 2014
new/usr/src/lib/openssl/libsunw_crypto/des/enc_writ.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/enc_writ.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <errno.h>
60 #include <time.h>
61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/des/enc_writ.c 2

62 #include "cryptlib.h"
63 #include "des_locl.h"
64 #include <openssl/rand.h>

66 /*
67 * WARNINGS:
68 *
69 * - The data format used by DES_enc_write() and DES_enc_read()
70 * has a cryptographic weakness: When asked to write more
71 * than MAXWRITE bytes, DES_enc_write will split the data
72 * into several chunks that are all encrypted
73 * using the same IV. So don’t use these functions unless you
74 * are sure you know what you do (in which case you might
75 * not want to use them anyway).
76 *
77 * - This code cannot handle non-blocking sockets.
78 */

80 int DES_enc_write(int fd, const void *_buf, int len,
81 DES_key_schedule *sched, DES_cblock *iv)
82 {
83 #if defined(OPENSSL_NO_POSIX_IO)
84 return (-1);
85 #else
86 #ifdef _LIBC
87 extern unsigned long time();
88 extern int write();
89 #endif
90 const unsigned char *buf=_buf;
91 long rnum;
92 int i,j,k,outnum;
93 static unsigned char *outbuf=NULL;
94 unsigned char shortbuf[8];
95 unsigned char *p;
96 const unsigned char *cp;
97 static int start=1;

99 if (outbuf == NULL)
100 {
101 outbuf=OPENSSL_malloc(BSIZE+HDRSIZE);
102 if (outbuf == NULL) return(-1);
103 }
104 /* If we are sending less than 8 bytes, the same char will look
105 * the same if we don’t pad it out with random bytes */
106 if (start)
107 {
108 start=0;
109 }

111 /* lets recurse if we want to send the data in small chunks */
112 if (len > MAXWRITE)
113 {
114 j=0;
115 for (i=0; i<len; i+=k)
116 {
117 k=DES_enc_write(fd,&(buf[i]),
118 ((len-i) > MAXWRITE)?MAXWRITE:(len-i),sched,iv);
119 if (k < 0)
120 return(k);
121 else
122 j+=k;
123 }
124 return(j);
125 }

127 /* write length first */

new/usr/src/lib/openssl/libsunw_crypto/des/enc_writ.c 3

128 p=outbuf;
129 l2n(len,p);

131 /* pad short strings */
132 if (len < 8)
133 {
134 cp=shortbuf;
135 memcpy(shortbuf,buf,len);
136 RAND_pseudo_bytes(shortbuf+len, 8-len);
137 rnum=8;
138 }
139 else
140 {
141 cp=buf;
142 rnum=((len+7)/8*8); /* round up to nearest eight */
143 }

145 if (DES_rw_mode & DES_PCBC_MODE)
146 DES_pcbc_encrypt(cp,&(outbuf[HDRSIZE]),(len<8)?8:len,sched,iv,
147 DES_ENCRYPT);
148 else
149 DES_cbc_encrypt(cp,&(outbuf[HDRSIZE]),(len<8)?8:len,sched,iv,
150 DES_ENCRYPT);

152 /* output */
153 outnum=rnum+HDRSIZE;

155 for (j=0; j<outnum; j+=i)
156 {
157 /* eay 26/08/92 I was not doing writing from where we
158 * got up to. */
159 #ifndef _WIN32
160 i=write(fd,(void *)&(outbuf[j]),outnum-j);
161 #else
162 i=_write(fd,(void *)&(outbuf[j]),outnum-j);
163 #endif
164 if (i == -1)
165 {
166 #ifdef EINTR
167 if (errno == EINTR)
168 i=0;
169 else
170 #endif
171 /* This is really a bad error - very bad
172 * It will stuff-up both ends. */
173 return(-1);
174 }
175 }

177 return(len);
178 #endif /* OPENSSL_NO_POSIX_IO */
179 }

new/usr/src/lib/openssl/libsunw_crypto/des/fcrypt.c 1

**
 4236 Fri May 30 18:31:42 2014
new/usr/src/lib/openssl/libsunw_crypto/des/fcrypt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* NOCW */
2 #include <stdio.h>
3 #ifdef _OSD_POSIX
4 #ifndef CHARSET_EBCDIC
5 #define CHARSET_EBCDIC 1
6 #endif
7 #endif
8 #ifdef CHARSET_EBCDIC
9 #include <openssl/ebcdic.h>
10 #endif

12 /* This version of crypt has been developed from my MIT compatible
13 * DES library.
14 * Eric Young (eay@cryptsoft.com)
15 */

17 /* Modification by Jens Kupferschmidt (Cu)
18 * I have included directive PARA for shared memory computers.
19 * I have included a directive LONGCRYPT to using this routine to cipher
20 * passwords with more then 8 bytes like HP-UX 10.x it used. The MAXPLEN
21 * definition is the maximum of length of password and can changed. I have
22 * defined 24.
23 */

25 #include "des_locl.h"

27 /* Added more values to handle illegal salt values the way normal
28 * crypt() implementations do. The patch was sent by
29 * Bjorn Gronvall <bg@sics.se>
30 */
31 static unsigned const char con_salt[128]={
32 0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,
33 0xDA,0xDB,0xDC,0xDD,0xDE,0xDF,0xE0,0xE1,
34 0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,
35 0xEA,0xEB,0xEC,0xED,0xEE,0xEF,0xF0,0xF1,
36 0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,0xF9,
37 0xFA,0xFB,0xFC,0xFD,0xFE,0xFF,0x00,0x01,
38 0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,
39 0x0A,0x0B,0x05,0x06,0x07,0x08,0x09,0x0A,
40 0x0B,0x0C,0x0D,0x0E,0x0F,0x10,0x11,0x12,
41 0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1A,
42 0x1B,0x1C,0x1D,0x1E,0x1F,0x20,0x21,0x22,
43 0x23,0x24,0x25,0x20,0x21,0x22,0x23,0x24,
44 0x25,0x26,0x27,0x28,0x29,0x2A,0x2B,0x2C,
45 0x2D,0x2E,0x2F,0x30,0x31,0x32,0x33,0x34,
46 0x35,0x36,0x37,0x38,0x39,0x3A,0x3B,0x3C,
47 0x3D,0x3E,0x3F,0x40,0x41,0x42,0x43,0x44,
48 };

50 static unsigned const char cov_2char[64]={
51 0x2E,0x2F,0x30,0x31,0x32,0x33,0x34,0x35,
52 0x36,0x37,0x38,0x39,0x41,0x42,0x43,0x44,
53 0x45,0x46,0x47,0x48,0x49,0x4A,0x4B,0x4C,
54 0x4D,0x4E,0x4F,0x50,0x51,0x52,0x53,0x54,
55 0x55,0x56,0x57,0x58,0x59,0x5A,0x61,0x62,
56 0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6A,
57 0x6B,0x6C,0x6D,0x6E,0x6F,0x70,0x71,0x72,
58 0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7A
59 };

61 char *DES_crypt(const char *buf, const char *salt)

new/usr/src/lib/openssl/libsunw_crypto/des/fcrypt.c 2

62 {
63 static char buff[14];

65 #ifndef CHARSET_EBCDIC
66 return(DES_fcrypt(buf,salt,buff));
67 #else
68 char e_salt[2+1];
69 char e_buf[32+1]; /* replace 32 by 8 ? */
70 char *ret;

72 /* Copy at most 2 chars of salt */
73 if ((e_salt[0] = salt[0]) != ’\0’)
74 e_salt[1] = salt[1];

76 /* Copy at most 32 chars of password */
77 strncpy (e_buf, buf, sizeof(e_buf));

79 /* Make sure we have a delimiter */
80 e_salt[sizeof(e_salt)-1] = e_buf[sizeof(e_buf)-1] = ’\0’;

82 /* Convert the e_salt to ASCII, as that’s what DES_fcrypt works on */
83 ebcdic2ascii(e_salt, e_salt, sizeof e_salt);

85 /* Convert the cleartext password to ASCII */
86 ebcdic2ascii(e_buf, e_buf, sizeof e_buf);

88 /* Encrypt it (from/to ASCII) */
89 ret = DES_fcrypt(e_buf,e_salt,buff);

91 /* Convert the result back to EBCDIC */
92 ascii2ebcdic(ret, ret, strlen(ret));
93
94 return ret;
95 #endif
96 }

99 char *DES_fcrypt(const char *buf, const char *salt, char *ret)
100 {
101 unsigned int i,j,x,y;
102 DES_LONG Eswap0,Eswap1;
103 DES_LONG out[2],ll;
104 DES_cblock key;
105 DES_key_schedule ks;
106 unsigned char bb[9];
107 unsigned char *b=bb;
108 unsigned char c,u;

110 /* eay 25/08/92
111 * If you call crypt("pwd","*") as often happens when you
112 * have * as the pwd field in /etc/passwd, the function
113 * returns *\0XXXXXXXXX
114 * The \0 makes the string look like * so the pwd "*" would
115 * crypt to "*". This was found when replacing the crypt in
116 * our shared libraries. People found that the disabled
117 * accounts effectively had no passwd :-(. */
118 #ifndef CHARSET_EBCDIC
119 x=ret[0]=((salt[0] == ’\0’)?’A’:salt[0]);
120 Eswap0=con_salt[x]<<2;
121 x=ret[1]=((salt[1] == ’\0’)?’A’:salt[1]);
122 Eswap1=con_salt[x]<<6;
123 #else
124 x=ret[0]=((salt[0] == ’\0’)?os_toascii[’A’]:salt[0]);
125 Eswap0=con_salt[x]<<2;
126 x=ret[1]=((salt[1] == ’\0’)?os_toascii[’A’]:salt[1]);
127 Eswap1=con_salt[x]<<6;

new/usr/src/lib/openssl/libsunw_crypto/des/fcrypt.c 3

128 #endif

130 /* EAY
131 r=strlen(buf);
132 r=(r+7)/8;
133 */
134 for (i=0; i<8; i++)
135 {
136 c= *(buf++);
137 if (!c) break;
138 key[i]=(c<<1);
139 }
140 for (; i<8; i++)
141 key[i]=0;

143 DES_set_key_unchecked(&key,&ks);
144 fcrypt_body(&(out[0]),&ks,Eswap0,Eswap1);

146 ll=out[0]; l2c(ll,b);
147 ll=out[1]; l2c(ll,b);
148 y=0;
149 u=0x80;
150 bb[8]=0;
151 for (i=2; i<13; i++)
152 {
153 c=0;
154 for (j=0; j<6; j++)
155 {
156 c<<=1;
157 if (bb[y] & u) c|=1;
158 u>>=1;
159 if (!u)
160 {
161 y++;
162 u=0x80;
163 }
164 }
165 ret[i]=cov_2char[c];
166 }
167 ret[13]=’\0’;
168 return(ret);
169 }

new/usr/src/lib/openssl/libsunw_crypto/des/fcrypt_b.c 1

**
 4950 Fri May 30 18:31:43 2014
new/usr/src/lib/openssl/libsunw_crypto/des/fcrypt_b.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/fcrypt_b.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>

61 /* This version of crypt has been developed from my MIT compatible

new/usr/src/lib/openssl/libsunw_crypto/des/fcrypt_b.c 2

62 * DES library.
63 * The library is available at pub/Crypto/DES at ftp.psy.uq.oz.au
64 * Eric Young (eay@cryptsoft.com)
65 */

67 #define DES_FCRYPT
68 #include "des_locl.h"
69 #undef DES_FCRYPT

71 #undef PERM_OP
72 #define PERM_OP(a,b,t,n,m) ((t)=((((a)>>(n))^(b))&(m)),\
73 (b)^=(t),\
74 (a)^=((t)<<(n)))

76 #undef HPERM_OP
77 #define HPERM_OP(a,t,n,m) ((t)=((((a)<<(16-(n)))^(a))&(m)),\
78 (a)=(a)^(t)^(t>>(16-(n))))\

80 void fcrypt_body(DES_LONG *out, DES_key_schedule *ks, DES_LONG Eswap0,
81 DES_LONG Eswap1)
82 {
83 register DES_LONG l,r,t,u;
84 #ifdef DES_PTR
85 register const unsigned char *des_SP=(const unsigned char *)DES_SPtrans;
86 #endif
87 register DES_LONG *s;
88 register int j;
89 register DES_LONG E0,E1;

91 l=0;
92 r=0;

94 s=(DES_LONG *)ks;
95 E0=Eswap0;
96 E1=Eswap1;

98 for (j=0; j<25; j++)
99 {
100 #ifndef DES_UNROLL
101 register int i;

103 for (i=0; i<32; i+=4)
104 {
105 D_ENCRYPT(l,r,i+0); /* 1 */
106 D_ENCRYPT(r,l,i+2); /* 2 */
107 }
108 #else
109 D_ENCRYPT(l,r, 0); /* 1 */
110 D_ENCRYPT(r,l, 2); /* 2 */
111 D_ENCRYPT(l,r, 4); /* 3 */
112 D_ENCRYPT(r,l, 6); /* 4 */
113 D_ENCRYPT(l,r, 8); /* 5 */
114 D_ENCRYPT(r,l,10); /* 6 */
115 D_ENCRYPT(l,r,12); /* 7 */
116 D_ENCRYPT(r,l,14); /* 8 */
117 D_ENCRYPT(l,r,16); /* 9 */
118 D_ENCRYPT(r,l,18); /* 10 */
119 D_ENCRYPT(l,r,20); /* 11 */
120 D_ENCRYPT(r,l,22); /* 12 */
121 D_ENCRYPT(l,r,24); /* 13 */
122 D_ENCRYPT(r,l,26); /* 14 */
123 D_ENCRYPT(l,r,28); /* 15 */
124 D_ENCRYPT(r,l,30); /* 16 */
125 #endif

127 t=l;

new/usr/src/lib/openssl/libsunw_crypto/des/fcrypt_b.c 3

128 l=r;
129 r=t;
130 }
131 l=ROTATE(l,3)&0xffffffffL;
132 r=ROTATE(r,3)&0xffffffffL;

134 PERM_OP(l,r,t, 1,0x55555555L);
135 PERM_OP(r,l,t, 8,0x00ff00ffL);
136 PERM_OP(l,r,t, 2,0x33333333L);
137 PERM_OP(r,l,t,16,0x0000ffffL);
138 PERM_OP(l,r,t, 4,0x0f0f0f0fL);

140 out[0]=r;
141 out[1]=l;
142 }

new/usr/src/lib/openssl/libsunw_crypto/des/ncbc_enc.c 1

**
 5176 Fri May 30 18:31:43 2014
new/usr/src/lib/openssl/libsunw_crypto/des/ncbc_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/ncbc_enc.c */
2 /*
3 * #included by:
4 * cbc_enc.c (DES_cbc_encrypt)
5 * des_enc.c (DES_ncbc_encrypt)
6 */
7 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
8 * All rights reserved.
9 *
10 * This package is an SSL implementation written
11 * by Eric Young (eay@cryptsoft.com).
12 * The implementation was written so as to conform with Netscapes SSL.
13 *
14 * This library is free for commercial and non-commercial use as long as
15 * the following conditions are aheared to. The following conditions
16 * apply to all code found in this distribution, be it the RC4, RSA,
17 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
18 * included with this distribution is covered by the same copyright terms
19 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
20 *
21 * Copyright remains Eric Young’s, and as such any Copyright notices in
22 * the code are not to be removed.
23 * If this package is used in a product, Eric Young should be given attribution
24 * as the author of the parts of the library used.
25 * This can be in the form of a textual message at program startup or
26 * in documentation (online or textual) provided with the package.
27 *
28 * Redistribution and use in source and binary forms, with or without
29 * modification, are permitted provided that the following conditions
30 * are met:
31 * 1. Redistributions of source code must retain the copyright
32 * notice, this list of conditions and the following disclaimer.
33 * 2. Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in the
35 * documentation and/or other materials provided with the distribution.
36 * 3. All advertising materials mentioning features or use of this software
37 * must display the following acknowledgement:
38 * "This product includes cryptographic software written by
39 * Eric Young (eay@cryptsoft.com)"
40 * The word ’cryptographic’ can be left out if the rouines from the library
41 * being used are not cryptographic related :-).
42 * 4. If you include any Windows specific code (or a derivative thereof) from
43 * the apps directory (application code) you must include an acknowledgement:
44 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
45 *
46 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * The licence and distribution terms for any publically available version or
59 * derivative of this code cannot be changed. i.e. this code cannot simply be
60 * copied and put under another distribution licence
61 * [including the GNU Public Licence.]

new/usr/src/lib/openssl/libsunw_crypto/des/ncbc_enc.c 2

62 */

64 #include "des_locl.h"

66 #ifdef CBC_ENC_C__DONT_UPDATE_IV
67 void DES_cbc_encrypt(const unsigned char *in, unsigned char *out, long length,
68 DES_key_schedule *_schedule, DES_cblock *ivec, int enc)
69 #else
70 void DES_ncbc_encrypt(const unsigned char *in, unsigned char *out, long length,
71 DES_key_schedule *_schedule, DES_cblock *ivec, int enc)
72 #endif
73 {
74 register DES_LONG tin0,tin1;
75 register DES_LONG tout0,tout1,xor0,xor1;
76 register long l=length;
77 DES_LONG tin[2];
78 unsigned char *iv;

80 iv = &(*ivec)[0];

82 if (enc)
83 {
84 c2l(iv,tout0);
85 c2l(iv,tout1);
86 for (l-=8; l>=0; l-=8)
87 {
88 c2l(in,tin0);
89 c2l(in,tin1);
90 tin0^=tout0; tin[0]=tin0;
91 tin1^=tout1; tin[1]=tin1;
92 DES_encrypt1((DES_LONG *)tin,_schedule,DES_ENCRYPT);
93 tout0=tin[0]; l2c(tout0,out);
94 tout1=tin[1]; l2c(tout1,out);
95 }
96 if (l != -8)
97 {
98 c2ln(in,tin0,tin1,l+8);
99 tin0^=tout0; tin[0]=tin0;
100 tin1^=tout1; tin[1]=tin1;
101 DES_encrypt1((DES_LONG *)tin,_schedule,DES_ENCRYPT);
102 tout0=tin[0]; l2c(tout0,out);
103 tout1=tin[1]; l2c(tout1,out);
104 }
105 #ifndef CBC_ENC_C__DONT_UPDATE_IV
106 iv = &(*ivec)[0];
107 l2c(tout0,iv);
108 l2c(tout1,iv);
109 #endif
110 }
111 else
112 {
113 c2l(iv,xor0);
114 c2l(iv,xor1);
115 for (l-=8; l>=0; l-=8)
116 {
117 c2l(in,tin0); tin[0]=tin0;
118 c2l(in,tin1); tin[1]=tin1;
119 DES_encrypt1((DES_LONG *)tin,_schedule,DES_DECRYPT);
120 tout0=tin[0]^xor0;
121 tout1=tin[1]^xor1;
122 l2c(tout0,out);
123 l2c(tout1,out);
124 xor0=tin0;
125 xor1=tin1;
126 }
127 if (l != -8)

new/usr/src/lib/openssl/libsunw_crypto/des/ncbc_enc.c 3

128 {
129 c2l(in,tin0); tin[0]=tin0;
130 c2l(in,tin1); tin[1]=tin1;
131 DES_encrypt1((DES_LONG *)tin,_schedule,DES_DECRYPT);
132 tout0=tin[0]^xor0;
133 tout1=tin[1]^xor1;
134 l2cn(tout0,tout1,out,l+8);
135 #ifndef CBC_ENC_C__DONT_UPDATE_IV
136 xor0=tin0;
137 xor1=tin1;
138 #endif
139 }
140 #ifndef CBC_ENC_C__DONT_UPDATE_IV
141 iv = &(*ivec)[0];
142 l2c(xor0,iv);
143 l2c(xor1,iv);
144 #endif
145 }
146 tin0=tin1=tout0=tout1=xor0=xor1=0;
147 tin[0]=tin[1]=0;
148 }

new/usr/src/lib/openssl/libsunw_crypto/des/ofb64ede.c 1

**
 4557 Fri May 30 18:31:43 2014
new/usr/src/lib/openssl/libsunw_crypto/des/ofb64ede.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/ofb64ede.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include "des_locl.h"

61 /* The input and output encrypted as though 64bit ofb mode is being

new/usr/src/lib/openssl/libsunw_crypto/des/ofb64ede.c 2

62 * used. The extra state information to record how much of the
63 * 64bit block we have used is contained in *num;
64 */
65 void DES_ede3_ofb64_encrypt(register const unsigned char *in,
66 register unsigned char *out, long length,
67 DES_key_schedule *k1, DES_key_schedule *k2,
68 DES_key_schedule *k3, DES_cblock *ivec,
69 int *num)
70 {
71 register DES_LONG v0,v1;
72 register int n= *num;
73 register long l=length;
74 DES_cblock d;
75 register char *dp;
76 DES_LONG ti[2];
77 unsigned char *iv;
78 int save=0;

80 iv = &(*ivec)[0];
81 c2l(iv,v0);
82 c2l(iv,v1);
83 ti[0]=v0;
84 ti[1]=v1;
85 dp=(char *)d;
86 l2c(v0,dp);
87 l2c(v1,dp);
88 while (l--)
89 {
90 if (n == 0)
91 {
92 /* ti[0]=v0; */
93 /* ti[1]=v1; */
94 DES_encrypt3(ti,k1,k2,k3);
95 v0=ti[0];
96 v1=ti[1];

98 dp=(char *)d;
99 l2c(v0,dp);
100 l2c(v1,dp);
101 save++;
102 }
103 *(out++)= *(in++)^d[n];
104 n=(n+1)&0x07;
105 }
106 if (save)
107 {
108 /* v0=ti[0];
109 v1=ti[1];*/
110 iv = &(*ivec)[0];
111 l2c(v0,iv);
112 l2c(v1,iv);
113 }
114 v0=v1=ti[0]=ti[1]=0;
115 *num=n;
116 }

118 #ifdef undef /* MACRO */
119 void DES_ede2_ofb64_encrypt(register unsigned char *in,
120 register unsigned char *out, long length, DES_key_schedule k1,
121 DES_key_schedule k2, DES_cblock (*ivec), int *num)
122 {
123 DES_ede3_ofb64_encrypt(in, out, length, k1,k2,k1, ivec, num);
124 }
125 #endif

new/usr/src/lib/openssl/libsunw_crypto/des/ofb64enc.c 1

**
 4177 Fri May 30 18:31:43 2014
new/usr/src/lib/openssl/libsunw_crypto/des/ofb64enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/ofb64enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include "des_locl.h"

61 /* The input and output encrypted as though 64bit ofb mode is being

new/usr/src/lib/openssl/libsunw_crypto/des/ofb64enc.c 2

62 * used. The extra state information to record how much of the
63 * 64bit block we have used is contained in *num;
64 */
65 void DES_ofb64_encrypt(register const unsigned char *in,
66 register unsigned char *out, long length,
67 DES_key_schedule *schedule, DES_cblock *ivec, int *num)
68 {
69 register DES_LONG v0,v1,t;
70 register int n= *num;
71 register long l=length;
72 DES_cblock d;
73 register unsigned char *dp;
74 DES_LONG ti[2];
75 unsigned char *iv;
76 int save=0;

78 iv = &(*ivec)[0];
79 c2l(iv,v0);
80 c2l(iv,v1);
81 ti[0]=v0;
82 ti[1]=v1;
83 dp=d;
84 l2c(v0,dp);
85 l2c(v1,dp);
86 while (l--)
87 {
88 if (n == 0)
89 {
90 DES_encrypt1(ti,schedule,DES_ENCRYPT);
91 dp=d;
92 t=ti[0]; l2c(t,dp);
93 t=ti[1]; l2c(t,dp);
94 save++;
95 }
96 *(out++)= *(in++)^d[n];
97 n=(n+1)&0x07;
98 }
99 if (save)
100 {
101 v0=ti[0];
102 v1=ti[1];
103 iv = &(*ivec)[0];
104 l2c(v0,iv);
105 l2c(v1,iv);
106 }
107 t=v0=v1=ti[0]=ti[1]=0;
108 *num=n;
109 }

new/usr/src/lib/openssl/libsunw_crypto/des/ofb_enc.c 1

**
 4817 Fri May 30 18:31:43 2014
new/usr/src/lib/openssl/libsunw_crypto/des/ofb_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/ofb_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include "des_locl.h"

61 /* The input and output are loaded in multiples of 8 bits.

new/usr/src/lib/openssl/libsunw_crypto/des/ofb_enc.c 2

62 * What this means is that if you hame numbits=12 and length=2
63 * the first 12 bits will be retrieved from the first byte and half
64 * the second. The second 12 bits will come from the 3rd and half the 4th
65 * byte.
66 */
67 void DES_ofb_encrypt(const unsigned char *in, unsigned char *out, int numbits,
68 long length, DES_key_schedule *schedule,
69 DES_cblock *ivec)
70 {
71 register DES_LONG d0,d1,vv0,vv1,v0,v1,n=(numbits+7)/8;
72 register DES_LONG mask0,mask1;
73 register long l=length;
74 register int num=numbits;
75 DES_LONG ti[2];
76 unsigned char *iv;

78 if (num > 64) return;
79 if (num > 32)
80 {
81 mask0=0xffffffffL;
82 if (num >= 64)
83 mask1=mask0;
84 else
85 mask1=(1L<<(num-32))-1;
86 }
87 else
88 {
89 if (num == 32)
90 mask0=0xffffffffL;
91 else
92 mask0=(1L<<num)-1;
93 mask1=0x00000000L;
94 }

96 iv = &(*ivec)[0];
97 c2l(iv,v0);
98 c2l(iv,v1);
99 ti[0]=v0;
100 ti[1]=v1;
101 while (l-- > 0)
102 {
103 ti[0]=v0;
104 ti[1]=v1;
105 DES_encrypt1((DES_LONG *)ti,schedule,DES_ENCRYPT);
106 vv0=ti[0];
107 vv1=ti[1];
108 c2ln(in,d0,d1,n);
109 in+=n;
110 d0=(d0^vv0)&mask0;
111 d1=(d1^vv1)&mask1;
112 l2cn(d0,d1,out,n);
113 out+=n;

115 if (num == 32)
116 { v0=v1; v1=vv0; }
117 else if (num == 64)
118 { v0=vv0; v1=vv1; }
119 else if (num > 32) /* && num != 64 */
120 {
121 v0=((v1>>(num-32))|(vv0<<(64-num)))&0xffffffffL;
122 v1=((vv0>>(num-32))|(vv1<<(64-num)))&0xffffffffL;
123 }
124 else /* num < 32 */
125 {
126 v0=((v0>>num)|(v1<<(32-num)))&0xffffffffL;
127 v1=((v1>>num)|(vv0<<(32-num)))&0xffffffffL;

new/usr/src/lib/openssl/libsunw_crypto/des/ofb_enc.c 3

128 }
129 }
130 iv = &(*ivec)[0];
131 l2c(v0,iv);
132 l2c(v1,iv);
133 v0=v1=d0=d1=ti[0]=ti[1]=vv0=vv1=0;
134 }

new/usr/src/lib/openssl/libsunw_crypto/des/pcbc_enc.c 1

**
 4413 Fri May 30 18:31:43 2014
new/usr/src/lib/openssl/libsunw_crypto/des/pcbc_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/pcbc_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include "des_locl.h"

61 void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,

new/usr/src/lib/openssl/libsunw_crypto/des/pcbc_enc.c 2

62 long length, DES_key_schedule *schedule,
63 DES_cblock *ivec, int enc)
64 {
65 register DES_LONG sin0,sin1,xor0,xor1,tout0,tout1;
66 DES_LONG tin[2];
67 const unsigned char *in;
68 unsigned char *out,*iv;

70 in=input;
71 out=output;
72 iv = &(*ivec)[0];

74 if (enc)
75 {
76 c2l(iv,xor0);
77 c2l(iv,xor1);
78 for (; length>0; length-=8)
79 {
80 if (length >= 8)
81 {
82 c2l(in,sin0);
83 c2l(in,sin1);
84 }
85 else
86 c2ln(in,sin0,sin1,length);
87 tin[0]=sin0^xor0;
88 tin[1]=sin1^xor1;
89 DES_encrypt1((DES_LONG *)tin,schedule,DES_ENCRYPT);
90 tout0=tin[0];
91 tout1=tin[1];
92 xor0=sin0^tout0;
93 xor1=sin1^tout1;
94 l2c(tout0,out);
95 l2c(tout1,out);
96 }
97 }
98 else
99 {
100 c2l(iv,xor0); c2l(iv,xor1);
101 for (; length>0; length-=8)
102 {
103 c2l(in,sin0);
104 c2l(in,sin1);
105 tin[0]=sin0;
106 tin[1]=sin1;
107 DES_encrypt1((DES_LONG *)tin,schedule,DES_DECRYPT);
108 tout0=tin[0]^xor0;
109 tout1=tin[1]^xor1;
110 if (length >= 8)
111 {
112 l2c(tout0,out);
113 l2c(tout1,out);
114 }
115 else
116 l2cn(tout0,tout1,out,length);
117 xor0=tout0^sin0;
118 xor1=tout1^sin1;
119 }
120 }
121 tin[0]=tin[1]=0;
122 sin0=sin1=xor0=xor1=tout0=tout1=0;
123 }

new/usr/src/lib/openssl/libsunw_crypto/des/qud_cksm.c 1

**
 5116 Fri May 30 18:31:43 2014
new/usr/src/lib/openssl/libsunw_crypto/des/qud_cksm.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/qud_cksm.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* From "Message Authentication" R.R. Jueneman, S.M. Matyas, C.H. Meyer
60 * IEEE Communications Magazine Sept 1985 Vol. 23 No. 9 p 29-40
61 * This module in only based on the code in this paper and is

new/usr/src/lib/openssl/libsunw_crypto/des/qud_cksm.c 2

62 * almost definitely not the same as the MIT implementation.
63 */
64 #include "des_locl.h"

66 /* bug fix for dos - 7/6/91 - Larry hughes@logos.ucs.indiana.edu */
67 #define Q_B0(a) (((DES_LONG)(a)))
68 #define Q_B1(a) (((DES_LONG)(a))<<8)
69 #define Q_B2(a) (((DES_LONG)(a))<<16)
70 #define Q_B3(a) (((DES_LONG)(a))<<24)

72 /* used to scramble things a bit */
73 /* Got the value MIT uses via brute force :-) 2/10/90 eay */
74 #define NOISE ((DES_LONG)83653421L)

76 DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
77 long length, int out_count, DES_cblock *seed)
78 {
79 DES_LONG z0,z1,t0,t1;
80 int i;
81 long l;
82 const unsigned char *cp;
83 #ifdef _CRAY
84 struct lp_st { int a:32; int b:32; } *lp;
85 #else
86 DES_LONG *lp;
87 #endif

89 if (out_count < 1) out_count=1;
90 #ifdef _CRAY
91 lp = (struct lp_st *) &(output[0])[0];
92 #else
93 lp = (DES_LONG *) &(output[0])[0];
94 #endif

96 z0=Q_B0((*seed)[0])|Q_B1((*seed)[1])|Q_B2((*seed)[2])|Q_B3((*seed)[3]);
97 z1=Q_B0((*seed)[4])|Q_B1((*seed)[5])|Q_B2((*seed)[6])|Q_B3((*seed)[7]);

99 for (i=0; ((i<4)&&(i<out_count)); i++)
100 {
101 cp=input;
102 l=length;
103 while (l > 0)
104 {
105 if (l > 1)
106 {
107 t0= (DES_LONG)(*(cp++));
108 t0|=(DES_LONG)Q_B1(*(cp++));
109 l--;
110 }
111 else
112 t0= (DES_LONG)(*(cp++));
113 l--;
114 /* add */
115 t0+=z0;
116 t0&=0xffffffffL;
117 t1=z1;
118 /* square, well sort of square */
119 z0=((((t0*t0)&0xffffffffL)+((t1*t1)&0xffffffffL))
120 &0xffffffffL)%0x7fffffffL;
121 z1=((t0*((t1+NOISE)&0xffffffffL))&0xffffffffL)%0x7ffffff
122 }
123 if (lp != NULL)
124 {
125 /* The MIT library assumes that the checksum is
126 * composed of 2*out_count 32 bit ints */
127 #ifdef _CRAY

new/usr/src/lib/openssl/libsunw_crypto/des/qud_cksm.c 3

128 (*lp).a = z0;
129 (*lp).b = z1;
130 lp++;
131 #else
132 *lp++ = z0;
133 *lp++ = z1;
134 #endif
135 }
136 }
137 return(z0);
138 }

new/usr/src/lib/openssl/libsunw_crypto/des/rand_key.c 1

**
 2918 Fri May 30 18:31:43 2014
new/usr/src/lib/openssl/libsunw_crypto/des/rand_key.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/rand_key.c */
2 /* ==
3 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 #include <openssl/des.h>
57 #include <openssl/rand.h>

59 int DES_random_key(DES_cblock *ret)
60 {
61 do

new/usr/src/lib/openssl/libsunw_crypto/des/rand_key.c 2

62 {
63 if (RAND_bytes((unsigned char *)ret, sizeof(DES_cblock)) != 1)
64 return (0);
65 } while (DES_is_weak_key(ret));
66 DES_set_odd_parity(ret);
67 return (1);
68 }

new/usr/src/lib/openssl/libsunw_crypto/des/read2pwd.c 1

**
 6538 Fri May 30 18:31:43 2014
new/usr/src/lib/openssl/libsunw_crypto/des/read2pwd.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/read2pwd.c */
2 /* ==
3 * Copyright (c) 2001-2002 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
56 * All rights reserved.
57 *
58 * This package is an SSL implementation written
59 * by Eric Young (eay@cryptsoft.com).
60 * The implementation was written so as to conform with Netscapes SSL.
61 *

new/usr/src/lib/openssl/libsunw_crypto/des/read2pwd.c 2

62 * This library is free for commercial and non-commercial use as long as
63 * the following conditions are aheared to. The following conditions
64 * apply to all code found in this distribution, be it the RC4, RSA,
65 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
66 * included with this distribution is covered by the same copyright terms
67 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
68 *
69 * Copyright remains Eric Young’s, and as such any Copyright notices in
70 * the code are not to be removed.
71 * If this package is used in a product, Eric Young should be given attribution
72 * as the author of the parts of the library used.
73 * This can be in the form of a textual message at program startup or
74 * in documentation (online or textual) provided with the package.
75 *
76 * Redistribution and use in source and binary forms, with or without
77 * modification, are permitted provided that the following conditions
78 * are met:
79 * 1. Redistributions of source code must retain the copyright
80 * notice, this list of conditions and the following disclaimer.
81 * 2. Redistributions in binary form must reproduce the above copyright
82 * notice, this list of conditions and the following disclaimer in the
83 * documentation and/or other materials provided with the distribution.
84 * 3. All advertising materials mentioning features or use of this software
85 * must display the following acknowledgement:
86 * "This product includes cryptographic software written by
87 * Eric Young (eay@cryptsoft.com)"
88 * The word ’cryptographic’ can be left out if the rouines from the library
89 * being used are not cryptographic related :-).
90 * 4. If you include any Windows specific code (or a derivative thereof) from
91 * the apps directory (application code) you must include an acknowledgement:
92 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
93 *
94 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
95 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
96 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
97 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
98 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
99 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
100 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 * SUCH DAMAGE.
105 *
106 * The licence and distribution terms for any publically available version or
107 * derivative of this code cannot be changed. i.e. this code cannot simply be
108 * copied and put under another distribution licence
109 * [including the GNU Public Licence.]
110 */

112 #include <string.h>
113 #include <openssl/des.h>
114 #include <openssl/ui.h>
115 #include <openssl/crypto.h>

117 int DES_read_password(DES_cblock *key, const char *prompt, int verify)
118 {
119 int ok;
120 char buf[BUFSIZ],buff[BUFSIZ];

122 if ((ok=UI_UTIL_read_pw(buf,buff,BUFSIZ,prompt,verify)) == 0)
123 DES_string_to_key(buf,key);
124 OPENSSL_cleanse(buf,BUFSIZ);
125 OPENSSL_cleanse(buff,BUFSIZ);
126 return(ok);
127 }

new/usr/src/lib/openssl/libsunw_crypto/des/read2pwd.c 3

129 int DES_read_2passwords(DES_cblock *key1, DES_cblock *key2, const char *prompt,
130 int verify)
131 {
132 int ok;
133 char buf[BUFSIZ],buff[BUFSIZ];

135 if ((ok=UI_UTIL_read_pw(buf,buff,BUFSIZ,prompt,verify)) == 0)
136 DES_string_to_2keys(buf,key1,key2);
137 OPENSSL_cleanse(buf,BUFSIZ);
138 OPENSSL_cleanse(buff,BUFSIZ);
139 return(ok);
140 }

new/usr/src/lib/openssl/libsunw_crypto/des/rpc_enc.c 1

**
 4216 Fri May 30 18:31:43 2014
new/usr/src/lib/openssl/libsunw_crypto/des/rpc_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/rpc_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include "rpc_des.h"
60 #include "des_locl.h"
61 #include "des_ver.h"

new/usr/src/lib/openssl/libsunw_crypto/des/rpc_enc.c 2

63 int _des_crypt(char *buf,int len,struct desparams *desp);
64 int _des_crypt(char *buf, int len, struct desparams *desp)
65 {
66 DES_key_schedule ks;
67 int enc;

69 DES_set_key_unchecked(&desp->des_key,&ks);
70 enc=(desp->des_dir == ENCRYPT)?DES_ENCRYPT:DES_DECRYPT;

72 if (desp->des_mode == CBC)
73 DES_ecb_encrypt((const_DES_cblock *)desp->UDES.UDES_buf,
74 (DES_cblock *)desp->UDES.UDES_buf,&ks,
75 enc);
76 else
77 {
78 DES_ncbc_encrypt(desp->UDES.UDES_buf,desp->UDES.UDES_buf,
79 len,&ks,&desp->des_ivec,enc);
80 #ifdef undef
81 /* len will always be %8 if called from common_crypt
82 * in secure_rpc.
83 * Libdes’s cbc encrypt does not copy back the iv,
84 * so we have to do it here. */
85 /* It does now :-) eay 20/09/95 */

87 a=(char *)&(desp->UDES.UDES_buf[len-8]);
88 b=(char *)&(desp->des_ivec[0]);

90 *(a++)= *(b++); *(a++)= *(b++);
91 *(a++)= *(b++); *(a++)= *(b++);
92 *(a++)= *(b++); *(a++)= *(b++);
93 *(a++)= *(b++); *(a++)= *(b++);
94 #endif
95 }
96 return(1);
97 }

new/usr/src/lib/openssl/libsunw_crypto/des/set_key.c 1

**
 16388 Fri May 30 18:31:43 2014
new/usr/src/lib/openssl/libsunw_crypto/des/set_key.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/set_key.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* set_key.c v 1.4 eay 24/9/91
60 * 1.4 Speed up by 400% :-)
61 * 1.3 added register declarations.

new/usr/src/lib/openssl/libsunw_crypto/des/set_key.c 2

62 * 1.2 unrolled make_key_sched a bit more
63 * 1.1 added norm_expand_bits
64 * 1.0 First working version
65 */
66 #include <openssl/crypto.h>
67 #include "des_locl.h"

69 OPENSSL_IMPLEMENT_GLOBAL(int,DES_check_key,0) /* defaults to false */

71 static const unsigned char odd_parity[256]={
72 1, 1, 2, 2, 4, 4, 7, 7, 8, 8, 11, 11, 13, 13, 14, 14,
73 16, 16, 19, 19, 21, 21, 22, 22, 25, 25, 26, 26, 28, 28, 31, 31,
74 32, 32, 35, 35, 37, 37, 38, 38, 41, 41, 42, 42, 44, 44, 47, 47,
75 49, 49, 50, 50, 52, 52, 55, 55, 56, 56, 59, 59, 61, 61, 62, 62,
76 64, 64, 67, 67, 69, 69, 70, 70, 73, 73, 74, 74, 76, 76, 79, 79,
77 81, 81, 82, 82, 84, 84, 87, 87, 88, 88, 91, 91, 93, 93, 94, 94,
78 97, 97, 98, 98,100,100,103,103,104,104,107,107,109,109,110,110,
79 112,112,115,115,117,117,118,118,121,121,122,122,124,124,127,127,
80 128,128,131,131,133,133,134,134,137,137,138,138,140,140,143,143,
81 145,145,146,146,148,148,151,151,152,152,155,155,157,157,158,158,
82 161,161,162,162,164,164,167,167,168,168,171,171,173,173,174,174,
83 176,176,179,179,181,181,182,182,185,185,186,186,188,188,191,191,
84 193,193,194,194,196,196,199,199,200,200,203,203,205,205,206,206,
85 208,208,211,211,213,213,214,214,217,217,218,218,220,220,223,223,
86 224,224,227,227,229,229,230,230,233,233,234,234,236,236,239,239,
87 241,241,242,242,244,244,247,247,248,248,251,251,253,253,254,254};

89 void DES_set_odd_parity(DES_cblock *key)
90 {
91 unsigned int i;

93 for (i=0; i<DES_KEY_SZ; i++)
94 (*key)[i]=odd_parity[(*key)[i]];
95 }

97 int DES_check_key_parity(const_DES_cblock *key)
98 {
99 unsigned int i;

101 for (i=0; i<DES_KEY_SZ; i++)
102 {
103 if ((*key)[i] != odd_parity[(*key)[i]])
104 return(0);
105 }
106 return(1);
107 }

109 /* Weak and semi week keys as take from
110 * %A D.W. Davies
111 * %A W.L. Price
112 * %T Security for Computer Networks
113 * %I John Wiley & Sons
114 * %D 1984
115 * Many thanks to smb@ulysses.att.com (Steven Bellovin) for the reference
116 * (and actual cblock values).
117 */
118 #define NUM_WEAK_KEY 16
119 static const DES_cblock weak_keys[NUM_WEAK_KEY]={
120 /* weak keys */
121 {0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01},
122 {0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE},
123 {0x1F,0x1F,0x1F,0x1F,0x0E,0x0E,0x0E,0x0E},
124 {0xE0,0xE0,0xE0,0xE0,0xF1,0xF1,0xF1,0xF1},
125 /* semi-weak keys */
126 {0x01,0xFE,0x01,0xFE,0x01,0xFE,0x01,0xFE},
127 {0xFE,0x01,0xFE,0x01,0xFE,0x01,0xFE,0x01},

new/usr/src/lib/openssl/libsunw_crypto/des/set_key.c 3

128 {0x1F,0xE0,0x1F,0xE0,0x0E,0xF1,0x0E,0xF1},
129 {0xE0,0x1F,0xE0,0x1F,0xF1,0x0E,0xF1,0x0E},
130 {0x01,0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1},
131 {0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1,0x01},
132 {0x1F,0xFE,0x1F,0xFE,0x0E,0xFE,0x0E,0xFE},
133 {0xFE,0x1F,0xFE,0x1F,0xFE,0x0E,0xFE,0x0E},
134 {0x01,0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E},
135 {0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E,0x01},
136 {0xE0,0xFE,0xE0,0xFE,0xF1,0xFE,0xF1,0xFE},
137 {0xFE,0xE0,0xFE,0xE0,0xFE,0xF1,0xFE,0xF1}};

139 int DES_is_weak_key(const_DES_cblock *key)
140 {
141 int i;

143 for (i=0; i<NUM_WEAK_KEY; i++)
144 /* Added == 0 to comparison, I obviously don’t run
145 * this section very often :-(, thanks to
146 * engineering@MorningStar.Com for the fix
147 * eay 93/06/29
148 * Another problem, I was comparing only the first 4
149 * bytes, 97/03/18 */
150 if (memcmp(weak_keys[i],key,sizeof(DES_cblock)) == 0) return(1);
151 return(0);
152 }

154 /* NOW DEFINED IN des_local.h
155 * See ecb_encrypt.c for a pseudo description of these macros.
156 * #define PERM_OP(a,b,t,n,m) ((t)=((((a)>>(n))^(b))&(m)),\
157 * (b)^=(t),\
158 * (a)=((a)^((t)<<(n))))
159 */

161 #define HPERM_OP(a,t,n,m) ((t)=((((a)<<(16-(n)))^(a))&(m)),\
162 (a)=(a)^(t)^(t>>(16-(n))))

164 static const DES_LONG des_skb[8][64]={
165 {
166 /* for C bits (numbered as per FIPS 46) 1 2 3 4 5 6 */
167 0x00000000L,0x00000010L,0x20000000L,0x20000010L,
168 0x00010000L,0x00010010L,0x20010000L,0x20010010L,
169 0x00000800L,0x00000810L,0x20000800L,0x20000810L,
170 0x00010800L,0x00010810L,0x20010800L,0x20010810L,
171 0x00000020L,0x00000030L,0x20000020L,0x20000030L,
172 0x00010020L,0x00010030L,0x20010020L,0x20010030L,
173 0x00000820L,0x00000830L,0x20000820L,0x20000830L,
174 0x00010820L,0x00010830L,0x20010820L,0x20010830L,
175 0x00080000L,0x00080010L,0x20080000L,0x20080010L,
176 0x00090000L,0x00090010L,0x20090000L,0x20090010L,
177 0x00080800L,0x00080810L,0x20080800L,0x20080810L,
178 0x00090800L,0x00090810L,0x20090800L,0x20090810L,
179 0x00080020L,0x00080030L,0x20080020L,0x20080030L,
180 0x00090020L,0x00090030L,0x20090020L,0x20090030L,
181 0x00080820L,0x00080830L,0x20080820L,0x20080830L,
182 0x00090820L,0x00090830L,0x20090820L,0x20090830L,
183 },{
184 /* for C bits (numbered as per FIPS 46) 7 8 10 11 12 13 */
185 0x00000000L,0x02000000L,0x00002000L,0x02002000L,
186 0x00200000L,0x02200000L,0x00202000L,0x02202000L,
187 0x00000004L,0x02000004L,0x00002004L,0x02002004L,
188 0x00200004L,0x02200004L,0x00202004L,0x02202004L,
189 0x00000400L,0x02000400L,0x00002400L,0x02002400L,
190 0x00200400L,0x02200400L,0x00202400L,0x02202400L,
191 0x00000404L,0x02000404L,0x00002404L,0x02002404L,
192 0x00200404L,0x02200404L,0x00202404L,0x02202404L,
193 0x10000000L,0x12000000L,0x10002000L,0x12002000L,

new/usr/src/lib/openssl/libsunw_crypto/des/set_key.c 4

194 0x10200000L,0x12200000L,0x10202000L,0x12202000L,
195 0x10000004L,0x12000004L,0x10002004L,0x12002004L,
196 0x10200004L,0x12200004L,0x10202004L,0x12202004L,
197 0x10000400L,0x12000400L,0x10002400L,0x12002400L,
198 0x10200400L,0x12200400L,0x10202400L,0x12202400L,
199 0x10000404L,0x12000404L,0x10002404L,0x12002404L,
200 0x10200404L,0x12200404L,0x10202404L,0x12202404L,
201 },{
202 /* for C bits (numbered as per FIPS 46) 14 15 16 17 19 20 */
203 0x00000000L,0x00000001L,0x00040000L,0x00040001L,
204 0x01000000L,0x01000001L,0x01040000L,0x01040001L,
205 0x00000002L,0x00000003L,0x00040002L,0x00040003L,
206 0x01000002L,0x01000003L,0x01040002L,0x01040003L,
207 0x00000200L,0x00000201L,0x00040200L,0x00040201L,
208 0x01000200L,0x01000201L,0x01040200L,0x01040201L,
209 0x00000202L,0x00000203L,0x00040202L,0x00040203L,
210 0x01000202L,0x01000203L,0x01040202L,0x01040203L,
211 0x08000000L,0x08000001L,0x08040000L,0x08040001L,
212 0x09000000L,0x09000001L,0x09040000L,0x09040001L,
213 0x08000002L,0x08000003L,0x08040002L,0x08040003L,
214 0x09000002L,0x09000003L,0x09040002L,0x09040003L,
215 0x08000200L,0x08000201L,0x08040200L,0x08040201L,
216 0x09000200L,0x09000201L,0x09040200L,0x09040201L,
217 0x08000202L,0x08000203L,0x08040202L,0x08040203L,
218 0x09000202L,0x09000203L,0x09040202L,0x09040203L,
219 },{
220 /* for C bits (numbered as per FIPS 46) 21 23 24 26 27 28 */
221 0x00000000L,0x00100000L,0x00000100L,0x00100100L,
222 0x00000008L,0x00100008L,0x00000108L,0x00100108L,
223 0x00001000L,0x00101000L,0x00001100L,0x00101100L,
224 0x00001008L,0x00101008L,0x00001108L,0x00101108L,
225 0x04000000L,0x04100000L,0x04000100L,0x04100100L,
226 0x04000008L,0x04100008L,0x04000108L,0x04100108L,
227 0x04001000L,0x04101000L,0x04001100L,0x04101100L,
228 0x04001008L,0x04101008L,0x04001108L,0x04101108L,
229 0x00020000L,0x00120000L,0x00020100L,0x00120100L,
230 0x00020008L,0x00120008L,0x00020108L,0x00120108L,
231 0x00021000L,0x00121000L,0x00021100L,0x00121100L,
232 0x00021008L,0x00121008L,0x00021108L,0x00121108L,
233 0x04020000L,0x04120000L,0x04020100L,0x04120100L,
234 0x04020008L,0x04120008L,0x04020108L,0x04120108L,
235 0x04021000L,0x04121000L,0x04021100L,0x04121100L,
236 0x04021008L,0x04121008L,0x04021108L,0x04121108L,
237 },{
238 /* for D bits (numbered as per FIPS 46) 1 2 3 4 5 6 */
239 0x00000000L,0x10000000L,0x00010000L,0x10010000L,
240 0x00000004L,0x10000004L,0x00010004L,0x10010004L,
241 0x20000000L,0x30000000L,0x20010000L,0x30010000L,
242 0x20000004L,0x30000004L,0x20010004L,0x30010004L,
243 0x00100000L,0x10100000L,0x00110000L,0x10110000L,
244 0x00100004L,0x10100004L,0x00110004L,0x10110004L,
245 0x20100000L,0x30100000L,0x20110000L,0x30110000L,
246 0x20100004L,0x30100004L,0x20110004L,0x30110004L,
247 0x00001000L,0x10001000L,0x00011000L,0x10011000L,
248 0x00001004L,0x10001004L,0x00011004L,0x10011004L,
249 0x20001000L,0x30001000L,0x20011000L,0x30011000L,
250 0x20001004L,0x30001004L,0x20011004L,0x30011004L,
251 0x00101000L,0x10101000L,0x00111000L,0x10111000L,
252 0x00101004L,0x10101004L,0x00111004L,0x10111004L,
253 0x20101000L,0x30101000L,0x20111000L,0x30111000L,
254 0x20101004L,0x30101004L,0x20111004L,0x30111004L,
255 },{
256 /* for D bits (numbered as per FIPS 46) 8 9 11 12 13 14 */
257 0x00000000L,0x08000000L,0x00000008L,0x08000008L,
258 0x00000400L,0x08000400L,0x00000408L,0x08000408L,
259 0x00020000L,0x08020000L,0x00020008L,0x08020008L,

new/usr/src/lib/openssl/libsunw_crypto/des/set_key.c 5

260 0x00020400L,0x08020400L,0x00020408L,0x08020408L,
261 0x00000001L,0x08000001L,0x00000009L,0x08000009L,
262 0x00000401L,0x08000401L,0x00000409L,0x08000409L,
263 0x00020001L,0x08020001L,0x00020009L,0x08020009L,
264 0x00020401L,0x08020401L,0x00020409L,0x08020409L,
265 0x02000000L,0x0A000000L,0x02000008L,0x0A000008L,
266 0x02000400L,0x0A000400L,0x02000408L,0x0A000408L,
267 0x02020000L,0x0A020000L,0x02020008L,0x0A020008L,
268 0x02020400L,0x0A020400L,0x02020408L,0x0A020408L,
269 0x02000001L,0x0A000001L,0x02000009L,0x0A000009L,
270 0x02000401L,0x0A000401L,0x02000409L,0x0A000409L,
271 0x02020001L,0x0A020001L,0x02020009L,0x0A020009L,
272 0x02020401L,0x0A020401L,0x02020409L,0x0A020409L,
273 },{
274 /* for D bits (numbered as per FIPS 46) 16 17 18 19 20 21 */
275 0x00000000L,0x00000100L,0x00080000L,0x00080100L,
276 0x01000000L,0x01000100L,0x01080000L,0x01080100L,
277 0x00000010L,0x00000110L,0x00080010L,0x00080110L,
278 0x01000010L,0x01000110L,0x01080010L,0x01080110L,
279 0x00200000L,0x00200100L,0x00280000L,0x00280100L,
280 0x01200000L,0x01200100L,0x01280000L,0x01280100L,
281 0x00200010L,0x00200110L,0x00280010L,0x00280110L,
282 0x01200010L,0x01200110L,0x01280010L,0x01280110L,
283 0x00000200L,0x00000300L,0x00080200L,0x00080300L,
284 0x01000200L,0x01000300L,0x01080200L,0x01080300L,
285 0x00000210L,0x00000310L,0x00080210L,0x00080310L,
286 0x01000210L,0x01000310L,0x01080210L,0x01080310L,
287 0x00200200L,0x00200300L,0x00280200L,0x00280300L,
288 0x01200200L,0x01200300L,0x01280200L,0x01280300L,
289 0x00200210L,0x00200310L,0x00280210L,0x00280310L,
290 0x01200210L,0x01200310L,0x01280210L,0x01280310L,
291 },{
292 /* for D bits (numbered as per FIPS 46) 22 23 24 25 27 28 */
293 0x00000000L,0x04000000L,0x00040000L,0x04040000L,
294 0x00000002L,0x04000002L,0x00040002L,0x04040002L,
295 0x00002000L,0x04002000L,0x00042000L,0x04042000L,
296 0x00002002L,0x04002002L,0x00042002L,0x04042002L,
297 0x00000020L,0x04000020L,0x00040020L,0x04040020L,
298 0x00000022L,0x04000022L,0x00040022L,0x04040022L,
299 0x00002020L,0x04002020L,0x00042020L,0x04042020L,
300 0x00002022L,0x04002022L,0x00042022L,0x04042022L,
301 0x00000800L,0x04000800L,0x00040800L,0x04040800L,
302 0x00000802L,0x04000802L,0x00040802L,0x04040802L,
303 0x00002800L,0x04002800L,0x00042800L,0x04042800L,
304 0x00002802L,0x04002802L,0x00042802L,0x04042802L,
305 0x00000820L,0x04000820L,0x00040820L,0x04040820L,
306 0x00000822L,0x04000822L,0x00040822L,0x04040822L,
307 0x00002820L,0x04002820L,0x00042820L,0x04042820L,
308 0x00002822L,0x04002822L,0x00042822L,0x04042822L,
309 }};

311 int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule)
312 {
313 if (DES_check_key)
314 {
315 return DES_set_key_checked(key, schedule);
316 }
317 else
318 {
319 DES_set_key_unchecked(key, schedule);
320 return 0;
321 }
322 }

324 /* return 0 if key parity is odd (correct),
325 * return -1 if key parity error,

new/usr/src/lib/openssl/libsunw_crypto/des/set_key.c 6

326 * return -2 if illegal weak key.
327 */
328 int DES_set_key_checked(const_DES_cblock *key, DES_key_schedule *schedule)
329 {
330 if (!DES_check_key_parity(key))
331 return(-1);
332 if (DES_is_weak_key(key))
333 return(-2);
334 DES_set_key_unchecked(key, schedule);
335 return 0;
336 }

338 void DES_set_key_unchecked(const_DES_cblock *key, DES_key_schedule *schedule)
339 #ifdef OPENSSL_FIPS
340 {
341 fips_cipher_abort(DES);
342 private_DES_set_key_unchecked(key, schedule);
343 }
344 void private_DES_set_key_unchecked(const_DES_cblock *key, DES_key_schedule *sche
345 #endif
346 {
347 static const int shifts2[16]={0,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0};
348 register DES_LONG c,d,t,s,t2;
349 register const unsigned char *in;
350 register DES_LONG *k;
351 register int i;

353 #ifdef OPENBSD_DEV_CRYPTO
354 memcpy(schedule->key,key,sizeof schedule->key);
355 schedule->session=NULL;
356 #endif
357 k = &schedule->ks->deslong[0];
358 in = &(*key)[0];

360 c2l(in,c);
361 c2l(in,d);

363 /* do PC1 in 47 simple operations :-)
364 * Thanks to John Fletcher (john_fletcher@lccmail.ocf.llnl.gov)
365 * for the inspiration. :-) */
366 PERM_OP (d,c,t,4,0x0f0f0f0fL);
367 HPERM_OP(c,t,-2,0xcccc0000L);
368 HPERM_OP(d,t,-2,0xcccc0000L);
369 PERM_OP (d,c,t,1,0x55555555L);
370 PERM_OP (c,d,t,8,0x00ff00ffL);
371 PERM_OP (d,c,t,1,0x55555555L);
372 d= (((d&0x000000ffL)<<16L)| (d&0x0000ff00L) |
373 ((d&0x00ff0000L)>>16L)|((c&0xf0000000L)>>4L));
374 c&=0x0fffffffL;

376 for (i=0; i<ITERATIONS; i++)
377 {
378 if (shifts2[i])
379 { c=((c>>2L)|(c<<26L)); d=((d>>2L)|(d<<26L)); }
380 else
381 { c=((c>>1L)|(c<<27L)); d=((d>>1L)|(d<<27L)); }
382 c&=0x0fffffffL;
383 d&=0x0fffffffL;
384 /* could be a few less shifts but I am to lazy at this
385 * point in time to investigate */
386 s= des_skb[0][(c)&0x3f]|
387 des_skb[1][((c>> 6L)&0x03)|((c>> 7L)&0x3c)]|
388 des_skb[2][((c>>13L)&0x0f)|((c>>14L)&0x30)]|
389 des_skb[3][((c>>20L)&0x01)|((c>>21L)&0x06) |
390 ((c>>22L)&0x38)];
391 t= des_skb[4][(d)&0x3f]|

new/usr/src/lib/openssl/libsunw_crypto/des/set_key.c 7

392 des_skb[5][((d>> 7L)&0x03)|((d>> 8L)&0x3c)]|
393 des_skb[6][(d>>15L)&0x3f]|
394 des_skb[7][((d>>21L)&0x0f)|((d>>22L)&0x30)];

396 /* table contained 0213 4657 */
397 t2=((t<<16L)|(s&0x0000ffffL))&0xffffffffL;
398 *(k++)=ROTATE(t2,30)&0xffffffffL;

400 t2=((s>>16L)|(t&0xffff0000L));
401 *(k++)=ROTATE(t2,26)&0xffffffffL;
402 }
403 }

405 int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule)
406 {
407 return(DES_set_key(key,schedule));
408 }
409 /*
410 #undef des_fixup_key_parity
411 void des_fixup_key_parity(des_cblock *key)
412 {
413 des_set_odd_parity(key);
414 }
415 */

new/usr/src/lib/openssl/libsunw_crypto/des/str2key.c 1

**
 5588 Fri May 30 18:31:43 2014
new/usr/src/lib/openssl/libsunw_crypto/des/str2key.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/str2key.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/crypto.h>
60 #include "des_locl.h"

new/usr/src/lib/openssl/libsunw_crypto/des/str2key.c 2

62 void DES_string_to_key(const char *str, DES_cblock *key)
63 {
64 DES_key_schedule ks;
65 int i,length;
66 register unsigned char j;

68 memset(key,0,8);
69 length=strlen(str);
70 #ifdef OLD_STR_TO_KEY
71 for (i=0; i<length; i++)
72 (*key)[i%8]^=(str[i]<<1);
73 #else /* MIT COMPATIBLE */
74 for (i=0; i<length; i++)
75 {
76 j=str[i];
77 if ((i%16) < 8)
78 (*key)[i%8]^=(j<<1);
79 else
80 {
81 /* Reverse the bit order 05/05/92 eay */
82 j=((j<<4)&0xf0)|((j>>4)&0x0f);
83 j=((j<<2)&0xcc)|((j>>2)&0x33);
84 j=((j<<1)&0xaa)|((j>>1)&0x55);
85 (*key)[7-(i%8)]^=j;
86 }
87 }
88 #endif
89 DES_set_odd_parity(key);
90 #ifdef EXPERIMENTAL_STR_TO_STRONG_KEY
91 if(DES_is_weak_key(key))
92 (*key)[7] ^= 0xF0;
93 DES_set_key(key,&ks);
94 #else
95 DES_set_key_unchecked(key,&ks);
96 #endif
97 DES_cbc_cksum((const unsigned char*)str,key,length,&ks,key);
98 OPENSSL_cleanse(&ks,sizeof(ks));
99 DES_set_odd_parity(key);
100 }

102 void DES_string_to_2keys(const char *str, DES_cblock *key1, DES_cblock *key2)
103 {
104 DES_key_schedule ks;
105 int i,length;
106 register unsigned char j;

108 memset(key1,0,8);
109 memset(key2,0,8);
110 length=strlen(str);
111 #ifdef OLD_STR_TO_KEY
112 if (length <= 8)
113 {
114 for (i=0; i<length; i++)
115 {
116 (*key2)[i]=(*key1)[i]=(str[i]<<1);
117 }
118 }
119 else
120 {
121 for (i=0; i<length; i++)
122 {
123 if ((i/8)&1)
124 (*key2)[i%8]^=(str[i]<<1);
125 else
126 (*key1)[i%8]^=(str[i]<<1);
127 }

new/usr/src/lib/openssl/libsunw_crypto/des/str2key.c 3

128 }
129 #else /* MIT COMPATIBLE */
130 for (i=0; i<length; i++)
131 {
132 j=str[i];
133 if ((i%32) < 16)
134 {
135 if ((i%16) < 8)
136 (*key1)[i%8]^=(j<<1);
137 else
138 (*key2)[i%8]^=(j<<1);
139 }
140 else
141 {
142 j=((j<<4)&0xf0)|((j>>4)&0x0f);
143 j=((j<<2)&0xcc)|((j>>2)&0x33);
144 j=((j<<1)&0xaa)|((j>>1)&0x55);
145 if ((i%16) < 8)
146 (*key1)[7-(i%8)]^=j;
147 else
148 (*key2)[7-(i%8)]^=j;
149 }
150 }
151 if (length <= 8) memcpy(key2,key1,8);
152 #endif
153 DES_set_odd_parity(key1);
154 DES_set_odd_parity(key2);
155 #ifdef EXPERIMENTAL_STR_TO_STRONG_KEY
156 if(DES_is_weak_key(key1))
157 (*key1)[7] ^= 0xF0;
158 DES_set_key(key1,&ks);
159 #else
160 DES_set_key_unchecked(key1,&ks);
161 #endif
162 DES_cbc_cksum((const unsigned char*)str,key1,length,&ks,key1);
163 #ifdef EXPERIMENTAL_STR_TO_STRONG_KEY
164 if(DES_is_weak_key(key2))
165 (*key2)[7] ^= 0xF0;
166 DES_set_key(key2,&ks);
167 #else
168 DES_set_key_unchecked(key2,&ks);
169 #endif
170 DES_cbc_cksum((const unsigned char*)str,key2,length,&ks,key2);
171 OPENSSL_cleanse(&ks,sizeof(ks));
172 DES_set_odd_parity(key1);
173 DES_set_odd_parity(key2);
174 }

new/usr/src/lib/openssl/libsunw_crypto/des/xcbc_enc.c 1

**
 7165 Fri May 30 18:31:44 2014
new/usr/src/lib/openssl/libsunw_crypto/des/xcbc_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/des/xcbc_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include "des_locl.h"

61 /* RSA’s DESX */

new/usr/src/lib/openssl/libsunw_crypto/des/xcbc_enc.c 2

63 #if 0 /* broken code, preserved just in case anyone specifically looks for this
64 static const unsigned char desx_white_in2out[256]={
65 0xBD,0x56,0xEA,0xF2,0xA2,0xF1,0xAC,0x2A,0xB0,0x93,0xD1,0x9C,0x1B,0x33,0xFD,0xD0,
66 0x30,0x04,0xB6,0xDC,0x7D,0xDF,0x32,0x4B,0xF7,0xCB,0x45,0x9B,0x31,0xBB,0x21,0x5A,
67 0x41,0x9F,0xE1,0xD9,0x4A,0x4D,0x9E,0xDA,0xA0,0x68,0x2C,0xC3,0x27,0x5F,0x80,0x36,
68 0x3E,0xEE,0xFB,0x95,0x1A,0xFE,0xCE,0xA8,0x34,0xA9,0x13,0xF0,0xA6,0x3F,0xD8,0x0C,
69 0x78,0x24,0xAF,0x23,0x52,0xC1,0x67,0x17,0xF5,0x66,0x90,0xE7,0xE8,0x07,0xB8,0x60,
70 0x48,0xE6,0x1E,0x53,0xF3,0x92,0xA4,0x72,0x8C,0x08,0x15,0x6E,0x86,0x00,0x84,0xFA,
71 0xF4,0x7F,0x8A,0x42,0x19,0xF6,0xDB,0xCD,0x14,0x8D,0x50,0x12,0xBA,0x3C,0x06,0x4E,
72 0xEC,0xB3,0x35,0x11,0xA1,0x88,0x8E,0x2B,0x94,0x99,0xB7,0x71,0x74,0xD3,0xE4,0xBF,
73 0x3A,0xDE,0x96,0x0E,0xBC,0x0A,0xED,0x77,0xFC,0x37,0x6B,0x03,0x79,0x89,0x62,0xC6,
74 0xD7,0xC0,0xD2,0x7C,0x6A,0x8B,0x22,0xA3,0x5B,0x05,0x5D,0x02,0x75,0xD5,0x61,0xE3,
75 0x18,0x8F,0x55,0x51,0xAD,0x1F,0x0B,0x5E,0x85,0xE5,0xC2,0x57,0x63,0xCA,0x3D,0x6C,
76 0xB4,0xC5,0xCC,0x70,0xB2,0x91,0x59,0x0D,0x47,0x20,0xC8,0x4F,0x58,0xE0,0x01,0xE2,
77 0x16,0x38,0xC4,0x6F,0x3B,0x0F,0x65,0x46,0xBE,0x7E,0x2D,0x7B,0x82,0xF9,0x40,0xB5,
78 0x1D,0x73,0xF8,0xEB,0x26,0xC7,0x87,0x97,0x25,0x54,0xB1,0x28,0xAA,0x98,0x9D,0xA5,
79 0x64,0x6D,0x7A,0xD4,0x10,0x81,0x44,0xEF,0x49,0xD6,0xAE,0x2E,0xDD,0x76,0x5C,0x2F,
80 0xA7,0x1C,0xC9,0x09,0x69,0x9A,0x83,0xCF,0x29,0x39,0xB9,0xE9,0x4C,0xFF,0x43,0xAB,
81 };

83 void DES_xwhite_in2out(const_DES_cblock *des_key, const_DES_cblock *in_white,
84 DES_cblock *out_white)
85 {
86 int out0,out1;
87 int i;
88 const unsigned char *key = &(*des_key)[0];
89 const unsigned char *in = &(*in_white)[0];
90 unsigned char *out = &(*out_white)[0];

92 out[0]=out[1]=out[2]=out[3]=out[4]=out[5]=out[6]=out[7]=0;
93 out0=out1=0;
94 for (i=0; i<8; i++)
95 {
96 out[i]=key[i]^desx_white_in2out[out0^out1];
97 out0=out1;
98 out1=(int)out[i&0x07];
99 }

101 out0=out[0];
102 out1=out[i]; /* BUG: out-of-bounds read */
103 for (i=0; i<8; i++)
104 {
105 out[i]=in[i]^desx_white_in2out[out0^out1];
106 out0=out1;
107 out1=(int)out[i&0x07];
108 }
109 }
110 #endif

112 void DES_xcbc_encrypt(const unsigned char *in, unsigned char *out,
113 long length, DES_key_schedule *schedule,
114 DES_cblock *ivec, const_DES_cblock *inw,
115 const_DES_cblock *outw, int enc)
116 {
117 register DES_LONG tin0,tin1;
118 register DES_LONG tout0,tout1,xor0,xor1;
119 register DES_LONG inW0,inW1,outW0,outW1;
120 register const unsigned char *in2;
121 register long l=length;
122 DES_LONG tin[2];
123 unsigned char *iv;

125 in2 = &(*inw)[0];
126 c2l(in2,inW0);
127 c2l(in2,inW1);

new/usr/src/lib/openssl/libsunw_crypto/des/xcbc_enc.c 3

128 in2 = &(*outw)[0];
129 c2l(in2,outW0);
130 c2l(in2,outW1);

132 iv = &(*ivec)[0];

134 if (enc)
135 {
136 c2l(iv,tout0);
137 c2l(iv,tout1);
138 for (l-=8; l>=0; l-=8)
139 {
140 c2l(in,tin0);
141 c2l(in,tin1);
142 tin0^=tout0^inW0; tin[0]=tin0;
143 tin1^=tout1^inW1; tin[1]=tin1;
144 DES_encrypt1(tin,schedule,DES_ENCRYPT);
145 tout0=tin[0]^outW0; l2c(tout0,out);
146 tout1=tin[1]^outW1; l2c(tout1,out);
147 }
148 if (l != -8)
149 {
150 c2ln(in,tin0,tin1,l+8);
151 tin0^=tout0^inW0; tin[0]=tin0;
152 tin1^=tout1^inW1; tin[1]=tin1;
153 DES_encrypt1(tin,schedule,DES_ENCRYPT);
154 tout0=tin[0]^outW0; l2c(tout0,out);
155 tout1=tin[1]^outW1; l2c(tout1,out);
156 }
157 iv = &(*ivec)[0];
158 l2c(tout0,iv);
159 l2c(tout1,iv);
160 }
161 else
162 {
163 c2l(iv,xor0);
164 c2l(iv,xor1);
165 for (l-=8; l>0; l-=8)
166 {
167 c2l(in,tin0); tin[0]=tin0^outW0;
168 c2l(in,tin1); tin[1]=tin1^outW1;
169 DES_encrypt1(tin,schedule,DES_DECRYPT);
170 tout0=tin[0]^xor0^inW0;
171 tout1=tin[1]^xor1^inW1;
172 l2c(tout0,out);
173 l2c(tout1,out);
174 xor0=tin0;
175 xor1=tin1;
176 }
177 if (l != -8)
178 {
179 c2l(in,tin0); tin[0]=tin0^outW0;
180 c2l(in,tin1); tin[1]=tin1^outW1;
181 DES_encrypt1(tin,schedule,DES_DECRYPT);
182 tout0=tin[0]^xor0^inW0;
183 tout1=tin[1]^xor1^inW1;
184 l2cn(tout0,tout1,out,l+8);
185 xor0=tin0;
186 xor1=tin1;
187 }

189 iv = &(*ivec)[0];
190 l2c(xor0,iv);
191 l2c(xor1,iv);
192 }
193 tin0=tin1=tout0=tout1=xor0=xor1=0;

new/usr/src/lib/openssl/libsunw_crypto/des/xcbc_enc.c 4

194 inW0=inW1=outW0=outW1=0;
195 tin[0]=tin[1]=0;
196 }

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_ameth.c 1

**
 11158 Fri May 30 18:31:44 2014
new/usr/src/lib/openssl/libsunw_crypto/dh/dh_ameth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2 * project 2006.
3 */
4 /* ==
5 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ==
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */

58 #include <stdio.h>
59 #include "cryptlib.h"
60 #include <openssl/x509.h>
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_ameth.c 2

62 #include <openssl/dh.h>
63 #include <openssl/bn.h>
64 #include "asn1_locl.h"

66 static void int_dh_free(EVP_PKEY *pkey)
67 {
68 DH_free(pkey->pkey.dh);
69 }

71 static int dh_pub_decode(EVP_PKEY *pkey, X509_PUBKEY *pubkey)
72 {
73 const unsigned char *p, *pm;
74 int pklen, pmlen;
75 int ptype;
76 void *pval;
77 ASN1_STRING *pstr;
78 X509_ALGOR *palg;
79 ASN1_INTEGER *public_key = NULL;

81 DH *dh = NULL;

83 if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, &palg, pubkey))
84 return 0;
85 X509_ALGOR_get0(NULL, &ptype, &pval, palg);

87 if (ptype != V_ASN1_SEQUENCE)
88 {
89 DHerr(DH_F_DH_PUB_DECODE, DH_R_PARAMETER_ENCODING_ERROR);
90 goto err;
91 }

93 pstr = pval;
94 pm = pstr->data;
95 pmlen = pstr->length;

97 if (!(dh = d2i_DHparams(NULL, &pm, pmlen)))
98 {
99 DHerr(DH_F_DH_PUB_DECODE, DH_R_DECODE_ERROR);
100 goto err;
101 }

103 if (!(public_key=d2i_ASN1_INTEGER(NULL, &p, pklen)))
104 {
105 DHerr(DH_F_DH_PUB_DECODE, DH_R_DECODE_ERROR);
106 goto err;
107 }

109 /* We have parameters now set public key */
110 if (!(dh->pub_key = ASN1_INTEGER_to_BN(public_key, NULL)))
111 {
112 DHerr(DH_F_DH_PUB_DECODE, DH_R_BN_DECODE_ERROR);
113 goto err;
114 }

116 ASN1_INTEGER_free(public_key);
117 EVP_PKEY_assign_DH(pkey, dh);
118 return 1;

120 err:
121 if (public_key)
122 ASN1_INTEGER_free(public_key);
123 if (dh)
124 DH_free(dh);
125 return 0;

127 }

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_ameth.c 3

129 static int dh_pub_encode(X509_PUBKEY *pk, const EVP_PKEY *pkey)
130 {
131 DH *dh;
132 void *pval = NULL;
133 int ptype;
134 unsigned char *penc = NULL;
135 int penclen;
136 ASN1_STRING *str;
137 ASN1_INTEGER *pub_key = NULL;

139 dh=pkey->pkey.dh;

141 str = ASN1_STRING_new();
142 str->length = i2d_DHparams(dh, &str->data);
143 if (str->length <= 0)
144 {
145 DHerr(DH_F_DH_PUB_ENCODE, ERR_R_MALLOC_FAILURE);
146 goto err;
147 }
148 pval = str;
149 ptype = V_ASN1_SEQUENCE;

151 pub_key = BN_to_ASN1_INTEGER(dh->pub_key, NULL);
152 if (!pub_key)
153 goto err;

155 penclen = i2d_ASN1_INTEGER(pub_key, &penc);

157 ASN1_INTEGER_free(pub_key);

159 if (penclen <= 0)
160 {
161 DHerr(DH_F_DH_PUB_ENCODE, ERR_R_MALLOC_FAILURE);
162 goto err;
163 }

165 if (X509_PUBKEY_set0_param(pk, OBJ_nid2obj(EVP_PKEY_DH),
166 ptype, pval, penc, penclen))
167 return 1;

169 err:
170 if (penc)
171 OPENSSL_free(penc);
172 if (pval)
173 ASN1_STRING_free(pval);

175 return 0;
176 }

179 /* PKCS#8 DH is defined in PKCS#11 of all places. It is similar to DH in
180 * that the AlgorithmIdentifier contains the paramaters, the private key
181 * is explcitly included and the pubkey must be recalculated.
182 */
183
184 static int dh_priv_decode(EVP_PKEY *pkey, PKCS8_PRIV_KEY_INFO *p8)
185 {
186 const unsigned char *p, *pm;
187 int pklen, pmlen;
188 int ptype;
189 void *pval;
190 ASN1_STRING *pstr;
191 X509_ALGOR *palg;
192 ASN1_INTEGER *privkey = NULL;

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_ameth.c 4

194 DH *dh = NULL;

196 if (!PKCS8_pkey_get0(NULL, &p, &pklen, &palg, p8))
197 return 0;

199 X509_ALGOR_get0(NULL, &ptype, &pval, palg);

201 if (ptype != V_ASN1_SEQUENCE)
202 goto decerr;

204 if (!(privkey=d2i_ASN1_INTEGER(NULL, &p, pklen)))
205 goto decerr;

208 pstr = pval;
209 pm = pstr->data;
210 pmlen = pstr->length;
211 if (!(dh = d2i_DHparams(NULL, &pm, pmlen)))
212 goto decerr;
213 /* We have parameters now set private key */
214 if (!(dh->priv_key = ASN1_INTEGER_to_BN(privkey, NULL)))
215 {
216 DHerr(DH_F_DH_PRIV_DECODE,DH_R_BN_ERROR);
217 goto dherr;
218 }
219 /* Calculate public key */
220 if (!DH_generate_key(dh))
221 goto dherr;

223 EVP_PKEY_assign_DH(pkey, dh);

225 ASN1_INTEGER_free(privkey);

227 return 1;

229 decerr:
230 DHerr(DH_F_DH_PRIV_DECODE, EVP_R_DECODE_ERROR);
231 dherr:
232 DH_free(dh);
233 return 0;
234 }

236 static int dh_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey)
237 {
238 ASN1_STRING *params = NULL;
239 ASN1_INTEGER *prkey = NULL;
240 unsigned char *dp = NULL;
241 int dplen;

243 params = ASN1_STRING_new();

245 if (!params)
246 {
247 DHerr(DH_F_DH_PRIV_ENCODE,ERR_R_MALLOC_FAILURE);
248 goto err;
249 }

251 params->length = i2d_DHparams(pkey->pkey.dh, ¶ms->data);
252 if (params->length <= 0)
253 {
254 DHerr(DH_F_DH_PRIV_ENCODE,ERR_R_MALLOC_FAILURE);
255 goto err;
256 }
257 params->type = V_ASN1_SEQUENCE;

259 /* Get private key into integer */

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_ameth.c 5

260 prkey = BN_to_ASN1_INTEGER(pkey->pkey.dh->priv_key, NULL);

262 if (!prkey)
263 {
264 DHerr(DH_F_DH_PRIV_ENCODE,DH_R_BN_ERROR);
265 goto err;
266 }

268 dplen = i2d_ASN1_INTEGER(prkey, &dp);

270 ASN1_INTEGER_free(prkey);

272 if (!PKCS8_pkey_set0(p8, OBJ_nid2obj(NID_dhKeyAgreement), 0,
273 V_ASN1_SEQUENCE, params, dp, dplen))
274 goto err;

276 return 1;

278 err:
279 if (dp != NULL)
280 OPENSSL_free(dp);
281 if (params != NULL)
282 ASN1_STRING_free(params);
283 if (prkey != NULL)
284 ASN1_INTEGER_free(prkey);
285 return 0;
286 }

289 static void update_buflen(const BIGNUM *b, size_t *pbuflen)
290 {
291 size_t i;
292 if (!b)
293 return;
294 if (*pbuflen < (i = (size_t)BN_num_bytes(b)))
295 *pbuflen = i;
296 }

298 static int dh_param_decode(EVP_PKEY *pkey,
299 const unsigned char **pder, int derlen)
300 {
301 DH *dh;
302 if (!(dh = d2i_DHparams(NULL, pder, derlen)))
303 {
304 DHerr(DH_F_DH_PARAM_DECODE, ERR_R_DH_LIB);
305 return 0;
306 }
307 EVP_PKEY_assign_DH(pkey, dh);
308 return 1;
309 }

311 static int dh_param_encode(const EVP_PKEY *pkey, unsigned char **pder)
312 {
313 return i2d_DHparams(pkey->pkey.dh, pder);
314 }

316 static int do_dh_print(BIO *bp, const DH *x, int indent,
317 ASN1_PCTX *ctx, int ptype)
318 {
319 unsigned char *m=NULL;
320 int reason=ERR_R_BUF_LIB,ret=0;
321 size_t buf_len=0;

323 const char *ktype = NULL;

325 BIGNUM *priv_key, *pub_key;

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_ameth.c 6

327 if (ptype == 2)
328 priv_key = x->priv_key;
329 else
330 priv_key = NULL;

332 if (ptype > 0)
333 pub_key = x->pub_key;
334 else
335 pub_key = NULL;

337 update_buflen(x->p, &buf_len);

339 if (buf_len == 0)
340 {
341 reason = ERR_R_PASSED_NULL_PARAMETER;
342 goto err;
343 }

345 update_buflen(x->g, &buf_len);
346 update_buflen(pub_key, &buf_len);
347 update_buflen(priv_key, &buf_len);

349 if (ptype == 2)
350 ktype = "PKCS#3 DH Private-Key";
351 else if (ptype == 1)
352 ktype = "PKCS#3 DH Public-Key";
353 else
354 ktype = "PKCS#3 DH Parameters";

356 m= OPENSSL_malloc(buf_len+10);
357 if (m == NULL)
358 {
359 reason=ERR_R_MALLOC_FAILURE;
360 goto err;
361 }

363 BIO_indent(bp, indent, 128);
364 if (BIO_printf(bp,"%s: (%d bit)\n", ktype, BN_num_bits(x->p)) <= 0)
365 goto err;
366 indent += 4;

368 if (!ASN1_bn_print(bp,"private-key:",priv_key,m,indent)) goto err;
369 if (!ASN1_bn_print(bp,"public-key:",pub_key,m,indent)) goto err;

371 if (!ASN1_bn_print(bp,"prime:",x->p,m,indent)) goto err;
372 if (!ASN1_bn_print(bp,"generator:",x->g,m,indent)) goto err;
373 if (x->length != 0)
374 {
375 BIO_indent(bp, indent, 128);
376 if (BIO_printf(bp,"recommended-private-length: %d bits\n",
377 (int)x->length) <= 0) goto err;
378 }

381 ret=1;
382 if (0)
383 {
384 err:
385 DHerr(DH_F_DO_DH_PRINT,reason);
386 }
387 if (m != NULL) OPENSSL_free(m);
388 return(ret);
389 }

391 static int int_dh_size(const EVP_PKEY *pkey)

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_ameth.c 7

392 {
393 return(DH_size(pkey->pkey.dh));
394 }

396 static int dh_bits(const EVP_PKEY *pkey)
397 {
398 return BN_num_bits(pkey->pkey.dh->p);
399 }

401 static int dh_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b)
402 {
403 if (BN_cmp(a->pkey.dh->p,b->pkey.dh->p) ||
404 BN_cmp(a->pkey.dh->g,b->pkey.dh->g))
405 return 0;
406 else
407 return 1;
408 }

410 static int dh_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from)
411 {
412 BIGNUM *a;

414 if ((a=BN_dup(from->pkey.dh->p)) == NULL)
415 return 0;
416 if (to->pkey.dh->p != NULL)
417 BN_free(to->pkey.dh->p);
418 to->pkey.dh->p=a;

420 if ((a=BN_dup(from->pkey.dh->g)) == NULL)
421 return 0;
422 if (to->pkey.dh->g != NULL)
423 BN_free(to->pkey.dh->g);
424 to->pkey.dh->g=a;

426 return 1;
427 }

429 static int dh_missing_parameters(const EVP_PKEY *a)
430 {
431 if (!a->pkey.dh->p || !a->pkey.dh->g)
432 return 1;
433 return 0;
434 }

436 static int dh_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b)
437 {
438 if (dh_cmp_parameters(a, b) == 0)
439 return 0;
440 if (BN_cmp(b->pkey.dh->pub_key,a->pkey.dh->pub_key) != 0)
441 return 0;
442 else
443 return 1;
444 }

446 static int dh_param_print(BIO *bp, const EVP_PKEY *pkey, int indent,
447 ASN1_PCTX *ctx)
448 {
449 return do_dh_print(bp, pkey->pkey.dh, indent, ctx, 0);
450 }

452 static int dh_public_print(BIO *bp, const EVP_PKEY *pkey, int indent,
453 ASN1_PCTX *ctx)
454 {
455 return do_dh_print(bp, pkey->pkey.dh, indent, ctx, 1);
456 }

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_ameth.c 8

458 static int dh_private_print(BIO *bp, const EVP_PKEY *pkey, int indent,
459 ASN1_PCTX *ctx)
460 {
461 return do_dh_print(bp, pkey->pkey.dh, indent, ctx, 2);
462 }

464 int DHparams_print(BIO *bp, const DH *x)
465 {
466 return do_dh_print(bp, x, 4, NULL, 0);
467 }

469 const EVP_PKEY_ASN1_METHOD dh_asn1_meth =
470 {
471 EVP_PKEY_DH,
472 EVP_PKEY_DH,
473 0,

475 "DH",
476 "OpenSSL PKCS#3 DH method",

478 dh_pub_decode,
479 dh_pub_encode,
480 dh_pub_cmp,
481 dh_public_print,

483 dh_priv_decode,
484 dh_priv_encode,
485 dh_private_print,

487 int_dh_size,
488 dh_bits,

490 dh_param_decode,
491 dh_param_encode,
492 dh_missing_parameters,
493 dh_copy_parameters,
494 dh_cmp_parameters,
495 dh_param_print,
496 0,

498 int_dh_free,
499 0
500 };

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_asn1.c 1

**
 3560 Fri May 30 18:31:44 2014
new/usr/src/lib/openssl/libsunw_crypto/dh/dh_asn1.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* dh_asn1.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_asn1.c 2

62 #include <openssl/dh.h>
63 #include <openssl/objects.h>
64 #include <openssl/asn1t.h>

66 /* Override the default free and new methods */
67 static int dh_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
68 void *exarg)
69 {
70 if(operation == ASN1_OP_NEW_PRE) {
71 *pval = (ASN1_VALUE *)DH_new();
72 if(*pval) return 2;
73 return 0;
74 } else if(operation == ASN1_OP_FREE_PRE) {
75 DH_free((DH *)*pval);
76 *pval = NULL;
77 return 2;
78 }
79 return 1;
80 }

82 ASN1_SEQUENCE_cb(DHparams, dh_cb) = {
83 ASN1_SIMPLE(DH, p, BIGNUM),
84 ASN1_SIMPLE(DH, g, BIGNUM),
85 ASN1_OPT(DH, length, ZLONG),
86 } ASN1_SEQUENCE_END_cb(DH, DHparams)

88 IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DH, DHparams, DHparams)

90 DH *DHparams_dup(DH *dh)
91 {
92 return ASN1_item_dup(ASN1_ITEM_rptr(DHparams), dh);
93 }

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_check.c 1

**
 4841 Fri May 30 18:31:44 2014
new/usr/src/lib/openssl/libsunw_crypto/dh/dh_check.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dh/dh_check.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_check.c 2

62 #include <openssl/dh.h>

64 /* Check that p is a safe prime and
65 * if g is 2, 3 or 5, check that it is a suitable generator
66 * where
67 * for 2, p mod 24 == 11
68 * for 3, p mod 12 == 5
69 * for 5, p mod 10 == 3 or 7
70 * should hold.
71 */

73 int DH_check(const DH *dh, int *ret)
74 {
75 int ok=0;
76 BN_CTX *ctx=NULL;
77 BN_ULONG l;
78 BIGNUM *q=NULL;

80 *ret=0;
81 ctx=BN_CTX_new();
82 if (ctx == NULL) goto err;
83 q=BN_new();
84 if (q == NULL) goto err;

86 if (BN_is_word(dh->g,DH_GENERATOR_2))
87 {
88 l=BN_mod_word(dh->p,24);
89 if (l != 11) *ret|=DH_NOT_SUITABLE_GENERATOR;
90 }
91 #if 0
92 else if (BN_is_word(dh->g,DH_GENERATOR_3))
93 {
94 l=BN_mod_word(dh->p,12);
95 if (l != 5) *ret|=DH_NOT_SUITABLE_GENERATOR;
96 }
97 #endif
98 else if (BN_is_word(dh->g,DH_GENERATOR_5))
99 {
100 l=BN_mod_word(dh->p,10);
101 if ((l != 3) && (l != 7))
102 *ret|=DH_NOT_SUITABLE_GENERATOR;
103 }
104 else
105 *ret|=DH_UNABLE_TO_CHECK_GENERATOR;

107 if (!BN_is_prime_ex(dh->p,BN_prime_checks,ctx,NULL))
108 *ret|=DH_CHECK_P_NOT_PRIME;
109 else
110 {
111 if (!BN_rshift1(q,dh->p)) goto err;
112 if (!BN_is_prime_ex(q,BN_prime_checks,ctx,NULL))
113 *ret|=DH_CHECK_P_NOT_SAFE_PRIME;
114 }
115 ok=1;
116 err:
117 if (ctx != NULL) BN_CTX_free(ctx);
118 if (q != NULL) BN_free(q);
119 return(ok);
120 }

122 int DH_check_pub_key(const DH *dh, const BIGNUM *pub_key, int *ret)
123 {
124 int ok=0;
125 BIGNUM *q=NULL;

127 *ret=0;

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_check.c 3

128 q=BN_new();
129 if (q == NULL) goto err;
130 BN_set_word(q,1);
131 if (BN_cmp(pub_key,q)<=0)
132 *ret|=DH_CHECK_PUBKEY_TOO_SMALL;
133 BN_copy(q,dh->p);
134 BN_sub_word(q,1);
135 if (BN_cmp(pub_key,q)>=0)
136 *ret|=DH_CHECK_PUBKEY_TOO_LARGE;

138 ok = 1;
139 err:
140 if (q != NULL) BN_free(q);
141 return(ok);
142 }

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_depr.c 1

**
 3232 Fri May 30 18:31:44 2014
new/usr/src/lib/openssl/libsunw_crypto/dh/dh_depr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dh/dh_depr.c */
2 /* ==
3 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

57 /* This file contains deprecated functions as wrappers to the new ones */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_depr.c 2

62 #include <openssl/dh.h>

64 static void *dummy=&dummy;

66 #ifndef OPENSSL_NO_DEPRECATED
67 DH *DH_generate_parameters(int prime_len, int generator,
68 void (*callback)(int,int,void *), void *cb_arg)
69 {
70 BN_GENCB cb;
71 DH *ret=NULL;

73 if((ret=DH_new()) == NULL)
74 return NULL;

76 BN_GENCB_set_old(&cb, callback, cb_arg);

78 if(DH_generate_parameters_ex(ret, prime_len, generator, &cb))
79 return ret;
80 DH_free(ret);
81 return NULL;
82 }
83 #endif

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_err.c 1

**
 5064 Fri May 30 18:31:44 2014
new/usr/src/lib/openssl/libsunw_crypto/dh/dh_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dh/dh_err.c */
2 /* ==
3 * Copyright (c) 1999-2011 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/dh.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_DH,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_DH,0,reason)

71 static ERR_STRING_DATA DH_str_functs[]=
72 {
73 {ERR_FUNC(DH_F_COMPUTE_KEY), "COMPUTE_KEY"},
74 {ERR_FUNC(DH_F_DHPARAMS_PRINT_FP), "DHparams_print_fp"},
75 {ERR_FUNC(DH_F_DH_BUILTIN_GENPARAMS), "DH_BUILTIN_GENPARAMS"},
76 {ERR_FUNC(DH_F_DH_COMPUTE_KEY), "DH_compute_key"},
77 {ERR_FUNC(DH_F_DH_GENERATE_KEY), "DH_generate_key"},
78 {ERR_FUNC(DH_F_DH_GENERATE_PARAMETERS_EX), "DH_generate_parameters_ex"},
79 {ERR_FUNC(DH_F_DH_NEW_METHOD), "DH_new_method"},
80 {ERR_FUNC(DH_F_DH_PARAM_DECODE), "DH_PARAM_DECODE"},
81 {ERR_FUNC(DH_F_DH_PRIV_DECODE), "DH_PRIV_DECODE"},
82 {ERR_FUNC(DH_F_DH_PRIV_ENCODE), "DH_PRIV_ENCODE"},
83 {ERR_FUNC(DH_F_DH_PUB_DECODE), "DH_PUB_DECODE"},
84 {ERR_FUNC(DH_F_DH_PUB_ENCODE), "DH_PUB_ENCODE"},
85 {ERR_FUNC(DH_F_DO_DH_PRINT), "DO_DH_PRINT"},
86 {ERR_FUNC(DH_F_GENERATE_KEY), "GENERATE_KEY"},
87 {ERR_FUNC(DH_F_GENERATE_PARAMETERS), "GENERATE_PARAMETERS"},
88 {ERR_FUNC(DH_F_PKEY_DH_DERIVE), "PKEY_DH_DERIVE"},
89 {ERR_FUNC(DH_F_PKEY_DH_KEYGEN), "PKEY_DH_KEYGEN"},
90 {0,NULL}
91 };

93 static ERR_STRING_DATA DH_str_reasons[]=
94 {
95 {ERR_REASON(DH_R_BAD_GENERATOR) ,"bad generator"},
96 {ERR_REASON(DH_R_BN_DECODE_ERROR) ,"bn decode error"},
97 {ERR_REASON(DH_R_BN_ERROR) ,"bn error"},
98 {ERR_REASON(DH_R_DECODE_ERROR) ,"decode error"},
99 {ERR_REASON(DH_R_INVALID_PUBKEY) ,"invalid public key"},
100 {ERR_REASON(DH_R_KEYS_NOT_SET) ,"keys not set"},
101 {ERR_REASON(DH_R_KEY_SIZE_TOO_SMALL) ,"key size too small"},
102 {ERR_REASON(DH_R_MODULUS_TOO_LARGE) ,"modulus too large"},
103 {ERR_REASON(DH_R_NON_FIPS_METHOD) ,"non fips method"},
104 {ERR_REASON(DH_R_NO_PARAMETERS_SET) ,"no parameters set"},
105 {ERR_REASON(DH_R_NO_PRIVATE_VALUE) ,"no private value"},
106 {ERR_REASON(DH_R_PARAMETER_ENCODING_ERROR),"parameter encoding error"},
107 {0,NULL}
108 };

110 #endif

112 void ERR_load_DH_strings(void)
113 {
114 #ifndef OPENSSL_NO_ERR

116 if (ERR_func_error_string(DH_str_functs[0].error) == NULL)
117 {
118 ERR_load_strings(0,DH_str_functs);
119 ERR_load_strings(0,DH_str_reasons);
120 }
121 #endif
122 }

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_gen.c 1

**
 6866 Fri May 30 18:31:44 2014
new/usr/src/lib/openssl/libsunw_crypto/dh/dh_gen.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dh/dh_gen.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* NB: These functions have been upgraded - the previous prototypes are in
60 * dh_depr.c as wrappers to these ones.
61 * - Geoff

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_gen.c 2

62 */

64 #include <stdio.h>
65 #include "cryptlib.h"
66 #include <openssl/bn.h>
67 #include <openssl/dh.h>

69 #ifdef OPENSSL_FIPS
70 #include <openssl/fips.h>
71 #endif

73 static int dh_builtin_genparams(DH *ret, int prime_len, int generator, BN_GENCB

75 int DH_generate_parameters_ex(DH *ret, int prime_len, int generator, BN_GENCB *c
76 {
77 #ifdef OPENSSL_FIPS
78 if (FIPS_mode() && !(ret->meth->flags & DH_FLAG_FIPS_METHOD)
79 && !(ret->flags & DH_FLAG_NON_FIPS_ALLOW))
80 {
81 DHerr(DH_F_DH_GENERATE_PARAMETERS_EX, DH_R_NON_FIPS_METHOD);
82 return 0;
83 }
84 #endif
85 if(ret->meth->generate_params)
86 return ret->meth->generate_params(ret, prime_len, generator, cb)
87 #ifdef OPENSSL_FIPS
88 if (FIPS_mode())
89 return FIPS_dh_generate_parameters_ex(ret, prime_len,
90 generator, cb);
91 #endif
92 return dh_builtin_genparams(ret, prime_len, generator, cb);
93 }

95 /* We generate DH parameters as follows
96 * find a prime q which is prime_len/2 bits long.
97 * p=(2*q)+1 or (p-1)/2 = q
98 * For this case, g is a generator if
99 * g^((p-1)/q) mod p != 1 for values of q which are the factors of p-1.
100 * Since the factors of p-1 are q and 2, we just need to check
101 * g^2 mod p != 1 and g^q mod p != 1.
102 *
103 * Having said all that,
104 * there is another special case method for the generators 2, 3 and 5.
105 * for 2, p mod 24 == 11
106 * for 3, p mod 12 == 5 <<<<< does not work for safe primes.
107 * for 5, p mod 10 == 3 or 7
108 *
109 * Thanks to Phil Karn <karn@qualcomm.com> for the pointers about the
110 * special generators and for answering some of my questions.
111 *
112 * I’ve implemented the second simple method :-).
113 * Since DH should be using a safe prime (both p and q are prime),
114 * this generator function can take a very very long time to run.
115 */
116 /* Actually there is no reason to insist that ’generator’ be a generator.
117 * It’s just as OK (and in some sense better) to use a generator of the
118 * order-q subgroup.
119 */
120 static int dh_builtin_genparams(DH *ret, int prime_len, int generator, BN_GENCB
121 {
122 BIGNUM *t1,*t2;
123 int g,ok= -1;
124 BN_CTX *ctx=NULL;

126 ctx=BN_CTX_new();
127 if (ctx == NULL) goto err;

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_gen.c 3

128 BN_CTX_start(ctx);
129 t1 = BN_CTX_get(ctx);
130 t2 = BN_CTX_get(ctx);
131 if (t1 == NULL || t2 == NULL) goto err;

133 /* Make sure ’ret’ has the necessary elements */
134 if(!ret->p && ((ret->p = BN_new()) == NULL)) goto err;
135 if(!ret->g && ((ret->g = BN_new()) == NULL)) goto err;
136
137 if (generator <= 1)
138 {
139 DHerr(DH_F_DH_BUILTIN_GENPARAMS, DH_R_BAD_GENERATOR);
140 goto err;
141 }
142 if (generator == DH_GENERATOR_2)
143 {
144 if (!BN_set_word(t1,24)) goto err;
145 if (!BN_set_word(t2,11)) goto err;
146 g=2;
147 }
148 #if 0 /* does not work for safe primes */
149 else if (generator == DH_GENERATOR_3)
150 {
151 if (!BN_set_word(t1,12)) goto err;
152 if (!BN_set_word(t2,5)) goto err;
153 g=3;
154 }
155 #endif
156 else if (generator == DH_GENERATOR_5)
157 {
158 if (!BN_set_word(t1,10)) goto err;
159 if (!BN_set_word(t2,3)) goto err;
160 /* BN_set_word(t3,7); just have to miss
161 * out on these ones :-(*/
162 g=5;
163 }
164 else
165 {
166 /* in the general case, don’t worry if ’generator’ is a
167 * generator or not: since we are using safe primes,
168 * it will generate either an order-q or an order-2q group,
169 * which both is OK */
170 if (!BN_set_word(t1,2)) goto err;
171 if (!BN_set_word(t2,1)) goto err;
172 g=generator;
173 }
174
175 if(!BN_generate_prime_ex(ret->p,prime_len,1,t1,t2,cb)) goto err;
176 if(!BN_GENCB_call(cb, 3, 0)) goto err;
177 if (!BN_set_word(ret->g,g)) goto err;
178 ok=1;
179 err:
180 if (ok == -1)
181 {
182 DHerr(DH_F_DH_BUILTIN_GENPARAMS,ERR_R_BN_LIB);
183 ok=0;
184 }

186 if (ctx != NULL)
187 {
188 BN_CTX_end(ctx);
189 BN_CTX_free(ctx);
190 }
191 return ok;
192 }

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_key.c 1

**
 7805 Fri May 30 18:31:44 2014
new/usr/src/lib/openssl/libsunw_crypto/dh/dh_key.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dh/dh_key.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_key.c 2

62 #include <openssl/rand.h>
63 #include <openssl/dh.h>

65 static int generate_key(DH *dh);
66 static int compute_key(unsigned char *key, const BIGNUM *pub_key, DH *dh);
67 static int dh_bn_mod_exp(const DH *dh, BIGNUM *r,
68 const BIGNUM *a, const BIGNUM *p,
69 const BIGNUM *m, BN_CTX *ctx,
70 BN_MONT_CTX *m_ctx);
71 static int dh_init(DH *dh);
72 static int dh_finish(DH *dh);

74 int DH_generate_key(DH *dh)
75 {
76 #ifdef OPENSSL_FIPS
77 if (FIPS_mode() && !(dh->meth->flags & DH_FLAG_FIPS_METHOD)
78 && !(dh->flags & DH_FLAG_NON_FIPS_ALLOW))
79 {
80 DHerr(DH_F_DH_GENERATE_KEY, DH_R_NON_FIPS_METHOD);
81 return 0;
82 }
83 #endif
84 return dh->meth->generate_key(dh);
85 }

87 int DH_compute_key(unsigned char *key, const BIGNUM *pub_key, DH *dh)
88 {
89 #ifdef OPENSSL_FIPS
90 if (FIPS_mode() && !(dh->meth->flags & DH_FLAG_FIPS_METHOD)
91 && !(dh->flags & DH_FLAG_NON_FIPS_ALLOW))
92 {
93 DHerr(DH_F_DH_COMPUTE_KEY, DH_R_NON_FIPS_METHOD);
94 return 0;
95 }
96 #endif
97 return dh->meth->compute_key(key, pub_key, dh);
98 }

100 static DH_METHOD dh_ossl = {
101 "OpenSSL DH Method",
102 generate_key,
103 compute_key,
104 dh_bn_mod_exp,
105 dh_init,
106 dh_finish,
107 0,
108 NULL,
109 NULL
110 };

112 const DH_METHOD *DH_OpenSSL(void)
113 {
114 return &dh_ossl;
115 }

117 static int generate_key(DH *dh)
118 {
119 int ok=0;
120 int generate_new_key=0;
121 unsigned l;
122 BN_CTX *ctx;
123 BN_MONT_CTX *mont=NULL;
124 BIGNUM *pub_key=NULL,*priv_key=NULL;

126 ctx = BN_CTX_new();
127 if (ctx == NULL) goto err;

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_key.c 3

129 if (dh->priv_key == NULL)
130 {
131 priv_key=BN_new();
132 if (priv_key == NULL) goto err;
133 generate_new_key=1;
134 }
135 else
136 priv_key=dh->priv_key;

138 if (dh->pub_key == NULL)
139 {
140 pub_key=BN_new();
141 if (pub_key == NULL) goto err;
142 }
143 else
144 pub_key=dh->pub_key;

147 if (dh->flags & DH_FLAG_CACHE_MONT_P)
148 {
149 mont = BN_MONT_CTX_set_locked(&dh->method_mont_p,
150 CRYPTO_LOCK_DH, dh->p, ctx);
151 if (!mont)
152 goto err;
153 }

155 if (generate_new_key)
156 {
157 if (dh->q)
158 {
159 do
160 {
161 if (!BN_rand_range(priv_key, dh->q))
162 goto err;
163 }
164 while (BN_is_zero(priv_key) || BN_is_one(priv_key));
165 }
166 else
167 {
168 /* secret exponent length */
169 l = dh->length ? dh->length : BN_num_bits(dh->p)-1;
170 if (!BN_rand(priv_key, l, 0, 0)) goto err;
171 }
172 }

174 {
175 BIGNUM local_prk;
176 BIGNUM *prk;

178 if ((dh->flags & DH_FLAG_NO_EXP_CONSTTIME) == 0)
179 {
180 BN_init(&local_prk);
181 prk = &local_prk;
182 BN_with_flags(prk, priv_key, BN_FLG_CONSTTIME);
183 }
184 else
185 prk = priv_key;

187 if (!dh->meth->bn_mod_exp(dh, pub_key, dh->g, prk, dh->p, ctx, m
188 }
189
190 dh->pub_key=pub_key;
191 dh->priv_key=priv_key;
192 ok=1;
193 err:

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_key.c 4

194 if (ok != 1)
195 DHerr(DH_F_GENERATE_KEY,ERR_R_BN_LIB);

197 if ((pub_key != NULL) && (dh->pub_key == NULL)) BN_free(pub_key);
198 if ((priv_key != NULL) && (dh->priv_key == NULL)) BN_free(priv_key);
199 BN_CTX_free(ctx);
200 return(ok);
201 }

203 static int compute_key(unsigned char *key, const BIGNUM *pub_key, DH *dh)
204 {
205 BN_CTX *ctx=NULL;
206 BN_MONT_CTX *mont=NULL;
207 BIGNUM *tmp;
208 int ret= -1;
209 int check_result;

211 if (BN_num_bits(dh->p) > OPENSSL_DH_MAX_MODULUS_BITS)
212 {
213 DHerr(DH_F_COMPUTE_KEY,DH_R_MODULUS_TOO_LARGE);
214 goto err;
215 }

217 ctx = BN_CTX_new();
218 if (ctx == NULL) goto err;
219 BN_CTX_start(ctx);
220 tmp = BN_CTX_get(ctx);
221
222 if (dh->priv_key == NULL)
223 {
224 DHerr(DH_F_COMPUTE_KEY,DH_R_NO_PRIVATE_VALUE);
225 goto err;
226 }

228 if (dh->flags & DH_FLAG_CACHE_MONT_P)
229 {
230 mont = BN_MONT_CTX_set_locked(&dh->method_mont_p,
231 CRYPTO_LOCK_DH, dh->p, ctx);
232 if ((dh->flags & DH_FLAG_NO_EXP_CONSTTIME) == 0)
233 {
234 /* XXX */
235 BN_set_flags(dh->priv_key, BN_FLG_CONSTTIME);
236 }
237 if (!mont)
238 goto err;
239 }

241 if (!DH_check_pub_key(dh, pub_key, &check_result) || check_result)
242 {
243 DHerr(DH_F_COMPUTE_KEY,DH_R_INVALID_PUBKEY);
244 goto err;
245 }

247 if (!dh->meth->bn_mod_exp(dh, tmp, pub_key, dh->priv_key,dh->p,ctx,mont)
248 {
249 DHerr(DH_F_COMPUTE_KEY,ERR_R_BN_LIB);
250 goto err;
251 }

253 ret=BN_bn2bin(tmp,key);
254 err:
255 if (ctx != NULL)
256 {
257 BN_CTX_end(ctx);
258 BN_CTX_free(ctx);
259 }

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_key.c 5

260 return(ret);
261 }

263 static int dh_bn_mod_exp(const DH *dh, BIGNUM *r,
264 const BIGNUM *a, const BIGNUM *p,
265 const BIGNUM *m, BN_CTX *ctx,
266 BN_MONT_CTX *m_ctx)
267 {
268 /* If a is only one word long and constant time is false, use the faster
269 * exponenentiation function.
270 */
271 if (a->top == 1 && ((dh->flags & DH_FLAG_NO_EXP_CONSTTIME) != 0))
272 {
273 BN_ULONG A = a->d[0];
274 return BN_mod_exp_mont_word(r,A,p,m,ctx,m_ctx);
275 }
276 else
277 return BN_mod_exp_mont(r,a,p,m,ctx,m_ctx);
278 }

281 static int dh_init(DH *dh)
282 {
283 dh->flags |= DH_FLAG_CACHE_MONT_P;
284 return(1);
285 }

287 static int dh_finish(DH *dh)
288 {
289 if(dh->method_mont_p)
290 BN_MONT_CTX_free(dh->method_mont_p);
291 return(1);
292 }

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_lib.c 1

**
 7292 Fri May 30 18:31:44 2014
new/usr/src/lib/openssl/libsunw_crypto/dh/dh_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dh/dh_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_lib.c 2

62 #include <openssl/dh.h>
63 #ifndef OPENSSL_NO_ENGINE
64 #include <openssl/engine.h>
65 #endif

67 #ifdef OPENSSL_FIPS
68 #include <openssl/fips.h>
69 #endif

71 const char DH_version[]="Diffie-Hellman" OPENSSL_VERSION_PTEXT;

73 static const DH_METHOD *default_DH_method = NULL;

75 void DH_set_default_method(const DH_METHOD *meth)
76 {
77 default_DH_method = meth;
78 }

80 const DH_METHOD *DH_get_default_method(void)
81 {
82 if(!default_DH_method)
83 {
84 #ifdef OPENSSL_FIPS
85 if (FIPS_mode())
86 return FIPS_dh_openssl();
87 else
88 return DH_OpenSSL();
89 #else
90 default_DH_method = DH_OpenSSL();
91 #endif
92 }
93 return default_DH_method;
94 }

96 int DH_set_method(DH *dh, const DH_METHOD *meth)
97 {
98 /* NB: The caller is specifically setting a method, so it’s not up to us
99 * to deal with which ENGINE it comes from. */
100 const DH_METHOD *mtmp;
101 mtmp = dh->meth;
102 if (mtmp->finish) mtmp->finish(dh);
103 #ifndef OPENSSL_NO_ENGINE
104 if (dh->engine)
105 {
106 ENGINE_finish(dh->engine);
107 dh->engine = NULL;
108 }
109 #endif
110 dh->meth = meth;
111 if (meth->init) meth->init(dh);
112 return 1;
113 }

115 DH *DH_new(void)
116 {
117 return DH_new_method(NULL);
118 }

120 DH *DH_new_method(ENGINE *engine)
121 {
122 DH *ret;

124 ret=(DH *)OPENSSL_malloc(sizeof(DH));
125 if (ret == NULL)
126 {
127 DHerr(DH_F_DH_NEW_METHOD,ERR_R_MALLOC_FAILURE);

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_lib.c 3

128 return(NULL);
129 }

131 ret->meth = DH_get_default_method();
132 #ifndef OPENSSL_NO_ENGINE
133 if (engine)
134 {
135 if (!ENGINE_init(engine))
136 {
137 DHerr(DH_F_DH_NEW_METHOD, ERR_R_ENGINE_LIB);
138 OPENSSL_free(ret);
139 return NULL;
140 }
141 ret->engine = engine;
142 }
143 else
144 ret->engine = ENGINE_get_default_DH();
145 if(ret->engine)
146 {
147 ret->meth = ENGINE_get_DH(ret->engine);
148 if(!ret->meth)
149 {
150 DHerr(DH_F_DH_NEW_METHOD,ERR_R_ENGINE_LIB);
151 ENGINE_finish(ret->engine);
152 OPENSSL_free(ret);
153 return NULL;
154 }
155 }
156 #endif

158 ret->pad=0;
159 ret->version=0;
160 ret->p=NULL;
161 ret->g=NULL;
162 ret->length=0;
163 ret->pub_key=NULL;
164 ret->priv_key=NULL;
165 ret->q=NULL;
166 ret->j=NULL;
167 ret->seed = NULL;
168 ret->seedlen = 0;
169 ret->counter = NULL;
170 ret->method_mont_p=NULL;
171 ret->references = 1;
172 ret->flags=ret->meth->flags & ~DH_FLAG_NON_FIPS_ALLOW;
173 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_DH, ret, &ret->ex_data);
174 if ((ret->meth->init != NULL) && !ret->meth->init(ret))
175 {
176 #ifndef OPENSSL_NO_ENGINE
177 if (ret->engine)
178 ENGINE_finish(ret->engine);
179 #endif
180 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_DH, ret, &ret->ex_data);
181 OPENSSL_free(ret);
182 ret=NULL;
183 }
184 return(ret);
185 }

187 void DH_free(DH *r)
188 {
189 int i;
190 if(r == NULL) return;
191 i = CRYPTO_add(&r->references, -1, CRYPTO_LOCK_DH);
192 #ifdef REF_PRINT
193 REF_PRINT("DH",r);

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_lib.c 4

194 #endif
195 if (i > 0) return;
196 #ifdef REF_CHECK
197 if (i < 0)
198 {
199 fprintf(stderr,"DH_free, bad reference count\n");
200 abort();
201 }
202 #endif

204 if (r->meth->finish)
205 r->meth->finish(r);
206 #ifndef OPENSSL_NO_ENGINE
207 if (r->engine)
208 ENGINE_finish(r->engine);
209 #endif

211 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_DH, r, &r->ex_data);

213 if (r->p != NULL) BN_clear_free(r->p);
214 if (r->g != NULL) BN_clear_free(r->g);
215 if (r->q != NULL) BN_clear_free(r->q);
216 if (r->j != NULL) BN_clear_free(r->j);
217 if (r->seed) OPENSSL_free(r->seed);
218 if (r->counter != NULL) BN_clear_free(r->counter);
219 if (r->pub_key != NULL) BN_clear_free(r->pub_key);
220 if (r->priv_key != NULL) BN_clear_free(r->priv_key);
221 OPENSSL_free(r);
222 }

224 int DH_up_ref(DH *r)
225 {
226 int i = CRYPTO_add(&r->references, 1, CRYPTO_LOCK_DH);
227 #ifdef REF_PRINT
228 REF_PRINT("DH",r);
229 #endif
230 #ifdef REF_CHECK
231 if (i < 2)
232 {
233 fprintf(stderr, "DH_up, bad reference count\n");
234 abort();
235 }
236 #endif
237 return ((i > 1) ? 1 : 0);
238 }

240 int DH_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
241 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func)
242 {
243 return CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_DH, argl, argp,
244 new_func, dup_func, free_func);
245 }

247 int DH_set_ex_data(DH *d, int idx, void *arg)
248 {
249 return(CRYPTO_set_ex_data(&d->ex_data,idx,arg));
250 }

252 void *DH_get_ex_data(DH *d, int idx)
253 {
254 return(CRYPTO_get_ex_data(&d->ex_data,idx));
255 }

257 int DH_size(const DH *dh)
258 {
259 return(BN_num_bytes(dh->p));

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_lib.c 5

260 }

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_pmeth.c 1

**
 6148 Fri May 30 18:31:44 2014
new/usr/src/lib/openssl/libsunw_crypto/dh/dh_pmeth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2 * project 2006.
3 */
4 /* ==
5 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ==
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */

58 #include <stdio.h>
59 #include "cryptlib.h"
60 #include <openssl/asn1t.h>
61 #include <openssl/x509.h>

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_pmeth.c 2

62 #include <openssl/evp.h>
63 #include <openssl/dh.h>
64 #include <openssl/bn.h>
65 #include "evp_locl.h"

67 /* DH pkey context structure */

69 typedef struct
70 {
71 /* Parameter gen parameters */
72 int prime_len;
73 int generator;
74 int use_dsa;
75 /* Keygen callback info */
76 int gentmp[2];
77 /* message digest */
78 } DH_PKEY_CTX;

80 static int pkey_dh_init(EVP_PKEY_CTX *ctx)
81 {
82 DH_PKEY_CTX *dctx;
83 dctx = OPENSSL_malloc(sizeof(DH_PKEY_CTX));
84 if (!dctx)
85 return 0;
86 dctx->prime_len = 1024;
87 dctx->generator = 2;
88 dctx->use_dsa = 0;

90 ctx->data = dctx;
91 ctx->keygen_info = dctx->gentmp;
92 ctx->keygen_info_count = 2;
93
94 return 1;
95 }

97 static int pkey_dh_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src)
98 {
99 DH_PKEY_CTX *dctx, *sctx;
100 if (!pkey_dh_init(dst))
101 return 0;
102 sctx = src->data;
103 dctx = dst->data;
104 dctx->prime_len = sctx->prime_len;
105 dctx->generator = sctx->generator;
106 dctx->use_dsa = sctx->use_dsa;
107 return 1;
108 }

110 static void pkey_dh_cleanup(EVP_PKEY_CTX *ctx)
111 {
112 DH_PKEY_CTX *dctx = ctx->data;
113 if (dctx)
114 OPENSSL_free(dctx);
115 }

117 static int pkey_dh_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
118 {
119 DH_PKEY_CTX *dctx = ctx->data;
120 switch (type)
121 {
122 case EVP_PKEY_CTRL_DH_PARAMGEN_PRIME_LEN:
123 if (p1 < 256)
124 return -2;
125 dctx->prime_len = p1;
126 return 1;

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_pmeth.c 3

128 case EVP_PKEY_CTRL_DH_PARAMGEN_GENERATOR:
129 dctx->generator = p1;
130 return 1;

132 case EVP_PKEY_CTRL_PEER_KEY:
133 /* Default behaviour is OK */
134 return 1;

136 default:
137 return -2;

139 }
140 }

142
143 static int pkey_dh_ctrl_str(EVP_PKEY_CTX *ctx,
144 const char *type, const char *value)
145 {
146 if (!strcmp(type, "dh_paramgen_prime_len"))
147 {
148 int len;
149 len = atoi(value);
150 return EVP_PKEY_CTX_set_dh_paramgen_prime_len(ctx, len);
151 }
152 if (!strcmp(type, "dh_paramgen_generator"))
153 {
154 int len;
155 len = atoi(value);
156 return EVP_PKEY_CTX_set_dh_paramgen_generator(ctx, len);
157 }
158 return -2;
159 }

161 static int pkey_dh_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
162 {
163 DH *dh = NULL;
164 DH_PKEY_CTX *dctx = ctx->data;
165 BN_GENCB *pcb, cb;
166 int ret;
167 if (ctx->pkey_gencb)
168 {
169 pcb = &cb;
170 evp_pkey_set_cb_translate(pcb, ctx);
171 }
172 else
173 pcb = NULL;
174 dh = DH_new();
175 if (!dh)
176 return 0;
177 ret = DH_generate_parameters_ex(dh,
178 dctx->prime_len, dctx->generator, pcb);
179 if (ret)
180 EVP_PKEY_assign_DH(pkey, dh);
181 else
182 DH_free(dh);
183 return ret;
184 }

186 static int pkey_dh_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
187 {
188 DH *dh = NULL;
189 if (ctx->pkey == NULL)
190 {
191 DHerr(DH_F_PKEY_DH_KEYGEN, DH_R_NO_PARAMETERS_SET);
192 return 0;
193 }

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_pmeth.c 4

194 dh = DH_new();
195 if (!dh)
196 return 0;
197 EVP_PKEY_assign_DH(pkey, dh);
198 /* Note: if error return, pkey is freed by parent routine */
199 if (!EVP_PKEY_copy_parameters(pkey, ctx->pkey))
200 return 0;
201 return DH_generate_key(pkey->pkey.dh);
202 }

204 static int pkey_dh_derive(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen)
205 {
206 int ret;
207 if (!ctx->pkey || !ctx->peerkey)
208 {
209 DHerr(DH_F_PKEY_DH_DERIVE, DH_R_KEYS_NOT_SET);
210 return 0;
211 }
212 ret = DH_compute_key(key, ctx->peerkey->pkey.dh->pub_key,
213 ctx->pkey->pkey.dh);
214 if (ret < 0)
215 return ret;
216 *keylen = ret;
217 return 1;
218 }

220 const EVP_PKEY_METHOD dh_pkey_meth =
221 {
222 EVP_PKEY_DH,
223 EVP_PKEY_FLAG_AUTOARGLEN,
224 pkey_dh_init,
225 pkey_dh_copy,
226 pkey_dh_cleanup,

228 0,
229 pkey_dh_paramgen,

231 0,
232 pkey_dh_keygen,

234 0,
235 0,

237 0,
238 0,

240 0,0,

242 0,0,0,0,

244 0,0,

246 0,0,

248 0,
249 pkey_dh_derive,

251 pkey_dh_ctrl,
252 pkey_dh_ctrl_str

254 };

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_prn.c 1

**
 3586 Fri May 30 18:31:44 2014
new/usr/src/lib/openssl/libsunw_crypto/dh/dh_prn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/asn1/t_pkey.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/dh/dh_prn.c 2

62 #include <openssl/dh.h>

64 #ifndef OPENSSL_NO_FP_API
65 int DHparams_print_fp(FILE *fp, const DH *x)
66 {
67 BIO *b;
68 int ret;

70 if ((b=BIO_new(BIO_s_file())) == NULL)
71 {
72 DHerr(DH_F_DHPARAMS_PRINT_FP,ERR_R_BUF_LIB);
73 return(0);
74 }
75 BIO_set_fp(b,fp,BIO_NOCLOSE);
76 ret=DHparams_print(b, x);
77 BIO_free(b);
78 return(ret);
79 }
80 #endif

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ameth.c 1

**
 15654 Fri May 30 18:31:44 2014
new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ameth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2 * project 2006.
3 */
4 /* ==
5 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ==
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */

58 #include <stdio.h>
59 #include "cryptlib.h"
60 #include <openssl/x509.h>
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ameth.c 2

62 #include <openssl/dsa.h>
63 #include <openssl/bn.h>
64 #ifndef OPENSSL_NO_CMS
65 #include <openssl/cms.h>
66 #endif
67 #include "asn1_locl.h"

69 static int dsa_pub_decode(EVP_PKEY *pkey, X509_PUBKEY *pubkey)
70 {
71 const unsigned char *p, *pm;
72 int pklen, pmlen;
73 int ptype;
74 void *pval;
75 ASN1_STRING *pstr;
76 X509_ALGOR *palg;
77 ASN1_INTEGER *public_key = NULL;

79 DSA *dsa = NULL;

81 if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, &palg, pubkey))
82 return 0;
83 X509_ALGOR_get0(NULL, &ptype, &pval, palg);

86 if (ptype == V_ASN1_SEQUENCE)
87 {
88 pstr = pval;
89 pm = pstr->data;
90 pmlen = pstr->length;

92 if (!(dsa = d2i_DSAparams(NULL, &pm, pmlen)))
93 {
94 DSAerr(DSA_F_DSA_PUB_DECODE, DSA_R_DECODE_ERROR);
95 goto err;
96 }

98 }
99 else if ((ptype == V_ASN1_NULL) || (ptype == V_ASN1_UNDEF))
100 {
101 if (!(dsa = DSA_new()))
102 {
103 DSAerr(DSA_F_DSA_PUB_DECODE, ERR_R_MALLOC_FAILURE);
104 goto err;
105 }
106 }
107 else
108 {
109 DSAerr(DSA_F_DSA_PUB_DECODE, DSA_R_PARAMETER_ENCODING_ERROR);
110 goto err;
111 }

113 if (!(public_key=d2i_ASN1_INTEGER(NULL, &p, pklen)))
114 {
115 DSAerr(DSA_F_DSA_PUB_DECODE, DSA_R_DECODE_ERROR);
116 goto err;
117 }

119 if (!(dsa->pub_key = ASN1_INTEGER_to_BN(public_key, NULL)))
120 {
121 DSAerr(DSA_F_DSA_PUB_DECODE, DSA_R_BN_DECODE_ERROR);
122 goto err;
123 }

125 ASN1_INTEGER_free(public_key);
126 EVP_PKEY_assign_DSA(pkey, dsa);
127 return 1;

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ameth.c 3

129 err:
130 if (public_key)
131 ASN1_INTEGER_free(public_key);
132 if (dsa)
133 DSA_free(dsa);
134 return 0;

136 }

138 static int dsa_pub_encode(X509_PUBKEY *pk, const EVP_PKEY *pkey)
139 {
140 DSA *dsa;
141 void *pval = NULL;
142 int ptype;
143 unsigned char *penc = NULL;
144 int penclen;

146 dsa=pkey->pkey.dsa;
147 if (pkey->save_parameters && dsa->p && dsa->q && dsa->g)
148 {
149 ASN1_STRING *str;
150 str = ASN1_STRING_new();
151 str->length = i2d_DSAparams(dsa, &str->data);
152 if (str->length <= 0)
153 {
154 DSAerr(DSA_F_DSA_PUB_ENCODE, ERR_R_MALLOC_FAILURE);
155 goto err;
156 }
157 pval = str;
158 ptype = V_ASN1_SEQUENCE;
159 }
160 else
161 ptype = V_ASN1_UNDEF;

163 dsa->write_params=0;

165 penclen = i2d_DSAPublicKey(dsa, &penc);

167 if (penclen <= 0)
168 {
169 DSAerr(DSA_F_DSA_PUB_ENCODE, ERR_R_MALLOC_FAILURE);
170 goto err;
171 }

173 if (X509_PUBKEY_set0_param(pk, OBJ_nid2obj(EVP_PKEY_DSA),
174 ptype, pval, penc, penclen))
175 return 1;

177 err:
178 if (penc)
179 OPENSSL_free(penc);
180 if (pval)
181 ASN1_STRING_free(pval);

183 return 0;
184 }

186 /* In PKCS#8 DSA: you just get a private key integer and parameters in the
187 * AlgorithmIdentifier the pubkey must be recalculated.
188 */
189
190 static int dsa_priv_decode(EVP_PKEY *pkey, PKCS8_PRIV_KEY_INFO *p8)
191 {
192 const unsigned char *p, *pm;
193 int pklen, pmlen;

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ameth.c 4

194 int ptype;
195 void *pval;
196 ASN1_STRING *pstr;
197 X509_ALGOR *palg;
198 ASN1_INTEGER *privkey = NULL;
199 BN_CTX *ctx = NULL;

201 STACK_OF(ASN1_TYPE) *ndsa = NULL;
202 DSA *dsa = NULL;

204 if (!PKCS8_pkey_get0(NULL, &p, &pklen, &palg, p8))
205 return 0;
206 X509_ALGOR_get0(NULL, &ptype, &pval, palg);

208 /* Check for broken DSA PKCS#8, UGH! */
209 if (*p == (V_ASN1_SEQUENCE|V_ASN1_CONSTRUCTED))
210 {
211 ASN1_TYPE *t1, *t2;
212 if(!(ndsa = d2i_ASN1_SEQUENCE_ANY(NULL, &p, pklen)))
213 goto decerr;
214 if (sk_ASN1_TYPE_num(ndsa) != 2)
215 goto decerr;
216 /* Handle Two broken types:
217 * SEQUENCE {parameters, priv_key}
218 * SEQUENCE {pub_key, priv_key}
219 */

221 t1 = sk_ASN1_TYPE_value(ndsa, 0);
222 t2 = sk_ASN1_TYPE_value(ndsa, 1);
223 if (t1->type == V_ASN1_SEQUENCE)
224 {
225 p8->broken = PKCS8_EMBEDDED_PARAM;
226 pval = t1->value.ptr;
227 }
228 else if (ptype == V_ASN1_SEQUENCE)
229 p8->broken = PKCS8_NS_DB;
230 else
231 goto decerr;

233 if (t2->type != V_ASN1_INTEGER)
234 goto decerr;

236 privkey = t2->value.integer;
237 }
238 else
239 {
240 const unsigned char *q = p;
241 if (!(privkey=d2i_ASN1_INTEGER(NULL, &p, pklen)))
242 goto decerr;
243 if (privkey->type == V_ASN1_NEG_INTEGER)
244 {
245 p8->broken = PKCS8_NEG_PRIVKEY;
246 ASN1_INTEGER_free(privkey);
247 if (!(privkey=d2i_ASN1_UINTEGER(NULL, &q, pklen)))
248 goto decerr;
249 }
250 if (ptype != V_ASN1_SEQUENCE)
251 goto decerr;
252 }

254 pstr = pval;
255 pm = pstr->data;
256 pmlen = pstr->length;
257 if (!(dsa = d2i_DSAparams(NULL, &pm, pmlen)))
258 goto decerr;
259 /* We have parameters now set private key */

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ameth.c 5

260 if (!(dsa->priv_key = ASN1_INTEGER_to_BN(privkey, NULL)))
261 {
262 DSAerr(DSA_F_DSA_PRIV_DECODE,DSA_R_BN_ERROR);
263 goto dsaerr;
264 }
265 /* Calculate public key */
266 if (!(dsa->pub_key = BN_new()))
267 {
268 DSAerr(DSA_F_DSA_PRIV_DECODE, ERR_R_MALLOC_FAILURE);
269 goto dsaerr;
270 }
271 if (!(ctx = BN_CTX_new()))
272 {
273 DSAerr(DSA_F_DSA_PRIV_DECODE, ERR_R_MALLOC_FAILURE);
274 goto dsaerr;
275 }
276
277 if (!BN_mod_exp(dsa->pub_key, dsa->g, dsa->priv_key, dsa->p, ctx))
278 {
279 DSAerr(DSA_F_DSA_PRIV_DECODE,DSA_R_BN_ERROR);
280 goto dsaerr;
281 }

283 EVP_PKEY_assign_DSA(pkey, dsa);
284 BN_CTX_free (ctx);
285 if(ndsa)
286 sk_ASN1_TYPE_pop_free(ndsa, ASN1_TYPE_free);
287 else
288 ASN1_INTEGER_free(privkey);

290 return 1;

292 decerr:
293 DSAerr(DSA_F_DSA_PRIV_DECODE, EVP_R_DECODE_ERROR);
294 dsaerr:
295 BN_CTX_free (ctx);
296 if (privkey)
297 ASN1_INTEGER_free(privkey);
298 sk_ASN1_TYPE_pop_free(ndsa, ASN1_TYPE_free);
299 DSA_free(dsa);
300 return 0;
301 }

303 static int dsa_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey)
304 {
305 ASN1_STRING *params = NULL;
306 ASN1_INTEGER *prkey = NULL;
307 unsigned char *dp = NULL;
308 int dplen;

310 params = ASN1_STRING_new();

312 if (!params)
313 {
314 DSAerr(DSA_F_DSA_PRIV_ENCODE,ERR_R_MALLOC_FAILURE);
315 goto err;
316 }

318 params->length = i2d_DSAparams(pkey->pkey.dsa, ¶ms->data);
319 if (params->length <= 0)
320 {
321 DSAerr(DSA_F_DSA_PRIV_ENCODE,ERR_R_MALLOC_FAILURE);
322 goto err;
323 }
324 params->type = V_ASN1_SEQUENCE;

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ameth.c 6

326 /* Get private key into integer */
327 prkey = BN_to_ASN1_INTEGER(pkey->pkey.dsa->priv_key, NULL);

329 if (!prkey)
330 {
331 DSAerr(DSA_F_DSA_PRIV_ENCODE,DSA_R_BN_ERROR);
332 goto err;
333 }

335 dplen = i2d_ASN1_INTEGER(prkey, &dp);

337 ASN1_INTEGER_free(prkey);

339 if (!PKCS8_pkey_set0(p8, OBJ_nid2obj(NID_dsa), 0,
340 V_ASN1_SEQUENCE, params, dp, dplen))
341 goto err;

343 return 1;

345 err:
346 if (dp != NULL)
347 OPENSSL_free(dp);
348 if (params != NULL)
349 ASN1_STRING_free(params);
350 if (prkey != NULL)
351 ASN1_INTEGER_free(prkey);
352 return 0;
353 }

355 static int int_dsa_size(const EVP_PKEY *pkey)
356 {
357 return(DSA_size(pkey->pkey.dsa));
358 }

360 static int dsa_bits(const EVP_PKEY *pkey)
361 {
362 return BN_num_bits(pkey->pkey.dsa->p);
363 }

365 static int dsa_missing_parameters(const EVP_PKEY *pkey)
366 {
367 DSA *dsa;
368 dsa=pkey->pkey.dsa;
369 if ((dsa->p == NULL) || (dsa->q == NULL) || (dsa->g == NULL))
370 return 1;
371 return 0;
372 }

374 static int dsa_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from)
375 {
376 BIGNUM *a;

378 if ((a=BN_dup(from->pkey.dsa->p)) == NULL)
379 return 0;
380 if (to->pkey.dsa->p != NULL)
381 BN_free(to->pkey.dsa->p);
382 to->pkey.dsa->p=a;

384 if ((a=BN_dup(from->pkey.dsa->q)) == NULL)
385 return 0;
386 if (to->pkey.dsa->q != NULL)
387 BN_free(to->pkey.dsa->q);
388 to->pkey.dsa->q=a;

390 if ((a=BN_dup(from->pkey.dsa->g)) == NULL)
391 return 0;

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ameth.c 7

392 if (to->pkey.dsa->g != NULL)
393 BN_free(to->pkey.dsa->g);
394 to->pkey.dsa->g=a;
395 return 1;
396 }

398 static int dsa_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b)
399 {
400 if (BN_cmp(a->pkey.dsa->p,b->pkey.dsa->p) ||
401 BN_cmp(a->pkey.dsa->q,b->pkey.dsa->q) ||
402 BN_cmp(a->pkey.dsa->g,b->pkey.dsa->g))
403 return 0;
404 else
405 return 1;
406 }

408 static int dsa_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b)
409 {
410 if (BN_cmp(b->pkey.dsa->pub_key,a->pkey.dsa->pub_key) != 0)
411 return 0;
412 else
413 return 1;
414 }

416 static void int_dsa_free(EVP_PKEY *pkey)
417 {
418 DSA_free(pkey->pkey.dsa);
419 }

421 static void update_buflen(const BIGNUM *b, size_t *pbuflen)
422 {
423 size_t i;
424 if (!b)
425 return;
426 if (*pbuflen < (i = (size_t)BN_num_bytes(b)))
427 *pbuflen = i;
428 }

430 static int do_dsa_print(BIO *bp, const DSA *x, int off, int ptype)
431 {
432 unsigned char *m=NULL;
433 int ret=0;
434 size_t buf_len=0;
435 const char *ktype = NULL;

437 const BIGNUM *priv_key, *pub_key;

439 if (ptype == 2)
440 priv_key = x->priv_key;
441 else
442 priv_key = NULL;

444 if (ptype > 0)
445 pub_key = x->pub_key;
446 else
447 pub_key = NULL;

449 if (ptype == 2)
450 ktype = "Private-Key";
451 else if (ptype == 1)
452 ktype = "Public-Key";
453 else
454 ktype = "DSA-Parameters";

456 update_buflen(x->p, &buf_len);
457 update_buflen(x->q, &buf_len);

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ameth.c 8

458 update_buflen(x->g, &buf_len);
459 update_buflen(priv_key, &buf_len);
460 update_buflen(pub_key, &buf_len);

462 m=(unsigned char *)OPENSSL_malloc(buf_len+10);
463 if (m == NULL)
464 {
465 DSAerr(DSA_F_DO_DSA_PRINT,ERR_R_MALLOC_FAILURE);
466 goto err;
467 }

469 if (priv_key)
470 {
471 if(!BIO_indent(bp,off,128))
472 goto err;
473 if (BIO_printf(bp,"%s: (%d bit)\n",ktype, BN_num_bits(x->p))
474 <= 0) goto err;
475 }

477 if (!ASN1_bn_print(bp,"priv:",priv_key,m,off))
478 goto err;
479 if (!ASN1_bn_print(bp,"pub: ",pub_key,m,off))
480 goto err;
481 if (!ASN1_bn_print(bp,"P: ",x->p,m,off)) goto err;
482 if (!ASN1_bn_print(bp,"Q: ",x->q,m,off)) goto err;
483 if (!ASN1_bn_print(bp,"G: ",x->g,m,off)) goto err;
484 ret=1;
485 err:
486 if (m != NULL) OPENSSL_free(m);
487 return(ret);
488 }

490 static int dsa_param_decode(EVP_PKEY *pkey,
491 const unsigned char **pder, int derlen)
492 {
493 DSA *dsa;
494 if (!(dsa = d2i_DSAparams(NULL, pder, derlen)))
495 {
496 DSAerr(DSA_F_DSA_PARAM_DECODE, ERR_R_DSA_LIB);
497 return 0;
498 }
499 EVP_PKEY_assign_DSA(pkey, dsa);
500 return 1;
501 }

503 static int dsa_param_encode(const EVP_PKEY *pkey, unsigned char **pder)
504 {
505 return i2d_DSAparams(pkey->pkey.dsa, pder);
506 }

508 static int dsa_param_print(BIO *bp, const EVP_PKEY *pkey, int indent,
509 ASN1_PCTX *ctx)
510 {
511 return do_dsa_print(bp, pkey->pkey.dsa, indent, 0);
512 }

514 static int dsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent,
515 ASN1_PCTX *ctx)
516 {
517 return do_dsa_print(bp, pkey->pkey.dsa, indent, 1);
518 }

521 static int dsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent,
522 ASN1_PCTX *ctx)
523 {

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ameth.c 9

524 return do_dsa_print(bp, pkey->pkey.dsa, indent, 2);
525 }

527 static int old_dsa_priv_decode(EVP_PKEY *pkey,
528 const unsigned char **pder, int derlen)
529 {
530 DSA *dsa;
531 if (!(dsa = d2i_DSAPrivateKey (NULL, pder, derlen)))
532 {
533 DSAerr(DSA_F_OLD_DSA_PRIV_DECODE, ERR_R_DSA_LIB);
534 return 0;
535 }
536 EVP_PKEY_assign_DSA(pkey, dsa);
537 return 1;
538 }

540 static int old_dsa_priv_encode(const EVP_PKEY *pkey, unsigned char **pder)
541 {
542 return i2d_DSAPrivateKey(pkey->pkey.dsa, pder);
543 }

545 static int dsa_sig_print(BIO *bp, const X509_ALGOR *sigalg,
546 const ASN1_STRING *sig,
547 int indent, ASN1_PCTX *pctx)
548 {
549 DSA_SIG *dsa_sig;
550 const unsigned char *p;
551 if (!sig)
552 {
553 if (BIO_puts(bp, "\n") <= 0)
554 return 0;
555 else
556 return 1;
557 }
558 p = sig->data;
559 dsa_sig = d2i_DSA_SIG(NULL, &p, sig->length);
560 if (dsa_sig)
561 {
562 int rv = 0;
563 size_t buf_len = 0;
564 unsigned char *m=NULL;
565 update_buflen(dsa_sig->r, &buf_len);
566 update_buflen(dsa_sig->s, &buf_len);
567 m = OPENSSL_malloc(buf_len+10);
568 if (m == NULL)
569 {
570 DSAerr(DSA_F_DSA_SIG_PRINT,ERR_R_MALLOC_FAILURE);
571 goto err;
572 }

574 if (BIO_write(bp, "\n", 1) != 1)
575 goto err;

577 if (!ASN1_bn_print(bp,"r: ",dsa_sig->r,m,indent))
578 goto err;
579 if (!ASN1_bn_print(bp,"s: ",dsa_sig->s,m,indent))
580 goto err;
581 rv = 1;
582 err:
583 if (m)
584 OPENSSL_free(m);
585 DSA_SIG_free(dsa_sig);
586 return rv;
587 }
588 return X509_signature_dump(bp, sig, indent);
589 }

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ameth.c 10

591 static int dsa_pkey_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2)
592 {
593 switch (op)
594 {
595 case ASN1_PKEY_CTRL_PKCS7_SIGN:
596 if (arg1 == 0)
597 {
598 int snid, hnid;
599 X509_ALGOR *alg1, *alg2;
600 PKCS7_SIGNER_INFO_get0_algs(arg2, NULL, &alg1, &alg2);
601 if (alg1 == NULL || alg1->algorithm == NULL)
602 return -1;
603 hnid = OBJ_obj2nid(alg1->algorithm);
604 if (hnid == NID_undef)
605 return -1;
606 if (!OBJ_find_sigid_by_algs(&snid, hnid, EVP_PKEY_id(pke
607 return -1;
608 X509_ALGOR_set0(alg2, OBJ_nid2obj(snid), V_ASN1_UNDEF, 0
609 }
610 return 1;
611 #ifndef OPENSSL_NO_CMS
612 case ASN1_PKEY_CTRL_CMS_SIGN:
613 if (arg1 == 0)
614 {
615 int snid, hnid;
616 X509_ALGOR *alg1, *alg2;
617 CMS_SignerInfo_get0_algs(arg2, NULL, NULL, &alg1, &alg2)
618 if (alg1 == NULL || alg1->algorithm == NULL)
619 return -1;
620 hnid = OBJ_obj2nid(alg1->algorithm);
621 if (hnid == NID_undef)
622 return -1;
623 if (!OBJ_find_sigid_by_algs(&snid, hnid, EVP_PKEY_id(pke
624 return -1;
625 X509_ALGOR_set0(alg2, OBJ_nid2obj(snid), V_ASN1_UNDEF, 0
626 }
627 return 1;
628 #endif

630 case ASN1_PKEY_CTRL_DEFAULT_MD_NID:
631 *(int *)arg2 = NID_sha1;
632 return 2;

634 default:
635 return -2;

637 }

639 }

641 /* NB these are sorted in pkey_id order, lowest first */

643 const EVP_PKEY_ASN1_METHOD dsa_asn1_meths[] =
644 {

646 {
647 EVP_PKEY_DSA2,
648 EVP_PKEY_DSA,
649 ASN1_PKEY_ALIAS
650 },

652 {
653 EVP_PKEY_DSA1,
654 EVP_PKEY_DSA,
655 ASN1_PKEY_ALIAS

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ameth.c 11

656 },

658 {
659 EVP_PKEY_DSA4,
660 EVP_PKEY_DSA,
661 ASN1_PKEY_ALIAS
662 },

664 {
665 EVP_PKEY_DSA3,
666 EVP_PKEY_DSA,
667 ASN1_PKEY_ALIAS
668 },

670 {
671 EVP_PKEY_DSA,
672 EVP_PKEY_DSA,
673 0,

675 "DSA",
676 "OpenSSL DSA method",

678 dsa_pub_decode,
679 dsa_pub_encode,
680 dsa_pub_cmp,
681 dsa_pub_print,

683 dsa_priv_decode,
684 dsa_priv_encode,
685 dsa_priv_print,

687 int_dsa_size,
688 dsa_bits,

690 dsa_param_decode,
691 dsa_param_encode,
692 dsa_missing_parameters,
693 dsa_copy_parameters,
694 dsa_cmp_parameters,
695 dsa_param_print,
696 dsa_sig_print,

698 int_dsa_free,
699 dsa_pkey_ctrl,
700 old_dsa_priv_decode,
701 old_dsa_priv_encode
702 }
703 };

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_asn1.c 1

**
 6058 Fri May 30 18:31:45 2014
new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_asn1.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* dsa_asn1.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/dsa.h>

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_asn1.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/asn1t.h>
64 #include <openssl/rand.h>

66 /* Override the default new methods */
67 static int sig_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
68 void *exarg)
69 {
70 if(operation == ASN1_OP_NEW_PRE) {
71 DSA_SIG *sig;
72 sig = OPENSSL_malloc(sizeof(DSA_SIG));
73 if (!sig)
74 {
75 DSAerr(DSA_F_SIG_CB, ERR_R_MALLOC_FAILURE);
76 return 0;
77 }
78 sig->r = NULL;
79 sig->s = NULL;
80 *pval = (ASN1_VALUE *)sig;
81 return 2;
82 }
83 return 1;
84 }

86 ASN1_SEQUENCE_cb(DSA_SIG, sig_cb) = {
87 ASN1_SIMPLE(DSA_SIG, r, CBIGNUM),
88 ASN1_SIMPLE(DSA_SIG, s, CBIGNUM)
89 } ASN1_SEQUENCE_END_cb(DSA_SIG, DSA_SIG)

91 IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DSA_SIG, DSA_SIG, DSA_SIG)

93 /* Override the default free and new methods */
94 static int dsa_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
95 void *exarg)
96 {
97 if(operation == ASN1_OP_NEW_PRE) {
98 *pval = (ASN1_VALUE *)DSA_new();
99 if(*pval) return 2;
100 return 0;
101 } else if(operation == ASN1_OP_FREE_PRE) {
102 DSA_free((DSA *)*pval);
103 *pval = NULL;
104 return 2;
105 }
106 return 1;
107 }

109 ASN1_SEQUENCE_cb(DSAPrivateKey, dsa_cb) = {
110 ASN1_SIMPLE(DSA, version, LONG),
111 ASN1_SIMPLE(DSA, p, BIGNUM),
112 ASN1_SIMPLE(DSA, q, BIGNUM),
113 ASN1_SIMPLE(DSA, g, BIGNUM),
114 ASN1_SIMPLE(DSA, pub_key, BIGNUM),
115 ASN1_SIMPLE(DSA, priv_key, BIGNUM)
116 } ASN1_SEQUENCE_END_cb(DSA, DSAPrivateKey)

118 IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DSA, DSAPrivateKey, DSAPrivateKey)

120 ASN1_SEQUENCE_cb(DSAparams, dsa_cb) = {
121 ASN1_SIMPLE(DSA, p, BIGNUM),
122 ASN1_SIMPLE(DSA, q, BIGNUM),
123 ASN1_SIMPLE(DSA, g, BIGNUM),
124 } ASN1_SEQUENCE_END_cb(DSA, DSAparams)

126 IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DSA, DSAparams, DSAparams)

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_asn1.c 3

128 /* DSA public key is a bit trickier... its effectively a CHOICE type
129 * decided by a field called write_params which can either write out
130 * just the public key as an INTEGER or the parameters and public key
131 * in a SEQUENCE
132 */

134 ASN1_SEQUENCE(dsa_pub_internal) = {
135 ASN1_SIMPLE(DSA, pub_key, BIGNUM),
136 ASN1_SIMPLE(DSA, p, BIGNUM),
137 ASN1_SIMPLE(DSA, q, BIGNUM),
138 ASN1_SIMPLE(DSA, g, BIGNUM)
139 } ASN1_SEQUENCE_END_name(DSA, dsa_pub_internal)

141 ASN1_CHOICE_cb(DSAPublicKey, dsa_cb) = {
142 ASN1_SIMPLE(DSA, pub_key, BIGNUM),
143 ASN1_EX_COMBINE(0, 0, dsa_pub_internal)
144 } ASN1_CHOICE_END_cb(DSA, DSAPublicKey, write_params)

146 IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(DSA, DSAPublicKey, DSAPublicKey)

148 DSA *DSAparams_dup(DSA *dsa)
149 {
150 return ASN1_item_dup(ASN1_ITEM_rptr(DSAparams), dsa);
151 }

153 int DSA_sign(int type, const unsigned char *dgst, int dlen, unsigned char *sig,
154 unsigned int *siglen, DSA *dsa)
155 {
156 DSA_SIG *s;
157 RAND_seed(dgst, dlen);
158 s=DSA_do_sign(dgst,dlen,dsa);
159 if (s == NULL)
160 {
161 *siglen=0;
162 return(0);
163 }
164 *siglen=i2d_DSA_SIG(s,&sig);
165 DSA_SIG_free(s);
166 return(1);
167 }

169 /* data has already been hashed (probably with SHA or SHA-1). */
170 /* returns
171 * 1: correct signature
172 * 0: incorrect signature
173 * -1: error
174 */
175 int DSA_verify(int type, const unsigned char *dgst, int dgst_len,
176 const unsigned char *sigbuf, int siglen, DSA *dsa)
177 {
178 DSA_SIG *s;
179 int ret=-1;

181 s = DSA_SIG_new();
182 if (s == NULL) return(ret);
183 if (d2i_DSA_SIG(&s,&sigbuf,siglen) == NULL) goto err;
184 ret=DSA_do_verify(dgst,dgst_len,s,dsa);
185 err:
186 DSA_SIG_free(s);
187 return(ret);
188 }

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_depr.c 1

**
 3872 Fri May 30 18:31:45 2014
new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_depr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dsa/dsa_depr.c */
2 /* ==
3 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* This file contains deprecated function(s) that are now wrappers to the new
57 * version(s). */

59 #undef GENUINE_DSA

61 #ifdef GENUINE_DSA

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_depr.c 2

62 /* Parameter generation follows the original release of FIPS PUB 186,
63 * Appendix 2.2 (i.e. use SHA as defined in FIPS PUB 180) */
64 #define HASH EVP_sha()
65 #else
66 /* Parameter generation follows the updated Appendix 2.2 for FIPS PUB 186,
67 * also Appendix 2.2 of FIPS PUB 186-1 (i.e. use SHA as defined in
68 * FIPS PUB 180-1) */
69 #define HASH EVP_sha1()
70 #endif

72 static void *dummy=&dummy;

74 #ifndef OPENSSL_NO_SHA

76 #include <stdio.h>
77 #include <time.h>
78 #include "cryptlib.h"
79 #include <openssl/evp.h>
80 #include <openssl/bn.h>
81 #include <openssl/dsa.h>
82 #include <openssl/rand.h>
83 #include <openssl/sha.h>

85 #ifndef OPENSSL_NO_DEPRECATED
86 DSA *DSA_generate_parameters(int bits,
87 unsigned char *seed_in, int seed_len,
88 int *counter_ret, unsigned long *h_ret,
89 void (*callback)(int, int, void *),
90 void *cb_arg)
91 {
92 BN_GENCB cb;
93 DSA *ret;

95 if ((ret=DSA_new()) == NULL) return NULL;

97 BN_GENCB_set_old(&cb, callback, cb_arg);

99 if(DSA_generate_parameters_ex(ret, bits, seed_in, seed_len,
100 counter_ret, h_ret, &cb))
101 return ret;
102 DSA_free(ret);
103 return NULL;
104 }
105 #endif
106 #endif

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_err.c 1

**
 5489 Fri May 30 18:31:45 2014
new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dsa/dsa_err.c */
2 /* ==
3 * Copyright (c) 1999-2011 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/dsa.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_DSA,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_DSA,0,reason)

71 static ERR_STRING_DATA DSA_str_functs[]=
72 {
73 {ERR_FUNC(DSA_F_D2I_DSA_SIG), "d2i_DSA_SIG"},
74 {ERR_FUNC(DSA_F_DO_DSA_PRINT), "DO_DSA_PRINT"},
75 {ERR_FUNC(DSA_F_DSAPARAMS_PRINT), "DSAparams_print"},
76 {ERR_FUNC(DSA_F_DSAPARAMS_PRINT_FP), "DSAparams_print_fp"},
77 {ERR_FUNC(DSA_F_DSA_DO_SIGN), "DSA_do_sign"},
78 {ERR_FUNC(DSA_F_DSA_DO_VERIFY), "DSA_do_verify"},
79 {ERR_FUNC(DSA_F_DSA_GENERATE_KEY), "DSA_generate_key"},
80 {ERR_FUNC(DSA_F_DSA_GENERATE_PARAMETERS_EX), "DSA_generate_parameters_ex"},
81 {ERR_FUNC(DSA_F_DSA_NEW_METHOD), "DSA_new_method"},
82 {ERR_FUNC(DSA_F_DSA_PARAM_DECODE), "DSA_PARAM_DECODE"},
83 {ERR_FUNC(DSA_F_DSA_PRINT_FP), "DSA_print_fp"},
84 {ERR_FUNC(DSA_F_DSA_PRIV_DECODE), "DSA_PRIV_DECODE"},
85 {ERR_FUNC(DSA_F_DSA_PRIV_ENCODE), "DSA_PRIV_ENCODE"},
86 {ERR_FUNC(DSA_F_DSA_PUB_DECODE), "DSA_PUB_DECODE"},
87 {ERR_FUNC(DSA_F_DSA_PUB_ENCODE), "DSA_PUB_ENCODE"},
88 {ERR_FUNC(DSA_F_DSA_SIGN), "DSA_sign"},
89 {ERR_FUNC(DSA_F_DSA_SIGN_SETUP), "DSA_sign_setup"},
90 {ERR_FUNC(DSA_F_DSA_SIG_NEW), "DSA_SIG_new"},
91 {ERR_FUNC(DSA_F_DSA_SIG_PRINT), "DSA_SIG_PRINT"},
92 {ERR_FUNC(DSA_F_DSA_VERIFY), "DSA_verify"},
93 {ERR_FUNC(DSA_F_I2D_DSA_SIG), "i2d_DSA_SIG"},
94 {ERR_FUNC(DSA_F_OLD_DSA_PRIV_DECODE), "OLD_DSA_PRIV_DECODE"},
95 {ERR_FUNC(DSA_F_PKEY_DSA_CTRL), "PKEY_DSA_CTRL"},
96 {ERR_FUNC(DSA_F_PKEY_DSA_KEYGEN), "PKEY_DSA_KEYGEN"},
97 {ERR_FUNC(DSA_F_SIG_CB), "SIG_CB"},
98 {0,NULL}
99 };

101 static ERR_STRING_DATA DSA_str_reasons[]=
102 {
103 {ERR_REASON(DSA_R_BAD_Q_VALUE) ,"bad q value"},
104 {ERR_REASON(DSA_R_BN_DECODE_ERROR) ,"bn decode error"},
105 {ERR_REASON(DSA_R_BN_ERROR) ,"bn error"},
106 {ERR_REASON(DSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE),"data too large for key size"},
107 {ERR_REASON(DSA_R_DECODE_ERROR) ,"decode error"},
108 {ERR_REASON(DSA_R_INVALID_DIGEST_TYPE) ,"invalid digest type"},
109 {ERR_REASON(DSA_R_MISSING_PARAMETERS) ,"missing parameters"},
110 {ERR_REASON(DSA_R_MODULUS_TOO_LARGE) ,"modulus too large"},
111 {ERR_REASON(DSA_R_NEED_NEW_SETUP_VALUES) ,"need new setup values"},
112 {ERR_REASON(DSA_R_NON_FIPS_DSA_METHOD) ,"non fips dsa method"},
113 {ERR_REASON(DSA_R_NO_PARAMETERS_SET) ,"no parameters set"},
114 {ERR_REASON(DSA_R_PARAMETER_ENCODING_ERROR),"parameter encoding error"},
115 {0,NULL}
116 };

118 #endif

120 void ERR_load_DSA_strings(void)
121 {
122 #ifndef OPENSSL_NO_ERR

124 if (ERR_func_error_string(DSA_str_functs[0].error) == NULL)
125 {
126 ERR_load_strings(0,DSA_str_functs);
127 ERR_load_strings(0,DSA_str_reasons);

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_err.c 3

128 }
129 #endif
130 }

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_gen.c 1

**
 10009 Fri May 30 18:31:45 2014
new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_gen.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dsa/dsa_gen.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #undef GENUINE_DSA

61 #ifdef GENUINE_DSA

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_gen.c 2

62 /* Parameter generation follows the original release of FIPS PUB 186,
63 * Appendix 2.2 (i.e. use SHA as defined in FIPS PUB 180) */
64 #define HASH EVP_sha()
65 #else
66 /* Parameter generation follows the updated Appendix 2.2 for FIPS PUB 186,
67 * also Appendix 2.2 of FIPS PUB 186-1 (i.e. use SHA as defined in
68 * FIPS PUB 180-1) */
69 #define HASH EVP_sha1()
70 #endif

72 #include <openssl/opensslconf.h> /* To see if OPENSSL_NO_SHA is defined */

74 #ifndef OPENSSL_NO_SHA

76 #include <stdio.h>
77 #include "cryptlib.h"
78 #include <openssl/evp.h>
79 #include <openssl/bn.h>
80 #include <openssl/rand.h>
81 #include <openssl/sha.h>
82 #include "dsa_locl.h"

84 #ifdef OPENSSL_FIPS
85 #include <openssl/fips.h>
86 #endif

88 int DSA_generate_parameters_ex(DSA *ret, int bits,
89 const unsigned char *seed_in, int seed_len,
90 int *counter_ret, unsigned long *h_ret, BN_GENCB *cb)
91 {
92 #ifdef OPENSSL_FIPS
93 if (FIPS_mode() && !(ret->meth->flags & DSA_FLAG_FIPS_METHOD)
94 && !(ret->flags & DSA_FLAG_NON_FIPS_ALLOW))
95 {
96 DSAerr(DSA_F_DSA_GENERATE_PARAMETERS_EX, DSA_R_NON_FIPS_DSA_METH
97 return 0;
98 }
99 #endif
100 if(ret->meth->dsa_paramgen)
101 return ret->meth->dsa_paramgen(ret, bits, seed_in, seed_len,
102 counter_ret, h_ret, cb);
103 #ifdef OPENSSL_FIPS
104 else if (FIPS_mode())
105 {
106 return FIPS_dsa_generate_parameters_ex(ret, bits,
107 seed_in, seed_len,
108 counter_ret, h_ret, cb);
109 }
110 #endif
111 else
112 {
113 const EVP_MD *evpmd;
114 size_t qbits = bits >= 2048 ? 256 : 160;

116 if (bits >= 2048)
117 {
118 qbits = 256;
119 evpmd = EVP_sha256();
120 }
121 else
122 {
123 qbits = 160;
124 evpmd = EVP_sha1();
125 }

127 return dsa_builtin_paramgen(ret, bits, qbits, evpmd,

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_gen.c 3

128 seed_in, seed_len, NULL, counter_ret, h_ret, cb);
129 }
130 }

132 int dsa_builtin_paramgen(DSA *ret, size_t bits, size_t qbits,
133 const EVP_MD *evpmd, const unsigned char *seed_in, size_t seed_len,
134 unsigned char *seed_out,
135 int *counter_ret, unsigned long *h_ret, BN_GENCB *cb)
136 {
137 int ok=0;
138 unsigned char seed[SHA256_DIGEST_LENGTH];
139 unsigned char md[SHA256_DIGEST_LENGTH];
140 unsigned char buf[SHA256_DIGEST_LENGTH],buf2[SHA256_DIGEST_LENGTH];
141 BIGNUM *r0,*W,*X,*c,*test;
142 BIGNUM *g=NULL,*q=NULL,*p=NULL;
143 BN_MONT_CTX *mont=NULL;
144 int i, k, n=0, m=0, qsize = qbits >> 3;
145 int counter=0;
146 int r=0;
147 BN_CTX *ctx=NULL;
148 unsigned int h=2;

150 if (qsize != SHA_DIGEST_LENGTH && qsize != SHA224_DIGEST_LENGTH &&
151 qsize != SHA256_DIGEST_LENGTH)
152 /* invalid q size */
153 return 0;

155 if (evpmd == NULL)
156 /* use SHA1 as default */
157 evpmd = EVP_sha1();

159 if (bits < 512)
160 bits = 512;

162 bits = (bits+63)/64*64;

164 /* NB: seed_len == 0 is special case: copy generated seed to
165 * seed_in if it is not NULL.
166 */
167 if (seed_len && (seed_len < (size_t)qsize))
168 seed_in = NULL; /* seed buffer too small -- ignore */
169 if (seed_len > (size_t)qsize)
170 seed_len = qsize; /* App. 2.2 of FIPS PUB 186 allows large
171 * but our internal buffers are restrict
172 if (seed_in != NULL)
173 memcpy(seed, seed_in, seed_len);

175 if ((ctx=BN_CTX_new()) == NULL)
176 goto err;

178 if ((mont=BN_MONT_CTX_new()) == NULL)
179 goto err;

181 BN_CTX_start(ctx);
182 r0 = BN_CTX_get(ctx);
183 g = BN_CTX_get(ctx);
184 W = BN_CTX_get(ctx);
185 q = BN_CTX_get(ctx);
186 X = BN_CTX_get(ctx);
187 c = BN_CTX_get(ctx);
188 p = BN_CTX_get(ctx);
189 test = BN_CTX_get(ctx);

191 if (!BN_lshift(test,BN_value_one(),bits-1))
192 goto err;

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_gen.c 4

194 for (;;)
195 {
196 for (;;) /* find q */
197 {
198 int seed_is_random;

200 /* step 1 */
201 if(!BN_GENCB_call(cb, 0, m++))
202 goto err;

204 if (!seed_len)
205 {
206 RAND_pseudo_bytes(seed, qsize);
207 seed_is_random = 1;
208 }
209 else
210 {
211 seed_is_random = 0;
212 seed_len=0; /* use random seed if ’seed_in’ turn
213 }
214 memcpy(buf , seed, qsize);
215 memcpy(buf2, seed, qsize);
216 /* precompute "SEED + 1" for step 7: */
217 for (i = qsize-1; i >= 0; i--)
218 {
219 buf[i]++;
220 if (buf[i] != 0)
221 break;
222 }

224 /* step 2 */
225 if (!EVP_Digest(seed, qsize, md, NULL, evpmd, NULL))
226 goto err;
227 if (!EVP_Digest(buf, qsize, buf2, NULL, evpmd, NULL))
228 goto err;
229 for (i = 0; i < qsize; i++)
230 md[i]^=buf2[i];

232 /* step 3 */
233 md[0] |= 0x80;
234 md[qsize-1] |= 0x01;
235 if (!BN_bin2bn(md, qsize, q))
236 goto err;

238 /* step 4 */
239 r = BN_is_prime_fasttest_ex(q, DSS_prime_checks, ctx,
240 seed_is_random, cb);
241 if (r > 0)
242 break;
243 if (r != 0)
244 goto err;

246 /* do a callback call */
247 /* step 5 */
248 }

250 if(!BN_GENCB_call(cb, 2, 0)) goto err;
251 if(!BN_GENCB_call(cb, 3, 0)) goto err;

253 /* step 6 */
254 counter=0;
255 /* "offset = 2" */

257 n=(bits-1)/160;

259 for (;;)

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_gen.c 5

260 {
261 if ((counter != 0) && !BN_GENCB_call(cb, 0, counter))
262 goto err;

264 /* step 7 */
265 BN_zero(W);
266 /* now ’buf’ contains "SEED + offset - 1" */
267 for (k=0; k<=n; k++)
268 {
269 /* obtain "SEED + offset + k" by incrementing: *
270 for (i = qsize-1; i >= 0; i--)
271 {
272 buf[i]++;
273 if (buf[i] != 0)
274 break;
275 }

277 if (!EVP_Digest(buf, qsize, md ,NULL, evpmd,
278 NULL))
279 goto err;

281 /* step 8 */
282 if (!BN_bin2bn(md, qsize, r0))
283 goto err;
284 if (!BN_lshift(r0,r0,(qsize << 3)*k)) goto err;
285 if (!BN_add(W,W,r0)) goto err;
286 }

288 /* more of step 8 */
289 if (!BN_mask_bits(W,bits-1)) goto err;
290 if (!BN_copy(X,W)) goto err;
291 if (!BN_add(X,X,test)) goto err;

293 /* step 9 */
294 if (!BN_lshift1(r0,q)) goto err;
295 if (!BN_mod(c,X,r0,ctx)) goto err;
296 if (!BN_sub(r0,c,BN_value_one())) goto err;
297 if (!BN_sub(p,X,r0)) goto err;

299 /* step 10 */
300 if (BN_cmp(p,test) >= 0)
301 {
302 /* step 11 */
303 r = BN_is_prime_fasttest_ex(p, DSS_prime_checks,
304 ctx, 1, cb);
305 if (r > 0)
306 goto end; /* found it */
307 if (r != 0)
308 goto err;
309 }

311 /* step 13 */
312 counter++;
313 /* "offset = offset + n + 1" */

315 /* step 14 */
316 if (counter >= 4096) break;
317 }
318 }
319 end:
320 if(!BN_GENCB_call(cb, 2, 1))
321 goto err;

323 /* We now need to generate g */
324 /* Set r0=(p-1)/q */
325 if (!BN_sub(test,p,BN_value_one())) goto err;

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_gen.c 6

326 if (!BN_div(r0,NULL,test,q,ctx)) goto err;

328 if (!BN_set_word(test,h)) goto err;
329 if (!BN_MONT_CTX_set(mont,p,ctx)) goto err;

331 for (;;)
332 {
333 /* g=test^r0%p */
334 if (!BN_mod_exp_mont(g,test,r0,p,ctx,mont)) goto err;
335 if (!BN_is_one(g)) break;
336 if (!BN_add(test,test,BN_value_one())) goto err;
337 h++;
338 }

340 if(!BN_GENCB_call(cb, 3, 1))
341 goto err;

343 ok=1;
344 err:
345 if (ok)
346 {
347 if(ret->p) BN_free(ret->p);
348 if(ret->q) BN_free(ret->q);
349 if(ret->g) BN_free(ret->g);
350 ret->p=BN_dup(p);
351 ret->q=BN_dup(q);
352 ret->g=BN_dup(g);
353 if (ret->p == NULL || ret->q == NULL || ret->g == NULL)
354 {
355 ok=0;
356 goto err;
357 }
358 if (counter_ret != NULL) *counter_ret=counter;
359 if (h_ret != NULL) *h_ret=h;
360 if (seed_out)
361 memcpy(seed_out, seed, qsize);
362 }
363 if(ctx)
364 {
365 BN_CTX_end(ctx);
366 BN_CTX_free(ctx);
367 }
368 if (mont != NULL) BN_MONT_CTX_free(mont);
369 return ok;
370 }
371 #endif

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_key.c 1

**
 4900 Fri May 30 18:31:45 2014
new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_key.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dsa/dsa_key.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <time.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_key.c 2

62 #ifndef OPENSSL_NO_SHA
63 #include <openssl/bn.h>
64 #include <openssl/dsa.h>
65 #include <openssl/rand.h>

67 #ifdef OPENSSL_FIPS
68 #include <openssl/fips.h>
69 #endif

71 static int dsa_builtin_keygen(DSA *dsa);

73 int DSA_generate_key(DSA *dsa)
74 {
75 #ifdef OPENSSL_FIPS
76 if (FIPS_mode() && !(dsa->meth->flags & DSA_FLAG_FIPS_METHOD)
77 && !(dsa->flags & DSA_FLAG_NON_FIPS_ALLOW))
78 {
79 DSAerr(DSA_F_DSA_GENERATE_KEY, DSA_R_NON_FIPS_DSA_METHOD);
80 return 0;
81 }
82 #endif
83 if(dsa->meth->dsa_keygen)
84 return dsa->meth->dsa_keygen(dsa);
85 #ifdef OPENSSL_FIPS
86 if (FIPS_mode())
87 return FIPS_dsa_generate_key(dsa);
88 #endif
89 return dsa_builtin_keygen(dsa);
90 }

92 static int dsa_builtin_keygen(DSA *dsa)
93 {
94 int ok=0;
95 BN_CTX *ctx=NULL;
96 BIGNUM *pub_key=NULL,*priv_key=NULL;

98 if ((ctx=BN_CTX_new()) == NULL) goto err;

100 if (dsa->priv_key == NULL)
101 {
102 if ((priv_key=BN_new()) == NULL) goto err;
103 }
104 else
105 priv_key=dsa->priv_key;

107 do
108 if (!BN_rand_range(priv_key,dsa->q)) goto err;
109 while (BN_is_zero(priv_key));

111 if (dsa->pub_key == NULL)
112 {
113 if ((pub_key=BN_new()) == NULL) goto err;
114 }
115 else
116 pub_key=dsa->pub_key;
117
118 {
119 BIGNUM local_prk;
120 BIGNUM *prk;

122 if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0)
123 {
124 BN_init(&local_prk);
125 prk = &local_prk;
126 BN_with_flags(prk, priv_key, BN_FLG_CONSTTIME);
127 }

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_key.c 3

128 else
129 prk = priv_key;

131 if (!BN_mod_exp(pub_key,dsa->g,prk,dsa->p,ctx)) goto err;
132 }

134 dsa->priv_key=priv_key;
135 dsa->pub_key=pub_key;
136 ok=1;

138 err:
139 if ((pub_key != NULL) && (dsa->pub_key == NULL)) BN_free(pub_key);
140 if ((priv_key != NULL) && (dsa->priv_key == NULL)) BN_free(priv_key);
141 if (ctx != NULL) BN_CTX_free(ctx);
142 return(ok);
143 }
144 #endif

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_lib.c 1

**
 8699 Fri May 30 18:31:45 2014
new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dsa/dsa_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* Original version from Steven Schoch <schoch@sheba.arc.nasa.gov> */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_lib.c 2

62 #include "cryptlib.h"
63 #include <openssl/bn.h>
64 #include <openssl/dsa.h>
65 #include <openssl/asn1.h>
66 #ifndef OPENSSL_NO_ENGINE
67 #include <openssl/engine.h>
68 #endif
69 #ifndef OPENSSL_NO_DH
70 #include <openssl/dh.h>
71 #endif

73 #ifdef OPENSSL_FIPS
74 #include <openssl/fips.h>
75 #endif

77 const char DSA_version[]="DSA" OPENSSL_VERSION_PTEXT;

79 static const DSA_METHOD *default_DSA_method = NULL;

81 void DSA_set_default_method(const DSA_METHOD *meth)
82 {
83 default_DSA_method = meth;
84 }

86 const DSA_METHOD *DSA_get_default_method(void)
87 {
88 if(!default_DSA_method)
89 {
90 #ifdef OPENSSL_FIPS
91 if (FIPS_mode())
92 return FIPS_dsa_openssl();
93 else
94 return DSA_OpenSSL();
95 #else
96 default_DSA_method = DSA_OpenSSL();
97 #endif
98 }
99 return default_DSA_method;
100 }

102 DSA *DSA_new(void)
103 {
104 return DSA_new_method(NULL);
105 }

107 int DSA_set_method(DSA *dsa, const DSA_METHOD *meth)
108 {
109 /* NB: The caller is specifically setting a method, so it’s not up to us
110 * to deal with which ENGINE it comes from. */
111 const DSA_METHOD *mtmp;
112 mtmp = dsa->meth;
113 if (mtmp->finish) mtmp->finish(dsa);
114 #ifndef OPENSSL_NO_ENGINE
115 if (dsa->engine)
116 {
117 ENGINE_finish(dsa->engine);
118 dsa->engine = NULL;
119 }
120 #endif
121 dsa->meth = meth;
122 if (meth->init) meth->init(dsa);
123 return 1;
124 }

126 DSA *DSA_new_method(ENGINE *engine)
127 {

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_lib.c 3

128 DSA *ret;

130 ret=(DSA *)OPENSSL_malloc(sizeof(DSA));
131 if (ret == NULL)
132 {
133 DSAerr(DSA_F_DSA_NEW_METHOD,ERR_R_MALLOC_FAILURE);
134 return(NULL);
135 }
136 ret->meth = DSA_get_default_method();
137 #ifndef OPENSSL_NO_ENGINE
138 if (engine)
139 {
140 if (!ENGINE_init(engine))
141 {
142 DSAerr(DSA_F_DSA_NEW_METHOD, ERR_R_ENGINE_LIB);
143 OPENSSL_free(ret);
144 return NULL;
145 }
146 ret->engine = engine;
147 }
148 else
149 ret->engine = ENGINE_get_default_DSA();
150 if(ret->engine)
151 {
152 ret->meth = ENGINE_get_DSA(ret->engine);
153 if(!ret->meth)
154 {
155 DSAerr(DSA_F_DSA_NEW_METHOD,
156 ERR_R_ENGINE_LIB);
157 ENGINE_finish(ret->engine);
158 OPENSSL_free(ret);
159 return NULL;
160 }
161 }
162 #endif

164 ret->pad=0;
165 ret->version=0;
166 ret->write_params=1;
167 ret->p=NULL;
168 ret->q=NULL;
169 ret->g=NULL;

171 ret->pub_key=NULL;
172 ret->priv_key=NULL;

174 ret->kinv=NULL;
175 ret->r=NULL;
176 ret->method_mont_p=NULL;

178 ret->references=1;
179 ret->flags=ret->meth->flags & ~DSA_FLAG_NON_FIPS_ALLOW;
180 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_DSA, ret, &ret->ex_data);
181 if ((ret->meth->init != NULL) && !ret->meth->init(ret))
182 {
183 #ifndef OPENSSL_NO_ENGINE
184 if (ret->engine)
185 ENGINE_finish(ret->engine);
186 #endif
187 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_DSA, ret, &ret->ex_data);
188 OPENSSL_free(ret);
189 ret=NULL;
190 }
191
192 return(ret);
193 }

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_lib.c 4

195 void DSA_free(DSA *r)
196 {
197 int i;

199 if (r == NULL) return;

201 i=CRYPTO_add(&r->references,-1,CRYPTO_LOCK_DSA);
202 #ifdef REF_PRINT
203 REF_PRINT("DSA",r);
204 #endif
205 if (i > 0) return;
206 #ifdef REF_CHECK
207 if (i < 0)
208 {
209 fprintf(stderr,"DSA_free, bad reference count\n");
210 abort();
211 }
212 #endif

214 if(r->meth->finish)
215 r->meth->finish(r);
216 #ifndef OPENSSL_NO_ENGINE
217 if(r->engine)
218 ENGINE_finish(r->engine);
219 #endif

221 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_DSA, r, &r->ex_data);

223 if (r->p != NULL) BN_clear_free(r->p);
224 if (r->q != NULL) BN_clear_free(r->q);
225 if (r->g != NULL) BN_clear_free(r->g);
226 if (r->pub_key != NULL) BN_clear_free(r->pub_key);
227 if (r->priv_key != NULL) BN_clear_free(r->priv_key);
228 if (r->kinv != NULL) BN_clear_free(r->kinv);
229 if (r->r != NULL) BN_clear_free(r->r);
230 OPENSSL_free(r);
231 }

233 int DSA_up_ref(DSA *r)
234 {
235 int i = CRYPTO_add(&r->references, 1, CRYPTO_LOCK_DSA);
236 #ifdef REF_PRINT
237 REF_PRINT("DSA",r);
238 #endif
239 #ifdef REF_CHECK
240 if (i < 2)
241 {
242 fprintf(stderr, "DSA_up_ref, bad reference count\n");
243 abort();
244 }
245 #endif
246 return ((i > 1) ? 1 : 0);
247 }

249 int DSA_size(const DSA *r)
250 {
251 int ret,i;
252 ASN1_INTEGER bs;
253 unsigned char buf[4]; /* 4 bytes looks really small.
254 However, i2d_ASN1_INTEGER() will not look
255 beyond the first byte, as long as the second
256 parameter is NULL. */

258 i=BN_num_bits(r->q);
259 bs.length=(i+7)/8;

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_lib.c 5

260 bs.data=buf;
261 bs.type=V_ASN1_INTEGER;
262 /* If the top bit is set the asn1 encoding is 1 larger. */
263 buf[0]=0xff;

265 i=i2d_ASN1_INTEGER(&bs,NULL);
266 i+=i; /* r and s */
267 ret=ASN1_object_size(1,i,V_ASN1_SEQUENCE);
268 return(ret);
269 }

271 int DSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
272 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func)
273 {
274 return CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_DSA, argl, argp,
275 new_func, dup_func, free_func);
276 }

278 int DSA_set_ex_data(DSA *d, int idx, void *arg)
279 {
280 return(CRYPTO_set_ex_data(&d->ex_data,idx,arg));
281 }

283 void *DSA_get_ex_data(DSA *d, int idx)
284 {
285 return(CRYPTO_get_ex_data(&d->ex_data,idx));
286 }

288 #ifndef OPENSSL_NO_DH
289 DH *DSA_dup_DH(const DSA *r)
290 {
291 /* DSA has p, q, g, optional pub_key, optional priv_key.
292 * DH has p, optional length, g, optional pub_key, optional priv_key,
293 * optional q.
294 */

296 DH *ret = NULL;

298 if (r == NULL)
299 goto err;
300 ret = DH_new();
301 if (ret == NULL)
302 goto err;
303 if (r->p != NULL)
304 if ((ret->p = BN_dup(r->p)) == NULL)
305 goto err;
306 if (r->q != NULL)
307 {
308 ret->length = BN_num_bits(r->q);
309 if ((ret->q = BN_dup(r->q)) == NULL)
310 goto err;
311 }
312 if (r->g != NULL)
313 if ((ret->g = BN_dup(r->g)) == NULL)
314 goto err;
315 if (r->pub_key != NULL)
316 if ((ret->pub_key = BN_dup(r->pub_key)) == NULL)
317 goto err;
318 if (r->priv_key != NULL)
319 if ((ret->priv_key = BN_dup(r->priv_key)) == NULL)
320 goto err;

322 return ret;

324 err:
325 if (ret != NULL)

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_lib.c 6

326 DH_free(ret);
327 return NULL;
328 }
329 #endif

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ossl.c 1

**
 11312 Fri May 30 18:31:45 2014
new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ossl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dsa/dsa_ossl.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* Original version from Steven Schoch <schoch@sheba.arc.nasa.gov> */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ossl.c 2

62 #include "cryptlib.h"
63 #include <openssl/bn.h>
64 #include <openssl/sha.h>
65 #include <openssl/dsa.h>
66 #include <openssl/rand.h>
67 #include <openssl/asn1.h>

69 static DSA_SIG *dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa);
70 static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp)
71 static int dsa_do_verify(const unsigned char *dgst, int dgst_len, DSA_SIG *sig,
72 DSA *dsa);
73 static int dsa_init(DSA *dsa);
74 static int dsa_finish(DSA *dsa);

76 static DSA_METHOD openssl_dsa_meth = {
77 "OpenSSL DSA method",
78 dsa_do_sign,
79 dsa_sign_setup,
80 dsa_do_verify,
81 NULL, /* dsa_mod_exp, */
82 NULL, /* dsa_bn_mod_exp, */
83 dsa_init,
84 dsa_finish,
85 0,
86 NULL,
87 NULL,
88 NULL
89 };

91 /* These macro wrappers replace attempts to use the dsa_mod_exp() and
92 * bn_mod_exp() handlers in the DSA_METHOD structure. We avoid the problem of
93 * having a the macro work as an expression by bundling an "err_instr". So;
94 *
95 * if (!dsa->meth->bn_mod_exp(dsa, r,dsa->g,&k,dsa->p,ctx,
96 * dsa->method_mont_p)) goto err;
97 *
98 * can be replaced by;
99 *
100 * DSA_BN_MOD_EXP(goto err, dsa, r, dsa->g, &k, dsa->p, ctx,
101 * dsa->method_mont_p);
102 */

104 #define DSA_MOD_EXP(err_instr,dsa,rr,a1,p1,a2,p2,m,ctx,in_mont) \
105 do { \
106 int _tmp_res53; \
107 if((dsa)->meth->dsa_mod_exp) \
108 _tmp_res53 = (dsa)->meth->dsa_mod_exp((dsa), (rr), (a1), (p1), \
109 (a2), (p2), (m), (ctx), (in_mont)); \
110 else \
111 _tmp_res53 = BN_mod_exp2_mont((rr), (a1), (p1), (a2), (p2), \
112 (m), (ctx), (in_mont)); \
113 if(!_tmp_res53) err_instr; \
114 } while(0)
115 #define DSA_BN_MOD_EXP(err_instr,dsa,r,a,p,m,ctx,m_ctx) \
116 do { \
117 int _tmp_res53; \
118 if((dsa)->meth->bn_mod_exp) \
119 _tmp_res53 = (dsa)->meth->bn_mod_exp((dsa), (r), (a), (p), \
120 (m), (ctx), (m_ctx)); \
121 else \
122 _tmp_res53 = BN_mod_exp_mont((r), (a), (p), (m), (ctx), (m_ctx))
123 if(!_tmp_res53) err_instr; \
124 } while(0)

126 const DSA_METHOD *DSA_OpenSSL(void)
127 {

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ossl.c 3

128 return &openssl_dsa_meth;
129 }

131 static DSA_SIG *dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa)
132 {
133 BIGNUM *kinv=NULL,*r=NULL,*s=NULL;
134 BIGNUM m;
135 BIGNUM xr;
136 BN_CTX *ctx=NULL;
137 int reason=ERR_R_BN_LIB;
138 DSA_SIG *ret=NULL;
139 int noredo = 0;

141 BN_init(&m);
142 BN_init(&xr);

144 if (!dsa->p || !dsa->q || !dsa->g)
145 {
146 reason=DSA_R_MISSING_PARAMETERS;
147 goto err;
148 }

150 s=BN_new();
151 if (s == NULL) goto err;
152 ctx=BN_CTX_new();
153 if (ctx == NULL) goto err;
154 redo:
155 if ((dsa->kinv == NULL) || (dsa->r == NULL))
156 {
157 if (!DSA_sign_setup(dsa,ctx,&kinv,&r)) goto err;
158 }
159 else
160 {
161 kinv=dsa->kinv;
162 dsa->kinv=NULL;
163 r=dsa->r;
164 dsa->r=NULL;
165 noredo = 1;
166 }

168
169 if (dlen > BN_num_bytes(dsa->q))
170 /* if the digest length is greater than the size of q use the
171 * BN_num_bits(dsa->q) leftmost bits of the digest, see
172 * fips 186-3, 4.2 */
173 dlen = BN_num_bytes(dsa->q);
174 if (BN_bin2bn(dgst,dlen,&m) == NULL)
175 goto err;

177 /* Compute s = inv(k) (m + xr) mod q */
178 if (!BN_mod_mul(&xr,dsa->priv_key,r,dsa->q,ctx)) goto err;/* s = xr */
179 if (!BN_add(s, &xr, &m)) goto err; /* s = m + xr */
180 if (BN_cmp(s,dsa->q) > 0)
181 if (!BN_sub(s,s,dsa->q)) goto err;
182 if (!BN_mod_mul(s,s,kinv,dsa->q,ctx)) goto err;

184 ret=DSA_SIG_new();
185 if (ret == NULL) goto err;
186 /* Redo if r or s is zero as required by FIPS 186-3: this is
187 * very unlikely.
188 */
189 if (BN_is_zero(r) || BN_is_zero(s))
190 {
191 if (noredo)
192 {
193 reason = DSA_R_NEED_NEW_SETUP_VALUES;

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ossl.c 4

194 goto err;
195 }
196 goto redo;
197 }
198 ret->r = r;
199 ret->s = s;
200
201 err:
202 if (!ret)
203 {
204 DSAerr(DSA_F_DSA_DO_SIGN,reason);
205 BN_free(r);
206 BN_free(s);
207 }
208 if (ctx != NULL) BN_CTX_free(ctx);
209 BN_clear_free(&m);
210 BN_clear_free(&xr);
211 if (kinv != NULL) /* dsa->kinv is NULL now if we used it */
212 BN_clear_free(kinv);
213 return(ret);
214 }

216 static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp)
217 {
218 BN_CTX *ctx;
219 BIGNUM k,kq,*K,*kinv=NULL,*r=NULL;
220 int ret=0;

222 if (!dsa->p || !dsa->q || !dsa->g)
223 {
224 DSAerr(DSA_F_DSA_SIGN_SETUP,DSA_R_MISSING_PARAMETERS);
225 return 0;
226 }

228 BN_init(&k);
229 BN_init(&kq);

231 if (ctx_in == NULL)
232 {
233 if ((ctx=BN_CTX_new()) == NULL) goto err;
234 }
235 else
236 ctx=ctx_in;

238 if ((r=BN_new()) == NULL) goto err;

240 /* Get random k */
241 do
242 if (!BN_rand_range(&k, dsa->q)) goto err;
243 while (BN_is_zero(&k));
244 if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0)
245 {
246 BN_set_flags(&k, BN_FLG_CONSTTIME);
247 }

249 if (dsa->flags & DSA_FLAG_CACHE_MONT_P)
250 {
251 if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p,
252 CRYPTO_LOCK_DSA,
253 dsa->p, ctx))
254 goto err;
255 }

257 /* Compute r = (g^k mod p) mod q */

259 if ((dsa->flags & DSA_FLAG_NO_EXP_CONSTTIME) == 0)

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ossl.c 5

260 {
261 if (!BN_copy(&kq, &k)) goto err;

263 /* We do not want timing information to leak the length of k,
264 * so we compute g^k using an equivalent exponent of fixed lengt
265 *
266 * (This is a kludge that we need because the BN_mod_exp_mont()
267 * does not let us specify the desired timing behaviour.) */

269 if (!BN_add(&kq, &kq, dsa->q)) goto err;
270 if (BN_num_bits(&kq) <= BN_num_bits(dsa->q))
271 {
272 if (!BN_add(&kq, &kq, dsa->q)) goto err;
273 }

275 K = &kq;
276 }
277 else
278 {
279 K = &k;
280 }
281 DSA_BN_MOD_EXP(goto err, dsa, r, dsa->g, K, dsa->p, ctx,
282 dsa->method_mont_p);
283 if (!BN_mod(r,r,dsa->q,ctx)) goto err;

285 /* Compute part of ’s = inv(k) (m + xr) mod q’ */
286 if ((kinv=BN_mod_inverse(NULL,&k,dsa->q,ctx)) == NULL) goto err;

288 if (*kinvp != NULL) BN_clear_free(*kinvp);
289 *kinvp=kinv;
290 kinv=NULL;
291 if (*rp != NULL) BN_clear_free(*rp);
292 *rp=r;
293 ret=1;
294 err:
295 if (!ret)
296 {
297 DSAerr(DSA_F_DSA_SIGN_SETUP,ERR_R_BN_LIB);
298 if (r != NULL)
299 BN_clear_free(r);
300 }
301 if (ctx_in == NULL) BN_CTX_free(ctx);
302 BN_clear_free(&k);
303 BN_clear_free(&kq);
304 return(ret);
305 }

307 static int dsa_do_verify(const unsigned char *dgst, int dgst_len, DSA_SIG *sig,
308 DSA *dsa)
309 {
310 BN_CTX *ctx;
311 BIGNUM u1,u2,t1;
312 BN_MONT_CTX *mont=NULL;
313 int ret = -1, i;
314 if (!dsa->p || !dsa->q || !dsa->g)
315 {
316 DSAerr(DSA_F_DSA_DO_VERIFY,DSA_R_MISSING_PARAMETERS);
317 return -1;
318 }

320 i = BN_num_bits(dsa->q);
321 /* fips 186-3 allows only different sizes for q */
322 if (i != 160 && i != 224 && i != 256)
323 {
324 DSAerr(DSA_F_DSA_DO_VERIFY,DSA_R_BAD_Q_VALUE);
325 return -1;

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ossl.c 6

326 }

328 if (BN_num_bits(dsa->p) > OPENSSL_DSA_MAX_MODULUS_BITS)
329 {
330 DSAerr(DSA_F_DSA_DO_VERIFY,DSA_R_MODULUS_TOO_LARGE);
331 return -1;
332 }
333 BN_init(&u1);
334 BN_init(&u2);
335 BN_init(&t1);

337 if ((ctx=BN_CTX_new()) == NULL) goto err;

339 if (BN_is_zero(sig->r) || BN_is_negative(sig->r) ||
340 BN_ucmp(sig->r, dsa->q) >= 0)
341 {
342 ret = 0;
343 goto err;
344 }
345 if (BN_is_zero(sig->s) || BN_is_negative(sig->s) ||
346 BN_ucmp(sig->s, dsa->q) >= 0)
347 {
348 ret = 0;
349 goto err;
350 }

352 /* Calculate W = inv(S) mod Q
353 * save W in u2 */
354 if ((BN_mod_inverse(&u2,sig->s,dsa->q,ctx)) == NULL) goto err;

356 /* save M in u1 */
357 if (dgst_len > (i >> 3))
358 /* if the digest length is greater than the size of q use the
359 * BN_num_bits(dsa->q) leftmost bits of the digest, see
360 * fips 186-3, 4.2 */
361 dgst_len = (i >> 3);
362 if (BN_bin2bn(dgst,dgst_len,&u1) == NULL) goto err;

364 /* u1 = M * w mod q */
365 if (!BN_mod_mul(&u1,&u1,&u2,dsa->q,ctx)) goto err;

367 /* u2 = r * w mod q */
368 if (!BN_mod_mul(&u2,sig->r,&u2,dsa->q,ctx)) goto err;

371 if (dsa->flags & DSA_FLAG_CACHE_MONT_P)
372 {
373 mont = BN_MONT_CTX_set_locked(&dsa->method_mont_p,
374 CRYPTO_LOCK_DSA, dsa->p, ctx);
375 if (!mont)
376 goto err;
377 }

380 DSA_MOD_EXP(goto err, dsa, &t1, dsa->g, &u1, dsa->pub_key, &u2, dsa->p,
381 /* BN_copy(&u1,&t1); */
382 /* let u1 = u1 mod q */
383 if (!BN_mod(&u1,&t1,dsa->q,ctx)) goto err;

385 /* V is now in u1. If the signature is correct, it will be
386 * equal to R. */
387 ret=(BN_ucmp(&u1, sig->r) == 0);

389 err:
390 /* XXX: surely this is wrong - if ret is 0, it just didn’t verify;
391 there is no error in BN. Test should be ret == -1 (Ben) */

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_ossl.c 7

392 if (ret != 1) DSAerr(DSA_F_DSA_DO_VERIFY,ERR_R_BN_LIB);
393 if (ctx != NULL) BN_CTX_free(ctx);
394 BN_free(&u1);
395 BN_free(&u2);
396 BN_free(&t1);
397 return(ret);
398 }

400 static int dsa_init(DSA *dsa)
401 {
402 dsa->flags|=DSA_FLAG_CACHE_MONT_P;
403 return(1);
404 }

406 static int dsa_finish(DSA *dsa)
407 {
408 if(dsa->method_mont_p)
409 BN_MONT_CTX_free(dsa->method_mont_p);
410 return(1);
411 }

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_pmeth.c 1

**
 8246 Fri May 30 18:31:45 2014
new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_pmeth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2 * project 2006.
3 */
4 /* ==
5 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ==
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */

58 #include <stdio.h>
59 #include "cryptlib.h"
60 #include <openssl/asn1t.h>
61 #include <openssl/x509.h>

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_pmeth.c 2

62 #include <openssl/evp.h>
63 #include <openssl/bn.h>
64 #include "evp_locl.h"
65 #include "dsa_locl.h"

67 /* DSA pkey context structure */

69 typedef struct
70 {
71 /* Parameter gen parameters */
72 int nbits; /* size of p in bits (default: 1024) */
73 int qbits; /* size of q in bits (default: 160) */
74 const EVP_MD *pmd; /* MD for parameter generation */
75 /* Keygen callback info */
76 int gentmp[2];
77 /* message digest */
78 const EVP_MD *md; /* MD for the signature */
79 } DSA_PKEY_CTX;

81 static int pkey_dsa_init(EVP_PKEY_CTX *ctx)
82 {
83 DSA_PKEY_CTX *dctx;
84 dctx = OPENSSL_malloc(sizeof(DSA_PKEY_CTX));
85 if (!dctx)
86 return 0;
87 dctx->nbits = 1024;
88 dctx->qbits = 160;
89 dctx->pmd = NULL;
90 dctx->md = NULL;

92 ctx->data = dctx;
93 ctx->keygen_info = dctx->gentmp;
94 ctx->keygen_info_count = 2;
95
96 return 1;
97 }

99 static int pkey_dsa_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src)
100 {
101 DSA_PKEY_CTX *dctx, *sctx;
102 if (!pkey_dsa_init(dst))
103 return 0;
104 sctx = src->data;
105 dctx = dst->data;
106 dctx->nbits = sctx->nbits;
107 dctx->qbits = sctx->qbits;
108 dctx->pmd = sctx->pmd;
109 dctx->md = sctx->md;
110 return 1;
111 }

113 static void pkey_dsa_cleanup(EVP_PKEY_CTX *ctx)
114 {
115 DSA_PKEY_CTX *dctx = ctx->data;
116 if (dctx)
117 OPENSSL_free(dctx);
118 }

120 static int pkey_dsa_sign(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen,
121 const unsigned char *tbs, size_t tbslen)
122 {
123 int ret, type;
124 unsigned int sltmp;
125 DSA_PKEY_CTX *dctx = ctx->data;
126 DSA *dsa = ctx->pkey->pkey.dsa;

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_pmeth.c 3

128 if (dctx->md)
129 type = EVP_MD_type(dctx->md);
130 else
131 type = NID_sha1;

133 ret = DSA_sign(type, tbs, tbslen, sig, &sltmp, dsa);

135 if (ret <= 0)
136 return ret;
137 *siglen = sltmp;
138 return 1;
139 }

141 static int pkey_dsa_verify(EVP_PKEY_CTX *ctx,
142 const unsigned char *sig, size_t siglen,
143 const unsigned char *tbs, size_t tbslen)
144 {
145 int ret, type;
146 DSA_PKEY_CTX *dctx = ctx->data;
147 DSA *dsa = ctx->pkey->pkey.dsa;

149 if (dctx->md)
150 type = EVP_MD_type(dctx->md);
151 else
152 type = NID_sha1;

154 ret = DSA_verify(type, tbs, tbslen, sig, siglen, dsa);

156 return ret;
157 }

159 static int pkey_dsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
160 {
161 DSA_PKEY_CTX *dctx = ctx->data;
162 switch (type)
163 {
164 case EVP_PKEY_CTRL_DSA_PARAMGEN_BITS:
165 if (p1 < 256)
166 return -2;
167 dctx->nbits = p1;
168 return 1;

170 case EVP_PKEY_CTRL_DSA_PARAMGEN_Q_BITS:
171 if (p1 != 160 && p1 != 224 && p1 && p1 != 256)
172 return -2;
173 dctx->qbits = p1;
174 return 1;

176 case EVP_PKEY_CTRL_DSA_PARAMGEN_MD:
177 if (EVP_MD_type((const EVP_MD *)p2) != NID_sha1 &&
178 EVP_MD_type((const EVP_MD *)p2) != NID_sha224 &&
179 EVP_MD_type((const EVP_MD *)p2) != NID_sha256)
180 {
181 DSAerr(DSA_F_PKEY_DSA_CTRL, DSA_R_INVALID_DIGEST_TYPE);
182 return 0;
183 }
184 dctx->md = p2;
185 return 1;

187 case EVP_PKEY_CTRL_MD:
188 if (EVP_MD_type((const EVP_MD *)p2) != NID_sha1 &&
189 EVP_MD_type((const EVP_MD *)p2) != NID_dsa &&
190 EVP_MD_type((const EVP_MD *)p2) != NID_dsaWithSHA &&
191 EVP_MD_type((const EVP_MD *)p2) != NID_sha224 &&
192 EVP_MD_type((const EVP_MD *)p2) != NID_sha256 &&
193 EVP_MD_type((const EVP_MD *)p2) != NID_sha384 &&

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_pmeth.c 4

194 EVP_MD_type((const EVP_MD *)p2) != NID_sha512)
195 {
196 DSAerr(DSA_F_PKEY_DSA_CTRL, DSA_R_INVALID_DIGEST_TYPE);
197 return 0;
198 }
199 dctx->md = p2;
200 return 1;

202 case EVP_PKEY_CTRL_DIGESTINIT:
203 case EVP_PKEY_CTRL_PKCS7_SIGN:
204 case EVP_PKEY_CTRL_CMS_SIGN:
205 return 1;
206
207 case EVP_PKEY_CTRL_PEER_KEY:
208 DSAerr(DSA_F_PKEY_DSA_CTRL,
209 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
210 return -2;
211 default:
212 return -2;

214 }
215 }
216
217 static int pkey_dsa_ctrl_str(EVP_PKEY_CTX *ctx,
218 const char *type, const char *value)
219 {
220 if (!strcmp(type, "dsa_paramgen_bits"))
221 {
222 int nbits;
223 nbits = atoi(value);
224 return EVP_PKEY_CTX_set_dsa_paramgen_bits(ctx, nbits);
225 }
226 if (!strcmp(type, "dsa_paramgen_q_bits"))
227 {
228 int qbits = atoi(value);
229 return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_DSA, EVP_PKEY_OP_PARAMGEN
230 EVP_PKEY_CTRL_DSA_PARAMGEN_Q_BITS, qbit
231 }
232 if (!strcmp(type, "dsa_paramgen_md"))
233 {
234 return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_DSA, EVP_PKEY_OP_PARAMGEN
235 EVP_PKEY_CTRL_DSA_PARAMGEN_MD, 0,
236 (void *)EVP_get_digestbyname(value));
237 }
238 return -2;
239 }

241 static int pkey_dsa_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
242 {
243 DSA *dsa = NULL;
244 DSA_PKEY_CTX *dctx = ctx->data;
245 BN_GENCB *pcb, cb;
246 int ret;
247 if (ctx->pkey_gencb)
248 {
249 pcb = &cb;
250 evp_pkey_set_cb_translate(pcb, ctx);
251 }
252 else
253 pcb = NULL;
254 dsa = DSA_new();
255 if (!dsa)
256 return 0;
257 ret = dsa_builtin_paramgen(dsa, dctx->nbits, dctx->qbits, dctx->pmd,
258 NULL, 0, NULL, NULL, NULL, pcb);
259 if (ret)

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_pmeth.c 5

260 EVP_PKEY_assign_DSA(pkey, dsa);
261 else
262 DSA_free(dsa);
263 return ret;
264 }

266 static int pkey_dsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
267 {
268 DSA *dsa = NULL;
269 if (ctx->pkey == NULL)
270 {
271 DSAerr(DSA_F_PKEY_DSA_KEYGEN, DSA_R_NO_PARAMETERS_SET);
272 return 0;
273 }
274 dsa = DSA_new();
275 if (!dsa)
276 return 0;
277 EVP_PKEY_assign_DSA(pkey, dsa);
278 /* Note: if error return, pkey is freed by parent routine */
279 if (!EVP_PKEY_copy_parameters(pkey, ctx->pkey))
280 return 0;
281 return DSA_generate_key(pkey->pkey.dsa);
282 }

284 const EVP_PKEY_METHOD dsa_pkey_meth =
285 {
286 EVP_PKEY_DSA,
287 EVP_PKEY_FLAG_AUTOARGLEN,
288 pkey_dsa_init,
289 pkey_dsa_copy,
290 pkey_dsa_cleanup,

292 0,
293 pkey_dsa_paramgen,

295 0,
296 pkey_dsa_keygen,

298 0,
299 pkey_dsa_sign,

301 0,
302 pkey_dsa_verify,

304 0,0,

306 0,0,0,0,

308 0,0,

310 0,0,

312 0,0,

314 pkey_dsa_ctrl,
315 pkey_dsa_ctrl_str

318 };

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_prn.c 1

**
 3884 Fri May 30 18:31:45 2014
new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_prn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dsa/dsa_prn.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2006.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_prn.c 2

62 #include <openssl/dsa.h>

64 #ifndef OPENSSL_NO_FP_API
65 int DSA_print_fp(FILE *fp, const DSA *x, int off)
66 {
67 BIO *b;
68 int ret;

70 if ((b=BIO_new(BIO_s_file())) == NULL)
71 {
72 DSAerr(DSA_F_DSA_PRINT_FP,ERR_R_BUF_LIB);
73 return(0);
74 }
75 BIO_set_fp(b,fp,BIO_NOCLOSE);
76 ret=DSA_print(b,x,off);
77 BIO_free(b);
78 return(ret);
79 }

81 int DSAparams_print_fp(FILE *fp, const DSA *x)
82 {
83 BIO *b;
84 int ret;

86 if ((b=BIO_new(BIO_s_file())) == NULL)
87 {
88 DSAerr(DSA_F_DSAPARAMS_PRINT_FP,ERR_R_BUF_LIB);
89 return(0);
90 }
91 BIO_set_fp(b,fp,BIO_NOCLOSE);
92 ret=DSAparams_print(b, x);
93 BIO_free(b);
94 return(ret);
95 }
96 #endif

98 int DSA_print(BIO *bp, const DSA *x, int off)
99 {
100 EVP_PKEY *pk;
101 int ret;
102 pk = EVP_PKEY_new();
103 if (!pk || !EVP_PKEY_set1_DSA(pk, (DSA *)x))
104 return 0;
105 ret = EVP_PKEY_print_private(bp, pk, off, NULL);
106 EVP_PKEY_free(pk);
107 return ret;
108 }

110 int DSAparams_print(BIO *bp, const DSA *x)
111 {
112 EVP_PKEY *pk;
113 int ret;
114 pk = EVP_PKEY_new();
115 if (!pk || !EVP_PKEY_set1_DSA(pk, (DSA *)x))
116 return 0;
117 ret = EVP_PKEY_print_params(bp, pk, 4, NULL);
118 EVP_PKEY_free(pk);
119 return ret;
120 }

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_sign.c 1

**
 4370 Fri May 30 18:31:45 2014
new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_sign.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dsa/dsa_sign.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* Original version from Steven Schoch <schoch@sheba.arc.nasa.gov> */

61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_sign.c 2

62 #include <openssl/dsa.h>
63 #include <openssl/rand.h>
64 #include <openssl/bn.h>

66 DSA_SIG * DSA_do_sign(const unsigned char *dgst, int dlen, DSA *dsa)
67 {
68 #ifdef OPENSSL_FIPS
69 if (FIPS_mode() && !(dsa->meth->flags & DSA_FLAG_FIPS_METHOD)
70 && !(dsa->flags & DSA_FLAG_NON_FIPS_ALLOW))
71 {
72 DSAerr(DSA_F_DSA_DO_SIGN, DSA_R_NON_FIPS_DSA_METHOD);
73 return NULL;
74 }
75 #endif
76 return dsa->meth->dsa_do_sign(dgst, dlen, dsa);
77 }

79 int DSA_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, BIGNUM **rp)
80 {
81 #ifdef OPENSSL_FIPS
82 if (FIPS_mode() && !(dsa->meth->flags & DSA_FLAG_FIPS_METHOD)
83 && !(dsa->flags & DSA_FLAG_NON_FIPS_ALLOW))
84 {
85 DSAerr(DSA_F_DSA_SIGN_SETUP, DSA_R_NON_FIPS_DSA_METHOD);
86 return 0;
87 }
88 #endif
89 return dsa->meth->dsa_sign_setup(dsa, ctx_in, kinvp, rp);
90 }

92 DSA_SIG *DSA_SIG_new(void)
93 {
94 DSA_SIG *sig;
95 sig = OPENSSL_malloc(sizeof(DSA_SIG));
96 if (!sig)
97 return NULL;
98 sig->r = NULL;
99 sig->s = NULL;
100 return sig;
101 }

103 void DSA_SIG_free(DSA_SIG *sig)
104 {
105 if (sig)
106 {
107 if (sig->r)
108 BN_free(sig->r);
109 if (sig->s)
110 BN_free(sig->s);
111 OPENSSL_free(sig);
112 }
113 }

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_vrf.c 1

**
 3685 Fri May 30 18:31:45 2014
new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_vrf.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dsa/dsa_vrf.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* Original version from Steven Schoch <schoch@sheba.arc.nasa.gov> */

61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/dsa/dsa_vrf.c 2

62 #include <openssl/dsa.h>

64 int DSA_do_verify(const unsigned char *dgst, int dgst_len, DSA_SIG *sig,
65 DSA *dsa)
66 {
67 #ifdef OPENSSL_FIPS
68 if (FIPS_mode() && !(dsa->meth->flags & DSA_FLAG_FIPS_METHOD)
69 && !(dsa->flags & DSA_FLAG_NON_FIPS_ALLOW))
70 {
71 DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_NON_FIPS_DSA_METHOD);
72 return -1;
73 }
74 #endif
75 return dsa->meth->dsa_do_verify(dgst, dgst_len, sig, dsa);
76 }

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_beos.c 1

**
 7521 Fri May 30 18:31:45 2014
new/usr/src/lib/openssl/libsunw_crypto/dso/dso_beos.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* dso_beos.c */
2 /* Written by Marcin Konicki (ahwayakchih@neoni.net) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <string.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_beos.c 2

62 #include <openssl/dso.h>

64 #if !defined(OPENSSL_SYS_BEOS)
65 DSO_METHOD *DSO_METHOD_beos(void)
66 {
67 return NULL;
68 }
69 #else

71 #include <kernel/image.h>

73 static int beos_load(DSO *dso);
74 static int beos_unload(DSO *dso);
75 static void *beos_bind_var(DSO *dso, const char *symname);
76 static DSO_FUNC_TYPE beos_bind_func(DSO *dso, const char *symname);
77 #if 0
78 static int beos_unbind_var(DSO *dso, char *symname, void *symptr);
79 static int beos_unbind_func(DSO *dso, char *symname, DSO_FUNC_TYPE symptr);
80 static int beos_init(DSO *dso);
81 static int beos_finish(DSO *dso);
82 static long beos_ctrl(DSO *dso, int cmd, long larg, void *parg);
83 #endif
84 static char *beos_name_converter(DSO *dso, const char *filename);

86 static DSO_METHOD dso_meth_beos = {
87 "OpenSSL ’beos’ shared library method",
88 beos_load,
89 beos_unload,
90 beos_bind_var,
91 beos_bind_func,
92 /* For now, "unbind" doesn’t exist */
93 #if 0
94 NULL, /* unbind_var */
95 NULL, /* unbind_func */
96 #endif
97 NULL, /* ctrl */
98 beos_name_converter,
99 NULL, /* init */
100 NULL /* finish */
101 };

103 DSO_METHOD *DSO_METHOD_beos(void)
104 {
105 return(&dso_meth_beos);
106 }

108 /* For this DSO_METHOD, our meth_data STACK will contain;
109 * (i) a pointer to the handle (image_id) returned from
110 * load_add_on().
111 */

113 static int beos_load(DSO *dso)
114 {
115 image_id id;
116 /* See applicable comments from dso_dl.c */
117 char *filename = DSO_convert_filename(dso, NULL);

119 if(filename == NULL)
120 {
121 DSOerr(DSO_F_BEOS_LOAD,DSO_R_NO_FILENAME);
122 goto err;
123 }
124 id = load_add_on(filename);
125 if(id < 1)
126 {
127 DSOerr(DSO_F_BEOS_LOAD,DSO_R_LOAD_FAILED);

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_beos.c 3

128 ERR_add_error_data(3, "filename(", filename, ")");
129 goto err;
130 }
131 if(!sk_push(dso->meth_data, (char *)id))
132 {
133 DSOerr(DSO_F_BEOS_LOAD,DSO_R_STACK_ERROR);
134 goto err;
135 }
136 /* Success */
137 dso->loaded_filename = filename;
138 return(1);
139 err:
140 /* Cleanup !*/
141 if(filename != NULL)
142 OPENSSL_free(filename);
143 if(id > 0)
144 unload_add_on(id);
145 return(0);
146 }

148 static int beos_unload(DSO *dso)
149 {
150 image_id id;
151 if(dso == NULL)
152 {
153 DSOerr(DSO_F_BEOS_UNLOAD,ERR_R_PASSED_NULL_PARAMETER);
154 return(0);
155 }
156 if(sk_num(dso->meth_data) < 1)
157 return(1);
158 id = (image_id)sk_pop(dso->meth_data);
159 if(id < 1)
160 {
161 DSOerr(DSO_F_BEOS_UNLOAD,DSO_R_NULL_HANDLE);
162 return(0);
163 }
164 if(unload_add_on(id) != B_OK)
165 {
166 DSOerr(DSO_F_BEOS_UNLOAD,DSO_R_UNLOAD_FAILED);
167 /* We should push the value back onto the stack in
168 * case of a retry. */
169 sk_push(dso->meth_data, (char *)id);
170 return(0);
171 }
172 return(1);
173 }

175 static void *beos_bind_var(DSO *dso, const char *symname)
176 {
177 image_id id;
178 void *sym;

180 if((dso == NULL) || (symname == NULL))
181 {
182 DSOerr(DSO_F_BEOS_BIND_VAR,ERR_R_PASSED_NULL_PARAMETER);
183 return(NULL);
184 }
185 if(sk_num(dso->meth_data) < 1)
186 {
187 DSOerr(DSO_F_BEOS_BIND_VAR,DSO_R_STACK_ERROR);
188 return(NULL);
189 }
190 id = (image_id)sk_value(dso->meth_data, sk_num(dso->meth_data) - 1);
191 if(id < 1)
192 {
193 DSOerr(DSO_F_BEOS_BIND_VAR,DSO_R_NULL_HANDLE);

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_beos.c 4

194 return(NULL);
195 }
196 if(get_image_symbol(id, symname, B_SYMBOL_TYPE_DATA, &sym) != B_OK)
197 {
198 DSOerr(DSO_F_BEOS_BIND_VAR,DSO_R_SYM_FAILURE);
199 ERR_add_error_data(3, "symname(", symname, ")");
200 return(NULL);
201 }
202 return(sym);
203 }

205 static DSO_FUNC_TYPE beos_bind_func(DSO *dso, const char *symname)
206 {
207 image_id id;
208 void *sym;

210 if((dso == NULL) || (symname == NULL))
211 {
212 DSOerr(DSO_F_BEOS_BIND_FUNC,ERR_R_PASSED_NULL_PARAMETER);
213 return(NULL);
214 }
215 if(sk_num(dso->meth_data) < 1)
216 {
217 DSOerr(DSO_F_BEOS_BIND_FUNC,DSO_R_STACK_ERROR);
218 return(NULL);
219 }
220 id = (image_id)sk_value(dso->meth_data, sk_num(dso->meth_data) - 1);
221 if(id < 1)
222 {
223 DSOerr(DSO_F_BEOS_BIND_FUNC,DSO_R_NULL_HANDLE);
224 return(NULL);
225 }
226 if(get_image_symbol(id, symname, B_SYMBOL_TYPE_TEXT, &sym) != B_OK)
227 {
228 DSOerr(DSO_F_BEOS_BIND_FUNC,DSO_R_SYM_FAILURE);
229 ERR_add_error_data(3, "symname(", symname, ")");
230 return(NULL);
231 }
232 return((DSO_FUNC_TYPE)sym);
233 }

235 /* This one is the same as the one in dlfcn */
236 static char *beos_name_converter(DSO *dso, const char *filename)
237 {
238 char *translated;
239 int len, rsize, transform;

241 len = strlen(filename);
242 rsize = len + 1;
243 transform = (strstr(filename, "/") == NULL);
244 if(transform)
245 {
246 /* We will convert this to "%s.so" or "lib%s.so" */
247 rsize += 3; /* The length of ".so" */
248 if ((DSO_flags(dso) & DSO_FLAG_NAME_TRANSLATION_EXT_ONLY) == 0)
249 rsize += 3; /* The length of "lib" */
250 }
251 translated = OPENSSL_malloc(rsize);
252 if(translated == NULL)
253 {
254 DSOerr(DSO_F_BEOS_NAME_CONVERTER,
255 DSO_R_NAME_TRANSLATION_FAILED);
256 return(NULL);
257 }
258 if(transform)
259 {

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_beos.c 5

260 if ((DSO_flags(dso) & DSO_FLAG_NAME_TRANSLATION_EXT_ONLY) == 0)
261 sprintf(translated, "lib%s.so", filename);
262 else
263 sprintf(translated, "%s.so", filename);
264 }
265 else
266 sprintf(translated, "%s", filename);
267 return(translated);
268 }

270 #endif

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dl.c 1

**
 10953 Fri May 30 18:31:45 2014
new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* dso_dl.c -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/dso.h>

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dl.c 2

63 #ifndef DSO_DL
64 DSO_METHOD *DSO_METHOD_dl(void)
65 {
66 return NULL;
67 }
68 #else

70 #include <dl.h>

72 /* Part of the hack in "dl_load" ... */
73 #define DSO_MAX_TRANSLATED_SIZE 256

75 static int dl_load(DSO *dso);
76 static int dl_unload(DSO *dso);
77 static void *dl_bind_var(DSO *dso, const char *symname);
78 static DSO_FUNC_TYPE dl_bind_func(DSO *dso, const char *symname);
79 #if 0
80 static int dl_unbind_var(DSO *dso, char *symname, void *symptr);
81 static int dl_unbind_func(DSO *dso, char *symname, DSO_FUNC_TYPE symptr);
82 static int dl_init(DSO *dso);
83 static int dl_finish(DSO *dso);
84 static int dl_ctrl(DSO *dso, int cmd, long larg, void *parg);
85 #endif
86 static char *dl_name_converter(DSO *dso, const char *filename);
87 static char *dl_merger(DSO *dso, const char *filespec1, const char *filespec2);
88 static int dl_pathbyaddr(void *addr,char *path,int sz);
89 static void *dl_globallookup(const char *name);

91 static DSO_METHOD dso_meth_dl = {
92 "OpenSSL ’dl’ shared library method",
93 dl_load,
94 dl_unload,
95 dl_bind_var,
96 dl_bind_func,
97 /* For now, "unbind" doesn’t exist */
98 #if 0
99 NULL, /* unbind_var */
100 NULL, /* unbind_func */
101 #endif
102 NULL, /* ctrl */
103 dl_name_converter,
104 dl_merger,
105 NULL, /* init */
106 NULL, /* finish */
107 dl_pathbyaddr,
108 dl_globallookup
109 };

111 DSO_METHOD *DSO_METHOD_dl(void)
112 {
113 return(&dso_meth_dl);
114 }

116 /* For this DSO_METHOD, our meth_data STACK will contain;
117 * (i) the handle (shl_t) returned from shl_load().
118 * NB: I checked on HPUX11 and shl_t is itself a pointer
119 * type so the cast is safe.
120 */

122 static int dl_load(DSO *dso)
123 {
124 shl_t ptr = NULL;
125 /* We don’t do any fancy retries or anything, just take the method’s
126 * (or DSO’s if it has the callback set) best translation of the
127 * platform-independant filename and try once with that. */

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dl.c 3

128 char *filename= DSO_convert_filename(dso, NULL);

130 if(filename == NULL)
131 {
132 DSOerr(DSO_F_DL_LOAD,DSO_R_NO_FILENAME);
133 goto err;
134 }
135 ptr = shl_load(filename, BIND_IMMEDIATE |
136 (dso->flags&DSO_FLAG_NO_NAME_TRANSLATION?0:DYNAMIC_PATH), 0L);
137 if(ptr == NULL)
138 {
139 DSOerr(DSO_F_DL_LOAD,DSO_R_LOAD_FAILED);
140 ERR_add_error_data(4, "filename(", filename, "): ",
141 strerror(errno));
142 goto err;
143 }
144 if(!sk_push(dso->meth_data, (char *)ptr))
145 {
146 DSOerr(DSO_F_DL_LOAD,DSO_R_STACK_ERROR);
147 goto err;
148 }
149 /* Success, stick the converted filename we’ve loaded under into the DSO
150 * (it also serves as the indicator that we are currently loaded). */
151 dso->loaded_filename = filename;
152 return(1);
153 err:
154 /* Cleanup! */
155 if(filename != NULL)
156 OPENSSL_free(filename);
157 if(ptr != NULL)
158 shl_unload(ptr);
159 return(0);
160 }

162 static int dl_unload(DSO *dso)
163 {
164 shl_t ptr;
165 if(dso == NULL)
166 {
167 DSOerr(DSO_F_DL_UNLOAD,ERR_R_PASSED_NULL_PARAMETER);
168 return(0);
169 }
170 if(sk_num(dso->meth_data) < 1)
171 return(1);
172 /* Is this statement legal? */
173 ptr = (shl_t)sk_pop(dso->meth_data);
174 if(ptr == NULL)
175 {
176 DSOerr(DSO_F_DL_UNLOAD,DSO_R_NULL_HANDLE);
177 /* Should push the value back onto the stack in
178 * case of a retry. */
179 sk_push(dso->meth_data, (char *)ptr);
180 return(0);
181 }
182 shl_unload(ptr);
183 return(1);
184 }

186 static void *dl_bind_var(DSO *dso, const char *symname)
187 {
188 shl_t ptr;
189 void *sym;

191 if((dso == NULL) || (symname == NULL))
192 {
193 DSOerr(DSO_F_DL_BIND_VAR,ERR_R_PASSED_NULL_PARAMETER);

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dl.c 4

194 return(NULL);
195 }
196 if(sk_num(dso->meth_data) < 1)
197 {
198 DSOerr(DSO_F_DL_BIND_VAR,DSO_R_STACK_ERROR);
199 return(NULL);
200 }
201 ptr = (shl_t)sk_value(dso->meth_data, sk_num(dso->meth_data) - 1);
202 if(ptr == NULL)
203 {
204 DSOerr(DSO_F_DL_BIND_VAR,DSO_R_NULL_HANDLE);
205 return(NULL);
206 }
207 if (shl_findsym(&ptr, symname, TYPE_UNDEFINED, &sym) < 0)
208 {
209 DSOerr(DSO_F_DL_BIND_VAR,DSO_R_SYM_FAILURE);
210 ERR_add_error_data(4, "symname(", symname, "): ",
211 strerror(errno));
212 return(NULL);
213 }
214 return(sym);
215 }

217 static DSO_FUNC_TYPE dl_bind_func(DSO *dso, const char *symname)
218 {
219 shl_t ptr;
220 void *sym;

222 if((dso == NULL) || (symname == NULL))
223 {
224 DSOerr(DSO_F_DL_BIND_FUNC,ERR_R_PASSED_NULL_PARAMETER);
225 return(NULL);
226 }
227 if(sk_num(dso->meth_data) < 1)
228 {
229 DSOerr(DSO_F_DL_BIND_FUNC,DSO_R_STACK_ERROR);
230 return(NULL);
231 }
232 ptr = (shl_t)sk_value(dso->meth_data, sk_num(dso->meth_data) - 1);
233 if(ptr == NULL)
234 {
235 DSOerr(DSO_F_DL_BIND_FUNC,DSO_R_NULL_HANDLE);
236 return(NULL);
237 }
238 if (shl_findsym(&ptr, symname, TYPE_UNDEFINED, &sym) < 0)
239 {
240 DSOerr(DSO_F_DL_BIND_FUNC,DSO_R_SYM_FAILURE);
241 ERR_add_error_data(4, "symname(", symname, "): ",
242 strerror(errno));
243 return(NULL);
244 }
245 return((DSO_FUNC_TYPE)sym);
246 }

248 static char *dl_merger(DSO *dso, const char *filespec1, const char *filespec2)
249 {
250 char *merged;

252 if(!filespec1 && !filespec2)
253 {
254 DSOerr(DSO_F_DL_MERGER,
255 ERR_R_PASSED_NULL_PARAMETER);
256 return(NULL);
257 }
258 /* If the first file specification is a rooted path, it rules.
259 same goes if the second file specification is missing. */

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dl.c 5

260 if (!filespec2 || filespec1[0] == ’/’)
261 {
262 merged = OPENSSL_malloc(strlen(filespec1) + 1);
263 if(!merged)
264 {
265 DSOerr(DSO_F_DL_MERGER,
266 ERR_R_MALLOC_FAILURE);
267 return(NULL);
268 }
269 strcpy(merged, filespec1);
270 }
271 /* If the first file specification is missing, the second one rules. */
272 else if (!filespec1)
273 {
274 merged = OPENSSL_malloc(strlen(filespec2) + 1);
275 if(!merged)
276 {
277 DSOerr(DSO_F_DL_MERGER,
278 ERR_R_MALLOC_FAILURE);
279 return(NULL);
280 }
281 strcpy(merged, filespec2);
282 }
283 else
284 /* This part isn’t as trivial as it looks. It assumes that
285 the second file specification really is a directory, and
286 makes no checks whatsoever. Therefore, the result becomes
287 the concatenation of filespec2 followed by a slash followed
288 by filespec1. */
289 {
290 int spec2len, len;

292 spec2len = (filespec2 ? strlen(filespec2) : 0);
293 len = spec2len + (filespec1 ? strlen(filespec1) : 0);

295 if(filespec2 && filespec2[spec2len - 1] == ’/’)
296 {
297 spec2len--;
298 len--;
299 }
300 merged = OPENSSL_malloc(len + 2);
301 if(!merged)
302 {
303 DSOerr(DSO_F_DL_MERGER,
304 ERR_R_MALLOC_FAILURE);
305 return(NULL);
306 }
307 strcpy(merged, filespec2);
308 merged[spec2len] = ’/’;
309 strcpy(&merged[spec2len + 1], filespec1);
310 }
311 return(merged);
312 }

314 /* This function is identical to the one in dso_dlfcn.c, but as it is highly
315 * unlikely that both the "dl" *and* "dlfcn" variants are being compiled at the
316 * same time, there’s no great duplicating the code. Figuring out an elegant
317 * way to share one copy of the code would be more difficult and would not
318 * leave the implementations independant. */
319 #if defined(__hpux)
320 static const char extension[] = ".sl";
321 #else
322 static const char extension[] = ".so";
323 #endif
324 static char *dl_name_converter(DSO *dso, const char *filename)
325 {

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dl.c 6

326 char *translated;
327 int len, rsize, transform;

329 len = strlen(filename);
330 rsize = len + 1;
331 transform = (strstr(filename, "/") == NULL);
332 {
333 /* We will convert this to "%s.s?" or "lib%s.s?" */
334 rsize += strlen(extension);/* The length of ".s?" */
335 if ((DSO_flags(dso) & DSO_FLAG_NAME_TRANSLATION_EXT_ONLY) == 0)
336 rsize += 3; /* The length of "lib" */
337 }
338 translated = OPENSSL_malloc(rsize);
339 if(translated == NULL)
340 {
341 DSOerr(DSO_F_DL_NAME_CONVERTER,
342 DSO_R_NAME_TRANSLATION_FAILED);
343 return(NULL);
344 }
345 if(transform)
346 {
347 if ((DSO_flags(dso) & DSO_FLAG_NAME_TRANSLATION_EXT_ONLY) == 0)
348 sprintf(translated, "lib%s%s", filename, extension);
349 else
350 sprintf(translated, "%s%s", filename, extension);
351 }
352 else
353 sprintf(translated, "%s", filename);
354 return(translated);
355 }

357 static int dl_pathbyaddr(void *addr,char *path,int sz)
358 {
359 struct shl_descriptor inf;
360 int i,len;

362 if (addr == NULL)
363 {
364 union { int(*f)(void*,char*,int); void *p; } t =
365 { dl_pathbyaddr };
366 addr = t.p;
367 }

369 for (i=-1;shl_get_r(i,&inf)==0;i++)
370 {
371 if (((size_t)addr >= inf.tstart && (size_t)addr < inf.tend) ||
372 ((size_t)addr >= inf.dstart && (size_t)addr < inf.dend))
373 {
374 len = (int)strlen(inf.filename);
375 if (sz <= 0) return len+1;
376 if (len >= sz) len=sz-1;
377 memcpy(path,inf.filename,len);
378 path[len++] = 0;
379 return len;
380 }
381 }

383 return -1;
384 }

386 static void *dl_globallookup(const char *name)
387 {
388 void *ret;
389 shl_t h = NULL;

391 return shl_findsym(&h,name,TYPE_UNDEFINED,&ret) ? NULL : ret;

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dl.c 7

392 }
393 #endif /* DSO_DL */

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dlfcn.c 1

**
 12984 Fri May 30 18:31:46 2014
new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dlfcn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* dso_dlfcn.c -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 /* We need to do this early, because stdio.h includes the header files
60 that handle _GNU_SOURCE and other similar macros. Defining it later
61 is simply too late, because those headers are protected from re-

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dlfcn.c 2

62 inclusion. */
63 #ifdef __linux
64 # ifndef _GNU_SOURCE
65 # define _GNU_SOURCE /* make sure dladdr is declared */
66 # endif
67 #endif

69 #include <stdio.h>
70 #include "cryptlib.h"
71 #include <openssl/dso.h>

73 #ifndef DSO_DLFCN
74 DSO_METHOD *DSO_METHOD_dlfcn(void)
75 {
76 return NULL;
77 }
78 #else

80 #ifdef HAVE_DLFCN_H
81 # ifdef __osf__
82 # define __EXTENSIONS__
83 # endif
84 # include <dlfcn.h>
85 # define HAVE_DLINFO 1
86 # if defined(_AIX) || defined(__CYGWIN__) || \
87 defined(__SCO_VERSION__) || defined(_SCO_ELF) || \
88 (defined(__osf__) && !defined(RTLD_NEXT)) || \
89 (defined(__OpenBSD__) && !defined(RTLD_SELF)) || \
90 defined(__ANDROID__)
91 # undef HAVE_DLINFO
92 # endif
93 #endif

95 /* Part of the hack in "dlfcn_load" ... */
96 #define DSO_MAX_TRANSLATED_SIZE 256

98 static int dlfcn_load(DSO *dso);
99 static int dlfcn_unload(DSO *dso);
100 static void *dlfcn_bind_var(DSO *dso, const char *symname);
101 static DSO_FUNC_TYPE dlfcn_bind_func(DSO *dso, const char *symname);
102 #if 0
103 static int dlfcn_unbind(DSO *dso, char *symname, void *symptr);
104 static int dlfcn_init(DSO *dso);
105 static int dlfcn_finish(DSO *dso);
106 static long dlfcn_ctrl(DSO *dso, int cmd, long larg, void *parg);
107 #endif
108 static char *dlfcn_name_converter(DSO *dso, const char *filename);
109 static char *dlfcn_merger(DSO *dso, const char *filespec1,
110 const char *filespec2);
111 static int dlfcn_pathbyaddr(void *addr,char *path,int sz);
112 static void *dlfcn_globallookup(const char *name);

114 static DSO_METHOD dso_meth_dlfcn = {
115 "OpenSSL ’dlfcn’ shared library method",
116 dlfcn_load,
117 dlfcn_unload,
118 dlfcn_bind_var,
119 dlfcn_bind_func,
120 /* For now, "unbind" doesn’t exist */
121 #if 0
122 NULL, /* unbind_var */
123 NULL, /* unbind_func */
124 #endif
125 NULL, /* ctrl */
126 dlfcn_name_converter,
127 dlfcn_merger,

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dlfcn.c 3

128 NULL, /* init */
129 NULL, /* finish */
130 dlfcn_pathbyaddr,
131 dlfcn_globallookup
132 };

134 DSO_METHOD *DSO_METHOD_dlfcn(void)
135 {
136 return(&dso_meth_dlfcn);
137 }

139 /* Prior to using the dlopen() function, we should decide on the flag
140 * we send. There’s a few different ways of doing this and it’s a
141 * messy venn-diagram to match up which platforms support what. So
142 * as we don’t have autoconf yet, I’m implementing a hack that could
143 * be hacked further relatively easily to deal with cases as we find
144 * them. Initially this is to cope with OpenBSD. */
145 #if defined(__OpenBSD__) || defined(__NetBSD__)
146 # ifdef DL_LAZY
147 # define DLOPEN_FLAG DL_LAZY
148 # else
149 # ifdef RTLD_NOW
150 # define DLOPEN_FLAG RTLD_NOW
151 # else
152 # define DLOPEN_FLAG 0
153 # endif
154 # endif
155 #else
156 # ifdef OPENSSL_SYS_SUNOS
157 # define DLOPEN_FLAG 1
158 # else
159 # define DLOPEN_FLAG RTLD_NOW /* Hope this works everywhere else *
160 # endif
161 #endif

163 /* For this DSO_METHOD, our meth_data STACK will contain;
164 * (i) the handle (void*) returned from dlopen().
165 */

167 static int dlfcn_load(DSO *dso)
168 {
169 void *ptr = NULL;
170 /* See applicable comments in dso_dl.c */
171 char *filename = DSO_convert_filename(dso, NULL);
172 int flags = DLOPEN_FLAG;

174 if(filename == NULL)
175 {
176 DSOerr(DSO_F_DLFCN_LOAD,DSO_R_NO_FILENAME);
177 goto err;
178 }

180 #ifdef RTLD_GLOBAL
181 if (dso->flags & DSO_FLAG_GLOBAL_SYMBOLS)
182 flags |= RTLD_GLOBAL;
183 #endif
184 ptr = dlopen(filename, flags);
185 if(ptr == NULL)
186 {
187 DSOerr(DSO_F_DLFCN_LOAD,DSO_R_LOAD_FAILED);
188 ERR_add_error_data(4, "filename(", filename, "): ", dlerror());
189 goto err;
190 }
191 if(!sk_void_push(dso->meth_data, (char *)ptr))
192 {
193 DSOerr(DSO_F_DLFCN_LOAD,DSO_R_STACK_ERROR);

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dlfcn.c 4

194 goto err;
195 }
196 /* Success */
197 dso->loaded_filename = filename;
198 return(1);
199 err:
200 /* Cleanup! */
201 if(filename != NULL)
202 OPENSSL_free(filename);
203 if(ptr != NULL)
204 dlclose(ptr);
205 return(0);
206 }

208 static int dlfcn_unload(DSO *dso)
209 {
210 void *ptr;
211 if(dso == NULL)
212 {
213 DSOerr(DSO_F_DLFCN_UNLOAD,ERR_R_PASSED_NULL_PARAMETER);
214 return(0);
215 }
216 if(sk_void_num(dso->meth_data) < 1)
217 return(1);
218 ptr = sk_void_pop(dso->meth_data);
219 if(ptr == NULL)
220 {
221 DSOerr(DSO_F_DLFCN_UNLOAD,DSO_R_NULL_HANDLE);
222 /* Should push the value back onto the stack in
223 * case of a retry. */
224 sk_void_push(dso->meth_data, ptr);
225 return(0);
226 }
227 /* For now I’m not aware of any errors associated with dlclose() */
228 dlclose(ptr);
229 return(1);
230 }

232 static void *dlfcn_bind_var(DSO *dso, const char *symname)
233 {
234 void *ptr, *sym;

236 if((dso == NULL) || (symname == NULL))
237 {
238 DSOerr(DSO_F_DLFCN_BIND_VAR,ERR_R_PASSED_NULL_PARAMETER);
239 return(NULL);
240 }
241 if(sk_void_num(dso->meth_data) < 1)
242 {
243 DSOerr(DSO_F_DLFCN_BIND_VAR,DSO_R_STACK_ERROR);
244 return(NULL);
245 }
246 ptr = sk_void_value(dso->meth_data, sk_void_num(dso->meth_data) - 1);
247 if(ptr == NULL)
248 {
249 DSOerr(DSO_F_DLFCN_BIND_VAR,DSO_R_NULL_HANDLE);
250 return(NULL);
251 }
252 sym = dlsym(ptr, symname);
253 if(sym == NULL)
254 {
255 DSOerr(DSO_F_DLFCN_BIND_VAR,DSO_R_SYM_FAILURE);
256 ERR_add_error_data(4, "symname(", symname, "): ", dlerror());
257 return(NULL);
258 }
259 return(sym);

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dlfcn.c 5

260 }

262 static DSO_FUNC_TYPE dlfcn_bind_func(DSO *dso, const char *symname)
263 {
264 void *ptr;
265 union {
266 DSO_FUNC_TYPE sym;
267 void *dlret;
268 } u;

270 if((dso == NULL) || (symname == NULL))
271 {
272 DSOerr(DSO_F_DLFCN_BIND_FUNC,ERR_R_PASSED_NULL_PARAMETER);
273 return(NULL);
274 }
275 if(sk_void_num(dso->meth_data) < 1)
276 {
277 DSOerr(DSO_F_DLFCN_BIND_FUNC,DSO_R_STACK_ERROR);
278 return(NULL);
279 }
280 ptr = sk_void_value(dso->meth_data, sk_void_num(dso->meth_data) - 1);
281 if(ptr == NULL)
282 {
283 DSOerr(DSO_F_DLFCN_BIND_FUNC,DSO_R_NULL_HANDLE);
284 return(NULL);
285 }
286 u.dlret = dlsym(ptr, symname);
287 if(u.dlret == NULL)
288 {
289 DSOerr(DSO_F_DLFCN_BIND_FUNC,DSO_R_SYM_FAILURE);
290 ERR_add_error_data(4, "symname(", symname, "): ", dlerror());
291 return(NULL);
292 }
293 return u.sym;
294 }

296 static char *dlfcn_merger(DSO *dso, const char *filespec1,
297 const char *filespec2)
298 {
299 char *merged;

301 if(!filespec1 && !filespec2)
302 {
303 DSOerr(DSO_F_DLFCN_MERGER,
304 ERR_R_PASSED_NULL_PARAMETER);
305 return(NULL);
306 }
307 /* If the first file specification is a rooted path, it rules.
308 same goes if the second file specification is missing. */
309 if (!filespec2 || (filespec1 != NULL && filespec1[0] == ’/’))
310 {
311 merged = OPENSSL_malloc(strlen(filespec1) + 1);
312 if(!merged)
313 {
314 DSOerr(DSO_F_DLFCN_MERGER, ERR_R_MALLOC_FAILURE);
315 return(NULL);
316 }
317 strcpy(merged, filespec1);
318 }
319 /* If the first file specification is missing, the second one rules. */
320 else if (!filespec1)
321 {
322 merged = OPENSSL_malloc(strlen(filespec2) + 1);
323 if(!merged)
324 {
325 DSOerr(DSO_F_DLFCN_MERGER,

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dlfcn.c 6

326 ERR_R_MALLOC_FAILURE);
327 return(NULL);
328 }
329 strcpy(merged, filespec2);
330 }
331 else
332 /* This part isn’t as trivial as it looks. It assumes that
333 the second file specification really is a directory, and
334 makes no checks whatsoever. Therefore, the result becomes
335 the concatenation of filespec2 followed by a slash followed
336 by filespec1. */
337 {
338 int spec2len, len;

340 spec2len = strlen(filespec2);
341 len = spec2len + (filespec1 ? strlen(filespec1) : 0);

343 if(filespec2 && filespec2[spec2len - 1] == ’/’)
344 {
345 spec2len--;
346 len--;
347 }
348 merged = OPENSSL_malloc(len + 2);
349 if(!merged)
350 {
351 DSOerr(DSO_F_DLFCN_MERGER,
352 ERR_R_MALLOC_FAILURE);
353 return(NULL);
354 }
355 strcpy(merged, filespec2);
356 merged[spec2len] = ’/’;
357 strcpy(&merged[spec2len + 1], filespec1);
358 }
359 return(merged);
360 }

362 #ifdef OPENSSL_SYS_MACOSX
363 #define DSO_ext ".dylib"
364 #define DSO_extlen 6
365 #else
366 #define DSO_ext ".so"
367 #define DSO_extlen 3
368 #endif

371 static char *dlfcn_name_converter(DSO *dso, const char *filename)
372 {
373 char *translated;
374 int len, rsize, transform;

376 len = strlen(filename);
377 rsize = len + 1;
378 transform = (strstr(filename, "/") == NULL);
379 if(transform)
380 {
381 /* We will convert this to "%s.so" or "lib%s.so" etc */
382 rsize += DSO_extlen; /* The length of ".so" */
383 if ((DSO_flags(dso) & DSO_FLAG_NAME_TRANSLATION_EXT_ONLY) == 0)
384 rsize += 3; /* The length of "lib" */
385 }
386 translated = OPENSSL_malloc(rsize);
387 if(translated == NULL)
388 {
389 DSOerr(DSO_F_DLFCN_NAME_CONVERTER,
390 DSO_R_NAME_TRANSLATION_FAILED);
391 return(NULL);

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dlfcn.c 7

392 }
393 if(transform)
394 {
395 if ((DSO_flags(dso) & DSO_FLAG_NAME_TRANSLATION_EXT_ONLY) == 0)
396 sprintf(translated, "lib%s" DSO_ext, filename);
397 else
398 sprintf(translated, "%s" DSO_ext, filename);
399 }
400 else
401 sprintf(translated, "%s", filename);
402 return(translated);
403 }

405 #ifdef __sgi
406 /*
407 This is a quote from IRIX manual for dladdr(3c):

409 <dlfcn.h> does not contain a prototype for dladdr or definition of
410 Dl_info. The #include <dlfcn.h> in the SYNOPSIS line is traditional,
411 but contains no dladdr prototype and no IRIX library contains an
412 implementation. Write your own declaration based on the code below.

414 The following code is dependent on internal interfaces that are not
415 part of the IRIX compatibility guarantee; however, there is no future
416 intention to change this interface, so on a practical level, the code
417 below is safe to use on IRIX.
418 */
419 #include <rld_interface.h>
420 #ifndef _RLD_INTERFACE_DLFCN_H_DLADDR
421 #define _RLD_INTERFACE_DLFCN_H_DLADDR
422 typedef struct Dl_info {
423 const char * dli_fname;
424 void * dli_fbase;
425 const char * dli_sname;
426 void * dli_saddr;
427 int dli_version;
428 int dli_reserved1;
429 long dli_reserved[4];
430 } Dl_info;
431 #else
432 typedef struct Dl_info Dl_info;
433 #endif
434 #define _RLD_DLADDR 14

436 static int dladdr(void *address, Dl_info *dl)
437 {
438 void *v;
439 v = _rld_new_interface(_RLD_DLADDR,address,dl);
440 return (int)v;
441 }
442 #endif /* __sgi */

444 static int dlfcn_pathbyaddr(void *addr,char *path,int sz)
445 {
446 #ifdef HAVE_DLINFO
447 Dl_info dli;
448 int len;

450 if (addr == NULL)
451 {
452 union { int(*f)(void*,char*,int); void *p; } t =
453 { dlfcn_pathbyaddr };
454 addr = t.p;
455 }

457 if (dladdr(addr,&dli))

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_dlfcn.c 8

458 {
459 len = (int)strlen(dli.dli_fname);
460 if (sz <= 0) return len+1;
461 if (len >= sz) len=sz-1;
462 memcpy(path,dli.dli_fname,len);
463 path[len++]=0;
464 return len;
465 }

467 ERR_add_error_data(4, "dlfcn_pathbyaddr(): ", dlerror());
468 #endif
469 return -1;
470 }

472 static void *dlfcn_globallookup(const char *name)
473 {
474 void *ret = NULL,*handle = dlopen(NULL,RTLD_LAZY);
475
476 if (handle)
477 {
478 ret = dlsym(handle,name);
479 dlclose(handle);
480 }

482 return ret;
483 }
484 #endif /* DSO_DLFCN */

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_err.c 1

**
 7131 Fri May 30 18:31:46 2014
new/usr/src/lib/openssl/libsunw_crypto/dso/dso_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/dso/dso_err.c */
2 /* ==
3 * Copyright (c) 1999-2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/dso.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_DSO,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_DSO,0,reason)

71 static ERR_STRING_DATA DSO_str_functs[]=
72 {
73 {ERR_FUNC(DSO_F_BEOS_BIND_FUNC), "BEOS_BIND_FUNC"},
74 {ERR_FUNC(DSO_F_BEOS_BIND_VAR), "BEOS_BIND_VAR"},
75 {ERR_FUNC(DSO_F_BEOS_LOAD), "BEOS_LOAD"},
76 {ERR_FUNC(DSO_F_BEOS_NAME_CONVERTER), "BEOS_NAME_CONVERTER"},
77 {ERR_FUNC(DSO_F_BEOS_UNLOAD), "BEOS_UNLOAD"},
78 {ERR_FUNC(DSO_F_DLFCN_BIND_FUNC), "DLFCN_BIND_FUNC"},
79 {ERR_FUNC(DSO_F_DLFCN_BIND_VAR), "DLFCN_BIND_VAR"},
80 {ERR_FUNC(DSO_F_DLFCN_LOAD), "DLFCN_LOAD"},
81 {ERR_FUNC(DSO_F_DLFCN_MERGER), "DLFCN_MERGER"},
82 {ERR_FUNC(DSO_F_DLFCN_NAME_CONVERTER), "DLFCN_NAME_CONVERTER"},
83 {ERR_FUNC(DSO_F_DLFCN_UNLOAD), "DLFCN_UNLOAD"},
84 {ERR_FUNC(DSO_F_DL_BIND_FUNC), "DL_BIND_FUNC"},
85 {ERR_FUNC(DSO_F_DL_BIND_VAR), "DL_BIND_VAR"},
86 {ERR_FUNC(DSO_F_DL_LOAD), "DL_LOAD"},
87 {ERR_FUNC(DSO_F_DL_MERGER), "DL_MERGER"},
88 {ERR_FUNC(DSO_F_DL_NAME_CONVERTER), "DL_NAME_CONVERTER"},
89 {ERR_FUNC(DSO_F_DL_UNLOAD), "DL_UNLOAD"},
90 {ERR_FUNC(DSO_F_DSO_BIND_FUNC), "DSO_bind_func"},
91 {ERR_FUNC(DSO_F_DSO_BIND_VAR), "DSO_bind_var"},
92 {ERR_FUNC(DSO_F_DSO_CONVERT_FILENAME), "DSO_convert_filename"},
93 {ERR_FUNC(DSO_F_DSO_CTRL), "DSO_ctrl"},
94 {ERR_FUNC(DSO_F_DSO_FREE), "DSO_free"},
95 {ERR_FUNC(DSO_F_DSO_GET_FILENAME), "DSO_get_filename"},
96 {ERR_FUNC(DSO_F_DSO_GET_LOADED_FILENAME), "DSO_get_loaded_filename"},
97 {ERR_FUNC(DSO_F_DSO_GLOBAL_LOOKUP), "DSO_global_lookup"},
98 {ERR_FUNC(DSO_F_DSO_LOAD), "DSO_load"},
99 {ERR_FUNC(DSO_F_DSO_MERGE), "DSO_merge"},
100 {ERR_FUNC(DSO_F_DSO_NEW_METHOD), "DSO_new_method"},
101 {ERR_FUNC(DSO_F_DSO_PATHBYADDR), "DSO_pathbyaddr"},
102 {ERR_FUNC(DSO_F_DSO_SET_FILENAME), "DSO_set_filename"},
103 {ERR_FUNC(DSO_F_DSO_SET_NAME_CONVERTER), "DSO_set_name_converter"},
104 {ERR_FUNC(DSO_F_DSO_UP_REF), "DSO_up_ref"},
105 {ERR_FUNC(DSO_F_GLOBAL_LOOKUP_FUNC), "GLOBAL_LOOKUP_FUNC"},
106 {ERR_FUNC(DSO_F_PATHBYADDR), "PATHBYADDR"},
107 {ERR_FUNC(DSO_F_VMS_BIND_SYM), "VMS_BIND_SYM"},
108 {ERR_FUNC(DSO_F_VMS_LOAD), "VMS_LOAD"},
109 {ERR_FUNC(DSO_F_VMS_MERGER), "VMS_MERGER"},
110 {ERR_FUNC(DSO_F_VMS_UNLOAD), "VMS_UNLOAD"},
111 {ERR_FUNC(DSO_F_WIN32_BIND_FUNC), "WIN32_BIND_FUNC"},
112 {ERR_FUNC(DSO_F_WIN32_BIND_VAR), "WIN32_BIND_VAR"},
113 {ERR_FUNC(DSO_F_WIN32_GLOBALLOOKUP), "WIN32_GLOBALLOOKUP"},
114 {ERR_FUNC(DSO_F_WIN32_GLOBALLOOKUP_FUNC), "WIN32_GLOBALLOOKUP_FUNC"},
115 {ERR_FUNC(DSO_F_WIN32_JOINER), "WIN32_JOINER"},
116 {ERR_FUNC(DSO_F_WIN32_LOAD), "WIN32_LOAD"},
117 {ERR_FUNC(DSO_F_WIN32_MERGER), "WIN32_MERGER"},
118 {ERR_FUNC(DSO_F_WIN32_NAME_CONVERTER), "WIN32_NAME_CONVERTER"},
119 {ERR_FUNC(DSO_F_WIN32_PATHBYADDR), "WIN32_PATHBYADDR"},
120 {ERR_FUNC(DSO_F_WIN32_SPLITTER), "WIN32_SPLITTER"},
121 {ERR_FUNC(DSO_F_WIN32_UNLOAD), "WIN32_UNLOAD"},
122 {0,NULL}
123 };

125 static ERR_STRING_DATA DSO_str_reasons[]=
126 {
127 {ERR_REASON(DSO_R_CTRL_FAILED) ,"control command failed"},

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_err.c 3

128 {ERR_REASON(DSO_R_DSO_ALREADY_LOADED) ,"dso already loaded"},
129 {ERR_REASON(DSO_R_EMPTY_FILE_STRUCTURE) ,"empty file structure"},
130 {ERR_REASON(DSO_R_FAILURE) ,"failure"},
131 {ERR_REASON(DSO_R_FILENAME_TOO_BIG) ,"filename too big"},
132 {ERR_REASON(DSO_R_FINISH_FAILED) ,"cleanup method function failed"},
133 {ERR_REASON(DSO_R_INCORRECT_FILE_SYNTAX) ,"incorrect file syntax"},
134 {ERR_REASON(DSO_R_LOAD_FAILED) ,"could not load the shared library"},
135 {ERR_REASON(DSO_R_NAME_TRANSLATION_FAILED),"name translation failed"},
136 {ERR_REASON(DSO_R_NO_FILENAME) ,"no filename"},
137 {ERR_REASON(DSO_R_NO_FILE_SPECIFICATION) ,"no file specification"},
138 {ERR_REASON(DSO_R_NULL_HANDLE) ,"a null shared library handle was used
139 {ERR_REASON(DSO_R_SET_FILENAME_FAILED) ,"set filename failed"},
140 {ERR_REASON(DSO_R_STACK_ERROR) ,"the meth_data stack is corrupt"},
141 {ERR_REASON(DSO_R_SYM_FAILURE) ,"could not bind to the requested symbo
142 {ERR_REASON(DSO_R_UNLOAD_FAILED) ,"could not unload the shared library"}
143 {ERR_REASON(DSO_R_UNSUPPORTED) ,"functionality not supported"},
144 {0,NULL}
145 };

147 #endif

149 void ERR_load_DSO_strings(void)
150 {
151 #ifndef OPENSSL_NO_ERR

153 if (ERR_func_error_string(DSO_str_functs[0].error) == NULL)
154 {
155 ERR_load_strings(0,DSO_str_functs);
156 ERR_load_strings(0,DSO_str_reasons);
157 }
158 #endif
159 }

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_lib.c 1

**
 11922 Fri May 30 18:31:46 2014
new/usr/src/lib/openssl/libsunw_crypto/dso/dso_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* dso_lib.c -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <openssl/crypto.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_lib.c 2

62 #include <openssl/dso.h>

64 static DSO_METHOD *default_DSO_meth = NULL;

66 DSO *DSO_new(void)
67 {
68 return(DSO_new_method(NULL));
69 }

71 void DSO_set_default_method(DSO_METHOD *meth)
72 {
73 default_DSO_meth = meth;
74 }

76 DSO_METHOD *DSO_get_default_method(void)
77 {
78 return(default_DSO_meth);
79 }

81 DSO_METHOD *DSO_get_method(DSO *dso)
82 {
83 return(dso->meth);
84 }

86 DSO_METHOD *DSO_set_method(DSO *dso, DSO_METHOD *meth)
87 {
88 DSO_METHOD *mtmp;
89 mtmp = dso->meth;
90 dso->meth = meth;
91 return(mtmp);
92 }

94 DSO *DSO_new_method(DSO_METHOD *meth)
95 {
96 DSO *ret;

98 if(default_DSO_meth == NULL)
99 /* We default to DSO_METH_openssl() which in turn defaults
100 * to stealing the "best available" method. Will fallback
101 * to DSO_METH_null() in the worst case. */
102 default_DSO_meth = DSO_METHOD_openssl();
103 ret = (DSO *)OPENSSL_malloc(sizeof(DSO));
104 if(ret == NULL)
105 {
106 DSOerr(DSO_F_DSO_NEW_METHOD,ERR_R_MALLOC_FAILURE);
107 return(NULL);
108 }
109 memset(ret, 0, sizeof(DSO));
110 ret->meth_data = sk_void_new_null();
111 if(ret->meth_data == NULL)
112 {
113 /* sk_new doesn’t generate any errors so we do */
114 DSOerr(DSO_F_DSO_NEW_METHOD,ERR_R_MALLOC_FAILURE);
115 OPENSSL_free(ret);
116 return(NULL);
117 }
118 if(meth == NULL)
119 ret->meth = default_DSO_meth;
120 else
121 ret->meth = meth;
122 ret->references = 1;
123 if((ret->meth->init != NULL) && !ret->meth->init(ret))
124 {
125 OPENSSL_free(ret);
126 ret=NULL;
127 }

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_lib.c 3

128 return(ret);
129 }

131 int DSO_free(DSO *dso)
132 {
133 int i;
134
135 if(dso == NULL)
136 {
137 DSOerr(DSO_F_DSO_FREE,ERR_R_PASSED_NULL_PARAMETER);
138 return(0);
139 }
140
141 i=CRYPTO_add(&dso->references,-1,CRYPTO_LOCK_DSO);
142 #ifdef REF_PRINT
143 REF_PRINT("DSO",dso);
144 #endif
145 if(i > 0) return(1);
146 #ifdef REF_CHECK
147 if(i < 0)
148 {
149 fprintf(stderr,"DSO_free, bad reference count\n");
150 abort();
151 }
152 #endif

154 if((dso->meth->dso_unload != NULL) && !dso->meth->dso_unload(dso))
155 {
156 DSOerr(DSO_F_DSO_FREE,DSO_R_UNLOAD_FAILED);
157 return(0);
158 }
159
160 if((dso->meth->finish != NULL) && !dso->meth->finish(dso))
161 {
162 DSOerr(DSO_F_DSO_FREE,DSO_R_FINISH_FAILED);
163 return(0);
164 }
165
166 sk_void_free(dso->meth_data);
167 if(dso->filename != NULL)
168 OPENSSL_free(dso->filename);
169 if(dso->loaded_filename != NULL)
170 OPENSSL_free(dso->loaded_filename);
171
172 OPENSSL_free(dso);
173 return(1);
174 }

176 int DSO_flags(DSO *dso)
177 {
178 return((dso == NULL) ? 0 : dso->flags);
179 }

182 int DSO_up_ref(DSO *dso)
183 {
184 if (dso == NULL)
185 {
186 DSOerr(DSO_F_DSO_UP_REF,ERR_R_PASSED_NULL_PARAMETER);
187 return(0);
188 }

190 CRYPTO_add(&dso->references,1,CRYPTO_LOCK_DSO);
191 return(1);
192 }

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_lib.c 4

194 DSO *DSO_load(DSO *dso, const char *filename, DSO_METHOD *meth, int flags)
195 {
196 DSO *ret;
197 int allocated = 0;

199 if(dso == NULL)
200 {
201 ret = DSO_new_method(meth);
202 if(ret == NULL)
203 {
204 DSOerr(DSO_F_DSO_LOAD,ERR_R_MALLOC_FAILURE);
205 goto err;
206 }
207 allocated = 1;
208 /* Pass the provided flags to the new DSO object */
209 if(DSO_ctrl(ret, DSO_CTRL_SET_FLAGS, flags, NULL) < 0)
210 {
211 DSOerr(DSO_F_DSO_LOAD,DSO_R_CTRL_FAILED);
212 goto err;
213 }
214 }
215 else
216 ret = dso;
217 /* Don’t load if we’re currently already loaded */
218 if(ret->filename != NULL)
219 {
220 DSOerr(DSO_F_DSO_LOAD,DSO_R_DSO_ALREADY_LOADED);
221 goto err;
222 }
223 /* filename can only be NULL if we were passed a dso that already has
224 * one set. */
225 if(filename != NULL)
226 if(!DSO_set_filename(ret, filename))
227 {
228 DSOerr(DSO_F_DSO_LOAD,DSO_R_SET_FILENAME_FAILED);
229 goto err;
230 }
231 filename = ret->filename;
232 if(filename == NULL)
233 {
234 DSOerr(DSO_F_DSO_LOAD,DSO_R_NO_FILENAME);
235 goto err;
236 }
237 if(ret->meth->dso_load == NULL)
238 {
239 DSOerr(DSO_F_DSO_LOAD,DSO_R_UNSUPPORTED);
240 goto err;
241 }
242 if(!ret->meth->dso_load(ret))
243 {
244 DSOerr(DSO_F_DSO_LOAD,DSO_R_LOAD_FAILED);
245 goto err;
246 }
247 /* Load succeeded */
248 return(ret);
249 err:
250 if(allocated)
251 DSO_free(ret);
252 return(NULL);
253 }

255 void *DSO_bind_var(DSO *dso, const char *symname)
256 {
257 void *ret = NULL;

259 if((dso == NULL) || (symname == NULL))

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_lib.c 5

260 {
261 DSOerr(DSO_F_DSO_BIND_VAR,ERR_R_PASSED_NULL_PARAMETER);
262 return(NULL);
263 }
264 if(dso->meth->dso_bind_var == NULL)
265 {
266 DSOerr(DSO_F_DSO_BIND_VAR,DSO_R_UNSUPPORTED);
267 return(NULL);
268 }
269 if((ret = dso->meth->dso_bind_var(dso, symname)) == NULL)
270 {
271 DSOerr(DSO_F_DSO_BIND_VAR,DSO_R_SYM_FAILURE);
272 return(NULL);
273 }
274 /* Success */
275 return(ret);
276 }

278 DSO_FUNC_TYPE DSO_bind_func(DSO *dso, const char *symname)
279 {
280 DSO_FUNC_TYPE ret = NULL;

282 if((dso == NULL) || (symname == NULL))
283 {
284 DSOerr(DSO_F_DSO_BIND_FUNC,ERR_R_PASSED_NULL_PARAMETER);
285 return(NULL);
286 }
287 if(dso->meth->dso_bind_func == NULL)
288 {
289 DSOerr(DSO_F_DSO_BIND_FUNC,DSO_R_UNSUPPORTED);
290 return(NULL);
291 }
292 if((ret = dso->meth->dso_bind_func(dso, symname)) == NULL)
293 {
294 DSOerr(DSO_F_DSO_BIND_FUNC,DSO_R_SYM_FAILURE);
295 return(NULL);
296 }
297 /* Success */
298 return(ret);
299 }

301 /* I don’t really like these *_ctrl functions very much to be perfectly
302 * honest. For one thing, I think I have to return a negative value for
303 * any error because possible DSO_ctrl() commands may return values
304 * such as "size"s that can legitimately be zero (making the standard
305 * "if(DSO_cmd(...))" form that works almost everywhere else fail at
306 * odd times. I’d prefer "output" values to be passed by reference and
307 * the return value as success/failure like usual ... but we conform
308 * when we must... :-) */
309 long DSO_ctrl(DSO *dso, int cmd, long larg, void *parg)
310 {
311 if(dso == NULL)
312 {
313 DSOerr(DSO_F_DSO_CTRL,ERR_R_PASSED_NULL_PARAMETER);
314 return(-1);
315 }
316 /* We should intercept certain generic commands and only pass control
317 * to the method-specific ctrl() function if it’s something we don’t
318 * handle. */
319 switch(cmd)
320 {
321 case DSO_CTRL_GET_FLAGS:
322 return dso->flags;
323 case DSO_CTRL_SET_FLAGS:
324 dso->flags = (int)larg;
325 return(0);

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_lib.c 6

326 case DSO_CTRL_OR_FLAGS:
327 dso->flags |= (int)larg;
328 return(0);
329 default:
330 break;
331 }
332 if((dso->meth == NULL) || (dso->meth->dso_ctrl == NULL))
333 {
334 DSOerr(DSO_F_DSO_CTRL,DSO_R_UNSUPPORTED);
335 return(-1);
336 }
337 return(dso->meth->dso_ctrl(dso,cmd,larg,parg));
338 }

340 int DSO_set_name_converter(DSO *dso, DSO_NAME_CONVERTER_FUNC cb,
341 DSO_NAME_CONVERTER_FUNC *oldcb)
342 {
343 if(dso == NULL)
344 {
345 DSOerr(DSO_F_DSO_SET_NAME_CONVERTER,
346 ERR_R_PASSED_NULL_PARAMETER);
347 return(0);
348 }
349 if(oldcb)
350 *oldcb = dso->name_converter;
351 dso->name_converter = cb;
352 return(1);
353 }

355 const char *DSO_get_filename(DSO *dso)
356 {
357 if(dso == NULL)
358 {
359 DSOerr(DSO_F_DSO_GET_FILENAME,ERR_R_PASSED_NULL_PARAMETER);
360 return(NULL);
361 }
362 return(dso->filename);
363 }

365 int DSO_set_filename(DSO *dso, const char *filename)
366 {
367 char *copied;

369 if((dso == NULL) || (filename == NULL))
370 {
371 DSOerr(DSO_F_DSO_SET_FILENAME,ERR_R_PASSED_NULL_PARAMETER);
372 return(0);
373 }
374 if(dso->loaded_filename)
375 {
376 DSOerr(DSO_F_DSO_SET_FILENAME,DSO_R_DSO_ALREADY_LOADED);
377 return(0);
378 }
379 /* We’ll duplicate filename */
380 copied = OPENSSL_malloc(strlen(filename) + 1);
381 if(copied == NULL)
382 {
383 DSOerr(DSO_F_DSO_SET_FILENAME,ERR_R_MALLOC_FAILURE);
384 return(0);
385 }
386 BUF_strlcpy(copied, filename, strlen(filename) + 1);
387 if(dso->filename)
388 OPENSSL_free(dso->filename);
389 dso->filename = copied;
390 return(1);
391 }

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_lib.c 7

393 char *DSO_merge(DSO *dso, const char *filespec1, const char *filespec2)
394 {
395 char *result = NULL;

397 if(dso == NULL || filespec1 == NULL)
398 {
399 DSOerr(DSO_F_DSO_MERGE,ERR_R_PASSED_NULL_PARAMETER);
400 return(NULL);
401 }
402 if((dso->flags & DSO_FLAG_NO_NAME_TRANSLATION) == 0)
403 {
404 if(dso->merger != NULL)
405 result = dso->merger(dso, filespec1, filespec2);
406 else if(dso->meth->dso_merger != NULL)
407 result = dso->meth->dso_merger(dso,
408 filespec1, filespec2);
409 }
410 return(result);
411 }

413 char *DSO_convert_filename(DSO *dso, const char *filename)
414 {
415 char *result = NULL;

417 if(dso == NULL)
418 {
419 DSOerr(DSO_F_DSO_CONVERT_FILENAME,ERR_R_PASSED_NULL_PARAMETER);
420 return(NULL);
421 }
422 if(filename == NULL)
423 filename = dso->filename;
424 if(filename == NULL)
425 {
426 DSOerr(DSO_F_DSO_CONVERT_FILENAME,DSO_R_NO_FILENAME);
427 return(NULL);
428 }
429 if((dso->flags & DSO_FLAG_NO_NAME_TRANSLATION) == 0)
430 {
431 if(dso->name_converter != NULL)
432 result = dso->name_converter(dso, filename);
433 else if(dso->meth->dso_name_converter != NULL)
434 result = dso->meth->dso_name_converter(dso, filename);
435 }
436 if(result == NULL)
437 {
438 result = OPENSSL_malloc(strlen(filename) + 1);
439 if(result == NULL)
440 {
441 DSOerr(DSO_F_DSO_CONVERT_FILENAME,
442 ERR_R_MALLOC_FAILURE);
443 return(NULL);
444 }
445 BUF_strlcpy(result, filename, strlen(filename) + 1);
446 }
447 return(result);
448 }

450 const char *DSO_get_loaded_filename(DSO *dso)
451 {
452 if(dso == NULL)
453 {
454 DSOerr(DSO_F_DSO_GET_LOADED_FILENAME,
455 ERR_R_PASSED_NULL_PARAMETER);
456 return(NULL);
457 }

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_lib.c 8

458 return(dso->loaded_filename);
459 }

461 int DSO_pathbyaddr(void *addr,char *path,int sz)
462 {
463 DSO_METHOD *meth = default_DSO_meth;
464 if (meth == NULL) meth = DSO_METHOD_openssl();
465 if (meth->pathbyaddr == NULL)
466 {
467 DSOerr(DSO_F_DSO_PATHBYADDR,DSO_R_UNSUPPORTED);
468 return -1;
469 }
470 return (*meth->pathbyaddr)(addr,path,sz);
471 }

473 void *DSO_global_lookup(const char *name)
474 {
475 DSO_METHOD *meth = default_DSO_meth;
476 if (meth == NULL) meth = DSO_METHOD_openssl();
477 if (meth->globallookup == NULL)
478 {
479 DSOerr(DSO_F_DSO_GLOBAL_LOOKUP,DSO_R_UNSUPPORTED);
480 return NULL;
481 }
482 return (*meth->globallookup)(name);
483 }

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_null.c 1

**
 3408 Fri May 30 18:31:46 2014
new/usr/src/lib/openssl/libsunw_crypto/dso/dso_null.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* dso_null.c */
2 /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 /* This "NULL" method is provided as the fallback for systems that have
60 * no appropriate support for "shared-libraries". */

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_null.c 2

62 #include <stdio.h>
63 #include "cryptlib.h"
64 #include <openssl/dso.h>

66 static DSO_METHOD dso_meth_null = {
67 "NULL shared library method",
68 NULL, /* load */
69 NULL, /* unload */
70 NULL, /* bind_var */
71 NULL, /* bind_func */
72 /* For now, "unbind" doesn’t exist */
73 #if 0
74 NULL, /* unbind_var */
75 NULL, /* unbind_func */
76 #endif
77 NULL, /* ctrl */
78 NULL, /* dso_name_converter */
79 NULL, /* dso_merger */
80 NULL, /* init */
81 NULL, /* finish */
82 NULL, /* pathbyaddr */
83 NULL /* globallookup */
84 };

86 DSO_METHOD *DSO_METHOD_null(void)
87 {
88 return(&dso_meth_null);
89 }

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_openssl.c 1

**
 3264 Fri May 30 18:31:46 2014
new/usr/src/lib/openssl/libsunw_crypto/dso/dso_openssl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* dso_openssl.c */
2 /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/dso.h>

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_openssl.c 2

63 /* We just pinch the method from an appropriate "default" method. */

65 DSO_METHOD *DSO_METHOD_openssl(void)
66 {
67 #ifdef DEF_DSO_METHOD
68 return(DEF_DSO_METHOD());
69 #elif defined(DSO_DLFCN)
70 return(DSO_METHOD_dlfcn());
71 #elif defined(DSO_DL)
72 return(DSO_METHOD_dl());
73 #elif defined(DSO_WIN32)
74 return(DSO_METHOD_win32());
75 #elif defined(DSO_VMS)
76 return(DSO_METHOD_vms());
77 #elif defined(DSO_BEOS)
78 return(DSO_METHOD_beos());
79 #else
80 return(DSO_METHOD_null());
81 #endif
82 }

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_vms.c 1

**
 15324 Fri May 30 18:31:46 2014
new/usr/src/lib/openssl/libsunw_crypto/dso/dso_vms.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* dso_vms.c -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <string.h>
61 #include <errno.h>

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_vms.c 2

62 #include "cryptlib.h"
63 #include <openssl/dso.h>
64 #ifdef OPENSSL_SYS_VMS
65 #pragma message disable DOLLARID
66 #include <rms.h>
67 #include <lib$routines.h>
68 #include <stsdef.h>
69 #include <descrip.h>
70 #include <starlet.h>
71 #include "vms_rms.h"
72 #endif

74 /* Some compiler options may mask the declaration of "_malloc32". */
75 #if __INITIAL_POINTER_SIZE && defined _ANSI_C_SOURCE
76 # if __INITIAL_POINTER_SIZE == 64
77 # pragma pointer_size save
78 # pragma pointer_size 32
79 void * _malloc32 (__size_t);
80 # pragma pointer_size restore
81 # endif /* __INITIAL_POINTER_SIZE == 64 */
82 #endif /* __INITIAL_POINTER_SIZE && defined _ANSI_C_SOURCE */

85 #ifndef OPENSSL_SYS_VMS
86 DSO_METHOD *DSO_METHOD_vms(void)
87 {
88 return NULL;
89 }
90 #else
91 #pragma message disable DOLLARID

93 static int vms_load(DSO *dso);
94 static int vms_unload(DSO *dso);
95 static void *vms_bind_var(DSO *dso, const char *symname);
96 static DSO_FUNC_TYPE vms_bind_func(DSO *dso, const char *symname);
97 #if 0
98 static int vms_unbind_var(DSO *dso, char *symname, void *symptr);
99 static int vms_unbind_func(DSO *dso, char *symname, DSO_FUNC_TYPE symptr);
100 static int vms_init(DSO *dso);
101 static int vms_finish(DSO *dso);
102 static long vms_ctrl(DSO *dso, int cmd, long larg, void *parg);
103 #endif
104 static char *vms_name_converter(DSO *dso, const char *filename);
105 static char *vms_merger(DSO *dso, const char *filespec1,
106 const char *filespec2);

108 static DSO_METHOD dso_meth_vms = {
109 "OpenSSL ’VMS’ shared library method",
110 vms_load,
111 NULL, /* unload */
112 vms_bind_var,
113 vms_bind_func,
114 /* For now, "unbind" doesn’t exist */
115 #if 0
116 NULL, /* unbind_var */
117 NULL, /* unbind_func */
118 #endif
119 NULL, /* ctrl */
120 vms_name_converter,
121 vms_merger,
122 NULL, /* init */
123 NULL /* finish */
124 };

126 /* On VMS, the only "handle" is the file name. LIB$FIND_IMAGE_SYMBOL depends
127 * on the reference to the file name being the same for all calls regarding

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_vms.c 3

128 * one shared image, so we’ll just store it in an instance of the following
129 * structure and put a pointer to that instance in the meth_data stack.
130 */
131 typedef struct dso_internal_st
132 {
133 /* This should contain the name only, no directory,
134 * no extension, nothing but a name. */
135 struct dsc$descriptor_s filename_dsc;
136 char filename[NAMX_MAXRSS+ 1];
137 /* This contains whatever is not in filename, if needed.
138 * Normally not defined. */
139 struct dsc$descriptor_s imagename_dsc;
140 char imagename[NAMX_MAXRSS+ 1];
141 } DSO_VMS_INTERNAL;

143 DSO_METHOD *DSO_METHOD_vms(void)
144 {
145 return(&dso_meth_vms);
146 }

148 static int vms_load(DSO *dso)
149 {
150 void *ptr = NULL;
151 /* See applicable comments in dso_dl.c */
152 char *filename = DSO_convert_filename(dso, NULL);

154 /* Ensure 32-bit pointer for "p", and appropriate malloc() function. */
155 #if __INITIAL_POINTER_SIZE == 64
156 # define DSO_MALLOC _malloc32
157 # pragma pointer_size save
158 # pragma pointer_size 32
159 #else /* __INITIAL_POINTER_SIZE == 64 */
160 # define DSO_MALLOC OPENSSL_malloc
161 #endif /* __INITIAL_POINTER_SIZE == 64 [else] */

163 DSO_VMS_INTERNAL *p = NULL;

165 #if __INITIAL_POINTER_SIZE == 64
166 # pragma pointer_size restore
167 #endif /* __INITIAL_POINTER_SIZE == 64 */

169 const char *sp1, *sp2; /* Search result */

171 if(filename == NULL)
172 {
173 DSOerr(DSO_F_VMS_LOAD,DSO_R_NO_FILENAME);
174 goto err;
175 }

177 /* A file specification may look like this:
178 *
179 * node::dev:[dir-spec]name.type;ver
180 *
181 * or (for compatibility with TOPS-20):
182 *
183 * node::dev:<dir-spec>name.type;ver
184 *
185 * and the dir-spec uses ’.’ as separator. Also, a dir-spec
186 * may consist of several parts, with mixed use of [] and <>:
187 *
188 * [dir1.]<dir2>
189 *
190 * We need to split the file specification into the name and
191 * the rest (both before and after the name itself).
192 */
193 /* Start with trying to find the end of a dir-spec, and save the

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_vms.c 4

194 position of the byte after in sp1 */
195 sp1 = strrchr(filename, ’]’);
196 sp2 = strrchr(filename, ’>’);
197 if (sp1 == NULL) sp1 = sp2;
198 if (sp2 != NULL && sp2 > sp1) sp1 = sp2;
199 if (sp1 == NULL) sp1 = strrchr(filename, ’:’);
200 if (sp1 == NULL)
201 sp1 = filename;
202 else
203 sp1++; /* The byte after the found character */
204 /* Now, let’s see if there’s a type, and save the position in sp2 */
205 sp2 = strchr(sp1, ’.’);
206 /* If we found it, that’s where we’ll cut. Otherwise, look for a
207 version number and save the position in sp2 */
208 if (sp2 == NULL) sp2 = strchr(sp1, ’;’);
209 /* If there was still nothing to find, set sp2 to point at the end of
210 the string */
211 if (sp2 == NULL) sp2 = sp1 + strlen(sp1);

213 /* Check that we won’t get buffer overflows */
214 if (sp2 - sp1 > FILENAME_MAX
215 || (sp1 - filename) + strlen(sp2) > FILENAME_MAX)
216 {
217 DSOerr(DSO_F_VMS_LOAD,DSO_R_FILENAME_TOO_BIG);
218 goto err;
219 }

221 p = DSO_MALLOC(sizeof(DSO_VMS_INTERNAL));
222 if(p == NULL)
223 {
224 DSOerr(DSO_F_VMS_LOAD,ERR_R_MALLOC_FAILURE);
225 goto err;
226 }

228 strncpy(p->filename, sp1, sp2-sp1);
229 p->filename[sp2-sp1] = ’\0’;

231 strncpy(p->imagename, filename, sp1-filename);
232 p->imagename[sp1-filename] = ’\0’;
233 strcat(p->imagename, sp2);

235 p->filename_dsc.dsc$w_length = strlen(p->filename);
236 p->filename_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
237 p->filename_dsc.dsc$b_class = DSC$K_CLASS_S;
238 p->filename_dsc.dsc$a_pointer = p->filename;
239 p->imagename_dsc.dsc$w_length = strlen(p->imagename);
240 p->imagename_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
241 p->imagename_dsc.dsc$b_class = DSC$K_CLASS_S;
242 p->imagename_dsc.dsc$a_pointer = p->imagename;

244 if(!sk_void_push(dso->meth_data, (char *)p))
245 {
246 DSOerr(DSO_F_VMS_LOAD,DSO_R_STACK_ERROR);
247 goto err;
248 }

250 /* Success (for now, we lie. We actually do not know...) */
251 dso->loaded_filename = filename;
252 return(1);
253 err:
254 /* Cleanup! */
255 if(p != NULL)
256 OPENSSL_free(p);
257 if(filename != NULL)
258 OPENSSL_free(filename);
259 return(0);

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_vms.c 5

260 }

262 /* Note that this doesn’t actually unload the shared image, as there is no
263 * such thing in VMS. Next time it get loaded again, a new copy will
264 * actually be loaded.
265 */
266 static int vms_unload(DSO *dso)
267 {
268 DSO_VMS_INTERNAL *p;
269 if(dso == NULL)
270 {
271 DSOerr(DSO_F_VMS_UNLOAD,ERR_R_PASSED_NULL_PARAMETER);
272 return(0);
273 }
274 if(sk_void_num(dso->meth_data) < 1)
275 return(1);
276 p = (DSO_VMS_INTERNAL *)sk_void_pop(dso->meth_data);
277 if(p == NULL)
278 {
279 DSOerr(DSO_F_VMS_UNLOAD,DSO_R_NULL_HANDLE);
280 return(0);
281 }
282 /* Cleanup */
283 OPENSSL_free(p);
284 return(1);
285 }

287 /* We must do this in a separate function because of the way the exception
288 handler works (it makes this function return */
289 static int do_find_symbol(DSO_VMS_INTERNAL *ptr,
290 struct dsc$descriptor_s *symname_dsc, void **sym,
291 unsigned long flags)
292 {
293 /* Make sure that signals are caught and returned instead of
294 aborting the program. The exception handler gets unestablished
295 automatically on return from this function. */
296 lib$establish(lib$sig_to_ret);

298 if(ptr->imagename_dsc.dsc$w_length)
299 return lib$find_image_symbol(&ptr->filename_dsc,
300 symname_dsc, sym,
301 &ptr->imagename_dsc, flags);
302 else
303 return lib$find_image_symbol(&ptr->filename_dsc,
304 symname_dsc, sym,
305 0, flags);
306 }

308 void vms_bind_sym(DSO *dso, const char *symname, void **sym)
309 {
310 DSO_VMS_INTERNAL *ptr;
311 int status;
312 #if 0
313 int flags = (1<<4); /* LIB$M_FIS_MIXEDCASE, but this symbol isn’t
314 defined in VMS older than 7.0 or so */
315 #else
316 int flags = 0;
317 #endif
318 struct dsc$descriptor_s symname_dsc;

320 /* Arrange 32-bit pointer to (copied) string storage, if needed. */
321 #if __INITIAL_POINTER_SIZE == 64
322 # define SYMNAME symname_32p
323 # pragma pointer_size save
324 # pragma pointer_size 32
325 char *symname_32p;

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_vms.c 6

326 # pragma pointer_size restore
327 char symname_32[NAMX_MAXRSS+ 1];
328 #else /* __INITIAL_POINTER_SIZE == 64 */
329 # define SYMNAME ((char *) symname)
330 #endif /* __INITIAL_POINTER_SIZE == 64 [else] */

332 *sym = NULL;

334 if((dso == NULL) || (symname == NULL))
335 {
336 DSOerr(DSO_F_VMS_BIND_SYM,ERR_R_PASSED_NULL_PARAMETER);
337 return;
338 }

340 #if __INITIAL_POINTER_SIZE == 64
341 /* Copy the symbol name to storage with a 32-bit pointer. */
342 symname_32p = symname_32;
343 strcpy(symname_32p, symname);
344 #endif /* __INITIAL_POINTER_SIZE == 64 [else] */

346 symname_dsc.dsc$w_length = strlen(SYMNAME);
347 symname_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
348 symname_dsc.dsc$b_class = DSC$K_CLASS_S;
349 symname_dsc.dsc$a_pointer = SYMNAME;

351 if(sk_void_num(dso->meth_data) < 1)
352 {
353 DSOerr(DSO_F_VMS_BIND_SYM,DSO_R_STACK_ERROR);
354 return;
355 }
356 ptr = (DSO_VMS_INTERNAL *)sk_void_value(dso->meth_data,
357 sk_void_num(dso->meth_data) - 1);
358 if(ptr == NULL)
359 {
360 DSOerr(DSO_F_VMS_BIND_SYM,DSO_R_NULL_HANDLE);
361 return;
362 }

364 if(dso->flags & DSO_FLAG_UPCASE_SYMBOL) flags = 0;

366 status = do_find_symbol(ptr, &symname_dsc, sym, flags);

368 if(!$VMS_STATUS_SUCCESS(status))
369 {
370 unsigned short length;
371 char errstring[257];
372 struct dsc$descriptor_s errstring_dsc;

374 errstring_dsc.dsc$w_length = sizeof(errstring);
375 errstring_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
376 errstring_dsc.dsc$b_class = DSC$K_CLASS_S;
377 errstring_dsc.dsc$a_pointer = errstring;

379 *sym = NULL;

381 status = sys$getmsg(status, &length, &errstring_dsc, 1, 0);

383 if (!$VMS_STATUS_SUCCESS(status))
384 lib$signal(status); /* This is really bad. Abort! */
385 else
386 {
387 errstring[length] = ’\0’;

389 DSOerr(DSO_F_VMS_BIND_SYM,DSO_R_SYM_FAILURE);
390 if (ptr->imagename_dsc.dsc$w_length)
391 ERR_add_error_data(9,

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_vms.c 7

392 "Symbol ", symname,
393 " in ", ptr->filename,
394 " (", ptr->imagename, ")",
395 ": ", errstring);
396 else
397 ERR_add_error_data(6,
398 "Symbol ", symname,
399 " in ", ptr->filename,
400 ": ", errstring);
401 }
402 return;
403 }
404 return;
405 }

407 static void *vms_bind_var(DSO *dso, const char *symname)
408 {
409 void *sym = 0;
410 vms_bind_sym(dso, symname, &sym);
411 return sym;
412 }

414 static DSO_FUNC_TYPE vms_bind_func(DSO *dso, const char *symname)
415 {
416 DSO_FUNC_TYPE sym = 0;
417 vms_bind_sym(dso, symname, (void **)&sym);
418 return sym;
419 }

422 static char *vms_merger(DSO *dso, const char *filespec1, const char *filespec2)
423 {
424 int status;
425 int filespec1len, filespec2len;
426 struct FAB fab;
427 struct NAMX_STRUCT nam;
428 char esa[NAMX_MAXRSS+ 1];
429 char *merged;

431 /* Arrange 32-bit pointer to (copied) string storage, if needed. */
432 #if __INITIAL_POINTER_SIZE == 64
433 # define FILESPEC1 filespec1_32p;
434 # define FILESPEC2 filespec2_32p;
435 # pragma pointer_size save
436 # pragma pointer_size 32
437 char *filespec1_32p;
438 char *filespec2_32p;
439 # pragma pointer_size restore
440 char filespec1_32[NAMX_MAXRSS+ 1];
441 char filespec2_32[NAMX_MAXRSS+ 1];
442 #else /* __INITIAL_POINTER_SIZE == 64 */
443 # define FILESPEC1 ((char *) filespec1)
444 # define FILESPEC2 ((char *) filespec2)
445 #endif /* __INITIAL_POINTER_SIZE == 64 [else] */

447 if (!filespec1) filespec1 = "";
448 if (!filespec2) filespec2 = "";
449 filespec1len = strlen(filespec1);
450 filespec2len = strlen(filespec2);

452 #if __INITIAL_POINTER_SIZE == 64
453 /* Copy the file names to storage with a 32-bit pointer. */
454 filespec1_32p = filespec1_32;
455 filespec2_32p = filespec2_32;
456 strcpy(filespec1_32p, filespec1);
457 strcpy(filespec2_32p, filespec2);

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_vms.c 8

458 #endif /* __INITIAL_POINTER_SIZE == 64 [else] */

460 fab = cc$rms_fab;
461 nam = CC_RMS_NAMX;

463 FAB_OR_NAML(fab, nam).FAB_OR_NAML_FNA = FILESPEC1;
464 FAB_OR_NAML(fab, nam).FAB_OR_NAML_FNS = filespec1len;
465 FAB_OR_NAML(fab, nam).FAB_OR_NAML_DNA = FILESPEC2;
466 FAB_OR_NAML(fab, nam).FAB_OR_NAML_DNS = filespec2len;
467 NAMX_DNA_FNA_SET(fab)

469 nam.NAMX_ESA = esa;
470 nam.NAMX_ESS = NAMX_MAXRSS;
471 nam.NAMX_NOP = NAM$M_SYNCHK | NAM$M_PWD;
472 SET_NAMX_NO_SHORT_UPCASE(nam);

474 fab.FAB_NAMX = &nam;

476 status = sys$parse(&fab, 0, 0);

478 if(!$VMS_STATUS_SUCCESS(status))
479 {
480 unsigned short length;
481 char errstring[257];
482 struct dsc$descriptor_s errstring_dsc;

484 errstring_dsc.dsc$w_length = sizeof(errstring);
485 errstring_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
486 errstring_dsc.dsc$b_class = DSC$K_CLASS_S;
487 errstring_dsc.dsc$a_pointer = errstring;

489 status = sys$getmsg(status, &length, &errstring_dsc, 1, 0);

491 if (!$VMS_STATUS_SUCCESS(status))
492 lib$signal(status); /* This is really bad. Abort! */
493 else
494 {
495 errstring[length] = ’\0’;

497 DSOerr(DSO_F_VMS_MERGER,DSO_R_FAILURE);
498 ERR_add_error_data(7,
499 "filespec \"", filespec1, "\", ",
500 "defaults \"", filespec2, "\": ",
501 errstring);
502 }
503 return(NULL);
504 }

506 merged = OPENSSL_malloc(nam.NAMX_ESL+ 1);
507 if(!merged)
508 goto malloc_err;
509 strncpy(merged, nam.NAMX_ESA, nam.NAMX_ESL);
510 merged[nam.NAMX_ESL] = ’\0’;
511 return(merged);
512 malloc_err:
513 DSOerr(DSO_F_VMS_MERGER,
514 ERR_R_MALLOC_FAILURE);
515 }

517 static char *vms_name_converter(DSO *dso, const char *filename)
518 {
519 int len = strlen(filename);
520 char *not_translated = OPENSSL_malloc(len+1);
521 strcpy(not_translated,filename);
522 return(not_translated);
523 }

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_vms.c 9

525 #endif /* OPENSSL_SYS_VMS */

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_win32.c 1

**
 20880 Fri May 30 18:31:46 2014
new/usr/src/lib/openssl/libsunw_crypto/dso/dso_win32.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* dso_win32.c -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <string.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_win32.c 2

62 #include <openssl/dso.h>

64 #if !defined(DSO_WIN32)
65 DSO_METHOD *DSO_METHOD_win32(void)
66 {
67 return NULL;
68 }
69 #else

71 #ifdef _WIN32_WCE
72 # if _WIN32_WCE < 300
73 static FARPROC GetProcAddressA(HMODULE hModule,LPCSTR lpProcName)
74 {
75 WCHAR lpProcNameW[64];
76 int i;

78 for (i=0;lpProcName[i] && i<64;i++)
79 lpProcNameW[i] = (WCHAR)lpProcName[i];
80 if (i==64) return NULL;
81 lpProcNameW[i] = 0;

83 return GetProcAddressW(hModule,lpProcNameW);
84 }
85 # endif
86 # undef GetProcAddress
87 # define GetProcAddress GetProcAddressA

89 static HINSTANCE LoadLibraryA(LPCSTR lpLibFileName)
90 {
91 WCHAR *fnamw;
92 size_t len_0=strlen(lpLibFileName)+1,i;

94 #ifdef _MSC_VER
95 fnamw = (WCHAR *)_alloca (len_0*sizeof(WCHAR));
96 #else
97 fnamw = (WCHAR *)alloca (len_0*sizeof(WCHAR));
98 #endif
99 if (fnamw == NULL)
100 {
101 SetLastError(ERROR_NOT_ENOUGH_MEMORY);
102 return NULL;
103 }

105 #if defined(_WIN32_WCE) && _WIN32_WCE>=101
106 if (!MultiByteToWideChar(CP_ACP,0,lpLibFileName,len_0,fnamw,len_0))
107 #endif
108 for (i=0;i<len_0;i++) fnamw[i]=(WCHAR)lpLibFileName[i];

110 return LoadLibraryW(fnamw);
111 }
112 #endif

114 /* Part of the hack in "win32_load" ... */
115 #define DSO_MAX_TRANSLATED_SIZE 256

117 static int win32_load(DSO *dso);
118 static int win32_unload(DSO *dso);
119 static void *win32_bind_var(DSO *dso, const char *symname);
120 static DSO_FUNC_TYPE win32_bind_func(DSO *dso, const char *symname);
121 #if 0
122 static int win32_unbind_var(DSO *dso, char *symname, void *symptr);
123 static int win32_unbind_func(DSO *dso, char *symname, DSO_FUNC_TYPE symptr);
124 static int win32_init(DSO *dso);
125 static int win32_finish(DSO *dso);
126 static long win32_ctrl(DSO *dso, int cmd, long larg, void *parg);
127 #endif

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_win32.c 3

128 static char *win32_name_converter(DSO *dso, const char *filename);
129 static char *win32_merger(DSO *dso, const char *filespec1,
130 const char *filespec2);
131 static int win32_pathbyaddr(void *addr,char *path,int sz);
132 static void *win32_globallookup(const char *name);

134 static const char *openssl_strnchr(const char *string, int c, size_t len);

136 static DSO_METHOD dso_meth_win32 = {
137 "OpenSSL ’win32’ shared library method",
138 win32_load,
139 win32_unload,
140 win32_bind_var,
141 win32_bind_func,
142 /* For now, "unbind" doesn’t exist */
143 #if 0
144 NULL, /* unbind_var */
145 NULL, /* unbind_func */
146 #endif
147 NULL, /* ctrl */
148 win32_name_converter,
149 win32_merger,
150 NULL, /* init */
151 NULL, /* finish */
152 win32_pathbyaddr,
153 win32_globallookup
154 };

156 DSO_METHOD *DSO_METHOD_win32(void)
157 {
158 return(&dso_meth_win32);
159 }

161 /* For this DSO_METHOD, our meth_data STACK will contain;
162 * (i) a pointer to the handle (HINSTANCE) returned from
163 * LoadLibrary(), and copied.
164 */

166 static int win32_load(DSO *dso)
167 {
168 HINSTANCE h = NULL, *p = NULL;
169 /* See applicable comments from dso_dl.c */
170 char *filename = DSO_convert_filename(dso, NULL);

172 if(filename == NULL)
173 {
174 DSOerr(DSO_F_WIN32_LOAD,DSO_R_NO_FILENAME);
175 goto err;
176 }
177 h = LoadLibraryA(filename);
178 if(h == NULL)
179 {
180 DSOerr(DSO_F_WIN32_LOAD,DSO_R_LOAD_FAILED);
181 ERR_add_error_data(3, "filename(", filename, ")");
182 goto err;
183 }
184 p = (HINSTANCE *)OPENSSL_malloc(sizeof(HINSTANCE));
185 if(p == NULL)
186 {
187 DSOerr(DSO_F_WIN32_LOAD,ERR_R_MALLOC_FAILURE);
188 goto err;
189 }
190 *p = h;
191 if(!sk_void_push(dso->meth_data, p))
192 {
193 DSOerr(DSO_F_WIN32_LOAD,DSO_R_STACK_ERROR);

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_win32.c 4

194 goto err;
195 }
196 /* Success */
197 dso->loaded_filename = filename;
198 return(1);
199 err:
200 /* Cleanup !*/
201 if(filename != NULL)
202 OPENSSL_free(filename);
203 if(p != NULL)
204 OPENSSL_free(p);
205 if(h != NULL)
206 FreeLibrary(h);
207 return(0);
208 }

210 static int win32_unload(DSO *dso)
211 {
212 HINSTANCE *p;
213 if(dso == NULL)
214 {
215 DSOerr(DSO_F_WIN32_UNLOAD,ERR_R_PASSED_NULL_PARAMETER);
216 return(0);
217 }
218 if(sk_void_num(dso->meth_data) < 1)
219 return(1);
220 p = sk_void_pop(dso->meth_data);
221 if(p == NULL)
222 {
223 DSOerr(DSO_F_WIN32_UNLOAD,DSO_R_NULL_HANDLE);
224 return(0);
225 }
226 if(!FreeLibrary(*p))
227 {
228 DSOerr(DSO_F_WIN32_UNLOAD,DSO_R_UNLOAD_FAILED);
229 /* We should push the value back onto the stack in
230 * case of a retry. */
231 sk_void_push(dso->meth_data, p);
232 return(0);
233 }
234 /* Cleanup */
235 OPENSSL_free(p);
236 return(1);
237 }

239 /* Using GetProcAddress for variables? TODO: Check this out in
240 * the Win32 API docs, there’s probably a variant for variables. */
241 static void *win32_bind_var(DSO *dso, const char *symname)
242 {
243 HINSTANCE *ptr;
244 void *sym;

246 if((dso == NULL) || (symname == NULL))
247 {
248 DSOerr(DSO_F_WIN32_BIND_VAR,ERR_R_PASSED_NULL_PARAMETER);
249 return(NULL);
250 }
251 if(sk_void_num(dso->meth_data) < 1)
252 {
253 DSOerr(DSO_F_WIN32_BIND_VAR,DSO_R_STACK_ERROR);
254 return(NULL);
255 }
256 ptr = sk_void_value(dso->meth_data, sk_void_num(dso->meth_data) - 1);
257 if(ptr == NULL)
258 {
259 DSOerr(DSO_F_WIN32_BIND_VAR,DSO_R_NULL_HANDLE);

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_win32.c 5

260 return(NULL);
261 }
262 sym = GetProcAddress(*ptr, symname);
263 if(sym == NULL)
264 {
265 DSOerr(DSO_F_WIN32_BIND_VAR,DSO_R_SYM_FAILURE);
266 ERR_add_error_data(3, "symname(", symname, ")");
267 return(NULL);
268 }
269 return(sym);
270 }

272 static DSO_FUNC_TYPE win32_bind_func(DSO *dso, const char *symname)
273 {
274 HINSTANCE *ptr;
275 void *sym;

277 if((dso == NULL) || (symname == NULL))
278 {
279 DSOerr(DSO_F_WIN32_BIND_FUNC,ERR_R_PASSED_NULL_PARAMETER);
280 return(NULL);
281 }
282 if(sk_void_num(dso->meth_data) < 1)
283 {
284 DSOerr(DSO_F_WIN32_BIND_FUNC,DSO_R_STACK_ERROR);
285 return(NULL);
286 }
287 ptr = sk_void_value(dso->meth_data, sk_void_num(dso->meth_data) - 1);
288 if(ptr == NULL)
289 {
290 DSOerr(DSO_F_WIN32_BIND_FUNC,DSO_R_NULL_HANDLE);
291 return(NULL);
292 }
293 sym = GetProcAddress(*ptr, symname);
294 if(sym == NULL)
295 {
296 DSOerr(DSO_F_WIN32_BIND_FUNC,DSO_R_SYM_FAILURE);
297 ERR_add_error_data(3, "symname(", symname, ")");
298 return(NULL);
299 }
300 return((DSO_FUNC_TYPE)sym);
301 }

303 struct file_st
304 {
305 const char *node; int nodelen;
306 const char *device; int devicelen;
307 const char *predir; int predirlen;
308 const char *dir; int dirlen;
309 const char *file; int filelen;
310 };

312 static struct file_st *win32_splitter(DSO *dso, const char *filename,
313 int assume_last_is_dir)
314 {
315 struct file_st *result = NULL;
316 enum { IN_NODE, IN_DEVICE, IN_FILE } position;
317 const char *start = filename;
318 char last;

320 if (!filename)
321 {
322 DSOerr(DSO_F_WIN32_SPLITTER,DSO_R_NO_FILENAME);
323 /*goto err;*/
324 return(NULL);
325 }

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_win32.c 6

327 result = OPENSSL_malloc(sizeof(struct file_st));
328 if(result == NULL)
329 {
330 DSOerr(DSO_F_WIN32_SPLITTER,
331 ERR_R_MALLOC_FAILURE);
332 return(NULL);
333 }

335 memset(result, 0, sizeof(struct file_st));
336 position = IN_DEVICE;

338 if((filename[0] == ’\\’ && filename[1] == ’\\’)
339 || (filename[0] == ’/’ && filename[1] == ’/’))
340 {
341 position = IN_NODE;
342 filename += 2;
343 start = filename;
344 result->node = start;
345 }

347 do
348 {
349 last = filename[0];
350 switch(last)
351 {
352 case ’:’:
353 if(position != IN_DEVICE)
354 {
355 DSOerr(DSO_F_WIN32_SPLITTER,
356 DSO_R_INCORRECT_FILE_SYNTAX);
357 /*goto err;*/
358 OPENSSL_free(result);
359 return(NULL);
360 }
361 result->device = start;
362 result->devicelen = (int)(filename - start);
363 position = IN_FILE;
364 start = ++filename;
365 result->dir = start;
366 break;
367 case ’\\’:
368 case ’/’:
369 if(position == IN_NODE)
370 {
371 result->nodelen = (int)(filename - start);
372 position = IN_FILE;
373 start = ++filename;
374 result->dir = start;
375 }
376 else if(position == IN_DEVICE)
377 {
378 position = IN_FILE;
379 filename++;
380 result->dir = start;
381 result->dirlen = (int)(filename - start);
382 start = filename;
383 }
384 else
385 {
386 filename++;
387 result->dirlen += (int)(filename - start);
388 start = filename;
389 }
390 break;
391 case ’\0’:

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_win32.c 7

392 if(position == IN_NODE)
393 {
394 result->nodelen = (int)(filename - start);
395 }
396 else
397 {
398 if(filename - start > 0)
399 {
400 if (assume_last_is_dir)
401 {
402 if (position == IN_DEVICE)
403 {
404 result->dir = start;
405 result->dirlen = 0;
406 }
407 result->dirlen +=
408 (int)(filename - start);
409 }
410 else
411 {
412 result->file = start;
413 result->filelen =
414 (int)(filename - start);
415 }
416 }
417 }
418 break;
419 default:
420 filename++;
421 break;
422 }
423 }
424 while(last);

426 if(!result->nodelen) result->node = NULL;
427 if(!result->devicelen) result->device = NULL;
428 if(!result->dirlen) result->dir = NULL;
429 if(!result->filelen) result->file = NULL;

431 return(result);
432 }

434 static char *win32_joiner(DSO *dso, const struct file_st *file_split)
435 {
436 int len = 0, offset = 0;
437 char *result = NULL;
438 const char *start;

440 if(!file_split)
441 {
442 DSOerr(DSO_F_WIN32_JOINER,
443 ERR_R_PASSED_NULL_PARAMETER);
444 return(NULL);
445 }
446 if(file_split->node)
447 {
448 len += 2 + file_split->nodelen; /* 2 for starting \\ */
449 if(file_split->predir || file_split->dir || file_split->file)
450 len++; /* 1 for ending \ */
451 }
452 else if(file_split->device)
453 {
454 len += file_split->devicelen + 1; /* 1 for ending : */
455 }
456 len += file_split->predirlen;
457 if(file_split->predir && (file_split->dir || file_split->file))

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_win32.c 8

458 {
459 len++; /* 1 for ending \ */
460 }
461 len += file_split->dirlen;
462 if(file_split->dir && file_split->file)
463 {
464 len++; /* 1 for ending \ */
465 }
466 len += file_split->filelen;

468 if(!len)
469 {
470 DSOerr(DSO_F_WIN32_JOINER, DSO_R_EMPTY_FILE_STRUCTURE);
471 return(NULL);
472 }

474 result = OPENSSL_malloc(len + 1);
475 if (!result)
476 {
477 DSOerr(DSO_F_WIN32_JOINER,
478 ERR_R_MALLOC_FAILURE);
479 return(NULL);
480 }

482 if(file_split->node)
483 {
484 strcpy(&result[offset], "\\\\"); offset += 2;
485 strncpy(&result[offset], file_split->node,
486 file_split->nodelen); offset += file_split->nodelen;
487 if(file_split->predir || file_split->dir || file_split->file)
488 {
489 result[offset] = ’\\’; offset++;
490 }
491 }
492 else if(file_split->device)
493 {
494 strncpy(&result[offset], file_split->device,
495 file_split->devicelen); offset += file_split->devicelen;
496 result[offset] = ’:’; offset++;
497 }
498 start = file_split->predir;
499 while(file_split->predirlen > (start - file_split->predir))
500 {
501 const char *end = openssl_strnchr(start, ’/’,
502 file_split->predirlen - (start - file_split->predir));
503 if(!end)
504 end = start
505 + file_split->predirlen
506 - (start - file_split->predir);
507 strncpy(&result[offset], start,
508 end - start); offset += (int)(end - start);
509 result[offset] = ’\\’; offset++;
510 start = end + 1;
511 }
512 #if 0 /* Not needed, since the directory converter above already appeneded
513 a backslash */
514 if(file_split->predir && (file_split->dir || file_split->file))
515 {
516 result[offset] = ’\\’; offset++;
517 }
518 #endif
519 start = file_split->dir;
520 while(file_split->dirlen > (start - file_split->dir))
521 {
522 const char *end = openssl_strnchr(start, ’/’,
523 file_split->dirlen - (start - file_split->dir));

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_win32.c 9

524 if(!end)
525 end = start
526 + file_split->dirlen
527 - (start - file_split->dir);
528 strncpy(&result[offset], start,
529 end - start); offset += (int)(end - start);
530 result[offset] = ’\\’; offset++;
531 start = end + 1;
532 }
533 #if 0 /* Not needed, since the directory converter above already appeneded
534 a backslash */
535 if(file_split->dir && file_split->file)
536 {
537 result[offset] = ’\\’; offset++;
538 }
539 #endif
540 strncpy(&result[offset], file_split->file,
541 file_split->filelen); offset += file_split->filelen;
542 result[offset] = ’\0’;
543 return(result);
544 }

546 static char *win32_merger(DSO *dso, const char *filespec1, const char *filespec2
547 {
548 char *merged = NULL;
549 struct file_st *filespec1_split = NULL;
550 struct file_st *filespec2_split = NULL;

552 if(!filespec1 && !filespec2)
553 {
554 DSOerr(DSO_F_WIN32_MERGER,
555 ERR_R_PASSED_NULL_PARAMETER);
556 return(NULL);
557 }
558 if (!filespec2)
559 {
560 merged = OPENSSL_malloc(strlen(filespec1) + 1);
561 if(!merged)
562 {
563 DSOerr(DSO_F_WIN32_MERGER,
564 ERR_R_MALLOC_FAILURE);
565 return(NULL);
566 }
567 strcpy(merged, filespec1);
568 }
569 else if (!filespec1)
570 {
571 merged = OPENSSL_malloc(strlen(filespec2) + 1);
572 if(!merged)
573 {
574 DSOerr(DSO_F_WIN32_MERGER,
575 ERR_R_MALLOC_FAILURE);
576 return(NULL);
577 }
578 strcpy(merged, filespec2);
579 }
580 else
581 {
582 filespec1_split = win32_splitter(dso, filespec1, 0);
583 if (!filespec1_split)
584 {
585 DSOerr(DSO_F_WIN32_MERGER,
586 ERR_R_MALLOC_FAILURE);
587 return(NULL);
588 }
589 filespec2_split = win32_splitter(dso, filespec2, 1);

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_win32.c 10

590 if (!filespec2_split)
591 {
592 DSOerr(DSO_F_WIN32_MERGER,
593 ERR_R_MALLOC_FAILURE);
594 OPENSSL_free(filespec1_split);
595 return(NULL);
596 }

598 /* Fill in into filespec1_split */
599 if (!filespec1_split->node && !filespec1_split->device)
600 {
601 filespec1_split->node = filespec2_split->node;
602 filespec1_split->nodelen = filespec2_split->nodelen;
603 filespec1_split->device = filespec2_split->device;
604 filespec1_split->devicelen = filespec2_split->devicelen;
605 }
606 if (!filespec1_split->dir)
607 {
608 filespec1_split->dir = filespec2_split->dir;
609 filespec1_split->dirlen = filespec2_split->dirlen;
610 }
611 else if (filespec1_split->dir[0] != ’\\’
612 && filespec1_split->dir[0] != ’/’)
613 {
614 filespec1_split->predir = filespec2_split->dir;
615 filespec1_split->predirlen = filespec2_split->dirlen;
616 }
617 if (!filespec1_split->file)
618 {
619 filespec1_split->file = filespec2_split->file;
620 filespec1_split->filelen = filespec2_split->filelen;
621 }

623 merged = win32_joiner(dso, filespec1_split);
624 }
625 OPENSSL_free(filespec1_split);
626 OPENSSL_free(filespec2_split);
627 return(merged);
628 }

630 static char *win32_name_converter(DSO *dso, const char *filename)
631 {
632 char *translated;
633 int len, transform;

635 len = strlen(filename);
636 transform = ((strstr(filename, "/") == NULL) &&
637 (strstr(filename, "\\") == NULL) &&
638 (strstr(filename, ":") == NULL));
639 if(transform)
640 /* We will convert this to "%s.dll" */
641 translated = OPENSSL_malloc(len + 5);
642 else
643 /* We will simply duplicate filename */
644 translated = OPENSSL_malloc(len + 1);
645 if(translated == NULL)
646 {
647 DSOerr(DSO_F_WIN32_NAME_CONVERTER,
648 DSO_R_NAME_TRANSLATION_FAILED);
649 return(NULL);
650 }
651 if(transform)
652 sprintf(translated, "%s.dll", filename);
653 else
654 sprintf(translated, "%s", filename);
655 return(translated);

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_win32.c 11

656 }

658 static const char *openssl_strnchr(const char *string, int c, size_t len)
659 {
660 size_t i;
661 const char *p;
662 for (i = 0, p = string; i < len && *p; i++, p++)
663 {
664 if (*p == c)
665 return p;
666 }
667 return NULL;
668 }

670 #include <tlhelp32.h>
671 #ifdef _WIN32_WCE
672 # define DLLNAME "TOOLHELP.DLL"
673 #else
674 # ifdef MODULEENTRY32
675 # undef MODULEENTRY32 /* unmask the ASCII version! */
676 # endif
677 # define DLLNAME "KERNEL32.DLL"
678 #endif

680 typedef HANDLE (WINAPI *CREATETOOLHELP32SNAPSHOT)(DWORD, DWORD);
681 typedef BOOL (WINAPI *CLOSETOOLHELP32SNAPSHOT)(HANDLE);
682 typedef BOOL (WINAPI *MODULE32)(HANDLE, MODULEENTRY32 *);

684 static int win32_pathbyaddr(void *addr,char *path,int sz)
685 {
686 HMODULE dll;
687 HANDLE hModuleSnap = INVALID_HANDLE_VALUE;
688 MODULEENTRY32 me32;
689 CREATETOOLHELP32SNAPSHOT create_snap;
690 CLOSETOOLHELP32SNAPSHOT close_snap;
691 MODULE32 module_first, module_next;
692 int len;
693
694 if (addr == NULL)
695 {
696 union { int(*f)(void*,char*,int); void *p; } t =
697 { win32_pathbyaddr };
698 addr = t.p;
699 }

701 dll = LoadLibrary(TEXT(DLLNAME));
702 if (dll == NULL)
703 {
704 DSOerr(DSO_F_WIN32_PATHBYADDR,DSO_R_UNSUPPORTED);
705 return -1;
706 }

708 create_snap = (CREATETOOLHELP32SNAPSHOT)
709 GetProcAddress(dll,"CreateToolhelp32Snapshot");
710 if (create_snap == NULL)
711 {
712 FreeLibrary(dll);
713 DSOerr(DSO_F_WIN32_PATHBYADDR,DSO_R_UNSUPPORTED);
714 return -1;
715 }
716 /* We take the rest for granted... */
717 #ifdef _WIN32_WCE
718 close_snap = (CLOSETOOLHELP32SNAPSHOT)
719 GetProcAddress(dll,"CloseToolhelp32Snapshot");
720 #else
721 close_snap = (CLOSETOOLHELP32SNAPSHOT)CloseHandle;

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_win32.c 12

722 #endif
723 module_first = (MODULE32)GetProcAddress(dll,"Module32First");
724 module_next = (MODULE32)GetProcAddress(dll,"Module32Next");

726 hModuleSnap = (*create_snap)(TH32CS_SNAPMODULE,0);
727 if(hModuleSnap == INVALID_HANDLE_VALUE)
728 {
729 FreeLibrary(dll);
730 DSOerr(DSO_F_WIN32_PATHBYADDR,DSO_R_UNSUPPORTED);
731 return -1;
732 }
733
734 me32.dwSize = sizeof(me32);
735
736 if(!(*module_first)(hModuleSnap,&me32))
737 {
738 (*close_snap)(hModuleSnap);
739 FreeLibrary(dll);
740 DSOerr(DSO_F_WIN32_PATHBYADDR,DSO_R_FAILURE);
741 return -1;
742 }
743
744 do {
745 if ((BYTE *)addr >= me32.modBaseAddr &&
746 (BYTE *)addr < me32.modBaseAddr+me32.modBaseSize)
747 {
748 (*close_snap)(hModuleSnap);
749 FreeLibrary(dll);
750 #ifdef _WIN32_WCE
751 # if _WIN32_WCE >= 101
752 return WideCharToMultiByte(CP_ACP,0,me32.szExePath,-1,
753 path,sz,NULL,NULL);
754 # else
755 len = (int)wcslen(me32.szExePath);
756 if (sz <= 0) return len+1;
757 if (len >= sz) len=sz-1;
758 for(i=0;i<len;i++)
759 path[i] = (char)me32.szExePath[i];
760 path[len++] = 0;
761 return len;
762 # endif
763 #else
764 len = (int)strlen(me32.szExePath);
765 if (sz <= 0) return len+1;
766 if (len >= sz) len=sz-1;
767 memcpy(path,me32.szExePath,len);
768 path[len++] = 0;
769 return len;
770 #endif
771 }
772 } while((*module_next)(hModuleSnap, &me32));
773
774 (*close_snap)(hModuleSnap);
775 FreeLibrary(dll);
776 return 0;
777 }

779 static void *win32_globallookup(const char *name)
780 {
781 HMODULE dll;
782 HANDLE hModuleSnap = INVALID_HANDLE_VALUE;
783 MODULEENTRY32 me32;
784 CREATETOOLHELP32SNAPSHOT create_snap;
785 CLOSETOOLHELP32SNAPSHOT close_snap;
786 MODULE32 module_first, module_next;
787 FARPROC ret=NULL;

new/usr/src/lib/openssl/libsunw_crypto/dso/dso_win32.c 13

789 dll = LoadLibrary(TEXT(DLLNAME));
790 if (dll == NULL)
791 {
792 DSOerr(DSO_F_WIN32_GLOBALLOOKUP,DSO_R_UNSUPPORTED);
793 return NULL;
794 }

796 create_snap = (CREATETOOLHELP32SNAPSHOT)
797 GetProcAddress(dll,"CreateToolhelp32Snapshot");
798 if (create_snap == NULL)
799 {
800 FreeLibrary(dll);
801 DSOerr(DSO_F_WIN32_GLOBALLOOKUP,DSO_R_UNSUPPORTED);
802 return NULL;
803 }
804 /* We take the rest for granted... */
805 #ifdef _WIN32_WCE
806 close_snap = (CLOSETOOLHELP32SNAPSHOT)
807 GetProcAddress(dll,"CloseToolhelp32Snapshot");
808 #else
809 close_snap = (CLOSETOOLHELP32SNAPSHOT)CloseHandle;
810 #endif
811 module_first = (MODULE32)GetProcAddress(dll,"Module32First");
812 module_next = (MODULE32)GetProcAddress(dll,"Module32Next");

814 hModuleSnap = (*create_snap)(TH32CS_SNAPMODULE,0);
815 if(hModuleSnap == INVALID_HANDLE_VALUE)
816 {
817 FreeLibrary(dll);
818 DSOerr(DSO_F_WIN32_GLOBALLOOKUP,DSO_R_UNSUPPORTED);
819 return NULL;
820 }

822 me32.dwSize = sizeof(me32);

824 if (!(*module_first)(hModuleSnap,&me32))
825 {
826 (*close_snap)(hModuleSnap);
827 FreeLibrary(dll);
828 return NULL;
829 }

831 do {
832 if ((ret = GetProcAddress(me32.hModule,name)))
833 {
834 (*close_snap)(hModuleSnap);
835 FreeLibrary(dll);
836 return ret;
837 }
838 } while((*module_next)(hModuleSnap,&me32));

840 (*close_snap)(hModuleSnap);
841 FreeLibrary(dll);
842 return NULL;
843 }
844 #endif /* DSO_WIN32 */

new/usr/src/lib/openssl/libsunw_crypto/ebcdic.c 1

**
 11307 Fri May 30 18:31:46 2014
new/usr/src/lib/openssl/libsunw_crypto/ebcdic.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ebcdic.c */

3 #ifndef CHARSET_EBCDIC

5 #include <openssl/e_os2.h>
6 #if defined(PEDANTIC) || defined(__DECC) || defined(OPENSSL_SYS_MACOSX)
7 static void *dummy=&dummy;
8 #endif

10 #else /*CHARSET_EBCDIC*/

12 #include "ebcdic.h"
13 /* Initial Port for Apache-1.3 by <Martin.Kraemer@Mch.SNI.De>
14 * Adapted for OpenSSL-0.9.4 by <Martin.Kraemer@Mch.SNI.De>
15 */

17 #ifdef _OSD_POSIX
18 /*
19 "BS2000 OSD" is a POSIX subsystem on a main frame.
20 It is made by Siemens AG, Germany, for their BS2000 mainframe machines.
21 Within the POSIX subsystem, the same character set was chosen as in
22 "native BS2000", namely EBCDIC. (EDF04)

24 The name "ASCII" in these routines is misleading: actually, conversion
25 is not between EBCDIC and ASCII, but EBCDIC(EDF04) and ISO-8859.1;
26 that means that (western european) national characters are preserved.

28 This table is identical to the one used by rsh/rcp/ftp and other POSIX tools
29 */

31 /* Here’s the bijective ebcdic-to-ascii table: */
32 const unsigned char os_toascii[256] = {
33 /*00*/ 0x00, 0x01, 0x02, 0x03, 0x85, 0x09, 0x86, 0x7f,
34 0x87, 0x8d, 0x8e, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, /*................*/
35 /*10*/ 0x10, 0x11, 0x12, 0x13, 0x8f, 0x0a, 0x08, 0x97,
36 0x18, 0x19, 0x9c, 0x9d, 0x1c, 0x1d, 0x1e, 0x1f, /*................*/
37 /*20*/ 0x80, 0x81, 0x82, 0x83, 0x84, 0x92, 0x17, 0x1b,
38 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x05, 0x06, 0x07, /*................*/
39 /*30*/ 0x90, 0x91, 0x16, 0x93, 0x94, 0x95, 0x96, 0x04,
40 0x98, 0x99, 0x9a, 0x9b, 0x14, 0x15, 0x9e, 0x1a, /*................*/
41 /*40*/ 0x20, 0xa0, 0xe2, 0xe4, 0xe0, 0xe1, 0xe3, 0xe5,
42 0xe7, 0xf1, 0x60, 0x2e, 0x3c, 0x28, 0x2b, 0x7c, /*‘.<(+|*/
43 /*50*/ 0x26, 0xe9, 0xea, 0xeb, 0xe8, 0xed, 0xee, 0xef,
44 0xec, 0xdf, 0x21, 0x24, 0x2a, 0x29, 0x3b, 0x9f, /*&.........!$*);.*/
45 /*60*/ 0x2d, 0x2f, 0xc2, 0xc4, 0xc0, 0xc1, 0xc3, 0xc5,
46 0xc7, 0xd1, 0x5e, 0x2c, 0x25, 0x5f, 0x3e, 0x3f, /*-/........^,%_>?*/
47 /*70*/ 0xf8, 0xc9, 0xca, 0xcb, 0xc8, 0xcd, 0xce, 0xcf,
48 0xcc, 0xa8, 0x3a, 0x23, 0x40, 0x27, 0x3d, 0x22, /*..........:#@’="*/
49 /*80*/ 0xd8, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
50 0x68, 0x69, 0xab, 0xbb, 0xf0, 0xfd, 0xfe, 0xb1, /*.abcdefghi......*/
51 /*90*/ 0xb0, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70,
52 0x71, 0x72, 0xaa, 0xba, 0xe6, 0xb8, 0xc6, 0xa4, /*.jklmnopqr......*/
53 /*a0*/ 0xb5, 0xaf, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
54 0x79, 0x7a, 0xa1, 0xbf, 0xd0, 0xdd, 0xde, 0xae, /*..stuvwxyz......*/
55 /*b0*/ 0xa2, 0xa3, 0xa5, 0xb7, 0xa9, 0xa7, 0xb6, 0xbc,
56 0xbd, 0xbe, 0xac, 0x5b, 0x5c, 0x5d, 0xb4, 0xd7, /*...........[\]..*/
57 /*c0*/ 0xf9, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
58 0x48, 0x49, 0xad, 0xf4, 0xf6, 0xf2, 0xf3, 0xf5, /*.ABCDEFGHI......*/
59 /*d0*/ 0xa6, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50,
60 0x51, 0x52, 0xb9, 0xfb, 0xfc, 0xdb, 0xfa, 0xff, /*.JKLMNOPQR......*/
61 /*e0*/ 0xd9, 0xf7, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,

new/usr/src/lib/openssl/libsunw_crypto/ebcdic.c 2

62 0x59, 0x5a, 0xb2, 0xd4, 0xd6, 0xd2, 0xd3, 0xd5, /*..STUVWXYZ......*/
63 /*f0*/ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
64 0x38, 0x39, 0xb3, 0x7b, 0xdc, 0x7d, 0xda, 0x7e /*0123456789.{.}.~*/
65 };

68 /* The ascii-to-ebcdic table: */
69 const unsigned char os_toebcdic[256] = {
70 /*00*/ 0x00, 0x01, 0x02, 0x03, 0x37, 0x2d, 0x2e, 0x2f,
71 0x16, 0x05, 0x15, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, /*................*/
72 /*10*/ 0x10, 0x11, 0x12, 0x13, 0x3c, 0x3d, 0x32, 0x26,
73 0x18, 0x19, 0x3f, 0x27, 0x1c, 0x1d, 0x1e, 0x1f, /*................*/
74 /*20*/ 0x40, 0x5a, 0x7f, 0x7b, 0x5b, 0x6c, 0x50, 0x7d,
75 0x4d, 0x5d, 0x5c, 0x4e, 0x6b, 0x60, 0x4b, 0x61, /* !"#$%&’()*+,-./ */
76 /*30*/ 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
77 0xf8, 0xf9, 0x7a, 0x5e, 0x4c, 0x7e, 0x6e, 0x6f, /*0123456789:;<=>?*/
78 /*40*/ 0x7c, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
79 0xc8, 0xc9, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, /*@ABCDEFGHIJKLMNO*/
80 /*50*/ 0xd7, 0xd8, 0xd9, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6,
81 0xe7, 0xe8, 0xe9, 0xbb, 0xbc, 0xbd, 0x6a, 0x6d, /*PQRSTUVWXYZ[\]^_*/
82 /*60*/ 0x4a, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
83 0x88, 0x89, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, /*‘abcdefghijklmno*/
84 /*70*/ 0x97, 0x98, 0x99, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6,
85 0xa7, 0xa8, 0xa9, 0xfb, 0x4f, 0xfd, 0xff, 0x07, /*pqrstuvwxyz{|}~.*/
86 /*80*/ 0x20, 0x21, 0x22, 0x23, 0x24, 0x04, 0x06, 0x08,
87 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x09, 0x0a, 0x14, /*................*/
88 /*90*/ 0x30, 0x31, 0x25, 0x33, 0x34, 0x35, 0x36, 0x17,
89 0x38, 0x39, 0x3a, 0x3b, 0x1a, 0x1b, 0x3e, 0x5f, /*................*/
90 /*a0*/ 0x41, 0xaa, 0xb0, 0xb1, 0x9f, 0xb2, 0xd0, 0xb5,
91 0x79, 0xb4, 0x9a, 0x8a, 0xba, 0xca, 0xaf, 0xa1, /*................*/
92 /*b0*/ 0x90, 0x8f, 0xea, 0xfa, 0xbe, 0xa0, 0xb6, 0xb3,
93 0x9d, 0xda, 0x9b, 0x8b, 0xb7, 0xb8, 0xb9, 0xab, /*................*/
94 /*c0*/ 0x64, 0x65, 0x62, 0x66, 0x63, 0x67, 0x9e, 0x68,
95 0x74, 0x71, 0x72, 0x73, 0x78, 0x75, 0x76, 0x77, /*................*/
96 /*d0*/ 0xac, 0x69, 0xed, 0xee, 0xeb, 0xef, 0xec, 0xbf,
97 0x80, 0xe0, 0xfe, 0xdd, 0xfc, 0xad, 0xae, 0x59, /*................*/
98 /*e0*/ 0x44, 0x45, 0x42, 0x46, 0x43, 0x47, 0x9c, 0x48,
99 0x54, 0x51, 0x52, 0x53, 0x58, 0x55, 0x56, 0x57, /*................*/
100 /*f0*/ 0x8c, 0x49, 0xcd, 0xce, 0xcb, 0xcf, 0xcc, 0xe1,
101 0x70, 0xc0, 0xde, 0xdb, 0xdc, 0x8d, 0x8e, 0xdf /*................*/
102 };

104 #else /*_OSD_POSIX*/

106 /*
107 This code does basic character mapping for IBM’s TPF and OS/390 operating system
108 It is a modified version of the BS2000 table.

110 Bijective EBCDIC (character set IBM-1047) to US-ASCII table:
111 This table is bijective - there are no ambigous or duplicate characters.
112 */
113 const unsigned char os_toascii[256] = {
114 0x00, 0x01, 0x02, 0x03, 0x85, 0x09, 0x86, 0x7f, /* 00-0f: */
115 0x87, 0x8d, 0x8e, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, /* */
116 0x10, 0x11, 0x12, 0x13, 0x8f, 0x0a, 0x08, 0x97, /* 10-1f: */
117 0x18, 0x19, 0x9c, 0x9d, 0x1c, 0x1d, 0x1e, 0x1f, /* */
118 0x80, 0x81, 0x82, 0x83, 0x84, 0x92, 0x17, 0x1b, /* 20-2f: */
119 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x05, 0x06, 0x07, /* */
120 0x90, 0x91, 0x16, 0x93, 0x94, 0x95, 0x96, 0x04, /* 30-3f: */
121 0x98, 0x99, 0x9a, 0x9b, 0x14, 0x15, 0x9e, 0x1a, /* */
122 0x20, 0xa0, 0xe2, 0xe4, 0xe0, 0xe1, 0xe3, 0xe5, /* 40-4f: */
123 0xe7, 0xf1, 0xa2, 0x2e, 0x3c, 0x28, 0x2b, 0x7c, /* <(+| */
124 0x26, 0xe9, 0xea, 0xeb, 0xe8, 0xed, 0xee, 0xef, /* 50-5f: */
125 0xec, 0xdf, 0x21, 0x24, 0x2a, 0x29, 0x3b, 0x5e, /* &.........!$*);^ */
126 0x2d, 0x2f, 0xc2, 0xc4, 0xc0, 0xc1, 0xc3, 0xc5, /* 60-6f: */
127 0xc7, 0xd1, 0xa6, 0x2c, 0x25, 0x5f, 0x3e, 0x3f, /* -/.........,%_>? */

new/usr/src/lib/openssl/libsunw_crypto/ebcdic.c 3

128 0xf8, 0xc9, 0xca, 0xcb, 0xc8, 0xcd, 0xce, 0xcf, /* 70-7f: */
129 0xcc, 0x60, 0x3a, 0x23, 0x40, 0x27, 0x3d, 0x22, /*‘:#@’=" */
130 0xd8, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, /* 80-8f: */
131 0x68, 0x69, 0xab, 0xbb, 0xf0, 0xfd, 0xfe, 0xb1, /* .abcdefghi...... */
132 0xb0, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, /* 90-9f: */
133 0x71, 0x72, 0xaa, 0xba, 0xe6, 0xb8, 0xc6, 0xa4, /* .jklmnopqr...... */
134 0xb5, 0x7e, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, /* a0-af: */
135 0x79, 0x7a, 0xa1, 0xbf, 0xd0, 0x5b, 0xde, 0xae, /* .~stuvwxyz...[.. */
136 0xac, 0xa3, 0xa5, 0xb7, 0xa9, 0xa7, 0xb6, 0xbc, /* b0-bf: */
137 0xbd, 0xbe, 0xdd, 0xa8, 0xaf, 0x5d, 0xb4, 0xd7, /*].. */
138 0x7b, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, /* c0-cf: */
139 0x48, 0x49, 0xad, 0xf4, 0xf6, 0xf2, 0xf3, 0xf5, /* {ABCDEFGHI...... */
140 0x7d, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, /* d0-df: */
141 0x51, 0x52, 0xb9, 0xfb, 0xfc, 0xf9, 0xfa, 0xff, /* }JKLMNOPQR...... */
142 0x5c, 0xf7, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, /* e0-ef: */
143 0x59, 0x5a, 0xb2, 0xd4, 0xd6, 0xd2, 0xd3, 0xd5, /* \.STUVWXYZ...... */
144 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, /* f0-ff: */
145 0x38, 0x39, 0xb3, 0xdb, 0xdc, 0xd9, 0xda, 0x9f /* 0123456789...... */
146 };

149 /*
150 The US-ASCII to EBCDIC (character set IBM-1047) table:
151 This table is bijective (no ambiguous or duplicate characters)
152 */
153 const unsigned char os_toebcdic[256] = {
154 0x00, 0x01, 0x02, 0x03, 0x37, 0x2d, 0x2e, 0x2f, /* 00-0f: */
155 0x16, 0x05, 0x15, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, /* */
156 0x10, 0x11, 0x12, 0x13, 0x3c, 0x3d, 0x32, 0x26, /* 10-1f: */
157 0x18, 0x19, 0x3f, 0x27, 0x1c, 0x1d, 0x1e, 0x1f, /* */
158 0x40, 0x5a, 0x7f, 0x7b, 0x5b, 0x6c, 0x50, 0x7d, /* 20-2f: */
159 0x4d, 0x5d, 0x5c, 0x4e, 0x6b, 0x60, 0x4b, 0x61, /* !"#$%&’()*+,-./ */
160 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, /* 30-3f: */
161 0xf8, 0xf9, 0x7a, 0x5e, 0x4c, 0x7e, 0x6e, 0x6f, /* 0123456789:;<=>? */
162 0x7c, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, /* 40-4f: */
163 0xc8, 0xc9, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, /* @ABCDEFGHIJKLMNO */
164 0xd7, 0xd8, 0xd9, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, /* 50-5f: */
165 0xe7, 0xe8, 0xe9, 0xad, 0xe0, 0xbd, 0x5f, 0x6d, /* PQRSTUVWXYZ[\]^_ */
166 0x79, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, /* 60-6f: */
167 0x88, 0x89, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, /* ‘abcdefghijklmno */
168 0x97, 0x98, 0x99, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, /* 70-7f: */
169 0xa7, 0xa8, 0xa9, 0xc0, 0x4f, 0xd0, 0xa1, 0x07, /* pqrstuvwxyz{|}~. */
170 0x20, 0x21, 0x22, 0x23, 0x24, 0x04, 0x06, 0x08, /* 80-8f: */
171 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x09, 0x0a, 0x14, /* */
172 0x30, 0x31, 0x25, 0x33, 0x34, 0x35, 0x36, 0x17, /* 90-9f: */
173 0x38, 0x39, 0x3a, 0x3b, 0x1a, 0x1b, 0x3e, 0xff, /* */
174 0x41, 0xaa, 0x4a, 0xb1, 0x9f, 0xb2, 0x6a, 0xb5, /* a0-af: */
175 0xbb, 0xb4, 0x9a, 0x8a, 0xb0, 0xca, 0xaf, 0xbc, /* */
176 0x90, 0x8f, 0xea, 0xfa, 0xbe, 0xa0, 0xb6, 0xb3, /* b0-bf: */
177 0x9d, 0xda, 0x9b, 0x8b, 0xb7, 0xb8, 0xb9, 0xab, /* */
178 0x64, 0x65, 0x62, 0x66, 0x63, 0x67, 0x9e, 0x68, /* c0-cf: */
179 0x74, 0x71, 0x72, 0x73, 0x78, 0x75, 0x76, 0x77, /* */
180 0xac, 0x69, 0xed, 0xee, 0xeb, 0xef, 0xec, 0xbf, /* d0-df: */
181 0x80, 0xfd, 0xfe, 0xfb, 0xfc, 0xba, 0xae, 0x59, /* */
182 0x44, 0x45, 0x42, 0x46, 0x43, 0x47, 0x9c, 0x48, /* e0-ef: */
183 0x54, 0x51, 0x52, 0x53, 0x58, 0x55, 0x56, 0x57, /* */
184 0x8c, 0x49, 0xcd, 0xce, 0xcb, 0xcf, 0xcc, 0xe1, /* f0-ff: */
185 0x70, 0xdd, 0xde, 0xdb, 0xdc, 0x8d, 0x8e, 0xdf /* */
186 };
187 #endif /*_OSD_POSIX*/

189 /* Translate a memory block from EBCDIC (host charset) to ASCII (net charset)
190 * dest and srce may be identical, or separate memory blocks, but
191 * should not overlap. These functions intentionally have an interface
192 * compatible to memcpy(3).
193 */

new/usr/src/lib/openssl/libsunw_crypto/ebcdic.c 4

195 void *
196 ebcdic2ascii(void *dest, const void *srce, size_t count)
197 {
198 unsigned char *udest = dest;
199 const unsigned char *usrce = srce;

201 while (count-- != 0) {
202 *udest++ = os_toascii[*usrce++];
203 }

205 return dest;
206 }

208 void *
209 ascii2ebcdic(void *dest, const void *srce, size_t count)
210 {
211 unsigned char *udest = dest;
212 const unsigned char *usrce = srce;

214 while (count-- != 0) {
215 *udest++ = os_toebcdic[*usrce++];
216 }

218 return dest;
219 }

221 #endif

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_all.c 1

**
 4679 Fri May 30 18:31:46 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/eng_all.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/engine/eng_all.c -*- mode: C; c-file-style: "eay" -*- */
2 /* Written by Richard Levitte <richard@levitte.org> for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000-2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include "cryptlib.h"
60 #include "eng_int.h"

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_all.c 2

62 void ENGINE_load_builtin_engines(void)
63 {
64 /* Some ENGINEs need this */
65 OPENSSL_cpuid_setup();
66 #if 0
67 /* There’s no longer any need for an "openssl" ENGINE unless, one day,
68 * it is the *only* way for standard builtin implementations to be be
69 * accessed (ie. it would be possible to statically link binaries with
70 * *no* builtin implementations). */
71 ENGINE_load_openssl();
72 #endif
73 #if !defined(OPENSSL_NO_HW) && (defined(__OpenBSD__) || defined(__FreeBSD__) ||
74 ENGINE_load_cryptodev();
75 #endif
76 #ifndef OPENSSL_NO_RSAX
77 ENGINE_load_rsax();
78 #endif
79 #ifndef OPENSSL_NO_RDRAND
80 ENGINE_load_rdrand();
81 #endif
82 ENGINE_load_dynamic();
83 #ifndef OPENSSL_NO_STATIC_ENGINE
84 #ifndef OPENSSL_NO_HW
85 #ifndef OPENSSL_NO_HW_4758_CCA
86 ENGINE_load_4758cca();
87 #endif
88 #ifndef OPENSSL_NO_HW_AEP
89 ENGINE_load_aep();
90 #endif
91 #ifndef OPENSSL_NO_HW_ATALLA
92 ENGINE_load_atalla();
93 #endif
94 #ifndef OPENSSL_NO_HW_CSWIFT
95 ENGINE_load_cswift();
96 #endif
97 #ifndef OPENSSL_NO_HW_NCIPHER
98 ENGINE_load_chil();
99 #endif
100 #ifndef OPENSSL_NO_HW_NURON
101 ENGINE_load_nuron();
102 #endif
103 #ifndef OPENSSL_NO_HW_SUREWARE
104 ENGINE_load_sureware();
105 #endif
106 #ifndef OPENSSL_NO_HW_UBSEC
107 ENGINE_load_ubsec();
108 #endif
109 #ifndef OPENSSL_NO_HW_PADLOCK
110 ENGINE_load_padlock();
111 #endif
112 #ifndef OPENSSL_NO_HW_PKCS11
113 ENGINE_load_pk11();
114 #endif
115 #endif
116 #ifndef OPENSSL_NO_GOST
117 ENGINE_load_gost();
118 #endif
119 #ifndef OPENSSL_NO_GMP
120 ENGINE_load_gmp();
121 #endif
122 #if defined(OPENSSL_SYS_WIN32) && !defined(OPENSSL_NO_CAPIENG)
123 ENGINE_load_capi();
124 #endif
125 #endif
126 ENGINE_register_all_complete();
127 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_all.c 3

129 #if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(HAVE_CRYPTODEV)
130 void ENGINE_setup_bsd_cryptodev(void) {
131 static int bsd_cryptodev_default_loaded = 0;
132 if (!bsd_cryptodev_default_loaded) {
133 ENGINE_load_cryptodev();
134 ENGINE_register_all_complete();
135 }
136 bsd_cryptodev_default_loaded=1;
137 }
138 #endif

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cnf.c 1

**
 7093 Fri May 30 18:31:46 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cnf.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* eng_cnf.c */
2 /* Written by Stephen Henson (steve@openssl.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include "eng_int.h"
60 #include <openssl/conf.h>

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cnf.c 2

62 /* #define ENGINE_CONF_DEBUG */

64 /* ENGINE config module */

66 static char *skip_dot(char *name)
67 {
68 char *p;
69 p = strchr(name, ’.’);
70 if (p)
71 return p + 1;
72 return name;
73 }

75 static STACK_OF(ENGINE) *initialized_engines = NULL;

77 static int int_engine_init(ENGINE *e)
78 {
79 if (!ENGINE_init(e))
80 return 0;
81 if (!initialized_engines)
82 initialized_engines = sk_ENGINE_new_null();
83 if (!initialized_engines || !sk_ENGINE_push(initialized_engines, e))
84 {
85 ENGINE_finish(e);
86 return 0;
87 }
88 return 1;
89 }
90

92 static int int_engine_configure(char *name, char *value, const CONF *cnf)
93 {
94 int i;
95 int ret = 0;
96 long do_init = -1;
97 STACK_OF(CONF_VALUE) *ecmds;
98 CONF_VALUE *ecmd = NULL;
99 char *ctrlname, *ctrlvalue;
100 ENGINE *e = NULL;
101 int soft = 0;

103 name = skip_dot(name);
104 #ifdef ENGINE_CONF_DEBUG
105 fprintf(stderr, "Configuring engine %s\n", name);
106 #endif
107 /* Value is a section containing ENGINE commands */
108 ecmds = NCONF_get_section(cnf, value);

110 if (!ecmds)
111 {
112 ENGINEerr(ENGINE_F_INT_ENGINE_CONFIGURE, ENGINE_R_ENGINE_SECTION
113 return 0;
114 }

116 for (i = 0; i < sk_CONF_VALUE_num(ecmds); i++)
117 {
118 ecmd = sk_CONF_VALUE_value(ecmds, i);
119 ctrlname = skip_dot(ecmd->name);
120 ctrlvalue = ecmd->value;
121 #ifdef ENGINE_CONF_DEBUG
122 fprintf(stderr, "ENGINE conf: doing ctrl(%s,%s)\n", ctrlname, ctrlvalue)
123 #endif

125 /* First handle some special pseudo ctrls */

127 /* Override engine name to use */

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cnf.c 3

128 if (!strcmp(ctrlname, "engine_id"))
129 name = ctrlvalue;
130 else if (!strcmp(ctrlname, "soft_load"))
131 soft = 1;
132 /* Load a dynamic ENGINE */
133 else if (!strcmp(ctrlname, "dynamic_path"))
134 {
135 e = ENGINE_by_id("dynamic");
136 if (!e)
137 goto err;
138 if (!ENGINE_ctrl_cmd_string(e, "SO_PATH", ctrlvalue, 0))
139 goto err;
140 if (!ENGINE_ctrl_cmd_string(e, "LIST_ADD", "2", 0))
141 goto err;
142 if (!ENGINE_ctrl_cmd_string(e, "LOAD", NULL, 0))
143 goto err;
144 }
145 /* ... add other pseudos here ... */
146 else
147 {
148 /* At this point we need an ENGINE structural reference
149 * if we don’t already have one.
150 */
151 if (!e)
152 {
153 e = ENGINE_by_id(name);
154 if (!e && soft)
155 {
156 ERR_clear_error();
157 return 1;
158 }
159 if (!e)
160 goto err;
161 }
162 /* Allow "EMPTY" to mean no value: this allows a valid
163 * "value" to be passed to ctrls of type NO_INPUT
164 */
165 if (!strcmp(ctrlvalue, "EMPTY"))
166 ctrlvalue = NULL;
167 if (!strcmp(ctrlname, "init"))
168 {
169 if (!NCONF_get_number_e(cnf, value, "init", &do_
170 goto err;
171 if (do_init == 1)
172 {
173 if (!int_engine_init(e))
174 goto err;
175 }
176 else if (do_init != 0)
177 {
178 ENGINEerr(ENGINE_F_INT_ENGINE_CONFIGURE,
179 goto err;
180 }
181 }
182 else if (!strcmp(ctrlname, "default_algorithms"))
183 {
184 if (!ENGINE_set_default_string(e, ctrlvalue))
185 goto err;
186 }
187 else if (!ENGINE_ctrl_cmd_string(e,
188 ctrlname, ctrlvalue, 0))
189 goto err;
190 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cnf.c 4

194 }
195 if (e && (do_init == -1) && !int_engine_init(e))
196 {
197 ecmd = NULL;
198 goto err;
199 }
200 ret = 1;
201 err:
202 if (ret != 1)
203 {
204 ENGINEerr(ENGINE_F_INT_ENGINE_CONFIGURE, ENGINE_R_ENGINE_CONFIGU
205 if (ecmd)
206 ERR_add_error_data(6, "section=", ecmd->section,
207 ", name=", ecmd->name,
208 ", value=", ecmd->value);
209 }
210 if (e)
211 ENGINE_free(e);
212 return ret;
213 }

216 static int int_engine_module_init(CONF_IMODULE *md, const CONF *cnf)
217 {
218 STACK_OF(CONF_VALUE) *elist;
219 CONF_VALUE *cval;
220 int i;
221 #ifdef ENGINE_CONF_DEBUG
222 fprintf(stderr, "Called engine module: name %s, value %s\n",
223 CONF_imodule_get_name(md), CONF_imodule_get_value(md));
224 #endif
225 /* Value is a section containing ENGINEs to configure */
226 elist = NCONF_get_section(cnf, CONF_imodule_get_value(md));

228 if (!elist)
229 {
230 ENGINEerr(ENGINE_F_INT_ENGINE_MODULE_INIT, ENGINE_R_ENGINES_SECT
231 return 0;
232 }

234 for (i = 0; i < sk_CONF_VALUE_num(elist); i++)
235 {
236 cval = sk_CONF_VALUE_value(elist, i);
237 if (!int_engine_configure(cval->name, cval->value, cnf))
238 return 0;
239 }

241 return 1;
242 }

244 static void int_engine_module_finish(CONF_IMODULE *md)
245 {
246 ENGINE *e;
247 while ((e = sk_ENGINE_pop(initialized_engines)))
248 ENGINE_finish(e);
249 sk_ENGINE_free(initialized_engines);
250 initialized_engines = NULL;
251 }
252

254 void ENGINE_add_conf_module(void)
255 {
256 CONF_module_add("engines",
257 int_engine_module_init,
258 int_engine_module_finish);
259 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cnf.c 5

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 1

**
 34938 Fri May 30 18:31:46 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright (c) 2002 Bob Beck <beck@openbsd.org>
3 * Copyright (c) 2002 Theo de Raadt
4 * Copyright (c) 2002 Markus Friedl
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */

29 #include <openssl/objects.h>
30 #include <openssl/engine.h>
31 #include <openssl/evp.h>
32 #include <openssl/bn.h>

34 #if (defined(__unix__) || defined(unix)) && !defined(USG) && \
35 (defined(OpenBSD) || defined(__FreeBSD__))
36 #include <sys/param.h>
37 # if (OpenBSD >= 200112) || ((__FreeBSD_version >= 470101 && __FreeBSD_version <
38 # define HAVE_CRYPTODEV
39 # endif
40 # if (OpenBSD >= 200110)
41 # define HAVE_SYSLOG_R
42 # endif
43 #endif

45 #ifndef HAVE_CRYPTODEV

47 void
48 ENGINE_load_cryptodev(void)
49 {
50 /* This is a NOP on platforms without /dev/crypto */
51 return;
52 }

54 #else
55
56 #include <sys/types.h>
57 #include <crypto/cryptodev.h>
58 #include <crypto/dh/dh.h>
59 #include <crypto/dsa/dsa.h>
60 #include <crypto/err/err.h>
61 #include <crypto/rsa/rsa.h>

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 2

62 #include <sys/ioctl.h>
63 #include <errno.h>
64 #include <stdio.h>
65 #include <unistd.h>
66 #include <fcntl.h>
67 #include <stdarg.h>
68 #include <syslog.h>
69 #include <errno.h>
70 #include <string.h>

72 struct dev_crypto_state {
73 struct session_op d_sess;
74 int d_fd;

76 #ifdef USE_CRYPTODEV_DIGESTS
77 char dummy_mac_key[HASH_MAX_LEN];

79 unsigned char digest_res[HASH_MAX_LEN];
80 char *mac_data;
81 int mac_len;
82 #endif
83 };

85 static u_int32_t cryptodev_asymfeat = 0;

87 static int get_asym_dev_crypto(void);
88 static int open_dev_crypto(void);
89 static int get_dev_crypto(void);
90 static int get_cryptodev_ciphers(const int **cnids);
91 #ifdef USE_CRYPTODEV_DIGESTS
92 static int get_cryptodev_digests(const int **cnids);
93 #endif
94 static int cryptodev_usable_ciphers(const int **nids);
95 static int cryptodev_usable_digests(const int **nids);
96 static int cryptodev_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
97 const unsigned char *in, size_t inl);
98 static int cryptodev_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
99 const unsigned char *iv, int enc);
100 static int cryptodev_cleanup(EVP_CIPHER_CTX *ctx);
101 static int cryptodev_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
102 const int **nids, int nid);
103 static int cryptodev_engine_digests(ENGINE *e, const EVP_MD **digest,
104 const int **nids, int nid);
105 static int bn2crparam(const BIGNUM *a, struct crparam *crp);
106 static int crparam2bn(struct crparam *crp, BIGNUM *a);
107 static void zapparams(struct crypt_kop *kop);
108 static int cryptodev_asym(struct crypt_kop *kop, int rlen, BIGNUM *r,
109 int slen, BIGNUM *s);

111 static int cryptodev_bn_mod_exp(BIGNUM *r, const BIGNUM *a,
112 const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
113 static int cryptodev_rsa_nocrt_mod_exp(BIGNUM *r0, const BIGNUM *I,
114 RSA *rsa, BN_CTX *ctx);
115 static int cryptodev_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *
116 static int cryptodev_dsa_bn_mod_exp(DSA *dsa, BIGNUM *r, BIGNUM *a,
117 const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
118 static int cryptodev_dsa_dsa_mod_exp(DSA *dsa, BIGNUM *t1, BIGNUM *g,
119 BIGNUM *u1, BIGNUM *pub_key, BIGNUM *u2, BIGNUM *p,
120 BN_CTX *ctx, BN_MONT_CTX *mont);
121 static DSA_SIG *cryptodev_dsa_do_sign(const unsigned char *dgst,
122 int dlen, DSA *dsa);
123 static int cryptodev_dsa_verify(const unsigned char *dgst, int dgst_len,
124 DSA_SIG *sig, DSA *dsa);
125 static int cryptodev_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a,
126 const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
127 BN_MONT_CTX *m_ctx);

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 3

128 static int cryptodev_dh_compute_key(unsigned char *key,
129 const BIGNUM *pub_key, DH *dh);
130 static int cryptodev_ctrl(ENGINE *e, int cmd, long i, void *p,
131 void (*f)(void));
132 void ENGINE_load_cryptodev(void);

134 static const ENGINE_CMD_DEFN cryptodev_defns[] = {
135 { 0, NULL, NULL, 0 }
136 };

138 static struct {
139 int id;
140 int nid;
141 int ivmax;
142 int keylen;
143 } ciphers[] = {
144 { CRYPTO_ARC4, NID_rc4, 0, 16, },
145 { CRYPTO_DES_CBC, NID_des_cbc, 8, 8, },
146 { CRYPTO_3DES_CBC, NID_des_ede3_cbc, 8, 24, },
147 { CRYPTO_AES_CBC, NID_aes_128_cbc, 16, 16, },
148 { CRYPTO_AES_CBC, NID_aes_192_cbc, 16, 24, },
149 { CRYPTO_AES_CBC, NID_aes_256_cbc, 16, 32, },
150 { CRYPTO_BLF_CBC, NID_bf_cbc, 8, 16, },
151 { CRYPTO_CAST_CBC, NID_cast5_cbc, 8, 16, },
152 { CRYPTO_SKIPJACK_CBC, NID_undef, 0, 0, },
153 { 0, NID_undef, 0, 0, },
154 };

156 #ifdef USE_CRYPTODEV_DIGESTS
157 static struct {
158 int id;
159 int nid;
160 int keylen;
161 } digests[] = {
162 { CRYPTO_MD5_HMAC, NID_hmacWithMD5, 16},
163 { CRYPTO_SHA1_HMAC, NID_hmacWithSHA1, 20},
164 { CRYPTO_RIPEMD160_HMAC, NID_ripemd160, 16/*?*/},
165 { CRYPTO_MD5_KPDK, NID_undef, 0},
166 { CRYPTO_SHA1_KPDK, NID_undef, 0},
167 { CRYPTO_MD5, NID_md5, 16},
168 { CRYPTO_SHA1, NID_sha1, 20},
169 { 0, NID_undef, 0},
170 };
171 #endif

173 /*
174 * Return a fd if /dev/crypto seems usable, 0 otherwise.
175 */
176 static int
177 open_dev_crypto(void)
178 {
179 static int fd = -1;

181 if (fd == -1) {
182 if ((fd = open("/dev/crypto", O_RDWR, 0)) == -1)
183 return (-1);
184 /* close on exec */
185 if (fcntl(fd, F_SETFD, 1) == -1) {
186 close(fd);
187 fd = -1;
188 return (-1);
189 }
190 }
191 return (fd);
192 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 4

194 static int
195 get_dev_crypto(void)
196 {
197 int fd, retfd;

199 if ((fd = open_dev_crypto()) == -1)
200 return (-1);
201 #ifndef CRIOGET_NOT_NEEDED
202 if (ioctl(fd, CRIOGET, &retfd) == -1)
203 return (-1);

205 /* close on exec */
206 if (fcntl(retfd, F_SETFD, 1) == -1) {
207 close(retfd);
208 return (-1);
209 }
210 #else
211 retfd = fd;
212 #endif
213 return (retfd);
214 }

216 static void put_dev_crypto(int fd)
217 {
218 #ifndef CRIOGET_NOT_NEEDED
219 close(fd);
220 #endif
221 }

223 /* Caching version for asym operations */
224 static int
225 get_asym_dev_crypto(void)
226 {
227 static int fd = -1;

229 if (fd == -1)
230 fd = get_dev_crypto();
231 return fd;
232 }

234 /*
235 * Find out what ciphers /dev/crypto will let us have a session for.
236 * XXX note, that some of these openssl doesn’t deal with yet!
237 * returning them here is harmless, as long as we return NULL
238 * when asked for a handler in the cryptodev_engine_ciphers routine
239 */
240 static int
241 get_cryptodev_ciphers(const int **cnids)
242 {
243 static int nids[CRYPTO_ALGORITHM_MAX];
244 struct session_op sess;
245 int fd, i, count = 0;

247 if ((fd = get_dev_crypto()) < 0) {
248 *cnids = NULL;
249 return (0);
250 }
251 memset(&sess, 0, sizeof(sess));
252 sess.key = (caddr_t)"123456789abcdefghijklmno";

254 for (i = 0; ciphers[i].id && count < CRYPTO_ALGORITHM_MAX; i++) {
255 if (ciphers[i].nid == NID_undef)
256 continue;
257 sess.cipher = ciphers[i].id;
258 sess.keylen = ciphers[i].keylen;
259 sess.mac = 0;

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 5

260 if (ioctl(fd, CIOCGSESSION, &sess) != -1 &&
261 ioctl(fd, CIOCFSESSION, &sess.ses) != -1)
262 nids[count++] = ciphers[i].nid;
263 }
264 put_dev_crypto(fd);

266 if (count > 0)
267 *cnids = nids;
268 else
269 *cnids = NULL;
270 return (count);
271 }

273 #ifdef USE_CRYPTODEV_DIGESTS
274 /*
275 * Find out what digests /dev/crypto will let us have a session for.
276 * XXX note, that some of these openssl doesn’t deal with yet!
277 * returning them here is harmless, as long as we return NULL
278 * when asked for a handler in the cryptodev_engine_digests routine
279 */
280 static int
281 get_cryptodev_digests(const int **cnids)
282 {
283 static int nids[CRYPTO_ALGORITHM_MAX];
284 struct session_op sess;
285 int fd, i, count = 0;

287 if ((fd = get_dev_crypto()) < 0) {
288 *cnids = NULL;
289 return (0);
290 }
291 memset(&sess, 0, sizeof(sess));
292 sess.mackey = (caddr_t)"123456789abcdefghijklmno";
293 for (i = 0; digests[i].id && count < CRYPTO_ALGORITHM_MAX; i++) {
294 if (digests[i].nid == NID_undef)
295 continue;
296 sess.mac = digests[i].id;
297 sess.mackeylen = digests[i].keylen;
298 sess.cipher = 0;
299 if (ioctl(fd, CIOCGSESSION, &sess) != -1 &&
300 ioctl(fd, CIOCFSESSION, &sess.ses) != -1)
301 nids[count++] = digests[i].nid;
302 }
303 put_dev_crypto(fd);

305 if (count > 0)
306 *cnids = nids;
307 else
308 *cnids = NULL;
309 return (count);
310 }
311 #endif /* 0 */

313 /*
314 * Find the useable ciphers|digests from dev/crypto - this is the first
315 * thing called by the engine init crud which determines what it
316 * can use for ciphers from this engine. We want to return
317 * only what we can do, anythine else is handled by software.
318 *
319 * If we can’t initialize the device to do anything useful for
320 * any reason, we want to return a NULL array, and 0 length,
321 * which forces everything to be done is software. By putting
322 * the initalization of the device in here, we ensure we can
323 * use this engine as the default, and if for whatever reason
324 * /dev/crypto won’t do what we want it will just be done in
325 * software

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 6

326 *
327 * This can (should) be greatly expanded to perhaps take into
328 * account speed of the device, and what we want to do.
329 * (although the disabling of particular alg’s could be controlled
330 * by the device driver with sysctl’s.) - this is where we
331 * want most of the decisions made about what we actually want
332 * to use from /dev/crypto.
333 */
334 static int
335 cryptodev_usable_ciphers(const int **nids)
336 {
337 return (get_cryptodev_ciphers(nids));
338 }

340 static int
341 cryptodev_usable_digests(const int **nids)
342 {
343 #ifdef USE_CRYPTODEV_DIGESTS
344 return (get_cryptodev_digests(nids));
345 #else
346 /*
347 * XXXX just disable all digests for now, because it sucks.
348 * we need a better way to decide this - i.e. I may not
349 * want digests on slow cards like hifn on fast machines,
350 * but might want them on slow or loaded machines, etc.
351 * will also want them when using crypto cards that don’t
352 * suck moose gonads - would be nice to be able to decide something
353 * as reasonable default without having hackery that’s card dependent.
354 * of course, the default should probably be just do everything,
355 * with perhaps a sysctl to turn algoritms off (or have them off
356 * by default) on cards that generally suck like the hifn.
357 */
358 *nids = NULL;
359 return (0);
360 #endif
361 }

363 static int
364 cryptodev_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
365 const unsigned char *in, size_t inl)
366 {
367 struct crypt_op cryp;
368 struct dev_crypto_state *state = ctx->cipher_data;
369 struct session_op *sess = &state->d_sess;
370 const void *iiv;
371 unsigned char save_iv[EVP_MAX_IV_LENGTH];

373 if (state->d_fd < 0)
374 return (0);
375 if (!inl)
376 return (1);
377 if ((inl % ctx->cipher->block_size) != 0)
378 return (0);

380 memset(&cryp, 0, sizeof(cryp));

382 cryp.ses = sess->ses;
383 cryp.flags = 0;
384 cryp.len = inl;
385 cryp.src = (caddr_t) in;
386 cryp.dst = (caddr_t) out;
387 cryp.mac = 0;

389 cryp.op = ctx->encrypt ? COP_ENCRYPT : COP_DECRYPT;

391 if (ctx->cipher->iv_len) {

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 7

392 cryp.iv = (caddr_t) ctx->iv;
393 if (!ctx->encrypt) {
394 iiv = in + inl - ctx->cipher->iv_len;
395 memcpy(save_iv, iiv, ctx->cipher->iv_len);
396 }
397 } else
398 cryp.iv = NULL;

400 if (ioctl(state->d_fd, CIOCCRYPT, &cryp) == -1) {
401 /* XXX need better errror handling
402 * this can fail for a number of different reasons.
403 */
404 return (0);
405 }

407 if (ctx->cipher->iv_len) {
408 if (ctx->encrypt)
409 iiv = out + inl - ctx->cipher->iv_len;
410 else
411 iiv = save_iv;
412 memcpy(ctx->iv, iiv, ctx->cipher->iv_len);
413 }
414 return (1);
415 }

417 static int
418 cryptodev_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
419 const unsigned char *iv, int enc)
420 {
421 struct dev_crypto_state *state = ctx->cipher_data;
422 struct session_op *sess = &state->d_sess;
423 int cipher = -1, i;

425 for (i = 0; ciphers[i].id; i++)
426 if (ctx->cipher->nid == ciphers[i].nid &&
427 ctx->cipher->iv_len <= ciphers[i].ivmax &&
428 ctx->key_len == ciphers[i].keylen) {
429 cipher = ciphers[i].id;
430 break;
431 }

433 if (!ciphers[i].id) {
434 state->d_fd = -1;
435 return (0);
436 }

438 memset(sess, 0, sizeof(struct session_op));

440 if ((state->d_fd = get_dev_crypto()) < 0)
441 return (0);

443 sess->key = (caddr_t)key;
444 sess->keylen = ctx->key_len;
445 sess->cipher = cipher;

447 if (ioctl(state->d_fd, CIOCGSESSION, sess) == -1) {
448 put_dev_crypto(state->d_fd);
449 state->d_fd = -1;
450 return (0);
451 }
452 return (1);
453 }

455 /*
456 * free anything we allocated earlier when initting a
457 * session, and close the session.

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 8

458 */
459 static int
460 cryptodev_cleanup(EVP_CIPHER_CTX *ctx)
461 {
462 int ret = 0;
463 struct dev_crypto_state *state = ctx->cipher_data;
464 struct session_op *sess = &state->d_sess;

466 if (state->d_fd < 0)
467 return (0);

469 /* XXX if this ioctl fails, someting’s wrong. the invoker
470 * may have called us with a bogus ctx, or we could
471 * have a device that for whatever reason just doesn’t
472 * want to play ball - it’s not clear what’s right
473 * here - should this be an error? should it just
474 * increase a counter, hmm. For right now, we return
475 * 0 - I don’t believe that to be "right". we could
476 * call the gorpy openssl lib error handlers that
477 * print messages to users of the library. hmm..
478 */

480 if (ioctl(state->d_fd, CIOCFSESSION, &sess->ses) == -1) {
481 ret = 0;
482 } else {
483 ret = 1;
484 }
485 put_dev_crypto(state->d_fd);
486 state->d_fd = -1;

488 return (ret);
489 }

491 /*
492 * libcrypto EVP stuff - this is how we get wired to EVP so the engine
493 * gets called when libcrypto requests a cipher NID.
494 */

496 /* RC4 */
497 const EVP_CIPHER cryptodev_rc4 = {
498 NID_rc4,
499 1, 16, 0,
500 EVP_CIPH_VARIABLE_LENGTH,
501 cryptodev_init_key,
502 cryptodev_cipher,
503 cryptodev_cleanup,
504 sizeof(struct dev_crypto_state),
505 NULL,
506 NULL,
507 NULL
508 };

510 /* DES CBC EVP */
511 const EVP_CIPHER cryptodev_des_cbc = {
512 NID_des_cbc,
513 8, 8, 8,
514 EVP_CIPH_CBC_MODE,
515 cryptodev_init_key,
516 cryptodev_cipher,
517 cryptodev_cleanup,
518 sizeof(struct dev_crypto_state),
519 EVP_CIPHER_set_asn1_iv,
520 EVP_CIPHER_get_asn1_iv,
521 NULL
522 };

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 9

524 /* 3DES CBC EVP */
525 const EVP_CIPHER cryptodev_3des_cbc = {
526 NID_des_ede3_cbc,
527 8, 24, 8,
528 EVP_CIPH_CBC_MODE,
529 cryptodev_init_key,
530 cryptodev_cipher,
531 cryptodev_cleanup,
532 sizeof(struct dev_crypto_state),
533 EVP_CIPHER_set_asn1_iv,
534 EVP_CIPHER_get_asn1_iv,
535 NULL
536 };

538 const EVP_CIPHER cryptodev_bf_cbc = {
539 NID_bf_cbc,
540 8, 16, 8,
541 EVP_CIPH_CBC_MODE,
542 cryptodev_init_key,
543 cryptodev_cipher,
544 cryptodev_cleanup,
545 sizeof(struct dev_crypto_state),
546 EVP_CIPHER_set_asn1_iv,
547 EVP_CIPHER_get_asn1_iv,
548 NULL
549 };

551 const EVP_CIPHER cryptodev_cast_cbc = {
552 NID_cast5_cbc,
553 8, 16, 8,
554 EVP_CIPH_CBC_MODE,
555 cryptodev_init_key,
556 cryptodev_cipher,
557 cryptodev_cleanup,
558 sizeof(struct dev_crypto_state),
559 EVP_CIPHER_set_asn1_iv,
560 EVP_CIPHER_get_asn1_iv,
561 NULL
562 };

564 const EVP_CIPHER cryptodev_aes_cbc = {
565 NID_aes_128_cbc,
566 16, 16, 16,
567 EVP_CIPH_CBC_MODE,
568 cryptodev_init_key,
569 cryptodev_cipher,
570 cryptodev_cleanup,
571 sizeof(struct dev_crypto_state),
572 EVP_CIPHER_set_asn1_iv,
573 EVP_CIPHER_get_asn1_iv,
574 NULL
575 };

577 const EVP_CIPHER cryptodev_aes_192_cbc = {
578 NID_aes_192_cbc,
579 16, 24, 16,
580 EVP_CIPH_CBC_MODE,
581 cryptodev_init_key,
582 cryptodev_cipher,
583 cryptodev_cleanup,
584 sizeof(struct dev_crypto_state),
585 EVP_CIPHER_set_asn1_iv,
586 EVP_CIPHER_get_asn1_iv,
587 NULL
588 };

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 10

590 const EVP_CIPHER cryptodev_aes_256_cbc = {
591 NID_aes_256_cbc,
592 16, 32, 16,
593 EVP_CIPH_CBC_MODE,
594 cryptodev_init_key,
595 cryptodev_cipher,
596 cryptodev_cleanup,
597 sizeof(struct dev_crypto_state),
598 EVP_CIPHER_set_asn1_iv,
599 EVP_CIPHER_get_asn1_iv,
600 NULL
601 };

603 /*
604 * Registered by the ENGINE when used to find out how to deal with
605 * a particular NID in the ENGINE. this says what we’ll do at the
606 * top level - note, that list is restricted by what we answer with
607 */
608 static int
609 cryptodev_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
610 const int **nids, int nid)
611 {
612 if (!cipher)
613 return (cryptodev_usable_ciphers(nids));

615 switch (nid) {
616 case NID_rc4:
617 *cipher = &cryptodev_rc4;
618 break;
619 case NID_des_ede3_cbc:
620 *cipher = &cryptodev_3des_cbc;
621 break;
622 case NID_des_cbc:
623 *cipher = &cryptodev_des_cbc;
624 break;
625 case NID_bf_cbc:
626 *cipher = &cryptodev_bf_cbc;
627 break;
628 case NID_cast5_cbc:
629 *cipher = &cryptodev_cast_cbc;
630 break;
631 case NID_aes_128_cbc:
632 *cipher = &cryptodev_aes_cbc;
633 break;
634 case NID_aes_192_cbc:
635 *cipher = &cryptodev_aes_192_cbc;
636 break;
637 case NID_aes_256_cbc:
638 *cipher = &cryptodev_aes_256_cbc;
639 break;
640 default:
641 *cipher = NULL;
642 break;
643 }
644 return (*cipher != NULL);
645 }

648 #ifdef USE_CRYPTODEV_DIGESTS

650 /* convert digest type to cryptodev */
651 static int
652 digest_nid_to_cryptodev(int nid)
653 {
654 int i;

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 11

656 for (i = 0; digests[i].id; i++)
657 if (digests[i].nid == nid)
658 return (digests[i].id);
659 return (0);
660 }

663 static int
664 digest_key_length(int nid)
665 {
666 int i;

668 for (i = 0; digests[i].id; i++)
669 if (digests[i].nid == nid)
670 return digests[i].keylen;
671 return (0);
672 }

675 static int cryptodev_digest_init(EVP_MD_CTX *ctx)
676 {
677 struct dev_crypto_state *state = ctx->md_data;
678 struct session_op *sess = &state->d_sess;
679 int digest;

681 if ((digest = digest_nid_to_cryptodev(ctx->digest->type)) == NID_undef){
682 printf("cryptodev_digest_init: Can’t get digest \n");
683 return (0);
684 }

686 memset(state, 0, sizeof(struct dev_crypto_state));

688 if ((state->d_fd = get_dev_crypto()) < 0) {
689 printf("cryptodev_digest_init: Can’t get Dev \n");
690 return (0);
691 }

693 sess->mackey = state->dummy_mac_key;
694 sess->mackeylen = digest_key_length(ctx->digest->type);
695 sess->mac = digest;

697 if (ioctl(state->d_fd, CIOCGSESSION, sess) < 0) {
698 put_dev_crypto(state->d_fd);
699 state->d_fd = -1;
700 printf("cryptodev_digest_init: Open session failed\n");
701 return (0);
702 }

704 return (1);
705 }

707 static int cryptodev_digest_update(EVP_MD_CTX *ctx, const void *data,
708 size_t count)
709 {
710 struct crypt_op cryp;
711 struct dev_crypto_state *state = ctx->md_data;
712 struct session_op *sess = &state->d_sess;

714 if (!data || state->d_fd < 0) {
715 printf("cryptodev_digest_update: illegal inputs \n");
716 return (0);
717 }

719 if (!count) {
720 return (0);
721 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 12

723 if (!(ctx->flags & EVP_MD_CTX_FLAG_ONESHOT)) {
724 /* if application doesn’t support one buffer */
725 state->mac_data = OPENSSL_realloc(state->mac_data, state->mac_le

727 if (!state->mac_data) {
728 printf("cryptodev_digest_update: realloc failed\n");
729 return (0);
730 }

732 memcpy(state->mac_data + state->mac_len, data, count);
733 state->mac_len += count;
734
735 return (1);
736 }

738 memset(&cryp, 0, sizeof(cryp));

740 cryp.ses = sess->ses;
741 cryp.flags = 0;
742 cryp.len = count;
743 cryp.src = (caddr_t) data;
744 cryp.dst = NULL;
745 cryp.mac = (caddr_t) state->digest_res;
746 if (ioctl(state->d_fd, CIOCCRYPT, &cryp) < 0) {
747 printf("cryptodev_digest_update: digest failed\n");
748 return (0);
749 }
750 return (1);
751 }

754 static int cryptodev_digest_final(EVP_MD_CTX *ctx, unsigned char *md)
755 {
756 struct crypt_op cryp;
757 struct dev_crypto_state *state = ctx->md_data;
758 struct session_op *sess = &state->d_sess;

760 int ret = 1;

762 if (!md || state->d_fd < 0) {
763 printf("cryptodev_digest_final: illegal input\n");
764 return(0);
765 }

767 if (! (ctx->flags & EVP_MD_CTX_FLAG_ONESHOT)) {
768 /* if application doesn’t support one buffer */
769 memset(&cryp, 0, sizeof(cryp));
770 cryp.ses = sess->ses;
771 cryp.flags = 0;
772 cryp.len = state->mac_len;
773 cryp.src = state->mac_data;
774 cryp.dst = NULL;
775 cryp.mac = (caddr_t)md;
776 if (ioctl(state->d_fd, CIOCCRYPT, &cryp) < 0) {
777 printf("cryptodev_digest_final: digest failed\n");
778 return (0);
779 }

781 return 1;
782 }

784 memcpy(md, state->digest_res, ctx->digest->md_size);

786 return (ret);
787 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 13

790 static int cryptodev_digest_cleanup(EVP_MD_CTX *ctx)
791 {
792 int ret = 1;
793 struct dev_crypto_state *state = ctx->md_data;
794 struct session_op *sess = &state->d_sess;

796 if (state == NULL)
797 return 0;

799 if (state->d_fd < 0) {
800 printf("cryptodev_digest_cleanup: illegal input\n");
801 return (0);
802 }

804 if (state->mac_data) {
805 OPENSSL_free(state->mac_data);
806 state->mac_data = NULL;
807 state->mac_len = 0;
808 }

810 if (ioctl(state->d_fd, CIOCFSESSION, &sess->ses) < 0) {
811 printf("cryptodev_digest_cleanup: failed to close session\n");
812 ret = 0;
813 } else {
814 ret = 1;
815 }
816 put_dev_crypto(state->d_fd);
817 state->d_fd = -1;

819 return (ret);
820 }

822 static int cryptodev_digest_copy(EVP_MD_CTX *to,const EVP_MD_CTX *from)
823 {
824 struct dev_crypto_state *fstate = from->md_data;
825 struct dev_crypto_state *dstate = to->md_data;
826 struct session_op *sess;
827 int digest;

829 if (dstate == NULL || fstate == NULL)
830 return 1;

832 memcpy(dstate, fstate, sizeof(struct dev_crypto_state));

834 sess = &dstate->d_sess;

836 digest = digest_nid_to_cryptodev(to->digest->type);

838 sess->mackey = dstate->dummy_mac_key;
839 sess->mackeylen = digest_key_length(to->digest->type);
840 sess->mac = digest;

842 dstate->d_fd = get_dev_crypto();

844 if (ioctl(dstate->d_fd, CIOCGSESSION, sess) < 0) {
845 put_dev_crypto(dstate->d_fd);
846 dstate->d_fd = -1;
847 printf("cryptodev_digest_init: Open session failed\n");
848 return (0);
849 }

851 if (fstate->mac_len != 0) {
852 if (fstate->mac_data != NULL)
853 {

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 14

854 dstate->mac_data = OPENSSL_malloc(fstate->mac_len);
855 memcpy(dstate->mac_data, fstate->mac_data, fstate->mac_l
856 dstate->mac_len = fstate->mac_len;
857 }
858 }

860 return 1;
861 }

864 const EVP_MD cryptodev_sha1 = {
865 NID_sha1,
866 NID_undef,
867 SHA_DIGEST_LENGTH,
868 EVP_MD_FLAG_ONESHOT,
869 cryptodev_digest_init,
870 cryptodev_digest_update,
871 cryptodev_digest_final,
872 cryptodev_digest_copy,
873 cryptodev_digest_cleanup,
874 EVP_PKEY_NULL_method,
875 SHA_CBLOCK,
876 sizeof(struct dev_crypto_state),
877 };

879 const EVP_MD cryptodev_md5 = {
880 NID_md5,
881 NID_undef,
882 16 /* MD5_DIGEST_LENGTH */,
883 EVP_MD_FLAG_ONESHOT,
884 cryptodev_digest_init,
885 cryptodev_digest_update,
886 cryptodev_digest_final,
887 cryptodev_digest_copy,
888 cryptodev_digest_cleanup,
889 EVP_PKEY_NULL_method,
890 64 /* MD5_CBLOCK */,
891 sizeof(struct dev_crypto_state),
892 };

894 #endif /* USE_CRYPTODEV_DIGESTS */

897 static int
898 cryptodev_engine_digests(ENGINE *e, const EVP_MD **digest,
899 const int **nids, int nid)
900 {
901 if (!digest)
902 return (cryptodev_usable_digests(nids));

904 switch (nid) {
905 #ifdef USE_CRYPTODEV_DIGESTS
906 case NID_md5:
907 *digest = &cryptodev_md5;
908 break;
909 case NID_sha1:
910 *digest = &cryptodev_sha1;
911 break;
912 default:
913 #endif /* USE_CRYPTODEV_DIGESTS */
914 *digest = NULL;
915 break;
916 }
917 return (*digest != NULL);
918 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 15

920 /*
921 * Convert a BIGNUM to the representation that /dev/crypto needs.
922 * Upon completion of use, the caller is responsible for freeing
923 * crp->crp_p.
924 */
925 static int
926 bn2crparam(const BIGNUM *a, struct crparam *crp)
927 {
928 int i, j, k;
929 ssize_t bytes, bits;
930 u_char *b;

932 crp->crp_p = NULL;
933 crp->crp_nbits = 0;

935 bits = BN_num_bits(a);
936 bytes = (bits + 7) / 8;

938 b = malloc(bytes);
939 if (b == NULL)
940 return (1);
941 memset(b, 0, bytes);

943 crp->crp_p = (caddr_t) b;
944 crp->crp_nbits = bits;

946 for (i = 0, j = 0; i < a->top; i++) {
947 for (k = 0; k < BN_BITS2 / 8; k++) {
948 if ((j + k) >= bytes)
949 return (0);
950 b[j + k] = a->d[i] >> (k * 8);
951 }
952 j += BN_BITS2 / 8;
953 }
954 return (0);
955 }

957 /* Convert a /dev/crypto parameter to a BIGNUM */
958 static int
959 crparam2bn(struct crparam *crp, BIGNUM *a)
960 {
961 u_int8_t *pd;
962 int i, bytes;

964 bytes = (crp->crp_nbits + 7) / 8;

966 if (bytes == 0)
967 return (-1);

969 if ((pd = (u_int8_t *) malloc(bytes)) == NULL)
970 return (-1);

972 for (i = 0; i < bytes; i++)
973 pd[i] = crp->crp_p[bytes - i - 1];

975 BN_bin2bn(pd, bytes, a);
976 free(pd);

978 return (0);
979 }

981 static void
982 zapparams(struct crypt_kop *kop)
983 {
984 int i;

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 16

986 for (i = 0; i < kop->crk_iparams + kop->crk_oparams; i++) {
987 if (kop->crk_param[i].crp_p)
988 free(kop->crk_param[i].crp_p);
989 kop->crk_param[i].crp_p = NULL;
990 kop->crk_param[i].crp_nbits = 0;
991 }
992 }

994 static int
995 cryptodev_asym(struct crypt_kop *kop, int rlen, BIGNUM *r, int slen, BIGNUM *s)
996 {
997 int fd, ret = -1;

999 if ((fd = get_asym_dev_crypto()) < 0)
1000 return (ret);

1002 if (r) {
1003 kop->crk_param[kop->crk_iparams].crp_p = calloc(rlen, sizeof(cha
1004 kop->crk_param[kop->crk_iparams].crp_nbits = rlen * 8;
1005 kop->crk_oparams++;
1006 }
1007 if (s) {
1008 kop->crk_param[kop->crk_iparams+1].crp_p = calloc(slen, sizeof(c
1009 kop->crk_param[kop->crk_iparams+1].crp_nbits = slen * 8;
1010 kop->crk_oparams++;
1011 }

1013 if (ioctl(fd, CIOCKEY, kop) == 0) {
1014 if (r)
1015 crparam2bn(&kop->crk_param[kop->crk_iparams], r);
1016 if (s)
1017 crparam2bn(&kop->crk_param[kop->crk_iparams+1], s);
1018 ret = 0;
1019 }

1021 return (ret);
1022 }

1024 static int
1025 cryptodev_bn_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1026 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
1027 {
1028 struct crypt_kop kop;
1029 int ret = 1;

1031 /* Currently, we know we can do mod exp iff we can do any
1032 * asymmetric operations at all.
1033 */
1034 if (cryptodev_asymfeat == 0) {
1035 ret = BN_mod_exp(r, a, p, m, ctx);
1036 return (ret);
1037 }

1039 memset(&kop, 0, sizeof kop);
1040 kop.crk_op = CRK_MOD_EXP;

1042 /* inputs: a^p % m */
1043 if (bn2crparam(a, &kop.crk_param[0]))
1044 goto err;
1045 if (bn2crparam(p, &kop.crk_param[1]))
1046 goto err;
1047 if (bn2crparam(m, &kop.crk_param[2]))
1048 goto err;
1049 kop.crk_iparams = 3;

1051 if (cryptodev_asym(&kop, BN_num_bytes(m), r, 0, NULL)) {

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 17

1052 const RSA_METHOD *meth = RSA_PKCS1_SSLeay();
1053 printf("OCF asym process failed, Running in software\n");
1054 ret = meth->bn_mod_exp(r, a, p, m, ctx, in_mont);

1056 } else if (ECANCELED == kop.crk_status) {
1057 const RSA_METHOD *meth = RSA_PKCS1_SSLeay();
1058 printf("OCF hardware operation cancelled. Running in Software\n"
1059 ret = meth->bn_mod_exp(r, a, p, m, ctx, in_mont);
1060 }
1061 /* else cryptodev operation worked ok ==> ret = 1*/

1063 err:
1064 zapparams(&kop);
1065 return (ret);
1066 }

1068 static int
1069 cryptodev_rsa_nocrt_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
1070 {
1071 int r;
1072 ctx = BN_CTX_new();
1073 r = cryptodev_bn_mod_exp(r0, I, rsa->d, rsa->n, ctx, NULL);
1074 BN_CTX_free(ctx);
1075 return (r);
1076 }

1078 static int
1079 cryptodev_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
1080 {
1081 struct crypt_kop kop;
1082 int ret = 1;

1084 if (!rsa->p || !rsa->q || !rsa->dmp1 || !rsa->dmq1 || !rsa->iqmp) {
1085 /* XXX 0 means failure?? */
1086 return (0);
1087 }

1089 memset(&kop, 0, sizeof kop);
1090 kop.crk_op = CRK_MOD_EXP_CRT;
1091 /* inputs: rsa->p rsa->q I rsa->dmp1 rsa->dmq1 rsa->iqmp */
1092 if (bn2crparam(rsa->p, &kop.crk_param[0]))
1093 goto err;
1094 if (bn2crparam(rsa->q, &kop.crk_param[1]))
1095 goto err;
1096 if (bn2crparam(I, &kop.crk_param[2]))
1097 goto err;
1098 if (bn2crparam(rsa->dmp1, &kop.crk_param[3]))
1099 goto err;
1100 if (bn2crparam(rsa->dmq1, &kop.crk_param[4]))
1101 goto err;
1102 if (bn2crparam(rsa->iqmp, &kop.crk_param[5]))
1103 goto err;
1104 kop.crk_iparams = 6;

1106 if (cryptodev_asym(&kop, BN_num_bytes(rsa->n), r0, 0, NULL)) {
1107 const RSA_METHOD *meth = RSA_PKCS1_SSLeay();
1108 printf("OCF asym process failed, running in Software\n");
1109 ret = (*meth->rsa_mod_exp)(r0, I, rsa, ctx);

1111 } else if (ECANCELED == kop.crk_status) {
1112 const RSA_METHOD *meth = RSA_PKCS1_SSLeay();
1113 printf("OCF hardware operation cancelled. Running in Software\n"
1114 ret = (*meth->rsa_mod_exp)(r0, I, rsa, ctx);
1115 }
1116 /* else cryptodev operation worked ok ==> ret = 1*/

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 18

1118 err:
1119 zapparams(&kop);
1120 return (ret);
1121 }

1123 static RSA_METHOD cryptodev_rsa = {
1124 "cryptodev RSA method",
1125 NULL, /* rsa_pub_enc */
1126 NULL, /* rsa_pub_dec */
1127 NULL, /* rsa_priv_enc */
1128 NULL, /* rsa_priv_dec */
1129 NULL,
1130 NULL,
1131 NULL, /* init */
1132 NULL, /* finish */
1133 0, /* flags */
1134 NULL, /* app_data */
1135 NULL, /* rsa_sign */
1136 NULL /* rsa_verify */
1137 };

1139 static int
1140 cryptodev_dsa_bn_mod_exp(DSA *dsa, BIGNUM *r, BIGNUM *a, const BIGNUM *p,
1141 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx)
1142 {
1143 return (cryptodev_bn_mod_exp(r, a, p, m, ctx, m_ctx));
1144 }

1146 static int
1147 cryptodev_dsa_dsa_mod_exp(DSA *dsa, BIGNUM *t1, BIGNUM *g,
1148 BIGNUM *u1, BIGNUM *pub_key, BIGNUM *u2, BIGNUM *p,
1149 BN_CTX *ctx, BN_MONT_CTX *mont)
1150 {
1151 BIGNUM t2;
1152 int ret = 0;

1154 BN_init(&t2);

1156 /* v = (g^u1 * y^u2 mod p) mod q */
1157 /* let t1 = g ^ u1 mod p */
1158 ret = 0;

1160 if (!dsa->meth->bn_mod_exp(dsa,t1,dsa->g,u1,dsa->p,ctx,mont))
1161 goto err;

1163 /* let t2 = y ^ u2 mod p */
1164 if (!dsa->meth->bn_mod_exp(dsa,&t2,dsa->pub_key,u2,dsa->p,ctx,mont))
1165 goto err;
1166 /* let u1 = t1 * t2 mod p */
1167 if (!BN_mod_mul(u1,t1,&t2,dsa->p,ctx))
1168 goto err;

1170 BN_copy(t1,u1);

1172 ret = 1;
1173 err:
1174 BN_free(&t2);
1175 return(ret);
1176 }

1178 static DSA_SIG *
1179 cryptodev_dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa)
1180 {
1181 struct crypt_kop kop;
1182 BIGNUM *r = NULL, *s = NULL;
1183 DSA_SIG *dsaret = NULL;

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 19

1185 if ((r = BN_new()) == NULL)
1186 goto err;
1187 if ((s = BN_new()) == NULL) {
1188 BN_free(r);
1189 goto err;
1190 }

1192 memset(&kop, 0, sizeof kop);
1193 kop.crk_op = CRK_DSA_SIGN;

1195 /* inputs: dgst dsa->p dsa->q dsa->g dsa->priv_key */
1196 kop.crk_param[0].crp_p = (caddr_t)dgst;
1197 kop.crk_param[0].crp_nbits = dlen * 8;
1198 if (bn2crparam(dsa->p, &kop.crk_param[1]))
1199 goto err;
1200 if (bn2crparam(dsa->q, &kop.crk_param[2]))
1201 goto err;
1202 if (bn2crparam(dsa->g, &kop.crk_param[3]))
1203 goto err;
1204 if (bn2crparam(dsa->priv_key, &kop.crk_param[4]))
1205 goto err;
1206 kop.crk_iparams = 5;

1208 if (cryptodev_asym(&kop, BN_num_bytes(dsa->q), r,
1209 BN_num_bytes(dsa->q), s) == 0) {
1210 dsaret = DSA_SIG_new();
1211 dsaret->r = r;
1212 dsaret->s = s;
1213 } else {
1214 const DSA_METHOD *meth = DSA_OpenSSL();
1215 BN_free(r);
1216 BN_free(s);
1217 dsaret = (meth->dsa_do_sign)(dgst, dlen, dsa);
1218 }
1219 err:
1220 kop.crk_param[0].crp_p = NULL;
1221 zapparams(&kop);
1222 return (dsaret);
1223 }

1225 static int
1226 cryptodev_dsa_verify(const unsigned char *dgst, int dlen,
1227 DSA_SIG *sig, DSA *dsa)
1228 {
1229 struct crypt_kop kop;
1230 int dsaret = 1;

1232 memset(&kop, 0, sizeof kop);
1233 kop.crk_op = CRK_DSA_VERIFY;

1235 /* inputs: dgst dsa->p dsa->q dsa->g dsa->pub_key sig->r sig->s */
1236 kop.crk_param[0].crp_p = (caddr_t)dgst;
1237 kop.crk_param[0].crp_nbits = dlen * 8;
1238 if (bn2crparam(dsa->p, &kop.crk_param[1]))
1239 goto err;
1240 if (bn2crparam(dsa->q, &kop.crk_param[2]))
1241 goto err;
1242 if (bn2crparam(dsa->g, &kop.crk_param[3]))
1243 goto err;
1244 if (bn2crparam(dsa->pub_key, &kop.crk_param[4]))
1245 goto err;
1246 if (bn2crparam(sig->r, &kop.crk_param[5]))
1247 goto err;
1248 if (bn2crparam(sig->s, &kop.crk_param[6]))
1249 goto err;

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 20

1250 kop.crk_iparams = 7;

1252 if (cryptodev_asym(&kop, 0, NULL, 0, NULL) == 0) {
1253 /*OCF success value is 0, if not zero, change dsaret to fail*/
1254 if(0 != kop.crk_status) dsaret = 0;
1255 } else {
1256 const DSA_METHOD *meth = DSA_OpenSSL();

1258 dsaret = (meth->dsa_do_verify)(dgst, dlen, sig, dsa);
1259 }
1260 err:
1261 kop.crk_param[0].crp_p = NULL;
1262 zapparams(&kop);
1263 return (dsaret);
1264 }

1266 static DSA_METHOD cryptodev_dsa = {
1267 "cryptodev DSA method",
1268 NULL,
1269 NULL, /* dsa_sign_setup */
1270 NULL,
1271 NULL, /* dsa_mod_exp */
1272 NULL,
1273 NULL, /* init */
1274 NULL, /* finish */
1275 0, /* flags */
1276 NULL /* app_data */
1277 };

1279 static int
1280 cryptodev_mod_exp_dh(const DH *dh, BIGNUM *r, const BIGNUM *a,
1281 const BIGNUM *p, const BIGNUM *m, BN_CTX *ctx,
1282 BN_MONT_CTX *m_ctx)
1283 {
1284 return (cryptodev_bn_mod_exp(r, a, p, m, ctx, m_ctx));
1285 }

1287 static int
1288 cryptodev_dh_compute_key(unsigned char *key, const BIGNUM *pub_key, DH *dh)
1289 {
1290 struct crypt_kop kop;
1291 int dhret = 1;
1292 int fd, keylen;

1294 if ((fd = get_asym_dev_crypto()) < 0) {
1295 const DH_METHOD *meth = DH_OpenSSL();

1297 return ((meth->compute_key)(key, pub_key, dh));
1298 }

1300 keylen = BN_num_bits(dh->p);

1302 memset(&kop, 0, sizeof kop);
1303 kop.crk_op = CRK_DH_COMPUTE_KEY;

1305 /* inputs: dh->priv_key pub_key dh->p key */
1306 if (bn2crparam(dh->priv_key, &kop.crk_param[0]))
1307 goto err;
1308 if (bn2crparam(pub_key, &kop.crk_param[1]))
1309 goto err;
1310 if (bn2crparam(dh->p, &kop.crk_param[2]))
1311 goto err;
1312 kop.crk_iparams = 3;

1314 kop.crk_param[3].crp_p = (caddr_t) key;
1315 kop.crk_param[3].crp_nbits = keylen * 8;

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 21

1316 kop.crk_oparams = 1;

1318 if (ioctl(fd, CIOCKEY, &kop) == -1) {
1319 const DH_METHOD *meth = DH_OpenSSL();

1321 dhret = (meth->compute_key)(key, pub_key, dh);
1322 }
1323 err:
1324 kop.crk_param[3].crp_p = NULL;
1325 zapparams(&kop);
1326 return (dhret);
1327 }

1329 static DH_METHOD cryptodev_dh = {
1330 "cryptodev DH method",
1331 NULL, /* cryptodev_dh_generate_key */
1332 NULL,
1333 NULL,
1334 NULL,
1335 NULL,
1336 0, /* flags */
1337 NULL /* app_data */
1338 };

1340 /*
1341 * ctrl right now is just a wrapper that doesn’t do much
1342 * but I expect we’ll want some options soon.
1343 */
1344 static int
1345 cryptodev_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void))
1346 {
1347 #ifdef HAVE_SYSLOG_R
1348 struct syslog_data sd = SYSLOG_DATA_INIT;
1349 #endif

1351 switch (cmd) {
1352 default:
1353 #ifdef HAVE_SYSLOG_R
1354 syslog_r(LOG_ERR, &sd,
1355 "cryptodev_ctrl: unknown command %d", cmd);
1356 #else
1357 syslog(LOG_ERR, "cryptodev_ctrl: unknown command %d", cmd);
1358 #endif
1359 break;
1360 }
1361 return (1);
1362 }

1364 void
1365 ENGINE_load_cryptodev(void)
1366 {
1367 ENGINE *engine = ENGINE_new();
1368 int fd;

1370 if (engine == NULL)
1371 return;
1372 if ((fd = get_dev_crypto()) < 0) {
1373 ENGINE_free(engine);
1374 return;
1375 }

1377 /*
1378 * find out what asymmetric crypto algorithms we support
1379 */
1380 if (ioctl(fd, CIOCASYMFEAT, &cryptodev_asymfeat) == -1) {
1381 put_dev_crypto(fd);

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 22

1382 ENGINE_free(engine);
1383 return;
1384 }
1385 put_dev_crypto(fd);

1387 if (!ENGINE_set_id(engine, "cryptodev") ||
1388 !ENGINE_set_name(engine, "BSD cryptodev engine") ||
1389 !ENGINE_set_ciphers(engine, cryptodev_engine_ciphers) ||
1390 !ENGINE_set_digests(engine, cryptodev_engine_digests) ||
1391 !ENGINE_set_ctrl_function(engine, cryptodev_ctrl) ||
1392 !ENGINE_set_cmd_defns(engine, cryptodev_defns)) {
1393 ENGINE_free(engine);
1394 return;
1395 }

1397 if (ENGINE_set_RSA(engine, &cryptodev_rsa)) {
1398 const RSA_METHOD *rsa_meth = RSA_PKCS1_SSLeay();

1400 cryptodev_rsa.bn_mod_exp = rsa_meth->bn_mod_exp;
1401 cryptodev_rsa.rsa_mod_exp = rsa_meth->rsa_mod_exp;
1402 cryptodev_rsa.rsa_pub_enc = rsa_meth->rsa_pub_enc;
1403 cryptodev_rsa.rsa_pub_dec = rsa_meth->rsa_pub_dec;
1404 cryptodev_rsa.rsa_priv_enc = rsa_meth->rsa_priv_enc;
1405 cryptodev_rsa.rsa_priv_dec = rsa_meth->rsa_priv_dec;
1406 if (cryptodev_asymfeat & CRF_MOD_EXP) {
1407 cryptodev_rsa.bn_mod_exp = cryptodev_bn_mod_exp;
1408 if (cryptodev_asymfeat & CRF_MOD_EXP_CRT)
1409 cryptodev_rsa.rsa_mod_exp =
1410 cryptodev_rsa_mod_exp;
1411 else
1412 cryptodev_rsa.rsa_mod_exp =
1413 cryptodev_rsa_nocrt_mod_exp;
1414 }
1415 }

1417 if (ENGINE_set_DSA(engine, &cryptodev_dsa)) {
1418 const DSA_METHOD *meth = DSA_OpenSSL();

1420 memcpy(&cryptodev_dsa, meth, sizeof(DSA_METHOD));
1421 if (cryptodev_asymfeat & CRF_DSA_SIGN)
1422 cryptodev_dsa.dsa_do_sign = cryptodev_dsa_do_sign;
1423 if (cryptodev_asymfeat & CRF_MOD_EXP) {
1424 cryptodev_dsa.bn_mod_exp = cryptodev_dsa_bn_mod_exp;
1425 cryptodev_dsa.dsa_mod_exp = cryptodev_dsa_dsa_mod_exp;
1426 }
1427 if (cryptodev_asymfeat & CRF_DSA_VERIFY)
1428 cryptodev_dsa.dsa_do_verify = cryptodev_dsa_verify;
1429 }

1431 if (ENGINE_set_DH(engine, &cryptodev_dh)){
1432 const DH_METHOD *dh_meth = DH_OpenSSL();

1434 cryptodev_dh.generate_key = dh_meth->generate_key;
1435 cryptodev_dh.compute_key = dh_meth->compute_key;
1436 cryptodev_dh.bn_mod_exp = dh_meth->bn_mod_exp;
1437 if (cryptodev_asymfeat & CRF_MOD_EXP) {
1438 cryptodev_dh.bn_mod_exp = cryptodev_mod_exp_dh;
1439 if (cryptodev_asymfeat & CRF_DH_COMPUTE_KEY)
1440 cryptodev_dh.compute_key =
1441 cryptodev_dh_compute_key;
1442 }
1443 }

1445 ENGINE_add(engine);
1446 ENGINE_free(engine);
1447 ERR_clear_error();

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_cryptodev.c 23

1448 }

1450 #endif /* HAVE_CRYPTODEV */

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_ctrl.c 1

**
 12340 Fri May 30 18:31:47 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/eng_ctrl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/engine/eng_ctrl.c */
2 /* ==
3 * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * licensing@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 #include "eng_int.h"

58 /* When querying a ENGINE-specific control command’s ’description’, this string
59 * is used if the ENGINE_CMD_DEFN has cmd_desc set to NULL. */
60 static const char *int_no_description = "";

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_ctrl.c 2

62 /* These internal functions handle ’CMD’-related control commands when the
63 * ENGINE in question has asked us to take care of it (ie. the ENGINE did not
64 * set the ENGINE_FLAGS_MANUAL_CMD_CTRL flag. */

66 static int int_ctrl_cmd_is_null(const ENGINE_CMD_DEFN *defn)
67 {
68 if((defn->cmd_num == 0) || (defn->cmd_name == NULL))
69 return 1;
70 return 0;
71 }

73 static int int_ctrl_cmd_by_name(const ENGINE_CMD_DEFN *defn, const char *s)
74 {
75 int idx = 0;
76 while(!int_ctrl_cmd_is_null(defn) && (strcmp(defn->cmd_name, s) != 0))
77 {
78 idx++;
79 defn++;
80 }
81 if(int_ctrl_cmd_is_null(defn))
82 /* The given name wasn’t found */
83 return -1;
84 return idx;
85 }

87 static int int_ctrl_cmd_by_num(const ENGINE_CMD_DEFN *defn, unsigned int num)
88 {
89 int idx = 0;
90 /* NB: It is stipulated that ’cmd_defn’ lists are ordered by cmd_num. So
91 * our searches don’t need to take any longer than necessary. */
92 while(!int_ctrl_cmd_is_null(defn) && (defn->cmd_num < num))
93 {
94 idx++;
95 defn++;
96 }
97 if(defn->cmd_num == num)
98 return idx;
99 /* The given cmd_num wasn’t found */
100 return -1;
101 }

103 static int int_ctrl_helper(ENGINE *e, int cmd, long i, void *p,
104 void (*f)(void))
105 {
106 int idx;
107 char *s = (char *)p;
108 /* Take care of the easy one first (eg. it requires no searches) */
109 if(cmd == ENGINE_CTRL_GET_FIRST_CMD_TYPE)
110 {
111 if((e->cmd_defns == NULL) || int_ctrl_cmd_is_null(e->cmd_defns))
112 return 0;
113 return e->cmd_defns->cmd_num;
114 }
115 /* One or two commands require that "p" be a valid string buffer */
116 if((cmd == ENGINE_CTRL_GET_CMD_FROM_NAME) ||
117 (cmd == ENGINE_CTRL_GET_NAME_FROM_CMD) ||
118 (cmd == ENGINE_CTRL_GET_DESC_FROM_CMD))
119 {
120 if(s == NULL)
121 {
122 ENGINEerr(ENGINE_F_INT_CTRL_HELPER,
123 ERR_R_PASSED_NULL_PARAMETER);
124 return -1;
125 }
126 }
127 /* Now handle cmd_name -> cmd_num conversion */

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_ctrl.c 3

128 if(cmd == ENGINE_CTRL_GET_CMD_FROM_NAME)
129 {
130 if((e->cmd_defns == NULL) || ((idx = int_ctrl_cmd_by_name(
131 e->cmd_defns, s)) < 0))
132 {
133 ENGINEerr(ENGINE_F_INT_CTRL_HELPER,
134 ENGINE_R_INVALID_CMD_NAME);
135 return -1;
136 }
137 return e->cmd_defns[idx].cmd_num;
138 }
139 /* For the rest of the commands, the ’long’ argument must specify a
140 * valie command number - so we need to conduct a search. */
141 if((e->cmd_defns == NULL) || ((idx = int_ctrl_cmd_by_num(e->cmd_defns,
142 (unsigned int)i)) < 0))
143 {
144 ENGINEerr(ENGINE_F_INT_CTRL_HELPER,
145 ENGINE_R_INVALID_CMD_NUMBER);
146 return -1;
147 }
148 /* Now the logic splits depending on command type */
149 switch(cmd)
150 {
151 case ENGINE_CTRL_GET_NEXT_CMD_TYPE:
152 idx++;
153 if(int_ctrl_cmd_is_null(e->cmd_defns + idx))
154 /* end-of-list */
155 return 0;
156 else
157 return e->cmd_defns[idx].cmd_num;
158 case ENGINE_CTRL_GET_NAME_LEN_FROM_CMD:
159 return strlen(e->cmd_defns[idx].cmd_name);
160 case ENGINE_CTRL_GET_NAME_FROM_CMD:
161 return BIO_snprintf(s,strlen(e->cmd_defns[idx].cmd_name) + 1,
162 "%s", e->cmd_defns[idx].cmd_name);
163 case ENGINE_CTRL_GET_DESC_LEN_FROM_CMD:
164 if(e->cmd_defns[idx].cmd_desc)
165 return strlen(e->cmd_defns[idx].cmd_desc);
166 return strlen(int_no_description);
167 case ENGINE_CTRL_GET_DESC_FROM_CMD:
168 if(e->cmd_defns[idx].cmd_desc)
169 return BIO_snprintf(s,
170 strlen(e->cmd_defns[idx].cmd_desc) +
171 "%s", e->cmd_defns[idx].cmd_desc);
172 return BIO_snprintf(s, strlen(int_no_description) + 1,"%s",
173 int_no_description);
174 case ENGINE_CTRL_GET_CMD_FLAGS:
175 return e->cmd_defns[idx].cmd_flags;
176 }
177 /* Shouldn’t really be here ... */
178 ENGINEerr(ENGINE_F_INT_CTRL_HELPER,ENGINE_R_INTERNAL_LIST_ERROR);
179 return -1;
180 }

182 int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void))
183 {
184 int ctrl_exists, ref_exists;
185 if(e == NULL)
186 {
187 ENGINEerr(ENGINE_F_ENGINE_CTRL,ERR_R_PASSED_NULL_PARAMETER);
188 return 0;
189 }
190 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
191 ref_exists = ((e->struct_ref > 0) ? 1 : 0);
192 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
193 ctrl_exists = ((e->ctrl == NULL) ? 0 : 1);

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_ctrl.c 4

194 if(!ref_exists)
195 {
196 ENGINEerr(ENGINE_F_ENGINE_CTRL,ENGINE_R_NO_REFERENCE);
197 return 0;
198 }
199 /* Intercept any "root-level" commands before trying to hand them on to
200 * ctrl() handlers. */
201 switch(cmd)
202 {
203 case ENGINE_CTRL_HAS_CTRL_FUNCTION:
204 return ctrl_exists;
205 case ENGINE_CTRL_GET_FIRST_CMD_TYPE:
206 case ENGINE_CTRL_GET_NEXT_CMD_TYPE:
207 case ENGINE_CTRL_GET_CMD_FROM_NAME:
208 case ENGINE_CTRL_GET_NAME_LEN_FROM_CMD:
209 case ENGINE_CTRL_GET_NAME_FROM_CMD:
210 case ENGINE_CTRL_GET_DESC_LEN_FROM_CMD:
211 case ENGINE_CTRL_GET_DESC_FROM_CMD:
212 case ENGINE_CTRL_GET_CMD_FLAGS:
213 if(ctrl_exists && !(e->flags & ENGINE_FLAGS_MANUAL_CMD_CTRL))
214 return int_ctrl_helper(e,cmd,i,p,f);
215 if(!ctrl_exists)
216 {
217 ENGINEerr(ENGINE_F_ENGINE_CTRL,ENGINE_R_NO_CONTROL_FUNCT
218 /* For these cmd-related functions, failure is indicated
219 * by a -1 return value (because 0 is used as a valid
220 * return in some places). */
221 return -1;
222 }
223 default:
224 break;
225 }
226 /* Anything else requires a ctrl() handler to exist. */
227 if(!ctrl_exists)
228 {
229 ENGINEerr(ENGINE_F_ENGINE_CTRL,ENGINE_R_NO_CONTROL_FUNCTION);
230 return 0;
231 }
232 return e->ctrl(e, cmd, i, p, f);
233 }

235 int ENGINE_cmd_is_executable(ENGINE *e, int cmd)
236 {
237 int flags;
238 if((flags = ENGINE_ctrl(e, ENGINE_CTRL_GET_CMD_FLAGS, cmd, NULL, NULL))
239 {
240 ENGINEerr(ENGINE_F_ENGINE_CMD_IS_EXECUTABLE,
241 ENGINE_R_INVALID_CMD_NUMBER);
242 return 0;
243 }
244 if(!(flags & ENGINE_CMD_FLAG_NO_INPUT) &&
245 !(flags & ENGINE_CMD_FLAG_NUMERIC) &&
246 !(flags & ENGINE_CMD_FLAG_STRING))
247 return 0;
248 return 1;
249 }

251 int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name,
252 long i, void *p, void (*f)(void), int cmd_optional)
253 {
254 int num;

256 if((e == NULL) || (cmd_name == NULL))
257 {
258 ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD,
259 ERR_R_PASSED_NULL_PARAMETER);

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_ctrl.c 5

260 return 0;
261 }
262 if((e->ctrl == NULL) || ((num = ENGINE_ctrl(e,
263 ENGINE_CTRL_GET_CMD_FROM_NAME,
264 0, (void *)cmd_name, NULL)) <= 0))
265 {
266 /* If the command didn’t *have* to be supported, we fake
267 * success. This allows certain settings to be specified for
268 * multiple ENGINEs and only require a change of ENGINE id
269 * (without having to selectively apply settings). Eg. changing
270 * from a hardware device back to the regular software ENGINE
271 * without editing the config file, etc. */
272 if(cmd_optional)
273 {
274 ERR_clear_error();
275 return 1;
276 }
277 ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD,
278 ENGINE_R_INVALID_CMD_NAME);
279 return 0;
280 }
281 /* Force the result of the control command to 0 or 1, for the reasons
282 * mentioned before. */
283 if (ENGINE_ctrl(e, num, i, p, f) > 0)
284 return 1;
285 return 0;
286 }

288 int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,
289 int cmd_optional)
290 {
291 int num, flags;
292 long l;
293 char *ptr;
294 if((e == NULL) || (cmd_name == NULL))
295 {
296 ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING,
297 ERR_R_PASSED_NULL_PARAMETER);
298 return 0;
299 }
300 if((e->ctrl == NULL) || ((num = ENGINE_ctrl(e,
301 ENGINE_CTRL_GET_CMD_FROM_NAME,
302 0, (void *)cmd_name, NULL)) <= 0))
303 {
304 /* If the command didn’t *have* to be supported, we fake
305 * success. This allows certain settings to be specified for
306 * multiple ENGINEs and only require a change of ENGINE id
307 * (without having to selectively apply settings). Eg. changing
308 * from a hardware device back to the regular software ENGINE
309 * without editing the config file, etc. */
310 if(cmd_optional)
311 {
312 ERR_clear_error();
313 return 1;
314 }
315 ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING,
316 ENGINE_R_INVALID_CMD_NAME);
317 return 0;
318 }
319 if(!ENGINE_cmd_is_executable(e, num))
320 {
321 ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING,
322 ENGINE_R_CMD_NOT_EXECUTABLE);
323 return 0;
324 }
325 if((flags = ENGINE_ctrl(e, ENGINE_CTRL_GET_CMD_FLAGS, num, NULL, NULL))

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_ctrl.c 6

326 {
327 /* Shouldn’t happen, given that ENGINE_cmd_is_executable()
328 * returned success. */
329 ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING,
330 ENGINE_R_INTERNAL_LIST_ERROR);
331 return 0;
332 }
333 /* If the command takes no input, there must be no input. And vice
334 * versa. */
335 if(flags & ENGINE_CMD_FLAG_NO_INPUT)
336 {
337 if(arg != NULL)
338 {
339 ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING,
340 ENGINE_R_COMMAND_TAKES_NO_INPUT);
341 return 0;
342 }
343 /* We deliberately force the result of ENGINE_ctrl() to 0 or 1
344 * rather than returning it as "return data". This is to ensure
345 * usage of these commands is consistent across applications and
346 * that certain applications don’t understand it one way, and
347 * others another. */
348 if(ENGINE_ctrl(e, num, 0, (void *)arg, NULL) > 0)
349 return 1;
350 return 0;
351 }
352 /* So, we require input */
353 if(arg == NULL)
354 {
355 ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING,
356 ENGINE_R_COMMAND_TAKES_INPUT);
357 return 0;
358 }
359 /* If it takes string input, that’s easy */
360 if(flags & ENGINE_CMD_FLAG_STRING)
361 {
362 /* Same explanation as above */
363 if(ENGINE_ctrl(e, num, 0, (void *)arg, NULL) > 0)
364 return 1;
365 return 0;
366 }
367 /* If it doesn’t take numeric either, then it is unsupported for use in
368 * a config-setting situation, which is what this function is for. This
369 * should never happen though, because ENGINE_cmd_is_executable() was
370 * used. */
371 if(!(flags & ENGINE_CMD_FLAG_NUMERIC))
372 {
373 ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING,
374 ENGINE_R_INTERNAL_LIST_ERROR);
375 return 0;
376 }
377 l = strtol(arg, &ptr, 10);
378 if((arg == ptr) || (*ptr != ’\0’))
379 {
380 ENGINEerr(ENGINE_F_ENGINE_CTRL_CMD_STRING,
381 ENGINE_R_ARGUMENT_IS_NOT_A_NUMBER);
382 return 0;
383 }
384 /* Force the result of the control command to 0 or 1, for the reasons
385 * mentioned before. */
386 if(ENGINE_ctrl(e, num, l, NULL, NULL) > 0)
387 return 1;
388 return 0;
389 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_dyn.c 1

**
 18040 Fri May 30 18:31:47 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/eng_dyn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/engine/eng_dyn.c */
2 /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include "eng_int.h"
61 #include <openssl/dso.h>

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_dyn.c 2

63 /* Shared libraries implementing ENGINEs for use by the "dynamic" ENGINE loader
64 * should implement the hook-up functions with the following prototypes. */

66 /* Our ENGINE handlers */
67 static int dynamic_init(ENGINE *e);
68 static int dynamic_finish(ENGINE *e);
69 static int dynamic_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void));
70 /* Predeclare our context type */
71 typedef struct st_dynamic_data_ctx dynamic_data_ctx;
72 /* The implementation for the important control command */
73 static int dynamic_load(ENGINE *e, dynamic_data_ctx *ctx);

75 #define DYNAMIC_CMD_SO_PATH ENGINE_CMD_BASE
76 #define DYNAMIC_CMD_NO_VCHECK (ENGINE_CMD_BASE + 1)
77 #define DYNAMIC_CMD_ID (ENGINE_CMD_BASE + 2)
78 #define DYNAMIC_CMD_LIST_ADD (ENGINE_CMD_BASE + 3)
79 #define DYNAMIC_CMD_DIR_LOAD (ENGINE_CMD_BASE + 4)
80 #define DYNAMIC_CMD_DIR_ADD (ENGINE_CMD_BASE + 5)
81 #define DYNAMIC_CMD_LOAD (ENGINE_CMD_BASE + 6)

83 /* The constants used when creating the ENGINE */
84 static const char *engine_dynamic_id = "dynamic";
85 static const char *engine_dynamic_name = "Dynamic engine loading support";
86 static const ENGINE_CMD_DEFN dynamic_cmd_defns[] = {
87 {DYNAMIC_CMD_SO_PATH,
88 "SO_PATH",
89 "Specifies the path to the new ENGINE shared library",
90 ENGINE_CMD_FLAG_STRING},
91 {DYNAMIC_CMD_NO_VCHECK,
92 "NO_VCHECK",
93 "Specifies to continue even if version checking fails (boolean)"
94 ENGINE_CMD_FLAG_NUMERIC},
95 {DYNAMIC_CMD_ID,
96 "ID",
97 "Specifies an ENGINE id name for loading",
98 ENGINE_CMD_FLAG_STRING},
99 {DYNAMIC_CMD_LIST_ADD,
100 "LIST_ADD",
101 "Whether to add a loaded ENGINE to the internal list (0=no,1=yes
102 ENGINE_CMD_FLAG_NUMERIC},
103 {DYNAMIC_CMD_DIR_LOAD,
104 "DIR_LOAD",
105 "Specifies whether to load from ’DIR_ADD’ directories (0=no,1=ye
106 ENGINE_CMD_FLAG_NUMERIC},
107 {DYNAMIC_CMD_DIR_ADD,
108 "DIR_ADD",
109 "Adds a directory from which ENGINEs can be loaded",
110 ENGINE_CMD_FLAG_STRING},
111 {DYNAMIC_CMD_LOAD,
112 "LOAD",
113 "Load up the ENGINE specified by other settings",
114 ENGINE_CMD_FLAG_NO_INPUT},
115 {0, NULL, NULL, 0}
116 };
117 static const ENGINE_CMD_DEFN dynamic_cmd_defns_empty[] = {
118 {0, NULL, NULL, 0}
119 };

121 /* Loading code stores state inside the ENGINE structure via the "ex_data"
122 * element. We load all our state into a single structure and use that as a
123 * single context in the "ex_data" stack. */
124 struct st_dynamic_data_ctx
125 {
126 /* The DSO object we load that supplies the ENGINE code */
127 DSO *dynamic_dso;

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_dyn.c 3

128 /* The function pointer to the version checking shared library function
129 dynamic_v_check_fn v_check;
130 /* The function pointer to the engine-binding shared library function */
131 dynamic_bind_engine bind_engine;
132 /* The default name/path for loading the shared library */
133 const char *DYNAMIC_LIBNAME;
134 /* Whether to continue loading on a version check failure */
135 int no_vcheck;
136 /* If non-NULL, stipulates the ’id’ of the ENGINE to be loaded */
137 const char *engine_id;
138 /* If non-zero, a successfully loaded ENGINE should be added to the inte
139 * ENGINE list. If 2, the add must succeed or the entire load should fai
140 int list_add_value;
141 /* The symbol name for the version checking function */
142 const char *DYNAMIC_F1;
143 /* The symbol name for the "initialise ENGINE structure" function */
144 const char *DYNAMIC_F2;
145 /* Whether to never use ’dirs’, use ’dirs’ as a fallback, or only use
146 * ’dirs’ for loading. Default is to use ’dirs’ as a fallback. */
147 int dir_load;
148 /* A stack of directories from which ENGINEs could be loaded */
149 STACK_OF(OPENSSL_STRING) *dirs;
150 };

152 /* This is the "ex_data" index we obtain and reserve for use with our context
153 * structure. */
154 static int dynamic_ex_data_idx = -1;

156 static void int_free_str(char *s) { OPENSSL_free(s); }
157 /* Because our ex_data element may or may not get allocated depending on whether
158 * a "first-use" occurs before the ENGINE is freed, we have a memory leak
159 * problem to solve. We can’t declare a "new" handler for the ex_data as we
160 * don’t want a dynamic_data_ctx in *all* ENGINE structures of all types (this
161 * is a bug in the design of CRYPTO_EX_DATA). As such, we just declare a "free"
162 * handler and that will get called if an ENGINE is being destroyed and there
163 * was an ex_data element corresponding to our context type. */
164 static void dynamic_data_ctx_free_func(void *parent, void *ptr,
165 CRYPTO_EX_DATA *ad, int idx, long argl, void *argp)
166 {
167 if(ptr)
168 {
169 dynamic_data_ctx *ctx = (dynamic_data_ctx *)ptr;
170 if(ctx->dynamic_dso)
171 DSO_free(ctx->dynamic_dso);
172 if(ctx->DYNAMIC_LIBNAME)
173 OPENSSL_free((void*)ctx->DYNAMIC_LIBNAME);
174 if(ctx->engine_id)
175 OPENSSL_free((void*)ctx->engine_id);
176 if(ctx->dirs)
177 sk_OPENSSL_STRING_pop_free(ctx->dirs, int_free_str);
178 OPENSSL_free(ctx);
179 }
180 }

182 /* Construct the per-ENGINE context. We create it blindly and then use a lock to
183 * check for a race - if so, all but one of the threads "racing" will have
184 * wasted their time. The alternative involves creating everything inside the
185 * lock which is far worse. */
186 static int dynamic_set_data_ctx(ENGINE *e, dynamic_data_ctx **ctx)
187 {
188 dynamic_data_ctx *c;
189 c = OPENSSL_malloc(sizeof(dynamic_data_ctx));
190 if(!c)
191 {
192 ENGINEerr(ENGINE_F_DYNAMIC_SET_DATA_CTX,ERR_R_MALLOC_FAILURE);
193 return 0;

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_dyn.c 4

194 }
195 memset(c, 0, sizeof(dynamic_data_ctx));
196 c->dynamic_dso = NULL;
197 c->v_check = NULL;
198 c->bind_engine = NULL;
199 c->DYNAMIC_LIBNAME = NULL;
200 c->no_vcheck = 0;
201 c->engine_id = NULL;
202 c->list_add_value = 0;
203 c->DYNAMIC_F1 = "v_check";
204 c->DYNAMIC_F2 = "bind_engine";
205 c->dir_load = 1;
206 c->dirs = sk_OPENSSL_STRING_new_null();
207 if(!c->dirs)
208 {
209 ENGINEerr(ENGINE_F_DYNAMIC_SET_DATA_CTX,ERR_R_MALLOC_FAILURE);
210 OPENSSL_free(c);
211 return 0;
212 }
213 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
214 if((*ctx = (dynamic_data_ctx *)ENGINE_get_ex_data(e,
215 dynamic_ex_data_idx)) == NULL)
216 {
217 /* Good, we’re the first */
218 ENGINE_set_ex_data(e, dynamic_ex_data_idx, c);
219 *ctx = c;
220 c = NULL;
221 }
222 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
223 /* If we lost the race to set the context, c is non-NULL and *ctx is the
224 * context of the thread that won. */
225 if(c)
226 OPENSSL_free(c);
227 return 1;
228 }

230 /* This function retrieves the context structure from an ENGINE’s "ex_data", or
231 * if it doesn’t exist yet, sets it up. */
232 static dynamic_data_ctx *dynamic_get_data_ctx(ENGINE *e)
233 {
234 dynamic_data_ctx *ctx;
235 if(dynamic_ex_data_idx < 0)
236 {
237 /* Create and register the ENGINE ex_data, and associate our
238 * "free" function with it to ensure any allocated contexts get
239 * freed when an ENGINE goes underground. */
240 int new_idx = ENGINE_get_ex_new_index(0, NULL, NULL, NULL,
241 dynamic_data_ctx_free_func);
242 if(new_idx == -1)
243 {
244 ENGINEerr(ENGINE_F_DYNAMIC_GET_DATA_CTX,ENGINE_R_NO_INDE
245 return NULL;
246 }
247 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
248 /* Avoid a race by checking again inside this lock */
249 if(dynamic_ex_data_idx < 0)
250 {
251 /* Good, someone didn’t beat us to it */
252 dynamic_ex_data_idx = new_idx;
253 new_idx = -1;
254 }
255 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
256 /* In theory we could "give back" the index here if
257 * (new_idx>-1), but it’s not possible and wouldn’t gain us much
258 * if it were. */
259 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_dyn.c 5

260 ctx = (dynamic_data_ctx *)ENGINE_get_ex_data(e, dynamic_ex_data_idx);
261 /* Check if the context needs to be created */
262 if((ctx == NULL) && !dynamic_set_data_ctx(e, &ctx))
263 /* "set_data" will set errors if necessary */
264 return NULL;
265 return ctx;
266 }

268 static ENGINE *engine_dynamic(void)
269 {
270 ENGINE *ret = ENGINE_new();
271 if(!ret)
272 return NULL;
273 if(!ENGINE_set_id(ret, engine_dynamic_id) ||
274 !ENGINE_set_name(ret, engine_dynamic_name) ||
275 !ENGINE_set_init_function(ret, dynamic_init) ||
276 !ENGINE_set_finish_function(ret, dynamic_finish) ||
277 !ENGINE_set_ctrl_function(ret, dynamic_ctrl) ||
278 !ENGINE_set_flags(ret, ENGINE_FLAGS_BY_ID_COPY) ||
279 !ENGINE_set_cmd_defns(ret, dynamic_cmd_defns))
280 {
281 ENGINE_free(ret);
282 return NULL;
283 }
284 return ret;
285 }

287 void ENGINE_load_dynamic(void)
288 {
289 ENGINE *toadd = engine_dynamic();
290 if(!toadd) return;
291 ENGINE_add(toadd);
292 /* If the "add" worked, it gets a structural reference. So either way,
293 * we release our just-created reference. */
294 ENGINE_free(toadd);
295 /* If the "add" didn’t work, it was probably a conflict because it was
296 * already added (eg. someone calling ENGINE_load_blah then calling
297 * ENGINE_load_builtin_engines() perhaps). */
298 ERR_clear_error();
299 }

301 static int dynamic_init(ENGINE *e)
302 {
303 /* We always return failure - the "dyanamic" engine itself can’t be used
304 * for anything. */
305 return 0;
306 }

308 static int dynamic_finish(ENGINE *e)
309 {
310 /* This should never be called on account of "dynamic_init" always
311 * failing. */
312 return 0;
313 }

315 static int dynamic_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void))
316 {
317 dynamic_data_ctx *ctx = dynamic_get_data_ctx(e);
318 int initialised;
319
320 if(!ctx)
321 {
322 ENGINEerr(ENGINE_F_DYNAMIC_CTRL,ENGINE_R_NOT_LOADED);
323 return 0;
324 }
325 initialised = ((ctx->dynamic_dso == NULL) ? 0 : 1);

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_dyn.c 6

326 /* All our control commands require the ENGINE to be uninitialised */
327 if(initialised)
328 {
329 ENGINEerr(ENGINE_F_DYNAMIC_CTRL,
330 ENGINE_R_ALREADY_LOADED);
331 return 0;
332 }
333 switch(cmd)
334 {
335 case DYNAMIC_CMD_SO_PATH:
336 /* a NULL ’p’ or a string of zero-length is the same thing */
337 if(p && (strlen((const char *)p) < 1))
338 p = NULL;
339 if(ctx->DYNAMIC_LIBNAME)
340 OPENSSL_free((void*)ctx->DYNAMIC_LIBNAME);
341 if(p)
342 ctx->DYNAMIC_LIBNAME = BUF_strdup(p);
343 else
344 ctx->DYNAMIC_LIBNAME = NULL;
345 return (ctx->DYNAMIC_LIBNAME ? 1 : 0);
346 case DYNAMIC_CMD_NO_VCHECK:
347 ctx->no_vcheck = ((i == 0) ? 0 : 1);
348 return 1;
349 case DYNAMIC_CMD_ID:
350 /* a NULL ’p’ or a string of zero-length is the same thing */
351 if(p && (strlen((const char *)p) < 1))
352 p = NULL;
353 if(ctx->engine_id)
354 OPENSSL_free((void*)ctx->engine_id);
355 if(p)
356 ctx->engine_id = BUF_strdup(p);
357 else
358 ctx->engine_id = NULL;
359 return (ctx->engine_id ? 1 : 0);
360 case DYNAMIC_CMD_LIST_ADD:
361 if((i < 0) || (i > 2))
362 {
363 ENGINEerr(ENGINE_F_DYNAMIC_CTRL,
364 ENGINE_R_INVALID_ARGUMENT);
365 return 0;
366 }
367 ctx->list_add_value = (int)i;
368 return 1;
369 case DYNAMIC_CMD_LOAD:
370 return dynamic_load(e, ctx);
371 case DYNAMIC_CMD_DIR_LOAD:
372 if((i < 0) || (i > 2))
373 {
374 ENGINEerr(ENGINE_F_DYNAMIC_CTRL,
375 ENGINE_R_INVALID_ARGUMENT);
376 return 0;
377 }
378 ctx->dir_load = (int)i;
379 return 1;
380 case DYNAMIC_CMD_DIR_ADD:
381 /* a NULL ’p’ or a string of zero-length is the same thing */
382 if(!p || (strlen((const char *)p) < 1))
383 {
384 ENGINEerr(ENGINE_F_DYNAMIC_CTRL,
385 ENGINE_R_INVALID_ARGUMENT);
386 return 0;
387 }
388 {
389 char *tmp_str = BUF_strdup(p);
390 if(!tmp_str)
391 {

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_dyn.c 7

392 ENGINEerr(ENGINE_F_DYNAMIC_CTRL,
393 ERR_R_MALLOC_FAILURE);
394 return 0;
395 }
396 sk_OPENSSL_STRING_insert(ctx->dirs, tmp_str, -1);
397 }
398 return 1;
399 default:
400 break;
401 }
402 ENGINEerr(ENGINE_F_DYNAMIC_CTRL,ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED);
403 return 0;
404 }

406 static int int_load(dynamic_data_ctx *ctx)
407 {
408 int num, loop;
409 /* Unless told not to, try a direct load */
410 if((ctx->dir_load != 2) && (DSO_load(ctx->dynamic_dso,
411 ctx->DYNAMIC_LIBNAME, NULL, 0)) != NULL)
412 return 1;
413 /* If we’re not allowed to use ’dirs’ or we have none, fail */
414 if(!ctx->dir_load || (num = sk_OPENSSL_STRING_num(ctx->dirs)) < 1)
415 return 0;
416 for(loop = 0; loop < num; loop++)
417 {
418 const char *s = sk_OPENSSL_STRING_value(ctx->dirs, loop);
419 char *merge = DSO_merge(ctx->dynamic_dso, ctx->DYNAMIC_LIBNAME,
420 if(!merge)
421 return 0;
422 if(DSO_load(ctx->dynamic_dso, merge, NULL, 0))
423 {
424 /* Found what we’re looking for */
425 OPENSSL_free(merge);
426 return 1;
427 }
428 OPENSSL_free(merge);
429 }
430 return 0;
431 }

433 static int dynamic_load(ENGINE *e, dynamic_data_ctx *ctx)
434 {
435 ENGINE cpy;
436 dynamic_fns fns;

438 if(!ctx->dynamic_dso)
439 ctx->dynamic_dso = DSO_new();
440 if(!ctx->DYNAMIC_LIBNAME)
441 {
442 if(!ctx->engine_id)
443 return 0;
444 ctx->DYNAMIC_LIBNAME =
445 DSO_convert_filename(ctx->dynamic_dso, ctx->engine_id);
446 }
447 if(!int_load(ctx))
448 {
449 ENGINEerr(ENGINE_F_DYNAMIC_LOAD,
450 ENGINE_R_DSO_NOT_FOUND);
451 DSO_free(ctx->dynamic_dso);
452 ctx->dynamic_dso = NULL;
453 return 0;
454 }
455 /* We have to find a bind function otherwise it’ll always end badly */
456 if(!(ctx->bind_engine = (dynamic_bind_engine)DSO_bind_func(
457 ctx->dynamic_dso, ctx->DYNAMIC_F2)))

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_dyn.c 8

458 {
459 ctx->bind_engine = NULL;
460 DSO_free(ctx->dynamic_dso);
461 ctx->dynamic_dso = NULL;
462 ENGINEerr(ENGINE_F_DYNAMIC_LOAD,
463 ENGINE_R_DSO_FAILURE);
464 return 0;
465 }
466 /* Do we perform version checking? */
467 if(!ctx->no_vcheck)
468 {
469 unsigned long vcheck_res = 0;
470 /* Now we try to find a version checking function and decide how
471 * to cope with failure if/when it fails. */
472 ctx->v_check = (dynamic_v_check_fn)DSO_bind_func(
473 ctx->dynamic_dso, ctx->DYNAMIC_F1);
474 if(ctx->v_check)
475 vcheck_res = ctx->v_check(OSSL_DYNAMIC_VERSION);
476 /* We fail if the version checker veto’d the load *or* if it is
477 * deferring to us (by returning its version) and we think it is
478 * too old. */
479 if(vcheck_res < OSSL_DYNAMIC_OLDEST)
480 {
481 /* Fail */
482 ctx->bind_engine = NULL;
483 ctx->v_check = NULL;
484 DSO_free(ctx->dynamic_dso);
485 ctx->dynamic_dso = NULL;
486 ENGINEerr(ENGINE_F_DYNAMIC_LOAD,
487 ENGINE_R_VERSION_INCOMPATIBILITY);
488 return 0;
489 }
490 }
491 /* First binary copy the ENGINE structure so that we can roll back if
492 * the hand-over fails */
493 memcpy(&cpy, e, sizeof(ENGINE));
494 /* Provide the ERR, "ex_data", memory, and locking callbacks so the
495 * loaded library uses our state rather than its own. FIXME: As noted in
496 * engine.h, much of this would be simplified if each area of code
497 * provided its own "summary" structure of all related callbacks. It
498 * would also increase opaqueness. */
499 fns.static_state = ENGINE_get_static_state();
500 fns.err_fns = ERR_get_implementation();
501 fns.ex_data_fns = CRYPTO_get_ex_data_implementation();
502 CRYPTO_get_mem_functions(&fns.mem_fns.malloc_cb,
503 &fns.mem_fns.realloc_cb,
504 &fns.mem_fns.free_cb);
505 fns.lock_fns.lock_locking_cb = CRYPTO_get_locking_callback();
506 fns.lock_fns.lock_add_lock_cb = CRYPTO_get_add_lock_callback();
507 fns.lock_fns.dynlock_create_cb = CRYPTO_get_dynlock_create_callback();
508 fns.lock_fns.dynlock_lock_cb = CRYPTO_get_dynlock_lock_callback();
509 fns.lock_fns.dynlock_destroy_cb = CRYPTO_get_dynlock_destroy_callback();
510 /* Now that we’ve loaded the dynamic engine, make sure no "dynamic"
511 * ENGINE elements will show through. */
512 engine_set_all_null(e);

514 /* Try to bind the ENGINE onto our own ENGINE structure */
515 if(!ctx->bind_engine(e, ctx->engine_id, &fns))
516 {
517 ctx->bind_engine = NULL;
518 ctx->v_check = NULL;
519 DSO_free(ctx->dynamic_dso);
520 ctx->dynamic_dso = NULL;
521 ENGINEerr(ENGINE_F_DYNAMIC_LOAD,ENGINE_R_INIT_FAILED);
522 /* Copy the original ENGINE structure back */
523 memcpy(e, &cpy, sizeof(ENGINE));

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_dyn.c 9

524 return 0;
525 }
526 /* Do we try to add this ENGINE to the internal list too? */
527 if(ctx->list_add_value > 0)
528 {
529 if(!ENGINE_add(e))
530 {
531 /* Do we tolerate this or fail? */
532 if(ctx->list_add_value > 1)
533 {
534 /* Fail - NB: By this time, it’s too late to
535 * rollback, and trying to do so allows the
536 * bind_engine() code to have created leaks. We
537 * just have to fail where we are, after the
538 * ENGINE has changed. */
539 ENGINEerr(ENGINE_F_DYNAMIC_LOAD,
540 ENGINE_R_CONFLICTING_ENGINE_ID);
541 return 0;
542 }
543 /* Tolerate */
544 ERR_clear_error();
545 }
546 }
547 return 1;
548 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_err.c 1

**
 8620 Fri May 30 18:31:47 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/eng_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/engine/eng_err.c */
2 /* ==
3 * Copyright (c) 1999-2010 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/engine.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_ENGINE,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_ENGINE,0,reason)

71 static ERR_STRING_DATA ENGINE_str_functs[]=
72 {
73 {ERR_FUNC(ENGINE_F_DYNAMIC_CTRL), "DYNAMIC_CTRL"},
74 {ERR_FUNC(ENGINE_F_DYNAMIC_GET_DATA_CTX), "DYNAMIC_GET_DATA_CTX"},
75 {ERR_FUNC(ENGINE_F_DYNAMIC_LOAD), "DYNAMIC_LOAD"},
76 {ERR_FUNC(ENGINE_F_DYNAMIC_SET_DATA_CTX), "DYNAMIC_SET_DATA_CTX"},
77 {ERR_FUNC(ENGINE_F_ENGINE_ADD), "ENGINE_add"},
78 {ERR_FUNC(ENGINE_F_ENGINE_BY_ID), "ENGINE_by_id"},
79 {ERR_FUNC(ENGINE_F_ENGINE_CMD_IS_EXECUTABLE), "ENGINE_cmd_is_executable"},
80 {ERR_FUNC(ENGINE_F_ENGINE_CTRL), "ENGINE_ctrl"},
81 {ERR_FUNC(ENGINE_F_ENGINE_CTRL_CMD), "ENGINE_ctrl_cmd"},
82 {ERR_FUNC(ENGINE_F_ENGINE_CTRL_CMD_STRING), "ENGINE_ctrl_cmd_string"},
83 {ERR_FUNC(ENGINE_F_ENGINE_FINISH), "ENGINE_finish"},
84 {ERR_FUNC(ENGINE_F_ENGINE_FREE_UTIL), "ENGINE_FREE_UTIL"},
85 {ERR_FUNC(ENGINE_F_ENGINE_GET_CIPHER), "ENGINE_get_cipher"},
86 {ERR_FUNC(ENGINE_F_ENGINE_GET_DEFAULT_TYPE), "ENGINE_GET_DEFAULT_TYPE"},
87 {ERR_FUNC(ENGINE_F_ENGINE_GET_DIGEST), "ENGINE_get_digest"},
88 {ERR_FUNC(ENGINE_F_ENGINE_GET_NEXT), "ENGINE_get_next"},
89 {ERR_FUNC(ENGINE_F_ENGINE_GET_PKEY_ASN1_METH), "ENGINE_get_pkey_asn1_meth"},
90 {ERR_FUNC(ENGINE_F_ENGINE_GET_PKEY_METH), "ENGINE_get_pkey_meth"},
91 {ERR_FUNC(ENGINE_F_ENGINE_GET_PREV), "ENGINE_get_prev"},
92 {ERR_FUNC(ENGINE_F_ENGINE_INIT), "ENGINE_init"},
93 {ERR_FUNC(ENGINE_F_ENGINE_LIST_ADD), "ENGINE_LIST_ADD"},
94 {ERR_FUNC(ENGINE_F_ENGINE_LIST_REMOVE), "ENGINE_LIST_REMOVE"},
95 {ERR_FUNC(ENGINE_F_ENGINE_LOAD_PRIVATE_KEY), "ENGINE_load_private_key"},
96 {ERR_FUNC(ENGINE_F_ENGINE_LOAD_PUBLIC_KEY), "ENGINE_load_public_key"},
97 {ERR_FUNC(ENGINE_F_ENGINE_LOAD_SSL_CLIENT_CERT), "ENGINE_load_ssl_client_
98 {ERR_FUNC(ENGINE_F_ENGINE_NEW), "ENGINE_new"},
99 {ERR_FUNC(ENGINE_F_ENGINE_REMOVE), "ENGINE_remove"},
100 {ERR_FUNC(ENGINE_F_ENGINE_SET_DEFAULT_STRING), "ENGINE_set_default_string"},
101 {ERR_FUNC(ENGINE_F_ENGINE_SET_DEFAULT_TYPE), "ENGINE_SET_DEFAULT_TYPE"},
102 {ERR_FUNC(ENGINE_F_ENGINE_SET_ID), "ENGINE_set_id"},
103 {ERR_FUNC(ENGINE_F_ENGINE_SET_NAME), "ENGINE_set_name"},
104 {ERR_FUNC(ENGINE_F_ENGINE_TABLE_REGISTER), "ENGINE_TABLE_REGISTER"},
105 {ERR_FUNC(ENGINE_F_ENGINE_UNLOAD_KEY), "ENGINE_UNLOAD_KEY"},
106 {ERR_FUNC(ENGINE_F_ENGINE_UNLOCKED_FINISH), "ENGINE_UNLOCKED_FINISH"},
107 {ERR_FUNC(ENGINE_F_ENGINE_UP_REF), "ENGINE_up_ref"},
108 {ERR_FUNC(ENGINE_F_INT_CTRL_HELPER), "INT_CTRL_HELPER"},
109 {ERR_FUNC(ENGINE_F_INT_ENGINE_CONFIGURE), "INT_ENGINE_CONFIGURE"},
110 {ERR_FUNC(ENGINE_F_INT_ENGINE_MODULE_INIT), "INT_ENGINE_MODULE_INIT"},
111 {ERR_FUNC(ENGINE_F_LOG_MESSAGE), "LOG_MESSAGE"},
112 {0,NULL}
113 };

115 static ERR_STRING_DATA ENGINE_str_reasons[]=
116 {
117 {ERR_REASON(ENGINE_R_ALREADY_LOADED) ,"already loaded"},
118 {ERR_REASON(ENGINE_R_ARGUMENT_IS_NOT_A_NUMBER),"argument is not a number"},
119 {ERR_REASON(ENGINE_R_CMD_NOT_EXECUTABLE) ,"cmd not executable"},
120 {ERR_REASON(ENGINE_R_COMMAND_TAKES_INPUT),"command takes input"},
121 {ERR_REASON(ENGINE_R_COMMAND_TAKES_NO_INPUT),"command takes no input"},
122 {ERR_REASON(ENGINE_R_CONFLICTING_ENGINE_ID),"conflicting engine id"},
123 {ERR_REASON(ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED),"ctrl command not implemented
124 {ERR_REASON(ENGINE_R_DH_NOT_IMPLEMENTED) ,"dh not implemented"},
125 {ERR_REASON(ENGINE_R_DSA_NOT_IMPLEMENTED),"dsa not implemented"},
126 {ERR_REASON(ENGINE_R_DSO_FAILURE) ,"DSO failure"},
127 {ERR_REASON(ENGINE_R_DSO_NOT_FOUND) ,"dso not found"},

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_err.c 3

128 {ERR_REASON(ENGINE_R_ENGINES_SECTION_ERROR),"engines section error"},
129 {ERR_REASON(ENGINE_R_ENGINE_CONFIGURATION_ERROR),"engine configuration error"},
130 {ERR_REASON(ENGINE_R_ENGINE_IS_NOT_IN_LIST),"engine is not in the list"},
131 {ERR_REASON(ENGINE_R_ENGINE_SECTION_ERROR),"engine section error"},
132 {ERR_REASON(ENGINE_R_FAILED_LOADING_PRIVATE_KEY),"failed loading private key"},
133 {ERR_REASON(ENGINE_R_FAILED_LOADING_PUBLIC_KEY),"failed loading public key"},
134 {ERR_REASON(ENGINE_R_FINISH_FAILED) ,"finish failed"},
135 {ERR_REASON(ENGINE_R_GET_HANDLE_FAILED) ,"could not obtain hardware handle"},
136 {ERR_REASON(ENGINE_R_ID_OR_NAME_MISSING) ,"’id’ or ’name’ missing"},
137 {ERR_REASON(ENGINE_R_INIT_FAILED) ,"init failed"},
138 {ERR_REASON(ENGINE_R_INTERNAL_LIST_ERROR),"internal list error"},
139 {ERR_REASON(ENGINE_R_INVALID_ARGUMENT) ,"invalid argument"},
140 {ERR_REASON(ENGINE_R_INVALID_CMD_NAME) ,"invalid cmd name"},
141 {ERR_REASON(ENGINE_R_INVALID_CMD_NUMBER) ,"invalid cmd number"},
142 {ERR_REASON(ENGINE_R_INVALID_INIT_VALUE) ,"invalid init value"},
143 {ERR_REASON(ENGINE_R_INVALID_STRING) ,"invalid string"},
144 {ERR_REASON(ENGINE_R_NOT_INITIALISED) ,"not initialised"},
145 {ERR_REASON(ENGINE_R_NOT_LOADED) ,"not loaded"},
146 {ERR_REASON(ENGINE_R_NO_CONTROL_FUNCTION),"no control function"},
147 {ERR_REASON(ENGINE_R_NO_INDEX) ,"no index"},
148 {ERR_REASON(ENGINE_R_NO_LOAD_FUNCTION) ,"no load function"},
149 {ERR_REASON(ENGINE_R_NO_REFERENCE) ,"no reference"},
150 {ERR_REASON(ENGINE_R_NO_SUCH_ENGINE) ,"no such engine"},
151 {ERR_REASON(ENGINE_R_NO_UNLOAD_FUNCTION) ,"no unload function"},
152 {ERR_REASON(ENGINE_R_PROVIDE_PARAMETERS) ,"provide parameters"},
153 {ERR_REASON(ENGINE_R_RSA_NOT_IMPLEMENTED),"rsa not implemented"},
154 {ERR_REASON(ENGINE_R_UNIMPLEMENTED_CIPHER),"unimplemented cipher"},
155 {ERR_REASON(ENGINE_R_UNIMPLEMENTED_DIGEST),"unimplemented digest"},
156 {ERR_REASON(ENGINE_R_UNIMPLEMENTED_PUBLIC_KEY_METHOD),"unimplemented public key
157 {ERR_REASON(ENGINE_R_VERSION_INCOMPATIBILITY),"version incompatibility"},
158 {0,NULL}
159 };

161 #endif

163 void ERR_load_ENGINE_strings(void)
164 {
165 #ifndef OPENSSL_NO_ERR

167 if (ERR_func_error_string(ENGINE_str_functs[0].error) == NULL)
168 {
169 ERR_load_strings(0,ENGINE_str_functs);
170 ERR_load_strings(0,ENGINE_str_reasons);
171 }
172 #endif
173 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_fat.c 1

**
 6091 Fri May 30 18:31:47 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/eng_fat.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/engine/eng_fat.c */
2 /* ==
3 * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * licensing@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55 /* ==
56 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57 * ECDH support in OpenSSL originally developed by
58 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
59 */

61 #include "eng_int.h"

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_fat.c 2

62 #include <openssl/conf.h>

64 int ENGINE_set_default(ENGINE *e, unsigned int flags)
65 {
66 if((flags & ENGINE_METHOD_CIPHERS) && !ENGINE_set_default_ciphers(e))
67 return 0;
68 if((flags & ENGINE_METHOD_DIGESTS) && !ENGINE_set_default_digests(e))
69 return 0;
70 #ifndef OPENSSL_NO_RSA
71 if((flags & ENGINE_METHOD_RSA) && !ENGINE_set_default_RSA(e))
72 return 0;
73 #endif
74 #ifndef OPENSSL_NO_DSA
75 if((flags & ENGINE_METHOD_DSA) && !ENGINE_set_default_DSA(e))
76 return 0;
77 #endif
78 #ifndef OPENSSL_NO_DH
79 if((flags & ENGINE_METHOD_DH) && !ENGINE_set_default_DH(e))
80 return 0;
81 #endif
82 #ifndef OPENSSL_NO_ECDH
83 if((flags & ENGINE_METHOD_ECDH) && !ENGINE_set_default_ECDH(e))
84 return 0;
85 #endif
86 #ifndef OPENSSL_NO_ECDSA
87 if((flags & ENGINE_METHOD_ECDSA) && !ENGINE_set_default_ECDSA(e))
88 return 0;
89 #endif
90 if((flags & ENGINE_METHOD_RAND) && !ENGINE_set_default_RAND(e))
91 return 0;
92 if((flags & ENGINE_METHOD_PKEY_METHS)
93 && !ENGINE_set_default_pkey_meths(e))
94 return 0;
95 if((flags & ENGINE_METHOD_PKEY_ASN1_METHS)
96 && !ENGINE_set_default_pkey_asn1_meths(e))
97 return 0;
98 return 1;
99 }

101 /* Set default algorithms using a string */

103 static int int_def_cb(const char *alg, int len, void *arg)
104 {
105 unsigned int *pflags = arg;
106 if (!strncmp(alg, "ALL", len))
107 *pflags |= ENGINE_METHOD_ALL;
108 else if (!strncmp(alg, "RSA", len))
109 *pflags |= ENGINE_METHOD_RSA;
110 else if (!strncmp(alg, "DSA", len))
111 *pflags |= ENGINE_METHOD_DSA;
112 else if (!strncmp(alg, "ECDH", len))
113 *pflags |= ENGINE_METHOD_ECDH;
114 else if (!strncmp(alg, "ECDSA", len))
115 *pflags |= ENGINE_METHOD_ECDSA;
116 else if (!strncmp(alg, "DH", len))
117 *pflags |= ENGINE_METHOD_DH;
118 else if (!strncmp(alg, "RAND", len))
119 *pflags |= ENGINE_METHOD_RAND;
120 else if (!strncmp(alg, "CIPHERS", len))
121 *pflags |= ENGINE_METHOD_CIPHERS;
122 else if (!strncmp(alg, "DIGESTS", len))
123 *pflags |= ENGINE_METHOD_DIGESTS;
124 else if (!strncmp(alg, "PKEY", len))
125 *pflags |=
126 ENGINE_METHOD_PKEY_METHS|ENGINE_METHOD_PKEY_ASN1_METHS;
127 else if (!strncmp(alg, "PKEY_CRYPTO", len))

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_fat.c 3

128 *pflags |= ENGINE_METHOD_PKEY_METHS;
129 else if (!strncmp(alg, "PKEY_ASN1", len))
130 *pflags |= ENGINE_METHOD_PKEY_ASN1_METHS;
131 else
132 return 0;
133 return 1;
134 }

137 int ENGINE_set_default_string(ENGINE *e, const char *def_list)
138 {
139 unsigned int flags = 0;
140 if (!CONF_parse_list(def_list, ’,’, 1, int_def_cb, &flags))
141 {
142 ENGINEerr(ENGINE_F_ENGINE_SET_DEFAULT_STRING,
143 ENGINE_R_INVALID_STRING);
144 ERR_add_error_data(2, "str=",def_list);
145 return 0;
146 }
147 return ENGINE_set_default(e, flags);
148 }

150 int ENGINE_register_complete(ENGINE *e)
151 {
152 ENGINE_register_ciphers(e);
153 ENGINE_register_digests(e);
154 #ifndef OPENSSL_NO_RSA
155 ENGINE_register_RSA(e);
156 #endif
157 #ifndef OPENSSL_NO_DSA
158 ENGINE_register_DSA(e);
159 #endif
160 #ifndef OPENSSL_NO_DH
161 ENGINE_register_DH(e);
162 #endif
163 #ifndef OPENSSL_NO_ECDH
164 ENGINE_register_ECDH(e);
165 #endif
166 #ifndef OPENSSL_NO_ECDSA
167 ENGINE_register_ECDSA(e);
168 #endif
169 ENGINE_register_RAND(e);
170 ENGINE_register_pkey_meths(e);
171 return 1;
172 }

174 int ENGINE_register_all_complete(void)
175 {
176 ENGINE *e;

178 for(e=ENGINE_get_first() ; e ; e=ENGINE_get_next(e))
179 if (!(e->flags & ENGINE_FLAGS_NO_REGISTER_ALL))
180 ENGINE_register_complete(e);
181 return 1;
182 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_init.c 1

**
 5200 Fri May 30 18:31:47 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/eng_init.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/engine/eng_init.c */
2 /* ==
3 * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * licensing@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 #include "eng_int.h"

58 /* Initialise a engine type for use (or up its functional reference count
59 * if it’s already in use). This version is only used internally. */
60 int engine_unlocked_init(ENGINE *e)
61 {

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_init.c 2

62 int to_return = 1;

64 if((e->funct_ref == 0) && e->init)
65 /* This is the first functional reference and the engine
66 * requires initialisation so we do it now. */
67 to_return = e->init(e);
68 if(to_return)
69 {
70 /* OK, we return a functional reference which is also a
71 * structural reference. */
72 e->struct_ref++;
73 e->funct_ref++;
74 engine_ref_debug(e, 0, 1)
75 engine_ref_debug(e, 1, 1)
76 }
77 return to_return;
78 }

80 /* Free a functional reference to a engine type. This version is only used
81 * internally. */
82 int engine_unlocked_finish(ENGINE *e, int unlock_for_handlers)
83 {
84 int to_return = 1;

86 /* Reduce the functional reference count here so if it’s the terminating
87 * case, we can release the lock safely and call the finish() handler
88 * without risk of a race. We get a race if we leave the count until
89 * after and something else is calling "finish" at the same time -
90 * there’s a chance that both threads will together take the count from
91 * 2 to 0 without either calling finish(). */
92 e->funct_ref--;
93 engine_ref_debug(e, 1, -1);
94 if((e->funct_ref == 0) && e->finish)
95 {
96 if(unlock_for_handlers)
97 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
98 to_return = e->finish(e);
99 if(unlock_for_handlers)
100 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
101 if(!to_return)
102 return 0;
103 }
104 #ifdef REF_CHECK
105 if(e->funct_ref < 0)
106 {
107 fprintf(stderr,"ENGINE_finish, bad functional reference count\n"
108 abort();
109 }
110 #endif
111 /* Release the structural reference too */
112 if(!engine_free_util(e, 0))
113 {
114 ENGINEerr(ENGINE_F_ENGINE_UNLOCKED_FINISH,ENGINE_R_FINISH_FAILED
115 return 0;
116 }
117 return to_return;
118 }

120 /* The API (locked) version of "init" */
121 int ENGINE_init(ENGINE *e)
122 {
123 int ret;
124 if(e == NULL)
125 {
126 ENGINEerr(ENGINE_F_ENGINE_INIT,ERR_R_PASSED_NULL_PARAMETER);
127 return 0;

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_init.c 3

128 }
129 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
130 ret = engine_unlocked_init(e);
131 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
132 return ret;
133 }

135 /* The API (locked) version of "finish" */
136 int ENGINE_finish(ENGINE *e)
137 {
138 int to_return = 1;

140 if(e == NULL)
141 {
142 ENGINEerr(ENGINE_F_ENGINE_FINISH,ERR_R_PASSED_NULL_PARAMETER);
143 return 0;
144 }
145 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
146 to_return = engine_unlocked_finish(e, 1);
147 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
148 if(!to_return)
149 {
150 ENGINEerr(ENGINE_F_ENGINE_FINISH,ENGINE_R_FINISH_FAILED);
151 return 0;
152 }
153 return to_return;
154 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_lib.c 1

**
 8789 Fri May 30 18:31:47 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/eng_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/engine/eng_lib.c */
2 /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include "eng_int.h"
60 #include <openssl/rand.h>

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_lib.c 2

62 /* The "new"/"free" stuff first */

64 ENGINE *ENGINE_new(void)
65 {
66 ENGINE *ret;

68 ret = (ENGINE *)OPENSSL_malloc(sizeof(ENGINE));
69 if(ret == NULL)
70 {
71 ENGINEerr(ENGINE_F_ENGINE_NEW, ERR_R_MALLOC_FAILURE);
72 return NULL;
73 }
74 memset(ret, 0, sizeof(ENGINE));
75 ret->struct_ref = 1;
76 engine_ref_debug(ret, 0, 1)
77 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_ENGINE, ret, &ret->ex_data);
78 return ret;
79 }

81 /* Placed here (close proximity to ENGINE_new) so that modifications to the
82 * elements of the ENGINE structure are more likely to be caught and changed
83 * here. */
84 void engine_set_all_null(ENGINE *e)
85 {
86 e->id = NULL;
87 e->name = NULL;
88 e->rsa_meth = NULL;
89 e->dsa_meth = NULL;
90 e->dh_meth = NULL;
91 e->rand_meth = NULL;
92 e->store_meth = NULL;
93 e->ciphers = NULL;
94 e->digests = NULL;
95 e->destroy = NULL;
96 e->init = NULL;
97 e->finish = NULL;
98 e->ctrl = NULL;
99 e->load_privkey = NULL;
100 e->load_pubkey = NULL;
101 e->cmd_defns = NULL;
102 e->flags = 0;
103 }

105 int engine_free_util(ENGINE *e, int locked)
106 {
107 int i;

109 if(e == NULL)
110 {
111 ENGINEerr(ENGINE_F_ENGINE_FREE_UTIL,
112 ERR_R_PASSED_NULL_PARAMETER);
113 return 0;
114 }
115 if(locked)
116 i = CRYPTO_add(&e->struct_ref,-1,CRYPTO_LOCK_ENGINE);
117 else
118 i = --e->struct_ref;
119 engine_ref_debug(e, 0, -1)
120 if (i > 0) return 1;
121 #ifdef REF_CHECK
122 if (i < 0)
123 {
124 fprintf(stderr,"ENGINE_free, bad structural reference count\n");
125 abort();
126 }
127 #endif

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_lib.c 3

128 /* Free up any dynamically allocated public key methods */
129 engine_pkey_meths_free(e);
130 engine_pkey_asn1_meths_free(e);
131 /* Give the ENGINE a chance to do any structural cleanup corresponding
132 * to allocation it did in its constructor (eg. unload error strings) */
133 if(e->destroy)
134 e->destroy(e);
135 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_ENGINE, e, &e->ex_data);
136 OPENSSL_free(e);
137 return 1;
138 }

140 int ENGINE_free(ENGINE *e)
141 {
142 return engine_free_util(e, 1);
143 }

145 /* Cleanup stuff */

147 /* ENGINE_cleanup() is coded such that anything that does work that will need
148 * cleanup can register a "cleanup" callback here. That way we don’t get linker
149 * bloat by referring to all *possible* cleanups, but any linker bloat into code
150 * "X" will cause X’s cleanup function to end up here. */
151 static STACK_OF(ENGINE_CLEANUP_ITEM) *cleanup_stack = NULL;
152 static int int_cleanup_check(int create)
153 {
154 if(cleanup_stack) return 1;
155 if(!create) return 0;
156 cleanup_stack = sk_ENGINE_CLEANUP_ITEM_new_null();
157 return (cleanup_stack ? 1 : 0);
158 }
159 static ENGINE_CLEANUP_ITEM *int_cleanup_item(ENGINE_CLEANUP_CB *cb)
160 {
161 ENGINE_CLEANUP_ITEM *item = OPENSSL_malloc(sizeof(
162 ENGINE_CLEANUP_ITEM));
163 if(!item) return NULL;
164 item->cb = cb;
165 return item;
166 }
167 void engine_cleanup_add_first(ENGINE_CLEANUP_CB *cb)
168 {
169 ENGINE_CLEANUP_ITEM *item;
170 if(!int_cleanup_check(1)) return;
171 item = int_cleanup_item(cb);
172 if(item)
173 sk_ENGINE_CLEANUP_ITEM_insert(cleanup_stack, item, 0);
174 }
175 void engine_cleanup_add_last(ENGINE_CLEANUP_CB *cb)
176 {
177 ENGINE_CLEANUP_ITEM *item;
178 if(!int_cleanup_check(1)) return;
179 item = int_cleanup_item(cb);
180 if(item)
181 sk_ENGINE_CLEANUP_ITEM_push(cleanup_stack, item);
182 }
183 /* The API function that performs all cleanup */
184 static void engine_cleanup_cb_free(ENGINE_CLEANUP_ITEM *item)
185 {
186 (*(item->cb))();
187 OPENSSL_free(item);
188 }
189 void ENGINE_cleanup(void)
190 {
191 if(int_cleanup_check(0))
192 {
193 sk_ENGINE_CLEANUP_ITEM_pop_free(cleanup_stack,

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_lib.c 4

194 engine_cleanup_cb_free);
195 cleanup_stack = NULL;
196 }
197 /* FIXME: This should be handled (somehow) through RAND, eg. by it
198 * registering a cleanup callback. */
199 RAND_set_rand_method(NULL);
200 }

202 /* Now the "ex_data" support */

204 int ENGINE_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
205 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func)
206 {
207 return CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_ENGINE, argl, argp,
208 new_func, dup_func, free_func);
209 }

211 int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg)
212 {
213 return(CRYPTO_set_ex_data(&e->ex_data, idx, arg));
214 }

216 void *ENGINE_get_ex_data(const ENGINE *e, int idx)
217 {
218 return(CRYPTO_get_ex_data(&e->ex_data, idx));
219 }

221 /* Functions to get/set an ENGINE’s elements - mainly to avoid exposing the
222 * ENGINE structure itself. */

224 int ENGINE_set_id(ENGINE *e, const char *id)
225 {
226 if(id == NULL)
227 {
228 ENGINEerr(ENGINE_F_ENGINE_SET_ID,
229 ERR_R_PASSED_NULL_PARAMETER);
230 return 0;
231 }
232 e->id = id;
233 return 1;
234 }

236 int ENGINE_set_name(ENGINE *e, const char *name)
237 {
238 if(name == NULL)
239 {
240 ENGINEerr(ENGINE_F_ENGINE_SET_NAME,
241 ERR_R_PASSED_NULL_PARAMETER);
242 return 0;
243 }
244 e->name = name;
245 return 1;
246 }

248 int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f)
249 {
250 e->destroy = destroy_f;
251 return 1;
252 }

254 int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f)
255 {
256 e->init = init_f;
257 return 1;
258 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_lib.c 5

260 int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f)
261 {
262 e->finish = finish_f;
263 return 1;
264 }

266 int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f)
267 {
268 e->ctrl = ctrl_f;
269 return 1;
270 }

272 int ENGINE_set_flags(ENGINE *e, int flags)
273 {
274 e->flags = flags;
275 return 1;
276 }

278 int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns)
279 {
280 e->cmd_defns = defns;
281 return 1;
282 }

284 const char *ENGINE_get_id(const ENGINE *e)
285 {
286 return e->id;
287 }

289 const char *ENGINE_get_name(const ENGINE *e)
290 {
291 return e->name;
292 }

294 ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e)
295 {
296 return e->destroy;
297 }

299 ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e)
300 {
301 return e->init;
302 }

304 ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e)
305 {
306 return e->finish;
307 }

309 ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e)
310 {
311 return e->ctrl;
312 }

314 int ENGINE_get_flags(const ENGINE *e)
315 {
316 return e->flags;
317 }

319 const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e)
320 {
321 return e->cmd_defns;
322 }

324 /* eng_lib.o is pretty much linked into anything that touches ENGINE already, so
325 * put the "static_state" hack here. */

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_lib.c 6

327 static int internal_static_hack = 0;

329 void *ENGINE_get_static_state(void)
330 {
331 return &internal_static_hack;
332 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_list.c 1

**
 11841 Fri May 30 18:31:47 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/eng_list.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/engine/eng_list.c */
2 /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 /* ==
59 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60 * ECDH support in OpenSSL originally developed by
61 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_list.c 2

62 */

64 #include "eng_int.h"

66 /* The linked-list of pointers to engine types. engine_list_head
67 * incorporates an implicit structural reference but engine_list_tail
68 * does not - the latter is a computational niceity and only points
69 * to something that is already pointed to by its predecessor in the
70 * list (or engine_list_head itself). In the same way, the use of the
71 * "prev" pointer in each ENGINE is to save excessive list iteration,
72 * it doesn’t correspond to an extra structural reference. Hence,
73 * engine_list_head, and each non-null "next" pointer account for
74 * the list itself assuming exactly 1 structural reference on each
75 * list member. */
76 static ENGINE *engine_list_head = NULL;
77 static ENGINE *engine_list_tail = NULL;

79 /* This cleanup function is only needed internally. If it should be called, we
80 * register it with the "ENGINE_cleanup()" stack to be called during cleanup. */

82 static void engine_list_cleanup(void)
83 {
84 ENGINE *iterator = engine_list_head;

86 while(iterator != NULL)
87 {
88 ENGINE_remove(iterator);
89 iterator = engine_list_head;
90 }
91 return;
92 }

94 /* These static functions starting with a lower case "engine_" always
95 * take place when CRYPTO_LOCK_ENGINE has been locked up. */
96 static int engine_list_add(ENGINE *e)
97 {
98 int conflict = 0;
99 ENGINE *iterator = NULL;

101 if(e == NULL)
102 {
103 ENGINEerr(ENGINE_F_ENGINE_LIST_ADD,
104 ERR_R_PASSED_NULL_PARAMETER);
105 return 0;
106 }
107 iterator = engine_list_head;
108 while(iterator && !conflict)
109 {
110 conflict = (strcmp(iterator->id, e->id) == 0);
111 iterator = iterator->next;
112 }
113 if(conflict)
114 {
115 ENGINEerr(ENGINE_F_ENGINE_LIST_ADD,
116 ENGINE_R_CONFLICTING_ENGINE_ID);
117 return 0;
118 }
119 if(engine_list_head == NULL)
120 {
121 /* We are adding to an empty list. */
122 if(engine_list_tail)
123 {
124 ENGINEerr(ENGINE_F_ENGINE_LIST_ADD,
125 ENGINE_R_INTERNAL_LIST_ERROR);
126 return 0;
127 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_list.c 3

128 engine_list_head = e;
129 e->prev = NULL;
130 /* The first time the list allocates, we should register the
131 * cleanup. */
132 engine_cleanup_add_last(engine_list_cleanup);
133 }
134 else
135 {
136 /* We are adding to the tail of an existing list. */
137 if((engine_list_tail == NULL) ||
138 (engine_list_tail->next != NULL))
139 {
140 ENGINEerr(ENGINE_F_ENGINE_LIST_ADD,
141 ENGINE_R_INTERNAL_LIST_ERROR);
142 return 0;
143 }
144 engine_list_tail->next = e;
145 e->prev = engine_list_tail;
146 }
147 /* Having the engine in the list assumes a structural
148 * reference. */
149 e->struct_ref++;
150 engine_ref_debug(e, 0, 1)
151 /* However it came to be, e is the last item in the list. */
152 engine_list_tail = e;
153 e->next = NULL;
154 return 1;
155 }

157 static int engine_list_remove(ENGINE *e)
158 {
159 ENGINE *iterator;

161 if(e == NULL)
162 {
163 ENGINEerr(ENGINE_F_ENGINE_LIST_REMOVE,
164 ERR_R_PASSED_NULL_PARAMETER);
165 return 0;
166 }
167 /* We need to check that e is in our linked list! */
168 iterator = engine_list_head;
169 while(iterator && (iterator != e))
170 iterator = iterator->next;
171 if(iterator == NULL)
172 {
173 ENGINEerr(ENGINE_F_ENGINE_LIST_REMOVE,
174 ENGINE_R_ENGINE_IS_NOT_IN_LIST);
175 return 0;
176 }
177 /* un-link e from the chain. */
178 if(e->next)
179 e->next->prev = e->prev;
180 if(e->prev)
181 e->prev->next = e->next;
182 /* Correct our head/tail if necessary. */
183 if(engine_list_head == e)
184 engine_list_head = e->next;
185 if(engine_list_tail == e)
186 engine_list_tail = e->prev;
187 engine_free_util(e, 0);
188 return 1;
189 }

191 /* Get the first/last "ENGINE" type available. */
192 ENGINE *ENGINE_get_first(void)
193 {

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_list.c 4

194 ENGINE *ret;

196 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
197 ret = engine_list_head;
198 if(ret)
199 {
200 ret->struct_ref++;
201 engine_ref_debug(ret, 0, 1)
202 }
203 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
204 return ret;
205 }

207 ENGINE *ENGINE_get_last(void)
208 {
209 ENGINE *ret;

211 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
212 ret = engine_list_tail;
213 if(ret)
214 {
215 ret->struct_ref++;
216 engine_ref_debug(ret, 0, 1)
217 }
218 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
219 return ret;
220 }

222 /* Iterate to the next/previous "ENGINE" type (NULL = end of the list). */
223 ENGINE *ENGINE_get_next(ENGINE *e)
224 {
225 ENGINE *ret = NULL;
226 if(e == NULL)
227 {
228 ENGINEerr(ENGINE_F_ENGINE_GET_NEXT,
229 ERR_R_PASSED_NULL_PARAMETER);
230 return 0;
231 }
232 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
233 ret = e->next;
234 if(ret)
235 {
236 /* Return a valid structural refernce to the next ENGINE */
237 ret->struct_ref++;
238 engine_ref_debug(ret, 0, 1)
239 }
240 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
241 /* Release the structural reference to the previous ENGINE */
242 ENGINE_free(e);
243 return ret;
244 }

246 ENGINE *ENGINE_get_prev(ENGINE *e)
247 {
248 ENGINE *ret = NULL;
249 if(e == NULL)
250 {
251 ENGINEerr(ENGINE_F_ENGINE_GET_PREV,
252 ERR_R_PASSED_NULL_PARAMETER);
253 return 0;
254 }
255 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
256 ret = e->prev;
257 if(ret)
258 {
259 /* Return a valid structural reference to the next ENGINE */

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_list.c 5

260 ret->struct_ref++;
261 engine_ref_debug(ret, 0, 1)
262 }
263 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
264 /* Release the structural reference to the previous ENGINE */
265 ENGINE_free(e);
266 return ret;
267 }

269 /* Add another "ENGINE" type into the list. */
270 int ENGINE_add(ENGINE *e)
271 {
272 int to_return = 1;
273 if(e == NULL)
274 {
275 ENGINEerr(ENGINE_F_ENGINE_ADD,
276 ERR_R_PASSED_NULL_PARAMETER);
277 return 0;
278 }
279 if((e->id == NULL) || (e->name == NULL))
280 {
281 ENGINEerr(ENGINE_F_ENGINE_ADD,
282 ENGINE_R_ID_OR_NAME_MISSING);
283 }
284 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
285 if(!engine_list_add(e))
286 {
287 ENGINEerr(ENGINE_F_ENGINE_ADD,
288 ENGINE_R_INTERNAL_LIST_ERROR);
289 to_return = 0;
290 }
291 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
292 return to_return;
293 }

295 /* Remove an existing "ENGINE" type from the array. */
296 int ENGINE_remove(ENGINE *e)
297 {
298 int to_return = 1;
299 if(e == NULL)
300 {
301 ENGINEerr(ENGINE_F_ENGINE_REMOVE,
302 ERR_R_PASSED_NULL_PARAMETER);
303 return 0;
304 }
305 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
306 if(!engine_list_remove(e))
307 {
308 ENGINEerr(ENGINE_F_ENGINE_REMOVE,
309 ENGINE_R_INTERNAL_LIST_ERROR);
310 to_return = 0;
311 }
312 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
313 return to_return;
314 }

316 static void engine_cpy(ENGINE *dest, const ENGINE *src)
317 {
318 dest->id = src->id;
319 dest->name = src->name;
320 #ifndef OPENSSL_NO_RSA
321 dest->rsa_meth = src->rsa_meth;
322 #endif
323 #ifndef OPENSSL_NO_DSA
324 dest->dsa_meth = src->dsa_meth;
325 #endif

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_list.c 6

326 #ifndef OPENSSL_NO_DH
327 dest->dh_meth = src->dh_meth;
328 #endif
329 #ifndef OPENSSL_NO_ECDH
330 dest->ecdh_meth = src->ecdh_meth;
331 #endif
332 #ifndef OPENSSL_NO_ECDSA
333 dest->ecdsa_meth = src->ecdsa_meth;
334 #endif
335 dest->rand_meth = src->rand_meth;
336 dest->store_meth = src->store_meth;
337 dest->ciphers = src->ciphers;
338 dest->digests = src->digests;
339 dest->pkey_meths = src->pkey_meths;
340 dest->destroy = src->destroy;
341 dest->init = src->init;
342 dest->finish = src->finish;
343 dest->ctrl = src->ctrl;
344 dest->load_privkey = src->load_privkey;
345 dest->load_pubkey = src->load_pubkey;
346 dest->cmd_defns = src->cmd_defns;
347 dest->flags = src->flags;
348 }

350 ENGINE *ENGINE_by_id(const char *id)
351 {
352 ENGINE *iterator;
353 char *load_dir = NULL;
354 if(id == NULL)
355 {
356 ENGINEerr(ENGINE_F_ENGINE_BY_ID,
357 ERR_R_PASSED_NULL_PARAMETER);
358 return NULL;
359 }
360 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
361 iterator = engine_list_head;
362 while(iterator && (strcmp(id, iterator->id) != 0))
363 iterator = iterator->next;
364 if(iterator)
365 {
366 /* We need to return a structural reference. If this is an
367 * ENGINE type that returns copies, make a duplicate - otherwise
368 * increment the existing ENGINE’s reference count. */
369 if(iterator->flags & ENGINE_FLAGS_BY_ID_COPY)
370 {
371 ENGINE *cp = ENGINE_new();
372 if(!cp)
373 iterator = NULL;
374 else
375 {
376 engine_cpy(cp, iterator);
377 iterator = cp;
378 }
379 }
380 else
381 {
382 iterator->struct_ref++;
383 engine_ref_debug(iterator, 0, 1)
384 }
385 }
386 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
387 #if 0
388 if(iterator == NULL)
389 {
390 ENGINEerr(ENGINE_F_ENGINE_BY_ID,
391 ENGINE_R_NO_SUCH_ENGINE);

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_list.c 7

392 ERR_add_error_data(2, "id=", id);
393 }
394 return iterator;
395 #else
396 /* EEK! Experimental code starts */
397 if(iterator) return iterator;
398 /* Prevent infinite recusrion if we’re looking for the dynamic engine. *
399 if (strcmp(id, "dynamic"))
400 {
401 #ifdef OPENSSL_SYS_VMS
402 if((load_dir = getenv("OPENSSL_ENGINES")) == 0) load_dir = "SSLR
403 #else
404 if((load_dir = getenv("OPENSSL_ENGINES")) == 0) load_dir = ENGIN
405 #endif
406 iterator = ENGINE_by_id("dynamic");
407 if(!iterator || !ENGINE_ctrl_cmd_string(iterator, "ID", id, 0) |
408 !ENGINE_ctrl_cmd_string(iterator, "DIR_LOAD", "2
409 !ENGINE_ctrl_cmd_string(iterator, "DIR_ADD",
410 load_dir, 0) ||
411 !ENGINE_ctrl_cmd_string(iterator, "LIST_ADD", "1
412 !ENGINE_ctrl_cmd_string(iterator, "LOAD", NULL,
413 goto notfound;
414 return iterator;
415 }
416 notfound:
417 ENGINE_free(iterator);
418 ENGINEerr(ENGINE_F_ENGINE_BY_ID,ENGINE_R_NO_SUCH_ENGINE);
419 ERR_add_error_data(2, "id=", id);
420 return NULL;
421 /* EEK! Experimental code ends */
422 #endif
423 }

425 int ENGINE_up_ref(ENGINE *e)
426 {
427 if (e == NULL)
428 {
429 ENGINEerr(ENGINE_F_ENGINE_UP_REF,ERR_R_PASSED_NULL_PARAMETER);
430 return 0;
431 }
432 CRYPTO_add(&e->struct_ref,1,CRYPTO_LOCK_ENGINE);
433 return 1;
434 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_openssl.c 1

**
 11632 Fri May 30 18:31:47 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/eng_openssl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/engine/eng_openssl.c */
2 /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 /* ==
59 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60 * ECDH support in OpenSSL originally developed by
61 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_openssl.c 2

62 */

65 #include <stdio.h>
66 #include <openssl/crypto.h>
67 #include "cryptlib.h"
68 #include <openssl/engine.h>
69 #include <openssl/dso.h>
70 #include <openssl/pem.h>
71 #include <openssl/evp.h>
72 #include <openssl/rand.h>
73 #ifndef OPENSSL_NO_RSA
74 #include <openssl/rsa.h>
75 #endif
76 #ifndef OPENSSL_NO_DSA
77 #include <openssl/dsa.h>
78 #endif
79 #ifndef OPENSSL_NO_DH
80 #include <openssl/dh.h>
81 #endif

83 /* This testing gunk is implemented (and explained) lower down. It also assumes
84 * the application explicitly calls "ENGINE_load_openssl()" because this is no
85 * longer automatic in ENGINE_load_builtin_engines(). */
86 #define TEST_ENG_OPENSSL_RC4
87 #define TEST_ENG_OPENSSL_PKEY
88 /* #define TEST_ENG_OPENSSL_RC4_OTHERS */
89 #define TEST_ENG_OPENSSL_RC4_P_INIT
90 /* #define TEST_ENG_OPENSSL_RC4_P_CIPHER */
91 #define TEST_ENG_OPENSSL_SHA
92 /* #define TEST_ENG_OPENSSL_SHA_OTHERS */
93 /* #define TEST_ENG_OPENSSL_SHA_P_INIT */
94 /* #define TEST_ENG_OPENSSL_SHA_P_UPDATE */
95 /* #define TEST_ENG_OPENSSL_SHA_P_FINAL */

97 /* Now check what of those algorithms are actually enabled */
98 #ifdef OPENSSL_NO_RC4
99 #undef TEST_ENG_OPENSSL_RC4
100 #undef TEST_ENG_OPENSSL_RC4_OTHERS
101 #undef TEST_ENG_OPENSSL_RC4_P_INIT
102 #undef TEST_ENG_OPENSSL_RC4_P_CIPHER
103 #endif
104 #if defined(OPENSSL_NO_SHA) || defined(OPENSSL_NO_SHA0) || defined(OPENSSL_NO_SH
105 #undef TEST_ENG_OPENSSL_SHA
106 #undef TEST_ENG_OPENSSL_SHA_OTHERS
107 #undef TEST_ENG_OPENSSL_SHA_P_INIT
108 #undef TEST_ENG_OPENSSL_SHA_P_UPDATE
109 #undef TEST_ENG_OPENSSL_SHA_P_FINAL
110 #endif

112 #ifdef TEST_ENG_OPENSSL_RC4
113 static int openssl_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
114 const int **nids, int nid);
115 #endif
116 #ifdef TEST_ENG_OPENSSL_SHA
117 static int openssl_digests(ENGINE *e, const EVP_MD **digest,
118 const int **nids, int nid);
119 #endif

121 #ifdef TEST_ENG_OPENSSL_PKEY
122 static EVP_PKEY *openssl_load_privkey(ENGINE *eng, const char *key_id,
123 UI_METHOD *ui_method, void *callback_data);
124 #endif

126 /* The constants used when creating the ENGINE */
127 static const char *engine_openssl_id = "openssl";

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_openssl.c 3

128 static const char *engine_openssl_name = "Software engine support";

130 /* This internal function is used by ENGINE_openssl() and possibly by the
131 * "dynamic" ENGINE support too */
132 static int bind_helper(ENGINE *e)
133 {
134 if(!ENGINE_set_id(e, engine_openssl_id)
135 || !ENGINE_set_name(e, engine_openssl_name)
136 #ifndef TEST_ENG_OPENSSL_NO_ALGORITHMS
137 #ifndef OPENSSL_NO_RSA
138 || !ENGINE_set_RSA(e, RSA_get_default_method())
139 #endif
140 #ifndef OPENSSL_NO_DSA
141 || !ENGINE_set_DSA(e, DSA_get_default_method())
142 #endif
143 #ifndef OPENSSL_NO_ECDH
144 || !ENGINE_set_ECDH(e, ECDH_OpenSSL())
145 #endif
146 #ifndef OPENSSL_NO_ECDSA
147 || !ENGINE_set_ECDSA(e, ECDSA_OpenSSL())
148 #endif
149 #ifndef OPENSSL_NO_DH
150 || !ENGINE_set_DH(e, DH_get_default_method())
151 #endif
152 || !ENGINE_set_RAND(e, RAND_SSLeay())
153 #ifdef TEST_ENG_OPENSSL_RC4
154 || !ENGINE_set_ciphers(e, openssl_ciphers)
155 #endif
156 #ifdef TEST_ENG_OPENSSL_SHA
157 || !ENGINE_set_digests(e, openssl_digests)
158 #endif
159 #endif
160 #ifdef TEST_ENG_OPENSSL_PKEY
161 || !ENGINE_set_load_privkey_function(e, openssl_load_pri
162 #endif
163)
164 return 0;
165 /* If we add errors to this ENGINE, ensure the error handling is setup h
166 /* openssl_load_error_strings(); */
167 return 1;
168 }

170 static ENGINE *engine_openssl(void)
171 {
172 ENGINE *ret = ENGINE_new();
173 if(!ret)
174 return NULL;
175 if(!bind_helper(ret))
176 {
177 ENGINE_free(ret);
178 return NULL;
179 }
180 return ret;
181 }

183 void ENGINE_load_openssl(void)
184 {
185 ENGINE *toadd = engine_openssl();
186 if(!toadd) return;
187 ENGINE_add(toadd);
188 /* If the "add" worked, it gets a structural reference. So either way,
189 * we release our just-created reference. */
190 ENGINE_free(toadd);
191 ERR_clear_error();
192 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_openssl.c 4

194 /* This stuff is needed if this ENGINE is being compiled into a self-contained
195 * shared-library. */
196 #ifdef ENGINE_DYNAMIC_SUPPORT
197 static int bind_fn(ENGINE *e, const char *id)
198 {
199 if(id && (strcmp(id, engine_openssl_id) != 0))
200 return 0;
201 if(!bind_helper(e))
202 return 0;
203 return 1;
204 }
205 IMPLEMENT_DYNAMIC_CHECK_FN()
206 IMPLEMENT_DYNAMIC_BIND_FN(bind_fn)
207 #endif /* ENGINE_DYNAMIC_SUPPORT */

209 #ifdef TEST_ENG_OPENSSL_RC4
210 /* This section of code compiles an "alternative implementation" of two modes of
211 * RC4 into this ENGINE. The result is that EVP_CIPHER operation for "rc4"
212 * should under normal circumstances go via this support rather than the default
213 * EVP support. There are other symbols to tweak the testing;
214 * TEST_ENC_OPENSSL_RC4_OTHERS - print a one line message to stderr each time
215 * we’re asked for a cipher we don’t support (should not happen).
216 * TEST_ENG_OPENSSL_RC4_P_INIT - print a one line message to stderr each time
217 * the "init_key" handler is called.
218 * TEST_ENG_OPENSSL_RC4_P_CIPHER - ditto for the "cipher" handler.
219 */
220 #include <openssl/rc4.h>
221 #define TEST_RC4_KEY_SIZE 16
222 static int test_cipher_nids[] = {NID_rc4,NID_rc4_40};
223 static int test_cipher_nids_number = 2;
224 typedef struct {
225 unsigned char key[TEST_RC4_KEY_SIZE];
226 RC4_KEY ks;
227 } TEST_RC4_KEY;
228 #define test(ctx) ((TEST_RC4_KEY *)(ctx)->cipher_data)
229 static int test_rc4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
230 const unsigned char *iv, int enc)
231 {
232 #ifdef TEST_ENG_OPENSSL_RC4_P_INIT
233 fprintf(stderr, "(TEST_ENG_OPENSSL_RC4) test_init_key() called\n");
234 #endif
235 memcpy(&test(ctx)->key[0],key,EVP_CIPHER_CTX_key_length(ctx));
236 RC4_set_key(&test(ctx)->ks,EVP_CIPHER_CTX_key_length(ctx),
237 test(ctx)->key);
238 return 1;
239 }
240 static int test_rc4_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
241 const unsigned char *in, size_t inl)
242 {
243 #ifdef TEST_ENG_OPENSSL_RC4_P_CIPHER
244 fprintf(stderr, "(TEST_ENG_OPENSSL_RC4) test_cipher() called\n");
245 #endif
246 RC4(&test(ctx)->ks,inl,in,out);
247 return 1;
248 }
249 static const EVP_CIPHER test_r4_cipher=
250 {
251 NID_rc4,
252 1,TEST_RC4_KEY_SIZE,0,
253 EVP_CIPH_VARIABLE_LENGTH,
254 test_rc4_init_key,
255 test_rc4_cipher,
256 NULL,
257 sizeof(TEST_RC4_KEY),
258 NULL,
259 NULL,

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_openssl.c 5

260 NULL,
261 NULL
262 };
263 static const EVP_CIPHER test_r4_40_cipher=
264 {
265 NID_rc4_40,
266 1,5 /* 40 bit */,0,
267 EVP_CIPH_VARIABLE_LENGTH,
268 test_rc4_init_key,
269 test_rc4_cipher,
270 NULL,
271 sizeof(TEST_RC4_KEY),
272 NULL,
273 NULL,
274 NULL,
275 NULL
276 };
277 static int openssl_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
278 const int **nids, int nid)
279 {
280 if(!cipher)
281 {
282 /* We are returning a list of supported nids */
283 *nids = test_cipher_nids;
284 return test_cipher_nids_number;
285 }
286 /* We are being asked for a specific cipher */
287 if(nid == NID_rc4)
288 *cipher = &test_r4_cipher;
289 else if(nid == NID_rc4_40)
290 *cipher = &test_r4_40_cipher;
291 else
292 {
293 #ifdef TEST_ENG_OPENSSL_RC4_OTHERS
294 fprintf(stderr, "(TEST_ENG_OPENSSL_RC4) returning NULL for "
295 "nid %d\n", nid);
296 #endif
297 *cipher = NULL;
298 return 0;
299 }
300 return 1;
301 }
302 #endif

304 #ifdef TEST_ENG_OPENSSL_SHA
305 /* Much the same sort of comment as for TEST_ENG_OPENSSL_RC4 */
306 #include <openssl/sha.h>
307 static int test_digest_nids[] = {NID_sha1};
308 static int test_digest_nids_number = 1;
309 static int test_sha1_init(EVP_MD_CTX *ctx)
310 {
311 #ifdef TEST_ENG_OPENSSL_SHA_P_INIT
312 fprintf(stderr, "(TEST_ENG_OPENSSL_SHA) test_sha1_init() called\n");
313 #endif
314 return SHA1_Init(ctx->md_data);
315 }
316 static int test_sha1_update(EVP_MD_CTX *ctx,const void *data,size_t count)
317 {
318 #ifdef TEST_ENG_OPENSSL_SHA_P_UPDATE
319 fprintf(stderr, "(TEST_ENG_OPENSSL_SHA) test_sha1_update() called\n");
320 #endif
321 return SHA1_Update(ctx->md_data,data,count);
322 }
323 static int test_sha1_final(EVP_MD_CTX *ctx,unsigned char *md)
324 {
325 #ifdef TEST_ENG_OPENSSL_SHA_P_FINAL

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_openssl.c 6

326 fprintf(stderr, "(TEST_ENG_OPENSSL_SHA) test_sha1_final() called\n");
327 #endif
328 return SHA1_Final(md,ctx->md_data);
329 }
330 static const EVP_MD test_sha_md=
331 {
332 NID_sha1,
333 NID_sha1WithRSAEncryption,
334 SHA_DIGEST_LENGTH,
335 0,
336 test_sha1_init,
337 test_sha1_update,
338 test_sha1_final,
339 NULL,
340 NULL,
341 EVP_PKEY_RSA_method,
342 SHA_CBLOCK,
343 sizeof(EVP_MD *)+sizeof(SHA_CTX),
344 };
345 static int openssl_digests(ENGINE *e, const EVP_MD **digest,
346 const int **nids, int nid)
347 {
348 if(!digest)
349 {
350 /* We are returning a list of supported nids */
351 *nids = test_digest_nids;
352 return test_digest_nids_number;
353 }
354 /* We are being asked for a specific digest */
355 if(nid == NID_sha1)
356 *digest = &test_sha_md;
357 else
358 {
359 #ifdef TEST_ENG_OPENSSL_SHA_OTHERS
360 fprintf(stderr, "(TEST_ENG_OPENSSL_SHA) returning NULL for "
361 "nid %d\n", nid);
362 #endif
363 *digest = NULL;
364 return 0;
365 }
366 return 1;
367 }
368 #endif

370 #ifdef TEST_ENG_OPENSSL_PKEY
371 static EVP_PKEY *openssl_load_privkey(ENGINE *eng, const char *key_id,
372 UI_METHOD *ui_method, void *callback_data)
373 {
374 BIO *in;
375 EVP_PKEY *key;
376 fprintf(stderr, "(TEST_ENG_OPENSSL_PKEY)Loading Private key %s\n", key_i
377 in = BIO_new_file(key_id, "r");
378 if (!in)
379 return NULL;
380 key = PEM_read_bio_PrivateKey(in, NULL, 0, NULL);
381 BIO_free(in);
382 return key;
383 }
384 #endif

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_pkey.c 1

**
 5846 Fri May 30 18:31:47 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/eng_pkey.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/engine/eng_pkey.c */
2 /* ==
3 * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * licensing@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 #include "eng_int.h"

58 /* Basic get/set stuff */

60 int ENGINE_set_load_privkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpriv_f)
61 {

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_pkey.c 2

62 e->load_privkey = loadpriv_f;
63 return 1;
64 }

66 int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f)
67 {
68 e->load_pubkey = loadpub_f;
69 return 1;
70 }

72 int ENGINE_set_load_ssl_client_cert_function(ENGINE *e,
73 ENGINE_SSL_CLIENT_CERT_PTR loadssl_f)
74 {
75 e->load_ssl_client_cert = loadssl_f;
76 return 1;
77 }

79 ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e)
80 {
81 return e->load_privkey;
82 }

84 ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e)
85 {
86 return e->load_pubkey;
87 }

89 ENGINE_SSL_CLIENT_CERT_PTR ENGINE_get_ssl_client_cert_function(const ENGINE *e)
90 {
91 return e->load_ssl_client_cert;
92 }

94 /* API functions to load public/private keys */

96 EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id,
97 UI_METHOD *ui_method, void *callback_data)
98 {
99 EVP_PKEY *pkey;

101 if(e == NULL)
102 {
103 ENGINEerr(ENGINE_F_ENGINE_LOAD_PRIVATE_KEY,
104 ERR_R_PASSED_NULL_PARAMETER);
105 return 0;
106 }
107 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
108 if(e->funct_ref == 0)
109 {
110 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
111 ENGINEerr(ENGINE_F_ENGINE_LOAD_PRIVATE_KEY,
112 ENGINE_R_NOT_INITIALISED);
113 return 0;
114 }
115 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
116 if (!e->load_privkey)
117 {
118 ENGINEerr(ENGINE_F_ENGINE_LOAD_PRIVATE_KEY,
119 ENGINE_R_NO_LOAD_FUNCTION);
120 return 0;
121 }
122 pkey = e->load_privkey(e, key_id, ui_method, callback_data);
123 if (!pkey)
124 {
125 ENGINEerr(ENGINE_F_ENGINE_LOAD_PRIVATE_KEY,
126 ENGINE_R_FAILED_LOADING_PRIVATE_KEY);
127 return 0;

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_pkey.c 3

128 }
129 return pkey;
130 }

132 EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id,
133 UI_METHOD *ui_method, void *callback_data)
134 {
135 EVP_PKEY *pkey;

137 if(e == NULL)
138 {
139 ENGINEerr(ENGINE_F_ENGINE_LOAD_PUBLIC_KEY,
140 ERR_R_PASSED_NULL_PARAMETER);
141 return 0;
142 }
143 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
144 if(e->funct_ref == 0)
145 {
146 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
147 ENGINEerr(ENGINE_F_ENGINE_LOAD_PUBLIC_KEY,
148 ENGINE_R_NOT_INITIALISED);
149 return 0;
150 }
151 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
152 if (!e->load_pubkey)
153 {
154 ENGINEerr(ENGINE_F_ENGINE_LOAD_PUBLIC_KEY,
155 ENGINE_R_NO_LOAD_FUNCTION);
156 return 0;
157 }
158 pkey = e->load_pubkey(e, key_id, ui_method, callback_data);
159 if (!pkey)
160 {
161 ENGINEerr(ENGINE_F_ENGINE_LOAD_PUBLIC_KEY,
162 ENGINE_R_FAILED_LOADING_PUBLIC_KEY);
163 return 0;
164 }
165 return pkey;
166 }

168 int ENGINE_load_ssl_client_cert(ENGINE *e, SSL *s,
169 STACK_OF(X509_NAME) *ca_dn, X509 **pcert, EVP_PKEY **ppkey,
170 STACK_OF(X509) **pother, UI_METHOD *ui_method, void *callback_data)
171 {

173 if(e == NULL)
174 {
175 ENGINEerr(ENGINE_F_ENGINE_LOAD_SSL_CLIENT_CERT,
176 ERR_R_PASSED_NULL_PARAMETER);
177 return 0;
178 }
179 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
180 if(e->funct_ref == 0)
181 {
182 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
183 ENGINEerr(ENGINE_F_ENGINE_LOAD_SSL_CLIENT_CERT,
184 ENGINE_R_NOT_INITIALISED);
185 return 0;
186 }
187 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
188 if (!e->load_ssl_client_cert)
189 {
190 ENGINEerr(ENGINE_F_ENGINE_LOAD_SSL_CLIENT_CERT,
191 ENGINE_R_NO_LOAD_FUNCTION);
192 return 0;
193 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_pkey.c 4

194 return e->load_ssl_client_cert(e, s, ca_dn, pcert, ppkey, pother,
195 ui_method, callback_data);
196 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rdrand.c 1

**
 4338 Fri May 30 18:31:47 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rdrand.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2011 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 */

50 #include <openssl/opensslconf.h>

52 #include <stdio.h>
53 #include <string.h>
54 #include <openssl/engine.h>
55 #include <openssl/rand.h>
56 #include <openssl/err.h>

58 #if (defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
59 defined(__x86_64) || defined(__x86_64__) || \
60 defined(_M_AMD64) || defined (_M_X64)) && defined(OPENSSL_CPUID_OBJ)

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rdrand.c 2

62 size_t OPENSSL_ia32_rdrand(void);

64 static int get_random_bytes (unsigned char *buf, int num)
65 {
66 size_t rnd;

68 while (num>=(int)sizeof(size_t)) {
69 if ((rnd = OPENSSL_ia32_rdrand()) == 0) return 0;

71 *((size_t *)buf) = rnd;
72 buf += sizeof(size_t);
73 num -= sizeof(size_t);
74 }
75 if (num) {
76 if ((rnd = OPENSSL_ia32_rdrand()) == 0) return 0;

78 memcpy (buf,&rnd,num);
79 }

81 return 1;
82 }

84 static int random_status (void)
85 { return 1; }

87 static RAND_METHOD rdrand_meth =
88 {
89 NULL, /* seed */
90 get_random_bytes,
91 NULL, /* cleanup */
92 NULL, /* add */
93 get_random_bytes,
94 random_status,
95 };

97 static int rdrand_init(ENGINE *e)
98 { return 1; }

100 static const char *engine_e_rdrand_id = "rdrand";
101 static const char *engine_e_rdrand_name = "Intel RDRAND engine";

103 static int bind_helper(ENGINE *e)
104 {
105 if (!ENGINE_set_id(e, engine_e_rdrand_id) ||
106 !ENGINE_set_name(e, engine_e_rdrand_name) ||
107 !ENGINE_set_flags(e, ENGINE_FLAGS_NO_REGISTER_ALL) ||
108 !ENGINE_set_init_function(e, rdrand_init) ||
109 !ENGINE_set_RAND(e, &rdrand_meth))
110 return 0;

112 return 1;
113 }

115 static ENGINE *ENGINE_rdrand(void)
116 {
117 ENGINE *ret = ENGINE_new();
118 if(!ret)
119 return NULL;
120 if(!bind_helper(ret))
121 {
122 ENGINE_free(ret);
123 return NULL;
124 }
125 return ret;
126 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rdrand.c 3

128 void ENGINE_load_rdrand (void)
129 {
130 extern unsigned int OPENSSL_ia32cap_P[];

132 if (OPENSSL_ia32cap_P[1] & (1<<(62-32)))
133 {
134 ENGINE *toadd = ENGINE_rdrand();
135 if(!toadd) return;
136 ENGINE_add(toadd);
137 ENGINE_free(toadd);
138 ERR_clear_error();
139 }
140 }
141 #else
142 void ENGINE_load_rdrand (void) {}
143 #endif

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rsax.c 1

**
 17913 Fri May 30 18:31:47 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rsax.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/engine/eng_rsax.c */
2 /* Copyright (c) 2010-2010 Intel Corp.
3 * Author: Vinodh.Gopal@intel.com
4 * Jim Guilford
5 * Erdinc.Ozturk@intel.com
6 * Maxim.Perminov@intel.com
7 * Ying.Huang@intel.com
8 *
9 * More information about algorithm used can be found at:
10 * http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
11 */
12 /* ==
13 * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 *
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 *
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in
24 * the documentation and/or other materials provided with the
25 * distribution.
26 *
27 * 3. All advertising materials mentioning features or use of this
28 * software must display the following acknowledgment:
29 * "This product includes software developed by the OpenSSL Project
30 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
31 *
32 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
33 * endorse or promote products derived from this software without
34 * prior written permission. For written permission, please contact
35 * licensing@OpenSSL.org.
36 *
37 * 5. Products derived from this software may not be called "OpenSSL"
38 * nor may "OpenSSL" appear in their names without prior written
39 * permission of the OpenSSL Project.
40 *
41 * 6. Redistributions of any form whatsoever must retain the following
42 * acknowledgment:
43 * "This product includes software developed by the OpenSSL Project
44 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
47 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
50 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
51 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
52 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
53 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
55 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
56 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
57 * OF THE POSSIBILITY OF SUCH DAMAGE.
58 * ==
59 *
60 * This product includes cryptographic software written by Eric Young
61 * (eay@cryptsoft.com). This product includes software written by Tim

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rsax.c 2

62 * Hudson (tjh@cryptsoft.com).
63 */

65 #include <openssl/opensslconf.h>

67 #include <stdio.h>
68 #include <string.h>
69 #include <openssl/crypto.h>
70 #include <openssl/buffer.h>
71 #include <openssl/engine.h>
72 #ifndef OPENSSL_NO_RSA
73 #include <openssl/rsa.h>
74 #endif
75 #include <openssl/bn.h>
76 #include <openssl/err.h>

78 /* RSAX is available **ONLY* on x86_64 CPUs */
79 #undef COMPILE_RSAX

81 #if (defined(__x86_64) || defined(__x86_64__) || \
82 defined(_M_AMD64) || defined (_M_X64)) && !defined(OPENSSL_NO_ASM)
83 #define COMPILE_RSAX
84 static ENGINE *ENGINE_rsax (void);
85 #endif

87 void ENGINE_load_rsax (void)
88 {
89 /* On non-x86 CPUs it just returns. */
90 #ifdef COMPILE_RSAX
91 ENGINE *toadd = ENGINE_rsax();
92 if(!toadd) return;
93 ENGINE_add(toadd);
94 ENGINE_free(toadd);
95 ERR_clear_error();
96 #endif
97 }

99 #ifdef COMPILE_RSAX
100 #define E_RSAX_LIB_NAME "rsax engine"

102 static int e_rsax_destroy(ENGINE *e);
103 static int e_rsax_init(ENGINE *e);
104 static int e_rsax_finish(ENGINE *e);
105 static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void));

107 #ifndef OPENSSL_NO_RSA
108 /* RSA stuff */
109 static int e_rsax_rsa_mod_exp(BIGNUM *r, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
110 static int e_rsax_rsa_finish(RSA *r);
111 #endif

113 static const ENGINE_CMD_DEFN e_rsax_cmd_defns[] = {
114 {0, NULL, NULL, 0}
115 };

117 #ifndef OPENSSL_NO_RSA
118 /* Our internal RSA_METHOD that we provide pointers to */
119 static RSA_METHOD e_rsax_rsa =
120 {
121 "Intel RSA-X method",
122 NULL,
123 NULL,
124 NULL,
125 NULL,
126 e_rsax_rsa_mod_exp,
127 NULL,

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rsax.c 3

128 NULL,
129 e_rsax_rsa_finish,
130 RSA_FLAG_CACHE_PUBLIC|RSA_FLAG_CACHE_PRIVATE,
131 NULL,
132 NULL,
133 NULL
134 };
135 #endif

137 /* Constants used when creating the ENGINE */
138 static const char *engine_e_rsax_id = "rsax";
139 static const char *engine_e_rsax_name = "RSAX engine support";

141 /* This internal function is used by ENGINE_rsax() */
142 static int bind_helper(ENGINE *e)
143 {
144 #ifndef OPENSSL_NO_RSA
145 const RSA_METHOD *meth1;
146 #endif
147 if(!ENGINE_set_id(e, engine_e_rsax_id) ||
148 !ENGINE_set_name(e, engine_e_rsax_name) ||
149 #ifndef OPENSSL_NO_RSA
150 !ENGINE_set_RSA(e, &e_rsax_rsa) ||
151 #endif
152 !ENGINE_set_destroy_function(e, e_rsax_destroy) ||
153 !ENGINE_set_init_function(e, e_rsax_init) ||
154 !ENGINE_set_finish_function(e, e_rsax_finish) ||
155 !ENGINE_set_ctrl_function(e, e_rsax_ctrl) ||
156 !ENGINE_set_cmd_defns(e, e_rsax_cmd_defns))
157 return 0;

159 #ifndef OPENSSL_NO_RSA
160 meth1 = RSA_PKCS1_SSLeay();
161 e_rsax_rsa.rsa_pub_enc = meth1->rsa_pub_enc;
162 e_rsax_rsa.rsa_pub_dec = meth1->rsa_pub_dec;
163 e_rsax_rsa.rsa_priv_enc = meth1->rsa_priv_enc;
164 e_rsax_rsa.rsa_priv_dec = meth1->rsa_priv_dec;
165 e_rsax_rsa.bn_mod_exp = meth1->bn_mod_exp;
166 #endif
167 return 1;
168 }

170 static ENGINE *ENGINE_rsax(void)
171 {
172 ENGINE *ret = ENGINE_new();
173 if(!ret)
174 return NULL;
175 if(!bind_helper(ret))
176 {
177 ENGINE_free(ret);
178 return NULL;
179 }
180 return ret;
181 }

183 #ifndef OPENSSL_NO_RSA
184 /* Used to attach our own key-data to an RSA structure */
185 static int rsax_ex_data_idx = -1;
186 #endif

188 static int e_rsax_destroy(ENGINE *e)
189 {
190 return 1;
191 }

193 /* (de)initialisation functions. */

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rsax.c 4

194 static int e_rsax_init(ENGINE *e)
195 {
196 #ifndef OPENSSL_NO_RSA
197 if (rsax_ex_data_idx == -1)
198 rsax_ex_data_idx = RSA_get_ex_new_index(0,
199 NULL,
200 NULL, NULL, NULL);
201 #endif
202 if (rsax_ex_data_idx == -1)
203 return 0;
204 return 1;
205 }

207 static int e_rsax_finish(ENGINE *e)
208 {
209 return 1;
210 }

212 static int e_rsax_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void))
213 {
214 int to_return = 1;

216 switch(cmd)
217 {
218 /* The command isn’t understood by this engine */
219 default:
220 to_return = 0;
221 break;
222 }

224 return to_return;
225 }

228 #ifndef OPENSSL_NO_RSA

230 #ifdef _WIN32
231 typedef unsigned __int64 UINT64;
232 #else
233 typedef unsigned long long UINT64;
234 #endif
235 typedef unsigned short UINT16;

237 /* Table t is interleaved in the following manner:
238 * The order in memory is t[0][0], t[0][1], ..., t[0][7], t[1][0], ...
239 * A particular 512-bit value is stored in t[][index] rather than the more
240 * normal t[index][]; i.e. the qwords of a particular entry in t are not
241 * adjacent in memory
242 */

244 /* Init BIGNUM b from the interleaved UINT64 array */
245 static int interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array);

247 /* Extract array elements from BIGNUM b
248 * To set the whole array from b, call with n=8
249 */
250 static int bn_extract_to_array_512(const BIGNUM* b, unsigned int n, UINT64 *arra

252 struct mod_ctx_512 {
253 UINT64 t[8][8];
254 UINT64 m[8];
255 UINT64 m1[8]; /* 2^278 % m */
256 UINT64 m2[8]; /* 2^640 % m */
257 UINT64 k1[2]; /* (- 1/m) % 2^128 */
258 };

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rsax.c 5

260 static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data);

262 void mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */
263 UINT64 *g, /* 512 bits, 8 qwords */
264 UINT64 *exp, /* 512 bits, 8 qwords */
265 struct mod_ctx_512 *data);

267 typedef struct st_e_rsax_mod_ctx
268 {
269 UINT64 type;
270 union {
271 struct mod_ctx_512 b512;
272 } ctx;

274 } E_RSAX_MOD_CTX;

276 static E_RSAX_MOD_CTX *e_rsax_get_ctx(RSA *rsa, int idx, BIGNUM* m)
277 {
278 E_RSAX_MOD_CTX *hptr;

280 if (idx < 0 || idx > 2)
281 return NULL;

283 hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
284 if (!hptr) {
285 hptr = OPENSSL_malloc(3*sizeof(E_RSAX_MOD_CTX));
286 if (!hptr) return NULL;
287 hptr[2].type = hptr[1].type= hptr[0].type = 0;
288 RSA_set_ex_data(rsa, rsax_ex_data_idx, hptr);
289 }

291 if (hptr[idx].type == (UINT64)BN_num_bits(m))
292 return hptr+idx;

294 if (BN_num_bits(m) == 512) {
295 UINT64 _m[8];
296 bn_extract_to_array_512(m, 8, _m);
297 memset(&hptr[idx].ctx.b512, 0, sizeof(struct mod_ctx_512));
298 mod_exp_pre_compute_data_512(_m, &hptr[idx].ctx.b512);
299 }

301 hptr[idx].type = BN_num_bits(m);
302 return hptr+idx;
303 }

305 static int e_rsax_rsa_finish(RSA *rsa)
306 {
307 E_RSAX_MOD_CTX *hptr = RSA_get_ex_data(rsa, rsax_ex_data_idx);
308 if(hptr)
309 {
310 OPENSSL_free(hptr);
311 RSA_set_ex_data(rsa, rsax_ex_data_idx, NULL);
312 }
313 if (rsa->_method_mod_n)
314 BN_MONT_CTX_free(rsa->_method_mod_n);
315 if (rsa->_method_mod_p)
316 BN_MONT_CTX_free(rsa->_method_mod_p);
317 if (rsa->_method_mod_q)
318 BN_MONT_CTX_free(rsa->_method_mod_q);
319 return 1;
320 }

323 static int e_rsax_bn_mod_exp(BIGNUM *r, const BIGNUM *g, const BIGNUM *e,
324 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont, E_RSAX_M
325 {

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rsax.c 6

326 if (rsax_mod_ctx && BN_get_flags(e, BN_FLG_CONSTTIME) != 0) {
327 if (BN_num_bits(m) == 512) {
328 UINT64 _r[8];
329 UINT64 _g[8];
330 UINT64 _e[8];

332 /* Init the arrays from the BIGNUMs */
333 bn_extract_to_array_512(g, 8, _g);
334 bn_extract_to_array_512(e, 8, _e);

336 mod_exp_512(_r, _g, _e, &rsax_mod_ctx->ctx.b512);
337 /* Return the result in the BIGNUM */
338 interleaved_array_to_bn_512(r, _r);
339 return 1;
340 }
341 }

343 return BN_mod_exp_mont(r, g, e, m, ctx, in_mont);
344 }

346 /* Declares for the Intel CIAP 512-bit / CRT / 1024 bit RSA modular
347 * exponentiation routine precalculations and a structure to hold the
348 * necessary values. These files are meant to live in crypto/rsa/ in
349 * the target openssl.
350 */

352 /*
353 * Local method: extracts a piece from a BIGNUM, to fit it into
354 * an array. Call with n=8 to extract an entire 512-bit BIGNUM
355 */
356 static int bn_extract_to_array_512(const BIGNUM* b, unsigned int n, UINT64 *arra
357 {
358 int i;
359 UINT64 tmp;
360 unsigned char bn_buff[64];
361 memset(bn_buff, 0, 64);
362 if (BN_num_bytes(b) > 64) {
363 printf ("Can’t support this byte size\n");
364 return 0; }
365 if (BN_num_bytes(b)!=0) {
366 if (!BN_bn2bin(b, bn_buff+(64-BN_num_bytes(b)))) {
367 printf ("Error’s in bn2bin\n");
368 /* We have to error, here */
369 return 0; } }
370 while (n-- > 0) {
371 array[n] = 0;
372 for (i=7; i>=0; i--) {
373 tmp = bn_buff[63-(n*8+i)];
374 array[n] |= tmp << (8*i); } }
375 return 1;
376 }

378 /* Init a 512-bit BIGNUM from the UINT64*_ (8 * 64) interleaved array */
379 static int interleaved_array_to_bn_512(BIGNUM* b, UINT64 *array)
380 {
381 unsigned char tmp[64];
382 int n=8;
383 int i;
384 while (n-- > 0) {
385 for (i = 7; i>=0; i--) {
386 tmp[63-(n*8+i)] = (unsigned char)(array[n]>>(8*i)); } }
387 BN_bin2bn(tmp, 64, b);
388 return 0;
389 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rsax.c 7

392 /* The main 512bit precompute call */
393 static int mod_exp_pre_compute_data_512(UINT64 *m, struct mod_ctx_512 *data)
394 {
395 BIGNUM two_768, two_640, two_128, two_512, tmp, _m, tmp2;

397 /* We need a BN_CTX for the modulo functions */
398 BN_CTX* ctx;
399 /* Some tmps */
400 UINT64 _t[8];
401 int i, j, ret = 0;

403 /* Init _m with m */
404 BN_init(&_m);
405 interleaved_array_to_bn_512(&_m, m);
406 memset(_t, 0, 64);

408 /* Inits */
409 BN_init(&two_768);
410 BN_init(&two_640);
411 BN_init(&two_128);
412 BN_init(&two_512);
413 BN_init(&tmp);
414 BN_init(&tmp2);

416 /* Create our context */
417 if ((ctx=BN_CTX_new()) == NULL) { goto err; }
418 BN_CTX_start(ctx);

420 /*
421 * For production, if you care, these only need to be set once,
422 * and may be made constants.
423 */
424 BN_lshift(&two_768, BN_value_one(), 768);
425 BN_lshift(&two_640, BN_value_one(), 640);
426 BN_lshift(&two_128, BN_value_one(), 128);
427 BN_lshift(&two_512, BN_value_one(), 512);

429 if (0 == (m[7] & 0x8000000000000000)) {
430 exit(1);
431 }
432 if (0 == (m[0] & 0x1)) { /* Odd modulus required for Mont */
433 exit(1);
434 }

436 /* Precompute m1 */
437 BN_mod(&tmp, &two_768, &_m, ctx);
438 if (!bn_extract_to_array_512(&tmp, 8, &data->m1[0])) {
439 goto err; }

441 /* Precompute m2 */
442 BN_mod(&tmp, &two_640, &_m, ctx);
443 if (!bn_extract_to_array_512(&tmp, 8, &data->m2[0])) {
444 goto err;
445 }

447 /*
448 * Precompute k1, a 128b number = ((-1)* m-1) mod 2128; k1 should
449 * be non-negative.
450 */
451 BN_mod_inverse(&tmp, &_m, &two_128, ctx);
452 if (!BN_is_zero(&tmp)) { BN_sub(&tmp, &two_128, &tmp); }
453 if (!bn_extract_to_array_512(&tmp, 2, &data->k1[0])) {
454 goto err; }

456 /* Precompute t */
457 for (i=0; i<8; i++) {

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rsax.c 8

458 BN_zero(&tmp);
459 if (i & 1) { BN_add(&tmp, &two_512, &tmp); }
460 if (i & 2) { BN_add(&tmp, &two_512, &tmp); }
461 if (i & 4) { BN_add(&tmp, &two_640, &tmp); }

463 BN_nnmod(&tmp2, &tmp, &_m, ctx);
464 if (!bn_extract_to_array_512(&tmp2, 8, _t)) {
465 goto err; }
466 for (j=0; j<8; j++) data->t[j][i] = _t[j]; }

468 /* Precompute m */
469 for (i=0; i<8; i++) {
470 data->m[i] = m[i]; }

472 ret = 1;

474 err:
475 /* Cleanup */
476 if (ctx != NULL) {
477 BN_CTX_end(ctx); BN_CTX_free(ctx); }
478 BN_free(&two_768);
479 BN_free(&two_640);
480 BN_free(&two_128);
481 BN_free(&two_512);
482 BN_free(&tmp);
483 BN_free(&tmp2);
484 BN_free(&_m);

486 return ret;
487 }

490 static int e_rsax_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx
491 {
492 BIGNUM *r1,*m1,*vrfy;
493 BIGNUM local_dmp1,local_dmq1,local_c,local_r1;
494 BIGNUM *dmp1,*dmq1,*c,*pr1;
495 int ret=0;

497 BN_CTX_start(ctx);
498 r1 = BN_CTX_get(ctx);
499 m1 = BN_CTX_get(ctx);
500 vrfy = BN_CTX_get(ctx);

502 {
503 BIGNUM local_p, local_q;
504 BIGNUM *p = NULL, *q = NULL;
505 int error = 0;

507 /* Make sure BN_mod_inverse in Montgomery
508 * intialization uses the BN_FLG_CONSTTIME flag
509 * (unless RSA_FLAG_NO_CONSTTIME is set)
510 */
511 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
512 {
513 BN_init(&local_p);
514 p = &local_p;
515 BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);

517 BN_init(&local_q);
518 q = &local_q;
519 BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME);
520 }
521 else
522 {
523 p = rsa->p;

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rsax.c 9

524 q = rsa->q;
525 }

527 if (rsa->flags & RSA_FLAG_CACHE_PRIVATE)
528 {
529 if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_p, CRYPTO_
530 error = 1;
531 if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_q, CRYPTO_
532 error = 1;
533 }

535 /* clean up */
536 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
537 {
538 BN_free(&local_p);
539 BN_free(&local_q);
540 }
541 if (error)
542 goto err;
543 }

545 if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
546 if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, CRYPTO_LOCK_RSA
547 goto err;

549 /* compute I mod q */
550 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
551 {
552 c = &local_c;
553 BN_with_flags(c, I, BN_FLG_CONSTTIME);
554 if (!BN_mod(r1,c,rsa->q,ctx)) goto err;
555 }
556 else
557 {
558 if (!BN_mod(r1,I,rsa->q,ctx)) goto err;
559 }

561 /* compute r1^dmq1 mod q */
562 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
563 {
564 dmq1 = &local_dmq1;
565 BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME);
566 }
567 else
568 dmq1 = rsa->dmq1;

570 if (!e_rsax_bn_mod_exp(m1,r1,dmq1,rsa->q,ctx,
571 rsa->_method_mod_q, e_rsax_get_ctx(rsa, 0, rsa->q))) goto err;

573 /* compute I mod p */
574 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
575 {
576 c = &local_c;
577 BN_with_flags(c, I, BN_FLG_CONSTTIME);
578 if (!BN_mod(r1,c,rsa->p,ctx)) goto err;
579 }
580 else
581 {
582 if (!BN_mod(r1,I,rsa->p,ctx)) goto err;
583 }

585 /* compute r1^dmp1 mod p */
586 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
587 {
588 dmp1 = &local_dmp1;
589 BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME);

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rsax.c 10

590 }
591 else
592 dmp1 = rsa->dmp1;

594 if (!e_rsax_bn_mod_exp(r0,r1,dmp1,rsa->p,ctx,
595 rsa->_method_mod_p, e_rsax_get_ctx(rsa, 1, rsa->p))) goto err;

597 if (!BN_sub(r0,r0,m1)) goto err;
598 /* This will help stop the size of r0 increasing, which does
599 * affect the multiply if it optimised for a power of 2 size */
600 if (BN_is_negative(r0))
601 if (!BN_add(r0,r0,rsa->p)) goto err;

603 if (!BN_mul(r1,r0,rsa->iqmp,ctx)) goto err;

605 /* Turn BN_FLG_CONSTTIME flag on before division operation */
606 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
607 {
608 pr1 = &local_r1;
609 BN_with_flags(pr1, r1, BN_FLG_CONSTTIME);
610 }
611 else
612 pr1 = r1;
613 if (!BN_mod(r0,pr1,rsa->p,ctx)) goto err;

615 /* If p < q it is occasionally possible for the correction of
616 * adding ’p’ if r0 is negative above to leave the result still
617 * negative. This can break the private key operations: the following
618 * second correction should *always* correct this rare occurrence.
619 * This will *never* happen with OpenSSL generated keys because
620 * they ensure p > q [steve]
621 */
622 if (BN_is_negative(r0))
623 if (!BN_add(r0,r0,rsa->p)) goto err;
624 if (!BN_mul(r1,r0,rsa->q,ctx)) goto err;
625 if (!BN_add(r0,r1,m1)) goto err;

627 if (rsa->e && rsa->n)
628 {
629 if (!e_rsax_bn_mod_exp(vrfy,r0,rsa->e,rsa->n,ctx,rsa->_method_mo
630 goto err;

632 /* If ’I’ was greater than (or equal to) rsa->n, the operation
633 * will be equivalent to using ’I mod n’. However, the result of
634 * the verify will *always* be less than ’n’ so we don’t check
635 * for absolute equality, just congruency. */
636 if (!BN_sub(vrfy, vrfy, I)) goto err;
637 if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) goto err;
638 if (BN_is_negative(vrfy))
639 if (!BN_add(vrfy, vrfy, rsa->n)) goto err;
640 if (!BN_is_zero(vrfy))
641 {
642 /* ’I’ and ’vrfy’ aren’t congruent mod n. Don’t leak
643 * miscalculated CRT output, just do a raw (slower)
644 * mod_exp and return that instead. */

646 BIGNUM local_d;
647 BIGNUM *d = NULL;

649 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
650 {
651 d = &local_d;
652 BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
653 }
654 else
655 d = rsa->d;

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_rsax.c 11

656 if (!e_rsax_bn_mod_exp(r0,I,d,rsa->n,ctx,
657 rsa->_method_mod_n, e_rsax_ge
658 }
659 }
660 ret=1;

662 err:
663 BN_CTX_end(ctx);

665 return ret;
666 }
667 #endif /* !OPENSSL_NO_RSA */
668 #endif /* !COMPILE_RSAX */

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_table.c 1

**
 10125 Fri May 30 18:31:48 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/eng_table.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 #include "cryptlib.h"
56 #include <openssl/evp.h>
57 #include <openssl/lhash.h>
58 #include "eng_int.h"

60 /* The type of the items in the table */
61 typedef struct st_engine_pile

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_table.c 2

62 {
63 /* The ’nid’ of this algorithm/mode */
64 int nid;
65 /* ENGINEs that implement this algorithm/mode. */
66 STACK_OF(ENGINE) *sk;
67 /* The default ENGINE to perform this algorithm/mode. */
68 ENGINE *funct;
69 /* Zero if ’sk’ is newer than the cached ’funct’, non-zero otherwise */
70 int uptodate;
71 } ENGINE_PILE;

73 DECLARE_LHASH_OF(ENGINE_PILE);

75 /* The type exposed in eng_int.h */
76 struct st_engine_table
77 {
78 LHASH_OF(ENGINE_PILE) piles;
79 }; /* ENGINE_TABLE */

82 typedef struct st_engine_pile_doall
83 {
84 engine_table_doall_cb *cb;
85 void *arg;
86 } ENGINE_PILE_DOALL;
87

89 /* Global flags (ENGINE_TABLE_FLAG_***). */
90 static unsigned int table_flags = 0;

92 /* API function manipulating ’table_flags’ */
93 unsigned int ENGINE_get_table_flags(void)
94 {
95 return table_flags;
96 }

98 void ENGINE_set_table_flags(unsigned int flags)
99 {
100 table_flags = flags;
101 }

103 /* Internal functions for the "piles" hash table */
104 static unsigned long engine_pile_hash(const ENGINE_PILE *c)
105 {
106 return c->nid;
107 }

109 static int engine_pile_cmp(const ENGINE_PILE *a, const ENGINE_PILE *b)
110 {
111 return a->nid - b->nid;
112 }
113 static IMPLEMENT_LHASH_HASH_FN(engine_pile, ENGINE_PILE)
114 static IMPLEMENT_LHASH_COMP_FN(engine_pile, ENGINE_PILE)

116 static int int_table_check(ENGINE_TABLE **t, int create)
117 {
118 LHASH_OF(ENGINE_PILE) *lh;

120 if(*t) return 1;
121 if(!create) return 0;
122 if((lh = lh_ENGINE_PILE_new()) == NULL)
123 return 0;
124 *t = (ENGINE_TABLE *)lh;
125 return 1;
126 }

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_table.c 3

128 /* Privately exposed (via eng_int.h) functions for adding and/or removing
129 * ENGINEs from the implementation table */
130 int engine_table_register(ENGINE_TABLE **table, ENGINE_CLEANUP_CB *cleanup,
131 ENGINE *e, const int *nids, int num_nids, int setdefault)
132 {
133 int ret = 0, added = 0;
134 ENGINE_PILE tmplate, *fnd;
135 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
136 if(!(*table))
137 added = 1;
138 if(!int_table_check(table, 1))
139 goto end;
140 if(added)
141 /* The cleanup callback needs to be added */
142 engine_cleanup_add_first(cleanup);
143 while(num_nids--)
144 {
145 tmplate.nid = *nids;
146 fnd = lh_ENGINE_PILE_retrieve(&(*table)->piles, &tmplate);
147 if(!fnd)
148 {
149 fnd = OPENSSL_malloc(sizeof(ENGINE_PILE));
150 if(!fnd) goto end;
151 fnd->uptodate = 1;
152 fnd->nid = *nids;
153 fnd->sk = sk_ENGINE_new_null();
154 if(!fnd->sk)
155 {
156 OPENSSL_free(fnd);
157 goto end;
158 }
159 fnd->funct = NULL;
160 (void)lh_ENGINE_PILE_insert(&(*table)->piles, fnd);
161 }
162 /* A registration shouldn’t add duplciate entries */
163 (void)sk_ENGINE_delete_ptr(fnd->sk, e);
164 /* if ’setdefault’, this ENGINE goes to the head of the list */
165 if(!sk_ENGINE_push(fnd->sk, e))
166 goto end;
167 /* "touch" this ENGINE_PILE */
168 fnd->uptodate = 0;
169 if(setdefault)
170 {
171 if(!engine_unlocked_init(e))
172 {
173 ENGINEerr(ENGINE_F_ENGINE_TABLE_REGISTER,
174 ENGINE_R_INIT_FAILED);
175 goto end;
176 }
177 if(fnd->funct)
178 engine_unlocked_finish(fnd->funct, 0);
179 fnd->funct = e;
180 fnd->uptodate = 1;
181 }
182 nids++;
183 }
184 ret = 1;
185 end:
186 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
187 return ret;
188 }
189 static void int_unregister_cb_doall_arg(ENGINE_PILE *pile, ENGINE *e)
190 {
191 int n;
192 /* Iterate the ’c->sk’ stack removing any occurance of ’e’ */
193 while((n = sk_ENGINE_find(pile->sk, e)) >= 0)

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_table.c 4

194 {
195 (void)sk_ENGINE_delete(pile->sk, n);
196 pile->uptodate = 0;
197 }
198 if(pile->funct == e)
199 {
200 engine_unlocked_finish(e, 0);
201 pile->funct = NULL;
202 }
203 }
204 static IMPLEMENT_LHASH_DOALL_ARG_FN(int_unregister_cb, ENGINE_PILE, ENGINE)

206 void engine_table_unregister(ENGINE_TABLE **table, ENGINE *e)
207 {
208 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
209 if(int_table_check(table, 0))
210 lh_ENGINE_PILE_doall_arg(&(*table)->piles,
211 LHASH_DOALL_ARG_FN(int_unregister_cb),
212 ENGINE, e);
213 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
214 }

216 static void int_cleanup_cb_doall(ENGINE_PILE *p)
217 {
218 sk_ENGINE_free(p->sk);
219 if(p->funct)
220 engine_unlocked_finish(p->funct, 0);
221 OPENSSL_free(p);
222 }
223 static IMPLEMENT_LHASH_DOALL_FN(int_cleanup_cb, ENGINE_PILE)

225 void engine_table_cleanup(ENGINE_TABLE **table)
226 {
227 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
228 if(*table)
229 {
230 lh_ENGINE_PILE_doall(&(*table)->piles,
231 LHASH_DOALL_FN(int_cleanup_cb));
232 lh_ENGINE_PILE_free(&(*table)->piles);
233 *table = NULL;
234 }
235 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
236 }

238 /* return a functional reference for a given ’nid’ */
239 #ifndef ENGINE_TABLE_DEBUG
240 ENGINE *engine_table_select(ENGINE_TABLE **table, int nid)
241 #else
242 ENGINE *engine_table_select_tmp(ENGINE_TABLE **table, int nid, const char *f, in
243 #endif
244 {
245 ENGINE *ret = NULL;
246 ENGINE_PILE tmplate, *fnd=NULL;
247 int initres, loop = 0;

249 if(!(*table))
250 {
251 #ifdef ENGINE_TABLE_DEBUG
252 fprintf(stderr, "engine_table_dbg: %s:%d, nid=%d, nothing "
253 "registered!\n", f, l, nid);
254 #endif
255 return NULL;
256 }
257 ERR_set_mark();
258 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
259 /* Check again inside the lock otherwise we could race against cleanup

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_table.c 5

260 * operations. But don’t worry about a fprintf(stderr). */
261 if(!int_table_check(table, 0)) goto end;
262 tmplate.nid = nid;
263 fnd = lh_ENGINE_PILE_retrieve(&(*table)->piles, &tmplate);
264 if(!fnd) goto end;
265 if(fnd->funct && engine_unlocked_init(fnd->funct))
266 {
267 #ifdef ENGINE_TABLE_DEBUG
268 fprintf(stderr, "engine_table_dbg: %s:%d, nid=%d, using "
269 "ENGINE ’%s’ cached\n", f, l, nid, fnd->funct->id);
270 #endif
271 ret = fnd->funct;
272 goto end;
273 }
274 if(fnd->uptodate)
275 {
276 ret = fnd->funct;
277 goto end;
278 }
279 trynext:
280 ret = sk_ENGINE_value(fnd->sk, loop++);
281 if(!ret)
282 {
283 #ifdef ENGINE_TABLE_DEBUG
284 fprintf(stderr, "engine_table_dbg: %s:%d, nid=%d, no "
285 "registered implementations would initialise\n",
286 f, l, nid);
287 #endif
288 goto end;
289 }
290 /* Try to initialise the ENGINE? */
291 if((ret->funct_ref > 0) || !(table_flags & ENGINE_TABLE_FLAG_NOINIT))
292 initres = engine_unlocked_init(ret);
293 else
294 initres = 0;
295 if(initres)
296 {
297 /* Update ’funct’ */
298 if((fnd->funct != ret) && engine_unlocked_init(ret))
299 {
300 /* If there was a previous default we release it. */
301 if(fnd->funct)
302 engine_unlocked_finish(fnd->funct, 0);
303 fnd->funct = ret;
304 #ifdef ENGINE_TABLE_DEBUG
305 fprintf(stderr, "engine_table_dbg: %s:%d, nid=%d, "
306 "setting default to ’%s’\n", f, l, nid, ret->id)
307 #endif
308 }
309 #ifdef ENGINE_TABLE_DEBUG
310 fprintf(stderr, "engine_table_dbg: %s:%d, nid=%d, using "
311 "newly initialised ’%s’\n", f, l, nid, ret->id);
312 #endif
313 goto end;
314 }
315 goto trynext;
316 end:
317 /* If it failed, it is unlikely to succeed again until some future
318 * registrations have taken place. In all cases, we cache. */
319 if(fnd) fnd->uptodate = 1;
320 #ifdef ENGINE_TABLE_DEBUG
321 if(ret)
322 fprintf(stderr, "engine_table_dbg: %s:%d, nid=%d, caching "
323 "ENGINE ’%s’\n", f, l, nid, ret->id);
324 else
325 fprintf(stderr, "engine_table_dbg: %s:%d, nid=%d, caching "

new/usr/src/lib/openssl/libsunw_crypto/engine/eng_table.c 6

326 "’no matching ENGINE’\n", f, l, nid);
327 #endif
328 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
329 /* Whatever happened, any failed init()s are not failures in this
330 * context, so clear our error state. */
331 ERR_pop_to_mark();
332 return ret;
333 }

335 /* Table enumeration */

337 static void int_cb_doall_arg(ENGINE_PILE *pile, ENGINE_PILE_DOALL *dall)
338 {
339 dall->cb(pile->nid, pile->sk, pile->funct, dall->arg);
340 }
341 static IMPLEMENT_LHASH_DOALL_ARG_FN(int_cb, ENGINE_PILE,ENGINE_PILE_DOALL)

343 void engine_table_doall(ENGINE_TABLE *table, engine_table_doall_cb *cb,
344 void *arg)
345 {
346 ENGINE_PILE_DOALL dall;
347 dall.cb = cb;
348 dall.arg = arg;
349 lh_ENGINE_PILE_doall_arg(&table->piles, LHASH_DOALL_ARG_FN(int_cb),
350 ENGINE_PILE_DOALL, &dall);
351 }

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 1

**
 92357 Fri May 30 18:31:48 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */

6 /* crypto/engine/hw_pk11.c */
7 /*
8 * This product includes software developed by the OpenSSL Project for
9 * use in the OpenSSL Toolkit (http://www.openssl.org/).
10 *
11 * This project also referenced hw_pkcs11-0.9.7b.patch written by
12 * Afchine Madjlessi.
13 */
14 /*
15 * ==
16 * Copyright (c) 2000-2001 The OpenSSL Project. All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 *
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 *
25 * 2. Redistributions in binary form must reproduce the above copyright
26 * notice, this list of conditions and the following disclaimer in
27 * the documentation and/or other materials provided with the
28 * distribution.
29 *
30 * 3. All advertising materials mentioning features or use of this
31 * software must display the following acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
34 *
35 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
36 * endorse or promote products derived from this software without
37 * prior written permission. For written permission, please contact
38 * licensing@OpenSSL.org.
39 *
40 * 5. Products derived from this software may not be called "OpenSSL"
41 * nor may "OpenSSL" appear in their names without prior written
42 * permission of the OpenSSL Project.
43 *
44 * 6. Redistributions of any form whatsoever must retain the following
45 * acknowledgment:
46 * "This product includes software developed by the OpenSSL Project
47 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
50 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
53 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
54 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
55 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
56 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
58 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
60 * OF THE POSSIBILITY OF SUCH DAMAGE.
61 * ==

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 2

62 *
63 * This product includes cryptographic software written by Eric Young
64 * (eay@cryptsoft.com). This product includes software written by Tim
65 * Hudson (tjh@cryptsoft.com).
66 *
67 */

69 #include <stdio.h>
70 #include <stdlib.h>
71 #include <string.h>
72 #include <sys/types.h>
73 #include <unistd.h>

75 #include <openssl/opensslconf.h>
76 #include <openssl/e_os2.h>
77 #include <openssl/crypto.h>
78 #include <openssl/engine.h>
79 #include <openssl/dso.h>
80 #include <openssl/err.h>
81 #include <openssl/bn.h>
82 #include <openssl/md5.h>
83 #include <openssl/pem.h>
84 #ifndef OPENSSL_NO_RSA
85 #include <openssl/rsa.h>
86 #endif
87 #ifndef OPENSSL_NO_DSA
88 #include <openssl/dsa.h>
89 #endif
90 #ifndef OPENSSL_NO_DH
91 #include <openssl/dh.h>
92 #endif
93 #include <openssl/rand.h>
94 #include <openssl/objects.h>
95 #include <openssl/x509.h>
96 #include <openssl/aes.h>
97 #include <cryptlib.h>
98 #include <dlfcn.h>
99 #include <pthread.h>

101 #ifndef OPENSSL_NO_HW
102 #ifndef OPENSSL_NO_HW_PK11

104 /* label for debug messages printed on stderr */
105 #define PK11_DBG "PKCS#11 ENGINE DEBUG"
106 /* prints a lot of debug messages on stderr about slot selection process */
107 #undef DEBUG_SLOT_SELECTION
108 /*
109 * Solaris specific code. See comment at check_hw_mechanisms() for more
110 * information.
111 */
112 #if defined (__SVR4) && defined (__sun)
113 #define SOLARIS_HW_SLOT_SELECTION
114 #endif

116 /*
117 * AES counter mode is not supported in the OpenSSL EVP API yet and neither
118 * there are official OIDs for mechanisms based on this mode. With our changes,
119 * an application can define its own EVP calls for AES counter mode and then
120 * it can make use of hardware acceleration through this engine. However, it’s
121 * better if we keep AES CTR support code under ifdef’s.
122 */
123 #define SOLARIS_AES_CTR

125 #include "cryptoki.h"
126 #include "pkcs11.h"
127 #include "hw_pk11_err.c"

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 3

129 #ifdef SOLARIS_HW_SLOT_SELECTION
130 /*
131 * Tables for symmetric ciphers and digest mechs found in the pkcs11_kernel
132 * library. See comment at check_hw_mechanisms() for more information.
133 */
134 int *hw_cnids;
135 int *hw_dnids;
136 #endif /* SOLARIS_HW_SLOT_SELECTION */

138 /* PKCS#11 session caches and their locks for all operation types */
139 static PK11_CACHE session_cache[OP_MAX];

141 /*
142 * As stated in v2.20, 11.7 Object Management Function, in section for
143 * C_FindObjectsInit(), at most one search operation may be active at a given
144 * time in a given session. Therefore, C_Find{,Init,Final}Objects() should be
145 * grouped together to form one atomic search operation. This is already
146 * ensured by the property of unique PKCS#11 session handle used for each
147 * PK11_SESSION object.
148 *
149 * This is however not the biggest concern - maintaining consistency of the
150 * underlying object store is more important. The same section of the spec also
151 * says that one thread can be in the middle of a search operation while another
152 * thread destroys the object matching the search template which would result in
153 * invalid handle returned from the search operation.
154 *
155 * Hence, the following locks are used for both protection of the object stores.
156 * They are also used for active list protection.
157 */
158 pthread_mutex_t *find_lock[OP_MAX] = { NULL };

160 /*
161 * lists of asymmetric key handles which are active (referenced by at least one
162 * PK11_SESSION structure, either held by a thread or present in free_session
163 * list) for given algorithm type
164 */
165 PK11_active *active_list[OP_MAX] = { NULL };

167 /*
168 * Create all secret key objects in a global session so that they are available
169 * to use for other sessions. These other sessions may be opened or closed
170 * without losing the secret key objects.
171 */
172 static CK_SESSION_HANDLE global_session = CK_INVALID_HANDLE;

174 /* ENGINE level stuff */
175 static int pk11_init(ENGINE *e);
176 static int pk11_library_init(ENGINE *e);
177 static int pk11_finish(ENGINE *e);
178 static int pk11_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)());
179 static int pk11_destroy(ENGINE *e);

181 /* RAND stuff */
182 static void pk11_rand_seed(const void *buf, int num);
183 static void pk11_rand_add(const void *buf, int num, double add_entropy);
184 static void pk11_rand_cleanup(void);
185 static int pk11_rand_bytes(unsigned char *buf, int num);
186 static int pk11_rand_status(void);

188 /* These functions are also used in other files */
189 PK11_SESSION *pk11_get_session(PK11_OPTYPE optype);
190 void pk11_return_session(PK11_SESSION *sp, PK11_OPTYPE optype);

192 /* active list manipulation functions used in this file */
193 extern int pk11_active_delete(CK_OBJECT_HANDLE h, PK11_OPTYPE type);

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 4

194 extern void pk11_free_active_list(PK11_OPTYPE type);

196 #ifndef OPENSSL_NO_RSA
197 int pk11_destroy_rsa_key_objects(PK11_SESSION *session);
198 int pk11_destroy_rsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock);
199 int pk11_destroy_rsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock);
200 #endif
201 #ifndef OPENSSL_NO_DSA
202 int pk11_destroy_dsa_key_objects(PK11_SESSION *session);
203 int pk11_destroy_dsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock);
204 int pk11_destroy_dsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock);
205 #endif
206 #ifndef OPENSSL_NO_DH
207 int pk11_destroy_dh_key_objects(PK11_SESSION *session);
208 int pk11_destroy_dh_object(PK11_SESSION *session, CK_BBOOL uselock);
209 #endif

211 /* Local helper functions */
212 static int pk11_free_all_sessions(void);
213 static int pk11_free_session_list(PK11_OPTYPE optype);
214 static int pk11_setup_session(PK11_SESSION *sp, PK11_OPTYPE optype);
215 static int pk11_destroy_cipher_key_objects(PK11_SESSION *session);
216 static int pk11_destroy_object(CK_SESSION_HANDLE session,
217 CK_OBJECT_HANDLE oh);
218 static const char *get_PK11_LIBNAME(void);
219 static void free_PK11_LIBNAME(void);
220 static long set_PK11_LIBNAME(const char *name);

222 /* Symmetric cipher and digest support functions */
223 static int cipher_nid_to_pk11(int nid);
224 #ifdef SOLARIS_AES_CTR
225 static int pk11_add_aes_ctr_NIDs(void);
226 #endif /* SOLARIS_AES_CTR */
227 static int pk11_usable_ciphers(const int **nids);
228 static int pk11_usable_digests(const int **nids);
229 static int pk11_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
230 const unsigned char *iv, int enc);
231 static int pk11_cipher_final(PK11_SESSION *sp);
232 static int pk11_cipher_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
233 const unsigned char *in, size_t inl);
234 static int pk11_cipher_cleanup(EVP_CIPHER_CTX *ctx);
235 static int pk11_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
236 const int **nids, int nid);
237 static int pk11_engine_digests(ENGINE *e, const EVP_MD **digest,
238 const int **nids, int nid);
239 static CK_OBJECT_HANDLE pk11_get_cipher_key(EVP_CIPHER_CTX *ctx,
240 const unsigned char *key, CK_KEY_TYPE key_type, PK11_SESSION *sp);
241 static int check_new_cipher_key(PK11_SESSION *sp, const unsigned char *key,
242 int key_len);
243 static int md_nid_to_pk11(int nid);
244 static int pk11_digest_init(EVP_MD_CTX *ctx);
245 static int pk11_digest_update(EVP_MD_CTX *ctx, const void *data,
246 size_t count);
247 static int pk11_digest_final(EVP_MD_CTX *ctx, unsigned char *md);
248 static int pk11_digest_copy(EVP_MD_CTX *to, const EVP_MD_CTX *from);
249 static int pk11_digest_cleanup(EVP_MD_CTX *ctx);

251 static int pk11_choose_slots(int *any_slot_found);
252 static void pk11_find_symmetric_ciphers(CK_FUNCTION_LIST_PTR pflist,
253 CK_SLOT_ID current_slot, int *current_slot_n_cipher,
254 int *local_cipher_nids);
255 static void pk11_find_digests(CK_FUNCTION_LIST_PTR pflist,
256 CK_SLOT_ID current_slot, int *current_slot_n_digest,
257 int *local_digest_nids);
258 static void pk11_get_symmetric_cipher(CK_FUNCTION_LIST_PTR, int slot_id,
259 CK_MECHANISM_TYPE mech, int *current_slot_n_cipher, int *local_cipher_nids,

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 5

260 int id);
261 static void pk11_get_digest(CK_FUNCTION_LIST_PTR pflist, int slot_id,
262 CK_MECHANISM_TYPE mech, int *current_slot_n_digest, int *local_digest_nids,
263 int id);

265 static int pk11_init_all_locks(void);
266 static void pk11_free_all_locks(void);

268 #ifdef SOLARIS_HW_SLOT_SELECTION
269 static int check_hw_mechanisms(void);
270 static int nid_in_table(int nid, int *nid_table);
271 #endif /* SOLARIS_HW_SLOT_SELECTION */

273 /* Index for the supported ciphers */
274 enum pk11_cipher_id {
275 PK11_DES_CBC,
276 PK11_DES3_CBC,
277 PK11_DES_ECB,
278 PK11_DES3_ECB,
279 PK11_RC4,
280 PK11_AES_128_CBC,
281 PK11_AES_192_CBC,
282 PK11_AES_256_CBC,
283 PK11_AES_128_ECB,
284 PK11_AES_192_ECB,
285 PK11_AES_256_ECB,
286 PK11_BLOWFISH_CBC,
287 #ifdef SOLARIS_AES_CTR
288 PK11_AES_128_CTR,
289 PK11_AES_192_CTR,
290 PK11_AES_256_CTR,
291 #endif /* SOLARIS_AES_CTR */
292 PK11_CIPHER_MAX
293 };

295 /* Index for the supported digests */
296 enum pk11_digest_id {
297 PK11_MD5,
298 PK11_SHA1,
299 PK11_SHA224,
300 PK11_SHA256,
301 PK11_SHA384,
302 PK11_SHA512,
303 PK11_DIGEST_MAX
304 };

306 #define TRY_OBJ_DESTROY(sess_hdl, obj_hdl, retval, uselock, alg_type) \
307 { \
308 if (uselock) \
309 LOCK_OBJSTORE(alg_type); \
310 if (pk11_active_delete(obj_hdl, alg_type) == 1) \
311 { \
312 retval = pk11_destroy_object(sess_hdl, obj_hdl); \
313 } \
314 if (uselock) \
315 UNLOCK_OBJSTORE(alg_type); \
316 }

318 static int cipher_nids[PK11_CIPHER_MAX];
319 static int digest_nids[PK11_DIGEST_MAX];
320 static int cipher_count = 0;
321 static int digest_count = 0;
322 static CK_BBOOL pk11_have_rsa = CK_FALSE;
323 static CK_BBOOL pk11_have_dsa = CK_FALSE;
324 static CK_BBOOL pk11_have_dh = CK_FALSE;
325 static CK_BBOOL pk11_have_random = CK_FALSE;

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 6

327 typedef struct PK11_CIPHER_st
328 {
329 enum pk11_cipher_id id;
330 int nid;
331 int iv_len;
332 int min_key_len;
333 int max_key_len;
334 CK_KEY_TYPE key_type;
335 CK_MECHANISM_TYPE mech_type;
336 } PK11_CIPHER;

338 static PK11_CIPHER ciphers[] =
339 {
340 { PK11_DES_CBC, NID_des_cbc, 8, 8, 8,
341 CKK_DES, CKM_DES_CBC, },
342 { PK11_DES3_CBC, NID_des_ede3_cbc, 8, 24, 24,
343 CKK_DES3, CKM_DES3_CBC, },
344 { PK11_DES_ECB, NID_des_ecb, 0, 8, 8,
345 CKK_DES, CKM_DES_ECB, },
346 { PK11_DES3_ECB, NID_des_ede3_ecb, 0, 24, 24,
347 CKK_DES3, CKM_DES3_ECB, },
348 { PK11_RC4, NID_rc4, 0, 16, 256,
349 CKK_RC4, CKM_RC4, },
350 { PK11_AES_128_CBC, NID_aes_128_cbc, 16, 16, 16,
351 CKK_AES, CKM_AES_CBC, },
352 { PK11_AES_192_CBC, NID_aes_192_cbc, 16, 24, 24,
353 CKK_AES, CKM_AES_CBC, },
354 { PK11_AES_256_CBC, NID_aes_256_cbc, 16, 32, 32,
355 CKK_AES, CKM_AES_CBC, },
356 { PK11_AES_128_ECB, NID_aes_128_ecb, 0, 16, 16,
357 CKK_AES, CKM_AES_ECB, },
358 { PK11_AES_192_ECB, NID_aes_192_ecb, 0, 24, 24,
359 CKK_AES, CKM_AES_ECB, },
360 { PK11_AES_256_ECB, NID_aes_256_ecb, 0, 32, 32,
361 CKK_AES, CKM_AES_ECB, },
362 { PK11_BLOWFISH_CBC, NID_bf_cbc, 8, 16, 16,
363 CKK_BLOWFISH, CKM_BLOWFISH_CBC, },
364 #ifdef SOLARIS_AES_CTR
365 /* we don’t know the correct NIDs until the engine is initialized */
366 { PK11_AES_128_CTR, NID_undef, 16, 16, 16,
367 CKK_AES, CKM_AES_CTR, },
368 { PK11_AES_192_CTR, NID_undef, 16, 24, 24,
369 CKK_AES, CKM_AES_CTR, },
370 { PK11_AES_256_CTR, NID_undef, 16, 32, 32,
371 CKK_AES, CKM_AES_CTR, },
372 #endif /* SOLARIS_AES_CTR */
373 };

375 typedef struct PK11_DIGEST_st
376 {
377 enum pk11_digest_id id;
378 int nid;
379 CK_MECHANISM_TYPE mech_type;
380 } PK11_DIGEST;

382 static PK11_DIGEST digests[] =
383 {
384 {PK11_MD5, NID_md5, CKM_MD5, },
385 {PK11_SHA1, NID_sha1, CKM_SHA_1, },
386 {PK11_SHA224, NID_sha224, CKM_SHA224, },
387 {PK11_SHA256, NID_sha256, CKM_SHA256, },
388 {PK11_SHA384, NID_sha384, CKM_SHA384, },
389 {PK11_SHA512, NID_sha512, CKM_SHA512, },
390 {0, NID_undef, 0xFFFF, },
391 };

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 7

393 /*
394 * Structure to be used for the cipher_data/md_data in
395 * EVP_CIPHER_CTX/EVP_MD_CTX structures in order to use the same pk11
396 * session in multiple cipher_update calls
397 */
398 typedef struct PK11_CIPHER_STATE_st
399 {
400 PK11_SESSION *sp;
401 } PK11_CIPHER_STATE;

404 /*
405 * libcrypto EVP stuff - this is how we get wired to EVP so the engine gets
406 * called when libcrypto requests a cipher NID.
407 *
408 * Note how the PK11_CIPHER_STATE is used here.
409 */

411 /* DES CBC EVP */
412 static const EVP_CIPHER pk11_des_cbc =
413 {
414 NID_des_cbc,
415 8, 8, 8,
416 EVP_CIPH_CBC_MODE,
417 pk11_cipher_init,
418 pk11_cipher_do_cipher,
419 pk11_cipher_cleanup,
420 sizeof (PK11_CIPHER_STATE),
421 EVP_CIPHER_set_asn1_iv,
422 EVP_CIPHER_get_asn1_iv,
423 NULL
424 };

426 /* 3DES CBC EVP */
427 static const EVP_CIPHER pk11_3des_cbc =
428 {
429 NID_des_ede3_cbc,
430 8, 24, 8,
431 EVP_CIPH_CBC_MODE,
432 pk11_cipher_init,
433 pk11_cipher_do_cipher,
434 pk11_cipher_cleanup,
435 sizeof (PK11_CIPHER_STATE),
436 EVP_CIPHER_set_asn1_iv,
437 EVP_CIPHER_get_asn1_iv,
438 NULL
439 };

441 /*
442 * ECB modes don’t use an Initial Vector so that’s why set_asn1_parameters and
443 * get_asn1_parameters fields are set to NULL.
444 */
445 static const EVP_CIPHER pk11_des_ecb =
446 {
447 NID_des_ecb,
448 8, 8, 8,
449 EVP_CIPH_ECB_MODE,
450 pk11_cipher_init,
451 pk11_cipher_do_cipher,
452 pk11_cipher_cleanup,
453 sizeof (PK11_CIPHER_STATE),
454 NULL,
455 NULL,
456 NULL
457 };

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 8

459 static const EVP_CIPHER pk11_3des_ecb =
460 {
461 NID_des_ede3_ecb,
462 8, 24, 8,
463 EVP_CIPH_ECB_MODE,
464 pk11_cipher_init,
465 pk11_cipher_do_cipher,
466 pk11_cipher_cleanup,
467 sizeof (PK11_CIPHER_STATE),
468 NULL,
469 NULL,
470 NULL
471 };

474 static const EVP_CIPHER pk11_aes_128_cbc =
475 {
476 NID_aes_128_cbc,
477 16, 16, 16,
478 EVP_CIPH_CBC_MODE,
479 pk11_cipher_init,
480 pk11_cipher_do_cipher,
481 pk11_cipher_cleanup,
482 sizeof (PK11_CIPHER_STATE),
483 EVP_CIPHER_set_asn1_iv,
484 EVP_CIPHER_get_asn1_iv,
485 NULL
486 };

488 static const EVP_CIPHER pk11_aes_192_cbc =
489 {
490 NID_aes_192_cbc,
491 16, 24, 16,
492 EVP_CIPH_CBC_MODE,
493 pk11_cipher_init,
494 pk11_cipher_do_cipher,
495 pk11_cipher_cleanup,
496 sizeof (PK11_CIPHER_STATE),
497 EVP_CIPHER_set_asn1_iv,
498 EVP_CIPHER_get_asn1_iv,
499 NULL
500 };

502 static const EVP_CIPHER pk11_aes_256_cbc =
503 {
504 NID_aes_256_cbc,
505 16, 32, 16,
506 EVP_CIPH_CBC_MODE,
507 pk11_cipher_init,
508 pk11_cipher_do_cipher,
509 pk11_cipher_cleanup,
510 sizeof (PK11_CIPHER_STATE),
511 EVP_CIPHER_set_asn1_iv,
512 EVP_CIPHER_get_asn1_iv,
513 NULL
514 };

516 /*
517 * ECB modes don’t use IV so that’s why set_asn1_parameters and
518 * get_asn1_parameters are set to NULL.
519 */
520 static const EVP_CIPHER pk11_aes_128_ecb =
521 {
522 NID_aes_128_ecb,
523 16, 16, 0,

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 9

524 EVP_CIPH_ECB_MODE,
525 pk11_cipher_init,
526 pk11_cipher_do_cipher,
527 pk11_cipher_cleanup,
528 sizeof (PK11_CIPHER_STATE),
529 NULL,
530 NULL,
531 NULL
532 };

534 static const EVP_CIPHER pk11_aes_192_ecb =
535 {
536 NID_aes_192_ecb,
537 16, 24, 0,
538 EVP_CIPH_ECB_MODE,
539 pk11_cipher_init,
540 pk11_cipher_do_cipher,
541 pk11_cipher_cleanup,
542 sizeof (PK11_CIPHER_STATE),
543 NULL,
544 NULL,
545 NULL
546 };

548 static const EVP_CIPHER pk11_aes_256_ecb =
549 {
550 NID_aes_256_ecb,
551 16, 32, 0,
552 EVP_CIPH_ECB_MODE,
553 pk11_cipher_init,
554 pk11_cipher_do_cipher,
555 pk11_cipher_cleanup,
556 sizeof (PK11_CIPHER_STATE),
557 NULL,
558 NULL,
559 NULL
560 };

562 #ifdef SOLARIS_AES_CTR
563 /*
564 * NID_undef’s will be changed to the AES counter mode NIDs as soon they are
565 * created in pk11_library_init(). Note that the need to change these structures
566 * is the reason why we don’t define them with the const keyword.
567 */
568 static EVP_CIPHER pk11_aes_128_ctr =
569 {
570 NID_undef,
571 16, 16, 16,
572 EVP_CIPH_CBC_MODE,
573 pk11_cipher_init,
574 pk11_cipher_do_cipher,
575 pk11_cipher_cleanup,
576 sizeof (PK11_CIPHER_STATE),
577 EVP_CIPHER_set_asn1_iv,
578 EVP_CIPHER_get_asn1_iv,
579 NULL
580 };

582 static EVP_CIPHER pk11_aes_192_ctr =
583 {
584 NID_undef,
585 16, 24, 16,
586 EVP_CIPH_CBC_MODE,
587 pk11_cipher_init,
588 pk11_cipher_do_cipher,
589 pk11_cipher_cleanup,

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 10

590 sizeof (PK11_CIPHER_STATE),
591 EVP_CIPHER_set_asn1_iv,
592 EVP_CIPHER_get_asn1_iv,
593 NULL
594 };

596 static EVP_CIPHER pk11_aes_256_ctr =
597 {
598 NID_undef,
599 16, 32, 16,
600 EVP_CIPH_CBC_MODE,
601 pk11_cipher_init,
602 pk11_cipher_do_cipher,
603 pk11_cipher_cleanup,
604 sizeof (PK11_CIPHER_STATE),
605 EVP_CIPHER_set_asn1_iv,
606 EVP_CIPHER_get_asn1_iv,
607 NULL
608 };
609 #endif /* SOLARIS_AES_CTR */

611 static const EVP_CIPHER pk11_bf_cbc =
612 {
613 NID_bf_cbc,
614 8, 16, 8,
615 EVP_CIPH_VARIABLE_LENGTH,
616 pk11_cipher_init,
617 pk11_cipher_do_cipher,
618 pk11_cipher_cleanup,
619 sizeof (PK11_CIPHER_STATE),
620 EVP_CIPHER_set_asn1_iv,
621 EVP_CIPHER_get_asn1_iv,
622 NULL
623 };

625 static const EVP_CIPHER pk11_rc4 =
626 {
627 NID_rc4,
628 1, 16, 0,
629 EVP_CIPH_VARIABLE_LENGTH,
630 pk11_cipher_init,
631 pk11_cipher_do_cipher,
632 pk11_cipher_cleanup,
633 sizeof (PK11_CIPHER_STATE),
634 NULL,
635 NULL,
636 NULL
637 };

639 static const EVP_MD pk11_md5 =
640 {
641 NID_md5,
642 NID_md5WithRSAEncryption,
643 MD5_DIGEST_LENGTH,
644 0,
645 pk11_digest_init,
646 pk11_digest_update,
647 pk11_digest_final,
648 pk11_digest_copy,
649 pk11_digest_cleanup,
650 EVP_PKEY_RSA_method,
651 MD5_CBLOCK,
652 sizeof (PK11_CIPHER_STATE),
653 };

655 static const EVP_MD pk11_sha1 =

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 11

656 {
657 NID_sha1,
658 NID_sha1WithRSAEncryption,
659 SHA_DIGEST_LENGTH,
660 0,
661 pk11_digest_init,
662 pk11_digest_update,
663 pk11_digest_final,
664 pk11_digest_copy,
665 pk11_digest_cleanup,
666 EVP_PKEY_RSA_method,
667 SHA_CBLOCK,
668 sizeof (PK11_CIPHER_STATE),
669 };

671 static const EVP_MD pk11_sha224 =
672 {
673 NID_sha224,
674 NID_sha224WithRSAEncryption,
675 SHA224_DIGEST_LENGTH,
676 0,
677 pk11_digest_init,
678 pk11_digest_update,
679 pk11_digest_final,
680 pk11_digest_copy,
681 pk11_digest_cleanup,
682 EVP_PKEY_RSA_method,
683 /* SHA-224 uses the same cblock size as SHA-256 */
684 SHA256_CBLOCK,
685 sizeof (PK11_CIPHER_STATE),
686 };

688 static const EVP_MD pk11_sha256 =
689 {
690 NID_sha256,
691 NID_sha256WithRSAEncryption,
692 SHA256_DIGEST_LENGTH,
693 0,
694 pk11_digest_init,
695 pk11_digest_update,
696 pk11_digest_final,
697 pk11_digest_copy,
698 pk11_digest_cleanup,
699 EVP_PKEY_RSA_method,
700 SHA256_CBLOCK,
701 sizeof (PK11_CIPHER_STATE),
702 };

704 static const EVP_MD pk11_sha384 =
705 {
706 NID_sha384,
707 NID_sha384WithRSAEncryption,
708 SHA384_DIGEST_LENGTH,
709 0,
710 pk11_digest_init,
711 pk11_digest_update,
712 pk11_digest_final,
713 pk11_digest_copy,
714 pk11_digest_cleanup,
715 EVP_PKEY_RSA_method,
716 /* SHA-384 uses the same cblock size as SHA-512 */
717 SHA512_CBLOCK,
718 sizeof (PK11_CIPHER_STATE),
719 };

721 static const EVP_MD pk11_sha512 =

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 12

722 {
723 NID_sha512,
724 NID_sha512WithRSAEncryption,
725 SHA512_DIGEST_LENGTH,
726 0,
727 pk11_digest_init,
728 pk11_digest_update,
729 pk11_digest_final,
730 pk11_digest_copy,
731 pk11_digest_cleanup,
732 EVP_PKEY_RSA_method,
733 SHA512_CBLOCK,
734 sizeof (PK11_CIPHER_STATE),
735 };

737 /*
738 * Initialization function. Sets up various PKCS#11 library components.
739 * The definitions for control commands specific to this engine
740 */
741 #define PK11_CMD_SO_PATH ENGINE_CMD_BASE
742 static const ENGINE_CMD_DEFN pk11_cmd_defns[] =
743 {
744 {
745 PK11_CMD_SO_PATH,
746 "SO_PATH",
747 "Specifies the path to the ’pkcs#11’ shared library",
748 ENGINE_CMD_FLAG_STRING
749 },
750 {0, NULL, NULL, 0}
751 };

754 static RAND_METHOD pk11_random =
755 {
756 pk11_rand_seed,
757 pk11_rand_bytes,
758 pk11_rand_cleanup,
759 pk11_rand_add,
760 pk11_rand_bytes,
761 pk11_rand_status
762 };

765 /* Constants used when creating the ENGINE */
766 static const char *engine_pk11_id = "pkcs11";
767 static const char *engine_pk11_name = "PKCS #11 engine support";

769 CK_FUNCTION_LIST_PTR pFuncList = NULL;
770 static const char PK11_GET_FUNCTION_LIST[] = "C_GetFunctionList";

772 /*
773 * These is the static string constant for the DSO file name and the function
774 * symbol names to bind to.
775 */
776 static const char def_PK11_LIBNAME[] = PK11_LIB_LOCATION;

778 static CK_BBOOL true = TRUE;
779 static CK_BBOOL false = FALSE;
780 static CK_SLOT_ID pubkey_SLOTID = 0;
781 static CK_SLOT_ID rand_SLOTID = 0;
782 static CK_SLOT_ID SLOTID = 0;
783 static CK_BBOOL pk11_library_initialized = FALSE;
784 static CK_BBOOL pk11_atfork_initialized = FALSE;
785 static int pk11_pid = 0;

787 static DSO *pk11_dso = NULL;

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 13

789 /* allocate and initialize all locks used by the engine itself */
790 static int pk11_init_all_locks(void)
791 {
792 int type;

794 #ifndef OPENSSL_NO_RSA
795 find_lock[OP_RSA] = OPENSSL_malloc(sizeof (pthread_mutex_t));
796 if (find_lock[OP_RSA] == NULL)
797 goto malloc_err;
798 (void) pthread_mutex_init(find_lock[OP_RSA], NULL);
799 #endif /* OPENSSL_NO_RSA */

801 #ifndef OPENSSL_NO_DSA
802 find_lock[OP_DSA] = OPENSSL_malloc(sizeof (pthread_mutex_t));
803 if (find_lock[OP_DSA] == NULL)
804 goto malloc_err;
805 (void) pthread_mutex_init(find_lock[OP_DSA], NULL);
806 #endif /* OPENSSL_NO_DSA */

808 #ifndef OPENSSL_NO_DH
809 find_lock[OP_DH] = OPENSSL_malloc(sizeof (pthread_mutex_t));
810 if (find_lock[OP_DH] == NULL)
811 goto malloc_err;
812 (void) pthread_mutex_init(find_lock[OP_DH], NULL);
813 #endif /* OPENSSL_NO_DH */

815 for (type = 0; type < OP_MAX; type++)
816 {
817 session_cache[type].lock =
818 OPENSSL_malloc(sizeof (pthread_mutex_t));
819 if (session_cache[type].lock == NULL)
820 goto malloc_err;
821 (void) pthread_mutex_init(session_cache[type].lock, NULL);
822 }

824 return (1);

826 malloc_err:
827 pk11_free_all_locks();
828 PK11err(PK11_F_INIT_ALL_LOCKS, PK11_R_MALLOC_FAILURE);
829 return (0);
830 }

832 static void pk11_free_all_locks(void)
833 {
834 int type;

836 #ifndef OPENSSL_NO_RSA
837 if (find_lock[OP_RSA] != NULL)
838 {
839 (void) pthread_mutex_destroy(find_lock[OP_RSA]);
840 OPENSSL_free(find_lock[OP_RSA]);
841 find_lock[OP_RSA] = NULL;
842 }
843 #endif /* OPENSSL_NO_RSA */
844 #ifndef OPENSSL_NO_DSA
845 if (find_lock[OP_DSA] != NULL)
846 {
847 (void) pthread_mutex_destroy(find_lock[OP_DSA]);
848 OPENSSL_free(find_lock[OP_DSA]);
849 find_lock[OP_DSA] = NULL;
850 }
851 #endif /* OPENSSL_NO_DSA */
852 #ifndef OPENSSL_NO_DH
853 if (find_lock[OP_DH] != NULL)

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 14

854 {
855 (void) pthread_mutex_destroy(find_lock[OP_DH]);
856 OPENSSL_free(find_lock[OP_DH]);
857 find_lock[OP_DH] = NULL;
858 }
859 #endif /* OPENSSL_NO_DH */

861 for (type = 0; type < OP_MAX; type++)
862 {
863 if (session_cache[type].lock != NULL)
864 {
865 (void) pthread_mutex_destroy(session_cache[type].lock);
866 OPENSSL_free(session_cache[type].lock);
867 session_cache[type].lock = NULL;
868 }
869 }
870 }

872 /*
873 * This internal function is used by ENGINE_pk11() and "dynamic" ENGINE support.
874 */
875 static int bind_pk11(ENGINE *e)
876 {
877 #ifndef OPENSSL_NO_RSA
878 const RSA_METHOD *rsa = NULL;
879 RSA_METHOD *pk11_rsa = PK11_RSA();
880 #endif /* OPENSSL_NO_RSA */
881 if (!pk11_library_initialized)
882 if (!pk11_library_init(e))
883 return (0);

885 if (!ENGINE_set_id(e, engine_pk11_id) ||
886 !ENGINE_set_name(e, engine_pk11_name) ||
887 !ENGINE_set_ciphers(e, pk11_engine_ciphers) ||
888 !ENGINE_set_digests(e, pk11_engine_digests))
889 return (0);
890 #ifndef OPENSSL_NO_RSA
891 if (pk11_have_rsa == CK_TRUE)
892 {
893 if (!ENGINE_set_RSA(e, PK11_RSA()) ||
894 !ENGINE_set_load_privkey_function(e, pk11_load_privkey) ||
895 !ENGINE_set_load_pubkey_function(e, pk11_load_pubkey))
896 return (0);
897 #ifdef DEBUG_SLOT_SELECTION
898 fprintf(stderr, "%s: registered RSA\n", PK11_DBG);
899 #endif /* DEBUG_SLOT_SELECTION */
900 }
901 #endif /* OPENSSL_NO_RSA */
902 #ifndef OPENSSL_NO_DSA
903 if (pk11_have_dsa == CK_TRUE)
904 {
905 if (!ENGINE_set_DSA(e, PK11_DSA()))
906 return (0);
907 #ifdef DEBUG_SLOT_SELECTION
908 fprintf(stderr, "%s: registered DSA\n", PK11_DBG);
909 #endif /* DEBUG_SLOT_SELECTION */
910 }
911 #endif /* OPENSSL_NO_DSA */
912 #ifndef OPENSSL_NO_DH
913 if (pk11_have_dh == CK_TRUE)
914 {
915 if (!ENGINE_set_DH(e, PK11_DH()))
916 return (0);
917 #ifdef DEBUG_SLOT_SELECTION
918 fprintf(stderr, "%s: registered DH\n", PK11_DBG);
919 #endif /* DEBUG_SLOT_SELECTION */

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 15

920 }
921 #endif /* OPENSSL_NO_DH */
922 if (pk11_have_random)
923 {
924 if (!ENGINE_set_RAND(e, &pk11_random))
925 return (0);
926 #ifdef DEBUG_SLOT_SELECTION
927 fprintf(stderr, "%s: registered random\n", PK11_DBG);
928 #endif /* DEBUG_SLOT_SELECTION */
929 }
930 if (!ENGINE_set_init_function(e, pk11_init) ||
931 !ENGINE_set_destroy_function(e, pk11_destroy) ||
932 !ENGINE_set_finish_function(e, pk11_finish) ||
933 !ENGINE_set_ctrl_function(e, pk11_ctrl) ||
934 !ENGINE_set_cmd_defns(e, pk11_cmd_defns))
935 return (0);

937 /*
938 * Apache calls OpenSSL function RSA_blinding_on() once during startup
939 * which in turn calls bn_mod_exp. Since we do not implement bn_mod_exp
940 * here, we wire it back to the OpenSSL software implementation.
941 * Since it is used only once, performance is not a concern.
942 */
943 #ifndef OPENSSL_NO_RSA
944 rsa = RSA_PKCS1_SSLeay();
945 pk11_rsa->rsa_mod_exp = rsa->rsa_mod_exp;
946 pk11_rsa->bn_mod_exp = rsa->bn_mod_exp;
947 #endif /* OPENSSL_NO_RSA */

949 /* Ensure the pk11 error handling is set up */
950 ERR_load_pk11_strings();

952 return (1);
953 }

955 /* Dynamic engine support is disabled at a higher level for Solaris */
956 #ifdef ENGINE_DYNAMIC_SUPPORT
957 static int bind_helper(ENGINE *e, const char *id)
958 {
959 if (id && (strcmp(id, engine_pk11_id) != 0))
960 return (0);

962 if (!bind_pk11(e))
963 return (0);

965 return (1);
966 }

968 IMPLEMENT_DYNAMIC_CHECK_FN()
969 IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)

971 #else
972 static ENGINE *engine_pk11(void)
973 {
974 ENGINE *ret = ENGINE_new();

976 if (!ret)
977 return (NULL);

979 if (!bind_pk11(ret))
980 {
981 ENGINE_free(ret);
982 return (NULL);
983 }

985 return (ret);

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 16

986 }

988 void
989 ENGINE_load_pk11(void)
990 {
991 ENGINE *e_pk11 = NULL;

993 /*
994 * Do not use dynamic PKCS#11 library on Solaris due to
995 * security reasons. We will link it in statically.
996 */
997 /* Attempt to load PKCS#11 library */
998 if (!pk11_dso)
999 pk11_dso = DSO_load(NULL, get_PK11_LIBNAME(), NULL, 0);

1001 if (pk11_dso == NULL)
1002 {
1003 PK11err(PK11_F_LOAD, PK11_R_DSO_FAILURE);
1004 return;
1005 }

1007 e_pk11 = engine_pk11();
1008 if (!e_pk11)
1009 {
1010 DSO_free(pk11_dso);
1011 pk11_dso = NULL;
1012 return;
1013 }

1015 /*
1016 * At this point, the pk11 shared library is either dynamically
1017 * loaded or statically linked in. So, initialize the pk11
1018 * library before calling ENGINE_set_default since the latter
1019 * needs cipher and digest algorithm information
1020 */
1021 if (!pk11_library_init(e_pk11))
1022 {
1023 DSO_free(pk11_dso);
1024 pk11_dso = NULL;
1025 ENGINE_free(e_pk11);
1026 return;
1027 }

1029 ENGINE_add(e_pk11);

1031 ENGINE_free(e_pk11);
1032 ERR_clear_error();
1033 }
1034 #endif /* ENGINE_DYNAMIC_SUPPORT */

1036 /*
1037 * These are the static string constants for the DSO file name and
1038 * the function symbol names to bind to.
1039 */
1040 static const char *PK11_LIBNAME = NULL;

1042 static const char *get_PK11_LIBNAME(void)
1043 {
1044 if (PK11_LIBNAME)
1045 return (PK11_LIBNAME);

1047 return (def_PK11_LIBNAME);
1048 }

1050 static void free_PK11_LIBNAME(void)
1051 {

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 17

1052 if (PK11_LIBNAME)
1053 OPENSSL_free((void*)PK11_LIBNAME);

1055 PK11_LIBNAME = NULL;
1056 }

1058 static long set_PK11_LIBNAME(const char *name)
1059 {
1060 free_PK11_LIBNAME();

1062 return ((PK11_LIBNAME = BUF_strdup(name)) != NULL ? 1 : 0);
1063 }

1065 /* acquire all engine specific mutexes before fork */
1066 static void pk11_fork_prepare(void)
1067 {
1068 int i;

1070 if (!pk11_library_initialized)
1071 return;

1073 LOCK_OBJSTORE(OP_RSA);
1074 LOCK_OBJSTORE(OP_DSA);
1075 LOCK_OBJSTORE(OP_DH);
1076 for (i = 0; i < OP_MAX; i++)
1077 {
1078 (void) pthread_mutex_lock(session_cache[i].lock);
1079 }
1080 }

1082 /* release all engine specific mutexes */
1083 static void pk11_fork_parent(void)
1084 {
1085 int i;

1087 if (!pk11_library_initialized)
1088 return;

1090 for (i = OP_MAX - 1; i >= 0; i--)
1091 {
1092 (void) pthread_mutex_unlock(session_cache[i].lock);
1093 }
1094 UNLOCK_OBJSTORE(OP_DH);
1095 UNLOCK_OBJSTORE(OP_DSA);
1096 UNLOCK_OBJSTORE(OP_RSA);
1097 }

1099 /*
1100 * same situation as in parent - we need to unlock all locks to make them
1101 * accessible to all threads.
1102 */
1103 static void pk11_fork_child(void)
1104 {
1105 int i;

1107 if (!pk11_library_initialized)
1108 return;

1110 for (i = OP_MAX - 1; i >= 0; i--)
1111 {
1112 (void) pthread_mutex_unlock(session_cache[i].lock);
1113 }
1114 UNLOCK_OBJSTORE(OP_DH);
1115 UNLOCK_OBJSTORE(OP_DSA);
1116 UNLOCK_OBJSTORE(OP_RSA);
1117 }

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 18

1119 /* Initialization function for the pk11 engine */
1120 static int pk11_init(ENGINE *e)
1121 {
1122 return (pk11_library_init(e));
1123 }

1125 /*
1126 * Initialization function. Sets up various PKCS#11 library components.
1127 * It selects a slot based on predefined critiera. In the process, it also
1128 * count how many ciphers and digests to support. Since the cipher and
1129 * digest information is needed when setting default engine, this function
1130 * needs to be called before calling ENGINE_set_default.
1131 */
1132 /* ARGSUSED */
1133 static int pk11_library_init(ENGINE *e)
1134 {
1135 CK_C_GetFunctionList p;
1136 CK_RV rv = CKR_OK;
1137 CK_INFO info;
1138 CK_ULONG ul_state_len;
1139 int any_slot_found;
1140 int i;

1142 /*
1143 * pk11_library_initialized is set to 0 in pk11_finish() which is called
1144 * from ENGINE_finish(). However, if there is still at least one
1145 * existing functional reference to the engine (see engine(3) for more
1146 * information), pk11_finish() is skipped. For example, this can happen
1147 * if an application forgets to clear one cipher context. In case of a
1148 * fork() when the application is finishing the engine so that it can be
1149 * reinitialized in the child, forgotten functional reference causes
1150 * pk11_library_initialized to stay 1. In that case we need the PID
1151 * check so that we properly initialize the engine again.
1152 */
1153 if (pk11_library_initialized)
1154 {
1155 if (pk11_pid == getpid())
1156 {
1157 return (1);
1158 }
1159 else
1160 {
1161 global_session = CK_INVALID_HANDLE;
1162 /*
1163 * free the locks first to prevent memory leak in case
1164 * the application calls fork() without finishing the
1165 * engine first.
1166 */
1167 pk11_free_all_locks();
1168 }
1169 }

1171 if (pk11_dso == NULL)
1172 {
1173 PK11err(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE);
1174 goto err;
1175 }

1177 #ifdef SOLARIS_AES_CTR
1178 /*
1179 * We must do this before we start working with slots since we need all
1180 * NIDs there.
1181 */
1182 if (pk11_add_aes_ctr_NIDs() == 0)
1183 goto err;

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 19

1184 #endif /* SOLARIS_AES_CTR */

1186 #ifdef SOLARIS_HW_SLOT_SELECTION
1187 if (check_hw_mechanisms() == 0)
1188 goto err;
1189 #endif /* SOLARIS_HW_SLOT_SELECTION */

1191 /* get the C_GetFunctionList function from the loaded library */
1192 p = (CK_C_GetFunctionList)DSO_bind_func(pk11_dso,
1193 PK11_GET_FUNCTION_LIST);
1194 if (!p)
1195 {
1196 PK11err(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE);
1197 goto err;
1198 }

1200 /* get the full function list from the loaded library */
1201 rv = p(&pFuncList);
1202 if (rv != CKR_OK)
1203 {
1204 PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE, rv);
1205 goto err;
1206 }

1208 rv = pFuncList->C_Initialize(NULL_PTR);
1209 if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED))
1210 {
1211 PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_INITIALIZE, rv);
1212 goto err;
1213 }

1215 rv = pFuncList->C_GetInfo(&info);
1216 if (rv != CKR_OK)
1217 {
1218 PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_GETINFO, rv);
1219 goto err;
1220 }

1222 if (pk11_choose_slots(&any_slot_found) == 0)
1223 goto err;

1225 /*
1226 * The library we use, set in def_PK11_LIBNAME, may not offer any
1227 * slot(s). In that case, we must not proceed but we must not return an
1228 * error. The reason is that applications that try to set up the PKCS#11
1229 * engine don’t exit on error during the engine initialization just
1230 * because no slot was present.
1231 */
1232 if (any_slot_found == 0)
1233 return (1);

1235 if (global_session == CK_INVALID_HANDLE)
1236 {
1237 /* Open the global_session for the new process */
1238 rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION,
1239 NULL_PTR, NULL_PTR, &global_session);
1240 if (rv != CKR_OK)
1241 {
1242 PK11err_add_data(PK11_F_LIBRARY_INIT,
1243 PK11_R_OPENSESSION, rv);
1244 goto err;
1245 }
1246 }

1248 /*
1249 * Disable digest if C_GetOperationState is not supported since

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 20

1250 * this function is required by OpenSSL digest copy function
1251 */
1252 if (pFuncList->C_GetOperationState(global_session, NULL, &ul_state_len)
1253 == CKR_FUNCTION_NOT_SUPPORTED) {
1254 #ifdef DEBUG_SLOT_SELECTION
1255 fprintf(stderr, "%s: C_GetOperationState() not supported, "
1256 "setting digest_count to 0\n", PK11_DBG);
1257 #endif /* DEBUG_SLOT_SELECTION */
1258 digest_count = 0;
1259 }

1261 pk11_library_initialized = TRUE;
1262 pk11_pid = getpid();
1263 /*
1264 * if initialization of the locks fails pk11_init_all_locks()
1265 * will do the cleanup.
1266 */
1267 if (!pk11_init_all_locks())
1268 goto err;
1269 for (i = 0; i < OP_MAX; i++)
1270 session_cache[i].head = NULL;
1271 /*
1272 * initialize active lists. We only use active lists
1273 * for asymmetric ciphers.
1274 */
1275 for (i = 0; i < OP_MAX; i++)
1276 active_list[i] = NULL;

1278 if (!pk11_atfork_initialized)
1279 {
1280 if (pthread_atfork(pk11_fork_prepare, pk11_fork_parent,
1281 pk11_fork_child) != 0)
1282 {
1283 PK11err(PK11_F_LIBRARY_INIT, PK11_R_ATFORK_FAILED);
1284 goto err;
1285 }
1286 pk11_atfork_initialized = TRUE;
1287 }

1289 return (1);

1291 err:
1292 return (0);
1293 }

1295 /* Destructor (complements the "ENGINE_pk11()" constructor) */
1296 /* ARGSUSED */
1297 static int pk11_destroy(ENGINE *e)
1298 {
1299 free_PK11_LIBNAME();
1300 ERR_unload_pk11_strings();
1301 return (1);
1302 }

1304 /*
1305 * Termination function to clean up the session, the token, and the pk11
1306 * library.
1307 */
1308 /* ARGSUSED */
1309 static int pk11_finish(ENGINE *e)
1310 {
1311 int i;

1313 if (pk11_dso == NULL)
1314 {
1315 PK11err(PK11_F_FINISH, PK11_R_NOT_LOADED);

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 21

1316 goto err;
1317 }

1319 OPENSSL_assert(pFuncList != NULL);

1321 if (pk11_free_all_sessions() == 0)
1322 goto err;

1324 /* free all active lists */
1325 for (i = 0; i < OP_MAX; i++)
1326 pk11_free_active_list(i);

1328 pFuncList->C_CloseSession(global_session);
1329 global_session = CK_INVALID_HANDLE;

1331 /*
1332 * Since we are part of a library (libcrypto.so), calling this function
1333 * may have side-effects.
1334 */
1335 #if 0
1336 pFuncList->C_Finalize(NULL);
1337 #endif

1339 if (!DSO_free(pk11_dso))
1340 {
1341 PK11err(PK11_F_FINISH, PK11_R_DSO_FAILURE);
1342 goto err;
1343 }
1344 pk11_dso = NULL;
1345 pFuncList = NULL;
1346 pk11_library_initialized = FALSE;
1347 pk11_pid = 0;
1348 /*
1349 * There is no way how to unregister atfork handlers (other than
1350 * unloading the library) so we just free the locks. For this reason
1351 * the atfork handlers check if the engine is initialized and bail out
1352 * immediately if not. This is necessary in case a process finishes
1353 * the engine before calling fork().
1354 */
1355 pk11_free_all_locks();

1357 return (1);

1359 err:
1360 return (0);
1361 }

1363 /* Standard engine interface function to set the dynamic library path */
1364 /* ARGSUSED */
1365 static int pk11_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)())
1366 {
1367 int initialized = ((pk11_dso == NULL) ? 0 : 1);

1369 switch (cmd)
1370 {
1371 case PK11_CMD_SO_PATH:
1372 if (p == NULL)
1373 {
1374 PK11err(PK11_F_CTRL, ERR_R_PASSED_NULL_PARAMETER);
1375 return (0);
1376 }

1378 if (initialized)
1379 {
1380 PK11err(PK11_F_CTRL, PK11_R_ALREADY_LOADED);
1381 return (0);

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 22

1382 }

1384 return (set_PK11_LIBNAME((const char *)p));
1385 default:
1386 break;
1387 }

1389 PK11err(PK11_F_CTRL, PK11_R_CTRL_COMMAND_NOT_IMPLEMENTED);

1391 return (0);
1392 }

1395 /* Required function by the engine random interface. It does nothing here */
1396 static void pk11_rand_cleanup(void)
1397 {
1398 return;
1399 }

1401 /* ARGSUSED */
1402 static void pk11_rand_add(const void *buf, int num, double add)
1403 {
1404 PK11_SESSION *sp;

1406 if ((sp = pk11_get_session(OP_RAND)) == NULL)
1407 return;

1409 /*
1410 * Ignore any errors (e.g. CKR_RANDOM_SEED_NOT_SUPPORTED) since
1411 * the calling functions do not care anyway
1412 */
1413 pFuncList->C_SeedRandom(sp->session, (unsigned char *) buf, num);
1414 pk11_return_session(sp, OP_RAND);

1416 return;
1417 }

1419 static void pk11_rand_seed(const void *buf, int num)
1420 {
1421 pk11_rand_add(buf, num, 0);
1422 }

1424 static int pk11_rand_bytes(unsigned char *buf, int num)
1425 {
1426 CK_RV rv;
1427 PK11_SESSION *sp;

1429 if ((sp = pk11_get_session(OP_RAND)) == NULL)
1430 return (0);

1432 rv = pFuncList->C_GenerateRandom(sp->session, buf, num);
1433 if (rv != CKR_OK)
1434 {
1435 PK11err_add_data(PK11_F_RAND_BYTES, PK11_R_GENERATERANDOM, rv);
1436 pk11_return_session(sp, OP_RAND);
1437 return (0);
1438 }

1440 pk11_return_session(sp, OP_RAND);
1441 return (1);
1442 }

1444 /* Required function by the engine random interface. It does nothing here */
1445 static int pk11_rand_status(void)
1446 {
1447 return (1);

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 23

1448 }

1450 /* Free all BIGNUM structures from PK11_SESSION. */
1451 static void pk11_free_nums(PK11_SESSION *sp, PK11_OPTYPE optype)
1452 {
1453 switch (optype)
1454 {
1455 #ifndef OPENSSL_NO_RSA
1456 case OP_RSA:
1457 if (sp->opdata_rsa_n_num != NULL)
1458 {
1459 BN_free(sp->opdata_rsa_n_num);
1460 sp->opdata_rsa_n_num = NULL;
1461 }
1462 if (sp->opdata_rsa_e_num != NULL)
1463 {
1464 BN_free(sp->opdata_rsa_e_num);
1465 sp->opdata_rsa_e_num = NULL;
1466 }
1467 if (sp->opdata_rsa_d_num != NULL)
1468 {
1469 BN_free(sp->opdata_rsa_d_num);
1470 sp->opdata_rsa_d_num = NULL;
1471 }
1472 break;
1473 #endif
1474 #ifndef OPENSSL_NO_DSA
1475 case OP_DSA:
1476 if (sp->opdata_dsa_pub_num != NULL)
1477 {
1478 BN_free(sp->opdata_dsa_pub_num);
1479 sp->opdata_dsa_pub_num = NULL;
1480 }
1481 if (sp->opdata_dsa_priv_num != NULL)
1482 {
1483 BN_free(sp->opdata_dsa_priv_num);
1484 sp->opdata_dsa_priv_num = NULL;
1485 }
1486 break;
1487 #endif
1488 #ifndef OPENSSL_NO_DH
1489 case OP_DH:
1490 if (sp->opdata_dh_priv_num != NULL)
1491 {
1492 BN_free(sp->opdata_dh_priv_num);
1493 sp->opdata_dh_priv_num = NULL;
1494 }
1495 break;
1496 #endif
1497 default:
1498 break;
1499 }
1500 }

1502 /*
1503 * Get new PK11_SESSION structure ready for use. Every process must have
1504 * its own freelist of PK11_SESSION structures so handle fork() here
1505 * by destroying the old and creating new freelist.
1506 * The returned PK11_SESSION structure is disconnected from the freelist.
1507 */
1508 PK11_SESSION *
1509 pk11_get_session(PK11_OPTYPE optype)
1510 {
1511 PK11_SESSION *sp = NULL, *sp1, *freelist;
1512 pthread_mutex_t *freelist_lock;
1513 CK_RV rv;

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 24

1515 switch (optype)
1516 {
1517 case OP_RSA:
1518 case OP_DSA:
1519 case OP_DH:
1520 case OP_RAND:
1521 case OP_DIGEST:
1522 case OP_CIPHER:
1523 freelist_lock = session_cache[optype].lock;
1524 break;
1525 default:
1526 PK11err(PK11_F_GET_SESSION,
1527 PK11_R_INVALID_OPERATION_TYPE);
1528 return (NULL);
1529 }
1530 (void) pthread_mutex_lock(freelist_lock);
1531 freelist = session_cache[optype].head;
1532 sp = freelist;

1534 /*
1535 * If the free list is empty, allocate new unitialized (filled
1536 * with zeroes) PK11_SESSION structure otherwise return first
1537 * structure from the freelist.
1538 */
1539 if (sp == NULL)
1540 {
1541 if ((sp = OPENSSL_malloc(sizeof (PK11_SESSION))) == NULL)
1542 {
1543 PK11err(PK11_F_GET_SESSION,
1544 PK11_R_MALLOC_FAILURE);
1545 goto err;
1546 }
1547 (void) memset(sp, 0, sizeof (PK11_SESSION));
1548 }
1549 else
1550 {
1551 freelist = sp->next;
1552 }

1554 if (sp->pid != 0 && sp->pid != getpid())
1555 {
1556 /*
1557 * We are a new process and thus need to free any inherited
1558 * PK11_SESSION objects.
1559 */
1560 while ((sp1 = freelist) != NULL)
1561 {
1562 freelist = sp1->next;
1563 /*
1564 * NOTE: we do not want to call pk11_free_all_sessions()
1565 * here because it would close underlying PKCS#11
1566 * sessions and destroy all objects.
1567 */
1568 pk11_free_nums(sp1, optype);
1569 OPENSSL_free(sp1);
1570 }

1572 /* we have to free the active list as well. */
1573 pk11_free_active_list(optype);

1575 /* Initialize the process */
1576 rv = pFuncList->C_Initialize(NULL_PTR);
1577 if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED))
1578 {
1579 PK11err_add_data(PK11_F_GET_SESSION, PK11_R_INITIALIZE,

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 25

1580 rv);
1581 OPENSSL_free(sp);
1582 sp = NULL;
1583 goto err;
1584 }

1586 /*
1587 * Choose slot here since the slot table is different on this
1588 * process. If we are here then we must have found at least one
1589 * usable slot before so we don’t need to check any_slot_found.
1590 * See pk11_library_init()’s usage of this function for more
1591 * information.
1592 */
1593 #ifdef SOLARIS_HW_SLOT_SELECTION
1594 if (check_hw_mechanisms() == 0)
1595 goto err;
1596 #endif /* SOLARIS_HW_SLOT_SELECTION */
1597 if (pk11_choose_slots(NULL) == 0)
1598 goto err;

1600 /* Open the global_session for the new process */
1601 rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION,
1602 NULL_PTR, NULL_PTR, &global_session);
1603 if (rv != CKR_OK)
1604 {
1605 PK11err_add_data(PK11_F_GET_SESSION, PK11_R_OPENSESSION,
1606 rv);
1607 OPENSSL_free(sp);
1608 sp = NULL;
1609 goto err;
1610 }

1612 /* It is an inherited session and needs re-initialization. */
1613 if (pk11_setup_session(sp, optype) == 0)
1614 {
1615 OPENSSL_free(sp);
1616 sp = NULL;
1617 }
1618 }
1619 if (sp->pid == 0)
1620 {
1621 /* It is a new session and needs initialization. */
1622 if (pk11_setup_session(sp, optype) == 0)
1623 {
1624 OPENSSL_free(sp);
1625 sp = NULL;
1626 }
1627 }

1629 /* set new head for the list of PK11_SESSION objects */
1630 session_cache[optype].head = freelist;

1632 err:
1633 if (sp != NULL)
1634 sp->next = NULL;

1636 (void) pthread_mutex_unlock(freelist_lock);

1638 return (sp);
1639 }

1642 void
1643 pk11_return_session(PK11_SESSION *sp, PK11_OPTYPE optype)
1644 {
1645 pthread_mutex_t *freelist_lock;

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 26

1646 PK11_SESSION *freelist;

1648 if (sp == NULL || sp->pid != getpid())
1649 return;

1651 switch (optype)
1652 {
1653 case OP_RSA:
1654 case OP_DSA:
1655 case OP_DH:
1656 case OP_RAND:
1657 case OP_DIGEST:
1658 case OP_CIPHER:
1659 freelist_lock = session_cache[optype].lock;
1660 break;
1661 default:
1662 PK11err(PK11_F_RETURN_SESSION,
1663 PK11_R_INVALID_OPERATION_TYPE);
1664 return;
1665 }

1667 (void) pthread_mutex_lock(freelist_lock);
1668 freelist = session_cache[optype].head;
1669 sp->next = freelist;
1670 session_cache[optype].head = sp;
1671 (void) pthread_mutex_unlock(freelist_lock);
1672 }

1675 /* Destroy all objects. This function is called when the engine is finished */
1676 static int pk11_free_all_sessions()
1677 {
1678 int ret = 1;
1679 int type;

1681 #ifndef OPENSSL_NO_RSA
1682 (void) pk11_destroy_rsa_key_objects(NULL);
1683 #endif /* OPENSSL_NO_RSA */
1684 #ifndef OPENSSL_NO_DSA
1685 (void) pk11_destroy_dsa_key_objects(NULL);
1686 #endif /* OPENSSL_NO_DSA */
1687 #ifndef OPENSSL_NO_DH
1688 (void) pk11_destroy_dh_key_objects(NULL);
1689 #endif /* OPENSSL_NO_DH */
1690 (void) pk11_destroy_cipher_key_objects(NULL);

1692 /*
1693 * We try to release as much as we can but any error means that we will
1694 * return 0 on exit.
1695 */
1696 for (type = 0; type < OP_MAX; type++)
1697 {
1698 if (pk11_free_session_list(type) == 0)
1699 ret = 0;
1700 }

1702 return (ret);
1703 }

1705 /*
1706 * Destroy session structures from the linked list specified. Free as many
1707 * sessions as possible but any failure in C_CloseSession() means that we
1708 * return an error on return.
1709 */
1710 static int pk11_free_session_list(PK11_OPTYPE optype)
1711 {

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 27

1712 CK_RV rv;
1713 PK11_SESSION *sp = NULL;
1714 PK11_SESSION *freelist = NULL;
1715 pid_t mypid = getpid();
1716 pthread_mutex_t *freelist_lock;
1717 int ret = 1;

1719 switch (optype)
1720 {
1721 case OP_RSA:
1722 case OP_DSA:
1723 case OP_DH:
1724 case OP_RAND:
1725 case OP_DIGEST:
1726 case OP_CIPHER:
1727 freelist_lock = session_cache[optype].lock;
1728 break;
1729 default:
1730 PK11err(PK11_F_FREE_ALL_SESSIONS,
1731 PK11_R_INVALID_OPERATION_TYPE);
1732 return (0);
1733 }

1735 (void) pthread_mutex_lock(freelist_lock);
1736 freelist = session_cache[optype].head;
1737 while ((sp = freelist) != NULL)
1738 {
1739 if (sp->session != CK_INVALID_HANDLE && sp->pid == mypid)
1740 {
1741 rv = pFuncList->C_CloseSession(sp->session);
1742 if (rv != CKR_OK)
1743 {
1744 PK11err_add_data(PK11_F_FREE_ALL_SESSIONS,
1745 PK11_R_CLOSESESSION, rv);
1746 ret = 0;
1747 }
1748 }
1749 freelist = sp->next;
1750 pk11_free_nums(sp, optype);
1751 OPENSSL_free(sp);
1752 }

1754 (void) pthread_mutex_unlock(freelist_lock);
1755 return (ret);
1756 }

1759 static int pk11_setup_session(PK11_SESSION *sp, PK11_OPTYPE optype)
1760 {
1761 CK_RV rv;
1762 CK_SLOT_ID myslot;

1764 switch (optype)
1765 {
1766 case OP_RSA:
1767 case OP_DSA:
1768 case OP_DH:
1769 myslot = pubkey_SLOTID;
1770 break;
1771 case OP_RAND:
1772 myslot = rand_SLOTID;
1773 break;
1774 case OP_DIGEST:
1775 case OP_CIPHER:
1776 myslot = SLOTID;
1777 break;

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 28

1778 default:
1779 PK11err(PK11_F_SETUP_SESSION,
1780 PK11_R_INVALID_OPERATION_TYPE);
1781 return (0);
1782 }

1784 sp->session = CK_INVALID_HANDLE;
1785 #ifdef DEBUG_SLOT_SELECTION
1786 fprintf(stderr, "%s: myslot=%d optype=%d\n", PK11_DBG, myslot, optype);
1787 #endif /* DEBUG_SLOT_SELECTION */
1788 rv = pFuncList->C_OpenSession(myslot, CKF_SERIAL_SESSION,
1789 NULL_PTR, NULL_PTR, &sp->session);
1790 if (rv == CKR_CRYPTOKI_NOT_INITIALIZED)
1791 {
1792 /*
1793 * We are probably a child process so force the
1794 * reinitialize of the session
1795 */
1796 pk11_library_initialized = FALSE;
1797 if (!pk11_library_init(NULL))
1798 return (0);
1799 rv = pFuncList->C_OpenSession(myslot, CKF_SERIAL_SESSION,
1800 NULL_PTR, NULL_PTR, &sp->session);
1801 }
1802 if (rv != CKR_OK)
1803 {
1804 PK11err_add_data(PK11_F_SETUP_SESSION, PK11_R_OPENSESSION, rv);
1805 return (0);
1806 }

1808 sp->pid = getpid();

1810 switch (optype)
1811 {
1812 #ifndef OPENSSL_NO_RSA
1813 case OP_RSA:
1814 sp->opdata_rsa_pub_key = CK_INVALID_HANDLE;
1815 sp->opdata_rsa_priv_key = CK_INVALID_HANDLE;
1816 sp->opdata_rsa_pub = NULL;
1817 sp->opdata_rsa_n_num = NULL;
1818 sp->opdata_rsa_e_num = NULL;
1819 sp->opdata_rsa_priv = NULL;
1820 sp->opdata_rsa_d_num = NULL;
1821 break;
1822 #endif /* OPENSSL_NO_RSA */
1823 #ifndef OPENSSL_NO_DSA
1824 case OP_DSA:
1825 sp->opdata_dsa_pub_key = CK_INVALID_HANDLE;
1826 sp->opdata_dsa_priv_key = CK_INVALID_HANDLE;
1827 sp->opdata_dsa_pub = NULL;
1828 sp->opdata_dsa_pub_num = NULL;
1829 sp->opdata_dsa_priv = NULL;
1830 sp->opdata_dsa_priv_num = NULL;
1831 break;
1832 #endif /* OPENSSL_NO_DSA */
1833 #ifndef OPENSSL_NO_DH
1834 case OP_DH:
1835 sp->opdata_dh_key = CK_INVALID_HANDLE;
1836 sp->opdata_dh = NULL;
1837 sp->opdata_dh_priv_num = NULL;
1838 break;
1839 #endif /* OPENSSL_NO_DH */
1840 case OP_CIPHER:
1841 sp->opdata_cipher_key = CK_INVALID_HANDLE;
1842 sp->opdata_encrypt = -1;
1843 break;

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 29

1844 }

1846 return (1);
1847 }

1849 #ifndef OPENSSL_NO_RSA
1850 /* Destroy RSA public key from single session. */
1851 int
1852 pk11_destroy_rsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock)
1853 {
1854 int ret = 0;

1856 if (sp->opdata_rsa_pub_key != CK_INVALID_HANDLE)
1857 {
1858 TRY_OBJ_DESTROY(sp->session, sp->opdata_rsa_pub_key,
1859 ret, uselock, OP_RSA);
1860 sp->opdata_rsa_pub_key = CK_INVALID_HANDLE;
1861 sp->opdata_rsa_pub = NULL;
1862 if (sp->opdata_rsa_n_num != NULL)
1863 {
1864 BN_free(sp->opdata_rsa_n_num);
1865 sp->opdata_rsa_n_num = NULL;
1866 }
1867 if (sp->opdata_rsa_e_num != NULL)
1868 {
1869 BN_free(sp->opdata_rsa_e_num);
1870 sp->opdata_rsa_e_num = NULL;
1871 }
1872 }

1874 return (ret);
1875 }

1877 /* Destroy RSA private key from single session. */
1878 int
1879 pk11_destroy_rsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock)
1880 {
1881 int ret = 0;

1883 if (sp->opdata_rsa_priv_key != CK_INVALID_HANDLE)
1884 {
1885 TRY_OBJ_DESTROY(sp->session, sp->opdata_rsa_priv_key,
1886 ret, uselock, OP_RSA);
1887 sp->opdata_rsa_priv_key = CK_INVALID_HANDLE;
1888 sp->opdata_rsa_priv = NULL;
1889 if (sp->opdata_rsa_d_num != NULL)
1890 {
1891 BN_free(sp->opdata_rsa_d_num);
1892 sp->opdata_rsa_d_num = NULL;
1893 }
1894 }

1896 return (ret);
1897 }

1899 /*
1900 * Destroy RSA key object wrapper. If session is NULL, try to destroy all
1901 * objects in the free list.
1902 */
1903 int
1904 pk11_destroy_rsa_key_objects(PK11_SESSION *session)
1905 {
1906 int ret = 1;
1907 PK11_SESSION *sp = NULL;
1908 PK11_SESSION *local_free_session;
1909 CK_BBOOL uselock = TRUE;

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 30

1911 if (session != NULL)
1912 local_free_session = session;
1913 else
1914 {
1915 (void) pthread_mutex_lock(session_cache[OP_RSA].lock);
1916 local_free_session = session_cache[OP_RSA].head;
1917 uselock = FALSE;
1918 }

1920 /*
1921 * go through the list of sessions and delete key objects
1922 */
1923 while ((sp = local_free_session) != NULL)
1924 {
1925 local_free_session = sp->next;

1927 /*
1928 * Do not terminate list traversal if one of the
1929 * destroy operations fails.
1930 */
1931 if (pk11_destroy_rsa_object_pub(sp, uselock) == 0)
1932 {
1933 ret = 0;
1934 continue;
1935 }
1936 if (pk11_destroy_rsa_object_priv(sp, uselock) == 0)
1937 {
1938 ret = 0;
1939 continue;
1940 }
1941 }

1943 if (session == NULL)
1944 (void) pthread_mutex_unlock(session_cache[OP_RSA].lock);

1946 return (ret);
1947 }
1948 #endif /* OPENSSL_NO_RSA */

1950 #ifndef OPENSSL_NO_DSA
1951 /* Destroy DSA public key from single session. */
1952 int
1953 pk11_destroy_dsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock)
1954 {
1955 int ret = 0;

1957 if (sp->opdata_dsa_pub_key != CK_INVALID_HANDLE)
1958 {
1959 TRY_OBJ_DESTROY(sp->session, sp->opdata_dsa_pub_key,
1960 ret, uselock, OP_DSA);
1961 sp->opdata_dsa_pub_key = CK_INVALID_HANDLE;
1962 sp->opdata_dsa_pub = NULL;
1963 if (sp->opdata_dsa_pub_num != NULL)
1964 {
1965 BN_free(sp->opdata_dsa_pub_num);
1966 sp->opdata_dsa_pub_num = NULL;
1967 }
1968 }

1970 return (ret);
1971 }

1973 /* Destroy DSA private key from single session. */
1974 int
1975 pk11_destroy_dsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock)

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 31

1976 {
1977 int ret = 0;

1979 if (sp->opdata_dsa_priv_key != CK_INVALID_HANDLE)
1980 {
1981 TRY_OBJ_DESTROY(sp->session, sp->opdata_dsa_priv_key,
1982 ret, uselock, OP_DSA);
1983 sp->opdata_dsa_priv_key = CK_INVALID_HANDLE;
1984 sp->opdata_dsa_priv = NULL;
1985 if (sp->opdata_dsa_priv_num != NULL)
1986 {
1987 BN_free(sp->opdata_dsa_priv_num);
1988 sp->opdata_dsa_priv_num = NULL;
1989 }
1990 }

1992 return (ret);
1993 }

1995 /*
1996 * Destroy DSA key object wrapper. If session is NULL, try to destroy all
1997 * objects in the free list.
1998 */
1999 int
2000 pk11_destroy_dsa_key_objects(PK11_SESSION *session)
2001 {
2002 int ret = 1;
2003 PK11_SESSION *sp = NULL;
2004 PK11_SESSION *local_free_session;
2005 CK_BBOOL uselock = TRUE;

2007 if (session != NULL)
2008 local_free_session = session;
2009 else
2010 {
2011 (void) pthread_mutex_lock(session_cache[OP_DSA].lock);
2012 local_free_session = session_cache[OP_DSA].head;
2013 uselock = FALSE;
2014 }

2016 /*
2017 * go through the list of sessions and delete key objects
2018 */
2019 while ((sp = local_free_session) != NULL)
2020 {
2021 local_free_session = sp->next;

2023 /*
2024 * Do not terminate list traversal if one of the
2025 * destroy operations fails.
2026 */
2027 if (pk11_destroy_dsa_object_pub(sp, uselock) == 0)
2028 {
2029 ret = 0;
2030 continue;
2031 }
2032 if (pk11_destroy_dsa_object_priv(sp, uselock) == 0)
2033 {
2034 ret = 0;
2035 continue;
2036 }
2037 }

2039 if (session == NULL)
2040 (void) pthread_mutex_unlock(session_cache[OP_DSA].lock);

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 32

2042 return (ret);
2043 }
2044 #endif /* OPENSSL_NO_DSA */

2046 #ifndef OPENSSL_NO_DH
2047 /* Destroy DH key from single session. */
2048 int
2049 pk11_destroy_dh_object(PK11_SESSION *sp, CK_BBOOL uselock)
2050 {
2051 int ret = 0;

2053 if (sp->opdata_dh_key != CK_INVALID_HANDLE)
2054 {
2055 TRY_OBJ_DESTROY(sp->session, sp->opdata_dh_key,
2056 ret, uselock, OP_DH);
2057 sp->opdata_dh_key = CK_INVALID_HANDLE;
2058 sp->opdata_dh = NULL;
2059 if (sp->opdata_dh_priv_num != NULL)
2060 {
2061 BN_free(sp->opdata_dh_priv_num);
2062 sp->opdata_dh_priv_num = NULL;
2063 }
2064 }

2066 return (ret);
2067 }

2069 /*
2070 * Destroy DH key object wrapper.
2071 *
2072 * arg0: pointer to PKCS#11 engine session structure
2073 * if session is NULL, try to destroy all objects in the free list
2074 */
2075 int
2076 pk11_destroy_dh_key_objects(PK11_SESSION *session)
2077 {
2078 int ret = 1;
2079 PK11_SESSION *sp = NULL;
2080 PK11_SESSION *local_free_session;
2081 CK_BBOOL uselock = TRUE;

2083 if (session != NULL)
2084 local_free_session = session;
2085 else
2086 {
2087 (void) pthread_mutex_lock(session_cache[OP_DH].lock);
2088 local_free_session = session_cache[OP_DH].head;
2089 uselock = FALSE;
2090 }

2092 while ((sp = local_free_session) != NULL)
2093 {
2094 local_free_session = sp->next;

2096 /*
2097 * Do not terminate list traversal if one of the
2098 * destroy operations fails.
2099 */
2100 if (pk11_destroy_dh_object(sp, uselock) == 0)
2101 {
2102 ret = 0;
2103 continue;
2104 }
2105 }
2106 if (session == NULL)
2107 (void) pthread_mutex_unlock(session_cache[OP_DH].lock);

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 33

2109 return (ret);
2110 }
2111 #endif /* OPENSSL_NO_DH */

2113 static int pk11_destroy_object(CK_SESSION_HANDLE session, CK_OBJECT_HANDLE oh)
2114 {
2115 CK_RV rv;
2116 rv = pFuncList->C_DestroyObject(session, oh);
2117 if (rv != CKR_OK)
2118 {
2119 PK11err_add_data(PK11_F_DESTROY_OBJECT, PK11_R_DESTROYOBJECT,
2120 rv);
2121 return (0);
2122 }

2124 return (1);
2125 }

2128 /* Symmetric ciphers and digests support functions */

2130 static int
2131 cipher_nid_to_pk11(int nid)
2132 {
2133 int i;

2135 for (i = 0; i < PK11_CIPHER_MAX; i++)
2136 if (ciphers[i].nid == nid)
2137 return (ciphers[i].id);
2138 return (-1);
2139 }

2141 static int
2142 pk11_usable_ciphers(const int **nids)
2143 {
2144 if (cipher_count > 0)
2145 *nids = cipher_nids;
2146 else
2147 *nids = NULL;
2148 return (cipher_count);
2149 }

2151 static int
2152 pk11_usable_digests(const int **nids)
2153 {
2154 if (digest_count > 0)
2155 *nids = digest_nids;
2156 else
2157 *nids = NULL;
2158 return (digest_count);
2159 }

2161 /*
2162 * Init context for encryption or decryption using a symmetric key.
2163 */
2164 static int pk11_init_symmetric(EVP_CIPHER_CTX *ctx, PK11_CIPHER *pcipher,
2165 PK11_SESSION *sp, CK_MECHANISM_PTR pmech)
2166 {
2167 CK_RV rv;
2168 #ifdef SOLARIS_AES_CTR
2169 CK_AES_CTR_PARAMS ctr_params;
2170 #endif /* SOLARIS_AES_CTR */

2172 /*
2173 * We expect pmech->mechanism to be already set and

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 34

2174 * pParameter/ulParameterLen initialized to NULL/0 before
2175 * pk11_init_symetric() is called.
2176 */
2177 OPENSSL_assert(pmech->mechanism != NULL);
2178 OPENSSL_assert(pmech->pParameter == NULL);
2179 OPENSSL_assert(pmech->ulParameterLen == 0);

2181 #ifdef SOLARIS_AES_CTR
2182 if (ctx->cipher->nid == NID_aes_128_ctr ||
2183 ctx->cipher->nid == NID_aes_192_ctr ||
2184 ctx->cipher->nid == NID_aes_256_ctr)
2185 {
2186 pmech->pParameter = (void *)(&ctr_params);
2187 pmech->ulParameterLen = sizeof (ctr_params);
2188 /*
2189 * For now, we are limited to the fixed length of the counter,
2190 * it covers the whole counter block. That’s what RFC 4344
2191 * needs. For more information on internal structure of the
2192 * counter block, see RFC 3686. If needed in the future, we can
2193 * add code so that the counter length can be set via
2194 * ENGINE_ctrl() function.
2195 */
2196 ctr_params.ulCounterBits = AES_BLOCK_SIZE * 8;
2197 OPENSSL_assert(pcipher->iv_len == AES_BLOCK_SIZE);
2198 (void) memcpy(ctr_params.cb, ctx->iv, AES_BLOCK_SIZE);
2199 }
2200 else
2201 #endif /* SOLARIS_AES_CTR */
2202 {
2203 if (pcipher->iv_len > 0)
2204 {
2205 pmech->pParameter = (void *)ctx->iv;
2206 pmech->ulParameterLen = pcipher->iv_len;
2207 }
2208 }

2210 /* if we get here, the encryption needs to be reinitialized */
2211 if (ctx->encrypt)
2212 rv = pFuncList->C_EncryptInit(sp->session, pmech,
2213 sp->opdata_cipher_key);
2214 else
2215 rv = pFuncList->C_DecryptInit(sp->session, pmech,
2216 sp->opdata_cipher_key);

2218 if (rv != CKR_OK)
2219 {
2220 PK11err_add_data(PK11_F_CIPHER_INIT, ctx->encrypt ?
2221 PK11_R_ENCRYPTINIT : PK11_R_DECRYPTINIT, rv);
2222 pk11_return_session(sp, OP_CIPHER);
2223 return (0);
2224 }

2226 return (1);
2227 }

2229 /* ARGSUSED */
2230 static int
2231 pk11_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
2232 const unsigned char *iv, int enc)
2233 {
2234 CK_MECHANISM mech;
2235 int index;
2236 PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->cipher_data;
2237 PK11_SESSION *sp;
2238 PK11_CIPHER *p_ciph_table_row;

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 35

2240 state->sp = NULL;

2242 index = cipher_nid_to_pk11(ctx->cipher->nid);
2243 if (index < 0 || index >= PK11_CIPHER_MAX)
2244 return (0);

2246 p_ciph_table_row = &ciphers[index];
2247 /*
2248 * iv_len in the ctx->cipher structure is the maximum IV length for the
2249 * current cipher and it must be less or equal to the IV length in our
2250 * ciphers table. The key length must be in the allowed interval. From
2251 * all cipher modes that the PKCS#11 engine supports only RC4 allows a
2252 * key length to be in some range, all other NIDs have a precise key
2253 * length. Every application can define its own EVP functions so this
2254 * code serves as a sanity check.
2255 *
2256 * Note that the reason why the IV length in ctx->cipher might be
2257 * greater than the actual length is that OpenSSL uses BLOCK_CIPHER_defs
2258 * macro to define functions that return EVP structures for all DES
2259 * modes. So, even ECB modes get 8 byte IV.
2260 */
2261 if (ctx->cipher->iv_len < p_ciph_table_row->iv_len ||
2262 ctx->key_len < p_ciph_table_row->min_key_len ||
2263 ctx->key_len > p_ciph_table_row->max_key_len) {
2264 PK11err(PK11_F_CIPHER_INIT, PK11_R_KEY_OR_IV_LEN_PROBLEM);
2265 return (0);
2266 }

2268 if ((sp = pk11_get_session(OP_CIPHER)) == NULL)
2269 return (0);

2271 /* if applicable, the mechanism parameter is used for IV */
2272 mech.mechanism = p_ciph_table_row->mech_type;
2273 mech.pParameter = NULL;
2274 mech.ulParameterLen = 0;

2276 /* The key object is destroyed here if it is not the current key. */
2277 (void) check_new_cipher_key(sp, key, ctx->key_len);

2279 /*
2280 * If the key is the same and the encryption is also the same, then
2281 * just reuse it. However, we must not forget to reinitialize the
2282 * context that was finalized in pk11_cipher_cleanup().
2283 */
2284 if (sp->opdata_cipher_key != CK_INVALID_HANDLE &&
2285 sp->opdata_encrypt == ctx->encrypt)
2286 {
2287 state->sp = sp;
2288 if (pk11_init_symmetric(ctx, p_ciph_table_row, sp, &mech) == 0)
2289 return (0);

2291 return (1);
2292 }

2294 /*
2295 * Check if the key has been invalidated. If so, a new key object
2296 * needs to be created.
2297 */
2298 if (sp->opdata_cipher_key == CK_INVALID_HANDLE)
2299 {
2300 sp->opdata_cipher_key = pk11_get_cipher_key(
2301 ctx, key, p_ciph_table_row->key_type, sp);
2302 }

2304 if (sp->opdata_encrypt != ctx->encrypt && sp->opdata_encrypt != -1)
2305 {

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 36

2306 /*
2307 * The previous encryption/decryption is different. Need to
2308 * terminate the previous * active encryption/decryption here.
2309 */
2310 if (!pk11_cipher_final(sp))
2311 {
2312 pk11_return_session(sp, OP_CIPHER);
2313 return (0);
2314 }
2315 }

2317 if (sp->opdata_cipher_key == CK_INVALID_HANDLE)
2318 {
2319 pk11_return_session(sp, OP_CIPHER);
2320 return (0);
2321 }

2323 /* now initialize the context with a new key */
2324 if (pk11_init_symmetric(ctx, p_ciph_table_row, sp, &mech) == 0)
2325 return (0);

2327 sp->opdata_encrypt = ctx->encrypt;
2328 state->sp = sp;

2330 return (1);
2331 }

2333 /*
2334 * When reusing the same key in an encryption/decryption session for a
2335 * decryption/encryption session, we need to close the active session
2336 * and recreate a new one. Note that the key is in the global session so
2337 * that it needs not be recreated.
2338 *
2339 * It is more appropriate to use C_En/DecryptFinish here. At the time of this
2340 * development, these two functions in the PKCS#11 libraries used return
2341 * unexpected errors when passing in 0 length output. It may be a good
2342 * idea to try them again if performance is a problem here and fix
2343 * C_En/DecryptFinial if there are bugs there causing the problem.
2344 */
2345 static int
2346 pk11_cipher_final(PK11_SESSION *sp)
2347 {
2348 CK_RV rv;

2350 rv = pFuncList->C_CloseSession(sp->session);
2351 if (rv != CKR_OK)
2352 {
2353 PK11err_add_data(PK11_F_CIPHER_FINAL, PK11_R_CLOSESESSION, rv);
2354 return (0);
2355 }

2357 rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION,
2358 NULL_PTR, NULL_PTR, &sp->session);
2359 if (rv != CKR_OK)
2360 {
2361 PK11err_add_data(PK11_F_CIPHER_FINAL, PK11_R_OPENSESSION, rv);
2362 return (0);
2363 }

2365 return (1);
2366 }

2368 /*
2369 * An engine interface function. The calling function allocates sufficient
2370 * memory for the output buffer "out" to hold the results.
2371 */

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 37

2372 static int
2373 pk11_cipher_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
2374 const unsigned char *in, size_t inl)
2375 {
2376 PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->cipher_data;
2377 PK11_SESSION *sp;
2378 CK_RV rv;
2379 unsigned long outl = inl;

2381 if (state == NULL || state->sp == NULL)
2382 return (0);

2384 sp = (PK11_SESSION *) state->sp;

2386 if (!inl)
2387 return (1);

2389 /* RC4 is the only stream cipher we support */
2390 if (ctx->cipher->nid != NID_rc4 && (inl % ctx->cipher->block_size) != 0)
2391 return (0);

2393 if (ctx->encrypt)
2394 {
2395 rv = pFuncList->C_EncryptUpdate(sp->session,
2396 (unsigned char *)in, inl, out, &outl);

2398 if (rv != CKR_OK)
2399 {
2400 PK11err_add_data(PK11_F_CIPHER_DO_CIPHER,
2401 PK11_R_ENCRYPTUPDATE, rv);
2402 return (0);
2403 }
2404 }
2405 else
2406 {
2407 rv = pFuncList->C_DecryptUpdate(sp->session,
2408 (unsigned char *)in, inl, out, &outl);

2410 if (rv != CKR_OK)
2411 {
2412 PK11err_add_data(PK11_F_CIPHER_DO_CIPHER,
2413 PK11_R_DECRYPTUPDATE, rv);
2414 return (0);
2415 }
2416 }

2418 /*
2419 * For DES_CBC, DES3_CBC, AES_CBC, and RC4, the output size is always
2420 * the same size of input.
2421 * The application has guaranteed to call the block ciphers with
2422 * correctly aligned buffers.
2423 */
2424 if (inl != outl)
2425 return (0);

2427 return (1);
2428 }

2430 /*
2431 * Return the session to the pool. Calling C_EncryptFinal() and C_DecryptFinal()
2432 * here is the right thing because in EVP_DecryptFinal_ex(), engine’s
2433 * do_cipher() is not even called, and in EVP_EncryptFinal_ex() it is called but
2434 * the engine can’t find out that it’s the finalizing call. We wouldn’t
2435 * necessarily have to finalize the context here since reinitializing it with
2436 * C_(Encrypt|Decrypt)Init() should be fine but for the sake of correctness,
2437 * let’s do it. Some implementations might leak memory if the previously used

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 38

2438 * context is initialized without finalizing it first.
2439 */
2440 static int
2441 pk11_cipher_cleanup(EVP_CIPHER_CTX *ctx)
2442 {
2443 CK_RV rv;
2444 CK_ULONG len = EVP_MAX_BLOCK_LENGTH;
2445 CK_BYTE buf[EVP_MAX_BLOCK_LENGTH];
2446 PK11_CIPHER_STATE *state = ctx->cipher_data;

2448 if (state != NULL && state->sp != NULL)
2449 {
2450 /*
2451 * We are not interested in the data here, we just need to get
2452 * rid of the context.
2453 */
2454 if (ctx->encrypt)
2455 rv = pFuncList->C_EncryptFinal(
2456 state->sp->session, buf, &len);
2457 else
2458 rv = pFuncList->C_DecryptFinal(
2459 state->sp->session, buf, &len);

2461 if (rv != CKR_OK)
2462 {
2463 PK11err_add_data(PK11_F_CIPHER_CLEANUP, ctx->encrypt ?
2464 PK11_R_ENCRYPTFINAL : PK11_R_DECRYPTFINAL, rv);
2465 pk11_return_session(state->sp, OP_CIPHER);
2466 return (0);
2467 }

2469 pk11_return_session(state->sp, OP_CIPHER);
2470 state->sp = NULL;
2471 }

2473 return (1);
2474 }

2476 /*
2477 * Registered by the ENGINE when used to find out how to deal with
2478 * a particular NID in the ENGINE. This says what we’ll do at the
2479 * top level - note, that list is restricted by what we answer with
2480 */
2481 /* ARGSUSED */
2482 static int
2483 pk11_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
2484 const int **nids, int nid)
2485 {
2486 if (!cipher)
2487 return (pk11_usable_ciphers(nids));

2489 switch (nid)
2490 {
2491 case NID_des_ede3_cbc:
2492 *cipher = &pk11_3des_cbc;
2493 break;
2494 case NID_des_cbc:
2495 *cipher = &pk11_des_cbc;
2496 break;
2497 case NID_des_ede3_ecb:
2498 *cipher = &pk11_3des_ecb;
2499 break;
2500 case NID_des_ecb:
2501 *cipher = &pk11_des_ecb;
2502 break;
2503 case NID_aes_128_cbc:

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 39

2504 *cipher = &pk11_aes_128_cbc;
2505 break;
2506 case NID_aes_192_cbc:
2507 *cipher = &pk11_aes_192_cbc;
2508 break;
2509 case NID_aes_256_cbc:
2510 *cipher = &pk11_aes_256_cbc;
2511 break;
2512 case NID_aes_128_ecb:
2513 *cipher = &pk11_aes_128_ecb;
2514 break;
2515 case NID_aes_192_ecb:
2516 *cipher = &pk11_aes_192_ecb;
2517 break;
2518 case NID_aes_256_ecb:
2519 *cipher = &pk11_aes_256_ecb;
2520 break;
2521 case NID_bf_cbc:
2522 *cipher = &pk11_bf_cbc;
2523 break;
2524 case NID_rc4:
2525 *cipher = &pk11_rc4;
2526 break;
2527 default:
2528 #ifdef SOLARIS_AES_CTR
2529 /*
2530 * These can’t be in separated cases because the NIDs
2531 * here are not constants.
2532 */
2533 if (nid == NID_aes_128_ctr)
2534 *cipher = &pk11_aes_128_ctr;
2535 else if (nid == NID_aes_192_ctr)
2536 *cipher = &pk11_aes_192_ctr;
2537 else if (nid == NID_aes_256_ctr)
2538 *cipher = &pk11_aes_256_ctr;
2539 else
2540 #endif /* SOLARIS_AES_CTR */
2541 *cipher = NULL;
2542 break;
2543 }
2544 return (*cipher != NULL);
2545 }

2547 /* ARGSUSED */
2548 static int
2549 pk11_engine_digests(ENGINE *e, const EVP_MD **digest,
2550 const int **nids, int nid)
2551 {
2552 if (!digest)
2553 return (pk11_usable_digests(nids));

2555 switch (nid)
2556 {
2557 case NID_md5:
2558 *digest = &pk11_md5;
2559 break;
2560 case NID_sha1:
2561 *digest = &pk11_sha1;
2562 break;
2563 case NID_sha224:
2564 *digest = &pk11_sha224;
2565 break;
2566 case NID_sha256:
2567 *digest = &pk11_sha256;
2568 break;
2569 case NID_sha384:

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 40

2570 *digest = &pk11_sha384;
2571 break;
2572 case NID_sha512:
2573 *digest = &pk11_sha512;
2574 break;
2575 default:
2576 *digest = NULL;
2577 break;
2578 }
2579 return (*digest != NULL);
2580 }

2583 /* Create a secret key object in a PKCS#11 session */
2584 static CK_OBJECT_HANDLE pk11_get_cipher_key(EVP_CIPHER_CTX *ctx,
2585 const unsigned char *key, CK_KEY_TYPE key_type, PK11_SESSION *sp)
2586 {
2587 CK_RV rv;
2588 CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;
2589 CK_OBJECT_CLASS obj_key = CKO_SECRET_KEY;
2590 CK_ULONG ul_key_attr_count = 6;

2592 CK_ATTRIBUTE a_key_template[] =
2593 {
2594 {CKA_CLASS, (void*) NULL, sizeof (CK_OBJECT_CLASS)},
2595 {CKA_KEY_TYPE, (void*) NULL, sizeof (CK_KEY_TYPE)},
2596 {CKA_TOKEN, &false, sizeof (false)},
2597 {CKA_ENCRYPT, &true, sizeof (true)},
2598 {CKA_DECRYPT, &true, sizeof (true)},
2599 {CKA_VALUE, (void*) NULL, 0},
2600 };

2602 /*
2603 * Create secret key object in global_session. All other sessions
2604 * can use the key handles. Here is why:
2605 * OpenSSL will call EncryptInit and EncryptUpdate using a secret key.
2606 * It may then call DecryptInit and DecryptUpdate using the same key.
2607 * To use the same key object, we need to call EncryptFinal with
2608 * a 0 length message. Currently, this does not work for 3DES
2609 * mechanism. To get around this problem, we close the session and
2610 * then create a new session to use the same key object. When a session
2611 * is closed, all the object handles will be invalid. Thus, create key
2612 * objects in a global session, an individual session may be closed to
2613 * terminate the active operation.
2614 */
2615 CK_SESSION_HANDLE session = global_session;
2616 a_key_template[0].pValue = &obj_key;
2617 a_key_template[1].pValue = &key_type;
2618 a_key_template[5].pValue = (void *) key;
2619 a_key_template[5].ulValueLen = (unsigned long) ctx->key_len;

2621 rv = pFuncList->C_CreateObject(session,
2622 a_key_template, ul_key_attr_count, &h_key);
2623 if (rv != CKR_OK)
2624 {
2625 PK11err_add_data(PK11_F_GET_CIPHER_KEY, PK11_R_CREATEOBJECT,
2626 rv);
2627 goto err;
2628 }

2630 /*
2631 * Save the key information used in this session.
2632 * The max can be saved is PK11_KEY_LEN_MAX.
2633 */
2634 sp->opdata_key_len = ctx->key_len > PK11_KEY_LEN_MAX ?
2635 PK11_KEY_LEN_MAX : ctx->key_len;

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 41

2636 (void) memcpy(sp->opdata_key, key, sp->opdata_key_len);
2637 err:

2639 return (h_key);
2640 }

2642 static int
2643 md_nid_to_pk11(int nid)
2644 {
2645 int i;

2647 for (i = 0; i < PK11_DIGEST_MAX; i++)
2648 if (digests[i].nid == nid)
2649 return (digests[i].id);
2650 return (-1);
2651 }

2653 static int
2654 pk11_digest_init(EVP_MD_CTX *ctx)
2655 {
2656 CK_RV rv;
2657 CK_MECHANISM mech;
2658 int index;
2659 PK11_SESSION *sp;
2660 PK11_DIGEST *pdp;
2661 PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data;

2663 state->sp = NULL;

2665 index = md_nid_to_pk11(ctx->digest->type);
2666 if (index < 0 || index >= PK11_DIGEST_MAX)
2667 return (0);

2669 pdp = &digests[index];
2670 if ((sp = pk11_get_session(OP_DIGEST)) == NULL)
2671 return (0);

2673 /* at present, no parameter is needed for supported digests */
2674 mech.mechanism = pdp->mech_type;
2675 mech.pParameter = NULL;
2676 mech.ulParameterLen = 0;

2678 rv = pFuncList->C_DigestInit(sp->session, &mech);

2680 if (rv != CKR_OK)
2681 {
2682 PK11err_add_data(PK11_F_DIGEST_INIT, PK11_R_DIGESTINIT, rv);
2683 pk11_return_session(sp, OP_DIGEST);
2684 return (0);
2685 }

2687 state->sp = sp;

2689 return (1);
2690 }

2692 static int
2693 pk11_digest_update(EVP_MD_CTX *ctx, const void *data, size_t count)
2694 {
2695 CK_RV rv;
2696 PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data;

2698 /* 0 length message will cause a failure in C_DigestFinal */
2699 if (count == 0)
2700 return (1);

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 42

2702 if (state == NULL || state->sp == NULL)
2703 return (0);

2705 rv = pFuncList->C_DigestUpdate(state->sp->session, (CK_BYTE *) data,
2706 count);

2708 if (rv != CKR_OK)
2709 {
2710 PK11err_add_data(PK11_F_DIGEST_UPDATE, PK11_R_DIGESTUPDATE, rv);
2711 pk11_return_session(state->sp, OP_DIGEST);
2712 state->sp = NULL;
2713 return (0);
2714 }

2716 return (1);
2717 }

2719 static int
2720 pk11_digest_final(EVP_MD_CTX *ctx, unsigned char *md)
2721 {
2722 CK_RV rv;
2723 unsigned long len;
2724 PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data;
2725 len = ctx->digest->md_size;

2727 if (state == NULL || state->sp == NULL)
2728 return (0);

2730 rv = pFuncList->C_DigestFinal(state->sp->session, md, &len);

2732 if (rv != CKR_OK)
2733 {
2734 PK11err_add_data(PK11_F_DIGEST_FINAL, PK11_R_DIGESTFINAL, rv);
2735 pk11_return_session(state->sp, OP_DIGEST);
2736 state->sp = NULL;
2737 return (0);
2738 }

2740 if (ctx->digest->md_size != len)
2741 return (0);

2743 /*
2744 * Final is called and digest is returned, so return the session
2745 * to the pool
2746 */
2747 pk11_return_session(state->sp, OP_DIGEST);
2748 state->sp = NULL;

2750 return (1);
2751 }

2753 static int
2754 pk11_digest_copy(EVP_MD_CTX *to, const EVP_MD_CTX *from)
2755 {
2756 CK_RV rv;
2757 int ret = 0;
2758 PK11_CIPHER_STATE *state, *state_to;
2759 CK_BYTE_PTR pstate = NULL;
2760 CK_ULONG ul_state_len;

2762 /* The copy-from state */
2763 state = (PK11_CIPHER_STATE *) from->md_data;
2764 if (state == NULL || state->sp == NULL)
2765 goto err;

2767 /* Initialize the copy-to state */

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 43

2768 if (!pk11_digest_init(to))
2769 goto err;
2770 state_to = (PK11_CIPHER_STATE *) to->md_data;

2772 /* Get the size of the operation state of the copy-from session */
2773 rv = pFuncList->C_GetOperationState(state->sp->session, NULL,
2774 &ul_state_len);

2776 if (rv != CKR_OK)
2777 {
2778 PK11err_add_data(PK11_F_DIGEST_COPY, PK11_R_GET_OPERATION_STATE,
2779 rv);
2780 goto err;
2781 }
2782 if (ul_state_len == 0)
2783 {
2784 goto err;
2785 }

2787 pstate = OPENSSL_malloc(ul_state_len);
2788 if (pstate == NULL)
2789 {
2790 PK11err(PK11_F_DIGEST_COPY, PK11_R_MALLOC_FAILURE);
2791 goto err;
2792 }

2794 /* Get the operation state of the copy-from session */
2795 rv = pFuncList->C_GetOperationState(state->sp->session, pstate,
2796 &ul_state_len);

2798 if (rv != CKR_OK)
2799 {
2800 PK11err_add_data(PK11_F_DIGEST_COPY, PK11_R_GET_OPERATION_STATE,
2801 rv);
2802 goto err;
2803 }

2805 /* Set the operation state of the copy-to session */
2806 rv = pFuncList->C_SetOperationState(state_to->sp->session, pstate,
2807 ul_state_len, 0, 0);

2809 if (rv != CKR_OK)
2810 {
2811 PK11err_add_data(PK11_F_DIGEST_COPY,
2812 PK11_R_SET_OPERATION_STATE, rv);
2813 goto err;
2814 }

2816 ret = 1;
2817 err:
2818 if (pstate != NULL)
2819 OPENSSL_free(pstate);

2821 return (ret);
2822 }

2824 /* Return any pending session state to the pool */
2825 static int
2826 pk11_digest_cleanup(EVP_MD_CTX *ctx)
2827 {
2828 PK11_CIPHER_STATE *state = ctx->md_data;
2829 unsigned char buf[EVP_MAX_MD_SIZE];

2831 if (state != NULL && state->sp != NULL)
2832 {
2833 /*

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 44

2834 * If state->sp is not NULL then pk11_digest_final() has not
2835 * been called yet. We must call it now to free any memory
2836 * that might have been allocated in the token when
2837 * pk11_digest_init() was called. pk11_digest_final()
2838 * will return the session to the cache.
2839 */
2840 if (!pk11_digest_final(ctx, buf))
2841 return (0);
2842 }

2844 return (1);
2845 }

2847 /*
2848 * Check if the new key is the same as the key object in the session. If the key
2849 * is the same, no need to create a new key object. Otherwise, the old key
2850 * object needs to be destroyed and a new one will be created. Return 1 for
2851 * cache hit, 0 for cache miss. Note that we must check the key length first
2852 * otherwise we could end up reusing a different, longer key with the same
2853 * prefix.
2854 */
2855 static int check_new_cipher_key(PK11_SESSION *sp, const unsigned char *key,
2856 int key_len)
2857 {
2858 if (sp->opdata_key_len != key_len ||
2859 memcmp(sp->opdata_key, key, key_len) != 0)
2860 {
2861 (void) pk11_destroy_cipher_key_objects(sp);
2862 return (0);
2863 }
2864 return (1);
2865 }

2867 /* Destroy one or more secret key objects. */
2868 static int pk11_destroy_cipher_key_objects(PK11_SESSION *session)
2869 {
2870 int ret = 0;
2871 PK11_SESSION *sp = NULL;
2872 PK11_SESSION *local_free_session;

2874 if (session != NULL)
2875 local_free_session = session;
2876 else
2877 {
2878 (void) pthread_mutex_lock(session_cache[OP_CIPHER].lock);
2879 local_free_session = session_cache[OP_CIPHER].head;
2880 }

2882 while ((sp = local_free_session) != NULL)
2883 {
2884 local_free_session = sp->next;

2886 if (sp->opdata_cipher_key != CK_INVALID_HANDLE)
2887 {
2888 /*
2889 * The secret key object is created in the
2890 * global_session. See pk11_get_cipher_key
2891 */
2892 if (pk11_destroy_object(global_session,
2893 sp->opdata_cipher_key) == 0)
2894 goto err;
2895 sp->opdata_cipher_key = CK_INVALID_HANDLE;
2896 }
2897 }
2898 ret = 1;
2899 err:

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 45

2901 if (session == NULL)
2902 (void) pthread_mutex_unlock(session_cache[OP_CIPHER].lock);

2904 return (ret);
2905 }

2908 /*
2909 * Public key mechanisms optionally supported
2910 *
2911 * CKM_RSA_X_509
2912 * CKM_RSA_PKCS
2913 * CKM_DSA
2914 *
2915 * The first slot that supports at least one of those mechanisms is chosen as a
2916 * public key slot.
2917 *
2918 * Symmetric ciphers optionally supported
2919 *
2920 * CKM_DES3_CBC
2921 * CKM_DES_CBC
2922 * CKM_AES_CBC
2923 * CKM_DES3_ECB
2924 * CKM_DES_ECB
2925 * CKM_AES_ECB
2926 * CKM_AES_CTR
2927 * CKM_RC4
2928 * CKM_BLOWFISH_CBC
2929 *
2930 * Digests optionally supported
2931 *
2932 * CKM_MD5
2933 * CKM_SHA_1
2934 * CKM_SHA224
2935 * CKM_SHA256
2936 * CKM_SHA384
2937 * CKM_SHA512
2938 *
2939 * The output of this function is a set of global variables indicating which
2940 * mechanisms from RSA, DSA, DH and RAND are present, and also two arrays of
2941 * mechanisms, one for symmetric ciphers and one for digests. Also, 3 global
2942 * variables carry information about which slot was chosen for (a) public key
2943 * mechanisms, (b) random operations, and (c) symmetric ciphers and digests.
2944 */
2945 static int
2946 pk11_choose_slots(int *any_slot_found)
2947 {
2948 CK_SLOT_ID_PTR pSlotList = NULL_PTR;
2949 CK_ULONG ulSlotCount = 0;
2950 CK_MECHANISM_INFO mech_info;
2951 CK_TOKEN_INFO token_info;
2952 int i;
2953 CK_RV rv;
2954 CK_SLOT_ID best_slot_sofar = 0;
2955 CK_BBOOL found_candidate_slot = CK_FALSE;
2956 int slot_n_cipher = 0;
2957 int slot_n_digest = 0;
2958 CK_SLOT_ID current_slot = 0;
2959 int current_slot_n_cipher = 0;
2960 int current_slot_n_digest = 0;

2962 int local_cipher_nids[PK11_CIPHER_MAX];
2963 int local_digest_nids[PK11_DIGEST_MAX];

2965 /* let’s initialize the output parameter */

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 46

2966 if (any_slot_found != NULL)
2967 *any_slot_found = 0;

2969 /* Get slot list for memory allocation */
2970 rv = pFuncList->C_GetSlotList(0, NULL_PTR, &ulSlotCount);

2972 if (rv != CKR_OK)
2973 {
2974 PK11err_add_data(PK11_F_CHOOSE_SLOT, PK11_R_GETSLOTLIST, rv);
2975 return (0);
2976 }

2978 /* it’s not an error if we didn’t find any providers */
2979 if (ulSlotCount == 0)
2980 {
2981 #ifdef DEBUG_SLOT_SELECTION
2982 fprintf(stderr, "%s: no crypto providers found\n", PK11_DBG);
2983 #endif /* DEBUG_SLOT_SELECTION */
2984 return (1);
2985 }

2987 pSlotList = OPENSSL_malloc(ulSlotCount * sizeof (CK_SLOT_ID));

2989 if (pSlotList == NULL)
2990 {
2991 PK11err(PK11_F_CHOOSE_SLOT, PK11_R_MALLOC_FAILURE);
2992 return (0);
2993 }

2995 /* Get the slot list for processing */
2996 rv = pFuncList->C_GetSlotList(0, pSlotList, &ulSlotCount);
2997 if (rv != CKR_OK)
2998 {
2999 PK11err_add_data(PK11_F_CHOOSE_SLOT, PK11_R_GETSLOTLIST, rv);
3000 OPENSSL_free(pSlotList);
3001 return (0);
3002 }

3004 #ifdef DEBUG_SLOT_SELECTION
3005 fprintf(stderr, "%s: provider: %s\n", PK11_DBG, def_PK11_LIBNAME);
3006 fprintf(stderr, "%s: number of slots: %d\n", PK11_DBG, ulSlotCount);

3008 fprintf(stderr, "%s: == checking rand slots ==\n", PK11_DBG);
3009 #endif /* DEBUG_SLOT_SELECTION */
3010 for (i = 0; i < ulSlotCount; i++)
3011 {
3012 current_slot = pSlotList[i];

3014 #ifdef DEBUG_SLOT_SELECTION
3015 fprintf(stderr, "%s: checking slot: %d\n", PK11_DBG, i);
3016 #endif /* DEBUG_SLOT_SELECTION */
3017 /* Check if slot has random support. */
3018 rv = pFuncList->C_GetTokenInfo(current_slot, &token_info);
3019 if (rv != CKR_OK)
3020 continue;

3022 #ifdef DEBUG_SLOT_SELECTION
3023 fprintf(stderr, "%s: token label: %.32s\n", PK11_DBG, token_info.label);
3024 #endif /* DEBUG_SLOT_SELECTION */

3026 if (token_info.flags & CKF_RNG)
3027 {
3028 #ifdef DEBUG_SLOT_SELECTION
3029 fprintf(stderr, "%s: this token has CKF_RNG flag\n", PK11_DBG);
3030 #endif /* DEBUG_SLOT_SELECTION */
3031 pk11_have_random = CK_TRUE;

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 47

3032 rand_SLOTID = current_slot;
3033 break;
3034 }
3035 }

3037 #ifdef DEBUG_SLOT_SELECTION
3038 fprintf(stderr, "%s: == checking pubkey slots ==\n", PK11_DBG);
3039 #endif /* DEBUG_SLOT_SELECTION */

3041 pubkey_SLOTID = pSlotList[0];
3042 for (i = 0; i < ulSlotCount; i++)
3043 {
3044 CK_BBOOL slot_has_rsa = CK_FALSE;
3045 CK_BBOOL slot_has_dsa = CK_FALSE;
3046 CK_BBOOL slot_has_dh = CK_FALSE;
3047 current_slot = pSlotList[i];

3049 #ifdef DEBUG_SLOT_SELECTION
3050 fprintf(stderr, "%s: checking slot: %d\n", PK11_DBG, i);
3051 #endif /* DEBUG_SLOT_SELECTION */
3052 rv = pFuncList->C_GetTokenInfo(current_slot, &token_info);
3053 if (rv != CKR_OK)
3054 continue;

3056 #ifdef DEBUG_SLOT_SELECTION
3057 fprintf(stderr, "%s: token label: %.32s\n", PK11_DBG, token_info.label);
3058 #endif /* DEBUG_SLOT_SELECTION */

3060 #ifndef OPENSSL_NO_RSA
3061 /*
3062 * Check if this slot is capable of signing and
3063 * verifying with CKM_RSA_PKCS.
3064 */
3065 rv = pFuncList->C_GetMechanismInfo(current_slot, CKM_RSA_PKCS,
3066 &mech_info);

3068 if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) &&
3069 (mech_info.flags & CKF_VERIFY)))
3070 {
3071 /*
3072 * Check if this slot is capable of encryption,
3073 * decryption, sign, and verify with CKM_RSA_X_509.
3074 */
3075 rv = pFuncList->C_GetMechanismInfo(current_slot,
3076 CKM_RSA_X_509, &mech_info);

3078 if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) &&
3079 (mech_info.flags & CKF_VERIFY) &&
3080 (mech_info.flags & CKF_ENCRYPT) &&
3081 (mech_info.flags & CKF_VERIFY_RECOVER) &&
3082 (mech_info.flags & CKF_DECRYPT)))
3083 {
3084 slot_has_rsa = CK_TRUE;
3085 }
3086 }
3087 #endif /* OPENSSL_NO_RSA */

3089 #ifndef OPENSSL_NO_DSA
3090 /*
3091 * Check if this slot is capable of signing and
3092 * verifying with CKM_DSA.
3093 */
3094 rv = pFuncList->C_GetMechanismInfo(current_slot, CKM_DSA,
3095 &mech_info);
3096 if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) &&
3097 (mech_info.flags & CKF_VERIFY)))

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 48

3098 {
3099 slot_has_dsa = CK_TRUE;
3100 }

3102 #endif /* OPENSSL_NO_DSA */

3104 #ifndef OPENSSL_NO_DH
3105 /*
3106 * Check if this slot is capable of DH key generataion and
3107 * derivation.
3108 */
3109 rv = pFuncList->C_GetMechanismInfo(current_slot,
3110 CKM_DH_PKCS_KEY_PAIR_GEN, &mech_info);

3112 if (rv == CKR_OK && (mech_info.flags & CKF_GENERATE_KEY_PAIR))
3113 {
3114 rv = pFuncList->C_GetMechanismInfo(current_slot,
3115 CKM_DH_PKCS_DERIVE, &mech_info);
3116 if (rv == CKR_OK && (mech_info.flags & CKF_DERIVE))
3117 {
3118 slot_has_dh = CK_TRUE;
3119 }
3120 }
3121 #endif /* OPENSSL_NO_DH */

3123 if (!found_candidate_slot &&
3124 (slot_has_rsa || slot_has_dsa || slot_has_dh))
3125 {
3126 #ifdef DEBUG_SLOT_SELECTION
3127 fprintf(stderr,
3128 "%s: potential slot: %d\n", PK11_DBG, current_slot);
3129 #endif /* DEBUG_SLOT_SELECTION */
3130 best_slot_sofar = current_slot;
3131 pk11_have_rsa = slot_has_rsa;
3132 pk11_have_dsa = slot_has_dsa;
3133 pk11_have_dh = slot_has_dh;
3134 found_candidate_slot = CK_TRUE;
3135 #ifdef DEBUG_SLOT_SELECTION
3136 fprintf(stderr,
3137 "%s: setting found_candidate_slot to CK_TRUE\n",
3138 PK11_DBG);
3139 fprintf(stderr,
3140 "%s: best so far slot: %d\n", PK11_DBG,
3141 best_slot_sofar);
3142 }
3143 else
3144 {
3145 fprintf(stderr,
3146 "%s: no rsa/dsa/dh\n", PK11_DBG);
3147 }
3148 #else
3149 } /* if */
3150 #endif /* DEBUG_SLOT_SELECTION */
3151 } /* for */

3153 if (found_candidate_slot)
3154 {
3155 pubkey_SLOTID = best_slot_sofar;
3156 }

3158 found_candidate_slot = CK_FALSE;
3159 best_slot_sofar = 0;

3161 #ifdef DEBUG_SLOT_SELECTION
3162 fprintf(stderr, "%s: == checking cipher/digest ==\n", PK11_DBG);
3163 #endif /* DEBUG_SLOT_SELECTION */

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 49

3165 SLOTID = pSlotList[0];
3166 for (i = 0; i < ulSlotCount; i++)
3167 {
3168 #ifdef DEBUG_SLOT_SELECTION
3169 fprintf(stderr, "%s: checking slot: %d\n", PK11_DBG, i);
3170 #endif /* DEBUG_SLOT_SELECTION */

3172 current_slot = pSlotList[i];
3173 current_slot_n_cipher = 0;
3174 current_slot_n_digest = 0;
3175 (void) memset(local_cipher_nids, 0, sizeof (local_cipher_nids));
3176 (void) memset(local_digest_nids, 0, sizeof (local_digest_nids));

3178 pk11_find_symmetric_ciphers(pFuncList, current_slot,
3179 ¤t_slot_n_cipher, local_cipher_nids);

3181 pk11_find_digests(pFuncList, current_slot,
3182 ¤t_slot_n_digest, local_digest_nids);

3184 #ifdef DEBUG_SLOT_SELECTION
3185 fprintf(stderr, "%s: current_slot_n_cipher %d\n", PK11_DBG,
3186 current_slot_n_cipher);
3187 fprintf(stderr, "%s: current_slot_n_digest %d\n", PK11_DBG,
3188 current_slot_n_digest);
3189 fprintf(stderr, "%s: best so far cipher/digest slot: %d\n",
3190 PK11_DBG, best_slot_sofar);
3191 #endif /* DEBUG_SLOT_SELECTION */

3193 /*
3194 * If the current slot supports more ciphers/digests than
3195 * the previous best one we change the current best to this one,
3196 * otherwise leave it where it is.
3197 */
3198 if ((current_slot_n_cipher + current_slot_n_digest) >
3199 (slot_n_cipher + slot_n_digest))
3200 {
3201 #ifdef DEBUG_SLOT_SELECTION
3202 fprintf(stderr,
3203 "%s: changing best so far slot to %d\n",
3204 PK11_DBG, current_slot);
3205 #endif /* DEBUG_SLOT_SELECTION */
3206 best_slot_sofar = SLOTID = current_slot;
3207 cipher_count = slot_n_cipher = current_slot_n_cipher;
3208 digest_count = slot_n_digest = current_slot_n_digest;
3209 (void) memcpy(cipher_nids, local_cipher_nids,
3210 sizeof (local_cipher_nids));
3211 (void) memcpy(digest_nids, local_digest_nids,
3212 sizeof (local_digest_nids));
3213 }
3214 }

3216 #ifdef DEBUG_SLOT_SELECTION
3217 fprintf(stderr,
3218 "%s: chosen pubkey slot: %d\n", PK11_DBG, pubkey_SLOTID);
3219 fprintf(stderr,
3220 "%s: chosen rand slot: %d\n", PK11_DBG, rand_SLOTID);
3221 fprintf(stderr,
3222 "%s: chosen cipher/digest slot: %d\n", PK11_DBG, SLOTID);
3223 fprintf(stderr,
3224 "%s: pk11_have_rsa %d\n", PK11_DBG, pk11_have_rsa);
3225 fprintf(stderr,
3226 "%s: pk11_have_dsa %d\n", PK11_DBG, pk11_have_dsa);
3227 fprintf(stderr,
3228 "%s: pk11_have_dh %d\n", PK11_DBG, pk11_have_dh);
3229 fprintf(stderr,

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 50

3230 "%s: pk11_have_random %d\n", PK11_DBG, pk11_have_random);
3231 fprintf(stderr,
3232 "%s: cipher_count %d\n", PK11_DBG, cipher_count);
3233 fprintf(stderr,
3234 "%s: digest_count %d\n", PK11_DBG, digest_count);
3235 #endif /* DEBUG_SLOT_SELECTION */

3237 if (pSlotList != NULL)
3238 OPENSSL_free(pSlotList);

3240 #ifdef SOLARIS_HW_SLOT_SELECTION
3241 OPENSSL_free(hw_cnids);
3242 OPENSSL_free(hw_dnids);
3243 #endif /* SOLARIS_HW_SLOT_SELECTION */

3245 if (any_slot_found != NULL)
3246 *any_slot_found = 1;
3247 return (1);
3248 }

3250 static void pk11_get_symmetric_cipher(CK_FUNCTION_LIST_PTR pflist,
3251 int slot_id, CK_MECHANISM_TYPE mech, int *current_slot_n_cipher,
3252 int *local_cipher_nids, int id)
3253 {
3254 CK_MECHANISM_INFO mech_info;
3255 CK_RV rv;

3257 #ifdef DEBUG_SLOT_SELECTION
3258 fprintf(stderr, "%s: checking mech: %x", PK11_DBG, mech);
3259 #endif /* DEBUG_SLOT_SELECTION */
3260 rv = pflist->C_GetMechanismInfo(slot_id, mech, &mech_info);

3262 if (rv != CKR_OK)
3263 {
3264 #ifdef DEBUG_SLOT_SELECTION
3265 fprintf(stderr, " not found\n");
3266 #endif /* DEBUG_SLOT_SELECTION */
3267 return;
3268 }

3270 if ((mech_info.flags & CKF_ENCRYPT) &&
3271 (mech_info.flags & CKF_DECRYPT))
3272 {
3273 #ifdef SOLARIS_HW_SLOT_SELECTION
3274 if (nid_in_table(ciphers[id].nid, hw_cnids))
3275 #endif /* SOLARIS_HW_SLOT_SELECTION */
3276 {
3277 #ifdef DEBUG_SLOT_SELECTION
3278 fprintf(stderr, " usable\n");
3279 #endif /* DEBUG_SLOT_SELECTION */
3280 local_cipher_nids[(*current_slot_n_cipher)++] =
3281 ciphers[id].nid;
3282 }
3283 #ifdef SOLARIS_HW_SLOT_SELECTION
3284 #ifdef DEBUG_SLOT_SELECTION
3285 else
3286 {
3287 fprintf(stderr, " rejected, software implementation only\n");
3288 }
3289 #endif /* DEBUG_SLOT_SELECTION */
3290 #endif /* SOLARIS_HW_SLOT_SELECTION */
3291 }
3292 #ifdef DEBUG_SLOT_SELECTION
3293 else
3294 {
3295 fprintf(stderr, " unusable\n");

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 51

3296 }
3297 #endif /* DEBUG_SLOT_SELECTION */

3299 return;
3300 }

3302 static void pk11_get_digest(CK_FUNCTION_LIST_PTR pflist, int slot_id,
3303 CK_MECHANISM_TYPE mech, int *current_slot_n_digest, int *local_digest_nids,
3304 int id)
3305 {
3306 CK_MECHANISM_INFO mech_info;
3307 CK_RV rv;

3309 #ifdef DEBUG_SLOT_SELECTION
3310 fprintf(stderr, "%s: checking mech: %x", PK11_DBG, mech);
3311 #endif /* DEBUG_SLOT_SELECTION */
3312 rv = pflist->C_GetMechanismInfo(slot_id, mech, &mech_info);

3314 if (rv != CKR_OK)
3315 {
3316 #ifdef DEBUG_SLOT_SELECTION
3317 fprintf(stderr, " not found\n");
3318 #endif /* DEBUG_SLOT_SELECTION */
3319 return;
3320 }

3322 if (mech_info.flags & CKF_DIGEST)
3323 {
3324 #ifdef SOLARIS_HW_SLOT_SELECTION
3325 if (nid_in_table(digests[id].nid, hw_dnids))
3326 #endif /* SOLARIS_HW_SLOT_SELECTION */
3327 {
3328 #ifdef DEBUG_SLOT_SELECTION
3329 fprintf(stderr, " usable\n");
3330 #endif /* DEBUG_SLOT_SELECTION */
3331 local_digest_nids[(*current_slot_n_digest)++] =
3332 digests[id].nid;
3333 }
3334 #ifdef SOLARIS_HW_SLOT_SELECTION
3335 #ifdef DEBUG_SLOT_SELECTION
3336 else
3337 {
3338 fprintf(stderr, " rejected, software implementation only\n");
3339 }
3340 #endif /* DEBUG_SLOT_SELECTION */
3341 #endif /* SOLARIS_HW_SLOT_SELECTION */
3342 }
3343 #ifdef DEBUG_SLOT_SELECTION
3344 else
3345 {
3346 fprintf(stderr, " unusable\n");
3347 }
3348 #endif /* DEBUG_SLOT_SELECTION */

3350 return;
3351 }

3353 #ifdef SOLARIS_AES_CTR
3354 /*
3355 * Create new NIDs for AES counter mode. OpenSSL doesn’t support them now so we
3356 * have to help ourselves here.
3357 */
3358 static int pk11_add_aes_ctr_NIDs(void)
3359 {
3360 /* are we already set? */
3361 if (NID_aes_256_ctr != NID_undef)

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 52

3362 return (1);

3364 /*
3365 * There are no official names for AES counter modes yet so we just
3366 * follow the format of those that exist.
3367 */
3368 ciphers[PK11_AES_128_CTR].nid = pk11_aes_128_ctr.nid = NID_aes_128_ctr;
3369 ciphers[PK11_AES_192_CTR].nid = pk11_aes_192_ctr.nid = NID_aes_192_ctr;
3370 ciphers[PK11_AES_256_CTR].nid = pk11_aes_256_ctr.nid = NID_aes_256_ctr;
3371 return (1);

3373 }
3374 #endif /* SOLARIS_AES_CTR */

3376 /* Find what symmetric ciphers this slot supports. */
3377 static void pk11_find_symmetric_ciphers(CK_FUNCTION_LIST_PTR pflist,
3378 CK_SLOT_ID current_slot, int *current_slot_n_cipher, int *local_cipher_nids)
3379 {
3380 int i;

3382 for (i = 0; i < PK11_CIPHER_MAX; ++i)
3383 {
3384 pk11_get_symmetric_cipher(pflist, current_slot,
3385 ciphers[i].mech_type, current_slot_n_cipher,
3386 local_cipher_nids, ciphers[i].id);
3387 }
3388 }

3390 /* Find what digest algorithms this slot supports. */
3391 static void pk11_find_digests(CK_FUNCTION_LIST_PTR pflist,
3392 CK_SLOT_ID current_slot, int *current_slot_n_digest, int *local_digest_nids)
3393 {
3394 int i;

3396 for (i = 0; i < PK11_DIGEST_MAX; ++i)
3397 {
3398 pk11_get_digest(pflist, current_slot, digests[i].mech_type,
3399 current_slot_n_digest, local_digest_nids, digests[i].id);
3400 }
3401 }

3403 #ifdef SOLARIS_HW_SLOT_SELECTION
3404 /*
3405 * It would be great if we could use pkcs11_kernel directly since this library
3406 * offers hardware slots only. That’s the easiest way to achieve the situation
3407 * where we use the hardware accelerators when present and OpenSSL native code
3408 * otherwise. That presumes the fact that OpenSSL native code is faster than the
3409 * code in the soft token. It’s a logical assumption - Crypto Framework has some
3410 * inherent overhead so going there for the software implementation of a
3411 * mechanism should be logically slower in contrast to the OpenSSL native code,
3412 * presuming that both implementations are of similar speed. For example, the
3413 * soft token for AES is roughly three times slower than OpenSSL for 64 byte
3414 * blocks and still 20% slower for 8KB blocks. So, if we want to ship products
3415 * that use the PKCS#11 engine by default, we must somehow avoid that regression
3416 * on machines without hardware acceleration. That’s why switching to the
3417 * pkcs11_kernel library seems like a very good idea.
3418 *
3419 * The problem is that OpenSSL built with SunStudio is roughly 2x slower for
3420 * asymmetric operations (RSA/DSA/DH) than the soft token built with the same
3421 * compiler. That means that if we switched to pkcs11_kernel from the libpkcs11
3422 * library, we would have had a performance regression on machines without
3423 * hardware acceleration for asymmetric operations for all applications that use
3424 * the PKCS#11 engine. There is one such application - Apache web server since
3425 * it’s shipped configured to use the PKCS#11 engine by default. Having said
3426 * that, we can’t switch to the pkcs11_kernel library now and have to come with
3427 * a solution that, on non-accelerated machines, uses the OpenSSL native code

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 53

3428 * for all symmetric ciphers and digests while it uses the soft token for
3429 * asymmetric operations.
3430 *
3431 * This is the idea: dlopen() pkcs11_kernel directly and find out what
3432 * mechanisms are there. We don’t care about duplications (more slots can
3433 * support the same mechanism), we just want to know what mechanisms can be
3434 * possibly supported in hardware on that particular machine. As said before,
3435 * pkcs11_kernel will show you hardware providers only.
3436 *
3437 * Then, we rely on the fact that since we use libpkcs11 library we will find
3438 * the metaslot. When we go through the metaslot’s mechanisms for symmetric
3439 * ciphers and digests, we check that any found mechanism is in the table
3440 * created using the pkcs11_kernel library. So, as a result we have two arrays
3441 * of mechanisms that were advertised as supported in hardware which was the
3442 * goal of that whole excercise. Thus, we can use libpkcs11 but avoid soft token
3443 * code for symmetric ciphers and digests. See pk11_choose_slots() for more
3444 * information.
3445 *
3446 * This is Solaris specific code, if SOLARIS_HW_SLOT_SELECTION is not defined
3447 * the code won’t be used.
3448 */
3449 #if defined(__sparcv9) || defined(__x86_64) || defined(__amd64)
3450 static const char pkcs11_kernel[] = "/usr/lib/security/64/pkcs11_kernel.so.1";
3451 #else
3452 static const char pkcs11_kernel[] = "/usr/lib/security/pkcs11_kernel.so.1";
3453 #endif

3455 /*
3456 * Check hardware capabilities of the machines. The output are two lists,
3457 * hw_cnids and hw_dnids, that contain hardware mechanisms found in all hardware
3458 * providers together. They are not sorted and may contain duplicate mechanisms.
3459 */
3460 static int check_hw_mechanisms(void)
3461 {
3462 int i;
3463 CK_RV rv;
3464 void *handle;
3465 CK_C_GetFunctionList p;
3466 CK_TOKEN_INFO token_info;
3467 CK_ULONG ulSlotCount = 0;
3468 int n_cipher = 0, n_digest = 0;
3469 CK_FUNCTION_LIST_PTR pflist = NULL;
3470 CK_SLOT_ID_PTR pSlotList = NULL_PTR;
3471 int *tmp_hw_cnids=NULL, *tmp_hw_dnids=NULL;
3472 int hw_ctable_size, hw_dtable_size;

3474 #ifdef DEBUG_SLOT_SELECTION
3475 fprintf(stderr, "%s: SOLARIS_HW_SLOT_SELECTION code running\n",
3476 PK11_DBG);
3477 #endif
3478 if ((handle = dlopen(pkcs11_kernel, RTLD_LAZY)) == NULL)
3479 {
3480 PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE);
3481 goto err;
3482 }

3484 if ((p = (CK_C_GetFunctionList)dlsym(handle,
3485 PK11_GET_FUNCTION_LIST)) == NULL)
3486 {
3487 PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE);
3488 goto err;
3489 }

3491 /* get the full function list from the loaded library */
3492 if (p(&pflist) != CKR_OK)
3493 {

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 54

3494 PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE);
3495 goto err;
3496 }

3498 rv = pflist->C_Initialize(NULL_PTR);
3499 if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED))
3500 {
3501 PK11err_add_data(PK11_F_CHECK_HW_MECHANISMS,
3502 PK11_R_INITIALIZE, rv);
3503 goto err;
3504 }

3506 if (pflist->C_GetSlotList(0, NULL_PTR, &ulSlotCount) != CKR_OK)
3507 {
3508 PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_GETSLOTLIST);
3509 goto err;
3510 }

3512 /* no slots, set the hw mechanism tables as empty */
3513 if (ulSlotCount == 0)
3514 {
3515 #ifdef DEBUG_SLOT_SELECTION
3516 fprintf(stderr, "%s: no hardware mechanisms found\n", PK11_DBG);
3517 #endif
3518 hw_cnids = OPENSSL_malloc(sizeof (int));
3519 hw_dnids = OPENSSL_malloc(sizeof (int));
3520 if (hw_cnids == NULL || hw_dnids == NULL)
3521 {
3522 PK11err(PK11_F_CHECK_HW_MECHANISMS,
3523 PK11_R_MALLOC_FAILURE);
3524 return (0);
3525 }
3526 /* this means empty tables */
3527 hw_cnids[0] = NID_undef;
3528 hw_dnids[0] = NID_undef;
3529 return (1);
3530 }

3532 pSlotList = OPENSSL_malloc(ulSlotCount * sizeof (CK_SLOT_ID));
3533 if (pSlotList == NULL)
3534 {
3535 PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_MALLOC_FAILURE);
3536 goto err;
3537 }

3539 /* Get the slot list for processing */
3540 if (pflist->C_GetSlotList(0, pSlotList, &ulSlotCount) != CKR_OK)
3541 {
3542 PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_GETSLOTLIST);
3543 goto err;
3544 }

3546 /*
3547 * We don’t care about duplicit mechanisms in multiple slots and also
3548 * reserve one slot for the terminal NID_undef which we use to stop the
3549 * search.
3550 */
3551 hw_ctable_size = ulSlotCount * PK11_CIPHER_MAX + 1;
3552 hw_dtable_size = ulSlotCount * PK11_DIGEST_MAX + 1;
3553 tmp_hw_cnids = OPENSSL_malloc(hw_ctable_size * sizeof (int));
3554 tmp_hw_dnids = OPENSSL_malloc(hw_dtable_size * sizeof (int));
3555 if (tmp_hw_cnids == NULL || tmp_hw_dnids == NULL)
3556 {
3557 PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_MALLOC_FAILURE);
3558 goto err;
3559 }

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 55

3561 /*
3562 * Do not use memset since we should not rely on the fact that NID_undef
3563 * is zero now.
3564 */
3565 for (i = 0; i < hw_ctable_size; ++i)
3566 tmp_hw_cnids[i] = NID_undef;
3567 for (i = 0; i < hw_dtable_size; ++i)
3568 tmp_hw_dnids[i] = NID_undef;

3570 #ifdef DEBUG_SLOT_SELECTION
3571 fprintf(stderr, "%s: provider: %s\n", PK11_DBG, pkcs11_kernel);
3572 fprintf(stderr, "%s: found %d hardware slots\n", PK11_DBG, ulSlotCount);
3573 fprintf(stderr, "%s: now looking for mechs supported in hw\n",
3574 PK11_DBG);
3575 #endif /* DEBUG_SLOT_SELECTION */

3577 for (i = 0; i < ulSlotCount; i++)
3578 {
3579 if (pflist->C_GetTokenInfo(pSlotList[i], &token_info) != CKR_OK)
3580 continue;

3582 #ifdef DEBUG_SLOT_SELECTION
3583 fprintf(stderr, "%s: token label: %.32s\n", PK11_DBG, token_info.label);
3584 #endif /* DEBUG_SLOT_SELECTION */

3586 /*
3587 * We are filling the hw mech tables here. Global tables are
3588 * still NULL so all mechanisms are put into tmp tables.
3589 */
3590 pk11_find_symmetric_ciphers(pflist, pSlotList[i],
3591 &n_cipher, tmp_hw_cnids);
3592 pk11_find_digests(pflist, pSlotList[i],
3593 &n_digest, tmp_hw_dnids);
3594 }

3596 /*
3597 * Since we are part of a library (libcrypto.so), calling this function
3598 * may have side-effects. Also, C_Finalize() is triggered by
3599 * dlclose(3C).
3600 */
3601 #if 0
3602 pflist->C_Finalize(NULL);
3603 #endif
3604 OPENSSL_free(pSlotList);
3605 (void) dlclose(handle);
3606 hw_cnids = tmp_hw_cnids;
3607 hw_dnids = tmp_hw_dnids;

3609 #ifdef DEBUG_SLOT_SELECTION
3610 fprintf(stderr, "%s: hw mechs check complete\n", PK11_DBG);
3611 #endif /* DEBUG_SLOT_SELECTION */
3612 return (1);

3614 err:
3615 if (pSlotList != NULL)
3616 OPENSSL_free(pSlotList);
3617 if (tmp_hw_cnids != NULL)
3618 OPENSSL_free(tmp_hw_cnids);
3619 if (tmp_hw_dnids != NULL)
3620 OPENSSL_free(tmp_hw_dnids);

3622 return (0);
3623 }

3625 /*

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11.c 56

3626 * Check presence of a NID in the table of NIDs. The table may be NULL (i.e.,
3627 * non-existent).
3628 */
3629 static int nid_in_table(int nid, int *nid_table)
3630 {
3631 int i = 0;

3633 /*
3634 * a special case. NULL means that we are initializing a new
3635 * table.
3636 */
3637 if (nid_table == NULL)
3638 return (1);

3640 /*
3641 * the table is never full, there is always at least one
3642 * NID_undef.
3643 */
3644 while (nid_table[i] != NID_undef)
3645 {
3646 if (nid_table[i++] == nid)
3647 {
3648 #ifdef DEBUG_SLOT_SELECTION
3649 fprintf(stderr, " (NID %d in hw table, idx %d)", nid, i);
3650 #endif /* DEBUG_SLOT_SELECTION */
3651 return (1);
3652 }
3653 }

3655 return (0);
3656 }
3657 #endif /* SOLARIS_HW_SLOT_SELECTION */

3659 #endif /* OPENSSL_NO_HW_PK11 */
3660 #endif /* OPENSSL_NO_HW */

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_err.c 1

**
 11334 Fri May 30 18:31:48 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */

6 /* crypto/engine/hw_pk11_err.c */
7 /*
8 * This product includes software developed by the OpenSSL Project for
9 * use in the OpenSSL Toolkit (http://www.openssl.org/).
10 *
11 * This project also referenced hw_pkcs11-0.9.7b.patch written by
12 * Afchine Madjlessi.
13 */
14 /*
15 * ==
16 * Copyright (c) 2000-2001 The OpenSSL Project. All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 *
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 *
25 * 2. Redistributions in binary form must reproduce the above copyright
26 * notice, this list of conditions and the following disclaimer in
27 * the documentation and/or other materials provided with the
28 * distribution.
29 *
30 * 3. All advertising materials mentioning features or use of this
31 * software must display the following acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
34 *
35 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
36 * endorse or promote products derived from this software without
37 * prior written permission. For written permission, please contact
38 * licensing@OpenSSL.org.
39 *
40 * 5. Products derived from this software may not be called "OpenSSL"
41 * nor may "OpenSSL" appear in their names without prior written
42 * permission of the OpenSSL Project.
43 *
44 * 6. Redistributions of any form whatsoever must retain the following
45 * acknowledgment:
46 * "This product includes software developed by the OpenSSL Project
47 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
50 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
53 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
54 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
55 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
56 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
58 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
60 * OF THE POSSIBILITY OF SUCH DAMAGE.
61 * ==

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_err.c 2

62 *
63 * This product includes cryptographic software written by Eric Young
64 * (eay@cryptsoft.com). This product includes software written by Tim
65 * Hudson (tjh@cryptsoft.com).
66 *
67 */

69 #include <stdio.h>
70 #include <openssl/opensslconf.h>
71 #include <openssl/err.h>
72 #include "hw_pk11_err.h"

74 /* BEGIN ERROR CODES */
75 #ifndef OPENSSL_NO_ERR
76 static ERR_STRING_DATA pk11_str_functs[]=
77 {
78 { ERR_PACK(0, PK11_F_INIT, 0), "PK11_INIT"},
79 { ERR_PACK(0, PK11_F_FINISH, 0), "PK11_FINISH"},
80 { ERR_PACK(0, PK11_F_DESTROY, 0), "PK11_DESTROY"},
81 { ERR_PACK(0, PK11_F_CTRL, 0), "PK11_CTRL"},
82 { ERR_PACK(0, PK11_F_RSA_INIT, 0), "PK11_RSA_INIT"},
83 { ERR_PACK(0, PK11_F_RSA_FINISH, 0), "PK11_RSA_FINISH"},
84 { ERR_PACK(0, PK11_F_GET_PUB_RSA_KEY, 0), "PK11_GET_PUB_RSA_KEY"},
85 { ERR_PACK(0, PK11_F_GET_PRIV_RSA_KEY, 0), "PK11_GET_PRIV_RSA_KEY"},
86 { ERR_PACK(0, PK11_F_RSA_GEN_KEY, 0), "PK11_RSA_GEN_KEY"},
87 { ERR_PACK(0, PK11_F_RSA_PUB_ENC, 0), "PK11_RSA_PUB_ENC"},
88 { ERR_PACK(0, PK11_F_RSA_PRIV_ENC, 0), "PK11_RSA_PRIV_ENC"},
89 { ERR_PACK(0, PK11_F_RSA_PUB_DEC, 0), "PK11_RSA_PUB_DEC"},
90 { ERR_PACK(0, PK11_F_RSA_PRIV_DEC, 0), "PK11_RSA_PRIV_DEC"},
91 { ERR_PACK(0, PK11_F_RSA_SIGN, 0), "PK11_RSA_SIGN"},
92 { ERR_PACK(0, PK11_F_RSA_VERIFY, 0), "PK11_RSA_VERIFY"},
93 { ERR_PACK(0, PK11_F_RAND_ADD, 0), "PK11_RAND_ADD"},
94 { ERR_PACK(0, PK11_F_RAND_BYTES, 0), "PK11_RAND_BYTES"},
95 { ERR_PACK(0, PK11_F_GET_SESSION, 0), "PK11_GET_SESSION"},
96 { ERR_PACK(0, PK11_F_FREE_SESSION, 0), "PK11_FREE_SESSION"},
97 { ERR_PACK(0, PK11_F_LOAD_PUBKEY, 0), "PK11_LOAD_PUBKEY"},
98 { ERR_PACK(0, PK11_F_LOAD_PRIVKEY, 0), "PK11_LOAD_PRIV_KEY"},
99 { ERR_PACK(0, PK11_F_RSA_PUB_ENC_LOW, 0), "PK11_RSA_PUB_ENC_LOW"},
100 { ERR_PACK(0, PK11_F_RSA_PRIV_ENC_LOW, 0), "PK11_RSA_PRIV_ENC_LOW"},
101 { ERR_PACK(0, PK11_F_RSA_PUB_DEC_LOW, 0), "PK11_RSA_PUB_DEC_LOW"},
102 { ERR_PACK(0, PK11_F_RSA_PRIV_DEC_LOW, 0), "PK11_RSA_PRIV_DEC_LOW"},
103 { ERR_PACK(0, PK11_F_DSA_SIGN, 0), "PK11_DSA_SIGN"},
104 { ERR_PACK(0, PK11_F_DSA_VERIFY, 0), "PK11_DSA_VERIFY"},
105 { ERR_PACK(0, PK11_F_DSA_INIT, 0), "PK11_DSA_INIT"},
106 { ERR_PACK(0, PK11_F_DSA_FINISH, 0), "PK11_DSA_FINISH"},
107 { ERR_PACK(0, PK11_F_GET_PUB_DSA_KEY, 0), "PK11_GET_PUB_DSA_KEY"},
108 { ERR_PACK(0, PK11_F_GET_PRIV_DSA_KEY, 0), "PK11_GET_PRIV_DSA_KEY"},
109 { ERR_PACK(0, PK11_F_DH_INIT, 0), "PK11_DH_INIT"},
110 { ERR_PACK(0, PK11_F_DH_FINISH, 0), "PK11_DH_FINISH"},
111 { ERR_PACK(0, PK11_F_MOD_EXP_DH, 0), "PK11_MOD_EXP_DH"},
112 { ERR_PACK(0, PK11_F_GET_DH_KEY, 0), "PK11_GET_DH_KEY"},
113 { ERR_PACK(0, PK11_F_FREE_ALL_SESSIONS, 0), "PK11_FREE_ALL_SESSIONS"},
114 { ERR_PACK(0, PK11_F_SETUP_SESSION, 0), "PK11_SETUP_SESSION"},
115 { ERR_PACK(0, PK11_F_DESTROY_OBJECT, 0), "PK11_DESTROY_OBJECT"},
116 { ERR_PACK(0, PK11_F_CIPHER_INIT, 0), "PK11_CIPHER_INIT"},
117 { ERR_PACK(0, PK11_F_CIPHER_DO_CIPHER, 0), "PK11_CIPHER_DO_CIPHER"},
118 { ERR_PACK(0, PK11_F_GET_CIPHER_KEY, 0), "PK11_GET_CIPHER_KEY"},
119 { ERR_PACK(0, PK11_F_DIGEST_INIT, 0), "PK11_DIGEST_INIT"},
120 { ERR_PACK(0, PK11_F_DIGEST_UPDATE, 0), "PK11_DIGEST_UPDATE"},
121 { ERR_PACK(0, PK11_F_DIGEST_FINAL, 0), "PK11_DIGEST_FINAL"},
122 { ERR_PACK(0, PK11_F_CHOOSE_SLOT, 0), "PK11_CHOOSE_SLOT"},
123 { ERR_PACK(0, PK11_F_CIPHER_FINAL, 0), "PK11_CIPHER_FINAL"},
124 { ERR_PACK(0, PK11_F_LIBRARY_INIT, 0), "PK11_LIBRARY_INIT"},
125 { ERR_PACK(0, PK11_F_LOAD, 0), "ENGINE_LOAD_PK11"},
126 { ERR_PACK(0, PK11_F_DH_GEN_KEY, 0), "PK11_DH_GEN_KEY"},
127 { ERR_PACK(0, PK11_F_DH_COMP_KEY, 0), "PK11_DH_COMP_KEY"},

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_err.c 3

128 { ERR_PACK(0, PK11_F_DIGEST_COPY, 0), "PK11_DIGEST_COPY"},
129 { ERR_PACK(0, PK11_F_CIPHER_CLEANUP, 0), "PK11_CIPHER_CLEANUP"},
130 { ERR_PACK(0, PK11_F_ACTIVE_ADD, 0), "PK11_ACTIVE_ADD"},
131 { ERR_PACK(0, PK11_F_ACTIVE_DELETE, 0), "PK11_ACTIVE_DELETE"},
132 { ERR_PACK(0, PK11_F_CHECK_HW_MECHANISMS, 0), "PK11_CHECK_HW_MECHANISMS"},
133 { ERR_PACK(0, PK11_F_INIT_SYMMETRIC, 0), "PK11_INIT_SYMMETRIC"},
134 { ERR_PACK(0, PK11_F_ADD_AES_CTR_NIDS, 0), "PK11_ADD_AES_CTR_NIDS"},
135 { 0, NULL}
136 };

138 static ERR_STRING_DATA pk11_str_reasons[]=
139 {
140 { PK11_R_ALREADY_LOADED, "PKCS#11 DSO already loaded"},
141 { PK11_R_DSO_FAILURE, "unable to load PKCS#11 DSO"},
142 { PK11_R_NOT_LOADED, "PKCS#11 DSO not loaded"},
143 { PK11_R_PASSED_NULL_PARAMETER, "null parameter passed"},
144 { PK11_R_COMMAND_NOT_IMPLEMENTED, "command not implemented"},
145 { PK11_R_INITIALIZE, "C_Initialize failed"},
146 { PK11_R_FINALIZE, "C_Finalize failed"},
147 { PK11_R_GETINFO, "C_GetInfo faile"},
148 { PK11_R_GETSLOTLIST, "C_GetSlotList failed"},
149 { PK11_R_NO_MODULUS_OR_NO_EXPONENT, "no modulus or no exponent"},
150 { PK11_R_ATTRIBUT_SENSITIVE_OR_INVALID, "attr sensitive or invalid"},
151 { PK11_R_GETATTRIBUTVALUE, "C_GetAttributeValue failed"},
152 { PK11_R_NO_MODULUS, "no modulus"},
153 { PK11_R_NO_EXPONENT, "no exponent"},
154 { PK11_R_FINDOBJECTSINIT, "C_FindObjectsInit failed"},
155 { PK11_R_FINDOBJECTS, "C_FindObjects failed"},
156 { PK11_R_FINDOBJECTSFINAL, "C_FindObjectsFinal failed"},
157 { PK11_R_CREATEOBJECT, "C_CreateObject failed"},
158 { PK11_R_DESTROYOBJECT, "C_DestroyObject failed"},
159 { PK11_R_OPENSESSION, "C_OpenSession failed"},
160 { PK11_R_CLOSESESSION, "C_CloseSession failed"},
161 { PK11_R_ENCRYPTINIT, "C_EncryptInit failed"},
162 { PK11_R_ENCRYPT, "C_Encrypt failed"},
163 { PK11_R_SIGNINIT, "C_SignInit failed"},
164 { PK11_R_SIGN, "C_Sign failed"},
165 { PK11_R_DECRYPTINIT, "C_DecryptInit failed"},
166 { PK11_R_DECRYPT, "C_Decrypt failed"},
167 { PK11_R_VERIFYINIT, "C_VerifyRecover failed"},
168 { PK11_R_VERIFY, "C_Verify failed"},
169 { PK11_R_VERIFYRECOVERINIT, "C_VerifyRecoverInit failed"},
170 { PK11_R_VERIFYRECOVER, "C_VerifyRecover failed"},
171 { PK11_R_GEN_KEY, "C_GenerateKeyPair failed"},
172 { PK11_R_SEEDRANDOM, "C_SeedRandom failed"},
173 { PK11_R_GENERATERANDOM, "C_GenerateRandom failed"},
174 { PK11_R_INVALID_MESSAGE_LENGTH, "invalid message length"},
175 { PK11_R_UNKNOWN_ALGORITHM_TYPE, "unknown algorithm type"},
176 { PK11_R_UNKNOWN_ASN1_OBJECT_ID, "unknown asn1 onject id"},
177 { PK11_R_UNKNOWN_PADDING_TYPE, "unknown padding type"},
178 { PK11_R_PADDING_CHECK_FAILED, "padding check failed"},
179 { PK11_R_DIGEST_TOO_BIG, "digest too big"},
180 { PK11_R_MALLOC_FAILURE, "malloc failure"},
181 { PK11_R_CTRL_COMMAND_NOT_IMPLEMENTED, "ctl command not implemented"},
182 { PK11_R_DATA_GREATER_THAN_MOD_LEN, "data is bigger than mod"},
183 { PK11_R_DATA_TOO_LARGE_FOR_MODULUS, "data is too larger for mod"},
184 { PK11_R_MISSING_KEY_COMPONENT, "a dsa component is missing"},
185 { PK11_R_INVALID_SIGNATURE_LENGTH, "invalid signature length"},
186 { PK11_R_INVALID_DSA_SIGNATURE_R, "missing r in dsa verify"},
187 { PK11_R_INVALID_DSA_SIGNATURE_S, "missing s in dsa verify"},
188 { PK11_R_INCONSISTENT_KEY, "inconsistent key type"},
189 { PK11_R_ENCRYPTUPDATE, "C_EncryptUpdate failed"},
190 { PK11_R_DECRYPTUPDATE, "C_DecryptUpdate failed"},
191 { PK11_R_DIGESTINIT, "C_DigestInit failed"},
192 { PK11_R_DIGESTUPDATE, "C_DigestUpdate failed"},
193 { PK11_R_DIGESTFINAL, "C_DigestFinal failed"},

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_err.c 4

194 { PK11_R_ENCRYPTFINAL, "C_EncryptFinal failed"},
195 { PK11_R_DECRYPTFINAL, "C_DecryptFinal failed"},
196 { PK11_R_NO_PRNG_SUPPORT, "Slot does not support PRNG"},
197 { PK11_R_GETTOKENINFO, "C_GetTokenInfo failed"},
198 { PK11_R_DERIVEKEY, "C_DeriveKey failed"},
199 { PK11_R_GET_OPERATION_STATE, "C_GetOperationState failed"},
200 { PK11_R_SET_OPERATION_STATE, "C_SetOperationState failed"},
201 { PK11_R_INVALID_HANDLE, "invalid PKCS#11 object handle"},
202 { PK11_R_KEY_OR_IV_LEN_PROBLEM, "IV or key length incorrect"},
203 { PK11_R_INVALID_OPERATION_TYPE, "invalid operation type"},
204 { PK11_R_ADD_NID_FAILED, "failed to add NID" },
205 { 0, NULL}
206 };
207 #endif /* OPENSSL_NO_ERR */

209 static int pk11_lib_error_code = 0;
210 static int pk11_error_init = 1;

212 static void
213 ERR_load_pk11_strings(void)
214 {
215 if (pk11_lib_error_code == 0)
216 pk11_lib_error_code = ERR_get_next_error_library();

218 if (pk11_error_init)
219 {
220 pk11_error_init = 0;
221 #ifndef OPENSSL_NO_ERR
222 ERR_load_strings(pk11_lib_error_code, pk11_str_functs);
223 ERR_load_strings(pk11_lib_error_code, pk11_str_reasons);
224 #endif
225 }
226 }

228 static void
229 ERR_unload_pk11_strings(void)
230 {
231 if (pk11_error_init == 0)
232 {
233 #ifndef OPENSSL_NO_ERR
234 ERR_unload_strings(pk11_lib_error_code, pk11_str_functs);
235 ERR_unload_strings(pk11_lib_error_code, pk11_str_reasons);
236 #endif
237 pk11_error_init = 1;
238 }
239 }

241 void
242 ERR_pk11_error(int function, int reason, char *file, int line)
243 {
244 if (pk11_lib_error_code == 0)
245 pk11_lib_error_code = ERR_get_next_error_library();
246 ERR_PUT_error(pk11_lib_error_code, function, reason, file, line);
247 }

249 void
250 PK11err_add_data(int function, int reason, CK_RV rv)
251 {
252 char tmp_buf[20];

254 PK11err(function, reason);
255 (void) snprintf(tmp_buf, sizeof (tmp_buf), "%lx", rv);
256 ERR_add_error_data(2, "PK11 CK_RV=0X", tmp_buf);
257 }

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 1

**
 70067 Fri May 30 18:31:48 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */

6 /* crypto/engine/hw_pk11_pub.c */
7 /*
8 * This product includes software developed by the OpenSSL Project for
9 * use in the OpenSSL Toolkit (http://www.openssl.org/).
10 *
11 * This project also referenced hw_pkcs11-0.9.7b.patch written by
12 * Afchine Madjlessi.
13 */
14 /*
15 * ==
16 * Copyright (c) 2000-2001 The OpenSSL Project. All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 *
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 *
25 * 2. Redistributions in binary form must reproduce the above copyright
26 * notice, this list of conditions and the following disclaimer in
27 * the documentation and/or other materials provided with the
28 * distribution.
29 *
30 * 3. All advertising materials mentioning features or use of this
31 * software must display the following acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
34 *
35 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
36 * endorse or promote products derived from this software without
37 * prior written permission. For written permission, please contact
38 * licensing@OpenSSL.org.
39 *
40 * 5. Products derived from this software may not be called "OpenSSL"
41 * nor may "OpenSSL" appear in their names without prior written
42 * permission of the OpenSSL Project.
43 *
44 * 6. Redistributions of any form whatsoever must retain the following
45 * acknowledgment:
46 * "This product includes software developed by the OpenSSL Project
47 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
50 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
53 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
54 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
55 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
56 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
58 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
60 * OF THE POSSIBILITY OF SUCH DAMAGE.
61 * ==

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 2

62 *
63 * This product includes cryptographic software written by Eric Young
64 * (eay@cryptsoft.com). This product includes software written by Tim
65 * Hudson (tjh@cryptsoft.com).
66 *
67 */

69 #include <stdio.h>
70 #include <stdlib.h>
71 #include <string.h>
72 #include <sys/types.h>
73 #include <unistd.h>

75 #include <openssl/e_os2.h>
76 #include <openssl/crypto.h>
77 #include <openssl/engine.h>
78 #include <openssl/dso.h>
79 #include <openssl/err.h>
80 #include <openssl/bn.h>
81 #include <openssl/pem.h>
82 #ifndef OPENSSL_NO_RSA
83 #include <openssl/rsa.h>
84 #endif /* OPENSSL_NO_RSA */
85 #ifndef OPENSSL_NO_DSA
86 #include <openssl/dsa.h>
87 #endif /* OPENSSL_NO_DSA */
88 #ifndef OPENSSL_NO_DH
89 #include <openssl/dh.h>
90 #endif /* OPENSSL_NO_DH */
91 #include <openssl/rand.h>
92 #include <openssl/objects.h>
93 #include <openssl/x509.h>
94 #include <cryptlib.h>
95 #include <pthread.h>

97 #ifndef OPENSSL_NO_HW
98 #ifndef OPENSSL_NO_HW_PK11

100 #include "cryptoki.h"
101 #include "pkcs11.h"
102 #include "hw_pk11_err.h"

104 #ifndef OPENSSL_NO_RSA
105 /* RSA stuff */
106 static int pk11_RSA_public_encrypt(int flen, const unsigned char *from,
107 unsigned char *to, RSA *rsa, int padding);
108 static int pk11_RSA_private_encrypt(int flen, const unsigned char *from,
109 unsigned char *to, RSA *rsa, int padding);
110 static int pk11_RSA_public_decrypt(int flen, const unsigned char *from,
111 unsigned char *to, RSA *rsa, int padding);
112 static int pk11_RSA_private_decrypt(int flen, const unsigned char *from,
113 unsigned char *to, RSA *rsa, int padding);
114 static int pk11_RSA_init(RSA *rsa);
115 static int pk11_RSA_finish(RSA *rsa);
116 static int pk11_RSA_sign(int type, const unsigned char *m, unsigned int m_len,
117 unsigned char *sigret, unsigned int *siglen, const RSA *rsa);
118 static int pk11_RSA_verify(int dtype, const unsigned char *m,
119 unsigned int m_len, const unsigned char *sigbuf, unsigned int siglen,
120 const RSA *rsa);
121 EVP_PKEY *pk11_load_privkey(ENGINE*, const char *pubkey_file,
122 UI_METHOD *ui_method, void *callback_data);
123 EVP_PKEY *pk11_load_pubkey(ENGINE*, const char *pubkey_file,
124 UI_METHOD *ui_method, void *callback_data);

126 static int pk11_RSA_public_encrypt_low(int flen, const unsigned char *from,
127 unsigned char *to, RSA *rsa);

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 3

128 static int pk11_RSA_private_encrypt_low(int flen, const unsigned char *from,
129 unsigned char *to, RSA *rsa);
130 static int pk11_RSA_public_decrypt_low(int flen, const unsigned char *from,
131 unsigned char *to, RSA *rsa);
132 static int pk11_RSA_private_decrypt_low(int flen, const unsigned char *from,
133 unsigned char *to, RSA *rsa);

135 static CK_OBJECT_HANDLE pk11_get_public_rsa_key(RSA* rsa, RSA** key_ptr,
136 BIGNUM **rsa_n_num, BIGNUM **rsa_e_num, CK_SESSION_HANDLE session);
137 static CK_OBJECT_HANDLE pk11_get_private_rsa_key(RSA* rsa, RSA** key_ptr,
138 BIGNUM **rsa_d_num, CK_SESSION_HANDLE session);

140 static int check_new_rsa_key_pub(PK11_SESSION *sp, const RSA *rsa);
141 static int check_new_rsa_key_priv(PK11_SESSION *sp, const RSA *rsa);
142 #endif

144 /* DSA stuff */
145 #ifndef OPENSSL_NO_DSA
146 static int pk11_DSA_init(DSA *dsa);
147 static int pk11_DSA_finish(DSA *dsa);
148 static DSA_SIG *pk11_dsa_do_sign(const unsigned char *dgst, int dlen,
149 DSA *dsa);
150 static int pk11_dsa_do_verify(const unsigned char *dgst, int dgst_len,
151 DSA_SIG *sig, DSA *dsa);

153 static CK_OBJECT_HANDLE pk11_get_public_dsa_key(DSA* dsa, DSA **key_ptr,
154 BIGNUM **dsa_pub_num, CK_SESSION_HANDLE session);
155 static CK_OBJECT_HANDLE pk11_get_private_dsa_key(DSA* dsa, DSA **key_ptr,
156 BIGNUM **dsa_priv_num, CK_SESSION_HANDLE session);

158 static int check_new_dsa_key_pub(PK11_SESSION *sp, DSA *dsa);
159 static int check_new_dsa_key_priv(PK11_SESSION *sp, DSA *dsa);
160 #endif

162 /* DH stuff */
163 #ifndef OPENSSL_NO_DH
164 static int pk11_DH_init(DH *dh);
165 static int pk11_DH_finish(DH *dh);
166 static int pk11_DH_generate_key(DH *dh);
167 static int pk11_DH_compute_key(unsigned char *key,
168 const BIGNUM *pub_key, DH *dh);

170 static CK_OBJECT_HANDLE pk11_get_dh_key(DH* dh, DH **key_ptr,
171 BIGNUM **priv_key, CK_SESSION_HANDLE session);

173 static int check_new_dh_key(PK11_SESSION *sp, DH *dh);
174 #endif

176 static int init_template_value(BIGNUM *bn, CK_VOID_PTR *pValue,
177 CK_ULONG *ulValueLen);

179 /* Read mode string to be used for fopen() */
180 #if SOLARIS_OPENSSL
181 static char *read_mode_flags = "rF";
182 #else
183 static char *read_mode_flags = "r";
184 #endif

186 /*
187 * increment/create reference for an asymmetric key handle via active list
188 * manipulation. If active list operation fails, unlock (if locked), set error
189 * variable and jump to the specified label.
190 */
191 #define KEY_HANDLE_REFHOLD(key_handle, alg_type, unlock, var, label) \
192 { \
193 if (sunw_pk11_active_add(key_handle, alg_type) < 0)

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 4

194 { \
195 var = TRUE; \
196 if (unlock) \
197 UNLOCK_OBJSTORE(alg_type); \
198 goto label; \
199 } \
200 }

202 /*
203 * Find active list entry according to object handle and return pointer to the
204 * entry otherwise return NULL.
205 *
206 * This function presumes it is called with lock protecting the active list
207 * held.
208 */
209 static PK11_active *pk11_active_find(CK_OBJECT_HANDLE h, PK11_OPTYPE type)
210 {
211 PK11_active *entry;

213 for (entry = active_list[type]; entry != NULL; entry = entry->next)
214 if (entry->h == h)
215 return (entry);

217 return (NULL);
218 }

220 /*
221 * Search for an entry in the active list using PKCS#11 object handle as a
222 * search key and return refcnt of the found/created entry or -1 in case of
223 * failure.
224 *
225 * This function presumes it is called with lock protecting the active list
226 * held.
227 */
228 int
229 sunw_pk11_active_add(CK_OBJECT_HANDLE h, PK11_OPTYPE type)
230 {
231 PK11_active *entry = NULL;

233 if (h == CK_INVALID_HANDLE)
234 {
235 PK11err(PK11_F_ACTIVE_ADD, PK11_R_INVALID_HANDLE);
236 return (-1);
237 }

239 /* search for entry in the active list */
240 if ((entry = pk11_active_find(h, type)) != NULL)
241 entry->refcnt++;
242 else
243 {
244 /* not found, create new entry and add it to the list */
245 entry = OPENSSL_malloc(sizeof (PK11_active));
246 if (entry == NULL)
247 {
248 PK11err(PK11_F_ACTIVE_ADD, PK11_R_MALLOC_FAILURE);
249 return (-1);
250 }
251 entry->h = h;
252 entry->refcnt = 1;
253 entry->prev = NULL;
254 entry->next = NULL;
255 /* connect the newly created entry to the list */
256 if (active_list[type] == NULL)
257 active_list[type] = entry;
258 else /* make the entry first in the list */
259 {

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 5

260 entry->next = active_list[type];
261 active_list[type]->prev = entry;
262 active_list[type] = entry;
263 }
264 }

266 return (entry->refcnt);
267 }

269 /*
270 * Remove active list entry from the list and free it.
271 *
272 * This function presumes it is called with lock protecting the active list
273 * held.
274 */
275 void
276 sunw_pk11_active_remove(PK11_active *entry, PK11_OPTYPE type)
277 {
278 PK11_active *prev_entry;

280 /* remove the entry from the list and free it */
281 if ((prev_entry = entry->prev) != NULL)
282 {
283 prev_entry->next = entry->next;
284 if (entry->next != NULL)
285 entry->next->prev = prev_entry;
286 }
287 else
288 {
289 active_list[type] = entry->next;
290 /* we were the first but not the only one */
291 if (entry->next != NULL)
292 entry->next->prev = NULL;
293 }

295 /* sanitization */
296 entry->h = CK_INVALID_HANDLE;
297 entry->prev = NULL;
298 entry->next = NULL;
299 OPENSSL_free(entry);
300 }

302 /* Free all entries from the active list. */
303 void
304 sunw_pk11_free_active_list(PK11_OPTYPE type)
305 {
306 PK11_active *entry;

308 /* only for asymmetric types since only they have C_Find* locks. */
309 switch (type)
310 {
311 case OP_RSA:
312 case OP_DSA:
313 case OP_DH:
314 break;
315 default:
316 return;
317 }

319 /* see find_lock array definition for more info on object locking */
320 LOCK_OBJSTORE(type);
321 while ((entry = active_list[type]) != NULL)
322 sunw_pk11_active_remove(entry, type);
323 UNLOCK_OBJSTORE(type);
324 }

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 6

326 /*
327 * Search for active list entry associated with given PKCS#11 object handle,
328 * decrement its refcnt and if it drops to 0, disconnect the entry and free it.
329 *
330 * Return 1 if the PKCS#11 object associated with the entry has no references,
331 * return 0 if there is at least one reference, -1 on error.
332 *
333 * This function presumes it is called with lock protecting the active list
334 * held.
335 */
336 int
337 sunw_pk11_active_delete(CK_OBJECT_HANDLE h, PK11_OPTYPE type)
338 {
339 PK11_active *entry = NULL;

341 if ((entry = pk11_active_find(h, type)) == NULL)
342 {
343 PK11err(PK11_F_ACTIVE_DELETE, PK11_R_INVALID_HANDLE);
344 return (-1);
345 }

347 OPENSSL_assert(entry->refcnt > 0);
348 entry->refcnt--;
349 if (entry->refcnt == 0)
350 {
351 sunw_pk11_active_remove(entry, type);
352 return (1);
353 }

355 return (0);
356 }

358 #ifndef OPENSSL_NO_RSA
359 /* Our internal RSA_METHOD that we provide pointers to */
360 static RSA_METHOD pk11_rsa =
361 {
362 "PKCS#11 RSA method",
363 pk11_RSA_public_encrypt, /* rsa_pub_encrypt */
364 pk11_RSA_public_decrypt, /* rsa_pub_decrypt */
365 pk11_RSA_private_encrypt, /* rsa_priv_encrypt */
366 pk11_RSA_private_decrypt, /* rsa_priv_decrypt */
367 NULL, /* rsa_mod_exp */
368 NULL, /* bn_mod_exp */
369 pk11_RSA_init, /* init */
370 pk11_RSA_finish, /* finish */
371 RSA_FLAG_SIGN_VER, /* flags */
372 NULL, /* app_data */
373 pk11_RSA_sign, /* rsa_sign */
374 pk11_RSA_verify /* rsa_verify */
375 };

377 RSA_METHOD *
378 PK11_RSA(void)
379 {
380 return (&pk11_rsa);
381 }
382 #endif

384 #ifndef OPENSSL_NO_DSA
385 /* Our internal DSA_METHOD that we provide pointers to */
386 static DSA_METHOD pk11_dsa =
387 {
388 "PKCS#11 DSA method",
389 pk11_dsa_do_sign, /* dsa_do_sign */
390 NULL, /* dsa_sign_setup */
391 pk11_dsa_do_verify, /* dsa_do_verify */

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 7

392 NULL, /* dsa_mod_exp */
393 NULL, /* bn_mod_exp */
394 pk11_DSA_init, /* init */
395 pk11_DSA_finish, /* finish */
396 0, /* flags */
397 NULL /* app_data */
398 };

400 DSA_METHOD *
401 PK11_DSA(void)
402 {
403 return (&pk11_dsa);
404 }
405 #endif

407 #ifndef OPENSSL_NO_DH
408 /*
409 * PKCS #11 V2.20, section 11.2 specifies that the number of bytes needed for
410 * output buffer may somewhat exceed the precise number of bytes needed, but
411 * should not exceed it by a large amount. That may be caused, for example, by
412 * rounding it up to multiple of X in the underlying bignum library. 8 should be
413 * enough.
414 */
415 #define DH_BUF_RESERVE 8

417 /* Our internal DH_METHOD that we provide pointers to */
418 static DH_METHOD pk11_dh =
419 {
420 "PKCS#11 DH method",
421 pk11_DH_generate_key, /* generate_key */
422 pk11_DH_compute_key, /* compute_key */
423 NULL, /* bn_mod_exp */
424 pk11_DH_init, /* init */
425 pk11_DH_finish, /* finish */
426 0, /* flags */
427 NULL, /* app_data */
428 NULL /* generate_params */
429 };

431 DH_METHOD *
432 PK11_DH(void)
433 {
434 return (&pk11_dh);
435 }
436 #endif

438 /* Size of an SSL signature: MD5+SHA1 */
439 #define SSL_SIG_LENGTH 36

441 /* Lengths of DSA data and signature */
442 #define DSA_DATA_LEN 20
443 #define DSA_SIGNATURE_LEN 40

445 static CK_BBOOL true = TRUE;
446 static CK_BBOOL false = FALSE;

448 #ifndef OPENSSL_NO_RSA
449 /*
450 * Similiar to OpenSSL to take advantage of the paddings. The goal is to
451 * support all paddings in this engine although PK11 library does not
452 * support all the paddings used in OpenSSL.
453 * The input errors should have been checked in the padding functions.
454 */
455 static int pk11_RSA_public_encrypt(int flen, const unsigned char *from,
456 unsigned char *to, RSA *rsa, int padding)
457 {

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 8

458 int i, num = 0, r = -1;
459 unsigned char *buf = NULL;

461 num = BN_num_bytes(rsa->n);
462 if ((buf = (unsigned char *)OPENSSL_malloc(num)) == NULL)
463 {
464 RSAerr(PK11_F_RSA_PUB_ENC, PK11_R_MALLOC_FAILURE);
465 goto err;
466 }

468 switch (padding)
469 {
470 case RSA_PKCS1_PADDING:
471 i = RSA_padding_add_PKCS1_type_2(buf, num, from, flen);
472 break;
473 #ifndef OPENSSL_NO_SHA
474 case RSA_PKCS1_OAEP_PADDING:
475 i = RSA_padding_add_PKCS1_OAEP(buf, num, from, flen, NULL, 0);
476 break;
477 #endif
478 case RSA_SSLV23_PADDING:
479 i = RSA_padding_add_SSLv23(buf, num, from, flen);
480 break;
481 case RSA_NO_PADDING:
482 i = RSA_padding_add_none(buf, num, from, flen);
483 break;
484 default:
485 RSAerr(PK11_F_RSA_PUB_ENC, PK11_R_UNKNOWN_PADDING_TYPE);
486 goto err;
487 }
488 if (i <= 0) goto err;

490 /* PK11 functions are called here */
491 r = pk11_RSA_public_encrypt_low(num, buf, to, rsa);
492 err:
493 if (buf != NULL)
494 {
495 OPENSSL_cleanse(buf, num);
496 OPENSSL_free(buf);
497 }
498 return (r);
499 }

502 /*
503 * Similar to Openssl to take advantage of the paddings. The input errors
504 * should be catched in the padding functions
505 */
506 static int pk11_RSA_private_encrypt(int flen, const unsigned char *from,
507 unsigned char *to, RSA *rsa, int padding)
508 {
509 int i, num = 0, r = -1;
510 unsigned char *buf = NULL;

512 num = BN_num_bytes(rsa->n);
513 if ((buf = (unsigned char *)OPENSSL_malloc(num)) == NULL)
514 {
515 RSAerr(PK11_F_RSA_PRIV_ENC, PK11_R_MALLOC_FAILURE);
516 goto err;
517 }

519 switch (padding)
520 {
521 case RSA_PKCS1_PADDING:
522 i = RSA_padding_add_PKCS1_type_1(buf, num, from, flen);
523 break;

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 9

524 case RSA_NO_PADDING:
525 i = RSA_padding_add_none(buf, num, from, flen);
526 break;
527 case RSA_SSLV23_PADDING:
528 default:
529 RSAerr(PK11_F_RSA_PRIV_ENC, PK11_R_UNKNOWN_PADDING_TYPE);
530 goto err;
531 }
532 if (i <= 0) goto err;

534 /* PK11 functions are called here */
535 r = pk11_RSA_private_encrypt_low(num, buf, to, rsa);
536 err:
537 if (buf != NULL)
538 {
539 OPENSSL_cleanse(buf, num);
540 OPENSSL_free(buf);
541 }
542 return (r);
543 }

545 /* Similar to OpenSSL code. Input errors are also checked here */
546 static int pk11_RSA_private_decrypt(int flen, const unsigned char *from,
547 unsigned char *to, RSA *rsa, int padding)
548 {
549 BIGNUM f;
550 int j, num = 0, r = -1;
551 unsigned char *p;
552 unsigned char *buf = NULL;

554 BN_init(&f);

556 num = BN_num_bytes(rsa->n);

558 if ((buf = (unsigned char *)OPENSSL_malloc(num)) == NULL)
559 {
560 RSAerr(PK11_F_RSA_PRIV_DEC, PK11_R_MALLOC_FAILURE);
561 goto err;
562 }

564 /*
565 * This check was for equality but PGP does evil things
566 * and chops off the top ’0’ bytes
567 */
568 if (flen > num)
569 {
570 RSAerr(PK11_F_RSA_PRIV_DEC,
571 PK11_R_DATA_GREATER_THAN_MOD_LEN);
572 goto err;
573 }

575 /* make data into a big number */
576 if (BN_bin2bn(from, (int)flen, &f) == NULL)
577 goto err;

579 if (BN_ucmp(&f, rsa->n) >= 0)
580 {
581 RSAerr(PK11_F_RSA_PRIV_DEC,
582 PK11_R_DATA_TOO_LARGE_FOR_MODULUS);
583 goto err;
584 }

586 /* PK11 functions are called here */
587 r = pk11_RSA_private_decrypt_low(flen, from, buf, rsa);

589 /*

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 10

590 * PK11 CKM_RSA_X_509 mechanism pads 0’s at the beginning.
591 * Needs to skip these 0’s paddings here.
592 */
593 for (j = 0; j < r; j++)
594 if (buf[j] != 0)
595 break;

597 p = buf + j;
598 j = r - j; /* j is only used with no-padding mode */

600 switch (padding)
601 {
602 case RSA_PKCS1_PADDING:
603 r = RSA_padding_check_PKCS1_type_2(to, num, p, j, num);
604 break;
605 #ifndef OPENSSL_NO_SHA
606 case RSA_PKCS1_OAEP_PADDING:
607 r = RSA_padding_check_PKCS1_OAEP(to, num, p, j, num, NULL, 0);
608 break;
609 #endif
610 case RSA_SSLV23_PADDING:
611 r = RSA_padding_check_SSLv23(to, num, p, j, num);
612 break;
613 case RSA_NO_PADDING:
614 r = RSA_padding_check_none(to, num, p, j, num);
615 break;
616 default:
617 RSAerr(PK11_F_RSA_PRIV_DEC, PK11_R_UNKNOWN_PADDING_TYPE);
618 goto err;
619 }
620 if (r < 0)
621 RSAerr(PK11_F_RSA_PRIV_DEC, PK11_R_PADDING_CHECK_FAILED);

623 err:
624 BN_clear_free(&f);
625 if (buf != NULL)
626 {
627 OPENSSL_cleanse(buf, num);
628 OPENSSL_free(buf);
629 }
630 return (r);
631 }

633 /* Similar to OpenSSL code. Input errors are also checked here */
634 static int pk11_RSA_public_decrypt(int flen, const unsigned char *from,
635 unsigned char *to, RSA *rsa, int padding)
636 {
637 BIGNUM f;
638 int i, num = 0, r = -1;
639 unsigned char *p;
640 unsigned char *buf = NULL;

642 BN_init(&f);
643 num = BN_num_bytes(rsa->n);
644 buf = (unsigned char *)OPENSSL_malloc(num);
645 if (buf == NULL)
646 {
647 RSAerr(PK11_F_RSA_PUB_DEC, PK11_R_MALLOC_FAILURE);
648 goto err;
649 }

651 /*
652 * This check was for equality but PGP does evil things
653 * and chops off the top ’0’ bytes
654 */
655 if (flen > num)

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 11

656 {
657 RSAerr(PK11_F_RSA_PUB_DEC, PK11_R_DATA_GREATER_THAN_MOD_LEN);
658 goto err;
659 }

661 if (BN_bin2bn(from, flen, &f) == NULL)
662 goto err;

664 if (BN_ucmp(&f, rsa->n) >= 0)
665 {
666 RSAerr(PK11_F_RSA_PUB_DEC,
667 PK11_R_DATA_TOO_LARGE_FOR_MODULUS);
668 goto err;
669 }

671 /* PK11 functions are called here */
672 r = pk11_RSA_public_decrypt_low(flen, from, buf, rsa);

674 /*
675 * PK11 CKM_RSA_X_509 mechanism pads 0’s at the beginning.
676 * Needs to skip these 0’s here
677 */
678 for (i = 0; i < r; i++)
679 if (buf[i] != 0)
680 break;

682 p = buf + i;
683 i = r - i; /* i is only used with no-padding mode */

685 switch (padding)
686 {
687 case RSA_PKCS1_PADDING:
688 r = RSA_padding_check_PKCS1_type_1(to, num, p, i, num);
689 break;
690 case RSA_NO_PADDING:
691 r = RSA_padding_check_none(to, num, p, i, num);
692 break;
693 default:
694 RSAerr(PK11_F_RSA_PUB_DEC, PK11_R_UNKNOWN_PADDING_TYPE);
695 goto err;
696 }
697 if (r < 0)
698 RSAerr(PK11_F_RSA_PUB_DEC, PK11_R_PADDING_CHECK_FAILED);

700 err:
701 BN_clear_free(&f);
702 if (buf != NULL)
703 {
704 OPENSSL_cleanse(buf, num);
705 OPENSSL_free(buf);
706 }
707 return (r);
708 }

710 /*
711 * This function implements RSA public encryption using C_EncryptInit and
712 * C_Encrypt pk11 interfaces. Note that the CKM_RSA_X_509 is used here.
713 * The calling function allocated sufficient memory in "to" to store results.
714 */
715 static int pk11_RSA_public_encrypt_low(int flen,
716 const unsigned char *from, unsigned char *to, RSA *rsa)
717 {
718 CK_ULONG bytes_encrypted = flen;
719 int retval = -1;
720 CK_RV rv;
721 CK_MECHANISM mech_rsa = {CKM_RSA_X_509, NULL, 0};

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 12

722 CK_MECHANISM *p_mech = &mech_rsa;
723 CK_OBJECT_HANDLE h_pub_key = CK_INVALID_HANDLE;
724 PK11_SESSION *sp;

726 if ((sp = pk11_get_session(OP_RSA)) == NULL)
727 return (-1);

729 (void) check_new_rsa_key_pub(sp, rsa);

731 h_pub_key = sp->opdata_rsa_pub_key;
732 if (h_pub_key == CK_INVALID_HANDLE)
733 h_pub_key = sp->opdata_rsa_pub_key =
734 pk11_get_public_rsa_key(rsa, &sp->opdata_rsa_pub,
735 &sp->opdata_rsa_n_num, &sp->opdata_rsa_e_num,
736 sp->session);

738 if (h_pub_key != CK_INVALID_HANDLE)
739 {
740 rv = pFuncList->C_EncryptInit(sp->session, p_mech,
741 h_pub_key);

743 if (rv != CKR_OK)
744 {
745 PK11err_add_data(PK11_F_RSA_PUB_ENC_LOW,
746 PK11_R_ENCRYPTINIT, rv);
747 pk11_return_session(sp, OP_RSA);
748 return (-1);
749 }

751 rv = pFuncList->C_Encrypt(sp->session,
752 (unsigned char *)from, flen, to, &bytes_encrypted);

754 if (rv != CKR_OK)
755 {
756 PK11err_add_data(PK11_F_RSA_PUB_ENC_LOW,
757 PK11_R_ENCRYPT, rv);
758 pk11_return_session(sp, OP_RSA);
759 return (-1);
760 }
761 retval = bytes_encrypted;
762 }

764 pk11_return_session(sp, OP_RSA);
765 return (retval);
766 }

769 /*
770 * This function implements RSA private encryption using C_SignInit and
771 * C_Sign pk11 APIs. Note that CKM_RSA_X_509 is used here.
772 * The calling function allocated sufficient memory in "to" to store results.
773 */
774 static int pk11_RSA_private_encrypt_low(int flen,
775 const unsigned char *from, unsigned char *to, RSA *rsa)
776 {
777 CK_ULONG ul_sig_len = flen;
778 int retval = -1;
779 CK_RV rv;
780 CK_MECHANISM mech_rsa = {CKM_RSA_X_509, NULL, 0};
781 CK_MECHANISM *p_mech = &mech_rsa;
782 CK_OBJECT_HANDLE h_priv_key = CK_INVALID_HANDLE;
783 PK11_SESSION *sp;

785 if ((sp = pk11_get_session(OP_RSA)) == NULL)
786 return (-1);

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 13

788 (void) check_new_rsa_key_priv(sp, rsa);

790 h_priv_key = sp->opdata_rsa_priv_key;
791 if (h_priv_key == CK_INVALID_HANDLE)
792 h_priv_key = sp->opdata_rsa_priv_key =
793 pk11_get_private_rsa_key(rsa, &sp->opdata_rsa_priv,
794 &sp->opdata_rsa_d_num, sp->session);

796 if (h_priv_key != CK_INVALID_HANDLE)
797 {
798 rv = pFuncList->C_SignInit(sp->session, p_mech,
799 h_priv_key);

801 if (rv != CKR_OK)
802 {
803 PK11err_add_data(PK11_F_RSA_PRIV_ENC_LOW,
804 PK11_R_SIGNINIT, rv);
805 pk11_return_session(sp, OP_RSA);
806 return (-1);
807 }

809 rv = pFuncList->C_Sign(sp->session,
810 (unsigned char *)from, flen, to, &ul_sig_len);

812 if (rv != CKR_OK)
813 {
814 PK11err_add_data(PK11_F_RSA_PRIV_ENC_LOW, PK11_R_SIGN,
815 rv);
816 pk11_return_session(sp, OP_RSA);
817 return (-1);
818 }

820 retval = ul_sig_len;
821 }

823 pk11_return_session(sp, OP_RSA);
824 return (retval);
825 }

828 /*
829 * This function implements RSA private decryption using C_DecryptInit and
830 * C_Decrypt pk11 APIs. Note that CKM_RSA_X_509 mechanism is used here.
831 * The calling function allocated sufficient memory in "to" to store results.
832 */
833 static int pk11_RSA_private_decrypt_low(int flen,
834 const unsigned char *from, unsigned char *to, RSA *rsa)
835 {
836 CK_ULONG bytes_decrypted = flen;
837 int retval = -1;
838 CK_RV rv;
839 CK_MECHANISM mech_rsa = {CKM_RSA_X_509, NULL, 0};
840 CK_MECHANISM *p_mech = &mech_rsa;
841 CK_OBJECT_HANDLE h_priv_key;
842 PK11_SESSION *sp;

844 if ((sp = pk11_get_session(OP_RSA)) == NULL)
845 return (-1);

847 (void) check_new_rsa_key_priv(sp, rsa);

849 h_priv_key = sp->opdata_rsa_priv_key;
850 if (h_priv_key == CK_INVALID_HANDLE)
851 h_priv_key = sp->opdata_rsa_priv_key =
852 pk11_get_private_rsa_key(rsa, &sp->opdata_rsa_priv,
853 &sp->opdata_rsa_d_num, sp->session);

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 14

855 if (h_priv_key != CK_INVALID_HANDLE)
856 {
857 rv = pFuncList->C_DecryptInit(sp->session, p_mech,
858 h_priv_key);

860 if (rv != CKR_OK)
861 {
862 PK11err_add_data(PK11_F_RSA_PRIV_DEC_LOW,
863 PK11_R_DECRYPTINIT, rv);
864 pk11_return_session(sp, OP_RSA);
865 return (-1);
866 }

868 rv = pFuncList->C_Decrypt(sp->session,
869 (unsigned char *)from, flen, to, &bytes_decrypted);

871 if (rv != CKR_OK)
872 {
873 PK11err_add_data(PK11_F_RSA_PRIV_DEC_LOW,
874 PK11_R_DECRYPT, rv);
875 pk11_return_session(sp, OP_RSA);
876 return (-1);
877 }
878 retval = bytes_decrypted;
879 }

881 pk11_return_session(sp, OP_RSA);
882 return (retval);
883 }

886 /*
887 * This function implements RSA public decryption using C_VerifyRecoverInit
888 * and C_VerifyRecover pk11 APIs. Note that CKM_RSA_X_509 is used here.
889 * The calling function allocated sufficient memory in "to" to store results.
890 */
891 static int pk11_RSA_public_decrypt_low(int flen,
892 const unsigned char *from, unsigned char *to, RSA *rsa)
893 {
894 CK_ULONG bytes_decrypted = flen;
895 int retval = -1;
896 CK_RV rv;
897 CK_MECHANISM mech_rsa = {CKM_RSA_X_509, NULL, 0};
898 CK_MECHANISM *p_mech = &mech_rsa;
899 CK_OBJECT_HANDLE h_pub_key = CK_INVALID_HANDLE;
900 PK11_SESSION *sp;

902 if ((sp = pk11_get_session(OP_RSA)) == NULL)
903 return (-1);

905 (void) check_new_rsa_key_pub(sp, rsa);

907 h_pub_key = sp->opdata_rsa_pub_key;
908 if (h_pub_key == CK_INVALID_HANDLE)
909 h_pub_key = sp->opdata_rsa_pub_key =
910 pk11_get_public_rsa_key(rsa, &sp->opdata_rsa_pub,
911 &sp->opdata_rsa_n_num, &sp->opdata_rsa_e_num,
912 sp->session);

914 if (h_pub_key != CK_INVALID_HANDLE)
915 {
916 rv = pFuncList->C_VerifyRecoverInit(sp->session,
917 p_mech, h_pub_key);

919 if (rv != CKR_OK)

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 15

920 {
921 PK11err_add_data(PK11_F_RSA_PUB_DEC_LOW,
922 PK11_R_VERIFYRECOVERINIT, rv);
923 pk11_return_session(sp, OP_RSA);
924 return (-1);
925 }

927 rv = pFuncList->C_VerifyRecover(sp->session,
928 (unsigned char *)from, flen, to, &bytes_decrypted);

930 if (rv != CKR_OK)
931 {
932 PK11err_add_data(PK11_F_RSA_PUB_DEC_LOW,
933 PK11_R_VERIFYRECOVER, rv);
934 pk11_return_session(sp, OP_RSA);
935 return (-1);
936 }
937 retval = bytes_decrypted;
938 }

940 pk11_return_session(sp, OP_RSA);
941 return (retval);
942 }

944 static int pk11_RSA_init(RSA *rsa)
945 {
946 /*
947 * This flag in the RSA_METHOD enables the new rsa_sign,
948 * rsa_verify functions. See rsa.h for details.
949 */
950 rsa->flags |= RSA_FLAG_SIGN_VER;

952 return (1);
953 }

955 static int pk11_RSA_finish(RSA *rsa)
956 {
957 /*
958 * Since we are overloading OpenSSL’s native RSA_eay_finish() we need
959 * to do the same as in the original function, i.e. to free bignum
960 * structures.
961 */
962 if (rsa->_method_mod_n != NULL)
963 BN_MONT_CTX_free(rsa->_method_mod_n);
964 if (rsa->_method_mod_p != NULL)
965 BN_MONT_CTX_free(rsa->_method_mod_p);
966 if (rsa->_method_mod_q != NULL)
967 BN_MONT_CTX_free(rsa->_method_mod_q);

969 return (1);
970 }

972 /*
973 * Standard engine interface function. Majority codes here are from
974 * rsa/rsa_sign.c. We replaced the decrypt function call by C_Sign of PKCS#11.
975 * See more details in rsa/rsa_sign.c
976 */
977 static int pk11_RSA_sign(int type, const unsigned char *m, unsigned int m_len,
978 unsigned char *sigret, unsigned int *siglen, const RSA *rsa)
979 {
980 X509_SIG sig;
981 ASN1_TYPE parameter;
982 int i, j=0;
983 unsigned char *p, *s = NULL;
984 X509_ALGOR algor;
985 ASN1_OCTET_STRING digest;

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 16

986 CK_RV rv;
987 CK_MECHANISM mech_rsa = {CKM_RSA_PKCS, NULL, 0};
988 CK_MECHANISM *p_mech = &mech_rsa;
989 CK_OBJECT_HANDLE h_priv_key;
990 PK11_SESSION *sp = NULL;
991 int ret = 0;
992 unsigned long ulsiglen;

994 /* Encode the digest */
995 /* Special case: SSL signature, just check the length */
996 if (type == NID_md5_sha1)
997 {
998 if (m_len != SSL_SIG_LENGTH)
999 {

1000 PK11err(PK11_F_RSA_SIGN,
1001 PK11_R_INVALID_MESSAGE_LENGTH);
1002 goto err;
1003 }
1004 i = SSL_SIG_LENGTH;
1005 s = (unsigned char *)m;
1006 }
1007 else
1008 {
1009 sig.algor = &algor;
1010 sig.algor->algorithm = OBJ_nid2obj(type);
1011 if (sig.algor->algorithm == NULL)
1012 {
1013 PK11err(PK11_F_RSA_SIGN,
1014 PK11_R_UNKNOWN_ALGORITHM_TYPE);
1015 goto err;
1016 }
1017 if (sig.algor->algorithm->length == 0)
1018 {
1019 PK11err(PK11_F_RSA_SIGN,
1020 PK11_R_UNKNOWN_ASN1_OBJECT_ID);
1021 goto err;
1022 }
1023 parameter.type = V_ASN1_NULL;
1024 parameter.value.ptr = NULL;
1025 sig.algor->parameter = ¶meter;

1027 sig.digest = &digest;
1028 sig.digest->data = (unsigned char *)m;
1029 sig.digest->length = m_len;

1031 i = i2d_X509_SIG(&sig, NULL);
1032 }

1034 j = RSA_size(rsa);
1035 if ((i - RSA_PKCS1_PADDING) > j)
1036 {
1037 PK11err(PK11_F_RSA_SIGN, PK11_R_DIGEST_TOO_BIG);
1038 goto err;
1039 }

1041 if (type != NID_md5_sha1)
1042 {
1043 s = (unsigned char *)OPENSSL_malloc((unsigned int)(j + 1));
1044 if (s == NULL)
1045 {
1046 PK11err(PK11_F_RSA_SIGN, PK11_R_MALLOC_FAILURE);
1047 goto err;
1048 }
1049 p = s;
1050 (void) i2d_X509_SIG(&sig, &p);
1051 }

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 17

1053 if ((sp = pk11_get_session(OP_RSA)) == NULL)
1054 goto err;

1056 (void) check_new_rsa_key_priv(sp, rsa);

1058 h_priv_key = sp->opdata_rsa_priv_key;
1059 if (h_priv_key == CK_INVALID_HANDLE)
1060 h_priv_key = sp->opdata_rsa_priv_key =
1061 pk11_get_private_rsa_key((RSA *)rsa,
1062 &sp->opdata_rsa_priv,
1063 &sp->opdata_rsa_d_num, sp->session);

1065 if (h_priv_key != CK_INVALID_HANDLE)
1066 {
1067 rv = pFuncList->C_SignInit(sp->session, p_mech, h_priv_key);

1069 if (rv != CKR_OK)
1070 {
1071 PK11err_add_data(PK11_F_RSA_SIGN, PK11_R_SIGNINIT, rv);
1072 goto err;
1073 }

1075 ulsiglen = j;
1076 rv = pFuncList->C_Sign(sp->session, s, i, sigret,
1077 (CK_ULONG_PTR) &ulsiglen);
1078 *siglen = ulsiglen;

1080 if (rv != CKR_OK)
1081 {
1082 PK11err_add_data(PK11_F_RSA_SIGN, PK11_R_SIGN, rv);
1083 goto err;
1084 }
1085 ret = 1;
1086 }

1088 err:
1089 if (type != NID_md5_sha1)
1090 {
1091 (void) memset(s, 0, (unsigned int)(j + 1));
1092 OPENSSL_free(s);
1093 }

1095 pk11_return_session(sp, OP_RSA);
1096 return (ret);
1097 }

1099 static int pk11_RSA_verify(int type, const unsigned char *m,
1100 unsigned int m_len, const unsigned char *sigbuf, unsigned int siglen,
1101 const RSA *rsa)
1102 {
1103 X509_SIG sig;
1104 ASN1_TYPE parameter;
1105 int i, j;
1106 unsigned char *p, *s = NULL;
1107 X509_ALGOR algor;
1108 ASN1_OCTET_STRING digest;
1109 CK_RV rv;
1110 CK_MECHANISM mech_rsa = {CKM_RSA_PKCS, NULL, 0};
1111 CK_MECHANISM *p_mech = &mech_rsa;
1112 CK_OBJECT_HANDLE h_pub_key;
1113 PK11_SESSION *sp = NULL;
1114 int ret = 0;

1116 /* Encode the digest */
1117 /* Special case: SSL signature, just check the length */

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 18

1118 if (type == NID_md5_sha1)
1119 {
1120 if (m_len != SSL_SIG_LENGTH)
1121 {
1122 PK11err(PK11_F_RSA_VERIFY,
1123 PK11_R_INVALID_MESSAGE_LENGTH);
1124 goto err;
1125 }
1126 i = SSL_SIG_LENGTH;
1127 s = (unsigned char *)m;
1128 }
1129 else
1130 {
1131 sig.algor = &algor;
1132 sig.algor->algorithm = OBJ_nid2obj(type);
1133 if (sig.algor->algorithm == NULL)
1134 {
1135 PK11err(PK11_F_RSA_VERIFY,
1136 PK11_R_UNKNOWN_ALGORITHM_TYPE);
1137 goto err;
1138 }
1139 if (sig.algor->algorithm->length == 0)
1140 {
1141 PK11err(PK11_F_RSA_VERIFY,
1142 PK11_R_UNKNOWN_ASN1_OBJECT_ID);
1143 goto err;
1144 }
1145 parameter.type = V_ASN1_NULL;
1146 parameter.value.ptr = NULL;
1147 sig.algor->parameter = ¶meter;
1148 sig.digest = &digest;
1149 sig.digest->data = (unsigned char *)m;
1150 sig.digest->length = m_len;
1151 i = i2d_X509_SIG(&sig, NULL);
1152 }

1154 j = RSA_size(rsa);
1155 if ((i - RSA_PKCS1_PADDING) > j)
1156 {
1157 PK11err(PK11_F_RSA_VERIFY, PK11_R_DIGEST_TOO_BIG);
1158 goto err;
1159 }

1161 if (type != NID_md5_sha1)
1162 {
1163 s = (unsigned char *)OPENSSL_malloc((unsigned int)(j + 1));
1164 if (s == NULL)
1165 {
1166 PK11err(PK11_F_RSA_VERIFY, PK11_R_MALLOC_FAILURE);
1167 goto err;
1168 }
1169 p = s;
1170 (void) i2d_X509_SIG(&sig, &p);
1171 }

1173 if ((sp = pk11_get_session(OP_RSA)) == NULL)
1174 goto err;

1176 (void) check_new_rsa_key_pub(sp, rsa);

1178 h_pub_key = sp->opdata_rsa_pub_key;
1179 if (h_pub_key == CK_INVALID_HANDLE)
1180 h_pub_key = sp->opdata_rsa_pub_key =
1181 pk11_get_public_rsa_key((RSA *)rsa, &sp->opdata_rsa_pub,
1182 &sp->opdata_rsa_n_num, &sp->opdata_rsa_e_num,
1183 sp->session);

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 19

1185 if (h_pub_key != CK_INVALID_HANDLE)
1186 {
1187 rv = pFuncList->C_VerifyInit(sp->session, p_mech,
1188 h_pub_key);

1190 if (rv != CKR_OK)
1191 {
1192 PK11err_add_data(PK11_F_RSA_VERIFY, PK11_R_VERIFYINIT,
1193 rv);
1194 goto err;
1195 }
1196 rv = pFuncList->C_Verify(sp->session, s, i, (CK_BYTE_PTR) sigbuf
1197 (CK_ULONG)siglen);

1199 if (rv != CKR_OK)
1200 {
1201 PK11err_add_data(PK11_F_RSA_VERIFY, PK11_R_VERIFY, rv);
1202 goto err;
1203 }
1204 ret = 1;
1205 }

1207 err:
1208 if (type != NID_md5_sha1)
1209 {
1210 (void) memset(s, 0, (unsigned int)siglen);
1211 OPENSSL_free(s);
1212 }

1214 pk11_return_session(sp, OP_RSA);
1215 return (ret);
1216 }

1218 /* load RSA private key from a file */
1219 /* ARGSUSED */
1220 EVP_PKEY *pk11_load_privkey(ENGINE* e, const char *privkey_file,
1221 UI_METHOD *ui_method, void *callback_data)
1222 {
1223 EVP_PKEY *pkey = NULL;
1224 FILE *pubkey;
1225 CK_OBJECT_HANDLE h_priv_key = CK_INVALID_HANDLE;
1226 RSA *rsa;
1227 PK11_SESSION *sp;

1229 if ((sp = pk11_get_session(OP_RSA)) == NULL)
1230 return (NULL);

1232 if ((pubkey = fopen(privkey_file, read_mode_flags)) != NULL)
1233 {
1234 pkey = PEM_read_PrivateKey(pubkey, NULL, NULL, NULL);
1235 (void) fclose(pubkey);
1236 if (pkey != NULL)
1237 {
1238 rsa = EVP_PKEY_get1_RSA(pkey);
1239 if (rsa != NULL)
1240 {
1241 (void) check_new_rsa_key_priv(sp, rsa);

1243 h_priv_key = sp->opdata_rsa_priv_key =
1244 pk11_get_private_rsa_key(rsa,
1245 &sp->opdata_rsa_priv, &sp->opdata_rsa_d_num,
1246 sp->session);
1247 if (h_priv_key == CK_INVALID_HANDLE)
1248 {
1249 EVP_PKEY_free(pkey);

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 20

1250 pkey = NULL;
1251 }
1252 }
1253 else
1254 {
1255 EVP_PKEY_free(pkey);
1256 pkey = NULL;
1257 }
1258 }
1259 }

1261 pk11_return_session(sp, OP_RSA);
1262 return (pkey);
1263 }

1265 /* load RSA public key from a file */
1266 /* ARGSUSED */
1267 EVP_PKEY *pk11_load_pubkey(ENGINE* e, const char *pubkey_file,
1268 UI_METHOD *ui_method, void *callback_data)
1269 {
1270 EVP_PKEY *pkey = NULL;
1271 FILE *pubkey;
1272 CK_OBJECT_HANDLE h_pub_key = CK_INVALID_HANDLE;
1273 RSA *rsa;
1274 PK11_SESSION *sp;

1276 if ((sp = pk11_get_session(OP_RSA)) == NULL)
1277 return (NULL);

1279 if ((pubkey = fopen(pubkey_file, read_mode_flags)) != NULL)
1280 {
1281 pkey = PEM_read_PUBKEY(pubkey, NULL, NULL, NULL);
1282 (void) fclose(pubkey);
1283 if (pkey != NULL)
1284 {
1285 rsa = EVP_PKEY_get1_RSA(pkey);
1286 if (rsa != NULL)
1287 {
1288 (void) check_new_rsa_key_pub(sp, rsa);

1290 h_pub_key = sp->opdata_rsa_pub_key =
1291 pk11_get_public_rsa_key(rsa,
1292 &sp->opdata_rsa_pub, &sp->opdata_rsa_n_num,
1293 &sp->opdata_rsa_e_num, sp->session);
1294 if (h_pub_key == CK_INVALID_HANDLE)
1295 {
1296 EVP_PKEY_free(pkey);
1297 pkey = NULL;
1298 }
1299 }
1300 else
1301 {
1302 EVP_PKEY_free(pkey);
1303 pkey = NULL;
1304 }
1305 }
1306 }

1308 pk11_return_session(sp, OP_RSA);
1309 return (pkey);
1310 }

1312 /*
1313 * Create a public key object in a session from a given rsa structure.
1314 * The *rsa_n_num and *rsa_e_num pointers are non-NULL for RSA public keys.
1315 */

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 21

1316 static CK_OBJECT_HANDLE pk11_get_public_rsa_key(RSA* rsa,
1317 RSA** key_ptr, BIGNUM **rsa_n_num, BIGNUM **rsa_e_num,
1318 CK_SESSION_HANDLE session)
1319 {
1320 CK_RV rv;
1321 CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;
1322 CK_ULONG found;
1323 CK_OBJECT_CLASS o_key = CKO_PUBLIC_KEY;
1324 CK_KEY_TYPE k_type = CKK_RSA;
1325 CK_ULONG ul_key_attr_count = 7;
1326 CK_BBOOL rollback = FALSE;

1328 CK_ATTRIBUTE a_key_template[] =
1329 {
1330 {CKA_CLASS, (void *) NULL, sizeof (CK_OBJECT_CLASS)},
1331 {CKA_KEY_TYPE, (void *) NULL, sizeof (CK_KEY_TYPE)},
1332 {CKA_TOKEN, &false, sizeof (true)},
1333 {CKA_ENCRYPT, &true, sizeof (true)},
1334 {CKA_VERIFY_RECOVER, &true, sizeof (true)},
1335 {CKA_MODULUS, (void *)NULL, 0},
1336 {CKA_PUBLIC_EXPONENT, (void *)NULL, 0}
1337 };

1339 int i;

1341 a_key_template[0].pValue = &o_key;
1342 a_key_template[1].pValue = &k_type;

1344 a_key_template[5].ulValueLen = BN_num_bytes(rsa->n);
1345 a_key_template[5].pValue = (CK_VOID_PTR)OPENSSL_malloc(
1346 (size_t)a_key_template[5].ulValueLen);
1347 if (a_key_template[5].pValue == NULL)
1348 {
1349 PK11err(PK11_F_GET_PUB_RSA_KEY, PK11_R_MALLOC_FAILURE);
1350 goto malloc_err;
1351 }

1353 BN_bn2bin(rsa->n, a_key_template[5].pValue);

1355 a_key_template[6].ulValueLen = BN_num_bytes(rsa->e);
1356 a_key_template[6].pValue = (CK_VOID_PTR)OPENSSL_malloc(
1357 (size_t)a_key_template[6].ulValueLen);
1358 if (a_key_template[6].pValue == NULL)
1359 {
1360 PK11err(PK11_F_GET_PUB_RSA_KEY, PK11_R_MALLOC_FAILURE);
1361 goto malloc_err;
1362 }

1364 BN_bn2bin(rsa->e, a_key_template[6].pValue);

1366 /* see find_lock array definition for more info on object locking */
1367 LOCK_OBJSTORE(OP_RSA);
1368 rv = pFuncList->C_FindObjectsInit(session, a_key_template,
1369 ul_key_attr_count);

1371 if (rv != CKR_OK)
1372 {
1373 PK11err_add_data(PK11_F_GET_PUB_RSA_KEY, PK11_R_FINDOBJECTSINIT,
1374 rv);
1375 goto err;
1376 }

1378 rv = pFuncList->C_FindObjects(session, &h_key, 1, &found);

1380 if (rv != CKR_OK)
1381 {

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 22

1382 PK11err_add_data(PK11_F_GET_PUB_RSA_KEY,
1383 PK11_R_FINDOBJECTS, rv);
1384 goto err;
1385 }

1387 rv = pFuncList->C_FindObjectsFinal(session);

1389 if (rv != CKR_OK)
1390 {
1391 PK11err_add_data(PK11_F_GET_PUB_RSA_KEY,
1392 PK11_R_FINDOBJECTSFINAL, rv);
1393 goto err;
1394 }

1396 if (found == 0)
1397 {
1398 rv = pFuncList->C_CreateObject(session,
1399 a_key_template, ul_key_attr_count, &h_key);
1400 if (rv != CKR_OK)
1401 {
1402 PK11err_add_data(PK11_F_GET_PUB_RSA_KEY,
1403 PK11_R_CREATEOBJECT, rv);
1404 goto err;
1405 }
1406 }

1408 if (rsa_n_num != NULL)
1409 if ((*rsa_n_num = BN_dup(rsa->n)) == NULL)
1410 {
1411 PK11err(PK11_F_GET_PUB_RSA_KEY, PK11_R_MALLOC_FAILURE);
1412 rollback = TRUE;
1413 goto err;
1414 }
1415 if (rsa_e_num != NULL)
1416 if ((*rsa_e_num = BN_dup(rsa->e)) == NULL)
1417 {
1418 PK11err(PK11_F_GET_PUB_RSA_KEY, PK11_R_MALLOC_FAILURE);
1419 BN_free(*rsa_n_num);
1420 *rsa_n_num = NULL;
1421 rollback = TRUE;
1422 goto err;
1423 }

1425 /* LINTED: E_CONSTANT_CONDITION */
1426 KEY_HANDLE_REFHOLD(h_key, OP_RSA, FALSE, rollback, err);
1427 if (key_ptr != NULL)
1428 *key_ptr = rsa;

1430 err:
1431 if (rollback)
1432 {
1433 /*
1434 * We do not care about the return value from C_DestroyObject()
1435 * since we are doing rollback.
1436 */
1437 if (found == 0)
1438 (void) pFuncList->C_DestroyObject(session, h_key);
1439 h_key = CK_INVALID_HANDLE;
1440 }

1442 UNLOCK_OBJSTORE(OP_RSA);

1444 malloc_err:
1445 for (i = 5; i <= 6; i++)
1446 {
1447 if (a_key_template[i].pValue != NULL)

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 23

1448 {
1449 OPENSSL_free(a_key_template[i].pValue);
1450 a_key_template[i].pValue = NULL;
1451 }
1452 }

1454 return (h_key);
1455 }

1457 /*
1458 * Create a private key object in the session from a given rsa structure.
1459 * The *rsa_d_num pointer is non-NULL for RSA private keys.
1460 */
1461 static CK_OBJECT_HANDLE pk11_get_private_rsa_key(RSA* rsa,
1462 RSA** key_ptr, BIGNUM **rsa_d_num, CK_SESSION_HANDLE session)
1463 {
1464 CK_RV rv;
1465 CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;
1466 int i;
1467 CK_ULONG found;
1468 CK_OBJECT_CLASS o_key = CKO_PRIVATE_KEY;
1469 CK_KEY_TYPE k_type = CKK_RSA;
1470 CK_ULONG ul_key_attr_count = 14;
1471 CK_BBOOL rollback = FALSE;

1473 /* Both CKA_TOKEN and CKA_SENSITIVE have to be FALSE for session keys */
1474 CK_ATTRIBUTE a_key_template[] =
1475 {
1476 {CKA_CLASS, (void *) NULL, sizeof (CK_OBJECT_CLASS)},
1477 {CKA_KEY_TYPE, (void *) NULL, sizeof (CK_KEY_TYPE)},
1478 {CKA_TOKEN, &false, sizeof (true)},
1479 {CKA_SENSITIVE, &false, sizeof (true)},
1480 {CKA_DECRYPT, &true, sizeof (true)},
1481 {CKA_SIGN, &true, sizeof (true)},
1482 {CKA_MODULUS, (void *)NULL, 0},
1483 {CKA_PUBLIC_EXPONENT, (void *)NULL, 0},
1484 {CKA_PRIVATE_EXPONENT, (void *)NULL, 0},
1485 {CKA_PRIME_1, (void *)NULL, 0},
1486 {CKA_PRIME_2, (void *)NULL, 0},
1487 {CKA_EXPONENT_1, (void *)NULL, 0},
1488 {CKA_EXPONENT_2, (void *)NULL, 0},
1489 {CKA_COEFFICIENT, (void *)NULL, 0}
1490 };

1492 a_key_template[0].pValue = &o_key;
1493 a_key_template[1].pValue = &k_type;

1495 /* Put the private key components into the template */
1496 if (init_template_value(rsa->n, &a_key_template[6].pValue,
1497 &a_key_template[6].ulValueLen) == 0 ||
1498 init_template_value(rsa->e, &a_key_template[7].pValue,
1499 &a_key_template[7].ulValueLen) == 0 ||
1500 init_template_value(rsa->d, &a_key_template[8].pValue,
1501 &a_key_template[8].ulValueLen) == 0 ||
1502 init_template_value(rsa->p, &a_key_template[9].pValue,
1503 &a_key_template[9].ulValueLen) == 0 ||
1504 init_template_value(rsa->q, &a_key_template[10].pValue,
1505 &a_key_template[10].ulValueLen) == 0 ||
1506 init_template_value(rsa->dmp1, &a_key_template[11].pValue,
1507 &a_key_template[11].ulValueLen) == 0 ||
1508 init_template_value(rsa->dmq1, &a_key_template[12].pValue,
1509 &a_key_template[12].ulValueLen) == 0 ||
1510 init_template_value(rsa->iqmp, &a_key_template[13].pValue,
1511 &a_key_template[13].ulValueLen) == 0)
1512 {
1513 PK11err(PK11_F_GET_PRIV_RSA_KEY, PK11_R_MALLOC_FAILURE);

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 24

1514 goto malloc_err;
1515 }

1517 /* see find_lock array definition for more info on object locking */
1518 LOCK_OBJSTORE(OP_RSA);
1519 rv = pFuncList->C_FindObjectsInit(session, a_key_template,
1520 ul_key_attr_count);

1522 if (rv != CKR_OK)
1523 {
1524 PK11err_add_data(PK11_F_GET_PRIV_RSA_KEY,
1525 PK11_R_FINDOBJECTSINIT, rv);
1526 goto err;
1527 }

1529 rv = pFuncList->C_FindObjects(session, &h_key, 1, &found);

1531 if (rv != CKR_OK)
1532 {
1533 PK11err_add_data(PK11_F_GET_PRIV_RSA_KEY,
1534 PK11_R_FINDOBJECTS, rv);
1535 goto err;
1536 }

1538 rv = pFuncList->C_FindObjectsFinal(session);

1540 if (rv != CKR_OK)
1541 {
1542 PK11err_add_data(PK11_F_GET_PRIV_RSA_KEY,
1543 PK11_R_FINDOBJECTSFINAL, rv);
1544 goto err;
1545 }

1547 if (found == 0)
1548 {
1549 rv = pFuncList->C_CreateObject(session,
1550 a_key_template, ul_key_attr_count, &h_key);
1551 if (rv != CKR_OK)
1552 {
1553 PK11err_add_data(PK11_F_GET_PRIV_RSA_KEY,
1554 PK11_R_CREATEOBJECT, rv);
1555 goto err;
1556 }
1557 }

1559 if (rsa_d_num != NULL)
1560 if ((*rsa_d_num = BN_dup(rsa->d)) == NULL)
1561 {
1562 PK11err(PK11_F_GET_PRIV_RSA_KEY, PK11_R_MALLOC_FAILURE);
1563 rollback = TRUE;
1564 goto err;
1565 }

1567 /* LINTED: E_CONSTANT_CONDITION */
1568 KEY_HANDLE_REFHOLD(h_key, OP_RSA, FALSE, rollback, err);
1569 if (key_ptr != NULL)
1570 *key_ptr = rsa;

1572 err:
1573 if (rollback)
1574 {
1575 /*
1576 * We do not care about the return value from C_DestroyObject()
1577 * since we are doing rollback.
1578 */
1579 if (found == 0)

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 25

1580 (void) pFuncList->C_DestroyObject(session, h_key);
1581 h_key = CK_INVALID_HANDLE;
1582 }

1584 UNLOCK_OBJSTORE(OP_RSA);

1586 malloc_err:
1587 /*
1588 * 6 to 13 entries in the key template are key components.
1589 * They need to be freed apon exit or error.
1590 */
1591 for (i = 6; i <= 13; i++)
1592 {
1593 if (a_key_template[i].pValue != NULL)
1594 {
1595 (void) memset(a_key_template[i].pValue, 0,
1596 a_key_template[i].ulValueLen);
1597 OPENSSL_free(a_key_template[i].pValue);
1598 a_key_template[i].pValue = NULL;
1599 }
1600 }

1602 return (h_key);
1603 }

1605 /*
1606 * Check for cache miss and clean the object pointer and handle
1607 * in such case. Return 1 for cache hit, 0 for cache miss.
1608 */
1609 static int check_new_rsa_key_pub(PK11_SESSION *sp, const RSA *rsa)
1610 {
1611 /*
1612 * Provide protection against RSA structure reuse by making the
1613 * check for cache hit stronger. Only public components of RSA
1614 * key matter here so it is sufficient to compare them with values
1615 * cached in PK11_SESSION structure.
1616 */
1617 if ((sp->opdata_rsa_pub != rsa) ||
1618 (BN_cmp(sp->opdata_rsa_n_num, rsa->n) != 0) ||
1619 (BN_cmp(sp->opdata_rsa_e_num, rsa->e) != 0))
1620 {
1621 /*
1622 * We do not check the return value because even in case of
1623 * failure the sp structure will have both key pointer
1624 * and object handle cleaned and pk11_destroy_object()
1625 * reports the failure to the OpenSSL error message buffer.
1626 */
1627 (void) pk11_destroy_rsa_object_pub(sp, TRUE);
1628 return (0);
1629 }
1630 return (1);
1631 }

1633 /*
1634 * Check for cache miss and clean the object pointer and handle
1635 * in such case. Return 1 for cache hit, 0 for cache miss.
1636 */
1637 static int check_new_rsa_key_priv(PK11_SESSION *sp, const RSA *rsa)
1638 {
1639 /*
1640 * Provide protection against RSA structure reuse by making the
1641 * check for cache hit stronger. Comparing private exponent of RSA
1642 * key with value cached in PK11_SESSION structure should
1643 * be sufficient.
1644 */
1645 if ((sp->opdata_rsa_priv != rsa) ||

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 26

1646 (BN_cmp(sp->opdata_rsa_d_num, rsa->d) != 0))
1647 {
1648 /*
1649 * We do not check the return value because even in case of
1650 * failure the sp structure will have both key pointer
1651 * and object handle cleaned and pk11_destroy_object()
1652 * reports the failure to the OpenSSL error message buffer.
1653 */
1654 (void) pk11_destroy_rsa_object_priv(sp, TRUE);
1655 return (0);
1656 }
1657 return (1);
1658 }
1659 #endif

1661 #ifndef OPENSSL_NO_DSA
1662 /* The DSA function implementation */
1663 /* ARGSUSED */
1664 static int pk11_DSA_init(DSA *dsa)
1665 {
1666 return (1);
1667 }

1669 /* ARGSUSED */
1670 static int pk11_DSA_finish(DSA *dsa)
1671 {
1672 return (1);
1673 }

1676 static DSA_SIG *
1677 pk11_dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa)
1678 {
1679 BIGNUM *r = NULL, *s = NULL;
1680 int i;
1681 DSA_SIG *dsa_sig = NULL;

1683 CK_RV rv;
1684 CK_MECHANISM Mechanism_dsa = {CKM_DSA, NULL, 0};
1685 CK_MECHANISM *p_mech = &Mechanism_dsa;
1686 CK_OBJECT_HANDLE h_priv_key;

1688 /*
1689 * The signature is the concatenation of r and s,
1690 * each is 20 bytes long
1691 */
1692 unsigned char sigret[DSA_SIGNATURE_LEN];
1693 unsigned long siglen = DSA_SIGNATURE_LEN;
1694 unsigned int siglen2 = DSA_SIGNATURE_LEN / 2;

1696 PK11_SESSION *sp = NULL;

1698 if ((dsa->p == NULL) || (dsa->q == NULL) || (dsa->g == NULL))
1699 {
1700 PK11err(PK11_F_DSA_SIGN, PK11_R_MISSING_KEY_COMPONENT);
1701 goto ret;
1702 }

1704 i = BN_num_bytes(dsa->q); /* should be 20 */
1705 if (dlen > i)
1706 {
1707 PK11err(PK11_F_DSA_SIGN, PK11_R_INVALID_SIGNATURE_LENGTH);
1708 goto ret;
1709 }

1711 if ((sp = pk11_get_session(OP_DSA)) == NULL)

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 27

1712 goto ret;

1714 (void) check_new_dsa_key_priv(sp, dsa);

1716 h_priv_key = sp->opdata_dsa_priv_key;
1717 if (h_priv_key == CK_INVALID_HANDLE)
1718 h_priv_key = sp->opdata_dsa_priv_key =
1719 pk11_get_private_dsa_key((DSA *)dsa,
1720 &sp->opdata_dsa_priv,
1721 &sp->opdata_dsa_priv_num, sp->session);

1723 if (h_priv_key != CK_INVALID_HANDLE)
1724 {
1725 rv = pFuncList->C_SignInit(sp->session, p_mech, h_priv_key);

1727 if (rv != CKR_OK)
1728 {
1729 PK11err_add_data(PK11_F_DSA_SIGN, PK11_R_SIGNINIT, rv);
1730 goto ret;
1731 }

1733 (void) memset(sigret, 0, siglen);
1734 rv = pFuncList->C_Sign(sp->session,
1735 (unsigned char *) dgst, dlen, sigret,
1736 (CK_ULONG_PTR) &siglen);

1738 if (rv != CKR_OK)
1739 {
1740 PK11err_add_data(PK11_F_DSA_SIGN, PK11_R_SIGN, rv);
1741 goto ret;
1742 }
1743 }

1746 if ((s = BN_new()) == NULL)
1747 {
1748 PK11err(PK11_F_DSA_SIGN, PK11_R_MALLOC_FAILURE);
1749 goto ret;
1750 }

1752 if ((r = BN_new()) == NULL)
1753 {
1754 PK11err(PK11_F_DSA_SIGN, PK11_R_MALLOC_FAILURE);
1755 goto ret;
1756 }

1758 if ((dsa_sig = DSA_SIG_new()) == NULL)
1759 {
1760 PK11err(PK11_F_DSA_SIGN, PK11_R_MALLOC_FAILURE);
1761 goto ret;
1762 }

1764 if (BN_bin2bn(sigret, siglen2, r) == NULL ||
1765 BN_bin2bn(&sigret[siglen2], siglen2, s) == NULL)
1766 {
1767 PK11err(PK11_F_DSA_SIGN, PK11_R_MALLOC_FAILURE);
1768 goto ret;
1769 }

1771 dsa_sig->r = r;
1772 dsa_sig->s = s;

1774 ret:
1775 if (dsa_sig == NULL)
1776 {
1777 if (r != NULL)

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 28

1778 BN_free(r);
1779 if (s != NULL)
1780 BN_free(s);
1781 }

1783 pk11_return_session(sp, OP_DSA);
1784 return (dsa_sig);
1785 }

1787 static int
1788 pk11_dsa_do_verify(const unsigned char *dgst, int dlen, DSA_SIG *sig,
1789 DSA *dsa)
1790 {
1791 int i;
1792 CK_RV rv;
1793 int retval = 0;
1794 CK_MECHANISM Mechanism_dsa = {CKM_DSA, NULL, 0};
1795 CK_MECHANISM *p_mech = &Mechanism_dsa;
1796 CK_OBJECT_HANDLE h_pub_key;

1798 unsigned char sigbuf[DSA_SIGNATURE_LEN];
1799 unsigned long siglen = DSA_SIGNATURE_LEN;
1800 unsigned long siglen2 = DSA_SIGNATURE_LEN/2;

1802 PK11_SESSION *sp = NULL;

1804 if (BN_is_zero(sig->r) || sig->r->neg || BN_ucmp(sig->r, dsa->q) >= 0)
1805 {
1806 PK11err(PK11_F_DSA_VERIFY,
1807 PK11_R_INVALID_DSA_SIGNATURE_R);
1808 goto ret;
1809 }

1811 if (BN_is_zero(sig->s) || sig->s->neg || BN_ucmp(sig->s, dsa->q) >= 0)
1812 {
1813 PK11err(PK11_F_DSA_VERIFY,
1814 PK11_R_INVALID_DSA_SIGNATURE_S);
1815 goto ret;
1816 }

1818 i = BN_num_bytes(dsa->q); /* should be 20 */

1820 if (dlen > i)
1821 {
1822 PK11err(PK11_F_DSA_VERIFY,
1823 PK11_R_INVALID_SIGNATURE_LENGTH);
1824 goto ret;
1825 }

1827 if ((sp = pk11_get_session(OP_DSA)) == NULL)
1828 goto ret;

1830 (void) check_new_dsa_key_pub(sp, dsa);

1832 h_pub_key = sp->opdata_dsa_pub_key;
1833 if (h_pub_key == CK_INVALID_HANDLE)
1834 h_pub_key = sp->opdata_dsa_pub_key =
1835 pk11_get_public_dsa_key((DSA *)dsa, &sp->opdata_dsa_pub,
1836 &sp->opdata_dsa_pub_num, sp->session);

1838 if (h_pub_key != CK_INVALID_HANDLE)
1839 {
1840 rv = pFuncList->C_VerifyInit(sp->session, p_mech,
1841 h_pub_key);

1843 if (rv != CKR_OK)

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 29

1844 {
1845 PK11err_add_data(PK11_F_DSA_VERIFY, PK11_R_VERIFYINIT,
1846 rv);
1847 goto ret;
1848 }

1850 /*
1851 * The representation of each of the two big numbers could
1852 * be shorter than DSA_SIGNATURE_LEN/2 bytes so we need
1853 * to act accordingly and shift if necessary.
1854 */
1855 (void) memset(sigbuf, 0, siglen);
1856 BN_bn2bin(sig->r, sigbuf + siglen2 - BN_num_bytes(sig->r));
1857 BN_bn2bin(sig->s, &sigbuf[siglen2] + siglen2 -
1858 BN_num_bytes(sig->s));

1860 rv = pFuncList->C_Verify(sp->session,
1861 (unsigned char *) dgst, dlen, sigbuf, (CK_ULONG)siglen);

1863 if (rv != CKR_OK)
1864 {
1865 PK11err_add_data(PK11_F_DSA_VERIFY, PK11_R_VERIFY, rv);
1866 goto ret;
1867 }
1868 }

1870 retval = 1;
1871 ret:

1873 pk11_return_session(sp, OP_DSA);
1874 return (retval);
1875 }

1878 /*
1879 * Create a public key object in a session from a given dsa structure.
1880 * The *dsa_pub_num pointer is non-NULL for DSA public keys.
1881 */
1882 static CK_OBJECT_HANDLE pk11_get_public_dsa_key(DSA* dsa,
1883 DSA **key_ptr, BIGNUM **dsa_pub_num, CK_SESSION_HANDLE session)
1884 {
1885 CK_RV rv;
1886 CK_OBJECT_CLASS o_key = CKO_PUBLIC_KEY;
1887 CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;
1888 CK_ULONG found;
1889 CK_KEY_TYPE k_type = CKK_DSA;
1890 CK_ULONG ul_key_attr_count = 8;
1891 CK_BBOOL rollback = FALSE;
1892 int i;

1894 CK_ATTRIBUTE a_key_template[] =
1895 {
1896 {CKA_CLASS, (void *) NULL, sizeof (CK_OBJECT_CLASS)},
1897 {CKA_KEY_TYPE, (void *) NULL, sizeof (CK_KEY_TYPE)},
1898 {CKA_TOKEN, &false, sizeof (true)},
1899 {CKA_VERIFY, &true, sizeof (true)},
1900 {CKA_PRIME, (void *)NULL, 0}, /* p */
1901 {CKA_SUBPRIME, (void *)NULL, 0}, /* q */
1902 {CKA_BASE, (void *)NULL, 0}, /* g */
1903 {CKA_VALUE, (void *)NULL, 0} /* pub_key - y */
1904 };

1906 a_key_template[0].pValue = &o_key;
1907 a_key_template[1].pValue = &k_type;

1909 if (init_template_value(dsa->p, &a_key_template[4].pValue,

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 30

1910 &a_key_template[4].ulValueLen) == 0 ||
1911 init_template_value(dsa->q, &a_key_template[5].pValue,
1912 &a_key_template[5].ulValueLen) == 0 ||
1913 init_template_value(dsa->g, &a_key_template[6].pValue,
1914 &a_key_template[6].ulValueLen) == 0 ||
1915 init_template_value(dsa->pub_key, &a_key_template[7].pValue,
1916 &a_key_template[7].ulValueLen) == 0)
1917 {
1918 PK11err(PK11_F_GET_PUB_DSA_KEY, PK11_R_MALLOC_FAILURE);
1919 goto malloc_err;
1920 }

1922 /* see find_lock array definition for more info on object locking */
1923 LOCK_OBJSTORE(OP_DSA);
1924 rv = pFuncList->C_FindObjectsInit(session, a_key_template,
1925 ul_key_attr_count);

1927 if (rv != CKR_OK)
1928 {
1929 PK11err_add_data(PK11_F_GET_PUB_DSA_KEY, PK11_R_FINDOBJECTSINIT,
1930 rv);
1931 goto err;
1932 }

1934 rv = pFuncList->C_FindObjects(session, &h_key, 1, &found);

1936 if (rv != CKR_OK)
1937 {
1938 PK11err_add_data(PK11_F_GET_PUB_DSA_KEY,
1939 PK11_R_FINDOBJECTS, rv);
1940 goto err;
1941 }

1943 rv = pFuncList->C_FindObjectsFinal(session);

1945 if (rv != CKR_OK)
1946 {
1947 PK11err_add_data(PK11_F_GET_PUB_DSA_KEY,
1948 PK11_R_FINDOBJECTSFINAL, rv);
1949 goto err;
1950 }

1952 if (found == 0)
1953 {
1954 rv = pFuncList->C_CreateObject(session,
1955 a_key_template, ul_key_attr_count, &h_key);
1956 if (rv != CKR_OK)
1957 {
1958 PK11err_add_data(PK11_F_GET_PUB_DSA_KEY,
1959 PK11_R_CREATEOBJECT, rv);
1960 goto err;
1961 }
1962 }

1964 if (dsa_pub_num != NULL)
1965 if ((*dsa_pub_num = BN_dup(dsa->pub_key)) == NULL)
1966 {
1967 PK11err(PK11_F_GET_PUB_DSA_KEY, PK11_R_MALLOC_FAILURE);
1968 rollback = TRUE;
1969 goto err;
1970 }

1972 /* LINTED: E_CONSTANT_CONDITION */
1973 KEY_HANDLE_REFHOLD(h_key, OP_DSA, FALSE, rollback, err);
1974 if (key_ptr != NULL)
1975 *key_ptr = dsa;

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 31

1977 err:
1978 if (rollback)
1979 {
1980 /*
1981 * We do not care about the return value from C_DestroyObject()
1982 * since we are doing rollback.
1983 */
1984 if (found == 0)
1985 (void) pFuncList->C_DestroyObject(session, h_key);
1986 h_key = CK_INVALID_HANDLE;
1987 }

1989 UNLOCK_OBJSTORE(OP_DSA);

1991 malloc_err:
1992 for (i = 4; i <= 7; i++)
1993 {
1994 if (a_key_template[i].pValue != NULL)
1995 {
1996 OPENSSL_free(a_key_template[i].pValue);
1997 a_key_template[i].pValue = NULL;
1998 }
1999 }

2001 return (h_key);
2002 }

2004 /*
2005 * Create a private key object in the session from a given dsa structure
2006 * The *dsa_priv_num pointer is non-NULL for DSA private keys.
2007 */
2008 static CK_OBJECT_HANDLE pk11_get_private_dsa_key(DSA* dsa,
2009 DSA **key_ptr, BIGNUM **dsa_priv_num, CK_SESSION_HANDLE session)
2010 {
2011 CK_RV rv;
2012 CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;
2013 CK_OBJECT_CLASS o_key = CKO_PRIVATE_KEY;
2014 int i;
2015 CK_ULONG found;
2016 CK_KEY_TYPE k_type = CKK_DSA;
2017 CK_ULONG ul_key_attr_count = 9;
2018 CK_BBOOL rollback = FALSE;

2020 /* Both CKA_TOKEN and CKA_SENSITIVE have to be FALSE for session keys */
2021 CK_ATTRIBUTE a_key_template[] =
2022 {
2023 {CKA_CLASS, (void *) NULL, sizeof (CK_OBJECT_CLASS)},
2024 {CKA_KEY_TYPE, (void *) NULL, sizeof (CK_KEY_TYPE)},
2025 {CKA_TOKEN, &false, sizeof (true)},
2026 {CKA_SENSITIVE, &false, sizeof (true)},
2027 {CKA_SIGN, &true, sizeof (true)},
2028 {CKA_PRIME, (void *)NULL, 0}, /* p */
2029 {CKA_SUBPRIME, (void *)NULL, 0}, /* q */
2030 {CKA_BASE, (void *)NULL, 0}, /* g */
2031 {CKA_VALUE, (void *)NULL, 0} /* priv_key - x */
2032 };

2034 a_key_template[0].pValue = &o_key;
2035 a_key_template[1].pValue = &k_type;

2037 /* Put the private key components into the template */
2038 if (init_template_value(dsa->p, &a_key_template[5].pValue,
2039 &a_key_template[5].ulValueLen) == 0 ||
2040 init_template_value(dsa->q, &a_key_template[6].pValue,
2041 &a_key_template[6].ulValueLen) == 0 ||

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 32

2042 init_template_value(dsa->g, &a_key_template[7].pValue,
2043 &a_key_template[7].ulValueLen) == 0 ||
2044 init_template_value(dsa->priv_key, &a_key_template[8].pValue,
2045 &a_key_template[8].ulValueLen) == 0)
2046 {
2047 PK11err(PK11_F_GET_PRIV_DSA_KEY, PK11_R_MALLOC_FAILURE);
2048 goto malloc_err;
2049 }

2051 /* see find_lock array definition for more info on object locking */
2052 LOCK_OBJSTORE(OP_DSA);
2053 rv = pFuncList->C_FindObjectsInit(session, a_key_template,
2054 ul_key_attr_count);

2056 if (rv != CKR_OK)
2057 {
2058 PK11err_add_data(PK11_F_GET_PRIV_DSA_KEY,
2059 PK11_R_FINDOBJECTSINIT, rv);
2060 goto err;
2061 }

2063 rv = pFuncList->C_FindObjects(session, &h_key, 1, &found);

2065 if (rv != CKR_OK)
2066 {
2067 PK11err_add_data(PK11_F_GET_PRIV_DSA_KEY,
2068 PK11_R_FINDOBJECTS, rv);
2069 goto err;
2070 }

2072 rv = pFuncList->C_FindObjectsFinal(session);

2074 if (rv != CKR_OK)
2075 {
2076 PK11err_add_data(PK11_F_GET_PRIV_DSA_KEY,
2077 PK11_R_FINDOBJECTSFINAL, rv);
2078 goto err;
2079 }

2081 if (found == 0)
2082 {
2083 rv = pFuncList->C_CreateObject(session,
2084 a_key_template, ul_key_attr_count, &h_key);
2085 if (rv != CKR_OK)
2086 {
2087 PK11err_add_data(PK11_F_GET_PRIV_DSA_KEY,
2088 PK11_R_CREATEOBJECT, rv);
2089 goto err;
2090 }
2091 }

2093 if (dsa_priv_num != NULL)
2094 if ((*dsa_priv_num = BN_dup(dsa->priv_key)) == NULL)
2095 {
2096 PK11err(PK11_F_GET_PRIV_DSA_KEY, PK11_R_MALLOC_FAILURE);
2097 rollback = TRUE;
2098 goto err;
2099 }

2101 /* LINTED: E_CONSTANT_CONDITION */
2102 KEY_HANDLE_REFHOLD(h_key, OP_DSA, FALSE, rollback, err);
2103 if (key_ptr != NULL)
2104 *key_ptr = dsa;

2106 err:
2107 if (rollback)

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 33

2108 {
2109 /*
2110 * We do not care about the return value from C_DestroyObject()
2111 * since we are doing rollback.
2112 */
2113 if (found == 0)
2114 (void) pFuncList->C_DestroyObject(session, h_key);
2115 h_key = CK_INVALID_HANDLE;
2116 }

2118 UNLOCK_OBJSTORE(OP_DSA);

2120 malloc_err:
2121 /*
2122 * 5 to 8 entries in the key template are key components.
2123 * They need to be freed apon exit or error.
2124 */
2125 for (i = 5; i <= 8; i++)
2126 {
2127 if (a_key_template[i].pValue != NULL)
2128 {
2129 (void) memset(a_key_template[i].pValue, 0,
2130 a_key_template[i].ulValueLen);
2131 OPENSSL_free(a_key_template[i].pValue);
2132 a_key_template[i].pValue = NULL;
2133 }
2134 }

2136 return (h_key);
2137 }

2139 /*
2140 * Check for cache miss and clean the object pointer and handle
2141 * in such case. Return 1 for cache hit, 0 for cache miss.
2142 */
2143 static int check_new_dsa_key_pub(PK11_SESSION *sp, DSA *dsa)
2144 {
2145 /*
2146 * Provide protection against DSA structure reuse by making the
2147 * check for cache hit stronger. Only public key component of DSA
2148 * key matters here so it is sufficient to compare it with value
2149 * cached in PK11_SESSION structure.
2150 */
2151 if ((sp->opdata_dsa_pub != dsa) ||
2152 (BN_cmp(sp->opdata_dsa_pub_num, dsa->pub_key) != 0))
2153 {
2154 /*
2155 * We do not check the return value because even in case of
2156 * failure the sp structure will have both key pointer
2157 * and object handle cleaned and pk11_destroy_object()
2158 * reports the failure to the OpenSSL error message buffer.
2159 */
2160 (void) pk11_destroy_dsa_object_pub(sp, TRUE);
2161 return (0);
2162 }
2163 return (1);
2164 }

2166 /*
2167 * Check for cache miss and clean the object pointer and handle
2168 * in such case. Return 1 for cache hit, 0 for cache miss.
2169 */
2170 static int check_new_dsa_key_priv(PK11_SESSION *sp, DSA *dsa)
2171 {
2172 /*
2173 * Provide protection against DSA structure reuse by making the

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 34

2174 * check for cache hit stronger. Only private key component of DSA
2175 * key matters here so it is sufficient to compare it with value
2176 * cached in PK11_SESSION structure.
2177 */
2178 if ((sp->opdata_dsa_priv != dsa) ||
2179 (BN_cmp(sp->opdata_dsa_priv_num, dsa->priv_key) != 0))
2180 {
2181 /*
2182 * We do not check the return value because even in case of
2183 * failure the sp structure will have both key pointer
2184 * and object handle cleaned and pk11_destroy_object()
2185 * reports the failure to the OpenSSL error message buffer.
2186 */
2187 (void) pk11_destroy_dsa_object_priv(sp, TRUE);
2188 return (0);
2189 }
2190 return (1);
2191 }
2192 #endif

2195 #ifndef OPENSSL_NO_DH
2196 /* The DH function implementation */
2197 /* ARGSUSED */
2198 static int pk11_DH_init(DH *dh)
2199 {
2200 return (1);
2201 }

2203 /* ARGSUSED */
2204 static int pk11_DH_finish(DH *dh)
2205 {
2206 return (1);
2207 }

2209 /*
2210 * Generate DH key-pair.
2211 *
2212 * Warning: Unlike OpenSSL’s DH_generate_key(3) we ignore dh->priv_key
2213 * and override it even if it is set. OpenSSL does not touch dh->priv_key
2214 * if set and just computes dh->pub_key. It looks like PKCS#11 standard
2215 * is not capable of providing this functionality. This could be a problem
2216 * for applications relying on OpenSSL’s semantics.
2217 */
2218 static int pk11_DH_generate_key(DH *dh)
2219 {
2220 CK_ULONG i;
2221 CK_RV rv, rv1;
2222 int reuse_mem_len = 0, ret = 0;
2223 PK11_SESSION *sp = NULL;
2224 CK_BYTE_PTR reuse_mem;

2226 CK_MECHANISM mechanism = {CKM_DH_PKCS_KEY_PAIR_GEN, NULL_PTR, 0};
2227 CK_OBJECT_HANDLE h_pub_key = CK_INVALID_HANDLE;
2228 CK_OBJECT_HANDLE h_priv_key = CK_INVALID_HANDLE;

2230 CK_ULONG ul_pub_key_attr_count = 3;
2231 CK_ATTRIBUTE pub_key_template[] =
2232 {
2233 {CKA_PRIVATE, &false, sizeof (false)},
2234 {CKA_PRIME, (void *)NULL, 0},
2235 {CKA_BASE, (void *)NULL, 0}
2236 };

2238 CK_ULONG ul_priv_key_attr_count = 3;
2239 CK_ATTRIBUTE priv_key_template[] =

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 35

2240 {
2241 {CKA_PRIVATE, &false, sizeof (false)},
2242 {CKA_SENSITIVE, &false, sizeof (false)},
2243 {CKA_DERIVE, &true, sizeof (true)}
2244 };

2246 CK_ULONG pub_key_attr_result_count = 1;
2247 CK_ATTRIBUTE pub_key_result[] =
2248 {
2249 {CKA_VALUE, (void *)NULL, 0}
2250 };

2252 CK_ULONG priv_key_attr_result_count = 1;
2253 CK_ATTRIBUTE priv_key_result[] =
2254 {
2255 {CKA_VALUE, (void *)NULL, 0}
2256 };

2258 pub_key_template[1].ulValueLen = BN_num_bytes(dh->p);
2259 if (pub_key_template[1].ulValueLen > 0)
2260 {
2261 /*
2262 * We must not increase ulValueLen by DH_BUF_RESERVE since that
2263 * could cause the same rounding problem. See definition of
2264 * DH_BUF_RESERVE above.
2265 */
2266 pub_key_template[1].pValue =
2267 OPENSSL_malloc(pub_key_template[1].ulValueLen +
2268 DH_BUF_RESERVE);
2269 if (pub_key_template[1].pValue == NULL)
2270 {
2271 PK11err(PK11_F_DH_GEN_KEY, PK11_R_MALLOC_FAILURE);
2272 goto err;
2273 }

2275 i = BN_bn2bin(dh->p, pub_key_template[1].pValue);
2276 }
2277 else
2278 goto err;

2280 pub_key_template[2].ulValueLen = BN_num_bytes(dh->g);
2281 if (pub_key_template[2].ulValueLen > 0)
2282 {
2283 pub_key_template[2].pValue =
2284 OPENSSL_malloc(pub_key_template[2].ulValueLen +
2285 DH_BUF_RESERVE);
2286 if (pub_key_template[2].pValue == NULL)
2287 {
2288 PK11err(PK11_F_DH_GEN_KEY, PK11_R_MALLOC_FAILURE);
2289 goto err;
2290 }

2292 i = BN_bn2bin(dh->g, pub_key_template[2].pValue);
2293 }
2294 else
2295 goto err;

2297 /*
2298 * Note: we are only using PK11_SESSION structure for getting
2299 * a session handle. The objects created in this function are
2300 * destroyed before return and thus not cached.
2301 */
2302 if ((sp = pk11_get_session(OP_DH)) == NULL)
2303 goto err;

2305 rv = pFuncList->C_GenerateKeyPair(sp->session,

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 36

2306 &mechanism,
2307 pub_key_template,
2308 ul_pub_key_attr_count,
2309 priv_key_template,
2310 ul_priv_key_attr_count,
2311 &h_pub_key,
2312 &h_priv_key);
2313 if (rv != CKR_OK)
2314 {
2315 PK11err_add_data(PK11_F_DH_GEN_KEY, PK11_R_GEN_KEY, rv);
2316 goto err;
2317 }

2319 /*
2320 * Reuse the larger memory allocated. We know the larger memory
2321 * should be sufficient for reuse.
2322 */
2323 if (pub_key_template[1].ulValueLen > pub_key_template[2].ulValueLen)
2324 {
2325 reuse_mem = pub_key_template[1].pValue;
2326 reuse_mem_len = pub_key_template[1].ulValueLen + DH_BUF_RESERVE;
2327 }
2328 else
2329 {
2330 reuse_mem = pub_key_template[2].pValue;
2331 reuse_mem_len = pub_key_template[2].ulValueLen + DH_BUF_RESERVE;
2332 }

2334 rv = pFuncList->C_GetAttributeValue(sp->session, h_pub_key,
2335 pub_key_result, pub_key_attr_result_count);
2336 rv1 = pFuncList->C_GetAttributeValue(sp->session, h_priv_key,
2337 priv_key_result, priv_key_attr_result_count);

2339 if (rv != CKR_OK || rv1 != CKR_OK)
2340 {
2341 rv = (rv != CKR_OK) ? rv : rv1;
2342 PK11err_add_data(PK11_F_DH_GEN_KEY,
2343 PK11_R_GETATTRIBUTVALUE, rv);
2344 goto err;
2345 }

2347 if (((CK_LONG) pub_key_result[0].ulValueLen) <= 0 ||
2348 ((CK_LONG) priv_key_result[0].ulValueLen) <= 0)
2349 {
2350 PK11err(PK11_F_DH_GEN_KEY, PK11_R_GETATTRIBUTVALUE);
2351 goto err;
2352 }

2354 /* Reuse the memory allocated */
2355 pub_key_result[0].pValue = reuse_mem;
2356 pub_key_result[0].ulValueLen = reuse_mem_len;

2358 rv = pFuncList->C_GetAttributeValue(sp->session, h_pub_key,
2359 pub_key_result, pub_key_attr_result_count);

2361 if (rv != CKR_OK)
2362 {
2363 PK11err_add_data(PK11_F_DH_GEN_KEY,
2364 PK11_R_GETATTRIBUTVALUE, rv);
2365 goto err;
2366 }

2368 if (pub_key_result[0].type == CKA_VALUE)
2369 {
2370 if (dh->pub_key == NULL)
2371 if ((dh->pub_key = BN_new()) == NULL)

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 37

2372 {
2373 PK11err(PK11_F_DH_GEN_KEY,
2374 PK11_R_MALLOC_FAILURE);
2375 goto err;
2376 }
2377 dh->pub_key = BN_bin2bn(pub_key_result[0].pValue,
2378 pub_key_result[0].ulValueLen, dh->pub_key);
2379 if (dh->pub_key == NULL)
2380 {
2381 PK11err(PK11_F_DH_GEN_KEY, PK11_R_MALLOC_FAILURE);
2382 goto err;
2383 }
2384 }

2386 /* Reuse the memory allocated */
2387 priv_key_result[0].pValue = reuse_mem;
2388 priv_key_result[0].ulValueLen = reuse_mem_len;

2390 rv = pFuncList->C_GetAttributeValue(sp->session, h_priv_key,
2391 priv_key_result, priv_key_attr_result_count);

2393 if (rv != CKR_OK)
2394 {
2395 PK11err_add_data(PK11_F_DH_GEN_KEY,
2396 PK11_R_GETATTRIBUTVALUE, rv);
2397 goto err;
2398 }

2400 if (priv_key_result[0].type == CKA_VALUE)
2401 {
2402 if (dh->priv_key == NULL)
2403 if ((dh->priv_key = BN_new()) == NULL)
2404 {
2405 PK11err(PK11_F_DH_GEN_KEY,
2406 PK11_R_MALLOC_FAILURE);
2407 goto err;
2408 }
2409 dh->priv_key = BN_bin2bn(priv_key_result[0].pValue,
2410 priv_key_result[0].ulValueLen, dh->priv_key);
2411 if (dh->priv_key == NULL)
2412 {
2413 PK11err(PK11_F_DH_GEN_KEY, PK11_R_MALLOC_FAILURE);
2414 goto err;
2415 }
2416 }

2418 ret = 1;

2420 err:

2422 if (h_pub_key != CK_INVALID_HANDLE)
2423 {
2424 rv = pFuncList->C_DestroyObject(sp->session, h_pub_key);
2425 if (rv != CKR_OK)
2426 {
2427 PK11err_add_data(PK11_F_DH_GEN_KEY,
2428 PK11_R_DESTROYOBJECT, rv);
2429 }
2430 }

2432 if (h_priv_key != CK_INVALID_HANDLE)
2433 {
2434 rv = pFuncList->C_DestroyObject(sp->session, h_priv_key);
2435 if (rv != CKR_OK)
2436 {
2437 PK11err_add_data(PK11_F_DH_GEN_KEY,

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 38

2438 PK11_R_DESTROYOBJECT, rv);
2439 }
2440 }

2442 for (i = 1; i <= 2; i++)
2443 {
2444 if (pub_key_template[i].pValue != NULL)
2445 {
2446 OPENSSL_free(pub_key_template[i].pValue);
2447 pub_key_template[i].pValue = NULL;
2448 }
2449 }

2451 pk11_return_session(sp, OP_DH);
2452 return (ret);
2453 }

2455 static int pk11_DH_compute_key(unsigned char *key, const BIGNUM *pub_key,
2456 DH *dh)
2457 {
2458 int i;
2459 CK_MECHANISM mechanism = {CKM_DH_PKCS_DERIVE, NULL_PTR, 0};
2460 CK_OBJECT_CLASS key_class = CKO_SECRET_KEY;
2461 CK_KEY_TYPE key_type = CKK_GENERIC_SECRET;
2462 CK_OBJECT_HANDLE h_derived_key = CK_INVALID_HANDLE;
2463 CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;

2465 CK_ULONG ul_priv_key_attr_count = 2;
2466 CK_ATTRIBUTE priv_key_template[] =
2467 {
2468 {CKA_CLASS, (void*) NULL, sizeof (key_class)},
2469 {CKA_KEY_TYPE, (void*) NULL, sizeof (key_type)},
2470 };

2472 CK_ULONG priv_key_attr_result_count = 1;
2473 CK_ATTRIBUTE priv_key_result[] =
2474 {
2475 {CKA_VALUE, (void *)NULL, 0}
2476 };

2478 CK_RV rv;
2479 int ret = -1;
2480 PK11_SESSION *sp = NULL;

2482 if (dh->priv_key == NULL)
2483 goto err;

2485 priv_key_template[0].pValue = &key_class;
2486 priv_key_template[1].pValue = &key_type;

2488 if ((sp = pk11_get_session(OP_DH)) == NULL)
2489 goto err;

2491 mechanism.ulParameterLen = BN_num_bytes(pub_key);
2492 mechanism.pParameter = OPENSSL_malloc(mechanism.ulParameterLen);
2493 if (mechanism.pParameter == NULL)
2494 {
2495 PK11err(PK11_F_DH_COMP_KEY, PK11_R_MALLOC_FAILURE);
2496 goto err;
2497 }
2498 BN_bn2bin(pub_key, mechanism.pParameter);

2500 (void) check_new_dh_key(sp, dh);

2502 h_key = sp->opdata_dh_key;
2503 if (h_key == CK_INVALID_HANDLE)

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 39

2504 h_key = sp->opdata_dh_key =
2505 pk11_get_dh_key((DH*) dh, &sp->opdata_dh,
2506 &sp->opdata_dh_priv_num, sp->session);

2508 if (h_key == CK_INVALID_HANDLE)
2509 {
2510 PK11err(PK11_F_DH_COMP_KEY, PK11_R_CREATEOBJECT);
2511 goto err;
2512 }

2514 rv = pFuncList->C_DeriveKey(sp->session,
2515 &mechanism,
2516 h_key,
2517 priv_key_template,
2518 ul_priv_key_attr_count,
2519 &h_derived_key);
2520 if (rv != CKR_OK)
2521 {
2522 PK11err_add_data(PK11_F_DH_COMP_KEY, PK11_R_DERIVEKEY, rv);
2523 goto err;
2524 }

2526 rv = pFuncList->C_GetAttributeValue(sp->session, h_derived_key,
2527 priv_key_result, priv_key_attr_result_count);

2529 if (rv != CKR_OK)
2530 {
2531 PK11err_add_data(PK11_F_DH_COMP_KEY, PK11_R_GETATTRIBUTVALUE,
2532 rv);
2533 goto err;
2534 }

2536 if (((CK_LONG) priv_key_result[0].ulValueLen) <= 0)
2537 {
2538 PK11err(PK11_F_DH_COMP_KEY, PK11_R_GETATTRIBUTVALUE);
2539 goto err;
2540 }
2541 priv_key_result[0].pValue =
2542 OPENSSL_malloc(priv_key_result[0].ulValueLen);
2543 if (!priv_key_result[0].pValue)
2544 {
2545 PK11err(PK11_F_DH_COMP_KEY, PK11_R_MALLOC_FAILURE);
2546 goto err;
2547 }

2549 rv = pFuncList->C_GetAttributeValue(sp->session, h_derived_key,
2550 priv_key_result, priv_key_attr_result_count);

2552 if (rv != CKR_OK)
2553 {
2554 PK11err_add_data(PK11_F_DH_COMP_KEY, PK11_R_GETATTRIBUTVALUE,
2555 rv);
2556 goto err;
2557 }

2559 /*
2560 * OpenSSL allocates the output buffer ’key’ which is the same
2561 * length of the public key. It is long enough for the derived key
2562 */
2563 if (priv_key_result[0].type == CKA_VALUE)
2564 {
2565 /*
2566 * CKM_DH_PKCS_DERIVE mechanism is not supposed to strip
2567 * leading zeros from a computed shared secret. However,
2568 * OpenSSL always did it so we must do the same here. The
2569 * vagueness of the spec regarding leading zero bytes was

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 40

2570 * finally cleared with TLS 1.1 (RFC 4346) saying that leading
2571 * zeros are stripped before the computed data is used as the
2572 * pre-master secret.
2573 */
2574 for (i = 0; i < priv_key_result[0].ulValueLen; ++i)
2575 {
2576 if (((char *)priv_key_result[0].pValue)[i] != 0)
2577 break;
2578 }

2580 (void) memcpy(key, ((char *)priv_key_result[0].pValue) + i,
2581 priv_key_result[0].ulValueLen - i);
2582 ret = priv_key_result[0].ulValueLen - i;
2583 }

2585 err:

2587 if (h_derived_key != CK_INVALID_HANDLE)
2588 {
2589 rv = pFuncList->C_DestroyObject(sp->session, h_derived_key);
2590 if (rv != CKR_OK)
2591 {
2592 PK11err_add_data(PK11_F_DH_COMP_KEY,
2593 PK11_R_DESTROYOBJECT, rv);
2594 }
2595 }
2596 if (priv_key_result[0].pValue)
2597 {
2598 OPENSSL_free(priv_key_result[0].pValue);
2599 priv_key_result[0].pValue = NULL;
2600 }

2602 if (mechanism.pParameter)
2603 {
2604 OPENSSL_free(mechanism.pParameter);
2605 mechanism.pParameter = NULL;
2606 }

2608 pk11_return_session(sp, OP_DH);
2609 return (ret);
2610 }

2613 static CK_OBJECT_HANDLE pk11_get_dh_key(DH* dh,
2614 DH **key_ptr, BIGNUM **dh_priv_num, CK_SESSION_HANDLE session)
2615 {
2616 CK_RV rv;
2617 CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;
2618 CK_OBJECT_CLASS class = CKO_PRIVATE_KEY;
2619 CK_KEY_TYPE key_type = CKK_DH;
2620 CK_ULONG found;
2621 CK_BBOOL rollback = FALSE;
2622 int i;

2624 CK_ULONG ul_key_attr_count = 7;
2625 CK_ATTRIBUTE key_template[] =
2626 {
2627 {CKA_CLASS, (void*) NULL, sizeof (class)},
2628 {CKA_KEY_TYPE, (void*) NULL, sizeof (key_type)},
2629 {CKA_DERIVE, &true, sizeof (true)},
2630 {CKA_PRIVATE, &false, sizeof (false)},
2631 {CKA_PRIME, (void *) NULL, 0},
2632 {CKA_BASE, (void *) NULL, 0},
2633 {CKA_VALUE, (void *) NULL, 0},
2634 };

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 41

2636 key_template[0].pValue = &class;
2637 key_template[1].pValue = &key_type;

2639 key_template[4].ulValueLen = BN_num_bytes(dh->p);
2640 key_template[4].pValue = (CK_VOID_PTR)OPENSSL_malloc(
2641 (size_t)key_template[4].ulValueLen);
2642 if (key_template[4].pValue == NULL)
2643 {
2644 PK11err(PK11_F_GET_DH_KEY, PK11_R_MALLOC_FAILURE);
2645 goto malloc_err;
2646 }

2648 BN_bn2bin(dh->p, key_template[4].pValue);

2650 key_template[5].ulValueLen = BN_num_bytes(dh->g);
2651 key_template[5].pValue = (CK_VOID_PTR)OPENSSL_malloc(
2652 (size_t)key_template[5].ulValueLen);
2653 if (key_template[5].pValue == NULL)
2654 {
2655 PK11err(PK11_F_GET_DH_KEY, PK11_R_MALLOC_FAILURE);
2656 goto malloc_err;
2657 }

2659 BN_bn2bin(dh->g, key_template[5].pValue);

2661 key_template[6].ulValueLen = BN_num_bytes(dh->priv_key);
2662 key_template[6].pValue = (CK_VOID_PTR)OPENSSL_malloc(
2663 (size_t)key_template[6].ulValueLen);
2664 if (key_template[6].pValue == NULL)
2665 {
2666 PK11err(PK11_F_GET_DH_KEY, PK11_R_MALLOC_FAILURE);
2667 goto malloc_err;
2668 }

2670 BN_bn2bin(dh->priv_key, key_template[6].pValue);

2672 /* see find_lock array definition for more info on object locking */
2673 LOCK_OBJSTORE(OP_DH);
2674 rv = pFuncList->C_FindObjectsInit(session, key_template,
2675 ul_key_attr_count);

2677 if (rv != CKR_OK)
2678 {
2679 PK11err_add_data(PK11_F_GET_DH_KEY, PK11_R_FINDOBJECTSINIT, rv);
2680 goto err;
2681 }

2683 rv = pFuncList->C_FindObjects(session, &h_key, 1, &found);

2685 if (rv != CKR_OK)
2686 {
2687 PK11err_add_data(PK11_F_GET_DH_KEY, PK11_R_FINDOBJECTS, rv);
2688 goto err;
2689 }

2691 rv = pFuncList->C_FindObjectsFinal(session);

2693 if (rv != CKR_OK)
2694 {
2695 PK11err_add_data(PK11_F_GET_DH_KEY, PK11_R_FINDOBJECTSFINAL,
2696 rv);
2697 goto err;
2698 }

2700 if (found == 0)
2701 {

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 42

2702 rv = pFuncList->C_CreateObject(session,
2703 key_template, ul_key_attr_count, &h_key);
2704 if (rv != CKR_OK)
2705 {
2706 PK11err_add_data(PK11_F_GET_DH_KEY, PK11_R_CREATEOBJECT,
2707 rv);
2708 goto err;
2709 }
2710 }

2712 if (dh_priv_num != NULL)
2713 if ((*dh_priv_num = BN_dup(dh->priv_key)) == NULL)
2714 {
2715 PK11err(PK11_F_GET_DH_KEY, PK11_R_MALLOC_FAILURE);
2716 rollback = TRUE;
2717 goto err;
2718 }

2720 /* LINTED: E_CONSTANT_CONDITION */
2721 KEY_HANDLE_REFHOLD(h_key, OP_DH, FALSE, rollback, err);
2722 if (key_ptr != NULL)
2723 *key_ptr = dh;

2725 err:
2726 if (rollback)
2727 {
2728 /*
2729 * We do not care about the return value from C_DestroyObject()
2730 * since we are doing rollback.
2731 */
2732 if (found == 0)
2733 (void) pFuncList->C_DestroyObject(session, h_key);
2734 h_key = CK_INVALID_HANDLE;
2735 }

2737 UNLOCK_OBJSTORE(OP_DH);

2739 malloc_err:
2740 for (i = 4; i <= 6; i++)
2741 {
2742 if (key_template[i].pValue != NULL)
2743 {
2744 OPENSSL_free(key_template[i].pValue);
2745 key_template[i].pValue = NULL;
2746 }
2747 }

2749 return (h_key);
2750 }

2752 /*
2753 * Check for cache miss and clean the object pointer and handle
2754 * in such case. Return 1 for cache hit, 0 for cache miss.
2755 *
2756 * Note: we rely on pk11_destroy_dh_key_objects() to set sp->opdata_dh
2757 * to CK_INVALID_HANDLE even when it fails to destroy the object.
2758 */
2759 static int check_new_dh_key(PK11_SESSION *sp, DH *dh)
2760 {
2761 /*
2762 * Provide protection against DH structure reuse by making the
2763 * check for cache hit stronger. Private key component of DH key
2764 * is unique so it is sufficient to compare it with value cached
2765 * in PK11_SESSION structure.
2766 */
2767 if ((sp->opdata_dh != dh) ||

new/usr/src/lib/openssl/libsunw_crypto/engine/hw_pk11_pub.c 43

2768 (BN_cmp(sp->opdata_dh_priv_num, dh->priv_key) != 0))
2769 {
2770 /*
2771 * We do not check the return value because even in case of
2772 * failure the sp structure will have both key pointer
2773 * and object handle cleaned and pk11_destroy_object()
2774 * reports the failure to the OpenSSL error message buffer.
2775 */
2776 (void) pk11_destroy_dh_object(sp, TRUE);
2777 return (0);
2778 }
2779 return (1);
2780 }
2781 #endif

2783 /*
2784 * Local function to simplify key template population
2785 * Return 0 -- error, 1 -- no error
2786 */
2787 static int init_template_value(BIGNUM *bn, CK_VOID_PTR *p_value,
2788 CK_ULONG *ul_value_len)
2789 {
2790 CK_ULONG len = BN_num_bytes(bn);
2791 if (len == 0)
2792 return (1);

2794 *ul_value_len = len;
2795 *p_value = (CK_VOID_PTR)OPENSSL_malloc((size_t)*ul_value_len);
2796 if (*p_value == NULL)
2797 return (0);

2799 BN_bn2bin(bn, *p_value);

2801 return (1);
2802 }

2804 #endif /* OPENSSL_NO_HW_PK11 */
2805 #endif /* OPENSSL_NO_HW */

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_asnmth.c 1

**
 7447 Fri May 30 18:31:48 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/tb_asnmth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 #include "eng_int.h"
56 #include "asn1_locl.h"
57 #include <openssl/evp.h>

59 /* If this symbol is defined then ENGINE_get_pkey_asn1_meth_engine(), the
60 * function that is used by EVP to hook in pkey_asn1_meth code and cache
61 * defaults (etc), will display brief debugging summaries to stderr with the

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_asnmth.c 2

62 * ’nid’. */
63 /* #define ENGINE_PKEY_ASN1_METH_DEBUG */

65 static ENGINE_TABLE *pkey_asn1_meth_table = NULL;

67 void ENGINE_unregister_pkey_asn1_meths(ENGINE *e)
68 {
69 engine_table_unregister(&pkey_asn1_meth_table, e);
70 }

72 static void engine_unregister_all_pkey_asn1_meths(void)
73 {
74 engine_table_cleanup(&pkey_asn1_meth_table);
75 }

77 int ENGINE_register_pkey_asn1_meths(ENGINE *e)
78 {
79 if(e->pkey_asn1_meths)
80 {
81 const int *nids;
82 int num_nids = e->pkey_asn1_meths(e, NULL, &nids, 0);
83 if(num_nids > 0)
84 return engine_table_register(&pkey_asn1_meth_table,
85 engine_unregister_all_pkey_asn1_meths, e, nids,
86 num_nids, 0);
87 }
88 return 1;
89 }

91 void ENGINE_register_all_pkey_asn1_meths(void)
92 {
93 ENGINE *e;

95 for(e=ENGINE_get_first() ; e ; e=ENGINE_get_next(e))
96 ENGINE_register_pkey_asn1_meths(e);
97 }

99 int ENGINE_set_default_pkey_asn1_meths(ENGINE *e)
100 {
101 if(e->pkey_asn1_meths)
102 {
103 const int *nids;
104 int num_nids = e->pkey_asn1_meths(e, NULL, &nids, 0);
105 if(num_nids > 0)
106 return engine_table_register(&pkey_asn1_meth_table,
107 engine_unregister_all_pkey_asn1_meths, e, nids,
108 num_nids, 1);
109 }
110 return 1;
111 }

113 /* Exposed API function to get a functional reference from the implementation
114 * table (ie. try to get a functional reference from the tabled structural
115 * references) for a given pkey_asn1_meth ’nid’ */
116 ENGINE *ENGINE_get_pkey_asn1_meth_engine(int nid)
117 {
118 return engine_table_select(&pkey_asn1_meth_table, nid);
119 }

121 /* Obtains a pkey_asn1_meth implementation from an ENGINE functional reference *
122 const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth(ENGINE *e, int nid)
123 {
124 EVP_PKEY_ASN1_METHOD *ret;
125 ENGINE_PKEY_ASN1_METHS_PTR fn = ENGINE_get_pkey_asn1_meths(e);
126 if(!fn || !fn(e, &ret, NULL, nid))
127 {

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_asnmth.c 3

128 ENGINEerr(ENGINE_F_ENGINE_GET_PKEY_ASN1_METH,
129 ENGINE_R_UNIMPLEMENTED_PUBLIC_KEY_METHOD);
130 return NULL;
131 }
132 return ret;
133 }

135 /* Gets the pkey_asn1_meth callback from an ENGINE structure */
136 ENGINE_PKEY_ASN1_METHS_PTR ENGINE_get_pkey_asn1_meths(const ENGINE *e)
137 {
138 return e->pkey_asn1_meths;
139 }

141 /* Sets the pkey_asn1_meth callback in an ENGINE structure */
142 int ENGINE_set_pkey_asn1_meths(ENGINE *e, ENGINE_PKEY_ASN1_METHS_PTR f)
143 {
144 e->pkey_asn1_meths = f;
145 return 1;
146 }

148 /* Internal function to free up EVP_PKEY_ASN1_METHOD structures before an
149 * ENGINE is destroyed
150 */

152 void engine_pkey_asn1_meths_free(ENGINE *e)
153 {
154 int i;
155 EVP_PKEY_ASN1_METHOD *pkm;
156 if (e->pkey_asn1_meths)
157 {
158 const int *pknids;
159 int npknids;
160 npknids = e->pkey_asn1_meths(e, NULL, &pknids, 0);
161 for (i = 0; i < npknids; i++)
162 {
163 if (e->pkey_asn1_meths(e, &pkm, NULL, pknids[i]))
164 {
165 EVP_PKEY_asn1_free(pkm);
166 }
167 }
168 }
169 }

171 /* Find a method based on a string. This does a linear search through
172 * all implemented algorithms. This is OK in practice because only
173 * a small number of algorithms are likely to be implemented in an engine
174 * and it is not used for speed critical operations.
175 */

177 const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth_str(ENGINE *e,
178 const char *str, int len)
179 {
180 int i, nidcount;
181 const int *nids;
182 EVP_PKEY_ASN1_METHOD *ameth;
183 if (!e->pkey_asn1_meths)
184 return NULL;
185 if (len == -1)
186 len = strlen(str);
187 nidcount = e->pkey_asn1_meths(e, NULL, &nids, 0);
188 for (i = 0; i < nidcount; i++)
189 {
190 e->pkey_asn1_meths(e, &ameth, NULL, nids[i]);
191 if (((int)strlen(ameth->pem_str) == len) &&
192 !strncasecmp(ameth->pem_str, str, len))
193 return ameth;

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_asnmth.c 4

194 }
195 return NULL;
196 }

198 typedef struct
199 {
200 ENGINE *e;
201 const EVP_PKEY_ASN1_METHOD *ameth;
202 const char *str;
203 int len;
204 } ENGINE_FIND_STR;

206 static void look_str_cb(int nid, STACK_OF(ENGINE) *sk, ENGINE *def, void *arg)
207 {
208 ENGINE_FIND_STR *lk = arg;
209 int i;
210 if (lk->ameth)
211 return;
212 for (i = 0; i < sk_ENGINE_num(sk); i++)
213 {
214 ENGINE *e = sk_ENGINE_value(sk, i);
215 EVP_PKEY_ASN1_METHOD *ameth;
216 e->pkey_asn1_meths(e, &ameth, NULL, nid);
217 if (((int)strlen(ameth->pem_str) == lk->len) &&
218 !strncasecmp(ameth->pem_str, lk->str, lk->len))
219 {
220 lk->e = e;
221 lk->ameth = ameth;
222 return;
223 }
224 }
225 }

227 const EVP_PKEY_ASN1_METHOD *ENGINE_pkey_asn1_find_str(ENGINE **pe,
228 const char *str, int len)
229 {
230 ENGINE_FIND_STR fstr;
231 fstr.e = NULL;
232 fstr.ameth = NULL;
233 fstr.str = str;
234 fstr.len = len;
235 CRYPTO_w_lock(CRYPTO_LOCK_ENGINE);
236 engine_table_doall(pkey_asn1_meth_table, look_str_cb, &fstr);
237 /* If found obtain a structural reference to engine */
238 if (fstr.e)
239 {
240 fstr.e->struct_ref++;
241 engine_ref_debug(fstr.e, 0, 1)
242 }
243 *pe = fstr.e;
244 CRYPTO_w_unlock(CRYPTO_LOCK_ENGINE);
245 return fstr.ameth;
246 }

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_cipher.c 1

**
 4762 Fri May 30 18:31:48 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/tb_cipher.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 #include "eng_int.h"

57 /* If this symbol is defined then ENGINE_get_cipher_engine(), the function that
58 * is used by EVP to hook in cipher code and cache defaults (etc), will display
59 * brief debugging summaries to stderr with the ’nid’. */
60 /* #define ENGINE_CIPHER_DEBUG */

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_cipher.c 2

62 static ENGINE_TABLE *cipher_table = NULL;

64 void ENGINE_unregister_ciphers(ENGINE *e)
65 {
66 engine_table_unregister(&cipher_table, e);
67 }

69 static void engine_unregister_all_ciphers(void)
70 {
71 engine_table_cleanup(&cipher_table);
72 }

74 int ENGINE_register_ciphers(ENGINE *e)
75 {
76 if(e->ciphers)
77 {
78 const int *nids;
79 int num_nids = e->ciphers(e, NULL, &nids, 0);
80 if(num_nids > 0)
81 return engine_table_register(&cipher_table,
82 engine_unregister_all_ciphers, e, nids,
83 num_nids, 0);
84 }
85 return 1;
86 }

88 void ENGINE_register_all_ciphers()
89 {
90 ENGINE *e;

92 for(e=ENGINE_get_first() ; e ; e=ENGINE_get_next(e))
93 ENGINE_register_ciphers(e);
94 }

96 int ENGINE_set_default_ciphers(ENGINE *e)
97 {
98 if(e->ciphers)
99 {
100 const int *nids;
101 int num_nids = e->ciphers(e, NULL, &nids, 0);
102 if(num_nids > 0)
103 return engine_table_register(&cipher_table,
104 engine_unregister_all_ciphers, e, nids,
105 num_nids, 1);
106 }
107 return 1;
108 }

110 /* Exposed API function to get a functional reference from the implementation
111 * table (ie. try to get a functional reference from the tabled structural
112 * references) for a given cipher ’nid’ */
113 ENGINE *ENGINE_get_cipher_engine(int nid)
114 {
115 return engine_table_select(&cipher_table, nid);
116 }

118 /* Obtains a cipher implementation from an ENGINE functional reference */
119 const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid)
120 {
121 const EVP_CIPHER *ret;
122 ENGINE_CIPHERS_PTR fn = ENGINE_get_ciphers(e);
123 if(!fn || !fn(e, &ret, NULL, nid))
124 {
125 ENGINEerr(ENGINE_F_ENGINE_GET_CIPHER,
126 ENGINE_R_UNIMPLEMENTED_CIPHER);
127 return NULL;

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_cipher.c 3

128 }
129 return ret;
130 }

132 /* Gets the cipher callback from an ENGINE structure */
133 ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e)
134 {
135 return e->ciphers;
136 }

138 /* Sets the cipher callback in an ENGINE structure */
139 int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f)
140 {
141 e->ciphers = f;
142 return 1;
143 }

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_dh.c 1

**
 4159 Fri May 30 18:31:48 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/tb_dh.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 #include "eng_int.h"

57 /* If this symbol is defined then ENGINE_get_default_DH(), the function that is
58 * used by DH to hook in implementation code and cache defaults (etc), will
59 * display brief debugging summaries to stderr with the ’nid’. */
60 /* #define ENGINE_DH_DEBUG */

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_dh.c 2

62 static ENGINE_TABLE *dh_table = NULL;
63 static const int dummy_nid = 1;

65 void ENGINE_unregister_DH(ENGINE *e)
66 {
67 engine_table_unregister(&dh_table, e);
68 }

70 static void engine_unregister_all_DH(void)
71 {
72 engine_table_cleanup(&dh_table);
73 }

75 int ENGINE_register_DH(ENGINE *e)
76 {
77 if(e->dh_meth)
78 return engine_table_register(&dh_table,
79 engine_unregister_all_DH, e, &dummy_nid, 1, 0);
80 return 1;
81 }

83 void ENGINE_register_all_DH()
84 {
85 ENGINE *e;

87 for(e=ENGINE_get_first() ; e ; e=ENGINE_get_next(e))
88 ENGINE_register_DH(e);
89 }

91 int ENGINE_set_default_DH(ENGINE *e)
92 {
93 if(e->dh_meth)
94 return engine_table_register(&dh_table,
95 engine_unregister_all_DH, e, &dummy_nid, 1, 1);
96 return 1;
97 }

99 /* Exposed API function to get a functional reference from the implementation
100 * table (ie. try to get a functional reference from the tabled structural
101 * references). */
102 ENGINE *ENGINE_get_default_DH(void)
103 {
104 return engine_table_select(&dh_table, dummy_nid);
105 }

107 /* Obtains an DH implementation from an ENGINE functional reference */
108 const DH_METHOD *ENGINE_get_DH(const ENGINE *e)
109 {
110 return e->dh_meth;
111 }

113 /* Sets an DH implementation in an ENGINE structure */
114 int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth)
115 {
116 e->dh_meth = dh_meth;
117 return 1;
118 }

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_digest.c 1

**
 4754 Fri May 30 18:31:48 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/tb_digest.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 #include "eng_int.h"

57 /* If this symbol is defined then ENGINE_get_digest_engine(), the function that
58 * is used by EVP to hook in digest code and cache defaults (etc), will display
59 * brief debugging summaries to stderr with the ’nid’. */
60 /* #define ENGINE_DIGEST_DEBUG */

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_digest.c 2

62 static ENGINE_TABLE *digest_table = NULL;

64 void ENGINE_unregister_digests(ENGINE *e)
65 {
66 engine_table_unregister(&digest_table, e);
67 }

69 static void engine_unregister_all_digests(void)
70 {
71 engine_table_cleanup(&digest_table);
72 }

74 int ENGINE_register_digests(ENGINE *e)
75 {
76 if(e->digests)
77 {
78 const int *nids;
79 int num_nids = e->digests(e, NULL, &nids, 0);
80 if(num_nids > 0)
81 return engine_table_register(&digest_table,
82 engine_unregister_all_digests, e, nids,
83 num_nids, 0);
84 }
85 return 1;
86 }

88 void ENGINE_register_all_digests()
89 {
90 ENGINE *e;

92 for(e=ENGINE_get_first() ; e ; e=ENGINE_get_next(e))
93 ENGINE_register_digests(e);
94 }

96 int ENGINE_set_default_digests(ENGINE *e)
97 {
98 if(e->digests)
99 {
100 const int *nids;
101 int num_nids = e->digests(e, NULL, &nids, 0);
102 if(num_nids > 0)
103 return engine_table_register(&digest_table,
104 engine_unregister_all_digests, e, nids,
105 num_nids, 1);
106 }
107 return 1;
108 }

110 /* Exposed API function to get a functional reference from the implementation
111 * table (ie. try to get a functional reference from the tabled structural
112 * references) for a given digest ’nid’ */
113 ENGINE *ENGINE_get_digest_engine(int nid)
114 {
115 return engine_table_select(&digest_table, nid);
116 }

118 /* Obtains a digest implementation from an ENGINE functional reference */
119 const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid)
120 {
121 const EVP_MD *ret;
122 ENGINE_DIGESTS_PTR fn = ENGINE_get_digests(e);
123 if(!fn || !fn(e, &ret, NULL, nid))
124 {
125 ENGINEerr(ENGINE_F_ENGINE_GET_DIGEST,
126 ENGINE_R_UNIMPLEMENTED_DIGEST);
127 return NULL;

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_digest.c 3

128 }
129 return ret;
130 }

132 /* Gets the digest callback from an ENGINE structure */
133 ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e)
134 {
135 return e->digests;
136 }

138 /* Sets the digest callback in an ENGINE structure */
139 int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f)
140 {
141 e->digests = f;
142 return 1;
143 }

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_dsa.c 1

**
 4189 Fri May 30 18:31:49 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/tb_dsa.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 #include "eng_int.h"

57 /* If this symbol is defined then ENGINE_get_default_DSA(), the function that is
58 * used by DSA to hook in implementation code and cache defaults (etc), will
59 * display brief debugging summaries to stderr with the ’nid’. */
60 /* #define ENGINE_DSA_DEBUG */

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_dsa.c 2

62 static ENGINE_TABLE *dsa_table = NULL;
63 static const int dummy_nid = 1;

65 void ENGINE_unregister_DSA(ENGINE *e)
66 {
67 engine_table_unregister(&dsa_table, e);
68 }

70 static void engine_unregister_all_DSA(void)
71 {
72 engine_table_cleanup(&dsa_table);
73 }

75 int ENGINE_register_DSA(ENGINE *e)
76 {
77 if(e->dsa_meth)
78 return engine_table_register(&dsa_table,
79 engine_unregister_all_DSA, e, &dummy_nid, 1, 0);
80 return 1;
81 }

83 void ENGINE_register_all_DSA()
84 {
85 ENGINE *e;

87 for(e=ENGINE_get_first() ; e ; e=ENGINE_get_next(e))
88 ENGINE_register_DSA(e);
89 }

91 int ENGINE_set_default_DSA(ENGINE *e)
92 {
93 if(e->dsa_meth)
94 return engine_table_register(&dsa_table,
95 engine_unregister_all_DSA, e, &dummy_nid, 1, 1);
96 return 1;
97 }

99 /* Exposed API function to get a functional reference from the implementation
100 * table (ie. try to get a functional reference from the tabled structural
101 * references). */
102 ENGINE *ENGINE_get_default_DSA(void)
103 {
104 return engine_table_select(&dsa_table, dummy_nid);
105 }

107 /* Obtains an DSA implementation from an ENGINE functional reference */
108 const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e)
109 {
110 return e->dsa_meth;
111 }

113 /* Sets an DSA implementation in an ENGINE structure */
114 int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth)
115 {
116 e->dsa_meth = dsa_meth;
117 return 1;
118 }

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_ecdh.c 1

**
 4779 Fri May 30 18:31:49 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/tb_ecdh.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/engine/tb_ecdh.c */
2 /* ==
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * The ECDH engine software is originally written by Nils Gura and
13 * Douglas Stebila of Sun Microsystems Laboratories.
14 *
15 */
16 /* ==
17 * Copyright (c) 2000-2002 The OpenSSL Project. All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * 1. Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 *
26 * 2. Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 *
31 * 3. All advertising materials mentioning features or use of this
32 * software must display the following acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
35 *
36 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37 * endorse or promote products derived from this software without
38 * prior written permission. For written permission, please contact
39 * licensing@OpenSSL.org.
40 *
41 * 5. Products derived from this software may not be called "OpenSSL"
42 * nor may "OpenSSL" appear in their names without prior written
43 * permission of the OpenSSL Project.
44 *
45 * 6. Redistributions of any form whatsoever must retain the following
46 * acknowledgment:
47 * "This product includes software developed by the OpenSSL Project
48 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
51 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
54 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61 * OF THE POSSIBILITY OF SUCH DAMAGE.

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_ecdh.c 2

62 * ==
63 *
64 * This product includes cryptographic software written by Eric Young
65 * (eay@cryptsoft.com). This product includes software written by Tim
66 * Hudson (tjh@cryptsoft.com).
67 *
68 */

70 #include "eng_int.h"

72 /* If this symbol is defined then ENGINE_get_default_ECDH(), the function that i
73 * used by ECDH to hook in implementation code and cache defaults (etc), will
74 * display brief debugging summaries to stderr with the ’nid’. */
75 /* #define ENGINE_ECDH_DEBUG */

77 static ENGINE_TABLE *ecdh_table = NULL;
78 static const int dummy_nid = 1;

80 void ENGINE_unregister_ECDH(ENGINE *e)
81 {
82 engine_table_unregister(&ecdh_table, e);
83 }

85 static void engine_unregister_all_ECDH(void)
86 {
87 engine_table_cleanup(&ecdh_table);
88 }

90 int ENGINE_register_ECDH(ENGINE *e)
91 {
92 if(e->ecdh_meth)
93 return engine_table_register(&ecdh_table,
94 engine_unregister_all_ECDH, e, &dummy_nid, 1, 0)
95 return 1;
96 }

98 void ENGINE_register_all_ECDH()
99 {
100 ENGINE *e;

102 for(e=ENGINE_get_first() ; e ; e=ENGINE_get_next(e))
103 ENGINE_register_ECDH(e);
104 }

106 int ENGINE_set_default_ECDH(ENGINE *e)
107 {
108 if(e->ecdh_meth)
109 return engine_table_register(&ecdh_table,
110 engine_unregister_all_ECDH, e, &dummy_nid, 1, 1)
111 return 1;
112 }

114 /* Exposed API function to get a functional reference from the implementation
115 * table (ie. try to get a functional reference from the tabled structural
116 * references). */
117 ENGINE *ENGINE_get_default_ECDH(void)
118 {
119 return engine_table_select(&ecdh_table, dummy_nid);
120 }

122 /* Obtains an ECDH implementation from an ENGINE functional reference */
123 const ECDH_METHOD *ENGINE_get_ECDH(const ENGINE *e)
124 {
125 return e->ecdh_meth;
126 }

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_ecdh.c 3

128 /* Sets an ECDH implementation in an ENGINE structure */
129 int ENGINE_set_ECDH(ENGINE *e, const ECDH_METHOD *ecdh_meth)
130 {
131 e->ecdh_meth = ecdh_meth;
132 return 1;
133 }

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_ecdsa.c 1

**
 4254 Fri May 30 18:31:49 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/tb_ecdsa.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2000-2002 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 #include "eng_int.h"

57 /* If this symbol is defined then ENGINE_get_default_ECDSA(), the function that
58 * used by ECDSA to hook in implementation code and cache defaults (etc), will
59 * display brief debugging summaries to stderr with the ’nid’. */
60 /* #define ENGINE_ECDSA_DEBUG */

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_ecdsa.c 2

62 static ENGINE_TABLE *ecdsa_table = NULL;
63 static const int dummy_nid = 1;

65 void ENGINE_unregister_ECDSA(ENGINE *e)
66 {
67 engine_table_unregister(&ecdsa_table, e);
68 }

70 static void engine_unregister_all_ECDSA(void)
71 {
72 engine_table_cleanup(&ecdsa_table);
73 }

75 int ENGINE_register_ECDSA(ENGINE *e)
76 {
77 if(e->ecdsa_meth)
78 return engine_table_register(&ecdsa_table,
79 engine_unregister_all_ECDSA, e, &dummy_nid, 1, 0
80 return 1;
81 }

83 void ENGINE_register_all_ECDSA()
84 {
85 ENGINE *e;

87 for(e=ENGINE_get_first() ; e ; e=ENGINE_get_next(e))
88 ENGINE_register_ECDSA(e);
89 }

91 int ENGINE_set_default_ECDSA(ENGINE *e)
92 {
93 if(e->ecdsa_meth)
94 return engine_table_register(&ecdsa_table,
95 engine_unregister_all_ECDSA, e, &dummy_nid, 1, 1
96 return 1;
97 }

99 /* Exposed API function to get a functional reference from the implementation
100 * table (ie. try to get a functional reference from the tabled structural
101 * references). */
102 ENGINE *ENGINE_get_default_ECDSA(void)
103 {
104 return engine_table_select(&ecdsa_table, dummy_nid);
105 }

107 /* Obtains an ECDSA implementation from an ENGINE functional reference */
108 const ECDSA_METHOD *ENGINE_get_ECDSA(const ENGINE *e)
109 {
110 return e->ecdsa_meth;
111 }

113 /* Sets an ECDSA implementation in an ENGINE structure */
114 int ENGINE_set_ECDSA(ENGINE *e, const ECDSA_METHOD *ecdsa_meth)
115 {
116 e->ecdsa_meth = ecdsa_meth;
117 return 1;
118 }

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_pkmeth.c 1

**
 5325 Fri May 30 18:31:49 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/tb_pkmeth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 #include "eng_int.h"
56 #include <openssl/evp.h>

58 /* If this symbol is defined then ENGINE_get_pkey_meth_engine(), the function
59 * that is used by EVP to hook in pkey_meth code and cache defaults (etc), will
60 * display brief debugging summaries to stderr with the ’nid’. */
61 /* #define ENGINE_PKEY_METH_DEBUG */

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_pkmeth.c 2

63 static ENGINE_TABLE *pkey_meth_table = NULL;

65 void ENGINE_unregister_pkey_meths(ENGINE *e)
66 {
67 engine_table_unregister(&pkey_meth_table, e);
68 }

70 static void engine_unregister_all_pkey_meths(void)
71 {
72 engine_table_cleanup(&pkey_meth_table);
73 }

75 int ENGINE_register_pkey_meths(ENGINE *e)
76 {
77 if(e->pkey_meths)
78 {
79 const int *nids;
80 int num_nids = e->pkey_meths(e, NULL, &nids, 0);
81 if(num_nids > 0)
82 return engine_table_register(&pkey_meth_table,
83 engine_unregister_all_pkey_meths, e, nids,
84 num_nids, 0);
85 }
86 return 1;
87 }

89 void ENGINE_register_all_pkey_meths()
90 {
91 ENGINE *e;

93 for(e=ENGINE_get_first() ; e ; e=ENGINE_get_next(e))
94 ENGINE_register_pkey_meths(e);
95 }

97 int ENGINE_set_default_pkey_meths(ENGINE *e)
98 {
99 if(e->pkey_meths)
100 {
101 const int *nids;
102 int num_nids = e->pkey_meths(e, NULL, &nids, 0);
103 if(num_nids > 0)
104 return engine_table_register(&pkey_meth_table,
105 engine_unregister_all_pkey_meths, e, nids,
106 num_nids, 1);
107 }
108 return 1;
109 }

111 /* Exposed API function to get a functional reference from the implementation
112 * table (ie. try to get a functional reference from the tabled structural
113 * references) for a given pkey_meth ’nid’ */
114 ENGINE *ENGINE_get_pkey_meth_engine(int nid)
115 {
116 return engine_table_select(&pkey_meth_table, nid);
117 }

119 /* Obtains a pkey_meth implementation from an ENGINE functional reference */
120 const EVP_PKEY_METHOD *ENGINE_get_pkey_meth(ENGINE *e, int nid)
121 {
122 EVP_PKEY_METHOD *ret;
123 ENGINE_PKEY_METHS_PTR fn = ENGINE_get_pkey_meths(e);
124 if(!fn || !fn(e, &ret, NULL, nid))
125 {
126 ENGINEerr(ENGINE_F_ENGINE_GET_PKEY_METH,
127 ENGINE_R_UNIMPLEMENTED_PUBLIC_KEY_METHOD);

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_pkmeth.c 3

128 return NULL;
129 }
130 return ret;
131 }

133 /* Gets the pkey_meth callback from an ENGINE structure */
134 ENGINE_PKEY_METHS_PTR ENGINE_get_pkey_meths(const ENGINE *e)
135 {
136 return e->pkey_meths;
137 }

139 /* Sets the pkey_meth callback in an ENGINE structure */
140 int ENGINE_set_pkey_meths(ENGINE *e, ENGINE_PKEY_METHS_PTR f)
141 {
142 e->pkey_meths = f;
143 return 1;
144 }

146 /* Internal function to free up EVP_PKEY_METHOD structures before an
147 * ENGINE is destroyed
148 */

150 void engine_pkey_meths_free(ENGINE *e)
151 {
152 int i;
153 EVP_PKEY_METHOD *pkm;
154 if (e->pkey_meths)
155 {
156 const int *pknids;
157 int npknids;
158 npknids = e->pkey_meths(e, NULL, &pknids, 0);
159 for (i = 0; i < npknids; i++)
160 {
161 if (e->pkey_meths(e, &pkm, NULL, pknids[i]))
162 {
163 EVP_PKEY_meth_free(pkm);
164 }
165 }
166 }
167 }

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_rand.c 1

**
 4219 Fri May 30 18:31:49 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/tb_rand.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 #include "eng_int.h"

57 /* If this symbol is defined then ENGINE_get_default_RAND(), the function that i
58 * used by RAND to hook in implementation code and cache defaults (etc), will
59 * display brief debugging summaries to stderr with the ’nid’. */
60 /* #define ENGINE_RAND_DEBUG */

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_rand.c 2

62 static ENGINE_TABLE *rand_table = NULL;
63 static const int dummy_nid = 1;

65 void ENGINE_unregister_RAND(ENGINE *e)
66 {
67 engine_table_unregister(&rand_table, e);
68 }

70 static void engine_unregister_all_RAND(void)
71 {
72 engine_table_cleanup(&rand_table);
73 }

75 int ENGINE_register_RAND(ENGINE *e)
76 {
77 if(e->rand_meth)
78 return engine_table_register(&rand_table,
79 engine_unregister_all_RAND, e, &dummy_nid, 1, 0)
80 return 1;
81 }

83 void ENGINE_register_all_RAND()
84 {
85 ENGINE *e;

87 for(e=ENGINE_get_first() ; e ; e=ENGINE_get_next(e))
88 ENGINE_register_RAND(e);
89 }

91 int ENGINE_set_default_RAND(ENGINE *e)
92 {
93 if(e->rand_meth)
94 return engine_table_register(&rand_table,
95 engine_unregister_all_RAND, e, &dummy_nid, 1, 1)
96 return 1;
97 }

99 /* Exposed API function to get a functional reference from the implementation
100 * table (ie. try to get a functional reference from the tabled structural
101 * references). */
102 ENGINE *ENGINE_get_default_RAND(void)
103 {
104 return engine_table_select(&rand_table, dummy_nid);
105 }

107 /* Obtains an RAND implementation from an ENGINE functional reference */
108 const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e)
109 {
110 return e->rand_meth;
111 }

113 /* Sets an RAND implementation in an ENGINE structure */
114 int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth)
115 {
116 e->rand_meth = rand_meth;
117 return 1;
118 }

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_rsa.c 1

**
 4189 Fri May 30 18:31:49 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/tb_rsa.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 #include "eng_int.h"

57 /* If this symbol is defined then ENGINE_get_default_RSA(), the function that is
58 * used by RSA to hook in implementation code and cache defaults (etc), will
59 * display brief debugging summaries to stderr with the ’nid’. */
60 /* #define ENGINE_RSA_DEBUG */

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_rsa.c 2

62 static ENGINE_TABLE *rsa_table = NULL;
63 static const int dummy_nid = 1;

65 void ENGINE_unregister_RSA(ENGINE *e)
66 {
67 engine_table_unregister(&rsa_table, e);
68 }

70 static void engine_unregister_all_RSA(void)
71 {
72 engine_table_cleanup(&rsa_table);
73 }

75 int ENGINE_register_RSA(ENGINE *e)
76 {
77 if(e->rsa_meth)
78 return engine_table_register(&rsa_table,
79 engine_unregister_all_RSA, e, &dummy_nid, 1, 0);
80 return 1;
81 }

83 void ENGINE_register_all_RSA()
84 {
85 ENGINE *e;

87 for(e=ENGINE_get_first() ; e ; e=ENGINE_get_next(e))
88 ENGINE_register_RSA(e);
89 }

91 int ENGINE_set_default_RSA(ENGINE *e)
92 {
93 if(e->rsa_meth)
94 return engine_table_register(&rsa_table,
95 engine_unregister_all_RSA, e, &dummy_nid, 1, 1);
96 return 1;
97 }

99 /* Exposed API function to get a functional reference from the implementation
100 * table (ie. try to get a functional reference from the tabled structural
101 * references). */
102 ENGINE *ENGINE_get_default_RSA(void)
103 {
104 return engine_table_select(&rsa_table, dummy_nid);
105 }

107 /* Obtains an RSA implementation from an ENGINE functional reference */
108 const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e)
109 {
110 return e->rsa_meth;
111 }

113 /* Sets an RSA implementation in an ENGINE structure */
114 int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth)
115 {
116 e->rsa_meth = rsa_meth;
117 return 1;
118 }

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_store.c 1

**
 4346 Fri May 30 18:31:49 2014
new/usr/src/lib/openssl/libsunw_crypto/engine/tb_store.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2003 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com).
52 *
53 */

55 #include "eng_int.h"

57 /* If this symbol is defined then ENGINE_get_default_STORE(), the function that
58 * used by STORE to hook in implementation code and cache defaults (etc), will
59 * display brief debugging summaries to stderr with the ’nid’. */
60 /* #define ENGINE_STORE_DEBUG */

new/usr/src/lib/openssl/libsunw_crypto/engine/tb_store.c 2

62 static ENGINE_TABLE *store_table = NULL;
63 static const int dummy_nid = 1;

65 void ENGINE_unregister_STORE(ENGINE *e)
66 {
67 engine_table_unregister(&store_table, e);
68 }

70 static void engine_unregister_all_STORE(void)
71 {
72 engine_table_cleanup(&store_table);
73 }

75 int ENGINE_register_STORE(ENGINE *e)
76 {
77 if(e->store_meth)
78 return engine_table_register(&store_table,
79 engine_unregister_all_STORE, e, &dummy_nid, 1, 0
80 return 1;
81 }

83 void ENGINE_register_all_STORE()
84 {
85 ENGINE *e;

87 for(e=ENGINE_get_first() ; e ; e=ENGINE_get_next(e))
88 ENGINE_register_STORE(e);
89 }

91 /* The following two functions are removed because they’re useless. */
92 #if 0
93 int ENGINE_set_default_STORE(ENGINE *e)
94 {
95 if(e->store_meth)
96 return engine_table_register(&store_table,
97 engine_unregister_all_STORE, e, &dummy_nid, 1, 1
98 return 1;
99 }
100 #endif

102 #if 0
103 /* Exposed API function to get a functional reference from the implementation
104 * table (ie. try to get a functional reference from the tabled structural
105 * references). */
106 ENGINE *ENGINE_get_default_STORE(void)
107 {
108 return engine_table_select(&store_table, dummy_nid);
109 }
110 #endif

112 /* Obtains an STORE implementation from an ENGINE functional reference */
113 const STORE_METHOD *ENGINE_get_STORE(const ENGINE *e)
114 {
115 return e->store_meth;
116 }

118 /* Sets an STORE implementation in an ENGINE structure */
119 int ENGINE_set_STORE(ENGINE *e, const STORE_METHOD *store_meth)
120 {
121 e->store_meth = store_meth;
122 return 1;
123 }

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 1

**
 30145 Fri May 30 18:31:49 2014
new/usr/src/lib/openssl/libsunw_crypto/err/err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/err/err.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include <stdio.h>
113 #include <stdarg.h>
114 #include <string.h>
115 #include "cryptlib.h"
116 #include <openssl/lhash.h>
117 #include <openssl/crypto.h>
118 #include <openssl/buffer.h>
119 #include <openssl/bio.h>
120 #include <openssl/err.h>

122 DECLARE_LHASH_OF(ERR_STRING_DATA);
123 DECLARE_LHASH_OF(ERR_STATE);

125 static void err_load_strings(int lib, ERR_STRING_DATA *str);

127 static void ERR_STATE_free(ERR_STATE *s);

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 3

128 #ifndef OPENSSL_NO_ERR
129 static ERR_STRING_DATA ERR_str_libraries[]=
130 {
131 {ERR_PACK(ERR_LIB_NONE,0,0) ,"unknown library"},
132 {ERR_PACK(ERR_LIB_SYS,0,0) ,"system library"},
133 {ERR_PACK(ERR_LIB_BN,0,0) ,"bignum routines"},
134 {ERR_PACK(ERR_LIB_RSA,0,0) ,"rsa routines"},
135 {ERR_PACK(ERR_LIB_DH,0,0) ,"Diffie-Hellman routines"},
136 {ERR_PACK(ERR_LIB_EVP,0,0) ,"digital envelope routines"},
137 {ERR_PACK(ERR_LIB_BUF,0,0) ,"memory buffer routines"},
138 {ERR_PACK(ERR_LIB_OBJ,0,0) ,"object identifier routines"},
139 {ERR_PACK(ERR_LIB_PEM,0,0) ,"PEM routines"},
140 {ERR_PACK(ERR_LIB_DSA,0,0) ,"dsa routines"},
141 {ERR_PACK(ERR_LIB_X509,0,0) ,"x509 certificate routines"},
142 {ERR_PACK(ERR_LIB_ASN1,0,0) ,"asn1 encoding routines"},
143 {ERR_PACK(ERR_LIB_CONF,0,0) ,"configuration file routines"},
144 {ERR_PACK(ERR_LIB_CRYPTO,0,0) ,"common libcrypto routines"},
145 {ERR_PACK(ERR_LIB_EC,0,0) ,"elliptic curve routines"},
146 {ERR_PACK(ERR_LIB_SSL,0,0) ,"SSL routines"},
147 {ERR_PACK(ERR_LIB_BIO,0,0) ,"BIO routines"},
148 {ERR_PACK(ERR_LIB_PKCS7,0,0) ,"PKCS7 routines"},
149 {ERR_PACK(ERR_LIB_X509V3,0,0) ,"X509 V3 routines"},
150 {ERR_PACK(ERR_LIB_PKCS12,0,0) ,"PKCS12 routines"},
151 {ERR_PACK(ERR_LIB_RAND,0,0) ,"random number generator"},
152 {ERR_PACK(ERR_LIB_DSO,0,0) ,"DSO support routines"},
153 {ERR_PACK(ERR_LIB_TS,0,0) ,"time stamp routines"},
154 {ERR_PACK(ERR_LIB_ENGINE,0,0) ,"engine routines"},
155 {ERR_PACK(ERR_LIB_OCSP,0,0) ,"OCSP routines"},
156 {ERR_PACK(ERR_LIB_FIPS,0,0) ,"FIPS routines"},
157 {ERR_PACK(ERR_LIB_CMS,0,0) ,"CMS routines"},
158 {ERR_PACK(ERR_LIB_HMAC,0,0) ,"HMAC routines"},
159 {0,NULL},
160 };

162 static ERR_STRING_DATA ERR_str_functs[]=
163 {
164 {ERR_PACK(0,SYS_F_FOPEN,0), "fopen"},
165 {ERR_PACK(0,SYS_F_CONNECT,0), "connect"},
166 {ERR_PACK(0,SYS_F_GETSERVBYNAME,0), "getservbyname"},
167 {ERR_PACK(0,SYS_F_SOCKET,0), "socket"},
168 {ERR_PACK(0,SYS_F_IOCTLSOCKET,0), "ioctlsocket"},
169 {ERR_PACK(0,SYS_F_BIND,0), "bind"},
170 {ERR_PACK(0,SYS_F_LISTEN,0), "listen"},
171 {ERR_PACK(0,SYS_F_ACCEPT,0), "accept"},
172 #ifdef OPENSSL_SYS_WINDOWS
173 {ERR_PACK(0,SYS_F_WSASTARTUP,0), "WSAstartup"},
174 #endif
175 {ERR_PACK(0,SYS_F_OPENDIR,0), "opendir"},
176 {ERR_PACK(0,SYS_F_FREAD,0), "fread"},
177 {0,NULL},
178 };

180 static ERR_STRING_DATA ERR_str_reasons[]=
181 {
182 {ERR_R_SYS_LIB ,"system lib"},
183 {ERR_R_BN_LIB ,"BN lib"},
184 {ERR_R_RSA_LIB ,"RSA lib"},
185 {ERR_R_DH_LIB ,"DH lib"},
186 {ERR_R_EVP_LIB ,"EVP lib"},
187 {ERR_R_BUF_LIB ,"BUF lib"},
188 {ERR_R_OBJ_LIB ,"OBJ lib"},
189 {ERR_R_PEM_LIB ,"PEM lib"},
190 {ERR_R_DSA_LIB ,"DSA lib"},
191 {ERR_R_X509_LIB ,"X509 lib"},
192 {ERR_R_ASN1_LIB ,"ASN1 lib"},
193 {ERR_R_CONF_LIB ,"CONF lib"},

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 4

194 {ERR_R_CRYPTO_LIB ,"CRYPTO lib"},
195 {ERR_R_EC_LIB ,"EC lib"},
196 {ERR_R_SSL_LIB ,"SSL lib"},
197 {ERR_R_BIO_LIB ,"BIO lib"},
198 {ERR_R_PKCS7_LIB ,"PKCS7 lib"},
199 {ERR_R_X509V3_LIB ,"X509V3 lib"},
200 {ERR_R_PKCS12_LIB ,"PKCS12 lib"},
201 {ERR_R_RAND_LIB ,"RAND lib"},
202 {ERR_R_DSO_LIB ,"DSO lib"},
203 {ERR_R_ENGINE_LIB ,"ENGINE lib"},
204 {ERR_R_OCSP_LIB ,"OCSP lib"},
205 {ERR_R_TS_LIB ,"TS lib"},

207 {ERR_R_NESTED_ASN1_ERROR ,"nested asn1 error"},
208 {ERR_R_BAD_ASN1_OBJECT_HEADER ,"bad asn1 object header"},
209 {ERR_R_BAD_GET_ASN1_OBJECT_CALL ,"bad get asn1 object call"},
210 {ERR_R_EXPECTING_AN_ASN1_SEQUENCE ,"expecting an asn1 sequence"},
211 {ERR_R_ASN1_LENGTH_MISMATCH ,"asn1 length mismatch"},
212 {ERR_R_MISSING_ASN1_EOS ,"missing asn1 eos"},

214 {ERR_R_FATAL ,"fatal"},
215 {ERR_R_MALLOC_FAILURE ,"malloc failure"},
216 {ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED ,"called a function you should not call"
217 {ERR_R_PASSED_NULL_PARAMETER ,"passed a null parameter"},
218 {ERR_R_INTERNAL_ERROR ,"internal error"},
219 {ERR_R_DISABLED ,"called a function that was disabled at

221 {0,NULL},
222 };
223 #endif

226 /* Define the predeclared (but externally opaque) "ERR_FNS" type */
227 struct st_ERR_FNS
228 {
229 /* Works on the "error_hash" string table */
230 LHASH_OF(ERR_STRING_DATA) *(*cb_err_get)(int create);
231 void (*cb_err_del)(void);
232 ERR_STRING_DATA *(*cb_err_get_item)(const ERR_STRING_DATA *);
233 ERR_STRING_DATA *(*cb_err_set_item)(ERR_STRING_DATA *);
234 ERR_STRING_DATA *(*cb_err_del_item)(ERR_STRING_DATA *);
235 /* Works on the "thread_hash" error-state table */
236 LHASH_OF(ERR_STATE) *(*cb_thread_get)(int create);
237 void (*cb_thread_release)(LHASH_OF(ERR_STATE) **hash);
238 ERR_STATE *(*cb_thread_get_item)(const ERR_STATE *);
239 ERR_STATE *(*cb_thread_set_item)(ERR_STATE *);
240 void (*cb_thread_del_item)(const ERR_STATE *);
241 /* Returns the next available error "library" numbers */
242 int (*cb_get_next_lib)(void);
243 };

245 /* Predeclarations of the "err_defaults" functions */
246 static LHASH_OF(ERR_STRING_DATA) *int_err_get(int create);
247 static void int_err_del(void);
248 static ERR_STRING_DATA *int_err_get_item(const ERR_STRING_DATA *);
249 static ERR_STRING_DATA *int_err_set_item(ERR_STRING_DATA *);
250 static ERR_STRING_DATA *int_err_del_item(ERR_STRING_DATA *);
251 static LHASH_OF(ERR_STATE) *int_thread_get(int create);
252 static void int_thread_release(LHASH_OF(ERR_STATE) **hash);
253 static ERR_STATE *int_thread_get_item(const ERR_STATE *);
254 static ERR_STATE *int_thread_set_item(ERR_STATE *);
255 static void int_thread_del_item(const ERR_STATE *);
256 static int int_err_get_next_lib(void);
257 /* The static ERR_FNS table using these defaults functions */
258 static const ERR_FNS err_defaults =
259 {

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 5

260 int_err_get,
261 int_err_del,
262 int_err_get_item,
263 int_err_set_item,
264 int_err_del_item,
265 int_thread_get,
266 int_thread_release,
267 int_thread_get_item,
268 int_thread_set_item,
269 int_thread_del_item,
270 int_err_get_next_lib
271 };

273 /* The replacable table of ERR_FNS functions we use at run-time */
274 static const ERR_FNS *err_fns = NULL;

276 /* Eg. rather than using "err_get()", use "ERRFN(err_get)()". */
277 #define ERRFN(a) err_fns->cb_##a

279 /* The internal state used by "err_defaults" - as such, the setting, reading,
280 * creating, and deleting of this data should only be permitted via the
281 * "err_defaults" functions. This way, a linked module can completely defer all
282 * ERR state operation (together with requisite locking) to the implementations
283 * and state in the loading application. */
284 static LHASH_OF(ERR_STRING_DATA) *int_error_hash = NULL;
285 static LHASH_OF(ERR_STATE) *int_thread_hash = NULL;
286 static int int_thread_hash_references = 0;
287 static int int_err_library_number= ERR_LIB_USER;

289 /* Internal function that checks whether "err_fns" is set and if not, sets it to
290 * the defaults. */
291 static void err_fns_check(void)
292 {
293 if (err_fns) return;
294
295 CRYPTO_w_lock(CRYPTO_LOCK_ERR);
296 if (!err_fns)
297 err_fns = &err_defaults;
298 CRYPTO_w_unlock(CRYPTO_LOCK_ERR);
299 }

301 /* API functions to get or set the underlying ERR functions. */

303 const ERR_FNS *ERR_get_implementation(void)
304 {
305 err_fns_check();
306 return err_fns;
307 }

309 int ERR_set_implementation(const ERR_FNS *fns)
310 {
311 int ret = 0;

313 CRYPTO_w_lock(CRYPTO_LOCK_ERR);
314 /* It’s too late if ’err_fns’ is non-NULL. BTW: not much point setting
315 * an error is there?! */
316 if (!err_fns)
317 {
318 err_fns = fns;
319 ret = 1;
320 }
321 CRYPTO_w_unlock(CRYPTO_LOCK_ERR);
322 return ret;
323 }

325 /* These are the callbacks provided to "lh_new()" when creating the LHASH tables

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 6

326 * internal to the "err_defaults" implementation. */

328 static unsigned long get_error_values(int inc,int top,const char **file,int *lin
329 const char **data,int *flags);

331 /* The internal functions used in the "err_defaults" implementation */

333 static unsigned long err_string_data_hash(const ERR_STRING_DATA *a)
334 {
335 unsigned long ret,l;

337 l=a->error;
338 ret=l^ERR_GET_LIB(l)^ERR_GET_FUNC(l);
339 return(ret^ret%19*13);
340 }
341 static IMPLEMENT_LHASH_HASH_FN(err_string_data, ERR_STRING_DATA)

343 static int err_string_data_cmp(const ERR_STRING_DATA *a,
344 const ERR_STRING_DATA *b)
345 {
346 return (int)(a->error - b->error);
347 }
348 static IMPLEMENT_LHASH_COMP_FN(err_string_data, ERR_STRING_DATA)

350 static LHASH_OF(ERR_STRING_DATA) *int_err_get(int create)
351 {
352 LHASH_OF(ERR_STRING_DATA) *ret = NULL;

354 CRYPTO_w_lock(CRYPTO_LOCK_ERR);
355 if (!int_error_hash && create)
356 {
357 CRYPTO_push_info("int_err_get (err.c)");
358 int_error_hash = lh_ERR_STRING_DATA_new();
359 CRYPTO_pop_info();
360 }
361 if (int_error_hash)
362 ret = int_error_hash;
363 CRYPTO_w_unlock(CRYPTO_LOCK_ERR);

365 return ret;
366 }

368 static void int_err_del(void)
369 {
370 CRYPTO_w_lock(CRYPTO_LOCK_ERR);
371 if (int_error_hash)
372 {
373 lh_ERR_STRING_DATA_free(int_error_hash);
374 int_error_hash = NULL;
375 }
376 CRYPTO_w_unlock(CRYPTO_LOCK_ERR);
377 }

379 static ERR_STRING_DATA *int_err_get_item(const ERR_STRING_DATA *d)
380 {
381 ERR_STRING_DATA *p;
382 LHASH_OF(ERR_STRING_DATA) *hash;

384 err_fns_check();
385 hash = ERRFN(err_get)(0);
386 if (!hash)
387 return NULL;

389 CRYPTO_r_lock(CRYPTO_LOCK_ERR);
390 p = lh_ERR_STRING_DATA_retrieve(hash, d);
391 CRYPTO_r_unlock(CRYPTO_LOCK_ERR);

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 7

393 return p;
394 }

396 static ERR_STRING_DATA *int_err_set_item(ERR_STRING_DATA *d)
397 {
398 ERR_STRING_DATA *p;
399 LHASH_OF(ERR_STRING_DATA) *hash;

401 err_fns_check();
402 hash = ERRFN(err_get)(1);
403 if (!hash)
404 return NULL;

406 CRYPTO_w_lock(CRYPTO_LOCK_ERR);
407 p = lh_ERR_STRING_DATA_insert(hash, d);
408 CRYPTO_w_unlock(CRYPTO_LOCK_ERR);

410 return p;
411 }

413 static ERR_STRING_DATA *int_err_del_item(ERR_STRING_DATA *d)
414 {
415 ERR_STRING_DATA *p;
416 LHASH_OF(ERR_STRING_DATA) *hash;

418 err_fns_check();
419 hash = ERRFN(err_get)(0);
420 if (!hash)
421 return NULL;

423 CRYPTO_w_lock(CRYPTO_LOCK_ERR);
424 p = lh_ERR_STRING_DATA_delete(hash, d);
425 CRYPTO_w_unlock(CRYPTO_LOCK_ERR);

427 return p;
428 }

430 static unsigned long err_state_hash(const ERR_STATE *a)
431 {
432 return CRYPTO_THREADID_hash(&a->tid) * 13;
433 }
434 static IMPLEMENT_LHASH_HASH_FN(err_state, ERR_STATE)

436 static int err_state_cmp(const ERR_STATE *a, const ERR_STATE *b)
437 {
438 return CRYPTO_THREADID_cmp(&a->tid, &b->tid);
439 }
440 static IMPLEMENT_LHASH_COMP_FN(err_state, ERR_STATE)

442 static LHASH_OF(ERR_STATE) *int_thread_get(int create)
443 {
444 LHASH_OF(ERR_STATE) *ret = NULL;

446 CRYPTO_w_lock(CRYPTO_LOCK_ERR);
447 if (!int_thread_hash && create)
448 {
449 CRYPTO_push_info("int_thread_get (err.c)");
450 int_thread_hash = lh_ERR_STATE_new();
451 CRYPTO_pop_info();
452 }
453 if (int_thread_hash)
454 {
455 int_thread_hash_references++;
456 ret = int_thread_hash;
457 }

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 8

458 CRYPTO_w_unlock(CRYPTO_LOCK_ERR);
459 return ret;
460 }

462 static void int_thread_release(LHASH_OF(ERR_STATE) **hash)
463 {
464 int i;

466 if (hash == NULL || *hash == NULL)
467 return;

469 i = CRYPTO_add(&int_thread_hash_references, -1, CRYPTO_LOCK_ERR);

471 #ifdef REF_PRINT
472 fprintf(stderr,"%4d:%s\n",int_thread_hash_references,"ERR");
473 #endif
474 if (i > 0) return;
475 #ifdef REF_CHECK
476 if (i < 0)
477 {
478 fprintf(stderr,"int_thread_release, bad reference count\n");
479 abort(); /* ok */
480 }
481 #endif
482 *hash = NULL;
483 }

485 static ERR_STATE *int_thread_get_item(const ERR_STATE *d)
486 {
487 ERR_STATE *p;
488 LHASH_OF(ERR_STATE) *hash;

490 err_fns_check();
491 hash = ERRFN(thread_get)(0);
492 if (!hash)
493 return NULL;

495 CRYPTO_r_lock(CRYPTO_LOCK_ERR);
496 p = lh_ERR_STATE_retrieve(hash, d);
497 CRYPTO_r_unlock(CRYPTO_LOCK_ERR);

499 ERRFN(thread_release)(&hash);
500 return p;
501 }

503 static ERR_STATE *int_thread_set_item(ERR_STATE *d)
504 {
505 ERR_STATE *p;
506 LHASH_OF(ERR_STATE) *hash;

508 err_fns_check();
509 hash = ERRFN(thread_get)(1);
510 if (!hash)
511 return NULL;

513 CRYPTO_w_lock(CRYPTO_LOCK_ERR);
514 p = lh_ERR_STATE_insert(hash, d);
515 CRYPTO_w_unlock(CRYPTO_LOCK_ERR);

517 ERRFN(thread_release)(&hash);
518 return p;
519 }

521 static void int_thread_del_item(const ERR_STATE *d)
522 {
523 ERR_STATE *p;

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 9

524 LHASH_OF(ERR_STATE) *hash;

526 err_fns_check();
527 hash = ERRFN(thread_get)(0);
528 if (!hash)
529 return;

531 CRYPTO_w_lock(CRYPTO_LOCK_ERR);
532 p = lh_ERR_STATE_delete(hash, d);
533 /* make sure we don’t leak memory */
534 if (int_thread_hash_references == 1
535 && int_thread_hash && lh_ERR_STATE_num_items(int_thread_hash) == 0)
536 {
537 lh_ERR_STATE_free(int_thread_hash);
538 int_thread_hash = NULL;
539 }
540 CRYPTO_w_unlock(CRYPTO_LOCK_ERR);

542 ERRFN(thread_release)(&hash);
543 if (p)
544 ERR_STATE_free(p);
545 }

547 static int int_err_get_next_lib(void)
548 {
549 int ret;

551 CRYPTO_w_lock(CRYPTO_LOCK_ERR);
552 ret = int_err_library_number++;
553 CRYPTO_w_unlock(CRYPTO_LOCK_ERR);

555 return ret;
556 }

559 #ifndef OPENSSL_NO_ERR
560 #define NUM_SYS_STR_REASONS 127
561 #define LEN_SYS_STR_REASON 32

563 static ERR_STRING_DATA SYS_str_reasons[NUM_SYS_STR_REASONS + 1];
564 /* SYS_str_reasons is filled with copies of strerror() results at
565 * initialization.
566 * ’errno’ values up to 127 should cover all usual errors,
567 * others will be displayed numerically by ERR_error_string.
568 * It is crucial that we have something for each reason code
569 * that occurs in ERR_str_reasons, or bogus reason strings
570 * will be returned for SYSerr(), which always gets an errno
571 * value and never one of those ’standard’ reason codes. */

573 static void build_SYS_str_reasons(void)
574 {
575 /* OPENSSL_malloc cannot be used here, use static storage instead */
576 static char strerror_tab[NUM_SYS_STR_REASONS][LEN_SYS_STR_REASON];
577 int i;
578 static int init = 1;

580 CRYPTO_r_lock(CRYPTO_LOCK_ERR);
581 if (!init)
582 {
583 CRYPTO_r_unlock(CRYPTO_LOCK_ERR);
584 return;
585 }
586
587 CRYPTO_r_unlock(CRYPTO_LOCK_ERR);
588 CRYPTO_w_lock(CRYPTO_LOCK_ERR);
589 if (!init)

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 10

590 {
591 CRYPTO_w_unlock(CRYPTO_LOCK_ERR);
592 return;
593 }

595 for (i = 1; i <= NUM_SYS_STR_REASONS; i++)
596 {
597 ERR_STRING_DATA *str = &SYS_str_reasons[i - 1];

599 str->error = (unsigned long)i;
600 if (str->string == NULL)
601 {
602 char (*dest)[LEN_SYS_STR_REASON] = &(strerror_tab[i - 1]
603 char *src = strerror(i);
604 if (src != NULL)
605 {
606 strncpy(*dest, src, sizeof *dest);
607 (*dest)[sizeof *dest - 1] = ’\0’;
608 str->string = *dest;
609 }
610 }
611 if (str->string == NULL)
612 str->string = "unknown";
613 }

615 /* Now we still have SYS_str_reasons[NUM_SYS_STR_REASONS] = {0, NULL},
616 * as required by ERR_load_strings. */

618 init = 0;
619
620 CRYPTO_w_unlock(CRYPTO_LOCK_ERR);
621 }
622 #endif

624 #define err_clear_data(p,i) \
625 do { \
626 if (((p)->err_data[i] != NULL) && \
627 (p)->err_data_flags[i] & ERR_TXT_MALLOCED) \
628 { \
629 OPENSSL_free((p)->err_data[i]); \
630 (p)->err_data[i]=NULL; \
631 } \
632 (p)->err_data_flags[i]=0; \
633 } while(0)

635 #define err_clear(p,i) \
636 do { \
637 (p)->err_flags[i]=0; \
638 (p)->err_buffer[i]=0; \
639 err_clear_data(p,i); \
640 (p)->err_file[i]=NULL; \
641 (p)->err_line[i]= -1; \
642 } while(0)

644 static void ERR_STATE_free(ERR_STATE *s)
645 {
646 int i;

648 if (s == NULL)
649 return;

651 for (i=0; i<ERR_NUM_ERRORS; i++)
652 {
653 err_clear_data(s,i);
654 }
655 OPENSSL_free(s);

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 11

656 }

658 void ERR_load_ERR_strings(void)
659 {
660 err_fns_check();
661 #ifndef OPENSSL_NO_ERR
662 err_load_strings(0,ERR_str_libraries);
663 err_load_strings(0,ERR_str_reasons);
664 err_load_strings(ERR_LIB_SYS,ERR_str_functs);
665 build_SYS_str_reasons();
666 err_load_strings(ERR_LIB_SYS,SYS_str_reasons);
667 #endif
668 }

670 static void err_load_strings(int lib, ERR_STRING_DATA *str)
671 {
672 while (str->error)
673 {
674 if (lib)
675 str->error|=ERR_PACK(lib,0,0);
676 ERRFN(err_set_item)(str);
677 str++;
678 }
679 }

681 void ERR_load_strings(int lib, ERR_STRING_DATA *str)
682 {
683 ERR_load_ERR_strings();
684 err_load_strings(lib, str);
685 }

687 void ERR_unload_strings(int lib, ERR_STRING_DATA *str)
688 {
689 while (str->error)
690 {
691 if (lib)
692 str->error|=ERR_PACK(lib,0,0);
693 ERRFN(err_del_item)(str);
694 str++;
695 }
696 }

698 void ERR_free_strings(void)
699 {
700 err_fns_check();
701 ERRFN(err_del)();
702 }

704 /**/

706 void ERR_put_error(int lib, int func, int reason, const char *file,
707 int line)
708 {
709 ERR_STATE *es;

711 #ifdef _OSD_POSIX
712 /* In the BS2000-OSD POSIX subsystem, the compiler generates
713 * path names in the form "*POSIX(/etc/passwd)".
714 * This dirty hack strips them to something sensible.
715 * @@@ We shouldn’t modify a const string, though.
716 */
717 if (strncmp(file,"*POSIX(", sizeof("*POSIX(")-1) == 0) {
718 char *end;

720 /* Skip the "*POSIX(" prefix */
721 file += sizeof("*POSIX(")-1;

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 12

722 end = &file[strlen(file)-1];
723 if (*end == ’)’)
724 *end = ’\0’;
725 /* Optional: use the basename of the path only. */
726 if ((end = strrchr(file, ’/’)) != NULL)
727 file = &end[1];
728 }
729 #endif
730 es=ERR_get_state();

732 es->top=(es->top+1)%ERR_NUM_ERRORS;
733 if (es->top == es->bottom)
734 es->bottom=(es->bottom+1)%ERR_NUM_ERRORS;
735 es->err_flags[es->top]=0;
736 es->err_buffer[es->top]=ERR_PACK(lib,func,reason);
737 es->err_file[es->top]=file;
738 es->err_line[es->top]=line;
739 err_clear_data(es,es->top);
740 }

742 void ERR_clear_error(void)
743 {
744 int i;
745 ERR_STATE *es;

747 es=ERR_get_state();

749 for (i=0; i<ERR_NUM_ERRORS; i++)
750 {
751 err_clear(es,i);
752 }
753 es->top=es->bottom=0;
754 }

757 unsigned long ERR_get_error(void)
758 { return(get_error_values(1,0,NULL,NULL,NULL,NULL)); }

760 unsigned long ERR_get_error_line(const char **file,
761 int *line)
762 { return(get_error_values(1,0,file,line,NULL,NULL)); }

764 unsigned long ERR_get_error_line_data(const char **file, int *line,
765 const char **data, int *flags)
766 { return(get_error_values(1,0,file,line,data,flags)); }

769 unsigned long ERR_peek_error(void)
770 { return(get_error_values(0,0,NULL,NULL,NULL,NULL)); }

772 unsigned long ERR_peek_error_line(const char **file, int *line)
773 { return(get_error_values(0,0,file,line,NULL,NULL)); }

775 unsigned long ERR_peek_error_line_data(const char **file, int *line,
776 const char **data, int *flags)
777 { return(get_error_values(0,0,file,line,data,flags)); }

780 unsigned long ERR_peek_last_error(void)
781 { return(get_error_values(0,1,NULL,NULL,NULL,NULL)); }

783 unsigned long ERR_peek_last_error_line(const char **file, int *line)
784 { return(get_error_values(0,1,file,line,NULL,NULL)); }

786 unsigned long ERR_peek_last_error_line_data(const char **file, int *line,
787 const char **data, int *flags)

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 13

788 { return(get_error_values(0,1,file,line,data,flags)); }

791 static unsigned long get_error_values(int inc, int top, const char **file, int *
792 const char **data, int *flags)
793 {
794 int i=0;
795 ERR_STATE *es;
796 unsigned long ret;

798 es=ERR_get_state();

800 if (inc && top)
801 {
802 if (file) *file = "";
803 if (line) *line = 0;
804 if (data) *data = "";
805 if (flags) *flags = 0;
806
807 return ERR_R_INTERNAL_ERROR;
808 }

810 if (es->bottom == es->top) return 0;
811 if (top)
812 i=es->top; /* last error */
813 else
814 i=(es->bottom+1)%ERR_NUM_ERRORS; /* first error */

816 ret=es->err_buffer[i];
817 if (inc)
818 {
819 es->bottom=i;
820 es->err_buffer[i]=0;
821 }

823 if ((file != NULL) && (line != NULL))
824 {
825 if (es->err_file[i] == NULL)
826 {
827 *file="NA";
828 if (line != NULL) *line=0;
829 }
830 else
831 {
832 *file=es->err_file[i];
833 if (line != NULL) *line=es->err_line[i];
834 }
835 }

837 if (data == NULL)
838 {
839 if (inc)
840 {
841 err_clear_data(es, i);
842 }
843 }
844 else
845 {
846 if (es->err_data[i] == NULL)
847 {
848 *data="";
849 if (flags != NULL) *flags=0;
850 }
851 else
852 {
853 *data=es->err_data[i];

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 14

854 if (flags != NULL) *flags=es->err_data_flags[i];
855 }
856 }
857 return ret;
858 }

860 void ERR_error_string_n(unsigned long e, char *buf, size_t len)
861 {
862 char lsbuf[64], fsbuf[64], rsbuf[64];
863 const char *ls,*fs,*rs;
864 unsigned long l,f,r;

866 l=ERR_GET_LIB(e);
867 f=ERR_GET_FUNC(e);
868 r=ERR_GET_REASON(e);

870 ls=ERR_lib_error_string(e);
871 fs=ERR_func_error_string(e);
872 rs=ERR_reason_error_string(e);

874 if (ls == NULL)
875 BIO_snprintf(lsbuf, sizeof(lsbuf), "lib(%lu)", l);
876 if (fs == NULL)
877 BIO_snprintf(fsbuf, sizeof(fsbuf), "func(%lu)", f);
878 if (rs == NULL)
879 BIO_snprintf(rsbuf, sizeof(rsbuf), "reason(%lu)", r);

881 BIO_snprintf(buf, len,"error:%08lX:%s:%s:%s", e, ls?ls:lsbuf,
882 fs?fs:fsbuf, rs?rs:rsbuf);
883 if (strlen(buf) == len-1)
884 {
885 /* output may be truncated; make sure we always have 5
886 * colon-separated fields, i.e. 4 colons ... */
887 #define NUM_COLONS 4
888 if (len > NUM_COLONS) /* ... if possible */
889 {
890 int i;
891 char *s = buf;
892
893 for (i = 0; i < NUM_COLONS; i++)
894 {
895 char *colon = strchr(s, ’:’);
896 if (colon == NULL || colon > &buf[len-1] - NUM_C
897 {
898 /* set colon no. i at last possible posi
899 * (buf[len-1] is the terminating 0)*/
900 colon = &buf[len-1] - NUM_COLONS + i;
901 *colon = ’:’;
902 }
903 s = colon + 1;
904 }
905 }
906 }
907 }

909 /* BAD for multi-threading: uses a local buffer if ret == NULL */
910 /* ERR_error_string_n should be used instead for ret != NULL
911 * as ERR_error_string cannot know how large the buffer is */
912 char *ERR_error_string(unsigned long e, char *ret)
913 {
914 static char buf[256];

916 if (ret == NULL) ret=buf;
917 ERR_error_string_n(e, ret, 256);

919 return ret;

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 15

920 }

922 LHASH_OF(ERR_STRING_DATA) *ERR_get_string_table(void)
923 {
924 err_fns_check();
925 return ERRFN(err_get)(0);
926 }

928 LHASH_OF(ERR_STATE) *ERR_get_err_state_table(void)
929 {
930 err_fns_check();
931 return ERRFN(thread_get)(0);
932 }

934 void ERR_release_err_state_table(LHASH_OF(ERR_STATE) **hash)
935 {
936 err_fns_check();
937 ERRFN(thread_release)(hash);
938 }

940 const char *ERR_lib_error_string(unsigned long e)
941 {
942 ERR_STRING_DATA d,*p;
943 unsigned long l;

945 err_fns_check();
946 l=ERR_GET_LIB(e);
947 d.error=ERR_PACK(l,0,0);
948 p=ERRFN(err_get_item)(&d);
949 return((p == NULL)?NULL:p->string);
950 }

952 const char *ERR_func_error_string(unsigned long e)
953 {
954 ERR_STRING_DATA d,*p;
955 unsigned long l,f;

957 err_fns_check();
958 l=ERR_GET_LIB(e);
959 f=ERR_GET_FUNC(e);
960 d.error=ERR_PACK(l,f,0);
961 p=ERRFN(err_get_item)(&d);
962 return((p == NULL)?NULL:p->string);
963 }

965 const char *ERR_reason_error_string(unsigned long e)
966 {
967 ERR_STRING_DATA d,*p=NULL;
968 unsigned long l,r;

970 err_fns_check();
971 l=ERR_GET_LIB(e);
972 r=ERR_GET_REASON(e);
973 d.error=ERR_PACK(l,0,r);
974 p=ERRFN(err_get_item)(&d);
975 if (!p)
976 {
977 d.error=ERR_PACK(0,0,r);
978 p=ERRFN(err_get_item)(&d);
979 }
980 return((p == NULL)?NULL:p->string);
981 }

983 void ERR_remove_thread_state(const CRYPTO_THREADID *id)
984 {
985 ERR_STATE tmp;

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 16

987 if (id)
988 CRYPTO_THREADID_cpy(&tmp.tid, id);
989 else
990 CRYPTO_THREADID_current(&tmp.tid);
991 err_fns_check();
992 /* thread_del_item automatically destroys the LHASH if the number of
993 * items reaches zero. */
994 ERRFN(thread_del_item)(&tmp);
995 }

997 #ifndef OPENSSL_NO_DEPRECATED
998 void ERR_remove_state(unsigned long pid)
999 {

1000 ERR_remove_thread_state(NULL);
1001 }
1002 #endif

1004 ERR_STATE *ERR_get_state(void)
1005 {
1006 static ERR_STATE fallback;
1007 ERR_STATE *ret,tmp,*tmpp=NULL;
1008 int i;
1009 CRYPTO_THREADID tid;

1011 err_fns_check();
1012 CRYPTO_THREADID_current(&tid);
1013 CRYPTO_THREADID_cpy(&tmp.tid, &tid);
1014 ret=ERRFN(thread_get_item)(&tmp);

1016 /* ret == the error state, if NULL, make a new one */
1017 if (ret == NULL)
1018 {
1019 ret=(ERR_STATE *)OPENSSL_malloc(sizeof(ERR_STATE));
1020 if (ret == NULL) return(&fallback);
1021 CRYPTO_THREADID_cpy(&ret->tid, &tid);
1022 ret->top=0;
1023 ret->bottom=0;
1024 for (i=0; i<ERR_NUM_ERRORS; i++)
1025 {
1026 ret->err_data[i]=NULL;
1027 ret->err_data_flags[i]=0;
1028 }
1029 tmpp = ERRFN(thread_set_item)(ret);
1030 /* To check if insertion failed, do a get. */
1031 if (ERRFN(thread_get_item)(ret) != ret)
1032 {
1033 ERR_STATE_free(ret); /* could not insert it */
1034 return(&fallback);
1035 }
1036 /* If a race occured in this function and we came second, tmpp
1037 * is the first one that we just replaced. */
1038 if (tmpp)
1039 ERR_STATE_free(tmpp);
1040 }
1041 return ret;
1042 }

1044 int ERR_get_next_error_library(void)
1045 {
1046 err_fns_check();
1047 return ERRFN(get_next_lib)();
1048 }

1050 void ERR_set_error_data(char *data, int flags)
1051 {

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 17

1052 ERR_STATE *es;
1053 int i;

1055 es=ERR_get_state();

1057 i=es->top;
1058 if (i == 0)
1059 i=ERR_NUM_ERRORS-1;

1061 err_clear_data(es,i);
1062 es->err_data[i]=data;
1063 es->err_data_flags[i]=flags;
1064 }

1066 void ERR_add_error_data(int num, ...)
1067 {
1068 va_list args;
1069 va_start(args, num);
1070 ERR_add_error_vdata(num, args);
1071 va_end(args);
1072 }

1074 void ERR_add_error_vdata(int num, va_list args)
1075 {
1076 int i,n,s;
1077 char *str,*p,*a;

1079 s=80;
1080 str=OPENSSL_malloc(s+1);
1081 if (str == NULL) return;
1082 str[0]=’\0’;

1084 n=0;
1085 for (i=0; i<num; i++)
1086 {
1087 a=va_arg(args, char*);
1088 /* ignore NULLs, thanks to Bob Beck <beck@obtuse.com> */
1089 if (a != NULL)
1090 {
1091 n+=strlen(a);
1092 if (n > s)
1093 {
1094 s=n+20;
1095 p=OPENSSL_realloc(str,s+1);
1096 if (p == NULL)
1097 {
1098 OPENSSL_free(str);
1099 return;
1100 }
1101 else
1102 str=p;
1103 }
1104 BUF_strlcat(str,a,(size_t)s+1);
1105 }
1106 }
1107 ERR_set_error_data(str,ERR_TXT_MALLOCED|ERR_TXT_STRING);
1108 }

1110 int ERR_set_mark(void)
1111 {
1112 ERR_STATE *es;

1114 es=ERR_get_state();

1116 if (es->bottom == es->top) return 0;
1117 es->err_flags[es->top]|=ERR_FLAG_MARK;

new/usr/src/lib/openssl/libsunw_crypto/err/err.c 18

1118 return 1;
1119 }

1121 int ERR_pop_to_mark(void)
1122 {
1123 ERR_STATE *es;

1125 es=ERR_get_state();

1127 while(es->bottom != es->top
1128 && (es->err_flags[es->top] & ERR_FLAG_MARK) == 0)
1129 {
1130 err_clear(es,es->top);
1131 es->top-=1;
1132 if (es->top == -1) es->top=ERR_NUM_ERRORS-1;
1133 }
1134
1135 if (es->bottom == es->top) return 0;
1136 es->err_flags[es->top]&=~ERR_FLAG_MARK;
1137 return 1;
1138 }

new/usr/src/lib/openssl/libsunw_crypto/err/err_all.c 1

**
 5560 Fri May 30 18:31:49 2014
new/usr/src/lib/openssl/libsunw_crypto/err/err_all.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/err/err_all.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/asn1.h>
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/err/err_all.c 2

62 #ifndef OPENSSL_NO_EC
63 #include <openssl/ec.h>
64 #endif
65 #include <openssl/buffer.h>
66 #include <openssl/bio.h>
67 #ifndef OPENSSL_NO_COMP
68 #include <openssl/comp.h>
69 #endif
70 #ifndef OPENSSL_NO_RSA
71 #include <openssl/rsa.h>
72 #endif
73 #ifndef OPENSSL_NO_DH
74 #include <openssl/dh.h>
75 #endif
76 #ifndef OPENSSL_NO_DSA
77 #include <openssl/dsa.h>
78 #endif
79 #ifndef OPENSSL_NO_ECDSA
80 #include <openssl/ecdsa.h>
81 #endif
82 #ifndef OPENSSL_NO_ECDH
83 #include <openssl/ecdh.h>
84 #endif
85 #include <openssl/evp.h>
86 #include <openssl/objects.h>
87 #include <openssl/pem2.h>
88 #include <openssl/x509.h>
89 #include <openssl/x509v3.h>
90 #include <openssl/conf.h>
91 #include <openssl/pkcs12.h>
92 #include <openssl/rand.h>
93 #include <openssl/dso.h>
94 #ifndef OPENSSL_NO_ENGINE
95 #include <openssl/engine.h>
96 #endif
97 #include <openssl/ui.h>
98 #include <openssl/ocsp.h>
99 #include <openssl/err.h>
100 #ifdef OPENSSL_FIPS
101 #include <openssl/fips.h>
102 #endif
103 #include <openssl/ts.h>
104 #ifndef OPENSSL_NO_CMS
105 #include <openssl/cms.h>
106 #endif
107 #ifndef OPENSSL_NO_JPAKE
108 #include <openssl/jpake.h>
109 #endif

111 void ERR_load_crypto_strings(void)
112 {
113 #ifndef OPENSSL_NO_ERR
114 ERR_load_ERR_strings(); /* include error strings for SYSerr */
115 ERR_load_BN_strings();
116 #ifndef OPENSSL_NO_RSA
117 ERR_load_RSA_strings();
118 #endif
119 #ifndef OPENSSL_NO_DH
120 ERR_load_DH_strings();
121 #endif
122 ERR_load_EVP_strings();
123 ERR_load_BUF_strings();
124 ERR_load_OBJ_strings();
125 ERR_load_PEM_strings();
126 #ifndef OPENSSL_NO_DSA
127 ERR_load_DSA_strings();

new/usr/src/lib/openssl/libsunw_crypto/err/err_all.c 3

128 #endif
129 ERR_load_X509_strings();
130 ERR_load_ASN1_strings();
131 ERR_load_CONF_strings();
132 ERR_load_CRYPTO_strings();
133 #ifndef OPENSSL_NO_COMP
134 ERR_load_COMP_strings();
135 #endif
136 #ifndef OPENSSL_NO_EC
137 ERR_load_EC_strings();
138 #endif
139 #ifndef OPENSSL_NO_ECDSA
140 ERR_load_ECDSA_strings();
141 #endif
142 #ifndef OPENSSL_NO_ECDH
143 ERR_load_ECDH_strings();
144 #endif
145 /* skip ERR_load_SSL_strings() because it is not in this library */
146 ERR_load_BIO_strings();
147 ERR_load_PKCS7_strings();
148 ERR_load_X509V3_strings();
149 ERR_load_PKCS12_strings();
150 ERR_load_RAND_strings();
151 ERR_load_DSO_strings();
152 ERR_load_TS_strings();
153 #ifndef OPENSSL_NO_ENGINE
154 ERR_load_ENGINE_strings();
155 #endif
156 ERR_load_OCSP_strings();
157 ERR_load_UI_strings();
158 #ifdef OPENSSL_FIPS
159 ERR_load_FIPS_strings();
160 #endif
161 #ifndef OPENSSL_NO_CMS
162 ERR_load_CMS_strings();
163 #endif
164 #ifndef OPENSSL_NO_JPAKE
165 ERR_load_JPAKE_strings();
166 #endif
167 #endif
168 }

new/usr/src/lib/openssl/libsunw_crypto/err/err_prn.c 1

**
 4437 Fri May 30 18:31:49 2014
new/usr/src/lib/openssl/libsunw_crypto/err/err_prn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/err/err_prn.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/lhash.h>

new/usr/src/lib/openssl/libsunw_crypto/err/err_prn.c 2

62 #include <openssl/crypto.h>
63 #include <openssl/buffer.h>
64 #include <openssl/err.h>

66 void ERR_print_errors_cb(int (*cb)(const char *str, size_t len, void *u),
67 void *u)
68 {
69 unsigned long l;
70 char buf[256];
71 char buf2[4096];
72 const char *file,*data;
73 int line,flags;
74 unsigned long es;
75 CRYPTO_THREADID cur;

77 CRYPTO_THREADID_current(&cur);
78 es=CRYPTO_THREADID_hash(&cur);
79 while ((l=ERR_get_error_line_data(&file,&line,&data,&flags)) != 0)
80 {
81 ERR_error_string_n(l, buf, sizeof buf);
82 BIO_snprintf(buf2, sizeof(buf2), "%lu:%s:%s:%d:%s\n", es, buf,
83 file, line, (flags & ERR_TXT_STRING) ? data : "");
84 if (cb(buf2, strlen(buf2), u) <= 0)
85 break; /* abort outputting the error report */
86 }
87 }

89 #ifndef OPENSSL_NO_FP_API
90 static int print_fp(const char *str, size_t len, void *fp)
91 {
92 BIO bio;

94 BIO_set(&bio,BIO_s_file());
95 BIO_set_fp(&bio,fp,BIO_NOCLOSE);

97 return BIO_printf(&bio, "%s", str);
98 }
99 void ERR_print_errors_fp(FILE *fp)
100 {
101 ERR_print_errors_cb(print_fp, fp);
102 }
103 #endif

105 static int print_bio(const char *str, size_t len, void *bp)
106 {
107 return BIO_write((BIO *)bp, str, len);
108 }
109 void ERR_print_errors(BIO *bp)
110 {
111 ERR_print_errors_cb(print_bio, bp);
112 }

114

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_b64.c 1

**
 14417 Fri May 30 18:31:49 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/bio_b64.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/bio_b64.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <errno.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_b64.c 2

62 #include <openssl/buffer.h>
63 #include <openssl/evp.h>

65 static int b64_write(BIO *h, const char *buf, int num);
66 static int b64_read(BIO *h, char *buf, int size);
67 static int b64_puts(BIO *h, const char *str);
68 /*static int b64_gets(BIO *h, char *str, int size); */
69 static long b64_ctrl(BIO *h, int cmd, long arg1, void *arg2);
70 static int b64_new(BIO *h);
71 static int b64_free(BIO *data);
72 static long b64_callback_ctrl(BIO *h,int cmd,bio_info_cb *fp);
73 #define B64_BLOCK_SIZE 1024
74 #define B64_BLOCK_SIZE2 768
75 #define B64_NONE 0
76 #define B64_ENCODE 1
77 #define B64_DECODE 2

79 typedef struct b64_struct
80 {
81 /*BIO *bio; moved to the BIO structure */
82 int buf_len;
83 int buf_off;
84 int tmp_len; /* used to find the start when decoding */
85 int tmp_nl; /* If true, scan until ’\n’ */
86 int encode;
87 int start; /* have we started decoding yet? */
88 int cont; /* <= 0 when finished */
89 EVP_ENCODE_CTX base64;
90 char buf[EVP_ENCODE_LENGTH(B64_BLOCK_SIZE)+10];
91 char tmp[B64_BLOCK_SIZE];
92 } BIO_B64_CTX;

94 static BIO_METHOD methods_b64=
95 {
96 BIO_TYPE_BASE64,"base64 encoding",
97 b64_write,
98 b64_read,
99 b64_puts,
100 NULL, /* b64_gets, */
101 b64_ctrl,
102 b64_new,
103 b64_free,
104 b64_callback_ctrl,
105 };

107 BIO_METHOD *BIO_f_base64(void)
108 {
109 return(&methods_b64);
110 }

112 static int b64_new(BIO *bi)
113 {
114 BIO_B64_CTX *ctx;

116 ctx=(BIO_B64_CTX *)OPENSSL_malloc(sizeof(BIO_B64_CTX));
117 if (ctx == NULL) return(0);

119 ctx->buf_len=0;
120 ctx->tmp_len=0;
121 ctx->tmp_nl=0;
122 ctx->buf_off=0;
123 ctx->cont=1;
124 ctx->start=1;
125 ctx->encode=0;

127 bi->init=1;

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_b64.c 3

128 bi->ptr=(char *)ctx;
129 bi->flags=0;
130 bi->num = 0;
131 return(1);
132 }

134 static int b64_free(BIO *a)
135 {
136 if (a == NULL) return(0);
137 OPENSSL_free(a->ptr);
138 a->ptr=NULL;
139 a->init=0;
140 a->flags=0;
141 return(1);
142 }
143
144 static int b64_read(BIO *b, char *out, int outl)
145 {
146 int ret=0,i,ii,j,k,x,n,num,ret_code=0;
147 BIO_B64_CTX *ctx;
148 unsigned char *p,*q;

150 if (out == NULL) return(0);
151 ctx=(BIO_B64_CTX *)b->ptr;

153 if ((ctx == NULL) || (b->next_bio == NULL)) return(0);

155 BIO_clear_retry_flags(b);

157 if (ctx->encode != B64_DECODE)
158 {
159 ctx->encode=B64_DECODE;
160 ctx->buf_len=0;
161 ctx->buf_off=0;
162 ctx->tmp_len=0;
163 EVP_DecodeInit(&(ctx->base64));
164 }

166 /* First check if there are bytes decoded/encoded */
167 if (ctx->buf_len > 0)
168 {
169 OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
170 i=ctx->buf_len-ctx->buf_off;
171 if (i > outl) i=outl;
172 OPENSSL_assert(ctx->buf_off+i < (int)sizeof(ctx->buf));
173 memcpy(out,&(ctx->buf[ctx->buf_off]),i);
174 ret=i;
175 out+=i;
176 outl-=i;
177 ctx->buf_off+=i;
178 if (ctx->buf_len == ctx->buf_off)
179 {
180 ctx->buf_len=0;
181 ctx->buf_off=0;
182 }
183 }

185 /* At this point, we have room of outl bytes and an empty
186 * buffer, so we should read in some more. */

188 ret_code=0;
189 while (outl > 0)
190 {
191 if (ctx->cont <= 0)
192 break;

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_b64.c 4

194 i=BIO_read(b->next_bio,&(ctx->tmp[ctx->tmp_len]),
195 B64_BLOCK_SIZE-ctx->tmp_len);

197 if (i <= 0)
198 {
199 ret_code=i;

201 /* Should we continue next time we are called? */
202 if (!BIO_should_retry(b->next_bio))
203 {
204 ctx->cont=i;
205 /* If buffer empty break */
206 if(ctx->tmp_len == 0)
207 break;
208 /* Fall through and process what we have */
209 else
210 i = 0;
211 }
212 /* else we retry and add more data to buffer */
213 else
214 break;
215 }
216 i+=ctx->tmp_len;
217 ctx->tmp_len = i;

219 /* We need to scan, a line at a time until we
220 * have a valid line if we are starting. */
221 if (ctx->start && (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL))
222 {
223 /* ctx->start=1; */
224 ctx->tmp_len=0;
225 }
226 else if (ctx->start)
227 {
228 q=p=(unsigned char *)ctx->tmp;
229 for (j=0; j<i; j++)
230 {
231 if (*(q++) != ’\n’) continue;

233 /* due to a previous very long line,
234 * we need to keep on scanning for a ’\n’
235 * before we even start looking for
236 * base64 encoded stuff. */
237 if (ctx->tmp_nl)
238 {
239 p=q;
240 ctx->tmp_nl=0;
241 continue;
242 }

244 k=EVP_DecodeUpdate(&(ctx->base64),
245 (unsigned char *)ctx->buf,
246 &num,p,q-p);
247 if ((k <= 0) && (num == 0) && (ctx->start))
248 EVP_DecodeInit(&ctx->base64);
249 else
250 {
251 if (p != (unsigned char *)
252 &(ctx->tmp[0]))
253 {
254 i-=(p- (unsigned char *)
255 &(ctx->tmp[0]));
256 for (x=0; x < i; x++)
257 ctx->tmp[x]=p[x];
258 }
259 EVP_DecodeInit(&ctx->base64);

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_b64.c 5

260 ctx->start=0;
261 break;
262 }
263 p=q;
264 }

266 /* we fell off the end without starting */
267 if ((j == i) && (num == 0))
268 {
269 /* Is this is one long chunk?, if so, keep on
270 * reading until a new line. */
271 if (p == (unsigned char *)&(ctx->tmp[0]))
272 {
273 /* Check buffer full */
274 if (i == B64_BLOCK_SIZE)
275 {
276 ctx->tmp_nl=1;
277 ctx->tmp_len=0;
278 }
279 }
280 else if (p != q) /* finished on a ’\n’ */
281 {
282 n=q-p;
283 for (ii=0; ii<n; ii++)
284 ctx->tmp[ii]=p[ii];
285 ctx->tmp_len=n;
286 }
287 /* else finished on a ’\n’ */
288 continue;
289 }
290 else
291 {
292 ctx->tmp_len=0;
293 }
294 }
295 else if ((i < B64_BLOCK_SIZE) && (ctx->cont > 0))
296 {
297 /* If buffer isn’t full and we can retry then
298 * restart to read in more data.
299 */
300 continue;
301 }

303 if (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL)
304 {
305 int z,jj;

307 #if 0
308 jj=(i>>2)<<2;
309 #else
310 jj = i & ~3; /* process per 4 */
311 #endif
312 z=EVP_DecodeBlock((unsigned char *)ctx->buf,
313 (unsigned char *)ctx->tmp,jj);
314 if (jj > 2)
315 {
316 if (ctx->tmp[jj-1] == ’=’)
317 {
318 z--;
319 if (ctx->tmp[jj-2] == ’=’)
320 z--;
321 }
322 }
323 /* z is now number of output bytes and jj is the
324 * number consumed */
325 if (jj != i)

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_b64.c 6

326 {
327 memmove(ctx->tmp, &ctx->tmp[jj], i-jj);
328 ctx->tmp_len=i-jj;
329 }
330 ctx->buf_len=0;
331 if (z > 0)
332 {
333 ctx->buf_len=z;
334 }
335 i=z;
336 }
337 else
338 {
339 i=EVP_DecodeUpdate(&(ctx->base64),
340 (unsigned char *)ctx->buf,&ctx->buf_len,
341 (unsigned char *)ctx->tmp,i);
342 ctx->tmp_len = 0;
343 }
344 ctx->buf_off=0;
345 if (i < 0)
346 {
347 ret_code=0;
348 ctx->buf_len=0;
349 break;
350 }

352 if (ctx->buf_len <= outl)
353 i=ctx->buf_len;
354 else
355 i=outl;

357 memcpy(out,ctx->buf,i);
358 ret+=i;
359 ctx->buf_off=i;
360 if (ctx->buf_off == ctx->buf_len)
361 {
362 ctx->buf_len=0;
363 ctx->buf_off=0;
364 }
365 outl-=i;
366 out+=i;
367 }
368 /* BIO_clear_retry_flags(b); */
369 BIO_copy_next_retry(b);
370 return((ret == 0)?ret_code:ret);
371 }

373 static int b64_write(BIO *b, const char *in, int inl)
374 {
375 int ret=0;
376 int n;
377 int i;
378 BIO_B64_CTX *ctx;

380 ctx=(BIO_B64_CTX *)b->ptr;
381 BIO_clear_retry_flags(b);

383 if (ctx->encode != B64_ENCODE)
384 {
385 ctx->encode=B64_ENCODE;
386 ctx->buf_len=0;
387 ctx->buf_off=0;
388 ctx->tmp_len=0;
389 EVP_EncodeInit(&(ctx->base64));
390 }

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_b64.c 7

392 OPENSSL_assert(ctx->buf_off < (int)sizeof(ctx->buf));
393 OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf));
394 OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
395 n=ctx->buf_len-ctx->buf_off;
396 while (n > 0)
397 {
398 i=BIO_write(b->next_bio,&(ctx->buf[ctx->buf_off]),n);
399 if (i <= 0)
400 {
401 BIO_copy_next_retry(b);
402 return(i);
403 }
404 OPENSSL_assert(i <= n);
405 ctx->buf_off+=i;
406 OPENSSL_assert(ctx->buf_off <= (int)sizeof(ctx->buf));
407 OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
408 n-=i;
409 }
410 /* at this point all pending data has been written */
411 ctx->buf_off=0;
412 ctx->buf_len=0;

414 if ((in == NULL) || (inl <= 0)) return(0);

416 while (inl > 0)
417 {
418 n=(inl > B64_BLOCK_SIZE)?B64_BLOCK_SIZE:inl;

420 if (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL)
421 {
422 if (ctx->tmp_len > 0)
423 {
424 OPENSSL_assert(ctx->tmp_len <= 3);
425 n=3-ctx->tmp_len;
426 /* There’s a theoretical possibility for this */
427 if (n > inl)
428 n=inl;
429 memcpy(&(ctx->tmp[ctx->tmp_len]),in,n);
430 ctx->tmp_len+=n;
431 ret += n;
432 if (ctx->tmp_len < 3)
433 break;
434 ctx->buf_len=EVP_EncodeBlock((unsigned char *)ct
435 OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->
436 OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
437 /* Since we’re now done using the temporary
438 buffer, the length should be 0’d */
439 ctx->tmp_len=0;
440 }
441 else
442 {
443 if (n < 3)
444 {
445 memcpy(ctx->tmp,in,n);
446 ctx->tmp_len=n;
447 ret += n;
448 break;
449 }
450 n-=n%3;
451 ctx->buf_len=EVP_EncodeBlock((unsigned char *)ct
452 OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->
453 OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
454 ret += n;
455 }
456 }
457 else

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_b64.c 8

458 {
459 EVP_EncodeUpdate(&(ctx->base64),
460 (unsigned char *)ctx->buf,&ctx->buf_len,
461 (unsigned char *)in,n);
462 OPENSSL_assert(ctx->buf_len <= (int)sizeof(ctx->buf));
463 OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
464 ret += n;
465 }
466 inl-=n;
467 in+=n;

469 ctx->buf_off=0;
470 n=ctx->buf_len;
471 while (n > 0)
472 {
473 i=BIO_write(b->next_bio,&(ctx->buf[ctx->buf_off]),n);
474 if (i <= 0)
475 {
476 BIO_copy_next_retry(b);
477 return((ret == 0)?i:ret);
478 }
479 OPENSSL_assert(i <= n);
480 n-=i;
481 ctx->buf_off+=i;
482 OPENSSL_assert(ctx->buf_off <= (int)sizeof(ctx->buf));
483 OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
484 }
485 ctx->buf_len=0;
486 ctx->buf_off=0;
487 }
488 return(ret);
489 }

491 static long b64_ctrl(BIO *b, int cmd, long num, void *ptr)
492 {
493 BIO_B64_CTX *ctx;
494 long ret=1;
495 int i;

497 ctx=(BIO_B64_CTX *)b->ptr;

499 switch (cmd)
500 {
501 case BIO_CTRL_RESET:
502 ctx->cont=1;
503 ctx->start=1;
504 ctx->encode=B64_NONE;
505 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
506 break;
507 case BIO_CTRL_EOF: /* More to read */
508 if (ctx->cont <= 0)
509 ret=1;
510 else
511 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
512 break;
513 case BIO_CTRL_WPENDING: /* More to write in buffer */
514 OPENSSL_assert(ctx->buf_len >= ctx->buf_off);
515 ret=ctx->buf_len-ctx->buf_off;
516 if ((ret == 0) && (ctx->encode != B64_NONE)
517 && (ctx->base64.num != 0))
518 ret=1;
519 else if (ret <= 0)
520 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
521 break;
522 case BIO_CTRL_PENDING: /* More to read in buffer */
523 OPENSSL_assert(ctx->buf_len >= ctx->buf_off);

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_b64.c 9

524 ret=ctx->buf_len-ctx->buf_off;
525 if (ret <= 0)
526 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
527 break;
528 case BIO_CTRL_FLUSH:
529 /* do a final write */
530 again:
531 while (ctx->buf_len != ctx->buf_off)
532 {
533 i=b64_write(b,NULL,0);
534 if (i < 0)
535 return i;
536 }
537 if (BIO_get_flags(b) & BIO_FLAGS_BASE64_NO_NL)
538 {
539 if (ctx->tmp_len != 0)
540 {
541 ctx->buf_len=EVP_EncodeBlock(
542 (unsigned char *)ctx->buf,
543 (unsigned char *)ctx->tmp,
544 ctx->tmp_len);
545 ctx->buf_off=0;
546 ctx->tmp_len=0;
547 goto again;
548 }
549 }
550 else if (ctx->encode != B64_NONE && ctx->base64.num != 0)
551 {
552 ctx->buf_off=0;
553 EVP_EncodeFinal(&(ctx->base64),
554 (unsigned char *)ctx->buf,
555 &(ctx->buf_len));
556 /* push out the bytes */
557 goto again;
558 }
559 /* Finally flush the underlying BIO */
560 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
561 break;

563 case BIO_C_DO_STATE_MACHINE:
564 BIO_clear_retry_flags(b);
565 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
566 BIO_copy_next_retry(b);
567 break;

569 case BIO_CTRL_DUP:
570 break;
571 case BIO_CTRL_INFO:
572 case BIO_CTRL_GET:
573 case BIO_CTRL_SET:
574 default:
575 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
576 break;
577 }
578 return(ret);
579 }

581 static long b64_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp)
582 {
583 long ret=1;

585 if (b->next_bio == NULL) return(0);
586 switch (cmd)
587 {
588 default:
589 ret=BIO_callback_ctrl(b->next_bio,cmd,fp);

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_b64.c 10

590 break;
591 }
592 return(ret);
593 }

595 static int b64_puts(BIO *b, const char *str)
596 {
597 return b64_write(b,str,strlen(str));
598 }

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_enc.c 1

**
 10750 Fri May 30 18:31:49 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/bio_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/bio_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <errno.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_enc.c 2

62 #include <openssl/buffer.h>
63 #include <openssl/evp.h>

65 static int enc_write(BIO *h, const char *buf, int num);
66 static int enc_read(BIO *h, char *buf, int size);
67 /*static int enc_puts(BIO *h, const char *str); */
68 /*static int enc_gets(BIO *h, char *str, int size); */
69 static long enc_ctrl(BIO *h, int cmd, long arg1, void *arg2);
70 static int enc_new(BIO *h);
71 static int enc_free(BIO *data);
72 static long enc_callback_ctrl(BIO *h, int cmd, bio_info_cb *fps);
73 #define ENC_BLOCK_SIZE (1024*4)
74 #define BUF_OFFSET (EVP_MAX_BLOCK_LENGTH*2)

76 typedef struct enc_struct
77 {
78 int buf_len;
79 int buf_off;
80 int cont; /* <= 0 when finished */
81 int finished;
82 int ok; /* bad decrypt */
83 EVP_CIPHER_CTX cipher;
84 /* buf is larger than ENC_BLOCK_SIZE because EVP_DecryptUpdate
85 * can return up to a block more data than is presented to it
86 */
87 char buf[ENC_BLOCK_SIZE+BUF_OFFSET+2];
88 } BIO_ENC_CTX;

90 static BIO_METHOD methods_enc=
91 {
92 BIO_TYPE_CIPHER,"cipher",
93 enc_write,
94 enc_read,
95 NULL, /* enc_puts, */
96 NULL, /* enc_gets, */
97 enc_ctrl,
98 enc_new,
99 enc_free,
100 enc_callback_ctrl,
101 };

103 BIO_METHOD *BIO_f_cipher(void)
104 {
105 return(&methods_enc);
106 }

108 static int enc_new(BIO *bi)
109 {
110 BIO_ENC_CTX *ctx;

112 ctx=(BIO_ENC_CTX *)OPENSSL_malloc(sizeof(BIO_ENC_CTX));
113 if (ctx == NULL) return(0);
114 EVP_CIPHER_CTX_init(&ctx->cipher);

116 ctx->buf_len=0;
117 ctx->buf_off=0;
118 ctx->cont=1;
119 ctx->finished=0;
120 ctx->ok=1;

122 bi->init=0;
123 bi->ptr=(char *)ctx;
124 bi->flags=0;
125 return(1);
126 }

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_enc.c 3

128 static int enc_free(BIO *a)
129 {
130 BIO_ENC_CTX *b;

132 if (a == NULL) return(0);
133 b=(BIO_ENC_CTX *)a->ptr;
134 EVP_CIPHER_CTX_cleanup(&(b->cipher));
135 OPENSSL_cleanse(a->ptr,sizeof(BIO_ENC_CTX));
136 OPENSSL_free(a->ptr);
137 a->ptr=NULL;
138 a->init=0;
139 a->flags=0;
140 return(1);
141 }
142
143 static int enc_read(BIO *b, char *out, int outl)
144 {
145 int ret=0,i;
146 BIO_ENC_CTX *ctx;

148 if (out == NULL) return(0);
149 ctx=(BIO_ENC_CTX *)b->ptr;

151 if ((ctx == NULL) || (b->next_bio == NULL)) return(0);

153 /* First check if there are bytes decoded/encoded */
154 if (ctx->buf_len > 0)
155 {
156 i=ctx->buf_len-ctx->buf_off;
157 if (i > outl) i=outl;
158 memcpy(out,&(ctx->buf[ctx->buf_off]),i);
159 ret=i;
160 out+=i;
161 outl-=i;
162 ctx->buf_off+=i;
163 if (ctx->buf_len == ctx->buf_off)
164 {
165 ctx->buf_len=0;
166 ctx->buf_off=0;
167 }
168 }

170 /* At this point, we have room of outl bytes and an empty
171 * buffer, so we should read in some more. */

173 while (outl > 0)
174 {
175 if (ctx->cont <= 0) break;

177 /* read in at IV offset, read the EVP_Cipher
178 * documentation about why */
179 i=BIO_read(b->next_bio,&(ctx->buf[BUF_OFFSET]),ENC_BLOCK_SIZE);

181 if (i <= 0)
182 {
183 /* Should be continue next time we are called? */
184 if (!BIO_should_retry(b->next_bio))
185 {
186 ctx->cont=i;
187 i=EVP_CipherFinal_ex(&(ctx->cipher),
188 (unsigned char *)ctx->buf,
189 &(ctx->buf_len));
190 ctx->ok=i;
191 ctx->buf_off=0;
192 }
193 else

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_enc.c 4

194 {
195 ret=(ret == 0)?i:ret;
196 break;
197 }
198 }
199 else
200 {
201 EVP_CipherUpdate(&(ctx->cipher),
202 (unsigned char *)ctx->buf,&ctx->buf_len,
203 (unsigned char *)&(ctx->buf[BUF_OFFSET]),i);
204 ctx->cont=1;
205 /* Note: it is possible for EVP_CipherUpdate to
206 * decrypt zero bytes because this is or looks like
207 * the final block: if this happens we should retry
208 * and either read more data or decrypt the final
209 * block
210 */
211 if(ctx->buf_len == 0) continue;
212 }

214 if (ctx->buf_len <= outl)
215 i=ctx->buf_len;
216 else
217 i=outl;
218 if (i <= 0) break;
219 memcpy(out,ctx->buf,i);
220 ret+=i;
221 ctx->buf_off=i;
222 outl-=i;
223 out+=i;
224 }

226 BIO_clear_retry_flags(b);
227 BIO_copy_next_retry(b);
228 return((ret == 0)?ctx->cont:ret);
229 }

231 static int enc_write(BIO *b, const char *in, int inl)
232 {
233 int ret=0,n,i;
234 BIO_ENC_CTX *ctx;

236 ctx=(BIO_ENC_CTX *)b->ptr;
237 ret=inl;

239 BIO_clear_retry_flags(b);
240 n=ctx->buf_len-ctx->buf_off;
241 while (n > 0)
242 {
243 i=BIO_write(b->next_bio,&(ctx->buf[ctx->buf_off]),n);
244 if (i <= 0)
245 {
246 BIO_copy_next_retry(b);
247 return(i);
248 }
249 ctx->buf_off+=i;
250 n-=i;
251 }
252 /* at this point all pending data has been written */

254 if ((in == NULL) || (inl <= 0)) return(0);

256 ctx->buf_off=0;
257 while (inl > 0)
258 {
259 n=(inl > ENC_BLOCK_SIZE)?ENC_BLOCK_SIZE:inl;

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_enc.c 5

260 EVP_CipherUpdate(&(ctx->cipher),
261 (unsigned char *)ctx->buf,&ctx->buf_len,
262 (unsigned char *)in,n);
263 inl-=n;
264 in+=n;

266 ctx->buf_off=0;
267 n=ctx->buf_len;
268 while (n > 0)
269 {
270 i=BIO_write(b->next_bio,&(ctx->buf[ctx->buf_off]),n);
271 if (i <= 0)
272 {
273 BIO_copy_next_retry(b);
274 return (ret == inl) ? i : ret - inl;
275 }
276 n-=i;
277 ctx->buf_off+=i;
278 }
279 ctx->buf_len=0;
280 ctx->buf_off=0;
281 }
282 BIO_copy_next_retry(b);
283 return(ret);
284 }

286 static long enc_ctrl(BIO *b, int cmd, long num, void *ptr)
287 {
288 BIO *dbio;
289 BIO_ENC_CTX *ctx,*dctx;
290 long ret=1;
291 int i;
292 EVP_CIPHER_CTX **c_ctx;

294 ctx=(BIO_ENC_CTX *)b->ptr;

296 switch (cmd)
297 {
298 case BIO_CTRL_RESET:
299 ctx->ok=1;
300 ctx->finished=0;
301 EVP_CipherInit_ex(&(ctx->cipher),NULL,NULL,NULL,NULL,
302 ctx->cipher.encrypt);
303 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
304 break;
305 case BIO_CTRL_EOF: /* More to read */
306 if (ctx->cont <= 0)
307 ret=1;
308 else
309 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
310 break;
311 case BIO_CTRL_WPENDING:
312 ret=ctx->buf_len-ctx->buf_off;
313 if (ret <= 0)
314 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
315 break;
316 case BIO_CTRL_PENDING: /* More to read in buffer */
317 ret=ctx->buf_len-ctx->buf_off;
318 if (ret <= 0)
319 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
320 break;
321 case BIO_CTRL_FLUSH:
322 /* do a final write */
323 again:
324 while (ctx->buf_len != ctx->buf_off)
325 {

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_enc.c 6

326 i=enc_write(b,NULL,0);
327 if (i < 0)
328 return i;
329 }

331 if (!ctx->finished)
332 {
333 ctx->finished=1;
334 ctx->buf_off=0;
335 ret=EVP_CipherFinal_ex(&(ctx->cipher),
336 (unsigned char *)ctx->buf,
337 &(ctx->buf_len));
338 ctx->ok=(int)ret;
339 if (ret <= 0) break;

341 /* push out the bytes */
342 goto again;
343 }
344
345 /* Finally flush the underlying BIO */
346 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
347 break;
348 case BIO_C_GET_CIPHER_STATUS:
349 ret=(long)ctx->ok;
350 break;
351 case BIO_C_DO_STATE_MACHINE:
352 BIO_clear_retry_flags(b);
353 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
354 BIO_copy_next_retry(b);
355 break;
356 case BIO_C_GET_CIPHER_CTX:
357 c_ctx=(EVP_CIPHER_CTX **)ptr;
358 (*c_ctx)= &(ctx->cipher);
359 b->init=1;
360 break;
361 case BIO_CTRL_DUP:
362 dbio=(BIO *)ptr;
363 dctx=(BIO_ENC_CTX *)dbio->ptr;
364 EVP_CIPHER_CTX_init(&dctx->cipher);
365 ret = EVP_CIPHER_CTX_copy(&dctx->cipher,&ctx->cipher);
366 if (ret)
367 dbio->init=1;
368 break;
369 default:
370 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
371 break;
372 }
373 return(ret);
374 }

376 static long enc_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp)
377 {
378 long ret=1;

380 if (b->next_bio == NULL) return(0);
381 switch (cmd)
382 {
383 default:
384 ret=BIO_callback_ctrl(b->next_bio,cmd,fp);
385 break;
386 }
387 return(ret);
388 }

390 /*
391 void BIO_set_cipher_ctx(b,c)

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_enc.c 7

392 BIO *b;
393 EVP_CIPHER_ctx *c;
394 {
395 if (b == NULL) return;

397 if ((b->callback != NULL) &&
398 (b->callback(b,BIO_CB_CTRL,(char *)c,BIO_CTRL_SET,e,0L) <= 0))
399 return;

401 b->init=1;
402 ctx=(BIO_ENC_CTX *)b->ptr;
403 memcpy(ctx->cipher,c,sizeof(EVP_CIPHER_CTX));
404
405 if (b->callback != NULL)
406 b->callback(b,BIO_CB_CTRL,(char *)c,BIO_CTRL_SET,e,1L);
407 }
408 */

410 void BIO_set_cipher(BIO *b, const EVP_CIPHER *c, const unsigned char *k,
411 const unsigned char *i, int e)
412 {
413 BIO_ENC_CTX *ctx;

415 if (b == NULL) return;

417 if ((b->callback != NULL) &&
418 (b->callback(b,BIO_CB_CTRL,(const char *)c,BIO_CTRL_SET,e,0L) <=
419 return;

421 b->init=1;
422 ctx=(BIO_ENC_CTX *)b->ptr;
423 EVP_CipherInit_ex(&(ctx->cipher),c,NULL, k,i,e);
424
425 if (b->callback != NULL)
426 b->callback(b,BIO_CB_CTRL,(const char *)c,BIO_CTRL_SET,e,1L);
427 }

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_md.c 1

**
 6864 Fri May 30 18:31:50 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/bio_md.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/bio_md.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <errno.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_md.c 2

62 #include <openssl/buffer.h>
63 #include <openssl/evp.h>

65 /* BIO_put and BIO_get both add to the digest,
66 * BIO_gets returns the digest */

68 static int md_write(BIO *h, char const *buf, int num);
69 static int md_read(BIO *h, char *buf, int size);
70 /*static int md_puts(BIO *h, const char *str); */
71 static int md_gets(BIO *h, char *str, int size);
72 static long md_ctrl(BIO *h, int cmd, long arg1, void *arg2);
73 static int md_new(BIO *h);
74 static int md_free(BIO *data);
75 static long md_callback_ctrl(BIO *h,int cmd,bio_info_cb *fp);

77 static BIO_METHOD methods_md=
78 {
79 BIO_TYPE_MD,"message digest",
80 md_write,
81 md_read,
82 NULL, /* md_puts, */
83 md_gets,
84 md_ctrl,
85 md_new,
86 md_free,
87 md_callback_ctrl,
88 };

90 BIO_METHOD *BIO_f_md(void)
91 {
92 return(&methods_md);
93 }

95 static int md_new(BIO *bi)
96 {
97 EVP_MD_CTX *ctx;

99 ctx=EVP_MD_CTX_create();
100 if (ctx == NULL) return(0);

102 bi->init=0;
103 bi->ptr=(char *)ctx;
104 bi->flags=0;
105 return(1);
106 }

108 static int md_free(BIO *a)
109 {
110 if (a == NULL) return(0);
111 EVP_MD_CTX_destroy(a->ptr);
112 a->ptr=NULL;
113 a->init=0;
114 a->flags=0;
115 return(1);
116 }
117
118 static int md_read(BIO *b, char *out, int outl)
119 {
120 int ret=0;
121 EVP_MD_CTX *ctx;

123 if (out == NULL) return(0);
124 ctx=b->ptr;

126 if ((ctx == NULL) || (b->next_bio == NULL)) return(0);

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_md.c 3

128 ret=BIO_read(b->next_bio,out,outl);
129 if (b->init)
130 {
131 if (ret > 0)
132 {
133 if (EVP_DigestUpdate(ctx,(unsigned char *)out,
134 (unsigned int)ret)<=0) return (-1);
135 }
136 }
137 BIO_clear_retry_flags(b);
138 BIO_copy_next_retry(b);
139 return(ret);
140 }

142 static int md_write(BIO *b, const char *in, int inl)
143 {
144 int ret=0;
145 EVP_MD_CTX *ctx;

147 if ((in == NULL) || (inl <= 0)) return(0);
148 ctx=b->ptr;

150 if ((ctx != NULL) && (b->next_bio != NULL))
151 ret=BIO_write(b->next_bio,in,inl);
152 if (b->init)
153 {
154 if (ret > 0)
155 {
156 if (!EVP_DigestUpdate(ctx,(const unsigned char *)in,
157 (unsigned int)ret))
158 {
159 BIO_clear_retry_flags(b);
160 return 0;
161 }
162 }
163 }
164 if(b->next_bio != NULL)
165 {
166 BIO_clear_retry_flags(b);
167 BIO_copy_next_retry(b);
168 }
169 return(ret);
170 }

172 static long md_ctrl(BIO *b, int cmd, long num, void *ptr)
173 {
174 EVP_MD_CTX *ctx,*dctx,**pctx;
175 const EVP_MD **ppmd;
176 EVP_MD *md;
177 long ret=1;
178 BIO *dbio;

180 ctx=b->ptr;

182 switch (cmd)
183 {
184 case BIO_CTRL_RESET:
185 if (b->init)
186 ret = EVP_DigestInit_ex(ctx,ctx->digest, NULL);
187 else
188 ret=0;
189 if (ret > 0)
190 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
191 break;
192 case BIO_C_GET_MD:
193 if (b->init)

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_md.c 4

194 {
195 ppmd=ptr;
196 *ppmd=ctx->digest;
197 }
198 else
199 ret=0;
200 break;
201 case BIO_C_GET_MD_CTX:
202 pctx=ptr;
203 *pctx=ctx;
204 b->init = 1;
205 break;
206 case BIO_C_SET_MD_CTX:
207 if (b->init)
208 b->ptr=ptr;
209 else
210 ret=0;
211 break;
212 case BIO_C_DO_STATE_MACHINE:
213 BIO_clear_retry_flags(b);
214 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
215 BIO_copy_next_retry(b);
216 break;

218 case BIO_C_SET_MD:
219 md=ptr;
220 ret = EVP_DigestInit_ex(ctx,md, NULL);
221 if (ret > 0)
222 b->init=1;
223 break;
224 case BIO_CTRL_DUP:
225 dbio=ptr;
226 dctx=dbio->ptr;
227 if (!EVP_MD_CTX_copy_ex(dctx,ctx))
228 return 0;
229 b->init=1;
230 break;
231 default:
232 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
233 break;
234 }
235 return(ret);
236 }

238 static long md_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp)
239 {
240 long ret=1;

242 if (b->next_bio == NULL) return(0);
243 switch (cmd)
244 {
245 default:
246 ret=BIO_callback_ctrl(b->next_bio,cmd,fp);
247 break;
248 }
249 return(ret);
250 }

252 static int md_gets(BIO *bp, char *buf, int size)
253 {
254 EVP_MD_CTX *ctx;
255 unsigned int ret;

258 ctx=bp->ptr;
259 if (size < ctx->digest->md_size)

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_md.c 5

260 return(0);
261 if (EVP_DigestFinal_ex(ctx,(unsigned char *)buf,&ret)<=0)
262 return -1;
263
264 return((int)ret);
265 }

267 /*
268 static int md_puts(bp,str)
269 BIO *bp;
270 char *str;
271 {
272 return(-1);
273 }
274 */

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_ok.c 1

**
 15847 Fri May 30 18:31:50 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/bio_ok.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/bio_ok.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /*
60 From: Arne Ansper <arne@cyber.ee>

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_ok.c 2

62 Why BIO_f_reliable?

64 I wrote function which took BIO* as argument, read data from it
65 and processed it. Then I wanted to store the input file in
66 encrypted form. OK I pushed BIO_f_cipher to the BIO stack
67 and everything was OK. BUT if user types wrong password
68 BIO_f_cipher outputs only garbage and my function crashes. Yes
69 I can and I should fix my function, but BIO_f_cipher is
70 easy way to add encryption support to many existing applications
71 and it’s hard to debug and fix them all.

73 So I wanted another BIO which would catch the incorrect passwords and
74 file damages which cause garbage on BIO_f_cipher’s output.

76 The easy way is to push the BIO_f_md and save the checksum at
77 the end of the file. However there are several problems with this
78 approach:

80 1) you must somehow separate checksum from actual data.
81 2) you need lot’s of memory when reading the file, because you
82 must read to the end of the file and verify the checksum before
83 letting the application to read the data.
84
85 BIO_f_reliable tries to solve both problems, so that you can
86 read and write arbitrary long streams using only fixed amount
87 of memory.

89 BIO_f_reliable splits data stream into blocks. Each block is prefixed
90 with it’s length and suffixed with it’s digest. So you need only
91 several Kbytes of memory to buffer single block before verifying
92 it’s digest.

94 BIO_f_reliable goes further and adds several important capabilities:

96 1) the digest of the block is computed over the whole stream
97 -- so nobody can rearrange the blocks or remove or replace them.

99 2) to detect invalid passwords right at the start BIO_f_reliable
100 adds special prefix to the stream. In order to avoid known plain-text
101 attacks this prefix is generated as follows:

103 *) digest is initialized with random seed instead of
104 standardized one.
105 *) same seed is written to output
106 *) well-known text is then hashed and the output
107 of the digest is also written to output.

109 reader can now read the seed from stream, hash the same string
110 and then compare the digest output.

112 Bad things: BIO_f_reliable knows what’s going on in EVP_Digest. I
113 initially wrote and tested this code on x86 machine and wrote the
114 digests out in machine-dependent order :(There are people using
115 this code and I cannot change this easily without making existing
116 data files unreadable.

118 */

120 #include <stdio.h>
121 #include <errno.h>
122 #include <assert.h>
123 #include "cryptlib.h"
124 #include <openssl/buffer.h>
125 #include <openssl/bio.h>
126 #include <openssl/evp.h>
127 #include <openssl/rand.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_ok.c 3

129 static int ok_write(BIO *h, const char *buf, int num);
130 static int ok_read(BIO *h, char *buf, int size);
131 static long ok_ctrl(BIO *h, int cmd, long arg1, void *arg2);
132 static int ok_new(BIO *h);
133 static int ok_free(BIO *data);
134 static long ok_callback_ctrl(BIO *h, int cmd, bio_info_cb *fp);

136 static int sig_out(BIO* b);
137 static int sig_in(BIO* b);
138 static int block_out(BIO* b);
139 static int block_in(BIO* b);
140 #define OK_BLOCK_SIZE (1024*4)
141 #define OK_BLOCK_BLOCK 4
142 #define IOBS (OK_BLOCK_SIZE+ OK_BLOCK_BLOCK+ 3*EVP_MAX_MD_SIZE)
143 #define WELLKNOWN "The quick brown fox jumped over the lazy dog’s back."

145 typedef struct ok_struct
146 {
147 size_t buf_len;
148 size_t buf_off;
149 size_t buf_len_save;
150 size_t buf_off_save;
151 int cont; /* <= 0 when finished */
152 int finished;
153 EVP_MD_CTX md;
154 int blockout; /* output block is ready */
155 int sigio; /* must process signature */
156 unsigned char buf[IOBS];
157 } BIO_OK_CTX;

159 static BIO_METHOD methods_ok=
160 {
161 BIO_TYPE_CIPHER,"reliable",
162 ok_write,
163 ok_read,
164 NULL, /* ok_puts, */
165 NULL, /* ok_gets, */
166 ok_ctrl,
167 ok_new,
168 ok_free,
169 ok_callback_ctrl,
170 };

172 BIO_METHOD *BIO_f_reliable(void)
173 {
174 return(&methods_ok);
175 }

177 static int ok_new(BIO *bi)
178 {
179 BIO_OK_CTX *ctx;

181 ctx=(BIO_OK_CTX *)OPENSSL_malloc(sizeof(BIO_OK_CTX));
182 if (ctx == NULL) return(0);

184 ctx->buf_len=0;
185 ctx->buf_off=0;
186 ctx->buf_len_save=0;
187 ctx->buf_off_save=0;
188 ctx->cont=1;
189 ctx->finished=0;
190 ctx->blockout= 0;
191 ctx->sigio=1;

193 EVP_MD_CTX_init(&ctx->md);

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_ok.c 4

195 bi->init=0;
196 bi->ptr=(char *)ctx;
197 bi->flags=0;
198 return(1);
199 }

201 static int ok_free(BIO *a)
202 {
203 if (a == NULL) return(0);
204 EVP_MD_CTX_cleanup(&((BIO_OK_CTX *)a->ptr)->md);
205 OPENSSL_cleanse(a->ptr,sizeof(BIO_OK_CTX));
206 OPENSSL_free(a->ptr);
207 a->ptr=NULL;
208 a->init=0;
209 a->flags=0;
210 return(1);
211 }
212
213 static int ok_read(BIO *b, char *out, int outl)
214 {
215 int ret=0,i,n;
216 BIO_OK_CTX *ctx;

218 if (out == NULL) return(0);
219 ctx=(BIO_OK_CTX *)b->ptr;

221 if ((ctx == NULL) || (b->next_bio == NULL) || (b->init == 0)) return(0);

223 while(outl > 0)
224 {

226 /* copy clean bytes to output buffer */
227 if (ctx->blockout)
228 {
229 i=ctx->buf_len-ctx->buf_off;
230 if (i > outl) i=outl;
231 memcpy(out,&(ctx->buf[ctx->buf_off]),i);
232 ret+=i;
233 out+=i;
234 outl-=i;
235 ctx->buf_off+=i;

237 /* all clean bytes are out */
238 if (ctx->buf_len == ctx->buf_off)
239 {
240 ctx->buf_off=0;

242 /* copy start of the next block into proper plac
243 if(ctx->buf_len_save- ctx->buf_off_save > 0)
244 {
245 ctx->buf_len= ctx->buf_len_save- ctx->bu
246 memmove(ctx->buf, &(ctx->buf[ctx->buf_of
247 ctx->buf_len);
248 }
249 else
250 {
251 ctx->buf_len=0;
252 }
253 ctx->blockout= 0;
254 }
255 }
256
257 /* output buffer full -- cancel */
258 if (outl == 0) break;

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_ok.c 5

260 /* no clean bytes in buffer -- fill it */
261 n=IOBS- ctx->buf_len;
262 i=BIO_read(b->next_bio,&(ctx->buf[ctx->buf_len]),n);

264 if (i <= 0) break; /* nothing new */

266 ctx->buf_len+= i;

268 /* no signature yet -- check if we got one */
269 if (ctx->sigio == 1)
270 {
271 if (!sig_in(b))
272 {
273 BIO_clear_retry_flags(b);
274 return 0;
275 }
276 }

278 /* signature ok -- check if we got block */
279 if (ctx->sigio == 0)
280 {
281 if (!block_in(b))
282 {
283 BIO_clear_retry_flags(b);
284 return 0;
285 }
286 }

288 /* invalid block -- cancel */
289 if (ctx->cont <= 0) break;

291 }

293 BIO_clear_retry_flags(b);
294 BIO_copy_next_retry(b);
295 return(ret);
296 }

298 static int ok_write(BIO *b, const char *in, int inl)
299 {
300 int ret=0,n,i;
301 BIO_OK_CTX *ctx;

303 if (inl <= 0) return inl;

305 ctx=(BIO_OK_CTX *)b->ptr;
306 ret=inl;

308 if ((ctx == NULL) || (b->next_bio == NULL) || (b->init == 0)) return(0);

310 if(ctx->sigio && !sig_out(b))
311 return 0;

313 do{
314 BIO_clear_retry_flags(b);
315 n=ctx->buf_len-ctx->buf_off;
316 while (ctx->blockout && n > 0)
317 {
318 i=BIO_write(b->next_bio,&(ctx->buf[ctx->buf_off]),n);
319 if (i <= 0)
320 {
321 BIO_copy_next_retry(b);
322 if(!BIO_should_retry(b))
323 ctx->cont= 0;
324 return(i);
325 }

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_ok.c 6

326 ctx->buf_off+=i;
327 n-=i;
328 }

330 /* at this point all pending data has been written */
331 ctx->blockout= 0;
332 if (ctx->buf_len == ctx->buf_off)
333 {
334 ctx->buf_len=OK_BLOCK_BLOCK;
335 ctx->buf_off=0;
336 }
337
338 if ((in == NULL) || (inl <= 0)) return(0);

340 n= (inl+ ctx->buf_len > OK_BLOCK_SIZE+ OK_BLOCK_BLOCK) ?
341 (int)(OK_BLOCK_SIZE+OK_BLOCK_BLOCK-ctx->buf_len) : inl;

343 memcpy((unsigned char *)(&(ctx->buf[ctx->buf_len])),(unsigned ch
344 ctx->buf_len+= n;
345 inl-=n;
346 in+=n;

348 if(ctx->buf_len >= OK_BLOCK_SIZE+ OK_BLOCK_BLOCK)
349 {
350 if (!block_out(b))
351 {
352 BIO_clear_retry_flags(b);
353 return 0;
354 }
355 }
356 }while(inl > 0);

358 BIO_clear_retry_flags(b);
359 BIO_copy_next_retry(b);
360 return(ret);
361 }

363 static long ok_ctrl(BIO *b, int cmd, long num, void *ptr)
364 {
365 BIO_OK_CTX *ctx;
366 EVP_MD *md;
367 const EVP_MD **ppmd;
368 long ret=1;
369 int i;

371 ctx=b->ptr;

373 switch (cmd)
374 {
375 case BIO_CTRL_RESET:
376 ctx->buf_len=0;
377 ctx->buf_off=0;
378 ctx->buf_len_save=0;
379 ctx->buf_off_save=0;
380 ctx->cont=1;
381 ctx->finished=0;
382 ctx->blockout= 0;
383 ctx->sigio=1;
384 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
385 break;
386 case BIO_CTRL_EOF: /* More to read */
387 if (ctx->cont <= 0)
388 ret=1;
389 else
390 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
391 break;

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_ok.c 7

392 case BIO_CTRL_PENDING: /* More to read in buffer */
393 case BIO_CTRL_WPENDING: /* More to read in buffer */
394 ret=ctx->blockout ? ctx->buf_len-ctx->buf_off : 0;
395 if (ret <= 0)
396 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
397 break;
398 case BIO_CTRL_FLUSH:
399 /* do a final write */
400 if(ctx->blockout == 0)
401 if (!block_out(b))
402 return 0;

404 while (ctx->blockout)
405 {
406 i=ok_write(b,NULL,0);
407 if (i < 0)
408 {
409 ret=i;
410 break;
411 }
412 }

414 ctx->finished=1;
415 ctx->buf_off=ctx->buf_len=0;
416 ctx->cont=(int)ret;
417
418 /* Finally flush the underlying BIO */
419 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
420 break;
421 case BIO_C_DO_STATE_MACHINE:
422 BIO_clear_retry_flags(b);
423 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
424 BIO_copy_next_retry(b);
425 break;
426 case BIO_CTRL_INFO:
427 ret=(long)ctx->cont;
428 break;
429 case BIO_C_SET_MD:
430 md=ptr;
431 if (!EVP_DigestInit_ex(&ctx->md, md, NULL))
432 return 0;
433 b->init=1;
434 break;
435 case BIO_C_GET_MD:
436 if (b->init)
437 {
438 ppmd=ptr;
439 *ppmd=ctx->md.digest;
440 }
441 else
442 ret=0;
443 break;
444 default:
445 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
446 break;
447 }
448 return(ret);
449 }

451 static long ok_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp)
452 {
453 long ret=1;

455 if (b->next_bio == NULL) return(0);
456 switch (cmd)
457 {

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_ok.c 8

458 default:
459 ret=BIO_callback_ctrl(b->next_bio,cmd,fp);
460 break;
461 }
462 return(ret);
463 }

465 static void longswap(void *_ptr, size_t len)
466 { const union { long one; char little; } is_endian = {1};

468 if (is_endian.little) {
469 size_t i;
470 unsigned char *p=_ptr,c;

472 for(i= 0;i < len;i+= 4) {
473 c=p[0],p[0]=p[3],p[3]=c;
474 c=p[1],p[1]=p[2],p[2]=c;
475 }
476 }
477 }

479 static int sig_out(BIO* b)
480 {
481 BIO_OK_CTX *ctx;
482 EVP_MD_CTX *md;

484 ctx=b->ptr;
485 md=&ctx->md;

487 if(ctx->buf_len+ 2* md->digest->md_size > OK_BLOCK_SIZE) return 1;

489 if (!EVP_DigestInit_ex(md, md->digest, NULL))
490 goto berr;
491 /* FIXME: there’s absolutely no guarantee this makes any sense at all,
492 * particularly now EVP_MD_CTX has been restructured.
493 */
494 RAND_pseudo_bytes(md->md_data, md->digest->md_size);
495 memcpy(&(ctx->buf[ctx->buf_len]), md->md_data, md->digest->md_size);
496 longswap(&(ctx->buf[ctx->buf_len]), md->digest->md_size);
497 ctx->buf_len+= md->digest->md_size;

499 if (!EVP_DigestUpdate(md, WELLKNOWN, strlen(WELLKNOWN)))
500 goto berr;
501 if (!EVP_DigestFinal_ex(md, &(ctx->buf[ctx->buf_len]), NULL))
502 goto berr;
503 ctx->buf_len+= md->digest->md_size;
504 ctx->blockout= 1;
505 ctx->sigio= 0;
506 return 1;
507 berr:
508 BIO_clear_retry_flags(b);
509 return 0;
510 }

512 static int sig_in(BIO* b)
513 {
514 BIO_OK_CTX *ctx;
515 EVP_MD_CTX *md;
516 unsigned char tmp[EVP_MAX_MD_SIZE];
517 int ret= 0;

519 ctx=b->ptr;
520 md=&ctx->md;

522 if((int)(ctx->buf_len-ctx->buf_off) < 2*md->digest->md_size) return 1;

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_ok.c 9

524 if (!EVP_DigestInit_ex(md, md->digest, NULL))
525 goto berr;
526 memcpy(md->md_data, &(ctx->buf[ctx->buf_off]), md->digest->md_size);
527 longswap(md->md_data, md->digest->md_size);
528 ctx->buf_off+= md->digest->md_size;

530 if (!EVP_DigestUpdate(md, WELLKNOWN, strlen(WELLKNOWN)))
531 goto berr;
532 if (!EVP_DigestFinal_ex(md, tmp, NULL))
533 goto berr;
534 ret= memcmp(&(ctx->buf[ctx->buf_off]), tmp, md->digest->md_size) == 0;
535 ctx->buf_off+= md->digest->md_size;
536 if(ret == 1)
537 {
538 ctx->sigio= 0;
539 if(ctx->buf_len != ctx->buf_off)
540 {
541 memmove(ctx->buf, &(ctx->buf[ctx->buf_off]), ctx->buf_le
542 }
543 ctx->buf_len-= ctx->buf_off;
544 ctx->buf_off= 0;
545 }
546 else
547 {
548 ctx->cont= 0;
549 }
550 return 1;
551 berr:
552 BIO_clear_retry_flags(b);
553 return 0;
554 }

556 static int block_out(BIO* b)
557 {
558 BIO_OK_CTX *ctx;
559 EVP_MD_CTX *md;
560 unsigned long tl;

562 ctx=b->ptr;
563 md=&ctx->md;

565 tl= ctx->buf_len- OK_BLOCK_BLOCK;
566 ctx->buf[0]=(unsigned char)(tl>>24);
567 ctx->buf[1]=(unsigned char)(tl>>16);
568 ctx->buf[2]=(unsigned char)(tl>>8);
569 ctx->buf[3]=(unsigned char)(tl);
570 if (!EVP_DigestUpdate(md,
571 (unsigned char*) &(ctx->buf[OK_BLOCK_BLOCK]), tl))
572 goto berr;
573 if (!EVP_DigestFinal_ex(md, &(ctx->buf[ctx->buf_len]), NULL))
574 goto berr;
575 ctx->buf_len+= md->digest->md_size;
576 ctx->blockout= 1;
577 return 1;
578 berr:
579 BIO_clear_retry_flags(b);
580 return 0;
581 }

583 static int block_in(BIO* b)
584 {
585 BIO_OK_CTX *ctx;
586 EVP_MD_CTX *md;
587 unsigned long tl= 0;
588 unsigned char tmp[EVP_MAX_MD_SIZE];

new/usr/src/lib/openssl/libsunw_crypto/evp/bio_ok.c 10

590 ctx=b->ptr;
591 md=&ctx->md;

593 assert(sizeof(tl)>=OK_BLOCK_BLOCK); /* always true */
594 tl =ctx->buf[0]; tl<<=8;
595 tl|=ctx->buf[1]; tl<<=8;
596 tl|=ctx->buf[2]; tl<<=8;
597 tl|=ctx->buf[3];

599 if (ctx->buf_len < tl+ OK_BLOCK_BLOCK+ md->digest->md_size) return 1;
600
601 if (!EVP_DigestUpdate(md,
602 (unsigned char*) &(ctx->buf[OK_BLOCK_BLOCK]), tl))
603 goto berr;
604 if (!EVP_DigestFinal_ex(md, tmp, NULL))
605 goto berr;
606 if(memcmp(&(ctx->buf[tl+ OK_BLOCK_BLOCK]), tmp, md->digest->md_size) ==
607 {
608 /* there might be parts from next block lurking around ! */
609 ctx->buf_off_save= tl+ OK_BLOCK_BLOCK+ md->digest->md_size;
610 ctx->buf_len_save= ctx->buf_len;
611 ctx->buf_off= OK_BLOCK_BLOCK;
612 ctx->buf_len= tl+ OK_BLOCK_BLOCK;
613 ctx->blockout= 1;
614 }
615 else
616 {
617 ctx->cont= 0;
618 }
619 return 1;
620 berr:
621 BIO_clear_retry_flags(b);
622 return 0;
623 }

new/usr/src/lib/openssl/libsunw_crypto/evp/c_all.c 1

**
 3867 Fri May 30 18:31:50 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/c_all.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/c_all.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/c_all.c 2

62 #ifndef OPENSSL_NO_ENGINE
63 #include <openssl/engine.h>
64 #endif

66 #if 0
67 #undef OpenSSL_add_all_algorithms

69 void OpenSSL_add_all_algorithms(void)
70 {
71 OPENSSL_add_all_algorithms_noconf();
72 }
73 #endif

75 void OPENSSL_add_all_algorithms_noconf(void)
76 {
77 /*
78 * For the moment OPENSSL_cpuid_setup does something
79 * only on IA-32, but we reserve the option for all
80 * platforms...
81 */
82 OPENSSL_cpuid_setup();
83 OpenSSL_add_all_ciphers();
84 OpenSSL_add_all_digests();
85 #ifndef OPENSSL_NO_ENGINE
86 # if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(HAVE_CRYPTODEV)
87 ENGINE_setup_bsd_cryptodev();
88 # endif
89 #endif
90 }

new/usr/src/lib/openssl/libsunw_crypto/evp/c_allc.c 1

**
 8665 Fri May 30 18:31:50 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/c_allc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/c_allc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/c_allc.c 2

62 #include <openssl/pkcs12.h>
63 #include <openssl/objects.h>

65 void OpenSSL_add_all_ciphers(void)
66 {

68 #ifndef OPENSSL_NO_DES
69 EVP_add_cipher(EVP_des_cfb());
70 EVP_add_cipher(EVP_des_cfb1());
71 EVP_add_cipher(EVP_des_cfb8());
72 EVP_add_cipher(EVP_des_ede_cfb());
73 EVP_add_cipher(EVP_des_ede3_cfb());
74 EVP_add_cipher(EVP_des_ede3_cfb1());
75 EVP_add_cipher(EVP_des_ede3_cfb8());

77 EVP_add_cipher(EVP_des_ofb());
78 EVP_add_cipher(EVP_des_ede_ofb());
79 EVP_add_cipher(EVP_des_ede3_ofb());

81 EVP_add_cipher(EVP_desx_cbc());
82 EVP_add_cipher_alias(SN_desx_cbc,"DESX");
83 EVP_add_cipher_alias(SN_desx_cbc,"desx");

85 EVP_add_cipher(EVP_des_cbc());
86 EVP_add_cipher_alias(SN_des_cbc,"DES");
87 EVP_add_cipher_alias(SN_des_cbc,"des");
88 EVP_add_cipher(EVP_des_ede_cbc());
89 EVP_add_cipher(EVP_des_ede3_cbc());
90 EVP_add_cipher_alias(SN_des_ede3_cbc,"DES3");
91 EVP_add_cipher_alias(SN_des_ede3_cbc,"des3");

93 EVP_add_cipher(EVP_des_ecb());
94 EVP_add_cipher(EVP_des_ede());
95 EVP_add_cipher(EVP_des_ede3());
96 #endif

98 #ifndef OPENSSL_NO_RC4
99 EVP_add_cipher(EVP_rc4());
100 EVP_add_cipher(EVP_rc4_40());
101 #ifndef OPENSSL_NO_MD5
102 EVP_add_cipher(EVP_rc4_hmac_md5());
103 #endif
104 #endif

106 #ifndef OPENSSL_NO_IDEA
107 EVP_add_cipher(EVP_idea_ecb());
108 EVP_add_cipher(EVP_idea_cfb());
109 EVP_add_cipher(EVP_idea_ofb());
110 EVP_add_cipher(EVP_idea_cbc());
111 EVP_add_cipher_alias(SN_idea_cbc,"IDEA");
112 EVP_add_cipher_alias(SN_idea_cbc,"idea");
113 #endif

115 #ifndef OPENSSL_NO_SEED
116 EVP_add_cipher(EVP_seed_ecb());
117 EVP_add_cipher(EVP_seed_cfb());
118 EVP_add_cipher(EVP_seed_ofb());
119 EVP_add_cipher(EVP_seed_cbc());
120 EVP_add_cipher_alias(SN_seed_cbc,"SEED");
121 EVP_add_cipher_alias(SN_seed_cbc,"seed");
122 #endif

124 #ifndef OPENSSL_NO_RC2
125 EVP_add_cipher(EVP_rc2_ecb());
126 EVP_add_cipher(EVP_rc2_cfb());
127 EVP_add_cipher(EVP_rc2_ofb());

new/usr/src/lib/openssl/libsunw_crypto/evp/c_allc.c 3

128 EVP_add_cipher(EVP_rc2_cbc());
129 EVP_add_cipher(EVP_rc2_40_cbc());
130 EVP_add_cipher(EVP_rc2_64_cbc());
131 EVP_add_cipher_alias(SN_rc2_cbc,"RC2");
132 EVP_add_cipher_alias(SN_rc2_cbc,"rc2");
133 #endif

135 #ifndef OPENSSL_NO_BF
136 EVP_add_cipher(EVP_bf_ecb());
137 EVP_add_cipher(EVP_bf_cfb());
138 EVP_add_cipher(EVP_bf_ofb());
139 EVP_add_cipher(EVP_bf_cbc());
140 EVP_add_cipher_alias(SN_bf_cbc,"BF");
141 EVP_add_cipher_alias(SN_bf_cbc,"bf");
142 EVP_add_cipher_alias(SN_bf_cbc,"blowfish");
143 #endif

145 #ifndef OPENSSL_NO_CAST
146 EVP_add_cipher(EVP_cast5_ecb());
147 EVP_add_cipher(EVP_cast5_cfb());
148 EVP_add_cipher(EVP_cast5_ofb());
149 EVP_add_cipher(EVP_cast5_cbc());
150 EVP_add_cipher_alias(SN_cast5_cbc,"CAST");
151 EVP_add_cipher_alias(SN_cast5_cbc,"cast");
152 EVP_add_cipher_alias(SN_cast5_cbc,"CAST-cbc");
153 EVP_add_cipher_alias(SN_cast5_cbc,"cast-cbc");
154 #endif

156 #ifndef OPENSSL_NO_RC5
157 EVP_add_cipher(EVP_rc5_32_12_16_ecb());
158 EVP_add_cipher(EVP_rc5_32_12_16_cfb());
159 EVP_add_cipher(EVP_rc5_32_12_16_ofb());
160 EVP_add_cipher(EVP_rc5_32_12_16_cbc());
161 EVP_add_cipher_alias(SN_rc5_cbc,"rc5");
162 EVP_add_cipher_alias(SN_rc5_cbc,"RC5");
163 #endif

165 #ifndef OPENSSL_NO_AES
166 EVP_add_cipher(EVP_aes_128_ecb());
167 EVP_add_cipher(EVP_aes_128_cbc());
168 EVP_add_cipher(EVP_aes_128_cfb());
169 EVP_add_cipher(EVP_aes_128_cfb1());
170 EVP_add_cipher(EVP_aes_128_cfb8());
171 EVP_add_cipher(EVP_aes_128_ofb());
172 EVP_add_cipher(EVP_aes_128_ctr());
173 EVP_add_cipher(EVP_aes_128_gcm());
174 EVP_add_cipher(EVP_aes_128_xts());
175 EVP_add_cipher_alias(SN_aes_128_cbc,"AES128");
176 EVP_add_cipher_alias(SN_aes_128_cbc,"aes128");
177 EVP_add_cipher(EVP_aes_192_ecb());
178 EVP_add_cipher(EVP_aes_192_cbc());
179 EVP_add_cipher(EVP_aes_192_cfb());
180 EVP_add_cipher(EVP_aes_192_cfb1());
181 EVP_add_cipher(EVP_aes_192_cfb8());
182 EVP_add_cipher(EVP_aes_192_ofb());
183 EVP_add_cipher(EVP_aes_192_ctr());
184 EVP_add_cipher(EVP_aes_192_gcm());
185 EVP_add_cipher_alias(SN_aes_192_cbc,"AES192");
186 EVP_add_cipher_alias(SN_aes_192_cbc,"aes192");
187 EVP_add_cipher(EVP_aes_256_ecb());
188 EVP_add_cipher(EVP_aes_256_cbc());
189 EVP_add_cipher(EVP_aes_256_cfb());
190 EVP_add_cipher(EVP_aes_256_cfb1());
191 EVP_add_cipher(EVP_aes_256_cfb8());
192 EVP_add_cipher(EVP_aes_256_ofb());
193 EVP_add_cipher(EVP_aes_256_ctr());

new/usr/src/lib/openssl/libsunw_crypto/evp/c_allc.c 4

194 EVP_add_cipher(EVP_aes_256_gcm());
195 EVP_add_cipher(EVP_aes_256_xts());
196 EVP_add_cipher_alias(SN_aes_256_cbc,"AES256");
197 EVP_add_cipher_alias(SN_aes_256_cbc,"aes256");
198 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1)
199 EVP_add_cipher(EVP_aes_128_cbc_hmac_sha1());
200 EVP_add_cipher(EVP_aes_256_cbc_hmac_sha1());
201 #endif
202 #endif

204 #ifndef OPENSSL_NO_CAMELLIA
205 EVP_add_cipher(EVP_camellia_128_ecb());
206 EVP_add_cipher(EVP_camellia_128_cbc());
207 EVP_add_cipher(EVP_camellia_128_cfb());
208 EVP_add_cipher(EVP_camellia_128_cfb1());
209 EVP_add_cipher(EVP_camellia_128_cfb8());
210 EVP_add_cipher(EVP_camellia_128_ofb());
211 EVP_add_cipher_alias(SN_camellia_128_cbc,"CAMELLIA128");
212 EVP_add_cipher_alias(SN_camellia_128_cbc,"camellia128");
213 EVP_add_cipher(EVP_camellia_192_ecb());
214 EVP_add_cipher(EVP_camellia_192_cbc());
215 EVP_add_cipher(EVP_camellia_192_cfb());
216 EVP_add_cipher(EVP_camellia_192_cfb1());
217 EVP_add_cipher(EVP_camellia_192_cfb8());
218 EVP_add_cipher(EVP_camellia_192_ofb());
219 EVP_add_cipher_alias(SN_camellia_192_cbc,"CAMELLIA192");
220 EVP_add_cipher_alias(SN_camellia_192_cbc,"camellia192");
221 EVP_add_cipher(EVP_camellia_256_ecb());
222 EVP_add_cipher(EVP_camellia_256_cbc());
223 EVP_add_cipher(EVP_camellia_256_cfb());
224 EVP_add_cipher(EVP_camellia_256_cfb1());
225 EVP_add_cipher(EVP_camellia_256_cfb8());
226 EVP_add_cipher(EVP_camellia_256_ofb());
227 EVP_add_cipher_alias(SN_camellia_256_cbc,"CAMELLIA256");
228 EVP_add_cipher_alias(SN_camellia_256_cbc,"camellia256");
229 #endif
230 }

new/usr/src/lib/openssl/libsunw_crypto/evp/c_alld.c 1

**
 4696 Fri May 30 18:31:50 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/c_alld.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/c_alld.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/c_alld.c 2

62 #include <openssl/pkcs12.h>
63 #include <openssl/objects.h>

65 void OpenSSL_add_all_digests(void)
66 {
67 #ifndef OPENSSL_NO_MD4
68 EVP_add_digest(EVP_md4());
69 #endif
70 #ifndef OPENSSL_NO_MD5
71 EVP_add_digest(EVP_md5());
72 EVP_add_digest_alias(SN_md5,"ssl2-md5");
73 EVP_add_digest_alias(SN_md5,"ssl3-md5");
74 #endif
75 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA0)
76 EVP_add_digest(EVP_sha());
77 #ifndef OPENSSL_NO_DSA
78 EVP_add_digest(EVP_dss());
79 #endif
80 #endif
81 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1)
82 EVP_add_digest(EVP_sha1());
83 EVP_add_digest_alias(SN_sha1,"ssl3-sha1");
84 EVP_add_digest_alias(SN_sha1WithRSAEncryption,SN_sha1WithRSA);
85 #ifndef OPENSSL_NO_DSA
86 EVP_add_digest(EVP_dss1());
87 EVP_add_digest_alias(SN_dsaWithSHA1,SN_dsaWithSHA1_2);
88 EVP_add_digest_alias(SN_dsaWithSHA1,"DSS1");
89 EVP_add_digest_alias(SN_dsaWithSHA1,"dss1");
90 #endif
91 #ifndef OPENSSL_NO_ECDSA
92 EVP_add_digest(EVP_ecdsa());
93 #endif
94 #endif
95 #if !defined(OPENSSL_NO_MDC2) && !defined(OPENSSL_NO_DES)
96 EVP_add_digest(EVP_mdc2());
97 #endif
98 #ifndef OPENSSL_NO_RIPEMD
99 EVP_add_digest(EVP_ripemd160());
100 EVP_add_digest_alias(SN_ripemd160,"ripemd");
101 EVP_add_digest_alias(SN_ripemd160,"rmd160");
102 #endif
103 #ifndef OPENSSL_NO_SHA256
104 EVP_add_digest(EVP_sha224());
105 EVP_add_digest(EVP_sha256());
106 #endif
107 #ifndef OPENSSL_NO_SHA512
108 EVP_add_digest(EVP_sha384());
109 EVP_add_digest(EVP_sha512());
110 #endif
111 #ifndef OPENSSL_NO_WHIRLPOOL
112 EVP_add_digest(EVP_whirlpool());
113 #endif
114 }

new/usr/src/lib/openssl/libsunw_crypto/evp/digest.c 1

**
 12754 Fri May 30 18:31:50 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/digest.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/digest.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/evp/digest.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include <stdio.h>
113 #include "cryptlib.h"
114 #include <openssl/objects.h>
115 #include <openssl/evp.h>
116 #ifndef OPENSSL_NO_ENGINE
117 #include <openssl/engine.h>
118 #endif

120 #ifdef OPENSSL_FIPS
121 #include <openssl/fips.h>
122 #endif

124 void EVP_MD_CTX_init(EVP_MD_CTX *ctx)
125 {
126 memset(ctx,’\0’,sizeof *ctx);
127 }

new/usr/src/lib/openssl/libsunw_crypto/evp/digest.c 3

129 EVP_MD_CTX *EVP_MD_CTX_create(void)
130 {
131 EVP_MD_CTX *ctx=OPENSSL_malloc(sizeof *ctx);

133 if (ctx)
134 EVP_MD_CTX_init(ctx);

136 return ctx;
137 }

139 int EVP_DigestInit(EVP_MD_CTX *ctx, const EVP_MD *type)
140 {
141 EVP_MD_CTX_init(ctx);
142 return EVP_DigestInit_ex(ctx, type, NULL);
143 }

145 int EVP_DigestInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl)
146 {
147 EVP_MD_CTX_clear_flags(ctx,EVP_MD_CTX_FLAG_CLEANED);
148 #ifndef OPENSSL_NO_ENGINE
149 /* Whether it’s nice or not, "Inits" can be used on "Final"’d contexts
150 * so this context may already have an ENGINE! Try to avoid releasing
151 * the previous handle, re-querying for an ENGINE, and having a
152 * reinitialisation, when it may all be unecessary. */
153 if (ctx->engine && ctx->digest && (!type ||
154 (type && (type->type == ctx->digest->type))))
155 goto skip_to_init;
156 if (type)
157 {
158 /* Ensure an ENGINE left lying around from last time is cleared
159 * (the previous check attempted to avoid this if the same
160 * ENGINE and EVP_MD could be used). */
161 if(ctx->engine)
162 ENGINE_finish(ctx->engine);
163 if(impl)
164 {
165 if (!ENGINE_init(impl))
166 {
167 EVPerr(EVP_F_EVP_DIGESTINIT_EX,EVP_R_INITIALIZAT
168 return 0;
169 }
170 }
171 else
172 /* Ask if an ENGINE is reserved for this job */
173 impl = ENGINE_get_digest_engine(type->type);
174 if(impl)
175 {
176 /* There’s an ENGINE for this job ... (apparently) */
177 const EVP_MD *d = ENGINE_get_digest(impl, type->type);
178 if(!d)
179 {
180 /* Same comment from evp_enc.c */
181 EVPerr(EVP_F_EVP_DIGESTINIT_EX,EVP_R_INITIALIZAT
182 ENGINE_finish(impl);
183 return 0;
184 }
185 /* We’ll use the ENGINE’s private digest definition */
186 type = d;
187 /* Store the ENGINE functional reference so we know
188 * ’type’ came from an ENGINE and we need to release
189 * it when done. */
190 ctx->engine = impl;
191 }
192 else
193 ctx->engine = NULL;

new/usr/src/lib/openssl/libsunw_crypto/evp/digest.c 4

194 }
195 else
196 if(!ctx->digest)
197 {
198 EVPerr(EVP_F_EVP_DIGESTINIT_EX,EVP_R_NO_DIGEST_SET);
199 return 0;
200 }
201 #endif
202 if (ctx->digest != type)
203 {
204 if (ctx->digest && ctx->digest->ctx_size)
205 OPENSSL_free(ctx->md_data);
206 ctx->digest=type;
207 if (!(ctx->flags & EVP_MD_CTX_FLAG_NO_INIT) && type->ctx_size)
208 {
209 ctx->update = type->update;
210 ctx->md_data=OPENSSL_malloc(type->ctx_size);
211 if (ctx->md_data == NULL)
212 {
213 EVPerr(EVP_F_EVP_DIGESTINIT_EX,
214 ERR_R_MALLOC_FAILURE);
215 return 0;
216 }
217 }
218 }
219 #ifndef OPENSSL_NO_ENGINE
220 skip_to_init:
221 #endif
222 if (ctx->pctx)
223 {
224 int r;
225 r = EVP_PKEY_CTX_ctrl(ctx->pctx, -1, EVP_PKEY_OP_TYPE_SIG,
226 EVP_PKEY_CTRL_DIGESTINIT, 0, ctx);
227 if (r <= 0 && (r != -2))
228 return 0;
229 }
230 if (ctx->flags & EVP_MD_CTX_FLAG_NO_INIT)
231 return 1;
232 #ifdef OPENSSL_FIPS
233 if (FIPS_mode())
234 {
235 if (FIPS_digestinit(ctx, type))
236 return 1;
237 OPENSSL_free(ctx->md_data);
238 ctx->md_data = NULL;
239 return 0;
240 }
241 #endif
242 return ctx->digest->init(ctx);
243 }

245 int EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *data, size_t count)
246 {
247 #ifdef OPENSSL_FIPS
248 return FIPS_digestupdate(ctx, data, count);
249 #else
250 return ctx->update(ctx,data,count);
251 #endif
252 }

254 /* The caller can assume that this removes any secret data from the context */
255 int EVP_DigestFinal(EVP_MD_CTX *ctx, unsigned char *md, unsigned int *size)
256 {
257 int ret;
258 ret = EVP_DigestFinal_ex(ctx, md, size);
259 EVP_MD_CTX_cleanup(ctx);

new/usr/src/lib/openssl/libsunw_crypto/evp/digest.c 5

260 return ret;
261 }

263 /* The caller can assume that this removes any secret data from the context */
264 int EVP_DigestFinal_ex(EVP_MD_CTX *ctx, unsigned char *md, unsigned int *size)
265 {
266 #ifdef OPENSSL_FIPS
267 return FIPS_digestfinal(ctx, md, size);
268 #else
269 int ret;

271 OPENSSL_assert(ctx->digest->md_size <= EVP_MAX_MD_SIZE);
272 ret=ctx->digest->final(ctx,md);
273 if (size != NULL)
274 *size=ctx->digest->md_size;
275 if (ctx->digest->cleanup)
276 {
277 ctx->digest->cleanup(ctx);
278 EVP_MD_CTX_set_flags(ctx,EVP_MD_CTX_FLAG_CLEANED);
279 }
280 memset(ctx->md_data,0,ctx->digest->ctx_size);
281 return ret;
282 #endif
283 }

285 int EVP_MD_CTX_copy(EVP_MD_CTX *out, const EVP_MD_CTX *in)
286 {
287 EVP_MD_CTX_init(out);
288 return EVP_MD_CTX_copy_ex(out, in);
289 }

291 int EVP_MD_CTX_copy_ex(EVP_MD_CTX *out, const EVP_MD_CTX *in)
292 {
293 unsigned char *tmp_buf;
294 if ((in == NULL) || (in->digest == NULL))
295 {
296 EVPerr(EVP_F_EVP_MD_CTX_COPY_EX,EVP_R_INPUT_NOT_INITIALIZED);
297 return 0;
298 }
299 #ifndef OPENSSL_NO_ENGINE
300 /* Make sure it’s safe to copy a digest context using an ENGINE */
301 if (in->engine && !ENGINE_init(in->engine))
302 {
303 EVPerr(EVP_F_EVP_MD_CTX_COPY_EX,ERR_R_ENGINE_LIB);
304 return 0;
305 }
306 #endif

308 if (out->digest == in->digest)
309 {
310 tmp_buf = out->md_data;
311 EVP_MD_CTX_set_flags(out,EVP_MD_CTX_FLAG_REUSE);
312 }
313 else tmp_buf = NULL;
314 EVP_MD_CTX_cleanup(out);
315 memcpy(out,in,sizeof *out);

317 if (in->md_data && out->digest->ctx_size)
318 {
319 if (tmp_buf)
320 out->md_data = tmp_buf;
321 else
322 {
323 out->md_data=OPENSSL_malloc(out->digest->ctx_size);
324 if (!out->md_data)
325 {

new/usr/src/lib/openssl/libsunw_crypto/evp/digest.c 6

326 EVPerr(EVP_F_EVP_MD_CTX_COPY_EX,ERR_R_MALLOC_FAI
327 return 0;
328 }
329 }
330 memcpy(out->md_data,in->md_data,out->digest->ctx_size);
331 }

333 out->update = in->update;

335 if (in->pctx)
336 {
337 out->pctx = EVP_PKEY_CTX_dup(in->pctx);
338 if (!out->pctx)
339 {
340 EVP_MD_CTX_cleanup(out);
341 return 0;
342 }
343 }

345 if (out->digest->copy)
346 return out->digest->copy(out,in);
347
348 return 1;
349 }

351 int EVP_Digest(const void *data, size_t count,
352 unsigned char *md, unsigned int *size, const EVP_MD *type, ENGIN
353 {
354 EVP_MD_CTX ctx;
355 int ret;

357 EVP_MD_CTX_init(&ctx);
358 EVP_MD_CTX_set_flags(&ctx,EVP_MD_CTX_FLAG_ONESHOT);
359 ret=EVP_DigestInit_ex(&ctx, type, impl)
360 && EVP_DigestUpdate(&ctx, data, count)
361 && EVP_DigestFinal_ex(&ctx, md, size);
362 EVP_MD_CTX_cleanup(&ctx);

364 return ret;
365 }

367 void EVP_MD_CTX_destroy(EVP_MD_CTX *ctx)
368 {
369 if (ctx)
370 {
371 EVP_MD_CTX_cleanup(ctx);
372 OPENSSL_free(ctx);
373 }
374 }

376 /* This call frees resources associated with the context */
377 int EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx)
378 {
379 #ifndef OPENSSL_FIPS
380 /* Don’t assume ctx->md_data was cleaned in EVP_Digest_Final,
381 * because sometimes only copies of the context are ever finalised.
382 */
383 if (ctx->digest && ctx->digest->cleanup
384 && !EVP_MD_CTX_test_flags(ctx,EVP_MD_CTX_FLAG_CLEANED))
385 ctx->digest->cleanup(ctx);
386 if (ctx->digest && ctx->digest->ctx_size && ctx->md_data
387 && !EVP_MD_CTX_test_flags(ctx, EVP_MD_CTX_FLAG_REUSE))
388 {
389 OPENSSL_cleanse(ctx->md_data,ctx->digest->ctx_size);
390 OPENSSL_free(ctx->md_data);
391 }

new/usr/src/lib/openssl/libsunw_crypto/evp/digest.c 7

392 #endif
393 if (ctx->pctx)
394 EVP_PKEY_CTX_free(ctx->pctx);
395 #ifndef OPENSSL_NO_ENGINE
396 if(ctx->engine)
397 /* The EVP_MD we used belongs to an ENGINE, release the
398 * functional reference we held for this reason. */
399 ENGINE_finish(ctx->engine);
400 #endif
401 #ifdef OPENSSL_FIPS
402 FIPS_md_ctx_cleanup(ctx);
403 #endif
404 memset(ctx,’\0’,sizeof *ctx);

406 return 1;
407 }

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 1

**
 35238 Fri May 30 18:31:50 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 */

51 #include <openssl/opensslconf.h>
52 #ifndef OPENSSL_NO_AES
53 #include <openssl/evp.h>
54 #include <openssl/err.h>
55 #include <string.h>
56 #include <assert.h>
57 #include <openssl/aes.h>
58 #include "evp_locl.h"
59 #ifndef OPENSSL_FIPS
60 #include "modes_lcl.h"
61 #include <openssl/rand.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 2

63 typedef struct
64 {
65 AES_KEY ks;
66 block128_f block;
67 union {
68 cbc128_f cbc;
69 ctr128_f ctr;
70 } stream;
71 } EVP_AES_KEY;

73 typedef struct
74 {
75 AES_KEY ks; /* AES key schedule to use */
76 int key_set; /* Set if key initialised */
77 int iv_set; /* Set if an iv is set */
78 GCM128_CONTEXT gcm;
79 unsigned char *iv; /* Temporary IV store */
80 int ivlen; /* IV length */
81 int taglen;
82 int iv_gen; /* It is OK to generate IVs */
83 int tls_aad_len; /* TLS AAD length */
84 ctr128_f ctr;
85 } EVP_AES_GCM_CTX;

87 typedef struct
88 {
89 AES_KEY ks1, ks2; /* AES key schedules to use */
90 XTS128_CONTEXT xts;
91 void (*stream)(const unsigned char *in,
92 unsigned char *out, size_t length,
93 const AES_KEY *key1, const AES_KEY *key2,
94 const unsigned char iv[16]);
95 } EVP_AES_XTS_CTX;

97 typedef struct
98 {
99 AES_KEY ks; /* AES key schedule to use */
100 int key_set; /* Set if key initialised */
101 int iv_set; /* Set if an iv is set */
102 int tag_set; /* Set if tag is valid */
103 int len_set; /* Set if message length set */
104 int L, M; /* L and M parameters from RFC3610 */
105 CCM128_CONTEXT ccm;
106 ccm128_f str;
107 } EVP_AES_CCM_CTX;

109 #define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4))

111 #ifdef VPAES_ASM
112 int vpaes_set_encrypt_key(const unsigned char *userKey, int bits,
113 AES_KEY *key);
114 int vpaes_set_decrypt_key(const unsigned char *userKey, int bits,
115 AES_KEY *key);

117 void vpaes_encrypt(const unsigned char *in, unsigned char *out,
118 const AES_KEY *key);
119 void vpaes_decrypt(const unsigned char *in, unsigned char *out,
120 const AES_KEY *key);

122 void vpaes_cbc_encrypt(const unsigned char *in,
123 unsigned char *out,
124 size_t length,
125 const AES_KEY *key,
126 unsigned char *ivec, int enc);
127 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 3

128 #ifdef BSAES_ASM
129 void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
130 size_t length, const AES_KEY *key,
131 unsigned char ivec[16], int enc);
132 void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
133 size_t len, const AES_KEY *key,
134 const unsigned char ivec[16]);
135 void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out,
136 size_t len, const AES_KEY *key1,
137 const AES_KEY *key2, const unsigned char iv[16]);
138 void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out,
139 size_t len, const AES_KEY *key1,
140 const AES_KEY *key2, const unsigned char iv[16]);
141 #endif
142 #ifdef AES_CTR_ASM
143 void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
144 size_t blocks, const AES_KEY *key,
145 const unsigned char ivec[AES_BLOCK_SIZE]);
146 #endif
147 #ifdef AES_XTS_ASM
148 void AES_xts_encrypt(const char *inp,char *out,size_t len,
149 const AES_KEY *key1, const AES_KEY *key2,
150 const unsigned char iv[16]);
151 void AES_xts_decrypt(const char *inp,char *out,size_t len,
152 const AES_KEY *key1, const AES_KEY *key2,
153 const unsigned char iv[16]);
154 #endif

156 #if defined(AES_ASM) && !defined(I386_ONLY) && (\
157 ((defined(__i386) || defined(__i386__) || \
158 defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
159 defined(__x86_64) || defined(__x86_64__) || \
160 defined(_M_AMD64) || defined(_M_X64) || \
161 defined(__INTEL__))

163 extern unsigned int OPENSSL_ia32cap_P[2];

165 #ifdef VPAES_ASM
166 #define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
167 #endif
168 #ifdef BSAES_ASM
169 #define BSAES_CAPABLE VPAES_CAPABLE
170 #endif
171 /*
172 * AES-NI section
173 */
174 #define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32)))

176 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
177 AES_KEY *key);
178 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
179 AES_KEY *key);

181 void aesni_encrypt(const unsigned char *in, unsigned char *out,
182 const AES_KEY *key);
183 void aesni_decrypt(const unsigned char *in, unsigned char *out,
184 const AES_KEY *key);

186 void aesni_ecb_encrypt(const unsigned char *in,
187 unsigned char *out,
188 size_t length,
189 const AES_KEY *key,
190 int enc);
191 void aesni_cbc_encrypt(const unsigned char *in,
192 unsigned char *out,
193 size_t length,

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 4

194 const AES_KEY *key,
195 unsigned char *ivec, int enc);

197 void aesni_ctr32_encrypt_blocks(const unsigned char *in,
198 unsigned char *out,
199 size_t blocks,
200 const void *key,
201 const unsigned char *ivec);

203 void aesni_xts_encrypt(const unsigned char *in,
204 unsigned char *out,
205 size_t length,
206 const AES_KEY *key1, const AES_KEY *key2,
207 const unsigned char iv[16]);

209 void aesni_xts_decrypt(const unsigned char *in,
210 unsigned char *out,
211 size_t length,
212 const AES_KEY *key1, const AES_KEY *key2,
213 const unsigned char iv[16]);

215 void aesni_ccm64_encrypt_blocks (const unsigned char *in,
216 unsigned char *out,
217 size_t blocks,
218 const void *key,
219 const unsigned char ivec[16],
220 unsigned char cmac[16]);

222 void aesni_ccm64_decrypt_blocks (const unsigned char *in,
223 unsigned char *out,
224 size_t blocks,
225 const void *key,
226 const unsigned char ivec[16],
227 unsigned char cmac[16]);

229 static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
230 const unsigned char *iv, int enc)
231 {
232 int ret, mode;
233 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;

235 mode = ctx->cipher->flags & EVP_CIPH_MODE;
236 if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
237 && !enc)
238 {
239 ret = aesni_set_decrypt_key(key, ctx->key_len*8, ctx->cipher_dat
240 dat->block = (block128_f)aesni_decrypt;
241 dat->stream.cbc = mode==EVP_CIPH_CBC_MODE ?
242 (cbc128_f)aesni_cbc_encrypt :
243 NULL;
244 }
245 else {
246 ret = aesni_set_encrypt_key(key, ctx->key_len*8, ctx->cipher_dat
247 dat->block = (block128_f)aesni_encrypt;
248 if (mode==EVP_CIPH_CBC_MODE)
249 dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt;
250 else if (mode==EVP_CIPH_CTR_MODE)
251 dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
252 else
253 dat->stream.cbc = NULL;
254 }

256 if(ret < 0)
257 {
258 EVPerr(EVP_F_AESNI_INIT_KEY,EVP_R_AES_KEY_SETUP_FAILED);
259 return 0;

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 5

260 }

262 return 1;
263 }

265 static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
266 const unsigned char *in, size_t len)
267 {
268 aesni_cbc_encrypt(in,out,len,ctx->cipher_data,ctx->iv,ctx->encrypt);

270 return 1;
271 }

273 static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
274 const unsigned char *in, size_t len)
275 {
276 size_t bl = ctx->cipher->block_size;

278 if (len<bl) return 1;

280 aesni_ecb_encrypt(in,out,len,ctx->cipher_data,ctx->encrypt);

282 return 1;
283 }

285 #define aesni_ofb_cipher aes_ofb_cipher
286 static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
287 const unsigned char *in,size_t len);

289 #define aesni_cfb_cipher aes_cfb_cipher
290 static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
291 const unsigned char *in,size_t len);

293 #define aesni_cfb8_cipher aes_cfb8_cipher
294 static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
295 const unsigned char *in,size_t len);

297 #define aesni_cfb1_cipher aes_cfb1_cipher
298 static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
299 const unsigned char *in,size_t len);

301 #define aesni_ctr_cipher aes_ctr_cipher
302 static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
303 const unsigned char *in, size_t len);

305 static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
306 const unsigned char *iv, int enc)
307 {
308 EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
309 if (!iv && !key)
310 return 1;
311 if (key)
312 {
313 aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks);
314 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
315 (block128_f)aesni_encrypt);
316 gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
317 /* If we have an iv can set it directly, otherwise use
318 * saved IV.
319 */
320 if (iv == NULL && gctx->iv_set)
321 iv = gctx->iv;
322 if (iv)
323 {
324 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
325 gctx->iv_set = 1;

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 6

326 }
327 gctx->key_set = 1;
328 }
329 else
330 {
331 /* If key set use IV, otherwise copy */
332 if (gctx->key_set)
333 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
334 else
335 memcpy(gctx->iv, iv, gctx->ivlen);
336 gctx->iv_set = 1;
337 gctx->iv_gen = 0;
338 }
339 return 1;
340 }

342 #define aesni_gcm_cipher aes_gcm_cipher
343 static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
344 const unsigned char *in, size_t len);

346 static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
347 const unsigned char *iv, int enc)
348 {
349 EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
350 if (!iv && !key)
351 return 1;

353 if (key)
354 {
355 /* key_len is two AES keys */
356 if (enc)
357 {
358 aesni_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1)
359 xctx->xts.block1 = (block128_f)aesni_encrypt;
360 xctx->stream = aesni_xts_encrypt;
361 }
362 else
363 {
364 aesni_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1)
365 xctx->xts.block1 = (block128_f)aesni_decrypt;
366 xctx->stream = aesni_xts_decrypt;
367 }

369 aesni_set_encrypt_key(key + ctx->key_len/2,
370 ctx->key_len * 4, &xctx->ks2);
371 xctx->xts.block2 = (block128_f)aesni_encrypt;

373 xctx->xts.key1 = &xctx->ks1;
374 }

376 if (iv)
377 {
378 xctx->xts.key2 = &xctx->ks2;
379 memcpy(ctx->iv, iv, 16);
380 }

382 return 1;
383 }

385 #define aesni_xts_cipher aes_xts_cipher
386 static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
387 const unsigned char *in, size_t len);

389 static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
390 const unsigned char *iv, int enc)
391 {

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 7

392 EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
393 if (!iv && !key)
394 return 1;
395 if (key)
396 {
397 aesni_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks);
398 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
399 &cctx->ks, (block128_f)aesni_encrypt);
400 cctx->str = enc?(ccm128_f)aesni_ccm64_encrypt_blocks :
401 (ccm128_f)aesni_ccm64_decrypt_blocks;
402 cctx->key_set = 1;
403 }
404 if (iv)
405 {
406 memcpy(ctx->iv, iv, 15 - cctx->L);
407 cctx->iv_set = 1;
408 }
409 return 1;
410 }

412 #define aesni_ccm_cipher aes_ccm_cipher
413 static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
414 const unsigned char *in, size_t len);

416 #define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
417 static const EVP_CIPHER aesni_##keylen##_##mode = { \
418 nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
419 flags|EVP_CIPH_##MODE##_MODE, \
420 aesni_init_key, \
421 aesni_##mode##_cipher, \
422 NULL, \
423 sizeof(EVP_AES_KEY), \
424 NULL,NULL,NULL,NULL }; \
425 static const EVP_CIPHER aes_##keylen##_##mode = { \
426 nid##_##keylen##_##nmode,blocksize, \
427 keylen/8,ivlen, \
428 flags|EVP_CIPH_##MODE##_MODE, \
429 aes_init_key, \
430 aes_##mode##_cipher, \
431 NULL, \
432 sizeof(EVP_AES_KEY), \
433 NULL,NULL,NULL,NULL }; \
434 const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
435 { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }

437 #define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
438 static const EVP_CIPHER aesni_##keylen##_##mode = { \
439 nid##_##keylen##_##mode,blocksize, \
440 (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
441 flags|EVP_CIPH_##MODE##_MODE, \
442 aesni_##mode##_init_key, \
443 aesni_##mode##_cipher, \
444 aes_##mode##_cleanup, \
445 sizeof(EVP_AES_##MODE##_CTX), \
446 NULL,NULL,aes_##mode##_ctrl,NULL }; \
447 static const EVP_CIPHER aes_##keylen##_##mode = { \
448 nid##_##keylen##_##mode,blocksize, \
449 (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
450 flags|EVP_CIPH_##MODE##_MODE, \
451 aes_##mode##_init_key, \
452 aes_##mode##_cipher, \
453 aes_##mode##_cleanup, \
454 sizeof(EVP_AES_##MODE##_CTX), \
455 NULL,NULL,aes_##mode##_ctrl,NULL }; \
456 const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
457 { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 8

459 #else

461 #define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
462 static const EVP_CIPHER aes_##keylen##_##mode = { \
463 nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
464 flags|EVP_CIPH_##MODE##_MODE, \
465 aes_init_key, \
466 aes_##mode##_cipher, \
467 NULL, \
468 sizeof(EVP_AES_KEY), \
469 NULL,NULL,NULL,NULL }; \
470 const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
471 { return &aes_##keylen##_##mode; }

473 #define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
474 static const EVP_CIPHER aes_##keylen##_##mode = { \
475 nid##_##keylen##_##mode,blocksize, \
476 (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
477 flags|EVP_CIPH_##MODE##_MODE, \
478 aes_##mode##_init_key, \
479 aes_##mode##_cipher, \
480 aes_##mode##_cleanup, \
481 sizeof(EVP_AES_##MODE##_CTX), \
482 NULL,NULL,aes_##mode##_ctrl,NULL }; \
483 const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
484 { return &aes_##keylen##_##mode; }
485 #endif

487 #define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \
488 BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DE
489 BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEF
490 BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_
491 BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_
492 BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \
493 BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \
494 BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)

496 static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
497 const unsigned char *iv, int enc)
498 {
499 int ret, mode;
500 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;

502 mode = ctx->cipher->flags & EVP_CIPH_MODE;
503 if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
504 && !enc)
505 #ifdef BSAES_CAPABLE
506 if (BSAES_CAPABLE && mode==EVP_CIPH_CBC_MODE)
507 {
508 ret = AES_set_decrypt_key(key,ctx->key_len*8,&dat->ks);
509 dat->block = (block128_f)AES_decrypt;
510 dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt;
511 }
512 else
513 #endif
514 #ifdef VPAES_CAPABLE
515 if (VPAES_CAPABLE)
516 {
517 ret = vpaes_set_decrypt_key(key,ctx->key_len*8,&dat->ks);
518 dat->block = (block128_f)vpaes_decrypt;
519 dat->stream.cbc = mode==EVP_CIPH_CBC_MODE ?
520 (cbc128_f)vpaes_cbc_encrypt :
521 NULL;
522 }
523 else

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 9

524 #endif
525 {
526 ret = AES_set_decrypt_key(key,ctx->key_len*8,&dat->ks);
527 dat->block = (block128_f)AES_decrypt;
528 dat->stream.cbc = mode==EVP_CIPH_CBC_MODE ?
529 (cbc128_f)AES_cbc_encrypt :
530 NULL;
531 }
532 else
533 #ifdef BSAES_CAPABLE
534 if (BSAES_CAPABLE && mode==EVP_CIPH_CTR_MODE)
535 {
536 ret = AES_set_encrypt_key(key,ctx->key_len*8,&dat->ks);
537 dat->block = (block128_f)AES_encrypt;
538 dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks;
539 }
540 else
541 #endif
542 #ifdef VPAES_CAPABLE
543 if (VPAES_CAPABLE)
544 {
545 ret = vpaes_set_encrypt_key(key,ctx->key_len*8,&dat->ks);
546 dat->block = (block128_f)vpaes_encrypt;
547 dat->stream.cbc = mode==EVP_CIPH_CBC_MODE ?
548 (cbc128_f)vpaes_cbc_encrypt :
549 NULL;
550 }
551 else
552 #endif
553 {
554 ret = AES_set_encrypt_key(key,ctx->key_len*8,&dat->ks);
555 dat->block = (block128_f)AES_encrypt;
556 dat->stream.cbc = mode==EVP_CIPH_CBC_MODE ?
557 (cbc128_f)AES_cbc_encrypt :
558 NULL;
559 #ifdef AES_CTR_ASM
560 if (mode==EVP_CIPH_CTR_MODE)
561 dat->stream.ctr = (ctr128_f)AES_ctr32_encrypt;
562 #endif
563 }

565 if(ret < 0)
566 {
567 EVPerr(EVP_F_AES_INIT_KEY,EVP_R_AES_KEY_SETUP_FAILED);
568 return 0;
569 }

571 return 1;
572 }

574 static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
575 const unsigned char *in, size_t len)
576 {
577 size_t bl = ctx->cipher->block_size;
578 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;

580 if (len<bl) return 1;

582 if (dat->stream.cbc)
583 (*dat->stream.cbc)(in,out,len,&dat->ks,ctx->iv,ctx->encrypt);
584 else if (ctx->encrypt)
585 CRYPTO_cbc128_encrypt(in,out,len,&dat->ks,ctx->iv,dat->block);
586 else
587 CRYPTO_cbc128_encrypt(in,out,len,&dat->ks,ctx->iv,dat->block);

589 return 1;

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 10

590 }

592 static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
593 const unsigned char *in, size_t len)
594 {
595 size_t bl = ctx->cipher->block_size;
596 size_t i;
597 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;

599 if (len<bl) return 1;

601 for (i=0,len-=bl;i<=len;i+=bl)
602 (*dat->block)(in+i,out+i,&dat->ks);

604 return 1;
605 }

607 static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
608 const unsigned char *in,size_t len)
609 {
610 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;

612 CRYPTO_ofb128_encrypt(in,out,len,&dat->ks,
613 ctx->iv,&ctx->num,dat->block);
614 return 1;
615 }

617 static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
618 const unsigned char *in,size_t len)
619 {
620 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;

622 CRYPTO_cfb128_encrypt(in,out,len,&dat->ks,
623 ctx->iv,&ctx->num,ctx->encrypt,dat->block);
624 return 1;
625 }

627 static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
628 const unsigned char *in,size_t len)
629 {
630 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;

632 CRYPTO_cfb128_8_encrypt(in,out,len,&dat->ks,
633 ctx->iv,&ctx->num,ctx->encrypt,dat->block);
634 return 1;
635 }

637 static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx,unsigned char *out,
638 const unsigned char *in,size_t len)
639 {
640 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;

642 if (ctx->flags&EVP_CIPH_FLAG_LENGTH_BITS) {
643 CRYPTO_cfb128_1_encrypt(in,out,len,&dat->ks,
644 ctx->iv,&ctx->num,ctx->encrypt,dat->block);
645 return 1;
646 }

648 while (len>=MAXBITCHUNK) {
649 CRYPTO_cfb128_1_encrypt(in,out,MAXBITCHUNK*8,&dat->ks,
650 ctx->iv,&ctx->num,ctx->encrypt,dat->block);
651 len-=MAXBITCHUNK;
652 }
653 if (len)
654 CRYPTO_cfb128_1_encrypt(in,out,len*8,&dat->ks,
655 ctx->iv,&ctx->num,ctx->encrypt,dat->block);

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 11

656
657 return 1;
658 }

660 static int aes_ctr_cipher (EVP_CIPHER_CTX *ctx, unsigned char *out,
661 const unsigned char *in, size_t len)
662 {
663 unsigned int num = ctx->num;
664 EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;

666 if (dat->stream.ctr)
667 CRYPTO_ctr128_encrypt_ctr32(in,out,len,&dat->ks,
668 ctx->iv,ctx->buf,&num,dat->stream.ctr);
669 else
670 CRYPTO_ctr128_encrypt(in,out,len,&dat->ks,
671 ctx->iv,ctx->buf,&num,dat->block);
672 ctx->num = (size_t)num;
673 return 1;
674 }

676 BLOCK_CIPHER_generic_pack(NID_aes,128,EVP_CIPH_FLAG_FIPS)
677 BLOCK_CIPHER_generic_pack(NID_aes,192,EVP_CIPH_FLAG_FIPS)
678 BLOCK_CIPHER_generic_pack(NID_aes,256,EVP_CIPH_FLAG_FIPS)

680 static int aes_gcm_cleanup(EVP_CIPHER_CTX *c)
681 {
682 EVP_AES_GCM_CTX *gctx = c->cipher_data;
683 OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
684 if (gctx->iv != c->iv)
685 OPENSSL_free(gctx->iv);
686 return 1;
687 }

689 /* increment counter (64-bit int) by 1 */
690 static void ctr64_inc(unsigned char *counter) {
691 int n=8;
692 unsigned char c;

694 do {
695 --n;
696 c = counter[n];
697 ++c;
698 counter[n] = c;
699 if (c) return;
700 } while (n);
701 }

703 static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
704 {
705 EVP_AES_GCM_CTX *gctx = c->cipher_data;
706 switch (type)
707 {
708 case EVP_CTRL_INIT:
709 gctx->key_set = 0;
710 gctx->iv_set = 0;
711 gctx->ivlen = c->cipher->iv_len;
712 gctx->iv = c->iv;
713 gctx->taglen = -1;
714 gctx->iv_gen = 0;
715 gctx->tls_aad_len = -1;
716 return 1;

718 case EVP_CTRL_GCM_SET_IVLEN:
719 if (arg <= 0)
720 return 0;
721 #ifdef OPENSSL_FIPS

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 12

722 if (FIPS_module_mode() && !(c->flags & EVP_CIPH_FLAG_NON_FIPS_AL
723 && arg < 12)
724 return 0;
725 #endif
726 /* Allocate memory for IV if needed */
727 if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen))
728 {
729 if (gctx->iv != c->iv)
730 OPENSSL_free(gctx->iv);
731 gctx->iv = OPENSSL_malloc(arg);
732 if (!gctx->iv)
733 return 0;
734 }
735 gctx->ivlen = arg;
736 return 1;

738 case EVP_CTRL_GCM_SET_TAG:
739 if (arg <= 0 || arg > 16 || c->encrypt)
740 return 0;
741 memcpy(c->buf, ptr, arg);
742 gctx->taglen = arg;
743 return 1;

745 case EVP_CTRL_GCM_GET_TAG:
746 if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0)
747 return 0;
748 memcpy(ptr, c->buf, arg);
749 return 1;

751 case EVP_CTRL_GCM_SET_IV_FIXED:
752 /* Special case: -1 length restores whole IV */
753 if (arg == -1)
754 {
755 memcpy(gctx->iv, ptr, gctx->ivlen);
756 gctx->iv_gen = 1;
757 return 1;
758 }
759 /* Fixed field must be at least 4 bytes and invocation field
760 * at least 8.
761 */
762 if ((arg < 4) || (gctx->ivlen - arg) < 8)
763 return 0;
764 if (arg)
765 memcpy(gctx->iv, ptr, arg);
766 if (c->encrypt &&
767 RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
768 return 0;
769 gctx->iv_gen = 1;
770 return 1;

772 case EVP_CTRL_GCM_IV_GEN:
773 if (gctx->iv_gen == 0 || gctx->key_set == 0)
774 return 0;
775 CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
776 if (arg <= 0 || arg > gctx->ivlen)
777 arg = gctx->ivlen;
778 memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
779 /* Invocation field will be at least 8 bytes in size and
780 * so no need to check wrap around or increment more than
781 * last 8 bytes.
782 */
783 ctr64_inc(gctx->iv + gctx->ivlen - 8);
784 gctx->iv_set = 1;
785 return 1;

787 case EVP_CTRL_GCM_SET_IV_INV:

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 13

788 if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
789 return 0;
790 memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
791 CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
792 gctx->iv_set = 1;
793 return 1;

795 case EVP_CTRL_AEAD_TLS1_AAD:
796 /* Save the AAD for later use */
797 if (arg != 13)
798 return 0;
799 memcpy(c->buf, ptr, arg);
800 gctx->tls_aad_len = arg;
801 {
802 unsigned int len=c->buf[arg-2]<<8|c->buf[arg-1];
803 /* Correct length for explicit IV */
804 len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
805 /* If decrypting correct for tag too */
806 if (!c->encrypt)
807 len -= EVP_GCM_TLS_TAG_LEN;
808 c->buf[arg-2] = len>>8;
809 c->buf[arg-1] = len & 0xff;
810 }
811 /* Extra padding: tag appended to record */
812 return EVP_GCM_TLS_TAG_LEN;

814 default:
815 return -1;

817 }
818 }

820 static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
821 const unsigned char *iv, int enc)
822 {
823 EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
824 if (!iv && !key)
825 return 1;
826 if (key)
827 { do {
828 #ifdef BSAES_CAPABLE
829 if (BSAES_CAPABLE)
830 {
831 AES_set_encrypt_key(key,ctx->key_len*8,&gctx->ks);
832 CRYPTO_gcm128_init(&gctx->gcm,&gctx->ks,
833 (block128_f)AES_encrypt);
834 gctx->ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks;
835 break;
836 }
837 else
838 #endif
839 #ifdef VPAES_CAPABLE
840 if (VPAES_CAPABLE)
841 {
842 vpaes_set_encrypt_key(key,ctx->key_len*8,&gctx->ks);
843 CRYPTO_gcm128_init(&gctx->gcm,&gctx->ks,
844 (block128_f)vpaes_encrypt);
845 gctx->ctr = NULL;
846 break;
847 }
848 else
849 #endif
850 (void)0; /* terminate potentially open ’else’ */

852 AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks);
853 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)AES_encryp

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 14

854 #ifdef AES_CTR_ASM
855 gctx->ctr = (ctr128_f)AES_ctr32_encrypt;
856 #else
857 gctx->ctr = NULL;
858 #endif
859 } while (0);

861 /* If we have an iv can set it directly, otherwise use
862 * saved IV.
863 */
864 if (iv == NULL && gctx->iv_set)
865 iv = gctx->iv;
866 if (iv)
867 {
868 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
869 gctx->iv_set = 1;
870 }
871 gctx->key_set = 1;
872 }
873 else
874 {
875 /* If key set use IV, otherwise copy */
876 if (gctx->key_set)
877 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
878 else
879 memcpy(gctx->iv, iv, gctx->ivlen);
880 gctx->iv_set = 1;
881 gctx->iv_gen = 0;
882 }
883 return 1;
884 }

886 /* Handle TLS GCM packet format. This consists of the last portion of the IV
887 * followed by the payload and finally the tag. On encrypt generate IV,
888 * encrypt payload and write the tag. On verify retrieve IV, decrypt payload
889 * and verify tag.
890 */

892 static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
893 const unsigned char *in, size_t len)
894 {
895 EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
896 int rv = -1;
897 /* Encrypt/decrypt must be performed in place */
898 if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN+EVP_GCM_TLS_TAG_LEN)
899 return -1;
900 /* Set IV from start of buffer or generate IV and write to start
901 * of buffer.
902 */
903 if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ?
904 EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV,
905 EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
906 goto err;
907 /* Use saved AAD */
908 if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
909 goto err;
910 /* Fix buffer and length to point to payload */
911 in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
912 out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
913 len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
914 if (ctx->encrypt)
915 {
916 /* Encrypt payload */
917 if (gctx->ctr)
918 {
919 if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 15

920 in, out, len,
921 gctx->ctr))
922 goto err;
923 }
924 else {
925 if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, len))
926 goto err;
927 }
928 out += len;
929 /* Finally write tag */
930 CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
931 rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
932 }
933 else
934 {
935 /* Decrypt */
936 if (gctx->ctr)
937 {
938 if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
939 in, out, len,
940 gctx->ctr))
941 goto err;
942 }
943 else {
944 if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, len))
945 goto err;
946 }
947 /* Retrieve tag */
948 CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf,
949 EVP_GCM_TLS_TAG_LEN);
950 /* If tag mismatch wipe buffer */
951 if (memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN))
952 {
953 OPENSSL_cleanse(out, len);
954 goto err;
955 }
956 rv = len;
957 }

959 err:
960 gctx->iv_set = 0;
961 gctx->tls_aad_len = -1;
962 return rv;
963 }

965 static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
966 const unsigned char *in, size_t len)
967 {
968 EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
969 /* If not set up, return error */
970 if (!gctx->key_set)
971 return -1;

973 if (gctx->tls_aad_len >= 0)
974 return aes_gcm_tls_cipher(ctx, out, in, len);

976 if (!gctx->iv_set)
977 return -1;
978 if (in)
979 {
980 if (out == NULL)
981 {
982 if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
983 return -1;
984 }
985 else if (ctx->encrypt)

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 16

986 {
987 if (gctx->ctr)
988 {
989 if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
990 in, out, len,
991 gctx->ctr))
992 return -1;
993 }
994 else {
995 if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, l
996 return -1;
997 }
998 }
999 else

1000 {
1001 if (gctx->ctr)
1002 {
1003 if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
1004 in, out, len,
1005 gctx->ctr))
1006 return -1;
1007 }
1008 else {
1009 if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, l
1010 return -1;
1011 }
1012 }
1013 return len;
1014 }
1015 else
1016 {
1017 if (!ctx->encrypt)
1018 {
1019 if (gctx->taglen < 0)
1020 return -1;
1021 if (CRYPTO_gcm128_finish(&gctx->gcm,
1022 ctx->buf, gctx->taglen) != 0)
1023 return -1;
1024 gctx->iv_set = 0;
1025 return 0;
1026 }
1027 CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
1028 gctx->taglen = 16;
1029 /* Don’t reuse the IV */
1030 gctx->iv_set = 0;
1031 return 0;
1032 }

1034 }

1036 #define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \
1037 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
1038 | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT)

1040 BLOCK_CIPHER_custom(NID_aes,128,1,12,gcm,GCM,
1041 EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS)
1042 BLOCK_CIPHER_custom(NID_aes,192,1,12,gcm,GCM,
1043 EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS)
1044 BLOCK_CIPHER_custom(NID_aes,256,1,12,gcm,GCM,
1045 EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS)

1047 static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
1048 {
1049 EVP_AES_XTS_CTX *xctx = c->cipher_data;
1050 if (type != EVP_CTRL_INIT)
1051 return -1;

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 17

1052 /* key1 and key2 are used as an indicator both key and IV are set */
1053 xctx->xts.key1 = NULL;
1054 xctx->xts.key2 = NULL;
1055 return 1;
1056 }

1058 static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
1059 const unsigned char *iv, int enc)
1060 {
1061 EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
1062 if (!iv && !key)
1063 return 1;

1065 if (key) do
1066 {
1067 #ifdef AES_XTS_ASM
1068 xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
1069 #else
1070 xctx->stream = NULL;
1071 #endif
1072 /* key_len is two AES keys */
1073 #ifdef BSAES_CAPABLE
1074 if (BSAES_CAPABLE)
1075 xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decry
1076 else
1077 #endif
1078 #ifdef VPAES_CAPABLE
1079 if (VPAES_CAPABLE)
1080 {
1081 if (enc)
1082 {
1083 vpaes_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1)
1084 xctx->xts.block1 = (block128_f)vpaes_encrypt;
1085 }
1086 else
1087 {
1088 vpaes_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1)
1089 xctx->xts.block1 = (block128_f)vpaes_decrypt;
1090 }

1092 vpaes_set_encrypt_key(key + ctx->key_len/2,
1093 ctx->key_len * 4, &xctx->ks2);
1094 xctx->xts.block2 = (block128_f)vpaes_encrypt;

1096 xctx->xts.key1 = &xctx->ks1;
1097 break;
1098 }
1099 else
1100 #endif
1101 (void)0; /* terminate potentially open ’else’ */

1103 if (enc)
1104 {
1105 AES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1);
1106 xctx->xts.block1 = (block128_f)AES_encrypt;
1107 }
1108 else
1109 {
1110 AES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1);
1111 xctx->xts.block1 = (block128_f)AES_decrypt;
1112 }

1114 AES_set_encrypt_key(key + ctx->key_len/2,
1115 ctx->key_len * 4, &xctx->ks2);
1116 xctx->xts.block2 = (block128_f)AES_encrypt;

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 18

1118 xctx->xts.key1 = &xctx->ks1;
1119 } while (0);

1121 if (iv)
1122 {
1123 xctx->xts.key2 = &xctx->ks2;
1124 memcpy(ctx->iv, iv, 16);
1125 }

1127 return 1;
1128 }

1130 static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1131 const unsigned char *in, size_t len)
1132 {
1133 EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
1134 if (!xctx->xts.key1 || !xctx->xts.key2)
1135 return 0;
1136 if (!out || !in || len<AES_BLOCK_SIZE)
1137 return 0;
1138 #ifdef OPENSSL_FIPS
1139 /* Requirement of SP800-38E */
1140 if (FIPS_module_mode() && !(ctx->flags & EVP_CIPH_FLAG_NON_FIPS_ALLOW) &
1141 (len > (1UL<<20)*16))
1142 {
1143 EVPerr(EVP_F_AES_XTS_CIPHER, EVP_R_TOO_LARGE);
1144 return 0;
1145 }
1146 #endif
1147 if (xctx->stream)
1148 (*xctx->stream)(in, out, len,
1149 xctx->xts.key1, xctx->xts.key2, ctx->iv);
1150 else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len,
1151 ctx->encrypt))
1152 return 0;
1153 return 1;
1154 }

1156 #define aes_xts_cleanup NULL

1158 #define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \
1159 | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT)

1161 BLOCK_CIPHER_custom(NID_aes,128,1,16,xts,XTS,EVP_CIPH_FLAG_FIPS|XTS_FLAGS)
1162 BLOCK_CIPHER_custom(NID_aes,256,1,16,xts,XTS,EVP_CIPH_FLAG_FIPS|XTS_FLAGS)

1164 static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
1165 {
1166 EVP_AES_CCM_CTX *cctx = c->cipher_data;
1167 switch (type)
1168 {
1169 case EVP_CTRL_INIT:
1170 cctx->key_set = 0;
1171 cctx->iv_set = 0;
1172 cctx->L = 8;
1173 cctx->M = 12;
1174 cctx->tag_set = 0;
1175 cctx->len_set = 0;
1176 return 1;

1178 case EVP_CTRL_CCM_SET_IVLEN:
1179 arg = 15 - arg;
1180 case EVP_CTRL_CCM_SET_L:
1181 if (arg < 2 || arg > 8)
1182 return 0;
1183 cctx->L = arg;

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 19

1184 return 1;

1186 case EVP_CTRL_CCM_SET_TAG:
1187 if ((arg & 1) || arg < 4 || arg > 16)
1188 return 0;
1189 if ((c->encrypt && ptr) || (!c->encrypt && !ptr))
1190 return 0;
1191 if (ptr)
1192 {
1193 cctx->tag_set = 1;
1194 memcpy(c->buf, ptr, arg);
1195 }
1196 cctx->M = arg;
1197 return 1;

1199 case EVP_CTRL_CCM_GET_TAG:
1200 if (!c->encrypt || !cctx->tag_set)
1201 return 0;
1202 if(!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
1203 return 0;
1204 cctx->tag_set = 0;
1205 cctx->iv_set = 0;
1206 cctx->len_set = 0;
1207 return 1;

1209 default:
1210 return -1;

1212 }
1213 }

1215 static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
1216 const unsigned char *iv, int enc)
1217 {
1218 EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
1219 if (!iv && !key)
1220 return 1;
1221 if (key) do
1222 {
1223 #ifdef VPAES_CAPABLE
1224 if (VPAES_CAPABLE)
1225 {
1226 vpaes_set_encrypt_key(key, ctx->key_len*8, &cctx->ks);
1227 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
1228 &cctx->ks, (block128_f)vpaes_encrypt);
1229 cctx->str = NULL;
1230 cctx->key_set = 1;
1231 break;
1232 }
1233 #endif
1234 AES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks);
1235 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
1236 &cctx->ks, (block128_f)AES_encrypt);
1237 cctx->str = NULL;
1238 cctx->key_set = 1;
1239 } while (0);
1240 if (iv)
1241 {
1242 memcpy(ctx->iv, iv, 15 - cctx->L);
1243 cctx->iv_set = 1;
1244 }
1245 return 1;
1246 }

1248 static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1249 const unsigned char *in, size_t len)

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 20

1250 {
1251 EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
1252 CCM128_CONTEXT *ccm = &cctx->ccm;
1253 /* If not set up, return error */
1254 if (!cctx->iv_set && !cctx->key_set)
1255 return -1;
1256 if (!ctx->encrypt && !cctx->tag_set)
1257 return -1;
1258 if (!out)
1259 {
1260 if (!in)
1261 {
1262 if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L,len))
1263 return -1;
1264 cctx->len_set = 1;
1265 return len;
1266 }
1267 /* If have AAD need message length */
1268 if (!cctx->len_set && len)
1269 return -1;
1270 CRYPTO_ccm128_aad(ccm, in, len);
1271 return len;
1272 }
1273 /* EVP_*Final() doesn’t return any data */
1274 if (!in)
1275 return 0;
1276 /* If not set length yet do it */
1277 if (!cctx->len_set)
1278 {
1279 if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len))
1280 return -1;
1281 cctx->len_set = 1;
1282 }
1283 if (ctx->encrypt)
1284 {
1285 if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
1286 cctx->str) :
1287 CRYPTO_ccm128_encrypt(ccm, in, out, len))
1288 return -1;
1289 cctx->tag_set = 1;
1290 return len;
1291 }
1292 else
1293 {
1294 int rv = -1;
1295 if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
1296 cctx->str) :
1297 !CRYPTO_ccm128_decrypt(ccm, in, out, len))
1298 {
1299 unsigned char tag[16];
1300 if (CRYPTO_ccm128_tag(ccm, tag, cctx->M))
1301 {
1302 if (!memcmp(tag, ctx->buf, cctx->M))
1303 rv = len;
1304 }
1305 }
1306 if (rv == -1)
1307 OPENSSL_cleanse(out, len);
1308 cctx->iv_set = 0;
1309 cctx->tag_set = 0;
1310 cctx->len_set = 0;
1311 return rv;
1312 }

1314 }

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes.c 21

1316 #define aes_ccm_cleanup NULL

1318 BLOCK_CIPHER_custom(NID_aes,128,1,12,ccm,CCM,EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS)
1319 BLOCK_CIPHER_custom(NID_aes,192,1,12,ccm,CCM,EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS)
1320 BLOCK_CIPHER_custom(NID_aes,256,1,12,ccm,CCM,EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS)

1322 #endif
1323 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes_cbc_hmac_sha1.c 1

**
 15525 Fri May 30 18:31:50 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes_cbc_hmac_sha1.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2011-2013 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 */

50 #include <openssl/opensslconf.h>

52 #include <stdio.h>
53 #include <string.h>

55 #if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA1)

57 #include <openssl/evp.h>
58 #include <openssl/objects.h>
59 #include <openssl/aes.h>
60 #include <openssl/sha.h>
61 #include "evp_locl.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes_cbc_hmac_sha1.c 2

63 #ifndef EVP_CIPH_FLAG_AEAD_CIPHER
64 #define EVP_CIPH_FLAG_AEAD_CIPHER 0x200000
65 #define EVP_CTRL_AEAD_TLS1_AAD 0x16
66 #define EVP_CTRL_AEAD_SET_MAC_KEY 0x17
67 #endif

69 #if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1)
70 #define EVP_CIPH_FLAG_DEFAULT_ASN1 0
71 #endif

73 #define TLS1_1_VERSION 0x0302

75 typedef struct
76 {
77 AES_KEY ks;
78 SHA_CTX head,tail,md;
79 size_t payload_length; /* AAD length in decrypt case */
80 union {
81 unsigned int tls_ver;
82 unsigned char tls_aad[16]; /* 13 used */
83 } aux;
84 } EVP_AES_HMAC_SHA1;

86 #define NO_PAYLOAD_LENGTH ((size_t)-1)

88 #if defined(AES_ASM) && (\
89 defined(__x86_64) || defined(__x86_64__) || \
90 defined(_M_AMD64) || defined(_M_X64) || \
91 defined(__INTEL__))

93 #if defined(__GNUC__) && __GNUC__>=2 && !defined(PEDANTIC)
94 # define BSWAP(x) ({ unsigned int r=(x); __asm__ ("bswapl %0":"=r"(r):"0"(r)); r
95 #endif

97 extern unsigned int OPENSSL_ia32cap_P[2];
98 #define AESNI_CAPABLE (1<<(57-32))

100 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
101 AES_KEY *key);
102 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
103 AES_KEY *key);

105 void aesni_cbc_encrypt(const unsigned char *in,
106 unsigned char *out,
107 size_t length,
108 const AES_KEY *key,
109 unsigned char *ivec, int enc);

111 void aesni_cbc_sha1_enc (const void *inp, void *out, size_t blocks,
112 const AES_KEY *key, unsigned char iv[16],
113 SHA_CTX *ctx,const void *in0);

115 #define data(ctx) ((EVP_AES_HMAC_SHA1 *)(ctx)->cipher_data)

117 static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
118 const unsigned char *inkey,
119 const unsigned char *iv, int enc)
120 {
121 EVP_AES_HMAC_SHA1 *key = data(ctx);
122 int ret;

124 if (enc)
125 ret=aesni_set_encrypt_key(inkey,ctx->key_len*8,&key->ks);
126 else
127 ret=aesni_set_decrypt_key(inkey,ctx->key_len*8,&key->ks);

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes_cbc_hmac_sha1.c 3

129 SHA1_Init(&key->head); /* handy when benchmarking */
130 key->tail = key->head;
131 key->md = key->head;

133 key->payload_length = NO_PAYLOAD_LENGTH;

135 return ret<0?0:1;
136 }

138 #define STITCHED_CALL

140 #if !defined(STITCHED_CALL)
141 #define aes_off 0
142 #endif

144 void sha1_block_data_order (void *c,const void *p,size_t len);

146 static void sha1_update(SHA_CTX *c,const void *data,size_t len)
147 { const unsigned char *ptr = data;
148 size_t res;

150 if ((res = c->num)) {
151 res = SHA_CBLOCK-res;
152 if (len<res) res=len;
153 SHA1_Update (c,ptr,res);
154 ptr += res;
155 len -= res;
156 }

158 res = len % SHA_CBLOCK;
159 len -= res;

161 if (len) {
162 sha1_block_data_order(c,ptr,len/SHA_CBLOCK);

164 ptr += len;
165 c->Nh += len>>29;
166 c->Nl += len<<=3;
167 if (c->Nl<(unsigned int)len) c->Nh++;
168 }

170 if (res)
171 SHA1_Update(c,ptr,res);
172 }

174 #ifdef SHA1_Update
175 #undef SHA1_Update
176 #endif
177 #define SHA1_Update sha1_update

179 static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
180 const unsigned char *in, size_t len)
181 {
182 EVP_AES_HMAC_SHA1 *key = data(ctx);
183 unsigned int l;
184 size_t plen = key->payload_length,
185 iv = 0, /* explicit IV in TLS 1.1 and later */
186 sha_off = 0;
187 #if defined(STITCHED_CALL)
188 size_t aes_off = 0,
189 blocks;

191 sha_off = SHA_CBLOCK-key->md.num;
192 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes_cbc_hmac_sha1.c 4

194 key->payload_length = NO_PAYLOAD_LENGTH;

196 if (len%AES_BLOCK_SIZE) return 0;

198 if (ctx->encrypt) {
199 if (plen==NO_PAYLOAD_LENGTH)
200 plen = len;
201 else if (len!=((plen+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AES_BLOC
202 return 0;
203 else if (key->aux.tls_ver >= TLS1_1_VERSION)
204 iv = AES_BLOCK_SIZE;

206 #if defined(STITCHED_CALL)
207 if (plen>(sha_off+iv) && (blocks=(plen-(sha_off+iv))/SHA_CBLOCK)
208 SHA1_Update(&key->md,in+iv,sha_off);

210 aesni_cbc_sha1_enc(in,out,blocks,&key->ks,
211 ctx->iv,&key->md,in+iv+sha_off);
212 blocks *= SHA_CBLOCK;
213 aes_off += blocks;
214 sha_off += blocks;
215 key->md.Nh += blocks>>29;
216 key->md.Nl += blocks<<=3;
217 if (key->md.Nl<(unsigned int)blocks) key->md.Nh++;
218 } else {
219 sha_off = 0;
220 }
221 #endif
222 sha_off += iv;
223 SHA1_Update(&key->md,in+sha_off,plen-sha_off);

225 if (plen!=len) { /* "TLS" mode of operation */
226 if (in!=out)
227 memcpy(out+aes_off,in+aes_off,plen-aes_off);

229 /* calculate HMAC and append it to payload */
230 SHA1_Final(out+plen,&key->md);
231 key->md = key->tail;
232 SHA1_Update(&key->md,out+plen,SHA_DIGEST_LENGTH);
233 SHA1_Final(out+plen,&key->md);

235 /* pad the payload|hmac */
236 plen += SHA_DIGEST_LENGTH;
237 for (l=len-plen-1;plen<len;plen++) out[plen]=l;
238 /* encrypt HMAC|padding at once */
239 aesni_cbc_encrypt(out+aes_off,out+aes_off,len-aes_off,
240 &key->ks,ctx->iv,1);
241 } else {
242 aesni_cbc_encrypt(in+aes_off,out+aes_off,len-aes_off,
243 &key->ks,ctx->iv,1);
244 }
245 } else {
246 union { unsigned int u[SHA_DIGEST_LENGTH/sizeof(unsigned int)];
247 unsigned char c[32+SHA_DIGEST_LENGTH]; } mac, *pmac;

249 /* arrange cache line alignment */
250 pmac = (void *)(((size_t)mac.c+31)&((size_t)0-32));

252 /* decrypt HMAC|padding at once */
253 aesni_cbc_encrypt(in,out,len,
254 &key->ks,ctx->iv,0);

256 if (plen) { /* "TLS" mode of operation */
257 size_t inp_len, mask, j, i;
258 unsigned int res, maxpad, pad, bitlen;
259 int ret = 1;

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes_cbc_hmac_sha1.c 5

260 union { unsigned int u[SHA_LBLOCK];
261 unsigned char c[SHA_CBLOCK]; }
262 *data = (void *)key->md.data;

264 if ((key->aux.tls_aad[plen-4]<<8|key->aux.tls_aad[plen-3
265 >= TLS1_1_VERSION)
266 iv = AES_BLOCK_SIZE;

268 if (len<(iv+SHA_DIGEST_LENGTH+1))
269 return 0;

271 /* omit explicit iv */
272 out += iv;
273 len -= iv;

275 /* figure out payload length */
276 pad = out[len-1];
277 maxpad = len-(SHA_DIGEST_LENGTH+1);
278 maxpad |= (255-maxpad)>>(sizeof(maxpad)*8-8);
279 maxpad &= 255;

281 inp_len = len - (SHA_DIGEST_LENGTH+pad+1);
282 mask = (0-((inp_len-len)>>(sizeof(inp_len)*8-1)));
283 inp_len &= mask;
284 ret &= (int)mask;

286 key->aux.tls_aad[plen-2] = inp_len>>8;
287 key->aux.tls_aad[plen-1] = inp_len;

289 /* calculate HMAC */
290 key->md = key->head;
291 SHA1_Update(&key->md,key->aux.tls_aad,plen);

293 #if 1
294 len -= SHA_DIGEST_LENGTH; /* amend mac */
295 if (len>=(256+SHA_CBLOCK)) {
296 j = (len-(256+SHA_CBLOCK))&(0-SHA_CBLOCK);
297 j += SHA_CBLOCK-key->md.num;
298 SHA1_Update(&key->md,out,j);
299 out += j;
300 len -= j;
301 inp_len -= j;
302 }

304 /* but pretend as if we hashed padded payload */
305 bitlen = key->md.Nl+(inp_len<<3); /* at most 18 bi
306 #ifdef BSWAP
307 bitlen = BSWAP(bitlen);
308 #else
309 mac.c[0] = 0;
310 mac.c[1] = (unsigned char)(bitlen>>16);
311 mac.c[2] = (unsigned char)(bitlen>>8);
312 mac.c[3] = (unsigned char)bitlen;
313 bitlen = mac.u[0];
314 #endif

316 pmac->u[0]=0;
317 pmac->u[1]=0;
318 pmac->u[2]=0;
319 pmac->u[3]=0;
320 pmac->u[4]=0;

322 for (res=key->md.num, j=0;j<len;j++) {
323 size_t c = out[j];
324 mask = (j-inp_len)>>(sizeof(j)*8-8);
325 c &= mask;

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes_cbc_hmac_sha1.c 6

326 c |= 0x80&~mask&~((inp_len-j)>>(sizeof(j)*8-8));
327 data->c[res++]=(unsigned char)c;

329 if (res!=SHA_CBLOCK) continue;

331 /* j is not incremented yet */
332 mask = 0-((inp_len+7-j)>>(sizeof(j)*8-1));
333 data->u[SHA_LBLOCK-1] |= bitlen&mask;
334 sha1_block_data_order(&key->md,data,1);
335 mask &= 0-((j-inp_len-72)>>(sizeof(j)*8-1));
336 pmac->u[0] |= key->md.h0 & mask;
337 pmac->u[1] |= key->md.h1 & mask;
338 pmac->u[2] |= key->md.h2 & mask;
339 pmac->u[3] |= key->md.h3 & mask;
340 pmac->u[4] |= key->md.h4 & mask;
341 res=0;
342 }

344 for(i=res;i<SHA_CBLOCK;i++,j++) data->c[i]=0;

346 if (res>SHA_CBLOCK-8) {
347 mask = 0-((inp_len+8-j)>>(sizeof(j)*8-1));
348 data->u[SHA_LBLOCK-1] |= bitlen&mask;
349 sha1_block_data_order(&key->md,data,1);
350 mask &= 0-((j-inp_len-73)>>(sizeof(j)*8-1));
351 pmac->u[0] |= key->md.h0 & mask;
352 pmac->u[1] |= key->md.h1 & mask;
353 pmac->u[2] |= key->md.h2 & mask;
354 pmac->u[3] |= key->md.h3 & mask;
355 pmac->u[4] |= key->md.h4 & mask;

357 memset(data,0,SHA_CBLOCK);
358 j+=64;
359 }
360 data->u[SHA_LBLOCK-1] = bitlen;
361 sha1_block_data_order(&key->md,data,1);
362 mask = 0-((j-inp_len-73)>>(sizeof(j)*8-1));
363 pmac->u[0] |= key->md.h0 & mask;
364 pmac->u[1] |= key->md.h1 & mask;
365 pmac->u[2] |= key->md.h2 & mask;
366 pmac->u[3] |= key->md.h3 & mask;
367 pmac->u[4] |= key->md.h4 & mask;

369 #ifdef BSWAP
370 pmac->u[0] = BSWAP(pmac->u[0]);
371 pmac->u[1] = BSWAP(pmac->u[1]);
372 pmac->u[2] = BSWAP(pmac->u[2]);
373 pmac->u[3] = BSWAP(pmac->u[3]);
374 pmac->u[4] = BSWAP(pmac->u[4]);
375 #else
376 for (i=0;i<5;i++) {
377 res = pmac->u[i];
378 pmac->c[4*i+0]=(unsigned char)(res>>24);
379 pmac->c[4*i+1]=(unsigned char)(res>>16);
380 pmac->c[4*i+2]=(unsigned char)(res>>8);
381 pmac->c[4*i+3]=(unsigned char)res;
382 }
383 #endif
384 len += SHA_DIGEST_LENGTH;
385 #else
386 SHA1_Update(&key->md,out,inp_len);
387 res = key->md.num;
388 SHA1_Final(pmac->c,&key->md);

390 {
391 unsigned int inp_blocks, pad_blocks;

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes_cbc_hmac_sha1.c 7

393 /* but pretend as if we hashed padded payload */
394 inp_blocks = 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1));
395 res += (unsigned int)(len-inp_len);
396 pad_blocks = res / SHA_CBLOCK;
397 res %= SHA_CBLOCK;
398 pad_blocks += 1+((SHA_CBLOCK-9-res)>>(sizeof(res)*8-1));
399 for (;inp_blocks<pad_blocks;inp_blocks++)
400 sha1_block_data_order(&key->md,data,1);
401 }
402 #endif
403 key->md = key->tail;
404 SHA1_Update(&key->md,pmac->c,SHA_DIGEST_LENGTH);
405 SHA1_Final(pmac->c,&key->md);

407 /* verify HMAC */
408 out += inp_len;
409 len -= inp_len;
410 #if 1
411 {
412 unsigned char *p = out+len-1-maxpad-SHA_DIGEST_LENGTH;
413 size_t off = out-p;
414 unsigned int c, cmask;

416 maxpad += SHA_DIGEST_LENGTH;
417 for (res=0,i=0,j=0;j<maxpad;j++) {
418 c = p[j];
419 cmask = ((int)(j-off-SHA_DIGEST_LENGTH))>>(sizeo
420 res |= (c^pad)&~cmask; /* ... and padding */
421 cmask &= ((int)(off-1-j))>>(sizeof(int)*8-1);
422 res |= (c^pmac->c[i])&cmask;
423 i += 1&cmask;
424 }
425 maxpad -= SHA_DIGEST_LENGTH;

427 res = 0-((0-res)>>(sizeof(res)*8-1));
428 ret &= (int)~res;
429 }
430 #else
431 for (res=0,i=0;i<SHA_DIGEST_LENGTH;i++)
432 res |= out[i]^pmac->c[i];
433 res = 0-((0-res)>>(sizeof(res)*8-1));
434 ret &= (int)~res;

436 /* verify padding */
437 pad = (pad&~res) | (maxpad&res);
438 out = out+len-1-pad;
439 for (res=0,i=0;i<pad;i++)
440 res |= out[i]^pad;

442 res = (0-res)>>(sizeof(res)*8-1);
443 ret &= (int)~res;
444 #endif
445 return ret;
446 } else {
447 SHA1_Update(&key->md,out,len);
448 }
449 }

451 return 1;
452 }

454 static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void
455 {
456 EVP_AES_HMAC_SHA1 *key = data(ctx);

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes_cbc_hmac_sha1.c 8

458 switch (type)
459 {
460 case EVP_CTRL_AEAD_SET_MAC_KEY:
461 {
462 unsigned int i;
463 unsigned char hmac_key[64];

465 memset (hmac_key,0,sizeof(hmac_key));

467 if (arg > (int)sizeof(hmac_key)) {
468 SHA1_Init(&key->head);
469 SHA1_Update(&key->head,ptr,arg);
470 SHA1_Final(hmac_key,&key->head);
471 } else {
472 memcpy(hmac_key,ptr,arg);
473 }

475 for (i=0;i<sizeof(hmac_key);i++)
476 hmac_key[i] ^= 0x36; /* ipad */
477 SHA1_Init(&key->head);
478 SHA1_Update(&key->head,hmac_key,sizeof(hmac_key));

480 for (i=0;i<sizeof(hmac_key);i++)
481 hmac_key[i] ^= 0x36^0x5c; /* opad */
482 SHA1_Init(&key->tail);
483 SHA1_Update(&key->tail,hmac_key,sizeof(hmac_key));

485 OPENSSL_cleanse(hmac_key,sizeof(hmac_key));

487 return 1;
488 }
489 case EVP_CTRL_AEAD_TLS1_AAD:
490 {
491 unsigned char *p=ptr;
492 unsigned int len=p[arg-2]<<8|p[arg-1];

494 if (ctx->encrypt)
495 {
496 key->payload_length = len;
497 if ((key->aux.tls_ver=p[arg-4]<<8|p[arg-3]) >= TLS1_1_VE
498 len -= AES_BLOCK_SIZE;
499 p[arg-2] = len>>8;
500 p[arg-1] = len;
501 }
502 key->md = key->head;
503 SHA1_Update(&key->md,p,arg);

505 return (int)(((len+SHA_DIGEST_LENGTH+AES_BLOCK_SIZE)&-AE
506 - len);
507 }
508 else
509 {
510 if (arg>13) arg = 13;
511 memcpy(key->aux.tls_aad,ptr,arg);
512 key->payload_length = arg;

514 return SHA_DIGEST_LENGTH;
515 }
516 }
517 default:
518 return -1;
519 }
520 }

522 static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher =
523 {

new/usr/src/lib/openssl/libsunw_crypto/evp/e_aes_cbc_hmac_sha1.c 9

524 #ifdef NID_aes_128_cbc_hmac_sha1
525 NID_aes_128_cbc_hmac_sha1,
526 #else
527 NID_undef,
528 #endif
529 16,16,16,
530 EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|EVP_CIPH_FLAG_AEAD_CIPHER,
531 aesni_cbc_hmac_sha1_init_key,
532 aesni_cbc_hmac_sha1_cipher,
533 NULL,
534 sizeof(EVP_AES_HMAC_SHA1),
535 EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv,
536 EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv,
537 aesni_cbc_hmac_sha1_ctrl,
538 NULL
539 };

541 static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher =
542 {
543 #ifdef NID_aes_256_cbc_hmac_sha1
544 NID_aes_256_cbc_hmac_sha1,
545 #else
546 NID_undef,
547 #endif
548 16,32,16,
549 EVP_CIPH_CBC_MODE|EVP_CIPH_FLAG_DEFAULT_ASN1|EVP_CIPH_FLAG_AEAD_CIPHER,
550 aesni_cbc_hmac_sha1_init_key,
551 aesni_cbc_hmac_sha1_cipher,
552 NULL,
553 sizeof(EVP_AES_HMAC_SHA1),
554 EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_set_asn1_iv,
555 EVP_CIPH_FLAG_DEFAULT_ASN1?NULL:EVP_CIPHER_get_asn1_iv,
556 aesni_cbc_hmac_sha1_ctrl,
557 NULL
558 };

560 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
561 {
562 return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE?
563 &aesni_128_cbc_hmac_sha1_cipher:NULL);
564 }

566 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
567 {
568 return(OPENSSL_ia32cap_P[1]&AESNI_CAPABLE?
569 &aesni_256_cbc_hmac_sha1_cipher:NULL);
570 }
571 #else
572 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
573 {
574 return NULL;
575 }
576 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
577 {
578 return NULL;
579 }
580 #endif
581 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_bf.c 1

**
 3950 Fri May 30 18:31:50 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_bf.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/e_bf.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #ifndef OPENSSL_NO_BF

new/usr/src/lib/openssl/libsunw_crypto/evp/e_bf.c 2

62 #include <openssl/evp.h>
63 #include "evp_locl.h"
64 #include <openssl/objects.h>
65 #include <openssl/blowfish.h>

67 static int bf_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
68 const unsigned char *iv, int enc);

70 typedef struct
71 {
72 BF_KEY ks;
73 } EVP_BF_KEY;

75 #define data(ctx) EVP_C_DATA(EVP_BF_KEY,ctx)

77 IMPLEMENT_BLOCK_CIPHER(bf, ks, BF, EVP_BF_KEY, NID_bf, 8, 16, 8, 64,
78 EVP_CIPH_VARIABLE_LENGTH, bf_init_key, NULL,
79 EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL)
80
81 static int bf_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
82 const unsigned char *iv, int enc)
83 {
84 BF_set_key(&data(ctx)->ks,EVP_CIPHER_CTX_key_length(ctx),key);
85 return 1;
86 }

88 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_camellia.c 1

**
 4494 Fri May 30 18:31:50 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_camellia.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/e_camellia.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 #include <openssl/opensslconf.h>
57 #ifndef OPENSSL_NO_CAMELLIA
58 #include <openssl/evp.h>
59 #include <openssl/err.h>
60 #include <string.h>
61 #include <assert.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/e_camellia.c 2

62 #include <openssl/camellia.h>
63 #include "evp_locl.h"

65 static int camellia_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
66 const unsigned char *iv, int enc);

68 /* Camellia subkey Structure */
69 typedef struct
70 {
71 CAMELLIA_KEY ks;
72 } EVP_CAMELLIA_KEY;

74 /* Attribute operation for Camellia */
75 #define data(ctx) EVP_C_DATA(EVP_CAMELLIA_KEY,ctx)

77 IMPLEMENT_BLOCK_CIPHER(camellia_128, ks, Camellia, EVP_CAMELLIA_KEY,
78 NID_camellia_128, 16, 16, 16, 128,
79 0, camellia_init_key, NULL,
80 EVP_CIPHER_set_asn1_iv,
81 EVP_CIPHER_get_asn1_iv,
82 NULL)
83 IMPLEMENT_BLOCK_CIPHER(camellia_192, ks, Camellia, EVP_CAMELLIA_KEY,
84 NID_camellia_192, 16, 24, 16, 128,
85 0, camellia_init_key, NULL,
86 EVP_CIPHER_set_asn1_iv,
87 EVP_CIPHER_get_asn1_iv,
88 NULL)
89 IMPLEMENT_BLOCK_CIPHER(camellia_256, ks, Camellia, EVP_CAMELLIA_KEY,
90 NID_camellia_256, 16, 32, 16, 128,
91 0, camellia_init_key, NULL,
92 EVP_CIPHER_set_asn1_iv,
93 EVP_CIPHER_get_asn1_iv,
94 NULL)

96 #define IMPLEMENT_CAMELLIA_CFBR(ksize,cbits) IMPLEMENT_CFBR(camellia,Camellia

98 IMPLEMENT_CAMELLIA_CFBR(128,1)
99 IMPLEMENT_CAMELLIA_CFBR(192,1)
100 IMPLEMENT_CAMELLIA_CFBR(256,1)

102 IMPLEMENT_CAMELLIA_CFBR(128,8)
103 IMPLEMENT_CAMELLIA_CFBR(192,8)
104 IMPLEMENT_CAMELLIA_CFBR(256,8)

108 /* The subkey for Camellia is generated. */
109 static int camellia_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
110 const unsigned char *iv, int enc)
111 {
112 int ret;

114 ret=Camellia_set_key(key, ctx->key_len * 8, ctx->cipher_data);

116 if(ret < 0)
117 {
118 EVPerr(EVP_F_CAMELLIA_INIT_KEY,EVP_R_CAMELLIA_KEY_SETUP_FAILED);
119 return 0;
120 }

122 return 1;
123 }

125 #else

127 # ifdef PEDANTIC

new/usr/src/lib/openssl/libsunw_crypto/evp/e_camellia.c 3

128 static void *dummy=&dummy;
129 # endif

131 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_cast.c 1

**
 3982 Fri May 30 18:31:50 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_cast.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/e_cast.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/e_cast.c 2

62 #ifndef OPENSSL_NO_CAST
63 #include <openssl/evp.h>
64 #include <openssl/objects.h>
65 #include "evp_locl.h"
66 #include <openssl/cast.h>

68 static int cast_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
69 const unsigned char *iv,int enc);

71 typedef struct
72 {
73 CAST_KEY ks;
74 } EVP_CAST_KEY;

76 #define data(ctx) EVP_C_DATA(EVP_CAST_KEY,ctx)

78 IMPLEMENT_BLOCK_CIPHER(cast5, ks, CAST, EVP_CAST_KEY,
79 NID_cast5, 8, CAST_KEY_LENGTH, 8, 64,
80 EVP_CIPH_VARIABLE_LENGTH, cast_init_key, NULL,
81 EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL)
82
83 static int cast_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
84 const unsigned char *iv, int enc)
85 {
86 CAST_set_key(&data(ctx)->ks,EVP_CIPHER_CTX_key_length(ctx),key);
87 return 1;
88 }

90 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_des.c 1

**
 7503 Fri May 30 18:31:51 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_des.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/e_des.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #ifndef OPENSSL_NO_DES

new/usr/src/lib/openssl/libsunw_crypto/evp/e_des.c 2

62 #include <openssl/evp.h>
63 #include <openssl/objects.h>
64 #include "evp_locl.h"
65 #include <openssl/des.h>
66 #include <openssl/rand.h>

68 static int des_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
69 const unsigned char *iv, int enc);
70 static int des_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr);

72 /* Because of various casts and different names can’t use IMPLEMENT_BLOCK_CIPHER

74 static int des_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
75 const unsigned char *in, size_t inl)
76 {
77 BLOCK_CIPHER_ecb_loop()
78 DES_ecb_encrypt((DES_cblock *)(in + i), (DES_cblock *)(out + i),
79 return 1;
80 }

82 static int des_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
83 const unsigned char *in, size_t inl)
84 {
85 while(inl>=EVP_MAXCHUNK)
86 {
87 DES_ofb64_encrypt(in, out, (long)EVP_MAXCHUNK, ctx->cipher_data,
88 (DES_cblock *)ctx->iv, &ctx->num);
89 inl-=EVP_MAXCHUNK;
90 in +=EVP_MAXCHUNK;
91 out+=EVP_MAXCHUNK;
92 }
93 if (inl)
94 DES_ofb64_encrypt(in, out, (long)inl, ctx->cipher_data,
95 (DES_cblock *)ctx->iv, &ctx->num);
96 return 1;
97 }

99 static int des_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
100 const unsigned char *in, size_t inl)
101 {
102 while(inl>=EVP_MAXCHUNK)
103 {
104 DES_ncbc_encrypt(in, out, (long)EVP_MAXCHUNK, ctx->cipher_data,
105 (DES_cblock *)ctx->iv, ctx->encrypt);
106 inl-=EVP_MAXCHUNK;
107 in +=EVP_MAXCHUNK;
108 out+=EVP_MAXCHUNK;
109 }
110 if (inl)
111 DES_ncbc_encrypt(in, out, (long)inl, ctx->cipher_data,
112 (DES_cblock *)ctx->iv, ctx->encrypt);
113 return 1;
114 }

116 static int des_cfb64_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
117 const unsigned char *in, size_t inl)
118 {
119 while(inl>=EVP_MAXCHUNK)
120 {
121 DES_cfb64_encrypt(in,out, (long)EVP_MAXCHUNK, ctx->cipher_data,
122 (DES_cblock *)ctx->iv, &ctx->num, ctx->encrypt);
123 inl-=EVP_MAXCHUNK;
124 in +=EVP_MAXCHUNK;
125 out+=EVP_MAXCHUNK;
126 }
127 if (inl)

new/usr/src/lib/openssl/libsunw_crypto/evp/e_des.c 3

128 DES_cfb64_encrypt(in, out, (long)inl, ctx->cipher_data,
129 (DES_cblock *)ctx->iv, &ctx->num, ctx->encrypt);
130 return 1;
131 }

133 /* Although we have a CFB-r implementation for DES, it doesn’t pack the right
134 way, so wrap it here */
135 static int des_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
136 const unsigned char *in, size_t inl)
137 {
138 size_t n,chunk=EVP_MAXCHUNK/8;
139 unsigned char c[1],d[1];

141 if (inl<chunk) chunk=inl;

143 while (inl && inl>=chunk)
144 {
145 for(n=0 ; n < chunk*8; ++n)
146 {
147 c[0]=(in[n/8]&(1 << (7-n%8))) ? 0x80 : 0;
148 DES_cfb_encrypt(c,d,1,1,ctx->cipher_data,(DES_cblock *)ctx->iv,
149 ctx->encrypt);
150 out[n/8]=(out[n/8]&~(0x80 >> (unsigned int)(n%8))) |
151 ((d[0]&0x80) >> (unsigned int)(n%8));
152 }
153 inl-=chunk;
154 in +=chunk;
155 out+=chunk;
156 if (inl<chunk) chunk=inl;
157 }

159 return 1;
160 }

162 static int des_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
163 const unsigned char *in, size_t inl)
164 {
165 while (inl>=EVP_MAXCHUNK)
166 {
167 DES_cfb_encrypt(in,out,8,(long)EVP_MAXCHUNK,ctx->cipher_data,
168 (DES_cblock *)ctx->iv,ctx->encrypt);
169 inl-=EVP_MAXCHUNK;
170 in +=EVP_MAXCHUNK;
171 out+=EVP_MAXCHUNK;
172 }
173 if (inl)
174 DES_cfb_encrypt(in,out,8,(long)inl,ctx->cipher_data,
175 (DES_cblock *)ctx->iv,ctx->encrypt);
176 return 1;
177 }

179 BLOCK_CIPHER_defs(des, DES_key_schedule, NID_des, 8, 8, 8, 64,
180 EVP_CIPH_RAND_KEY, des_init_key, NULL,
181 EVP_CIPHER_set_asn1_iv,
182 EVP_CIPHER_get_asn1_iv,
183 des_ctrl)

185 BLOCK_CIPHER_def_cfb(des,DES_key_schedule,NID_des,8,8,1,
186 EVP_CIPH_RAND_KEY, des_init_key,NULL,
187 EVP_CIPHER_set_asn1_iv,
188 EVP_CIPHER_get_asn1_iv,des_ctrl)

190 BLOCK_CIPHER_def_cfb(des,DES_key_schedule,NID_des,8,8,8,
191 EVP_CIPH_RAND_KEY,des_init_key,NULL,
192 EVP_CIPHER_set_asn1_iv,
193 EVP_CIPHER_get_asn1_iv,des_ctrl)

new/usr/src/lib/openssl/libsunw_crypto/evp/e_des.c 4

195 static int des_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
196 const unsigned char *iv, int enc)
197 {
198 DES_cblock *deskey = (DES_cblock *)key;
199 #ifdef EVP_CHECK_DES_KEY
200 if(DES_set_key_checked(deskey,ctx->cipher_data) != 0)
201 return 0;
202 #else
203 DES_set_key_unchecked(deskey,ctx->cipher_data);
204 #endif
205 return 1;
206 }

208 static int des_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
209 {
210
211 switch(type)
212 {
213 case EVP_CTRL_RAND_KEY:
214 if (RAND_bytes(ptr, 8) <= 0)
215 return 0;
216 DES_set_odd_parity((DES_cblock *)ptr);
217 return 1;

219 default:
220 return -1;
221 }
222 }

224 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_des3.c 1

**
 10310 Fri May 30 18:31:51 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_des3.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/e_des3.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #ifndef OPENSSL_NO_DES

new/usr/src/lib/openssl/libsunw_crypto/evp/e_des3.c 2

62 #include <openssl/evp.h>
63 #include <openssl/objects.h>
64 #include "evp_locl.h"
65 #include <openssl/des.h>
66 #include <openssl/rand.h>

68 #ifndef OPENSSL_FIPS

70 static int des_ede_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
71 const unsigned char *iv,int enc);

73 static int des_ede3_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
74 const unsigned char *iv,int enc);

76 static int des3_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr);

78 typedef struct
79 {
80 DES_key_schedule ks1;/* key schedule */
81 DES_key_schedule ks2;/* key schedule (for ede) */
82 DES_key_schedule ks3;/* key schedule (for ede3) */
83 } DES_EDE_KEY;

85 #define data(ctx) ((DES_EDE_KEY *)(ctx)->cipher_data)

87 /* Because of various casts and different args can’t use IMPLEMENT_BLOCK_CIPHER

89 static int des_ede_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
90 const unsigned char *in, size_t inl)
91 {
92 BLOCK_CIPHER_ecb_loop()
93 DES_ecb3_encrypt((const_DES_cblock *)(in + i),
94 (DES_cblock *)(out + i),
95 &data(ctx)->ks1, &data(ctx)->ks2,
96 &data(ctx)->ks3,
97 ctx->encrypt);
98 return 1;
99 }

101 static int des_ede_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
102 const unsigned char *in, size_t inl)
103 {
104 while (inl>=EVP_MAXCHUNK)
105 {
106 DES_ede3_ofb64_encrypt(in, out, (long)EVP_MAXCHUNK,
107 &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3
108 (DES_cblock *)ctx->iv, &ctx->num);
109 inl-=EVP_MAXCHUNK;
110 in +=EVP_MAXCHUNK;
111 out+=EVP_MAXCHUNK;
112 }
113 if (inl)
114 DES_ede3_ofb64_encrypt(in, out, (long)inl,
115 &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks
116 (DES_cblock *)ctx->iv, &ctx->num);

118 return 1;
119 }

121 static int des_ede_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
122 const unsigned char *in, size_t inl)
123 {
124 #ifdef KSSL_DEBUG
125 {
126 int i;
127 char *cp;

new/usr/src/lib/openssl/libsunw_crypto/evp/e_des3.c 3

128 printf("des_ede_cbc_cipher(ctx=%lx, buflen=%d)\n", ctx, ctx->buf_len);
129 printf("\t iv= ");
130 for(i=0;i<8;i++)
131 printf("%02X",ctx->iv[i]);
132 printf("\n");
133 }
134 #endif /* KSSL_DEBUG */
135 while (inl>=EVP_MAXCHUNK)
136 {
137 DES_ede3_cbc_encrypt(in, out, (long)EVP_MAXCHUNK,
138 &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3,
139 (DES_cblock *)ctx->iv, ctx->encrypt);
140 inl-=EVP_MAXCHUNK;
141 in +=EVP_MAXCHUNK;
142 out+=EVP_MAXCHUNK;
143 }
144 if (inl)
145 DES_ede3_cbc_encrypt(in, out, (long)inl,
146 &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3,
147 (DES_cblock *)ctx->iv, ctx->encrypt);
148 return 1;
149 }

151 static int des_ede_cfb64_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
152 const unsigned char *in, size_t inl)
153 {
154 while (inl>=EVP_MAXCHUNK)
155 {
156 DES_ede3_cfb64_encrypt(in, out, (long)EVP_MAXCHUNK,
157 &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3
158 (DES_cblock *)ctx->iv, &ctx->num, ctx->encrypt);
159 inl-=EVP_MAXCHUNK;
160 in +=EVP_MAXCHUNK;
161 out+=EVP_MAXCHUNK;
162 }
163 if (inl)
164 DES_ede3_cfb64_encrypt(in, out, (long)inl,
165 &data(ctx)->ks1, &data(ctx)->ks2, &data(ctx)->ks3
166 (DES_cblock *)ctx->iv, &ctx->num, ctx->encrypt);
167 return 1;
168 }

170 /* Although we have a CFB-r implementation for 3-DES, it doesn’t pack the right
171 way, so wrap it here */
172 static int des_ede3_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
173 const unsigned char *in, size_t inl)
174 {
175 size_t n;
176 unsigned char c[1],d[1];

178 for(n=0 ; n < inl ; ++n)
179 {
180 c[0]=(in[n/8]&(1 << (7-n%8))) ? 0x80 : 0;
181 DES_ede3_cfb_encrypt(c,d,1,1,
182 &data(ctx)->ks1,&data(ctx)->ks2,&data(ctx)->ks3,
183 (DES_cblock *)ctx->iv,ctx->encrypt);
184 out[n/8]=(out[n/8]&~(0x80 >> (unsigned int)(n%8))) |
185 ((d[0]&0x80) >> (unsigned int)(n%8));
186 }

188 return 1;
189 }

191 static int des_ede3_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
192 const unsigned char *in, size_t inl)
193 {

new/usr/src/lib/openssl/libsunw_crypto/evp/e_des3.c 4

194 while (inl>=EVP_MAXCHUNK)
195 {
196 DES_ede3_cfb_encrypt(in,out,8,(long)EVP_MAXCHUNK,
197 &data(ctx)->ks1,&data(ctx)->ks2,&data(ctx)->ks3,
198 (DES_cblock *)ctx->iv,ctx->encrypt);
199 inl-=EVP_MAXCHUNK;
200 in +=EVP_MAXCHUNK;
201 out+=EVP_MAXCHUNK;
202 }
203 if (inl)
204 DES_ede3_cfb_encrypt(in,out,8,(long)inl,
205 &data(ctx)->ks1,&data(ctx)->ks2,&data(ctx)->ks3,
206 (DES_cblock *)ctx->iv,ctx->encrypt);
207 return 1;
208 }

210 BLOCK_CIPHER_defs(des_ede, DES_EDE_KEY, NID_des_ede, 8, 16, 8, 64,
211 EVP_CIPH_RAND_KEY, des_ede_init_key, NULL,
212 EVP_CIPHER_set_asn1_iv,
213 EVP_CIPHER_get_asn1_iv,
214 des3_ctrl)

216 #define des_ede3_cfb64_cipher des_ede_cfb64_cipher
217 #define des_ede3_ofb_cipher des_ede_ofb_cipher
218 #define des_ede3_cbc_cipher des_ede_cbc_cipher
219 #define des_ede3_ecb_cipher des_ede_ecb_cipher

221 BLOCK_CIPHER_defs(des_ede3, DES_EDE_KEY, NID_des_ede3, 8, 24, 8, 64,
222 EVP_CIPH_RAND_KEY, des_ede3_init_key, NULL,
223 EVP_CIPHER_set_asn1_iv,
224 EVP_CIPHER_get_asn1_iv,
225 des3_ctrl)

227 BLOCK_CIPHER_def_cfb(des_ede3,DES_EDE_KEY,NID_des_ede3,24,8,1,
228 EVP_CIPH_RAND_KEY, des_ede3_init_key,NULL,
229 EVP_CIPHER_set_asn1_iv,
230 EVP_CIPHER_get_asn1_iv,
231 des3_ctrl)

233 BLOCK_CIPHER_def_cfb(des_ede3,DES_EDE_KEY,NID_des_ede3,24,8,8,
234 EVP_CIPH_RAND_KEY, des_ede3_init_key,NULL,
235 EVP_CIPHER_set_asn1_iv,
236 EVP_CIPHER_get_asn1_iv,
237 des3_ctrl)

239 static int des_ede_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
240 const unsigned char *iv, int enc)
241 {
242 DES_cblock *deskey = (DES_cblock *)key;
243 #ifdef EVP_CHECK_DES_KEY
244 if (DES_set_key_checked(&deskey[0],&data(ctx)->ks1)
245 !! DES_set_key_checked(&deskey[1],&data(ctx)->ks2))
246 return 0;
247 #else
248 DES_set_key_unchecked(&deskey[0],&data(ctx)->ks1);
249 DES_set_key_unchecked(&deskey[1],&data(ctx)->ks2);
250 #endif
251 memcpy(&data(ctx)->ks3,&data(ctx)->ks1,
252 sizeof(data(ctx)->ks1));
253 return 1;
254 }

256 static int des_ede3_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
257 const unsigned char *iv, int enc)
258 {
259 DES_cblock *deskey = (DES_cblock *)key;

new/usr/src/lib/openssl/libsunw_crypto/evp/e_des3.c 5

260 #ifdef KSSL_DEBUG
261 {
262 int i;
263 printf("des_ede3_init_key(ctx=%lx)\n", ctx);
264 printf("\tKEY= ");
265 for(i=0;i<24;i++) printf("%02X",key[i]); printf("\n");
266 printf("\t IV= ");
267 for(i=0;i<8;i++) printf("%02X",iv[i]); printf("\n");
268 }
269 #endif /* KSSL_DEBUG */

271 #ifdef EVP_CHECK_DES_KEY
272 if (DES_set_key_checked(&deskey[0],&data(ctx)->ks1)
273 || DES_set_key_checked(&deskey[1],&data(ctx)->ks2)
274 || DES_set_key_checked(&deskey[2],&data(ctx)->ks3))
275 return 0;
276 #else
277 DES_set_key_unchecked(&deskey[0],&data(ctx)->ks1);
278 DES_set_key_unchecked(&deskey[1],&data(ctx)->ks2);
279 DES_set_key_unchecked(&deskey[2],&data(ctx)->ks3);
280 #endif
281 return 1;
282 }

284 static int des3_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
285 {

287 DES_cblock *deskey = ptr;

289 switch(type)
290 {
291 case EVP_CTRL_RAND_KEY:
292 if (RAND_bytes(ptr, c->key_len) <= 0)
293 return 0;
294 DES_set_odd_parity(deskey);
295 if (c->key_len >= 16)
296 DES_set_odd_parity(deskey + 1);
297 if (c->key_len >= 24)
298 DES_set_odd_parity(deskey + 2);
299 return 1;

301 default:
302 return -1;
303 }
304 }

306 const EVP_CIPHER *EVP_des_ede(void)
307 {
308 return &des_ede_ecb;
309 }

311 const EVP_CIPHER *EVP_des_ede3(void)
312 {
313 return &des_ede3_ecb;
314 }
315 #endif
316 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_idea.c 1

**
 4765 Fri May 30 18:31:51 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_idea.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/e_idea.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/e_idea.c 2

62 #ifndef OPENSSL_NO_IDEA
63 #include <openssl/evp.h>
64 #include <openssl/objects.h>
65 #include "evp_locl.h"
66 #include <openssl/idea.h>

68 static int idea_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
69 const unsigned char *iv,int enc);

71 /* NB idea_ecb_encrypt doesn’t take an ’encrypt’ argument so we treat it as a sp
72 * case
73 */

75 static int idea_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
76 const unsigned char *in, size_t inl)
77 {
78 BLOCK_CIPHER_ecb_loop()
79 idea_ecb_encrypt(in + i, out + i, ctx->cipher_data);
80 return 1;
81 }

83 /* Can’t use IMPLEMENT_BLOCK_CIPHER because idea_ecb_encrypt is different */

85 typedef struct
86 {
87 IDEA_KEY_SCHEDULE ks;
88 } EVP_IDEA_KEY;

90 BLOCK_CIPHER_func_cbc(idea, idea, EVP_IDEA_KEY, ks)
91 BLOCK_CIPHER_func_ofb(idea, idea, 64, EVP_IDEA_KEY, ks)
92 BLOCK_CIPHER_func_cfb(idea, idea, 64, EVP_IDEA_KEY, ks)

94 BLOCK_CIPHER_defs(idea, IDEA_KEY_SCHEDULE, NID_idea, 8, 16, 8, 64,
95 0, idea_init_key, NULL,
96 EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL)

98 static int idea_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
99 const unsigned char *iv, int enc)
100 {
101 if(!enc) {
102 if (EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_OFB_MODE) enc = 1;
103 else if (EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_CFB_MODE) enc = 1;
104 }
105 if (enc) idea_set_encrypt_key(key,ctx->cipher_data);
106 else
107 {
108 IDEA_KEY_SCHEDULE tmp;

110 idea_set_encrypt_key(key,&tmp);
111 idea_set_decrypt_key(&tmp,ctx->cipher_data);
112 OPENSSL_cleanse((unsigned char *)&tmp,
113 sizeof(IDEA_KEY_SCHEDULE));
114 }
115 return 1;
116 }

118 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_null.c 1

**
 4085 Fri May 30 18:31:51 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_null.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/e_null.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/e_null.c 2

62 #include <openssl/objects.h>

64 #ifndef OPENSSL_FIPS

66 static int null_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
67 const unsigned char *iv,int enc);
68 static int null_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
69 const unsigned char *in, size_t inl);
70 static const EVP_CIPHER n_cipher=
71 {
72 NID_undef,
73 1,0,0,
74 0,
75 null_init_key,
76 null_cipher,
77 NULL,
78 0,
79 NULL,
80 NULL,
81 NULL,
82 NULL
83 };

85 const EVP_CIPHER *EVP_enc_null(void)
86 {
87 return(&n_cipher);
88 }

90 static int null_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
91 const unsigned char *iv, int enc)
92 {
93 /* memset(&(ctx->c),0,sizeof(ctx->c));*/
94 return 1;
95 }

97 static int null_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
98 const unsigned char *in, size_t inl)
99 {
100 if (in != out)
101 memcpy((char *)out,(const char *)in,inl);
102 return 1;
103 }
104 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_old.c 1

**
 4801 Fri May 30 18:31:51 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_old.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/e_old.c -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
3 * project 2004.
4 */
5 /* ==
6 * Copyright (c) 2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #ifdef OPENSSL_NO_DEPRECATED
60 static void *dummy = &dummy;
61 #else

new/usr/src/lib/openssl/libsunw_crypto/evp/e_old.c 2

63 #include <openssl/evp.h>

65 /* Define some deprecated functions, so older programs
66 don’t crash and burn too quickly. On Windows and VMS,
67 these will never be used, since functions and variables
68 in shared libraries are selected by entry point location,
69 not by name. */

71 #ifndef OPENSSL_NO_BF
72 #undef EVP_bf_cfb
73 const EVP_CIPHER *EVP_bf_cfb(void);
74 const EVP_CIPHER *EVP_bf_cfb(void) { return EVP_bf_cfb64(); }
75 #endif

77 #ifndef OPENSSL_NO_DES
78 #undef EVP_des_cfb
79 const EVP_CIPHER *EVP_des_cfb(void);
80 const EVP_CIPHER *EVP_des_cfb(void) { return EVP_des_cfb64(); }
81 #undef EVP_des_ede3_cfb
82 const EVP_CIPHER *EVP_des_ede3_cfb(void);
83 const EVP_CIPHER *EVP_des_ede3_cfb(void) { return EVP_des_ede3_cfb64(); }
84 #undef EVP_des_ede_cfb
85 const EVP_CIPHER *EVP_des_ede_cfb(void);
86 const EVP_CIPHER *EVP_des_ede_cfb(void) { return EVP_des_ede_cfb64(); }
87 #endif

89 #ifndef OPENSSL_NO_IDEA
90 #undef EVP_idea_cfb
91 const EVP_CIPHER *EVP_idea_cfb(void);
92 const EVP_CIPHER *EVP_idea_cfb(void) { return EVP_idea_cfb64(); }
93 #endif

95 #ifndef OPENSSL_NO_RC2
96 #undef EVP_rc2_cfb
97 const EVP_CIPHER *EVP_rc2_cfb(void);
98 const EVP_CIPHER *EVP_rc2_cfb(void) { return EVP_rc2_cfb64(); }
99 #endif

101 #ifndef OPENSSL_NO_CAST
102 #undef EVP_cast5_cfb
103 const EVP_CIPHER *EVP_cast5_cfb(void);
104 const EVP_CIPHER *EVP_cast5_cfb(void) { return EVP_cast5_cfb64(); }
105 #endif

107 #ifndef OPENSSL_NO_RC5
108 #undef EVP_rc5_32_12_16_cfb
109 const EVP_CIPHER *EVP_rc5_32_12_16_cfb(void);
110 const EVP_CIPHER *EVP_rc5_32_12_16_cfb(void) { return EVP_rc5_32_12_16_cfb64();
111 #endif

113 #ifndef OPENSSL_NO_AES
114 #undef EVP_aes_128_cfb
115 const EVP_CIPHER *EVP_aes_128_cfb(void);
116 const EVP_CIPHER *EVP_aes_128_cfb(void) { return EVP_aes_128_cfb128(); }
117 #undef EVP_aes_192_cfb
118 const EVP_CIPHER *EVP_aes_192_cfb(void);
119 const EVP_CIPHER *EVP_aes_192_cfb(void) { return EVP_aes_192_cfb128(); }
120 #undef EVP_aes_256_cfb
121 const EVP_CIPHER *EVP_aes_256_cfb(void);
122 const EVP_CIPHER *EVP_aes_256_cfb(void) { return EVP_aes_256_cfb128(); }
123 #endif

125 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc2.c 1

**
 7118 Fri May 30 18:31:51 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc2.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/e_rc2.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc2.c 2

62 #ifndef OPENSSL_NO_RC2

64 #include <openssl/evp.h>
65 #include <openssl/objects.h>
66 #include "evp_locl.h"
67 #include <openssl/rc2.h>

69 static int rc2_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
70 const unsigned char *iv,int enc);
71 static int rc2_meth_to_magic(EVP_CIPHER_CTX *ctx);
72 static int rc2_magic_to_meth(int i);
73 static int rc2_set_asn1_type_and_iv(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
74 static int rc2_get_asn1_type_and_iv(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
75 static int rc2_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr);

77 typedef struct
78 {
79 int key_bits; /* effective key bits */
80 RC2_KEY ks; /* key schedule */
81 } EVP_RC2_KEY;

83 #define data(ctx) ((EVP_RC2_KEY *)(ctx)->cipher_data)

85 IMPLEMENT_BLOCK_CIPHER(rc2, ks, RC2, EVP_RC2_KEY, NID_rc2,
86 8,
87 RC2_KEY_LENGTH, 8, 64,
88 EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT,
89 rc2_init_key, NULL,
90 rc2_set_asn1_type_and_iv, rc2_get_asn1_type_and_iv,
91 rc2_ctrl)

93 #define RC2_40_MAGIC 0xa0
94 #define RC2_64_MAGIC 0x78
95 #define RC2_128_MAGIC 0x3a

97 static const EVP_CIPHER r2_64_cbc_cipher=
98 {
99 NID_rc2_64_cbc,
100 8,8 /* 64 bit */,8,
101 EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT,
102 rc2_init_key,
103 rc2_cbc_cipher,
104 NULL,
105 sizeof(EVP_RC2_KEY),
106 rc2_set_asn1_type_and_iv,
107 rc2_get_asn1_type_and_iv,
108 rc2_ctrl,
109 NULL
110 };

112 static const EVP_CIPHER r2_40_cbc_cipher=
113 {
114 NID_rc2_40_cbc,
115 8,5 /* 40 bit */,8,
116 EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT,
117 rc2_init_key,
118 rc2_cbc_cipher,
119 NULL,
120 sizeof(EVP_RC2_KEY),
121 rc2_set_asn1_type_and_iv,
122 rc2_get_asn1_type_and_iv,
123 rc2_ctrl,
124 NULL
125 };

127 const EVP_CIPHER *EVP_rc2_64_cbc(void)

new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc2.c 3

128 {
129 return(&r2_64_cbc_cipher);
130 }

132 const EVP_CIPHER *EVP_rc2_40_cbc(void)
133 {
134 return(&r2_40_cbc_cipher);
135 }
136
137 static int rc2_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
138 const unsigned char *iv, int enc)
139 {
140 RC2_set_key(&data(ctx)->ks,EVP_CIPHER_CTX_key_length(ctx),
141 key,data(ctx)->key_bits);
142 return 1;
143 }

145 static int rc2_meth_to_magic(EVP_CIPHER_CTX *e)
146 {
147 int i;

149 EVP_CIPHER_CTX_ctrl(e, EVP_CTRL_GET_RC2_KEY_BITS, 0, &i);
150 if (i == 128) return(RC2_128_MAGIC);
151 else if (i == 64) return(RC2_64_MAGIC);
152 else if (i == 40) return(RC2_40_MAGIC);
153 else return(0);
154 }

156 static int rc2_magic_to_meth(int i)
157 {
158 if (i == RC2_128_MAGIC) return 128;
159 else if (i == RC2_64_MAGIC) return 64;
160 else if (i == RC2_40_MAGIC) return 40;
161 else
162 {
163 EVPerr(EVP_F_RC2_MAGIC_TO_METH,EVP_R_UNSUPPORTED_KEY_SIZE);
164 return(0);
165 }
166 }

168 static int rc2_get_asn1_type_and_iv(EVP_CIPHER_CTX *c, ASN1_TYPE *type)
169 {
170 long num=0;
171 int i=0;
172 int key_bits;
173 unsigned int l;
174 unsigned char iv[EVP_MAX_IV_LENGTH];

176 if (type != NULL)
177 {
178 l=EVP_CIPHER_CTX_iv_length(c);
179 OPENSSL_assert(l <= sizeof(iv));
180 i=ASN1_TYPE_get_int_octetstring(type,&num,iv,l);
181 if (i != (int)l)
182 return(-1);
183 key_bits =rc2_magic_to_meth((int)num);
184 if (!key_bits)
185 return(-1);
186 if(i > 0 && !EVP_CipherInit_ex(c, NULL, NULL, NULL, iv, -1))
187 return -1;
188 EVP_CIPHER_CTX_ctrl(c, EVP_CTRL_SET_RC2_KEY_BITS, key_bits, NULL
189 EVP_CIPHER_CTX_set_key_length(c, key_bits / 8);
190 }
191 return(i);
192 }

new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc2.c 4

194 static int rc2_set_asn1_type_and_iv(EVP_CIPHER_CTX *c, ASN1_TYPE *type)
195 {
196 long num;
197 int i=0,j;

199 if (type != NULL)
200 {
201 num=rc2_meth_to_magic(c);
202 j=EVP_CIPHER_CTX_iv_length(c);
203 i=ASN1_TYPE_set_int_octetstring(type,num,c->oiv,j);
204 }
205 return(i);
206 }

208 static int rc2_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
209 {
210 switch(type)
211 {
212 case EVP_CTRL_INIT:
213 data(c)->key_bits = EVP_CIPHER_CTX_key_length(c) * 8;
214 return 1;

216 case EVP_CTRL_GET_RC2_KEY_BITS:
217 *(int *)ptr = data(c)->key_bits;
218 return 1;
219
220 case EVP_CTRL_SET_RC2_KEY_BITS:
221 if(arg > 0)
222 {
223 data(c)->key_bits = arg;
224 return 1;
225 }
226 return 0;
227 #ifdef PBE_PRF_TEST
228 case EVP_CTRL_PBE_PRF_NID:
229 *(int *)ptr = NID_hmacWithMD5;
230 return 1;
231 #endif

233 default:
234 return -1;
235 }
236 }

238 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc4.c 1

**
 4657 Fri May 30 18:31:51 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc4.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/e_rc4.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc4.c 2

62 #ifndef OPENSSL_NO_RC4

64 #include <openssl/evp.h>
65 #include "evp_locl.h"
66 #include <openssl/objects.h>
67 #include <openssl/rc4.h>

69 /* FIXME: surely this is available elsewhere? */
70 #define EVP_RC4_KEY_SIZE 16

72 typedef struct
73 {
74 RC4_KEY ks; /* working key */
75 } EVP_RC4_KEY;

77 #define data(ctx) ((EVP_RC4_KEY *)(ctx)->cipher_data)

79 static int rc4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
80 const unsigned char *iv,int enc);
81 static int rc4_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
82 const unsigned char *in, size_t inl);
83 static const EVP_CIPHER r4_cipher=
84 {
85 NID_rc4,
86 1,EVP_RC4_KEY_SIZE,0,
87 EVP_CIPH_VARIABLE_LENGTH,
88 rc4_init_key,
89 rc4_cipher,
90 NULL,
91 sizeof(EVP_RC4_KEY),
92 NULL,
93 NULL,
94 NULL,
95 NULL
96 };

98 static const EVP_CIPHER r4_40_cipher=
99 {
100 NID_rc4_40,
101 1,5 /* 40 bit */,0,
102 EVP_CIPH_VARIABLE_LENGTH,
103 rc4_init_key,
104 rc4_cipher,
105 NULL,
106 sizeof(EVP_RC4_KEY),
107 NULL,
108 NULL,
109 NULL,
110 NULL
111 };

113 const EVP_CIPHER *EVP_rc4(void)
114 {
115 return(&r4_cipher);
116 }

118 const EVP_CIPHER *EVP_rc4_40(void)
119 {
120 return(&r4_40_cipher);
121 }

123 static int rc4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
124 const unsigned char *iv, int enc)
125 {
126 RC4_set_key(&data(ctx)->ks,EVP_CIPHER_CTX_key_length(ctx),
127 key);

new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc4.c 3

128 return 1;
129 }

131 static int rc4_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
132 const unsigned char *in, size_t inl)
133 {
134 RC4(&data(ctx)->ks,inl,in,out);
135 return 1;
136 }
137 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc4_hmac_md5.c 1

**
 8367 Fri May 30 18:31:51 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc4_hmac_md5.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2011 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 */

50 #include <openssl/opensslconf.h>

52 #include <stdio.h>
53 #include <string.h>

55 #if !defined(OPENSSL_NO_RC4) && !defined(OPENSSL_NO_MD5)

57 #include <openssl/evp.h>
58 #include <openssl/objects.h>
59 #include <openssl/rc4.h>
60 #include <openssl/md5.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc4_hmac_md5.c 2

62 #ifndef EVP_CIPH_FLAG_AEAD_CIPHER
63 #define EVP_CIPH_FLAG_AEAD_CIPHER 0x200000
64 #define EVP_CTRL_AEAD_TLS1_AAD 0x16
65 #define EVP_CTRL_AEAD_SET_MAC_KEY 0x17
66 #endif

68 /* FIXME: surely this is available elsewhere? */
69 #define EVP_RC4_KEY_SIZE 16

71 typedef struct
72 {
73 RC4_KEY ks;
74 MD5_CTX head,tail,md;
75 size_t payload_length;
76 } EVP_RC4_HMAC_MD5;

78 #define NO_PAYLOAD_LENGTH ((size_t)-1)

80 void rc4_md5_enc (RC4_KEY *key, const void *in0, void *out,
81 MD5_CTX *ctx,const void *inp,size_t blocks);

83 #define data(ctx) ((EVP_RC4_HMAC_MD5 *)(ctx)->cipher_data)

85 static int rc4_hmac_md5_init_key(EVP_CIPHER_CTX *ctx,
86 const unsigned char *inkey,
87 const unsigned char *iv, int enc)
88 {
89 EVP_RC4_HMAC_MD5 *key = data(ctx);

91 RC4_set_key(&key->ks,EVP_CIPHER_CTX_key_length(ctx),
92 inkey);

94 MD5_Init(&key->head); /* handy when benchmarking */
95 key->tail = key->head;
96 key->md = key->head;

98 key->payload_length = NO_PAYLOAD_LENGTH;

100 return 1;
101 }

103 #if !defined(OPENSSL_NO_ASM) && (\
104 defined(__x86_64) || defined(__x86_64__) || \
105 defined(_M_AMD64) || defined(_M_X64) || \
106 defined(__INTEL__)) && \
107 !(defined(__APPLE__) && defined(__MACH__))
108 #define STITCHED_CALL
109 #endif

111 #if !defined(STITCHED_CALL)
112 #define rc4_off 0
113 #define md5_off 0
114 #endif

116 static int rc4_hmac_md5_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
117 const unsigned char *in, size_t len)
118 {
119 EVP_RC4_HMAC_MD5 *key = data(ctx);
120 #if defined(STITCHED_CALL)
121 size_t rc4_off = 32-1-(key->ks.x&(32-1)), /* 32 is $MOD from rc4_m
122 md5_off = MD5_CBLOCK-key->md.num,
123 blocks;
124 unsigned int l;
125 extern unsigned int OPENSSL_ia32cap_P[];
126 #endif
127 size_t plen = key->payload_length;

new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc4_hmac_md5.c 3

129 if (plen!=NO_PAYLOAD_LENGTH && len!=(plen+MD5_DIGEST_LENGTH)) return 0;

131 if (ctx->encrypt) {
132 if (plen==NO_PAYLOAD_LENGTH) plen = len;
133 #if defined(STITCHED_CALL)
134 /* cipher has to "fall behind" */
135 if (rc4_off>md5_off) md5_off+=MD5_CBLOCK;

137 if (plen>md5_off && (blocks=(plen-md5_off)/MD5_CBLOCK) &&
138 (OPENSSL_ia32cap_P[0]&(1<<20))==0) {
139 MD5_Update(&key->md,in,md5_off);
140 RC4(&key->ks,rc4_off,in,out);

142 rc4_md5_enc(&key->ks,in+rc4_off,out+rc4_off,
143 &key->md,in+md5_off,blocks);
144 blocks *= MD5_CBLOCK;
145 rc4_off += blocks;
146 md5_off += blocks;
147 key->md.Nh += blocks>>29;
148 key->md.Nl += blocks<<=3;
149 if (key->md.Nl<(unsigned int)blocks) key->md.Nh++;
150 } else {
151 rc4_off = 0;
152 md5_off = 0;
153 }
154 #endif
155 MD5_Update(&key->md,in+md5_off,plen-md5_off);

157 if (plen!=len) { /* "TLS" mode of operation */
158 if (in!=out)
159 memcpy(out+rc4_off,in+rc4_off,plen-rc4_off);

161 /* calculate HMAC and append it to payload */
162 MD5_Final(out+plen,&key->md);
163 key->md = key->tail;
164 MD5_Update(&key->md,out+plen,MD5_DIGEST_LENGTH);
165 MD5_Final(out+plen,&key->md);
166 /* encrypt HMAC at once */
167 RC4(&key->ks,len-rc4_off,out+rc4_off,out+rc4_off);
168 } else {
169 RC4(&key->ks,len-rc4_off,in+rc4_off,out+rc4_off);
170 }
171 } else {
172 unsigned char mac[MD5_DIGEST_LENGTH];
173 #if defined(STITCHED_CALL)
174 /* digest has to "fall behind" */
175 if (md5_off>rc4_off) rc4_off += 2*MD5_CBLOCK;
176 else rc4_off += MD5_CBLOCK;

178 if (len>rc4_off && (blocks=(len-rc4_off)/MD5_CBLOCK) &&
179 (OPENSSL_ia32cap_P[0]&(1<<20))==0) {
180 RC4(&key->ks,rc4_off,in,out);
181 MD5_Update(&key->md,out,md5_off);

183 rc4_md5_enc(&key->ks,in+rc4_off,out+rc4_off,
184 &key->md,out+md5_off,blocks);
185 blocks *= MD5_CBLOCK;
186 rc4_off += blocks;
187 md5_off += blocks;
188 l = (key->md.Nl+(blocks<<3))&0xffffffffU;
189 if (l<key->md.Nl) key->md.Nh++;
190 key->md.Nl = l;
191 key->md.Nh += blocks>>29;
192 } else {
193 md5_off=0;

new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc4_hmac_md5.c 4

194 rc4_off=0;
195 }
196 #endif
197 /* decrypt HMAC at once */
198 RC4(&key->ks,len-rc4_off,in+rc4_off,out+rc4_off);
199 if (plen!=NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
200 MD5_Update(&key->md,out+md5_off,plen-md5_off);

202 /* calculate HMAC and verify it */
203 MD5_Final(mac,&key->md);
204 key->md = key->tail;
205 MD5_Update(&key->md,mac,MD5_DIGEST_LENGTH);
206 MD5_Final(mac,&key->md);

208 if (memcmp(out+plen,mac,MD5_DIGEST_LENGTH))
209 return 0;
210 } else {
211 MD5_Update(&key->md,out+md5_off,len-md5_off);
212 }
213 }

215 key->payload_length = NO_PAYLOAD_LENGTH;

217 return 1;
218 }

220 static int rc4_hmac_md5_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
221 {
222 EVP_RC4_HMAC_MD5 *key = data(ctx);

224 switch (type)
225 {
226 case EVP_CTRL_AEAD_SET_MAC_KEY:
227 {
228 unsigned int i;
229 unsigned char hmac_key[64];

231 memset (hmac_key,0,sizeof(hmac_key));

233 if (arg > (int)sizeof(hmac_key)) {
234 MD5_Init(&key->head);
235 MD5_Update(&key->head,ptr,arg);
236 MD5_Final(hmac_key,&key->head);
237 } else {
238 memcpy(hmac_key,ptr,arg);
239 }

241 for (i=0;i<sizeof(hmac_key);i++)
242 hmac_key[i] ^= 0x36; /* ipad */
243 MD5_Init(&key->head);
244 MD5_Update(&key->head,hmac_key,sizeof(hmac_key));

246 for (i=0;i<sizeof(hmac_key);i++)
247 hmac_key[i] ^= 0x36^0x5c; /* opad */
248 MD5_Init(&key->tail);
249 MD5_Update(&key->tail,hmac_key,sizeof(hmac_key));

251 return 1;
252 }
253 case EVP_CTRL_AEAD_TLS1_AAD:
254 {
255 unsigned char *p=ptr;
256 unsigned int len=p[arg-2]<<8|p[arg-1];

258 if (!ctx->encrypt)
259 {

new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc4_hmac_md5.c 5

260 len -= MD5_DIGEST_LENGTH;
261 p[arg-2] = len>>8;
262 p[arg-1] = len;
263 }
264 key->payload_length=len;
265 key->md = key->head;
266 MD5_Update(&key->md,p,arg);

268 return MD5_DIGEST_LENGTH;
269 }
270 default:
271 return -1;
272 }
273 }

275 static EVP_CIPHER r4_hmac_md5_cipher=
276 {
277 #ifdef NID_rc4_hmac_md5
278 NID_rc4_hmac_md5,
279 #else
280 NID_undef,
281 #endif
282 1,EVP_RC4_KEY_SIZE,0,
283 EVP_CIPH_STREAM_CIPHER|EVP_CIPH_VARIABLE_LENGTH|EVP_CIPH_FLAG_AEAD_CIPHE
284 rc4_hmac_md5_init_key,
285 rc4_hmac_md5_cipher,
286 NULL,
287 sizeof(EVP_RC4_HMAC_MD5),
288 NULL,
289 NULL,
290 rc4_hmac_md5_ctrl,
291 NULL
292 };

294 const EVP_CIPHER *EVP_rc4_hmac_md5(void)
295 {
296 return(&r4_hmac_md5_cipher);
297 }
298 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc5.c 1

**
 4702 Fri May 30 18:31:51 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc5.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/e_rc5.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/e_rc5.c 2

62 #ifndef OPENSSL_NO_RC5

64 #include <openssl/evp.h>
65 #include <openssl/objects.h>
66 #include "evp_locl.h"
67 #include <openssl/rc5.h>

69 static int r_32_12_16_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
70 const unsigned char *iv,int enc);
71 static int rc5_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr);

73 typedef struct
74 {
75 int rounds; /* number of rounds */
76 RC5_32_KEY ks; /* key schedule */
77 } EVP_RC5_KEY;

79 #define data(ctx) EVP_C_DATA(EVP_RC5_KEY,ctx)

81 IMPLEMENT_BLOCK_CIPHER(rc5_32_12_16, ks, RC5_32, EVP_RC5_KEY, NID_rc5,
82 8, RC5_32_KEY_LENGTH, 8, 64,
83 EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT,
84 r_32_12_16_init_key, NULL,
85 NULL, NULL, rc5_ctrl)

87 static int rc5_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
88 {
89 switch(type)
90 {
91 case EVP_CTRL_INIT:
92 data(c)->rounds = RC5_12_ROUNDS;
93 return 1;

95 case EVP_CTRL_GET_RC5_ROUNDS:
96 *(int *)ptr = data(c)->rounds;
97 return 1;
98
99 case EVP_CTRL_SET_RC5_ROUNDS:
100 switch(arg)
101 {
102 case RC5_8_ROUNDS:
103 case RC5_12_ROUNDS:
104 case RC5_16_ROUNDS:
105 data(c)->rounds = arg;
106 return 1;

108 default:
109 EVPerr(EVP_F_RC5_CTRL, EVP_R_UNSUPORTED_NUMBER_OF_ROUNDS
110 return 0;
111 }

113 default:
114 return -1;
115 }
116 }

118 static int r_32_12_16_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
119 const unsigned char *iv, int enc)
120 {
121 RC5_32_set_key(&data(ctx)->ks,EVP_CIPHER_CTX_key_length(ctx),
122 key,data(ctx)->rounds);
123 return 1;
124 }

126 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_seed.c 1

**
 3406 Fri May 30 18:31:51 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_seed.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/e_seed.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 2007 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 #include <openssl/opensslconf.h>
57 #ifndef OPENSSL_NO_SEED
58 #include <openssl/evp.h>
59 #include <openssl/err.h>
60 #include <string.h>
61 #include <assert.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/e_seed.c 2

62 #include <openssl/seed.h>
63 #include "evp_locl.h"

65 static int seed_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const un

67 typedef struct
68 {
69 SEED_KEY_SCHEDULE ks;
70 } EVP_SEED_KEY;

72 IMPLEMENT_BLOCK_CIPHER(seed, ks, SEED, EVP_SEED_KEY, NID_seed,
73 16, 16, 16, 128,
74 0, seed_init_key, 0, 0, 0, 0)

76 static int seed_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
77 const unsigned char *iv, int enc)
78 {
79 SEED_set_key(key, ctx->cipher_data);
80 return 1;
81 }

83 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/e_xcbc_d.c 1

**
 4920 Fri May 30 18:31:51 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/e_xcbc_d.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/e_xcbc_d.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/e_xcbc_d.c 2

62 #ifndef OPENSSL_NO_DES

64 #include <openssl/evp.h>
65 #include <openssl/objects.h>
66 #include "evp_locl.h"
67 #include <openssl/des.h>

69 static int desx_cbc_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
70 const unsigned char *iv,int enc);
71 static int desx_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
72 const unsigned char *in, size_t inl);

75 typedef struct
76 {
77 DES_key_schedule ks;/* key schedule */
78 DES_cblock inw;
79 DES_cblock outw;
80 } DESX_CBC_KEY;

82 #define data(ctx) ((DESX_CBC_KEY *)(ctx)->cipher_data)

84 static const EVP_CIPHER d_xcbc_cipher=
85 {
86 NID_desx_cbc,
87 8,24,8,
88 EVP_CIPH_CBC_MODE,
89 desx_cbc_init_key,
90 desx_cbc_cipher,
91 NULL,
92 sizeof(DESX_CBC_KEY),
93 EVP_CIPHER_set_asn1_iv,
94 EVP_CIPHER_get_asn1_iv,
95 NULL,
96 NULL
97 };

99 const EVP_CIPHER *EVP_desx_cbc(void)
100 {
101 return(&d_xcbc_cipher);
102 }
103
104 static int desx_cbc_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
105 const unsigned char *iv, int enc)
106 {
107 DES_cblock *deskey = (DES_cblock *)key;

109 DES_set_key_unchecked(deskey,&data(ctx)->ks);
110 memcpy(&data(ctx)->inw[0],&key[8],8);
111 memcpy(&data(ctx)->outw[0],&key[16],8);

113 return 1;
114 }

116 static int desx_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
117 const unsigned char *in, size_t inl)
118 {
119 while (inl>=EVP_MAXCHUNK)
120 {
121 DES_xcbc_encrypt(in,out,(long)EVP_MAXCHUNK,&data(ctx)->ks,
122 (DES_cblock *)&(ctx->iv[0]),
123 &data(ctx)->inw,
124 &data(ctx)->outw,
125 ctx->encrypt);
126 inl-=EVP_MAXCHUNK;
127 in +=EVP_MAXCHUNK;

new/usr/src/lib/openssl/libsunw_crypto/evp/e_xcbc_d.c 3

128 out+=EVP_MAXCHUNK;
129 }
130 if (inl)
131 DES_xcbc_encrypt(in,out,(long)inl,&data(ctx)->ks,
132 (DES_cblock *)&(ctx->iv[0]),
133 &data(ctx)->inw,
134 &data(ctx)->outw,
135 ctx->encrypt);
136 return 1;
137 }
138 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/encode.c 1

**
 11580 Fri May 30 18:31:51 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/encode.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/encode.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/encode.c 2

63 #ifndef CHARSET_EBCDIC
64 #define conv_bin2ascii(a) (data_bin2ascii[(a)&0x3f])
65 #define conv_ascii2bin(a) (data_ascii2bin[(a)&0x7f])
66 #else
67 /* We assume that PEM encoded files are EBCDIC files
68 * (i.e., printable text files). Convert them here while decoding.
69 * When encoding, output is EBCDIC (text) format again.
70 * (No need for conversion in the conv_bin2ascii macro, as the
71 * underlying textstring data_bin2ascii[] is already EBCDIC)
72 */
73 #define conv_bin2ascii(a) (data_bin2ascii[(a)&0x3f])
74 #define conv_ascii2bin(a) (data_ascii2bin[os_toascii[a]&0x7f])
75 #endif

77 /* 64 char lines
78 * pad input with 0
79 * left over chars are set to =
80 * 1 byte => xx==
81 * 2 bytes => xxx=
82 * 3 bytes => xxxx
83 */
84 #define BIN_PER_LINE (64/4*3)
85 #define CHUNKS_PER_LINE (64/4)
86 #define CHAR_PER_LINE (64+1)

88 static const unsigned char data_bin2ascii[65]="ABCDEFGHIJKLMNOPQRSTUVWXYZ\
89 abcdefghijklmnopqrstuvwxyz0123456789+/";

91 /* 0xF0 is a EOLN
92 * 0xF1 is ignore but next needs to be 0xF0 (for \r\n processing).
93 * 0xF2 is EOF
94 * 0xE0 is ignore at start of line.
95 * 0xFF is error
96 */

98 #define B64_EOLN 0xF0
99 #define B64_CR 0xF1
100 #define B64_EOF 0xF2
101 #define B64_WS 0xE0
102 #define B64_ERROR 0xFF
103 #define B64_NOT_BASE64(a) (((a)|0x13) == 0xF3)

105 static const unsigned char data_ascii2bin[128]={
106 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
107 0xFF,0xE0,0xF0,0xFF,0xFF,0xF1,0xFF,0xFF,
108 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
109 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
110 0xE0,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
111 0xFF,0xFF,0xFF,0x3E,0xFF,0xF2,0xFF,0x3F,
112 0x34,0x35,0x36,0x37,0x38,0x39,0x3A,0x3B,
113 0x3C,0x3D,0xFF,0xFF,0xFF,0x00,0xFF,0xFF,
114 0xFF,0x00,0x01,0x02,0x03,0x04,0x05,0x06,
115 0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,
116 0x0F,0x10,0x11,0x12,0x13,0x14,0x15,0x16,
117 0x17,0x18,0x19,0xFF,0xFF,0xFF,0xFF,0xFF,
118 0xFF,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F,0x20,
119 0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,
120 0x29,0x2A,0x2B,0x2C,0x2D,0x2E,0x2F,0x30,
121 0x31,0x32,0x33,0xFF,0xFF,0xFF,0xFF,0xFF,
122 };

124 void EVP_EncodeInit(EVP_ENCODE_CTX *ctx)
125 {
126 ctx->length=48;
127 ctx->num=0;

new/usr/src/lib/openssl/libsunw_crypto/evp/encode.c 3

128 ctx->line_num=0;
129 }

131 void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,
132 const unsigned char *in, int inl)
133 {
134 int i,j;
135 unsigned int total=0;

137 *outl=0;
138 if (inl == 0) return;
139 OPENSSL_assert(ctx->length <= (int)sizeof(ctx->enc_data));
140 if ((ctx->num+inl) < ctx->length)
141 {
142 memcpy(&(ctx->enc_data[ctx->num]),in,inl);
143 ctx->num+=inl;
144 return;
145 }
146 if (ctx->num != 0)
147 {
148 i=ctx->length-ctx->num;
149 memcpy(&(ctx->enc_data[ctx->num]),in,i);
150 in+=i;
151 inl-=i;
152 j=EVP_EncodeBlock(out,ctx->enc_data,ctx->length);
153 ctx->num=0;
154 out+=j;
155 *(out++)=’\n’;
156 *out=’\0’;
157 total=j+1;
158 }
159 while (inl >= ctx->length)
160 {
161 j=EVP_EncodeBlock(out,in,ctx->length);
162 in+=ctx->length;
163 inl-=ctx->length;
164 out+=j;
165 *(out++)=’\n’;
166 *out=’\0’;
167 total+=j+1;
168 }
169 if (inl != 0)
170 memcpy(&(ctx->enc_data[0]),in,inl);
171 ctx->num=inl;
172 *outl=total;
173 }

175 void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl)
176 {
177 unsigned int ret=0;

179 if (ctx->num != 0)
180 {
181 ret=EVP_EncodeBlock(out,ctx->enc_data,ctx->num);
182 out[ret++]=’\n’;
183 out[ret]=’\0’;
184 ctx->num=0;
185 }
186 *outl=ret;
187 }

189 int EVP_EncodeBlock(unsigned char *t, const unsigned char *f, int dlen)
190 {
191 int i,ret=0;
192 unsigned long l;

new/usr/src/lib/openssl/libsunw_crypto/evp/encode.c 4

194 for (i=dlen; i > 0; i-=3)
195 {
196 if (i >= 3)
197 {
198 l= (((unsigned long)f[0])<<16L)|
199 (((unsigned long)f[1])<< 8L)|f[2];
200 *(t++)=conv_bin2ascii(l>>18L);
201 *(t++)=conv_bin2ascii(l>>12L);
202 *(t++)=conv_bin2ascii(l>> 6L);
203 *(t++)=conv_bin2ascii(l);
204 }
205 else
206 {
207 l=((unsigned long)f[0])<<16L;
208 if (i == 2) l|=((unsigned long)f[1]<<8L);

210 *(t++)=conv_bin2ascii(l>>18L);
211 *(t++)=conv_bin2ascii(l>>12L);
212 *(t++)=(i == 1)?’=’:conv_bin2ascii(l>> 6L);
213 *(t++)=’=’;
214 }
215 ret+=4;
216 f+=3;
217 }

219 *t=’\0’;
220 return(ret);
221 }

223 void EVP_DecodeInit(EVP_ENCODE_CTX *ctx)
224 {
225 ctx->length=30;
226 ctx->num=0;
227 ctx->line_num=0;
228 ctx->expect_nl=0;
229 }

231 /* -1 for error
232 * 0 for last line
233 * 1 for full line
234 */
235 int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,
236 const unsigned char *in, int inl)
237 {
238 int seof= -1,eof=0,rv= -1,ret=0,i,v,tmp,n,ln,exp_nl;
239 unsigned char *d;

241 n=ctx->num;
242 d=ctx->enc_data;
243 ln=ctx->line_num;
244 exp_nl=ctx->expect_nl;

246 /* last line of input. */
247 if ((inl == 0) || ((n == 0) && (conv_ascii2bin(in[0]) == B64_EOF)))
248 { rv=0; goto end; }
249
250 /* We parse the input data */
251 for (i=0; i<inl; i++)
252 {
253 /* If the current line is > 80 characters, scream alot */
254 if (ln >= 80) { rv= -1; goto end; }

256 /* Get char and put it into the buffer */
257 tmp= *(in++);
258 v=conv_ascii2bin(tmp);
259 /* only save the good data :-) */

new/usr/src/lib/openssl/libsunw_crypto/evp/encode.c 5

260 if (!B64_NOT_BASE64(v))
261 {
262 OPENSSL_assert(n < (int)sizeof(ctx->enc_data));
263 d[n++]=tmp;
264 ln++;
265 }
266 else if (v == B64_ERROR)
267 {
268 rv= -1;
269 goto end;
270 }

272 /* have we seen a ’=’ which is ’definitly’ the last
273 * input line. seof will point to the character that
274 * holds it. and eof will hold how many characters to
275 * chop off. */
276 if (tmp == ’=’)
277 {
278 if (seof == -1) seof=n;
279 eof++;
280 }

282 if (v == B64_CR)
283 {
284 ln = 0;
285 if (exp_nl)
286 continue;
287 }

289 /* eoln */
290 if (v == B64_EOLN)
291 {
292 ln=0;
293 if (exp_nl)
294 {
295 exp_nl=0;
296 continue;
297 }
298 }
299 exp_nl=0;

301 /* If we are at the end of input and it looks like a
302 * line, process it. */
303 if (((i+1) == inl) && (((n&3) == 0) || eof))
304 {
305 v=B64_EOF;
306 /* In case things were given us in really small
307 records (so two ’=’ were given in separate
308 updates), eof may contain the incorrect number
309 of ending bytes to skip, so let’s redo the count */
310 eof = 0;
311 if (d[n-1] == ’=’) eof++;
312 if (d[n-2] == ’=’) eof++;
313 /* There will never be more than two ’=’ */
314 }

316 if ((v == B64_EOF && (n&3) == 0) || (n >= 64))
317 {
318 /* This is needed to work correctly on 64 byte input
319 * lines. We process the line and then need to
320 * accept the ’\n’ */
321 if ((v != B64_EOF) && (n >= 64)) exp_nl=1;
322 if (n > 0)
323 {
324 v=EVP_DecodeBlock(out,d,n);
325 n=0;

new/usr/src/lib/openssl/libsunw_crypto/evp/encode.c 6

326 if (v < 0) { rv=0; goto end; }
327 ret+=(v-eof);
328 }
329 else
330 {
331 eof=1;
332 v=0;
333 }

335 /* This is the case where we have had a short
336 * but valid input line */
337 if ((v < ctx->length) && eof)
338 {
339 rv=0;
340 goto end;
341 }
342 else
343 ctx->length=v;

345 if (seof >= 0) { rv=0; goto end; }
346 out+=v;
347 }
348 }
349 rv=1;
350 end:
351 *outl=ret;
352 ctx->num=n;
353 ctx->line_num=ln;
354 ctx->expect_nl=exp_nl;
355 return(rv);
356 }

358 int EVP_DecodeBlock(unsigned char *t, const unsigned char *f, int n)
359 {
360 int i,ret=0,a,b,c,d;
361 unsigned long l;

363 /* trim white space from the start of the line. */
364 while ((conv_ascii2bin(*f) == B64_WS) && (n > 0))
365 {
366 f++;
367 n--;
368 }

370 /* strip off stuff at the end of the line
371 * ascii2bin values B64_WS, B64_EOLN, B64_EOLN and B64_EOF */
372 while ((n > 3) && (B64_NOT_BASE64(conv_ascii2bin(f[n-1]))))
373 n--;

375 if (n%4 != 0) return(-1);

377 for (i=0; i<n; i+=4)
378 {
379 a=conv_ascii2bin(*(f++));
380 b=conv_ascii2bin(*(f++));
381 c=conv_ascii2bin(*(f++));
382 d=conv_ascii2bin(*(f++));
383 if ((a & 0x80) || (b & 0x80) ||
384 (c & 0x80) || (d & 0x80))
385 return(-1);
386 l=((((unsigned long)a)<<18L)|
387 (((unsigned long)b)<<12L)|
388 (((unsigned long)c)<< 6L)|
389 (((unsigned long)d)));
390 *(t++)=(unsigned char)(l>>16L)&0xff;
391 *(t++)=(unsigned char)(l>> 8L)&0xff;

new/usr/src/lib/openssl/libsunw_crypto/evp/encode.c 7

392 *(t++)=(unsigned char)(l)&0xff;
393 ret+=3;
394 }
395 return(ret);
396 }

398 int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl)
399 {
400 int i;

402 *outl=0;
403 if (ctx->num != 0)
404 {
405 i=EVP_DecodeBlock(out,ctx->enc_data,ctx->num);
406 if (i < 0) return(-1);
407 ctx->num=0;
408 *outl=i;
409 return(1);
410 }
411 else
412 return(1);
413 }

415 #ifdef undef
416 int EVP_DecodeValid(unsigned char *buf, int len)
417 {
418 int i,num=0,bad=0;

420 if (len == 0) return(-1);
421 while (conv_ascii2bin(*buf) == B64_WS)
422 {
423 buf++;
424 len--;
425 if (len == 0) return(-1);
426 }

428 for (i=len; i >= 4; i-=4)
429 {
430 if ((conv_ascii2bin(buf[0]) >= 0x40) ||
431 (conv_ascii2bin(buf[1]) >= 0x40) ||
432 (conv_ascii2bin(buf[2]) >= 0x40) ||
433 (conv_ascii2bin(buf[3]) >= 0x40))
434 return(-1);
435 buf+=4;
436 num+=1+(buf[2] != ’=’)+(buf[3] != ’=’);
437 }
438 if ((i == 1) && (conv_ascii2bin(buf[0]) == B64_EOLN))
439 return(num);
440 if ((i == 2) && (conv_ascii2bin(buf[0]) == B64_EOLN) &&
441 (conv_ascii2bin(buf[0]) == B64_EOLN))
442 return(num);
443 return(1);
444 }
445 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_acnf.c 1

**
 3041 Fri May 30 18:31:52 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/evp_acnf.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* evp_acnf.c */
2 /* Written by Stephen Henson (steve@openssl.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include "cryptlib.h"
60 #include <openssl/evp.h>
61 #include <openssl/conf.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_acnf.c 2

64 /* Load all algorithms and configure OpenSSL.
65 * This function is called automatically when
66 * OPENSSL_LOAD_CONF is set.
67 */

69 void OPENSSL_add_all_algorithms_conf(void)
70 {
71 OPENSSL_add_all_algorithms_noconf();
72 OPENSSL_config(NULL);
73 }

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_cnf.c 1

**
 4161 Fri May 30 18:31:52 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/evp_cnf.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* evp_cnf.c */
2 /* Written by Stephen Henson (steve@openssl.org) for the OpenSSL
3 * project 2007.
4 */
5 /* ==
6 * Copyright (c) 2007 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <ctype.h>
61 #include <openssl/crypto.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_cnf.c 2

62 #include "cryptlib.h"
63 #include <openssl/conf.h>
64 #include <openssl/dso.h>
65 #include <openssl/x509.h>
66 #include <openssl/x509v3.h>
67 #ifdef OPENSSL_FIPS
68 #include <openssl/fips.h>
69 #endif

72 /* Algorithm configuration module. */

74 static int alg_module_init(CONF_IMODULE *md, const CONF *cnf)
75 {
76 int i;
77 const char *oid_section;
78 STACK_OF(CONF_VALUE) *sktmp;
79 CONF_VALUE *oval;
80 oid_section = CONF_imodule_get_value(md);
81 if(!(sktmp = NCONF_get_section(cnf, oid_section)))
82 {
83 EVPerr(EVP_F_ALG_MODULE_INIT, EVP_R_ERROR_LOADING_SECTION);
84 return 0;
85 }
86 for(i = 0; i < sk_CONF_VALUE_num(sktmp); i++)
87 {
88 oval = sk_CONF_VALUE_value(sktmp, i);
89 if (!strcmp(oval->name, "fips_mode"))
90 {
91 int m;
92 if (!X509V3_get_value_bool(oval, &m))
93 {
94 EVPerr(EVP_F_ALG_MODULE_INIT, EVP_R_INVALID_FIPS
95 return 0;
96 }
97 if (m > 0)
98 {
99 #ifdef OPENSSL_FIPS
100 if (!FIPS_mode() && !FIPS_mode_set(1))
101 {
102 EVPerr(EVP_F_ALG_MODULE_INIT, EVP_R_ERRO
103 return 0;
104 }
105 #else
106 EVPerr(EVP_F_ALG_MODULE_INIT, EVP_R_FIPS_MODE_NO
107 return 0;
108 #endif
109 }
110 }
111 else
112 {
113 EVPerr(EVP_F_ALG_MODULE_INIT, EVP_R_UNKNOWN_OPTION);
114 ERR_add_error_data(4, "name=", oval->name,
115 ", value=", oval->value);
116 }
117
118 }
119 return 1;
120 }

122 void EVP_add_alg_module(void)
123 {
124 CONF_module_add("alg_section", alg_module_init, 0);
125 }

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_enc.c 1

**
 16741 Fri May 30 18:31:52 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/evp_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/evp_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_enc.c 2

62 #include <openssl/err.h>
63 #include <openssl/rand.h>
64 #ifndef OPENSSL_NO_ENGINE
65 #include <openssl/engine.h>
66 #endif
67 #ifdef OPENSSL_FIPS
68 #include <openssl/fips.h>
69 #endif
70 #include "evp_locl.h"

72 #ifdef OPENSSL_FIPS
73 #define M_do_cipher(ctx, out, in, inl) FIPS_cipher(ctx, out, in, inl)
74 #else
75 #define M_do_cipher(ctx, out, in, inl) ctx->cipher->do_cipher(ctx, out, in, inl)
76 #endif

79 const char EVP_version[]="EVP" OPENSSL_VERSION_PTEXT;

81 void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx)
82 {
83 memset(ctx,0,sizeof(EVP_CIPHER_CTX));
84 /* ctx->cipher=NULL; */
85 }

87 EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void)
88 {
89 EVP_CIPHER_CTX *ctx=OPENSSL_malloc(sizeof *ctx);
90 if (ctx)
91 EVP_CIPHER_CTX_init(ctx);
92 return ctx;
93 }

95 int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
96 const unsigned char *key, const unsigned char *iv, int enc)
97 {
98 if (cipher)
99 EVP_CIPHER_CTX_init(ctx);
100 return EVP_CipherInit_ex(ctx,cipher,NULL,key,iv,enc);
101 }

103 int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *imp
104 const unsigned char *key, const unsigned char *iv, int enc)
105 {
106 if (enc == -1)
107 enc = ctx->encrypt;
108 else
109 {
110 if (enc)
111 enc = 1;
112 ctx->encrypt = enc;
113 }
114 #ifndef OPENSSL_NO_ENGINE
115 /* Whether it’s nice or not, "Inits" can be used on "Final"’d contexts
116 * so this context may already have an ENGINE! Try to avoid releasing
117 * the previous handle, re-querying for an ENGINE, and having a
118 * reinitialisation, when it may all be unecessary. */
119 if (ctx->engine && ctx->cipher && (!cipher ||
120 (cipher && (cipher->nid == ctx->cipher->nid))))
121 goto skip_to_init;
122 #endif
123 if (cipher)
124 {
125 /* Ensure a context left lying around from last time is cleared
126 * (the previous check attempted to avoid this if the same
127 * ENGINE and EVP_CIPHER could be used). */

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_enc.c 3

128 if (ctx->cipher)
129 {
130 unsigned long flags = ctx->flags;
131 EVP_CIPHER_CTX_cleanup(ctx);
132 /* Restore encrypt and flags */
133 ctx->encrypt = enc;
134 ctx->flags = flags;
135 }
136 #ifndef OPENSSL_NO_ENGINE
137 if(impl)
138 {
139 if (!ENGINE_init(impl))
140 {
141 EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZA
142 return 0;
143 }
144 }
145 else
146 /* Ask if an ENGINE is reserved for this job */
147 impl = ENGINE_get_cipher_engine(cipher->nid);
148 if(impl)
149 {
150 /* There’s an ENGINE for this job ... (apparently) */
151 const EVP_CIPHER *c = ENGINE_get_cipher(impl, cipher->ni
152 if(!c)
153 {
154 /* One positive side-effect of US’s export
155 * control history, is that we should at least
156 * be able to avoid using US mispellings of
157 * "initialisation"? */
158 EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZA
159 return 0;
160 }
161 /* We’ll use the ENGINE’s private cipher definition */
162 cipher = c;
163 /* Store the ENGINE functional reference so we know
164 * ’cipher’ came from an ENGINE and we need to release
165 * it when done. */
166 ctx->engine = impl;
167 }
168 else
169 ctx->engine = NULL;
170 #endif

172 #ifdef OPENSSL_FIPS
173 if (FIPS_mode())
174 return FIPS_cipherinit(ctx, cipher, key, iv, enc);
175 #endif
176 ctx->cipher=cipher;
177 if (ctx->cipher->ctx_size)
178 {
179 ctx->cipher_data=OPENSSL_malloc(ctx->cipher->ctx_size);
180 if (!ctx->cipher_data)
181 {
182 EVPerr(EVP_F_EVP_CIPHERINIT_EX, ERR_R_MALLOC_FAI
183 return 0;
184 }
185 }
186 else
187 {
188 ctx->cipher_data = NULL;
189 }
190 ctx->key_len = cipher->key_len;
191 ctx->flags = 0;
192 if(ctx->cipher->flags & EVP_CIPH_CTRL_INIT)
193 {

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_enc.c 4

194 if(!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL))
195 {
196 EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZA
197 return 0;
198 }
199 }
200 }
201 else if(!ctx->cipher)
202 {
203 EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_NO_CIPHER_SET);
204 return 0;
205 }
206 #ifndef OPENSSL_NO_ENGINE
207 skip_to_init:
208 #endif
209 #ifdef OPENSSL_FIPS
210 if (FIPS_mode())
211 return FIPS_cipherinit(ctx, cipher, key, iv, enc);
212 #endif
213 /* we assume block size is a power of 2 in *cryptUpdate */
214 OPENSSL_assert(ctx->cipher->block_size == 1
215 || ctx->cipher->block_size == 8
216 || ctx->cipher->block_size == 16);

218 if(!(EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_CUSTOM_IV)) {
219 switch(EVP_CIPHER_CTX_mode(ctx)) {

221 case EVP_CIPH_STREAM_CIPHER:
222 case EVP_CIPH_ECB_MODE:
223 break;

225 case EVP_CIPH_CFB_MODE:
226 case EVP_CIPH_OFB_MODE:

228 ctx->num = 0;
229 /* fall-through */

231 case EVP_CIPH_CBC_MODE:

233 OPENSSL_assert(EVP_CIPHER_CTX_iv_length(ctx) <=
234 (int)sizeof(ctx->iv));
235 if(iv) memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx
236 memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx))
237 break;

239 case EVP_CIPH_CTR_MODE:
240 ctx->num = 0;
241 /* Don’t reuse IV for CTR mode */
242 if(iv)
243 memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx
244 break;

246 default:
247 return 0;
248 break;
249 }
250 }

252 if(key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) {
253 if(!ctx->cipher->init(ctx,key,iv,enc)) return 0;
254 }
255 ctx->buf_len=0;
256 ctx->final_used=0;
257 ctx->block_mask=ctx->cipher->block_size-1;
258 return 1;
259 }

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_enc.c 5

261 int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl,
262 const unsigned char *in, int inl)
263 {
264 if (ctx->encrypt)
265 return EVP_EncryptUpdate(ctx,out,outl,in,inl);
266 else return EVP_DecryptUpdate(ctx,out,outl,in,inl);
267 }

269 int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl)
270 {
271 if (ctx->encrypt)
272 return EVP_EncryptFinal_ex(ctx,out,outl);
273 else return EVP_DecryptFinal_ex(ctx,out,outl);
274 }

276 int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl)
277 {
278 if (ctx->encrypt)
279 return EVP_EncryptFinal(ctx,out,outl);
280 else return EVP_DecryptFinal(ctx,out,outl);
281 }

283 int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
284 const unsigned char *key, const unsigned char *iv)
285 {
286 return EVP_CipherInit(ctx, cipher, key, iv, 1);
287 }

289 int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx,const EVP_CIPHER *cipher, ENGINE *imp
290 const unsigned char *key, const unsigned char *iv)
291 {
292 return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1);
293 }

295 int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
296 const unsigned char *key, const unsigned char *iv)
297 {
298 return EVP_CipherInit(ctx, cipher, key, iv, 0);
299 }

301 int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *im
302 const unsigned char *key, const unsigned char *iv)
303 {
304 return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0);
305 }

307 int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl,
308 const unsigned char *in, int inl)
309 {
310 int i,j,bl;

312 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER)
313 {
314 i = M_do_cipher(ctx, out, in, inl);
315 if (i < 0)
316 return 0;
317 else
318 *outl = i;
319 return 1;
320 }

322 if (inl <= 0)
323 {
324 *outl = 0;
325 return inl == 0;

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_enc.c 6

326 }

328 if(ctx->buf_len == 0 && (inl&(ctx->block_mask)) == 0)
329 {
330 if(M_do_cipher(ctx,out,in,inl))
331 {
332 *outl=inl;
333 return 1;
334 }
335 else
336 {
337 *outl=0;
338 return 0;
339 }
340 }
341 i=ctx->buf_len;
342 bl=ctx->cipher->block_size;
343 OPENSSL_assert(bl <= (int)sizeof(ctx->buf));
344 if (i != 0)
345 {
346 if (i+inl < bl)
347 {
348 memcpy(&(ctx->buf[i]),in,inl);
349 ctx->buf_len+=inl;
350 *outl=0;
351 return 1;
352 }
353 else
354 {
355 j=bl-i;
356 memcpy(&(ctx->buf[i]),in,j);
357 if(!M_do_cipher(ctx,out,ctx->buf,bl)) return 0;
358 inl-=j;
359 in+=j;
360 out+=bl;
361 *outl=bl;
362 }
363 }
364 else
365 *outl = 0;
366 i=inl&(bl-1);
367 inl-=i;
368 if (inl > 0)
369 {
370 if(!M_do_cipher(ctx,out,in,inl)) return 0;
371 *outl+=inl;
372 }

374 if (i != 0)
375 memcpy(ctx->buf,&(in[inl]),i);
376 ctx->buf_len=i;
377 return 1;
378 }

380 int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl)
381 {
382 int ret;
383 ret = EVP_EncryptFinal_ex(ctx, out, outl);
384 return ret;
385 }

387 int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl)
388 {
389 int n,ret;
390 unsigned int i, b, bl;

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_enc.c 7

392 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER)
393 {
394 ret = M_do_cipher(ctx, out, NULL, 0);
395 if (ret < 0)
396 return 0;
397 else
398 *outl = ret;
399 return 1;
400 }

402 b=ctx->cipher->block_size;
403 OPENSSL_assert(b <= sizeof ctx->buf);
404 if (b == 1)
405 {
406 *outl=0;
407 return 1;
408 }
409 bl=ctx->buf_len;
410 if (ctx->flags & EVP_CIPH_NO_PADDING)
411 {
412 if(bl)
413 {
414 EVPerr(EVP_F_EVP_ENCRYPTFINAL_EX,EVP_R_DATA_NOT_MULTIPLE
415 return 0;
416 }
417 *outl = 0;
418 return 1;
419 }

421 n=b-bl;
422 for (i=bl; i<b; i++)
423 ctx->buf[i]=n;
424 ret=M_do_cipher(ctx,out,ctx->buf,b);

427 if(ret)
428 *outl=b;

430 return ret;
431 }

433 int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl,
434 const unsigned char *in, int inl)
435 {
436 int fix_len;
437 unsigned int b;

439 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER)
440 {
441 fix_len = M_do_cipher(ctx, out, in, inl);
442 if (fix_len < 0)
443 {
444 *outl = 0;
445 return 0;
446 }
447 else
448 *outl = fix_len;
449 return 1;
450 }

452 if (inl <= 0)
453 {
454 *outl = 0;
455 return inl == 0;
456 }

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_enc.c 8

458 if (ctx->flags & EVP_CIPH_NO_PADDING)
459 return EVP_EncryptUpdate(ctx, out, outl, in, inl);

461 b=ctx->cipher->block_size;
462 OPENSSL_assert(b <= sizeof ctx->final);

464 if(ctx->final_used)
465 {
466 memcpy(out,ctx->final,b);
467 out+=b;
468 fix_len = 1;
469 }
470 else
471 fix_len = 0;

474 if(!EVP_EncryptUpdate(ctx,out,outl,in,inl))
475 return 0;

477 /* if we have ’decrypted’ a multiple of block size, make sure
478 * we have a copy of this last block */
479 if (b > 1 && !ctx->buf_len)
480 {
481 *outl-=b;
482 ctx->final_used=1;
483 memcpy(ctx->final,&out[*outl],b);
484 }
485 else
486 ctx->final_used = 0;

488 if (fix_len)
489 *outl += b;
490
491 return 1;
492 }

494 int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl)
495 {
496 int ret;
497 ret = EVP_DecryptFinal_ex(ctx, out, outl);
498 return ret;
499 }

501 int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl)
502 {
503 int i,n;
504 unsigned int b;
505 *outl=0;

507 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER)
508 {
509 i = M_do_cipher(ctx, out, NULL, 0);
510 if (i < 0)
511 return 0;
512 else
513 *outl = i;
514 return 1;
515 }

517 b=ctx->cipher->block_size;
518 if (ctx->flags & EVP_CIPH_NO_PADDING)
519 {
520 if(ctx->buf_len)
521 {
522 EVPerr(EVP_F_EVP_DECRYPTFINAL_EX,EVP_R_DATA_NOT_MULTIPLE
523 return 0;

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_enc.c 9

524 }
525 *outl = 0;
526 return 1;
527 }
528 if (b > 1)
529 {
530 if (ctx->buf_len || !ctx->final_used)
531 {
532 EVPerr(EVP_F_EVP_DECRYPTFINAL_EX,EVP_R_WRONG_FINAL_BLOCK
533 return(0);
534 }
535 OPENSSL_assert(b <= sizeof ctx->final);
536 n=ctx->final[b-1];
537 if (n == 0 || n > (int)b)
538 {
539 EVPerr(EVP_F_EVP_DECRYPTFINAL_EX,EVP_R_BAD_DECRYPT);
540 return(0);
541 }
542 for (i=0; i<n; i++)
543 {
544 if (ctx->final[--b] != n)
545 {
546 EVPerr(EVP_F_EVP_DECRYPTFINAL_EX,EVP_R_BAD_DECRY
547 return(0);
548 }
549 }
550 n=ctx->cipher->block_size-n;
551 for (i=0; i<n; i++)
552 out[i]=ctx->final[i];
553 *outl=n;
554 }
555 else
556 *outl=0;
557 return(1);
558 }

560 void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx)
561 {
562 if (ctx)
563 {
564 EVP_CIPHER_CTX_cleanup(ctx);
565 OPENSSL_free(ctx);
566 }
567 }

569 int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c)
570 {
571 #ifndef OPENSSL_FIPS
572 if (c->cipher != NULL)
573 {
574 if(c->cipher->cleanup && !c->cipher->cleanup(c))
575 return 0;
576 /* Cleanse cipher context data */
577 if (c->cipher_data)
578 OPENSSL_cleanse(c->cipher_data, c->cipher->ctx_size);
579 }
580 if (c->cipher_data)
581 OPENSSL_free(c->cipher_data);
582 #endif
583 #ifndef OPENSSL_NO_ENGINE
584 if (c->engine)
585 /* The EVP_CIPHER we used belongs to an ENGINE, release the
586 * functional reference we held for this reason. */
587 ENGINE_finish(c->engine);
588 #endif
589 #ifdef OPENSSL_FIPS

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_enc.c 10

590 FIPS_cipher_ctx_cleanup(c);
591 #endif
592 memset(c,0,sizeof(EVP_CIPHER_CTX));
593 return 1;
594 }

596 int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, int keylen)
597 {
598 if(c->cipher->flags & EVP_CIPH_CUSTOM_KEY_LENGTH)
599 return EVP_CIPHER_CTX_ctrl(c, EVP_CTRL_SET_KEY_LENGTH, keylen, N
600 if(c->key_len == keylen) return 1;
601 if((keylen > 0) && (c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH))
602 {
603 c->key_len = keylen;
604 return 1;
605 }
606 EVPerr(EVP_F_EVP_CIPHER_CTX_SET_KEY_LENGTH,EVP_R_INVALID_KEY_LENGTH);
607 return 0;
608 }

610 int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad)
611 {
612 if (pad) ctx->flags &= ~EVP_CIPH_NO_PADDING;
613 else ctx->flags |= EVP_CIPH_NO_PADDING;
614 return 1;
615 }

617 int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
618 {
619 int ret;
620 if(!ctx->cipher) {
621 EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, EVP_R_NO_CIPHER_SET);
622 return 0;
623 }

625 if(!ctx->cipher->ctrl) {
626 EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, EVP_R_CTRL_NOT_IMPLEMENTED);
627 return 0;
628 }

630 ret = ctx->cipher->ctrl(ctx, type, arg, ptr);
631 if(ret == -1) {
632 EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, EVP_R_CTRL_OPERATION_NOT_IMPLE
633 return 0;
634 }
635 return ret;
636 }

638 int EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, unsigned char *key)
639 {
640 if (ctx->cipher->flags & EVP_CIPH_RAND_KEY)
641 return EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_RAND_KEY, 0, key);
642 if (RAND_bytes(key, ctx->key_len) <= 0)
643 return 0;
644 return 1;
645 }

647 int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in)
648 {
649 if ((in == NULL) || (in->cipher == NULL))
650 {
651 EVPerr(EVP_F_EVP_CIPHER_CTX_COPY,EVP_R_INPUT_NOT_INITIALIZED);
652 return 0;
653 }
654 #ifndef OPENSSL_NO_ENGINE
655 /* Make sure it’s safe to copy a cipher context using an ENGINE */

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_enc.c 11

656 if (in->engine && !ENGINE_init(in->engine))
657 {
658 EVPerr(EVP_F_EVP_CIPHER_CTX_COPY,ERR_R_ENGINE_LIB);
659 return 0;
660 }
661 #endif

663 EVP_CIPHER_CTX_cleanup(out);
664 memcpy(out,in,sizeof *out);

666 if (in->cipher_data && in->cipher->ctx_size)
667 {
668 out->cipher_data=OPENSSL_malloc(in->cipher->ctx_size);
669 if (!out->cipher_data)
670 {
671 EVPerr(EVP_F_EVP_CIPHER_CTX_COPY,ERR_R_MALLOC_FAILURE);
672 return 0;
673 }
674 memcpy(out->cipher_data,in->cipher_data,in->cipher->ctx_size);
675 }

677 if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY)
678 return in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0,
679 return 1;
680 }

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_err.c 1

**
 12656 Fri May 30 18:31:52 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/evp_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/evp_err.c */
2 /* ==
3 * Copyright (c) 1999-2011 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/evp.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_EVP,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_EVP,0,reason)

71 static ERR_STRING_DATA EVP_str_functs[]=
72 {
73 {ERR_FUNC(EVP_F_AESNI_INIT_KEY), "AESNI_INIT_KEY"},
74 {ERR_FUNC(EVP_F_AESNI_XTS_CIPHER), "AESNI_XTS_CIPHER"},
75 {ERR_FUNC(EVP_F_AES_INIT_KEY), "AES_INIT_KEY"},
76 {ERR_FUNC(EVP_F_AES_XTS), "AES_XTS"},
77 {ERR_FUNC(EVP_F_AES_XTS_CIPHER), "AES_XTS_CIPHER"},
78 {ERR_FUNC(EVP_F_ALG_MODULE_INIT), "ALG_MODULE_INIT"},
79 {ERR_FUNC(EVP_F_CAMELLIA_INIT_KEY), "CAMELLIA_INIT_KEY"},
80 {ERR_FUNC(EVP_F_CMAC_INIT), "CMAC_INIT"},
81 {ERR_FUNC(EVP_F_D2I_PKEY), "D2I_PKEY"},
82 {ERR_FUNC(EVP_F_DO_SIGVER_INIT), "DO_SIGVER_INIT"},
83 {ERR_FUNC(EVP_F_DSAPKEY2PKCS8), "DSAPKEY2PKCS8"},
84 {ERR_FUNC(EVP_F_DSA_PKEY2PKCS8), "DSA_PKEY2PKCS8"},
85 {ERR_FUNC(EVP_F_ECDSA_PKEY2PKCS8), "ECDSA_PKEY2PKCS8"},
86 {ERR_FUNC(EVP_F_ECKEY_PKEY2PKCS8), "ECKEY_PKEY2PKCS8"},
87 {ERR_FUNC(EVP_F_EVP_CIPHERINIT_EX), "EVP_CipherInit_ex"},
88 {ERR_FUNC(EVP_F_EVP_CIPHER_CTX_COPY), "EVP_CIPHER_CTX_copy"},
89 {ERR_FUNC(EVP_F_EVP_CIPHER_CTX_CTRL), "EVP_CIPHER_CTX_ctrl"},
90 {ERR_FUNC(EVP_F_EVP_CIPHER_CTX_SET_KEY_LENGTH), "EVP_CIPHER_CTX_set_key_length"}
91 {ERR_FUNC(EVP_F_EVP_DECRYPTFINAL_EX), "EVP_DecryptFinal_ex"},
92 {ERR_FUNC(EVP_F_EVP_DIGESTINIT_EX), "EVP_DigestInit_ex"},
93 {ERR_FUNC(EVP_F_EVP_ENCRYPTFINAL_EX), "EVP_EncryptFinal_ex"},
94 {ERR_FUNC(EVP_F_EVP_MD_CTX_COPY_EX), "EVP_MD_CTX_copy_ex"},
95 {ERR_FUNC(EVP_F_EVP_MD_SIZE), "EVP_MD_size"},
96 {ERR_FUNC(EVP_F_EVP_OPENINIT), "EVP_OpenInit"},
97 {ERR_FUNC(EVP_F_EVP_PBE_ALG_ADD), "EVP_PBE_alg_add"},
98 {ERR_FUNC(EVP_F_EVP_PBE_ALG_ADD_TYPE), "EVP_PBE_alg_add_type"},
99 {ERR_FUNC(EVP_F_EVP_PBE_CIPHERINIT), "EVP_PBE_CipherInit"},
100 {ERR_FUNC(EVP_F_EVP_PKCS82PKEY), "EVP_PKCS82PKEY"},
101 {ERR_FUNC(EVP_F_EVP_PKCS82PKEY_BROKEN), "EVP_PKCS82PKEY_BROKEN"},
102 {ERR_FUNC(EVP_F_EVP_PKEY2PKCS8_BROKEN), "EVP_PKEY2PKCS8_broken"},
103 {ERR_FUNC(EVP_F_EVP_PKEY_COPY_PARAMETERS), "EVP_PKEY_copy_parameters"},
104 {ERR_FUNC(EVP_F_EVP_PKEY_CTX_CTRL), "EVP_PKEY_CTX_ctrl"},
105 {ERR_FUNC(EVP_F_EVP_PKEY_CTX_CTRL_STR), "EVP_PKEY_CTX_ctrl_str"},
106 {ERR_FUNC(EVP_F_EVP_PKEY_CTX_DUP), "EVP_PKEY_CTX_dup"},
107 {ERR_FUNC(EVP_F_EVP_PKEY_DECRYPT), "EVP_PKEY_decrypt"},
108 {ERR_FUNC(EVP_F_EVP_PKEY_DECRYPT_INIT), "EVP_PKEY_decrypt_init"},
109 {ERR_FUNC(EVP_F_EVP_PKEY_DECRYPT_OLD), "EVP_PKEY_decrypt_old"},
110 {ERR_FUNC(EVP_F_EVP_PKEY_DERIVE), "EVP_PKEY_derive"},
111 {ERR_FUNC(EVP_F_EVP_PKEY_DERIVE_INIT), "EVP_PKEY_derive_init"},
112 {ERR_FUNC(EVP_F_EVP_PKEY_DERIVE_SET_PEER), "EVP_PKEY_derive_set_peer"},
113 {ERR_FUNC(EVP_F_EVP_PKEY_ENCRYPT), "EVP_PKEY_encrypt"},
114 {ERR_FUNC(EVP_F_EVP_PKEY_ENCRYPT_INIT), "EVP_PKEY_encrypt_init"},
115 {ERR_FUNC(EVP_F_EVP_PKEY_ENCRYPT_OLD), "EVP_PKEY_encrypt_old"},
116 {ERR_FUNC(EVP_F_EVP_PKEY_GET1_DH), "EVP_PKEY_get1_DH"},
117 {ERR_FUNC(EVP_F_EVP_PKEY_GET1_DSA), "EVP_PKEY_get1_DSA"},
118 {ERR_FUNC(EVP_F_EVP_PKEY_GET1_ECDSA), "EVP_PKEY_GET1_ECDSA"},
119 {ERR_FUNC(EVP_F_EVP_PKEY_GET1_EC_KEY), "EVP_PKEY_get1_EC_KEY"},
120 {ERR_FUNC(EVP_F_EVP_PKEY_GET1_RSA), "EVP_PKEY_get1_RSA"},
121 {ERR_FUNC(EVP_F_EVP_PKEY_KEYGEN), "EVP_PKEY_keygen"},
122 {ERR_FUNC(EVP_F_EVP_PKEY_KEYGEN_INIT), "EVP_PKEY_keygen_init"},
123 {ERR_FUNC(EVP_F_EVP_PKEY_NEW), "EVP_PKEY_new"},
124 {ERR_FUNC(EVP_F_EVP_PKEY_PARAMGEN), "EVP_PKEY_paramgen"},
125 {ERR_FUNC(EVP_F_EVP_PKEY_PARAMGEN_INIT), "EVP_PKEY_paramgen_init"},
126 {ERR_FUNC(EVP_F_EVP_PKEY_SIGN), "EVP_PKEY_sign"},
127 {ERR_FUNC(EVP_F_EVP_PKEY_SIGN_INIT), "EVP_PKEY_sign_init"},

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_err.c 3

128 {ERR_FUNC(EVP_F_EVP_PKEY_VERIFY), "EVP_PKEY_verify"},
129 {ERR_FUNC(EVP_F_EVP_PKEY_VERIFY_INIT), "EVP_PKEY_verify_init"},
130 {ERR_FUNC(EVP_F_EVP_PKEY_VERIFY_RECOVER), "EVP_PKEY_verify_recover"},
131 {ERR_FUNC(EVP_F_EVP_PKEY_VERIFY_RECOVER_INIT), "EVP_PKEY_verify_recover_init"},
132 {ERR_FUNC(EVP_F_EVP_RIJNDAEL), "EVP_RIJNDAEL"},
133 {ERR_FUNC(EVP_F_EVP_SIGNFINAL), "EVP_SignFinal"},
134 {ERR_FUNC(EVP_F_EVP_VERIFYFINAL), "EVP_VerifyFinal"},
135 {ERR_FUNC(EVP_F_FIPS_CIPHERINIT), "FIPS_CIPHERINIT"},
136 {ERR_FUNC(EVP_F_FIPS_CIPHER_CTX_COPY), "FIPS_CIPHER_CTX_COPY"},
137 {ERR_FUNC(EVP_F_FIPS_CIPHER_CTX_CTRL), "FIPS_CIPHER_CTX_CTRL"},
138 {ERR_FUNC(EVP_F_FIPS_CIPHER_CTX_SET_KEY_LENGTH), "FIPS_CIPHER_CTX_SET_KEY
139 {ERR_FUNC(EVP_F_FIPS_DIGESTINIT), "FIPS_DIGESTINIT"},
140 {ERR_FUNC(EVP_F_FIPS_MD_CTX_COPY), "FIPS_MD_CTX_COPY"},
141 {ERR_FUNC(EVP_F_HMAC_INIT_EX), "HMAC_Init_ex"},
142 {ERR_FUNC(EVP_F_INT_CTX_NEW), "INT_CTX_NEW"},
143 {ERR_FUNC(EVP_F_PKCS5_PBE_KEYIVGEN), "PKCS5_PBE_keyivgen"},
144 {ERR_FUNC(EVP_F_PKCS5_V2_PBE_KEYIVGEN), "PKCS5_v2_PBE_keyivgen"},
145 {ERR_FUNC(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN), "PKCS5_V2_PBKDF2_KEYIVGEN"},
146 {ERR_FUNC(EVP_F_PKCS8_SET_BROKEN), "PKCS8_set_broken"},
147 {ERR_FUNC(EVP_F_PKEY_SET_TYPE), "PKEY_SET_TYPE"},
148 {ERR_FUNC(EVP_F_RC2_MAGIC_TO_METH), "RC2_MAGIC_TO_METH"},
149 {ERR_FUNC(EVP_F_RC5_CTRL), "RC5_CTRL"},
150 {0,NULL}
151 };

153 static ERR_STRING_DATA EVP_str_reasons[]=
154 {
155 {ERR_REASON(EVP_R_AES_IV_SETUP_FAILED) ,"aes iv setup failed"},
156 {ERR_REASON(EVP_R_AES_KEY_SETUP_FAILED) ,"aes key setup failed"},
157 {ERR_REASON(EVP_R_ASN1_LIB) ,"asn1 lib"},
158 {ERR_REASON(EVP_R_BAD_BLOCK_LENGTH) ,"bad block length"},
159 {ERR_REASON(EVP_R_BAD_DECRYPT) ,"bad decrypt"},
160 {ERR_REASON(EVP_R_BAD_KEY_LENGTH) ,"bad key length"},
161 {ERR_REASON(EVP_R_BN_DECODE_ERROR) ,"bn decode error"},
162 {ERR_REASON(EVP_R_BN_PUBKEY_ERROR) ,"bn pubkey error"},
163 {ERR_REASON(EVP_R_BUFFER_TOO_SMALL) ,"buffer too small"},
164 {ERR_REASON(EVP_R_CAMELLIA_KEY_SETUP_FAILED),"camellia key setup failed"},
165 {ERR_REASON(EVP_R_CIPHER_PARAMETER_ERROR),"cipher parameter error"},
166 {ERR_REASON(EVP_R_COMMAND_NOT_SUPPORTED) ,"command not supported"},
167 {ERR_REASON(EVP_R_CTRL_NOT_IMPLEMENTED) ,"ctrl not implemented"},
168 {ERR_REASON(EVP_R_CTRL_OPERATION_NOT_IMPLEMENTED),"ctrl operation not implemente
169 {ERR_REASON(EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH),"data not multiple of block
170 {ERR_REASON(EVP_R_DECODE_ERROR) ,"decode error"},
171 {ERR_REASON(EVP_R_DIFFERENT_KEY_TYPES) ,"different key types"},
172 {ERR_REASON(EVP_R_DIFFERENT_PARAMETERS) ,"different parameters"},
173 {ERR_REASON(EVP_R_DISABLED_FOR_FIPS) ,"disabled for fips"},
174 {ERR_REASON(EVP_R_ENCODE_ERROR) ,"encode error"},
175 {ERR_REASON(EVP_R_ERROR_LOADING_SECTION) ,"error loading section"},
176 {ERR_REASON(EVP_R_ERROR_SETTING_FIPS_MODE),"error setting fips mode"},
177 {ERR_REASON(EVP_R_EVP_PBE_CIPHERINIT_ERROR),"evp pbe cipherinit error"},
178 {ERR_REASON(EVP_R_EXPECTING_AN_RSA_KEY) ,"expecting an rsa key"},
179 {ERR_REASON(EVP_R_EXPECTING_A_DH_KEY) ,"expecting a dh key"},
180 {ERR_REASON(EVP_R_EXPECTING_A_DSA_KEY) ,"expecting a dsa key"},
181 {ERR_REASON(EVP_R_EXPECTING_A_ECDSA_KEY) ,"expecting a ecdsa key"},
182 {ERR_REASON(EVP_R_EXPECTING_A_EC_KEY) ,"expecting a ec key"},
183 {ERR_REASON(EVP_R_FIPS_MODE_NOT_SUPPORTED),"fips mode not supported"},
184 {ERR_REASON(EVP_R_INITIALIZATION_ERROR) ,"initialization error"},
185 {ERR_REASON(EVP_R_INPUT_NOT_INITIALIZED) ,"input not initialized"},
186 {ERR_REASON(EVP_R_INVALID_DIGEST) ,"invalid digest"},
187 {ERR_REASON(EVP_R_INVALID_FIPS_MODE) ,"invalid fips mode"},
188 {ERR_REASON(EVP_R_INVALID_KEY_LENGTH) ,"invalid key length"},
189 {ERR_REASON(EVP_R_INVALID_OPERATION) ,"invalid operation"},
190 {ERR_REASON(EVP_R_IV_TOO_LARGE) ,"iv too large"},
191 {ERR_REASON(EVP_R_KEYGEN_FAILURE) ,"keygen failure"},
192 {ERR_REASON(EVP_R_MESSAGE_DIGEST_IS_NULL),"message digest is null"},
193 {ERR_REASON(EVP_R_METHOD_NOT_SUPPORTED) ,"method not supported"},

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_err.c 4

194 {ERR_REASON(EVP_R_MISSING_PARAMETERS) ,"missing parameters"},
195 {ERR_REASON(EVP_R_NO_CIPHER_SET) ,"no cipher set"},
196 {ERR_REASON(EVP_R_NO_DEFAULT_DIGEST) ,"no default digest"},
197 {ERR_REASON(EVP_R_NO_DIGEST_SET) ,"no digest set"},
198 {ERR_REASON(EVP_R_NO_DSA_PARAMETERS) ,"no dsa parameters"},
199 {ERR_REASON(EVP_R_NO_KEY_SET) ,"no key set"},
200 {ERR_REASON(EVP_R_NO_OPERATION_SET) ,"no operation set"},
201 {ERR_REASON(EVP_R_NO_SIGN_FUNCTION_CONFIGURED),"no sign function configured"},
202 {ERR_REASON(EVP_R_NO_VERIFY_FUNCTION_CONFIGURED),"no verify function configured"
203 {ERR_REASON(EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE),"operation not suppo
204 {ERR_REASON(EVP_R_OPERATON_NOT_INITIALIZED),"operaton not initialized"},
205 {ERR_REASON(EVP_R_PKCS8_UNKNOWN_BROKEN_TYPE),"pkcs8 unknown broken type"},
206 {ERR_REASON(EVP_R_PRIVATE_KEY_DECODE_ERROR),"private key decode error"},
207 {ERR_REASON(EVP_R_PRIVATE_KEY_ENCODE_ERROR),"private key encode error"},
208 {ERR_REASON(EVP_R_PUBLIC_KEY_NOT_RSA) ,"public key not rsa"},
209 {ERR_REASON(EVP_R_TOO_LARGE) ,"too large"},
210 {ERR_REASON(EVP_R_UNKNOWN_CIPHER) ,"unknown cipher"},
211 {ERR_REASON(EVP_R_UNKNOWN_DIGEST) ,"unknown digest"},
212 {ERR_REASON(EVP_R_UNKNOWN_OPTION) ,"unknown option"},
213 {ERR_REASON(EVP_R_UNKNOWN_PBE_ALGORITHM) ,"unknown pbe algorithm"},
214 {ERR_REASON(EVP_R_UNSUPORTED_NUMBER_OF_ROUNDS),"unsuported number of rounds"},
215 {ERR_REASON(EVP_R_UNSUPPORTED_ALGORITHM) ,"unsupported algorithm"},
216 {ERR_REASON(EVP_R_UNSUPPORTED_CIPHER) ,"unsupported cipher"},
217 {ERR_REASON(EVP_R_UNSUPPORTED_KEYLENGTH) ,"unsupported keylength"},
218 {ERR_REASON(EVP_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION),"unsupported key derivati
219 {ERR_REASON(EVP_R_UNSUPPORTED_KEY_SIZE) ,"unsupported key size"},
220 {ERR_REASON(EVP_R_UNSUPPORTED_PRF) ,"unsupported prf"},
221 {ERR_REASON(EVP_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM),"unsupported private key al
222 {ERR_REASON(EVP_R_UNSUPPORTED_SALT_TYPE) ,"unsupported salt type"},
223 {ERR_REASON(EVP_R_WRONG_FINAL_BLOCK_LENGTH),"wrong final block length"},
224 {ERR_REASON(EVP_R_WRONG_PUBLIC_KEY_TYPE) ,"wrong public key type"},
225 {0,NULL}
226 };

228 #endif

230 void ERR_load_EVP_strings(void)
231 {
232 #ifndef OPENSSL_NO_ERR

234 if (ERR_func_error_string(EVP_str_functs[0].error) == NULL)
235 {
236 ERR_load_strings(0,EVP_str_functs);
237 ERR_load_strings(0,EVP_str_reasons);
238 }
239 #endif
240 }

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_fips.c 1

**
 6353 Fri May 30 18:31:52 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/evp_fips.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/evp_fips.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2011 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 */

55 #include <openssl/evp.h>

57 #ifdef OPENSSL_FIPS
58 #include <openssl/fips.h>

60 const EVP_CIPHER *EVP_aes_128_cbc(void) { return FIPS_evp_aes_128_cbc(); }
61 const EVP_CIPHER *EVP_aes_128_ccm(void) { return FIPS_evp_aes_128_ccm(); }

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_fips.c 2

62 const EVP_CIPHER *EVP_aes_128_cfb1(void) { return FIPS_evp_aes_128_cfb1(); }
63 const EVP_CIPHER *EVP_aes_128_cfb128(void) { return FIPS_evp_aes_128_cfb128();
64 const EVP_CIPHER *EVP_aes_128_cfb8(void) { return FIPS_evp_aes_128_cfb8(); }
65 const EVP_CIPHER *EVP_aes_128_ctr(void) { return FIPS_evp_aes_128_ctr(); }
66 const EVP_CIPHER *EVP_aes_128_ecb(void) { return FIPS_evp_aes_128_ecb(); }
67 const EVP_CIPHER *EVP_aes_128_gcm(void) { return FIPS_evp_aes_128_gcm(); }
68 const EVP_CIPHER *EVP_aes_128_ofb(void) { return FIPS_evp_aes_128_ofb(); }
69 const EVP_CIPHER *EVP_aes_128_xts(void) { return FIPS_evp_aes_128_xts(); }
70 const EVP_CIPHER *EVP_aes_192_cbc(void) { return FIPS_evp_aes_192_cbc(); }
71 const EVP_CIPHER *EVP_aes_192_ccm(void) { return FIPS_evp_aes_192_ccm(); }
72 const EVP_CIPHER *EVP_aes_192_cfb1(void) { return FIPS_evp_aes_192_cfb1(); }
73 const EVP_CIPHER *EVP_aes_192_cfb128(void) { return FIPS_evp_aes_192_cfb128();
74 const EVP_CIPHER *EVP_aes_192_cfb8(void) { return FIPS_evp_aes_192_cfb8(); }
75 const EVP_CIPHER *EVP_aes_192_ctr(void) { return FIPS_evp_aes_192_ctr(); }
76 const EVP_CIPHER *EVP_aes_192_ecb(void) { return FIPS_evp_aes_192_ecb(); }
77 const EVP_CIPHER *EVP_aes_192_gcm(void) { return FIPS_evp_aes_192_gcm(); }
78 const EVP_CIPHER *EVP_aes_192_ofb(void) { return FIPS_evp_aes_192_ofb(); }
79 const EVP_CIPHER *EVP_aes_256_cbc(void) { return FIPS_evp_aes_256_cbc(); }
80 const EVP_CIPHER *EVP_aes_256_ccm(void) { return FIPS_evp_aes_256_ccm(); }
81 const EVP_CIPHER *EVP_aes_256_cfb1(void) { return FIPS_evp_aes_256_cfb1(); }
82 const EVP_CIPHER *EVP_aes_256_cfb128(void) { return FIPS_evp_aes_256_cfb128();
83 const EVP_CIPHER *EVP_aes_256_cfb8(void) { return FIPS_evp_aes_256_cfb8(); }
84 const EVP_CIPHER *EVP_aes_256_ctr(void) { return FIPS_evp_aes_256_ctr(); }
85 const EVP_CIPHER *EVP_aes_256_ecb(void) { return FIPS_evp_aes_256_ecb(); }
86 const EVP_CIPHER *EVP_aes_256_gcm(void) { return FIPS_evp_aes_256_gcm(); }
87 const EVP_CIPHER *EVP_aes_256_ofb(void) { return FIPS_evp_aes_256_ofb(); }
88 const EVP_CIPHER *EVP_aes_256_xts(void) { return FIPS_evp_aes_256_xts(); }
89 const EVP_CIPHER *EVP_des_ede(void) { return FIPS_evp_des_ede(); }
90 const EVP_CIPHER *EVP_des_ede3(void) { return FIPS_evp_des_ede3(); }
91 const EVP_CIPHER *EVP_des_ede3_cbc(void) { return FIPS_evp_des_ede3_cbc(); }
92 const EVP_CIPHER *EVP_des_ede3_cfb1(void) { return FIPS_evp_des_ede3_cfb1(); }
93 const EVP_CIPHER *EVP_des_ede3_cfb64(void) { return FIPS_evp_des_ede3_cfb64();
94 const EVP_CIPHER *EVP_des_ede3_cfb8(void) { return FIPS_evp_des_ede3_cfb8(); }
95 const EVP_CIPHER *EVP_des_ede3_ecb(void) { return FIPS_evp_des_ede3_ecb(); }
96 const EVP_CIPHER *EVP_des_ede3_ofb(void) { return FIPS_evp_des_ede3_ofb(); }
97 const EVP_CIPHER *EVP_des_ede_cbc(void) { return FIPS_evp_des_ede_cbc(); }
98 const EVP_CIPHER *EVP_des_ede_cfb64(void) { return FIPS_evp_des_ede_cfb64(); }
99 const EVP_CIPHER *EVP_des_ede_ecb(void) { return FIPS_evp_des_ede_ecb(); }
100 const EVP_CIPHER *EVP_des_ede_ofb(void) { return FIPS_evp_des_ede_ofb(); }
101 const EVP_CIPHER *EVP_enc_null(void) { return FIPS_evp_enc_null(); }

103 const EVP_MD *EVP_sha1(void) { return FIPS_evp_sha1(); }
104 const EVP_MD *EVP_sha224(void) { return FIPS_evp_sha224(); }
105 const EVP_MD *EVP_sha256(void) { return FIPS_evp_sha256(); }
106 const EVP_MD *EVP_sha384(void) { return FIPS_evp_sha384(); }
107 const EVP_MD *EVP_sha512(void) { return FIPS_evp_sha512(); }

109 const EVP_MD *EVP_dss(void) { return FIPS_evp_dss(); }
110 const EVP_MD *EVP_dss1(void) { return FIPS_evp_dss1(); }
111 const EVP_MD *EVP_ecdsa(void) { return FIPS_evp_ecdsa(); }

113 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_key.c 1

**
 6042 Fri May 30 18:31:52 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/evp_key.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/evp_key.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/x509.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_key.c 2

62 #include <openssl/objects.h>
63 #include <openssl/evp.h>
64 #include <openssl/ui.h>

66 /* should be init to zeros. */
67 static char prompt_string[80];

69 void EVP_set_pw_prompt(const char *prompt)
70 {
71 if (prompt == NULL)
72 prompt_string[0]=’\0’;
73 else
74 {
75 strncpy(prompt_string,prompt,79);
76 prompt_string[79]=’\0’;
77 }
78 }

80 char *EVP_get_pw_prompt(void)
81 {
82 if (prompt_string[0] == ’\0’)
83 return(NULL);
84 else
85 return(prompt_string);
86 }

88 /* For historical reasons, the standard function for reading passwords is
89 * in the DES library -- if someone ever wants to disable DES,
90 * this function will fail */
91 int EVP_read_pw_string(char *buf, int len, const char *prompt, int verify)
92 {
93 return EVP_read_pw_string_min(buf, 0, len, prompt, verify);
94 }

96 int EVP_read_pw_string_min(char *buf, int min, int len, const char *prompt, int
97 {
98 int ret;
99 char buff[BUFSIZ];
100 UI *ui;

102 if ((prompt == NULL) && (prompt_string[0] != ’\0’))
103 prompt=prompt_string;
104 ui = UI_new();
105 UI_add_input_string(ui,prompt,0,buf,min,(len>=BUFSIZ)?BUFSIZ-1:len);
106 if (verify)
107 UI_add_verify_string(ui,prompt,0,
108 buff,min,(len>=BUFSIZ)?BUFSIZ-1:len,buf);
109 ret = UI_process(ui);
110 UI_free(ui);
111 OPENSSL_cleanse(buff,BUFSIZ);
112 return ret;
113 }

115 int EVP_BytesToKey(const EVP_CIPHER *type, const EVP_MD *md,
116 const unsigned char *salt, const unsigned char *data, int datal,
117 int count, unsigned char *key, unsigned char *iv)
118 {
119 EVP_MD_CTX c;
120 unsigned char md_buf[EVP_MAX_MD_SIZE];
121 int niv,nkey,addmd=0;
122 unsigned int mds=0,i;
123 int rv = 0;
124 nkey=type->key_len;
125 niv=type->iv_len;
126 OPENSSL_assert(nkey <= EVP_MAX_KEY_LENGTH);
127 OPENSSL_assert(niv <= EVP_MAX_IV_LENGTH);

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_key.c 3

129 if (data == NULL) return(nkey);

131 EVP_MD_CTX_init(&c);
132 for (;;)
133 {
134 if (!EVP_DigestInit_ex(&c,md, NULL))
135 return 0;
136 if (addmd++)
137 if (!EVP_DigestUpdate(&c,&(md_buf[0]),mds))
138 goto err;
139 if (!EVP_DigestUpdate(&c,data,datal))
140 goto err;
141 if (salt != NULL)
142 if (!EVP_DigestUpdate(&c,salt,PKCS5_SALT_LEN))
143 goto err;
144 if (!EVP_DigestFinal_ex(&c,&(md_buf[0]),&mds))
145 goto err;

147 for (i=1; i<(unsigned int)count; i++)
148 {
149 if (!EVP_DigestInit_ex(&c,md, NULL))
150 goto err;
151 if (!EVP_DigestUpdate(&c,&(md_buf[0]),mds))
152 goto err;
153 if (!EVP_DigestFinal_ex(&c,&(md_buf[0]),&mds))
154 goto err;
155 }
156 i=0;
157 if (nkey)
158 {
159 for (;;)
160 {
161 if (nkey == 0) break;
162 if (i == mds) break;
163 if (key != NULL)
164 *(key++)=md_buf[i];
165 nkey--;
166 i++;
167 }
168 }
169 if (niv && (i != mds))
170 {
171 for (;;)
172 {
173 if (niv == 0) break;
174 if (i == mds) break;
175 if (iv != NULL)
176 *(iv++)=md_buf[i];
177 niv--;
178 i++;
179 }
180 }
181 if ((nkey == 0) && (niv == 0)) break;
182 }
183 rv = type->key_len;
184 err:
185 EVP_MD_CTX_cleanup(&c);
186 OPENSSL_cleanse(&(md_buf[0]),EVP_MAX_MD_SIZE);
187 return rv;
188 }

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_lib.c 1

**
 7884 Fri May 30 18:31:52 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/evp_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/evp_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_lib.c 2

62 #include <openssl/objects.h>

64 int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type)
65 {
66 int ret;

68 if (c->cipher->set_asn1_parameters != NULL)
69 ret=c->cipher->set_asn1_parameters(c,type);
70 else if (c->cipher->flags & EVP_CIPH_FLAG_DEFAULT_ASN1)
71 ret=EVP_CIPHER_set_asn1_iv(c, type);
72 else
73 ret=-1;
74 return(ret);
75 }

77 int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type)
78 {
79 int ret;

81 if (c->cipher->get_asn1_parameters != NULL)
82 ret=c->cipher->get_asn1_parameters(c,type);
83 else if (c->cipher->flags & EVP_CIPH_FLAG_DEFAULT_ASN1)
84 ret=EVP_CIPHER_get_asn1_iv(c, type);
85 else
86 ret=-1;
87 return(ret);
88 }

90 int EVP_CIPHER_get_asn1_iv(EVP_CIPHER_CTX *c, ASN1_TYPE *type)
91 {
92 int i=0;
93 unsigned int l;

95 if (type != NULL)
96 {
97 l=EVP_CIPHER_CTX_iv_length(c);
98 OPENSSL_assert(l <= sizeof(c->iv));
99 i=ASN1_TYPE_get_octetstring(type,c->oiv,l);
100 if (i != (int)l)
101 return(-1);
102 else if (i > 0)
103 memcpy(c->iv,c->oiv,l);
104 }
105 return(i);
106 }

108 int EVP_CIPHER_set_asn1_iv(EVP_CIPHER_CTX *c, ASN1_TYPE *type)
109 {
110 int i=0;
111 unsigned int j;

113 if (type != NULL)
114 {
115 j=EVP_CIPHER_CTX_iv_length(c);
116 OPENSSL_assert(j <= sizeof(c->iv));
117 i=ASN1_TYPE_set_octetstring(type,c->oiv,j);
118 }
119 return(i);
120 }

122 /* Convert the various cipher NIDs and dummies to a proper OID NID */
123 int EVP_CIPHER_type(const EVP_CIPHER *ctx)
124 {
125 int nid;
126 ASN1_OBJECT *otmp;
127 nid = EVP_CIPHER_nid(ctx);

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_lib.c 3

129 switch(nid) {

131 case NID_rc2_cbc:
132 case NID_rc2_64_cbc:
133 case NID_rc2_40_cbc:

135 return NID_rc2_cbc;

137 case NID_rc4:
138 case NID_rc4_40:

140 return NID_rc4;

142 case NID_aes_128_cfb128:
143 case NID_aes_128_cfb8:
144 case NID_aes_128_cfb1:

146 return NID_aes_128_cfb128;

148 case NID_aes_192_cfb128:
149 case NID_aes_192_cfb8:
150 case NID_aes_192_cfb1:

152 return NID_aes_192_cfb128;

154 case NID_aes_256_cfb128:
155 case NID_aes_256_cfb8:
156 case NID_aes_256_cfb1:

158 return NID_aes_256_cfb128;

160 case NID_des_cfb64:
161 case NID_des_cfb8:
162 case NID_des_cfb1:

164 return NID_des_cfb64;

166 case NID_des_ede3_cfb64:
167 case NID_des_ede3_cfb8:
168 case NID_des_ede3_cfb1:

170 return NID_des_cfb64;

172 default:
173 /* Check it has an OID and it is valid */
174 otmp = OBJ_nid2obj(nid);
175 if(!otmp || !otmp->data) nid = NID_undef;
176 ASN1_OBJECT_free(otmp);
177 return nid;
178 }
179 }

181 int EVP_CIPHER_block_size(const EVP_CIPHER *e)
182 {
183 return e->block_size;
184 }

186 int EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx)
187 {
188 return ctx->cipher->block_size;
189 }

191 int EVP_Cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in,
192 {
193 return ctx->cipher->do_cipher(ctx,out,in,inl);

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_lib.c 4

194 }

196 const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx)
197 {
198 return ctx->cipher;
199 }

201 unsigned long EVP_CIPHER_flags(const EVP_CIPHER *cipher)
202 {
203 return cipher->flags;
204 }

206 unsigned long EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx)
207 {
208 return ctx->cipher->flags;
209 }

211 void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx)
212 {
213 return ctx->app_data;
214 }

216 void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data)
217 {
218 ctx->app_data = data;
219 }

221 int EVP_CIPHER_iv_length(const EVP_CIPHER *cipher)
222 {
223 return cipher->iv_len;
224 }

226 int EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx)
227 {
228 return ctx->cipher->iv_len;
229 }

231 int EVP_CIPHER_key_length(const EVP_CIPHER *cipher)
232 {
233 return cipher->key_len;
234 }

236 int EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx)
237 {
238 return ctx->key_len;
239 }

241 int EVP_CIPHER_nid(const EVP_CIPHER *cipher)
242 {
243 return cipher->nid;
244 }

246 int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx)
247 {
248 return ctx->cipher->nid;
249 }

251 int EVP_MD_block_size(const EVP_MD *md)
252 {
253 return md->block_size;
254 }

256 int EVP_MD_type(const EVP_MD *md)
257 {
258 return md->type;
259 }

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_lib.c 5

261 int EVP_MD_pkey_type(const EVP_MD *md)
262 {
263 return md->pkey_type;
264 }

266 int EVP_MD_size(const EVP_MD *md)
267 {
268 if (!md)
269 {
270 EVPerr(EVP_F_EVP_MD_SIZE, EVP_R_MESSAGE_DIGEST_IS_NULL);
271 return -1;
272 }
273 return md->md_size;
274 }

276 unsigned long EVP_MD_flags(const EVP_MD *md)
277 {
278 return md->flags;
279 }

281 const EVP_MD *EVP_MD_CTX_md(const EVP_MD_CTX *ctx)
282 {
283 if (!ctx)
284 return NULL;
285 return ctx->digest;
286 }

288 void EVP_MD_CTX_set_flags(EVP_MD_CTX *ctx, int flags)
289 {
290 ctx->flags |= flags;
291 }

293 void EVP_MD_CTX_clear_flags(EVP_MD_CTX *ctx, int flags)
294 {
295 ctx->flags &= ~flags;
296 }

298 int EVP_MD_CTX_test_flags(const EVP_MD_CTX *ctx, int flags)
299 {
300 return (ctx->flags & flags);
301 }

303 void EVP_CIPHER_CTX_set_flags(EVP_CIPHER_CTX *ctx, int flags)
304 {
305 ctx->flags |= flags;
306 }

308 void EVP_CIPHER_CTX_clear_flags(EVP_CIPHER_CTX *ctx, int flags)
309 {
310 ctx->flags &= ~flags;
311 }

313 int EVP_CIPHER_CTX_test_flags(const EVP_CIPHER_CTX *ctx, int flags)
314 {
315 return (ctx->flags & flags);
316 }

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_pbe.c 1

**
 9141 Fri May 30 18:31:52 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/evp_pbe.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* evp_pbe.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999-2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_pbe.c 2

62 #include <openssl/pkcs12.h>
63 #include <openssl/x509.h>
64 #include "evp_locl.h"

66 /* Password based encryption (PBE) functions */

68 DECLARE_STACK_OF(EVP_PBE_CTL)
69 static STACK_OF(EVP_PBE_CTL) *pbe_algs;

71 /* Setup a cipher context from a PBE algorithm */

73 typedef struct
74 {
75 int pbe_type;
76 int pbe_nid;
77 int cipher_nid;
78 int md_nid;
79 EVP_PBE_KEYGEN *keygen;
80 } EVP_PBE_CTL;

82 static const EVP_PBE_CTL builtin_pbe[] =
83 {
84 {EVP_PBE_TYPE_OUTER, NID_pbeWithMD2AndDES_CBC,
85 NID_des_cbc, NID_md2, PKCS5_PBE_keyivgen},
86 {EVP_PBE_TYPE_OUTER, NID_pbeWithMD5AndDES_CBC,
87 NID_des_cbc, NID_md5, PKCS5_PBE_keyivgen},
88 {EVP_PBE_TYPE_OUTER, NID_pbeWithSHA1AndRC2_CBC,
89 NID_rc2_64_cbc, NID_sha1, PKCS5_PBE_keyivgen},

91 #ifndef OPENSSL_NO_HMAC
92 {EVP_PBE_TYPE_OUTER, NID_id_pbkdf2, -1, -1, PKCS5_v2_PBKDF2_keyivgen},
93 #endif

95 {EVP_PBE_TYPE_OUTER, NID_pbe_WithSHA1And128BitRC4,
96 NID_rc4, NID_sha1, PKCS12_PBE_keyivgen},
97 {EVP_PBE_TYPE_OUTER, NID_pbe_WithSHA1And40BitRC4,
98 NID_rc4_40, NID_sha1, PKCS12_PBE_keyivgen},
99 {EVP_PBE_TYPE_OUTER, NID_pbe_WithSHA1And3_Key_TripleDES_CBC,
100 NID_des_ede3_cbc, NID_sha1, PKCS12_PBE_keyivgen},
101 {EVP_PBE_TYPE_OUTER, NID_pbe_WithSHA1And2_Key_TripleDES_CBC,
102 NID_des_ede_cbc, NID_sha1, PKCS12_PBE_keyivgen},
103 {EVP_PBE_TYPE_OUTER, NID_pbe_WithSHA1And128BitRC2_CBC,
104 NID_rc2_cbc, NID_sha1, PKCS12_PBE_keyivgen},
105 {EVP_PBE_TYPE_OUTER, NID_pbe_WithSHA1And40BitRC2_CBC,
106 NID_rc2_40_cbc, NID_sha1, PKCS12_PBE_keyivgen},

108 #ifndef OPENSSL_NO_HMAC
109 {EVP_PBE_TYPE_OUTER, NID_pbes2, -1, -1, PKCS5_v2_PBE_keyivgen},
110 #endif
111 {EVP_PBE_TYPE_OUTER, NID_pbeWithMD2AndRC2_CBC,
112 NID_rc2_64_cbc, NID_md2, PKCS5_PBE_keyivgen},
113 {EVP_PBE_TYPE_OUTER, NID_pbeWithMD5AndRC2_CBC,
114 NID_rc2_64_cbc, NID_md5, PKCS5_PBE_keyivgen},
115 {EVP_PBE_TYPE_OUTER, NID_pbeWithSHA1AndDES_CBC,
116 NID_des_cbc, NID_sha1, PKCS5_PBE_keyivgen},

119 {EVP_PBE_TYPE_PRF, NID_hmacWithSHA1, -1, NID_sha1, 0},
120 {EVP_PBE_TYPE_PRF, NID_hmacWithMD5, -1, NID_md5, 0},
121 {EVP_PBE_TYPE_PRF, NID_hmacWithSHA224, -1, NID_sha224, 0},
122 {EVP_PBE_TYPE_PRF, NID_hmacWithSHA256, -1, NID_sha256, 0},
123 {EVP_PBE_TYPE_PRF, NID_hmacWithSHA384, -1, NID_sha384, 0},
124 {EVP_PBE_TYPE_PRF, NID_hmacWithSHA512, -1, NID_sha512, 0},
125 {EVP_PBE_TYPE_PRF, NID_id_HMACGostR3411_94, -1, NID_id_GostR3411_94, 0},
126 };

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_pbe.c 3

128 #ifdef TEST
129 int main(int argc, char **argv)
130 {
131 int i, nid_md, nid_cipher;
132 EVP_PBE_CTL *tpbe, *tpbe2;
133 /*OpenSSL_add_all_algorithms();*/

135 for (i = 0; i < sizeof(builtin_pbe)/sizeof(EVP_PBE_CTL); i++)
136 {
137 tpbe = builtin_pbe + i;
138 fprintf(stderr, "%d %d %s ", tpbe->pbe_type, tpbe->pbe_nid,
139 OBJ_nid2sn(tpbe->pbe_nid));
140 if (EVP_PBE_find(tpbe->pbe_type, tpbe->pbe_nid,
141 &nid_cipher ,&nid_md,0))
142 fprintf(stderr, "Found %s %s\n",
143 OBJ_nid2sn(nid_cipher),
144 OBJ_nid2sn(nid_md));
145 else
146 fprintf(stderr, "Find ERROR!!\n");
147 }

149 return 0;
150 }
151 #endif
152

155 int EVP_PBE_CipherInit(ASN1_OBJECT *pbe_obj, const char *pass, int passlen,
156 ASN1_TYPE *param, EVP_CIPHER_CTX *ctx, int en_de)
157 {
158 const EVP_CIPHER *cipher;
159 const EVP_MD *md;
160 int cipher_nid, md_nid;
161 EVP_PBE_KEYGEN *keygen;

163 if (!EVP_PBE_find(EVP_PBE_TYPE_OUTER, OBJ_obj2nid(pbe_obj),
164 &cipher_nid, &md_nid, &keygen))
165 {
166 char obj_tmp[80];
167 EVPerr(EVP_F_EVP_PBE_CIPHERINIT,EVP_R_UNKNOWN_PBE_ALGORITHM);
168 if (!pbe_obj) BUF_strlcpy (obj_tmp, "NULL", sizeof obj_tmp);
169 else i2t_ASN1_OBJECT(obj_tmp, sizeof obj_tmp, pbe_obj);
170 ERR_add_error_data(2, "TYPE=", obj_tmp);
171 return 0;
172 }

174 if(!pass)
175 passlen = 0;
176 else if (passlen == -1)
177 passlen = strlen(pass);

179 if (cipher_nid == -1)
180 cipher = NULL;
181 else
182 {
183 cipher = EVP_get_cipherbynid(cipher_nid);
184 if (!cipher)
185 {
186 EVPerr(EVP_F_EVP_PBE_CIPHERINIT,EVP_R_UNKNOWN_CIPHER);
187 return 0;
188 }
189 }

191 if (md_nid == -1)
192 md = NULL;
193 else

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_pbe.c 4

194 {
195 md = EVP_get_digestbynid(md_nid);
196 if (!md)
197 {
198 EVPerr(EVP_F_EVP_PBE_CIPHERINIT,EVP_R_UNKNOWN_DIGEST);
199 return 0;
200 }
201 }

203 if (!keygen(ctx, pass, passlen, param, cipher, md, en_de))
204 {
205 EVPerr(EVP_F_EVP_PBE_CIPHERINIT,EVP_R_KEYGEN_FAILURE);
206 return 0;
207 }
208 return 1;
209 }

211 DECLARE_OBJ_BSEARCH_CMP_FN(EVP_PBE_CTL, EVP_PBE_CTL, pbe2);

213 static int pbe2_cmp(const EVP_PBE_CTL *pbe1, const EVP_PBE_CTL *pbe2)
214 {
215 int ret = pbe1->pbe_type - pbe2->pbe_type;
216 if (ret)
217 return ret;
218 else
219 return pbe1->pbe_nid - pbe2->pbe_nid;
220 }

222 IMPLEMENT_OBJ_BSEARCH_CMP_FN(EVP_PBE_CTL, EVP_PBE_CTL, pbe2);

224 static int pbe_cmp(const EVP_PBE_CTL * const *a, const EVP_PBE_CTL * const *b)
225 {
226 int ret = (*a)->pbe_type - (*b)->pbe_type;
227 if (ret)
228 return ret;
229 else
230 return (*a)->pbe_nid - (*b)->pbe_nid;
231 }

233 /* Add a PBE algorithm */

235 int EVP_PBE_alg_add_type(int pbe_type, int pbe_nid, int cipher_nid, int md_nid,
236 EVP_PBE_KEYGEN *keygen)
237 {
238 EVP_PBE_CTL *pbe_tmp;
239 if (!pbe_algs)
240 pbe_algs = sk_EVP_PBE_CTL_new(pbe_cmp);
241 if (!(pbe_tmp = (EVP_PBE_CTL*) OPENSSL_malloc (sizeof(EVP_PBE_CTL))))
242 {
243 EVPerr(EVP_F_EVP_PBE_ALG_ADD_TYPE,ERR_R_MALLOC_FAILURE);
244 return 0;
245 }
246 pbe_tmp->pbe_type = pbe_type;
247 pbe_tmp->pbe_nid = pbe_nid;
248 pbe_tmp->cipher_nid = cipher_nid;
249 pbe_tmp->md_nid = md_nid;
250 pbe_tmp->keygen = keygen;

253 sk_EVP_PBE_CTL_push (pbe_algs, pbe_tmp);
254 return 1;
255 }

257 int EVP_PBE_alg_add(int nid, const EVP_CIPHER *cipher, const EVP_MD *md,
258 EVP_PBE_KEYGEN *keygen)
259 {

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_pbe.c 5

260 int cipher_nid, md_nid;
261 if (cipher)
262 cipher_nid = EVP_CIPHER_type(cipher);
263 else
264 cipher_nid = -1;
265 if (md)
266 md_nid = EVP_MD_type(md);
267 else
268 md_nid = -1;

270 return EVP_PBE_alg_add_type(EVP_PBE_TYPE_OUTER, nid,
271 cipher_nid, md_nid, keygen);
272 }

274 int EVP_PBE_find(int type, int pbe_nid,
275 int *pcnid, int *pmnid, EVP_PBE_KEYGEN **pkeygen)
276 {
277 EVP_PBE_CTL *pbetmp = NULL, pbelu;
278 int i;
279 if (pbe_nid == NID_undef)
280 return 0;

282 pbelu.pbe_type = type;
283 pbelu.pbe_nid = pbe_nid;

285 if (pbe_algs)
286 {
287 i = sk_EVP_PBE_CTL_find(pbe_algs, &pbelu);
288 if (i != -1)
289 pbetmp = sk_EVP_PBE_CTL_value (pbe_algs, i);
290 }
291 if (pbetmp == NULL)
292 {
293 pbetmp = OBJ_bsearch_pbe2(&pbelu, builtin_pbe,
294 sizeof(builtin_pbe)/sizeof(EVP_PBE_CTL));
295 }
296 if (pbetmp == NULL)
297 return 0;
298 if (pcnid)
299 *pcnid = pbetmp->cipher_nid;
300 if (pmnid)
301 *pmnid = pbetmp->md_nid;
302 if (pkeygen)
303 *pkeygen = pbetmp->keygen;
304 return 1;
305 }

307 static void free_evp_pbe_ctl(EVP_PBE_CTL *pbe)
308 {
309 OPENSSL_freeFunc(pbe);
310 }

312 void EVP_PBE_cleanup(void)
313 {
314 sk_EVP_PBE_CTL_pop_free(pbe_algs, free_evp_pbe_ctl);
315 pbe_algs = NULL;
316 }

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_pkey.c 1

**
 6602 Fri May 30 18:31:52 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/evp_pkey.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* evp_pkey.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <stdlib.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_pkey.c 2

62 #include <openssl/x509.h>
63 #include <openssl/rand.h>
64 #include "asn1_locl.h"

66 /* Extract a private key from a PKCS8 structure */

68 EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8)
69 {
70 EVP_PKEY *pkey = NULL;
71 ASN1_OBJECT *algoid;
72 char obj_tmp[80];

74 if (!PKCS8_pkey_get0(&algoid, NULL, NULL, NULL, p8))
75 return NULL;

77 if (!(pkey = EVP_PKEY_new())) {
78 EVPerr(EVP_F_EVP_PKCS82PKEY,ERR_R_MALLOC_FAILURE);
79 return NULL;
80 }

82 if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(algoid)))
83 {
84 EVPerr(EVP_F_EVP_PKCS82PKEY, EVP_R_UNSUPPORTED_PRIVATE_KEY_ALGOR
85 i2t_ASN1_OBJECT(obj_tmp, 80, algoid);
86 ERR_add_error_data(2, "TYPE=", obj_tmp);
87 goto error;
88 }

90 if (pkey->ameth->priv_decode)
91 {
92 if (!pkey->ameth->priv_decode(pkey, p8))
93 {
94 EVPerr(EVP_F_EVP_PKCS82PKEY,
95 EVP_R_PRIVATE_KEY_DECODE_ERROR);
96 goto error;
97 }
98 }
99 else
100 {
101 EVPerr(EVP_F_EVP_PKCS82PKEY, EVP_R_METHOD_NOT_SUPPORTED);
102 goto error;
103 }

105 return pkey;

107 error:
108 EVP_PKEY_free (pkey);
109 return NULL;
110 }

112 PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey)
113 {
114 return EVP_PKEY2PKCS8_broken(pkey, PKCS8_OK);
115 }

117 /* Turn a private key into a PKCS8 structure */

119 PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8_broken(EVP_PKEY *pkey, int broken)
120 {
121 PKCS8_PRIV_KEY_INFO *p8;

123 if (!(p8 = PKCS8_PRIV_KEY_INFO_new())) {
124 EVPerr(EVP_F_EVP_PKEY2PKCS8_BROKEN,ERR_R_MALLOC_FAILURE);
125 return NULL;
126 }
127 p8->broken = broken;

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_pkey.c 3

129 if (pkey->ameth)
130 {
131 if (pkey->ameth->priv_encode)
132 {
133 if (!pkey->ameth->priv_encode(p8, pkey))
134 {
135 EVPerr(EVP_F_EVP_PKEY2PKCS8_BROKEN,
136 EVP_R_PRIVATE_KEY_ENCODE_ERROR);
137 goto error;
138 }
139 }
140 else
141 {
142 EVPerr(EVP_F_EVP_PKEY2PKCS8_BROKEN,
143 EVP_R_METHOD_NOT_SUPPORTED);
144 goto error;
145 }
146 }
147 else
148 {
149 EVPerr(EVP_F_EVP_PKEY2PKCS8_BROKEN,
150 EVP_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM);
151 goto error;
152 }
153 RAND_add(p8->pkey->value.octet_string->data,
154 p8->pkey->value.octet_string->length, 0.0);
155 return p8;
156 error:
157 PKCS8_PRIV_KEY_INFO_free(p8);
158 return NULL;
159 }

161 PKCS8_PRIV_KEY_INFO *PKCS8_set_broken(PKCS8_PRIV_KEY_INFO *p8, int broken)
162 {
163 switch (broken) {

165 case PKCS8_OK:
166 p8->broken = PKCS8_OK;
167 return p8;
168 break;

170 case PKCS8_NO_OCTET:
171 p8->broken = PKCS8_NO_OCTET;
172 p8->pkey->type = V_ASN1_SEQUENCE;
173 return p8;
174 break;

176 default:
177 EVPerr(EVP_F_PKCS8_SET_BROKEN,EVP_R_PKCS8_UNKNOWN_BROKEN_TYPE);
178 return NULL;
179 }
180 }

182 /* EVP_PKEY attribute functions */

184 int EVP_PKEY_get_attr_count(const EVP_PKEY *key)
185 {
186 return X509at_get_attr_count(key->attributes);
187 }

189 int EVP_PKEY_get_attr_by_NID(const EVP_PKEY *key, int nid,
190 int lastpos)
191 {
192 return X509at_get_attr_by_NID(key->attributes, nid, lastpos);
193 }

new/usr/src/lib/openssl/libsunw_crypto/evp/evp_pkey.c 4

195 int EVP_PKEY_get_attr_by_OBJ(const EVP_PKEY *key, ASN1_OBJECT *obj,
196 int lastpos)
197 {
198 return X509at_get_attr_by_OBJ(key->attributes, obj, lastpos);
199 }

201 X509_ATTRIBUTE *EVP_PKEY_get_attr(const EVP_PKEY *key, int loc)
202 {
203 return X509at_get_attr(key->attributes, loc);
204 }

206 X509_ATTRIBUTE *EVP_PKEY_delete_attr(EVP_PKEY *key, int loc)
207 {
208 return X509at_delete_attr(key->attributes, loc);
209 }

211 int EVP_PKEY_add1_attr(EVP_PKEY *key, X509_ATTRIBUTE *attr)
212 {
213 if(X509at_add1_attr(&key->attributes, attr)) return 1;
214 return 0;
215 }

217 int EVP_PKEY_add1_attr_by_OBJ(EVP_PKEY *key,
218 const ASN1_OBJECT *obj, int type,
219 const unsigned char *bytes, int len)
220 {
221 if(X509at_add1_attr_by_OBJ(&key->attributes, obj,
222 type, bytes, len)) return 1;
223 return 0;
224 }

226 int EVP_PKEY_add1_attr_by_NID(EVP_PKEY *key,
227 int nid, int type,
228 const unsigned char *bytes, int len)
229 {
230 if(X509at_add1_attr_by_NID(&key->attributes, nid,
231 type, bytes, len)) return 1;
232 return 0;
233 }

235 int EVP_PKEY_add1_attr_by_txt(EVP_PKEY *key,
236 const char *attrname, int type,
237 const unsigned char *bytes, int len)
238 {
239 if(X509at_add1_attr_by_txt(&key->attributes, attrname,
240 type, bytes, len)) return 1;
241 return 0;
242 }

new/usr/src/lib/openssl/libsunw_crypto/evp/m_dss.c 1

**
 3987 Fri May 30 18:31:52 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/m_dss.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/m_dss.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/m_dss.c 2

62 #include <openssl/objects.h>
63 #include <openssl/sha.h>
64 #ifndef OPENSSL_NO_DSA
65 #include <openssl/dsa.h>
66 #endif

68 #ifndef OPENSSL_NO_SHA
69 #ifndef OPENSSL_FIPS

71 static int init(EVP_MD_CTX *ctx)
72 { return SHA1_Init(ctx->md_data); }

74 static int update(EVP_MD_CTX *ctx,const void *data,size_t count)
75 { return SHA1_Update(ctx->md_data,data,count); }

77 static int final(EVP_MD_CTX *ctx,unsigned char *md)
78 { return SHA1_Final(md,ctx->md_data); }

80 static const EVP_MD dsa_md=
81 {
82 NID_dsaWithSHA,
83 NID_dsaWithSHA,
84 SHA_DIGEST_LENGTH,
85 EVP_MD_FLAG_PKEY_DIGEST,
86 init,
87 update,
88 final,
89 NULL,
90 NULL,
91 EVP_PKEY_DSA_method,
92 SHA_CBLOCK,
93 sizeof(EVP_MD *)+sizeof(SHA_CTX),
94 };

96 const EVP_MD *EVP_dss(void)
97 {
98 return(&dsa_md);
99 }
100 #endif
101 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/m_dss1.c 1

**
 3988 Fri May 30 18:31:52 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/m_dss1.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/m_dss1.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/m_dss1.c 2

62 #ifndef OPENSSL_NO_SHA

64 #include <openssl/evp.h>
65 #include <openssl/objects.h>
66 #include <openssl/sha.h>
67 #ifndef OPENSSL_NO_DSA
68 #include <openssl/dsa.h>
69 #endif

71 #ifndef OPENSSL_FIPS

73 static int init(EVP_MD_CTX *ctx)
74 { return SHA1_Init(ctx->md_data); }

76 static int update(EVP_MD_CTX *ctx,const void *data,size_t count)
77 { return SHA1_Update(ctx->md_data,data,count); }

79 static int final(EVP_MD_CTX *ctx,unsigned char *md)
80 { return SHA1_Final(md,ctx->md_data); }

82 static const EVP_MD dss1_md=
83 {
84 NID_dsa,
85 NID_dsaWithSHA1,
86 SHA_DIGEST_LENGTH,
87 EVP_MD_FLAG_PKEY_DIGEST,
88 init,
89 update,
90 final,
91 NULL,
92 NULL,
93 EVP_PKEY_DSA_method,
94 SHA_CBLOCK,
95 sizeof(EVP_MD *)+sizeof(SHA_CTX),
96 };

98 const EVP_MD *EVP_dss1(void)
99 {
100 return(&dss1_md);
101 }
102 #endif
103 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/m_ecdsa.c 1

**
 6587 Fri May 30 18:31:52 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/m_ecdsa.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/m_ecdsa.c */
2 /* ==
3 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
56 * All rights reserved.
57 *
58 * This package is an SSL implementation written
59 * by Eric Young (eay@cryptsoft.com).
60 * The implementation was written so as to conform with Netscapes SSL.
61 *

new/usr/src/lib/openssl/libsunw_crypto/evp/m_ecdsa.c 2

62 * This library is free for commercial and non-commercial use as long as
63 * the following conditions are aheared to. The following conditions
64 * apply to all code found in this distribution, be it the RC4, RSA,
65 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
66 * included with this distribution is covered by the same copyright terms
67 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
68 *
69 * Copyright remains Eric Young’s, and as such any Copyright notices in
70 * the code are not to be removed.
71 * If this package is used in a product, Eric Young should be given attribution
72 * as the author of the parts of the library used.
73 * This can be in the form of a textual message at program startup or
74 * in documentation (online or textual) provided with the package.
75 *
76 * Redistribution and use in source and binary forms, with or without
77 * modification, are permitted provided that the following conditions
78 * are met:
79 * 1. Redistributions of source code must retain the copyright
80 * notice, this list of conditions and the following disclaimer.
81 * 2. Redistributions in binary form must reproduce the above copyright
82 * notice, this list of conditions and the following disclaimer in the
83 * documentation and/or other materials provided with the distribution.
84 * 3. All advertising materials mentioning features or use of this software
85 * must display the following acknowledgement:
86 * "This product includes cryptographic software written by
87 * Eric Young (eay@cryptsoft.com)"
88 * The word ’cryptographic’ can be left out if the rouines from the library
89 * being used are not cryptographic related :-).
90 * 4. If you include any Windows specific code (or a derivative thereof) from
91 * the apps directory (application code) you must include an acknowledgement:
92 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
93 *
94 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
95 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
96 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
97 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
98 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
99 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
100 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104 * SUCH DAMAGE.
105 *
106 * The licence and distribution terms for any publically available version or
107 * derivative of this code cannot be changed. i.e. this code cannot simply be
108 * copied and put under another distribution licence
109 * [including the GNU Public Licence.]
110 */

112 #include <stdio.h>
113 #include "cryptlib.h"
114 #include <openssl/evp.h>
115 #include <openssl/objects.h>
116 #include <openssl/x509.h>

118 #ifndef OPENSSL_NO_SHA
119 #ifndef OPENSSL_FIPS

121 static int init(EVP_MD_CTX *ctx)
122 { return SHA1_Init(ctx->md_data); }

124 static int update(EVP_MD_CTX *ctx,const void *data,size_t count)
125 { return SHA1_Update(ctx->md_data,data,count); }

127 static int final(EVP_MD_CTX *ctx,unsigned char *md)

new/usr/src/lib/openssl/libsunw_crypto/evp/m_ecdsa.c 3

128 { return SHA1_Final(md,ctx->md_data); }

130 static const EVP_MD ecdsa_md=
131 {
132 NID_ecdsa_with_SHA1,
133 NID_ecdsa_with_SHA1,
134 SHA_DIGEST_LENGTH,
135 EVP_MD_FLAG_PKEY_DIGEST,
136 init,
137 update,
138 final,
139 NULL,
140 NULL,
141 EVP_PKEY_ECDSA_method,
142 SHA_CBLOCK,
143 sizeof(EVP_MD *)+sizeof(SHA_CTX),
144 };

146 const EVP_MD *EVP_ecdsa(void)
147 {
148 return(&ecdsa_md);
149 }
150 #endif
151 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/m_md2.c 1

**
 3963 Fri May 30 18:31:53 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/m_md2.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/m_md2.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/m_md2.c 2

62 #ifndef OPENSSL_NO_MD2

64 #include <openssl/evp.h>
65 #include <openssl/objects.h>
66 #include <openssl/x509.h>
67 #include <openssl/md2.h>
68 #ifndef OPENSSL_NO_RSA
69 #include <openssl/rsa.h>
70 #endif

72 static int init(EVP_MD_CTX *ctx)
73 { return MD2_Init(ctx->md_data); }

75 static int update(EVP_MD_CTX *ctx,const void *data,size_t count)
76 { return MD2_Update(ctx->md_data,data,count); }

78 static int final(EVP_MD_CTX *ctx,unsigned char *md)
79 { return MD2_Final(md,ctx->md_data); }

81 static const EVP_MD md2_md=
82 {
83 NID_md2,
84 NID_md2WithRSAEncryption,
85 MD2_DIGEST_LENGTH,
86 0,
87 init,
88 update,
89 final,
90 NULL,
91 NULL,
92 EVP_PKEY_RSA_method,
93 MD2_BLOCK,
94 sizeof(EVP_MD *)+sizeof(MD2_CTX),
95 };

97 const EVP_MD *EVP_md2(void)
98 {
99 return(&md2_md);
100 }
101 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/m_md4.c 1

**
 3987 Fri May 30 18:31:53 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/m_md4.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/m_md4.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/m_md4.c 2

62 #ifndef OPENSSL_NO_MD4

64 #include <openssl/evp.h>
65 #include <openssl/objects.h>
66 #include <openssl/x509.h>
67 #include <openssl/md4.h>
68 #ifndef OPENSSL_NO_RSA
69 #include <openssl/rsa.h>
70 #endif

72 #include "evp_locl.h"

74 static int init(EVP_MD_CTX *ctx)
75 { return MD4_Init(ctx->md_data); }

77 static int update(EVP_MD_CTX *ctx,const void *data,size_t count)
78 { return MD4_Update(ctx->md_data,data,count); }

80 static int final(EVP_MD_CTX *ctx,unsigned char *md)
81 { return MD4_Final(md,ctx->md_data); }

83 static const EVP_MD md4_md=
84 {
85 NID_md4,
86 NID_md4WithRSAEncryption,
87 MD4_DIGEST_LENGTH,
88 0,
89 init,
90 update,
91 final,
92 NULL,
93 NULL,
94 EVP_PKEY_RSA_method,
95 MD4_CBLOCK,
96 sizeof(EVP_MD *)+sizeof(MD4_CTX),
97 };

99 const EVP_MD *EVP_md4(void)
100 {
101 return(&md4_md);
102 }
103 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/m_md5.c 1

**
 3986 Fri May 30 18:31:53 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/m_md5.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/m_md5.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/m_md5.c 2

62 #ifndef OPENSSL_NO_MD5

64 #include <openssl/evp.h>
65 #include <openssl/objects.h>
66 #include <openssl/x509.h>
67 #include <openssl/md5.h>
68 #ifndef OPENSSL_NO_RSA
69 #include <openssl/rsa.h>
70 #endif
71 #include "evp_locl.h"

73 static int init(EVP_MD_CTX *ctx)
74 { return MD5_Init(ctx->md_data); }

76 static int update(EVP_MD_CTX *ctx,const void *data,size_t count)
77 { return MD5_Update(ctx->md_data,data,count); }

79 static int final(EVP_MD_CTX *ctx,unsigned char *md)
80 { return MD5_Final(md,ctx->md_data); }

82 static const EVP_MD md5_md=
83 {
84 NID_md5,
85 NID_md5WithRSAEncryption,
86 MD5_DIGEST_LENGTH,
87 0,
88 init,
89 update,
90 final,
91 NULL,
92 NULL,
93 EVP_PKEY_RSA_method,
94 MD5_CBLOCK,
95 sizeof(EVP_MD *)+sizeof(MD5_CTX),
96 };

98 const EVP_MD *EVP_md5(void)
99 {
100 return(&md5_md);
101 }
102 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/m_mdc2.c 1

**
 4008 Fri May 30 18:31:53 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/m_mdc2.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/m_mdc2.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/m_mdc2.c 2

62 #ifndef OPENSSL_NO_MDC2

64 #include <openssl/evp.h>
65 #include <openssl/objects.h>
66 #include <openssl/x509.h>
67 #include <openssl/mdc2.h>
68 #ifndef OPENSSL_NO_RSA
69 #include <openssl/rsa.h>
70 #endif

72 #include "evp_locl.h"

74 static int init(EVP_MD_CTX *ctx)
75 { return MDC2_Init(ctx->md_data); }

77 static int update(EVP_MD_CTX *ctx,const void *data,size_t count)
78 { return MDC2_Update(ctx->md_data,data,count); }

80 static int final(EVP_MD_CTX *ctx,unsigned char *md)
81 { return MDC2_Final(md,ctx->md_data); }

83 static const EVP_MD mdc2_md=
84 {
85 NID_mdc2,
86 NID_mdc2WithRSA,
87 MDC2_DIGEST_LENGTH,
88 0,
89 init,
90 update,
91 final,
92 NULL,
93 NULL,
94 EVP_PKEY_RSA_ASN1_OCTET_STRING_method,
95 MDC2_BLOCK,
96 sizeof(EVP_MD *)+sizeof(MDC2_CTX),
97 };

99 const EVP_MD *EVP_mdc2(void)
100 {
101 return(&mdc2_md);
102 }
103 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/m_null.c 1

**
 3728 Fri May 30 18:31:53 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/m_null.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/m_null.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/m_null.c 2

62 #include <openssl/objects.h>
63 #include <openssl/x509.h>

65 static int init(EVP_MD_CTX *ctx)
66 { return 1; }

68 static int update(EVP_MD_CTX *ctx,const void *data,size_t count)
69 { return 1; }

71 static int final(EVP_MD_CTX *ctx,unsigned char *md)
72 { return 1; }

74 static const EVP_MD null_md=
75 {
76 NID_undef,
77 NID_undef,
78 0,
79 0,
80 init,
81 update,
82 final,
83 NULL,
84 NULL,
85 EVP_PKEY_NULL_method,
86 0,
87 sizeof(EVP_MD *),
88 };

90 const EVP_MD *EVP_md_null(void)
91 {
92 return(&null_md);
93 }

new/usr/src/lib/openssl/libsunw_crypto/evp/m_ripemd.c 1

**
 4051 Fri May 30 18:31:53 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/m_ripemd.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/m_ripemd.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/m_ripemd.c 2

62 #ifndef OPENSSL_NO_RIPEMD

64 #include <openssl/ripemd.h>
65 #include <openssl/evp.h>
66 #include <openssl/objects.h>
67 #include <openssl/x509.h>
68 #ifndef OPENSSL_NO_RSA
69 #include <openssl/rsa.h>
70 #endif
71 #include "evp_locl.h"

73 static int init(EVP_MD_CTX *ctx)
74 { return RIPEMD160_Init(ctx->md_data); }

76 static int update(EVP_MD_CTX *ctx,const void *data,size_t count)
77 { return RIPEMD160_Update(ctx->md_data,data,count); }

79 static int final(EVP_MD_CTX *ctx,unsigned char *md)
80 { return RIPEMD160_Final(md,ctx->md_data); }

82 static const EVP_MD ripemd160_md=
83 {
84 NID_ripemd160,
85 NID_ripemd160WithRSA,
86 RIPEMD160_DIGEST_LENGTH,
87 0,
88 init,
89 update,
90 final,
91 NULL,
92 NULL,
93 EVP_PKEY_RSA_method,
94 RIPEMD160_CBLOCK,
95 sizeof(EVP_MD *)+sizeof(RIPEMD160_CTX),
96 };

98 const EVP_MD *EVP_ripemd160(void)
99 {
100 return(&ripemd160_md);
101 }
102 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/m_sha.c 1

**
 3996 Fri May 30 18:31:53 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/m_sha.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/m_sha.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/m_sha.c 2

62 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA0)

64 #include <openssl/evp.h>
65 #include <openssl/objects.h>
66 #include <openssl/x509.h>
67 #ifndef OPENSSL_NO_RSA
68 #include <openssl/rsa.h>
69 #endif
70 #include "evp_locl.h"

72 static int init(EVP_MD_CTX *ctx)
73 { return SHA_Init(ctx->md_data); }

75 static int update(EVP_MD_CTX *ctx,const void *data,size_t count)
76 { return SHA_Update(ctx->md_data,data,count); }

78 static int final(EVP_MD_CTX *ctx,unsigned char *md)
79 { return SHA_Final(md,ctx->md_data); }

81 static const EVP_MD sha_md=
82 {
83 NID_sha,
84 NID_shaWithRSAEncryption,
85 SHA_DIGEST_LENGTH,
86 0,
87 init,
88 update,
89 final,
90 NULL,
91 NULL,
92 EVP_PKEY_RSA_method,
93 SHA_CBLOCK,
94 sizeof(EVP_MD *)+sizeof(SHA_CTX),
95 };

97 const EVP_MD *EVP_sha(void)
98 {
99 return(&sha_md);
100 }
101 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/m_sha1.c 1

**
 6527 Fri May 30 18:31:53 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/m_sha1.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/m_sha1.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/m_sha1.c 2

62 #ifndef OPENSSL_FIPS

64 #ifndef OPENSSL_NO_SHA

66 #include <openssl/evp.h>
67 #include <openssl/objects.h>
68 #include <openssl/sha.h>
69 #ifndef OPENSSL_NO_RSA
70 #include <openssl/rsa.h>
71 #endif

74 static int init(EVP_MD_CTX *ctx)
75 { return SHA1_Init(ctx->md_data); }

77 static int update(EVP_MD_CTX *ctx,const void *data,size_t count)
78 { return SHA1_Update(ctx->md_data,data,count); }

80 static int final(EVP_MD_CTX *ctx,unsigned char *md)
81 { return SHA1_Final(md,ctx->md_data); }

83 static const EVP_MD sha1_md=
84 {
85 NID_sha1,
86 NID_sha1WithRSAEncryption,
87 SHA_DIGEST_LENGTH,
88 EVP_MD_FLAG_PKEY_METHOD_SIGNATURE|EVP_MD_FLAG_DIGALGID_ABSENT,
89 init,
90 update,
91 final,
92 NULL,
93 NULL,
94 EVP_PKEY_RSA_method,
95 SHA_CBLOCK,
96 sizeof(EVP_MD *)+sizeof(SHA_CTX),
97 };

99 const EVP_MD *EVP_sha1(void)
100 {
101 return(&sha1_md);
102 }
103 #endif

105 #ifndef OPENSSL_NO_SHA256
106 static int init224(EVP_MD_CTX *ctx)
107 { return SHA224_Init(ctx->md_data); }
108 static int init256(EVP_MD_CTX *ctx)
109 { return SHA256_Init(ctx->md_data); }
110 /*
111 * Even though there’re separate SHA224_[Update|Final], we call
112 * SHA256 functions even in SHA224 context. This is what happens
113 * there anyway, so we can spare few CPU cycles:-)
114 */
115 static int update256(EVP_MD_CTX *ctx,const void *data,size_t count)
116 { return SHA256_Update(ctx->md_data,data,count); }
117 static int final256(EVP_MD_CTX *ctx,unsigned char *md)
118 { return SHA256_Final(md,ctx->md_data); }

120 static const EVP_MD sha224_md=
121 {
122 NID_sha224,
123 NID_sha224WithRSAEncryption,
124 SHA224_DIGEST_LENGTH,
125 EVP_MD_FLAG_PKEY_METHOD_SIGNATURE|EVP_MD_FLAG_DIGALGID_ABSENT,
126 init224,
127 update256,

new/usr/src/lib/openssl/libsunw_crypto/evp/m_sha1.c 3

128 final256,
129 NULL,
130 NULL,
131 EVP_PKEY_RSA_method,
132 SHA256_CBLOCK,
133 sizeof(EVP_MD *)+sizeof(SHA256_CTX),
134 };

136 const EVP_MD *EVP_sha224(void)
137 { return(&sha224_md); }

139 static const EVP_MD sha256_md=
140 {
141 NID_sha256,
142 NID_sha256WithRSAEncryption,
143 SHA256_DIGEST_LENGTH,
144 EVP_MD_FLAG_PKEY_METHOD_SIGNATURE|EVP_MD_FLAG_DIGALGID_ABSENT,
145 init256,
146 update256,
147 final256,
148 NULL,
149 NULL,
150 EVP_PKEY_RSA_method,
151 SHA256_CBLOCK,
152 sizeof(EVP_MD *)+sizeof(SHA256_CTX),
153 };

155 const EVP_MD *EVP_sha256(void)
156 { return(&sha256_md); }
157 #endif /* ifndef OPENSSL_NO_SHA256 */

159 #ifndef OPENSSL_NO_SHA512
160 static int init384(EVP_MD_CTX *ctx)
161 { return SHA384_Init(ctx->md_data); }
162 static int init512(EVP_MD_CTX *ctx)
163 { return SHA512_Init(ctx->md_data); }
164 /* See comment in SHA224/256 section */
165 static int update512(EVP_MD_CTX *ctx,const void *data,size_t count)
166 { return SHA512_Update(ctx->md_data,data,count); }
167 static int final512(EVP_MD_CTX *ctx,unsigned char *md)
168 { return SHA512_Final(md,ctx->md_data); }

170 static const EVP_MD sha384_md=
171 {
172 NID_sha384,
173 NID_sha384WithRSAEncryption,
174 SHA384_DIGEST_LENGTH,
175 EVP_MD_FLAG_PKEY_METHOD_SIGNATURE|EVP_MD_FLAG_DIGALGID_ABSENT,
176 init384,
177 update512,
178 final512,
179 NULL,
180 NULL,
181 EVP_PKEY_RSA_method,
182 SHA512_CBLOCK,
183 sizeof(EVP_MD *)+sizeof(SHA512_CTX),
184 };

186 const EVP_MD *EVP_sha384(void)
187 { return(&sha384_md); }

189 static const EVP_MD sha512_md=
190 {
191 NID_sha512,
192 NID_sha512WithRSAEncryption,
193 SHA512_DIGEST_LENGTH,

new/usr/src/lib/openssl/libsunw_crypto/evp/m_sha1.c 4

194 EVP_MD_FLAG_PKEY_METHOD_SIGNATURE|EVP_MD_FLAG_DIGALGID_ABSENT,
195 init512,
196 update512,
197 final512,
198 NULL,
199 NULL,
200 EVP_PKEY_RSA_method,
201 SHA512_CBLOCK,
202 sizeof(EVP_MD *)+sizeof(SHA512_CTX),
203 };

205 const EVP_MD *EVP_sha512(void)
206 { return(&sha512_md); }
207 #endif /* ifndef OPENSSL_NO_SHA512 */

209 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/m_sigver.c 1

**
 5883 Fri May 30 18:31:53 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/m_sigver.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* m_sigver.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2006.
4 */
5 /* ==
6 * Copyright (c) 2006,2007 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/m_sigver.c 2

62 #include <openssl/objects.h>
63 #include <openssl/x509.h>
64 #include "evp_locl.h"

66 static int do_sigver_init(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx,
67 const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey,
68 int ver)
69 {
70 if (ctx->pctx == NULL)
71 ctx->pctx = EVP_PKEY_CTX_new(pkey, e);
72 if (ctx->pctx == NULL)
73 return 0;

75 if (type == NULL)
76 {
77 int def_nid;
78 if (EVP_PKEY_get_default_digest_nid(pkey, &def_nid) > 0)
79 type = EVP_get_digestbynid(def_nid);
80 }

82 if (type == NULL)
83 {
84 EVPerr(EVP_F_DO_SIGVER_INIT, EVP_R_NO_DEFAULT_DIGEST);
85 return 0;
86 }

88 if (ver)
89 {
90 if (ctx->pctx->pmeth->verifyctx_init)
91 {
92 if (ctx->pctx->pmeth->verifyctx_init(ctx->pctx, ctx) <=0
93 return 0;
94 ctx->pctx->operation = EVP_PKEY_OP_VERIFYCTX;
95 }
96 else if (EVP_PKEY_verify_init(ctx->pctx) <= 0)
97 return 0;
98 }
99 else
100 {
101 if (ctx->pctx->pmeth->signctx_init)
102 {
103 if (ctx->pctx->pmeth->signctx_init(ctx->pctx, ctx) <= 0)
104 return 0;
105 ctx->pctx->operation = EVP_PKEY_OP_SIGNCTX;
106 }
107 else if (EVP_PKEY_sign_init(ctx->pctx) <= 0)
108 return 0;
109 }
110 if (EVP_PKEY_CTX_set_signature_md(ctx->pctx, type) <= 0)
111 return 0;
112 if (pctx)
113 *pctx = ctx->pctx;
114 if (!EVP_DigestInit_ex(ctx, type, e))
115 return 0;
116 return 1;
117 }

119 int EVP_DigestSignInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx,
120 const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey)
121 {
122 return do_sigver_init(ctx, pctx, type, e, pkey, 0);
123 }

125 int EVP_DigestVerifyInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx,
126 const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey)
127 {

new/usr/src/lib/openssl/libsunw_crypto/evp/m_sigver.c 3

128 return do_sigver_init(ctx, pctx, type, e, pkey, 1);
129 }

131 int EVP_DigestSignFinal(EVP_MD_CTX *ctx, unsigned char *sigret, size_t *siglen)
132 {
133 int sctx, r = 0;
134 if (ctx->pctx->pmeth->signctx)
135 sctx = 1;
136 else
137 sctx = 0;
138 if (sigret)
139 {
140 EVP_MD_CTX tmp_ctx;
141 unsigned char md[EVP_MAX_MD_SIZE];
142 unsigned int mdlen;
143 EVP_MD_CTX_init(&tmp_ctx);
144 if (!EVP_MD_CTX_copy_ex(&tmp_ctx,ctx))
145 return 0;
146 if (sctx)
147 r = tmp_ctx.pctx->pmeth->signctx(tmp_ctx.pctx,
148 sigret, siglen, &tmp_ctx);
149 else
150 r = EVP_DigestFinal_ex(&tmp_ctx,md,&mdlen);
151 EVP_MD_CTX_cleanup(&tmp_ctx);
152 if (sctx || !r)
153 return r;
154 if (EVP_PKEY_sign(ctx->pctx, sigret, siglen, md, mdlen) <= 0)
155 return 0;
156 }
157 else
158 {
159 if (sctx)
160 {
161 if (ctx->pctx->pmeth->signctx(ctx->pctx, sigret, siglen,
162 return 0;
163 }
164 else
165 {
166 int s = EVP_MD_size(ctx->digest);
167 if (s < 0 || EVP_PKEY_sign(ctx->pctx, sigret, siglen, NU
168 return 0;
169 }
170 }
171 return 1;
172 }

174 int EVP_DigestVerifyFinal(EVP_MD_CTX *ctx, unsigned char *sig, size_t siglen)
175 {
176 EVP_MD_CTX tmp_ctx;
177 unsigned char md[EVP_MAX_MD_SIZE];
178 int r;
179 unsigned int mdlen;
180 int vctx;

182 if (ctx->pctx->pmeth->verifyctx)
183 vctx = 1;
184 else
185 vctx = 0;
186 EVP_MD_CTX_init(&tmp_ctx);
187 if (!EVP_MD_CTX_copy_ex(&tmp_ctx,ctx))
188 return -1;
189 if (vctx)
190 {
191 r = tmp_ctx.pctx->pmeth->verifyctx(tmp_ctx.pctx,
192 sig, siglen, &tmp_ctx);
193 }

new/usr/src/lib/openssl/libsunw_crypto/evp/m_sigver.c 4

194 else
195 r = EVP_DigestFinal_ex(&tmp_ctx,md,&mdlen);
196 EVP_MD_CTX_cleanup(&tmp_ctx);
197 if (vctx || !r)
198 return r;
199 return EVP_PKEY_verify(ctx->pctx, sig, siglen, md, mdlen);
200 }

new/usr/src/lib/openssl/libsunw_crypto/evp/m_wp.c 1

**
 812 Fri May 30 18:31:53 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/m_wp.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/m_wp.c */

3 #include <stdio.h>
4 #include "cryptlib.h"

6 #ifndef OPENSSL_NO_WHIRLPOOL

8 #include <openssl/evp.h>
9 #include <openssl/objects.h>
10 #include <openssl/x509.h>
11 #include <openssl/whrlpool.h>
12 #include "evp_locl.h"

14 static int init(EVP_MD_CTX *ctx)
15 { return WHIRLPOOL_Init(ctx->md_data); }

17 static int update(EVP_MD_CTX *ctx,const void *data,size_t count)
18 { return WHIRLPOOL_Update(ctx->md_data,data,count); }

20 static int final(EVP_MD_CTX *ctx,unsigned char *md)
21 { return WHIRLPOOL_Final(md,ctx->md_data); }

23 static const EVP_MD whirlpool_md=
24 {
25 NID_whirlpool,
26 0,
27 WHIRLPOOL_DIGEST_LENGTH,
28 0,
29 init,
30 update,
31 final,
32 NULL,
33 NULL,
34 EVP_PKEY_NULL_method,
35 WHIRLPOOL_BBLOCK/8,
36 sizeof(EVP_MD *)+sizeof(WHIRLPOOL_CTX),
37 };

39 const EVP_MD *EVP_whirlpool(void)
40 {
41 return(&whirlpool_md);
42 }
43 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/names.c 1

**
 6678 Fri May 30 18:31:53 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/names.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/names.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/names.c 2

62 #include <openssl/objects.h>
63 #include <openssl/x509.h>

65 int EVP_add_cipher(const EVP_CIPHER *c)
66 {
67 int r;

69 if (c == NULL) return 0;

71 OPENSSL_init();

73 r=OBJ_NAME_add(OBJ_nid2sn(c->nid),OBJ_NAME_TYPE_CIPHER_METH,(const char
74 if (r == 0) return(0);
75 check_defer(c->nid);
76 r=OBJ_NAME_add(OBJ_nid2ln(c->nid),OBJ_NAME_TYPE_CIPHER_METH,(const char
77 return(r);
78 }

81 int EVP_add_digest(const EVP_MD *md)
82 {
83 int r;
84 const char *name;
85 OPENSSL_init();

87 name=OBJ_nid2sn(md->type);
88 r=OBJ_NAME_add(name,OBJ_NAME_TYPE_MD_METH,(const char *)md);
89 if (r == 0) return(0);
90 check_defer(md->type);
91 r=OBJ_NAME_add(OBJ_nid2ln(md->type),OBJ_NAME_TYPE_MD_METH,(const char *)
92 if (r == 0) return(0);

94 if (md->pkey_type && md->type != md->pkey_type)
95 {
96 r=OBJ_NAME_add(OBJ_nid2sn(md->pkey_type),
97 OBJ_NAME_TYPE_MD_METH|OBJ_NAME_ALIAS,name);
98 if (r == 0) return(0);
99 check_defer(md->pkey_type);
100 r=OBJ_NAME_add(OBJ_nid2ln(md->pkey_type),
101 OBJ_NAME_TYPE_MD_METH|OBJ_NAME_ALIAS,name);
102 }
103 return(r);
104 }

106 const EVP_CIPHER *EVP_get_cipherbyname(const char *name)
107 {
108 const EVP_CIPHER *cp;

110 cp=(const EVP_CIPHER *)OBJ_NAME_get(name,OBJ_NAME_TYPE_CIPHER_METH);
111 return(cp);
112 }

114 const EVP_MD *EVP_get_digestbyname(const char *name)
115 {
116 const EVP_MD *cp;

118 cp=(const EVP_MD *)OBJ_NAME_get(name,OBJ_NAME_TYPE_MD_METH);
119 return(cp);
120 }

122 void EVP_cleanup(void)
123 {
124 OBJ_NAME_cleanup(OBJ_NAME_TYPE_CIPHER_METH);
125 OBJ_NAME_cleanup(OBJ_NAME_TYPE_MD_METH);
126 /* The above calls will only clean out the contents of the name
127 hash table, but not the hash table itself. The following line

new/usr/src/lib/openssl/libsunw_crypto/evp/names.c 3

128 does that part. -- Richard Levitte */
129 OBJ_NAME_cleanup(-1);

131 EVP_PBE_cleanup();
132 if (obj_cleanup_defer == 2)
133 {
134 obj_cleanup_defer = 0;
135 OBJ_cleanup();
136 }
137 OBJ_sigid_free();
138 }

140 struct doall_cipher
141 {
142 void *arg;
143 void (*fn)(const EVP_CIPHER *ciph,
144 const char *from, const char *to, void *arg);
145 };

147 static void do_all_cipher_fn(const OBJ_NAME *nm, void *arg)
148 {
149 struct doall_cipher *dc = arg;
150 if (nm->alias)
151 dc->fn(NULL, nm->name, nm->data, dc->arg);
152 else
153 dc->fn((const EVP_CIPHER *)nm->data, nm->name, NULL, dc->arg);
154 }

156 void EVP_CIPHER_do_all(void (*fn)(const EVP_CIPHER *ciph,
157 const char *from, const char *to, void *x), void *arg)
158 {
159 struct doall_cipher dc;
160 dc.fn = fn;
161 dc.arg = arg;
162 OBJ_NAME_do_all(OBJ_NAME_TYPE_CIPHER_METH, do_all_cipher_fn, &dc);
163 }

165 void EVP_CIPHER_do_all_sorted(void (*fn)(const EVP_CIPHER *ciph,
166 const char *from, const char *to, void *x), void *arg)
167 {
168 struct doall_cipher dc;
169 dc.fn = fn;
170 dc.arg = arg;
171 OBJ_NAME_do_all_sorted(OBJ_NAME_TYPE_CIPHER_METH, do_all_cipher_fn,&dc);
172 }

174 struct doall_md
175 {
176 void *arg;
177 void (*fn)(const EVP_MD *ciph,
178 const char *from, const char *to, void *arg);
179 };

181 static void do_all_md_fn(const OBJ_NAME *nm, void *arg)
182 {
183 struct doall_md *dc = arg;
184 if (nm->alias)
185 dc->fn(NULL, nm->name, nm->data, dc->arg);
186 else
187 dc->fn((const EVP_MD *)nm->data, nm->name, NULL, dc->arg);
188 }

190 void EVP_MD_do_all(void (*fn)(const EVP_MD *md,
191 const char *from, const char *to, void *x), void *arg)
192 {
193 struct doall_md dc;

new/usr/src/lib/openssl/libsunw_crypto/evp/names.c 4

194 dc.fn = fn;
195 dc.arg = arg;
196 OBJ_NAME_do_all(OBJ_NAME_TYPE_MD_METH, do_all_md_fn, &dc);
197 }

199 void EVP_MD_do_all_sorted(void (*fn)(const EVP_MD *md,
200 const char *from, const char *to, void *x), void *arg)
201 {
202 struct doall_md dc;
203 dc.fn = fn;
204 dc.arg = arg;
205 OBJ_NAME_do_all_sorted(OBJ_NAME_TYPE_MD_METH, do_all_md_fn, &dc);
206 }

new/usr/src/lib/openssl/libsunw_crypto/evp/p5_crpt.c 1

**
 5005 Fri May 30 18:31:53 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/p5_crpt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p5_crpt.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <stdlib.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/p5_crpt.c 2

62 #include <openssl/x509.h>
63 #include <openssl/evp.h>

65 /* Doesn’t do anything now: Builtin PBE algorithms in static table.
66 */

68 void PKCS5_PBE_add(void)
69 {
70 }

72 int PKCS5_PBE_keyivgen(EVP_CIPHER_CTX *cctx, const char *pass, int passlen,
73 ASN1_TYPE *param, const EVP_CIPHER *cipher, const EVP_M
74 int en_de)
75 {
76 EVP_MD_CTX ctx;
77 unsigned char md_tmp[EVP_MAX_MD_SIZE];
78 unsigned char key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH];
79 int i;
80 PBEPARAM *pbe;
81 int saltlen, iter;
82 unsigned char *salt;
83 const unsigned char *pbuf;
84 int mdsize;
85 int rv = 0;
86 EVP_MD_CTX_init(&ctx);

88 /* Extract useful info from parameter */
89 if (param == NULL || param->type != V_ASN1_SEQUENCE ||
90 param->value.sequence == NULL) {
91 EVPerr(EVP_F_PKCS5_PBE_KEYIVGEN,EVP_R_DECODE_ERROR);
92 return 0;
93 }

95 pbuf = param->value.sequence->data;
96 if (!(pbe = d2i_PBEPARAM(NULL, &pbuf, param->value.sequence->length))) {
97 EVPerr(EVP_F_PKCS5_PBE_KEYIVGEN,EVP_R_DECODE_ERROR);
98 return 0;
99 }

101 if (!pbe->iter) iter = 1;
102 else iter = ASN1_INTEGER_get (pbe->iter);
103 salt = pbe->salt->data;
104 saltlen = pbe->salt->length;

106 if(!pass) passlen = 0;
107 else if(passlen == -1) passlen = strlen(pass);

109 if (!EVP_DigestInit_ex(&ctx, md, NULL))
110 goto err;
111 if (!EVP_DigestUpdate(&ctx, pass, passlen))
112 goto err;
113 if (!EVP_DigestUpdate(&ctx, salt, saltlen))
114 goto err;
115 PBEPARAM_free(pbe);
116 if (!EVP_DigestFinal_ex(&ctx, md_tmp, NULL))
117 goto err;
118 mdsize = EVP_MD_size(md);
119 if (mdsize < 0)
120 return 0;
121 for (i = 1; i < iter; i++) {
122 if (!EVP_DigestInit_ex(&ctx, md, NULL))
123 goto err;
124 if (!EVP_DigestUpdate(&ctx, md_tmp, mdsize))
125 goto err;
126 if (!EVP_DigestFinal_ex (&ctx, md_tmp, NULL))
127 goto err;

new/usr/src/lib/openssl/libsunw_crypto/evp/p5_crpt.c 3

128 }
129 OPENSSL_assert(EVP_CIPHER_key_length(cipher) <= (int)sizeof(md_tmp));
130 memcpy(key, md_tmp, EVP_CIPHER_key_length(cipher));
131 OPENSSL_assert(EVP_CIPHER_iv_length(cipher) <= 16);
132 memcpy(iv, md_tmp + (16 - EVP_CIPHER_iv_length(cipher)),
133 EVP_CIPHER_iv_length(cipher));
134 if (!EVP_CipherInit_ex(cctx, cipher, NULL, key, iv, en_de))
135 goto err;
136 OPENSSL_cleanse(md_tmp, EVP_MAX_MD_SIZE);
137 OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH);
138 OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH);
139 rv = 1;
140 err:
141 EVP_MD_CTX_cleanup(&ctx);
142 return rv;
143 }

new/usr/src/lib/openssl/libsunw_crypto/evp/p5_crpt2.c 1

**
 10002 Fri May 30 18:31:53 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/p5_crpt2.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p5_crpt2.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999-2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include "cryptlib.h"
61 #if !defined(OPENSSL_NO_HMAC) && !defined(OPENSSL_NO_SHA)

new/usr/src/lib/openssl/libsunw_crypto/evp/p5_crpt2.c 2

62 #include <openssl/x509.h>
63 #include <openssl/evp.h>
64 #include <openssl/hmac.h>
65 #include "evp_locl.h"

67 /* set this to print out info about the keygen algorithm */
68 /* #define DEBUG_PKCS5V2 */

70 #ifdef DEBUG_PKCS5V2
71 static void h__dump (const unsigned char *p, int len);
72 #endif

74 /* This is an implementation of PKCS#5 v2.0 password based encryption key
75 * derivation function PBKDF2.
76 * SHA1 version verified against test vectors posted by Peter Gutmann
77 * <pgut001@cs.auckland.ac.nz> to the PKCS-TNG <pkcs-tng@rsa.com> mailing list.
78 */

80 int PKCS5_PBKDF2_HMAC(const char *pass, int passlen,
81 const unsigned char *salt, int saltlen, int iter,
82 const EVP_MD *digest,
83 int keylen, unsigned char *out)
84 {
85 unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4];
86 int cplen, j, k, tkeylen, mdlen;
87 unsigned long i = 1;
88 HMAC_CTX hctx_tpl, hctx;

90 mdlen = EVP_MD_size(digest);
91 if (mdlen < 0)
92 return 0;

94 HMAC_CTX_init(&hctx_tpl);
95 p = out;
96 tkeylen = keylen;
97 if(!pass)
98 passlen = 0;
99 else if(passlen == -1)
100 passlen = strlen(pass);
101 if (!HMAC_Init_ex(&hctx_tpl, pass, passlen, digest, NULL))
102 {
103 HMAC_CTX_cleanup(&hctx_tpl);
104 return 0;
105 }
106 while(tkeylen)
107 {
108 if(tkeylen > mdlen)
109 cplen = mdlen;
110 else
111 cplen = tkeylen;
112 /* We are unlikely to ever use more than 256 blocks (5120 bits!)
113 * but just in case...
114 */
115 itmp[0] = (unsigned char)((i >> 24) & 0xff);
116 itmp[1] = (unsigned char)((i >> 16) & 0xff);
117 itmp[2] = (unsigned char)((i >> 8) & 0xff);
118 itmp[3] = (unsigned char)(i & 0xff);
119 if (!HMAC_CTX_copy(&hctx, &hctx_tpl))
120 {
121 HMAC_CTX_cleanup(&hctx_tpl);
122 return 0;
123 }
124 if (!HMAC_Update(&hctx, salt, saltlen)
125 || !HMAC_Update(&hctx, itmp, 4)
126 || !HMAC_Final(&hctx, digtmp, NULL))
127 {

new/usr/src/lib/openssl/libsunw_crypto/evp/p5_crpt2.c 3

128 HMAC_CTX_cleanup(&hctx_tpl);
129 HMAC_CTX_cleanup(&hctx);
130 return 0;
131 }
132 HMAC_CTX_cleanup(&hctx);
133 memcpy(p, digtmp, cplen);
134 for(j = 1; j < iter; j++)
135 {
136 if (!HMAC_CTX_copy(&hctx, &hctx_tpl))
137 {
138 HMAC_CTX_cleanup(&hctx_tpl);
139 return 0;
140 }
141 if (!HMAC_Update(&hctx, digtmp, mdlen)
142 || !HMAC_Final(&hctx, digtmp, NULL))
143 {
144 HMAC_CTX_cleanup(&hctx_tpl);
145 HMAC_CTX_cleanup(&hctx);
146 return 0;
147 }
148 HMAC_CTX_cleanup(&hctx);
149 for(k = 0; k < cplen; k++)
150 p[k] ^= digtmp[k];
151 }
152 tkeylen-= cplen;
153 i++;
154 p+= cplen;
155 }
156 HMAC_CTX_cleanup(&hctx_tpl);
157 #ifdef DEBUG_PKCS5V2
158 fprintf(stderr, "Password:\n");
159 h__dump (pass, passlen);
160 fprintf(stderr, "Salt:\n");
161 h__dump (salt, saltlen);
162 fprintf(stderr, "Iteration count %d\n", iter);
163 fprintf(stderr, "Key:\n");
164 h__dump (out, keylen);
165 #endif
166 return 1;
167 }

169 int PKCS5_PBKDF2_HMAC_SHA1(const char *pass, int passlen,
170 const unsigned char *salt, int saltlen, int iter,
171 int keylen, unsigned char *out)
172 {
173 return PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, EVP_sha1(),
174 keylen, out);
175 }

177 #ifdef DO_TEST
178 main()
179 {
180 unsigned char out[4];
181 unsigned char salt[] = {0x12, 0x34, 0x56, 0x78};
182 PKCS5_PBKDF2_HMAC_SHA1("password", -1, salt, 4, 5, 4, out);
183 fprintf(stderr, "Out %02X %02X %02X %02X\n",
184 out[0], out[1], out[2], out[3]);
185 }

187 #endif

189 /* Now the key derivation function itself. This is a bit evil because
190 * it has to check the ASN1 parameters are valid: and there are quite a
191 * few of them...
192 */

new/usr/src/lib/openssl/libsunw_crypto/evp/p5_crpt2.c 4

194 int PKCS5_v2_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen,
195 ASN1_TYPE *param, const EVP_CIPHER *c, const EVP_MD *md
196 int en_de)
197 {
198 const unsigned char *pbuf;
199 int plen;
200 PBE2PARAM *pbe2 = NULL;
201 const EVP_CIPHER *cipher;

203 int rv = 0;

205 if (param == NULL || param->type != V_ASN1_SEQUENCE ||
206 param->value.sequence == NULL) {
207 EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN,EVP_R_DECODE_ERROR);
208 goto err;
209 }

211 pbuf = param->value.sequence->data;
212 plen = param->value.sequence->length;
213 if(!(pbe2 = d2i_PBE2PARAM(NULL, &pbuf, plen))) {
214 EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN,EVP_R_DECODE_ERROR);
215 goto err;
216 }

218 /* See if we recognise the key derivation function */

220 if(OBJ_obj2nid(pbe2->keyfunc->algorithm) != NID_id_pbkdf2) {
221 EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN,
222 EVP_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION);
223 goto err;
224 }

226 /* lets see if we recognise the encryption algorithm.
227 */

229 cipher = EVP_get_cipherbyobj(pbe2->encryption->algorithm);

231 if(!cipher) {
232 EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN,
233 EVP_R_UNSUPPORTED_CIPHER);
234 goto err;
235 }

237 /* Fixup cipher based on AlgorithmIdentifier */
238 if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, en_de))
239 goto err;
240 if(EVP_CIPHER_asn1_to_param(ctx, pbe2->encryption->parameter) < 0) {
241 EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN,
242 EVP_R_CIPHER_PARAMETER_ERROR);
243 goto err;
244 }
245 rv = PKCS5_v2_PBKDF2_keyivgen(ctx, pass, passlen,
246 pbe2->keyfunc->parameter, c, md, en_de);
247 err:
248 PBE2PARAM_free(pbe2);
249 return rv;
250 }

252 int PKCS5_v2_PBKDF2_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen,
253 ASN1_TYPE *param,
254 const EVP_CIPHER *c, const EVP_MD *md, int en_de)
255 {
256 unsigned char *salt, key[EVP_MAX_KEY_LENGTH];
257 const unsigned char *pbuf;
258 int saltlen, iter, plen;
259 int rv = 0;

new/usr/src/lib/openssl/libsunw_crypto/evp/p5_crpt2.c 5

260 unsigned int keylen = 0;
261 int prf_nid, hmac_md_nid;
262 PBKDF2PARAM *kdf = NULL;
263 const EVP_MD *prfmd;

265 if (EVP_CIPHER_CTX_cipher(ctx) == NULL)
266 {
267 EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN,EVP_R_NO_CIPHER_SET);
268 goto err;
269 }
270 keylen = EVP_CIPHER_CTX_key_length(ctx);
271 OPENSSL_assert(keylen <= sizeof key);

273 /* Decode parameter */

275 if(!param || (param->type != V_ASN1_SEQUENCE))
276 {
277 EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN,EVP_R_DECODE_ERROR);
278 goto err;
279 }

281 pbuf = param->value.sequence->data;
282 plen = param->value.sequence->length;

284 if(!(kdf = d2i_PBKDF2PARAM(NULL, &pbuf, plen))) {
285 EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN,EVP_R_DECODE_ERROR);
286 goto err;
287 }

289 keylen = EVP_CIPHER_CTX_key_length(ctx);

291 /* Now check the parameters of the kdf */

293 if(kdf->keylength && (ASN1_INTEGER_get(kdf->keylength) != (int)keylen)){
294 EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN,
295 EVP_R_UNSUPPORTED_KEYLENGTH);
296 goto err;
297 }

299 if (kdf->prf)
300 prf_nid = OBJ_obj2nid(kdf->prf->algorithm);
301 else
302 prf_nid = NID_hmacWithSHA1;

304 if (!EVP_PBE_find(EVP_PBE_TYPE_PRF, prf_nid, NULL, &hmac_md_nid, 0))
305 {
306 EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF);
307 goto err;
308 }

310 prfmd = EVP_get_digestbynid(hmac_md_nid);
311 if (prfmd == NULL)
312 {
313 EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF);
314 goto err;
315 }

317 if(kdf->salt->type != V_ASN1_OCTET_STRING) {
318 EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN,
319 EVP_R_UNSUPPORTED_SALT_TYPE);
320 goto err;
321 }

323 /* it seems that its all OK */
324 salt = kdf->salt->value.octet_string->data;
325 saltlen = kdf->salt->value.octet_string->length;

new/usr/src/lib/openssl/libsunw_crypto/evp/p5_crpt2.c 6

326 iter = ASN1_INTEGER_get(kdf->iter);
327 if(!PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, prfmd,
328 keylen, key))
329 goto err;
330 rv = EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, en_de);
331 err:
332 OPENSSL_cleanse(key, keylen);
333 PBKDF2PARAM_free(kdf);
334 return rv;
335 }

337 #ifdef DEBUG_PKCS5V2
338 static void h__dump (const unsigned char *p, int len)
339 {
340 for (; len --; p++) fprintf(stderr, "%02X ", *p);
341 fprintf(stderr, "\n");
342 }
343 #endif
344 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/p_dec.c 1

**
 3802 Fri May 30 18:31:54 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/p_dec.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/p_dec.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/rand.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/p_dec.c 2

62 #ifndef OPENSSL_NO_RSA
63 #include <openssl/rsa.h>
64 #endif
65 #include <openssl/evp.h>
66 #include <openssl/objects.h>
67 #include <openssl/x509.h>

69 int EVP_PKEY_decrypt_old(unsigned char *key, const unsigned char *ek, int ekl,
70 EVP_PKEY *priv)
71 {
72 int ret= -1;
73
74 #ifndef OPENSSL_NO_RSA
75 if (priv->type != EVP_PKEY_RSA)
76 {
77 #endif
78 EVPerr(EVP_F_EVP_PKEY_DECRYPT_OLD,EVP_R_PUBLIC_KEY_NOT_RSA);
79 #ifndef OPENSSL_NO_RSA
80 goto err;
81 }

83 ret=RSA_private_decrypt(ekl,ek,key,priv->pkey.rsa,RSA_PKCS1_PADDING);
84 err:
85 #endif
86 return(ret);
87 }

new/usr/src/lib/openssl/libsunw_crypto/evp/p_enc.c 1

**
 3792 Fri May 30 18:31:54 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/p_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/p_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/rand.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/p_enc.c 2

62 #ifndef OPENSSL_NO_RSA
63 #include <openssl/rsa.h>
64 #endif
65 #include <openssl/evp.h>
66 #include <openssl/objects.h>
67 #include <openssl/x509.h>

69 int EVP_PKEY_encrypt_old(unsigned char *ek, const unsigned char *key, int key_le
70 EVP_PKEY *pubk)
71 {
72 int ret=0;
73
74 #ifndef OPENSSL_NO_RSA
75 if (pubk->type != EVP_PKEY_RSA)
76 {
77 #endif
78 EVPerr(EVP_F_EVP_PKEY_ENCRYPT_OLD,EVP_R_PUBLIC_KEY_NOT_RSA);
79 #ifndef OPENSSL_NO_RSA
80 goto err;
81 }
82 ret=RSA_public_encrypt(key_len,key,ek,pubk->pkey.rsa,RSA_PKCS1_PADDING);
83 err:
84 #endif
85 return(ret);
86 }

new/usr/src/lib/openssl/libsunw_crypto/evp/p_lib.c 1

**
 11305 Fri May 30 18:31:54 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/p_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/p_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/p_lib.c 2

62 #include <openssl/err.h>
63 #include <openssl/objects.h>
64 #include <openssl/evp.h>
65 #include <openssl/asn1_mac.h>
66 #include <openssl/x509.h>
67 #ifndef OPENSSL_NO_RSA
68 #include <openssl/rsa.h>
69 #endif
70 #ifndef OPENSSL_NO_DSA
71 #include <openssl/dsa.h>
72 #endif
73 #ifndef OPENSSL_NO_DH
74 #include <openssl/dh.h>
75 #endif

77 #ifndef OPENSSL_NO_ENGINE
78 #include <openssl/engine.h>
79 #endif

81 #include "asn1_locl.h"

83 static void EVP_PKEY_free_it(EVP_PKEY *x);

85 int EVP_PKEY_bits(EVP_PKEY *pkey)
86 {
87 if (pkey && pkey->ameth && pkey->ameth->pkey_bits)
88 return pkey->ameth->pkey_bits(pkey);
89 return 0;
90 }

92 int EVP_PKEY_size(EVP_PKEY *pkey)
93 {
94 if (pkey && pkey->ameth && pkey->ameth->pkey_size)
95 return pkey->ameth->pkey_size(pkey);
96 return 0;
97 }

99 int EVP_PKEY_save_parameters(EVP_PKEY *pkey, int mode)
100 {
101 #ifndef OPENSSL_NO_DSA
102 if (pkey->type == EVP_PKEY_DSA)
103 {
104 int ret=pkey->save_parameters;

106 if (mode >= 0)
107 pkey->save_parameters=mode;
108 return(ret);
109 }
110 #endif
111 #ifndef OPENSSL_NO_EC
112 if (pkey->type == EVP_PKEY_EC)
113 {
114 int ret = pkey->save_parameters;

116 if (mode >= 0)
117 pkey->save_parameters = mode;
118 return(ret);
119 }
120 #endif
121 return(0);
122 }

124 int EVP_PKEY_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from)
125 {
126 if (to->type != from->type)
127 {

new/usr/src/lib/openssl/libsunw_crypto/evp/p_lib.c 3

128 EVPerr(EVP_F_EVP_PKEY_COPY_PARAMETERS,EVP_R_DIFFERENT_KEY_TYPES)
129 goto err;
130 }

132 if (EVP_PKEY_missing_parameters(from))
133 {
134 EVPerr(EVP_F_EVP_PKEY_COPY_PARAMETERS,EVP_R_MISSING_PARAMETERS);
135 goto err;
136 }
137 if (from->ameth && from->ameth->param_copy)
138 return from->ameth->param_copy(to, from);
139 err:
140 return 0;
141 }

143 int EVP_PKEY_missing_parameters(const EVP_PKEY *pkey)
144 {
145 if (pkey->ameth && pkey->ameth->param_missing)
146 return pkey->ameth->param_missing(pkey);
147 return 0;
148 }

150 int EVP_PKEY_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b)
151 {
152 if (a->type != b->type)
153 return -1;
154 if (a->ameth && a->ameth->param_cmp)
155 return a->ameth->param_cmp(a, b);
156 return -2;
157 }

159 int EVP_PKEY_cmp(const EVP_PKEY *a, const EVP_PKEY *b)
160 {
161 if (a->type != b->type)
162 return -1;

164 if (a->ameth)
165 {
166 int ret;
167 /* Compare parameters if the algorithm has them */
168 if (a->ameth->param_cmp)
169 {
170 ret = a->ameth->param_cmp(a, b);
171 if (ret <= 0)
172 return ret;
173 }

175 if (a->ameth->pub_cmp)
176 return a->ameth->pub_cmp(a, b);
177 }

179 return -2;
180 }

182 EVP_PKEY *EVP_PKEY_new(void)
183 {
184 EVP_PKEY *ret;

186 ret=(EVP_PKEY *)OPENSSL_malloc(sizeof(EVP_PKEY));
187 if (ret == NULL)
188 {
189 EVPerr(EVP_F_EVP_PKEY_NEW,ERR_R_MALLOC_FAILURE);
190 return(NULL);
191 }
192 ret->type=EVP_PKEY_NONE;
193 ret->save_type=EVP_PKEY_NONE;

new/usr/src/lib/openssl/libsunw_crypto/evp/p_lib.c 4

194 ret->references=1;
195 ret->ameth=NULL;
196 ret->engine=NULL;
197 ret->pkey.ptr=NULL;
198 ret->attributes=NULL;
199 ret->save_parameters=1;
200 return(ret);
201 }

203 /* Setup a public key ASN1 method and ENGINE from a NID or a string.
204 * If pkey is NULL just return 1 or 0 if the algorithm exists.
205 */

207 static int pkey_set_type(EVP_PKEY *pkey, int type, const char *str, int len)
208 {
209 const EVP_PKEY_ASN1_METHOD *ameth;
210 ENGINE *e = NULL;
211 if (pkey)
212 {
213 if (pkey->pkey.ptr)
214 EVP_PKEY_free_it(pkey);
215 /* If key type matches and a method exists then this
216 * lookup has succeeded once so just indicate success.
217 */
218 if ((type == pkey->save_type) && pkey->ameth)
219 return 1;
220 #ifndef OPENSSL_NO_ENGINE
221 /* If we have an ENGINE release it */
222 if (pkey->engine)
223 {
224 ENGINE_finish(pkey->engine);
225 pkey->engine = NULL;
226 }
227 #endif
228 }
229 if (str)
230 ameth = EVP_PKEY_asn1_find_str(&e, str, len);
231 else
232 ameth = EVP_PKEY_asn1_find(&e, type);
233 #ifndef OPENSSL_NO_ENGINE
234 if (!pkey && e)
235 ENGINE_finish(e);
236 #endif
237 if (!ameth)
238 {
239 EVPerr(EVP_F_PKEY_SET_TYPE, EVP_R_UNSUPPORTED_ALGORITHM);
240 return 0;
241 }
242 if (pkey)
243 {
244 pkey->ameth = ameth;
245 pkey->engine = e;

247 pkey->type = pkey->ameth->pkey_id;
248 pkey->save_type=type;
249 }
250 return 1;
251 }

253 int EVP_PKEY_set_type(EVP_PKEY *pkey, int type)
254 {
255 return pkey_set_type(pkey, type, NULL, -1);
256 }

258 int EVP_PKEY_set_type_str(EVP_PKEY *pkey, const char *str, int len)
259 {

new/usr/src/lib/openssl/libsunw_crypto/evp/p_lib.c 5

260 return pkey_set_type(pkey, EVP_PKEY_NONE, str, len);
261 }

263 int EVP_PKEY_assign(EVP_PKEY *pkey, int type, void *key)
264 {
265 if (!EVP_PKEY_set_type(pkey, type))
266 return 0;
267 pkey->pkey.ptr=key;
268 return (key != NULL);
269 }

271 void *EVP_PKEY_get0(EVP_PKEY *pkey)
272 {
273 return pkey->pkey.ptr;
274 }

276 #ifndef OPENSSL_NO_RSA
277 int EVP_PKEY_set1_RSA(EVP_PKEY *pkey, RSA *key)
278 {
279 int ret = EVP_PKEY_assign_RSA(pkey, key);
280 if(ret)
281 RSA_up_ref(key);
282 return ret;
283 }

285 RSA *EVP_PKEY_get1_RSA(EVP_PKEY *pkey)
286 {
287 if(pkey->type != EVP_PKEY_RSA) {
288 EVPerr(EVP_F_EVP_PKEY_GET1_RSA, EVP_R_EXPECTING_AN_RSA_KEY);
289 return NULL;
290 }
291 RSA_up_ref(pkey->pkey.rsa);
292 return pkey->pkey.rsa;
293 }
294 #endif

296 #ifndef OPENSSL_NO_DSA
297 int EVP_PKEY_set1_DSA(EVP_PKEY *pkey, DSA *key)
298 {
299 int ret = EVP_PKEY_assign_DSA(pkey, key);
300 if(ret)
301 DSA_up_ref(key);
302 return ret;
303 }

305 DSA *EVP_PKEY_get1_DSA(EVP_PKEY *pkey)
306 {
307 if(pkey->type != EVP_PKEY_DSA) {
308 EVPerr(EVP_F_EVP_PKEY_GET1_DSA, EVP_R_EXPECTING_A_DSA_KEY);
309 return NULL;
310 }
311 DSA_up_ref(pkey->pkey.dsa);
312 return pkey->pkey.dsa;
313 }
314 #endif

316 #ifndef OPENSSL_NO_EC

318 int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey, EC_KEY *key)
319 {
320 int ret = EVP_PKEY_assign_EC_KEY(pkey,key);
321 if (ret)
322 EC_KEY_up_ref(key);
323 return ret;
324 }

new/usr/src/lib/openssl/libsunw_crypto/evp/p_lib.c 6

326 EC_KEY *EVP_PKEY_get1_EC_KEY(EVP_PKEY *pkey)
327 {
328 if (pkey->type != EVP_PKEY_EC)
329 {
330 EVPerr(EVP_F_EVP_PKEY_GET1_EC_KEY, EVP_R_EXPECTING_A_EC_KEY);
331 return NULL;
332 }
333 EC_KEY_up_ref(pkey->pkey.ec);
334 return pkey->pkey.ec;
335 }
336 #endif

339 #ifndef OPENSSL_NO_DH

341 int EVP_PKEY_set1_DH(EVP_PKEY *pkey, DH *key)
342 {
343 int ret = EVP_PKEY_assign_DH(pkey, key);
344 if(ret)
345 DH_up_ref(key);
346 return ret;
347 }

349 DH *EVP_PKEY_get1_DH(EVP_PKEY *pkey)
350 {
351 if(pkey->type != EVP_PKEY_DH) {
352 EVPerr(EVP_F_EVP_PKEY_GET1_DH, EVP_R_EXPECTING_A_DH_KEY);
353 return NULL;
354 }
355 DH_up_ref(pkey->pkey.dh);
356 return pkey->pkey.dh;
357 }
358 #endif

360 int EVP_PKEY_type(int type)
361 {
362 int ret;
363 const EVP_PKEY_ASN1_METHOD *ameth;
364 ENGINE *e;
365 ameth = EVP_PKEY_asn1_find(&e, type);
366 if (ameth)
367 ret = ameth->pkey_id;
368 else
369 ret = NID_undef;
370 #ifndef OPENSSL_NO_ENGINE
371 if (e)
372 ENGINE_finish(e);
373 #endif
374 return ret;
375 }

377 int EVP_PKEY_id(const EVP_PKEY *pkey)
378 {
379 return pkey->type;
380 }

382 int EVP_PKEY_base_id(const EVP_PKEY *pkey)
383 {
384 return EVP_PKEY_type(pkey->type);
385 }

387 void EVP_PKEY_free(EVP_PKEY *x)
388 {
389 int i;

391 if (x == NULL) return;

new/usr/src/lib/openssl/libsunw_crypto/evp/p_lib.c 7

393 i=CRYPTO_add(&x->references,-1,CRYPTO_LOCK_EVP_PKEY);
394 #ifdef REF_PRINT
395 REF_PRINT("EVP_PKEY",x);
396 #endif
397 if (i > 0) return;
398 #ifdef REF_CHECK
399 if (i < 0)
400 {
401 fprintf(stderr,"EVP_PKEY_free, bad reference count\n");
402 abort();
403 }
404 #endif
405 EVP_PKEY_free_it(x);
406 if (x->attributes)
407 sk_X509_ATTRIBUTE_pop_free(x->attributes, X509_ATTRIBUTE_free);
408 OPENSSL_free(x);
409 }

411 static void EVP_PKEY_free_it(EVP_PKEY *x)
412 {
413 if (x->ameth && x->ameth->pkey_free)
414 {
415 x->ameth->pkey_free(x);
416 x->pkey.ptr = NULL;
417 }
418 #ifndef OPENSSL_NO_ENGINE
419 if (x->engine)
420 {
421 ENGINE_finish(x->engine);
422 x->engine = NULL;
423 }
424 #endif
425 }

427 static int unsup_alg(BIO *out, const EVP_PKEY *pkey, int indent,
428 const char *kstr)
429 {
430 BIO_indent(out, indent, 128);
431 BIO_printf(out, "%s algorithm \"%s\" unsupported\n",
432 kstr, OBJ_nid2ln(pkey->type));
433 return 1;
434 }

436 int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey,
437 int indent, ASN1_PCTX *pctx)
438 {
439 if (pkey->ameth && pkey->ameth->pub_print)
440 return pkey->ameth->pub_print(out, pkey, indent, pctx);
441
442 return unsup_alg(out, pkey, indent, "Public Key");
443 }

445 int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey,
446 int indent, ASN1_PCTX *pctx)
447 {
448 if (pkey->ameth && pkey->ameth->priv_print)
449 return pkey->ameth->priv_print(out, pkey, indent, pctx);
450
451 return unsup_alg(out, pkey, indent, "Private Key");
452 }

454 int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey,
455 int indent, ASN1_PCTX *pctx)
456 {
457 if (pkey->ameth && pkey->ameth->param_print)

new/usr/src/lib/openssl/libsunw_crypto/evp/p_lib.c 8

458 return pkey->ameth->param_print(out, pkey, indent, pctx);
459 return unsup_alg(out, pkey, indent, "Parameters");
460 }

462 int EVP_PKEY_get_default_digest_nid(EVP_PKEY *pkey, int *pnid)
463 {
464 if (!pkey->ameth || !pkey->ameth->pkey_ctrl)
465 return -2;
466 return pkey->ameth->pkey_ctrl(pkey, ASN1_PKEY_CTRL_DEFAULT_MD_NID,
467 0, pnid);
468 }

new/usr/src/lib/openssl/libsunw_crypto/evp/p_open.c 1

**
 4562 Fri May 30 18:31:54 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/p_open.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/p_open.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/p_open.c 2

62 #ifndef OPENSSL_NO_RSA

64 #include <openssl/evp.h>
65 #include <openssl/objects.h>
66 #include <openssl/x509.h>
67 #include <openssl/rsa.h>

69 int EVP_OpenInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
70 const unsigned char *ek, int ekl, const unsigned char *iv,
71 EVP_PKEY *priv)
72 {
73 unsigned char *key=NULL;
74 int i,size=0,ret=0;

76 if(type) {
77 EVP_CIPHER_CTX_init(ctx);
78 if(!EVP_DecryptInit_ex(ctx,type,NULL, NULL,NULL)) return 0;
79 }

81 if(!priv) return 1;

83 if (priv->type != EVP_PKEY_RSA)
84 {
85 EVPerr(EVP_F_EVP_OPENINIT,EVP_R_PUBLIC_KEY_NOT_RSA);
86 goto err;
87 }

89 size=RSA_size(priv->pkey.rsa);
90 key=(unsigned char *)OPENSSL_malloc(size+2);
91 if (key == NULL)
92 {
93 /* ERROR */
94 EVPerr(EVP_F_EVP_OPENINIT,ERR_R_MALLOC_FAILURE);
95 goto err;
96 }

98 i=EVP_PKEY_decrypt_old(key,ek,ekl,priv);
99 if ((i <= 0) || !EVP_CIPHER_CTX_set_key_length(ctx, i))
100 {
101 /* ERROR */
102 goto err;
103 }
104 if(!EVP_DecryptInit_ex(ctx,NULL,NULL,key,iv)) goto err;

106 ret=1;
107 err:
108 if (key != NULL) OPENSSL_cleanse(key,size);
109 OPENSSL_free(key);
110 return(ret);
111 }

113 int EVP_OpenFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl)
114 {
115 int i;

117 i=EVP_DecryptFinal_ex(ctx,out,outl);
118 if (i)
119 i = EVP_DecryptInit_ex(ctx,NULL,NULL,NULL,NULL);
120 return(i);
121 }
122 #else /* !OPENSSL_NO_RSA */

124 # ifdef PEDANTIC
125 static void *dummy=&dummy;
126 # endif

new/usr/src/lib/openssl/libsunw_crypto/evp/p_open.c 3

128 #endif

new/usr/src/lib/openssl/libsunw_crypto/evp/p_seal.c 1

**
 4493 Fri May 30 18:31:54 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/p_seal.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/p_seal.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/rand.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/p_seal.c 2

62 #ifndef OPENSSL_NO_RSA
63 #include <openssl/rsa.h>
64 #endif
65 #include <openssl/evp.h>
66 #include <openssl/objects.h>
67 #include <openssl/x509.h>

69 int EVP_SealInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, unsigned char **ek
70 int *ekl, unsigned char *iv, EVP_PKEY **pubk, int npubk)
71 {
72 unsigned char key[EVP_MAX_KEY_LENGTH];
73 int i;
74
75 if(type) {
76 EVP_CIPHER_CTX_init(ctx);
77 if(!EVP_EncryptInit_ex(ctx,type,NULL,NULL,NULL)) return 0;
78 }
79 if ((npubk <= 0) || !pubk)
80 return 1;
81 if (EVP_CIPHER_CTX_rand_key(ctx, key) <= 0)
82 return 0;
83 if (EVP_CIPHER_CTX_iv_length(ctx))
84 RAND_pseudo_bytes(iv,EVP_CIPHER_CTX_iv_length(ctx));

86 if(!EVP_EncryptInit_ex(ctx,NULL,NULL,key,iv)) return 0;

88 for (i=0; i<npubk; i++)
89 {
90 ekl[i]=EVP_PKEY_encrypt_old(ek[i],key,EVP_CIPHER_CTX_key_length(
91 pubk[i]);
92 if (ekl[i] <= 0) return(-1);
93 }
94 return(npubk);
95 }

97 /* MACRO
98 void EVP_SealUpdate(ctx,out,outl,in,inl)
99 EVP_CIPHER_CTX *ctx;
100 unsigned char *out;
101 int *outl;
102 unsigned char *in;
103 int inl;
104 {
105 EVP_EncryptUpdate(ctx,out,outl,in,inl);
106 }
107 */

109 int EVP_SealFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl)
110 {
111 int i;
112 i = EVP_EncryptFinal_ex(ctx,out,outl);
113 if (i)
114 i = EVP_EncryptInit_ex(ctx,NULL,NULL,NULL,NULL);
115 return i;
116 }

new/usr/src/lib/openssl/libsunw_crypto/evp/p_sign.c 1

**
 4879 Fri May 30 18:31:54 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/p_sign.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/p_sign.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/p_sign.c 2

62 #include <openssl/objects.h>
63 #include <openssl/x509.h>

65 #ifdef undef
66 void EVP_SignInit(EVP_MD_CTX *ctx, EVP_MD *type)
67 {
68 EVP_DigestInit_ex(ctx,type);
69 }

71 void EVP_SignUpdate(EVP_MD_CTX *ctx, unsigned char *data,
72 unsigned int count)
73 {
74 EVP_DigestUpdate(ctx,data,count);
75 }
76 #endif

78 int EVP_SignFinal(EVP_MD_CTX *ctx, unsigned char *sigret, unsigned int *siglen,
79 EVP_PKEY *pkey)
80 {
81 unsigned char m[EVP_MAX_MD_SIZE];
82 unsigned int m_len;
83 int i = 0,ok = 0,v;
84 EVP_MD_CTX tmp_ctx;
85 EVP_PKEY_CTX *pkctx = NULL;

87 *siglen=0;
88 EVP_MD_CTX_init(&tmp_ctx);
89 if (!EVP_MD_CTX_copy_ex(&tmp_ctx,ctx))
90 goto err;
91 if (!EVP_DigestFinal_ex(&tmp_ctx,&(m[0]),&m_len))
92 goto err;
93 EVP_MD_CTX_cleanup(&tmp_ctx);

95 if (ctx->digest->flags & EVP_MD_FLAG_PKEY_METHOD_SIGNATURE)
96 {
97 size_t sltmp = (size_t)EVP_PKEY_size(pkey);
98 i = 0;
99 pkctx = EVP_PKEY_CTX_new(pkey, NULL);
100 if (!pkctx)
101 goto err;
102 if (EVP_PKEY_sign_init(pkctx) <= 0)
103 goto err;
104 if (EVP_PKEY_CTX_set_signature_md(pkctx, ctx->digest) <= 0)
105 goto err;
106 if (EVP_PKEY_sign(pkctx, sigret, &sltmp, m, m_len) <= 0)
107 goto err;
108 *siglen = sltmp;
109 i = 1;
110 err:
111 EVP_PKEY_CTX_free(pkctx);
112 return i;
113 }

115 for (i=0; i<4; i++)
116 {
117 v=ctx->digest->required_pkey_type[i];
118 if (v == 0) break;
119 if (pkey->type == v)
120 {
121 ok=1;
122 break;
123 }
124 }
125 if (!ok)
126 {
127 EVPerr(EVP_F_EVP_SIGNFINAL,EVP_R_WRONG_PUBLIC_KEY_TYPE);

new/usr/src/lib/openssl/libsunw_crypto/evp/p_sign.c 3

128 return(0);
129 }

131 if (ctx->digest->sign == NULL)
132 {
133 EVPerr(EVP_F_EVP_SIGNFINAL,EVP_R_NO_SIGN_FUNCTION_CONFIGURED);
134 return(0);
135 }
136 return(ctx->digest->sign(ctx->digest->type,m,m_len,sigret,siglen,
137 pkey->pkey.ptr));
138 }

new/usr/src/lib/openssl/libsunw_crypto/evp/p_verify.c 1

**
 4591 Fri May 30 18:31:54 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/p_verify.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/evp/p_verify.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/evp/p_verify.c 2

62 #include <openssl/objects.h>
63 #include <openssl/x509.h>

65 int EVP_VerifyFinal(EVP_MD_CTX *ctx, const unsigned char *sigbuf,
66 unsigned int siglen, EVP_PKEY *pkey)
67 {
68 unsigned char m[EVP_MAX_MD_SIZE];
69 unsigned int m_len;
70 int i = 0,ok = 0,v;
71 EVP_MD_CTX tmp_ctx;
72 EVP_PKEY_CTX *pkctx = NULL;

74 EVP_MD_CTX_init(&tmp_ctx);
75 if (!EVP_MD_CTX_copy_ex(&tmp_ctx,ctx))
76 goto err;
77 if (!EVP_DigestFinal_ex(&tmp_ctx,&(m[0]),&m_len))
78 goto err;
79 EVP_MD_CTX_cleanup(&tmp_ctx);

81 if (ctx->digest->flags & EVP_MD_FLAG_PKEY_METHOD_SIGNATURE)
82 {
83 i = -1;
84 pkctx = EVP_PKEY_CTX_new(pkey, NULL);
85 if (!pkctx)
86 goto err;
87 if (EVP_PKEY_verify_init(pkctx) <= 0)
88 goto err;
89 if (EVP_PKEY_CTX_set_signature_md(pkctx, ctx->digest) <= 0)
90 goto err;
91 i = EVP_PKEY_verify(pkctx, sigbuf, siglen, m, m_len);
92 err:
93 EVP_PKEY_CTX_free(pkctx);
94 return i;
95 }

97 for (i=0; i<4; i++)
98 {
99 v=ctx->digest->required_pkey_type[i];
100 if (v == 0) break;
101 if (pkey->type == v)
102 {
103 ok=1;
104 break;
105 }
106 }
107 if (!ok)
108 {
109 EVPerr(EVP_F_EVP_VERIFYFINAL,EVP_R_WRONG_PUBLIC_KEY_TYPE);
110 return(-1);
111 }
112 if (ctx->digest->verify == NULL)
113 {
114 EVPerr(EVP_F_EVP_VERIFYFINAL,EVP_R_NO_VERIFY_FUNCTION_CONFIGURED
115 return(0);
116 }

118 return(ctx->digest->verify(ctx->digest->type,m,m_len,
119 sigbuf,siglen,pkey->pkey.ptr));
120 }

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_fn.c 1

**
 10546 Fri May 30 18:31:54 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_fn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pmeth_fn.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2006.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <stdlib.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_fn.c 2

62 #include <openssl/objects.h>
63 #include <openssl/evp.h>
64 #include "evp_locl.h"

66 #define M_check_autoarg(ctx, arg, arglen, err) \
67 if (ctx->pmeth->flags & EVP_PKEY_FLAG_AUTOARGLEN) \
68 { \
69 size_t pksize = (size_t)EVP_PKEY_size(ctx->pkey); \
70 if (!arg) \
71 { \
72 *arglen = pksize; \
73 return 1; \
74 } \
75 else if (*arglen < pksize) \
76 { \
77 EVPerr(err, EVP_R_BUFFER_TOO_SMALL); /*ckerr_ignore*/\
78 return 0; \
79 } \
80 }

82 int EVP_PKEY_sign_init(EVP_PKEY_CTX *ctx)
83 {
84 int ret;
85 if (!ctx || !ctx->pmeth || !ctx->pmeth->sign)
86 {
87 EVPerr(EVP_F_EVP_PKEY_SIGN_INIT,
88 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
89 return -2;
90 }
91 ctx->operation = EVP_PKEY_OP_SIGN;
92 if (!ctx->pmeth->sign_init)
93 return 1;
94 ret = ctx->pmeth->sign_init(ctx);
95 if (ret <= 0)
96 ctx->operation = EVP_PKEY_OP_UNDEFINED;
97 return ret;
98 }

100 int EVP_PKEY_sign(EVP_PKEY_CTX *ctx,
101 unsigned char *sig, size_t *siglen,
102 const unsigned char *tbs, size_t tbslen)
103 {
104 if (!ctx || !ctx->pmeth || !ctx->pmeth->sign)
105 {
106 EVPerr(EVP_F_EVP_PKEY_SIGN,
107 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
108 return -2;
109 }
110 if (ctx->operation != EVP_PKEY_OP_SIGN)
111 {
112 EVPerr(EVP_F_EVP_PKEY_SIGN, EVP_R_OPERATON_NOT_INITIALIZED);
113 return -1;
114 }
115 M_check_autoarg(ctx, sig, siglen, EVP_F_EVP_PKEY_SIGN)
116 return ctx->pmeth->sign(ctx, sig, siglen, tbs, tbslen);
117 }

119 int EVP_PKEY_verify_init(EVP_PKEY_CTX *ctx)
120 {
121 int ret;
122 if (!ctx || !ctx->pmeth || !ctx->pmeth->verify)
123 {
124 EVPerr(EVP_F_EVP_PKEY_VERIFY_INIT,
125 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
126 return -2;
127 }

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_fn.c 3

128 ctx->operation = EVP_PKEY_OP_VERIFY;
129 if (!ctx->pmeth->verify_init)
130 return 1;
131 ret = ctx->pmeth->verify_init(ctx);
132 if (ret <= 0)
133 ctx->operation = EVP_PKEY_OP_UNDEFINED;
134 return ret;
135 }

137 int EVP_PKEY_verify(EVP_PKEY_CTX *ctx,
138 const unsigned char *sig, size_t siglen,
139 const unsigned char *tbs, size_t tbslen)
140 {
141 if (!ctx || !ctx->pmeth || !ctx->pmeth->verify)
142 {
143 EVPerr(EVP_F_EVP_PKEY_VERIFY,
144 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
145 return -2;
146 }
147 if (ctx->operation != EVP_PKEY_OP_VERIFY)
148 {
149 EVPerr(EVP_F_EVP_PKEY_VERIFY, EVP_R_OPERATON_NOT_INITIALIZED);
150 return -1;
151 }
152 return ctx->pmeth->verify(ctx, sig, siglen, tbs, tbslen);
153 }

155 int EVP_PKEY_verify_recover_init(EVP_PKEY_CTX *ctx)
156 {
157 int ret;
158 if (!ctx || !ctx->pmeth || !ctx->pmeth->verify_recover)
159 {
160 EVPerr(EVP_F_EVP_PKEY_VERIFY_RECOVER_INIT,
161 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
162 return -2;
163 }
164 ctx->operation = EVP_PKEY_OP_VERIFYRECOVER;
165 if (!ctx->pmeth->verify_recover_init)
166 return 1;
167 ret = ctx->pmeth->verify_recover_init(ctx);
168 if (ret <= 0)
169 ctx->operation = EVP_PKEY_OP_UNDEFINED;
170 return ret;
171 }

173 int EVP_PKEY_verify_recover(EVP_PKEY_CTX *ctx,
174 unsigned char *rout, size_t *routlen,
175 const unsigned char *sig, size_t siglen)
176 {
177 if (!ctx || !ctx->pmeth || !ctx->pmeth->verify_recover)
178 {
179 EVPerr(EVP_F_EVP_PKEY_VERIFY_RECOVER,
180 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
181 return -2;
182 }
183 if (ctx->operation != EVP_PKEY_OP_VERIFYRECOVER)
184 {
185 EVPerr(EVP_F_EVP_PKEY_VERIFY_RECOVER, EVP_R_OPERATON_NOT_INITIAL
186 return -1;
187 }
188 M_check_autoarg(ctx, rout, routlen, EVP_F_EVP_PKEY_VERIFY_RECOVER)
189 return ctx->pmeth->verify_recover(ctx, rout, routlen, sig, siglen);
190 }

192 int EVP_PKEY_encrypt_init(EVP_PKEY_CTX *ctx)
193 {

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_fn.c 4

194 int ret;
195 if (!ctx || !ctx->pmeth || !ctx->pmeth->encrypt)
196 {
197 EVPerr(EVP_F_EVP_PKEY_ENCRYPT_INIT,
198 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
199 return -2;
200 }
201 ctx->operation = EVP_PKEY_OP_ENCRYPT;
202 if (!ctx->pmeth->encrypt_init)
203 return 1;
204 ret = ctx->pmeth->encrypt_init(ctx);
205 if (ret <= 0)
206 ctx->operation = EVP_PKEY_OP_UNDEFINED;
207 return ret;
208 }

210 int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx,
211 unsigned char *out, size_t *outlen,
212 const unsigned char *in, size_t inlen)
213 {
214 if (!ctx || !ctx->pmeth || !ctx->pmeth->encrypt)
215 {
216 EVPerr(EVP_F_EVP_PKEY_ENCRYPT,
217 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
218 return -2;
219 }
220 if (ctx->operation != EVP_PKEY_OP_ENCRYPT)
221 {
222 EVPerr(EVP_F_EVP_PKEY_ENCRYPT, EVP_R_OPERATON_NOT_INITIALIZED);
223 return -1;
224 }
225 M_check_autoarg(ctx, out, outlen, EVP_F_EVP_PKEY_ENCRYPT)
226 return ctx->pmeth->encrypt(ctx, out, outlen, in, inlen);
227 }

229 int EVP_PKEY_decrypt_init(EVP_PKEY_CTX *ctx)
230 {
231 int ret;
232 if (!ctx || !ctx->pmeth || !ctx->pmeth->decrypt)
233 {
234 EVPerr(EVP_F_EVP_PKEY_DECRYPT_INIT,
235 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
236 return -2;
237 }
238 ctx->operation = EVP_PKEY_OP_DECRYPT;
239 if (!ctx->pmeth->decrypt_init)
240 return 1;
241 ret = ctx->pmeth->decrypt_init(ctx);
242 if (ret <= 0)
243 ctx->operation = EVP_PKEY_OP_UNDEFINED;
244 return ret;
245 }

247 int EVP_PKEY_decrypt(EVP_PKEY_CTX *ctx,
248 unsigned char *out, size_t *outlen,
249 const unsigned char *in, size_t inlen)
250 {
251 if (!ctx || !ctx->pmeth || !ctx->pmeth->decrypt)
252 {
253 EVPerr(EVP_F_EVP_PKEY_DECRYPT,
254 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
255 return -2;
256 }
257 if (ctx->operation != EVP_PKEY_OP_DECRYPT)
258 {
259 EVPerr(EVP_F_EVP_PKEY_DECRYPT, EVP_R_OPERATON_NOT_INITIALIZED);

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_fn.c 5

260 return -1;
261 }
262 M_check_autoarg(ctx, out, outlen, EVP_F_EVP_PKEY_DECRYPT)
263 return ctx->pmeth->decrypt(ctx, out, outlen, in, inlen);
264 }

267 int EVP_PKEY_derive_init(EVP_PKEY_CTX *ctx)
268 {
269 int ret;
270 if (!ctx || !ctx->pmeth || !ctx->pmeth->derive)
271 {
272 EVPerr(EVP_F_EVP_PKEY_DERIVE_INIT,
273 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
274 return -2;
275 }
276 ctx->operation = EVP_PKEY_OP_DERIVE;
277 if (!ctx->pmeth->derive_init)
278 return 1;
279 ret = ctx->pmeth->derive_init(ctx);
280 if (ret <= 0)
281 ctx->operation = EVP_PKEY_OP_UNDEFINED;
282 return ret;
283 }

285 int EVP_PKEY_derive_set_peer(EVP_PKEY_CTX *ctx, EVP_PKEY *peer)
286 {
287 int ret;
288 if (!ctx || !ctx->pmeth || !(ctx->pmeth->derive||ctx->pmeth->encrypt||ct
289 {
290 EVPerr(EVP_F_EVP_PKEY_DERIVE_SET_PEER,
291 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
292 return -2;
293 }
294 if (ctx->operation != EVP_PKEY_OP_DERIVE && ctx->operation != EVP_PKEY_O
295 {
296 EVPerr(EVP_F_EVP_PKEY_DERIVE_SET_PEER,
297 EVP_R_OPERATON_NOT_INITIALIZED);
298 return -1;
299 }

301 ret = ctx->pmeth->ctrl(ctx, EVP_PKEY_CTRL_PEER_KEY, 0, peer);

303 if (ret <= 0)
304 return ret;

306 if (ret == 2)
307 return 1;

309 if (!ctx->pkey)
310 {
311 EVPerr(EVP_F_EVP_PKEY_DERIVE_SET_PEER, EVP_R_NO_KEY_SET);
312 return -1;
313 }

315 if (ctx->pkey->type != peer->type)
316 {
317 EVPerr(EVP_F_EVP_PKEY_DERIVE_SET_PEER,
318 EVP_R_DIFFERENT_KEY_TYPES);
319 return -1;
320 }

322 /* ran@cryptocom.ru: For clarity. The error is if parameters in peer ar
323 * present (!missing) but don’t match. EVP_PKEY_cmp_parameters may retu
324 * 1 (match), 0 (don’t match) and -2 (comparison is not defined). -1
325 * (different key types) is impossible here because it is checked earlie

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_fn.c 6

326 * -2 is OK for us here, as well as 1, so we can check for 0 only. */
327 if (!EVP_PKEY_missing_parameters(peer) &&
328 !EVP_PKEY_cmp_parameters(ctx->pkey, peer))
329 {
330 EVPerr(EVP_F_EVP_PKEY_DERIVE_SET_PEER,
331 EVP_R_DIFFERENT_PARAMETERS);
332 return -1;
333 }

335 if (ctx->peerkey)
336 EVP_PKEY_free(ctx->peerkey);
337 ctx->peerkey = peer;

339 ret = ctx->pmeth->ctrl(ctx, EVP_PKEY_CTRL_PEER_KEY, 1, peer);

341 if (ret <= 0)
342 {
343 ctx->peerkey = NULL;
344 return ret;
345 }

347 CRYPTO_add(&peer->references,1,CRYPTO_LOCK_EVP_PKEY);
348 return 1;
349 }

352 int EVP_PKEY_derive(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *pkeylen)
353 {
354 if (!ctx || !ctx->pmeth || !ctx->pmeth->derive)
355 {
356 EVPerr(EVP_F_EVP_PKEY_DERIVE,
357 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
358 return -2;
359 }
360 if (ctx->operation != EVP_PKEY_OP_DERIVE)
361 {
362 EVPerr(EVP_F_EVP_PKEY_DERIVE, EVP_R_OPERATON_NOT_INITIALIZED);
363 return -1;
364 }
365 M_check_autoarg(ctx, key, pkeylen, EVP_F_EVP_PKEY_DERIVE)
366 return ctx->pmeth->derive(ctx, key, pkeylen);
367 }

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_gn.c 1

**
 6131 Fri May 30 18:31:54 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_gn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pmeth_gn.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2006.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <stdlib.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_gn.c 2

62 #include <openssl/objects.h>
63 #include <openssl/evp.h>
64 #include <openssl/bn.h>
65 #include "evp_locl.h"

67 int EVP_PKEY_paramgen_init(EVP_PKEY_CTX *ctx)
68 {
69 int ret;
70 if (!ctx || !ctx->pmeth || !ctx->pmeth->paramgen)
71 {
72 EVPerr(EVP_F_EVP_PKEY_PARAMGEN_INIT,
73 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
74 return -2;
75 }
76 ctx->operation = EVP_PKEY_OP_PARAMGEN;
77 if (!ctx->pmeth->paramgen_init)
78 return 1;
79 ret = ctx->pmeth->paramgen_init(ctx);
80 if (ret <= 0)
81 ctx->operation = EVP_PKEY_OP_UNDEFINED;
82 return ret;
83 }

85 int EVP_PKEY_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY **ppkey)
86 {
87 int ret;
88 if (!ctx || !ctx->pmeth || !ctx->pmeth->paramgen)
89 {
90 EVPerr(EVP_F_EVP_PKEY_PARAMGEN,
91 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
92 return -2;
93 }

95 if (ctx->operation != EVP_PKEY_OP_PARAMGEN)
96 {
97 EVPerr(EVP_F_EVP_PKEY_PARAMGEN, EVP_R_OPERATON_NOT_INITIALIZED);
98 return -1;
99 }

101 if (!ppkey)
102 return -1;

104 if (!*ppkey)
105 *ppkey = EVP_PKEY_new();

107 ret = ctx->pmeth->paramgen(ctx, *ppkey);
108 if (ret <= 0)
109 {
110 EVP_PKEY_free(*ppkey);
111 *ppkey = NULL;
112 }
113 return ret;
114 }

116 int EVP_PKEY_keygen_init(EVP_PKEY_CTX *ctx)
117 {
118 int ret;
119 if (!ctx || !ctx->pmeth || !ctx->pmeth->keygen)
120 {
121 EVPerr(EVP_F_EVP_PKEY_KEYGEN_INIT,
122 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
123 return -2;
124 }
125 ctx->operation = EVP_PKEY_OP_KEYGEN;
126 if (!ctx->pmeth->keygen_init)
127 return 1;

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_gn.c 3

128 ret = ctx->pmeth->keygen_init(ctx);
129 if (ret <= 0)
130 ctx->operation = EVP_PKEY_OP_UNDEFINED;
131 return ret;
132 }

134 int EVP_PKEY_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY **ppkey)
135 {
136 int ret;

138 if (!ctx || !ctx->pmeth || !ctx->pmeth->keygen)
139 {
140 EVPerr(EVP_F_EVP_PKEY_KEYGEN,
141 EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
142 return -2;
143 }
144 if (ctx->operation != EVP_PKEY_OP_KEYGEN)
145 {
146 EVPerr(EVP_F_EVP_PKEY_KEYGEN, EVP_R_OPERATON_NOT_INITIALIZED);
147 return -1;
148 }

150 if (!ppkey)
151 return -1;

153 if (!*ppkey)
154 *ppkey = EVP_PKEY_new();

156 ret = ctx->pmeth->keygen(ctx, *ppkey);
157 if (ret <= 0)
158 {
159 EVP_PKEY_free(*ppkey);
160 *ppkey = NULL;
161 }
162 return ret;
163 }

165 void EVP_PKEY_CTX_set_cb(EVP_PKEY_CTX *ctx, EVP_PKEY_gen_cb *cb)
166 {
167 ctx->pkey_gencb = cb;
168 }

170 EVP_PKEY_gen_cb *EVP_PKEY_CTX_get_cb(EVP_PKEY_CTX *ctx)
171 {
172 return ctx->pkey_gencb;
173 }

175 /* "translation callback" to call EVP_PKEY_CTX callbacks using BN_GENCB
176 * style callbacks.
177 */

179 static int trans_cb(int a, int b, BN_GENCB *gcb)
180 {
181 EVP_PKEY_CTX *ctx = gcb->arg;
182 ctx->keygen_info[0] = a;
183 ctx->keygen_info[1] = b;
184 return ctx->pkey_gencb(ctx);
185 }

187 void evp_pkey_set_cb_translate(BN_GENCB *cb, EVP_PKEY_CTX *ctx)
188 {
189 BN_GENCB_set(cb, trans_cb, ctx)
190 }

192 int EVP_PKEY_CTX_get_keygen_info(EVP_PKEY_CTX *ctx, int idx)
193 {

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_gn.c 4

194 if (idx == -1)
195 return ctx->keygen_info_count;
196 if (idx < 0 || idx > ctx->keygen_info_count)
197 return 0;
198 return ctx->keygen_info[idx];
199 }

201 EVP_PKEY *EVP_PKEY_new_mac_key(int type, ENGINE *e,
202 const unsigned char *key, int keylen)
203 {
204 EVP_PKEY_CTX *mac_ctx = NULL;
205 EVP_PKEY *mac_key = NULL;
206 mac_ctx = EVP_PKEY_CTX_new_id(type, e);
207 if (!mac_ctx)
208 return NULL;
209 if (EVP_PKEY_keygen_init(mac_ctx) <= 0)
210 goto merr;
211 if (EVP_PKEY_CTX_ctrl(mac_ctx, -1, EVP_PKEY_OP_KEYGEN,
212 EVP_PKEY_CTRL_SET_MAC_KEY,
213 keylen, (void *)key) <= 0)
214 goto merr;
215 if (EVP_PKEY_keygen(mac_ctx, &mac_key) <= 0)
216 goto merr;
217 merr:
218 if (mac_ctx)
219 EVP_PKEY_CTX_free(mac_ctx);
220 return mac_key;
221 }

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_lib.c 1

**
 15000 Fri May 30 18:31:54 2014
new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pmeth_lib.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2006.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <stdlib.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_lib.c 2

62 #include <openssl/objects.h>
63 #include <openssl/evp.h>
64 #ifndef OPENSSL_NO_ENGINE
65 #include <openssl/engine.h>
66 #endif
67 #include "asn1_locl.h"
68 #include "evp_locl.h"

70 typedef int sk_cmp_fn_type(const char * const *a, const char * const *b);

72 DECLARE_STACK_OF(EVP_PKEY_METHOD)
73 STACK_OF(EVP_PKEY_METHOD) *app_pkey_methods = NULL;

75 extern const EVP_PKEY_METHOD rsa_pkey_meth, dh_pkey_meth, dsa_pkey_meth;
76 extern const EVP_PKEY_METHOD ec_pkey_meth, hmac_pkey_meth, cmac_pkey_meth;

78 static const EVP_PKEY_METHOD *standard_methods[] =
79 {
80 #ifndef OPENSSL_NO_RSA
81 &rsa_pkey_meth,
82 #endif
83 #ifndef OPENSSL_NO_DH
84 &dh_pkey_meth,
85 #endif
86 #ifndef OPENSSL_NO_DSA
87 &dsa_pkey_meth,
88 #endif
89 #ifndef OPENSSL_NO_EC
90 &ec_pkey_meth,
91 #endif
92 &hmac_pkey_meth,
93 &cmac_pkey_meth
94 };

96 DECLARE_OBJ_BSEARCH_CMP_FN(const EVP_PKEY_METHOD *, const EVP_PKEY_METHOD *,
97 pmeth);

99 static int pmeth_cmp(const EVP_PKEY_METHOD * const *a,
100 const EVP_PKEY_METHOD * const *b)
101 {
102 return ((*a)->pkey_id - (*b)->pkey_id);
103 }

105 IMPLEMENT_OBJ_BSEARCH_CMP_FN(const EVP_PKEY_METHOD *, const EVP_PKEY_METHOD *,
106 pmeth);

108 const EVP_PKEY_METHOD *EVP_PKEY_meth_find(int type)
109 {
110 EVP_PKEY_METHOD tmp;
111 const EVP_PKEY_METHOD *t = &tmp, **ret;
112 tmp.pkey_id = type;
113 if (app_pkey_methods)
114 {
115 int idx;
116 idx = sk_EVP_PKEY_METHOD_find(app_pkey_methods, &tmp);
117 if (idx >= 0)
118 return sk_EVP_PKEY_METHOD_value(app_pkey_methods, idx);
119 }
120 ret = OBJ_bsearch_pmeth(&t, standard_methods,
121 sizeof(standard_methods)/sizeof(EVP_PKEY_METHOD *));
122 if (!ret || !*ret)
123 return NULL;
124 return *ret;
125 }

127 static EVP_PKEY_CTX *int_ctx_new(EVP_PKEY *pkey, ENGINE *e, int id)

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_lib.c 3

128 {
129 EVP_PKEY_CTX *ret;
130 const EVP_PKEY_METHOD *pmeth;
131 if (id == -1)
132 {
133 if (!pkey || !pkey->ameth)
134 return NULL;
135 id = pkey->ameth->pkey_id;
136 }
137 #ifndef OPENSSL_NO_ENGINE
138 if (pkey && pkey->engine)
139 e = pkey->engine;
140 /* Try to find an ENGINE which implements this method */
141 if (e)
142 {
143 if (!ENGINE_init(e))
144 {
145 EVPerr(EVP_F_INT_CTX_NEW,ERR_R_ENGINE_LIB);
146 return NULL;
147 }
148 }
149 else
150 e = ENGINE_get_pkey_meth_engine(id);

152 /* If an ENGINE handled this method look it up. Othewise
153 * use internal tables.
154 */

156 if (e)
157 pmeth = ENGINE_get_pkey_meth(e, id);
158 else
159 #endif
160 pmeth = EVP_PKEY_meth_find(id);

162 if (pmeth == NULL)
163 {
164 EVPerr(EVP_F_INT_CTX_NEW,EVP_R_UNSUPPORTED_ALGORITHM);
165 return NULL;
166 }

168 ret = OPENSSL_malloc(sizeof(EVP_PKEY_CTX));
169 if (!ret)
170 {
171 #ifndef OPENSSL_NO_ENGINE
172 if (e)
173 ENGINE_finish(e);
174 #endif
175 EVPerr(EVP_F_INT_CTX_NEW,ERR_R_MALLOC_FAILURE);
176 return NULL;
177 }
178 ret->engine = e;
179 ret->pmeth = pmeth;
180 ret->operation = EVP_PKEY_OP_UNDEFINED;
181 ret->pkey = pkey;
182 ret->peerkey = NULL;
183 ret->pkey_gencb = 0;
184 if (pkey)
185 CRYPTO_add(&pkey->references,1,CRYPTO_LOCK_EVP_PKEY);
186 ret->data = NULL;

188 if (pmeth->init)
189 {
190 if (pmeth->init(ret) <= 0)
191 {
192 EVP_PKEY_CTX_free(ret);
193 return NULL;

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_lib.c 4

194 }
195 }

197 return ret;
198 }

200 EVP_PKEY_METHOD* EVP_PKEY_meth_new(int id, int flags)
201 {
202 EVP_PKEY_METHOD *pmeth;
203 pmeth = OPENSSL_malloc(sizeof(EVP_PKEY_METHOD));
204 if (!pmeth)
205 return NULL;

207 memset(pmeth, 0, sizeof(EVP_PKEY_METHOD));

209 pmeth->pkey_id = id;
210 pmeth->flags = flags | EVP_PKEY_FLAG_DYNAMIC;

212 pmeth->init = 0;
213 pmeth->copy = 0;
214 pmeth->cleanup = 0;
215 pmeth->paramgen_init = 0;
216 pmeth->paramgen = 0;
217 pmeth->keygen_init = 0;
218 pmeth->keygen = 0;
219 pmeth->sign_init = 0;
220 pmeth->sign = 0;
221 pmeth->verify_init = 0;
222 pmeth->verify = 0;
223 pmeth->verify_recover_init = 0;
224 pmeth->verify_recover = 0;
225 pmeth->signctx_init = 0;
226 pmeth->signctx = 0;
227 pmeth->verifyctx_init = 0;
228 pmeth->verifyctx = 0;
229 pmeth->encrypt_init = 0;
230 pmeth->encrypt = 0;
231 pmeth->decrypt_init = 0;
232 pmeth->decrypt = 0;
233 pmeth->derive_init = 0;
234 pmeth->derive = 0;
235 pmeth->ctrl = 0;
236 pmeth->ctrl_str = 0;

238 return pmeth;
239 }

241 void EVP_PKEY_meth_get0_info(int *ppkey_id, int *pflags,
242 const EVP_PKEY_METHOD *meth)
243 {
244 if (ppkey_id)
245 *ppkey_id = meth->pkey_id;
246 if (pflags)
247 *pflags = meth->flags;
248 }

250 void EVP_PKEY_meth_copy(EVP_PKEY_METHOD *dst, const EVP_PKEY_METHOD *src)
251 {

253 dst->init = src->init;
254 dst->copy = src->copy;
255 dst->cleanup = src->cleanup;

257 dst->paramgen_init = src->paramgen_init;
258 dst->paramgen = src->paramgen;

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_lib.c 5

260 dst->keygen_init = src->keygen_init;
261 dst->keygen = src->keygen;

263 dst->sign_init = src->sign_init;
264 dst->sign = src->sign;

266 dst->verify_init = src->verify_init;
267 dst->verify = src->verify;

269 dst->verify_recover_init = src->verify_recover_init;
270 dst->verify_recover = src->verify_recover;

272 dst->signctx_init = src->signctx_init;
273 dst->signctx = src->signctx;

275 dst->verifyctx_init = src->verifyctx_init;
276 dst->verifyctx = src->verifyctx;

278 dst->encrypt_init = src->encrypt_init;
279 dst->encrypt = src->encrypt;

281 dst->decrypt_init = src->decrypt_init;
282 dst->decrypt = src->decrypt;

284 dst->derive_init = src->derive_init;
285 dst->derive = src->derive;

287 dst->ctrl = src->ctrl;
288 dst->ctrl_str = src->ctrl_str;
289 }

291 void EVP_PKEY_meth_free(EVP_PKEY_METHOD *pmeth)
292 {
293 if (pmeth && (pmeth->flags & EVP_PKEY_FLAG_DYNAMIC))
294 OPENSSL_free(pmeth);
295 }

297 EVP_PKEY_CTX *EVP_PKEY_CTX_new(EVP_PKEY *pkey, ENGINE *e)
298 {
299 return int_ctx_new(pkey, e, -1);
300 }

302 EVP_PKEY_CTX *EVP_PKEY_CTX_new_id(int id, ENGINE *e)
303 {
304 return int_ctx_new(NULL, e, id);
305 }

307 EVP_PKEY_CTX *EVP_PKEY_CTX_dup(EVP_PKEY_CTX *pctx)
308 {
309 EVP_PKEY_CTX *rctx;
310 if (!pctx->pmeth || !pctx->pmeth->copy)
311 return NULL;
312 #ifndef OPENSSL_NO_ENGINE
313 /* Make sure it’s safe to copy a pkey context using an ENGINE */
314 if (pctx->engine && !ENGINE_init(pctx->engine))
315 {
316 EVPerr(EVP_F_EVP_PKEY_CTX_DUP,ERR_R_ENGINE_LIB);
317 return 0;
318 }
319 #endif
320 rctx = OPENSSL_malloc(sizeof(EVP_PKEY_CTX));
321 if (!rctx)
322 return NULL;

324 rctx->pmeth = pctx->pmeth;
325 #ifndef OPENSSL_NO_ENGINE

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_lib.c 6

326 rctx->engine = pctx->engine;
327 #endif

329 if (pctx->pkey)
330 CRYPTO_add(&pctx->pkey->references,1,CRYPTO_LOCK_EVP_PKEY);

332 rctx->pkey = pctx->pkey;

334 if (pctx->peerkey)
335 CRYPTO_add(&pctx->peerkey->references,1,CRYPTO_LOCK_EVP_PKEY);

337 rctx->peerkey = pctx->peerkey;

339 rctx->data = NULL;
340 rctx->app_data = NULL;
341 rctx->operation = pctx->operation;

343 if (pctx->pmeth->copy(rctx, pctx) > 0)
344 return rctx;

346 EVP_PKEY_CTX_free(rctx);
347 return NULL;

349 }

351 int EVP_PKEY_meth_add0(const EVP_PKEY_METHOD *pmeth)
352 {
353 if (app_pkey_methods == NULL)
354 {
355 app_pkey_methods = sk_EVP_PKEY_METHOD_new(pmeth_cmp);
356 if (!app_pkey_methods)
357 return 0;
358 }
359 if (!sk_EVP_PKEY_METHOD_push(app_pkey_methods, pmeth))
360 return 0;
361 sk_EVP_PKEY_METHOD_sort(app_pkey_methods);
362 return 1;
363 }

365 void EVP_PKEY_CTX_free(EVP_PKEY_CTX *ctx)
366 {
367 if (ctx == NULL)
368 return;
369 if (ctx->pmeth && ctx->pmeth->cleanup)
370 ctx->pmeth->cleanup(ctx);
371 if (ctx->pkey)
372 EVP_PKEY_free(ctx->pkey);
373 if (ctx->peerkey)
374 EVP_PKEY_free(ctx->peerkey);
375 #ifndef OPENSSL_NO_ENGINE
376 if(ctx->engine)
377 /* The EVP_PKEY_CTX we used belongs to an ENGINE, release the
378 * functional reference we held for this reason. */
379 ENGINE_finish(ctx->engine);
380 #endif
381 OPENSSL_free(ctx);
382 }

384 int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype,
385 int cmd, int p1, void *p2)
386 {
387 int ret;
388 if (!ctx || !ctx->pmeth || !ctx->pmeth->ctrl)
389 {
390 EVPerr(EVP_F_EVP_PKEY_CTX_CTRL, EVP_R_COMMAND_NOT_SUPPORTED);
391 return -2;

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_lib.c 7

392 }
393 if ((keytype != -1) && (ctx->pmeth->pkey_id != keytype))
394 return -1;

396 if (ctx->operation == EVP_PKEY_OP_UNDEFINED)
397 {
398 EVPerr(EVP_F_EVP_PKEY_CTX_CTRL, EVP_R_NO_OPERATION_SET);
399 return -1;
400 }

402 if ((optype != -1) && !(ctx->operation & optype))
403 {
404 EVPerr(EVP_F_EVP_PKEY_CTX_CTRL, EVP_R_INVALID_OPERATION);
405 return -1;
406 }

408 ret = ctx->pmeth->ctrl(ctx, cmd, p1, p2);

410 if (ret == -2)
411 EVPerr(EVP_F_EVP_PKEY_CTX_CTRL, EVP_R_COMMAND_NOT_SUPPORTED);

413 return ret;

415 }

417 int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx,
418 const char *name, const char *value)
419 {
420 if (!ctx || !ctx->pmeth || !ctx->pmeth->ctrl_str)
421 {
422 EVPerr(EVP_F_EVP_PKEY_CTX_CTRL_STR,
423 EVP_R_COMMAND_NOT_SUPPORTED);
424 return -2;
425 }
426 if (!strcmp(name, "digest"))
427 {
428 const EVP_MD *md;
429 if (!value || !(md = EVP_get_digestbyname(value)))
430 {
431 EVPerr(EVP_F_EVP_PKEY_CTX_CTRL_STR,
432 EVP_R_INVALID_DIGEST);
433 return 0;
434 }
435 return EVP_PKEY_CTX_set_signature_md(ctx, md);
436 }
437 return ctx->pmeth->ctrl_str(ctx, name, value);
438 }

440 int EVP_PKEY_CTX_get_operation(EVP_PKEY_CTX *ctx)
441 {
442 return ctx->operation;
443 }

445 void EVP_PKEY_CTX_set0_keygen_info(EVP_PKEY_CTX *ctx, int *dat, int datlen)
446 {
447 ctx->keygen_info = dat;
448 ctx->keygen_info_count = datlen;
449 }

451 void EVP_PKEY_CTX_set_data(EVP_PKEY_CTX *ctx, void *data)
452 {
453 ctx->data = data;
454 }

456 void *EVP_PKEY_CTX_get_data(EVP_PKEY_CTX *ctx)
457 {

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_lib.c 8

458 return ctx->data;
459 }

461 EVP_PKEY *EVP_PKEY_CTX_get0_pkey(EVP_PKEY_CTX *ctx)
462 {
463 return ctx->pkey;
464 }

466 EVP_PKEY *EVP_PKEY_CTX_get0_peerkey(EVP_PKEY_CTX *ctx)
467 {
468 return ctx->peerkey;
469 }
470
471 void EVP_PKEY_CTX_set_app_data(EVP_PKEY_CTX *ctx, void *data)
472 {
473 ctx->app_data = data;
474 }

476 void *EVP_PKEY_CTX_get_app_data(EVP_PKEY_CTX *ctx)
477 {
478 return ctx->app_data;
479 }

481 void EVP_PKEY_meth_set_init(EVP_PKEY_METHOD *pmeth,
482 int (*init)(EVP_PKEY_CTX *ctx))
483 {
484 pmeth->init = init;
485 }

487 void EVP_PKEY_meth_set_copy(EVP_PKEY_METHOD *pmeth,
488 int (*copy)(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src))
489 {
490 pmeth->copy = copy;
491 }

493 void EVP_PKEY_meth_set_cleanup(EVP_PKEY_METHOD *pmeth,
494 void (*cleanup)(EVP_PKEY_CTX *ctx))
495 {
496 pmeth->cleanup = cleanup;
497 }

499 void EVP_PKEY_meth_set_paramgen(EVP_PKEY_METHOD *pmeth,
500 int (*paramgen_init)(EVP_PKEY_CTX *ctx),
501 int (*paramgen)(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey))
502 {
503 pmeth->paramgen_init = paramgen_init;
504 pmeth->paramgen = paramgen;
505 }

507 void EVP_PKEY_meth_set_keygen(EVP_PKEY_METHOD *pmeth,
508 int (*keygen_init)(EVP_PKEY_CTX *ctx),
509 int (*keygen)(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey))
510 {
511 pmeth->keygen_init = keygen_init;
512 pmeth->keygen = keygen;
513 }

515 void EVP_PKEY_meth_set_sign(EVP_PKEY_METHOD *pmeth,
516 int (*sign_init)(EVP_PKEY_CTX *ctx),
517 int (*sign)(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen,
518 const unsigned char *tbs, size_t tbslen)
519 {
520 pmeth->sign_init = sign_init;
521 pmeth->sign = sign;
522 }

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_lib.c 9

524 void EVP_PKEY_meth_set_verify(EVP_PKEY_METHOD *pmeth,
525 int (*verify_init)(EVP_PKEY_CTX *ctx),
526 int (*verify)(EVP_PKEY_CTX *ctx, const unsigned char *sig, size_t siglen
527 const unsigned char *tbs, size_t tbslen)
528 {
529 pmeth->verify_init = verify_init;
530 pmeth->verify = verify;
531 }

533 void EVP_PKEY_meth_set_verify_recover(EVP_PKEY_METHOD *pmeth,
534 int (*verify_recover_init)(EVP_PKEY_CTX *ctx),
535 int (*verify_recover)(EVP_PKEY_CTX *ctx,
536 unsigned char *sig, size_t *siglen,
537 const unsigned char *tbs, size_t tbslen)
538 {
539 pmeth->verify_recover_init = verify_recover_init;
540 pmeth->verify_recover = verify_recover;
541 }

543 void EVP_PKEY_meth_set_signctx(EVP_PKEY_METHOD *pmeth,
544 int (*signctx_init)(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx),
545 int (*signctx)(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen,
546 EVP_MD_CTX *mctx))
547 {
548 pmeth->signctx_init = signctx_init;
549 pmeth->signctx = signctx;
550 }

552 void EVP_PKEY_meth_set_verifyctx(EVP_PKEY_METHOD *pmeth,
553 int (*verifyctx_init)(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx),
554 int (*verifyctx)(EVP_PKEY_CTX *ctx, const unsigned char *sig,int siglen,
555 EVP_MD_CTX *mctx))
556 {
557 pmeth->verifyctx_init = verifyctx_init;
558 pmeth->verifyctx = verifyctx;
559 }

561 void EVP_PKEY_meth_set_encrypt(EVP_PKEY_METHOD *pmeth,
562 int (*encrypt_init)(EVP_PKEY_CTX *ctx),
563 int (*encryptfn)(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen,
564 const unsigned char *in, size_t inlen))
565 {
566 pmeth->encrypt_init = encrypt_init;
567 pmeth->encrypt = encryptfn;
568 }

570 void EVP_PKEY_meth_set_decrypt(EVP_PKEY_METHOD *pmeth,
571 int (*decrypt_init)(EVP_PKEY_CTX *ctx),
572 int (*decrypt)(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen,
573 const unsigned char *in, size_t inlen))
574 {
575 pmeth->decrypt_init = decrypt_init;
576 pmeth->decrypt = decrypt;
577 }

579 void EVP_PKEY_meth_set_derive(EVP_PKEY_METHOD *pmeth,
580 int (*derive_init)(EVP_PKEY_CTX *ctx),
581 int (*derive)(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen))
582 {
583 pmeth->derive_init = derive_init;
584 pmeth->derive = derive;
585 }

587 void EVP_PKEY_meth_set_ctrl(EVP_PKEY_METHOD *pmeth,
588 int (*ctrl)(EVP_PKEY_CTX *ctx, int type, int p1, void *p2),
589 int (*ctrl_str)(EVP_PKEY_CTX *ctx, const char *type, const char *value))

new/usr/src/lib/openssl/libsunw_crypto/evp/pmeth_lib.c 10

590 {
591 pmeth->ctrl = ctrl;
592 pmeth->ctrl_str = ctrl_str;
593 }

new/usr/src/lib/openssl/libsunw_crypto/ex_data.c 1

**
 21405 Fri May 30 18:31:54 2014
new/usr/src/lib/openssl/libsunw_crypto/ex_data.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ex_data.c */

3 /*
4 * Overhaul notes;
5 *
6 * This code is now *mostly* thread-safe. It is now easier to understand in what
7 * ways it is safe and in what ways it is not, which is an improvement. Firstly,
8 * all per-class stacks and index-counters for ex_data are stored in the same
9 * global LHASH table (keyed by class). This hash table uses locking for all
10 * access with the exception of CRYPTO_cleanup_all_ex_data(), which must only be
11 * called when no other threads can possibly race against it (even if it was
12 * locked, the race would mean it’s possible the hash table might have been
13 * recreated after the cleanup). As classes can only be added to the hash table,
14 * and within each class, the stack of methods can only be incremented, the
15 * locking mechanics are simpler than they would otherwise be. For example, the
16 * new/dup/free ex_data functions will lock the hash table, copy the method
17 * pointers it needs from the relevant class, then unlock the hash table before
18 * actually applying those method pointers to the task of the new/dup/free
19 * operations. As they can’t be removed from the method-stack, only
20 * supplemented, there’s no race conditions associated with using them outside
21 * the lock. The get/set_ex_data functions are not locked because they do not
22 * involve this global state at all - they operate directly with a previously
23 * obtained per-class method index and a particular "ex_data" variable. These
24 * variables are usually instantiated per-context (eg. each RSA structure has
25 * one) so locking on read/write access to that variable can be locked locally
26 * if required (eg. using the "RSA" lock to synchronise access to a
27 * per-RSA-structure ex_data variable if required).
28 * [Geoff]
29 */

31 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
32 * All rights reserved.
33 *
34 * This package is an SSL implementation written
35 * by Eric Young (eay@cryptsoft.com).
36 * The implementation was written so as to conform with Netscapes SSL.
37 *
38 * This library is free for commercial and non-commercial use as long as
39 * the following conditions are aheared to. The following conditions
40 * apply to all code found in this distribution, be it the RC4, RSA,
41 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
42 * included with this distribution is covered by the same copyright terms
43 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
44 *
45 * Copyright remains Eric Young’s, and as such any Copyright notices in
46 * the code are not to be removed.
47 * If this package is used in a product, Eric Young should be given attribution
48 * as the author of the parts of the library used.
49 * This can be in the form of a textual message at program startup or
50 * in documentation (online or textual) provided with the package.
51 *
52 * Redistribution and use in source and binary forms, with or without
53 * modification, are permitted provided that the following conditions
54 * are met:
55 * 1. Redistributions of source code must retain the copyright
56 * notice, this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright
58 * notice, this list of conditions and the following disclaimer in the
59 * documentation and/or other materials provided with the distribution.
60 * 3. All advertising materials mentioning features or use of this software
61 * must display the following acknowledgement:

new/usr/src/lib/openssl/libsunw_crypto/ex_data.c 2

62 * "This product includes cryptographic software written by
63 * Eric Young (eay@cryptsoft.com)"
64 * The word ’cryptographic’ can be left out if the rouines from the library
65 * being used are not cryptographic related :-).
66 * 4. If you include any Windows specific code (or a derivative thereof) from
67 * the apps directory (application code) you must include an acknowledgement:
68 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
69 *
70 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
71 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
72 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
73 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
74 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
75 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
76 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
77 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
78 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
79 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
80 * SUCH DAMAGE.
81 *
82 * The licence and distribution terms for any publically available version or
83 * derivative of this code cannot be changed. i.e. this code cannot simply be
84 * copied and put under another distribution licence
85 * [including the GNU Public Licence.]
86 */
87 /* ==
88 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
89 *
90 * Redistribution and use in source and binary forms, with or without
91 * modification, are permitted provided that the following conditions
92 * are met:
93 *
94 * 1. Redistributions of source code must retain the above copyright
95 * notice, this list of conditions and the following disclaimer.
96 *
97 * 2. Redistributions in binary form must reproduce the above copyright
98 * notice, this list of conditions and the following disclaimer in
99 * the documentation and/or other materials provided with the
100 * distribution.
101 *
102 * 3. All advertising materials mentioning features or use of this
103 * software must display the following acknowledgment:
104 * "This product includes software developed by the OpenSSL Project
105 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
106 *
107 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
108 * endorse or promote products derived from this software without
109 * prior written permission. For written permission, please contact
110 * openssl-core@openssl.org.
111 *
112 * 5. Products derived from this software may not be called "OpenSSL"
113 * nor may "OpenSSL" appear in their names without prior written
114 * permission of the OpenSSL Project.
115 *
116 * 6. Redistributions of any form whatsoever must retain the following
117 * acknowledgment:
118 * "This product includes software developed by the OpenSSL Project
119 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
120 *
121 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
122 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
123 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
124 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
125 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
126 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
127 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

new/usr/src/lib/openssl/libsunw_crypto/ex_data.c 3

128 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
129 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
130 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
131 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
132 * OF THE POSSIBILITY OF SUCH DAMAGE.
133 * ==
134 *
135 * This product includes cryptographic software written by Eric Young
136 * (eay@cryptsoft.com). This product includes software written by Tim
137 * Hudson (tjh@cryptsoft.com).
138 *
139 */

141 #include <cryptlib.h>
142 #include <openssl/lhash.h>

144 /* What an "implementation of ex_data functionality" looks like */
145 struct st_CRYPTO_EX_DATA_IMPL
146 {
147 /*********************/
148 /* GLOBAL OPERATIONS */
149 /* Return a new class index */
150 int (*cb_new_class)(void);
151 /* Cleanup all state used by the implementation */
152 void (*cb_cleanup)(void);
153 /************************/
154 /* PER-CLASS OPERATIONS */
155 /* Get a new method index within a class */
156 int (*cb_get_new_index)(int class_index, long argl, void *argp,
157 CRYPTO_EX_new *new_func, CRYPTO_EX_dup *dup_func,
158 CRYPTO_EX_free *free_func);
159 /* Initialise a new CRYPTO_EX_DATA of a given class */
160 int (*cb_new_ex_data)(int class_index, void *obj,
161 CRYPTO_EX_DATA *ad);
162 /* Duplicate a CRYPTO_EX_DATA of a given class onto a copy */
163 int (*cb_dup_ex_data)(int class_index, CRYPTO_EX_DATA *to,
164 CRYPTO_EX_DATA *from);
165 /* Cleanup a CRYPTO_EX_DATA of a given class */
166 void (*cb_free_ex_data)(int class_index, void *obj,
167 CRYPTO_EX_DATA *ad);
168 };

170 /* The implementation we use at run-time */
171 static const CRYPTO_EX_DATA_IMPL *impl = NULL;

173 /* To call "impl" functions, use this macro rather than referring to ’impl’ dire
174 * EX_IMPL(get_new_index)(...); */
175 #define EX_IMPL(a) impl->cb_##a

177 /* Predeclare the "default" ex_data implementation */
178 static int int_new_class(void);
179 static void int_cleanup(void);
180 static int int_get_new_index(int class_index, long argl, void *argp,
181 CRYPTO_EX_new *new_func, CRYPTO_EX_dup *dup_func,
182 CRYPTO_EX_free *free_func);
183 static int int_new_ex_data(int class_index, void *obj,
184 CRYPTO_EX_DATA *ad);
185 static int int_dup_ex_data(int class_index, CRYPTO_EX_DATA *to,
186 CRYPTO_EX_DATA *from);
187 static void int_free_ex_data(int class_index, void *obj,
188 CRYPTO_EX_DATA *ad);
189 static CRYPTO_EX_DATA_IMPL impl_default =
190 {
191 int_new_class,
192 int_cleanup,
193 int_get_new_index,

new/usr/src/lib/openssl/libsunw_crypto/ex_data.c 4

194 int_new_ex_data,
195 int_dup_ex_data,
196 int_free_ex_data
197 };

199 /* Internal function that checks whether "impl" is set and if not, sets it to
200 * the default. */
201 static void impl_check(void)
202 {
203 CRYPTO_w_lock(CRYPTO_LOCK_EX_DATA);
204 if(!impl)
205 impl = &impl_default;
206 CRYPTO_w_unlock(CRYPTO_LOCK_EX_DATA);
207 }
208 /* A macro wrapper for impl_check that first uses a non-locked test before
209 * invoking the function (which checks again inside a lock). */
210 #define IMPL_CHECK if(!impl) impl_check();

212 /* API functions to get/set the "ex_data" implementation */
213 const CRYPTO_EX_DATA_IMPL *CRYPTO_get_ex_data_implementation(void)
214 {
215 IMPL_CHECK
216 return impl;
217 }
218 int CRYPTO_set_ex_data_implementation(const CRYPTO_EX_DATA_IMPL *i)
219 {
220 int toret = 0;
221 CRYPTO_w_lock(CRYPTO_LOCK_EX_DATA);
222 if(!impl)
223 {
224 impl = i;
225 toret = 1;
226 }
227 CRYPTO_w_unlock(CRYPTO_LOCK_EX_DATA);
228 return toret;
229 }

231 /**/
232 /* Interal (default) implementation of "ex_data" support. API functions are
233 * further down. */

235 /* The type that represents what each "class" used to implement locally. A STACK
236 * of CRYPTO_EX_DATA_FUNCS plus a index-counter. The ’class_index’ is the global
237 * value representing the class that is used to distinguish these items. */
238 typedef struct st_ex_class_item {
239 int class_index;
240 STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
241 int meth_num;
242 } EX_CLASS_ITEM;

244 /* When assigning new class indexes, this is our counter */
245 static int ex_class = CRYPTO_EX_INDEX_USER;

247 /* The global hash table of EX_CLASS_ITEM items */
248 DECLARE_LHASH_OF(EX_CLASS_ITEM);
249 static LHASH_OF(EX_CLASS_ITEM) *ex_data = NULL;

251 /* The callbacks required in the "ex_data" hash table */
252 static unsigned long ex_class_item_hash(const EX_CLASS_ITEM *a)
253 {
254 return a->class_index;
255 }
256 static IMPLEMENT_LHASH_HASH_FN(ex_class_item, EX_CLASS_ITEM)

258 static int ex_class_item_cmp(const EX_CLASS_ITEM *a, const EX_CLASS_ITEM *b)
259 {

new/usr/src/lib/openssl/libsunw_crypto/ex_data.c 5

260 return a->class_index - b->class_index;
261 }
262 static IMPLEMENT_LHASH_COMP_FN(ex_class_item, EX_CLASS_ITEM)

264 /* Internal functions used by the "impl_default" implementation to access the
265 * state */

267 static int ex_data_check(void)
268 {
269 int toret = 1;
270 CRYPTO_w_lock(CRYPTO_LOCK_EX_DATA);
271 if(!ex_data
272 && (ex_data = lh_EX_CLASS_ITEM_new()) == NULL)
273 toret = 0;
274 CRYPTO_w_unlock(CRYPTO_LOCK_EX_DATA);
275 return toret;
276 }
277 /* This macros helps reduce the locking from repeated checks because the
278 * ex_data_check() function checks ex_data again inside a lock. */
279 #define EX_DATA_CHECK(iffail) if(!ex_data && !ex_data_check()) {iffail}

281 /* This "inner" callback is used by the callback function that follows it */
282 static void def_cleanup_util_cb(CRYPTO_EX_DATA_FUNCS *funcs)
283 {
284 OPENSSL_free(funcs);
285 }

287 /* This callback is used in lh_doall to destroy all EX_CLASS_ITEM values from
288 * "ex_data" prior to the ex_data hash table being itself destroyed. Doesn’t do
289 * any locking. */
290 static void def_cleanup_cb(void *a_void)
291 {
292 EX_CLASS_ITEM *item = (EX_CLASS_ITEM *)a_void;
293 sk_CRYPTO_EX_DATA_FUNCS_pop_free(item->meth, def_cleanup_util_cb);
294 OPENSSL_free(item);
295 }

297 /* Return the EX_CLASS_ITEM from the "ex_data" hash table that corresponds to a
298 * given class. Handles locking. */
299 static EX_CLASS_ITEM *def_get_class(int class_index)
300 {
301 EX_CLASS_ITEM d, *p, *gen;
302 EX_DATA_CHECK(return NULL;)
303 d.class_index = class_index;
304 CRYPTO_w_lock(CRYPTO_LOCK_EX_DATA);
305 p = lh_EX_CLASS_ITEM_retrieve(ex_data, &d);
306 if(!p)
307 {
308 gen = OPENSSL_malloc(sizeof(EX_CLASS_ITEM));
309 if(gen)
310 {
311 gen->class_index = class_index;
312 gen->meth_num = 0;
313 gen->meth = sk_CRYPTO_EX_DATA_FUNCS_new_null();
314 if(!gen->meth)
315 OPENSSL_free(gen);
316 else
317 {
318 /* Because we’re inside the ex_data lock, the
319 * return value from the insert will be NULL */
320 (void)lh_EX_CLASS_ITEM_insert(ex_data, gen);
321 p = gen;
322 }
323 }
324 }
325 CRYPTO_w_unlock(CRYPTO_LOCK_EX_DATA);

new/usr/src/lib/openssl/libsunw_crypto/ex_data.c 6

326 if(!p)
327 CRYPTOerr(CRYPTO_F_DEF_GET_CLASS,ERR_R_MALLOC_FAILURE);
328 return p;
329 }

331 /* Add a new method to the given EX_CLASS_ITEM and return the corresponding
332 * index (or -1 for error). Handles locking. */
333 static int def_add_index(EX_CLASS_ITEM *item, long argl, void *argp,
334 CRYPTO_EX_new *new_func, CRYPTO_EX_dup *dup_func,
335 CRYPTO_EX_free *free_func)
336 {
337 int toret = -1;
338 CRYPTO_EX_DATA_FUNCS *a = (CRYPTO_EX_DATA_FUNCS *)OPENSSL_malloc(
339 sizeof(CRYPTO_EX_DATA_FUNCS));
340 if(!a)
341 {
342 CRYPTOerr(CRYPTO_F_DEF_ADD_INDEX,ERR_R_MALLOC_FAILURE);
343 return -1;
344 }
345 a->argl=argl;
346 a->argp=argp;
347 a->new_func=new_func;
348 a->dup_func=dup_func;
349 a->free_func=free_func;
350 CRYPTO_w_lock(CRYPTO_LOCK_EX_DATA);
351 while (sk_CRYPTO_EX_DATA_FUNCS_num(item->meth) <= item->meth_num)
352 {
353 if (!sk_CRYPTO_EX_DATA_FUNCS_push(item->meth, NULL))
354 {
355 CRYPTOerr(CRYPTO_F_DEF_ADD_INDEX,ERR_R_MALLOC_FAILURE);
356 OPENSSL_free(a);
357 goto err;
358 }
359 }
360 toret = item->meth_num++;
361 (void)sk_CRYPTO_EX_DATA_FUNCS_set(item->meth, toret, a);
362 err:
363 CRYPTO_w_unlock(CRYPTO_LOCK_EX_DATA);
364 return toret;
365 }

367 /**/
368 /* The functions in the default CRYPTO_EX_DATA_IMPL structure */

370 static int int_new_class(void)
371 {
372 int toret;
373 CRYPTO_w_lock(CRYPTO_LOCK_EX_DATA);
374 toret = ex_class++;
375 CRYPTO_w_unlock(CRYPTO_LOCK_EX_DATA);
376 return toret;
377 }

379 static void int_cleanup(void)
380 {
381 EX_DATA_CHECK(return;)
382 lh_EX_CLASS_ITEM_doall(ex_data, def_cleanup_cb);
383 lh_EX_CLASS_ITEM_free(ex_data);
384 ex_data = NULL;
385 impl = NULL;
386 }

388 static int int_get_new_index(int class_index, long argl, void *argp,
389 CRYPTO_EX_new *new_func, CRYPTO_EX_dup *dup_func,
390 CRYPTO_EX_free *free_func)
391 {

new/usr/src/lib/openssl/libsunw_crypto/ex_data.c 7

392 EX_CLASS_ITEM *item = def_get_class(class_index);
393 if(!item)
394 return -1;
395 return def_add_index(item, argl, argp, new_func, dup_func, free_func);
396 }

398 /* Thread-safe by copying a class’s array of "CRYPTO_EX_DATA_FUNCS" entries in
399 * the lock, then using them outside the lock. NB: Thread-safety only applies to
400 * the global "ex_data" state (ie. class definitions), not thread-safe on ’ad’
401 * itself. */
402 static int int_new_ex_data(int class_index, void *obj,
403 CRYPTO_EX_DATA *ad)
404 {
405 int mx,i;
406 void *ptr;
407 CRYPTO_EX_DATA_FUNCS **storage = NULL;
408 EX_CLASS_ITEM *item = def_get_class(class_index);
409 if(!item)
410 /* error is already set */
411 return 0;
412 ad->sk = NULL;
413 CRYPTO_r_lock(CRYPTO_LOCK_EX_DATA);
414 mx = sk_CRYPTO_EX_DATA_FUNCS_num(item->meth);
415 if(mx > 0)
416 {
417 storage = OPENSSL_malloc(mx * sizeof(CRYPTO_EX_DATA_FUNCS*));
418 if(!storage)
419 goto skip;
420 for(i = 0; i < mx; i++)
421 storage[i] = sk_CRYPTO_EX_DATA_FUNCS_value(item->meth,i)
422 }
423 skip:
424 CRYPTO_r_unlock(CRYPTO_LOCK_EX_DATA);
425 if((mx > 0) && !storage)
426 {
427 CRYPTOerr(CRYPTO_F_INT_NEW_EX_DATA,ERR_R_MALLOC_FAILURE);
428 return 0;
429 }
430 for(i = 0; i < mx; i++)
431 {
432 if(storage[i] && storage[i]->new_func)
433 {
434 ptr = CRYPTO_get_ex_data(ad, i);
435 storage[i]->new_func(obj,ptr,ad,i,
436 storage[i]->argl,storage[i]->argp);
437 }
438 }
439 if(storage)
440 OPENSSL_free(storage);
441 return 1;
442 }

444 /* Same thread-safety notes as for "int_new_ex_data" */
445 static int int_dup_ex_data(int class_index, CRYPTO_EX_DATA *to,
446 CRYPTO_EX_DATA *from)
447 {
448 int mx, j, i;
449 char *ptr;
450 CRYPTO_EX_DATA_FUNCS **storage = NULL;
451 EX_CLASS_ITEM *item;
452 if(!from->sk)
453 /* ’to’ should be "blank" which *is* just like ’from’ */
454 return 1;
455 if((item = def_get_class(class_index)) == NULL)
456 return 0;
457 CRYPTO_r_lock(CRYPTO_LOCK_EX_DATA);

new/usr/src/lib/openssl/libsunw_crypto/ex_data.c 8

458 mx = sk_CRYPTO_EX_DATA_FUNCS_num(item->meth);
459 j = sk_void_num(from->sk);
460 if(j < mx)
461 mx = j;
462 if(mx > 0)
463 {
464 storage = OPENSSL_malloc(mx * sizeof(CRYPTO_EX_DATA_FUNCS*));
465 if(!storage)
466 goto skip;
467 for(i = 0; i < mx; i++)
468 storage[i] = sk_CRYPTO_EX_DATA_FUNCS_value(item->meth,i)
469 }
470 skip:
471 CRYPTO_r_unlock(CRYPTO_LOCK_EX_DATA);
472 if((mx > 0) && !storage)
473 {
474 CRYPTOerr(CRYPTO_F_INT_DUP_EX_DATA,ERR_R_MALLOC_FAILURE);
475 return 0;
476 }
477 for(i = 0; i < mx; i++)
478 {
479 ptr = CRYPTO_get_ex_data(from, i);
480 if(storage[i] && storage[i]->dup_func)
481 storage[i]->dup_func(to,from,&ptr,i,
482 storage[i]->argl,storage[i]->argp);
483 CRYPTO_set_ex_data(to,i,ptr);
484 }
485 if(storage)
486 OPENSSL_free(storage);
487 return 1;
488 }

490 /* Same thread-safety notes as for "int_new_ex_data" */
491 static void int_free_ex_data(int class_index, void *obj,
492 CRYPTO_EX_DATA *ad)
493 {
494 int mx,i;
495 EX_CLASS_ITEM *item;
496 void *ptr;
497 CRYPTO_EX_DATA_FUNCS **storage = NULL;
498 if((item = def_get_class(class_index)) == NULL)
499 return;
500 CRYPTO_r_lock(CRYPTO_LOCK_EX_DATA);
501 mx = sk_CRYPTO_EX_DATA_FUNCS_num(item->meth);
502 if(mx > 0)
503 {
504 storage = OPENSSL_malloc(mx * sizeof(CRYPTO_EX_DATA_FUNCS*));
505 if(!storage)
506 goto skip;
507 for(i = 0; i < mx; i++)
508 storage[i] = sk_CRYPTO_EX_DATA_FUNCS_value(item->meth,i)
509 }
510 skip:
511 CRYPTO_r_unlock(CRYPTO_LOCK_EX_DATA);
512 if((mx > 0) && !storage)
513 {
514 CRYPTOerr(CRYPTO_F_INT_FREE_EX_DATA,ERR_R_MALLOC_FAILURE);
515 return;
516 }
517 for(i = 0; i < mx; i++)
518 {
519 if(storage[i] && storage[i]->free_func)
520 {
521 ptr = CRYPTO_get_ex_data(ad,i);
522 storage[i]->free_func(obj,ptr,ad,i,
523 storage[i]->argl,storage[i]->argp);

new/usr/src/lib/openssl/libsunw_crypto/ex_data.c 9

524 }
525 }
526 if(storage)
527 OPENSSL_free(storage);
528 if(ad->sk)
529 {
530 sk_void_free(ad->sk);
531 ad->sk=NULL;
532 }
533 }

535 /**/
536 /* API functions that defer all "state" operations to the "ex_data"
537 * implementation we have set. */

539 /* Obtain an index for a new class (not the same as getting a new index within
540 * an existing class - this is actually getting a new *class*) */
541 int CRYPTO_ex_data_new_class(void)
542 {
543 IMPL_CHECK
544 return EX_IMPL(new_class)();
545 }

547 /* Release all "ex_data" state to prevent memory leaks. This can’t be made
548 * thread-safe without overhauling a lot of stuff, and shouldn’t really be
549 * called under potential race-conditions anyway (it’s for program shutdown
550 * after all). */
551 void CRYPTO_cleanup_all_ex_data(void)
552 {
553 IMPL_CHECK
554 EX_IMPL(cleanup)();
555 }

557 /* Inside an existing class, get/register a new index. */
558 int CRYPTO_get_ex_new_index(int class_index, long argl, void *argp,
559 CRYPTO_EX_new *new_func, CRYPTO_EX_dup *dup_func,
560 CRYPTO_EX_free *free_func)
561 {
562 int ret = -1;

564 IMPL_CHECK
565 ret = EX_IMPL(get_new_index)(class_index,
566 argl, argp, new_func, dup_func, free_func);
567 return ret;
568 }

570 /* Initialise a new CRYPTO_EX_DATA for use in a particular class - including
571 * calling new() callbacks for each index in the class used by this variable */
572 int CRYPTO_new_ex_data(int class_index, void *obj, CRYPTO_EX_DATA *ad)
573 {
574 IMPL_CHECK
575 return EX_IMPL(new_ex_data)(class_index, obj, ad);
576 }

578 /* Duplicate a CRYPTO_EX_DATA variable - including calling dup() callbacks for
579 * each index in the class used by this variable */
580 int CRYPTO_dup_ex_data(int class_index, CRYPTO_EX_DATA *to,
581 CRYPTO_EX_DATA *from)
582 {
583 IMPL_CHECK
584 return EX_IMPL(dup_ex_data)(class_index, to, from);
585 }

587 /* Cleanup a CRYPTO_EX_DATA variable - including calling free() callbacks for
588 * each index in the class used by this variable */
589 void CRYPTO_free_ex_data(int class_index, void *obj, CRYPTO_EX_DATA *ad)

new/usr/src/lib/openssl/libsunw_crypto/ex_data.c 10

590 {
591 IMPL_CHECK
592 EX_IMPL(free_ex_data)(class_index, obj, ad);
593 }

595 /* For a given CRYPTO_EX_DATA variable, set the value corresponding to a
596 * particular index in the class used by this variable */
597 int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int idx, void *val)
598 {
599 int i;

601 if (ad->sk == NULL)
602 {
603 if ((ad->sk=sk_void_new_null()) == NULL)
604 {
605 CRYPTOerr(CRYPTO_F_CRYPTO_SET_EX_DATA,ERR_R_MALLOC_FAILU
606 return(0);
607 }
608 }
609 i=sk_void_num(ad->sk);

611 while (i <= idx)
612 {
613 if (!sk_void_push(ad->sk,NULL))
614 {
615 CRYPTOerr(CRYPTO_F_CRYPTO_SET_EX_DATA,ERR_R_MALLOC_FAILU
616 return(0);
617 }
618 i++;
619 }
620 sk_void_set(ad->sk,idx,val);
621 return(1);
622 }

624 /* For a given CRYPTO_EX_DATA_ variable, get the value corresponding to a
625 * particular index in the class used by this variable */
626 void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int idx)
627 {
628 if (ad->sk == NULL)
629 return(0);
630 else if (idx >= sk_void_num(ad->sk))
631 return(0);
632 else
633 return(sk_void_value(ad->sk,idx));
634 }

636 IMPLEMENT_STACK_OF(CRYPTO_EX_DATA_FUNCS)

new/usr/src/lib/openssl/libsunw_crypto/fips_ers.c 1

**
 117 Fri May 30 18:31:55 2014
new/usr/src/lib/openssl/libsunw_crypto/fips_ers.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #include <openssl/opensslconf.h>

3 #ifdef OPENSSL_FIPS
4 # include "fips_err.h"
5 #else
6 static void *dummy=&dummy;
7 #endif

new/usr/src/lib/openssl/libsunw_crypto/hmac/hm_ameth.c 1

**
 4636 Fri May 30 18:31:55 2014
new/usr/src/lib/openssl/libsunw_crypto/hmac/hm_ameth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2 * project 2007.
3 */
4 /* ==
5 * Copyright (c) 2007 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ==
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */

58 #include <stdio.h>
59 #include "cryptlib.h"
60 #include <openssl/evp.h>
61 #include "asn1_locl.h"

new/usr/src/lib/openssl/libsunw_crypto/hmac/hm_ameth.c 2

63 #define HMAC_TEST_PRIVATE_KEY_FORMAT

65 /* HMAC "ASN1" method. This is just here to indicate the
66 * maximum HMAC output length and to free up an HMAC
67 * key.
68 */

70 static int hmac_size(const EVP_PKEY *pkey)
71 {
72 return EVP_MAX_MD_SIZE;
73 }

75 static void hmac_key_free(EVP_PKEY *pkey)
76 {
77 ASN1_OCTET_STRING *os = (ASN1_OCTET_STRING *)pkey->pkey.ptr;
78 if (os)
79 {
80 if (os->data)
81 OPENSSL_cleanse(os->data, os->length);
82 ASN1_OCTET_STRING_free(os);
83 }
84 }

87 static int hmac_pkey_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2)
88 {
89 switch (op)
90 {
91 case ASN1_PKEY_CTRL_DEFAULT_MD_NID:
92 *(int *)arg2 = NID_sha1;
93 return 1;

95 default:
96 return -2;
97 }
98 }

100 #ifdef HMAC_TEST_PRIVATE_KEY_FORMAT
101 /* A bogus private key format for test purposes. This is simply the
102 * HMAC key with "HMAC PRIVATE KEY" in the headers. When enabled the
103 * genpkey utility can be used to "generate" HMAC keys.
104 */

106 static int old_hmac_decode(EVP_PKEY *pkey,
107 const unsigned char **pder, int derlen)
108 {
109 ASN1_OCTET_STRING *os;
110 os = ASN1_OCTET_STRING_new();
111 if (!os || !ASN1_OCTET_STRING_set(os, *pder, derlen))
112 return 0;
113 EVP_PKEY_assign(pkey, EVP_PKEY_HMAC, os);
114 return 1;
115 }

117 static int old_hmac_encode(const EVP_PKEY *pkey, unsigned char **pder)
118 {
119 int inc;
120 ASN1_OCTET_STRING *os = (ASN1_OCTET_STRING *)pkey->pkey.ptr;
121 if (pder)
122 {
123 if (!*pder)
124 {
125 *pder = OPENSSL_malloc(os->length);
126 inc = 0;
127 }

new/usr/src/lib/openssl/libsunw_crypto/hmac/hm_ameth.c 3

128 else inc = 1;

130 memcpy(*pder, os->data, os->length);

132 if (inc)
133 *pder += os->length;
134 }
135
136 return os->length;
137 }

139 #endif

141 const EVP_PKEY_ASN1_METHOD hmac_asn1_meth =
142 {
143 EVP_PKEY_HMAC,
144 EVP_PKEY_HMAC,
145 0,

147 "HMAC",
148 "OpenSSL HMAC method",

150 0,0,0,0,

152 0,0,0,

154 hmac_size,
155 0,
156 0,0,0,0,0,0,0,

158 hmac_key_free,
159 hmac_pkey_ctrl,
160 #ifdef HMAC_TEST_PRIVATE_KEY_FORMAT
161 old_hmac_decode,
162 old_hmac_encode
163 #else
164 0,0
165 #endif
166 };

new/usr/src/lib/openssl/libsunw_crypto/hmac/hm_pmeth.c 1

**
 6670 Fri May 30 18:31:55 2014
new/usr/src/lib/openssl/libsunw_crypto/hmac/hm_pmeth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2 * project 2007.
3 */
4 /* ==
5 * Copyright (c) 2007 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ==
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */

58 #include <stdio.h>
59 #include "cryptlib.h"
60 #include <openssl/x509.h>
61 #include <openssl/x509v3.h>

new/usr/src/lib/openssl/libsunw_crypto/hmac/hm_pmeth.c 2

62 #include <openssl/evp.h>
63 #include <openssl/hmac.h>
64 #include "evp_locl.h"

66 /* HMAC pkey context structure */

68 typedef struct
69 {
70 const EVP_MD *md; /* MD for HMAC use */
71 ASN1_OCTET_STRING ktmp; /* Temp storage for key */
72 HMAC_CTX ctx;
73 } HMAC_PKEY_CTX;

75 static int pkey_hmac_init(EVP_PKEY_CTX *ctx)
76 {
77 HMAC_PKEY_CTX *hctx;
78 hctx = OPENSSL_malloc(sizeof(HMAC_PKEY_CTX));
79 if (!hctx)
80 return 0;
81 hctx->md = NULL;
82 hctx->ktmp.data = NULL;
83 hctx->ktmp.length = 0;
84 hctx->ktmp.flags = 0;
85 hctx->ktmp.type = V_ASN1_OCTET_STRING;
86 HMAC_CTX_init(&hctx->ctx);

88 ctx->data = hctx;
89 ctx->keygen_info_count = 0;

91 return 1;
92 }

94 static int pkey_hmac_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src)
95 {
96 HMAC_PKEY_CTX *sctx, *dctx;
97 if (!pkey_hmac_init(dst))
98 return 0;
99 sctx = src->data;
100 dctx = dst->data;
101 dctx->md = sctx->md;
102 HMAC_CTX_init(&dctx->ctx);
103 if (!HMAC_CTX_copy(&dctx->ctx, &sctx->ctx))
104 return 0;
105 if (sctx->ktmp.data)
106 {
107 if (!ASN1_OCTET_STRING_set(&dctx->ktmp,
108 sctx->ktmp.data, sctx->ktmp.length))
109 return 0;
110 }
111 return 1;
112 }

114 static void pkey_hmac_cleanup(EVP_PKEY_CTX *ctx)
115 {
116 HMAC_PKEY_CTX *hctx = ctx->data;
117 HMAC_CTX_cleanup(&hctx->ctx);
118 if (hctx->ktmp.data)
119 {
120 if (hctx->ktmp.length)
121 OPENSSL_cleanse(hctx->ktmp.data, hctx->ktmp.length);
122 OPENSSL_free(hctx->ktmp.data);
123 hctx->ktmp.data = NULL;
124 }
125 OPENSSL_free(hctx);
126 }

new/usr/src/lib/openssl/libsunw_crypto/hmac/hm_pmeth.c 3

128 static int pkey_hmac_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
129 {
130 ASN1_OCTET_STRING *hkey = NULL;
131 HMAC_PKEY_CTX *hctx = ctx->data;
132 if (!hctx->ktmp.data)
133 return 0;
134 hkey = ASN1_OCTET_STRING_dup(&hctx->ktmp);
135 if (!hkey)
136 return 0;
137 EVP_PKEY_assign(pkey, EVP_PKEY_HMAC, hkey);
138
139 return 1;
140 }

142 static int int_update(EVP_MD_CTX *ctx,const void *data,size_t count)
143 {
144 HMAC_PKEY_CTX *hctx = ctx->pctx->data;
145 if (!HMAC_Update(&hctx->ctx, data, count))
146 return 0;
147 return 1;
148 }

150 static int hmac_signctx_init(EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx)
151 {
152 HMAC_PKEY_CTX *hctx = ctx->data;
153 HMAC_CTX_set_flags(&hctx->ctx, mctx->flags & ~EVP_MD_CTX_FLAG_NO_INIT);
154 EVP_MD_CTX_set_flags(mctx, EVP_MD_CTX_FLAG_NO_INIT);
155 mctx->update = int_update;
156 return 1;
157 }

159 static int hmac_signctx(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen,
160 EVP_MD_CTX *mctx)
161 {
162 unsigned int hlen;
163 HMAC_PKEY_CTX *hctx = ctx->data;
164 int l = EVP_MD_CTX_size(mctx);

166 if (l < 0)
167 return 0;
168 *siglen = l;
169 if (!sig)
170 return 1;

172 if (!HMAC_Final(&hctx->ctx, sig, &hlen))
173 return 0;
174 *siglen = (size_t)hlen;
175 return 1;
176 }

178 static int pkey_hmac_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
179 {
180 HMAC_PKEY_CTX *hctx = ctx->data;
181 ASN1_OCTET_STRING *key;
182 switch (type)
183 {

185 case EVP_PKEY_CTRL_SET_MAC_KEY:
186 if ((!p2 && p1 > 0) || (p1 < -1))
187 return 0;
188 if (!ASN1_OCTET_STRING_set(&hctx->ktmp, p2, p1))
189 return 0;
190 break;

192 case EVP_PKEY_CTRL_MD:
193 hctx->md = p2;

new/usr/src/lib/openssl/libsunw_crypto/hmac/hm_pmeth.c 4

194 break;

196 case EVP_PKEY_CTRL_DIGESTINIT:
197 key = (ASN1_OCTET_STRING *)ctx->pkey->pkey.ptr;
198 if (!HMAC_Init_ex(&hctx->ctx, key->data, key->length, hctx->md,
199 ctx->engine))
200 return 0;
201 break;

203 default:
204 return -2;

206 }
207 return 1;
208 }

210 static int pkey_hmac_ctrl_str(EVP_PKEY_CTX *ctx,
211 const char *type, const char *value)
212 {
213 if (!value)
214 {
215 return 0;
216 }
217 if (!strcmp(type, "key"))
218 {
219 void *p = (void *)value;
220 return pkey_hmac_ctrl(ctx, EVP_PKEY_CTRL_SET_MAC_KEY,
221 -1, p);
222 }
223 if (!strcmp(type, "hexkey"))
224 {
225 unsigned char *key;
226 int r;
227 long keylen;
228 key = string_to_hex(value, &keylen);
229 if (!key)
230 return 0;
231 r = pkey_hmac_ctrl(ctx, EVP_PKEY_CTRL_SET_MAC_KEY, keylen, key);
232 OPENSSL_free(key);
233 return r;
234 }
235 return -2;
236 }

238 const EVP_PKEY_METHOD hmac_pkey_meth =
239 {
240 EVP_PKEY_HMAC,
241 0,
242 pkey_hmac_init,
243 pkey_hmac_copy,
244 pkey_hmac_cleanup,

246 0, 0,

248 0,
249 pkey_hmac_keygen,

251 0, 0,

253 0, 0,

255 0,0,

257 hmac_signctx_init,
258 hmac_signctx,

new/usr/src/lib/openssl/libsunw_crypto/hmac/hm_pmeth.c 5

260 0,0,

262 0,0,

264 0,0,

266 0,0,

268 pkey_hmac_ctrl,
269 pkey_hmac_ctrl_str

271 };

new/usr/src/lib/openssl/libsunw_crypto/hmac/hmac.c 1

**
 7549 Fri May 30 18:31:55 2014
new/usr/src/lib/openssl/libsunw_crypto/hmac/hmac.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/hmac/hmac.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/hmac/hmac.c 2

62 #include <openssl/hmac.h>

64 #ifdef OPENSSL_FIPS
65 #include <openssl/fips.h>
66 #endif

68 int HMAC_Init_ex(HMAC_CTX *ctx, const void *key, int len,
69 const EVP_MD *md, ENGINE *impl)
70 {
71 int i,j,reset=0;
72 unsigned char pad[HMAC_MAX_MD_CBLOCK];

74 #ifdef OPENSSL_FIPS
75 if (FIPS_mode())
76 {
77 /* If we have an ENGINE need to allow non FIPS */
78 if ((impl || ctx->i_ctx.engine)
79 && !(ctx->i_ctx.flags & EVP_CIPH_FLAG_NON_FIPS_ALLOW))
80 {
81 EVPerr(EVP_F_HMAC_INIT_EX, EVP_R_DISABLED_FOR_FIPS);
82 return 0;
83 }
84 /* Other algorithm blocking will be done in FIPS_cmac_init,
85 * via FIPS_hmac_init_ex().
86 */
87 if (!impl && !ctx->i_ctx.engine)
88 return FIPS_hmac_init_ex(ctx, key, len, md, NULL);
89 }
90 #endif

92 if (md != NULL)
93 {
94 reset=1;
95 ctx->md=md;
96 }
97 else
98 md=ctx->md;

100 if (key != NULL)
101 {
102 reset=1;
103 j=EVP_MD_block_size(md);
104 OPENSSL_assert(j <= (int)sizeof(ctx->key));
105 if (j < len)
106 {
107 if (!EVP_DigestInit_ex(&ctx->md_ctx,md, impl))
108 goto err;
109 if (!EVP_DigestUpdate(&ctx->md_ctx,key,len))
110 goto err;
111 if (!EVP_DigestFinal_ex(&(ctx->md_ctx),ctx->key,
112 &ctx->key_length))
113 goto err;
114 }
115 else
116 {
117 OPENSSL_assert(len>=0 && len<=(int)sizeof(ctx->key));
118 memcpy(ctx->key,key,len);
119 ctx->key_length=len;
120 }
121 if(ctx->key_length != HMAC_MAX_MD_CBLOCK)
122 memset(&ctx->key[ctx->key_length], 0,
123 HMAC_MAX_MD_CBLOCK - ctx->key_length);
124 }

126 if (reset)
127 {

new/usr/src/lib/openssl/libsunw_crypto/hmac/hmac.c 3

128 for (i=0; i<HMAC_MAX_MD_CBLOCK; i++)
129 pad[i]=0x36^ctx->key[i];
130 if (!EVP_DigestInit_ex(&ctx->i_ctx,md, impl))
131 goto err;
132 if (!EVP_DigestUpdate(&ctx->i_ctx,pad,EVP_MD_block_size(md)))
133 goto err;

135 for (i=0; i<HMAC_MAX_MD_CBLOCK; i++)
136 pad[i]=0x5c^ctx->key[i];
137 if (!EVP_DigestInit_ex(&ctx->o_ctx,md, impl))
138 goto err;
139 if (!EVP_DigestUpdate(&ctx->o_ctx,pad,EVP_MD_block_size(md)))
140 goto err;
141 }
142 if (!EVP_MD_CTX_copy_ex(&ctx->md_ctx,&ctx->i_ctx))
143 goto err;
144 return 1;
145 err:
146 return 0;
147 }

149 int HMAC_Init(HMAC_CTX *ctx, const void *key, int len, const EVP_MD *md)
150 {
151 if(key && md)
152 HMAC_CTX_init(ctx);
153 return HMAC_Init_ex(ctx,key,len,md, NULL);
154 }

156 int HMAC_Update(HMAC_CTX *ctx, const unsigned char *data, size_t len)
157 {
158 #ifdef OPENSSL_FIPS
159 if (FIPS_mode() && !ctx->i_ctx.engine)
160 return FIPS_hmac_update(ctx, data, len);
161 #endif
162 return EVP_DigestUpdate(&ctx->md_ctx,data,len);
163 }

165 int HMAC_Final(HMAC_CTX *ctx, unsigned char *md, unsigned int *len)
166 {
167 unsigned int i;
168 unsigned char buf[EVP_MAX_MD_SIZE];
169 #ifdef OPENSSL_FIPS
170 if (FIPS_mode() && !ctx->i_ctx.engine)
171 return FIPS_hmac_final(ctx, md, len);
172 #endif

174 if (!EVP_DigestFinal_ex(&ctx->md_ctx,buf,&i))
175 goto err;
176 if (!EVP_MD_CTX_copy_ex(&ctx->md_ctx,&ctx->o_ctx))
177 goto err;
178 if (!EVP_DigestUpdate(&ctx->md_ctx,buf,i))
179 goto err;
180 if (!EVP_DigestFinal_ex(&ctx->md_ctx,md,len))
181 goto err;
182 return 1;
183 err:
184 return 0;
185 }

187 void HMAC_CTX_init(HMAC_CTX *ctx)
188 {
189 EVP_MD_CTX_init(&ctx->i_ctx);
190 EVP_MD_CTX_init(&ctx->o_ctx);
191 EVP_MD_CTX_init(&ctx->md_ctx);
192 }

new/usr/src/lib/openssl/libsunw_crypto/hmac/hmac.c 4

194 int HMAC_CTX_copy(HMAC_CTX *dctx, HMAC_CTX *sctx)
195 {
196 if (!EVP_MD_CTX_copy(&dctx->i_ctx, &sctx->i_ctx))
197 goto err;
198 if (!EVP_MD_CTX_copy(&dctx->o_ctx, &sctx->o_ctx))
199 goto err;
200 if (!EVP_MD_CTX_copy(&dctx->md_ctx, &sctx->md_ctx))
201 goto err;
202 memcpy(dctx->key, sctx->key, HMAC_MAX_MD_CBLOCK);
203 dctx->key_length = sctx->key_length;
204 dctx->md = sctx->md;
205 return 1;
206 err:
207 return 0;
208 }

210 void HMAC_CTX_cleanup(HMAC_CTX *ctx)
211 {
212 #ifdef OPENSSL_FIPS
213 if (FIPS_mode() && !ctx->i_ctx.engine)
214 {
215 FIPS_hmac_ctx_cleanup(ctx);
216 return;
217 }
218 #endif
219 EVP_MD_CTX_cleanup(&ctx->i_ctx);
220 EVP_MD_CTX_cleanup(&ctx->o_ctx);
221 EVP_MD_CTX_cleanup(&ctx->md_ctx);
222 memset(ctx,0,sizeof *ctx);
223 }

225 unsigned char *HMAC(const EVP_MD *evp_md, const void *key, int key_len,
226 const unsigned char *d, size_t n, unsigned char *md,
227 unsigned int *md_len)
228 {
229 HMAC_CTX c;
230 static unsigned char m[EVP_MAX_MD_SIZE];

232 if (md == NULL) md=m;
233 HMAC_CTX_init(&c);
234 if (!HMAC_Init(&c,key,key_len,evp_md))
235 goto err;
236 if (!HMAC_Update(&c,d,n))
237 goto err;
238 if (!HMAC_Final(&c,md,md_len))
239 goto err;
240 HMAC_CTX_cleanup(&c);
241 return md;
242 err:
243 return NULL;
244 }

246 void HMAC_CTX_set_flags(HMAC_CTX *ctx, unsigned long flags)
247 {
248 EVP_MD_CTX_set_flags(&ctx->i_ctx, flags);
249 EVP_MD_CTX_set_flags(&ctx->o_ctx, flags);
250 EVP_MD_CTX_set_flags(&ctx->md_ctx, flags);
251 }

new/usr/src/lib/openssl/libsunw_crypto/i386/Makefile 1

**
 1820 Fri May 30 18:31:55 2014
new/usr/src/lib/openssl/libsunw_crypto/i386/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 # aes/*.s
27 ASM_SOURCES = x86cpuid.s \
28 aes-586.s \
29 aesni-x86.s \
30 vpaes-x86.s \
31 bf-586.s \
32 bn-586.s \
33 co-586.s \
34 x86-gf2m.s \
35 x86-mont.s \
36 cmll-x86.s \
37 crypt586.s \
38 des-586.s \
39 md5-586.s \
40 ghash-x86.s \
41 rc4-586.s \
42 rmd-586.s \
43 sha1-586.s \
44 sha256-586.s \
45 sha512-586.s

47 OBJECTS += $(ASM_SOURCES:%.s=%.o)

49 CLEANFILES += $(ASM_SOURCES)

51 include ../Makefile.com

53 CPPFLAGS += -DL_ENDIAN
54 CPPFLAGS += -DOPENSSL_NO_INLINE_ASM
55 CPPFLAGS += -DOPENSSL_BN_ASM_PART_WORDS
56 CPPFLAGS += -DOPENSSL_IA32_SSE2
57 CPPFLAGS += -DRMD160_ASM
58 CPPFLAGS += -DAES_ASM
59 CPPFLAGS += -DPK11_LIB_LOCATION=\"/usr/lib/libpkcs11.so.1\"

61 PERL_CPPFLAGS += -DOPENSSL_IA32_SSE2

new/usr/src/lib/openssl/libsunw_crypto/i386/Makefile 2

62 PERL_CPPFLAGS += -fPIC

64 # OpenSSL interface is a mess
65 MAPFILES =

67 .KEEP_STATE:

69 all: $(ROOTLIBDIR) $(LIBS) $(LIBLINKS)

71 $(LIBLINKS): FRC
72 $(RM) $@; $(SYMLINK) $(DYNLIB) $@

74 $(ROOTLIBDIR):
75 $(INS.dir)

77 install: all $(ROOTLIBS) $(ROOTLINKS)

79 FRC:

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 1

**
 37886 Fri May 30 18:31:55 2014
new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 .text

4 .globl sunw_Camellia_EncryptBlock
5 .type sunw_Camellia_EncryptBlock,@function
6 .align 16
7 sunw_Camellia_EncryptBlock:
8 movl $128,%eax
9 subl %edi,%eax
10 movl $3,%edi
11 adcl $0,%edi
12 jmp .Lenc_rounds
13 .size sunw_Camellia_EncryptBlock,.-sunw_Camellia_EncryptBlock

15 .globl sunw_Camellia_EncryptBlock_Rounds
16 .type sunw_Camellia_EncryptBlock_Rounds,@function
17 .align 16
18 .Lenc_rounds:
19 sunw_Camellia_EncryptBlock_Rounds:
20 pushq %rbx
21 pushq %rbp
22 pushq %r13
23 pushq %r14
24 pushq %r15
25 .Lenc_prologue:

28 movq %rcx,%r13
29 movq %rdx,%r14

31 shll $6,%edi
32 leaq .LCamellia_SBOX(%rip),%rbp
33 leaq (%r14,%rdi,1),%r15

35 movl 0(%rsi),%r8d
36 movl 4(%rsi),%r9d
37 movl 8(%rsi),%r10d
38 bswapl %r8d
39 movl 12(%rsi),%r11d
40 bswapl %r9d
41 bswapl %r10d
42 bswapl %r11d

44 call _x86_64_Camellia_encrypt

46 bswapl %r8d
47 bswapl %r9d
48 bswapl %r10d
49 movl %r8d,0(%r13)
50 bswapl %r11d
51 movl %r9d,4(%r13)
52 movl %r10d,8(%r13)
53 movl %r11d,12(%r13)

55 movq 0(%rsp),%r15
56 movq 8(%rsp),%r14
57 movq 16(%rsp),%r13
58 movq 24(%rsp),%rbp
59 movq 32(%rsp),%rbx
60 leaq 40(%rsp),%rsp
61 .Lenc_epilogue:

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 2

62 .byte 0xf3,0xc3
63 .size sunw_Camellia_EncryptBlock_Rounds,.-sunw_Camellia_EncryptBlock_Rounds

65 .type _x86_64_Camellia_encrypt,@function
66 .align 16
67 _x86_64_Camellia_encrypt:
68 xorl 0(%r14),%r9d
69 xorl 4(%r14),%r8d
70 xorl 8(%r14),%r11d
71 xorl 12(%r14),%r10d
72 .align 16
73 .Leloop:
74 movl 16(%r14),%ebx
75 movl 20(%r14),%eax

77 xorl %r8d,%eax
78 xorl %r9d,%ebx
79 movzbl %ah,%esi
80 movzbl %bl,%edi
81 movl 2052(%rbp,%rsi,8),%edx
82 movl 0(%rbp,%rdi,8),%ecx
83 movzbl %al,%esi
84 shrl $16,%eax
85 movzbl %bh,%edi
86 xorl 4(%rbp,%rsi,8),%edx
87 shrl $16,%ebx
88 xorl 4(%rbp,%rdi,8),%ecx
89 movzbl %ah,%esi
90 movzbl %bl,%edi
91 xorl 0(%rbp,%rsi,8),%edx
92 xorl 2052(%rbp,%rdi,8),%ecx
93 movzbl %al,%esi
94 movzbl %bh,%edi
95 xorl 2048(%rbp,%rsi,8),%edx
96 xorl 2048(%rbp,%rdi,8),%ecx
97 movl 24(%r14),%ebx
98 movl 28(%r14),%eax
99 xorl %edx,%ecx
100 rorl $8,%edx
101 xorl %ecx,%r10d
102 xorl %ecx,%r11d
103 xorl %edx,%r11d
104 xorl %r10d,%eax
105 xorl %r11d,%ebx
106 movzbl %ah,%esi
107 movzbl %bl,%edi
108 movl 2052(%rbp,%rsi,8),%edx
109 movl 0(%rbp,%rdi,8),%ecx
110 movzbl %al,%esi
111 shrl $16,%eax
112 movzbl %bh,%edi
113 xorl 4(%rbp,%rsi,8),%edx
114 shrl $16,%ebx
115 xorl 4(%rbp,%rdi,8),%ecx
116 movzbl %ah,%esi
117 movzbl %bl,%edi
118 xorl 0(%rbp,%rsi,8),%edx
119 xorl 2052(%rbp,%rdi,8),%ecx
120 movzbl %al,%esi
121 movzbl %bh,%edi
122 xorl 2048(%rbp,%rsi,8),%edx
123 xorl 2048(%rbp,%rdi,8),%ecx
124 movl 32(%r14),%ebx
125 movl 36(%r14),%eax
126 xorl %edx,%ecx
127 rorl $8,%edx

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 3

128 xorl %ecx,%r8d
129 xorl %ecx,%r9d
130 xorl %edx,%r9d
131 xorl %r8d,%eax
132 xorl %r9d,%ebx
133 movzbl %ah,%esi
134 movzbl %bl,%edi
135 movl 2052(%rbp,%rsi,8),%edx
136 movl 0(%rbp,%rdi,8),%ecx
137 movzbl %al,%esi
138 shrl $16,%eax
139 movzbl %bh,%edi
140 xorl 4(%rbp,%rsi,8),%edx
141 shrl $16,%ebx
142 xorl 4(%rbp,%rdi,8),%ecx
143 movzbl %ah,%esi
144 movzbl %bl,%edi
145 xorl 0(%rbp,%rsi,8),%edx
146 xorl 2052(%rbp,%rdi,8),%ecx
147 movzbl %al,%esi
148 movzbl %bh,%edi
149 xorl 2048(%rbp,%rsi,8),%edx
150 xorl 2048(%rbp,%rdi,8),%ecx
151 movl 40(%r14),%ebx
152 movl 44(%r14),%eax
153 xorl %edx,%ecx
154 rorl $8,%edx
155 xorl %ecx,%r10d
156 xorl %ecx,%r11d
157 xorl %edx,%r11d
158 xorl %r10d,%eax
159 xorl %r11d,%ebx
160 movzbl %ah,%esi
161 movzbl %bl,%edi
162 movl 2052(%rbp,%rsi,8),%edx
163 movl 0(%rbp,%rdi,8),%ecx
164 movzbl %al,%esi
165 shrl $16,%eax
166 movzbl %bh,%edi
167 xorl 4(%rbp,%rsi,8),%edx
168 shrl $16,%ebx
169 xorl 4(%rbp,%rdi,8),%ecx
170 movzbl %ah,%esi
171 movzbl %bl,%edi
172 xorl 0(%rbp,%rsi,8),%edx
173 xorl 2052(%rbp,%rdi,8),%ecx
174 movzbl %al,%esi
175 movzbl %bh,%edi
176 xorl 2048(%rbp,%rsi,8),%edx
177 xorl 2048(%rbp,%rdi,8),%ecx
178 movl 48(%r14),%ebx
179 movl 52(%r14),%eax
180 xorl %edx,%ecx
181 rorl $8,%edx
182 xorl %ecx,%r8d
183 xorl %ecx,%r9d
184 xorl %edx,%r9d
185 xorl %r8d,%eax
186 xorl %r9d,%ebx
187 movzbl %ah,%esi
188 movzbl %bl,%edi
189 movl 2052(%rbp,%rsi,8),%edx
190 movl 0(%rbp,%rdi,8),%ecx
191 movzbl %al,%esi
192 shrl $16,%eax
193 movzbl %bh,%edi

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 4

194 xorl 4(%rbp,%rsi,8),%edx
195 shrl $16,%ebx
196 xorl 4(%rbp,%rdi,8),%ecx
197 movzbl %ah,%esi
198 movzbl %bl,%edi
199 xorl 0(%rbp,%rsi,8),%edx
200 xorl 2052(%rbp,%rdi,8),%ecx
201 movzbl %al,%esi
202 movzbl %bh,%edi
203 xorl 2048(%rbp,%rsi,8),%edx
204 xorl 2048(%rbp,%rdi,8),%ecx
205 movl 56(%r14),%ebx
206 movl 60(%r14),%eax
207 xorl %edx,%ecx
208 rorl $8,%edx
209 xorl %ecx,%r10d
210 xorl %ecx,%r11d
211 xorl %edx,%r11d
212 xorl %r10d,%eax
213 xorl %r11d,%ebx
214 movzbl %ah,%esi
215 movzbl %bl,%edi
216 movl 2052(%rbp,%rsi,8),%edx
217 movl 0(%rbp,%rdi,8),%ecx
218 movzbl %al,%esi
219 shrl $16,%eax
220 movzbl %bh,%edi
221 xorl 4(%rbp,%rsi,8),%edx
222 shrl $16,%ebx
223 xorl 4(%rbp,%rdi,8),%ecx
224 movzbl %ah,%esi
225 movzbl %bl,%edi
226 xorl 0(%rbp,%rsi,8),%edx
227 xorl 2052(%rbp,%rdi,8),%ecx
228 movzbl %al,%esi
229 movzbl %bh,%edi
230 xorl 2048(%rbp,%rsi,8),%edx
231 xorl 2048(%rbp,%rdi,8),%ecx
232 movl 64(%r14),%ebx
233 movl 68(%r14),%eax
234 xorl %edx,%ecx
235 rorl $8,%edx
236 xorl %ecx,%r8d
237 xorl %ecx,%r9d
238 xorl %edx,%r9d
239 leaq 64(%r14),%r14
240 cmpq %r15,%r14
241 movl 8(%r14),%edx
242 movl 12(%r14),%ecx
243 je .Ledone

245 andl %r8d,%eax
246 orl %r11d,%edx
247 roll $1,%eax
248 xorl %edx,%r10d
249 xorl %eax,%r9d
250 andl %r10d,%ecx
251 orl %r9d,%ebx
252 roll $1,%ecx
253 xorl %ebx,%r8d
254 xorl %ecx,%r11d
255 jmp .Leloop

257 .align 16
258 .Ledone:
259 xorl %r10d,%eax

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 5

260 xorl %r11d,%ebx
261 xorl %r8d,%ecx
262 xorl %r9d,%edx

264 movl %eax,%r8d
265 movl %ebx,%r9d
266 movl %ecx,%r10d
267 movl %edx,%r11d

269 .byte 0xf3,0xc3
270 .size _x86_64_Camellia_encrypt,.-_x86_64_Camellia_encrypt

273 .globl sunw_Camellia_DecryptBlock
274 .type sunw_Camellia_DecryptBlock,@function
275 .align 16
276 sunw_Camellia_DecryptBlock:
277 movl $128,%eax
278 subl %edi,%eax
279 movl $3,%edi
280 adcl $0,%edi
281 jmp .Ldec_rounds
282 .size sunw_Camellia_DecryptBlock,.-sunw_Camellia_DecryptBlock

284 .globl sunw_Camellia_DecryptBlock_Rounds
285 .type sunw_Camellia_DecryptBlock_Rounds,@function
286 .align 16
287 .Ldec_rounds:
288 sunw_Camellia_DecryptBlock_Rounds:
289 pushq %rbx
290 pushq %rbp
291 pushq %r13
292 pushq %r14
293 pushq %r15
294 .Ldec_prologue:

297 movq %rcx,%r13
298 movq %rdx,%r15

300 shll $6,%edi
301 leaq .LCamellia_SBOX(%rip),%rbp
302 leaq (%r15,%rdi,1),%r14

304 movl 0(%rsi),%r8d
305 movl 4(%rsi),%r9d
306 movl 8(%rsi),%r10d
307 bswapl %r8d
308 movl 12(%rsi),%r11d
309 bswapl %r9d
310 bswapl %r10d
311 bswapl %r11d

313 call _x86_64_Camellia_decrypt

315 bswapl %r8d
316 bswapl %r9d
317 bswapl %r10d
318 movl %r8d,0(%r13)
319 bswapl %r11d
320 movl %r9d,4(%r13)
321 movl %r10d,8(%r13)
322 movl %r11d,12(%r13)

324 movq 0(%rsp),%r15
325 movq 8(%rsp),%r14

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 6

326 movq 16(%rsp),%r13
327 movq 24(%rsp),%rbp
328 movq 32(%rsp),%rbx
329 leaq 40(%rsp),%rsp
330 .Ldec_epilogue:
331 .byte 0xf3,0xc3
332 .size sunw_Camellia_DecryptBlock_Rounds,.-sunw_Camellia_DecryptBlock_Rounds

334 .type _x86_64_Camellia_decrypt,@function
335 .align 16
336 _x86_64_Camellia_decrypt:
337 xorl 0(%r14),%r9d
338 xorl 4(%r14),%r8d
339 xorl 8(%r14),%r11d
340 xorl 12(%r14),%r10d
341 .align 16
342 .Ldloop:
343 movl -8(%r14),%ebx
344 movl -4(%r14),%eax

346 xorl %r8d,%eax
347 xorl %r9d,%ebx
348 movzbl %ah,%esi
349 movzbl %bl,%edi
350 movl 2052(%rbp,%rsi,8),%edx
351 movl 0(%rbp,%rdi,8),%ecx
352 movzbl %al,%esi
353 shrl $16,%eax
354 movzbl %bh,%edi
355 xorl 4(%rbp,%rsi,8),%edx
356 shrl $16,%ebx
357 xorl 4(%rbp,%rdi,8),%ecx
358 movzbl %ah,%esi
359 movzbl %bl,%edi
360 xorl 0(%rbp,%rsi,8),%edx
361 xorl 2052(%rbp,%rdi,8),%ecx
362 movzbl %al,%esi
363 movzbl %bh,%edi
364 xorl 2048(%rbp,%rsi,8),%edx
365 xorl 2048(%rbp,%rdi,8),%ecx
366 movl -16(%r14),%ebx
367 movl -12(%r14),%eax
368 xorl %edx,%ecx
369 rorl $8,%edx
370 xorl %ecx,%r10d
371 xorl %ecx,%r11d
372 xorl %edx,%r11d
373 xorl %r10d,%eax
374 xorl %r11d,%ebx
375 movzbl %ah,%esi
376 movzbl %bl,%edi
377 movl 2052(%rbp,%rsi,8),%edx
378 movl 0(%rbp,%rdi,8),%ecx
379 movzbl %al,%esi
380 shrl $16,%eax
381 movzbl %bh,%edi
382 xorl 4(%rbp,%rsi,8),%edx
383 shrl $16,%ebx
384 xorl 4(%rbp,%rdi,8),%ecx
385 movzbl %ah,%esi
386 movzbl %bl,%edi
387 xorl 0(%rbp,%rsi,8),%edx
388 xorl 2052(%rbp,%rdi,8),%ecx
389 movzbl %al,%esi
390 movzbl %bh,%edi
391 xorl 2048(%rbp,%rsi,8),%edx

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 7

392 xorl 2048(%rbp,%rdi,8),%ecx
393 movl -24(%r14),%ebx
394 movl -20(%r14),%eax
395 xorl %edx,%ecx
396 rorl $8,%edx
397 xorl %ecx,%r8d
398 xorl %ecx,%r9d
399 xorl %edx,%r9d
400 xorl %r8d,%eax
401 xorl %r9d,%ebx
402 movzbl %ah,%esi
403 movzbl %bl,%edi
404 movl 2052(%rbp,%rsi,8),%edx
405 movl 0(%rbp,%rdi,8),%ecx
406 movzbl %al,%esi
407 shrl $16,%eax
408 movzbl %bh,%edi
409 xorl 4(%rbp,%rsi,8),%edx
410 shrl $16,%ebx
411 xorl 4(%rbp,%rdi,8),%ecx
412 movzbl %ah,%esi
413 movzbl %bl,%edi
414 xorl 0(%rbp,%rsi,8),%edx
415 xorl 2052(%rbp,%rdi,8),%ecx
416 movzbl %al,%esi
417 movzbl %bh,%edi
418 xorl 2048(%rbp,%rsi,8),%edx
419 xorl 2048(%rbp,%rdi,8),%ecx
420 movl -32(%r14),%ebx
421 movl -28(%r14),%eax
422 xorl %edx,%ecx
423 rorl $8,%edx
424 xorl %ecx,%r10d
425 xorl %ecx,%r11d
426 xorl %edx,%r11d
427 xorl %r10d,%eax
428 xorl %r11d,%ebx
429 movzbl %ah,%esi
430 movzbl %bl,%edi
431 movl 2052(%rbp,%rsi,8),%edx
432 movl 0(%rbp,%rdi,8),%ecx
433 movzbl %al,%esi
434 shrl $16,%eax
435 movzbl %bh,%edi
436 xorl 4(%rbp,%rsi,8),%edx
437 shrl $16,%ebx
438 xorl 4(%rbp,%rdi,8),%ecx
439 movzbl %ah,%esi
440 movzbl %bl,%edi
441 xorl 0(%rbp,%rsi,8),%edx
442 xorl 2052(%rbp,%rdi,8),%ecx
443 movzbl %al,%esi
444 movzbl %bh,%edi
445 xorl 2048(%rbp,%rsi,8),%edx
446 xorl 2048(%rbp,%rdi,8),%ecx
447 movl -40(%r14),%ebx
448 movl -36(%r14),%eax
449 xorl %edx,%ecx
450 rorl $8,%edx
451 xorl %ecx,%r8d
452 xorl %ecx,%r9d
453 xorl %edx,%r9d
454 xorl %r8d,%eax
455 xorl %r9d,%ebx
456 movzbl %ah,%esi
457 movzbl %bl,%edi

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 8

458 movl 2052(%rbp,%rsi,8),%edx
459 movl 0(%rbp,%rdi,8),%ecx
460 movzbl %al,%esi
461 shrl $16,%eax
462 movzbl %bh,%edi
463 xorl 4(%rbp,%rsi,8),%edx
464 shrl $16,%ebx
465 xorl 4(%rbp,%rdi,8),%ecx
466 movzbl %ah,%esi
467 movzbl %bl,%edi
468 xorl 0(%rbp,%rsi,8),%edx
469 xorl 2052(%rbp,%rdi,8),%ecx
470 movzbl %al,%esi
471 movzbl %bh,%edi
472 xorl 2048(%rbp,%rsi,8),%edx
473 xorl 2048(%rbp,%rdi,8),%ecx
474 movl -48(%r14),%ebx
475 movl -44(%r14),%eax
476 xorl %edx,%ecx
477 rorl $8,%edx
478 xorl %ecx,%r10d
479 xorl %ecx,%r11d
480 xorl %edx,%r11d
481 xorl %r10d,%eax
482 xorl %r11d,%ebx
483 movzbl %ah,%esi
484 movzbl %bl,%edi
485 movl 2052(%rbp,%rsi,8),%edx
486 movl 0(%rbp,%rdi,8),%ecx
487 movzbl %al,%esi
488 shrl $16,%eax
489 movzbl %bh,%edi
490 xorl 4(%rbp,%rsi,8),%edx
491 shrl $16,%ebx
492 xorl 4(%rbp,%rdi,8),%ecx
493 movzbl %ah,%esi
494 movzbl %bl,%edi
495 xorl 0(%rbp,%rsi,8),%edx
496 xorl 2052(%rbp,%rdi,8),%ecx
497 movzbl %al,%esi
498 movzbl %bh,%edi
499 xorl 2048(%rbp,%rsi,8),%edx
500 xorl 2048(%rbp,%rdi,8),%ecx
501 movl -56(%r14),%ebx
502 movl -52(%r14),%eax
503 xorl %edx,%ecx
504 rorl $8,%edx
505 xorl %ecx,%r8d
506 xorl %ecx,%r9d
507 xorl %edx,%r9d
508 leaq -64(%r14),%r14
509 cmpq %r15,%r14
510 movl 0(%r14),%edx
511 movl 4(%r14),%ecx
512 je .Lddone

514 andl %r8d,%eax
515 orl %r11d,%edx
516 roll $1,%eax
517 xorl %edx,%r10d
518 xorl %eax,%r9d
519 andl %r10d,%ecx
520 orl %r9d,%ebx
521 roll $1,%ecx
522 xorl %ebx,%r8d
523 xorl %ecx,%r11d

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 9

525 jmp .Ldloop

527 .align 16
528 .Lddone:
529 xorl %r10d,%ecx
530 xorl %r11d,%edx
531 xorl %r8d,%eax
532 xorl %r9d,%ebx

534 movl %ecx,%r8d
535 movl %edx,%r9d
536 movl %eax,%r10d
537 movl %ebx,%r11d

539 .byte 0xf3,0xc3
540 .size _x86_64_Camellia_decrypt,.-_x86_64_Camellia_decrypt
541 .globl sunw_Camellia_Ekeygen
542 .type sunw_Camellia_Ekeygen,@function
543 .align 16
544 sunw_Camellia_Ekeygen:
545 pushq %rbx
546 pushq %rbp
547 pushq %r13
548 pushq %r14
549 pushq %r15
550 .Lkey_prologue:

552 movq %rdi,%r15
553 movq %rdx,%r13

555 movl 0(%rsi),%r8d
556 movl 4(%rsi),%r9d
557 movl 8(%rsi),%r10d
558 movl 12(%rsi),%r11d

560 bswapl %r8d
561 bswapl %r9d
562 bswapl %r10d
563 bswapl %r11d
564 movl %r9d,0(%r13)
565 movl %r8d,4(%r13)
566 movl %r11d,8(%r13)
567 movl %r10d,12(%r13)
568 cmpq $128,%r15
569 je .L1st128

571 movl 16(%rsi),%r8d
572 movl 20(%rsi),%r9d
573 cmpq $192,%r15
574 je .L1st192
575 movl 24(%rsi),%r10d
576 movl 28(%rsi),%r11d
577 jmp .L1st256
578 .L1st192:
579 movl %r8d,%r10d
580 movl %r9d,%r11d
581 notl %r10d
582 notl %r11d
583 .L1st256:
584 bswapl %r8d
585 bswapl %r9d
586 bswapl %r10d
587 bswapl %r11d
588 movl %r9d,32(%r13)
589 movl %r8d,36(%r13)

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 10

590 movl %r11d,40(%r13)
591 movl %r10d,44(%r13)
592 xorl 0(%r13),%r9d
593 xorl 4(%r13),%r8d
594 xorl 8(%r13),%r11d
595 xorl 12(%r13),%r10d

597 .L1st128:
598 leaq .LCamellia_SIGMA(%rip),%r14
599 leaq .LCamellia_SBOX(%rip),%rbp

601 movl 0(%r14),%ebx
602 movl 4(%r14),%eax
603 xorl %r8d,%eax
604 xorl %r9d,%ebx
605 movzbl %ah,%esi
606 movzbl %bl,%edi
607 movl 2052(%rbp,%rsi,8),%edx
608 movl 0(%rbp,%rdi,8),%ecx
609 movzbl %al,%esi
610 shrl $16,%eax
611 movzbl %bh,%edi
612 xorl 4(%rbp,%rsi,8),%edx
613 shrl $16,%ebx
614 xorl 4(%rbp,%rdi,8),%ecx
615 movzbl %ah,%esi
616 movzbl %bl,%edi
617 xorl 0(%rbp,%rsi,8),%edx
618 xorl 2052(%rbp,%rdi,8),%ecx
619 movzbl %al,%esi
620 movzbl %bh,%edi
621 xorl 2048(%rbp,%rsi,8),%edx
622 xorl 2048(%rbp,%rdi,8),%ecx
623 movl 8(%r14),%ebx
624 movl 12(%r14),%eax
625 xorl %edx,%ecx
626 rorl $8,%edx
627 xorl %ecx,%r10d
628 xorl %ecx,%r11d
629 xorl %edx,%r11d
630 xorl %r10d,%eax
631 xorl %r11d,%ebx
632 movzbl %ah,%esi
633 movzbl %bl,%edi
634 movl 2052(%rbp,%rsi,8),%edx
635 movl 0(%rbp,%rdi,8),%ecx
636 movzbl %al,%esi
637 shrl $16,%eax
638 movzbl %bh,%edi
639 xorl 4(%rbp,%rsi,8),%edx
640 shrl $16,%ebx
641 xorl 4(%rbp,%rdi,8),%ecx
642 movzbl %ah,%esi
643 movzbl %bl,%edi
644 xorl 0(%rbp,%rsi,8),%edx
645 xorl 2052(%rbp,%rdi,8),%ecx
646 movzbl %al,%esi
647 movzbl %bh,%edi
648 xorl 2048(%rbp,%rsi,8),%edx
649 xorl 2048(%rbp,%rdi,8),%ecx
650 movl 16(%r14),%ebx
651 movl 20(%r14),%eax
652 xorl %edx,%ecx
653 rorl $8,%edx
654 xorl %ecx,%r8d
655 xorl %ecx,%r9d

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 11

656 xorl %edx,%r9d
657 xorl 0(%r13),%r9d
658 xorl 4(%r13),%r8d
659 xorl 8(%r13),%r11d
660 xorl 12(%r13),%r10d
661 xorl %r8d,%eax
662 xorl %r9d,%ebx
663 movzbl %ah,%esi
664 movzbl %bl,%edi
665 movl 2052(%rbp,%rsi,8),%edx
666 movl 0(%rbp,%rdi,8),%ecx
667 movzbl %al,%esi
668 shrl $16,%eax
669 movzbl %bh,%edi
670 xorl 4(%rbp,%rsi,8),%edx
671 shrl $16,%ebx
672 xorl 4(%rbp,%rdi,8),%ecx
673 movzbl %ah,%esi
674 movzbl %bl,%edi
675 xorl 0(%rbp,%rsi,8),%edx
676 xorl 2052(%rbp,%rdi,8),%ecx
677 movzbl %al,%esi
678 movzbl %bh,%edi
679 xorl 2048(%rbp,%rsi,8),%edx
680 xorl 2048(%rbp,%rdi,8),%ecx
681 movl 24(%r14),%ebx
682 movl 28(%r14),%eax
683 xorl %edx,%ecx
684 rorl $8,%edx
685 xorl %ecx,%r10d
686 xorl %ecx,%r11d
687 xorl %edx,%r11d
688 xorl %r10d,%eax
689 xorl %r11d,%ebx
690 movzbl %ah,%esi
691 movzbl %bl,%edi
692 movl 2052(%rbp,%rsi,8),%edx
693 movl 0(%rbp,%rdi,8),%ecx
694 movzbl %al,%esi
695 shrl $16,%eax
696 movzbl %bh,%edi
697 xorl 4(%rbp,%rsi,8),%edx
698 shrl $16,%ebx
699 xorl 4(%rbp,%rdi,8),%ecx
700 movzbl %ah,%esi
701 movzbl %bl,%edi
702 xorl 0(%rbp,%rsi,8),%edx
703 xorl 2052(%rbp,%rdi,8),%ecx
704 movzbl %al,%esi
705 movzbl %bh,%edi
706 xorl 2048(%rbp,%rsi,8),%edx
707 xorl 2048(%rbp,%rdi,8),%ecx
708 movl 32(%r14),%ebx
709 movl 36(%r14),%eax
710 xorl %edx,%ecx
711 rorl $8,%edx
712 xorl %ecx,%r8d
713 xorl %ecx,%r9d
714 xorl %edx,%r9d
715 cmpq $128,%r15
716 jne .L2nd256

718 leaq 128(%r13),%r13
719 shlq $32,%r8
720 shlq $32,%r10
721 orq %r9,%r8

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 12

722 orq %r11,%r10
723 movq -128(%r13),%rax
724 movq -120(%r13),%rbx
725 movq %r8,-112(%r13)
726 movq %r10,-104(%r13)
727 movq %rax,%r11
728 shlq $15,%rax
729 movq %rbx,%r9
730 shrq $49,%r9
731 shrq $49,%r11
732 orq %r9,%rax
733 shlq $15,%rbx
734 orq %r11,%rbx
735 movq %rax,-96(%r13)
736 movq %rbx,-88(%r13)
737 movq %r8,%r11
738 shlq $15,%r8
739 movq %r10,%r9
740 shrq $49,%r9
741 shrq $49,%r11
742 orq %r9,%r8
743 shlq $15,%r10
744 orq %r11,%r10
745 movq %r8,-80(%r13)
746 movq %r10,-72(%r13)
747 movq %r8,%r11
748 shlq $15,%r8
749 movq %r10,%r9
750 shrq $49,%r9
751 shrq $49,%r11
752 orq %r9,%r8
753 shlq $15,%r10
754 orq %r11,%r10
755 movq %r8,-64(%r13)
756 movq %r10,-56(%r13)
757 movq %rax,%r11
758 shlq $30,%rax
759 movq %rbx,%r9
760 shrq $34,%r9
761 shrq $34,%r11
762 orq %r9,%rax
763 shlq $30,%rbx
764 orq %r11,%rbx
765 movq %rax,-48(%r13)
766 movq %rbx,-40(%r13)
767 movq %r8,%r11
768 shlq $15,%r8
769 movq %r10,%r9
770 shrq $49,%r9
771 shrq $49,%r11
772 orq %r9,%r8
773 shlq $15,%r10
774 orq %r11,%r10
775 movq %r8,-32(%r13)
776 movq %rax,%r11
777 shlq $15,%rax
778 movq %rbx,%r9
779 shrq $49,%r9
780 shrq $49,%r11
781 orq %r9,%rax
782 shlq $15,%rbx
783 orq %r11,%rbx
784 movq %rbx,-24(%r13)
785 movq %r8,%r11
786 shlq $15,%r8
787 movq %r10,%r9

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 13

788 shrq $49,%r9
789 shrq $49,%r11
790 orq %r9,%r8
791 shlq $15,%r10
792 orq %r11,%r10
793 movq %r8,-16(%r13)
794 movq %r10,-8(%r13)
795 movq %rax,%r11
796 shlq $17,%rax
797 movq %rbx,%r9
798 shrq $47,%r9
799 shrq $47,%r11
800 orq %r9,%rax
801 shlq $17,%rbx
802 orq %r11,%rbx
803 movq %rax,0(%r13)
804 movq %rbx,8(%r13)
805 movq %rax,%r11
806 shlq $17,%rax
807 movq %rbx,%r9
808 shrq $47,%r9
809 shrq $47,%r11
810 orq %r9,%rax
811 shlq $17,%rbx
812 orq %r11,%rbx
813 movq %rax,16(%r13)
814 movq %rbx,24(%r13)
815 movq %r8,%r11
816 shlq $34,%r8
817 movq %r10,%r9
818 shrq $30,%r9
819 shrq $30,%r11
820 orq %r9,%r8
821 shlq $34,%r10
822 orq %r11,%r10
823 movq %r8,32(%r13)
824 movq %r10,40(%r13)
825 movq %rax,%r11
826 shlq $17,%rax
827 movq %rbx,%r9
828 shrq $47,%r9
829 shrq $47,%r11
830 orq %r9,%rax
831 shlq $17,%rbx
832 orq %r11,%rbx
833 movq %rax,48(%r13)
834 movq %rbx,56(%r13)
835 movq %r8,%r11
836 shlq $17,%r8
837 movq %r10,%r9
838 shrq $47,%r9
839 shrq $47,%r11
840 orq %r9,%r8
841 shlq $17,%r10
842 orq %r11,%r10
843 movq %r8,64(%r13)
844 movq %r10,72(%r13)
845 movl $3,%eax
846 jmp .Ldone
847 .align 16
848 .L2nd256:
849 movl %r9d,48(%r13)
850 movl %r8d,52(%r13)
851 movl %r11d,56(%r13)
852 movl %r10d,60(%r13)
853 xorl 32(%r13),%r9d

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 14

854 xorl 36(%r13),%r8d
855 xorl 40(%r13),%r11d
856 xorl 44(%r13),%r10d
857 xorl %r8d,%eax
858 xorl %r9d,%ebx
859 movzbl %ah,%esi
860 movzbl %bl,%edi
861 movl 2052(%rbp,%rsi,8),%edx
862 movl 0(%rbp,%rdi,8),%ecx
863 movzbl %al,%esi
864 shrl $16,%eax
865 movzbl %bh,%edi
866 xorl 4(%rbp,%rsi,8),%edx
867 shrl $16,%ebx
868 xorl 4(%rbp,%rdi,8),%ecx
869 movzbl %ah,%esi
870 movzbl %bl,%edi
871 xorl 0(%rbp,%rsi,8),%edx
872 xorl 2052(%rbp,%rdi,8),%ecx
873 movzbl %al,%esi
874 movzbl %bh,%edi
875 xorl 2048(%rbp,%rsi,8),%edx
876 xorl 2048(%rbp,%rdi,8),%ecx
877 movl 40(%r14),%ebx
878 movl 44(%r14),%eax
879 xorl %edx,%ecx
880 rorl $8,%edx
881 xorl %ecx,%r10d
882 xorl %ecx,%r11d
883 xorl %edx,%r11d
884 xorl %r10d,%eax
885 xorl %r11d,%ebx
886 movzbl %ah,%esi
887 movzbl %bl,%edi
888 movl 2052(%rbp,%rsi,8),%edx
889 movl 0(%rbp,%rdi,8),%ecx
890 movzbl %al,%esi
891 shrl $16,%eax
892 movzbl %bh,%edi
893 xorl 4(%rbp,%rsi,8),%edx
894 shrl $16,%ebx
895 xorl 4(%rbp,%rdi,8),%ecx
896 movzbl %ah,%esi
897 movzbl %bl,%edi
898 xorl 0(%rbp,%rsi,8),%edx
899 xorl 2052(%rbp,%rdi,8),%ecx
900 movzbl %al,%esi
901 movzbl %bh,%edi
902 xorl 2048(%rbp,%rsi,8),%edx
903 xorl 2048(%rbp,%rdi,8),%ecx
904 movl 48(%r14),%ebx
905 movl 52(%r14),%eax
906 xorl %edx,%ecx
907 rorl $8,%edx
908 xorl %ecx,%r8d
909 xorl %ecx,%r9d
910 xorl %edx,%r9d
911 movq 0(%r13),%rax
912 movq 8(%r13),%rbx
913 movq 32(%r13),%rcx
914 movq 40(%r13),%rdx
915 movq 48(%r13),%r14
916 movq 56(%r13),%r15
917 leaq 128(%r13),%r13
918 shlq $32,%r8
919 shlq $32,%r10

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 15

920 orq %r9,%r8
921 orq %r11,%r10
922 movq %r8,-112(%r13)
923 movq %r10,-104(%r13)
924 movq %rcx,%r11
925 shlq $15,%rcx
926 movq %rdx,%r9
927 shrq $49,%r9
928 shrq $49,%r11
929 orq %r9,%rcx
930 shlq $15,%rdx
931 orq %r11,%rdx
932 movq %rcx,-96(%r13)
933 movq %rdx,-88(%r13)
934 movq %r14,%r11
935 shlq $15,%r14
936 movq %r15,%r9
937 shrq $49,%r9
938 shrq $49,%r11
939 orq %r9,%r14
940 shlq $15,%r15
941 orq %r11,%r15
942 movq %r14,-80(%r13)
943 movq %r15,-72(%r13)
944 movq %rcx,%r11
945 shlq $15,%rcx
946 movq %rdx,%r9
947 shrq $49,%r9
948 shrq $49,%r11
949 orq %r9,%rcx
950 shlq $15,%rdx
951 orq %r11,%rdx
952 movq %rcx,-64(%r13)
953 movq %rdx,-56(%r13)
954 movq %r8,%r11
955 shlq $30,%r8
956 movq %r10,%r9
957 shrq $34,%r9
958 shrq $34,%r11
959 orq %r9,%r8
960 shlq $30,%r10
961 orq %r11,%r10
962 movq %r8,-48(%r13)
963 movq %r10,-40(%r13)
964 movq %rax,%r11
965 shlq $45,%rax
966 movq %rbx,%r9
967 shrq $19,%r9
968 shrq $19,%r11
969 orq %r9,%rax
970 shlq $45,%rbx
971 orq %r11,%rbx
972 movq %rax,-32(%r13)
973 movq %rbx,-24(%r13)
974 movq %r14,%r11
975 shlq $30,%r14
976 movq %r15,%r9
977 shrq $34,%r9
978 shrq $34,%r11
979 orq %r9,%r14
980 shlq $30,%r15
981 orq %r11,%r15
982 movq %r14,-16(%r13)
983 movq %r15,-8(%r13)
984 movq %rax,%r11
985 shlq $15,%rax

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 16

986 movq %rbx,%r9
987 shrq $49,%r9
988 shrq $49,%r11
989 orq %r9,%rax
990 shlq $15,%rbx
991 orq %r11,%rbx
992 movq %rax,0(%r13)
993 movq %rbx,8(%r13)
994 movq %rcx,%r11
995 shlq $30,%rcx
996 movq %rdx,%r9
997 shrq $34,%r9
998 shrq $34,%r11
999 orq %r9,%rcx

1000 shlq $30,%rdx
1001 orq %r11,%rdx
1002 movq %rcx,16(%r13)
1003 movq %rdx,24(%r13)
1004 movq %r8,%r11
1005 shlq $30,%r8
1006 movq %r10,%r9
1007 shrq $34,%r9
1008 shrq $34,%r11
1009 orq %r9,%r8
1010 shlq $30,%r10
1011 orq %r11,%r10
1012 movq %r8,32(%r13)
1013 movq %r10,40(%r13)
1014 movq %rax,%r11
1015 shlq $17,%rax
1016 movq %rbx,%r9
1017 shrq $47,%r9
1018 shrq $47,%r11
1019 orq %r9,%rax
1020 shlq $17,%rbx
1021 orq %r11,%rbx
1022 movq %rax,48(%r13)
1023 movq %rbx,56(%r13)
1024 movq %r14,%r11
1025 shlq $32,%r14
1026 movq %r15,%r9
1027 shrq $32,%r9
1028 shrq $32,%r11
1029 orq %r9,%r14
1030 shlq $32,%r15
1031 orq %r11,%r15
1032 movq %r14,64(%r13)
1033 movq %r15,72(%r13)
1034 movq %rcx,%r11
1035 shlq $34,%rcx
1036 movq %rdx,%r9
1037 shrq $30,%r9
1038 shrq $30,%r11
1039 orq %r9,%rcx
1040 shlq $34,%rdx
1041 orq %r11,%rdx
1042 movq %rcx,80(%r13)
1043 movq %rdx,88(%r13)
1044 movq %r14,%r11
1045 shlq $17,%r14
1046 movq %r15,%r9
1047 shrq $47,%r9
1048 shrq $47,%r11
1049 orq %r9,%r14
1050 shlq $17,%r15
1051 orq %r11,%r15

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 17

1052 movq %r14,96(%r13)
1053 movq %r15,104(%r13)
1054 movq %rax,%r11
1055 shlq $34,%rax
1056 movq %rbx,%r9
1057 shrq $30,%r9
1058 shrq $30,%r11
1059 orq %r9,%rax
1060 shlq $34,%rbx
1061 orq %r11,%rbx
1062 movq %rax,112(%r13)
1063 movq %rbx,120(%r13)
1064 movq %r8,%r11
1065 shlq $51,%r8
1066 movq %r10,%r9
1067 shrq $13,%r9
1068 shrq $13,%r11
1069 orq %r9,%r8
1070 shlq $51,%r10
1071 orq %r11,%r10
1072 movq %r8,128(%r13)
1073 movq %r10,136(%r13)
1074 movl $4,%eax
1075 .Ldone:
1076 movq 0(%rsp),%r15
1077 movq 8(%rsp),%r14
1078 movq 16(%rsp),%r13
1079 movq 24(%rsp),%rbp
1080 movq 32(%rsp),%rbx
1081 leaq 40(%rsp),%rsp
1082 .Lkey_epilogue:
1083 .byte 0xf3,0xc3
1084 .size sunw_Camellia_Ekeygen,.-sunw_Camellia_Ekeygen
1085 .align 64
1086 .LCamellia_SIGMA:
1087 .long 0x3bcc908b, 0xa09e667f, 0x4caa73b2, 0xb67ae858
1088 .long 0xe94f82be, 0xc6ef372f, 0xf1d36f1c, 0x54ff53a5
1089 .long 0xde682d1d, 0x10e527fa, 0xb3e6c1fd, 0xb05688c2
1090 .long 0, 0, 0, 0
1091 .LCamellia_SBOX:
1092 .long 0x70707000,0x70700070
1093 .long 0x82828200,0x2c2c002c
1094 .long 0x2c2c2c00,0xb3b300b3
1095 .long 0xececec00,0xc0c000c0
1096 .long 0xb3b3b300,0xe4e400e4
1097 .long 0x27272700,0x57570057
1098 .long 0xc0c0c000,0xeaea00ea
1099 .long 0xe5e5e500,0xaeae00ae
1100 .long 0xe4e4e400,0x23230023
1101 .long 0x85858500,0x6b6b006b
1102 .long 0x57575700,0x45450045
1103 .long 0x35353500,0xa5a500a5
1104 .long 0xeaeaea00,0xeded00ed
1105 .long 0x0c0c0c00,0x4f4f004f
1106 .long 0xaeaeae00,0x1d1d001d
1107 .long 0x41414100,0x92920092
1108 .long 0x23232300,0x86860086
1109 .long 0xefefef00,0xafaf00af
1110 .long 0x6b6b6b00,0x7c7c007c
1111 .long 0x93939300,0x1f1f001f
1112 .long 0x45454500,0x3e3e003e
1113 .long 0x19191900,0xdcdc00dc
1114 .long 0xa5a5a500,0x5e5e005e
1115 .long 0x21212100,0x0b0b000b
1116 .long 0xededed00,0xa6a600a6
1117 .long 0x0e0e0e00,0x39390039

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 18

1118 .long 0x4f4f4f00,0xd5d500d5
1119 .long 0x4e4e4e00,0x5d5d005d
1120 .long 0x1d1d1d00,0xd9d900d9
1121 .long 0x65656500,0x5a5a005a
1122 .long 0x92929200,0x51510051
1123 .long 0xbdbdbd00,0x6c6c006c
1124 .long 0x86868600,0x8b8b008b
1125 .long 0xb8b8b800,0x9a9a009a
1126 .long 0xafafaf00,0xfbfb00fb
1127 .long 0x8f8f8f00,0xb0b000b0
1128 .long 0x7c7c7c00,0x74740074
1129 .long 0xebebeb00,0x2b2b002b
1130 .long 0x1f1f1f00,0xf0f000f0
1131 .long 0xcecece00,0x84840084
1132 .long 0x3e3e3e00,0xdfdf00df
1133 .long 0x30303000,0xcbcb00cb
1134 .long 0xdcdcdc00,0x34340034
1135 .long 0x5f5f5f00,0x76760076
1136 .long 0x5e5e5e00,0x6d6d006d
1137 .long 0xc5c5c500,0xa9a900a9
1138 .long 0x0b0b0b00,0xd1d100d1
1139 .long 0x1a1a1a00,0x04040004
1140 .long 0xa6a6a600,0x14140014
1141 .long 0xe1e1e100,0x3a3a003a
1142 .long 0x39393900,0xdede00de
1143 .long 0xcacaca00,0x11110011
1144 .long 0xd5d5d500,0x32320032
1145 .long 0x47474700,0x9c9c009c
1146 .long 0x5d5d5d00,0x53530053
1147 .long 0x3d3d3d00,0xf2f200f2
1148 .long 0xd9d9d900,0xfefe00fe
1149 .long 0x01010100,0xcfcf00cf
1150 .long 0x5a5a5a00,0xc3c300c3
1151 .long 0xd6d6d600,0x7a7a007a
1152 .long 0x51515100,0x24240024
1153 .long 0x56565600,0xe8e800e8
1154 .long 0x6c6c6c00,0x60600060
1155 .long 0x4d4d4d00,0x69690069
1156 .long 0x8b8b8b00,0xaaaa00aa
1157 .long 0x0d0d0d00,0xa0a000a0
1158 .long 0x9a9a9a00,0xa1a100a1
1159 .long 0x66666600,0x62620062
1160 .long 0xfbfbfb00,0x54540054
1161 .long 0xcccccc00,0x1e1e001e
1162 .long 0xb0b0b000,0xe0e000e0
1163 .long 0x2d2d2d00,0x64640064
1164 .long 0x74747400,0x10100010
1165 .long 0x12121200,0x00000000
1166 .long 0x2b2b2b00,0xa3a300a3
1167 .long 0x20202000,0x75750075
1168 .long 0xf0f0f000,0x8a8a008a
1169 .long 0xb1b1b100,0xe6e600e6
1170 .long 0x84848400,0x09090009
1171 .long 0x99999900,0xdddd00dd
1172 .long 0xdfdfdf00,0x87870087
1173 .long 0x4c4c4c00,0x83830083
1174 .long 0xcbcbcb00,0xcdcd00cd
1175 .long 0xc2c2c200,0x90900090
1176 .long 0x34343400,0x73730073
1177 .long 0x7e7e7e00,0xf6f600f6
1178 .long 0x76767600,0x9d9d009d
1179 .long 0x05050500,0xbfbf00bf
1180 .long 0x6d6d6d00,0x52520052
1181 .long 0xb7b7b700,0xd8d800d8
1182 .long 0xa9a9a900,0xc8c800c8
1183 .long 0x31313100,0xc6c600c6

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 19

1184 .long 0xd1d1d100,0x81810081
1185 .long 0x17171700,0x6f6f006f
1186 .long 0x04040400,0x13130013
1187 .long 0xd7d7d700,0x63630063
1188 .long 0x14141400,0xe9e900e9
1189 .long 0x58585800,0xa7a700a7
1190 .long 0x3a3a3a00,0x9f9f009f
1191 .long 0x61616100,0xbcbc00bc
1192 .long 0xdedede00,0x29290029
1193 .long 0x1b1b1b00,0xf9f900f9
1194 .long 0x11111100,0x2f2f002f
1195 .long 0x1c1c1c00,0xb4b400b4
1196 .long 0x32323200,0x78780078
1197 .long 0x0f0f0f00,0x06060006
1198 .long 0x9c9c9c00,0xe7e700e7
1199 .long 0x16161600,0x71710071
1200 .long 0x53535300,0xd4d400d4
1201 .long 0x18181800,0xabab00ab
1202 .long 0xf2f2f200,0x88880088
1203 .long 0x22222200,0x8d8d008d
1204 .long 0xfefefe00,0x72720072
1205 .long 0x44444400,0xb9b900b9
1206 .long 0xcfcfcf00,0xf8f800f8
1207 .long 0xb2b2b200,0xacac00ac
1208 .long 0xc3c3c300,0x36360036
1209 .long 0xb5b5b500,0x2a2a002a
1210 .long 0x7a7a7a00,0x3c3c003c
1211 .long 0x91919100,0xf1f100f1
1212 .long 0x24242400,0x40400040
1213 .long 0x08080800,0xd3d300d3
1214 .long 0xe8e8e800,0xbbbb00bb
1215 .long 0xa8a8a800,0x43430043
1216 .long 0x60606000,0x15150015
1217 .long 0xfcfcfc00,0xadad00ad
1218 .long 0x69696900,0x77770077
1219 .long 0x50505000,0x80800080
1220 .long 0xaaaaaa00,0x82820082
1221 .long 0xd0d0d000,0xecec00ec
1222 .long 0xa0a0a000,0x27270027
1223 .long 0x7d7d7d00,0xe5e500e5
1224 .long 0xa1a1a100,0x85850085
1225 .long 0x89898900,0x35350035
1226 .long 0x62626200,0x0c0c000c
1227 .long 0x97979700,0x41410041
1228 .long 0x54545400,0xefef00ef
1229 .long 0x5b5b5b00,0x93930093
1230 .long 0x1e1e1e00,0x19190019
1231 .long 0x95959500,0x21210021
1232 .long 0xe0e0e000,0x0e0e000e
1233 .long 0xffffff00,0x4e4e004e
1234 .long 0x64646400,0x65650065
1235 .long 0xd2d2d200,0xbdbd00bd
1236 .long 0x10101000,0xb8b800b8
1237 .long 0xc4c4c400,0x8f8f008f
1238 .long 0x00000000,0xebeb00eb
1239 .long 0x48484800,0xcece00ce
1240 .long 0xa3a3a300,0x30300030
1241 .long 0xf7f7f700,0x5f5f005f
1242 .long 0x75757500,0xc5c500c5
1243 .long 0xdbdbdb00,0x1a1a001a
1244 .long 0x8a8a8a00,0xe1e100e1
1245 .long 0x03030300,0xcaca00ca
1246 .long 0xe6e6e600,0x47470047
1247 .long 0xdadada00,0x3d3d003d
1248 .long 0x09090900,0x01010001
1249 .long 0x3f3f3f00,0xd6d600d6

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 20

1250 .long 0xdddddd00,0x56560056
1251 .long 0x94949400,0x4d4d004d
1252 .long 0x87878700,0x0d0d000d
1253 .long 0x5c5c5c00,0x66660066
1254 .long 0x83838300,0xcccc00cc
1255 .long 0x02020200,0x2d2d002d
1256 .long 0xcdcdcd00,0x12120012
1257 .long 0x4a4a4a00,0x20200020
1258 .long 0x90909000,0xb1b100b1
1259 .long 0x33333300,0x99990099
1260 .long 0x73737300,0x4c4c004c
1261 .long 0x67676700,0xc2c200c2
1262 .long 0xf6f6f600,0x7e7e007e
1263 .long 0xf3f3f300,0x05050005
1264 .long 0x9d9d9d00,0xb7b700b7
1265 .long 0x7f7f7f00,0x31310031
1266 .long 0xbfbfbf00,0x17170017
1267 .long 0xe2e2e200,0xd7d700d7
1268 .long 0x52525200,0x58580058
1269 .long 0x9b9b9b00,0x61610061
1270 .long 0xd8d8d800,0x1b1b001b
1271 .long 0x26262600,0x1c1c001c
1272 .long 0xc8c8c800,0x0f0f000f
1273 .long 0x37373700,0x16160016
1274 .long 0xc6c6c600,0x18180018
1275 .long 0x3b3b3b00,0x22220022
1276 .long 0x81818100,0x44440044
1277 .long 0x96969600,0xb2b200b2
1278 .long 0x6f6f6f00,0xb5b500b5
1279 .long 0x4b4b4b00,0x91910091
1280 .long 0x13131300,0x08080008
1281 .long 0xbebebe00,0xa8a800a8
1282 .long 0x63636300,0xfcfc00fc
1283 .long 0x2e2e2e00,0x50500050
1284 .long 0xe9e9e900,0xd0d000d0
1285 .long 0x79797900,0x7d7d007d
1286 .long 0xa7a7a700,0x89890089
1287 .long 0x8c8c8c00,0x97970097
1288 .long 0x9f9f9f00,0x5b5b005b
1289 .long 0x6e6e6e00,0x95950095
1290 .long 0xbcbcbc00,0xffff00ff
1291 .long 0x8e8e8e00,0xd2d200d2
1292 .long 0x29292900,0xc4c400c4
1293 .long 0xf5f5f500,0x48480048
1294 .long 0xf9f9f900,0xf7f700f7
1295 .long 0xb6b6b600,0xdbdb00db
1296 .long 0x2f2f2f00,0x03030003
1297 .long 0xfdfdfd00,0xdada00da
1298 .long 0xb4b4b400,0x3f3f003f
1299 .long 0x59595900,0x94940094
1300 .long 0x78787800,0x5c5c005c
1301 .long 0x98989800,0x02020002
1302 .long 0x06060600,0x4a4a004a
1303 .long 0x6a6a6a00,0x33330033
1304 .long 0xe7e7e700,0x67670067
1305 .long 0x46464600,0xf3f300f3
1306 .long 0x71717100,0x7f7f007f
1307 .long 0xbababa00,0xe2e200e2
1308 .long 0xd4d4d400,0x9b9b009b
1309 .long 0x25252500,0x26260026
1310 .long 0xababab00,0x37370037
1311 .long 0x42424200,0x3b3b003b
1312 .long 0x88888800,0x96960096
1313 .long 0xa2a2a200,0x4b4b004b
1314 .long 0x8d8d8d00,0xbebe00be
1315 .long 0xfafafa00,0x2e2e002e

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 21

1316 .long 0x72727200,0x79790079
1317 .long 0x07070700,0x8c8c008c
1318 .long 0xb9b9b900,0x6e6e006e
1319 .long 0x55555500,0x8e8e008e
1320 .long 0xf8f8f800,0xf5f500f5
1321 .long 0xeeeeee00,0xb6b600b6
1322 .long 0xacacac00,0xfdfd00fd
1323 .long 0x0a0a0a00,0x59590059
1324 .long 0x36363600,0x98980098
1325 .long 0x49494900,0x6a6a006a
1326 .long 0x2a2a2a00,0x46460046
1327 .long 0x68686800,0xbaba00ba
1328 .long 0x3c3c3c00,0x25250025
1329 .long 0x38383800,0x42420042
1330 .long 0xf1f1f100,0xa2a200a2
1331 .long 0xa4a4a400,0xfafa00fa
1332 .long 0x40404000,0x07070007
1333 .long 0x28282800,0x55550055
1334 .long 0xd3d3d300,0xeeee00ee
1335 .long 0x7b7b7b00,0x0a0a000a
1336 .long 0xbbbbbb00,0x49490049
1337 .long 0xc9c9c900,0x68680068
1338 .long 0x43434300,0x38380038
1339 .long 0xc1c1c100,0xa4a400a4
1340 .long 0x15151500,0x28280028
1341 .long 0xe3e3e300,0x7b7b007b
1342 .long 0xadadad00,0xc9c900c9
1343 .long 0xf4f4f400,0xc1c100c1
1344 .long 0x77777700,0xe3e300e3
1345 .long 0xc7c7c700,0xf4f400f4
1346 .long 0x80808000,0xc7c700c7
1347 .long 0x9e9e9e00,0x9e9e009e
1348 .long 0x00e0e0e0,0x38003838
1349 .long 0x00050505,0x41004141
1350 .long 0x00585858,0x16001616
1351 .long 0x00d9d9d9,0x76007676
1352 .long 0x00676767,0xd900d9d9
1353 .long 0x004e4e4e,0x93009393
1354 .long 0x00818181,0x60006060
1355 .long 0x00cbcbcb,0xf200f2f2
1356 .long 0x00c9c9c9,0x72007272
1357 .long 0x000b0b0b,0xc200c2c2
1358 .long 0x00aeaeae,0xab00abab
1359 .long 0x006a6a6a,0x9a009a9a
1360 .long 0x00d5d5d5,0x75007575
1361 .long 0x00181818,0x06000606
1362 .long 0x005d5d5d,0x57005757
1363 .long 0x00828282,0xa000a0a0
1364 .long 0x00464646,0x91009191
1365 .long 0x00dfdfdf,0xf700f7f7
1366 .long 0x00d6d6d6,0xb500b5b5
1367 .long 0x00272727,0xc900c9c9
1368 .long 0x008a8a8a,0xa200a2a2
1369 .long 0x00323232,0x8c008c8c
1370 .long 0x004b4b4b,0xd200d2d2
1371 .long 0x00424242,0x90009090
1372 .long 0x00dbdbdb,0xf600f6f6
1373 .long 0x001c1c1c,0x07000707
1374 .long 0x009e9e9e,0xa700a7a7
1375 .long 0x009c9c9c,0x27002727
1376 .long 0x003a3a3a,0x8e008e8e
1377 .long 0x00cacaca,0xb200b2b2
1378 .long 0x00252525,0x49004949
1379 .long 0x007b7b7b,0xde00dede
1380 .long 0x000d0d0d,0x43004343
1381 .long 0x00717171,0x5c005c5c

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 22

1382 .long 0x005f5f5f,0xd700d7d7
1383 .long 0x001f1f1f,0xc700c7c7
1384 .long 0x00f8f8f8,0x3e003e3e
1385 .long 0x00d7d7d7,0xf500f5f5
1386 .long 0x003e3e3e,0x8f008f8f
1387 .long 0x009d9d9d,0x67006767
1388 .long 0x007c7c7c,0x1f001f1f
1389 .long 0x00606060,0x18001818
1390 .long 0x00b9b9b9,0x6e006e6e
1391 .long 0x00bebebe,0xaf00afaf
1392 .long 0x00bcbcbc,0x2f002f2f
1393 .long 0x008b8b8b,0xe200e2e2
1394 .long 0x00161616,0x85008585
1395 .long 0x00343434,0x0d000d0d
1396 .long 0x004d4d4d,0x53005353
1397 .long 0x00c3c3c3,0xf000f0f0
1398 .long 0x00727272,0x9c009c9c
1399 .long 0x00959595,0x65006565
1400 .long 0x00ababab,0xea00eaea
1401 .long 0x008e8e8e,0xa300a3a3
1402 .long 0x00bababa,0xae00aeae
1403 .long 0x007a7a7a,0x9e009e9e
1404 .long 0x00b3b3b3,0xec00ecec
1405 .long 0x00020202,0x80008080
1406 .long 0x00b4b4b4,0x2d002d2d
1407 .long 0x00adadad,0x6b006b6b
1408 .long 0x00a2a2a2,0xa800a8a8
1409 .long 0x00acacac,0x2b002b2b
1410 .long 0x00d8d8d8,0x36003636
1411 .long 0x009a9a9a,0xa600a6a6
1412 .long 0x00171717,0xc500c5c5
1413 .long 0x001a1a1a,0x86008686
1414 .long 0x00353535,0x4d004d4d
1415 .long 0x00cccccc,0x33003333
1416 .long 0x00f7f7f7,0xfd00fdfd
1417 .long 0x00999999,0x66006666
1418 .long 0x00616161,0x58005858
1419 .long 0x005a5a5a,0x96009696
1420 .long 0x00e8e8e8,0x3a003a3a
1421 .long 0x00242424,0x09000909
1422 .long 0x00565656,0x95009595
1423 .long 0x00404040,0x10001010
1424 .long 0x00e1e1e1,0x78007878
1425 .long 0x00636363,0xd800d8d8
1426 .long 0x00090909,0x42004242
1427 .long 0x00333333,0xcc00cccc
1428 .long 0x00bfbfbf,0xef00efef
1429 .long 0x00989898,0x26002626
1430 .long 0x00979797,0xe500e5e5
1431 .long 0x00858585,0x61006161
1432 .long 0x00686868,0x1a001a1a
1433 .long 0x00fcfcfc,0x3f003f3f
1434 .long 0x00ececec,0x3b003b3b
1435 .long 0x000a0a0a,0x82008282
1436 .long 0x00dadada,0xb600b6b6
1437 .long 0x006f6f6f,0xdb00dbdb
1438 .long 0x00535353,0xd400d4d4
1439 .long 0x00626262,0x98009898
1440 .long 0x00a3a3a3,0xe800e8e8
1441 .long 0x002e2e2e,0x8b008b8b
1442 .long 0x00080808,0x02000202
1443 .long 0x00afafaf,0xeb00ebeb
1444 .long 0x00282828,0x0a000a0a
1445 .long 0x00b0b0b0,0x2c002c2c
1446 .long 0x00747474,0x1d001d1d
1447 .long 0x00c2c2c2,0xb000b0b0

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 23

1448 .long 0x00bdbdbd,0x6f006f6f
1449 .long 0x00363636,0x8d008d8d
1450 .long 0x00222222,0x88008888
1451 .long 0x00383838,0x0e000e0e
1452 .long 0x00646464,0x19001919
1453 .long 0x001e1e1e,0x87008787
1454 .long 0x00393939,0x4e004e4e
1455 .long 0x002c2c2c,0x0b000b0b
1456 .long 0x00a6a6a6,0xa900a9a9
1457 .long 0x00303030,0x0c000c0c
1458 .long 0x00e5e5e5,0x79007979
1459 .long 0x00444444,0x11001111
1460 .long 0x00fdfdfd,0x7f007f7f
1461 .long 0x00888888,0x22002222
1462 .long 0x009f9f9f,0xe700e7e7
1463 .long 0x00656565,0x59005959
1464 .long 0x00878787,0xe100e1e1
1465 .long 0x006b6b6b,0xda00dada
1466 .long 0x00f4f4f4,0x3d003d3d
1467 .long 0x00232323,0xc800c8c8
1468 .long 0x00484848,0x12001212
1469 .long 0x00101010,0x04000404
1470 .long 0x00d1d1d1,0x74007474
1471 .long 0x00515151,0x54005454
1472 .long 0x00c0c0c0,0x30003030
1473 .long 0x00f9f9f9,0x7e007e7e
1474 .long 0x00d2d2d2,0xb400b4b4
1475 .long 0x00a0a0a0,0x28002828
1476 .long 0x00555555,0x55005555
1477 .long 0x00a1a1a1,0x68006868
1478 .long 0x00414141,0x50005050
1479 .long 0x00fafafa,0xbe00bebe
1480 .long 0x00434343,0xd000d0d0
1481 .long 0x00131313,0xc400c4c4
1482 .long 0x00c4c4c4,0x31003131
1483 .long 0x002f2f2f,0xcb00cbcb
1484 .long 0x00a8a8a8,0x2a002a2a
1485 .long 0x00b6b6b6,0xad00adad
1486 .long 0x003c3c3c,0x0f000f0f
1487 .long 0x002b2b2b,0xca00caca
1488 .long 0x00c1c1c1,0x70007070
1489 .long 0x00ffffff,0xff00ffff
1490 .long 0x00c8c8c8,0x32003232
1491 .long 0x00a5a5a5,0x69006969
1492 .long 0x00202020,0x08000808
1493 .long 0x00898989,0x62006262
1494 .long 0x00000000,0x00000000
1495 .long 0x00909090,0x24002424
1496 .long 0x00474747,0xd100d1d1
1497 .long 0x00efefef,0xfb00fbfb
1498 .long 0x00eaeaea,0xba00baba
1499 .long 0x00b7b7b7,0xed00eded
1500 .long 0x00151515,0x45004545
1501 .long 0x00060606,0x81008181
1502 .long 0x00cdcdcd,0x73007373
1503 .long 0x00b5b5b5,0x6d006d6d
1504 .long 0x00121212,0x84008484
1505 .long 0x007e7e7e,0x9f009f9f
1506 .long 0x00bbbbbb,0xee00eeee
1507 .long 0x00292929,0x4a004a4a
1508 .long 0x000f0f0f,0xc300c3c3
1509 .long 0x00b8b8b8,0x2e002e2e
1510 .long 0x00070707,0xc100c1c1
1511 .long 0x00040404,0x01000101
1512 .long 0x009b9b9b,0xe600e6e6
1513 .long 0x00949494,0x25002525

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 24

1514 .long 0x00212121,0x48004848
1515 .long 0x00666666,0x99009999
1516 .long 0x00e6e6e6,0xb900b9b9
1517 .long 0x00cecece,0xb300b3b3
1518 .long 0x00ededed,0x7b007b7b
1519 .long 0x00e7e7e7,0xf900f9f9
1520 .long 0x003b3b3b,0xce00cece
1521 .long 0x00fefefe,0xbf00bfbf
1522 .long 0x007f7f7f,0xdf00dfdf
1523 .long 0x00c5c5c5,0x71007171
1524 .long 0x00a4a4a4,0x29002929
1525 .long 0x00373737,0xcd00cdcd
1526 .long 0x00b1b1b1,0x6c006c6c
1527 .long 0x004c4c4c,0x13001313
1528 .long 0x00919191,0x64006464
1529 .long 0x006e6e6e,0x9b009b9b
1530 .long 0x008d8d8d,0x63006363
1531 .long 0x00767676,0x9d009d9d
1532 .long 0x00030303,0xc000c0c0
1533 .long 0x002d2d2d,0x4b004b4b
1534 .long 0x00dedede,0xb700b7b7
1535 .long 0x00969696,0xa500a5a5
1536 .long 0x00262626,0x89008989
1537 .long 0x007d7d7d,0x5f005f5f
1538 .long 0x00c6c6c6,0xb100b1b1
1539 .long 0x005c5c5c,0x17001717
1540 .long 0x00d3d3d3,0xf400f4f4
1541 .long 0x00f2f2f2,0xbc00bcbc
1542 .long 0x004f4f4f,0xd300d3d3
1543 .long 0x00191919,0x46004646
1544 .long 0x003f3f3f,0xcf00cfcf
1545 .long 0x00dcdcdc,0x37003737
1546 .long 0x00797979,0x5e005e5e
1547 .long 0x001d1d1d,0x47004747
1548 .long 0x00525252,0x94009494
1549 .long 0x00ebebeb,0xfa00fafa
1550 .long 0x00f3f3f3,0xfc00fcfc
1551 .long 0x006d6d6d,0x5b005b5b
1552 .long 0x005e5e5e,0x97009797
1553 .long 0x00fbfbfb,0xfe00fefe
1554 .long 0x00696969,0x5a005a5a
1555 .long 0x00b2b2b2,0xac00acac
1556 .long 0x00f0f0f0,0x3c003c3c
1557 .long 0x00313131,0x4c004c4c
1558 .long 0x000c0c0c,0x03000303
1559 .long 0x00d4d4d4,0x35003535
1560 .long 0x00cfcfcf,0xf300f3f3
1561 .long 0x008c8c8c,0x23002323
1562 .long 0x00e2e2e2,0xb800b8b8
1563 .long 0x00757575,0x5d005d5d
1564 .long 0x00a9a9a9,0x6a006a6a
1565 .long 0x004a4a4a,0x92009292
1566 .long 0x00575757,0xd500d5d5
1567 .long 0x00848484,0x21002121
1568 .long 0x00111111,0x44004444
1569 .long 0x00454545,0x51005151
1570 .long 0x001b1b1b,0xc600c6c6
1571 .long 0x00f5f5f5,0x7d007d7d
1572 .long 0x00e4e4e4,0x39003939
1573 .long 0x000e0e0e,0x83008383
1574 .long 0x00737373,0xdc00dcdc
1575 .long 0x00aaaaaa,0xaa00aaaa
1576 .long 0x00f1f1f1,0x7c007c7c
1577 .long 0x00dddddd,0x77007777
1578 .long 0x00595959,0x56005656
1579 .long 0x00141414,0x05000505

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 25

1580 .long 0x006c6c6c,0x1b001b1b
1581 .long 0x00929292,0xa400a4a4
1582 .long 0x00545454,0x15001515
1583 .long 0x00d0d0d0,0x34003434
1584 .long 0x00787878,0x1e001e1e
1585 .long 0x00707070,0x1c001c1c
1586 .long 0x00e3e3e3,0xf800f8f8
1587 .long 0x00494949,0x52005252
1588 .long 0x00808080,0x20002020
1589 .long 0x00505050,0x14001414
1590 .long 0x00a7a7a7,0xe900e9e9
1591 .long 0x00f6f6f6,0xbd00bdbd
1592 .long 0x00777777,0xdd00dddd
1593 .long 0x00939393,0xe400e4e4
1594 .long 0x00868686,0xa100a1a1
1595 .long 0x00838383,0xe000e0e0
1596 .long 0x002a2a2a,0x8a008a8a
1597 .long 0x00c7c7c7,0xf100f1f1
1598 .long 0x005b5b5b,0xd600d6d6
1599 .long 0x00e9e9e9,0x7a007a7a
1600 .long 0x00eeeeee,0xbb00bbbb
1601 .long 0x008f8f8f,0xe300e3e3
1602 .long 0x00010101,0x40004040
1603 .long 0x003d3d3d,0x4f004f4f
1604 .globl sunw_Camellia_cbc_encrypt
1605 .type sunw_Camellia_cbc_encrypt,@function
1606 .align 16
1607 sunw_Camellia_cbc_encrypt:
1608 cmpq $0,%rdx
1609 je .Lcbc_abort
1610 pushq %rbx
1611 pushq %rbp
1612 pushq %r12
1613 pushq %r13
1614 pushq %r14
1615 pushq %r15
1616 .Lcbc_prologue:

1618 movq %rsp,%rbp
1619 subq $64,%rsp
1620 andq $-64,%rsp

1624 leaq -64-63(%rcx),%r10
1625 subq %rsp,%r10
1626 negq %r10
1627 andq $960,%r10
1628 subq %r10,%rsp

1631 movq %rdi,%r12
1632 movq %rsi,%r13
1633 movq %r8,%rbx
1634 movq %rcx,%r14
1635 movl 272(%rcx),%r15d

1637 movq %r8,40(%rsp)
1638 movq %rbp,48(%rsp)

1640 .Lcbc_body:
1641 leaq .LCamellia_SBOX(%rip),%rbp

1643 movl $32,%ecx
1644 .align 4
1645 .Lcbc_prefetch_sbox:

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 26

1646 movq 0(%rbp),%rax
1647 movq 32(%rbp),%rsi
1648 movq 64(%rbp),%rdi
1649 movq 96(%rbp),%r11
1650 leaq 128(%rbp),%rbp
1651 loop .Lcbc_prefetch_sbox
1652 subq $4096,%rbp
1653 shlq $6,%r15
1654 movq %rdx,%rcx
1655 leaq (%r14,%r15,1),%r15

1657 cmpl $0,%r9d
1658 je .LCBC_DECRYPT

1660 andq $-16,%rdx
1661 andq $15,%rcx
1662 leaq (%r12,%rdx,1),%rdx
1663 movq %r14,0(%rsp)
1664 movq %rdx,8(%rsp)
1665 movq %rcx,16(%rsp)

1667 cmpq %r12,%rdx
1668 movl 0(%rbx),%r8d
1669 movl 4(%rbx),%r9d
1670 movl 8(%rbx),%r10d
1671 movl 12(%rbx),%r11d
1672 je .Lcbc_enc_tail
1673 jmp .Lcbc_eloop

1675 .align 16
1676 .Lcbc_eloop:
1677 xorl 0(%r12),%r8d
1678 xorl 4(%r12),%r9d
1679 xorl 8(%r12),%r10d
1680 bswapl %r8d
1681 xorl 12(%r12),%r11d
1682 bswapl %r9d
1683 bswapl %r10d
1684 bswapl %r11d

1686 call _x86_64_Camellia_encrypt

1688 movq 0(%rsp),%r14
1689 bswapl %r8d
1690 movq 8(%rsp),%rdx
1691 bswapl %r9d
1692 movq 16(%rsp),%rcx
1693 bswapl %r10d
1694 movl %r8d,0(%r13)
1695 bswapl %r11d
1696 movl %r9d,4(%r13)
1697 movl %r10d,8(%r13)
1698 leaq 16(%r12),%r12
1699 movl %r11d,12(%r13)
1700 cmpq %rdx,%r12
1701 leaq 16(%r13),%r13
1702 jne .Lcbc_eloop

1704 cmpq $0,%rcx
1705 jne .Lcbc_enc_tail

1707 movq 40(%rsp),%r13
1708 movl %r8d,0(%r13)
1709 movl %r9d,4(%r13)
1710 movl %r10d,8(%r13)
1711 movl %r11d,12(%r13)

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 27

1712 jmp .Lcbc_done

1714 .align 16
1715 .Lcbc_enc_tail:
1716 xorq %rax,%rax
1717 movq %rax,0+24(%rsp)
1718 movq %rax,8+24(%rsp)
1719 movq %rax,16(%rsp)

1721 .Lcbc_enc_pushf:
1722 pushfq
1723 cld
1724 movq %r12,%rsi
1725 leaq 8+24(%rsp),%rdi
1726 .long 0x9066A4F3
1727 popfq
1728 .Lcbc_enc_popf:

1730 leaq 24(%rsp),%r12
1731 leaq 16+24(%rsp),%rax
1732 movq %rax,8(%rsp)
1733 jmp .Lcbc_eloop

1735 .align 16
1736 .LCBC_DECRYPT:
1737 xchgq %r14,%r15
1738 addq $15,%rdx
1739 andq $15,%rcx
1740 andq $-16,%rdx
1741 movq %r14,0(%rsp)
1742 leaq (%r12,%rdx,1),%rdx
1743 movq %rdx,8(%rsp)
1744 movq %rcx,16(%rsp)

1746 movq (%rbx),%rax
1747 movq 8(%rbx),%rbx
1748 jmp .Lcbc_dloop
1749 .align 16
1750 .Lcbc_dloop:
1751 movl 0(%r12),%r8d
1752 movl 4(%r12),%r9d
1753 movl 8(%r12),%r10d
1754 bswapl %r8d
1755 movl 12(%r12),%r11d
1756 bswapl %r9d
1757 movq %rax,0+24(%rsp)
1758 bswapl %r10d
1759 movq %rbx,8+24(%rsp)
1760 bswapl %r11d

1762 call _x86_64_Camellia_decrypt

1764 movq 0(%rsp),%r14
1765 movq 8(%rsp),%rdx
1766 movq 16(%rsp),%rcx

1768 bswapl %r8d
1769 movq (%r12),%rax
1770 bswapl %r9d
1771 movq 8(%r12),%rbx
1772 bswapl %r10d
1773 xorl 0+24(%rsp),%r8d
1774 bswapl %r11d
1775 xorl 4+24(%rsp),%r9d
1776 xorl 8+24(%rsp),%r10d
1777 leaq 16(%r12),%r12

new/usr/src/lib/openssl/libsunw_crypto/i386/cmll-x86_64.s 28

1778 xorl 12+24(%rsp),%r11d
1779 cmpq %rdx,%r12
1780 je .Lcbc_ddone

1782 movl %r8d,0(%r13)
1783 movl %r9d,4(%r13)
1784 movl %r10d,8(%r13)
1785 movl %r11d,12(%r13)

1787 leaq 16(%r13),%r13
1788 jmp .Lcbc_dloop

1790 .align 16
1791 .Lcbc_ddone:
1792 movq 40(%rsp),%rdx
1793 cmpq $0,%rcx
1794 jne .Lcbc_dec_tail

1796 movl %r8d,0(%r13)
1797 movl %r9d,4(%r13)
1798 movl %r10d,8(%r13)
1799 movl %r11d,12(%r13)

1801 movq %rax,(%rdx)
1802 movq %rbx,8(%rdx)
1803 jmp .Lcbc_done
1804 .align 16
1805 .Lcbc_dec_tail:
1806 movl %r8d,0+24(%rsp)
1807 movl %r9d,4+24(%rsp)
1808 movl %r10d,8+24(%rsp)
1809 movl %r11d,12+24(%rsp)

1811 .Lcbc_dec_pushf:
1812 pushfq
1813 cld
1814 leaq 8+24(%rsp),%rsi
1815 leaq (%r13),%rdi
1816 .long 0x9066A4F3
1817 popfq
1818 .Lcbc_dec_popf:

1820 movq %rax,(%rdx)
1821 movq %rbx,8(%rdx)
1822 jmp .Lcbc_done

1824 .align 16
1825 .Lcbc_done:
1826 movq 48(%rsp),%rcx
1827 movq 0(%rcx),%r15
1828 movq 8(%rcx),%r14
1829 movq 16(%rcx),%r13
1830 movq 24(%rcx),%r12
1831 movq 32(%rcx),%rbp
1832 movq 40(%rcx),%rbx
1833 leaq 48(%rcx),%rsp
1834 .Lcbc_abort:
1835 .byte 0xf3,0xc3
1836 .size sunw_Camellia_cbc_encrypt,.-sunw_Camellia_cbc_encrypt

1838 .byte 67,97,109,101,108,108,105,97,32,102,111,114,32,120,56,54,95,54,52,32,98,

new/usr/src/lib/openssl/libsunw_crypto/krb5/krb5_asn.c 1

**
 6206 Fri May 30 18:31:55 2014
new/usr/src/lib/openssl/libsunw_crypto/krb5/krb5_asn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* krb5_asn.c */
2 /* Written by Vern Staats <staatsvr@asc.hpc.mil> for the OpenSSL project,
3 ** using ocsp/{*.h,*asn*.c} as a starting point
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 #include <openssl/asn1.h>
59 #include <openssl/asn1t.h>
60 #include <openssl/krb5_asn.h>

new/usr/src/lib/openssl/libsunw_crypto/krb5/krb5_asn.c 2

63 ASN1_SEQUENCE(KRB5_ENCDATA) = {
64 ASN1_EXP(KRB5_ENCDATA, etype, ASN1_INTEGER, 0),
65 ASN1_EXP_OPT(KRB5_ENCDATA, kvno, ASN1_INTEGER, 1),
66 ASN1_EXP(KRB5_ENCDATA, cipher, ASN1_OCTET_STRING,2)
67 } ASN1_SEQUENCE_END(KRB5_ENCDATA)

69 IMPLEMENT_ASN1_FUNCTIONS(KRB5_ENCDATA)

72 ASN1_SEQUENCE(KRB5_PRINCNAME) = {
73 ASN1_EXP(KRB5_PRINCNAME, nametype, ASN1_INTEGER, 0),
74 ASN1_EXP_SEQUENCE_OF(KRB5_PRINCNAME, namestring, ASN1_GENERALSTRING, 1)
75 } ASN1_SEQUENCE_END(KRB5_PRINCNAME)

77 IMPLEMENT_ASN1_FUNCTIONS(KRB5_PRINCNAME)

80 /* [APPLICATION 1] = 0x61 */
81 ASN1_SEQUENCE(KRB5_TKTBODY) = {
82 ASN1_EXP(KRB5_TKTBODY, tktvno, ASN1_INTEGER, 0),
83 ASN1_EXP(KRB5_TKTBODY, realm, ASN1_GENERALSTRING, 1),
84 ASN1_EXP(KRB5_TKTBODY, sname, KRB5_PRINCNAME, 2),
85 ASN1_EXP(KRB5_TKTBODY, encdata, KRB5_ENCDATA, 3)
86 } ASN1_SEQUENCE_END(KRB5_TKTBODY)

88 IMPLEMENT_ASN1_FUNCTIONS(KRB5_TKTBODY)

91 ASN1_ITEM_TEMPLATE(KRB5_TICKET) =
92 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_EXPTAG|ASN1_TFLG_APPLICATION, 1,
93 KRB5_TICKET, KRB5_TKTBODY)
94 ASN1_ITEM_TEMPLATE_END(KRB5_TICKET)

96 IMPLEMENT_ASN1_FUNCTIONS(KRB5_TICKET)

99 /* [APPLICATION 14] = 0x6e */
100 ASN1_SEQUENCE(KRB5_APREQBODY) = {
101 ASN1_EXP(KRB5_APREQBODY, pvno, ASN1_INTEGER, 0),
102 ASN1_EXP(KRB5_APREQBODY, msgtype, ASN1_INTEGER, 1),
103 ASN1_EXP(KRB5_APREQBODY, apoptions, ASN1_BIT_STRING, 2),
104 ASN1_EXP(KRB5_APREQBODY, ticket, KRB5_TICKET, 3),
105 ASN1_EXP(KRB5_APREQBODY, authenticator, KRB5_ENCDATA, 4),
106 } ASN1_SEQUENCE_END(KRB5_APREQBODY)

108 IMPLEMENT_ASN1_FUNCTIONS(KRB5_APREQBODY)

110 ASN1_ITEM_TEMPLATE(KRB5_APREQ) =
111 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_EXPTAG|ASN1_TFLG_APPLICATION, 14,
112 KRB5_APREQ, KRB5_APREQBODY)
113 ASN1_ITEM_TEMPLATE_END(KRB5_APREQ)

115 IMPLEMENT_ASN1_FUNCTIONS(KRB5_APREQ)

118 /* Authenticator stuff */

120 ASN1_SEQUENCE(KRB5_CHECKSUM) = {
121 ASN1_EXP(KRB5_CHECKSUM, ctype, ASN1_INTEGER, 0),
122 ASN1_EXP(KRB5_CHECKSUM, checksum, ASN1_OCTET_STRING,1)
123 } ASN1_SEQUENCE_END(KRB5_CHECKSUM)

125 IMPLEMENT_ASN1_FUNCTIONS(KRB5_CHECKSUM)

new/usr/src/lib/openssl/libsunw_crypto/krb5/krb5_asn.c 3

128 ASN1_SEQUENCE(KRB5_ENCKEY) = {
129 ASN1_EXP(KRB5_ENCKEY, ktype, ASN1_INTEGER, 0),
130 ASN1_EXP(KRB5_ENCKEY, keyvalue, ASN1_OCTET_STRING,1)
131 } ASN1_SEQUENCE_END(KRB5_ENCKEY)

133 IMPLEMENT_ASN1_FUNCTIONS(KRB5_ENCKEY)

136 /* SEQ OF SEQ; see ASN1_EXP_SEQUENCE_OF_OPT() below */
137 ASN1_SEQUENCE(KRB5_AUTHDATA) = {
138 ASN1_EXP(KRB5_AUTHDATA, adtype, ASN1_INTEGER, 0),
139 ASN1_EXP(KRB5_AUTHDATA, addata, ASN1_OCTET_STRING,1)
140 } ASN1_SEQUENCE_END(KRB5_AUTHDATA)

142 IMPLEMENT_ASN1_FUNCTIONS(KRB5_AUTHDATA)

145 /* [APPLICATION 2] = 0x62 */
146 ASN1_SEQUENCE(KRB5_AUTHENTBODY) = {
147 ASN1_EXP(KRB5_AUTHENTBODY, avno, ASN1_INTEGER, 0),
148 ASN1_EXP(KRB5_AUTHENTBODY, crealm, ASN1_GENERALSTRING, 1),
149 ASN1_EXP(KRB5_AUTHENTBODY, cname, KRB5_PRINCNAME, 2),
150 ASN1_EXP_OPT(KRB5_AUTHENTBODY, cksum, KRB5_CHECKSUM, 3),
151 ASN1_EXP(KRB5_AUTHENTBODY, cusec, ASN1_INTEGER, 4),
152 ASN1_EXP(KRB5_AUTHENTBODY, ctime, ASN1_GENERALIZEDTIME, 5),
153 ASN1_EXP_OPT(KRB5_AUTHENTBODY, subkey, KRB5_ENCKEY, 6),
154 ASN1_EXP_OPT(KRB5_AUTHENTBODY, seqnum, ASN1_INTEGER, 7),
155 ASN1_EXP_SEQUENCE_OF_OPT
156 (KRB5_AUTHENTBODY, authorization, KRB5_AUTHDATA, 8),
157 } ASN1_SEQUENCE_END(KRB5_AUTHENTBODY)

159 IMPLEMENT_ASN1_FUNCTIONS(KRB5_AUTHENTBODY)

161 ASN1_ITEM_TEMPLATE(KRB5_AUTHENT) =
162 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_EXPTAG|ASN1_TFLG_APPLICATION, 2,
163 KRB5_AUTHENT, KRB5_AUTHENTBODY)
164 ASN1_ITEM_TEMPLATE_END(KRB5_AUTHENT)

166 IMPLEMENT_ASN1_FUNCTIONS(KRB5_AUTHENT)

new/usr/src/lib/openssl/libsunw_crypto/lhash/lh_stats.c 1

**
 8601 Fri May 30 18:31:55 2014
new/usr/src/lib/openssl/libsunw_crypto/lhash/lh_stats.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/lhash/lh_stats.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <string.h>
61 #include <stdlib.h>

new/usr/src/lib/openssl/libsunw_crypto/lhash/lh_stats.c 2

62 /* If you wish to build this outside of SSLeay, remove the following lines
63 * and things should work as expected */
64 #include "cryptlib.h"

66 #ifndef OPENSSL_NO_BIO
67 #include <openssl/bio.h>
68 #endif
69 #include <openssl/lhash.h>

71 #ifdef OPENSSL_NO_BIO

73 void lh_stats(LHASH *lh, FILE *out)
74 {
75 fprintf(out,"num_items = %lu\n",lh->num_items);
76 fprintf(out,"num_nodes = %u\n",lh->num_nodes);
77 fprintf(out,"num_alloc_nodes = %u\n",lh->num_alloc_nodes);
78 fprintf(out,"num_expands = %lu\n",lh->num_expands);
79 fprintf(out,"num_expand_reallocs = %lu\n",lh->num_expand_reallocs);
80 fprintf(out,"num_contracts = %lu\n",lh->num_contracts);
81 fprintf(out,"num_contract_reallocs = %lu\n",lh->num_contract_reallocs);
82 fprintf(out,"num_hash_calls = %lu\n",lh->num_hash_calls);
83 fprintf(out,"num_comp_calls = %lu\n",lh->num_comp_calls);
84 fprintf(out,"num_insert = %lu\n",lh->num_insert);
85 fprintf(out,"num_replace = %lu\n",lh->num_replace);
86 fprintf(out,"num_delete = %lu\n",lh->num_delete);
87 fprintf(out,"num_no_delete = %lu\n",lh->num_no_delete);
88 fprintf(out,"num_retrieve = %lu\n",lh->num_retrieve);
89 fprintf(out,"num_retrieve_miss = %lu\n",lh->num_retrieve_miss);
90 fprintf(out,"num_hash_comps = %lu\n",lh->num_hash_comps);
91 #if 0
92 fprintf(out,"p = %u\n",lh->p);
93 fprintf(out,"pmax = %u\n",lh->pmax);
94 fprintf(out,"up_load = %lu\n",lh->up_load);
95 fprintf(out,"down_load = %lu\n",lh->down_load);
96 #endif
97 }

99 void lh_node_stats(LHASH *lh, FILE *out)
100 {
101 LHASH_NODE *n;
102 unsigned int i,num;

104 for (i=0; i<lh->num_nodes; i++)
105 {
106 for (n=lh->b[i],num=0; n != NULL; n=n->next)
107 num++;
108 fprintf(out,"node %6u -> %3u\n",i,num);
109 }
110 }

112 void lh_node_usage_stats(LHASH *lh, FILE *out)
113 {
114 LHASH_NODE *n;
115 unsigned long num;
116 unsigned int i;
117 unsigned long total=0,n_used=0;

119 for (i=0; i<lh->num_nodes; i++)
120 {
121 for (n=lh->b[i],num=0; n != NULL; n=n->next)
122 num++;
123 if (num != 0)
124 {
125 n_used++;
126 total+=num;
127 }

new/usr/src/lib/openssl/libsunw_crypto/lhash/lh_stats.c 3

128 }
129 fprintf(out,"%lu nodes used out of %u\n",n_used,lh->num_nodes);
130 fprintf(out,"%lu items\n",total);
131 if (n_used == 0) return;
132 fprintf(out,"load %d.%02d actual load %d.%02d\n",
133 (int)(total/lh->num_nodes),
134 (int)((total%lh->num_nodes)*100/lh->num_nodes),
135 (int)(total/n_used),
136 (int)((total%n_used)*100/n_used));
137 }

139 #else

141 #ifndef OPENSSL_NO_FP_API
142 void lh_stats(const _LHASH *lh, FILE *fp)
143 {
144 BIO *bp;

146 bp=BIO_new(BIO_s_file());
147 if (bp == NULL) goto end;
148 BIO_set_fp(bp,fp,BIO_NOCLOSE);
149 lh_stats_bio(lh,bp);
150 BIO_free(bp);
151 end:;
152 }

154 void lh_node_stats(const _LHASH *lh, FILE *fp)
155 {
156 BIO *bp;

158 bp=BIO_new(BIO_s_file());
159 if (bp == NULL) goto end;
160 BIO_set_fp(bp,fp,BIO_NOCLOSE);
161 lh_node_stats_bio(lh,bp);
162 BIO_free(bp);
163 end:;
164 }

166 void lh_node_usage_stats(const _LHASH *lh, FILE *fp)
167 {
168 BIO *bp;

170 bp=BIO_new(BIO_s_file());
171 if (bp == NULL) goto end;
172 BIO_set_fp(bp,fp,BIO_NOCLOSE);
173 lh_node_usage_stats_bio(lh,bp);
174 BIO_free(bp);
175 end:;
176 }

178 #endif

180 void lh_stats_bio(const _LHASH *lh, BIO *out)
181 {
182 BIO_printf(out,"num_items = %lu\n",lh->num_items);
183 BIO_printf(out,"num_nodes = %u\n",lh->num_nodes);
184 BIO_printf(out,"num_alloc_nodes = %u\n",lh->num_alloc_nodes);
185 BIO_printf(out,"num_expands = %lu\n",lh->num_expands);
186 BIO_printf(out,"num_expand_reallocs = %lu\n",
187 lh->num_expand_reallocs);
188 BIO_printf(out,"num_contracts = %lu\n",lh->num_contracts);
189 BIO_printf(out,"num_contract_reallocs = %lu\n",
190 lh->num_contract_reallocs);
191 BIO_printf(out,"num_hash_calls = %lu\n",lh->num_hash_calls);
192 BIO_printf(out,"num_comp_calls = %lu\n",lh->num_comp_calls);
193 BIO_printf(out,"num_insert = %lu\n",lh->num_insert);

new/usr/src/lib/openssl/libsunw_crypto/lhash/lh_stats.c 4

194 BIO_printf(out,"num_replace = %lu\n",lh->num_replace);
195 BIO_printf(out,"num_delete = %lu\n",lh->num_delete);
196 BIO_printf(out,"num_no_delete = %lu\n",lh->num_no_delete);
197 BIO_printf(out,"num_retrieve = %lu\n",lh->num_retrieve);
198 BIO_printf(out,"num_retrieve_miss = %lu\n",lh->num_retrieve_miss);
199 BIO_printf(out,"num_hash_comps = %lu\n",lh->num_hash_comps);
200 #if 0
201 BIO_printf(out,"p = %u\n",lh->p);
202 BIO_printf(out,"pmax = %u\n",lh->pmax);
203 BIO_printf(out,"up_load = %lu\n",lh->up_load);
204 BIO_printf(out,"down_load = %lu\n",lh->down_load);
205 #endif
206 }

208 void lh_node_stats_bio(const _LHASH *lh, BIO *out)
209 {
210 LHASH_NODE *n;
211 unsigned int i,num;

213 for (i=0; i<lh->num_nodes; i++)
214 {
215 for (n=lh->b[i],num=0; n != NULL; n=n->next)
216 num++;
217 BIO_printf(out,"node %6u -> %3u\n",i,num);
218 }
219 }

221 void lh_node_usage_stats_bio(const _LHASH *lh, BIO *out)
222 {
223 LHASH_NODE *n;
224 unsigned long num;
225 unsigned int i;
226 unsigned long total=0,n_used=0;

228 for (i=0; i<lh->num_nodes; i++)
229 {
230 for (n=lh->b[i],num=0; n != NULL; n=n->next)
231 num++;
232 if (num != 0)
233 {
234 n_used++;
235 total+=num;
236 }
237 }
238 BIO_printf(out,"%lu nodes used out of %u\n",n_used,lh->num_nodes);
239 BIO_printf(out,"%lu items\n",total);
240 if (n_used == 0) return;
241 BIO_printf(out,"load %d.%02d actual load %d.%02d\n",
242 (int)(total/lh->num_nodes),
243 (int)((total%lh->num_nodes)*100/lh->num_nodes),
244 (int)(total/n_used),
245 (int)((total%n_used)*100/n_used));
246 }

248 #endif

new/usr/src/lib/openssl/libsunw_crypto/lhash/lhash.c 1

**
 11529 Fri May 30 18:31:55 2014
new/usr/src/lib/openssl/libsunw_crypto/lhash/lhash.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/lhash/lhash.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* Code for dynamic hash table routines
60 * Author - Eric Young v 2.0
61 *

new/usr/src/lib/openssl/libsunw_crypto/lhash/lhash.c 2

62 * 2.2 eay - added #include "crypto.h" so the memory leak checking code is
63 * present. eay 18-Jun-98
64 *
65 * 2.1 eay - Added an ’error in last operation’ flag. eay 6-May-98
66 *
67 * 2.0 eay - Fixed a bug that occurred when using lh_delete
68 * from inside lh_doall(). As entries were deleted,
69 * the ’table’ was ’contract()ed’, making some entries
70 * jump from the end of the table to the start, there by
71 * skipping the lh_doall() processing. eay - 4/12/95
72 *
73 * 1.9 eay - Fixed a memory leak in lh_free, the LHASH_NODEs
74 * were not being free()ed. 21/11/95
75 *
76 * 1.8 eay - Put the stats routines into a separate file, lh_stats.c
77 * 19/09/95
78 *
79 * 1.7 eay - Removed the fputs() for realloc failures - the code
80 * should silently tolerate them. I have also fixed things
81 * lint complained about 04/05/95
82 *
83 * 1.6 eay - Fixed an invalid pointers in contract/expand 27/07/92
84 *
85 * 1.5 eay - Fixed a misuse of realloc in expand 02/03/1992
86 *
87 * 1.4 eay - Fixed lh_doall so the function can call lh_delete 28/05/91
88 *
89 * 1.3 eay - Fixed a few lint problems 19/3/1991
90 *
91 * 1.2 eay - Fixed lh_doall problem 13/3/1991
92 *
93 * 1.1 eay - Added lh_doall
94 *
95 * 1.0 eay - First version
96 */
97 #include <stdio.h>
98 #include <string.h>
99 #include <stdlib.h>
100 #include <openssl/crypto.h>
101 #include <openssl/lhash.h>

103 const char lh_version[]="lhash" OPENSSL_VERSION_PTEXT;

105 #undef MIN_NODES
106 #define MIN_NODES 16
107 #define UP_LOAD (2*LH_LOAD_MULT) /* load times 256 (default 2) */
108 #define DOWN_LOAD (LH_LOAD_MULT) /* load times 256 (default 1) */

110 static void expand(_LHASH *lh);
111 static void contract(_LHASH *lh);
112 static LHASH_NODE **getrn(_LHASH *lh, const void *data, unsigned long *rhash);

114 _LHASH *lh_new(LHASH_HASH_FN_TYPE h, LHASH_COMP_FN_TYPE c)
115 {
116 _LHASH *ret;
117 int i;

119 if ((ret=OPENSSL_malloc(sizeof(_LHASH))) == NULL)
120 goto err0;
121 if ((ret->b=OPENSSL_malloc(sizeof(LHASH_NODE *)*MIN_NODES)) == NULL)
122 goto err1;
123 for (i=0; i<MIN_NODES; i++)
124 ret->b[i]=NULL;
125 ret->comp=((c == NULL)?(LHASH_COMP_FN_TYPE)strcmp:c);
126 ret->hash=((h == NULL)?(LHASH_HASH_FN_TYPE)lh_strhash:h);
127 ret->num_nodes=MIN_NODES/2;

new/usr/src/lib/openssl/libsunw_crypto/lhash/lhash.c 3

128 ret->num_alloc_nodes=MIN_NODES;
129 ret->p=0;
130 ret->pmax=MIN_NODES/2;
131 ret->up_load=UP_LOAD;
132 ret->down_load=DOWN_LOAD;
133 ret->num_items=0;

135 ret->num_expands=0;
136 ret->num_expand_reallocs=0;
137 ret->num_contracts=0;
138 ret->num_contract_reallocs=0;
139 ret->num_hash_calls=0;
140 ret->num_comp_calls=0;
141 ret->num_insert=0;
142 ret->num_replace=0;
143 ret->num_delete=0;
144 ret->num_no_delete=0;
145 ret->num_retrieve=0;
146 ret->num_retrieve_miss=0;
147 ret->num_hash_comps=0;

149 ret->error=0;
150 return(ret);
151 err1:
152 OPENSSL_free(ret);
153 err0:
154 return(NULL);
155 }

157 void lh_free(_LHASH *lh)
158 {
159 unsigned int i;
160 LHASH_NODE *n,*nn;

162 if (lh == NULL)
163 return;

165 for (i=0; i<lh->num_nodes; i++)
166 {
167 n=lh->b[i];
168 while (n != NULL)
169 {
170 nn=n->next;
171 OPENSSL_free(n);
172 n=nn;
173 }
174 }
175 OPENSSL_free(lh->b);
176 OPENSSL_free(lh);
177 }

179 void *lh_insert(_LHASH *lh, void *data)
180 {
181 unsigned long hash;
182 LHASH_NODE *nn,**rn;
183 void *ret;

185 lh->error=0;
186 if (lh->up_load <= (lh->num_items*LH_LOAD_MULT/lh->num_nodes))
187 expand(lh);

189 rn=getrn(lh,data,&hash);

191 if (*rn == NULL)
192 {
193 if ((nn=(LHASH_NODE *)OPENSSL_malloc(sizeof(LHASH_NODE))) == NUL

new/usr/src/lib/openssl/libsunw_crypto/lhash/lhash.c 4

194 {
195 lh->error++;
196 return(NULL);
197 }
198 nn->data=data;
199 nn->next=NULL;
200 #ifndef OPENSSL_NO_HASH_COMP
201 nn->hash=hash;
202 #endif
203 *rn=nn;
204 ret=NULL;
205 lh->num_insert++;
206 lh->num_items++;
207 }
208 else /* replace same key */
209 {
210 ret= (*rn)->data;
211 (*rn)->data=data;
212 lh->num_replace++;
213 }
214 return(ret);
215 }

217 void *lh_delete(_LHASH *lh, const void *data)
218 {
219 unsigned long hash;
220 LHASH_NODE *nn,**rn;
221 void *ret;

223 lh->error=0;
224 rn=getrn(lh,data,&hash);

226 if (*rn == NULL)
227 {
228 lh->num_no_delete++;
229 return(NULL);
230 }
231 else
232 {
233 nn= *rn;
234 *rn=nn->next;
235 ret=nn->data;
236 OPENSSL_free(nn);
237 lh->num_delete++;
238 }

240 lh->num_items--;
241 if ((lh->num_nodes > MIN_NODES) &&
242 (lh->down_load >= (lh->num_items*LH_LOAD_MULT/lh->num_nodes)))
243 contract(lh);

245 return(ret);
246 }

248 void *lh_retrieve(_LHASH *lh, const void *data)
249 {
250 unsigned long hash;
251 LHASH_NODE **rn;
252 void *ret;

254 lh->error=0;
255 rn=getrn(lh,data,&hash);

257 if (*rn == NULL)
258 {
259 lh->num_retrieve_miss++;

new/usr/src/lib/openssl/libsunw_crypto/lhash/lhash.c 5

260 return(NULL);
261 }
262 else
263 {
264 ret= (*rn)->data;
265 lh->num_retrieve++;
266 }
267 return(ret);
268 }

270 static void doall_util_fn(_LHASH *lh, int use_arg, LHASH_DOALL_FN_TYPE func,
271 LHASH_DOALL_ARG_FN_TYPE func_arg, void *arg)
272 {
273 int i;
274 LHASH_NODE *a,*n;

276 if (lh == NULL)
277 return;

279 /* reverse the order so we search from ’top to bottom’
280 * We were having memory leaks otherwise */
281 for (i=lh->num_nodes-1; i>=0; i--)
282 {
283 a=lh->b[i];
284 while (a != NULL)
285 {
286 /* 28/05/91 - eay - n added so items can be deleted
287 * via lh_doall */
288 /* 22/05/08 - ben - eh? since a is not passed,
289 * this should not be needed */
290 n=a->next;
291 if(use_arg)
292 func_arg(a->data,arg);
293 else
294 func(a->data);
295 a=n;
296 }
297 }
298 }

300 void lh_doall(_LHASH *lh, LHASH_DOALL_FN_TYPE func)
301 {
302 doall_util_fn(lh, 0, func, (LHASH_DOALL_ARG_FN_TYPE)0, NULL);
303 }

305 void lh_doall_arg(_LHASH *lh, LHASH_DOALL_ARG_FN_TYPE func, void *arg)
306 {
307 doall_util_fn(lh, 1, (LHASH_DOALL_FN_TYPE)0, func, arg);
308 }

310 static void expand(_LHASH *lh)
311 {
312 LHASH_NODE **n,**n1,**n2,*np;
313 unsigned int p,i,j;
314 unsigned long hash,nni;

316 lh->num_nodes++;
317 lh->num_expands++;
318 p=(int)lh->p++;
319 n1= &(lh->b[p]);
320 n2= &(lh->b[p+(int)lh->pmax]);
321 *n2=NULL; /* 27/07/92 - eay - undefined pointer bug */
322 nni=lh->num_alloc_nodes;
323
324 for (np= *n1; np != NULL;)
325 {

new/usr/src/lib/openssl/libsunw_crypto/lhash/lhash.c 6

326 #ifndef OPENSSL_NO_HASH_COMP
327 hash=np->hash;
328 #else
329 hash=lh->hash(np->data);
330 lh->num_hash_calls++;
331 #endif
332 if ((hash%nni) != p)
333 { /* move it */
334 *n1= (*n1)->next;
335 np->next= *n2;
336 *n2=np;
337 }
338 else
339 n1= &((*n1)->next);
340 np= *n1;
341 }

343 if ((lh->p) >= lh->pmax)
344 {
345 j=(int)lh->num_alloc_nodes*2;
346 n=(LHASH_NODE **)OPENSSL_realloc(lh->b,
347 (int)(sizeof(LHASH_NODE *)*j));
348 if (n == NULL)
349 {
350 /* fputs("realloc error in lhash",stderr); */
351 lh->error++;
352 lh->p=0;
353 return;
354 }
355 /* else */
356 for (i=(int)lh->num_alloc_nodes; i<j; i++)/* 26/02/92 eay */
357 n[i]=NULL; /* 02/03/92 eay */
358 lh->pmax=lh->num_alloc_nodes;
359 lh->num_alloc_nodes=j;
360 lh->num_expand_reallocs++;
361 lh->p=0;
362 lh->b=n;
363 }
364 }

366 static void contract(_LHASH *lh)
367 {
368 LHASH_NODE **n,*n1,*np;

370 np=lh->b[lh->p+lh->pmax-1];
371 lh->b[lh->p+lh->pmax-1]=NULL; /* 24/07-92 - eay - weird but :-(*/
372 if (lh->p == 0)
373 {
374 n=(LHASH_NODE **)OPENSSL_realloc(lh->b,
375 (unsigned int)(sizeof(LHASH_NODE *)*lh->pmax));
376 if (n == NULL)
377 {
378 /* fputs("realloc error in lhash",stderr); */
379 lh->error++;
380 return;
381 }
382 lh->num_contract_reallocs++;
383 lh->num_alloc_nodes/=2;
384 lh->pmax/=2;
385 lh->p=lh->pmax-1;
386 lh->b=n;
387 }
388 else
389 lh->p--;

391 lh->num_nodes--;

new/usr/src/lib/openssl/libsunw_crypto/lhash/lhash.c 7

392 lh->num_contracts++;

394 n1=lh->b[(int)lh->p];
395 if (n1 == NULL)
396 lh->b[(int)lh->p]=np;
397 else
398 {
399 while (n1->next != NULL)
400 n1=n1->next;
401 n1->next=np;
402 }
403 }

405 static LHASH_NODE **getrn(_LHASH *lh, const void *data, unsigned long *rhash)
406 {
407 LHASH_NODE **ret,*n1;
408 unsigned long hash,nn;
409 LHASH_COMP_FN_TYPE cf;

411 hash=(*(lh->hash))(data);
412 lh->num_hash_calls++;
413 *rhash=hash;

415 nn=hash%lh->pmax;
416 if (nn < lh->p)
417 nn=hash%lh->num_alloc_nodes;

419 cf=lh->comp;
420 ret= &(lh->b[(int)nn]);
421 for (n1= *ret; n1 != NULL; n1=n1->next)
422 {
423 #ifndef OPENSSL_NO_HASH_COMP
424 lh->num_hash_comps++;
425 if (n1->hash != hash)
426 {
427 ret= &(n1->next);
428 continue;
429 }
430 #endif
431 lh->num_comp_calls++;
432 if(cf(n1->data,data) == 0)
433 break;
434 ret= &(n1->next);
435 }
436 return(ret);
437 }

439 /* The following hash seems to work very well on normal text strings
440 * no collisions on /usr/dict/words and it distributes on %2^n quite
441 * well, not as good as MD5, but still good.
442 */
443 unsigned long lh_strhash(const char *c)
444 {
445 unsigned long ret=0;
446 long n;
447 unsigned long v;
448 int r;

450 if ((c == NULL) || (*c == ’\0’))
451 return(ret);
452 /*
453 unsigned char b[16];
454 MD5(c,strlen(c),b);
455 return(b[0]|(b[1]<<8)|(b[2]<<16)|(b[3]<<24));
456 */

new/usr/src/lib/openssl/libsunw_crypto/lhash/lhash.c 8

458 n=0x100;
459 while (*c)
460 {
461 v=n|(*c);
462 n+=0x100;
463 r= (int)((v>>2)^v)&0x0f;
464 ret=(ret<<r)|(ret>>(32-r));
465 ret&=0xFFFFFFFFL;
466 ret^=v*v;
467 c++;
468 }
469 return((ret>>16)^ret);
470 }

472 unsigned long lh_num_items(const _LHASH *lh)
473 {
474 return lh ? lh->num_items : 0;
475 }

new/usr/src/lib/openssl/libsunw_crypto/md2/md2_dgst.c 1

**
 7349 Fri May 30 18:31:55 2014
new/usr/src/lib/openssl/libsunw_crypto/md2/md2_dgst.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/md2/md2_dgst.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>

new/usr/src/lib/openssl/libsunw_crypto/md2/md2_dgst.c 2

62 #include <openssl/md2.h>
63 #include <openssl/opensslv.h>
64 #include <openssl/crypto.h>

66 const char MD2_version[]="MD2" OPENSSL_VERSION_PTEXT;

68 /* Implemented from RFC1319 The MD2 Message-Digest Algorithm
69 */

71 #define UCHAR unsigned char

73 static void md2_block(MD2_CTX *c, const unsigned char *d);
74 /* The magic S table - I have converted it to hex since it is
75 * basically just a random byte string. */
76 static const MD2_INT S[256]={
77 0x29, 0x2E, 0x43, 0xC9, 0xA2, 0xD8, 0x7C, 0x01,
78 0x3D, 0x36, 0x54, 0xA1, 0xEC, 0xF0, 0x06, 0x13,
79 0x62, 0xA7, 0x05, 0xF3, 0xC0, 0xC7, 0x73, 0x8C,
80 0x98, 0x93, 0x2B, 0xD9, 0xBC, 0x4C, 0x82, 0xCA,
81 0x1E, 0x9B, 0x57, 0x3C, 0xFD, 0xD4, 0xE0, 0x16,
82 0x67, 0x42, 0x6F, 0x18, 0x8A, 0x17, 0xE5, 0x12,
83 0xBE, 0x4E, 0xC4, 0xD6, 0xDA, 0x9E, 0xDE, 0x49,
84 0xA0, 0xFB, 0xF5, 0x8E, 0xBB, 0x2F, 0xEE, 0x7A,
85 0xA9, 0x68, 0x79, 0x91, 0x15, 0xB2, 0x07, 0x3F,
86 0x94, 0xC2, 0x10, 0x89, 0x0B, 0x22, 0x5F, 0x21,
87 0x80, 0x7F, 0x5D, 0x9A, 0x5A, 0x90, 0x32, 0x27,
88 0x35, 0x3E, 0xCC, 0xE7, 0xBF, 0xF7, 0x97, 0x03,
89 0xFF, 0x19, 0x30, 0xB3, 0x48, 0xA5, 0xB5, 0xD1,
90 0xD7, 0x5E, 0x92, 0x2A, 0xAC, 0x56, 0xAA, 0xC6,
91 0x4F, 0xB8, 0x38, 0xD2, 0x96, 0xA4, 0x7D, 0xB6,
92 0x76, 0xFC, 0x6B, 0xE2, 0x9C, 0x74, 0x04, 0xF1,
93 0x45, 0x9D, 0x70, 0x59, 0x64, 0x71, 0x87, 0x20,
94 0x86, 0x5B, 0xCF, 0x65, 0xE6, 0x2D, 0xA8, 0x02,
95 0x1B, 0x60, 0x25, 0xAD, 0xAE, 0xB0, 0xB9, 0xF6,
96 0x1C, 0x46, 0x61, 0x69, 0x34, 0x40, 0x7E, 0x0F,
97 0x55, 0x47, 0xA3, 0x23, 0xDD, 0x51, 0xAF, 0x3A,
98 0xC3, 0x5C, 0xF9, 0xCE, 0xBA, 0xC5, 0xEA, 0x26,
99 0x2C, 0x53, 0x0D, 0x6E, 0x85, 0x28, 0x84, 0x09,
100 0xD3, 0xDF, 0xCD, 0xF4, 0x41, 0x81, 0x4D, 0x52,
101 0x6A, 0xDC, 0x37, 0xC8, 0x6C, 0xC1, 0xAB, 0xFA,
102 0x24, 0xE1, 0x7B, 0x08, 0x0C, 0xBD, 0xB1, 0x4A,
103 0x78, 0x88, 0x95, 0x8B, 0xE3, 0x63, 0xE8, 0x6D,
104 0xE9, 0xCB, 0xD5, 0xFE, 0x3B, 0x00, 0x1D, 0x39,
105 0xF2, 0xEF, 0xB7, 0x0E, 0x66, 0x58, 0xD0, 0xE4,
106 0xA6, 0x77, 0x72, 0xF8, 0xEB, 0x75, 0x4B, 0x0A,
107 0x31, 0x44, 0x50, 0xB4, 0x8F, 0xED, 0x1F, 0x1A,
108 0xDB, 0x99, 0x8D, 0x33, 0x9F, 0x11, 0x83, 0x14,
109 };

111 const char *MD2_options(void)
112 {
113 if (sizeof(MD2_INT) == 1)
114 return("md2(char)");
115 else
116 return("md2(int)");
117 }

119 fips_md_init(MD2)
120 {
121 c->num=0;
122 memset(c->state,0,sizeof c->state);
123 memset(c->cksm,0,sizeof c->cksm);
124 memset(c->data,0,sizeof c->data);
125 return 1;
126 }

new/usr/src/lib/openssl/libsunw_crypto/md2/md2_dgst.c 3

128 int MD2_Update(MD2_CTX *c, const unsigned char *data, size_t len)
129 {
130 register UCHAR *p;

132 if (len == 0) return 1;

134 p=c->data;
135 if (c->num != 0)
136 {
137 if ((c->num+len) >= MD2_BLOCK)
138 {
139 memcpy(&(p[c->num]),data,MD2_BLOCK-c->num);
140 md2_block(c,c->data);
141 data+=(MD2_BLOCK - c->num);
142 len-=(MD2_BLOCK - c->num);
143 c->num=0;
144 /* drop through and do the rest */
145 }
146 else
147 {
148 memcpy(&(p[c->num]),data,len);
149 /* data+=len; */
150 c->num+=(int)len;
151 return 1;
152 }
153 }
154 /* we now can process the input data in blocks of MD2_BLOCK
155 * chars and save the leftovers to c->data. */
156 while (len >= MD2_BLOCK)
157 {
158 md2_block(c,data);
159 data+=MD2_BLOCK;
160 len-=MD2_BLOCK;
161 }
162 memcpy(p,data,len);
163 c->num=(int)len;
164 return 1;
165 }

167 static void md2_block(MD2_CTX *c, const unsigned char *d)
168 {
169 register MD2_INT t,*sp1,*sp2;
170 register int i,j;
171 MD2_INT state[48];

173 sp1=c->state;
174 sp2=c->cksm;
175 j=sp2[MD2_BLOCK-1];
176 for (i=0; i<16; i++)
177 {
178 state[i]=sp1[i];
179 state[i+16]=t=d[i];
180 state[i+32]=(t^sp1[i]);
181 j=sp2[i]^=S[t^j];
182 }
183 t=0;
184 for (i=0; i<18; i++)
185 {
186 for (j=0; j<48; j+=8)
187 {
188 t= state[j+ 0]^=S[t];
189 t= state[j+ 1]^=S[t];
190 t= state[j+ 2]^=S[t];
191 t= state[j+ 3]^=S[t];
192 t= state[j+ 4]^=S[t];
193 t= state[j+ 5]^=S[t];

new/usr/src/lib/openssl/libsunw_crypto/md2/md2_dgst.c 4

194 t= state[j+ 6]^=S[t];
195 t= state[j+ 7]^=S[t];
196 }
197 t=(t+i)&0xff;
198 }
199 memcpy(sp1,state,16*sizeof(MD2_INT));
200 OPENSSL_cleanse(state,48*sizeof(MD2_INT));
201 }

203 int MD2_Final(unsigned char *md, MD2_CTX *c)
204 {
205 int i,v;
206 register UCHAR *cp;
207 register MD2_INT *p1,*p2;

209 cp=c->data;
210 p1=c->state;
211 p2=c->cksm;
212 v=MD2_BLOCK-c->num;
213 for (i=c->num; i<MD2_BLOCK; i++)
214 cp[i]=(UCHAR)v;

216 md2_block(c,cp);

218 for (i=0; i<MD2_BLOCK; i++)
219 cp[i]=(UCHAR)p2[i];
220 md2_block(c,cp);

222 for (i=0; i<16; i++)
223 md[i]=(UCHAR)(p1[i]&0xff);
224 memset((char *)&c,0,sizeof(c));
225 return 1;
226 }

new/usr/src/lib/openssl/libsunw_crypto/md2/md2_one.c 1

**
 3931 Fri May 30 18:31:55 2014
new/usr/src/lib/openssl/libsunw_crypto/md2/md2_one.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/md2/md2_one.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/md2.h>

new/usr/src/lib/openssl/libsunw_crypto/md2/md2_one.c 2

63 /* This is a separate file so that #defines in cryptlib.h can
64 * map my MD functions to different names */

66 unsigned char *MD2(const unsigned char *d, size_t n, unsigned char *md)
67 {
68 MD2_CTX c;
69 static unsigned char m[MD2_DIGEST_LENGTH];

71 if (md == NULL) md=m;
72 if (!MD2_Init(&c))
73 return NULL;
74 #ifndef CHARSET_EBCDIC
75 MD2_Update(&c,d,n);
76 #else
77 {
78 char temp[1024];
79 unsigned long chunk;

81 while (n > 0)
82 {
83 chunk = (n > sizeof(temp)) ? sizeof(temp) : n;
84 ebcdic2ascii(temp, d, chunk);
85 MD2_Update(&c,temp,chunk);
86 n -= chunk;
87 d += chunk;
88 }
89 }
90 #endif
91 MD2_Final(md,&c);
92 OPENSSL_cleanse(&c,sizeof(c)); /* Security consideration */
93 return(md);
94 }

new/usr/src/lib/openssl/libsunw_crypto/md4/md4_dgst.c 1

**
 6440 Fri May 30 18:31:55 2014
new/usr/src/lib/openssl/libsunw_crypto/md4/md4_dgst.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/md4/md4_dgst.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/opensslv.h>
61 #include <openssl/crypto.h>

new/usr/src/lib/openssl/libsunw_crypto/md4/md4_dgst.c 2

62 #include "md4_locl.h"

64 const char MD4_version[]="MD4" OPENSSL_VERSION_PTEXT;

66 /* Implemented from RFC1186 The MD4 Message-Digest Algorithm
67 */

69 #define INIT_DATA_A (unsigned long)0x67452301L
70 #define INIT_DATA_B (unsigned long)0xefcdab89L
71 #define INIT_DATA_C (unsigned long)0x98badcfeL
72 #define INIT_DATA_D (unsigned long)0x10325476L

74 fips_md_init(MD4)
75 {
76 memset (c,0,sizeof(*c));
77 c->A=INIT_DATA_A;
78 c->B=INIT_DATA_B;
79 c->C=INIT_DATA_C;
80 c->D=INIT_DATA_D;
81 return 1;
82 }

84 #ifndef md4_block_data_order
85 #ifdef X
86 #undef X
87 #endif
88 void md4_block_data_order (MD4_CTX *c, const void *data_, size_t num)
89 {
90 const unsigned char *data=data_;
91 register unsigned MD32_REG_T A,B,C,D,l;
92 #ifndef MD32_XARRAY
93 /* See comment in crypto/sha/sha_locl.h for details. */
94 unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
95 XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15;
96 # define X(i) XX##i
97 #else
98 MD4_LONG XX[MD4_LBLOCK];
99 # define X(i) XX[i]
100 #endif

102 A=c->A;
103 B=c->B;
104 C=c->C;
105 D=c->D;

107 for (;num--;)
108 {
109 (void)HOST_c2l(data,l); X(0)=l;
110 (void)HOST_c2l(data,l); X(1)=l;
111 /* Round 0 */
112 R0(A,B,C,D,X(0), 3,0); (void)HOST_c2l(data,l); X(2)=l;
113 R0(D,A,B,C,X(1), 7,0); (void)HOST_c2l(data,l); X(3)=l;
114 R0(C,D,A,B,X(2),11,0); (void)HOST_c2l(data,l); X(4)=l;
115 R0(B,C,D,A,X(3),19,0); (void)HOST_c2l(data,l); X(5)=l;
116 R0(A,B,C,D,X(4), 3,0); (void)HOST_c2l(data,l); X(6)=l;
117 R0(D,A,B,C,X(5), 7,0); (void)HOST_c2l(data,l); X(7)=l;
118 R0(C,D,A,B,X(6),11,0); (void)HOST_c2l(data,l); X(8)=l;
119 R0(B,C,D,A,X(7),19,0); (void)HOST_c2l(data,l); X(9)=l;
120 R0(A,B,C,D,X(8), 3,0); (void)HOST_c2l(data,l); X(10)=l;
121 R0(D,A,B,C,X(9), 7,0); (void)HOST_c2l(data,l); X(11)=l;
122 R0(C,D,A,B,X(10),11,0); (void)HOST_c2l(data,l); X(12)=l;
123 R0(B,C,D,A,X(11),19,0); (void)HOST_c2l(data,l); X(13)=l;
124 R0(A,B,C,D,X(12), 3,0); (void)HOST_c2l(data,l); X(14)=l;
125 R0(D,A,B,C,X(13), 7,0); (void)HOST_c2l(data,l); X(15)=l;
126 R0(C,D,A,B,X(14),11,0);
127 R0(B,C,D,A,X(15),19,0);

new/usr/src/lib/openssl/libsunw_crypto/md4/md4_dgst.c 3

128 /* Round 1 */
129 R1(A,B,C,D,X(0), 3,0x5A827999L);
130 R1(D,A,B,C,X(4), 5,0x5A827999L);
131 R1(C,D,A,B,X(8), 9,0x5A827999L);
132 R1(B,C,D,A,X(12),13,0x5A827999L);
133 R1(A,B,C,D,X(1), 3,0x5A827999L);
134 R1(D,A,B,C,X(5), 5,0x5A827999L);
135 R1(C,D,A,B,X(9), 9,0x5A827999L);
136 R1(B,C,D,A,X(13),13,0x5A827999L);
137 R1(A,B,C,D,X(2), 3,0x5A827999L);
138 R1(D,A,B,C,X(6), 5,0x5A827999L);
139 R1(C,D,A,B,X(10), 9,0x5A827999L);
140 R1(B,C,D,A,X(14),13,0x5A827999L);
141 R1(A,B,C,D,X(3), 3,0x5A827999L);
142 R1(D,A,B,C,X(7), 5,0x5A827999L);
143 R1(C,D,A,B,X(11), 9,0x5A827999L);
144 R1(B,C,D,A,X(15),13,0x5A827999L);
145 /* Round 2 */
146 R2(A,B,C,D,X(0), 3,0x6ED9EBA1L);
147 R2(D,A,B,C,X(8), 9,0x6ED9EBA1L);
148 R2(C,D,A,B,X(4),11,0x6ED9EBA1L);
149 R2(B,C,D,A,X(12),15,0x6ED9EBA1L);
150 R2(A,B,C,D,X(2), 3,0x6ED9EBA1L);
151 R2(D,A,B,C,X(10), 9,0x6ED9EBA1L);
152 R2(C,D,A,B,X(6),11,0x6ED9EBA1L);
153 R2(B,C,D,A,X(14),15,0x6ED9EBA1L);
154 R2(A,B,C,D,X(1), 3,0x6ED9EBA1L);
155 R2(D,A,B,C,X(9), 9,0x6ED9EBA1L);
156 R2(C,D,A,B,X(5),11,0x6ED9EBA1L);
157 R2(B,C,D,A,X(13),15,0x6ED9EBA1L);
158 R2(A,B,C,D,X(3), 3,0x6ED9EBA1L);
159 R2(D,A,B,C,X(11), 9,0x6ED9EBA1L);
160 R2(C,D,A,B,X(7),11,0x6ED9EBA1L);
161 R2(B,C,D,A,X(15),15,0x6ED9EBA1L);

163 A = c->A += A;
164 B = c->B += B;
165 C = c->C += C;
166 D = c->D += D;
167 }
168 }
169 #endif

new/usr/src/lib/openssl/libsunw_crypto/md4/md4_one.c 1

**
 3908 Fri May 30 18:31:56 2014
new/usr/src/lib/openssl/libsunw_crypto/md4/md4_one.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/md4/md4_one.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <string.h>
61 #include <openssl/md4.h>

new/usr/src/lib/openssl/libsunw_crypto/md4/md4_one.c 2

62 #include <openssl/crypto.h>

64 #ifdef CHARSET_EBCDIC
65 #include <openssl/ebcdic.h>
66 #endif

68 unsigned char *MD4(const unsigned char *d, size_t n, unsigned char *md)
69 {
70 MD4_CTX c;
71 static unsigned char m[MD4_DIGEST_LENGTH];

73 if (md == NULL) md=m;
74 if (!MD4_Init(&c))
75 return NULL;
76 #ifndef CHARSET_EBCDIC
77 MD4_Update(&c,d,n);
78 #else
79 {
80 char temp[1024];
81 unsigned long chunk;

83 while (n > 0)
84 {
85 chunk = (n > sizeof(temp)) ? sizeof(temp) : n;
86 ebcdic2ascii(temp, d, chunk);
87 MD4_Update(&c,temp,chunk);
88 n -= chunk;
89 d += chunk;
90 }
91 }
92 #endif
93 MD4_Final(md,&c);
94 OPENSSL_cleanse(&c,sizeof(c)); /* security consideration */
95 return(md);
96 }

new/usr/src/lib/openssl/libsunw_crypto/md5/md5_dgst.c 1

**
 7079 Fri May 30 18:31:56 2014
new/usr/src/lib/openssl/libsunw_crypto/md5/md5_dgst.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/md5/md5_dgst.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "md5_locl.h"
61 #include <openssl/opensslv.h>

new/usr/src/lib/openssl/libsunw_crypto/md5/md5_dgst.c 2

62 #include <openssl/crypto.h>

64 const char MD5_version[]="MD5" OPENSSL_VERSION_PTEXT;

66 /* Implemented from RFC1321 The MD5 Message-Digest Algorithm
67 */

69 #define INIT_DATA_A (unsigned long)0x67452301L
70 #define INIT_DATA_B (unsigned long)0xefcdab89L
71 #define INIT_DATA_C (unsigned long)0x98badcfeL
72 #define INIT_DATA_D (unsigned long)0x10325476L

74 fips_md_init(MD5)
75 {
76 memset (c,0,sizeof(*c));
77 c->A=INIT_DATA_A;
78 c->B=INIT_DATA_B;
79 c->C=INIT_DATA_C;
80 c->D=INIT_DATA_D;
81 return 1;
82 }

84 #ifndef md5_block_data_order
85 #ifdef X
86 #undef X
87 #endif
88 void md5_block_data_order (MD5_CTX *c, const void *data_, size_t num)
89 {
90 const unsigned char *data=data_;
91 register unsigned MD32_REG_T A,B,C,D,l;
92 #ifndef MD32_XARRAY
93 /* See comment in crypto/sha/sha_locl.h for details. */
94 unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
95 XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15;
96 # define X(i) XX##i
97 #else
98 MD5_LONG XX[MD5_LBLOCK];
99 # define X(i) XX[i]
100 #endif

102 A=c->A;
103 B=c->B;
104 C=c->C;
105 D=c->D;

107 for (;num--;)
108 {
109 HOST_c2l(data,l); X(0)=l; HOST_c2l(data,l); X(1)=l;
110 /* Round 0 */
111 R0(A,B,C,D,X(0), 7,0xd76aa478L); HOST_c2l(data,l); X(2)=l;
112 R0(D,A,B,C,X(1),12,0xe8c7b756L); HOST_c2l(data,l); X(3)=l;
113 R0(C,D,A,B,X(2),17,0x242070dbL); HOST_c2l(data,l); X(4)=l;
114 R0(B,C,D,A,X(3),22,0xc1bdceeeL); HOST_c2l(data,l); X(5)=l;
115 R0(A,B,C,D,X(4), 7,0xf57c0fafL); HOST_c2l(data,l); X(6)=l;
116 R0(D,A,B,C,X(5),12,0x4787c62aL); HOST_c2l(data,l); X(7)=l;
117 R0(C,D,A,B,X(6),17,0xa8304613L); HOST_c2l(data,l); X(8)=l;
118 R0(B,C,D,A,X(7),22,0xfd469501L); HOST_c2l(data,l); X(9)=l;
119 R0(A,B,C,D,X(8), 7,0x698098d8L); HOST_c2l(data,l); X(10)=l;
120 R0(D,A,B,C,X(9),12,0x8b44f7afL); HOST_c2l(data,l); X(11)=l;
121 R0(C,D,A,B,X(10),17,0xffff5bb1L); HOST_c2l(data,l); X(12)=l;
122 R0(B,C,D,A,X(11),22,0x895cd7beL); HOST_c2l(data,l); X(13)=l;
123 R0(A,B,C,D,X(12), 7,0x6b901122L); HOST_c2l(data,l); X(14)=l;
124 R0(D,A,B,C,X(13),12,0xfd987193L); HOST_c2l(data,l); X(15)=l;
125 R0(C,D,A,B,X(14),17,0xa679438eL);
126 R0(B,C,D,A,X(15),22,0x49b40821L);
127 /* Round 1 */

new/usr/src/lib/openssl/libsunw_crypto/md5/md5_dgst.c 3

128 R1(A,B,C,D,X(1), 5,0xf61e2562L);
129 R1(D,A,B,C,X(6), 9,0xc040b340L);
130 R1(C,D,A,B,X(11),14,0x265e5a51L);
131 R1(B,C,D,A,X(0),20,0xe9b6c7aaL);
132 R1(A,B,C,D,X(5), 5,0xd62f105dL);
133 R1(D,A,B,C,X(10), 9,0x02441453L);
134 R1(C,D,A,B,X(15),14,0xd8a1e681L);
135 R1(B,C,D,A,X(4),20,0xe7d3fbc8L);
136 R1(A,B,C,D,X(9), 5,0x21e1cde6L);
137 R1(D,A,B,C,X(14), 9,0xc33707d6L);
138 R1(C,D,A,B,X(3),14,0xf4d50d87L);
139 R1(B,C,D,A,X(8),20,0x455a14edL);
140 R1(A,B,C,D,X(13), 5,0xa9e3e905L);
141 R1(D,A,B,C,X(2), 9,0xfcefa3f8L);
142 R1(C,D,A,B,X(7),14,0x676f02d9L);
143 R1(B,C,D,A,X(12),20,0x8d2a4c8aL);
144 /* Round 2 */
145 R2(A,B,C,D,X(5), 4,0xfffa3942L);
146 R2(D,A,B,C,X(8),11,0x8771f681L);
147 R2(C,D,A,B,X(11),16,0x6d9d6122L);
148 R2(B,C,D,A,X(14),23,0xfde5380cL);
149 R2(A,B,C,D,X(1), 4,0xa4beea44L);
150 R2(D,A,B,C,X(4),11,0x4bdecfa9L);
151 R2(C,D,A,B,X(7),16,0xf6bb4b60L);
152 R2(B,C,D,A,X(10),23,0xbebfbc70L);
153 R2(A,B,C,D,X(13), 4,0x289b7ec6L);
154 R2(D,A,B,C,X(0),11,0xeaa127faL);
155 R2(C,D,A,B,X(3),16,0xd4ef3085L);
156 R2(B,C,D,A,X(6),23,0x04881d05L);
157 R2(A,B,C,D,X(9), 4,0xd9d4d039L);
158 R2(D,A,B,C,X(12),11,0xe6db99e5L);
159 R2(C,D,A,B,X(15),16,0x1fa27cf8L);
160 R2(B,C,D,A,X(2),23,0xc4ac5665L);
161 /* Round 3 */
162 R3(A,B,C,D,X(0), 6,0xf4292244L);
163 R3(D,A,B,C,X(7),10,0x432aff97L);
164 R3(C,D,A,B,X(14),15,0xab9423a7L);
165 R3(B,C,D,A,X(5),21,0xfc93a039L);
166 R3(A,B,C,D,X(12), 6,0x655b59c3L);
167 R3(D,A,B,C,X(3),10,0x8f0ccc92L);
168 R3(C,D,A,B,X(10),15,0xffeff47dL);
169 R3(B,C,D,A,X(1),21,0x85845dd1L);
170 R3(A,B,C,D,X(8), 6,0x6fa87e4fL);
171 R3(D,A,B,C,X(15),10,0xfe2ce6e0L);
172 R3(C,D,A,B,X(6),15,0xa3014314L);
173 R3(B,C,D,A,X(13),21,0x4e0811a1L);
174 R3(A,B,C,D,X(4), 6,0xf7537e82L);
175 R3(D,A,B,C,X(11),10,0xbd3af235L);
176 R3(C,D,A,B,X(2),15,0x2ad7d2bbL);
177 R3(B,C,D,A,X(9),21,0xeb86d391L);

179 A = c->A += A;
180 B = c->B += B;
181 C = c->C += C;
182 D = c->D += D;
183 }
184 }
185 #endif

new/usr/src/lib/openssl/libsunw_crypto/md5/md5_one.c 1

**
 3908 Fri May 30 18:31:56 2014
new/usr/src/lib/openssl/libsunw_crypto/md5/md5_one.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/md5/md5_one.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <string.h>
61 #include <openssl/md5.h>

new/usr/src/lib/openssl/libsunw_crypto/md5/md5_one.c 2

62 #include <openssl/crypto.h>

64 #ifdef CHARSET_EBCDIC
65 #include <openssl/ebcdic.h>
66 #endif

68 unsigned char *MD5(const unsigned char *d, size_t n, unsigned char *md)
69 {
70 MD5_CTX c;
71 static unsigned char m[MD5_DIGEST_LENGTH];

73 if (md == NULL) md=m;
74 if (!MD5_Init(&c))
75 return NULL;
76 #ifndef CHARSET_EBCDIC
77 MD5_Update(&c,d,n);
78 #else
79 {
80 char temp[1024];
81 unsigned long chunk;

83 while (n > 0)
84 {
85 chunk = (n > sizeof(temp)) ? sizeof(temp) : n;
86 ebcdic2ascii(temp, d, chunk);
87 MD5_Update(&c,temp,chunk);
88 n -= chunk;
89 d += chunk;
90 }
91 }
92 #endif
93 MD5_Final(md,&c);
94 OPENSSL_cleanse(&c,sizeof(c)); /* security consideration */
95 return(md);
96 }

new/usr/src/lib/openssl/libsunw_crypto/mem.c 1

**
 13471 Fri May 30 18:31:56 2014
new/usr/src/lib/openssl/libsunw_crypto/mem.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/mem.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <openssl/crypto.h>

new/usr/src/lib/openssl/libsunw_crypto/mem.c 2

62 #include "cryptlib.h"

65 static int allow_customize = 1; /* we provide flexible functions for */
66 static int allow_customize_debug = 1;/* exchanging memory-related functions at
67 * run-time, but this must be done
68 * before any blocks are actually
69 * allocated; or we’ll run into huge
70 * problems when malloc/free pairs
71 * don’t match etc. */

75 /* the following pointers may be changed as long as ’allow_customize’ is set */

77 static void *(*malloc_func)(size_t) = malloc;
78 static void *default_malloc_ex(size_t num, const char *file, int line)
79 { return malloc_func(num); }
80 static void *(*malloc_ex_func)(size_t, const char *file, int line)
81 = default_malloc_ex;

83 static void *(*realloc_func)(void *, size_t)= realloc;
84 static void *default_realloc_ex(void *str, size_t num,
85 const char *file, int line)
86 { return realloc_func(str,num); }
87 static void *(*realloc_ex_func)(void *, size_t, const char *file, int line)
88 = default_realloc_ex;

90 static void (*free_func)(void *) = free;

92 static void *(*malloc_locked_func)(size_t) = malloc;
93 static void *default_malloc_locked_ex(size_t num, const char *file, int line)
94 { return malloc_locked_func(num); }
95 static void *(*malloc_locked_ex_func)(size_t, const char *file, int line)
96 = default_malloc_locked_ex;

98 static void (*free_locked_func)(void *) = free;

102 /* may be changed as long as ’allow_customize_debug’ is set */
103 /* XXX use correct function pointer types */
104 #ifdef CRYPTO_MDEBUG
105 /* use default functions from mem_dbg.c */
106 static void (*malloc_debug_func)(void *,int,const char *,int,int)
107 = CRYPTO_dbg_malloc;
108 static void (*realloc_debug_func)(void *,void *,int,const char *,int,int)
109 = CRYPTO_dbg_realloc;
110 static void (*free_debug_func)(void *,int) = CRYPTO_dbg_free;
111 static void (*set_debug_options_func)(long) = CRYPTO_dbg_set_options;
112 static long (*get_debug_options_func)(void) = CRYPTO_dbg_get_options;
113 #else
114 /* applications can use CRYPTO_malloc_debug_init() to select above case
115 * at run-time */
116 static void (*malloc_debug_func)(void *,int,const char *,int,int) = NULL;
117 static void (*realloc_debug_func)(void *,void *,int,const char *,int,int)
118 = NULL;
119 static void (*free_debug_func)(void *,int) = NULL;
120 static void (*set_debug_options_func)(long) = NULL;
121 static long (*get_debug_options_func)(void) = NULL;
122 #endif

124 int CRYPTO_set_mem_functions(void *(*m)(size_t), void *(*r)(void *, size_t),
125 void (*f)(void *))
126 {
127 /* Dummy call just to ensure OPENSSL_init() gets linked in */

new/usr/src/lib/openssl/libsunw_crypto/mem.c 3

128 OPENSSL_init();
129 if (!allow_customize)
130 return 0;
131 if ((m == 0) || (r == 0) || (f == 0))
132 return 0;
133 malloc_func=m; malloc_ex_func=default_malloc_ex;
134 realloc_func=r; realloc_ex_func=default_realloc_ex;
135 free_func=f;
136 malloc_locked_func=m; malloc_locked_ex_func=default_malloc_locked_ex;
137 free_locked_func=f;
138 return 1;
139 }

141 int CRYPTO_set_mem_ex_functions(
142 void *(*m)(size_t,const char *,int),
143 void *(*r)(void *, size_t,const char *,int),
144 void (*f)(void *))
145 {
146 if (!allow_customize)
147 return 0;
148 if ((m == 0) || (r == 0) || (f == 0))
149 return 0;
150 malloc_func=0; malloc_ex_func=m;
151 realloc_func=0; realloc_ex_func=r;
152 free_func=f;
153 malloc_locked_func=0; malloc_locked_ex_func=m;
154 free_locked_func=f;
155 return 1;
156 }

158 int CRYPTO_set_locked_mem_functions(void *(*m)(size_t), void (*f)(void *))
159 {
160 if (!allow_customize)
161 return 0;
162 if ((m == NULL) || (f == NULL))
163 return 0;
164 malloc_locked_func=m; malloc_locked_ex_func=default_malloc_locked_ex;
165 free_locked_func=f;
166 return 1;
167 }

169 int CRYPTO_set_locked_mem_ex_functions(
170 void *(*m)(size_t,const char *,int),
171 void (*f)(void *))
172 {
173 if (!allow_customize)
174 return 0;
175 if ((m == NULL) || (f == NULL))
176 return 0;
177 malloc_locked_func=0; malloc_locked_ex_func=m;
178 free_func=f;
179 return 1;
180 }

182 int CRYPTO_set_mem_debug_functions(void (*m)(void *,int,const char *,int,int),
183 void (*r)(void *,void *,int,const char *,int,
184 void (*f)(void *,int),
185 void (*so)(long),
186 long (*go)(void))
187 {
188 if (!allow_customize_debug)
189 return 0;
190 OPENSSL_init();
191 malloc_debug_func=m;
192 realloc_debug_func=r;
193 free_debug_func=f;

new/usr/src/lib/openssl/libsunw_crypto/mem.c 4

194 set_debug_options_func=so;
195 get_debug_options_func=go;
196 return 1;
197 }

200 void CRYPTO_get_mem_functions(void *(**m)(size_t), void *(**r)(void *, size_t),
201 void (**f)(void *))
202 {
203 if (m != NULL) *m = (malloc_ex_func == default_malloc_ex) ?
204 malloc_func : 0;
205 if (r != NULL) *r = (realloc_ex_func == default_realloc_ex) ?
206 realloc_func : 0;
207 if (f != NULL) *f=free_func;
208 }

210 void CRYPTO_get_mem_ex_functions(
211 void *(**m)(size_t,const char *,int),
212 void *(**r)(void *, size_t,const char *,int),
213 void (**f)(void *))
214 {
215 if (m != NULL) *m = (malloc_ex_func != default_malloc_ex) ?
216 malloc_ex_func : 0;
217 if (r != NULL) *r = (realloc_ex_func != default_realloc_ex) ?
218 realloc_ex_func : 0;
219 if (f != NULL) *f=free_func;
220 }

222 void CRYPTO_get_locked_mem_functions(void *(**m)(size_t), void (**f)(void *))
223 {
224 if (m != NULL) *m = (malloc_locked_ex_func == default_malloc_locked_ex)
225 malloc_locked_func : 0;
226 if (f != NULL) *f=free_locked_func;
227 }

229 void CRYPTO_get_locked_mem_ex_functions(
230 void *(**m)(size_t,const char *,int),
231 void (**f)(void *))
232 {
233 if (m != NULL) *m = (malloc_locked_ex_func != default_malloc_locked_ex)
234 malloc_locked_ex_func : 0;
235 if (f != NULL) *f=free_locked_func;
236 }

238 void CRYPTO_get_mem_debug_functions(void (**m)(void *,int,const char *,int,int),
239 void (**r)(void *,void *,int,const char *,in
240 void (**f)(void *,int),
241 void (**so)(long),
242 long (**go)(void))
243 {
244 if (m != NULL) *m=malloc_debug_func;
245 if (r != NULL) *r=realloc_debug_func;
246 if (f != NULL) *f=free_debug_func;
247 if (so != NULL) *so=set_debug_options_func;
248 if (go != NULL) *go=get_debug_options_func;
249 }

252 void *CRYPTO_malloc_locked(int num, const char *file, int line)
253 {
254 void *ret = NULL;

256 if (num <= 0) return NULL;

258 allow_customize = 0;
259 if (malloc_debug_func != NULL)

new/usr/src/lib/openssl/libsunw_crypto/mem.c 5

260 {
261 allow_customize_debug = 0;
262 malloc_debug_func(NULL, num, file, line, 0);
263 }
264 ret = malloc_locked_ex_func(num,file,line);
265 #ifdef LEVITTE_DEBUG_MEM
266 fprintf(stderr, "LEVITTE_DEBUG_MEM: > 0x%p (%d)\n", ret, num);
267 #endif
268 if (malloc_debug_func != NULL)
269 malloc_debug_func(ret, num, file, line, 1);

271 #ifndef OPENSSL_CPUID_OBJ
272 /* Create a dependency on the value of ’cleanse_ctr’ so our memory
273 * sanitisation function can’t be optimised out. NB: We only do
274 * this for >2Kb so the overhead doesn’t bother us. */
275 if(ret && (num > 2048))
276 { extern unsigned char cleanse_ctr;
277 ((unsigned char *)ret)[0] = cleanse_ctr;
278 }
279 #endif

281 return ret;
282 }

284 void CRYPTO_free_locked(void *str)
285 {
286 if (free_debug_func != NULL)
287 free_debug_func(str, 0);
288 #ifdef LEVITTE_DEBUG_MEM
289 fprintf(stderr, "LEVITTE_DEBUG_MEM: < 0x%p\n", str);
290 #endif
291 free_locked_func(str);
292 if (free_debug_func != NULL)
293 free_debug_func(NULL, 1);
294 }

296 void *CRYPTO_malloc(int num, const char *file, int line)
297 {
298 void *ret = NULL;

300 if (num <= 0) return NULL;

302 allow_customize = 0;
303 if (malloc_debug_func != NULL)
304 {
305 allow_customize_debug = 0;
306 malloc_debug_func(NULL, num, file, line, 0);
307 }
308 ret = malloc_ex_func(num,file,line);
309 #ifdef LEVITTE_DEBUG_MEM
310 fprintf(stderr, "LEVITTE_DEBUG_MEM: > 0x%p (%d)\n", ret, num);
311 #endif
312 if (malloc_debug_func != NULL)
313 malloc_debug_func(ret, num, file, line, 1);

315 #ifndef OPENSSL_CPUID_OBJ
316 /* Create a dependency on the value of ’cleanse_ctr’ so our memory
317 * sanitisation function can’t be optimised out. NB: We only do
318 * this for >2Kb so the overhead doesn’t bother us. */
319 if(ret && (num > 2048))
320 { extern unsigned char cleanse_ctr;
321 ((unsigned char *)ret)[0] = cleanse_ctr;
322 }
323 #endif

325 return ret;

new/usr/src/lib/openssl/libsunw_crypto/mem.c 6

326 }
327 char *CRYPTO_strdup(const char *str, const char *file, int line)
328 {
329 char *ret = CRYPTO_malloc(strlen(str)+1, file, line);

331 strcpy(ret, str);
332 return ret;
333 }

335 void *CRYPTO_realloc(void *str, int num, const char *file, int line)
336 {
337 void *ret = NULL;

339 if (str == NULL)
340 return CRYPTO_malloc(num, file, line);

342 if (num <= 0) return NULL;

344 if (realloc_debug_func != NULL)
345 realloc_debug_func(str, NULL, num, file, line, 0);
346 ret = realloc_ex_func(str,num,file,line);
347 #ifdef LEVITTE_DEBUG_MEM
348 fprintf(stderr, "LEVITTE_DEBUG_MEM: | 0x%p -> 0x%p (%d)\n", str,
349 #endif
350 if (realloc_debug_func != NULL)
351 realloc_debug_func(str, ret, num, file, line, 1);

353 return ret;
354 }

356 void *CRYPTO_realloc_clean(void *str, int old_len, int num, const char *file,
357 int line)
358 {
359 void *ret = NULL;

361 if (str == NULL)
362 return CRYPTO_malloc(num, file, line);

364 if (num <= 0) return NULL;

366 /* We don’t support shrinking the buffer. Note the memcpy that copies
367 * |old_len| bytes to the new buffer, below. */
368 if (num < old_len) return NULL;

370 if (realloc_debug_func != NULL)
371 realloc_debug_func(str, NULL, num, file, line, 0);
372 ret=malloc_ex_func(num,file,line);
373 if(ret)
374 {
375 memcpy(ret,str,old_len);
376 OPENSSL_cleanse(str,old_len);
377 free_func(str);
378 }
379 #ifdef LEVITTE_DEBUG_MEM
380 fprintf(stderr,
381 "LEVITTE_DEBUG_MEM: | 0x%p -> 0x%p (%d)\n",
382 str, ret, num);
383 #endif
384 if (realloc_debug_func != NULL)
385 realloc_debug_func(str, ret, num, file, line, 1);

387 return ret;
388 }

390 void CRYPTO_free(void *str)
391 {

new/usr/src/lib/openssl/libsunw_crypto/mem.c 7

392 if (free_debug_func != NULL)
393 free_debug_func(str, 0);
394 #ifdef LEVITTE_DEBUG_MEM
395 fprintf(stderr, "LEVITTE_DEBUG_MEM: < 0x%p\n", str);
396 #endif
397 free_func(str);
398 if (free_debug_func != NULL)
399 free_debug_func(NULL, 1);
400 }

402 void *CRYPTO_remalloc(void *a, int num, const char *file, int line)
403 {
404 if (a != NULL) OPENSSL_free(a);
405 a=(char *)OPENSSL_malloc(num);
406 return(a);
407 }

409 void CRYPTO_set_mem_debug_options(long bits)
410 {
411 if (set_debug_options_func != NULL)
412 set_debug_options_func(bits);
413 }

415 long CRYPTO_get_mem_debug_options(void)
416 {
417 if (get_debug_options_func != NULL)
418 return get_debug_options_func();
419 return 0;
420 }

new/usr/src/lib/openssl/libsunw_crypto/mem_dbg.c 1

**
 23523 Fri May 30 18:31:56 2014
new/usr/src/lib/openssl/libsunw_crypto/mem_dbg.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/mem_dbg.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/mem_dbg.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include <stdio.h>
113 #include <stdlib.h>
114 #include <time.h>
115 #include <cryptlib.h>
116 #include <openssl/crypto.h>
117 #include <openssl/buffer.h>
118 #include <openssl/bio.h>
119 #include <openssl/lhash.h>

121 static int mh_mode=CRYPTO_MEM_CHECK_OFF;
122 /* The state changes to CRYPTO_MEM_CHECK_ON | CRYPTO_MEM_CHECK_ENABLE
123 * when the application asks for it (usually after library initialisation
124 * for which no book-keeping is desired).
125 *
126 * State CRYPTO_MEM_CHECK_ON exists only temporarily when the library
127 * thinks that certain allocations should not be checked (e.g. the data

new/usr/src/lib/openssl/libsunw_crypto/mem_dbg.c 3

128 * structures used for memory checking). It is not suitable as an initial
129 * state: the library will unexpectedly enable memory checking when it
130 * executes one of those sections that want to disable checking
131 * temporarily.
132 *
133 * State CRYPTO_MEM_CHECK_ENABLE without ..._ON makes no sense whatsoever.
134 */

136 static unsigned long order = 0; /* number of memory requests */

138 DECLARE_LHASH_OF(MEM);
139 static LHASH_OF(MEM) *mh=NULL; /* hash-table of memory requests
140 * (address as key); access requires
141 * MALLOC2 lock */

144 typedef struct app_mem_info_st
145 /* For application-defined information (static C-string ‘info’)
146 * to be displayed in memory leak list.
147 * Each thread has its own stack. For applications, there is
148 * CRYPTO_push_info("...") to push an entry,
149 * CRYPTO_pop_info() to pop an entry,
150 * CRYPTO_remove_all_info() to pop all entries.
151 */
152 {
153 CRYPTO_THREADID threadid;
154 const char *file;
155 int line;
156 const char *info;
157 struct app_mem_info_st *next; /* tail of thread’s stack */
158 int references;
159 } APP_INFO;

161 static void app_info_free(APP_INFO *);

163 DECLARE_LHASH_OF(APP_INFO);
164 static LHASH_OF(APP_INFO) *amih=NULL; /* hash-table with those
165 * app_mem_info_st’s that are at
166 * the top of their thread’s
167 * stack (with ‘thread’ as key);
168 * access requires MALLOC2
169 * lock */

171 typedef struct mem_st
172 /* memory-block description */
173 {
174 void *addr;
175 int num;
176 const char *file;
177 int line;
178 CRYPTO_THREADID threadid;
179 unsigned long order;
180 time_t time;
181 APP_INFO *app_info;
182 } MEM;

184 static long options = /* extra information to be recorded */
185 #if defined(CRYPTO_MDEBUG_TIME) || defined(CRYPTO_MDEBUG_ALL)
186 V_CRYPTO_MDEBUG_TIME |
187 #endif
188 #if defined(CRYPTO_MDEBUG_THREAD) || defined(CRYPTO_MDEBUG_ALL)
189 V_CRYPTO_MDEBUG_THREAD |
190 #endif
191 0;

new/usr/src/lib/openssl/libsunw_crypto/mem_dbg.c 4

194 static unsigned int num_disable = 0; /* num_disable > 0
195 * iff
196 * mh_mode == CRYPTO_MEM_CHECK_ON (w/o ..._
197 */

199 /* Valid iff num_disable > 0. CRYPTO_LOCK_MALLOC2 is locked exactly in this
200 * case (by the thread named in disabling_thread).
201 */
202 static CRYPTO_THREADID disabling_threadid;

204 static void app_info_free(APP_INFO *inf)
205 {
206 if (--(inf->references) <= 0)
207 {
208 if (inf->next != NULL)
209 {
210 app_info_free(inf->next);
211 }
212 OPENSSL_free(inf);
213 }
214 }

216 int CRYPTO_mem_ctrl(int mode)
217 {
218 int ret=mh_mode;

220 CRYPTO_w_lock(CRYPTO_LOCK_MALLOC);
221 switch (mode)
222 {
223 /* for applications (not to be called while multiple threads
224 * use the library): */
225 case CRYPTO_MEM_CHECK_ON: /* aka MemCheck_start() */
226 mh_mode = CRYPTO_MEM_CHECK_ON|CRYPTO_MEM_CHECK_ENABLE;
227 num_disable = 0;
228 break;
229 case CRYPTO_MEM_CHECK_OFF: /* aka MemCheck_stop() */
230 mh_mode = 0;
231 num_disable = 0; /* should be true *before* MemCheck_stop is use
232 or there’ll be a lot of confusion */
233 break;

235 /* switch off temporarily (for library-internal use): */
236 case CRYPTO_MEM_CHECK_DISABLE: /* aka MemCheck_off() */
237 if (mh_mode & CRYPTO_MEM_CHECK_ON)
238 {
239 CRYPTO_THREADID cur;
240 CRYPTO_THREADID_current(&cur);
241 if (!num_disable || CRYPTO_THREADID_cmp(&disabling_threa
242 {
243 /* Long-time lock CRYPTO_LOCK_MALLOC2 must not b
244 * we’re holding CRYPTO_LOCK_MALLOC, or we’ll de
245 * somebody else holds CRYPTO_LOCK_MALLOC2 (and
246 * it because we block entry to this function).
247 * Give them a chance, first, and then claim the
248 * appropriate order (long-time lock first).
249 */
250 CRYPTO_w_unlock(CRYPTO_LOCK_MALLOC);
251 /* Note that after we have waited for CRYPTO_LOC
252 * and CRYPTO_LOCK_MALLOC, we’ll still be in the
253 * "case" and "if" branch because MemCheck_start
254 * MemCheck_stop may never be used while there a
255 * OpenSSL threads. */
256 CRYPTO_w_lock(CRYPTO_LOCK_MALLOC2);
257 CRYPTO_w_lock(CRYPTO_LOCK_MALLOC);
258 mh_mode &= ~CRYPTO_MEM_CHECK_ENABLE;
259 CRYPTO_THREADID_cpy(&disabling_threadid, &cur);

new/usr/src/lib/openssl/libsunw_crypto/mem_dbg.c 5

260 }
261 num_disable++;
262 }
263 break;
264 case CRYPTO_MEM_CHECK_ENABLE: /* aka MemCheck_on() */
265 if (mh_mode & CRYPTO_MEM_CHECK_ON)
266 {
267 if (num_disable) /* always true, or something is going w
268 {
269 num_disable--;
270 if (num_disable == 0)
271 {
272 mh_mode|=CRYPTO_MEM_CHECK_ENABLE;
273 CRYPTO_w_unlock(CRYPTO_LOCK_MALLOC2);
274 }
275 }
276 }
277 break;

279 default:
280 break;
281 }
282 CRYPTO_w_unlock(CRYPTO_LOCK_MALLOC);
283 return(ret);
284 }

286 int CRYPTO_is_mem_check_on(void)
287 {
288 int ret = 0;

290 if (mh_mode & CRYPTO_MEM_CHECK_ON)
291 {
292 CRYPTO_THREADID cur;
293 CRYPTO_THREADID_current(&cur);
294 CRYPTO_r_lock(CRYPTO_LOCK_MALLOC);

296 ret = (mh_mode & CRYPTO_MEM_CHECK_ENABLE)
297 || CRYPTO_THREADID_cmp(&disabling_threadid, &cur);

299 CRYPTO_r_unlock(CRYPTO_LOCK_MALLOC);
300 }
301 return(ret);
302 }

305 void CRYPTO_dbg_set_options(long bits)
306 {
307 options = bits;
308 }

310 long CRYPTO_dbg_get_options(void)
311 {
312 return options;
313 }

315 static int mem_cmp(const MEM *a, const MEM *b)
316 {
317 #ifdef _WIN64
318 const char *ap=(const char *)a->addr,
319 *bp=(const char *)b->addr;
320 if (ap==bp) return 0;
321 else if (ap>bp) return 1;
322 else return -1;
323 #else
324 return (const char *)a->addr - (const char *)b->addr;
325 #endif

new/usr/src/lib/openssl/libsunw_crypto/mem_dbg.c 6

326 }
327 static IMPLEMENT_LHASH_COMP_FN(mem, MEM)

329 static unsigned long mem_hash(const MEM *a)
330 {
331 unsigned long ret;

333 ret=(unsigned long)a->addr;

335 ret=ret*17851+(ret>>14)*7+(ret>>4)*251;
336 return(ret);
337 }
338 static IMPLEMENT_LHASH_HASH_FN(mem, MEM)

340 /* static int app_info_cmp(APP_INFO *a, APP_INFO *b) */
341 static int app_info_cmp(const void *a_void, const void *b_void)
342 {
343 return CRYPTO_THREADID_cmp(&((const APP_INFO *)a_void)->threadid,
344 &((const APP_INFO *)b_void)->threadid);
345 }
346 static IMPLEMENT_LHASH_COMP_FN(app_info, APP_INFO)

348 static unsigned long app_info_hash(const APP_INFO *a)
349 {
350 unsigned long ret;

352 ret = CRYPTO_THREADID_hash(&a->threadid);
353 /* This is left in as a "who am I to question legacy?" measure */
354 ret=ret*17851+(ret>>14)*7+(ret>>4)*251;
355 return(ret);
356 }
357 static IMPLEMENT_LHASH_HASH_FN(app_info, APP_INFO)

359 static APP_INFO *pop_info(void)
360 {
361 APP_INFO tmp;
362 APP_INFO *ret = NULL;

364 if (amih != NULL)
365 {
366 CRYPTO_THREADID_current(&tmp.threadid);
367 if ((ret=lh_APP_INFO_delete(amih,&tmp)) != NULL)
368 {
369 APP_INFO *next=ret->next;

371 if (next != NULL)
372 {
373 next->references++;
374 (void)lh_APP_INFO_insert(amih,next);
375 }
376 #ifdef LEVITTE_DEBUG_MEM
377 if (CRYPTO_THREADID_cmp(&ret->threadid, &tmp.threadid))
378 {
379 fprintf(stderr, "pop_info(): deleted info has ot
380 CRYPTO_THREADID_hash(&ret->threadid),
381 CRYPTO_THREADID_hash(&tmp.threadid));
382 abort();
383 }
384 #endif
385 if (--(ret->references) <= 0)
386 {
387 ret->next = NULL;
388 if (next != NULL)
389 next->references--;
390 OPENSSL_free(ret);
391 }

new/usr/src/lib/openssl/libsunw_crypto/mem_dbg.c 7

392 }
393 }
394 return(ret);
395 }

397 int CRYPTO_push_info_(const char *info, const char *file, int line)
398 {
399 APP_INFO *ami, *amim;
400 int ret=0;

402 if (is_MemCheck_on())
403 {
404 MemCheck_off(); /* obtain MALLOC2 lock */

406 if ((ami = (APP_INFO *)OPENSSL_malloc(sizeof(APP_INFO))) == NULL
407 {
408 ret=0;
409 goto err;
410 }
411 if (amih == NULL)
412 {
413 if ((amih=lh_APP_INFO_new()) == NULL)
414 {
415 OPENSSL_free(ami);
416 ret=0;
417 goto err;
418 }
419 }

421 CRYPTO_THREADID_current(&ami->threadid);
422 ami->file=file;
423 ami->line=line;
424 ami->info=info;
425 ami->references=1;
426 ami->next=NULL;

428 if ((amim=lh_APP_INFO_insert(amih,ami)) != NULL)
429 {
430 #ifdef LEVITTE_DEBUG_MEM
431 if (CRYPTO_THREADID_cmp(&ami->threadid, &amim->threadid)
432 {
433 fprintf(stderr, "CRYPTO_push_info(): previous in
434 CRYPTO_THREADID_hash(&amim->threadid),
435 CRYPTO_THREADID_hash(&ami->threadid));
436 abort();
437 }
438 #endif
439 ami->next=amim;
440 }
441 err:
442 MemCheck_on(); /* release MALLOC2 lock */
443 }

445 return(ret);
446 }

448 int CRYPTO_pop_info(void)
449 {
450 int ret=0;

452 if (is_MemCheck_on()) /* _must_ be true, or something went severely wron
453 {
454 MemCheck_off(); /* obtain MALLOC2 lock */

456 ret=(pop_info() != NULL);

new/usr/src/lib/openssl/libsunw_crypto/mem_dbg.c 8

458 MemCheck_on(); /* release MALLOC2 lock */
459 }
460 return(ret);
461 }

463 int CRYPTO_remove_all_info(void)
464 {
465 int ret=0;

467 if (is_MemCheck_on()) /* _must_ be true */
468 {
469 MemCheck_off(); /* obtain MALLOC2 lock */

471 while(pop_info() != NULL)
472 ret++;

474 MemCheck_on(); /* release MALLOC2 lock */
475 }
476 return(ret);
477 }

480 static unsigned long break_order_num=0;
481 void CRYPTO_dbg_malloc(void *addr, int num, const char *file, int line,
482 int before_p)
483 {
484 MEM *m,*mm;
485 APP_INFO tmp,*amim;

487 switch(before_p & 127)
488 {
489 case 0:
490 break;
491 case 1:
492 if (addr == NULL)
493 break;

495 if (is_MemCheck_on())
496 {
497 MemCheck_off(); /* make sure we hold MALLOC2 lock */
498 if ((m=(MEM *)OPENSSL_malloc(sizeof(MEM))) == NULL)
499 {
500 OPENSSL_free(addr);
501 MemCheck_on(); /* release MALLOC2 lock
502 * if num_disabled drops to 0 */
503 return;
504 }
505 if (mh == NULL)
506 {
507 if ((mh=lh_MEM_new()) == NULL)
508 {
509 OPENSSL_free(addr);
510 OPENSSL_free(m);
511 addr=NULL;
512 goto err;
513 }
514 }

516 m->addr=addr;
517 m->file=file;
518 m->line=line;
519 m->num=num;
520 if (options & V_CRYPTO_MDEBUG_THREAD)
521 CRYPTO_THREADID_current(&m->threadid);
522 else
523 memset(&m->threadid, 0, sizeof(m->threadid));

new/usr/src/lib/openssl/libsunw_crypto/mem_dbg.c 9

525 if (order == break_order_num)
526 {
527 /* BREAK HERE */
528 m->order=order;
529 }
530 m->order=order++;
531 #ifdef LEVITTE_DEBUG_MEM
532 fprintf(stderr, "LEVITTE_DEBUG_MEM: [%5ld] %c 0x%p (%d)\
533 m->order,
534 (before_p & 128) ? ’*’ : ’+’,
535 m->addr, m->num);
536 #endif
537 if (options & V_CRYPTO_MDEBUG_TIME)
538 m->time=time(NULL);
539 else
540 m->time=0;

542 CRYPTO_THREADID_current(&tmp.threadid);
543 m->app_info=NULL;
544 if (amih != NULL
545 && (amim=lh_APP_INFO_retrieve(amih,&tmp)) != NULL)
546 {
547 m->app_info = amim;
548 amim->references++;
549 }

551 if ((mm=lh_MEM_insert(mh, m)) != NULL)
552 {
553 /* Not good, but don’t sweat it */
554 if (mm->app_info != NULL)
555 {
556 mm->app_info->references--;
557 }
558 OPENSSL_free(mm);
559 }
560 err:
561 MemCheck_on(); /* release MALLOC2 lock
562 * if num_disabled drops to 0 */
563 }
564 break;
565 }
566 return;
567 }

569 void CRYPTO_dbg_free(void *addr, int before_p)
570 {
571 MEM m,*mp;

573 switch(before_p)
574 {
575 case 0:
576 if (addr == NULL)
577 break;

579 if (is_MemCheck_on() && (mh != NULL))
580 {
581 MemCheck_off(); /* make sure we hold MALLOC2 lock */

583 m.addr=addr;
584 mp=lh_MEM_delete(mh,&m);
585 if (mp != NULL)
586 {
587 #ifdef LEVITTE_DEBUG_MEM
588 fprintf(stderr, "LEVITTE_DEBUG_MEM: [%5ld] - 0x%p (%d)\n
589 mp->order, mp->addr, mp->num);

new/usr/src/lib/openssl/libsunw_crypto/mem_dbg.c 10

590 #endif
591 if (mp->app_info != NULL)
592 app_info_free(mp->app_info);
593 OPENSSL_free(mp);
594 }

596 MemCheck_on(); /* release MALLOC2 lock
597 * if num_disabled drops to 0 */
598 }
599 break;
600 case 1:
601 break;
602 }
603 }

605 void CRYPTO_dbg_realloc(void *addr1, void *addr2, int num,
606 const char *file, int line, int before_p)
607 {
608 MEM m,*mp;

610 #ifdef LEVITTE_DEBUG_MEM
611 fprintf(stderr, "LEVITTE_DEBUG_MEM: --> CRYPTO_dbg_malloc(addr1 = %p, ad
612 addr1, addr2, num, file, line, before_p);
613 #endif

615 switch(before_p)
616 {
617 case 0:
618 break;
619 case 1:
620 if (addr2 == NULL)
621 break;

623 if (addr1 == NULL)
624 {
625 CRYPTO_dbg_malloc(addr2, num, file, line, 128 | before_p
626 break;
627 }

629 if (is_MemCheck_on())
630 {
631 MemCheck_off(); /* make sure we hold MALLOC2 lock */

633 m.addr=addr1;
634 mp=lh_MEM_delete(mh,&m);
635 if (mp != NULL)
636 {
637 #ifdef LEVITTE_DEBUG_MEM
638 fprintf(stderr, "LEVITTE_DEBUG_MEM: [%5ld] * 0x%
639 mp->order,
640 mp->addr, mp->num,
641 addr2, num);
642 #endif
643 mp->addr=addr2;
644 mp->num=num;
645 (void)lh_MEM_insert(mh,mp);
646 }

648 MemCheck_on(); /* release MALLOC2 lock
649 * if num_disabled drops to 0 */
650 }
651 break;
652 }
653 return;
654 }

new/usr/src/lib/openssl/libsunw_crypto/mem_dbg.c 11

657 typedef struct mem_leak_st
658 {
659 BIO *bio;
660 int chunks;
661 long bytes;
662 } MEM_LEAK;

664 static void print_leak_doall_arg(const MEM *m, MEM_LEAK *l)
665 {
666 char buf[1024];
667 char *bufp = buf;
668 APP_INFO *amip;
669 int ami_cnt;
670 struct tm *lcl = NULL;
671 CRYPTO_THREADID ti;

673 #define BUF_REMAIN (sizeof buf - (size_t)(bufp - buf))

675 if(m->addr == (char *)l->bio)
676 return;

678 if (options & V_CRYPTO_MDEBUG_TIME)
679 {
680 lcl = localtime(&m->time);
681
682 BIO_snprintf(bufp, BUF_REMAIN, "[%02d:%02d:%02d] ",
683 lcl->tm_hour,lcl->tm_min,lcl->tm_sec);
684 bufp += strlen(bufp);
685 }

687 BIO_snprintf(bufp, BUF_REMAIN, "%5lu file=%s, line=%d, ",
688 m->order,m->file,m->line);
689 bufp += strlen(bufp);

691 if (options & V_CRYPTO_MDEBUG_THREAD)
692 {
693 BIO_snprintf(bufp, BUF_REMAIN, "thread=%lu, ",
694 CRYPTO_THREADID_hash(&m->threadid));
695 bufp += strlen(bufp);
696 }

698 BIO_snprintf(bufp, BUF_REMAIN, "number=%d, address=%08lX\n",
699 m->num,(unsigned long)m->addr);
700 bufp += strlen(bufp);

702 BIO_puts(l->bio,buf);
703
704 l->chunks++;
705 l->bytes+=m->num;

707 amip=m->app_info;
708 ami_cnt=0;
709 if (!amip)
710 return;
711 CRYPTO_THREADID_cpy(&ti, &amip->threadid);

713 do
714 {
715 int buf_len;
716 int info_len;

718 ami_cnt++;
719 memset(buf,’>’,ami_cnt);
720 BIO_snprintf(buf + ami_cnt, sizeof buf - ami_cnt,
721 " thread=%lu, file=%s, line=%d, info=\"",

new/usr/src/lib/openssl/libsunw_crypto/mem_dbg.c 12

722 CRYPTO_THREADID_hash(&amip->threadid), amip->file,
723 amip->line);
724 buf_len=strlen(buf);
725 info_len=strlen(amip->info);
726 if (128 - buf_len - 3 < info_len)
727 {
728 memcpy(buf + buf_len, amip->info, 128 - buf_len - 3);
729 buf_len = 128 - 3;
730 }
731 else
732 {
733 BUF_strlcpy(buf + buf_len, amip->info,
734 sizeof buf - buf_len);
735 buf_len = strlen(buf);
736 }
737 BIO_snprintf(buf + buf_len, sizeof buf - buf_len, "\"\n");
738
739 BIO_puts(l->bio,buf);

741 amip = amip->next;
742 }
743 while(amip && !CRYPTO_THREADID_cmp(&amip->threadid, &ti));

745 #ifdef LEVITTE_DEBUG_MEM
746 if (amip)
747 {
748 fprintf(stderr, "Thread switch detected in backtrace!!!!\n");
749 abort();
750 }
751 #endif
752 }

754 static IMPLEMENT_LHASH_DOALL_ARG_FN(print_leak, const MEM, MEM_LEAK)

756 void CRYPTO_mem_leaks(BIO *b)
757 {
758 MEM_LEAK ml;

760 if (mh == NULL && amih == NULL)
761 return;

763 MemCheck_off(); /* obtain MALLOC2 lock */

765 ml.bio=b;
766 ml.bytes=0;
767 ml.chunks=0;
768 if (mh != NULL)
769 lh_MEM_doall_arg(mh, LHASH_DOALL_ARG_FN(print_leak), MEM_LEAK,
770 &ml);
771 if (ml.chunks != 0)
772 {
773 BIO_printf(b,"%ld bytes leaked in %d chunks\n",
774 ml.bytes,ml.chunks);
775 #ifdef CRYPTO_MDEBUG_ABORT
776 abort();
777 #endif
778 }
779 else
780 {
781 /* Make sure that, if we found no leaks, memory-leak debugging i
782 * does not introduce memory leaks (which might irritate
783 * external debugging tools).
784 * (When someone enables leak checking, but does not call
785 * this function, we declare it to be their fault.)
786 *
787 * XXX This should be in CRYPTO_mem_leaks_cb,

new/usr/src/lib/openssl/libsunw_crypto/mem_dbg.c 13

788 * and CRYPTO_mem_leaks should be implemented by
789 * using CRYPTO_mem_leaks_cb.
790 * (Also there should be a variant of lh_doall_arg
791 * that takes a function pointer instead of a void *;
792 * this would obviate the ugly and illegal
793 * void_fn_to_char kludge in CRYPTO_mem_leaks_cb.
794 * Otherwise the code police will come and get us.)
795 */
796 int old_mh_mode;

798 CRYPTO_w_lock(CRYPTO_LOCK_MALLOC);

800 /* avoid deadlock when lh_free() uses CRYPTO_dbg_free(),
801 * which uses CRYPTO_is_mem_check_on */
802 old_mh_mode = mh_mode;
803 mh_mode = CRYPTO_MEM_CHECK_OFF;

805 if (mh != NULL)
806 {
807 lh_MEM_free(mh);
808 mh = NULL;
809 }
810 if (amih != NULL)
811 {
812 if (lh_APP_INFO_num_items(amih) == 0)
813 {
814 lh_APP_INFO_free(amih);
815 amih = NULL;
816 }
817 }

819 mh_mode = old_mh_mode;
820 CRYPTO_w_unlock(CRYPTO_LOCK_MALLOC);
821 }
822 MemCheck_on(); /* release MALLOC2 lock */
823 }

825 #ifndef OPENSSL_NO_FP_API
826 void CRYPTO_mem_leaks_fp(FILE *fp)
827 {
828 BIO *b;

830 if (mh == NULL) return;
831 /* Need to turn off memory checking when allocated BIOs ... especially
832 * as we’re creating them at a time when we’re trying to check we’ve not
833 * left anything un-free()’d!! */
834 MemCheck_off();
835 b = BIO_new(BIO_s_file());
836 MemCheck_on();
837 if(!b) return;
838 BIO_set_fp(b,fp,BIO_NOCLOSE);
839 CRYPTO_mem_leaks(b);
840 BIO_free(b);
841 }
842 #endif

846 /* FIXME: We really don’t allow much to the callback. For example, it has
847 no chance of reaching the info stack for the item it processes. Should
848 it really be this way? -- Richard Levitte */
849 /* NB: The prototypes have been typedef’d to CRYPTO_MEM_LEAK_CB inside crypto.h
850 * If this code is restructured, remove the callback type if it is no longer
851 * needed. -- Geoff Thorpe */

853 /* Can’t pass CRYPTO_MEM_LEAK_CB directly to lh_MEM_doall_arg because it

new/usr/src/lib/openssl/libsunw_crypto/mem_dbg.c 14

854 * is a function pointer and conversion to void * is prohibited. Instead
855 * pass its address
856 */

858 typedef CRYPTO_MEM_LEAK_CB *PCRYPTO_MEM_LEAK_CB;

860 static void cb_leak_doall_arg(const MEM *m, PCRYPTO_MEM_LEAK_CB *cb)
861 {
862 (*cb)(m->order,m->file,m->line,m->num,m->addr);
863 }

865 static IMPLEMENT_LHASH_DOALL_ARG_FN(cb_leak, const MEM, PCRYPTO_MEM_LEAK_CB)

867 void CRYPTO_mem_leaks_cb(CRYPTO_MEM_LEAK_CB *cb)
868 {
869 if (mh == NULL) return;
870 CRYPTO_w_lock(CRYPTO_LOCK_MALLOC2);
871 lh_MEM_doall_arg(mh, LHASH_DOALL_ARG_FN(cb_leak), PCRYPTO_MEM_LEAK_CB,
872 &cb);
873 CRYPTO_w_unlock(CRYPTO_LOCK_MALLOC2);
874 }

new/usr/src/lib/openssl/libsunw_crypto/modes/cbc128.c 1

**
 5591 Fri May 30 18:31:56 2014
new/usr/src/lib/openssl/libsunw_crypto/modes/cbc128.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 */

51 #include <openssl/crypto.h>
52 #include "modes_lcl.h"
53 #include <string.h>

55 #ifndef MODES_DEBUG
56 # ifndef NDEBUG
57 # define NDEBUG
58 # endif
59 #endif
60 #include <assert.h>

new/usr/src/lib/openssl/libsunw_crypto/modes/cbc128.c 2

62 #ifndef STRICT_ALIGNMENT
63 # define STRICT_ALIGNMENT 0
64 #endif

66 void CRYPTO_cbc128_encrypt(const unsigned char *in, unsigned char *out,
67 size_t len, const void *key,
68 unsigned char ivec[16], block128_f block)
69 {
70 size_t n;
71 const unsigned char *iv = ivec;

73 assert(in && out && key && ivec);

75 #if !defined(OPENSSL_SMALL_FOOTPRINT)
76 if (STRICT_ALIGNMENT &&
77 ((size_t)in|(size_t)out|(size_t)ivec)%sizeof(size_t) != 0) {
78 while (len>=16) {
79 for(n=0; n<16; ++n)
80 out[n] = in[n] ^ iv[n];
81 (*block)(out, out, key);
82 iv = out;
83 len -= 16;
84 in += 16;
85 out += 16;
86 }
87 } else {
88 while (len>=16) {
89 for(n=0; n<16; n+=sizeof(size_t))
90 *(size_t*)(out+n) =
91 *(size_t*)(in+n) ^ *(size_t*)(iv+n);
92 (*block)(out, out, key);
93 iv = out;
94 len -= 16;
95 in += 16;
96 out += 16;
97 }
98 }
99 #endif
100 while (len) {
101 for(n=0; n<16 && n<len; ++n)
102 out[n] = in[n] ^ iv[n];
103 for(; n<16; ++n)
104 out[n] = iv[n];
105 (*block)(out, out, key);
106 iv = out;
107 if (len<=16) break;
108 len -= 16;
109 in += 16;
110 out += 16;
111 }
112 memcpy(ivec,iv,16);
113 }

115 void CRYPTO_cbc128_decrypt(const unsigned char *in, unsigned char *out,
116 size_t len, const void *key,
117 unsigned char ivec[16], block128_f block)
118 {
119 size_t n;
120 union { size_t t[16/sizeof(size_t)]; unsigned char c[16]; } tmp;

122 assert(in && out && key && ivec);

124 #if !defined(OPENSSL_SMALL_FOOTPRINT)
125 if (in != out) {
126 const unsigned char *iv = ivec;

new/usr/src/lib/openssl/libsunw_crypto/modes/cbc128.c 3

128 if (STRICT_ALIGNMENT &&
129 ((size_t)in|(size_t)out|(size_t)ivec)%sizeof(size_t) != 0) {
130 while (len>=16) {
131 (*block)(in, out, key);
132 for(n=0; n<16; ++n)
133 out[n] ^= iv[n];
134 iv = in;
135 len -= 16;
136 in += 16;
137 out += 16;
138 }
139 }
140 else if (16%sizeof(size_t) == 0) { /* always true */
141 while (len>=16) {
142 size_t *out_t=(size_t *)out, *iv_t=(size_t *)iv;

144 (*block)(in, out, key);
145 for(n=0; n<16/sizeof(size_t); n++)
146 out_t[n] ^= iv_t[n];
147 iv = in;
148 len -= 16;
149 in += 16;
150 out += 16;
151 }
152 }
153 memcpy(ivec,iv,16);
154 } else {
155 if (STRICT_ALIGNMENT &&
156 ((size_t)in|(size_t)out|(size_t)ivec)%sizeof(size_t) != 0) {
157 unsigned char c;
158 while (len>=16) {
159 (*block)(in, tmp.c, key);
160 for(n=0; n<16; ++n) {
161 c = in[n];
162 out[n] = tmp.c[n] ^ ivec[n];
163 ivec[n] = c;
164 }
165 len -= 16;
166 in += 16;
167 out += 16;
168 }
169 }
170 else if (16%sizeof(size_t) == 0) { /* always true */
171 while (len>=16) {
172 size_t c, *out_t=(size_t *)out, *ivec_t=(size_t
173 const size_t *in_t=(const size_t *)in;

175 (*block)(in, tmp.c, key);
176 for(n=0; n<16/sizeof(size_t); n++) {
177 c = in_t[n];
178 out_t[n] = tmp.t[n] ^ ivec_t[n];
179 ivec_t[n] = c;
180 }
181 len -= 16;
182 in += 16;
183 out += 16;
184 }
185 }
186 }
187 #endif
188 while (len) {
189 unsigned char c;
190 (*block)(in, tmp.c, key);
191 for(n=0; n<16 && n<len; ++n) {
192 c = in[n];
193 out[n] = tmp.c[n] ^ ivec[n];

new/usr/src/lib/openssl/libsunw_crypto/modes/cbc128.c 4

194 ivec[n] = c;
195 }
196 if (len<=16) {
197 for (; n<16; ++n)
198 ivec[n] = in[n];
199 break;
200 }
201 len -= 16;
202 in += 16;
203 out += 16;
204 }
205 }

new/usr/src/lib/openssl/libsunw_crypto/modes/ccm128.c 1

**
 11636 Fri May 30 18:31:56 2014
new/usr/src/lib/openssl/libsunw_crypto/modes/ccm128.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2011 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 */

50 #include <openssl/crypto.h>
51 #include "modes_lcl.h"
52 #include <string.h>

54 #ifndef MODES_DEBUG
55 # ifndef NDEBUG
56 # define NDEBUG
57 # endif
58 #endif
59 #include <assert.h>

61 /* First you setup M and L parameters and pass the key schedule.

new/usr/src/lib/openssl/libsunw_crypto/modes/ccm128.c 2

62 * This is called once per session setup... */
63 void CRYPTO_ccm128_init(CCM128_CONTEXT *ctx,
64 unsigned int M,unsigned int L,void *key,block128_f block)
65 {
66 memset(ctx->nonce.c,0,sizeof(ctx->nonce.c));
67 ctx->nonce.c[0] = ((u8)(L-1)&7) | (u8)(((M-2)/2)&7)<<3;
68 ctx->blocks = 0;
69 ctx->block = block;
70 ctx->key = key;
71 }

73 /* !!! Following interfaces are to be called *once* per packet !!! */

75 /* Then you setup per-message nonce and pass the length of the message */
76 int CRYPTO_ccm128_setiv(CCM128_CONTEXT *ctx,
77 const unsigned char *nonce,size_t nlen,size_t mlen)
78 {
79 unsigned int L = ctx->nonce.c[0]&7; /* the L parameter */

81 if (nlen<(14-L)) return -1; /* nonce is too short */

83 if (sizeof(mlen)==8 && L>=3) {
84 ctx->nonce.c[8] = (u8)(mlen>>(56%(sizeof(mlen)*8)));
85 ctx->nonce.c[9] = (u8)(mlen>>(48%(sizeof(mlen)*8)));
86 ctx->nonce.c[10] = (u8)(mlen>>(40%(sizeof(mlen)*8)));
87 ctx->nonce.c[11] = (u8)(mlen>>(32%(sizeof(mlen)*8)));
88 }
89 else
90 ctx->nonce.u[1] = 0;

92 ctx->nonce.c[12] = (u8)(mlen>>24);
93 ctx->nonce.c[13] = (u8)(mlen>>16);
94 ctx->nonce.c[14] = (u8)(mlen>>8);
95 ctx->nonce.c[15] = (u8)mlen;

97 ctx->nonce.c[0] &= ~0x40; /* clear Adata flag */
98 memcpy(&ctx->nonce.c[1],nonce,14-L);

100 return 0;
101 }

103 /* Then you pass additional authentication data, this is optional */
104 void CRYPTO_ccm128_aad(CCM128_CONTEXT *ctx,
105 const unsigned char *aad,size_t alen)
106 { unsigned int i;
107 block128_f block = ctx->block;

109 if (alen==0) return;

111 ctx->nonce.c[0] |= 0x40; /* set Adata flag */
112 (*block)(ctx->nonce.c,ctx->cmac.c,ctx->key),
113 ctx->blocks++;

115 if (alen<(0x10000-0x100)) {
116 ctx->cmac.c[0] ^= (u8)(alen>>8);
117 ctx->cmac.c[1] ^= (u8)alen;
118 i=2;
119 }
120 else if (sizeof(alen)==8 && alen>=(size_t)1<<(32%(sizeof(alen)*8))) {
121 ctx->cmac.c[0] ^= 0xFF;
122 ctx->cmac.c[1] ^= 0xFF;
123 ctx->cmac.c[2] ^= (u8)(alen>>(56%(sizeof(alen)*8)));
124 ctx->cmac.c[3] ^= (u8)(alen>>(48%(sizeof(alen)*8)));
125 ctx->cmac.c[4] ^= (u8)(alen>>(40%(sizeof(alen)*8)));
126 ctx->cmac.c[5] ^= (u8)(alen>>(32%(sizeof(alen)*8)));
127 ctx->cmac.c[6] ^= (u8)(alen>>24);

new/usr/src/lib/openssl/libsunw_crypto/modes/ccm128.c 3

128 ctx->cmac.c[7] ^= (u8)(alen>>16);
129 ctx->cmac.c[8] ^= (u8)(alen>>8);
130 ctx->cmac.c[9] ^= (u8)alen;
131 i=10;
132 }
133 else {
134 ctx->cmac.c[0] ^= 0xFF;
135 ctx->cmac.c[1] ^= 0xFE;
136 ctx->cmac.c[2] ^= (u8)(alen>>24);
137 ctx->cmac.c[3] ^= (u8)(alen>>16);
138 ctx->cmac.c[4] ^= (u8)(alen>>8);
139 ctx->cmac.c[5] ^= (u8)alen;
140 i=6;
141 }

143 do {
144 for(;i<16 && alen;++i,++aad,--alen)
145 ctx->cmac.c[i] ^= *aad;
146 (*block)(ctx->cmac.c,ctx->cmac.c,ctx->key),
147 ctx->blocks++;
148 i=0;
149 } while (alen);
150 }

152 /* Finally you encrypt or decrypt the message */

154 /* counter part of nonce may not be larger than L*8 bits,
155 * L is not larger than 8, therefore 64-bit counter... */
156 static void ctr64_inc(unsigned char *counter) {
157 unsigned int n=8;
158 u8 c;

160 counter += 8;
161 do {
162 --n;
163 c = counter[n];
164 ++c;
165 counter[n] = c;
166 if (c) return;
167 } while (n);
168 }

170 int CRYPTO_ccm128_encrypt(CCM128_CONTEXT *ctx,
171 const unsigned char *inp, unsigned char *out,
172 size_t len)
173 {
174 size_t n;
175 unsigned int i,L;
176 unsigned char flags0 = ctx->nonce.c[0];
177 block128_f block = ctx->block;
178 void * key = ctx->key;
179 union { u64 u[2]; u8 c[16]; } scratch;

181 if (!(flags0&0x40))
182 (*block)(ctx->nonce.c,ctx->cmac.c,key),
183 ctx->blocks++;

185 ctx->nonce.c[0] = L = flags0&7;
186 for (n=0,i=15-L;i<15;++i) {
187 n |= ctx->nonce.c[i];
188 ctx->nonce.c[i]=0;
189 n <<= 8;
190 }
191 n |= ctx->nonce.c[15]; /* reconstructed length */
192 ctx->nonce.c[15]=1;

new/usr/src/lib/openssl/libsunw_crypto/modes/ccm128.c 4

194 if (n!=len) return -1; /* length mismatch */

196 ctx->blocks += ((len+15)>>3)|1;
197 if (ctx->blocks > (U64(1)<<61)) return -2; /* too much data */

199 while (len>=16) {
200 #if defined(STRICT_ALIGNMENT)
201 union { u64 u[2]; u8 c[16]; } temp;

203 memcpy (temp.c,inp,16);
204 ctx->cmac.u[0] ^= temp.u[0];
205 ctx->cmac.u[1] ^= temp.u[1];
206 #else
207 ctx->cmac.u[0] ^= ((u64*)inp)[0];
208 ctx->cmac.u[1] ^= ((u64*)inp)[1];
209 #endif
210 (*block)(ctx->cmac.c,ctx->cmac.c,key);
211 (*block)(ctx->nonce.c,scratch.c,key);
212 ctr64_inc(ctx->nonce.c);
213 #if defined(STRICT_ALIGNMENT)
214 temp.u[0] ^= scratch.u[0];
215 temp.u[1] ^= scratch.u[1];
216 memcpy(out,temp.c,16);
217 #else
218 ((u64*)out)[0] = scratch.u[0]^((u64*)inp)[0];
219 ((u64*)out)[1] = scratch.u[1]^((u64*)inp)[1];
220 #endif
221 inp += 16;
222 out += 16;
223 len -= 16;
224 }

226 if (len) {
227 for (i=0; i<len; ++i) ctx->cmac.c[i] ^= inp[i];
228 (*block)(ctx->cmac.c,ctx->cmac.c,key);
229 (*block)(ctx->nonce.c,scratch.c,key);
230 for (i=0; i<len; ++i) out[i] = scratch.c[i]^inp[i];
231 }

233 for (i=15-L;i<16;++i)
234 ctx->nonce.c[i]=0;

236 (*block)(ctx->nonce.c,scratch.c,key);
237 ctx->cmac.u[0] ^= scratch.u[0];
238 ctx->cmac.u[1] ^= scratch.u[1];

240 ctx->nonce.c[0] = flags0;

242 return 0;
243 }

245 int CRYPTO_ccm128_decrypt(CCM128_CONTEXT *ctx,
246 const unsigned char *inp, unsigned char *out,
247 size_t len)
248 {
249 size_t n;
250 unsigned int i,L;
251 unsigned char flags0 = ctx->nonce.c[0];
252 block128_f block = ctx->block;
253 void * key = ctx->key;
254 union { u64 u[2]; u8 c[16]; } scratch;

256 if (!(flags0&0x40))
257 (*block)(ctx->nonce.c,ctx->cmac.c,key);

259 ctx->nonce.c[0] = L = flags0&7;

new/usr/src/lib/openssl/libsunw_crypto/modes/ccm128.c 5

260 for (n=0,i=15-L;i<15;++i) {
261 n |= ctx->nonce.c[i];
262 ctx->nonce.c[i]=0;
263 n <<= 8;
264 }
265 n |= ctx->nonce.c[15]; /* reconstructed length */
266 ctx->nonce.c[15]=1;

268 if (n!=len) return -1;

270 while (len>=16) {
271 #if defined(STRICT_ALIGNMENT)
272 union { u64 u[2]; u8 c[16]; } temp;
273 #endif
274 (*block)(ctx->nonce.c,scratch.c,key);
275 ctr64_inc(ctx->nonce.c);
276 #if defined(STRICT_ALIGNMENT)
277 memcpy (temp.c,inp,16);
278 ctx->cmac.u[0] ^= (scratch.u[0] ^= temp.u[0]);
279 ctx->cmac.u[1] ^= (scratch.u[1] ^= temp.u[1]);
280 memcpy (out,scratch.c,16);
281 #else
282 ctx->cmac.u[0] ^= (((u64*)out)[0] = scratch.u[0]^((u64*)inp)[0])
283 ctx->cmac.u[1] ^= (((u64*)out)[1] = scratch.u[1]^((u64*)inp)[1])
284 #endif
285 (*block)(ctx->cmac.c,ctx->cmac.c,key);

287 inp += 16;
288 out += 16;
289 len -= 16;
290 }

292 if (len) {
293 (*block)(ctx->nonce.c,scratch.c,key);
294 for (i=0; i<len; ++i)
295 ctx->cmac.c[i] ^= (out[i] = scratch.c[i]^inp[i]);
296 (*block)(ctx->cmac.c,ctx->cmac.c,key);
297 }

299 for (i=15-L;i<16;++i)
300 ctx->nonce.c[i]=0;

302 (*block)(ctx->nonce.c,scratch.c,key);
303 ctx->cmac.u[0] ^= scratch.u[0];
304 ctx->cmac.u[1] ^= scratch.u[1];

306 ctx->nonce.c[0] = flags0;

308 return 0;
309 }

311 static void ctr64_add (unsigned char *counter,size_t inc)
312 { size_t n=8, val=0;

314 counter += 8;
315 do {
316 --n;
317 val += counter[n] + (inc&0xff);
318 counter[n] = (unsigned char)val;
319 val >>= 8; /* carry bit */
320 inc >>= 8;
321 } while(n && (inc || val));
322 }

324 int CRYPTO_ccm128_encrypt_ccm64(CCM128_CONTEXT *ctx,
325 const unsigned char *inp, unsigned char *out,

new/usr/src/lib/openssl/libsunw_crypto/modes/ccm128.c 6

326 size_t len,ccm128_f stream)
327 {
328 size_t n;
329 unsigned int i,L;
330 unsigned char flags0 = ctx->nonce.c[0];
331 block128_f block = ctx->block;
332 void * key = ctx->key;
333 union { u64 u[2]; u8 c[16]; } scratch;

335 if (!(flags0&0x40))
336 (*block)(ctx->nonce.c,ctx->cmac.c,key),
337 ctx->blocks++;

339 ctx->nonce.c[0] = L = flags0&7;
340 for (n=0,i=15-L;i<15;++i) {
341 n |= ctx->nonce.c[i];
342 ctx->nonce.c[i]=0;
343 n <<= 8;
344 }
345 n |= ctx->nonce.c[15]; /* reconstructed length */
346 ctx->nonce.c[15]=1;

348 if (n!=len) return -1; /* length mismatch */

350 ctx->blocks += ((len+15)>>3)|1;
351 if (ctx->blocks > (U64(1)<<61)) return -2; /* too much data */

353 if ((n=len/16)) {
354 (*stream)(inp,out,n,key,ctx->nonce.c,ctx->cmac.c);
355 n *= 16;
356 inp += n;
357 out += n;
358 len -= n;
359 if (len) ctr64_add(ctx->nonce.c,n/16);
360 }

362 if (len) {
363 for (i=0; i<len; ++i) ctx->cmac.c[i] ^= inp[i];
364 (*block)(ctx->cmac.c,ctx->cmac.c,key);
365 (*block)(ctx->nonce.c,scratch.c,key);
366 for (i=0; i<len; ++i) out[i] = scratch.c[i]^inp[i];
367 }

369 for (i=15-L;i<16;++i)
370 ctx->nonce.c[i]=0;

372 (*block)(ctx->nonce.c,scratch.c,key);
373 ctx->cmac.u[0] ^= scratch.u[0];
374 ctx->cmac.u[1] ^= scratch.u[1];

376 ctx->nonce.c[0] = flags0;

378 return 0;
379 }

381 int CRYPTO_ccm128_decrypt_ccm64(CCM128_CONTEXT *ctx,
382 const unsigned char *inp, unsigned char *out,
383 size_t len,ccm128_f stream)
384 {
385 size_t n;
386 unsigned int i,L;
387 unsigned char flags0 = ctx->nonce.c[0];
388 block128_f block = ctx->block;
389 void * key = ctx->key;
390 union { u64 u[2]; u8 c[16]; } scratch;

new/usr/src/lib/openssl/libsunw_crypto/modes/ccm128.c 7

392 if (!(flags0&0x40))
393 (*block)(ctx->nonce.c,ctx->cmac.c,key);

395 ctx->nonce.c[0] = L = flags0&7;
396 for (n=0,i=15-L;i<15;++i) {
397 n |= ctx->nonce.c[i];
398 ctx->nonce.c[i]=0;
399 n <<= 8;
400 }
401 n |= ctx->nonce.c[15]; /* reconstructed length */
402 ctx->nonce.c[15]=1;

404 if (n!=len) return -1;

406 if ((n=len/16)) {
407 (*stream)(inp,out,n,key,ctx->nonce.c,ctx->cmac.c);
408 n *= 16;
409 inp += n;
410 out += n;
411 len -= n;
412 if (len) ctr64_add(ctx->nonce.c,n/16);
413 }

415 if (len) {
416 (*block)(ctx->nonce.c,scratch.c,key);
417 for (i=0; i<len; ++i)
418 ctx->cmac.c[i] ^= (out[i] = scratch.c[i]^inp[i]);
419 (*block)(ctx->cmac.c,ctx->cmac.c,key);
420 }

422 for (i=15-L;i<16;++i)
423 ctx->nonce.c[i]=0;

425 (*block)(ctx->nonce.c,scratch.c,key);
426 ctx->cmac.u[0] ^= scratch.u[0];
427 ctx->cmac.u[1] ^= scratch.u[1];

429 ctx->nonce.c[0] = flags0;

431 return 0;
432 }

434 size_t CRYPTO_ccm128_tag(CCM128_CONTEXT *ctx,unsigned char *tag,size_t len)
435 { unsigned int M = (ctx->nonce.c[0]>>3)&7; /* the M parameter */

437 M *= 2; M += 2;
438 if (len<M) return 0;
439 memcpy(tag,ctx->cmac.c,M);
440 return M;
441 }

new/usr/src/lib/openssl/libsunw_crypto/modes/cfb128.c 1

**
 7039 Fri May 30 18:31:56 2014
new/usr/src/lib/openssl/libsunw_crypto/modes/cfb128.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 */

51 #include <openssl/crypto.h>
52 #include "modes_lcl.h"
53 #include <string.h>

55 #ifndef MODES_DEBUG
56 # ifndef NDEBUG
57 # define NDEBUG
58 # endif
59 #endif
60 #include <assert.h>

new/usr/src/lib/openssl/libsunw_crypto/modes/cfb128.c 2

62 /* The input and output encrypted as though 128bit cfb mode is being
63 * used. The extra state information to record how much of the
64 * 128bit block we have used is contained in *num;
65 */
66 void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out,
67 size_t len, const void *key,
68 unsigned char ivec[16], int *num,
69 int enc, block128_f block)
70 {
71 unsigned int n;
72 size_t l = 0;

74 assert(in && out && key && ivec && num);

76 n = *num;

78 if (enc) {
79 #if !defined(OPENSSL_SMALL_FOOTPRINT)
80 if (16%sizeof(size_t) == 0) do { /* always true actually */
81 while (n && len) {
82 *(out++) = ivec[n] ^= *(in++);
83 --len;
84 n = (n+1) % 16;
85 }
86 #if defined(STRICT_ALIGNMENT)
87 if (((size_t)in|(size_t)out|(size_t)ivec)%sizeof(size_t) != 0)
88 break;
89 #endif
90 while (len>=16) {
91 (*block)(ivec, ivec, key);
92 for (; n<16; n+=sizeof(size_t)) {
93 *(size_t*)(out+n) =
94 *(size_t*)(ivec+n) ^= *(size_t*)(in+n);
95 }
96 len -= 16;
97 out += 16;
98 in += 16;
99 n = 0;
100 }
101 if (len) {
102 (*block)(ivec, ivec, key);
103 while (len--) {
104 out[n] = ivec[n] ^= in[n];
105 ++n;
106 }
107 }
108 *num = n;
109 return;
110 } while (0);
111 /* the rest would be commonly eliminated by x86* compiler */
112 #endif
113 while (l<len) {
114 if (n == 0) {
115 (*block)(ivec, ivec, key);
116 }
117 out[l] = ivec[n] ^= in[l];
118 ++l;
119 n = (n+1) % 16;
120 }
121 *num = n;
122 } else {
123 #if !defined(OPENSSL_SMALL_FOOTPRINT)
124 if (16%sizeof(size_t) == 0) do { /* always true actually */
125 while (n && len) {
126 unsigned char c;
127 *(out++) = ivec[n] ^ (c = *(in++)); ivec[n] = c;

new/usr/src/lib/openssl/libsunw_crypto/modes/cfb128.c 3

128 --len;
129 n = (n+1) % 16;
130 }
131 #if defined(STRICT_ALIGNMENT)
132 if (((size_t)in|(size_t)out|(size_t)ivec)%sizeof(size_t) != 0)
133 break;
134 #endif
135 while (len>=16) {
136 (*block)(ivec, ivec, key);
137 for (; n<16; n+=sizeof(size_t)) {
138 size_t t = *(size_t*)(in+n);
139 *(size_t*)(out+n) = *(size_t*)(ivec+n) ^ t;
140 *(size_t*)(ivec+n) = t;
141 }
142 len -= 16;
143 out += 16;
144 in += 16;
145 n = 0;
146 }
147 if (len) {
148 (*block)(ivec, ivec, key);
149 while (len--) {
150 unsigned char c;
151 out[n] = ivec[n] ^ (c = in[n]); ivec[n] = c;
152 ++n;
153 }
154 }
155 *num = n;
156 return;
157 } while (0);
158 /* the rest would be commonly eliminated by x86* compiler */
159 #endif
160 while (l<len) {
161 unsigned char c;
162 if (n == 0) {
163 (*block)(ivec, ivec, key);
164 }
165 out[l] = ivec[n] ^ (c = in[l]); ivec[n] = c;
166 ++l;
167 n = (n+1) % 16;
168 }
169 *num=n;
170 }
171 }

173 /* This expects a single block of size nbits for both in and out. Note that
174 it corrupts any extra bits in the last byte of out */
175 static void cfbr_encrypt_block(const unsigned char *in,unsigned char *out,
176 int nbits,const void *key,
177 unsigned char ivec[16],int enc,
178 block128_f block)
179 {
180 int n,rem,num;
181 unsigned char ovec[16*2 + 1]; /* +1 because we dererefence (but don’t use)

183 if (nbits<=0 || nbits>128) return;

185 /* fill in the first half of the new IV with the current IV */
186 memcpy(ovec,ivec,16);
187 /* construct the new IV */
188 (*block)(ivec,ivec,key);
189 num = (nbits+7)/8;
190 if (enc) /* encrypt the input */
191 for(n=0 ; n < num ; ++n)
192 out[n] = (ovec[16+n] = in[n] ^ ivec[n]);
193 else /* decrypt the input */

new/usr/src/lib/openssl/libsunw_crypto/modes/cfb128.c 4

194 for(n=0 ; n < num ; ++n)
195 out[n] = (ovec[16+n] = in[n]) ^ ivec[n];
196 /* shift ovec left... */
197 rem = nbits%8;
198 num = nbits/8;
199 if(rem==0)
200 memcpy(ivec,ovec+num,16);
201 else
202 for(n=0 ; n < 16 ; ++n)
203 ivec[n] = ovec[n+num]<<rem | ovec[n+num+1]>>(8-rem);

205 /* it is not necessary to cleanse ovec, since the IV is not secret */
206 }

208 /* N.B. This expects the input to be packed, MS bit first */
209 void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out,
210 size_t bits, const void *key,
211 unsigned char ivec[16], int *num,
212 int enc, block128_f block)
213 {
214 size_t n;
215 unsigned char c[1],d[1];

217 assert(in && out && key && ivec && num);
218 assert(*num == 0);

220 for(n=0 ; n<bits ; ++n)
221 {
222 c[0]=(in[n/8]&(1 << (7-n%8))) ? 0x80 : 0;
223 cfbr_encrypt_block(c,d,1,key,ivec,enc,block);
224 out[n/8]=(out[n/8]&~(1 << (unsigned int)(7-n%8))) |
225 ((d[0]&0x80) >> (unsigned int)(n%8));
226 }
227 }

229 void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out,
230 size_t length, const void *key,
231 unsigned char ivec[16], int *num,
232 int enc, block128_f block)
233 {
234 size_t n;

236 assert(in && out && key && ivec && num);
237 assert(*num == 0);

239 for(n=0 ; n<length ; ++n)
240 cfbr_encrypt_block(&in[n],&out[n],8,key,ivec,enc,block);
241 }

new/usr/src/lib/openssl/libsunw_crypto/modes/ctr128.c 1

**
 6988 Fri May 30 18:31:56 2014
new/usr/src/lib/openssl/libsunw_crypto/modes/ctr128.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 */

51 #include <openssl/crypto.h>
52 #include "modes_lcl.h"
53 #include <string.h>

55 #ifndef MODES_DEBUG
56 # ifndef NDEBUG
57 # define NDEBUG
58 # endif
59 #endif
60 #include <assert.h>

new/usr/src/lib/openssl/libsunw_crypto/modes/ctr128.c 2

62 /* NOTE: the IV/counter CTR mode is big-endian. The code itself
63 * is endian-neutral. */

65 /* increment counter (128-bit int) by 1 */
66 static void ctr128_inc(unsigned char *counter) {
67 u32 n=16;
68 u8 c;

70 do {
71 --n;
72 c = counter[n];
73 ++c;
74 counter[n] = c;
75 if (c) return;
76 } while (n);
77 }

79 #if !defined(OPENSSL_SMALL_FOOTPRINT)
80 static void ctr128_inc_aligned(unsigned char *counter) {
81 size_t *data,c,n;
82 const union { long one; char little; } is_endian = {1};

84 if (is_endian.little) {
85 ctr128_inc(counter);
86 return;
87 }

89 data = (size_t *)counter;
90 n = 16/sizeof(size_t);
91 do {
92 --n;
93 c = data[n];
94 ++c;
95 data[n] = c;
96 if (c) return;
97 } while (n);
98 }
99 #endif

101 /* The input encrypted as though 128bit counter mode is being
102 * used. The extra state information to record how much of the
103 * 128bit block we have used is contained in *num, and the
104 * encrypted counter is kept in ecount_buf. Both *num and
105 * ecount_buf must be initialised with zeros before the first
106 * call to CRYPTO_ctr128_encrypt().
107 *
108 * This algorithm assumes that the counter is in the x lower bits
109 * of the IV (ivec), and that the application has full control over
110 * overflow and the rest of the IV. This implementation takes NO
111 * responsability for checking that the counter doesn’t overflow
112 * into the rest of the IV when incremented.
113 */
114 void CRYPTO_ctr128_encrypt(const unsigned char *in, unsigned char *out,
115 size_t len, const void *key,
116 unsigned char ivec[16], unsigned char ecount_buf[16],
117 unsigned int *num, block128_f block)
118 {
119 unsigned int n;
120 size_t l=0;

122 assert(in && out && key && ecount_buf && num);
123 assert(*num < 16);

125 n = *num;

127 #if !defined(OPENSSL_SMALL_FOOTPRINT)

new/usr/src/lib/openssl/libsunw_crypto/modes/ctr128.c 3

128 if (16%sizeof(size_t) == 0) do { /* always true actually */
129 while (n && len) {
130 *(out++) = *(in++) ^ ecount_buf[n];
131 --len;
132 n = (n+1) % 16;
133 }

135 #if defined(STRICT_ALIGNMENT)
136 if (((size_t)in|(size_t)out|(size_t)ivec)%sizeof(size_t) != 0)
137 break;
138 #endif
139 while (len>=16) {
140 (*block)(ivec, ecount_buf, key);
141 ctr128_inc_aligned(ivec);
142 for (; n<16; n+=sizeof(size_t))
143 *(size_t *)(out+n) =
144 *(size_t *)(in+n) ^ *(size_t *)(ecount_buf+n);
145 len -= 16;
146 out += 16;
147 in += 16;
148 n = 0;
149 }
150 if (len) {
151 (*block)(ivec, ecount_buf, key);
152 ctr128_inc_aligned(ivec);
153 while (len--) {
154 out[n] = in[n] ^ ecount_buf[n];
155 ++n;
156 }
157 }
158 *num = n;
159 return;
160 } while(0);
161 /* the rest would be commonly eliminated by x86* compiler */
162 #endif
163 while (l<len) {
164 if (n==0) {
165 (*block)(ivec, ecount_buf, key);
166 ctr128_inc(ivec);
167 }
168 out[l] = in[l] ^ ecount_buf[n];
169 ++l;
170 n = (n+1) % 16;
171 }

173 *num=n;
174 }

176 /* increment upper 96 bits of 128-bit counter by 1 */
177 static void ctr96_inc(unsigned char *counter) {
178 u32 n=12;
179 u8 c;

181 do {
182 --n;
183 c = counter[n];
184 ++c;
185 counter[n] = c;
186 if (c) return;
187 } while (n);
188 }

190 void CRYPTO_ctr128_encrypt_ctr32(const unsigned char *in, unsigned char *out,
191 size_t len, const void *key,
192 unsigned char ivec[16], unsigned char ecount_buf[16],
193 unsigned int *num, ctr128_f func)

new/usr/src/lib/openssl/libsunw_crypto/modes/ctr128.c 4

194 {
195 unsigned int n,ctr32;

197 assert(in && out && key && ecount_buf && num);
198 assert(*num < 16);

200 n = *num;

202 while (n && len) {
203 *(out++) = *(in++) ^ ecount_buf[n];
204 --len;
205 n = (n+1) % 16;
206 }

208 ctr32 = GETU32(ivec+12);
209 while (len>=16) {
210 size_t blocks = len/16;
211 /*
212 * 1<<28 is just a not-so-small yet not-so-large number...
213 * Below condition is practically never met, but it has to
214 * be checked for code correctness.
215 */
216 if (sizeof(size_t)>sizeof(unsigned int) && blocks>(1U<<28))
217 blocks = (1U<<28);
218 /*
219 * As (*func) operates on 32-bit counter, caller
220 * has to handle overflow. ’if’ below detects the
221 * overflow, which is then handled by limiting the
222 * amount of blocks to the exact overflow point...
223 */
224 ctr32 += (u32)blocks;
225 if (ctr32 < blocks) {
226 blocks -= ctr32;
227 ctr32 = 0;
228 }
229 (*func)(in,out,blocks,key,ivec);
230 /* (*ctr) does not update ivec, caller does: */
231 PUTU32(ivec+12,ctr32);
232 /* ... overflow was detected, propogate carry. */
233 if (ctr32 == 0) ctr96_inc(ivec);
234 blocks *= 16;
235 len -= blocks;
236 out += blocks;
237 in += blocks;
238 }
239 if (len) {
240 memset(ecount_buf,0,16);
241 (*func)(ecount_buf,ecount_buf,1,key,ivec);
242 ++ctr32;
243 PUTU32(ivec+12,ctr32);
244 if (ctr32 == 0) ctr96_inc(ivec);
245 while (len--) {
246 out[n] = in[n] ^ ecount_buf[n];
247 ++n;
248 }
249 }

251 *num=n;
252 }

new/usr/src/lib/openssl/libsunw_crypto/modes/cts128.c 1

**
 12796 Fri May 30 18:31:56 2014
new/usr/src/lib/openssl/libsunw_crypto/modes/cts128.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
3 *
4 * Rights for redistribution and usage in source and binary
5 * forms are granted according to the OpenSSL license.
6 */

8 #include <openssl/crypto.h>
9 #include "modes_lcl.h"
10 #include <string.h>

12 #ifndef MODES_DEBUG
13 # ifndef NDEBUG
14 # define NDEBUG
15 # endif
16 #endif
17 #include <assert.h>

19 /*
20 * Trouble with Ciphertext Stealing, CTS, mode is that there is no
21 * common official specification, but couple of cipher/application
22 * specific ones: RFC2040 and RFC3962. Then there is ’Proposal to
23 * Extend CBC Mode By "Ciphertext Stealing"’ at NIST site, which
24 * deviates from mentioned RFCs. Most notably it allows input to be
25 * of block length and it doesn’t flip the order of the last two
26 * blocks. CTS is being discussed even in ECB context, but it’s not
27 * adopted for any known application. This implementation provides
28 * two interfaces: one compliant with above mentioned RFCs and one
29 * compliant with the NIST proposal, both extending CBC mode.
30 */

32 size_t CRYPTO_cts128_encrypt_block(const unsigned char *in, unsigned char *out,
33 size_t len, const void *key,
34 unsigned char ivec[16], block128_f block)
35 { size_t residue, n;

37 assert (in && out && key && ivec);

39 if (len <= 16) return 0;

41 if ((residue=len%16) == 0) residue = 16;

43 len -= residue;

45 CRYPTO_cbc128_encrypt(in,out,len,key,ivec,block);

47 in += len;
48 out += len;

50 for (n=0; n<residue; ++n)
51 ivec[n] ^= in[n];
52 (*block)(ivec,ivec,key);
53 memcpy(out,out-16,residue);
54 memcpy(out-16,ivec,16);

56 return len+residue;
57 }

59 size_t CRYPTO_nistcts128_encrypt_block(const unsigned char *in, unsigned char *o
60 size_t len, const void *key,
61 unsigned char ivec[16], block128_f block)

new/usr/src/lib/openssl/libsunw_crypto/modes/cts128.c 2

62 { size_t residue, n;

64 assert (in && out && key && ivec);

66 if (len < 16) return 0;

68 residue=len%16;

70 len -= residue;

72 CRYPTO_cbc128_encrypt(in,out,len,key,ivec,block);

74 if (residue==0) return len;

76 in += len;
77 out += len;

79 for (n=0; n<residue; ++n)
80 ivec[n] ^= in[n];
81 (*block)(ivec,ivec,key);
82 memcpy(out-16+residue,ivec,16);

84 return len+residue;
85 }

87 size_t CRYPTO_cts128_encrypt(const unsigned char *in, unsigned char *out,
88 size_t len, const void *key,
89 unsigned char ivec[16], cbc128_f cbc)
90 { size_t residue;
91 union { size_t align; unsigned char c[16]; } tmp;

93 assert (in && out && key && ivec);

95 if (len <= 16) return 0;

97 if ((residue=len%16) == 0) residue = 16;

99 len -= residue;

101 (*cbc)(in,out,len,key,ivec,1);

103 in += len;
104 out += len;

106 #if defined(CBC_HANDLES_TRUNCATED_IO)
107 memcpy(tmp.c,out-16,16);
108 (*cbc)(in,out-16,residue,key,ivec,1);
109 memcpy(out,tmp.c,residue);
110 #else
111 memset(tmp.c,0,sizeof(tmp));
112 memcpy(tmp.c,in,residue);
113 memcpy(out,out-16,residue);
114 (*cbc)(tmp.c,out-16,16,key,ivec,1);
115 #endif
116 return len+residue;
117 }

119 size_t CRYPTO_nistcts128_encrypt(const unsigned char *in, unsigned char *out,
120 size_t len, const void *key,
121 unsigned char ivec[16], cbc128_f cbc)
122 { size_t residue;
123 union { size_t align; unsigned char c[16]; } tmp;

125 assert (in && out && key && ivec);

127 if (len < 16) return 0;

new/usr/src/lib/openssl/libsunw_crypto/modes/cts128.c 3

129 residue=len%16;

131 len -= residue;

133 (*cbc)(in,out,len,key,ivec,1);

135 if (residue==0) return len;

137 in += len;
138 out += len;

140 #if defined(CBC_HANDLES_TRUNCATED_IO)
141 (*cbc)(in,out-16+residue,residue,key,ivec,1);
142 #else
143 memset(tmp.c,0,sizeof(tmp));
144 memcpy(tmp.c,in,residue);
145 (*cbc)(tmp.c,out-16+residue,16,key,ivec,1);
146 #endif
147 return len+residue;
148 }

150 size_t CRYPTO_cts128_decrypt_block(const unsigned char *in, unsigned char *out,
151 size_t len, const void *key,
152 unsigned char ivec[16], block128_f block)
153 { size_t residue, n;
154 union { size_t align; unsigned char c[32]; } tmp;

156 assert (in && out && key && ivec);

158 if (len<=16) return 0;

160 if ((residue=len%16) == 0) residue = 16;

162 len -= 16+residue;

164 if (len) {
165 CRYPTO_cbc128_decrypt(in,out,len,key,ivec,block);
166 in += len;
167 out += len;
168 }

170 (*block)(in,tmp.c+16,key);

172 memcpy(tmp.c,tmp.c+16,16);
173 memcpy(tmp.c,in+16,residue);
174 (*block)(tmp.c,tmp.c,key);

176 for(n=0; n<16; ++n) {
177 unsigned char c = in[n];
178 out[n] = tmp.c[n] ^ ivec[n];
179 ivec[n] = c;
180 }
181 for(residue+=16; n<residue; ++n)
182 out[n] = tmp.c[n] ^ in[n];

184 return 16+len+residue;
185 }

187 size_t CRYPTO_nistcts128_decrypt_block(const unsigned char *in, unsigned char *o
188 size_t len, const void *key,
189 unsigned char ivec[16], block128_f block)
190 { size_t residue, n;
191 union { size_t align; unsigned char c[32]; } tmp;

193 assert (in && out && key && ivec);

new/usr/src/lib/openssl/libsunw_crypto/modes/cts128.c 4

195 if (len<16) return 0;

197 residue=len%16;

199 if (residue==0) {
200 CRYPTO_cbc128_decrypt(in,out,len,key,ivec,block);
201 return len;
202 }

204 len -= 16+residue;

206 if (len) {
207 CRYPTO_cbc128_decrypt(in,out,len,key,ivec,block);
208 in += len;
209 out += len;
210 }

212 (*block)(in+residue,tmp.c+16,key);

214 memcpy(tmp.c,tmp.c+16,16);
215 memcpy(tmp.c,in,residue);
216 (*block)(tmp.c,tmp.c,key);

218 for(n=0; n<16; ++n) {
219 unsigned char c = in[n];
220 out[n] = tmp.c[n] ^ ivec[n];
221 ivec[n] = in[n+residue];
222 tmp.c[n] = c;
223 }
224 for(residue+=16; n<residue; ++n)
225 out[n] = tmp.c[n] ^ tmp.c[n-16];

227 return 16+len+residue;
228 }

230 size_t CRYPTO_cts128_decrypt(const unsigned char *in, unsigned char *out,
231 size_t len, const void *key,
232 unsigned char ivec[16], cbc128_f cbc)
233 { size_t residue;
234 union { size_t align; unsigned char c[32]; } tmp;

236 assert (in && out && key && ivec);

238 if (len<=16) return 0;

240 if ((residue=len%16) == 0) residue = 16;

242 len -= 16+residue;

244 if (len) {
245 (*cbc)(in,out,len,key,ivec,0);
246 in += len;
247 out += len;
248 }

250 memset(tmp.c,0,sizeof(tmp));
251 /* this places in[16] at &tmp.c[16] and decrypted block at &tmp.c[0] */
252 (*cbc)(in,tmp.c,16,key,tmp.c+16,0);

254 memcpy(tmp.c,in+16,residue);
255 #if defined(CBC_HANDLES_TRUNCATED_IO)
256 (*cbc)(tmp.c,out,16+residue,key,ivec,0);
257 #else
258 (*cbc)(tmp.c,tmp.c,32,key,ivec,0);
259 memcpy(out,tmp.c,16+residue);

new/usr/src/lib/openssl/libsunw_crypto/modes/cts128.c 5

260 #endif
261 return 16+len+residue;
262 }

264 size_t CRYPTO_nistcts128_decrypt(const unsigned char *in, unsigned char *out,
265 size_t len, const void *key,
266 unsigned char ivec[16], cbc128_f cbc)
267 { size_t residue;
268 union { size_t align; unsigned char c[32]; } tmp;

270 assert (in && out && key && ivec);

272 if (len<16) return 0;

274 residue=len%16;

276 if (residue==0) {
277 (*cbc)(in,out,len,key,ivec,0);
278 return len;
279 }

281 len -= 16+residue;

283 if (len) {
284 (*cbc)(in,out,len,key,ivec,0);
285 in += len;
286 out += len;
287 }

289 memset(tmp.c,0,sizeof(tmp));
290 /* this places in[16] at &tmp.c[16] and decrypted block at &tmp.c[0] */
291 (*cbc)(in+residue,tmp.c,16,key,tmp.c+16,0);

293 memcpy(tmp.c,in,residue);
294 #if defined(CBC_HANDLES_TRUNCATED_IO)
295 (*cbc)(tmp.c,out,16+residue,key,ivec,0);
296 #else
297 (*cbc)(tmp.c,tmp.c,32,key,ivec,0);
298 memcpy(out,tmp.c,16+residue);
299 #endif
300 return 16+len+residue;
301 }

303 #if defined(SELFTEST)
304 #include <stdio.h>
305 #include <openssl/aes.h>

307 /* test vectors from RFC 3962 */
308 static const unsigned char test_key[16] = "chicken teriyaki";
309 static const unsigned char test_input[64] =
310 "I would like the" " General Gau’s C"
311 "hicken, please, " "and wonton soup.";
312 static const unsigned char test_iv[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

314 static const unsigned char vector_17[17] =
315 {0xc6,0x35,0x35,0x68,0xf2,0xbf,0x8c,0xb4, 0xd8,0xa5,0x80,0x36,0x2d,0xa7,0xff,0x7
316 0x97};
317 static const unsigned char vector_31[31] =
318 {0xfc,0x00,0x78,0x3e,0x0e,0xfd,0xb2,0xc1, 0xd4,0x45,0xd4,0xc8,0xef,0xf7,0xed,0x2
319 0x97,0x68,0x72,0x68,0xd6,0xec,0xcc,0xc0, 0xc0,0x7b,0x25,0xe2,0x5e,0xcf,0xe5};
320 static const unsigned char vector_32[32] =
321 {0x39,0x31,0x25,0x23,0xa7,0x86,0x62,0xd5, 0xbe,0x7f,0xcb,0xcc,0x98,0xeb,0xf5,0xa
322 0x97,0x68,0x72,0x68,0xd6,0xec,0xcc,0xc0, 0xc0,0x7b,0x25,0xe2,0x5e,0xcf,0xe5,0x8
323 static const unsigned char vector_47[47] =
324 {0x97,0x68,0x72,0x68,0xd6,0xec,0xcc,0xc0, 0xc0,0x7b,0x25,0xe2,0x5e,0xcf,0xe5,0x8
325 0xb3,0xff,0xfd,0x94,0x0c,0x16,0xa1,0x8c, 0x1b,0x55,0x49,0xd2,0xf8,0x38,0x02,0x9

new/usr/src/lib/openssl/libsunw_crypto/modes/cts128.c 6

326 0x39,0x31,0x25,0x23,0xa7,0x86,0x62,0xd5, 0xbe,0x7f,0xcb,0xcc,0x98,0xeb,0xf5};
327 static const unsigned char vector_48[48] =
328 {0x97,0x68,0x72,0x68,0xd6,0xec,0xcc,0xc0, 0xc0,0x7b,0x25,0xe2,0x5e,0xcf,0xe5,0x8
329 0x9d,0xad,0x8b,0xbb,0x96,0xc4,0xcd,0xc0, 0x3b,0xc1,0x03,0xe1,0xa1,0x94,0xbb,0xd
330 0x39,0x31,0x25,0x23,0xa7,0x86,0x62,0xd5, 0xbe,0x7f,0xcb,0xcc,0x98,0xeb,0xf5,0xa
331 static const unsigned char vector_64[64] =
332 {0x97,0x68,0x72,0x68,0xd6,0xec,0xcc,0xc0, 0xc0,0x7b,0x25,0xe2,0x5e,0xcf,0xe5,0x8
333 0x39,0x31,0x25,0x23,0xa7,0x86,0x62,0xd5, 0xbe,0x7f,0xcb,0xcc,0x98,0xeb,0xf5,0xa
334 0x48,0x07,0xef,0xe8,0x36,0xee,0x89,0xa5, 0x26,0x73,0x0d,0xbc,0x2f,0x7b,0xc8,0x4
335 0x9d,0xad,0x8b,0xbb,0x96,0xc4,0xcd,0xc0, 0x3b,0xc1,0x03,0xe1,0xa1,0x94,0xbb,0xd

337 static AES_KEY encks, decks;

339 void test_vector(const unsigned char *vector,size_t len)
340 { unsigned char iv[sizeof(test_iv)];
341 unsigned char cleartext[64],ciphertext[64];
342 size_t tail;

344 printf("vector_%d\n",len); fflush(stdout);

346 if ((tail=len%16) == 0) tail = 16;
347 tail += 16;

349 /* test block-based encryption */
350 memcpy(iv,test_iv,sizeof(test_iv));
351 CRYPTO_cts128_encrypt_block(test_input,ciphertext,len,&encks,iv,(block12
352 if (memcmp(ciphertext,vector,len))
353 fprintf(stderr,"output_%d mismatch\n",len), exit(1);
354 if (memcmp(iv,vector+len-tail,sizeof(iv)))
355 fprintf(stderr,"iv_%d mismatch\n",len), exit(1);

357 /* test block-based decryption */
358 memcpy(iv,test_iv,sizeof(test_iv));
359 CRYPTO_cts128_decrypt_block(ciphertext,cleartext,len,&decks,iv,(block128
360 if (memcmp(cleartext,test_input,len))
361 fprintf(stderr,"input_%d mismatch\n",len), exit(2);
362 if (memcmp(iv,vector+len-tail,sizeof(iv)))
363 fprintf(stderr,"iv_%d mismatch\n",len), exit(2);

365 /* test streamed encryption */
366 memcpy(iv,test_iv,sizeof(test_iv));
367 CRYPTO_cts128_encrypt(test_input,ciphertext,len,&encks,iv,(cbc128_f)AES_
368 if (memcmp(ciphertext,vector,len))
369 fprintf(stderr,"output_%d mismatch\n",len), exit(3);
370 if (memcmp(iv,vector+len-tail,sizeof(iv)))
371 fprintf(stderr,"iv_%d mismatch\n",len), exit(3);

373 /* test streamed decryption */
374 memcpy(iv,test_iv,sizeof(test_iv));
375 CRYPTO_cts128_decrypt(ciphertext,cleartext,len,&decks,iv,(cbc128_f)AES_c
376 if (memcmp(cleartext,test_input,len))
377 fprintf(stderr,"input_%d mismatch\n",len), exit(4);
378 if (memcmp(iv,vector+len-tail,sizeof(iv)))
379 fprintf(stderr,"iv_%d mismatch\n",len), exit(4);
380 }

382 void test_nistvector(const unsigned char *vector,size_t len)
383 { unsigned char iv[sizeof(test_iv)];
384 unsigned char cleartext[64],ciphertext[64],nistvector[64];
385 size_t tail;

387 printf("nistvector_%d\n",len); fflush(stdout);

389 if ((tail=len%16) == 0) tail = 16;

391 len -= 16 + tail;

new/usr/src/lib/openssl/libsunw_crypto/modes/cts128.c 7

392 memcpy(nistvector,vector,len);
393 /* flip two last blocks */
394 memcpy(nistvector+len,vector+len+16,tail);
395 memcpy(nistvector+len+tail,vector+len,16);
396 len += 16 + tail;
397 tail = 16;

399 /* test block-based encryption */
400 memcpy(iv,test_iv,sizeof(test_iv));
401 CRYPTO_nistcts128_encrypt_block(test_input,ciphertext,len,&encks,iv,(blo
402 if (memcmp(ciphertext,nistvector,len))
403 fprintf(stderr,"output_%d mismatch\n",len), exit(1);
404 if (memcmp(iv,nistvector+len-tail,sizeof(iv)))
405 fprintf(stderr,"iv_%d mismatch\n",len), exit(1);

407 /* test block-based decryption */
408 memcpy(iv,test_iv,sizeof(test_iv));
409 CRYPTO_nistcts128_decrypt_block(ciphertext,cleartext,len,&decks,iv,(bloc
410 if (memcmp(cleartext,test_input,len))
411 fprintf(stderr,"input_%d mismatch\n",len), exit(2);
412 if (memcmp(iv,nistvector+len-tail,sizeof(iv)))
413 fprintf(stderr,"iv_%d mismatch\n",len), exit(2);

415 /* test streamed encryption */
416 memcpy(iv,test_iv,sizeof(test_iv));
417 CRYPTO_nistcts128_encrypt(test_input,ciphertext,len,&encks,iv,(cbc128_f)
418 if (memcmp(ciphertext,nistvector,len))
419 fprintf(stderr,"output_%d mismatch\n",len), exit(3);
420 if (memcmp(iv,nistvector+len-tail,sizeof(iv)))
421 fprintf(stderr,"iv_%d mismatch\n",len), exit(3);

423 /* test streamed decryption */
424 memcpy(iv,test_iv,sizeof(test_iv));
425 CRYPTO_nistcts128_decrypt(ciphertext,cleartext,len,&decks,iv,(cbc128_f)A
426 if (memcmp(cleartext,test_input,len))
427 fprintf(stderr,"input_%d mismatch\n",len), exit(4);
428 if (memcmp(iv,nistvector+len-tail,sizeof(iv)))
429 fprintf(stderr,"iv_%d mismatch\n",len), exit(4);
430 }

432 int main()
433 {
434 AES_set_encrypt_key(test_key,128,&encks);
435 AES_set_decrypt_key(test_key,128,&decks);

437 test_vector(vector_17,sizeof(vector_17));
438 test_vector(vector_31,sizeof(vector_31));
439 test_vector(vector_32,sizeof(vector_32));
440 test_vector(vector_47,sizeof(vector_47));
441 test_vector(vector_48,sizeof(vector_48));
442 test_vector(vector_64,sizeof(vector_64));

444 test_nistvector(vector_17,sizeof(vector_17));
445 test_nistvector(vector_31,sizeof(vector_31));
446 test_nistvector(vector_32,sizeof(vector_32));
447 test_nistvector(vector_47,sizeof(vector_47));
448 test_nistvector(vector_48,sizeof(vector_48));
449 test_nistvector(vector_64,sizeof(vector_64));

451 return 0;
452 }
453 #endif

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 1

**
 55995 Fri May 30 18:31:56 2014
new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2010 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 */

50 #define OPENSSL_FIPSAPI

52 #include <openssl/crypto.h>
53 #include "modes_lcl.h"
54 #include <string.h>

56 #ifndef MODES_DEBUG
57 # ifndef NDEBUG
58 # define NDEBUG
59 # endif
60 #endif
61 #include <assert.h>

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 2

63 #if defined(BSWAP4) && defined(STRICT_ALIGNMENT)
64 /* redefine, because alignment is ensured */
65 #undef GETU32
66 #define GETU32(p) BSWAP4(*(const u32 *)(p))
67 #undef PUTU32
68 #define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v)
69 #endif

71 #define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16))
72 #define REDUCE1BIT(V) do { \
73 if (sizeof(size_t)==8) { \
74 u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \
75 V.lo = (V.hi<<63)|(V.lo>>1); \
76 V.hi = (V.hi>>1)^T; \
77 } \
78 else { \
79 u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \
80 V.lo = (V.hi<<63)|(V.lo>>1); \
81 V.hi = (V.hi>>1)^((u64)T<<32); \
82 } \
83 } while(0)

85 /*
86 * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should
87 * never be set to 8. 8 is effectively reserved for testing purposes.
88 * TABLE_BITS>1 are lookup-table-driven implementations referred to as
89 * "Shoup’s" in GCM specification. In other words OpenSSL does not cover
90 * whole spectrum of possible table driven implementations. Why? In
91 * non-"Shoup’s" case memory access pattern is segmented in such manner,
92 * that it’s trivial to see that cache timing information can reveal
93 * fair portion of intermediate hash value. Given that ciphertext is
94 * always available to attacker, it’s possible for him to attempt to
95 * deduce secret parameter H and if successful, tamper with messages
96 * [which is nothing but trivial in CTR mode]. In "Shoup’s" case it’s
97 * not as trivial, but there is no reason to believe that it’s resistant
98 * to cache-timing attack. And the thing about "8-bit" implementation is
99 * that it consumes 16 (sixteen) times more memory, 4KB per individual
100 * key + 1KB shared. Well, on pros side it should be twice as fast as
101 * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version
102 * was observed to run ~75% faster, closer to 100% for commercial
103 * compilers... Yet "4-bit" procedure is preferred, because it’s
104 * believed to provide better security-performance balance and adequate
105 * all-round performance. "All-round" refers to things like:
106 *
107 * - shorter setup time effectively improves overall timing for
108 * handling short messages;
109 * - larger table allocation can become unbearable because of VM
110 * subsystem penalties (for example on Windows large enough free
111 * results in VM working set trimming, meaning that consequent
112 * malloc would immediately incur working set expansion);
113 * - larger table has larger cache footprint, which can affect
114 * performance of other code paths (not necessarily even from same
115 * thread in Hyper-Threading world);
116 *
117 * Value of 1 is not appropriate for performance reasons.
118 */
119 #if TABLE_BITS==8

121 static void gcm_init_8bit(u128 Htable[256], u64 H[2])
122 {
123 int i, j;
124 u128 V;

126 Htable[0].hi = 0;
127 Htable[0].lo = 0;

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 3

128 V.hi = H[0];
129 V.lo = H[1];

131 for (Htable[128]=V, i=64; i>0; i>>=1) {
132 REDUCE1BIT(V);
133 Htable[i] = V;
134 }

136 for (i=2; i<256; i<<=1) {
137 u128 *Hi = Htable+i, H0 = *Hi;
138 for (j=1; j<i; ++j) {
139 Hi[j].hi = H0.hi^Htable[j].hi;
140 Hi[j].lo = H0.lo^Htable[j].lo;
141 }
142 }
143 }

145 static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256])
146 {
147 u128 Z = { 0, 0};
148 const u8 *xi = (const u8 *)Xi+15;
149 size_t rem, n = *xi;
150 const union { long one; char little; } is_endian = {1};
151 static const size_t rem_8bit[256] = {
152 PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246),
153 PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E),
154 PACK(0x0E10), PACK(0x0FD2), PACK(0x0D94), PACK(0x0C56),
155 PACK(0x0918), PACK(0x08DA), PACK(0x0A9C), PACK(0x0B5E),
156 PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66),
157 PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E),
158 PACK(0x1230), PACK(0x13F2), PACK(0x11B4), PACK(0x1076),
159 PACK(0x1538), PACK(0x14FA), PACK(0x16BC), PACK(0x177E),
160 PACK(0x3840), PACK(0x3982), PACK(0x3BC4), PACK(0x3A06),
161 PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E),
162 PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416),
163 PACK(0x3158), PACK(0x309A), PACK(0x32DC), PACK(0x331E),
164 PACK(0x2460), PACK(0x25A2), PACK(0x27E4), PACK(0x2626),
165 PACK(0x2368), PACK(0x22AA), PACK(0x20EC), PACK(0x212E),
166 PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836),
167 PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E),
168 PACK(0x7080), PACK(0x7142), PACK(0x7304), PACK(0x72C6),
169 PACK(0x7788), PACK(0x764A), PACK(0x740C), PACK(0x75CE),
170 PACK(0x7E90), PACK(0x7F52), PACK(0x7D14), PACK(0x7CD6),
171 PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE),
172 PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6),
173 PACK(0x6BA8), PACK(0x6A6A), PACK(0x682C), PACK(0x69EE),
174 PACK(0x62B0), PACK(0x6372), PACK(0x6134), PACK(0x60F6),
175 PACK(0x65B8), PACK(0x647A), PACK(0x663C), PACK(0x67FE),
176 PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86),
177 PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E),
178 PACK(0x46D0), PACK(0x4712), PACK(0x4554), PACK(0x4496),
179 PACK(0x41D8), PACK(0x401A), PACK(0x425C), PACK(0x439E),
180 PACK(0x54E0), PACK(0x5522), PACK(0x5764), PACK(0x56A6),
181 PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE),
182 PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6),
183 PACK(0x5DF8), PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE),
184 PACK(0xE100), PACK(0xE0C2), PACK(0xE284), PACK(0xE346),
185 PACK(0xE608), PACK(0xE7CA), PACK(0xE58C), PACK(0xE44E),
186 PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56),
187 PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E),
188 PACK(0xFD20), PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66),
189 PACK(0xFA28), PACK(0xFBEA), PACK(0xF9AC), PACK(0xF86E),
190 PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4), PACK(0xF176),
191 PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E),
192 PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06),
193 PACK(0xDE48), PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E),

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 4

194 PACK(0xD750), PACK(0xD692), PACK(0xD4D4), PACK(0xD516),
195 PACK(0xD058), PACK(0xD19A), PACK(0xD3DC), PACK(0xD21E),
196 PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726),
197 PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E),
198 PACK(0xCB70), PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936),
199 PACK(0xCC78), PACK(0xCDBA), PACK(0xCFFC), PACK(0xCE3E),
200 PACK(0x9180), PACK(0x9042), PACK(0x9204), PACK(0x93C6),
201 PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE),
202 PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6),
203 PACK(0x9898), PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE),
204 PACK(0x8DA0), PACK(0x8C62), PACK(0x8E24), PACK(0x8FE6),
205 PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C), PACK(0x88EE),
206 PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6),
207 PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE),
208 PACK(0xA9C0), PACK(0xA802), PACK(0xAA44), PACK(0xAB86),
209 PACK(0xAEC8), PACK(0xAF0A), PACK(0xAD4C), PACK(0xAC8E),
210 PACK(0xA7D0), PACK(0xA612), PACK(0xA454), PACK(0xA596),
211 PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E),
212 PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6),
213 PACK(0xB2E8), PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE),
214 PACK(0xBBF0), PACK(0xBA32), PACK(0xB874), PACK(0xB9B6),
215 PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C), PACK(0xBEBE) };

217 while (1) {
218 Z.hi ^= Htable[n].hi;
219 Z.lo ^= Htable[n].lo;

221 if ((u8 *)Xi==xi) break;

223 n = *(--xi);

225 rem = (size_t)Z.lo&0xff;
226 Z.lo = (Z.hi<<56)|(Z.lo>>8);
227 Z.hi = (Z.hi>>8);
228 if (sizeof(size_t)==8)
229 Z.hi ^= rem_8bit[rem];
230 else
231 Z.hi ^= (u64)rem_8bit[rem]<<32;
232 }

234 if (is_endian.little) {
235 #ifdef BSWAP8
236 Xi[0] = BSWAP8(Z.hi);
237 Xi[1] = BSWAP8(Z.lo);
238 #else
239 u8 *p = (u8 *)Xi;
240 u32 v;
241 v = (u32)(Z.hi>>32); PUTU32(p,v);
242 v = (u32)(Z.hi); PUTU32(p+4,v);
243 v = (u32)(Z.lo>>32); PUTU32(p+8,v);
244 v = (u32)(Z.lo); PUTU32(p+12,v);
245 #endif
246 }
247 else {
248 Xi[0] = Z.hi;
249 Xi[1] = Z.lo;
250 }
251 }
252 #define GCM_MUL(ctx,Xi) gcm_gmult_8bit(ctx->Xi.u,ctx->Htable)

254 #elif TABLE_BITS==4

256 static void gcm_init_4bit(u128 Htable[16], u64 H[2])
257 {
258 u128 V;
259 #if defined(OPENSSL_SMALL_FOOTPRINT)

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 5

260 int i;
261 #endif

263 Htable[0].hi = 0;
264 Htable[0].lo = 0;
265 V.hi = H[0];
266 V.lo = H[1];

268 #if defined(OPENSSL_SMALL_FOOTPRINT)
269 for (Htable[8]=V, i=4; i>0; i>>=1) {
270 REDUCE1BIT(V);
271 Htable[i] = V;
272 }

274 for (i=2; i<16; i<<=1) {
275 u128 *Hi = Htable+i;
276 int j;
277 for (V=*Hi, j=1; j<i; ++j) {
278 Hi[j].hi = V.hi^Htable[j].hi;
279 Hi[j].lo = V.lo^Htable[j].lo;
280 }
281 }
282 #else
283 Htable[8] = V;
284 REDUCE1BIT(V);
285 Htable[4] = V;
286 REDUCE1BIT(V);
287 Htable[2] = V;
288 REDUCE1BIT(V);
289 Htable[1] = V;
290 Htable[3].hi = V.hi^Htable[2].hi, Htable[3].lo = V.lo^Htable[2].lo;
291 V=Htable[4];
292 Htable[5].hi = V.hi^Htable[1].hi, Htable[5].lo = V.lo^Htable[1].lo;
293 Htable[6].hi = V.hi^Htable[2].hi, Htable[6].lo = V.lo^Htable[2].lo;
294 Htable[7].hi = V.hi^Htable[3].hi, Htable[7].lo = V.lo^Htable[3].lo;
295 V=Htable[8];
296 Htable[9].hi = V.hi^Htable[1].hi, Htable[9].lo = V.lo^Htable[1].lo;
297 Htable[10].hi = V.hi^Htable[2].hi, Htable[10].lo = V.lo^Htable[2].lo;
298 Htable[11].hi = V.hi^Htable[3].hi, Htable[11].lo = V.lo^Htable[3].lo;
299 Htable[12].hi = V.hi^Htable[4].hi, Htable[12].lo = V.lo^Htable[4].lo;
300 Htable[13].hi = V.hi^Htable[5].hi, Htable[13].lo = V.lo^Htable[5].lo;
301 Htable[14].hi = V.hi^Htable[6].hi, Htable[14].lo = V.lo^Htable[6].lo;
302 Htable[15].hi = V.hi^Htable[7].hi, Htable[15].lo = V.lo^Htable[7].lo;
303 #endif
304 #if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm))
305 /*
306 * ARM assembler expects specific dword order in Htable.
307 */
308 {
309 int j;
310 const union { long one; char little; } is_endian = {1};

312 if (is_endian.little)
313 for (j=0;j<16;++j) {
314 V = Htable[j];
315 Htable[j].hi = V.lo;
316 Htable[j].lo = V.hi;
317 }
318 else
319 for (j=0;j<16;++j) {
320 V = Htable[j];
321 Htable[j].hi = V.lo<<32|V.lo>>32;
322 Htable[j].lo = V.hi<<32|V.hi>>32;
323 }
324 }
325 #endif

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 6

326 }

328 #ifndef GHASH_ASM
329 static const size_t rem_4bit[16] = {
330 PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460),
331 PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0),
332 PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560),
333 PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) };

335 static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16])
336 {
337 u128 Z;
338 int cnt = 15;
339 size_t rem, nlo, nhi;
340 const union { long one; char little; } is_endian = {1};

342 nlo = ((const u8 *)Xi)[15];
343 nhi = nlo>>4;
344 nlo &= 0xf;

346 Z.hi = Htable[nlo].hi;
347 Z.lo = Htable[nlo].lo;

349 while (1) {
350 rem = (size_t)Z.lo&0xf;
351 Z.lo = (Z.hi<<60)|(Z.lo>>4);
352 Z.hi = (Z.hi>>4);
353 if (sizeof(size_t)==8)
354 Z.hi ^= rem_4bit[rem];
355 else
356 Z.hi ^= (u64)rem_4bit[rem]<<32;

358 Z.hi ^= Htable[nhi].hi;
359 Z.lo ^= Htable[nhi].lo;

361 if (--cnt<0) break;

363 nlo = ((const u8 *)Xi)[cnt];
364 nhi = nlo>>4;
365 nlo &= 0xf;

367 rem = (size_t)Z.lo&0xf;
368 Z.lo = (Z.hi<<60)|(Z.lo>>4);
369 Z.hi = (Z.hi>>4);
370 if (sizeof(size_t)==8)
371 Z.hi ^= rem_4bit[rem];
372 else
373 Z.hi ^= (u64)rem_4bit[rem]<<32;

375 Z.hi ^= Htable[nlo].hi;
376 Z.lo ^= Htable[nlo].lo;
377 }

379 if (is_endian.little) {
380 #ifdef BSWAP8
381 Xi[0] = BSWAP8(Z.hi);
382 Xi[1] = BSWAP8(Z.lo);
383 #else
384 u8 *p = (u8 *)Xi;
385 u32 v;
386 v = (u32)(Z.hi>>32); PUTU32(p,v);
387 v = (u32)(Z.hi); PUTU32(p+4,v);
388 v = (u32)(Z.lo>>32); PUTU32(p+8,v);
389 v = (u32)(Z.lo); PUTU32(p+12,v);
390 #endif
391 }

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 7

392 else {
393 Xi[0] = Z.hi;
394 Xi[1] = Z.lo;
395 }
396 }

398 #if !defined(OPENSSL_SMALL_FOOTPRINT)
399 /*
400 * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for
401 * details... Compiler-generated code doesn’t seem to give any
402 * performance improvement, at least not on x86[_64]. It’s here
403 * mostly as reference and a placeholder for possible future
404 * non-trivial optimization[s]...
405 */
406 static void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16],
407 const u8 *inp,size_t len)
408 {
409 u128 Z;
410 int cnt;
411 size_t rem, nlo, nhi;
412 const union { long one; char little; } is_endian = {1};

414 #if 1
415 do {
416 cnt = 15;
417 nlo = ((const u8 *)Xi)[15];
418 nlo ^= inp[15];
419 nhi = nlo>>4;
420 nlo &= 0xf;

422 Z.hi = Htable[nlo].hi;
423 Z.lo = Htable[nlo].lo;

425 while (1) {
426 rem = (size_t)Z.lo&0xf;
427 Z.lo = (Z.hi<<60)|(Z.lo>>4);
428 Z.hi = (Z.hi>>4);
429 if (sizeof(size_t)==8)
430 Z.hi ^= rem_4bit[rem];
431 else
432 Z.hi ^= (u64)rem_4bit[rem]<<32;

434 Z.hi ^= Htable[nhi].hi;
435 Z.lo ^= Htable[nhi].lo;

437 if (--cnt<0) break;

439 nlo = ((const u8 *)Xi)[cnt];
440 nlo ^= inp[cnt];
441 nhi = nlo>>4;
442 nlo &= 0xf;

444 rem = (size_t)Z.lo&0xf;
445 Z.lo = (Z.hi<<60)|(Z.lo>>4);
446 Z.hi = (Z.hi>>4);
447 if (sizeof(size_t)==8)
448 Z.hi ^= rem_4bit[rem];
449 else
450 Z.hi ^= (u64)rem_4bit[rem]<<32;

452 Z.hi ^= Htable[nlo].hi;
453 Z.lo ^= Htable[nlo].lo;
454 }
455 #else
456 /*
457 * Extra 256+16 bytes per-key plus 512 bytes shared tables

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 8

458 * [should] give ~50% improvement... One could have PACK()-ed
459 * the rem_8bit even here, but the priority is to minimize
460 * cache footprint...
461 */
462 u128 Hshr4[16]; /* Htable shifted right by 4 bits */
463 u8 Hshl4[16]; /* Htable shifted left by 4 bits */
464 static const unsigned short rem_8bit[256] = {
465 0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E,
466 0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E,
467 0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E,
468 0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E,
469 0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E,
470 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E,
471 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E,
472 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E,
473 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE,
474 0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE,
475 0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE,
476 0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE,
477 0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E,
478 0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E,
479 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE,
480 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE,
481 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E,
482 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E,
483 0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E,
484 0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E,
485 0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E,
486 0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E,
487 0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E,
488 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E,
489 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE,
490 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE,
491 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE,
492 0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE,
493 0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E,
494 0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E,
495 0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE,
496 0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE };
497 /*
498 * This pre-processing phase slows down procedure by approximately
499 * same time as it makes each loop spin faster. In other words
500 * single block performance is approximately same as straightforward
501 * "4-bit" implementation, and then it goes only faster...
502 */
503 for (cnt=0; cnt<16; ++cnt) {
504 Z.hi = Htable[cnt].hi;
505 Z.lo = Htable[cnt].lo;
506 Hshr4[cnt].lo = (Z.hi<<60)|(Z.lo>>4);
507 Hshr4[cnt].hi = (Z.hi>>4);
508 Hshl4[cnt] = (u8)(Z.lo<<4);
509 }

511 do {
512 for (Z.lo=0, Z.hi=0, cnt=15; cnt; --cnt) {
513 nlo = ((const u8 *)Xi)[cnt];
514 nlo ^= inp[cnt];
515 nhi = nlo>>4;
516 nlo &= 0xf;

518 Z.hi ^= Htable[nlo].hi;
519 Z.lo ^= Htable[nlo].lo;

521 rem = (size_t)Z.lo&0xff;

523 Z.lo = (Z.hi<<56)|(Z.lo>>8);

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 9

524 Z.hi = (Z.hi>>8);

526 Z.hi ^= Hshr4[nhi].hi;
527 Z.lo ^= Hshr4[nhi].lo;
528 Z.hi ^= (u64)rem_8bit[rem^Hshl4[nhi]]<<48;
529 }

531 nlo = ((const u8 *)Xi)[0];
532 nlo ^= inp[0];
533 nhi = nlo>>4;
534 nlo &= 0xf;

536 Z.hi ^= Htable[nlo].hi;
537 Z.lo ^= Htable[nlo].lo;

539 rem = (size_t)Z.lo&0xf;

541 Z.lo = (Z.hi<<60)|(Z.lo>>4);
542 Z.hi = (Z.hi>>4);

544 Z.hi ^= Htable[nhi].hi;
545 Z.lo ^= Htable[nhi].lo;
546 Z.hi ^= ((u64)rem_8bit[rem<<4])<<48;
547 #endif

549 if (is_endian.little) {
550 #ifdef BSWAP8
551 Xi[0] = BSWAP8(Z.hi);
552 Xi[1] = BSWAP8(Z.lo);
553 #else
554 u8 *p = (u8 *)Xi;
555 u32 v;
556 v = (u32)(Z.hi>>32); PUTU32(p,v);
557 v = (u32)(Z.hi); PUTU32(p+4,v);
558 v = (u32)(Z.lo>>32); PUTU32(p+8,v);
559 v = (u32)(Z.lo); PUTU32(p+12,v);
560 #endif
561 }
562 else {
563 Xi[0] = Z.hi;
564 Xi[1] = Z.lo;
565 }
566 } while (inp+=16, len-=16);
567 }
568 #endif
569 #else
570 void gcm_gmult_4bit(u64 Xi[2],const u128 Htable[16]);
571 void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
572 #endif

574 #define GCM_MUL(ctx,Xi) gcm_gmult_4bit(ctx->Xi.u,ctx->Htable)
575 #if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT)
576 #define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len)
577 /* GHASH_CHUNK is "stride parameter" missioned to mitigate cache
578 * trashing effect. In other words idea is to hash data while it’s
579 * still in L1 cache after encryption pass... */
580 #define GHASH_CHUNK (3*1024)
581 #endif

583 #else /* TABLE_BITS */

585 static void gcm_gmult_1bit(u64 Xi[2],const u64 H[2])
586 {
587 u128 V,Z = { 0,0 };
588 long X;
589 int i,j;

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 10

590 const long *xi = (const long *)Xi;
591 const union { long one; char little; } is_endian = {1};

593 V.hi = H[0]; /* H is in host byte order, no byte swapping */
594 V.lo = H[1];

596 for (j=0; j<16/sizeof(long); ++j) {
597 if (is_endian.little) {
598 if (sizeof(long)==8) {
599 #ifdef BSWAP8
600 X = (long)(BSWAP8(xi[j]));
601 #else
602 const u8 *p = (const u8 *)(xi+j);
603 X = (long)((u64)GETU32(p)<<32|GETU32(p+4));
604 #endif
605 }
606 else {
607 const u8 *p = (const u8 *)(xi+j);
608 X = (long)GETU32(p);
609 }
610 }
611 else
612 X = xi[j];

614 for (i=0; i<8*sizeof(long); ++i, X<<=1) {
615 u64 M = (u64)(X>>(8*sizeof(long)-1));
616 Z.hi ^= V.hi&M;
617 Z.lo ^= V.lo&M;

619 REDUCE1BIT(V);
620 }
621 }

623 if (is_endian.little) {
624 #ifdef BSWAP8
625 Xi[0] = BSWAP8(Z.hi);
626 Xi[1] = BSWAP8(Z.lo);
627 #else
628 u8 *p = (u8 *)Xi;
629 u32 v;
630 v = (u32)(Z.hi>>32); PUTU32(p,v);
631 v = (u32)(Z.hi); PUTU32(p+4,v);
632 v = (u32)(Z.lo>>32); PUTU32(p+8,v);
633 v = (u32)(Z.lo); PUTU32(p+12,v);
634 #endif
635 }
636 else {
637 Xi[0] = Z.hi;
638 Xi[1] = Z.lo;
639 }
640 }
641 #define GCM_MUL(ctx,Xi) gcm_gmult_1bit(ctx->Xi.u,ctx->H.u)

643 #endif

645 #if TABLE_BITS==4 && defined(GHASH_ASM)
646 # if !defined(I386_ONLY) && \
647 (defined(__i386) || defined(__i386__) || \
648 defined(__x86_64) || defined(__x86_64__) || \
649 defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64))
650 # define GHASH_ASM_X86_OR_64
651 # define GCM_FUNCREF_4BIT
652 extern unsigned int OPENSSL_ia32cap_P[2];

654 void gcm_init_clmul(u128 Htable[16],const u64 Xi[2]);
655 void gcm_gmult_clmul(u64 Xi[2],const u128 Htable[16]);

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 11

656 void gcm_ghash_clmul(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);

658 # if defined(__i386) || defined(__i386__) || defined(_M_IX86)
659 # define GHASH_ASM_X86
660 void gcm_gmult_4bit_mmx(u64 Xi[2],const u128 Htable[16]);
661 void gcm_ghash_4bit_mmx(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len

663 void gcm_gmult_4bit_x86(u64 Xi[2],const u128 Htable[16]);
664 void gcm_ghash_4bit_x86(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len
665 # endif
666 # elif defined(__arm__) || defined(__arm)
667 # include "arm_arch.h"
668 # if __ARM_ARCH__>=7
669 # define GHASH_ASM_ARM
670 # define GCM_FUNCREF_4BIT
671 void gcm_gmult_neon(u64 Xi[2],const u128 Htable[16]);
672 void gcm_ghash_neon(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
673 # endif
674 # endif
675 #endif

677 #ifdef GCM_FUNCREF_4BIT
678 # undef GCM_MUL
679 # define GCM_MUL(ctx,Xi) (*gcm_gmult_p)(ctx->Xi.u,ctx->Htable)
680 # ifdef GHASH
681 # undef GHASH
682 # define GHASH(ctx,in,len) (*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len)
683 # endif
684 #endif

686 void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block)
687 {
688 const union { long one; char little; } is_endian = {1};

690 memset(ctx,0,sizeof(*ctx));
691 ctx->block = block;
692 ctx->key = key;

694 (*block)(ctx->H.c,ctx->H.c,key);

696 if (is_endian.little) {
697 /* H is stored in host byte order */
698 #ifdef BSWAP8
699 ctx->H.u[0] = BSWAP8(ctx->H.u[0]);
700 ctx->H.u[1] = BSWAP8(ctx->H.u[1]);
701 #else
702 u8 *p = ctx->H.c;
703 u64 hi,lo;
704 hi = (u64)GETU32(p) <<32|GETU32(p+4);
705 lo = (u64)GETU32(p+8)<<32|GETU32(p+12);
706 ctx->H.u[0] = hi;
707 ctx->H.u[1] = lo;
708 #endif
709 }

711 #if TABLE_BITS==8
712 gcm_init_8bit(ctx->Htable,ctx->H.u);
713 #elif TABLE_BITS==4
714 # if defined(GHASH_ASM_X86_OR_64)
715 # if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2)
716 if (OPENSSL_ia32cap_P[0]&(1<<24) && /* check FXSR bit */
717 OPENSSL_ia32cap_P[1]&(1<<1)) { /* check PCLMULQDQ bit */
718 gcm_init_clmul(ctx->Htable,ctx->H.u);
719 ctx->gmult = gcm_gmult_clmul;
720 ctx->ghash = gcm_ghash_clmul;
721 return;

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 12

722 }
723 # endif
724 gcm_init_4bit(ctx->Htable,ctx->H.u);
725 # if defined(GHASH_ASM_X86) /* x86 only */
726 # if defined(OPENSSL_IA32_SSE2)
727 if (OPENSSL_ia32cap_P[0]&(1<<25)) { /* check SSE bit */
728 # else
729 if (OPENSSL_ia32cap_P[0]&(1<<23)) { /* check MMX bit */
730 # endif
731 ctx->gmult = gcm_gmult_4bit_mmx;
732 ctx->ghash = gcm_ghash_4bit_mmx;
733 } else {
734 ctx->gmult = gcm_gmult_4bit_x86;
735 ctx->ghash = gcm_ghash_4bit_x86;
736 }
737 # else
738 ctx->gmult = gcm_gmult_4bit;
739 ctx->ghash = gcm_ghash_4bit;
740 # endif
741 # elif defined(GHASH_ASM_ARM)
742 if (OPENSSL_armcap_P & ARMV7_NEON) {
743 ctx->gmult = gcm_gmult_neon;
744 ctx->ghash = gcm_ghash_neon;
745 } else {
746 gcm_init_4bit(ctx->Htable,ctx->H.u);
747 ctx->gmult = gcm_gmult_4bit;
748 ctx->ghash = gcm_ghash_4bit;
749 }
750 # else
751 gcm_init_4bit(ctx->Htable,ctx->H.u);
752 # endif
753 #endif
754 }

756 void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx,const unsigned char *iv,size_t len)
757 {
758 const union { long one; char little; } is_endian = {1};
759 unsigned int ctr;
760 #ifdef GCM_FUNCREF_4BIT
761 void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
762 #endif

764 ctx->Yi.u[0] = 0;
765 ctx->Yi.u[1] = 0;
766 ctx->Xi.u[0] = 0;
767 ctx->Xi.u[1] = 0;
768 ctx->len.u[0] = 0; /* AAD length */
769 ctx->len.u[1] = 0; /* message length */
770 ctx->ares = 0;
771 ctx->mres = 0;

773 if (len==12) {
774 memcpy(ctx->Yi.c,iv,12);
775 ctx->Yi.c[15]=1;
776 ctr=1;
777 }
778 else {
779 size_t i;
780 u64 len0 = len;

782 while (len>=16) {
783 for (i=0; i<16; ++i) ctx->Yi.c[i] ^= iv[i];
784 GCM_MUL(ctx,Yi);
785 iv += 16;
786 len -= 16;
787 }

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 13

788 if (len) {
789 for (i=0; i<len; ++i) ctx->Yi.c[i] ^= iv[i];
790 GCM_MUL(ctx,Yi);
791 }
792 len0 <<= 3;
793 if (is_endian.little) {
794 #ifdef BSWAP8
795 ctx->Yi.u[1] ^= BSWAP8(len0);
796 #else
797 ctx->Yi.c[8] ^= (u8)(len0>>56);
798 ctx->Yi.c[9] ^= (u8)(len0>>48);
799 ctx->Yi.c[10] ^= (u8)(len0>>40);
800 ctx->Yi.c[11] ^= (u8)(len0>>32);
801 ctx->Yi.c[12] ^= (u8)(len0>>24);
802 ctx->Yi.c[13] ^= (u8)(len0>>16);
803 ctx->Yi.c[14] ^= (u8)(len0>>8);
804 ctx->Yi.c[15] ^= (u8)(len0);
805 #endif
806 }
807 else
808 ctx->Yi.u[1] ^= len0;

810 GCM_MUL(ctx,Yi);

812 if (is_endian.little)
813 #ifdef BSWAP4
814 ctr = BSWAP4(ctx->Yi.d[3]);
815 #else
816 ctr = GETU32(ctx->Yi.c+12);
817 #endif
818 else
819 ctr = ctx->Yi.d[3];
820 }

822 (*ctx->block)(ctx->Yi.c,ctx->EK0.c,ctx->key);
823 ++ctr;
824 if (is_endian.little)
825 #ifdef BSWAP4
826 ctx->Yi.d[3] = BSWAP4(ctr);
827 #else
828 PUTU32(ctx->Yi.c+12,ctr);
829 #endif
830 else
831 ctx->Yi.d[3] = ctr;
832 }

834 int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx,const unsigned char *aad,size_t len)
835 {
836 size_t i;
837 unsigned int n;
838 u64 alen = ctx->len.u[0];
839 #ifdef GCM_FUNCREF_4BIT
840 void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
841 # ifdef GHASH
842 void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
843 const u8 *inp,size_t len) = ctx->ghash;
844 # endif
845 #endif

847 if (ctx->len.u[1]) return -2;

849 alen += len;
850 if (alen>(U64(1)<<61) || (sizeof(len)==8 && alen<len))
851 return -1;
852 ctx->len.u[0] = alen;

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 14

854 n = ctx->ares;
855 if (n) {
856 while (n && len) {
857 ctx->Xi.c[n] ^= *(aad++);
858 --len;
859 n = (n+1)%16;
860 }
861 if (n==0) GCM_MUL(ctx,Xi);
862 else {
863 ctx->ares = n;
864 return 0;
865 }
866 }

868 #ifdef GHASH
869 if ((i = (len&(size_t)-16))) {
870 GHASH(ctx,aad,i);
871 aad += i;
872 len -= i;
873 }
874 #else
875 while (len>=16) {
876 for (i=0; i<16; ++i) ctx->Xi.c[i] ^= aad[i];
877 GCM_MUL(ctx,Xi);
878 aad += 16;
879 len -= 16;
880 }
881 #endif
882 if (len) {
883 n = (unsigned int)len;
884 for (i=0; i<len; ++i) ctx->Xi.c[i] ^= aad[i];
885 }

887 ctx->ares = n;
888 return 0;
889 }

891 int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
892 const unsigned char *in, unsigned char *out,
893 size_t len)
894 {
895 const union { long one; char little; } is_endian = {1};
896 unsigned int n, ctr;
897 size_t i;
898 u64 mlen = ctx->len.u[1];
899 block128_f block = ctx->block;
900 void *key = ctx->key;
901 #ifdef GCM_FUNCREF_4BIT
902 void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
903 # ifdef GHASH
904 void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
905 const u8 *inp,size_t len) = ctx->ghash;
906 # endif
907 #endif

909 #if 0
910 n = (unsigned int)mlen%16; /* alternative to ctx->mres */
911 #endif
912 mlen += len;
913 if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len))
914 return -1;
915 ctx->len.u[1] = mlen;

917 if (ctx->ares) {
918 /* First call to encrypt finalizes GHASH(AAD) */
919 GCM_MUL(ctx,Xi);

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 15

920 ctx->ares = 0;
921 }

923 if (is_endian.little)
924 #ifdef BSWAP4
925 ctr = BSWAP4(ctx->Yi.d[3]);
926 #else
927 ctr = GETU32(ctx->Yi.c+12);
928 #endif
929 else
930 ctr = ctx->Yi.d[3];

932 n = ctx->mres;
933 #if !defined(OPENSSL_SMALL_FOOTPRINT)
934 if (16%sizeof(size_t) == 0) do { /* always true actually */
935 if (n) {
936 while (n && len) {
937 ctx->Xi.c[n] ^= *(out++) = *(in++)^ctx->EKi.c[n]
938 --len;
939 n = (n+1)%16;
940 }
941 if (n==0) GCM_MUL(ctx,Xi);
942 else {
943 ctx->mres = n;
944 return 0;
945 }
946 }
947 #if defined(STRICT_ALIGNMENT)
948 if (((size_t)in|(size_t)out)%sizeof(size_t) != 0)
949 break;
950 #endif
951 #if defined(GHASH) && defined(GHASH_CHUNK)
952 while (len>=GHASH_CHUNK) {
953 size_t j=GHASH_CHUNK;

955 while (j) {
956 size_t *out_t=(size_t *)out;
957 const size_t *in_t=(const size_t *)in;

959 (*block)(ctx->Yi.c,ctx->EKi.c,key);
960 ++ctr;
961 if (is_endian.little)
962 #ifdef BSWAP4
963 ctx->Yi.d[3] = BSWAP4(ctr);
964 #else
965 PUTU32(ctx->Yi.c+12,ctr);
966 #endif
967 else
968 ctx->Yi.d[3] = ctr;
969 for (i=0; i<16/sizeof(size_t); ++i)
970 out_t[i] = in_t[i] ^ ctx->EKi.t[i];
971 out += 16;
972 in += 16;
973 j -= 16;
974 }
975 GHASH(ctx,out-GHASH_CHUNK,GHASH_CHUNK);
976 len -= GHASH_CHUNK;
977 }
978 if ((i = (len&(size_t)-16))) {
979 size_t j=i;

981 while (len>=16) {
982 size_t *out_t=(size_t *)out;
983 const size_t *in_t=(const size_t *)in;

985 (*block)(ctx->Yi.c,ctx->EKi.c,key);

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 16

986 ++ctr;
987 if (is_endian.little)
988 #ifdef BSWAP4
989 ctx->Yi.d[3] = BSWAP4(ctr);
990 #else
991 PUTU32(ctx->Yi.c+12,ctr);
992 #endif
993 else
994 ctx->Yi.d[3] = ctr;
995 for (i=0; i<16/sizeof(size_t); ++i)
996 out_t[i] = in_t[i] ^ ctx->EKi.t[i];
997 out += 16;
998 in += 16;
999 len -= 16;

1000 }
1001 GHASH(ctx,out-j,j);
1002 }
1003 #else
1004 while (len>=16) {
1005 size_t *out_t=(size_t *)out;
1006 const size_t *in_t=(const size_t *)in;

1008 (*block)(ctx->Yi.c,ctx->EKi.c,key);
1009 ++ctr;
1010 if (is_endian.little)
1011 #ifdef BSWAP4
1012 ctx->Yi.d[3] = BSWAP4(ctr);
1013 #else
1014 PUTU32(ctx->Yi.c+12,ctr);
1015 #endif
1016 else
1017 ctx->Yi.d[3] = ctr;
1018 for (i=0; i<16/sizeof(size_t); ++i)
1019 ctx->Xi.t[i] ^=
1020 out_t[i] = in_t[i]^ctx->EKi.t[i];
1021 GCM_MUL(ctx,Xi);
1022 out += 16;
1023 in += 16;
1024 len -= 16;
1025 }
1026 #endif
1027 if (len) {
1028 (*block)(ctx->Yi.c,ctx->EKi.c,key);
1029 ++ctr;
1030 if (is_endian.little)
1031 #ifdef BSWAP4
1032 ctx->Yi.d[3] = BSWAP4(ctr);
1033 #else
1034 PUTU32(ctx->Yi.c+12,ctr);
1035 #endif
1036 else
1037 ctx->Yi.d[3] = ctr;
1038 while (len--) {
1039 ctx->Xi.c[n] ^= out[n] = in[n]^ctx->EKi.c[n];
1040 ++n;
1041 }
1042 }

1044 ctx->mres = n;
1045 return 0;
1046 } while(0);
1047 #endif
1048 for (i=0;i<len;++i) {
1049 if (n==0) {
1050 (*block)(ctx->Yi.c,ctx->EKi.c,key);
1051 ++ctr;

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 17

1052 if (is_endian.little)
1053 #ifdef BSWAP4
1054 ctx->Yi.d[3] = BSWAP4(ctr);
1055 #else
1056 PUTU32(ctx->Yi.c+12,ctr);
1057 #endif
1058 else
1059 ctx->Yi.d[3] = ctr;
1060 }
1061 ctx->Xi.c[n] ^= out[i] = in[i]^ctx->EKi.c[n];
1062 n = (n+1)%16;
1063 if (n==0)
1064 GCM_MUL(ctx,Xi);
1065 }

1067 ctx->mres = n;
1068 return 0;
1069 }

1071 int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
1072 const unsigned char *in, unsigned char *out,
1073 size_t len)
1074 {
1075 const union { long one; char little; } is_endian = {1};
1076 unsigned int n, ctr;
1077 size_t i;
1078 u64 mlen = ctx->len.u[1];
1079 block128_f block = ctx->block;
1080 void *key = ctx->key;
1081 #ifdef GCM_FUNCREF_4BIT
1082 void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
1083 # ifdef GHASH
1084 void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
1085 const u8 *inp,size_t len) = ctx->ghash;
1086 # endif
1087 #endif

1089 mlen += len;
1090 if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len))
1091 return -1;
1092 ctx->len.u[1] = mlen;

1094 if (ctx->ares) {
1095 /* First call to decrypt finalizes GHASH(AAD) */
1096 GCM_MUL(ctx,Xi);
1097 ctx->ares = 0;
1098 }

1100 if (is_endian.little)
1101 #ifdef BSWAP4
1102 ctr = BSWAP4(ctx->Yi.d[3]);
1103 #else
1104 ctr = GETU32(ctx->Yi.c+12);
1105 #endif
1106 else
1107 ctr = ctx->Yi.d[3];

1109 n = ctx->mres;
1110 #if !defined(OPENSSL_SMALL_FOOTPRINT)
1111 if (16%sizeof(size_t) == 0) do { /* always true actually */
1112 if (n) {
1113 while (n && len) {
1114 u8 c = *(in++);
1115 *(out++) = c^ctx->EKi.c[n];
1116 ctx->Xi.c[n] ^= c;
1117 --len;

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 18

1118 n = (n+1)%16;
1119 }
1120 if (n==0) GCM_MUL (ctx,Xi);
1121 else {
1122 ctx->mres = n;
1123 return 0;
1124 }
1125 }
1126 #if defined(STRICT_ALIGNMENT)
1127 if (((size_t)in|(size_t)out)%sizeof(size_t) != 0)
1128 break;
1129 #endif
1130 #if defined(GHASH) && defined(GHASH_CHUNK)
1131 while (len>=GHASH_CHUNK) {
1132 size_t j=GHASH_CHUNK;

1134 GHASH(ctx,in,GHASH_CHUNK);
1135 while (j) {
1136 size_t *out_t=(size_t *)out;
1137 const size_t *in_t=(const size_t *)in;

1139 (*block)(ctx->Yi.c,ctx->EKi.c,key);
1140 ++ctr;
1141 if (is_endian.little)
1142 #ifdef BSWAP4
1143 ctx->Yi.d[3] = BSWAP4(ctr);
1144 #else
1145 PUTU32(ctx->Yi.c+12,ctr);
1146 #endif
1147 else
1148 ctx->Yi.d[3] = ctr;
1149 for (i=0; i<16/sizeof(size_t); ++i)
1150 out_t[i] = in_t[i]^ctx->EKi.t[i];
1151 out += 16;
1152 in += 16;
1153 j -= 16;
1154 }
1155 len -= GHASH_CHUNK;
1156 }
1157 if ((i = (len&(size_t)-16))) {
1158 GHASH(ctx,in,i);
1159 while (len>=16) {
1160 size_t *out_t=(size_t *)out;
1161 const size_t *in_t=(const size_t *)in;

1163 (*block)(ctx->Yi.c,ctx->EKi.c,key);
1164 ++ctr;
1165 if (is_endian.little)
1166 #ifdef BSWAP4
1167 ctx->Yi.d[3] = BSWAP4(ctr);
1168 #else
1169 PUTU32(ctx->Yi.c+12,ctr);
1170 #endif
1171 else
1172 ctx->Yi.d[3] = ctr;
1173 for (i=0; i<16/sizeof(size_t); ++i)
1174 out_t[i] = in_t[i]^ctx->EKi.t[i];
1175 out += 16;
1176 in += 16;
1177 len -= 16;
1178 }
1179 }
1180 #else
1181 while (len>=16) {
1182 size_t *out_t=(size_t *)out;
1183 const size_t *in_t=(const size_t *)in;

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 19

1185 (*block)(ctx->Yi.c,ctx->EKi.c,key);
1186 ++ctr;
1187 if (is_endian.little)
1188 #ifdef BSWAP4
1189 ctx->Yi.d[3] = BSWAP4(ctr);
1190 #else
1191 PUTU32(ctx->Yi.c+12,ctr);
1192 #endif
1193 else
1194 ctx->Yi.d[3] = ctr;
1195 for (i=0; i<16/sizeof(size_t); ++i) {
1196 size_t c = in[i];
1197 out[i] = c^ctx->EKi.t[i];
1198 ctx->Xi.t[i] ^= c;
1199 }
1200 GCM_MUL(ctx,Xi);
1201 out += 16;
1202 in += 16;
1203 len -= 16;
1204 }
1205 #endif
1206 if (len) {
1207 (*block)(ctx->Yi.c,ctx->EKi.c,key);
1208 ++ctr;
1209 if (is_endian.little)
1210 #ifdef BSWAP4
1211 ctx->Yi.d[3] = BSWAP4(ctr);
1212 #else
1213 PUTU32(ctx->Yi.c+12,ctr);
1214 #endif
1215 else
1216 ctx->Yi.d[3] = ctr;
1217 while (len--) {
1218 u8 c = in[n];
1219 ctx->Xi.c[n] ^= c;
1220 out[n] = c^ctx->EKi.c[n];
1221 ++n;
1222 }
1223 }

1225 ctx->mres = n;
1226 return 0;
1227 } while(0);
1228 #endif
1229 for (i=0;i<len;++i) {
1230 u8 c;
1231 if (n==0) {
1232 (*block)(ctx->Yi.c,ctx->EKi.c,key);
1233 ++ctr;
1234 if (is_endian.little)
1235 #ifdef BSWAP4
1236 ctx->Yi.d[3] = BSWAP4(ctr);
1237 #else
1238 PUTU32(ctx->Yi.c+12,ctr);
1239 #endif
1240 else
1241 ctx->Yi.d[3] = ctr;
1242 }
1243 c = in[i];
1244 out[i] = c^ctx->EKi.c[n];
1245 ctx->Xi.c[n] ^= c;
1246 n = (n+1)%16;
1247 if (n==0)
1248 GCM_MUL(ctx,Xi);
1249 }

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 20

1251 ctx->mres = n;
1252 return 0;
1253 }

1255 int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
1256 const unsigned char *in, unsigned char *out,
1257 size_t len, ctr128_f stream)
1258 {
1259 const union { long one; char little; } is_endian = {1};
1260 unsigned int n, ctr;
1261 size_t i;
1262 u64 mlen = ctx->len.u[1];
1263 void *key = ctx->key;
1264 #ifdef GCM_FUNCREF_4BIT
1265 void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
1266 # ifdef GHASH
1267 void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
1268 const u8 *inp,size_t len) = ctx->ghash;
1269 # endif
1270 #endif

1272 mlen += len;
1273 if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len))
1274 return -1;
1275 ctx->len.u[1] = mlen;

1277 if (ctx->ares) {
1278 /* First call to encrypt finalizes GHASH(AAD) */
1279 GCM_MUL(ctx,Xi);
1280 ctx->ares = 0;
1281 }

1283 if (is_endian.little)
1284 #ifdef BSWAP4
1285 ctr = BSWAP4(ctx->Yi.d[3]);
1286 #else
1287 ctr = GETU32(ctx->Yi.c+12);
1288 #endif
1289 else
1290 ctr = ctx->Yi.d[3];

1292 n = ctx->mres;
1293 if (n) {
1294 while (n && len) {
1295 ctx->Xi.c[n] ^= *(out++) = *(in++)^ctx->EKi.c[n];
1296 --len;
1297 n = (n+1)%16;
1298 }
1299 if (n==0) GCM_MUL(ctx,Xi);
1300 else {
1301 ctx->mres = n;
1302 return 0;
1303 }
1304 }
1305 #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
1306 while (len>=GHASH_CHUNK) {
1307 (*stream)(in,out,GHASH_CHUNK/16,key,ctx->Yi.c);
1308 ctr += GHASH_CHUNK/16;
1309 if (is_endian.little)
1310 #ifdef BSWAP4
1311 ctx->Yi.d[3] = BSWAP4(ctr);
1312 #else
1313 PUTU32(ctx->Yi.c+12,ctr);
1314 #endif
1315 else

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 21

1316 ctx->Yi.d[3] = ctr;
1317 GHASH(ctx,out,GHASH_CHUNK);
1318 out += GHASH_CHUNK;
1319 in += GHASH_CHUNK;
1320 len -= GHASH_CHUNK;
1321 }
1322 #endif
1323 if ((i = (len&(size_t)-16))) {
1324 size_t j=i/16;

1326 (*stream)(in,out,j,key,ctx->Yi.c);
1327 ctr += (unsigned int)j;
1328 if (is_endian.little)
1329 #ifdef BSWAP4
1330 ctx->Yi.d[3] = BSWAP4(ctr);
1331 #else
1332 PUTU32(ctx->Yi.c+12,ctr);
1333 #endif
1334 else
1335 ctx->Yi.d[3] = ctr;
1336 in += i;
1337 len -= i;
1338 #if defined(GHASH)
1339 GHASH(ctx,out,i);
1340 out += i;
1341 #else
1342 while (j--) {
1343 for (i=0;i<16;++i) ctx->Xi.c[i] ^= out[i];
1344 GCM_MUL(ctx,Xi);
1345 out += 16;
1346 }
1347 #endif
1348 }
1349 if (len) {
1350 (*ctx->block)(ctx->Yi.c,ctx->EKi.c,key);
1351 ++ctr;
1352 if (is_endian.little)
1353 #ifdef BSWAP4
1354 ctx->Yi.d[3] = BSWAP4(ctr);
1355 #else
1356 PUTU32(ctx->Yi.c+12,ctr);
1357 #endif
1358 else
1359 ctx->Yi.d[3] = ctr;
1360 while (len--) {
1361 ctx->Xi.c[n] ^= out[n] = in[n]^ctx->EKi.c[n];
1362 ++n;
1363 }
1364 }

1366 ctx->mres = n;
1367 return 0;
1368 }

1370 int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
1371 const unsigned char *in, unsigned char *out,
1372 size_t len,ctr128_f stream)
1373 {
1374 const union { long one; char little; } is_endian = {1};
1375 unsigned int n, ctr;
1376 size_t i;
1377 u64 mlen = ctx->len.u[1];
1378 void *key = ctx->key;
1379 #ifdef GCM_FUNCREF_4BIT
1380 void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
1381 # ifdef GHASH

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 22

1382 void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
1383 const u8 *inp,size_t len) = ctx->ghash;
1384 # endif
1385 #endif

1387 mlen += len;
1388 if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len))
1389 return -1;
1390 ctx->len.u[1] = mlen;

1392 if (ctx->ares) {
1393 /* First call to decrypt finalizes GHASH(AAD) */
1394 GCM_MUL(ctx,Xi);
1395 ctx->ares = 0;
1396 }

1398 if (is_endian.little)
1399 #ifdef BSWAP4
1400 ctr = BSWAP4(ctx->Yi.d[3]);
1401 #else
1402 ctr = GETU32(ctx->Yi.c+12);
1403 #endif
1404 else
1405 ctr = ctx->Yi.d[3];

1407 n = ctx->mres;
1408 if (n) {
1409 while (n && len) {
1410 u8 c = *(in++);
1411 *(out++) = c^ctx->EKi.c[n];
1412 ctx->Xi.c[n] ^= c;
1413 --len;
1414 n = (n+1)%16;
1415 }
1416 if (n==0) GCM_MUL (ctx,Xi);
1417 else {
1418 ctx->mres = n;
1419 return 0;
1420 }
1421 }
1422 #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
1423 while (len>=GHASH_CHUNK) {
1424 GHASH(ctx,in,GHASH_CHUNK);
1425 (*stream)(in,out,GHASH_CHUNK/16,key,ctx->Yi.c);
1426 ctr += GHASH_CHUNK/16;
1427 if (is_endian.little)
1428 #ifdef BSWAP4
1429 ctx->Yi.d[3] = BSWAP4(ctr);
1430 #else
1431 PUTU32(ctx->Yi.c+12,ctr);
1432 #endif
1433 else
1434 ctx->Yi.d[3] = ctr;
1435 out += GHASH_CHUNK;
1436 in += GHASH_CHUNK;
1437 len -= GHASH_CHUNK;
1438 }
1439 #endif
1440 if ((i = (len&(size_t)-16))) {
1441 size_t j=i/16;

1443 #if defined(GHASH)
1444 GHASH(ctx,in,i);
1445 #else
1446 while (j--) {
1447 size_t k;

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 23

1448 for (k=0;k<16;++k) ctx->Xi.c[k] ^= in[k];
1449 GCM_MUL(ctx,Xi);
1450 in += 16;
1451 }
1452 j = i/16;
1453 in -= i;
1454 #endif
1455 (*stream)(in,out,j,key,ctx->Yi.c);
1456 ctr += (unsigned int)j;
1457 if (is_endian.little)
1458 #ifdef BSWAP4
1459 ctx->Yi.d[3] = BSWAP4(ctr);
1460 #else
1461 PUTU32(ctx->Yi.c+12,ctr);
1462 #endif
1463 else
1464 ctx->Yi.d[3] = ctr;
1465 out += i;
1466 in += i;
1467 len -= i;
1468 }
1469 if (len) {
1470 (*ctx->block)(ctx->Yi.c,ctx->EKi.c,key);
1471 ++ctr;
1472 if (is_endian.little)
1473 #ifdef BSWAP4
1474 ctx->Yi.d[3] = BSWAP4(ctr);
1475 #else
1476 PUTU32(ctx->Yi.c+12,ctr);
1477 #endif
1478 else
1479 ctx->Yi.d[3] = ctr;
1480 while (len--) {
1481 u8 c = in[n];
1482 ctx->Xi.c[n] ^= c;
1483 out[n] = c^ctx->EKi.c[n];
1484 ++n;
1485 }
1486 }

1488 ctx->mres = n;
1489 return 0;
1490 }

1492 int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx,const unsigned char *tag,
1493 size_t len)
1494 {
1495 const union { long one; char little; } is_endian = {1};
1496 u64 alen = ctx->len.u[0]<<3;
1497 u64 clen = ctx->len.u[1]<<3;
1498 #ifdef GCM_FUNCREF_4BIT
1499 void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
1500 #endif

1502 if (ctx->mres || ctx->ares)
1503 GCM_MUL(ctx,Xi);

1505 if (is_endian.little) {
1506 #ifdef BSWAP8
1507 alen = BSWAP8(alen);
1508 clen = BSWAP8(clen);
1509 #else
1510 u8 *p = ctx->len.c;

1512 ctx->len.u[0] = alen;
1513 ctx->len.u[1] = clen;

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 24

1515 alen = (u64)GETU32(p) <<32|GETU32(p+4);
1516 clen = (u64)GETU32(p+8)<<32|GETU32(p+12);
1517 #endif
1518 }

1520 ctx->Xi.u[0] ^= alen;
1521 ctx->Xi.u[1] ^= clen;
1522 GCM_MUL(ctx,Xi);

1524 ctx->Xi.u[0] ^= ctx->EK0.u[0];
1525 ctx->Xi.u[1] ^= ctx->EK0.u[1];

1527 if (tag && len<=sizeof(ctx->Xi))
1528 return memcmp(ctx->Xi.c,tag,len);
1529 else
1530 return -1;
1531 }

1533 void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len)
1534 {
1535 CRYPTO_gcm128_finish(ctx, NULL, 0);
1536 memcpy(tag, ctx->Xi.c, len<=sizeof(ctx->Xi.c)?len:sizeof(ctx->Xi.c));
1537 }

1539 GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block)
1540 {
1541 GCM128_CONTEXT *ret;

1543 if ((ret = (GCM128_CONTEXT *)OPENSSL_malloc(sizeof(GCM128_CONTEXT))))
1544 CRYPTO_gcm128_init(ret,key,block);

1546 return ret;
1547 }

1549 void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx)
1550 {
1551 if (ctx) {
1552 OPENSSL_cleanse(ctx,sizeof(*ctx));
1553 OPENSSL_free(ctx);
1554 }
1555 }

1557 #if defined(SELFTEST)
1558 #include <stdio.h>
1559 #include <openssl/aes.h>

1561 /* Test Case 1 */
1562 static const u8 K1[16],
1563 *P1=NULL,
1564 *A1=NULL,
1565 IV1[12],
1566 *C1=NULL,
1567 T1[]= {0x58,0xe2,0xfc,0xce,0xfa,0x7e,0x30,0x61,0x36,0x7f,0x1d,0

1569 /* Test Case 2 */
1570 #define K2 K1
1571 #define A2 A1
1572 #define IV2 IV1
1573 static const u8 P2[16],
1574 C2[]= {0x03,0x88,0xda,0xce,0x60,0xb6,0xa3,0x92,0xf3,0x28,0xc2,0
1575 T2[]= {0xab,0x6e,0x47,0xd4,0x2c,0xec,0x13,0xbd,0xf5,0x3a,0x67,0

1577 /* Test Case 3 */
1578 #define A3 A2
1579 static const u8 K3[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 25

1580 P3[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0
1581 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0
1582 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0
1583 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0
1584 IV3[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0
1585 C3[]= {0x42,0x83,0x1e,0xc2,0x21,0x77,0x74,0x24,0x4b,0x72,0x21,0
1586 0xe3,0xaa,0x21,0x2f,0x2c,0x02,0xa4,0xe0,0x35,0xc1,0x7e,0
1587 0x21,0xd5,0x14,0xb2,0x54,0x66,0x93,0x1c,0x7d,0x8f,0x6a,0
1588 0x1b,0xa3,0x0b,0x39,0x6a,0x0a,0xac,0x97,0x3d,0x58,0xe0,0
1589 T3[]= {0x4d,0x5c,0x2a,0xf3,0x27,0xcd,0x64,0xa6,0x2c,0xf3,0x5a,0

1591 /* Test Case 4 */
1592 #define K4 K3
1593 #define IV4 IV3
1594 static const u8 P4[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0
1595 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0
1596 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0
1597 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0
1598 A4[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0
1599 0xab,0xad,0xda,0xd2},
1600 C4[]= {0x42,0x83,0x1e,0xc2,0x21,0x77,0x74,0x24,0x4b,0x72,0x21,0
1601 0xe3,0xaa,0x21,0x2f,0x2c,0x02,0xa4,0xe0,0x35,0xc1,0x7e,0
1602 0x21,0xd5,0x14,0xb2,0x54,0x66,0x93,0x1c,0x7d,0x8f,0x6a,0
1603 0x1b,0xa3,0x0b,0x39,0x6a,0x0a,0xac,0x97,0x3d,0x58,0xe0,0
1604 T4[]= {0x5b,0xc9,0x4f,0xbc,0x32,0x21,0xa5,0xdb,0x94,0xfa,0xe9,0

1606 /* Test Case 5 */
1607 #define K5 K4
1608 #define P5 P4
1609 #define A5 A4
1610 static const u8 IV5[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad},
1611 C5[]= {0x61,0x35,0x3b,0x4c,0x28,0x06,0x93,0x4a,0x77,0x7f,0xf5,0
1612 0x69,0x9b,0x2a,0x71,0x4f,0xcd,0xc6,0xf8,0x37,0x66,0xe5,0
1613 0x73,0x80,0x69,0x00,0xe4,0x9f,0x24,0xb2,0x2b,0x09,0x75,0
1614 0x49,0x89,0xb5,0xe1,0xeb,0xac,0x0f,0x07,0xc2,0x3f,0x45,0
1615 T5[]= {0x36,0x12,0xd2,0xe7,0x9e,0x3b,0x07,0x85,0x56,0x1b,0xe1,0

1617 /* Test Case 6 */
1618 #define K6 K5
1619 #define P6 P5
1620 #define A6 A5
1621 static const u8 IV6[]= {0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0
1622 0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0
1623 0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0
1624 0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0
1625 C6[]= {0x8c,0xe2,0x49,0x98,0x62,0x56,0x15,0xb6,0x03,0xa0,0x33,0
1626 0xbe,0x91,0x12,0xa5,0xc3,0xa2,0x11,0xa8,0xba,0x26,0x2a,0
1627 0x01,0xe4,0xa9,0xa4,0xfb,0xa4,0x3c,0x90,0xcc,0xdc,0xb2,0
1628 0xd6,0x28,0x75,0xd2,0xac,0xa4,0x17,0x03,0x4c,0x34,0xae,0
1629 T6[]= {0x61,0x9c,0xc5,0xae,0xff,0xfe,0x0b,0xfa,0x46,0x2a,0xf4,0

1631 /* Test Case 7 */
1632 static const u8 K7[24],
1633 *P7=NULL,
1634 *A7=NULL,
1635 IV7[12],
1636 *C7=NULL,
1637 T7[]= {0xcd,0x33,0xb2,0x8a,0xc7,0x73,0xf7,0x4b,0xa0,0x0e,0xd1,0

1639 /* Test Case 8 */
1640 #define K8 K7
1641 #define IV8 IV7
1642 #define A8 A7
1643 static const u8 P8[16],
1644 C8[]= {0x98,0xe7,0x24,0x7c,0x07,0xf0,0xfe,0x41,0x1c,0x26,0x7e,0
1645 T8[]= {0x2f,0xf5,0x8d,0x80,0x03,0x39,0x27,0xab,0x8e,0xf4,0xd4,0

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 26

1647 /* Test Case 9 */
1648 #define A9 A8
1649 static const u8 K9[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0
1650 0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c},
1651 P9[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0
1652 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0
1653 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0
1654 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0
1655 IV9[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0
1656 C9[]= {0x39,0x80,0xca,0x0b,0x3c,0x00,0xe8,0x41,0xeb,0x06,0xfa,0
1657 0x85,0x9e,0x1c,0xea,0xa6,0xef,0xd9,0x84,0x62,0x85,0x93,0
1658 0x7d,0x77,0x3d,0x00,0xc1,0x44,0xc5,0x25,0xac,0x61,0x9d,0
1659 0x18,0xe2,0x44,0x8b,0x2f,0xe3,0x24,0xd9,0xcc,0xda,0x27,0
1660 T9[]= {0x99,0x24,0xa7,0xc8,0x58,0x73,0x36,0xbf,0xb1,0x18,0x02,0

1662 /* Test Case 10 */
1663 #define K10 K9
1664 #define IV10 IV9
1665 static const u8 P10[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0
1666 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0
1667 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0
1668 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0
1669 A10[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0
1670 0xab,0xad,0xda,0xd2},
1671 C10[]= {0x39,0x80,0xca,0x0b,0x3c,0x00,0xe8,0x41,0xeb,0x06,0xfa,0
1672 0x85,0x9e,0x1c,0xea,0xa6,0xef,0xd9,0x84,0x62,0x85,0x93,0
1673 0x7d,0x77,0x3d,0x00,0xc1,0x44,0xc5,0x25,0xac,0x61,0x9d,0
1674 0x18,0xe2,0x44,0x8b,0x2f,0xe3,0x24,0xd9,0xcc,0xda,0x27,0
1675 T10[]= {0x25,0x19,0x49,0x8e,0x80,0xf1,0x47,0x8f,0x37,0xba,0x55,0

1677 /* Test Case 11 */
1678 #define K11 K10
1679 #define P11 P10
1680 #define A11 A10
1681 static const u8 IV11[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad},
1682 C11[]= {0x0f,0x10,0xf5,0x99,0xae,0x14,0xa1,0x54,0xed,0x24,0xb3,0
1683 0xc5,0x66,0x63,0x2e,0xf2,0xbb,0xb3,0x4f,0x83,0x47,0x28,0
1684 0xfd,0xdc,0x29,0xdf,0x9a,0x47,0x1f,0x75,0xc6,0x65,0x41,0
1685 0xe9,0x3a,0x19,0xa5,0x8e,0x8b,0x47,0x3f,0xa0,0xf0,0x62,0
1686 T11[]= {0x65,0xdc,0xc5,0x7f,0xcf,0x62,0x3a,0x24,0x09,0x4f,0xcc,0

1688 /* Test Case 12 */
1689 #define K12 K11
1690 #define P12 P11
1691 #define A12 A11
1692 static const u8 IV12[]={0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0
1693 0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0
1694 0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0
1695 0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0
1696 C12[]= {0xd2,0x7e,0x88,0x68,0x1c,0xe3,0x24,0x3c,0x48,0x30,0x16,0
1697 0x1d,0xe9,0xa1,0xd8,0xe6,0xb4,0x47,0xef,0x6e,0xf7,0xb7,0
1698 0x81,0xe7,0x90,0x12,0xaf,0x34,0xdd,0xd9,0xe2,0xf0,0x37,0
1699 0xe6,0x7c,0x03,0x67,0x45,0xfa,0x22,0xe7,0xe9,0xb7,0x37,0
1700 T12[]= {0xdc,0xf5,0x66,0xff,0x29,0x1c,0x25,0xbb,0xb8,0x56,0x8f,0

1702 /* Test Case 13 */
1703 static const u8 K13[32],
1704 *P13=NULL,
1705 *A13=NULL,
1706 IV13[12],
1707 *C13=NULL,
1708 T13[]={0x53,0x0f,0x8a,0xfb,0xc7,0x45,0x36,0xb9,0xa9,0x63,0xb4,0x

1710 /* Test Case 14 */
1711 #define K14 K13

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 27

1712 #define A14 A13
1713 static const u8 P14[16],
1714 IV14[12],
1715 C14[]= {0xce,0xa7,0x40,0x3d,0x4d,0x60,0x6b,0x6e,0x07,0x4e,0xc5,0
1716 T14[]= {0xd0,0xd1,0xc8,0xa7,0x99,0x99,0x6b,0xf0,0x26,0x5b,0x98,0

1718 /* Test Case 15 */
1719 #define A15 A14
1720 static const u8 K15[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0
1721 0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0
1722 P15[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0
1723 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0
1724 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0
1725 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0
1726 IV15[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0
1727 C15[]= {0x52,0x2d,0xc1,0xf0,0x99,0x56,0x7d,0x07,0xf4,0x7f,0x37,0
1728 0x64,0x3a,0x8c,0xdc,0xbf,0xe5,0xc0,0xc9,0x75,0x98,0xa2,0
1729 0x8c,0xb0,0x8e,0x48,0x59,0x0d,0xbb,0x3d,0xa7,0xb0,0x8b,0
1730 0xc5,0xf6,0x1e,0x63,0x93,0xba,0x7a,0x0a,0xbc,0xc9,0xf6,0
1731 T15[]= {0xb0,0x94,0xda,0xc5,0xd9,0x34,0x71,0xbd,0xec,0x1a,0x50,0

1733 /* Test Case 16 */
1734 #define K16 K15
1735 #define IV16 IV15
1736 static const u8 P16[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0
1737 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0
1738 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0
1739 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0
1740 A16[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0
1741 0xab,0xad,0xda,0xd2},
1742 C16[]= {0x52,0x2d,0xc1,0xf0,0x99,0x56,0x7d,0x07,0xf4,0x7f,0x37,0
1743 0x64,0x3a,0x8c,0xdc,0xbf,0xe5,0xc0,0xc9,0x75,0x98,0xa2,0
1744 0x8c,0xb0,0x8e,0x48,0x59,0x0d,0xbb,0x3d,0xa7,0xb0,0x8b,0
1745 0xc5,0xf6,0x1e,0x63,0x93,0xba,0x7a,0x0a,0xbc,0xc9,0xf6,0
1746 T16[]= {0x76,0xfc,0x6e,0xce,0x0f,0x4e,0x17,0x68,0xcd,0xdf,0x88,0

1748 /* Test Case 17 */
1749 #define K17 K16
1750 #define P17 P16
1751 #define A17 A16
1752 static const u8 IV17[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad},
1753 C17[]= {0xc3,0x76,0x2d,0xf1,0xca,0x78,0x7d,0x32,0xae,0x47,0xc1,0
1754 0xaf,0x1a,0xe1,0x4d,0x0b,0x97,0x6a,0xfa,0xc5,0x2f,0xf7,0
1755 0xfe,0xb5,0x82,0xd3,0x39,0x34,0xa4,0xf0,0x95,0x4c,0xc2,0
1756 0x62,0xac,0x43,0x0e,0x64,0xab,0xe4,0x99,0xf4,0x7c,0x9b,0
1757 T17[]= {0x3a,0x33,0x7d,0xbf,0x46,0xa7,0x92,0xc4,0x5e,0x45,0x49,0

1759 /* Test Case 18 */
1760 #define K18 K17
1761 #define P18 P17
1762 #define A18 A17
1763 static const u8 IV18[]={0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0
1764 0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0
1765 0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0
1766 0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0
1767 C18[]= {0x5a,0x8d,0xef,0x2f,0x0c,0x9e,0x53,0xf1,0xf7,0x5d,0x78,0
1768 0xee,0xb2,0xb2,0x2a,0xaf,0xde,0x64,0x19,0xa0,0x58,0xab,0
1769 0x0f,0xc0,0xc3,0xb7,0x80,0xf2,0x44,0x45,0x2d,0xa3,0xeb,0
1770 0xa2,0x41,0x89,0x97,0x20,0x0e,0xf8,0x2e,0x44,0xae,0x7e,0
1771 T18[]= {0xa4,0x4a,0x82,0x66,0xee,0x1c,0x8e,0xb0,0xc8,0xb5,0xd4,0

1773 /* Test Case 19 */
1774 #define K19 K1
1775 #define P19 P1
1776 #define IV19 IV1
1777 #define C19 C1

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 28

1778 static const u8 A19[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0
1779 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0
1780 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0
1781 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0
1782 0x52,0x2d,0xc1,0xf0,0x99,0x56,0x7d,0x07,0xf4,0x7f,0x37,0
1783 0x64,0x3a,0x8c,0xdc,0xbf,0xe5,0xc0,0xc9,0x75,0x98,0xa2,0
1784 0x8c,0xb0,0x8e,0x48,0x59,0x0d,0xbb,0x3d,0xa7,0xb0,0x8b,0
1785 0xc5,0xf6,0x1e,0x63,0x93,0xba,0x7a,0x0a,0xbc,0xc9,0xf6,0
1786 T19[]= {0x5f,0xea,0x79,0x3a,0x2d,0x6f,0x97,0x4d,0x37,0xe6,0x8e,0

1788 /* Test Case 20 */
1789 #define K20 K1
1790 #define A20 A1
1791 static const u8 IV20[64]={0xff,0xff,0xff,0xff}, /* this results in 0xff in count
1792 P20[288],
1793 C20[]= {0x56,0xb3,0x37,0x3c,0xa9,0xef,0x6e,0x4a,0x2b,0x64,0xfe,0
1794 0x25,0xf1,0x0d,0x47,0xa7,0x5a,0x5f,0xce,0x13,0xef,0xc6,0
1795 0x41,0x41,0xbd,0xd4,0x8c,0xf7,0xc7,0x70,0x88,0x7a,0xfd,0
1796 0xa9,0xae,0xff,0xcd,0x7c,0x5c,0xed,0xdf,0xc6,0xa7,0x83,0
1797 0x9d,0xa5,0x58,0x25,0x72,0x67,0xca,0xab,0x2a,0xd0,0xb2,0
1798 0xb1,0x7f,0xb4,0x1c,0x4b,0x8b,0x47,0x5c,0xb4,0xf3,0xf7,0
1799 0xc9,0xe8,0xc4,0xdc,0x0a,0x2a,0x5f,0xf1,0x90,0x3e,0x50,0
1800 0xa1,0xcd,0xb8,0x36,0x4c,0x50,0x61,0xa2,0x0c,0xae,0x74,0
1801 0xb0,0xab,0xc9,0xfd,0x32,0x17,0xef,0x9f,0x8c,0x90,0xbe,0
1802 0x97,0xf4,0xf8,0x80,0xdf,0xf1,0x5b,0xfb,0x7a,0x6b,0x28,0
1803 0x3c,0x2d,0x59,0xe3,0xf9,0xdf,0xff,0x65,0x3c,0x71,0x26,0
1804 0x11,0xf4,0x2b,0xae,0x12,0xaf,0x46,0x2b,0x10,0x70,0xbe,0
1805 0x87,0x2c,0xa1,0x0d,0xee,0x15,0xb3,0x24,0x9b,0x1a,0x1b,0
1806 0x4b,0xcc,0xb7,0xd0,0x32,0x00,0xbc,0xe4,0x20,0xa2,0xf8,0
1807 0x4d,0x14,0x23,0xc1,0xb5,0x69,0x90,0x03,0xc1,0x3e,0xce,0
1808 0x0e,0xed,0xc3,0x40,0x33,0xba,0xc1,0x90,0x27,0x83,0xdc,0
1809 0x18,0x8a,0x43,0x9c,0x7e,0xbc,0xc0,0x67,0x2d,0xbd,0xa4,0
1810 0x13,0xb0,0xbe,0x41,0x31,0x5e,0xf7,0x78,0x70,0x8a,0x70,0
1811 T20[]= {0x8b,0x30,0x7f,0x6b,0x33,0x28,0x6d,0x0a,0xb0,0x26,0xa9,0

1813 #define TEST_CASE(n) do { \
1814 u8 out[sizeof(P##n)]; \
1815 AES_set_encrypt_key(K##n,sizeof(K##n)*8,&key); \
1816 CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt); \
1817 CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n)); \
1818 memset(out,0,sizeof(out)); \
1819 if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n)); \
1820 if (P##n) CRYPTO_gcm128_encrypt(&ctx,P##n,out,sizeof(out)); \
1821 if (CRYPTO_gcm128_finish(&ctx,T##n,16) || \
1822 (C##n && memcmp(out,C##n,sizeof(out)))) \
1823 ret++, printf ("encrypt test#%d failed.\n",n); \
1824 CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n)); \
1825 memset(out,0,sizeof(out)); \
1826 if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n)); \
1827 if (C##n) CRYPTO_gcm128_decrypt(&ctx,C##n,out,sizeof(out)); \
1828 if (CRYPTO_gcm128_finish(&ctx,T##n,16) || \
1829 (P##n && memcmp(out,P##n,sizeof(out)))) \
1830 ret++, printf ("decrypt test#%d failed.\n",n); \
1831 } while(0)

1833 int main()
1834 {
1835 GCM128_CONTEXT ctx;
1836 AES_KEY key;
1837 int ret=0;

1839 TEST_CASE(1);
1840 TEST_CASE(2);
1841 TEST_CASE(3);
1842 TEST_CASE(4);
1843 TEST_CASE(5);

new/usr/src/lib/openssl/libsunw_crypto/modes/gcm128.c 29

1844 TEST_CASE(6);
1845 TEST_CASE(7);
1846 TEST_CASE(8);
1847 TEST_CASE(9);
1848 TEST_CASE(10);
1849 TEST_CASE(11);
1850 TEST_CASE(12);
1851 TEST_CASE(13);
1852 TEST_CASE(14);
1853 TEST_CASE(15);
1854 TEST_CASE(16);
1855 TEST_CASE(17);
1856 TEST_CASE(18);
1857 TEST_CASE(19);
1858 TEST_CASE(20);

1860 #ifdef OPENSSL_CPUID_OBJ
1861 {
1862 size_t start,stop,gcm_t,ctr_t,OPENSSL_rdtsc();
1863 union { u64 u; u8 c[1024]; } buf;
1864 int i;

1866 AES_set_encrypt_key(K1,sizeof(K1)*8,&key);
1867 CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt);
1868 CRYPTO_gcm128_setiv(&ctx,IV1,sizeof(IV1));

1870 CRYPTO_gcm128_encrypt(&ctx,buf.c,buf.c,sizeof(buf));
1871 start = OPENSSL_rdtsc();
1872 CRYPTO_gcm128_encrypt(&ctx,buf.c,buf.c,sizeof(buf));
1873 gcm_t = OPENSSL_rdtsc() - start;

1875 CRYPTO_ctr128_encrypt(buf.c,buf.c,sizeof(buf),
1876 &key,ctx.Yi.c,ctx.EKi.c,&ctx.mres,
1877 (block128_f)AES_encrypt);
1878 start = OPENSSL_rdtsc();
1879 CRYPTO_ctr128_encrypt(buf.c,buf.c,sizeof(buf),
1880 &key,ctx.Yi.c,ctx.EKi.c,&ctx.mres,
1881 (block128_f)AES_encrypt);
1882 ctr_t = OPENSSL_rdtsc() - start;

1884 printf("%.2f-%.2f=%.2f\n",
1885 gcm_t/(double)sizeof(buf),
1886 ctr_t/(double)sizeof(buf),
1887 (gcm_t-ctr_t)/(double)sizeof(buf));
1888 #ifdef GHASH
1889 {
1890 void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
1891 const u8 *inp,size_t len) = ctx.ghash;

1893 GHASH((&ctx),buf.c,sizeof(buf));
1894 start = OPENSSL_rdtsc();
1895 for (i=0;i<100;++i) GHASH((&ctx),buf.c,sizeof(buf));
1896 gcm_t = OPENSSL_rdtsc() - start;
1897 printf("%.2f\n",gcm_t/(double)sizeof(buf)/(double)i);
1898 }
1899 #endif
1900 }
1901 #endif

1903 return ret;
1904 }
1905 #endif

new/usr/src/lib/openssl/libsunw_crypto/modes/ofb128.c 1

**
 3907 Fri May 30 18:31:57 2014
new/usr/src/lib/openssl/libsunw_crypto/modes/ofb128.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 *
49 */

51 #include <openssl/crypto.h>
52 #include "modes_lcl.h"
53 #include <string.h>

55 #ifndef MODES_DEBUG
56 # ifndef NDEBUG
57 # define NDEBUG
58 # endif
59 #endif
60 #include <assert.h>

new/usr/src/lib/openssl/libsunw_crypto/modes/ofb128.c 2

62 /* The input and output encrypted as though 128bit ofb mode is being
63 * used. The extra state information to record how much of the
64 * 128bit block we have used is contained in *num;
65 */
66 void CRYPTO_ofb128_encrypt(const unsigned char *in, unsigned char *out,
67 size_t len, const void *key,
68 unsigned char ivec[16], int *num,
69 block128_f block)
70 {
71 unsigned int n;
72 size_t l=0;

74 assert(in && out && key && ivec && num);

76 n = *num;

78 #if !defined(OPENSSL_SMALL_FOOTPRINT)
79 if (16%sizeof(size_t) == 0) do { /* always true actually */
80 while (n && len) {
81 *(out++) = *(in++) ^ ivec[n];
82 --len;
83 n = (n+1) % 16;
84 }
85 #if defined(STRICT_ALIGNMENT)
86 if (((size_t)in|(size_t)out|(size_t)ivec)%sizeof(size_t) != 0)
87 break;
88 #endif
89 while (len>=16) {
90 (*block)(ivec, ivec, key);
91 for (; n<16; n+=sizeof(size_t))
92 *(size_t*)(out+n) =
93 *(size_t*)(in+n) ^ *(size_t*)(ivec+n);
94 len -= 16;
95 out += 16;
96 in += 16;
97 n = 0;
98 }
99 if (len) {
100 (*block)(ivec, ivec, key);
101 while (len--) {
102 out[n] = in[n] ^ ivec[n];
103 ++n;
104 }
105 }
106 *num = n;
107 return;
108 } while(0);
109 /* the rest would be commonly eliminated by x86* compiler */
110 #endif
111 while (l<len) {
112 if (n==0) {
113 (*block)(ivec, ivec, key);
114 }
115 out[l] = in[l] ^ ivec[n];
116 ++l;
117 n = (n+1) % 16;
118 }

120 *num=n;
121 }

new/usr/src/lib/openssl/libsunw_crypto/modes/xts128.c 1

**
 5613 Fri May 30 18:31:57 2014
new/usr/src/lib/openssl/libsunw_crypto/modes/xts128.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ==
2 * Copyright (c) 2011 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==
48 */

50 #include <openssl/crypto.h>
51 #include "modes_lcl.h"
52 #include <string.h>

54 #ifndef MODES_DEBUG
55 # ifndef NDEBUG
56 # define NDEBUG
57 # endif
58 #endif
59 #include <assert.h>

61 int CRYPTO_xts128_encrypt(const XTS128_CONTEXT *ctx, const unsigned char iv[16],

new/usr/src/lib/openssl/libsunw_crypto/modes/xts128.c 2

62 const unsigned char *inp, unsigned char *out,
63 size_t len, int enc)
64 {
65 const union { long one; char little; } is_endian = {1};
66 union { u64 u[2]; u32 d[4]; u8 c[16]; } tweak, scratch;
67 unsigned int i;

69 if (len<16) return -1;

71 memcpy(tweak.c, iv, 16);

73 (*ctx->block2)(tweak.c,tweak.c,ctx->key2);

75 if (!enc && (len%16)) len-=16;

77 while (len>=16) {
78 #if defined(STRICT_ALIGNMENT)
79 memcpy(scratch.c,inp,16);
80 scratch.u[0] ^= tweak.u[0];
81 scratch.u[1] ^= tweak.u[1];
82 #else
83 scratch.u[0] = ((u64*)inp)[0]^tweak.u[0];
84 scratch.u[1] = ((u64*)inp)[1]^tweak.u[1];
85 #endif
86 (*ctx->block1)(scratch.c,scratch.c,ctx->key1);
87 #if defined(STRICT_ALIGNMENT)
88 scratch.u[0] ^= tweak.u[0];
89 scratch.u[1] ^= tweak.u[1];
90 memcpy(out,scratch.c,16);
91 #else
92 ((u64*)out)[0] = scratch.u[0]^=tweak.u[0];
93 ((u64*)out)[1] = scratch.u[1]^=tweak.u[1];
94 #endif
95 inp += 16;
96 out += 16;
97 len -= 16;

99 if (len==0) return 0;

101 if (is_endian.little) {
102 unsigned int carry,res;
103
104 res = 0x87&(((int)tweak.d[3])>>31);
105 carry = (unsigned int)(tweak.u[0]>>63);
106 tweak.u[0] = (tweak.u[0]<<1)^res;
107 tweak.u[1] = (tweak.u[1]<<1)|carry;
108 }
109 else {
110 size_t c;

112 for (c=0,i=0;i<16;++i) {
113 /*+ substitutes for |, because c is 1 bit */
114 c += ((size_t)tweak.c[i])<<1;
115 tweak.c[i] = (u8)c;
116 c = c>>8;
117 }
118 tweak.c[0] ^= (u8)(0x87&(0-c));
119 }
120 }
121 if (enc) {
122 for (i=0;i<len;++i) {
123 u8 c = inp[i];
124 out[i] = scratch.c[i];
125 scratch.c[i] = c;
126 }
127 scratch.u[0] ^= tweak.u[0];

new/usr/src/lib/openssl/libsunw_crypto/modes/xts128.c 3

128 scratch.u[1] ^= tweak.u[1];
129 (*ctx->block1)(scratch.c,scratch.c,ctx->key1);
130 scratch.u[0] ^= tweak.u[0];
131 scratch.u[1] ^= tweak.u[1];
132 memcpy(out-16,scratch.c,16);
133 }
134 else {
135 union { u64 u[2]; u8 c[16]; } tweak1;

137 if (is_endian.little) {
138 unsigned int carry,res;

140 res = 0x87&(((int)tweak.d[3])>>31);
141 carry = (unsigned int)(tweak.u[0]>>63);
142 tweak1.u[0] = (tweak.u[0]<<1)^res;
143 tweak1.u[1] = (tweak.u[1]<<1)|carry;
144 }
145 else {
146 size_t c;

148 for (c=0,i=0;i<16;++i) {
149 /*+ substitutes for |, because c is 1 bit */
150 c += ((size_t)tweak.c[i])<<1;
151 tweak1.c[i] = (u8)c;
152 c = c>>8;
153 }
154 tweak1.c[0] ^= (u8)(0x87&(0-c));
155 }
156 #if defined(STRICT_ALIGNMENT)
157 memcpy(scratch.c,inp,16);
158 scratch.u[0] ^= tweak1.u[0];
159 scratch.u[1] ^= tweak1.u[1];
160 #else
161 scratch.u[0] = ((u64*)inp)[0]^tweak1.u[0];
162 scratch.u[1] = ((u64*)inp)[1]^tweak1.u[1];
163 #endif
164 (*ctx->block1)(scratch.c,scratch.c,ctx->key1);
165 scratch.u[0] ^= tweak1.u[0];
166 scratch.u[1] ^= tweak1.u[1];

168 for (i=0;i<len;++i) {
169 u8 c = inp[16+i];
170 out[16+i] = scratch.c[i];
171 scratch.c[i] = c;
172 }
173 scratch.u[0] ^= tweak.u[0];
174 scratch.u[1] ^= tweak.u[1];
175 (*ctx->block1)(scratch.c,scratch.c,ctx->key1);
176 #if defined(STRICT_ALIGNMENT)
177 scratch.u[0] ^= tweak.u[0];
178 scratch.u[1] ^= tweak.u[1];
179 memcpy (out,scratch.c,16);
180 #else
181 ((u64*)out)[0] = scratch.u[0]^tweak.u[0];
182 ((u64*)out)[1] = scratch.u[1]^tweak.u[1];
183 #endif
184 }

186 return 0;
187 }

new/usr/src/lib/openssl/libsunw_crypto/o_dir.c 1

**
 3451 Fri May 30 18:31:57 2014
new/usr/src/lib/openssl/libsunw_crypto/o_dir.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/o_dir.c -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
3 * project 2004.
4 */
5 /* ==
6 * Copyright (c) 2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <errno.h>
60 #include <e_os.h>

new/usr/src/lib/openssl/libsunw_crypto/o_dir.c 2

62 /* The routines really come from the Levitte Programming, so to make
63 life simple, let’s just use the raw files and hack the symbols to
64 fit our namespace. */
65 #define LP_DIR_CTX OPENSSL_DIR_CTX
66 #define LP_dir_context_st OPENSSL_dir_context_st
67 #define LP_find_file OPENSSL_DIR_read
68 #define LP_find_file_end OPENSSL_DIR_end

70 #include "o_dir.h"

72 #define LPDIR_H
73 #if defined OPENSSL_SYS_UNIX || defined DJGPP
74 #include "LPdir_unix.c"
75 #elif defined OPENSSL_SYS_VMS
76 #include "LPdir_vms.c"
77 #elif defined OPENSSL_SYS_WIN32
78 #include "LPdir_win32.c"
79 #elif defined OPENSSL_SYS_WINCE
80 #include "LPdir_wince.c"
81 #else
82 #include "LPdir_nyi.c"
83 #endif

new/usr/src/lib/openssl/libsunw_crypto/o_fips.c 1

**
 3419 Fri May 30 18:31:57 2014
new/usr/src/lib/openssl/libsunw_crypto/o_fips.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* Written by Stephen henson (steve@openssl.org) for the OpenSSL
2 * project 2011.
3 */
4 /* ==
5 * Copyright (c) 2011 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * openssl-core@openssl.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ==
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */

58 #include "cryptlib.h"
59 #ifdef OPENSSL_FIPS
60 #include <openssl/fips.h>
61 #include <openssl/fips_rand.h>

new/usr/src/lib/openssl/libsunw_crypto/o_fips.c 2

62 #include <openssl/rand.h>
63 #endif

65 int FIPS_mode(void)
66 {
67 OPENSSL_init();
68 #ifdef OPENSSL_FIPS
69 return FIPS_module_mode();
70 #else
71 return 0;
72 #endif
73 }

75 int FIPS_mode_set(int r)
76 {
77 OPENSSL_init();
78 #ifdef OPENSSL_FIPS
79 #ifndef FIPS_AUTH_USER_PASS
80 #define FIPS_AUTH_USER_PASS "Default FIPS Crypto User Password"
81 #endif
82 if (!FIPS_module_mode_set(r, FIPS_AUTH_USER_PASS))
83 return 0;
84 if (r)
85 RAND_set_rand_method(FIPS_rand_get_method());
86 else
87 RAND_set_rand_method(NULL);
88 return 1;
89 #else
90 if (r == 0)
91 return 1;
92 CRYPTOerr(CRYPTO_F_FIPS_MODE_SET, CRYPTO_R_FIPS_MODE_NOT_SUPPORTED);
93 return 0;
94 #endif
95 }

new/usr/src/lib/openssl/libsunw_crypto/o_init.c 1

**
 3147 Fri May 30 18:31:57 2014
new/usr/src/lib/openssl/libsunw_crypto/o_init.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* o_init.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2011 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 */

55 #include <e_os.h>
56 #include <openssl/err.h>
57 #ifdef OPENSSL_FIPS
58 #include <openssl/fips.h>
59 #include <openssl/rand.h>
60 #endif

new/usr/src/lib/openssl/libsunw_crypto/o_init.c 2

62 /* Perform any essential OpenSSL initialization operations.
63 * Currently only sets FIPS callbacks
64 */

66 void OPENSSL_init(void)
67 {
68 static int done = 0;
69 if (done)
70 return;
71 done = 1;
72 #ifdef OPENSSL_FIPS
73 FIPS_set_locking_callbacks(CRYPTO_lock, CRYPTO_add_lock);
74 FIPS_set_error_callbacks(ERR_put_error, ERR_add_error_vdata);
75 FIPS_set_malloc_callbacks(CRYPTO_malloc, CRYPTO_free);
76 RAND_init_fips();
77 #endif
78 #if 0
79 fprintf(stderr, "Called OPENSSL_init\n");
80 #endif
81 }

new/usr/src/lib/openssl/libsunw_crypto/o_str.c 1

**
 3915 Fri May 30 18:31:57 2014
new/usr/src/lib/openssl/libsunw_crypto/o_str.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/o_str.c -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
3 * project 2003.
4 */
5 /* ==
6 * Copyright (c) 2003 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <ctype.h>
60 #include <e_os.h>
61 #include <o_str.h>

new/usr/src/lib/openssl/libsunw_crypto/o_str.c 2

63 #if !defined(OPENSSL_IMPLEMENTS_strncasecmp) && \
64 !defined(OPENSSL_SYSNAME_WIN32) && \
65 !defined(NETWARE_CLIB)
66 # include <strings.h>
67 #endif

69 int OPENSSL_strncasecmp(const char *str1, const char *str2, size_t n)
70 {
71 #if defined(OPENSSL_IMPLEMENTS_strncasecmp)
72 while (*str1 && *str2 && n)
73 {
74 int res = toupper(*str1) - toupper(*str2);
75 if (res) return res < 0 ? -1 : 1;
76 str1++;
77 str2++;
78 n--;
79 }
80 if (n == 0)
81 return 0;
82 if (*str1)
83 return 1;
84 if (*str2)
85 return -1;
86 return 0;
87 #else
88 /* Recursion hazard warning! Whenever strncasecmp is #defined as
89 * OPENSSL_strncasecmp, OPENSSL_IMPLEMENTS_strncasecmp must be
90 * defined as well. */
91 return strncasecmp(str1, str2, n);
92 #endif
93 }
94 int OPENSSL_strcasecmp(const char *str1, const char *str2)
95 {
96 #if defined(OPENSSL_IMPLEMENTS_strncasecmp)
97 return OPENSSL_strncasecmp(str1, str2, (size_t)-1);
98 #else
99 return strcasecmp(str1, str2);
100 #endif
101 }

103 int OPENSSL_memcmp(const void *v1,const void *v2,size_t n)
104 {
105 const unsigned char *c1=v1,*c2=v2;
106 int ret=0;

108 while(n && (ret=*c1-*c2)==0) n--,c1++,c2++;

110 return ret;
111 }

new/usr/src/lib/openssl/libsunw_crypto/o_time.c 1

**
 11241 Fri May 30 18:31:57 2014
new/usr/src/lib/openssl/libsunw_crypto/o_time.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/o_time.c -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
3 * project 2001.
4 */
5 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
6 * project 2008.
7 */
8 /* ==
9 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 *
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 *
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in
20 * the documentation and/or other materials provided with the
21 * distribution.
22 *
23 * 3. All advertising materials mentioning features or use of this
24 * software must display the following acknowledgment:
25 * "This product includes software developed by the OpenSSL Project
26 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
27 *
28 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
29 * endorse or promote products derived from this software without
30 * prior written permission. For written permission, please contact
31 * licensing@OpenSSL.org.
32 *
33 * 5. Products derived from this software may not be called "OpenSSL"
34 * nor may "OpenSSL" appear in their names without prior written
35 * permission of the OpenSSL Project.
36 *
37 * 6. Redistributions of any form whatsoever must retain the following
38 * acknowledgment:
39 * "This product includes software developed by the OpenSSL Project
40 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
43 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
45 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
46 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
47 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
48 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
49 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
51 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
52 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
53 * OF THE POSSIBILITY OF SUCH DAMAGE.
54 * ==
55 *
56 * This product includes cryptographic software written by Eric Young
57 * (eay@cryptsoft.com). This product includes software written by Tim
58 * Hudson (tjh@cryptsoft.com).
59 *
60 */

new/usr/src/lib/openssl/libsunw_crypto/o_time.c 2

62 #include <openssl/e_os2.h>
63 #include <string.h>
64 #include <o_time.h>

66 #ifdef OPENSSL_SYS_VMS
67 # if __CRTL_VER >= 70000000 && \
68 (defined _POSIX_C_SOURCE || !defined _ANSI_C_SOURCE)
69 # define VMS_GMTIME_OK
70 # endif
71 # ifndef VMS_GMTIME_OK
72 # include <libdtdef.h>
73 # include <lib$routines.h>
74 # include <lnmdef.h>
75 # include <starlet.h>
76 # include <descrip.h>
77 # include <stdlib.h>
78 # endif /* ndef VMS_GMTIME_OK */
79 #endif

81 struct tm *OPENSSL_gmtime(const time_t *timer, struct tm *result)
82 {
83 struct tm *ts = NULL;

85 #if defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) && !defined(OPENSSL_
86 /* should return &data, but doesn’t on some systems,
87 so we don’t even look at the return value */
88 gmtime_r(timer,result);
89 ts = result;
90 #elif !defined(OPENSSL_SYS_VMS) || defined(VMS_GMTIME_OK)
91 ts = gmtime(timer);
92 if (ts == NULL)
93 return NULL;

95 memcpy(result, ts, sizeof(struct tm));
96 ts = result;
97 #endif
98 #if defined(OPENSSL_SYS_VMS) && !defined(VMS_GMTIME_OK)
99 if (ts == NULL)
100 {
101 static $DESCRIPTOR(tabnam,"LNM$DCL_LOGICAL");
102 static $DESCRIPTOR(lognam,"SYS$TIMEZONE_DIFFERENTIAL");
103 char logvalue[256];
104 unsigned int reslen = 0;
105 struct {
106 short buflen;
107 short code;
108 void *bufaddr;
109 unsigned int *reslen;
110 } itemlist[] = {
111 { 0, LNM$_STRING, 0, 0 },
112 { 0, 0, 0, 0 },
113 };
114 int status;
115 time_t t;

117 /* Get the value for SYS$TIMEZONE_DIFFERENTIAL */
118 itemlist[0].buflen = sizeof(logvalue);
119 itemlist[0].bufaddr = logvalue;
120 itemlist[0].reslen = &reslen;
121 status = sys$trnlnm(0, &tabnam, &lognam, 0, itemlist);
122 if (!(status & 1))
123 return NULL;
124 logvalue[reslen] = ’\0’;

126 t = *timer;

new/usr/src/lib/openssl/libsunw_crypto/o_time.c 3

128 /* The following is extracted from the DEC C header time.h */
129 /*
130 ** Beginning in OpenVMS Version 7.0 mktime, time, ctime, strftime
131 ** have two implementations. One implementation is provided
132 ** for compatibility and deals with time in terms of local time,
133 ** the other __utc_* deals with time in terms of UTC.
134 */
135 /* We use the same conditions as in said time.h to check if we should
136 assume that t contains local time (and should therefore be adjusted)
137 or UTC (and should therefore be left untouched). */
138 #if __CRTL_VER < 70000000 || defined _VMS_V6_SOURCE
139 /* Get the numerical value of the equivalence string */
140 status = atoi(logvalue);

142 /* and use it to move time to GMT */
143 t -= status;
144 #endif

146 /* then convert the result to the time structure */

148 /* Since there was no gmtime_r() to do this stuff for us,
149 we have to do it the hard way. */
150 {
151 /* The VMS epoch is the astronomical Smithsonian date,
152 if I remember correctly, which is November 17, 1858.
153 Furthermore, time is measure in thenths of microseconds
154 and stored in quadwords (64 bit integers). unix_epoch
155 below is January 1st 1970 expressed as a VMS time. The
156 following code was used to get this number:

158 #include <stdio.h>
159 #include <stdlib.h>
160 #include <lib$routines.h>
161 #include <starlet.h>

163 main()
164 {
165 unsigned long systime[2];
166 unsigned short epoch_values[7] =
167 { 1970, 1, 1, 0, 0, 0, 0 };

169 lib$cvt_vectim(epoch_values, systime);

171 printf("%u %u", systime[0], systime[1]);
172 }
173 */
174 unsigned long unix_epoch[2] = { 1273708544, 8164711 };
175 unsigned long deltatime[2];
176 unsigned long systime[2];
177 struct vms_vectime
178 {
179 short year, month, day, hour, minute, second,
180 centi_second;
181 } time_values;
182 long operation;

184 /* Turn the number of seconds since January 1st 1970 to
185 an internal delta time.
186 Note that lib$cvt_to_internal_time() will assume
187 that t is signed, and will therefore break on 32-bit
188 systems some time in 2038.
189 */
190 operation = LIB$K_DELTA_SECONDS;
191 status = lib$cvt_to_internal_time(&operation,
192 &t, deltatime);

new/usr/src/lib/openssl/libsunw_crypto/o_time.c 4

194 /* Add the delta time with the Unix epoch and we have
195 the current UTC time in internal format */
196 status = lib$add_times(unix_epoch, deltatime, systime);

198 /* Turn the internal time into a time vector */
199 status = sys$numtim(&time_values, systime);

201 /* Fill in the struct tm with the result */
202 result->tm_sec = time_values.second;
203 result->tm_min = time_values.minute;
204 result->tm_hour = time_values.hour;
205 result->tm_mday = time_values.day;
206 result->tm_mon = time_values.month - 1;
207 result->tm_year = time_values.year - 1900;

209 operation = LIB$K_DAY_OF_WEEK;
210 status = lib$cvt_from_internal_time(&operation,
211 &result->tm_wday, systime);
212 result->tm_wday %= 7;

214 operation = LIB$K_DAY_OF_YEAR;
215 status = lib$cvt_from_internal_time(&operation,
216 &result->tm_yday, systime);
217 result->tm_yday--;

219 result->tm_isdst = 0; /* There’s no way to know... */

221 ts = result;
222 }
223 }
224 #endif
225 return ts;
226 }

228 /* Take a tm structure and add an offset to it. This avoids any OS issues
229 * with restricted date types and overflows which cause the year 2038
230 * problem.
231 */

233 #define SECS_PER_DAY (24 * 60 * 60)

235 static long date_to_julian(int y, int m, int d);
236 static void julian_to_date(long jd, int *y, int *m, int *d);

238 int OPENSSL_gmtime_adj(struct tm *tm, int off_day, long offset_sec)
239 {
240 int offset_hms, offset_day;
241 long time_jd;
242 int time_year, time_month, time_day;
243 /* split offset into days and day seconds */
244 offset_day = offset_sec / SECS_PER_DAY;
245 /* Avoid sign issues with % operator */
246 offset_hms = offset_sec - (offset_day * SECS_PER_DAY);
247 offset_day += off_day;
248 /* Add current time seconds to offset */
249 offset_hms += tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec;
250 /* Adjust day seconds if overflow */
251 if (offset_hms >= SECS_PER_DAY)
252 {
253 offset_day++;
254 offset_hms -= SECS_PER_DAY;
255 }
256 else if (offset_hms < 0)
257 {
258 offset_day--;
259 offset_hms += SECS_PER_DAY;

new/usr/src/lib/openssl/libsunw_crypto/o_time.c 5

260 }

262 /* Convert date of time structure into a Julian day number.
263 */

265 time_year = tm->tm_year + 1900;
266 time_month = tm->tm_mon + 1;
267 time_day = tm->tm_mday;

269 time_jd = date_to_julian(time_year, time_month, time_day);

271 /* Work out Julian day of new date */
272 time_jd += offset_day;

274 if (time_jd < 0)
275 return 0;

277 /* Convert Julian day back to date */

279 julian_to_date(time_jd, &time_year, &time_month, &time_day);

281 if (time_year < 1900 || time_year > 9999)
282 return 0;

284 /* Update tm structure */

286 tm->tm_year = time_year - 1900;
287 tm->tm_mon = time_month - 1;
288 tm->tm_mday = time_day;

290 tm->tm_hour = offset_hms / 3600;
291 tm->tm_min = (offset_hms / 60) % 60;
292 tm->tm_sec = offset_hms % 60;

294 return 1;
295
296 }

298 /* Convert date to and from julian day
299 * Uses Fliegel & Van Flandern algorithm
300 */
301 static long date_to_julian(int y, int m, int d)
302 {
303 return (1461 * (y + 4800 + (m - 14) / 12)) / 4 +
304 (367 * (m - 2 - 12 * ((m - 14) / 12))) / 12 -
305 (3 * ((y + 4900 + (m - 14) / 12) / 100)) / 4 +
306 d - 32075;
307 }

309 static void julian_to_date(long jd, int *y, int *m, int *d)
310 {
311 long L = jd + 68569;
312 long n = (4 * L) / 146097;
313 long i, j;

315 L = L - (146097 * n + 3) / 4;
316 i = (4000 * (L + 1)) / 1461001;
317 L = L - (1461 * i) / 4 + 31;
318 j = (80 * L) / 2447;
319 *d = L - (2447 * j) / 80;
320 L = j / 11;
321 *m = j + 2 - (12 * L);
322 *y = 100 * (n - 49) + i + L;
323 }

325 #ifdef OPENSSL_TIME_TEST

new/usr/src/lib/openssl/libsunw_crypto/o_time.c 6

327 #include <stdio.h>

329 /* Time checking test code. Check times are identical for a wide range of
330 * offsets. This should be run on a machine with 64 bit time_t or it will
331 * trigger the very errors the routines fix.
332 */

334 int main(int argc, char **argv)
335 {
336 long offset;
337 for (offset = 0; offset < 1000000; offset++)
338 {
339 check_time(offset);
340 check_time(-offset);
341 check_time(offset * 1000);
342 check_time(-offset * 1000);
343 }
344 }

346 int check_time(long offset)
347 {
348 struct tm tm1, tm2;
349 time_t t1, t2;
350 time(&t1);
351 t2 = t1 + offset;
352 OPENSSL_gmtime(&t2, &tm2);
353 OPENSSL_gmtime(&t1, &tm1);
354 OPENSSL_gmtime_adj(&tm1, 0, offset);
355 if ((tm1.tm_year == tm2.tm_year) &&
356 (tm1.tm_mon == tm2.tm_mon) &&
357 (tm1.tm_mday == tm2.tm_mday) &&
358 (tm1.tm_hour == tm2.tm_hour) &&
359 (tm1.tm_min == tm2.tm_min) &&
360 (tm1.tm_sec == tm2.tm_sec))
361 return 1;
362 fprintf(stderr, "TIME ERROR!!\n");
363 fprintf(stderr, "Time1: %d/%d/%d, %d:%02d:%02d\n",
364 tm2.tm_mday, tm2.tm_mon + 1, tm2.tm_year + 1900,
365 tm2.tm_hour, tm2.tm_min, tm2.tm_sec);
366 fprintf(stderr, "Time2: %d/%d/%d, %d:%02d:%02d\n",
367 tm1.tm_mday, tm1.tm_mon + 1, tm1.tm_year + 1900,
368 tm1.tm_hour, tm1.tm_min, tm1.tm_sec);
369 return 0;
370 }

372 #endif

new/usr/src/lib/openssl/libsunw_crypto/objects/o_names.c 1

**
 8304 Fri May 30 18:31:57 2014
new/usr/src/lib/openssl/libsunw_crypto/objects/o_names.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>

5 #include <openssl/err.h>
6 #include <openssl/lhash.h>
7 #include <openssl/objects.h>
8 #include <openssl/safestack.h>
9 #include <openssl/e_os2.h>

11 /* Later versions of DEC C has started to add lnkage information to certain
12 * functions, which makes it tricky to use them as values to regular function
13 * pointers. One way is to define a macro that takes care of casting them
14 * correctly.
15 */
16 #ifdef OPENSSL_SYS_VMS_DECC
17 # define OPENSSL_strcmp (int (*)(const char *,const char *))strcmp
18 #else
19 # define OPENSSL_strcmp strcmp
20 #endif

22 /* I use the ex_data stuff to manage the identifiers for the obj_name_types
23 * that applications may define. I only really use the free function field.
24 */
25 DECLARE_LHASH_OF(OBJ_NAME);
26 static LHASH_OF(OBJ_NAME) *names_lh=NULL;
27 static int names_type_num=OBJ_NAME_TYPE_NUM;

29 typedef struct name_funcs_st
30 {
31 unsigned long (*hash_func)(const char *name);
32 int (*cmp_func)(const char *a,const char *b);
33 void (*free_func)(const char *, int, const char *);
34 } NAME_FUNCS;

36 DECLARE_STACK_OF(NAME_FUNCS)
37 IMPLEMENT_STACK_OF(NAME_FUNCS)

39 static STACK_OF(NAME_FUNCS) *name_funcs_stack;

41 /* The LHASH callbacks now use the raw "void *" prototypes and do per-variable
42 * casting in the functions. This prevents function pointer casting without the
43 * need for macro-generated wrapper functions. */

45 /* static unsigned long obj_name_hash(OBJ_NAME *a); */
46 static unsigned long obj_name_hash(const void *a_void);
47 /* static int obj_name_cmp(OBJ_NAME *a,OBJ_NAME *b); */
48 static int obj_name_cmp(const void *a_void,const void *b_void);

50 static IMPLEMENT_LHASH_HASH_FN(obj_name, OBJ_NAME)
51 static IMPLEMENT_LHASH_COMP_FN(obj_name, OBJ_NAME)

53 int OBJ_NAME_init(void)
54 {
55 if (names_lh != NULL) return(1);
56 MemCheck_off();
57 names_lh=lh_OBJ_NAME_new();
58 MemCheck_on();
59 return(names_lh != NULL);
60 }

new/usr/src/lib/openssl/libsunw_crypto/objects/o_names.c 2

62 int OBJ_NAME_new_index(unsigned long (*hash_func)(const char *),
63 int (*cmp_func)(const char *, const char *),
64 void (*free_func)(const char *, int, const char *))
65 {
66 int ret;
67 int i;
68 NAME_FUNCS *name_funcs;

70 if (name_funcs_stack == NULL)
71 {
72 MemCheck_off();
73 name_funcs_stack=sk_NAME_FUNCS_new_null();
74 MemCheck_on();
75 }
76 if (name_funcs_stack == NULL)
77 {
78 /* ERROR */
79 return(0);
80 }
81 ret=names_type_num;
82 names_type_num++;
83 for (i=sk_NAME_FUNCS_num(name_funcs_stack); i<names_type_num; i++)
84 {
85 MemCheck_off();
86 name_funcs = OPENSSL_malloc(sizeof(NAME_FUNCS));
87 MemCheck_on();
88 if (!name_funcs)
89 {
90 OBJerr(OBJ_F_OBJ_NAME_NEW_INDEX,ERR_R_MALLOC_FAILURE);
91 return(0);
92 }
93 name_funcs->hash_func = lh_strhash;
94 name_funcs->cmp_func = OPENSSL_strcmp;
95 name_funcs->free_func = 0; /* NULL is often declared to
96 * ((void *)0), which according
97 * to Compaq C is not really
98 * compatible with a function
99 * pointer. -- Richard Levit
100 MemCheck_off();
101 sk_NAME_FUNCS_push(name_funcs_stack,name_funcs);
102 MemCheck_on();
103 }
104 name_funcs = sk_NAME_FUNCS_value(name_funcs_stack, ret);
105 if (hash_func != NULL)
106 name_funcs->hash_func = hash_func;
107 if (cmp_func != NULL)
108 name_funcs->cmp_func = cmp_func;
109 if (free_func != NULL)
110 name_funcs->free_func = free_func;
111 return(ret);
112 }

114 /* static int obj_name_cmp(OBJ_NAME *a, OBJ_NAME *b) */
115 static int obj_name_cmp(const void *a_void, const void *b_void)
116 {
117 int ret;
118 const OBJ_NAME *a = (const OBJ_NAME *)a_void;
119 const OBJ_NAME *b = (const OBJ_NAME *)b_void;

121 ret=a->type-b->type;
122 if (ret == 0)
123 {
124 if ((name_funcs_stack != NULL)
125 && (sk_NAME_FUNCS_num(name_funcs_stack) > a->type))
126 {
127 ret=sk_NAME_FUNCS_value(name_funcs_stack,

new/usr/src/lib/openssl/libsunw_crypto/objects/o_names.c 3

128 a->type)->cmp_func(a->name,b->name);
129 }
130 else
131 ret=strcmp(a->name,b->name);
132 }
133 return(ret);
134 }

136 /* static unsigned long obj_name_hash(OBJ_NAME *a) */
137 static unsigned long obj_name_hash(const void *a_void)
138 {
139 unsigned long ret;
140 const OBJ_NAME *a = (const OBJ_NAME *)a_void;

142 if ((name_funcs_stack != NULL) && (sk_NAME_FUNCS_num(name_funcs_stack) >
143 {
144 ret=sk_NAME_FUNCS_value(name_funcs_stack,
145 a->type)->hash_func(a->name);
146 }
147 else
148 {
149 ret=lh_strhash(a->name);
150 }
151 ret^=a->type;
152 return(ret);
153 }

155 const char *OBJ_NAME_get(const char *name, int type)
156 {
157 OBJ_NAME on,*ret;
158 int num=0,alias;

160 if (name == NULL) return(NULL);
161 if ((names_lh == NULL) && !OBJ_NAME_init()) return(NULL);

163 alias=type&OBJ_NAME_ALIAS;
164 type&= ~OBJ_NAME_ALIAS;

166 on.name=name;
167 on.type=type;

169 for (;;)
170 {
171 ret=lh_OBJ_NAME_retrieve(names_lh,&on);
172 if (ret == NULL) return(NULL);
173 if ((ret->alias) && !alias)
174 {
175 if (++num > 10) return(NULL);
176 on.name=ret->data;
177 }
178 else
179 {
180 return(ret->data);
181 }
182 }
183 }

185 int OBJ_NAME_add(const char *name, int type, const char *data)
186 {
187 OBJ_NAME *onp,*ret;
188 int alias;

190 if ((names_lh == NULL) && !OBJ_NAME_init()) return(0);

192 alias=type&OBJ_NAME_ALIAS;
193 type&= ~OBJ_NAME_ALIAS;

new/usr/src/lib/openssl/libsunw_crypto/objects/o_names.c 4

195 onp=(OBJ_NAME *)OPENSSL_malloc(sizeof(OBJ_NAME));
196 if (onp == NULL)
197 {
198 /* ERROR */
199 return(0);
200 }

202 onp->name=name;
203 onp->alias=alias;
204 onp->type=type;
205 onp->data=data;

207 ret=lh_OBJ_NAME_insert(names_lh,onp);
208 if (ret != NULL)
209 {
210 /* free things */
211 if ((name_funcs_stack != NULL) && (sk_NAME_FUNCS_num(name_funcs_
212 {
213 /* XXX: I’m not sure I understand why the free
214 * function should get three arguments...
215 * -- Richard Levitte
216 */
217 sk_NAME_FUNCS_value(name_funcs_stack,
218 ret->type)->free_func(ret->name,ret->type,ret->d
219 }
220 OPENSSL_free(ret);
221 }
222 else
223 {
224 if (lh_OBJ_NAME_error(names_lh))
225 {
226 /* ERROR */
227 return(0);
228 }
229 }
230 return(1);
231 }

233 int OBJ_NAME_remove(const char *name, int type)
234 {
235 OBJ_NAME on,*ret;

237 if (names_lh == NULL) return(0);

239 type&= ~OBJ_NAME_ALIAS;
240 on.name=name;
241 on.type=type;
242 ret=lh_OBJ_NAME_delete(names_lh,&on);
243 if (ret != NULL)
244 {
245 /* free things */
246 if ((name_funcs_stack != NULL) && (sk_NAME_FUNCS_num(name_funcs_
247 {
248 /* XXX: I’m not sure I understand why the free
249 * function should get three arguments...
250 * -- Richard Levitte
251 */
252 sk_NAME_FUNCS_value(name_funcs_stack,
253 ret->type)->free_func(ret->name,ret->type,ret->d
254 }
255 OPENSSL_free(ret);
256 return(1);
257 }
258 else
259 return(0);

new/usr/src/lib/openssl/libsunw_crypto/objects/o_names.c 5

260 }

262 struct doall
263 {
264 int type;
265 void (*fn)(const OBJ_NAME *,void *arg);
266 void *arg;
267 };

269 static void do_all_fn_doall_arg(const OBJ_NAME *name,struct doall *d)
270 {
271 if(name->type == d->type)
272 d->fn(name,d->arg);
273 }

275 static IMPLEMENT_LHASH_DOALL_ARG_FN(do_all_fn, const OBJ_NAME, struct doall)

277 void OBJ_NAME_do_all(int type,void (*fn)(const OBJ_NAME *,void *arg),void *arg)
278 {
279 struct doall d;

281 d.type=type;
282 d.fn=fn;
283 d.arg=arg;

285 lh_OBJ_NAME_doall_arg(names_lh, LHASH_DOALL_ARG_FN(do_all_fn),
286 struct doall, &d);
287 }

289 struct doall_sorted
290 {
291 int type;
292 int n;
293 const OBJ_NAME **names;
294 };

296 static void do_all_sorted_fn(const OBJ_NAME *name,void *d_)
297 {
298 struct doall_sorted *d=d_;

300 if(name->type != d->type)
301 return;

303 d->names[d->n++]=name;
304 }

306 static int do_all_sorted_cmp(const void *n1_,const void *n2_)
307 {
308 const OBJ_NAME * const *n1=n1_;
309 const OBJ_NAME * const *n2=n2_;

311 return strcmp((*n1)->name,(*n2)->name);
312 }

314 void OBJ_NAME_do_all_sorted(int type,void (*fn)(const OBJ_NAME *,void *arg),
315 void *arg)
316 {
317 struct doall_sorted d;
318 int n;

320 d.type=type;
321 d.names=OPENSSL_malloc(lh_OBJ_NAME_num_items(names_lh)*sizeof *d.names);
322 d.n=0;
323 OBJ_NAME_do_all(type,do_all_sorted_fn,&d);

325 qsort((void *)d.names,d.n,sizeof *d.names,do_all_sorted_cmp);

new/usr/src/lib/openssl/libsunw_crypto/objects/o_names.c 6

327 for(n=0 ; n < d.n ; ++n)
328 fn(d.names[n],arg);

330 OPENSSL_free((void *)d.names);
331 }

333 static int free_type;

335 static void names_lh_free_doall(OBJ_NAME *onp)
336 {
337 if (onp == NULL)
338 return;

340 if (free_type < 0 || free_type == onp->type)
341 OBJ_NAME_remove(onp->name,onp->type);
342 }

344 static IMPLEMENT_LHASH_DOALL_FN(names_lh_free, OBJ_NAME)

346 static void name_funcs_free(NAME_FUNCS *ptr)
347 {
348 OPENSSL_free(ptr);
349 }

351 void OBJ_NAME_cleanup(int type)
352 {
353 unsigned long down_load;

355 if (names_lh == NULL) return;

357 free_type=type;
358 down_load=lh_OBJ_NAME_down_load(names_lh);
359 lh_OBJ_NAME_down_load(names_lh)=0;

361 lh_OBJ_NAME_doall(names_lh,LHASH_DOALL_FN(names_lh_free));
362 if (type < 0)
363 {
364 lh_OBJ_NAME_free(names_lh);
365 sk_NAME_FUNCS_pop_free(name_funcs_stack,name_funcs_free);
366 names_lh=NULL;
367 name_funcs_stack = NULL;
368 }
369 else
370 lh_OBJ_NAME_down_load(names_lh)=down_load;
371 }

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_dat.c 1

**
 17969 Fri May 30 18:31:57 2014
new/usr/src/lib/openssl/libsunw_crypto/objects/obj_dat.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/objects/obj_dat.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <ctype.h>
61 #include <limits.h>

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_dat.c 2

62 #include "cryptlib.h"
63 #include <openssl/lhash.h>
64 #include <openssl/asn1.h>
65 #include <openssl/objects.h>
66 #include <openssl/bn.h>

68 /* obj_dat.h is generated from objects.h by obj_dat.pl */
69 #ifndef OPENSSL_NO_OBJECT
70 #include "obj_dat.h"
71 #else
72 /* You will have to load all the objects needed manually in the application */
73 #define NUM_NID 0
74 #define NUM_SN 0
75 #define NUM_LN 0
76 #define NUM_OBJ 0
77 static const unsigned char lvalues[1];
78 static const ASN1_OBJECT nid_objs[1];
79 static const unsigned int sn_objs[1];
80 static const unsigned int ln_objs[1];
81 static const unsigned int obj_objs[1];
82 #endif

84 DECLARE_OBJ_BSEARCH_CMP_FN(const ASN1_OBJECT *, unsigned int, sn);
85 DECLARE_OBJ_BSEARCH_CMP_FN(const ASN1_OBJECT *, unsigned int, ln);
86 DECLARE_OBJ_BSEARCH_CMP_FN(const ASN1_OBJECT *, unsigned int, obj);

88 #define ADDED_DATA 0
89 #define ADDED_SNAME 1
90 #define ADDED_LNAME 2
91 #define ADDED_NID 3

93 typedef struct added_obj_st
94 {
95 int type;
96 ASN1_OBJECT *obj;
97 } ADDED_OBJ;
98 DECLARE_LHASH_OF(ADDED_OBJ);

100 static int new_nid=NUM_NID;
101 static LHASH_OF(ADDED_OBJ) *added=NULL;

103 static int sn_cmp(const ASN1_OBJECT * const *a, const unsigned int *b)
104 { return(strcmp((*a)->sn,nid_objs[*b].sn)); }

106 IMPLEMENT_OBJ_BSEARCH_CMP_FN(const ASN1_OBJECT *, unsigned int, sn);

108 static int ln_cmp(const ASN1_OBJECT * const *a, const unsigned int *b)
109 { return(strcmp((*a)->ln,nid_objs[*b].ln)); }

111 IMPLEMENT_OBJ_BSEARCH_CMP_FN(const ASN1_OBJECT *, unsigned int, ln);

113 static unsigned long added_obj_hash(const ADDED_OBJ *ca)
114 {
115 const ASN1_OBJECT *a;
116 int i;
117 unsigned long ret=0;
118 unsigned char *p;

120 a=ca->obj;
121 switch (ca->type)
122 {
123 case ADDED_DATA:
124 ret=a->length<<20L;
125 p=(unsigned char *)a->data;
126 for (i=0; i<a->length; i++)
127 ret^=p[i]<<((i*3)%24);

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_dat.c 3

128 break;
129 case ADDED_SNAME:
130 ret=lh_strhash(a->sn);
131 break;
132 case ADDED_LNAME:
133 ret=lh_strhash(a->ln);
134 break;
135 case ADDED_NID:
136 ret=a->nid;
137 break;
138 default:
139 /* abort(); */
140 return 0;
141 }
142 ret&=0x3fffffffL;
143 ret|=ca->type<<30L;
144 return(ret);
145 }
146 static IMPLEMENT_LHASH_HASH_FN(added_obj, ADDED_OBJ)

148 static int added_obj_cmp(const ADDED_OBJ *ca, const ADDED_OBJ *cb)
149 {
150 ASN1_OBJECT *a,*b;
151 int i;

153 i=ca->type-cb->type;
154 if (i) return(i);
155 a=ca->obj;
156 b=cb->obj;
157 switch (ca->type)
158 {
159 case ADDED_DATA:
160 i=(a->length - b->length);
161 if (i) return(i);
162 return(memcmp(a->data,b->data,(size_t)a->length));
163 case ADDED_SNAME:
164 if (a->sn == NULL) return(-1);
165 else if (b->sn == NULL) return(1);
166 else return(strcmp(a->sn,b->sn));
167 case ADDED_LNAME:
168 if (a->ln == NULL) return(-1);
169 else if (b->ln == NULL) return(1);
170 else return(strcmp(a->ln,b->ln));
171 case ADDED_NID:
172 return(a->nid-b->nid);
173 default:
174 /* abort(); */
175 return 0;
176 }
177 }
178 static IMPLEMENT_LHASH_COMP_FN(added_obj, ADDED_OBJ)

180 static int init_added(void)
181 {
182 if (added != NULL) return(1);
183 added=lh_ADDED_OBJ_new();
184 return(added != NULL);
185 }

187 static void cleanup1_doall(ADDED_OBJ *a)
188 {
189 a->obj->nid=0;
190 a->obj->flags|=ASN1_OBJECT_FLAG_DYNAMIC|
191 ASN1_OBJECT_FLAG_DYNAMIC_STRINGS|
192 ASN1_OBJECT_FLAG_DYNAMIC_DATA;
193 }

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_dat.c 4

195 static void cleanup2_doall(ADDED_OBJ *a)
196 { a->obj->nid++; }

198 static void cleanup3_doall(ADDED_OBJ *a)
199 {
200 if (--a->obj->nid == 0)
201 ASN1_OBJECT_free(a->obj);
202 OPENSSL_free(a);
203 }

205 static IMPLEMENT_LHASH_DOALL_FN(cleanup1, ADDED_OBJ)
206 static IMPLEMENT_LHASH_DOALL_FN(cleanup2, ADDED_OBJ)
207 static IMPLEMENT_LHASH_DOALL_FN(cleanup3, ADDED_OBJ)

209 /* The purpose of obj_cleanup_defer is to avoid EVP_cleanup() attempting
210 * to use freed up OIDs. If neccessary the actual freeing up of OIDs is
211 * delayed.
212 */

214 int obj_cleanup_defer = 0;

216 void check_defer(int nid)
217 {
218 if (!obj_cleanup_defer && nid >= NUM_NID)
219 obj_cleanup_defer = 1;
220 }

222 void OBJ_cleanup(void)
223 {
224 if (obj_cleanup_defer)
225 {
226 obj_cleanup_defer = 2;
227 return ;
228 }
229 if (added == NULL) return;
230 lh_ADDED_OBJ_down_load(added) = 0;
231 lh_ADDED_OBJ_doall(added,LHASH_DOALL_FN(cleanup1)); /* zero counters */
232 lh_ADDED_OBJ_doall(added,LHASH_DOALL_FN(cleanup2)); /* set counters */
233 lh_ADDED_OBJ_doall(added,LHASH_DOALL_FN(cleanup3)); /* free objects */
234 lh_ADDED_OBJ_free(added);
235 added=NULL;
236 }

238 int OBJ_new_nid(int num)
239 {
240 int i;

242 i=new_nid;
243 new_nid+=num;
244 return(i);
245 }

247 int OBJ_add_object(const ASN1_OBJECT *obj)
248 {
249 ASN1_OBJECT *o;
250 ADDED_OBJ *ao[4]={NULL,NULL,NULL,NULL},*aop;
251 int i;

253 if (added == NULL)
254 if (!init_added()) return(0);
255 if ((o=OBJ_dup(obj)) == NULL) goto err;
256 if (!(ao[ADDED_NID]=(ADDED_OBJ *)OPENSSL_malloc(sizeof(ADDED_OBJ)))) got
257 if ((o->length != 0) && (obj->data != NULL))
258 if (!(ao[ADDED_DATA]=(ADDED_OBJ *)OPENSSL_malloc(sizeof(ADDED_OB
259 if (o->sn != NULL)

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_dat.c 5

260 if (!(ao[ADDED_SNAME]=(ADDED_OBJ *)OPENSSL_malloc(sizeof(ADDED_O
261 if (o->ln != NULL)
262 if (!(ao[ADDED_LNAME]=(ADDED_OBJ *)OPENSSL_malloc(sizeof(ADDED_O

264 for (i=ADDED_DATA; i<=ADDED_NID; i++)
265 {
266 if (ao[i] != NULL)
267 {
268 ao[i]->type=i;
269 ao[i]->obj=o;
270 aop=lh_ADDED_OBJ_insert(added,ao[i]);
271 /* memory leak, buit should not normally matter */
272 if (aop != NULL)
273 OPENSSL_free(aop);
274 }
275 }
276 o->flags&= ~(ASN1_OBJECT_FLAG_DYNAMIC|ASN1_OBJECT_FLAG_DYNAMIC_STRINGS|
277 ASN1_OBJECT_FLAG_DYNAMIC_DATA);

279 return(o->nid);
280 err2:
281 OBJerr(OBJ_F_OBJ_ADD_OBJECT,ERR_R_MALLOC_FAILURE);
282 err:
283 for (i=ADDED_DATA; i<=ADDED_NID; i++)
284 if (ao[i] != NULL) OPENSSL_free(ao[i]);
285 if (o != NULL) OPENSSL_free(o);
286 return(NID_undef);
287 }

289 ASN1_OBJECT *OBJ_nid2obj(int n)
290 {
291 ADDED_OBJ ad,*adp;
292 ASN1_OBJECT ob;

294 if ((n >= 0) && (n < NUM_NID))
295 {
296 if ((n != NID_undef) && (nid_objs[n].nid == NID_undef))
297 {
298 OBJerr(OBJ_F_OBJ_NID2OBJ,OBJ_R_UNKNOWN_NID);
299 return(NULL);
300 }
301 return((ASN1_OBJECT *)&(nid_objs[n]));
302 }
303 else if (added == NULL)
304 return(NULL);
305 else
306 {
307 ad.type=ADDED_NID;
308 ad.obj= &ob;
309 ob.nid=n;
310 adp=lh_ADDED_OBJ_retrieve(added,&ad);
311 if (adp != NULL)
312 return(adp->obj);
313 else
314 {
315 OBJerr(OBJ_F_OBJ_NID2OBJ,OBJ_R_UNKNOWN_NID);
316 return(NULL);
317 }
318 }
319 }

321 const char *OBJ_nid2sn(int n)
322 {
323 ADDED_OBJ ad,*adp;
324 ASN1_OBJECT ob;

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_dat.c 6

326 if ((n >= 0) && (n < NUM_NID))
327 {
328 if ((n != NID_undef) && (nid_objs[n].nid == NID_undef))
329 {
330 OBJerr(OBJ_F_OBJ_NID2SN,OBJ_R_UNKNOWN_NID);
331 return(NULL);
332 }
333 return(nid_objs[n].sn);
334 }
335 else if (added == NULL)
336 return(NULL);
337 else
338 {
339 ad.type=ADDED_NID;
340 ad.obj= &ob;
341 ob.nid=n;
342 adp=lh_ADDED_OBJ_retrieve(added,&ad);
343 if (adp != NULL)
344 return(adp->obj->sn);
345 else
346 {
347 OBJerr(OBJ_F_OBJ_NID2SN,OBJ_R_UNKNOWN_NID);
348 return(NULL);
349 }
350 }
351 }

353 const char *OBJ_nid2ln(int n)
354 {
355 ADDED_OBJ ad,*adp;
356 ASN1_OBJECT ob;

358 if ((n >= 0) && (n < NUM_NID))
359 {
360 if ((n != NID_undef) && (nid_objs[n].nid == NID_undef))
361 {
362 OBJerr(OBJ_F_OBJ_NID2LN,OBJ_R_UNKNOWN_NID);
363 return(NULL);
364 }
365 return(nid_objs[n].ln);
366 }
367 else if (added == NULL)
368 return(NULL);
369 else
370 {
371 ad.type=ADDED_NID;
372 ad.obj= &ob;
373 ob.nid=n;
374 adp=lh_ADDED_OBJ_retrieve(added,&ad);
375 if (adp != NULL)
376 return(adp->obj->ln);
377 else
378 {
379 OBJerr(OBJ_F_OBJ_NID2LN,OBJ_R_UNKNOWN_NID);
380 return(NULL);
381 }
382 }
383 }

385 static int obj_cmp(const ASN1_OBJECT * const *ap, const unsigned int *bp)
386 {
387 int j;
388 const ASN1_OBJECT *a= *ap;
389 const ASN1_OBJECT *b= &nid_objs[*bp];

391 j=(a->length - b->length);

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_dat.c 7

392 if (j) return(j);
393 return(memcmp(a->data,b->data,a->length));
394 }

396 IMPLEMENT_OBJ_BSEARCH_CMP_FN(const ASN1_OBJECT *, unsigned int, obj);

398 int OBJ_obj2nid(const ASN1_OBJECT *a)
399 {
400 const unsigned int *op;
401 ADDED_OBJ ad,*adp;

403 if (a == NULL)
404 return(NID_undef);
405 if (a->nid != 0)
406 return(a->nid);

408 if (added != NULL)
409 {
410 ad.type=ADDED_DATA;
411 ad.obj=(ASN1_OBJECT *)a; /* XXX: ugly but harmless */
412 adp=lh_ADDED_OBJ_retrieve(added,&ad);
413 if (adp != NULL) return (adp->obj->nid);
414 }
415 op=OBJ_bsearch_obj(&a, obj_objs, NUM_OBJ);
416 if (op == NULL)
417 return(NID_undef);
418 return(nid_objs[*op].nid);
419 }

421 /* Convert an object name into an ASN1_OBJECT
422 * if "noname" is not set then search for short and long names first.
423 * This will convert the "dotted" form into an object: unlike OBJ_txt2nid
424 * it can be used with any objects, not just registered ones.
425 */

427 ASN1_OBJECT *OBJ_txt2obj(const char *s, int no_name)
428 {
429 int nid = NID_undef;
430 ASN1_OBJECT *op=NULL;
431 unsigned char *buf;
432 unsigned char *p;
433 const unsigned char *cp;
434 int i, j;

436 if(!no_name) {
437 if(((nid = OBJ_sn2nid(s)) != NID_undef) ||
438 ((nid = OBJ_ln2nid(s)) != NID_undef))
439 return OBJ_nid2obj(nid);
440 }

442 /* Work out size of content octets */
443 i=a2d_ASN1_OBJECT(NULL,0,s,-1);
444 if (i <= 0) {
445 /* Don’t clear the error */
446 /*ERR_clear_error();*/
447 return NULL;
448 }
449 /* Work out total size */
450 j = ASN1_object_size(0,i,V_ASN1_OBJECT);

452 if((buf=(unsigned char *)OPENSSL_malloc(j)) == NULL) return NULL;

454 p = buf;
455 /* Write out tag+length */
456 ASN1_put_object(&p,0,i,V_ASN1_OBJECT,V_ASN1_UNIVERSAL);
457 /* Write out contents */

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_dat.c 8

458 a2d_ASN1_OBJECT(p,i,s,-1);

460 cp=buf;
461 op=d2i_ASN1_OBJECT(NULL,&cp,j);
462 OPENSSL_free(buf);
463 return op;
464 }

466 int OBJ_obj2txt(char *buf, int buf_len, const ASN1_OBJECT *a, int no_name)
467 {
468 int i,n=0,len,nid, first, use_bn;
469 BIGNUM *bl;
470 unsigned long l;
471 const unsigned char *p;
472 char tbuf[DECIMAL_SIZE(i)+DECIMAL_SIZE(l)+2];

474 if ((a == NULL) || (a->data == NULL)) {
475 buf[0]=’\0’;
476 return(0);
477 }

480 if (!no_name && (nid=OBJ_obj2nid(a)) != NID_undef)
481 {
482 const char *s;
483 s=OBJ_nid2ln(nid);
484 if (s == NULL)
485 s=OBJ_nid2sn(nid);
486 if (s)
487 {
488 if (buf)
489 BUF_strlcpy(buf,s,buf_len);
490 n=strlen(s);
491 return n;
492 }
493 }

496 len=a->length;
497 p=a->data;

499 first = 1;
500 bl = NULL;

502 while (len > 0)
503 {
504 l=0;
505 use_bn = 0;
506 for (;;)
507 {
508 unsigned char c = *p++;
509 len--;
510 if ((len == 0) && (c & 0x80))
511 goto err;
512 if (use_bn)
513 {
514 if (!BN_add_word(bl, c & 0x7f))
515 goto err;
516 }
517 else
518 l |= c & 0x7f;
519 if (!(c & 0x80))
520 break;
521 if (!use_bn && (l > (ULONG_MAX >> 7L)))
522 {
523 if (!bl && !(bl = BN_new()))

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_dat.c 9

524 goto err;
525 if (!BN_set_word(bl, l))
526 goto err;
527 use_bn = 1;
528 }
529 if (use_bn)
530 {
531 if (!BN_lshift(bl, bl, 7))
532 goto err;
533 }
534 else
535 l<<=7L;
536 }

538 if (first)
539 {
540 first = 0;
541 if (l >= 80)
542 {
543 i = 2;
544 if (use_bn)
545 {
546 if (!BN_sub_word(bl, 80))
547 goto err;
548 }
549 else
550 l -= 80;
551 }
552 else
553 {
554 i=(int)(l/40);
555 l-=(long)(i*40);
556 }
557 if (buf && (buf_len > 0))
558 {
559 *buf++ = i + ’0’;
560 buf_len--;
561 }
562 n++;
563 }

565 if (use_bn)
566 {
567 char *bndec;
568 bndec = BN_bn2dec(bl);
569 if (!bndec)
570 goto err;
571 i = strlen(bndec);
572 if (buf)
573 {
574 if (buf_len > 0)
575 {
576 *buf++ = ’.’;
577 buf_len--;
578 }
579 BUF_strlcpy(buf,bndec,buf_len);
580 if (i > buf_len)
581 {
582 buf += buf_len;
583 buf_len = 0;
584 }
585 else
586 {
587 buf+=i;
588 buf_len-=i;
589 }

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_dat.c 10

590 }
591 n++;
592 n += i;
593 OPENSSL_free(bndec);
594 }
595 else
596 {
597 BIO_snprintf(tbuf,sizeof tbuf,".%lu",l);
598 i=strlen(tbuf);
599 if (buf && (buf_len > 0))
600 {
601 BUF_strlcpy(buf,tbuf,buf_len);
602 if (i > buf_len)
603 {
604 buf += buf_len;
605 buf_len = 0;
606 }
607 else
608 {
609 buf+=i;
610 buf_len-=i;
611 }
612 }
613 n+=i;
614 l=0;
615 }
616 }

618 if (bl)
619 BN_free(bl);
620 return n;

622 err:
623 if (bl)
624 BN_free(bl);
625 return -1;
626 }

628 int OBJ_txt2nid(const char *s)
629 {
630 ASN1_OBJECT *obj;
631 int nid;
632 obj = OBJ_txt2obj(s, 0);
633 nid = OBJ_obj2nid(obj);
634 ASN1_OBJECT_free(obj);
635 return nid;
636 }

638 int OBJ_ln2nid(const char *s)
639 {
640 ASN1_OBJECT o;
641 const ASN1_OBJECT *oo= &o;
642 ADDED_OBJ ad,*adp;
643 const unsigned int *op;

645 o.ln=s;
646 if (added != NULL)
647 {
648 ad.type=ADDED_LNAME;
649 ad.obj= &o;
650 adp=lh_ADDED_OBJ_retrieve(added,&ad);
651 if (adp != NULL) return (adp->obj->nid);
652 }
653 op=OBJ_bsearch_ln(&oo, ln_objs, NUM_LN);
654 if (op == NULL) return(NID_undef);
655 return(nid_objs[*op].nid);

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_dat.c 11

656 }

658 int OBJ_sn2nid(const char *s)
659 {
660 ASN1_OBJECT o;
661 const ASN1_OBJECT *oo= &o;
662 ADDED_OBJ ad,*adp;
663 const unsigned int *op;

665 o.sn=s;
666 if (added != NULL)
667 {
668 ad.type=ADDED_SNAME;
669 ad.obj= &o;
670 adp=lh_ADDED_OBJ_retrieve(added,&ad);
671 if (adp != NULL) return (adp->obj->nid);
672 }
673 op=OBJ_bsearch_sn(&oo, sn_objs, NUM_SN);
674 if (op == NULL) return(NID_undef);
675 return(nid_objs[*op].nid);
676 }

678 const void *OBJ_bsearch_(const void *key, const void *base, int num, int size,
679 int (*cmp)(const void *, const void *))
680 {
681 return OBJ_bsearch_ex_(key, base, num, size, cmp, 0);
682 }

684 const void *OBJ_bsearch_ex_(const void *key, const void *base_, int num,
685 int size,
686 int (*cmp)(const void *, const void *),
687 int flags)
688 {
689 const char *base=base_;
690 int l,h,i=0,c=0;
691 const char *p = NULL;

693 if (num == 0) return(NULL);
694 l=0;
695 h=num;
696 while (l < h)
697 {
698 i=(l+h)/2;
699 p= &(base[i*size]);
700 c=(*cmp)(key,p);
701 if (c < 0)
702 h=i;
703 else if (c > 0)
704 l=i+1;
705 else
706 break;
707 }
708 #ifdef CHARSET_EBCDIC
709 /* THIS IS A KLUDGE - Because the *_obj is sorted in ASCII order, and
710 * I don’t have perl (yet), we revert to a *LINEAR* search
711 * when the object wasn’t found in the binary search.
712 */
713 if (c != 0)
714 {
715 for (i=0; i<num; ++i)
716 {
717 p= &(base[i*size]);
718 c = (*cmp)(key,p);
719 if (c == 0 || (c < 0 && (flags & OBJ_BSEARCH_VALUE_ON_NO
720 return p;
721 }

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_dat.c 12

722 }
723 #endif
724 if (c != 0 && !(flags & OBJ_BSEARCH_VALUE_ON_NOMATCH))
725 p = NULL;
726 else if (c == 0 && (flags & OBJ_BSEARCH_FIRST_VALUE_ON_MATCH))
727 {
728 while(i > 0 && (*cmp)(key,&(base[(i-1)*size])) == 0)
729 i--;
730 p = &(base[i*size]);
731 }
732 return(p);
733 }

735 int OBJ_create_objects(BIO *in)
736 {
737 MS_STATIC char buf[512];
738 int i,num=0;
739 char *o,*s,*l=NULL;

741 for (;;)
742 {
743 s=o=NULL;
744 i=BIO_gets(in,buf,512);
745 if (i <= 0) return(num);
746 buf[i-1]=’\0’;
747 if (!isalnum((unsigned char)buf[0])) return(num);
748 o=s=buf;
749 while (isdigit((unsigned char)*s) || (*s == ’.’))
750 s++;
751 if (*s != ’\0’)
752 {
753 *(s++)=’\0’;
754 while (isspace((unsigned char)*s))
755 s++;
756 if (*s == ’\0’)
757 s=NULL;
758 else
759 {
760 l=s;
761 while ((*l != ’\0’) && !isspace((unsigned char)*
762 l++;
763 if (*l != ’\0’)
764 {
765 *(l++)=’\0’;
766 while (isspace((unsigned char)*l))
767 l++;
768 if (*l == ’\0’) l=NULL;
769 }
770 else
771 l=NULL;
772 }
773 }
774 else
775 s=NULL;
776 if ((o == NULL) || (*o == ’\0’)) return(num);
777 if (!OBJ_create(o,s,l)) return(num);
778 num++;
779 }
780 /* return(num); */
781 }

783 int OBJ_create(const char *oid, const char *sn, const char *ln)
784 {
785 int ok=0;
786 ASN1_OBJECT *op=NULL;
787 unsigned char *buf;

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_dat.c 13

788 int i;

790 i=a2d_ASN1_OBJECT(NULL,0,oid,-1);
791 if (i <= 0) return(0);

793 if ((buf=(unsigned char *)OPENSSL_malloc(i)) == NULL)
794 {
795 OBJerr(OBJ_F_OBJ_CREATE,ERR_R_MALLOC_FAILURE);
796 return(0);
797 }
798 i=a2d_ASN1_OBJECT(buf,i,oid,-1);
799 if (i == 0)
800 goto err;
801 op=(ASN1_OBJECT *)ASN1_OBJECT_create(OBJ_new_nid(1),buf,i,sn,ln);
802 if (op == NULL)
803 goto err;
804 ok=OBJ_add_object(op);
805 err:
806 ASN1_OBJECT_free(op);
807 OPENSSL_free(buf);
808 return(ok);
809 }

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_err.c 1

**
 3881 Fri May 30 18:31:57 2014
new/usr/src/lib/openssl/libsunw_crypto/objects/obj_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/objects/obj_err.c */
2 /* ==
3 * Copyright (c) 1999-2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/objects.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_OBJ,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_OBJ,0,reason)

71 static ERR_STRING_DATA OBJ_str_functs[]=
72 {
73 {ERR_FUNC(OBJ_F_OBJ_ADD_OBJECT), "OBJ_add_object"},
74 {ERR_FUNC(OBJ_F_OBJ_CREATE), "OBJ_create"},
75 {ERR_FUNC(OBJ_F_OBJ_DUP), "OBJ_dup"},
76 {ERR_FUNC(OBJ_F_OBJ_NAME_NEW_INDEX), "OBJ_NAME_new_index"},
77 {ERR_FUNC(OBJ_F_OBJ_NID2LN), "OBJ_nid2ln"},
78 {ERR_FUNC(OBJ_F_OBJ_NID2OBJ), "OBJ_nid2obj"},
79 {ERR_FUNC(OBJ_F_OBJ_NID2SN), "OBJ_nid2sn"},
80 {0,NULL}
81 };

83 static ERR_STRING_DATA OBJ_str_reasons[]=
84 {
85 {ERR_REASON(OBJ_R_MALLOC_FAILURE) ,"malloc failure"},
86 {ERR_REASON(OBJ_R_UNKNOWN_NID) ,"unknown nid"},
87 {0,NULL}
88 };

90 #endif

92 void ERR_load_OBJ_strings(void)
93 {
94 #ifndef OPENSSL_NO_ERR

96 if (ERR_func_error_string(OBJ_str_functs[0].error) == NULL)
97 {
98 ERR_load_strings(0,OBJ_str_functs);
99 ERR_load_strings(0,OBJ_str_reasons);
100 }
101 #endif
102 }

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_lib.c 1

**
 4749 Fri May 30 18:31:57 2014
new/usr/src/lib/openssl/libsunw_crypto/objects/obj_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/objects/obj_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/lhash.h>

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_lib.c 2

62 #include <openssl/objects.h>
63 #include <openssl/buffer.h>

65 ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *o)
66 {
67 ASN1_OBJECT *r;
68 int i;
69 char *ln=NULL,*sn=NULL;
70 unsigned char *data=NULL;

72 if (o == NULL) return(NULL);
73 if (!(o->flags & ASN1_OBJECT_FLAG_DYNAMIC))
74 return((ASN1_OBJECT *)o); /* XXX: ugh! Why? What kind of
75 duplication is this??? */

77 r=ASN1_OBJECT_new();
78 if (r == NULL)
79 {
80 OBJerr(OBJ_F_OBJ_DUP,ERR_R_ASN1_LIB);
81 return(NULL);
82 }
83 data=OPENSSL_malloc(o->length);
84 if (data == NULL)
85 goto err;
86 if (o->data != NULL)
87 memcpy(data,o->data,o->length);
88 /* once data attached to object it remains const */
89 r->data = data;
90 r->length=o->length;
91 r->nid=o->nid;
92 r->ln=r->sn=NULL;
93 if (o->ln != NULL)
94 {
95 i=strlen(o->ln)+1;
96 ln=OPENSSL_malloc(i);
97 if (ln == NULL) goto err;
98 memcpy(ln,o->ln,i);
99 r->ln=ln;
100 }

102 if (o->sn != NULL)
103 {
104 i=strlen(o->sn)+1;
105 sn=OPENSSL_malloc(i);
106 if (sn == NULL) goto err;
107 memcpy(sn,o->sn,i);
108 r->sn=sn;
109 }
110 r->flags=o->flags|(ASN1_OBJECT_FLAG_DYNAMIC|
111 ASN1_OBJECT_FLAG_DYNAMIC_STRINGS|ASN1_OBJECT_FLAG_DYNAMIC_DATA);
112 return(r);
113 err:
114 OBJerr(OBJ_F_OBJ_DUP,ERR_R_MALLOC_FAILURE);
115 if (ln != NULL) OPENSSL_free(ln);
116 if (sn != NULL) OPENSSL_free(sn);
117 if (data != NULL) OPENSSL_free(data);
118 if (r != NULL) OPENSSL_free(r);
119 return(NULL);
120 }

122 int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b)
123 {
124 int ret;

126 ret=(a->length-b->length);
127 if (ret) return(ret);

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_lib.c 3

128 return(memcmp(a->data,b->data,a->length));
129 }

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_xref.c 1

**
 6184 Fri May 30 18:31:58 2014
new/usr/src/lib/openssl/libsunw_crypto/objects/obj_xref.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/objects/obj_xref.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2006.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <openssl/objects.h>
60 #include "obj_xref.h"

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_xref.c 2

62 DECLARE_STACK_OF(nid_triple)
63 STACK_OF(nid_triple) *sig_app, *sigx_app;

65 static int sig_cmp(const nid_triple *a, const nid_triple *b)
66 {
67 return a->sign_id - b->sign_id;
68 }

70 DECLARE_OBJ_BSEARCH_CMP_FN(nid_triple, nid_triple, sig);
71 IMPLEMENT_OBJ_BSEARCH_CMP_FN(nid_triple, nid_triple, sig);

73 static int sig_sk_cmp(const nid_triple * const *a, const nid_triple * const *b)
74 {
75 return (*a)->sign_id - (*b)->sign_id;
76 }

78 DECLARE_OBJ_BSEARCH_CMP_FN(const nid_triple *, const nid_triple *, sigx);

80 static int sigx_cmp(const nid_triple * const *a, const nid_triple * const *b)
81 {
82 int ret;
83 ret = (*a)->hash_id - (*b)->hash_id;
84 if (ret)
85 return ret;
86 return (*a)->pkey_id - (*b)->pkey_id;
87 }

89 IMPLEMENT_OBJ_BSEARCH_CMP_FN(const nid_triple *, const nid_triple *, sigx);

91 int OBJ_find_sigid_algs(int signid, int *pdig_nid, int *ppkey_nid)
92 {
93 nid_triple tmp;
94 const nid_triple *rv = NULL;
95 tmp.sign_id = signid;

97 if (sig_app)
98 {
99 int idx = sk_nid_triple_find(sig_app, &tmp);
100 if (idx >= 0)
101 rv = sk_nid_triple_value(sig_app, idx);
102 }

104 #ifndef OBJ_XREF_TEST2
105 if (rv == NULL)
106 {
107 rv = OBJ_bsearch_sig(&tmp, sigoid_srt,
108 sizeof(sigoid_srt) / sizeof(nid_triple));
109 }
110 #endif
111 if (rv == NULL)
112 return 0;
113 if (pdig_nid)
114 *pdig_nid = rv->hash_id;
115 if (ppkey_nid)
116 *ppkey_nid = rv->pkey_id;
117 return 1;
118 }

120 int OBJ_find_sigid_by_algs(int *psignid, int dig_nid, int pkey_nid)
121 {
122 nid_triple tmp;
123 const nid_triple *t=&tmp;
124 const nid_triple **rv = NULL;

126 tmp.hash_id = dig_nid;
127 tmp.pkey_id = pkey_nid;

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_xref.c 3

129 if (sigx_app)
130 {
131 int idx = sk_nid_triple_find(sigx_app, &tmp);
132 if (idx >= 0)
133 {
134 t = sk_nid_triple_value(sigx_app, idx);
135 rv = &t;
136 }
137 }

139 #ifndef OBJ_XREF_TEST2
140 if (rv == NULL)
141 {
142 rv = OBJ_bsearch_sigx(&t, sigoid_srt_xref,
143 sizeof(sigoid_srt_xref) / sizeof(nid_triple *)
144);
145 }
146 #endif
147 if (rv == NULL)
148 return 0;
149 if (psignid)
150 *psignid = (*rv)->sign_id;
151 return 1;
152 }

154 int OBJ_add_sigid(int signid, int dig_id, int pkey_id)
155 {
156 nid_triple *ntr;
157 if (!sig_app)
158 sig_app = sk_nid_triple_new(sig_sk_cmp);
159 if (!sig_app)
160 return 0;
161 if (!sigx_app)
162 sigx_app = sk_nid_triple_new(sigx_cmp);
163 if (!sigx_app)
164 return 0;
165 ntr = OPENSSL_malloc(sizeof(int) * 3);
166 if (!ntr)
167 return 0;
168 ntr->sign_id = signid;
169 ntr->hash_id = dig_id;
170 ntr->pkey_id = pkey_id;

172 if (!sk_nid_triple_push(sig_app, ntr))
173 {
174 OPENSSL_free(ntr);
175 return 0;
176 }

178 if (!sk_nid_triple_push(sigx_app, ntr))
179 return 0;

181 sk_nid_triple_sort(sig_app);
182 sk_nid_triple_sort(sigx_app);

184 return 1;
185 }

187 static void sid_free(nid_triple *tt)
188 {
189 OPENSSL_free(tt);
190 }

192 void OBJ_sigid_free(void)
193 {

new/usr/src/lib/openssl/libsunw_crypto/objects/obj_xref.c 4

194 if (sig_app)
195 {
196 sk_nid_triple_pop_free(sig_app, sid_free);
197 sig_app = NULL;
198 }
199 if (sigx_app)
200 {
201 sk_nid_triple_free(sigx_app);
202 sigx_app = NULL;
203 }
204 }
205
206 #ifdef OBJ_XREF_TEST

208 main()
209 {
210 int n1, n2, n3;

212 int i, rv;
213 #ifdef OBJ_XREF_TEST2
214 for (i = 0; i < sizeof(sigoid_srt) / sizeof(nid_triple); i++)
215 {
216 OBJ_add_sigid(sigoid_srt[i][0], sigoid_srt[i][1],
217 sigoid_srt[i][2]);
218 }
219 #endif

221 for (i = 0; i < sizeof(sigoid_srt) / sizeof(nid_triple); i++)
222 {
223 n1 = sigoid_srt[i][0];
224 rv = OBJ_find_sigid_algs(n1, &n2, &n3);
225 printf("Forward: %d, %s %s %s\n", rv,
226 OBJ_nid2ln(n1), OBJ_nid2ln(n2), OBJ_nid2ln(n3));
227 n1=0;
228 rv = OBJ_find_sigid_by_algs(&n1, n2, n3);
229 printf("Reverse: %d, %s %s %s\n", rv,
230 OBJ_nid2ln(n1), OBJ_nid2ln(n2), OBJ_nid2ln(n3));
231 }
232 }
233
234 #endif

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_asn.c 1

**
 7300 Fri May 30 18:31:58 2014
new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_asn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ocsp_asn.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 #include <openssl/asn1.h>
59 #include <openssl/asn1t.h>
60 #include <openssl/ocsp.h>

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_asn.c 2

62 ASN1_SEQUENCE(OCSP_SIGNATURE) = {
63 ASN1_SIMPLE(OCSP_SIGNATURE, signatureAlgorithm, X509_ALGOR),
64 ASN1_SIMPLE(OCSP_SIGNATURE, signature, ASN1_BIT_STRING),
65 ASN1_EXP_SEQUENCE_OF_OPT(OCSP_SIGNATURE, certs, X509, 0)
66 } ASN1_SEQUENCE_END(OCSP_SIGNATURE)

68 IMPLEMENT_ASN1_FUNCTIONS(OCSP_SIGNATURE)

70 ASN1_SEQUENCE(OCSP_CERTID) = {
71 ASN1_SIMPLE(OCSP_CERTID, hashAlgorithm, X509_ALGOR),
72 ASN1_SIMPLE(OCSP_CERTID, issuerNameHash, ASN1_OCTET_STRING),
73 ASN1_SIMPLE(OCSP_CERTID, issuerKeyHash, ASN1_OCTET_STRING),
74 ASN1_SIMPLE(OCSP_CERTID, serialNumber, ASN1_INTEGER)
75 } ASN1_SEQUENCE_END(OCSP_CERTID)

77 IMPLEMENT_ASN1_FUNCTIONS(OCSP_CERTID)

79 ASN1_SEQUENCE(OCSP_ONEREQ) = {
80 ASN1_SIMPLE(OCSP_ONEREQ, reqCert, OCSP_CERTID),
81 ASN1_EXP_SEQUENCE_OF_OPT(OCSP_ONEREQ, singleRequestExtensions, X509_EXTE
82 } ASN1_SEQUENCE_END(OCSP_ONEREQ)

84 IMPLEMENT_ASN1_FUNCTIONS(OCSP_ONEREQ)

86 ASN1_SEQUENCE(OCSP_REQINFO) = {
87 ASN1_EXP_OPT(OCSP_REQINFO, version, ASN1_INTEGER, 0),
88 ASN1_EXP_OPT(OCSP_REQINFO, requestorName, GENERAL_NAME, 1),
89 ASN1_SEQUENCE_OF(OCSP_REQINFO, requestList, OCSP_ONEREQ),
90 ASN1_EXP_SEQUENCE_OF_OPT(OCSP_REQINFO, requestExtensions, X509_EXTENSION
91 } ASN1_SEQUENCE_END(OCSP_REQINFO)

93 IMPLEMENT_ASN1_FUNCTIONS(OCSP_REQINFO)

95 ASN1_SEQUENCE(OCSP_REQUEST) = {
96 ASN1_SIMPLE(OCSP_REQUEST, tbsRequest, OCSP_REQINFO),
97 ASN1_EXP_OPT(OCSP_REQUEST, optionalSignature, OCSP_SIGNATURE, 0)
98 } ASN1_SEQUENCE_END(OCSP_REQUEST)

100 IMPLEMENT_ASN1_FUNCTIONS(OCSP_REQUEST)

102 /* OCSP_RESPONSE templates */

104 ASN1_SEQUENCE(OCSP_RESPBYTES) = {
105 ASN1_SIMPLE(OCSP_RESPBYTES, responseType, ASN1_OBJECT),
106 ASN1_SIMPLE(OCSP_RESPBYTES, response, ASN1_OCTET_STRING)
107 } ASN1_SEQUENCE_END(OCSP_RESPBYTES)

109 IMPLEMENT_ASN1_FUNCTIONS(OCSP_RESPBYTES)

111 ASN1_SEQUENCE(OCSP_RESPONSE) = {
112 ASN1_SIMPLE(OCSP_RESPONSE, responseStatus, ASN1_ENUMERATED),
113 ASN1_EXP_OPT(OCSP_RESPONSE, responseBytes, OCSP_RESPBYTES, 0)
114 } ASN1_SEQUENCE_END(OCSP_RESPONSE)

116 IMPLEMENT_ASN1_FUNCTIONS(OCSP_RESPONSE)

118 ASN1_CHOICE(OCSP_RESPID) = {
119 ASN1_EXP(OCSP_RESPID, value.byName, X509_NAME, 1),
120 ASN1_EXP(OCSP_RESPID, value.byKey, ASN1_OCTET_STRING, 2)
121 } ASN1_CHOICE_END(OCSP_RESPID)

123 IMPLEMENT_ASN1_FUNCTIONS(OCSP_RESPID)

125 ASN1_SEQUENCE(OCSP_REVOKEDINFO) = {
126 ASN1_SIMPLE(OCSP_REVOKEDINFO, revocationTime, ASN1_GENERALIZEDTIME),
127 ASN1_EXP_OPT(OCSP_REVOKEDINFO, revocationReason, ASN1_ENUMERATED, 0)

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_asn.c 3

128 } ASN1_SEQUENCE_END(OCSP_REVOKEDINFO)

130 IMPLEMENT_ASN1_FUNCTIONS(OCSP_REVOKEDINFO)

132 ASN1_CHOICE(OCSP_CERTSTATUS) = {
133 ASN1_IMP(OCSP_CERTSTATUS, value.good, ASN1_NULL, 0),
134 ASN1_IMP(OCSP_CERTSTATUS, value.revoked, OCSP_REVOKEDINFO, 1),
135 ASN1_IMP(OCSP_CERTSTATUS, value.unknown, ASN1_NULL, 2)
136 } ASN1_CHOICE_END(OCSP_CERTSTATUS)

138 IMPLEMENT_ASN1_FUNCTIONS(OCSP_CERTSTATUS)

140 ASN1_SEQUENCE(OCSP_SINGLERESP) = {
141 ASN1_SIMPLE(OCSP_SINGLERESP, certId, OCSP_CERTID),
142 ASN1_SIMPLE(OCSP_SINGLERESP, certStatus, OCSP_CERTSTATUS),
143 ASN1_SIMPLE(OCSP_SINGLERESP, thisUpdate, ASN1_GENERALIZEDTIME),
144 ASN1_EXP_OPT(OCSP_SINGLERESP, nextUpdate, ASN1_GENERALIZEDTIME, 0),
145 ASN1_EXP_SEQUENCE_OF_OPT(OCSP_SINGLERESP, singleExtensions, X509_EXTE
146 } ASN1_SEQUENCE_END(OCSP_SINGLERESP)

148 IMPLEMENT_ASN1_FUNCTIONS(OCSP_SINGLERESP)

150 ASN1_SEQUENCE(OCSP_RESPDATA) = {
151 ASN1_EXP_OPT(OCSP_RESPDATA, version, ASN1_INTEGER, 0),
152 ASN1_SIMPLE(OCSP_RESPDATA, responderId, OCSP_RESPID),
153 ASN1_SIMPLE(OCSP_RESPDATA, producedAt, ASN1_GENERALIZEDTIME),
154 ASN1_SEQUENCE_OF(OCSP_RESPDATA, responses, OCSP_SINGLERESP),
155 ASN1_EXP_SEQUENCE_OF_OPT(OCSP_RESPDATA, responseExtensions, X509_EXTE
156 } ASN1_SEQUENCE_END(OCSP_RESPDATA)

158 IMPLEMENT_ASN1_FUNCTIONS(OCSP_RESPDATA)

160 ASN1_SEQUENCE(OCSP_BASICRESP) = {
161 ASN1_SIMPLE(OCSP_BASICRESP, tbsResponseData, OCSP_RESPDATA),
162 ASN1_SIMPLE(OCSP_BASICRESP, signatureAlgorithm, X509_ALGOR),
163 ASN1_SIMPLE(OCSP_BASICRESP, signature, ASN1_BIT_STRING),
164 ASN1_EXP_SEQUENCE_OF_OPT(OCSP_BASICRESP, certs, X509, 0)
165 } ASN1_SEQUENCE_END(OCSP_BASICRESP)

167 IMPLEMENT_ASN1_FUNCTIONS(OCSP_BASICRESP)

169 ASN1_SEQUENCE(OCSP_CRLID) = {
170 ASN1_EXP_OPT(OCSP_CRLID, crlUrl, ASN1_IA5STRING, 0),
171 ASN1_EXP_OPT(OCSP_CRLID, crlNum, ASN1_INTEGER, 1),
172 ASN1_EXP_OPT(OCSP_CRLID, crlTime, ASN1_GENERALIZEDTIME, 2)
173 } ASN1_SEQUENCE_END(OCSP_CRLID)

175 IMPLEMENT_ASN1_FUNCTIONS(OCSP_CRLID)

177 ASN1_SEQUENCE(OCSP_SERVICELOC) = {
178 ASN1_SIMPLE(OCSP_SERVICELOC, issuer, X509_NAME),
179 ASN1_SEQUENCE_OF_OPT(OCSP_SERVICELOC, locator, ACCESS_DESCRIPTION)
180 } ASN1_SEQUENCE_END(OCSP_SERVICELOC)

182 IMPLEMENT_ASN1_FUNCTIONS(OCSP_SERVICELOC)

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_cl.c 1

**
 10785 Fri May 30 18:31:58 2014
new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_cl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ocsp_cl.c */
2 /* Written by Tom Titchener <Tom_Titchener@groove.net> for the OpenSSL
3 * project. */

5 /* History:
6 This file was transfered to Richard Levitte from CertCo by Kathy
7 Weinhold in mid-spring 2000 to be included in OpenSSL or released
8 as a patch kit. */

10 /* ==
11 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 *
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 *
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in
22 * the documentation and/or other materials provided with the
23 * distribution.
24 *
25 * 3. All advertising materials mentioning features or use of this
26 * software must display the following acknowledgment:
27 * "This product includes software developed by the OpenSSL Project
28 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
29 *
30 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
31 * endorse or promote products derived from this software without
32 * prior written permission. For written permission, please contact
33 * openssl-core@openssl.org.
34 *
35 * 5. Products derived from this software may not be called "OpenSSL"
36 * nor may "OpenSSL" appear in their names without prior written
37 * permission of the OpenSSL Project.
38 *
39 * 6. Redistributions of any form whatsoever must retain the following
40 * acknowledgment:
41 * "This product includes software developed by the OpenSSL Project
42 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
43 *
44 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
45 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
46 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
47 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
48 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
49 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
50 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
51 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
53 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
54 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
55 * OF THE POSSIBILITY OF SUCH DAMAGE.
56 * ==
57 *
58 * This product includes cryptographic software written by Eric Young
59 * (eay@cryptsoft.com). This product includes software written by Tim
60 * Hudson (tjh@cryptsoft.com).
61 *

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_cl.c 2

62 */

64 #include <stdio.h>
65 #include <time.h>
66 #include <cryptlib.h>
67 #include <openssl/objects.h>
68 #include <openssl/rand.h>
69 #include <openssl/x509.h>
70 #include <openssl/pem.h>
71 #include <openssl/x509v3.h>
72 #include <openssl/ocsp.h>

74 /* Utility functions related to sending OCSP requests and extracting
75 * relevant information from the response.
76 */

78 /* Add an OCSP_CERTID to an OCSP request. Return new OCSP_ONEREQ
79 * pointer: useful if we want to add extensions.
80 */

82 OCSP_ONEREQ *OCSP_request_add0_id(OCSP_REQUEST *req, OCSP_CERTID *cid)
83 {
84 OCSP_ONEREQ *one = NULL;

86 if (!(one = OCSP_ONEREQ_new())) goto err;
87 if (one->reqCert) OCSP_CERTID_free(one->reqCert);
88 one->reqCert = cid;
89 if (req &&
90 !sk_OCSP_ONEREQ_push(req->tbsRequest->requestList, one))
91 goto err;
92 return one;
93 err:
94 OCSP_ONEREQ_free(one);
95 return NULL;
96 }

98 /* Set requestorName from an X509_NAME structure */

100 int OCSP_request_set1_name(OCSP_REQUEST *req, X509_NAME *nm)
101 {
102 GENERAL_NAME *gen;
103 gen = GENERAL_NAME_new();
104 if (gen == NULL)
105 return 0;
106 if (!X509_NAME_set(&gen->d.directoryName, nm))
107 {
108 GENERAL_NAME_free(gen);
109 return 0;
110 }
111 gen->type = GEN_DIRNAME;
112 if (req->tbsRequest->requestorName)
113 GENERAL_NAME_free(req->tbsRequest->requestorName);
114 req->tbsRequest->requestorName = gen;
115 return 1;
116 }
117

119 /* Add a certificate to an OCSP request */

121 int OCSP_request_add1_cert(OCSP_REQUEST *req, X509 *cert)
122 {
123 OCSP_SIGNATURE *sig;
124 if (!req->optionalSignature)
125 req->optionalSignature = OCSP_SIGNATURE_new();
126 sig = req->optionalSignature;
127 if (!sig) return 0;

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_cl.c 3

128 if (!cert) return 1;
129 if (!sig->certs && !(sig->certs = sk_X509_new_null()))
130 return 0;

132 if(!sk_X509_push(sig->certs, cert)) return 0;
133 CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
134 return 1;
135 }

137 /* Sign an OCSP request set the requestorName to the subjec
138 * name of an optional signers certificate and include one
139 * or more optional certificates in the request. Behaves
140 * like PKCS7_sign().
141 */

143 int OCSP_request_sign(OCSP_REQUEST *req,
144 X509 *signer,
145 EVP_PKEY *key,
146 const EVP_MD *dgst,
147 STACK_OF(X509) *certs,
148 unsigned long flags)
149 {
150 int i;
151 OCSP_SIGNATURE *sig;
152 X509 *x;

154 if (!OCSP_request_set1_name(req, X509_get_subject_name(signer)))
155 goto err;

157 if (!(req->optionalSignature = sig = OCSP_SIGNATURE_new())) goto err;
158 if (key)
159 {
160 if (!X509_check_private_key(signer, key))
161 {
162 OCSPerr(OCSP_F_OCSP_REQUEST_SIGN, OCSP_R_PRIVATE_KEY_DOE
163 goto err;
164 }
165 if (!OCSP_REQUEST_sign(req, key, dgst)) goto err;
166 }

168 if (!(flags & OCSP_NOCERTS))
169 {
170 if(!OCSP_request_add1_cert(req, signer)) goto err;
171 for (i = 0; i < sk_X509_num(certs); i++)
172 {
173 x = sk_X509_value(certs, i);
174 if (!OCSP_request_add1_cert(req, x)) goto err;
175 }
176 }

178 return 1;
179 err:
180 OCSP_SIGNATURE_free(req->optionalSignature);
181 req->optionalSignature = NULL;
182 return 0;
183 }

185 /* Get response status */

187 int OCSP_response_status(OCSP_RESPONSE *resp)
188 {
189 return ASN1_ENUMERATED_get(resp->responseStatus);
190 }

192 /* Extract basic response from OCSP_RESPONSE or NULL if
193 * no basic response present.

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_cl.c 4

194 */
195

197 OCSP_BASICRESP *OCSP_response_get1_basic(OCSP_RESPONSE *resp)
198 {
199 OCSP_RESPBYTES *rb;
200 rb = resp->responseBytes;
201 if (!rb)
202 {
203 OCSPerr(OCSP_F_OCSP_RESPONSE_GET1_BASIC, OCSP_R_NO_RESPONSE_DATA
204 return NULL;
205 }
206 if (OBJ_obj2nid(rb->responseType) != NID_id_pkix_OCSP_basic)
207 {
208 OCSPerr(OCSP_F_OCSP_RESPONSE_GET1_BASIC, OCSP_R_NOT_BASIC_RESPON
209 return NULL;
210 }

212 return ASN1_item_unpack(rb->response, ASN1_ITEM_rptr(OCSP_BASICRESP));
213 }

215 /* Return number of OCSP_SINGLERESP reponses present in
216 * a basic response.
217 */

219 int OCSP_resp_count(OCSP_BASICRESP *bs)
220 {
221 if (!bs) return -1;
222 return sk_OCSP_SINGLERESP_num(bs->tbsResponseData->responses);
223 }

225 /* Extract an OCSP_SINGLERESP response with a given index */

227 OCSP_SINGLERESP *OCSP_resp_get0(OCSP_BASICRESP *bs, int idx)
228 {
229 if (!bs) return NULL;
230 return sk_OCSP_SINGLERESP_value(bs->tbsResponseData->responses, idx);
231 }

233 /* Look single response matching a given certificate ID */

235 int OCSP_resp_find(OCSP_BASICRESP *bs, OCSP_CERTID *id, int last)
236 {
237 int i;
238 STACK_OF(OCSP_SINGLERESP) *sresp;
239 OCSP_SINGLERESP *single;
240 if (!bs) return -1;
241 if (last < 0) last = 0;
242 else last++;
243 sresp = bs->tbsResponseData->responses;
244 for (i = last; i < sk_OCSP_SINGLERESP_num(sresp); i++)
245 {
246 single = sk_OCSP_SINGLERESP_value(sresp, i);
247 if (!OCSP_id_cmp(id, single->certId)) return i;
248 }
249 return -1;
250 }

252 /* Extract status information from an OCSP_SINGLERESP structure.
253 * Note: the revtime and reason values are only set if the
254 * certificate status is revoked. Returns numerical value of
255 * status.
256 */

258 int OCSP_single_get0_status(OCSP_SINGLERESP *single, int *reason,
259 ASN1_GENERALIZEDTIME **revtime,

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_cl.c 5

260 ASN1_GENERALIZEDTIME **thisupd,
261 ASN1_GENERALIZEDTIME **nextupd)
262 {
263 int ret;
264 OCSP_CERTSTATUS *cst;
265 if(!single) return -1;
266 cst = single->certStatus;
267 ret = cst->type;
268 if (ret == V_OCSP_CERTSTATUS_REVOKED)
269 {
270 OCSP_REVOKEDINFO *rev = cst->value.revoked;
271 if (revtime) *revtime = rev->revocationTime;
272 if (reason)
273 {
274 if(rev->revocationReason)
275 *reason = ASN1_ENUMERATED_get(rev->revocationRea
276 else *reason = -1;
277 }
278 }
279 if(thisupd) *thisupd = single->thisUpdate;
280 if(nextupd) *nextupd = single->nextUpdate;
281 return ret;
282 }

284 /* This function combines the previous ones: look up a certificate ID and
285 * if found extract status information. Return 0 is successful.
286 */

288 int OCSP_resp_find_status(OCSP_BASICRESP *bs, OCSP_CERTID *id, int *status,
289 int *reason,
290 ASN1_GENERALIZEDTIME **revtime,
291 ASN1_GENERALIZEDTIME **thisupd,
292 ASN1_GENERALIZEDTIME **nextupd)
293 {
294 int i;
295 OCSP_SINGLERESP *single;
296 i = OCSP_resp_find(bs, id, -1);
297 /* Maybe check for multiple responses and give an error? */
298 if(i < 0) return 0;
299 single = OCSP_resp_get0(bs, i);
300 i = OCSP_single_get0_status(single, reason, revtime, thisupd, nextupd);
301 if(status) *status = i;
302 return 1;
303 }

305 /* Check validity of thisUpdate and nextUpdate fields. It is possible that the r
306 * take a few seconds to process and/or the time wont be totally accurate. There
307 * rejecting otherwise valid time we allow the times to be within ’nsec’ of the
308 * Also to avoid accepting very old responses without a nextUpdate field an opti
309 * parameter specifies the maximum age the thisUpdate field can be.
310 */

312 int OCSP_check_validity(ASN1_GENERALIZEDTIME *thisupd, ASN1_GENERALIZEDTIME *nex
313 {
314 int ret = 1;
315 time_t t_now, t_tmp;
316 time(&t_now);
317 /* Check thisUpdate is valid and not more than nsec in the future */
318 if (!ASN1_GENERALIZEDTIME_check(thisupd))
319 {
320 OCSPerr(OCSP_F_OCSP_CHECK_VALIDITY, OCSP_R_ERROR_IN_THISUPDATE_F
321 ret = 0;
322 }
323 else
324 {
325 t_tmp = t_now + nsec;

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_cl.c 6

326 if (X509_cmp_time(thisupd, &t_tmp) > 0)
327 {
328 OCSPerr(OCSP_F_OCSP_CHECK_VALIDITY, OCSP_R_STATUS_NOT_YE
329 ret = 0;
330 }

332 /* If maxsec specified check thisUpdate is not more than maxsec
333 if (maxsec >= 0)
334 {
335 t_tmp = t_now - maxsec;
336 if (X509_cmp_time(thisupd, &t_tmp) < 0)
337 {
338 OCSPerr(OCSP_F_OCSP_CHECK_VALIDITY, OCSP_R_STATU
339 ret = 0;
340 }
341 }
342 }
343

345 if (!nextupd) return ret;

347 /* Check nextUpdate is valid and not more than nsec in the past */
348 if (!ASN1_GENERALIZEDTIME_check(nextupd))
349 {
350 OCSPerr(OCSP_F_OCSP_CHECK_VALIDITY, OCSP_R_ERROR_IN_NEXTUPDATE_F
351 ret = 0;
352 }
353 else
354 {
355 t_tmp = t_now - nsec;
356 if (X509_cmp_time(nextupd, &t_tmp) < 0)
357 {
358 OCSPerr(OCSP_F_OCSP_CHECK_VALIDITY, OCSP_R_STATUS_EXPIRE
359 ret = 0;
360 }
361 }

363 /* Also don’t allow nextUpdate to precede thisUpdate */
364 if (ASN1_STRING_cmp(nextupd, thisupd) < 0)
365 {
366 OCSPerr(OCSP_F_OCSP_CHECK_VALIDITY, OCSP_R_NEXTUPDATE_BEFORE_THI
367 ret = 0;
368 }

370 return ret;
371 }

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_err.c 1

**
 6666 Fri May 30 18:31:58 2014
new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ocsp/ocsp_err.c */
2 /* ==
3 * Copyright (c) 1999-2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/ocsp.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_OCSP,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_OCSP,0,reason)

71 static ERR_STRING_DATA OCSP_str_functs[]=
72 {
73 {ERR_FUNC(OCSP_F_ASN1_STRING_ENCODE), "ASN1_STRING_encode"},
74 {ERR_FUNC(OCSP_F_D2I_OCSP_NONCE), "D2I_OCSP_NONCE"},
75 {ERR_FUNC(OCSP_F_OCSP_BASIC_ADD1_STATUS), "OCSP_basic_add1_status"},
76 {ERR_FUNC(OCSP_F_OCSP_BASIC_SIGN), "OCSP_basic_sign"},
77 {ERR_FUNC(OCSP_F_OCSP_BASIC_VERIFY), "OCSP_basic_verify"},
78 {ERR_FUNC(OCSP_F_OCSP_CERT_ID_NEW), "OCSP_cert_id_new"},
79 {ERR_FUNC(OCSP_F_OCSP_CHECK_DELEGATED), "OCSP_CHECK_DELEGATED"},
80 {ERR_FUNC(OCSP_F_OCSP_CHECK_IDS), "OCSP_CHECK_IDS"},
81 {ERR_FUNC(OCSP_F_OCSP_CHECK_ISSUER), "OCSP_CHECK_ISSUER"},
82 {ERR_FUNC(OCSP_F_OCSP_CHECK_VALIDITY), "OCSP_check_validity"},
83 {ERR_FUNC(OCSP_F_OCSP_MATCH_ISSUERID), "OCSP_MATCH_ISSUERID"},
84 {ERR_FUNC(OCSP_F_OCSP_PARSE_URL), "OCSP_parse_url"},
85 {ERR_FUNC(OCSP_F_OCSP_REQUEST_SIGN), "OCSP_request_sign"},
86 {ERR_FUNC(OCSP_F_OCSP_REQUEST_VERIFY), "OCSP_request_verify"},
87 {ERR_FUNC(OCSP_F_OCSP_RESPONSE_GET1_BASIC), "OCSP_response_get1_basic"},
88 {ERR_FUNC(OCSP_F_OCSP_SENDREQ_BIO), "OCSP_sendreq_bio"},
89 {ERR_FUNC(OCSP_F_OCSP_SENDREQ_NBIO), "OCSP_sendreq_nbio"},
90 {ERR_FUNC(OCSP_F_PARSE_HTTP_LINE1), "PARSE_HTTP_LINE1"},
91 {ERR_FUNC(OCSP_F_REQUEST_VERIFY), "REQUEST_VERIFY"},
92 {0,NULL}
93 };

95 static ERR_STRING_DATA OCSP_str_reasons[]=
96 {
97 {ERR_REASON(OCSP_R_BAD_DATA) ,"bad data"},
98 {ERR_REASON(OCSP_R_CERTIFICATE_VERIFY_ERROR),"certificate verify error"},
99 {ERR_REASON(OCSP_R_DIGEST_ERR) ,"digest err"},
100 {ERR_REASON(OCSP_R_ERROR_IN_NEXTUPDATE_FIELD),"error in nextupdate field"},
101 {ERR_REASON(OCSP_R_ERROR_IN_THISUPDATE_FIELD),"error in thisupdate field"},
102 {ERR_REASON(OCSP_R_ERROR_PARSING_URL) ,"error parsing url"},
103 {ERR_REASON(OCSP_R_MISSING_OCSPSIGNING_USAGE),"missing ocspsigning usage"},
104 {ERR_REASON(OCSP_R_NEXTUPDATE_BEFORE_THISUPDATE),"nextupdate before thisupdate"}
105 {ERR_REASON(OCSP_R_NOT_BASIC_RESPONSE) ,"not basic response"},
106 {ERR_REASON(OCSP_R_NO_CERTIFICATES_IN_CHAIN),"no certificates in chain"},
107 {ERR_REASON(OCSP_R_NO_CONTENT) ,"no content"},
108 {ERR_REASON(OCSP_R_NO_PUBLIC_KEY) ,"no public key"},
109 {ERR_REASON(OCSP_R_NO_RESPONSE_DATA) ,"no response data"},
110 {ERR_REASON(OCSP_R_NO_REVOKED_TIME) ,"no revoked time"},
111 {ERR_REASON(OCSP_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE),"private key does not
112 {ERR_REASON(OCSP_R_REQUEST_NOT_SIGNED) ,"request not signed"},
113 {ERR_REASON(OCSP_R_RESPONSE_CONTAINS_NO_REVOCATION_DATA),"response contains no r
114 {ERR_REASON(OCSP_R_ROOT_CA_NOT_TRUSTED) ,"root ca not trusted"},
115 {ERR_REASON(OCSP_R_SERVER_READ_ERROR) ,"server read error"},
116 {ERR_REASON(OCSP_R_SERVER_RESPONSE_ERROR),"server response error"},
117 {ERR_REASON(OCSP_R_SERVER_RESPONSE_PARSE_ERROR),"server response parse error"},
118 {ERR_REASON(OCSP_R_SERVER_WRITE_ERROR) ,"server write error"},
119 {ERR_REASON(OCSP_R_SIGNATURE_FAILURE) ,"signature failure"},
120 {ERR_REASON(OCSP_R_SIGNER_CERTIFICATE_NOT_FOUND),"signer certificate not found"}
121 {ERR_REASON(OCSP_R_STATUS_EXPIRED) ,"status expired"},
122 {ERR_REASON(OCSP_R_STATUS_NOT_YET_VALID) ,"status not yet valid"},
123 {ERR_REASON(OCSP_R_STATUS_TOO_OLD) ,"status too old"},
124 {ERR_REASON(OCSP_R_UNKNOWN_MESSAGE_DIGEST),"unknown message digest"},
125 {ERR_REASON(OCSP_R_UNKNOWN_NID) ,"unknown nid"},
126 {ERR_REASON(OCSP_R_UNSUPPORTED_REQUESTORNAME_TYPE),"unsupported requestorname ty
127 {0,NULL}

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_err.c 3

128 };

130 #endif

132 void ERR_load_OCSP_strings(void)
133 {
134 #ifndef OPENSSL_NO_ERR

136 if (ERR_func_error_string(OCSP_str_functs[0].error) == NULL)
137 {
138 ERR_load_strings(0,OCSP_str_functs);
139 ERR_load_strings(0,OCSP_str_reasons);
140 }
141 #endif
142 }

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ext.c 1

**
 16220 Fri May 30 18:31:58 2014
new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ext.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ocsp_ext.c */
2 /* Written by Tom Titchener <Tom_Titchener@groove.net> for the OpenSSL
3 * project. */

5 /* History:
6 This file was transfered to Richard Levitte from CertCo by Kathy
7 Weinhold in mid-spring 2000 to be included in OpenSSL or released
8 as a patch kit. */

10 /* ==
11 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 *
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 *
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in
22 * the documentation and/or other materials provided with the
23 * distribution.
24 *
25 * 3. All advertising materials mentioning features or use of this
26 * software must display the following acknowledgment:
27 * "This product includes software developed by the OpenSSL Project
28 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
29 *
30 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
31 * endorse or promote products derived from this software without
32 * prior written permission. For written permission, please contact
33 * openssl-core@openssl.org.
34 *
35 * 5. Products derived from this software may not be called "OpenSSL"
36 * nor may "OpenSSL" appear in their names without prior written
37 * permission of the OpenSSL Project.
38 *
39 * 6. Redistributions of any form whatsoever must retain the following
40 * acknowledgment:
41 * "This product includes software developed by the OpenSSL Project
42 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
43 *
44 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
45 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
46 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
47 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
48 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
49 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
50 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
51 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
53 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
54 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
55 * OF THE POSSIBILITY OF SUCH DAMAGE.
56 * ==
57 *
58 * This product includes cryptographic software written by Eric Young
59 * (eay@cryptsoft.com). This product includes software written by Tim
60 * Hudson (tjh@cryptsoft.com).
61 *

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ext.c 2

62 */

64 #include <stdio.h>
65 #include <cryptlib.h>
66 #include <openssl/objects.h>
67 #include <openssl/x509.h>
68 #include <openssl/ocsp.h>
69 #include <openssl/rand.h>
70 #include <openssl/x509v3.h>

72 /* Standard wrapper functions for extensions */

74 /* OCSP request extensions */

76 int OCSP_REQUEST_get_ext_count(OCSP_REQUEST *x)
77 {
78 return(X509v3_get_ext_count(x->tbsRequest->requestExtensions));
79 }

81 int OCSP_REQUEST_get_ext_by_NID(OCSP_REQUEST *x, int nid, int lastpos)
82 {
83 return(X509v3_get_ext_by_NID(x->tbsRequest->requestExtensions,nid,lastpo
84 }

86 int OCSP_REQUEST_get_ext_by_OBJ(OCSP_REQUEST *x, ASN1_OBJECT *obj, int lastpos)
87 {
88 return(X509v3_get_ext_by_OBJ(x->tbsRequest->requestExtensions,obj,lastpo
89 }

91 int OCSP_REQUEST_get_ext_by_critical(OCSP_REQUEST *x, int crit, int lastpos)
92 {
93 return(X509v3_get_ext_by_critical(x->tbsRequest->requestExtensions,crit,
94 }

96 X509_EXTENSION *OCSP_REQUEST_get_ext(OCSP_REQUEST *x, int loc)
97 {
98 return(X509v3_get_ext(x->tbsRequest->requestExtensions,loc));
99 }

101 X509_EXTENSION *OCSP_REQUEST_delete_ext(OCSP_REQUEST *x, int loc)
102 {
103 return(X509v3_delete_ext(x->tbsRequest->requestExtensions,loc));
104 }

106 void *OCSP_REQUEST_get1_ext_d2i(OCSP_REQUEST *x, int nid, int *crit, int *idx)
107 {
108 return X509V3_get_d2i(x->tbsRequest->requestExtensions, nid, crit, idx);
109 }

111 int OCSP_REQUEST_add1_ext_i2d(OCSP_REQUEST *x, int nid, void *value, int crit,
112 unsigned long flags)
113 {
114 return X509V3_add1_i2d(&x->tbsRequest->requestExtensions, nid, value, cr
115 }

117 int OCSP_REQUEST_add_ext(OCSP_REQUEST *x, X509_EXTENSION *ex, int loc)
118 {
119 return(X509v3_add_ext(&(x->tbsRequest->requestExtensions),ex,loc) != NUL
120 }

122 /* Single extensions */

124 int OCSP_ONEREQ_get_ext_count(OCSP_ONEREQ *x)
125 {
126 return(X509v3_get_ext_count(x->singleRequestExtensions));
127 }

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ext.c 3

129 int OCSP_ONEREQ_get_ext_by_NID(OCSP_ONEREQ *x, int nid, int lastpos)
130 {
131 return(X509v3_get_ext_by_NID(x->singleRequestExtensions,nid,lastpos));
132 }

134 int OCSP_ONEREQ_get_ext_by_OBJ(OCSP_ONEREQ *x, ASN1_OBJECT *obj, int lastpos)
135 {
136 return(X509v3_get_ext_by_OBJ(x->singleRequestExtensions,obj,lastpos));
137 }

139 int OCSP_ONEREQ_get_ext_by_critical(OCSP_ONEREQ *x, int crit, int lastpos)
140 {
141 return(X509v3_get_ext_by_critical(x->singleRequestExtensions,crit,lastpo
142 }

144 X509_EXTENSION *OCSP_ONEREQ_get_ext(OCSP_ONEREQ *x, int loc)
145 {
146 return(X509v3_get_ext(x->singleRequestExtensions,loc));
147 }

149 X509_EXTENSION *OCSP_ONEREQ_delete_ext(OCSP_ONEREQ *x, int loc)
150 {
151 return(X509v3_delete_ext(x->singleRequestExtensions,loc));
152 }

154 void *OCSP_ONEREQ_get1_ext_d2i(OCSP_ONEREQ *x, int nid, int *crit, int *idx)
155 {
156 return X509V3_get_d2i(x->singleRequestExtensions, nid, crit, idx);
157 }

159 int OCSP_ONEREQ_add1_ext_i2d(OCSP_ONEREQ *x, int nid, void *value, int crit,
160 unsigned long flags)
161 {
162 return X509V3_add1_i2d(&x->singleRequestExtensions, nid, value, crit, fl
163 }

165 int OCSP_ONEREQ_add_ext(OCSP_ONEREQ *x, X509_EXTENSION *ex, int loc)
166 {
167 return(X509v3_add_ext(&(x->singleRequestExtensions),ex,loc) != NULL);
168 }

170 /* OCSP Basic response */

172 int OCSP_BASICRESP_get_ext_count(OCSP_BASICRESP *x)
173 {
174 return(X509v3_get_ext_count(x->tbsResponseData->responseExtensions));
175 }

177 int OCSP_BASICRESP_get_ext_by_NID(OCSP_BASICRESP *x, int nid, int lastpos)
178 {
179 return(X509v3_get_ext_by_NID(x->tbsResponseData->responseExtensions,nid,
180 }

182 int OCSP_BASICRESP_get_ext_by_OBJ(OCSP_BASICRESP *x, ASN1_OBJECT *obj, int lastp
183 {
184 return(X509v3_get_ext_by_OBJ(x->tbsResponseData->responseExtensions,obj,
185 }

187 int OCSP_BASICRESP_get_ext_by_critical(OCSP_BASICRESP *x, int crit, int lastpos)
188 {
189 return(X509v3_get_ext_by_critical(x->tbsResponseData->responseExtensions
190 }

192 X509_EXTENSION *OCSP_BASICRESP_get_ext(OCSP_BASICRESP *x, int loc)
193 {

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ext.c 4

194 return(X509v3_get_ext(x->tbsResponseData->responseExtensions,loc));
195 }

197 X509_EXTENSION *OCSP_BASICRESP_delete_ext(OCSP_BASICRESP *x, int loc)
198 {
199 return(X509v3_delete_ext(x->tbsResponseData->responseExtensions,loc));
200 }

202 void *OCSP_BASICRESP_get1_ext_d2i(OCSP_BASICRESP *x, int nid, int *crit, int *id
203 {
204 return X509V3_get_d2i(x->tbsResponseData->responseExtensions, nid, crit,
205 }

207 int OCSP_BASICRESP_add1_ext_i2d(OCSP_BASICRESP *x, int nid, void *value, int cri
208 unsigned long flags)
209 {
210 return X509V3_add1_i2d(&x->tbsResponseData->responseExtensions, nid, val
211 }

213 int OCSP_BASICRESP_add_ext(OCSP_BASICRESP *x, X509_EXTENSION *ex, int loc)
214 {
215 return(X509v3_add_ext(&(x->tbsResponseData->responseExtensions),ex,loc)
216 }

218 /* OCSP single response extensions */

220 int OCSP_SINGLERESP_get_ext_count(OCSP_SINGLERESP *x)
221 {
222 return(X509v3_get_ext_count(x->singleExtensions));
223 }

225 int OCSP_SINGLERESP_get_ext_by_NID(OCSP_SINGLERESP *x, int nid, int lastpos)
226 {
227 return(X509v3_get_ext_by_NID(x->singleExtensions,nid,lastpos));
228 }

230 int OCSP_SINGLERESP_get_ext_by_OBJ(OCSP_SINGLERESP *x, ASN1_OBJECT *obj, int las
231 {
232 return(X509v3_get_ext_by_OBJ(x->singleExtensions,obj,lastpos));
233 }

235 int OCSP_SINGLERESP_get_ext_by_critical(OCSP_SINGLERESP *x, int crit, int lastpo
236 {
237 return(X509v3_get_ext_by_critical(x->singleExtensions,crit,lastpos));
238 }

240 X509_EXTENSION *OCSP_SINGLERESP_get_ext(OCSP_SINGLERESP *x, int loc)
241 {
242 return(X509v3_get_ext(x->singleExtensions,loc));
243 }

245 X509_EXTENSION *OCSP_SINGLERESP_delete_ext(OCSP_SINGLERESP *x, int loc)
246 {
247 return(X509v3_delete_ext(x->singleExtensions,loc));
248 }

250 void *OCSP_SINGLERESP_get1_ext_d2i(OCSP_SINGLERESP *x, int nid, int *crit, int *
251 {
252 return X509V3_get_d2i(x->singleExtensions, nid, crit, idx);
253 }

255 int OCSP_SINGLERESP_add1_ext_i2d(OCSP_SINGLERESP *x, int nid, void *value, int c
256 unsigned long flags)
257 {
258 return X509V3_add1_i2d(&x->singleExtensions, nid, value, crit, flags);
259 }

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ext.c 5

261 int OCSP_SINGLERESP_add_ext(OCSP_SINGLERESP *x, X509_EXTENSION *ex, int loc)
262 {
263 return(X509v3_add_ext(&(x->singleExtensions),ex,loc) != NULL);
264 }

266 /* also CRL Entry Extensions */
267 #if 0
268 ASN1_STRING *ASN1_STRING_encode(ASN1_STRING *s, i2d_of_void *i2d,
269 void *data, STACK_OF(ASN1_OBJECT) *sk)
270 {
271 int i;
272 unsigned char *p, *b = NULL;

274 if (data)
275 {
276 if ((i=i2d(data,NULL)) <= 0) goto err;
277 if (!(b=p=OPENSSL_malloc((unsigned int)i)))
278 goto err;
279 if (i2d(data, &p) <= 0) goto err;
280 }
281 else if (sk)
282 {
283 if ((i=i2d_ASN1_SET_OF_ASN1_OBJECT(sk,NULL,
284 (I2D_OF(ASN1_OBJECT))i2d,
285 V_ASN1_SEQUENCE,
286 V_ASN1_UNIVERSAL,
287 IS_SEQUENCE))<=0) goto err;
288 if (!(b=p=OPENSSL_malloc((unsigned int)i)))
289 goto err;
290 if (i2d_ASN1_SET_OF_ASN1_OBJECT(sk,&p,(I2D_OF(ASN1_OBJECT))i2d,
291 V_ASN1_SEQUENCE,
292 V_ASN1_UNIVERSAL,
293 IS_SEQUENCE)<=0) goto err;
294 }
295 else
296 {
297 OCSPerr(OCSP_F_ASN1_STRING_ENCODE,OCSP_R_BAD_DATA);
298 goto err;
299 }
300 if (!s && !(s = ASN1_STRING_new())) goto err;
301 if (!(ASN1_STRING_set(s, b, i))) goto err;
302 OPENSSL_free(b);
303 return s;
304 err:
305 if (b) OPENSSL_free(b);
306 return NULL;
307 }
308 #endif

310 /* Nonce handling functions */

312 /* Add a nonce to an extension stack. A nonce can be specificed or if NULL
313 * a random nonce will be generated.
314 * Note: OpenSSL 0.9.7d and later create an OCTET STRING containing the
315 * nonce, previous versions used the raw nonce.
316 */

318 static int ocsp_add1_nonce(STACK_OF(X509_EXTENSION) **exts, unsigned char *val,
319 {
320 unsigned char *tmpval;
321 ASN1_OCTET_STRING os;
322 int ret = 0;
323 if (len <= 0) len = OCSP_DEFAULT_NONCE_LENGTH;
324 /* Create the OCTET STRING manually by writing out the header and
325 * appending the content octets. This avoids an extra memory allocation

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ext.c 6

326 * operation in some cases. Applications should *NOT* do this because
327 * it relies on library internals.
328 */
329 os.length = ASN1_object_size(0, len, V_ASN1_OCTET_STRING);
330 os.data = OPENSSL_malloc(os.length);
331 if (os.data == NULL)
332 goto err;
333 tmpval = os.data;
334 ASN1_put_object(&tmpval, 0, len, V_ASN1_OCTET_STRING, V_ASN1_UNIVERSAL);
335 if (val)
336 memcpy(tmpval, val, len);
337 else
338 RAND_pseudo_bytes(tmpval, len);
339 if(!X509V3_add1_i2d(exts, NID_id_pkix_OCSP_Nonce,
340 &os, 0, X509V3_ADD_REPLACE))
341 goto err;
342 ret = 1;
343 err:
344 if (os.data)
345 OPENSSL_free(os.data);
346 return ret;
347 }

350 /* Add nonce to an OCSP request */

352 int OCSP_request_add1_nonce(OCSP_REQUEST *req, unsigned char *val, int len)
353 {
354 return ocsp_add1_nonce(&req->tbsRequest->requestExtensions, val, len);
355 }

357 /* Same as above but for a response */

359 int OCSP_basic_add1_nonce(OCSP_BASICRESP *resp, unsigned char *val, int len)
360 {
361 return ocsp_add1_nonce(&resp->tbsResponseData->responseExtensions, val,
362 }

364 /* Check nonce validity in a request and response.
365 * Return value reflects result:
366 * 1: nonces present and equal.
367 * 2: nonces both absent.
368 * 3: nonce present in response only.
369 * 0: nonces both present and not equal.
370 * -1: nonce in request only.
371 *
372 * For most responders clients can check return > 0.
373 * If responder doesn’t handle nonces return != 0 may be
374 * necessary. return == 0 is always an error.
375 */

377 int OCSP_check_nonce(OCSP_REQUEST *req, OCSP_BASICRESP *bs)
378 {
379 /*
380 * Since we are only interested in the presence or absence of
381 * the nonce and comparing its value there is no need to use
382 * the X509V3 routines: this way we can avoid them allocating an
383 * ASN1_OCTET_STRING structure for the value which would be
384 * freed immediately anyway.
385 */

387 int req_idx, resp_idx;
388 X509_EXTENSION *req_ext, *resp_ext;
389 req_idx = OCSP_REQUEST_get_ext_by_NID(req, NID_id_pkix_OCSP_Nonce, -1);
390 resp_idx = OCSP_BASICRESP_get_ext_by_NID(bs, NID_id_pkix_OCSP_Nonce, -1)
391 /* Check both absent */

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ext.c 7

392 if((req_idx < 0) && (resp_idx < 0))
393 return 2;
394 /* Check in request only */
395 if((req_idx >= 0) && (resp_idx < 0))
396 return -1;
397 /* Check in response but not request */
398 if((req_idx < 0) && (resp_idx >= 0))
399 return 3;
400 /* Otherwise nonce in request and response so retrieve the extensions */
401 req_ext = OCSP_REQUEST_get_ext(req, req_idx);
402 resp_ext = OCSP_BASICRESP_get_ext(bs, resp_idx);
403 if(ASN1_OCTET_STRING_cmp(req_ext->value, resp_ext->value))
404 return 0;
405 return 1;
406 }

408 /* Copy the nonce value (if any) from an OCSP request to
409 * a response.
410 */

412 int OCSP_copy_nonce(OCSP_BASICRESP *resp, OCSP_REQUEST *req)
413 {
414 X509_EXTENSION *req_ext;
415 int req_idx;
416 /* Check for nonce in request */
417 req_idx = OCSP_REQUEST_get_ext_by_NID(req, NID_id_pkix_OCSP_Nonce, -1);
418 /* If no nonce that’s OK */
419 if (req_idx < 0) return 2;
420 req_ext = OCSP_REQUEST_get_ext(req, req_idx);
421 return OCSP_BASICRESP_add_ext(resp, req_ext, -1);
422 }

424 X509_EXTENSION *OCSP_crlID_new(char *url, long *n, char *tim)
425 {
426 X509_EXTENSION *x = NULL;
427 OCSP_CRLID *cid = NULL;
428
429 if (!(cid = OCSP_CRLID_new())) goto err;
430 if (url)
431 {
432 if (!(cid->crlUrl = ASN1_IA5STRING_new())) goto err;
433 if (!(ASN1_STRING_set(cid->crlUrl, url, -1))) goto err;
434 }
435 if (n)
436 {
437 if (!(cid->crlNum = ASN1_INTEGER_new())) goto err;
438 if (!(ASN1_INTEGER_set(cid->crlNum, *n))) goto err;
439 }
440 if (tim)
441 {
442 if (!(cid->crlTime = ASN1_GENERALIZEDTIME_new())) goto err;
443 if (!(ASN1_GENERALIZEDTIME_set_string(cid->crlTime, tim)))
444 goto err;
445 }
446 x = X509V3_EXT_i2d(NID_id_pkix_OCSP_CrlID, 0, cid);
447 err:
448 if (cid) OCSP_CRLID_free(cid);
449 return x;
450 }

452 /* AcceptableResponses ::= SEQUENCE OF OBJECT IDENTIFIER */
453 X509_EXTENSION *OCSP_accept_responses_new(char **oids)
454 {
455 int nid;
456 STACK_OF(ASN1_OBJECT) *sk = NULL;
457 ASN1_OBJECT *o = NULL;

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ext.c 8

458 X509_EXTENSION *x = NULL;

460 if (!(sk = sk_ASN1_OBJECT_new_null())) goto err;
461 while (oids && *oids)
462 {
463 if ((nid=OBJ_txt2nid(*oids))!=NID_undef&&(o=OBJ_nid2obj(nid)))
464 sk_ASN1_OBJECT_push(sk, o);
465 oids++;
466 }
467 x = X509V3_EXT_i2d(NID_id_pkix_OCSP_acceptableResponses, 0, sk);
468 err:
469 if (sk) sk_ASN1_OBJECT_pop_free(sk, ASN1_OBJECT_free);
470 return x;
471 }

473 /* ArchiveCutoff ::= GeneralizedTime */
474 X509_EXTENSION *OCSP_archive_cutoff_new(char* tim)
475 {
476 X509_EXTENSION *x=NULL;
477 ASN1_GENERALIZEDTIME *gt = NULL;

479 if (!(gt = ASN1_GENERALIZEDTIME_new())) goto err;
480 if (!(ASN1_GENERALIZEDTIME_set_string(gt, tim))) goto err;
481 x = X509V3_EXT_i2d(NID_id_pkix_OCSP_archiveCutoff, 0, gt);
482 err:
483 if (gt) ASN1_GENERALIZEDTIME_free(gt);
484 return x;
485 }

487 /* per ACCESS_DESCRIPTION parameter are oids, of which there are currently
488 * two--NID_ad_ocsp, NID_id_ad_caIssuers--and GeneralName value. This
489 * method forces NID_ad_ocsp and uniformResourceLocator [6] IA5String.
490 */
491 X509_EXTENSION *OCSP_url_svcloc_new(X509_NAME* issuer, char **urls)
492 {
493 X509_EXTENSION *x = NULL;
494 ASN1_IA5STRING *ia5 = NULL;
495 OCSP_SERVICELOC *sloc = NULL;
496 ACCESS_DESCRIPTION *ad = NULL;
497
498 if (!(sloc = OCSP_SERVICELOC_new())) goto err;
499 if (!(sloc->issuer = X509_NAME_dup(issuer))) goto err;
500 if (urls && *urls && !(sloc->locator = sk_ACCESS_DESCRIPTION_new_null())
501 while (urls && *urls)
502 {
503 if (!(ad = ACCESS_DESCRIPTION_new())) goto err;
504 if (!(ad->method=OBJ_nid2obj(NID_ad_OCSP))) goto err;
505 if (!(ad->location = GENERAL_NAME_new())) goto err;
506 if (!(ia5 = ASN1_IA5STRING_new())) goto err;
507 if (!ASN1_STRING_set((ASN1_STRING*)ia5, *urls, -1)) goto err;
508 ad->location->type = GEN_URI;
509 ad->location->d.ia5 = ia5;
510 if (!sk_ACCESS_DESCRIPTION_push(sloc->locator, ad)) goto err;
511 urls++;
512 }
513 x = X509V3_EXT_i2d(NID_id_pkix_OCSP_serviceLocator, 0, sloc);
514 err:
515 if (sloc) OCSP_SERVICELOC_free(sloc);
516 return x;
517 }

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ht.c 1

**
 11532 Fri May 30 18:31:58 2014
new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ht.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ocsp_ht.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2006.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <ctype.h>

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ht.c 2

62 #include <string.h>
63 #include "e_os.h"
64 #include <openssl/asn1.h>
65 #include <openssl/ocsp.h>
66 #include <openssl/err.h>
67 #include <openssl/buffer.h>
68 #ifdef OPENSSL_SYS_SUNOS
69 #define strtoul (unsigned long)strtol
70 #endif /* OPENSSL_SYS_SUNOS */

72 /* Stateful OCSP request code, supporting non-blocking I/O */

74 /* Opaque OCSP request status structure */

76 struct ocsp_req_ctx_st {
77 int state; /* Current I/O state */
78 unsigned char *iobuf; /* Line buffer */
79 int iobuflen; /* Line buffer length */
80 BIO *io; /* BIO to perform I/O with */
81 BIO *mem; /* Memory BIO response is built into */
82 unsigned long asn1_len; /* ASN1 length of response */
83 };

85 #define OCSP_MAX_REQUEST_LENGTH (100 * 1024)
86 #define OCSP_MAX_LINE_LEN 4096;

88 /* OCSP states */

90 /* If set no reading should be performed */
91 #define OHS_NOREAD 0x1000
92 /* Error condition */
93 #define OHS_ERROR (0 | OHS_NOREAD)
94 /* First line being read */
95 #define OHS_FIRSTLINE 1
96 /* MIME headers being read */
97 #define OHS_HEADERS 2
98 /* OCSP initial header (tag + length) being read */
99 #define OHS_ASN1_HEADER 3
100 /* OCSP content octets being read */
101 #define OHS_ASN1_CONTENT 4
102 /* Request being sent */
103 #define OHS_ASN1_WRITE (6 | OHS_NOREAD)
104 /* Request being flushed */
105 #define OHS_ASN1_FLUSH (7 | OHS_NOREAD)
106 /* Completed */
107 #define OHS_DONE (8 | OHS_NOREAD)

110 static int parse_http_line1(char *line);

112 void OCSP_REQ_CTX_free(OCSP_REQ_CTX *rctx)
113 {
114 if (rctx->mem)
115 BIO_free(rctx->mem);
116 if (rctx->iobuf)
117 OPENSSL_free(rctx->iobuf);
118 OPENSSL_free(rctx);
119 }

121 int OCSP_REQ_CTX_set1_req(OCSP_REQ_CTX *rctx, OCSP_REQUEST *req)
122 {
123 static const char req_hdr[] =
124 "Content-Type: application/ocsp-request\r\n"
125 "Content-Length: %d\r\n\r\n";
126 if (BIO_printf(rctx->mem, req_hdr, i2d_OCSP_REQUEST(req, NULL)) <= 0)
127 return 0;

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ht.c 3

128 if (i2d_OCSP_REQUEST_bio(rctx->mem, req) <= 0)
129 return 0;
130 rctx->state = OHS_ASN1_WRITE;
131 rctx->asn1_len = BIO_get_mem_data(rctx->mem, NULL);
132 return 1;
133 }

135 int OCSP_REQ_CTX_add1_header(OCSP_REQ_CTX *rctx,
136 const char *name, const char *value)
137 {
138 if (!name)
139 return 0;
140 if (BIO_puts(rctx->mem, name) <= 0)
141 return 0;
142 if (value)
143 {
144 if (BIO_write(rctx->mem, ": ", 2) != 2)
145 return 0;
146 if (BIO_puts(rctx->mem, value) <= 0)
147 return 0;
148 }
149 if (BIO_write(rctx->mem, "\r\n", 2) != 2)
150 return 0;
151 return 1;
152 }

154 OCSP_REQ_CTX *OCSP_sendreq_new(BIO *io, char *path, OCSP_REQUEST *req,
155 int maxline)
156 {
157 static const char post_hdr[] = "POST %s HTTP/1.0\r\n";

159 OCSP_REQ_CTX *rctx;
160 rctx = OPENSSL_malloc(sizeof(OCSP_REQ_CTX));
161 rctx->state = OHS_ERROR;
162 rctx->mem = BIO_new(BIO_s_mem());
163 rctx->io = io;
164 rctx->asn1_len = 0;
165 if (maxline > 0)
166 rctx->iobuflen = maxline;
167 else
168 rctx->iobuflen = OCSP_MAX_LINE_LEN;
169 rctx->iobuf = OPENSSL_malloc(rctx->iobuflen);
170 if (!rctx->iobuf)
171 return 0;
172 if (!path)
173 path = "/";

175 if (BIO_printf(rctx->mem, post_hdr, path) <= 0)
176 return 0;

178 if (req && !OCSP_REQ_CTX_set1_req(rctx, req))
179 return 0;

181 return rctx;
182 }

184 /* Parse the HTTP response. This will look like this:
185 * "HTTP/1.0 200 OK". We need to obtain the numeric code and
186 * (optional) informational message.
187 */

189 static int parse_http_line1(char *line)
190 {
191 int retcode;
192 char *p, *q, *r;
193 /* Skip to first white space (passed protocol info) */

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ht.c 4

195 for(p = line; *p && !isspace((unsigned char)*p); p++)
196 continue;
197 if(!*p)
198 {
199 OCSPerr(OCSP_F_PARSE_HTTP_LINE1,
200 OCSP_R_SERVER_RESPONSE_PARSE_ERROR);
201 return 0;
202 }

204 /* Skip past white space to start of response code */
205 while(*p && isspace((unsigned char)*p))
206 p++;

208 if(!*p)
209 {
210 OCSPerr(OCSP_F_PARSE_HTTP_LINE1,
211 OCSP_R_SERVER_RESPONSE_PARSE_ERROR);
212 return 0;
213 }

215 /* Find end of response code: first whitespace after start of code */
216 for(q = p; *q && !isspace((unsigned char)*q); q++)
217 continue;

219 if(!*q)
220 {
221 OCSPerr(OCSP_F_PARSE_HTTP_LINE1,
222 OCSP_R_SERVER_RESPONSE_PARSE_ERROR);
223 return 0;
224 }

226 /* Set end of response code and start of message */
227 *q++ = 0;

229 /* Attempt to parse numeric code */
230 retcode = strtoul(p, &r, 10);

232 if(*r)
233 return 0;

235 /* Skip over any leading white space in message */
236 while(*q && isspace((unsigned char)*q))
237 q++;

239 if(*q)
240 {
241 /* Finally zap any trailing white space in message (include
242 * CRLF) */

244 /* We know q has a non white space character so this is OK */
245 for(r = q + strlen(q) - 1; isspace((unsigned char)*r); r--)
246 *r = 0;
247 }
248 if(retcode != 200)
249 {
250 OCSPerr(OCSP_F_PARSE_HTTP_LINE1, OCSP_R_SERVER_RESPONSE_ERROR);
251 if(!*q)
252 ERR_add_error_data(2, "Code=", p);
253 else
254 ERR_add_error_data(4, "Code=", p, ",Reason=", q);
255 return 0;
256 }

259 return 1;

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ht.c 5

261 }

263 int OCSP_sendreq_nbio(OCSP_RESPONSE **presp, OCSP_REQ_CTX *rctx)
264 {
265 int i, n;
266 const unsigned char *p;
267 next_io:
268 if (!(rctx->state & OHS_NOREAD))
269 {
270 n = BIO_read(rctx->io, rctx->iobuf, rctx->iobuflen);

272 if (n <= 0)
273 {
274 if (BIO_should_retry(rctx->io))
275 return -1;
276 return 0;
277 }

279 /* Write data to memory BIO */

281 if (BIO_write(rctx->mem, rctx->iobuf, n) != n)
282 return 0;
283 }

285 switch(rctx->state)
286 {

288 case OHS_ASN1_WRITE:
289 n = BIO_get_mem_data(rctx->mem, &p);

291 i = BIO_write(rctx->io,
292 p + (n - rctx->asn1_len), rctx->asn1_len);

294 if (i <= 0)
295 {
296 if (BIO_should_retry(rctx->io))
297 return -1;
298 rctx->state = OHS_ERROR;
299 return 0;
300 }

302 rctx->asn1_len -= i;

304 if (rctx->asn1_len > 0)
305 goto next_io;

307 rctx->state = OHS_ASN1_FLUSH;

309 (void)BIO_reset(rctx->mem);

311 case OHS_ASN1_FLUSH:

313 i = BIO_flush(rctx->io);

315 if (i > 0)
316 {
317 rctx->state = OHS_FIRSTLINE;
318 goto next_io;
319 }

321 if (BIO_should_retry(rctx->io))
322 return -1;

324 rctx->state = OHS_ERROR;
325 return 0;

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ht.c 6

327 case OHS_ERROR:
328 return 0;

330 case OHS_FIRSTLINE:
331 case OHS_HEADERS:

333 /* Attempt to read a line in */

335 next_line:
336 /* Due to &%^*$" memory BIO behaviour with BIO_gets we
337 * have to check there’s a complete line in there before
338 * calling BIO_gets or we’ll just get a partial read.
339 */
340 n = BIO_get_mem_data(rctx->mem, &p);
341 if ((n <= 0) || !memchr(p, ’\n’, n))
342 {
343 if (n >= rctx->iobuflen)
344 {
345 rctx->state = OHS_ERROR;
346 return 0;
347 }
348 goto next_io;
349 }
350 n = BIO_gets(rctx->mem, (char *)rctx->iobuf, rctx->iobuflen);

352 if (n <= 0)
353 {
354 if (BIO_should_retry(rctx->mem))
355 goto next_io;
356 rctx->state = OHS_ERROR;
357 return 0;
358 }

360 /* Don’t allow excessive lines */
361 if (n == rctx->iobuflen)
362 {
363 rctx->state = OHS_ERROR;
364 return 0;
365 }

367 /* First line */
368 if (rctx->state == OHS_FIRSTLINE)
369 {
370 if (parse_http_line1((char *)rctx->iobuf))
371 {
372 rctx->state = OHS_HEADERS;
373 goto next_line;
374 }
375 else
376 {
377 rctx->state = OHS_ERROR;
378 return 0;
379 }
380 }
381 else
382 {
383 /* Look for blank line: end of headers */
384 for (p = rctx->iobuf; *p; p++)
385 {
386 if ((*p != ’\r’) && (*p != ’\n’))
387 break;
388 }
389 if (*p)
390 goto next_line;

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ht.c 7

392 rctx->state = OHS_ASN1_HEADER;

394 }
395
396 /* Fall thru */

399 case OHS_ASN1_HEADER:
400 /* Now reading ASN1 header: can read at least 2 bytes which
401 * is enough for ASN1 SEQUENCE header and either length field
402 * or at least the length of the length field.
403 */
404 n = BIO_get_mem_data(rctx->mem, &p);
405 if (n < 2)
406 goto next_io;

408 /* Check it is an ASN1 SEQUENCE */
409 if (*p++ != (V_ASN1_SEQUENCE|V_ASN1_CONSTRUCTED))
410 {
411 rctx->state = OHS_ERROR;
412 return 0;
413 }

415 /* Check out length field */
416 if (*p & 0x80)
417 {
418 /* If MSB set on initial length octet we can now
419 * always read 6 octets: make sure we have them.
420 */
421 if (n < 6)
422 goto next_io;
423 n = *p & 0x7F;
424 /* Not NDEF or excessive length */
425 if (!n || (n > 4))
426 {
427 rctx->state = OHS_ERROR;
428 return 0;
429 }
430 p++;
431 rctx->asn1_len = 0;
432 for (i = 0; i < n; i++)
433 {
434 rctx->asn1_len <<= 8;
435 rctx->asn1_len |= *p++;
436 }

438 if (rctx->asn1_len > OCSP_MAX_REQUEST_LENGTH)
439 {
440 rctx->state = OHS_ERROR;
441 return 0;
442 }

444 rctx->asn1_len += n + 2;
445 }
446 else
447 rctx->asn1_len = *p + 2;

449 rctx->state = OHS_ASN1_CONTENT;

451 /* Fall thru */
452
453 case OHS_ASN1_CONTENT:
454 n = BIO_get_mem_data(rctx->mem, &p);
455 if (n < (int)rctx->asn1_len)
456 goto next_io;

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_ht.c 8

459 *presp = d2i_OCSP_RESPONSE(NULL, &p, rctx->asn1_len);
460 if (*presp)
461 {
462 rctx->state = OHS_DONE;
463 return 1;
464 }

466 rctx->state = OHS_ERROR;
467 return 0;

469 break;

471 case OHS_DONE:
472 return 1;

474 }

478 return 0;

481 }

483 /* Blocking OCSP request handler: now a special case of non-blocking I/O */

485 OCSP_RESPONSE *OCSP_sendreq_bio(BIO *b, char *path, OCSP_REQUEST *req)
486 {
487 OCSP_RESPONSE *resp = NULL;
488 OCSP_REQ_CTX *ctx;
489 int rv;

491 ctx = OCSP_sendreq_new(b, path, req, -1);

493 do
494 {
495 rv = OCSP_sendreq_nbio(&resp, ctx);
496 } while ((rv == -1) && BIO_should_retry(b));

498 OCSP_REQ_CTX_free(ctx);

500 if (rv)
501 return resp;

503 return NULL;
504 }

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_lib.c 1

**
 7178 Fri May 30 18:31:58 2014
new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ocsp_lib.c */
2 /* Written by Tom Titchener <Tom_Titchener@groove.net> for the OpenSSL
3 * project. */

5 /* History:
6 This file was transfered to Richard Levitte from CertCo by Kathy
7 Weinhold in mid-spring 2000 to be included in OpenSSL or released
8 as a patch kit. */

10 /* ==
11 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 *
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 *
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in
22 * the documentation and/or other materials provided with the
23 * distribution.
24 *
25 * 3. All advertising materials mentioning features or use of this
26 * software must display the following acknowledgment:
27 * "This product includes software developed by the OpenSSL Project
28 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
29 *
30 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
31 * endorse or promote products derived from this software without
32 * prior written permission. For written permission, please contact
33 * openssl-core@openssl.org.
34 *
35 * 5. Products derived from this software may not be called "OpenSSL"
36 * nor may "OpenSSL" appear in their names without prior written
37 * permission of the OpenSSL Project.
38 *
39 * 6. Redistributions of any form whatsoever must retain the following
40 * acknowledgment:
41 * "This product includes software developed by the OpenSSL Project
42 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
43 *
44 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
45 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
46 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
47 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
48 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
49 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
50 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
51 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
53 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
54 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
55 * OF THE POSSIBILITY OF SUCH DAMAGE.
56 * ==
57 *
58 * This product includes cryptographic software written by Eric Young
59 * (eay@cryptsoft.com). This product includes software written by Tim
60 * Hudson (tjh@cryptsoft.com).
61 *

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_lib.c 2

62 */

64 #include <stdio.h>
65 #include <cryptlib.h>
66 #include <openssl/objects.h>
67 #include <openssl/rand.h>
68 #include <openssl/x509.h>
69 #include <openssl/pem.h>
70 #include <openssl/x509v3.h>
71 #include <openssl/ocsp.h>
72 #include <openssl/asn1t.h>

74 /* Convert a certificate and its issuer to an OCSP_CERTID */

76 OCSP_CERTID *OCSP_cert_to_id(const EVP_MD *dgst, X509 *subject, X509 *issuer)
77 {
78 X509_NAME *iname;
79 ASN1_INTEGER *serial;
80 ASN1_BIT_STRING *ikey;
81 #ifndef OPENSSL_NO_SHA1
82 if(!dgst) dgst = EVP_sha1();
83 #endif
84 if (subject)
85 {
86 iname = X509_get_issuer_name(subject);
87 serial = X509_get_serialNumber(subject);
88 }
89 else
90 {
91 iname = X509_get_subject_name(issuer);
92 serial = NULL;
93 }
94 ikey = X509_get0_pubkey_bitstr(issuer);
95 return OCSP_cert_id_new(dgst, iname, ikey, serial);
96 }

99 OCSP_CERTID *OCSP_cert_id_new(const EVP_MD *dgst,
100 X509_NAME *issuerName,
101 ASN1_BIT_STRING* issuerKey,
102 ASN1_INTEGER *serialNumber)
103 {
104 int nid;
105 unsigned int i;
106 X509_ALGOR *alg;
107 OCSP_CERTID *cid = NULL;
108 unsigned char md[EVP_MAX_MD_SIZE];

110 if (!(cid = OCSP_CERTID_new())) goto err;

112 alg = cid->hashAlgorithm;
113 if (alg->algorithm != NULL) ASN1_OBJECT_free(alg->algorithm);
114 if ((nid = EVP_MD_type(dgst)) == NID_undef)
115 {
116 OCSPerr(OCSP_F_OCSP_CERT_ID_NEW,OCSP_R_UNKNOWN_NID);
117 goto err;
118 }
119 if (!(alg->algorithm=OBJ_nid2obj(nid))) goto err;
120 if ((alg->parameter=ASN1_TYPE_new()) == NULL) goto err;
121 alg->parameter->type=V_ASN1_NULL;

123 if (!X509_NAME_digest(issuerName, dgst, md, &i)) goto digerr;
124 if (!(ASN1_OCTET_STRING_set(cid->issuerNameHash, md, i))) goto err;

126 /* Calculate the issuerKey hash, excluding tag and length */
127 if (!EVP_Digest(issuerKey->data, issuerKey->length, md, &i, dgst, NULL))

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_lib.c 3

128 goto err;

130 if (!(ASN1_OCTET_STRING_set(cid->issuerKeyHash, md, i))) goto err;

132 if (serialNumber)
133 {
134 ASN1_INTEGER_free(cid->serialNumber);
135 if (!(cid->serialNumber = ASN1_INTEGER_dup(serialNumber))) goto
136 }
137 return cid;
138 digerr:
139 OCSPerr(OCSP_F_OCSP_CERT_ID_NEW,OCSP_R_DIGEST_ERR);
140 err:
141 if (cid) OCSP_CERTID_free(cid);
142 return NULL;
143 }

145 int OCSP_id_issuer_cmp(OCSP_CERTID *a, OCSP_CERTID *b)
146 {
147 int ret;
148 ret = OBJ_cmp(a->hashAlgorithm->algorithm, b->hashAlgorithm->algorithm);
149 if (ret) return ret;
150 ret = ASN1_OCTET_STRING_cmp(a->issuerNameHash, b->issuerNameHash);
151 if (ret) return ret;
152 return ASN1_OCTET_STRING_cmp(a->issuerKeyHash, b->issuerKeyHash);
153 }

155 int OCSP_id_cmp(OCSP_CERTID *a, OCSP_CERTID *b)
156 {
157 int ret;
158 ret = OCSP_id_issuer_cmp(a, b);
159 if (ret) return ret;
160 return ASN1_INTEGER_cmp(a->serialNumber, b->serialNumber);
161 }

164 /* Parse a URL and split it up into host, port and path components and whether
165 * it is SSL.
166 */

168 int OCSP_parse_url(char *url, char **phost, char **pport, char **ppath, int *pss
169 {
170 char *p, *buf;

172 char *host, *port;

174 *phost = NULL;
175 *pport = NULL;
176 *ppath = NULL;

178 /* dup the buffer since we are going to mess with it */
179 buf = BUF_strdup(url);
180 if (!buf) goto mem_err;

182 /* Check for initial colon */
183 p = strchr(buf, ’:’);

185 if (!p) goto parse_err;

187 *(p++) = ’\0’;

189 if (!strcmp(buf, "http"))
190 {
191 *pssl = 0;
192 port = "80";
193 }

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_lib.c 4

194 else if (!strcmp(buf, "https"))
195 {
196 *pssl = 1;
197 port = "443";
198 }
199 else
200 goto parse_err;

202 /* Check for double slash */
203 if ((p[0] != ’/’) || (p[1] != ’/’))
204 goto parse_err;

206 p += 2;

208 host = p;

210 /* Check for trailing part of path */

212 p = strchr(p, ’/’);

214 if (!p)
215 *ppath = BUF_strdup("/");
216 else
217 {
218 *ppath = BUF_strdup(p);
219 /* Set start of path to 0 so hostname is valid */
220 *p = ’\0’;
221 }

223 if (!*ppath) goto mem_err;

225 /* Look for optional ’:’ for port number */
226 if ((p = strchr(host, ’:’)))
227 {
228 *p = 0;
229 port = p + 1;
230 }
231 else
232 {
233 /* Not found: set default port */
234 if (*pssl) port = "443";
235 else port = "80";
236 }

238 *pport = BUF_strdup(port);
239 if (!*pport) goto mem_err;

241 *phost = BUF_strdup(host);

243 if (!*phost) goto mem_err;

245 OPENSSL_free(buf);

247 return 1;

249 mem_err:
250 OCSPerr(OCSP_F_OCSP_PARSE_URL, ERR_R_MALLOC_FAILURE);
251 goto err;

253 parse_err:
254 OCSPerr(OCSP_F_OCSP_PARSE_URL, OCSP_R_ERROR_PARSING_URL);

257 err:
258 if (buf) OPENSSL_free(buf);
259 if (*ppath) OPENSSL_free(*ppath);

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_lib.c 5

260 if (*pport) OPENSSL_free(*pport);
261 if (*phost) OPENSSL_free(*phost);
262 return 0;

264 }

266 IMPLEMENT_ASN1_DUP_FUNCTION(OCSP_CERTID)

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_prn.c 1

**
 10202 Fri May 30 18:31:58 2014
new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_prn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ocsp_prn.c */
2 /* Written by Tom Titchener <Tom_Titchener@groove.net> for the OpenSSL
3 * project. */

5 /* History:
6 This file was originally part of ocsp.c and was transfered to Richard
7 Levitte from CertCo by Kathy Weinhold in mid-spring 2000 to be included
8 in OpenSSL or released as a patch kit. */

10 /* ==
11 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 *
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 *
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in
22 * the documentation and/or other materials provided with the
23 * distribution.
24 *
25 * 3. All advertising materials mentioning features or use of this
26 * software must display the following acknowledgment:
27 * "This product includes software developed by the OpenSSL Project
28 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
29 *
30 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
31 * endorse or promote products derived from this software without
32 * prior written permission. For written permission, please contact
33 * openssl-core@openssl.org.
34 *
35 * 5. Products derived from this software may not be called "OpenSSL"
36 * nor may "OpenSSL" appear in their names without prior written
37 * permission of the OpenSSL Project.
38 *
39 * 6. Redistributions of any form whatsoever must retain the following
40 * acknowledgment:
41 * "This product includes software developed by the OpenSSL Project
42 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
43 *
44 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
45 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
46 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
47 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
48 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
49 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
50 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
51 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
53 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
54 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
55 * OF THE POSSIBILITY OF SUCH DAMAGE.
56 * ==
57 *
58 * This product includes cryptographic software written by Eric Young
59 * (eay@cryptsoft.com). This product includes software written by Tim
60 * Hudson (tjh@cryptsoft.com).
61 *

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_prn.c 2

62 */

64 #include <openssl/bio.h>
65 #include <openssl/err.h>
66 #include <openssl/ocsp.h>
67 #include <openssl/pem.h>

69 static int ocsp_certid_print(BIO *bp, OCSP_CERTID* a, int indent)
70 {
71 BIO_printf(bp, "%*sCertificate ID:\n", indent, "");
72 indent += 2;
73 BIO_printf(bp, "%*sHash Algorithm: ", indent, "");
74 i2a_ASN1_OBJECT(bp, a->hashAlgorithm->algorithm);
75 BIO_printf(bp, "\n%*sIssuer Name Hash: ", indent, "");
76 i2a_ASN1_STRING(bp, a->issuerNameHash, V_ASN1_OCTET_STRING);
77 BIO_printf(bp, "\n%*sIssuer Key Hash: ", indent, "");
78 i2a_ASN1_STRING(bp, a->issuerKeyHash, V_ASN1_OCTET_STRING);
79 BIO_printf(bp, "\n%*sSerial Number: ", indent, "");
80 i2a_ASN1_INTEGER(bp, a->serialNumber);
81 BIO_printf(bp, "\n");
82 return 1;
83 }

85 typedef struct
86 {
87 long t;
88 const char *m;
89 } OCSP_TBLSTR;

91 static const char *table2string(long s, const OCSP_TBLSTR *ts, int len)
92 {
93 const OCSP_TBLSTR *p;
94 for (p=ts; p < ts + len; p++)
95 if (p->t == s)
96 return p->m;
97 return "(UNKNOWN)";
98 }

100 const char *OCSP_response_status_str(long s)
101 {
102 static const OCSP_TBLSTR rstat_tbl[] = {
103 { OCSP_RESPONSE_STATUS_SUCCESSFUL, "successful" },
104 { OCSP_RESPONSE_STATUS_MALFORMEDREQUEST, "malformedrequest" },
105 { OCSP_RESPONSE_STATUS_INTERNALERROR, "internalerror" },
106 { OCSP_RESPONSE_STATUS_TRYLATER, "trylater" },
107 { OCSP_RESPONSE_STATUS_SIGREQUIRED, "sigrequired" },
108 { OCSP_RESPONSE_STATUS_UNAUTHORIZED, "unauthorized" } };
109 return table2string(s, rstat_tbl, 6);
110 }

112 const char *OCSP_cert_status_str(long s)
113 {
114 static const OCSP_TBLSTR cstat_tbl[] = {
115 { V_OCSP_CERTSTATUS_GOOD, "good" },
116 { V_OCSP_CERTSTATUS_REVOKED, "revoked" },
117 { V_OCSP_CERTSTATUS_UNKNOWN, "unknown" } };
118 return table2string(s, cstat_tbl, 3);
119 }

121 const char *OCSP_crl_reason_str(long s)
122 {
123 static const OCSP_TBLSTR reason_tbl[] = {
124 { OCSP_REVOKED_STATUS_UNSPECIFIED, "unspecified" },
125 { OCSP_REVOKED_STATUS_KEYCOMPROMISE, "keyCompromise" },
126 { OCSP_REVOKED_STATUS_CACOMPROMISE, "cACompromise" },
127 { OCSP_REVOKED_STATUS_AFFILIATIONCHANGED, "affiliationChanged" },

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_prn.c 3

128 { OCSP_REVOKED_STATUS_SUPERSEDED, "superseded" },
129 { OCSP_REVOKED_STATUS_CESSATIONOFOPERATION, "cessationOfOperation" },
130 { OCSP_REVOKED_STATUS_CERTIFICATEHOLD, "certificateHold" },
131 { OCSP_REVOKED_STATUS_REMOVEFROMCRL, "removeFromCRL" } };
132 return table2string(s, reason_tbl, 8);
133 }

135 int OCSP_REQUEST_print(BIO *bp, OCSP_REQUEST* o, unsigned long flags)
136 {
137 int i;
138 long l;
139 OCSP_CERTID* cid = NULL;
140 OCSP_ONEREQ *one = NULL;
141 OCSP_REQINFO *inf = o->tbsRequest;
142 OCSP_SIGNATURE *sig = o->optionalSignature;

144 if (BIO_write(bp,"OCSP Request Data:\n",19) <= 0) goto err;
145 l=ASN1_INTEGER_get(inf->version);
146 if (BIO_printf(bp," Version: %lu (0x%lx)",l+1,l) <= 0) goto err;
147 if (inf->requestorName != NULL)
148 {
149 if (BIO_write(bp,"\n Requestor Name: ",21) <= 0)
150 goto err;
151 GENERAL_NAME_print(bp, inf->requestorName);
152 }
153 if (BIO_write(bp,"\n Requestor List:\n",21) <= 0) goto err;
154 for (i = 0; i < sk_OCSP_ONEREQ_num(inf->requestList); i++)
155 {
156 one = sk_OCSP_ONEREQ_value(inf->requestList, i);
157 cid = one->reqCert;
158 ocsp_certid_print(bp, cid, 8);
159 if (!X509V3_extensions_print(bp,
160 "Request Single Extensions",
161 one->singleRequestExtensions, flags, 8))
162 goto err;
163 }
164 if (!X509V3_extensions_print(bp, "Request Extensions",
165 inf->requestExtensions, flags, 4))
166 goto err;
167 if (sig)
168 {
169 X509_signature_print(bp, sig->signatureAlgorithm, sig->signature
170 for (i=0; i<sk_X509_num(sig->certs); i++)
171 {
172 X509_print(bp, sk_X509_value(sig->certs,i));
173 PEM_write_bio_X509(bp,sk_X509_value(sig->certs,i));
174 }
175 }
176 return 1;
177 err:
178 return 0;
179 }

181 int OCSP_RESPONSE_print(BIO *bp, OCSP_RESPONSE* o, unsigned long flags)
182 {
183 int i, ret = 0;
184 long l;
185 OCSP_CERTID *cid = NULL;
186 OCSP_BASICRESP *br = NULL;
187 OCSP_RESPID *rid = NULL;
188 OCSP_RESPDATA *rd = NULL;
189 OCSP_CERTSTATUS *cst = NULL;
190 OCSP_REVOKEDINFO *rev = NULL;
191 OCSP_SINGLERESP *single = NULL;
192 OCSP_RESPBYTES *rb = o->responseBytes;

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_prn.c 4

194 if (BIO_puts(bp,"OCSP Response Data:\n") <= 0) goto err;
195 l=ASN1_ENUMERATED_get(o->responseStatus);
196 if (BIO_printf(bp," OCSP Response Status: %s (0x%lx)\n",
197 OCSP_response_status_str(l), l) <= 0) goto err;
198 if (rb == NULL) return 1;
199 if (BIO_puts(bp," Response Type: ") <= 0)
200 goto err;
201 if(i2a_ASN1_OBJECT(bp, rb->responseType) <= 0)
202 goto err;
203 if (OBJ_obj2nid(rb->responseType) != NID_id_pkix_OCSP_basic)
204 {
205 BIO_puts(bp," (unknown response type)\n");
206 return 1;
207 }

209 i = ASN1_STRING_length(rb->response);
210 if (!(br = OCSP_response_get1_basic(o))) goto err;
211 rd = br->tbsResponseData;
212 l=ASN1_INTEGER_get(rd->version);
213 if (BIO_printf(bp,"\n Version: %lu (0x%lx)\n",
214 l+1,l) <= 0) goto err;
215 if (BIO_puts(bp," Responder Id: ") <= 0) goto err;

217 rid = rd->responderId;
218 switch (rid->type)
219 {
220 case V_OCSP_RESPID_NAME:
221 X509_NAME_print_ex(bp, rid->value.byName, 0, XN_FLAG_ONE
222 break;
223 case V_OCSP_RESPID_KEY:
224 i2a_ASN1_STRING(bp, rid->value.byKey, V_ASN1_OCTET_STRIN
225 break;
226 }

228 if (BIO_printf(bp,"\n Produced At: ")<=0) goto err;
229 if (!ASN1_GENERALIZEDTIME_print(bp, rd->producedAt)) goto err;
230 if (BIO_printf(bp,"\n Responses:\n") <= 0) goto err;
231 for (i = 0; i < sk_OCSP_SINGLERESP_num(rd->responses); i++)
232 {
233 if (! sk_OCSP_SINGLERESP_value(rd->responses, i)) continue;
234 single = sk_OCSP_SINGLERESP_value(rd->responses, i);
235 cid = single->certId;
236 if(ocsp_certid_print(bp, cid, 4) <= 0) goto err;
237 cst = single->certStatus;
238 if (BIO_printf(bp," Cert Status: %s",
239 OCSP_cert_status_str(cst->type)) <= 0)
240 goto err;
241 if (cst->type == V_OCSP_CERTSTATUS_REVOKED)
242 {
243 rev = cst->value.revoked;
244 if (BIO_printf(bp, "\n Revocation Time: ") <= 0)
245 goto err;
246 if (!ASN1_GENERALIZEDTIME_print(bp,
247 rev->revocationTime))
248 goto err;
249 if (rev->revocationReason)
250 {
251 l=ASN1_ENUMERATED_get(rev->revocationReason);
252 if (BIO_printf(bp,
253 "\n Revocation Reason: %s (0x%lx)",
254 OCSP_crl_reason_str(l), l) <= 0)
255 goto err;
256 }
257 }
258 if (BIO_printf(bp,"\n This Update: ") <= 0) goto err;
259 if (!ASN1_GENERALIZEDTIME_print(bp, single->thisUpdate))

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_prn.c 5

260 goto err;
261 if (single->nextUpdate)
262 {
263 if (BIO_printf(bp,"\n Next Update: ") <= 0)goto err;
264 if (!ASN1_GENERALIZEDTIME_print(bp,single->nextUpdate))
265 goto err;
266 }
267 if (BIO_write(bp,"\n",1) <= 0) goto err;
268 if (!X509V3_extensions_print(bp,
269 "Response Single Extensions",
270 single->singleExtensions, flags, 8))
271 goto err;
272 if (BIO_write(bp,"\n",1) <= 0) goto err;
273 }
274 if (!X509V3_extensions_print(bp, "Response Extensions",
275 rd->responseExtensions, flags, 4))
276 goto err;
277 if(X509_signature_print(bp, br->signatureAlgorithm, br->signature) <= 0)
278 goto err;

280 for (i=0; i<sk_X509_num(br->certs); i++)
281 {
282 X509_print(bp, sk_X509_value(br->certs,i));
283 PEM_write_bio_X509(bp,sk_X509_value(br->certs,i));
284 }

286 ret = 1;
287 err:
288 OCSP_BASICRESP_free(br);
289 return ret;
290 }

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_srv.c 1

**
 7820 Fri May 30 18:31:58 2014
new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_srv.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ocsp_srv.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <cryptlib.h>
61 #include <openssl/objects.h>

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_srv.c 2

62 #include <openssl/rand.h>
63 #include <openssl/x509.h>
64 #include <openssl/pem.h>
65 #include <openssl/x509v3.h>
66 #include <openssl/ocsp.h>

68 /* Utility functions related to sending OCSP responses and extracting
69 * relevant information from the request.
70 */

72 int OCSP_request_onereq_count(OCSP_REQUEST *req)
73 {
74 return sk_OCSP_ONEREQ_num(req->tbsRequest->requestList);
75 }

77 OCSP_ONEREQ *OCSP_request_onereq_get0(OCSP_REQUEST *req, int i)
78 {
79 return sk_OCSP_ONEREQ_value(req->tbsRequest->requestList, i);
80 }

82 OCSP_CERTID *OCSP_onereq_get0_id(OCSP_ONEREQ *one)
83 {
84 return one->reqCert;
85 }

87 int OCSP_id_get0_info(ASN1_OCTET_STRING **piNameHash, ASN1_OBJECT **pmd,
88 ASN1_OCTET_STRING **pikeyHash,
89 ASN1_INTEGER **pserial, OCSP_CERTID *cid)
90 {
91 if (!cid) return 0;
92 if (pmd) *pmd = cid->hashAlgorithm->algorithm;
93 if(piNameHash) *piNameHash = cid->issuerNameHash;
94 if (pikeyHash) *pikeyHash = cid->issuerKeyHash;
95 if (pserial) *pserial = cid->serialNumber;
96 return 1;
97 }

99 int OCSP_request_is_signed(OCSP_REQUEST *req)
100 {
101 if(req->optionalSignature) return 1;
102 return 0;
103 }

105 /* Create an OCSP response and encode an optional basic response */
106 OCSP_RESPONSE *OCSP_response_create(int status, OCSP_BASICRESP *bs)
107 {
108 OCSP_RESPONSE *rsp = NULL;

110 if (!(rsp = OCSP_RESPONSE_new())) goto err;
111 if (!(ASN1_ENUMERATED_set(rsp->responseStatus, status))) goto err;
112 if (!bs) return rsp;
113 if (!(rsp->responseBytes = OCSP_RESPBYTES_new())) goto err;
114 rsp->responseBytes->responseType = OBJ_nid2obj(NID_id_pkix_OCSP_basic);
115 if (!ASN1_item_pack(bs, ASN1_ITEM_rptr(OCSP_BASICRESP), &rsp->responseBy
116 goto err;
117 return rsp;
118 err:
119 if (rsp) OCSP_RESPONSE_free(rsp);
120 return NULL;
121 }

124 OCSP_SINGLERESP *OCSP_basic_add1_status(OCSP_BASICRESP *rsp,
125 OCSP_CERTID *cid,
126 int status, int reason,
127 ASN1_TIME *revtime,

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_srv.c 3

128 ASN1_TIME *thisupd, ASN1_TIME *nextupd)
129 {
130 OCSP_SINGLERESP *single = NULL;
131 OCSP_CERTSTATUS *cs;
132 OCSP_REVOKEDINFO *ri;

134 if(!rsp->tbsResponseData->responses &&
135 !(rsp->tbsResponseData->responses = sk_OCSP_SINGLERESP_new_null()))
136 goto err;

138 if (!(single = OCSP_SINGLERESP_new()))
139 goto err;

143 if (!ASN1_TIME_to_generalizedtime(thisupd, &single->thisUpdate))
144 goto err;
145 if (nextupd &&
146 !ASN1_TIME_to_generalizedtime(nextupd, &single->nextUpdate))
147 goto err;

149 OCSP_CERTID_free(single->certId);

151 if(!(single->certId = OCSP_CERTID_dup(cid)))
152 goto err;

154 cs = single->certStatus;
155 switch(cs->type = status)
156 {
157 case V_OCSP_CERTSTATUS_REVOKED:
158 if (!revtime)
159 {
160 OCSPerr(OCSP_F_OCSP_BASIC_ADD1_STATUS,OCSP_R_NO_REVOKED_
161 goto err;
162 }
163 if (!(cs->value.revoked = ri = OCSP_REVOKEDINFO_new())) goto err
164 if (!ASN1_TIME_to_generalizedtime(revtime, &ri->revocationTime))
165 goto err;
166 if (reason != OCSP_REVOKED_STATUS_NOSTATUS)
167 {
168 if (!(ri->revocationReason = ASN1_ENUMERATED_new()))
169 goto err;
170 if (!(ASN1_ENUMERATED_set(ri->revocationReason,
171 reason)))
172 goto err;
173 }
174 break;

176 case V_OCSP_CERTSTATUS_GOOD:
177 cs->value.good = ASN1_NULL_new();
178 break;

180 case V_OCSP_CERTSTATUS_UNKNOWN:
181 cs->value.unknown = ASN1_NULL_new();
182 break;

184 default:
185 goto err;

187 }
188 if (!(sk_OCSP_SINGLERESP_push(rsp->tbsResponseData->responses, single)))
189 goto err;
190 return single;
191 err:
192 OCSP_SINGLERESP_free(single);
193 return NULL;

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_srv.c 4

194 }

196 /* Add a certificate to an OCSP request */

198 int OCSP_basic_add1_cert(OCSP_BASICRESP *resp, X509 *cert)
199 {
200 if (!resp->certs && !(resp->certs = sk_X509_new_null()))
201 return 0;

203 if(!sk_X509_push(resp->certs, cert)) return 0;
204 CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
205 return 1;
206 }

208 int OCSP_basic_sign(OCSP_BASICRESP *brsp,
209 X509 *signer, EVP_PKEY *key, const EVP_MD *dgst,
210 STACK_OF(X509) *certs, unsigned long flags)
211 {
212 int i;
213 OCSP_RESPID *rid;

215 if (!X509_check_private_key(signer, key))
216 {
217 OCSPerr(OCSP_F_OCSP_BASIC_SIGN, OCSP_R_PRIVATE_KEY_DOES_NOT_MATC
218 goto err;
219 }

221 if(!(flags & OCSP_NOCERTS))
222 {
223 if(!OCSP_basic_add1_cert(brsp, signer))
224 goto err;
225 for (i = 0; i < sk_X509_num(certs); i++)
226 {
227 X509 *tmpcert = sk_X509_value(certs, i);
228 if(!OCSP_basic_add1_cert(brsp, tmpcert))
229 goto err;
230 }
231 }

233 rid = brsp->tbsResponseData->responderId;
234 if (flags & OCSP_RESPID_KEY)
235 {
236 unsigned char md[SHA_DIGEST_LENGTH];
237 X509_pubkey_digest(signer, EVP_sha1(), md, NULL);
238 if (!(rid->value.byKey = ASN1_OCTET_STRING_new()))
239 goto err;
240 if (!(ASN1_OCTET_STRING_set(rid->value.byKey, md, SHA_DIGEST_LEN
241 goto err;
242 rid->type = V_OCSP_RESPID_KEY;
243 }
244 else
245 {
246 if (!X509_NAME_set(&rid->value.byName,
247 X509_get_subject_name(signer)))
248 goto err;
249 rid->type = V_OCSP_RESPID_NAME;
250 }

252 if (!(flags & OCSP_NOTIME) &&
253 !X509_gmtime_adj(brsp->tbsResponseData->producedAt, 0))
254 goto err;

256 /* Right now, I think that not doing double hashing is the right
257 thing. -- Richard Levitte */

259 if (!OCSP_BASICRESP_sign(brsp, key, dgst, 0)) goto err;

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_srv.c 5

261 return 1;
262 err:
263 return 0;
264 }

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_vfy.c 1

**
 12898 Fri May 30 18:31:58 2014
new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_vfy.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ocsp_vfy.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000-2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <openssl/ocsp.h>
60 #include <openssl/err.h>
61 #include <string.h>

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_vfy.c 2

63 static int ocsp_find_signer(X509 **psigner, OCSP_BASICRESP *bs, STACK_OF(X509) *
64 X509_STORE *st, unsigned long flags);
65 static X509 *ocsp_find_signer_sk(STACK_OF(X509) *certs, OCSP_RESPID *id);
66 static int ocsp_check_issuer(OCSP_BASICRESP *bs, STACK_OF(X509) *chain, unsigned
67 static int ocsp_check_ids(STACK_OF(OCSP_SINGLERESP) *sresp, OCSP_CERTID **ret);
68 static int ocsp_match_issuerid(X509 *cert, OCSP_CERTID *cid, STACK_OF(OCSP_SINGL
69 static int ocsp_check_delegated(X509 *x, int flags);
70 static int ocsp_req_find_signer(X509 **psigner, OCSP_REQUEST *req, X509_NAME *nm
71 X509_STORE *st, unsigned long flags);

73 /* Verify a basic response message */

75 int OCSP_basic_verify(OCSP_BASICRESP *bs, STACK_OF(X509) *certs,
76 X509_STORE *st, unsigned long flags)
77 {
78 X509 *signer, *x;
79 STACK_OF(X509) *chain = NULL;
80 X509_STORE_CTX ctx;
81 int i, ret = 0;
82 ret = ocsp_find_signer(&signer, bs, certs, st, flags);
83 if (!ret)
84 {
85 OCSPerr(OCSP_F_OCSP_BASIC_VERIFY, OCSP_R_SIGNER_CERTIFICATE_NOT_
86 goto end;
87 }
88 if ((ret == 2) && (flags & OCSP_TRUSTOTHER))
89 flags |= OCSP_NOVERIFY;
90 if (!(flags & OCSP_NOSIGS))
91 {
92 EVP_PKEY *skey;
93 skey = X509_get_pubkey(signer);
94 if (skey)
95 {
96 ret = OCSP_BASICRESP_verify(bs, skey, 0);
97 EVP_PKEY_free(skey);
98 }
99 if(!skey || ret <= 0)
100 {
101 OCSPerr(OCSP_F_OCSP_BASIC_VERIFY, OCSP_R_SIGNATURE_FAILU
102 goto end;
103 }
104 }
105 if (!(flags & OCSP_NOVERIFY))
106 {
107 int init_res;
108 if(flags & OCSP_NOCHAIN)
109 init_res = X509_STORE_CTX_init(&ctx, st, signer, NULL);
110 else
111 init_res = X509_STORE_CTX_init(&ctx, st, signer, bs->cer
112 if(!init_res)
113 {
114 ret = -1;
115 OCSPerr(OCSP_F_OCSP_BASIC_VERIFY,ERR_R_X509_LIB);
116 goto end;
117 }

119 X509_STORE_CTX_set_purpose(&ctx, X509_PURPOSE_OCSP_HELPER);
120 ret = X509_verify_cert(&ctx);
121 chain = X509_STORE_CTX_get1_chain(&ctx);
122 X509_STORE_CTX_cleanup(&ctx);
123 if (ret <= 0)
124 {
125 i = X509_STORE_CTX_get_error(&ctx);
126 OCSPerr(OCSP_F_OCSP_BASIC_VERIFY,OCSP_R_CERTIFICATE_VERI
127 ERR_add_error_data(2, "Verify error:",

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_vfy.c 3

128 X509_verify_cert_error_string(i));
129 goto end;
130 }
131 if(flags & OCSP_NOCHECKS)
132 {
133 ret = 1;
134 goto end;
135 }
136 /* At this point we have a valid certificate chain
137 * need to verify it against the OCSP issuer criteria.
138 */
139 ret = ocsp_check_issuer(bs, chain, flags);

141 /* If fatal error or valid match then finish */
142 if (ret != 0) goto end;

144 /* Easy case: explicitly trusted. Get root CA and
145 * check for explicit trust
146 */
147 if(flags & OCSP_NOEXPLICIT) goto end;

149 x = sk_X509_value(chain, sk_X509_num(chain) - 1);
150 if(X509_check_trust(x, NID_OCSP_sign, 0) != X509_TRUST_TRUSTED)
151 {
152 OCSPerr(OCSP_F_OCSP_BASIC_VERIFY,OCSP_R_ROOT_CA_NOT_TRUS
153 goto end;
154 }
155 ret = 1;
156 }

160 end:
161 if(chain) sk_X509_pop_free(chain, X509_free);
162 return ret;
163 }

166 static int ocsp_find_signer(X509 **psigner, OCSP_BASICRESP *bs, STACK_OF(X509) *
167 X509_STORE *st, unsigned long flags)
168 {
169 X509 *signer;
170 OCSP_RESPID *rid = bs->tbsResponseData->responderId;
171 if ((signer = ocsp_find_signer_sk(certs, rid)))
172 {
173 *psigner = signer;
174 return 2;
175 }
176 if(!(flags & OCSP_NOINTERN) &&
177 (signer = ocsp_find_signer_sk(bs->certs, rid)))
178 {
179 *psigner = signer;
180 return 1;
181 }
182 /* Maybe lookup from store if by subject name */

184 *psigner = NULL;
185 return 0;
186 }

189 static X509 *ocsp_find_signer_sk(STACK_OF(X509) *certs, OCSP_RESPID *id)
190 {
191 int i;
192 unsigned char tmphash[SHA_DIGEST_LENGTH], *keyhash;
193 X509 *x;

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_vfy.c 4

195 /* Easy if lookup by name */
196 if (id->type == V_OCSP_RESPID_NAME)
197 return X509_find_by_subject(certs, id->value.byName);

199 /* Lookup by key hash */

201 /* If key hash isn’t SHA1 length then forget it */
202 if (id->value.byKey->length != SHA_DIGEST_LENGTH) return NULL;
203 keyhash = id->value.byKey->data;
204 /* Calculate hash of each key and compare */
205 for (i = 0; i < sk_X509_num(certs); i++)
206 {
207 x = sk_X509_value(certs, i);
208 X509_pubkey_digest(x, EVP_sha1(), tmphash, NULL);
209 if(!memcmp(keyhash, tmphash, SHA_DIGEST_LENGTH))
210 return x;
211 }
212 return NULL;
213 }

216 static int ocsp_check_issuer(OCSP_BASICRESP *bs, STACK_OF(X509) *chain, unsigned
217 {
218 STACK_OF(OCSP_SINGLERESP) *sresp;
219 X509 *signer, *sca;
220 OCSP_CERTID *caid = NULL;
221 int i;
222 sresp = bs->tbsResponseData->responses;

224 if (sk_X509_num(chain) <= 0)
225 {
226 OCSPerr(OCSP_F_OCSP_CHECK_ISSUER, OCSP_R_NO_CERTIFICATES_IN_CHAI
227 return -1;
228 }

230 /* See if the issuer IDs match. */
231 i = ocsp_check_ids(sresp, &caid);

233 /* If ID mismatch or other error then return */
234 if (i <= 0) return i;

236 signer = sk_X509_value(chain, 0);
237 /* Check to see if OCSP responder CA matches request CA */
238 if (sk_X509_num(chain) > 1)
239 {
240 sca = sk_X509_value(chain, 1);
241 i = ocsp_match_issuerid(sca, caid, sresp);
242 if (i < 0) return i;
243 if (i)
244 {
245 /* We have a match, if extensions OK then success */
246 if (ocsp_check_delegated(signer, flags)) return 1;
247 return 0;
248 }
249 }

251 /* Otherwise check if OCSP request signed directly by request CA */
252 return ocsp_match_issuerid(signer, caid, sresp);
253 }

256 /* Check the issuer certificate IDs for equality. If there is a mismatch with th
257 * algorithm then there’s no point trying to match any certificates against the
258 * If the issuer IDs all match then we just need to check equality against one o
259 */

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_vfy.c 5

260
261 static int ocsp_check_ids(STACK_OF(OCSP_SINGLERESP) *sresp, OCSP_CERTID **ret)
262 {
263 OCSP_CERTID *tmpid, *cid;
264 int i, idcount;

266 idcount = sk_OCSP_SINGLERESP_num(sresp);
267 if (idcount <= 0)
268 {
269 OCSPerr(OCSP_F_OCSP_CHECK_IDS, OCSP_R_RESPONSE_CONTAINS_NO_REVOC
270 return -1;
271 }

273 cid = sk_OCSP_SINGLERESP_value(sresp, 0)->certId;

275 *ret = NULL;

277 for (i = 1; i < idcount; i++)
278 {
279 tmpid = sk_OCSP_SINGLERESP_value(sresp, i)->certId;
280 /* Check to see if IDs match */
281 if (OCSP_id_issuer_cmp(cid, tmpid))
282 {
283 /* If algoritm mismatch let caller deal with it */
284 if (OBJ_cmp(tmpid->hashAlgorithm->algorithm,
285 cid->hashAlgorithm->algorithm))
286 return 2;
287 /* Else mismatch */
288 return 0;
289 }
290 }

292 /* All IDs match: only need to check one ID */
293 *ret = cid;
294 return 1;
295 }

298 static int ocsp_match_issuerid(X509 *cert, OCSP_CERTID *cid,
299 STACK_OF(OCSP_SINGLERESP) *sresp)
300 {
301 /* If only one ID to match then do it */
302 if(cid)
303 {
304 const EVP_MD *dgst;
305 X509_NAME *iname;
306 int mdlen;
307 unsigned char md[EVP_MAX_MD_SIZE];
308 if (!(dgst = EVP_get_digestbyobj(cid->hashAlgorithm->algorithm))
309 {
310 OCSPerr(OCSP_F_OCSP_MATCH_ISSUERID, OCSP_R_UNKNOWN_MESSA
311 return -1;
312 }

314 mdlen = EVP_MD_size(dgst);
315 if (mdlen < 0)
316 return -1;
317 if ((cid->issuerNameHash->length != mdlen) ||
318 (cid->issuerKeyHash->length != mdlen))
319 return 0;
320 iname = X509_get_subject_name(cert);
321 if (!X509_NAME_digest(iname, dgst, md, NULL))
322 return -1;
323 if (memcmp(md, cid->issuerNameHash->data, mdlen))
324 return 0;
325 X509_pubkey_digest(cert, dgst, md, NULL);

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_vfy.c 6

326 if (memcmp(md, cid->issuerKeyHash->data, mdlen))
327 return 0;

329 return 1;

331 }
332 else
333 {
334 /* We have to match the whole lot */
335 int i, ret;
336 OCSP_CERTID *tmpid;
337 for (i = 0; i < sk_OCSP_SINGLERESP_num(sresp); i++)
338 {
339 tmpid = sk_OCSP_SINGLERESP_value(sresp, i)->certId;
340 ret = ocsp_match_issuerid(cert, tmpid, NULL);
341 if (ret <= 0) return ret;
342 }
343 return 1;
344 }
345
346 }

348 static int ocsp_check_delegated(X509 *x, int flags)
349 {
350 X509_check_purpose(x, -1, 0);
351 if ((x->ex_flags & EXFLAG_XKUSAGE) &&
352 (x->ex_xkusage & XKU_OCSP_SIGN))
353 return 1;
354 OCSPerr(OCSP_F_OCSP_CHECK_DELEGATED, OCSP_R_MISSING_OCSPSIGNING_USAGE);
355 return 0;
356 }

358 /* Verify an OCSP request. This is fortunately much easier than OCSP
359 * response verify. Just find the signers certificate and verify it
360 * against a given trust value.
361 */

363 int OCSP_request_verify(OCSP_REQUEST *req, STACK_OF(X509) *certs, X509_STORE *st
364 {
365 X509 *signer;
366 X509_NAME *nm;
367 GENERAL_NAME *gen;
368 int ret;
369 X509_STORE_CTX ctx;
370 if (!req->optionalSignature)
371 {
372 OCSPerr(OCSP_F_OCSP_REQUEST_VERIFY, OCSP_R_REQUEST_NOT_SIGNED);
373 return 0;
374 }
375 gen = req->tbsRequest->requestorName;
376 if (!gen || gen->type != GEN_DIRNAME)
377 {
378 OCSPerr(OCSP_F_OCSP_REQUEST_VERIFY, OCSP_R_UNSUPPORTED_REQUESTOR
379 return 0;
380 }
381 nm = gen->d.directoryName;
382 ret = ocsp_req_find_signer(&signer, req, nm, certs, store, flags);
383 if (ret <= 0)
384 {
385 OCSPerr(OCSP_F_OCSP_REQUEST_VERIFY, OCSP_R_SIGNER_CERTIFICATE_NO
386 return 0;
387 }
388 if ((ret == 2) && (flags & OCSP_TRUSTOTHER))
389 flags |= OCSP_NOVERIFY;
390 if (!(flags & OCSP_NOSIGS))
391 {

new/usr/src/lib/openssl/libsunw_crypto/ocsp/ocsp_vfy.c 7

392 EVP_PKEY *skey;
393 skey = X509_get_pubkey(signer);
394 ret = OCSP_REQUEST_verify(req, skey);
395 EVP_PKEY_free(skey);
396 if(ret <= 0)
397 {
398 OCSPerr(OCSP_F_OCSP_REQUEST_VERIFY, OCSP_R_SIGNATURE_FAI
399 return 0;
400 }
401 }
402 if (!(flags & OCSP_NOVERIFY))
403 {
404 int init_res;
405 if(flags & OCSP_NOCHAIN)
406 init_res = X509_STORE_CTX_init(&ctx, store, signer, NULL
407 else
408 init_res = X509_STORE_CTX_init(&ctx, store, signer,
409 req->optionalSignature->certs);
410 if(!init_res)
411 {
412 OCSPerr(OCSP_F_OCSP_REQUEST_VERIFY,ERR_R_X509_LIB);
413 return 0;
414 }

416 X509_STORE_CTX_set_purpose(&ctx, X509_PURPOSE_OCSP_HELPER);
417 X509_STORE_CTX_set_trust(&ctx, X509_TRUST_OCSP_REQUEST);
418 ret = X509_verify_cert(&ctx);
419 X509_STORE_CTX_cleanup(&ctx);
420 if (ret <= 0)
421 {
422 ret = X509_STORE_CTX_get_error(&ctx);
423 OCSPerr(OCSP_F_OCSP_REQUEST_VERIFY,OCSP_R_CERTIFICATE_VE
424 ERR_add_error_data(2, "Verify error:",
425 X509_verify_cert_error_string(ret));
426 return 0;
427 }
428 }
429 return 1;
430 }

432 static int ocsp_req_find_signer(X509 **psigner, OCSP_REQUEST *req, X509_NAME *nm
433 X509_STORE *st, unsigned long flags)
434 {
435 X509 *signer;
436 if(!(flags & OCSP_NOINTERN))
437 {
438 signer = X509_find_by_subject(req->optionalSignature->certs, nm)
439 *psigner = signer;
440 return 1;
441 }

443 signer = X509_find_by_subject(certs, nm);
444 if (signer)
445 {
446 *psigner = signer;
447 return 2;
448 }
449 return 0;
450 }

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_all.c 1

**
 13750 Fri May 30 18:31:58 2014
new/usr/src/lib/openssl/libsunw_crypto/pem/pem_all.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pem/pem_all.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_all.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include <stdio.h>
113 #include "cryptlib.h"
114 #include <openssl/bio.h>
115 #include <openssl/evp.h>
116 #include <openssl/x509.h>
117 #include <openssl/pkcs7.h>
118 #include <openssl/pem.h>
119 #ifndef OPENSSL_NO_RSA
120 #include <openssl/rsa.h>
121 #endif
122 #ifndef OPENSSL_NO_DSA
123 #include <openssl/dsa.h>
124 #endif
125 #ifndef OPENSSL_NO_DH
126 #include <openssl/dh.h>
127 #endif

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_all.c 3

129 #ifndef OPENSSL_NO_RSA
130 static RSA *pkey_get_rsa(EVP_PKEY *key, RSA **rsa);
131 #endif
132 #ifndef OPENSSL_NO_DSA
133 static DSA *pkey_get_dsa(EVP_PKEY *key, DSA **dsa);
134 #endif

136 #ifndef OPENSSL_NO_EC
137 static EC_KEY *pkey_get_eckey(EVP_PKEY *key, EC_KEY **eckey);
138 #endif

140 IMPLEMENT_PEM_rw(X509_REQ, X509_REQ, PEM_STRING_X509_REQ, X509_REQ)

142 IMPLEMENT_PEM_write(X509_REQ_NEW, X509_REQ, PEM_STRING_X509_REQ_OLD, X509_REQ)

144 IMPLEMENT_PEM_rw(X509_CRL, X509_CRL, PEM_STRING_X509_CRL, X509_CRL)

146 IMPLEMENT_PEM_rw(PKCS7, PKCS7, PEM_STRING_PKCS7, PKCS7)

148 IMPLEMENT_PEM_rw(NETSCAPE_CERT_SEQUENCE, NETSCAPE_CERT_SEQUENCE,
149 PEM_STRING_X509, NETSCAPE_CERT_SEQUENCE)

152 #ifndef OPENSSL_NO_RSA

154 /* We treat RSA or DSA private keys as a special case.
155 *
156 * For private keys we read in an EVP_PKEY structure with
157 * PEM_read_bio_PrivateKey() and extract the relevant private
158 * key: this means can handle "traditional" and PKCS#8 formats
159 * transparently.
160 */

162 static RSA *pkey_get_rsa(EVP_PKEY *key, RSA **rsa)
163 {
164 RSA *rtmp;
165 if(!key) return NULL;
166 rtmp = EVP_PKEY_get1_RSA(key);
167 EVP_PKEY_free(key);
168 if(!rtmp) return NULL;
169 if(rsa) {
170 RSA_free(*rsa);
171 *rsa = rtmp;
172 }
173 return rtmp;
174 }

176 RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **rsa, pem_password_cb *cb,
177 void *u)
178 {
179 EVP_PKEY *pktmp;
180 pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u);
181 return pkey_get_rsa(pktmp, rsa);
182 }

184 #ifndef OPENSSL_NO_FP_API

186 RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **rsa, pem_password_cb *cb,
187 void *u)
188 {
189 EVP_PKEY *pktmp;
190 pktmp = PEM_read_PrivateKey(fp, NULL, cb, u);
191 return pkey_get_rsa(pktmp, rsa);
192 }

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_all.c 4

194 #endif

196 #ifdef OPENSSL_FIPS

198 int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
199 unsigned char *kstr, int klen,
200 pem_password_cb *cb, void *u)
201 {
202 if (FIPS_mode())
203 {
204 EVP_PKEY *k;
205 int ret;
206 k = EVP_PKEY_new();
207 if (!k)
208 return 0;
209 EVP_PKEY_set1_RSA(k, x);

211 ret = PEM_write_bio_PrivateKey(bp, k, enc, kstr, klen, cb, u);
212 EVP_PKEY_free(k);
213 return ret;
214 }
215 else
216 return PEM_ASN1_write_bio((i2d_of_void *)i2d_RSAPrivateKey,
217 PEM_STRING_RSA,bp,x,enc,kstr,klen,cb,u);
218 }

220 #ifndef OPENSSL_NO_FP_API
221 int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
222 unsigned char *kstr, int klen,
223 pem_password_cb *cb, void *u)
224 {
225 if (FIPS_mode())
226 {
227 EVP_PKEY *k;
228 int ret;
229 k = EVP_PKEY_new();
230 if (!k)
231 return 0;

233 EVP_PKEY_set1_RSA(k, x);

235 ret = PEM_write_PrivateKey(fp, k, enc, kstr, klen, cb, u);
236 EVP_PKEY_free(k);
237 return ret;
238 }
239 else
240 return PEM_ASN1_write((i2d_of_void *)i2d_RSAPrivateKey,
241 PEM_STRING_RSA,fp,x,enc,kstr,klen,cb,u);
242 }
243 #endif

245 #else

247 IMPLEMENT_PEM_write_cb_const(RSAPrivateKey, RSA, PEM_STRING_RSA, RSAPrivateKey)

249 #endif

251 IMPLEMENT_PEM_rw_const(RSAPublicKey, RSA, PEM_STRING_RSA_PUBLIC, RSAPublicKey)
252 IMPLEMENT_PEM_rw(RSA_PUBKEY, RSA, PEM_STRING_PUBLIC, RSA_PUBKEY)

254 #endif

256 #ifndef OPENSSL_NO_DSA

258 static DSA *pkey_get_dsa(EVP_PKEY *key, DSA **dsa)
259 {

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_all.c 5

260 DSA *dtmp;
261 if(!key) return NULL;
262 dtmp = EVP_PKEY_get1_DSA(key);
263 EVP_PKEY_free(key);
264 if(!dtmp) return NULL;
265 if(dsa) {
266 DSA_free(*dsa);
267 *dsa = dtmp;
268 }
269 return dtmp;
270 }

272 DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **dsa, pem_password_cb *cb,
273 void *u)
274 {
275 EVP_PKEY *pktmp;
276 pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u);
277 return pkey_get_dsa(pktmp, dsa); /* will free pktmp */
278 }

280 #ifdef OPENSSL_FIPS

282 int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
283 unsigned char *kstr, int klen,
284 pem_password_cb *cb, void *u)
285 {
286 if (FIPS_mode())
287 {
288 EVP_PKEY *k;
289 int ret;
290 k = EVP_PKEY_new();
291 if (!k)
292 return 0;
293 EVP_PKEY_set1_DSA(k, x);

295 ret = PEM_write_bio_PrivateKey(bp, k, enc, kstr, klen, cb, u);
296 EVP_PKEY_free(k);
297 return ret;
298 }
299 else
300 return PEM_ASN1_write_bio((i2d_of_void *)i2d_DSAPrivateKey,
301 PEM_STRING_DSA,bp,x,enc,kstr,klen,cb,u);
302 }

304 #ifndef OPENSSL_NO_FP_API
305 int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
306 unsigned char *kstr, int klen,
307 pem_password_cb *cb, void *u)
308 {
309 if (FIPS_mode())
310 {
311 EVP_PKEY *k;
312 int ret;
313 k = EVP_PKEY_new();
314 if (!k)
315 return 0;
316 EVP_PKEY_set1_DSA(k, x);
317 ret = PEM_write_PrivateKey(fp, k, enc, kstr, klen, cb, u);
318 EVP_PKEY_free(k);
319 return ret;
320 }
321 else
322 return PEM_ASN1_write((i2d_of_void *)i2d_DSAPrivateKey,
323 PEM_STRING_DSA,fp,x,enc,kstr,klen,cb,u);
324 }
325 #endif

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_all.c 6

327 #else

329 IMPLEMENT_PEM_write_cb_const(DSAPrivateKey, DSA, PEM_STRING_DSA, DSAPrivateKey)

331 #endif

333 IMPLEMENT_PEM_rw(DSA_PUBKEY, DSA, PEM_STRING_PUBLIC, DSA_PUBKEY)

335 #ifndef OPENSSL_NO_FP_API

337 DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **dsa, pem_password_cb *cb,
338 void *u)
339 {
340 EVP_PKEY *pktmp;
341 pktmp = PEM_read_PrivateKey(fp, NULL, cb, u);
342 return pkey_get_dsa(pktmp, dsa); /* will free pktmp */
343 }

345 #endif

347 IMPLEMENT_PEM_rw_const(DSAparams, DSA, PEM_STRING_DSAPARAMS, DSAparams)

349 #endif

352 #ifndef OPENSSL_NO_EC
353 static EC_KEY *pkey_get_eckey(EVP_PKEY *key, EC_KEY **eckey)
354 {
355 EC_KEY *dtmp;
356 if(!key) return NULL;
357 dtmp = EVP_PKEY_get1_EC_KEY(key);
358 EVP_PKEY_free(key);
359 if(!dtmp) return NULL;
360 if(eckey)
361 {
362 EC_KEY_free(*eckey);
363 *eckey = dtmp;
364 }
365 return dtmp;
366 }

368 EC_KEY *PEM_read_bio_ECPrivateKey(BIO *bp, EC_KEY **key, pem_password_cb *cb,
369 void *u)
370 {
371 EVP_PKEY *pktmp;
372 pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u);
373 return pkey_get_eckey(pktmp, key); /* will free pktmp */
374 }

376 IMPLEMENT_PEM_rw_const(ECPKParameters, EC_GROUP, PEM_STRING_ECPARAMETERS, ECPKPa

380 #ifdef OPENSSL_FIPS

382 int PEM_write_bio_ECPrivateKey(BIO *bp, EC_KEY *x, const EVP_CIPHER *enc,
383 unsigned char *kstr, int klen,
384 pem_password_cb *cb, void *u)
385 {
386 if (FIPS_mode())
387 {
388 EVP_PKEY *k;
389 int ret;
390 k = EVP_PKEY_new();
391 if (!k)

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_all.c 7

392 return 0;
393 EVP_PKEY_set1_EC_KEY(k, x);

395 ret = PEM_write_bio_PrivateKey(bp, k, enc, kstr, klen, cb, u);
396 EVP_PKEY_free(k);
397 return ret;
398 }
399 else
400 return PEM_ASN1_write_bio((i2d_of_void *)i2d_ECPrivateKey,
401 PEM_STRING_ECPRIVATEKEY,
402 bp,x,enc,kstr,klen,cb,u);
403 }

405 #ifndef OPENSSL_NO_FP_API
406 int PEM_write_ECPrivateKey(FILE *fp, EC_KEY *x, const EVP_CIPHER *enc,
407 unsigned char *kstr, int klen,
408 pem_password_cb *cb, void *u)
409 {
410 if (FIPS_mode())
411 {
412 EVP_PKEY *k;
413 int ret;
414 k = EVP_PKEY_new();
415 if (!k)
416 return 0;
417 EVP_PKEY_set1_EC_KEY(k, x);
418 ret = PEM_write_PrivateKey(fp, k, enc, kstr, klen, cb, u);
419 EVP_PKEY_free(k);
420 return ret;
421 }
422 else
423 return PEM_ASN1_write((i2d_of_void *)i2d_ECPrivateKey,
424 PEM_STRING_ECPRIVATEKEY,
425 fp,x,enc,kstr,klen,cb,u);
426 }
427 #endif

429 #else

431 IMPLEMENT_PEM_write_cb(ECPrivateKey, EC_KEY, PEM_STRING_ECPRIVATEKEY, ECPrivateK

433 #endif

435 IMPLEMENT_PEM_rw(EC_PUBKEY, EC_KEY, PEM_STRING_PUBLIC, EC_PUBKEY)

437 #ifndef OPENSSL_NO_FP_API
438
439 EC_KEY *PEM_read_ECPrivateKey(FILE *fp, EC_KEY **eckey, pem_password_cb *cb,
440 void *u)
441 {
442 EVP_PKEY *pktmp;
443 pktmp = PEM_read_PrivateKey(fp, NULL, cb, u);
444 return pkey_get_eckey(pktmp, eckey); /* will free pktmp */
445 }

447 #endif

449 #endif

451 #ifndef OPENSSL_NO_DH

453 IMPLEMENT_PEM_rw_const(DHparams, DH, PEM_STRING_DHPARAMS, DHparams)

455 #endif

457 IMPLEMENT_PEM_rw(PUBKEY, EVP_PKEY, PEM_STRING_PUBLIC, PUBKEY)

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_all.c 8

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_err.c 1

**
 7387 Fri May 30 18:31:58 2014
new/usr/src/lib/openssl/libsunw_crypto/pem/pem_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pem/pem_err.c */
2 /* ==
3 * Copyright (c) 1999-2007 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/pem.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_PEM,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_PEM,0,reason)

71 static ERR_STRING_DATA PEM_str_functs[]=
72 {
73 {ERR_FUNC(PEM_F_B2I_DSS), "B2I_DSS"},
74 {ERR_FUNC(PEM_F_B2I_PVK_BIO), "b2i_PVK_bio"},
75 {ERR_FUNC(PEM_F_B2I_RSA), "B2I_RSA"},
76 {ERR_FUNC(PEM_F_CHECK_BITLEN_DSA), "CHECK_BITLEN_DSA"},
77 {ERR_FUNC(PEM_F_CHECK_BITLEN_RSA), "CHECK_BITLEN_RSA"},
78 {ERR_FUNC(PEM_F_D2I_PKCS8PRIVATEKEY_BIO), "d2i_PKCS8PrivateKey_bio"},
79 {ERR_FUNC(PEM_F_D2I_PKCS8PRIVATEKEY_FP), "d2i_PKCS8PrivateKey_fp"},
80 {ERR_FUNC(PEM_F_DO_B2I), "DO_B2I"},
81 {ERR_FUNC(PEM_F_DO_B2I_BIO), "DO_B2I_BIO"},
82 {ERR_FUNC(PEM_F_DO_BLOB_HEADER), "DO_BLOB_HEADER"},
83 {ERR_FUNC(PEM_F_DO_PK8PKEY), "DO_PK8PKEY"},
84 {ERR_FUNC(PEM_F_DO_PK8PKEY_FP), "DO_PK8PKEY_FP"},
85 {ERR_FUNC(PEM_F_DO_PVK_BODY), "DO_PVK_BODY"},
86 {ERR_FUNC(PEM_F_DO_PVK_HEADER), "DO_PVK_HEADER"},
87 {ERR_FUNC(PEM_F_I2B_PVK), "I2B_PVK"},
88 {ERR_FUNC(PEM_F_I2B_PVK_BIO), "i2b_PVK_bio"},
89 {ERR_FUNC(PEM_F_LOAD_IV), "LOAD_IV"},
90 {ERR_FUNC(PEM_F_PEM_ASN1_READ), "PEM_ASN1_read"},
91 {ERR_FUNC(PEM_F_PEM_ASN1_READ_BIO), "PEM_ASN1_read_bio"},
92 {ERR_FUNC(PEM_F_PEM_ASN1_WRITE), "PEM_ASN1_write"},
93 {ERR_FUNC(PEM_F_PEM_ASN1_WRITE_BIO), "PEM_ASN1_write_bio"},
94 {ERR_FUNC(PEM_F_PEM_DEF_CALLBACK), "PEM_def_callback"},
95 {ERR_FUNC(PEM_F_PEM_DO_HEADER), "PEM_do_header"},
96 {ERR_FUNC(PEM_F_PEM_F_PEM_WRITE_PKCS8PRIVATEKEY), "PEM_F_PEM_WRITE_PKCS8PR
97 {ERR_FUNC(PEM_F_PEM_GET_EVP_CIPHER_INFO), "PEM_get_EVP_CIPHER_INFO"},
98 {ERR_FUNC(PEM_F_PEM_PK8PKEY), "PEM_PK8PKEY"},
99 {ERR_FUNC(PEM_F_PEM_READ), "PEM_read"},
100 {ERR_FUNC(PEM_F_PEM_READ_BIO), "PEM_read_bio"},
101 {ERR_FUNC(PEM_F_PEM_READ_BIO_PARAMETERS), "PEM_read_bio_Parameters"},
102 {ERR_FUNC(PEM_F_PEM_READ_BIO_PRIVATEKEY), "PEM_READ_BIO_PRIVATEKEY"},
103 {ERR_FUNC(PEM_F_PEM_READ_PRIVATEKEY), "PEM_READ_PRIVATEKEY"},
104 {ERR_FUNC(PEM_F_PEM_SEALFINAL), "PEM_SealFinal"},
105 {ERR_FUNC(PEM_F_PEM_SEALINIT), "PEM_SealInit"},
106 {ERR_FUNC(PEM_F_PEM_SIGNFINAL), "PEM_SignFinal"},
107 {ERR_FUNC(PEM_F_PEM_WRITE), "PEM_write"},
108 {ERR_FUNC(PEM_F_PEM_WRITE_BIO), "PEM_write_bio"},
109 {ERR_FUNC(PEM_F_PEM_WRITE_PRIVATEKEY), "PEM_WRITE_PRIVATEKEY"},
110 {ERR_FUNC(PEM_F_PEM_X509_INFO_READ), "PEM_X509_INFO_read"},
111 {ERR_FUNC(PEM_F_PEM_X509_INFO_READ_BIO), "PEM_X509_INFO_read_bio"},
112 {ERR_FUNC(PEM_F_PEM_X509_INFO_WRITE_BIO), "PEM_X509_INFO_write_bio"},
113 {0,NULL}
114 };

116 static ERR_STRING_DATA PEM_str_reasons[]=
117 {
118 {ERR_REASON(PEM_R_BAD_BASE64_DECODE) ,"bad base64 decode"},
119 {ERR_REASON(PEM_R_BAD_DECRYPT) ,"bad decrypt"},
120 {ERR_REASON(PEM_R_BAD_END_LINE) ,"bad end line"},
121 {ERR_REASON(PEM_R_BAD_IV_CHARS) ,"bad iv chars"},
122 {ERR_REASON(PEM_R_BAD_MAGIC_NUMBER) ,"bad magic number"},
123 {ERR_REASON(PEM_R_BAD_PASSWORD_READ) ,"bad password read"},
124 {ERR_REASON(PEM_R_BAD_VERSION_NUMBER) ,"bad version number"},
125 {ERR_REASON(PEM_R_BIO_WRITE_FAILURE) ,"bio write failure"},
126 {ERR_REASON(PEM_R_CIPHER_IS_NULL) ,"cipher is null"},
127 {ERR_REASON(PEM_R_ERROR_CONVERTING_PRIVATE_KEY),"error converting private key"},

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_err.c 3

128 {ERR_REASON(PEM_R_EXPECTING_PRIVATE_KEY_BLOB),"expecting private key blob"},
129 {ERR_REASON(PEM_R_EXPECTING_PUBLIC_KEY_BLOB),"expecting public key blob"},
130 {ERR_REASON(PEM_R_INCONSISTENT_HEADER) ,"inconsistent header"},
131 {ERR_REASON(PEM_R_KEYBLOB_HEADER_PARSE_ERROR),"keyblob header parse error"},
132 {ERR_REASON(PEM_R_KEYBLOB_TOO_SHORT) ,"keyblob too short"},
133 {ERR_REASON(PEM_R_NOT_DEK_INFO) ,"not dek info"},
134 {ERR_REASON(PEM_R_NOT_ENCRYPTED) ,"not encrypted"},
135 {ERR_REASON(PEM_R_NOT_PROC_TYPE) ,"not proc type"},
136 {ERR_REASON(PEM_R_NO_START_LINE) ,"no start line"},
137 {ERR_REASON(PEM_R_PROBLEMS_GETTING_PASSWORD),"problems getting password"},
138 {ERR_REASON(PEM_R_PUBLIC_KEY_NO_RSA) ,"public key no rsa"},
139 {ERR_REASON(PEM_R_PVK_DATA_TOO_SHORT) ,"pvk data too short"},
140 {ERR_REASON(PEM_R_PVK_TOO_SHORT) ,"pvk too short"},
141 {ERR_REASON(PEM_R_READ_KEY) ,"read key"},
142 {ERR_REASON(PEM_R_SHORT_HEADER) ,"short header"},
143 {ERR_REASON(PEM_R_UNSUPPORTED_CIPHER) ,"unsupported cipher"},
144 {ERR_REASON(PEM_R_UNSUPPORTED_ENCRYPTION),"unsupported encryption"},
145 {ERR_REASON(PEM_R_UNSUPPORTED_KEY_COMPONENTS),"unsupported key components"},
146 {0,NULL}
147 };

149 #endif

151 void ERR_load_PEM_strings(void)
152 {
153 #ifndef OPENSSL_NO_ERR

155 if (ERR_func_error_string(PEM_str_functs[0].error) == NULL)
156 {
157 ERR_load_strings(0,PEM_str_functs);
158 ERR_load_strings(0,PEM_str_reasons);
159 }
160 #endif
161 }

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_info.c 1

**
 11076 Fri May 30 18:31:59 2014
new/usr/src/lib/openssl/libsunw_crypto/pem/pem_info.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pem/pem_info.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_info.c 2

62 #include <openssl/objects.h>
63 #include <openssl/evp.h>
64 #include <openssl/x509.h>
65 #include <openssl/pem.h>
66 #ifndef OPENSSL_NO_RSA
67 #include <openssl/rsa.h>
68 #endif
69 #ifndef OPENSSL_NO_DSA
70 #include <openssl/dsa.h>
71 #endif

73 #ifndef OPENSSL_NO_FP_API
74 STACK_OF(X509_INFO) *PEM_X509_INFO_read(FILE *fp, STACK_OF(X509_INFO) *sk, pem_p
75 {
76 BIO *b;
77 STACK_OF(X509_INFO) *ret;

79 if ((b=BIO_new(BIO_s_file())) == NULL)
80 {
81 PEMerr(PEM_F_PEM_X509_INFO_READ,ERR_R_BUF_LIB);
82 return(0);
83 }
84 BIO_set_fp(b,fp,BIO_NOCLOSE);
85 ret=PEM_X509_INFO_read_bio(b,sk,cb,u);
86 BIO_free(b);
87 return(ret);
88 }
89 #endif

91 STACK_OF(X509_INFO) *PEM_X509_INFO_read_bio(BIO *bp, STACK_OF(X509_INFO) *sk, pe
92 {
93 X509_INFO *xi=NULL;
94 char *name=NULL,*header=NULL;
95 void *pp;
96 unsigned char *data=NULL;
97 const unsigned char *p;
98 long len,error=0;
99 int ok=0;
100 STACK_OF(X509_INFO) *ret=NULL;
101 unsigned int i,raw,ptype;
102 d2i_of_void *d2i = 0;

104 if (sk == NULL)
105 {
106 if ((ret=sk_X509_INFO_new_null()) == NULL)
107 {
108 PEMerr(PEM_F_PEM_X509_INFO_READ_BIO,ERR_R_MALLOC_FAILURE
109 goto err;
110 }
111 }
112 else
113 ret=sk;

115 if ((xi=X509_INFO_new()) == NULL) goto err;
116 for (;;)
117 {
118 raw=0;
119 ptype = 0;
120 i=PEM_read_bio(bp,&name,&header,&data,&len);
121 if (i == 0)
122 {
123 error=ERR_GET_REASON(ERR_peek_last_error());
124 if (error == PEM_R_NO_START_LINE)
125 {
126 ERR_clear_error();
127 break;

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_info.c 3

128 }
129 goto err;
130 }
131 start:
132 if ((strcmp(name,PEM_STRING_X509) == 0) ||
133 (strcmp(name,PEM_STRING_X509_OLD) == 0))
134 {
135 d2i=(D2I_OF(void))d2i_X509;
136 if (xi->x509 != NULL)
137 {
138 if (!sk_X509_INFO_push(ret,xi)) goto err;
139 if ((xi=X509_INFO_new()) == NULL) goto err;
140 goto start;
141 }
142 pp=&(xi->x509);
143 }
144 else if ((strcmp(name,PEM_STRING_X509_TRUSTED) == 0))
145 {
146 d2i=(D2I_OF(void))d2i_X509_AUX;
147 if (xi->x509 != NULL)
148 {
149 if (!sk_X509_INFO_push(ret,xi)) goto err;
150 if ((xi=X509_INFO_new()) == NULL) goto err;
151 goto start;
152 }
153 pp=&(xi->x509);
154 }
155 else if (strcmp(name,PEM_STRING_X509_CRL) == 0)
156 {
157 d2i=(D2I_OF(void))d2i_X509_CRL;
158 if (xi->crl != NULL)
159 {
160 if (!sk_X509_INFO_push(ret,xi)) goto err;
161 if ((xi=X509_INFO_new()) == NULL) goto err;
162 goto start;
163 }
164 pp=&(xi->crl);
165 }
166 else
167 #ifndef OPENSSL_NO_RSA
168 if (strcmp(name,PEM_STRING_RSA) == 0)
169 {
170 d2i=(D2I_OF(void))d2i_RSAPrivateKey;
171 if (xi->x_pkey != NULL)
172 {
173 if (!sk_X509_INFO_push(ret,xi)) goto err;
174 if ((xi=X509_INFO_new()) == NULL) goto err;
175 goto start;
176 }

178 xi->enc_data=NULL;
179 xi->enc_len=0;

181 xi->x_pkey=X509_PKEY_new();
182 ptype=EVP_PKEY_RSA;
183 pp=&xi->x_pkey->dec_pkey;
184 if ((int)strlen(header) > 10) /* assume encrypted */
185 raw=1;
186 }
187 else
188 #endif
189 #ifndef OPENSSL_NO_DSA
190 if (strcmp(name,PEM_STRING_DSA) == 0)
191 {
192 d2i=(D2I_OF(void))d2i_DSAPrivateKey;
193 if (xi->x_pkey != NULL)

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_info.c 4

194 {
195 if (!sk_X509_INFO_push(ret,xi)) goto err;
196 if ((xi=X509_INFO_new()) == NULL) goto err;
197 goto start;
198 }

200 xi->enc_data=NULL;
201 xi->enc_len=0;

203 xi->x_pkey=X509_PKEY_new();
204 ptype = EVP_PKEY_DSA;
205 pp=&xi->x_pkey->dec_pkey;
206 if ((int)strlen(header) > 10) /* assume encrypted */
207 raw=1;
208 }
209 else
210 #endif
211 #ifndef OPENSSL_NO_EC
212 if (strcmp(name,PEM_STRING_ECPRIVATEKEY) == 0)
213 {
214 d2i=(D2I_OF(void))d2i_ECPrivateKey;
215 if (xi->x_pkey != NULL)
216 {
217 if (!sk_X509_INFO_push(ret,xi)) goto err
218 if ((xi=X509_INFO_new()) == NULL) goto e
219 goto start;
220 }
221
222 xi->enc_data=NULL;
223 xi->enc_len=0;
224
225 xi->x_pkey=X509_PKEY_new();
226 ptype = EVP_PKEY_EC;
227 pp=&xi->x_pkey->dec_pkey;
228 if ((int)strlen(header) > 10) /* assume encrypted */
229 raw=1;
230 }
231 else
232 #endif
233 {
234 d2i=NULL;
235 pp=NULL;
236 }

238 if (d2i != NULL)
239 {
240 if (!raw)
241 {
242 EVP_CIPHER_INFO cipher;

244 if (!PEM_get_EVP_CIPHER_INFO(header,&cipher))
245 goto err;
246 if (!PEM_do_header(&cipher,data,&len,cb,u))
247 goto err;
248 p=data;
249 if (ptype)
250 {
251 if (!d2i_PrivateKey(ptype, pp, &p, len))
252 {
253 PEMerr(PEM_F_PEM_X509_INFO_READ_
254 goto err;
255 }
256 }
257 else if (d2i(pp,&p,len) == NULL)
258 {
259 PEMerr(PEM_F_PEM_X509_INFO_READ_BIO,ERR_

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_info.c 5

260 goto err;
261 }
262 }
263 else
264 { /* encrypted RSA data */
265 if (!PEM_get_EVP_CIPHER_INFO(header,
266 &xi->enc_cipher)) goto err;
267 xi->enc_data=(char *)data;
268 xi->enc_len=(int)len;
269 data=NULL;
270 }
271 }
272 else {
273 /* unknown */
274 }
275 if (name != NULL) OPENSSL_free(name);
276 if (header != NULL) OPENSSL_free(header);
277 if (data != NULL) OPENSSL_free(data);
278 name=NULL;
279 header=NULL;
280 data=NULL;
281 }

283 /* if the last one hasn’t been pushed yet and there is anything
284 * in it then add it to the stack ...
285 */
286 if ((xi->x509 != NULL) || (xi->crl != NULL) ||
287 (xi->x_pkey != NULL) || (xi->enc_data != NULL))
288 {
289 if (!sk_X509_INFO_push(ret,xi)) goto err;
290 xi=NULL;
291 }
292 ok=1;
293 err:
294 if (xi != NULL) X509_INFO_free(xi);
295 if (!ok)
296 {
297 for (i=0; ((int)i)<sk_X509_INFO_num(ret); i++)
298 {
299 xi=sk_X509_INFO_value(ret,i);
300 X509_INFO_free(xi);
301 }
302 if (ret != sk) sk_X509_INFO_free(ret);
303 ret=NULL;
304 }
305
306 if (name != NULL) OPENSSL_free(name);
307 if (header != NULL) OPENSSL_free(header);
308 if (data != NULL) OPENSSL_free(data);
309 return(ret);
310 }

313 /* A TJH addition */
314 int PEM_X509_INFO_write_bio(BIO *bp, X509_INFO *xi, EVP_CIPHER *enc,
315 unsigned char *kstr, int klen, pem_password_cb *cb, void *u)
316 {
317 EVP_CIPHER_CTX ctx;
318 int i,ret=0;
319 unsigned char *data=NULL;
320 const char *objstr=NULL;
321 char buf[PEM_BUFSIZE];
322 unsigned char *iv=NULL;
323
324 if (enc != NULL)
325 {

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_info.c 6

326 objstr=OBJ_nid2sn(EVP_CIPHER_nid(enc));
327 if (objstr == NULL)
328 {
329 PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO,PEM_R_UNSUPPORTED_C
330 goto err;
331 }
332 }

334 /* now for the fun part ... if we have a private key then
335 * we have to be able to handle a not-yet-decrypted key
336 * being written out correctly ... if it is decrypted or
337 * it is non-encrypted then we use the base code
338 */
339 if (xi->x_pkey!=NULL)
340 {
341 if ((xi->enc_data!=NULL) && (xi->enc_len>0))
342 {
343 if (enc == NULL)
344 {
345 PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO,PEM_R_CIPHE
346 goto err;
347 }

349 /* copy from weirdo names into more normal things */
350 iv=xi->enc_cipher.iv;
351 data=(unsigned char *)xi->enc_data;
352 i=xi->enc_len;

354 /* we take the encryption data from the
355 * internal stuff rather than what the
356 * user has passed us ... as we have to
357 * match exactly for some strange reason
358 */
359 objstr=OBJ_nid2sn(
360 EVP_CIPHER_nid(xi->enc_cipher.cipher));
361 if (objstr == NULL)
362 {
363 PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO,PEM_R_UNSUP
364 goto err;
365 }

367 /* create the right magic header stuff */
368 OPENSSL_assert(strlen(objstr)+23+2*enc->iv_len+13 <= siz
369 buf[0]=’\0’;
370 PEM_proc_type(buf,PEM_TYPE_ENCRYPTED);
371 PEM_dek_info(buf,objstr,enc->iv_len,(char *)iv);

373 /* use the normal code to write things out */
374 i=PEM_write_bio(bp,PEM_STRING_RSA,buf,data,i);
375 if (i <= 0) goto err;
376 }
377 else
378 {
379 /* Add DSA/DH */
380 #ifndef OPENSSL_NO_RSA
381 /* normal optionally encrypted stuff */
382 if (PEM_write_bio_RSAPrivateKey(bp,
383 xi->x_pkey->dec_pkey->pkey.rsa,
384 enc,kstr,klen,cb,u)<=0)
385 goto err;
386 #endif
387 }
388 }

390 /* if we have a certificate then write it out now */
391 if ((xi->x509 != NULL) && (PEM_write_bio_X509(bp,xi->x509) <= 0))

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_info.c 7

392 goto err;

394 /* we are ignoring anything else that is loaded into the X509_INFO
395 * structure for the moment ... as I don’t need it so I’m not
396 * coding it here and Eric can do it when this makes it into the
397 * base library --tjh
398 */

400 ret=1;

402 err:
403 OPENSSL_cleanse((char *)&ctx,sizeof(ctx));
404 OPENSSL_cleanse(buf,PEM_BUFSIZE);
405 return(ret);
406 }

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_lib.c 1

**
 21098 Fri May 30 18:31:59 2014
new/usr/src/lib/openssl/libsunw_crypto/pem/pem_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pem/pem_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <ctype.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_lib.c 2

62 #include <openssl/buffer.h>
63 #include <openssl/objects.h>
64 #include <openssl/evp.h>
65 #include <openssl/rand.h>
66 #include <openssl/x509.h>
67 #include <openssl/pem.h>
68 #include <openssl/pkcs12.h>
69 #include "asn1_locl.h"
70 #ifndef OPENSSL_NO_DES
71 #include <openssl/des.h>
72 #endif
73 #ifndef OPENSSL_NO_ENGINE
74 #include <openssl/engine.h>
75 #endif

77 const char PEM_version[]="PEM" OPENSSL_VERSION_PTEXT;

79 #define MIN_LENGTH 4

81 static int load_iv(char **fromp,unsigned char *to, int num);
82 static int check_pem(const char *nm, const char *name);
83 int pem_check_suffix(const char *pem_str, const char *suffix);

85 int PEM_def_callback(char *buf, int num, int w, void *key)
86 {
87 #ifdef OPENSSL_NO_FP_API
88 /* We should not ever call the default callback routine from
89 * windows. */
90 PEMerr(PEM_F_PEM_DEF_CALLBACK,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
91 return(-1);
92 #else
93 int i,j;
94 const char *prompt;
95 if(key) {
96 i=strlen(key);
97 i=(i > num)?num:i;
98 memcpy(buf,key,i);
99 return(i);
100 }

102 prompt=EVP_get_pw_prompt();
103 if (prompt == NULL)
104 prompt="Enter PEM pass phrase:";

106 for (;;)
107 {
108 i=EVP_read_pw_string_min(buf,MIN_LENGTH,num,prompt,w);
109 if (i != 0)
110 {
111 PEMerr(PEM_F_PEM_DEF_CALLBACK,PEM_R_PROBLEMS_GETTING_PAS
112 memset(buf,0,(unsigned int)num);
113 return(-1);
114 }
115 j=strlen(buf);
116 if (j < MIN_LENGTH)
117 {
118 fprintf(stderr,"phrase is too short, needs to be at leas
119 }
120 else
121 break;
122 }
123 return(j);
124 #endif
125 }

127 void PEM_proc_type(char *buf, int type)

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_lib.c 3

128 {
129 const char *str;

131 if (type == PEM_TYPE_ENCRYPTED)
132 str="ENCRYPTED";
133 else if (type == PEM_TYPE_MIC_CLEAR)
134 str="MIC-CLEAR";
135 else if (type == PEM_TYPE_MIC_ONLY)
136 str="MIC-ONLY";
137 else
138 str="BAD-TYPE";
139
140 BUF_strlcat(buf,"Proc-Type: 4,",PEM_BUFSIZE);
141 BUF_strlcat(buf,str,PEM_BUFSIZE);
142 BUF_strlcat(buf,"\n",PEM_BUFSIZE);
143 }

145 void PEM_dek_info(char *buf, const char *type, int len, char *str)
146 {
147 static const unsigned char map[17]="0123456789ABCDEF";
148 long i;
149 int j;

151 BUF_strlcat(buf,"DEK-Info: ",PEM_BUFSIZE);
152 BUF_strlcat(buf,type,PEM_BUFSIZE);
153 BUF_strlcat(buf,",",PEM_BUFSIZE);
154 j=strlen(buf);
155 if (j + (len * 2) + 1 > PEM_BUFSIZE)
156 return;
157 for (i=0; i<len; i++)
158 {
159 buf[j+i*2] =map[(str[i]>>4)&0x0f];
160 buf[j+i*2+1]=map[(str[i])&0x0f];
161 }
162 buf[j+i*2]=’\n’;
163 buf[j+i*2+1]=’\0’;
164 }

166 #ifndef OPENSSL_NO_FP_API
167 void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x,
168 pem_password_cb *cb, void *u)
169 {
170 BIO *b;
171 void *ret;

173 if ((b=BIO_new(BIO_s_file())) == NULL)
174 {
175 PEMerr(PEM_F_PEM_ASN1_READ,ERR_R_BUF_LIB);
176 return(0);
177 }
178 BIO_set_fp(b,fp,BIO_NOCLOSE);
179 ret=PEM_ASN1_read_bio(d2i,name,b,x,cb,u);
180 BIO_free(b);
181 return(ret);
182 }
183 #endif

185 static int check_pem(const char *nm, const char *name)
186 {
187 /* Normal matching nm and name */
188 if (!strcmp(nm,name)) return 1;

190 /* Make PEM_STRING_EVP_PKEY match any private key */

192 if(!strcmp(name,PEM_STRING_EVP_PKEY))
193 {

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_lib.c 4

194 int slen;
195 const EVP_PKEY_ASN1_METHOD *ameth;
196 if(!strcmp(nm,PEM_STRING_PKCS8))
197 return 1;
198 if(!strcmp(nm,PEM_STRING_PKCS8INF))
199 return 1;
200 slen = pem_check_suffix(nm, "PRIVATE KEY");
201 if (slen > 0)
202 {
203 /* NB: ENGINE implementations wont contain
204 * a deprecated old private key decode function
205 * so don’t look for them.
206 */
207 ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen);
208 if (ameth && ameth->old_priv_decode)
209 return 1;
210 }
211 return 0;
212 }

214 if(!strcmp(name,PEM_STRING_PARAMETERS))
215 {
216 int slen;
217 const EVP_PKEY_ASN1_METHOD *ameth;
218 slen = pem_check_suffix(nm, "PARAMETERS");
219 if (slen > 0)
220 {
221 ENGINE *e;
222 ameth = EVP_PKEY_asn1_find_str(&e, nm, slen);
223 if (ameth)
224 {
225 int r;
226 if (ameth->param_decode)
227 r = 1;
228 else
229 r = 0;
230 #ifndef OPENSSL_NO_ENGINE
231 if (e)
232 ENGINE_finish(e);
233 #endif
234 return r;
235 }
236 }
237 return 0;
238 }

240 /* Permit older strings */

242 if(!strcmp(nm,PEM_STRING_X509_OLD) &&
243 !strcmp(name,PEM_STRING_X509)) return 1;

245 if(!strcmp(nm,PEM_STRING_X509_REQ_OLD) &&
246 !strcmp(name,PEM_STRING_X509_REQ)) return 1;

248 /* Allow normal certs to be read as trusted certs */
249 if(!strcmp(nm,PEM_STRING_X509) &&
250 !strcmp(name,PEM_STRING_X509_TRUSTED)) return 1;

252 if(!strcmp(nm,PEM_STRING_X509_OLD) &&
253 !strcmp(name,PEM_STRING_X509_TRUSTED)) return 1;

255 /* Some CAs use PKCS#7 with CERTIFICATE headers */
256 if(!strcmp(nm, PEM_STRING_X509) &&
257 !strcmp(name, PEM_STRING_PKCS7)) return 1;

259 if(!strcmp(nm, PEM_STRING_PKCS7_SIGNED) &&

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_lib.c 5

260 !strcmp(name, PEM_STRING_PKCS7)) return 1;

262 #ifndef OPENSSL_NO_CMS
263 if(!strcmp(nm, PEM_STRING_X509) &&
264 !strcmp(name, PEM_STRING_CMS)) return 1;
265 /* Allow CMS to be read from PKCS#7 headers */
266 if(!strcmp(nm, PEM_STRING_PKCS7) &&
267 !strcmp(name, PEM_STRING_CMS)) return 1;
268 #endif

270 return 0;
271 }

273 int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, const char
274 pem_password_cb *cb, void *u)
275 {
276 EVP_CIPHER_INFO cipher;
277 char *nm=NULL,*header=NULL;
278 unsigned char *data=NULL;
279 long len;
280 int ret = 0;

282 for (;;)
283 {
284 if (!PEM_read_bio(bp,&nm,&header,&data,&len)) {
285 if(ERR_GET_REASON(ERR_peek_error()) ==
286 PEM_R_NO_START_LINE)
287 ERR_add_error_data(2, "Expecting: ", name);
288 return 0;
289 }
290 if(check_pem(nm, name)) break;
291 OPENSSL_free(nm);
292 OPENSSL_free(header);
293 OPENSSL_free(data);
294 }
295 if (!PEM_get_EVP_CIPHER_INFO(header,&cipher)) goto err;
296 if (!PEM_do_header(&cipher,data,&len,cb,u)) goto err;

298 *pdata = data;
299 *plen = len;

301 if (pnm)
302 *pnm = nm;

304 ret = 1;

306 err:
307 if (!ret || !pnm) OPENSSL_free(nm);
308 OPENSSL_free(header);
309 if (!ret) OPENSSL_free(data);
310 return ret;
311 }

313 #ifndef OPENSSL_NO_FP_API
314 int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp,
315 void *x, const EVP_CIPHER *enc, unsigned char *kstr,
316 int klen, pem_password_cb *callback, void *u)
317 {
318 BIO *b;
319 int ret;

321 if ((b=BIO_new(BIO_s_file())) == NULL)
322 {
323 PEMerr(PEM_F_PEM_ASN1_WRITE,ERR_R_BUF_LIB);
324 return(0);
325 }

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_lib.c 6

326 BIO_set_fp(b,fp,BIO_NOCLOSE);
327 ret=PEM_ASN1_write_bio(i2d,name,b,x,enc,kstr,klen,callback,u);
328 BIO_free(b);
329 return(ret);
330 }
331 #endif

333 int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp,
334 void *x, const EVP_CIPHER *enc, unsigned char *kstr,
335 int klen, pem_password_cb *callback, void *u)
336 {
337 EVP_CIPHER_CTX ctx;
338 int dsize=0,i,j,ret=0;
339 unsigned char *p,*data=NULL;
340 const char *objstr=NULL;
341 char buf[PEM_BUFSIZE];
342 unsigned char key[EVP_MAX_KEY_LENGTH];
343 unsigned char iv[EVP_MAX_IV_LENGTH];
344
345 if (enc != NULL)
346 {
347 objstr=OBJ_nid2sn(EVP_CIPHER_nid(enc));
348 if (objstr == NULL)
349 {
350 PEMerr(PEM_F_PEM_ASN1_WRITE_BIO,PEM_R_UNSUPPORTED_CIPHER
351 goto err;
352 }
353 }

355 if ((dsize=i2d(x,NULL)) < 0)
356 {
357 PEMerr(PEM_F_PEM_ASN1_WRITE_BIO,ERR_R_ASN1_LIB);
358 dsize=0;
359 goto err;
360 }
361 /* dzise + 8 bytes are needed */
362 /* actually it needs the cipher block size extra... */
363 data=(unsigned char *)OPENSSL_malloc((unsigned int)dsize+20);
364 if (data == NULL)
365 {
366 PEMerr(PEM_F_PEM_ASN1_WRITE_BIO,ERR_R_MALLOC_FAILURE);
367 goto err;
368 }
369 p=data;
370 i=i2d(x,&p);

372 if (enc != NULL)
373 {
374 if (kstr == NULL)
375 {
376 if (callback == NULL)
377 klen=PEM_def_callback(buf,PEM_BUFSIZE,1,u);
378 else
379 klen=(*callback)(buf,PEM_BUFSIZE,1,u);
380 if (klen <= 0)
381 {
382 PEMerr(PEM_F_PEM_ASN1_WRITE_BIO,PEM_R_READ_KEY);
383 goto err;
384 }
385 #ifdef CHARSET_EBCDIC
386 /* Convert the pass phrase from EBCDIC */
387 ebcdic2ascii(buf, buf, klen);
388 #endif
389 kstr=(unsigned char *)buf;
390 }
391 RAND_add(data,i,0);/* put in the RSA key. */

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_lib.c 7

392 OPENSSL_assert(enc->iv_len <= (int)sizeof(iv));
393 if (RAND_pseudo_bytes(iv,enc->iv_len) < 0) /* Generate a salt */
394 goto err;
395 /* The ’iv’ is used as the iv and as a salt. It is
396 * NOT taken from the BytesToKey function */
397 if (!EVP_BytesToKey(enc,EVP_md5(),iv,kstr,klen,1,key,NULL))
398 goto err;

400 if (kstr == (unsigned char *)buf) OPENSSL_cleanse(buf,PEM_BUFSIZ

402 OPENSSL_assert(strlen(objstr)+23+2*enc->iv_len+13 <= sizeof buf)

404 buf[0]=’\0’;
405 PEM_proc_type(buf,PEM_TYPE_ENCRYPTED);
406 PEM_dek_info(buf,objstr,enc->iv_len,(char *)iv);
407 /* k=strlen(buf); */

409 EVP_CIPHER_CTX_init(&ctx);
410 ret = 1;
411 if (!EVP_EncryptInit_ex(&ctx,enc,NULL,key,iv)
412 || !EVP_EncryptUpdate(&ctx,data,&j,data,i)
413 || !EVP_EncryptFinal_ex(&ctx,&(data[j]),&i))
414 ret = 0;
415 EVP_CIPHER_CTX_cleanup(&ctx);
416 if (ret == 0)
417 goto err;
418 i+=j;
419 }
420 else
421 {
422 ret=1;
423 buf[0]=’\0’;
424 }
425 i=PEM_write_bio(bp,name,buf,data,i);
426 if (i <= 0) ret=0;
427 err:
428 OPENSSL_cleanse(key,sizeof(key));
429 OPENSSL_cleanse(iv,sizeof(iv));
430 OPENSSL_cleanse((char *)&ctx,sizeof(ctx));
431 OPENSSL_cleanse(buf,PEM_BUFSIZE);
432 if (data != NULL)
433 {
434 OPENSSL_cleanse(data,(unsigned int)dsize);
435 OPENSSL_free(data);
436 }
437 return(ret);
438 }

440 int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen,
441 pem_password_cb *callback,void *u)
442 {
443 int i,j,o,klen;
444 long len;
445 EVP_CIPHER_CTX ctx;
446 unsigned char key[EVP_MAX_KEY_LENGTH];
447 char buf[PEM_BUFSIZE];

449 len= *plen;

451 if (cipher->cipher == NULL) return(1);
452 if (callback == NULL)
453 klen=PEM_def_callback(buf,PEM_BUFSIZE,0,u);
454 else
455 klen=callback(buf,PEM_BUFSIZE,0,u);
456 if (klen <= 0)
457 {

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_lib.c 8

458 PEMerr(PEM_F_PEM_DO_HEADER,PEM_R_BAD_PASSWORD_READ);
459 return(0);
460 }
461 #ifdef CHARSET_EBCDIC
462 /* Convert the pass phrase from EBCDIC */
463 ebcdic2ascii(buf, buf, klen);
464 #endif

466 if (!EVP_BytesToKey(cipher->cipher,EVP_md5(),&(cipher->iv[0]),
467 (unsigned char *)buf,klen,1,key,NULL))
468 return 0;

470 j=(int)len;
471 EVP_CIPHER_CTX_init(&ctx);
472 o = EVP_DecryptInit_ex(&ctx,cipher->cipher,NULL, key,&(cipher->iv[0]));
473 if (o)
474 o = EVP_DecryptUpdate(&ctx,data,&i,data,j);
475 if (o)
476 o = EVP_DecryptFinal_ex(&ctx,&(data[i]),&j);
477 EVP_CIPHER_CTX_cleanup(&ctx);
478 OPENSSL_cleanse((char *)buf,sizeof(buf));
479 OPENSSL_cleanse((char *)key,sizeof(key));
480 j+=i;
481 if (!o)
482 {
483 PEMerr(PEM_F_PEM_DO_HEADER,PEM_R_BAD_DECRYPT);
484 return(0);
485 }
486 *plen=j;
487 return(1);
488 }

490 int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher)
491 {
492 const EVP_CIPHER *enc=NULL;
493 char *p,c;
494 char **header_pp = &header;

496 cipher->cipher=NULL;
497 if ((header == NULL) || (*header == ’\0’) || (*header == ’\n’))
498 return(1);
499 if (strncmp(header,"Proc-Type: ",11) != 0)
500 { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO,PEM_R_NOT_PROC_TYPE); ret
501 header+=11;
502 if (*header != ’4’) return(0); header++;
503 if (*header != ’,’) return(0); header++;
504 if (strncmp(header,"ENCRYPTED",9) != 0)
505 { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO,PEM_R_NOT_ENCRYPTED); ret
506 for (; (*header != ’\n’) && (*header != ’\0’); header++)
507 ;
508 if (*header == ’\0’)
509 { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO,PEM_R_SHORT_HEADER); retu
510 header++;
511 if (strncmp(header,"DEK-Info: ",10) != 0)
512 { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO,PEM_R_NOT_DEK_INFO); retu
513 header+=10;

515 p=header;
516 for (;;)
517 {
518 c= *header;
519 #ifndef CHARSET_EBCDIC
520 if (!(((c >= ’A’) && (c <= ’Z’)) || (c == ’-’) ||
521 ((c >= ’0’) && (c <= ’9’))))
522 break;
523 #else

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_lib.c 9

524 if (!(isupper(c) || (c == ’-’) ||
525 isdigit(c)))
526 break;
527 #endif
528 header++;
529 }
530 *header=’\0’;
531 cipher->cipher=enc=EVP_get_cipherbyname(p);
532 *header=c;
533 header++;

535 if (enc == NULL)
536 {
537 PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO,PEM_R_UNSUPPORTED_ENCRYPTIO
538 return(0);
539 }
540 if (!load_iv(header_pp,&(cipher->iv[0]),enc->iv_len))
541 return(0);

543 return(1);
544 }

546 static int load_iv(char **fromp, unsigned char *to, int num)
547 {
548 int v,i;
549 char *from;

551 from= *fromp;
552 for (i=0; i<num; i++) to[i]=0;
553 num*=2;
554 for (i=0; i<num; i++)
555 {
556 if ((*from >= ’0’) && (*from <= ’9’))
557 v= *from-’0’;
558 else if ((*from >= ’A’) && (*from <= ’F’))
559 v= *from-’A’+10;
560 else if ((*from >= ’a’) && (*from <= ’f’))
561 v= *from-’a’+10;
562 else
563 {
564 PEMerr(PEM_F_LOAD_IV,PEM_R_BAD_IV_CHARS);
565 return(0);
566 }
567 from++;
568 to[i/2]|=v<<(long)((!(i&1))*4);
569 }

571 *fromp=from;
572 return(1);
573 }

575 #ifndef OPENSSL_NO_FP_API
576 int PEM_write(FILE *fp, char *name, char *header, unsigned char *data,
577 long len)
578 {
579 BIO *b;
580 int ret;

582 if ((b=BIO_new(BIO_s_file())) == NULL)
583 {
584 PEMerr(PEM_F_PEM_WRITE,ERR_R_BUF_LIB);
585 return(0);
586 }
587 BIO_set_fp(b,fp,BIO_NOCLOSE);
588 ret=PEM_write_bio(b, name, header, data,len);
589 BIO_free(b);

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_lib.c 10

590 return(ret);
591 }
592 #endif

594 int PEM_write_bio(BIO *bp, const char *name, char *header, unsigned char *data,
595 long len)
596 {
597 int nlen,n,i,j,outl;
598 unsigned char *buf = NULL;
599 EVP_ENCODE_CTX ctx;
600 int reason=ERR_R_BUF_LIB;
601
602 EVP_EncodeInit(&ctx);
603 nlen=strlen(name);

605 if ((BIO_write(bp,"-----BEGIN ",11) != 11) ||
606 (BIO_write(bp,name,nlen) != nlen) ||
607 (BIO_write(bp,"-----\n",6) != 6))
608 goto err;
609
610 i=strlen(header);
611 if (i > 0)
612 {
613 if ((BIO_write(bp,header,i) != i) ||
614 (BIO_write(bp,"\n",1) != 1))
615 goto err;
616 }

618 buf = OPENSSL_malloc(PEM_BUFSIZE*8);
619 if (buf == NULL)
620 {
621 reason=ERR_R_MALLOC_FAILURE;
622 goto err;
623 }

625 i=j=0;
626 while (len > 0)
627 {
628 n=(int)((len>(PEM_BUFSIZE*5))?(PEM_BUFSIZE*5):len);
629 EVP_EncodeUpdate(&ctx,buf,&outl,&(data[j]),n);
630 if ((outl) && (BIO_write(bp,(char *)buf,outl) != outl))
631 goto err;
632 i+=outl;
633 len-=n;
634 j+=n;
635 }
636 EVP_EncodeFinal(&ctx,buf,&outl);
637 if ((outl > 0) && (BIO_write(bp,(char *)buf,outl) != outl)) goto err;
638 OPENSSL_cleanse(buf, PEM_BUFSIZE*8);
639 OPENSSL_free(buf);
640 buf = NULL;
641 if ((BIO_write(bp,"-----END ",9) != 9) ||
642 (BIO_write(bp,name,nlen) != nlen) ||
643 (BIO_write(bp,"-----\n",6) != 6))
644 goto err;
645 return(i+outl);
646 err:
647 if (buf) {
648 OPENSSL_cleanse(buf, PEM_BUFSIZE*8);
649 OPENSSL_free(buf);
650 }
651 PEMerr(PEM_F_PEM_WRITE_BIO,reason);
652 return(0);
653 }

655 #ifndef OPENSSL_NO_FP_API

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_lib.c 11

656 int PEM_read(FILE *fp, char **name, char **header, unsigned char **data,
657 long *len)
658 {
659 BIO *b;
660 int ret;

662 if ((b=BIO_new(BIO_s_file())) == NULL)
663 {
664 PEMerr(PEM_F_PEM_READ,ERR_R_BUF_LIB);
665 return(0);
666 }
667 BIO_set_fp(b,fp,BIO_NOCLOSE);
668 ret=PEM_read_bio(b, name, header, data,len);
669 BIO_free(b);
670 return(ret);
671 }
672 #endif

674 int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data,
675 long *len)
676 {
677 EVP_ENCODE_CTX ctx;
678 int end=0,i,k,bl=0,hl=0,nohead=0;
679 char buf[256];
680 BUF_MEM *nameB;
681 BUF_MEM *headerB;
682 BUF_MEM *dataB,*tmpB;
683
684 nameB=BUF_MEM_new();
685 headerB=BUF_MEM_new();
686 dataB=BUF_MEM_new();
687 if ((nameB == NULL) || (headerB == NULL) || (dataB == NULL))
688 {
689 BUF_MEM_free(nameB);
690 BUF_MEM_free(headerB);
691 BUF_MEM_free(dataB);
692 PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE);
693 return(0);
694 }

696 buf[254]=’\0’;
697 for (;;)
698 {
699 i=BIO_gets(bp,buf,254);

701 if (i <= 0)
702 {
703 PEMerr(PEM_F_PEM_READ_BIO,PEM_R_NO_START_LINE);
704 goto err;
705 }

707 while ((i >= 0) && (buf[i] <= ’ ’)) i--;
708 buf[++i]=’\n’; buf[++i]=’\0’;

710 if (strncmp(buf,"-----BEGIN ",11) == 0)
711 {
712 i=strlen(&(buf[11]));

714 if (strncmp(&(buf[11+i-6]),"-----\n",6) != 0)
715 continue;
716 if (!BUF_MEM_grow(nameB,i+9))
717 {
718 PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE);
719 goto err;
720 }
721 memcpy(nameB->data,&(buf[11]),i-6);

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_lib.c 12

722 nameB->data[i-6]=’\0’;
723 break;
724 }
725 }
726 hl=0;
727 if (!BUF_MEM_grow(headerB,256))
728 { PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE); goto err; }
729 headerB->data[0]=’\0’;
730 for (;;)
731 {
732 i=BIO_gets(bp,buf,254);
733 if (i <= 0) break;

735 while ((i >= 0) && (buf[i] <= ’ ’)) i--;
736 buf[++i]=’\n’; buf[++i]=’\0’;

738 if (buf[0] == ’\n’) break;
739 if (!BUF_MEM_grow(headerB,hl+i+9))
740 { PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE); goto
741 if (strncmp(buf,"-----END ",9) == 0)
742 {
743 nohead=1;
744 break;
745 }
746 memcpy(&(headerB->data[hl]),buf,i);
747 headerB->data[hl+i]=’\0’;
748 hl+=i;
749 }

751 bl=0;
752 if (!BUF_MEM_grow(dataB,1024))
753 { PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE); goto err; }
754 dataB->data[0]=’\0’;
755 if (!nohead)
756 {
757 for (;;)
758 {
759 i=BIO_gets(bp,buf,254);
760 if (i <= 0) break;

762 while ((i >= 0) && (buf[i] <= ’ ’)) i--;
763 buf[++i]=’\n’; buf[++i]=’\0’;

765 if (i != 65) end=1;
766 if (strncmp(buf,"-----END ",9) == 0)
767 break;
768 if (i > 65) break;
769 if (!BUF_MEM_grow_clean(dataB,i+bl+9))
770 {
771 PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE);
772 goto err;
773 }
774 memcpy(&(dataB->data[bl]),buf,i);
775 dataB->data[bl+i]=’\0’;
776 bl+=i;
777 if (end)
778 {
779 buf[0]=’\0’;
780 i=BIO_gets(bp,buf,254);
781 if (i <= 0) break;

783 while ((i >= 0) && (buf[i] <= ’ ’)) i--;
784 buf[++i]=’\n’; buf[++i]=’\0’;

786 break;
787 }

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_lib.c 13

788 }
789 }
790 else
791 {
792 tmpB=headerB;
793 headerB=dataB;
794 dataB=tmpB;
795 bl=hl;
796 }
797 i=strlen(nameB->data);
798 if ((strncmp(buf,"-----END ",9) != 0) ||
799 (strncmp(nameB->data,&(buf[9]),i) != 0) ||
800 (strncmp(&(buf[9+i]),"-----\n",6) != 0))
801 {
802 PEMerr(PEM_F_PEM_READ_BIO,PEM_R_BAD_END_LINE);
803 goto err;
804 }

806 EVP_DecodeInit(&ctx);
807 i=EVP_DecodeUpdate(&ctx,
808 (unsigned char *)dataB->data,&bl,
809 (unsigned char *)dataB->data,bl);
810 if (i < 0)
811 {
812 PEMerr(PEM_F_PEM_READ_BIO,PEM_R_BAD_BASE64_DECODE);
813 goto err;
814 }
815 i=EVP_DecodeFinal(&ctx,(unsigned char *)&(dataB->data[bl]),&k);
816 if (i < 0)
817 {
818 PEMerr(PEM_F_PEM_READ_BIO,PEM_R_BAD_BASE64_DECODE);
819 goto err;
820 }
821 bl+=k;

823 if (bl == 0) goto err;
824 *name=nameB->data;
825 *header=headerB->data;
826 *data=(unsigned char *)dataB->data;
827 *len=bl;
828 OPENSSL_free(nameB);
829 OPENSSL_free(headerB);
830 OPENSSL_free(dataB);
831 return(1);
832 err:
833 BUF_MEM_free(nameB);
834 BUF_MEM_free(headerB);
835 BUF_MEM_free(dataB);
836 return(0);
837 }

839 /* Check pem string and return prefix length.
840 * If for example the pem_str == "RSA PRIVATE KEY" and suffix = "PRIVATE KEY"
841 * the return value is 3 for the string "RSA".
842 */

844 int pem_check_suffix(const char *pem_str, const char *suffix)
845 {
846 int pem_len = strlen(pem_str);
847 int suffix_len = strlen(suffix);
848 const char *p;
849 if (suffix_len + 1 >= pem_len)
850 return 0;
851 p = pem_str + pem_len - suffix_len;
852 if (strcmp(p, suffix))
853 return 0;

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_lib.c 14

854 p--;
855 if (*p != ’ ’)
856 return 0;
857 return p - pem_str;
858 }

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_oth.c 1

**
 3858 Fri May 30 18:31:59 2014
new/usr/src/lib/openssl/libsunw_crypto/pem/pem_oth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pem/pem_oth.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_oth.c 2

62 #include <openssl/objects.h>
63 #include <openssl/evp.h>
64 #include <openssl/rand.h>
65 #include <openssl/x509.h>
66 #include <openssl/pem.h>

68 /* Handle ’other’ PEMs: not private keys */

70 void *PEM_ASN1_read_bio(d2i_of_void *d2i, const char *name, BIO *bp, void **x,
71 pem_password_cb *cb, void *u)
72 {
73 const unsigned char *p=NULL;
74 unsigned char *data=NULL;
75 long len;
76 char *ret=NULL;

78 if (!PEM_bytes_read_bio(&data, &len, NULL, name, bp, cb, u))
79 return NULL;
80 p = data;
81 ret=d2i(x,&p,len);
82 if (ret == NULL)
83 PEMerr(PEM_F_PEM_ASN1_READ_BIO,ERR_R_ASN1_LIB);
84 OPENSSL_free(data);
85 return(ret);
86 }

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_pk8.c 1

**
 8344 Fri May 30 18:31:59 2014
new/usr/src/lib/openssl/libsunw_crypto/pem/pem_pk8.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pem/pem_pkey.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_pk8.c 2

62 #include <openssl/objects.h>
63 #include <openssl/evp.h>
64 #include <openssl/rand.h>
65 #include <openssl/x509.h>
66 #include <openssl/pkcs12.h>
67 #include <openssl/pem.h>

69 static int do_pk8pkey(BIO *bp, EVP_PKEY *x, int isder,
70 int nid, const EVP_CIPHER *enc,
71 char *kstr, int klen,
72 pem_password_cb *cb, void *u);
73 static int do_pk8pkey_fp(FILE *bp, EVP_PKEY *x, int isder,
74 int nid, const EVP_CIPHER *enc,
75 char *kstr, int klen,
76 pem_password_cb *cb, void *u);

78 /* These functions write a private key in PKCS#8 format: it is a "drop in"
79 * replacement for PEM_write_bio_PrivateKey() and friends. As usual if ’enc’
80 * is NULL then it uses the unencrypted private key form. The ’nid’ versions
81 * uses PKCS#5 v1.5 PBE algorithms whereas the others use PKCS#5 v2.0.
82 */

84 int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
85 char *kstr, int klen,
86 pem_password_cb *cb, void *u)
87 {
88 return do_pk8pkey(bp, x, 0, nid, NULL, kstr, klen, cb, u);
89 }

91 int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
92 char *kstr, int klen,
93 pem_password_cb *cb, void *u)
94 {
95 return do_pk8pkey(bp, x, 0, -1, enc, kstr, klen, cb, u);
96 }

98 int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
99 char *kstr, int klen,
100 pem_password_cb *cb, void *u)
101 {
102 return do_pk8pkey(bp, x, 1, -1, enc, kstr, klen, cb, u);
103 }

105 int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid,
106 char *kstr, int klen,
107 pem_password_cb *cb, void *u)
108 {
109 return do_pk8pkey(bp, x, 1, nid, NULL, kstr, klen, cb, u);
110 }

112 static int do_pk8pkey(BIO *bp, EVP_PKEY *x, int isder, int nid, const EVP_CIPHER
113 char *kstr, int klen,
114 pem_password_cb *cb, void *u)
115 {
116 X509_SIG *p8;
117 PKCS8_PRIV_KEY_INFO *p8inf;
118 char buf[PEM_BUFSIZE];
119 int ret;
120 if(!(p8inf = EVP_PKEY2PKCS8(x))) {
121 PEMerr(PEM_F_DO_PK8PKEY,
122 PEM_R_ERROR_CONVERTING_PRIVATE_KEY);
123 return 0;
124 }
125 if(enc || (nid != -1)) {
126 if(!kstr) {
127 if(!cb) klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u);

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_pk8.c 3

128 else klen = cb(buf, PEM_BUFSIZE, 1, u);
129 if(klen <= 0) {
130 PEMerr(PEM_F_DO_PK8PKEY,PEM_R_READ_KEY);
131 PKCS8_PRIV_KEY_INFO_free(p8inf);
132 return 0;
133 }
134
135 kstr = buf;
136 }
137 p8 = PKCS8_encrypt(nid, enc, kstr, klen, NULL, 0, 0, p8inf);
138 if(kstr == buf) OPENSSL_cleanse(buf, klen);
139 PKCS8_PRIV_KEY_INFO_free(p8inf);
140 if(isder) ret = i2d_PKCS8_bio(bp, p8);
141 else ret = PEM_write_bio_PKCS8(bp, p8);
142 X509_SIG_free(p8);
143 return ret;
144 } else {
145 if(isder) ret = i2d_PKCS8_PRIV_KEY_INFO_bio(bp, p8inf);
146 else ret = PEM_write_bio_PKCS8_PRIV_KEY_INFO(bp, p8inf);
147 PKCS8_PRIV_KEY_INFO_free(p8inf);
148 return ret;
149 }
150 }

152 EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, vo
153 {
154 PKCS8_PRIV_KEY_INFO *p8inf = NULL;
155 X509_SIG *p8 = NULL;
156 int klen;
157 EVP_PKEY *ret;
158 char psbuf[PEM_BUFSIZE];
159 p8 = d2i_PKCS8_bio(bp, NULL);
160 if(!p8) return NULL;
161 if (cb) klen=cb(psbuf,PEM_BUFSIZE,0,u);
162 else klen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u);
163 if (klen <= 0) {
164 PEMerr(PEM_F_D2I_PKCS8PRIVATEKEY_BIO, PEM_R_BAD_PASSWORD_READ);
165 X509_SIG_free(p8);
166 return NULL;
167 }
168 p8inf = PKCS8_decrypt(p8, psbuf, klen);
169 X509_SIG_free(p8);
170 if(!p8inf) return NULL;
171 ret = EVP_PKCS82PKEY(p8inf);
172 PKCS8_PRIV_KEY_INFO_free(p8inf);
173 if(!ret) return NULL;
174 if(x) {
175 if(*x) EVP_PKEY_free(*x);
176 *x = ret;
177 }
178 return ret;
179 }

181 #ifndef OPENSSL_NO_FP_API

183 int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
184 char *kstr, int klen,
185 pem_password_cb *cb, void *u)
186 {
187 return do_pk8pkey_fp(fp, x, 1, -1, enc, kstr, klen, cb, u);
188 }

190 int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid,
191 char *kstr, int klen,
192 pem_password_cb *cb, void *u)
193 {

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_pk8.c 4

194 return do_pk8pkey_fp(fp, x, 1, nid, NULL, kstr, klen, cb, u);
195 }

197 int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
198 char *kstr, int klen,
199 pem_password_cb *cb, void *u)
200 {
201 return do_pk8pkey_fp(fp, x, 0, nid, NULL, kstr, klen, cb, u);
202 }

204 int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
205 char *kstr, int klen, pem_password_cb *cb, void *u
206 {
207 return do_pk8pkey_fp(fp, x, 0, -1, enc, kstr, klen, cb, u);
208 }

210 static int do_pk8pkey_fp(FILE *fp, EVP_PKEY *x, int isder, int nid, const EVP_CI
211 char *kstr, int klen,
212 pem_password_cb *cb, void *u)
213 {
214 BIO *bp;
215 int ret;
216 if(!(bp = BIO_new_fp(fp, BIO_NOCLOSE))) {
217 PEMerr(PEM_F_DO_PK8PKEY_FP,ERR_R_BUF_LIB);
218 return(0);
219 }
220 ret = do_pk8pkey(bp, x, isder, nid, enc, kstr, klen, cb, u);
221 BIO_free(bp);
222 return ret;
223 }

225 EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, vo
226 {
227 BIO *bp;
228 EVP_PKEY *ret;
229 if(!(bp = BIO_new_fp(fp, BIO_NOCLOSE))) {
230 PEMerr(PEM_F_D2I_PKCS8PRIVATEKEY_FP,ERR_R_BUF_LIB);
231 return NULL;
232 }
233 ret = d2i_PKCS8PrivateKey_bio(bp, x, cb, u);
234 BIO_free(bp);
235 return ret;
236 }

238 #endif

240 IMPLEMENT_PEM_rw(PKCS8, X509_SIG, PEM_STRING_PKCS8, X509_SIG)
241 IMPLEMENT_PEM_rw(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO, PEM_STRING_PKCS8INF,
242 PKCS8_PRIV_KEY_INFO)

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_pkey.c 1

**
 7827 Fri May 30 18:31:59 2014
new/usr/src/lib/openssl/libsunw_crypto/pem/pem_pkey.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pem/pem_pkey.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_pkey.c 2

62 #include <openssl/objects.h>
63 #include <openssl/evp.h>
64 #include <openssl/rand.h>
65 #include <openssl/x509.h>
66 #include <openssl/pkcs12.h>
67 #include <openssl/pem.h>
68 #ifndef OPENSSL_NO_ENGINE
69 #include <openssl/engine.h>
70 #endif
71 #include "asn1_locl.h"

73 int pem_check_suffix(const char *pem_str, const char *suffix);

75 EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, vo
76 {
77 char *nm=NULL;
78 const unsigned char *p=NULL;
79 unsigned char *data=NULL;
80 long len;
81 int slen;
82 EVP_PKEY *ret=NULL;

84 if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_EVP_PKEY, bp, cb, u
85 return NULL;
86 p = data;

88 if (strcmp(nm,PEM_STRING_PKCS8INF) == 0) {
89 PKCS8_PRIV_KEY_INFO *p8inf;
90 p8inf=d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, len);
91 if(!p8inf) goto p8err;
92 ret = EVP_PKCS82PKEY(p8inf);
93 if(x) {
94 if(*x) EVP_PKEY_free((EVP_PKEY *)*x);
95 *x = ret;
96 }
97 PKCS8_PRIV_KEY_INFO_free(p8inf);
98 } else if (strcmp(nm,PEM_STRING_PKCS8) == 0) {
99 PKCS8_PRIV_KEY_INFO *p8inf;
100 X509_SIG *p8;
101 int klen;
102 char psbuf[PEM_BUFSIZE];
103 p8 = d2i_X509_SIG(NULL, &p, len);
104 if(!p8) goto p8err;
105 if (cb) klen=cb(psbuf,PEM_BUFSIZE,0,u);
106 else klen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u);
107 if (klen <= 0) {
108 PEMerr(PEM_F_PEM_READ_BIO_PRIVATEKEY,
109 PEM_R_BAD_PASSWORD_READ);
110 X509_SIG_free(p8);
111 goto err;
112 }
113 p8inf = PKCS8_decrypt(p8, psbuf, klen);
114 X509_SIG_free(p8);
115 if(!p8inf) goto p8err;
116 ret = EVP_PKCS82PKEY(p8inf);
117 if(x) {
118 if(*x) EVP_PKEY_free((EVP_PKEY *)*x);
119 *x = ret;
120 }
121 PKCS8_PRIV_KEY_INFO_free(p8inf);
122 } else if ((slen = pem_check_suffix(nm, "PRIVATE KEY")) > 0)
123 {
124 const EVP_PKEY_ASN1_METHOD *ameth;
125 ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen);
126 if (!ameth || !ameth->old_priv_decode)
127 goto p8err;

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_pkey.c 3

128 ret=d2i_PrivateKey(ameth->pkey_id,x,&p,len);
129 }
130 p8err:
131 if (ret == NULL)
132 PEMerr(PEM_F_PEM_READ_BIO_PRIVATEKEY,ERR_R_ASN1_LIB);
133 err:
134 OPENSSL_free(nm);
135 OPENSSL_cleanse(data, len);
136 OPENSSL_free(data);
137 return(ret);
138 }

140 int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
141 unsigned char *kstr, int klen,
142 pem_password_cb *cb, void *u)
143 {
144 char pem_str[80];
145 if (!x->ameth || x->ameth->priv_encode)
146 return PEM_write_bio_PKCS8PrivateKey(bp, x, enc,
147 (char *)kstr, klen,
148 cb, u);

150 BIO_snprintf(pem_str, 80, "%s PRIVATE KEY", x->ameth->pem_str);
151 return PEM_ASN1_write_bio((i2d_of_void *)i2d_PrivateKey,
152 pem_str,bp,x,enc,kstr,klen,cb,u);
153 }

155 EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x)
156 {
157 char *nm=NULL;
158 const unsigned char *p=NULL;
159 unsigned char *data=NULL;
160 long len;
161 int slen;
162 EVP_PKEY *ret=NULL;

164 if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_PARAMETERS,
165 bp, 0, NULL))
166 return NULL;
167 p = data;

169 if ((slen = pem_check_suffix(nm, "PARAMETERS")) > 0)
170 {
171 ret = EVP_PKEY_new();
172 if (!ret)
173 goto err;
174 if (!EVP_PKEY_set_type_str(ret, nm, slen)
175 || !ret->ameth->param_decode
176 || !ret->ameth->param_decode(ret, &p, len))
177 {
178 EVP_PKEY_free(ret);
179 ret = NULL;
180 goto err;
181 }
182 if(x)
183 {
184 if(*x) EVP_PKEY_free((EVP_PKEY *)*x);
185 *x = ret;
186 }
187 }
188 err:
189 if (ret == NULL)
190 PEMerr(PEM_F_PEM_READ_BIO_PARAMETERS,ERR_R_ASN1_LIB);
191 OPENSSL_free(nm);
192 OPENSSL_free(data);
193 return(ret);

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_pkey.c 4

194 }

196 int PEM_write_bio_Parameters(BIO *bp, EVP_PKEY *x)
197 {
198 char pem_str[80];
199 if (!x->ameth || !x->ameth->param_encode)
200 return 0;

202 BIO_snprintf(pem_str, 80, "%s PARAMETERS", x->ameth->pem_str);
203 return PEM_ASN1_write_bio(
204 (i2d_of_void *)x->ameth->param_encode,
205 pem_str,bp,x,NULL,NULL,0,0,NULL);
206 }

208 #ifndef OPENSSL_NO_FP_API
209 EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void
210 {
211 BIO *b;
212 EVP_PKEY *ret;

214 if ((b=BIO_new(BIO_s_file())) == NULL)
215 {
216 PEMerr(PEM_F_PEM_READ_PRIVATEKEY,ERR_R_BUF_LIB);
217 return(0);
218 }
219 BIO_set_fp(b,fp,BIO_NOCLOSE);
220 ret=PEM_read_bio_PrivateKey(b,x,cb,u);
221 BIO_free(b);
222 return(ret);
223 }

225 int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
226 unsigned char *kstr, int klen,
227 pem_password_cb *cb, void *u)
228 {
229 BIO *b;
230 int ret;

232 if ((b=BIO_new_fp(fp, BIO_NOCLOSE)) == NULL)
233 {
234 PEMerr(PEM_F_PEM_WRITE_PRIVATEKEY,ERR_R_BUF_LIB);
235 return 0;
236 }
237 ret=PEM_write_bio_PrivateKey(b, x, enc, kstr, klen, cb, u);
238 BIO_free(b);
239 return ret;
240 }

242 #endif

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_seal.c 1

**
 5966 Fri May 30 18:31:59 2014
new/usr/src/lib/openssl/libsunw_crypto/pem/pem_seal.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pem/pem_seal.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/opensslconf.h> /* for OPENSSL_NO_RSA */
60 #ifndef OPENSSL_NO_RSA
61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_seal.c 2

62 #include "cryptlib.h"
63 #include <openssl/evp.h>
64 #include <openssl/rand.h>
65 #include <openssl/objects.h>
66 #include <openssl/x509.h>
67 #include <openssl/pem.h>
68 #include <openssl/rsa.h>

70 int PEM_SealInit(PEM_ENCODE_SEAL_CTX *ctx, EVP_CIPHER *type, EVP_MD *md_type,
71 unsigned char **ek, int *ekl, unsigned char *iv, EVP_PKEY **pubk,
72 int npubk)
73 {
74 unsigned char key[EVP_MAX_KEY_LENGTH];
75 int ret= -1;
76 int i,j,max=0;
77 char *s=NULL;

79 for (i=0; i<npubk; i++)
80 {
81 if (pubk[i]->type != EVP_PKEY_RSA)
82 {
83 PEMerr(PEM_F_PEM_SEALINIT,PEM_R_PUBLIC_KEY_NO_RSA);
84 goto err;
85 }
86 j=RSA_size(pubk[i]->pkey.rsa);
87 if (j > max) max=j;
88 }
89 s=(char *)OPENSSL_malloc(max*2);
90 if (s == NULL)
91 {
92 PEMerr(PEM_F_PEM_SEALINIT,ERR_R_MALLOC_FAILURE);
93 goto err;
94 }

96 EVP_EncodeInit(&ctx->encode);

98 EVP_MD_CTX_init(&ctx->md);
99 if (!EVP_SignInit(&ctx->md,md_type))
100 goto err;

102 EVP_CIPHER_CTX_init(&ctx->cipher);
103 ret=EVP_SealInit(&ctx->cipher,type,ek,ekl,iv,pubk,npubk);
104 if (ret <= 0) goto err;

106 /* base64 encode the keys */
107 for (i=0; i<npubk; i++)
108 {
109 j=EVP_EncodeBlock((unsigned char *)s,ek[i],
110 RSA_size(pubk[i]->pkey.rsa));
111 ekl[i]=j;
112 memcpy(ek[i],s,j+1);
113 }

115 ret=npubk;
116 err:
117 if (s != NULL) OPENSSL_free(s);
118 OPENSSL_cleanse(key,EVP_MAX_KEY_LENGTH);
119 return(ret);
120 }

122 void PEM_SealUpdate(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *out, int *outl,
123 unsigned char *in, int inl)
124 {
125 unsigned char buffer[1600];
126 int i,j;

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_seal.c 3

128 *outl=0;
129 EVP_SignUpdate(&ctx->md,in,inl);
130 for (;;)
131 {
132 if (inl <= 0) break;
133 if (inl > 1200)
134 i=1200;
135 else
136 i=inl;
137 EVP_EncryptUpdate(&ctx->cipher,buffer,&j,in,i);
138 EVP_EncodeUpdate(&ctx->encode,out,&j,buffer,j);
139 *outl+=j;
140 out+=j;
141 in+=i;
142 inl-=i;
143 }
144 }

146 int PEM_SealFinal(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *sig, int *sigl,
147 unsigned char *out, int *outl, EVP_PKEY *priv)
148 {
149 unsigned char *s=NULL;
150 int ret=0,j;
151 unsigned int i;

153 if (priv->type != EVP_PKEY_RSA)
154 {
155 PEMerr(PEM_F_PEM_SEALFINAL,PEM_R_PUBLIC_KEY_NO_RSA);
156 goto err;
157 }
158 i=RSA_size(priv->pkey.rsa);
159 if (i < 100) i=100;
160 s=(unsigned char *)OPENSSL_malloc(i*2);
161 if (s == NULL)
162 {
163 PEMerr(PEM_F_PEM_SEALFINAL,ERR_R_MALLOC_FAILURE);
164 goto err;
165 }

167 if (!EVP_EncryptFinal_ex(&ctx->cipher,s,(int *)&i))
168 goto err;
169 EVP_EncodeUpdate(&ctx->encode,out,&j,s,i);
170 *outl=j;
171 out+=j;
172 EVP_EncodeFinal(&ctx->encode,out,&j);
173 *outl+=j;

175 if (!EVP_SignFinal(&ctx->md,s,&i,priv)) goto err;
176 *sigl=EVP_EncodeBlock(sig,s,i);

178 ret=1;
179 err:
180 EVP_MD_CTX_cleanup(&ctx->md);
181 EVP_CIPHER_CTX_cleanup(&ctx->cipher);
182 if (s != NULL) OPENSSL_free(s);
183 return(ret);
184 }
185 #else /* !OPENSSL_NO_RSA */

187 # if PEDANTIC
188 static void *dummy=&dummy;
189 # endif

191 #endif

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_sign.c 1

**
 4111 Fri May 30 18:31:59 2014
new/usr/src/lib/openssl/libsunw_crypto/pem/pem_sign.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pem/pem_sign.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/rand.h>

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_sign.c 2

62 #include <openssl/evp.h>
63 #include <openssl/objects.h>
64 #include <openssl/x509.h>
65 #include <openssl/pem.h>

67 void PEM_SignInit(EVP_MD_CTX *ctx, EVP_MD *type)
68 {
69 EVP_DigestInit_ex(ctx, type, NULL);
70 }

72 void PEM_SignUpdate(EVP_MD_CTX *ctx, unsigned char *data,
73 unsigned int count)
74 {
75 EVP_DigestUpdate(ctx,data,count);
76 }

78 int PEM_SignFinal(EVP_MD_CTX *ctx, unsigned char *sigret, unsigned int *siglen,
79 EVP_PKEY *pkey)
80 {
81 unsigned char *m;
82 int i,ret=0;
83 unsigned int m_len;

85 m=(unsigned char *)OPENSSL_malloc(EVP_PKEY_size(pkey)+2);
86 if (m == NULL)
87 {
88 PEMerr(PEM_F_PEM_SIGNFINAL,ERR_R_MALLOC_FAILURE);
89 goto err;
90 }

92 if (EVP_SignFinal(ctx,m,&m_len,pkey) <= 0) goto err;

94 i=EVP_EncodeBlock(sigret,m,m_len);
95 *siglen=i;
96 ret=1;
97 err:
98 /* ctx has been zeroed by EVP_SignFinal() */
99 if (m != NULL) OPENSSL_free(m);
100 return(ret);
101 }

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_x509.c 1

**
 2958 Fri May 30 18:31:59 2014
new/usr/src/lib/openssl/libsunw_crypto/pem/pem_x509.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pem_x509.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bio.h>

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_x509.c 2

62 #include <openssl/evp.h>
63 #include <openssl/x509.h>
64 #include <openssl/pkcs7.h>
65 #include <openssl/pem.h>

67 IMPLEMENT_PEM_rw(X509, X509, PEM_STRING_X509, X509)

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_xaux.c 1

**
 3060 Fri May 30 18:31:59 2014
new/usr/src/lib/openssl/libsunw_crypto/pem/pem_xaux.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pem_xaux.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bio.h>

new/usr/src/lib/openssl/libsunw_crypto/pem/pem_xaux.c 2

62 #include <openssl/evp.h>
63 #include <openssl/x509.h>
64 #include <openssl/pkcs7.h>
65 #include <openssl/pem.h>

67 IMPLEMENT_PEM_rw(X509_AUX, X509, PEM_STRING_X509_TRUSTED, X509_AUX)
68 IMPLEMENT_PEM_rw(X509_CERT_PAIR, X509_CERT_PAIR, PEM_STRING_X509_PAIR, X509_CERT

new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c 1

**
 21644 Fri May 30 18:31:59 2014
new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2 * project 2005.
3 */
4 /* ==
5 * Copyright (c) 2005 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ==
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */

58 /* Support for PVK format keys and related structures (such a PUBLICKEYBLOB
59 * and PRIVATEKEYBLOB).
60 */

new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c 2

62 #include "cryptlib.h"
63 #include <openssl/pem.h>
64 #include <openssl/rand.h>
65 #include <openssl/bn.h>
66 #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA)
67 #include <openssl/dsa.h>
68 #include <openssl/rsa.h>

70 /* Utility function: read a DWORD (4 byte unsigned integer) in little endian
71 * format
72 */

74 static unsigned int read_ledword(const unsigned char **in)
75 {
76 const unsigned char *p = *in;
77 unsigned int ret;
78 ret = *p++;
79 ret |= (*p++ << 8);
80 ret |= (*p++ << 16);
81 ret |= (*p++ << 24);
82 *in = p;
83 return ret;
84 }

86 /* Read a BIGNUM in little endian format. The docs say that this should take up
87 * bitlen/8 bytes.
88 */

90 static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r)
91 {
92 const unsigned char *p;
93 unsigned char *tmpbuf, *q;
94 unsigned int i;
95 p = *in + nbyte - 1;
96 tmpbuf = OPENSSL_malloc(nbyte);
97 if (!tmpbuf)
98 return 0;
99 q = tmpbuf;
100 for (i = 0; i < nbyte; i++)
101 *q++ = *p--;
102 *r = BN_bin2bn(tmpbuf, nbyte, NULL);
103 OPENSSL_free(tmpbuf);
104 if (*r)
105 {
106 *in += nbyte;
107 return 1;
108 }
109 else
110 return 0;
111 }

114 /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */

116 #define MS_PUBLICKEYBLOB 0x6
117 #define MS_PRIVATEKEYBLOB 0x7
118 #define MS_RSA1MAGIC 0x31415352L
119 #define MS_RSA2MAGIC 0x32415352L
120 #define MS_DSS1MAGIC 0x31535344L
121 #define MS_DSS2MAGIC 0x32535344L

123 #define MS_KEYALG_RSA_KEYX 0xa400
124 #define MS_KEYALG_DSS_SIGN 0x2200

126 #define MS_KEYTYPE_KEYX 0x1
127 #define MS_KEYTYPE_SIGN 0x2

new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c 3

129 /* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */
130 #define MS_PVKMAGIC 0xb0b5f11eL
131 /* Salt length for PVK files */
132 #define PVK_SALTLEN 0x10

134 static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
135 unsigned int bitlen, int ispub);
136 static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
137 unsigned int bitlen, int ispub);

139 static int do_blob_header(const unsigned char **in, unsigned int length,
140 unsigned int *pmagic, unsigned int *pbitlen,
141 int *pisdss, int *pispub)
142 {
143 const unsigned char *p = *in;
144 if (length < 16)
145 return 0;
146 /* bType */
147 if (*p == MS_PUBLICKEYBLOB)
148 {
149 if (*pispub == 0)
150 {
151 PEMerr(PEM_F_DO_BLOB_HEADER,
152 PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
153 return 0;
154 }
155 *pispub = 1;
156 }
157 else if (*p == MS_PRIVATEKEYBLOB)
158 {
159 if (*pispub == 1)
160 {
161 PEMerr(PEM_F_DO_BLOB_HEADER,
162 PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
163 return 0;
164 }
165 *pispub = 0;
166 }
167 else
168 return 0;
169 p++;
170 /* Version */
171 if (*p++ != 0x2)
172 {
173 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER);
174 return 0;
175 }
176 /* Ignore reserved, aiKeyAlg */
177 p+= 6;
178 *pmagic = read_ledword(&p);
179 *pbitlen = read_ledword(&p);
180 *pisdss = 0;
181 switch (*pmagic)
182 {

184 case MS_DSS1MAGIC:
185 *pisdss = 1;
186 case MS_RSA1MAGIC:
187 if (*pispub == 0)
188 {
189 PEMerr(PEM_F_DO_BLOB_HEADER,
190 PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
191 return 0;
192 }
193 break;

new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c 4

195 case MS_DSS2MAGIC:
196 *pisdss = 1;
197 case MS_RSA2MAGIC:
198 if (*pispub == 1)
199 {
200 PEMerr(PEM_F_DO_BLOB_HEADER,
201 PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
202 return 0;
203 }
204 break;

206 default:
207 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER);
208 return -1;
209 }
210 *in = p;
211 return 1;
212 }

214 static unsigned int blob_length(unsigned bitlen, int isdss, int ispub)
215 {
216 unsigned int nbyte, hnbyte;
217 nbyte = (bitlen + 7) >> 3;
218 hnbyte = (bitlen + 15) >> 4;
219 if (isdss)
220 {

222 /* Expected length: 20 for q + 3 components bitlen each + 24
223 * for seed structure.
224 */
225 if (ispub)
226 return 44 + 3 * nbyte;
227 /* Expected length: 20 for q, priv, 2 bitlen components + 24
228 * for seed structure.
229 */
230 else
231 return 64 + 2 * nbyte;
232 }
233 else
234 {
235 /* Expected length: 4 for ’e’ + ’n’ */
236 if (ispub)
237 return 4 + nbyte;
238 else
239 /* Expected length: 4 for ’e’ and 7 other components.
240 * 2 components are bitlen size, 5 are bitlen/2
241 */
242 return 4 + 2*nbyte + 5*hnbyte;
243 }

245 }

247 static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length,
248 int ispub)
249 {
250 const unsigned char *p = *in;
251 unsigned int bitlen, magic;
252 int isdss;
253 if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0)
254 {
255 PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR);
256 return NULL;
257 }
258 length -= 16;
259 if (length < blob_length(bitlen, isdss, ispub))

new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c 5

260 {
261 PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT);
262 return NULL;
263 }
264 if (isdss)
265 return b2i_dss(&p, length, bitlen, ispub);
266 else
267 return b2i_rsa(&p, length, bitlen, ispub);
268 }

270 static EVP_PKEY *do_b2i_bio(BIO *in, int ispub)
271 {
272 const unsigned char *p;
273 unsigned char hdr_buf[16], *buf = NULL;
274 unsigned int bitlen, magic, length;
275 int isdss;
276 EVP_PKEY *ret = NULL;
277 if (BIO_read(in, hdr_buf, 16) != 16)
278 {
279 PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
280 return NULL;
281 }
282 p = hdr_buf;
283 if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0)
284 return NULL;

286 length = blob_length(bitlen, isdss, ispub);
287 buf = OPENSSL_malloc(length);
288 if (!buf)
289 {
290 PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE);
291 goto err;
292 }
293 p = buf;
294 if (BIO_read(in, buf, length) != (int)length)
295 {
296 PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
297 goto err;
298 }

300 if (isdss)
301 ret = b2i_dss(&p, length, bitlen, ispub);
302 else
303 ret = b2i_rsa(&p, length, bitlen, ispub);

305 err:
306 if (buf)
307 OPENSSL_free(buf);
308 return ret;
309 }

311 static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
312 unsigned int bitlen, int ispub)
313 {
314 const unsigned char *p = *in;
315 EVP_PKEY *ret = NULL;
316 DSA *dsa = NULL;
317 BN_CTX *ctx = NULL;
318 unsigned int nbyte;
319 nbyte = (bitlen + 7) >> 3;

321 dsa = DSA_new();
322 ret = EVP_PKEY_new();
323 if (!dsa || !ret)
324 goto memerr;
325 if (!read_lebn(&p, nbyte, &dsa->p))

new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c 6

326 goto memerr;
327 if (!read_lebn(&p, 20, &dsa->q))
328 goto memerr;
329 if (!read_lebn(&p, nbyte, &dsa->g))
330 goto memerr;
331 if (ispub)
332 {
333 if (!read_lebn(&p, nbyte, &dsa->pub_key))
334 goto memerr;
335 }
336 else
337 {
338 if (!read_lebn(&p, 20, &dsa->priv_key))
339 goto memerr;
340 /* Calculate public key */
341 if (!(dsa->pub_key = BN_new()))
342 goto memerr;
343 if (!(ctx = BN_CTX_new()))
344 goto memerr;
345
346 if (!BN_mod_exp(dsa->pub_key, dsa->g,
347 dsa->priv_key, dsa->p, ctx))
348
349 goto memerr;
350 BN_CTX_free(ctx);
351 }

353 EVP_PKEY_set1_DSA(ret, dsa);
354 DSA_free(dsa);
355 *in = p;
356 return ret;

358 memerr:
359 PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE);
360 if (dsa)
361 DSA_free(dsa);
362 if (ret)
363 EVP_PKEY_free(ret);
364 if (ctx)
365 BN_CTX_free(ctx);
366 return NULL;
367 }

369 static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
370 unsigned int bitlen, int ispub)
371
372 {
373 const unsigned char *p = *in;
374 EVP_PKEY *ret = NULL;
375 RSA *rsa = NULL;
376 unsigned int nbyte, hnbyte;
377 nbyte = (bitlen + 7) >> 3;
378 hnbyte = (bitlen + 15) >> 4;
379 rsa = RSA_new();
380 ret = EVP_PKEY_new();
381 if (!rsa || !ret)
382 goto memerr;
383 rsa->e = BN_new();
384 if (!rsa->e)
385 goto memerr;
386 if (!BN_set_word(rsa->e, read_ledword(&p)))
387 goto memerr;
388 if (!read_lebn(&p, nbyte, &rsa->n))
389 goto memerr;
390 if (!ispub)
391 {

new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c 7

392 if (!read_lebn(&p, hnbyte, &rsa->p))
393 goto memerr;
394 if (!read_lebn(&p, hnbyte, &rsa->q))
395 goto memerr;
396 if (!read_lebn(&p, hnbyte, &rsa->dmp1))
397 goto memerr;
398 if (!read_lebn(&p, hnbyte, &rsa->dmq1))
399 goto memerr;
400 if (!read_lebn(&p, hnbyte, &rsa->iqmp))
401 goto memerr;
402 if (!read_lebn(&p, nbyte, &rsa->d))
403 goto memerr;
404 }

406 EVP_PKEY_set1_RSA(ret, rsa);
407 RSA_free(rsa);
408 *in = p;
409 return ret;
410 memerr:
411 PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE);
412 if (rsa)
413 RSA_free(rsa);
414 if (ret)
415 EVP_PKEY_free(ret);
416 return NULL;
417 }

419 EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length)
420 {
421 return do_b2i(in, length, 0);
422 }

424 EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length)
425 {
426 return do_b2i(in, length, 1);
427 }

430 EVP_PKEY *b2i_PrivateKey_bio(BIO *in)
431 {
432 return do_b2i_bio(in, 0);
433 }

435 EVP_PKEY *b2i_PublicKey_bio(BIO *in)
436 {
437 return do_b2i_bio(in, 1);
438 }

440 static void write_ledword(unsigned char **out, unsigned int dw)
441 {
442 unsigned char *p = *out;
443 *p++ = dw & 0xff;
444 *p++ = (dw>>8) & 0xff;
445 *p++ = (dw>>16) & 0xff;
446 *p++ = (dw>>24) & 0xff;
447 *out = p;
448 }

450 static void write_lebn(unsigned char **out, const BIGNUM *bn, int len)
451 {
452 int nb, i;
453 unsigned char *p = *out, *q, c;
454 nb = BN_num_bytes(bn);
455 BN_bn2bin(bn, p);
456 q = p + nb - 1;
457 /* In place byte order reversal */

new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c 8

458 for (i = 0; i < nb/2; i++)
459 {
460 c = *p;
461 *p++ = *q;
462 *q-- = c;
463 }
464 *out += nb;
465 /* Pad with zeroes if we have to */
466 if (len > 0)
467 {
468 len -= nb;
469 if (len > 0)
470 {
471 memset(*out, 0, len);
472 *out += len;
473 }
474 }
475 }

478 static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic);
479 static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic);

481 static void write_rsa(unsigned char **out, RSA *rsa, int ispub);
482 static void write_dsa(unsigned char **out, DSA *dsa, int ispub);
483
484 static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub)
485 {
486 unsigned char *p;
487 unsigned int bitlen, magic = 0, keyalg;
488 int outlen, noinc = 0;
489 if (pk->type == EVP_PKEY_DSA)
490 {
491 bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic);
492 keyalg = MS_KEYALG_DSS_SIGN;
493 }
494 else if (pk->type == EVP_PKEY_RSA)
495 {
496 bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic);
497 keyalg = MS_KEYALG_RSA_KEYX;
498 }
499 else
500 return -1;
501 if (bitlen == 0)
502 return -1;
503 outlen = 16 + blob_length(bitlen,
504 keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub);
505 if (out == NULL)
506 return outlen;
507 if (*out)
508 p = *out;
509 else
510 {
511 p = OPENSSL_malloc(outlen);
512 if (!p)
513 return -1;
514 *out = p;
515 noinc = 1;
516 }
517 if (ispub)
518 *p++ = MS_PUBLICKEYBLOB;
519 else
520 *p++ = MS_PRIVATEKEYBLOB;
521 *p++ = 0x2;
522 *p++ = 0;
523 *p++ = 0;

new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c 9

524 write_ledword(&p, keyalg);
525 write_ledword(&p, magic);
526 write_ledword(&p, bitlen);
527 if (keyalg == MS_KEYALG_DSS_SIGN)
528 write_dsa(&p, pk->pkey.dsa, ispub);
529 else
530 write_rsa(&p, pk->pkey.rsa, ispub);
531 if (!noinc)
532 *out += outlen;
533 return outlen;
534 }

536 static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub)
537 {
538 unsigned char *tmp = NULL;
539 int outlen, wrlen;
540 outlen = do_i2b(&tmp, pk, ispub);
541 if (outlen < 0)
542 return -1;
543 wrlen = BIO_write(out, tmp, outlen);
544 OPENSSL_free(tmp);
545 if (wrlen == outlen)
546 return outlen;
547 return -1;
548 }

550 static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic)
551 {
552 int bitlen;
553 bitlen = BN_num_bits(dsa->p);
554 if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160)
555 || (BN_num_bits(dsa->g) > bitlen))
556 goto badkey;
557 if (ispub)
558 {
559 if (BN_num_bits(dsa->pub_key) > bitlen)
560 goto badkey;
561 *pmagic = MS_DSS1MAGIC;
562 }
563 else
564 {
565 if (BN_num_bits(dsa->priv_key) > 160)
566 goto badkey;
567 *pmagic = MS_DSS2MAGIC;
568 }
569
570 return bitlen;
571 badkey:
572 PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
573 return 0;
574 }

576 static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic)
577 {
578 int nbyte, hnbyte, bitlen;
579 if (BN_num_bits(rsa->e) > 32)
580 goto badkey;
581 bitlen = BN_num_bits(rsa->n);
582 nbyte = BN_num_bytes(rsa->n);
583 hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
584 if (ispub)
585 {
586 *pmagic = MS_RSA1MAGIC;
587 return bitlen;
588 }
589 else

new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c 10

590 {
591 *pmagic = MS_RSA2MAGIC;
592 /* For private key each component must fit within nbyte or
593 * hnbyte.
594 */
595 if (BN_num_bytes(rsa->d) > nbyte)
596 goto badkey;
597 if ((BN_num_bytes(rsa->iqmp) > hnbyte)
598 || (BN_num_bytes(rsa->p) > hnbyte)
599 || (BN_num_bytes(rsa->q) > hnbyte)
600 || (BN_num_bytes(rsa->dmp1) > hnbyte)
601 || (BN_num_bytes(rsa->dmq1) > hnbyte))
602 goto badkey;
603 }
604 return bitlen;
605 badkey:
606 PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
607 return 0;
608 }

611 static void write_rsa(unsigned char **out, RSA *rsa, int ispub)
612 {
613 int nbyte, hnbyte;
614 nbyte = BN_num_bytes(rsa->n);
615 hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
616 write_lebn(out, rsa->e, 4);
617 write_lebn(out, rsa->n, -1);
618 if (ispub)
619 return;
620 write_lebn(out, rsa->p, hnbyte);
621 write_lebn(out, rsa->q, hnbyte);
622 write_lebn(out, rsa->dmp1, hnbyte);
623 write_lebn(out, rsa->dmq1, hnbyte);
624 write_lebn(out, rsa->iqmp, hnbyte);
625 write_lebn(out, rsa->d, nbyte);
626 }

628
629 static void write_dsa(unsigned char **out, DSA *dsa, int ispub)
630 {
631 int nbyte;
632 nbyte = BN_num_bytes(dsa->p);
633 write_lebn(out, dsa->p, nbyte);
634 write_lebn(out, dsa->q, 20);
635 write_lebn(out, dsa->g, nbyte);
636 if (ispub)
637 write_lebn(out, dsa->pub_key, nbyte);
638 else
639 write_lebn(out, dsa->priv_key, 20);
640 /* Set "invalid" for seed structure values */
641 memset(*out, 0xff, 24);
642 *out += 24;
643 return;
644 }
645

647 int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk)
648 {
649 return do_i2b_bio(out, pk, 0);
650 }

652 int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk)
653 {
654 return do_i2b_bio(out, pk, 1);
655 }

new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c 11

657 #ifndef OPENSSL_NO_RC4

659 static int do_PVK_header(const unsigned char **in, unsigned int length,
660 int skip_magic,
661 unsigned int *psaltlen, unsigned int *pkeylen)
662
663 {
664 const unsigned char *p = *in;
665 unsigned int pvk_magic, is_encrypted;
666 if (skip_magic)
667 {
668 if (length < 20)
669 {
670 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
671 return 0;
672 }
673 length -= 20;
674 }
675 else
676 {
677 if (length < 24)
678 {
679 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
680 return 0;
681 }
682 length -= 24;
683 pvk_magic = read_ledword(&p);
684 if (pvk_magic != MS_PVKMAGIC)
685 {
686 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER);
687 return 0;
688 }
689 }
690 /* Skip reserved */
691 p += 4;
692 /*keytype = */read_ledword(&p);
693 is_encrypted = read_ledword(&p);
694 *psaltlen = read_ledword(&p);
695 *pkeylen = read_ledword(&p);

697 if (is_encrypted && !*psaltlen)
698 {
699 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER);
700 return 0;
701 }

703 *in = p;
704 return 1;
705 }

707 static int derive_pvk_key(unsigned char *key,
708 const unsigned char *salt, unsigned int saltlen,
709 const unsigned char *pass, int passlen)
710 {
711 EVP_MD_CTX mctx;
712 int rv = 1;
713 EVP_MD_CTX_init(&mctx);
714 if (!EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL)
715 || !EVP_DigestUpdate(&mctx, salt, saltlen)
716 || !EVP_DigestUpdate(&mctx, pass, passlen)
717 || !EVP_DigestFinal_ex(&mctx, key, NULL))
718 rv = 0;

720 EVP_MD_CTX_cleanup(&mctx);
721 return rv;

new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c 12

722 }
723

725 static EVP_PKEY *do_PVK_body(const unsigned char **in,
726 unsigned int saltlen, unsigned int keylen,
727 pem_password_cb *cb, void *u)
728 {
729 EVP_PKEY *ret = NULL;
730 const unsigned char *p = *in;
731 unsigned int magic;
732 unsigned char *enctmp = NULL, *q;
733 EVP_CIPHER_CTX cctx;
734 EVP_CIPHER_CTX_init(&cctx);
735 if (saltlen)
736 {
737 char psbuf[PEM_BUFSIZE];
738 unsigned char keybuf[20];
739 int enctmplen, inlen;
740 if (cb)
741 inlen=cb(psbuf,PEM_BUFSIZE,0,u);
742 else
743 inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u);
744 if (inlen <= 0)
745 {
746 PEMerr(PEM_F_DO_PVK_BODY,PEM_R_BAD_PASSWORD_READ);
747 return NULL;
748 }
749 enctmp = OPENSSL_malloc(keylen + 8);
750 if (!enctmp)
751 {
752 PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE);
753 return NULL;
754 }
755 if (!derive_pvk_key(keybuf, p, saltlen,
756 (unsigned char *)psbuf, inlen))
757 return NULL;
758 p += saltlen;
759 /* Copy BLOBHEADER across, decrypt rest */
760 memcpy(enctmp, p, 8);
761 p += 8;
762 inlen = keylen - 8;
763 q = enctmp + 8;
764 if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
765 goto err;
766 if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
767 goto err;
768 if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen))
769 goto err;
770 magic = read_ledword((const unsigned char **)&q);
771 if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC)
772 {
773 q = enctmp + 8;
774 memset(keybuf + 5, 0, 11);
775 if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf,
776 NULL))
777 goto err;
778 OPENSSL_cleanse(keybuf, 20);
779 if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
780 goto err;
781 if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen,
782 &enctmplen))
783 goto err;
784 magic = read_ledword((const unsigned char **)&q);
785 if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC)
786 {
787 PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT);

new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c 13

788 goto err;
789 }
790 }
791 else
792 OPENSSL_cleanse(keybuf, 20);
793 p = enctmp;
794 }

796 ret = b2i_PrivateKey(&p, keylen);
797 err:
798 EVP_CIPHER_CTX_cleanup(&cctx);
799 if (enctmp && saltlen)
800 OPENSSL_free(enctmp);
801 return ret;
802 }

805 EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u)
806 {
807 unsigned char pvk_hdr[24], *buf = NULL;
808 const unsigned char *p;
809 int buflen;
810 EVP_PKEY *ret = NULL;
811 unsigned int saltlen, keylen;
812 if (BIO_read(in, pvk_hdr, 24) != 24)
813 {
814 PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
815 return NULL;
816 }
817 p = pvk_hdr;

819 if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen))
820 return 0;
821 buflen = (int) keylen + saltlen;
822 buf = OPENSSL_malloc(buflen);
823 if (!buf)
824 {
825 PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE);
826 return 0;
827 }
828 p = buf;
829 if (BIO_read(in, buf, buflen) != buflen)
830 {
831 PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
832 goto err;
833 }
834 ret = do_PVK_body(&p, saltlen, keylen, cb, u);

836 err:
837 if (buf)
838 {
839 OPENSSL_cleanse(buf, buflen);
840 OPENSSL_free(buf);
841 }
842 return ret;
843 }

845
846
847 static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel,
848 pem_password_cb *cb, void *u)
849 {
850 int outlen = 24, pklen;
851 unsigned char *p, *salt = NULL;
852 EVP_CIPHER_CTX cctx;
853 EVP_CIPHER_CTX_init(&cctx);

new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c 14

854 if (enclevel)
855 outlen += PVK_SALTLEN;
856 pklen = do_i2b(NULL, pk, 0);
857 if (pklen < 0)
858 return -1;
859 outlen += pklen;
860 if (!out)
861 return outlen;
862 if (*out)
863 p = *out;
864 else
865 {
866 p = OPENSSL_malloc(outlen);
867 if (!p)
868 {
869 PEMerr(PEM_F_I2B_PVK,ERR_R_MALLOC_FAILURE);
870 return -1;
871 }
872 *out = p;
873 }

875 write_ledword(&p, MS_PVKMAGIC);
876 write_ledword(&p, 0);
877 if (pk->type == EVP_PKEY_DSA)
878 write_ledword(&p, MS_KEYTYPE_SIGN);
879 else
880 write_ledword(&p, MS_KEYTYPE_KEYX);
881 write_ledword(&p, enclevel ? 1 : 0);
882 write_ledword(&p, enclevel ? PVK_SALTLEN: 0);
883 write_ledword(&p, pklen);
884 if (enclevel)
885 {
886 if (RAND_bytes(p, PVK_SALTLEN) <= 0)
887 goto error;
888 salt = p;
889 p += PVK_SALTLEN;
890 }
891 do_i2b(&p, pk, 0);
892 if (enclevel == 0)
893 return outlen;
894 else
895 {
896 char psbuf[PEM_BUFSIZE];
897 unsigned char keybuf[20];
898 int enctmplen, inlen;
899 if (cb)
900 inlen=cb(psbuf,PEM_BUFSIZE,1,u);
901 else
902 inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,1,u);
903 if (inlen <= 0)
904 {
905 PEMerr(PEM_F_I2B_PVK,PEM_R_BAD_PASSWORD_READ);
906 goto error;
907 }
908 if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN,
909 (unsigned char *)psbuf, inlen))
910 goto error;
911 if (enclevel == 1)
912 memset(keybuf + 5, 0, 11);
913 p = salt + PVK_SALTLEN + 8;
914 if (!EVP_EncryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
915 goto error;
916 OPENSSL_cleanse(keybuf, 20);
917 if (!EVP_DecryptUpdate(&cctx, p, &enctmplen, p, pklen - 8))
918 goto error;
919 if (!EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen))

new/usr/src/lib/openssl/libsunw_crypto/pem/pvkfmt.c 15

920 goto error;
921 }
922 EVP_CIPHER_CTX_cleanup(&cctx);
923 return outlen;

925 error:
926 EVP_CIPHER_CTX_cleanup(&cctx);
927 return -1;
928 }

930 int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel,
931 pem_password_cb *cb, void *u)
932 {
933 unsigned char *tmp = NULL;
934 int outlen, wrlen;
935 outlen = i2b_PVK(&tmp, pk, enclevel, cb, u);
936 if (outlen < 0)
937 return -1;
938 wrlen = BIO_write(out, tmp, outlen);
939 OPENSSL_free(tmp);
940 if (wrlen == outlen)
941 {
942 PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE);
943 return outlen;
944 }
945 return -1;
946 }

948 #endif

950 #endif

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_add.c 1

**
 7740 Fri May 30 18:31:59 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_add.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p12_add.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/pkcs12.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_add.c 2

63 /* Pack an object into an OCTET STRING and turn into a safebag */

65 PKCS12_SAFEBAG *PKCS12_item_pack_safebag(void *obj, const ASN1_ITEM *it, int nid
66 int nid2)
67 {
68 PKCS12_BAGS *bag;
69 PKCS12_SAFEBAG *safebag;
70 if (!(bag = PKCS12_BAGS_new())) {
71 PKCS12err(PKCS12_F_PKCS12_ITEM_PACK_SAFEBAG, ERR_R_MALLOC_FAILUR
72 return NULL;
73 }
74 bag->type = OBJ_nid2obj(nid1);
75 if (!ASN1_item_pack(obj, it, &bag->value.octet)) {
76 PKCS12err(PKCS12_F_PKCS12_ITEM_PACK_SAFEBAG, ERR_R_MALLOC_FAILUR
77 return NULL;
78 }
79 if (!(safebag = PKCS12_SAFEBAG_new())) {
80 PKCS12err(PKCS12_F_PKCS12_ITEM_PACK_SAFEBAG, ERR_R_MALLOC_FAILUR
81 return NULL;
82 }
83 safebag->value.bag = bag;
84 safebag->type = OBJ_nid2obj(nid2);
85 return safebag;
86 }

88 /* Turn PKCS8 object into a keybag */

90 PKCS12_SAFEBAG *PKCS12_MAKE_KEYBAG(PKCS8_PRIV_KEY_INFO *p8)
91 {
92 PKCS12_SAFEBAG *bag;
93 if (!(bag = PKCS12_SAFEBAG_new())) {
94 PKCS12err(PKCS12_F_PKCS12_MAKE_KEYBAG,ERR_R_MALLOC_FAILURE);
95 return NULL;
96 }
97 bag->type = OBJ_nid2obj(NID_keyBag);
98 bag->value.keybag = p8;
99 return bag;
100 }

102 /* Turn PKCS8 object into a shrouded keybag */

104 PKCS12_SAFEBAG *PKCS12_MAKE_SHKEYBAG(int pbe_nid, const char *pass,
105 int passlen, unsigned char *salt, int saltlen, int iter,
106 PKCS8_PRIV_KEY_INFO *p8)
107 {
108 PKCS12_SAFEBAG *bag;
109 const EVP_CIPHER *pbe_ciph;

111 /* Set up the safe bag */
112 if (!(bag = PKCS12_SAFEBAG_new())) {
113 PKCS12err(PKCS12_F_PKCS12_MAKE_SHKEYBAG, ERR_R_MALLOC_FAILURE);
114 return NULL;
115 }

117 bag->type = OBJ_nid2obj(NID_pkcs8ShroudedKeyBag);

119 pbe_ciph = EVP_get_cipherbynid(pbe_nid);

121 if (pbe_ciph)
122 pbe_nid = -1;

124 if (!(bag->value.shkeybag =
125 PKCS8_encrypt(pbe_nid, pbe_ciph, pass, passlen, salt, saltlen, iter,
126 p8))) {
127 PKCS12err(PKCS12_F_PKCS12_MAKE_SHKEYBAG, ERR_R_MALLOC_FAILURE);

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_add.c 3

128 return NULL;
129 }

131 return bag;
132 }

134 /* Turn a stack of SAFEBAGS into a PKCS#7 data Contentinfo */
135 PKCS7 *PKCS12_pack_p7data(STACK_OF(PKCS12_SAFEBAG) *sk)
136 {
137 PKCS7 *p7;
138 if (!(p7 = PKCS7_new())) {
139 PKCS12err(PKCS12_F_PKCS12_PACK_P7DATA, ERR_R_MALLOC_FAILURE);
140 return NULL;
141 }
142 p7->type = OBJ_nid2obj(NID_pkcs7_data);
143 if (!(p7->d.data = M_ASN1_OCTET_STRING_new())) {
144 PKCS12err(PKCS12_F_PKCS12_PACK_P7DATA, ERR_R_MALLOC_FAILURE);
145 return NULL;
146 }
147
148 if (!ASN1_item_pack(sk, ASN1_ITEM_rptr(PKCS12_SAFEBAGS), &p7->d.data)) {
149 PKCS12err(PKCS12_F_PKCS12_PACK_P7DATA, PKCS12_R_CANT_PACK_STRUCT
150 return NULL;
151 }
152 return p7;
153 }

155 /* Unpack SAFEBAGS from PKCS#7 data ContentInfo */
156 STACK_OF(PKCS12_SAFEBAG) *PKCS12_unpack_p7data(PKCS7 *p7)
157 {
158 if(!PKCS7_type_is_data(p7))
159 {
160 PKCS12err(PKCS12_F_PKCS12_UNPACK_P7DATA,PKCS12_R_CONTENT_TYPE_NO
161 return NULL;
162 }
163 return ASN1_item_unpack(p7->d.data, ASN1_ITEM_rptr(PKCS12_SAFEBAGS));
164 }

166 /* Turn a stack of SAFEBAGS into a PKCS#7 encrypted data ContentInfo */

168 PKCS7 *PKCS12_pack_p7encdata(int pbe_nid, const char *pass, int passlen,
169 unsigned char *salt, int saltlen, int iter,
170 STACK_OF(PKCS12_SAFEBAG) *bags)
171 {
172 PKCS7 *p7;
173 X509_ALGOR *pbe;
174 const EVP_CIPHER *pbe_ciph;
175 if (!(p7 = PKCS7_new())) {
176 PKCS12err(PKCS12_F_PKCS12_PACK_P7ENCDATA, ERR_R_MALLOC_FAILURE);
177 return NULL;
178 }
179 if(!PKCS7_set_type(p7, NID_pkcs7_encrypted)) {
180 PKCS12err(PKCS12_F_PKCS12_PACK_P7ENCDATA,
181 PKCS12_R_ERROR_SETTING_ENCRYPTED_DATA_TYPE);
182 return NULL;
183 }

185 pbe_ciph = EVP_get_cipherbynid(pbe_nid);

187 if (pbe_ciph)
188 pbe = PKCS5_pbe2_set(pbe_ciph, iter, salt, saltlen);
189 else
190 pbe = PKCS5_pbe_set(pbe_nid, iter, salt, saltlen);

192 if (!pbe) {
193 PKCS12err(PKCS12_F_PKCS12_PACK_P7ENCDATA, ERR_R_MALLOC_FAILURE);

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_add.c 4

194 return NULL;
195 }
196 X509_ALGOR_free(p7->d.encrypted->enc_data->algorithm);
197 p7->d.encrypted->enc_data->algorithm = pbe;
198 M_ASN1_OCTET_STRING_free(p7->d.encrypted->enc_data->enc_data);
199 if (!(p7->d.encrypted->enc_data->enc_data =
200 PKCS12_item_i2d_encrypt(pbe, ASN1_ITEM_rptr(PKCS12_SAFEBAGS), pass, pass
201 bags, 1))) {
202 PKCS12err(PKCS12_F_PKCS12_PACK_P7ENCDATA, PKCS12_R_ENCRYPT_ERROR
203 return NULL;
204 }

206 return p7;
207 }

209 STACK_OF(PKCS12_SAFEBAG) *PKCS12_unpack_p7encdata(PKCS7 *p7, const char *pass, i
210 {
211 if(!PKCS7_type_is_encrypted(p7)) return NULL;
212 return PKCS12_item_decrypt_d2i(p7->d.encrypted->enc_data->algorithm,
213 ASN1_ITEM_rptr(PKCS12_SAFEBAGS),
214 pass, passlen,
215 p7->d.encrypted->enc_data->enc_data, 1);
216 }

218 PKCS8_PRIV_KEY_INFO *PKCS12_decrypt_skey(PKCS12_SAFEBAG *bag, const char *pass,
219 int passlen)
220 {
221 return PKCS8_decrypt(bag->value.shkeybag, pass, passlen);
222 }

224 int PKCS12_pack_authsafes(PKCS12 *p12, STACK_OF(PKCS7) *safes)
225 {
226 if(ASN1_item_pack(safes, ASN1_ITEM_rptr(PKCS12_AUTHSAFES),
227 &p12->authsafes->d.data))
228 return 1;
229 return 0;
230 }

232 STACK_OF(PKCS7) *PKCS12_unpack_authsafes(PKCS12 *p12)
233 {
234 if (!PKCS7_type_is_data(p12->authsafes))
235 {
236 PKCS12err(PKCS12_F_PKCS12_UNPACK_AUTHSAFES,PKCS12_R_CONTENT_TYPE
237 return NULL;
238 }
239 return ASN1_item_unpack(p12->authsafes->d.data, ASN1_ITEM_rptr(PKCS12_AU
240 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_asn.c 1

**
 5299 Fri May 30 18:32:00 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_asn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p12_asn.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_asn.c 2

62 #include <openssl/pkcs12.h>

64 /* PKCS#12 ASN1 module */

66 ASN1_SEQUENCE(PKCS12) = {
67 ASN1_SIMPLE(PKCS12, version, ASN1_INTEGER),
68 ASN1_SIMPLE(PKCS12, authsafes, PKCS7),
69 ASN1_OPT(PKCS12, mac, PKCS12_MAC_DATA)
70 } ASN1_SEQUENCE_END(PKCS12)

72 IMPLEMENT_ASN1_FUNCTIONS(PKCS12)

74 ASN1_SEQUENCE(PKCS12_MAC_DATA) = {
75 ASN1_SIMPLE(PKCS12_MAC_DATA, dinfo, X509_SIG),
76 ASN1_SIMPLE(PKCS12_MAC_DATA, salt, ASN1_OCTET_STRING),
77 ASN1_OPT(PKCS12_MAC_DATA, iter, ASN1_INTEGER)
78 } ASN1_SEQUENCE_END(PKCS12_MAC_DATA)

80 IMPLEMENT_ASN1_FUNCTIONS(PKCS12_MAC_DATA)

82 ASN1_ADB_TEMPLATE(bag_default) = ASN1_EXP(PKCS12_BAGS, value.other, ASN1_ANY, 0)

84 ASN1_ADB(PKCS12_BAGS) = {
85 ADB_ENTRY(NID_x509Certificate, ASN1_EXP(PKCS12_BAGS, value.x509cert, ASN
86 ADB_ENTRY(NID_x509Crl, ASN1_EXP(PKCS12_BAGS, value.x509crl, ASN1_OCTET_S
87 ADB_ENTRY(NID_sdsiCertificate, ASN1_EXP(PKCS12_BAGS, value.sdsicert, ASN
88 } ASN1_ADB_END(PKCS12_BAGS, 0, type, 0, &bag_default_tt, NULL);

90 ASN1_SEQUENCE(PKCS12_BAGS) = {
91 ASN1_SIMPLE(PKCS12_BAGS, type, ASN1_OBJECT),
92 ASN1_ADB_OBJECT(PKCS12_BAGS),
93 } ASN1_SEQUENCE_END(PKCS12_BAGS)

95 IMPLEMENT_ASN1_FUNCTIONS(PKCS12_BAGS)

97 ASN1_ADB_TEMPLATE(safebag_default) = ASN1_EXP(PKCS12_SAFEBAG, value.other, ASN1_

99 ASN1_ADB(PKCS12_SAFEBAG) = {
100 ADB_ENTRY(NID_keyBag, ASN1_EXP(PKCS12_SAFEBAG, value.keybag, PKCS8_PRIV_
101 ADB_ENTRY(NID_pkcs8ShroudedKeyBag, ASN1_EXP(PKCS12_SAFEBAG, value.shkeyb
102 ADB_ENTRY(NID_safeContentsBag, ASN1_EXP_SET_OF(PKCS12_SAFEBAG, value.saf
103 ADB_ENTRY(NID_certBag, ASN1_EXP(PKCS12_SAFEBAG, value.bag, PKCS12_BAGS,
104 ADB_ENTRY(NID_crlBag, ASN1_EXP(PKCS12_SAFEBAG, value.bag, PKCS12_BAGS, 0
105 ADB_ENTRY(NID_secretBag, ASN1_EXP(PKCS12_SAFEBAG, value.bag, PKCS12_BAGS
106 } ASN1_ADB_END(PKCS12_SAFEBAG, 0, type, 0, &safebag_default_tt, NULL);

108 ASN1_SEQUENCE(PKCS12_SAFEBAG) = {
109 ASN1_SIMPLE(PKCS12_SAFEBAG, type, ASN1_OBJECT),
110 ASN1_ADB_OBJECT(PKCS12_SAFEBAG),
111 ASN1_SET_OF_OPT(PKCS12_SAFEBAG, attrib, X509_ATTRIBUTE)
112 } ASN1_SEQUENCE_END(PKCS12_SAFEBAG)

114 IMPLEMENT_ASN1_FUNCTIONS(PKCS12_SAFEBAG)

116 /* SEQUENCE OF SafeBag */
117 ASN1_ITEM_TEMPLATE(PKCS12_SAFEBAGS) =
118 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, PKCS12_SAFEBAGS, PKCS12_
119 ASN1_ITEM_TEMPLATE_END(PKCS12_SAFEBAGS)

121 /* Authsafes: SEQUENCE OF PKCS7 */
122 ASN1_ITEM_TEMPLATE(PKCS12_AUTHSAFES) =
123 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, PKCS12_AUTHSAFES, PKCS7)
124 ASN1_ITEM_TEMPLATE_END(PKCS12_AUTHSAFES)

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_attr.c 1

**
 4812 Fri May 30 18:32:00 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_attr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p12_attr.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/pkcs12.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_attr.c 2

63 /* Add a local keyid to a safebag */

65 int PKCS12_add_localkeyid(PKCS12_SAFEBAG *bag, unsigned char *name,
66 int namelen)
67 {
68 if (X509at_add1_attr_by_NID(&bag->attrib, NID_localKeyID,
69 V_ASN1_OCTET_STRING, name, namelen))
70 return 1;
71 else
72 return 0;
73 }

75 /* Add key usage to PKCS#8 structure */

77 int PKCS8_add_keyusage(PKCS8_PRIV_KEY_INFO *p8, int usage)
78 {
79 unsigned char us_val;
80 us_val = (unsigned char) usage;
81 if (X509at_add1_attr_by_NID(&p8->attributes, NID_key_usage,
82 V_ASN1_BIT_STRING, &us_val, 1))
83 return 1;
84 else
85 return 0;
86 }

88 /* Add a friendlyname to a safebag */

90 int PKCS12_add_friendlyname_asc(PKCS12_SAFEBAG *bag, const char *name,
91 int namelen)
92 {
93 if (X509at_add1_attr_by_NID(&bag->attrib, NID_friendlyName,
94 MBSTRING_ASC, (unsigned char *)name, namelen))
95 return 1;
96 else
97 return 0;
98 }

101 int PKCS12_add_friendlyname_uni(PKCS12_SAFEBAG *bag,
102 const unsigned char *name, int namelen)
103 {
104 if (X509at_add1_attr_by_NID(&bag->attrib, NID_friendlyName,
105 MBSTRING_BMP, name, namelen))
106 return 1;
107 else
108 return 0;
109 }

111 int PKCS12_add_CSPName_asc(PKCS12_SAFEBAG *bag, const char *name,
112 int namelen)
113 {
114 if (X509at_add1_attr_by_NID(&bag->attrib, NID_ms_csp_name,
115 MBSTRING_ASC, (unsigned char *)name, namelen))
116 return 1;
117 else
118 return 0;
119 }

121 ASN1_TYPE *PKCS12_get_attr_gen(STACK_OF(X509_ATTRIBUTE) *attrs, int attr_nid)
122 {
123 X509_ATTRIBUTE *attrib;
124 int i;
125 if (!attrs) return NULL;
126 for (i = 0; i < sk_X509_ATTRIBUTE_num (attrs); i++) {
127 attrib = sk_X509_ATTRIBUTE_value (attrs, i);

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_attr.c 3

128 if (OBJ_obj2nid (attrib->object) == attr_nid) {
129 if (sk_ASN1_TYPE_num (attrib->value.set))
130 return sk_ASN1_TYPE_value(attrib->value.set, 0);
131 else return NULL;
132 }
133 }
134 return NULL;
135 }

137 char *PKCS12_get_friendlyname(PKCS12_SAFEBAG *bag)
138 {
139 ASN1_TYPE *atype;
140 if (!(atype = PKCS12_get_attr(bag, NID_friendlyName))) return NULL;
141 if (atype->type != V_ASN1_BMPSTRING) return NULL;
142 return OPENSSL_uni2asc(atype->value.bmpstring->data,
143 atype->value.bmpstring->length);
144 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_crpt.c 1

**
 4355 Fri May 30 18:32:00 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_crpt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p12_crpt.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/pkcs12.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_crpt.c 2

63 /* PKCS#12 PBE algorithms now in static table */

65 void PKCS12_PBE_add(void)
66 {
67 }

69 int PKCS12_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen,
70 ASN1_TYPE *param, const EVP_CIPHER *cipher, const EVP_MD *md, in
71 {
72 PBEPARAM *pbe;
73 int saltlen, iter, ret;
74 unsigned char *salt;
75 const unsigned char *pbuf;
76 unsigned char key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH];

78 /* Extract useful info from parameter */
79 if (param == NULL || param->type != V_ASN1_SEQUENCE ||
80 param->value.sequence == NULL) {
81 PKCS12err(PKCS12_F_PKCS12_PBE_KEYIVGEN,PKCS12_R_DECODE_ERROR);
82 return 0;
83 }

85 pbuf = param->value.sequence->data;
86 if (!(pbe = d2i_PBEPARAM(NULL, &pbuf, param->value.sequence->length))) {
87 PKCS12err(PKCS12_F_PKCS12_PBE_KEYIVGEN,PKCS12_R_DECODE_ERROR);
88 return 0;
89 }

91 if (!pbe->iter) iter = 1;
92 else iter = ASN1_INTEGER_get (pbe->iter);
93 salt = pbe->salt->data;
94 saltlen = pbe->salt->length;
95 if (!PKCS12_key_gen (pass, passlen, salt, saltlen, PKCS12_KEY_ID,
96 iter, EVP_CIPHER_key_length(cipher), key, md)) {
97 PKCS12err(PKCS12_F_PKCS12_PBE_KEYIVGEN,PKCS12_R_KEY_GEN_ERROR);
98 PBEPARAM_free(pbe);
99 return 0;
100 }
101 if (!PKCS12_key_gen (pass, passlen, salt, saltlen, PKCS12_IV_ID,
102 iter, EVP_CIPHER_iv_length(cipher), iv, md)) {
103 PKCS12err(PKCS12_F_PKCS12_PBE_KEYIVGEN,PKCS12_R_IV_GEN_ERROR);
104 PBEPARAM_free(pbe);
105 return 0;
106 }
107 PBEPARAM_free(pbe);
108 ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, en_de);
109 OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH);
110 OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH);
111 return ret;
112 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_crt.c 1

**
 8346 Fri May 30 18:32:00 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_crt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p12_crt.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 1999-2002 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/pkcs12.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_crt.c 2

64 static int pkcs12_add_bag(STACK_OF(PKCS12_SAFEBAG) **pbags, PKCS12_SAFEBAG *bag)

66 static int copy_bag_attr(PKCS12_SAFEBAG *bag, EVP_PKEY *pkey, int nid)
67 {
68 int idx;
69 X509_ATTRIBUTE *attr;
70 idx = EVP_PKEY_get_attr_by_NID(pkey, nid, -1);
71 if (idx < 0)
72 return 1;
73 attr = EVP_PKEY_get_attr(pkey, idx);
74 if (!X509at_add1_attr(&bag->attrib, attr))
75 return 0;
76 return 1;
77 }

79 PKCS12 *PKCS12_create(char *pass, char *name, EVP_PKEY *pkey, X509 *cert,
80 STACK_OF(X509) *ca, int nid_key, int nid_cert, int iter, int mac_it
81 int keytype)
82 {
83 PKCS12 *p12 = NULL;
84 STACK_OF(PKCS7) *safes = NULL;
85 STACK_OF(PKCS12_SAFEBAG) *bags = NULL;
86 PKCS12_SAFEBAG *bag = NULL;
87 int i;
88 unsigned char keyid[EVP_MAX_MD_SIZE];
89 unsigned int keyidlen = 0;

91 /* Set defaults */
92 if (!nid_cert)
93 {
94 #ifdef OPENSSL_FIPS
95 if (FIPS_mode())
96 nid_cert = NID_pbe_WithSHA1And3_Key_TripleDES_CBC;
97 else
98 #endif
99 nid_cert = NID_pbe_WithSHA1And40BitRC2_CBC;
100 }
101 if (!nid_key)
102 nid_key = NID_pbe_WithSHA1And3_Key_TripleDES_CBC;
103 if (!iter)
104 iter = PKCS12_DEFAULT_ITER;
105 if (!mac_iter)
106 mac_iter = 1;

108 if(!pkey && !cert && !ca)
109 {
110 PKCS12err(PKCS12_F_PKCS12_CREATE,PKCS12_R_INVALID_NULL_ARGUMENT)
111 return NULL;
112 }

114 if (pkey && cert)
115 {
116 if(!X509_check_private_key(cert, pkey))
117 return NULL;
118 X509_digest(cert, EVP_sha1(), keyid, &keyidlen);
119 }

121 if (cert)
122 {
123 bag = PKCS12_add_cert(&bags, cert);
124 if(name && !PKCS12_add_friendlyname(bag, name, -1))
125 goto err;
126 if(keyidlen && !PKCS12_add_localkeyid(bag, keyid, keyidlen))
127 goto err;

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_crt.c 3

128 }

130 /* Add all other certificates */
131 for(i = 0; i < sk_X509_num(ca); i++)
132 {
133 if (!PKCS12_add_cert(&bags, sk_X509_value(ca, i)))
134 goto err;
135 }

137 if (bags && !PKCS12_add_safe(&safes, bags, nid_cert, iter, pass))
138 goto err;

140 sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free);
141 bags = NULL;

143 if (pkey)
144 {
145 bag = PKCS12_add_key(&bags, pkey, keytype, iter, nid_key, pass);

147 if (!bag)
148 goto err;

150 if (!copy_bag_attr(bag, pkey, NID_ms_csp_name))
151 goto err;
152 if (!copy_bag_attr(bag, pkey, NID_LocalKeySet))
153 goto err;

155 if(name && !PKCS12_add_friendlyname(bag, name, -1))
156 goto err;
157 if(keyidlen && !PKCS12_add_localkeyid(bag, keyid, keyidlen))
158 goto err;
159 }

161 if (bags && !PKCS12_add_safe(&safes, bags, -1, 0, NULL))
162 goto err;

164 sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free);
165 bags = NULL;

167 p12 = PKCS12_add_safes(safes, 0);

169 if (!p12)
170 goto err;

172 sk_PKCS7_pop_free(safes, PKCS7_free);

174 safes = NULL;

176 if ((mac_iter != -1) &&
177 !PKCS12_set_mac(p12, pass, -1, NULL, 0, mac_iter, NULL))
178 goto err;

180 return p12;

182 err:

184 if (p12)
185 PKCS12_free(p12);
186 if (safes)
187 sk_PKCS7_pop_free(safes, PKCS7_free);
188 if (bags)
189 sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free);
190 return NULL;

192 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_crt.c 4

194 PKCS12_SAFEBAG *PKCS12_add_cert(STACK_OF(PKCS12_SAFEBAG) **pbags, X509 *cert)
195 {
196 PKCS12_SAFEBAG *bag = NULL;
197 char *name;
198 int namelen = -1;
199 unsigned char *keyid;
200 int keyidlen = -1;

202 /* Add user certificate */
203 if(!(bag = PKCS12_x5092certbag(cert)))
204 goto err;

206 /* Use friendlyName and localKeyID in certificate.
207 * (if present)
208 */

210 name = (char *)X509_alias_get0(cert, &namelen);

212 if(name && !PKCS12_add_friendlyname(bag, name, namelen))
213 goto err;

215 keyid = X509_keyid_get0(cert, &keyidlen);

217 if(keyid && !PKCS12_add_localkeyid(bag, keyid, keyidlen))
218 goto err;

220 if (!pkcs12_add_bag(pbags, bag))
221 goto err;

223 return bag;

225 err:

227 if (bag)
228 PKCS12_SAFEBAG_free(bag);

230 return NULL;

232 }

234 PKCS12_SAFEBAG *PKCS12_add_key(STACK_OF(PKCS12_SAFEBAG) **pbags, EVP_PKEY *key,
235 int key_usage, int iter,
236 int nid_key, char *pass)
237 {

239 PKCS12_SAFEBAG *bag = NULL;
240 PKCS8_PRIV_KEY_INFO *p8 = NULL;

242 /* Make a PKCS#8 structure */
243 if(!(p8 = EVP_PKEY2PKCS8(key)))
244 goto err;
245 if(key_usage && !PKCS8_add_keyusage(p8, key_usage))
246 goto err;
247 if (nid_key != -1)
248 {
249 bag = PKCS12_MAKE_SHKEYBAG(nid_key, pass, -1, NULL, 0, iter, p8)
250 PKCS8_PRIV_KEY_INFO_free(p8);
251 }
252 else
253 bag = PKCS12_MAKE_KEYBAG(p8);

255 if(!bag)
256 goto err;

258 if (!pkcs12_add_bag(pbags, bag))
259 goto err;

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_crt.c 5

261 return bag;

263 err:

265 if (bag)
266 PKCS12_SAFEBAG_free(bag);

268 return NULL;

270 }

272 int PKCS12_add_safe(STACK_OF(PKCS7) **psafes, STACK_OF(PKCS12_SAFEBAG) *bags,
273 int nid_safe, int iter, char *pa
274 {
275 PKCS7 *p7 = NULL;
276 int free_safes = 0;

278 if (!*psafes)
279 {
280 *psafes = sk_PKCS7_new_null();
281 if (!*psafes)
282 return 0;
283 free_safes = 1;
284 }
285 else
286 free_safes = 0;

288 if (nid_safe == 0)
289 nid_safe = NID_pbe_WithSHA1And40BitRC2_CBC;

291 if (nid_safe == -1)
292 p7 = PKCS12_pack_p7data(bags);
293 else
294 p7 = PKCS12_pack_p7encdata(nid_safe, pass, -1, NULL, 0,
295 iter, bags);
296 if (!p7)
297 goto err;

299 if (!sk_PKCS7_push(*psafes, p7))
300 goto err;

302 return 1;

304 err:
305 if (free_safes)
306 {
307 sk_PKCS7_free(*psafes);
308 *psafes = NULL;
309 }

311 if (p7)
312 PKCS7_free(p7);

314 return 0;

316 }

318 static int pkcs12_add_bag(STACK_OF(PKCS12_SAFEBAG) **pbags, PKCS12_SAFEBAG *bag)
319 {
320 int free_bags;
321 if (!pbags)
322 return 1;
323 if (!*pbags)
324 {
325 *pbags = sk_PKCS12_SAFEBAG_new_null();

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_crt.c 6

326 if (!*pbags)
327 return 0;
328 free_bags = 1;
329 }
330 else
331 free_bags = 0;

333 if (!sk_PKCS12_SAFEBAG_push(*pbags, bag))
334 {
335 if (free_bags)
336 {
337 sk_PKCS12_SAFEBAG_free(*pbags);
338 *pbags = NULL;
339 }
340 return 0;
341 }

343 return 1;

345 }
346

348 PKCS12 *PKCS12_add_safes(STACK_OF(PKCS7) *safes, int nid_p7)
349 {
350 PKCS12 *p12;
351 if (nid_p7 <= 0)
352 nid_p7 = NID_pkcs7_data;
353 p12 = PKCS12_init(nid_p7);

355 if (!p12)
356 return NULL;

358 if(!PKCS12_pack_authsafes(p12, safes))
359 {
360 PKCS12_free(p12);
361 return NULL;
362 }

364 return p12;

366 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_decr.c 1

**
 5903 Fri May 30 18:32:00 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_decr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p12_decr.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/pkcs12.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_decr.c 2

63 /* Define this to dump decrypted output to files called DERnnn */
64 /*#define DEBUG_DECRYPT*/

67 /* Encrypt/Decrypt a buffer based on password and algor, result in a
68 * OPENSSL_malloc’ed buffer
69 */

71 unsigned char * PKCS12_pbe_crypt(X509_ALGOR *algor, const char *pass,
72 int passlen, unsigned char *in, int inlen, unsigned char **data,
73 int *datalen, int en_de)
74 {
75 unsigned char *out;
76 int outlen, i;
77 EVP_CIPHER_CTX ctx;

79 EVP_CIPHER_CTX_init(&ctx);
80 /* Decrypt data */
81 if (!EVP_PBE_CipherInit(algor->algorithm, pass, passlen,
82 algor->parameter, &ctx, en_de)) {
83 PKCS12err(PKCS12_F_PKCS12_PBE_CRYPT,PKCS12_R_PKCS12_ALGOR_CIPHER
84 return NULL;
85 }

87 if(!(out = OPENSSL_malloc(inlen + EVP_CIPHER_CTX_block_size(&ctx)))) {
88 PKCS12err(PKCS12_F_PKCS12_PBE_CRYPT,ERR_R_MALLOC_FAILURE);
89 goto err;
90 }

92 if (!EVP_CipherUpdate(&ctx, out, &i, in, inlen))
93 {
94 OPENSSL_free(out);
95 out = NULL;
96 PKCS12err(PKCS12_F_PKCS12_PBE_CRYPT,ERR_R_EVP_LIB);
97 goto err;
98 }

100 outlen = i;
101 if(!EVP_CipherFinal_ex(&ctx, out + i, &i)) {
102 OPENSSL_free(out);
103 out = NULL;
104 PKCS12err(PKCS12_F_PKCS12_PBE_CRYPT,PKCS12_R_PKCS12_CIPHERFINAL_
105 goto err;
106 }
107 outlen += i;
108 if (datalen) *datalen = outlen;
109 if (data) *data = out;
110 err:
111 EVP_CIPHER_CTX_cleanup(&ctx);
112 return out;

114 }

116 /* Decrypt an OCTET STRING and decode ASN1 structure
117 * if zbuf set zero buffer after use.
118 */

120 void * PKCS12_item_decrypt_d2i(X509_ALGOR *algor, const ASN1_ITEM *it,
121 const char *pass, int passlen, ASN1_OCTET_STRING *oct, int zbuf)
122 {
123 unsigned char *out;
124 const unsigned char *p;
125 void *ret;
126 int outlen;

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_decr.c 3

128 if (!PKCS12_pbe_crypt(algor, pass, passlen, oct->data, oct->length,
129 &out, &outlen, 0)) {
130 PKCS12err(PKCS12_F_PKCS12_ITEM_DECRYPT_D2I,PKCS12_R_PKCS12_PBE_C
131 return NULL;
132 }
133 p = out;
134 #ifdef DEBUG_DECRYPT
135 {
136 FILE *op;

138 char fname[30];
139 static int fnm = 1;
140 sprintf(fname, "DER%d", fnm++);
141 op = fopen(fname, "wb");
142 fwrite (p, 1, outlen, op);
143 fclose(op);
144 }
145 #endif
146 ret = ASN1_item_d2i(NULL, &p, outlen, it);
147 if (zbuf) OPENSSL_cleanse(out, outlen);
148 if(!ret) PKCS12err(PKCS12_F_PKCS12_ITEM_DECRYPT_D2I,PKCS12_R_DECODE_ERRO
149 OPENSSL_free(out);
150 return ret;
151 }

153 /* Encode ASN1 structure and encrypt, return OCTET STRING
154 * if zbuf set zero encoding.
155 */

157 ASN1_OCTET_STRING *PKCS12_item_i2d_encrypt(X509_ALGOR *algor, const ASN1_ITEM *i
158 const char *pass, int passlen,
159 void *obj, int zbuf)
160 {
161 ASN1_OCTET_STRING *oct;
162 unsigned char *in = NULL;
163 int inlen;
164 if (!(oct = M_ASN1_OCTET_STRING_new ())) {
165 PKCS12err(PKCS12_F_PKCS12_ITEM_I2D_ENCRYPT,ERR_R_MALLOC_FAILURE)
166 return NULL;
167 }
168 inlen = ASN1_item_i2d(obj, &in, it);
169 if (!in) {
170 PKCS12err(PKCS12_F_PKCS12_ITEM_I2D_ENCRYPT,PKCS12_R_ENCODE_ERROR
171 return NULL;
172 }
173 if (!PKCS12_pbe_crypt(algor, pass, passlen, in, inlen, &oct->data,
174 &oct->length, 1)) {
175 PKCS12err(PKCS12_F_PKCS12_ITEM_I2D_ENCRYPT,PKCS12_R_ENCRYPT_ERRO
176 OPENSSL_free(in);
177 return NULL;
178 }
179 if (zbuf) OPENSSL_cleanse(in, inlen);
180 OPENSSL_free(in);
181 return oct;
182 }

184 IMPLEMENT_PKCS12_STACK_OF(PKCS7)

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_init.c 1

**
 3474 Fri May 30 18:32:00 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_init.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p12_init.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/pkcs12.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_init.c 2

63 /* Initialise a PKCS12 structure to take data */

65 PKCS12 *PKCS12_init(int mode)
66 {
67 PKCS12 *pkcs12;
68 if (!(pkcs12 = PKCS12_new())) {
69 PKCS12err(PKCS12_F_PKCS12_INIT,ERR_R_MALLOC_FAILURE);
70 return NULL;
71 }
72 ASN1_INTEGER_set(pkcs12->version, 3);
73 pkcs12->authsafes->type = OBJ_nid2obj(mode);
74 switch (mode) {
75 case NID_pkcs7_data:
76 if (!(pkcs12->authsafes->d.data =
77 M_ASN1_OCTET_STRING_new())) {
78 PKCS12err(PKCS12_F_PKCS12_INIT,ERR_R_MALLOC_FAILURE);
79 goto err;
80 }
81 break;
82 default:
83 PKCS12err(PKCS12_F_PKCS12_INIT,
84 PKCS12_R_UNSUPPORTED_PKCS12_MODE);
85 goto err;
86 }
87
88 return pkcs12;
89 err:
90 if (pkcs12 != NULL) PKCS12_free(pkcs12);
91 return NULL;
92 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_key.c 1

**
 6897 Fri May 30 18:32:00 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_key.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p12_key.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/pkcs12.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_key.c 2

62 #include <openssl/bn.h>

64 /* Uncomment out this line to get debugging info about key generation */
65 /*#define DEBUG_KEYGEN*/
66 #ifdef DEBUG_KEYGEN
67 #include <openssl/bio.h>
68 extern BIO *bio_err;
69 void h__dump (unsigned char *p, int len);
70 #endif

72 /* PKCS12 compatible key/IV generation */
73 #ifndef min
74 #define min(a,b) ((a) < (b) ? (a) : (b))
75 #endif

77 int PKCS12_key_gen_asc(const char *pass, int passlen, unsigned char *salt,
78 int saltlen, int id, int iter, int n, unsigned char *out,
79 const EVP_MD *md_type)
80 {
81 int ret;
82 unsigned char *unipass;
83 int uniplen;

85 if(!pass) {
86 unipass = NULL;
87 uniplen = 0;
88 } else if (!OPENSSL_asc2uni(pass, passlen, &unipass, &uniplen)) {
89 PKCS12err(PKCS12_F_PKCS12_KEY_GEN_ASC,ERR_R_MALLOC_FAILURE);
90 return 0;
91 }
92 ret = PKCS12_key_gen_uni(unipass, uniplen, salt, saltlen,
93 id, iter, n, out, md_type);
94 if (ret <= 0)
95 return 0;
96 if(unipass) {
97 OPENSSL_cleanse(unipass, uniplen); /* Clear password from m
98 OPENSSL_free(unipass);
99 }
100 return ret;
101 }

103 int PKCS12_key_gen_uni(unsigned char *pass, int passlen, unsigned char *salt,
104 int saltlen, int id, int iter, int n, unsigned char *out,
105 const EVP_MD *md_type)
106 {
107 unsigned char *B, *D, *I, *p, *Ai;
108 int Slen, Plen, Ilen, Ijlen;
109 int i, j, u, v;
110 int ret = 0;
111 BIGNUM *Ij, *Bpl1; /* These hold Ij and B + 1 */
112 EVP_MD_CTX ctx;
113 #ifdef DEBUG_KEYGEN
114 unsigned char *tmpout = out;
115 int tmpn = n;
116 #endif

118 #if 0
119 if (!pass) {
120 PKCS12err(PKCS12_F_PKCS12_KEY_GEN_UNI,ERR_R_PASSED_NULL_PARAMETE
121 return 0;
122 }
123 #endif

125 EVP_MD_CTX_init(&ctx);
126 #ifdef DEBUG_KEYGEN
127 fprintf(stderr, "KEYGEN DEBUG\n");

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_key.c 3

128 fprintf(stderr, "ID %d, ITER %d\n", id, iter);
129 fprintf(stderr, "Password (length %d):\n", passlen);
130 h__dump(pass, passlen);
131 fprintf(stderr, "Salt (length %d):\n", saltlen);
132 h__dump(salt, saltlen);
133 #endif
134 v = EVP_MD_block_size (md_type);
135 u = EVP_MD_size (md_type);
136 if (u < 0)
137 return 0;
138 D = OPENSSL_malloc (v);
139 Ai = OPENSSL_malloc (u);
140 B = OPENSSL_malloc (v + 1);
141 Slen = v * ((saltlen+v-1)/v);
142 if(passlen) Plen = v * ((passlen+v-1)/v);
143 else Plen = 0;
144 Ilen = Slen + Plen;
145 I = OPENSSL_malloc (Ilen);
146 Ij = BN_new();
147 Bpl1 = BN_new();
148 if (!D || !Ai || !B || !I || !Ij || !Bpl1)
149 goto err;
150 for (i = 0; i < v; i++) D[i] = id;
151 p = I;
152 for (i = 0; i < Slen; i++) *p++ = salt[i % saltlen];
153 for (i = 0; i < Plen; i++) *p++ = pass[i % passlen];
154 for (;;) {
155 if (!EVP_DigestInit_ex(&ctx, md_type, NULL)
156 || !EVP_DigestUpdate(&ctx, D, v)
157 || !EVP_DigestUpdate(&ctx, I, Ilen)
158 || !EVP_DigestFinal_ex(&ctx, Ai, NULL))
159 goto err;
160 for (j = 1; j < iter; j++) {
161 if (!EVP_DigestInit_ex(&ctx, md_type, NULL)
162 || !EVP_DigestUpdate(&ctx, Ai, u)
163 || !EVP_DigestFinal_ex(&ctx, Ai, NULL))
164 goto err;
165 }
166 memcpy (out, Ai, min (n, u));
167 if (u >= n) {
168 #ifdef DEBUG_KEYGEN
169 fprintf(stderr, "Output KEY (length %d)\n", tmpn);
170 h__dump(tmpout, tmpn);
171 #endif
172 ret = 1;
173 goto end;
174 }
175 n -= u;
176 out += u;
177 for (j = 0; j < v; j++) B[j] = Ai[j % u];
178 /* Work out B + 1 first then can use B as tmp space */
179 if (!BN_bin2bn (B, v, Bpl1))
180 goto err;
181 if (!BN_add_word (Bpl1, 1))
182 goto err;
183 for (j = 0; j < Ilen ; j+=v) {
184 if (!BN_bin2bn(I + j, v, Ij))
185 goto err;
186 if (!BN_add(Ij, Ij, Bpl1))
187 goto err;
188 if (!BN_bn2bin(Ij, B))
189 goto err;
190 Ijlen = BN_num_bytes (Ij);
191 /* If more than 2^(v*8) - 1 cut off MSB */
192 if (Ijlen > v) {
193 if (!BN_bn2bin (Ij, B))

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_key.c 4

194 goto err;
195 memcpy (I + j, B + 1, v);
196 #ifndef PKCS12_BROKEN_KEYGEN
197 /* If less than v bytes pad with zeroes */
198 } else if (Ijlen < v) {
199 memset(I + j, 0, v - Ijlen);
200 if (!BN_bn2bin(Ij, I + j + v - Ijlen))
201 goto err;
202 #endif
203 } else if (!BN_bn2bin (Ij, I + j))
204 goto err;
205 }
206 }

208 err:
209 PKCS12err(PKCS12_F_PKCS12_KEY_GEN_UNI,ERR_R_MALLOC_FAILURE);

211 end:
212 OPENSSL_free (Ai);
213 OPENSSL_free (B);
214 OPENSSL_free (D);
215 OPENSSL_free (I);
216 BN_free (Ij);
217 BN_free (Bpl1);
218 EVP_MD_CTX_cleanup(&ctx);
219 return ret;
220 }
221 #ifdef DEBUG_KEYGEN
222 void h__dump (unsigned char *p, int len)
223 {
224 for (; len --; p++) fprintf(stderr, "%02X", *p);
225 fprintf(stderr, "\n");
226 }
227 #endif

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_kiss.c 1

**
 8201 Fri May 30 18:32:00 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_kiss.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p12_kiss.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/pkcs12.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_kiss.c 2

63 /* Simplified PKCS#12 routines */

65 static int parse_pk12(PKCS12 *p12, const char *pass, int passlen,
66 EVP_PKEY **pkey, STACK_OF(X509) *ocerts);

68 static int parse_bags(STACK_OF(PKCS12_SAFEBAG) *bags, const char *pass,
69 int passlen, EVP_PKEY **pkey, STACK_OF(X509) *ocerts);

71 static int parse_bag(PKCS12_SAFEBAG *bag, const char *pass, int passlen,
72 EVP_PKEY **pkey, STACK_OF(X509) *ocerts);

74 /* Parse and decrypt a PKCS#12 structure returning user key, user cert
75 * and other (CA) certs. Note either ca should be NULL, *ca should be NULL,
76 * or it should point to a valid STACK structure. pkey and cert can be
77 * passed unitialised.
78 */

80 int PKCS12_parse(PKCS12 *p12, const char *pass, EVP_PKEY **pkey, X509 **cert,
81 STACK_OF(X509) **ca)
82 {
83 STACK_OF(X509) *ocerts = NULL;
84 X509 *x = NULL;
85 /* Check for NULL PKCS12 structure */

87 if(!p12)
88 {
89 PKCS12err(PKCS12_F_PKCS12_PARSE,PKCS12_R_INVALID_NULL_PKCS12_POI
90 return 0;
91 }

93 if(pkey)
94 *pkey = NULL;
95 if(cert)
96 *cert = NULL;

98 /* Check the mac */

100 /* If password is zero length or NULL then try verifying both cases
101 * to determine which password is correct. The reason for this is that
102 * under PKCS#12 password based encryption no password and a zero length
103 * password are two different things...
104 */

106 if(!pass || !*pass) {
107 if(PKCS12_verify_mac(p12, NULL, 0)) pass = NULL;
108 else if(PKCS12_verify_mac(p12, "", 0)) pass = "";
109 else {
110 PKCS12err(PKCS12_F_PKCS12_PARSE,PKCS12_R_MAC_VERIFY_FAIL
111 goto err;
112 }
113 } else if (!PKCS12_verify_mac(p12, pass, -1)) {
114 PKCS12err(PKCS12_F_PKCS12_PARSE,PKCS12_R_MAC_VERIFY_FAILURE);
115 goto err;
116 }

118 /* Allocate stack for other certificates */
119 ocerts = sk_X509_new_null();

121 if (!ocerts)
122 {
123 PKCS12err(PKCS12_F_PKCS12_PARSE,ERR_R_MALLOC_FAILURE);
124 return 0;
125 }

127 if (!parse_pk12 (p12, pass, -1, pkey, ocerts))

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_kiss.c 3

128 {
129 PKCS12err(PKCS12_F_PKCS12_PARSE,PKCS12_R_PARSE_ERROR);
130 goto err;
131 }

133 while ((x = sk_X509_pop(ocerts)))
134 {
135 if (pkey && *pkey && cert && !*cert)
136 {
137 if (X509_check_private_key(x, *pkey))
138 {
139 *cert = x;
140 x = NULL;
141 }
142 }

144 if (ca && x)
145 {
146 if (!*ca)
147 *ca = sk_X509_new_null();
148 if (!*ca)
149 goto err;
150 if (!sk_X509_push(*ca, x))
151 goto err;
152 x = NULL;
153 }
154 if (x)
155 X509_free(x);
156 }

158 if (ocerts)
159 sk_X509_pop_free(ocerts, X509_free);

161 return 1;

163 err:

165 if (pkey && *pkey)
166 EVP_PKEY_free(*pkey);
167 if (cert && *cert)
168 X509_free(*cert);
169 if (x)
170 X509_free(x);
171 if (ocerts)
172 sk_X509_pop_free(ocerts, X509_free);
173 return 0;

175 }

177 /* Parse the outer PKCS#12 structure */

179 static int parse_pk12(PKCS12 *p12, const char *pass, int passlen,
180 EVP_PKEY **pkey, STACK_OF(X509) *ocerts)
181 {
182 STACK_OF(PKCS7) *asafes;
183 STACK_OF(PKCS12_SAFEBAG) *bags;
184 int i, bagnid;
185 PKCS7 *p7;

187 if (!(asafes = PKCS12_unpack_authsafes (p12))) return 0;
188 for (i = 0; i < sk_PKCS7_num (asafes); i++) {
189 p7 = sk_PKCS7_value (asafes, i);
190 bagnid = OBJ_obj2nid (p7->type);
191 if (bagnid == NID_pkcs7_data) {
192 bags = PKCS12_unpack_p7data(p7);
193 } else if (bagnid == NID_pkcs7_encrypted) {

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_kiss.c 4

194 bags = PKCS12_unpack_p7encdata(p7, pass, passlen);
195 } else continue;
196 if (!bags) {
197 sk_PKCS7_pop_free(asafes, PKCS7_free);
198 return 0;
199 }
200 if (!parse_bags(bags, pass, passlen, pkey, ocerts)) {
201 sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free);
202 sk_PKCS7_pop_free(asafes, PKCS7_free);
203 return 0;
204 }
205 sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free);
206 }
207 sk_PKCS7_pop_free(asafes, PKCS7_free);
208 return 1;
209 }

212 static int parse_bags(STACK_OF(PKCS12_SAFEBAG) *bags, const char *pass,
213 int passlen, EVP_PKEY **pkey, STACK_OF(X509) *ocerts)
214 {
215 int i;
216 for (i = 0; i < sk_PKCS12_SAFEBAG_num(bags); i++) {
217 if (!parse_bag(sk_PKCS12_SAFEBAG_value (bags, i),
218 pass, passlen, pkey, ocerts))
219 return 0;
220 }
221 return 1;
222 }

224 static int parse_bag(PKCS12_SAFEBAG *bag, const char *pass, int passlen,
225 EVP_PKEY **pkey, STACK_OF(X509) *ocerts)
226 {
227 PKCS8_PRIV_KEY_INFO *p8;
228 X509 *x509;
229 ASN1_TYPE *attrib;
230 ASN1_BMPSTRING *fname = NULL;
231 ASN1_OCTET_STRING *lkid = NULL;

233 if ((attrib = PKCS12_get_attr (bag, NID_friendlyName)))
234 fname = attrib->value.bmpstring;

236 if ((attrib = PKCS12_get_attr (bag, NID_localKeyID)))
237 lkid = attrib->value.octet_string;

239 switch (M_PKCS12_bag_type(bag))
240 {
241 case NID_keyBag:
242 if (!pkey || *pkey)
243 return 1;
244 if (!(*pkey = EVP_PKCS82PKEY(bag->value.keybag)))
245 return 0;
246 break;

248 case NID_pkcs8ShroudedKeyBag:
249 if (!pkey || *pkey)
250 return 1;
251 if (!(p8 = PKCS12_decrypt_skey(bag, pass, passlen)))
252 return 0;
253 *pkey = EVP_PKCS82PKEY(p8);
254 PKCS8_PRIV_KEY_INFO_free(p8);
255 if (!(*pkey)) return 0;
256 break;

258 case NID_certBag:
259 if (M_PKCS12_cert_bag_type(bag) != NID_x509Certificate)

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_kiss.c 5

260 return 1;
261 if (!(x509 = PKCS12_certbag2x509(bag)))
262 return 0;
263 if(lkid && !X509_keyid_set1(x509, lkid->data, lkid->length))
264 {
265 X509_free(x509);
266 return 0;
267 }
268 if(fname) {
269 int len, r;
270 unsigned char *data;
271 len = ASN1_STRING_to_UTF8(&data, fname);
272 if(len > 0) {
273 r = X509_alias_set1(x509, data, len);
274 OPENSSL_free(data);
275 if (!r)
276 {
277 X509_free(x509);
278 return 0;
279 }
280 }
281 }

283 if(!sk_X509_push(ocerts, x509))
284 {
285 X509_free(x509);
286 return 0;
287 }

289 break;

291 case NID_safeContentsBag:
292 return parse_bags(bag->value.safes, pass, passlen,
293 pkey, ocerts);
294 break;

296 default:
297 return 1;
298 break;
299 }
300 return 1;
301 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_mutl.c 1

**
 6529 Fri May 30 18:32:00 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_mutl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p12_mutl.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #ifndef OPENSSL_NO_HMAC
60 #include <stdio.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_mutl.c 2

62 #include <openssl/hmac.h>
63 #include <openssl/rand.h>
64 #include <openssl/pkcs12.h>

66 /* Generate a MAC */
67 int PKCS12_gen_mac(PKCS12 *p12, const char *pass, int passlen,
68 unsigned char *mac, unsigned int *maclen)
69 {
70 const EVP_MD *md_type;
71 HMAC_CTX hmac;
72 unsigned char key[EVP_MAX_MD_SIZE], *salt;
73 int saltlen, iter;
74 int md_size;

76 if (!PKCS7_type_is_data(p12->authsafes))
77 {
78 PKCS12err(PKCS12_F_PKCS12_GEN_MAC,PKCS12_R_CONTENT_TYPE_NOT_DATA
79 return 0;
80 }

82 salt = p12->mac->salt->data;
83 saltlen = p12->mac->salt->length;
84 if (!p12->mac->iter) iter = 1;
85 else iter = ASN1_INTEGER_get (p12->mac->iter);
86 if(!(md_type =
87 EVP_get_digestbyobj (p12->mac->dinfo->algor->algorithm))) {
88 PKCS12err(PKCS12_F_PKCS12_GEN_MAC,PKCS12_R_UNKNOWN_DIGEST_ALGORI
89 return 0;
90 }
91 md_size = EVP_MD_size(md_type);
92 if (md_size < 0)
93 return 0;
94 if(!PKCS12_key_gen (pass, passlen, salt, saltlen, PKCS12_MAC_ID, iter,
95 md_size, key, md_type)) {
96 PKCS12err(PKCS12_F_PKCS12_GEN_MAC,PKCS12_R_KEY_GEN_ERROR);
97 return 0;
98 }
99 HMAC_CTX_init(&hmac);
100 if (!HMAC_Init_ex(&hmac, key, md_size, md_type, NULL)
101 || !HMAC_Update(&hmac, p12->authsafes->d.data->data,
102 p12->authsafes->d.data->length)
103 || !HMAC_Final(&hmac, mac, maclen))
104 {
105 HMAC_CTX_cleanup(&hmac);
106 return 0;
107 }
108 HMAC_CTX_cleanup(&hmac);
109 return 1;
110 }

112 /* Verify the mac */
113 int PKCS12_verify_mac(PKCS12 *p12, const char *pass, int passlen)
114 {
115 unsigned char mac[EVP_MAX_MD_SIZE];
116 unsigned int maclen;
117 if(p12->mac == NULL) {
118 PKCS12err(PKCS12_F_PKCS12_VERIFY_MAC,PKCS12_R_MAC_ABSENT);
119 return 0;
120 }
121 if (!PKCS12_gen_mac (p12, pass, passlen, mac, &maclen)) {
122 PKCS12err(PKCS12_F_PKCS12_VERIFY_MAC,PKCS12_R_MAC_GENERATION_ERR
123 return 0;
124 }
125 if ((maclen != (unsigned int)p12->mac->dinfo->digest->length)
126 || memcmp (mac, p12->mac->dinfo->digest->data, maclen)) return 0;
127 return 1;

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_mutl.c 3

128 }

130 /* Set a mac */

132 int PKCS12_set_mac(PKCS12 *p12, const char *pass, int passlen,
133 unsigned char *salt, int saltlen, int iter, const EVP_MD *md_type)
134 {
135 unsigned char mac[EVP_MAX_MD_SIZE];
136 unsigned int maclen;

138 if (!md_type) md_type = EVP_sha1();
139 if (PKCS12_setup_mac (p12, iter, salt, saltlen, md_type) ==
140 PKCS12_ERROR) {
141 PKCS12err(PKCS12_F_PKCS12_SET_MAC,PKCS12_R_MAC_SETUP_ERROR);
142 return 0;
143 }
144 if (!PKCS12_gen_mac (p12, pass, passlen, mac, &maclen)) {
145 PKCS12err(PKCS12_F_PKCS12_SET_MAC,PKCS12_R_MAC_GENERATION_ERROR)
146 return 0;
147 }
148 if (!(M_ASN1_OCTET_STRING_set (p12->mac->dinfo->digest, mac, maclen))) {
149 PKCS12err(PKCS12_F_PKCS12_SET_MAC,PKCS12_R_MAC_STRING_SET_ERROR)
150 return 0;
151 }
152 return 1;
153 }

155 /* Set up a mac structure */
156 int PKCS12_setup_mac(PKCS12 *p12, int iter, unsigned char *salt, int saltlen,
157 const EVP_MD *md_type)
158 {
159 if (!(p12->mac = PKCS12_MAC_DATA_new())) return PKCS12_ERROR;
160 if (iter > 1) {
161 if(!(p12->mac->iter = M_ASN1_INTEGER_new())) {
162 PKCS12err(PKCS12_F_PKCS12_SETUP_MAC, ERR_R_MALLOC_FAILUR
163 return 0;
164 }
165 if (!ASN1_INTEGER_set(p12->mac->iter, iter)) {
166 PKCS12err(PKCS12_F_PKCS12_SETUP_MAC, ERR_R_MALLOC_FAILUR
167 return 0;
168 }
169 }
170 if (!saltlen) saltlen = PKCS12_SALT_LEN;
171 p12->mac->salt->length = saltlen;
172 if (!(p12->mac->salt->data = OPENSSL_malloc (saltlen))) {
173 PKCS12err(PKCS12_F_PKCS12_SETUP_MAC, ERR_R_MALLOC_FAILURE);
174 return 0;
175 }
176 if (!salt) {
177 if (RAND_pseudo_bytes (p12->mac->salt->data, saltlen) < 0)
178 return 0;
179 }
180 else memcpy (p12->mac->salt->data, salt, saltlen);
181 p12->mac->dinfo->algor->algorithm = OBJ_nid2obj(EVP_MD_type(md_type));
182 if (!(p12->mac->dinfo->algor->parameter = ASN1_TYPE_new())) {
183 PKCS12err(PKCS12_F_PKCS12_SETUP_MAC, ERR_R_MALLOC_FAILURE);
184 return 0;
185 }
186 p12->mac->dinfo->algor->parameter->type = V_ASN1_NULL;
187
188 return 1;
189 }
190 #endif

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_npas.c 1

**
 7472 Fri May 30 18:32:00 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_npas.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p12_npas.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_npas.c 2

62 #include <openssl/pem.h>
63 #include <openssl/err.h>
64 #include <openssl/pkcs12.h>

66 /* PKCS#12 password change routine */

68 static int newpass_p12(PKCS12 *p12, char *oldpass, char *newpass);
69 static int newpass_bags(STACK_OF(PKCS12_SAFEBAG) *bags, char *oldpass,
70 char *newpass);
71 static int newpass_bag(PKCS12_SAFEBAG *bag, char *oldpass, char *newpass);
72 static int alg_get(X509_ALGOR *alg, int *pnid, int *piter, int *psaltlen);

74 /*
75 * Change the password on a PKCS#12 structure.
76 */

78 int PKCS12_newpass(PKCS12 *p12, char *oldpass, char *newpass)
79 {
80 /* Check for NULL PKCS12 structure */

82 if(!p12) {
83 PKCS12err(PKCS12_F_PKCS12_NEWPASS,PKCS12_R_INVALID_NULL_PKCS12_P
84 return 0;
85 }

87 /* Check the mac */
88
89 if (!PKCS12_verify_mac(p12, oldpass, -1)) {
90 PKCS12err(PKCS12_F_PKCS12_NEWPASS,PKCS12_R_MAC_VERIFY_FAILURE);
91 return 0;
92 }

94 if (!newpass_p12(p12, oldpass, newpass)) {
95 PKCS12err(PKCS12_F_PKCS12_NEWPASS,PKCS12_R_PARSE_ERROR);
96 return 0;
97 }

99 return 1;
100 }

102 /* Parse the outer PKCS#12 structure */

104 static int newpass_p12(PKCS12 *p12, char *oldpass, char *newpass)
105 {
106 STACK_OF(PKCS7) *asafes, *newsafes;
107 STACK_OF(PKCS12_SAFEBAG) *bags;
108 int i, bagnid, pbe_nid = 0, pbe_iter = 0, pbe_saltlen = 0;
109 PKCS7 *p7, *p7new;
110 ASN1_OCTET_STRING *p12_data_tmp = NULL, *macnew = NULL;
111 unsigned char mac[EVP_MAX_MD_SIZE];
112 unsigned int maclen;

114 if (!(asafes = PKCS12_unpack_authsafes(p12))) return 0;
115 if(!(newsafes = sk_PKCS7_new_null())) return 0;
116 for (i = 0; i < sk_PKCS7_num (asafes); i++) {
117 p7 = sk_PKCS7_value(asafes, i);
118 bagnid = OBJ_obj2nid(p7->type);
119 if (bagnid == NID_pkcs7_data) {
120 bags = PKCS12_unpack_p7data(p7);
121 } else if (bagnid == NID_pkcs7_encrypted) {
122 bags = PKCS12_unpack_p7encdata(p7, oldpass, -1);
123 if (!alg_get(p7->d.encrypted->enc_data->algorithm,
124 &pbe_nid, &pbe_iter, &pbe_saltlen))
125 {
126 sk_PKCS12_SAFEBAG_pop_free(bags,
127 PKCS12_SAFEBAG_free);

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_npas.c 3

128 bags = NULL;
129 }
130 } else continue;
131 if (!bags) {
132 sk_PKCS7_pop_free(asafes, PKCS7_free);
133 return 0;
134 }
135 if (!newpass_bags(bags, oldpass, newpass)) {
136 sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free);
137 sk_PKCS7_pop_free(asafes, PKCS7_free);
138 return 0;
139 }
140 /* Repack bag in same form with new password */
141 if (bagnid == NID_pkcs7_data) p7new = PKCS12_pack_p7data(bags);
142 else p7new = PKCS12_pack_p7encdata(pbe_nid, newpass, -1, NULL,
143 pbe_saltlen, pbe_iter, bags);
144 sk_PKCS12_SAFEBAG_pop_free(bags, PKCS12_SAFEBAG_free);
145 if(!p7new) {
146 sk_PKCS7_pop_free(asafes, PKCS7_free);
147 return 0;
148 }
149 sk_PKCS7_push(newsafes, p7new);
150 }
151 sk_PKCS7_pop_free(asafes, PKCS7_free);

153 /* Repack safe: save old safe in case of error */

155 p12_data_tmp = p12->authsafes->d.data;
156 if(!(p12->authsafes->d.data = ASN1_OCTET_STRING_new())) goto saferr;
157 if(!PKCS12_pack_authsafes(p12, newsafes)) goto saferr;

159 if(!PKCS12_gen_mac(p12, newpass, -1, mac, &maclen)) goto saferr;
160 if(!(macnew = ASN1_OCTET_STRING_new())) goto saferr;
161 if(!ASN1_OCTET_STRING_set(macnew, mac, maclen)) goto saferr;
162 ASN1_OCTET_STRING_free(p12->mac->dinfo->digest);
163 p12->mac->dinfo->digest = macnew;
164 ASN1_OCTET_STRING_free(p12_data_tmp);

166 return 1;

168 saferr:
169 /* Restore old safe */
170 ASN1_OCTET_STRING_free(p12->authsafes->d.data);
171 ASN1_OCTET_STRING_free(macnew);
172 p12->authsafes->d.data = p12_data_tmp;
173 return 0;

175 }

178 static int newpass_bags(STACK_OF(PKCS12_SAFEBAG) *bags, char *oldpass,
179 char *newpass)
180 {
181 int i;
182 for (i = 0; i < sk_PKCS12_SAFEBAG_num(bags); i++) {
183 if (!newpass_bag(sk_PKCS12_SAFEBAG_value(bags, i),
184 oldpass, newpass))
185 return 0;
186 }
187 return 1;
188 }

190 /* Change password of safebag: only needs handle shrouded keybags */

192 static int newpass_bag(PKCS12_SAFEBAG *bag, char *oldpass, char *newpass)
193 {

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_npas.c 4

194 PKCS8_PRIV_KEY_INFO *p8;
195 X509_SIG *p8new;
196 int p8_nid, p8_saltlen, p8_iter;

198 if(M_PKCS12_bag_type(bag) != NID_pkcs8ShroudedKeyBag) return 1;

200 if (!(p8 = PKCS8_decrypt(bag->value.shkeybag, oldpass, -1))) return 0;
201 if (!alg_get(bag->value.shkeybag->algor, &p8_nid, &p8_iter,
202 &p8_saltlen))
203 return 0;
204 if(!(p8new = PKCS8_encrypt(p8_nid, NULL, newpass, -1, NULL, p8_saltlen,
205 p8_iter, p8))) return 0;
206 X509_SIG_free(bag->value.shkeybag);
207 bag->value.shkeybag = p8new;
208 return 1;
209 }

211 static int alg_get(X509_ALGOR *alg, int *pnid, int *piter, int *psaltlen)
212 {
213 PBEPARAM *pbe;
214 const unsigned char *p;

216 p = alg->parameter->value.sequence->data;
217 pbe = d2i_PBEPARAM(NULL, &p, alg->parameter->value.sequence->length);
218 if (!pbe)
219 return 0;
220 *pnid = OBJ_obj2nid(alg->algorithm);
221 *piter = ASN1_INTEGER_get(pbe->iter);
222 *psaltlen = pbe->salt->length;
223 PBEPARAM_free(pbe);
224 return 1;
225 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_p8d.c 1

**
 3005 Fri May 30 18:32:00 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_p8d.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p12_p8d.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/pkcs12.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_p8d.c 2

63 PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *p8, const char *pass, int passlen)
64 {
65 return PKCS12_item_decrypt_d2i(p8->algor, ASN1_ITEM_rptr(PKCS8_PRIV_KEY_
66 passlen, p8->digest, 1);
67 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_p8e.c 1

**
 3688 Fri May 30 18:32:00 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_p8e.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p12_p8e.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/pkcs12.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_p8e.c 2

63 X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher,
64 const char *pass, int passlen,
65 unsigned char *salt, int saltlen, int iter,
66 PKCS8_PRIV_KEY_INFO *p8inf)
67 {
68 X509_SIG *p8 = NULL;
69 X509_ALGOR *pbe;

71 if (!(p8 = X509_SIG_new())) {
72 PKCS12err(PKCS12_F_PKCS8_ENCRYPT, ERR_R_MALLOC_FAILURE);
73 goto err;
74 }

76 if(pbe_nid == -1) pbe = PKCS5_pbe2_set(cipher, iter, salt, saltlen);
77 else pbe = PKCS5_pbe_set(pbe_nid, iter, salt, saltlen);
78 if(!pbe) {
79 PKCS12err(PKCS12_F_PKCS8_ENCRYPT, ERR_R_ASN1_LIB);
80 goto err;
81 }
82 X509_ALGOR_free(p8->algor);
83 p8->algor = pbe;
84 M_ASN1_OCTET_STRING_free(p8->digest);
85 p8->digest = PKCS12_item_i2d_encrypt(pbe, ASN1_ITEM_rptr(PKCS8_PRIV_KEY_
86 pass, passlen, p8inf, 1);
87 if(!p8->digest) {
88 PKCS12err(PKCS12_F_PKCS8_ENCRYPT, PKCS12_R_ENCRYPT_ERROR);
89 goto err;
90 }

92 return p8;

94 err:
95 X509_SIG_free(p8);
96 return NULL;
97 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_utl.c 1

**
 5016 Fri May 30 18:32:01 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_utl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* p12_utl.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/pkcs12.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_utl.c 2

63 /* Cheap and nasty Unicode stuff */

65 unsigned char *OPENSSL_asc2uni(const char *asc, int asclen, unsigned char **uni,
66 {
67 int ulen, i;
68 unsigned char *unitmp;
69 if (asclen == -1) asclen = strlen(asc);
70 ulen = asclen*2 + 2;
71 if (!(unitmp = OPENSSL_malloc(ulen))) return NULL;
72 for (i = 0; i < ulen - 2; i+=2) {
73 unitmp[i] = 0;
74 unitmp[i + 1] = asc[i>>1];
75 }
76 /* Make result double null terminated */
77 unitmp[ulen - 2] = 0;
78 unitmp[ulen - 1] = 0;
79 if (unilen) *unilen = ulen;
80 if (uni) *uni = unitmp;
81 return unitmp;
82 }

84 char *OPENSSL_uni2asc(unsigned char *uni, int unilen)
85 {
86 int asclen, i;
87 char *asctmp;
88 asclen = unilen / 2;
89 /* If no terminating zero allow for one */
90 if (!unilen || uni[unilen - 1]) asclen++;
91 uni++;
92 if (!(asctmp = OPENSSL_malloc(asclen))) return NULL;
93 for (i = 0; i < unilen; i+=2) asctmp[i>>1] = uni[i];
94 asctmp[asclen - 1] = 0;
95 return asctmp;
96 }

98 int i2d_PKCS12_bio(BIO *bp, PKCS12 *p12)
99 {
100 return ASN1_item_i2d_bio(ASN1_ITEM_rptr(PKCS12), bp, p12);
101 }

103 #ifndef OPENSSL_NO_FP_API
104 int i2d_PKCS12_fp(FILE *fp, PKCS12 *p12)
105 {
106 return ASN1_item_i2d_fp(ASN1_ITEM_rptr(PKCS12), fp, p12);
107 }
108 #endif

110 PKCS12 *d2i_PKCS12_bio(BIO *bp, PKCS12 **p12)
111 {
112 return ASN1_item_d2i_bio(ASN1_ITEM_rptr(PKCS12), bp, p12);
113 }
114 #ifndef OPENSSL_NO_FP_API
115 PKCS12 *d2i_PKCS12_fp(FILE *fp, PKCS12 **p12)
116 {
117 return ASN1_item_d2i_fp(ASN1_ITEM_rptr(PKCS12), fp, p12);
118 }
119 #endif

121 PKCS12_SAFEBAG *PKCS12_x5092certbag(X509 *x509)
122 {
123 return PKCS12_item_pack_safebag(x509, ASN1_ITEM_rptr(X509),
124 NID_x509Certificate, NID_certBag);
125 }

127 PKCS12_SAFEBAG *PKCS12_x509crl2certbag(X509_CRL *crl)

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/p12_utl.c 3

128 {
129 return PKCS12_item_pack_safebag(crl, ASN1_ITEM_rptr(X509_CRL),
130 NID_x509Crl, NID_crlBag);
131 }

133 X509 *PKCS12_certbag2x509(PKCS12_SAFEBAG *bag)
134 {
135 if(M_PKCS12_bag_type(bag) != NID_certBag) return NULL;
136 if(M_PKCS12_cert_bag_type(bag) != NID_x509Certificate) return NULL;
137 return ASN1_item_unpack(bag->value.bag->value.octet, ASN1_ITEM_rptr(X509
138 }

140 X509_CRL *PKCS12_certbag2x509crl(PKCS12_SAFEBAG *bag)
141 {
142 if(M_PKCS12_bag_type(bag) != NID_crlBag) return NULL;
143 if(M_PKCS12_cert_bag_type(bag) != NID_x509Crl) return NULL;
144 return ASN1_item_unpack(bag->value.bag->value.octet,
145 ASN1_ITEM_rptr(X509_CRL)
146 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/pk12err.c 1

**
 6783 Fri May 30 18:32:01 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs12/pk12err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pkcs12/pk12err.c */
2 /* ==
3 * Copyright (c) 1999-2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/pk12err.c 2

62 #include <openssl/err.h>
63 #include <openssl/pkcs12.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_PKCS12,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_PKCS12,0,reason)

71 static ERR_STRING_DATA PKCS12_str_functs[]=
72 {
73 {ERR_FUNC(PKCS12_F_PARSE_BAG), "PARSE_BAG"},
74 {ERR_FUNC(PKCS12_F_PARSE_BAGS), "PARSE_BAGS"},
75 {ERR_FUNC(PKCS12_F_PKCS12_ADD_FRIENDLYNAME), "PKCS12_ADD_FRIENDLYNAME"},
76 {ERR_FUNC(PKCS12_F_PKCS12_ADD_FRIENDLYNAME_ASC), "PKCS12_add_friendlyname
77 {ERR_FUNC(PKCS12_F_PKCS12_ADD_FRIENDLYNAME_UNI), "PKCS12_add_friendlyname
78 {ERR_FUNC(PKCS12_F_PKCS12_ADD_LOCALKEYID), "PKCS12_add_localkeyid"},
79 {ERR_FUNC(PKCS12_F_PKCS12_CREATE), "PKCS12_create"},
80 {ERR_FUNC(PKCS12_F_PKCS12_GEN_MAC), "PKCS12_gen_mac"},
81 {ERR_FUNC(PKCS12_F_PKCS12_INIT), "PKCS12_init"},
82 {ERR_FUNC(PKCS12_F_PKCS12_ITEM_DECRYPT_D2I), "PKCS12_item_decrypt_d2i"},
83 {ERR_FUNC(PKCS12_F_PKCS12_ITEM_I2D_ENCRYPT), "PKCS12_item_i2d_encrypt"},
84 {ERR_FUNC(PKCS12_F_PKCS12_ITEM_PACK_SAFEBAG), "PKCS12_item_pack_safebag"},
85 {ERR_FUNC(PKCS12_F_PKCS12_KEY_GEN_ASC), "PKCS12_key_gen_asc"},
86 {ERR_FUNC(PKCS12_F_PKCS12_KEY_GEN_UNI), "PKCS12_key_gen_uni"},
87 {ERR_FUNC(PKCS12_F_PKCS12_MAKE_KEYBAG), "PKCS12_MAKE_KEYBAG"},
88 {ERR_FUNC(PKCS12_F_PKCS12_MAKE_SHKEYBAG), "PKCS12_MAKE_SHKEYBAG"},
89 {ERR_FUNC(PKCS12_F_PKCS12_NEWPASS), "PKCS12_newpass"},
90 {ERR_FUNC(PKCS12_F_PKCS12_PACK_P7DATA), "PKCS12_pack_p7data"},
91 {ERR_FUNC(PKCS12_F_PKCS12_PACK_P7ENCDATA), "PKCS12_pack_p7encdata"},
92 {ERR_FUNC(PKCS12_F_PKCS12_PARSE), "PKCS12_parse"},
93 {ERR_FUNC(PKCS12_F_PKCS12_PBE_CRYPT), "PKCS12_pbe_crypt"},
94 {ERR_FUNC(PKCS12_F_PKCS12_PBE_KEYIVGEN), "PKCS12_PBE_keyivgen"},
95 {ERR_FUNC(PKCS12_F_PKCS12_SETUP_MAC), "PKCS12_setup_mac"},
96 {ERR_FUNC(PKCS12_F_PKCS12_SET_MAC), "PKCS12_set_mac"},
97 {ERR_FUNC(PKCS12_F_PKCS12_UNPACK_AUTHSAFES), "PKCS12_unpack_authsafes"},
98 {ERR_FUNC(PKCS12_F_PKCS12_UNPACK_P7DATA), "PKCS12_unpack_p7data"},
99 {ERR_FUNC(PKCS12_F_PKCS12_VERIFY_MAC), "PKCS12_verify_mac"},
100 {ERR_FUNC(PKCS12_F_PKCS8_ADD_KEYUSAGE), "PKCS8_add_keyusage"},
101 {ERR_FUNC(PKCS12_F_PKCS8_ENCRYPT), "PKCS8_encrypt"},
102 {0,NULL}
103 };

105 static ERR_STRING_DATA PKCS12_str_reasons[]=
106 {
107 {ERR_REASON(PKCS12_R_CANT_PACK_STRUCTURE),"cant pack structure"},
108 {ERR_REASON(PKCS12_R_CONTENT_TYPE_NOT_DATA),"content type not data"},
109 {ERR_REASON(PKCS12_R_DECODE_ERROR) ,"decode error"},
110 {ERR_REASON(PKCS12_R_ENCODE_ERROR) ,"encode error"},
111 {ERR_REASON(PKCS12_R_ENCRYPT_ERROR) ,"encrypt error"},
112 {ERR_REASON(PKCS12_R_ERROR_SETTING_ENCRYPTED_DATA_TYPE),"error setting encrypted
113 {ERR_REASON(PKCS12_R_INVALID_NULL_ARGUMENT),"invalid null argument"},
114 {ERR_REASON(PKCS12_R_INVALID_NULL_PKCS12_POINTER),"invalid null pkcs12 pointer"}
115 {ERR_REASON(PKCS12_R_IV_GEN_ERROR) ,"iv gen error"},
116 {ERR_REASON(PKCS12_R_KEY_GEN_ERROR) ,"key gen error"},
117 {ERR_REASON(PKCS12_R_MAC_ABSENT) ,"mac absent"},
118 {ERR_REASON(PKCS12_R_MAC_GENERATION_ERROR),"mac generation error"},
119 {ERR_REASON(PKCS12_R_MAC_SETUP_ERROR) ,"mac setup error"},
120 {ERR_REASON(PKCS12_R_MAC_STRING_SET_ERROR),"mac string set error"},
121 {ERR_REASON(PKCS12_R_MAC_VERIFY_ERROR) ,"mac verify error"},
122 {ERR_REASON(PKCS12_R_MAC_VERIFY_FAILURE) ,"mac verify failure"},
123 {ERR_REASON(PKCS12_R_PARSE_ERROR) ,"parse error"},
124 {ERR_REASON(PKCS12_R_PKCS12_ALGOR_CIPHERINIT_ERROR),"pkcs12 algor cipherinit err
125 {ERR_REASON(PKCS12_R_PKCS12_CIPHERFINAL_ERROR),"pkcs12 cipherfinal error"},
126 {ERR_REASON(PKCS12_R_PKCS12_PBE_CRYPT_ERROR),"pkcs12 pbe crypt error"},
127 {ERR_REASON(PKCS12_R_UNKNOWN_DIGEST_ALGORITHM),"unknown digest algorithm"},

new/usr/src/lib/openssl/libsunw_crypto/pkcs12/pk12err.c 3

128 {ERR_REASON(PKCS12_R_UNSUPPORTED_PKCS12_MODE),"unsupported pkcs12 mode"},
129 {0,NULL}
130 };

132 #endif

134 void ERR_load_PKCS12_strings(void)
135 {
136 #ifndef OPENSSL_NO_ERR

138 if (ERR_func_error_string(PKCS12_str_functs[0].error) == NULL)
139 {
140 ERR_load_strings(0,PKCS12_str_functs);
141 ERR_load_strings(0,PKCS12_str_reasons);
142 }
143 #endif
144 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/bio_pk7.c 1

**
 2913 Fri May 30 18:32:01 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs7/bio_pk7.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* bio_pk7.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 */

55 #include <openssl/asn1.h>
56 #include <openssl/pkcs7.h>
57 #include <openssl/bio.h>

59 #if !defined(OPENSSL_SYSNAME_NETWARE) && !defined(OPENSSL_SYSNAME_VXWORKS)
60 #include <memory.h>
61 #endif

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/bio_pk7.c 2

62 #include <stdio.h>

64 /* Streaming encode support for PKCS#7 */

66 BIO *BIO_new_PKCS7(BIO *out, PKCS7 *p7)
67 {
68 return BIO_new_NDEF(out, (ASN1_VALUE *)p7, ASN1_ITEM_rptr(PKCS7));
69 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_asn1.c 1

**
 9354 Fri May 30 18:32:01 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_asn1.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pk7_asn.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_asn1.c 2

62 #include <openssl/pkcs7.h>
63 #include <openssl/x509.h>

65 /* PKCS#7 ASN1 module */

67 /* This is the ANY DEFINED BY table for the top level PKCS#7 structure */

69 ASN1_ADB_TEMPLATE(p7default) = ASN1_EXP_OPT(PKCS7, d.other, ASN1_ANY, 0);

71 ASN1_ADB(PKCS7) = {
72 ADB_ENTRY(NID_pkcs7_data, ASN1_NDEF_EXP_OPT(PKCS7, d.data, ASN1_OCTET_ST
73 ADB_ENTRY(NID_pkcs7_signed, ASN1_NDEF_EXP_OPT(PKCS7, d.sign, PKCS7_SIGNE
74 ADB_ENTRY(NID_pkcs7_enveloped, ASN1_NDEF_EXP_OPT(PKCS7, d.enveloped, PKC
75 ADB_ENTRY(NID_pkcs7_signedAndEnveloped, ASN1_NDEF_EXP_OPT(PKCS7, d.signe
76 ADB_ENTRY(NID_pkcs7_digest, ASN1_NDEF_EXP_OPT(PKCS7, d.digest, PKCS7_DIG
77 ADB_ENTRY(NID_pkcs7_encrypted, ASN1_NDEF_EXP_OPT(PKCS7, d.encrypted, PKC
78 } ASN1_ADB_END(PKCS7, 0, type, 0, &p7default_tt, NULL);

80 /* PKCS#7 streaming support */
81 static int pk7_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
82 void *exarg)
83 {
84 ASN1_STREAM_ARG *sarg = exarg;
85 PKCS7 **pp7 = (PKCS7 **)pval;

87 switch(operation)
88 {

90 case ASN1_OP_STREAM_PRE:
91 if (PKCS7_stream(&sarg->boundary, *pp7) <= 0)
92 return 0;
93 case ASN1_OP_DETACHED_PRE:
94 sarg->ndef_bio = PKCS7_dataInit(*pp7, sarg->out);
95 if (!sarg->ndef_bio)
96 return 0;
97 break;

99 case ASN1_OP_STREAM_POST:
100 case ASN1_OP_DETACHED_POST:
101 if (PKCS7_dataFinal(*pp7, sarg->ndef_bio) <= 0)
102 return 0;
103 break;

105 }
106 return 1;
107 }

109 ASN1_NDEF_SEQUENCE_cb(PKCS7, pk7_cb) = {
110 ASN1_SIMPLE(PKCS7, type, ASN1_OBJECT),
111 ASN1_ADB_OBJECT(PKCS7)
112 }ASN1_NDEF_SEQUENCE_END_cb(PKCS7, PKCS7)

114 IMPLEMENT_ASN1_FUNCTIONS(PKCS7)
115 IMPLEMENT_ASN1_NDEF_FUNCTION(PKCS7)
116 IMPLEMENT_ASN1_DUP_FUNCTION(PKCS7)

118 ASN1_NDEF_SEQUENCE(PKCS7_SIGNED) = {
119 ASN1_SIMPLE(PKCS7_SIGNED, version, ASN1_INTEGER),
120 ASN1_SET_OF(PKCS7_SIGNED, md_algs, X509_ALGOR),
121 ASN1_SIMPLE(PKCS7_SIGNED, contents, PKCS7),
122 ASN1_IMP_SEQUENCE_OF_OPT(PKCS7_SIGNED, cert, X509, 0),
123 ASN1_IMP_SET_OF_OPT(PKCS7_SIGNED, crl, X509_CRL, 1),
124 ASN1_SET_OF(PKCS7_SIGNED, signer_info, PKCS7_SIGNER_INFO)
125 } ASN1_NDEF_SEQUENCE_END(PKCS7_SIGNED)

127 IMPLEMENT_ASN1_FUNCTIONS(PKCS7_SIGNED)

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_asn1.c 3

129 /* Minor tweak to operation: free up EVP_PKEY */
130 static int si_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
131 void *exarg)
132 {
133 if(operation == ASN1_OP_FREE_POST) {
134 PKCS7_SIGNER_INFO *si = (PKCS7_SIGNER_INFO *)*pval;
135 EVP_PKEY_free(si->pkey);
136 }
137 return 1;
138 }

140 ASN1_SEQUENCE_cb(PKCS7_SIGNER_INFO, si_cb) = {
141 ASN1_SIMPLE(PKCS7_SIGNER_INFO, version, ASN1_INTEGER),
142 ASN1_SIMPLE(PKCS7_SIGNER_INFO, issuer_and_serial, PKCS7_ISSUER_AND_SERIA
143 ASN1_SIMPLE(PKCS7_SIGNER_INFO, digest_alg, X509_ALGOR),
144 /* NB this should be a SET OF but we use a SEQUENCE OF so the
145 * original order * is retained when the structure is reencoded.
146 * Since the attributes are implicitly tagged this will not affect
147 * the encoding.
148 */
149 ASN1_IMP_SEQUENCE_OF_OPT(PKCS7_SIGNER_INFO, auth_attr, X509_ATTRIBUTE, 0
150 ASN1_SIMPLE(PKCS7_SIGNER_INFO, digest_enc_alg, X509_ALGOR),
151 ASN1_SIMPLE(PKCS7_SIGNER_INFO, enc_digest, ASN1_OCTET_STRING),
152 ASN1_IMP_SET_OF_OPT(PKCS7_SIGNER_INFO, unauth_attr, X509_ATTRIBUTE, 1)
153 } ASN1_SEQUENCE_END_cb(PKCS7_SIGNER_INFO, PKCS7_SIGNER_INFO)

155 IMPLEMENT_ASN1_FUNCTIONS(PKCS7_SIGNER_INFO)

157 ASN1_SEQUENCE(PKCS7_ISSUER_AND_SERIAL) = {
158 ASN1_SIMPLE(PKCS7_ISSUER_AND_SERIAL, issuer, X509_NAME),
159 ASN1_SIMPLE(PKCS7_ISSUER_AND_SERIAL, serial, ASN1_INTEGER)
160 } ASN1_SEQUENCE_END(PKCS7_ISSUER_AND_SERIAL)

162 IMPLEMENT_ASN1_FUNCTIONS(PKCS7_ISSUER_AND_SERIAL)

164 ASN1_NDEF_SEQUENCE(PKCS7_ENVELOPE) = {
165 ASN1_SIMPLE(PKCS7_ENVELOPE, version, ASN1_INTEGER),
166 ASN1_SET_OF(PKCS7_ENVELOPE, recipientinfo, PKCS7_RECIP_INFO),
167 ASN1_SIMPLE(PKCS7_ENVELOPE, enc_data, PKCS7_ENC_CONTENT)
168 } ASN1_NDEF_SEQUENCE_END(PKCS7_ENVELOPE)

170 IMPLEMENT_ASN1_FUNCTIONS(PKCS7_ENVELOPE)

172 /* Minor tweak to operation: free up X509 */
173 static int ri_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
174 void *exarg)
175 {
176 if(operation == ASN1_OP_FREE_POST) {
177 PKCS7_RECIP_INFO *ri = (PKCS7_RECIP_INFO *)*pval;
178 X509_free(ri->cert);
179 }
180 return 1;
181 }

183 ASN1_SEQUENCE_cb(PKCS7_RECIP_INFO, ri_cb) = {
184 ASN1_SIMPLE(PKCS7_RECIP_INFO, version, ASN1_INTEGER),
185 ASN1_SIMPLE(PKCS7_RECIP_INFO, issuer_and_serial, PKCS7_ISSUER_AND_SERIAL
186 ASN1_SIMPLE(PKCS7_RECIP_INFO, key_enc_algor, X509_ALGOR),
187 ASN1_SIMPLE(PKCS7_RECIP_INFO, enc_key, ASN1_OCTET_STRING)
188 } ASN1_SEQUENCE_END_cb(PKCS7_RECIP_INFO, PKCS7_RECIP_INFO)

190 IMPLEMENT_ASN1_FUNCTIONS(PKCS7_RECIP_INFO)

192 ASN1_NDEF_SEQUENCE(PKCS7_ENC_CONTENT) = {
193 ASN1_SIMPLE(PKCS7_ENC_CONTENT, content_type, ASN1_OBJECT),

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_asn1.c 4

194 ASN1_SIMPLE(PKCS7_ENC_CONTENT, algorithm, X509_ALGOR),
195 ASN1_IMP_OPT(PKCS7_ENC_CONTENT, enc_data, ASN1_OCTET_STRING_NDEF, 0)
196 } ASN1_NDEF_SEQUENCE_END(PKCS7_ENC_CONTENT)

198 IMPLEMENT_ASN1_FUNCTIONS(PKCS7_ENC_CONTENT)

200 ASN1_NDEF_SEQUENCE(PKCS7_SIGN_ENVELOPE) = {
201 ASN1_SIMPLE(PKCS7_SIGN_ENVELOPE, version, ASN1_INTEGER),
202 ASN1_SET_OF(PKCS7_SIGN_ENVELOPE, recipientinfo, PKCS7_RECIP_INFO),
203 ASN1_SET_OF(PKCS7_SIGN_ENVELOPE, md_algs, X509_ALGOR),
204 ASN1_SIMPLE(PKCS7_SIGN_ENVELOPE, enc_data, PKCS7_ENC_CONTENT),
205 ASN1_IMP_SET_OF_OPT(PKCS7_SIGN_ENVELOPE, cert, X509, 0),
206 ASN1_IMP_SET_OF_OPT(PKCS7_SIGN_ENVELOPE, crl, X509_CRL, 1),
207 ASN1_SET_OF(PKCS7_SIGN_ENVELOPE, signer_info, PKCS7_SIGNER_INFO)
208 } ASN1_NDEF_SEQUENCE_END(PKCS7_SIGN_ENVELOPE)

210 IMPLEMENT_ASN1_FUNCTIONS(PKCS7_SIGN_ENVELOPE)

212 ASN1_NDEF_SEQUENCE(PKCS7_ENCRYPT) = {
213 ASN1_SIMPLE(PKCS7_ENCRYPT, version, ASN1_INTEGER),
214 ASN1_SIMPLE(PKCS7_ENCRYPT, enc_data, PKCS7_ENC_CONTENT)
215 } ASN1_NDEF_SEQUENCE_END(PKCS7_ENCRYPT)

217 IMPLEMENT_ASN1_FUNCTIONS(PKCS7_ENCRYPT)

219 ASN1_NDEF_SEQUENCE(PKCS7_DIGEST) = {
220 ASN1_SIMPLE(PKCS7_DIGEST, version, ASN1_INTEGER),
221 ASN1_SIMPLE(PKCS7_DIGEST, md, X509_ALGOR),
222 ASN1_SIMPLE(PKCS7_DIGEST, contents, PKCS7),
223 ASN1_SIMPLE(PKCS7_DIGEST, digest, ASN1_OCTET_STRING)
224 } ASN1_NDEF_SEQUENCE_END(PKCS7_DIGEST)

226 IMPLEMENT_ASN1_FUNCTIONS(PKCS7_DIGEST)

228 /* Specials for authenticated attributes */

230 /* When signing attributes we want to reorder them to match the sorted
231 * encoding.
232 */

234 ASN1_ITEM_TEMPLATE(PKCS7_ATTR_SIGN) =
235 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SET_ORDER, 0, PKCS7_ATTRIBUTES, X509_ATT
236 ASN1_ITEM_TEMPLATE_END(PKCS7_ATTR_SIGN)

238 /* When verifying attributes we need to use the received order. So
239 * we use SEQUENCE OF and tag it to SET OF
240 */

242 ASN1_ITEM_TEMPLATE(PKCS7_ATTR_VERIFY) =
243 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF | ASN1_TFLG_IMPTAG | ASN1_TF
244 V_ASN1_SET, PKCS7_ATTRIBUTES, X509_ATTRIBUTE)
245 ASN1_ITEM_TEMPLATE_END(PKCS7_ATTR_VERIFY)

247 IMPLEMENT_ASN1_PRINT_FUNCTION(PKCS7)

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_attr.c 1

**
 5597 Fri May 30 18:32:01 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_attr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pk7_attr.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001-2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <openssl/bio.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_attr.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/asn1t.h>
64 #include <openssl/pem.h>
65 #include <openssl/pkcs7.h>
66 #include <openssl/x509.h>
67 #include <openssl/err.h>

69 int PKCS7_add_attrib_smimecap(PKCS7_SIGNER_INFO *si, STACK_OF(X509_ALGOR) *cap)
70 {
71 ASN1_STRING *seq;
72 if(!(seq = ASN1_STRING_new())) {
73 PKCS7err(PKCS7_F_PKCS7_ADD_ATTRIB_SMIMECAP,ERR_R_MALLOC_FAILURE)
74 return 0;
75 }
76 seq->length = ASN1_item_i2d((ASN1_VALUE *)cap,&seq->data,
77 ASN1_ITEM_rptr(X509_ALGORS));
78 return PKCS7_add_signed_attribute(si, NID_SMIMECapabilities,
79 V_ASN1_SEQUENCE, seq);
80 }

82 STACK_OF(X509_ALGOR) *PKCS7_get_smimecap(PKCS7_SIGNER_INFO *si)
83 {
84 ASN1_TYPE *cap;
85 const unsigned char *p;

87 cap = PKCS7_get_signed_attribute(si, NID_SMIMECapabilities);
88 if (!cap || (cap->type != V_ASN1_SEQUENCE))
89 return NULL;
90 p = cap->value.sequence->data;
91 return (STACK_OF(X509_ALGOR) *)
92 ASN1_item_d2i(NULL, &p, cap->value.sequence->length,
93 ASN1_ITEM_rptr(X509_ALGORS));
94 }

96 /* Basic smime-capabilities OID and optional integer arg */
97 int PKCS7_simple_smimecap(STACK_OF(X509_ALGOR) *sk, int nid, int arg)
98 {
99 X509_ALGOR *alg;

101 if(!(alg = X509_ALGOR_new())) {
102 PKCS7err(PKCS7_F_PKCS7_SIMPLE_SMIMECAP,ERR_R_MALLOC_FAILURE);
103 return 0;
104 }
105 ASN1_OBJECT_free(alg->algorithm);
106 alg->algorithm = OBJ_nid2obj (nid);
107 if (arg > 0) {
108 ASN1_INTEGER *nbit;
109 if(!(alg->parameter = ASN1_TYPE_new())) {
110 PKCS7err(PKCS7_F_PKCS7_SIMPLE_SMIMECAP,ERR_R_MALLOC_FAIL
111 return 0;
112 }
113 if(!(nbit = ASN1_INTEGER_new())) {
114 PKCS7err(PKCS7_F_PKCS7_SIMPLE_SMIMECAP,ERR_R_MALLOC_FAIL
115 return 0;
116 }
117 if(!ASN1_INTEGER_set (nbit, arg)) {
118 PKCS7err(PKCS7_F_PKCS7_SIMPLE_SMIMECAP,ERR_R_MALLOC_FAIL
119 return 0;
120 }
121 alg->parameter->value.integer = nbit;
122 alg->parameter->type = V_ASN1_INTEGER;
123 }
124 sk_X509_ALGOR_push (sk, alg);
125 return 1;
126 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_attr.c 3

128 int PKCS7_add_attrib_content_type(PKCS7_SIGNER_INFO *si, ASN1_OBJECT *coid)
129 {
130 if (PKCS7_get_signed_attribute(si, NID_pkcs9_contentType))
131 return 0;
132 if (!coid)
133 coid = OBJ_nid2obj(NID_pkcs7_data);
134 return PKCS7_add_signed_attribute(si, NID_pkcs9_contentType,
135 V_ASN1_OBJECT, coid);
136 }

138 int PKCS7_add0_attrib_signing_time(PKCS7_SIGNER_INFO *si, ASN1_TIME *t)
139 {
140 if (!t && !(t=X509_gmtime_adj(NULL,0)))
141 {
142 PKCS7err(PKCS7_F_PKCS7_ADD0_ATTRIB_SIGNING_TIME,
143 ERR_R_MALLOC_FAILURE);
144 return 0;
145 }
146 return PKCS7_add_signed_attribute(si, NID_pkcs9_signingTime,
147 V_ASN1_UTCTIME, t);
148 }

150 int PKCS7_add1_attrib_digest(PKCS7_SIGNER_INFO *si,
151 const unsigned char *md, int mdlen)
152 {
153 ASN1_OCTET_STRING *os;
154 os = ASN1_OCTET_STRING_new();
155 if (!os)
156 return 0;
157 if (!ASN1_STRING_set(os, md, mdlen)
158 || !PKCS7_add_signed_attribute(si, NID_pkcs9_messageDigest,
159 V_ASN1_OCTET_STRING, os))
160 {
161 ASN1_OCTET_STRING_free(os);
162 return 0;
163 }
164 return 1;
165 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 1

**
 30711 Fri May 30 18:32:01 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pkcs7/pk7_doit.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/rand.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 2

62 #include <openssl/objects.h>
63 #include <openssl/x509.h>
64 #include <openssl/x509v3.h>
65 #include <openssl/err.h>

67 static int add_attribute(STACK_OF(X509_ATTRIBUTE) **sk, int nid, int atrtype,
68 void *value);
69 static ASN1_TYPE *get_attribute(STACK_OF(X509_ATTRIBUTE) *sk, int nid);

71 static int PKCS7_type_is_other(PKCS7* p7)
72 {
73 int isOther=1;
74
75 int nid=OBJ_obj2nid(p7->type);

77 switch(nid)
78 {
79 case NID_pkcs7_data:
80 case NID_pkcs7_signed:
81 case NID_pkcs7_enveloped:
82 case NID_pkcs7_signedAndEnveloped:
83 case NID_pkcs7_digest:
84 case NID_pkcs7_encrypted:
85 isOther=0;
86 break;
87 default:
88 isOther=1;
89 }

91 return isOther;

93 }

95 static ASN1_OCTET_STRING *PKCS7_get_octet_string(PKCS7 *p7)
96 {
97 if (PKCS7_type_is_data(p7))
98 return p7->d.data;
99 if (PKCS7_type_is_other(p7) && p7->d.other
100 && (p7->d.other->type == V_ASN1_OCTET_STRING))
101 return p7->d.other->value.octet_string;
102 return NULL;
103 }

105 static int PKCS7_bio_add_digest(BIO **pbio, X509_ALGOR *alg)
106 {
107 BIO *btmp;
108 const EVP_MD *md;
109 if ((btmp=BIO_new(BIO_f_md())) == NULL)
110 {
111 PKCS7err(PKCS7_F_PKCS7_BIO_ADD_DIGEST,ERR_R_BIO_LIB);
112 goto err;
113 }

115 md=EVP_get_digestbyobj(alg->algorithm);
116 if (md == NULL)
117 {
118 PKCS7err(PKCS7_F_PKCS7_BIO_ADD_DIGEST,PKCS7_R_UNKNOWN_DIGEST_TYP
119 goto err;
120 }

122 BIO_set_md(btmp,md);
123 if (*pbio == NULL)
124 *pbio=btmp;
125 else if (!BIO_push(*pbio,btmp))
126 {
127 PKCS7err(PKCS7_F_PKCS7_BIO_ADD_DIGEST,ERR_R_BIO_LIB);

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 3

128 goto err;
129 }
130 btmp=NULL;

132 return 1;

134 err:
135 if (btmp)
136 BIO_free(btmp);
137 return 0;

139 }

141 static int pkcs7_encode_rinfo(PKCS7_RECIP_INFO *ri,
142 unsigned char *key, int keylen)
143 {
144 EVP_PKEY_CTX *pctx = NULL;
145 EVP_PKEY *pkey = NULL;
146 unsigned char *ek = NULL;
147 int ret = 0;
148 size_t eklen;

150 pkey = X509_get_pubkey(ri->cert);

152 if (!pkey)
153 return 0;

155 pctx = EVP_PKEY_CTX_new(pkey, NULL);
156 if (!pctx)
157 return 0;

159 if (EVP_PKEY_encrypt_init(pctx) <= 0)
160 goto err;

162 if (EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_ENCRYPT,
163 EVP_PKEY_CTRL_PKCS7_ENCRYPT, 0, ri) <= 0)
164 {
165 PKCS7err(PKCS7_F_PKCS7_ENCODE_RINFO, PKCS7_R_CTRL_ERROR);
166 goto err;
167 }

169 if (EVP_PKEY_encrypt(pctx, NULL, &eklen, key, keylen) <= 0)
170 goto err;

172 ek = OPENSSL_malloc(eklen);

174 if (ek == NULL)
175 {
176 PKCS7err(PKCS7_F_PKCS7_ENCODE_RINFO, ERR_R_MALLOC_FAILURE);
177 goto err;
178 }

180 if (EVP_PKEY_encrypt(pctx, ek, &eklen, key, keylen) <= 0)
181 goto err;

183 ASN1_STRING_set0(ri->enc_key, ek, eklen);
184 ek = NULL;

186 ret = 1;

188 err:
189 if (pkey)
190 EVP_PKEY_free(pkey);
191 if (pctx)
192 EVP_PKEY_CTX_free(pctx);
193 if (ek)

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 4

194 OPENSSL_free(ek);
195 return ret;

197 }

200 static int pkcs7_decrypt_rinfo(unsigned char **pek, int *peklen,
201 PKCS7_RECIP_INFO *ri, EVP_PKEY *pkey)
202 {
203 EVP_PKEY_CTX *pctx = NULL;
204 unsigned char *ek = NULL;
205 size_t eklen;

207 int ret = -1;

209 pctx = EVP_PKEY_CTX_new(pkey, NULL);
210 if (!pctx)
211 return -1;

213 if (EVP_PKEY_decrypt_init(pctx) <= 0)
214 goto err;

216 if (EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_DECRYPT,
217 EVP_PKEY_CTRL_PKCS7_DECRYPT, 0, ri) <= 0)
218 {
219 PKCS7err(PKCS7_F_PKCS7_DECRYPT_RINFO, PKCS7_R_CTRL_ERROR);
220 goto err;
221 }

223 if (EVP_PKEY_decrypt(pctx, NULL, &eklen,
224 ri->enc_key->data, ri->enc_key->length) <= 0)
225 goto err;

227 ek = OPENSSL_malloc(eklen);

229 if (ek == NULL)
230 {
231 PKCS7err(PKCS7_F_PKCS7_DECRYPT_RINFO, ERR_R_MALLOC_FAILURE);
232 goto err;
233 }

235 if (EVP_PKEY_decrypt(pctx, ek, &eklen,
236 ri->enc_key->data, ri->enc_key->length) <= 0)
237 {
238 ret = 0;
239 PKCS7err(PKCS7_F_PKCS7_DECRYPT_RINFO, ERR_R_EVP_LIB);
240 goto err;
241 }

243 ret = 1;

245 if (*pek)
246 {
247 OPENSSL_cleanse(*pek, *peklen);
248 OPENSSL_free(*pek);
249 }

251 *pek = ek;
252 *peklen = eklen;

254 err:
255 if (pctx)
256 EVP_PKEY_CTX_free(pctx);
257 if (!ret && ek)
258 OPENSSL_free(ek);

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 5

260 return ret;
261 }

263 BIO *PKCS7_dataInit(PKCS7 *p7, BIO *bio)
264 {
265 int i;
266 BIO *out=NULL,*btmp=NULL;
267 X509_ALGOR *xa = NULL;
268 const EVP_CIPHER *evp_cipher=NULL;
269 STACK_OF(X509_ALGOR) *md_sk=NULL;
270 STACK_OF(PKCS7_RECIP_INFO) *rsk=NULL;
271 X509_ALGOR *xalg=NULL;
272 PKCS7_RECIP_INFO *ri=NULL;
273 ASN1_OCTET_STRING *os=NULL;

275 i=OBJ_obj2nid(p7->type);
276 p7->state=PKCS7_S_HEADER;

278 switch (i)
279 {
280 case NID_pkcs7_signed:
281 md_sk=p7->d.sign->md_algs;
282 os = PKCS7_get_octet_string(p7->d.sign->contents);
283 break;
284 case NID_pkcs7_signedAndEnveloped:
285 rsk=p7->d.signed_and_enveloped->recipientinfo;
286 md_sk=p7->d.signed_and_enveloped->md_algs;
287 xalg=p7->d.signed_and_enveloped->enc_data->algorithm;
288 evp_cipher=p7->d.signed_and_enveloped->enc_data->cipher;
289 if (evp_cipher == NULL)
290 {
291 PKCS7err(PKCS7_F_PKCS7_DATAINIT,
292 PKCS7_R_CIPHER_NOT_INITIALIZED);
293 goto err;
294 }
295 break;
296 case NID_pkcs7_enveloped:
297 rsk=p7->d.enveloped->recipientinfo;
298 xalg=p7->d.enveloped->enc_data->algorithm;
299 evp_cipher=p7->d.enveloped->enc_data->cipher;
300 if (evp_cipher == NULL)
301 {
302 PKCS7err(PKCS7_F_PKCS7_DATAINIT,
303 PKCS7_R_CIPHER_NOT_INITIALIZED);
304 goto err;
305 }
306 break;
307 case NID_pkcs7_digest:
308 xa = p7->d.digest->md;
309 os = PKCS7_get_octet_string(p7->d.digest->contents);
310 break;
311 case NID_pkcs7_data:
312 break;
313 default:
314 PKCS7err(PKCS7_F_PKCS7_DATAINIT,PKCS7_R_UNSUPPORTED_CONTENT_TYPE
315 goto err;
316 }

318 for (i=0; i<sk_X509_ALGOR_num(md_sk); i++)
319 if (!PKCS7_bio_add_digest(&out, sk_X509_ALGOR_value(md_sk, i)))
320 goto err;

322 if (xa && !PKCS7_bio_add_digest(&out, xa))
323 goto err;

325 if (evp_cipher != NULL)

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 6

326 {
327 unsigned char key[EVP_MAX_KEY_LENGTH];
328 unsigned char iv[EVP_MAX_IV_LENGTH];
329 int keylen,ivlen;
330 EVP_CIPHER_CTX *ctx;

332 if ((btmp=BIO_new(BIO_f_cipher())) == NULL)
333 {
334 PKCS7err(PKCS7_F_PKCS7_DATAINIT,ERR_R_BIO_LIB);
335 goto err;
336 }
337 BIO_get_cipher_ctx(btmp, &ctx);
338 keylen=EVP_CIPHER_key_length(evp_cipher);
339 ivlen=EVP_CIPHER_iv_length(evp_cipher);
340 xalg->algorithm = OBJ_nid2obj(EVP_CIPHER_type(evp_cipher));
341 if (ivlen > 0)
342 if (RAND_pseudo_bytes(iv,ivlen) <= 0)
343 goto err;
344 if (EVP_CipherInit_ex(ctx, evp_cipher, NULL, NULL, NULL, 1)<=0)
345 goto err;
346 if (EVP_CIPHER_CTX_rand_key(ctx, key) <= 0)
347 goto err;
348 if (EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, 1) <= 0)
349 goto err;

351 if (ivlen > 0) {
352 if (xalg->parameter == NULL) {
353 xalg->parameter = ASN1_TYPE_new();
354 if (xalg->parameter == NULL)
355 goto err;
356 }
357 if(EVP_CIPHER_param_to_asn1(ctx, xalg->parameter) < 0)
358 goto err;
359 }

361 /* Lets do the pub key stuff :-) */
362 for (i=0; i<sk_PKCS7_RECIP_INFO_num(rsk); i++)
363 {
364 ri=sk_PKCS7_RECIP_INFO_value(rsk,i);
365 if (pkcs7_encode_rinfo(ri, key, keylen) <= 0)
366 goto err;
367 }
368 OPENSSL_cleanse(key, keylen);

370 if (out == NULL)
371 out=btmp;
372 else
373 BIO_push(out,btmp);
374 btmp=NULL;
375 }

377 if (bio == NULL)
378 {
379 if (PKCS7_is_detached(p7))
380 bio=BIO_new(BIO_s_null());
381 else if (os && os->length > 0)
382 bio = BIO_new_mem_buf(os->data, os->length);
383 if(bio == NULL)
384 {
385 bio=BIO_new(BIO_s_mem());
386 if (bio == NULL)
387 goto err;
388 BIO_set_mem_eof_return(bio,0);
389 }
390 }
391 if (out)

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 7

392 BIO_push(out,bio);
393 else
394 out = bio;
395 bio=NULL;
396 if (0)
397 {
398 err:
399 if (out != NULL)
400 BIO_free_all(out);
401 if (btmp != NULL)
402 BIO_free_all(btmp);
403 out=NULL;
404 }
405 return(out);
406 }

408 static int pkcs7_cmp_ri(PKCS7_RECIP_INFO *ri, X509 *pcert)
409 {
410 int ret;
411 ret = X509_NAME_cmp(ri->issuer_and_serial->issuer,
412 pcert->cert_info->issuer);
413 if (ret)
414 return ret;
415 return M_ASN1_INTEGER_cmp(pcert->cert_info->serialNumber,
416 ri->issuer_and_serial->serial);
417 }

419 /* int */
420 BIO *PKCS7_dataDecode(PKCS7 *p7, EVP_PKEY *pkey, BIO *in_bio, X509 *pcert)
421 {
422 int i,j;
423 BIO *out=NULL,*btmp=NULL,*etmp=NULL,*bio=NULL;
424 X509_ALGOR *xa;
425 ASN1_OCTET_STRING *data_body=NULL;
426 const EVP_MD *evp_md;
427 const EVP_CIPHER *evp_cipher=NULL;
428 EVP_CIPHER_CTX *evp_ctx=NULL;
429 X509_ALGOR *enc_alg=NULL;
430 STACK_OF(X509_ALGOR) *md_sk=NULL;
431 STACK_OF(PKCS7_RECIP_INFO) *rsk=NULL;
432 PKCS7_RECIP_INFO *ri=NULL;
433 unsigned char *ek = NULL, *tkey = NULL;
434 int eklen = 0, tkeylen = 0;

436 i=OBJ_obj2nid(p7->type);
437 p7->state=PKCS7_S_HEADER;

439 switch (i)
440 {
441 case NID_pkcs7_signed:
442 data_body=PKCS7_get_octet_string(p7->d.sign->contents);
443 md_sk=p7->d.sign->md_algs;
444 break;
445 case NID_pkcs7_signedAndEnveloped:
446 rsk=p7->d.signed_and_enveloped->recipientinfo;
447 md_sk=p7->d.signed_and_enveloped->md_algs;
448 data_body=p7->d.signed_and_enveloped->enc_data->enc_data;
449 enc_alg=p7->d.signed_and_enveloped->enc_data->algorithm;
450 evp_cipher=EVP_get_cipherbyobj(enc_alg->algorithm);
451 if (evp_cipher == NULL)
452 {
453 PKCS7err(PKCS7_F_PKCS7_DATADECODE,PKCS7_R_UNSUPPORTED_CI
454 goto err;
455 }
456 break;
457 case NID_pkcs7_enveloped:

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 8

458 rsk=p7->d.enveloped->recipientinfo;
459 enc_alg=p7->d.enveloped->enc_data->algorithm;
460 data_body=p7->d.enveloped->enc_data->enc_data;
461 evp_cipher=EVP_get_cipherbyobj(enc_alg->algorithm);
462 if (evp_cipher == NULL)
463 {
464 PKCS7err(PKCS7_F_PKCS7_DATADECODE,PKCS7_R_UNSUPPORTED_CI
465 goto err;
466 }
467 break;
468 default:
469 PKCS7err(PKCS7_F_PKCS7_DATADECODE,PKCS7_R_UNSUPPORTED_CONTENT_TY
470 goto err;
471 }

473 /* We will be checking the signature */
474 if (md_sk != NULL)
475 {
476 for (i=0; i<sk_X509_ALGOR_num(md_sk); i++)
477 {
478 xa=sk_X509_ALGOR_value(md_sk,i);
479 if ((btmp=BIO_new(BIO_f_md())) == NULL)
480 {
481 PKCS7err(PKCS7_F_PKCS7_DATADECODE,ERR_R_BIO_LIB)
482 goto err;
483 }

485 j=OBJ_obj2nid(xa->algorithm);
486 evp_md=EVP_get_digestbynid(j);
487 if (evp_md == NULL)
488 {
489 PKCS7err(PKCS7_F_PKCS7_DATADECODE,PKCS7_R_UNKNOW
490 goto err;
491 }

493 BIO_set_md(btmp,evp_md);
494 if (out == NULL)
495 out=btmp;
496 else
497 BIO_push(out,btmp);
498 btmp=NULL;
499 }
500 }

502 if (evp_cipher != NULL)
503 {
504 #if 0
505 unsigned char key[EVP_MAX_KEY_LENGTH];
506 unsigned char iv[EVP_MAX_IV_LENGTH];
507 unsigned char *p;
508 int keylen,ivlen;
509 int max;
510 X509_OBJECT ret;
511 #endif

513 if ((etmp=BIO_new(BIO_f_cipher())) == NULL)
514 {
515 PKCS7err(PKCS7_F_PKCS7_DATADECODE,ERR_R_BIO_LIB);
516 goto err;
517 }

519 /* It was encrypted, we need to decrypt the secret key
520 * with the private key */

522 /* Find the recipientInfo which matches the passed certificate
523 * (if any)

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 9

524 */

526 if (pcert)
527 {
528 for (i=0; i<sk_PKCS7_RECIP_INFO_num(rsk); i++)
529 {
530 ri=sk_PKCS7_RECIP_INFO_value(rsk,i);
531 if (!pkcs7_cmp_ri(ri, pcert))
532 break;
533 ri=NULL;
534 }
535 if (ri == NULL)
536 {
537 PKCS7err(PKCS7_F_PKCS7_DATADECODE,
538 PKCS7_R_NO_RECIPIENT_MATCHES_CERTIFICATE);
539 goto err;
540 }
541 }

543 /* If we haven’t got a certificate try each ri in turn */
544 if (pcert == NULL)
545 {
546 /* Always attempt to decrypt all rinfo even
547 * after sucess as a defence against MMA timing
548 * attacks.
549 */
550 for (i=0; i<sk_PKCS7_RECIP_INFO_num(rsk); i++)
551 {
552 ri=sk_PKCS7_RECIP_INFO_value(rsk,i);
553
554 if (pkcs7_decrypt_rinfo(&ek, &eklen,
555 ri, pkey) < 0)
556 goto err;
557 ERR_clear_error();
558 }
559 }
560 else
561 {
562 /* Only exit on fatal errors, not decrypt failure */
563 if (pkcs7_decrypt_rinfo(&ek, &eklen, ri, pkey) < 0)
564 goto err;
565 ERR_clear_error();
566 }

568 evp_ctx=NULL;
569 BIO_get_cipher_ctx(etmp,&evp_ctx);
570 if (EVP_CipherInit_ex(evp_ctx,evp_cipher,NULL,NULL,NULL,0) <= 0)
571 goto err;
572 if (EVP_CIPHER_asn1_to_param(evp_ctx,enc_alg->parameter) < 0)
573 goto err;
574 /* Generate random key as MMA defence */
575 tkeylen = EVP_CIPHER_CTX_key_length(evp_ctx);
576 tkey = OPENSSL_malloc(tkeylen);
577 if (!tkey)
578 goto err;
579 if (EVP_CIPHER_CTX_rand_key(evp_ctx, tkey) <= 0)
580 goto err;
581 if (ek == NULL)
582 {
583 ek = tkey;
584 eklen = tkeylen;
585 tkey = NULL;
586 }

588 if (eklen != EVP_CIPHER_CTX_key_length(evp_ctx)) {
589 /* Some S/MIME clients don’t use the same key

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 10

590 * and effective key length. The key length is
591 * determined by the size of the decrypted RSA key.
592 */
593 if(!EVP_CIPHER_CTX_set_key_length(evp_ctx, eklen))
594 {
595 /* Use random key as MMA defence */
596 OPENSSL_cleanse(ek, eklen);
597 OPENSSL_free(ek);
598 ek = tkey;
599 eklen = tkeylen;
600 tkey = NULL;
601 }
602 }
603 /* Clear errors so we don’t leak information useful in MMA */
604 ERR_clear_error();
605 if (EVP_CipherInit_ex(evp_ctx,NULL,NULL,ek,NULL,0) <= 0)
606 goto err;

608 if (ek)
609 {
610 OPENSSL_cleanse(ek,eklen);
611 OPENSSL_free(ek);
612 ek = NULL;
613 }
614 if (tkey)
615 {
616 OPENSSL_cleanse(tkey,tkeylen);
617 OPENSSL_free(tkey);
618 tkey = NULL;
619 }

621 if (out == NULL)
622 out=etmp;
623 else
624 BIO_push(out,etmp);
625 etmp=NULL;
626 }

628 #if 1
629 if (PKCS7_is_detached(p7) || (in_bio != NULL))
630 {
631 bio=in_bio;
632 }
633 else
634 {
635 #if 0
636 bio=BIO_new(BIO_s_mem());
637 /* We need to set this so that when we have read all
638 * the data, the encrypt BIO, if present, will read
639 * EOF and encode the last few bytes */
640 BIO_set_mem_eof_return(bio,0);

642 if (data_body->length > 0)
643 BIO_write(bio,(char *)data_body->data,data_body->length)
644 #else
645 if (data_body->length > 0)
646 bio = BIO_new_mem_buf(data_body->data,data_body->length);
647 else {
648 bio=BIO_new(BIO_s_mem());
649 BIO_set_mem_eof_return(bio,0);
650 }
651 if (bio == NULL)
652 goto err;
653 #endif
654 }
655 BIO_push(out,bio);

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 11

656 bio=NULL;
657 #endif
658 if (0)
659 {
660 err:
661 if (ek)
662 {
663 OPENSSL_cleanse(ek,eklen);
664 OPENSSL_free(ek);
665 }
666 if (tkey)
667 {
668 OPENSSL_cleanse(tkey,tkeylen);
669 OPENSSL_free(tkey);
670 }
671 if (out != NULL) BIO_free_all(out);
672 if (btmp != NULL) BIO_free_all(btmp);
673 if (etmp != NULL) BIO_free_all(etmp);
674 if (bio != NULL) BIO_free_all(bio);
675 out=NULL;
676 }
677 return(out);
678 }

680 static BIO *PKCS7_find_digest(EVP_MD_CTX **pmd, BIO *bio, int nid)
681 {
682 for (;;)
683 {
684 bio=BIO_find_type(bio,BIO_TYPE_MD);
685 if (bio == NULL)
686 {
687 PKCS7err(PKCS7_F_PKCS7_FIND_DIGEST,PKCS7_R_UNABLE_TO_FIN
688 return NULL;
689 }
690 BIO_get_md_ctx(bio,pmd);
691 if (*pmd == NULL)
692 {
693 PKCS7err(PKCS7_F_PKCS7_FIND_DIGEST,ERR_R_INTERNAL_ERROR)
694 return NULL;
695 }
696 if (EVP_MD_CTX_type(*pmd) == nid)
697 return bio;
698 bio=BIO_next(bio);
699 }
700 return NULL;
701 }

703 static int do_pkcs7_signed_attrib(PKCS7_SIGNER_INFO *si, EVP_MD_CTX *mctx)
704 {
705 unsigned char md_data[EVP_MAX_MD_SIZE];
706 unsigned int md_len;

708 /* Add signing time if not already present */
709 if (!PKCS7_get_signed_attribute(si, NID_pkcs9_signingTime))
710 {
711 if (!PKCS7_add0_attrib_signing_time(si, NULL))
712 {
713 PKCS7err(PKCS7_F_DO_PKCS7_SIGNED_ATTRIB,
714 ERR_R_MALLOC_FAILURE);
715 return 0;
716 }
717 }

719 /* Add digest */
720 if (!EVP_DigestFinal_ex(mctx, md_data,&md_len))
721 {

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 12

722 PKCS7err(PKCS7_F_DO_PKCS7_SIGNED_ATTRIB, ERR_R_EVP_LIB);
723 return 0;
724 }
725 if (!PKCS7_add1_attrib_digest(si, md_data, md_len))
726 {
727 PKCS7err(PKCS7_F_DO_PKCS7_SIGNED_ATTRIB, ERR_R_MALLOC_FAILURE);
728 return 0;
729 }

731 /* Now sign the attributes */
732 if (!PKCS7_SIGNER_INFO_sign(si))
733 return 0;

735 return 1;
736 }
737
738
739 int PKCS7_dataFinal(PKCS7 *p7, BIO *bio)
740 {
741 int ret=0;
742 int i,j;
743 BIO *btmp;
744 PKCS7_SIGNER_INFO *si;
745 EVP_MD_CTX *mdc,ctx_tmp;
746 STACK_OF(X509_ATTRIBUTE) *sk;
747 STACK_OF(PKCS7_SIGNER_INFO) *si_sk=NULL;
748 ASN1_OCTET_STRING *os=NULL;

750 EVP_MD_CTX_init(&ctx_tmp);
751 i=OBJ_obj2nid(p7->type);
752 p7->state=PKCS7_S_HEADER;

754 switch (i)
755 {
756 case NID_pkcs7_data:
757 os = p7->d.data;
758 break;
759 case NID_pkcs7_signedAndEnveloped:
760 /* XXXXXXXXXXXXXXXX */
761 si_sk=p7->d.signed_and_enveloped->signer_info;
762 os = p7->d.signed_and_enveloped->enc_data->enc_data;
763 if (!os)
764 {
765 os=M_ASN1_OCTET_STRING_new();
766 if (!os)
767 {
768 PKCS7err(PKCS7_F_PKCS7_DATAFINAL,ERR_R_MALLOC_FA
769 goto err;
770 }
771 p7->d.signed_and_enveloped->enc_data->enc_data=os;
772 }
773 break;
774 case NID_pkcs7_enveloped:
775 /* XXXXXXXXXXXXXXXX */
776 os = p7->d.enveloped->enc_data->enc_data;
777 if (!os)
778 {
779 os=M_ASN1_OCTET_STRING_new();
780 if (!os)
781 {
782 PKCS7err(PKCS7_F_PKCS7_DATAFINAL,ERR_R_MALLOC_FA
783 goto err;
784 }
785 p7->d.enveloped->enc_data->enc_data=os;
786 }
787 break;

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 13

788 case NID_pkcs7_signed:
789 si_sk=p7->d.sign->signer_info;
790 os=PKCS7_get_octet_string(p7->d.sign->contents);
791 /* If detached data then the content is excluded */
792 if(PKCS7_type_is_data(p7->d.sign->contents) && p7->detached) {
793 M_ASN1_OCTET_STRING_free(os);
794 p7->d.sign->contents->d.data = NULL;
795 }
796 break;

798 case NID_pkcs7_digest:
799 os=PKCS7_get_octet_string(p7->d.digest->contents);
800 /* If detached data then the content is excluded */
801 if(PKCS7_type_is_data(p7->d.digest->contents) && p7->detached)
802 {
803 M_ASN1_OCTET_STRING_free(os);
804 p7->d.digest->contents->d.data = NULL;
805 }
806 break;

808 default:
809 PKCS7err(PKCS7_F_PKCS7_DATAFINAL,PKCS7_R_UNSUPPORTED_CONTENT_TYP
810 goto err;
811 }

813 if (si_sk != NULL)
814 {
815 for (i=0; i<sk_PKCS7_SIGNER_INFO_num(si_sk); i++)
816 {
817 si=sk_PKCS7_SIGNER_INFO_value(si_sk,i);
818 if (si->pkey == NULL)
819 continue;

821 j = OBJ_obj2nid(si->digest_alg->algorithm);

823 btmp=bio;

825 btmp = PKCS7_find_digest(&mdc, btmp, j);

827 if (btmp == NULL)
828 goto err;

830 /* We now have the EVP_MD_CTX, lets do the
831 * signing. */
832 if (!EVP_MD_CTX_copy_ex(&ctx_tmp,mdc))
833 goto err;

835 sk=si->auth_attr;

837 /* If there are attributes, we add the digest
838 * attribute and only sign the attributes */
839 if (sk_X509_ATTRIBUTE_num(sk) > 0)
840 {
841 if (!do_pkcs7_signed_attrib(si, &ctx_tmp))
842 goto err;
843 }
844 else
845 {
846 unsigned char *abuf = NULL;
847 unsigned int abuflen;
848 abuflen = EVP_PKEY_size(si->pkey);
849 abuf = OPENSSL_malloc(abuflen);
850 if (!abuf)
851 goto err;

853 if (!EVP_SignFinal(&ctx_tmp, abuf, &abuflen,

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 14

854 si->pkey))
855 {
856 PKCS7err(PKCS7_F_PKCS7_DATAFINAL,
857 ERR_R_EVP_LIB);
858 goto err;
859 }
860 ASN1_STRING_set0(si->enc_digest, abuf, abuflen);
861 }
862 }
863 }
864 else if (i == NID_pkcs7_digest)
865 {
866 unsigned char md_data[EVP_MAX_MD_SIZE];
867 unsigned int md_len;
868 if (!PKCS7_find_digest(&mdc, bio,
869 OBJ_obj2nid(p7->d.digest->md->algorithm)))
870 goto err;
871 if (!EVP_DigestFinal_ex(mdc,md_data,&md_len))
872 goto err;
873 M_ASN1_OCTET_STRING_set(p7->d.digest->digest, md_data, md_len);
874 }

876 if (!PKCS7_is_detached(p7) && !(os->flags & ASN1_STRING_FLAG_NDEF))
877 {
878 char *cont;
879 long contlen;
880 btmp=BIO_find_type(bio,BIO_TYPE_MEM);
881 if (btmp == NULL)
882 {
883 PKCS7err(PKCS7_F_PKCS7_DATAFINAL,PKCS7_R_UNABLE_TO_FIND_
884 goto err;
885 }
886 contlen = BIO_get_mem_data(btmp, &cont);
887 /* Mark the BIO read only then we can use its copy of the data
888 * instead of making an extra copy.
889 */
890 BIO_set_flags(btmp, BIO_FLAGS_MEM_RDONLY);
891 BIO_set_mem_eof_return(btmp, 0);
892 ASN1_STRING_set0(os, (unsigned char *)cont, contlen);
893 }
894 ret=1;
895 err:
896 EVP_MD_CTX_cleanup(&ctx_tmp);
897 return(ret);
898 }

900 int PKCS7_SIGNER_INFO_sign(PKCS7_SIGNER_INFO *si)
901 {
902 EVP_MD_CTX mctx;
903 EVP_PKEY_CTX *pctx;
904 unsigned char *abuf = NULL;
905 int alen;
906 size_t siglen;
907 const EVP_MD *md = NULL;

909 md = EVP_get_digestbyobj(si->digest_alg->algorithm);
910 if (md == NULL)
911 return 0;

913 EVP_MD_CTX_init(&mctx);
914 if (EVP_DigestSignInit(&mctx, &pctx, md,NULL, si->pkey) <= 0)
915 goto err;

917 if (EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_SIGN,
918 EVP_PKEY_CTRL_PKCS7_SIGN, 0, si) <= 0)
919 {

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 15

920 PKCS7err(PKCS7_F_PKCS7_SIGNER_INFO_SIGN, PKCS7_R_CTRL_ERROR);
921 goto err;
922 }

924 alen = ASN1_item_i2d((ASN1_VALUE *)si->auth_attr,&abuf,
925 ASN1_ITEM_rptr(PKCS7_ATTR_SIGN));
926 if(!abuf)
927 goto err;
928 if (EVP_DigestSignUpdate(&mctx,abuf,alen) <= 0)
929 goto err;
930 OPENSSL_free(abuf);
931 if (EVP_DigestSignFinal(&mctx, NULL, &siglen) <= 0)
932 goto err;
933 abuf = OPENSSL_malloc(siglen);
934 if(!abuf)
935 goto err;
936 if (EVP_DigestSignFinal(&mctx, abuf, &siglen) <= 0)
937 goto err;

939 if (EVP_PKEY_CTX_ctrl(pctx, -1, EVP_PKEY_OP_SIGN,
940 EVP_PKEY_CTRL_PKCS7_SIGN, 1, si) <= 0)
941 {
942 PKCS7err(PKCS7_F_PKCS7_SIGNER_INFO_SIGN, PKCS7_R_CTRL_ERROR);
943 goto err;
944 }

946 EVP_MD_CTX_cleanup(&mctx);

948 ASN1_STRING_set0(si->enc_digest, abuf, siglen);

950 return 1;

952 err:
953 if (abuf)
954 OPENSSL_free(abuf);
955 EVP_MD_CTX_cleanup(&mctx);
956 return 0;

958 }

960 int PKCS7_dataVerify(X509_STORE *cert_store, X509_STORE_CTX *ctx, BIO *bio,
961 PKCS7 *p7, PKCS7_SIGNER_INFO *si)
962 {
963 PKCS7_ISSUER_AND_SERIAL *ias;
964 int ret=0,i;
965 STACK_OF(X509) *cert;
966 X509 *x509;

968 if (PKCS7_type_is_signed(p7))
969 {
970 cert=p7->d.sign->cert;
971 }
972 else if (PKCS7_type_is_signedAndEnveloped(p7))
973 {
974 cert=p7->d.signed_and_enveloped->cert;
975 }
976 else
977 {
978 PKCS7err(PKCS7_F_PKCS7_DATAVERIFY,PKCS7_R_WRONG_PKCS7_TYPE);
979 goto err;
980 }
981 /* XXXXXXXXXXXXXXXXXXXXXXX */
982 ias=si->issuer_and_serial;

984 x509=X509_find_by_issuer_and_serial(cert,ias->issuer,ias->serial);

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 16

986 /* were we able to find the cert in passed to us */
987 if (x509 == NULL)
988 {
989 PKCS7err(PKCS7_F_PKCS7_DATAVERIFY,PKCS7_R_UNABLE_TO_FIND_CERTIFI
990 goto err;
991 }

993 /* Lets verify */
994 if(!X509_STORE_CTX_init(ctx,cert_store,x509,cert))
995 {
996 PKCS7err(PKCS7_F_PKCS7_DATAVERIFY,ERR_R_X509_LIB);
997 goto err;
998 }
999 X509_STORE_CTX_set_purpose(ctx, X509_PURPOSE_SMIME_SIGN);

1000 i=X509_verify_cert(ctx);
1001 if (i <= 0)
1002 {
1003 PKCS7err(PKCS7_F_PKCS7_DATAVERIFY,ERR_R_X509_LIB);
1004 X509_STORE_CTX_cleanup(ctx);
1005 goto err;
1006 }
1007 X509_STORE_CTX_cleanup(ctx);

1009 return PKCS7_signatureVerify(bio, p7, si, x509);
1010 err:
1011 return ret;
1012 }

1014 int PKCS7_signatureVerify(BIO *bio, PKCS7 *p7, PKCS7_SIGNER_INFO *si,
1015 X509 *x509)
1016 {
1017 ASN1_OCTET_STRING *os;
1018 EVP_MD_CTX mdc_tmp,*mdc;
1019 int ret=0,i;
1020 int md_type;
1021 STACK_OF(X509_ATTRIBUTE) *sk;
1022 BIO *btmp;
1023 EVP_PKEY *pkey;

1025 EVP_MD_CTX_init(&mdc_tmp);

1027 if (!PKCS7_type_is_signed(p7) &&
1028 !PKCS7_type_is_signedAndEnveloped(p7)) {
1029 PKCS7err(PKCS7_F_PKCS7_SIGNATUREVERIFY,
1030 PKCS7_R_WRONG_PKCS7_TYPE);
1031 goto err;
1032 }

1034 md_type=OBJ_obj2nid(si->digest_alg->algorithm);

1036 btmp=bio;
1037 for (;;)
1038 {
1039 if ((btmp == NULL) ||
1040 ((btmp=BIO_find_type(btmp,BIO_TYPE_MD)) == NULL))
1041 {
1042 PKCS7err(PKCS7_F_PKCS7_SIGNATUREVERIFY,
1043 PKCS7_R_UNABLE_TO_FIND_MESSAGE_DIGEST);
1044 goto err;
1045 }
1046 BIO_get_md_ctx(btmp,&mdc);
1047 if (mdc == NULL)
1048 {
1049 PKCS7err(PKCS7_F_PKCS7_SIGNATUREVERIFY,
1050 ERR_R_INTERNAL_ERROR);
1051 goto err;

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 17

1052 }
1053 if (EVP_MD_CTX_type(mdc) == md_type)
1054 break;
1055 /* Workaround for some broken clients that put the signature
1056 * OID instead of the digest OID in digest_alg->algorithm
1057 */
1058 if (EVP_MD_pkey_type(EVP_MD_CTX_md(mdc)) == md_type)
1059 break;
1060 btmp=BIO_next(btmp);
1061 }

1063 /* mdc is the digest ctx that we want, unless there are attributes,
1064 * in which case the digest is the signed attributes */
1065 if (!EVP_MD_CTX_copy_ex(&mdc_tmp,mdc))
1066 goto err;

1068 sk=si->auth_attr;
1069 if ((sk != NULL) && (sk_X509_ATTRIBUTE_num(sk) != 0))
1070 {
1071 unsigned char md_dat[EVP_MAX_MD_SIZE], *abuf = NULL;
1072 unsigned int md_len;
1073 int alen;
1074 ASN1_OCTET_STRING *message_digest;

1076 if (!EVP_DigestFinal_ex(&mdc_tmp,md_dat,&md_len))
1077 goto err;
1078 message_digest=PKCS7_digest_from_attributes(sk);
1079 if (!message_digest)
1080 {
1081 PKCS7err(PKCS7_F_PKCS7_SIGNATUREVERIFY,
1082 PKCS7_R_UNABLE_TO_FIND_MESSAGE_DIGEST);
1083 goto err;
1084 }
1085 if ((message_digest->length != (int)md_len) ||
1086 (memcmp(message_digest->data,md_dat,md_len)))
1087 {
1088 #if 0
1089 {
1090 int ii;
1091 for (ii=0; ii<message_digest->length; ii++)
1092 printf("%02X",message_digest->data[ii]); printf(" sent\n");
1093 for (ii=0; ii<md_len; ii++) printf("%02X",md_dat[ii]); printf(" calc\n");
1094 }
1095 #endif
1096 PKCS7err(PKCS7_F_PKCS7_SIGNATUREVERIFY,
1097 PKCS7_R_DIGEST_FAILURE);
1098 ret= -1;
1099 goto err;
1100 }

1102 if (!EVP_VerifyInit_ex(&mdc_tmp,EVP_get_digestbynid(md_type), NU
1103 goto err;

1105 alen = ASN1_item_i2d((ASN1_VALUE *)sk, &abuf,
1106 ASN1_ITEM_rptr(PKCS7_ATTR_VERIFY
1107 if (alen <= 0)
1108 {
1109 PKCS7err(PKCS7_F_PKCS7_SIGNATUREVERIFY,ERR_R_ASN1_LIB);
1110 ret = -1;
1111 goto err;
1112 }
1113 if (!EVP_VerifyUpdate(&mdc_tmp, abuf, alen))
1114 goto err;

1116 OPENSSL_free(abuf);
1117 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 18

1119 os=si->enc_digest;
1120 pkey = X509_get_pubkey(x509);
1121 if (!pkey)
1122 {
1123 ret = -1;
1124 goto err;
1125 }

1127 i=EVP_VerifyFinal(&mdc_tmp,os->data,os->length, pkey);
1128 EVP_PKEY_free(pkey);
1129 if (i <= 0)
1130 {
1131 PKCS7err(PKCS7_F_PKCS7_SIGNATUREVERIFY,
1132 PKCS7_R_SIGNATURE_FAILURE);
1133 ret= -1;
1134 goto err;
1135 }
1136 else
1137 ret=1;
1138 err:
1139 EVP_MD_CTX_cleanup(&mdc_tmp);
1140 return(ret);
1141 }

1143 PKCS7_ISSUER_AND_SERIAL *PKCS7_get_issuer_and_serial(PKCS7 *p7, int idx)
1144 {
1145 STACK_OF(PKCS7_RECIP_INFO) *rsk;
1146 PKCS7_RECIP_INFO *ri;
1147 int i;

1149 i=OBJ_obj2nid(p7->type);
1150 if (i != NID_pkcs7_signedAndEnveloped)
1151 return NULL;
1152 if (p7->d.signed_and_enveloped == NULL)
1153 return NULL;
1154 rsk=p7->d.signed_and_enveloped->recipientinfo;
1155 if (rsk == NULL)
1156 return NULL;
1157 ri=sk_PKCS7_RECIP_INFO_value(rsk,0);
1158 if (sk_PKCS7_RECIP_INFO_num(rsk) <= idx) return(NULL);
1159 ri=sk_PKCS7_RECIP_INFO_value(rsk,idx);
1160 return(ri->issuer_and_serial);
1161 }

1163 ASN1_TYPE *PKCS7_get_signed_attribute(PKCS7_SIGNER_INFO *si, int nid)
1164 {
1165 return(get_attribute(si->auth_attr,nid));
1166 }

1168 ASN1_TYPE *PKCS7_get_attribute(PKCS7_SIGNER_INFO *si, int nid)
1169 {
1170 return(get_attribute(si->unauth_attr,nid));
1171 }

1173 static ASN1_TYPE *get_attribute(STACK_OF(X509_ATTRIBUTE) *sk, int nid)
1174 {
1175 int i;
1176 X509_ATTRIBUTE *xa;
1177 ASN1_OBJECT *o;

1179 o=OBJ_nid2obj(nid);
1180 if (!o || !sk) return(NULL);
1181 for (i=0; i<sk_X509_ATTRIBUTE_num(sk); i++)
1182 {
1183 xa=sk_X509_ATTRIBUTE_value(sk,i);

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 19

1184 if (OBJ_cmp(xa->object,o) == 0)
1185 {
1186 if (!xa->single && sk_ASN1_TYPE_num(xa->value.set))
1187 return(sk_ASN1_TYPE_value(xa->value.set,0));
1188 else
1189 return(NULL);
1190 }
1191 }
1192 return(NULL);
1193 }

1195 ASN1_OCTET_STRING *PKCS7_digest_from_attributes(STACK_OF(X509_ATTRIBUTE) *sk)
1196 {
1197 ASN1_TYPE *astype;
1198 if(!(astype = get_attribute(sk, NID_pkcs9_messageDigest))) return NULL;
1199 return astype->value.octet_string;
1200 }

1202 int PKCS7_set_signed_attributes(PKCS7_SIGNER_INFO *p7si,
1203 STACK_OF(X509_ATTRIBUTE) *sk)
1204 {
1205 int i;

1207 if (p7si->auth_attr != NULL)
1208 sk_X509_ATTRIBUTE_pop_free(p7si->auth_attr,X509_ATTRIBUTE_free);
1209 p7si->auth_attr=sk_X509_ATTRIBUTE_dup(sk);
1210 if (p7si->auth_attr == NULL)
1211 return 0;
1212 for (i=0; i<sk_X509_ATTRIBUTE_num(sk); i++)
1213 {
1214 if ((sk_X509_ATTRIBUTE_set(p7si->auth_attr,i,
1215 X509_ATTRIBUTE_dup(sk_X509_ATTRIBUTE_value(sk,i))))
1216 == NULL)
1217 return(0);
1218 }
1219 return(1);
1220 }

1222 int PKCS7_set_attributes(PKCS7_SIGNER_INFO *p7si, STACK_OF(X509_ATTRIBUTE) *sk)
1223 {
1224 int i;

1226 if (p7si->unauth_attr != NULL)
1227 sk_X509_ATTRIBUTE_pop_free(p7si->unauth_attr,
1228 X509_ATTRIBUTE_free);
1229 p7si->unauth_attr=sk_X509_ATTRIBUTE_dup(sk);
1230 if (p7si->unauth_attr == NULL)
1231 return 0;
1232 for (i=0; i<sk_X509_ATTRIBUTE_num(sk); i++)
1233 {
1234 if ((sk_X509_ATTRIBUTE_set(p7si->unauth_attr,i,
1235 X509_ATTRIBUTE_dup(sk_X509_ATTRIBUTE_value(sk,i))))
1236 == NULL)
1237 return(0);
1238 }
1239 return(1);
1240 }

1242 int PKCS7_add_signed_attribute(PKCS7_SIGNER_INFO *p7si, int nid, int atrtype,
1243 void *value)
1244 {
1245 return(add_attribute(&(p7si->auth_attr),nid,atrtype,value));
1246 }

1248 int PKCS7_add_attribute(PKCS7_SIGNER_INFO *p7si, int nid, int atrtype,
1249 void *value)

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_doit.c 20

1250 {
1251 return(add_attribute(&(p7si->unauth_attr),nid,atrtype,value));
1252 }

1254 static int add_attribute(STACK_OF(X509_ATTRIBUTE) **sk, int nid, int atrtype,
1255 void *value)
1256 {
1257 X509_ATTRIBUTE *attr=NULL;

1259 if (*sk == NULL)
1260 {
1261 *sk = sk_X509_ATTRIBUTE_new_null();
1262 if (*sk == NULL)
1263 return 0;
1264 new_attrib:
1265 if (!(attr=X509_ATTRIBUTE_create(nid,atrtype,value)))
1266 return 0;
1267 if (!sk_X509_ATTRIBUTE_push(*sk,attr))
1268 {
1269 X509_ATTRIBUTE_free(attr);
1270 return 0;
1271 }
1272 }
1273 else
1274 {
1275 int i;

1277 for (i=0; i<sk_X509_ATTRIBUTE_num(*sk); i++)
1278 {
1279 attr=sk_X509_ATTRIBUTE_value(*sk,i);
1280 if (OBJ_obj2nid(attr->object) == nid)
1281 {
1282 X509_ATTRIBUTE_free(attr);
1283 attr=X509_ATTRIBUTE_create(nid,atrtype,value);
1284 if (attr == NULL)
1285 return 0;
1286 if (!sk_X509_ATTRIBUTE_set(*sk,i,attr))
1287 {
1288 X509_ATTRIBUTE_free(attr);
1289 return 0;
1290 }
1291 goto end;
1292 }
1293 }
1294 goto new_attrib;
1295 }
1296 end:
1297 return(1);
1298 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_lib.c 1

**
 16066 Fri May 30 18:32:01 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pkcs7/pk7_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/objects.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_lib.c 2

62 #include <openssl/x509.h>
63 #include "asn1_locl.h"

65 long PKCS7_ctrl(PKCS7 *p7, int cmd, long larg, char *parg)
66 {
67 int nid;
68 long ret;

70 nid=OBJ_obj2nid(p7->type);

72 switch (cmd)
73 {
74 case PKCS7_OP_SET_DETACHED_SIGNATURE:
75 if (nid == NID_pkcs7_signed)
76 {
77 ret=p7->detached=(int)larg;
78 if (ret && PKCS7_type_is_data(p7->d.sign->contents))
79 {
80 ASN1_OCTET_STRING *os;
81 os=p7->d.sign->contents->d.data;
82 ASN1_OCTET_STRING_free(os);
83 p7->d.sign->contents->d.data = NULL;
84 }
85 }
86 else
87 {
88 PKCS7err(PKCS7_F_PKCS7_CTRL,PKCS7_R_OPERATION_NOT_SUPPOR
89 ret=0;
90 }
91 break;
92 case PKCS7_OP_GET_DETACHED_SIGNATURE:
93 if (nid == NID_pkcs7_signed)
94 {
95 if(!p7->d.sign || !p7->d.sign->contents->d.ptr)
96 ret = 1;
97 else ret = 0;
98
99 p7->detached = ret;
100 }
101 else
102 {
103 PKCS7err(PKCS7_F_PKCS7_CTRL,PKCS7_R_OPERATION_NOT_SUPPOR
104 ret=0;
105 }
106
107 break;
108 default:
109 PKCS7err(PKCS7_F_PKCS7_CTRL,PKCS7_R_UNKNOWN_OPERATION);
110 ret=0;
111 }
112 return(ret);
113 }

115 int PKCS7_content_new(PKCS7 *p7, int type)
116 {
117 PKCS7 *ret=NULL;

119 if ((ret=PKCS7_new()) == NULL) goto err;
120 if (!PKCS7_set_type(ret,type)) goto err;
121 if (!PKCS7_set_content(p7,ret)) goto err;

123 return(1);
124 err:
125 if (ret != NULL) PKCS7_free(ret);
126 return(0);
127 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_lib.c 3

129 int PKCS7_set_content(PKCS7 *p7, PKCS7 *p7_data)
130 {
131 int i;

133 i=OBJ_obj2nid(p7->type);
134 switch (i)
135 {
136 case NID_pkcs7_signed:
137 if (p7->d.sign->contents != NULL)
138 PKCS7_free(p7->d.sign->contents);
139 p7->d.sign->contents=p7_data;
140 break;
141 case NID_pkcs7_digest:
142 if (p7->d.digest->contents != NULL)
143 PKCS7_free(p7->d.digest->contents);
144 p7->d.digest->contents=p7_data;
145 break;
146 case NID_pkcs7_data:
147 case NID_pkcs7_enveloped:
148 case NID_pkcs7_signedAndEnveloped:
149 case NID_pkcs7_encrypted:
150 default:
151 PKCS7err(PKCS7_F_PKCS7_SET_CONTENT,PKCS7_R_UNSUPPORTED_CONTENT_T
152 goto err;
153 }
154 return(1);
155 err:
156 return(0);
157 }

159 int PKCS7_set_type(PKCS7 *p7, int type)
160 {
161 ASN1_OBJECT *obj;

163 /*PKCS7_content_free(p7);*/
164 obj=OBJ_nid2obj(type); /* will not fail */

166 switch (type)
167 {
168 case NID_pkcs7_signed:
169 p7->type=obj;
170 if ((p7->d.sign=PKCS7_SIGNED_new()) == NULL)
171 goto err;
172 if (!ASN1_INTEGER_set(p7->d.sign->version,1))
173 {
174 PKCS7_SIGNED_free(p7->d.sign);
175 p7->d.sign=NULL;
176 goto err;
177 }
178 break;
179 case NID_pkcs7_data:
180 p7->type=obj;
181 if ((p7->d.data=M_ASN1_OCTET_STRING_new()) == NULL)
182 goto err;
183 break;
184 case NID_pkcs7_signedAndEnveloped:
185 p7->type=obj;
186 if ((p7->d.signed_and_enveloped=PKCS7_SIGN_ENVELOPE_new())
187 == NULL) goto err;
188 ASN1_INTEGER_set(p7->d.signed_and_enveloped->version,1);
189 if (!ASN1_INTEGER_set(p7->d.signed_and_enveloped->version,1))
190 goto err;
191 p7->d.signed_and_enveloped->enc_data->content_type
192 = OBJ_nid2obj(NID_pkcs7_data);
193 break;

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_lib.c 4

194 case NID_pkcs7_enveloped:
195 p7->type=obj;
196 if ((p7->d.enveloped=PKCS7_ENVELOPE_new())
197 == NULL) goto err;
198 if (!ASN1_INTEGER_set(p7->d.enveloped->version,0))
199 goto err;
200 p7->d.enveloped->enc_data->content_type
201 = OBJ_nid2obj(NID_pkcs7_data);
202 break;
203 case NID_pkcs7_encrypted:
204 p7->type=obj;
205 if ((p7->d.encrypted=PKCS7_ENCRYPT_new())
206 == NULL) goto err;
207 if (!ASN1_INTEGER_set(p7->d.encrypted->version,0))
208 goto err;
209 p7->d.encrypted->enc_data->content_type
210 = OBJ_nid2obj(NID_pkcs7_data);
211 break;

213 case NID_pkcs7_digest:
214 p7->type=obj;
215 if ((p7->d.digest=PKCS7_DIGEST_new())
216 == NULL) goto err;
217 if (!ASN1_INTEGER_set(p7->d.digest->version,0))
218 goto err;
219 break;
220 default:
221 PKCS7err(PKCS7_F_PKCS7_SET_TYPE,PKCS7_R_UNSUPPORTED_CONTENT_TYPE
222 goto err;
223 }
224 return(1);
225 err:
226 return(0);
227 }

229 int PKCS7_set0_type_other(PKCS7 *p7, int type, ASN1_TYPE *other)
230 {
231 p7->type = OBJ_nid2obj(type);
232 p7->d.other = other;
233 return 1;
234 }

236 int PKCS7_add_signer(PKCS7 *p7, PKCS7_SIGNER_INFO *psi)
237 {
238 int i,j,nid;
239 X509_ALGOR *alg;
240 STACK_OF(PKCS7_SIGNER_INFO) *signer_sk;
241 STACK_OF(X509_ALGOR) *md_sk;

243 i=OBJ_obj2nid(p7->type);
244 switch (i)
245 {
246 case NID_pkcs7_signed:
247 signer_sk= p7->d.sign->signer_info;
248 md_sk= p7->d.sign->md_algs;
249 break;
250 case NID_pkcs7_signedAndEnveloped:
251 signer_sk= p7->d.signed_and_enveloped->signer_info;
252 md_sk= p7->d.signed_and_enveloped->md_algs;
253 break;
254 default:
255 PKCS7err(PKCS7_F_PKCS7_ADD_SIGNER,PKCS7_R_WRONG_CONTENT_TYPE);
256 return(0);
257 }

259 nid=OBJ_obj2nid(psi->digest_alg->algorithm);

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_lib.c 5

261 /* If the digest is not currently listed, add it */
262 j=0;
263 for (i=0; i<sk_X509_ALGOR_num(md_sk); i++)
264 {
265 alg=sk_X509_ALGOR_value(md_sk,i);
266 if (OBJ_obj2nid(alg->algorithm) == nid)
267 {
268 j=1;
269 break;
270 }
271 }
272 if (!j) /* we need to add another algorithm */
273 {
274 if(!(alg=X509_ALGOR_new())
275 || !(alg->parameter = ASN1_TYPE_new()))
276 {
277 X509_ALGOR_free(alg);
278 PKCS7err(PKCS7_F_PKCS7_ADD_SIGNER,ERR_R_MALLOC_FAILURE);
279 return(0);
280 }
281 alg->algorithm=OBJ_nid2obj(nid);
282 alg->parameter->type = V_ASN1_NULL;
283 if (!sk_X509_ALGOR_push(md_sk,alg))
284 {
285 X509_ALGOR_free(alg);
286 return 0;
287 }
288 }

290 if (!sk_PKCS7_SIGNER_INFO_push(signer_sk,psi))
291 return 0;
292 return(1);
293 }

295 int PKCS7_add_certificate(PKCS7 *p7, X509 *x509)
296 {
297 int i;
298 STACK_OF(X509) **sk;

300 i=OBJ_obj2nid(p7->type);
301 switch (i)
302 {
303 case NID_pkcs7_signed:
304 sk= &(p7->d.sign->cert);
305 break;
306 case NID_pkcs7_signedAndEnveloped:
307 sk= &(p7->d.signed_and_enveloped->cert);
308 break;
309 default:
310 PKCS7err(PKCS7_F_PKCS7_ADD_CERTIFICATE,PKCS7_R_WRONG_CONTENT_TYP
311 return(0);
312 }

314 if (*sk == NULL)
315 *sk=sk_X509_new_null();
316 if (*sk == NULL)
317 {
318 PKCS7err(PKCS7_F_PKCS7_ADD_CERTIFICATE, ERR_R_MALLOC_FAILURE);
319 return 0;
320 }
321 CRYPTO_add(&x509->references,1,CRYPTO_LOCK_X509);
322 if (!sk_X509_push(*sk,x509))
323 {
324 X509_free(x509);
325 return 0;

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_lib.c 6

326 }
327 return(1);
328 }

330 int PKCS7_add_crl(PKCS7 *p7, X509_CRL *crl)
331 {
332 int i;
333 STACK_OF(X509_CRL) **sk;

335 i=OBJ_obj2nid(p7->type);
336 switch (i)
337 {
338 case NID_pkcs7_signed:
339 sk= &(p7->d.sign->crl);
340 break;
341 case NID_pkcs7_signedAndEnveloped:
342 sk= &(p7->d.signed_and_enveloped->crl);
343 break;
344 default:
345 PKCS7err(PKCS7_F_PKCS7_ADD_CRL,PKCS7_R_WRONG_CONTENT_TYPE);
346 return(0);
347 }

349 if (*sk == NULL)
350 *sk=sk_X509_CRL_new_null();
351 if (*sk == NULL)
352 {
353 PKCS7err(PKCS7_F_PKCS7_ADD_CRL,ERR_R_MALLOC_FAILURE);
354 return 0;
355 }

357 CRYPTO_add(&crl->references,1,CRYPTO_LOCK_X509_CRL);
358 if (!sk_X509_CRL_push(*sk,crl))
359 {
360 X509_CRL_free(crl);
361 return 0;
362 }
363 return(1);
364 }

366 int PKCS7_SIGNER_INFO_set(PKCS7_SIGNER_INFO *p7i, X509 *x509, EVP_PKEY *pkey,
367 const EVP_MD *dgst)
368 {
369 int ret;

371 /* We now need to add another PKCS7_SIGNER_INFO entry */
372 if (!ASN1_INTEGER_set(p7i->version,1))
373 goto err;
374 if (!X509_NAME_set(&p7i->issuer_and_serial->issuer,
375 X509_get_issuer_name(x509)))
376 goto err;

378 /* because ASN1_INTEGER_set is used to set a ’long’ we will do
379 * things the ugly way. */
380 M_ASN1_INTEGER_free(p7i->issuer_and_serial->serial);
381 if (!(p7i->issuer_and_serial->serial=
382 M_ASN1_INTEGER_dup(X509_get_serialNumber(x509))))
383 goto err;

385 /* lets keep the pkey around for a while */
386 CRYPTO_add(&pkey->references,1,CRYPTO_LOCK_EVP_PKEY);
387 p7i->pkey=pkey;

389 /* Set the algorithms */

391 X509_ALGOR_set0(p7i->digest_alg, OBJ_nid2obj(EVP_MD_type(dgst)),

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_lib.c 7

392 V_ASN1_NULL, NULL);

394 if (pkey->ameth && pkey->ameth->pkey_ctrl)
395 {
396 ret = pkey->ameth->pkey_ctrl(pkey, ASN1_PKEY_CTRL_PKCS7_SIGN,
397 0, p7i);
398 if (ret > 0)
399 return 1;
400 if (ret != -2)
401 {
402 PKCS7err(PKCS7_F_PKCS7_SIGNER_INFO_SET,
403 PKCS7_R_SIGNING_CTRL_FAILURE);
404 return 0;
405 }
406 }
407 PKCS7err(PKCS7_F_PKCS7_SIGNER_INFO_SET,
408 PKCS7_R_SIGNING_NOT_SUPPORTED_FOR_THIS_KEY_TYPE);
409 err:
410 return 0;
411 }

413 PKCS7_SIGNER_INFO *PKCS7_add_signature(PKCS7 *p7, X509 *x509, EVP_PKEY *pkey,
414 const EVP_MD *dgst)
415 {
416 PKCS7_SIGNER_INFO *si = NULL;

418 if (dgst == NULL)
419 {
420 int def_nid;
421 if (EVP_PKEY_get_default_digest_nid(pkey, &def_nid) <= 0)
422 goto err;
423 dgst = EVP_get_digestbynid(def_nid);
424 if (dgst == NULL)
425 {
426 PKCS7err(PKCS7_F_PKCS7_ADD_SIGNATURE,
427 PKCS7_R_NO_DEFAULT_DIGEST);
428 goto err;
429 }
430 }

432 if ((si=PKCS7_SIGNER_INFO_new()) == NULL) goto err;
433 if (!PKCS7_SIGNER_INFO_set(si,x509,pkey,dgst)) goto err;
434 if (!PKCS7_add_signer(p7,si)) goto err;
435 return(si);
436 err:
437 if (si)
438 PKCS7_SIGNER_INFO_free(si);
439 return(NULL);
440 }

442 int PKCS7_set_digest(PKCS7 *p7, const EVP_MD *md)
443 {
444 if (PKCS7_type_is_digest(p7))
445 {
446 if(!(p7->d.digest->md->parameter = ASN1_TYPE_new()))
447 {
448 PKCS7err(PKCS7_F_PKCS7_SET_DIGEST,ERR_R_MALLOC_FAILURE);
449 return 0;
450 }
451 p7->d.digest->md->parameter->type = V_ASN1_NULL;
452 p7->d.digest->md->algorithm = OBJ_nid2obj(EVP_MD_nid(md));
453 return 1;
454 }
455
456 PKCS7err(PKCS7_F_PKCS7_SET_DIGEST,PKCS7_R_WRONG_CONTENT_TYPE);
457 return 1;

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_lib.c 8

458 }

460 STACK_OF(PKCS7_SIGNER_INFO) *PKCS7_get_signer_info(PKCS7 *p7)
461 {
462 if (PKCS7_type_is_signed(p7))
463 {
464 return(p7->d.sign->signer_info);
465 }
466 else if (PKCS7_type_is_signedAndEnveloped(p7))
467 {
468 return(p7->d.signed_and_enveloped->signer_info);
469 }
470 else
471 return(NULL);
472 }

474 void PKCS7_SIGNER_INFO_get0_algs(PKCS7_SIGNER_INFO *si, EVP_PKEY **pk,
475 X509_ALGOR **pdig, X509_ALGOR **psig)
476 {
477 if (pk)
478 *pk = si->pkey;
479 if (pdig)
480 *pdig = si->digest_alg;
481 if (psig)
482 *psig = si->digest_enc_alg;
483 }

485 void PKCS7_RECIP_INFO_get0_alg(PKCS7_RECIP_INFO *ri, X509_ALGOR **penc)
486 {
487 if (penc)
488 *penc = ri->key_enc_algor;
489 }

491 PKCS7_RECIP_INFO *PKCS7_add_recipient(PKCS7 *p7, X509 *x509)
492 {
493 PKCS7_RECIP_INFO *ri;

495 if ((ri=PKCS7_RECIP_INFO_new()) == NULL) goto err;
496 if (!PKCS7_RECIP_INFO_set(ri,x509)) goto err;
497 if (!PKCS7_add_recipient_info(p7,ri)) goto err;
498 return ri;
499 err:
500 if (ri)
501 PKCS7_RECIP_INFO_free(ri);
502 return NULL;
503 }

505 int PKCS7_add_recipient_info(PKCS7 *p7, PKCS7_RECIP_INFO *ri)
506 {
507 int i;
508 STACK_OF(PKCS7_RECIP_INFO) *sk;

510 i=OBJ_obj2nid(p7->type);
511 switch (i)
512 {
513 case NID_pkcs7_signedAndEnveloped:
514 sk= p7->d.signed_and_enveloped->recipientinfo;
515 break;
516 case NID_pkcs7_enveloped:
517 sk= p7->d.enveloped->recipientinfo;
518 break;
519 default:
520 PKCS7err(PKCS7_F_PKCS7_ADD_RECIPIENT_INFO,PKCS7_R_WRONG_CONTENT_
521 return(0);
522 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_lib.c 9

524 if (!sk_PKCS7_RECIP_INFO_push(sk,ri))
525 return 0;
526 return(1);
527 }

529 int PKCS7_RECIP_INFO_set(PKCS7_RECIP_INFO *p7i, X509 *x509)
530 {
531 int ret;
532 EVP_PKEY *pkey = NULL;
533 if (!ASN1_INTEGER_set(p7i->version,0))
534 return 0;
535 if (!X509_NAME_set(&p7i->issuer_and_serial->issuer,
536 X509_get_issuer_name(x509)))
537 return 0;

539 M_ASN1_INTEGER_free(p7i->issuer_and_serial->serial);
540 if (!(p7i->issuer_and_serial->serial=
541 M_ASN1_INTEGER_dup(X509_get_serialNumber(x509))))
542 return 0;

544 pkey = X509_get_pubkey(x509);

546 if (!pkey || !pkey->ameth || !pkey->ameth->pkey_ctrl)
547 {
548 PKCS7err(PKCS7_F_PKCS7_RECIP_INFO_SET,
549 PKCS7_R_ENCRYPTION_NOT_SUPPORTED_FOR_THIS_KEY_TYPE);
550 goto err;
551 }

553 ret = pkey->ameth->pkey_ctrl(pkey, ASN1_PKEY_CTRL_PKCS7_ENCRYPT,
554 0, p7i);
555 if (ret == -2)
556 {
557 PKCS7err(PKCS7_F_PKCS7_RECIP_INFO_SET,
558 PKCS7_R_ENCRYPTION_NOT_SUPPORTED_FOR_THIS_KEY_TYPE);
559 goto err;
560 }
561 if (ret <= 0)
562 {
563 PKCS7err(PKCS7_F_PKCS7_RECIP_INFO_SET,
564 PKCS7_R_ENCRYPTION_CTRL_FAILURE);
565 goto err;
566 }

568 EVP_PKEY_free(pkey);

570 CRYPTO_add(&x509->references,1,CRYPTO_LOCK_X509);
571 p7i->cert=x509;

573 return 1;

575 err:
576 if (pkey)
577 EVP_PKEY_free(pkey);
578 return 0;
579 }

581 X509 *PKCS7_cert_from_signer_info(PKCS7 *p7, PKCS7_SIGNER_INFO *si)
582 {
583 if (PKCS7_type_is_signed(p7))
584 return(X509_find_by_issuer_and_serial(p7->d.sign->cert,
585 si->issuer_and_serial->issuer,
586 si->issuer_and_serial->serial));
587 else
588 return(NULL);
589 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_lib.c 10

591 int PKCS7_set_cipher(PKCS7 *p7, const EVP_CIPHER *cipher)
592 {
593 int i;
594 PKCS7_ENC_CONTENT *ec;

596 i=OBJ_obj2nid(p7->type);
597 switch (i)
598 {
599 case NID_pkcs7_signedAndEnveloped:
600 ec=p7->d.signed_and_enveloped->enc_data;
601 break;
602 case NID_pkcs7_enveloped:
603 ec=p7->d.enveloped->enc_data;
604 break;
605 default:
606 PKCS7err(PKCS7_F_PKCS7_SET_CIPHER,PKCS7_R_WRONG_CONTENT_TYPE);
607 return(0);
608 }

610 /* Check cipher OID exists and has data in it*/
611 i = EVP_CIPHER_type(cipher);
612 if(i == NID_undef) {
613 PKCS7err(PKCS7_F_PKCS7_SET_CIPHER,PKCS7_R_CIPHER_HAS_NO_OBJECT_I
614 return(0);
615 }

617 ec->cipher = cipher;
618 return 1;
619 }

621 int PKCS7_stream(unsigned char ***boundary, PKCS7 *p7)
622 {
623 ASN1_OCTET_STRING *os = NULL;

625 switch (OBJ_obj2nid(p7->type))
626 {
627 case NID_pkcs7_data:
628 os = p7->d.data;
629 break;

631 case NID_pkcs7_signedAndEnveloped:
632 os = p7->d.signed_and_enveloped->enc_data->enc_data;
633 if (os == NULL)
634 {
635 os=M_ASN1_OCTET_STRING_new();
636 p7->d.signed_and_enveloped->enc_data->enc_data=os;
637 }
638 break;

640 case NID_pkcs7_enveloped:
641 os = p7->d.enveloped->enc_data->enc_data;
642 if (os == NULL)
643 {
644 os=M_ASN1_OCTET_STRING_new();
645 p7->d.enveloped->enc_data->enc_data=os;
646 }
647 break;

649 case NID_pkcs7_signed:
650 os=p7->d.sign->contents->d.data;
651 break;

653 default:
654 os = NULL;
655 break;

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_lib.c 11

656 }
657
658 if (os == NULL)
659 return 0;

661 os->flags |= ASN1_STRING_FLAG_NDEF;
662 *boundary = &os->data;

664 return 1;
665 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_mime.c 1

**
 3632 Fri May 30 18:32:01 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_mime.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pk7_mime.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 */

55 #include <stdio.h>
56 #include <ctype.h>
57 #include "cryptlib.h"
58 #include <openssl/rand.h>
59 #include <openssl/x509.h>
60 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_mime.c 2

62 /* PKCS#7 wrappers round generalised stream and MIME routines */

64 int i2d_PKCS7_bio_stream(BIO *out, PKCS7 *p7, BIO *in, int flags)
65 {
66 return i2d_ASN1_bio_stream(out, (ASN1_VALUE *)p7, in, flags,
67 ASN1_ITEM_rptr(PKCS7));
68 }

70 int PEM_write_bio_PKCS7_stream(BIO *out, PKCS7 *p7, BIO *in, int flags)
71 {
72 return PEM_write_bio_ASN1_stream(out, (ASN1_VALUE *) p7, in, flags,
73 "PKCS7",
74 ASN1_ITEM_rptr(PKCS7));
75 }

77 int SMIME_write_PKCS7(BIO *bio, PKCS7 *p7, BIO *data, int flags)
78 {
79 STACK_OF(X509_ALGOR) *mdalgs;
80 int ctype_nid = OBJ_obj2nid(p7->type);
81 if (ctype_nid == NID_pkcs7_signed)
82 mdalgs = p7->d.sign->md_algs;
83 else
84 mdalgs = NULL;

86 flags ^= SMIME_OLDMIME;

89 return SMIME_write_ASN1(bio, (ASN1_VALUE *)p7, data, flags,
90 ctype_nid, NID_undef, mdalgs,
91 ASN1_ITEM_rptr(PKCS7));
92 }

94 PKCS7 *SMIME_read_PKCS7(BIO *bio, BIO **bcont)
95 {
96 return (PKCS7 *)SMIME_read_ASN1(bio, bcont, ASN1_ITEM_rptr(PKCS7));
97 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_smime.c 1

**
 15373 Fri May 30 18:32:01 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_smime.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pk7_smime.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 1999-2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 /* Simple PKCS#7 processing functions */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_smime.c 2

62 #include "cryptlib.h"
63 #include <openssl/x509.h>
64 #include <openssl/x509v3.h>

66 static int pkcs7_copy_existing_digest(PKCS7 *p7, PKCS7_SIGNER_INFO *si);

68 PKCS7 *PKCS7_sign(X509 *signcert, EVP_PKEY *pkey, STACK_OF(X509) *certs,
69 BIO *data, int flags)
70 {
71 PKCS7 *p7;
72 int i;

74 if(!(p7 = PKCS7_new()))
75 {
76 PKCS7err(PKCS7_F_PKCS7_SIGN,ERR_R_MALLOC_FAILURE);
77 return NULL;
78 }

80 if (!PKCS7_set_type(p7, NID_pkcs7_signed))
81 goto err;

83 if (!PKCS7_content_new(p7, NID_pkcs7_data))
84 goto err;

86 if (pkey && !PKCS7_sign_add_signer(p7, signcert, pkey, NULL, flags))
87 {
88 PKCS7err(PKCS7_F_PKCS7_SIGN,PKCS7_R_PKCS7_ADD_SIGNER_ERROR);
89 goto err;
90 }

92 if(!(flags & PKCS7_NOCERTS))
93 {
94 for(i = 0; i < sk_X509_num(certs); i++)
95 {
96 if (!PKCS7_add_certificate(p7, sk_X509_value(certs, i)))
97 goto err;
98 }
99 }

101 if(flags & PKCS7_DETACHED)
102 PKCS7_set_detached(p7, 1);

104 if (flags & (PKCS7_STREAM|PKCS7_PARTIAL))
105 return p7;

107 if (PKCS7_final(p7, data, flags))
108 return p7;

110 err:
111 PKCS7_free(p7);
112 return NULL;
113 }

115 int PKCS7_final(PKCS7 *p7, BIO *data, int flags)
116 {
117 BIO *p7bio;
118 int ret = 0;
119 if (!(p7bio = PKCS7_dataInit(p7, NULL)))
120 {
121 PKCS7err(PKCS7_F_PKCS7_FINAL,ERR_R_MALLOC_FAILURE);
122 return 0;
123 }

125 SMIME_crlf_copy(data, p7bio, flags);

127 (void)BIO_flush(p7bio);

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_smime.c 3

130 if (!PKCS7_dataFinal(p7,p7bio))
131 {
132 PKCS7err(PKCS7_F_PKCS7_FINAL,PKCS7_R_PKCS7_DATASIGN);
133 goto err;
134 }

136 ret = 1;

138 err:
139 BIO_free_all(p7bio);

141 return ret;

143 }

145 /* Check to see if a cipher exists and if so add S/MIME capabilities */

147 static int add_cipher_smcap(STACK_OF(X509_ALGOR) *sk, int nid, int arg)
148 {
149 if (EVP_get_cipherbynid(nid))
150 return PKCS7_simple_smimecap(sk, nid, arg);
151 return 1;
152 }

154 static int add_digest_smcap(STACK_OF(X509_ALGOR) *sk, int nid, int arg)
155 {
156 if (EVP_get_digestbynid(nid))
157 return PKCS7_simple_smimecap(sk, nid, arg);
158 return 1;
159 }

161 PKCS7_SIGNER_INFO *PKCS7_sign_add_signer(PKCS7 *p7, X509 *signcert,
162 EVP_PKEY *pkey, const EVP_MD *md,
163 int flags)
164 {
165 PKCS7_SIGNER_INFO *si = NULL;
166 STACK_OF(X509_ALGOR) *smcap = NULL;
167 if(!X509_check_private_key(signcert, pkey))
168 {
169 PKCS7err(PKCS7_F_PKCS7_SIGN_ADD_SIGNER,
170 PKCS7_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE);
171 return NULL;
172 }

174 if (!(si = PKCS7_add_signature(p7,signcert,pkey, md)))
175 {
176 PKCS7err(PKCS7_F_PKCS7_SIGN_ADD_SIGNER,
177 PKCS7_R_PKCS7_ADD_SIGNATURE_ERROR);
178 return NULL;
179 }

181 if(!(flags & PKCS7_NOCERTS))
182 {
183 if (!PKCS7_add_certificate(p7, signcert))
184 goto err;
185 }

187 if(!(flags & PKCS7_NOATTR))
188 {
189 if (!PKCS7_add_attrib_content_type(si, NULL))
190 goto err;
191 /* Add SMIMECapabilities */
192 if(!(flags & PKCS7_NOSMIMECAP))
193 {

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_smime.c 4

194 if(!(smcap = sk_X509_ALGOR_new_null()))
195 {
196 PKCS7err(PKCS7_F_PKCS7_SIGN_ADD_SIGNER,
197 ERR_R_MALLOC_FAILURE);
198 goto err;
199 }
200 if (!add_cipher_smcap(smcap, NID_aes_256_cbc, -1)
201 || !add_digest_smcap(smcap, NID_id_GostR3411_94, -1)
202 || !add_cipher_smcap(smcap, NID_id_Gost28147_89, -1)
203 || !add_cipher_smcap(smcap, NID_aes_192_cbc, -1)
204 || !add_cipher_smcap(smcap, NID_aes_128_cbc, -1)
205 || !add_cipher_smcap(smcap, NID_des_ede3_cbc, -1)
206 || !add_cipher_smcap(smcap, NID_rc2_cbc, 128)
207 || !add_cipher_smcap(smcap, NID_rc2_cbc, 64)
208 || !add_cipher_smcap(smcap, NID_des_cbc, -1)
209 || !add_cipher_smcap(smcap, NID_rc2_cbc, 40)
210 || !PKCS7_add_attrib_smimecap (si, smcap))
211 goto err;
212 sk_X509_ALGOR_pop_free(smcap, X509_ALGOR_free);
213 smcap = NULL;
214 }
215 if (flags & PKCS7_REUSE_DIGEST)
216 {
217 if (!pkcs7_copy_existing_digest(p7, si))
218 goto err;
219 if (!(flags & PKCS7_PARTIAL) &&
220 !PKCS7_SIGNER_INFO_sign(si))
221 goto err;
222 }
223 }
224 return si;
225 err:
226 if (smcap)
227 sk_X509_ALGOR_pop_free(smcap, X509_ALGOR_free);
228 return NULL;
229 }

231 /* Search for a digest matching SignerInfo digest type and if found
232 * copy across.
233 */

235 static int pkcs7_copy_existing_digest(PKCS7 *p7, PKCS7_SIGNER_INFO *si)
236 {
237 int i;
238 STACK_OF(PKCS7_SIGNER_INFO) *sinfos;
239 PKCS7_SIGNER_INFO *sitmp;
240 ASN1_OCTET_STRING *osdig = NULL;
241 sinfos = PKCS7_get_signer_info(p7);
242 for (i = 0; i < sk_PKCS7_SIGNER_INFO_num(sinfos); i++)
243 {
244 sitmp = sk_PKCS7_SIGNER_INFO_value(sinfos, i);
245 if (si == sitmp)
246 break;
247 if (sk_X509_ATTRIBUTE_num(sitmp->auth_attr) <= 0)
248 continue;
249 if (!OBJ_cmp(si->digest_alg->algorithm,
250 sitmp->digest_alg->algorithm))
251 {
252 osdig = PKCS7_digest_from_attributes(sitmp->auth_attr);
253 break;
254 }

256 }

258 if (osdig)
259 return PKCS7_add1_attrib_digest(si, osdig->data, osdig->length);

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_smime.c 5

261 PKCS7err(PKCS7_F_PKCS7_COPY_EXISTING_DIGEST,
262 PKCS7_R_NO_MATCHING_DIGEST_TYPE_FOUND);
263 return 0;
264 }

266 int PKCS7_verify(PKCS7 *p7, STACK_OF(X509) *certs, X509_STORE *store,
267 BIO *indata, BIO *out, int flags)
268 {
269 STACK_OF(X509) *signers;
270 X509 *signer;
271 STACK_OF(PKCS7_SIGNER_INFO) *sinfos;
272 PKCS7_SIGNER_INFO *si;
273 X509_STORE_CTX cert_ctx;
274 char buf[4096];
275 int i, j=0, k, ret = 0;
276 BIO *p7bio;
277 BIO *tmpin, *tmpout;

279 if(!p7) {
280 PKCS7err(PKCS7_F_PKCS7_VERIFY,PKCS7_R_INVALID_NULL_POINTER);
281 return 0;
282 }

284 if(!PKCS7_type_is_signed(p7)) {
285 PKCS7err(PKCS7_F_PKCS7_VERIFY,PKCS7_R_WRONG_CONTENT_TYPE);
286 return 0;
287 }

289 /* Check for no data and no content: no data to verify signature */
290 if(PKCS7_get_detached(p7) && !indata) {
291 PKCS7err(PKCS7_F_PKCS7_VERIFY,PKCS7_R_NO_CONTENT);
292 return 0;
293 }
294 #if 0
295 /* NB: this test commented out because some versions of Netscape
296 * illegally include zero length content when signing data.
297 */

299 /* Check for data and content: two sets of data */
300 if(!PKCS7_get_detached(p7) && indata) {
301 PKCS7err(PKCS7_F_PKCS7_VERIFY,PKCS7_R_CONTENT_AN
302 return 0;
303 }
304 #endif

306 sinfos = PKCS7_get_signer_info(p7);

308 if(!sinfos || !sk_PKCS7_SIGNER_INFO_num(sinfos)) {
309 PKCS7err(PKCS7_F_PKCS7_VERIFY,PKCS7_R_NO_SIGNATURES_ON_DATA);
310 return 0;
311 }

314 signers = PKCS7_get0_signers(p7, certs, flags);

316 if(!signers) return 0;

318 /* Now verify the certificates */

320 if (!(flags & PKCS7_NOVERIFY)) for (k = 0; k < sk_X509_num(signers); k++
321 signer = sk_X509_value (signers, k);
322 if (!(flags & PKCS7_NOCHAIN)) {
323 if(!X509_STORE_CTX_init(&cert_ctx, store, signer,
324 p7->d.sign->cert))
325 {

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_smime.c 6

326 PKCS7err(PKCS7_F_PKCS7_VERIFY,ERR_R_X509_LIB);
327 sk_X509_free(signers);
328 return 0;
329 }
330 X509_STORE_CTX_set_default(&cert_ctx, "smime_sign");
331 } else if(!X509_STORE_CTX_init (&cert_ctx, store, signer, NULL))
332 PKCS7err(PKCS7_F_PKCS7_VERIFY,ERR_R_X509_LIB);
333 sk_X509_free(signers);
334 return 0;
335 }
336 if (!(flags & PKCS7_NOCRL))
337 X509_STORE_CTX_set0_crls(&cert_ctx, p7->d.sign->crl);
338 i = X509_verify_cert(&cert_ctx);
339 if (i <= 0) j = X509_STORE_CTX_get_error(&cert_ctx);
340 X509_STORE_CTX_cleanup(&cert_ctx);
341 if (i <= 0) {
342 PKCS7err(PKCS7_F_PKCS7_VERIFY,PKCS7_R_CERTIFICATE_VERIFY
343 ERR_add_error_data(2, "Verify error:",
344 X509_verify_cert_error_string(j));
345 sk_X509_free(signers);
346 return 0;
347 }
348 /* Check for revocation status here */
349 }

351 /* Performance optimization: if the content is a memory BIO then
352 * store its contents in a temporary read only memory BIO. This
353 * avoids potentially large numbers of slow copies of data which will
354 * occur when reading from a read write memory BIO when signatures
355 * are calculated.
356 */

358 if (indata && (BIO_method_type(indata) == BIO_TYPE_MEM))
359 {
360 char *ptr;
361 long len;
362 len = BIO_get_mem_data(indata, &ptr);
363 tmpin = BIO_new_mem_buf(ptr, len);
364 if (tmpin == NULL)
365 {
366 PKCS7err(PKCS7_F_PKCS7_VERIFY,ERR_R_MALLOC_FAILURE);
367 return 0;
368 }
369 }
370 else
371 tmpin = indata;
372

374 if (!(p7bio=PKCS7_dataInit(p7,tmpin)))
375 goto err;

377 if(flags & PKCS7_TEXT) {
378 if(!(tmpout = BIO_new(BIO_s_mem()))) {
379 PKCS7err(PKCS7_F_PKCS7_VERIFY,ERR_R_MALLOC_FAILURE);
380 goto err;
381 }
382 BIO_set_mem_eof_return(tmpout, 0);
383 } else tmpout = out;

385 /* We now have to ’read’ from p7bio to calculate digests etc. */
386 for (;;)
387 {
388 i=BIO_read(p7bio,buf,sizeof(buf));
389 if (i <= 0) break;
390 if (tmpout) BIO_write(tmpout, buf, i);
391 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_smime.c 7

393 if(flags & PKCS7_TEXT) {
394 if(!SMIME_text(tmpout, out)) {
395 PKCS7err(PKCS7_F_PKCS7_VERIFY,PKCS7_R_SMIME_TEXT_ERROR);
396 BIO_free(tmpout);
397 goto err;
398 }
399 BIO_free(tmpout);
400 }

402 /* Now Verify All Signatures */
403 if (!(flags & PKCS7_NOSIGS))
404 for (i=0; i<sk_PKCS7_SIGNER_INFO_num(sinfos); i++)
405 {
406 si=sk_PKCS7_SIGNER_INFO_value(sinfos,i);
407 signer = sk_X509_value (signers, i);
408 j=PKCS7_signatureVerify(p7bio,p7,si, signer);
409 if (j <= 0) {
410 PKCS7err(PKCS7_F_PKCS7_VERIFY,PKCS7_R_SIGNATURE_FAILURE)
411 goto err;
412 }
413 }

415 ret = 1;

417 err:
418
419 if (tmpin == indata)
420 {
421 if (indata) BIO_pop(p7bio);
422 }
423 BIO_free_all(p7bio);

425 sk_X509_free(signers);

427 return ret;
428 }

430 STACK_OF(X509) *PKCS7_get0_signers(PKCS7 *p7, STACK_OF(X509) *certs, int flags)
431 {
432 STACK_OF(X509) *signers;
433 STACK_OF(PKCS7_SIGNER_INFO) *sinfos;
434 PKCS7_SIGNER_INFO *si;
435 PKCS7_ISSUER_AND_SERIAL *ias;
436 X509 *signer;
437 int i;

439 if(!p7) {
440 PKCS7err(PKCS7_F_PKCS7_GET0_SIGNERS,PKCS7_R_INVALID_NULL_POINTER
441 return NULL;
442 }

444 if(!PKCS7_type_is_signed(p7)) {
445 PKCS7err(PKCS7_F_PKCS7_GET0_SIGNERS,PKCS7_R_WRONG_CONTENT_TYPE);
446 return NULL;
447 }

449 /* Collect all the signers together */

451 sinfos = PKCS7_get_signer_info(p7);

453 if(sk_PKCS7_SIGNER_INFO_num(sinfos) <= 0) {
454 PKCS7err(PKCS7_F_PKCS7_GET0_SIGNERS,PKCS7_R_NO_SIGNERS);
455 return 0;
456 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_smime.c 8

458 if(!(signers = sk_X509_new_null())) {
459 PKCS7err(PKCS7_F_PKCS7_GET0_SIGNERS,ERR_R_MALLOC_FAILURE);
460 return NULL;
461 }

463 for (i = 0; i < sk_PKCS7_SIGNER_INFO_num(sinfos); i++)
464 {
465 si = sk_PKCS7_SIGNER_INFO_value(sinfos, i);
466 ias = si->issuer_and_serial;
467 signer = NULL;
468 /* If any certificates passed they take priority */
469 if (certs) signer = X509_find_by_issuer_and_serial (certs,
470 ias->issuer, ias->serial);
471 if (!signer && !(flags & PKCS7_NOINTERN)
472 && p7->d.sign->cert) signer =
473 X509_find_by_issuer_and_serial (p7->d.sign->cert,
474 ias->issuer, ias->serial);
475 if (!signer) {
476 PKCS7err(PKCS7_F_PKCS7_GET0_SIGNERS,PKCS7_R_SIGNER_CERTI
477 sk_X509_free(signers);
478 return 0;
479 }

481 if (!sk_X509_push(signers, signer)) {
482 sk_X509_free(signers);
483 return NULL;
484 }
485 }
486 return signers;
487 }

490 /* Build a complete PKCS#7 enveloped data */

492 PKCS7 *PKCS7_encrypt(STACK_OF(X509) *certs, BIO *in, const EVP_CIPHER *cipher,
493 int flags)
494 {
495 PKCS7 *p7;
496 BIO *p7bio = NULL;
497 int i;
498 X509 *x509;
499 if(!(p7 = PKCS7_new())) {
500 PKCS7err(PKCS7_F_PKCS7_ENCRYPT,ERR_R_MALLOC_FAILURE);
501 return NULL;
502 }

504 if (!PKCS7_set_type(p7, NID_pkcs7_enveloped))
505 goto err;
506 if (!PKCS7_set_cipher(p7, cipher)) {
507 PKCS7err(PKCS7_F_PKCS7_ENCRYPT,PKCS7_R_ERROR_SETTING_CIPHER);
508 goto err;
509 }

511 for(i = 0; i < sk_X509_num(certs); i++) {
512 x509 = sk_X509_value(certs, i);
513 if(!PKCS7_add_recipient(p7, x509)) {
514 PKCS7err(PKCS7_F_PKCS7_ENCRYPT,
515 PKCS7_R_ERROR_ADDING_RECIPIENT);
516 goto err;
517 }
518 }

520 if (flags & PKCS7_STREAM)
521 return p7;

523 if (PKCS7_final(p7, in, flags))

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_smime.c 9

524 return p7;

526 err:

528 BIO_free_all(p7bio);
529 PKCS7_free(p7);
530 return NULL;

532 }

534 int PKCS7_decrypt(PKCS7 *p7, EVP_PKEY *pkey, X509 *cert, BIO *data, int flags)
535 {
536 BIO *tmpmem;
537 int ret, i;
538 char buf[4096];

540 if(!p7) {
541 PKCS7err(PKCS7_F_PKCS7_DECRYPT,PKCS7_R_INVALID_NULL_POINTER);
542 return 0;
543 }

545 if(!PKCS7_type_is_enveloped(p7)) {
546 PKCS7err(PKCS7_F_PKCS7_DECRYPT,PKCS7_R_WRONG_CONTENT_TYPE);
547 return 0;
548 }

550 if(cert && !X509_check_private_key(cert, pkey)) {
551 PKCS7err(PKCS7_F_PKCS7_DECRYPT,
552 PKCS7_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE);
553 return 0;
554 }

556 if(!(tmpmem = PKCS7_dataDecode(p7, pkey, NULL, cert))) {
557 PKCS7err(PKCS7_F_PKCS7_DECRYPT, PKCS7_R_DECRYPT_ERROR);
558 return 0;
559 }

561 if (flags & PKCS7_TEXT) {
562 BIO *tmpbuf, *bread;
563 /* Encrypt BIOs can’t do BIO_gets() so add a buffer BIO */
564 if(!(tmpbuf = BIO_new(BIO_f_buffer()))) {
565 PKCS7err(PKCS7_F_PKCS7_DECRYPT, ERR_R_MALLOC_FAILURE);
566 BIO_free_all(tmpmem);
567 return 0;
568 }
569 if(!(bread = BIO_push(tmpbuf, tmpmem))) {
570 PKCS7err(PKCS7_F_PKCS7_DECRYPT, ERR_R_MALLOC_FAILURE);
571 BIO_free_all(tmpbuf);
572 BIO_free_all(tmpmem);
573 return 0;
574 }
575 ret = SMIME_text(bread, data);
576 if (ret > 0 && BIO_method_type(tmpmem) == BIO_TYPE_CIPHER)
577 {
578 if (!BIO_get_cipher_status(tmpmem))
579 ret = 0;
580 }
581 BIO_free_all(bread);
582 return ret;
583 } else {
584 for(;;) {
585 i = BIO_read(tmpmem, buf, sizeof(buf));
586 if(i <= 0)
587 {
588 ret = 1;
589 if (BIO_method_type(tmpmem) == BIO_TYPE_CIPHER)

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pk7_smime.c 10

590 {
591 if (!BIO_get_cipher_status(tmpmem))
592 ret = 0;
593 }
594
595 break;
596 }
597 if (BIO_write(data, buf, i) != i)
598 {
599 ret = 0;
600 break;
601 }
602 }
603 BIO_free_all(tmpmem);
604 return ret;
605 }
606 }

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pkcs7err.c 1

**
 9769 Fri May 30 18:32:01 2014
new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pkcs7err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pkcs7/pkcs7err.c */
2 /* ==
3 * Copyright (c) 1999-2007 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pkcs7err.c 2

62 #include <openssl/err.h>
63 #include <openssl/pkcs7.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_PKCS7,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_PKCS7,0,reason)

71 static ERR_STRING_DATA PKCS7_str_functs[]=
72 {
73 {ERR_FUNC(PKCS7_F_B64_READ_PKCS7), "B64_READ_PKCS7"},
74 {ERR_FUNC(PKCS7_F_B64_WRITE_PKCS7), "B64_WRITE_PKCS7"},
75 {ERR_FUNC(PKCS7_F_DO_PKCS7_SIGNED_ATTRIB), "DO_PKCS7_SIGNED_ATTRIB"},
76 {ERR_FUNC(PKCS7_F_I2D_PKCS7_BIO_STREAM), "i2d_PKCS7_bio_stream"},
77 {ERR_FUNC(PKCS7_F_PKCS7_ADD0_ATTRIB_SIGNING_TIME), "PKCS7_add0_attrib_signi
78 {ERR_FUNC(PKCS7_F_PKCS7_ADD_ATTRIB_SMIMECAP), "PKCS7_add_attrib_smimecap"},
79 {ERR_FUNC(PKCS7_F_PKCS7_ADD_CERTIFICATE), "PKCS7_add_certificate"},
80 {ERR_FUNC(PKCS7_F_PKCS7_ADD_CRL), "PKCS7_add_crl"},
81 {ERR_FUNC(PKCS7_F_PKCS7_ADD_RECIPIENT_INFO), "PKCS7_add_recipient_info"},
82 {ERR_FUNC(PKCS7_F_PKCS7_ADD_SIGNATURE), "PKCS7_add_signature"},
83 {ERR_FUNC(PKCS7_F_PKCS7_ADD_SIGNER), "PKCS7_add_signer"},
84 {ERR_FUNC(PKCS7_F_PKCS7_BIO_ADD_DIGEST), "PKCS7_BIO_ADD_DIGEST"},
85 {ERR_FUNC(PKCS7_F_PKCS7_COPY_EXISTING_DIGEST), "PKCS7_COPY_EXISTING_DIGEST"},
86 {ERR_FUNC(PKCS7_F_PKCS7_CTRL), "PKCS7_ctrl"},
87 {ERR_FUNC(PKCS7_F_PKCS7_DATADECODE), "PKCS7_dataDecode"},
88 {ERR_FUNC(PKCS7_F_PKCS7_DATAFINAL), "PKCS7_dataFinal"},
89 {ERR_FUNC(PKCS7_F_PKCS7_DATAINIT), "PKCS7_dataInit"},
90 {ERR_FUNC(PKCS7_F_PKCS7_DATASIGN), "PKCS7_DATASIGN"},
91 {ERR_FUNC(PKCS7_F_PKCS7_DATAVERIFY), "PKCS7_dataVerify"},
92 {ERR_FUNC(PKCS7_F_PKCS7_DECRYPT), "PKCS7_decrypt"},
93 {ERR_FUNC(PKCS7_F_PKCS7_DECRYPT_RINFO), "PKCS7_DECRYPT_RINFO"},
94 {ERR_FUNC(PKCS7_F_PKCS7_ENCODE_RINFO), "PKCS7_ENCODE_RINFO"},
95 {ERR_FUNC(PKCS7_F_PKCS7_ENCRYPT), "PKCS7_encrypt"},
96 {ERR_FUNC(PKCS7_F_PKCS7_FINAL), "PKCS7_final"},
97 {ERR_FUNC(PKCS7_F_PKCS7_FIND_DIGEST), "PKCS7_FIND_DIGEST"},
98 {ERR_FUNC(PKCS7_F_PKCS7_GET0_SIGNERS), "PKCS7_get0_signers"},
99 {ERR_FUNC(PKCS7_F_PKCS7_RECIP_INFO_SET), "PKCS7_RECIP_INFO_set"},
100 {ERR_FUNC(PKCS7_F_PKCS7_SET_CIPHER), "PKCS7_set_cipher"},
101 {ERR_FUNC(PKCS7_F_PKCS7_SET_CONTENT), "PKCS7_set_content"},
102 {ERR_FUNC(PKCS7_F_PKCS7_SET_DIGEST), "PKCS7_set_digest"},
103 {ERR_FUNC(PKCS7_F_PKCS7_SET_TYPE), "PKCS7_set_type"},
104 {ERR_FUNC(PKCS7_F_PKCS7_SIGN), "PKCS7_sign"},
105 {ERR_FUNC(PKCS7_F_PKCS7_SIGNATUREVERIFY), "PKCS7_signatureVerify"},
106 {ERR_FUNC(PKCS7_F_PKCS7_SIGNER_INFO_SET), "PKCS7_SIGNER_INFO_set"},
107 {ERR_FUNC(PKCS7_F_PKCS7_SIGNER_INFO_SIGN), "PKCS7_SIGNER_INFO_sign"},
108 {ERR_FUNC(PKCS7_F_PKCS7_SIGN_ADD_SIGNER), "PKCS7_sign_add_signer"},
109 {ERR_FUNC(PKCS7_F_PKCS7_SIMPLE_SMIMECAP), "PKCS7_simple_smimecap"},
110 {ERR_FUNC(PKCS7_F_PKCS7_VERIFY), "PKCS7_verify"},
111 {ERR_FUNC(PKCS7_F_SMIME_READ_PKCS7), "SMIME_read_PKCS7"},
112 {ERR_FUNC(PKCS7_F_SMIME_TEXT), "SMIME_text"},
113 {0,NULL}
114 };

116 static ERR_STRING_DATA PKCS7_str_reasons[]=
117 {
118 {ERR_REASON(PKCS7_R_CERTIFICATE_VERIFY_ERROR),"certificate verify error"},
119 {ERR_REASON(PKCS7_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER),"cipher has no object ident
120 {ERR_REASON(PKCS7_R_CIPHER_NOT_INITIALIZED),"cipher not initialized"},
121 {ERR_REASON(PKCS7_R_CONTENT_AND_DATA_PRESENT),"content and data present"},
122 {ERR_REASON(PKCS7_R_CTRL_ERROR) ,"ctrl error"},
123 {ERR_REASON(PKCS7_R_DECODE_ERROR) ,"decode error"},
124 {ERR_REASON(PKCS7_R_DECRYPTED_KEY_IS_WRONG_LENGTH),"decrypted key is wrong lengt
125 {ERR_REASON(PKCS7_R_DECRYPT_ERROR) ,"decrypt error"},
126 {ERR_REASON(PKCS7_R_DIGEST_FAILURE) ,"digest failure"},
127 {ERR_REASON(PKCS7_R_ENCRYPTION_CTRL_FAILURE),"encryption ctrl failure"},

new/usr/src/lib/openssl/libsunw_crypto/pkcs7/pkcs7err.c 3

128 {ERR_REASON(PKCS7_R_ENCRYPTION_NOT_SUPPORTED_FOR_THIS_KEY_TYPE),"encryption not
129 {ERR_REASON(PKCS7_R_ERROR_ADDING_RECIPIENT),"error adding recipient"},
130 {ERR_REASON(PKCS7_R_ERROR_SETTING_CIPHER),"error setting cipher"},
131 {ERR_REASON(PKCS7_R_INVALID_MIME_TYPE) ,"invalid mime type"},
132 {ERR_REASON(PKCS7_R_INVALID_NULL_POINTER),"invalid null pointer"},
133 {ERR_REASON(PKCS7_R_MIME_NO_CONTENT_TYPE),"mime no content type"},
134 {ERR_REASON(PKCS7_R_MIME_PARSE_ERROR) ,"mime parse error"},
135 {ERR_REASON(PKCS7_R_MIME_SIG_PARSE_ERROR),"mime sig parse error"},
136 {ERR_REASON(PKCS7_R_MISSING_CERIPEND_INFO),"missing ceripend info"},
137 {ERR_REASON(PKCS7_R_NO_CONTENT) ,"no content"},
138 {ERR_REASON(PKCS7_R_NO_CONTENT_TYPE) ,"no content type"},
139 {ERR_REASON(PKCS7_R_NO_DEFAULT_DIGEST) ,"no default digest"},
140 {ERR_REASON(PKCS7_R_NO_MATCHING_DIGEST_TYPE_FOUND),"no matching digest type foun
141 {ERR_REASON(PKCS7_R_NO_MULTIPART_BODY_FAILURE),"no multipart body failure"},
142 {ERR_REASON(PKCS7_R_NO_MULTIPART_BOUNDARY),"no multipart boundary"},
143 {ERR_REASON(PKCS7_R_NO_RECIPIENT_MATCHES_CERTIFICATE),"no recipient matches cert
144 {ERR_REASON(PKCS7_R_NO_RECIPIENT_MATCHES_KEY),"no recipient matches key"},
145 {ERR_REASON(PKCS7_R_NO_SIGNATURES_ON_DATA),"no signatures on data"},
146 {ERR_REASON(PKCS7_R_NO_SIGNERS) ,"no signers"},
147 {ERR_REASON(PKCS7_R_NO_SIG_CONTENT_TYPE) ,"no sig content type"},
148 {ERR_REASON(PKCS7_R_OPERATION_NOT_SUPPORTED_ON_THIS_TYPE),"operation not support
149 {ERR_REASON(PKCS7_R_PKCS7_ADD_SIGNATURE_ERROR),"pkcs7 add signature error"},
150 {ERR_REASON(PKCS7_R_PKCS7_ADD_SIGNER_ERROR),"pkcs7 add signer error"},
151 {ERR_REASON(PKCS7_R_PKCS7_DATAFINAL) ,"pkcs7 datafinal"},
152 {ERR_REASON(PKCS7_R_PKCS7_DATAFINAL_ERROR),"pkcs7 datafinal error"},
153 {ERR_REASON(PKCS7_R_PKCS7_DATASIGN) ,"pkcs7 datasign"},
154 {ERR_REASON(PKCS7_R_PKCS7_PARSE_ERROR) ,"pkcs7 parse error"},
155 {ERR_REASON(PKCS7_R_PKCS7_SIG_PARSE_ERROR),"pkcs7 sig parse error"},
156 {ERR_REASON(PKCS7_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE),"private key does no
157 {ERR_REASON(PKCS7_R_SIGNATURE_FAILURE) ,"signature failure"},
158 {ERR_REASON(PKCS7_R_SIGNER_CERTIFICATE_NOT_FOUND),"signer certificate not found"
159 {ERR_REASON(PKCS7_R_SIGNING_CTRL_FAILURE),"signing ctrl failure"},
160 {ERR_REASON(PKCS7_R_SIGNING_NOT_SUPPORTED_FOR_THIS_KEY_TYPE),"signing not suppor
161 {ERR_REASON(PKCS7_R_SIG_INVALID_MIME_TYPE),"sig invalid mime type"},
162 {ERR_REASON(PKCS7_R_SMIME_TEXT_ERROR) ,"smime text error"},
163 {ERR_REASON(PKCS7_R_UNABLE_TO_FIND_CERTIFICATE),"unable to find certificate"},
164 {ERR_REASON(PKCS7_R_UNABLE_TO_FIND_MEM_BIO),"unable to find mem bio"},
165 {ERR_REASON(PKCS7_R_UNABLE_TO_FIND_MESSAGE_DIGEST),"unable to find message diges
166 {ERR_REASON(PKCS7_R_UNKNOWN_DIGEST_TYPE) ,"unknown digest type"},
167 {ERR_REASON(PKCS7_R_UNKNOWN_OPERATION) ,"unknown operation"},
168 {ERR_REASON(PKCS7_R_UNSUPPORTED_CIPHER_TYPE),"unsupported cipher type"},
169 {ERR_REASON(PKCS7_R_UNSUPPORTED_CONTENT_TYPE),"unsupported content type"},
170 {ERR_REASON(PKCS7_R_WRONG_CONTENT_TYPE) ,"wrong content type"},
171 {ERR_REASON(PKCS7_R_WRONG_PKCS7_TYPE) ,"wrong pkcs7 type"},
172 {0,NULL}
173 };

175 #endif

177 void ERR_load_PKCS7_strings(void)
178 {
179 #ifndef OPENSSL_NO_ERR

181 if (ERR_func_error_string(PKCS7_str_functs[0].error) == NULL)
182 {
183 ERR_load_strings(0,PKCS7_str_functs);
184 ERR_load_strings(0,PKCS7_str_reasons);
185 }
186 #endif
187 }

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 1

**
 103486 Fri May 30 18:32:01 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl
2 #
3 # ==
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==
9 #
10 # Version 4.3.
11 #
12 # You might fail to appreciate this module performance from the first
13 # try. If compared to "vanilla" linux-ia32-icc target, i.e. considered
14 # to be *the* best Intel C compiler without -KPIC, performance appears
15 # to be virtually identical... But try to re-configure with shared
16 # library support... Aha! Intel compiler "suddenly" lags behind by 30%
17 # [on P4, more on others]:-) And if compared to position-independent
18 # code generated by GNU C, this code performs *more* than *twice* as
19 # fast! Yes, all this buzz about PIC means that unlike other hand-
20 # coded implementations, this one was explicitly designed to be safe
21 # to use even in shared library context... This also means that this
22 # code isn’t necessarily absolutely fastest "ever," because in order
23 # to achieve position independence an extra register has to be
24 # off-loaded to stack, which affects the benchmark result.
25 #
26 # Special note about instruction choice. Do you recall RC4_INT code
27 # performing poorly on P4? It might be the time to figure out why.
28 # RC4_INT code implies effective address calculations in base+offset*4
29 # form. Trouble is that it seems that offset scaling turned to be
30 # critical path... At least eliminating scaling resulted in 2.8x RC4
31 # performance improvement [as you might recall]. As AES code is hungry
32 # for scaling too, I [try to] avoid the latter by favoring off-by-2
33 # shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF.
34 #
35 # As was shown by Dean Gaudet <dean@arctic.org>, the above note turned
36 # void. Performance improvement with off-by-2 shifts was observed on
37 # intermediate implementation, which was spilling yet another register
38 # to stack... Final offset*4 code below runs just a tad faster on P4,
39 # but exhibits up to 10% improvement on other cores.
40 #
41 # Second version is "monolithic" replacement for aes_core.c, which in
42 # addition to AES_[de|en]crypt implements private_AES_set_[de|en]cryption_key.
43 # This made it possible to implement little-endian variant of the
44 # algorithm without modifying the base C code. Motivating factor for
45 # the undertaken effort was that it appeared that in tight IA-32
46 # register window little-endian flavor could achieve slightly higher
47 # Instruction Level Parallelism, and it indeed resulted in up to 15%
48 # better performance on most recent µ-archs...
49 #
50 # Third version adds AES_cbc_encrypt implementation, which resulted in
51 # up to 40% performance imrovement of CBC benchmark results. 40% was
52 # observed on P4 core, where "overall" imrovement coefficient, i.e. if
53 # compared to PIC generated by GCC and in CBC mode, was observed to be
54 # as large as 4x:-) CBC performance is virtually identical to ECB now
55 # and on some platforms even better, e.g. 17.6 "small" cycles/byte on
56 # Opteron, because certain function prologues and epilogues are
57 # effectively taken out of the loop...
58 #
59 # Version 3.2 implements compressed tables and prefetch of these tables
60 # in CBC[!] mode. Former means that 3/4 of table references are now
61 # misaligned, which unfortunately has negative impact on elder IA-32

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 2

62 # implementations, Pentium suffered 30% penalty, PIII - 10%.
63 #
64 # Version 3.3 avoids L1 cache aliasing between stack frame and
65 # S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The
66 # latter is achieved by copying the key schedule to controlled place in
67 # stack. This unfortunately has rather strong impact on small block CBC
68 # performance, ~2x deterioration on 16-byte block if compared to 3.3.
69 #
70 # Version 3.5 checks if there is L1 cache aliasing between user-supplied
71 # key schedule and S-boxes and abstains from copying the former if
72 # there is no. This allows end-user to consciously retain small block
73 # performance by aligning key schedule in specific manner.
74 #
75 # Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB.
76 #
77 # Current ECB performance numbers for 128-bit key in CPU cycles per
78 # processed byte [measure commonly used by AES benchmarkers] are:
79 #
80 # small footprint fully unrolled
81 # P4 24 22
82 # AMD K8 20 19
83 # PIII 25 23
84 # Pentium 81 78
85 #
86 # Version 3.7 reimplements outer rounds as "compact." Meaning that
87 # first and last rounds reference compact 256 bytes S-box. This means
88 # that first round consumes a lot more CPU cycles and that encrypt
89 # and decrypt performance becomes asymmetric. Encrypt performance
90 # drops by 10-12%, while decrypt - by 20-25%:-(256 bytes S-box is
91 # aggressively pre-fetched.
92 #
93 # Version 4.0 effectively rolls back to 3.6 and instead implements
94 # additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact,
95 # which use exclusively 256 byte S-box. These functions are to be
96 # called in modes not concealing plain text, such as ECB, or when
97 # we’re asked to process smaller amount of data [or unconditionally
98 # on hyper-threading CPU]. Currently it’s called unconditionally from
99 # AES_[en|de]crypt, which affects all modes, but CBC. CBC routine
100 # still needs to be modified to switch between slower and faster
101 # mode when appropriate... But in either case benchmark landscape
102 # changes dramatically and below numbers are CPU cycles per processed
103 # byte for 128-bit key.
104 #
105 # ECB encrypt ECB decrypt CBC large chunk
106 # P4 56[60] 84[100] 23
107 # AMD K8 48[44] 70[79] 18
108 # PIII 41[50] 61[91] 24
109 # Core 2 32[38] 45[70] 18.5
110 # Pentium 120 160 77
111 #
112 # Version 4.1 switches to compact S-box even in key schedule setup.
113 #
114 # Version 4.2 prefetches compact S-box in every SSE round or in other
115 # words every cache-line is *guaranteed* to be accessed within ~50
116 # cycles window. Why just SSE? Because it’s needed on hyper-threading
117 # CPU! Which is also why it’s prefetched with 64 byte stride. Best
118 # part is that it has no negative effect on performance:-)
119 #
120 # Version 4.3 implements switch between compact and non-compact block
121 # functions in AES_cbc_encrypt depending on how much data was asked
122 # to be processed in one stroke.
123 #
124 ##
125 # Timing attacks are classified in two classes: synchronous when
126 # attacker consciously initiates cryptographic operation and collects
127 # timing data of various character afterwards, and asynchronous when

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 3

128 # malicious code is executed on same CPU simultaneously with AES,
129 # instruments itself and performs statistical analysis of this data.
130 #
131 # As far as synchronous attacks go the root to the AES timing
132 # vulnerability is twofold. Firstly, of 256 S-box elements at most 160
133 # are referred to in single 128-bit block operation. Well, in C
134 # implementation with 4 distinct tables it’s actually as little as 40
135 # references per 256 elements table, but anyway... Secondly, even
136 # though S-box elements are clustered into smaller amount of cache-
137 # lines, smaller than 160 and even 40, it turned out that for certain
138 # plain-text pattern[s] or simply put chosen plain-text and given key
139 # few cache-lines remain unaccessed during block operation. Now, if
140 # attacker can figure out this access pattern, he can deduct the key
141 # [or at least part of it]. The natural way to mitigate this kind of
142 # attacks is to minimize the amount of cache-lines in S-box and/or
143 # prefetch them to ensure that every one is accessed for more uniform
144 # timing. But note that *if* plain-text was concealed in such way that
145 # input to block function is distributed *uniformly*, then attack
146 # wouldn’t apply. Now note that some encryption modes, most notably
147 # CBC, do mask the plain-text in this exact way [secure cipher output
148 # is distributed uniformly]. Yes, one still might find input that
149 # would reveal the information about given key, but if amount of
150 # candidate inputs to be tried is larger than amount of possible key
151 # combinations then attack becomes infeasible. This is why revised
152 # AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk
153 # of data is to be processed in one stroke. The current size limit of
154 # 512 bytes is chosen to provide same [diminishigly low] probability
155 # for cache-line to remain untouched in large chunk operation with
156 # large S-box as for single block operation with compact S-box and
157 # surely needs more careful consideration...
158 #
159 # As for asynchronous attacks. There are two flavours: attacker code
160 # being interleaved with AES on hyper-threading CPU at *instruction*
161 # level, and two processes time sharing single core. As for latter.
162 # Two vectors. 1. Given that attacker process has higher priority,
163 # yield execution to process performing AES just before timer fires
164 # off the scheduler, immediately regain control of CPU and analyze the
165 # cache state. For this attack to be efficient attacker would have to
166 # effectively slow down the operation by several *orders* of magnitute,
167 # by ratio of time slice to duration of handful of AES rounds, which
168 # unlikely to remain unnoticed. Not to mention that this also means
169 # that he would spend correspondigly more time to collect enough
170 # statistical data to mount the attack. It’s probably appropriate to
171 # say that if adeversary reckons that this attack is beneficial and
172 # risks to be noticed, you probably have larger problems having him
173 # mere opportunity. In other words suggested code design expects you
174 # to preclude/mitigate this attack by overall system security design.
175 # 2. Attacker manages to make his code interrupt driven. In order for
176 # this kind of attack to be feasible, interrupt rate has to be high
177 # enough, again comparable to duration of handful of AES rounds. But
178 # is there interrupt source of such rate? Hardly, not even 1Gbps NIC
179 # generates interrupts at such raging rate...
180 #
181 # And now back to the former, hyper-threading CPU or more specifically
182 # Intel P4. Recall that asynchronous attack implies that malicious
183 # code instruments itself. And naturally instrumentation granularity
184 # has be noticeably lower than duration of codepath accessing S-box.
185 # Given that all cache-lines are accessed during that time that is.
186 # Current implementation accesses *all* cache-lines within ~50 cycles
187 # window, which is actually *less* than RDTSC latency on Intel P4!

189 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
190 push(@INC,"${dir}","${dir}../../perlasm");
191 require "x86asm.pl";

193 &asm_init($ARGV[0],"aes-586.pl",$x86only = $ARGV[$#ARGV] eq "386");

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 4

194 &static_label("AES_Te");
195 &static_label("AES_Td");

197 $s0="eax";
198 $s1="ebx";
199 $s2="ecx";
200 $s3="edx";
201 $key="edi";
202 $acc="esi";
203 $tbl="ebp";

205 # stack frame layout in _[x86|sse]_AES_* routines, frame is allocated
206 # by caller
207 $__ra=&DWP(0,"esp"); # return address
208 $__s0=&DWP(4,"esp"); # s0 backing store
209 $__s1=&DWP(8,"esp"); # s1 backing store
210 $__s2=&DWP(12,"esp"); # s2 backing store
211 $__s3=&DWP(16,"esp"); # s3 backing store
212 $__key=&DWP(20,"esp"); # pointer to key schedule
213 $__end=&DWP(24,"esp"); # pointer to end of key schedule
214 $__tbl=&DWP(28,"esp"); # %ebp backing store

216 # stack frame layout in AES_[en|crypt] routines, which differs from
217 # above by 4 and overlaps by %ebp backing store
218 $_tbl=&DWP(24,"esp");
219 $_esp=&DWP(28,"esp");

221 sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } }

223 $speed_limit=512; # chunks smaller than $speed_limit are
224 # processed with compact routine in CBC mode
225 $small_footprint=1; # $small_footprint=1 code is ~5% slower [on
226 # recent µ-archs], but ~5 times smaller!
227 # I favor compact code to minimize cache
228 # contention and in hope to "collect" 5% back
229 # in real-life applications...

231 $vertical_spin=0; # shift "verticaly" defaults to 0, because of
232 # its proof-of-concept status...
233 # Note that there is no decvert(), as well as last encryption round is
234 # performed with "horizontal" shifts. This is because this "vertical"
235 # implementation [one which groups shifts on a given $s[i] to form a
236 # "column," unlike "horizontal" one, which groups shifts on different
237 # $s[i] to form a "row"] is work in progress. It was observed to run
238 # few percents faster on Intel cores, but not AMD. On AMD K8 core it’s
239 # whole 12% slower:-(So we face a trade-off... Shall it be resolved
240 # some day? Till then the code is considered experimental and by
241 # default remains dormant...

243 sub encvert()
244 { my ($te,@s) = @_;
245 my $v0 = $acc, $v1 = $key;

247 &mov ($v0,$s[3]); # copy s3
248 &mov (&DWP(4,"esp"),$s[2]); # save s2
249 &mov ($v1,$s[0]); # copy s0
250 &mov (&DWP(8,"esp"),$s[1]); # save s1

252 &movz ($s[2],&HB($s[0]));
253 &and ($s[0],0xFF);
254 &mov ($s[0],&DWP(0,$te,$s[0],8)); # s0>>0
255 &shr ($v1,16);
256 &mov ($s[3],&DWP(3,$te,$s[2],8)); # s0>>8
257 &movz ($s[1],&HB($v1));
258 &and ($v1,0xFF);
259 &mov ($s[2],&DWP(2,$te,$v1,8)); # s0>>16

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 5

260 &mov ($v1,$v0);
261 &mov ($s[1],&DWP(1,$te,$s[1],8)); # s0>>24

263 &and ($v0,0xFF);
264 &xor ($s[3],&DWP(0,$te,$v0,8)); # s3>>0
265 &movz ($v0,&HB($v1));
266 &shr ($v1,16);
267 &xor ($s[2],&DWP(3,$te,$v0,8)); # s3>>8
268 &movz ($v0,&HB($v1));
269 &and ($v1,0xFF);
270 &xor ($s[1],&DWP(2,$te,$v1,8)); # s3>>16
271 &mov ($v1,&DWP(4,"esp")); # restore s2
272 &xor ($s[0],&DWP(1,$te,$v0,8)); # s3>>24

274 &mov ($v0,$v1);
275 &and ($v1,0xFF);
276 &xor ($s[2],&DWP(0,$te,$v1,8)); # s2>>0
277 &movz ($v1,&HB($v0));
278 &shr ($v0,16);
279 &xor ($s[1],&DWP(3,$te,$v1,8)); # s2>>8
280 &movz ($v1,&HB($v0));
281 &and ($v0,0xFF);
282 &xor ($s[0],&DWP(2,$te,$v0,8)); # s2>>16
283 &mov ($v0,&DWP(8,"esp")); # restore s1
284 &xor ($s[3],&DWP(1,$te,$v1,8)); # s2>>24

286 &mov ($v1,$v0);
287 &and ($v0,0xFF);
288 &xor ($s[1],&DWP(0,$te,$v0,8)); # s1>>0
289 &movz ($v0,&HB($v1));
290 &shr ($v1,16);
291 &xor ($s[0],&DWP(3,$te,$v0,8)); # s1>>8
292 &movz ($v0,&HB($v1));
293 &and ($v1,0xFF);
294 &xor ($s[3],&DWP(2,$te,$v1,8)); # s1>>16
295 &mov ($key,$__key); # reincarnate v1 as key
296 &xor ($s[2],&DWP(1,$te,$v0,8)); # s1>>24
297 }

299 # Another experimental routine, which features "horizontal spin," but
300 # eliminates one reference to stack. Strangely enough runs slower...
301 sub enchoriz()
302 { my $v0 = $key, $v1 = $acc;

304 &movz ($v0,&LB($s0)); # 3, 2, 1, 0*
305 &rotr ($s2,8); # 8,11,10, 9
306 &mov ($v1,&DWP(0,$te,$v0,8)); # 0
307 &movz ($v0,&HB($s1)); # 7, 6, 5*, 4
308 &rotr ($s3,16); # 13,12,15,14
309 &xor ($v1,&DWP(3,$te,$v0,8)); # 5
310 &movz ($v0,&HB($s2)); # 8,11,10*, 9
311 &rotr ($s0,16); # 1, 0, 3, 2
312 &xor ($v1,&DWP(2,$te,$v0,8)); # 10
313 &movz ($v0,&HB($s3)); # 13,12,15*,14
314 &xor ($v1,&DWP(1,$te,$v0,8)); # 15, t[0] collected
315 &mov ($__s0,$v1); # t[0] saved

317 &movz ($v0,&LB($s1)); # 7, 6, 5, 4*
318 &shr ($s1,16); # -, -, 7, 6
319 &mov ($v1,&DWP(0,$te,$v0,8)); # 4
320 &movz ($v0,&LB($s3)); # 13,12,15,14*
321 &xor ($v1,&DWP(2,$te,$v0,8)); # 14
322 &movz ($v0,&HB($s0)); # 1, 0, 3*, 2
323 &and ($s3,0xffff0000); # 13,12, -, -
324 &xor ($v1,&DWP(1,$te,$v0,8)); # 3
325 &movz ($v0,&LB($s2)); # 8,11,10, 9*

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 6

326 &or ($s3,$s1); # 13,12, 7, 6
327 &xor ($v1,&DWP(3,$te,$v0,8)); # 9, t[1] collected
328 &mov ($s1,$v1); # s[1]=t[1]

330 &movz ($v0,&LB($s0)); # 1, 0, 3, 2*
331 &shr ($s2,16); # -, -, 8,11
332 &mov ($v1,&DWP(2,$te,$v0,8)); # 2
333 &movz ($v0,&HB($s3)); # 13,12, 7*, 6
334 &xor ($v1,&DWP(1,$te,$v0,8)); # 7
335 &movz ($v0,&HB($s2)); # -, -, 8*,11
336 &xor ($v1,&DWP(0,$te,$v0,8)); # 8
337 &mov ($v0,$s3);
338 &shr ($v0,24); # 13
339 &xor ($v1,&DWP(3,$te,$v0,8)); # 13, t[2] collected

341 &movz ($v0,&LB($s2)); # -, -, 8,11*
342 &shr ($s0,24); # 1*
343 &mov ($s2,&DWP(1,$te,$v0,8)); # 11
344 &xor ($s2,&DWP(3,$te,$s0,8)); # 1
345 &mov ($s0,$__s0); # s[0]=t[0]
346 &movz ($v0,&LB($s3)); # 13,12, 7, 6*
347 &shr ($s3,16); # , ,13,12
348 &xor ($s2,&DWP(2,$te,$v0,8)); # 6
349 &mov ($key,$__key); # reincarnate v0 as key
350 &and ($s3,0xff); # , ,13,12*
351 &mov ($s3,&DWP(0,$te,$s3,8)); # 12
352 &xor ($s3,$s2); # s[2]=t[3] collected
353 &mov ($s2,$v1); # s[2]=t[2]
354 }

356 # More experimental code... SSE one... Even though this one eliminates
357 # *all* references to stack, it’s not faster...
358 sub sse_encbody()
359 {
360 &movz ($acc,&LB("eax")); # 0
361 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 0
362 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2
363 &movz ("edx",&HB("eax")); # 1
364 &mov ("edx",&DWP(3,$tbl,"edx",8)); # 1
365 &shr ("eax",16); # 5, 4

367 &movz ($acc,&LB("ebx")); # 10
368 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 10
369 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8
370 &movz ($acc,&HB("ebx")); # 11
371 &xor ("edx",&DWP(1,$tbl,$acc,8)); # 11
372 &shr ("ebx",16); # 15,14

374 &movz ($acc,&HB("eax")); # 5
375 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 5
376 &movq ("mm3",QWP(16,$key));
377 &movz ($acc,&HB("ebx")); # 15
378 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 15
379 &movd ("mm0","ecx"); # t[0] collected

381 &movz ($acc,&LB("eax")); # 4
382 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 4
383 &movd ("eax","mm2"); # 7, 6, 3, 2
384 &movz ($acc,&LB("ebx")); # 14
385 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 14
386 &movd ("ebx","mm6"); # 13,12, 9, 8

388 &movz ($acc,&HB("eax")); # 3
389 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 3
390 &movz ($acc,&HB("ebx")); # 9
391 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 9

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 7

392 &movd ("mm1","ecx"); # t[1] collected

394 &movz ($acc,&LB("eax")); # 2
395 &mov ("ecx",&DWP(2,$tbl,$acc,8)); # 2
396 &shr ("eax",16); # 7, 6
397 &punpckldq ("mm0","mm1"); # t[0,1] collected
398 &movz ($acc,&LB("ebx")); # 8
399 &xor ("ecx",&DWP(0,$tbl,$acc,8)); # 8
400 &shr ("ebx",16); # 13,12

402 &movz ($acc,&HB("eax")); # 7
403 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 7
404 &pxor ("mm0","mm3");
405 &movz ("eax",&LB("eax")); # 6
406 &xor ("edx",&DWP(2,$tbl,"eax",8)); # 6
407 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0
408 &movz ($acc,&HB("ebx")); # 13
409 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 13
410 &xor ("ecx",&DWP(24,$key)); # t[2]
411 &movd ("mm4","ecx"); # t[2] collected
412 &movz ("ebx",&LB("ebx")); # 12
413 &xor ("edx",&DWP(0,$tbl,"ebx",8)); # 12
414 &shr ("ecx",16);
415 &movd ("eax","mm1"); # 5, 4, 1, 0
416 &mov ("ebx",&DWP(28,$key)); # t[3]
417 &xor ("ebx","edx");
418 &movd ("mm5","ebx"); # t[3] collected
419 &and ("ebx",0xffff0000);
420 &or ("ebx","ecx");

422 &punpckldq ("mm4","mm5"); # t[2,3] collected
423 }

425 ##
426 # "Compact" block function
427 ##

429 sub enccompact()
430 { my $Fn = mov;
431 while ($#_>5) { pop(@_); $Fn=sub{}; }
432 my ($i,$te,@s)=@_;
433 my $tmp = $key;
434 my $out = $i==3?$s[0]:$acc;

436 # $Fn is used in first compact round and its purpose is to
437 # void restoration of some values from stack, so that after
438 # 4xenccompact with extra argument $key value is left there...
439 if ($i==3) { &$Fn ($key,$__key); }##%edx
440 else { &mov ($out,$s[0]); }
441 &and ($out,0xFF);
442 if ($i==1) { &shr ($s[0],16); }#%ebx[1]
443 if ($i==2) { &shr ($s[0],24); }#%ecx[2]
444 &movz ($out,&BP(-128,$te,$out,1));

446 if ($i==3) { $tmp=$s[1]; }##%eax
447 &movz ($tmp,&HB($s[1]));
448 &movz ($tmp,&BP(-128,$te,$tmp,1));
449 &shl ($tmp,8);
450 &xor ($out,$tmp);

452 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
453 else { &mov ($tmp,$s[2]);
454 &shr ($tmp,16); }
455 if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
456 &and ($tmp,0xFF);
457 &movz ($tmp,&BP(-128,$te,$tmp,1));

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 8

458 &shl ($tmp,16);
459 &xor ($out,$tmp);

461 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
462 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
463 else { &mov ($tmp,$s[3]);
464 &shr ($tmp,24); }
465 &movz ($tmp,&BP(-128,$te,$tmp,1));
466 &shl ($tmp,24);
467 &xor ($out,$tmp);
468 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
469 if ($i==3) { &mov ($s[3],$acc); }
470 &comment();
471 }

473 sub enctransform()
474 { my @s = ($s0,$s1,$s2,$s3);
475 my $i = shift;
476 my $tmp = $tbl;
477 my $r2 = $key ;

479 &mov ($acc,$s[$i]);
480 &and ($acc,0x80808080);
481 &mov ($tmp,$acc);
482 &shr ($tmp,7);
483 &lea ($r2,&DWP(0,$s[$i],$s[$i]));
484 &sub ($acc,$tmp);
485 &and ($r2,0xfefefefe);
486 &and ($acc,0x1b1b1b1b);
487 &mov ($tmp,$s[$i]);
488 &xor ($acc,$r2); # r2

490 &xor ($s[$i],$acc); # r0 ^ r2
491 &rotl ($s[$i],24);
492 &xor ($s[$i],$acc) # ROTATE(r2^r0,24) ^ r2
493 &rotr ($tmp,16);
494 &xor ($s[$i],$tmp);
495 &rotr ($tmp,8);
496 &xor ($s[$i],$tmp);
497 }

499 &function_begin_B("_x86_AES_encrypt_compact");
500 # note that caller is expected to allocate stack frame for me!
501 &mov ($__key,$key); # save key

503 &xor ($s0,&DWP(0,$key)); # xor with key
504 &xor ($s1,&DWP(4,$key));
505 &xor ($s2,&DWP(8,$key));
506 &xor ($s3,&DWP(12,$key));

508 &mov ($acc,&DWP(240,$key)); # load key->rounds
509 &lea ($acc,&DWP(-2,$acc,$acc));
510 &lea ($acc,&DWP(0,$key,$acc,8));
511 &mov ($__end,$acc); # end of key schedule

513 # prefetch Te4
514 &mov ($key,&DWP(0-128,$tbl));
515 &mov ($acc,&DWP(32-128,$tbl));
516 &mov ($key,&DWP(64-128,$tbl));
517 &mov ($acc,&DWP(96-128,$tbl));
518 &mov ($key,&DWP(128-128,$tbl));
519 &mov ($acc,&DWP(160-128,$tbl));
520 &mov ($key,&DWP(192-128,$tbl));
521 &mov ($acc,&DWP(224-128,$tbl));

523 &set_label("loop",16);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 9

525 &enccompact(0,$tbl,$s0,$s1,$s2,$s3,1);
526 &enccompact(1,$tbl,$s1,$s2,$s3,$s0,1);
527 &enccompact(2,$tbl,$s2,$s3,$s0,$s1,1);
528 &enccompact(3,$tbl,$s3,$s0,$s1,$s2,1);
529 &enctransform(2);
530 &enctransform(3);
531 &enctransform(0);
532 &enctransform(1);
533 &mov ($key,$__key);
534 &mov ($tbl,$__tbl);
535 &add ($key,16); # advance rd_key
536 &xor ($s0,&DWP(0,$key));
537 &xor ($s1,&DWP(4,$key));
538 &xor ($s2,&DWP(8,$key));
539 &xor ($s3,&DWP(12,$key));

541 &cmp ($key,$__end);
542 &mov ($__key,$key);
543 &jb (&label("loop"));

545 &enccompact(0,$tbl,$s0,$s1,$s2,$s3);
546 &enccompact(1,$tbl,$s1,$s2,$s3,$s0);
547 &enccompact(2,$tbl,$s2,$s3,$s0,$s1);
548 &enccompact(3,$tbl,$s3,$s0,$s1,$s2);

550 &xor ($s0,&DWP(16,$key));
551 &xor ($s1,&DWP(20,$key));
552 &xor ($s2,&DWP(24,$key));
553 &xor ($s3,&DWP(28,$key));

555 &ret ();
556 &function_end_B("_x86_AES_encrypt_compact");

558 ##
559 # "Compact" SSE block function.
560 ##
561 #
562 # Performance is not actually extraordinary in comparison to pure
563 # x86 code. In particular encrypt performance is virtually the same.
564 # Decrypt performance on the other hand is 15-20% better on newer
565 # µ-archs [but we’re thankful for *any* improvement here], and ~50%
566 # better on PIII:-) And additionally on the pros side this code
567 # eliminates redundant references to stack and thus relieves/
568 # minimizes the pressure on the memory bus.
569 #
570 # MMX register layout lsb
571 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
572 # | mm4 | mm0 |
573 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
574 # | s3 | s2 | s1 | s0 |
575 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
576 # |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|
577 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
578 #
579 # Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8.
580 # In this terms encryption and decryption "compact" permutation
581 # matrices can be depicted as following:
582 #
583 # encryption lsb # decryption lsb
584 # +----++----+----+----+----+ # +----++----+----+----+----+
585 # | t0 || 15 | 10 | 5 | 0 | # | t0 || 7 | 10 | 13 | 0 |
586 # +----++----+----+----+----+ # +----++----+----+----+----+
587 # | t1 || 3 | 14 | 9 | 4 | # | t1 || 11 | 14 | 1 | 4 |
588 # +----++----+----+----+----+ # +----++----+----+----+----+
589 # | t2 || 7 | 2 | 13 | 8 | # | t2 || 15 | 2 | 5 | 8 |

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 10

590 # +----++----+----+----+----+ # +----++----+----+----+----+
591 # | t3 || 11 | 6 | 1 | 12 | # | t3 || 3 | 6 | 9 | 12 |
592 # +----++----+----+----+----+ # +----++----+----+----+----+
593 #
594 ##
595 # Why not xmm registers? Short answer. It was actually tested and
596 # was not any faster, but *contrary*, most notably on Intel CPUs.
597 # Longer answer. Main advantage of using mm registers is that movd
598 # latency is lower, especially on Intel P4. While arithmetic
599 # instructions are twice as many, they can be scheduled every cycle
600 # and not every second one when they are operating on xmm register,
601 # so that "arithmetic throughput" remains virtually the same. And
602 # finally the code can be executed even on elder SSE-only CPUs:-)

604 sub sse_enccompact()
605 {
606 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0
607 &pshufw ("mm5","mm4",0x0d); # 15,14,11,10
608 &movd ("eax","mm1"); # 5, 4, 1, 0
609 &movd ("ebx","mm5"); # 15,14,11,10

611 &movz ($acc,&LB("eax")); # 0
612 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0
613 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2
614 &movz ("edx",&HB("eax")); # 1
615 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1
616 &shl ("edx",8); # 1
617 &shr ("eax",16); # 5, 4

619 &movz ($acc,&LB("ebx")); # 10
620 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 10
621 &shl ($acc,16); # 10
622 &or ("ecx",$acc); # 10
623 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8
624 &movz ($acc,&HB("ebx")); # 11
625 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 11
626 &shl ($acc,24); # 11
627 &or ("edx",$acc); # 11
628 &shr ("ebx",16); # 15,14

630 &movz ($acc,&HB("eax")); # 5
631 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 5
632 &shl ($acc,8); # 5
633 &or ("ecx",$acc); # 5
634 &movz ($acc,&HB("ebx")); # 15
635 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 15
636 &shl ($acc,24); # 15
637 &or ("ecx",$acc); # 15
638 &movd ("mm0","ecx"); # t[0] collected

640 &movz ($acc,&LB("eax")); # 4
641 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 4
642 &movd ("eax","mm2"); # 7, 6, 3, 2
643 &movz ($acc,&LB("ebx")); # 14
644 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 14
645 &shl ($acc,16); # 14
646 &or ("ecx",$acc); # 14

648 &movd ("ebx","mm6"); # 13,12, 9, 8
649 &movz ($acc,&HB("eax")); # 3
650 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 3
651 &shl ($acc,24); # 3
652 &or ("ecx",$acc); # 3
653 &movz ($acc,&HB("ebx")); # 9
654 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 9
655 &shl ($acc,8); # 9

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 11

656 &or ("ecx",$acc); # 9
657 &movd ("mm1","ecx"); # t[1] collected

659 &movz ($acc,&LB("ebx")); # 8
660 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 8
661 &shr ("ebx",16); # 13,12
662 &movz ($acc,&LB("eax")); # 2
663 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 2
664 &shl ($acc,16); # 2
665 &or ("ecx",$acc); # 2
666 &shr ("eax",16); # 7, 6

668 &punpckldq ("mm0","mm1"); # t[0,1] collected

670 &movz ($acc,&HB("eax")); # 7
671 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 7
672 &shl ($acc,24); # 7
673 &or ("ecx",$acc); # 7
674 &and ("eax",0xff); # 6
675 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 6
676 &shl ("eax",16); # 6
677 &or ("edx","eax"); # 6
678 &movz ($acc,&HB("ebx")); # 13
679 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 13
680 &shl ($acc,8); # 13
681 &or ("ecx",$acc); # 13
682 &movd ("mm4","ecx"); # t[2] collected
683 &and ("ebx",0xff); # 12
684 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 12
685 &or ("edx","ebx"); # 12
686 &movd ("mm5","edx"); # t[3] collected

688 &punpckldq ("mm4","mm5"); # t[2,3] collected
689 }

691 if (!$x86only) {
692 &function_begin_B("_sse_AES_encrypt_compact");
693 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0
694 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8

696 # note that caller is expected to allocate stack frame for me!
697 &mov ($acc,&DWP(240,$key)); # load key->rounds
698 &lea ($acc,&DWP(-2,$acc,$acc));
699 &lea ($acc,&DWP(0,$key,$acc,8));
700 &mov ($__end,$acc); # end of key schedule

702 &mov ($s0,0x1b1b1b1b); # magic constant
703 &mov (&DWP(8,"esp"),$s0);
704 &mov (&DWP(12,"esp"),$s0);

706 # prefetch Te4
707 &mov ($s0,&DWP(0-128,$tbl));
708 &mov ($s1,&DWP(32-128,$tbl));
709 &mov ($s2,&DWP(64-128,$tbl));
710 &mov ($s3,&DWP(96-128,$tbl));
711 &mov ($s0,&DWP(128-128,$tbl));
712 &mov ($s1,&DWP(160-128,$tbl));
713 &mov ($s2,&DWP(192-128,$tbl));
714 &mov ($s3,&DWP(224-128,$tbl));

716 &set_label("loop",16);
717 &sse_enccompact();
718 &add ($key,16);
719 &cmp ($key,$__end);
720 &ja (&label("out"));

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 12

722 &movq ("mm2",&QWP(8,"esp"));
723 &pxor ("mm3","mm3"); &pxor ("mm7","mm7");
724 &movq ("mm1","mm0"); &movq ("mm5","mm4"); # r0
725 &pcmpgtb("mm3","mm0"); &pcmpgtb("mm7","mm4");
726 &pand ("mm3","mm2"); &pand ("mm7","mm2");
727 &pshufw ("mm2","mm0",0xb1); &pshufw ("mm6","mm4",0xb1);# ROT
728 &paddb ("mm0","mm0"); &paddb ("mm4","mm4");
729 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # = r2
730 &pshufw ("mm3","mm2",0xb1); &pshufw ("mm7","mm6",0xb1);# r0
731 &pxor ("mm1","mm0"); &pxor ("mm5","mm4"); # r0^r2
732 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROT

734 &movq ("mm2","mm3"); &movq ("mm6","mm7");
735 &pslld ("mm3",8); &pslld ("mm7",8);
736 &psrld ("mm2",24); &psrld ("mm6",24);
737 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= r0<
738 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= r0>

740 &movq ("mm3","mm1"); &movq ("mm7","mm5");
741 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key));
742 &psrld ("mm1",8); &psrld ("mm5",8);
743 &mov ($s0,&DWP(0-128,$tbl));
744 &pslld ("mm3",24); &pslld ("mm7",24);
745 &mov ($s1,&DWP(64-128,$tbl));
746 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= (r2
747 &mov ($s2,&DWP(128-128,$tbl));
748 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= (r2
749 &mov ($s3,&DWP(192-128,$tbl));

751 &pxor ("mm0","mm2"); &pxor ("mm4","mm6");
752 &jmp (&label("loop"));

754 &set_label("out",16);
755 &pxor ("mm0",&QWP(0,$key));
756 &pxor ("mm4",&QWP(8,$key));

758 &ret ();
759 &function_end_B("_sse_AES_encrypt_compact");
760 }

762 ##
763 # Vanilla block function.
764 ##

766 sub encstep()
767 { my ($i,$te,@s) = @_;
768 my $tmp = $key;
769 my $out = $i==3?$s[0]:$acc;

771 # lines marked with #%e?x[i] denote "reordered" instructions...
772 if ($i==3) { &mov ($key,$__key); }##%edx
773 else { &mov ($out,$s[0]);
774 &and ($out,0xFF); }
775 if ($i==1) { &shr ($s[0],16); }#%ebx[1]
776 if ($i==2) { &shr ($s[0],24); }#%ecx[2]
777 &mov ($out,&DWP(0,$te,$out,8));

779 if ($i==3) { $tmp=$s[1]; }##%eax
780 &movz ($tmp,&HB($s[1]));
781 &xor ($out,&DWP(3,$te,$tmp,8));

783 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
784 else { &mov ($tmp,$s[2]);
785 &shr ($tmp,16); }
786 if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
787 &and ($tmp,0xFF);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 13

788 &xor ($out,&DWP(2,$te,$tmp,8));

790 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
791 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
792 else { &mov ($tmp,$s[3]);
793 &shr ($tmp,24) }
794 &xor ($out,&DWP(1,$te,$tmp,8));
795 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
796 if ($i==3) { &mov ($s[3],$acc); }
797 &comment();
798 }

800 sub enclast()
801 { my ($i,$te,@s)=@_;
802 my $tmp = $key;
803 my $out = $i==3?$s[0]:$acc;

805 if ($i==3) { &mov ($key,$__key); }##%edx
806 else { &mov ($out,$s[0]); }
807 &and ($out,0xFF);
808 if ($i==1) { &shr ($s[0],16); }#%ebx[1]
809 if ($i==2) { &shr ($s[0],24); }#%ecx[2]
810 &mov ($out,&DWP(2,$te,$out,8));
811 &and ($out,0x000000ff);

813 if ($i==3) { $tmp=$s[1]; }##%eax
814 &movz ($tmp,&HB($s[1]));
815 &mov ($tmp,&DWP(0,$te,$tmp,8));
816 &and ($tmp,0x0000ff00);
817 &xor ($out,$tmp);

819 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
820 else { &mov ($tmp,$s[2]);
821 &shr ($tmp,16); }
822 if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
823 &and ($tmp,0xFF);
824 &mov ($tmp,&DWP(0,$te,$tmp,8));
825 &and ($tmp,0x00ff0000);
826 &xor ($out,$tmp);

828 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
829 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
830 else { &mov ($tmp,$s[3]);
831 &shr ($tmp,24); }
832 &mov ($tmp,&DWP(2,$te,$tmp,8));
833 &and ($tmp,0xff000000);
834 &xor ($out,$tmp);
835 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
836 if ($i==3) { &mov ($s[3],$acc); }
837 }

839 &function_begin_B("_x86_AES_encrypt");
840 if ($vertical_spin) {
841 # I need high parts of volatile registers to be accessible...
842 &exch ($s1="edi",$key="ebx");
843 &mov ($s2="esi",$acc="ecx");
844 }

846 # note that caller is expected to allocate stack frame for me!
847 &mov ($__key,$key); # save key

849 &xor ($s0,&DWP(0,$key)); # xor with key
850 &xor ($s1,&DWP(4,$key));
851 &xor ($s2,&DWP(8,$key));
852 &xor ($s3,&DWP(12,$key));

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 14

854 &mov ($acc,&DWP(240,$key)); # load key->rounds

856 if ($small_footprint) {
857 &lea ($acc,&DWP(-2,$acc,$acc));
858 &lea ($acc,&DWP(0,$key,$acc,8));
859 &mov ($__end,$acc); # end of key schedule

861 &set_label("loop",16);
862 if ($vertical_spin) {
863 &encvert($tbl,$s0,$s1,$s2,$s3);
864 } else {
865 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
866 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
867 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
868 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
869 }
870 &add ($key,16); # advance rd_key
871 &xor ($s0,&DWP(0,$key));
872 &xor ($s1,&DWP(4,$key));
873 &xor ($s2,&DWP(8,$key));
874 &xor ($s3,&DWP(12,$key));
875 &cmp ($key,$__end);
876 &mov ($__key,$key);
877 &jb (&label("loop"));
878 }
879 else {
880 &cmp ($acc,10);
881 &jle (&label("10rounds"));
882 &cmp ($acc,12);
883 &jle (&label("12rounds"));

885 &set_label("14rounds",4);
886 for ($i=1;$i<3;$i++) {
887 if ($vertical_spin) {
888 &encvert($tbl,$s0,$s1,$s2,$s3);
889 } else {
890 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
891 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
892 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
893 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
894 }
895 &xor ($s0,&DWP(16*$i+0,$key));
896 &xor ($s1,&DWP(16*$i+4,$key));
897 &xor ($s2,&DWP(16*$i+8,$key));
898 &xor ($s3,&DWP(16*$i+12,$key));
899 }
900 &add ($key,32);
901 &mov ($__key,$key); # advance rd_key
902 &set_label("12rounds",4);
903 for ($i=1;$i<3;$i++) {
904 if ($vertical_spin) {
905 &encvert($tbl,$s0,$s1,$s2,$s3);
906 } else {
907 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
908 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
909 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
910 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
911 }
912 &xor ($s0,&DWP(16*$i+0,$key));
913 &xor ($s1,&DWP(16*$i+4,$key));
914 &xor ($s2,&DWP(16*$i+8,$key));
915 &xor ($s3,&DWP(16*$i+12,$key));
916 }
917 &add ($key,32);
918 &mov ($__key,$key); # advance rd_key
919 &set_label("10rounds",4);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 15

920 for ($i=1;$i<10;$i++) {
921 if ($vertical_spin) {
922 &encvert($tbl,$s0,$s1,$s2,$s3);
923 } else {
924 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
925 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
926 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
927 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
928 }
929 &xor ($s0,&DWP(16*$i+0,$key));
930 &xor ($s1,&DWP(16*$i+4,$key));
931 &xor ($s2,&DWP(16*$i+8,$key));
932 &xor ($s3,&DWP(16*$i+12,$key));
933 }
934 }

936 if ($vertical_spin) {
937 # "reincarnate" some registers for "horizontal" spin...
938 &mov ($s1="ebx",$key="edi");
939 &mov ($s2="ecx",$acc="esi");
940 }
941 &enclast(0,$tbl,$s0,$s1,$s2,$s3);
942 &enclast(1,$tbl,$s1,$s2,$s3,$s0);
943 &enclast(2,$tbl,$s2,$s3,$s0,$s1);
944 &enclast(3,$tbl,$s3,$s0,$s1,$s2);

946 &add ($key,$small_footprint?16:160);
947 &xor ($s0,&DWP(0,$key));
948 &xor ($s1,&DWP(4,$key));
949 &xor ($s2,&DWP(8,$key));
950 &xor ($s3,&DWP(12,$key));

952 &ret ();

954 &set_label("AES_Te",64); # Yes! I keep it in the code segment!
955 &_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6);
956 &_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591);
957 &_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56);
958 &_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec);
959 &_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa);
960 &_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb);
961 &_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45);
962 &_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b);
963 &_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c);
964 &_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83);
965 &_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9);
966 &_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a);
967 &_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d);
968 &_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f);
969 &_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df);
970 &_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea);
971 &_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34);
972 &_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b);
973 &_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d);
974 &_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413);
975 &_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1);
976 &_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6);
977 &_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972);
978 &_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85);
979 &_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed);
980 &_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511);
981 &_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe);
982 &_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b);
983 &_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05);
984 &_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1);
985 &_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 16

986 &_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf);
987 &_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3);
988 &_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e);
989 &_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a);
990 &_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6);
991 &_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3);
992 &_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b);
993 &_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428);
994 &_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad);
995 &_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14);
996 &_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8);
997 &_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4);
998 &_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2);
999 &_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda);

1000 &_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949);
1001 &_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf);
1002 &_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810);
1003 &_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c);
1004 &_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697);
1005 &_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e);
1006 &_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f);
1007 &_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc);
1008 &_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c);
1009 &_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969);
1010 &_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27);
1011 &_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122);
1012 &_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433);
1013 &_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9);
1014 &_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5);
1015 &_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a);
1016 &_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0);
1017 &_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e);
1018 &_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c);

1020 #Te4 # four copies of Te4 to choose from to avoid L1 aliasing
1021 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1022 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1023 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1024 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1025 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1026 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1027 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1028 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1029 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1030 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1031 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1032 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1033 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1034 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1035 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1036 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1037 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1038 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1039 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1040 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1041 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1042 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1043 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1044 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1045 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1046 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1047 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1048 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1049 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1050 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1051 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 17

1052 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);

1054 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1055 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1056 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1057 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1058 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1059 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1060 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1061 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1062 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1063 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1064 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1065 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1066 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1067 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1068 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1069 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1070 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1071 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1072 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1073 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1074 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1075 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1076 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1077 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1078 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1079 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1080 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1081 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1082 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1083 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1084 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1085 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);

1087 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1088 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1089 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1090 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1091 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1092 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1093 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1094 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1095 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1096 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1097 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1098 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1099 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1100 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1101 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1102 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1103 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1104 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1105 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1106 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1107 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1108 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1109 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1110 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1111 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1112 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1113 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1114 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1115 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1116 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1117 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 18

1118 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);

1120 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1121 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1122 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1123 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1124 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1125 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1126 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1127 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1128 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1129 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1130 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1131 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1132 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1133 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1134 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1135 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1136 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1137 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1138 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1139 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1140 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1141 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1142 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1143 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1144 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1145 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1146 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1147 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1148 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1149 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1150 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1151 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1152 #rcon:
1153 &data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008);
1154 &data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080);
1155 &data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000);
1156 &data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000);
1157 &function_end_B("_x86_AES_encrypt");

1159 # void AES_encrypt (const void *inp,void *out,const AES_KEY *key);
1160 &function_begin("AES_encrypt");
1161 &mov ($acc,&wparam(0)); # load inp
1162 &mov ($key,&wparam(2)); # load key

1164 &mov ($s0,"esp");
1165 &sub ("esp",36);
1166 &and ("esp",-64); # align to cache-line

1168 # place stack frame just "above" the key schedule
1169 &lea ($s1,&DWP(-64-63,$key));
1170 &sub ($s1,"esp");
1171 &neg ($s1);
1172 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
1173 &sub ("esp",$s1);
1174 &add ("esp",4); # 4 is reserved for caller’s return address
1175 &mov ($_esp,$s0); # save stack pointer

1177 &call (&label("pic_point")); # make it PIC!
1178 &set_label("pic_point");
1179 &blindpop($tbl);
1180 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only
1181 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));

1183 # pick Te4 copy which can’t "overlap" with stack frame or key schedule

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 19

1184 &lea ($s1,&DWP(768-4,"esp"));
1185 &sub ($s1,$tbl);
1186 &and ($s1,0x300);
1187 &lea ($tbl,&DWP(2048+128,$tbl,$s1));

1189 if (!$x86only) {
1190 &bt (&DWP(0,$s0),25); # check for SSE bit
1191 &jnc (&label("x86"));

1193 &movq ("mm0",&QWP(0,$acc));
1194 &movq ("mm4",&QWP(8,$acc));
1195 &call ("_sse_AES_encrypt_compact");
1196 &mov ("esp",$_esp); # restore stack pointer
1197 &mov ($acc,&wparam(1)); # load out
1198 &movq (&QWP(0,$acc),"mm0"); # write output data
1199 &movq (&QWP(8,$acc),"mm4");
1200 &emms ();
1201 &function_end_A();
1202 }
1203 &set_label("x86",16);
1204 &mov ($_tbl,$tbl);
1205 &mov ($s0,&DWP(0,$acc)); # load input data
1206 &mov ($s1,&DWP(4,$acc));
1207 &mov ($s2,&DWP(8,$acc));
1208 &mov ($s3,&DWP(12,$acc));
1209 &call ("_x86_AES_encrypt_compact");
1210 &mov ("esp",$_esp); # restore stack pointer
1211 &mov ($acc,&wparam(1)); # load out
1212 &mov (&DWP(0,$acc),$s0); # write output data
1213 &mov (&DWP(4,$acc),$s1);
1214 &mov (&DWP(8,$acc),$s2);
1215 &mov (&DWP(12,$acc),$s3);
1216 &function_end("AES_encrypt");

1218 #--#

1220 ##
1221 # "Compact" block function
1222 ##

1224 sub deccompact()
1225 { my $Fn = mov;
1226 while ($#_>5) { pop(@_); $Fn=sub{}; }
1227 my ($i,$td,@s)=@_;
1228 my $tmp = $key;
1229 my $out = $i==3?$s[0]:$acc;

1231 # $Fn is used in first compact round and its purpose is to
1232 # void restoration of some values from stack, so that after
1233 # 4xdeccompact with extra argument $key, $s0 and $s1 values
1234 # are left there...
1235 if($i==3) { &$Fn ($key,$__key); }
1236 else { &mov ($out,$s[0]); }
1237 &and ($out,0xFF);
1238 &movz ($out,&BP(-128,$td,$out,1));

1240 if ($i==3) { $tmp=$s[1]; }
1241 &movz ($tmp,&HB($s[1]));
1242 &movz ($tmp,&BP(-128,$td,$tmp,1));
1243 &shl ($tmp,8);
1244 &xor ($out,$tmp);

1246 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
1247 else { mov ($tmp,$s[2]); }
1248 &shr ($tmp,16);
1249 &and ($tmp,0xFF);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 20

1250 &movz ($tmp,&BP(-128,$td,$tmp,1));
1251 &shl ($tmp,16);
1252 &xor ($out,$tmp);

1254 if ($i==3) { $tmp=$s[3]; &$Fn ($s[2],$__s1); }
1255 else { &mov ($tmp,$s[3]); }
1256 &shr ($tmp,24);
1257 &movz ($tmp,&BP(-128,$td,$tmp,1));
1258 &shl ($tmp,24);
1259 &xor ($out,$tmp);
1260 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
1261 if ($i==3) { &$Fn ($s[3],$__s0); }
1262 }

1264 # must be called with 2,3,0,1 as argument sequence!!!
1265 sub dectransform()
1266 { my @s = ($s0,$s1,$s2,$s3);
1267 my $i = shift;
1268 my $tmp = $key;
1269 my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1);
1270 my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1);
1271 my $tp8 = $tbl;

1273 &mov ($acc,$s[$i]);
1274 &and ($acc,0x80808080);
1275 &mov ($tmp,$acc);
1276 &shr ($tmp,7);
1277 &lea ($tp2,&DWP(0,$s[$i],$s[$i]));
1278 &sub ($acc,$tmp);
1279 &and ($tp2,0xfefefefe);
1280 &and ($acc,0x1b1b1b1b);
1281 &xor ($acc,$tp2);
1282 &mov ($tp2,$acc);

1284 &and ($acc,0x80808080);
1285 &mov ($tmp,$acc);
1286 &shr ($tmp,7);
1287 &lea ($tp4,&DWP(0,$tp2,$tp2));
1288 &sub ($acc,$tmp);
1289 &and ($tp4,0xfefefefe);
1290 &and ($acc,0x1b1b1b1b);
1291 &xor ($tp2,$s[$i]); # tp2^tp1
1292 &xor ($acc,$tp4);
1293 &mov ($tp4,$acc);

1295 &and ($acc,0x80808080);
1296 &mov ($tmp,$acc);
1297 &shr ($tmp,7);
1298 &lea ($tp8,&DWP(0,$tp4,$tp4));
1299 &sub ($acc,$tmp);
1300 &and ($tp8,0xfefefefe);
1301 &and ($acc,0x1b1b1b1b);
1302 &xor ($tp4,$s[$i]); # tp4^tp1
1303 &rotl ($s[$i],8); # = ROTATE(tp1,8)
1304 &xor ($tp8,$acc);

1306 &xor ($s[$i],$tp2);
1307 &xor ($tp2,$tp8);
1308 &rotl ($tp2,24);
1309 &xor ($s[$i],$tp4);
1310 &xor ($tp4,$tp8);
1311 &rotl ($tp4,16);
1312 &xor ($s[$i],$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1)
1313 &rotl ($tp8,8);
1314 &xor ($s[$i],$tp2); # ^= ROTATE(tp8^tp2^tp1,24)
1315 &xor ($s[$i],$tp4); # ^= ROTATE(tp8^tp4^tp1,16)

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 21

1316 &mov ($s[0],$__s0) if($i==2); #prefetch $s0
1317 &mov ($s[1],$__s1) if($i==3); #prefetch $s1
1318 &mov ($s[2],$__s2) if($i==1);
1319 &xor ($s[$i],$tp8); # ^= ROTATE(tp8,8)

1321 &mov ($s[3],$__s3) if($i==1);
1322 &mov (&DWP(4+4*$i,"esp"),$s[$i]) if($i>=2);
1323 }

1325 &function_begin_B("_x86_AES_decrypt_compact");
1326 # note that caller is expected to allocate stack frame for me!
1327 &mov ($__key,$key); # save key

1329 &xor ($s0,&DWP(0,$key)); # xor with key
1330 &xor ($s1,&DWP(4,$key));
1331 &xor ($s2,&DWP(8,$key));
1332 &xor ($s3,&DWP(12,$key));

1334 &mov ($acc,&DWP(240,$key)); # load key->rounds

1336 &lea ($acc,&DWP(-2,$acc,$acc));
1337 &lea ($acc,&DWP(0,$key,$acc,8));
1338 &mov ($__end,$acc); # end of key schedule

1340 # prefetch Td4
1341 &mov ($key,&DWP(0-128,$tbl));
1342 &mov ($acc,&DWP(32-128,$tbl));
1343 &mov ($key,&DWP(64-128,$tbl));
1344 &mov ($acc,&DWP(96-128,$tbl));
1345 &mov ($key,&DWP(128-128,$tbl));
1346 &mov ($acc,&DWP(160-128,$tbl));
1347 &mov ($key,&DWP(192-128,$tbl));
1348 &mov ($acc,&DWP(224-128,$tbl));

1350 &set_label("loop",16);

1352 &deccompact(0,$tbl,$s0,$s3,$s2,$s1,1);
1353 &deccompact(1,$tbl,$s1,$s0,$s3,$s2,1);
1354 &deccompact(2,$tbl,$s2,$s1,$s0,$s3,1);
1355 &deccompact(3,$tbl,$s3,$s2,$s1,$s0,1);
1356 &dectransform(2);
1357 &dectransform(3);
1358 &dectransform(0);
1359 &dectransform(1);
1360 &mov ($key,$__key);
1361 &mov ($tbl,$__tbl);
1362 &add ($key,16); # advance rd_key
1363 &xor ($s0,&DWP(0,$key));
1364 &xor ($s1,&DWP(4,$key));
1365 &xor ($s2,&DWP(8,$key));
1366 &xor ($s3,&DWP(12,$key));

1368 &cmp ($key,$__end);
1369 &mov ($__key,$key);
1370 &jb (&label("loop"));

1372 &deccompact(0,$tbl,$s0,$s3,$s2,$s1);
1373 &deccompact(1,$tbl,$s1,$s0,$s3,$s2);
1374 &deccompact(2,$tbl,$s2,$s1,$s0,$s3);
1375 &deccompact(3,$tbl,$s3,$s2,$s1,$s0);

1377 &xor ($s0,&DWP(16,$key));
1378 &xor ($s1,&DWP(20,$key));
1379 &xor ($s2,&DWP(24,$key));
1380 &xor ($s3,&DWP(28,$key));

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 22

1382 &ret ();
1383 &function_end_B("_x86_AES_decrypt_compact");

1385 ##
1386 # "Compact" SSE block function.
1387 ##

1389 sub sse_deccompact()
1390 {
1391 &pshufw ("mm1","mm0",0x0c); # 7, 6, 1, 0
1392 &movd ("eax","mm1"); # 7, 6, 1, 0

1394 &pshufw ("mm5","mm4",0x09); # 13,12,11,10
1395 &movz ($acc,&LB("eax")); # 0
1396 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0
1397 &movd ("ebx","mm5"); # 13,12,11,10
1398 &movz ("edx",&HB("eax")); # 1
1399 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1
1400 &shl ("edx",8); # 1

1402 &pshufw ("mm2","mm0",0x06); # 3, 2, 5, 4
1403 &movz ($acc,&LB("ebx")); # 10
1404 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 10
1405 &shl ($acc,16); # 10
1406 &or ("ecx",$acc); # 10
1407 &shr ("eax",16); # 7, 6
1408 &movz ($acc,&HB("ebx")); # 11
1409 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 11
1410 &shl ($acc,24); # 11
1411 &or ("edx",$acc); # 11
1412 &shr ("ebx",16); # 13,12

1414 &pshufw ("mm6","mm4",0x03); # 9, 8,15,14
1415 &movz ($acc,&HB("eax")); # 7
1416 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 7
1417 &shl ($acc,24); # 7
1418 &or ("ecx",$acc); # 7
1419 &movz ($acc,&HB("ebx")); # 13
1420 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 13
1421 &shl ($acc,8); # 13
1422 &or ("ecx",$acc); # 13
1423 &movd ("mm0","ecx"); # t[0] collected

1425 &movz ($acc,&LB("eax")); # 6
1426 &movd ("eax","mm2"); # 3, 2, 5, 4
1427 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 6
1428 &shl ("ecx",16); # 6
1429 &movz ($acc,&LB("ebx")); # 12
1430 &movd ("ebx","mm6"); # 9, 8,15,14
1431 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 12
1432 &or ("ecx",$acc); # 12

1434 &movz ($acc,&LB("eax")); # 4
1435 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 4
1436 &or ("edx",$acc); # 4
1437 &movz ($acc,&LB("ebx")); # 14
1438 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 14
1439 &shl ($acc,16); # 14
1440 &or ("edx",$acc); # 14
1441 &movd ("mm1","edx"); # t[1] collected

1443 &movz ($acc,&HB("eax")); # 5
1444 &movz ("edx",&BP(-128,$tbl,$acc,1)); # 5
1445 &shl ("edx",8); # 5
1446 &movz ($acc,&HB("ebx")); # 15
1447 &shr ("eax",16); # 3, 2

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 23

1448 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 15
1449 &shl ($acc,24); # 15
1450 &or ("edx",$acc); # 15
1451 &shr ("ebx",16); # 9, 8

1453 &punpckldq ("mm0","mm1"); # t[0,1] collected

1455 &movz ($acc,&HB("ebx")); # 9
1456 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 9
1457 &shl ($acc,8); # 9
1458 &or ("ecx",$acc); # 9
1459 &and ("ebx",0xff); # 8
1460 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 8
1461 &or ("edx","ebx"); # 8
1462 &movz ($acc,&LB("eax")); # 2
1463 &movz ($acc,&BP(-128,$tbl,$acc,1)); # 2
1464 &shl ($acc,16); # 2
1465 &or ("edx",$acc); # 2
1466 &movd ("mm4","edx"); # t[2] collected
1467 &movz ("eax",&HB("eax")); # 3
1468 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 3
1469 &shl ("eax",24); # 3
1470 &or ("ecx","eax"); # 3
1471 &movd ("mm5","ecx"); # t[3] collected

1473 &punpckldq ("mm4","mm5"); # t[2,3] collected
1474 }

1476 if (!$x86only) {
1477 &function_begin_B("_sse_AES_decrypt_compact");
1478 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0
1479 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8

1481 # note that caller is expected to allocate stack frame for me!
1482 &mov ($acc,&DWP(240,$key)); # load key->rounds
1483 &lea ($acc,&DWP(-2,$acc,$acc));
1484 &lea ($acc,&DWP(0,$key,$acc,8));
1485 &mov ($__end,$acc); # end of key schedule

1487 &mov ($s0,0x1b1b1b1b); # magic constant
1488 &mov (&DWP(8,"esp"),$s0);
1489 &mov (&DWP(12,"esp"),$s0);

1491 # prefetch Td4
1492 &mov ($s0,&DWP(0-128,$tbl));
1493 &mov ($s1,&DWP(32-128,$tbl));
1494 &mov ($s2,&DWP(64-128,$tbl));
1495 &mov ($s3,&DWP(96-128,$tbl));
1496 &mov ($s0,&DWP(128-128,$tbl));
1497 &mov ($s1,&DWP(160-128,$tbl));
1498 &mov ($s2,&DWP(192-128,$tbl));
1499 &mov ($s3,&DWP(224-128,$tbl));

1501 &set_label("loop",16);
1502 &sse_deccompact();
1503 &add ($key,16);
1504 &cmp ($key,$__end);
1505 &ja (&label("out"));

1507 # ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N)
1508 &movq ("mm3","mm0"); &movq ("mm7","mm4");
1509 &movq ("mm2","mm0",1); &movq ("mm6","mm4",1);
1510 &movq ("mm1","mm0"); &movq ("mm5","mm4");
1511 &pshufw ("mm0","mm0",0xb1); &pshufw ("mm4","mm4",0xb1);# = R
1512 &pslld ("mm2",8); &pslld ("mm6",8);
1513 &psrld ("mm3",8); &psrld ("mm7",8);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 24

1514 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0
1515 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0
1516 &pslld ("mm2",16); &pslld ("mm6",16);
1517 &psrld ("mm3",16); &psrld ("mm7",16);
1518 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0
1519 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0

1521 &movq ("mm3",&QWP(8,"esp"));
1522 &pxor ("mm2","mm2"); &pxor ("mm6","mm6");
1523 &pcmpgtb("mm2","mm1"); &pcmpgtb("mm6","mm5");
1524 &pand ("mm2","mm3"); &pand ("mm6","mm3");
1525 &paddb ("mm1","mm1"); &paddb ("mm5","mm5");
1526 &pxor ("mm1","mm2"); &pxor ("mm5","mm6"); # tp2
1527 &movq ("mm3","mm1"); &movq ("mm7","mm5");
1528 &movq ("mm2","mm1"); &movq ("mm6","mm5");
1529 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp2
1530 &pslld ("mm3",24); &pslld ("mm7",24);
1531 &psrld ("mm2",8); &psrld ("mm6",8);
1532 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp2
1533 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp2

1535 &movq ("mm2",&QWP(8,"esp"));
1536 &pxor ("mm3","mm3"); &pxor ("mm7","mm7");
1537 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5");
1538 &pand ("mm3","mm2"); &pand ("mm7","mm2");
1539 &paddb ("mm1","mm1"); &paddb ("mm5","mm5");
1540 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp4
1541 &pshufw ("mm3","mm1",0xb1); &pshufw ("mm7","mm5",0xb1);
1542 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp4
1543 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= ROT

1545 &pxor ("mm3","mm3"); &pxor ("mm7","mm7");
1546 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5");
1547 &pand ("mm3","mm2"); &pand ("mm7","mm2");
1548 &paddb ("mm1","mm1"); &paddb ("mm5","mm5");
1549 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp8
1550 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8
1551 &movq ("mm3","mm1"); &movq ("mm7","mm5");
1552 &pshufw ("mm2","mm1",0xb1); &pshufw ("mm6","mm5",0xb1);
1553 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROT
1554 &pslld ("mm1",8); &pslld ("mm5",8);
1555 &psrld ("mm3",8); &psrld ("mm7",8);
1556 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key));
1557 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8
1558 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8
1559 &mov ($s0,&DWP(0-128,$tbl));
1560 &pslld ("mm1",16); &pslld ("mm5",16);
1561 &mov ($s1,&DWP(64-128,$tbl));
1562 &psrld ("mm3",16); &psrld ("mm7",16);
1563 &mov ($s2,&DWP(128-128,$tbl));
1564 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8
1565 &mov ($s3,&DWP(192-128,$tbl));
1566 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8

1568 &pxor ("mm0","mm2"); &pxor ("mm4","mm6");
1569 &jmp (&label("loop"));

1571 &set_label("out",16);
1572 &pxor ("mm0",&QWP(0,$key));
1573 &pxor ("mm4",&QWP(8,$key));

1575 &ret ();
1576 &function_end_B("_sse_AES_decrypt_compact");
1577 }

1579 ##

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 25

1580 # Vanilla block function.
1581 ##

1583 sub decstep()
1584 { my ($i,$td,@s) = @_;
1585 my $tmp = $key;
1586 my $out = $i==3?$s[0]:$acc;

1588 # no instructions are reordered, as performance appears
1589 # optimal... or rather that all attempts to reorder didn’t
1590 # result in better performance [which by the way is not a
1591 # bit lower than ecryption].
1592 if($i==3) { &mov ($key,$__key); }
1593 else { &mov ($out,$s[0]); }
1594 &and ($out,0xFF);
1595 &mov ($out,&DWP(0,$td,$out,8));

1597 if ($i==3) { $tmp=$s[1]; }
1598 &movz ($tmp,&HB($s[1]));
1599 &xor ($out,&DWP(3,$td,$tmp,8));

1601 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
1602 else { &mov ($tmp,$s[2]); }
1603 &shr ($tmp,16);
1604 &and ($tmp,0xFF);
1605 &xor ($out,&DWP(2,$td,$tmp,8));

1607 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }
1608 else { &mov ($tmp,$s[3]); }
1609 &shr ($tmp,24);
1610 &xor ($out,&DWP(1,$td,$tmp,8));
1611 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
1612 if ($i==3) { &mov ($s[3],$__s0); }
1613 &comment();
1614 }

1616 sub declast()
1617 { my ($i,$td,@s)=@_;
1618 my $tmp = $key;
1619 my $out = $i==3?$s[0]:$acc;

1621 if($i==0) { &lea ($td,&DWP(2048+128,$td));
1622 &mov ($tmp,&DWP(0-128,$td));
1623 &mov ($acc,&DWP(32-128,$td));
1624 &mov ($tmp,&DWP(64-128,$td));
1625 &mov ($acc,&DWP(96-128,$td));
1626 &mov ($tmp,&DWP(128-128,$td));
1627 &mov ($acc,&DWP(160-128,$td));
1628 &mov ($tmp,&DWP(192-128,$td));
1629 &mov ($acc,&DWP(224-128,$td));
1630 &lea ($td,&DWP(-128,$td)); }
1631 if($i==3) { &mov ($key,$__key); }
1632 else { &mov ($out,$s[0]); }
1633 &and ($out,0xFF);
1634 &movz ($out,&BP(0,$td,$out,1));

1636 if ($i==3) { $tmp=$s[1]; }
1637 &movz ($tmp,&HB($s[1]));
1638 &movz ($tmp,&BP(0,$td,$tmp,1));
1639 &shl ($tmp,8);
1640 &xor ($out,$tmp);

1642 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
1643 else { mov ($tmp,$s[2]); }
1644 &shr ($tmp,16);
1645 &and ($tmp,0xFF);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 26

1646 &movz ($tmp,&BP(0,$td,$tmp,1));
1647 &shl ($tmp,16);
1648 &xor ($out,$tmp);

1650 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }
1651 else { &mov ($tmp,$s[3]); }
1652 &shr ($tmp,24);
1653 &movz ($tmp,&BP(0,$td,$tmp,1));
1654 &shl ($tmp,24);
1655 &xor ($out,$tmp);
1656 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
1657 if ($i==3) { &mov ($s[3],$__s0);
1658 &lea ($td,&DWP(-2048,$td)); }
1659 }

1661 &function_begin_B("_x86_AES_decrypt");
1662 # note that caller is expected to allocate stack frame for me!
1663 &mov ($__key,$key); # save key

1665 &xor ($s0,&DWP(0,$key)); # xor with key
1666 &xor ($s1,&DWP(4,$key));
1667 &xor ($s2,&DWP(8,$key));
1668 &xor ($s3,&DWP(12,$key));

1670 &mov ($acc,&DWP(240,$key)); # load key->rounds

1672 if ($small_footprint) {
1673 &lea ($acc,&DWP(-2,$acc,$acc));
1674 &lea ($acc,&DWP(0,$key,$acc,8));
1675 &mov ($__end,$acc); # end of key schedule
1676 &set_label("loop",16);
1677 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1678 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1679 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1680 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1681 &add ($key,16); # advance rd_key
1682 &xor ($s0,&DWP(0,$key));
1683 &xor ($s1,&DWP(4,$key));
1684 &xor ($s2,&DWP(8,$key));
1685 &xor ($s3,&DWP(12,$key));
1686 &cmp ($key,$__end);
1687 &mov ($__key,$key);
1688 &jb (&label("loop"));
1689 }
1690 else {
1691 &cmp ($acc,10);
1692 &jle (&label("10rounds"));
1693 &cmp ($acc,12);
1694 &jle (&label("12rounds"));

1696 &set_label("14rounds",4);
1697 for ($i=1;$i<3;$i++) {
1698 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1699 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1700 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1701 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1702 &xor ($s0,&DWP(16*$i+0,$key));
1703 &xor ($s1,&DWP(16*$i+4,$key));
1704 &xor ($s2,&DWP(16*$i+8,$key));
1705 &xor ($s3,&DWP(16*$i+12,$key));
1706 }
1707 &add ($key,32);
1708 &mov ($__key,$key); # advance rd_key
1709 &set_label("12rounds",4);
1710 for ($i=1;$i<3;$i++) {
1711 &decstep(0,$tbl,$s0,$s3,$s2,$s1);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 27

1712 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1713 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1714 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1715 &xor ($s0,&DWP(16*$i+0,$key));
1716 &xor ($s1,&DWP(16*$i+4,$key));
1717 &xor ($s2,&DWP(16*$i+8,$key));
1718 &xor ($s3,&DWP(16*$i+12,$key));
1719 }
1720 &add ($key,32);
1721 &mov ($__key,$key); # advance rd_key
1722 &set_label("10rounds",4);
1723 for ($i=1;$i<10;$i++) {
1724 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1725 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1726 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1727 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1728 &xor ($s0,&DWP(16*$i+0,$key));
1729 &xor ($s1,&DWP(16*$i+4,$key));
1730 &xor ($s2,&DWP(16*$i+8,$key));
1731 &xor ($s3,&DWP(16*$i+12,$key));
1732 }
1733 }

1735 &declast(0,$tbl,$s0,$s3,$s2,$s1);
1736 &declast(1,$tbl,$s1,$s0,$s3,$s2);
1737 &declast(2,$tbl,$s2,$s1,$s0,$s3);
1738 &declast(3,$tbl,$s3,$s2,$s1,$s0);

1740 &add ($key,$small_footprint?16:160);
1741 &xor ($s0,&DWP(0,$key));
1742 &xor ($s1,&DWP(4,$key));
1743 &xor ($s2,&DWP(8,$key));
1744 &xor ($s3,&DWP(12,$key));

1746 &ret ();

1748 &set_label("AES_Td",64); # Yes! I keep it in the code segment!
1749 &_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a);
1750 &_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b);
1751 &_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5);
1752 &_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5);
1753 &_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d);
1754 &_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b);
1755 &_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295);
1756 &_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e);
1757 &_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927);
1758 &_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d);
1759 &_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362);
1760 &_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9);
1761 &_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52);
1762 &_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566);
1763 &_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3);
1764 &_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed);
1765 &_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e);
1766 &_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4);
1767 &_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4);
1768 &_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd);
1769 &_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d);
1770 &_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060);
1771 &_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967);
1772 &_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879);
1773 &_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000);
1774 &_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c);
1775 &_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36);
1776 &_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624);
1777 &_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 28

1778 &_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c);
1779 &_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12);
1780 &_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14);
1781 &_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3);
1782 &_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b);
1783 &_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8);
1784 &_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684);
1785 &_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7);
1786 &_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177);
1787 &_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947);
1788 &_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322);
1789 &_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498);
1790 &_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f);
1791 &_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54);
1792 &_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382);
1793 &_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf);
1794 &_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb);
1795 &_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83);
1796 &_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef);
1797 &_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029);
1798 &_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235);
1799 &_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733);
1800 &_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117);
1801 &_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4);
1802 &_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546);
1803 &_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb);
1804 &_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d);
1805 &_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb);
1806 &_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a);
1807 &_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773);
1808 &_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478);
1809 &_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2);
1810 &_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff);
1811 &_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664);
1812 &_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0);

1814 #Td4: # four copies of Td4 to choose from to avoid L1 aliasing
1815 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1816 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1817 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1818 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1819 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1820 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1821 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1822 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1823 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1824 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1825 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1826 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1827 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1828 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1829 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1830 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1831 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1832 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1833 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1834 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1835 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1836 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1837 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1838 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1839 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1840 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1841 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1842 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1843 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 29

1844 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1845 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1846 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);

1848 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1849 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1850 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1851 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1852 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1853 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1854 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1855 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1856 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1857 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1858 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1859 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1860 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1861 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1862 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1863 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1864 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1865 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1866 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1867 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1868 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1869 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1870 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1871 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1872 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1873 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1874 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1875 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1876 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1877 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1878 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1879 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);

1881 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1882 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1883 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1884 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1885 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1886 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1887 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1888 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1889 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1890 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1891 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1892 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1893 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1894 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1895 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1896 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1897 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1898 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1899 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1900 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1901 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1902 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1903 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1904 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1905 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1906 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1907 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1908 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1909 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 30

1910 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1911 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1912 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);

1914 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1915 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1916 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1917 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1918 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1919 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1920 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1921 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1922 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1923 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1924 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1925 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1926 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1927 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1928 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1929 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1930 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1931 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1932 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1933 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1934 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1935 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1936 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1937 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1938 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1939 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1940 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1941 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1942 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1943 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1944 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1945 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1946 &function_end_B("_x86_AES_decrypt");

1948 # void AES_decrypt (const void *inp,void *out,const AES_KEY *key);
1949 &function_begin("AES_decrypt");
1950 &mov ($acc,&wparam(0)); # load inp
1951 &mov ($key,&wparam(2)); # load key

1953 &mov ($s0,"esp");
1954 &sub ("esp",36);
1955 &and ("esp",-64); # align to cache-line

1957 # place stack frame just "above" the key schedule
1958 &lea ($s1,&DWP(-64-63,$key));
1959 &sub ($s1,"esp");
1960 &neg ($s1);
1961 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
1962 &sub ("esp",$s1);
1963 &add ("esp",4); # 4 is reserved for caller’s return address
1964 &mov ($_esp,$s0); # save stack pointer

1966 &call (&label("pic_point")); # make it PIC!
1967 &set_label("pic_point");
1968 &blindpop($tbl);
1969 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only)
1970 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("pic_point"),$tbl));

1972 # pick Td4 copy which can’t "overlap" with stack frame or key schedule
1973 &lea ($s1,&DWP(768-4,"esp"));
1974 &sub ($s1,$tbl);
1975 &and ($s1,0x300);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 31

1976 &lea ($tbl,&DWP(2048+128,$tbl,$s1));

1978 if (!$x86only) {
1979 &bt (&DWP(0,$s0),25); # check for SSE bit
1980 &jnc (&label("x86"));

1982 &movq ("mm0",&QWP(0,$acc));
1983 &movq ("mm4",&QWP(8,$acc));
1984 &call ("_sse_AES_decrypt_compact");
1985 &mov ("esp",$_esp); # restore stack pointer
1986 &mov ($acc,&wparam(1)); # load out
1987 &movq (&QWP(0,$acc),"mm0"); # write output data
1988 &movq (&QWP(8,$acc),"mm4");
1989 &emms ();
1990 &function_end_A();
1991 }
1992 &set_label("x86",16);
1993 &mov ($_tbl,$tbl);
1994 &mov ($s0,&DWP(0,$acc)); # load input data
1995 &mov ($s1,&DWP(4,$acc));
1996 &mov ($s2,&DWP(8,$acc));
1997 &mov ($s3,&DWP(12,$acc));
1998 &call ("_x86_AES_decrypt_compact");
1999 &mov ("esp",$_esp); # restore stack pointer
2000 &mov ($acc,&wparam(1)); # load out
2001 &mov (&DWP(0,$acc),$s0); # write output data
2002 &mov (&DWP(4,$acc),$s1);
2003 &mov (&DWP(8,$acc),$s2);
2004 &mov (&DWP(12,$acc),$s3);
2005 &function_end("AES_decrypt");

2007 # void AES_cbc_encrypt (const void char *inp, unsigned char *out,
2008 # size_t length, const AES_KEY *key,
2009 # unsigned char *ivp,const int enc);
2010 {
2011 # stack frame layout
2012 # -4(%esp) # return address 0(%esp)
2013 # 0(%esp) # s0 backing store 4(%esp)
2014 # 4(%esp) # s1 backing store 8(%esp)
2015 # 8(%esp) # s2 backing store 12(%esp)
2016 # 12(%esp) # s3 backing store 16(%esp)
2017 # 16(%esp) # key backup 20(%esp)
2018 # 20(%esp) # end of key schedule 24(%esp)
2019 # 24(%esp) # %ebp backup 28(%esp)
2020 # 28(%esp) # %esp backup
2021 my $_inp=&DWP(32,"esp"); # copy of wparam(0)
2022 my $_out=&DWP(36,"esp"); # copy of wparam(1)
2023 my $_len=&DWP(40,"esp"); # copy of wparam(2)
2024 my $_key=&DWP(44,"esp"); # copy of wparam(3)
2025 my $_ivp=&DWP(48,"esp"); # copy of wparam(4)
2026 my $_tmp=&DWP(52,"esp"); # volatile variable
2027 #
2028 my $ivec=&DWP(60,"esp"); # ivec[16]
2029 my $aes_key=&DWP(76,"esp"); # copy of aes_key
2030 my $mark=&DWP(76+240,"esp"); # copy of aes_key->rounds

2032 &function_begin("AES_cbc_encrypt");
2033 &mov ($s2 eq "ecx"? $s2 : "",&wparam(2)); # load len
2034 &cmp ($s2,0);
2035 &je (&label("drop_out"));

2037 &call (&label("pic_point")); # make it PIC!
2038 &set_label("pic_point");
2039 &blindpop($tbl);
2040 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only)

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 32

2042 &cmp (&wparam(5),0);
2043 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2044 &jne (&label("picked_te"));
2045 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("AES_Te"),$tbl));
2046 &set_label("picked_te");

2048 # one can argue if this is required
2049 &pushf ();
2050 &cld ();

2052 &cmp ($s2,$speed_limit);
2053 &jb (&label("slow_way"));
2054 &test ($s2,15);
2055 &jnz (&label("slow_way"));
2056 if (!$x86only) {
2057 &bt (&DWP(0,$s0),28); # check for hyper-threading bit
2058 &jc (&label("slow_way"));
2059 }
2060 # pre-allocate aligned stack frame...
2061 &lea ($acc,&DWP(-80-244,"esp"));
2062 &and ($acc,-64);

2064 # ... and make sure it doesn’t alias with $tbl modulo 4096
2065 &mov ($s0,$tbl);
2066 &lea ($s1,&DWP(2048+256,$tbl));
2067 &mov ($s3,$acc);
2068 &and ($s0,0xfff); # s = %ebp&0xfff
2069 &and ($s1,0xfff); # e = (%ebp+2048+256)&0xfff
2070 &and ($s3,0xfff); # p = %esp&0xfff

2072 &cmp ($s3,$s1); # if (p>=e) %esp =- (p-e);
2073 &jb (&label("tbl_break_out"));
2074 &sub ($s3,$s1);
2075 &sub ($acc,$s3);
2076 &jmp (&label("tbl_ok"));
2077 &set_label("tbl_break_out",4); # else %esp -= (p-s)&0xfff + framesz;
2078 &sub ($s3,$s0);
2079 &and ($s3,0xfff);
2080 &add ($s3,384);
2081 &sub ($acc,$s3);
2082 &set_label("tbl_ok",4);

2084 &lea ($s3,&wparam(0)); # obtain pointer to parameter block
2085 &exch ("esp",$acc); # allocate stack frame
2086 &add ("esp",4); # reserve for return address!
2087 &mov ($_tbl,$tbl); # save %ebp
2088 &mov ($_esp,$acc); # save %esp

2090 &mov ($s0,&DWP(0,$s3)); # load inp
2091 &mov ($s1,&DWP(4,$s3)); # load out
2092 #&mov ($s2,&DWP(8,$s3)); # load len
2093 &mov ($key,&DWP(12,$s3)); # load key
2094 &mov ($acc,&DWP(16,$s3)); # load ivp
2095 &mov ($s3,&DWP(20,$s3)); # load enc flag

2097 &mov ($_inp,$s0); # save copy of inp
2098 &mov ($_out,$s1); # save copy of out
2099 &mov ($_len,$s2); # save copy of len
2100 &mov ($_key,$key); # save copy of key
2101 &mov ($_ivp,$acc); # save copy of ivp

2103 &mov ($mark,0); # copy of aes_key->rounds = 0;
2104 # do we copy key schedule to stack?
2105 &mov ($s1 eq "ebx" ? $s1 : "",$key);
2106 &mov ($s2 eq "ecx" ? $s2 : "",244/4);
2107 &sub ($s1,$tbl);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 33

2108 &mov ("esi",$key);
2109 &and ($s1,0xfff);
2110 &lea ("edi",$aes_key);
2111 &cmp ($s1,2048+256);
2112 &jb (&label("do_copy"));
2113 &cmp ($s1,4096-244);
2114 &jb (&label("skip_copy"));
2115 &set_label("do_copy",4);
2116 &mov ($_key,"edi");
2117 &data_word(0xA5F3F689); # rep movsd
2118 &set_label("skip_copy");

2120 &mov ($key,16);
2121 &set_label("prefetch_tbl",4);
2122 &mov ($s0,&DWP(0,$tbl));
2123 &mov ($s1,&DWP(32,$tbl));
2124 &mov ($s2,&DWP(64,$tbl));
2125 &mov ($acc,&DWP(96,$tbl));
2126 &lea ($tbl,&DWP(128,$tbl));
2127 &sub ($key,1);
2128 &jnz (&label("prefetch_tbl"));
2129 &sub ($tbl,2048);

2131 &mov ($acc,$_inp);
2132 &mov ($key,$_ivp);

2134 &cmp ($s3,0);
2135 &je (&label("fast_decrypt"));

2137 #----------------------------- ENCRYPT -----------------------------#
2138 &mov ($s0,&DWP(0,$key)); # load iv
2139 &mov ($s1,&DWP(4,$key));

2141 &set_label("fast_enc_loop",16);
2142 &mov ($s2,&DWP(8,$key));
2143 &mov ($s3,&DWP(12,$key));

2145 &xor ($s0,&DWP(0,$acc)); # xor input data
2146 &xor ($s1,&DWP(4,$acc));
2147 &xor ($s2,&DWP(8,$acc));
2148 &xor ($s3,&DWP(12,$acc));

2150 &mov ($key,$_key); # load key
2151 &call ("_x86_AES_encrypt");

2153 &mov ($acc,$_inp); # load inp
2154 &mov ($key,$_out); # load out

2156 &mov (&DWP(0,$key),$s0); # save output data
2157 &mov (&DWP(4,$key),$s1);
2158 &mov (&DWP(8,$key),$s2);
2159 &mov (&DWP(12,$key),$s3);

2161 &lea ($acc,&DWP(16,$acc)); # advance inp
2162 &mov ($s2,$_len); # load len
2163 &mov ($_inp,$acc); # save inp
2164 &lea ($s3,&DWP(16,$key)); # advance out
2165 &mov ($_out,$s3); # save out
2166 &sub ($s2,16); # decrease len
2167 &mov ($_len,$s2); # save len
2168 &jnz (&label("fast_enc_loop"));
2169 &mov ($acc,$_ivp); # load ivp
2170 &mov ($s2,&DWP(8,$key)); # restore last 2 dwords
2171 &mov ($s3,&DWP(12,$key));
2172 &mov (&DWP(0,$acc),$s0); # save ivec
2173 &mov (&DWP(4,$acc),$s1);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 34

2174 &mov (&DWP(8,$acc),$s2);
2175 &mov (&DWP(12,$acc),$s3);

2177 &cmp ($mark,0); # was the key schedule copied?
2178 &mov ("edi",$_key);
2179 &je (&label("skip_ezero"));
2180 # zero copy of key schedule
2181 &mov ("ecx",240/4);
2182 &xor ("eax","eax");
2183 &align (4);
2184 &data_word(0xABF3F689); # rep stosd
2185 &set_label("skip_ezero")
2186 &mov ("esp",$_esp);
2187 &popf ();
2188 &set_label("drop_out");
2189 &function_end_A();
2190 &pushf (); # kludge, never executed

2192 #----------------------------- DECRYPT -----------------------------#
2193 &set_label("fast_decrypt",16);

2195 &cmp ($acc,$_out);
2196 &je (&label("fast_dec_in_place")); # in-place processing...

2198 &mov ($_tmp,$key);

2200 &align (4);
2201 &set_label("fast_dec_loop",16);
2202 &mov ($s0,&DWP(0,$acc)); # read input
2203 &mov ($s1,&DWP(4,$acc));
2204 &mov ($s2,&DWP(8,$acc));
2205 &mov ($s3,&DWP(12,$acc));

2207 &mov ($key,$_key); # load key
2208 &call ("_x86_AES_decrypt");

2210 &mov ($key,$_tmp); # load ivp
2211 &mov ($acc,$_len); # load len
2212 &xor ($s0,&DWP(0,$key)); # xor iv
2213 &xor ($s1,&DWP(4,$key));
2214 &xor ($s2,&DWP(8,$key));
2215 &xor ($s3,&DWP(12,$key));

2217 &mov ($key,$_out); # load out
2218 &mov ($acc,$_inp); # load inp

2220 &mov (&DWP(0,$key),$s0); # write output
2221 &mov (&DWP(4,$key),$s1);
2222 &mov (&DWP(8,$key),$s2);
2223 &mov (&DWP(12,$key),$s3);

2225 &mov ($s2,$_len); # load len
2226 &mov ($_tmp,$acc); # save ivp
2227 &lea ($acc,&DWP(16,$acc)); # advance inp
2228 &mov ($_inp,$acc); # save inp
2229 &lea ($key,&DWP(16,$key)); # advance out
2230 &mov ($_out,$key); # save out
2231 &sub ($s2,16); # decrease len
2232 &mov ($_len,$s2); # save len
2233 &jnz (&label("fast_dec_loop"));
2234 &mov ($key,$_tmp); # load temp ivp
2235 &mov ($acc,$_ivp); # load user ivp
2236 &mov ($s0,&DWP(0,$key)); # load iv
2237 &mov ($s1,&DWP(4,$key));
2238 &mov ($s2,&DWP(8,$key));
2239 &mov ($s3,&DWP(12,$key));

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 35

2240 &mov (&DWP(0,$acc),$s0); # copy back to user
2241 &mov (&DWP(4,$acc),$s1);
2242 &mov (&DWP(8,$acc),$s2);
2243 &mov (&DWP(12,$acc),$s3);
2244 &jmp (&label("fast_dec_out"));

2246 &set_label("fast_dec_in_place",16);
2247 &set_label("fast_dec_in_place_loop");
2248 &mov ($s0,&DWP(0,$acc)); # read input
2249 &mov ($s1,&DWP(4,$acc));
2250 &mov ($s2,&DWP(8,$acc));
2251 &mov ($s3,&DWP(12,$acc));

2253 &lea ($key,$ivec);
2254 &mov (&DWP(0,$key),$s0); # copy to temp
2255 &mov (&DWP(4,$key),$s1);
2256 &mov (&DWP(8,$key),$s2);
2257 &mov (&DWP(12,$key),$s3);

2259 &mov ($key,$_key); # load key
2260 &call ("_x86_AES_decrypt");

2262 &mov ($key,$_ivp); # load ivp
2263 &mov ($acc,$_out); # load out
2264 &xor ($s0,&DWP(0,$key)); # xor iv
2265 &xor ($s1,&DWP(4,$key));
2266 &xor ($s2,&DWP(8,$key));
2267 &xor ($s3,&DWP(12,$key));

2269 &mov (&DWP(0,$acc),$s0); # write output
2270 &mov (&DWP(4,$acc),$s1);
2271 &mov (&DWP(8,$acc),$s2);
2272 &mov (&DWP(12,$acc),$s3);

2274 &lea ($acc,&DWP(16,$acc)); # advance out
2275 &mov ($_out,$acc); # save out

2277 &lea ($acc,$ivec);
2278 &mov ($s0,&DWP(0,$acc)); # read temp
2279 &mov ($s1,&DWP(4,$acc));
2280 &mov ($s2,&DWP(8,$acc));
2281 &mov ($s3,&DWP(12,$acc));

2283 &mov (&DWP(0,$key),$s0); # copy iv
2284 &mov (&DWP(4,$key),$s1);
2285 &mov (&DWP(8,$key),$s2);
2286 &mov (&DWP(12,$key),$s3);

2288 &mov ($acc,$_inp); # load inp
2289 &mov ($s2,$_len); # load len
2290 &lea ($acc,&DWP(16,$acc)); # advance inp
2291 &mov ($_inp,$acc); # save inp
2292 &sub ($s2,16); # decrease len
2293 &mov ($_len,$s2); # save len
2294 &jnz (&label("fast_dec_in_place_loop"));

2296 &set_label("fast_dec_out",4);
2297 &cmp ($mark,0); # was the key schedule copied?
2298 &mov ("edi",$_key);
2299 &je (&label("skip_dzero"));
2300 # zero copy of key schedule
2301 &mov ("ecx",240/4);
2302 &xor ("eax","eax");
2303 &align (4);
2304 &data_word(0xABF3F689); # rep stosd
2305 &set_label("skip_dzero")

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 36

2306 &mov ("esp",$_esp);
2307 &popf ();
2308 &function_end_A();
2309 &pushf (); # kludge, never executed

2311 #--------------------------- SLOW ROUTINE ---------------------------#
2312 &set_label("slow_way",16);

2314 &mov ($s0,&DWP(0,$s0)) if (!$x86only);# load OPENSSL_ia32cap
2315 &mov ($key,&wparam(3)); # load key

2317 # pre-allocate aligned stack frame...
2318 &lea ($acc,&DWP(-80,"esp"));
2319 &and ($acc,-64);

2321 # ... and make sure it doesn’t alias with $key modulo 1024
2322 &lea ($s1,&DWP(-80-63,$key));
2323 &sub ($s1,$acc);
2324 &neg ($s1);
2325 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
2326 &sub ($acc,$s1);

2328 # pick S-box copy which can’t overlap with stack frame or $key
2329 &lea ($s1,&DWP(768,$acc));
2330 &sub ($s1,$tbl);
2331 &and ($s1,0x300);
2332 &lea ($tbl,&DWP(2048+128,$tbl,$s1));

2334 &lea ($s3,&wparam(0)); # pointer to parameter block

2336 &exch ("esp",$acc);
2337 &add ("esp",4); # reserve for return address!
2338 &mov ($_tbl,$tbl); # save %ebp
2339 &mov ($_esp,$acc); # save %esp
2340 &mov ($_tmp,$s0); # save OPENSSL_ia32cap

2342 &mov ($s0,&DWP(0,$s3)); # load inp
2343 &mov ($s1,&DWP(4,$s3)); # load out
2344 #&mov ($s2,&DWP(8,$s3)); # load len
2345 #&mov ($key,&DWP(12,$s3)); # load key
2346 &mov ($acc,&DWP(16,$s3)); # load ivp
2347 &mov ($s3,&DWP(20,$s3)); # load enc flag

2349 &mov ($_inp,$s0); # save copy of inp
2350 &mov ($_out,$s1); # save copy of out
2351 &mov ($_len,$s2); # save copy of len
2352 &mov ($_key,$key); # save copy of key
2353 &mov ($_ivp,$acc); # save copy of ivp

2355 &mov ($key,$acc);
2356 &mov ($acc,$s0);

2358 &cmp ($s3,0);
2359 &je (&label("slow_decrypt"));

2361 #--------------------------- SLOW ENCRYPT ---------------------------#
2362 &cmp ($s2,16);
2363 &mov ($s3,$s1);
2364 &jb (&label("slow_enc_tail"));

2366 if (!$x86only) {
2367 &bt ($_tmp,25); # check for SSE bit
2368 &jnc (&label("slow_enc_x86"));

2370 &movq ("mm0",&QWP(0,$key)); # load iv
2371 &movq ("mm4",&QWP(8,$key));

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 37

2373 &set_label("slow_enc_loop_sse",16);
2374 &pxor ("mm0",&QWP(0,$acc)); # xor input data
2375 &pxor ("mm4",&QWP(8,$acc));

2377 &mov ($key,$_key);
2378 &call ("_sse_AES_encrypt_compact");

2380 &mov ($acc,$_inp); # load inp
2381 &mov ($key,$_out); # load out
2382 &mov ($s2,$_len); # load len

2384 &movq (&QWP(0,$key),"mm0"); # save output data
2385 &movq (&QWP(8,$key),"mm4");

2387 &lea ($acc,&DWP(16,$acc)); # advance inp
2388 &mov ($_inp,$acc); # save inp
2389 &lea ($s3,&DWP(16,$key)); # advance out
2390 &mov ($_out,$s3); # save out
2391 &sub ($s2,16); # decrease len
2392 &cmp ($s2,16);
2393 &mov ($_len,$s2); # save len
2394 &jae (&label("slow_enc_loop_sse"));
2395 &test ($s2,15);
2396 &jnz (&label("slow_enc_tail"));
2397 &mov ($acc,$_ivp); # load ivp
2398 &movq (&QWP(0,$acc),"mm0"); # save ivec
2399 &movq (&QWP(8,$acc),"mm4");
2400 &emms ();
2401 &mov ("esp",$_esp);
2402 &popf ();
2403 &function_end_A();
2404 &pushf (); # kludge, never executed
2405 }
2406 &set_label("slow_enc_x86",16);
2407 &mov ($s0,&DWP(0,$key)); # load iv
2408 &mov ($s1,&DWP(4,$key));

2410 &set_label("slow_enc_loop_x86",4);
2411 &mov ($s2,&DWP(8,$key));
2412 &mov ($s3,&DWP(12,$key));

2414 &xor ($s0,&DWP(0,$acc)); # xor input data
2415 &xor ($s1,&DWP(4,$acc));
2416 &xor ($s2,&DWP(8,$acc));
2417 &xor ($s3,&DWP(12,$acc));

2419 &mov ($key,$_key); # load key
2420 &call ("_x86_AES_encrypt_compact");

2422 &mov ($acc,$_inp); # load inp
2423 &mov ($key,$_out); # load out

2425 &mov (&DWP(0,$key),$s0); # save output data
2426 &mov (&DWP(4,$key),$s1);
2427 &mov (&DWP(8,$key),$s2);
2428 &mov (&DWP(12,$key),$s3);

2430 &mov ($s2,$_len); # load len
2431 &lea ($acc,&DWP(16,$acc)); # advance inp
2432 &mov ($_inp,$acc); # save inp
2433 &lea ($s3,&DWP(16,$key)); # advance out
2434 &mov ($_out,$s3); # save out
2435 &sub ($s2,16); # decrease len
2436 &cmp ($s2,16);
2437 &mov ($_len,$s2); # save len

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 38

2438 &jae (&label("slow_enc_loop_x86"));
2439 &test ($s2,15);
2440 &jnz (&label("slow_enc_tail"));
2441 &mov ($acc,$_ivp); # load ivp
2442 &mov ($s2,&DWP(8,$key)); # restore last dwords
2443 &mov ($s3,&DWP(12,$key));
2444 &mov (&DWP(0,$acc),$s0); # save ivec
2445 &mov (&DWP(4,$acc),$s1);
2446 &mov (&DWP(8,$acc),$s2);
2447 &mov (&DWP(12,$acc),$s3);

2449 &mov ("esp",$_esp);
2450 &popf ();
2451 &function_end_A();
2452 &pushf (); # kludge, never executed

2454 &set_label("slow_enc_tail",16);
2455 &emms () if (!$x86only);
2456 &mov ($key eq "edi"? $key:"",$s3); # load out to edi
2457 &mov ($s1,16);
2458 &sub ($s1,$s2);
2459 &cmp ($key,$acc eq "esi"? $acc:""); # compare with inp
2460 &je (&label("enc_in_place"));
2461 &align (4);
2462 &data_word(0xA4F3F689); # rep movsb # copy input
2463 &jmp (&label("enc_skip_in_place"));
2464 &set_label("enc_in_place");
2465 &lea ($key,&DWP(0,$key,$s2));
2466 &set_label("enc_skip_in_place");
2467 &mov ($s2,$s1);
2468 &xor ($s0,$s0);
2469 &align (4);
2470 &data_word(0xAAF3F689); # rep stosb # zero tail

2472 &mov ($key,$_ivp); # restore ivp
2473 &mov ($acc,$s3); # output as input
2474 &mov ($s0,&DWP(0,$key));
2475 &mov ($s1,&DWP(4,$key));
2476 &mov ($_len,16); # len=16
2477 &jmp (&label("slow_enc_loop_x86")); # one more spin...

2479 #--------------------------- SLOW DECRYPT ---------------------------#
2480 &set_label("slow_decrypt",16);
2481 if (!$x86only) {
2482 &bt ($_tmp,25); # check for SSE bit
2483 &jnc (&label("slow_dec_loop_x86"));

2485 &set_label("slow_dec_loop_sse",4);
2486 &movq ("mm0",&QWP(0,$acc)); # read input
2487 &movq ("mm4",&QWP(8,$acc));

2489 &mov ($key,$_key);
2490 &call ("_sse_AES_decrypt_compact");

2492 &mov ($acc,$_inp); # load inp
2493 &lea ($s0,$ivec);
2494 &mov ($s1,$_out); # load out
2495 &mov ($s2,$_len); # load len
2496 &mov ($key,$_ivp); # load ivp

2498 &movq ("mm1",&QWP(0,$acc)); # re-read input
2499 &movq ("mm5",&QWP(8,$acc));

2501 &pxor ("mm0",&QWP(0,$key)); # xor iv
2502 &pxor ("mm4",&QWP(8,$key));

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 39

2504 &movq (&QWP(0,$key),"mm1"); # copy input to iv
2505 &movq (&QWP(8,$key),"mm5");

2507 &sub ($s2,16); # decrease len
2508 &jc (&label("slow_dec_partial_sse"));

2510 &movq (&QWP(0,$s1),"mm0"); # write output
2511 &movq (&QWP(8,$s1),"mm4");

2513 &lea ($s1,&DWP(16,$s1)); # advance out
2514 &mov ($_out,$s1); # save out
2515 &lea ($acc,&DWP(16,$acc)); # advance inp
2516 &mov ($_inp,$acc); # save inp
2517 &mov ($_len,$s2); # save len
2518 &jnz (&label("slow_dec_loop_sse"));
2519 &emms ();
2520 &mov ("esp",$_esp);
2521 &popf ();
2522 &function_end_A();
2523 &pushf (); # kludge, never executed

2525 &set_label("slow_dec_partial_sse",16);
2526 &movq (&QWP(0,$s0),"mm0"); # save output to temp
2527 &movq (&QWP(8,$s0),"mm4");
2528 &emms ();

2530 &add ($s2 eq "ecx" ? "ecx":"",16);
2531 &mov ("edi",$s1); # out
2532 &mov ("esi",$s0); # temp
2533 &align (4);
2534 &data_word(0xA4F3F689); # rep movsb # copy partial output

2536 &mov ("esp",$_esp);
2537 &popf ();
2538 &function_end_A();
2539 &pushf (); # kludge, never executed
2540 }
2541 &set_label("slow_dec_loop_x86",16);
2542 &mov ($s0,&DWP(0,$acc)); # read input
2543 &mov ($s1,&DWP(4,$acc));
2544 &mov ($s2,&DWP(8,$acc));
2545 &mov ($s3,&DWP(12,$acc));

2547 &lea ($key,$ivec);
2548 &mov (&DWP(0,$key),$s0); # copy to temp
2549 &mov (&DWP(4,$key),$s1);
2550 &mov (&DWP(8,$key),$s2);
2551 &mov (&DWP(12,$key),$s3);

2553 &mov ($key,$_key); # load key
2554 &call ("_x86_AES_decrypt_compact");

2556 &mov ($key,$_ivp); # load ivp
2557 &mov ($acc,$_len); # load len
2558 &xor ($s0,&DWP(0,$key)); # xor iv
2559 &xor ($s1,&DWP(4,$key));
2560 &xor ($s2,&DWP(8,$key));
2561 &xor ($s3,&DWP(12,$key));

2563 &sub ($acc,16);
2564 &jc (&label("slow_dec_partial_x86"));

2566 &mov ($_len,$acc); # save len
2567 &mov ($acc,$_out); # load out

2569 &mov (&DWP(0,$acc),$s0); # write output

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 40

2570 &mov (&DWP(4,$acc),$s1);
2571 &mov (&DWP(8,$acc),$s2);
2572 &mov (&DWP(12,$acc),$s3);

2574 &lea ($acc,&DWP(16,$acc)); # advance out
2575 &mov ($_out,$acc); # save out

2577 &lea ($acc,$ivec);
2578 &mov ($s0,&DWP(0,$acc)); # read temp
2579 &mov ($s1,&DWP(4,$acc));
2580 &mov ($s2,&DWP(8,$acc));
2581 &mov ($s3,&DWP(12,$acc));

2583 &mov (&DWP(0,$key),$s0); # copy it to iv
2584 &mov (&DWP(4,$key),$s1);
2585 &mov (&DWP(8,$key),$s2);
2586 &mov (&DWP(12,$key),$s3);

2588 &mov ($acc,$_inp); # load inp
2589 &lea ($acc,&DWP(16,$acc)); # advance inp
2590 &mov ($_inp,$acc); # save inp
2591 &jnz (&label("slow_dec_loop_x86"));
2592 &mov ("esp",$_esp);
2593 &popf ();
2594 &function_end_A();
2595 &pushf (); # kludge, never executed

2597 &set_label("slow_dec_partial_x86",16);
2598 &lea ($acc,$ivec);
2599 &mov (&DWP(0,$acc),$s0); # save output to temp
2600 &mov (&DWP(4,$acc),$s1);
2601 &mov (&DWP(8,$acc),$s2);
2602 &mov (&DWP(12,$acc),$s3);

2604 &mov ($acc,$_inp);
2605 &mov ($s0,&DWP(0,$acc)); # re-read input
2606 &mov ($s1,&DWP(4,$acc));
2607 &mov ($s2,&DWP(8,$acc));
2608 &mov ($s3,&DWP(12,$acc));

2610 &mov (&DWP(0,$key),$s0); # copy it to iv
2611 &mov (&DWP(4,$key),$s1);
2612 &mov (&DWP(8,$key),$s2);
2613 &mov (&DWP(12,$key),$s3);

2615 &mov ("ecx",$_len);
2616 &mov ("edi",$_out);
2617 &lea ("esi",$ivec);
2618 &align (4);
2619 &data_word(0xA4F3F689); # rep movsb # copy partial output

2621 &mov ("esp",$_esp);
2622 &popf ();
2623 &function_end("AES_cbc_encrypt");
2624 }

2626 #--#

2628 sub enckey()
2629 {
2630 &movz ("esi",&LB("edx")); # rk[i]>>0
2631 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2632 &movz ("esi",&HB("edx")); # rk[i]>>8
2633 &shl ("ebx",24);
2634 &xor ("eax","ebx");

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 41

2636 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2637 &shr ("edx",16);
2638 &movz ("esi",&LB("edx")); # rk[i]>>16
2639 &xor ("eax","ebx");

2641 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2642 &movz ("esi",&HB("edx")); # rk[i]>>24
2643 &shl ("ebx",8);
2644 &xor ("eax","ebx");

2646 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2647 &shl ("ebx",16);
2648 &xor ("eax","ebx");

2650 &xor ("eax",&DWP(1024-128,$tbl,"ecx",4)); # rcon
2651 }

2653 &function_begin("_x86_AES_set_encrypt_key");
2654 &mov ("esi",&wparam(1)); # user supplied key
2655 &mov ("edi",&wparam(3)); # private key schedule

2657 &test ("esi",-1);
2658 &jz (&label("badpointer"));
2659 &test ("edi",-1);
2660 &jz (&label("badpointer"));

2662 &call (&label("pic_point"));
2663 &set_label("pic_point");
2664 &blindpop($tbl);
2665 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2666 &lea ($tbl,&DWP(2048+128,$tbl));

2668 # prefetch Te4
2669 &mov ("eax",&DWP(0-128,$tbl));
2670 &mov ("ebx",&DWP(32-128,$tbl));
2671 &mov ("ecx",&DWP(64-128,$tbl));
2672 &mov ("edx",&DWP(96-128,$tbl));
2673 &mov ("eax",&DWP(128-128,$tbl));
2674 &mov ("ebx",&DWP(160-128,$tbl));
2675 &mov ("ecx",&DWP(192-128,$tbl));
2676 &mov ("edx",&DWP(224-128,$tbl));

2678 &mov ("ecx",&wparam(2)); # number of bits in key
2679 &cmp ("ecx",128);
2680 &je (&label("10rounds"));
2681 &cmp ("ecx",192);
2682 &je (&label("12rounds"));
2683 &cmp ("ecx",256);
2684 &je (&label("14rounds"));
2685 &mov ("eax",-2); # invalid number of bits
2686 &jmp (&label("exit"));

2688 &set_label("10rounds");
2689 &mov ("eax",&DWP(0,"esi")); # copy first 4 dwords
2690 &mov ("ebx",&DWP(4,"esi"));
2691 &mov ("ecx",&DWP(8,"esi"));
2692 &mov ("edx",&DWP(12,"esi"));
2693 &mov (&DWP(0,"edi"),"eax");
2694 &mov (&DWP(4,"edi"),"ebx");
2695 &mov (&DWP(8,"edi"),"ecx");
2696 &mov (&DWP(12,"edi"),"edx");

2698 &xor ("ecx","ecx");
2699 &jmp (&label("10shortcut"));

2701 &align (4);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 42

2702 &set_label("10loop");
2703 &mov ("eax",&DWP(0,"edi")); # rk[0]
2704 &mov ("edx",&DWP(12,"edi")); # rk[3]
2705 &set_label("10shortcut");
2706 &enckey ();

2708 &mov (&DWP(16,"edi"),"eax"); # rk[4]
2709 &xor ("eax",&DWP(4,"edi"));
2710 &mov (&DWP(20,"edi"),"eax"); # rk[5]
2711 &xor ("eax",&DWP(8,"edi"));
2712 &mov (&DWP(24,"edi"),"eax"); # rk[6]
2713 &xor ("eax",&DWP(12,"edi"));
2714 &mov (&DWP(28,"edi"),"eax"); # rk[7]
2715 &inc ("ecx");
2716 &add ("edi",16);
2717 &cmp ("ecx",10);
2718 &jl (&label("10loop"));

2720 &mov (&DWP(80,"edi"),10); # setup number of rounds
2721 &xor ("eax","eax");
2722 &jmp (&label("exit"));
2723
2724 &set_label("12rounds");
2725 &mov ("eax",&DWP(0,"esi")); # copy first 6 dwords
2726 &mov ("ebx",&DWP(4,"esi"));
2727 &mov ("ecx",&DWP(8,"esi"));
2728 &mov ("edx",&DWP(12,"esi"));
2729 &mov (&DWP(0,"edi"),"eax");
2730 &mov (&DWP(4,"edi"),"ebx");
2731 &mov (&DWP(8,"edi"),"ecx");
2732 &mov (&DWP(12,"edi"),"edx");
2733 &mov ("ecx",&DWP(16,"esi"));
2734 &mov ("edx",&DWP(20,"esi"));
2735 &mov (&DWP(16,"edi"),"ecx");
2736 &mov (&DWP(20,"edi"),"edx");

2738 &xor ("ecx","ecx");
2739 &jmp (&label("12shortcut"));

2741 &align (4);
2742 &set_label("12loop");
2743 &mov ("eax",&DWP(0,"edi")); # rk[0]
2744 &mov ("edx",&DWP(20,"edi")); # rk[5]
2745 &set_label("12shortcut");
2746 &enckey ();

2748 &mov (&DWP(24,"edi"),"eax"); # rk[6]
2749 &xor ("eax",&DWP(4,"edi"));
2750 &mov (&DWP(28,"edi"),"eax"); # rk[7]
2751 &xor ("eax",&DWP(8,"edi"));
2752 &mov (&DWP(32,"edi"),"eax"); # rk[8]
2753 &xor ("eax",&DWP(12,"edi"));
2754 &mov (&DWP(36,"edi"),"eax"); # rk[9]

2756 &cmp ("ecx",7);
2757 &je (&label("12break"));
2758 &inc ("ecx");

2760 &xor ("eax",&DWP(16,"edi"));
2761 &mov (&DWP(40,"edi"),"eax"); # rk[10]
2762 &xor ("eax",&DWP(20,"edi"));
2763 &mov (&DWP(44,"edi"),"eax"); # rk[11]

2765 &add ("edi",24);
2766 &jmp (&label("12loop"));

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 43

2768 &set_label("12break");
2769 &mov (&DWP(72,"edi"),12); # setup number of rounds
2770 &xor ("eax","eax");
2771 &jmp (&label("exit"));

2773 &set_label("14rounds");
2774 &mov ("eax",&DWP(0,"esi")); # copy first 8 dwords
2775 &mov ("ebx",&DWP(4,"esi"));
2776 &mov ("ecx",&DWP(8,"esi"));
2777 &mov ("edx",&DWP(12,"esi"));
2778 &mov (&DWP(0,"edi"),"eax");
2779 &mov (&DWP(4,"edi"),"ebx");
2780 &mov (&DWP(8,"edi"),"ecx");
2781 &mov (&DWP(12,"edi"),"edx");
2782 &mov ("eax",&DWP(16,"esi"));
2783 &mov ("ebx",&DWP(20,"esi"));
2784 &mov ("ecx",&DWP(24,"esi"));
2785 &mov ("edx",&DWP(28,"esi"));
2786 &mov (&DWP(16,"edi"),"eax");
2787 &mov (&DWP(20,"edi"),"ebx");
2788 &mov (&DWP(24,"edi"),"ecx");
2789 &mov (&DWP(28,"edi"),"edx");

2791 &xor ("ecx","ecx");
2792 &jmp (&label("14shortcut"));

2794 &align (4);
2795 &set_label("14loop");
2796 &mov ("edx",&DWP(28,"edi")); # rk[7]
2797 &set_label("14shortcut");
2798 &mov ("eax",&DWP(0,"edi")); # rk[0]

2800 &enckey ();

2802 &mov (&DWP(32,"edi"),"eax"); # rk[8]
2803 &xor ("eax",&DWP(4,"edi"));
2804 &mov (&DWP(36,"edi"),"eax"); # rk[9]
2805 &xor ("eax",&DWP(8,"edi"));
2806 &mov (&DWP(40,"edi"),"eax"); # rk[10]
2807 &xor ("eax",&DWP(12,"edi"));
2808 &mov (&DWP(44,"edi"),"eax"); # rk[11]

2810 &cmp ("ecx",6);
2811 &je (&label("14break"));
2812 &inc ("ecx");

2814 &mov ("edx","eax");
2815 &mov ("eax",&DWP(16,"edi")); # rk[4]
2816 &movz ("esi",&LB("edx")); # rk[11]>>0
2817 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2818 &movz ("esi",&HB("edx")); # rk[11]>>8
2819 &xor ("eax","ebx");

2821 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2822 &shr ("edx",16);
2823 &shl ("ebx",8);
2824 &movz ("esi",&LB("edx")); # rk[11]>>16
2825 &xor ("eax","ebx");

2827 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2828 &movz ("esi",&HB("edx")); # rk[11]>>24
2829 &shl ("ebx",16);
2830 &xor ("eax","ebx");

2832 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2833 &shl ("ebx",24);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 44

2834 &xor ("eax","ebx");

2836 &mov (&DWP(48,"edi"),"eax"); # rk[12]
2837 &xor ("eax",&DWP(20,"edi"));
2838 &mov (&DWP(52,"edi"),"eax"); # rk[13]
2839 &xor ("eax",&DWP(24,"edi"));
2840 &mov (&DWP(56,"edi"),"eax"); # rk[14]
2841 &xor ("eax",&DWP(28,"edi"));
2842 &mov (&DWP(60,"edi"),"eax"); # rk[15]

2844 &add ("edi",32);
2845 &jmp (&label("14loop"));

2847 &set_label("14break");
2848 &mov (&DWP(48,"edi"),14); # setup number of rounds
2849 &xor ("eax","eax");
2850 &jmp (&label("exit"));

2852 &set_label("badpointer");
2853 &mov ("eax",-1);
2854 &set_label("exit");
2855 &function_end("_x86_AES_set_encrypt_key");

2857 # int private_AES_set_encrypt_key(const unsigned char *userKey, const int bits,
2858 # AES_KEY *key)
2859 &function_begin_B("private_AES_set_encrypt_key");
2860 &call ("_x86_AES_set_encrypt_key");
2861 &ret ();
2862 &function_end_B("private_AES_set_encrypt_key");

2864 sub deckey()
2865 { my ($i,$key,$tp1,$tp2,$tp4,$tp8) = @_;
2866 my $tmp = $tbl;

2868 &mov ($acc,$tp1);
2869 &and ($acc,0x80808080);
2870 &mov ($tmp,$acc);
2871 &shr ($tmp,7);
2872 &lea ($tp2,&DWP(0,$tp1,$tp1));
2873 &sub ($acc,$tmp);
2874 &and ($tp2,0xfefefefe);
2875 &and ($acc,0x1b1b1b1b);
2876 &xor ($acc,$tp2);
2877 &mov ($tp2,$acc);

2879 &and ($acc,0x80808080);
2880 &mov ($tmp,$acc);
2881 &shr ($tmp,7);
2882 &lea ($tp4,&DWP(0,$tp2,$tp2));
2883 &sub ($acc,$tmp);
2884 &and ($tp4,0xfefefefe);
2885 &and ($acc,0x1b1b1b1b);
2886 &xor ($tp2,$tp1); # tp2^tp1
2887 &xor ($acc,$tp4);
2888 &mov ($tp4,$acc);

2890 &and ($acc,0x80808080);
2891 &mov ($tmp,$acc);
2892 &shr ($tmp,7);
2893 &lea ($tp8,&DWP(0,$tp4,$tp4));
2894 &xor ($tp4,$tp1); # tp4^tp1
2895 &sub ($acc,$tmp);
2896 &and ($tp8,0xfefefefe);
2897 &and ($acc,0x1b1b1b1b);
2898 &rotl ($tp1,8); # = ROTATE(tp1,8)
2899 &xor ($tp8,$acc);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 45

2901 &mov ($tmp,&DWP(4*($i+1),$key)); # modulo-scheduled load

2903 &xor ($tp1,$tp2);
2904 &xor ($tp2,$tp8);
2905 &xor ($tp1,$tp4);
2906 &rotl ($tp2,24);
2907 &xor ($tp4,$tp8);
2908 &xor ($tp1,$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1)
2909 &rotl ($tp4,16);
2910 &xor ($tp1,$tp2); # ^= ROTATE(tp8^tp2^tp1,24)
2911 &rotl ($tp8,8);
2912 &xor ($tp1,$tp4); # ^= ROTATE(tp8^tp4^tp1,16)
2913 &mov ($tp2,$tmp);
2914 &xor ($tp1,$tp8); # ^= ROTATE(tp8,8)

2916 &mov (&DWP(4*$i,$key),$tp1);
2917 }

2919 # int private_AES_set_decrypt_key(const unsigned char *userKey, const int bits,
2920 # AES_KEY *key)
2921 &function_begin_B("private_AES_set_decrypt_key");
2922 &call ("_x86_AES_set_encrypt_key");
2923 &cmp ("eax",0);
2924 &je (&label("proceed"));
2925 &ret ();

2927 &set_label("proceed");
2928 &push ("ebp");
2929 &push ("ebx");
2930 &push ("esi");
2931 &push ("edi");

2933 &mov ("esi",&wparam(2));
2934 &mov ("ecx",&DWP(240,"esi")); # pull number of rounds
2935 &lea ("ecx",&DWP(0,"","ecx",4));
2936 &lea ("edi",&DWP(0,"esi","ecx",4)); # pointer to last chunk

2938 &set_label("invert",4); # invert order of chunks
2939 &mov ("eax",&DWP(0,"esi"));
2940 &mov ("ebx",&DWP(4,"esi"));
2941 &mov ("ecx",&DWP(0,"edi"));
2942 &mov ("edx",&DWP(4,"edi"));
2943 &mov (&DWP(0,"edi"),"eax");
2944 &mov (&DWP(4,"edi"),"ebx");
2945 &mov (&DWP(0,"esi"),"ecx");
2946 &mov (&DWP(4,"esi"),"edx");
2947 &mov ("eax",&DWP(8,"esi"));
2948 &mov ("ebx",&DWP(12,"esi"));
2949 &mov ("ecx",&DWP(8,"edi"));
2950 &mov ("edx",&DWP(12,"edi"));
2951 &mov (&DWP(8,"edi"),"eax");
2952 &mov (&DWP(12,"edi"),"ebx");
2953 &mov (&DWP(8,"esi"),"ecx");
2954 &mov (&DWP(12,"esi"),"edx");
2955 &add ("esi",16);
2956 &sub ("edi",16);
2957 &cmp ("esi","edi");
2958 &jne (&label("invert"));

2960 &mov ($key,&wparam(2));
2961 &mov ($acc,&DWP(240,$key)); # pull number of rounds
2962 &lea ($acc,&DWP(-2,$acc,$acc));
2963 &lea ($acc,&DWP(0,$key,$acc,8));
2964 &mov (&wparam(2),$acc);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-586.pl 46

2966 &mov ($s0,&DWP(16,$key)); # modulo-scheduled load
2967 &set_label("permute",4); # permute the key schedule
2968 &add ($key,16);
2969 &deckey (0,$key,$s0,$s1,$s2,$s3);
2970 &deckey (1,$key,$s1,$s2,$s3,$s0);
2971 &deckey (2,$key,$s2,$s3,$s0,$s1);
2972 &deckey (3,$key,$s3,$s0,$s1,$s2);
2973 &cmp ($key,&wparam(2));
2974 &jb (&label("permute"));

2976 &xor ("eax","eax"); # return success
2977 &function_end("private_AES_set_decrypt_key");
2978 &asciz("AES for x86, CRYPTOGAMS by <appro\@openssl.org>");

2980 &asm_finish();

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 1

**
 75022 Fri May 30 18:32:02 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl
2 #
3 # ==
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==
9 #
10 # Version 2.1.
11 #
12 # aes-*-cbc benchmarks are improved by >70% [compared to gcc 3.3.2 on
13 # Opteron 240 CPU] plus all the bells-n-whistles from 32-bit version
14 # [you’ll notice a lot of resemblance], such as compressed S-boxes
15 # in little-endian byte order, prefetch of these tables in CBC mode,
16 # as well as avoiding L1 cache aliasing between stack frame and key
17 # schedule and already mentioned tables, compressed Td4...
18 #
19 # Performance in number of cycles per processed byte for 128-bit key:
20 #
21 # ECB encrypt ECB decrypt CBC large chunk
22 # AMD64 33 41 13.0
23 # EM64T 38 59 18.6(*)
24 # Core 2 30 43 14.5(*)
25 #
26 # (*) with hyper-threading off

28 $flavour = shift;
29 $output = shift;
30 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

32 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

34 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
35 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
36 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
37 die "can’t locate x86_64-xlate.pl";

39 open OUT,"| \"$^X\" $xlate $flavour $output";
40 *STDOUT=*OUT;

42 $verticalspin=1; # unlike 32-bit version $verticalspin performs
43 # ~15% better on both AMD and Intel cores
44 $speed_limit=512; # see aes-586.pl for details

46 $code=".text\n";

48 $s0="%eax";
49 $s1="%ebx";
50 $s2="%ecx";
51 $s3="%edx";
52 $acc0="%esi"; $mask80="%rsi";
53 $acc1="%edi"; $maskfe="%rdi";
54 $acc2="%ebp"; $mask1b="%rbp";
55 $inp="%r8";
56 $out="%r9";
57 $t0="%r10d";
58 $t1="%r11d";
59 $t2="%r12d";
60 $rnds="%r13d";
61 $sbox="%r14";

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 2

62 $key="%r15";

64 sub hi() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1h/; $r; }
65 sub lo() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/;
66 $r =~ s/%[er]([sd]i)/%\1l/;
67 $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; }
68 sub LO() { my $r=shift; $r =~ s/%r([a-z]+)/%e\1/;
69 $r =~ s/%r([0-9]+)/%r\1d/; $r; }
70 sub _data_word()
71 { my $i;
72 while(defined($i=shift)) { $code.=sprintf".long\t0x%08x,0x%08x\n",$i,$i; }
73 }
74 sub data_word()
75 { my $i;
76 my $last=pop(@_);
77 $code.=".long\t";
78 while(defined($i=shift)) { $code.=sprintf"0x%08x,",$i; }
79 $code.=sprintf"0x%08x\n",$last;
80 }

82 sub data_byte()
83 { my $i;
84 my $last=pop(@_);
85 $code.=".byte\t";
86 while(defined($i=shift)) { $code.=sprintf"0x%02x,",$i&0xff; }
87 $code.=sprintf"0x%02x\n",$last&0xff;
88 }

90 sub encvert()
91 { my $t3="%r8d"; # zaps $inp!

93 $code.=<<___;
94 # favor 3-way issue Opteron pipeline...
95 movzb ‘&lo("$s0")‘,$acc0
96 movzb ‘&lo("$s1")‘,$acc1
97 movzb ‘&lo("$s2")‘,$acc2
98 mov 0($sbox,$acc0,8),$t0
99 mov 0($sbox,$acc1,8),$t1
100 mov 0($sbox,$acc2,8),$t2

102 movzb ‘&hi("$s1")‘,$acc0
103 movzb ‘&hi("$s2")‘,$acc1
104 movzb ‘&lo("$s3")‘,$acc2
105 xor 3($sbox,$acc0,8),$t0
106 xor 3($sbox,$acc1,8),$t1
107 mov 0($sbox,$acc2,8),$t3

109 movzb ‘&hi("$s3")‘,$acc0
110 shr \$16,$s2
111 movzb ‘&hi("$s0")‘,$acc2
112 xor 3($sbox,$acc0,8),$t2
113 shr \$16,$s3
114 xor 3($sbox,$acc2,8),$t3

116 shr \$16,$s1
117 lea 16($key),$key
118 shr \$16,$s0

120 movzb ‘&lo("$s2")‘,$acc0
121 movzb ‘&lo("$s3")‘,$acc1
122 movzb ‘&lo("$s0")‘,$acc2
123 xor 2($sbox,$acc0,8),$t0
124 xor 2($sbox,$acc1,8),$t1
125 xor 2($sbox,$acc2,8),$t2

127 movzb ‘&hi("$s3")‘,$acc0

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 3

128 movzb ‘&hi("$s0")‘,$acc1
129 movzb ‘&lo("$s1")‘,$acc2
130 xor 1($sbox,$acc0,8),$t0
131 xor 1($sbox,$acc1,8),$t1
132 xor 2($sbox,$acc2,8),$t3

134 mov 12($key),$s3
135 movzb ‘&hi("$s1")‘,$acc1
136 movzb ‘&hi("$s2")‘,$acc2
137 mov 0($key),$s0
138 xor 1($sbox,$acc1,8),$t2
139 xor 1($sbox,$acc2,8),$t3

141 mov 4($key),$s1
142 mov 8($key),$s2
143 xor $t0,$s0
144 xor $t1,$s1
145 xor $t2,$s2
146 xor $t3,$s3
147 ___
148 }

150 sub enclastvert()
151 { my $t3="%r8d"; # zaps $inp!

153 $code.=<<___;
154 movzb ‘&lo("$s0")‘,$acc0
155 movzb ‘&lo("$s1")‘,$acc1
156 movzb ‘&lo("$s2")‘,$acc2
157 movzb 2($sbox,$acc0,8),$t0
158 movzb 2($sbox,$acc1,8),$t1
159 movzb 2($sbox,$acc2,8),$t2

161 movzb ‘&lo("$s3")‘,$acc0
162 movzb ‘&hi("$s1")‘,$acc1
163 movzb ‘&hi("$s2")‘,$acc2
164 movzb 2($sbox,$acc0,8),$t3
165 mov 0($sbox,$acc1,8),$acc1 #$t0
166 mov 0($sbox,$acc2,8),$acc2 #$t1

168 and \$0x0000ff00,$acc1
169 and \$0x0000ff00,$acc2

171 xor $acc1,$t0
172 xor $acc2,$t1
173 shr \$16,$s2

175 movzb ‘&hi("$s3")‘,$acc0
176 movzb ‘&hi("$s0")‘,$acc1
177 shr \$16,$s3
178 mov 0($sbox,$acc0,8),$acc0 #$t2
179 mov 0($sbox,$acc1,8),$acc1 #$t3

181 and \$0x0000ff00,$acc0
182 and \$0x0000ff00,$acc1
183 shr \$16,$s1
184 xor $acc0,$t2
185 xor $acc1,$t3
186 shr \$16,$s0

188 movzb ‘&lo("$s2")‘,$acc0
189 movzb ‘&lo("$s3")‘,$acc1
190 movzb ‘&lo("$s0")‘,$acc2
191 mov 0($sbox,$acc0,8),$acc0 #$t0
192 mov 0($sbox,$acc1,8),$acc1 #$t1
193 mov 0($sbox,$acc2,8),$acc2 #$t2

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 4

195 and \$0x00ff0000,$acc0
196 and \$0x00ff0000,$acc1
197 and \$0x00ff0000,$acc2

199 xor $acc0,$t0
200 xor $acc1,$t1
201 xor $acc2,$t2

203 movzb ‘&lo("$s1")‘,$acc0
204 movzb ‘&hi("$s3")‘,$acc1
205 movzb ‘&hi("$s0")‘,$acc2
206 mov 0($sbox,$acc0,8),$acc0 #$t3
207 mov 2($sbox,$acc1,8),$acc1 #$t0
208 mov 2($sbox,$acc2,8),$acc2 #$t1

210 and \$0x00ff0000,$acc0
211 and \$0xff000000,$acc1
212 and \$0xff000000,$acc2

214 xor $acc0,$t3
215 xor $acc1,$t0
216 xor $acc2,$t1

218 movzb ‘&hi("$s1")‘,$acc0
219 movzb ‘&hi("$s2")‘,$acc1
220 mov 16+12($key),$s3
221 mov 2($sbox,$acc0,8),$acc0 #$t2
222 mov 2($sbox,$acc1,8),$acc1 #$t3
223 mov 16+0($key),$s0

225 and \$0xff000000,$acc0
226 and \$0xff000000,$acc1

228 xor $acc0,$t2
229 xor $acc1,$t3

231 mov 16+4($key),$s1
232 mov 16+8($key),$s2
233 xor $t0,$s0
234 xor $t1,$s1
235 xor $t2,$s2
236 xor $t3,$s3
237 ___
238 }

240 sub encstep()
241 { my ($i,@s) = @_;
242 my $tmp0=$acc0;
243 my $tmp1=$acc1;
244 my $tmp2=$acc2;
245 my $out=($t0,$t1,$t2,$s[0])[$i];

247 if ($i==3) {
248 $tmp0=$s[1];
249 $tmp1=$s[2];
250 $tmp2=$s[3];
251 }
252 $code.=" movzb ".&lo($s[0]).",$out\n";
253 $code.=" mov $s[2],$tmp1\n" if ($i!=3);
254 $code.=" lea 16($key),$key\n" if ($i==0);

256 $code.=" movzb ".&hi($s[1]).",$tmp0\n";
257 $code.=" mov 0($sbox,$out,8),$out\n";

259 $code.=" shr \$16,$tmp1\n";

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 5

260 $code.=" mov $s[3],$tmp2\n" if ($i!=3);
261 $code.=" xor 3($sbox,$tmp0,8),$out\n";

263 $code.=" movzb ".&lo($tmp1).",$tmp1\n";
264 $code.=" shr \$24,$tmp2\n";
265 $code.=" xor 4*$i($key),$out\n";

267 $code.=" xor 2($sbox,$tmp1,8),$out\n";
268 $code.=" xor 1($sbox,$tmp2,8),$out\n";

270 $code.=" mov $t0,$s[1]\n" if ($i==3);
271 $code.=" mov $t1,$s[2]\n" if ($i==3);
272 $code.=" mov $t2,$s[3]\n" if ($i==3);
273 $code.="\n";
274 }

276 sub enclast()
277 { my ($i,@s)=@_;
278 my $tmp0=$acc0;
279 my $tmp1=$acc1;
280 my $tmp2=$acc2;
281 my $out=($t0,$t1,$t2,$s[0])[$i];

283 if ($i==3) {
284 $tmp0=$s[1];
285 $tmp1=$s[2];
286 $tmp2=$s[3];
287 }
288 $code.=" movzb ".&lo($s[0]).",$out\n";
289 $code.=" mov $s[2],$tmp1\n" if ($i!=3);

291 $code.=" mov 2($sbox,$out,8),$out\n";
292 $code.=" shr \$16,$tmp1\n";
293 $code.=" mov $s[3],$tmp2\n" if ($i!=3);

295 $code.=" and \$0x000000ff,$out\n";
296 $code.=" movzb ".&hi($s[1]).",$tmp0\n";
297 $code.=" movzb ".&lo($tmp1).",$tmp1\n";
298 $code.=" shr \$24,$tmp2\n";

300 $code.=" mov 0($sbox,$tmp0,8),$tmp0\n";
301 $code.=" mov 0($sbox,$tmp1,8),$tmp1\n";
302 $code.=" mov 2($sbox,$tmp2,8),$tmp2\n";

304 $code.=" and \$0x0000ff00,$tmp0\n";
305 $code.=" and \$0x00ff0000,$tmp1\n";
306 $code.=" and \$0xff000000,$tmp2\n";

308 $code.=" xor $tmp0,$out\n";
309 $code.=" mov $t0,$s[1]\n" if ($i==3);
310 $code.=" xor $tmp1,$out\n";
311 $code.=" mov $t1,$s[2]\n" if ($i==3);
312 $code.=" xor $tmp2,$out\n";
313 $code.=" mov $t2,$s[3]\n" if ($i==3);
314 $code.="\n";
315 }

317 $code.=<<___;
318 .type _x86_64_AES_encrypt,\@abi-omnipotent
319 .align 16
320 _x86_64_AES_encrypt:
321 xor 0($key),$s0 # xor with key
322 xor 4($key),$s1
323 xor 8($key),$s2
324 xor 12($key),$s3

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 6

326 mov 240($key),$rnds # load key->rounds
327 sub \$1,$rnds
328 jmp .Lenc_loop
329 .align 16
330 .Lenc_loop:
331 ___
332 if ($verticalspin) { &encvert(); }
333 else { &encstep(0,$s0,$s1,$s2,$s3);
334 &encstep(1,$s1,$s2,$s3,$s0);
335 &encstep(2,$s2,$s3,$s0,$s1);
336 &encstep(3,$s3,$s0,$s1,$s2);
337 }
338 $code.=<<___;
339 sub \$1,$rnds
340 jnz .Lenc_loop
341 ___
342 if ($verticalspin) { &enclastvert(); }
343 else { &enclast(0,$s0,$s1,$s2,$s3);
344 &enclast(1,$s1,$s2,$s3,$s0);
345 &enclast(2,$s2,$s3,$s0,$s1);
346 &enclast(3,$s3,$s0,$s1,$s2);
347 $code.=<<___;
348 xor 16+0($key),$s0 # xor with key
349 xor 16+4($key),$s1
350 xor 16+8($key),$s2
351 xor 16+12($key),$s3
352 ___
353 }
354 $code.=<<___;
355 .byte 0xf3,0xc3 # rep ret
356 .size _x86_64_AES_encrypt,.-_x86_64_AES_encrypt
357 ___

359 # it’s possible to implement this by shifting tN by 8, filling least
360 # significant byte with byte load and finally bswap-ing at the end,
361 # but such partial register load kills Core 2...
362 sub enccompactvert()
363 { my ($t3,$t4,$t5)=("%r8d","%r9d","%r13d");

365 $code.=<<___;
366 movzb ‘&lo("$s0")‘,$t0
367 movzb ‘&lo("$s1")‘,$t1
368 movzb ‘&lo("$s2")‘,$t2
369 movzb ($sbox,$t0,1),$t0
370 movzb ($sbox,$t1,1),$t1
371 movzb ($sbox,$t2,1),$t2

373 movzb ‘&lo("$s3")‘,$t3
374 movzb ‘&hi("$s1")‘,$acc0
375 movzb ‘&hi("$s2")‘,$acc1
376 movzb ($sbox,$t3,1),$t3
377 movzb ($sbox,$acc0,1),$t4 #$t0
378 movzb ($sbox,$acc1,1),$t5 #$t1

380 movzb ‘&hi("$s3")‘,$acc2
381 movzb ‘&hi("$s0")‘,$acc0
382 shr \$16,$s2
383 movzb ($sbox,$acc2,1),$acc2 #$t2
384 movzb ($sbox,$acc0,1),$acc0 #$t3
385 shr \$16,$s3

387 movzb ‘&lo("$s2")‘,$acc1
388 shl \$8,$t4
389 shl \$8,$t5
390 movzb ($sbox,$acc1,1),$acc1 #$t0
391 xor $t4,$t0

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 7

392 xor $t5,$t1

394 movzb ‘&lo("$s3")‘,$t4
395 shr \$16,$s0
396 shr \$16,$s1
397 movzb ‘&lo("$s0")‘,$t5
398 shl \$8,$acc2
399 shl \$8,$acc0
400 movzb ($sbox,$t4,1),$t4 #$t1
401 movzb ($sbox,$t5,1),$t5 #$t2
402 xor $acc2,$t2
403 xor $acc0,$t3

405 movzb ‘&lo("$s1")‘,$acc2
406 movzb ‘&hi("$s3")‘,$acc0
407 shl \$16,$acc1
408 movzb ($sbox,$acc2,1),$acc2 #$t3
409 movzb ($sbox,$acc0,1),$acc0 #$t0
410 xor $acc1,$t0

412 movzb ‘&hi("$s0")‘,$acc1
413 shr \$8,$s2
414 shr \$8,$s1
415 movzb ($sbox,$acc1,1),$acc1 #$t1
416 movzb ($sbox,$s2,1),$s3 #$t3
417 movzb ($sbox,$s1,1),$s2 #$t2
418 shl \$16,$t4
419 shl \$16,$t5
420 shl \$16,$acc2
421 xor $t4,$t1
422 xor $t5,$t2
423 xor $acc2,$t3

425 shl \$24,$acc0
426 shl \$24,$acc1
427 shl \$24,$s3
428 xor $acc0,$t0
429 shl \$24,$s2
430 xor $acc1,$t1
431 mov $t0,$s0
432 mov $t1,$s1
433 xor $t2,$s2
434 xor $t3,$s3
435 ___
436 }

438 sub enctransform_ref()
439 { my $sn = shift;
440 my ($acc,$r2,$tmp)=("%r8d","%r9d","%r13d");

442 $code.=<<___;
443 mov $sn,$acc
444 and \$0x80808080,$acc
445 mov $acc,$tmp
446 shr \$7,$tmp
447 lea ($sn,$sn),$r2
448 sub $tmp,$acc
449 and \$0xfefefefe,$r2
450 and \$0x1b1b1b1b,$acc
451 mov $sn,$tmp
452 xor $acc,$r2

454 xor $r2,$sn
455 rol \$24,$sn
456 xor $r2,$sn
457 ror \$16,$tmp

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 8

458 xor $tmp,$sn
459 ror \$8,$tmp
460 xor $tmp,$sn
461 ___
462 }

464 # unlike decrypt case it does not pay off to parallelize enctransform
465 sub enctransform()
466 { my ($t3,$r20,$r21)=($acc2,"%r8d","%r9d");

468 $code.=<<___;
469 mov $s0,$acc0
470 mov $s1,$acc1
471 and \$0x80808080,$acc0
472 and \$0x80808080,$acc1
473 mov $acc0,$t0
474 mov $acc1,$t1
475 shr \$7,$t0
476 lea ($s0,$s0),$r20
477 shr \$7,$t1
478 lea ($s1,$s1),$r21
479 sub $t0,$acc0
480 sub $t1,$acc1
481 and \$0xfefefefe,$r20
482 and \$0xfefefefe,$r21
483 and \$0x1b1b1b1b,$acc0
484 and \$0x1b1b1b1b,$acc1
485 mov $s0,$t0
486 mov $s1,$t1
487 xor $acc0,$r20
488 xor $acc1,$r21

490 xor $r20,$s0
491 xor $r21,$s1
492 mov $s2,$acc0
493 mov $s3,$acc1
494 rol \$24,$s0
495 rol \$24,$s1
496 and \$0x80808080,$acc0
497 and \$0x80808080,$acc1
498 xor $r20,$s0
499 xor $r21,$s1
500 mov $acc0,$t2
501 mov $acc1,$t3
502 ror \$16,$t0
503 ror \$16,$t1
504 shr \$7,$t2
505 lea ($s2,$s2),$r20
506 xor $t0,$s0
507 xor $t1,$s1
508 shr \$7,$t3
509 lea ($s3,$s3),$r21
510 ror \$8,$t0
511 ror \$8,$t1
512 sub $t2,$acc0
513 sub $t3,$acc1
514 xor $t0,$s0
515 xor $t1,$s1

517 and \$0xfefefefe,$r20
518 and \$0xfefefefe,$r21
519 and \$0x1b1b1b1b,$acc0
520 and \$0x1b1b1b1b,$acc1
521 mov $s2,$t2
522 mov $s3,$t3
523 xor $acc0,$r20

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 9

524 xor $acc1,$r21

526 xor $r20,$s2
527 xor $r21,$s3
528 rol \$24,$s2
529 rol \$24,$s3
530 xor $r20,$s2
531 xor $r21,$s3
532 mov 0($sbox),$acc0 # prefetch Te4
533 ror \$16,$t2
534 ror \$16,$t3
535 mov 64($sbox),$acc1
536 xor $t2,$s2
537 xor $t3,$s3
538 mov 128($sbox),$r20
539 ror \$8,$t2
540 ror \$8,$t3
541 mov 192($sbox),$r21
542 xor $t2,$s2
543 xor $t3,$s3
544 ___
545 }

547 $code.=<<___;
548 .type _x86_64_AES_encrypt_compact,\@abi-omnipotent
549 .align 16
550 _x86_64_AES_encrypt_compact:
551 lea 128($sbox),$inp # size optimization
552 mov 0-128($inp),$acc1 # prefetch Te4
553 mov 32-128($inp),$acc2
554 mov 64-128($inp),$t0
555 mov 96-128($inp),$t1
556 mov 128-128($inp),$acc1
557 mov 160-128($inp),$acc2
558 mov 192-128($inp),$t0
559 mov 224-128($inp),$t1
560 jmp .Lenc_loop_compact
561 .align 16
562 .Lenc_loop_compact:
563 xor 0($key),$s0 # xor with key
564 xor 4($key),$s1
565 xor 8($key),$s2
566 xor 12($key),$s3
567 lea 16($key),$key
568 ___
569 &enccompactvert();
570 $code.=<<___;
571 cmp 16(%rsp),$key
572 je .Lenc_compact_done
573 ___
574 &enctransform();
575 $code.=<<___;
576 jmp .Lenc_loop_compact
577 .align 16
578 .Lenc_compact_done:
579 xor 0($key),$s0
580 xor 4($key),$s1
581 xor 8($key),$s2
582 xor 12($key),$s3
583 .byte 0xf3,0xc3 # rep ret
584 .size _x86_64_AES_encrypt_compact,.-_x86_64_AES_encrypt_compact
585 ___

587 # void AES_encrypt (const void *inp,void *out,const AES_KEY *key);
588 $code.=<<___;
589 .globl AES_encrypt

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 10

590 .type AES_encrypt,\@function,3
591 .align 16
592 .globl asm_AES_encrypt
593 .hidden asm_AES_encrypt
594 asm_AES_encrypt:
595 AES_encrypt:
596 push %rbx
597 push %rbp
598 push %r12
599 push %r13
600 push %r14
601 push %r15

603 # allocate frame "above" key schedule
604 mov %rsp,%r10
605 lea -63(%rdx),%rcx # %rdx is key argument
606 and \$-64,%rsp
607 sub %rsp,%rcx
608 neg %rcx
609 and \$0x3c0,%rcx
610 sub %rcx,%rsp
611 sub \$32,%rsp

613 mov %rsi,16(%rsp) # save out
614 mov %r10,24(%rsp) # save real stack pointer
615 .Lenc_prologue:

617 mov %rdx,$key
618 mov 240($key),$rnds # load rounds

620 mov 0(%rdi),$s0 # load input vector
621 mov 4(%rdi),$s1
622 mov 8(%rdi),$s2
623 mov 12(%rdi),$s3

625 shl \$4,$rnds
626 lea ($key,$rnds),%rbp
627 mov $key,(%rsp) # key schedule
628 mov %rbp,8(%rsp) # end of key schedule

630 # pick Te4 copy which can’t "overlap" with stack frame or key schedule
631 lea .LAES_Te+2048(%rip),$sbox
632 lea 768(%rsp),%rbp
633 sub $sbox,%rbp
634 and \$0x300,%rbp
635 lea ($sbox,%rbp),$sbox

637 call _x86_64_AES_encrypt_compact

639 mov 16(%rsp),$out # restore out
640 mov 24(%rsp),%rsi # restore saved stack pointer
641 mov $s0,0($out) # write output vector
642 mov $s1,4($out)
643 mov $s2,8($out)
644 mov $s3,12($out)

646 mov (%rsi),%r15
647 mov 8(%rsi),%r14
648 mov 16(%rsi),%r13
649 mov 24(%rsi),%r12
650 mov 32(%rsi),%rbp
651 mov 40(%rsi),%rbx
652 lea 48(%rsi),%rsp
653 .Lenc_epilogue:
654 ret
655 .size AES_encrypt,.-AES_encrypt

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 11

656 ___

658 #--#

660 sub decvert()
661 { my $t3="%r8d"; # zaps $inp!

663 $code.=<<___;
664 # favor 3-way issue Opteron pipeline...
665 movzb ‘&lo("$s0")‘,$acc0
666 movzb ‘&lo("$s1")‘,$acc1
667 movzb ‘&lo("$s2")‘,$acc2
668 mov 0($sbox,$acc0,8),$t0
669 mov 0($sbox,$acc1,8),$t1
670 mov 0($sbox,$acc2,8),$t2

672 movzb ‘&hi("$s3")‘,$acc0
673 movzb ‘&hi("$s0")‘,$acc1
674 movzb ‘&lo("$s3")‘,$acc2
675 xor 3($sbox,$acc0,8),$t0
676 xor 3($sbox,$acc1,8),$t1
677 mov 0($sbox,$acc2,8),$t3

679 movzb ‘&hi("$s1")‘,$acc0
680 shr \$16,$s0
681 movzb ‘&hi("$s2")‘,$acc2
682 xor 3($sbox,$acc0,8),$t2
683 shr \$16,$s3
684 xor 3($sbox,$acc2,8),$t3

686 shr \$16,$s1
687 lea 16($key),$key
688 shr \$16,$s2

690 movzb ‘&lo("$s2")‘,$acc0
691 movzb ‘&lo("$s3")‘,$acc1
692 movzb ‘&lo("$s0")‘,$acc2
693 xor 2($sbox,$acc0,8),$t0
694 xor 2($sbox,$acc1,8),$t1
695 xor 2($sbox,$acc2,8),$t2

697 movzb ‘&hi("$s1")‘,$acc0
698 movzb ‘&hi("$s2")‘,$acc1
699 movzb ‘&lo("$s1")‘,$acc2
700 xor 1($sbox,$acc0,8),$t0
701 xor 1($sbox,$acc1,8),$t1
702 xor 2($sbox,$acc2,8),$t3

704 movzb ‘&hi("$s3")‘,$acc0
705 mov 12($key),$s3
706 movzb ‘&hi("$s0")‘,$acc2
707 xor 1($sbox,$acc0,8),$t2
708 mov 0($key),$s0
709 xor 1($sbox,$acc2,8),$t3

711 xor $t0,$s0
712 mov 4($key),$s1
713 mov 8($key),$s2
714 xor $t2,$s2
715 xor $t1,$s1
716 xor $t3,$s3
717 ___
718 }

720 sub declastvert()
721 { my $t3="%r8d"; # zaps $inp!

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 12

723 $code.=<<___;
724 lea 2048($sbox),$sbox # size optimization
725 movzb ‘&lo("$s0")‘,$acc0
726 movzb ‘&lo("$s1")‘,$acc1
727 movzb ‘&lo("$s2")‘,$acc2
728 movzb ($sbox,$acc0,1),$t0
729 movzb ($sbox,$acc1,1),$t1
730 movzb ($sbox,$acc2,1),$t2

732 movzb ‘&lo("$s3")‘,$acc0
733 movzb ‘&hi("$s3")‘,$acc1
734 movzb ‘&hi("$s0")‘,$acc2
735 movzb ($sbox,$acc0,1),$t3
736 movzb ($sbox,$acc1,1),$acc1 #$t0
737 movzb ($sbox,$acc2,1),$acc2 #$t1

739 shl \$8,$acc1
740 shl \$8,$acc2

742 xor $acc1,$t0
743 xor $acc2,$t1
744 shr \$16,$s3

746 movzb ‘&hi("$s1")‘,$acc0
747 movzb ‘&hi("$s2")‘,$acc1
748 shr \$16,$s0
749 movzb ($sbox,$acc0,1),$acc0 #$t2
750 movzb ($sbox,$acc1,1),$acc1 #$t3

752 shl \$8,$acc0
753 shl \$8,$acc1
754 shr \$16,$s1
755 xor $acc0,$t2
756 xor $acc1,$t3
757 shr \$16,$s2

759 movzb ‘&lo("$s2")‘,$acc0
760 movzb ‘&lo("$s3")‘,$acc1
761 movzb ‘&lo("$s0")‘,$acc2
762 movzb ($sbox,$acc0,1),$acc0 #$t0
763 movzb ($sbox,$acc1,1),$acc1 #$t1
764 movzb ($sbox,$acc2,1),$acc2 #$t2

766 shl \$16,$acc0
767 shl \$16,$acc1
768 shl \$16,$acc2

770 xor $acc0,$t0
771 xor $acc1,$t1
772 xor $acc2,$t2

774 movzb ‘&lo("$s1")‘,$acc0
775 movzb ‘&hi("$s1")‘,$acc1
776 movzb ‘&hi("$s2")‘,$acc2
777 movzb ($sbox,$acc0,1),$acc0 #$t3
778 movzb ($sbox,$acc1,1),$acc1 #$t0
779 movzb ($sbox,$acc2,1),$acc2 #$t1

781 shl \$16,$acc0
782 shl \$24,$acc1
783 shl \$24,$acc2

785 xor $acc0,$t3
786 xor $acc1,$t0
787 xor $acc2,$t1

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 13

789 movzb ‘&hi("$s3")‘,$acc0
790 movzb ‘&hi("$s0")‘,$acc1
791 mov 16+12($key),$s3
792 movzb ($sbox,$acc0,1),$acc0 #$t2
793 movzb ($sbox,$acc1,1),$acc1 #$t3
794 mov 16+0($key),$s0

796 shl \$24,$acc0
797 shl \$24,$acc1

799 xor $acc0,$t2
800 xor $acc1,$t3

802 mov 16+4($key),$s1
803 mov 16+8($key),$s2
804 lea -2048($sbox),$sbox
805 xor $t0,$s0
806 xor $t1,$s1
807 xor $t2,$s2
808 xor $t3,$s3
809 ___
810 }

812 sub decstep()
813 { my ($i,@s) = @_;
814 my $tmp0=$acc0;
815 my $tmp1=$acc1;
816 my $tmp2=$acc2;
817 my $out=($t0,$t1,$t2,$s[0])[$i];

819 $code.=" mov $s[0],$out\n" if ($i!=3);
820 $tmp1=$s[2] if ($i==3);
821 $code.=" mov $s[2],$tmp1\n" if ($i!=3);
822 $code.=" and \$0xFF,$out\n";

824 $code.=" mov 0($sbox,$out,8),$out\n";
825 $code.=" shr \$16,$tmp1\n";
826 $tmp2=$s[3] if ($i==3);
827 $code.=" mov $s[3],$tmp2\n" if ($i!=3);

829 $tmp0=$s[1] if ($i==3);
830 $code.=" movzb ".&hi($s[1]).",$tmp0\n";
831 $code.=" and \$0xFF,$tmp1\n";
832 $code.=" shr \$24,$tmp2\n";

834 $code.=" xor 3($sbox,$tmp0,8),$out\n";
835 $code.=" xor 2($sbox,$tmp1,8),$out\n";
836 $code.=" xor 1($sbox,$tmp2,8),$out\n";

838 $code.=" mov $t2,$s[1]\n" if ($i==3);
839 $code.=" mov $t1,$s[2]\n" if ($i==3);
840 $code.=" mov $t0,$s[3]\n" if ($i==3);
841 $code.="\n";
842 }

844 sub declast()
845 { my ($i,@s)=@_;
846 my $tmp0=$acc0;
847 my $tmp1=$acc1;
848 my $tmp2=$acc2;
849 my $out=($t0,$t1,$t2,$s[0])[$i];

851 $code.=" mov $s[0],$out\n" if ($i!=3);
852 $tmp1=$s[2] if ($i==3);
853 $code.=" mov $s[2],$tmp1\n" if ($i!=3);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 14

854 $code.=" and \$0xFF,$out\n";

856 $code.=" movzb 2048($sbox,$out,1),$out\n";
857 $code.=" shr \$16,$tmp1\n";
858 $tmp2=$s[3] if ($i==3);
859 $code.=" mov $s[3],$tmp2\n" if ($i!=3);

861 $tmp0=$s[1] if ($i==3);
862 $code.=" movzb ".&hi($s[1]).",$tmp0\n";
863 $code.=" and \$0xFF,$tmp1\n";
864 $code.=" shr \$24,$tmp2\n";

866 $code.=" movzb 2048($sbox,$tmp0,1),$tmp0\n";
867 $code.=" movzb 2048($sbox,$tmp1,1),$tmp1\n";
868 $code.=" movzb 2048($sbox,$tmp2,1),$tmp2\n";

870 $code.=" shl \$8,$tmp0\n";
871 $code.=" shl \$16,$tmp1\n";
872 $code.=" shl \$24,$tmp2\n";

874 $code.=" xor $tmp0,$out\n";
875 $code.=" mov $t2,$s[1]\n" if ($i==3);
876 $code.=" xor $tmp1,$out\n";
877 $code.=" mov $t1,$s[2]\n" if ($i==3);
878 $code.=" xor $tmp2,$out\n";
879 $code.=" mov $t0,$s[3]\n" if ($i==3);
880 $code.="\n";
881 }

883 $code.=<<___;
884 .type _x86_64_AES_decrypt,\@abi-omnipotent
885 .align 16
886 _x86_64_AES_decrypt:
887 xor 0($key),$s0 # xor with key
888 xor 4($key),$s1
889 xor 8($key),$s2
890 xor 12($key),$s3

892 mov 240($key),$rnds # load key->rounds
893 sub \$1,$rnds
894 jmp .Ldec_loop
895 .align 16
896 .Ldec_loop:
897 ___
898 if ($verticalspin) { &decvert(); }
899 else { &decstep(0,$s0,$s3,$s2,$s1);
900 &decstep(1,$s1,$s0,$s3,$s2);
901 &decstep(2,$s2,$s1,$s0,$s3);
902 &decstep(3,$s3,$s2,$s1,$s0);
903 $code.=<<___;
904 lea 16($key),$key
905 xor 0($key),$s0 # xor with key
906 xor 4($key),$s1
907 xor 8($key),$s2
908 xor 12($key),$s3
909 ___
910 }
911 $code.=<<___;
912 sub \$1,$rnds
913 jnz .Ldec_loop
914 ___
915 if ($verticalspin) { &declastvert(); }
916 else { &declast(0,$s0,$s3,$s2,$s1);
917 &declast(1,$s1,$s0,$s3,$s2);
918 &declast(2,$s2,$s1,$s0,$s3);
919 &declast(3,$s3,$s2,$s1,$s0);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 15

920 $code.=<<___;
921 xor 16+0($key),$s0 # xor with key
922 xor 16+4($key),$s1
923 xor 16+8($key),$s2
924 xor 16+12($key),$s3
925 ___
926 }
927 $code.=<<___;
928 .byte 0xf3,0xc3 # rep ret
929 .size _x86_64_AES_decrypt,.-_x86_64_AES_decrypt
930 ___

932 sub deccompactvert()
933 { my ($t3,$t4,$t5)=("%r8d","%r9d","%r13d");

935 $code.=<<___;
936 movzb ‘&lo("$s0")‘,$t0
937 movzb ‘&lo("$s1")‘,$t1
938 movzb ‘&lo("$s2")‘,$t2
939 movzb ($sbox,$t0,1),$t0
940 movzb ($sbox,$t1,1),$t1
941 movzb ($sbox,$t2,1),$t2

943 movzb ‘&lo("$s3")‘,$t3
944 movzb ‘&hi("$s3")‘,$acc0
945 movzb ‘&hi("$s0")‘,$acc1
946 movzb ($sbox,$t3,1),$t3
947 movzb ($sbox,$acc0,1),$t4 #$t0
948 movzb ($sbox,$acc1,1),$t5 #$t1

950 movzb ‘&hi("$s1")‘,$acc2
951 movzb ‘&hi("$s2")‘,$acc0
952 shr \$16,$s2
953 movzb ($sbox,$acc2,1),$acc2 #$t2
954 movzb ($sbox,$acc0,1),$acc0 #$t3
955 shr \$16,$s3

957 movzb ‘&lo("$s2")‘,$acc1
958 shl \$8,$t4
959 shl \$8,$t5
960 movzb ($sbox,$acc1,1),$acc1 #$t0
961 xor $t4,$t0
962 xor $t5,$t1

964 movzb ‘&lo("$s3")‘,$t4
965 shr \$16,$s0
966 shr \$16,$s1
967 movzb ‘&lo("$s0")‘,$t5
968 shl \$8,$acc2
969 shl \$8,$acc0
970 movzb ($sbox,$t4,1),$t4 #$t1
971 movzb ($sbox,$t5,1),$t5 #$t2
972 xor $acc2,$t2
973 xor $acc0,$t3

975 movzb ‘&lo("$s1")‘,$acc2
976 movzb ‘&hi("$s1")‘,$acc0
977 shl \$16,$acc1
978 movzb ($sbox,$acc2,1),$acc2 #$t3
979 movzb ($sbox,$acc0,1),$acc0 #$t0
980 xor $acc1,$t0

982 movzb ‘&hi("$s2")‘,$acc1
983 shl \$16,$t4
984 shl \$16,$t5
985 movzb ($sbox,$acc1,1),$s1 #$t1

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 16

986 xor $t4,$t1
987 xor $t5,$t2

989 movzb ‘&hi("$s3")‘,$acc1
990 shr \$8,$s0
991 shl \$16,$acc2
992 movzb ($sbox,$acc1,1),$s2 #$t2
993 movzb ($sbox,$s0,1),$s3 #$t3
994 xor $acc2,$t3

996 shl \$24,$acc0
997 shl \$24,$s1
998 shl \$24,$s2
999 xor $acc0,$t0

1000 shl \$24,$s3
1001 xor $t1,$s1
1002 mov $t0,$s0
1003 xor $t2,$s2
1004 xor $t3,$s3
1005 ___
1006 }

1008 # parallelized version! input is pair of 64-bit values: %rax=s1.s0
1009 # and %rcx=s3.s2, output is four 32-bit values in %eax=s0, %ebx=s1,
1010 # %ecx=s2 and %edx=s3.
1011 sub dectransform()
1012 { my ($tp10,$tp20,$tp40,$tp80,$acc0)=("%rax","%r8", "%r9", "%r10","%rbx");
1013 my ($tp18,$tp28,$tp48,$tp88,$acc8)=("%rcx","%r11","%r12","%r13","%rdx");
1014 my $prefetch = shift;

1016 $code.=<<___;
1017 mov $tp10,$acc0
1018 mov $tp18,$acc8
1019 and $mask80,$acc0
1020 and $mask80,$acc8
1021 mov $acc0,$tp40
1022 mov $acc8,$tp48
1023 shr \$7,$tp40
1024 lea ($tp10,$tp10),$tp20
1025 shr \$7,$tp48
1026 lea ($tp18,$tp18),$tp28
1027 sub $tp40,$acc0
1028 sub $tp48,$acc8
1029 and $maskfe,$tp20
1030 and $maskfe,$tp28
1031 and $mask1b,$acc0
1032 and $mask1b,$acc8
1033 xor $tp20,$acc0
1034 xor $tp28,$acc8
1035 mov $acc0,$tp20
1036 mov $acc8,$tp28

1038 and $mask80,$acc0
1039 and $mask80,$acc8
1040 mov $acc0,$tp80
1041 mov $acc8,$tp88
1042 shr \$7,$tp80
1043 lea ($tp20,$tp20),$tp40
1044 shr \$7,$tp88
1045 lea ($tp28,$tp28),$tp48
1046 sub $tp80,$acc0
1047 sub $tp88,$acc8
1048 and $maskfe,$tp40
1049 and $maskfe,$tp48
1050 and $mask1b,$acc0
1051 and $mask1b,$acc8

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 17

1052 xor $tp40,$acc0
1053 xor $tp48,$acc8
1054 mov $acc0,$tp40
1055 mov $acc8,$tp48

1057 and $mask80,$acc0
1058 and $mask80,$acc8
1059 mov $acc0,$tp80
1060 mov $acc8,$tp88
1061 shr \$7,$tp80
1062 xor $tp10,$tp20 # tp2^=tp1
1063 shr \$7,$tp88
1064 xor $tp18,$tp28 # tp2^=tp1
1065 sub $tp80,$acc0
1066 sub $tp88,$acc8
1067 lea ($tp40,$tp40),$tp80
1068 lea ($tp48,$tp48),$tp88
1069 xor $tp10,$tp40 # tp4^=tp1
1070 xor $tp18,$tp48 # tp4^=tp1
1071 and $maskfe,$tp80
1072 and $maskfe,$tp88
1073 and $mask1b,$acc0
1074 and $mask1b,$acc8
1075 xor $acc0,$tp80
1076 xor $acc8,$tp88

1078 xor $tp80,$tp10 # tp1^=tp8
1079 xor $tp88,$tp18 # tp1^=tp8
1080 xor $tp80,$tp20 # tp2^tp1^=tp8
1081 xor $tp88,$tp28 # tp2^tp1^=tp8
1082 mov $tp10,$acc0
1083 mov $tp18,$acc8
1084 xor $tp80,$tp40 # tp4^tp1^=tp8
1085 xor $tp88,$tp48 # tp4^tp1^=tp8
1086 shr \$32,$acc0
1087 shr \$32,$acc8
1088 xor $tp20,$tp80 # tp8^=tp8^tp2^tp1=tp2^tp1
1089 xor $tp28,$tp88 # tp8^=tp8^tp2^tp1=tp2^tp1
1090 rol \$8,‘&LO("$tp10")‘ # ROTATE(tp1^tp8,8)
1091 rol \$8,‘&LO("$tp18")‘ # ROTATE(tp1^tp8,8)
1092 xor $tp40,$tp80 # tp2^tp1^=tp8^tp4^tp1=tp8^tp4^tp2
1093 xor $tp48,$tp88 # tp2^tp1^=tp8^tp4^tp1=tp8^tp4^tp2

1095 rol \$8,‘&LO("$acc0")‘ # ROTATE(tp1^tp8,8)
1096 rol \$8,‘&LO("$acc8")‘ # ROTATE(tp1^tp8,8)
1097 xor ‘&LO("$tp80")‘,‘&LO("$tp10")‘
1098 xor ‘&LO("$tp88")‘,‘&LO("$tp18")‘
1099 shr \$32,$tp80
1100 shr \$32,$tp88
1101 xor ‘&LO("$tp80")‘,‘&LO("$acc0")‘
1102 xor ‘&LO("$tp88")‘,‘&LO("$acc8")‘

1104 mov $tp20,$tp80
1105 mov $tp28,$tp88
1106 shr \$32,$tp80
1107 shr \$32,$tp88
1108 rol \$24,‘&LO("$tp20")‘ # ROTATE(tp2^tp1^tp8,24)
1109 rol \$24,‘&LO("$tp28")‘ # ROTATE(tp2^tp1^tp8,24)
1110 rol \$24,‘&LO("$tp80")‘ # ROTATE(tp2^tp1^tp8,24)
1111 rol \$24,‘&LO("$tp88")‘ # ROTATE(tp2^tp1^tp8,24)
1112 xor ‘&LO("$tp20")‘,‘&LO("$tp10")‘
1113 xor ‘&LO("$tp28")‘,‘&LO("$tp18")‘
1114 mov $tp40,$tp20
1115 mov $tp48,$tp28
1116 xor ‘&LO("$tp80")‘,‘&LO("$acc0")‘
1117 xor ‘&LO("$tp88")‘,‘&LO("$acc8")‘

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 18

1119 ‘"mov 0($sbox),$mask80" if ($prefetch)‘
1120 shr \$32,$tp20
1121 shr \$32,$tp28
1122 ‘"mov 64($sbox),$maskfe" if ($prefetch)‘
1123 rol \$16,‘&LO("$tp40")‘ # ROTATE(tp4^tp1^tp8,16)
1124 rol \$16,‘&LO("$tp48")‘ # ROTATE(tp4^tp1^tp8,16)
1125 ‘"mov 128($sbox),$mask1b" if ($prefetch)‘
1126 rol \$16,‘&LO("$tp20")‘ # ROTATE(tp4^tp1^tp8,16)
1127 rol \$16,‘&LO("$tp28")‘ # ROTATE(tp4^tp1^tp8,16)
1128 ‘"mov 192($sbox),$tp80" if ($prefetch)‘
1129 xor ‘&LO("$tp40")‘,‘&LO("$tp10")‘
1130 xor ‘&LO("$tp48")‘,‘&LO("$tp18")‘
1131 ‘"mov 256($sbox),$tp88" if ($prefetch)‘
1132 xor ‘&LO("$tp20")‘,‘&LO("$acc0")‘
1133 xor ‘&LO("$tp28")‘,‘&LO("$acc8")‘
1134 ___
1135 }

1137 $code.=<<___;
1138 .type _x86_64_AES_decrypt_compact,\@abi-omnipotent
1139 .align 16
1140 _x86_64_AES_decrypt_compact:
1141 lea 128($sbox),$inp # size optimization
1142 mov 0-128($inp),$acc1 # prefetch Td4
1143 mov 32-128($inp),$acc2
1144 mov 64-128($inp),$t0
1145 mov 96-128($inp),$t1
1146 mov 128-128($inp),$acc1
1147 mov 160-128($inp),$acc2
1148 mov 192-128($inp),$t0
1149 mov 224-128($inp),$t1
1150 jmp .Ldec_loop_compact

1152 .align 16
1153 .Ldec_loop_compact:
1154 xor 0($key),$s0 # xor with key
1155 xor 4($key),$s1
1156 xor 8($key),$s2
1157 xor 12($key),$s3
1158 lea 16($key),$key
1159 ___
1160 &deccompactvert();
1161 $code.=<<___;
1162 cmp 16(%rsp),$key
1163 je .Ldec_compact_done

1165 mov 256+0($sbox),$mask80
1166 shl \$32,%rbx
1167 shl \$32,%rdx
1168 mov 256+8($sbox),$maskfe
1169 or %rbx,%rax
1170 or %rdx,%rcx
1171 mov 256+16($sbox),$mask1b
1172 ___
1173 &dectransform(1);
1174 $code.=<<___;
1175 jmp .Ldec_loop_compact
1176 .align 16
1177 .Ldec_compact_done:
1178 xor 0($key),$s0
1179 xor 4($key),$s1
1180 xor 8($key),$s2
1181 xor 12($key),$s3
1182 .byte 0xf3,0xc3 # rep ret
1183 .size _x86_64_AES_decrypt_compact,.-_x86_64_AES_decrypt_compact

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 19

1184 ___

1186 # void AES_decrypt (const void *inp,void *out,const AES_KEY *key);
1187 $code.=<<___;
1188 .globl AES_decrypt
1189 .type AES_decrypt,\@function,3
1190 .align 16
1191 .globl asm_AES_decrypt
1192 .hidden asm_AES_decrypt
1193 asm_AES_decrypt:
1194 AES_decrypt:
1195 push %rbx
1196 push %rbp
1197 push %r12
1198 push %r13
1199 push %r14
1200 push %r15

1202 # allocate frame "above" key schedule
1203 mov %rsp,%r10
1204 lea -63(%rdx),%rcx # %rdx is key argument
1205 and \$-64,%rsp
1206 sub %rsp,%rcx
1207 neg %rcx
1208 and \$0x3c0,%rcx
1209 sub %rcx,%rsp
1210 sub \$32,%rsp

1212 mov %rsi,16(%rsp) # save out
1213 mov %r10,24(%rsp) # save real stack pointer
1214 .Ldec_prologue:

1216 mov %rdx,$key
1217 mov 240($key),$rnds # load rounds

1219 mov 0(%rdi),$s0 # load input vector
1220 mov 4(%rdi),$s1
1221 mov 8(%rdi),$s2
1222 mov 12(%rdi),$s3

1224 shl \$4,$rnds
1225 lea ($key,$rnds),%rbp
1226 mov $key,(%rsp) # key schedule
1227 mov %rbp,8(%rsp) # end of key schedule

1229 # pick Td4 copy which can’t "overlap" with stack frame or key schedule
1230 lea .LAES_Td+2048(%rip),$sbox
1231 lea 768(%rsp),%rbp
1232 sub $sbox,%rbp
1233 and \$0x300,%rbp
1234 lea ($sbox,%rbp),$sbox
1235 shr \$3,%rbp # recall "magic" constants!
1236 add %rbp,$sbox

1238 call _x86_64_AES_decrypt_compact

1240 mov 16(%rsp),$out # restore out
1241 mov 24(%rsp),%rsi # restore saved stack pointer
1242 mov $s0,0($out) # write output vector
1243 mov $s1,4($out)
1244 mov $s2,8($out)
1245 mov $s3,12($out)

1247 mov (%rsi),%r15
1248 mov 8(%rsi),%r14
1249 mov 16(%rsi),%r13

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 20

1250 mov 24(%rsi),%r12
1251 mov 32(%rsi),%rbp
1252 mov 40(%rsi),%rbx
1253 lea 48(%rsi),%rsp
1254 .Ldec_epilogue:
1255 ret
1256 .size AES_decrypt,.-AES_decrypt
1257 ___
1258 #--#

1260 sub enckey()
1261 {
1262 $code.=<<___;
1263 movz %dl,%esi # rk[i]>>0
1264 movzb -128(%rbp,%rsi),%ebx
1265 movz %dh,%esi # rk[i]>>8
1266 shl \$24,%ebx
1267 xor %ebx,%eax

1269 movzb -128(%rbp,%rsi),%ebx
1270 shr \$16,%edx
1271 movz %dl,%esi # rk[i]>>16
1272 xor %ebx,%eax

1274 movzb -128(%rbp,%rsi),%ebx
1275 movz %dh,%esi # rk[i]>>24
1276 shl \$8,%ebx
1277 xor %ebx,%eax

1279 movzb -128(%rbp,%rsi),%ebx
1280 shl \$16,%ebx
1281 xor %ebx,%eax

1283 xor 1024-128(%rbp,%rcx,4),%eax # rcon
1284 ___
1285 }

1287 # int private_AES_set_encrypt_key(const unsigned char *userKey, const int bits,
1288 # AES_KEY *key)
1289 $code.=<<___;
1290 .globl private_AES_set_encrypt_key
1291 .type private_AES_set_encrypt_key,\@function,3
1292 .align 16
1293 private_AES_set_encrypt_key:
1294 push %rbx
1295 push %rbp
1296 push %r12 # redundant, but allows to share
1297 push %r13 # exception handler...
1298 push %r14
1299 push %r15
1300 sub \$8,%rsp
1301 .Lenc_key_prologue:

1303 call _x86_64_AES_set_encrypt_key

1305 mov 8(%rsp),%r15
1306 mov 16(%rsp),%r14
1307 mov 24(%rsp),%r13
1308 mov 32(%rsp),%r12
1309 mov 40(%rsp),%rbp
1310 mov 48(%rsp),%rbx
1311 add \$56,%rsp
1312 .Lenc_key_epilogue:
1313 ret
1314 .size private_AES_set_encrypt_key,.-private_AES_set_encrypt_key

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 21

1316 .type _x86_64_AES_set_encrypt_key,\@abi-omnipotent
1317 .align 16
1318 _x86_64_AES_set_encrypt_key:
1319 mov %esi,%ecx # %ecx=bits
1320 mov %rdi,%rsi # %rsi=userKey
1321 mov %rdx,%rdi # %rdi=key

1323 test \$-1,%rsi
1324 jz .Lbadpointer
1325 test \$-1,%rdi
1326 jz .Lbadpointer

1328 lea .LAES_Te(%rip),%rbp
1329 lea 2048+128(%rbp),%rbp

1331 # prefetch Te4
1332 mov 0-128(%rbp),%eax
1333 mov 32-128(%rbp),%ebx
1334 mov 64-128(%rbp),%r8d
1335 mov 96-128(%rbp),%edx
1336 mov 128-128(%rbp),%eax
1337 mov 160-128(%rbp),%ebx
1338 mov 192-128(%rbp),%r8d
1339 mov 224-128(%rbp),%edx

1341 cmp \$128,%ecx
1342 je .L10rounds
1343 cmp \$192,%ecx
1344 je .L12rounds
1345 cmp \$256,%ecx
1346 je .L14rounds
1347 mov \$-2,%rax # invalid number of bits
1348 jmp .Lexit

1350 .L10rounds:
1351 mov 0(%rsi),%rax # copy first 4 dwords
1352 mov 8(%rsi),%rdx
1353 mov %rax,0(%rdi)
1354 mov %rdx,8(%rdi)

1356 shr \$32,%rdx
1357 xor %ecx,%ecx
1358 jmp .L10shortcut
1359 .align 4
1360 .L10loop:
1361 mov 0(%rdi),%eax # rk[0]
1362 mov 12(%rdi),%edx # rk[3]
1363 .L10shortcut:
1364 ___
1365 &enckey ();
1366 $code.=<<___;
1367 mov %eax,16(%rdi) # rk[4]
1368 xor 4(%rdi),%eax
1369 mov %eax,20(%rdi) # rk[5]
1370 xor 8(%rdi),%eax
1371 mov %eax,24(%rdi) # rk[6]
1372 xor 12(%rdi),%eax
1373 mov %eax,28(%rdi) # rk[7]
1374 add \$1,%ecx
1375 lea 16(%rdi),%rdi
1376 cmp \$10,%ecx
1377 jl .L10loop

1379 movl \$10,80(%rdi) # setup number of rounds
1380 xor %rax,%rax
1381 jmp .Lexit

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 22

1383 .L12rounds:
1384 mov 0(%rsi),%rax # copy first 6 dwords
1385 mov 8(%rsi),%rbx
1386 mov 16(%rsi),%rdx
1387 mov %rax,0(%rdi)
1388 mov %rbx,8(%rdi)
1389 mov %rdx,16(%rdi)

1391 shr \$32,%rdx
1392 xor %ecx,%ecx
1393 jmp .L12shortcut
1394 .align 4
1395 .L12loop:
1396 mov 0(%rdi),%eax # rk[0]
1397 mov 20(%rdi),%edx # rk[5]
1398 .L12shortcut:
1399 ___
1400 &enckey ();
1401 $code.=<<___;
1402 mov %eax,24(%rdi) # rk[6]
1403 xor 4(%rdi),%eax
1404 mov %eax,28(%rdi) # rk[7]
1405 xor 8(%rdi),%eax
1406 mov %eax,32(%rdi) # rk[8]
1407 xor 12(%rdi),%eax
1408 mov %eax,36(%rdi) # rk[9]

1410 cmp \$7,%ecx
1411 je .L12break
1412 add \$1,%ecx

1414 xor 16(%rdi),%eax
1415 mov %eax,40(%rdi) # rk[10]
1416 xor 20(%rdi),%eax
1417 mov %eax,44(%rdi) # rk[11]

1419 lea 24(%rdi),%rdi
1420 jmp .L12loop
1421 .L12break:
1422 movl \$12,72(%rdi) # setup number of rounds
1423 xor %rax,%rax
1424 jmp .Lexit

1426 .L14rounds:
1427 mov 0(%rsi),%rax # copy first 8 dwords
1428 mov 8(%rsi),%rbx
1429 mov 16(%rsi),%rcx
1430 mov 24(%rsi),%rdx
1431 mov %rax,0(%rdi)
1432 mov %rbx,8(%rdi)
1433 mov %rcx,16(%rdi)
1434 mov %rdx,24(%rdi)

1436 shr \$32,%rdx
1437 xor %ecx,%ecx
1438 jmp .L14shortcut
1439 .align 4
1440 .L14loop:
1441 mov 0(%rdi),%eax # rk[0]
1442 mov 28(%rdi),%edx # rk[4]
1443 .L14shortcut:
1444 ___
1445 &enckey ();
1446 $code.=<<___;
1447 mov %eax,32(%rdi) # rk[8]

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 23

1448 xor 4(%rdi),%eax
1449 mov %eax,36(%rdi) # rk[9]
1450 xor 8(%rdi),%eax
1451 mov %eax,40(%rdi) # rk[10]
1452 xor 12(%rdi),%eax
1453 mov %eax,44(%rdi) # rk[11]

1455 cmp \$6,%ecx
1456 je .L14break
1457 add \$1,%ecx

1459 mov %eax,%edx
1460 mov 16(%rdi),%eax # rk[4]
1461 movz %dl,%esi # rk[11]>>0
1462 movzb -128(%rbp,%rsi),%ebx
1463 movz %dh,%esi # rk[11]>>8
1464 xor %ebx,%eax

1466 movzb -128(%rbp,%rsi),%ebx
1467 shr \$16,%edx
1468 shl \$8,%ebx
1469 movz %dl,%esi # rk[11]>>16
1470 xor %ebx,%eax

1472 movzb -128(%rbp,%rsi),%ebx
1473 movz %dh,%esi # rk[11]>>24
1474 shl \$16,%ebx
1475 xor %ebx,%eax

1477 movzb -128(%rbp,%rsi),%ebx
1478 shl \$24,%ebx
1479 xor %ebx,%eax

1481 mov %eax,48(%rdi) # rk[12]
1482 xor 20(%rdi),%eax
1483 mov %eax,52(%rdi) # rk[13]
1484 xor 24(%rdi),%eax
1485 mov %eax,56(%rdi) # rk[14]
1486 xor 28(%rdi),%eax
1487 mov %eax,60(%rdi) # rk[15]

1489 lea 32(%rdi),%rdi
1490 jmp .L14loop
1491 .L14break:
1492 movl \$14,48(%rdi) # setup number of rounds
1493 xor %rax,%rax
1494 jmp .Lexit

1496 .Lbadpointer:
1497 mov \$-1,%rax
1498 .Lexit:
1499 .byte 0xf3,0xc3 # rep ret
1500 .size _x86_64_AES_set_encrypt_key,.-_x86_64_AES_set_encrypt_key
1501 ___

1503 sub deckey_ref()
1504 { my ($i,$ptr,$te,$td) = @_;
1505 my ($tp1,$tp2,$tp4,$tp8,$acc)=("%eax","%ebx","%edi","%edx","%r8d");
1506 $code.=<<___;
1507 mov $i($ptr),$tp1
1508 mov $tp1,$acc
1509 and \$0x80808080,$acc
1510 mov $acc,$tp4
1511 shr \$7,$tp4
1512 lea 0($tp1,$tp1),$tp2
1513 sub $tp4,$acc

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 24

1514 and \$0xfefefefe,$tp2
1515 and \$0x1b1b1b1b,$acc
1516 xor $tp2,$acc
1517 mov $acc,$tp2

1519 and \$0x80808080,$acc
1520 mov $acc,$tp8
1521 shr \$7,$tp8
1522 lea 0($tp2,$tp2),$tp4
1523 sub $tp8,$acc
1524 and \$0xfefefefe,$tp4
1525 and \$0x1b1b1b1b,$acc
1526 xor $tp1,$tp2 # tp2^tp1
1527 xor $tp4,$acc
1528 mov $acc,$tp4

1530 and \$0x80808080,$acc
1531 mov $acc,$tp8
1532 shr \$7,$tp8
1533 sub $tp8,$acc
1534 lea 0($tp4,$tp4),$tp8
1535 xor $tp1,$tp4 # tp4^tp1
1536 and \$0xfefefefe,$tp8
1537 and \$0x1b1b1b1b,$acc
1538 xor $acc,$tp8

1540 xor $tp8,$tp1 # tp1^tp8
1541 rol \$8,$tp1 # ROTATE(tp1^tp8,8)
1542 xor $tp8,$tp2 # tp2^tp1^tp8
1543 xor $tp8,$tp4 # tp4^tp1^tp8
1544 xor $tp2,$tp8
1545 xor $tp4,$tp8 # tp8^(tp8^tp4^tp1)^(tp8^tp2^tp1)=tp8^tp

1547 xor $tp8,$tp1
1548 rol \$24,$tp2 # ROTATE(tp2^tp1^tp8,24)
1549 xor $tp2,$tp1
1550 rol \$16,$tp4 # ROTATE(tp4^tp1^tp8,16)
1551 xor $tp4,$tp1

1553 mov $tp1,$i($ptr)
1554 ___
1555 }

1557 # int private_AES_set_decrypt_key(const unsigned char *userKey, const int bits,
1558 # AES_KEY *key)
1559 $code.=<<___;
1560 .globl private_AES_set_decrypt_key
1561 .type private_AES_set_decrypt_key,\@function,3
1562 .align 16
1563 private_AES_set_decrypt_key:
1564 push %rbx
1565 push %rbp
1566 push %r12
1567 push %r13
1568 push %r14
1569 push %r15
1570 push %rdx # save key schedule
1571 .Ldec_key_prologue:

1573 call _x86_64_AES_set_encrypt_key
1574 mov (%rsp),%r8 # restore key schedule
1575 cmp \$0,%eax
1576 jne .Labort

1578 mov 240(%r8),%r14d # pull number of rounds
1579 xor %rdi,%rdi

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 25

1580 lea (%rdi,%r14d,4),%rcx
1581 mov %r8,%rsi
1582 lea (%r8,%rcx,4),%rdi # pointer to last chunk
1583 .align 4
1584 .Linvert:
1585 mov 0(%rsi),%rax
1586 mov 8(%rsi),%rbx
1587 mov 0(%rdi),%rcx
1588 mov 8(%rdi),%rdx
1589 mov %rax,0(%rdi)
1590 mov %rbx,8(%rdi)
1591 mov %rcx,0(%rsi)
1592 mov %rdx,8(%rsi)
1593 lea 16(%rsi),%rsi
1594 lea -16(%rdi),%rdi
1595 cmp %rsi,%rdi
1596 jne .Linvert

1598 lea .LAES_Te+2048+1024(%rip),%rax # rcon

1600 mov 40(%rax),$mask80
1601 mov 48(%rax),$maskfe
1602 mov 56(%rax),$mask1b

1604 mov %r8,$key
1605 sub \$1,%r14d
1606 .align 4
1607 .Lpermute:
1608 lea 16($key),$key
1609 mov 0($key),%rax
1610 mov 8($key),%rcx
1611 ___
1612 &dectransform ();
1613 $code.=<<___;
1614 mov %eax,0($key)
1615 mov %ebx,4($key)
1616 mov %ecx,8($key)
1617 mov %edx,12($key)
1618 sub \$1,%r14d
1619 jnz .Lpermute

1621 xor %rax,%rax
1622 .Labort:
1623 mov 8(%rsp),%r15
1624 mov 16(%rsp),%r14
1625 mov 24(%rsp),%r13
1626 mov 32(%rsp),%r12
1627 mov 40(%rsp),%rbp
1628 mov 48(%rsp),%rbx
1629 add \$56,%rsp
1630 .Ldec_key_epilogue:
1631 ret
1632 .size private_AES_set_decrypt_key,.-private_AES_set_decrypt_key
1633 ___

1635 # void AES_cbc_encrypt (const void char *inp, unsigned char *out,
1636 # size_t length, const AES_KEY *key,
1637 # unsigned char *ivp,const int enc);
1638 {
1639 # stack frame layout
1640 # -8(%rsp) return address
1641 my $keyp="0(%rsp)"; # one to pass as $key
1642 my $keyend="8(%rsp)"; # &(keyp->rd_key[4*keyp->rounds])
1643 my $_rsp="16(%rsp)"; # saved %rsp
1644 my $_inp="24(%rsp)"; # copy of 1st parameter, inp
1645 my $_out="32(%rsp)"; # copy of 2nd parameter, out

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 26

1646 my $_len="40(%rsp)"; # copy of 3rd parameter, length
1647 my $_key="48(%rsp)"; # copy of 4th parameter, key
1648 my $_ivp="56(%rsp)"; # copy of 5th parameter, ivp
1649 my $ivec="64(%rsp)"; # ivec[16]
1650 my $aes_key="80(%rsp)"; # copy of aes_key
1651 my $mark="80+240(%rsp)"; # copy of aes_key->rounds

1653 $code.=<<___;
1654 .globl AES_cbc_encrypt
1655 .type AES_cbc_encrypt,\@function,6
1656 .align 16
1657 .extern OPENSSL_ia32cap_P
1658 .globl asm_AES_cbc_encrypt
1659 .hidden asm_AES_cbc_encrypt
1660 asm_AES_cbc_encrypt:
1661 AES_cbc_encrypt:
1662 cmp \$0,%rdx # check length
1663 je .Lcbc_epilogue
1664 pushfq
1665 push %rbx
1666 push %rbp
1667 push %r12
1668 push %r13
1669 push %r14
1670 push %r15
1671 .Lcbc_prologue:

1673 cld
1674 mov %r9d,%r9d # clear upper half of enc

1676 lea .LAES_Te(%rip),$sbox
1677 cmp \$0,%r9
1678 jne .Lcbc_picked_te
1679 lea .LAES_Td(%rip),$sbox
1680 .Lcbc_picked_te:

1682 mov OPENSSL_ia32cap_P(%rip),%r10d
1683 cmp \$$speed_limit,%rdx
1684 jb .Lcbc_slow_prologue
1685 test \$15,%rdx
1686 jnz .Lcbc_slow_prologue
1687 bt \$28,%r10d
1688 jc .Lcbc_slow_prologue

1690 # allocate aligned stack frame...
1691 lea -88-248(%rsp),$key
1692 and \$-64,$key

1694 # ... and make sure it doesn’t alias with AES_T[ed] modulo 4096
1695 mov $sbox,%r10
1696 lea 2304($sbox),%r11
1697 mov $key,%r12
1698 and \$0xFFF,%r10 # s = $sbox&0xfff
1699 and \$0xFFF,%r11 # e = ($sbox+2048)&0xfff
1700 and \$0xFFF,%r12 # p = %rsp&0xfff

1702 cmp %r11,%r12 # if (p=>e) %rsp =- (p-e);
1703 jb .Lcbc_te_break_out
1704 sub %r11,%r12
1705 sub %r12,$key
1706 jmp .Lcbc_te_ok
1707 .Lcbc_te_break_out: # else %rsp -= (p-s)&0xfff + framesz
1708 sub %r10,%r12
1709 and \$0xFFF,%r12
1710 add \$320,%r12
1711 sub %r12,$key

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 27

1712 .align 4
1713 .Lcbc_te_ok:

1715 xchg %rsp,$key
1716 #add \$8,%rsp # reserve for return address!
1717 mov $key,$_rsp # save %rsp
1718 .Lcbc_fast_body:
1719 mov %rdi,$_inp # save copy of inp
1720 mov %rsi,$_out # save copy of out
1721 mov %rdx,$_len # save copy of len
1722 mov %rcx,$_key # save copy of key
1723 mov %r8,$_ivp # save copy of ivp
1724 movl \$0,$mark # copy of aes_key->rounds = 0;
1725 mov %r8,%rbp # rearrange input arguments
1726 mov %r9,%rbx
1727 mov %rsi,$out
1728 mov %rdi,$inp
1729 mov %rcx,$key

1731 mov 240($key),%eax # key->rounds
1732 # do we copy key schedule to stack?
1733 mov $key,%r10
1734 sub $sbox,%r10
1735 and \$0xfff,%r10
1736 cmp \$2304,%r10
1737 jb .Lcbc_do_ecopy
1738 cmp \$4096-248,%r10
1739 jb .Lcbc_skip_ecopy
1740 .align 4
1741 .Lcbc_do_ecopy:
1742 mov $key,%rsi
1743 lea $aes_key,%rdi
1744 lea $aes_key,$key
1745 mov \$240/8,%ecx
1746 .long 0x90A548F3 # rep movsq
1747 mov %eax,(%rdi) # copy aes_key->rounds
1748 .Lcbc_skip_ecopy:
1749 mov $key,$keyp # save key pointer

1751 mov \$18,%ecx
1752 .align 4
1753 .Lcbc_prefetch_te:
1754 mov 0($sbox),%r10
1755 mov 32($sbox),%r11
1756 mov 64($sbox),%r12
1757 mov 96($sbox),%r13
1758 lea 128($sbox),$sbox
1759 sub \$1,%ecx
1760 jnz .Lcbc_prefetch_te
1761 lea -2304($sbox),$sbox

1763 cmp \$0,%rbx
1764 je .LFAST_DECRYPT

1766 #----------------------------- ENCRYPT -----------------------------#
1767 mov 0(%rbp),$s0 # load iv
1768 mov 4(%rbp),$s1
1769 mov 8(%rbp),$s2
1770 mov 12(%rbp),$s3

1772 .align 4
1773 .Lcbc_fast_enc_loop:
1774 xor 0($inp),$s0
1775 xor 4($inp),$s1
1776 xor 8($inp),$s2
1777 xor 12($inp),$s3

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 28

1778 mov $keyp,$key # restore key
1779 mov $inp,$_inp # if ($verticalspin) save inp

1781 call _x86_64_AES_encrypt

1783 mov $_inp,$inp # if ($verticalspin) restore inp
1784 mov $_len,%r10
1785 mov $s0,0($out)
1786 mov $s1,4($out)
1787 mov $s2,8($out)
1788 mov $s3,12($out)

1790 lea 16($inp),$inp
1791 lea 16($out),$out
1792 sub \$16,%r10
1793 test \$-16,%r10
1794 mov %r10,$_len
1795 jnz .Lcbc_fast_enc_loop
1796 mov $_ivp,%rbp # restore ivp
1797 mov $s0,0(%rbp) # save ivec
1798 mov $s1,4(%rbp)
1799 mov $s2,8(%rbp)
1800 mov $s3,12(%rbp)

1802 jmp .Lcbc_fast_cleanup

1804 #----------------------------- DECRYPT -----------------------------#
1805 .align 16
1806 .LFAST_DECRYPT:
1807 cmp $inp,$out
1808 je .Lcbc_fast_dec_in_place

1810 mov %rbp,$ivec
1811 .align 4
1812 .Lcbc_fast_dec_loop:
1813 mov 0($inp),$s0 # read input
1814 mov 4($inp),$s1
1815 mov 8($inp),$s2
1816 mov 12($inp),$s3
1817 mov $keyp,$key # restore key
1818 mov $inp,$_inp # if ($verticalspin) save inp

1820 call _x86_64_AES_decrypt

1822 mov $ivec,%rbp # load ivp
1823 mov $_inp,$inp # if ($verticalspin) restore inp
1824 mov $_len,%r10 # load len
1825 xor 0(%rbp),$s0 # xor iv
1826 xor 4(%rbp),$s1
1827 xor 8(%rbp),$s2
1828 xor 12(%rbp),$s3
1829 mov $inp,%rbp # current input, next iv

1831 sub \$16,%r10
1832 mov %r10,$_len # update len
1833 mov %rbp,$ivec # update ivp

1835 mov $s0,0($out) # write output
1836 mov $s1,4($out)
1837 mov $s2,8($out)
1838 mov $s3,12($out)

1840 lea 16($inp),$inp
1841 lea 16($out),$out
1842 jnz .Lcbc_fast_dec_loop
1843 mov $_ivp,%r12 # load user ivp

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 29

1844 mov 0(%rbp),%r10 # load iv
1845 mov 8(%rbp),%r11
1846 mov %r10,0(%r12) # copy back to user
1847 mov %r11,8(%r12)
1848 jmp .Lcbc_fast_cleanup

1850 .align 16
1851 .Lcbc_fast_dec_in_place:
1852 mov 0(%rbp),%r10 # copy iv to stack
1853 mov 8(%rbp),%r11
1854 mov %r10,0+$ivec
1855 mov %r11,8+$ivec
1856 .align 4
1857 .Lcbc_fast_dec_in_place_loop:
1858 mov 0($inp),$s0 # load input
1859 mov 4($inp),$s1
1860 mov 8($inp),$s2
1861 mov 12($inp),$s3
1862 mov $keyp,$key # restore key
1863 mov $inp,$_inp # if ($verticalspin) save inp

1865 call _x86_64_AES_decrypt

1867 mov $_inp,$inp # if ($verticalspin) restore inp
1868 mov $_len,%r10
1869 xor 0+$ivec,$s0
1870 xor 4+$ivec,$s1
1871 xor 8+$ivec,$s2
1872 xor 12+$ivec,$s3

1874 mov 0($inp),%r11 # load input
1875 mov 8($inp),%r12
1876 sub \$16,%r10
1877 jz .Lcbc_fast_dec_in_place_done

1879 mov %r11,0+$ivec # copy input to iv
1880 mov %r12,8+$ivec

1882 mov $s0,0($out) # save output [zaps input]
1883 mov $s1,4($out)
1884 mov $s2,8($out)
1885 mov $s3,12($out)

1887 lea 16($inp),$inp
1888 lea 16($out),$out
1889 mov %r10,$_len
1890 jmp .Lcbc_fast_dec_in_place_loop
1891 .Lcbc_fast_dec_in_place_done:
1892 mov $_ivp,%rdi
1893 mov %r11,0(%rdi) # copy iv back to user
1894 mov %r12,8(%rdi)

1896 mov $s0,0($out) # save output [zaps input]
1897 mov $s1,4($out)
1898 mov $s2,8($out)
1899 mov $s3,12($out)

1901 .align 4
1902 .Lcbc_fast_cleanup:
1903 cmpl \$0,$mark # was the key schedule copied?
1904 lea $aes_key,%rdi
1905 je .Lcbc_exit
1906 mov \$240/8,%ecx
1907 xor %rax,%rax
1908 .long 0x90AB48F3 # rep stosq

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 30

1910 jmp .Lcbc_exit

1912 #--------------------------- SLOW ROUTINE ---------------------------#
1913 .align 16
1914 .Lcbc_slow_prologue:
1915 # allocate aligned stack frame...
1916 lea -88(%rsp),%rbp
1917 and \$-64,%rbp
1918 # ... just "above" key schedule
1919 lea -88-63(%rcx),%r10
1920 sub %rbp,%r10
1921 neg %r10
1922 and \$0x3c0,%r10
1923 sub %r10,%rbp

1925 xchg %rsp,%rbp
1926 #add \$8,%rsp # reserve for return address!
1927 mov %rbp,$_rsp # save %rsp
1928 .Lcbc_slow_body:
1929 #mov %rdi,$_inp # save copy of inp
1930 #mov %rsi,$_out # save copy of out
1931 #mov %rdx,$_len # save copy of len
1932 #mov %rcx,$_key # save copy of key
1933 mov %r8,$_ivp # save copy of ivp
1934 mov %r8,%rbp # rearrange input arguments
1935 mov %r9,%rbx
1936 mov %rsi,$out
1937 mov %rdi,$inp
1938 mov %rcx,$key
1939 mov %rdx,%r10

1941 mov 240($key),%eax
1942 mov $key,$keyp # save key pointer
1943 shl \$4,%eax
1944 lea ($key,%rax),%rax
1945 mov %rax,$keyend

1947 # pick Te4 copy which can’t "overlap" with stack frame or key scdedule
1948 lea 2048($sbox),$sbox
1949 lea 768-8(%rsp),%rax
1950 sub $sbox,%rax
1951 and \$0x300,%rax
1952 lea ($sbox,%rax),$sbox

1954 cmp \$0,%rbx
1955 je .LSLOW_DECRYPT

1957 #--------------------------- SLOW ENCRYPT ---------------------------#
1958 test \$-16,%r10 # check upon length
1959 mov 0(%rbp),$s0 # load iv
1960 mov 4(%rbp),$s1
1961 mov 8(%rbp),$s2
1962 mov 12(%rbp),$s3
1963 jz .Lcbc_slow_enc_tail # short input...

1965 .align 4
1966 .Lcbc_slow_enc_loop:
1967 xor 0($inp),$s0
1968 xor 4($inp),$s1
1969 xor 8($inp),$s2
1970 xor 12($inp),$s3
1971 mov $keyp,$key # restore key
1972 mov $inp,$_inp # save inp
1973 mov $out,$_out # save out
1974 mov %r10,$_len # save len

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 31

1976 call _x86_64_AES_encrypt_compact

1978 mov $_inp,$inp # restore inp
1979 mov $_out,$out # restore out
1980 mov $_len,%r10 # restore len
1981 mov $s0,0($out)
1982 mov $s1,4($out)
1983 mov $s2,8($out)
1984 mov $s3,12($out)

1986 lea 16($inp),$inp
1987 lea 16($out),$out
1988 sub \$16,%r10
1989 test \$-16,%r10
1990 jnz .Lcbc_slow_enc_loop
1991 test \$15,%r10
1992 jnz .Lcbc_slow_enc_tail
1993 mov $_ivp,%rbp # restore ivp
1994 mov $s0,0(%rbp) # save ivec
1995 mov $s1,4(%rbp)
1996 mov $s2,8(%rbp)
1997 mov $s3,12(%rbp)

1999 jmp .Lcbc_exit

2001 .align 4
2002 .Lcbc_slow_enc_tail:
2003 mov %rax,%r11
2004 mov %rcx,%r12
2005 mov %r10,%rcx
2006 mov $inp,%rsi
2007 mov $out,%rdi
2008 .long 0x9066A4F3 # rep movsb
2009 mov \$16,%rcx # zero tail
2010 sub %r10,%rcx
2011 xor %rax,%rax
2012 .long 0x9066AAF3 # rep stosb
2013 mov $out,$inp # this is not a mistake!
2014 mov \$16,%r10 # len=16
2015 mov %r11,%rax
2016 mov %r12,%rcx
2017 jmp .Lcbc_slow_enc_loop # one more spin...
2018 #--------------------------- SLOW DECRYPT ---------------------------#
2019 .align 16
2020 .LSLOW_DECRYPT:
2021 shr \$3,%rax
2022 add %rax,$sbox # recall "magic" constants!

2024 mov 0(%rbp),%r11 # copy iv to stack
2025 mov 8(%rbp),%r12
2026 mov %r11,0+$ivec
2027 mov %r12,8+$ivec

2029 .align 4
2030 .Lcbc_slow_dec_loop:
2031 mov 0($inp),$s0 # load input
2032 mov 4($inp),$s1
2033 mov 8($inp),$s2
2034 mov 12($inp),$s3
2035 mov $keyp,$key # restore key
2036 mov $inp,$_inp # save inp
2037 mov $out,$_out # save out
2038 mov %r10,$_len # save len

2040 call _x86_64_AES_decrypt_compact

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 32

2042 mov $_inp,$inp # restore inp
2043 mov $_out,$out # restore out
2044 mov $_len,%r10
2045 xor 0+$ivec,$s0
2046 xor 4+$ivec,$s1
2047 xor 8+$ivec,$s2
2048 xor 12+$ivec,$s3

2050 mov 0($inp),%r11 # load input
2051 mov 8($inp),%r12
2052 sub \$16,%r10
2053 jc .Lcbc_slow_dec_partial
2054 jz .Lcbc_slow_dec_done

2056 mov %r11,0+$ivec # copy input to iv
2057 mov %r12,8+$ivec

2059 mov $s0,0($out) # save output [can zap input]
2060 mov $s1,4($out)
2061 mov $s2,8($out)
2062 mov $s3,12($out)

2064 lea 16($inp),$inp
2065 lea 16($out),$out
2066 jmp .Lcbc_slow_dec_loop
2067 .Lcbc_slow_dec_done:
2068 mov $_ivp,%rdi
2069 mov %r11,0(%rdi) # copy iv back to user
2070 mov %r12,8(%rdi)

2072 mov $s0,0($out) # save output [can zap input]
2073 mov $s1,4($out)
2074 mov $s2,8($out)
2075 mov $s3,12($out)

2077 jmp .Lcbc_exit

2079 .align 4
2080 .Lcbc_slow_dec_partial:
2081 mov $_ivp,%rdi
2082 mov %r11,0(%rdi) # copy iv back to user
2083 mov %r12,8(%rdi)

2085 mov $s0,0+$ivec # save output to stack
2086 mov $s1,4+$ivec
2087 mov $s2,8+$ivec
2088 mov $s3,12+$ivec

2090 mov $out,%rdi
2091 lea $ivec,%rsi
2092 lea 16(%r10),%rcx
2093 .long 0x9066A4F3 # rep movsb
2094 jmp .Lcbc_exit

2096 .align 16
2097 .Lcbc_exit:
2098 mov $_rsp,%rsi
2099 mov (%rsi),%r15
2100 mov 8(%rsi),%r14
2101 mov 16(%rsi),%r13
2102 mov 24(%rsi),%r12
2103 mov 32(%rsi),%rbp
2104 mov 40(%rsi),%rbx
2105 lea 48(%rsi),%rsp
2106 .Lcbc_popfq:
2107 popfq

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 33

2108 .Lcbc_epilogue:
2109 ret
2110 .size AES_cbc_encrypt,.-AES_cbc_encrypt
2111 ___
2112 }

2114 $code.=<<___;
2115 .align 64
2116 .LAES_Te:
2117 ___
2118 &_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6);
2119 &_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591);
2120 &_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56);
2121 &_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec);
2122 &_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa);
2123 &_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb);
2124 &_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45);
2125 &_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b);
2126 &_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c);
2127 &_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83);
2128 &_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9);
2129 &_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a);
2130 &_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d);
2131 &_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f);
2132 &_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df);
2133 &_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea);
2134 &_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34);
2135 &_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b);
2136 &_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d);
2137 &_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413);
2138 &_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1);
2139 &_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6);
2140 &_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972);
2141 &_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85);
2142 &_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed);
2143 &_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511);
2144 &_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe);
2145 &_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b);
2146 &_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05);
2147 &_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1);
2148 &_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142);
2149 &_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf);
2150 &_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3);
2151 &_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e);
2152 &_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a);
2153 &_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6);
2154 &_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3);
2155 &_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b);
2156 &_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428);
2157 &_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad);
2158 &_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14);
2159 &_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8);
2160 &_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4);
2161 &_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2);
2162 &_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda);
2163 &_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949);
2164 &_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf);
2165 &_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810);
2166 &_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c);
2167 &_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697);
2168 &_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e);
2169 &_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f);
2170 &_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc);
2171 &_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c);
2172 &_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969);
2173 &_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 34

2174 &_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122);
2175 &_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433);
2176 &_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9);
2177 &_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5);
2178 &_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a);
2179 &_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0);
2180 &_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e);
2181 &_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c);

2183 #Te4 # four copies of Te4 to choose from to avoid L1 aliasing
2184 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
2185 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
2186 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
2187 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
2188 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
2189 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
2190 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
2191 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
2192 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
2193 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
2194 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
2195 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
2196 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
2197 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
2198 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
2199 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
2200 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
2201 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
2202 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
2203 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
2204 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
2205 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
2206 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
2207 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
2208 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
2209 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
2210 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
2211 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
2212 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
2213 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
2214 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
2215 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);

2217 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
2218 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
2219 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
2220 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
2221 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
2222 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
2223 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
2224 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
2225 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
2226 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
2227 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
2228 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
2229 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
2230 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
2231 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
2232 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
2233 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
2234 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
2235 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
2236 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
2237 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
2238 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
2239 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 35

2240 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
2241 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
2242 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
2243 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
2244 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
2245 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
2246 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
2247 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
2248 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);

2250 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
2251 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
2252 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
2253 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
2254 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
2255 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
2256 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
2257 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
2258 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
2259 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
2260 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
2261 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
2262 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
2263 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
2264 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
2265 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
2266 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
2267 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
2268 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
2269 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
2270 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
2271 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
2272 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
2273 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
2274 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
2275 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
2276 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
2277 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
2278 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
2279 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
2280 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
2281 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);

2283 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
2284 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
2285 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
2286 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
2287 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
2288 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
2289 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
2290 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
2291 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
2292 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
2293 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
2294 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
2295 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
2296 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
2297 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
2298 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
2299 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
2300 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
2301 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
2302 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
2303 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
2304 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
2305 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 36

2306 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
2307 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
2308 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
2309 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
2310 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
2311 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
2312 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
2313 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
2314 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
2315 #rcon:
2316 $code.=<<___;
2317 .long 0x00000001, 0x00000002, 0x00000004, 0x00000008
2318 .long 0x00000010, 0x00000020, 0x00000040, 0x00000080
2319 .long 0x0000001b, 0x00000036, 0x80808080, 0x80808080
2320 .long 0xfefefefe, 0xfefefefe, 0x1b1b1b1b, 0x1b1b1b1b
2321 ___
2322 $code.=<<___;
2323 .align 64
2324 .LAES_Td:
2325 ___
2326 &_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a);
2327 &_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b);
2328 &_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5);
2329 &_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5);
2330 &_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d);
2331 &_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b);
2332 &_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295);
2333 &_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e);
2334 &_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927);
2335 &_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d);
2336 &_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362);
2337 &_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9);
2338 &_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52);
2339 &_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566);
2340 &_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3);
2341 &_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed);
2342 &_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e);
2343 &_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4);
2344 &_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4);
2345 &_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd);
2346 &_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d);
2347 &_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060);
2348 &_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967);
2349 &_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879);
2350 &_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000);
2351 &_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c);
2352 &_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36);
2353 &_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624);
2354 &_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b);
2355 &_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c);
2356 &_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12);
2357 &_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14);
2358 &_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3);
2359 &_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b);
2360 &_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8);
2361 &_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684);
2362 &_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7);
2363 &_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177);
2364 &_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947);
2365 &_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322);
2366 &_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498);
2367 &_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f);
2368 &_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54);
2369 &_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382);
2370 &_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf);
2371 &_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 37

2372 &_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83);
2373 &_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef);
2374 &_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029);
2375 &_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235);
2376 &_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733);
2377 &_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117);
2378 &_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4);
2379 &_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546);
2380 &_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb);
2381 &_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d);
2382 &_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb);
2383 &_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a);
2384 &_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773);
2385 &_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478);
2386 &_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2);
2387 &_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff);
2388 &_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664);
2389 &_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0);

2391 #Td4: # four copies of Td4 to choose from to avoid L1 aliasing
2392 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
2393 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
2394 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
2395 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
2396 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
2397 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
2398 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
2399 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
2400 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
2401 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
2402 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
2403 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
2404 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
2405 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
2406 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
2407 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
2408 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
2409 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
2410 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
2411 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
2412 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
2413 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
2414 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
2415 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
2416 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
2417 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
2418 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
2419 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
2420 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
2421 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
2422 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
2423 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
2424 $code.=<<___;
2425 .long 0x80808080, 0x80808080, 0xfefefefe, 0xfefefefe
2426 .long 0x1b1b1b1b, 0x1b1b1b1b, 0, 0
2427 ___
2428 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
2429 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
2430 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
2431 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
2432 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
2433 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
2434 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
2435 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
2436 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
2437 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 38

2438 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
2439 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
2440 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
2441 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
2442 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
2443 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
2444 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
2445 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
2446 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
2447 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
2448 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
2449 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
2450 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
2451 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
2452 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
2453 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
2454 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
2455 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
2456 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
2457 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
2458 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
2459 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
2460 $code.=<<___;
2461 .long 0x80808080, 0x80808080, 0xfefefefe, 0xfefefefe
2462 .long 0x1b1b1b1b, 0x1b1b1b1b, 0, 0
2463 ___
2464 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
2465 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
2466 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
2467 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
2468 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
2469 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
2470 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
2471 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
2472 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
2473 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
2474 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
2475 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
2476 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
2477 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
2478 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
2479 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
2480 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
2481 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
2482 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
2483 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
2484 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
2485 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
2486 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
2487 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
2488 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
2489 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
2490 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
2491 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
2492 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
2493 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
2494 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
2495 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
2496 $code.=<<___;
2497 .long 0x80808080, 0x80808080, 0xfefefefe, 0xfefefefe
2498 .long 0x1b1b1b1b, 0x1b1b1b1b, 0, 0
2499 ___
2500 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
2501 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
2502 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
2503 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 39

2504 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
2505 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
2506 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
2507 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
2508 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
2509 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
2510 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
2511 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
2512 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
2513 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
2514 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
2515 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
2516 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
2517 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
2518 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
2519 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
2520 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
2521 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
2522 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
2523 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
2524 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
2525 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
2526 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
2527 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
2528 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
2529 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
2530 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
2531 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
2532 $code.=<<___;
2533 .long 0x80808080, 0x80808080, 0xfefefefe, 0xfefefefe
2534 .long 0x1b1b1b1b, 0x1b1b1b1b, 0, 0
2535 .asciz "AES for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
2536 .align 64
2537 ___

2539 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
2540 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
2541 if ($win64) {
2542 $rec="%rcx";
2543 $frame="%rdx";
2544 $context="%r8";
2545 $disp="%r9";

2547 $code.=<<___;
2548 .extern __imp_RtlVirtualUnwind
2549 .type block_se_handler,\@abi-omnipotent
2550 .align 16
2551 block_se_handler:
2552 push %rsi
2553 push %rdi
2554 push %rbx
2555 push %rbp
2556 push %r12
2557 push %r13
2558 push %r14
2559 push %r15
2560 pushfq
2561 sub \$64,%rsp

2563 mov 120($context),%rax # pull context->Rax
2564 mov 248($context),%rbx # pull context->Rip

2566 mov 8($disp),%rsi # disp->ImageBase
2567 mov 56($disp),%r11 # disp->HandlerData

2569 mov 0(%r11),%r10d # HandlerData[0]

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 40

2570 lea (%rsi,%r10),%r10 # prologue label
2571 cmp %r10,%rbx # context->Rip<prologue label
2572 jb .Lin_block_prologue

2574 mov 152($context),%rax # pull context->Rsp

2576 mov 4(%r11),%r10d # HandlerData[1]
2577 lea (%rsi,%r10),%r10 # epilogue label
2578 cmp %r10,%rbx # context->Rip>=epilogue label
2579 jae .Lin_block_prologue

2581 mov 24(%rax),%rax # pull saved real stack pointer
2582 lea 48(%rax),%rax # adjust...

2584 mov -8(%rax),%rbx
2585 mov -16(%rax),%rbp
2586 mov -24(%rax),%r12
2587 mov -32(%rax),%r13
2588 mov -40(%rax),%r14
2589 mov -48(%rax),%r15
2590 mov %rbx,144($context) # restore context->Rbx
2591 mov %rbp,160($context) # restore context->Rbp
2592 mov %r12,216($context) # restore context->R12
2593 mov %r13,224($context) # restore context->R13
2594 mov %r14,232($context) # restore context->R14
2595 mov %r15,240($context) # restore context->R15

2597 .Lin_block_prologue:
2598 mov 8(%rax),%rdi
2599 mov 16(%rax),%rsi
2600 mov %rax,152($context) # restore context->Rsp
2601 mov %rsi,168($context) # restore context->Rsi
2602 mov %rdi,176($context) # restore context->Rdi

2604 jmp .Lcommon_seh_exit
2605 .size block_se_handler,.-block_se_handler

2607 .type key_se_handler,\@abi-omnipotent
2608 .align 16
2609 key_se_handler:
2610 push %rsi
2611 push %rdi
2612 push %rbx
2613 push %rbp
2614 push %r12
2615 push %r13
2616 push %r14
2617 push %r15
2618 pushfq
2619 sub \$64,%rsp

2621 mov 120($context),%rax # pull context->Rax
2622 mov 248($context),%rbx # pull context->Rip

2624 mov 8($disp),%rsi # disp->ImageBase
2625 mov 56($disp),%r11 # disp->HandlerData

2627 mov 0(%r11),%r10d # HandlerData[0]
2628 lea (%rsi,%r10),%r10 # prologue label
2629 cmp %r10,%rbx # context->Rip<prologue label
2630 jb .Lin_key_prologue

2632 mov 152($context),%rax # pull context->Rsp

2634 mov 4(%r11),%r10d # HandlerData[1]
2635 lea (%rsi,%r10),%r10 # epilogue label

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 41

2636 cmp %r10,%rbx # context->Rip>=epilogue label
2637 jae .Lin_key_prologue

2639 lea 56(%rax),%rax

2641 mov -8(%rax),%rbx
2642 mov -16(%rax),%rbp
2643 mov -24(%rax),%r12
2644 mov -32(%rax),%r13
2645 mov -40(%rax),%r14
2646 mov -48(%rax),%r15
2647 mov %rbx,144($context) # restore context->Rbx
2648 mov %rbp,160($context) # restore context->Rbp
2649 mov %r12,216($context) # restore context->R12
2650 mov %r13,224($context) # restore context->R13
2651 mov %r14,232($context) # restore context->R14
2652 mov %r15,240($context) # restore context->R15

2654 .Lin_key_prologue:
2655 mov 8(%rax),%rdi
2656 mov 16(%rax),%rsi
2657 mov %rax,152($context) # restore context->Rsp
2658 mov %rsi,168($context) # restore context->Rsi
2659 mov %rdi,176($context) # restore context->Rdi

2661 jmp .Lcommon_seh_exit
2662 .size key_se_handler,.-key_se_handler

2664 .type cbc_se_handler,\@abi-omnipotent
2665 .align 16
2666 cbc_se_handler:
2667 push %rsi
2668 push %rdi
2669 push %rbx
2670 push %rbp
2671 push %r12
2672 push %r13
2673 push %r14
2674 push %r15
2675 pushfq
2676 sub \$64,%rsp

2678 mov 120($context),%rax # pull context->Rax
2679 mov 248($context),%rbx # pull context->Rip

2681 lea .Lcbc_prologue(%rip),%r10
2682 cmp %r10,%rbx # context->Rip<.Lcbc_prologue
2683 jb .Lin_cbc_prologue

2685 lea .Lcbc_fast_body(%rip),%r10
2686 cmp %r10,%rbx # context->Rip<.Lcbc_fast_body
2687 jb .Lin_cbc_frame_setup

2689 lea .Lcbc_slow_prologue(%rip),%r10
2690 cmp %r10,%rbx # context->Rip<.Lcbc_slow_prologue
2691 jb .Lin_cbc_body

2693 lea .Lcbc_slow_body(%rip),%r10
2694 cmp %r10,%rbx # context->Rip<.Lcbc_slow_body
2695 jb .Lin_cbc_frame_setup

2697 .Lin_cbc_body:
2698 mov 152($context),%rax # pull context->Rsp

2700 lea .Lcbc_epilogue(%rip),%r10
2701 cmp %r10,%rbx # context->Rip>=.Lcbc_epilogue

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 42

2702 jae .Lin_cbc_prologue

2704 lea 8(%rax),%rax

2706 lea .Lcbc_popfq(%rip),%r10
2707 cmp %r10,%rbx # context->Rip>=.Lcbc_popfq
2708 jae .Lin_cbc_prologue

2710 mov ‘16-8‘(%rax),%rax # biased $_rsp
2711 lea 56(%rax),%rax

2713 .Lin_cbc_frame_setup:
2714 mov -16(%rax),%rbx
2715 mov -24(%rax),%rbp
2716 mov -32(%rax),%r12
2717 mov -40(%rax),%r13
2718 mov -48(%rax),%r14
2719 mov -56(%rax),%r15
2720 mov %rbx,144($context) # restore context->Rbx
2721 mov %rbp,160($context) # restore context->Rbp
2722 mov %r12,216($context) # restore context->R12
2723 mov %r13,224($context) # restore context->R13
2724 mov %r14,232($context) # restore context->R14
2725 mov %r15,240($context) # restore context->R15

2727 .Lin_cbc_prologue:
2728 mov 8(%rax),%rdi
2729 mov 16(%rax),%rsi
2730 mov %rax,152($context) # restore context->Rsp
2731 mov %rsi,168($context) # restore context->Rsi
2732 mov %rdi,176($context) # restore context->Rdi

2734 .Lcommon_seh_exit:

2736 mov 40($disp),%rdi # disp->ContextRecord
2737 mov $context,%rsi # context
2738 mov \$‘1232/8‘,%ecx # sizeof(CONTEXT)
2739 .long 0xa548f3fc # cld; rep movsq

2741 mov $disp,%rsi
2742 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
2743 mov 8(%rsi),%rdx # arg2, disp->ImageBase
2744 mov 0(%rsi),%r8 # arg3, disp->ControlPc
2745 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
2746 mov 40(%rsi),%r10 # disp->ContextRecord
2747 lea 56(%rsi),%r11 # &disp->HandlerData
2748 lea 24(%rsi),%r12 # &disp->EstablisherFrame
2749 mov %r10,32(%rsp) # arg5
2750 mov %r11,40(%rsp) # arg6
2751 mov %r12,48(%rsp) # arg7
2752 mov %rcx,56(%rsp) # arg8, (NULL)
2753 call *__imp_RtlVirtualUnwind(%rip)

2755 mov \$1,%eax # ExceptionContinueSearch
2756 add \$64,%rsp
2757 popfq
2758 pop %r15
2759 pop %r14
2760 pop %r13
2761 pop %r12
2762 pop %rbp
2763 pop %rbx
2764 pop %rdi
2765 pop %rsi
2766 ret
2767 .size cbc_se_handler,.-cbc_se_handler

new/usr/src/lib/openssl/libsunw_crypto/pl/aes-x86_64.pl 43

2769 .section .pdata
2770 .align 4
2771 .rva .LSEH_begin_AES_encrypt
2772 .rva .LSEH_end_AES_encrypt
2773 .rva .LSEH_info_AES_encrypt

2775 .rva .LSEH_begin_AES_decrypt
2776 .rva .LSEH_end_AES_decrypt
2777 .rva .LSEH_info_AES_decrypt

2779 .rva .LSEH_begin_private_AES_set_encrypt_key
2780 .rva .LSEH_end_private_AES_set_encrypt_key
2781 .rva .LSEH_info_private_AES_set_encrypt_key

2783 .rva .LSEH_begin_private_AES_set_decrypt_key
2784 .rva .LSEH_end_private_AES_set_decrypt_key
2785 .rva .LSEH_info_private_AES_set_decrypt_key

2787 .rva .LSEH_begin_AES_cbc_encrypt
2788 .rva .LSEH_end_AES_cbc_encrypt
2789 .rva .LSEH_info_AES_cbc_encrypt

2791 .section .xdata
2792 .align 8
2793 .LSEH_info_AES_encrypt:
2794 .byte 9,0,0,0
2795 .rva block_se_handler
2796 .rva .Lenc_prologue,.Lenc_epilogue # HandlerData[]
2797 .LSEH_info_AES_decrypt:
2798 .byte 9,0,0,0
2799 .rva block_se_handler
2800 .rva .Ldec_prologue,.Ldec_epilogue # HandlerData[]
2801 .LSEH_info_private_AES_set_encrypt_key:
2802 .byte 9,0,0,0
2803 .rva key_se_handler
2804 .rva .Lenc_key_prologue,.Lenc_key_epilogue # HandlerData[]
2805 .LSEH_info_private_AES_set_decrypt_key:
2806 .byte 9,0,0,0
2807 .rva key_se_handler
2808 .rva .Ldec_key_prologue,.Ldec_key_epilogue # HandlerData[]
2809 .LSEH_info_AES_cbc_encrypt:
2810 .byte 9,0,0,0
2811 .rva cbc_se_handler
2812 ___
2813 }

2815 $code =~ s/\‘([^\‘]*)\‘/eval($1)/gem;

2817 print $code;

2819 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 1

**
 31703 Fri May 30 18:32:02 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl
2 #
3 # ==
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==
9 #
10 # June 2011
11 #
12 # This is AESNI-CBC+SHA1 "stitch" implementation. The idea, as spelled
13 # in http://download.intel.com/design/intarch/papers/323686.pdf, is
14 # that since AESNI-CBC encrypt exhibit *very* low instruction-level
15 # parallelism, interleaving it with another algorithm would allow to
16 # utilize processor resources better and achieve better performance.
17 # SHA1 instruction sequences(*) are taken from sha1-x86_64.pl and
18 # AESNI code is weaved into it. Below are performance numbers in
19 # cycles per processed byte, less is better, for standalone AESNI-CBC
20 # encrypt, sum of the latter and standalone SHA1, and "stitched"
21 # subroutine:
22 #
23 # AES-128-CBC +SHA1 stitch gain
24 # Westmere 3.77[+5.6] 9.37 6.65 +41%
25 # Sandy Bridge 5.05[+5.2(6.3)] 10.25(11.35) 6.16(7.08) +67%(+60%)
26 #
27 # AES-192-CBC
28 # Westmere 4.51 10.11 6.97 +45%
29 # Sandy Bridge 6.05 11.25(12.35) 6.34(7.27) +77%(+70%)
30 #
31 # AES-256-CBC
32 # Westmere 5.25 10.85 7.25 +50%
33 # Sandy Bridge 7.05 12.25(13.35) 7.06(7.70) +74%(+73%)
34 #
35 # (*) There are two code paths: SSSE3 and AVX. See sha1-568.pl for
36 # background information. Above numbers in parentheses are SSSE3
37 # results collected on AVX-capable CPU, i.e. apply on OSes that
38 # don’t support AVX.
39 #
40 # Needless to mention that it makes no sense to implement "stitched"
41 # *decrypt* subroutine. Because *both* AESNI-CBC decrypt and SHA1
42 # fully utilize parallelism, so stitching would not give any gain
43 # anyway. Well, there might be some, e.g. because of better cache
44 # locality... For reference, here are performance results for
45 # standalone AESNI-CBC decrypt:
46 #
47 # AES-128-CBC AES-192-CBC AES-256-CBC
48 # Westmere 1.31 1.55 1.80
49 # Sandy Bridge 0.93 1.06 1.22

51 $flavour = shift;
52 $output = shift;
53 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

55 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

57 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
58 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
59 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
60 die "can’t locate x86_64-xlate.pl";

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 2

62 $avx=1 if (‘$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1‘
63 =~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
64 $1>=2.19);
65 $avx=1 if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
66 ‘nasm -v 2>&1‘ =~ /NASM version ([2-9]\.[0-9]+)/ &&
67 $1>=2.09);
68 $avx=1 if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
69 ‘ml64 2>&1‘ =~ /Version ([0-9]+)\./ &&
70 $1>=10);

72 open OUT,"| \"$^X\" $xlate $flavour $output";
73 *STDOUT=*OUT;

75 # void aesni_cbc_sha1_enc(const void *inp,
76 # void *out,
77 # size_t length,
78 # const AES_KEY *key,
79 # unsigned char *iv,
80 # SHA_CTX *ctx,
81 # const void *in0);

83 $code.=<<___;
84 .text
85 .extern OPENSSL_ia32cap_P

87 .globl aesni_cbc_sha1_enc
88 .type aesni_cbc_sha1_enc,\@abi-omnipotent
89 .align 16
90 aesni_cbc_sha1_enc:
91 # caller should check for SSSE3 and AES-NI bits
92 mov OPENSSL_ia32cap_P+0(%rip),%r10d
93 mov OPENSSL_ia32cap_P+4(%rip),%r11d
94 ___
95 $code.=<<___ if ($avx);
96 and \$‘1<<28‘,%r11d # mask AVX bit
97 and \$‘1<<30‘,%r10d # mask "Intel CPU" bit
98 or %r11d,%r10d
99 cmp \$‘1<<28|1<<30‘,%r10d
100 je aesni_cbc_sha1_enc_avx
101 ___
102 $code.=<<___;
103 jmp aesni_cbc_sha1_enc_ssse3
104 ret
105 .size aesni_cbc_sha1_enc,.-aesni_cbc_sha1_enc
106 ___

108 my ($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9"

110 my $Xi=4;
111 my @X=map("%xmm$_",(4..7,0..3));
112 my @Tx=map("%xmm$_",(8..10));
113 my @V=($A,$B,$C,$D,$E)=("%eax","%ebx","%ecx","%edx","%ebp"); # size optimizat
114 my @T=("%esi","%edi");
115 my $j=0; my $jj=0; my $r=0; my $sn=0;
116 my $K_XX_XX="%r11";
117 my ($iv,$in,$rndkey0)=map("%xmm$_",(11..13));
118 my @rndkey=("%xmm14","%xmm15");

120 sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm
121 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
122 my $arg = pop;
123 $arg = "\$$arg" if ($arg*1 eq $arg);
124 $code .= "\t$opcode\t".join(’,’,$arg,reverse @_)."\n";
125 }

127 my $_rol=sub { &rol(@_) };

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 3

128 my $_ror=sub { &ror(@_) };

130 $code.=<<___;
131 .type aesni_cbc_sha1_enc_ssse3,\@function,6
132 .align 16
133 aesni_cbc_sha1_enc_ssse3:
134 mov ‘($win64?56:8)‘(%rsp),$inp # load 7th argument
135 #shr \$6,$len # debugging artefact
136 #jz .Lepilogue_ssse3 # debugging artefact
137 push %rbx
138 push %rbp
139 push %r12
140 push %r13
141 push %r14
142 push %r15
143 lea ‘-104-($win64?10*16:0)‘(%rsp),%rsp
144 #mov $in0,$inp # debugging artefact
145 #lea 64(%rsp),$ctx # debugging artefact
146 ___
147 $code.=<<___ if ($win64);
148 movaps %xmm6,96+0(%rsp)
149 movaps %xmm7,96+16(%rsp)
150 movaps %xmm8,96+32(%rsp)
151 movaps %xmm9,96+48(%rsp)
152 movaps %xmm10,96+64(%rsp)
153 movaps %xmm11,96+80(%rsp)
154 movaps %xmm12,96+96(%rsp)
155 movaps %xmm13,96+112(%rsp)
156 movaps %xmm14,96+128(%rsp)
157 movaps %xmm15,96+144(%rsp)
158 .Lprologue_ssse3:
159 ___
160 $code.=<<___;
161 mov $in0,%r12 # reassign arguments
162 mov $out,%r13
163 mov $len,%r14
164 mov $key,%r15
165 movdqu ($ivp),$iv # load IV
166 mov $ivp,88(%rsp) # save $ivp
167 ___
168 my ($in0,$out,$len,$key)=map("%r$_",(12..15)); # reassign arguments
169 my $rounds="${ivp}d";
170 $code.=<<___;
171 shl \$6,$len
172 sub $in0,$out
173 mov 240($key),$rounds
174 add $inp,$len # end of input

176 lea K_XX_XX(%rip),$K_XX_XX
177 mov 0($ctx),$A # load context
178 mov 4($ctx),$B
179 mov 8($ctx),$C
180 mov 12($ctx),$D
181 mov $B,@T[0] # magic seed
182 mov 16($ctx),$E

184 movdqa 64($K_XX_XX),@X[2] # pbswap mask
185 movdqa 0($K_XX_XX),@Tx[1] # K_00_19
186 movdqu 0($inp),@X[-4&7] # load input to %xmm[0-3]
187 movdqu 16($inp),@X[-3&7]
188 movdqu 32($inp),@X[-2&7]
189 movdqu 48($inp),@X[-1&7]
190 pshufb @X[2],@X[-4&7] # byte swap
191 add \$64,$inp
192 pshufb @X[2],@X[-3&7]
193 pshufb @X[2],@X[-2&7]

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 4

194 pshufb @X[2],@X[-1&7]
195 paddd @Tx[1],@X[-4&7] # add K_00_19
196 paddd @Tx[1],@X[-3&7]
197 paddd @Tx[1],@X[-2&7]
198 movdqa @X[-4&7],0(%rsp) # X[]+K xfer to IALU
199 psubd @Tx[1],@X[-4&7] # restore X[]
200 movdqa @X[-3&7],16(%rsp)
201 psubd @Tx[1],@X[-3&7]
202 movdqa @X[-2&7],32(%rsp)
203 psubd @Tx[1],@X[-2&7]
204 movups ($key),$rndkey0 # $key[0]
205 movups 16($key),$rndkey[0] # forward reference
206 jmp .Loop_ssse3
207 ___

209 my $aesenc=sub {
210 use integer;
211 my ($n,$k)=($r/10,$r%10);
212 if ($k==0) {
213 $code.=<<___;
214 movups ‘16*$n‘($in0),$in # load input
215 xorps $rndkey0,$in
216 ___
217 $code.=<<___ if ($n);
218 movups $iv,‘16*($n-1)‘($out,$in0) # write output
219 ___
220 $code.=<<___;
221 xorps $in,$iv
222 aesenc $rndkey[0],$iv
223 movups ‘32+16*$k‘($key),$rndkey[1]
224 ___
225 } elsif ($k==9) {
226 $sn++;
227 $code.=<<___;
228 cmp \$11,$rounds
229 jb .Laesenclast$sn
230 movups ‘32+16*($k+0)‘($key),$rndkey[1]
231 aesenc $rndkey[0],$iv
232 movups ‘32+16*($k+1)‘($key),$rndkey[0]
233 aesenc $rndkey[1],$iv
234 je .Laesenclast$sn
235 movups ‘32+16*($k+2)‘($key),$rndkey[1]
236 aesenc $rndkey[0],$iv
237 movups ‘32+16*($k+3)‘($key),$rndkey[0]
238 aesenc $rndkey[1],$iv
239 .Laesenclast$sn:
240 aesenclast $rndkey[0],$iv
241 movups 16($key),$rndkey[1] # forward reference
242 ___
243 } else {
244 $code.=<<___;
245 aesenc $rndkey[0],$iv
246 movups ‘32+16*$k‘($key),$rndkey[1]
247 ___
248 }
249 $r++; unshift(@rndkey,pop(@rndkey));
250 };

252 sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4
253 { use integer;
254 my $body = shift;
255 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
256 my ($a,$b,$c,$d,$e);

258 &movdqa (@X[0],@X[-3&7]);
259 eval(shift(@insns));

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 5

260 eval(shift(@insns));
261 &movdqa (@Tx[0],@X[-1&7]);
262 &palignr(@X[0],@X[-4&7],8); # compose "X[-14]" in "X[0]"
263 eval(shift(@insns));
264 eval(shift(@insns));

266 &paddd (@Tx[1],@X[-1&7]);
267 eval(shift(@insns));
268 eval(shift(@insns));
269 &psrldq (@Tx[0],4); # "X[-3]", 3 dwords
270 eval(shift(@insns));
271 eval(shift(@insns));
272 &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
273 eval(shift(@insns));
274 eval(shift(@insns));

276 &pxor (@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]"
277 eval(shift(@insns));
278 eval(shift(@insns));
279 eval(shift(@insns));
280 eval(shift(@insns));

282 &pxor (@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]"
283 eval(shift(@insns));
284 eval(shift(@insns));
285 &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to
286 eval(shift(@insns));
287 eval(shift(@insns));

289 &movdqa (@Tx[2],@X[0]);
290 &movdqa (@Tx[0],@X[0]);
291 eval(shift(@insns));
292 eval(shift(@insns));
293 eval(shift(@insns));
294 eval(shift(@insns));

296 &pslldq (@Tx[2],12); # "X[0]"<<96, extract one dword
297 &paddd (@X[0],@X[0]);
298 eval(shift(@insns));
299 eval(shift(@insns));
300 eval(shift(@insns));
301 eval(shift(@insns));

303 &psrld (@Tx[0],31);
304 eval(shift(@insns));
305 eval(shift(@insns));
306 &movdqa (@Tx[1],@Tx[2]);
307 eval(shift(@insns));
308 eval(shift(@insns));

310 &psrld (@Tx[2],30);
311 &por (@X[0],@Tx[0]); # "X[0]"<<<=1
312 eval(shift(@insns));
313 eval(shift(@insns));
314 eval(shift(@insns));
315 eval(shift(@insns));

317 &pslld (@Tx[1],2);
318 &pxor (@X[0],@Tx[2]);
319 eval(shift(@insns));
320 eval(shift(@insns));
321 &movdqa (@Tx[2],eval(16*(($Xi)/5))."($K_XX_XX)"); # K_XX_X
322 eval(shift(@insns));
323 eval(shift(@insns));

325 &pxor (@X[0],@Tx[1]); # "X[0]"^=("X[0]">>96)<<<2

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 6

327 foreach (@insns) { eval; } # remaining instructions [if any]

329 $Xi++; push(@X,shift(@X)); # "rotate" X[]
330 push(@Tx,shift(@Tx));
331 }

333 sub Xupdate_ssse3_32_79()
334 { use integer;
335 my $body = shift;
336 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
337 my ($a,$b,$c,$d,$e);

339 &movdqa (@Tx[0],@X[-1&7]) if ($Xi==8);
340 eval(shift(@insns)); # body_20_39
341 &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
342 &palignr(@Tx[0],@X[-2&7],8); # compose "X[-6]"
343 eval(shift(@insns));
344 eval(shift(@insns));
345 eval(shift(@insns)); # rol

347 &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
348 eval(shift(@insns));
349 eval(shift(@insns)) if (@insns[0] !~ /&ro[rl]/);
350 if ($Xi%5) {
351 &movdqa (@Tx[2],@Tx[1]);# "perpetuate" K_XX_XX...
352 } else { # ... or load next one
353 &movdqa (@Tx[2],eval(16*($Xi/5))."($K_XX_XX)");
354 }
355 &paddd (@Tx[1],@X[-1&7]);
356 eval(shift(@insns)); # ror
357 eval(shift(@insns));

359 &pxor (@X[0],@Tx[0]); # "X[0]"^="X[-6]"
360 eval(shift(@insns)); # body_20_39
361 eval(shift(@insns));
362 eval(shift(@insns));
363 eval(shift(@insns)); # rol

365 &movdqa (@Tx[0],@X[0]);
366 &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to
367 eval(shift(@insns));
368 eval(shift(@insns));
369 eval(shift(@insns)); # ror
370 eval(shift(@insns));

372 &pslld (@X[0],2);
373 eval(shift(@insns)); # body_20_39
374 eval(shift(@insns));
375 &psrld (@Tx[0],30);
376 eval(shift(@insns));
377 eval(shift(@insns)); # rol
378 eval(shift(@insns));
379 eval(shift(@insns));
380 eval(shift(@insns)); # ror
381 eval(shift(@insns));

383 &por (@X[0],@Tx[0]); # "X[0]"<<<=2
384 eval(shift(@insns)); # body_20_39
385 eval(shift(@insns));
386 &movdqa (@Tx[1],@X[0]) if ($Xi<19);
387 eval(shift(@insns));
388 eval(shift(@insns)); # rol
389 eval(shift(@insns));
390 eval(shift(@insns));
391 eval(shift(@insns)); # rol

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 7

392 eval(shift(@insns));

394 foreach (@insns) { eval; } # remaining instructions

396 $Xi++; push(@X,shift(@X)); # "rotate" X[]
397 push(@Tx,shift(@Tx));
398 }

400 sub Xuplast_ssse3_80()
401 { use integer;
402 my $body = shift;
403 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
404 my ($a,$b,$c,$d,$e);

406 eval(shift(@insns));
407 &paddd (@Tx[1],@X[-1&7]);
408 eval(shift(@insns));
409 eval(shift(@insns));
410 eval(shift(@insns));
411 eval(shift(@insns));

413 &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer IAL

415 foreach (@insns) { eval; } # remaining instructions

417 &cmp ($inp,$len);
418 &je (".Ldone_ssse3");

420 unshift(@Tx,pop(@Tx));

422 &movdqa (@X[2],"64($K_XX_XX)"); # pbswap mask
423 &movdqa (@Tx[1],"0($K_XX_XX)"); # K_00_19
424 &movdqu (@X[-4&7],"0($inp)"); # load input
425 &movdqu (@X[-3&7],"16($inp)");
426 &movdqu (@X[-2&7],"32($inp)");
427 &movdqu (@X[-1&7],"48($inp)");
428 &pshufb (@X[-4&7],@X[2]); # byte swap
429 &add ($inp,64);

431 $Xi=0;
432 }

434 sub Xloop_ssse3()
435 { use integer;
436 my $body = shift;
437 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
438 my ($a,$b,$c,$d,$e);

440 eval(shift(@insns));
441 eval(shift(@insns));
442 &pshufb (@X[($Xi-3)&7],@X[2]);
443 eval(shift(@insns));
444 eval(shift(@insns));
445 &paddd (@X[($Xi-4)&7],@Tx[1]);
446 eval(shift(@insns));
447 eval(shift(@insns));
448 eval(shift(@insns));
449 eval(shift(@insns));
450 &movdqa (eval(16*$Xi)."(%rsp)",@X[($Xi-4)&7]); # X[]+K xfer to IALU
451 eval(shift(@insns));
452 eval(shift(@insns));
453 &psubd (@X[($Xi-4)&7],@Tx[1]);

455 foreach (@insns) { eval; }
456 $Xi++;
457 }

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 8

459 sub Xtail_ssse3()
460 { use integer;
461 my $body = shift;
462 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
463 my ($a,$b,$c,$d,$e);

465 foreach (@insns) { eval; }
466 }

468 sub body_00_19 () {
469 use integer;
470 my ($k,$n);
471 my @r=(
472 ’($a,$b,$c,$d,$e)=@V;’.
473 ’&add ($e,eval(4*($j&15))."(%rsp)");’, # X[]+K xfer
474 ’&xor ($c,$d);’,
475 ’&mov (@T[1],$a);’, # $b in next round
476 ’&$_rol ($a,5);’,
477 ’&and (@T[0],$c);’, # ($b&($c^$d))
478 ’&xor ($c,$d);’, # restore $c
479 ’&xor (@T[0],$d);’,
480 ’&add ($e,$a);’,
481 ’&$_ror ($b,$j?7:2);’, # $b>>>2
482 ’&add ($e,@T[0]);’ .’$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T))
483);
484 $n = scalar(@r);
485 $k = (($jj+1)*12/20)*20*$n/12; # 12 aesencs per these 20 rounds
486 @r[$k%$n].=’&$aesenc();’ if ($jj==$k/$n);
487 $jj++;
488 return @r;
489 }

491 sub body_20_39 () {
492 use integer;
493 my ($k,$n);
494 my @r=(
495 ’($a,$b,$c,$d,$e)=@V;’.
496 ’&add ($e,eval(4*($j++&15))."(%rsp)");’, # X[]+K xfer
497 ’&xor (@T[0],$d);’, # ($b^$d)
498 ’&mov (@T[1],$a);’, # $b in next round
499 ’&$_rol ($a,5);’,
500 ’&xor (@T[0],$c);’, # ($b^$d^$c)
501 ’&add ($e,$a);’,
502 ’&$_ror ($b,7);’, # $b>>>2
503 ’&add ($e,@T[0]);’ .’unshift(@V,pop(@V)); unshift(@T,pop(@T));’
504);
505 $n = scalar(@r);
506 $k = (($jj+1)*8/20)*20*$n/8; # 8 aesencs per these 20 rounds
507 @r[$k%$n].=’&$aesenc();’ if ($jj==$k/$n);
508 $jj++;
509 return @r;
510 }

512 sub body_40_59 () {
513 use integer;
514 my ($k,$n);
515 my @r=(
516 ’($a,$b,$c,$d,$e)=@V;’.
517 ’&mov (@T[1],$c);’,
518 ’&xor ($c,$d);’,
519 ’&add ($e,eval(4*($j++&15))."(%rsp)");’, # X[]+K xfer
520 ’&and (@T[1],$d);’,
521 ’&and (@T[0],$c);’, # ($b&($c^$d))
522 ’&$_ror ($b,7);’, # $b>>>2
523 ’&add ($e,@T[1]);’,

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 9

524 ’&mov (@T[1],$a);’, # $b in next round
525 ’&$_rol ($a,5);’,
526 ’&add ($e,@T[0]);’,
527 ’&xor ($c,$d);’, # restore $c
528 ’&add ($e,$a);’ .’unshift(@V,pop(@V)); unshift(@T,pop(@T));’
529);
530 $n = scalar(@r);
531 $k=(($jj+1)*12/20)*20*$n/12; # 12 aesencs per these 20 rounds
532 @r[$k%$n].=’&$aesenc();’ if ($jj==$k/$n);
533 $jj++;
534 return @r;
535 }
536 $code.=<<___;
537 .align 16
538 .Loop_ssse3:
539 ___
540 &Xupdate_ssse3_16_31(\&body_00_19);
541 &Xupdate_ssse3_16_31(\&body_00_19);
542 &Xupdate_ssse3_16_31(\&body_00_19);
543 &Xupdate_ssse3_16_31(\&body_00_19);
544 &Xupdate_ssse3_32_79(\&body_00_19);
545 &Xupdate_ssse3_32_79(\&body_20_39);
546 &Xupdate_ssse3_32_79(\&body_20_39);
547 &Xupdate_ssse3_32_79(\&body_20_39);
548 &Xupdate_ssse3_32_79(\&body_20_39);
549 &Xupdate_ssse3_32_79(\&body_20_39);
550 &Xupdate_ssse3_32_79(\&body_40_59);
551 &Xupdate_ssse3_32_79(\&body_40_59);
552 &Xupdate_ssse3_32_79(\&body_40_59);
553 &Xupdate_ssse3_32_79(\&body_40_59);
554 &Xupdate_ssse3_32_79(\&body_40_59);
555 &Xupdate_ssse3_32_79(\&body_20_39);
556 &Xuplast_ssse3_80(\&body_20_39); # can jump to "done"

558 $saved_j=$j; @saved_V=@V;
559 $saved_r=$r; @saved_rndkey=@rndkey;

561 &Xloop_ssse3(\&body_20_39);
562 &Xloop_ssse3(\&body_20_39);
563 &Xloop_ssse3(\&body_20_39);

565 $code.=<<___;
566 movups $iv,48($out,$in0) # write output
567 lea 64($in0),$in0

569 add 0($ctx),$A # update context
570 add 4($ctx),@T[0]
571 add 8($ctx),$C
572 add 12($ctx),$D
573 mov $A,0($ctx)
574 add 16($ctx),$E
575 mov @T[0],4($ctx)
576 mov @T[0],$B # magic seed
577 mov $C,8($ctx)
578 mov $D,12($ctx)
579 mov $E,16($ctx)
580 jmp .Loop_ssse3

582 .align 16
583 .Ldone_ssse3:
584 ___
585 $jj=$j=$saved_j; @V=@saved_V;
586 $r=$saved_r; @rndkey=@saved_rndkey;

588 &Xtail_ssse3(\&body_20_39);
589 &Xtail_ssse3(\&body_20_39);

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 10

590 &Xtail_ssse3(\&body_20_39);

592 $code.=<<___;
593 movups $iv,48($out,$in0) # write output
594 mov 88(%rsp),$ivp # restore $ivp

596 add 0($ctx),$A # update context
597 add 4($ctx),@T[0]
598 add 8($ctx),$C
599 mov $A,0($ctx)
600 add 12($ctx),$D
601 mov @T[0],4($ctx)
602 add 16($ctx),$E
603 mov $C,8($ctx)
604 mov $D,12($ctx)
605 mov $E,16($ctx)
606 movups $iv,($ivp) # write IV
607 ___
608 $code.=<<___ if ($win64);
609 movaps 96+0(%rsp),%xmm6
610 movaps 96+16(%rsp),%xmm7
611 movaps 96+32(%rsp),%xmm8
612 movaps 96+48(%rsp),%xmm9
613 movaps 96+64(%rsp),%xmm10
614 movaps 96+80(%rsp),%xmm11
615 movaps 96+96(%rsp),%xmm12
616 movaps 96+112(%rsp),%xmm13
617 movaps 96+128(%rsp),%xmm14
618 movaps 96+144(%rsp),%xmm15
619 ___
620 $code.=<<___;
621 lea ‘104+($win64?10*16:0)‘(%rsp),%rsi
622 mov 0(%rsi),%r15
623 mov 8(%rsi),%r14
624 mov 16(%rsi),%r13
625 mov 24(%rsi),%r12
626 mov 32(%rsi),%rbp
627 mov 40(%rsi),%rbx
628 lea 48(%rsi),%rsp
629 .Lepilogue_ssse3:
630 ret
631 .size aesni_cbc_sha1_enc_ssse3,.-aesni_cbc_sha1_enc_ssse3
632 ___

634 $j=$jj=$r=$sn=0;

636 if ($avx) {
637 my ($in0,$out,$len,$key,$ivp,$ctx,$inp)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9"

639 my $Xi=4;
640 my @X=map("%xmm$_",(4..7,0..3));
641 my @Tx=map("%xmm$_",(8..10));
642 my @V=($A,$B,$C,$D,$E)=("%eax","%ebx","%ecx","%edx","%ebp"); # size optimizat
643 my @T=("%esi","%edi");

645 my $_rol=sub { &shld(@_[0],@_) };
646 my $_ror=sub { &shrd(@_[0],@_) };

648 $code.=<<___;
649 .type aesni_cbc_sha1_enc_avx,\@function,6
650 .align 16
651 aesni_cbc_sha1_enc_avx:
652 mov ‘($win64?56:8)‘(%rsp),$inp # load 7th argument
653 #shr \$6,$len # debugging artefact
654 #jz .Lepilogue_avx # debugging artefact
655 push %rbx

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 11

656 push %rbp
657 push %r12
658 push %r13
659 push %r14
660 push %r15
661 lea ‘-104-($win64?10*16:0)‘(%rsp),%rsp
662 #mov $in0,$inp # debugging artefact
663 #lea 64(%rsp),$ctx # debugging artefact
664 ___
665 $code.=<<___ if ($win64);
666 movaps %xmm6,96+0(%rsp)
667 movaps %xmm7,96+16(%rsp)
668 movaps %xmm8,96+32(%rsp)
669 movaps %xmm9,96+48(%rsp)
670 movaps %xmm10,96+64(%rsp)
671 movaps %xmm11,96+80(%rsp)
672 movaps %xmm12,96+96(%rsp)
673 movaps %xmm13,96+112(%rsp)
674 movaps %xmm14,96+128(%rsp)
675 movaps %xmm15,96+144(%rsp)
676 .Lprologue_avx:
677 ___
678 $code.=<<___;
679 vzeroall
680 mov $in0,%r12 # reassign arguments
681 mov $out,%r13
682 mov $len,%r14
683 mov $key,%r15
684 vmovdqu ($ivp),$iv # load IV
685 mov $ivp,88(%rsp) # save $ivp
686 ___
687 my ($in0,$out,$len,$key)=map("%r$_",(12..15)); # reassign arguments
688 my $rounds="${ivp}d";
689 $code.=<<___;
690 shl \$6,$len
691 sub $in0,$out
692 mov 240($key),$rounds
693 add \$112,$key # size optimization
694 add $inp,$len # end of input

696 lea K_XX_XX(%rip),$K_XX_XX
697 mov 0($ctx),$A # load context
698 mov 4($ctx),$B
699 mov 8($ctx),$C
700 mov 12($ctx),$D
701 mov $B,@T[0] # magic seed
702 mov 16($ctx),$E

704 vmovdqa 64($K_XX_XX),@X[2] # pbswap mask
705 vmovdqa 0($K_XX_XX),@Tx[1] # K_00_19
706 vmovdqu 0($inp),@X[-4&7] # load input to %xmm[0-3]
707 vmovdqu 16($inp),@X[-3&7]
708 vmovdqu 32($inp),@X[-2&7]
709 vmovdqu 48($inp),@X[-1&7]
710 vpshufb @X[2],@X[-4&7],@X[-4&7] # byte swap
711 add \$64,$inp
712 vpshufb @X[2],@X[-3&7],@X[-3&7]
713 vpshufb @X[2],@X[-2&7],@X[-2&7]
714 vpshufb @X[2],@X[-1&7],@X[-1&7]
715 vpaddd @Tx[1],@X[-4&7],@X[0] # add K_00_19
716 vpaddd @Tx[1],@X[-3&7],@X[1]
717 vpaddd @Tx[1],@X[-2&7],@X[2]
718 vmovdqa @X[0],0(%rsp) # X[]+K xfer to IALU
719 vmovdqa @X[1],16(%rsp)
720 vmovdqa @X[2],32(%rsp)
721 vmovups -112($key),$rndkey0 # $key[0]

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 12

722 vmovups 16-112($key),$rndkey[0] # forward reference
723 jmp .Loop_avx
724 ___

726 my $aesenc=sub {
727 use integer;
728 my ($n,$k)=($r/10,$r%10);
729 if ($k==0) {
730 $code.=<<___;
731 vmovups ‘16*$n‘($in0),$in # load input
732 vxorps $rndkey0,$in,$in
733 ___
734 $code.=<<___ if ($n);
735 vmovups $iv,‘16*($n-1)‘($out,$in0) # write output
736 ___
737 $code.=<<___;
738 vxorps $in,$iv,$iv
739 vaesenc $rndkey[0],$iv,$iv
740 vmovups ‘32+16*$k-112‘($key),$rndkey[1]
741 ___
742 } elsif ($k==9) {
743 $sn++;
744 $code.=<<___;
745 cmp \$11,$rounds
746 jb .Lvaesenclast$sn
747 vaesenc $rndkey[0],$iv,$iv
748 vmovups ‘32+16*($k+0)-112‘($key),$rndkey[1]
749 vaesenc $rndkey[1],$iv,$iv
750 vmovups ‘32+16*($k+1)-112‘($key),$rndkey[0]
751 je .Lvaesenclast$sn
752 vaesenc $rndkey[0],$iv,$iv
753 vmovups ‘32+16*($k+2)-112‘($key),$rndkey[1]
754 vaesenc $rndkey[1],$iv,$iv
755 vmovups ‘32+16*($k+3)-112‘($key),$rndkey[0]
756 .Lvaesenclast$sn:
757 vaesenclast $rndkey[0],$iv,$iv
758 vmovups 16-112($key),$rndkey[1] # forward reference
759 ___
760 } else {
761 $code.=<<___;
762 vaesenc $rndkey[0],$iv,$iv
763 vmovups ‘32+16*$k-112‘($key),$rndkey[1]
764 ___
765 }
766 $r++; unshift(@rndkey,pop(@rndkey));
767 };

769 sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4
770 { use integer;
771 my $body = shift;
772 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
773 my ($a,$b,$c,$d,$e);

775 eval(shift(@insns));
776 eval(shift(@insns));
777 &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
778 eval(shift(@insns));
779 eval(shift(@insns));

781 &vpaddd (@Tx[1],@Tx[1],@X[-1&7]);
782 eval(shift(@insns));
783 eval(shift(@insns));
784 &vpsrldq(@Tx[0],@X[-1&7],4); # "X[-3]", 3 dwords
785 eval(shift(@insns));
786 eval(shift(@insns));
787 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 13

788 eval(shift(@insns));
789 eval(shift(@insns));

791 &vpxor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]"
792 eval(shift(@insns));
793 eval(shift(@insns));
794 eval(shift(@insns));
795 eval(shift(@insns));

797 &vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]"
798 eval(shift(@insns));
799 eval(shift(@insns));
800 &vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to
801 eval(shift(@insns));
802 eval(shift(@insns));

804 &vpsrld (@Tx[0],@X[0],31);
805 eval(shift(@insns));
806 eval(shift(@insns));
807 eval(shift(@insns));
808 eval(shift(@insns));

810 &vpslldq(@Tx[2],@X[0],12); # "X[0]"<<96, extract one dword
811 &vpaddd (@X[0],@X[0],@X[0]);
812 eval(shift(@insns));
813 eval(shift(@insns));
814 eval(shift(@insns));
815 eval(shift(@insns));

817 &vpsrld (@Tx[1],@Tx[2],30);
818 &vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=1
819 eval(shift(@insns));
820 eval(shift(@insns));
821 eval(shift(@insns));
822 eval(shift(@insns));

824 &vpslld (@Tx[2],@Tx[2],2);
825 &vpxor (@X[0],@X[0],@Tx[1]);
826 eval(shift(@insns));
827 eval(shift(@insns));
828 eval(shift(@insns));
829 eval(shift(@insns));

831 &vpxor (@X[0],@X[0],@Tx[2]); # "X[0]"^=("X[0]">>96)<<<2
832 eval(shift(@insns));
833 eval(shift(@insns));
834 &vmovdqa (@Tx[2],eval(16*(($Xi)/5))."($K_XX_XX)"); # K_XX_X
835 eval(shift(@insns));
836 eval(shift(@insns));

839 foreach (@insns) { eval; } # remaining instructions [if any]

841 $Xi++; push(@X,shift(@X)); # "rotate" X[]
842 push(@Tx,shift(@Tx));
843 }

845 sub Xupdate_avx_32_79()
846 { use integer;
847 my $body = shift;
848 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
849 my ($a,$b,$c,$d,$e);

851 &vpalignr(@Tx[0],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
852 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
853 eval(shift(@insns)); # body_20_39

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 14

854 eval(shift(@insns));
855 eval(shift(@insns));
856 eval(shift(@insns)); # rol

858 &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
859 eval(shift(@insns));
860 eval(shift(@insns)) if (@insns[0] !~ /&ro[rl]/);
861 if ($Xi%5) {
862 &vmovdqa (@Tx[2],@Tx[1]);# "perpetuate" K_XX_XX...
863 } else { # ... or load next one
864 &vmovdqa (@Tx[2],eval(16*($Xi/5))."($K_XX_XX)");
865 }
866 &vpaddd (@Tx[1],@Tx[1],@X[-1&7]);
867 eval(shift(@insns)); # ror
868 eval(shift(@insns));

870 &vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-6]"
871 eval(shift(@insns)); # body_20_39
872 eval(shift(@insns));
873 eval(shift(@insns));
874 eval(shift(@insns)); # rol

876 &vpsrld (@Tx[0],@X[0],30);
877 &vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to
878 eval(shift(@insns));
879 eval(shift(@insns));
880 eval(shift(@insns)); # ror
881 eval(shift(@insns));

883 &vpslld (@X[0],@X[0],2);
884 eval(shift(@insns)); # body_20_39
885 eval(shift(@insns));
886 eval(shift(@insns));
887 eval(shift(@insns)); # rol
888 eval(shift(@insns));
889 eval(shift(@insns));
890 eval(shift(@insns)); # ror
891 eval(shift(@insns));

893 &vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=2
894 eval(shift(@insns)); # body_20_39
895 eval(shift(@insns));
896 &vmovdqa (@Tx[1],@X[0]) if ($Xi<19);
897 eval(shift(@insns));
898 eval(shift(@insns)); # rol
899 eval(shift(@insns));
900 eval(shift(@insns));
901 eval(shift(@insns)); # rol
902 eval(shift(@insns));

904 foreach (@insns) { eval; } # remaining instructions

906 $Xi++; push(@X,shift(@X)); # "rotate" X[]
907 push(@Tx,shift(@Tx));
908 }

910 sub Xuplast_avx_80()
911 { use integer;
912 my $body = shift;
913 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
914 my ($a,$b,$c,$d,$e);

916 eval(shift(@insns));
917 &vpaddd (@Tx[1],@Tx[1],@X[-1&7]);
918 eval(shift(@insns));
919 eval(shift(@insns));

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 15

920 eval(shift(@insns));
921 eval(shift(@insns));

923 &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer IAL

925 foreach (@insns) { eval; } # remaining instructions

927 &cmp ($inp,$len);
928 &je (".Ldone_avx");

930 unshift(@Tx,pop(@Tx));

932 &vmovdqa(@X[2],"64($K_XX_XX)"); # pbswap mask
933 &vmovdqa(@Tx[1],"0($K_XX_XX)"); # K_00_19
934 &vmovdqu(@X[-4&7],"0($inp)"); # load input
935 &vmovdqu(@X[-3&7],"16($inp)");
936 &vmovdqu(@X[-2&7],"32($inp)");
937 &vmovdqu(@X[-1&7],"48($inp)");
938 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
939 &add ($inp,64);

941 $Xi=0;
942 }

944 sub Xloop_avx()
945 { use integer;
946 my $body = shift;
947 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
948 my ($a,$b,$c,$d,$e);

950 eval(shift(@insns));
951 eval(shift(@insns));
952 &vpshufb(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
953 eval(shift(@insns));
954 eval(shift(@insns));
955 &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@Tx[1]);
956 eval(shift(@insns));
957 eval(shift(@insns));
958 eval(shift(@insns));
959 eval(shift(@insns));
960 &vmovdqa(eval(16*$Xi)."(%rsp)",@X[$Xi&7]); # X[]+K xfer to IALU
961 eval(shift(@insns));
962 eval(shift(@insns));

964 foreach (@insns) { eval; }
965 $Xi++;
966 }

968 sub Xtail_avx()
969 { use integer;
970 my $body = shift;
971 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
972 my ($a,$b,$c,$d,$e);

974 foreach (@insns) { eval; }
975 }

977 $code.=<<___;
978 .align 16
979 .Loop_avx:
980 ___
981 &Xupdate_avx_16_31(\&body_00_19);
982 &Xupdate_avx_16_31(\&body_00_19);
983 &Xupdate_avx_16_31(\&body_00_19);
984 &Xupdate_avx_16_31(\&body_00_19);
985 &Xupdate_avx_32_79(\&body_00_19);

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 16

986 &Xupdate_avx_32_79(\&body_20_39);
987 &Xupdate_avx_32_79(\&body_20_39);
988 &Xupdate_avx_32_79(\&body_20_39);
989 &Xupdate_avx_32_79(\&body_20_39);
990 &Xupdate_avx_32_79(\&body_20_39);
991 &Xupdate_avx_32_79(\&body_40_59);
992 &Xupdate_avx_32_79(\&body_40_59);
993 &Xupdate_avx_32_79(\&body_40_59);
994 &Xupdate_avx_32_79(\&body_40_59);
995 &Xupdate_avx_32_79(\&body_40_59);
996 &Xupdate_avx_32_79(\&body_20_39);
997 &Xuplast_avx_80(\&body_20_39); # can jump to "done"

999 $saved_j=$j; @saved_V=@V;
1000 $saved_r=$r; @saved_rndkey=@rndkey;

1002 &Xloop_avx(\&body_20_39);
1003 &Xloop_avx(\&body_20_39);
1004 &Xloop_avx(\&body_20_39);

1006 $code.=<<___;
1007 vmovups $iv,48($out,$in0) # write output
1008 lea 64($in0),$in0

1010 add 0($ctx),$A # update context
1011 add 4($ctx),@T[0]
1012 add 8($ctx),$C
1013 add 12($ctx),$D
1014 mov $A,0($ctx)
1015 add 16($ctx),$E
1016 mov @T[0],4($ctx)
1017 mov @T[0],$B # magic seed
1018 mov $C,8($ctx)
1019 mov $D,12($ctx)
1020 mov $E,16($ctx)
1021 jmp .Loop_avx

1023 .align 16
1024 .Ldone_avx:
1025 ___
1026 $jj=$j=$saved_j; @V=@saved_V;
1027 $r=$saved_r; @rndkey=@saved_rndkey;

1029 &Xtail_avx(\&body_20_39);
1030 &Xtail_avx(\&body_20_39);
1031 &Xtail_avx(\&body_20_39);

1033 $code.=<<___;
1034 vmovups $iv,48($out,$in0) # write output
1035 mov 88(%rsp),$ivp # restore $ivp

1037 add 0($ctx),$A # update context
1038 add 4($ctx),@T[0]
1039 add 8($ctx),$C
1040 mov $A,0($ctx)
1041 add 12($ctx),$D
1042 mov @T[0],4($ctx)
1043 add 16($ctx),$E
1044 mov $C,8($ctx)
1045 mov $D,12($ctx)
1046 mov $E,16($ctx)
1047 vmovups $iv,($ivp) # write IV
1048 vzeroall
1049 ___
1050 $code.=<<___ if ($win64);
1051 movaps 96+0(%rsp),%xmm6

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 17

1052 movaps 96+16(%rsp),%xmm7
1053 movaps 96+32(%rsp),%xmm8
1054 movaps 96+48(%rsp),%xmm9
1055 movaps 96+64(%rsp),%xmm10
1056 movaps 96+80(%rsp),%xmm11
1057 movaps 96+96(%rsp),%xmm12
1058 movaps 96+112(%rsp),%xmm13
1059 movaps 96+128(%rsp),%xmm14
1060 movaps 96+144(%rsp),%xmm15
1061 ___
1062 $code.=<<___;
1063 lea ‘104+($win64?10*16:0)‘(%rsp),%rsi
1064 mov 0(%rsi),%r15
1065 mov 8(%rsi),%r14
1066 mov 16(%rsi),%r13
1067 mov 24(%rsi),%r12
1068 mov 32(%rsi),%rbp
1069 mov 40(%rsi),%rbx
1070 lea 48(%rsi),%rsp
1071 .Lepilogue_avx:
1072 ret
1073 .size aesni_cbc_sha1_enc_avx,.-aesni_cbc_sha1_enc_avx
1074 ___
1075 }
1076 $code.=<<___;
1077 .align 64
1078 K_XX_XX:
1079 .long 0x5a827999,0x5a827999,0x5a827999,0x5a827999 # K_00_19
1080 .long 0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1 # K_20_39
1081 .long 0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc # K_40_59
1082 .long 0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6 # K_60_79
1083 .long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f # pbswap mask

1085 .asciz "AESNI-CBC+SHA1 stitch for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
1086 .align 64
1087 ___

1089 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1090 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
1091 if ($win64) {
1092 $rec="%rcx";
1093 $frame="%rdx";
1094 $context="%r8";
1095 $disp="%r9";

1097 $code.=<<___;
1098 .extern __imp_RtlVirtualUnwind
1099 .type ssse3_handler,\@abi-omnipotent
1100 .align 16
1101 ssse3_handler:
1102 push %rsi
1103 push %rdi
1104 push %rbx
1105 push %rbp
1106 push %r12
1107 push %r13
1108 push %r14
1109 push %r15
1110 pushfq
1111 sub \$64,%rsp

1113 mov 120($context),%rax # pull context->Rax
1114 mov 248($context),%rbx # pull context->Rip

1116 mov 8($disp),%rsi # disp->ImageBase
1117 mov 56($disp),%r11 # disp->HandlerData

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 18

1119 mov 0(%r11),%r10d # HandlerData[0]
1120 lea (%rsi,%r10),%r10 # prologue label
1121 cmp %r10,%rbx # context->Rip<prologue label
1122 jb .Lcommon_seh_tail

1124 mov 152($context),%rax # pull context->Rsp

1126 mov 4(%r11),%r10d # HandlerData[1]
1127 lea (%rsi,%r10),%r10 # epilogue label
1128 cmp %r10,%rbx # context->Rip>=epilogue label
1129 jae .Lcommon_seh_tail

1131 lea 96(%rax),%rsi
1132 lea 512($context),%rdi # &context.Xmm6
1133 mov \$20,%ecx
1134 .long 0xa548f3fc # cld; rep movsq
1135 lea ‘104+10*16‘(%rax),%rax # adjust stack pointer

1137 mov 0(%rax),%r15
1138 mov 8(%rax),%r14
1139 mov 16(%rax),%r13
1140 mov 24(%rax),%r12
1141 mov 32(%rax),%rbp
1142 mov 40(%rax),%rbx
1143 lea 48(%rax),%rax
1144 mov %rbx,144($context) # restore context->Rbx
1145 mov %rbp,160($context) # restore context->Rbp
1146 mov %r12,216($context) # restore context->R12
1147 mov %r13,224($context) # restore context->R13
1148 mov %r14,232($context) # restore context->R14
1149 mov %r15,240($context) # restore context->R15

1151 .Lcommon_seh_tail:
1152 mov 8(%rax),%rdi
1153 mov 16(%rax),%rsi
1154 mov %rax,152($context) # restore context->Rsp
1155 mov %rsi,168($context) # restore context->Rsi
1156 mov %rdi,176($context) # restore context->Rdi

1158 mov 40($disp),%rdi # disp->ContextRecord
1159 mov $context,%rsi # context
1160 mov \$154,%ecx # sizeof(CONTEXT)
1161 .long 0xa548f3fc # cld; rep movsq

1163 mov $disp,%rsi
1164 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
1165 mov 8(%rsi),%rdx # arg2, disp->ImageBase
1166 mov 0(%rsi),%r8 # arg3, disp->ControlPc
1167 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
1168 mov 40(%rsi),%r10 # disp->ContextRecord
1169 lea 56(%rsi),%r11 # &disp->HandlerData
1170 lea 24(%rsi),%r12 # &disp->EstablisherFrame
1171 mov %r10,32(%rsp) # arg5
1172 mov %r11,40(%rsp) # arg6
1173 mov %r12,48(%rsp) # arg7
1174 mov %rcx,56(%rsp) # arg8, (NULL)
1175 call *__imp_RtlVirtualUnwind(%rip)

1177 mov \$1,%eax # ExceptionContinueSearch
1178 add \$64,%rsp
1179 popfq
1180 pop %r15
1181 pop %r14
1182 pop %r13
1183 pop %r12

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 19

1184 pop %rbp
1185 pop %rbx
1186 pop %rdi
1187 pop %rsi
1188 ret
1189 .size ssse3_handler,.-ssse3_handler

1191 .section .pdata
1192 .align 4
1193 .rva .LSEH_begin_aesni_cbc_sha1_enc_ssse3
1194 .rva .LSEH_end_aesni_cbc_sha1_enc_ssse3
1195 .rva .LSEH_info_aesni_cbc_sha1_enc_ssse3
1196 ___
1197 $code.=<<___ if ($avx);
1198 .rva .LSEH_begin_aesni_cbc_sha1_enc_avx
1199 .rva .LSEH_end_aesni_cbc_sha1_enc_avx
1200 .rva .LSEH_info_aesni_cbc_sha1_enc_avx
1201 ___
1202 $code.=<<___;
1203 .section .xdata
1204 .align 8
1205 .LSEH_info_aesni_cbc_sha1_enc_ssse3:
1206 .byte 9,0,0,0
1207 .rva ssse3_handler
1208 .rva .Lprologue_ssse3,.Lepilogue_ssse3 # HandlerData[]
1209 ___
1210 $code.=<<___ if ($avx);
1211 .LSEH_info_aesni_cbc_sha1_enc_avx:
1212 .byte 9,0,0,0
1213 .rva ssse3_handler
1214 .rva .Lprologue_avx,.Lepilogue_avx # HandlerData[]
1215 ___
1216 }

1218 ##
1219 sub rex {
1220 local *opcode=shift;
1221 my ($dst,$src)=@_;
1222 my $rex=0;

1224 $rex|=0x04 if($dst>=8);
1225 $rex|=0x01 if($src>=8);
1226 push @opcode,$rex|0x40 if($rex);
1227 }

1229 sub aesni {
1230 my $line=shift;
1231 my @opcode=(0x66);

1233 if ($line=~/(aes[a-z]+)\s+%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1234 my %opcodelet = (
1235 "aesenc" => 0xdc, "aesenclast" => 0xdd
1236);
1237 return undef if (!defined($opcodelet{$1}));
1238 rex(\@opcode,$3,$2);
1239 push @opcode,0x0f,0x38,$opcodelet{$1};
1240 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
1241 return ".byte\t".join(’,’,@opcode);
1242 }
1243 return $line;
1244 }

1246 $code =~ s/\‘([^\‘]*)\‘/eval($1)/gem;
1247 $code =~ s/\b(aes.*%xmm[0-9]+).*$/aesni($1)/gem;

1249 print $code;

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-sha1-x86_64.pl 20

1250 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 1

**
 67130 Fri May 30 18:32:02 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 # ==
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==
9 #
10 # This module implements support for Intel AES-NI extension. In
11 # OpenSSL context it’s used with Intel engine, but can also be used as
12 # drop-in replacement for crypto/aes/asm/aes-586.pl [see below for
13 # details].
14 #
15 # Performance.
16 #
17 # To start with see corresponding paragraph in aesni-x86_64.pl...
18 # Instead of filling table similar to one found there I’ve chosen to
19 # summarize *comparison* results for raw ECB, CTR and CBC benchmarks.
20 # The simplified table below represents 32-bit performance relative
21 # to 64-bit one in every given point. Ratios vary for different
22 # encryption modes, therefore interval values.
23 #
24 # 16-byte 64-byte 256-byte 1-KB 8-KB
25 # 53-67% 67-84% 91-94% 95-98% 97-99.5%
26 #
27 # Lower ratios for smaller block sizes are perfectly understandable,
28 # because function call overhead is higher in 32-bit mode. Largest
29 # 8-KB block performance is virtually same: 32-bit code is less than
30 # 1% slower for ECB, CBC and CCM, and ~3% slower otherwise.

32 # January 2011
33 #
34 # See aesni-x86_64.pl for details. Unlike x86_64 version this module
35 # interleaves at most 6 aes[enc|dec] instructions, because there are
36 # not enough registers for 8x interleave [which should be optimal for
37 # Sandy Bridge]. Actually, performance results for 6x interleave
38 # factor presented in aesni-x86_64.pl (except for CTR) are for this
39 # module.

41 # April 2011
42 #
43 # Add aesni_xts_[en|de]crypt. Westmere spends 1.50 cycles processing
44 # one byte out of 8KB with 128-bit key, Sandy Bridge - 1.09.

46 $PREFIX="aesni"; # if $PREFIX is set to "AES", the script
47 # generates drop-in replacement for
48 # crypto/aes/asm/aes-586.pl:-)
49 $inline=1; # inline _aesni_[en|de]crypt

51 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
52 push(@INC,"${dir}","${dir}../../perlasm");
53 require "x86asm.pl";

55 &asm_init($ARGV[0],$0);

57 if ($PREFIX eq "aesni") { $movekey=*movups; }
58 else { $movekey=*movups; }

60 $len="eax";
61 $rounds="ecx";

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 2

62 $key="edx";
63 $inp="esi";
64 $out="edi";
65 $rounds_="ebx"; # backup copy for $rounds
66 $key_="ebp"; # backup copy for $key

68 $rndkey0="xmm0";
69 $rndkey1="xmm1";
70 $inout0="xmm2";
71 $inout1="xmm3";
72 $inout2="xmm4";
73 $inout3="xmm5"; $in1="xmm5";
74 $inout4="xmm6"; $in0="xmm6";
75 $inout5="xmm7"; $ivec="xmm7";

77 # AESNI extenstion
78 sub aeskeygenassist
79 { my($dst,$src,$imm)=@_;
80 if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
81 { &data_byte(0x66,0x0f,0x3a,0xdf,0xc0|($1<<3)|$2,$imm); }
82 }
83 sub aescommon
84 { my($opcodelet,$dst,$src)=@_;
85 if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
86 { &data_byte(0x66,0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2);}
87 }
88 sub aesimc { aescommon(0xdb,@_); }
89 sub aesenc { aescommon(0xdc,@_); }
90 sub aesenclast { aescommon(0xdd,@_); }
91 sub aesdec { aescommon(0xde,@_); }
92 sub aesdeclast { aescommon(0xdf,@_); }

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 3

93 # Inline version of internal aesni_[en|de]crypt1
94 { my $sn;
95 sub aesni_inline_generate1
96 { my ($p,$inout,$ivec)=@_; $inout=$inout0 if (!defined($inout));
97 $sn++;

99 &$movekey ($rndkey0,&QWP(0,$key));
100 &$movekey ($rndkey1,&QWP(16,$key));
101 &xorps ($ivec,$rndkey0) if (defined($ivec));
102 &lea ($key,&DWP(32,$key));
103 &xorps ($inout,$ivec) if (defined($ivec));
104 &xorps ($inout,$rndkey0) if (!defined($ivec));
105 &set_label("${p}1_loop_$sn");
106 eval"&aes${p} ($inout,$rndkey1)";
107 &dec ($rounds);
108 &$movekey ($rndkey1,&QWP(0,$key));
109 &lea ($key,&DWP(16,$key));
110 &jnz (&label("${p}1_loop_$sn"));
111 eval"&aes${p}last ($inout,$rndkey1)";
112 }}

114 sub aesni_generate1 # fully unrolled loop
115 { my ($p,$inout)=@_; $inout=$inout0 if (!defined($inout));

117 &function_begin_B("_aesni_${p}rypt1");
118 &movups ($rndkey0,&QWP(0,$key));
119 &$movekey ($rndkey1,&QWP(0x10,$key));
120 &xorps ($inout,$rndkey0);
121 &$movekey ($rndkey0,&QWP(0x20,$key));
122 &lea ($key,&DWP(0x30,$key));
123 &cmp ($rounds,11);
124 &jb (&label("${p}128"));
125 &lea ($key,&DWP(0x20,$key));
126 &je (&label("${p}192"));
127 &lea ($key,&DWP(0x20,$key));
128 eval"&aes${p} ($inout,$rndkey1)";
129 &$movekey ($rndkey1,&QWP(-0x40,$key));
130 eval"&aes${p} ($inout,$rndkey0)";
131 &$movekey ($rndkey0,&QWP(-0x30,$key));
132 &set_label("${p}192");
133 eval"&aes${p} ($inout,$rndkey1)";
134 &$movekey ($rndkey1,&QWP(-0x20,$key));
135 eval"&aes${p} ($inout,$rndkey0)";
136 &$movekey ($rndkey0,&QWP(-0x10,$key));
137 &set_label("${p}128");
138 eval"&aes${p} ($inout,$rndkey1)";
139 &$movekey ($rndkey1,&QWP(0,$key));
140 eval"&aes${p} ($inout,$rndkey0)";
141 &$movekey ($rndkey0,&QWP(0x10,$key));
142 eval"&aes${p} ($inout,$rndkey1)";
143 &$movekey ($rndkey1,&QWP(0x20,$key));
144 eval"&aes${p} ($inout,$rndkey0)";
145 &$movekey ($rndkey0,&QWP(0x30,$key));
146 eval"&aes${p} ($inout,$rndkey1)";
147 &$movekey ($rndkey1,&QWP(0x40,$key));
148 eval"&aes${p} ($inout,$rndkey0)";
149 &$movekey ($rndkey0,&QWP(0x50,$key));
150 eval"&aes${p} ($inout,$rndkey1)";
151 &$movekey ($rndkey1,&QWP(0x60,$key));
152 eval"&aes${p} ($inout,$rndkey0)";
153 &$movekey ($rndkey0,&QWP(0x70,$key));
154 eval"&aes${p} ($inout,$rndkey1)";
155 eval"&aes${p}last ($inout,$rndkey0)";
156 &ret();
157 &function_end_B("_aesni_${p}rypt1");
158 }

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 4

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 5

159 # void $PREFIX_encrypt (const void *inp,void *out,const AES_KEY *key);
160 &aesni_generate1("enc") if (!$inline);
161 &function_begin_B("${PREFIX}_encrypt");
162 &mov ("eax",&wparam(0));
163 &mov ($key,&wparam(2));
164 &movups ($inout0,&QWP(0,"eax"));
165 &mov ($rounds,&DWP(240,$key));
166 &mov ("eax",&wparam(1));
167 if ($inline)
168 { &aesni_inline_generate1("enc"); }
169 else
170 { &call ("_aesni_encrypt1"); }
171 &movups (&QWP(0,"eax"),$inout0);
172 &ret ();
173 &function_end_B("${PREFIX}_encrypt");

175 # void $PREFIX_decrypt (const void *inp,void *out,const AES_KEY *key);
176 &aesni_generate1("dec") if(!$inline);
177 &function_begin_B("${PREFIX}_decrypt");
178 &mov ("eax",&wparam(0));
179 &mov ($key,&wparam(2));
180 &movups ($inout0,&QWP(0,"eax"));
181 &mov ($rounds,&DWP(240,$key));
182 &mov ("eax",&wparam(1));
183 if ($inline)
184 { &aesni_inline_generate1("dec"); }
185 else
186 { &call ("_aesni_decrypt1"); }
187 &movups (&QWP(0,"eax"),$inout0);
188 &ret ();
189 &function_end_B("${PREFIX}_decrypt");

191 # _aesni_[en|de]cryptN are private interfaces, N denotes interleave
192 # factor. Why 3x subroutine were originally used in loops? Even though
193 # aes[enc|dec] latency was originally 6, it could be scheduled only
194 # every *2nd* cycle. Thus 3x interleave was the one providing optimal
195 # utilization, i.e. when subroutine’s throughput is virtually same as
196 # of non-interleaved subroutine [for number of input blocks up to 3].
197 # This is why it makes no sense to implement 2x subroutine.
198 # aes[enc|dec] latency in next processor generation is 8, but the
199 # instructions can be scheduled every cycle. Optimal interleave for
200 # new processor is therefore 8x, but it’s unfeasible to accommodate it
201 # in XMM registers addreassable in 32-bit mode and therefore 6x is
202 # used instead...

204 sub aesni_generate3
205 { my $p=shift;

207 &function_begin_B("_aesni_${p}rypt3");
208 &$movekey ($rndkey0,&QWP(0,$key));
209 &shr ($rounds,1);
210 &$movekey ($rndkey1,&QWP(16,$key));
211 &lea ($key,&DWP(32,$key));
212 &xorps ($inout0,$rndkey0);
213 &pxor ($inout1,$rndkey0);
214 &pxor ($inout2,$rndkey0);
215 &$movekey ($rndkey0,&QWP(0,$key));

217 &set_label("${p}3_loop");
218 eval"&aes${p} ($inout0,$rndkey1)";
219 eval"&aes${p} ($inout1,$rndkey1)";
220 &dec ($rounds);
221 eval"&aes${p} ($inout2,$rndkey1)";
222 &$movekey ($rndkey1,&QWP(16,$key));
223 eval"&aes${p} ($inout0,$rndkey0)";
224 eval"&aes${p} ($inout1,$rndkey0)";

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 6

225 &lea ($key,&DWP(32,$key));
226 eval"&aes${p} ($inout2,$rndkey0)";
227 &$movekey ($rndkey0,&QWP(0,$key));
228 &jnz (&label("${p}3_loop"));
229 eval"&aes${p} ($inout0,$rndkey1)";
230 eval"&aes${p} ($inout1,$rndkey1)";
231 eval"&aes${p} ($inout2,$rndkey1)";
232 eval"&aes${p}last ($inout0,$rndkey0)";
233 eval"&aes${p}last ($inout1,$rndkey0)";
234 eval"&aes${p}last ($inout2,$rndkey0)";
235 &ret();
236 &function_end_B("_aesni_${p}rypt3");
237 }

239 # 4x interleave is implemented to improve small block performance,
240 # most notably [and naturally] 4 block by ~30%. One can argue that one
241 # should have implemented 5x as well, but improvement would be <20%,
242 # so it’s not worth it...
243 sub aesni_generate4
244 { my $p=shift;

246 &function_begin_B("_aesni_${p}rypt4");
247 &$movekey ($rndkey0,&QWP(0,$key));
248 &$movekey ($rndkey1,&QWP(16,$key));
249 &shr ($rounds,1);
250 &lea ($key,&DWP(32,$key));
251 &xorps ($inout0,$rndkey0);
252 &pxor ($inout1,$rndkey0);
253 &pxor ($inout2,$rndkey0);
254 &pxor ($inout3,$rndkey0);
255 &$movekey ($rndkey0,&QWP(0,$key));

257 &set_label("${p}4_loop");
258 eval"&aes${p} ($inout0,$rndkey1)";
259 eval"&aes${p} ($inout1,$rndkey1)";
260 &dec ($rounds);
261 eval"&aes${p} ($inout2,$rndkey1)";
262 eval"&aes${p} ($inout3,$rndkey1)";
263 &$movekey ($rndkey1,&QWP(16,$key));
264 eval"&aes${p} ($inout0,$rndkey0)";
265 eval"&aes${p} ($inout1,$rndkey0)";
266 &lea ($key,&DWP(32,$key));
267 eval"&aes${p} ($inout2,$rndkey0)";
268 eval"&aes${p} ($inout3,$rndkey0)";
269 &$movekey ($rndkey0,&QWP(0,$key));
270 &jnz (&label("${p}4_loop"));

272 eval"&aes${p} ($inout0,$rndkey1)";
273 eval"&aes${p} ($inout1,$rndkey1)";
274 eval"&aes${p} ($inout2,$rndkey1)";
275 eval"&aes${p} ($inout3,$rndkey1)";
276 eval"&aes${p}last ($inout0,$rndkey0)";
277 eval"&aes${p}last ($inout1,$rndkey0)";
278 eval"&aes${p}last ($inout2,$rndkey0)";
279 eval"&aes${p}last ($inout3,$rndkey0)";
280 &ret();
281 &function_end_B("_aesni_${p}rypt4");
282 }

284 sub aesni_generate6
285 { my $p=shift;

287 &function_begin_B("_aesni_${p}rypt6");
288 &static_label("_aesni_${p}rypt6_enter");
289 &$movekey ($rndkey0,&QWP(0,$key));
290 &shr ($rounds,1);

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 7

291 &$movekey ($rndkey1,&QWP(16,$key));
292 &lea ($key,&DWP(32,$key));
293 &xorps ($inout0,$rndkey0);
294 &pxor ($inout1,$rndkey0); # pxor does better here
295 eval"&aes${p} ($inout0,$rndkey1)";
296 &pxor ($inout2,$rndkey0);
297 eval"&aes${p} ($inout1,$rndkey1)";
298 &pxor ($inout3,$rndkey0);
299 &dec ($rounds);
300 eval"&aes${p} ($inout2,$rndkey1)";
301 &pxor ($inout4,$rndkey0);
302 eval"&aes${p} ($inout3,$rndkey1)";
303 &pxor ($inout5,$rndkey0);
304 eval"&aes${p} ($inout4,$rndkey1)";
305 &$movekey ($rndkey0,&QWP(0,$key));
306 eval"&aes${p} ($inout5,$rndkey1)";
307 &jmp (&label("_aesni_${p}rypt6_enter"));

309 &set_label("${p}6_loop",16);
310 eval"&aes${p} ($inout0,$rndkey1)";
311 eval"&aes${p} ($inout1,$rndkey1)";
312 &dec ($rounds);
313 eval"&aes${p} ($inout2,$rndkey1)";
314 eval"&aes${p} ($inout3,$rndkey1)";
315 eval"&aes${p} ($inout4,$rndkey1)";
316 eval"&aes${p} ($inout5,$rndkey1)";
317 &set_label("_aesni_${p}rypt6_enter",16);
318 &$movekey ($rndkey1,&QWP(16,$key));
319 eval"&aes${p} ($inout0,$rndkey0)";
320 eval"&aes${p} ($inout1,$rndkey0)";
321 &lea ($key,&DWP(32,$key));
322 eval"&aes${p} ($inout2,$rndkey0)";
323 eval"&aes${p} ($inout3,$rndkey0)";
324 eval"&aes${p} ($inout4,$rndkey0)";
325 eval"&aes${p} ($inout5,$rndkey0)";
326 &$movekey ($rndkey0,&QWP(0,$key));
327 &jnz (&label("${p}6_loop"));

329 eval"&aes${p} ($inout0,$rndkey1)";
330 eval"&aes${p} ($inout1,$rndkey1)";
331 eval"&aes${p} ($inout2,$rndkey1)";
332 eval"&aes${p} ($inout3,$rndkey1)";
333 eval"&aes${p} ($inout4,$rndkey1)";
334 eval"&aes${p} ($inout5,$rndkey1)";
335 eval"&aes${p}last ($inout0,$rndkey0)";
336 eval"&aes${p}last ($inout1,$rndkey0)";
337 eval"&aes${p}last ($inout2,$rndkey0)";
338 eval"&aes${p}last ($inout3,$rndkey0)";
339 eval"&aes${p}last ($inout4,$rndkey0)";
340 eval"&aes${p}last ($inout5,$rndkey0)";
341 &ret();
342 &function_end_B("_aesni_${p}rypt6");
343 }
344 &aesni_generate3("enc") if ($PREFIX eq "aesni");
345 &aesni_generate3("dec");
346 &aesni_generate4("enc") if ($PREFIX eq "aesni");
347 &aesni_generate4("dec");
348 &aesni_generate6("enc") if ($PREFIX eq "aesni");
349 &aesni_generate6("dec");

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 8

350 if ($PREFIX eq "aesni") {
351 ##
352 # void aesni_ecb_encrypt (const void *in, void *out,
353 # size_t length, const AES_KEY *key,
354 # int enc);
355 &function_begin("aesni_ecb_encrypt");
356 &mov ($inp,&wparam(0));
357 &mov ($out,&wparam(1));
358 &mov ($len,&wparam(2));
359 &mov ($key,&wparam(3));
360 &mov ($rounds_,&wparam(4));
361 &and ($len,-16);
362 &jz (&label("ecb_ret"));
363 &mov ($rounds,&DWP(240,$key));
364 &test ($rounds_,$rounds_);
365 &jz (&label("ecb_decrypt"));

367 &mov ($key_,$key); # backup $key
368 &mov ($rounds_,$rounds); # backup $rounds
369 &cmp ($len,0x60);
370 &jb (&label("ecb_enc_tail"));

372 &movdqu ($inout0,&QWP(0,$inp));
373 &movdqu ($inout1,&QWP(0x10,$inp));
374 &movdqu ($inout2,&QWP(0x20,$inp));
375 &movdqu ($inout3,&QWP(0x30,$inp));
376 &movdqu ($inout4,&QWP(0x40,$inp));
377 &movdqu ($inout5,&QWP(0x50,$inp));
378 &lea ($inp,&DWP(0x60,$inp));
379 &sub ($len,0x60);
380 &jmp (&label("ecb_enc_loop6_enter"));

382 &set_label("ecb_enc_loop6",16);
383 &movups (&QWP(0,$out),$inout0);
384 &movdqu ($inout0,&QWP(0,$inp));
385 &movups (&QWP(0x10,$out),$inout1);
386 &movdqu ($inout1,&QWP(0x10,$inp));
387 &movups (&QWP(0x20,$out),$inout2);
388 &movdqu ($inout2,&QWP(0x20,$inp));
389 &movups (&QWP(0x30,$out),$inout3);
390 &movdqu ($inout3,&QWP(0x30,$inp));
391 &movups (&QWP(0x40,$out),$inout4);
392 &movdqu ($inout4,&QWP(0x40,$inp));
393 &movups (&QWP(0x50,$out),$inout5);
394 &lea ($out,&DWP(0x60,$out));
395 &movdqu ($inout5,&QWP(0x50,$inp));
396 &lea ($inp,&DWP(0x60,$inp));
397 &set_label("ecb_enc_loop6_enter");

399 &call ("_aesni_encrypt6");

401 &mov ($key,$key_); # restore $key
402 &mov ($rounds,$rounds_); # restore $rounds
403 &sub ($len,0x60);
404 &jnc (&label("ecb_enc_loop6"));

406 &movups (&QWP(0,$out),$inout0);
407 &movups (&QWP(0x10,$out),$inout1);
408 &movups (&QWP(0x20,$out),$inout2);
409 &movups (&QWP(0x30,$out),$inout3);
410 &movups (&QWP(0x40,$out),$inout4);
411 &movups (&QWP(0x50,$out),$inout5);
412 &lea ($out,&DWP(0x60,$out));
413 &add ($len,0x60);
414 &jz (&label("ecb_ret"));

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 9

416 &set_label("ecb_enc_tail");
417 &movups ($inout0,&QWP(0,$inp));
418 &cmp ($len,0x20);
419 &jb (&label("ecb_enc_one"));
420 &movups ($inout1,&QWP(0x10,$inp));
421 &je (&label("ecb_enc_two"));
422 &movups ($inout2,&QWP(0x20,$inp));
423 &cmp ($len,0x40);
424 &jb (&label("ecb_enc_three"));
425 &movups ($inout3,&QWP(0x30,$inp));
426 &je (&label("ecb_enc_four"));
427 &movups ($inout4,&QWP(0x40,$inp));
428 &xorps ($inout5,$inout5);
429 &call ("_aesni_encrypt6");
430 &movups (&QWP(0,$out),$inout0);
431 &movups (&QWP(0x10,$out),$inout1);
432 &movups (&QWP(0x20,$out),$inout2);
433 &movups (&QWP(0x30,$out),$inout3);
434 &movups (&QWP(0x40,$out),$inout4);
435 jmp (&label("ecb_ret"));

437 &set_label("ecb_enc_one",16);
438 if ($inline)
439 { &aesni_inline_generate1("enc"); }
440 else
441 { &call ("_aesni_encrypt1"); }
442 &movups (&QWP(0,$out),$inout0);
443 &jmp (&label("ecb_ret"));

445 &set_label("ecb_enc_two",16);
446 &xorps ($inout2,$inout2);
447 &call ("_aesni_encrypt3");
448 &movups (&QWP(0,$out),$inout0);
449 &movups (&QWP(0x10,$out),$inout1);
450 &jmp (&label("ecb_ret"));

452 &set_label("ecb_enc_three",16);
453 &call ("_aesni_encrypt3");
454 &movups (&QWP(0,$out),$inout0);
455 &movups (&QWP(0x10,$out),$inout1);
456 &movups (&QWP(0x20,$out),$inout2);
457 &jmp (&label("ecb_ret"));

459 &set_label("ecb_enc_four",16);
460 &call ("_aesni_encrypt4");
461 &movups (&QWP(0,$out),$inout0);
462 &movups (&QWP(0x10,$out),$inout1);
463 &movups (&QWP(0x20,$out),$inout2);
464 &movups (&QWP(0x30,$out),$inout3);
465 &jmp (&label("ecb_ret"));
466 ##
467 &set_label("ecb_decrypt",16);
468 &mov ($key_,$key); # backup $key
469 &mov ($rounds_,$rounds); # backup $rounds
470 &cmp ($len,0x60);
471 &jb (&label("ecb_dec_tail"));

473 &movdqu ($inout0,&QWP(0,$inp));
474 &movdqu ($inout1,&QWP(0x10,$inp));
475 &movdqu ($inout2,&QWP(0x20,$inp));
476 &movdqu ($inout3,&QWP(0x30,$inp));
477 &movdqu ($inout4,&QWP(0x40,$inp));
478 &movdqu ($inout5,&QWP(0x50,$inp));
479 &lea ($inp,&DWP(0x60,$inp));
480 &sub ($len,0x60);
481 &jmp (&label("ecb_dec_loop6_enter"));

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 10

483 &set_label("ecb_dec_loop6",16);
484 &movups (&QWP(0,$out),$inout0);
485 &movdqu ($inout0,&QWP(0,$inp));
486 &movups (&QWP(0x10,$out),$inout1);
487 &movdqu ($inout1,&QWP(0x10,$inp));
488 &movups (&QWP(0x20,$out),$inout2);
489 &movdqu ($inout2,&QWP(0x20,$inp));
490 &movups (&QWP(0x30,$out),$inout3);
491 &movdqu ($inout3,&QWP(0x30,$inp));
492 &movups (&QWP(0x40,$out),$inout4);
493 &movdqu ($inout4,&QWP(0x40,$inp));
494 &movups (&QWP(0x50,$out),$inout5);
495 &lea ($out,&DWP(0x60,$out));
496 &movdqu ($inout5,&QWP(0x50,$inp));
497 &lea ($inp,&DWP(0x60,$inp));
498 &set_label("ecb_dec_loop6_enter");

500 &call ("_aesni_decrypt6");

502 &mov ($key,$key_); # restore $key
503 &mov ($rounds,$rounds_); # restore $rounds
504 &sub ($len,0x60);
505 &jnc (&label("ecb_dec_loop6"));

507 &movups (&QWP(0,$out),$inout0);
508 &movups (&QWP(0x10,$out),$inout1);
509 &movups (&QWP(0x20,$out),$inout2);
510 &movups (&QWP(0x30,$out),$inout3);
511 &movups (&QWP(0x40,$out),$inout4);
512 &movups (&QWP(0x50,$out),$inout5);
513 &lea ($out,&DWP(0x60,$out));
514 &add ($len,0x60);
515 &jz (&label("ecb_ret"));

517 &set_label("ecb_dec_tail");
518 &movups ($inout0,&QWP(0,$inp));
519 &cmp ($len,0x20);
520 &jb (&label("ecb_dec_one"));
521 &movups ($inout1,&QWP(0x10,$inp));
522 &je (&label("ecb_dec_two"));
523 &movups ($inout2,&QWP(0x20,$inp));
524 &cmp ($len,0x40);
525 &jb (&label("ecb_dec_three"));
526 &movups ($inout3,&QWP(0x30,$inp));
527 &je (&label("ecb_dec_four"));
528 &movups ($inout4,&QWP(0x40,$inp));
529 &xorps ($inout5,$inout5);
530 &call ("_aesni_decrypt6");
531 &movups (&QWP(0,$out),$inout0);
532 &movups (&QWP(0x10,$out),$inout1);
533 &movups (&QWP(0x20,$out),$inout2);
534 &movups (&QWP(0x30,$out),$inout3);
535 &movups (&QWP(0x40,$out),$inout4);
536 &jmp (&label("ecb_ret"));

538 &set_label("ecb_dec_one",16);
539 if ($inline)
540 { &aesni_inline_generate1("dec"); }
541 else
542 { &call ("_aesni_decrypt1"); }
543 &movups (&QWP(0,$out),$inout0);
544 &jmp (&label("ecb_ret"));

546 &set_label("ecb_dec_two",16);
547 &xorps ($inout2,$inout2);

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 11

548 &call ("_aesni_decrypt3");
549 &movups (&QWP(0,$out),$inout0);
550 &movups (&QWP(0x10,$out),$inout1);
551 &jmp (&label("ecb_ret"));

553 &set_label("ecb_dec_three",16);
554 &call ("_aesni_decrypt3");
555 &movups (&QWP(0,$out),$inout0);
556 &movups (&QWP(0x10,$out),$inout1);
557 &movups (&QWP(0x20,$out),$inout2);
558 &jmp (&label("ecb_ret"));

560 &set_label("ecb_dec_four",16);
561 &call ("_aesni_decrypt4");
562 &movups (&QWP(0,$out),$inout0);
563 &movups (&QWP(0x10,$out),$inout1);
564 &movups (&QWP(0x20,$out),$inout2);
565 &movups (&QWP(0x30,$out),$inout3);

567 &set_label("ecb_ret");
568 &function_end("aesni_ecb_encrypt");

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 12

569 ##
570 # void aesni_ccm64_[en|de]crypt_blocks (const void *in, void *out,
571 # size_t blocks, const AES_KEY *key,
572 # const char *ivec,char *cmac);
573 #
574 # Handles only complete blocks, operates on 64-bit counter and
575 # does not update *ivec! Nor does it finalize CMAC value
576 # (see engine/eng_aesni.c for details)
577 #
578 { my $cmac=$inout1;
579 &function_begin("aesni_ccm64_encrypt_blocks");
580 &mov ($inp,&wparam(0));
581 &mov ($out,&wparam(1));
582 &mov ($len,&wparam(2));
583 &mov ($key,&wparam(3));
584 &mov ($rounds_,&wparam(4));
585 &mov ($rounds,&wparam(5));
586 &mov ($key_,"esp");
587 &sub ("esp",60);
588 &and ("esp",-16); # align stack
589 &mov (&DWP(48,"esp"),$key_);

591 &movdqu ($ivec,&QWP(0,$rounds_)); # load ivec
592 &movdqu ($cmac,&QWP(0,$rounds)); # load cmac
593 &mov ($rounds,&DWP(240,$key));

595 # compose byte-swap control mask for pshufb on stack
596 &mov (&DWP(0,"esp"),0x0c0d0e0f);
597 &mov (&DWP(4,"esp"),0x08090a0b);
598 &mov (&DWP(8,"esp"),0x04050607);
599 &mov (&DWP(12,"esp"),0x00010203);

601 # compose counter increment vector on stack
602 &mov ($rounds_,1);
603 &xor ($key_,$key_);
604 &mov (&DWP(16,"esp"),$rounds_);
605 &mov (&DWP(20,"esp"),$key_);
606 &mov (&DWP(24,"esp"),$key_);
607 &mov (&DWP(28,"esp"),$key_);

609 &shr ($rounds,1);
610 &lea ($key_,&DWP(0,$key));
611 &movdqa ($inout3,&QWP(0,"esp"));
612 &movdqa ($inout0,$ivec);
613 &mov ($rounds_,$rounds);
614 &pshufb ($ivec,$inout3);

616 &set_label("ccm64_enc_outer");
617 &$movekey ($rndkey0,&QWP(0,$key_));
618 &mov ($rounds,$rounds_);
619 &movups ($in0,&QWP(0,$inp));

621 &xorps ($inout0,$rndkey0);
622 &$movekey ($rndkey1,&QWP(16,$key_));
623 &xorps ($rndkey0,$in0);
624 &lea ($key,&DWP(32,$key_));
625 &xorps ($cmac,$rndkey0); # cmac^=inp
626 &$movekey ($rndkey0,&QWP(0,$key));

628 &set_label("ccm64_enc2_loop");
629 &aesenc ($inout0,$rndkey1);
630 &dec ($rounds);
631 &aesenc ($cmac,$rndkey1);
632 &$movekey ($rndkey1,&QWP(16,$key));
633 &aesenc ($inout0,$rndkey0);
634 &lea ($key,&DWP(32,$key));

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 13

635 &aesenc ($cmac,$rndkey0);
636 &$movekey ($rndkey0,&QWP(0,$key));
637 &jnz (&label("ccm64_enc2_loop"));
638 &aesenc ($inout0,$rndkey1);
639 &aesenc ($cmac,$rndkey1);
640 &paddq ($ivec,&QWP(16,"esp"));
641 &aesenclast ($inout0,$rndkey0);
642 &aesenclast ($cmac,$rndkey0);

644 &dec ($len);
645 &lea ($inp,&DWP(16,$inp));
646 &xorps ($in0,$inout0); # inp^=E(ivec)
647 &movdqa ($inout0,$ivec);
648 &movups (&QWP(0,$out),$in0); # save output
649 &lea ($out,&DWP(16,$out));
650 &pshufb ($inout0,$inout3);
651 &jnz (&label("ccm64_enc_outer"));

653 &mov ("esp",&DWP(48,"esp"));
654 &mov ($out,&wparam(5));
655 &movups (&QWP(0,$out),$cmac);
656 &function_end("aesni_ccm64_encrypt_blocks");

658 &function_begin("aesni_ccm64_decrypt_blocks");
659 &mov ($inp,&wparam(0));
660 &mov ($out,&wparam(1));
661 &mov ($len,&wparam(2));
662 &mov ($key,&wparam(3));
663 &mov ($rounds_,&wparam(4));
664 &mov ($rounds,&wparam(5));
665 &mov ($key_,"esp");
666 &sub ("esp",60);
667 &and ("esp",-16); # align stack
668 &mov (&DWP(48,"esp"),$key_);

670 &movdqu ($ivec,&QWP(0,$rounds_)); # load ivec
671 &movdqu ($cmac,&QWP(0,$rounds)); # load cmac
672 &mov ($rounds,&DWP(240,$key));

674 # compose byte-swap control mask for pshufb on stack
675 &mov (&DWP(0,"esp"),0x0c0d0e0f);
676 &mov (&DWP(4,"esp"),0x08090a0b);
677 &mov (&DWP(8,"esp"),0x04050607);
678 &mov (&DWP(12,"esp"),0x00010203);

680 # compose counter increment vector on stack
681 &mov ($rounds_,1);
682 &xor ($key_,$key_);
683 &mov (&DWP(16,"esp"),$rounds_);
684 &mov (&DWP(20,"esp"),$key_);
685 &mov (&DWP(24,"esp"),$key_);
686 &mov (&DWP(28,"esp"),$key_);

688 &movdqa ($inout3,&QWP(0,"esp")); # bswap mask
689 &movdqa ($inout0,$ivec);

691 &mov ($key_,$key);
692 &mov ($rounds_,$rounds);

694 &pshufb ($ivec,$inout3);
695 if ($inline)
696 { &aesni_inline_generate1("enc"); }
697 else
698 { &call ("_aesni_encrypt1"); }
699 &movups ($in0,&QWP(0,$inp)); # load inp
700 &paddq ($ivec,&QWP(16,"esp"));

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 14

701 &lea ($inp,&QWP(16,$inp));
702 &jmp (&label("ccm64_dec_outer"));

704 &set_label("ccm64_dec_outer",16);
705 &xorps ($in0,$inout0); # inp ^= E(ivec)
706 &movdqa ($inout0,$ivec);
707 &mov ($rounds,$rounds_);
708 &movups (&QWP(0,$out),$in0); # save output
709 &lea ($out,&DWP(16,$out));
710 &pshufb ($inout0,$inout3);

712 &sub ($len,1);
713 &jz (&label("ccm64_dec_break"));

715 &$movekey ($rndkey0,&QWP(0,$key_));
716 &shr ($rounds,1);
717 &$movekey ($rndkey1,&QWP(16,$key_));
718 &xorps ($in0,$rndkey0);
719 &lea ($key,&DWP(32,$key_));
720 &xorps ($inout0,$rndkey0);
721 &xorps ($cmac,$in0); # cmac^=out
722 &$movekey ($rndkey0,&QWP(0,$key));

724 &set_label("ccm64_dec2_loop");
725 &aesenc ($inout0,$rndkey1);
726 &dec ($rounds);
727 &aesenc ($cmac,$rndkey1);
728 &$movekey ($rndkey1,&QWP(16,$key));
729 &aesenc ($inout0,$rndkey0);
730 &lea ($key,&DWP(32,$key));
731 &aesenc ($cmac,$rndkey0);
732 &$movekey ($rndkey0,&QWP(0,$key));
733 &jnz (&label("ccm64_dec2_loop"));
734 &movups ($in0,&QWP(0,$inp)); # load inp
735 &paddq ($ivec,&QWP(16,"esp"));
736 &aesenc ($inout0,$rndkey1);
737 &aesenc ($cmac,$rndkey1);
738 &lea ($inp,&QWP(16,$inp));
739 &aesenclast ($inout0,$rndkey0);
740 &aesenclast ($cmac,$rndkey0);
741 &jmp (&label("ccm64_dec_outer"));

743 &set_label("ccm64_dec_break",16);
744 &mov ($key,$key_);
745 if ($inline)
746 { &aesni_inline_generate1("enc",$cmac,$in0); }
747 else
748 { &call ("_aesni_encrypt1",$cmac); }

750 &mov ("esp",&DWP(48,"esp"));
751 &mov ($out,&wparam(5));
752 &movups (&QWP(0,$out),$cmac);
753 &function_end("aesni_ccm64_decrypt_blocks");
754 }

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 15

755 ##
756 # void aesni_ctr32_encrypt_blocks (const void *in, void *out,
757 # size_t blocks, const AES_KEY *key,
758 # const char *ivec);
759 #
760 # Handles only complete blocks, operates on 32-bit counter and
761 # does not update *ivec! (see engine/eng_aesni.c for details)
762 #
763 # stack layout:
764 # 0 pshufb mask
765 # 16 vector addend: 0,6,6,6
766 # 32 counter-less ivec
767 # 48 1st triplet of counter vector
768 # 64 2nd triplet of counter vector
769 # 80 saved %esp

771 &function_begin("aesni_ctr32_encrypt_blocks");
772 &mov ($inp,&wparam(0));
773 &mov ($out,&wparam(1));
774 &mov ($len,&wparam(2));
775 &mov ($key,&wparam(3));
776 &mov ($rounds_,&wparam(4));
777 &mov ($key_,"esp");
778 &sub ("esp",88);
779 &and ("esp",-16); # align stack
780 &mov (&DWP(80,"esp"),$key_);

782 &cmp ($len,1);
783 &je (&label("ctr32_one_shortcut"));

785 &movdqu ($inout5,&QWP(0,$rounds_)); # load ivec

787 # compose byte-swap control mask for pshufb on stack
788 &mov (&DWP(0,"esp"),0x0c0d0e0f);
789 &mov (&DWP(4,"esp"),0x08090a0b);
790 &mov (&DWP(8,"esp"),0x04050607);
791 &mov (&DWP(12,"esp"),0x00010203);

793 # compose counter increment vector on stack
794 &mov ($rounds,6);
795 &xor ($key_,$key_);
796 &mov (&DWP(16,"esp"),$rounds);
797 &mov (&DWP(20,"esp"),$rounds);
798 &mov (&DWP(24,"esp"),$rounds);
799 &mov (&DWP(28,"esp"),$key_);

801 &pextrd ($rounds_,$inout5,3); # pull 32-bit counter
802 &pinsrd ($inout5,$key_,3); # wipe 32-bit counter

804 &mov ($rounds,&DWP(240,$key)); # key->rounds

806 # compose 2 vectors of 3x32-bit counters
807 &bswap ($rounds_);
808 &pxor ($rndkey1,$rndkey1);
809 &pxor ($rndkey0,$rndkey0);
810 &movdqa ($inout0,&QWP(0,"esp")); # load byte-swap mask
811 &pinsrd ($rndkey1,$rounds_,0);
812 &lea ($key_,&DWP(3,$rounds_));
813 &pinsrd ($rndkey0,$key_,0);
814 &inc ($rounds_);
815 &pinsrd ($rndkey1,$rounds_,1);
816 &inc ($key_);
817 &pinsrd ($rndkey0,$key_,1);
818 &inc ($rounds_);
819 &pinsrd ($rndkey1,$rounds_,2);
820 &inc ($key_);

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 16

821 &pinsrd ($rndkey0,$key_,2);
822 &movdqa (&QWP(48,"esp"),$rndkey1); # save 1st triplet
823 &pshufb ($rndkey1,$inout0); # byte swap
824 &movdqa (&QWP(64,"esp"),$rndkey0); # save 2nd triplet
825 &pshufb ($rndkey0,$inout0); # byte swap

827 &pshufd ($inout0,$rndkey1,3<<6); # place counter to upper dword
828 &pshufd ($inout1,$rndkey1,2<<6);
829 &cmp ($len,6);
830 &jb (&label("ctr32_tail"));
831 &movdqa (&QWP(32,"esp"),$inout5); # save counter-less ivec
832 &shr ($rounds,1);
833 &mov ($key_,$key); # backup $key
834 &mov ($rounds_,$rounds); # backup $rounds
835 &sub ($len,6);
836 &jmp (&label("ctr32_loop6"));

838 &set_label("ctr32_loop6",16);
839 &pshufd ($inout2,$rndkey1,1<<6);
840 &movdqa ($rndkey1,&QWP(32,"esp")); # pull counter-less ivec
841 &pshufd ($inout3,$rndkey0,3<<6);
842 &por ($inout0,$rndkey1); # merge counter-less ivec
843 &pshufd ($inout4,$rndkey0,2<<6);
844 &por ($inout1,$rndkey1);
845 &pshufd ($inout5,$rndkey0,1<<6);
846 &por ($inout2,$rndkey1);
847 &por ($inout3,$rndkey1);
848 &por ($inout4,$rndkey1);
849 &por ($inout5,$rndkey1);

851 # inlining _aesni_encrypt6’s prologue gives ~4% improvement...
852 &$movekey ($rndkey0,&QWP(0,$key_));
853 &$movekey ($rndkey1,&QWP(16,$key_));
854 &lea ($key,&DWP(32,$key_));
855 &dec ($rounds);
856 &pxor ($inout0,$rndkey0);
857 &pxor ($inout1,$rndkey0);
858 &aesenc ($inout0,$rndkey1);
859 &pxor ($inout2,$rndkey0);
860 &aesenc ($inout1,$rndkey1);
861 &pxor ($inout3,$rndkey0);
862 &aesenc ($inout2,$rndkey1);
863 &pxor ($inout4,$rndkey0);
864 &aesenc ($inout3,$rndkey1);
865 &pxor ($inout5,$rndkey0);
866 &aesenc ($inout4,$rndkey1);
867 &$movekey ($rndkey0,&QWP(0,$key));
868 &aesenc ($inout5,$rndkey1);

870 &call (&label("_aesni_encrypt6_enter"));

872 &movups ($rndkey1,&QWP(0,$inp));
873 &movups ($rndkey0,&QWP(0x10,$inp));
874 &xorps ($inout0,$rndkey1);
875 &movups ($rndkey1,&QWP(0x20,$inp));
876 &xorps ($inout1,$rndkey0);
877 &movups (&QWP(0,$out),$inout0);
878 &movdqa ($rndkey0,&QWP(16,"esp")); # load increment
879 &xorps ($inout2,$rndkey1);
880 &movdqa ($rndkey1,&QWP(48,"esp")); # load 1st triplet
881 &movups (&QWP(0x10,$out),$inout1);
882 &movups (&QWP(0x20,$out),$inout2);

884 &paddd ($rndkey1,$rndkey0); # 1st triplet increment
885 &paddd ($rndkey0,&QWP(64,"esp")); # 2nd triplet increment
886 &movdqa ($inout0,&QWP(0,"esp")); # load byte swap mask

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 17

888 &movups ($inout1,&QWP(0x30,$inp));
889 &movups ($inout2,&QWP(0x40,$inp));
890 &xorps ($inout3,$inout1);
891 &movups ($inout1,&QWP(0x50,$inp));
892 &lea ($inp,&DWP(0x60,$inp));
893 &movdqa (&QWP(48,"esp"),$rndkey1); # save 1st triplet
894 &pshufb ($rndkey1,$inout0); # byte swap
895 &xorps ($inout4,$inout2);
896 &movups (&QWP(0x30,$out),$inout3);
897 &xorps ($inout5,$inout1);
898 &movdqa (&QWP(64,"esp"),$rndkey0); # save 2nd triplet
899 &pshufb ($rndkey0,$inout0); # byte swap
900 &movups (&QWP(0x40,$out),$inout4);
901 &pshufd ($inout0,$rndkey1,3<<6);
902 &movups (&QWP(0x50,$out),$inout5);
903 &lea ($out,&DWP(0x60,$out));

905 &mov ($rounds,$rounds_);
906 &pshufd ($inout1,$rndkey1,2<<6);
907 &sub ($len,6);
908 &jnc (&label("ctr32_loop6"));

910 &add ($len,6);
911 &jz (&label("ctr32_ret"));
912 &mov ($key,$key_);
913 &lea ($rounds,&DWP(1,"",$rounds,2)); # restore $rounds
914 &movdqa ($inout5,&QWP(32,"esp")); # pull count-less ivec

916 &set_label("ctr32_tail");
917 &por ($inout0,$inout5);
918 &cmp ($len,2);
919 &jb (&label("ctr32_one"));

921 &pshufd ($inout2,$rndkey1,1<<6);
922 &por ($inout1,$inout5);
923 &je (&label("ctr32_two"));

925 &pshufd ($inout3,$rndkey0,3<<6);
926 &por ($inout2,$inout5);
927 &cmp ($len,4);
928 &jb (&label("ctr32_three"));

930 &pshufd ($inout4,$rndkey0,2<<6);
931 &por ($inout3,$inout5);
932 &je (&label("ctr32_four"));

934 &por ($inout4,$inout5);
935 &call ("_aesni_encrypt6");
936 &movups ($rndkey1,&QWP(0,$inp));
937 &movups ($rndkey0,&QWP(0x10,$inp));
938 &xorps ($inout0,$rndkey1);
939 &movups ($rndkey1,&QWP(0x20,$inp));
940 &xorps ($inout1,$rndkey0);
941 &movups ($rndkey0,&QWP(0x30,$inp));
942 &xorps ($inout2,$rndkey1);
943 &movups ($rndkey1,&QWP(0x40,$inp));
944 &xorps ($inout3,$rndkey0);
945 &movups (&QWP(0,$out),$inout0);
946 &xorps ($inout4,$rndkey1);
947 &movups (&QWP(0x10,$out),$inout1);
948 &movups (&QWP(0x20,$out),$inout2);
949 &movups (&QWP(0x30,$out),$inout3);
950 &movups (&QWP(0x40,$out),$inout4);
951 &jmp (&label("ctr32_ret"));

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 18

953 &set_label("ctr32_one_shortcut",16);
954 &movups ($inout0,&QWP(0,$rounds_)); # load ivec
955 &mov ($rounds,&DWP(240,$key));
956
957 &set_label("ctr32_one");
958 if ($inline)
959 { &aesni_inline_generate1("enc"); }
960 else
961 { &call ("_aesni_encrypt1"); }
962 &movups ($in0,&QWP(0,$inp));
963 &xorps ($in0,$inout0);
964 &movups (&QWP(0,$out),$in0);
965 &jmp (&label("ctr32_ret"));

967 &set_label("ctr32_two",16);
968 &call ("_aesni_encrypt3");
969 &movups ($inout3,&QWP(0,$inp));
970 &movups ($inout4,&QWP(0x10,$inp));
971 &xorps ($inout0,$inout3);
972 &xorps ($inout1,$inout4);
973 &movups (&QWP(0,$out),$inout0);
974 &movups (&QWP(0x10,$out),$inout1);
975 &jmp (&label("ctr32_ret"));

977 &set_label("ctr32_three",16);
978 &call ("_aesni_encrypt3");
979 &movups ($inout3,&QWP(0,$inp));
980 &movups ($inout4,&QWP(0x10,$inp));
981 &xorps ($inout0,$inout3);
982 &movups ($inout5,&QWP(0x20,$inp));
983 &xorps ($inout1,$inout4);
984 &movups (&QWP(0,$out),$inout0);
985 &xorps ($inout2,$inout5);
986 &movups (&QWP(0x10,$out),$inout1);
987 &movups (&QWP(0x20,$out),$inout2);
988 &jmp (&label("ctr32_ret"));

990 &set_label("ctr32_four",16);
991 &call ("_aesni_encrypt4");
992 &movups ($inout4,&QWP(0,$inp));
993 &movups ($inout5,&QWP(0x10,$inp));
994 &movups ($rndkey1,&QWP(0x20,$inp));
995 &xorps ($inout0,$inout4);
996 &movups ($rndkey0,&QWP(0x30,$inp));
997 &xorps ($inout1,$inout5);
998 &movups (&QWP(0,$out),$inout0);
999 &xorps ($inout2,$rndkey1);

1000 &movups (&QWP(0x10,$out),$inout1);
1001 &xorps ($inout3,$rndkey0);
1002 &movups (&QWP(0x20,$out),$inout2);
1003 &movups (&QWP(0x30,$out),$inout3);

1005 &set_label("ctr32_ret");
1006 &mov ("esp",&DWP(80,"esp"));
1007 &function_end("aesni_ctr32_encrypt_blocks");

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 19

1008 ##
1009 # void aesni_xts_[en|de]crypt(const char *inp,char *out,size_t len,
1010 # const AES_KEY *key1, const AES_KEY *key2
1011 # const unsigned char iv[16]);
1012 #
1013 { my ($tweak,$twtmp,$twres,$twmask)=($rndkey1,$rndkey0,$inout0,$inout1);

1015 &function_begin("aesni_xts_encrypt");
1016 &mov ($key,&wparam(4)); # key2
1017 &mov ($inp,&wparam(5)); # clear-text tweak

1019 &mov ($rounds,&DWP(240,$key)); # key2->rounds
1020 &movups ($inout0,&QWP(0,$inp));
1021 if ($inline)
1022 { &aesni_inline_generate1("enc"); }
1023 else
1024 { &call ("_aesni_encrypt1"); }

1026 &mov ($inp,&wparam(0));
1027 &mov ($out,&wparam(1));
1028 &mov ($len,&wparam(2));
1029 &mov ($key,&wparam(3)); # key1

1031 &mov ($key_,"esp");
1032 &sub ("esp",16*7+8);
1033 &mov ($rounds,&DWP(240,$key)); # key1->rounds
1034 &and ("esp",-16); # align stack

1036 &mov (&DWP(16*6+0,"esp"),0x87); # compose the magic constant
1037 &mov (&DWP(16*6+4,"esp"),0);
1038 &mov (&DWP(16*6+8,"esp"),1);
1039 &mov (&DWP(16*6+12,"esp"),0);
1040 &mov (&DWP(16*7+0,"esp"),$len); # save original $len
1041 &mov (&DWP(16*7+4,"esp"),$key_); # save original %esp

1043 &movdqa ($tweak,$inout0);
1044 &pxor ($twtmp,$twtmp);
1045 &movdqa ($twmask,&QWP(6*16,"esp")); # 0x0...010...87
1046 &pcmpgtd($twtmp,$tweak); # broadcast upper bits

1048 &and ($len,-16);
1049 &mov ($key_,$key); # backup $key
1050 &mov ($rounds_,$rounds); # backup $rounds
1051 &sub ($len,16*6);
1052 &jc (&label("xts_enc_short"));

1054 &shr ($rounds,1);
1055 &mov ($rounds_,$rounds);
1056 &jmp (&label("xts_enc_loop6"));

1058 &set_label("xts_enc_loop6",16);
1059 for ($i=0;$i<4;$i++) {
1060 &pshufd ($twres,$twtmp,0x13);
1061 &pxor ($twtmp,$twtmp);
1062 &movdqa (&QWP(16*$i,"esp"),$tweak);
1063 &paddq ($tweak,$tweak); # &psllq($tweak,1);
1064 &pand ($twres,$twmask); # isolate carry and residue
1065 &pcmpgtd ($twtmp,$tweak); # broadcast upper bits
1066 &pxor ($tweak,$twres);
1067 }
1068 &pshufd ($inout5,$twtmp,0x13);
1069 &movdqa (&QWP(16*$i++,"esp"),$tweak);
1070 &paddq ($tweak,$tweak); # &psllq($tweak,1);
1071 &$movekey ($rndkey0,&QWP(0,$key_));
1072 &pand ($inout5,$twmask); # isolate carry and residue
1073 &movups ($inout0,&QWP(0,$inp)); # load input

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 20

1074 &pxor ($inout5,$tweak);

1076 # inline _aesni_encrypt6 prologue and flip xor with tweak and key[0]
1077 &movdqu ($inout1,&QWP(16*1,$inp));
1078 &xorps ($inout0,$rndkey0); # input^=rndkey[0]
1079 &movdqu ($inout2,&QWP(16*2,$inp));
1080 &pxor ($inout1,$rndkey0);
1081 &movdqu ($inout3,&QWP(16*3,$inp));
1082 &pxor ($inout2,$rndkey0);
1083 &movdqu ($inout4,&QWP(16*4,$inp));
1084 &pxor ($inout3,$rndkey0);
1085 &movdqu ($rndkey1,&QWP(16*5,$inp));
1086 &pxor ($inout4,$rndkey0);
1087 &lea ($inp,&DWP(16*6,$inp));
1088 &pxor ($inout0,&QWP(16*0,"esp")); # input^=tweak
1089 &movdqa (&QWP(16*$i,"esp"),$inout5); # save last tweak
1090 &pxor ($inout5,$rndkey1);

1092 &$movekey ($rndkey1,&QWP(16,$key_));
1093 &lea ($key,&DWP(32,$key_));
1094 &pxor ($inout1,&QWP(16*1,"esp"));
1095 &aesenc ($inout0,$rndkey1);
1096 &pxor ($inout2,&QWP(16*2,"esp"));
1097 &aesenc ($inout1,$rndkey1);
1098 &pxor ($inout3,&QWP(16*3,"esp"));
1099 &dec ($rounds);
1100 &aesenc ($inout2,$rndkey1);
1101 &pxor ($inout4,&QWP(16*4,"esp"));
1102 &aesenc ($inout3,$rndkey1);
1103 &pxor ($inout5,$rndkey0);
1104 &aesenc ($inout4,$rndkey1);
1105 &$movekey ($rndkey0,&QWP(0,$key));
1106 &aesenc ($inout5,$rndkey1);
1107 &call (&label("_aesni_encrypt6_enter"));

1109 &movdqa ($tweak,&QWP(16*5,"esp")); # last tweak
1110 &pxor ($twtmp,$twtmp);
1111 &xorps ($inout0,&QWP(16*0,"esp")); # output^=tweak
1112 &pcmpgtd ($twtmp,$tweak); # broadcast upper bits
1113 &xorps ($inout1,&QWP(16*1,"esp"));
1114 &movups (&QWP(16*0,$out),$inout0); # write output
1115 &xorps ($inout2,&QWP(16*2,"esp"));
1116 &movups (&QWP(16*1,$out),$inout1);
1117 &xorps ($inout3,&QWP(16*3,"esp"));
1118 &movups (&QWP(16*2,$out),$inout2);
1119 &xorps ($inout4,&QWP(16*4,"esp"));
1120 &movups (&QWP(16*3,$out),$inout3);
1121 &xorps ($inout5,$tweak);
1122 &movups (&QWP(16*4,$out),$inout4);
1123 &pshufd ($twres,$twtmp,0x13);
1124 &movups (&QWP(16*5,$out),$inout5);
1125 &lea ($out,&DWP(16*6,$out));
1126 &movdqa ($twmask,&QWP(16*6,"esp")); # 0x0...010...87

1128 &pxor ($twtmp,$twtmp);
1129 &paddq ($tweak,$tweak); # &psllq($tweak,1);
1130 &pand ($twres,$twmask); # isolate carry and residue
1131 &pcmpgtd($twtmp,$tweak); # broadcast upper bits
1132 &mov ($rounds,$rounds_); # restore $rounds
1133 &pxor ($tweak,$twres);

1135 &sub ($len,16*6);
1136 &jnc (&label("xts_enc_loop6"));

1138 &lea ($rounds,&DWP(1,"",$rounds,2)); # restore $rounds
1139 &mov ($key,$key_); # restore $key

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 21

1140 &mov ($rounds_,$rounds);

1142 &set_label("xts_enc_short");
1143 &add ($len,16*6);
1144 &jz (&label("xts_enc_done6x"));

1146 &movdqa ($inout3,$tweak); # put aside previous tweak
1147 &cmp ($len,0x20);
1148 &jb (&label("xts_enc_one"));

1150 &pshufd ($twres,$twtmp,0x13);
1151 &pxor ($twtmp,$twtmp);
1152 &paddq ($tweak,$tweak); # &psllq($tweak,1);
1153 &pand ($twres,$twmask); # isolate carry and residue
1154 &pcmpgtd($twtmp,$tweak); # broadcast upper bits
1155 &pxor ($tweak,$twres);
1156 &je (&label("xts_enc_two"));

1158 &pshufd ($twres,$twtmp,0x13);
1159 &pxor ($twtmp,$twtmp);
1160 &movdqa ($inout4,$tweak); # put aside previous tweak
1161 &paddq ($tweak,$tweak); # &psllq($tweak,1);
1162 &pand ($twres,$twmask); # isolate carry and residue
1163 &pcmpgtd($twtmp,$tweak); # broadcast upper bits
1164 &pxor ($tweak,$twres);
1165 &cmp ($len,0x40);
1166 &jb (&label("xts_enc_three"));

1168 &pshufd ($twres,$twtmp,0x13);
1169 &pxor ($twtmp,$twtmp);
1170 &movdqa ($inout5,$tweak); # put aside previous tweak
1171 &paddq ($tweak,$tweak); # &psllq($tweak,1);
1172 &pand ($twres,$twmask); # isolate carry and residue
1173 &pcmpgtd($twtmp,$tweak); # broadcast upper bits
1174 &pxor ($tweak,$twres);
1175 &movdqa (&QWP(16*0,"esp"),$inout3);
1176 &movdqa (&QWP(16*1,"esp"),$inout4);
1177 &je (&label("xts_enc_four"));

1179 &movdqa (&QWP(16*2,"esp"),$inout5);
1180 &pshufd ($inout5,$twtmp,0x13);
1181 &movdqa (&QWP(16*3,"esp"),$tweak);
1182 &paddq ($tweak,$tweak); # &psllq($inout0,1);
1183 &pand ($inout5,$twmask); # isolate carry and residue
1184 &pxor ($inout5,$tweak);

1186 &movdqu ($inout0,&QWP(16*0,$inp)); # load input
1187 &movdqu ($inout1,&QWP(16*1,$inp));
1188 &movdqu ($inout2,&QWP(16*2,$inp));
1189 &pxor ($inout0,&QWP(16*0,"esp")); # input^=tweak
1190 &movdqu ($inout3,&QWP(16*3,$inp));
1191 &pxor ($inout1,&QWP(16*1,"esp"));
1192 &movdqu ($inout4,&QWP(16*4,$inp));
1193 &pxor ($inout2,&QWP(16*2,"esp"));
1194 &lea ($inp,&DWP(16*5,$inp));
1195 &pxor ($inout3,&QWP(16*3,"esp"));
1196 &movdqa (&QWP(16*4,"esp"),$inout5); # save last tweak
1197 &pxor ($inout4,$inout5);

1199 &call ("_aesni_encrypt6");

1201 &movaps ($tweak,&QWP(16*4,"esp")); # last tweak
1202 &xorps ($inout0,&QWP(16*0,"esp")); # output^=tweak
1203 &xorps ($inout1,&QWP(16*1,"esp"));
1204 &xorps ($inout2,&QWP(16*2,"esp"));
1205 &movups (&QWP(16*0,$out),$inout0); # write output

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 22

1206 &xorps ($inout3,&QWP(16*3,"esp"));
1207 &movups (&QWP(16*1,$out),$inout1);
1208 &xorps ($inout4,$tweak);
1209 &movups (&QWP(16*2,$out),$inout2);
1210 &movups (&QWP(16*3,$out),$inout3);
1211 &movups (&QWP(16*4,$out),$inout4);
1212 &lea ($out,&DWP(16*5,$out));
1213 &jmp (&label("xts_enc_done"));

1215 &set_label("xts_enc_one",16);
1216 &movups ($inout0,&QWP(16*0,$inp)); # load input
1217 &lea ($inp,&DWP(16*1,$inp));
1218 &xorps ($inout0,$inout3); # input^=tweak
1219 if ($inline)
1220 { &aesni_inline_generate1("enc"); }
1221 else
1222 { &call ("_aesni_encrypt1"); }
1223 &xorps ($inout0,$inout3); # output^=tweak
1224 &movups (&QWP(16*0,$out),$inout0); # write output
1225 &lea ($out,&DWP(16*1,$out));

1227 &movdqa ($tweak,$inout3); # last tweak
1228 &jmp (&label("xts_enc_done"));

1230 &set_label("xts_enc_two",16);
1231 &movaps ($inout4,$tweak); # put aside last tweak

1233 &movups ($inout0,&QWP(16*0,$inp)); # load input
1234 &movups ($inout1,&QWP(16*1,$inp));
1235 &lea ($inp,&DWP(16*2,$inp));
1236 &xorps ($inout0,$inout3); # input^=tweak
1237 &xorps ($inout1,$inout4);
1238 &xorps ($inout2,$inout2);

1240 &call ("_aesni_encrypt3");

1242 &xorps ($inout0,$inout3); # output^=tweak
1243 &xorps ($inout1,$inout4);
1244 &movups (&QWP(16*0,$out),$inout0); # write output
1245 &movups (&QWP(16*1,$out),$inout1);
1246 &lea ($out,&DWP(16*2,$out));

1248 &movdqa ($tweak,$inout4); # last tweak
1249 &jmp (&label("xts_enc_done"));

1251 &set_label("xts_enc_three",16);
1252 &movaps ($inout5,$tweak); # put aside last tweak
1253 &movups ($inout0,&QWP(16*0,$inp)); # load input
1254 &movups ($inout1,&QWP(16*1,$inp));
1255 &movups ($inout2,&QWP(16*2,$inp));
1256 &lea ($inp,&DWP(16*3,$inp));
1257 &xorps ($inout0,$inout3); # input^=tweak
1258 &xorps ($inout1,$inout4);
1259 &xorps ($inout2,$inout5);

1261 &call ("_aesni_encrypt3");

1263 &xorps ($inout0,$inout3); # output^=tweak
1264 &xorps ($inout1,$inout4);
1265 &xorps ($inout2,$inout5);
1266 &movups (&QWP(16*0,$out),$inout0); # write output
1267 &movups (&QWP(16*1,$out),$inout1);
1268 &movups (&QWP(16*2,$out),$inout2);
1269 &lea ($out,&DWP(16*3,$out));

1271 &movdqa ($tweak,$inout5); # last tweak

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 23

1272 &jmp (&label("xts_enc_done"));

1274 &set_label("xts_enc_four",16);
1275 &movaps ($inout4,$tweak); # put aside last tweak

1277 &movups ($inout0,&QWP(16*0,$inp)); # load input
1278 &movups ($inout1,&QWP(16*1,$inp));
1279 &movups ($inout2,&QWP(16*2,$inp));
1280 &xorps ($inout0,&QWP(16*0,"esp")); # input^=tweak
1281 &movups ($inout3,&QWP(16*3,$inp));
1282 &lea ($inp,&DWP(16*4,$inp));
1283 &xorps ($inout1,&QWP(16*1,"esp"));
1284 &xorps ($inout2,$inout5);
1285 &xorps ($inout3,$inout4);

1287 &call ("_aesni_encrypt4");

1289 &xorps ($inout0,&QWP(16*0,"esp")); # output^=tweak
1290 &xorps ($inout1,&QWP(16*1,"esp"));
1291 &xorps ($inout2,$inout5);
1292 &movups (&QWP(16*0,$out),$inout0); # write output
1293 &xorps ($inout3,$inout4);
1294 &movups (&QWP(16*1,$out),$inout1);
1295 &movups (&QWP(16*2,$out),$inout2);
1296 &movups (&QWP(16*3,$out),$inout3);
1297 &lea ($out,&DWP(16*4,$out));

1299 &movdqa ($tweak,$inout4); # last tweak
1300 &jmp (&label("xts_enc_done"));

1302 &set_label("xts_enc_done6x",16); # $tweak is pre-calculated
1303 &mov ($len,&DWP(16*7+0,"esp")); # restore original $len
1304 &and ($len,15);
1305 &jz (&label("xts_enc_ret"));
1306 &movdqa ($inout3,$tweak);
1307 &mov (&DWP(16*7+0,"esp"),$len); # save $len%16
1308 &jmp (&label("xts_enc_steal"));

1310 &set_label("xts_enc_done",16);
1311 &mov ($len,&DWP(16*7+0,"esp")); # restore original $len
1312 &pxor ($twtmp,$twtmp);
1313 &and ($len,15);
1314 &jz (&label("xts_enc_ret"));

1316 &pcmpgtd($twtmp,$tweak); # broadcast upper bits
1317 &mov (&DWP(16*7+0,"esp"),$len); # save $len%16
1318 &pshufd ($inout3,$twtmp,0x13);
1319 &paddq ($tweak,$tweak); # &psllq($tweak,1);
1320 &pand ($inout3,&QWP(16*6,"esp")); # isolate carry and residue
1321 &pxor ($inout3,$tweak);

1323 &set_label("xts_enc_steal");
1324 &movz ($rounds,&BP(0,$inp));
1325 &movz ($key,&BP(-16,$out));
1326 &lea ($inp,&DWP(1,$inp));
1327 &mov (&BP(-16,$out),&LB($rounds));
1328 &mov (&BP(0,$out),&LB($key));
1329 &lea ($out,&DWP(1,$out));
1330 &sub ($len,1);
1331 &jnz (&label("xts_enc_steal"));

1333 &sub ($out,&DWP(16*7+0,"esp")); # rewind $out
1334 &mov ($key,$key_); # restore $key
1335 &mov ($rounds,$rounds_); # restore $rounds

1337 &movups ($inout0,&QWP(-16,$out)); # load input

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 24

1338 &xorps ($inout0,$inout3); # input^=tweak
1339 if ($inline)
1340 { &aesni_inline_generate1("enc"); }
1341 else
1342 { &call ("_aesni_encrypt1"); }
1343 &xorps ($inout0,$inout3); # output^=tweak
1344 &movups (&QWP(-16,$out),$inout0); # write output

1346 &set_label("xts_enc_ret");
1347 &mov ("esp",&DWP(16*7+4,"esp")); # restore %esp
1348 &function_end("aesni_xts_encrypt");

1350 &function_begin("aesni_xts_decrypt");
1351 &mov ($key,&wparam(4)); # key2
1352 &mov ($inp,&wparam(5)); # clear-text tweak

1354 &mov ($rounds,&DWP(240,$key)); # key2->rounds
1355 &movups ($inout0,&QWP(0,$inp));
1356 if ($inline)
1357 { &aesni_inline_generate1("enc"); }
1358 else
1359 { &call ("_aesni_encrypt1"); }

1361 &mov ($inp,&wparam(0));
1362 &mov ($out,&wparam(1));
1363 &mov ($len,&wparam(2));
1364 &mov ($key,&wparam(3)); # key1

1366 &mov ($key_,"esp");
1367 &sub ("esp",16*7+8);
1368 &and ("esp",-16); # align stack

1370 &xor ($rounds_,$rounds_); # if(len%16) len-=16;
1371 &test ($len,15);
1372 &setnz (&LB($rounds_));
1373 &shl ($rounds_,4);
1374 &sub ($len,$rounds_);

1376 &mov (&DWP(16*6+0,"esp"),0x87); # compose the magic constant
1377 &mov (&DWP(16*6+4,"esp"),0);
1378 &mov (&DWP(16*6+8,"esp"),1);
1379 &mov (&DWP(16*6+12,"esp"),0);
1380 &mov (&DWP(16*7+0,"esp"),$len); # save original $len
1381 &mov (&DWP(16*7+4,"esp"),$key_); # save original %esp

1383 &mov ($rounds,&DWP(240,$key)); # key1->rounds
1384 &mov ($key_,$key); # backup $key
1385 &mov ($rounds_,$rounds); # backup $rounds

1387 &movdqa ($tweak,$inout0);
1388 &pxor ($twtmp,$twtmp);
1389 &movdqa ($twmask,&QWP(6*16,"esp")); # 0x0...010...87
1390 &pcmpgtd($twtmp,$tweak); # broadcast upper bits

1392 &and ($len,-16);
1393 &sub ($len,16*6);
1394 &jc (&label("xts_dec_short"));

1396 &shr ($rounds,1);
1397 &mov ($rounds_,$rounds);
1398 &jmp (&label("xts_dec_loop6"));

1400 &set_label("xts_dec_loop6",16);
1401 for ($i=0;$i<4;$i++) {
1402 &pshufd ($twres,$twtmp,0x13);
1403 &pxor ($twtmp,$twtmp);

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 25

1404 &movdqa (&QWP(16*$i,"esp"),$tweak);
1405 &paddq ($tweak,$tweak); # &psllq($tweak,1);
1406 &pand ($twres,$twmask); # isolate carry and residue
1407 &pcmpgtd ($twtmp,$tweak); # broadcast upper bits
1408 &pxor ($tweak,$twres);
1409 }
1410 &pshufd ($inout5,$twtmp,0x13);
1411 &movdqa (&QWP(16*$i++,"esp"),$tweak);
1412 &paddq ($tweak,$tweak); # &psllq($tweak,1);
1413 &$movekey ($rndkey0,&QWP(0,$key_));
1414 &pand ($inout5,$twmask); # isolate carry and residue
1415 &movups ($inout0,&QWP(0,$inp)); # load input
1416 &pxor ($inout5,$tweak);

1418 # inline _aesni_encrypt6 prologue and flip xor with tweak and key[0]
1419 &movdqu ($inout1,&QWP(16*1,$inp));
1420 &xorps ($inout0,$rndkey0); # input^=rndkey[0]
1421 &movdqu ($inout2,&QWP(16*2,$inp));
1422 &pxor ($inout1,$rndkey0);
1423 &movdqu ($inout3,&QWP(16*3,$inp));
1424 &pxor ($inout2,$rndkey0);
1425 &movdqu ($inout4,&QWP(16*4,$inp));
1426 &pxor ($inout3,$rndkey0);
1427 &movdqu ($rndkey1,&QWP(16*5,$inp));
1428 &pxor ($inout4,$rndkey0);
1429 &lea ($inp,&DWP(16*6,$inp));
1430 &pxor ($inout0,&QWP(16*0,"esp")); # input^=tweak
1431 &movdqa (&QWP(16*$i,"esp"),$inout5); # save last tweak
1432 &pxor ($inout5,$rndkey1);

1434 &$movekey ($rndkey1,&QWP(16,$key_));
1435 &lea ($key,&DWP(32,$key_));
1436 &pxor ($inout1,&QWP(16*1,"esp"));
1437 &aesdec ($inout0,$rndkey1);
1438 &pxor ($inout2,&QWP(16*2,"esp"));
1439 &aesdec ($inout1,$rndkey1);
1440 &pxor ($inout3,&QWP(16*3,"esp"));
1441 &dec ($rounds);
1442 &aesdec ($inout2,$rndkey1);
1443 &pxor ($inout4,&QWP(16*4,"esp"));
1444 &aesdec ($inout3,$rndkey1);
1445 &pxor ($inout5,$rndkey0);
1446 &aesdec ($inout4,$rndkey1);
1447 &$movekey ($rndkey0,&QWP(0,$key));
1448 &aesdec ($inout5,$rndkey1);
1449 &call (&label("_aesni_decrypt6_enter"));

1451 &movdqa ($tweak,&QWP(16*5,"esp")); # last tweak
1452 &pxor ($twtmp,$twtmp);
1453 &xorps ($inout0,&QWP(16*0,"esp")); # output^=tweak
1454 &pcmpgtd ($twtmp,$tweak); # broadcast upper bits
1455 &xorps ($inout1,&QWP(16*1,"esp"));
1456 &movups (&QWP(16*0,$out),$inout0); # write output
1457 &xorps ($inout2,&QWP(16*2,"esp"));
1458 &movups (&QWP(16*1,$out),$inout1);
1459 &xorps ($inout3,&QWP(16*3,"esp"));
1460 &movups (&QWP(16*2,$out),$inout2);
1461 &xorps ($inout4,&QWP(16*4,"esp"));
1462 &movups (&QWP(16*3,$out),$inout3);
1463 &xorps ($inout5,$tweak);
1464 &movups (&QWP(16*4,$out),$inout4);
1465 &pshufd ($twres,$twtmp,0x13);
1466 &movups (&QWP(16*5,$out),$inout5);
1467 &lea ($out,&DWP(16*6,$out));
1468 &movdqa ($twmask,&QWP(16*6,"esp")); # 0x0...010...87

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 26

1470 &pxor ($twtmp,$twtmp);
1471 &paddq ($tweak,$tweak); # &psllq($tweak,1);
1472 &pand ($twres,$twmask); # isolate carry and residue
1473 &pcmpgtd($twtmp,$tweak); # broadcast upper bits
1474 &mov ($rounds,$rounds_); # restore $rounds
1475 &pxor ($tweak,$twres);

1477 &sub ($len,16*6);
1478 &jnc (&label("xts_dec_loop6"));

1480 &lea ($rounds,&DWP(1,"",$rounds,2)); # restore $rounds
1481 &mov ($key,$key_); # restore $key
1482 &mov ($rounds_,$rounds);

1484 &set_label("xts_dec_short");
1485 &add ($len,16*6);
1486 &jz (&label("xts_dec_done6x"));

1488 &movdqa ($inout3,$tweak); # put aside previous tweak
1489 &cmp ($len,0x20);
1490 &jb (&label("xts_dec_one"));

1492 &pshufd ($twres,$twtmp,0x13);
1493 &pxor ($twtmp,$twtmp);
1494 &paddq ($tweak,$tweak); # &psllq($tweak,1);
1495 &pand ($twres,$twmask); # isolate carry and residue
1496 &pcmpgtd($twtmp,$tweak); # broadcast upper bits
1497 &pxor ($tweak,$twres);
1498 &je (&label("xts_dec_two"));

1500 &pshufd ($twres,$twtmp,0x13);
1501 &pxor ($twtmp,$twtmp);
1502 &movdqa ($inout4,$tweak); # put aside previous tweak
1503 &paddq ($tweak,$tweak); # &psllq($tweak,1);
1504 &pand ($twres,$twmask); # isolate carry and residue
1505 &pcmpgtd($twtmp,$tweak); # broadcast upper bits
1506 &pxor ($tweak,$twres);
1507 &cmp ($len,0x40);
1508 &jb (&label("xts_dec_three"));

1510 &pshufd ($twres,$twtmp,0x13);
1511 &pxor ($twtmp,$twtmp);
1512 &movdqa ($inout5,$tweak); # put aside previous tweak
1513 &paddq ($tweak,$tweak); # &psllq($tweak,1);
1514 &pand ($twres,$twmask); # isolate carry and residue
1515 &pcmpgtd($twtmp,$tweak); # broadcast upper bits
1516 &pxor ($tweak,$twres);
1517 &movdqa (&QWP(16*0,"esp"),$inout3);
1518 &movdqa (&QWP(16*1,"esp"),$inout4);
1519 &je (&label("xts_dec_four"));

1521 &movdqa (&QWP(16*2,"esp"),$inout5);
1522 &pshufd ($inout5,$twtmp,0x13);
1523 &movdqa (&QWP(16*3,"esp"),$tweak);
1524 &paddq ($tweak,$tweak); # &psllq($inout0,1);
1525 &pand ($inout5,$twmask); # isolate carry and residue
1526 &pxor ($inout5,$tweak);

1528 &movdqu ($inout0,&QWP(16*0,$inp)); # load input
1529 &movdqu ($inout1,&QWP(16*1,$inp));
1530 &movdqu ($inout2,&QWP(16*2,$inp));
1531 &pxor ($inout0,&QWP(16*0,"esp")); # input^=tweak
1532 &movdqu ($inout3,&QWP(16*3,$inp));
1533 &pxor ($inout1,&QWP(16*1,"esp"));
1534 &movdqu ($inout4,&QWP(16*4,$inp));
1535 &pxor ($inout2,&QWP(16*2,"esp"));

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 27

1536 &lea ($inp,&DWP(16*5,$inp));
1537 &pxor ($inout3,&QWP(16*3,"esp"));
1538 &movdqa (&QWP(16*4,"esp"),$inout5); # save last tweak
1539 &pxor ($inout4,$inout5);

1541 &call ("_aesni_decrypt6");

1543 &movaps ($tweak,&QWP(16*4,"esp")); # last tweak
1544 &xorps ($inout0,&QWP(16*0,"esp")); # output^=tweak
1545 &xorps ($inout1,&QWP(16*1,"esp"));
1546 &xorps ($inout2,&QWP(16*2,"esp"));
1547 &movups (&QWP(16*0,$out),$inout0); # write output
1548 &xorps ($inout3,&QWP(16*3,"esp"));
1549 &movups (&QWP(16*1,$out),$inout1);
1550 &xorps ($inout4,$tweak);
1551 &movups (&QWP(16*2,$out),$inout2);
1552 &movups (&QWP(16*3,$out),$inout3);
1553 &movups (&QWP(16*4,$out),$inout4);
1554 &lea ($out,&DWP(16*5,$out));
1555 &jmp (&label("xts_dec_done"));

1557 &set_label("xts_dec_one",16);
1558 &movups ($inout0,&QWP(16*0,$inp)); # load input
1559 &lea ($inp,&DWP(16*1,$inp));
1560 &xorps ($inout0,$inout3); # input^=tweak
1561 if ($inline)
1562 { &aesni_inline_generate1("dec"); }
1563 else
1564 { &call ("_aesni_decrypt1"); }
1565 &xorps ($inout0,$inout3); # output^=tweak
1566 &movups (&QWP(16*0,$out),$inout0); # write output
1567 &lea ($out,&DWP(16*1,$out));

1569 &movdqa ($tweak,$inout3); # last tweak
1570 &jmp (&label("xts_dec_done"));

1572 &set_label("xts_dec_two",16);
1573 &movaps ($inout4,$tweak); # put aside last tweak

1575 &movups ($inout0,&QWP(16*0,$inp)); # load input
1576 &movups ($inout1,&QWP(16*1,$inp));
1577 &lea ($inp,&DWP(16*2,$inp));
1578 &xorps ($inout0,$inout3); # input^=tweak
1579 &xorps ($inout1,$inout4);

1581 &call ("_aesni_decrypt3");

1583 &xorps ($inout0,$inout3); # output^=tweak
1584 &xorps ($inout1,$inout4);
1585 &movups (&QWP(16*0,$out),$inout0); # write output
1586 &movups (&QWP(16*1,$out),$inout1);
1587 &lea ($out,&DWP(16*2,$out));

1589 &movdqa ($tweak,$inout4); # last tweak
1590 &jmp (&label("xts_dec_done"));

1592 &set_label("xts_dec_three",16);
1593 &movaps ($inout5,$tweak); # put aside last tweak
1594 &movups ($inout0,&QWP(16*0,$inp)); # load input
1595 &movups ($inout1,&QWP(16*1,$inp));
1596 &movups ($inout2,&QWP(16*2,$inp));
1597 &lea ($inp,&DWP(16*3,$inp));
1598 &xorps ($inout0,$inout3); # input^=tweak
1599 &xorps ($inout1,$inout4);
1600 &xorps ($inout2,$inout5);

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 28

1602 &call ("_aesni_decrypt3");

1604 &xorps ($inout0,$inout3); # output^=tweak
1605 &xorps ($inout1,$inout4);
1606 &xorps ($inout2,$inout5);
1607 &movups (&QWP(16*0,$out),$inout0); # write output
1608 &movups (&QWP(16*1,$out),$inout1);
1609 &movups (&QWP(16*2,$out),$inout2);
1610 &lea ($out,&DWP(16*3,$out));

1612 &movdqa ($tweak,$inout5); # last tweak
1613 &jmp (&label("xts_dec_done"));

1615 &set_label("xts_dec_four",16);
1616 &movaps ($inout4,$tweak); # put aside last tweak

1618 &movups ($inout0,&QWP(16*0,$inp)); # load input
1619 &movups ($inout1,&QWP(16*1,$inp));
1620 &movups ($inout2,&QWP(16*2,$inp));
1621 &xorps ($inout0,&QWP(16*0,"esp")); # input^=tweak
1622 &movups ($inout3,&QWP(16*3,$inp));
1623 &lea ($inp,&DWP(16*4,$inp));
1624 &xorps ($inout1,&QWP(16*1,"esp"));
1625 &xorps ($inout2,$inout5);
1626 &xorps ($inout3,$inout4);

1628 &call ("_aesni_decrypt4");

1630 &xorps ($inout0,&QWP(16*0,"esp")); # output^=tweak
1631 &xorps ($inout1,&QWP(16*1,"esp"));
1632 &xorps ($inout2,$inout5);
1633 &movups (&QWP(16*0,$out),$inout0); # write output
1634 &xorps ($inout3,$inout4);
1635 &movups (&QWP(16*1,$out),$inout1);
1636 &movups (&QWP(16*2,$out),$inout2);
1637 &movups (&QWP(16*3,$out),$inout3);
1638 &lea ($out,&DWP(16*4,$out));

1640 &movdqa ($tweak,$inout4); # last tweak
1641 &jmp (&label("xts_dec_done"));

1643 &set_label("xts_dec_done6x",16); # $tweak is pre-calculated
1644 &mov ($len,&DWP(16*7+0,"esp")); # restore original $len
1645 &and ($len,15);
1646 &jz (&label("xts_dec_ret"));
1647 &mov (&DWP(16*7+0,"esp"),$len); # save $len%16
1648 &jmp (&label("xts_dec_only_one_more"));

1650 &set_label("xts_dec_done",16);
1651 &mov ($len,&DWP(16*7+0,"esp")); # restore original $len
1652 &pxor ($twtmp,$twtmp);
1653 &and ($len,15);
1654 &jz (&label("xts_dec_ret"));

1656 &pcmpgtd($twtmp,$tweak); # broadcast upper bits
1657 &mov (&DWP(16*7+0,"esp"),$len); # save $len%16
1658 &pshufd ($twres,$twtmp,0x13);
1659 &pxor ($twtmp,$twtmp);
1660 &movdqa ($twmask,&QWP(16*6,"esp"));
1661 &paddq ($tweak,$tweak); # &psllq($tweak,1);
1662 &pand ($twres,$twmask); # isolate carry and residue
1663 &pcmpgtd($twtmp,$tweak); # broadcast upper bits
1664 &pxor ($tweak,$twres);

1666 &set_label("xts_dec_only_one_more");
1667 &pshufd ($inout3,$twtmp,0x13);

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 29

1668 &movdqa ($inout4,$tweak); # put aside previous tweak
1669 &paddq ($tweak,$tweak); # &psllq($tweak,1);
1670 &pand ($inout3,$twmask); # isolate carry and residue
1671 &pxor ($inout3,$tweak);

1673 &mov ($key,$key_); # restore $key
1674 &mov ($rounds,$rounds_); # restore $rounds

1676 &movups ($inout0,&QWP(0,$inp)); # load input
1677 &xorps ($inout0,$inout3); # input^=tweak
1678 if ($inline)
1679 { &aesni_inline_generate1("dec"); }
1680 else
1681 { &call ("_aesni_decrypt1"); }
1682 &xorps ($inout0,$inout3); # output^=tweak
1683 &movups (&QWP(0,$out),$inout0); # write output

1685 &set_label("xts_dec_steal");
1686 &movz ($rounds,&BP(16,$inp));
1687 &movz ($key,&BP(0,$out));
1688 &lea ($inp,&DWP(1,$inp));
1689 &mov (&BP(0,$out),&LB($rounds));
1690 &mov (&BP(16,$out),&LB($key));
1691 &lea ($out,&DWP(1,$out));
1692 &sub ($len,1);
1693 &jnz (&label("xts_dec_steal"));

1695 &sub ($out,&DWP(16*7+0,"esp")); # rewind $out
1696 &mov ($key,$key_); # restore $key
1697 &mov ($rounds,$rounds_); # restore $rounds

1699 &movups ($inout0,&QWP(0,$out)); # load input
1700 &xorps ($inout0,$inout4); # input^=tweak
1701 if ($inline)
1702 { &aesni_inline_generate1("dec"); }
1703 else
1704 { &call ("_aesni_decrypt1"); }
1705 &xorps ($inout0,$inout4); # output^=tweak
1706 &movups (&QWP(0,$out),$inout0); # write output

1708 &set_label("xts_dec_ret");
1709 &mov ("esp",&DWP(16*7+4,"esp")); # restore %esp
1710 &function_end("aesni_xts_decrypt");
1711 }
1712 }

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 30

1713 ##
1714 # void $PREFIX_cbc_encrypt (const void *inp, void *out,
1715 # size_t length, const AES_KEY *key,
1716 # unsigned char *ivp,const int enc);
1717 &function_begin("${PREFIX}_cbc_encrypt");
1718 &mov ($inp,&wparam(0));
1719 &mov ($rounds_,"esp");
1720 &mov ($out,&wparam(1));
1721 &sub ($rounds_,24);
1722 &mov ($len,&wparam(2));
1723 &and ($rounds_,-16);
1724 &mov ($key,&wparam(3));
1725 &mov ($key_,&wparam(4));
1726 &test ($len,$len);
1727 &jz (&label("cbc_abort"));

1729 &cmp (&wparam(5),0);
1730 &xchg ($rounds_,"esp"); # alloca
1731 &movups ($ivec,&QWP(0,$key_)); # load IV
1732 &mov ($rounds,&DWP(240,$key));
1733 &mov ($key_,$key); # backup $key
1734 &mov (&DWP(16,"esp"),$rounds_); # save original %esp
1735 &mov ($rounds_,$rounds); # backup $rounds
1736 &je (&label("cbc_decrypt"));

1738 &movaps ($inout0,$ivec);
1739 &cmp ($len,16);
1740 &jb (&label("cbc_enc_tail"));
1741 &sub ($len,16);
1742 &jmp (&label("cbc_enc_loop"));

1744 &set_label("cbc_enc_loop",16);
1745 &movups ($ivec,&QWP(0,$inp)); # input actually
1746 &lea ($inp,&DWP(16,$inp));
1747 if ($inline)
1748 { &aesni_inline_generate1("enc",$inout0,$ivec); }
1749 else
1750 { &xorps($inout0,$ivec); &call("_aesni_encrypt1"); }
1751 &mov ($rounds,$rounds_); # restore $rounds
1752 &mov ($key,$key_); # restore $key
1753 &movups (&QWP(0,$out),$inout0); # store output
1754 &lea ($out,&DWP(16,$out));
1755 &sub ($len,16);
1756 &jnc (&label("cbc_enc_loop"));
1757 &add ($len,16);
1758 &jnz (&label("cbc_enc_tail"));
1759 &movaps ($ivec,$inout0);
1760 &jmp (&label("cbc_ret"));

1762 &set_label("cbc_enc_tail");
1763 &mov ("ecx",$len); # zaps $rounds
1764 &data_word(0xA4F3F689); # rep movsb
1765 &mov ("ecx",16); # zero tail
1766 &sub ("ecx",$len);
1767 &xor ("eax","eax"); # zaps $len
1768 &data_word(0xAAF3F689); # rep stosb
1769 &lea ($out,&DWP(-16,$out)); # rewind $out by 1 block
1770 &mov ($rounds,$rounds_); # restore $rounds
1771 &mov ($inp,$out); # $inp and $out are the same
1772 &mov ($key,$key_); # restore $key
1773 &jmp (&label("cbc_enc_loop"));
1774 ##
1775 &set_label("cbc_decrypt",16);
1776 &cmp ($len,0x50);
1777 &jbe (&label("cbc_dec_tail"));
1778 &movaps (&QWP(0,"esp"),$ivec); # save IV

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 31

1779 &sub ($len,0x50);
1780 &jmp (&label("cbc_dec_loop6_enter"));

1782 &set_label("cbc_dec_loop6",16);
1783 &movaps (&QWP(0,"esp"),$rndkey0); # save IV
1784 &movups (&QWP(0,$out),$inout5);
1785 &lea ($out,&DWP(0x10,$out));
1786 &set_label("cbc_dec_loop6_enter");
1787 &movdqu ($inout0,&QWP(0,$inp));
1788 &movdqu ($inout1,&QWP(0x10,$inp));
1789 &movdqu ($inout2,&QWP(0x20,$inp));
1790 &movdqu ($inout3,&QWP(0x30,$inp));
1791 &movdqu ($inout4,&QWP(0x40,$inp));
1792 &movdqu ($inout5,&QWP(0x50,$inp));

1794 &call ("_aesni_decrypt6");

1796 &movups ($rndkey1,&QWP(0,$inp));
1797 &movups ($rndkey0,&QWP(0x10,$inp));
1798 &xorps ($inout0,&QWP(0,"esp")); # ^=IV
1799 &xorps ($inout1,$rndkey1);
1800 &movups ($rndkey1,&QWP(0x20,$inp));
1801 &xorps ($inout2,$rndkey0);
1802 &movups ($rndkey0,&QWP(0x30,$inp));
1803 &xorps ($inout3,$rndkey1);
1804 &movups ($rndkey1,&QWP(0x40,$inp));
1805 &xorps ($inout4,$rndkey0);
1806 &movups ($rndkey0,&QWP(0x50,$inp)); # IV
1807 &xorps ($inout5,$rndkey1);
1808 &movups (&QWP(0,$out),$inout0);
1809 &movups (&QWP(0x10,$out),$inout1);
1810 &lea ($inp,&DWP(0x60,$inp));
1811 &movups (&QWP(0x20,$out),$inout2);
1812 &mov ($rounds,$rounds_) # restore $rounds
1813 &movups (&QWP(0x30,$out),$inout3);
1814 &mov ($key,$key_); # restore $key
1815 &movups (&QWP(0x40,$out),$inout4);
1816 &lea ($out,&DWP(0x50,$out));
1817 &sub ($len,0x60);
1818 &ja (&label("cbc_dec_loop6"));

1820 &movaps ($inout0,$inout5);
1821 &movaps ($ivec,$rndkey0);
1822 &add ($len,0x50);
1823 &jle (&label("cbc_dec_tail_collected"));
1824 &movups (&QWP(0,$out),$inout0);
1825 &lea ($out,&DWP(0x10,$out));
1826 &set_label("cbc_dec_tail");
1827 &movups ($inout0,&QWP(0,$inp));
1828 &movaps ($in0,$inout0);
1829 &cmp ($len,0x10);
1830 &jbe (&label("cbc_dec_one"));

1832 &movups ($inout1,&QWP(0x10,$inp));
1833 &movaps ($in1,$inout1);
1834 &cmp ($len,0x20);
1835 &jbe (&label("cbc_dec_two"));

1837 &movups ($inout2,&QWP(0x20,$inp));
1838 &cmp ($len,0x30);
1839 &jbe (&label("cbc_dec_three"));

1841 &movups ($inout3,&QWP(0x30,$inp));
1842 &cmp ($len,0x40);
1843 &jbe (&label("cbc_dec_four"));

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 32

1845 &movups ($inout4,&QWP(0x40,$inp));
1846 &movaps (&QWP(0,"esp"),$ivec); # save IV
1847 &movups ($inout0,&QWP(0,$inp));
1848 &xorps ($inout5,$inout5);
1849 &call ("_aesni_decrypt6");
1850 &movups ($rndkey1,&QWP(0,$inp));
1851 &movups ($rndkey0,&QWP(0x10,$inp));
1852 &xorps ($inout0,&QWP(0,"esp")); # ^= IV
1853 &xorps ($inout1,$rndkey1);
1854 &movups ($rndkey1,&QWP(0x20,$inp));
1855 &xorps ($inout2,$rndkey0);
1856 &movups ($rndkey0,&QWP(0x30,$inp));
1857 &xorps ($inout3,$rndkey1);
1858 &movups ($ivec,&QWP(0x40,$inp)); # IV
1859 &xorps ($inout4,$rndkey0);
1860 &movups (&QWP(0,$out),$inout0);
1861 &movups (&QWP(0x10,$out),$inout1);
1862 &movups (&QWP(0x20,$out),$inout2);
1863 &movups (&QWP(0x30,$out),$inout3);
1864 &lea ($out,&DWP(0x40,$out));
1865 &movaps ($inout0,$inout4);
1866 &sub ($len,0x50);
1867 &jmp (&label("cbc_dec_tail_collected"));

1869 &set_label("cbc_dec_one",16);
1870 if ($inline)
1871 { &aesni_inline_generate1("dec"); }
1872 else
1873 { &call ("_aesni_decrypt1"); }
1874 &xorps ($inout0,$ivec);
1875 &movaps ($ivec,$in0);
1876 &sub ($len,0x10);
1877 &jmp (&label("cbc_dec_tail_collected"));

1879 &set_label("cbc_dec_two",16);
1880 &xorps ($inout2,$inout2);
1881 &call ("_aesni_decrypt3");
1882 &xorps ($inout0,$ivec);
1883 &xorps ($inout1,$in0);
1884 &movups (&QWP(0,$out),$inout0);
1885 &movaps ($inout0,$inout1);
1886 &lea ($out,&DWP(0x10,$out));
1887 &movaps ($ivec,$in1);
1888 &sub ($len,0x20);
1889 &jmp (&label("cbc_dec_tail_collected"));

1891 &set_label("cbc_dec_three",16);
1892 &call ("_aesni_decrypt3");
1893 &xorps ($inout0,$ivec);
1894 &xorps ($inout1,$in0);
1895 &xorps ($inout2,$in1);
1896 &movups (&QWP(0,$out),$inout0);
1897 &movaps ($inout0,$inout2);
1898 &movups (&QWP(0x10,$out),$inout1);
1899 &lea ($out,&DWP(0x20,$out));
1900 &movups ($ivec,&QWP(0x20,$inp));
1901 &sub ($len,0x30);
1902 &jmp (&label("cbc_dec_tail_collected"));

1904 &set_label("cbc_dec_four",16);
1905 &call ("_aesni_decrypt4");
1906 &movups ($rndkey1,&QWP(0x10,$inp));
1907 &movups ($rndkey0,&QWP(0x20,$inp));
1908 &xorps ($inout0,$ivec);
1909 &movups ($ivec,&QWP(0x30,$inp));
1910 &xorps ($inout1,$in0);

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 33

1911 &movups (&QWP(0,$out),$inout0);
1912 &xorps ($inout2,$rndkey1);
1913 &movups (&QWP(0x10,$out),$inout1);
1914 &xorps ($inout3,$rndkey0);
1915 &movups (&QWP(0x20,$out),$inout2);
1916 &lea ($out,&DWP(0x30,$out));
1917 &movaps ($inout0,$inout3);
1918 &sub ($len,0x40);

1920 &set_label("cbc_dec_tail_collected");
1921 &and ($len,15);
1922 &jnz (&label("cbc_dec_tail_partial"));
1923 &movups (&QWP(0,$out),$inout0);
1924 &jmp (&label("cbc_ret"));

1926 &set_label("cbc_dec_tail_partial",16);
1927 &movaps (&QWP(0,"esp"),$inout0);
1928 &mov ("ecx",16);
1929 &mov ($inp,"esp");
1930 &sub ("ecx",$len);
1931 &data_word(0xA4F3F689); # rep movsb

1933 &set_label("cbc_ret");
1934 &mov ("esp",&DWP(16,"esp")); # pull original %esp
1935 &mov ($key_,&wparam(4));
1936 &movups (&QWP(0,$key_),$ivec); # output IV
1937 &set_label("cbc_abort");
1938 &function_end("${PREFIX}_cbc_encrypt");

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 34

1939 ##
1940 # Mechanical port from aesni-x86_64.pl.
1941 #
1942 # _aesni_set_encrypt_key is private interface,
1943 # input:
1944 # "eax" const unsigned char *userKey
1945 # $rounds int bits
1946 # $key AES_KEY *key
1947 # output:
1948 # "eax" return code
1949 # $round rounds

1951 &function_begin_B("_aesni_set_encrypt_key");
1952 &test ("eax","eax");
1953 &jz (&label("bad_pointer"));
1954 &test ($key,$key);
1955 &jz (&label("bad_pointer"));

1957 &movups ("xmm0",&QWP(0,"eax")); # pull first 128 bits of *userKey
1958 &xorps ("xmm4","xmm4"); # low dword of xmm4 is assumed 0
1959 &lea ($key,&DWP(16,$key));
1960 &cmp ($rounds,256);
1961 &je (&label("14rounds"));
1962 &cmp ($rounds,192);
1963 &je (&label("12rounds"));
1964 &cmp ($rounds,128);
1965 &jne (&label("bad_keybits"));

1967 &set_label("10rounds",16);
1968 &mov ($rounds,9);
1969 &$movekey (&QWP(-16,$key),"xmm0"); # round 0
1970 &aeskeygenassist("xmm1","xmm0",0x01); # round 1
1971 &call (&label("key_128_cold"));
1972 &aeskeygenassist("xmm1","xmm0",0x2); # round 2
1973 &call (&label("key_128"));
1974 &aeskeygenassist("xmm1","xmm0",0x04); # round 3
1975 &call (&label("key_128"));
1976 &aeskeygenassist("xmm1","xmm0",0x08); # round 4
1977 &call (&label("key_128"));
1978 &aeskeygenassist("xmm1","xmm0",0x10); # round 5
1979 &call (&label("key_128"));
1980 &aeskeygenassist("xmm1","xmm0",0x20); # round 6
1981 &call (&label("key_128"));
1982 &aeskeygenassist("xmm1","xmm0",0x40); # round 7
1983 &call (&label("key_128"));
1984 &aeskeygenassist("xmm1","xmm0",0x80); # round 8
1985 &call (&label("key_128"));
1986 &aeskeygenassist("xmm1","xmm0",0x1b); # round 9
1987 &call (&label("key_128"));
1988 &aeskeygenassist("xmm1","xmm0",0x36); # round 10
1989 &call (&label("key_128"));
1990 &$movekey (&QWP(0,$key),"xmm0");
1991 &mov (&DWP(80,$key),$rounds);
1992 &xor ("eax","eax");
1993 &ret();

1995 &set_label("key_128",16);
1996 &$movekey (&QWP(0,$key),"xmm0");
1997 &lea ($key,&DWP(16,$key));
1998 &set_label("key_128_cold");
1999 &shufps ("xmm4","xmm0",0b00010000);
2000 &xorps ("xmm0","xmm4");
2001 &shufps ("xmm4","xmm0",0b10001100);
2002 &xorps ("xmm0","xmm4");
2003 &shufps ("xmm1","xmm1",0b11111111); # critical path
2004 &xorps ("xmm0","xmm1");

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 35

2005 &ret();

2007 &set_label("12rounds",16);
2008 &movq ("xmm2",&QWP(16,"eax")); # remaining 1/3 of *user
2009 &mov ($rounds,11);
2010 &$movekey (&QWP(-16,$key),"xmm0") # round 0
2011 &aeskeygenassist("xmm1","xmm2",0x01); # round 1,2
2012 &call (&label("key_192a_cold"));
2013 &aeskeygenassist("xmm1","xmm2",0x02); # round 2,3
2014 &call (&label("key_192b"));
2015 &aeskeygenassist("xmm1","xmm2",0x04); # round 4,5
2016 &call (&label("key_192a"));
2017 &aeskeygenassist("xmm1","xmm2",0x08); # round 5,6
2018 &call (&label("key_192b"));
2019 &aeskeygenassist("xmm1","xmm2",0x10); # round 7,8
2020 &call (&label("key_192a"));
2021 &aeskeygenassist("xmm1","xmm2",0x20); # round 8,9
2022 &call (&label("key_192b"));
2023 &aeskeygenassist("xmm1","xmm2",0x40); # round 10,11
2024 &call (&label("key_192a"));
2025 &aeskeygenassist("xmm1","xmm2",0x80); # round 11,12
2026 &call (&label("key_192b"));
2027 &$movekey (&QWP(0,$key),"xmm0");
2028 &mov (&DWP(48,$key),$rounds);
2029 &xor ("eax","eax");
2030 &ret();

2032 &set_label("key_192a",16);
2033 &$movekey (&QWP(0,$key),"xmm0");
2034 &lea ($key,&DWP(16,$key));
2035 &set_label("key_192a_cold",16);
2036 &movaps ("xmm5","xmm2");
2037 &set_label("key_192b_warm");
2038 &shufps ("xmm4","xmm0",0b00010000);
2039 &movdqa ("xmm3","xmm2");
2040 &xorps ("xmm0","xmm4");
2041 &shufps ("xmm4","xmm0",0b10001100);
2042 &pslldq ("xmm3",4);
2043 &xorps ("xmm0","xmm4");
2044 &pshufd ("xmm1","xmm1",0b01010101); # critical path
2045 &pxor ("xmm2","xmm3");
2046 &pxor ("xmm0","xmm1");
2047 &pshufd ("xmm3","xmm0",0b11111111);
2048 &pxor ("xmm2","xmm3");
2049 &ret();

2051 &set_label("key_192b",16);
2052 &movaps ("xmm3","xmm0");
2053 &shufps ("xmm5","xmm0",0b01000100);
2054 &$movekey (&QWP(0,$key),"xmm5");
2055 &shufps ("xmm3","xmm2",0b01001110);
2056 &$movekey (&QWP(16,$key),"xmm3");
2057 &lea ($key,&DWP(32,$key));
2058 &jmp (&label("key_192b_warm"));

2060 &set_label("14rounds",16);
2061 &movups ("xmm2",&QWP(16,"eax")); # remaining half of *use
2062 &mov ($rounds,13);
2063 &lea ($key,&DWP(16,$key));
2064 &$movekey (&QWP(-32,$key),"xmm0"); # round 0
2065 &$movekey (&QWP(-16,$key),"xmm2"); # round 1
2066 &aeskeygenassist("xmm1","xmm2",0x01); # round 2
2067 &call (&label("key_256a_cold"));
2068 &aeskeygenassist("xmm1","xmm0",0x01); # round 3
2069 &call (&label("key_256b"));
2070 &aeskeygenassist("xmm1","xmm2",0x02); # round 4

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 36

2071 &call (&label("key_256a"));
2072 &aeskeygenassist("xmm1","xmm0",0x02); # round 5
2073 &call (&label("key_256b"));
2074 &aeskeygenassist("xmm1","xmm2",0x04); # round 6
2075 &call (&label("key_256a"));
2076 &aeskeygenassist("xmm1","xmm0",0x04); # round 7
2077 &call (&label("key_256b"));
2078 &aeskeygenassist("xmm1","xmm2",0x08); # round 8
2079 &call (&label("key_256a"));
2080 &aeskeygenassist("xmm1","xmm0",0x08); # round 9
2081 &call (&label("key_256b"));
2082 &aeskeygenassist("xmm1","xmm2",0x10); # round 10
2083 &call (&label("key_256a"));
2084 &aeskeygenassist("xmm1","xmm0",0x10); # round 11
2085 &call (&label("key_256b"));
2086 &aeskeygenassist("xmm1","xmm2",0x20); # round 12
2087 &call (&label("key_256a"));
2088 &aeskeygenassist("xmm1","xmm0",0x20); # round 13
2089 &call (&label("key_256b"));
2090 &aeskeygenassist("xmm1","xmm2",0x40); # round 14
2091 &call (&label("key_256a"));
2092 &$movekey (&QWP(0,$key),"xmm0");
2093 &mov (&DWP(16,$key),$rounds);
2094 &xor ("eax","eax");
2095 &ret();

2097 &set_label("key_256a",16);
2098 &$movekey (&QWP(0,$key),"xmm2");
2099 &lea ($key,&DWP(16,$key));
2100 &set_label("key_256a_cold");
2101 &shufps ("xmm4","xmm0",0b00010000);
2102 &xorps ("xmm0","xmm4");
2103 &shufps ("xmm4","xmm0",0b10001100);
2104 &xorps ("xmm0","xmm4");
2105 &shufps ("xmm1","xmm1",0b11111111); # critical path
2106 &xorps ("xmm0","xmm1");
2107 &ret();

2109 &set_label("key_256b",16);
2110 &$movekey (&QWP(0,$key),"xmm0");
2111 &lea ($key,&DWP(16,$key));

2113 &shufps ("xmm4","xmm2",0b00010000);
2114 &xorps ("xmm2","xmm4");
2115 &shufps ("xmm4","xmm2",0b10001100);
2116 &xorps ("xmm2","xmm4");
2117 &shufps ("xmm1","xmm1",0b10101010); # critical path
2118 &xorps ("xmm2","xmm1");
2119 &ret();

2121 &set_label("bad_pointer",4);
2122 &mov ("eax",-1);
2123 &ret ();
2124 &set_label("bad_keybits",4);
2125 &mov ("eax",-2);
2126 &ret ();
2127 &function_end_B("_aesni_set_encrypt_key");

2129 # int $PREFIX_set_encrypt_key (const unsigned char *userKey, int bits,
2130 # AES_KEY *key)
2131 &function_begin_B("${PREFIX}_set_encrypt_key");
2132 &mov ("eax",&wparam(0));
2133 &mov ($rounds,&wparam(1));
2134 &mov ($key,&wparam(2));
2135 &call ("_aesni_set_encrypt_key");
2136 &ret ();

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86.pl 37

2137 &function_end_B("${PREFIX}_set_encrypt_key");

2139 # int $PREFIX_set_decrypt_key (const unsigned char *userKey, int bits,
2140 # AES_KEY *key)
2141 &function_begin_B("${PREFIX}_set_decrypt_key");
2142 &mov ("eax",&wparam(0));
2143 &mov ($rounds,&wparam(1));
2144 &mov ($key,&wparam(2));
2145 &call ("_aesni_set_encrypt_key");
2146 &mov ($key,&wparam(2));
2147 &shl ($rounds,4) # rounds-1 after _aesni_set_encrypt_key
2148 &test ("eax","eax");
2149 &jnz (&label("dec_key_ret"));
2150 &lea ("eax",&DWP(16,$key,$rounds)); # end of key schedule

2152 &$movekey ("xmm0",&QWP(0,$key)); # just swap
2153 &$movekey ("xmm1",&QWP(0,"eax"));
2154 &$movekey (&QWP(0,"eax"),"xmm0");
2155 &$movekey (&QWP(0,$key),"xmm1");
2156 &lea ($key,&DWP(16,$key));
2157 &lea ("eax",&DWP(-16,"eax"));

2159 &set_label("dec_key_inverse");
2160 &$movekey ("xmm0",&QWP(0,$key)); # swap and inverse
2161 &$movekey ("xmm1",&QWP(0,"eax"));
2162 &aesimc ("xmm0","xmm0");
2163 &aesimc ("xmm1","xmm1");
2164 &lea ($key,&DWP(16,$key));
2165 &lea ("eax",&DWP(-16,"eax"));
2166 &$movekey (&QWP(16,"eax"),"xmm0");
2167 &$movekey (&QWP(-16,$key),"xmm1");
2168 &cmp ("eax",$key);
2169 &ja (&label("dec_key_inverse"));

2171 &$movekey ("xmm0",&QWP(0,$key)); # inverse middle
2172 &aesimc ("xmm0","xmm0");
2173 &$movekey (&QWP(0,$key),"xmm0");

2175 &xor ("eax","eax"); # return success
2176 &set_label("dec_key_ret");
2177 &ret ();
2178 &function_end_B("${PREFIX}_set_decrypt_key");
2179 &asciz("AES for Intel AES-NI, CRYPTOGAMS by <appro\@openssl.org>");

2181 &asm_finish();

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 1

**
 77731 Fri May 30 18:32:02 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl
2 #
3 # ==
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==
9 #
10 # This module implements support for Intel AES-NI extension. In
11 # OpenSSL context it’s used with Intel engine, but can also be used as
12 # drop-in replacement for crypto/aes/asm/aes-x86_64.pl [see below for
13 # details].
14 #
15 # Performance.
16 #
17 # Given aes(enc|dec) instructions’ latency asymptotic performance for
18 # non-parallelizable modes such as CBC encrypt is 3.75 cycles per byte
19 # processed with 128-bit key. And given their throughput asymptotic
20 # performance for parallelizable modes is 1.25 cycles per byte. Being
21 # asymptotic limit it’s not something you commonly achieve in reality,
22 # but how close does one get? Below are results collected for
23 # different modes and block sized. Pairs of numbers are for en-/
24 # decryption.
25 #
26 # 16-byte 64-byte 256-byte 1-KB 8-KB
27 # ECB 4.25/4.25 1.38/1.38 1.28/1.28 1.26/1.26 1.26/1.26
28 # CTR 5.42/5.42 1.92/1.92 1.44/1.44 1.28/1.28 1.26/1.26
29 # CBC 4.38/4.43 4.15/1.43 4.07/1.32 4.07/1.29 4.06/1.28
30 # CCM 5.66/9.42 4.42/5.41 4.16/4.40 4.09/4.15 4.06/4.07
31 # OFB 5.42/5.42 4.64/4.64 4.44/4.44 4.39/4.39 4.38/4.38
32 # CFB 5.73/5.85 5.56/5.62 5.48/5.56 5.47/5.55 5.47/5.55
33 #
34 # ECB, CTR, CBC and CCM results are free from EVP overhead. This means
35 # that otherwise used ’openssl speed -evp aes-128-??? -engine aesni
36 # [-decrypt]’ will exhibit 10-15% worse results for smaller blocks.
37 # The results were collected with specially crafted speed.c benchmark
38 # in order to compare them with results reported in "Intel Advanced
39 # Encryption Standard (AES) New Instruction Set" White Paper Revision
40 # 3.0 dated May 2010. All above results are consistently better. This
41 # module also provides better performance for block sizes smaller than
42 # 128 bytes in points *not* represented in the above table.
43 #
44 # Looking at the results for 8-KB buffer.
45 #
46 # CFB and OFB results are far from the limit, because implementation
47 # uses "generic" CRYPTO_[c|o]fb128_encrypt interfaces relying on
48 # single-block aesni_encrypt, which is not the most optimal way to go.
49 # CBC encrypt result is unexpectedly high and there is no documented
50 # explanation for it. Seemingly there is a small penalty for feeding
51 # the result back to AES unit the way it’s done in CBC mode. There is
52 # nothing one can do and the result appears optimal. CCM result is
53 # identical to CBC, because CBC-MAC is essentially CBC encrypt without
54 # saving output. CCM CTR "stays invisible," because it’s neatly
55 # interleaved wih CBC-MAC. This provides ~30% improvement over
56 # "straghtforward" CCM implementation with CTR and CBC-MAC performed
57 # disjointly. Parallelizable modes practically achieve the theoretical
58 # limit.
59 #
60 # Looking at how results vary with buffer size.
61 #

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 2

62 # Curves are practically saturated at 1-KB buffer size. In most cases
63 # "256-byte" performance is >95%, and "64-byte" is ~90% of "8-KB" one.
64 # CTR curve doesn’t follow this pattern and is "slowest" changing one
65 # with "256-byte" result being 87% of "8-KB." This is because overhead
66 # in CTR mode is most computationally intensive. Small-block CCM
67 # decrypt is slower than encrypt, because first CTR and last CBC-MAC
68 # iterations can’t be interleaved.
69 #
70 # Results for 192- and 256-bit keys.
71 #
72 # EVP-free results were observed to scale perfectly with number of
73 # rounds for larger block sizes, i.e. 192-bit result being 10/12 times
74 # lower and 256-bit one - 10/14. Well, in CBC encrypt case differences
75 # are a tad smaller, because the above mentioned penalty biases all
76 # results by same constant value. In similar way function call
77 # overhead affects small-block performance, as well as OFB and CFB
78 # results. Differences are not large, most common coefficients are
79 # 10/11.7 and 10/13.4 (as opposite to 10/12.0 and 10/14.0), but one
80 # observe even 10/11.2 and 10/12.4 (CTR, OFB, CFB)...

82 # January 2011
83 #
84 # While Westmere processor features 6 cycles latency for aes[enc|dec]
85 # instructions, which can be scheduled every second cycle, Sandy
86 # Bridge spends 8 cycles per instruction, but it can schedule them
87 # every cycle. This means that code targeting Westmere would perform
88 # suboptimally on Sandy Bridge. Therefore this update.
89 #
90 # In addition, non-parallelizable CBC encrypt (as well as CCM) is
91 # optimized. Relative improvement might appear modest, 8% on Westmere,
92 # but in absolute terms it’s 3.77 cycles per byte encrypted with
93 # 128-bit key on Westmere, and 5.07 - on Sandy Bridge. These numbers
94 # should be compared to asymptotic limits of 3.75 for Westmere and
95 # 5.00 for Sandy Bridge. Actually, the fact that they get this close
96 # to asymptotic limits is quite amazing. Indeed, the limit is
97 # calculated as latency times number of rounds, 10 for 128-bit key,
98 # and divided by 16, the number of bytes in block, or in other words
99 # it accounts *solely* for aesenc instructions. But there are extra
100 # instructions, and numbers so close to the asymptotic limits mean
101 # that it’s as if it takes as little as *one* additional cycle to
102 # execute all of them. How is it possible? It is possible thanks to
103 # out-of-order execution logic, which manages to overlap post-
104 # processing of previous block, things like saving the output, with
105 # actual encryption of current block, as well as pre-processing of
106 # current block, things like fetching input and xor-ing it with
107 # 0-round element of the key schedule, with actual encryption of
108 # previous block. Keep this in mind...
109 #
110 # For parallelizable modes, such as ECB, CBC decrypt, CTR, higher
111 # performance is achieved by interleaving instructions working on
112 # independent blocks. In which case asymptotic limit for such modes
113 # can be obtained by dividing above mentioned numbers by AES
114 # instructions’ interleave factor. Westmere can execute at most 3
115 # instructions at a time, meaning that optimal interleave factor is 3,
116 # and that’s where the "magic" number of 1.25 come from. "Optimal
117 # interleave factor" means that increase of interleave factor does
118 # not improve performance. The formula has proven to reflect reality
119 # pretty well on Westmere... Sandy Bridge on the other hand can
120 # execute up to 8 AES instructions at a time, so how does varying
121 # interleave factor affect the performance? Here is table for ECB
122 # (numbers are cycles per byte processed with 128-bit key):
123 #
124 # instruction interleave factor 3x 6x 8x
125 # theoretical asymptotic limit 1.67 0.83 0.625
126 # measured performance for 8KB block 1.05 0.86 0.84
127 #

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 3

128 # "as if" interleave factor 4.7x 5.8x 6.0x
129 #
130 # Further data for other parallelizable modes:
131 #
132 # CBC decrypt 1.16 0.93 0.93
133 # CTR 1.14 0.91 n/a
134 #
135 # Well, given 3x column it’s probably inappropriate to call the limit
136 # asymptotic, if it can be surpassed, isn’t it? What happens there?
137 # Rewind to CBC paragraph for the answer. Yes, out-of-order execution
138 # magic is responsible for this. Processor overlaps not only the
139 # additional instructions with AES ones, but even AES instuctions
140 # processing adjacent triplets of independent blocks. In the 6x case
141 # additional instructions still claim disproportionally small amount
142 # of additional cycles, but in 8x case number of instructions must be
143 # a tad too high for out-of-order logic to cope with, and AES unit
144 # remains underutilized... As you can see 8x interleave is hardly
145 # justifiable, so there no need to feel bad that 32-bit aesni-x86.pl
146 # utilizies 6x interleave because of limited register bank capacity.
147 #
148 # Higher interleave factors do have negative impact on Westmere
149 # performance. While for ECB mode it’s negligible ~1.5%, other
150 # parallelizables perform ~5% worse, which is outweighed by ~25%
151 # improvement on Sandy Bridge. To balance regression on Westmere
152 # CTR mode was implemented with 6x aesenc interleave factor.

154 # April 2011
155 #
156 # Add aesni_xts_[en|de]crypt. Westmere spends 1.33 cycles processing
157 # one byte out of 8KB with 128-bit key, Sandy Bridge - 0.97. Just like
158 # in CTR mode AES instruction interleave factor was chosen to be 6x.

160 $PREFIX="aesni"; # if $PREFIX is set to "AES", the script
161 # generates drop-in replacement for
162 # crypto/aes/asm/aes-x86_64.pl:-)

164 $flavour = shift;
165 $output = shift;
166 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

168 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

170 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
171 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
172 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
173 die "can’t locate x86_64-xlate.pl";

175 open OUT,"| \"$^X\" $xlate $flavour $output";
176 *STDOUT=*OUT;

178 $movkey = $PREFIX eq "aesni" ? "movups" : "movups";
179 @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
180 ("%rdi","%rsi","%rdx","%rcx"); # Unix order

182 $code=".text\n";

184 $rounds="%eax"; # input to and changed by aesni_[en|de]cryptN !!!
185 # this is natural Unix argument order for public $PREFIX_[ecb|cbc]_encrypt ...
186 $inp="%rdi";
187 $out="%rsi";
188 $len="%rdx";
189 $key="%rcx"; # input to and changed by aesni_[en|de]cryptN !!!
190 $ivp="%r8"; # cbc, ctr, ...

192 $rnds_="%r10d"; # backup copy for $rounds
193 $key_="%r11"; # backup copy for $key

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 4

195 # %xmm register layout
196 $rndkey0="%xmm0"; $rndkey1="%xmm1";
197 $inout0="%xmm2"; $inout1="%xmm3";
198 $inout2="%xmm4"; $inout3="%xmm5";
199 $inout4="%xmm6"; $inout5="%xmm7";
200 $inout6="%xmm8"; $inout7="%xmm9";

202 $in2="%xmm6"; $in1="%xmm7"; # used in CBC decrypt, CTR, ...
203 $in0="%xmm8"; $iv="%xmm9";

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 5

204 # Inline version of internal aesni_[en|de]crypt1.
205 #
206 # Why folded loop? Because aes[enc|dec] is slow enough to accommodate
207 # cycles which take care of loop variables...
208 { my $sn;
209 sub aesni_generate1 {
210 my ($p,$key,$rounds,$inout,$ivec)=@_; $inout=$inout0 if (!defined($inout));
211 ++$sn;
212 $code.=<<___;
213 $movkey ($key),$rndkey0
214 $movkey 16($key),$rndkey1
215 ___
216 $code.=<<___ if (defined($ivec));
217 xorps $rndkey0,$ivec
218 lea 32($key),$key
219 xorps $ivec,$inout
220 ___
221 $code.=<<___ if (!defined($ivec));
222 lea 32($key),$key
223 xorps $rndkey0,$inout
224 ___
225 $code.=<<___;
226 .Loop_${p}1_$sn:
227 aes${p} $rndkey1,$inout
228 dec $rounds
229 $movkey ($key),$rndkey1
230 lea 16($key),$key
231 jnz .Loop_${p}1_$sn # loop body is 16 bytes
232 aes${p}last $rndkey1,$inout
233 ___
234 }}
235 # void $PREFIX_[en|de]crypt (const void *inp,void *out,const AES_KEY *key);
236 #
237 { my ($inp,$out,$key) = @_4args;

239 $code.=<<___;
240 .globl ${PREFIX}_encrypt
241 .type ${PREFIX}_encrypt,\@abi-omnipotent
242 .align 16
243 ${PREFIX}_encrypt:
244 movups ($inp),$inout0 # load input
245 mov 240($key),$rounds # key->rounds
246 ___
247 &aesni_generate1("enc",$key,$rounds);
248 $code.=<<___;
249 movups $inout0,($out) # output
250 ret
251 .size ${PREFIX}_encrypt,.-${PREFIX}_encrypt

253 .globl ${PREFIX}_decrypt
254 .type ${PREFIX}_decrypt,\@abi-omnipotent
255 .align 16
256 ${PREFIX}_decrypt:
257 movups ($inp),$inout0 # load input
258 mov 240($key),$rounds # key->rounds
259 ___
260 &aesni_generate1("dec",$key,$rounds);
261 $code.=<<___;
262 movups $inout0,($out) # output
263 ret
264 .size ${PREFIX}_decrypt, .-${PREFIX}_decrypt
265 ___
266 }

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 6

267 # _aesni_[en|de]cryptN are private interfaces, N denotes interleave
268 # factor. Why 3x subroutine were originally used in loops? Even though
269 # aes[enc|dec] latency was originally 6, it could be scheduled only
270 # every *2nd* cycle. Thus 3x interleave was the one providing optimal
271 # utilization, i.e. when subroutine’s throughput is virtually same as
272 # of non-interleaved subroutine [for number of input blocks up to 3].
273 # This is why it makes no sense to implement 2x subroutine.
274 # aes[enc|dec] latency in next processor generation is 8, but the
275 # instructions can be scheduled every cycle. Optimal interleave for
276 # new processor is therefore 8x...
277 sub aesni_generate3 {
278 my $dir=shift;
279 # As already mentioned it takes in $key and $rounds, which are *not*
280 # preserved. $inout[0-2] is cipher/clear text...
281 $code.=<<___;
282 .type _aesni_${dir}rypt3,\@abi-omnipotent
283 .align 16
284 _aesni_${dir}rypt3:
285 $movkey ($key),$rndkey0
286 shr \$1,$rounds
287 $movkey 16($key),$rndkey1
288 lea 32($key),$key
289 xorps $rndkey0,$inout0
290 xorps $rndkey0,$inout1
291 xorps $rndkey0,$inout2
292 $movkey ($key),$rndkey0

294 .L${dir}_loop3:
295 aes${dir} $rndkey1,$inout0
296 aes${dir} $rndkey1,$inout1
297 dec $rounds
298 aes${dir} $rndkey1,$inout2
299 $movkey 16($key),$rndkey1
300 aes${dir} $rndkey0,$inout0
301 aes${dir} $rndkey0,$inout1
302 lea 32($key),$key
303 aes${dir} $rndkey0,$inout2
304 $movkey ($key),$rndkey0
305 jnz .L${dir}_loop3

307 aes${dir} $rndkey1,$inout0
308 aes${dir} $rndkey1,$inout1
309 aes${dir} $rndkey1,$inout2
310 aes${dir}last $rndkey0,$inout0
311 aes${dir}last $rndkey0,$inout1
312 aes${dir}last $rndkey0,$inout2
313 ret
314 .size _aesni_${dir}rypt3,.-_aesni_${dir}rypt3
315 ___
316 }
317 # 4x interleave is implemented to improve small block performance,
318 # most notably [and naturally] 4 block by ~30%. One can argue that one
319 # should have implemented 5x as well, but improvement would be <20%,
320 # so it’s not worth it...
321 sub aesni_generate4 {
322 my $dir=shift;
323 # As already mentioned it takes in $key and $rounds, which are *not*
324 # preserved. $inout[0-3] is cipher/clear text...
325 $code.=<<___;
326 .type _aesni_${dir}rypt4,\@abi-omnipotent
327 .align 16
328 _aesni_${dir}rypt4:
329 $movkey ($key),$rndkey0
330 shr \$1,$rounds
331 $movkey 16($key),$rndkey1
332 lea 32($key),$key

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 7

333 xorps $rndkey0,$inout0
334 xorps $rndkey0,$inout1
335 xorps $rndkey0,$inout2
336 xorps $rndkey0,$inout3
337 $movkey ($key),$rndkey0

339 .L${dir}_loop4:
340 aes${dir} $rndkey1,$inout0
341 aes${dir} $rndkey1,$inout1
342 dec $rounds
343 aes${dir} $rndkey1,$inout2
344 aes${dir} $rndkey1,$inout3
345 $movkey 16($key),$rndkey1
346 aes${dir} $rndkey0,$inout0
347 aes${dir} $rndkey0,$inout1
348 lea 32($key),$key
349 aes${dir} $rndkey0,$inout2
350 aes${dir} $rndkey0,$inout3
351 $movkey ($key),$rndkey0
352 jnz .L${dir}_loop4

354 aes${dir} $rndkey1,$inout0
355 aes${dir} $rndkey1,$inout1
356 aes${dir} $rndkey1,$inout2
357 aes${dir} $rndkey1,$inout3
358 aes${dir}last $rndkey0,$inout0
359 aes${dir}last $rndkey0,$inout1
360 aes${dir}last $rndkey0,$inout2
361 aes${dir}last $rndkey0,$inout3
362 ret
363 .size _aesni_${dir}rypt4,.-_aesni_${dir}rypt4
364 ___
365 }
366 sub aesni_generate6 {
367 my $dir=shift;
368 # As already mentioned it takes in $key and $rounds, which are *not*
369 # preserved. $inout[0-5] is cipher/clear text...
370 $code.=<<___;
371 .type _aesni_${dir}rypt6,\@abi-omnipotent
372 .align 16
373 _aesni_${dir}rypt6:
374 $movkey ($key),$rndkey0
375 shr \$1,$rounds
376 $movkey 16($key),$rndkey1
377 lea 32($key),$key
378 xorps $rndkey0,$inout0
379 pxor $rndkey0,$inout1
380 aes${dir} $rndkey1,$inout0
381 pxor $rndkey0,$inout2
382 aes${dir} $rndkey1,$inout1
383 pxor $rndkey0,$inout3
384 aes${dir} $rndkey1,$inout2
385 pxor $rndkey0,$inout4
386 aes${dir} $rndkey1,$inout3
387 pxor $rndkey0,$inout5
388 dec $rounds
389 aes${dir} $rndkey1,$inout4
390 $movkey ($key),$rndkey0
391 aes${dir} $rndkey1,$inout5
392 jmp .L${dir}_loop6_enter
393 .align 16
394 .L${dir}_loop6:
395 aes${dir} $rndkey1,$inout0
396 aes${dir} $rndkey1,$inout1
397 dec $rounds
398 aes${dir} $rndkey1,$inout2

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 8

399 aes${dir} $rndkey1,$inout3
400 aes${dir} $rndkey1,$inout4
401 aes${dir} $rndkey1,$inout5
402 .L${dir}_loop6_enter: # happens to be 16-byte aligned
403 $movkey 16($key),$rndkey1
404 aes${dir} $rndkey0,$inout0
405 aes${dir} $rndkey0,$inout1
406 lea 32($key),$key
407 aes${dir} $rndkey0,$inout2
408 aes${dir} $rndkey0,$inout3
409 aes${dir} $rndkey0,$inout4
410 aes${dir} $rndkey0,$inout5
411 $movkey ($key),$rndkey0
412 jnz .L${dir}_loop6

414 aes${dir} $rndkey1,$inout0
415 aes${dir} $rndkey1,$inout1
416 aes${dir} $rndkey1,$inout2
417 aes${dir} $rndkey1,$inout3
418 aes${dir} $rndkey1,$inout4
419 aes${dir} $rndkey1,$inout5
420 aes${dir}last $rndkey0,$inout0
421 aes${dir}last $rndkey0,$inout1
422 aes${dir}last $rndkey0,$inout2
423 aes${dir}last $rndkey0,$inout3
424 aes${dir}last $rndkey0,$inout4
425 aes${dir}last $rndkey0,$inout5
426 ret
427 .size _aesni_${dir}rypt6,.-_aesni_${dir}rypt6
428 ___
429 }
430 sub aesni_generate8 {
431 my $dir=shift;
432 # As already mentioned it takes in $key and $rounds, which are *not*
433 # preserved. $inout[0-7] is cipher/clear text...
434 $code.=<<___;
435 .type _aesni_${dir}rypt8,\@abi-omnipotent
436 .align 16
437 _aesni_${dir}rypt8:
438 $movkey ($key),$rndkey0
439 shr \$1,$rounds
440 $movkey 16($key),$rndkey1
441 lea 32($key),$key
442 xorps $rndkey0,$inout0
443 xorps $rndkey0,$inout1
444 aes${dir} $rndkey1,$inout0
445 pxor $rndkey0,$inout2
446 aes${dir} $rndkey1,$inout1
447 pxor $rndkey0,$inout3
448 aes${dir} $rndkey1,$inout2
449 pxor $rndkey0,$inout4
450 aes${dir} $rndkey1,$inout3
451 pxor $rndkey0,$inout5
452 dec $rounds
453 aes${dir} $rndkey1,$inout4
454 pxor $rndkey0,$inout6
455 aes${dir} $rndkey1,$inout5
456 pxor $rndkey0,$inout7
457 $movkey ($key),$rndkey0
458 aes${dir} $rndkey1,$inout6
459 aes${dir} $rndkey1,$inout7
460 $movkey 16($key),$rndkey1
461 jmp .L${dir}_loop8_enter
462 .align 16
463 .L${dir}_loop8:
464 aes${dir} $rndkey1,$inout0

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 9

465 aes${dir} $rndkey1,$inout1
466 dec $rounds
467 aes${dir} $rndkey1,$inout2
468 aes${dir} $rndkey1,$inout3
469 aes${dir} $rndkey1,$inout4
470 aes${dir} $rndkey1,$inout5
471 aes${dir} $rndkey1,$inout6
472 aes${dir} $rndkey1,$inout7
473 $movkey 16($key),$rndkey1
474 .L${dir}_loop8_enter: # happens to be 16-byte aligned
475 aes${dir} $rndkey0,$inout0
476 aes${dir} $rndkey0,$inout1
477 lea 32($key),$key
478 aes${dir} $rndkey0,$inout2
479 aes${dir} $rndkey0,$inout3
480 aes${dir} $rndkey0,$inout4
481 aes${dir} $rndkey0,$inout5
482 aes${dir} $rndkey0,$inout6
483 aes${dir} $rndkey0,$inout7
484 $movkey ($key),$rndkey0
485 jnz .L${dir}_loop8

487 aes${dir} $rndkey1,$inout0
488 aes${dir} $rndkey1,$inout1
489 aes${dir} $rndkey1,$inout2
490 aes${dir} $rndkey1,$inout3
491 aes${dir} $rndkey1,$inout4
492 aes${dir} $rndkey1,$inout5
493 aes${dir} $rndkey1,$inout6
494 aes${dir} $rndkey1,$inout7
495 aes${dir}last $rndkey0,$inout0
496 aes${dir}last $rndkey0,$inout1
497 aes${dir}last $rndkey0,$inout2
498 aes${dir}last $rndkey0,$inout3
499 aes${dir}last $rndkey0,$inout4
500 aes${dir}last $rndkey0,$inout5
501 aes${dir}last $rndkey0,$inout6
502 aes${dir}last $rndkey0,$inout7
503 ret
504 .size _aesni_${dir}rypt8,.-_aesni_${dir}rypt8
505 ___
506 }
507 &aesni_generate3("enc") if ($PREFIX eq "aesni");
508 &aesni_generate3("dec");
509 &aesni_generate4("enc") if ($PREFIX eq "aesni");
510 &aesni_generate4("dec");
511 &aesni_generate6("enc") if ($PREFIX eq "aesni");
512 &aesni_generate6("dec");
513 &aesni_generate8("enc") if ($PREFIX eq "aesni");
514 &aesni_generate8("dec");

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 10

515 if ($PREFIX eq "aesni") {
516 ##
517 # void aesni_ecb_encrypt (const void *in, void *out,
518 # size_t length, const AES_KEY *key,
519 # int enc);
520 $code.=<<___;
521 .globl aesni_ecb_encrypt
522 .type aesni_ecb_encrypt,\@function,5
523 .align 16
524 aesni_ecb_encrypt:
525 and \$-16,$len
526 jz .Lecb_ret

528 mov 240($key),$rounds # key->rounds
529 $movkey ($key),$rndkey0
530 mov $key,$key_ # backup $key
531 mov $rounds,$rnds_ # backup $rounds
532 test %r8d,%r8d # 5th argument
533 jz .Lecb_decrypt
534 #--------------------------- ECB ENCRYPT ------------------------------#
535 cmp \$0x80,$len
536 jb .Lecb_enc_tail

538 movdqu ($inp),$inout0
539 movdqu 0x10($inp),$inout1
540 movdqu 0x20($inp),$inout2
541 movdqu 0x30($inp),$inout3
542 movdqu 0x40($inp),$inout4
543 movdqu 0x50($inp),$inout5
544 movdqu 0x60($inp),$inout6
545 movdqu 0x70($inp),$inout7
546 lea 0x80($inp),$inp
547 sub \$0x80,$len
548 jmp .Lecb_enc_loop8_enter
549 .align 16
550 .Lecb_enc_loop8:
551 movups $inout0,($out)
552 mov $key_,$key # restore $key
553 movdqu ($inp),$inout0
554 mov $rnds_,$rounds # restore $rounds
555 movups $inout1,0x10($out)
556 movdqu 0x10($inp),$inout1
557 movups $inout2,0x20($out)
558 movdqu 0x20($inp),$inout2
559 movups $inout3,0x30($out)
560 movdqu 0x30($inp),$inout3
561 movups $inout4,0x40($out)
562 movdqu 0x40($inp),$inout4
563 movups $inout5,0x50($out)
564 movdqu 0x50($inp),$inout5
565 movups $inout6,0x60($out)
566 movdqu 0x60($inp),$inout6
567 movups $inout7,0x70($out)
568 lea 0x80($out),$out
569 movdqu 0x70($inp),$inout7
570 lea 0x80($inp),$inp
571 .Lecb_enc_loop8_enter:

573 call _aesni_encrypt8

575 sub \$0x80,$len
576 jnc .Lecb_enc_loop8

578 movups $inout0,($out)
579 mov $key_,$key # restore $key
580 movups $inout1,0x10($out)

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 11

581 mov $rnds_,$rounds # restore $rounds
582 movups $inout2,0x20($out)
583 movups $inout3,0x30($out)
584 movups $inout4,0x40($out)
585 movups $inout5,0x50($out)
586 movups $inout6,0x60($out)
587 movups $inout7,0x70($out)
588 lea 0x80($out),$out
589 add \$0x80,$len
590 jz .Lecb_ret

592 .Lecb_enc_tail:
593 movups ($inp),$inout0
594 cmp \$0x20,$len
595 jb .Lecb_enc_one
596 movups 0x10($inp),$inout1
597 je .Lecb_enc_two
598 movups 0x20($inp),$inout2
599 cmp \$0x40,$len
600 jb .Lecb_enc_three
601 movups 0x30($inp),$inout3
602 je .Lecb_enc_four
603 movups 0x40($inp),$inout4
604 cmp \$0x60,$len
605 jb .Lecb_enc_five
606 movups 0x50($inp),$inout5
607 je .Lecb_enc_six
608 movdqu 0x60($inp),$inout6
609 call _aesni_encrypt8
610 movups $inout0,($out)
611 movups $inout1,0x10($out)
612 movups $inout2,0x20($out)
613 movups $inout3,0x30($out)
614 movups $inout4,0x40($out)
615 movups $inout5,0x50($out)
616 movups $inout6,0x60($out)
617 jmp .Lecb_ret
618 .align 16
619 .Lecb_enc_one:
620 ___
621 &aesni_generate1("enc",$key,$rounds);
622 $code.=<<___;
623 movups $inout0,($out)
624 jmp .Lecb_ret
625 .align 16
626 .Lecb_enc_two:
627 xorps $inout2,$inout2
628 call _aesni_encrypt3
629 movups $inout0,($out)
630 movups $inout1,0x10($out)
631 jmp .Lecb_ret
632 .align 16
633 .Lecb_enc_three:
634 call _aesni_encrypt3
635 movups $inout0,($out)
636 movups $inout1,0x10($out)
637 movups $inout2,0x20($out)
638 jmp .Lecb_ret
639 .align 16
640 .Lecb_enc_four:
641 call _aesni_encrypt4
642 movups $inout0,($out)
643 movups $inout1,0x10($out)
644 movups $inout2,0x20($out)
645 movups $inout3,0x30($out)
646 jmp .Lecb_ret

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 12

647 .align 16
648 .Lecb_enc_five:
649 xorps $inout5,$inout5
650 call _aesni_encrypt6
651 movups $inout0,($out)
652 movups $inout1,0x10($out)
653 movups $inout2,0x20($out)
654 movups $inout3,0x30($out)
655 movups $inout4,0x40($out)
656 jmp .Lecb_ret
657 .align 16
658 .Lecb_enc_six:
659 call _aesni_encrypt6
660 movups $inout0,($out)
661 movups $inout1,0x10($out)
662 movups $inout2,0x20($out)
663 movups $inout3,0x30($out)
664 movups $inout4,0x40($out)
665 movups $inout5,0x50($out)
666 jmp .Lecb_ret

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 13

667 #--------------------------- ECB DECRYPT ------------------------------#
668 .align 16
669 .Lecb_decrypt:
670 cmp \$0x80,$len
671 jb .Lecb_dec_tail

673 movdqu ($inp),$inout0
674 movdqu 0x10($inp),$inout1
675 movdqu 0x20($inp),$inout2
676 movdqu 0x30($inp),$inout3
677 movdqu 0x40($inp),$inout4
678 movdqu 0x50($inp),$inout5
679 movdqu 0x60($inp),$inout6
680 movdqu 0x70($inp),$inout7
681 lea 0x80($inp),$inp
682 sub \$0x80,$len
683 jmp .Lecb_dec_loop8_enter
684 .align 16
685 .Lecb_dec_loop8:
686 movups $inout0,($out)
687 mov $key_,$key # restore $key
688 movdqu ($inp),$inout0
689 mov $rnds_,$rounds # restore $rounds
690 movups $inout1,0x10($out)
691 movdqu 0x10($inp),$inout1
692 movups $inout2,0x20($out)
693 movdqu 0x20($inp),$inout2
694 movups $inout3,0x30($out)
695 movdqu 0x30($inp),$inout3
696 movups $inout4,0x40($out)
697 movdqu 0x40($inp),$inout4
698 movups $inout5,0x50($out)
699 movdqu 0x50($inp),$inout5
700 movups $inout6,0x60($out)
701 movdqu 0x60($inp),$inout6
702 movups $inout7,0x70($out)
703 lea 0x80($out),$out
704 movdqu 0x70($inp),$inout7
705 lea 0x80($inp),$inp
706 .Lecb_dec_loop8_enter:

708 call _aesni_decrypt8

710 $movkey ($key_),$rndkey0
711 sub \$0x80,$len
712 jnc .Lecb_dec_loop8

714 movups $inout0,($out)
715 mov $key_,$key # restore $key
716 movups $inout1,0x10($out)
717 mov $rnds_,$rounds # restore $rounds
718 movups $inout2,0x20($out)
719 movups $inout3,0x30($out)
720 movups $inout4,0x40($out)
721 movups $inout5,0x50($out)
722 movups $inout6,0x60($out)
723 movups $inout7,0x70($out)
724 lea 0x80($out),$out
725 add \$0x80,$len
726 jz .Lecb_ret

728 .Lecb_dec_tail:
729 movups ($inp),$inout0
730 cmp \$0x20,$len
731 jb .Lecb_dec_one
732 movups 0x10($inp),$inout1

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 14

733 je .Lecb_dec_two
734 movups 0x20($inp),$inout2
735 cmp \$0x40,$len
736 jb .Lecb_dec_three
737 movups 0x30($inp),$inout3
738 je .Lecb_dec_four
739 movups 0x40($inp),$inout4
740 cmp \$0x60,$len
741 jb .Lecb_dec_five
742 movups 0x50($inp),$inout5
743 je .Lecb_dec_six
744 movups 0x60($inp),$inout6
745 $movkey ($key),$rndkey0
746 call _aesni_decrypt8
747 movups $inout0,($out)
748 movups $inout1,0x10($out)
749 movups $inout2,0x20($out)
750 movups $inout3,0x30($out)
751 movups $inout4,0x40($out)
752 movups $inout5,0x50($out)
753 movups $inout6,0x60($out)
754 jmp .Lecb_ret
755 .align 16
756 .Lecb_dec_one:
757 ___
758 &aesni_generate1("dec",$key,$rounds);
759 $code.=<<___;
760 movups $inout0,($out)
761 jmp .Lecb_ret
762 .align 16
763 .Lecb_dec_two:
764 xorps $inout2,$inout2
765 call _aesni_decrypt3
766 movups $inout0,($out)
767 movups $inout1,0x10($out)
768 jmp .Lecb_ret
769 .align 16
770 .Lecb_dec_three:
771 call _aesni_decrypt3
772 movups $inout0,($out)
773 movups $inout1,0x10($out)
774 movups $inout2,0x20($out)
775 jmp .Lecb_ret
776 .align 16
777 .Lecb_dec_four:
778 call _aesni_decrypt4
779 movups $inout0,($out)
780 movups $inout1,0x10($out)
781 movups $inout2,0x20($out)
782 movups $inout3,0x30($out)
783 jmp .Lecb_ret
784 .align 16
785 .Lecb_dec_five:
786 xorps $inout5,$inout5
787 call _aesni_decrypt6
788 movups $inout0,($out)
789 movups $inout1,0x10($out)
790 movups $inout2,0x20($out)
791 movups $inout3,0x30($out)
792 movups $inout4,0x40($out)
793 jmp .Lecb_ret
794 .align 16
795 .Lecb_dec_six:
796 call _aesni_decrypt6
797 movups $inout0,($out)
798 movups $inout1,0x10($out)

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 15

799 movups $inout2,0x20($out)
800 movups $inout3,0x30($out)
801 movups $inout4,0x40($out)
802 movups $inout5,0x50($out)

804 .Lecb_ret:
805 ret
806 .size aesni_ecb_encrypt,.-aesni_ecb_encrypt
807 ___

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 16

808 {
809 ##
810 # void aesni_ccm64_[en|de]crypt_blocks (const void *in, void *out,
811 # size_t blocks, const AES_KEY *key,
812 # const char *ivec,char *cmac);
813 #
814 # Handles only complete blocks, operates on 64-bit counter and
815 # does not update *ivec! Nor does it finalize CMAC value
816 # (see engine/eng_aesni.c for details)
817 #
818 {
819 my $cmac="%r9"; # 6th argument

821 my $increment="%xmm6";
822 my $bswap_mask="%xmm7";

824 $code.=<<___;
825 .globl aesni_ccm64_encrypt_blocks
826 .type aesni_ccm64_encrypt_blocks,\@function,6
827 .align 16
828 aesni_ccm64_encrypt_blocks:
829 ___
830 $code.=<<___ if ($win64);
831 lea -0x58(%rsp),%rsp
832 movaps %xmm6,(%rsp)
833 movaps %xmm7,0x10(%rsp)
834 movaps %xmm8,0x20(%rsp)
835 movaps %xmm9,0x30(%rsp)
836 .Lccm64_enc_body:
837 ___
838 $code.=<<___;
839 mov 240($key),$rounds # key->rounds
840 movdqu ($ivp),$iv
841 movdqa .Lincrement64(%rip),$increment
842 movdqa .Lbswap_mask(%rip),$bswap_mask

844 shr \$1,$rounds
845 lea 0($key),$key_
846 movdqu ($cmac),$inout1
847 movdqa $iv,$inout0
848 mov $rounds,$rnds_
849 pshufb $bswap_mask,$iv
850 jmp .Lccm64_enc_outer
851 .align 16
852 .Lccm64_enc_outer:
853 $movkey ($key_),$rndkey0
854 mov $rnds_,$rounds
855 movups ($inp),$in0 # load inp

857 xorps $rndkey0,$inout0 # counter
858 $movkey 16($key_),$rndkey1
859 xorps $in0,$rndkey0
860 lea 32($key_),$key
861 xorps $rndkey0,$inout1 # cmac^=inp
862 $movkey ($key),$rndkey0

864 .Lccm64_enc2_loop:
865 aesenc $rndkey1,$inout0
866 dec $rounds
867 aesenc $rndkey1,$inout1
868 $movkey 16($key),$rndkey1
869 aesenc $rndkey0,$inout0
870 lea 32($key),$key
871 aesenc $rndkey0,$inout1
872 $movkey 0($key),$rndkey0
873 jnz .Lccm64_enc2_loop

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 17

874 aesenc $rndkey1,$inout0
875 aesenc $rndkey1,$inout1
876 paddq $increment,$iv
877 aesenclast $rndkey0,$inout0
878 aesenclast $rndkey0,$inout1

880 dec $len
881 lea 16($inp),$inp
882 xorps $inout0,$in0 # inp ^= E(iv)
883 movdqa $iv,$inout0
884 movups $in0,($out) # save output
885 lea 16($out),$out
886 pshufb $bswap_mask,$inout0
887 jnz .Lccm64_enc_outer

889 movups $inout1,($cmac)
890 ___
891 $code.=<<___ if ($win64);
892 movaps (%rsp),%xmm6
893 movaps 0x10(%rsp),%xmm7
894 movaps 0x20(%rsp),%xmm8
895 movaps 0x30(%rsp),%xmm9
896 lea 0x58(%rsp),%rsp
897 .Lccm64_enc_ret:
898 ___
899 $code.=<<___;
900 ret
901 .size aesni_ccm64_encrypt_blocks,.-aesni_ccm64_encrypt_blocks
902 ___
903 ##
904 $code.=<<___;
905 .globl aesni_ccm64_decrypt_blocks
906 .type aesni_ccm64_decrypt_blocks,\@function,6
907 .align 16
908 aesni_ccm64_decrypt_blocks:
909 ___
910 $code.=<<___ if ($win64);
911 lea -0x58(%rsp),%rsp
912 movaps %xmm6,(%rsp)
913 movaps %xmm7,0x10(%rsp)
914 movaps %xmm8,0x20(%rsp)
915 movaps %xmm9,0x30(%rsp)
916 .Lccm64_dec_body:
917 ___
918 $code.=<<___;
919 mov 240($key),$rounds # key->rounds
920 movups ($ivp),$iv
921 movdqu ($cmac),$inout1
922 movdqa .Lincrement64(%rip),$increment
923 movdqa .Lbswap_mask(%rip),$bswap_mask

925 movaps $iv,$inout0
926 mov $rounds,$rnds_
927 mov $key,$key_
928 pshufb $bswap_mask,$iv
929 ___
930 &aesni_generate1("enc",$key,$rounds);
931 $code.=<<___;
932 movups ($inp),$in0 # load inp
933 paddq $increment,$iv
934 lea 16($inp),$inp
935 jmp .Lccm64_dec_outer
936 .align 16
937 .Lccm64_dec_outer:
938 xorps $inout0,$in0 # inp ^= E(iv)
939 movdqa $iv,$inout0

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 18

940 mov $rnds_,$rounds
941 movups $in0,($out) # save output
942 lea 16($out),$out
943 pshufb $bswap_mask,$inout0

945 sub \$1,$len
946 jz .Lccm64_dec_break

948 $movkey ($key_),$rndkey0
949 shr \$1,$rounds
950 $movkey 16($key_),$rndkey1
951 xorps $rndkey0,$in0
952 lea 32($key_),$key
953 xorps $rndkey0,$inout0
954 xorps $in0,$inout1 # cmac^=out
955 $movkey ($key),$rndkey0

957 .Lccm64_dec2_loop:
958 aesenc $rndkey1,$inout0
959 dec $rounds
960 aesenc $rndkey1,$inout1
961 $movkey 16($key),$rndkey1
962 aesenc $rndkey0,$inout0
963 lea 32($key),$key
964 aesenc $rndkey0,$inout1
965 $movkey 0($key),$rndkey0
966 jnz .Lccm64_dec2_loop
967 movups ($inp),$in0 # load inp
968 paddq $increment,$iv
969 aesenc $rndkey1,$inout0
970 aesenc $rndkey1,$inout1
971 lea 16($inp),$inp
972 aesenclast $rndkey0,$inout0
973 aesenclast $rndkey0,$inout1
974 jmp .Lccm64_dec_outer

976 .align 16
977 .Lccm64_dec_break:
978 #xorps $in0,$inout1 # cmac^=out
979 ___
980 &aesni_generate1("enc",$key_,$rounds,$inout1,$in0);
981 $code.=<<___;
982 movups $inout1,($cmac)
983 ___
984 $code.=<<___ if ($win64);
985 movaps (%rsp),%xmm6
986 movaps 0x10(%rsp),%xmm7
987 movaps 0x20(%rsp),%xmm8
988 movaps 0x30(%rsp),%xmm9
989 lea 0x58(%rsp),%rsp
990 .Lccm64_dec_ret:
991 ___
992 $code.=<<___;
993 ret
994 .size aesni_ccm64_decrypt_blocks,.-aesni_ccm64_decrypt_blocks
995 ___
996 }

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 19

997 ##
998 # void aesni_ctr32_encrypt_blocks (const void *in, void *out,
999 # size_t blocks, const AES_KEY *key,
1000 # const char *ivec);
1001 #
1002 # Handles only complete blocks, operates on 32-bit counter and
1003 # does not update *ivec! (see engine/eng_aesni.c for details)
1004 #
1005 {
1006 my $reserved = $win64?0:-0x28;
1007 my ($in0,$in1,$in2,$in3)=map("%xmm$_",(8..11));
1008 my ($iv0,$iv1,$ivec)=("%xmm12","%xmm13","%xmm14");
1009 my $bswap_mask="%xmm15";

1011 $code.=<<___;
1012 .globl aesni_ctr32_encrypt_blocks
1013 .type aesni_ctr32_encrypt_blocks,\@function,5
1014 .align 16
1015 aesni_ctr32_encrypt_blocks:
1016 ___
1017 $code.=<<___ if ($win64);
1018 lea -0xc8(%rsp),%rsp
1019 movaps %xmm6,0x20(%rsp)
1020 movaps %xmm7,0x30(%rsp)
1021 movaps %xmm8,0x40(%rsp)
1022 movaps %xmm9,0x50(%rsp)
1023 movaps %xmm10,0x60(%rsp)
1024 movaps %xmm11,0x70(%rsp)
1025 movaps %xmm12,0x80(%rsp)
1026 movaps %xmm13,0x90(%rsp)
1027 movaps %xmm14,0xa0(%rsp)
1028 movaps %xmm15,0xb0(%rsp)
1029 .Lctr32_body:
1030 ___
1031 $code.=<<___;
1032 cmp \$1,$len
1033 je .Lctr32_one_shortcut

1035 movdqu ($ivp),$ivec
1036 movdqa .Lbswap_mask(%rip),$bswap_mask
1037 xor $rounds,$rounds
1038 pextrd \$3,$ivec,$rnds_ # pull 32-bit counter
1039 pinsrd \$3,$rounds,$ivec # wipe 32-bit counter

1041 mov 240($key),$rounds # key->rounds
1042 bswap $rnds_
1043 pxor $iv0,$iv0 # vector of 3 32-bit counters
1044 pxor $iv1,$iv1 # vector of 3 32-bit counters
1045 pinsrd \$0,$rnds_,$iv0
1046 lea 3($rnds_),$key_
1047 pinsrd \$0,$key_,$iv1
1048 inc $rnds_
1049 pinsrd \$1,$rnds_,$iv0
1050 inc $key_
1051 pinsrd \$1,$key_,$iv1
1052 inc $rnds_
1053 pinsrd \$2,$rnds_,$iv0
1054 inc $key_
1055 pinsrd \$2,$key_,$iv1
1056 movdqa $iv0,$reserved(%rsp)
1057 pshufb $bswap_mask,$iv0
1058 movdqa $iv1,‘$reserved+0x10‘(%rsp)
1059 pshufb $bswap_mask,$iv1

1061 pshufd \$‘3<<6‘,$iv0,$inout0 # place counter to upper dword
1062 pshufd \$‘2<<6‘,$iv0,$inout1

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 20

1063 pshufd \$‘1<<6‘,$iv0,$inout2
1064 cmp \$6,$len
1065 jb .Lctr32_tail
1066 shr \$1,$rounds
1067 mov $key,$key_ # backup $key
1068 mov $rounds,$rnds_ # backup $rounds
1069 sub \$6,$len
1070 jmp .Lctr32_loop6

1072 .align 16
1073 .Lctr32_loop6:
1074 pshufd \$‘3<<6‘,$iv1,$inout3
1075 por $ivec,$inout0 # merge counter-less ivec
1076 $movkey ($key_),$rndkey0
1077 pshufd \$‘2<<6‘,$iv1,$inout4
1078 por $ivec,$inout1
1079 $movkey 16($key_),$rndkey1
1080 pshufd \$‘1<<6‘,$iv1,$inout5
1081 por $ivec,$inout2
1082 por $ivec,$inout3
1083 xorps $rndkey0,$inout0
1084 por $ivec,$inout4
1085 por $ivec,$inout5

1087 # inline _aesni_encrypt6 and interleave last rounds
1088 # with own code...

1090 pxor $rndkey0,$inout1
1091 aesenc $rndkey1,$inout0
1092 lea 32($key_),$key
1093 pxor $rndkey0,$inout2
1094 aesenc $rndkey1,$inout1
1095 movdqa .Lincrement32(%rip),$iv1
1096 pxor $rndkey0,$inout3
1097 aesenc $rndkey1,$inout2
1098 movdqa $reserved(%rsp),$iv0
1099 pxor $rndkey0,$inout4
1100 aesenc $rndkey1,$inout3
1101 pxor $rndkey0,$inout5
1102 $movkey ($key),$rndkey0
1103 dec $rounds
1104 aesenc $rndkey1,$inout4
1105 aesenc $rndkey1,$inout5
1106 jmp .Lctr32_enc_loop6_enter
1107 .align 16
1108 .Lctr32_enc_loop6:
1109 aesenc $rndkey1,$inout0
1110 aesenc $rndkey1,$inout1
1111 dec $rounds
1112 aesenc $rndkey1,$inout2
1113 aesenc $rndkey1,$inout3
1114 aesenc $rndkey1,$inout4
1115 aesenc $rndkey1,$inout5
1116 .Lctr32_enc_loop6_enter:
1117 $movkey 16($key),$rndkey1
1118 aesenc $rndkey0,$inout0
1119 aesenc $rndkey0,$inout1
1120 lea 32($key),$key
1121 aesenc $rndkey0,$inout2
1122 aesenc $rndkey0,$inout3
1123 aesenc $rndkey0,$inout4
1124 aesenc $rndkey0,$inout5
1125 $movkey ($key),$rndkey0
1126 jnz .Lctr32_enc_loop6

1128 aesenc $rndkey1,$inout0

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 21

1129 paddd $iv1,$iv0 # increment counter vector
1130 aesenc $rndkey1,$inout1
1131 paddd ‘$reserved+0x10‘(%rsp),$iv1
1132 aesenc $rndkey1,$inout2
1133 movdqa $iv0,$reserved(%rsp) # save counter vector
1134 aesenc $rndkey1,$inout3
1135 movdqa $iv1,‘$reserved+0x10‘(%rsp)
1136 aesenc $rndkey1,$inout4
1137 pshufb $bswap_mask,$iv0 # byte swap
1138 aesenc $rndkey1,$inout5
1139 pshufb $bswap_mask,$iv1

1141 aesenclast $rndkey0,$inout0
1142 movups ($inp),$in0 # load input
1143 aesenclast $rndkey0,$inout1
1144 movups 0x10($inp),$in1
1145 aesenclast $rndkey0,$inout2
1146 movups 0x20($inp),$in2
1147 aesenclast $rndkey0,$inout3
1148 movups 0x30($inp),$in3
1149 aesenclast $rndkey0,$inout4
1150 movups 0x40($inp),$rndkey1
1151 aesenclast $rndkey0,$inout5
1152 movups 0x50($inp),$rndkey0
1153 lea 0x60($inp),$inp

1155 xorps $inout0,$in0 # xor
1156 pshufd \$‘3<<6‘,$iv0,$inout0
1157 xorps $inout1,$in1
1158 pshufd \$‘2<<6‘,$iv0,$inout1
1159 movups $in0,($out) # store output
1160 xorps $inout2,$in2
1161 pshufd \$‘1<<6‘,$iv0,$inout2
1162 movups $in1,0x10($out)
1163 xorps $inout3,$in3
1164 movups $in2,0x20($out)
1165 xorps $inout4,$rndkey1
1166 movups $in3,0x30($out)
1167 xorps $inout5,$rndkey0
1168 movups $rndkey1,0x40($out)
1169 movups $rndkey0,0x50($out)
1170 lea 0x60($out),$out
1171 mov $rnds_,$rounds
1172 sub \$6,$len
1173 jnc .Lctr32_loop6

1175 add \$6,$len
1176 jz .Lctr32_done
1177 mov $key_,$key # restore $key
1178 lea 1($rounds,$rounds),$rounds # restore original value

1180 .Lctr32_tail:
1181 por $ivec,$inout0
1182 movups ($inp),$in0
1183 cmp \$2,$len
1184 jb .Lctr32_one

1186 por $ivec,$inout1
1187 movups 0x10($inp),$in1
1188 je .Lctr32_two

1190 pshufd \$‘3<<6‘,$iv1,$inout3
1191 por $ivec,$inout2
1192 movups 0x20($inp),$in2
1193 cmp \$4,$len
1194 jb .Lctr32_three

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 22

1196 pshufd \$‘2<<6‘,$iv1,$inout4
1197 por $ivec,$inout3
1198 movups 0x30($inp),$in3
1199 je .Lctr32_four

1201 por $ivec,$inout4
1202 xorps $inout5,$inout5

1204 call _aesni_encrypt6

1206 movups 0x40($inp),$rndkey1
1207 xorps $inout0,$in0
1208 xorps $inout1,$in1
1209 movups $in0,($out)
1210 xorps $inout2,$in2
1211 movups $in1,0x10($out)
1212 xorps $inout3,$in3
1213 movups $in2,0x20($out)
1214 xorps $inout4,$rndkey1
1215 movups $in3,0x30($out)
1216 movups $rndkey1,0x40($out)
1217 jmp .Lctr32_done

1219 .align 16
1220 .Lctr32_one_shortcut:
1221 movups ($ivp),$inout0
1222 movups ($inp),$in0
1223 mov 240($key),$rounds # key->rounds
1224 .Lctr32_one:
1225 ___
1226 &aesni_generate1("enc",$key,$rounds);
1227 $code.=<<___;
1228 xorps $inout0,$in0
1229 movups $in0,($out)
1230 jmp .Lctr32_done

1232 .align 16
1233 .Lctr32_two:
1234 xorps $inout2,$inout2
1235 call _aesni_encrypt3
1236 xorps $inout0,$in0
1237 xorps $inout1,$in1
1238 movups $in0,($out)
1239 movups $in1,0x10($out)
1240 jmp .Lctr32_done

1242 .align 16
1243 .Lctr32_three:
1244 call _aesni_encrypt3
1245 xorps $inout0,$in0
1246 xorps $inout1,$in1
1247 movups $in0,($out)
1248 xorps $inout2,$in2
1249 movups $in1,0x10($out)
1250 movups $in2,0x20($out)
1251 jmp .Lctr32_done

1253 .align 16
1254 .Lctr32_four:
1255 call _aesni_encrypt4
1256 xorps $inout0,$in0
1257 xorps $inout1,$in1
1258 movups $in0,($out)
1259 xorps $inout2,$in2
1260 movups $in1,0x10($out)

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 23

1261 xorps $inout3,$in3
1262 movups $in2,0x20($out)
1263 movups $in3,0x30($out)

1265 .Lctr32_done:
1266 ___
1267 $code.=<<___ if ($win64);
1268 movaps 0x20(%rsp),%xmm6
1269 movaps 0x30(%rsp),%xmm7
1270 movaps 0x40(%rsp),%xmm8
1271 movaps 0x50(%rsp),%xmm9
1272 movaps 0x60(%rsp),%xmm10
1273 movaps 0x70(%rsp),%xmm11
1274 movaps 0x80(%rsp),%xmm12
1275 movaps 0x90(%rsp),%xmm13
1276 movaps 0xa0(%rsp),%xmm14
1277 movaps 0xb0(%rsp),%xmm15
1278 lea 0xc8(%rsp),%rsp
1279 .Lctr32_ret:
1280 ___
1281 $code.=<<___;
1282 ret
1283 .size aesni_ctr32_encrypt_blocks,.-aesni_ctr32_encrypt_blocks
1284 ___
1285 }

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 24

1286 ##
1287 # void aesni_xts_[en|de]crypt(const char *inp,char *out,size_t len,
1288 # const AES_KEY *key1, const AES_KEY *key2
1289 # const unsigned char iv[16]);
1290 #
1291 {
1292 my @tweak=map("%xmm$_",(10..15));
1293 my ($twmask,$twres,$twtmp)=("%xmm8","%xmm9",@tweak[4]);
1294 my ($key2,$ivp,$len_)=("%r8","%r9","%r9");
1295 my $frame_size = 0x68 + ($win64?160:0);

1297 $code.=<<___;
1298 .globl aesni_xts_encrypt
1299 .type aesni_xts_encrypt,\@function,6
1300 .align 16
1301 aesni_xts_encrypt:
1302 lea -$frame_size(%rsp),%rsp
1303 ___
1304 $code.=<<___ if ($win64);
1305 movaps %xmm6,0x60(%rsp)
1306 movaps %xmm7,0x70(%rsp)
1307 movaps %xmm8,0x80(%rsp)
1308 movaps %xmm9,0x90(%rsp)
1309 movaps %xmm10,0xa0(%rsp)
1310 movaps %xmm11,0xb0(%rsp)
1311 movaps %xmm12,0xc0(%rsp)
1312 movaps %xmm13,0xd0(%rsp)
1313 movaps %xmm14,0xe0(%rsp)
1314 movaps %xmm15,0xf0(%rsp)
1315 .Lxts_enc_body:
1316 ___
1317 $code.=<<___;
1318 movups ($ivp),@tweak[5] # load clear-text tweak
1319 mov 240(%r8),$rounds # key2->rounds
1320 mov 240($key),$rnds_ # key1->rounds
1321 ___
1322 # generate the tweak
1323 &aesni_generate1("enc",$key2,$rounds,@tweak[5]);
1324 $code.=<<___;
1325 mov $key,$key_ # backup $key
1326 mov $rnds_,$rounds # backup $rounds
1327 mov $len,$len_ # backup $len
1328 and \$-16,$len

1330 movdqa .Lxts_magic(%rip),$twmask
1331 pxor $twtmp,$twtmp
1332 pcmpgtd @tweak[5],$twtmp # broadcast upper bits
1333 ___
1334 for ($i=0;$i<4;$i++) {
1335 $code.=<<___;
1336 pshufd \$0x13,$twtmp,$twres
1337 pxor $twtmp,$twtmp
1338 movdqa @tweak[5],@tweak[$i]
1339 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1340 pand $twmask,$twres # isolate carry and residue
1341 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1342 pxor $twres,@tweak[5]
1343 ___
1344 }
1345 $code.=<<___;
1346 sub \$16*6,$len
1347 jc .Lxts_enc_short

1349 shr \$1,$rounds
1350 sub \$1,$rounds
1351 mov $rounds,$rnds_

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 25

1352 jmp .Lxts_enc_grandloop

1354 .align 16
1355 .Lxts_enc_grandloop:
1356 pshufd \$0x13,$twtmp,$twres
1357 movdqa @tweak[5],@tweak[4]
1358 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1359 movdqu ‘16*0‘($inp),$inout0 # load input
1360 pand $twmask,$twres # isolate carry and residue
1361 movdqu ‘16*1‘($inp),$inout1
1362 pxor $twres,@tweak[5]

1364 movdqu ‘16*2‘($inp),$inout2
1365 pxor @tweak[0],$inout0 # input^=tweak
1366 movdqu ‘16*3‘($inp),$inout3
1367 pxor @tweak[1],$inout1
1368 movdqu ‘16*4‘($inp),$inout4
1369 pxor @tweak[2],$inout2
1370 movdqu ‘16*5‘($inp),$inout5
1371 lea ‘16*6‘($inp),$inp
1372 pxor @tweak[3],$inout3
1373 $movkey ($key_),$rndkey0
1374 pxor @tweak[4],$inout4
1375 pxor @tweak[5],$inout5

1377 # inline _aesni_encrypt6 and interleave first and last rounds
1378 # with own code...
1379 $movkey 16($key_),$rndkey1
1380 pxor $rndkey0,$inout0
1381 pxor $rndkey0,$inout1
1382 movdqa @tweak[0],‘16*0‘(%rsp) # put aside tweaks
1383 aesenc $rndkey1,$inout0
1384 lea 32($key_),$key
1385 pxor $rndkey0,$inout2
1386 movdqa @tweak[1],‘16*1‘(%rsp)
1387 aesenc $rndkey1,$inout1
1388 pxor $rndkey0,$inout3
1389 movdqa @tweak[2],‘16*2‘(%rsp)
1390 aesenc $rndkey1,$inout2
1391 pxor $rndkey0,$inout4
1392 movdqa @tweak[3],‘16*3‘(%rsp)
1393 aesenc $rndkey1,$inout3
1394 pxor $rndkey0,$inout5
1395 $movkey ($key),$rndkey0
1396 dec $rounds
1397 movdqa @tweak[4],‘16*4‘(%rsp)
1398 aesenc $rndkey1,$inout4
1399 movdqa @tweak[5],‘16*5‘(%rsp)
1400 aesenc $rndkey1,$inout5
1401 pxor $twtmp,$twtmp
1402 pcmpgtd @tweak[5],$twtmp
1403 jmp .Lxts_enc_loop6_enter

1405 .align 16
1406 .Lxts_enc_loop6:
1407 aesenc $rndkey1,$inout0
1408 aesenc $rndkey1,$inout1
1409 dec $rounds
1410 aesenc $rndkey1,$inout2
1411 aesenc $rndkey1,$inout3
1412 aesenc $rndkey1,$inout4
1413 aesenc $rndkey1,$inout5
1414 .Lxts_enc_loop6_enter:
1415 $movkey 16($key),$rndkey1
1416 aesenc $rndkey0,$inout0
1417 aesenc $rndkey0,$inout1

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 26

1418 lea 32($key),$key
1419 aesenc $rndkey0,$inout2
1420 aesenc $rndkey0,$inout3
1421 aesenc $rndkey0,$inout4
1422 aesenc $rndkey0,$inout5
1423 $movkey ($key),$rndkey0
1424 jnz .Lxts_enc_loop6

1426 pshufd \$0x13,$twtmp,$twres
1427 pxor $twtmp,$twtmp
1428 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1429 aesenc $rndkey1,$inout0
1430 pand $twmask,$twres # isolate carry and residue
1431 aesenc $rndkey1,$inout1
1432 pcmpgtd @tweak[5],$twtmp # broadcast upper bits
1433 aesenc $rndkey1,$inout2
1434 pxor $twres,@tweak[5]
1435 aesenc $rndkey1,$inout3
1436 aesenc $rndkey1,$inout4
1437 aesenc $rndkey1,$inout5
1438 $movkey 16($key),$rndkey1

1440 pshufd \$0x13,$twtmp,$twres
1441 pxor $twtmp,$twtmp
1442 movdqa @tweak[5],@tweak[0]
1443 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1444 aesenc $rndkey0,$inout0
1445 pand $twmask,$twres # isolate carry and residue
1446 aesenc $rndkey0,$inout1
1447 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1448 aesenc $rndkey0,$inout2
1449 pxor $twres,@tweak[5]
1450 aesenc $rndkey0,$inout3
1451 aesenc $rndkey0,$inout4
1452 aesenc $rndkey0,$inout5
1453 $movkey 32($key),$rndkey0

1455 pshufd \$0x13,$twtmp,$twres
1456 pxor $twtmp,$twtmp
1457 movdqa @tweak[5],@tweak[1]
1458 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1459 aesenc $rndkey1,$inout0
1460 pand $twmask,$twres # isolate carry and residue
1461 aesenc $rndkey1,$inout1
1462 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1463 aesenc $rndkey1,$inout2
1464 pxor $twres,@tweak[5]
1465 aesenc $rndkey1,$inout3
1466 aesenc $rndkey1,$inout4
1467 aesenc $rndkey1,$inout5

1469 pshufd \$0x13,$twtmp,$twres
1470 pxor $twtmp,$twtmp
1471 movdqa @tweak[5],@tweak[2]
1472 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1473 aesenclast $rndkey0,$inout0
1474 pand $twmask,$twres # isolate carry and residue
1475 aesenclast $rndkey0,$inout1
1476 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1477 aesenclast $rndkey0,$inout2
1478 pxor $twres,@tweak[5]
1479 aesenclast $rndkey0,$inout3
1480 aesenclast $rndkey0,$inout4
1481 aesenclast $rndkey0,$inout5

1483 pshufd \$0x13,$twtmp,$twres

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 27

1484 pxor $twtmp,$twtmp
1485 movdqa @tweak[5],@tweak[3]
1486 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1487 xorps ‘16*0‘(%rsp),$inout0 # output^=tweak
1488 pand $twmask,$twres # isolate carry and residue
1489 xorps ‘16*1‘(%rsp),$inout1
1490 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1491 pxor $twres,@tweak[5]

1493 xorps ‘16*2‘(%rsp),$inout2
1494 movups $inout0,‘16*0‘($out) # write output
1495 xorps ‘16*3‘(%rsp),$inout3
1496 movups $inout1,‘16*1‘($out)
1497 xorps ‘16*4‘(%rsp),$inout4
1498 movups $inout2,‘16*2‘($out)
1499 xorps ‘16*5‘(%rsp),$inout5
1500 movups $inout3,‘16*3‘($out)
1501 mov $rnds_,$rounds # restore $rounds
1502 movups $inout4,‘16*4‘($out)
1503 movups $inout5,‘16*5‘($out)
1504 lea ‘16*6‘($out),$out
1505 sub \$16*6,$len
1506 jnc .Lxts_enc_grandloop

1508 lea 3($rounds,$rounds),$rounds # restore original value
1509 mov $key_,$key # restore $key
1510 mov $rounds,$rnds_ # backup $rounds

1512 .Lxts_enc_short:
1513 add \$16*6,$len
1514 jz .Lxts_enc_done

1516 cmp \$0x20,$len
1517 jb .Lxts_enc_one
1518 je .Lxts_enc_two

1520 cmp \$0x40,$len
1521 jb .Lxts_enc_three
1522 je .Lxts_enc_four

1524 pshufd \$0x13,$twtmp,$twres
1525 movdqa @tweak[5],@tweak[4]
1526 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1527 movdqu ($inp),$inout0
1528 pand $twmask,$twres # isolate carry and residue
1529 movdqu 16*1($inp),$inout1
1530 pxor $twres,@tweak[5]

1532 movdqu 16*2($inp),$inout2
1533 pxor @tweak[0],$inout0
1534 movdqu 16*3($inp),$inout3
1535 pxor @tweak[1],$inout1
1536 movdqu 16*4($inp),$inout4
1537 lea 16*5($inp),$inp
1538 pxor @tweak[2],$inout2
1539 pxor @tweak[3],$inout3
1540 pxor @tweak[4],$inout4

1542 call _aesni_encrypt6

1544 xorps @tweak[0],$inout0
1545 movdqa @tweak[5],@tweak[0]
1546 xorps @tweak[1],$inout1
1547 xorps @tweak[2],$inout2
1548 movdqu $inout0,($out)
1549 xorps @tweak[3],$inout3

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 28

1550 movdqu $inout1,16*1($out)
1551 xorps @tweak[4],$inout4
1552 movdqu $inout2,16*2($out)
1553 movdqu $inout3,16*3($out)
1554 movdqu $inout4,16*4($out)
1555 lea 16*5($out),$out
1556 jmp .Lxts_enc_done

1558 .align 16
1559 .Lxts_enc_one:
1560 movups ($inp),$inout0
1561 lea 16*1($inp),$inp
1562 xorps @tweak[0],$inout0
1563 ___
1564 &aesni_generate1("enc",$key,$rounds);
1565 $code.=<<___;
1566 xorps @tweak[0],$inout0
1567 movdqa @tweak[1],@tweak[0]
1568 movups $inout0,($out)
1569 lea 16*1($out),$out
1570 jmp .Lxts_enc_done

1572 .align 16
1573 .Lxts_enc_two:
1574 movups ($inp),$inout0
1575 movups 16($inp),$inout1
1576 lea 32($inp),$inp
1577 xorps @tweak[0],$inout0
1578 xorps @tweak[1],$inout1

1580 call _aesni_encrypt3

1582 xorps @tweak[0],$inout0
1583 movdqa @tweak[2],@tweak[0]
1584 xorps @tweak[1],$inout1
1585 movups $inout0,($out)
1586 movups $inout1,16*1($out)
1587 lea 16*2($out),$out
1588 jmp .Lxts_enc_done

1590 .align 16
1591 .Lxts_enc_three:
1592 movups ($inp),$inout0
1593 movups 16*1($inp),$inout1
1594 movups 16*2($inp),$inout2
1595 lea 16*3($inp),$inp
1596 xorps @tweak[0],$inout0
1597 xorps @tweak[1],$inout1
1598 xorps @tweak[2],$inout2

1600 call _aesni_encrypt3

1602 xorps @tweak[0],$inout0
1603 movdqa @tweak[3],@tweak[0]
1604 xorps @tweak[1],$inout1
1605 xorps @tweak[2],$inout2
1606 movups $inout0,($out)
1607 movups $inout1,16*1($out)
1608 movups $inout2,16*2($out)
1609 lea 16*3($out),$out
1610 jmp .Lxts_enc_done

1612 .align 16
1613 .Lxts_enc_four:
1614 movups ($inp),$inout0
1615 movups 16*1($inp),$inout1

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 29

1616 movups 16*2($inp),$inout2
1617 xorps @tweak[0],$inout0
1618 movups 16*3($inp),$inout3
1619 lea 16*4($inp),$inp
1620 xorps @tweak[1],$inout1
1621 xorps @tweak[2],$inout2
1622 xorps @tweak[3],$inout3

1624 call _aesni_encrypt4

1626 xorps @tweak[0],$inout0
1627 movdqa @tweak[5],@tweak[0]
1628 xorps @tweak[1],$inout1
1629 xorps @tweak[2],$inout2
1630 movups $inout0,($out)
1631 xorps @tweak[3],$inout3
1632 movups $inout1,16*1($out)
1633 movups $inout2,16*2($out)
1634 movups $inout3,16*3($out)
1635 lea 16*4($out),$out
1636 jmp .Lxts_enc_done

1638 .align 16
1639 .Lxts_enc_done:
1640 and \$15,$len_
1641 jz .Lxts_enc_ret
1642 mov $len_,$len

1644 .Lxts_enc_steal:
1645 movzb ($inp),%eax # borrow $rounds ...
1646 movzb -16($out),%ecx # ... and $key
1647 lea 1($inp),$inp
1648 mov %al,-16($out)
1649 mov %cl,0($out)
1650 lea 1($out),$out
1651 sub \$1,$len
1652 jnz .Lxts_enc_steal

1654 sub $len_,$out # rewind $out
1655 mov $key_,$key # restore $key
1656 mov $rnds_,$rounds # restore $rounds

1658 movups -16($out),$inout0
1659 xorps @tweak[0],$inout0
1660 ___
1661 &aesni_generate1("enc",$key,$rounds);
1662 $code.=<<___;
1663 xorps @tweak[0],$inout0
1664 movups $inout0,-16($out)

1666 .Lxts_enc_ret:
1667 ___
1668 $code.=<<___ if ($win64);
1669 movaps 0x60(%rsp),%xmm6
1670 movaps 0x70(%rsp),%xmm7
1671 movaps 0x80(%rsp),%xmm8
1672 movaps 0x90(%rsp),%xmm9
1673 movaps 0xa0(%rsp),%xmm10
1674 movaps 0xb0(%rsp),%xmm11
1675 movaps 0xc0(%rsp),%xmm12
1676 movaps 0xd0(%rsp),%xmm13
1677 movaps 0xe0(%rsp),%xmm14
1678 movaps 0xf0(%rsp),%xmm15
1679 ___
1680 $code.=<<___;
1681 lea $frame_size(%rsp),%rsp

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 30

1682 .Lxts_enc_epilogue:
1683 ret
1684 .size aesni_xts_encrypt,.-aesni_xts_encrypt
1685 ___

1687 $code.=<<___;
1688 .globl aesni_xts_decrypt
1689 .type aesni_xts_decrypt,\@function,6
1690 .align 16
1691 aesni_xts_decrypt:
1692 lea -$frame_size(%rsp),%rsp
1693 ___
1694 $code.=<<___ if ($win64);
1695 movaps %xmm6,0x60(%rsp)
1696 movaps %xmm7,0x70(%rsp)
1697 movaps %xmm8,0x80(%rsp)
1698 movaps %xmm9,0x90(%rsp)
1699 movaps %xmm10,0xa0(%rsp)
1700 movaps %xmm11,0xb0(%rsp)
1701 movaps %xmm12,0xc0(%rsp)
1702 movaps %xmm13,0xd0(%rsp)
1703 movaps %xmm14,0xe0(%rsp)
1704 movaps %xmm15,0xf0(%rsp)
1705 .Lxts_dec_body:
1706 ___
1707 $code.=<<___;
1708 movups ($ivp),@tweak[5] # load clear-text tweak
1709 mov 240($key2),$rounds # key2->rounds
1710 mov 240($key),$rnds_ # key1->rounds
1711 ___
1712 # generate the tweak
1713 &aesni_generate1("enc",$key2,$rounds,@tweak[5]);
1714 $code.=<<___;
1715 xor %eax,%eax # if ($len%16) len-=16;
1716 test \$15,$len
1717 setnz %al
1718 shl \$4,%rax
1719 sub %rax,$len

1721 mov $key,$key_ # backup $key
1722 mov $rnds_,$rounds # backup $rounds
1723 mov $len,$len_ # backup $len
1724 and \$-16,$len

1726 movdqa .Lxts_magic(%rip),$twmask
1727 pxor $twtmp,$twtmp
1728 pcmpgtd @tweak[5],$twtmp # broadcast upper bits
1729 ___
1730 for ($i=0;$i<4;$i++) {
1731 $code.=<<___;
1732 pshufd \$0x13,$twtmp,$twres
1733 pxor $twtmp,$twtmp
1734 movdqa @tweak[5],@tweak[$i]
1735 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1736 pand $twmask,$twres # isolate carry and residue
1737 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1738 pxor $twres,@tweak[5]
1739 ___
1740 }
1741 $code.=<<___;
1742 sub \$16*6,$len
1743 jc .Lxts_dec_short

1745 shr \$1,$rounds
1746 sub \$1,$rounds
1747 mov $rounds,$rnds_

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 31

1748 jmp .Lxts_dec_grandloop

1750 .align 16
1751 .Lxts_dec_grandloop:
1752 pshufd \$0x13,$twtmp,$twres
1753 movdqa @tweak[5],@tweak[4]
1754 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1755 movdqu ‘16*0‘($inp),$inout0 # load input
1756 pand $twmask,$twres # isolate carry and residue
1757 movdqu ‘16*1‘($inp),$inout1
1758 pxor $twres,@tweak[5]

1760 movdqu ‘16*2‘($inp),$inout2
1761 pxor @tweak[0],$inout0 # input^=tweak
1762 movdqu ‘16*3‘($inp),$inout3
1763 pxor @tweak[1],$inout1
1764 movdqu ‘16*4‘($inp),$inout4
1765 pxor @tweak[2],$inout2
1766 movdqu ‘16*5‘($inp),$inout5
1767 lea ‘16*6‘($inp),$inp
1768 pxor @tweak[3],$inout3
1769 $movkey ($key_),$rndkey0
1770 pxor @tweak[4],$inout4
1771 pxor @tweak[5],$inout5

1773 # inline _aesni_decrypt6 and interleave first and last rounds
1774 # with own code...
1775 $movkey 16($key_),$rndkey1
1776 pxor $rndkey0,$inout0
1777 pxor $rndkey0,$inout1
1778 movdqa @tweak[0],‘16*0‘(%rsp) # put aside tweaks
1779 aesdec $rndkey1,$inout0
1780 lea 32($key_),$key
1781 pxor $rndkey0,$inout2
1782 movdqa @tweak[1],‘16*1‘(%rsp)
1783 aesdec $rndkey1,$inout1
1784 pxor $rndkey0,$inout3
1785 movdqa @tweak[2],‘16*2‘(%rsp)
1786 aesdec $rndkey1,$inout2
1787 pxor $rndkey0,$inout4
1788 movdqa @tweak[3],‘16*3‘(%rsp)
1789 aesdec $rndkey1,$inout3
1790 pxor $rndkey0,$inout5
1791 $movkey ($key),$rndkey0
1792 dec $rounds
1793 movdqa @tweak[4],‘16*4‘(%rsp)
1794 aesdec $rndkey1,$inout4
1795 movdqa @tweak[5],‘16*5‘(%rsp)
1796 aesdec $rndkey1,$inout5
1797 pxor $twtmp,$twtmp
1798 pcmpgtd @tweak[5],$twtmp
1799 jmp .Lxts_dec_loop6_enter

1801 .align 16
1802 .Lxts_dec_loop6:
1803 aesdec $rndkey1,$inout0
1804 aesdec $rndkey1,$inout1
1805 dec $rounds
1806 aesdec $rndkey1,$inout2
1807 aesdec $rndkey1,$inout3
1808 aesdec $rndkey1,$inout4
1809 aesdec $rndkey1,$inout5
1810 .Lxts_dec_loop6_enter:
1811 $movkey 16($key),$rndkey1
1812 aesdec $rndkey0,$inout0
1813 aesdec $rndkey0,$inout1

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 32

1814 lea 32($key),$key
1815 aesdec $rndkey0,$inout2
1816 aesdec $rndkey0,$inout3
1817 aesdec $rndkey0,$inout4
1818 aesdec $rndkey0,$inout5
1819 $movkey ($key),$rndkey0
1820 jnz .Lxts_dec_loop6

1822 pshufd \$0x13,$twtmp,$twres
1823 pxor $twtmp,$twtmp
1824 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1825 aesdec $rndkey1,$inout0
1826 pand $twmask,$twres # isolate carry and residue
1827 aesdec $rndkey1,$inout1
1828 pcmpgtd @tweak[5],$twtmp # broadcast upper bits
1829 aesdec $rndkey1,$inout2
1830 pxor $twres,@tweak[5]
1831 aesdec $rndkey1,$inout3
1832 aesdec $rndkey1,$inout4
1833 aesdec $rndkey1,$inout5
1834 $movkey 16($key),$rndkey1

1836 pshufd \$0x13,$twtmp,$twres
1837 pxor $twtmp,$twtmp
1838 movdqa @tweak[5],@tweak[0]
1839 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1840 aesdec $rndkey0,$inout0
1841 pand $twmask,$twres # isolate carry and residue
1842 aesdec $rndkey0,$inout1
1843 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1844 aesdec $rndkey0,$inout2
1845 pxor $twres,@tweak[5]
1846 aesdec $rndkey0,$inout3
1847 aesdec $rndkey0,$inout4
1848 aesdec $rndkey0,$inout5
1849 $movkey 32($key),$rndkey0

1851 pshufd \$0x13,$twtmp,$twres
1852 pxor $twtmp,$twtmp
1853 movdqa @tweak[5],@tweak[1]
1854 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1855 aesdec $rndkey1,$inout0
1856 pand $twmask,$twres # isolate carry and residue
1857 aesdec $rndkey1,$inout1
1858 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1859 aesdec $rndkey1,$inout2
1860 pxor $twres,@tweak[5]
1861 aesdec $rndkey1,$inout3
1862 aesdec $rndkey1,$inout4
1863 aesdec $rndkey1,$inout5

1865 pshufd \$0x13,$twtmp,$twres
1866 pxor $twtmp,$twtmp
1867 movdqa @tweak[5],@tweak[2]
1868 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1869 aesdeclast $rndkey0,$inout0
1870 pand $twmask,$twres # isolate carry and residue
1871 aesdeclast $rndkey0,$inout1
1872 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1873 aesdeclast $rndkey0,$inout2
1874 pxor $twres,@tweak[5]
1875 aesdeclast $rndkey0,$inout3
1876 aesdeclast $rndkey0,$inout4
1877 aesdeclast $rndkey0,$inout5

1879 pshufd \$0x13,$twtmp,$twres

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 33

1880 pxor $twtmp,$twtmp
1881 movdqa @tweak[5],@tweak[3]
1882 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1883 xorps ‘16*0‘(%rsp),$inout0 # output^=tweak
1884 pand $twmask,$twres # isolate carry and residue
1885 xorps ‘16*1‘(%rsp),$inout1
1886 pcmpgtd @tweak[5],$twtmp # broadcat upper bits
1887 pxor $twres,@tweak[5]

1889 xorps ‘16*2‘(%rsp),$inout2
1890 movups $inout0,‘16*0‘($out) # write output
1891 xorps ‘16*3‘(%rsp),$inout3
1892 movups $inout1,‘16*1‘($out)
1893 xorps ‘16*4‘(%rsp),$inout4
1894 movups $inout2,‘16*2‘($out)
1895 xorps ‘16*5‘(%rsp),$inout5
1896 movups $inout3,‘16*3‘($out)
1897 mov $rnds_,$rounds # restore $rounds
1898 movups $inout4,‘16*4‘($out)
1899 movups $inout5,‘16*5‘($out)
1900 lea ‘16*6‘($out),$out
1901 sub \$16*6,$len
1902 jnc .Lxts_dec_grandloop

1904 lea 3($rounds,$rounds),$rounds # restore original value
1905 mov $key_,$key # restore $key
1906 mov $rounds,$rnds_ # backup $rounds

1908 .Lxts_dec_short:
1909 add \$16*6,$len
1910 jz .Lxts_dec_done

1912 cmp \$0x20,$len
1913 jb .Lxts_dec_one
1914 je .Lxts_dec_two

1916 cmp \$0x40,$len
1917 jb .Lxts_dec_three
1918 je .Lxts_dec_four

1920 pshufd \$0x13,$twtmp,$twres
1921 movdqa @tweak[5],@tweak[4]
1922 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1923 movdqu ($inp),$inout0
1924 pand $twmask,$twres # isolate carry and residue
1925 movdqu 16*1($inp),$inout1
1926 pxor $twres,@tweak[5]

1928 movdqu 16*2($inp),$inout2
1929 pxor @tweak[0],$inout0
1930 movdqu 16*3($inp),$inout3
1931 pxor @tweak[1],$inout1
1932 movdqu 16*4($inp),$inout4
1933 lea 16*5($inp),$inp
1934 pxor @tweak[2],$inout2
1935 pxor @tweak[3],$inout3
1936 pxor @tweak[4],$inout4

1938 call _aesni_decrypt6

1940 xorps @tweak[0],$inout0
1941 xorps @tweak[1],$inout1
1942 xorps @tweak[2],$inout2
1943 movdqu $inout0,($out)
1944 xorps @tweak[3],$inout3
1945 movdqu $inout1,16*1($out)

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 34

1946 xorps @tweak[4],$inout4
1947 movdqu $inout2,16*2($out)
1948 pxor $twtmp,$twtmp
1949 movdqu $inout3,16*3($out)
1950 pcmpgtd @tweak[5],$twtmp
1951 movdqu $inout4,16*4($out)
1952 lea 16*5($out),$out
1953 pshufd \$0x13,$twtmp,@tweak[1] # $twres
1954 and \$15,$len_
1955 jz .Lxts_dec_ret

1957 movdqa @tweak[5],@tweak[0]
1958 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
1959 pand $twmask,@tweak[1] # isolate carry and residue
1960 pxor @tweak[5],@tweak[1]
1961 jmp .Lxts_dec_done2

1963 .align 16
1964 .Lxts_dec_one:
1965 movups ($inp),$inout0
1966 lea 16*1($inp),$inp
1967 xorps @tweak[0],$inout0
1968 ___
1969 &aesni_generate1("dec",$key,$rounds);
1970 $code.=<<___;
1971 xorps @tweak[0],$inout0
1972 movdqa @tweak[1],@tweak[0]
1973 movups $inout0,($out)
1974 movdqa @tweak[2],@tweak[1]
1975 lea 16*1($out),$out
1976 jmp .Lxts_dec_done

1978 .align 16
1979 .Lxts_dec_two:
1980 movups ($inp),$inout0
1981 movups 16($inp),$inout1
1982 lea 32($inp),$inp
1983 xorps @tweak[0],$inout0
1984 xorps @tweak[1],$inout1

1986 call _aesni_decrypt3

1988 xorps @tweak[0],$inout0
1989 movdqa @tweak[2],@tweak[0]
1990 xorps @tweak[1],$inout1
1991 movdqa @tweak[3],@tweak[1]
1992 movups $inout0,($out)
1993 movups $inout1,16*1($out)
1994 lea 16*2($out),$out
1995 jmp .Lxts_dec_done

1997 .align 16
1998 .Lxts_dec_three:
1999 movups ($inp),$inout0
2000 movups 16*1($inp),$inout1
2001 movups 16*2($inp),$inout2
2002 lea 16*3($inp),$inp
2003 xorps @tweak[0],$inout0
2004 xorps @tweak[1],$inout1
2005 xorps @tweak[2],$inout2

2007 call _aesni_decrypt3

2009 xorps @tweak[0],$inout0
2010 movdqa @tweak[3],@tweak[0]
2011 xorps @tweak[1],$inout1

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 35

2012 movdqa @tweak[5],@tweak[1]
2013 xorps @tweak[2],$inout2
2014 movups $inout0,($out)
2015 movups $inout1,16*1($out)
2016 movups $inout2,16*2($out)
2017 lea 16*3($out),$out
2018 jmp .Lxts_dec_done

2020 .align 16
2021 .Lxts_dec_four:
2022 pshufd \$0x13,$twtmp,$twres
2023 movdqa @tweak[5],@tweak[4]
2024 paddq @tweak[5],@tweak[5] # psllq 1,$tweak
2025 movups ($inp),$inout0
2026 pand $twmask,$twres # isolate carry and residue
2027 movups 16*1($inp),$inout1
2028 pxor $twres,@tweak[5]

2030 movups 16*2($inp),$inout2
2031 xorps @tweak[0],$inout0
2032 movups 16*3($inp),$inout3
2033 lea 16*4($inp),$inp
2034 xorps @tweak[1],$inout1
2035 xorps @tweak[2],$inout2
2036 xorps @tweak[3],$inout3

2038 call _aesni_decrypt4

2040 xorps @tweak[0],$inout0
2041 movdqa @tweak[4],@tweak[0]
2042 xorps @tweak[1],$inout1
2043 movdqa @tweak[5],@tweak[1]
2044 xorps @tweak[2],$inout2
2045 movups $inout0,($out)
2046 xorps @tweak[3],$inout3
2047 movups $inout1,16*1($out)
2048 movups $inout2,16*2($out)
2049 movups $inout3,16*3($out)
2050 lea 16*4($out),$out
2051 jmp .Lxts_dec_done

2053 .align 16
2054 .Lxts_dec_done:
2055 and \$15,$len_
2056 jz .Lxts_dec_ret
2057 .Lxts_dec_done2:
2058 mov $len_,$len
2059 mov $key_,$key # restore $key
2060 mov $rnds_,$rounds # restore $rounds

2062 movups ($inp),$inout0
2063 xorps @tweak[1],$inout0
2064 ___
2065 &aesni_generate1("dec",$key,$rounds);
2066 $code.=<<___;
2067 xorps @tweak[1],$inout0
2068 movups $inout0,($out)

2070 .Lxts_dec_steal:
2071 movzb 16($inp),%eax # borrow $rounds ...
2072 movzb ($out),%ecx # ... and $key
2073 lea 1($inp),$inp
2074 mov %al,($out)
2075 mov %cl,16($out)
2076 lea 1($out),$out
2077 sub \$1,$len

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 36

2078 jnz .Lxts_dec_steal

2080 sub $len_,$out # rewind $out
2081 mov $key_,$key # restore $key
2082 mov $rnds_,$rounds # restore $rounds

2084 movups ($out),$inout0
2085 xorps @tweak[0],$inout0
2086 ___
2087 &aesni_generate1("dec",$key,$rounds);
2088 $code.=<<___;
2089 xorps @tweak[0],$inout0
2090 movups $inout0,($out)

2092 .Lxts_dec_ret:
2093 ___
2094 $code.=<<___ if ($win64);
2095 movaps 0x60(%rsp),%xmm6
2096 movaps 0x70(%rsp),%xmm7
2097 movaps 0x80(%rsp),%xmm8
2098 movaps 0x90(%rsp),%xmm9
2099 movaps 0xa0(%rsp),%xmm10
2100 movaps 0xb0(%rsp),%xmm11
2101 movaps 0xc0(%rsp),%xmm12
2102 movaps 0xd0(%rsp),%xmm13
2103 movaps 0xe0(%rsp),%xmm14
2104 movaps 0xf0(%rsp),%xmm15
2105 ___
2106 $code.=<<___;
2107 lea $frame_size(%rsp),%rsp
2108 .Lxts_dec_epilogue:
2109 ret
2110 .size aesni_xts_decrypt,.-aesni_xts_decrypt
2111 ___
2112 } }}

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 37

2113 ##
2114 # void $PREFIX_cbc_encrypt (const void *inp, void *out,
2115 # size_t length, const AES_KEY *key,
2116 # unsigned char *ivp,const int enc);
2117 {
2118 my $reserved = $win64?0x40:-0x18; # used in decrypt
2119 $code.=<<___;
2120 .globl ${PREFIX}_cbc_encrypt
2121 .type ${PREFIX}_cbc_encrypt,\@function,6
2122 .align 16
2123 ${PREFIX}_cbc_encrypt:
2124 test $len,$len # check length
2125 jz .Lcbc_ret

2127 mov 240($key),$rnds_ # key->rounds
2128 mov $key,$key_ # backup $key
2129 test %r9d,%r9d # 6th argument
2130 jz .Lcbc_decrypt
2131 #--------------------------- CBC ENCRYPT ------------------------------#
2132 movups ($ivp),$inout0 # load iv as initial state
2133 mov $rnds_,$rounds
2134 cmp \$16,$len
2135 jb .Lcbc_enc_tail
2136 sub \$16,$len
2137 jmp .Lcbc_enc_loop
2138 .align 16
2139 .Lcbc_enc_loop:
2140 movups ($inp),$inout1 # load input
2141 lea 16($inp),$inp
2142 #xorps $inout1,$inout0
2143 ___
2144 &aesni_generate1("enc",$key,$rounds,$inout0,$inout1);
2145 $code.=<<___;
2146 mov $rnds_,$rounds # restore $rounds
2147 mov $key_,$key # restore $key
2148 movups $inout0,0($out) # store output
2149 lea 16($out),$out
2150 sub \$16,$len
2151 jnc .Lcbc_enc_loop
2152 add \$16,$len
2153 jnz .Lcbc_enc_tail
2154 movups $inout0,($ivp)
2155 jmp .Lcbc_ret

2157 .Lcbc_enc_tail:
2158 mov $len,%rcx # zaps $key
2159 xchg $inp,$out # $inp is %rsi and $out is %rdi now
2160 .long 0x9066A4F3 # rep movsb
2161 mov \$16,%ecx # zero tail
2162 sub $len,%rcx
2163 xor %eax,%eax
2164 .long 0x9066AAF3 # rep stosb
2165 lea -16(%rdi),%rdi # rewind $out by 1 block
2166 mov $rnds_,$rounds # restore $rounds
2167 mov %rdi,%rsi # $inp and $out are the same
2168 mov $key_,$key # restore $key
2169 xor $len,$len # len=16
2170 jmp .Lcbc_enc_loop # one more spin

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 38

2171 #--------------------------- CBC DECRYPT ------------------------------#
2172 .align 16
2173 .Lcbc_decrypt:
2174 ___
2175 $code.=<<___ if ($win64);
2176 lea -0x58(%rsp),%rsp
2177 movaps %xmm6,(%rsp)
2178 movaps %xmm7,0x10(%rsp)
2179 movaps %xmm8,0x20(%rsp)
2180 movaps %xmm9,0x30(%rsp)
2181 .Lcbc_decrypt_body:
2182 ___
2183 $code.=<<___;
2184 movups ($ivp),$iv
2185 mov $rnds_,$rounds
2186 cmp \$0x70,$len
2187 jbe .Lcbc_dec_tail
2188 shr \$1,$rnds_
2189 sub \$0x70,$len
2190 mov $rnds_,$rounds
2191 movaps $iv,$reserved(%rsp)
2192 jmp .Lcbc_dec_loop8_enter
2193 .align 16
2194 .Lcbc_dec_loop8:
2195 movaps $rndkey0,$reserved(%rsp) # save IV
2196 movups $inout7,($out)
2197 lea 0x10($out),$out
2198 .Lcbc_dec_loop8_enter:
2199 $movkey ($key),$rndkey0
2200 movups ($inp),$inout0 # load input
2201 movups 0x10($inp),$inout1
2202 $movkey 16($key),$rndkey1

2204 lea 32($key),$key
2205 movdqu 0x20($inp),$inout2
2206 xorps $rndkey0,$inout0
2207 movdqu 0x30($inp),$inout3
2208 xorps $rndkey0,$inout1
2209 movdqu 0x40($inp),$inout4
2210 aesdec $rndkey1,$inout0
2211 pxor $rndkey0,$inout2
2212 movdqu 0x50($inp),$inout5
2213 aesdec $rndkey1,$inout1
2214 pxor $rndkey0,$inout3
2215 movdqu 0x60($inp),$inout6
2216 aesdec $rndkey1,$inout2
2217 pxor $rndkey0,$inout4
2218 movdqu 0x70($inp),$inout7
2219 aesdec $rndkey1,$inout3
2220 pxor $rndkey0,$inout5
2221 dec $rounds
2222 aesdec $rndkey1,$inout4
2223 pxor $rndkey0,$inout6
2224 aesdec $rndkey1,$inout5
2225 pxor $rndkey0,$inout7
2226 $movkey ($key),$rndkey0
2227 aesdec $rndkey1,$inout6
2228 aesdec $rndkey1,$inout7
2229 $movkey 16($key),$rndkey1

2231 call .Ldec_loop8_enter

2233 movups ($inp),$rndkey1 # re-load input
2234 movups 0x10($inp),$rndkey0
2235 xorps $reserved(%rsp),$inout0 # ^= IV
2236 xorps $rndkey1,$inout1

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 39

2237 movups 0x20($inp),$rndkey1
2238 xorps $rndkey0,$inout2
2239 movups 0x30($inp),$rndkey0
2240 xorps $rndkey1,$inout3
2241 movups 0x40($inp),$rndkey1
2242 xorps $rndkey0,$inout4
2243 movups 0x50($inp),$rndkey0
2244 xorps $rndkey1,$inout5
2245 movups 0x60($inp),$rndkey1
2246 xorps $rndkey0,$inout6
2247 movups 0x70($inp),$rndkey0 # IV
2248 xorps $rndkey1,$inout7
2249 movups $inout0,($out)
2250 movups $inout1,0x10($out)
2251 movups $inout2,0x20($out)
2252 movups $inout3,0x30($out)
2253 mov $rnds_,$rounds # restore $rounds
2254 movups $inout4,0x40($out)
2255 mov $key_,$key # restore $key
2256 movups $inout5,0x50($out)
2257 lea 0x80($inp),$inp
2258 movups $inout6,0x60($out)
2259 lea 0x70($out),$out
2260 sub \$0x80,$len
2261 ja .Lcbc_dec_loop8

2263 movaps $inout7,$inout0
2264 movaps $rndkey0,$iv
2265 add \$0x70,$len
2266 jle .Lcbc_dec_tail_collected
2267 movups $inout0,($out)
2268 lea 1($rnds_,$rnds_),$rounds
2269 lea 0x10($out),$out
2270 .Lcbc_dec_tail:
2271 movups ($inp),$inout0
2272 movaps $inout0,$in0
2273 cmp \$0x10,$len
2274 jbe .Lcbc_dec_one

2276 movups 0x10($inp),$inout1
2277 movaps $inout1,$in1
2278 cmp \$0x20,$len
2279 jbe .Lcbc_dec_two

2281 movups 0x20($inp),$inout2
2282 movaps $inout2,$in2
2283 cmp \$0x30,$len
2284 jbe .Lcbc_dec_three

2286 movups 0x30($inp),$inout3
2287 cmp \$0x40,$len
2288 jbe .Lcbc_dec_four

2290 movups 0x40($inp),$inout4
2291 cmp \$0x50,$len
2292 jbe .Lcbc_dec_five

2294 movups 0x50($inp),$inout5
2295 cmp \$0x60,$len
2296 jbe .Lcbc_dec_six

2298 movups 0x60($inp),$inout6
2299 movaps $iv,$reserved(%rsp) # save IV
2300 call _aesni_decrypt8
2301 movups ($inp),$rndkey1
2302 movups 0x10($inp),$rndkey0

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 40

2303 xorps $reserved(%rsp),$inout0 # ^= IV
2304 xorps $rndkey1,$inout1
2305 movups 0x20($inp),$rndkey1
2306 xorps $rndkey0,$inout2
2307 movups 0x30($inp),$rndkey0
2308 xorps $rndkey1,$inout3
2309 movups 0x40($inp),$rndkey1
2310 xorps $rndkey0,$inout4
2311 movups 0x50($inp),$rndkey0
2312 xorps $rndkey1,$inout5
2313 movups 0x60($inp),$iv # IV
2314 xorps $rndkey0,$inout6
2315 movups $inout0,($out)
2316 movups $inout1,0x10($out)
2317 movups $inout2,0x20($out)
2318 movups $inout3,0x30($out)
2319 movups $inout4,0x40($out)
2320 movups $inout5,0x50($out)
2321 lea 0x60($out),$out
2322 movaps $inout6,$inout0
2323 sub \$0x70,$len
2324 jmp .Lcbc_dec_tail_collected
2325 .align 16
2326 .Lcbc_dec_one:
2327 ___
2328 &aesni_generate1("dec",$key,$rounds);
2329 $code.=<<___;
2330 xorps $iv,$inout0
2331 movaps $in0,$iv
2332 sub \$0x10,$len
2333 jmp .Lcbc_dec_tail_collected
2334 .align 16
2335 .Lcbc_dec_two:
2336 xorps $inout2,$inout2
2337 call _aesni_decrypt3
2338 xorps $iv,$inout0
2339 xorps $in0,$inout1
2340 movups $inout0,($out)
2341 movaps $in1,$iv
2342 movaps $inout1,$inout0
2343 lea 0x10($out),$out
2344 sub \$0x20,$len
2345 jmp .Lcbc_dec_tail_collected
2346 .align 16
2347 .Lcbc_dec_three:
2348 call _aesni_decrypt3
2349 xorps $iv,$inout0
2350 xorps $in0,$inout1
2351 movups $inout0,($out)
2352 xorps $in1,$inout2
2353 movups $inout1,0x10($out)
2354 movaps $in2,$iv
2355 movaps $inout2,$inout0
2356 lea 0x20($out),$out
2357 sub \$0x30,$len
2358 jmp .Lcbc_dec_tail_collected
2359 .align 16
2360 .Lcbc_dec_four:
2361 call _aesni_decrypt4
2362 xorps $iv,$inout0
2363 movups 0x30($inp),$iv
2364 xorps $in0,$inout1
2365 movups $inout0,($out)
2366 xorps $in1,$inout2
2367 movups $inout1,0x10($out)
2368 xorps $in2,$inout3

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 41

2369 movups $inout2,0x20($out)
2370 movaps $inout3,$inout0
2371 lea 0x30($out),$out
2372 sub \$0x40,$len
2373 jmp .Lcbc_dec_tail_collected
2374 .align 16
2375 .Lcbc_dec_five:
2376 xorps $inout5,$inout5
2377 call _aesni_decrypt6
2378 movups 0x10($inp),$rndkey1
2379 movups 0x20($inp),$rndkey0
2380 xorps $iv,$inout0
2381 xorps $in0,$inout1
2382 xorps $rndkey1,$inout2
2383 movups 0x30($inp),$rndkey1
2384 xorps $rndkey0,$inout3
2385 movups 0x40($inp),$iv
2386 xorps $rndkey1,$inout4
2387 movups $inout0,($out)
2388 movups $inout1,0x10($out)
2389 movups $inout2,0x20($out)
2390 movups $inout3,0x30($out)
2391 lea 0x40($out),$out
2392 movaps $inout4,$inout0
2393 sub \$0x50,$len
2394 jmp .Lcbc_dec_tail_collected
2395 .align 16
2396 .Lcbc_dec_six:
2397 call _aesni_decrypt6
2398 movups 0x10($inp),$rndkey1
2399 movups 0x20($inp),$rndkey0
2400 xorps $iv,$inout0
2401 xorps $in0,$inout1
2402 xorps $rndkey1,$inout2
2403 movups 0x30($inp),$rndkey1
2404 xorps $rndkey0,$inout3
2405 movups 0x40($inp),$rndkey0
2406 xorps $rndkey1,$inout4
2407 movups 0x50($inp),$iv
2408 xorps $rndkey0,$inout5
2409 movups $inout0,($out)
2410 movups $inout1,0x10($out)
2411 movups $inout2,0x20($out)
2412 movups $inout3,0x30($out)
2413 movups $inout4,0x40($out)
2414 lea 0x50($out),$out
2415 movaps $inout5,$inout0
2416 sub \$0x60,$len
2417 jmp .Lcbc_dec_tail_collected
2418 .align 16
2419 .Lcbc_dec_tail_collected:
2420 and \$15,$len
2421 movups $iv,($ivp)
2422 jnz .Lcbc_dec_tail_partial
2423 movups $inout0,($out)
2424 jmp .Lcbc_dec_ret
2425 .align 16
2426 .Lcbc_dec_tail_partial:
2427 movaps $inout0,$reserved(%rsp)
2428 mov \$16,%rcx
2429 mov $out,%rdi
2430 sub $len,%rcx
2431 lea $reserved(%rsp),%rsi
2432 .long 0x9066A4F3 # rep movsb

2434 .Lcbc_dec_ret:

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 42

2435 ___
2436 $code.=<<___ if ($win64);
2437 movaps (%rsp),%xmm6
2438 movaps 0x10(%rsp),%xmm7
2439 movaps 0x20(%rsp),%xmm8
2440 movaps 0x30(%rsp),%xmm9
2441 lea 0x58(%rsp),%rsp
2442 ___
2443 $code.=<<___;
2444 .Lcbc_ret:
2445 ret
2446 .size ${PREFIX}_cbc_encrypt,.-${PREFIX}_cbc_encrypt
2447 ___
2448 }

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 43

2449 # int $PREFIX_set_[en|de]crypt_key (const unsigned char *userKey,
2450 # int bits, AES_KEY *key)
2451 { my ($inp,$bits,$key) = @_4args;
2452 $bits =~ s/%r/%e/;

2454 $code.=<<___;
2455 .globl ${PREFIX}_set_decrypt_key
2456 .type ${PREFIX}_set_decrypt_key,\@abi-omnipotent
2457 .align 16
2458 ${PREFIX}_set_decrypt_key:
2459 .byte 0x48,0x83,0xEC,0x08 # sub rsp,8
2460 call __aesni_set_encrypt_key
2461 shl \$4,$bits # rounds-1 after _aesni_set_encrypt_key
2462 test %eax,%eax
2463 jnz .Ldec_key_ret
2464 lea 16($key,$bits),$inp # points at the end of key schedule

2466 $movkey ($key),%xmm0 # just swap
2467 $movkey ($inp),%xmm1
2468 $movkey %xmm0,($inp)
2469 $movkey %xmm1,($key)
2470 lea 16($key),$key
2471 lea -16($inp),$inp

2473 .Ldec_key_inverse:
2474 $movkey ($key),%xmm0 # swap and inverse
2475 $movkey ($inp),%xmm1
2476 aesimc %xmm0,%xmm0
2477 aesimc %xmm1,%xmm1
2478 lea 16($key),$key
2479 lea -16($inp),$inp
2480 $movkey %xmm0,16($inp)
2481 $movkey %xmm1,-16($key)
2482 cmp $key,$inp
2483 ja .Ldec_key_inverse

2485 $movkey ($key),%xmm0 # inverse middle
2486 aesimc %xmm0,%xmm0
2487 $movkey %xmm0,($inp)
2488 .Ldec_key_ret:
2489 add \$8,%rsp
2490 ret
2491 .LSEH_end_set_decrypt_key:
2492 .size ${PREFIX}_set_decrypt_key,.-${PREFIX}_set_decrypt_key
2493 ___

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 44

2494 # This is based on submission by
2495 #
2496 # Huang Ying <ying.huang@intel.com>
2497 # Vinodh Gopal <vinodh.gopal@intel.com>
2498 # Kahraman Akdemir
2499 #
2500 # Agressively optimized in respect to aeskeygenassist’s critical path
2501 # and is contained in %xmm0-5 to meet Win64 ABI requirement.
2502 #
2503 $code.=<<___;
2504 .globl ${PREFIX}_set_encrypt_key
2505 .type ${PREFIX}_set_encrypt_key,\@abi-omnipotent
2506 .align 16
2507 ${PREFIX}_set_encrypt_key:
2508 __aesni_set_encrypt_key:
2509 .byte 0x48,0x83,0xEC,0x08 # sub rsp,8
2510 mov \$-1,%rax
2511 test $inp,$inp
2512 jz .Lenc_key_ret
2513 test $key,$key
2514 jz .Lenc_key_ret

2516 movups ($inp),%xmm0 # pull first 128 bits of *userKey
2517 xorps %xmm4,%xmm4 # low dword of xmm4 is assumed 0
2518 lea 16($key),%rax
2519 cmp \$256,$bits
2520 je .L14rounds
2521 cmp \$192,$bits
2522 je .L12rounds
2523 cmp \$128,$bits
2524 jne .Lbad_keybits

2526 .L10rounds:
2527 mov \$9,$bits # 10 rounds for 128-bit key
2528 $movkey %xmm0,($key) # round 0
2529 aeskeygenassist \$0x1,%xmm0,%xmm1 # round 1
2530 call .Lkey_expansion_128_cold
2531 aeskeygenassist \$0x2,%xmm0,%xmm1 # round 2
2532 call .Lkey_expansion_128
2533 aeskeygenassist \$0x4,%xmm0,%xmm1 # round 3
2534 call .Lkey_expansion_128
2535 aeskeygenassist \$0x8,%xmm0,%xmm1 # round 4
2536 call .Lkey_expansion_128
2537 aeskeygenassist \$0x10,%xmm0,%xmm1 # round 5
2538 call .Lkey_expansion_128
2539 aeskeygenassist \$0x20,%xmm0,%xmm1 # round 6
2540 call .Lkey_expansion_128
2541 aeskeygenassist \$0x40,%xmm0,%xmm1 # round 7
2542 call .Lkey_expansion_128
2543 aeskeygenassist \$0x80,%xmm0,%xmm1 # round 8
2544 call .Lkey_expansion_128
2545 aeskeygenassist \$0x1b,%xmm0,%xmm1 # round 9
2546 call .Lkey_expansion_128
2547 aeskeygenassist \$0x36,%xmm0,%xmm1 # round 10
2548 call .Lkey_expansion_128
2549 $movkey %xmm0,(%rax)
2550 mov $bits,80(%rax) # 240(%rdx)
2551 xor %eax,%eax
2552 jmp .Lenc_key_ret

2554 .align 16
2555 .L12rounds:
2556 movq 16($inp),%xmm2 # remaining 1/3 of *userKey
2557 mov \$11,$bits # 12 rounds for 192
2558 $movkey %xmm0,($key) # round 0
2559 aeskeygenassist \$0x1,%xmm2,%xmm1 # round 1,2

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 45

2560 call .Lkey_expansion_192a_cold
2561 aeskeygenassist \$0x2,%xmm2,%xmm1 # round 2,3
2562 call .Lkey_expansion_192b
2563 aeskeygenassist \$0x4,%xmm2,%xmm1 # round 4,5
2564 call .Lkey_expansion_192a
2565 aeskeygenassist \$0x8,%xmm2,%xmm1 # round 5,6
2566 call .Lkey_expansion_192b
2567 aeskeygenassist \$0x10,%xmm2,%xmm1 # round 7,8
2568 call .Lkey_expansion_192a
2569 aeskeygenassist \$0x20,%xmm2,%xmm1 # round 8,9
2570 call .Lkey_expansion_192b
2571 aeskeygenassist \$0x40,%xmm2,%xmm1 # round 10,11
2572 call .Lkey_expansion_192a
2573 aeskeygenassist \$0x80,%xmm2,%xmm1 # round 11,12
2574 call .Lkey_expansion_192b
2575 $movkey %xmm0,(%rax)
2576 mov $bits,48(%rax) # 240(%rdx)
2577 xor %rax, %rax
2578 jmp .Lenc_key_ret

2580 .align 16
2581 .L14rounds:
2582 movups 16($inp),%xmm2 # remaning half of *userKey
2583 mov \$13,$bits # 14 rounds for 256
2584 lea 16(%rax),%rax
2585 $movkey %xmm0,($key) # round 0
2586 $movkey %xmm2,16($key) # round 1
2587 aeskeygenassist \$0x1,%xmm2,%xmm1 # round 2
2588 call .Lkey_expansion_256a_cold
2589 aeskeygenassist \$0x1,%xmm0,%xmm1 # round 3
2590 call .Lkey_expansion_256b
2591 aeskeygenassist \$0x2,%xmm2,%xmm1 # round 4
2592 call .Lkey_expansion_256a
2593 aeskeygenassist \$0x2,%xmm0,%xmm1 # round 5
2594 call .Lkey_expansion_256b
2595 aeskeygenassist \$0x4,%xmm2,%xmm1 # round 6
2596 call .Lkey_expansion_256a
2597 aeskeygenassist \$0x4,%xmm0,%xmm1 # round 7
2598 call .Lkey_expansion_256b
2599 aeskeygenassist \$0x8,%xmm2,%xmm1 # round 8
2600 call .Lkey_expansion_256a
2601 aeskeygenassist \$0x8,%xmm0,%xmm1 # round 9
2602 call .Lkey_expansion_256b
2603 aeskeygenassist \$0x10,%xmm2,%xmm1 # round 10
2604 call .Lkey_expansion_256a
2605 aeskeygenassist \$0x10,%xmm0,%xmm1 # round 11
2606 call .Lkey_expansion_256b
2607 aeskeygenassist \$0x20,%xmm2,%xmm1 # round 12
2608 call .Lkey_expansion_256a
2609 aeskeygenassist \$0x20,%xmm0,%xmm1 # round 13
2610 call .Lkey_expansion_256b
2611 aeskeygenassist \$0x40,%xmm2,%xmm1 # round 14
2612 call .Lkey_expansion_256a
2613 $movkey %xmm0,(%rax)
2614 mov $bits,16(%rax) # 240(%rdx)
2615 xor %rax,%rax
2616 jmp .Lenc_key_ret

2618 .align 16
2619 .Lbad_keybits:
2620 mov \$-2,%rax
2621 .Lenc_key_ret:
2622 add \$8,%rsp
2623 ret
2624 .LSEH_end_set_encrypt_key:

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 46

2625 .align 16
2626 .Lkey_expansion_128:
2627 $movkey %xmm0,(%rax)
2628 lea 16(%rax),%rax
2629 .Lkey_expansion_128_cold:
2630 shufps \$0b00010000,%xmm0,%xmm4
2631 xorps %xmm4, %xmm0
2632 shufps \$0b10001100,%xmm0,%xmm4
2633 xorps %xmm4, %xmm0
2634 shufps \$0b11111111,%xmm1,%xmm1 # critical path
2635 xorps %xmm1,%xmm0
2636 ret

2638 .align 16
2639 .Lkey_expansion_192a:
2640 $movkey %xmm0,(%rax)
2641 lea 16(%rax),%rax
2642 .Lkey_expansion_192a_cold:
2643 movaps %xmm2, %xmm5
2644 .Lkey_expansion_192b_warm:
2645 shufps \$0b00010000,%xmm0,%xmm4
2646 movdqa %xmm2,%xmm3
2647 xorps %xmm4,%xmm0
2648 shufps \$0b10001100,%xmm0,%xmm4
2649 pslldq \$4,%xmm3
2650 xorps %xmm4,%xmm0
2651 pshufd \$0b01010101,%xmm1,%xmm1 # critical path
2652 pxor %xmm3,%xmm2
2653 pxor %xmm1,%xmm0
2654 pshufd \$0b11111111,%xmm0,%xmm3
2655 pxor %xmm3,%xmm2
2656 ret

2658 .align 16
2659 .Lkey_expansion_192b:
2660 movaps %xmm0,%xmm3
2661 shufps \$0b01000100,%xmm0,%xmm5
2662 $movkey %xmm5,(%rax)
2663 shufps \$0b01001110,%xmm2,%xmm3
2664 $movkey %xmm3,16(%rax)
2665 lea 32(%rax),%rax
2666 jmp .Lkey_expansion_192b_warm

2668 .align 16
2669 .Lkey_expansion_256a:
2670 $movkey %xmm2,(%rax)
2671 lea 16(%rax),%rax
2672 .Lkey_expansion_256a_cold:
2673 shufps \$0b00010000,%xmm0,%xmm4
2674 xorps %xmm4,%xmm0
2675 shufps \$0b10001100,%xmm0,%xmm4
2676 xorps %xmm4,%xmm0
2677 shufps \$0b11111111,%xmm1,%xmm1 # critical path
2678 xorps %xmm1,%xmm0
2679 ret

2681 .align 16
2682 .Lkey_expansion_256b:
2683 $movkey %xmm0,(%rax)
2684 lea 16(%rax),%rax

2686 shufps \$0b00010000,%xmm2,%xmm4
2687 xorps %xmm4,%xmm2
2688 shufps \$0b10001100,%xmm2,%xmm4
2689 xorps %xmm4,%xmm2
2690 shufps \$0b10101010,%xmm1,%xmm1 # critical path

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 47

2691 xorps %xmm1,%xmm2
2692 ret
2693 .size ${PREFIX}_set_encrypt_key,.-${PREFIX}_set_encrypt_key
2694 .size __aesni_set_encrypt_key,.-__aesni_set_encrypt_key
2695 ___
2696 }

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 48

2697 $code.=<<___;
2698 .align 64
2699 .Lbswap_mask:
2700 .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
2701 .Lincrement32:
2702 .long 6,6,6,0
2703 .Lincrement64:
2704 .long 1,0,0,0
2705 .Lxts_magic:
2706 .long 0x87,0,1,0

2708 .asciz "AES for Intel AES-NI, CRYPTOGAMS by <appro\@openssl.org>"
2709 .align 64
2710 ___

2712 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
2713 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
2714 if ($win64) {
2715 $rec="%rcx";
2716 $frame="%rdx";
2717 $context="%r8";
2718 $disp="%r9";

2720 $code.=<<___;
2721 .extern __imp_RtlVirtualUnwind
2722 ___
2723 $code.=<<___ if ($PREFIX eq "aesni");
2724 .type ecb_se_handler,\@abi-omnipotent
2725 .align 16
2726 ecb_se_handler:
2727 push %rsi
2728 push %rdi
2729 push %rbx
2730 push %rbp
2731 push %r12
2732 push %r13
2733 push %r14
2734 push %r15
2735 pushfq
2736 sub \$64,%rsp

2738 mov 152($context),%rax # pull context->Rsp

2740 jmp .Lcommon_seh_tail
2741 .size ecb_se_handler,.-ecb_se_handler

2743 .type ccm64_se_handler,\@abi-omnipotent
2744 .align 16
2745 ccm64_se_handler:
2746 push %rsi
2747 push %rdi
2748 push %rbx
2749 push %rbp
2750 push %r12
2751 push %r13
2752 push %r14
2753 push %r15
2754 pushfq
2755 sub \$64,%rsp

2757 mov 120($context),%rax # pull context->Rax
2758 mov 248($context),%rbx # pull context->Rip

2760 mov 8($disp),%rsi # disp->ImageBase
2761 mov 56($disp),%r11 # disp->HandlerData

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 49

2763 mov 0(%r11),%r10d # HandlerData[0]
2764 lea (%rsi,%r10),%r10 # prologue label
2765 cmp %r10,%rbx # context->Rip<prologue label
2766 jb .Lcommon_seh_tail

2768 mov 152($context),%rax # pull context->Rsp

2770 mov 4(%r11),%r10d # HandlerData[1]
2771 lea (%rsi,%r10),%r10 # epilogue label
2772 cmp %r10,%rbx # context->Rip>=epilogue label
2773 jae .Lcommon_seh_tail

2775 lea 0(%rax),%rsi # %xmm save area
2776 lea 512($context),%rdi # &context.Xmm6
2777 mov \$8,%ecx # 4*sizeof(%xmm0)/sizeof(%rax)
2778 .long 0xa548f3fc # cld; rep movsq
2779 lea 0x58(%rax),%rax # adjust stack pointer

2781 jmp .Lcommon_seh_tail
2782 .size ccm64_se_handler,.-ccm64_se_handler

2784 .type ctr32_se_handler,\@abi-omnipotent
2785 .align 16
2786 ctr32_se_handler:
2787 push %rsi
2788 push %rdi
2789 push %rbx
2790 push %rbp
2791 push %r12
2792 push %r13
2793 push %r14
2794 push %r15
2795 pushfq
2796 sub \$64,%rsp

2798 mov 120($context),%rax # pull context->Rax
2799 mov 248($context),%rbx # pull context->Rip

2801 lea .Lctr32_body(%rip),%r10
2802 cmp %r10,%rbx # context->Rip<"prologue" label
2803 jb .Lcommon_seh_tail

2805 mov 152($context),%rax # pull context->Rsp

2807 lea .Lctr32_ret(%rip),%r10
2808 cmp %r10,%rbx
2809 jae .Lcommon_seh_tail

2811 lea 0x20(%rax),%rsi # %xmm save area
2812 lea 512($context),%rdi # &context.Xmm6
2813 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
2814 .long 0xa548f3fc # cld; rep movsq
2815 lea 0xc8(%rax),%rax # adjust stack pointer

2817 jmp .Lcommon_seh_tail
2818 .size ctr32_se_handler,.-ctr32_se_handler

2820 .type xts_se_handler,\@abi-omnipotent
2821 .align 16
2822 xts_se_handler:
2823 push %rsi
2824 push %rdi
2825 push %rbx
2826 push %rbp
2827 push %r12
2828 push %r13

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 50

2829 push %r14
2830 push %r15
2831 pushfq
2832 sub \$64,%rsp

2834 mov 120($context),%rax # pull context->Rax
2835 mov 248($context),%rbx # pull context->Rip

2837 mov 8($disp),%rsi # disp->ImageBase
2838 mov 56($disp),%r11 # disp->HandlerData

2840 mov 0(%r11),%r10d # HandlerData[0]
2841 lea (%rsi,%r10),%r10 # prologue lable
2842 cmp %r10,%rbx # context->Rip<prologue label
2843 jb .Lcommon_seh_tail

2845 mov 152($context),%rax # pull context->Rsp

2847 mov 4(%r11),%r10d # HandlerData[1]
2848 lea (%rsi,%r10),%r10 # epilogue label
2849 cmp %r10,%rbx # context->Rip>=epilogue label
2850 jae .Lcommon_seh_tail

2852 lea 0x60(%rax),%rsi # %xmm save area
2853 lea 512($context),%rdi # & context.Xmm6
2854 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
2855 .long 0xa548f3fc # cld; rep movsq
2856 lea 0x68+160(%rax),%rax # adjust stack pointer

2858 jmp .Lcommon_seh_tail
2859 .size xts_se_handler,.-xts_se_handler
2860 ___
2861 $code.=<<___;
2862 .type cbc_se_handler,\@abi-omnipotent
2863 .align 16
2864 cbc_se_handler:
2865 push %rsi
2866 push %rdi
2867 push %rbx
2868 push %rbp
2869 push %r12
2870 push %r13
2871 push %r14
2872 push %r15
2873 pushfq
2874 sub \$64,%rsp

2876 mov 152($context),%rax # pull context->Rsp
2877 mov 248($context),%rbx # pull context->Rip

2879 lea .Lcbc_decrypt(%rip),%r10
2880 cmp %r10,%rbx # context->Rip<"prologue" label
2881 jb .Lcommon_seh_tail

2883 lea .Lcbc_decrypt_body(%rip),%r10
2884 cmp %r10,%rbx # context->Rip<cbc_decrypt_body
2885 jb .Lrestore_cbc_rax

2887 lea .Lcbc_ret(%rip),%r10
2888 cmp %r10,%rbx # context->Rip>="epilogue" label
2889 jae .Lcommon_seh_tail

2891 lea 0(%rax),%rsi # top of stack
2892 lea 512($context),%rdi # &context.Xmm6
2893 mov \$8,%ecx # 4*sizeof(%xmm0)/sizeof(%rax)
2894 .long 0xa548f3fc # cld; rep movsq

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 51

2895 lea 0x58(%rax),%rax # adjust stack pointer
2896 jmp .Lcommon_seh_tail

2898 .Lrestore_cbc_rax:
2899 mov 120($context),%rax

2901 .Lcommon_seh_tail:
2902 mov 8(%rax),%rdi
2903 mov 16(%rax),%rsi
2904 mov %rax,152($context) # restore context->Rsp
2905 mov %rsi,168($context) # restore context->Rsi
2906 mov %rdi,176($context) # restore context->Rdi

2908 mov 40($disp),%rdi # disp->ContextRecord
2909 mov $context,%rsi # context
2910 mov \$154,%ecx # sizeof(CONTEXT)
2911 .long 0xa548f3fc # cld; rep movsq

2913 mov $disp,%rsi
2914 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
2915 mov 8(%rsi),%rdx # arg2, disp->ImageBase
2916 mov 0(%rsi),%r8 # arg3, disp->ControlPc
2917 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
2918 mov 40(%rsi),%r10 # disp->ContextRecord
2919 lea 56(%rsi),%r11 # &disp->HandlerData
2920 lea 24(%rsi),%r12 # &disp->EstablisherFrame
2921 mov %r10,32(%rsp) # arg5
2922 mov %r11,40(%rsp) # arg6
2923 mov %r12,48(%rsp) # arg7
2924 mov %rcx,56(%rsp) # arg8, (NULL)
2925 call *__imp_RtlVirtualUnwind(%rip)

2927 mov \$1,%eax # ExceptionContinueSearch
2928 add \$64,%rsp
2929 popfq
2930 pop %r15
2931 pop %r14
2932 pop %r13
2933 pop %r12
2934 pop %rbp
2935 pop %rbx
2936 pop %rdi
2937 pop %rsi
2938 ret
2939 .size cbc_se_handler,.-cbc_se_handler

2941 .section .pdata
2942 .align 4
2943 ___
2944 $code.=<<___ if ($PREFIX eq "aesni");
2945 .rva .LSEH_begin_aesni_ecb_encrypt
2946 .rva .LSEH_end_aesni_ecb_encrypt
2947 .rva .LSEH_info_ecb

2949 .rva .LSEH_begin_aesni_ccm64_encrypt_blocks
2950 .rva .LSEH_end_aesni_ccm64_encrypt_blocks
2951 .rva .LSEH_info_ccm64_enc

2953 .rva .LSEH_begin_aesni_ccm64_decrypt_blocks
2954 .rva .LSEH_end_aesni_ccm64_decrypt_blocks
2955 .rva .LSEH_info_ccm64_dec

2957 .rva .LSEH_begin_aesni_ctr32_encrypt_blocks
2958 .rva .LSEH_end_aesni_ctr32_encrypt_blocks
2959 .rva .LSEH_info_ctr32

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 52

2961 .rva .LSEH_begin_aesni_xts_encrypt
2962 .rva .LSEH_end_aesni_xts_encrypt
2963 .rva .LSEH_info_xts_enc

2965 .rva .LSEH_begin_aesni_xts_decrypt
2966 .rva .LSEH_end_aesni_xts_decrypt
2967 .rva .LSEH_info_xts_dec
2968 ___
2969 $code.=<<___;
2970 .rva .LSEH_begin_${PREFIX}_cbc_encrypt
2971 .rva .LSEH_end_${PREFIX}_cbc_encrypt
2972 .rva .LSEH_info_cbc

2974 .rva ${PREFIX}_set_decrypt_key
2975 .rva .LSEH_end_set_decrypt_key
2976 .rva .LSEH_info_key

2978 .rva ${PREFIX}_set_encrypt_key
2979 .rva .LSEH_end_set_encrypt_key
2980 .rva .LSEH_info_key
2981 .section .xdata
2982 .align 8
2983 ___
2984 $code.=<<___ if ($PREFIX eq "aesni");
2985 .LSEH_info_ecb:
2986 .byte 9,0,0,0
2987 .rva ecb_se_handler
2988 .LSEH_info_ccm64_enc:
2989 .byte 9,0,0,0
2990 .rva ccm64_se_handler
2991 .rva .Lccm64_enc_body,.Lccm64_enc_ret # HandlerData[]
2992 .LSEH_info_ccm64_dec:
2993 .byte 9,0,0,0
2994 .rva ccm64_se_handler
2995 .rva .Lccm64_dec_body,.Lccm64_dec_ret # HandlerData[]
2996 .LSEH_info_ctr32:
2997 .byte 9,0,0,0
2998 .rva ctr32_se_handler
2999 .LSEH_info_xts_enc:
3000 .byte 9,0,0,0
3001 .rva xts_se_handler
3002 .rva .Lxts_enc_body,.Lxts_enc_epilogue # HandlerData[]
3003 .LSEH_info_xts_dec:
3004 .byte 9,0,0,0
3005 .rva xts_se_handler
3006 .rva .Lxts_dec_body,.Lxts_dec_epilogue # HandlerData[]
3007 ___
3008 $code.=<<___;
3009 .LSEH_info_cbc:
3010 .byte 9,0,0,0
3011 .rva cbc_se_handler
3012 .LSEH_info_key:
3013 .byte 0x01,0x04,0x01,0x00
3014 .byte 0x04,0x02,0x00,0x00 # sub rsp,8
3015 ___
3016 }

3018 sub rex {
3019 local *opcode=shift;
3020 my ($dst,$src)=@_;
3021 my $rex=0;

3023 $rex|=0x04 if($dst>=8);
3024 $rex|=0x01 if($src>=8);
3025 push @opcode,$rex|0x40 if($rex);
3026 }

new/usr/src/lib/openssl/libsunw_crypto/pl/aesni-x86_64.pl 53

3028 sub aesni {
3029 my $line=shift;
3030 my @opcode=(0x66);

3032 if ($line=~/(aeskeygenassist)\s+\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]
3033 rex(\@opcode,$4,$3);
3034 push @opcode,0x0f,0x3a,0xdf;
3035 push @opcode,0xc0|($3&7)|(($4&7)<<3); # ModR/M
3036 my $c=$2;
3037 push @opcode,$c=~/^0/?oct($c):$c;
3038 return ".byte\t".join(’,’,@opcode);
3039 }
3040 elsif ($line=~/(aes[a-z]+)\s+%xmm([0-9]+),\s*%xmm([0-9]+)/) {
3041 my %opcodelet = (
3042 "aesimc" => 0xdb,
3043 "aesenc" => 0xdc, "aesenclast" => 0xdd,
3044 "aesdec" => 0xde, "aesdeclast" => 0xdf
3045);
3046 return undef if (!defined($opcodelet{$1}));
3047 rex(\@opcode,$3,$2);
3048 push @opcode,0x0f,0x38,$opcodelet{$1};
3049 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
3050 return ".byte\t".join(’,’,@opcode);
3051 }
3052 return $line;
3053 }

3055 $code =~ s/\‘([^\‘]*)\‘/eval($1)/gem;
3056 $code =~ s/\b(aes.*%xmm[0-9]+).*$/aesni($1)/gem;

3058 print $code;

3060 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/bf-586.pl 1

**
 2665 Fri May 30 18:32:02 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/bf-586.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/local/bin/perl

3 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
4 push(@INC,"${dir}","${dir}../../perlasm");
5 require "x86asm.pl";
6 require "cbc.pl";

8 &asm_init($ARGV[0],"bf-586.pl",$ARGV[$#ARGV] eq "386");

10 $BF_ROUNDS=16;
11 $BF_OFF=($BF_ROUNDS+2)*4;
12 $L="edi";
13 $R="esi";
14 $P="ebp";
15 $tmp1="eax";
16 $tmp2="ebx";
17 $tmp3="ecx";
18 $tmp4="edx";

20 &BF_encrypt("BF_encrypt",1);
21 &BF_encrypt("BF_decrypt",0);
22 &cbc("BF_cbc_encrypt","BF_encrypt","BF_decrypt",1,4,5,3,-1,-1);
23 &asm_finish();

25 sub BF_encrypt
26 {
27 local($name,$enc)=@_;

29 &function_begin_B($name,"");

31 &comment("");

33 &push("ebp");
34 &push("ebx");
35 &mov($tmp2,&wparam(0));
36 &mov($P,&wparam(1));
37 &push("esi");
38 &push("edi");

40 &comment("Load the 2 words");
41 &mov($L,&DWP(0,$tmp2,"",0));
42 &mov($R,&DWP(4,$tmp2,"",0));

44 &xor($tmp1, $tmp1);

46 # encrypting part

48 if ($enc)
49 {
50 &mov($tmp2,&DWP(0,$P,"",0));
51 &xor($tmp3, $tmp3);

53 &xor($L,$tmp2);
54 for ($i=0; $i<$BF_ROUNDS; $i+=2)
55 {
56 &comment("");
57 &comment("Round $i");
58 &BF_ENCRYPT($i+1,$R,$L,$P,$tmp1,$tmp2,$tmp3,$tmp4,1);

60 &comment("");
61 &comment("Round ".sprintf("%d",$i+1));

new/usr/src/lib/openssl/libsunw_crypto/pl/bf-586.pl 2

62 &BF_ENCRYPT($i+2,$L,$R,$P,$tmp1,$tmp2,$tmp3,$tmp4,1);
63 }
64 # &mov($tmp1,&wparam(0)); In last loop
65 &mov($tmp4,&DWP(($BF_ROUNDS+1)*4,$P,"",0));
66 }
67 else
68 {
69 &mov($tmp2,&DWP(($BF_ROUNDS+1)*4,$P,"",0));
70 &xor($tmp3, $tmp3);

72 &xor($L,$tmp2);
73 for ($i=$BF_ROUNDS; $i>0; $i-=2)
74 {
75 &comment("");
76 &comment("Round $i");
77 &BF_ENCRYPT($i,$R,$L,$P,$tmp1,$tmp2,$tmp3,$tmp4,0);
78 &comment("");
79 &comment("Round ".sprintf("%d",$i-1));
80 &BF_ENCRYPT($i-1,$L,$R,$P,$tmp1,$tmp2,$tmp3,$tmp4,0);
81 }
82 # &mov($tmp1,&wparam(0)); In last loop
83 &mov($tmp4,&DWP(0,$P,"",0));
84 }

86 &xor($R,$tmp4);
87 &mov(&DWP(4,$tmp1,"",0),$L);

89 &mov(&DWP(0,$tmp1,"",0),$R);
90 &function_end($name);
91 }

93 sub BF_ENCRYPT
94 {
95 local($i,$L,$R,$P,$tmp1,$tmp2,$tmp3,$tmp4,$enc)=@_;

97 &mov($tmp4, &DWP(&n2a($i*4),$P,"",0)); # for next round

99 &mov($tmp2, $R);
100 &xor($L, $tmp4);

102 &shr($tmp2, 16);
103 &mov($tmp4, $R);

105 &movb(&LB($tmp1), &HB($tmp2)); # A
106 &and($tmp2, 0xff); # B

108 &movb(&LB($tmp3), &HB($tmp4)); # C
109 &and($tmp4, 0xff); # D

111 &mov($tmp1, &DWP(&n2a($BF_OFF+0x0000),$P,$tmp1,4));
112 &mov($tmp2, &DWP(&n2a($BF_OFF+0x0400),$P,$tmp2,4));

114 &add($tmp2, $tmp1);
115 &mov($tmp1, &DWP(&n2a($BF_OFF+0x0800),$P,$tmp3,4));

117 &xor($tmp2, $tmp1);
118 &mov($tmp4, &DWP(&n2a($BF_OFF+0x0C00),$P,$tmp4,4));

120 &add($tmp2, $tmp4);
121 if (($enc && ($i != 16)) || ((!$enc) && ($i != 1)))
122 { &xor($tmp1, $tmp1); }
123 else
124 {
125 &comment("Load parameter 0 ($i) enc=$enc");
126 &mov($tmp1,&wparam(0));
127 } # In last loop

new/usr/src/lib/openssl/libsunw_crypto/pl/bf-586.pl 3

129 &xor($L, $tmp2);
130 # delay
131 }

133 sub n2a
134 {
135 sprintf("%d",$_[0]);
136 }

new/usr/src/lib/openssl/libsunw_crypto/pl/bn-586.pl 1

**
 16420 Fri May 30 18:32:03 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/bn-586.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/local/bin/perl

3 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
4 push(@INC,"${dir}","${dir}../../perlasm");
5 require "x86asm.pl";

7 &asm_init($ARGV[0],$0);

9 $sse2=0;
10 for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }

12 &external_label("OPENSSL_ia32cap_P") if ($sse2);

14 &bn_mul_add_words("bn_mul_add_words");
15 &bn_mul_words("bn_mul_words");
16 &bn_sqr_words("bn_sqr_words");
17 &bn_div_words("bn_div_words");
18 &bn_add_words("bn_add_words");
19 &bn_sub_words("bn_sub_words");
20 &bn_sub_part_words("bn_sub_part_words");

22 &asm_finish();

24 sub bn_mul_add_words
25 {
26 local($name)=@_;

28 &function_begin_B($name,$sse2?"EXTRN\t_OPENSSL_ia32cap_P:DWORD":"");

30 $r="eax";
31 $a="edx";
32 $c="ecx";

34 if ($sse2) {
35 &picmeup("eax","OPENSSL_ia32cap_P");
36 &bt(&DWP(0,"eax"),26);
37 &jnc(&label("maw_non_sse2"));

39 &mov($r,&wparam(0));
40 &mov($a,&wparam(1));
41 &mov($c,&wparam(2));
42 &movd("mm0",&wparam(3)); # mm0 = w
43 &pxor("mm1","mm1"); # mm1 = carry_in
44 &jmp(&label("maw_sse2_entry"));
45
46 &set_label("maw_sse2_unrolled",16);
47 &movd("mm3",&DWP(0,$r,"",0)); # mm3 = r[0]
48 &paddq("mm1","mm3"); # mm1 = carry_in + r[0]
49 &movd("mm2",&DWP(0,$a,"",0)); # mm2 = a[0]
50 &pmuludq("mm2","mm0"); # mm2 = w*a[0]
51 &movd("mm4",&DWP(4,$a,"",0)); # mm4 = a[1]
52 &pmuludq("mm4","mm0"); # mm4 = w*a[1]
53 &movd("mm6",&DWP(8,$a,"",0)); # mm6 = a[2]
54 &pmuludq("mm6","mm0"); # mm6 = w*a[2]
55 &movd("mm7",&DWP(12,$a,"",0)); # mm7 = a[3]
56 &pmuludq("mm7","mm0"); # mm7 = w*a[3]
57 &paddq("mm1","mm2"); # mm1 = carry_in + r[0] + w*a[0]
58 &movd("mm3",&DWP(4,$r,"",0)); # mm3 = r[1]
59 &paddq("mm3","mm4"); # mm3 = r[1] + w*a[1]
60 &movd("mm5",&DWP(8,$r,"",0)); # mm5 = r[2]
61 &paddq("mm5","mm6"); # mm5 = r[2] + w*a[2]

new/usr/src/lib/openssl/libsunw_crypto/pl/bn-586.pl 2

62 &movd("mm4",&DWP(12,$r,"",0)); # mm4 = r[3]
63 &paddq("mm7","mm4"); # mm7 = r[3] + w*a[3]
64 &movd(&DWP(0,$r,"",0),"mm1");
65 &movd("mm2",&DWP(16,$a,"",0)); # mm2 = a[4]
66 &pmuludq("mm2","mm0"); # mm2 = w*a[4]
67 &psrlq("mm1",32); # mm1 = carry0
68 &movd("mm4",&DWP(20,$a,"",0)); # mm4 = a[5]
69 &pmuludq("mm4","mm0"); # mm4 = w*a[5]
70 &paddq("mm1","mm3"); # mm1 = carry0 + r[1] + w*a[1]
71 &movd("mm6",&DWP(24,$a,"",0)); # mm6 = a[6]
72 &pmuludq("mm6","mm0"); # mm6 = w*a[6]
73 &movd(&DWP(4,$r,"",0),"mm1");
74 &psrlq("mm1",32); # mm1 = carry1
75 &movd("mm3",&DWP(28,$a,"",0)); # mm3 = a[7]
76 &add($a,32);
77 &pmuludq("mm3","mm0"); # mm3 = w*a[7]
78 &paddq("mm1","mm5"); # mm1 = carry1 + r[2] + w*a[2]
79 &movd("mm5",&DWP(16,$r,"",0)); # mm5 = r[4]
80 &paddq("mm2","mm5"); # mm2 = r[4] + w*a[4]
81 &movd(&DWP(8,$r,"",0),"mm1");
82 &psrlq("mm1",32); # mm1 = carry2
83 &paddq("mm1","mm7"); # mm1 = carry2 + r[3] + w*a[3]
84 &movd("mm5",&DWP(20,$r,"",0)); # mm5 = r[5]
85 &paddq("mm4","mm5"); # mm4 = r[5] + w*a[5]
86 &movd(&DWP(12,$r,"",0),"mm1");
87 &psrlq("mm1",32); # mm1 = carry3
88 &paddq("mm1","mm2"); # mm1 = carry3 + r[4] + w*a[4]
89 &movd("mm5",&DWP(24,$r,"",0)); # mm5 = r[6]
90 &paddq("mm6","mm5"); # mm6 = r[6] + w*a[6]
91 &movd(&DWP(16,$r,"",0),"mm1");
92 &psrlq("mm1",32); # mm1 = carry4
93 &paddq("mm1","mm4"); # mm1 = carry4 + r[5] + w*a[5]
94 &movd("mm5",&DWP(28,$r,"",0)); # mm5 = r[7]
95 &paddq("mm3","mm5"); # mm3 = r[7] + w*a[7]
96 &movd(&DWP(20,$r,"",0),"mm1");
97 &psrlq("mm1",32); # mm1 = carry5
98 &paddq("mm1","mm6"); # mm1 = carry5 + r[6] + w*a[6]
99 &movd(&DWP(24,$r,"",0),"mm1");
100 &psrlq("mm1",32); # mm1 = carry6
101 &paddq("mm1","mm3"); # mm1 = carry6 + r[7] + w*a[7]
102 &movd(&DWP(28,$r,"",0),"mm1");
103 &lea($r,&DWP(32,$r));
104 &psrlq("mm1",32); # mm1 = carry_out

106 &sub($c,8);
107 &jz(&label("maw_sse2_exit"));
108 &set_label("maw_sse2_entry");
109 &test($c,0xfffffff8);
110 &jnz(&label("maw_sse2_unrolled"));

112 &set_label("maw_sse2_loop",4);
113 &movd("mm2",&DWP(0,$a)); # mm2 = a[i]
114 &movd("mm3",&DWP(0,$r)); # mm3 = r[i]
115 &pmuludq("mm2","mm0"); # a[i] *= w
116 &lea($a,&DWP(4,$a));
117 &paddq("mm1","mm3"); # carry += r[i]
118 &paddq("mm1","mm2"); # carry += a[i]*w
119 &movd(&DWP(0,$r),"mm1"); # r[i] = carry_low
120 &sub($c,1);
121 &psrlq("mm1",32); # carry = carry_high
122 &lea($r,&DWP(4,$r));
123 &jnz(&label("maw_sse2_loop"));
124 &set_label("maw_sse2_exit");
125 &movd("eax","mm1"); # c = carry_out
126 &emms();
127 &ret();

new/usr/src/lib/openssl/libsunw_crypto/pl/bn-586.pl 3

129 &set_label("maw_non_sse2",16);
130 }

132 # function_begin prologue
133 &push("ebp");
134 &push("ebx");
135 &push("esi");
136 &push("edi");

138 &comment("");
139 $Low="eax";
140 $High="edx";
141 $a="ebx";
142 $w="ebp";
143 $r="edi";
144 $c="esi";

146 &xor($c,$c); # clear carry
147 &mov($r,&wparam(0)); #

149 &mov("ecx",&wparam(2)); #
150 &mov($a,&wparam(1)); #

152 &and("ecx",0xfffffff8); # num / 8
153 &mov($w,&wparam(3)); #

155 &push("ecx"); # Up the stack for a tmp variable

157 &jz(&label("maw_finish"));

159 &set_label("maw_loop",16);

161 for ($i=0; $i<32; $i+=4)
162 {
163 &comment("Round $i");

165 &mov("eax",&DWP($i,$a)); # *a
166 &mul($w); # *a * w
167 &add("eax",$c); # L(t)+= c
168 &adc("edx",0); # H(t)+=carry
169 &add("eax",&DWP($i,$r)); # L(t)+= *r
170 &adc("edx",0); # H(t)+=carry
171 &mov(&DWP($i,$r),"eax"); # *r= L(t);
172 &mov($c,"edx"); # c= H(t);
173 }

175 &comment("");
176 &sub("ecx",8);
177 &lea($a,&DWP(32,$a));
178 &lea($r,&DWP(32,$r));
179 &jnz(&label("maw_loop"));

181 &set_label("maw_finish",0);
182 &mov("ecx",&wparam(2)); # get num
183 &and("ecx",7);
184 &jnz(&label("maw_finish2")); # helps branch prediction
185 &jmp(&label("maw_end"));

187 &set_label("maw_finish2",1);
188 for ($i=0; $i<7; $i++)
189 {
190 &comment("Tail Round $i");
191 &mov("eax",&DWP($i*4,$a)); # *a
192 &mul($w); # *a * w
193 &add("eax",$c); # L(t)+=c

new/usr/src/lib/openssl/libsunw_crypto/pl/bn-586.pl 4

194 &adc("edx",0); # H(t)+=carry
195 &add("eax",&DWP($i*4,$r)); # L(t)+= *r
196 &adc("edx",0); # H(t)+=carry
197 &dec("ecx") if ($i != 7-1);
198 &mov(&DWP($i*4,$r),"eax"); # *r= L(t);
199 &mov($c,"edx"); # c= H(t);
200 &jz(&label("maw_end")) if ($i != 7-1);
201 }
202 &set_label("maw_end",0);
203 &mov("eax",$c);

205 &pop("ecx"); # clear variable from

207 &function_end($name);
208 }

210 sub bn_mul_words
211 {
212 local($name)=@_;

214 &function_begin_B($name,$sse2?"EXTRN\t_OPENSSL_ia32cap_P:DWORD":"");

216 $r="eax";
217 $a="edx";
218 $c="ecx";

220 if ($sse2) {
221 &picmeup("eax","OPENSSL_ia32cap_P");
222 &bt(&DWP(0,"eax"),26);
223 &jnc(&label("mw_non_sse2"));

225 &mov($r,&wparam(0));
226 &mov($a,&wparam(1));
227 &mov($c,&wparam(2));
228 &movd("mm0",&wparam(3)); # mm0 = w
229 &pxor("mm1","mm1"); # mm1 = carry = 0

231 &set_label("mw_sse2_loop",16);
232 &movd("mm2",&DWP(0,$a)); # mm2 = a[i]
233 &pmuludq("mm2","mm0"); # a[i] *= w
234 &lea($a,&DWP(4,$a));
235 &paddq("mm1","mm2"); # carry += a[i]*w
236 &movd(&DWP(0,$r),"mm1"); # r[i] = carry_low
237 &sub($c,1);
238 &psrlq("mm1",32); # carry = carry_high
239 &lea($r,&DWP(4,$r));
240 &jnz(&label("mw_sse2_loop"));

242 &movd("eax","mm1"); # return carry
243 &emms();
244 &ret();
245 &set_label("mw_non_sse2",16);
246 }

248 # function_begin prologue
249 &push("ebp");
250 &push("ebx");
251 &push("esi");
252 &push("edi");

254 &comment("");
255 $Low="eax";
256 $High="edx";
257 $a="ebx";
258 $w="ecx";
259 $r="edi";

new/usr/src/lib/openssl/libsunw_crypto/pl/bn-586.pl 5

260 $c="esi";
261 $num="ebp";

263 &xor($c,$c); # clear carry
264 &mov($r,&wparam(0)); #
265 &mov($a,&wparam(1)); #
266 &mov($num,&wparam(2)); #
267 &mov($w,&wparam(3)); #

269 &and($num,0xfffffff8); # num / 8
270 &jz(&label("mw_finish"));

272 &set_label("mw_loop",0);
273 for ($i=0; $i<32; $i+=4)
274 {
275 &comment("Round $i");

277 &mov("eax",&DWP($i,$a,"",0)); # *a
278 &mul($w); # *a * w
279 &add("eax",$c); # L(t)+=c
280 # XXX

282 &adc("edx",0); # H(t)+=carry
283 &mov(&DWP($i,$r,"",0),"eax"); # *r= L(t);

285 &mov($c,"edx"); # c= H(t);
286 }

288 &comment("");
289 &add($a,32);
290 &add($r,32);
291 &sub($num,8);
292 &jz(&label("mw_finish"));
293 &jmp(&label("mw_loop"));

295 &set_label("mw_finish",0);
296 &mov($num,&wparam(2)); # get num
297 &and($num,7);
298 &jnz(&label("mw_finish2"));
299 &jmp(&label("mw_end"));

301 &set_label("mw_finish2",1);
302 for ($i=0; $i<7; $i++)
303 {
304 &comment("Tail Round $i");
305 &mov("eax",&DWP($i*4,$a,"",0));# *a
306 &mul($w); # *a * w
307 &add("eax",$c); # L(t)+=c
308 # XXX
309 &adc("edx",0); # H(t)+=carry
310 &mov(&DWP($i*4,$r,"",0),"eax");# *r= L(t);
311 &mov($c,"edx"); # c= H(t);
312 &dec($num) if ($i != 7-1);
313 &jz(&label("mw_end")) if ($i != 7-1);
314 }
315 &set_label("mw_end",0);
316 &mov("eax",$c);

318 &function_end($name);
319 }

321 sub bn_sqr_words
322 {
323 local($name)=@_;

325 &function_begin_B($name,$sse2?"EXTRN\t_OPENSSL_ia32cap_P:DWORD":"");

new/usr/src/lib/openssl/libsunw_crypto/pl/bn-586.pl 6

327 $r="eax";
328 $a="edx";
329 $c="ecx";

331 if ($sse2) {
332 &picmeup("eax","OPENSSL_ia32cap_P");
333 &bt(&DWP(0,"eax"),26);
334 &jnc(&label("sqr_non_sse2"));

336 &mov($r,&wparam(0));
337 &mov($a,&wparam(1));
338 &mov($c,&wparam(2));

340 &set_label("sqr_sse2_loop",16);
341 &movd("mm0",&DWP(0,$a)); # mm0 = a[i]
342 &pmuludq("mm0","mm0"); # a[i] *= a[i]
343 &lea($a,&DWP(4,$a)); # a++
344 &movq(&QWP(0,$r),"mm0"); # r[i] = a[i]*a[i]
345 &sub($c,1);
346 &lea($r,&DWP(8,$r)); # r += 2
347 &jnz(&label("sqr_sse2_loop"));

349 &emms();
350 &ret();
351 &set_label("sqr_non_sse2",16);
352 }

354 # function_begin prologue
355 &push("ebp");
356 &push("ebx");
357 &push("esi");
358 &push("edi");

360 &comment("");
361 $r="esi";
362 $a="edi";
363 $num="ebx";

365 &mov($r,&wparam(0)); #
366 &mov($a,&wparam(1)); #
367 &mov($num,&wparam(2)); #

369 &and($num,0xfffffff8); # num / 8
370 &jz(&label("sw_finish"));

372 &set_label("sw_loop",0);
373 for ($i=0; $i<32; $i+=4)
374 {
375 &comment("Round $i");
376 &mov("eax",&DWP($i,$a,"",0)); # *a
377 # XXX
378 &mul("eax"); # *a * *a
379 &mov(&DWP($i*2,$r,"",0),"eax"); #
380 &mov(&DWP($i*2+4,$r,"",0),"edx");#
381 }

383 &comment("");
384 &add($a,32);
385 &add($r,64);
386 &sub($num,8);
387 &jnz(&label("sw_loop"));

389 &set_label("sw_finish",0);
390 &mov($num,&wparam(2)); # get num
391 &and($num,7);

new/usr/src/lib/openssl/libsunw_crypto/pl/bn-586.pl 7

392 &jz(&label("sw_end"));

394 for ($i=0; $i<7; $i++)
395 {
396 &comment("Tail Round $i");
397 &mov("eax",&DWP($i*4,$a,"",0)); # *a
398 # XXX
399 &mul("eax"); # *a * *a
400 &mov(&DWP($i*8,$r,"",0),"eax"); #
401 &dec($num) if ($i != 7-1);
402 &mov(&DWP($i*8+4,$r,"",0),"edx");
403 &jz(&label("sw_end")) if ($i != 7-1);
404 }
405 &set_label("sw_end",0);

407 &function_end($name);
408 }

410 sub bn_div_words
411 {
412 local($name)=@_;

414 &function_begin_B($name,"");
415 &mov("edx",&wparam(0)); #
416 &mov("eax",&wparam(1)); #
417 &mov("ecx",&wparam(2)); #
418 &div("ecx");
419 &ret();
420 &function_end_B($name);
421 }

423 sub bn_add_words
424 {
425 local($name)=@_;

427 &function_begin($name,"");

429 &comment("");
430 $a="esi";
431 $b="edi";
432 $c="eax";
433 $r="ebx";
434 $tmp1="ecx";
435 $tmp2="edx";
436 $num="ebp";

438 &mov($r,&wparam(0)); # get r
439 &mov($a,&wparam(1)); # get a
440 &mov($b,&wparam(2)); # get b
441 &mov($num,&wparam(3)); # get num
442 &xor($c,$c); # clear carry
443 &and($num,0xfffffff8); # num / 8

445 &jz(&label("aw_finish"));

447 &set_label("aw_loop",0);
448 for ($i=0; $i<8; $i++)
449 {
450 &comment("Round $i");

452 &mov($tmp1,&DWP($i*4,$a,"",0)); # *a
453 &mov($tmp2,&DWP($i*4,$b,"",0)); # *b
454 &add($tmp1,$c);
455 &mov($c,0);
456 &adc($c,$c);
457 &add($tmp1,$tmp2);

new/usr/src/lib/openssl/libsunw_crypto/pl/bn-586.pl 8

458 &adc($c,0);
459 &mov(&DWP($i*4,$r,"",0),$tmp1); # *r
460 }

462 &comment("");
463 &add($a,32);
464 &add($b,32);
465 &add($r,32);
466 &sub($num,8);
467 &jnz(&label("aw_loop"));

469 &set_label("aw_finish",0);
470 &mov($num,&wparam(3)); # get num
471 &and($num,7);
472 &jz(&label("aw_end"));

474 for ($i=0; $i<7; $i++)
475 {
476 &comment("Tail Round $i");
477 &mov($tmp1,&DWP($i*4,$a,"",0)); # *a
478 &mov($tmp2,&DWP($i*4,$b,"",0));# *b
479 &add($tmp1,$c);
480 &mov($c,0);
481 &adc($c,$c);
482 &add($tmp1,$tmp2);
483 &adc($c,0);
484 &dec($num) if ($i != 6);
485 &mov(&DWP($i*4,$r,"",0),$tmp1); # *r
486 &jz(&label("aw_end")) if ($i != 6);
487 }
488 &set_label("aw_end",0);

490 # &mov("eax",$c); # $c is "eax"

492 &function_end($name);
493 }

495 sub bn_sub_words
496 {
497 local($name)=@_;

499 &function_begin($name,"");

501 &comment("");
502 $a="esi";
503 $b="edi";
504 $c="eax";
505 $r="ebx";
506 $tmp1="ecx";
507 $tmp2="edx";
508 $num="ebp";

510 &mov($r,&wparam(0)); # get r
511 &mov($a,&wparam(1)); # get a
512 &mov($b,&wparam(2)); # get b
513 &mov($num,&wparam(3)); # get num
514 &xor($c,$c); # clear carry
515 &and($num,0xfffffff8); # num / 8

517 &jz(&label("aw_finish"));

519 &set_label("aw_loop",0);
520 for ($i=0; $i<8; $i++)
521 {
522 &comment("Round $i");

new/usr/src/lib/openssl/libsunw_crypto/pl/bn-586.pl 9

524 &mov($tmp1,&DWP($i*4,$a,"",0)); # *a
525 &mov($tmp2,&DWP($i*4,$b,"",0)); # *b
526 &sub($tmp1,$c);
527 &mov($c,0);
528 &adc($c,$c);
529 &sub($tmp1,$tmp2);
530 &adc($c,0);
531 &mov(&DWP($i*4,$r,"",0),$tmp1); # *r
532 }

534 &comment("");
535 &add($a,32);
536 &add($b,32);
537 &add($r,32);
538 &sub($num,8);
539 &jnz(&label("aw_loop"));

541 &set_label("aw_finish",0);
542 &mov($num,&wparam(3)); # get num
543 &and($num,7);
544 &jz(&label("aw_end"));

546 for ($i=0; $i<7; $i++)
547 {
548 &comment("Tail Round $i");
549 &mov($tmp1,&DWP($i*4,$a,"",0)); # *a
550 &mov($tmp2,&DWP($i*4,$b,"",0));# *b
551 &sub($tmp1,$c);
552 &mov($c,0);
553 &adc($c,$c);
554 &sub($tmp1,$tmp2);
555 &adc($c,0);
556 &dec($num) if ($i != 6);
557 &mov(&DWP($i*4,$r,"",0),$tmp1); # *r
558 &jz(&label("aw_end")) if ($i != 6);
559 }
560 &set_label("aw_end",0);

562 # &mov("eax",$c); # $c is "eax"

564 &function_end($name);
565 }

567 sub bn_sub_part_words
568 {
569 local($name)=@_;

571 &function_begin($name,"");

573 &comment("");
574 $a="esi";
575 $b="edi";
576 $c="eax";
577 $r="ebx";
578 $tmp1="ecx";
579 $tmp2="edx";
580 $num="ebp";

582 &mov($r,&wparam(0)); # get r
583 &mov($a,&wparam(1)); # get a
584 &mov($b,&wparam(2)); # get b
585 &mov($num,&wparam(3)); # get num
586 &xor($c,$c); # clear carry
587 &and($num,0xfffffff8); # num / 8

589 &jz(&label("aw_finish"));

new/usr/src/lib/openssl/libsunw_crypto/pl/bn-586.pl 10

591 &set_label("aw_loop",0);
592 for ($i=0; $i<8; $i++)
593 {
594 &comment("Round $i");

596 &mov($tmp1,&DWP($i*4,$a,"",0)); # *a
597 &mov($tmp2,&DWP($i*4,$b,"",0)); # *b
598 &sub($tmp1,$c);
599 &mov($c,0);
600 &adc($c,$c);
601 &sub($tmp1,$tmp2);
602 &adc($c,0);
603 &mov(&DWP($i*4,$r,"",0),$tmp1); # *r
604 }

606 &comment("");
607 &add($a,32);
608 &add($b,32);
609 &add($r,32);
610 &sub($num,8);
611 &jnz(&label("aw_loop"));

613 &set_label("aw_finish",0);
614 &mov($num,&wparam(3)); # get num
615 &and($num,7);
616 &jz(&label("aw_end"));

618 for ($i=0; $i<7; $i++)
619 {
620 &comment("Tail Round $i");
621 &mov($tmp1,&DWP(0,$a,"",0)); # *a
622 &mov($tmp2,&DWP(0,$b,"",0));# *b
623 &sub($tmp1,$c);
624 &mov($c,0);
625 &adc($c,$c);
626 &sub($tmp1,$tmp2);
627 &adc($c,0);
628 &mov(&DWP(0,$r,"",0),$tmp1); # *r
629 &add($a, 4);
630 &add($b, 4);
631 &add($r, 4);
632 &dec($num) if ($i != 6);
633 &jz(&label("aw_end")) if ($i != 6);
634 }
635 &set_label("aw_end",0);

637 &cmp(&wparam(4),0);
638 &je(&label("pw_end"));

640 &mov($num,&wparam(4)); # get dl
641 &cmp($num,0);
642 &je(&label("pw_end"));
643 &jge(&label("pw_pos"));

645 &comment("pw_neg");
646 &mov($tmp2,0);
647 &sub($tmp2,$num);
648 &mov($num,$tmp2);
649 &and($num,0xfffffff8); # num / 8
650 &jz(&label("pw_neg_finish"));

652 &set_label("pw_neg_loop",0);
653 for ($i=0; $i<8; $i++)
654 {
655 &comment("dl<0 Round $i");

new/usr/src/lib/openssl/libsunw_crypto/pl/bn-586.pl 11

657 &mov($tmp1,0);
658 &mov($tmp2,&DWP($i*4,$b,"",0)); # *b
659 &sub($tmp1,$c);
660 &mov($c,0);
661 &adc($c,$c);
662 &sub($tmp1,$tmp2);
663 &adc($c,0);
664 &mov(&DWP($i*4,$r,"",0),$tmp1); # *r
665 }
666
667 &comment("");
668 &add($b,32);
669 &add($r,32);
670 &sub($num,8);
671 &jnz(&label("pw_neg_loop"));
672
673 &set_label("pw_neg_finish",0);
674 &mov($tmp2,&wparam(4)); # get dl
675 &mov($num,0);
676 &sub($num,$tmp2);
677 &and($num,7);
678 &jz(&label("pw_end"));
679
680 for ($i=0; $i<7; $i++)
681 {
682 &comment("dl<0 Tail Round $i");
683 &mov($tmp1,0);
684 &mov($tmp2,&DWP($i*4,$b,"",0));# *b
685 &sub($tmp1,$c);
686 &mov($c,0);
687 &adc($c,$c);
688 &sub($tmp1,$tmp2);
689 &adc($c,0);
690 &dec($num) if ($i != 6);
691 &mov(&DWP($i*4,$r,"",0),$tmp1); # *r
692 &jz(&label("pw_end")) if ($i != 6);
693 }

695 &jmp(&label("pw_end"));
696
697 &set_label("pw_pos",0);
698
699 &and($num,0xfffffff8); # num / 8
700 &jz(&label("pw_pos_finish"));

702 &set_label("pw_pos_loop",0);

704 for ($i=0; $i<8; $i++)
705 {
706 &comment("dl>0 Round $i");

708 &mov($tmp1,&DWP($i*4,$a,"",0)); # *a
709 &sub($tmp1,$c);
710 &mov(&DWP($i*4,$r,"",0),$tmp1); # *r
711 &jnc(&label("pw_nc".$i));
712 }
713
714 &comment("");
715 &add($a,32);
716 &add($r,32);
717 &sub($num,8);
718 &jnz(&label("pw_pos_loop"));
719
720 &set_label("pw_pos_finish",0);
721 &mov($num,&wparam(4)); # get dl

new/usr/src/lib/openssl/libsunw_crypto/pl/bn-586.pl 12

722 &and($num,7);
723 &jz(&label("pw_end"));
724
725 for ($i=0; $i<7; $i++)
726 {
727 &comment("dl>0 Tail Round $i");
728 &mov($tmp1,&DWP($i*4,$a,"",0)); # *a
729 &sub($tmp1,$c);
730 &mov(&DWP($i*4,$r,"",0),$tmp1); # *r
731 &jnc(&label("pw_tail_nc".$i));
732 &dec($num) if ($i != 6);
733 &jz(&label("pw_end")) if ($i != 6);
734 }
735 &mov($c,1);
736 &jmp(&label("pw_end"));

738 &set_label("pw_nc_loop",0);
739 for ($i=0; $i<8; $i++)
740 {
741 &mov($tmp1,&DWP($i*4,$a,"",0)); # *a
742 &mov(&DWP($i*4,$r,"",0),$tmp1); # *r
743 &set_label("pw_nc".$i,0);
744 }
745
746 &comment("");
747 &add($a,32);
748 &add($r,32);
749 &sub($num,8);
750 &jnz(&label("pw_nc_loop"));
751
752 &mov($num,&wparam(4)); # get dl
753 &and($num,7);
754 &jz(&label("pw_nc_end"));
755
756 for ($i=0; $i<7; $i++)
757 {
758 &mov($tmp1,&DWP($i*4,$a,"",0)); # *a
759 &mov(&DWP($i*4,$r,"",0),$tmp1); # *r
760 &set_label("pw_tail_nc".$i,0);
761 &dec($num) if ($i != 6);
762 &jz(&label("pw_nc_end")) if ($i != 6);
763 }

765 &set_label("pw_nc_end",0);
766 &mov($c,0);

768 &set_label("pw_end",0);

770 # &mov("eax",$c); # $c is "eax"

772 &function_end($name);
773 }

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 1

**
 73459 Fri May 30 18:32:03 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 ###
4 ### AES-128 [originally in CTR mode] ###
5 ### bitsliced implementation for Intel Core 2 processors ###
6 ### requires support of SSE extensions up to SSSE3 ###
7 ### Author: Emilia Kˆ⁄sper and Peter Schwabe ###
8 ### Date: 2009-03-19 ###
9 ### Public domain ###
10 ### ###
11 ### See http://homes.esat.kuleuven.be/~ekasper/#software for ###
12 ### further information. ###
13 ###
14 #
15 # September 2011.
16 #
17 # Started as transliteration to "perlasm" the original code has
18 # undergone following changes:
19 #
20 # - code was made position-independent;
21 # - rounds were folded into a loop resulting in >5x size reduction
22 # from 12.5KB to 2.2KB;
23 # - above was possibile thanks to mixcolumns() modification that
24 # allowed to feed its output back to aesenc[last], this was
25 # achieved at cost of two additional inter-registers moves;
26 # - some instruction reordering and interleaving;
27 # - this module doesn’t implement key setup subroutine, instead it
28 # relies on conversion of "conventional" key schedule as returned
29 # by AES_set_encrypt_key (see discussion below);
30 # - first and last round keys are treated differently, which allowed
31 # to skip one shiftrows(), reduce bit-sliced key schedule and
32 # speed-up conversion by 22%;
33 # - support for 192- and 256-bit keys was added;
34 #
35 # Resulting performance in CPU cycles spent to encrypt one byte out
36 # of 4096-byte buffer with 128-bit key is:
37 #
38 # Emilia’s this(*) difference
39 #
40 # Core 2 9.30 8.69 +7%
41 # Nehalem(**) 7.63 6.98 +9%
42 # Atom 17.1 17.4 -2%(***)
43 #
44 # (*) Comparison is not completely fair, because "this" is ECB,
45 # i.e. no extra processing such as counter values calculation
46 # and xor-ing input as in Emilia’s CTR implementation is
47 # performed. However, the CTR calculations stand for not more
48 # than 1% of total time, so comparison is *rather* fair.
49 #
50 # (**) Results were collected on Westmere, which is considered to
51 # be equivalent to Nehalem for this code.
52 #
53 # (***) Slowdown on Atom is rather strange per se, because original
54 # implementation has a number of 9+-bytes instructions, which
55 # are bad for Atom front-end, and which I eliminated completely.
56 # In attempt to address deterioration sbox() was tested in FP
57 # SIMD "domain" (movaps instead of movdqa, xorps instead of
58 # pxor, etc.). While it resulted in nominal 4% improvement on
59 # Atom, it hurted Westmere by more than 2x factor.
60 #
61 # As for key schedule conversion subroutine. Interface to OpenSSL

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 2

62 # relies on per-invocation on-the-fly conversion. This naturally
63 # has impact on performance, especially for short inputs. Conversion
64 # time in CPU cycles and its ratio to CPU cycles spent in 8x block
65 # function is:
66 #
67 # conversion conversion/8x block
68 # Core 2 240 0.22
69 # Nehalem 180 0.20
70 # Atom 430 0.19
71 #
72 # The ratio values mean that 128-byte blocks will be processed
73 # 16-18% slower, 256-byte blocks - 9-10%, 384-byte blocks - 6-7%,
74 # etc. Then keep in mind that input sizes not divisible by 128 are
75 # *effectively* slower, especially shortest ones, e.g. consecutive
76 # 144-byte blocks are processed 44% slower than one would expect,
77 # 272 - 29%, 400 - 22%, etc. Yet, despite all these "shortcomings"
78 # it’s still faster than ["hyper-threading-safe" code path in]
79 # aes-x86_64.pl on all lengths above 64 bytes...
80 #
81 # October 2011.
82 #
83 # Add decryption procedure. Performance in CPU cycles spent to decrypt
84 # one byte out of 4096-byte buffer with 128-bit key is:
85 #
86 # Core 2 9.83
87 # Nehalem 7.74
88 # Atom 19.0
89 #
90 # November 2011.
91 #
92 # Add bsaes_xts_[en|de]crypt. Less-than-80-bytes-block performance is
93 # suboptimal, but XTS is meant to be used with larger blocks...
94 #
95 # <appro@openssl.org>

97 $flavour = shift;
98 $output = shift;
99 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

101 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

103 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
104 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
105 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
106 die "can’t locate x86_64-xlate.pl";

108 open OUT,"| \"$^X\" $xlate $flavour $output";
109 *STDOUT=*OUT;

111 my ($inp,$out,$len,$key,$ivp)=("%rdi","%rsi","%rdx","%rcx");
112 my @XMM=map("%xmm$_",(15,0..14)); # best on Atom, +10% over (0..15)
113 my $ecb=0; # suppress unreferenced ECB subroutines, spare some space...

115 {
116 my ($key,$rounds,$const)=("%rax","%r10d","%r11");

118 sub Sbox {
119 # input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
120 # output in lsb > [b0, b1, b4, b6, b3, b7, b2, b5] < msb
121 my @b=@_[0..7];
122 my @t=@_[8..11];
123 my @s=@_[12..15];
124 &InBasisChange (@b);
125 &Inv_GF256 (@b[6,5,0,3,7,1,4,2],@t,@s);
126 &OutBasisChange (@b[7,1,4,2,6,5,0,3]);
127 }

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 3

129 sub InBasisChange {
130 # input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
131 # output in lsb > [b6, b5, b0, b3, b7, b1, b4, b2] < msb
132 my @b=@_[0..7];
133 $code.=<<___;
134 pxor @b[6], @b[5]
135 pxor @b[1], @b[2]
136 pxor @b[0], @b[3]
137 pxor @b[2], @b[6]
138 pxor @b[0], @b[5]

140 pxor @b[3], @b[6]
141 pxor @b[7], @b[3]
142 pxor @b[5], @b[7]
143 pxor @b[4], @b[3]
144 pxor @b[5], @b[4]
145 pxor @b[1], @b[3]

147 pxor @b[7], @b[2]
148 pxor @b[5], @b[1]
149 ___
150 }

152 sub OutBasisChange {
153 # input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
154 # output in lsb > [b6, b1, b2, b4, b7, b0, b3, b5] < msb
155 my @b=@_[0..7];
156 $code.=<<___;
157 pxor @b[6], @b[0]
158 pxor @b[4], @b[1]
159 pxor @b[0], @b[2]
160 pxor @b[6], @b[4]
161 pxor @b[1], @b[6]

163 pxor @b[5], @b[1]
164 pxor @b[3], @b[5]
165 pxor @b[7], @b[3]
166 pxor @b[5], @b[7]
167 pxor @b[5], @b[2]

169 pxor @b[7], @b[4]
170 ___
171 }

173 sub InvSbox {
174 # input in lsb > [b0, b1, b2, b3, b4, b5, b6, b7] < msb
175 # output in lsb > [b0, b1, b6, b4, b2, b7, b3, b5] < msb
176 my @b=@_[0..7];
177 my @t=@_[8..11];
178 my @s=@_[12..15];
179 &InvInBasisChange (@b);
180 &Inv_GF256 (@b[5,1,2,6,3,7,0,4],@t,@s);
181 &InvOutBasisChange (@b[3,7,0,4,5,1,2,6]);
182 }

184 sub InvInBasisChange { # OutBasisChange in reverse
185 my @b=@_[5,1,2,6,3,7,0,4];
186 $code.=<<___
187 pxor @b[7], @b[4]

189 pxor @b[5], @b[7]
190 pxor @b[5], @b[2]
191 pxor @b[7], @b[3]
192 pxor @b[3], @b[5]
193 pxor @b[5], @b[1]

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 4

195 pxor @b[1], @b[6]
196 pxor @b[0], @b[2]
197 pxor @b[6], @b[4]
198 pxor @b[6], @b[0]
199 pxor @b[4], @b[1]
200 ___
201 }

203 sub InvOutBasisChange { # InBasisChange in reverse
204 my @b=@_[2,5,7,3,6,1,0,4];
205 $code.=<<___;
206 pxor @b[5], @b[1]
207 pxor @b[7], @b[2]

209 pxor @b[1], @b[3]
210 pxor @b[5], @b[4]
211 pxor @b[5], @b[7]
212 pxor @b[4], @b[3]
213 pxor @b[0], @b[5]
214 pxor @b[7], @b[3]
215 pxor @b[2], @b[6]
216 pxor @b[1], @b[2]
217 pxor @b[3], @b[6]

219 pxor @b[0], @b[3]
220 pxor @b[6], @b[5]
221 ___
222 }

224 sub Mul_GF4 {
225 #;***
226 #;* Mul_GF4: Input x0-x1,y0-y1 Output x0-x1 Temp t0 (8) *
227 #;***
228 my ($x0,$x1,$y0,$y1,$t0)=@_;
229 $code.=<<___;
230 movdqa $y0, $t0
231 pxor $y1, $t0
232 pand $x0, $t0
233 pxor $x1, $x0
234 pand $y0, $x1
235 pand $y1, $x0
236 pxor $x1, $x0
237 pxor $t0, $x1
238 ___
239 }

241 sub Mul_GF4_N { # not used, see next subroutine
242 # multiply and scale by N
243 my ($x0,$x1,$y0,$y1,$t0)=@_;
244 $code.=<<___;
245 movdqa $y0, $t0
246 pxor $y1, $t0
247 pand $x0, $t0
248 pxor $x1, $x0
249 pand $y0, $x1
250 pand $y1, $x0
251 pxor $x0, $x1
252 pxor $t0, $x0
253 ___
254 }

256 sub Mul_GF4_N_GF4 {
257 # interleaved Mul_GF4_N and Mul_GF4
258 my ($x0,$x1,$y0,$y1,$t0,
259 $x2,$x3,$y2,$y3,$t1)=@_;

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 5

260 $code.=<<___;
261 movdqa $y0, $t0
262 movdqa $y2, $t1
263 pxor $y1, $t0
264 pxor $y3, $t1
265 pand $x0, $t0
266 pand $x2, $t1
267 pxor $x1, $x0
268 pxor $x3, $x2
269 pand $y0, $x1
270 pand $y2, $x3
271 pand $y1, $x0
272 pand $y3, $x2
273 pxor $x0, $x1
274 pxor $x3, $x2
275 pxor $t0, $x0
276 pxor $t1, $x3
277 ___
278 }
279 sub Mul_GF16_2 {
280 my @x=@_[0..7];
281 my @y=@_[8..11];
282 my @t=@_[12..15];
283 $code.=<<___;
284 movdqa @x[0], @t[0]
285 movdqa @x[1], @t[1]
286 ___
287 &Mul_GF4 (@x[0], @x[1], @y[0], @y[1], @t[2]);
288 $code.=<<___;
289 pxor @x[2], @t[0]
290 pxor @x[3], @t[1]
291 pxor @y[2], @y[0]
292 pxor @y[3], @y[1]
293 ___
294 Mul_GF4_N_GF4 (@t[0], @t[1], @y[0], @y[1], @t[3],
295 @x[2], @x[3], @y[2], @y[3], @t[2]);
296 $code.=<<___;
297 pxor @t[0], @x[0]
298 pxor @t[0], @x[2]
299 pxor @t[1], @x[1]
300 pxor @t[1], @x[3]

302 movdqa @x[4], @t[0]
303 movdqa @x[5], @t[1]
304 pxor @x[6], @t[0]
305 pxor @x[7], @t[1]
306 ___
307 &Mul_GF4_N_GF4 (@t[0], @t[1], @y[0], @y[1], @t[3],
308 @x[6], @x[7], @y[2], @y[3], @t[2]);
309 $code.=<<___;
310 pxor @y[2], @y[0]
311 pxor @y[3], @y[1]
312 ___
313 &Mul_GF4 (@x[4], @x[5], @y[0], @y[1], @t[3]);
314 $code.=<<___;
315 pxor @t[0], @x[4]
316 pxor @t[0], @x[6]
317 pxor @t[1], @x[5]
318 pxor @t[1], @x[7]
319 ___
320 }
321 sub Inv_GF256 {
322 #;**
323 #;* Inv_GF256: Input x0-x7 Output x0-x7 Temp t0-t3,s0-s3 (144) *
324 #;**
325 my @x=@_[0..7];

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 6

326 my @t=@_[8..11];
327 my @s=@_[12..15];
328 # direct optimizations from hardware
329 $code.=<<___;
330 movdqa @x[4], @t[3]
331 movdqa @x[5], @t[2]
332 movdqa @x[1], @t[1]
333 movdqa @x[7], @s[1]
334 movdqa @x[0], @s[0]

336 pxor @x[6], @t[3]
337 pxor @x[7], @t[2]
338 pxor @x[3], @t[1]
339 movdqa @t[3], @s[2]
340 pxor @x[6], @s[1]
341 movdqa @t[2], @t[0]
342 pxor @x[2], @s[0]
343 movdqa @t[3], @s[3]

345 por @t[1], @t[2]
346 por @s[0], @t[3]
347 pxor @t[0], @s[3]
348 pand @s[0], @s[2]
349 pxor @t[1], @s[0]
350 pand @t[1], @t[0]
351 pand @s[0], @s[3]
352 movdqa @x[3], @s[0]
353 pxor @x[2], @s[0]
354 pand @s[0], @s[1]
355 pxor @s[1], @t[3]
356 pxor @s[1], @t[2]
357 movdqa @x[4], @s[1]
358 movdqa @x[1], @s[0]
359 pxor @x[5], @s[1]
360 pxor @x[0], @s[0]
361 movdqa @s[1], @t[1]
362 pand @s[0], @s[1]
363 por @s[0], @t[1]
364 pxor @s[1], @t[0]
365 pxor @s[3], @t[3]
366 pxor @s[2], @t[2]
367 pxor @s[3], @t[1]
368 movdqa @x[7], @s[0]
369 pxor @s[2], @t[0]
370 movdqa @x[6], @s[1]
371 pxor @s[2], @t[1]
372 movdqa @x[5], @s[2]
373 pand @x[3], @s[0]
374 movdqa @x[4], @s[3]
375 pand @x[2], @s[1]
376 pand @x[1], @s[2]
377 por @x[0], @s[3]
378 pxor @s[0], @t[3]
379 pxor @s[1], @t[2]
380 pxor @s[2], @t[1]
381 pxor @s[3], @t[0]

383 #Inv_GF16 \t0, \t1, \t2, \t3, \s0, \s1, \s2, \s3

385 # new smaller inversion

387 movdqa @t[3], @s[0]
388 pand @t[1], @t[3]
389 pxor @t[2], @s[0]

391 movdqa @t[0], @s[2]

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 7

392 movdqa @s[0], @s[3]
393 pxor @t[3], @s[2]
394 pand @s[2], @s[3]

396 movdqa @t[1], @s[1]
397 pxor @t[2], @s[3]
398 pxor @t[0], @s[1]

400 pxor @t[2], @t[3]

402 pand @t[3], @s[1]

404 movdqa @s[2], @t[2]
405 pxor @t[0], @s[1]

407 pxor @s[1], @t[2]
408 pxor @s[1], @t[1]

410 pand @t[0], @t[2]

412 pxor @t[2], @s[2]
413 pxor @t[2], @t[1]

415 pand @s[3], @s[2]

417 pxor @s[0], @s[2]
418 ___
419 # output in s3, s2, s1, t1

421 # Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \t2, \t3, \t0, \t1, \s0, \s

423 # Mul_GF16_2 \x0, \x1, \x2, \x3, \x4, \x5, \x6, \x7, \s3, \s2, \s1, \t1, \s0, \t
424 &Mul_GF16_2(@x,@s[3,2,1],@t[1],@s[0],@t[0,2,3]);

426 ### output msb > [x3,x2,x1,x0,x7,x6,x5,x4] < lsb
427 }

429 # AES linear components

431 sub ShiftRows {
432 my @x=@_[0..7];
433 my $mask=pop;
434 $code.=<<___;
435 pxor 0x00($key),@x[0]
436 pxor 0x10($key),@x[1]
437 pshufb $mask,@x[0]
438 pxor 0x20($key),@x[2]
439 pshufb $mask,@x[1]
440 pxor 0x30($key),@x[3]
441 pshufb $mask,@x[2]
442 pxor 0x40($key),@x[4]
443 pshufb $mask,@x[3]
444 pxor 0x50($key),@x[5]
445 pshufb $mask,@x[4]
446 pxor 0x60($key),@x[6]
447 pshufb $mask,@x[5]
448 pxor 0x70($key),@x[7]
449 pshufb $mask,@x[6]
450 lea 0x80($key),$key
451 pshufb $mask,@x[7]
452 ___
453 }

455 sub MixColumns {
456 # modified to emit output in order suitable for feeding back to aesenc[last]
457 my @x=@_[0..7];

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 8

458 my @t=@_[8..15];
459 my $inv=@_[16]; # optional
460 $code.=<<___;
461 pshufd \$0x93, @x[0], @t[0] # x0 <<< 32
462 pshufd \$0x93, @x[1], @t[1]
463 pxor @t[0], @x[0] # x0 ^ (x0 <<< 32)
464 pshufd \$0x93, @x[2], @t[2]
465 pxor @t[1], @x[1]
466 pshufd \$0x93, @x[3], @t[3]
467 pxor @t[2], @x[2]
468 pshufd \$0x93, @x[4], @t[4]
469 pxor @t[3], @x[3]
470 pshufd \$0x93, @x[5], @t[5]
471 pxor @t[4], @x[4]
472 pshufd \$0x93, @x[6], @t[6]
473 pxor @t[5], @x[5]
474 pshufd \$0x93, @x[7], @t[7]
475 pxor @t[6], @x[6]
476 pxor @t[7], @x[7]

478 pxor @x[0], @t[1]
479 pxor @x[7], @t[0]
480 pxor @x[7], @t[1]
481 pshufd \$0x4E, @x[0], @x[0] # (x0 ^ (x0 <<< 32)) <<< 64)
482 pxor @x[1], @t[2]
483 pshufd \$0x4E, @x[1], @x[1]
484 pxor @x[4], @t[5]
485 pxor @t[0], @x[0]
486 pxor @x[5], @t[6]
487 pxor @t[1], @x[1]
488 pxor @x[3], @t[4]
489 pshufd \$0x4E, @x[4], @t[0]
490 pxor @x[6], @t[7]
491 pshufd \$0x4E, @x[5], @t[1]
492 pxor @x[2], @t[3]
493 pshufd \$0x4E, @x[3], @x[4]
494 pxor @x[7], @t[3]
495 pshufd \$0x4E, @x[7], @x[5]
496 pxor @x[7], @t[4]
497 pshufd \$0x4E, @x[6], @x[3]
498 pxor @t[4], @t[0]
499 pshufd \$0x4E, @x[2], @x[6]
500 pxor @t[5], @t[1]
501 ___
502 $code.=<<___ if (!$inv);
503 pxor @t[3], @x[4]
504 pxor @t[7], @x[5]
505 pxor @t[6], @x[3]
506 movdqa @t[0], @x[2]
507 pxor @t[2], @x[6]
508 movdqa @t[1], @x[7]
509 ___
510 $code.=<<___ if ($inv);
511 pxor @x[4], @t[3]
512 pxor @t[7], @x[5]
513 pxor @x[3], @t[6]
514 movdqa @t[0], @x[3]
515 pxor @t[2], @x[6]
516 movdqa @t[6], @x[2]
517 movdqa @t[1], @x[7]
518 movdqa @x[6], @x[4]
519 movdqa @t[3], @x[6]
520 ___
521 }

523 sub InvMixColumns_orig {

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 9

524 my @x=@_[0..7];
525 my @t=@_[8..15];

527 $code.=<<___;
528 # multiplication by 0x0e
529 pshufd \$0x93, @x[7], @t[7]
530 movdqa @x[2], @t[2]
531 pxor @x[5], @x[7] # 7 5
532 pxor @x[5], @x[2] # 2 5
533 pshufd \$0x93, @x[0], @t[0]
534 movdqa @x[5], @t[5]
535 pxor @x[0], @x[5] # 5 0 [1]
536 pxor @x[1], @x[0] # 0 1
537 pshufd \$0x93, @x[1], @t[1]
538 pxor @x[2], @x[1] # 1 25
539 pxor @x[6], @x[0] # 01 6 [2]
540 pxor @x[3], @x[1] # 125 3 [4]
541 pshufd \$0x93, @x[3], @t[3]
542 pxor @x[0], @x[2] # 25 016 [3]
543 pxor @x[7], @x[3] # 3 75
544 pxor @x[6], @x[7] # 75 6 [0]
545 pshufd \$0x93, @x[6], @t[6]
546 movdqa @x[4], @t[4]
547 pxor @x[4], @x[6] # 6 4
548 pxor @x[3], @x[4] # 4 375 [6]
549 pxor @x[7], @x[3] # 375 756=36
550 pxor @t[5], @x[6] # 64 5 [7]
551 pxor @t[2], @x[3] # 36 2
552 pxor @t[4], @x[3] # 362 4 [5]
553 pshufd \$0x93, @t[5], @t[5]
554 ___
555 my @y = @x[7,5,0,2,1,3,4,6];
556 $code.=<<___;
557 # multiplication by 0x0b
558 pxor @y[0], @y[1]
559 pxor @t[0], @y[0]
560 pxor @t[1], @y[1]
561 pshufd \$0x93, @t[2], @t[2]
562 pxor @t[5], @y[0]
563 pxor @t[6], @y[1]
564 pxor @t[7], @y[0]
565 pshufd \$0x93, @t[4], @t[4]
566 pxor @t[6], @t[7] # clobber t[7]
567 pxor @y[0], @y[1]

569 pxor @t[0], @y[3]
570 pshufd \$0x93, @t[0], @t[0]
571 pxor @t[1], @y[2]
572 pxor @t[1], @y[4]
573 pxor @t[2], @y[2]
574 pshufd \$0x93, @t[1], @t[1]
575 pxor @t[2], @y[3]
576 pxor @t[2], @y[5]
577 pxor @t[7], @y[2]
578 pshufd \$0x93, @t[2], @t[2]
579 pxor @t[3], @y[3]
580 pxor @t[3], @y[6]
581 pxor @t[3], @y[4]
582 pshufd \$0x93, @t[3], @t[3]
583 pxor @t[4], @y[7]
584 pxor @t[4], @y[5]
585 pxor @t[7], @y[7]
586 pxor @t[5], @y[3]
587 pxor @t[4], @y[4]
588 pxor @t[5], @t[7] # clobber t[7] even more

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 10

590 pxor @t[7], @y[5]
591 pshufd \$0x93, @t[4], @t[4]
592 pxor @t[7], @y[6]
593 pxor @t[7], @y[4]

595 pxor @t[5], @t[7]
596 pshufd \$0x93, @t[5], @t[5]
597 pxor @t[6], @t[7] # restore t[7]

599 # multiplication by 0x0d
600 pxor @y[7], @y[4]
601 pxor @t[4], @y[7]
602 pshufd \$0x93, @t[6], @t[6]
603 pxor @t[0], @y[2]
604 pxor @t[5], @y[7]
605 pxor @t[2], @y[2]
606 pshufd \$0x93, @t[7], @t[7]

608 pxor @y[1], @y[3]
609 pxor @t[1], @y[1]
610 pxor @t[0], @y[0]
611 pxor @t[0], @y[3]
612 pxor @t[5], @y[1]
613 pxor @t[5], @y[0]
614 pxor @t[7], @y[1]
615 pshufd \$0x93, @t[0], @t[0]
616 pxor @t[6], @y[0]
617 pxor @y[1], @y[3]
618 pxor @t[1], @y[4]
619 pshufd \$0x93, @t[1], @t[1]

621 pxor @t[7], @y[7]
622 pxor @t[2], @y[4]
623 pxor @t[2], @y[5]
624 pshufd \$0x93, @t[2], @t[2]
625 pxor @t[6], @y[2]
626 pxor @t[3], @t[6] # clobber t[6]
627 pxor @y[7], @y[4]
628 pxor @t[6], @y[3]

630 pxor @t[6], @y[6]
631 pxor @t[5], @y[5]
632 pxor @t[4], @y[6]
633 pshufd \$0x93, @t[4], @t[4]
634 pxor @t[6], @y[5]
635 pxor @t[7], @y[6]
636 pxor @t[3], @t[6] # restore t[6]

638 pshufd \$0x93, @t[5], @t[5]
639 pshufd \$0x93, @t[6], @t[6]
640 pshufd \$0x93, @t[7], @t[7]
641 pshufd \$0x93, @t[3], @t[3]

643 # multiplication by 0x09
644 pxor @y[1], @y[4]
645 pxor @y[1], @t[1] # t[1]=y[1]
646 pxor @t[5], @t[0] # clobber t[0]
647 pxor @t[5], @t[1]
648 pxor @t[0], @y[3]
649 pxor @y[0], @t[0] # t[0]=y[0]
650 pxor @t[6], @t[1]
651 pxor @t[7], @t[6] # clobber t[6]
652 pxor @t[1], @y[4]
653 pxor @t[4], @y[7]
654 pxor @y[4], @t[4] # t[4]=y[4]
655 pxor @t[3], @y[6]

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 11

656 pxor @y[3], @t[3] # t[3]=y[3]
657 pxor @t[2], @y[5]
658 pxor @y[2], @t[2] # t[2]=y[2]
659 pxor @t[7], @t[3]
660 pxor @y[5], @t[5] # t[5]=y[5]
661 pxor @t[6], @t[2]
662 pxor @t[6], @t[5]
663 pxor @y[6], @t[6] # t[6]=y[6]
664 pxor @y[7], @t[7] # t[7]=y[7]

666 movdqa @t[0],@XMM[0]
667 movdqa @t[1],@XMM[1]
668 movdqa @t[2],@XMM[2]
669 movdqa @t[3],@XMM[3]
670 movdqa @t[4],@XMM[4]
671 movdqa @t[5],@XMM[5]
672 movdqa @t[6],@XMM[6]
673 movdqa @t[7],@XMM[7]
674 ___
675 }

677 sub InvMixColumns {
678 my @x=@_[0..7];
679 my @t=@_[8..15];

681 # Thanks to Jussi Kivilinna for providing pointer to
682 #
683 # | 0e 0b 0d 09 | | 02 03 01 01 | | 05 00 04 00 |
684 # | 09 0e 0b 0d | = | 01 02 03 01 | x | 00 05 00 04 |
685 # | 0d 09 0e 0b | | 01 01 02 03 | | 04 00 05 00 |
686 # | 0b 0d 09 0e | | 03 01 01 02 | | 00 04 00 05 |

688 $code.=<<___;
689 # multiplication by 0x05-0x00-0x04-0x00
690 pshufd \$0x4E, @x[0], @t[0]
691 pshufd \$0x4E, @x[6], @t[6]
692 pxor @x[0], @t[0]
693 pshufd \$0x4E, @x[7], @t[7]
694 pxor @x[6], @t[6]
695 pshufd \$0x4E, @x[1], @t[1]
696 pxor @x[7], @t[7]
697 pshufd \$0x4E, @x[2], @t[2]
698 pxor @x[1], @t[1]
699 pshufd \$0x4E, @x[3], @t[3]
700 pxor @x[2], @t[2]
701 pxor @t[6], @x[0]
702 pxor @t[6], @x[1]
703 pshufd \$0x4E, @x[4], @t[4]
704 pxor @x[3], @t[3]
705 pxor @t[0], @x[2]
706 pxor @t[1], @x[3]
707 pshufd \$0x4E, @x[5], @t[5]
708 pxor @x[4], @t[4]
709 pxor @t[7], @x[1]
710 pxor @t[2], @x[4]
711 pxor @x[5], @t[5]

713 pxor @t[7], @x[2]
714 pxor @t[6], @x[3]
715 pxor @t[6], @x[4]
716 pxor @t[3], @x[5]
717 pxor @t[4], @x[6]
718 pxor @t[7], @x[4]
719 pxor @t[7], @x[5]
720 pxor @t[5], @x[7]
721 ___

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 12

722 &MixColumns (@x,@t,1); # flipped 2<->3 and 4<->6
723 }

725 sub aesenc { # not used
726 my @b=@_[0..7];
727 my @t=@_[8..15];
728 $code.=<<___;
729 movdqa 0x30($const),@t[0] # .LSR
730 ___
731 &ShiftRows (@b,@t[0]);
732 &Sbox (@b,@t);
733 &MixColumns (@b[0,1,4,6,3,7,2,5],@t);
734 }

736 sub aesenclast { # not used
737 my @b=@_[0..7];
738 my @t=@_[8..15];
739 $code.=<<___;
740 movdqa 0x40($const),@t[0] # .LSRM0
741 ___
742 &ShiftRows (@b,@t[0]);
743 &Sbox (@b,@t);
744 $code.=<<___
745 pxor 0x00($key),@b[0]
746 pxor 0x10($key),@b[1]
747 pxor 0x20($key),@b[4]
748 pxor 0x30($key),@b[6]
749 pxor 0x40($key),@b[3]
750 pxor 0x50($key),@b[7]
751 pxor 0x60($key),@b[2]
752 pxor 0x70($key),@b[5]
753 ___
754 }

756 sub swapmove {
757 my ($a,$b,$n,$mask,$t)=@_;
758 $code.=<<___;
759 movdqa $b,$t
760 psrlq \$$n,$b
761 pxor $a,$b
762 pand $mask,$b
763 pxor $b,$a
764 psllq \$$n,$b
765 pxor $t,$b
766 ___
767 }
768 sub swapmove2x {
769 my ($a0,$b0,$a1,$b1,$n,$mask,$t0,$t1)=@_;
770 $code.=<<___;
771 movdqa $b0,$t0
772 psrlq \$$n,$b0
773 movdqa $b1,$t1
774 psrlq \$$n,$b1
775 pxor $a0,$b0
776 pxor $a1,$b1
777 pand $mask,$b0
778 pand $mask,$b1
779 pxor $b0,$a0
780 psllq \$$n,$b0
781 pxor $b1,$a1
782 psllq \$$n,$b1
783 pxor $t0,$b0
784 pxor $t1,$b1
785 ___
786 }

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 13

788 sub bitslice {
789 my @x=reverse(@_[0..7]);
790 my ($t0,$t1,$t2,$t3)=@_[8..11];
791 $code.=<<___;
792 movdqa 0x00($const),$t0 # .LBS0
793 movdqa 0x10($const),$t1 # .LBS1
794 ___
795 &swapmove2x(@x[0,1,2,3],1,$t0,$t2,$t3);
796 &swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3);
797 $code.=<<___;
798 movdqa 0x20($const),$t0 # .LBS2
799 ___
800 &swapmove2x(@x[0,2,1,3],2,$t1,$t2,$t3);
801 &swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3);

803 &swapmove2x(@x[0,4,1,5],4,$t0,$t2,$t3);
804 &swapmove2x(@x[2,6,3,7],4,$t0,$t2,$t3);
805 }

807 $code.=<<___;
808 .text

810 .extern asm_AES_encrypt
811 .extern asm_AES_decrypt

813 .type _bsaes_encrypt8,\@abi-omnipotent
814 .align 64
815 _bsaes_encrypt8:
816 lea .LBS0(%rip), $const # constants table

818 movdqa ($key), @XMM[9] # round 0 key
819 lea 0x10($key), $key
820 movdqa 0x50($const), @XMM[8] # .LM0SR
821 pxor @XMM[9], @XMM[0] # xor with round0 key
822 pxor @XMM[9], @XMM[1]
823 pshufb @XMM[8], @XMM[0]
824 pxor @XMM[9], @XMM[2]
825 pshufb @XMM[8], @XMM[1]
826 pxor @XMM[9], @XMM[3]
827 pshufb @XMM[8], @XMM[2]
828 pxor @XMM[9], @XMM[4]
829 pshufb @XMM[8], @XMM[3]
830 pxor @XMM[9], @XMM[5]
831 pshufb @XMM[8], @XMM[4]
832 pxor @XMM[9], @XMM[6]
833 pshufb @XMM[8], @XMM[5]
834 pxor @XMM[9], @XMM[7]
835 pshufb @XMM[8], @XMM[6]
836 pshufb @XMM[8], @XMM[7]
837 _bsaes_encrypt8_bitslice:
838 ___
839 &bitslice (@XMM[0..7, 8..11]);
840 $code.=<<___;
841 dec $rounds
842 jmp .Lenc_sbox
843 .align 16
844 .Lenc_loop:
845 ___
846 &ShiftRows (@XMM[0..7, 8]);
847 $code.=".Lenc_sbox:\n";
848 &Sbox (@XMM[0..7, 8..15]);
849 $code.=<<___;
850 dec $rounds
851 jl .Lenc_done
852 ___
853 &MixColumns (@XMM[0,1,4,6,3,7,2,5, 8..15]);

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 14

854 $code.=<<___;
855 movdqa 0x30($const), @XMM[8] # .LSR
856 jnz .Lenc_loop
857 movdqa 0x40($const), @XMM[8] # .LSRM0
858 jmp .Lenc_loop
859 .align 16
860 .Lenc_done:
861 ___
862 # output in lsb > [t0, t1, t4, t6, t3, t7, t2, t5] < msb
863 &bitslice (@XMM[0,1,4,6,3,7,2,5, 8..11]);
864 $code.=<<___;
865 movdqa ($key), @XMM[8] # last round key
866 pxor @XMM[8], @XMM[4]
867 pxor @XMM[8], @XMM[6]
868 pxor @XMM[8], @XMM[3]
869 pxor @XMM[8], @XMM[7]
870 pxor @XMM[8], @XMM[2]
871 pxor @XMM[8], @XMM[5]
872 pxor @XMM[8], @XMM[0]
873 pxor @XMM[8], @XMM[1]
874 ret
875 .size _bsaes_encrypt8,.-_bsaes_encrypt8

877 .type _bsaes_decrypt8,\@abi-omnipotent
878 .align 64
879 _bsaes_decrypt8:
880 lea .LBS0(%rip), $const # constants table

882 movdqa ($key), @XMM[9] # round 0 key
883 lea 0x10($key), $key
884 movdqa -0x30($const), @XMM[8] # .LM0ISR
885 pxor @XMM[9], @XMM[0] # xor with round0 key
886 pxor @XMM[9], @XMM[1]
887 pshufb @XMM[8], @XMM[0]
888 pxor @XMM[9], @XMM[2]
889 pshufb @XMM[8], @XMM[1]
890 pxor @XMM[9], @XMM[3]
891 pshufb @XMM[8], @XMM[2]
892 pxor @XMM[9], @XMM[4]
893 pshufb @XMM[8], @XMM[3]
894 pxor @XMM[9], @XMM[5]
895 pshufb @XMM[8], @XMM[4]
896 pxor @XMM[9], @XMM[6]
897 pshufb @XMM[8], @XMM[5]
898 pxor @XMM[9], @XMM[7]
899 pshufb @XMM[8], @XMM[6]
900 pshufb @XMM[8], @XMM[7]
901 ___
902 &bitslice (@XMM[0..7, 8..11]);
903 $code.=<<___;
904 dec $rounds
905 jmp .Ldec_sbox
906 .align 16
907 .Ldec_loop:
908 ___
909 &ShiftRows (@XMM[0..7, 8]);
910 $code.=".Ldec_sbox:\n";
911 &InvSbox (@XMM[0..7, 8..15]);
912 $code.=<<___;
913 dec $rounds
914 jl .Ldec_done
915 ___
916 &InvMixColumns (@XMM[0,1,6,4,2,7,3,5, 8..15]);
917 $code.=<<___;
918 movdqa -0x10($const), @XMM[8] # .LISR
919 jnz .Ldec_loop

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 15

920 movdqa -0x20($const), @XMM[8] # .LISRM0
921 jmp .Ldec_loop
922 .align 16
923 .Ldec_done:
924 ___
925 &bitslice (@XMM[0,1,6,4,2,7,3,5, 8..11]);
926 $code.=<<___;
927 movdqa ($key), @XMM[8] # last round key
928 pxor @XMM[8], @XMM[6]
929 pxor @XMM[8], @XMM[4]
930 pxor @XMM[8], @XMM[2]
931 pxor @XMM[8], @XMM[7]
932 pxor @XMM[8], @XMM[3]
933 pxor @XMM[8], @XMM[5]
934 pxor @XMM[8], @XMM[0]
935 pxor @XMM[8], @XMM[1]
936 ret
937 .size _bsaes_decrypt8,.-_bsaes_decrypt8
938 ___
939 }
940 {
941 my ($out,$inp,$rounds,$const)=("%rax","%rcx","%r10d","%r11");

943 sub bitslice_key {
944 my @x=reverse(@_[0..7]);
945 my ($bs0,$bs1,$bs2,$t2,$t3)=@_[8..12];

947 &swapmove (@x[0,1],1,$bs0,$t2,$t3);
948 $code.=<<___;
949 #&swapmove(@x[2,3],1,$t0,$t2,$t3);
950 movdqa @x[0], @x[2]
951 movdqa @x[1], @x[3]
952 ___
953 #&swapmove2x(@x[4,5,6,7],1,$t0,$t2,$t3);

955 &swapmove2x (@x[0,2,1,3],2,$bs1,$t2,$t3);
956 $code.=<<___;
957 #&swapmove2x(@x[4,6,5,7],2,$t1,$t2,$t3);
958 movdqa @x[0], @x[4]
959 movdqa @x[2], @x[6]
960 movdqa @x[1], @x[5]
961 movdqa @x[3], @x[7]
962 ___
963 &swapmove2x (@x[0,4,1,5],4,$bs2,$t2,$t3);
964 &swapmove2x (@x[2,6,3,7],4,$bs2,$t2,$t3);
965 }

967 $code.=<<___;
968 .type _bsaes_key_convert,\@abi-omnipotent
969 .align 16
970 _bsaes_key_convert:
971 lea .Lmasks(%rip), $const
972 movdqu ($inp), %xmm7 # load round 0 key
973 lea 0x10($inp), $inp
974 movdqa 0x00($const), %xmm0 # 0x01...
975 movdqa 0x10($const), %xmm1 # 0x02...
976 movdqa 0x20($const), %xmm2 # 0x04...
977 movdqa 0x30($const), %xmm3 # 0x08...
978 movdqa 0x40($const), %xmm4 # .LM0
979 pcmpeqd %xmm5, %xmm5 # .LNOT

981 movdqu ($inp), %xmm6 # load round 1 key
982 movdqa %xmm7, ($out) # save round 0 key
983 lea 0x10($out), $out
984 dec $rounds
985 jmp .Lkey_loop

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 16

986 .align 16
987 .Lkey_loop:
988 pshufb %xmm4, %xmm6 # .LM0

990 movdqa %xmm0, %xmm8
991 movdqa %xmm1, %xmm9

993 pand %xmm6, %xmm8
994 pand %xmm6, %xmm9
995 movdqa %xmm2, %xmm10
996 pcmpeqb %xmm0, %xmm8
997 psllq \$4, %xmm0 # 0x10...
998 movdqa %xmm3, %xmm11
999 pcmpeqb %xmm1, %xmm9

1000 psllq \$4, %xmm1 # 0x20...

1002 pand %xmm6, %xmm10
1003 pand %xmm6, %xmm11
1004 movdqa %xmm0, %xmm12
1005 pcmpeqb %xmm2, %xmm10
1006 psllq \$4, %xmm2 # 0x40...
1007 movdqa %xmm1, %xmm13
1008 pcmpeqb %xmm3, %xmm11
1009 psllq \$4, %xmm3 # 0x80...

1011 movdqa %xmm2, %xmm14
1012 movdqa %xmm3, %xmm15
1013 pxor %xmm5, %xmm8 # "pnot"
1014 pxor %xmm5, %xmm9

1016 pand %xmm6, %xmm12
1017 pand %xmm6, %xmm13
1018 movdqa %xmm8, 0x00($out) # write bit-sliced round key
1019 pcmpeqb %xmm0, %xmm12
1020 psrlq \$4, %xmm0 # 0x01...
1021 movdqa %xmm9, 0x10($out)
1022 pcmpeqb %xmm1, %xmm13
1023 psrlq \$4, %xmm1 # 0x02...
1024 lea 0x10($inp), $inp

1026 pand %xmm6, %xmm14
1027 pand %xmm6, %xmm15
1028 movdqa %xmm10, 0x20($out)
1029 pcmpeqb %xmm2, %xmm14
1030 psrlq \$4, %xmm2 # 0x04...
1031 movdqa %xmm11, 0x30($out)
1032 pcmpeqb %xmm3, %xmm15
1033 psrlq \$4, %xmm3 # 0x08...
1034 movdqu ($inp), %xmm6 # load next round key

1036 pxor %xmm5, %xmm13 # "pnot"
1037 pxor %xmm5, %xmm14
1038 movdqa %xmm12, 0x40($out)
1039 movdqa %xmm13, 0x50($out)
1040 movdqa %xmm14, 0x60($out)
1041 movdqa %xmm15, 0x70($out)
1042 lea 0x80($out),$out
1043 dec $rounds
1044 jnz .Lkey_loop

1046 movdqa 0x50($const), %xmm7 # .L63
1047 #movdqa %xmm6, ($out) # don’t save last round key
1048 ret
1049 .size _bsaes_key_convert,.-_bsaes_key_convert
1050 ___
1051 }

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 17

1053 if (0 && !$win64) { # following four functions are unsupported interface
1054 # used for benchmarking...
1055 $code.=<<___;
1056 .globl bsaes_enc_key_convert
1057 .type bsaes_enc_key_convert,\@function,2
1058 .align 16
1059 bsaes_enc_key_convert:
1060 mov 240($inp),%r10d # pass rounds
1061 mov $inp,%rcx # pass key
1062 mov $out,%rax # pass key schedule
1063 call _bsaes_key_convert
1064 pxor %xmm6,%xmm7 # fix up last round key
1065 movdqa %xmm7,(%rax) # save last round key
1066 ret
1067 .size bsaes_enc_key_convert,.-bsaes_enc_key_convert

1069 .globl bsaes_encrypt_128
1070 .type bsaes_encrypt_128,\@function,4
1071 .align 16
1072 bsaes_encrypt_128:
1073 .Lenc128_loop:
1074 movdqu 0x00($inp), @XMM[0] # load input
1075 movdqu 0x10($inp), @XMM[1]
1076 movdqu 0x20($inp), @XMM[2]
1077 movdqu 0x30($inp), @XMM[3]
1078 movdqu 0x40($inp), @XMM[4]
1079 movdqu 0x50($inp), @XMM[5]
1080 movdqu 0x60($inp), @XMM[6]
1081 movdqu 0x70($inp), @XMM[7]
1082 mov $key, %rax # pass the $key
1083 lea 0x80($inp), $inp
1084 mov \$10,%r10d

1086 call _bsaes_encrypt8

1088 movdqu @XMM[0], 0x00($out) # write output
1089 movdqu @XMM[1], 0x10($out)
1090 movdqu @XMM[4], 0x20($out)
1091 movdqu @XMM[6], 0x30($out)
1092 movdqu @XMM[3], 0x40($out)
1093 movdqu @XMM[7], 0x50($out)
1094 movdqu @XMM[2], 0x60($out)
1095 movdqu @XMM[5], 0x70($out)
1096 lea 0x80($out), $out
1097 sub \$0x80,$len
1098 ja .Lenc128_loop
1099 ret
1100 .size bsaes_encrypt_128,.-bsaes_encrypt_128

1102 .globl bsaes_dec_key_convert
1103 .type bsaes_dec_key_convert,\@function,2
1104 .align 16
1105 bsaes_dec_key_convert:
1106 mov 240($inp),%r10d # pass rounds
1107 mov $inp,%rcx # pass key
1108 mov $out,%rax # pass key schedule
1109 call _bsaes_key_convert
1110 pxor ($out),%xmm7 # fix up round 0 key
1111 movdqa %xmm6,(%rax) # save last round key
1112 movdqa %xmm7,($out)
1113 ret
1114 .size bsaes_dec_key_convert,.-bsaes_dec_key_convert

1116 .globl bsaes_decrypt_128
1117 .type bsaes_decrypt_128,\@function,4

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 18

1118 .align 16
1119 bsaes_decrypt_128:
1120 .Ldec128_loop:
1121 movdqu 0x00($inp), @XMM[0] # load input
1122 movdqu 0x10($inp), @XMM[1]
1123 movdqu 0x20($inp), @XMM[2]
1124 movdqu 0x30($inp), @XMM[3]
1125 movdqu 0x40($inp), @XMM[4]
1126 movdqu 0x50($inp), @XMM[5]
1127 movdqu 0x60($inp), @XMM[6]
1128 movdqu 0x70($inp), @XMM[7]
1129 mov $key, %rax # pass the $key
1130 lea 0x80($inp), $inp
1131 mov \$10,%r10d

1133 call _bsaes_decrypt8

1135 movdqu @XMM[0], 0x00($out) # write output
1136 movdqu @XMM[1], 0x10($out)
1137 movdqu @XMM[6], 0x20($out)
1138 movdqu @XMM[4], 0x30($out)
1139 movdqu @XMM[2], 0x40($out)
1140 movdqu @XMM[7], 0x50($out)
1141 movdqu @XMM[3], 0x60($out)
1142 movdqu @XMM[5], 0x70($out)
1143 lea 0x80($out), $out
1144 sub \$0x80,$len
1145 ja .Ldec128_loop
1146 ret
1147 .size bsaes_decrypt_128,.-bsaes_decrypt_128
1148 ___
1149 }
1150 {
1151 ##
1152 #
1153 # OpenSSL interface
1154 #
1155 my ($arg1,$arg2,$arg3,$arg4,$arg5,$arg6)=$win64 ? ("%rcx","%rdx","%r8","%r9","%r
1156 : ("%rdi","%rsi","%rdx","%rcx","
1157 my ($inp,$out,$len,$key)=("%r12","%r13","%r14","%r15");

1159 if ($ecb) {
1160 $code.=<<___;
1161 .globl bsaes_ecb_encrypt_blocks
1162 .type bsaes_ecb_encrypt_blocks,\@abi-omnipotent
1163 .align 16
1164 bsaes_ecb_encrypt_blocks:
1165 mov %rsp, %rax
1166 .Lecb_enc_prologue:
1167 push %rbp
1168 push %rbx
1169 push %r12
1170 push %r13
1171 push %r14
1172 push %r15
1173 lea -0x48(%rsp),%rsp
1174 ___
1175 $code.=<<___ if ($win64);
1176 lea -0xa0(%rsp), %rsp
1177 movaps %xmm6, 0x40(%rsp)
1178 movaps %xmm7, 0x50(%rsp)
1179 movaps %xmm8, 0x60(%rsp)
1180 movaps %xmm9, 0x70(%rsp)
1181 movaps %xmm10, 0x80(%rsp)
1182 movaps %xmm11, 0x90(%rsp)
1183 movaps %xmm12, 0xa0(%rsp)

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 19

1184 movaps %xmm13, 0xb0(%rsp)
1185 movaps %xmm14, 0xc0(%rsp)
1186 movaps %xmm15, 0xd0(%rsp)
1187 .Lecb_enc_body:
1188 ___
1189 $code.=<<___;
1190 mov %rsp,%rbp # backup %rsp
1191 mov 240($arg4),%eax # rounds
1192 mov $arg1,$inp # backup arguments
1193 mov $arg2,$out
1194 mov $arg3,$len
1195 mov $arg4,$key
1196 cmp \$8,$arg3
1197 jb .Lecb_enc_short

1199 mov %eax,%ebx # backup rounds
1200 shl \$7,%rax # 128 bytes per inner round key
1201 sub \$‘128-32‘,%rax # size of bit-sliced key schedule
1202 sub %rax,%rsp
1203 mov %rsp,%rax # pass key schedule
1204 mov $key,%rcx # pass key
1205 mov %ebx,%r10d # pass rounds
1206 call _bsaes_key_convert
1207 pxor %xmm6,%xmm7 # fix up last round key
1208 movdqa %xmm7,(%rax) # save last round key

1210 sub \$8,$len
1211 .Lecb_enc_loop:
1212 movdqu 0x00($inp), @XMM[0] # load input
1213 movdqu 0x10($inp), @XMM[1]
1214 movdqu 0x20($inp), @XMM[2]
1215 movdqu 0x30($inp), @XMM[3]
1216 movdqu 0x40($inp), @XMM[4]
1217 movdqu 0x50($inp), @XMM[5]
1218 mov %rsp, %rax # pass key schedule
1219 movdqu 0x60($inp), @XMM[6]
1220 mov %ebx,%r10d # pass rounds
1221 movdqu 0x70($inp), @XMM[7]
1222 lea 0x80($inp), $inp

1224 call _bsaes_encrypt8

1226 movdqu @XMM[0], 0x00($out) # write output
1227 movdqu @XMM[1], 0x10($out)
1228 movdqu @XMM[4], 0x20($out)
1229 movdqu @XMM[6], 0x30($out)
1230 movdqu @XMM[3], 0x40($out)
1231 movdqu @XMM[7], 0x50($out)
1232 movdqu @XMM[2], 0x60($out)
1233 movdqu @XMM[5], 0x70($out)
1234 lea 0x80($out), $out
1235 sub \$8,$len
1236 jnc .Lecb_enc_loop

1238 add \$8,$len
1239 jz .Lecb_enc_done

1241 movdqu 0x00($inp), @XMM[0] # load input
1242 mov %rsp, %rax # pass key schedule
1243 mov %ebx,%r10d # pass rounds
1244 cmp \$2,$len
1245 jb .Lecb_enc_one
1246 movdqu 0x10($inp), @XMM[1]
1247 je .Lecb_enc_two
1248 movdqu 0x20($inp), @XMM[2]
1249 cmp \$4,$len

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 20

1250 jb .Lecb_enc_three
1251 movdqu 0x30($inp), @XMM[3]
1252 je .Lecb_enc_four
1253 movdqu 0x40($inp), @XMM[4]
1254 cmp \$6,$len
1255 jb .Lecb_enc_five
1256 movdqu 0x50($inp), @XMM[5]
1257 je .Lecb_enc_six
1258 movdqu 0x60($inp), @XMM[6]
1259 call _bsaes_encrypt8
1260 movdqu @XMM[0], 0x00($out) # write output
1261 movdqu @XMM[1], 0x10($out)
1262 movdqu @XMM[4], 0x20($out)
1263 movdqu @XMM[6], 0x30($out)
1264 movdqu @XMM[3], 0x40($out)
1265 movdqu @XMM[7], 0x50($out)
1266 movdqu @XMM[2], 0x60($out)
1267 jmp .Lecb_enc_done
1268 .align 16
1269 .Lecb_enc_six:
1270 call _bsaes_encrypt8
1271 movdqu @XMM[0], 0x00($out) # write output
1272 movdqu @XMM[1], 0x10($out)
1273 movdqu @XMM[4], 0x20($out)
1274 movdqu @XMM[6], 0x30($out)
1275 movdqu @XMM[3], 0x40($out)
1276 movdqu @XMM[7], 0x50($out)
1277 jmp .Lecb_enc_done
1278 .align 16
1279 .Lecb_enc_five:
1280 call _bsaes_encrypt8
1281 movdqu @XMM[0], 0x00($out) # write output
1282 movdqu @XMM[1], 0x10($out)
1283 movdqu @XMM[4], 0x20($out)
1284 movdqu @XMM[6], 0x30($out)
1285 movdqu @XMM[3], 0x40($out)
1286 jmp .Lecb_enc_done
1287 .align 16
1288 .Lecb_enc_four:
1289 call _bsaes_encrypt8
1290 movdqu @XMM[0], 0x00($out) # write output
1291 movdqu @XMM[1], 0x10($out)
1292 movdqu @XMM[4], 0x20($out)
1293 movdqu @XMM[6], 0x30($out)
1294 jmp .Lecb_enc_done
1295 .align 16
1296 .Lecb_enc_three:
1297 call _bsaes_encrypt8
1298 movdqu @XMM[0], 0x00($out) # write output
1299 movdqu @XMM[1], 0x10($out)
1300 movdqu @XMM[4], 0x20($out)
1301 jmp .Lecb_enc_done
1302 .align 16
1303 .Lecb_enc_two:
1304 call _bsaes_encrypt8
1305 movdqu @XMM[0], 0x00($out) # write output
1306 movdqu @XMM[1], 0x10($out)
1307 jmp .Lecb_enc_done
1308 .align 16
1309 .Lecb_enc_one:
1310 call _bsaes_encrypt8
1311 movdqu @XMM[0], 0x00($out) # write output
1312 jmp .Lecb_enc_done
1313 .align 16
1314 .Lecb_enc_short:
1315 lea ($inp), $arg1

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 21

1316 lea ($out), $arg2
1317 lea ($key), $arg3
1318 call asm_AES_encrypt
1319 lea 16($inp), $inp
1320 lea 16($out), $out
1321 dec $len
1322 jnz .Lecb_enc_short

1324 .Lecb_enc_done:
1325 lea (%rsp),%rax
1326 pxor %xmm0, %xmm0
1327 .Lecb_enc_bzero: # wipe key schedule [if any]
1328 movdqa %xmm0, 0x00(%rax)
1329 movdqa %xmm0, 0x10(%rax)
1330 lea 0x20(%rax), %rax
1331 cmp %rax, %rbp
1332 jb .Lecb_enc_bzero

1334 lea (%rbp),%rsp # restore %rsp
1335 ___
1336 $code.=<<___ if ($win64);
1337 movaps 0x40(%rbp), %xmm6
1338 movaps 0x50(%rbp), %xmm7
1339 movaps 0x60(%rbp), %xmm8
1340 movaps 0x70(%rbp), %xmm9
1341 movaps 0x80(%rbp), %xmm10
1342 movaps 0x90(%rbp), %xmm11
1343 movaps 0xa0(%rbp), %xmm12
1344 movaps 0xb0(%rbp), %xmm13
1345 movaps 0xc0(%rbp), %xmm14
1346 movaps 0xd0(%rbp), %xmm15
1347 lea 0xa0(%rbp), %rsp
1348 ___
1349 $code.=<<___;
1350 mov 0x48(%rsp), %r15
1351 mov 0x50(%rsp), %r14
1352 mov 0x58(%rsp), %r13
1353 mov 0x60(%rsp), %r12
1354 mov 0x68(%rsp), %rbx
1355 mov 0x70(%rsp), %rax
1356 lea 0x78(%rsp), %rsp
1357 mov %rax, %rbp
1358 .Lecb_enc_epilogue:
1359 ret
1360 .size bsaes_ecb_encrypt_blocks,.-bsaes_ecb_encrypt_blocks

1362 .globl bsaes_ecb_decrypt_blocks
1363 .type bsaes_ecb_decrypt_blocks,\@abi-omnipotent
1364 .align 16
1365 bsaes_ecb_decrypt_blocks:
1366 mov %rsp, %rax
1367 .Lecb_dec_prologue:
1368 push %rbp
1369 push %rbx
1370 push %r12
1371 push %r13
1372 push %r14
1373 push %r15
1374 lea -0x48(%rsp),%rsp
1375 ___
1376 $code.=<<___ if ($win64);
1377 lea -0xa0(%rsp), %rsp
1378 movaps %xmm6, 0x40(%rsp)
1379 movaps %xmm7, 0x50(%rsp)
1380 movaps %xmm8, 0x60(%rsp)
1381 movaps %xmm9, 0x70(%rsp)

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 22

1382 movaps %xmm10, 0x80(%rsp)
1383 movaps %xmm11, 0x90(%rsp)
1384 movaps %xmm12, 0xa0(%rsp)
1385 movaps %xmm13, 0xb0(%rsp)
1386 movaps %xmm14, 0xc0(%rsp)
1387 movaps %xmm15, 0xd0(%rsp)
1388 .Lecb_dec_body:
1389 ___
1390 $code.=<<___;
1391 mov %rsp,%rbp # backup %rsp
1392 mov 240($arg4),%eax # rounds
1393 mov $arg1,$inp # backup arguments
1394 mov $arg2,$out
1395 mov $arg3,$len
1396 mov $arg4,$key
1397 cmp \$8,$arg3
1398 jb .Lecb_dec_short

1400 mov %eax,%ebx # backup rounds
1401 shl \$7,%rax # 128 bytes per inner round key
1402 sub \$‘128-32‘,%rax # size of bit-sliced key schedule
1403 sub %rax,%rsp
1404 mov %rsp,%rax # pass key schedule
1405 mov $key,%rcx # pass key
1406 mov %ebx,%r10d # pass rounds
1407 call _bsaes_key_convert
1408 pxor (%rsp),%xmm7 # fix up 0 round key
1409 movdqa %xmm6,(%rax) # save last round key
1410 movdqa %xmm7,(%rsp)

1412 sub \$8,$len
1413 .Lecb_dec_loop:
1414 movdqu 0x00($inp), @XMM[0] # load input
1415 movdqu 0x10($inp), @XMM[1]
1416 movdqu 0x20($inp), @XMM[2]
1417 movdqu 0x30($inp), @XMM[3]
1418 movdqu 0x40($inp), @XMM[4]
1419 movdqu 0x50($inp), @XMM[5]
1420 mov %rsp, %rax # pass key schedule
1421 movdqu 0x60($inp), @XMM[6]
1422 mov %ebx,%r10d # pass rounds
1423 movdqu 0x70($inp), @XMM[7]
1424 lea 0x80($inp), $inp

1426 call _bsaes_decrypt8

1428 movdqu @XMM[0], 0x00($out) # write output
1429 movdqu @XMM[1], 0x10($out)
1430 movdqu @XMM[6], 0x20($out)
1431 movdqu @XMM[4], 0x30($out)
1432 movdqu @XMM[2], 0x40($out)
1433 movdqu @XMM[7], 0x50($out)
1434 movdqu @XMM[3], 0x60($out)
1435 movdqu @XMM[5], 0x70($out)
1436 lea 0x80($out), $out
1437 sub \$8,$len
1438 jnc .Lecb_dec_loop

1440 add \$8,$len
1441 jz .Lecb_dec_done

1443 movdqu 0x00($inp), @XMM[0] # load input
1444 mov %rsp, %rax # pass key schedule
1445 mov %ebx,%r10d # pass rounds
1446 cmp \$2,$len
1447 jb .Lecb_dec_one

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 23

1448 movdqu 0x10($inp), @XMM[1]
1449 je .Lecb_dec_two
1450 movdqu 0x20($inp), @XMM[2]
1451 cmp \$4,$len
1452 jb .Lecb_dec_three
1453 movdqu 0x30($inp), @XMM[3]
1454 je .Lecb_dec_four
1455 movdqu 0x40($inp), @XMM[4]
1456 cmp \$6,$len
1457 jb .Lecb_dec_five
1458 movdqu 0x50($inp), @XMM[5]
1459 je .Lecb_dec_six
1460 movdqu 0x60($inp), @XMM[6]
1461 call _bsaes_decrypt8
1462 movdqu @XMM[0], 0x00($out) # write output
1463 movdqu @XMM[1], 0x10($out)
1464 movdqu @XMM[6], 0x20($out)
1465 movdqu @XMM[4], 0x30($out)
1466 movdqu @XMM[2], 0x40($out)
1467 movdqu @XMM[7], 0x50($out)
1468 movdqu @XMM[3], 0x60($out)
1469 jmp .Lecb_dec_done
1470 .align 16
1471 .Lecb_dec_six:
1472 call _bsaes_decrypt8
1473 movdqu @XMM[0], 0x00($out) # write output
1474 movdqu @XMM[1], 0x10($out)
1475 movdqu @XMM[6], 0x20($out)
1476 movdqu @XMM[4], 0x30($out)
1477 movdqu @XMM[2], 0x40($out)
1478 movdqu @XMM[7], 0x50($out)
1479 jmp .Lecb_dec_done
1480 .align 16
1481 .Lecb_dec_five:
1482 call _bsaes_decrypt8
1483 movdqu @XMM[0], 0x00($out) # write output
1484 movdqu @XMM[1], 0x10($out)
1485 movdqu @XMM[6], 0x20($out)
1486 movdqu @XMM[4], 0x30($out)
1487 movdqu @XMM[2], 0x40($out)
1488 jmp .Lecb_dec_done
1489 .align 16
1490 .Lecb_dec_four:
1491 call _bsaes_decrypt8
1492 movdqu @XMM[0], 0x00($out) # write output
1493 movdqu @XMM[1], 0x10($out)
1494 movdqu @XMM[6], 0x20($out)
1495 movdqu @XMM[4], 0x30($out)
1496 jmp .Lecb_dec_done
1497 .align 16
1498 .Lecb_dec_three:
1499 call _bsaes_decrypt8
1500 movdqu @XMM[0], 0x00($out) # write output
1501 movdqu @XMM[1], 0x10($out)
1502 movdqu @XMM[6], 0x20($out)
1503 jmp .Lecb_dec_done
1504 .align 16
1505 .Lecb_dec_two:
1506 call _bsaes_decrypt8
1507 movdqu @XMM[0], 0x00($out) # write output
1508 movdqu @XMM[1], 0x10($out)
1509 jmp .Lecb_dec_done
1510 .align 16
1511 .Lecb_dec_one:
1512 call _bsaes_decrypt8
1513 movdqu @XMM[0], 0x00($out) # write output

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 24

1514 jmp .Lecb_dec_done
1515 .align 16
1516 .Lecb_dec_short:
1517 lea ($inp), $arg1
1518 lea ($out), $arg2
1519 lea ($key), $arg3
1520 call asm_AES_decrypt
1521 lea 16($inp), $inp
1522 lea 16($out), $out
1523 dec $len
1524 jnz .Lecb_dec_short

1526 .Lecb_dec_done:
1527 lea (%rsp),%rax
1528 pxor %xmm0, %xmm0
1529 .Lecb_dec_bzero: # wipe key schedule [if any]
1530 movdqa %xmm0, 0x00(%rax)
1531 movdqa %xmm0, 0x10(%rax)
1532 lea 0x20(%rax), %rax
1533 cmp %rax, %rbp
1534 jb .Lecb_dec_bzero

1536 lea (%rbp),%rsp # restore %rsp
1537 ___
1538 $code.=<<___ if ($win64);
1539 movaps 0x40(%rbp), %xmm6
1540 movaps 0x50(%rbp), %xmm7
1541 movaps 0x60(%rbp), %xmm8
1542 movaps 0x70(%rbp), %xmm9
1543 movaps 0x80(%rbp), %xmm10
1544 movaps 0x90(%rbp), %xmm11
1545 movaps 0xa0(%rbp), %xmm12
1546 movaps 0xb0(%rbp), %xmm13
1547 movaps 0xc0(%rbp), %xmm14
1548 movaps 0xd0(%rbp), %xmm15
1549 lea 0xa0(%rbp), %rsp
1550 ___
1551 $code.=<<___;
1552 mov 0x48(%rsp), %r15
1553 mov 0x50(%rsp), %r14
1554 mov 0x58(%rsp), %r13
1555 mov 0x60(%rsp), %r12
1556 mov 0x68(%rsp), %rbx
1557 mov 0x70(%rsp), %rax
1558 lea 0x78(%rsp), %rsp
1559 mov %rax, %rbp
1560 .Lecb_dec_epilogue:
1561 ret
1562 .size bsaes_ecb_decrypt_blocks,.-bsaes_ecb_decrypt_blocks
1563 ___
1564 }
1565 $code.=<<___;
1566 .extern asm_AES_cbc_encrypt
1567 .globl bsaes_cbc_encrypt
1568 .type bsaes_cbc_encrypt,\@abi-omnipotent
1569 .align 16
1570 bsaes_cbc_encrypt:
1571 ___
1572 $code.=<<___ if ($win64);
1573 mov 48(%rsp),$arg6 # pull direction flag
1574 ___
1575 $code.=<<___;
1576 cmp \$0,$arg6
1577 jne asm_AES_cbc_encrypt
1578 cmp \$128,$arg3
1579 jb asm_AES_cbc_encrypt

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 25

1581 mov %rsp, %rax
1582 .Lcbc_dec_prologue:
1583 push %rbp
1584 push %rbx
1585 push %r12
1586 push %r13
1587 push %r14
1588 push %r15
1589 lea -0x48(%rsp), %rsp
1590 ___
1591 $code.=<<___ if ($win64);
1592 mov 0xa0(%rsp),$arg5 # pull ivp
1593 lea -0xa0(%rsp), %rsp
1594 movaps %xmm6, 0x40(%rsp)
1595 movaps %xmm7, 0x50(%rsp)
1596 movaps %xmm8, 0x60(%rsp)
1597 movaps %xmm9, 0x70(%rsp)
1598 movaps %xmm10, 0x80(%rsp)
1599 movaps %xmm11, 0x90(%rsp)
1600 movaps %xmm12, 0xa0(%rsp)
1601 movaps %xmm13, 0xb0(%rsp)
1602 movaps %xmm14, 0xc0(%rsp)
1603 movaps %xmm15, 0xd0(%rsp)
1604 .Lcbc_dec_body:
1605 ___
1606 $code.=<<___;
1607 mov %rsp, %rbp # backup %rsp
1608 mov 240($arg4), %eax # rounds
1609 mov $arg1, $inp # backup arguments
1610 mov $arg2, $out
1611 mov $arg3, $len
1612 mov $arg4, $key
1613 mov $arg5, %rbx
1614 shr \$4, $len # bytes to blocks

1616 mov %eax, %edx # rounds
1617 shl \$7, %rax # 128 bytes per inner round key
1618 sub \$‘128-32‘, %rax # size of bit-sliced key schedule
1619 sub %rax, %rsp

1621 mov %rsp, %rax # pass key schedule
1622 mov $key, %rcx # pass key
1623 mov %edx, %r10d # pass rounds
1624 call _bsaes_key_convert
1625 pxor (%rsp),%xmm7 # fix up 0 round key
1626 movdqa %xmm6,(%rax) # save last round key
1627 movdqa %xmm7,(%rsp)

1629 movdqu (%rbx), @XMM[15] # load IV
1630 sub \$8,$len
1631 .Lcbc_dec_loop:
1632 movdqu 0x00($inp), @XMM[0] # load input
1633 movdqu 0x10($inp), @XMM[1]
1634 movdqu 0x20($inp), @XMM[2]
1635 movdqu 0x30($inp), @XMM[3]
1636 movdqu 0x40($inp), @XMM[4]
1637 movdqu 0x50($inp), @XMM[5]
1638 mov %rsp, %rax # pass key schedule
1639 movdqu 0x60($inp), @XMM[6]
1640 mov %edx,%r10d # pass rounds
1641 movdqu 0x70($inp), @XMM[7]
1642 movdqa @XMM[15], 0x20(%rbp) # put aside IV

1644 call _bsaes_decrypt8

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 26

1646 pxor 0x20(%rbp), @XMM[0] # ^= IV
1647 movdqu 0x00($inp), @XMM[8] # re-load input
1648 movdqu 0x10($inp), @XMM[9]
1649 pxor @XMM[8], @XMM[1]
1650 movdqu 0x20($inp), @XMM[10]
1651 pxor @XMM[9], @XMM[6]
1652 movdqu 0x30($inp), @XMM[11]
1653 pxor @XMM[10], @XMM[4]
1654 movdqu 0x40($inp), @XMM[12]
1655 pxor @XMM[11], @XMM[2]
1656 movdqu 0x50($inp), @XMM[13]
1657 pxor @XMM[12], @XMM[7]
1658 movdqu 0x60($inp), @XMM[14]
1659 pxor @XMM[13], @XMM[3]
1660 movdqu 0x70($inp), @XMM[15] # IV
1661 pxor @XMM[14], @XMM[5]
1662 movdqu @XMM[0], 0x00($out) # write output
1663 lea 0x80($inp), $inp
1664 movdqu @XMM[1], 0x10($out)
1665 movdqu @XMM[6], 0x20($out)
1666 movdqu @XMM[4], 0x30($out)
1667 movdqu @XMM[2], 0x40($out)
1668 movdqu @XMM[7], 0x50($out)
1669 movdqu @XMM[3], 0x60($out)
1670 movdqu @XMM[5], 0x70($out)
1671 lea 0x80($out), $out
1672 sub \$8,$len
1673 jnc .Lcbc_dec_loop

1675 add \$8,$len
1676 jz .Lcbc_dec_done

1678 movdqu 0x00($inp), @XMM[0] # load input
1679 mov %rsp, %rax # pass key schedule
1680 mov %edx, %r10d # pass rounds
1681 cmp \$2,$len
1682 jb .Lcbc_dec_one
1683 movdqu 0x10($inp), @XMM[1]
1684 je .Lcbc_dec_two
1685 movdqu 0x20($inp), @XMM[2]
1686 cmp \$4,$len
1687 jb .Lcbc_dec_three
1688 movdqu 0x30($inp), @XMM[3]
1689 je .Lcbc_dec_four
1690 movdqu 0x40($inp), @XMM[4]
1691 cmp \$6,$len
1692 jb .Lcbc_dec_five
1693 movdqu 0x50($inp), @XMM[5]
1694 je .Lcbc_dec_six
1695 movdqu 0x60($inp), @XMM[6]
1696 movdqa @XMM[15], 0x20(%rbp) # put aside IV
1697 call _bsaes_decrypt8
1698 pxor 0x20(%rbp), @XMM[0] # ^= IV
1699 movdqu 0x00($inp), @XMM[8] # re-load input
1700 movdqu 0x10($inp), @XMM[9]
1701 pxor @XMM[8], @XMM[1]
1702 movdqu 0x20($inp), @XMM[10]
1703 pxor @XMM[9], @XMM[6]
1704 movdqu 0x30($inp), @XMM[11]
1705 pxor @XMM[10], @XMM[4]
1706 movdqu 0x40($inp), @XMM[12]
1707 pxor @XMM[11], @XMM[2]
1708 movdqu 0x50($inp), @XMM[13]
1709 pxor @XMM[12], @XMM[7]
1710 movdqu 0x60($inp), @XMM[15] # IV
1711 pxor @XMM[13], @XMM[3]

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 27

1712 movdqu @XMM[0], 0x00($out) # write output
1713 movdqu @XMM[1], 0x10($out)
1714 movdqu @XMM[6], 0x20($out)
1715 movdqu @XMM[4], 0x30($out)
1716 movdqu @XMM[2], 0x40($out)
1717 movdqu @XMM[7], 0x50($out)
1718 movdqu @XMM[3], 0x60($out)
1719 jmp .Lcbc_dec_done
1720 .align 16
1721 .Lcbc_dec_six:
1722 movdqa @XMM[15], 0x20(%rbp) # put aside IV
1723 call _bsaes_decrypt8
1724 pxor 0x20(%rbp), @XMM[0] # ^= IV
1725 movdqu 0x00($inp), @XMM[8] # re-load input
1726 movdqu 0x10($inp), @XMM[9]
1727 pxor @XMM[8], @XMM[1]
1728 movdqu 0x20($inp), @XMM[10]
1729 pxor @XMM[9], @XMM[6]
1730 movdqu 0x30($inp), @XMM[11]
1731 pxor @XMM[10], @XMM[4]
1732 movdqu 0x40($inp), @XMM[12]
1733 pxor @XMM[11], @XMM[2]
1734 movdqu 0x50($inp), @XMM[15] # IV
1735 pxor @XMM[12], @XMM[7]
1736 movdqu @XMM[0], 0x00($out) # write output
1737 movdqu @XMM[1], 0x10($out)
1738 movdqu @XMM[6], 0x20($out)
1739 movdqu @XMM[4], 0x30($out)
1740 movdqu @XMM[2], 0x40($out)
1741 movdqu @XMM[7], 0x50($out)
1742 jmp .Lcbc_dec_done
1743 .align 16
1744 .Lcbc_dec_five:
1745 movdqa @XMM[15], 0x20(%rbp) # put aside IV
1746 call _bsaes_decrypt8
1747 pxor 0x20(%rbp), @XMM[0] # ^= IV
1748 movdqu 0x00($inp), @XMM[8] # re-load input
1749 movdqu 0x10($inp), @XMM[9]
1750 pxor @XMM[8], @XMM[1]
1751 movdqu 0x20($inp), @XMM[10]
1752 pxor @XMM[9], @XMM[6]
1753 movdqu 0x30($inp), @XMM[11]
1754 pxor @XMM[10], @XMM[4]
1755 movdqu 0x40($inp), @XMM[15] # IV
1756 pxor @XMM[11], @XMM[2]
1757 movdqu @XMM[0], 0x00($out) # write output
1758 movdqu @XMM[1], 0x10($out)
1759 movdqu @XMM[6], 0x20($out)
1760 movdqu @XMM[4], 0x30($out)
1761 movdqu @XMM[2], 0x40($out)
1762 jmp .Lcbc_dec_done
1763 .align 16
1764 .Lcbc_dec_four:
1765 movdqa @XMM[15], 0x20(%rbp) # put aside IV
1766 call _bsaes_decrypt8
1767 pxor 0x20(%rbp), @XMM[0] # ^= IV
1768 movdqu 0x00($inp), @XMM[8] # re-load input
1769 movdqu 0x10($inp), @XMM[9]
1770 pxor @XMM[8], @XMM[1]
1771 movdqu 0x20($inp), @XMM[10]
1772 pxor @XMM[9], @XMM[6]
1773 movdqu 0x30($inp), @XMM[15] # IV
1774 pxor @XMM[10], @XMM[4]
1775 movdqu @XMM[0], 0x00($out) # write output
1776 movdqu @XMM[1], 0x10($out)
1777 movdqu @XMM[6], 0x20($out)

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 28

1778 movdqu @XMM[4], 0x30($out)
1779 jmp .Lcbc_dec_done
1780 .align 16
1781 .Lcbc_dec_three:
1782 movdqa @XMM[15], 0x20(%rbp) # put aside IV
1783 call _bsaes_decrypt8
1784 pxor 0x20(%rbp), @XMM[0] # ^= IV
1785 movdqu 0x00($inp), @XMM[8] # re-load input
1786 movdqu 0x10($inp), @XMM[9]
1787 pxor @XMM[8], @XMM[1]
1788 movdqu 0x20($inp), @XMM[15] # IV
1789 pxor @XMM[9], @XMM[6]
1790 movdqu @XMM[0], 0x00($out) # write output
1791 movdqu @XMM[1], 0x10($out)
1792 movdqu @XMM[6], 0x20($out)
1793 jmp .Lcbc_dec_done
1794 .align 16
1795 .Lcbc_dec_two:
1796 movdqa @XMM[15], 0x20(%rbp) # put aside IV
1797 call _bsaes_decrypt8
1798 pxor 0x20(%rbp), @XMM[0] # ^= IV
1799 movdqu 0x00($inp), @XMM[8] # re-load input
1800 movdqu 0x10($inp), @XMM[15] # IV
1801 pxor @XMM[8], @XMM[1]
1802 movdqu @XMM[0], 0x00($out) # write output
1803 movdqu @XMM[1], 0x10($out)
1804 jmp .Lcbc_dec_done
1805 .align 16
1806 .Lcbc_dec_one:
1807 lea ($inp), $arg1
1808 lea 0x20(%rbp), $arg2 # buffer output
1809 lea ($key), $arg3
1810 call asm_AES_decrypt # doesn’t touch %xmm
1811 pxor 0x20(%rbp), @XMM[15] # ^= IV
1812 movdqu @XMM[15], ($out) # write output
1813 movdqa @XMM[0], @XMM[15] # IV

1815 .Lcbc_dec_done:
1816 movdqu @XMM[15], (%rbx) # return IV
1817 lea (%rsp), %rax
1818 pxor %xmm0, %xmm0
1819 .Lcbc_dec_bzero: # wipe key schedule [if any]
1820 movdqa %xmm0, 0x00(%rax)
1821 movdqa %xmm0, 0x10(%rax)
1822 lea 0x20(%rax), %rax
1823 cmp %rax, %rbp
1824 ja .Lcbc_dec_bzero

1826 lea (%rbp),%rsp # restore %rsp
1827 ___
1828 $code.=<<___ if ($win64);
1829 movaps 0x40(%rbp), %xmm6
1830 movaps 0x50(%rbp), %xmm7
1831 movaps 0x60(%rbp), %xmm8
1832 movaps 0x70(%rbp), %xmm9
1833 movaps 0x80(%rbp), %xmm10
1834 movaps 0x90(%rbp), %xmm11
1835 movaps 0xa0(%rbp), %xmm12
1836 movaps 0xb0(%rbp), %xmm13
1837 movaps 0xc0(%rbp), %xmm14
1838 movaps 0xd0(%rbp), %xmm15
1839 lea 0xa0(%rbp), %rsp
1840 ___
1841 $code.=<<___;
1842 mov 0x48(%rsp), %r15
1843 mov 0x50(%rsp), %r14

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 29

1844 mov 0x58(%rsp), %r13
1845 mov 0x60(%rsp), %r12
1846 mov 0x68(%rsp), %rbx
1847 mov 0x70(%rsp), %rax
1848 lea 0x78(%rsp), %rsp
1849 mov %rax, %rbp
1850 .Lcbc_dec_epilogue:
1851 ret
1852 .size bsaes_cbc_encrypt,.-bsaes_cbc_encrypt

1854 .globl bsaes_ctr32_encrypt_blocks
1855 .type bsaes_ctr32_encrypt_blocks,\@abi-omnipotent
1856 .align 16
1857 bsaes_ctr32_encrypt_blocks:
1858 mov %rsp, %rax
1859 .Lctr_enc_prologue:
1860 push %rbp
1861 push %rbx
1862 push %r12
1863 push %r13
1864 push %r14
1865 push %r15
1866 lea -0x48(%rsp), %rsp
1867 ___
1868 $code.=<<___ if ($win64);
1869 mov 0xa0(%rsp),$arg5 # pull ivp
1870 lea -0xa0(%rsp), %rsp
1871 movaps %xmm6, 0x40(%rsp)
1872 movaps %xmm7, 0x50(%rsp)
1873 movaps %xmm8, 0x60(%rsp)
1874 movaps %xmm9, 0x70(%rsp)
1875 movaps %xmm10, 0x80(%rsp)
1876 movaps %xmm11, 0x90(%rsp)
1877 movaps %xmm12, 0xa0(%rsp)
1878 movaps %xmm13, 0xb0(%rsp)
1879 movaps %xmm14, 0xc0(%rsp)
1880 movaps %xmm15, 0xd0(%rsp)
1881 .Lctr_enc_body:
1882 ___
1883 $code.=<<___;
1884 mov %rsp, %rbp # backup %rsp
1885 movdqu ($arg5), %xmm0 # load counter
1886 mov 240($arg4), %eax # rounds
1887 mov $arg1, $inp # backup arguments
1888 mov $arg2, $out
1889 mov $arg3, $len
1890 mov $arg4, $key
1891 movdqa %xmm0, 0x20(%rbp) # copy counter
1892 cmp \$8, $arg3
1893 jb .Lctr_enc_short

1895 mov %eax, %ebx # rounds
1896 shl \$7, %rax # 128 bytes per inner round key
1897 sub \$‘128-32‘, %rax # size of bit-sliced key schedule
1898 sub %rax, %rsp

1900 mov %rsp, %rax # pass key schedule
1901 mov $key, %rcx # pass key
1902 mov %ebx, %r10d # pass rounds
1903 call _bsaes_key_convert
1904 pxor %xmm6,%xmm7 # fix up last round key
1905 movdqa %xmm7,(%rax) # save last round key

1907 movdqa (%rsp), @XMM[9] # load round0 key
1908 lea .LADD1(%rip), %r11
1909 movdqa 0x20(%rbp), @XMM[0] # counter copy

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 30

1910 movdqa -0x20(%r11), @XMM[8] # .LSWPUP
1911 pshufb @XMM[8], @XMM[9] # byte swap upper part
1912 pshufb @XMM[8], @XMM[0]
1913 movdqa @XMM[9], (%rsp) # save adjusted round0 key
1914 jmp .Lctr_enc_loop
1915 .align 16
1916 .Lctr_enc_loop:
1917 movdqa @XMM[0], 0x20(%rbp) # save counter
1918 movdqa @XMM[0], @XMM[1] # prepare 8 counter values
1919 movdqa @XMM[0], @XMM[2]
1920 paddd 0x00(%r11), @XMM[1] # .LADD1
1921 movdqa @XMM[0], @XMM[3]
1922 paddd 0x10(%r11), @XMM[2] # .LADD2
1923 movdqa @XMM[0], @XMM[4]
1924 paddd 0x20(%r11), @XMM[3] # .LADD3
1925 movdqa @XMM[0], @XMM[5]
1926 paddd 0x30(%r11), @XMM[4] # .LADD4
1927 movdqa @XMM[0], @XMM[6]
1928 paddd 0x40(%r11), @XMM[5] # .LADD5
1929 movdqa @XMM[0], @XMM[7]
1930 paddd 0x50(%r11), @XMM[6] # .LADD6
1931 paddd 0x60(%r11), @XMM[7] # .LADD7

1933 # Borrow prologue from _bsaes_encrypt8 to use the opportunity
1934 # to flip byte order in 32-bit counter
1935 movdqa (%rsp), @XMM[9] # round 0 key
1936 lea 0x10(%rsp), %rax # pass key schedule
1937 movdqa -0x10(%r11), @XMM[8] # .LSWPUPM0SR
1938 pxor @XMM[9], @XMM[0] # xor with round0 key
1939 pxor @XMM[9], @XMM[1]
1940 pshufb @XMM[8], @XMM[0]
1941 pxor @XMM[9], @XMM[2]
1942 pshufb @XMM[8], @XMM[1]
1943 pxor @XMM[9], @XMM[3]
1944 pshufb @XMM[8], @XMM[2]
1945 pxor @XMM[9], @XMM[4]
1946 pshufb @XMM[8], @XMM[3]
1947 pxor @XMM[9], @XMM[5]
1948 pshufb @XMM[8], @XMM[4]
1949 pxor @XMM[9], @XMM[6]
1950 pshufb @XMM[8], @XMM[5]
1951 pxor @XMM[9], @XMM[7]
1952 pshufb @XMM[8], @XMM[6]
1953 lea .LBS0(%rip), %r11 # constants table
1954 pshufb @XMM[8], @XMM[7]
1955 mov %ebx,%r10d # pass rounds

1957 call _bsaes_encrypt8_bitslice

1959 sub \$8,$len
1960 jc .Lctr_enc_loop_done

1962 movdqu 0x00($inp), @XMM[8] # load input
1963 movdqu 0x10($inp), @XMM[9]
1964 movdqu 0x20($inp), @XMM[10]
1965 movdqu 0x30($inp), @XMM[11]
1966 movdqu 0x40($inp), @XMM[12]
1967 movdqu 0x50($inp), @XMM[13]
1968 movdqu 0x60($inp), @XMM[14]
1969 movdqu 0x70($inp), @XMM[15]
1970 lea 0x80($inp),$inp
1971 pxor @XMM[0], @XMM[8]
1972 movdqa 0x20(%rbp), @XMM[0] # load counter
1973 pxor @XMM[9], @XMM[1]
1974 movdqu @XMM[8], 0x00($out) # write output
1975 pxor @XMM[10], @XMM[4]

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 31

1976 movdqu @XMM[1], 0x10($out)
1977 pxor @XMM[11], @XMM[6]
1978 movdqu @XMM[4], 0x20($out)
1979 pxor @XMM[12], @XMM[3]
1980 movdqu @XMM[6], 0x30($out)
1981 pxor @XMM[13], @XMM[7]
1982 movdqu @XMM[3], 0x40($out)
1983 pxor @XMM[14], @XMM[2]
1984 movdqu @XMM[7], 0x50($out)
1985 pxor @XMM[15], @XMM[5]
1986 movdqu @XMM[2], 0x60($out)
1987 lea .LADD1(%rip), %r11
1988 movdqu @XMM[5], 0x70($out)
1989 lea 0x80($out), $out
1990 paddd 0x70(%r11), @XMM[0] # .LADD8
1991 jnz .Lctr_enc_loop

1993 jmp .Lctr_enc_done
1994 .align 16
1995 .Lctr_enc_loop_done:
1996 add \$8, $len
1997 movdqu 0x00($inp), @XMM[8] # load input
1998 pxor @XMM[8], @XMM[0]
1999 movdqu @XMM[0], 0x00($out) # write output
2000 cmp \$2,$len
2001 jb .Lctr_enc_done
2002 movdqu 0x10($inp), @XMM[9]
2003 pxor @XMM[9], @XMM[1]
2004 movdqu @XMM[1], 0x10($out)
2005 je .Lctr_enc_done
2006 movdqu 0x20($inp), @XMM[10]
2007 pxor @XMM[10], @XMM[4]
2008 movdqu @XMM[4], 0x20($out)
2009 cmp \$4,$len
2010 jb .Lctr_enc_done
2011 movdqu 0x30($inp), @XMM[11]
2012 pxor @XMM[11], @XMM[6]
2013 movdqu @XMM[6], 0x30($out)
2014 je .Lctr_enc_done
2015 movdqu 0x40($inp), @XMM[12]
2016 pxor @XMM[12], @XMM[3]
2017 movdqu @XMM[3], 0x40($out)
2018 cmp \$6,$len
2019 jb .Lctr_enc_done
2020 movdqu 0x50($inp), @XMM[13]
2021 pxor @XMM[13], @XMM[7]
2022 movdqu @XMM[7], 0x50($out)
2023 je .Lctr_enc_done
2024 movdqu 0x60($inp), @XMM[14]
2025 pxor @XMM[14], @XMM[2]
2026 movdqu @XMM[2], 0x60($out)
2027 jmp .Lctr_enc_done

2029 .align 16
2030 .Lctr_enc_short:
2031 lea 0x20(%rbp), $arg1
2032 lea 0x30(%rbp), $arg2
2033 lea ($key), $arg3
2034 call asm_AES_encrypt
2035 movdqu ($inp), @XMM[1]
2036 lea 16($inp), $inp
2037 mov 0x2c(%rbp), %eax # load 32-bit counter
2038 bswap %eax
2039 pxor 0x30(%rbp), @XMM[1]
2040 inc %eax # increment
2041 movdqu @XMM[1], ($out)

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 32

2042 bswap %eax
2043 lea 16($out), $out
2044 mov %eax, 0x2c(%rsp) # save 32-bit counter
2045 dec $len
2046 jnz .Lctr_enc_short

2048 .Lctr_enc_done:
2049 lea (%rsp), %rax
2050 pxor %xmm0, %xmm0
2051 .Lctr_enc_bzero: # wipe key schedule [if any]
2052 movdqa %xmm0, 0x00(%rax)
2053 movdqa %xmm0, 0x10(%rax)
2054 lea 0x20(%rax), %rax
2055 cmp %rax, %rbp
2056 ja .Lctr_enc_bzero

2058 lea (%rbp),%rsp # restore %rsp
2059 ___
2060 $code.=<<___ if ($win64);
2061 movaps 0x40(%rbp), %xmm6
2062 movaps 0x50(%rbp), %xmm7
2063 movaps 0x60(%rbp), %xmm8
2064 movaps 0x70(%rbp), %xmm9
2065 movaps 0x80(%rbp), %xmm10
2066 movaps 0x90(%rbp), %xmm11
2067 movaps 0xa0(%rbp), %xmm12
2068 movaps 0xb0(%rbp), %xmm13
2069 movaps 0xc0(%rbp), %xmm14
2070 movaps 0xd0(%rbp), %xmm15
2071 lea 0xa0(%rbp), %rsp
2072 ___
2073 $code.=<<___;
2074 mov 0x48(%rsp), %r15
2075 mov 0x50(%rsp), %r14
2076 mov 0x58(%rsp), %r13
2077 mov 0x60(%rsp), %r12
2078 mov 0x68(%rsp), %rbx
2079 mov 0x70(%rsp), %rax
2080 lea 0x78(%rsp), %rsp
2081 mov %rax, %rbp
2082 .Lctr_enc_epilogue:
2083 ret
2084 .size bsaes_ctr32_encrypt_blocks,.-bsaes_ctr32_encrypt_blocks
2085 ___
2086 ##
2087 # void bsaes_xts_[en|de]crypt(const char *inp,char *out,size_t len,
2088 # const AES_KEY *key1, const AES_KEY *key2,
2089 # const unsigned char iv[16]);
2090 #
2091 my ($twmask,$twres,$twtmp)=@XMM[13..15];
2092 $arg6=~s/d$//;

2094 $code.=<<___;
2095 .globl bsaes_xts_encrypt
2096 .type bsaes_xts_encrypt,\@abi-omnipotent
2097 .align 16
2098 bsaes_xts_encrypt:
2099 mov %rsp, %rax
2100 .Lxts_enc_prologue:
2101 push %rbp
2102 push %rbx
2103 push %r12
2104 push %r13
2105 push %r14
2106 push %r15
2107 lea -0x48(%rsp), %rsp

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 33

2108 ___
2109 $code.=<<___ if ($win64);
2110 mov 0xa0(%rsp),$arg5 # pull key2
2111 mov 0xa8(%rsp),$arg6 # pull ivp
2112 lea -0xa0(%rsp), %rsp
2113 movaps %xmm6, 0x40(%rsp)
2114 movaps %xmm7, 0x50(%rsp)
2115 movaps %xmm8, 0x60(%rsp)
2116 movaps %xmm9, 0x70(%rsp)
2117 movaps %xmm10, 0x80(%rsp)
2118 movaps %xmm11, 0x90(%rsp)
2119 movaps %xmm12, 0xa0(%rsp)
2120 movaps %xmm13, 0xb0(%rsp)
2121 movaps %xmm14, 0xc0(%rsp)
2122 movaps %xmm15, 0xd0(%rsp)
2123 .Lxts_enc_body:
2124 ___
2125 $code.=<<___;
2126 mov %rsp, %rbp # backup %rsp
2127 mov $arg1, $inp # backup arguments
2128 mov $arg2, $out
2129 mov $arg3, $len
2130 mov $arg4, $key

2132 lea ($arg6), $arg1
2133 lea 0x20(%rbp), $arg2
2134 lea ($arg5), $arg3
2135 call asm_AES_encrypt # generate initial tweak

2137 mov 240($key), %eax # rounds
2138 mov $len, %rbx # backup $len

2140 mov %eax, %edx # rounds
2141 shl \$7, %rax # 128 bytes per inner round key
2142 sub \$‘128-32‘, %rax # size of bit-sliced key schedule
2143 sub %rax, %rsp

2145 mov %rsp, %rax # pass key schedule
2146 mov $key, %rcx # pass key
2147 mov %edx, %r10d # pass rounds
2148 call _bsaes_key_convert
2149 pxor %xmm6, %xmm7 # fix up last round key
2150 movdqa %xmm7, (%rax) # save last round key

2152 and \$-16, $len
2153 sub \$0x80, %rsp # place for tweak[8]
2154 movdqa 0x20(%rbp), @XMM[7] # initial tweak

2156 pxor $twtmp, $twtmp
2157 movdqa .Lxts_magic(%rip), $twmask
2158 pcmpgtd @XMM[7], $twtmp # broadcast upper bits

2160 sub \$0x80, $len
2161 jc .Lxts_enc_short
2162 jmp .Lxts_enc_loop

2164 .align 16
2165 .Lxts_enc_loop:
2166 ___
2167 for ($i=0;$i<7;$i++) {
2168 $code.=<<___;
2169 pshufd \$0x13, $twtmp, $twres
2170 pxor $twtmp, $twtmp
2171 movdqa @XMM[7], @XMM[$i]
2172 movdqa @XMM[7], ‘0x10*$i‘(%rsp)# save tweak[$i]
2173 paddq @XMM[7], @XMM[7] # psllq 1,$tweak

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 34

2174 pand $twmask, $twres # isolate carry and residue
2175 pcmpgtd @XMM[7], $twtmp # broadcast upper bits
2176 pxor $twres, @XMM[7]
2177 ___
2178 $code.=<<___ if ($i>=1);
2179 movdqu ‘0x10*($i-1)‘($inp), @XMM[8+$i-1]
2180 ___
2181 $code.=<<___ if ($i>=2);
2182 pxor @XMM[8+$i-2], @XMM[$i-2]# input[] ^ tweak[]
2183 ___
2184 }
2185 $code.=<<___;
2186 movdqu 0x60($inp), @XMM[8+6]
2187 pxor @XMM[8+5], @XMM[5]
2188 movdqu 0x70($inp), @XMM[8+7]
2189 lea 0x80($inp), $inp
2190 movdqa @XMM[7], 0x70(%rsp)
2191 pxor @XMM[8+6], @XMM[6]
2192 lea 0x80(%rsp), %rax # pass key schedule
2193 pxor @XMM[8+7], @XMM[7]
2194 mov %edx, %r10d # pass rounds

2196 call _bsaes_encrypt8

2198 pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2199 pxor 0x10(%rsp), @XMM[1]
2200 movdqu @XMM[0], 0x00($out) # write output
2201 pxor 0x20(%rsp), @XMM[4]
2202 movdqu @XMM[1], 0x10($out)
2203 pxor 0x30(%rsp), @XMM[6]
2204 movdqu @XMM[4], 0x20($out)
2205 pxor 0x40(%rsp), @XMM[3]
2206 movdqu @XMM[6], 0x30($out)
2207 pxor 0x50(%rsp), @XMM[7]
2208 movdqu @XMM[3], 0x40($out)
2209 pxor 0x60(%rsp), @XMM[2]
2210 movdqu @XMM[7], 0x50($out)
2211 pxor 0x70(%rsp), @XMM[5]
2212 movdqu @XMM[2], 0x60($out)
2213 movdqu @XMM[5], 0x70($out)
2214 lea 0x80($out), $out

2216 movdqa 0x70(%rsp), @XMM[7] # prepare next iteration tweak
2217 pxor $twtmp, $twtmp
2218 movdqa .Lxts_magic(%rip), $twmask
2219 pcmpgtd @XMM[7], $twtmp
2220 pshufd \$0x13, $twtmp, $twres
2221 pxor $twtmp, $twtmp
2222 paddq @XMM[7], @XMM[7] # psllq 1,$tweak
2223 pand $twmask, $twres # isolate carry and residue
2224 pcmpgtd @XMM[7], $twtmp # broadcast upper bits
2225 pxor $twres, @XMM[7]

2227 sub \$0x80,$len
2228 jnc .Lxts_enc_loop

2230 .Lxts_enc_short:
2231 add \$0x80, $len
2232 jz .Lxts_enc_done
2233 ___
2234 for ($i=0;$i<7;$i++) {
2235 $code.=<<___;
2236 pshufd \$0x13, $twtmp, $twres
2237 pxor $twtmp, $twtmp
2238 movdqa @XMM[7], @XMM[$i]
2239 movdqa @XMM[7], ‘0x10*$i‘(%rsp)# save tweak[$i]

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 35

2240 paddq @XMM[7], @XMM[7] # psllq 1,$tweak
2241 pand $twmask, $twres # isolate carry and residue
2242 pcmpgtd @XMM[7], $twtmp # broadcast upper bits
2243 pxor $twres, @XMM[7]
2244 ___
2245 $code.=<<___ if ($i>=1);
2246 movdqu ‘0x10*($i-1)‘($inp), @XMM[8+$i-1]
2247 cmp \$‘0x10*$i‘,$len
2248 je .Lxts_enc_$i
2249 ___
2250 $code.=<<___ if ($i>=2);
2251 pxor @XMM[8+$i-2], @XMM[$i-2]# input[] ^ tweak[]
2252 ___
2253 }
2254 $code.=<<___;
2255 movdqu 0x60($inp), @XMM[8+6]
2256 pxor @XMM[8+5], @XMM[5]
2257 movdqa @XMM[7], 0x70(%rsp)
2258 lea 0x70($inp), $inp
2259 pxor @XMM[8+6], @XMM[6]
2260 lea 0x80(%rsp), %rax # pass key schedule
2261 mov %edx, %r10d # pass rounds

2263 call _bsaes_encrypt8

2265 pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2266 pxor 0x10(%rsp), @XMM[1]
2267 movdqu @XMM[0], 0x00($out) # write output
2268 pxor 0x20(%rsp), @XMM[4]
2269 movdqu @XMM[1], 0x10($out)
2270 pxor 0x30(%rsp), @XMM[6]
2271 movdqu @XMM[4], 0x20($out)
2272 pxor 0x40(%rsp), @XMM[3]
2273 movdqu @XMM[6], 0x30($out)
2274 pxor 0x50(%rsp), @XMM[7]
2275 movdqu @XMM[3], 0x40($out)
2276 pxor 0x60(%rsp), @XMM[2]
2277 movdqu @XMM[7], 0x50($out)
2278 movdqu @XMM[2], 0x60($out)
2279 lea 0x70($out), $out

2281 movdqa 0x70(%rsp), @XMM[7] # next iteration tweak
2282 jmp .Lxts_enc_done
2283 .align 16
2284 .Lxts_enc_6:
2285 pxor @XMM[8+4], @XMM[4]
2286 lea 0x60($inp), $inp
2287 pxor @XMM[8+5], @XMM[5]
2288 lea 0x80(%rsp), %rax # pass key schedule
2289 mov %edx, %r10d # pass rounds

2291 call _bsaes_encrypt8

2293 pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2294 pxor 0x10(%rsp), @XMM[1]
2295 movdqu @XMM[0], 0x00($out) # write output
2296 pxor 0x20(%rsp), @XMM[4]
2297 movdqu @XMM[1], 0x10($out)
2298 pxor 0x30(%rsp), @XMM[6]
2299 movdqu @XMM[4], 0x20($out)
2300 pxor 0x40(%rsp), @XMM[3]
2301 movdqu @XMM[6], 0x30($out)
2302 pxor 0x50(%rsp), @XMM[7]
2303 movdqu @XMM[3], 0x40($out)
2304 movdqu @XMM[7], 0x50($out)
2305 lea 0x60($out), $out

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 36

2307 movdqa 0x60(%rsp), @XMM[7] # next iteration tweak
2308 jmp .Lxts_enc_done
2309 .align 16
2310 .Lxts_enc_5:
2311 pxor @XMM[8+3], @XMM[3]
2312 lea 0x50($inp), $inp
2313 pxor @XMM[8+4], @XMM[4]
2314 lea 0x80(%rsp), %rax # pass key schedule
2315 mov %edx, %r10d # pass rounds

2317 call _bsaes_encrypt8

2319 pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2320 pxor 0x10(%rsp), @XMM[1]
2321 movdqu @XMM[0], 0x00($out) # write output
2322 pxor 0x20(%rsp), @XMM[4]
2323 movdqu @XMM[1], 0x10($out)
2324 pxor 0x30(%rsp), @XMM[6]
2325 movdqu @XMM[4], 0x20($out)
2326 pxor 0x40(%rsp), @XMM[3]
2327 movdqu @XMM[6], 0x30($out)
2328 movdqu @XMM[3], 0x40($out)
2329 lea 0x50($out), $out

2331 movdqa 0x50(%rsp), @XMM[7] # next iteration tweak
2332 jmp .Lxts_enc_done
2333 .align 16
2334 .Lxts_enc_4:
2335 pxor @XMM[8+2], @XMM[2]
2336 lea 0x40($inp), $inp
2337 pxor @XMM[8+3], @XMM[3]
2338 lea 0x80(%rsp), %rax # pass key schedule
2339 mov %edx, %r10d # pass rounds

2341 call _bsaes_encrypt8

2343 pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2344 pxor 0x10(%rsp), @XMM[1]
2345 movdqu @XMM[0], 0x00($out) # write output
2346 pxor 0x20(%rsp), @XMM[4]
2347 movdqu @XMM[1], 0x10($out)
2348 pxor 0x30(%rsp), @XMM[6]
2349 movdqu @XMM[4], 0x20($out)
2350 movdqu @XMM[6], 0x30($out)
2351 lea 0x40($out), $out

2353 movdqa 0x40(%rsp), @XMM[7] # next iteration tweak
2354 jmp .Lxts_enc_done
2355 .align 16
2356 .Lxts_enc_3:
2357 pxor @XMM[8+1], @XMM[1]
2358 lea 0x30($inp), $inp
2359 pxor @XMM[8+2], @XMM[2]
2360 lea 0x80(%rsp), %rax # pass key schedule
2361 mov %edx, %r10d # pass rounds

2363 call _bsaes_encrypt8

2365 pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2366 pxor 0x10(%rsp), @XMM[1]
2367 movdqu @XMM[0], 0x00($out) # write output
2368 pxor 0x20(%rsp), @XMM[4]
2369 movdqu @XMM[1], 0x10($out)
2370 movdqu @XMM[4], 0x20($out)
2371 lea 0x30($out), $out

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 37

2373 movdqa 0x30(%rsp), @XMM[7] # next iteration tweak
2374 jmp .Lxts_enc_done
2375 .align 16
2376 .Lxts_enc_2:
2377 pxor @XMM[8+0], @XMM[0]
2378 lea 0x20($inp), $inp
2379 pxor @XMM[8+1], @XMM[1]
2380 lea 0x80(%rsp), %rax # pass key schedule
2381 mov %edx, %r10d # pass rounds

2383 call _bsaes_encrypt8

2385 pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2386 pxor 0x10(%rsp), @XMM[1]
2387 movdqu @XMM[0], 0x00($out) # write output
2388 movdqu @XMM[1], 0x10($out)
2389 lea 0x20($out), $out

2391 movdqa 0x20(%rsp), @XMM[7] # next iteration tweak
2392 jmp .Lxts_enc_done
2393 .align 16
2394 .Lxts_enc_1:
2395 pxor @XMM[0], @XMM[8]
2396 lea 0x10($inp), $inp
2397 movdqa @XMM[8], 0x20(%rbp)
2398 lea 0x20(%rbp), $arg1
2399 lea 0x20(%rbp), $arg2
2400 lea ($key), $arg3
2401 call asm_AES_encrypt # doesn’t touch %xmm
2402 pxor 0x20(%rbp), @XMM[0] # ^= tweak[]
2403 #pxor @XMM[8], @XMM[0]
2404 #lea 0x80(%rsp), %rax # pass key schedule
2405 #mov %edx, %r10d # pass rounds
2406 #call _bsaes_encrypt8
2407 #pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2408 movdqu @XMM[0], 0x00($out) # write output
2409 lea 0x10($out), $out

2411 movdqa 0x10(%rsp), @XMM[7] # next iteration tweak

2413 .Lxts_enc_done:
2414 and \$15, %ebx
2415 jz .Lxts_enc_ret
2416 mov $out, %rdx

2418 .Lxts_enc_steal:
2419 movzb ($inp), %eax
2420 movzb -16(%rdx), %ecx
2421 lea 1($inp), $inp
2422 mov %al, -16(%rdx)
2423 mov %cl, 0(%rdx)
2424 lea 1(%rdx), %rdx
2425 sub \$1,%ebx
2426 jnz .Lxts_enc_steal

2428 movdqu -16($out), @XMM[0]
2429 lea 0x20(%rbp), $arg1
2430 pxor @XMM[7], @XMM[0]
2431 lea 0x20(%rbp), $arg2
2432 movdqa @XMM[0], 0x20(%rbp)
2433 lea ($key), $arg3
2434 call asm_AES_encrypt # doesn’t touch %xmm
2435 pxor 0x20(%rbp), @XMM[7]
2436 movdqu @XMM[7], -16($out)

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 38

2438 .Lxts_enc_ret:
2439 lea (%rsp), %rax
2440 pxor %xmm0, %xmm0
2441 .Lxts_enc_bzero: # wipe key schedule [if any]
2442 movdqa %xmm0, 0x00(%rax)
2443 movdqa %xmm0, 0x10(%rax)
2444 lea 0x20(%rax), %rax
2445 cmp %rax, %rbp
2446 ja .Lxts_enc_bzero

2448 lea (%rbp),%rsp # restore %rsp
2449 ___
2450 $code.=<<___ if ($win64);
2451 movaps 0x40(%rbp), %xmm6
2452 movaps 0x50(%rbp), %xmm7
2453 movaps 0x60(%rbp), %xmm8
2454 movaps 0x70(%rbp), %xmm9
2455 movaps 0x80(%rbp), %xmm10
2456 movaps 0x90(%rbp), %xmm11
2457 movaps 0xa0(%rbp), %xmm12
2458 movaps 0xb0(%rbp), %xmm13
2459 movaps 0xc0(%rbp), %xmm14
2460 movaps 0xd0(%rbp), %xmm15
2461 lea 0xa0(%rbp), %rsp
2462 ___
2463 $code.=<<___;
2464 mov 0x48(%rsp), %r15
2465 mov 0x50(%rsp), %r14
2466 mov 0x58(%rsp), %r13
2467 mov 0x60(%rsp), %r12
2468 mov 0x68(%rsp), %rbx
2469 mov 0x70(%rsp), %rax
2470 lea 0x78(%rsp), %rsp
2471 mov %rax, %rbp
2472 .Lxts_enc_epilogue:
2473 ret
2474 .size bsaes_xts_encrypt,.-bsaes_xts_encrypt

2476 .globl bsaes_xts_decrypt
2477 .type bsaes_xts_decrypt,\@abi-omnipotent
2478 .align 16
2479 bsaes_xts_decrypt:
2480 mov %rsp, %rax
2481 .Lxts_dec_prologue:
2482 push %rbp
2483 push %rbx
2484 push %r12
2485 push %r13
2486 push %r14
2487 push %r15
2488 lea -0x48(%rsp), %rsp
2489 ___
2490 $code.=<<___ if ($win64);
2491 mov 0xa0(%rsp),$arg5 # pull key2
2492 mov 0xa8(%rsp),$arg6 # pull ivp
2493 lea -0xa0(%rsp), %rsp
2494 movaps %xmm6, 0x40(%rsp)
2495 movaps %xmm7, 0x50(%rsp)
2496 movaps %xmm8, 0x60(%rsp)
2497 movaps %xmm9, 0x70(%rsp)
2498 movaps %xmm10, 0x80(%rsp)
2499 movaps %xmm11, 0x90(%rsp)
2500 movaps %xmm12, 0xa0(%rsp)
2501 movaps %xmm13, 0xb0(%rsp)
2502 movaps %xmm14, 0xc0(%rsp)
2503 movaps %xmm15, 0xd0(%rsp)

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 39

2504 .Lxts_dec_body:
2505 ___
2506 $code.=<<___;
2507 mov %rsp, %rbp # backup %rsp
2508 mov $arg1, $inp # backup arguments
2509 mov $arg2, $out
2510 mov $arg3, $len
2511 mov $arg4, $key

2513 lea ($arg6), $arg1
2514 lea 0x20(%rbp), $arg2
2515 lea ($arg5), $arg3
2516 call asm_AES_encrypt # generate initial tweak

2518 mov 240($key), %eax # rounds
2519 mov $len, %rbx # backup $len

2521 mov %eax, %edx # rounds
2522 shl \$7, %rax # 128 bytes per inner round key
2523 sub \$‘128-32‘, %rax # size of bit-sliced key schedule
2524 sub %rax, %rsp

2526 mov %rsp, %rax # pass key schedule
2527 mov $key, %rcx # pass key
2528 mov %edx, %r10d # pass rounds
2529 call _bsaes_key_convert
2530 pxor (%rsp), %xmm7 # fix up round 0 key
2531 movdqa %xmm6, (%rax) # save last round key
2532 movdqa %xmm7, (%rsp)

2534 xor %eax, %eax # if ($len%16) len-=16;
2535 and \$-16, $len
2536 test \$15, %ebx
2537 setnz %al
2538 shl \$4, %rax
2539 sub %rax, $len

2541 sub \$0x80, %rsp # place for tweak[8]
2542 movdqa 0x20(%rbp), @XMM[7] # initial tweak

2544 pxor $twtmp, $twtmp
2545 movdqa .Lxts_magic(%rip), $twmask
2546 pcmpgtd @XMM[7], $twtmp # broadcast upper bits

2548 sub \$0x80, $len
2549 jc .Lxts_dec_short
2550 jmp .Lxts_dec_loop

2552 .align 16
2553 .Lxts_dec_loop:
2554 ___
2555 for ($i=0;$i<7;$i++) {
2556 $code.=<<___;
2557 pshufd \$0x13, $twtmp, $twres
2558 pxor $twtmp, $twtmp
2559 movdqa @XMM[7], @XMM[$i]
2560 movdqa @XMM[7], ‘0x10*$i‘(%rsp)# save tweak[$i]
2561 paddq @XMM[7], @XMM[7] # psllq 1,$tweak
2562 pand $twmask, $twres # isolate carry and residue
2563 pcmpgtd @XMM[7], $twtmp # broadcast upper bits
2564 pxor $twres, @XMM[7]
2565 ___
2566 $code.=<<___ if ($i>=1);
2567 movdqu ‘0x10*($i-1)‘($inp), @XMM[8+$i-1]
2568 ___
2569 $code.=<<___ if ($i>=2);

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 40

2570 pxor @XMM[8+$i-2], @XMM[$i-2]# input[] ^ tweak[]
2571 ___
2572 }
2573 $code.=<<___;
2574 movdqu 0x60($inp), @XMM[8+6]
2575 pxor @XMM[8+5], @XMM[5]
2576 movdqu 0x70($inp), @XMM[8+7]
2577 lea 0x80($inp), $inp
2578 movdqa @XMM[7], 0x70(%rsp)
2579 pxor @XMM[8+6], @XMM[6]
2580 lea 0x80(%rsp), %rax # pass key schedule
2581 pxor @XMM[8+7], @XMM[7]
2582 mov %edx, %r10d # pass rounds

2584 call _bsaes_decrypt8

2586 pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2587 pxor 0x10(%rsp), @XMM[1]
2588 movdqu @XMM[0], 0x00($out) # write output
2589 pxor 0x20(%rsp), @XMM[6]
2590 movdqu @XMM[1], 0x10($out)
2591 pxor 0x30(%rsp), @XMM[4]
2592 movdqu @XMM[6], 0x20($out)
2593 pxor 0x40(%rsp), @XMM[2]
2594 movdqu @XMM[4], 0x30($out)
2595 pxor 0x50(%rsp), @XMM[7]
2596 movdqu @XMM[2], 0x40($out)
2597 pxor 0x60(%rsp), @XMM[3]
2598 movdqu @XMM[7], 0x50($out)
2599 pxor 0x70(%rsp), @XMM[5]
2600 movdqu @XMM[3], 0x60($out)
2601 movdqu @XMM[5], 0x70($out)
2602 lea 0x80($out), $out

2604 movdqa 0x70(%rsp), @XMM[7] # prepare next iteration tweak
2605 pxor $twtmp, $twtmp
2606 movdqa .Lxts_magic(%rip), $twmask
2607 pcmpgtd @XMM[7], $twtmp
2608 pshufd \$0x13, $twtmp, $twres
2609 pxor $twtmp, $twtmp
2610 paddq @XMM[7], @XMM[7] # psllq 1,$tweak
2611 pand $twmask, $twres # isolate carry and residue
2612 pcmpgtd @XMM[7], $twtmp # broadcast upper bits
2613 pxor $twres, @XMM[7]

2615 sub \$0x80,$len
2616 jnc .Lxts_dec_loop

2618 .Lxts_dec_short:
2619 add \$0x80, $len
2620 jz .Lxts_dec_done
2621 ___
2622 for ($i=0;$i<7;$i++) {
2623 $code.=<<___;
2624 pshufd \$0x13, $twtmp, $twres
2625 pxor $twtmp, $twtmp
2626 movdqa @XMM[7], @XMM[$i]
2627 movdqa @XMM[7], ‘0x10*$i‘(%rsp)# save tweak[$i]
2628 paddq @XMM[7], @XMM[7] # psllq 1,$tweak
2629 pand $twmask, $twres # isolate carry and residue
2630 pcmpgtd @XMM[7], $twtmp # broadcast upper bits
2631 pxor $twres, @XMM[7]
2632 ___
2633 $code.=<<___ if ($i>=1);
2634 movdqu ‘0x10*($i-1)‘($inp), @XMM[8+$i-1]
2635 cmp \$‘0x10*$i‘,$len

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 41

2636 je .Lxts_dec_$i
2637 ___
2638 $code.=<<___ if ($i>=2);
2639 pxor @XMM[8+$i-2], @XMM[$i-2]# input[] ^ tweak[]
2640 ___
2641 }
2642 $code.=<<___;
2643 movdqu 0x60($inp), @XMM[8+6]
2644 pxor @XMM[8+5], @XMM[5]
2645 movdqa @XMM[7], 0x70(%rsp)
2646 lea 0x70($inp), $inp
2647 pxor @XMM[8+6], @XMM[6]
2648 lea 0x80(%rsp), %rax # pass key schedule
2649 mov %edx, %r10d # pass rounds

2651 call _bsaes_decrypt8

2653 pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2654 pxor 0x10(%rsp), @XMM[1]
2655 movdqu @XMM[0], 0x00($out) # write output
2656 pxor 0x20(%rsp), @XMM[6]
2657 movdqu @XMM[1], 0x10($out)
2658 pxor 0x30(%rsp), @XMM[4]
2659 movdqu @XMM[6], 0x20($out)
2660 pxor 0x40(%rsp), @XMM[2]
2661 movdqu @XMM[4], 0x30($out)
2662 pxor 0x50(%rsp), @XMM[7]
2663 movdqu @XMM[2], 0x40($out)
2664 pxor 0x60(%rsp), @XMM[3]
2665 movdqu @XMM[7], 0x50($out)
2666 movdqu @XMM[3], 0x60($out)
2667 lea 0x70($out), $out

2669 movdqa 0x70(%rsp), @XMM[7] # next iteration tweak
2670 jmp .Lxts_dec_done
2671 .align 16
2672 .Lxts_dec_6:
2673 pxor @XMM[8+4], @XMM[4]
2674 lea 0x60($inp), $inp
2675 pxor @XMM[8+5], @XMM[5]
2676 lea 0x80(%rsp), %rax # pass key schedule
2677 mov %edx, %r10d # pass rounds

2679 call _bsaes_decrypt8

2681 pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2682 pxor 0x10(%rsp), @XMM[1]
2683 movdqu @XMM[0], 0x00($out) # write output
2684 pxor 0x20(%rsp), @XMM[6]
2685 movdqu @XMM[1], 0x10($out)
2686 pxor 0x30(%rsp), @XMM[4]
2687 movdqu @XMM[6], 0x20($out)
2688 pxor 0x40(%rsp), @XMM[2]
2689 movdqu @XMM[4], 0x30($out)
2690 pxor 0x50(%rsp), @XMM[7]
2691 movdqu @XMM[2], 0x40($out)
2692 movdqu @XMM[7], 0x50($out)
2693 lea 0x60($out), $out

2695 movdqa 0x60(%rsp), @XMM[7] # next iteration tweak
2696 jmp .Lxts_dec_done
2697 .align 16
2698 .Lxts_dec_5:
2699 pxor @XMM[8+3], @XMM[3]
2700 lea 0x50($inp), $inp
2701 pxor @XMM[8+4], @XMM[4]

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 42

2702 lea 0x80(%rsp), %rax # pass key schedule
2703 mov %edx, %r10d # pass rounds

2705 call _bsaes_decrypt8

2707 pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2708 pxor 0x10(%rsp), @XMM[1]
2709 movdqu @XMM[0], 0x00($out) # write output
2710 pxor 0x20(%rsp), @XMM[6]
2711 movdqu @XMM[1], 0x10($out)
2712 pxor 0x30(%rsp), @XMM[4]
2713 movdqu @XMM[6], 0x20($out)
2714 pxor 0x40(%rsp), @XMM[2]
2715 movdqu @XMM[4], 0x30($out)
2716 movdqu @XMM[2], 0x40($out)
2717 lea 0x50($out), $out

2719 movdqa 0x50(%rsp), @XMM[7] # next iteration tweak
2720 jmp .Lxts_dec_done
2721 .align 16
2722 .Lxts_dec_4:
2723 pxor @XMM[8+2], @XMM[2]
2724 lea 0x40($inp), $inp
2725 pxor @XMM[8+3], @XMM[3]
2726 lea 0x80(%rsp), %rax # pass key schedule
2727 mov %edx, %r10d # pass rounds

2729 call _bsaes_decrypt8

2731 pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2732 pxor 0x10(%rsp), @XMM[1]
2733 movdqu @XMM[0], 0x00($out) # write output
2734 pxor 0x20(%rsp), @XMM[6]
2735 movdqu @XMM[1], 0x10($out)
2736 pxor 0x30(%rsp), @XMM[4]
2737 movdqu @XMM[6], 0x20($out)
2738 movdqu @XMM[4], 0x30($out)
2739 lea 0x40($out), $out

2741 movdqa 0x40(%rsp), @XMM[7] # next iteration tweak
2742 jmp .Lxts_dec_done
2743 .align 16
2744 .Lxts_dec_3:
2745 pxor @XMM[8+1], @XMM[1]
2746 lea 0x30($inp), $inp
2747 pxor @XMM[8+2], @XMM[2]
2748 lea 0x80(%rsp), %rax # pass key schedule
2749 mov %edx, %r10d # pass rounds

2751 call _bsaes_decrypt8

2753 pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2754 pxor 0x10(%rsp), @XMM[1]
2755 movdqu @XMM[0], 0x00($out) # write output
2756 pxor 0x20(%rsp), @XMM[6]
2757 movdqu @XMM[1], 0x10($out)
2758 movdqu @XMM[6], 0x20($out)
2759 lea 0x30($out), $out

2761 movdqa 0x30(%rsp), @XMM[7] # next iteration tweak
2762 jmp .Lxts_dec_done
2763 .align 16
2764 .Lxts_dec_2:
2765 pxor @XMM[8+0], @XMM[0]
2766 lea 0x20($inp), $inp
2767 pxor @XMM[8+1], @XMM[1]

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 43

2768 lea 0x80(%rsp), %rax # pass key schedule
2769 mov %edx, %r10d # pass rounds

2771 call _bsaes_decrypt8

2773 pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2774 pxor 0x10(%rsp), @XMM[1]
2775 movdqu @XMM[0], 0x00($out) # write output
2776 movdqu @XMM[1], 0x10($out)
2777 lea 0x20($out), $out

2779 movdqa 0x20(%rsp), @XMM[7] # next iteration tweak
2780 jmp .Lxts_dec_done
2781 .align 16
2782 .Lxts_dec_1:
2783 pxor @XMM[0], @XMM[8]
2784 lea 0x10($inp), $inp
2785 movdqa @XMM[8], 0x20(%rbp)
2786 lea 0x20(%rbp), $arg1
2787 lea 0x20(%rbp), $arg2
2788 lea ($key), $arg3
2789 call asm_AES_decrypt # doesn’t touch %xmm
2790 pxor 0x20(%rbp), @XMM[0] # ^= tweak[]
2791 #pxor @XMM[8], @XMM[0]
2792 #lea 0x80(%rsp), %rax # pass key schedule
2793 #mov %edx, %r10d # pass rounds
2794 #call _bsaes_decrypt8
2795 #pxor 0x00(%rsp), @XMM[0] # ^= tweak[]
2796 movdqu @XMM[0], 0x00($out) # write output
2797 lea 0x10($out), $out

2799 movdqa 0x10(%rsp), @XMM[7] # next iteration tweak

2801 .Lxts_dec_done:
2802 and \$15, %ebx
2803 jz .Lxts_dec_ret

2805 pxor $twtmp, $twtmp
2806 movdqa .Lxts_magic(%rip), $twmask
2807 pcmpgtd @XMM[7], $twtmp
2808 pshufd \$0x13, $twtmp, $twres
2809 movdqa @XMM[7], @XMM[6]
2810 paddq @XMM[7], @XMM[7] # psllq 1,$tweak
2811 pand $twmask, $twres # isolate carry and residue
2812 movdqu ($inp), @XMM[0]
2813 pxor $twres, @XMM[7]

2815 lea 0x20(%rbp), $arg1
2816 pxor @XMM[7], @XMM[0]
2817 lea 0x20(%rbp), $arg2
2818 movdqa @XMM[0], 0x20(%rbp)
2819 lea ($key), $arg3
2820 call asm_AES_decrypt # doesn’t touch %xmm
2821 pxor 0x20(%rbp), @XMM[7]
2822 mov $out, %rdx
2823 movdqu @XMM[7], ($out)

2825 .Lxts_dec_steal:
2826 movzb 16($inp), %eax
2827 movzb (%rdx), %ecx
2828 lea 1($inp), $inp
2829 mov %al, (%rdx)
2830 mov %cl, 16(%rdx)
2831 lea 1(%rdx), %rdx
2832 sub \$1,%ebx
2833 jnz .Lxts_dec_steal

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 44

2835 movdqu ($out), @XMM[0]
2836 lea 0x20(%rbp), $arg1
2837 pxor @XMM[6], @XMM[0]
2838 lea 0x20(%rbp), $arg2
2839 movdqa @XMM[0], 0x20(%rbp)
2840 lea ($key), $arg3
2841 call asm_AES_decrypt # doesn’t touch %xmm
2842 pxor 0x20(%rbp), @XMM[6]
2843 movdqu @XMM[6], ($out)

2845 .Lxts_dec_ret:
2846 lea (%rsp), %rax
2847 pxor %xmm0, %xmm0
2848 .Lxts_dec_bzero: # wipe key schedule [if any]
2849 movdqa %xmm0, 0x00(%rax)
2850 movdqa %xmm0, 0x10(%rax)
2851 lea 0x20(%rax), %rax
2852 cmp %rax, %rbp
2853 ja .Lxts_dec_bzero

2855 lea (%rbp),%rsp # restore %rsp
2856 ___
2857 $code.=<<___ if ($win64);
2858 movaps 0x40(%rbp), %xmm6
2859 movaps 0x50(%rbp), %xmm7
2860 movaps 0x60(%rbp), %xmm8
2861 movaps 0x70(%rbp), %xmm9
2862 movaps 0x80(%rbp), %xmm10
2863 movaps 0x90(%rbp), %xmm11
2864 movaps 0xa0(%rbp), %xmm12
2865 movaps 0xb0(%rbp), %xmm13
2866 movaps 0xc0(%rbp), %xmm14
2867 movaps 0xd0(%rbp), %xmm15
2868 lea 0xa0(%rbp), %rsp
2869 ___
2870 $code.=<<___;
2871 mov 0x48(%rsp), %r15
2872 mov 0x50(%rsp), %r14
2873 mov 0x58(%rsp), %r13
2874 mov 0x60(%rsp), %r12
2875 mov 0x68(%rsp), %rbx
2876 mov 0x70(%rsp), %rax
2877 lea 0x78(%rsp), %rsp
2878 mov %rax, %rbp
2879 .Lxts_dec_epilogue:
2880 ret
2881 .size bsaes_xts_decrypt,.-bsaes_xts_decrypt
2882 ___
2883 }
2884 $code.=<<___;
2885 .type _bsaes_const,\@object
2886 .align 64
2887 _bsaes_const:
2888 .LM0ISR: # InvShiftRows constants
2889 .quad 0x0a0e0206070b0f03, 0x0004080c0d010509
2890 .LISRM0:
2891 .quad 0x01040b0e0205080f, 0x0306090c00070a0d
2892 .LISR:
2893 .quad 0x0504070602010003, 0x0f0e0d0c080b0a09
2894 .LBS0: # bit-slice constants
2895 .quad 0x5555555555555555, 0x5555555555555555
2896 .LBS1:
2897 .quad 0x3333333333333333, 0x3333333333333333
2898 .LBS2:
2899 .quad 0x0f0f0f0f0f0f0f0f, 0x0f0f0f0f0f0f0f0f

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 45

2900 .LSR: # shiftrows constants
2901 .quad 0x0504070600030201, 0x0f0e0d0c0a09080b
2902 .LSRM0:
2903 .quad 0x0304090e00050a0f, 0x01060b0c0207080d
2904 .LM0SR:
2905 .quad 0x0a0e02060f03070b, 0x0004080c05090d01
2906 .LSWPUP: # byte-swap upper dword
2907 .quad 0x0706050403020100, 0x0c0d0e0f0b0a0908
2908 .LSWPUPM0SR:
2909 .quad 0x0a0d02060c03070b, 0x0004080f05090e01
2910 .LADD1: # counter increment constants
2911 .quad 0x0000000000000000, 0x0000000100000000
2912 .LADD2:
2913 .quad 0x0000000000000000, 0x0000000200000000
2914 .LADD3:
2915 .quad 0x0000000000000000, 0x0000000300000000
2916 .LADD4:
2917 .quad 0x0000000000000000, 0x0000000400000000
2918 .LADD5:
2919 .quad 0x0000000000000000, 0x0000000500000000
2920 .LADD6:
2921 .quad 0x0000000000000000, 0x0000000600000000
2922 .LADD7:
2923 .quad 0x0000000000000000, 0x0000000700000000
2924 .LADD8:
2925 .quad 0x0000000000000000, 0x0000000800000000
2926 .Lxts_magic:
2927 .long 0x87,0,1,0
2928 .Lmasks:
2929 .quad 0x0101010101010101, 0x0101010101010101
2930 .quad 0x0202020202020202, 0x0202020202020202
2931 .quad 0x0404040404040404, 0x0404040404040404
2932 .quad 0x0808080808080808, 0x0808080808080808
2933 .LM0:
2934 .quad 0x02060a0e03070b0f, 0x0004080c0105090d
2935 .L63:
2936 .quad 0x6363636363636363, 0x6363636363636363
2937 .asciz "Bit-sliced AES for x86_64/SSSE3, Emilia Kˆ⁄sper, Peter Schwabe, Andy Po
2938 .align 64
2939 .size _bsaes_const,.-_bsaes_const
2940 ___

2942 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
2943 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
2944 if ($win64) {
2945 $rec="%rcx";
2946 $frame="%rdx";
2947 $context="%r8";
2948 $disp="%r9";

2950 $code.=<<___;
2951 .extern __imp_RtlVirtualUnwind
2952 .type se_handler,\@abi-omnipotent
2953 .align 16
2954 se_handler:
2955 push %rsi
2956 push %rdi
2957 push %rbx
2958 push %rbp
2959 push %r12
2960 push %r13
2961 push %r14
2962 push %r15
2963 pushfq
2964 sub \$64,%rsp

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 46

2966 mov 120($context),%rax # pull context->Rax
2967 mov 248($context),%rbx # pull context->Rip

2969 mov 8($disp),%rsi # disp->ImageBase
2970 mov 56($disp),%r11 # disp->HandlerData

2972 mov 0(%r11),%r10d # HandlerData[0]
2973 lea (%rsi,%r10),%r10 # prologue label
2974 cmp %r10,%rbx # context->Rip<prologue label
2975 jb .Lin_prologue

2977 mov 152($context),%rax # pull context->Rsp

2979 mov 4(%r11),%r10d # HandlerData[1]
2980 lea (%rsi,%r10),%r10 # epilogue label
2981 cmp %r10,%rbx # context->Rip>=epilogue label
2982 jae .Lin_prologue

2984 mov 160($context),%rax # pull context->Rbp

2986 lea 0x40(%rax),%rsi # %xmm save area
2987 lea 512($context),%rdi # &context.Xmm6
2988 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
2989 .long 0xa548f3fc # cld; rep movsq
2990 lea 0xa0(%rax),%rax # adjust stack pointer

2992 mov 0x70(%rax),%rbp
2993 mov 0x68(%rax),%rbx
2994 mov 0x60(%rax),%r12
2995 mov 0x58(%rax),%r13
2996 mov 0x50(%rax),%r14
2997 mov 0x48(%rax),%r15
2998 lea 0x78(%rax),%rax # adjust stack pointer
2999 mov %rbx,144($context) # restore context->Rbx
3000 mov %rbp,160($context) # restore context->Rbp
3001 mov %r12,216($context) # restore context->R12
3002 mov %r13,224($context) # restore context->R13
3003 mov %r14,232($context) # restore context->R14
3004 mov %r15,240($context) # restore context->R15

3006 .Lin_prologue:
3007 mov %rax,152($context) # restore context->Rsp

3009 mov 40($disp),%rdi # disp->ContextRecord
3010 mov $context,%rsi # context
3011 mov \$‘1232/8‘,%ecx # sizeof(CONTEXT)
3012 .long 0xa548f3fc # cld; rep movsq

3014 mov $disp,%rsi
3015 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
3016 mov 8(%rsi),%rdx # arg2, disp->ImageBase
3017 mov 0(%rsi),%r8 # arg3, disp->ControlPc
3018 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
3019 mov 40(%rsi),%r10 # disp->ContextRecord
3020 lea 56(%rsi),%r11 # &disp->HandlerData
3021 lea 24(%rsi),%r12 # &disp->EstablisherFrame
3022 mov %r10,32(%rsp) # arg5
3023 mov %r11,40(%rsp) # arg6
3024 mov %r12,48(%rsp) # arg7
3025 mov %rcx,56(%rsp) # arg8, (NULL)
3026 call *__imp_RtlVirtualUnwind(%rip)

3028 mov \$1,%eax # ExceptionContinueSearch
3029 add \$64,%rsp
3030 popfq
3031 pop %r15

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 47

3032 pop %r14
3033 pop %r13
3034 pop %r12
3035 pop %rbp
3036 pop %rbx
3037 pop %rdi
3038 pop %rsi
3039 ret
3040 .size se_handler,.-se_handler

3042 .section .pdata
3043 .align 4
3044 ___
3045 $code.=<<___ if ($ecb);
3046 .rva .Lecb_enc_prologue
3047 .rva .Lecb_enc_epilogue
3048 .rva .Lecb_enc_info

3050 .rva .Lecb_dec_prologue
3051 .rva .Lecb_dec_epilogue
3052 .rva .Lecb_dec_info
3053 ___
3054 $code.=<<___;
3055 .rva .Lcbc_dec_prologue
3056 .rva .Lcbc_dec_epilogue
3057 .rva .Lcbc_dec_info

3059 .rva .Lctr_enc_prologue
3060 .rva .Lctr_enc_epilogue
3061 .rva .Lctr_enc_info

3063 .rva .Lxts_enc_prologue
3064 .rva .Lxts_enc_epilogue
3065 .rva .Lxts_enc_info

3067 .rva .Lxts_dec_prologue
3068 .rva .Lxts_dec_epilogue
3069 .rva .Lxts_dec_info

3071 .section .xdata
3072 .align 8
3073 ___
3074 $code.=<<___ if ($ecb);
3075 .Lecb_enc_info:
3076 .byte 9,0,0,0
3077 .rva se_handler
3078 .rva .Lecb_enc_body,.Lecb_enc_epilogue # HandlerData[]
3079 .Lecb_dec_info:
3080 .byte 9,0,0,0
3081 .rva se_handler
3082 .rva .Lecb_dec_body,.Lecb_dec_epilogue # HandlerData[]
3083 ___
3084 $code.=<<___;
3085 .Lcbc_dec_info:
3086 .byte 9,0,0,0
3087 .rva se_handler
3088 .rva .Lcbc_dec_body,.Lcbc_dec_epilogue # HandlerData[]
3089 .Lctr_enc_info:
3090 .byte 9,0,0,0
3091 .rva se_handler
3092 .rva .Lctr_enc_body,.Lctr_enc_epilogue # HandlerData[]
3093 .Lxts_enc_info:
3094 .byte 9,0,0,0
3095 .rva se_handler
3096 .rva .Lxts_enc_body,.Lxts_enc_epilogue # HandlerData[]
3097 .Lxts_dec_info:

new/usr/src/lib/openssl/libsunw_crypto/pl/bsaes-x86_64.pl 48

3098 .byte 9,0,0,0
3099 .rva se_handler
3100 .rva .Lxts_dec_body,.Lxts_dec_epilogue # HandlerData[]
3101 ___
3102 }

3104 $code =~ s/\‘([^\‘]*)\‘/eval($1)/gem;

3106 print $code;

3108 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/cbc.pl 1

**
 9080 Fri May 30 18:32:03 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/cbc.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/local/bin/perl

3 # void des_ncbc_encrypt(input, output, length, schedule, ivec, enc)
4 # des_cblock (*input);
5 # des_cblock (*output);
6 # long length;
7 # des_key_schedule schedule;
8 # des_cblock (*ivec);
9 # int enc;
10 #
11 # calls
12 # des_encrypt((DES_LONG *)tin,schedule,DES_ENCRYPT);
13 #

15 #&cbc("des_ncbc_encrypt","des_encrypt",0);
16 #&cbc("BF_cbc_encrypt","BF_encrypt","BF_encrypt",
17 # 1,4,5,3,5,-1);
18 #&cbc("des_ncbc_encrypt","des_encrypt","des_encrypt",
19 # 0,4,5,3,5,-1);
20 #&cbc("des_ede3_cbc_encrypt","des_encrypt3","des_decrypt3",
21 # 0,6,7,3,4,5);
22 #
23 # When doing a cipher that needs bigendian order,
24 # for encrypt, the iv is kept in bigendian form,
25 # while for decrypt, it is kept in little endian.
26 sub cbc
27 {
28 local($name,$enc_func,$dec_func,$swap,$iv_off,$enc_off,$p1,$p2,$p3)=@_;
29 # name is the function name
30 # enc_func and dec_func and the functions to call for encrypt/decrypt
31 # swap is true if byte order needs to be reversed
32 # iv_off is parameter number for the iv
33 # enc_off is parameter number for the encrypt/decrypt flag
34 # p1,p2,p3 are the offsets for parameters to be passed to the
35 # underlying calls.

37 &function_begin_B($name,"");
38 &comment("");

40 $in="esi";
41 $out="edi";
42 $count="ebp";

44 &push("ebp");
45 &push("ebx");
46 &push("esi");
47 &push("edi");

49 $data_off=4;
50 $data_off+=4 if ($p1 > 0);
51 $data_off+=4 if ($p2 > 0);
52 $data_off+=4 if ($p3 > 0);

54 &mov($count, &wparam(2)); # length

56 &comment("getting iv ptr from parameter $iv_off");
57 &mov("ebx", &wparam($iv_off)); # Get iv ptr

59 &mov($in, &DWP(0,"ebx","",0));# iv[0]
60 &mov($out, &DWP(4,"ebx","",0));# iv[1]

new/usr/src/lib/openssl/libsunw_crypto/pl/cbc.pl 2

62 &push($out);
63 &push($in);
64 &push($out); # used in decrypt for iv[1]
65 &push($in); # used in decrypt for iv[0]

67 &mov("ebx", "esp"); # This is the address of tin[2]

69 &mov($in, &wparam(0)); # in
70 &mov($out, &wparam(1)); # out

72 # We have loaded them all, how lets push things
73 &comment("getting encrypt flag from parameter $enc_off");
74 &mov("ecx", &wparam($enc_off)); # Get enc flag
75 if ($p3 > 0)
76 {
77 &comment("get and push parameter $p3");
78 if ($enc_off != $p3)
79 { &mov("eax", &wparam($p3)); &push("eax"); }
80 else { &push("ecx"); }
81 }
82 if ($p2 > 0)
83 {
84 &comment("get and push parameter $p2");
85 if ($enc_off != $p2)
86 { &mov("eax", &wparam($p2)); &push("eax"); }
87 else { &push("ecx"); }
88 }
89 if ($p1 > 0)
90 {
91 &comment("get and push parameter $p1");
92 if ($enc_off != $p1)
93 { &mov("eax", &wparam($p1)); &push("eax"); }
94 else { &push("ecx"); }
95 }
96 &push("ebx"); # push data/iv

98 &cmp("ecx",0);
99 &jz(&label("decrypt"));

101 &and($count,0xfffffff8);
102 &mov("eax", &DWP($data_off,"esp","",0)); # load iv[0]
103 &mov("ebx", &DWP($data_off+4,"esp","",0)); # load iv[1]

105 &jz(&label("encrypt_finish"));

107 ###

109 &set_label("encrypt_loop");
110 # encrypt start
111 # "eax" and "ebx" hold iv (or the last cipher text)

113 &mov("ecx", &DWP(0,$in,"",0)); # load first 4 bytes
114 &mov("edx", &DWP(4,$in,"",0)); # second 4 bytes

116 &xor("eax", "ecx");
117 &xor("ebx", "edx");

119 &bswap("eax") if $swap;
120 &bswap("ebx") if $swap;

122 &mov(&DWP($data_off,"esp","",0), "eax"); # put in array for call
123 &mov(&DWP($data_off+4,"esp","",0), "ebx"); #

125 &call($enc_func);

127 &mov("eax", &DWP($data_off,"esp","",0));

new/usr/src/lib/openssl/libsunw_crypto/pl/cbc.pl 3

128 &mov("ebx", &DWP($data_off+4,"esp","",0));

130 &bswap("eax") if $swap;
131 &bswap("ebx") if $swap;

133 &mov(&DWP(0,$out,"",0),"eax");
134 &mov(&DWP(4,$out,"",0),"ebx");

136 # eax and ebx are the next iv.

138 &add($in, 8);
139 &add($out, 8);

141 &sub($count, 8);
142 &jnz(&label("encrypt_loop"));

144 ###3
145 &set_label("encrypt_finish");
146 &mov($count, &wparam(2)); # length
147 &and($count, 7);
148 &jz(&label("finish"));
149 &call(&label("PIC_point"));
150 &set_label("PIC_point");
151 &blindpop("edx");
152 &lea("ecx",&DWP(&label("cbc_enc_jmp_table")."-".&label("PIC_point"),"edx
153 &mov($count,&DWP(0,"ecx",$count,4));
154 &add($count,"edx");
155 &xor("ecx","ecx");
156 &xor("edx","edx");
157 #&mov($count,&DWP(&label("cbc_enc_jmp_table"),"",$count,4));
158 &jmp_ptr($count);

160 &set_label("ej7");
161 &movb(&HB("edx"), &BP(6,$in,"",0));
162 &shl("edx",8);
163 &set_label("ej6");
164 &movb(&HB("edx"), &BP(5,$in,"",0));
165 &set_label("ej5");
166 &movb(&LB("edx"), &BP(4,$in,"",0));
167 &set_label("ej4");
168 &mov("ecx", &DWP(0,$in,"",0));
169 &jmp(&label("ejend"));
170 &set_label("ej3");
171 &movb(&HB("ecx"), &BP(2,$in,"",0));
172 &shl("ecx",8);
173 &set_label("ej2");
174 &movb(&HB("ecx"), &BP(1,$in,"",0));
175 &set_label("ej1");
176 &movb(&LB("ecx"), &BP(0,$in,"",0));
177 &set_label("ejend");

179 &xor("eax", "ecx");
180 &xor("ebx", "edx");

182 &bswap("eax") if $swap;
183 &bswap("ebx") if $swap;

185 &mov(&DWP($data_off,"esp","",0), "eax"); # put in array for call
186 &mov(&DWP($data_off+4,"esp","",0), "ebx"); #

188 &call($enc_func);

190 &mov("eax", &DWP($data_off,"esp","",0));
191 &mov("ebx", &DWP($data_off+4,"esp","",0));

193 &bswap("eax") if $swap;

new/usr/src/lib/openssl/libsunw_crypto/pl/cbc.pl 4

194 &bswap("ebx") if $swap;

196 &mov(&DWP(0,$out,"",0),"eax");
197 &mov(&DWP(4,$out,"",0),"ebx");

199 &jmp(&label("finish"));

201 ###
202 ###
203 &set_label("decrypt",1);
204 # decrypt start
205 &and($count,0xfffffff8);
206 # The next 2 instructions are only for if the jz is taken
207 &mov("eax", &DWP($data_off+8,"esp","",0)); # get iv[0]
208 &mov("ebx", &DWP($data_off+12,"esp","",0)); # get iv[1]
209 &jz(&label("decrypt_finish"));

211 &set_label("decrypt_loop");
212 &mov("eax", &DWP(0,$in,"",0)); # load first 4 bytes
213 &mov("ebx", &DWP(4,$in,"",0)); # second 4 bytes

215 &bswap("eax") if $swap;
216 &bswap("ebx") if $swap;

218 &mov(&DWP($data_off,"esp","",0), "eax"); # put back
219 &mov(&DWP($data_off+4,"esp","",0), "ebx"); #

221 &call($dec_func);

223 &mov("eax", &DWP($data_off,"esp","",0)); # get return
224 &mov("ebx", &DWP($data_off+4,"esp","",0)); #

226 &bswap("eax") if $swap;
227 &bswap("ebx") if $swap;

229 &mov("ecx", &DWP($data_off+8,"esp","",0)); # get iv[0]
230 &mov("edx", &DWP($data_off+12,"esp","",0)); # get iv[1]

232 &xor("ecx", "eax");
233 &xor("edx", "ebx");

235 &mov("eax", &DWP(0,$in,"",0)); # get old cipher text,
236 &mov("ebx", &DWP(4,$in,"",0)); # next iv actually

238 &mov(&DWP(0,$out,"",0),"ecx");
239 &mov(&DWP(4,$out,"",0),"edx");

241 &mov(&DWP($data_off+8,"esp","",0), "eax"); # save iv
242 &mov(&DWP($data_off+12,"esp","",0), "ebx"); #

244 &add($in, 8);
245 &add($out, 8);

247 &sub($count, 8);
248 &jnz(&label("decrypt_loop"));
249 ############################ ENDIT #######################3
250 &set_label("decrypt_finish");
251 &mov($count, &wparam(2)); # length
252 &and($count, 7);
253 &jz(&label("finish"));

255 &mov("eax", &DWP(0,$in,"",0)); # load first 4 bytes
256 &mov("ebx", &DWP(4,$in,"",0)); # second 4 bytes

258 &bswap("eax") if $swap;
259 &bswap("ebx") if $swap;

new/usr/src/lib/openssl/libsunw_crypto/pl/cbc.pl 5

261 &mov(&DWP($data_off,"esp","",0), "eax"); # put back
262 &mov(&DWP($data_off+4,"esp","",0), "ebx"); #

264 &call($dec_func);

266 &mov("eax", &DWP($data_off,"esp","",0)); # get return
267 &mov("ebx", &DWP($data_off+4,"esp","",0)); #

269 &bswap("eax") if $swap;
270 &bswap("ebx") if $swap;

272 &mov("ecx", &DWP($data_off+8,"esp","",0)); # get iv[0]
273 &mov("edx", &DWP($data_off+12,"esp","",0)); # get iv[1]

275 &xor("ecx", "eax");
276 &xor("edx", "ebx");

278 # this is for when we exit
279 &mov("eax", &DWP(0,$in,"",0)); # get old cipher text,
280 &mov("ebx", &DWP(4,$in,"",0)); # next iv actually

282 &set_label("dj7");
283 &rotr("edx", 16);
284 &movb(&BP(6,$out,"",0), &LB("edx"));
285 &shr("edx",16);
286 &set_label("dj6");
287 &movb(&BP(5,$out,"",0), &HB("edx"));
288 &set_label("dj5");
289 &movb(&BP(4,$out,"",0), &LB("edx"));
290 &set_label("dj4");
291 &mov(&DWP(0,$out,"",0), "ecx");
292 &jmp(&label("djend"));
293 &set_label("dj3");
294 &rotr("ecx", 16);
295 &movb(&BP(2,$out,"",0), &LB("ecx"));
296 &shl("ecx",16);
297 &set_label("dj2");
298 &movb(&BP(1,$in,"",0), &HB("ecx"));
299 &set_label("dj1");
300 &movb(&BP(0,$in,"",0), &LB("ecx"));
301 &set_label("djend");

303 # final iv is still in eax:ebx
304 &jmp(&label("finish"));

307 ############################ FINISH #######################3
308 &set_label("finish",1);
309 &mov("ecx", &wparam($iv_off)); # Get iv ptr

311 ###
312 $total=16+4;
313 $total+=4 if ($p1 > 0);
314 $total+=4 if ($p2 > 0);
315 $total+=4 if ($p3 > 0);
316 &add("esp",$total);

318 &mov(&DWP(0,"ecx","",0), "eax"); # save iv
319 &mov(&DWP(4,"ecx","",0), "ebx"); # save iv

321 &function_end_A($name);

323 &align(64);
324 &set_label("cbc_enc_jmp_table");
325 &data_word("0");

new/usr/src/lib/openssl/libsunw_crypto/pl/cbc.pl 6

326 &data_word(&label("ej1")."-".&label("PIC_point"));
327 &data_word(&label("ej2")."-".&label("PIC_point"));
328 &data_word(&label("ej3")."-".&label("PIC_point"));
329 &data_word(&label("ej4")."-".&label("PIC_point"));
330 &data_word(&label("ej5")."-".&label("PIC_point"));
331 &data_word(&label("ej6")."-".&label("PIC_point"));
332 &data_word(&label("ej7")."-".&label("PIC_point"));
333 # not used
334 #&set_label("cbc_dec_jmp_table",1);
335 #&data_word("0");
336 #&data_word(&label("dj1")."-".&label("PIC_point"));
337 #&data_word(&label("dj2")."-".&label("PIC_point"));
338 #&data_word(&label("dj3")."-".&label("PIC_point"));
339 #&data_word(&label("dj4")."-".&label("PIC_point"));
340 #&data_word(&label("dj5")."-".&label("PIC_point"));
341 #&data_word(&label("dj6")."-".&label("PIC_point"));
342 #&data_word(&label("dj7")."-".&label("PIC_point"));
343 &align(64);

345 &function_end_B($name);
346
347 }

349 1;

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 1

**
 33060 Fri May 30 18:32:03 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 # ==
4 # Copyright (c) 2008 Andy Polyakov <appro@openssl.org>
5 #
6 # This module may be used under the terms of either the GNU General
7 # Public License version 2 or later, the GNU Lesser General Public
8 # License version 2.1 or later, the Mozilla Public License version
9 # 1.1 or the BSD License. The exact terms of either license are
10 # distributed along with this module. For further details see
11 # http://www.openssl.org/~appro/camellia/.
12 # ==

14 # Performance in cycles per processed byte (less is better) in
15 # ’openssl speed ...’ benchmark:
16 #
17 # AMD K8 Core2 PIII P4
18 # -evp camellia-128-ecb 21.5 22.8 27.0 28.9
19 # + over gcc 3.4.6 +90/11% +70/10% +53/4% +160/64%
20 # + over icc 8.0 +48/19% +21/15% +21/17% +55/37%
21 #
22 # camellia-128-cbc 17.3 21.1 23.9 25.9
23 #
24 # 128-bit key setup 196 280 256 240 cycles/key
25 # + over gcc 3.4.6 +30/0% +17/11% +11/0% +63/40%
26 # + over icc 8.0 +18/3% +10/0% +10/3% +21/10%
27 #
28 # Pairs of numbers in "+" rows represent performance improvement over
29 # compiler generated position-independent code, PIC, and non-PIC
30 # respectively. PIC results are of greater relevance, as this module
31 # is position-independent, i.e. suitable for a shared library or PIE.
32 # Position independence "costs" one register, which is why compilers
33 # are so close with non-PIC results, they have an extra register to
34 # spare. CBC results are better than ECB ones thanks to "zero-copy"
35 # private _x86_* interface, and are ~30-40% better than with compiler
36 # generated cmll_cbc.o, and reach ~80-90% of x86_64 performance on
37 # same CPU (where applicable).

39 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
40 push(@INC,"${dir}","${dir}../../perlasm");
41 require "x86asm.pl";

43 $OPENSSL=1;

45 &asm_init($ARGV[0],"cmll-586.pl",$ARGV[$#ARGV] eq "386");

47 @T=("eax","ebx","ecx","edx");
48 $idx="esi";
49 $key="edi";
50 $Tbl="ebp";

52 # stack frame layout in _x86_Camellia_* routines, frame is allocated
53 # by caller
54 $__ra=&DWP(0,"esp"); # return address
55 $__s0=&DWP(4,"esp"); # s0 backing store
56 $__s1=&DWP(8,"esp"); # s1 backing store
57 $__s2=&DWP(12,"esp"); # s2 backing store
58 $__s3=&DWP(16,"esp"); # s3 backing store
59 $__end=&DWP(20,"esp"); # pointer to end/start of key schedule

61 # stack frame layout in Camellia_[en|crypt] routines, which differs from

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 2

62 # above by 4 and overlaps by pointer to end/start of key schedule
63 $_end=&DWP(16,"esp");
64 $_esp=&DWP(20,"esp");

66 # const unsigned int Camellia_SBOX[4][256];
67 # Well, sort of... Camellia_SBOX[0][] is interleaved with [1][],
68 # and [2][] - with [3][]. This is done to optimize code size.
69 $SBOX1_1110=0; # Camellia_SBOX[0]
70 $SBOX4_4404=4; # Camellia_SBOX[1]
71 $SBOX2_0222=2048; # Camellia_SBOX[2]
72 $SBOX3_3033=2052; # Camellia_SBOX[3]
73 &static_label("Camellia_SIGMA");
74 &static_label("Camellia_SBOX");

76 sub Camellia_Feistel {
77 my $i=@_[0];
78 my $seed=defined(@_[1])?@_[1]:0;
79 my $scale=$seed<0?-8:8;
80 my $frame=defined(@_[2])?@_[2]:0;
81 my $j=($i&1)*2;
82 my $t0=@T[($j)%4],$t1=@T[($j+1)%4],$t2=@T[($j+2)%4],$t3=@T[($j+3)%4];

84 &xor ($t0,$idx); # t0^=key[0]
85 &xor ($t1,&DWP($seed+$i*$scale+4,$key)); # t1^=key[1]
86 &movz ($idx,&HB($t0)); # (t0>>8)&0xff
87 &mov ($t3,&DWP($SBOX3_3033,$Tbl,$idx,8)); # t3=SBOX3_3033[0]
88 &movz ($idx,&LB($t0)); # (t0>>0)&0xff
89 &xor ($t3,&DWP($SBOX4_4404,$Tbl,$idx,8)); # t3^=SBOX4_4404[0]
90 &shr ($t0,16);
91 &movz ($idx,&LB($t1)); # (t1>>0)&0xff
92 &mov ($t2,&DWP($SBOX1_1110,$Tbl,$idx,8)); # t2=SBOX1_1110[1]
93 &movz ($idx,&HB($t0)); # (t0>>24)&0xff
94 &xor ($t3,&DWP($SBOX1_1110,$Tbl,$idx,8)); # t3^=SBOX1_1110[0]
95 &movz ($idx,&HB($t1)); # (t1>>8)&0xff
96 &xor ($t2,&DWP($SBOX4_4404,$Tbl,$idx,8)); # t2^=SBOX4_4404[1]
97 &shr ($t1,16);
98 &movz ($t0,&LB($t0)); # (t0>>16)&0xff
99 &xor ($t3,&DWP($SBOX2_0222,$Tbl,$t0,8)); # t3^=SBOX2_0222[0]
100 &movz ($idx,&HB($t1)); # (t1>>24)&0xff
101 &mov ($t0,&DWP($frame+4*(($j+3)%4),"esp")); # prefetch "s3"
102 &xor ($t2,$t3); # t2^=t3
103 &rotr ($t3,8); # t3=RightRotate(t3,8)
104 &xor ($t2,&DWP($SBOX2_0222,$Tbl,$idx,8)); # t2^=SBOX2_0222[1]
105 &movz ($idx,&LB($t1)); # (t1>>16)&0xff
106 &mov ($t1,&DWP($frame+4*(($j+2)%4),"esp")); # prefetch "s2"
107 &xor ($t3,$t0); # t3^=s3
108 &xor ($t2,&DWP($SBOX3_3033,$Tbl,$idx,8)); # t2^=SBOX3_3033[1]
109 &mov ($idx,&DWP($seed+($i+1)*$scale,$key)); # prefetch key[i+1]
110 &xor ($t3,$t2); # t3^=t2
111 &mov (&DWP($frame+4*(($j+3)%4),"esp"),$t3); # s3=t3
112 &xor ($t2,$t1); # t2^=s2
113 &mov (&DWP($frame+4*(($j+2)%4),"esp"),$t2); # s2=t2
114 }

116 # void Camellia_EncryptBlock_Rounds(
117 # int grandRounds,
118 # const Byte plaintext[],
119 # const KEY_TABLE_TYPE keyTable,
120 # Byte ciphertext[])
121 &function_begin("Camellia_EncryptBlock_Rounds");
122 &mov ("eax",&wparam(0)); # load grandRounds
123 &mov ($idx,&wparam(1)); # load plaintext pointer
124 &mov ($key,&wparam(2)); # load key schedule pointer

126 &mov ("ebx","esp");
127 &sub ("esp",7*4); # place for s[0-3],keyEnd,esp and ra

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 3

128 &and ("esp",-64);

130 # place stack frame just "above mod 1024" the key schedule
131 # this ensures that cache associativity of 2 suffices
132 &lea ("ecx",&DWP(-64-63,$key));
133 &sub ("ecx","esp");
134 &neg ("ecx");
135 &and ("ecx",0x3C0); # modulo 1024, but aligned to cache-line
136 &sub ("esp","ecx");
137 &add ("esp",4); # 4 is reserved for callee’s return address

139 &shl ("eax",6);
140 &lea ("eax",&DWP(0,$key,"eax"));
141 &mov ($_esp,"ebx"); # save %esp
142 &mov ($_end,"eax"); # save keyEnd

144 &call (&label("pic_point"));
145 &set_label("pic_point");
146 &blindpop($Tbl);
147 &lea ($Tbl,&DWP(&label("Camellia_SBOX")."-".&label("pic_point"),$Tbl)

149 &mov (@T[0],&DWP(0,$idx)); # load plaintext
150 &mov (@T[1],&DWP(4,$idx));
151 &mov (@T[2],&DWP(8,$idx));
152 &bswap (@T[0]);
153 &mov (@T[3],&DWP(12,$idx));
154 &bswap (@T[1]);
155 &bswap (@T[2]);
156 &bswap (@T[3]);

158 &call ("_x86_Camellia_encrypt");

160 &mov ("esp",$_esp);
161 &bswap (@T[0]);
162 &mov ($idx,&wparam(3)); # load ciphertext pointer
163 &bswap (@T[1]);
164 &bswap (@T[2]);
165 &bswap (@T[3]);
166 &mov (&DWP(0,$idx),@T[0]); # write ciphertext
167 &mov (&DWP(4,$idx),@T[1]);
168 &mov (&DWP(8,$idx),@T[2]);
169 &mov (&DWP(12,$idx),@T[3]);
170 &function_end("Camellia_EncryptBlock_Rounds");
171 # V1.x API
172 &function_begin_B("Camellia_EncryptBlock");
173 &mov ("eax",128);
174 &sub ("eax",&wparam(0)); # load keyBitLength
175 &mov ("eax",3);
176 &adc ("eax",0); # keyBitLength==128?3:4
177 &mov (&wparam(0),"eax");
178 &jmp (&label("Camellia_EncryptBlock_Rounds"));
179 &function_end_B("Camellia_EncryptBlock");

181 if ($OPENSSL) {
182 # void Camellia_encrypt(
183 # const unsigned char *in,
184 # unsigned char *out,
185 # const CAMELLIA_KEY *key)
186 &function_begin("Camellia_encrypt");
187 &mov ($idx,&wparam(0)); # load plaintext pointer
188 &mov ($key,&wparam(2)); # load key schedule pointer

190 &mov ("ebx","esp");
191 &sub ("esp",7*4); # place for s[0-3],keyEnd,esp and ra
192 &and ("esp",-64);
193 &mov ("eax",&DWP(272,$key)); # load grandRounds counter

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 4

195 # place stack frame just "above mod 1024" the key schedule
196 # this ensures that cache associativity of 2 suffices
197 &lea ("ecx",&DWP(-64-63,$key));
198 &sub ("ecx","esp");
199 &neg ("ecx");
200 &and ("ecx",0x3C0); # modulo 1024, but aligned to cache-line
201 &sub ("esp","ecx");
202 &add ("esp",4); # 4 is reserved for callee’s return address

204 &shl ("eax",6);
205 &lea ("eax",&DWP(0,$key,"eax"));
206 &mov ($_esp,"ebx"); # save %esp
207 &mov ($_end,"eax"); # save keyEnd

209 &call (&label("pic_point"));
210 &set_label("pic_point");
211 &blindpop($Tbl);
212 &lea ($Tbl,&DWP(&label("Camellia_SBOX")."-".&label("pic_point"),$Tbl)

214 &mov (@T[0],&DWP(0,$idx)); # load plaintext
215 &mov (@T[1],&DWP(4,$idx));
216 &mov (@T[2],&DWP(8,$idx));
217 &bswap (@T[0]);
218 &mov (@T[3],&DWP(12,$idx));
219 &bswap (@T[1]);
220 &bswap (@T[2]);
221 &bswap (@T[3]);

223 &call ("_x86_Camellia_encrypt");

225 &mov ("esp",$_esp);
226 &bswap (@T[0]);
227 &mov ($idx,&wparam(1)); # load ciphertext pointer
228 &bswap (@T[1]);
229 &bswap (@T[2]);
230 &bswap (@T[3]);
231 &mov (&DWP(0,$idx),@T[0]); # write ciphertext
232 &mov (&DWP(4,$idx),@T[1]);
233 &mov (&DWP(8,$idx),@T[2]);
234 &mov (&DWP(12,$idx),@T[3]);
235 &function_end("Camellia_encrypt");
236 }

238 &function_begin_B("_x86_Camellia_encrypt");
239 &xor (@T[0],&DWP(0,$key)); # ^=key[0-3]
240 &xor (@T[1],&DWP(4,$key));
241 &xor (@T[2],&DWP(8,$key));
242 &xor (@T[3],&DWP(12,$key));
243 &mov ($idx,&DWP(16,$key)); # prefetch key[4]

245 &mov ($__s0,@T[0]); # save s[0-3]
246 &mov ($__s1,@T[1]);
247 &mov ($__s2,@T[2]);
248 &mov ($__s3,@T[3]);

250 &set_label("loop",16);
251 for ($i=0;$i<6;$i++) { Camellia_Feistel($i,16,4); }

253 &add ($key,16*4);
254 &cmp ($key,$__end);
255 &je (&label("done"));

257 # @T[0-1] are preloaded, $idx is preloaded with key[0]
258 &and ($idx,@T[0]);
259 &mov (@T[3],$__s3);

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 5

260 &rotl ($idx,1);
261 &mov (@T[2],@T[3]);
262 &xor (@T[1],$idx);
263 &or (@T[2],&DWP(12,$key));
264 &mov ($__s1,@T[1]); # s1^=LeftRotate(s0&key[0],1);
265 &xor (@T[2],$__s2);

267 &mov ($idx,&DWP(4,$key));
268 &mov ($__s2,@T[2]); # s2^=s3|key[3];
269 &or ($idx,@T[1]);
270 &and (@T[2],&DWP(8,$key));
271 &xor (@T[0],$idx);
272 &rotl (@T[2],1);
273 &mov ($__s0,@T[0]); # s0^=s1|key[1];
274 &xor (@T[3],@T[2]);
275 &mov ($idx,&DWP(16,$key)); # prefetch key[4]
276 &mov ($__s3,@T[3]); # s3^=LeftRotate(s2&key[2],1);
277 &jmp (&label("loop"));

279 &set_label("done",8);
280 &mov (@T[2],@T[0]); # SwapHalf
281 &mov (@T[3],@T[1]);
282 &mov (@T[0],$__s2);
283 &mov (@T[1],$__s3);
284 &xor (@T[0],$idx); # $idx is preloaded with key[0]
285 &xor (@T[1],&DWP(4,$key));
286 &xor (@T[2],&DWP(8,$key));
287 &xor (@T[3],&DWP(12,$key));
288 &ret ();
289 &function_end_B("_x86_Camellia_encrypt");

291 # void Camellia_DecryptBlock_Rounds(
292 # int grandRounds,
293 # const Byte ciphertext[],
294 # const KEY_TABLE_TYPE keyTable,
295 # Byte plaintext[])
296 &function_begin("Camellia_DecryptBlock_Rounds");
297 &mov ("eax",&wparam(0)); # load grandRounds
298 &mov ($idx,&wparam(1)); # load ciphertext pointer
299 &mov ($key,&wparam(2)); # load key schedule pointer

301 &mov ("ebx","esp");
302 &sub ("esp",7*4); # place for s[0-3],keyEnd,esp and ra
303 &and ("esp",-64);

305 # place stack frame just "above mod 1024" the key schedule
306 # this ensures that cache associativity of 2 suffices
307 &lea ("ecx",&DWP(-64-63,$key));
308 &sub ("ecx","esp");
309 &neg ("ecx");
310 &and ("ecx",0x3C0); # modulo 1024, but aligned to cache-line
311 &sub ("esp","ecx");
312 &add ("esp",4); # 4 is reserved for callee’s return address

314 &shl ("eax",6);
315 &mov (&DWP(4*4,"esp"),$key); # save keyStart
316 &lea ($key,&DWP(0,$key,"eax"));
317 &mov (&DWP(5*4,"esp"),"ebx");# save %esp

319 &call (&label("pic_point"));
320 &set_label("pic_point");
321 &blindpop($Tbl);
322 &lea ($Tbl,&DWP(&label("Camellia_SBOX")."-".&label("pic_point"),$Tbl)

324 &mov (@T[0],&DWP(0,$idx)); # load ciphertext
325 &mov (@T[1],&DWP(4,$idx));

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 6

326 &mov (@T[2],&DWP(8,$idx));
327 &bswap (@T[0]);
328 &mov (@T[3],&DWP(12,$idx));
329 &bswap (@T[1]);
330 &bswap (@T[2]);
331 &bswap (@T[3]);

333 &call ("_x86_Camellia_decrypt");

335 &mov ("esp",&DWP(5*4,"esp"));
336 &bswap (@T[0]);
337 &mov ($idx,&wparam(3)); # load plaintext pointer
338 &bswap (@T[1]);
339 &bswap (@T[2]);
340 &bswap (@T[3]);
341 &mov (&DWP(0,$idx),@T[0]); # write plaintext
342 &mov (&DWP(4,$idx),@T[1]);
343 &mov (&DWP(8,$idx),@T[2]);
344 &mov (&DWP(12,$idx),@T[3]);
345 &function_end("Camellia_DecryptBlock_Rounds");
346 # V1.x API
347 &function_begin_B("Camellia_DecryptBlock");
348 &mov ("eax",128);
349 &sub ("eax",&wparam(0)); # load keyBitLength
350 &mov ("eax",3);
351 &adc ("eax",0); # keyBitLength==128?3:4
352 &mov (&wparam(0),"eax");
353 &jmp (&label("Camellia_DecryptBlock_Rounds"));
354 &function_end_B("Camellia_DecryptBlock");

356 if ($OPENSSL) {
357 # void Camellia_decrypt(
358 # const unsigned char *in,
359 # unsigned char *out,
360 # const CAMELLIA_KEY *key)
361 &function_begin("Camellia_decrypt");
362 &mov ($idx,&wparam(0)); # load ciphertext pointer
363 &mov ($key,&wparam(2)); # load key schedule pointer

365 &mov ("ebx","esp");
366 &sub ("esp",7*4); # place for s[0-3],keyEnd,esp and ra
367 &and ("esp",-64);
368 &mov ("eax",&DWP(272,$key)); # load grandRounds counter

370 # place stack frame just "above mod 1024" the key schedule
371 # this ensures that cache associativity of 2 suffices
372 &lea ("ecx",&DWP(-64-63,$key));
373 &sub ("ecx","esp");
374 &neg ("ecx");
375 &and ("ecx",0x3C0); # modulo 1024, but aligned to cache-line
376 &sub ("esp","ecx");
377 &add ("esp",4); # 4 is reserved for callee’s return address

379 &shl ("eax",6);
380 &mov (&DWP(4*4,"esp"),$key); # save keyStart
381 &lea ($key,&DWP(0,$key,"eax"));
382 &mov (&DWP(5*4,"esp"),"ebx");# save %esp

384 &call (&label("pic_point"));
385 &set_label("pic_point");
386 &blindpop($Tbl);
387 &lea ($Tbl,&DWP(&label("Camellia_SBOX")."-".&label("pic_point"),$Tbl)

389 &mov (@T[0],&DWP(0,$idx)); # load ciphertext
390 &mov (@T[1],&DWP(4,$idx));
391 &mov (@T[2],&DWP(8,$idx));

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 7

392 &bswap (@T[0]);
393 &mov (@T[3],&DWP(12,$idx));
394 &bswap (@T[1]);
395 &bswap (@T[2]);
396 &bswap (@T[3]);

398 &call ("_x86_Camellia_decrypt");

400 &mov ("esp",&DWP(5*4,"esp"));
401 &bswap (@T[0]);
402 &mov ($idx,&wparam(1)); # load plaintext pointer
403 &bswap (@T[1]);
404 &bswap (@T[2]);
405 &bswap (@T[3]);
406 &mov (&DWP(0,$idx),@T[0]); # write plaintext
407 &mov (&DWP(4,$idx),@T[1]);
408 &mov (&DWP(8,$idx),@T[2]);
409 &mov (&DWP(12,$idx),@T[3]);
410 &function_end("Camellia_decrypt");
411 }

413 &function_begin_B("_x86_Camellia_decrypt");
414 &xor (@T[0],&DWP(0,$key)); # ^=key[0-3]
415 &xor (@T[1],&DWP(4,$key));
416 &xor (@T[2],&DWP(8,$key));
417 &xor (@T[3],&DWP(12,$key));
418 &mov ($idx,&DWP(-8,$key)); # prefetch key[-2]

420 &mov ($__s0,@T[0]); # save s[0-3]
421 &mov ($__s1,@T[1]);
422 &mov ($__s2,@T[2]);
423 &mov ($__s3,@T[3]);

425 &set_label("loop",16);
426 for ($i=0;$i<6;$i++) { Camellia_Feistel($i,-8,4); }

428 &sub ($key,16*4);
429 &cmp ($key,$__end);
430 &je (&label("done"));

432 # @T[0-1] are preloaded, $idx is preloaded with key[2]
433 &and ($idx,@T[0]);
434 &mov (@T[3],$__s3);
435 &rotl ($idx,1);
436 &mov (@T[2],@T[3]);
437 &xor (@T[1],$idx);
438 &or (@T[2],&DWP(4,$key));
439 &mov ($__s1,@T[1]); # s1^=LeftRotate(s0&key[0],1);
440 &xor (@T[2],$__s2);

442 &mov ($idx,&DWP(12,$key));
443 &mov ($__s2,@T[2]); # s2^=s3|key[3];
444 &or ($idx,@T[1]);
445 &and (@T[2],&DWP(0,$key));
446 &xor (@T[0],$idx);
447 &rotl (@T[2],1);
448 &mov ($__s0,@T[0]); # s0^=s1|key[1];
449 &xor (@T[3],@T[2]);
450 &mov ($idx,&DWP(-8,$key)); # prefetch key[4]
451 &mov ($__s3,@T[3]); # s3^=LeftRotate(s2&key[2],1);
452 &jmp (&label("loop"));

454 &set_label("done",8);
455 &mov (@T[2],@T[0]); # SwapHalf
456 &mov (@T[3],@T[1]);
457 &mov (@T[0],$__s2);

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 8

458 &mov (@T[1],$__s3);
459 &xor (@T[2],$idx); # $idx is preloaded with key[2]
460 &xor (@T[3],&DWP(12,$key));
461 &xor (@T[0],&DWP(0,$key));
462 &xor (@T[1],&DWP(4,$key));
463 &ret ();
464 &function_end_B("_x86_Camellia_decrypt");

466 # shld is very slow on Intel P4 family. Even on AMD it limits
467 # instruction decode rate [because it’s VectorPath] and consequently
468 # performance. PIII, PM and Core[2] seem to be the only ones which
469 # execute this code ~7% faster...
470 sub __rotl128 {
471 my ($i0,$i1,$i2,$i3,$rot,$rnd,@T)=@_;

473 $rnd *= 2;
474 if ($rot) {
475 &mov ($idx,$i0);
476 &shld ($i0,$i1,$rot);
477 &shld ($i1,$i2,$rot);
478 &shld ($i2,$i3,$rot);
479 &shld ($i3,$idx,$rot);
480 }
481 &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i0 eq @T[0]);
482 &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i1 eq @T[0]);
483 &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i2 eq @T[0]);
484 &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i3 eq @T[0]);
485 }

487 # ... Implementing 128-bit rotate without shld gives >3x performance
488 # improvement on P4, only ~7% degradation on other Intel CPUs and
489 # not worse performance on AMD. This is therefore preferred.
490 sub _rotl128 {
491 my ($i0,$i1,$i2,$i3,$rot,$rnd,@T)=@_;

493 $rnd *= 2;
494 if ($rot) {
495 &mov ($Tbl,$i0);
496 &shl ($i0,$rot);
497 &mov ($idx,$i1);
498 &shr ($idx,32-$rot);
499 &shl ($i1,$rot);
500 &or ($i0,$idx);
501 &mov ($idx,$i2);
502 &shl ($i2,$rot);
503 &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i0 eq @T[0]);
504 &shr ($idx,32-$rot);
505 &or ($i1,$idx);
506 &shr ($Tbl,32-$rot);
507 &mov ($idx,$i3);
508 &shr ($idx,32-$rot);
509 &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i1 eq @T[0]);
510 &shl ($i3,$rot);
511 &or ($i2,$idx);
512 &or ($i3,$Tbl);
513 &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i2 eq @T[0]);
514 &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i3 eq @T[0]);
515 } else {
516 &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i0 eq @T[0]);
517 &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i1 eq @T[0]);
518 &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i2 eq @T[0]);
519 &mov (&DWP(-128+4*$rnd++,$key),shift(@T)) if ($i3 eq @T[0]);
520 }
521 }

523 sub _saveround {

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 9

524 my ($rnd,$key,@T)=@_;
525 my $bias=int(@T[0])?shift(@T):0;

527 &mov (&DWP($bias+$rnd*8+0,$key),@T[0]);
528 &mov (&DWP($bias+$rnd*8+4,$key),@T[1]) if ($#T>=1);
529 &mov (&DWP($bias+$rnd*8+8,$key),@T[2]) if ($#T>=2);
530 &mov (&DWP($bias+$rnd*8+12,$key),@T[3]) if ($#T>=3);
531 }

533 sub _loadround {
534 my ($rnd,$key,@T)=@_;
535 my $bias=int(@T[0])?shift(@T):0;

537 &mov (@T[0],&DWP($bias+$rnd*8+0,$key));
538 &mov (@T[1],&DWP($bias+$rnd*8+4,$key)) if ($#T>=1);
539 &mov (@T[2],&DWP($bias+$rnd*8+8,$key)) if ($#T>=2);
540 &mov (@T[3],&DWP($bias+$rnd*8+12,$key)) if ($#T>=3);
541 }

543 # void Camellia_Ekeygen(
544 # const int keyBitLength,
545 # const Byte *rawKey,
546 # KEY_TABLE_TYPE keyTable)
547 &function_begin("Camellia_Ekeygen");
548 { my $step=0;

550 &stack_push(4); # place for s[0-3]

552 &mov ($Tbl,&wparam(0)); # load arguments
553 &mov ($idx,&wparam(1));
554 &mov ($key,&wparam(2));

556 &mov (@T[0],&DWP(0,$idx)); # load 0-127 bits
557 &mov (@T[1],&DWP(4,$idx));
558 &mov (@T[2],&DWP(8,$idx));
559 &mov (@T[3],&DWP(12,$idx));

561 &bswap (@T[0]);
562 &bswap (@T[1]);
563 &bswap (@T[2]);
564 &bswap (@T[3]);

566 &_saveround (0,$key,@T); # KL<<<0

568 &cmp ($Tbl,128);
569 &je (&label("1st128"));

571 &mov (@T[0],&DWP(16,$idx)); # load 128-191 bits
572 &mov (@T[1],&DWP(20,$idx));
573 &cmp ($Tbl,192);
574 &je (&label("1st192"));
575 &mov (@T[2],&DWP(24,$idx)); # load 192-255 bits
576 &mov (@T[3],&DWP(28,$idx));
577 &jmp (&label("1st256"));
578 &set_label("1st192",4);
579 &mov (@T[2],@T[0]);
580 &mov (@T[3],@T[1]);
581 ¬ (@T[2]);
582 ¬ (@T[3]);
583 &set_label("1st256",4);
584 &bswap (@T[0]);
585 &bswap (@T[1]);
586 &bswap (@T[2]);
587 &bswap (@T[3]);

589 &_saveround (4,$key,@T); # temporary storage for KR!

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 10

591 &xor (@T[0],&DWP(0*8+0,$key)); # KR^KL
592 &xor (@T[1],&DWP(0*8+4,$key));
593 &xor (@T[2],&DWP(1*8+0,$key));
594 &xor (@T[3],&DWP(1*8+4,$key));

596 &set_label("1st128",4);
597 &call (&label("pic_point"));
598 &set_label("pic_point");
599 &blindpop($Tbl);
600 &lea ($Tbl,&DWP(&label("Camellia_SBOX")."-".&label("pic_point"),$Tbl)
601 &lea ($key,&DWP(&label("Camellia_SIGMA")."-".&label("Camellia_SBOX"),

603 &mov ($idx,&DWP($step*8,$key)); # prefetch SIGMA[0]
604 &mov (&swtmp(0),@T[0]); # save s[0-3]
605 &mov (&swtmp(1),@T[1]);
606 &mov (&swtmp(2),@T[2]);
607 &mov (&swtmp(3),@T[3]);
608 &Camellia_Feistel($step++);
609 &Camellia_Feistel($step++);
610 &mov (@T[2],&swtmp(2));
611 &mov (@T[3],&swtmp(3));

613 &mov ($idx,&wparam(2));
614 &xor (@T[0],&DWP(0*8+0,$idx)); # ^KL
615 &xor (@T[1],&DWP(0*8+4,$idx));
616 &xor (@T[2],&DWP(1*8+0,$idx));
617 &xor (@T[3],&DWP(1*8+4,$idx));

619 &mov ($idx,&DWP($step*8,$key)); # prefetch SIGMA[4]
620 &mov (&swtmp(0),@T[0]); # save s[0-3]
621 &mov (&swtmp(1),@T[1]);
622 &mov (&swtmp(2),@T[2]);
623 &mov (&swtmp(3),@T[3]);
624 &Camellia_Feistel($step++);
625 &Camellia_Feistel($step++);
626 &mov (@T[2],&swtmp(2));
627 &mov (@T[3],&swtmp(3));

629 &mov ($idx,&wparam(0));
630 &cmp ($idx,128);
631 &jne (&label("2nd256"));

633 &mov ($key,&wparam(2));
634 &lea ($key,&DWP(128,$key)); # size optimization

636 ####### process KA
637 &_saveround (2,$key,-128,@T); # KA<<<0
638 &_rotl128 (@T,15,6,@T); # KA<<<15
639 &_rotl128 (@T,15,8,@T); # KA<<<(15+15=30)
640 &_rotl128 (@T,15,12,@T[0],@T[1]); # KA<<<(30+15=45)
641 &_rotl128 (@T,15,14,@T); # KA<<<(45+15=60)
642 push (@T,shift(@T)); # rotl128(@T,32);
643 &_rotl128 (@T,2,20,@T); # KA<<<(60+32+2=94)
644 &_rotl128 (@T,17,24,@T); # KA<<<(94+17=111)

646 ####### process KL
647 &_loadround (0,$key,-128,@T); # load KL
648 &_rotl128 (@T,15,4,@T); # KL<<<15
649 &_rotl128 (@T,30,10,@T); # KL<<<(15+30=45)
650 &_rotl128 (@T,15,13,@T[2],@T[3]); # KL<<<(45+15=60)
651 &_rotl128 (@T,17,16,@T); # KL<<<(60+17=77)
652 &_rotl128 (@T,17,18,@T); # KL<<<(77+17=94)
653 &_rotl128 (@T,17,22,@T); # KL<<<(94+17=111)

655 while (@T[0] ne "eax") # restore order

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 11

656 { unshift (@T,pop(@T)); }

658 &mov ("eax",3); # 3 grandRounds
659 &jmp (&label("done"));

661 &set_label("2nd256",16);
662 &mov ($idx,&wparam(2));
663 &_saveround (6,$idx,@T); # temporary storage for KA!

665 &xor (@T[0],&DWP(4*8+0,$idx)); # KA^KR
666 &xor (@T[1],&DWP(4*8+4,$idx));
667 &xor (@T[2],&DWP(5*8+0,$idx));
668 &xor (@T[3],&DWP(5*8+4,$idx));

670 &mov ($idx,&DWP($step*8,$key)); # prefetch SIGMA[8]
671 &mov (&swtmp(0),@T[0]); # save s[0-3]
672 &mov (&swtmp(1),@T[1]);
673 &mov (&swtmp(2),@T[2]);
674 &mov (&swtmp(3),@T[3]);
675 &Camellia_Feistel($step++);
676 &Camellia_Feistel($step++);
677 &mov (@T[2],&swtmp(2));
678 &mov (@T[3],&swtmp(3));

680 &mov ($key,&wparam(2));
681 &lea ($key,&DWP(128,$key)); # size optimization

683 ####### process KB
684 &_saveround (2,$key,-128,@T); # KB<<<0
685 &_rotl128 (@T,30,10,@T); # KB<<<30
686 &_rotl128 (@T,30,20,@T); # KB<<<(30+30=60)
687 push (@T,shift(@T)); # rotl128(@T,32);
688 &_rotl128 (@T,19,32,@T); # KB<<<(60+32+19=111)

690 ####### process KR
691 &_loadround (4,$key,-128,@T); # load KR
692 &_rotl128 (@T,15,4,@T); # KR<<<15
693 &_rotl128 (@T,15,8,@T); # KR<<<(15+15=30)
694 &_rotl128 (@T,30,18,@T); # KR<<<(30+30=60)
695 push (@T,shift(@T)); # rotl128(@T,32);
696 &_rotl128 (@T,2,26,@T); # KR<<<(60+32+2=94)

698 ####### process KA
699 &_loadround (6,$key,-128,@T); # load KA
700 &_rotl128 (@T,15,6,@T); # KA<<<15
701 &_rotl128 (@T,30,14,@T); # KA<<<(15+30=45)
702 push (@T,shift(@T)); # rotl128(@T,32);
703 &_rotl128 (@T,0,24,@T); # KA<<<(45+32+0=77)
704 &_rotl128 (@T,17,28,@T); # KA<<<(77+17=94)

706 ####### process KL
707 &_loadround (0,$key,-128,@T); # load KL
708 push (@T,shift(@T)); # rotl128(@T,32);
709 &_rotl128 (@T,13,12,@T); # KL<<<(32+13=45)
710 &_rotl128 (@T,15,16,@T); # KL<<<(45+15=60)
711 &_rotl128 (@T,17,22,@T); # KL<<<(60+17=77)
712 push (@T,shift(@T)); # rotl128(@T,32);
713 &_rotl128 (@T,2,30,@T); # KL<<<(77+32+2=111)

715 while (@T[0] ne "eax") # restore order
716 { unshift (@T,pop(@T)); }

718 &mov ("eax",4); # 4 grandRounds
719 &set_label("done");
720 &lea ("edx",&DWP(272-128,$key)); # end of key schedule
721 &stack_pop(4);

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 12

722 }
723 &function_end("Camellia_Ekeygen");

725 if ($OPENSSL) {
726 # int private_Camellia_set_key (
727 # const unsigned char *userKey,
728 # int bits,
729 # CAMELLIA_KEY *key)
730 &function_begin_B("private_Camellia_set_key");
731 &push ("ebx");
732 &mov ("ecx",&wparam(0)); # pull arguments
733 &mov ("ebx",&wparam(1));
734 &mov ("edx",&wparam(2));

736 &mov ("eax",-1);
737 &test ("ecx","ecx");
738 &jz (&label("done")); # userKey==NULL?
739 &test ("edx","edx");
740 &jz (&label("done")); # key==NULL?

742 &mov ("eax",-2);
743 &cmp ("ebx",256);
744 &je (&label("arg_ok")); # bits==256?
745 &cmp ("ebx",192);
746 &je (&label("arg_ok")); # bits==192?
747 &cmp ("ebx",128);
748 &jne (&label("done")); # bits!=128?
749 &set_label("arg_ok",4);

751 &push ("edx"); # push arguments
752 &push ("ecx");
753 &push ("ebx");
754 &call ("Camellia_Ekeygen");
755 &stack_pop(3);

757 # eax holds grandRounds and edx points at where to put it
758 &mov (&DWP(0,"edx"),"eax");
759 &xor ("eax","eax");
760 &set_label("done",4);
761 &pop ("ebx");
762 &ret ();
763 &function_end_B("private_Camellia_set_key");
764 }

766 @SBOX=(
767 112,130, 44,236,179, 39,192,229,228,133, 87, 53,234, 12,174, 65,
768 35,239,107,147, 69, 25,165, 33,237, 14, 79, 78, 29,101,146,189,
769 134,184,175,143,124,235, 31,206, 62, 48,220, 95, 94,197, 11, 26,
770 166,225, 57,202,213, 71, 93, 61,217, 1, 90,214, 81, 86,108, 77,
771 139, 13,154,102,251,204,176, 45,116, 18, 43, 32,240,177,132,153,
772 223, 76,203,194, 52,126,118, 5,109,183,169, 49,209, 23, 4,215,
773 20, 88, 58, 97,222, 27, 17, 28, 50, 15,156, 22, 83, 24,242, 34,
774 254, 68,207,178,195,181,122,145, 36, 8,232,168, 96,252,105, 80,
775 170,208,160,125,161,137, 98,151, 84, 91, 30,149,224,255,100,210,
776 16,196, 0, 72,163,247,117,219,138, 3,230,218, 9, 63,221,148,
777 135, 92,131, 2,205, 74,144, 51,115,103,246,243,157,127,191,226,
778 82,155,216, 38,200, 55,198, 59,129,150,111, 75, 19,190, 99, 46,
779 233,121,167,140,159,110,188,142, 41,245,249,182, 47,253,180, 89,
780 120,152, 6,106,231, 70,113,186,212, 37,171, 66,136,162,141,250,
781 114, 7,185, 85,248,238,172, 10, 54, 73, 42,104, 60, 56,241,164,
782 64, 40,211,123,187,201, 67,193, 21,227,173,244,119,199,128,158);

784 sub S1110 { my $i=shift; $i=@SBOX[$i]; return $i<<24|$i<<16|$i<<8; }
785 sub S4404 { my $i=shift; $i=($i<<1|$i>>7)&0xff; $i=@SBOX[$i]; return $i<<24|$i<<
786 sub S0222 { my $i=shift; $i=@SBOX[$i]; $i=($i<<1|$i>>7)&0xff; return $i<<16|$i<<
787 sub S3033 { my $i=shift; $i=@SBOX[$i]; $i=($i>>1|$i<<7)&0xff; return $i<<24|$i<<

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 13

789 &set_label("Camellia_SIGMA",64);
790 &data_word(
791 0xa09e667f, 0x3bcc908b, 0xb67ae858, 0x4caa73b2,
792 0xc6ef372f, 0xe94f82be, 0x54ff53a5, 0xf1d36f1c,
793 0x10e527fa, 0xde682d1d, 0xb05688c2, 0xb3e6c1fd,
794 0, 0, 0, 0);
795 &set_label("Camellia_SBOX",64);
796 # tables are interleaved, remember?
797 for ($i=0;$i<256;$i++) { &data_word(&S1110($i),&S4404($i)); }
798 for ($i=0;$i<256;$i++) { &data_word(&S0222($i),&S3033($i)); }

800 # void Camellia_cbc_encrypt (const void char *inp, unsigned char *out,
801 # size_t length, const CAMELLIA_KEY *key,
802 # unsigned char *ivp,const int enc);
803 {
804 # stack frame layout
805 # -4(%esp) # return address 0(%esp)
806 # 0(%esp) # s0 4(%esp)
807 # 4(%esp) # s1 8(%esp)
808 # 8(%esp) # s2 12(%esp)
809 # 12(%esp) # s3 16(%esp)
810 # 16(%esp) # end of key schedule 20(%esp)
811 # 20(%esp) # %esp backup
812 my $_inp=&DWP(24,"esp"); #copy of wparam(0)
813 my $_out=&DWP(28,"esp"); #copy of wparam(1)
814 my $_len=&DWP(32,"esp"); #copy of wparam(2)
815 my $_key=&DWP(36,"esp"); #copy of wparam(3)
816 my $_ivp=&DWP(40,"esp"); #copy of wparam(4)
817 my $ivec=&DWP(44,"esp"); #ivec[16]
818 my $_tmp=&DWP(44,"esp"); #volatile variable [yes, aliases with ivec]
819 my ($s0,$s1,$s2,$s3) = @T;

821 &function_begin("Camellia_cbc_encrypt");
822 &mov ($s2 eq "ecx"? $s2 : "",&wparam(2)); # load len
823 &cmp ($s2,0);
824 &je (&label("enc_out"));

826 &pushf ();
827 &cld ();

829 &mov ($s0,&wparam(0)); # load inp
830 &mov ($s1,&wparam(1)); # load out
831 #&mov ($s2,&wparam(2)); # load len
832 &mov ($s3,&wparam(3)); # load key
833 &mov ($Tbl,&wparam(4)); # load ivp

835 # allocate aligned stack frame...
836 &lea ($idx,&DWP(-64,"esp"));
837 &and ($idx,-64);

839 # place stack frame just "above mod 1024" the key schedule
840 # this ensures that cache associativity of 2 suffices
841 &lea ($key,&DWP(-64-63,$s3));
842 &sub ($key,$idx);
843 &neg ($key);
844 &and ($key,0x3C0); # modulo 1024, but aligned to cache-line
845 &sub ($idx,$key);

847 &mov ($key,&wparam(5)); # load enc

849 &exch ("esp",$idx);
850 &add ("esp",4); # reserve for return address!
851 &mov ($_esp,$idx); # save %esp

853 &mov ($_inp,$s0); # save copy of inp

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 14

854 &mov ($_out,$s1); # save copy of out
855 &mov ($_len,$s2); # save copy of len
856 &mov ($_key,$s3); # save copy of key
857 &mov ($_ivp,$Tbl); # save copy of ivp

859 &call (&label("pic_point")); # make it PIC!
860 &set_label("pic_point");
861 &blindpop($Tbl);
862 &lea ($Tbl,&DWP(&label("Camellia_SBOX")."-".&label("pic_point"),$Tbl)

864 &mov ($idx,32);
865 &set_label("prefetch_sbox",4);
866 &mov ($s0,&DWP(0,$Tbl));
867 &mov ($s1,&DWP(32,$Tbl));
868 &mov ($s2,&DWP(64,$Tbl));
869 &mov ($s3,&DWP(96,$Tbl));
870 &lea ($Tbl,&DWP(128,$Tbl));
871 &dec ($idx);
872 &jnz (&label("prefetch_sbox"));
873 &mov ($s0,$_key);
874 &sub ($Tbl,4096);
875 &mov ($idx,$_inp);
876 &mov ($s3,&DWP(272,$s0)); # load grandRounds

878 &cmp ($key,0);
879 &je (&label("DECRYPT"));

881 &mov ($s2,$_len);
882 &mov ($key,$_ivp);
883 &shl ($s3,6);
884 &lea ($s3,&DWP(0,$s0,$s3));
885 &mov ($_end,$s3);

887 &test ($s2,0xFFFFFFF0);
888 &jz (&label("enc_tail")); # short input...

890 &mov ($s0,&DWP(0,$key)); # load iv
891 &mov ($s1,&DWP(4,$key));

893 &set_label("enc_loop",4);
894 &mov ($s2,&DWP(8,$key));
895 &mov ($s3,&DWP(12,$key));

897 &xor ($s0,&DWP(0,$idx)); # xor input data
898 &xor ($s1,&DWP(4,$idx));
899 &xor ($s2,&DWP(8,$idx));
900 &bswap ($s0);
901 &xor ($s3,&DWP(12,$idx));
902 &bswap ($s1);
903 &mov ($key,$_key); # load key
904 &bswap ($s2);
905 &bswap ($s3);

907 &call ("_x86_Camellia_encrypt");

909 &mov ($idx,$_inp); # load inp
910 &mov ($key,$_out); # load out

912 &bswap ($s0);
913 &bswap ($s1);
914 &bswap ($s2);
915 &mov (&DWP(0,$key),$s0); # save output data
916 &bswap ($s3);
917 &mov (&DWP(4,$key),$s1);
918 &mov (&DWP(8,$key),$s2);
919 &mov (&DWP(12,$key),$s3);

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 15

921 &mov ($s2,$_len); # load len

923 &lea ($idx,&DWP(16,$idx));
924 &mov ($_inp,$idx); # save inp

926 &lea ($s3,&DWP(16,$key));
927 &mov ($_out,$s3); # save out

929 &sub ($s2,16);
930 &test ($s2,0xFFFFFFF0);
931 &mov ($_len,$s2); # save len
932 &jnz (&label("enc_loop"));
933 &test ($s2,15);
934 &jnz (&label("enc_tail"));
935 &mov ($idx,$_ivp); # load ivp
936 &mov ($s2,&DWP(8,$key)); # restore last dwords
937 &mov ($s3,&DWP(12,$key));
938 &mov (&DWP(0,$idx),$s0); # save ivec
939 &mov (&DWP(4,$idx),$s1);
940 &mov (&DWP(8,$idx),$s2);
941 &mov (&DWP(12,$idx),$s3);

943 &mov ("esp",$_esp);
944 &popf ();
945 &set_label("enc_out");
946 &function_end_A();
947 &pushf (); # kludge, never executed

949 &set_label("enc_tail",4);
950 &mov ($s0,$key eq "edi" ? $key : "");
951 &mov ($key,$_out); # load out
952 &push ($s0); # push ivp
953 &mov ($s1,16);
954 &sub ($s1,$s2);
955 &cmp ($key,$idx); # compare with inp
956 &je (&label("enc_in_place"));
957 &align (4);
958 &data_word(0xA4F3F689); # rep movsb # copy input
959 &jmp (&label("enc_skip_in_place"));
960 &set_label("enc_in_place");
961 &lea ($key,&DWP(0,$key,$s2));
962 &set_label("enc_skip_in_place");
963 &mov ($s2,$s1);
964 &xor ($s0,$s0);
965 &align (4);
966 &data_word(0xAAF3F689); # rep stosb # zero tail
967 &pop ($key); # pop ivp

969 &mov ($idx,$_out); # output as input
970 &mov ($s0,&DWP(0,$key));
971 &mov ($s1,&DWP(4,$key));
972 &mov ($_len,16); # len=16
973 &jmp (&label("enc_loop")); # one more spin...

975 #----------------------------- DECRYPT -----------------------------#
976 &set_label("DECRYPT",16);
977 &shl ($s3,6);
978 &lea ($s3,&DWP(0,$s0,$s3));
979 &mov ($_end,$s0);
980 &mov ($_key,$s3);

982 &cmp ($idx,$_out);
983 &je (&label("dec_in_place")); # in-place processing...

985 &mov ($key,$_ivp); # load ivp

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 16

986 &mov ($_tmp,$key);

988 &set_label("dec_loop",4);
989 &mov ($s0,&DWP(0,$idx)); # read input
990 &mov ($s1,&DWP(4,$idx));
991 &mov ($s2,&DWP(8,$idx));
992 &bswap ($s0);
993 &mov ($s3,&DWP(12,$idx));
994 &bswap ($s1);
995 &mov ($key,$_key); # load key
996 &bswap ($s2);
997 &bswap ($s3);

999 &call ("_x86_Camellia_decrypt");

1001 &mov ($key,$_tmp); # load ivp
1002 &mov ($idx,$_len); # load len

1004 &bswap ($s0);
1005 &bswap ($s1);
1006 &bswap ($s2);
1007 &xor ($s0,&DWP(0,$key)); # xor iv
1008 &bswap ($s3);
1009 &xor ($s1,&DWP(4,$key));
1010 &xor ($s2,&DWP(8,$key));
1011 &xor ($s3,&DWP(12,$key));

1013 &sub ($idx,16);
1014 &jc (&label("dec_partial"));
1015 &mov ($_len,$idx); # save len
1016 &mov ($idx,$_inp); # load inp
1017 &mov ($key,$_out); # load out

1019 &mov (&DWP(0,$key),$s0); # write output
1020 &mov (&DWP(4,$key),$s1);
1021 &mov (&DWP(8,$key),$s2);
1022 &mov (&DWP(12,$key),$s3);

1024 &mov ($_tmp,$idx); # save ivp
1025 &lea ($idx,&DWP(16,$idx));
1026 &mov ($_inp,$idx); # save inp

1028 &lea ($key,&DWP(16,$key));
1029 &mov ($_out,$key); # save out

1031 &jnz (&label("dec_loop"));
1032 &mov ($key,$_tmp); # load temp ivp
1033 &set_label("dec_end");
1034 &mov ($idx,$_ivp); # load user ivp
1035 &mov ($s0,&DWP(0,$key)); # load iv
1036 &mov ($s1,&DWP(4,$key));
1037 &mov ($s2,&DWP(8,$key));
1038 &mov ($s3,&DWP(12,$key));
1039 &mov (&DWP(0,$idx),$s0); # copy back to user
1040 &mov (&DWP(4,$idx),$s1);
1041 &mov (&DWP(8,$idx),$s2);
1042 &mov (&DWP(12,$idx),$s3);
1043 &jmp (&label("dec_out"));

1045 &set_label("dec_partial",4);
1046 &lea ($key,$ivec);
1047 &mov (&DWP(0,$key),$s0); # dump output to stack
1048 &mov (&DWP(4,$key),$s1);
1049 &mov (&DWP(8,$key),$s2);
1050 &mov (&DWP(12,$key),$s3);
1051 &lea ($s2 eq "ecx" ? $s2 : "",&DWP(16,$idx));

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 17

1052 &mov ($idx eq "esi" ? $idx : "",$key);
1053 &mov ($key eq "edi" ? $key : "",$_out); # load out
1054 &data_word(0xA4F3F689); # rep movsb # copy output
1055 &mov ($key,$_inp); # use inp as temp ivp
1056 &jmp (&label("dec_end"));

1058 &set_label("dec_in_place",4);
1059 &set_label("dec_in_place_loop");
1060 &lea ($key,$ivec);
1061 &mov ($s0,&DWP(0,$idx)); # read input
1062 &mov ($s1,&DWP(4,$idx));
1063 &mov ($s2,&DWP(8,$idx));
1064 &mov ($s3,&DWP(12,$idx));

1066 &mov (&DWP(0,$key),$s0); # copy to temp
1067 &mov (&DWP(4,$key),$s1);
1068 &mov (&DWP(8,$key),$s2);
1069 &bswap ($s0);
1070 &mov (&DWP(12,$key),$s3);
1071 &bswap ($s1);
1072 &mov ($key,$_key); # load key
1073 &bswap ($s2);
1074 &bswap ($s3);

1076 &call ("_x86_Camellia_decrypt");

1078 &mov ($key,$_ivp); # load ivp
1079 &mov ($idx,$_out); # load out

1081 &bswap ($s0);
1082 &bswap ($s1);
1083 &bswap ($s2);
1084 &xor ($s0,&DWP(0,$key)); # xor iv
1085 &bswap ($s3);
1086 &xor ($s1,&DWP(4,$key));
1087 &xor ($s2,&DWP(8,$key));
1088 &xor ($s3,&DWP(12,$key));

1090 &mov (&DWP(0,$idx),$s0); # write output
1091 &mov (&DWP(4,$idx),$s1);
1092 &mov (&DWP(8,$idx),$s2);
1093 &mov (&DWP(12,$idx),$s3);

1095 &lea ($idx,&DWP(16,$idx));
1096 &mov ($_out,$idx); # save out

1098 &lea ($idx,$ivec);
1099 &mov ($s0,&DWP(0,$idx)); # read temp
1100 &mov ($s1,&DWP(4,$idx));
1101 &mov ($s2,&DWP(8,$idx));
1102 &mov ($s3,&DWP(12,$idx));

1104 &mov (&DWP(0,$key),$s0); # copy iv
1105 &mov (&DWP(4,$key),$s1);
1106 &mov (&DWP(8,$key),$s2);
1107 &mov (&DWP(12,$key),$s3);

1109 &mov ($idx,$_inp); # load inp

1111 &lea ($idx,&DWP(16,$idx));
1112 &mov ($_inp,$idx); # save inp

1114 &mov ($s2,$_len); # load len
1115 &sub ($s2,16);
1116 &jc (&label("dec_in_place_partial"));
1117 &mov ($_len,$s2); # save len

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86.pl 18

1118 &jnz (&label("dec_in_place_loop"));
1119 &jmp (&label("dec_out"));

1121 &set_label("dec_in_place_partial",4);
1122 # one can argue if this is actually required...
1123 &mov ($key eq "edi" ? $key : "",$_out);
1124 &lea ($idx eq "esi" ? $idx : "",$ivec);
1125 &lea ($key,&DWP(0,$key,$s2));
1126 &lea ($idx,&DWP(16,$idx,$s2));
1127 &neg ($s2 eq "ecx" ? $s2 : "");
1128 &data_word(0xA4F3F689); # rep movsb # restore tail

1130 &set_label("dec_out",4);
1131 &mov ("esp",$_esp);
1132 &popf ();
1133 &function_end("Camellia_cbc_encrypt");
1134 }

1136 &asciz("Camellia for x86 by <appro\@openssl.org>");

1138 &asm_finish();

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 1

**
 25677 Fri May 30 18:32:03 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 # ==
4 # Copyright (c) 2008 Andy Polyakov <appro@openssl.org>
5 #
6 # This module may be used under the terms of either the GNU General
7 # Public License version 2 or later, the GNU Lesser General Public
8 # License version 2.1 or later, the Mozilla Public License version
9 # 1.1 or the BSD License. The exact terms of either license are
10 # distributed along with this module. For further details see
11 # http://www.openssl.org/~appro/camellia/.
12 # ==

14 # Performance in cycles per processed byte (less is better) in
15 # ’openssl speed ...’ benchmark:
16 #
17 # AMD64 Core2 EM64T
18 # -evp camellia-128-ecb 16.7 21.0 22.7
19 # + over gcc 3.4.6 +25% +5% 0%
20 #
21 # camellia-128-cbc 15.7 20.4 21.1
22 #
23 # 128-bit key setup 128 216 205 cycles/key
24 # + over gcc 3.4.6 +54% +39% +15%
25 #
26 # Numbers in "+" rows represent performance improvement over compiler
27 # generated code. Key setup timings are impressive on AMD and Core2
28 # thanks to 64-bit operations being covertly deployed. Improvement on
29 # EM64T, pre-Core2 Intel x86_64 CPU, is not as impressive, because it
30 # apparently emulates some of 64-bit operations in [32-bit] microcode.

32 $flavour = shift;
33 $output = shift;
34 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

36 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

38 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
39 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
40 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
41 die "can’t locate x86_64-xlate.pl";

43 open OUT,"| \"$^X\" $xlate $flavour $output";
44 *STDOUT=*OUT;

46 sub hi() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1h/; $r; }
47 sub lo() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/;
48 $r =~ s/%[er]([sd]i)/%\1l/;
49 $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; }

51 $t0="%eax";$t1="%ebx";$t2="%ecx";$t3="%edx";
52 @S=("%r8d","%r9d","%r10d","%r11d");
53 $i0="%esi";
54 $i1="%edi";
55 $Tbl="%rbp"; # size optimization
56 $inp="%r12";
57 $out="%r13";
58 $key="%r14";
59 $keyend="%r15";
60 $arg0d=$win64?"%ecx":"%edi";

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 2

62 # const unsigned int Camellia_SBOX[4][256];
63 # Well, sort of... Camellia_SBOX[0][] is interleaved with [1][],
64 # and [2][] - with [3][]. This is done to minimize code size.
65 $SBOX1_1110=0; # Camellia_SBOX[0]
66 $SBOX4_4404=4; # Camellia_SBOX[1]
67 $SBOX2_0222=2048; # Camellia_SBOX[2]
68 $SBOX3_3033=2052; # Camellia_SBOX[3]

70 sub Camellia_Feistel {
71 my $i=@_[0];
72 my $seed=defined(@_[1])?@_[1]:0;
73 my $scale=$seed<0?-8:8;
74 my $j=($i&1)*2;
75 my $s0=@S[($j)%4],$s1=@S[($j+1)%4],$s2=@S[($j+2)%4],$s3=@S[($j+3)%4];

77 $code.=<<___;
78 xor $s0,$t0 # t0^=key[0]
79 xor $s1,$t1 # t1^=key[1]
80 movz ‘&hi("$t0")‘,$i0 # (t0>>8)&0xff
81 movz ‘&lo("$t1")‘,$i1 # (t1>>0)&0xff
82 mov $SBOX3_3033($Tbl,$i0,8),$t3 # t3=SBOX3_3033[0]
83 mov $SBOX1_1110($Tbl,$i1,8),$t2 # t2=SBOX1_1110[1]
84 movz ‘&lo("$t0")‘,$i0 # (t0>>0)&0xff
85 shr \$16,$t0
86 movz ‘&hi("$t1")‘,$i1 # (t1>>8)&0xff
87 xor $SBOX4_4404($Tbl,$i0,8),$t3 # t3^=SBOX4_4404[0]
88 shr \$16,$t1
89 xor $SBOX4_4404($Tbl,$i1,8),$t2 # t2^=SBOX4_4404[1]
90 movz ‘&hi("$t0")‘,$i0 # (t0>>24)&0xff
91 movz ‘&lo("$t1")‘,$i1 # (t1>>16)&0xff
92 xor $SBOX1_1110($Tbl,$i0,8),$t3 # t3^=SBOX1_1110[0]
93 xor $SBOX3_3033($Tbl,$i1,8),$t2 # t2^=SBOX3_3033[1]
94 movz ‘&lo("$t0")‘,$i0 # (t0>>16)&0xff
95 movz ‘&hi("$t1")‘,$i1 # (t1>>24)&0xff
96 xor $SBOX2_0222($Tbl,$i0,8),$t3 # t3^=SBOX2_0222[0]
97 xor $SBOX2_0222($Tbl,$i1,8),$t2 # t2^=SBOX2_0222[1]
98 mov ‘$seed+($i+1)*$scale‘($key),$t1 # prefetch key[i+1]
99 mov ‘$seed+($i+1)*$scale+4‘($key),$t0
100 xor $t3,$t2 # t2^=t3
101 ror \$8,$t3 # t3=RightRotate(t3,8)
102 xor $t2,$s2
103 xor $t2,$s3
104 xor $t3,$s3
105 ___
106 }

108 # void Camellia_EncryptBlock_Rounds(
109 # int grandRounds,
110 # const Byte plaintext[],
111 # const KEY_TABLE_TYPE keyTable,
112 # Byte ciphertext[])
113 $code=<<___;
114 .text

116 # V1.x API
117 .globl Camellia_EncryptBlock
118 .type Camellia_EncryptBlock,\@abi-omnipotent
119 .align 16
120 Camellia_EncryptBlock:
121 movl \$128,%eax
122 subl $arg0d,%eax
123 movl \$3,$arg0d
124 adcl \$0,$arg0d # keyBitLength==128?3:4
125 jmp .Lenc_rounds
126 .size Camellia_EncryptBlock,.-Camellia_EncryptBlock
127 # V2

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 3

128 .globl Camellia_EncryptBlock_Rounds
129 .type Camellia_EncryptBlock_Rounds,\@function,4
130 .align 16
131 .Lenc_rounds:
132 Camellia_EncryptBlock_Rounds:
133 push %rbx
134 push %rbp
135 push %r13
136 push %r14
137 push %r15
138 .Lenc_prologue:

140 #mov %rsi,$inp # put away arguments
141 mov %rcx,$out
142 mov %rdx,$key

144 shl \$6,%edi # process grandRounds
145 lea .LCamellia_SBOX(%rip),$Tbl
146 lea ($key,%rdi),$keyend

148 mov 0(%rsi),@S[0] # load plaintext
149 mov 4(%rsi),@S[1]
150 mov 8(%rsi),@S[2]
151 bswap @S[0]
152 mov 12(%rsi),@S[3]
153 bswap @S[1]
154 bswap @S[2]
155 bswap @S[3]

157 call _x86_64_Camellia_encrypt

159 bswap @S[0]
160 bswap @S[1]
161 bswap @S[2]
162 mov @S[0],0($out)
163 bswap @S[3]
164 mov @S[1],4($out)
165 mov @S[2],8($out)
166 mov @S[3],12($out)

168 mov 0(%rsp),%r15
169 mov 8(%rsp),%r14
170 mov 16(%rsp),%r13
171 mov 24(%rsp),%rbp
172 mov 32(%rsp),%rbx
173 lea 40(%rsp),%rsp
174 .Lenc_epilogue:
175 ret
176 .size Camellia_EncryptBlock_Rounds,.-Camellia_EncryptBlock_Rounds

178 .type _x86_64_Camellia_encrypt,\@abi-omnipotent
179 .align 16
180 _x86_64_Camellia_encrypt:
181 xor 0($key),@S[1]
182 xor 4($key),@S[0] # ^=key[0-3]
183 xor 8($key),@S[3]
184 xor 12($key),@S[2]
185 .align 16
186 .Leloop:
187 mov 16($key),$t1 # prefetch key[4-5]
188 mov 20($key),$t0

190 ___
191 for ($i=0;$i<6;$i++) { Camellia_Feistel($i,16); }
192 $code.=<<___;
193 lea 16*4($key),$key

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 4

194 cmp $keyend,$key
195 mov 8($key),$t3 # prefetch key[2-3]
196 mov 12($key),$t2
197 je .Ledone

199 and @S[0],$t0
200 or @S[3],$t3
201 rol \$1,$t0
202 xor $t3,@S[2] # s2^=s3|key[3];
203 xor $t0,@S[1] # s1^=LeftRotate(s0&key[0],1);
204 and @S[2],$t2
205 or @S[1],$t1
206 rol \$1,$t2
207 xor $t1,@S[0] # s0^=s1|key[1];
208 xor $t2,@S[3] # s3^=LeftRotate(s2&key[2],1);
209 jmp .Leloop

211 .align 16
212 .Ledone:
213 xor @S[2],$t0 # SwapHalf
214 xor @S[3],$t1
215 xor @S[0],$t2
216 xor @S[1],$t3

218 mov $t0,@S[0]
219 mov $t1,@S[1]
220 mov $t2,@S[2]
221 mov $t3,@S[3]

223 .byte 0xf3,0xc3 # rep ret
224 .size _x86_64_Camellia_encrypt,.-_x86_64_Camellia_encrypt

226 # V1.x API
227 .globl Camellia_DecryptBlock
228 .type Camellia_DecryptBlock,\@abi-omnipotent
229 .align 16
230 Camellia_DecryptBlock:
231 movl \$128,%eax
232 subl $arg0d,%eax
233 movl \$3,$arg0d
234 adcl \$0,$arg0d # keyBitLength==128?3:4
235 jmp .Ldec_rounds
236 .size Camellia_DecryptBlock,.-Camellia_DecryptBlock
237 # V2
238 .globl Camellia_DecryptBlock_Rounds
239 .type Camellia_DecryptBlock_Rounds,\@function,4
240 .align 16
241 .Ldec_rounds:
242 Camellia_DecryptBlock_Rounds:
243 push %rbx
244 push %rbp
245 push %r13
246 push %r14
247 push %r15
248 .Ldec_prologue:

250 #mov %rsi,$inp # put away arguments
251 mov %rcx,$out
252 mov %rdx,$keyend

254 shl \$6,%edi # process grandRounds
255 lea .LCamellia_SBOX(%rip),$Tbl
256 lea ($keyend,%rdi),$key

258 mov 0(%rsi),@S[0] # load plaintext
259 mov 4(%rsi),@S[1]

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 5

260 mov 8(%rsi),@S[2]
261 bswap @S[0]
262 mov 12(%rsi),@S[3]
263 bswap @S[1]
264 bswap @S[2]
265 bswap @S[3]

267 call _x86_64_Camellia_decrypt

269 bswap @S[0]
270 bswap @S[1]
271 bswap @S[2]
272 mov @S[0],0($out)
273 bswap @S[3]
274 mov @S[1],4($out)
275 mov @S[2],8($out)
276 mov @S[3],12($out)

278 mov 0(%rsp),%r15
279 mov 8(%rsp),%r14
280 mov 16(%rsp),%r13
281 mov 24(%rsp),%rbp
282 mov 32(%rsp),%rbx
283 lea 40(%rsp),%rsp
284 .Ldec_epilogue:
285 ret
286 .size Camellia_DecryptBlock_Rounds,.-Camellia_DecryptBlock_Rounds

288 .type _x86_64_Camellia_decrypt,\@abi-omnipotent
289 .align 16
290 _x86_64_Camellia_decrypt:
291 xor 0($key),@S[1]
292 xor 4($key),@S[0] # ^=key[0-3]
293 xor 8($key),@S[3]
294 xor 12($key),@S[2]
295 .align 16
296 .Ldloop:
297 mov -8($key),$t1 # prefetch key[4-5]
298 mov -4($key),$t0

300 ___
301 for ($i=0;$i<6;$i++) { Camellia_Feistel($i,-8); }
302 $code.=<<___;
303 lea -16*4($key),$key
304 cmp $keyend,$key
305 mov 0($key),$t3 # prefetch key[2-3]
306 mov 4($key),$t2
307 je .Lddone

309 and @S[0],$t0
310 or @S[3],$t3
311 rol \$1,$t0
312 xor $t3,@S[2] # s2^=s3|key[3];
313 xor $t0,@S[1] # s1^=LeftRotate(s0&key[0],1);
314 and @S[2],$t2
315 or @S[1],$t1
316 rol \$1,$t2
317 xor $t1,@S[0] # s0^=s1|key[1];
318 xor $t2,@S[3] # s3^=LeftRotate(s2&key[2],1);

320 jmp .Ldloop

322 .align 16
323 .Lddone:
324 xor @S[2],$t2
325 xor @S[3],$t3

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 6

326 xor @S[0],$t0
327 xor @S[1],$t1

329 mov $t2,@S[0] # SwapHalf
330 mov $t3,@S[1]
331 mov $t0,@S[2]
332 mov $t1,@S[3]

334 .byte 0xf3,0xc3 # rep ret
335 .size _x86_64_Camellia_decrypt,.-_x86_64_Camellia_decrypt
336 ___

338 sub _saveround {
339 my ($rnd,$key,@T)=@_;
340 my $bias=int(@T[0])?shift(@T):0;

342 if ($#T==3) {
343 $code.=<<___;
344 mov @T[1],‘$bias+$rnd*8+0‘($key)
345 mov @T[0],‘$bias+$rnd*8+4‘($key)
346 mov @T[3],‘$bias+$rnd*8+8‘($key)
347 mov @T[2],‘$bias+$rnd*8+12‘($key)
348 ___
349 } else {
350 $code.=" mov @T[0],‘$bias+$rnd*8+0‘($key)\n";
351 $code.=" mov @T[1],‘$bias+$rnd*8+8‘($key)\n" if ($#T>=1);
352 }
353 }

355 sub _loadround {
356 my ($rnd,$key,@T)=@_;
357 my $bias=int(@T[0])?shift(@T):0;

359 $code.=" mov ‘$bias+$rnd*8+0‘($key),@T[0]\n";
360 $code.=" mov ‘$bias+$rnd*8+8‘($key),@T[1]\n" if ($#T>=1);
361 }

363 # shld is very slow on Intel EM64T family. Even on AMD it limits
364 # instruction decode rate [because it’s VectorPath] and consequently
365 # performance...
366 sub __rotl128 {
367 my ($i0,$i1,$rot)=@_;

369 if ($rot) {
370 $code.=<<___;
371 mov $i0,%r11
372 shld \$$rot,$i1,$i0
373 shld \$$rot,%r11,$i1
374 ___
375 }
376 }

378 # ... Implementing 128-bit rotate without shld gives 80% better
379 # performance EM64T, +15% on AMD64 and only ~7% degradation on
380 # Core2. This is therefore preferred.
381 sub _rotl128 {
382 my ($i0,$i1,$rot)=@_;

384 if ($rot) {
385 $code.=<<___;
386 mov $i0,%r11
387 shl \$$rot,$i0
388 mov $i1,%r9
389 shr \$‘64-$rot‘,%r9
390 shr \$‘64-$rot‘,%r11
391 or %r9,$i0

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 7

392 shl \$$rot,$i1
393 or %r11,$i1
394 ___
395 }
396 }

398 { my $step=0;

400 $code.=<<___;
401 .globl Camellia_Ekeygen
402 .type Camellia_Ekeygen,\@function,3
403 .align 16
404 Camellia_Ekeygen:
405 push %rbx
406 push %rbp
407 push %r13
408 push %r14
409 push %r15
410 .Lkey_prologue:

412 mov %rdi,$keyend # put away arguments, keyBitLength
413 mov %rdx,$out # keyTable

415 mov 0(%rsi),@S[0] # load 0-127 bits
416 mov 4(%rsi),@S[1]
417 mov 8(%rsi),@S[2]
418 mov 12(%rsi),@S[3]

420 bswap @S[0]
421 bswap @S[1]
422 bswap @S[2]
423 bswap @S[3]
424 ___
425 &_saveround (0,$out,@S); # KL<<<0
426 $code.=<<___;
427 cmp \$128,$keyend # check keyBitLength
428 je .L1st128

430 mov 16(%rsi),@S[0] # load 128-191 bits
431 mov 20(%rsi),@S[1]
432 cmp \$192,$keyend
433 je .L1st192
434 mov 24(%rsi),@S[2] # load 192-255 bits
435 mov 28(%rsi),@S[3]
436 jmp .L1st256
437 .L1st192:
438 mov @S[0],@S[2]
439 mov @S[1],@S[3]
440 not @S[2]
441 not @S[3]
442 .L1st256:
443 bswap @S[0]
444 bswap @S[1]
445 bswap @S[2]
446 bswap @S[3]
447 ___
448 &_saveround (4,$out,@S); # temp storage for KR!
449 $code.=<<___;
450 xor 0($out),@S[1] # KR^KL
451 xor 4($out),@S[0]
452 xor 8($out),@S[3]
453 xor 12($out),@S[2]

455 .L1st128:
456 lea .LCamellia_SIGMA(%rip),$key
457 lea .LCamellia_SBOX(%rip),$Tbl

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 8

459 mov 0($key),$t1
460 mov 4($key),$t0
461 ___
462 &Camellia_Feistel($step++);
463 &Camellia_Feistel($step++);
464 $code.=<<___;
465 xor 0($out),@S[1] # ^KL
466 xor 4($out),@S[0]
467 xor 8($out),@S[3]
468 xor 12($out),@S[2]
469 ___
470 &Camellia_Feistel($step++);
471 &Camellia_Feistel($step++);
472 $code.=<<___;
473 cmp \$128,$keyend
474 jne .L2nd256

476 lea 128($out),$out # size optimization
477 shl \$32,%r8 # @S[0]||
478 shl \$32,%r10 # @S[2]||
479 or %r9,%r8 # ||@S[1]
480 or %r11,%r10 # ||@S[3]
481 ___
482 &_loadround (0,$out,-128,"%rax","%rbx"); # KL
483 &_saveround (2,$out,-128,"%r8","%r10"); # KA<<<0
484 &_rotl128 ("%rax","%rbx",15);
485 &_saveround (4,$out,-128,"%rax","%rbx"); # KL<<<15
486 &_rotl128 ("%r8","%r10",15);
487 &_saveround (6,$out,-128,"%r8","%r10"); # KA<<<15
488 &_rotl128 ("%r8","%r10",15); # 15+15=30
489 &_saveround (8,$out,-128,"%r8","%r10"); # KA<<<30
490 &_rotl128 ("%rax","%rbx",30); # 15+30=45
491 &_saveround (10,$out,-128,"%rax","%rbx"); # KL<<<45
492 &_rotl128 ("%r8","%r10",15); # 30+15=45
493 &_saveround (12,$out,-128,"%r8"); # KA<<<45
494 &_rotl128 ("%rax","%rbx",15); # 45+15=60
495 &_saveround (13,$out,-128,"%rbx"); # KL<<<60
496 &_rotl128 ("%r8","%r10",15); # 45+15=60
497 &_saveround (14,$out,-128,"%r8","%r10"); # KA<<<60
498 &_rotl128 ("%rax","%rbx",17); # 60+17=77
499 &_saveround (16,$out,-128,"%rax","%rbx"); # KL<<<77
500 &_rotl128 ("%rax","%rbx",17); # 77+17=94
501 &_saveround (18,$out,-128,"%rax","%rbx"); # KL<<<94
502 &_rotl128 ("%r8","%r10",34); # 60+34=94
503 &_saveround (20,$out,-128,"%r8","%r10"); # KA<<<94
504 &_rotl128 ("%rax","%rbx",17); # 94+17=111
505 &_saveround (22,$out,-128,"%rax","%rbx"); # KL<<<111
506 &_rotl128 ("%r8","%r10",17); # 94+17=111
507 &_saveround (24,$out,-128,"%r8","%r10"); # KA<<<111
508 $code.=<<___;
509 mov \$3,%eax
510 jmp .Ldone
511 .align 16
512 .L2nd256:
513 ___
514 &_saveround (6,$out,@S); # temp storage for KA!
515 $code.=<<___;
516 xor ‘4*8+0‘($out),@S[1] # KA^KR
517 xor ‘4*8+4‘($out),@S[0]
518 xor ‘5*8+0‘($out),@S[3]
519 xor ‘5*8+4‘($out),@S[2]
520 ___
521 &Camellia_Feistel($step++);
522 &Camellia_Feistel($step++);

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 9

524 &_loadround (0,$out,"%rax","%rbx"); # KL
525 &_loadround (4,$out,"%rcx","%rdx"); # KR
526 &_loadround (6,$out,"%r14","%r15"); # KA
527 $code.=<<___;
528 lea 128($out),$out # size optimization
529 shl \$32,%r8 # @S[0]||
530 shl \$32,%r10 # @S[2]||
531 or %r9,%r8 # ||@S[1]
532 or %r11,%r10 # ||@S[3]
533 ___
534 &_saveround (2,$out,-128,"%r8","%r10"); # KB<<<0
535 &_rotl128 ("%rcx","%rdx",15);
536 &_saveround (4,$out,-128,"%rcx","%rdx"); # KR<<<15
537 &_rotl128 ("%r14","%r15",15);
538 &_saveround (6,$out,-128,"%r14","%r15"); # KA<<<15
539 &_rotl128 ("%rcx","%rdx",15); # 15+15=30
540 &_saveround (8,$out,-128,"%rcx","%rdx"); # KR<<<30
541 &_rotl128 ("%r8","%r10",30);
542 &_saveround (10,$out,-128,"%r8","%r10"); # KB<<<30
543 &_rotl128 ("%rax","%rbx",45);
544 &_saveround (12,$out,-128,"%rax","%rbx"); # KL<<<45
545 &_rotl128 ("%r14","%r15",30); # 15+30=45
546 &_saveround (14,$out,-128,"%r14","%r15"); # KA<<<45
547 &_rotl128 ("%rax","%rbx",15); # 45+15=60
548 &_saveround (16,$out,-128,"%rax","%rbx"); # KL<<<60
549 &_rotl128 ("%rcx","%rdx",30); # 30+30=60
550 &_saveround (18,$out,-128,"%rcx","%rdx"); # KR<<<60
551 &_rotl128 ("%r8","%r10",30); # 30+30=60
552 &_saveround (20,$out,-128,"%r8","%r10"); # KB<<<60
553 &_rotl128 ("%rax","%rbx",17); # 60+17=77
554 &_saveround (22,$out,-128,"%rax","%rbx"); # KL<<<77
555 &_rotl128 ("%r14","%r15",32); # 45+32=77
556 &_saveround (24,$out,-128,"%r14","%r15"); # KA<<<77
557 &_rotl128 ("%rcx","%rdx",34); # 60+34=94
558 &_saveround (26,$out,-128,"%rcx","%rdx"); # KR<<<94
559 &_rotl128 ("%r14","%r15",17); # 77+17=94
560 &_saveround (28,$out,-128,"%r14","%r15"); # KA<<<77
561 &_rotl128 ("%rax","%rbx",34); # 77+34=111
562 &_saveround (30,$out,-128,"%rax","%rbx"); # KL<<<111
563 &_rotl128 ("%r8","%r10",51); # 60+51=111
564 &_saveround (32,$out,-128,"%r8","%r10"); # KB<<<111
565 $code.=<<___;
566 mov \$4,%eax
567 .Ldone:
568 mov 0(%rsp),%r15
569 mov 8(%rsp),%r14
570 mov 16(%rsp),%r13
571 mov 24(%rsp),%rbp
572 mov 32(%rsp),%rbx
573 lea 40(%rsp),%rsp
574 .Lkey_epilogue:
575 ret
576 .size Camellia_Ekeygen,.-Camellia_Ekeygen
577 ___
578 }

580 @SBOX=(
581 112,130, 44,236,179, 39,192,229,228,133, 87, 53,234, 12,174, 65,
582 35,239,107,147, 69, 25,165, 33,237, 14, 79, 78, 29,101,146,189,
583 134,184,175,143,124,235, 31,206, 62, 48,220, 95, 94,197, 11, 26,
584 166,225, 57,202,213, 71, 93, 61,217, 1, 90,214, 81, 86,108, 77,
585 139, 13,154,102,251,204,176, 45,116, 18, 43, 32,240,177,132,153,
586 223, 76,203,194, 52,126,118, 5,109,183,169, 49,209, 23, 4,215,
587 20, 88, 58, 97,222, 27, 17, 28, 50, 15,156, 22, 83, 24,242, 34,
588 254, 68,207,178,195,181,122,145, 36, 8,232,168, 96,252,105, 80,
589 170,208,160,125,161,137, 98,151, 84, 91, 30,149,224,255,100,210,

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 10

590 16,196, 0, 72,163,247,117,219,138, 3,230,218, 9, 63,221,148,
591 135, 92,131, 2,205, 74,144, 51,115,103,246,243,157,127,191,226,
592 82,155,216, 38,200, 55,198, 59,129,150,111, 75, 19,190, 99, 46,
593 233,121,167,140,159,110,188,142, 41,245,249,182, 47,253,180, 89,
594 120,152, 6,106,231, 70,113,186,212, 37,171, 66,136,162,141,250,
595 114, 7,185, 85,248,238,172, 10, 54, 73, 42,104, 60, 56,241,164,
596 64, 40,211,123,187,201, 67,193, 21,227,173,244,119,199,128,158);

598 sub S1110 { my $i=shift; $i=@SBOX[$i]; $i=$i<<24|$i<<16|$i<<8; sprintf("0x%08x",
599 sub S4404 { my $i=shift; $i=($i<<1|$i>>7)&0xff; $i=@SBOX[$i]; $i=$i<<24|$i<<16|$
600 sub S0222 { my $i=shift; $i=@SBOX[$i]; $i=($i<<1|$i>>7)&0xff; $i=$i<<16|$i<<8|$i
601 sub S3033 { my $i=shift; $i=@SBOX[$i]; $i=($i>>1|$i<<7)&0xff; $i=$i<<24|$i<<8|$i

603 $code.=<<___;
604 .align 64
605 .LCamellia_SIGMA:
606 .long 0x3bcc908b, 0xa09e667f, 0x4caa73b2, 0xb67ae858
607 .long 0xe94f82be, 0xc6ef372f, 0xf1d36f1c, 0x54ff53a5
608 .long 0xde682d1d, 0x10e527fa, 0xb3e6c1fd, 0xb05688c2
609 .long 0, 0, 0, 0
610 .LCamellia_SBOX:
611 ___
612 # tables are interleaved, remember?
613 sub data_word { $code.=".long\t".join(’,’,@_)."\n"; }
614 for ($i=0;$i<256;$i++) { &data_word(&S1110($i),&S4404($i)); }
615 for ($i=0;$i<256;$i++) { &data_word(&S0222($i),&S3033($i)); }

617 # void Camellia_cbc_encrypt (const void char *inp, unsigned char *out,
618 # size_t length, const CAMELLIA_KEY *key,
619 # unsigned char *ivp,const int enc);
620 {
621 $_key="0(%rsp)";
622 $_end="8(%rsp)"; # inp+len&~15
623 $_res="16(%rsp)"; # len&15
624 $ivec="24(%rsp)";
625 $_ivp="40(%rsp)";
626 $_rsp="48(%rsp)";

628 $code.=<<___;
629 .globl Camellia_cbc_encrypt
630 .type Camellia_cbc_encrypt,\@function,6
631 .align 16
632 Camellia_cbc_encrypt:
633 cmp \$0,%rdx
634 je .Lcbc_abort
635 push %rbx
636 push %rbp
637 push %r12
638 push %r13
639 push %r14
640 push %r15
641 .Lcbc_prologue:

643 mov %rsp,%rbp
644 sub \$64,%rsp
645 and \$-64,%rsp

647 # place stack frame just "above mod 1024" the key schedule,
648 # this ensures that cache associativity suffices
649 lea -64-63(%rcx),%r10
650 sub %rsp,%r10
651 neg %r10
652 and \$0x3C0,%r10
653 sub %r10,%rsp
654 #add \$8,%rsp # 8 is reserved for callee’s ra

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 11

656 mov %rdi,$inp # inp argument
657 mov %rsi,$out # out argument
658 mov %r8,%rbx # ivp argument
659 mov %rcx,$key # key argument
660 mov 272(%rcx),${keyend}d # grandRounds

662 mov %r8,$_ivp
663 mov %rbp,$_rsp

665 .Lcbc_body:
666 lea .LCamellia_SBOX(%rip),$Tbl

668 mov \$32,%ecx
669 .align 4
670 .Lcbc_prefetch_sbox:
671 mov 0($Tbl),%rax
672 mov 32($Tbl),%rsi
673 mov 64($Tbl),%rdi
674 mov 96($Tbl),%r11
675 lea 128($Tbl),$Tbl
676 loop .Lcbc_prefetch_sbox
677 sub \$4096,$Tbl
678 shl \$6,$keyend
679 mov %rdx,%rcx # len argument
680 lea ($key,$keyend),$keyend

682 cmp \$0,%r9d # enc argument
683 je .LCBC_DECRYPT

685 and \$-16,%rdx
686 and \$15,%rcx # length residue
687 lea ($inp,%rdx),%rdx
688 mov $key,$_key
689 mov %rdx,$_end
690 mov %rcx,$_res

692 cmp $inp,%rdx
693 mov 0(%rbx),@S[0] # load IV
694 mov 4(%rbx),@S[1]
695 mov 8(%rbx),@S[2]
696 mov 12(%rbx),@S[3]
697 je .Lcbc_enc_tail
698 jmp .Lcbc_eloop

700 .align 16
701 .Lcbc_eloop:
702 xor 0($inp),@S[0]
703 xor 4($inp),@S[1]
704 xor 8($inp),@S[2]
705 bswap @S[0]
706 xor 12($inp),@S[3]
707 bswap @S[1]
708 bswap @S[2]
709 bswap @S[3]

711 call _x86_64_Camellia_encrypt

713 mov $_key,$key # "rewind" the key
714 bswap @S[0]
715 mov $_end,%rdx
716 bswap @S[1]
717 mov $_res,%rcx
718 bswap @S[2]
719 mov @S[0],0($out)
720 bswap @S[3]
721 mov @S[1],4($out)

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 12

722 mov @S[2],8($out)
723 lea 16($inp),$inp
724 mov @S[3],12($out)
725 cmp %rdx,$inp
726 lea 16($out),$out
727 jne .Lcbc_eloop

729 cmp \$0,%rcx
730 jne .Lcbc_enc_tail

732 mov $_ivp,$out
733 mov @S[0],0($out) # write out IV residue
734 mov @S[1],4($out)
735 mov @S[2],8($out)
736 mov @S[3],12($out)
737 jmp .Lcbc_done

739 .align 16
740 .Lcbc_enc_tail:
741 xor %rax,%rax
742 mov %rax,0+$ivec
743 mov %rax,8+$ivec
744 mov %rax,$_res

746 .Lcbc_enc_pushf:
747 pushfq
748 cld
749 mov $inp,%rsi
750 lea 8+$ivec,%rdi
751 .long 0x9066A4F3 # rep movsb
752 popfq
753 .Lcbc_enc_popf:

755 lea $ivec,$inp
756 lea 16+$ivec,%rax
757 mov %rax,$_end
758 jmp .Lcbc_eloop # one more time

760 .align 16
761 .LCBC_DECRYPT:
762 xchg $key,$keyend
763 add \$15,%rdx
764 and \$15,%rcx # length residue
765 and \$-16,%rdx
766 mov $key,$_key
767 lea ($inp,%rdx),%rdx
768 mov %rdx,$_end
769 mov %rcx,$_res

771 mov (%rbx),%rax # load IV
772 mov 8(%rbx),%rbx
773 jmp .Lcbc_dloop
774 .align 16
775 .Lcbc_dloop:
776 mov 0($inp),@S[0]
777 mov 4($inp),@S[1]
778 mov 8($inp),@S[2]
779 bswap @S[0]
780 mov 12($inp),@S[3]
781 bswap @S[1]
782 mov %rax,0+$ivec # save IV to temporary storage
783 bswap @S[2]
784 mov %rbx,8+$ivec
785 bswap @S[3]

787 call _x86_64_Camellia_decrypt

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 13

789 mov $_key,$key # "rewind" the key
790 mov $_end,%rdx
791 mov $_res,%rcx

793 bswap @S[0]
794 mov ($inp),%rax # load IV for next iteration
795 bswap @S[1]
796 mov 8($inp),%rbx
797 bswap @S[2]
798 xor 0+$ivec,@S[0]
799 bswap @S[3]
800 xor 4+$ivec,@S[1]
801 xor 8+$ivec,@S[2]
802 lea 16($inp),$inp
803 xor 12+$ivec,@S[3]
804 cmp %rdx,$inp
805 je .Lcbc_ddone

807 mov @S[0],0($out)
808 mov @S[1],4($out)
809 mov @S[2],8($out)
810 mov @S[3],12($out)

812 lea 16($out),$out
813 jmp .Lcbc_dloop

815 .align 16
816 .Lcbc_ddone:
817 mov $_ivp,%rdx
818 cmp \$0,%rcx
819 jne .Lcbc_dec_tail

821 mov @S[0],0($out)
822 mov @S[1],4($out)
823 mov @S[2],8($out)
824 mov @S[3],12($out)

826 mov %rax,(%rdx) # write out IV residue
827 mov %rbx,8(%rdx)
828 jmp .Lcbc_done
829 .align 16
830 .Lcbc_dec_tail:
831 mov @S[0],0+$ivec
832 mov @S[1],4+$ivec
833 mov @S[2],8+$ivec
834 mov @S[3],12+$ivec

836 .Lcbc_dec_pushf:
837 pushfq
838 cld
839 lea 8+$ivec,%rsi
840 lea ($out),%rdi
841 .long 0x9066A4F3 # rep movsb
842 popfq
843 .Lcbc_dec_popf:

845 mov %rax,(%rdx) # write out IV residue
846 mov %rbx,8(%rdx)
847 jmp .Lcbc_done

849 .align 16
850 .Lcbc_done:
851 mov $_rsp,%rcx
852 mov 0(%rcx),%r15
853 mov 8(%rcx),%r14

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 14

854 mov 16(%rcx),%r13
855 mov 24(%rcx),%r12
856 mov 32(%rcx),%rbp
857 mov 40(%rcx),%rbx
858 lea 48(%rcx),%rsp
859 .Lcbc_abort:
860 ret
861 .size Camellia_cbc_encrypt,.-Camellia_cbc_encrypt

863 .asciz "Camellia for x86_64 by <appro\@openssl.org>"
864 ___
865 }

867 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
868 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
869 if ($win64) {
870 $rec="%rcx";
871 $frame="%rdx";
872 $context="%r8";
873 $disp="%r9";

875 $code.=<<___;
876 .extern __imp_RtlVirtualUnwind
877 .type common_se_handler,\@abi-omnipotent
878 .align 16
879 common_se_handler:
880 push %rsi
881 push %rdi
882 push %rbx
883 push %rbp
884 push %r12
885 push %r13
886 push %r14
887 push %r15
888 pushfq
889 lea -64(%rsp),%rsp

891 mov 120($context),%rax # pull context->Rax
892 mov 248($context),%rbx # pull context->Rip

894 mov 8($disp),%rsi # disp->ImageBase
895 mov 56($disp),%r11 # disp->HandlerData

897 mov 0(%r11),%r10d # HandlerData[0]
898 lea (%rsi,%r10),%r10 # prologue label
899 cmp %r10,%rbx # context->Rip<prologue label
900 jb .Lin_prologue

902 mov 152($context),%rax # pull context->Rsp

904 mov 4(%r11),%r10d # HandlerData[1]
905 lea (%rsi,%r10),%r10 # epilogue label
906 cmp %r10,%rbx # context->Rip>=epilogue label
907 jae .Lin_prologue

909 lea 40(%rax),%rax
910 mov -8(%rax),%rbx
911 mov -16(%rax),%rbp
912 mov -24(%rax),%r13
913 mov -32(%rax),%r14
914 mov -40(%rax),%r15
915 mov %rbx,144($context) # restore context->Rbx
916 mov %rbp,160($context) # restore context->Rbp
917 mov %r13,224($context) # restore context->R13
918 mov %r14,232($context) # restore context->R14
919 mov %r15,240($context) # restore context->R15

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 15

921 .Lin_prologue:
922 mov 8(%rax),%rdi
923 mov 16(%rax),%rsi
924 mov %rax,152($context) # restore context->Rsp
925 mov %rsi,168($context) # restore context->Rsi
926 mov %rdi,176($context) # restore context->Rdi

928 jmp .Lcommon_seh_exit
929 .size common_se_handler,.-common_se_handler

931 .type cbc_se_handler,\@abi-omnipotent
932 .align 16
933 cbc_se_handler:
934 push %rsi
935 push %rdi
936 push %rbx
937 push %rbp
938 push %r12
939 push %r13
940 push %r14
941 push %r15
942 pushfq
943 lea -64(%rsp),%rsp

945 mov 120($context),%rax # pull context->Rax
946 mov 248($context),%rbx # pull context->Rip

948 lea .Lcbc_prologue(%rip),%r10
949 cmp %r10,%rbx # context->Rip<.Lcbc_prologue
950 jb .Lin_cbc_prologue

952 lea .Lcbc_body(%rip),%r10
953 cmp %r10,%rbx # context->Rip<.Lcbc_body
954 jb .Lin_cbc_frame_setup

956 mov 152($context),%rax # pull context->Rsp

958 lea .Lcbc_abort(%rip),%r10
959 cmp %r10,%rbx # context->Rip>=.Lcbc_abort
960 jae .Lin_cbc_prologue

962 # handle pushf/popf in Camellia_cbc_encrypt
963 lea .Lcbc_enc_pushf(%rip),%r10
964 cmp %r10,%rbx # context->Rip<=.Lcbc_enc_pushf
965 jbe .Lin_cbc_no_flag
966 lea 8(%rax),%rax
967 lea .Lcbc_enc_popf(%rip),%r10
968 cmp %r10,%rbx # context->Rip<.Lcbc_enc_popf
969 jb .Lin_cbc_no_flag
970 lea -8(%rax),%rax
971 lea .Lcbc_dec_pushf(%rip),%r10
972 cmp %r10,%rbx # context->Rip<=.Lcbc_dec_pushf
973 jbe .Lin_cbc_no_flag
974 lea 8(%rax),%rax
975 lea .Lcbc_dec_popf(%rip),%r10
976 cmp %r10,%rbx # context->Rip<.Lcbc_dec_popf
977 jb .Lin_cbc_no_flag
978 lea -8(%rax),%rax

980 .Lin_cbc_no_flag:
981 mov 48(%rax),%rax # $_rsp
982 lea 48(%rax),%rax

984 .Lin_cbc_frame_setup:
985 mov -8(%rax),%rbx

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 16

986 mov -16(%rax),%rbp
987 mov -24(%rax),%r12
988 mov -32(%rax),%r13
989 mov -40(%rax),%r14
990 mov -48(%rax),%r15
991 mov %rbx,144($context) # restore context->Rbx
992 mov %rbp,160($context) # restore context->Rbp
993 mov %r12,216($context) # restore context->R12
994 mov %r13,224($context) # restore context->R13
995 mov %r14,232($context) # restore context->R14
996 mov %r15,240($context) # restore context->R15

998 .Lin_cbc_prologue:
999 mov 8(%rax),%rdi

1000 mov 16(%rax),%rsi
1001 mov %rax,152($context) # restore context->Rsp
1002 mov %rsi,168($context) # restore context->Rsi
1003 mov %rdi,176($context) # restore context->Rdi

1005 .align 4
1006 .Lcommon_seh_exit:

1008 mov 40($disp),%rdi # disp->ContextRecord
1009 mov $context,%rsi # context
1010 mov \$‘1232/8‘,%ecx # sizeof(CONTEXT)
1011 .long 0xa548f3fc # cld; rep movsq

1013 mov $disp,%rsi
1014 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
1015 mov 8(%rsi),%rdx # arg2, disp->ImageBase
1016 mov 0(%rsi),%r8 # arg3, disp->ControlPc
1017 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
1018 mov 40(%rsi),%r10 # disp->ContextRecord
1019 lea 56(%rsi),%r11 # &disp->HandlerData
1020 lea 24(%rsi),%r12 # &disp->EstablisherFrame
1021 mov %r10,32(%rsp) # arg5
1022 mov %r11,40(%rsp) # arg6
1023 mov %r12,48(%rsp) # arg7
1024 mov %rcx,56(%rsp) # arg8, (NULL)
1025 call *__imp_RtlVirtualUnwind(%rip)

1027 mov \$1,%eax # ExceptionContinueSearch
1028 lea 64(%rsp),%rsp
1029 popfq
1030 pop %r15
1031 pop %r14
1032 pop %r13
1033 pop %r12
1034 pop %rbp
1035 pop %rbx
1036 pop %rdi
1037 pop %rsi
1038 ret
1039 .size cbc_se_handler,.-cbc_se_handler

1041 .section .pdata
1042 .align 4
1043 .rva .LSEH_begin_Camellia_EncryptBlock_Rounds
1044 .rva .LSEH_end_Camellia_EncryptBlock_Rounds
1045 .rva .LSEH_info_Camellia_EncryptBlock_Rounds

1047 .rva .LSEH_begin_Camellia_DecryptBlock_Rounds
1048 .rva .LSEH_end_Camellia_DecryptBlock_Rounds
1049 .rva .LSEH_info_Camellia_DecryptBlock_Rounds

1051 .rva .LSEH_begin_Camellia_Ekeygen

new/usr/src/lib/openssl/libsunw_crypto/pl/cmll-x86_64.pl 17

1052 .rva .LSEH_end_Camellia_Ekeygen
1053 .rva .LSEH_info_Camellia_Ekeygen

1055 .rva .LSEH_begin_Camellia_cbc_encrypt
1056 .rva .LSEH_end_Camellia_cbc_encrypt
1057 .rva .LSEH_info_Camellia_cbc_encrypt

1059 .section .xdata
1060 .align 8
1061 .LSEH_info_Camellia_EncryptBlock_Rounds:
1062 .byte 9,0,0,0
1063 .rva common_se_handler
1064 .rva .Lenc_prologue,.Lenc_epilogue # HandlerData[]
1065 .LSEH_info_Camellia_DecryptBlock_Rounds:
1066 .byte 9,0,0,0
1067 .rva common_se_handler
1068 .rva .Ldec_prologue,.Ldec_epilogue # HandlerData[]
1069 .LSEH_info_Camellia_Ekeygen:
1070 .byte 9,0,0,0
1071 .rva common_se_handler
1072 .rva .Lkey_prologue,.Lkey_epilogue # HandlerData[]
1073 .LSEH_info_Camellia_cbc_encrypt:
1074 .byte 9,0,0,0
1075 .rva cbc_se_handler
1076 ___
1077 }

1079 $code =~ s/\‘([^\‘]*)\‘/eval $1/gem;
1080 print $code;
1081 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/co-586.pl 1

**
 5640 Fri May 30 18:32:03 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/co-586.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/local/bin/perl

3 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
4 push(@INC,"${dir}","${dir}../../perlasm");
5 require "x86asm.pl";

7 &asm_init($ARGV[0],$0);

9 &bn_mul_comba("bn_mul_comba8",8);
10 &bn_mul_comba("bn_mul_comba4",4);
11 &bn_sqr_comba("bn_sqr_comba8",8);
12 &bn_sqr_comba("bn_sqr_comba4",4);

14 &asm_finish();

16 sub mul_add_c
17 {
18 local($a,$ai,$b,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_;

20 # pos == -1 if eax and edx are pre-loaded, 0 to load from next
21 # words, and 1 if load return value

23 &comment("mul a[$ai]*b[$bi]");

25 # "eax" and "edx" will always be pre-loaded.
26 # &mov("eax",&DWP($ai*4,$a,"",0)) ;
27 # &mov("edx",&DWP($bi*4,$b,"",0));

29 &mul("edx");
30 &add($c0,"eax");
31 &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # laod next a
32 &mov("eax",&wparam(0)) if $pos > 0; # load r[]
33 ###
34 &adc($c1,"edx");
35 &mov("edx",&DWP(($nb)*4,$b,"",0)) if $pos == 0; # laod next b
36 &mov("edx",&DWP(($nb)*4,$b,"",0)) if $pos == 1; # laod next b
37 ###
38 &adc($c2,0);
39 # is pos > 1, it means it is the last loop
40 &mov(&DWP($i*4,"eax","",0),$c0) if $pos > 0; # save r[];
41 &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # laod next a
42 }

44 sub sqr_add_c
45 {
46 local($r,$a,$ai,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_;

48 # pos == -1 if eax and edx are pre-loaded, 0 to load from next
49 # words, and 1 if load return value

51 &comment("sqr a[$ai]*a[$bi]");

53 # "eax" and "edx" will always be pre-loaded.
54 # &mov("eax",&DWP($ai*4,$a,"",0)) ;
55 # &mov("edx",&DWP($bi*4,$b,"",0));

57 if ($ai == $bi)
58 { &mul("eax");}
59 else
60 { &mul("edx");}
61 &add($c0,"eax");

new/usr/src/lib/openssl/libsunw_crypto/pl/co-586.pl 2

62 &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a
63 ###
64 &adc($c1,"edx");
65 &mov("edx",&DWP(($nb)*4,$a,"",0)) if ($pos == 1) && ($na != $nb);
66 ###
67 &adc($c2,0);
68 # is pos > 1, it means it is the last loop
69 &mov(&DWP($i*4,$r,"",0),$c0) if $pos > 0; # save r[];
70 &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next b
71 }

73 sub sqr_add_c2
74 {
75 local($r,$a,$ai,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_;

77 # pos == -1 if eax and edx are pre-loaded, 0 to load from next
78 # words, and 1 if load return value

80 &comment("sqr a[$ai]*a[$bi]");

82 # "eax" and "edx" will always be pre-loaded.
83 # &mov("eax",&DWP($ai*4,$a,"",0)) ;
84 # &mov("edx",&DWP($bi*4,$a,"",0));

86 if ($ai == $bi)
87 { &mul("eax");}
88 else
89 { &mul("edx");}
90 &add("eax","eax");
91 ###
92 &adc("edx","edx");
93 ###
94 &adc($c2,0);
95 &add($c0,"eax");
96 &adc($c1,"edx");
97 &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a
98 &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next b
99 &adc($c2,0);
100 &mov(&DWP($i*4,$r,"",0),$c0) if $pos > 0; # save r[];
101 &mov("edx",&DWP(($nb)*4,$a,"",0)) if ($pos <= 1) && ($na != $nb);
102 ###
103 }

105 sub bn_mul_comba
106 {
107 local($name,$num)=@_;
108 local($a,$b,$c0,$c1,$c2);
109 local($i,$as,$ae,$bs,$be,$ai,$bi);
110 local($tot,$end);

112 &function_begin_B($name,"");

114 $c0="ebx";
115 $c1="ecx";
116 $c2="ebp";
117 $a="esi";
118 $b="edi";
119
120 $as=0;
121 $ae=0;
122 $bs=0;
123 $be=0;
124 $tot=$num+$num-1;

126 &push("esi");
127 &mov($a,&wparam(1));

new/usr/src/lib/openssl/libsunw_crypto/pl/co-586.pl 3

128 &push("edi");
129 &mov($b,&wparam(2));
130 &push("ebp");
131 &push("ebx");

133 &xor($c0,$c0);
134 &mov("eax",&DWP(0,$a,"",0)); # load the first word
135 &xor($c1,$c1);
136 &mov("edx",&DWP(0,$b,"",0)); # load the first second

138 for ($i=0; $i<$tot; $i++)
139 {
140 $ai=$as;
141 $bi=$bs;
142 $end=$be+1;

144 &comment("################## Calculate word $i");

146 for ($j=$bs; $j<$end; $j++)
147 {
148 &xor($c2,$c2) if ($j == $bs);
149 if (($j+1) == $end)
150 {
151 $v=1;
152 $v=2 if (($i+1) == $tot);
153 }
154 else
155 { $v=0; }
156 if (($j+1) != $end)
157 {
158 $na=($ai-1);
159 $nb=($bi+1);
160 }
161 else
162 {
163 $na=$as+($i < ($num-1));
164 $nb=$bs+($i >= ($num-1));
165 }
166 #printf STDERR "[$ai,$bi] -> [$na,$nb]\n";
167 &mul_add_c($a,$ai,$b,$bi,$c0,$c1,$c2,$v,$i,$na,$nb);
168 if ($v)
169 {
170 &comment("saved r[$i]");
171 # &mov("eax",&wparam(0));
172 # &mov(&DWP($i*4,"eax","",0),$c0);
173 ($c0,$c1,$c2)=($c1,$c2,$c0);
174 }
175 $ai--;
176 $bi++;
177 }
178 $as++ if ($i < ($num-1));
179 $ae++ if ($i >= ($num-1));

181 $bs++ if ($i >= ($num-1));
182 $be++ if ($i < ($num-1));
183 }
184 &comment("save r[$i]");
185 # &mov("eax",&wparam(0));
186 &mov(&DWP($i*4,"eax","",0),$c0);

188 &pop("ebx");
189 &pop("ebp");
190 &pop("edi");
191 &pop("esi");
192 &ret();
193 &function_end_B($name);

new/usr/src/lib/openssl/libsunw_crypto/pl/co-586.pl 4

194 }

196 sub bn_sqr_comba
197 {
198 local($name,$num)=@_;
199 local($r,$a,$c0,$c1,$c2)=@_;
200 local($i,$as,$ae,$bs,$be,$ai,$bi);
201 local($b,$tot,$end,$half);

203 &function_begin_B($name,"");

205 $c0="ebx";
206 $c1="ecx";
207 $c2="ebp";
208 $a="esi";
209 $r="edi";

211 &push("esi");
212 &push("edi");
213 &push("ebp");
214 &push("ebx");
215 &mov($r,&wparam(0));
216 &mov($a,&wparam(1));
217 &xor($c0,$c0);
218 &xor($c1,$c1);
219 &mov("eax",&DWP(0,$a,"",0)); # load the first word

221 $as=0;
222 $ae=0;
223 $bs=0;
224 $be=0;
225 $tot=$num+$num-1;

227 for ($i=0; $i<$tot; $i++)
228 {
229 $ai=$as;
230 $bi=$bs;
231 $end=$be+1;

233 &comment("############### Calculate word $i");
234 for ($j=$bs; $j<$end; $j++)
235 {
236 &xor($c2,$c2) if ($j == $bs);
237 if (($ai-1) < ($bi+1))
238 {
239 $v=1;
240 $v=2 if ($i+1) == $tot;
241 }
242 else
243 { $v=0; }
244 if (!$v)
245 {
246 $na=$ai-1;
247 $nb=$bi+1;
248 }
249 else
250 {
251 $na=$as+($i < ($num-1));
252 $nb=$bs+($i >= ($num-1));
253 }
254 if ($ai == $bi)
255 {
256 &sqr_add_c($r,$a,$ai,$bi,
257 $c0,$c1,$c2,$v,$i,$na,$nb);
258 }
259 else

new/usr/src/lib/openssl/libsunw_crypto/pl/co-586.pl 5

260 {
261 &sqr_add_c2($r,$a,$ai,$bi,
262 $c0,$c1,$c2,$v,$i,$na,$nb);
263 }
264 if ($v)
265 {
266 &comment("saved r[$i]");
267 #&mov(&DWP($i*4,$r,"",0),$c0);
268 ($c0,$c1,$c2)=($c1,$c2,$c0);
269 last;
270 }
271 $ai--;
272 $bi++;
273 }
274 $as++ if ($i < ($num-1));
275 $ae++ if ($i >= ($num-1));

277 $bs++ if ($i >= ($num-1));
278 $be++ if ($i < ($num-1));
279 }
280 &mov(&DWP($i*4,$r,"",0),$c0);
281 &pop("ebx");
282 &pop("ebp");
283 &pop("edi");
284 &pop("esi");
285 &ret();
286 &function_end_B($name);
287 }

new/usr/src/lib/openssl/libsunw_crypto/pl/crypt586.pl 1

**
 4358 Fri May 30 18:32:03 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/crypt586.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/local/bin/perl
2 #
3 # The inner loop instruction sequence and the IP/FP modifications are from
4 # Svend Olaf Mikkelsen <svolaf@inet.uni-c.dk>
5 # I’ve added the stuff needed for crypt() but I’ve not worried about making
6 # things perfect.
7 #

9 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
10 push(@INC,"${dir}","${dir}../../perlasm");
11 require "x86asm.pl";

13 &asm_init($ARGV[0],"crypt586.pl");

15 $L="edi";
16 $R="esi";

18 &external_label("DES_SPtrans");
19 &fcrypt_body("fcrypt_body");
20 &asm_finish();

22 sub fcrypt_body
23 {
24 local($name,$do_ip)=@_;

26 &function_begin($name);

28 &comment("");
29 &comment("Load the 2 words");
30 $trans="ebp";

32 &xor($L, $L);
33 &xor($R, $R);

35 # PIC-ification:-)
36 &picmeup("edx","DES_SPtrans");
37 #if ($cpp) { &picmeup("edx","DES_SPtrans"); }
38 #else { &lea("edx",&DWP("DES_SPtrans")); }
39 &push("edx"); # becomes &swtmp(1)
40 #
41 &mov($trans,&wparam(1)); # reloaded with DES_SPtrans in D_ENCRYPT

43 &push(&DWC(25)); # add a variable

45 &set_label("start");
46 for ($i=0; $i<16; $i+=2)
47 {
48 &comment("");
49 &comment("Round $i");
50 &D_ENCRYPT($i,$L,$R,$i*2,$trans,"eax","ebx","ecx","edx");

52 &comment("");
53 &comment("Round ".sprintf("%d",$i+1));
54 &D_ENCRYPT($i+1,$R,$L,($i+1)*2,$trans,"eax","ebx","ecx","edx");
55 }
56 &mov("ebx", &swtmp(0));
57 &mov("eax", $L);
58 &dec("ebx");
59 &mov($L, $R);
60 &mov($R, "eax");
61 &mov(&swtmp(0), "ebx");

new/usr/src/lib/openssl/libsunw_crypto/pl/crypt586.pl 2

62 &jnz(&label("start"));

64 &comment("");
65 &comment("FP");
66 &mov("edx",&wparam(0));

68 &FP_new($R,$L,"eax",3);
69 &mov(&DWP(0,"edx","",0),"eax");
70 &mov(&DWP(4,"edx","",0),$L);

72 &add("esp",8); # remove variables

74 &function_end($name);
75 }

77 sub D_ENCRYPT
78 {
79 local($r,$L,$R,$S,$trans,$u,$tmp1,$tmp2,$t)=@_;

81 &mov($u, &wparam(2)); # 2
82 &mov($t, $R);
83 &shr($t, 16); # 1
84 &mov($tmp2, &wparam(3)); # 2
85 &xor($t, $R); # 1

87 &and($u, $t); # 2
88 &and($t, $tmp2); # 2

90 &mov($tmp1, $u);
91 &shl($tmp1, 16); # 1
92 &mov($tmp2, $t);
93 &shl($tmp2, 16); # 1
94 &xor($u, $tmp1); # 2
95 &xor($t, $tmp2); # 2
96 &mov($tmp1, &DWP(&n2a($S*4),$trans,"",0)); # 2
97 &xor($u, $tmp1);
98 &mov($tmp2, &DWP(&n2a(($S+1)*4),$trans,"",0)); # 2
99 &xor($u, $R);
100 &xor($t, $R);
101 &xor($t, $tmp2);

103 &and($u, "0xfcfcfcfc"); # 2
104 &xor($tmp1, $tmp1); # 1
105 &and($t, "0xcfcfcfcf"); # 2
106 &xor($tmp2, $tmp2);
107 &movb(&LB($tmp1), &LB($u));
108 &movb(&LB($tmp2), &HB($u));
109 &rotr($t, 4);
110 &mov($trans, &swtmp(1));
111 &xor($L, &DWP(" ",$trans,$tmp1,0));
112 &movb(&LB($tmp1), &LB($t));
113 &xor($L, &DWP("0x200",$trans,$tmp2,0));
114 &movb(&LB($tmp2), &HB($t));
115 &shr($u, 16);
116 &xor($L, &DWP("0x100",$trans,$tmp1,0));
117 &movb(&LB($tmp1), &HB($u));
118 &shr($t, 16);
119 &xor($L, &DWP("0x300",$trans,$tmp2,0));
120 &movb(&LB($tmp2), &HB($t));
121 &and($u, "0xff");
122 &and($t, "0xff");
123 &mov($tmp1, &DWP("0x600",$trans,$tmp1,0));
124 &xor($L, $tmp1);
125 &mov($tmp1, &DWP("0x700",$trans,$tmp2,0));
126 &xor($L, $tmp1);
127 &mov($tmp1, &DWP("0x400",$trans,$u,0));

new/usr/src/lib/openssl/libsunw_crypto/pl/crypt586.pl 3

128 &xor($L, $tmp1);
129 &mov($tmp1, &DWP("0x500",$trans,$t,0));
130 &xor($L, $tmp1);
131 &mov($trans, &wparam(1));
132 }

134 sub n2a
135 {
136 sprintf("%d",$_[0]);
137 }

139 # now has a side affect of rotating $a by $shift
140 sub R_PERM_OP
141 {
142 local($a,$b,$tt,$shift,$mask,$last)=@_;

144 &rotl($a, $shift) if ($shift != 0);
145 &mov($tt, $a);
146 &xor($a, $b);
147 &and($a, $mask);
148 if ($notlast eq $b)
149 {
150 &xor($b, $a);
151 &xor($tt, $a);
152 }
153 else
154 {
155 &xor($tt, $a);
156 &xor($b, $a);
157 }
158 &comment("");
159 }

161 sub IP_new
162 {
163 local($l,$r,$tt,$lr)=@_;

165 &R_PERM_OP($l,$r,$tt, 4,"0xf0f0f0f0",$l);
166 &R_PERM_OP($r,$tt,$l,20,"0xfff0000f",$l);
167 &R_PERM_OP($l,$tt,$r,14,"0x33333333",$r);
168 &R_PERM_OP($tt,$r,$l,22,"0x03fc03fc",$r);
169 &R_PERM_OP($l,$r,$tt, 9,"0xaaaaaaaa",$r);
170
171 if ($lr != 3)
172 {
173 if (($lr-3) < 0)
174 { &rotr($tt, 3-$lr); }
175 else { &rotl($tt, $lr-3); }
176 }
177 if ($lr != 2)
178 {
179 if (($lr-2) < 0)
180 { &rotr($r, 2-$lr); }
181 else { &rotl($r, $lr-2); }
182 }
183 }

185 sub FP_new
186 {
187 local($l,$r,$tt,$lr)=@_;

189 if ($lr != 2)
190 {
191 if (($lr-2) < 0)
192 { &rotl($r, 2-$lr); }
193 else { &rotr($r, $lr-2); }

new/usr/src/lib/openssl/libsunw_crypto/pl/crypt586.pl 4

194 }
195 if ($lr != 3)
196 {
197 if (($lr-3) < 0)
198 { &rotl($l, 3-$lr); }
199 else { &rotr($l, $lr-3); }
200 }

202 &R_PERM_OP($l,$r,$tt, 0,"0xaaaaaaaa",$r);
203 &R_PERM_OP($tt,$r,$l,23,"0x03fc03fc",$r);
204 &R_PERM_OP($l,$r,$tt,10,"0x33333333",$l);
205 &R_PERM_OP($r,$tt,$l,18,"0xfff0000f",$l);
206 &R_PERM_OP($l,$tt,$r,12,"0xf0f0f0f0",$r);
207 &rotr($tt , 4);
208 }

new/usr/src/lib/openssl/libsunw_crypto/pl/des-586.pl 1

**
 14498 Fri May 30 18:32:03 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/des-586.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/local/bin/perl
2 #
3 # The inner loop instruction sequence and the IP/FP modifications are from
4 # Svend Olaf Mikkelsen <svolaf@inet.uni-c.dk>
5 #

7 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
8 push(@INC,"${dir}","${dir}../../perlasm");
9 require "x86asm.pl";
10 require "cbc.pl";
11 require "desboth.pl";

13 # base code is in microsft
14 # op dest, source
15 # format.
16 #

18 &asm_init($ARGV[0],"des-586.pl");

20 $L="edi";
21 $R="esi";
22 $trans="ebp";
23 $small_footprint=1 if (grep(/\-DOPENSSL_SMALL_FOOTPRINT/,@ARGV));
24 # one can discuss setting this variable to 1 unconditionally, as
25 # the folded loop is only 3% slower than unrolled, but >7 times smaller

27 &public_label("DES_SPtrans");

29 &DES_encrypt_internal();
30 &DES_decrypt_internal();
31 &DES_encrypt("DES_encrypt1",1);
32 &DES_encrypt("DES_encrypt2",0);
33 &DES_encrypt3("DES_encrypt3",1);
34 &DES_encrypt3("DES_decrypt3",0);
35 &cbc("DES_ncbc_encrypt","DES_encrypt1","DES_encrypt1",0,4,5,3,5,-1);
36 &cbc("DES_ede3_cbc_encrypt","DES_encrypt3","DES_decrypt3",0,6,7,3,4,5);
37 &DES_SPtrans();

39 &asm_finish();

41 sub DES_encrypt_internal()
42 {
43 &function_begin_B("_x86_DES_encrypt");

45 if ($small_footprint)
46 {
47 &lea("edx",&DWP(128,"ecx"));
48 &push("edx");
49 &push("ecx");
50 &set_label("eloop");
51 &D_ENCRYPT(0,$L,$R,0,$trans,"eax","ebx","ecx","edx",&swtmp(0));
52 &comment("");
53 &D_ENCRYPT(1,$R,$L,2,$trans,"eax","ebx","ecx","edx",&swtmp(0));
54 &comment("");
55 &add("ecx",16);
56 &cmp("ecx",&swtmp(1));
57 &mov(&swtmp(0),"ecx");
58 &jb(&label("eloop"));
59 &add("esp",8);
60 }
61 else

new/usr/src/lib/openssl/libsunw_crypto/pl/des-586.pl 2

62 {
63 &push("ecx");
64 for ($i=0; $i<16; $i+=2)
65 {
66 &comment("Round $i");
67 &D_ENCRYPT($i,$L,$R,$i*2,$trans,"eax","ebx","ecx","edx",&swtmp(0
68 &comment("Round ".sprintf("%d",$i+1));
69 &D_ENCRYPT($i+1,$R,$L,($i+1)*2,$trans,"eax","ebx","ecx","edx",&s
70 }
71 &add("esp",4);
72 }
73 &ret();

75 &function_end_B("_x86_DES_encrypt");
76 }
77
78 sub DES_decrypt_internal()
79 {
80 &function_begin_B("_x86_DES_decrypt");

82 if ($small_footprint)
83 {
84 &push("ecx");
85 &lea("ecx",&DWP(128,"ecx"));
86 &push("ecx");
87 &set_label("dloop");
88 &D_ENCRYPT(0,$L,$R,-2,$trans,"eax","ebx","ecx","edx",&swtmp(0));
89 &comment("");
90 &D_ENCRYPT(1,$R,$L,-4,$trans,"eax","ebx","ecx","edx",&swtmp(0));
91 &comment("");
92 &sub("ecx",16);
93 &cmp("ecx",&swtmp(1));
94 &mov(&swtmp(0),"ecx");
95 &ja(&label("dloop"));
96 &add("esp",8);
97 }
98 else
99 {
100 &push("ecx");
101 for ($i=15; $i>0; $i-=2)
102 {
103 &comment("Round $i");
104 &D_ENCRYPT(15-$i,$L,$R,$i*2,$trans,"eax","ebx","ecx","edx",&swtm
105 &comment("Round ".sprintf("%d",$i-1));
106 &D_ENCRYPT(15-$i+1,$R,$L,($i-1)*2,$trans,"eax","ebx","ecx","edx"
107 }
108 &add("esp",4);
109 }
110 &ret();

112 &function_end_B("_x86_DES_decrypt");
113 }
114
115 sub DES_encrypt
116 {
117 local($name,$do_ip)=@_;

119 &function_begin_B($name);

121 &push("esi");
122 &push("edi");

124 &comment("");
125 &comment("Load the 2 words");

127 if ($do_ip)

new/usr/src/lib/openssl/libsunw_crypto/pl/des-586.pl 3

128 {
129 &mov($R,&wparam(0));
130 &xor("ecx", "ecx");

132 &push("ebx");
133 &push("ebp");

135 &mov("eax",&DWP(0,$R,"",0));
136 &mov("ebx",&wparam(2)); # get encrypt flag
137 &mov($L,&DWP(4,$R,"",0));
138 &comment("");
139 &comment("IP");
140 &IP_new("eax",$L,$R,3);
141 }
142 else
143 {
144 &mov("eax",&wparam(0));
145 &xor("ecx", "ecx");

147 &push("ebx");
148 &push("ebp");

150 &mov($R,&DWP(0,"eax","",0));
151 &mov("ebx",&wparam(2)); # get encrypt flag
152 &rotl($R,3);
153 &mov($L,&DWP(4,"eax","",0));
154 &rotl($L,3);
155 }

157 # PIC-ification:-)
158 &call (&label("pic_point"));
159 &set_label("pic_point");
160 &blindpop($trans);
161 &lea ($trans,&DWP(&label("DES_SPtrans")."-".&label("pic_point"),$tran

163 &mov("ecx", &wparam(1));

165 &cmp("ebx","0");
166 &je(&label("decrypt"));
167 &call("_x86_DES_encrypt");
168 &jmp(&label("done"));
169 &set_label("decrypt");
170 &call("_x86_DES_decrypt");
171 &set_label("done");

173 if ($do_ip)
174 {
175 &comment("");
176 &comment("FP");
177 &mov("edx",&wparam(0));
178 &FP_new($L,$R,"eax",3);

180 &mov(&DWP(0,"edx","",0),"eax");
181 &mov(&DWP(4,"edx","",0),$R);
182 }
183 else
184 {
185 &comment("");
186 &comment("Fixup");
187 &rotr($L,3); # r
188 &mov("eax",&wparam(0));
189 &rotr($R,3); # l
190 &mov(&DWP(0,"eax","",0),$L);
191 &mov(&DWP(4,"eax","",0),$R);
192 }

new/usr/src/lib/openssl/libsunw_crypto/pl/des-586.pl 4

194 &pop("ebp");
195 &pop("ebx");
196 &pop("edi");
197 &pop("esi");
198 &ret();

200 &function_end_B($name);
201 }

203 sub D_ENCRYPT
204 {
205 local($r,$L,$R,$S,$trans,$u,$tmp1,$tmp2,$t,$wp1)=@_;

207 &mov($u, &DWP(&n2a($S*4),$tmp2,"",0));
208 &xor($tmp1, $tmp1);
209 &mov($t, &DWP(&n2a(($S+1)*4),$tmp2,"",0));
210 &xor($u, $R);
211 &xor($tmp2, $tmp2);
212 &xor($t, $R);
213 &and($u, "0xfcfcfcfc");
214 &and($t, "0xcfcfcfcf");
215 &movb(&LB($tmp1), &LB($u));
216 &movb(&LB($tmp2), &HB($u));
217 &rotr($t, 4);
218 &xor($L, &DWP(" ",$trans,$tmp1,0));
219 &movb(&LB($tmp1), &LB($t));
220 &xor($L, &DWP("0x200",$trans,$tmp2,0));
221 &movb(&LB($tmp2), &HB($t));
222 &shr($u, 16);
223 &xor($L, &DWP("0x100",$trans,$tmp1,0));
224 &movb(&LB($tmp1), &HB($u));
225 &shr($t, 16);
226 &xor($L, &DWP("0x300",$trans,$tmp2,0));
227 &movb(&LB($tmp2), &HB($t));
228 &and($u, "0xff");
229 &and($t, "0xff");
230 &xor($L, &DWP("0x600",$trans,$tmp1,0));
231 &xor($L, &DWP("0x700",$trans,$tmp2,0));
232 &mov($tmp2, $wp1);
233 &xor($L, &DWP("0x400",$trans,$u,0));
234 &xor($L, &DWP("0x500",$trans,$t,0));
235 }

237 sub n2a
238 {
239 sprintf("%d",$_[0]);
240 }

242 # now has a side affect of rotating $a by $shift
243 sub R_PERM_OP
244 {
245 local($a,$b,$tt,$shift,$mask,$last)=@_;

247 &rotl($a, $shift) if ($shift != 0);
248 &mov($tt, $a);
249 &xor($a, $b);
250 &and($a, $mask);
251 # This can never succeed, and besides it is difficult to see what the
252 # idea was - Ben 13 Feb 99
253 if (!$last eq $b)
254 {
255 &xor($b, $a);
256 &xor($tt, $a);
257 }
258 else
259 {

new/usr/src/lib/openssl/libsunw_crypto/pl/des-586.pl 5

260 &xor($tt, $a);
261 &xor($b, $a);
262 }
263 &comment("");
264 }

266 sub IP_new
267 {
268 local($l,$r,$tt,$lr)=@_;

270 &R_PERM_OP($l,$r,$tt, 4,"0xf0f0f0f0",$l);
271 &R_PERM_OP($r,$tt,$l,20,"0xfff0000f",$l);
272 &R_PERM_OP($l,$tt,$r,14,"0x33333333",$r);
273 &R_PERM_OP($tt,$r,$l,22,"0x03fc03fc",$r);
274 &R_PERM_OP($l,$r,$tt, 9,"0xaaaaaaaa",$r);
275
276 if ($lr != 3)
277 {
278 if (($lr-3) < 0)
279 { &rotr($tt, 3-$lr); }
280 else { &rotl($tt, $lr-3); }
281 }
282 if ($lr != 2)
283 {
284 if (($lr-2) < 0)
285 { &rotr($r, 2-$lr); }
286 else { &rotl($r, $lr-2); }
287 }
288 }

290 sub FP_new
291 {
292 local($l,$r,$tt,$lr)=@_;

294 if ($lr != 2)
295 {
296 if (($lr-2) < 0)
297 { &rotl($r, 2-$lr); }
298 else { &rotr($r, $lr-2); }
299 }
300 if ($lr != 3)
301 {
302 if (($lr-3) < 0)
303 { &rotl($l, 3-$lr); }
304 else { &rotr($l, $lr-3); }
305 }

307 &R_PERM_OP($l,$r,$tt, 0,"0xaaaaaaaa",$r);
308 &R_PERM_OP($tt,$r,$l,23,"0x03fc03fc",$r);
309 &R_PERM_OP($l,$r,$tt,10,"0x33333333",$l);
310 &R_PERM_OP($r,$tt,$l,18,"0xfff0000f",$l);
311 &R_PERM_OP($l,$tt,$r,12,"0xf0f0f0f0",$r);
312 &rotr($tt , 4);
313 }

315 sub DES_SPtrans
316 {
317 &set_label("DES_SPtrans",64);
318 &data_word(0x02080800, 0x00080000, 0x02000002, 0x02080802);
319 &data_word(0x02000000, 0x00080802, 0x00080002, 0x02000002);
320 &data_word(0x00080802, 0x02080800, 0x02080000, 0x00000802);
321 &data_word(0x02000802, 0x02000000, 0x00000000, 0x00080002);
322 &data_word(0x00080000, 0x00000002, 0x02000800, 0x00080800);
323 &data_word(0x02080802, 0x02080000, 0x00000802, 0x02000800);
324 &data_word(0x00000002, 0x00000800, 0x00080800, 0x02080002);
325 &data_word(0x00000800, 0x02000802, 0x02080002, 0x00000000);

new/usr/src/lib/openssl/libsunw_crypto/pl/des-586.pl 6

326 &data_word(0x00000000, 0x02080802, 0x02000800, 0x00080002);
327 &data_word(0x02080800, 0x00080000, 0x00000802, 0x02000800);
328 &data_word(0x02080002, 0x00000800, 0x00080800, 0x02000002);
329 &data_word(0x00080802, 0x00000002, 0x02000002, 0x02080000);
330 &data_word(0x02080802, 0x00080800, 0x02080000, 0x02000802);
331 &data_word(0x02000000, 0x00000802, 0x00080002, 0x00000000);
332 &data_word(0x00080000, 0x02000000, 0x02000802, 0x02080800);
333 &data_word(0x00000002, 0x02080002, 0x00000800, 0x00080802);
334 # nibble 1
335 &data_word(0x40108010, 0x00000000, 0x00108000, 0x40100000);
336 &data_word(0x40000010, 0x00008010, 0x40008000, 0x00108000);
337 &data_word(0x00008000, 0x40100010, 0x00000010, 0x40008000);
338 &data_word(0x00100010, 0x40108000, 0x40100000, 0x00000010);
339 &data_word(0x00100000, 0x40008010, 0x40100010, 0x00008000);
340 &data_word(0x00108010, 0x40000000, 0x00000000, 0x00100010);
341 &data_word(0x40008010, 0x00108010, 0x40108000, 0x40000010);
342 &data_word(0x40000000, 0x00100000, 0x00008010, 0x40108010);
343 &data_word(0x00100010, 0x40108000, 0x40008000, 0x00108010);
344 &data_word(0x40108010, 0x00100010, 0x40000010, 0x00000000);
345 &data_word(0x40000000, 0x00008010, 0x00100000, 0x40100010);
346 &data_word(0x00008000, 0x40000000, 0x00108010, 0x40008010);
347 &data_word(0x40108000, 0x00008000, 0x00000000, 0x40000010);
348 &data_word(0x00000010, 0x40108010, 0x00108000, 0x40100000);
349 &data_word(0x40100010, 0x00100000, 0x00008010, 0x40008000);
350 &data_word(0x40008010, 0x00000010, 0x40100000, 0x00108000);
351 # nibble 2
352 &data_word(0x04000001, 0x04040100, 0x00000100, 0x04000101);
353 &data_word(0x00040001, 0x04000000, 0x04000101, 0x00040100);
354 &data_word(0x04000100, 0x00040000, 0x04040000, 0x00000001);
355 &data_word(0x04040101, 0x00000101, 0x00000001, 0x04040001);
356 &data_word(0x00000000, 0x00040001, 0x04040100, 0x00000100);
357 &data_word(0x00000101, 0x04040101, 0x00040000, 0x04000001);
358 &data_word(0x04040001, 0x04000100, 0x00040101, 0x04040000);
359 &data_word(0x00040100, 0x00000000, 0x04000000, 0x00040101);
360 &data_word(0x04040100, 0x00000100, 0x00000001, 0x00040000);
361 &data_word(0x00000101, 0x00040001, 0x04040000, 0x04000101);
362 &data_word(0x00000000, 0x04040100, 0x00040100, 0x04040001);
363 &data_word(0x00040001, 0x04000000, 0x04040101, 0x00000001);
364 &data_word(0x00040101, 0x04000001, 0x04000000, 0x04040101);
365 &data_word(0x00040000, 0x04000100, 0x04000101, 0x00040100);
366 &data_word(0x04000100, 0x00000000, 0x04040001, 0x00000101);
367 &data_word(0x04000001, 0x00040101, 0x00000100, 0x04040000);
368 # nibble 3
369 &data_word(0x00401008, 0x10001000, 0x00000008, 0x10401008);
370 &data_word(0x00000000, 0x10400000, 0x10001008, 0x00400008);
371 &data_word(0x10401000, 0x10000008, 0x10000000, 0x00001008);
372 &data_word(0x10000008, 0x00401008, 0x00400000, 0x10000000);
373 &data_word(0x10400008, 0x00401000, 0x00001000, 0x00000008);
374 &data_word(0x00401000, 0x10001008, 0x10400000, 0x00001000);
375 &data_word(0x00001008, 0x00000000, 0x00400008, 0x10401000);
376 &data_word(0x10001000, 0x10400008, 0x10401008, 0x00400000);
377 &data_word(0x10400008, 0x00001008, 0x00400000, 0x10000008);
378 &data_word(0x00401000, 0x10001000, 0x00000008, 0x10400000);
379 &data_word(0x10001008, 0x00000000, 0x00001000, 0x00400008);
380 &data_word(0x00000000, 0x10400008, 0x10401000, 0x00001000);
381 &data_word(0x10000000, 0x10401008, 0x00401008, 0x00400000);
382 &data_word(0x10401008, 0x00000008, 0x10001000, 0x00401008);
383 &data_word(0x00400008, 0x00401000, 0x10400000, 0x10001008);
384 &data_word(0x00001008, 0x10000000, 0x10000008, 0x10401000);
385 # nibble 4
386 &data_word(0x08000000, 0x00010000, 0x00000400, 0x08010420);
387 &data_word(0x08010020, 0x08000400, 0x00010420, 0x08010000);
388 &data_word(0x00010000, 0x00000020, 0x08000020, 0x00010400);
389 &data_word(0x08000420, 0x08010020, 0x08010400, 0x00000000);
390 &data_word(0x00010400, 0x08000000, 0x00010020, 0x00000420);
391 &data_word(0x08000400, 0x00010420, 0x00000000, 0x08000020);

new/usr/src/lib/openssl/libsunw_crypto/pl/des-586.pl 7

392 &data_word(0x00000020, 0x08000420, 0x08010420, 0x00010020);
393 &data_word(0x08010000, 0x00000400, 0x00000420, 0x08010400);
394 &data_word(0x08010400, 0x08000420, 0x00010020, 0x08010000);
395 &data_word(0x00010000, 0x00000020, 0x08000020, 0x08000400);
396 &data_word(0x08000000, 0x00010400, 0x08010420, 0x00000000);
397 &data_word(0x00010420, 0x08000000, 0x00000400, 0x00010020);
398 &data_word(0x08000420, 0x00000400, 0x00000000, 0x08010420);
399 &data_word(0x08010020, 0x08010400, 0x00000420, 0x00010000);
400 &data_word(0x00010400, 0x08010020, 0x08000400, 0x00000420);
401 &data_word(0x00000020, 0x00010420, 0x08010000, 0x08000020);
402 # nibble 5
403 &data_word(0x80000040, 0x00200040, 0x00000000, 0x80202000);
404 &data_word(0x00200040, 0x00002000, 0x80002040, 0x00200000);
405 &data_word(0x00002040, 0x80202040, 0x00202000, 0x80000000);
406 &data_word(0x80002000, 0x80000040, 0x80200000, 0x00202040);
407 &data_word(0x00200000, 0x80002040, 0x80200040, 0x00000000);
408 &data_word(0x00002000, 0x00000040, 0x80202000, 0x80200040);
409 &data_word(0x80202040, 0x80200000, 0x80000000, 0x00002040);
410 &data_word(0x00000040, 0x00202000, 0x00202040, 0x80002000);
411 &data_word(0x00002040, 0x80000000, 0x80002000, 0x00202040);
412 &data_word(0x80202000, 0x00200040, 0x00000000, 0x80002000);
413 &data_word(0x80000000, 0x00002000, 0x80200040, 0x00200000);
414 &data_word(0x00200040, 0x80202040, 0x00202000, 0x00000040);
415 &data_word(0x80202040, 0x00202000, 0x00200000, 0x80002040);
416 &data_word(0x80000040, 0x80200000, 0x00202040, 0x00000000);
417 &data_word(0x00002000, 0x80000040, 0x80002040, 0x80202000);
418 &data_word(0x80200000, 0x00002040, 0x00000040, 0x80200040);
419 # nibble 6
420 &data_word(0x00004000, 0x00000200, 0x01000200, 0x01000004);
421 &data_word(0x01004204, 0x00004004, 0x00004200, 0x00000000);
422 &data_word(0x01000000, 0x01000204, 0x00000204, 0x01004000);
423 &data_word(0x00000004, 0x01004200, 0x01004000, 0x00000204);
424 &data_word(0x01000204, 0x00004000, 0x00004004, 0x01004204);
425 &data_word(0x00000000, 0x01000200, 0x01000004, 0x00004200);
426 &data_word(0x01004004, 0x00004204, 0x01004200, 0x00000004);
427 &data_word(0x00004204, 0x01004004, 0x00000200, 0x01000000);
428 &data_word(0x00004204, 0x01004000, 0x01004004, 0x00000204);
429 &data_word(0x00004000, 0x00000200, 0x01000000, 0x01004004);
430 &data_word(0x01000204, 0x00004204, 0x00004200, 0x00000000);
431 &data_word(0x00000200, 0x01000004, 0x00000004, 0x01000200);
432 &data_word(0x00000000, 0x01000204, 0x01000200, 0x00004200);
433 &data_word(0x00000204, 0x00004000, 0x01004204, 0x01000000);
434 &data_word(0x01004200, 0x00000004, 0x00004004, 0x01004204);
435 &data_word(0x01000004, 0x01004200, 0x01004000, 0x00004004);
436 # nibble 7
437 &data_word(0x20800080, 0x20820000, 0x00020080, 0x00000000);
438 &data_word(0x20020000, 0x00800080, 0x20800000, 0x20820080);
439 &data_word(0x00000080, 0x20000000, 0x00820000, 0x00020080);
440 &data_word(0x00820080, 0x20020080, 0x20000080, 0x20800000);
441 &data_word(0x00020000, 0x00820080, 0x00800080, 0x20020000);
442 &data_word(0x20820080, 0x20000080, 0x00000000, 0x00820000);
443 &data_word(0x20000000, 0x00800000, 0x20020080, 0x20800080);
444 &data_word(0x00800000, 0x00020000, 0x20820000, 0x00000080);
445 &data_word(0x00800000, 0x00020000, 0x20000080, 0x20820080);
446 &data_word(0x00020080, 0x20000000, 0x00000000, 0x00820000);
447 &data_word(0x20800080, 0x20020080, 0x20020000, 0x00800080);
448 &data_word(0x20820000, 0x00000080, 0x00800080, 0x20020000);
449 &data_word(0x20820080, 0x00800000, 0x20800000, 0x20000080);
450 &data_word(0x00820000, 0x00020080, 0x20020080, 0x20800000);
451 &data_word(0x00000080, 0x20820000, 0x00820080, 0x00000000);
452 &data_word(0x20000000, 0x20800080, 0x00020000, 0x00820080);
453 }

new/usr/src/lib/openssl/libsunw_crypto/pl/desboth.pl 1

**
 1375 Fri May 30 18:32:03 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/desboth.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/local/bin/perl

3 $L="edi";
4 $R="esi";

6 sub DES_encrypt3
7 {
8 local($name,$enc)=@_;

10 &function_begin_B($name,"");
11 &push("ebx");
12 &mov("ebx",&wparam(0));

14 &push("ebp");
15 &push("esi");

17 &push("edi");

19 &comment("");
20 &comment("Load the data words");
21 &mov($L,&DWP(0,"ebx","",0));
22 &mov($R,&DWP(4,"ebx","",0));
23 &stack_push(3);

25 &comment("");
26 &comment("IP");
27 &IP_new($L,$R,"edx",0);

29 # put them back
30
31 if ($enc)
32 {
33 &mov(&DWP(4,"ebx","",0),$R);
34 &mov("eax",&wparam(1));
35 &mov(&DWP(0,"ebx","",0),"edx");
36 &mov("edi",&wparam(2));
37 &mov("esi",&wparam(3));
38 }
39 else
40 {
41 &mov(&DWP(4,"ebx","",0),$R);
42 &mov("esi",&wparam(1));
43 &mov(&DWP(0,"ebx","",0),"edx");
44 &mov("edi",&wparam(2));
45 &mov("eax",&wparam(3));
46 }
47 &mov(&swtmp(2), (DWC(($enc)?"1":"0")));
48 &mov(&swtmp(1), "eax");
49 &mov(&swtmp(0), "ebx");
50 &call("DES_encrypt2");
51 &mov(&swtmp(2), (DWC(($enc)?"0":"1")));
52 &mov(&swtmp(1), "edi");
53 &mov(&swtmp(0), "ebx");
54 &call("DES_encrypt2");
55 &mov(&swtmp(2), (DWC(($enc)?"1":"0")));
56 &mov(&swtmp(1), "esi");
57 &mov(&swtmp(0), "ebx");
58 &call("DES_encrypt2");

60 &stack_pop(3);
61 &mov($L,&DWP(0,"ebx","",0));

new/usr/src/lib/openssl/libsunw_crypto/pl/desboth.pl 2

62 &mov($R,&DWP(4,"ebx","",0));

64 &comment("");
65 &comment("FP");
66 &FP_new($L,$R,"eax",0);

68 &mov(&DWP(0,"ebx","",0),"eax");
69 &mov(&DWP(4,"ebx","",0),$R);

71 &pop("edi");
72 &pop("esi");
73 &pop("ebp");
74 &pop("ebx");
75 &ret();
76 &function_end_B($name);
77 }

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 1

**
 39632 Fri May 30 18:32:04 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl
2 #
3 # ==
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==
9 #
10 # March, May, June 2010
11 #
12 # The module implements "4-bit" GCM GHASH function and underlying
13 # single multiplication operation in GF(2^128). "4-bit" means that it
14 # uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
15 # code paths: vanilla x86 and vanilla MMX. Former will be executed on
16 # 486 and Pentium, latter on all others. MMX GHASH features so called
17 # "528B" variant of "4-bit" method utilizing additional 256+16 bytes
18 # of per-key storage [+512 bytes shared table]. Performance results
19 # are for streamed GHASH subroutine and are expressed in cycles per
20 # processed byte, less is better:
21 #
22 # gcc 2.95.3(*) MMX assembler x86 assembler
23 #
24 # Pentium 105/111(**) - 50
25 # PIII 68 /75 12.2 24
26 # P4 125/125 17.8 84(***)
27 # Opteron 66 /70 10.1 30
28 # Core2 54 /67 8.4 18
29 #
30 # (*) gcc 3.4.x was observed to generate few percent slower code,
31 # which is one of reasons why 2.95.3 results were chosen,
32 # another reason is lack of 3.4.x results for older CPUs;
33 # comparison with MMX results is not completely fair, because C
34 # results are for vanilla "256B" implementation, while
35 # assembler results are for "528B";-)
36 # (**) second number is result for code compiled with -fPIC flag,
37 # which is actually more relevant, because assembler code is
38 # position-independent;
39 # (***) see comment in non-MMX routine for further details;
40 #
41 # To summarize, it’s >2-5 times faster than gcc-generated code. To
42 # anchor it to something else SHA1 assembler processes one byte in
43 # 11-13 cycles on contemporary x86 cores. As for choice of MMX in
44 # particular, see comment at the end of the file...

46 # May 2010
47 #
48 # Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
49 # The question is how close is it to theoretical limit? The pclmulqdq
50 # instruction latency appears to be 14 cycles and there can’t be more
51 # than 2 of them executing at any given time. This means that single
52 # Karatsuba multiplication would take 28 cycles *plus* few cycles for
53 # pre- and post-processing. Then multiplication has to be followed by
54 # modulo-reduction. Given that aggregated reduction method [see
55 # "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
56 # white paper by Intel] allows you to perform reduction only once in
57 # a while we can assume that asymptotic performance can be estimated
58 # as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
59 # and Naggr is the aggregation factor.
60 #
61 # Before we proceed to this implementation let’s have closer look at

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 2

62 # the best-performing code suggested by Intel in their white paper.
63 # By tracing inter-register dependencies Tmod is estimated as ~19
64 # cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
65 # processed byte. As implied, this is quite optimistic estimate,
66 # because it does not account for Karatsuba pre- and post-processing,
67 # which for a single multiplication is ~5 cycles. Unfortunately Intel
68 # does not provide performance data for GHASH alone. But benchmarking
69 # AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
70 # alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
71 # the result accounts even for pre-computing of degrees of the hash
72 # key H, but its portion is negligible at 16KB buffer size.
73 #
74 # Moving on to the implementation in question. Tmod is estimated as
75 # ~13 cycles and Naggr is 2, giving asymptotic performance of ...
76 # 2.16. How is it possible that measured performance is better than
77 # optimistic theoretical estimate? There is one thing Intel failed
78 # to recognize. By serializing GHASH with CTR in same subroutine
79 # former’s performance is really limited to above (Tmul + Tmod/Naggr)
80 # equation. But if GHASH procedure is detached, the modulo-reduction
81 # can be interleaved with Naggr-1 multiplications at instruction level
82 # and under ideal conditions even disappear from the equation. So that
83 # optimistic theoretical estimate for this implementation is ...
84 # 28/16=1.75, and not 2.16. Well, it’s probably way too optimistic,
85 # at least for such small Naggr. I’d argue that (28+Tproc/Naggr),
86 # where Tproc is time required for Karatsuba pre- and post-processing,
87 # is more realistic estimate. In this case it gives ... 1.91 cycles.
88 # Or in other words, depending on how well we can interleave reduction
89 # and one of the two multiplications the performance should be betwen
90 # 1.91 and 2.16. As already mentioned, this implementation processes
91 # one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
92 # - in 2.02. x86_64 performance is better, because larger register
93 # bank allows to interleave reduction and multiplication better.
94 #
95 # Does it make sense to increase Naggr? To start with it’s virtually
96 # impossible in 32-bit mode, because of limited register bank
97 # capacity. Otherwise improvement has to be weighed agiainst slower
98 # setup, as well as code size and complexity increase. As even
99 # optimistic estimate doesn’t promise 30% performance improvement,
100 # there are currently no plans to increase Naggr.
101 #
102 # Special thanks to David Woodhouse <dwmw2@infradead.org> for
103 # providing access to a Westmere-based system on behalf of Intel
104 # Open Source Technology Centre.

106 # January 2010
107 #
108 # Tweaked to optimize transitions between integer and FP operations
109 # on same XMM register, PCLMULQDQ subroutine was measured to process
110 # one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
111 # The minor regression on Westmere is outweighed by ~15% improvement
112 # on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
113 # similar manner resulted in almost 20% degradation on Sandy Bridge,
114 # where original 64-bit code processes one byte in 1.95 cycles.

116 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
117 push(@INC,"${dir}","${dir}../../perlasm");
118 require "x86asm.pl";

120 &asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");

122 # OpenSSL defaults to sse2=0, but it breaks it
123 $sse2=0;
124 for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }

126 ($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
127 $inp = "edi";

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 3

128 $Htbl = "esi";

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 4

129 $unroll = 0; # Affects x86 loop. Folded loop performs ~7% worse
130 # than unrolled, which has to be weighted against
131 # 2.5x x86-specific code size reduction.

133 sub x86_loop {
134 my $off = shift;
135 my $rem = "eax";

137 &mov ($Zhh,&DWP(4,$Htbl,$Zll));
138 &mov ($Zhl,&DWP(0,$Htbl,$Zll));
139 &mov ($Zlh,&DWP(12,$Htbl,$Zll));
140 &mov ($Zll,&DWP(8,$Htbl,$Zll));
141 &xor ($rem,$rem); # avoid partial register stalls on PIII

143 # shrd practically kills P4, 2.5x deterioration, but P4 has
144 # MMX code-path to execute. shrd runs tad faster [than twice
145 # the shifts, move’s and or’s] on pre-MMX Pentium (as well as
146 # PIII and Core2), *but* minimizes code size, spares register
147 # and thus allows to fold the loop...
148 if (!$unroll) {
149 my $cnt = $inp;
150 &mov ($cnt,15);
151 &jmp (&label("x86_loop"));
152 &set_label("x86_loop",16);
153 for($i=1;$i<=2;$i++) {
154 &mov (&LB($rem),&LB($Zll));
155 &shrd ($Zll,$Zlh,4);
156 &and (&LB($rem),0xf);
157 &shrd ($Zlh,$Zhl,4);
158 &shrd ($Zhl,$Zhh,4);
159 &shr ($Zhh,4);
160 &xor ($Zhh,&DWP($off+16,"esp",$rem,4));

162 &mov (&LB($rem),&BP($off,"esp",$cnt));
163 if ($i&1) {
164 &and (&LB($rem),0xf0);
165 } else {
166 &shl (&LB($rem),4);
167 }

169 &xor ($Zll,&DWP(8,$Htbl,$rem));
170 &xor ($Zlh,&DWP(12,$Htbl,$rem));
171 &xor ($Zhl,&DWP(0,$Htbl,$rem));
172 &xor ($Zhh,&DWP(4,$Htbl,$rem));

174 if ($i&1) {
175 &dec ($cnt);
176 &js (&label("x86_break"));
177 } else {
178 &jmp (&label("x86_loop"));
179 }
180 }
181 &set_label("x86_break",16);
182 } else {
183 for($i=1;$i<32;$i++) {
184 &comment($i);
185 &mov (&LB($rem),&LB($Zll));
186 &shrd ($Zll,$Zlh,4);
187 &and (&LB($rem),0xf);
188 &shrd ($Zlh,$Zhl,4);
189 &shrd ($Zhl,$Zhh,4);
190 &shr ($Zhh,4);
191 &xor ($Zhh,&DWP($off+16,"esp",$rem,4));

193 if ($i&1) {
194 &mov (&LB($rem),&BP($off+15-($i>>1),"esp"));

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 5

195 &and (&LB($rem),0xf0);
196 } else {
197 &mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
198 &shl (&LB($rem),4);
199 }

201 &xor ($Zll,&DWP(8,$Htbl,$rem));
202 &xor ($Zlh,&DWP(12,$Htbl,$rem));
203 &xor ($Zhl,&DWP(0,$Htbl,$rem));
204 &xor ($Zhh,&DWP(4,$Htbl,$rem));
205 }
206 }
207 &bswap ($Zll);
208 &bswap ($Zlh);
209 &bswap ($Zhl);
210 if (!$x86only) {
211 &bswap ($Zhh);
212 } else {
213 &mov ("eax",$Zhh);
214 &bswap ("eax");
215 &mov ($Zhh,"eax");
216 }
217 }

219 if ($unroll) {
220 &function_begin_B("_x86_gmult_4bit_inner");
221 &x86_loop(4);
222 &ret ();
223 &function_end_B("_x86_gmult_4bit_inner");
224 }

226 sub deposit_rem_4bit {
227 my $bias = shift;

229 &mov (&DWP($bias+0, "esp"),0x0000<<16);
230 &mov (&DWP($bias+4, "esp"),0x1C20<<16);
231 &mov (&DWP($bias+8, "esp"),0x3840<<16);
232 &mov (&DWP($bias+12,"esp"),0x2460<<16);
233 &mov (&DWP($bias+16,"esp"),0x7080<<16);
234 &mov (&DWP($bias+20,"esp"),0x6CA0<<16);
235 &mov (&DWP($bias+24,"esp"),0x48C0<<16);
236 &mov (&DWP($bias+28,"esp"),0x54E0<<16);
237 &mov (&DWP($bias+32,"esp"),0xE100<<16);
238 &mov (&DWP($bias+36,"esp"),0xFD20<<16);
239 &mov (&DWP($bias+40,"esp"),0xD940<<16);
240 &mov (&DWP($bias+44,"esp"),0xC560<<16);
241 &mov (&DWP($bias+48,"esp"),0x9180<<16);
242 &mov (&DWP($bias+52,"esp"),0x8DA0<<16);
243 &mov (&DWP($bias+56,"esp"),0xA9C0<<16);
244 &mov (&DWP($bias+60,"esp"),0xB5E0<<16);
245 }

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 6

246 $suffix = $x86only ? "" : "_x86";

248 &function_begin("gcm_gmult_4bit".$suffix);
249 &stack_push(16+4+1); # +1 for stack alignment
250 &mov ($inp,&wparam(0)); # load Xi
251 &mov ($Htbl,&wparam(1)); # load Htable

253 &mov ($Zhh,&DWP(0,$inp)); # load Xi[16]
254 &mov ($Zhl,&DWP(4,$inp));
255 &mov ($Zlh,&DWP(8,$inp));
256 &mov ($Zll,&DWP(12,$inp));

258 &deposit_rem_4bit(16);

260 &mov (&DWP(0,"esp"),$Zhh); # copy Xi[16] on stack
261 &mov (&DWP(4,"esp"),$Zhl);
262 &mov (&DWP(8,"esp"),$Zlh);
263 &mov (&DWP(12,"esp"),$Zll);
264 &shr ($Zll,20);
265 &and ($Zll,0xf0);

267 if ($unroll) {
268 &call ("_x86_gmult_4bit_inner");
269 } else {
270 &x86_loop(0);
271 &mov ($inp,&wparam(0));
272 }

274 &mov (&DWP(12,$inp),$Zll);
275 &mov (&DWP(8,$inp),$Zlh);
276 &mov (&DWP(4,$inp),$Zhl);
277 &mov (&DWP(0,$inp),$Zhh);
278 &stack_pop(16+4+1);
279 &function_end("gcm_gmult_4bit".$suffix);

281 &function_begin("gcm_ghash_4bit".$suffix);
282 &stack_push(16+4+1); # +1 for 64-bit alignment
283 &mov ($Zll,&wparam(0)); # load Xi
284 &mov ($Htbl,&wparam(1)); # load Htable
285 &mov ($inp,&wparam(2)); # load in
286 &mov ("ecx",&wparam(3)); # load len
287 &add ("ecx",$inp);
288 &mov (&wparam(3),"ecx");

290 &mov ($Zhh,&DWP(0,$Zll)); # load Xi[16]
291 &mov ($Zhl,&DWP(4,$Zll));
292 &mov ($Zlh,&DWP(8,$Zll));
293 &mov ($Zll,&DWP(12,$Zll));

295 &deposit_rem_4bit(16);

297 &set_label("x86_outer_loop",16);
298 &xor ($Zll,&DWP(12,$inp)); # xor with input
299 &xor ($Zlh,&DWP(8,$inp));
300 &xor ($Zhl,&DWP(4,$inp));
301 &xor ($Zhh,&DWP(0,$inp));
302 &mov (&DWP(12,"esp"),$Zll); # dump it on stack
303 &mov (&DWP(8,"esp"),$Zlh);
304 &mov (&DWP(4,"esp"),$Zhl);
305 &mov (&DWP(0,"esp"),$Zhh);

307 &shr ($Zll,20);
308 &and ($Zll,0xf0);

310 if ($unroll) {
311 &call ("_x86_gmult_4bit_inner");

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 7

312 } else {
313 &x86_loop(0);
314 &mov ($inp,&wparam(2));
315 }
316 &lea ($inp,&DWP(16,$inp));
317 &cmp ($inp,&wparam(3));
318 &mov (&wparam(2),$inp) if (!$unroll);
319 &jb (&label("x86_outer_loop"));

321 &mov ($inp,&wparam(0)); # load Xi
322 &mov (&DWP(12,$inp),$Zll);
323 &mov (&DWP(8,$inp),$Zlh);
324 &mov (&DWP(4,$inp),$Zhl);
325 &mov (&DWP(0,$inp),$Zhh);
326 &stack_pop(16+4+1);
327 &function_end("gcm_ghash_4bit".$suffix);

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 8

328 if (!$x86only) {{{

330 &static_label("rem_4bit");

332 if (!$sse2) {{ # pure-MMX "May" version...

334 $S=12; # shift factor for rem_4bit

336 &function_begin_B("_mmx_gmult_4bit_inner");
337 # MMX version performs 3.5 times better on P4 (see comment in non-MMX
338 # routine for further details), 100% better on Opteron, ~70% better
339 # on Core2 and PIII... In other words effort is considered to be well
340 # spent... Since initial release the loop was unrolled in order to
341 # "liberate" register previously used as loop counter. Instead it’s
342 # used to optimize critical path in ’Z.hi ^= rem_4bit[Z.lo&0xf]’.
343 # The path involves move of Z.lo from MMX to integer register,
344 # effective address calculation and finally merge of value to Z.hi.
345 # Reference to rem_4bit is scheduled so late that I had to >>4
346 # rem_4bit elements. This resulted in 20-45% procent improvement
347 # on contemporary µ-archs.
348 {
349 my $cnt;
350 my $rem_4bit = "eax";
351 my @rem = ($Zhh,$Zll);
352 my $nhi = $Zhl;
353 my $nlo = $Zlh;

355 my ($Zlo,$Zhi) = ("mm0","mm1");
356 my $tmp = "mm2";

358 &xor ($nlo,$nlo); # avoid partial register stalls on PIII
359 &mov ($nhi,$Zll);
360 &mov (&LB($nlo),&LB($nhi));
361 &shl (&LB($nlo),4);
362 &and ($nhi,0xf0);
363 &movq ($Zlo,&QWP(8,$Htbl,$nlo));
364 &movq ($Zhi,&QWP(0,$Htbl,$nlo));
365 &movd ($rem[0],$Zlo);

367 for ($cnt=28;$cnt>=-2;$cnt--) {
368 my $odd = $cnt&1;
369 my $nix = $odd ? $nlo : $nhi;

371 &shl (&LB($nlo),4) if ($odd);
372 &psrlq ($Zlo,4);
373 &movq ($tmp,$Zhi);
374 &psrlq ($Zhi,4);
375 &pxor ($Zlo,&QWP(8,$Htbl,$nix));
376 &mov (&LB($nlo),&BP($cnt/2,$inp)) if (!$odd && $cnt>=0);
377 &psllq ($tmp,60);
378 &and ($nhi,0xf0) if ($odd);
379 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
380 &and ($rem[0],0xf);
381 &pxor ($Zhi,&QWP(0,$Htbl,$nix));
382 &mov ($nhi,$nlo) if (!$odd && $cnt>=0);
383 &movd ($rem[1],$Zlo);
384 &pxor ($Zlo,$tmp);

386 push (@rem,shift(@rem)); # "rotate" registers
387 }

389 &mov ($inp,&DWP(4,$rem_4bit,$rem[1],8)); # last rem_4bit[rem]

391 &psrlq ($Zlo,32); # lower part of Zlo is already there
392 &movd ($Zhl,$Zhi);
393 &psrlq ($Zhi,32);

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 9

394 &movd ($Zlh,$Zlo);
395 &movd ($Zhh,$Zhi);
396 &shl ($inp,4); # compensate for rem_4bit[i] being >>4

398 &bswap ($Zll);
399 &bswap ($Zhl);
400 &bswap ($Zlh);
401 &xor ($Zhh,$inp);
402 &bswap ($Zhh);

404 &ret ();
405 }
406 &function_end_B("_mmx_gmult_4bit_inner");

408 &function_begin("gcm_gmult_4bit_mmx");
409 &mov ($inp,&wparam(0)); # load Xi
410 &mov ($Htbl,&wparam(1)); # load Htable

412 &call (&label("pic_point"));
413 &set_label("pic_point");
414 &blindpop("eax");
415 &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));

417 &movz ($Zll,&BP(15,$inp));

419 &call ("_mmx_gmult_4bit_inner");

421 &mov ($inp,&wparam(0)); # load Xi
422 &emms ();
423 &mov (&DWP(12,$inp),$Zll);
424 &mov (&DWP(4,$inp),$Zhl);
425 &mov (&DWP(8,$inp),$Zlh);
426 &mov (&DWP(0,$inp),$Zhh);
427 &function_end("gcm_gmult_4bit_mmx");

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 10

428 # Streamed version performs 20% better on P4, 7% on Opteron,
429 # 10% on Core2 and PIII...
430 &function_begin("gcm_ghash_4bit_mmx");
431 &mov ($Zhh,&wparam(0)); # load Xi
432 &mov ($Htbl,&wparam(1)); # load Htable
433 &mov ($inp,&wparam(2)); # load in
434 &mov ($Zlh,&wparam(3)); # load len

436 &call (&label("pic_point"));
437 &set_label("pic_point");
438 &blindpop("eax");
439 &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));

441 &add ($Zlh,$inp);
442 &mov (&wparam(3),$Zlh); # len to point at the end of input
443 &stack_push(4+1); # +1 for stack alignment

445 &mov ($Zll,&DWP(12,$Zhh)); # load Xi[16]
446 &mov ($Zhl,&DWP(4,$Zhh));
447 &mov ($Zlh,&DWP(8,$Zhh));
448 &mov ($Zhh,&DWP(0,$Zhh));
449 &jmp (&label("mmx_outer_loop"));

451 &set_label("mmx_outer_loop",16);
452 &xor ($Zll,&DWP(12,$inp));
453 &xor ($Zhl,&DWP(4,$inp));
454 &xor ($Zlh,&DWP(8,$inp));
455 &xor ($Zhh,&DWP(0,$inp));
456 &mov (&wparam(2),$inp);
457 &mov (&DWP(12,"esp"),$Zll);
458 &mov (&DWP(4,"esp"),$Zhl);
459 &mov (&DWP(8,"esp"),$Zlh);
460 &mov (&DWP(0,"esp"),$Zhh);

462 &mov ($inp,"esp");
463 &shr ($Zll,24);

465 &call ("_mmx_gmult_4bit_inner");

467 &mov ($inp,&wparam(2));
468 &lea ($inp,&DWP(16,$inp));
469 &cmp ($inp,&wparam(3));
470 &jb (&label("mmx_outer_loop"));

472 &mov ($inp,&wparam(0)); # load Xi
473 &emms ();
474 &mov (&DWP(12,$inp),$Zll);
475 &mov (&DWP(4,$inp),$Zhl);
476 &mov (&DWP(8,$inp),$Zlh);
477 &mov (&DWP(0,$inp),$Zhh);

479 &stack_pop(4+1);
480 &function_end("gcm_ghash_4bit_mmx");

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 11

481 }} else {{ # "June" MMX version...
482 # ... has slower "April" gcm_gmult_4bit_mmx with folded
483 # loop. This is done to conserve code size...
484 $S=16; # shift factor for rem_4bit

486 sub mmx_loop() {
487 # MMX version performs 2.8 times better on P4 (see comment in non-MMX
488 # routine for further details), 40% better on Opteron and Core2, 50%
489 # better on PIII... In other words effort is considered to be well
490 # spent...
491 my $inp = shift;
492 my $rem_4bit = shift;
493 my $cnt = $Zhh;
494 my $nhi = $Zhl;
495 my $nlo = $Zlh;
496 my $rem = $Zll;

498 my ($Zlo,$Zhi) = ("mm0","mm1");
499 my $tmp = "mm2";

501 &xor ($nlo,$nlo); # avoid partial register stalls on PIII
502 &mov ($nhi,$Zll);
503 &mov (&LB($nlo),&LB($nhi));
504 &mov ($cnt,14);
505 &shl (&LB($nlo),4);
506 &and ($nhi,0xf0);
507 &movq ($Zlo,&QWP(8,$Htbl,$nlo));
508 &movq ($Zhi,&QWP(0,$Htbl,$nlo));
509 &movd ($rem,$Zlo);
510 &jmp (&label("mmx_loop"));

512 &set_label("mmx_loop",16);
513 &psrlq ($Zlo,4);
514 &and ($rem,0xf);
515 &movq ($tmp,$Zhi);
516 &psrlq ($Zhi,4);
517 &pxor ($Zlo,&QWP(8,$Htbl,$nhi));
518 &mov (&LB($nlo),&BP(0,$inp,$cnt));
519 &psllq ($tmp,60);
520 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
521 &dec ($cnt);
522 &movd ($rem,$Zlo);
523 &pxor ($Zhi,&QWP(0,$Htbl,$nhi));
524 &mov ($nhi,$nlo);
525 &pxor ($Zlo,$tmp);
526 &js (&label("mmx_break"));

528 &shl (&LB($nlo),4);
529 &and ($rem,0xf);
530 &psrlq ($Zlo,4);
531 &and ($nhi,0xf0);
532 &movq ($tmp,$Zhi);
533 &psrlq ($Zhi,4);
534 &pxor ($Zlo,&QWP(8,$Htbl,$nlo));
535 &psllq ($tmp,60);
536 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
537 &movd ($rem,$Zlo);
538 &pxor ($Zhi,&QWP(0,$Htbl,$nlo));
539 &pxor ($Zlo,$tmp);
540 &jmp (&label("mmx_loop"));

542 &set_label("mmx_break",16);
543 &shl (&LB($nlo),4);
544 &and ($rem,0xf);
545 &psrlq ($Zlo,4);
546 &and ($nhi,0xf0);

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 12

547 &movq ($tmp,$Zhi);
548 &psrlq ($Zhi,4);
549 &pxor ($Zlo,&QWP(8,$Htbl,$nlo));
550 &psllq ($tmp,60);
551 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
552 &movd ($rem,$Zlo);
553 &pxor ($Zhi,&QWP(0,$Htbl,$nlo));
554 &pxor ($Zlo,$tmp);

556 &psrlq ($Zlo,4);
557 &and ($rem,0xf);
558 &movq ($tmp,$Zhi);
559 &psrlq ($Zhi,4);
560 &pxor ($Zlo,&QWP(8,$Htbl,$nhi));
561 &psllq ($tmp,60);
562 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
563 &movd ($rem,$Zlo);
564 &pxor ($Zhi,&QWP(0,$Htbl,$nhi));
565 &pxor ($Zlo,$tmp);

567 &psrlq ($Zlo,32); # lower part of Zlo is already there
568 &movd ($Zhl,$Zhi);
569 &psrlq ($Zhi,32);
570 &movd ($Zlh,$Zlo);
571 &movd ($Zhh,$Zhi);

573 &bswap ($Zll);
574 &bswap ($Zhl);
575 &bswap ($Zlh);
576 &bswap ($Zhh);
577 }

579 &function_begin("gcm_gmult_4bit_mmx");
580 &mov ($inp,&wparam(0)); # load Xi
581 &mov ($Htbl,&wparam(1)); # load Htable

583 &call (&label("pic_point"));
584 &set_label("pic_point");
585 &blindpop("eax");
586 &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));

588 &movz ($Zll,&BP(15,$inp));

590 &mmx_loop($inp,"eax");

592 &emms ();
593 &mov (&DWP(12,$inp),$Zll);
594 &mov (&DWP(4,$inp),$Zhl);
595 &mov (&DWP(8,$inp),$Zlh);
596 &mov (&DWP(0,$inp),$Zhh);
597 &function_end("gcm_gmult_4bit_mmx");

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 13

598 ##
599 # Below subroutine is "528B" variant of "4-bit" GCM GHASH function
600 # (see gcm128.c for details). It provides further 20-40% performance
601 # improvement over above mentioned "May" version.

603 &static_label("rem_8bit");

605 &function_begin("gcm_ghash_4bit_mmx");
606 { my ($Zlo,$Zhi) = ("mm7","mm6");
607 my $rem_8bit = "esi";
608 my $Htbl = "ebx";

610 # parameter block
611 &mov ("eax",&wparam(0)); # Xi
612 &mov ("ebx",&wparam(1)); # Htable
613 &mov ("ecx",&wparam(2)); # inp
614 &mov ("edx",&wparam(3)); # len
615 &mov ("ebp","esp"); # original %esp
616 &call (&label("pic_point"));
617 &set_label ("pic_point");
618 &blindpop ($rem_8bit);
619 &lea ($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_

621 &sub ("esp",512+16+16); # allocate stack frame...
622 &and ("esp",-64); # ...and align it
623 &sub ("esp",16); # place for (u8)(H[]<<4)

625 &add ("edx","ecx"); # pointer to the end of input
626 &mov (&DWP(528+16+0,"esp"),"eax"); # save Xi
627 &mov (&DWP(528+16+8,"esp"),"edx"); # save inp+len
628 &mov (&DWP(528+16+12,"esp"),"ebp"); # save original %esp

630 { my @lo = ("mm0","mm1","mm2");
631 my @hi = ("mm3","mm4","mm5");
632 my @tmp = ("mm6","mm7");
633 my ($off1,$off2,$i) = (0,0,);

635 &add ($Htbl,128); # optimize for size
636 &lea ("edi",&DWP(16+128,"esp"));
637 &lea ("ebp",&DWP(16+256+128,"esp"));

639 # decompose Htable (low and high parts are kept separately),
640 # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
641 for ($i=0;$i<18;$i++) {

643 &mov ("edx",&DWP(16*$i+8-128,$Htbl)) if ($i<16);
644 &movq ($lo[0],&QWP(16*$i+8-128,$Htbl)) if ($i<16);
645 &psllq ($tmp[1],60) if ($i>1);
646 &movq ($hi[0],&QWP(16*$i+0-128,$Htbl)) if ($i<16);
647 &por ($lo[2],$tmp[1]) if ($i>1);
648 &movq (&QWP($off1-128,"edi"),$lo[1]) if ($i>0 && $i<17);
649 &psrlq ($lo[1],4) if ($i>0 && $i<17);
650 &movq (&QWP($off1,"edi"),$hi[1]) if ($i>0 && $i<17);
651 &movq ($tmp[0],$hi[1]) if ($i>0 && $i<17);
652 &movq (&QWP($off2-128,"ebp"),$lo[2]) if ($i>1);
653 &psrlq ($hi[1],4) if ($i>0 && $i<17);
654 &movq (&QWP($off2,"ebp"),$hi[2]) if ($i>1);
655 &shl ("edx",4) if ($i<16);
656 &mov (&BP($i,"esp"),&LB("edx")) if ($i<16);

658 unshift (@lo,pop(@lo)); # "rotate" registers
659 unshift (@hi,pop(@hi));
660 unshift (@tmp,pop(@tmp));
661 $off1 += 8 if ($i>0);
662 $off2 += 8 if ($i>1);
663 }

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 14

664 }

666 &movq ($Zhi,&QWP(0,"eax"));
667 &mov ("ebx",&DWP(8,"eax"));
668 &mov ("edx",&DWP(12,"eax")); # load Xi

670 &set_label("outer",16);
671 { my $nlo = "eax";
672 my $dat = "edx";
673 my @nhi = ("edi","ebp");
674 my @rem = ("ebx","ecx");
675 my @red = ("mm0","mm1","mm2");
676 my $tmp = "mm3";

678 &xor ($dat,&DWP(12,"ecx")); # merge input data
679 &xor ("ebx",&DWP(8,"ecx"));
680 &pxor ($Zhi,&QWP(0,"ecx"));
681 &lea ("ecx",&DWP(16,"ecx")); # inp+=16
682 #&mov (&DWP(528+12,"esp"),$dat); # save inp^Xi
683 &mov (&DWP(528+8,"esp"),"ebx");
684 &movq (&QWP(528+0,"esp"),$Zhi);
685 &mov (&DWP(528+16+4,"esp"),"ecx"); # save inp

687 &xor ($nlo,$nlo);
688 &rol ($dat,8);
689 &mov (&LB($nlo),&LB($dat));
690 &mov ($nhi[1],$nlo);
691 &and (&LB($nlo),0x0f);
692 &shr ($nhi[1],4);
693 &pxor ($red[0],$red[0]);
694 &rol ($dat,8); # next byte
695 &pxor ($red[1],$red[1]);
696 &pxor ($red[2],$red[2]);

698 # Just like in "May" verson modulo-schedule for critical path in
699 # ’Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48’. Final ’pxor’
700 # is scheduled so late that rem_8bit[] has to be shifted *right*
701 # by 16, which is why last argument to pinsrw is 2, which
702 # corresponds to <<32=<<48>>16...
703 for ($j=11,$i=0;$i<15;$i++) {

705 if ($i>0) {
706 &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo]
707 &rol ($dat,8); # next byte
708 &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8));

710 &pxor ($Zlo,$tmp);
711 &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
712 &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4)
713 } else {
714 &movq ($Zlo,&QWP(16,"esp",$nlo,8));
715 &movq ($Zhi,&QWP(16+128,"esp",$nlo,8));
716 }

718 &mov (&LB($nlo),&LB($dat));
719 &mov ($dat,&DWP(528+$j,"esp")) if (--$j%4==0);

721 &movd ($rem[0],$Zlo);
722 &movz ($rem[1],&LB($rem[1])) if ($i>0);
723 &psrlq ($Zlo,8); # Z>>=8

725 &movq ($tmp,$Zhi);
726 &mov ($nhi[0],$nlo);
727 &psrlq ($Zhi,8);

729 &pxor ($Zlo,&QWP(16+256+0,"esp",$nhi[1],8)); # Z^=H[nhi]>>4

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 15

730 &and (&LB($nlo),0x0f);
731 &psllq ($tmp,56);

733 &pxor ($Zhi,$red[1]) if ($i>1);
734 &shr ($nhi[0],4);
735 &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2) if ($i>0);

737 unshift (@red,pop(@red)); # "rotate" registers
738 unshift (@rem,pop(@rem));
739 unshift (@nhi,pop(@nhi));
740 }

742 &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo]
743 &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8));
744 &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4)

746 &pxor ($Zlo,$tmp);
747 &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
748 &movz ($rem[1],&LB($rem[1]));

750 &pxor ($red[2],$red[2]); # clear 2nd word
751 &psllq ($red[1],4);

753 &movd ($rem[0],$Zlo);
754 &psrlq ($Zlo,4); # Z>>=4

756 &movq ($tmp,$Zhi);
757 &psrlq ($Zhi,4);
758 &shl ($rem[0],4); # rem<<4

760 &pxor ($Zlo,&QWP(16,"esp",$nhi[1],8)); # Z^=H[nhi]
761 &psllq ($tmp,60);
762 &movz ($rem[0],&LB($rem[0]));

764 &pxor ($Zlo,$tmp);
765 &pxor ($Zhi,&QWP(16+128,"esp",$nhi[1],8));

767 &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
768 &pxor ($Zhi,$red[1]);

770 &movd ($dat,$Zlo);
771 &pinsrw ($red[2],&WP(0,$rem_8bit,$rem[0],2),3); # last is <<48

773 &psllq ($red[0],12); # correct by <<16>>4
774 &pxor ($Zhi,$red[0]);
775 &psrlq ($Zlo,32);
776 &pxor ($Zhi,$red[2]);

778 &mov ("ecx",&DWP(528+16+4,"esp")); # restore inp
779 &movd ("ebx",$Zlo);
780 &movq ($tmp,$Zhi); # 01234567
781 &psllw ($Zhi,8); # 1.3.5.7.
782 &psrlw ($tmp,8); # .0.2.4.6
783 &por ($Zhi,$tmp); # 10325476
784 &bswap ($dat);
785 &pshufw ($Zhi,$Zhi,0b00011011); # 76543210
786 &bswap ("ebx");
787
788 &cmp ("ecx",&DWP(528+16+8,"esp")); # are we done?
789 &jne (&label("outer"));
790 }

792 &mov ("eax",&DWP(528+16+0,"esp")); # restore Xi
793 &mov (&DWP(12,"eax"),"edx");
794 &mov (&DWP(8,"eax"),"ebx");
795 &movq (&QWP(0,"eax"),$Zhi);

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 16

797 &mov ("esp",&DWP(528+16+12,"esp")); # restore original %esp
798 &emms ();
799 }
800 &function_end("gcm_ghash_4bit_mmx");
801 }}

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 17

802 if ($sse2) {{
803 ##
804 # PCLMULQDQ version.

806 $Xip="eax";
807 $Htbl="edx";
808 $const="ecx";
809 $inp="esi";
810 $len="ebx";

812 ($Xi,$Xhi)=("xmm0","xmm1"); $Hkey="xmm2";
813 ($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
814 ($Xn,$Xhn)=("xmm6","xmm7");

816 &static_label("bswap");

818 sub clmul64x64_T2 { # minimal "register" pressure
819 my ($Xhi,$Xi,$Hkey)=@_;

821 &movdqa ($Xhi,$Xi); #
822 &pshufd ($T1,$Xi,0b01001110);
823 &pshufd ($T2,$Hkey,0b01001110);
824 &pxor ($T1,$Xi); #
825 &pxor ($T2,$Hkey);

827 &pclmulqdq ($Xi,$Hkey,0x00); #######
828 &pclmulqdq ($Xhi,$Hkey,0x11); #######
829 &pclmulqdq ($T1,$T2,0x00); #######
830 &xorps ($T1,$Xi); #
831 &xorps ($T1,$Xhi); #

833 &movdqa ($T2,$T1); #
834 &psrldq ($T1,8);
835 &pslldq ($T2,8); #
836 &pxor ($Xhi,$T1);
837 &pxor ($Xi,$T2); #
838 }

840 sub clmul64x64_T3 {
841 # Even though this subroutine offers visually better ILP, it
842 # was empirically found to be a tad slower than above version.
843 # At least in gcm_ghash_clmul context. But it’s just as well,
844 # because loop modulo-scheduling is possible only thanks to
845 # minimized "register" pressure...
846 my ($Xhi,$Xi,$Hkey)=@_;

848 &movdqa ($T1,$Xi); #
849 &movdqa ($Xhi,$Xi);
850 &pclmulqdq ($Xi,$Hkey,0x00); #######
851 &pclmulqdq ($Xhi,$Hkey,0x11); #######
852 &pshufd ($T2,$T1,0b01001110); #
853 &pshufd ($T3,$Hkey,0b01001110);
854 &pxor ($T2,$T1); #
855 &pxor ($T3,$Hkey);
856 &pclmulqdq ($T2,$T3,0x00); #######
857 &pxor ($T2,$Xi); #
858 &pxor ($T2,$Xhi); #

860 &movdqa ($T3,$T2); #
861 &psrldq ($T2,8);
862 &pslldq ($T3,8); #
863 &pxor ($Xhi,$T2);
864 &pxor ($Xi,$T3); #
865 }

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 18

866 if (1) { # Algorithm 9 with <<1 twist.
867 # Reduction is shorter and uses only two
868 # temporary registers, which makes it better
869 # candidate for interleaving with 64x64
870 # multiplication. Pre-modulo-scheduled loop
871 # was found to be ~20% faster than Algorithm 5
872 # below. Algorithm 9 was therefore chosen for
873 # further optimization...

875 sub reduction_alg9 { # 17/13 times faster than Intel version
876 my ($Xhi,$Xi) = @_;

878 # 1st phase
879 &movdqa ($T1,$Xi); #
880 &psllq ($Xi,1);
881 &pxor ($Xi,$T1); #
882 &psllq ($Xi,5); #
883 &pxor ($Xi,$T1); #
884 &psllq ($Xi,57); #
885 &movdqa ($T2,$Xi); #
886 &pslldq ($Xi,8);
887 &psrldq ($T2,8); #
888 &pxor ($Xi,$T1);
889 &pxor ($Xhi,$T2); #

891 # 2nd phase
892 &movdqa ($T2,$Xi);
893 &psrlq ($Xi,5);
894 &pxor ($Xi,$T2); #
895 &psrlq ($Xi,1); #
896 &pxor ($Xi,$T2); #
897 &pxor ($T2,$Xhi);
898 &psrlq ($Xi,1); #
899 &pxor ($Xi,$T2); #
900 }

902 &function_begin_B("gcm_init_clmul");
903 &mov ($Htbl,&wparam(0));
904 &mov ($Xip,&wparam(1));

906 &call (&label("pic"));
907 &set_label("pic");
908 &blindpop ($const);
909 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));

911 &movdqu ($Hkey,&QWP(0,$Xip));
912 &pshufd ($Hkey,$Hkey,0b01001110);# dword swap

914 # <<1 twist
915 &pshufd ($T2,$Hkey,0b11111111); # broadcast uppermost dword
916 &movdqa ($T1,$Hkey);
917 &psllq ($Hkey,1);
918 &pxor ($T3,$T3); #
919 &psrlq ($T1,63);
920 &pcmpgtd ($T3,$T2); # broadcast carry bit
921 &pslldq ($T1,8);
922 &por ($Hkey,$T1); # H<<=1

924 # magic reduction
925 &pand ($T3,&QWP(16,$const)); # 0x1c2_polynomial
926 &pxor ($Hkey,$T3); # if(carry) H^=0x1c2_polynomial

928 # calculate H^2
929 &movdqa ($Xi,$Hkey);
930 &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
931 &reduction_alg9 ($Xhi,$Xi);

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 19

933 &movdqu (&QWP(0,$Htbl),$Hkey); # save H
934 &movdqu (&QWP(16,$Htbl),$Xi); # save H^2

936 &ret ();
937 &function_end_B("gcm_init_clmul");

939 &function_begin_B("gcm_gmult_clmul");
940 &mov ($Xip,&wparam(0));
941 &mov ($Htbl,&wparam(1));

943 &call (&label("pic"));
944 &set_label("pic");
945 &blindpop ($const);
946 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));

948 &movdqu ($Xi,&QWP(0,$Xip));
949 &movdqa ($T3,&QWP(0,$const));
950 &movups ($Hkey,&QWP(0,$Htbl));
951 &pshufb ($Xi,$T3);

953 &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
954 &reduction_alg9 ($Xhi,$Xi);

956 &pshufb ($Xi,$T3);
957 &movdqu (&QWP(0,$Xip),$Xi);

959 &ret ();
960 &function_end_B("gcm_gmult_clmul");

962 &function_begin("gcm_ghash_clmul");
963 &mov ($Xip,&wparam(0));
964 &mov ($Htbl,&wparam(1));
965 &mov ($inp,&wparam(2));
966 &mov ($len,&wparam(3));

968 &call (&label("pic"));
969 &set_label("pic");
970 &blindpop ($const);
971 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));

973 &movdqu ($Xi,&QWP(0,$Xip));
974 &movdqa ($T3,&QWP(0,$const));
975 &movdqu ($Hkey,&QWP(0,$Htbl));
976 &pshufb ($Xi,$T3);

978 &sub ($len,0x10);
979 &jz (&label("odd_tail"));

981 #######
982 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
983 # [(H*Ii+1) + (H*Xi+1)] mod P =
984 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
985 #
986 &movdqu ($T1,&QWP(0,$inp)); # Ii
987 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
988 &pshufb ($T1,$T3);
989 &pshufb ($Xn,$T3);
990 &pxor ($Xi,$T1); # Ii+Xi

992 &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1
993 &movups ($Hkey,&QWP(16,$Htbl)); # load H^2

995 &lea ($inp,&DWP(32,$inp)); # i+=2
996 &sub ($len,0x20);
997 &jbe (&label("even_tail"));

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 20

999 &set_label("mod_loop");
1000 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
1001 &movdqu ($T1,&QWP(0,$inp)); # Ii
1002 &movups ($Hkey,&QWP(0,$Htbl)); # load H

1004 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
1005 &pxor ($Xhi,$Xhn);

1007 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
1008 &pshufb ($T1,$T3);
1009 &pshufb ($Xn,$T3);

1011 &movdqa ($T3,$Xn); #&clmul64x64_TX ($Xhn,$Xn,$Hkey)
1012 &movdqa ($Xhn,$Xn);
1013 &pxor ($Xhi,$T1); # "Ii+Xi", consume early

1015 &movdqa ($T1,$Xi); #&reduction_alg9($Xhi,$Xi); 1st
1016 &psllq ($Xi,1);
1017 &pxor ($Xi,$T1); #
1018 &psllq ($Xi,5); #
1019 &pxor ($Xi,$T1); #
1020 &pclmulqdq ($Xn,$Hkey,0x00); #######
1021 &psllq ($Xi,57); #
1022 &movdqa ($T2,$Xi); #
1023 &pslldq ($Xi,8);
1024 &psrldq ($T2,8); #
1025 &pxor ($Xi,$T1);
1026 &pshufd ($T1,$T3,0b01001110);
1027 &pxor ($Xhi,$T2); #
1028 &pxor ($T1,$T3);
1029 &pshufd ($T3,$Hkey,0b01001110);
1030 &pxor ($T3,$Hkey); #

1032 &pclmulqdq ($Xhn,$Hkey,0x11); #######
1033 &movdqa ($T2,$Xi); # 2nd phase
1034 &psrlq ($Xi,5);
1035 &pxor ($Xi,$T2); #
1036 &psrlq ($Xi,1); #
1037 &pxor ($Xi,$T2); #
1038 &pxor ($T2,$Xhi);
1039 &psrlq ($Xi,1); #
1040 &pxor ($Xi,$T2); #

1042 &pclmulqdq ($T1,$T3,0x00); #######
1043 &movups ($Hkey,&QWP(16,$Htbl)); # load H^2
1044 &xorps ($T1,$Xn); #
1045 &xorps ($T1,$Xhn); #

1047 &movdqa ($T3,$T1); #
1048 &psrldq ($T1,8);
1049 &pslldq ($T3,8); #
1050 &pxor ($Xhn,$T1);
1051 &pxor ($Xn,$T3); #
1052 &movdqa ($T3,&QWP(0,$const));

1054 &lea ($inp,&DWP(32,$inp));
1055 &sub ($len,0x20);
1056 &ja (&label("mod_loop"));

1058 &set_label("even_tail");
1059 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)

1061 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
1062 &pxor ($Xhi,$Xhn);

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 21

1064 &reduction_alg9 ($Xhi,$Xi);

1066 &test ($len,$len);
1067 &jnz (&label("done"));

1069 &movups ($Hkey,&QWP(0,$Htbl)); # load H
1070 &set_label("odd_tail");
1071 &movdqu ($T1,&QWP(0,$inp)); # Ii
1072 &pshufb ($T1,$T3);
1073 &pxor ($Xi,$T1); # Ii+Xi

1075 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
1076 &reduction_alg9 ($Xhi,$Xi);

1078 &set_label("done");
1079 &pshufb ($Xi,$T3);
1080 &movdqu (&QWP(0,$Xip),$Xi);
1081 &function_end("gcm_ghash_clmul");

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 22

1082 } else { # Algorith 5. Kept for reference purposes.

1084 sub reduction_alg5 { # 19/16 times faster than Intel version
1085 my ($Xhi,$Xi)=@_;

1087 # <<1
1088 &movdqa ($T1,$Xi); #
1089 &movdqa ($T2,$Xhi);
1090 &pslld ($Xi,1);
1091 &pslld ($Xhi,1); #
1092 &psrld ($T1,31);
1093 &psrld ($T2,31); #
1094 &movdqa ($T3,$T1);
1095 &pslldq ($T1,4);
1096 &psrldq ($T3,12); #
1097 &pslldq ($T2,4);
1098 &por ($Xhi,$T3); #
1099 &por ($Xi,$T1);
1100 &por ($Xhi,$T2); #

1102 # 1st phase
1103 &movdqa ($T1,$Xi);
1104 &movdqa ($T2,$Xi);
1105 &movdqa ($T3,$Xi); #
1106 &pslld ($T1,31);
1107 &pslld ($T2,30);
1108 &pslld ($Xi,25); #
1109 &pxor ($T1,$T2);
1110 &pxor ($T1,$Xi); #
1111 &movdqa ($T2,$T1); #
1112 &pslldq ($T1,12);
1113 &psrldq ($T2,4); #
1114 &pxor ($T3,$T1);

1116 # 2nd phase
1117 &pxor ($Xhi,$T3); #
1118 &movdqa ($Xi,$T3);
1119 &movdqa ($T1,$T3);
1120 &psrld ($Xi,1); #
1121 &psrld ($T1,2);
1122 &psrld ($T3,7); #
1123 &pxor ($Xi,$T1);
1124 &pxor ($Xhi,$T2);
1125 &pxor ($Xi,$T3); #
1126 &pxor ($Xi,$Xhi); #
1127 }

1129 &function_begin_B("gcm_init_clmul");
1130 &mov ($Htbl,&wparam(0));
1131 &mov ($Xip,&wparam(1));

1133 &call (&label("pic"));
1134 &set_label("pic");
1135 &blindpop ($const);
1136 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));

1138 &movdqu ($Hkey,&QWP(0,$Xip));
1139 &pshufd ($Hkey,$Hkey,0b01001110);# dword swap

1141 # calculate H^2
1142 &movdqa ($Xi,$Hkey);
1143 &clmul64x64_T3 ($Xhi,$Xi,$Hkey);
1144 &reduction_alg5 ($Xhi,$Xi);

1146 &movdqu (&QWP(0,$Htbl),$Hkey); # save H
1147 &movdqu (&QWP(16,$Htbl),$Xi); # save H^2

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 23

1149 &ret ();
1150 &function_end_B("gcm_init_clmul");

1152 &function_begin_B("gcm_gmult_clmul");
1153 &mov ($Xip,&wparam(0));
1154 &mov ($Htbl,&wparam(1));

1156 &call (&label("pic"));
1157 &set_label("pic");
1158 &blindpop ($const);
1159 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));

1161 &movdqu ($Xi,&QWP(0,$Xip));
1162 &movdqa ($Xn,&QWP(0,$const));
1163 &movdqu ($Hkey,&QWP(0,$Htbl));
1164 &pshufb ($Xi,$Xn);

1166 &clmul64x64_T3 ($Xhi,$Xi,$Hkey);
1167 &reduction_alg5 ($Xhi,$Xi);

1169 &pshufb ($Xi,$Xn);
1170 &movdqu (&QWP(0,$Xip),$Xi);

1172 &ret ();
1173 &function_end_B("gcm_gmult_clmul");

1175 &function_begin("gcm_ghash_clmul");
1176 &mov ($Xip,&wparam(0));
1177 &mov ($Htbl,&wparam(1));
1178 &mov ($inp,&wparam(2));
1179 &mov ($len,&wparam(3));

1181 &call (&label("pic"));
1182 &set_label("pic");
1183 &blindpop ($const);
1184 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));

1186 &movdqu ($Xi,&QWP(0,$Xip));
1187 &movdqa ($T3,&QWP(0,$const));
1188 &movdqu ($Hkey,&QWP(0,$Htbl));
1189 &pshufb ($Xi,$T3);

1191 &sub ($len,0x10);
1192 &jz (&label("odd_tail"));

1194 #######
1195 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1196 # [(H*Ii+1) + (H*Xi+1)] mod P =
1197 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
1198 #
1199 &movdqu ($T1,&QWP(0,$inp)); # Ii
1200 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
1201 &pshufb ($T1,$T3);
1202 &pshufb ($Xn,$T3);
1203 &pxor ($Xi,$T1); # Ii+Xi

1205 &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1
1206 &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2

1208 &sub ($len,0x20);
1209 &lea ($inp,&DWP(32,$inp)); # i+=2
1210 &jbe (&label("even_tail"));

1212 &set_label("mod_loop");
1213 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 24

1214 &movdqu ($Hkey,&QWP(0,$Htbl)); # load H

1216 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
1217 &pxor ($Xhi,$Xhn);

1219 &reduction_alg5 ($Xhi,$Xi);

1221 #######
1222 &movdqa ($T3,&QWP(0,$const));
1223 &movdqu ($T1,&QWP(0,$inp)); # Ii
1224 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
1225 &pshufb ($T1,$T3);
1226 &pshufb ($Xn,$T3);
1227 &pxor ($Xi,$T1); # Ii+Xi

1229 &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1
1230 &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2

1232 &sub ($len,0x20);
1233 &lea ($inp,&DWP(32,$inp));
1234 &ja (&label("mod_loop"));

1236 &set_label("even_tail");
1237 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)

1239 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
1240 &pxor ($Xhi,$Xhn);

1242 &reduction_alg5 ($Xhi,$Xi);

1244 &movdqa ($T3,&QWP(0,$const));
1245 &test ($len,$len);
1246 &jnz (&label("done"));

1248 &movdqu ($Hkey,&QWP(0,$Htbl)); # load H
1249 &set_label("odd_tail");
1250 &movdqu ($T1,&QWP(0,$inp)); # Ii
1251 &pshufb ($T1,$T3);
1252 &pxor ($Xi,$T1); # Ii+Xi

1254 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
1255 &reduction_alg5 ($Xhi,$Xi);

1257 &movdqa ($T3,&QWP(0,$const));
1258 &set_label("done");
1259 &pshufb ($Xi,$T3);
1260 &movdqu (&QWP(0,$Xip),$Xi);
1261 &function_end("gcm_ghash_clmul");

1263 }

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 25

1264 &set_label("bswap",64);
1265 &data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
1266 &data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2); # 0x1c2_polynomial
1267 }} # $sse2

1269 &set_label("rem_4bit",64);
1270 &data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
1271 &data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
1272 &data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
1273 &data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
1274 &set_label("rem_8bit",64);
1275 &data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
1276 &data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
1277 &data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
1278 &data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
1279 &data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
1280 &data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
1281 &data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
1282 &data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
1283 &data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
1284 &data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
1285 &data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
1286 &data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
1287 &data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
1288 &data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
1289 &data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
1290 &data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
1291 &data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
1292 &data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
1293 &data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
1294 &data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
1295 &data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
1296 &data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
1297 &data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
1298 &data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
1299 &data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
1300 &data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
1301 &data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
1302 &data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
1303 &data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
1304 &data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
1305 &data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
1306 &data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
1307 }}} # !$x86only

1309 &asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
1310 &asm_finish();

1312 # A question was risen about choice of vanilla MMX. Or rather why wasn’t
1313 # SSE2 chosen instead? In addition to the fact that MMX runs on legacy
1314 # CPUs such as PIII, "4-bit" MMX version was observed to provide better
1315 # performance than *corresponding* SSE2 one even on contemporary CPUs.
1316 # SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
1317 # implementation featuring full range of lookup-table sizes, but with
1318 # per-invocation lookup table setup. Latter means that table size is
1319 # chosen depending on how much data is to be hashed in every given call,
1320 # more data - larger table. Best reported result for Core2 is ~4 cycles
1321 # per processed byte out of 64KB block. This number accounts even for
1322 # 64KB table setup overhead. As discussed in gcm128.c we choose to be
1323 # more conservative in respect to lookup table sizes, but how do the
1324 # results compare? Minimalistic "256B" MMX version delivers ~11 cycles
1325 # on same platform. As also discussed in gcm128.c, next in line "8-bit
1326 # Shoup’s" or "4KB" method should deliver twice the performance of
1327 # "256B" one, in other words not worse than ~6 cycles per byte. It
1328 # should be also be noted that in SSE2 case improvement can be "super-
1329 # linear," i.e. more than twice, mostly because >>8 maps to single

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86.pl 26

1330 # instruction on SSE2 register. This is unlike "4-bit" case when >>4
1331 # maps to same amount of instructions in both MMX and SSE2 cases.
1332 # Bottom line is that switch to SSE2 is considered to be justifiable
1333 # only in case we choose to implement "8-bit" method...

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 1

**
 19327 Fri May 30 18:32:04 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl
2 #
3 # ==
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==
9 #
10 # March, June 2010
11 #
12 # The module implements "4-bit" GCM GHASH function and underlying
13 # single multiplication operation in GF(2^128). "4-bit" means that
14 # it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
15 # function features so called "528B" variant utilizing additional
16 # 256+16 bytes of per-key storage [+512 bytes shared table].
17 # Performance results are for this streamed GHASH subroutine and are
18 # expressed in cycles per processed byte, less is better:
19 #
20 # gcc 3.4.x(*) assembler
21 #
22 # P4 28.6 14.0 +100%
23 # Opteron 19.3 7.7 +150%
24 # Core2 17.8 8.1(**) +120%
25 #
26 # (*) comparison is not completely fair, because C results are
27 # for vanilla "256B" implementation, while assembler results
28 # are for "528B";-)
29 # (**) it’s mystery [to me] why Core2 result is not same as for
30 # Opteron;

32 # May 2010
33 #
34 # Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
35 # See ghash-x86.pl for background information and details about coding
36 # techniques.
37 #
38 # Special thanks to David Woodhouse <dwmw2@infradead.org> for
39 # providing access to a Westmere-based system on behalf of Intel
40 # Open Source Technology Centre.

42 $flavour = shift;
43 $output = shift;
44 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

46 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

48 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
49 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
50 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
51 die "can’t locate x86_64-xlate.pl";

53 open OUT,"| \"$^X\" $xlate $flavour $output";
54 *STDOUT=*OUT;

56 # common register layout
57 $nlo="%rax";
58 $nhi="%rbx";
59 $Zlo="%r8";
60 $Zhi="%r9";
61 $tmp="%r10";

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 2

62 $rem_4bit = "%r11";

64 $Xi="%rdi";
65 $Htbl="%rsi";

67 # per-function register layout
68 $cnt="%rcx";
69 $rem="%rdx";

71 sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/ or
72 $r =~ s/%[er]([sd]i)/%\1l/ or
73 $r =~ s/%[er](bp)/%\1l/ or
74 $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; }

76 sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm
77 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
78 my $arg = pop;
79 $arg = "\$$arg" if ($arg*1 eq $arg);
80 $code .= "\t$opcode\t".join(’,’,$arg,reverse @_)."\n";
81 }

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 3

82 { my $N;
83 sub loop() {
84 my $inp = shift;

86 $N++;
87 $code.=<<___;
88 xor $nlo,$nlo
89 xor $nhi,$nhi
90 mov ‘&LB("$Zlo")‘,‘&LB("$nlo")‘
91 mov ‘&LB("$Zlo")‘,‘&LB("$nhi")‘
92 shl \$4,‘&LB("$nlo")‘
93 mov \$14,$cnt
94 mov 8($Htbl,$nlo),$Zlo
95 mov ($Htbl,$nlo),$Zhi
96 and \$0xf0,‘&LB("$nhi")‘
97 mov $Zlo,$rem
98 jmp .Loop$N

100 .align 16
101 .Loop$N:
102 shr \$4,$Zlo
103 and \$0xf,$rem
104 mov $Zhi,$tmp
105 mov ($inp,$cnt),‘&LB("$nlo")‘
106 shr \$4,$Zhi
107 xor 8($Htbl,$nhi),$Zlo
108 shl \$60,$tmp
109 xor ($Htbl,$nhi),$Zhi
110 mov ‘&LB("$nlo")‘,‘&LB("$nhi")‘
111 xor ($rem_4bit,$rem,8),$Zhi
112 mov $Zlo,$rem
113 shl \$4,‘&LB("$nlo")‘
114 xor $tmp,$Zlo
115 dec $cnt
116 js .Lbreak$N

118 shr \$4,$Zlo
119 and \$0xf,$rem
120 mov $Zhi,$tmp
121 shr \$4,$Zhi
122 xor 8($Htbl,$nlo),$Zlo
123 shl \$60,$tmp
124 xor ($Htbl,$nlo),$Zhi
125 and \$0xf0,‘&LB("$nhi")‘
126 xor ($rem_4bit,$rem,8),$Zhi
127 mov $Zlo,$rem
128 xor $tmp,$Zlo
129 jmp .Loop$N

131 .align 16
132 .Lbreak$N:
133 shr \$4,$Zlo
134 and \$0xf,$rem
135 mov $Zhi,$tmp
136 shr \$4,$Zhi
137 xor 8($Htbl,$nlo),$Zlo
138 shl \$60,$tmp
139 xor ($Htbl,$nlo),$Zhi
140 and \$0xf0,‘&LB("$nhi")‘
141 xor ($rem_4bit,$rem,8),$Zhi
142 mov $Zlo,$rem
143 xor $tmp,$Zlo

145 shr \$4,$Zlo
146 and \$0xf,$rem
147 mov $Zhi,$tmp

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 4

148 shr \$4,$Zhi
149 xor 8($Htbl,$nhi),$Zlo
150 shl \$60,$tmp
151 xor ($Htbl,$nhi),$Zhi
152 xor $tmp,$Zlo
153 xor ($rem_4bit,$rem,8),$Zhi

155 bswap $Zlo
156 bswap $Zhi
157 ___
158 }}

160 $code=<<___;
161 .text

163 .globl gcm_gmult_4bit
164 .type gcm_gmult_4bit,\@function,2
165 .align 16
166 gcm_gmult_4bit:
167 push %rbx
168 push %rbp # %rbp and %r12 are pushed exclusively in
169 push %r12 # order to reuse Win64 exception handler...
170 .Lgmult_prologue:

172 movzb 15($Xi),$Zlo
173 lea .Lrem_4bit(%rip),$rem_4bit
174 ___
175 &loop ($Xi);
176 $code.=<<___;
177 mov $Zlo,8($Xi)
178 mov $Zhi,($Xi)

180 mov 16(%rsp),%rbx
181 lea 24(%rsp),%rsp
182 .Lgmult_epilogue:
183 ret
184 .size gcm_gmult_4bit,.-gcm_gmult_4bit
185 ___

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 5

186 # per-function register layout
187 $inp="%rdx";
188 $len="%rcx";
189 $rem_8bit=$rem_4bit;

191 $code.=<<___;
192 .globl gcm_ghash_4bit
193 .type gcm_ghash_4bit,\@function,4
194 .align 16
195 gcm_ghash_4bit:
196 push %rbx
197 push %rbp
198 push %r12
199 push %r13
200 push %r14
201 push %r15
202 sub \$280,%rsp
203 .Lghash_prologue:
204 mov $inp,%r14 # reassign couple of args
205 mov $len,%r15
206 ___
207 { my $inp="%r14";
208 my $dat="%edx";
209 my $len="%r15";
210 my @nhi=("%ebx","%ecx");
211 my @rem=("%r12","%r13");
212 my $Hshr4="%rbp";

214 &sub ($Htbl,-128); # size optimization
215 &lea ($Hshr4,"16+128(%rsp)");
216 { my @lo =($nlo,$nhi);
217 my @hi =($Zlo,$Zhi);

219 &xor ($dat,$dat);
220 for ($i=0,$j=-2;$i<18;$i++,$j++) {
221 &mov ("$j(%rsp)",&LB($dat)) if ($i>1);
222 &or ($lo[0],$tmp) if ($i>1);
223 &mov (&LB($dat),&LB($lo[1])) if ($i>0 && $i<17);
224 &shr ($lo[1],4) if ($i>0 && $i<17);
225 &mov ($tmp,$hi[1]) if ($i>0 && $i<17);
226 &shr ($hi[1],4) if ($i>0 && $i<17);
227 &mov ("8*$j($Hshr4)",$hi[0]) if ($i>1);
228 &mov ($hi[0],"16*$i+0-128($Htbl)") if ($i<16);
229 &shl (&LB($dat),4) if ($i>0 && $i<17);
230 &mov ("8*$j-128($Hshr4)",$lo[0]) if ($i>1);
231 &mov ($lo[0],"16*$i+8-128($Htbl)") if ($i<16);
232 &shl ($tmp,60) if ($i>0 && $i<17);

234 push (@lo,shift(@lo));
235 push (@hi,shift(@hi));
236 }
237 }
238 &add ($Htbl,-128);
239 &mov ($Zlo,"8($Xi)");
240 &mov ($Zhi,"0($Xi)");
241 &add ($len,$inp); # pointer to the end of data
242 &lea ($rem_8bit,".Lrem_8bit(%rip)");
243 &jmp (".Louter_loop");

245 $code.=".align 16\n.Louter_loop:\n";
246 &xor ($Zhi,"($inp)");
247 &mov ("%rdx","8($inp)");
248 &lea ($inp,"16($inp)");
249 &xor ("%rdx",$Zlo);
250 &mov ("($Xi)",$Zhi);
251 &mov ("8($Xi)","%rdx");

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 6

252 &shr ("%rdx",32);

254 &xor ($nlo,$nlo);
255 &rol ($dat,8);
256 &mov (&LB($nlo),&LB($dat));
257 &movz ($nhi[0],&LB($dat));
258 &shl (&LB($nlo),4);
259 &shr ($nhi[0],4);

261 for ($j=11,$i=0;$i<15;$i++) {
262 &rol ($dat,8);
263 &xor ($Zlo,"8($Htbl,$nlo)") if ($i>0);
264 &xor ($Zhi,"($Htbl,$nlo)") if ($i>0);
265 &mov ($Zlo,"8($Htbl,$nlo)") if ($i==0);
266 &mov ($Zhi,"($Htbl,$nlo)") if ($i==0);

268 &mov (&LB($nlo),&LB($dat));
269 &xor ($Zlo,$tmp) if ($i>0);
270 &movzw ($rem[1],"($rem_8bit,$rem[1],2)") if ($i>0);

272 &movz ($nhi[1],&LB($dat));
273 &shl (&LB($nlo),4);
274 &movzb ($rem[0],"(%rsp,$nhi[0])");

276 &shr ($nhi[1],4) if ($i<14);
277 &and ($nhi[1],0xf0) if ($i==14);
278 &shl ($rem[1],48) if ($i>0);
279 &xor ($rem[0],$Zlo);

281 &mov ($tmp,$Zhi);
282 &xor ($Zhi,$rem[1]) if ($i>0);
283 &shr ($Zlo,8);

285 &movz ($rem[0],&LB($rem[0]));
286 &mov ($dat,"$j($Xi)") if (--$j%4==0);
287 &shr ($Zhi,8);

289 &xor ($Zlo,"-128($Hshr4,$nhi[0],8)");
290 &shl ($tmp,56);
291 &xor ($Zhi,"($Hshr4,$nhi[0],8)");

293 unshift (@nhi,pop(@nhi)); # "rotate" registers
294 unshift (@rem,pop(@rem));
295 }
296 &movzw ($rem[1],"($rem_8bit,$rem[1],2)");
297 &xor ($Zlo,"8($Htbl,$nlo)");
298 &xor ($Zhi,"($Htbl,$nlo)");

300 &shl ($rem[1],48);
301 &xor ($Zlo,$tmp);

303 &xor ($Zhi,$rem[1]);
304 &movz ($rem[0],&LB($Zlo));
305 &shr ($Zlo,4);

307 &mov ($tmp,$Zhi);
308 &shl (&LB($rem[0]),4);
309 &shr ($Zhi,4);

311 &xor ($Zlo,"8($Htbl,$nhi[0])");
312 &movzw ($rem[0],"($rem_8bit,$rem[0],2)");
313 &shl ($tmp,60);

315 &xor ($Zhi,"($Htbl,$nhi[0])");
316 &xor ($Zlo,$tmp);
317 &shl ($rem[0],48);

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 7

319 &bswap ($Zlo);
320 &xor ($Zhi,$rem[0]);

322 &bswap ($Zhi);
323 &cmp ($inp,$len);
324 &jb (".Louter_loop");
325 }
326 $code.=<<___;
327 mov $Zlo,8($Xi)
328 mov $Zhi,($Xi)

330 lea 280(%rsp),%rsi
331 mov 0(%rsi),%r15
332 mov 8(%rsi),%r14
333 mov 16(%rsi),%r13
334 mov 24(%rsi),%r12
335 mov 32(%rsi),%rbp
336 mov 40(%rsi),%rbx
337 lea 48(%rsi),%rsp
338 .Lghash_epilogue:
339 ret
340 .size gcm_ghash_4bit,.-gcm_ghash_4bit
341 ___

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 8

342 ##
343 # PCLMULQDQ version.

345 @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
346 ("%rdi","%rsi","%rdx","%rcx"); # Unix order

348 ($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2";
349 ($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");

351 sub clmul64x64_T2 { # minimal register pressure
352 my ($Xhi,$Xi,$Hkey,$modulo)=@_;

354 $code.=<<___ if (!defined($modulo));
355 movdqa $Xi,$Xhi #
356 pshufd \$0b01001110,$Xi,$T1
357 pshufd \$0b01001110,$Hkey,$T2
358 pxor $Xi,$T1 #
359 pxor $Hkey,$T2
360 ___
361 $code.=<<___;
362 pclmulqdq \$0x00,$Hkey,$Xi #######
363 pclmulqdq \$0x11,$Hkey,$Xhi #######
364 pclmulqdq \$0x00,$T2,$T1 #######
365 pxor $Xi,$T1 #
366 pxor $Xhi,$T1 #

368 movdqa $T1,$T2 #
369 psrldq \$8,$T1
370 pslldq \$8,$T2 #
371 pxor $T1,$Xhi
372 pxor $T2,$Xi #
373 ___
374 }

376 sub reduction_alg9 { # 17/13 times faster than Intel version
377 my ($Xhi,$Xi) = @_;

379 $code.=<<___;
380 # 1st phase
381 movdqa $Xi,$T1 #
382 psllq \$1,$Xi
383 pxor $T1,$Xi #
384 psllq \$5,$Xi #
385 pxor $T1,$Xi #
386 psllq \$57,$Xi #
387 movdqa $Xi,$T2 #
388 pslldq \$8,$Xi
389 psrldq \$8,$T2 #
390 pxor $T1,$Xi
391 pxor $T2,$Xhi #

393 # 2nd phase
394 movdqa $Xi,$T2
395 psrlq \$5,$Xi
396 pxor $T2,$Xi #
397 psrlq \$1,$Xi #
398 pxor $T2,$Xi #
399 pxor $Xhi,$T2
400 psrlq \$1,$Xi #
401 pxor $T2,$Xi #
402 ___
403 }

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 9

404 { my ($Htbl,$Xip)=@_4args;

406 $code.=<<___;
407 .globl gcm_init_clmul
408 .type gcm_init_clmul,\@abi-omnipotent
409 .align 16
410 gcm_init_clmul:
411 movdqu ($Xip),$Hkey
412 pshufd \$0b01001110,$Hkey,$Hkey # dword swap

414 # <<1 twist
415 pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword
416 movdqa $Hkey,$T1
417 psllq \$1,$Hkey
418 pxor $T3,$T3 #
419 psrlq \$63,$T1
420 pcmpgtd $T2,$T3 # broadcast carry bit
421 pslldq \$8,$T1
422 por $T1,$Hkey # H<<=1

424 # magic reduction
425 pand .L0x1c2_polynomial(%rip),$T3
426 pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial

428 # calculate H^2
429 movdqa $Hkey,$Xi
430 ___
431 &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
432 &reduction_alg9 ($Xhi,$Xi);
433 $code.=<<___;
434 movdqu $Hkey,($Htbl) # save H
435 movdqu $Xi,16($Htbl) # save H^2
436 ret
437 .size gcm_init_clmul,.-gcm_init_clmul
438 ___
439 }

441 { my ($Xip,$Htbl)=@_4args;

443 $code.=<<___;
444 .globl gcm_gmult_clmul
445 .type gcm_gmult_clmul,\@abi-omnipotent
446 .align 16
447 gcm_gmult_clmul:
448 movdqu ($Xip),$Xi
449 movdqa .Lbswap_mask(%rip),$T3
450 movdqu ($Htbl),$Hkey
451 pshufb $T3,$Xi
452 ___
453 &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
454 &reduction_alg9 ($Xhi,$Xi);
455 $code.=<<___;
456 pshufb $T3,$Xi
457 movdqu $Xi,($Xip)
458 ret
459 .size gcm_gmult_clmul,.-gcm_gmult_clmul
460 ___
461 }

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 10

462 { my ($Xip,$Htbl,$inp,$len)=@_4args;
463 my $Xn="%xmm6";
464 my $Xhn="%xmm7";
465 my $Hkey2="%xmm8";
466 my $T1n="%xmm9";
467 my $T2n="%xmm10";

469 $code.=<<___;
470 .globl gcm_ghash_clmul
471 .type gcm_ghash_clmul,\@abi-omnipotent
472 .align 16
473 gcm_ghash_clmul:
474 ___
475 $code.=<<___ if ($win64);
476 .LSEH_begin_gcm_ghash_clmul:
477 # I can’t trust assembler to use specific encoding:-(
478 .byte 0x48,0x83,0xec,0x58 #sub \$0x58,%rsp
479 .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp)
480 .byte 0x0f,0x29,0x7c,0x24,0x10 #movdqa %xmm7,0x10(%rsp)
481 .byte 0x44,0x0f,0x29,0x44,0x24,0x20 #movaps %xmm8,0x20(%rsp)
482 .byte 0x44,0x0f,0x29,0x4c,0x24,0x30 #movaps %xmm9,0x30(%rsp)
483 .byte 0x44,0x0f,0x29,0x54,0x24,0x40 #movaps %xmm10,0x40(%rsp)
484 ___
485 $code.=<<___;
486 movdqa .Lbswap_mask(%rip),$T3

488 movdqu ($Xip),$Xi
489 movdqu ($Htbl),$Hkey
490 pshufb $T3,$Xi

492 sub \$0x10,$len
493 jz .Lodd_tail

495 movdqu 16($Htbl),$Hkey2
496 #######
497 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
498 # [(H*Ii+1) + (H*Xi+1)] mod P =
499 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
500 #
501 movdqu ($inp),$T1 # Ii
502 movdqu 16($inp),$Xn # Ii+1
503 pshufb $T3,$T1
504 pshufb $T3,$Xn
505 pxor $T1,$Xi # Ii+Xi
506 ___
507 &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1
508 $code.=<<___;
509 movdqa $Xi,$Xhi #
510 pshufd \$0b01001110,$Xi,$T1
511 pshufd \$0b01001110,$Hkey2,$T2
512 pxor $Xi,$T1 #
513 pxor $Hkey2,$T2

515 lea 32($inp),$inp # i+=2
516 sub \$0x20,$len
517 jbe .Leven_tail

519 .Lmod_loop:
520 ___
521 &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi)
522 $code.=<<___;
523 movdqu ($inp),$T1 # Ii
524 pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
525 pxor $Xhn,$Xhi

527 movdqu 16($inp),$Xn # Ii+1

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 11

528 pshufb $T3,$T1
529 pshufb $T3,$Xn

531 movdqa $Xn,$Xhn #
532 pshufd \$0b01001110,$Xn,$T1n
533 pshufd \$0b01001110,$Hkey,$T2n
534 pxor $Xn,$T1n #
535 pxor $Hkey,$T2n
536 pxor $T1,$Xhi # "Ii+Xi", consume early

538 movdqa $Xi,$T1 # 1st phase
539 psllq \$1,$Xi
540 pxor $T1,$Xi #
541 psllq \$5,$Xi #
542 pxor $T1,$Xi #
543 pclmulqdq \$0x00,$Hkey,$Xn #######
544 psllq \$57,$Xi #
545 movdqa $Xi,$T2 #
546 pslldq \$8,$Xi
547 psrldq \$8,$T2 #
548 pxor $T1,$Xi
549 pxor $T2,$Xhi #

551 pclmulqdq \$0x11,$Hkey,$Xhn #######
552 movdqa $Xi,$T2 # 2nd phase
553 psrlq \$5,$Xi
554 pxor $T2,$Xi #
555 psrlq \$1,$Xi #
556 pxor $T2,$Xi #
557 pxor $Xhi,$T2
558 psrlq \$1,$Xi #
559 pxor $T2,$Xi #

561 pclmulqdq \$0x00,$T2n,$T1n #######
562 movdqa $Xi,$Xhi #
563 pshufd \$0b01001110,$Xi,$T1
564 pshufd \$0b01001110,$Hkey2,$T2
565 pxor $Xi,$T1 #
566 pxor $Hkey2,$T2

568 pxor $Xn,$T1n #
569 pxor $Xhn,$T1n #
570 movdqa $T1n,$T2n #
571 psrldq \$8,$T1n
572 pslldq \$8,$T2n #
573 pxor $T1n,$Xhn
574 pxor $T2n,$Xn #

576 lea 32($inp),$inp
577 sub \$0x20,$len
578 ja .Lmod_loop

580 .Leven_tail:
581 ___
582 &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi)
583 $code.=<<___;
584 pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
585 pxor $Xhn,$Xhi
586 ___
587 &reduction_alg9 ($Xhi,$Xi);
588 $code.=<<___;
589 test $len,$len
590 jnz .Ldone

592 .Lodd_tail:
593 movdqu ($inp),$T1 # Ii

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 12

594 pshufb $T3,$T1
595 pxor $T1,$Xi # Ii+Xi
596 ___
597 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
598 &reduction_alg9 ($Xhi,$Xi);
599 $code.=<<___;
600 .Ldone:
601 pshufb $T3,$Xi
602 movdqu $Xi,($Xip)
603 ___
604 $code.=<<___ if ($win64);
605 movaps (%rsp),%xmm6
606 movaps 0x10(%rsp),%xmm7
607 movaps 0x20(%rsp),%xmm8
608 movaps 0x30(%rsp),%xmm9
609 movaps 0x40(%rsp),%xmm10
610 add \$0x58,%rsp
611 ___
612 $code.=<<___;
613 ret
614 .LSEH_end_gcm_ghash_clmul:
615 .size gcm_ghash_clmul,.-gcm_ghash_clmul
616 ___
617 }

619 $code.=<<___;
620 .align 64
621 .Lbswap_mask:
622 .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
623 .L0x1c2_polynomial:
624 .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
625 .align 64
626 .type .Lrem_4bit,\@object
627 .Lrem_4bit:
628 .long 0,‘0x0000<<16‘,0,‘0x1C20<<16‘,0,‘0x3840<<16‘,0,‘0x2460<<16‘
629 .long 0,‘0x7080<<16‘,0,‘0x6CA0<<16‘,0,‘0x48C0<<16‘,0,‘0x54E0<<16‘
630 .long 0,‘0xE100<<16‘,0,‘0xFD20<<16‘,0,‘0xD940<<16‘,0,‘0xC560<<16‘
631 .long 0,‘0x9180<<16‘,0,‘0x8DA0<<16‘,0,‘0xA9C0<<16‘,0,‘0xB5E0<<16‘
632 .type .Lrem_8bit,\@object
633 .Lrem_8bit:
634 .value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
635 .value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
636 .value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
637 .value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
638 .value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
639 .value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
640 .value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
641 .value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
642 .value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
643 .value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
644 .value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
645 .value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
646 .value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
647 .value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
648 .value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
649 .value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
650 .value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
651 .value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
652 .value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
653 .value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
654 .value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
655 .value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
656 .value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
657 .value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
658 .value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
659 .value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 13

660 .value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
661 .value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
662 .value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
663 .value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
664 .value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
665 .value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE

667 .asciz "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
668 .align 64
669 ___

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 14

670 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
671 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
672 if ($win64) {
673 $rec="%rcx";
674 $frame="%rdx";
675 $context="%r8";
676 $disp="%r9";

678 $code.=<<___;
679 .extern __imp_RtlVirtualUnwind
680 .type se_handler,\@abi-omnipotent
681 .align 16
682 se_handler:
683 push %rsi
684 push %rdi
685 push %rbx
686 push %rbp
687 push %r12
688 push %r13
689 push %r14
690 push %r15
691 pushfq
692 sub \$64,%rsp

694 mov 120($context),%rax # pull context->Rax
695 mov 248($context),%rbx # pull context->Rip

697 mov 8($disp),%rsi # disp->ImageBase
698 mov 56($disp),%r11 # disp->HandlerData

700 mov 0(%r11),%r10d # HandlerData[0]
701 lea (%rsi,%r10),%r10 # prologue label
702 cmp %r10,%rbx # context->Rip<prologue label
703 jb .Lin_prologue

705 mov 152($context),%rax # pull context->Rsp

707 mov 4(%r11),%r10d # HandlerData[1]
708 lea (%rsi,%r10),%r10 # epilogue label
709 cmp %r10,%rbx # context->Rip>=epilogue label
710 jae .Lin_prologue

712 lea 24(%rax),%rax # adjust "rsp"

714 mov -8(%rax),%rbx
715 mov -16(%rax),%rbp
716 mov -24(%rax),%r12
717 mov %rbx,144($context) # restore context->Rbx
718 mov %rbp,160($context) # restore context->Rbp
719 mov %r12,216($context) # restore context->R12

721 .Lin_prologue:
722 mov 8(%rax),%rdi
723 mov 16(%rax),%rsi
724 mov %rax,152($context) # restore context->Rsp
725 mov %rsi,168($context) # restore context->Rsi
726 mov %rdi,176($context) # restore context->Rdi

728 mov 40($disp),%rdi # disp->ContextRecord
729 mov $context,%rsi # context
730 mov \$‘1232/8‘,%ecx # sizeof(CONTEXT)
731 .long 0xa548f3fc # cld; rep movsq

733 mov $disp,%rsi
734 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
735 mov 8(%rsi),%rdx # arg2, disp->ImageBase

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 15

736 mov 0(%rsi),%r8 # arg3, disp->ControlPc
737 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
738 mov 40(%rsi),%r10 # disp->ContextRecord
739 lea 56(%rsi),%r11 # &disp->HandlerData
740 lea 24(%rsi),%r12 # &disp->EstablisherFrame
741 mov %r10,32(%rsp) # arg5
742 mov %r11,40(%rsp) # arg6
743 mov %r12,48(%rsp) # arg7
744 mov %rcx,56(%rsp) # arg8, (NULL)
745 call *__imp_RtlVirtualUnwind(%rip)

747 mov \$1,%eax # ExceptionContinueSearch
748 add \$64,%rsp
749 popfq
750 pop %r15
751 pop %r14
752 pop %r13
753 pop %r12
754 pop %rbp
755 pop %rbx
756 pop %rdi
757 pop %rsi
758 ret
759 .size se_handler,.-se_handler

761 .section .pdata
762 .align 4
763 .rva .LSEH_begin_gcm_gmult_4bit
764 .rva .LSEH_end_gcm_gmult_4bit
765 .rva .LSEH_info_gcm_gmult_4bit

767 .rva .LSEH_begin_gcm_ghash_4bit
768 .rva .LSEH_end_gcm_ghash_4bit
769 .rva .LSEH_info_gcm_ghash_4bit

771 .rva .LSEH_begin_gcm_ghash_clmul
772 .rva .LSEH_end_gcm_ghash_clmul
773 .rva .LSEH_info_gcm_ghash_clmul

775 .section .xdata
776 .align 8
777 .LSEH_info_gcm_gmult_4bit:
778 .byte 9,0,0,0
779 .rva se_handler
780 .rva .Lgmult_prologue,.Lgmult_epilogue # HandlerData
781 .LSEH_info_gcm_ghash_4bit:
782 .byte 9,0,0,0
783 .rva se_handler
784 .rva .Lghash_prologue,.Lghash_epilogue # HandlerData
785 .LSEH_info_gcm_ghash_clmul:
786 .byte 0x01,0x1f,0x0b,0x00
787 .byte 0x1f,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10
788 .byte 0x19,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9
789 .byte 0x13,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8
790 .byte 0x0d,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7
791 .byte 0x08,0x68,0x00,0x00 #movaps (rsp),xmm6
792 .byte 0x04,0xa2,0x00,0x00 #sub rsp,0x58
793 ___
794 }

new/usr/src/lib/openssl/libsunw_crypto/pl/ghash-x86_64.pl 16

795 $code =~ s/\‘([^\‘]*)\‘/eval($1)/gem;

797 print $code;

799 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/keysets.pl 1

**
 6967 Fri May 30 18:32:04 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/keysets.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/perl

3 $NUMBER=0x01;
4 $UPPER=0x02;
5 $LOWER=0x04;
6 $UNDER=0x100;
7 $PUNCTUATION=0x200;
8 $WS=0x10;
9 $ESC=0x20;
10 $QUOTE=0x40;
11 $DQUOTE=0x400;
12 $COMMENT=0x80;
13 $FCOMMENT=0x800;
14 $EOF=0x08;
15 $HIGHBIT=0x1000;

17 foreach (0 .. 255)
18 {
19 $v=0;
20 $c=sprintf("%c",$_);
21 $v|=$NUMBER if ($c =~ /[0-9]/);
22 $v|=$UPPER if ($c =~ /[A-Z]/);
23 $v|=$LOWER if ($c =~ /[a-z]/);
24 $v|=$UNDER if ($c =~ /_/);
25 $v|=$PUNCTUATION if ($c =~ /[!\.%&*\+,\/;\?\@\^\~\|-]/);
26 $v|=$WS if ($c =~ /[\t\r\n]/);
27 $v|=$ESC if ($c =~ /\\/);
28 $v|=$QUOTE if ($c =~ /[’‘"]/); # for emacs: "‘’}/)
29 $v|=$COMMENT if ($c =~ /\#/);
30 $v|=$EOF if ($c =~ /\0/);
31 $v|=$HIGHBIT if ($c =~/[\x80-\xff]/);

33 push(@V_def,$v);
34 }

36 foreach (0 .. 255)
37 {
38 $v=0;
39 $c=sprintf("%c",$_);
40 $v|=$NUMBER if ($c =~ /[0-9]/);
41 $v|=$UPPER if ($c =~ /[A-Z]/);
42 $v|=$LOWER if ($c =~ /[a-z]/);
43 $v|=$UNDER if ($c =~ /_/);
44 $v|=$PUNCTUATION if ($c =~ /[!\.%&*\+,\/;\?\@\^\~\|-]/);
45 $v|=$WS if ($c =~ /[\t\r\n]/);
46 $v|=$DQUOTE if ($c =~ /["]/); # for emacs: "}/)
47 $v|=$FCOMMENT if ($c =~ /;/);
48 $v|=$EOF if ($c =~ /\0/);
49 $v|=$HIGHBIT if ($c =~/[\x80-\xff]/);

51 push(@V_w32,$v);
52 }

54 print <<"EOF";
55 /* crypto/conf/conf_def.h */
56 /* Copyright (C) 1995-1998 Eric Young (eay\@cryptsoft.com)
57 * All rights reserved.
58 *
59 * This package is an SSL implementation written
60 * by Eric Young (eay\@cryptsoft.com).
61 * The implementation was written so as to conform with Netscapes SSL.

new/usr/src/lib/openssl/libsunw_crypto/pl/keysets.pl 2

62 *
63 * This library is free for commercial and non-commercial use as long as
64 * the following conditions are aheared to. The following conditions
65 * apply to all code found in this distribution, be it the RC4, RSA,
66 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
67 * included with this distribution is covered by the same copyright terms
68 * except that the holder is Tim Hudson (tjh\@cryptsoft.com).
69 *
70 * Copyright remains Eric Young’s, and as such any Copyright notices in
71 * the code are not to be removed.
72 * If this package is used in a product, Eric Young should be given attribution
73 * as the author of the parts of the library used.
74 * This can be in the form of a textual message at program startup or
75 * in documentation (online or textual) provided with the package.
76 *
77 * Redistribution and use in source and binary forms, with or without
78 * modification, are permitted provided that the following conditions
79 * are met:
80 * 1. Redistributions of source code must retain the copyright
81 * notice, this list of conditions and the following disclaimer.
82 * 2. Redistributions in binary form must reproduce the above copyright
83 * notice, this list of conditions and the following disclaimer in the
84 * documentation and/or other materials provided with the distribution.
85 * 3. All advertising materials mentioning features or use of this software
86 * must display the following acknowledgement:
87 * "This product includes cryptographic software written by
88 * Eric Young (eay\@cryptsoft.com)"
89 * The word ’cryptographic’ can be left out if the rouines from the library
90 * being used are not cryptographic related :-).
91 * 4. If you include any Windows specific code (or a derivative thereof) from
92 * the apps directory (application code) you must include an acknowledgement:
93 * "This product includes software written by Tim Hudson (tjh\@cryptsoft.com)
94 *
95 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
96 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
97 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
98 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
99 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
100 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
101 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
103 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
104 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
105 * SUCH DAMAGE.
106 *
107 * The licence and distribution terms for any publically available version or
108 * derivative of this code cannot be changed. i.e. this code cannot simply be
109 * copied and put under another distribution licence
110 * [including the GNU Public Licence.]
111 */

113 /* THIS FILE WAS AUTOMAGICALLY GENERATED!
114 Please modify and use keysets.pl to regenerate it. */

116 #define CONF_NUMBER $NUMBER
117 #define CONF_UPPER $UPPER
118 #define CONF_LOWER $LOWER
119 #define CONF_UNDER $UNDER
120 #define CONF_PUNCTUATION $PUNCTUATION
121 #define CONF_WS $WS
122 #define CONF_ESC $ESC
123 #define CONF_QUOTE $QUOTE
124 #define CONF_DQUOTE $DQUOTE
125 #define CONF_COMMENT $COMMENT
126 #define CONF_FCOMMENT $FCOMMENT
127 #define CONF_EOF $EOF

new/usr/src/lib/openssl/libsunw_crypto/pl/keysets.pl 3

128 #define CONF_HIGHBIT $HIGHBIT
129 #define CONF_ALPHA (CONF_UPPER|CONF_LOWER)
130 #define CONF_ALPHA_NUMERIC (CONF_ALPHA|CONF_NUMBER|CONF_UNDER)
131 #define CONF_ALPHA_NUMERIC_PUNCT (CONF_ALPHA|CONF_NUMBER|CONF_UNDER| \\
132 CONF_PUNCTUATION)

134 #define KEYTYPES(c) ((unsigned short *)((c)->meth_data))
135 #ifndef CHARSET_EBCDIC
136 #define IS_COMMENT(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_COMMENT)
137 #define IS_FCOMMENT(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_FCOMMENT)
138 #define IS_EOF(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_EOF)
139 #define IS_ESC(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_ESC)
140 #define IS_NUMBER(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_NUMBER)
141 #define IS_WS(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_WS)
142 #define IS_ALPHA_NUMERIC(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_ALPHA_NUMERIC)
143 #define IS_ALPHA_NUMERIC_PUNCT(c,a) \\
144 (KEYTYPES(c)[(a)&0xff]&CONF_ALPHA_NUMERIC_PUNCT)
145 #define IS_QUOTE(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_QUOTE)
146 #define IS_DQUOTE(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_DQUOTE)
147 #define IS_HIGHBIT(c,a) (KEYTYPES(c)[(a)&0xff]&CONF_HIGHBIT)

149 #else /*CHARSET_EBCDIC*/

151 #define IS_COMMENT(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_COMMENT)
152 #define IS_FCOMMENT(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_FCOMMENT)
153 #define IS_EOF(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_EOF)
154 #define IS_ESC(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_ESC)
155 #define IS_NUMBER(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_NUMBER)
156 #define IS_WS(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_WS)
157 #define IS_ALPHA_NUMERIC(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_ALPHA_NUME
158 #define IS_ALPHA_NUMERIC_PUNCT(c,a) \\
159 (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_ALPHA_NUME
160 #define IS_QUOTE(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_QUOTE)
161 #define IS_DQUOTE(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_DQUOTE)
162 #define IS_HIGHBIT(c,a) (KEYTYPES(c)[os_toascii[a]&0xff]&CONF_HIGHBIT)
163 #endif /*CHARSET_EBCDIC*/

165 EOF

167 print "static unsigned short CONF_type_default[256]={";

169 for ($i=0; $i<256; $i++)
170 {
171 print "\n\t" if ($i % 8) == 0;
172 printf "0x%04X,",$V_def[$i];
173 }

175 print "\n\t};\n\n";

177 print "static unsigned short CONF_type_win32[256]={";

179 for ($i=0; $i<256; $i++)
180 {
181 print "\n\t" if ($i % 8) == 0;
182 printf "0x%04X,",$V_w32[$i];
183 }

185 print "\n\t};\n\n";

new/usr/src/lib/openssl/libsunw_crypto/pl/md5-586.pl 1

**
 7612 Fri May 30 18:32:04 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/md5-586.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/local/bin/perl

3 # Normal is the
4 # md5_block_x86(MD5_CTX *c, ULONG *X);
5 # version, non-normal is the
6 # md5_block_x86(MD5_CTX *c, ULONG *X,int blocks);

8 $normal=0;

10 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
11 push(@INC,"${dir}","${dir}../../perlasm");
12 require "x86asm.pl";

14 &asm_init($ARGV[0],$0);

16 $A="eax";
17 $B="ebx";
18 $C="ecx";
19 $D="edx";
20 $tmp1="edi";
21 $tmp2="ebp";
22 $X="esi";

24 # What we need to load into $tmp for the next round
25 %Ltmp1=("R0",&Np($C), "R1",&Np($C), "R2",&Np($C), "R3",&Np($D));
26 @xo=(
27 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, # R0
28 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, # R1
29 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, # R2
30 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9, # R3
31);

33 &md5_block("md5_block_asm_data_order");
34 &asm_finish();

36 sub Np
37 {
38 local($p)=@_;
39 local(%n)=($A,$D,$B,$A,$C,$B,$D,$C);
40 return($n{$p});
41 }

43 sub R0
44 {
45 local($pos,$a,$b,$c,$d,$K,$ki,$s,$t)=@_;

47 &mov($tmp1,$C) if $pos < 0;
48 &mov($tmp2,&DWP($xo[$ki]*4,$K,"",0)) if $pos < 0; # very first one

50 # body proper

52 &comment("R0 $ki");
53 &xor($tmp1,$d); # F function - part 2

55 &and($tmp1,$b); # F function - part 3
56 &lea($a,&DWP($t,$a,$tmp2,1));

58 &xor($tmp1,$d); # F function - part 4

60 &add($a,$tmp1);
61 &mov($tmp1,&Np($c)) if $pos < 1; # next tmp1 for R0

new/usr/src/lib/openssl/libsunw_crypto/pl/md5-586.pl 2

62 &mov($tmp1,&Np($c)) if $pos == 1; # next tmp1 for R1

64 &rotl($a,$s);

66 &mov($tmp2,&DWP($xo[$ki+1]*4,$K,"",0)) if ($pos != 2);

68 &add($a,$b);
69 }

71 sub R1
72 {
73 local($pos,$a,$b,$c,$d,$K,$ki,$s,$t)=@_;

75 &comment("R1 $ki");

77 &lea($a,&DWP($t,$a,$tmp2,1));

79 &xor($tmp1,$b); # G function - part 2
80 &and($tmp1,$d); # G function - part 3

82 &mov($tmp2,&DWP($xo[$ki+1]*4,$K,"",0)) if ($pos != 2);
83 &xor($tmp1,$c); # G function - part 4

85 &add($a,$tmp1);
86 &mov($tmp1,&Np($c)) if $pos < 1; # G function - part 1
87 &mov($tmp1,&Np($c)) if $pos == 1; # G function - part 1

89 &rotl($a,$s);

91 &add($a,$b);
92 }

94 sub R2
95 {
96 local($n,$pos,$a,$b,$c,$d,$K,$ki,$s,$t)=@_;
97 # This one is different, only 3 logical operations

99 if (($n & 1) == 0)
100 {
101 &comment("R2 $ki");
102 # make sure to do ’D’ first, not ’B’, else we clash with
103 # the last add from the previous round.

105 &xor($tmp1,$d); # H function - part 2

107 &xor($tmp1,$b); # H function - part 3
108 &lea($a,&DWP($t,$a,$tmp2,1));

110 &add($a,$tmp1);

112 &rotl($a,$s);

114 &mov($tmp2,&DWP($xo[$ki+1]*4,$K,"",0));
115 &mov($tmp1,&Np($c));
116 }
117 else
118 {
119 &comment("R2 $ki");
120 # make sure to do ’D’ first, not ’B’, else we clash with
121 # the last add from the previous round.

123 &lea($a,&DWP($t,$a,$tmp2,1));

125 &add($b,$c); # MOVED FORWARD
126 &xor($tmp1,$d); # H function - part 2

new/usr/src/lib/openssl/libsunw_crypto/pl/md5-586.pl 3

128 &xor($tmp1,$b); # H function - part 3
129 &mov($tmp2,&DWP($xo[$ki+1]*4,$K,"",0)) if ($pos != 2);

131 &add($a,$tmp1);
132 &mov($tmp1,&Np($c)) if $pos < 1; # H function - part 1
133 &mov($tmp1,-1) if $pos == 1; # I function - part 1

135 &rotl($a,$s);

137 &add($a,$b);
138 }
139 }

141 sub R3
142 {
143 local($pos,$a,$b,$c,$d,$K,$ki,$s,$t)=@_;

145 &comment("R3 $ki");

147 # ¬($tmp1)
148 &xor($tmp1,$d) if $pos < 0; # I function - part 2

150 &or($tmp1,$b); # I function - part 3
151 &lea($a,&DWP($t,$a,$tmp2,1));

153 &xor($tmp1,$c); # I function - part 4
154 &mov($tmp2,&DWP($xo[$ki+1]*4,$K,"",0)) if $pos != 2; # load X/k value
155 &mov($tmp2,&wparam(0)) if $pos == 2;

157 &add($a,$tmp1);
158 &mov($tmp1,-1) if $pos < 1; # H function - part 1
159 &add($K,64) if $pos >=1 && !$normal;

161 &rotl($a,$s);

163 &xor($tmp1,&Np($d)) if $pos <= 0; # I function - part = first time
164 &mov($tmp1,&DWP(0,$tmp2,"",0)) if $pos > 0;
165 &add($a,$b);
166 }

169 sub md5_block
170 {
171 local($name)=@_;

173 &function_begin_B($name,"",3);

175 # parameter 1 is the MD5_CTX structure.
176 # A 0
177 # B 4
178 # C 8
179 # D 12

181 &push("esi");
182 &push("edi");
183 &mov($tmp1, &wparam(0)); # edi
184 &mov($X, &wparam(1)); # esi
185 &mov($C, &wparam(2));
186 &push("ebp");
187 &shl($C, 6);
188 &push("ebx");
189 &add($C, $X); # offset we end at
190 &sub($C, 64);
191 &mov($A, &DWP(0,$tmp1,"",0));
192 &push($C); # Put on the TOS
193 &mov($B, &DWP(4,$tmp1,"",0));

new/usr/src/lib/openssl/libsunw_crypto/pl/md5-586.pl 4

194 &mov($C, &DWP(8,$tmp1,"",0));
195 &mov($D, &DWP(12,$tmp1,"",0));

197 &set_label("start") unless $normal;
198 &comment("");
199 &comment("R0 section");

201 &R0(-2,$A,$B,$C,$D,$X, 0, 7,0xd76aa478);
202 &R0(0,$D,$A,$B,$C,$X, 1,12,0xe8c7b756);
203 &R0(0,$C,$D,$A,$B,$X, 2,17,0x242070db);
204 &R0(0,$B,$C,$D,$A,$X, 3,22,0xc1bdceee);
205 &R0(0,$A,$B,$C,$D,$X, 4, 7,0xf57c0faf);
206 &R0(0,$D,$A,$B,$C,$X, 5,12,0x4787c62a);
207 &R0(0,$C,$D,$A,$B,$X, 6,17,0xa8304613);
208 &R0(0,$B,$C,$D,$A,$X, 7,22,0xfd469501);
209 &R0(0,$A,$B,$C,$D,$X, 8, 7,0x698098d8);
210 &R0(0,$D,$A,$B,$C,$X, 9,12,0x8b44f7af);
211 &R0(0,$C,$D,$A,$B,$X,10,17,0xffff5bb1);
212 &R0(0,$B,$C,$D,$A,$X,11,22,0x895cd7be);
213 &R0(0,$A,$B,$C,$D,$X,12, 7,0x6b901122);
214 &R0(0,$D,$A,$B,$C,$X,13,12,0xfd987193);
215 &R0(0,$C,$D,$A,$B,$X,14,17,0xa679438e);
216 &R0(1,$B,$C,$D,$A,$X,15,22,0x49b40821);

218 &comment("");
219 &comment("R1 section");
220 &R1(-1,$A,$B,$C,$D,$X,16, 5,0xf61e2562);
221 &R1(0,$D,$A,$B,$C,$X,17, 9,0xc040b340);
222 &R1(0,$C,$D,$A,$B,$X,18,14,0x265e5a51);
223 &R1(0,$B,$C,$D,$A,$X,19,20,0xe9b6c7aa);
224 &R1(0,$A,$B,$C,$D,$X,20, 5,0xd62f105d);
225 &R1(0,$D,$A,$B,$C,$X,21, 9,0x02441453);
226 &R1(0,$C,$D,$A,$B,$X,22,14,0xd8a1e681);
227 &R1(0,$B,$C,$D,$A,$X,23,20,0xe7d3fbc8);
228 &R1(0,$A,$B,$C,$D,$X,24, 5,0x21e1cde6);
229 &R1(0,$D,$A,$B,$C,$X,25, 9,0xc33707d6);
230 &R1(0,$C,$D,$A,$B,$X,26,14,0xf4d50d87);
231 &R1(0,$B,$C,$D,$A,$X,27,20,0x455a14ed);
232 &R1(0,$A,$B,$C,$D,$X,28, 5,0xa9e3e905);
233 &R1(0,$D,$A,$B,$C,$X,29, 9,0xfcefa3f8);
234 &R1(0,$C,$D,$A,$B,$X,30,14,0x676f02d9);
235 &R1(1,$B,$C,$D,$A,$X,31,20,0x8d2a4c8a);

237 &comment("");
238 &comment("R2 section");
239 &R2(0,-1,$A,$B,$C,$D,$X,32, 4,0xfffa3942);
240 &R2(1, 0,$D,$A,$B,$C,$X,33,11,0x8771f681);
241 &R2(2, 0,$C,$D,$A,$B,$X,34,16,0x6d9d6122);
242 &R2(3, 0,$B,$C,$D,$A,$X,35,23,0xfde5380c);
243 &R2(4, 0,$A,$B,$C,$D,$X,36, 4,0xa4beea44);
244 &R2(5, 0,$D,$A,$B,$C,$X,37,11,0x4bdecfa9);
245 &R2(6, 0,$C,$D,$A,$B,$X,38,16,0xf6bb4b60);
246 &R2(7, 0,$B,$C,$D,$A,$X,39,23,0xbebfbc70);
247 &R2(8, 0,$A,$B,$C,$D,$X,40, 4,0x289b7ec6);
248 &R2(9, 0,$D,$A,$B,$C,$X,41,11,0xeaa127fa);
249 &R2(10, 0,$C,$D,$A,$B,$X,42,16,0xd4ef3085);
250 &R2(11, 0,$B,$C,$D,$A,$X,43,23,0x04881d05);
251 &R2(12, 0,$A,$B,$C,$D,$X,44, 4,0xd9d4d039);
252 &R2(13, 0,$D,$A,$B,$C,$X,45,11,0xe6db99e5);
253 &R2(14, 0,$C,$D,$A,$B,$X,46,16,0x1fa27cf8);
254 &R2(15, 1,$B,$C,$D,$A,$X,47,23,0xc4ac5665);

256 &comment("");
257 &comment("R3 section");
258 &R3(-1,$A,$B,$C,$D,$X,48, 6,0xf4292244);
259 &R3(0,$D,$A,$B,$C,$X,49,10,0x432aff97);

new/usr/src/lib/openssl/libsunw_crypto/pl/md5-586.pl 5

260 &R3(0,$C,$D,$A,$B,$X,50,15,0xab9423a7);
261 &R3(0,$B,$C,$D,$A,$X,51,21,0xfc93a039);
262 &R3(0,$A,$B,$C,$D,$X,52, 6,0x655b59c3);
263 &R3(0,$D,$A,$B,$C,$X,53,10,0x8f0ccc92);
264 &R3(0,$C,$D,$A,$B,$X,54,15,0xffeff47d);
265 &R3(0,$B,$C,$D,$A,$X,55,21,0x85845dd1);
266 &R3(0,$A,$B,$C,$D,$X,56, 6,0x6fa87e4f);
267 &R3(0,$D,$A,$B,$C,$X,57,10,0xfe2ce6e0);
268 &R3(0,$C,$D,$A,$B,$X,58,15,0xa3014314);
269 &R3(0,$B,$C,$D,$A,$X,59,21,0x4e0811a1);
270 &R3(0,$A,$B,$C,$D,$X,60, 6,0xf7537e82);
271 &R3(0,$D,$A,$B,$C,$X,61,10,0xbd3af235);
272 &R3(0,$C,$D,$A,$B,$X,62,15,0x2ad7d2bb);
273 &R3(2,$B,$C,$D,$A,$X,63,21,0xeb86d391);

275 # &mov($tmp2,&wparam(0)); # done in the last R3
276 # &mov($tmp1, &DWP(0,$tmp2,"",0)); # done is the last R3

278 &add($A,$tmp1);
279 &mov($tmp1, &DWP(4,$tmp2,"",0));

281 &add($B,$tmp1);
282 &mov($tmp1, &DWP(8,$tmp2,"",0));

284 &add($C,$tmp1);
285 &mov($tmp1, &DWP(12,$tmp2,"",0));

287 &add($D,$tmp1);
288 &mov(&DWP(0,$tmp2,"",0),$A);

290 &mov(&DWP(4,$tmp2,"",0),$B);
291 &mov($tmp1,&swtmp(0)) unless $normal;

293 &mov(&DWP(8,$tmp2,"",0),$C);
294 &mov(&DWP(12,$tmp2,"",0),$D);

296 &cmp($tmp1,$X) unless $normal; # check count
297 &jae(&label("start")) unless $normal;

299 &pop("eax"); # pop the temp variable off the stack
300 &pop("ebx");
301 &pop("ebp");
302 &pop("edi");
303 &pop("esi");
304 &ret();
305 &function_end_B($name);
306 }

new/usr/src/lib/openssl/libsunw_crypto/pl/md5-x86_64.pl 1

**
 12448 Fri May 30 18:32:04 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/md5-x86_64.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/perl -w
2 #
3 # MD5 optimized for AMD64.
4 #
5 # Author: Marc Bevand <bevand_m (at) epita.fr>
6 # Licence: I hereby disclaim the copyright on this code and place it
7 # in the public domain.
8 #

10 use strict;

12 my $code;

14 # round1_step() does:
15 # dst = x + ((dst + F(x,y,z) + X[k] + T_i) <<< s)
16 # %r10d = X[k_next]
17 # %r11d = z’ (copy of z for the next step)
18 # Each round1_step() takes about 5.3 clocks (9 instructions, 1.7 IPC)
19 sub round1_step
20 {
21 my ($pos, $dst, $x, $y, $z, $k_next, $T_i, $s) = @_;
22 $code .= " mov 0*4(%rsi), %r10d /* (NEXT STEP) X[0] */\n
23 $code .= " mov %edx, %r11d /* (NEXT STEP) z’ = %edx
24 $code .= <<EOF;
25 xor $y, %r11d /* y ^ ... */
26 lea $T_i($dst,%r10d),$dst /* Const + dst + ... */
27 and $x, %r11d /* x & ... */
28 xor $z, %r11d /* z ^ ... */
29 mov $k_next*4(%rsi),%r10d /* (NEXT STEP) X[$k_next] */
30 add %r11d, $dst /* dst += ... */
31 rol \$$s, $dst /* dst <<< s */
32 mov $y, %r11d /* (NEXT STEP) z’ = $y */
33 add $x, $dst /* dst += x */
34 EOF
35 }

37 # round2_step() does:
38 # dst = x + ((dst + G(x,y,z) + X[k] + T_i) <<< s)
39 # %r10d = X[k_next]
40 # %r11d = z’ (copy of z for the next step)
41 # %r12d = z’ (copy of z for the next step)
42 # Each round2_step() takes about 5.4 clocks (11 instructions, 2.0 IPC)
43 sub round2_step
44 {
45 my ($pos, $dst, $x, $y, $z, $k_next, $T_i, $s) = @_;
46 $code .= " mov 1*4(%rsi), %r10d /* (NEXT STEP) X[1] */\n
47 $code .= " mov %edx, %r11d /* (NEXT STEP) z’ = %edx
48 $code .= " mov %edx, %r12d /* (NEXT STEP) z’ = %edx
49 $code .= <<EOF;
50 not %r11d /* not z */
51 lea $T_i($dst,%r10d),$dst /* Const + dst + ... */
52 and $x, %r12d /* x & z */
53 and $y, %r11d /* y & (not z) */
54 mov $k_next*4(%rsi),%r10d /* (NEXT STEP) X[$k_next] */
55 or %r11d, %r12d /* (y & (not z)) | (x & z) */
56 mov $y, %r11d /* (NEXT STEP) z’ = $y */
57 add %r12d, $dst /* dst += ... */
58 mov $y, %r12d /* (NEXT STEP) z’ = $y */
59 rol \$$s, $dst /* dst <<< s */
60 add $x, $dst /* dst += x */
61 EOF

new/usr/src/lib/openssl/libsunw_crypto/pl/md5-x86_64.pl 2

62 }

64 # round3_step() does:
65 # dst = x + ((dst + H(x,y,z) + X[k] + T_i) <<< s)
66 # %r10d = X[k_next]
67 # %r11d = y’ (copy of y for the next step)
68 # Each round3_step() takes about 4.2 clocks (8 instructions, 1.9 IPC)
69 sub round3_step
70 {
71 my ($pos, $dst, $x, $y, $z, $k_next, $T_i, $s) = @_;
72 $code .= " mov 5*4(%rsi), %r10d /* (NEXT STEP) X[5] */\n
73 $code .= " mov %ecx, %r11d /* (NEXT STEP) y’ = %ecx
74 $code .= <<EOF;
75 lea $T_i($dst,%r10d),$dst /* Const + dst + ... */
76 mov $k_next*4(%rsi),%r10d /* (NEXT STEP) X[$k_next] */
77 xor $z, %r11d /* z ^ ... */
78 xor $x, %r11d /* x ^ ... */
79 add %r11d, $dst /* dst += ... */
80 rol \$$s, $dst /* dst <<< s */
81 mov $x, %r11d /* (NEXT STEP) y’ = $x */
82 add $x, $dst /* dst += x */
83 EOF
84 }

86 # round4_step() does:
87 # dst = x + ((dst + I(x,y,z) + X[k] + T_i) <<< s)
88 # %r10d = X[k_next]
89 # %r11d = not z’ (copy of not z for the next step)
90 # Each round4_step() takes about 5.2 clocks (9 instructions, 1.7 IPC)
91 sub round4_step
92 {
93 my ($pos, $dst, $x, $y, $z, $k_next, $T_i, $s) = @_;
94 $code .= " mov 0*4(%rsi), %r10d /* (NEXT STEP) X[0] */\n
95 $code .= " mov \$0xffffffff, %r11d\n" if ($pos == -1);
96 $code .= " xor %edx, %r11d /* (NEXT STEP) not z’ =
97 if ($pos == -1);
98 $code .= <<EOF;
99 lea $T_i($dst,%r10d),$dst /* Const + dst + ... */
100 or $x, %r11d /* x | ... */
101 xor $y, %r11d /* y ^ ... */
102 add %r11d, $dst /* dst += ... */
103 mov $k_next*4(%rsi),%r10d /* (NEXT STEP) X[$k_next] */
104 mov \$0xffffffff, %r11d
105 rol \$$s, $dst /* dst <<< s */
106 xor $y, %r11d /* (NEXT STEP) not z’ = not $y *
107 add $x, $dst /* dst += x */
108 EOF
109 }

111 my $flavour = shift;
112 my $output = shift;
113 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

115 my $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

117 $0 =~ m/(.*[\/\\])[^\/\\]+$/; my $dir=$1; my $xlate;
118 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
119 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
120 die "can’t locate x86_64-xlate.pl";

122 no warnings qw(uninitialized);
123 open OUT,"| \"$^X\" $xlate $flavour $output";
124 *STDOUT=*OUT;

126 $code .= <<EOF;
127 .text

new/usr/src/lib/openssl/libsunw_crypto/pl/md5-x86_64.pl 3

128 .align 16

130 .globl md5_block_asm_data_order
131 .type md5_block_asm_data_order,\@function,3
132 md5_block_asm_data_order:
133 push %rbp
134 push %rbx
135 push %r12
136 push %r14
137 push %r15
138 .Lprologue:

140 # rdi = arg #1 (ctx, MD5_CTX pointer)
141 # rsi = arg #2 (ptr, data pointer)
142 # rdx = arg #3 (nbr, number of 16-word blocks to process)
143 mov %rdi, %rbp # rbp = ctx
144 shl \$6, %rdx # rdx = nbr in bytes
145 lea (%rsi,%rdx), %rdi # rdi = end
146 mov 0*4(%rbp), %eax # eax = ctx->A
147 mov 1*4(%rbp), %ebx # ebx = ctx->B
148 mov 2*4(%rbp), %ecx # ecx = ctx->C
149 mov 3*4(%rbp), %edx # edx = ctx->D
150 # end is ’rdi’
151 # ptr is ’rsi’
152 # A is ’eax’
153 # B is ’ebx’
154 # C is ’ecx’
155 # D is ’edx’

157 cmp %rdi, %rsi # cmp end with ptr
158 je .Lend # jmp if ptr == end

160 # BEGIN of loop over 16-word blocks
161 .Lloop: # save old values of A, B, C, D
162 mov %eax, %r8d
163 mov %ebx, %r9d
164 mov %ecx, %r14d
165 mov %edx, %r15d
166 EOF
167 round1_step(-1,’%eax’,’%ebx’,’%ecx’,’%edx’, ’1’,’0xd76aa478’, ’7’);
168 round1_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’, ’2’,’0xe8c7b756’,’12’);
169 round1_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’, ’3’,’0x242070db’,’17’);
170 round1_step(0,’%ebx’,’%ecx’,’%edx’,’%eax’, ’4’,’0xc1bdceee’,’22’);
171 round1_step(0,’%eax’,’%ebx’,’%ecx’,’%edx’, ’5’,’0xf57c0faf’, ’7’);
172 round1_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’, ’6’,’0x4787c62a’,’12’);
173 round1_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’, ’7’,’0xa8304613’,’17’);
174 round1_step(0,’%ebx’,’%ecx’,’%edx’,’%eax’, ’8’,’0xfd469501’,’22’);
175 round1_step(0,’%eax’,’%ebx’,’%ecx’,’%edx’, ’9’,’0x698098d8’, ’7’);
176 round1_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’,’10’,’0x8b44f7af’,’12’);
177 round1_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’,’11’,’0xffff5bb1’,’17’);
178 round1_step(0,’%ebx’,’%ecx’,’%edx’,’%eax’,’12’,’0x895cd7be’,’22’);
179 round1_step(0,’%eax’,’%ebx’,’%ecx’,’%edx’,’13’,’0x6b901122’, ’7’);
180 round1_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’,’14’,’0xfd987193’,’12’);
181 round1_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’,’15’,’0xa679438e’,’17’);
182 round1_step(1,’%ebx’,’%ecx’,’%edx’,’%eax’, ’0’,’0x49b40821’,’22’);

184 round2_step(-1,’%eax’,’%ebx’,’%ecx’,’%edx’, ’6’,’0xf61e2562’, ’5’);
185 round2_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’,’11’,’0xc040b340’, ’9’);
186 round2_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’, ’0’,’0x265e5a51’,’14’);
187 round2_step(0,’%ebx’,’%ecx’,’%edx’,’%eax’, ’5’,’0xe9b6c7aa’,’20’);
188 round2_step(0,’%eax’,’%ebx’,’%ecx’,’%edx’,’10’,’0xd62f105d’, ’5’);
189 round2_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’,’15’, ’0x2441453’, ’9’);
190 round2_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’, ’4’,’0xd8a1e681’,’14’);
191 round2_step(0,’%ebx’,’%ecx’,’%edx’,’%eax’, ’9’,’0xe7d3fbc8’,’20’);
192 round2_step(0,’%eax’,’%ebx’,’%ecx’,’%edx’,’14’,’0x21e1cde6’, ’5’);
193 round2_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’, ’3’,’0xc33707d6’, ’9’);

new/usr/src/lib/openssl/libsunw_crypto/pl/md5-x86_64.pl 4

194 round2_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’, ’8’,’0xf4d50d87’,’14’);
195 round2_step(0,’%ebx’,’%ecx’,’%edx’,’%eax’,’13’,’0x455a14ed’,’20’);
196 round2_step(0,’%eax’,’%ebx’,’%ecx’,’%edx’, ’2’,’0xa9e3e905’, ’5’);
197 round2_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’, ’7’,’0xfcefa3f8’, ’9’);
198 round2_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’,’12’,’0x676f02d9’,’14’);
199 round2_step(1,’%ebx’,’%ecx’,’%edx’,’%eax’, ’0’,’0x8d2a4c8a’,’20’);

201 round3_step(-1,’%eax’,’%ebx’,’%ecx’,’%edx’, ’8’,’0xfffa3942’, ’4’);
202 round3_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’,’11’,’0x8771f681’,’11’);
203 round3_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’,’14’,’0x6d9d6122’,’16’);
204 round3_step(0,’%ebx’,’%ecx’,’%edx’,’%eax’, ’1’,’0xfde5380c’,’23’);
205 round3_step(0,’%eax’,’%ebx’,’%ecx’,’%edx’, ’4’,’0xa4beea44’, ’4’);
206 round3_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’, ’7’,’0x4bdecfa9’,’11’);
207 round3_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’,’10’,’0xf6bb4b60’,’16’);
208 round3_step(0,’%ebx’,’%ecx’,’%edx’,’%eax’,’13’,’0xbebfbc70’,’23’);
209 round3_step(0,’%eax’,’%ebx’,’%ecx’,’%edx’, ’0’,’0x289b7ec6’, ’4’);
210 round3_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’, ’3’,’0xeaa127fa’,’11’);
211 round3_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’, ’6’,’0xd4ef3085’,’16’);
212 round3_step(0,’%ebx’,’%ecx’,’%edx’,’%eax’, ’9’, ’0x4881d05’,’23’);
213 round3_step(0,’%eax’,’%ebx’,’%ecx’,’%edx’,’12’,’0xd9d4d039’, ’4’);
214 round3_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’,’15’,’0xe6db99e5’,’11’);
215 round3_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’, ’2’,’0x1fa27cf8’,’16’);
216 round3_step(1,’%ebx’,’%ecx’,’%edx’,’%eax’, ’0’,’0xc4ac5665’,’23’);

218 round4_step(-1,’%eax’,’%ebx’,’%ecx’,’%edx’, ’7’,’0xf4292244’, ’6’);
219 round4_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’,’14’,’0x432aff97’,’10’);
220 round4_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’, ’5’,’0xab9423a7’,’15’);
221 round4_step(0,’%ebx’,’%ecx’,’%edx’,’%eax’,’12’,’0xfc93a039’,’21’);
222 round4_step(0,’%eax’,’%ebx’,’%ecx’,’%edx’, ’3’,’0x655b59c3’, ’6’);
223 round4_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’,’10’,’0x8f0ccc92’,’10’);
224 round4_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’, ’1’,’0xffeff47d’,’15’);
225 round4_step(0,’%ebx’,’%ecx’,’%edx’,’%eax’, ’8’,’0x85845dd1’,’21’);
226 round4_step(0,’%eax’,’%ebx’,’%ecx’,’%edx’,’15’,’0x6fa87e4f’, ’6’);
227 round4_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’, ’6’,’0xfe2ce6e0’,’10’);
228 round4_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’,’13’,’0xa3014314’,’15’);
229 round4_step(0,’%ebx’,’%ecx’,’%edx’,’%eax’, ’4’,’0x4e0811a1’,’21’);
230 round4_step(0,’%eax’,’%ebx’,’%ecx’,’%edx’,’11’,’0xf7537e82’, ’6’);
231 round4_step(0,’%edx’,’%eax’,’%ebx’,’%ecx’, ’2’,’0xbd3af235’,’10’);
232 round4_step(0,’%ecx’,’%edx’,’%eax’,’%ebx’, ’9’,’0x2ad7d2bb’,’15’);
233 round4_step(1,’%ebx’,’%ecx’,’%edx’,’%eax’, ’0’,’0xeb86d391’,’21’);
234 $code .= <<EOF;
235 # add old values of A, B, C, D
236 add %r8d, %eax
237 add %r9d, %ebx
238 add %r14d, %ecx
239 add %r15d, %edx

241 # loop control
242 add \$64, %rsi # ptr += 64
243 cmp %rdi, %rsi # cmp end with ptr
244 jb .Lloop # jmp if ptr < end
245 # END of loop over 16-word blocks

247 .Lend:
248 mov %eax, 0*4(%rbp) # ctx->A = A
249 mov %ebx, 1*4(%rbp) # ctx->B = B
250 mov %ecx, 2*4(%rbp) # ctx->C = C
251 mov %edx, 3*4(%rbp) # ctx->D = D

253 mov (%rsp),%r15
254 mov 8(%rsp),%r14
255 mov 16(%rsp),%r12
256 mov 24(%rsp),%rbx
257 mov 32(%rsp),%rbp
258 add \$40,%rsp
259 .Lepilogue:

new/usr/src/lib/openssl/libsunw_crypto/pl/md5-x86_64.pl 5

260 ret
261 .size md5_block_asm_data_order,.-md5_block_asm_data_order
262 EOF

264 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
265 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
266 if ($win64) {
267 my $rec="%rcx";
268 my $frame="%rdx";
269 my $context="%r8";
270 my $disp="%r9";

272 $code.=<<___;
273 .extern __imp_RtlVirtualUnwind
274 .type se_handler,\@abi-omnipotent
275 .align 16
276 se_handler:
277 push %rsi
278 push %rdi
279 push %rbx
280 push %rbp
281 push %r12
282 push %r13
283 push %r14
284 push %r15
285 pushfq
286 sub \$64,%rsp

288 mov 120($context),%rax # pull context->Rax
289 mov 248($context),%rbx # pull context->Rip

291 lea .Lprologue(%rip),%r10
292 cmp %r10,%rbx # context->Rip<.Lprologue
293 jb .Lin_prologue

295 mov 152($context),%rax # pull context->Rsp

297 lea .Lepilogue(%rip),%r10
298 cmp %r10,%rbx # context->Rip>=.Lepilogue
299 jae .Lin_prologue

301 lea 40(%rax),%rax

303 mov -8(%rax),%rbp
304 mov -16(%rax),%rbx
305 mov -24(%rax),%r12
306 mov -32(%rax),%r14
307 mov -40(%rax),%r15
308 mov %rbx,144($context) # restore context->Rbx
309 mov %rbp,160($context) # restore context->Rbp
310 mov %r12,216($context) # restore context->R12
311 mov %r14,232($context) # restore context->R14
312 mov %r15,240($context) # restore context->R15

314 .Lin_prologue:
315 mov 8(%rax),%rdi
316 mov 16(%rax),%rsi
317 mov %rax,152($context) # restore context->Rsp
318 mov %rsi,168($context) # restore context->Rsi
319 mov %rdi,176($context) # restore context->Rdi

321 mov 40($disp),%rdi # disp->ContextRecord
322 mov $context,%rsi # context
323 mov \$154,%ecx # sizeof(CONTEXT)
324 .long 0xa548f3fc # cld; rep movsq

new/usr/src/lib/openssl/libsunw_crypto/pl/md5-x86_64.pl 6

326 mov $disp,%rsi
327 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
328 mov 8(%rsi),%rdx # arg2, disp->ImageBase
329 mov 0(%rsi),%r8 # arg3, disp->ControlPc
330 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
331 mov 40(%rsi),%r10 # disp->ContextRecord
332 lea 56(%rsi),%r11 # &disp->HandlerData
333 lea 24(%rsi),%r12 # &disp->EstablisherFrame
334 mov %r10,32(%rsp) # arg5
335 mov %r11,40(%rsp) # arg6
336 mov %r12,48(%rsp) # arg7
337 mov %rcx,56(%rsp) # arg8, (NULL)
338 call *__imp_RtlVirtualUnwind(%rip)

340 mov \$1,%eax # ExceptionContinueSearch
341 add \$64,%rsp
342 popfq
343 pop %r15
344 pop %r14
345 pop %r13
346 pop %r12
347 pop %rbp
348 pop %rbx
349 pop %rdi
350 pop %rsi
351 ret
352 .size se_handler,.-se_handler

354 .section .pdata
355 .align 4
356 .rva .LSEH_begin_md5_block_asm_data_order
357 .rva .LSEH_end_md5_block_asm_data_order
358 .rva .LSEH_info_md5_block_asm_data_order

360 .section .xdata
361 .align 8
362 .LSEH_info_md5_block_asm_data_order:
363 .byte 9,0,0,0
364 .rva se_handler
365 ___
366 }

368 print $code;

370 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 1

**
 34519 Fri May 30 18:32:04 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl
2 #
3 # Copyright (c) 2010-2011 Intel Corp.
4 # Author: Vinodh.Gopal@intel.com
5 # Jim Guilford
6 # Erdinc.Ozturk@intel.com
7 # Maxim.Perminov@intel.com
8 #
9 # More information about algorithm used can be found at:
10 # http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
11 #
12 # ==
13 # Copyright (c) 2011 The OpenSSL Project. All rights reserved.
14 #
15 # Redistribution and use in source and binary forms, with or without
16 # modification, are permitted provided that the following conditions
17 # are met:
18 #
19 # 1. Redistributions of source code must retain the above copyright
20 # notice, this list of conditions and the following disclaimer.
21 #
22 # 2. Redistributions in binary form must reproduce the above copyright
23 # notice, this list of conditions and the following disclaimer in
24 # the documentation and/or other materials provided with the
25 # distribution.
26 #
27 # 3. All advertising materials mentioning features or use of this
28 # software must display the following acknowledgment:
29 # "This product includes software developed by the OpenSSL Project
30 # for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
31 #
32 # 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
33 # endorse or promote products derived from this software without
34 # prior written permission. For written permission, please contact
35 # licensing@OpenSSL.org.
36 #
37 # 5. Products derived from this software may not be called "OpenSSL"
38 # nor may "OpenSSL" appear in their names without prior written
39 # permission of the OpenSSL Project.
40 #
41 # 6. Redistributions of any form whatsoever must retain the following
42 # acknowledgment:
43 # "This product includes software developed by the OpenSSL Project
44 # for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
45 #
46 # THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
47 # EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49 # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
50 # ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
51 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
52 # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
53 # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
55 # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
56 # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
57 # OF THE POSSIBILITY OF SUCH DAMAGE.
58 # ==

60 $flavour = shift;
61 $output = shift;

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 2

62 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

64 my $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

66 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
67 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
68 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
69 die "can’t locate x86_64-xlate.pl";

71 open OUT,"| \"$^X\" $xlate $flavour $output";
72 *STDOUT=*OUT;

74 use strict;
75 my $code=".text\n\n";
76 my $m=0;

78 #
79 # Define x512 macros
80 #

82 #MULSTEP_512_ADD MACRO x7, x6, x5, x4, x3, x2, x1, x0, dst, src1, src2,
83 #
84 # uses rax, rdx, and args
85 sub MULSTEP_512_ADD
86 {
87 my ($x, $DST, $SRC2, $ASRC, $OP, $TMP)=@_;
88 my @X=@$x; # make a copy
89 $code.=<<___;
90 mov (+8*0)($SRC2), %rax
91 mul $OP # rdx:rax = %OP * [0]
92 mov ($ASRC), $X[0]
93 add %rax, $X[0]
94 adc \$0, %rdx
95 mov $X[0], $DST
96 ___
97 for(my $i=1;$i<8;$i++) {
98 $code.=<<___;
99 mov %rdx, $TMP

101 mov (+8*$i)($SRC2), %rax
102 mul $OP # rdx:rax = %OP * [$i]
103 mov (+8*$i)($ASRC), $X[$i]
104 add %rax, $X[$i]
105 adc \$0, %rdx
106 add $TMP, $X[$i]
107 adc \$0, %rdx
108 ___
109 }
110 $code.=<<___;
111 mov %rdx, $X[0]
112 ___
113 }

115 #MULSTEP_512 MACRO x7, x6, x5, x4, x3, x2, x1, x0, dst, src2, src1_val, tmp
116 #
117 # uses rax, rdx, and args
118 sub MULSTEP_512
119 {
120 my ($x, $DST, $SRC2, $OP, $TMP)=@_;
121 my @X=@$x; # make a copy
122 $code.=<<___;
123 mov (+8*0)($SRC2), %rax
124 mul $OP # rdx:rax = %OP * [0]
125 add %rax, $X[0]
126 adc \$0, %rdx
127 mov $X[0], $DST

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 3

128 ___
129 for(my $i=1;$i<8;$i++) {
130 $code.=<<___;
131 mov %rdx, $TMP

133 mov (+8*$i)($SRC2), %rax
134 mul $OP # rdx:rax = %OP * [$i]
135 add %rax, $X[$i]
136 adc \$0, %rdx
137 add $TMP, $X[$i]
138 adc \$0, %rdx
139 ___
140 }
141 $code.=<<___;
142 mov %rdx, $X[0]
143 ___
144 }

146 #
147 # Swizzle Macros
148 #

150 # macro to copy data from flat space to swizzled table
151 #MACRO swizzle pDst, pSrc, tmp1, tmp2
152 # pDst and pSrc are modified
153 sub swizzle
154 {
155 my ($pDst, $pSrc, $cnt, $d0)=@_;
156 $code.=<<___;
157 mov \$8, $cnt
158 loop_$m:
159 mov ($pSrc), $d0
160 mov $d0#w, ($pDst)
161 shr \$16, $d0
162 mov $d0#w, (+64*1)($pDst)
163 shr \$16, $d0
164 mov $d0#w, (+64*2)($pDst)
165 shr \$16, $d0
166 mov $d0#w, (+64*3)($pDst)
167 lea 8($pSrc), $pSrc
168 lea 64*4($pDst), $pDst
169 dec $cnt
170 jnz loop_$m
171 ___

173 $m++;
174 }

176 # macro to copy data from swizzled table to flat space
177 #MACRO unswizzle pDst, pSrc, tmp*3
178 sub unswizzle
179 {
180 my ($pDst, $pSrc, $cnt, $d0, $d1)=@_;
181 $code.=<<___;
182 mov \$4, $cnt
183 loop_$m:
184 movzxw (+64*3+256*0)($pSrc), $d0
185 movzxw (+64*3+256*1)($pSrc), $d1
186 shl \$16, $d0
187 shl \$16, $d1
188 mov (+64*2+256*0)($pSrc), $d0#w
189 mov (+64*2+256*1)($pSrc), $d1#w
190 shl \$16, $d0
191 shl \$16, $d1
192 mov (+64*1+256*0)($pSrc), $d0#w
193 mov (+64*1+256*1)($pSrc), $d1#w

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 4

194 shl \$16, $d0
195 shl \$16, $d1
196 mov (+64*0+256*0)($pSrc), $d0#w
197 mov (+64*0+256*1)($pSrc), $d1#w
198 mov $d0, (+8*0)($pDst)
199 mov $d1, (+8*1)($pDst)
200 lea 256*2($pSrc), $pSrc
201 lea 8*2($pDst), $pDst
202 sub \$1, $cnt
203 jnz loop_$m
204 ___

206 $m++;
207 }

209 #
210 # Data Structures
211 #

213 # Reduce Data
214 #
215 #
216 # Offset Value
217 # 0C0 Carries
218 # 0B8 X2[10]
219 # 0B0 X2[9]
220 # 0A8 X2[8]
221 # 0A0 X2[7]
222 # 098 X2[6]
223 # 090 X2[5]
224 # 088 X2[4]
225 # 080 X2[3]
226 # 078 X2[2]
227 # 070 X2[1]
228 # 068 X2[0]
229 # 060 X1[12] P[10]
230 # 058 X1[11] P[9] Z[8]
231 # 050 X1[10] P[8] Z[7]
232 # 048 X1[9] P[7] Z[6]
233 # 040 X1[8] P[6] Z[5]
234 # 038 X1[7] P[5] Z[4]
235 # 030 X1[6] P[4] Z[3]
236 # 028 X1[5] P[3] Z[2]
237 # 020 X1[4] P[2] Z[1]
238 # 018 X1[3] P[1] Z[0]
239 # 010 X1[2] P[0] Y[2]
240 # 008 X1[1] Q[1] Y[1]
241 # 000 X1[0] Q[0] Y[0]

243 my $X1_offset = 0; # 13 qwords
244 my $X2_offset = $X1_offset + 13*8; # 11 qwords
245 my $Carries_offset = $X2_offset + 11*8; # 1 qword
246 my $Q_offset = 0; # 2 qwords
247 my $P_offset = $Q_offset + 2*8; # 11 qwords
248 my $Y_offset = 0; # 3 qwords
249 my $Z_offset = $Y_offset + 3*8; # 9 qwords

251 my $Red_Data_Size = $Carries_offset + 1*8; # (25 qw

253 #
254 # Stack Frame
255 #
256 #
257 # offset value
258 # ... <old stack contents>
259 # ...

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 5

260 # 280 Garray

262 # 278 tmp16[15]
263 #
264 # 200 tmp16[0]

266 # 1F8 tmp[7]
267 #
268 # 1C0 tmp[0]

270 # 1B8 GT[7]
271 #
272 # 180 GT[0]

274 # 178 Reduce Data
275 #
276 # 0B8 Reduce Data
277 # 0B0 reserved
278 # 0A8 reserved
279 # 0A0 reserved
280 # 098 reserved
281 # 090 reserved
282 # 088 reduce result addr
283 # 080 exp[8]

285 # ...
286 # 048 exp[1]
287 # 040 exp[0]

289 # 038 reserved
290 # 030 loop_idx
291 # 028 pg
292 # 020 i
293 # 018 pData ; arg 4
294 # 010 pG ; arg 2
295 # 008 pResult ; arg 1
296 # 000 rsp ; stack pointer before subtract

298 my $rsp_offset = 0;
299 my $pResult_offset = 8*1 + $rsp_offset;
300 my $pG_offset = 8*1 + $pResult_offset;
301 my $pData_offset = 8*1 + $pG_offset;
302 my $i_offset = 8*1 + $pData_offset;
303 my $pg_offset = 8*1 + $i_offset;
304 my $loop_idx_offset = 8*1 + $pg_offset;
305 my $reserved1_offset = 8*1 + $loop_idx_offset;
306 my $exp_offset = 8*1 + $reserved1_offset;
307 my $red_result_addr_offset= 8*9 + $exp_offset;
308 my $reserved2_offset = 8*1 + $red_result_addr_offset;
309 my $Reduce_Data_offset = 8*5 + $reserved2_offset;
310 my $GT_offset = $Red_Data_Size + $Reduce_Data_offset;
311 my $tmp_offset = 8*8 + $GT_offset;
312 my $tmp16_offset = 8*8 + $tmp_offset;
313 my $garray_offset = 8*16 + $tmp16_offset;
314 my $mem_size = 8*8*32 + $garray_offset;

316 #
317 # Offsets within Reduce Data
318 #
319 #
320 # struct MODF_2FOLD_MONT_512_C1_DATA {
321 # UINT64 t[8][8];
322 # UINT64 m[8];
323 # UINT64 m1[8]; /* 2^768 % m */
324 # UINT64 m2[8]; /* 2^640 % m */
325 # UINT64 k1[2]; /* (- 1/m) % 2^128 */

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 6

326 # };

328 my $T = 0;
329 my $M = 512; # = 8 * 8 * 8
330 my $M1 = 576; # = 8 * 8 * 9 /* += 8 * 8 */
331 my $M2 = 640; # = 8 * 8 * 10 /* += 8 * 8 */
332 my $K1 = 704; # = 8 * 8 * 11 /* += 8 * 8 */

334 #
335 # FUNCTIONS
336 #

338 {{{
339 #
340 # MULADD_128x512 : Function to multiply 128-bits (2 qwords) by 512-bits (8 qword
341 # and add 512-bits (8 qwords)
342 # to get 640 bits (10 qwords)
343 # Input: 128-bit mul source: [rdi+8*1], rbp
344 # 512-bit mul source: [rsi+8*n]
345 # 512-bit add source: r15, r14, ..., r9, r8
346 # Output: r9, r8, r15, r14, r13, r12, r11, r10, [rcx+8*1], [rcx+8*0]
347 # Clobbers all regs except: rcx, rsi, rdi
348 $code.=<<___;
349 .type MULADD_128x512,\@abi-omnipotent
350 .align 16
351 MULADD_128x512:
352 ___
353 &MULSTEP_512([map("%r$_",(8..15))], "(+8*0)(%rcx)", "%rsi", "%rbp", "%rb
354 $code.=<<___;
355 mov (+8*1)(%rdi), %rbp
356 ___
357 &MULSTEP_512([map("%r$_",(9..15,8))], "(+8*1)(%rcx)", "%rsi", "%rbp", "%
358 $code.=<<___;
359 ret
360 .size MULADD_128x512,.-MULADD_128x512
361 ___
362 }}}

364 {{{
365 #MULADD_256x512 MACRO pDst, pA, pB, OP, TMP, X7, X6, X5, X4, X3, X2, X1, X0
366 #
367 # Inputs: pDst: Destination (768 bits, 12 qwords)
368 # pA: Multiplicand (1024 bits, 16 qwords)
369 # pB: Multiplicand (512 bits, 8 qwords)
370 # Dst = Ah * B + Al
371 # where Ah is (in qwords) A[15:12] (256 bits) and Al is A[7:0] (512 bits)
372 # Results in X3 X2 X1 X0 X7 X6 X5 X4 Dst[3:0]
373 # Uses registers: arguments, RAX, RDX
374 sub MULADD_256x512
375 {
376 my ($pDst, $pA, $pB, $OP, $TMP, $X)=@_;
377 $code.=<<___;
378 mov (+8*12)($pA), $OP
379 ___
380 &MULSTEP_512_ADD($X, "(+8*0)($pDst)", $pB, $pA, $OP, $TMP);
381 push(@$X,shift(@$X));

383 $code.=<<___;
384 mov (+8*13)($pA), $OP
385 ___
386 &MULSTEP_512($X, "(+8*1)($pDst)", $pB, $OP, $TMP);
387 push(@$X,shift(@$X));

389 $code.=<<___;
390 mov (+8*14)($pA), $OP
391 ___

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 7

392 &MULSTEP_512($X, "(+8*2)($pDst)", $pB, $OP, $TMP);
393 push(@$X,shift(@$X));

395 $code.=<<___;
396 mov (+8*15)($pA), $OP
397 ___
398 &MULSTEP_512($X, "(+8*3)($pDst)", $pB, $OP, $TMP);
399 push(@$X,shift(@$X));
400 }

402 #
403 # mont_reduce(UINT64 *x, /* 1024 bits, 16 qwords */
404 # UINT64 *m, /* 512 bits, 8 qwords */
405 # MODF_2FOLD_MONT_512_C1_DATA *data,
406 # UINT64 *r) /* 512 bits, 8 qwords */
407 # Input: x (number to be reduced): tmp16 (Implicit)
408 # m (modulus): [pM] (Implicit)
409 # data (reduce data): [pData] (Implicit)
410 # Output: r (result): Address in [red_res_addr]
411 # result also in: r9, r8, r15, r14, r13, r12, r11, r10

413 my @X=map("%r$_",(8..15));

415 $code.=<<___;
416 .type mont_reduce,\@abi-omnipotent
417 .align 16
418 mont_reduce:
419 ___

421 my $STACK_DEPTH = 8;
422 #
423 # X1 = Xh * M1 + Xl
424 $code.=<<___;
425 lea (+$Reduce_Data_offset+$X1_offset+$STACK_DEPTH)(%rsp), %rdi
426 mov (+$pData_offset+$STACK_DEPTH)(%rsp), %rsi
427 add \$$M1, %rsi
428 lea (+$tmp16_offset+$STACK_DEPTH)(%rsp), %rcx

430 ___

432 &MULADD_256x512("%rdi", "%rcx", "%rsi", "%rbp", "%rbx", \@X); # rotate
433 # results in r11, r10, r9, r8, r15, r14, r13, r12, X1[3:0]

435 $code.=<<___;
436 xor %rax, %rax
437 # X1 += xl
438 add (+8*8)(%rcx), $X[4]
439 adc (+8*9)(%rcx), $X[5]
440 adc (+8*10)(%rcx), $X[6]
441 adc (+8*11)(%rcx), $X[7]
442 adc \$0, %rax
443 # X1 is now rax, r11-r8, r15-r12, tmp16[3:0]

445 #
446 # check for carry ;; carry stored in rax
447 mov $X[4], (+8*8)(%rdi) # rdi points to X1
448 mov $X[5], (+8*9)(%rdi)
449 mov $X[6], %rbp
450 mov $X[7], (+8*11)(%rdi)

452 mov %rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp)

454 mov (+8*0)(%rdi), $X[4]
455 mov (+8*1)(%rdi), $X[5]
456 mov (+8*2)(%rdi), $X[6]
457 mov (+8*3)(%rdi), $X[7]

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 8

459 # X1 is now stored in: X1[11], rbp, X1[9:8], r15-r8
460 # rdi -> X1
461 # rsi -> M1

463 #
464 # X2 = Xh * M2 + Xl
465 # do first part (X2 = Xh * M2)
466 add \$8*10, %rdi # rdi -> pXh ; 128 bits, 2 qword
467 # Xh is actually { [rdi+8*1], rbp }
468 add \$‘$M2-$M1‘, %rsi # rsi -> M2
469 lea (+$Reduce_Data_offset+$X2_offset+$STACK_DEPTH)(%rsp), %rcx
470 ___
471 unshift(@X,pop(@X)); unshift(@X,pop(@X));
472 $code.=<<___;

474 call MULADD_128x512 # args in rcx, rdi / rbp, rsi, r
475 # result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0]
476 mov (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rax

478 # X2 += Xl
479 add (+8*8-8*10)(%rdi), $X[6] # (-8*10) is to adjust r
480 adc (+8*9-8*10)(%rdi), $X[7]
481 mov $X[6], (+8*8)(%rcx)
482 mov $X[7], (+8*9)(%rcx)

484 adc %rax, %rax
485 mov %rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp)

487 lea (+$Reduce_Data_offset+$Q_offset+$STACK_DEPTH)(%rsp), %rdi
488 add \$‘$K1-$M2‘, %rsi # rsi -> pK1 ; 128 bits,

490 # MUL_128x128t128 rdi, rcx, rsi ; Q = X2 * K1 (bottom half)
491 # B1:B0 = rsi[1:0] = K1[1:0]
492 # A1:A0 = rcx[1:0] = X2[1:0]
493 # Result = rdi[1],rbp = Q[1],rbp
494 mov (%rsi), %r8 # B0
495 mov (+8*1)(%rsi), %rbx # B1

497 mov (%rcx), %rax # A0
498 mul %r8 # B0
499 mov %rax, %rbp
500 mov %rdx, %r9

502 mov (+8*1)(%rcx), %rax # A1
503 mul %r8 # B0
504 add %rax, %r9

506 mov (%rcx), %rax # A0
507 mul %rbx # B1
508 add %rax, %r9

510 mov %r9, (+8*1)(%rdi)
511 # end MUL_128x128t128

513 sub \$‘$K1-$M‘, %rsi

515 mov (%rcx), $X[6]
516 mov (+8*1)(%rcx), $X[7] # r9:r8 = X2[1:0]

518 call MULADD_128x512 # args in rcx, rdi / rbp, rsi, r
519 # result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0]

521 # load first half of m to rdx, rdi, rbx, rax
522 # moved this here for efficiency
523 mov (+8*0)(%rsi), %rax

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 9

524 mov (+8*1)(%rsi), %rbx
525 mov (+8*2)(%rsi), %rdi
526 mov (+8*3)(%rsi), %rdx

528 # continue with reduction
529 mov (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rbp

531 add (+8*8)(%rcx), $X[6]
532 adc (+8*9)(%rcx), $X[7]

534 #accumulate the final carry to rbp
535 adc %rbp, %rbp

537 # Add in overflow corrections: R = (X2>>128) += T[overflow]
538 # R = {r9, r8, r15, r14, ..., r10}
539 shl \$3, %rbp
540 mov (+$pData_offset+$STACK_DEPTH)(%rsp), %rcx
541 add %rcx, %rbp # pT ; 512 bits, 8 qwords, sprea

543 # rsi will be used to generate a mask after the addition
544 xor %rsi, %rsi

546 add (+8*8*0)(%rbp), $X[0]
547 adc (+8*8*1)(%rbp), $X[1]
548 adc (+8*8*2)(%rbp), $X[2]
549 adc (+8*8*3)(%rbp), $X[3]
550 adc (+8*8*4)(%rbp), $X[4]
551 adc (+8*8*5)(%rbp), $X[5]
552 adc (+8*8*6)(%rbp), $X[6]
553 adc (+8*8*7)(%rbp), $X[7]

555 # if there is a carry: rsi = 0xFFFFFFFFFFFFFFFF
556 # if carry is clear: rsi = 0x0000000000000000
557 sbb \$0, %rsi

559 # if carry is clear, subtract 0. Otherwise, subtract 256 bits of m
560 and %rsi, %rax
561 and %rsi, %rbx
562 and %rsi, %rdi
563 and %rsi, %rdx

565 mov \$1, %rbp
566 sub %rax, $X[0]
567 sbb %rbx, $X[1]
568 sbb %rdi, $X[2]
569 sbb %rdx, $X[3]

571 # if there is a borrow: rbp = 0
572 # if there is no borrow: rbp = 1
573 # this is used to save the borrows in between the first half and the 2nd
574 sbb \$0, %rbp

576 #load second half of m to rdx, rdi, rbx, rax

578 add \$$M, %rcx
579 mov (+8*4)(%rcx), %rax
580 mov (+8*5)(%rcx), %rbx
581 mov (+8*6)(%rcx), %rdi
582 mov (+8*7)(%rcx), %rdx

584 # use the rsi mask as before
585 # if carry is clear, subtract 0. Otherwise, subtract 256 bits of m
586 and %rsi, %rax
587 and %rsi, %rbx
588 and %rsi, %rdi
589 and %rsi, %rdx

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 10

591 # if rbp = 0, there was a borrow before, it is moved to the carry flag
592 # if rbp = 1, there was not a borrow before, carry flag is cleared
593 sub \$1, %rbp

595 sbb %rax, $X[4]
596 sbb %rbx, $X[5]
597 sbb %rdi, $X[6]
598 sbb %rdx, $X[7]

600 # write R back to memory

602 mov (+$red_result_addr_offset+$STACK_DEPTH)(%rsp), %rsi
603 mov $X[0], (+8*0)(%rsi)
604 mov $X[1], (+8*1)(%rsi)
605 mov $X[2], (+8*2)(%rsi)
606 mov $X[3], (+8*3)(%rsi)
607 mov $X[4], (+8*4)(%rsi)
608 mov $X[5], (+8*5)(%rsi)
609 mov $X[6], (+8*6)(%rsi)
610 mov $X[7], (+8*7)(%rsi)

612 ret
613 .size mont_reduce,.-mont_reduce
614 ___
615 }}}

617 {{{
618 #MUL_512x512 MACRO pDst, pA, pB, x7, x6, x5, x4, x3, x2, x1, x0, tmp*2
619 #
620 # Inputs: pDst: Destination (1024 bits, 16 qwords)
621 # pA: Multiplicand (512 bits, 8 qwords)
622 # pB: Multiplicand (512 bits, 8 qwords)
623 # Uses registers rax, rdx, args
624 # B operand in [pB] and also in x7...x0
625 sub MUL_512x512
626 {
627 my ($pDst, $pA, $pB, $x, $OP, $TMP, $pDst_o)=@_;
628 my ($pDst, $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/);
629 my @X=@$x; # make a copy

631 $code.=<<___;
632 mov (+8*0)($pA), $OP

634 mov $X[0], %rax
635 mul $OP # rdx:rax = %OP * [0]
636 mov %rax, (+$pDst_o+8*0)($pDst)
637 mov %rdx, $X[0]
638 ___
639 for(my $i=1;$i<8;$i++) {
640 $code.=<<___;
641 mov $X[$i], %rax
642 mul $OP # rdx:rax = %OP * [$i]
643 add %rax, $X[$i-1]
644 adc \$0, %rdx
645 mov %rdx, $X[$i]
646 ___
647 }

649 for(my $i=1;$i<8;$i++) {
650 $code.=<<___;
651 mov (+8*$i)($pA), $OP
652 ___

654 &MULSTEP_512(\@X, "(+$pDst_o+8*$i)($pDst)", $pB, $OP, $TMP);
655 push(@X,shift(@X));

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 11

656 }

658 $code.=<<___;
659 mov $X[0], (+$pDst_o+8*8)($pDst)
660 mov $X[1], (+$pDst_o+8*9)($pDst)
661 mov $X[2], (+$pDst_o+8*10)($pDst)
662 mov $X[3], (+$pDst_o+8*11)($pDst)
663 mov $X[4], (+$pDst_o+8*12)($pDst)
664 mov $X[5], (+$pDst_o+8*13)($pDst)
665 mov $X[6], (+$pDst_o+8*14)($pDst)
666 mov $X[7], (+$pDst_o+8*15)($pDst)
667 ___
668 }

670 #
671 # mont_mul_a3b : subroutine to compute (Src1 * Src2) % M (all 512-bits)
672 # Input: src1: Address of source 1: rdi
673 # src2: Address of source 2: rsi
674 # Output: dst: Address of destination: [red_res_addr]
675 # src2 and result also in: r9, r8, r15, r14, r13, r12, r11, r10
676 # Temp: Clobbers [tmp16], all registers
677 $code.=<<___;
678 .type mont_mul_a3b,\@abi-omnipotent
679 .align 16
680 mont_mul_a3b:
681 #
682 # multiply tmp = src1 * src2
683 # For multiply: dst = rcx, src1 = rdi, src2 = rsi
684 # stack depth is extra 8 from call
685 ___
686 &MUL_512x512("%rsp+$tmp16_offset+8", "%rdi", "%rsi", [map("%r$_",(10..15
687 $code.=<<___;
688 #
689 # Dst = tmp % m
690 # Call reduce(tmp, m, data, dst)

692 # tail recursion optimization: jmp to mont_reduce and return from there
693 jmp mont_reduce
694 # call mont_reduce
695 # ret
696 .size mont_mul_a3b,.-mont_mul_a3b
697 ___
698 }}}

700 {{{
701 #SQR_512 MACRO pDest, pA, x7, x6, x5, x4, x3, x2, x1, x0, tmp*4
702 #
703 # Input in memory [pA] and also in x7...x0
704 # Uses all argument registers plus rax and rdx
705 #
706 # This version computes all of the off-diagonal terms into memory,
707 # and then it adds in the diagonal terms

709 sub SQR_512
710 {
711 my ($pDst, $pA, $x, $A, $tmp, $x7, $x6, $pDst_o)=@_;
712 my ($pDst, $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/);
713 my @X=@$x; # make a copy
714 $code.=<<___;
715 # ------------------
716 # first pass 01...07
717 # ------------------
718 mov $X[0], $A

720 mov $X[1],%rax
721 mul $A

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 12

722 mov %rax, (+$pDst_o+8*1)($pDst)
723 ___
724 for(my $i=2;$i<8;$i++) {
725 $code.=<<___;
726 mov %rdx, $X[$i-2]
727 mov $X[$i],%rax
728 mul $A
729 add %rax, $X[$i-2]
730 adc \$0, %rdx
731 ___
732 }
733 $code.=<<___;
734 mov %rdx, $x7

736 mov $X[0], (+$pDst_o+8*2)($pDst)

738 # ------------------
739 # second pass 12...17
740 # ------------------

742 mov (+8*1)($pA), $A

744 mov (+8*2)($pA),%rax
745 mul $A
746 add %rax, $X[1]
747 adc \$0, %rdx
748 mov $X[1], (+$pDst_o+8*3)($pDst)

750 mov %rdx, $X[0]
751 mov (+8*3)($pA),%rax
752 mul $A
753 add %rax, $X[2]
754 adc \$0, %rdx
755 add $X[0], $X[2]
756 adc \$0, %rdx
757 mov $X[2], (+$pDst_o+8*4)($pDst)

759 mov %rdx, $X[0]
760 mov (+8*4)($pA),%rax
761 mul $A
762 add %rax, $X[3]
763 adc \$0, %rdx
764 add $X[0], $X[3]
765 adc \$0, %rdx

767 mov %rdx, $X[0]
768 mov (+8*5)($pA),%rax
769 mul $A
770 add %rax, $X[4]
771 adc \$0, %rdx
772 add $X[0], $X[4]
773 adc \$0, %rdx

775 mov %rdx, $X[0]
776 mov $X[6],%rax
777 mul $A
778 add %rax, $X[5]
779 adc \$0, %rdx
780 add $X[0], $X[5]
781 adc \$0, %rdx

783 mov %rdx, $X[0]
784 mov $X[7],%rax
785 mul $A
786 add %rax, $x7
787 adc \$0, %rdx

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 13

788 add $X[0], $x7
789 adc \$0, %rdx

791 mov %rdx, $X[1]

793 # ------------------
794 # third pass 23...27
795 # ------------------
796 mov (+8*2)($pA), $A

798 mov (+8*3)($pA),%rax
799 mul $A
800 add %rax, $X[3]
801 adc \$0, %rdx
802 mov $X[3], (+$pDst_o+8*5)($pDst)

804 mov %rdx, $X[0]
805 mov (+8*4)($pA),%rax
806 mul $A
807 add %rax, $X[4]
808 adc \$0, %rdx
809 add $X[0], $X[4]
810 adc \$0, %rdx
811 mov $X[4], (+$pDst_o+8*6)($pDst)

813 mov %rdx, $X[0]
814 mov (+8*5)($pA),%rax
815 mul $A
816 add %rax, $X[5]
817 adc \$0, %rdx
818 add $X[0], $X[5]
819 adc \$0, %rdx

821 mov %rdx, $X[0]
822 mov $X[6],%rax
823 mul $A
824 add %rax, $x7
825 adc \$0, %rdx
826 add $X[0], $x7
827 adc \$0, %rdx

829 mov %rdx, $X[0]
830 mov $X[7],%rax
831 mul $A
832 add %rax, $X[1]
833 adc \$0, %rdx
834 add $X[0], $X[1]
835 adc \$0, %rdx

837 mov %rdx, $X[2]

839 # ------------------
840 # fourth pass 34...37
841 # ------------------

843 mov (+8*3)($pA), $A

845 mov (+8*4)($pA),%rax
846 mul $A
847 add %rax, $X[5]
848 adc \$0, %rdx
849 mov $X[5], (+$pDst_o+8*7)($pDst)

851 mov %rdx, $X[0]
852 mov (+8*5)($pA),%rax
853 mul $A

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 14

854 add %rax, $x7
855 adc \$0, %rdx
856 add $X[0], $x7
857 adc \$0, %rdx
858 mov $x7, (+$pDst_o+8*8)($pDst)

860 mov %rdx, $X[0]
861 mov $X[6],%rax
862 mul $A
863 add %rax, $X[1]
864 adc \$0, %rdx
865 add $X[0], $X[1]
866 adc \$0, %rdx

868 mov %rdx, $X[0]
869 mov $X[7],%rax
870 mul $A
871 add %rax, $X[2]
872 adc \$0, %rdx
873 add $X[0], $X[2]
874 adc \$0, %rdx

876 mov %rdx, $X[5]

878 # ------------------
879 # fifth pass 45...47
880 # ------------------
881 mov (+8*4)($pA), $A

883 mov (+8*5)($pA),%rax
884 mul $A
885 add %rax, $X[1]
886 adc \$0, %rdx
887 mov $X[1], (+$pDst_o+8*9)($pDst)

889 mov %rdx, $X[0]
890 mov $X[6],%rax
891 mul $A
892 add %rax, $X[2]
893 adc \$0, %rdx
894 add $X[0], $X[2]
895 adc \$0, %rdx
896 mov $X[2], (+$pDst_o+8*10)($pDst)

898 mov %rdx, $X[0]
899 mov $X[7],%rax
900 mul $A
901 add %rax, $X[5]
902 adc \$0, %rdx
903 add $X[0], $X[5]
904 adc \$0, %rdx

906 mov %rdx, $X[1]

908 # ------------------
909 # sixth pass 56...57
910 # ------------------
911 mov (+8*5)($pA), $A

913 mov $X[6],%rax
914 mul $A
915 add %rax, $X[5]
916 adc \$0, %rdx
917 mov $X[5], (+$pDst_o+8*11)($pDst)

919 mov %rdx, $X[0]

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 15

920 mov $X[7],%rax
921 mul $A
922 add %rax, $X[1]
923 adc \$0, %rdx
924 add $X[0], $X[1]
925 adc \$0, %rdx
926 mov $X[1], (+$pDst_o+8*12)($pDst)

928 mov %rdx, $X[2]

930 # ------------------
931 # seventh pass 67
932 # ------------------
933 mov $X[6], $A

935 mov $X[7],%rax
936 mul $A
937 add %rax, $X[2]
938 adc \$0, %rdx
939 mov $X[2], (+$pDst_o+8*13)($pDst)

941 mov %rdx, (+$pDst_o+8*14)($pDst)

943 # start finalize (add in squares, and double off-terms)
944 mov (+$pDst_o+8*1)($pDst), $X[0]
945 mov (+$pDst_o+8*2)($pDst), $X[1]
946 mov (+$pDst_o+8*3)($pDst), $X[2]
947 mov (+$pDst_o+8*4)($pDst), $X[3]
948 mov (+$pDst_o+8*5)($pDst), $X[4]
949 mov (+$pDst_o+8*6)($pDst), $X[5]

951 mov (+8*3)($pA), %rax
952 mul %rax
953 mov %rax, $x6
954 mov %rdx, $X[6]

956 add $X[0], $X[0]
957 adc $X[1], $X[1]
958 adc $X[2], $X[2]
959 adc $X[3], $X[3]
960 adc $X[4], $X[4]
961 adc $X[5], $X[5]
962 adc \$0, $X[6]

964 mov (+8*0)($pA), %rax
965 mul %rax
966 mov %rax, (+$pDst_o+8*0)($pDst)
967 mov %rdx, $A

969 mov (+8*1)($pA), %rax
970 mul %rax

972 add $A, $X[0]
973 adc %rax, $X[1]
974 adc \$0, %rdx

976 mov %rdx, $A
977 mov $X[0], (+$pDst_o+8*1)($pDst)
978 mov $X[1], (+$pDst_o+8*2)($pDst)

980 mov (+8*2)($pA), %rax
981 mul %rax

983 add $A, $X[2]
984 adc %rax, $X[3]
985 adc \$0, %rdx

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 16

987 mov %rdx, $A

989 mov $X[2], (+$pDst_o+8*3)($pDst)
990 mov $X[3], (+$pDst_o+8*4)($pDst)

992 xor $tmp, $tmp
993 add $A, $X[4]
994 adc $x6, $X[5]
995 adc \$0, $tmp

997 mov $X[4], (+$pDst_o+8*5)($pDst)
998 mov $X[5], (+$pDst_o+8*6)($pDst)

1000 # %%tmp has 0/1 in column 7
1001 # %%A6 has a full value in column 7

1003 mov (+$pDst_o+8*7)($pDst), $X[0]
1004 mov (+$pDst_o+8*8)($pDst), $X[1]
1005 mov (+$pDst_o+8*9)($pDst), $X[2]
1006 mov (+$pDst_o+8*10)($pDst), $X[3]
1007 mov (+$pDst_o+8*11)($pDst), $X[4]
1008 mov (+$pDst_o+8*12)($pDst), $X[5]
1009 mov (+$pDst_o+8*13)($pDst), $x6
1010 mov (+$pDst_o+8*14)($pDst), $x7

1012 mov $X[7], %rax
1013 mul %rax
1014 mov %rax, $X[7]
1015 mov %rdx, $A

1017 add $X[0], $X[0]
1018 adc $X[1], $X[1]
1019 adc $X[2], $X[2]
1020 adc $X[3], $X[3]
1021 adc $X[4], $X[4]
1022 adc $X[5], $X[5]
1023 adc $x6, $x6
1024 adc $x7, $x7
1025 adc \$0, $A

1027 add $tmp, $X[0]

1029 mov (+8*4)($pA), %rax
1030 mul %rax

1032 add $X[6], $X[0]
1033 adc %rax, $X[1]
1034 adc \$0, %rdx

1036 mov %rdx, $tmp

1038 mov $X[0], (+$pDst_o+8*7)($pDst)
1039 mov $X[1], (+$pDst_o+8*8)($pDst)

1041 mov (+8*5)($pA), %rax
1042 mul %rax

1044 add $tmp, $X[2]
1045 adc %rax, $X[3]
1046 adc \$0, %rdx

1048 mov %rdx, $tmp

1050 mov $X[2], (+$pDst_o+8*9)($pDst)
1051 mov $X[3], (+$pDst_o+8*10)($pDst)

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 17

1053 mov (+8*6)($pA), %rax
1054 mul %rax

1056 add $tmp, $X[4]
1057 adc %rax, $X[5]
1058 adc \$0, %rdx

1060 mov $X[4], (+$pDst_o+8*11)($pDst)
1061 mov $X[5], (+$pDst_o+8*12)($pDst)

1063 add %rdx, $x6
1064 adc $X[7], $x7
1065 adc \$0, $A

1067 mov $x6, (+$pDst_o+8*13)($pDst)
1068 mov $x7, (+$pDst_o+8*14)($pDst)
1069 mov $A, (+$pDst_o+8*15)($pDst)
1070 ___
1071 }

1073 #
1074 # sqr_reduce: subroutine to compute Result = reduce(Result * Result)
1075 #
1076 # input and result also in: r9, r8, r15, r14, r13, r12, r11, r10
1077 #
1078 $code.=<<___;
1079 .type sqr_reduce,\@abi-omnipotent
1080 .align 16
1081 sqr_reduce:
1082 mov (+$pResult_offset+8)(%rsp), %rcx
1083 ___
1084 &SQR_512("%rsp+$tmp16_offset+8", "%rcx", [map("%r$_",(10..15,8..9))], "%
1085 $code.=<<___;
1086 # tail recursion optimization: jmp to mont_reduce and return from there
1087 jmp mont_reduce
1088 # call mont_reduce
1089 # ret
1090 .size sqr_reduce,.-sqr_reduce
1091 ___
1092 }}}

1094 #
1095 # MAIN FUNCTION
1096 #

1098 #mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */
1099 # UINT64 *g, /* 512 bits, 8 qwords */
1100 # UINT64 *exp, /* 512 bits, 8 qwords */
1101 # struct mod_ctx_512 *data)

1103 # window size = 5
1104 # table size = 2^5 = 32
1105 #table_entries equ 32
1106 #table_size equ table_entries * 8
1107 $code.=<<___;
1108 .globl mod_exp_512
1109 .type mod_exp_512,\@function,4
1110 mod_exp_512:
1111 push %rbp
1112 push %rbx
1113 push %r12
1114 push %r13
1115 push %r14
1116 push %r15

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 18

1118 # adjust stack down and then align it with cache boundary
1119 mov %rsp, %r8
1120 sub \$$mem_size, %rsp
1121 and \$-64, %rsp

1123 # store previous stack pointer and arguments
1124 mov %r8, (+$rsp_offset)(%rsp)
1125 mov %rdi, (+$pResult_offset)(%rsp)
1126 mov %rsi, (+$pG_offset)(%rsp)
1127 mov %rcx, (+$pData_offset)(%rsp)
1128 .Lbody:
1129 # transform g into montgomery space
1130 # GT = reduce(g * C2) = reduce(g * (2^256))
1131 # reduce expects to have the input in [tmp16]
1132 pxor %xmm4, %xmm4
1133 movdqu (+16*0)(%rsi), %xmm0
1134 movdqu (+16*1)(%rsi), %xmm1
1135 movdqu (+16*2)(%rsi), %xmm2
1136 movdqu (+16*3)(%rsi), %xmm3
1137 movdqa %xmm4, (+$tmp16_offset+16*0)(%rsp)
1138 movdqa %xmm4, (+$tmp16_offset+16*1)(%rsp)
1139 movdqa %xmm4, (+$tmp16_offset+16*6)(%rsp)
1140 movdqa %xmm4, (+$tmp16_offset+16*7)(%rsp)
1141 movdqa %xmm0, (+$tmp16_offset+16*2)(%rsp)
1142 movdqa %xmm1, (+$tmp16_offset+16*3)(%rsp)
1143 movdqa %xmm2, (+$tmp16_offset+16*4)(%rsp)
1144 movdqa %xmm3, (+$tmp16_offset+16*5)(%rsp)

1146 # load pExp before rdx gets blown away
1147 movdqu (+16*0)(%rdx), %xmm0
1148 movdqu (+16*1)(%rdx), %xmm1
1149 movdqu (+16*2)(%rdx), %xmm2
1150 movdqu (+16*3)(%rdx), %xmm3

1152 lea (+$GT_offset)(%rsp), %rbx
1153 mov %rbx, (+$red_result_addr_offset)(%rsp)
1154 call mont_reduce

1156 # Initialize tmp = C
1157 lea (+$tmp_offset)(%rsp), %rcx
1158 xor %rax, %rax
1159 mov %rax, (+8*0)(%rcx)
1160 mov %rax, (+8*1)(%rcx)
1161 mov %rax, (+8*3)(%rcx)
1162 mov %rax, (+8*4)(%rcx)
1163 mov %rax, (+8*5)(%rcx)
1164 mov %rax, (+8*6)(%rcx)
1165 mov %rax, (+8*7)(%rcx)
1166 mov %rax, (+$exp_offset+8*8)(%rsp)
1167 movq \$1, (+8*2)(%rcx)

1169 lea (+$garray_offset)(%rsp), %rbp
1170 mov %rcx, %rsi # pTmp
1171 mov %rbp, %rdi # Garray[][0]
1172 ___

1174 &swizzle("%rdi", "%rcx", "%rax", "%rbx");

1176 # for (rax = 31; rax != 0; rax--) {
1177 # tmp = reduce(tmp * G)
1178 # swizzle(pg, tmp);
1179 # pg += 2; }
1180 $code.=<<___;
1181 mov \$31, %rax
1182 mov %rax, (+$i_offset)(%rsp)
1183 mov %rbp, (+$pg_offset)(%rsp)

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 19

1184 # rsi -> pTmp
1185 mov %rsi, (+$red_result_addr_offset)(%rsp)
1186 mov (+8*0)(%rsi), %r10
1187 mov (+8*1)(%rsi), %r11
1188 mov (+8*2)(%rsi), %r12
1189 mov (+8*3)(%rsi), %r13
1190 mov (+8*4)(%rsi), %r14
1191 mov (+8*5)(%rsi), %r15
1192 mov (+8*6)(%rsi), %r8
1193 mov (+8*7)(%rsi), %r9
1194 init_loop:
1195 lea (+$GT_offset)(%rsp), %rdi
1196 call mont_mul_a3b
1197 lea (+$tmp_offset)(%rsp), %rsi
1198 mov (+$pg_offset)(%rsp), %rbp
1199 add \$2, %rbp
1200 mov %rbp, (+$pg_offset)(%rsp)
1201 mov %rsi, %rcx # rcx = rsi = addr of tmp
1202 ___

1204 &swizzle("%rbp", "%rcx", "%rax", "%rbx");
1205 $code.=<<___;
1206 mov (+$i_offset)(%rsp), %rax
1207 sub \$1, %rax
1208 mov %rax, (+$i_offset)(%rsp)
1209 jne init_loop

1211 #
1212 # Copy exponent onto stack
1213 movdqa %xmm0, (+$exp_offset+16*0)(%rsp)
1214 movdqa %xmm1, (+$exp_offset+16*1)(%rsp)
1215 movdqa %xmm2, (+$exp_offset+16*2)(%rsp)
1216 movdqa %xmm3, (+$exp_offset+16*3)(%rsp)

1219 #
1220 # Do exponentiation
1221 # Initialize result to G[exp{511:507}]
1222 mov (+$exp_offset+62)(%rsp), %eax
1223 mov %rax, %rdx
1224 shr \$11, %rax
1225 and \$0x07FF, %edx
1226 mov %edx, (+$exp_offset+62)(%rsp)
1227 lea (+$garray_offset)(%rsp,%rax,2), %rsi
1228 mov (+$pResult_offset)(%rsp), %rdx
1229 ___

1231 &unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax");

1233 #
1234 # Loop variables
1235 # rcx = [loop_idx] = index: 510-5 to 0 by 5
1236 $code.=<<___;
1237 movq \$505, (+$loop_idx_offset)(%rsp)

1239 mov (+$pResult_offset)(%rsp), %rcx
1240 mov %rcx, (+$red_result_addr_offset)(%rsp)
1241 mov (+8*0)(%rcx), %r10
1242 mov (+8*1)(%rcx), %r11
1243 mov (+8*2)(%rcx), %r12
1244 mov (+8*3)(%rcx), %r13
1245 mov (+8*4)(%rcx), %r14
1246 mov (+8*5)(%rcx), %r15
1247 mov (+8*6)(%rcx), %r8
1248 mov (+8*7)(%rcx), %r9
1249 jmp sqr_2

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 20

1251 main_loop_a3b:
1252 call sqr_reduce
1253 call sqr_reduce
1254 call sqr_reduce
1255 sqr_2:
1256 call sqr_reduce
1257 call sqr_reduce

1259 #
1260 # Do multiply, first look up proper value in Garray
1261 mov (+$loop_idx_offset)(%rsp), %rcx # bit index
1262 mov %rcx, %rax
1263 shr \$4, %rax # rax is word pointer
1264 mov (+$exp_offset)(%rsp,%rax,2), %edx
1265 and \$15, %rcx
1266 shrq %cl, %rdx
1267 and \$0x1F, %rdx

1269 lea (+$garray_offset)(%rsp,%rdx,2), %rsi
1270 lea (+$tmp_offset)(%rsp), %rdx
1271 mov %rdx, %rdi
1272 ___

1274 &unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax");
1275 # rdi = tmp = pG

1277 #
1278 # Call mod_mul_a1(pDst, pSrc1, pSrc2, pM, pData)
1279 # result result pG M Data
1280 $code.=<<___;
1281 mov (+$pResult_offset)(%rsp), %rsi
1282 call mont_mul_a3b

1284 #
1285 # finish loop
1286 mov (+$loop_idx_offset)(%rsp), %rcx
1287 sub \$5, %rcx
1288 mov %rcx, (+$loop_idx_offset)(%rsp)
1289 jge main_loop_a3b

1291 #

1293 end_main_loop_a3b:
1294 # transform result out of Montgomery space
1295 # result = reduce(result)
1296 mov (+$pResult_offset)(%rsp), %rdx
1297 pxor %xmm4, %xmm4
1298 movdqu (+16*0)(%rdx), %xmm0
1299 movdqu (+16*1)(%rdx), %xmm1
1300 movdqu (+16*2)(%rdx), %xmm2
1301 movdqu (+16*3)(%rdx), %xmm3
1302 movdqa %xmm4, (+$tmp16_offset+16*4)(%rsp)
1303 movdqa %xmm4, (+$tmp16_offset+16*5)(%rsp)
1304 movdqa %xmm4, (+$tmp16_offset+16*6)(%rsp)
1305 movdqa %xmm4, (+$tmp16_offset+16*7)(%rsp)
1306 movdqa %xmm0, (+$tmp16_offset+16*0)(%rsp)
1307 movdqa %xmm1, (+$tmp16_offset+16*1)(%rsp)
1308 movdqa %xmm2, (+$tmp16_offset+16*2)(%rsp)
1309 movdqa %xmm3, (+$tmp16_offset+16*3)(%rsp)
1310 call mont_reduce

1312 # If result > m, subract m
1313 # load result into r15:r8
1314 mov (+$pResult_offset)(%rsp), %rax
1315 mov (+8*0)(%rax), %r8

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 21

1316 mov (+8*1)(%rax), %r9
1317 mov (+8*2)(%rax), %r10
1318 mov (+8*3)(%rax), %r11
1319 mov (+8*4)(%rax), %r12
1320 mov (+8*5)(%rax), %r13
1321 mov (+8*6)(%rax), %r14
1322 mov (+8*7)(%rax), %r15

1324 # subtract m
1325 mov (+$pData_offset)(%rsp), %rbx
1326 add \$$M, %rbx

1328 sub (+8*0)(%rbx), %r8
1329 sbb (+8*1)(%rbx), %r9
1330 sbb (+8*2)(%rbx), %r10
1331 sbb (+8*3)(%rbx), %r11
1332 sbb (+8*4)(%rbx), %r12
1333 sbb (+8*5)(%rbx), %r13
1334 sbb (+8*6)(%rbx), %r14
1335 sbb (+8*7)(%rbx), %r15

1337 # if Carry is clear, replace result with difference
1338 mov (+8*0)(%rax), %rsi
1339 mov (+8*1)(%rax), %rdi
1340 mov (+8*2)(%rax), %rcx
1341 mov (+8*3)(%rax), %rdx
1342 cmovnc %r8, %rsi
1343 cmovnc %r9, %rdi
1344 cmovnc %r10, %rcx
1345 cmovnc %r11, %rdx
1346 mov %rsi, (+8*0)(%rax)
1347 mov %rdi, (+8*1)(%rax)
1348 mov %rcx, (+8*2)(%rax)
1349 mov %rdx, (+8*3)(%rax)

1351 mov (+8*4)(%rax), %rsi
1352 mov (+8*5)(%rax), %rdi
1353 mov (+8*6)(%rax), %rcx
1354 mov (+8*7)(%rax), %rdx
1355 cmovnc %r12, %rsi
1356 cmovnc %r13, %rdi
1357 cmovnc %r14, %rcx
1358 cmovnc %r15, %rdx
1359 mov %rsi, (+8*4)(%rax)
1360 mov %rdi, (+8*5)(%rax)
1361 mov %rcx, (+8*6)(%rax)
1362 mov %rdx, (+8*7)(%rax)

1364 mov (+$rsp_offset)(%rsp), %rsi
1365 mov 0(%rsi),%r15
1366 mov 8(%rsi),%r14
1367 mov 16(%rsi),%r13
1368 mov 24(%rsi),%r12
1369 mov 32(%rsi),%rbx
1370 mov 40(%rsi),%rbp
1371 lea 48(%rsi),%rsp
1372 .Lepilogue:
1373 ret
1374 .size mod_exp_512, . - mod_exp_512
1375 ___

1377 if ($win64) {
1378 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1379 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
1380 my $rec="%rcx";
1381 my $frame="%rdx";

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 22

1382 my $context="%r8";
1383 my $disp="%r9";

1385 $code.=<<___;
1386 .extern __imp_RtlVirtualUnwind
1387 .type mod_exp_512_se_handler,\@abi-omnipotent
1388 .align 16
1389 mod_exp_512_se_handler:
1390 push %rsi
1391 push %rdi
1392 push %rbx
1393 push %rbp
1394 push %r12
1395 push %r13
1396 push %r14
1397 push %r15
1398 pushfq
1399 sub \$64,%rsp

1401 mov 120($context),%rax # pull context->Rax
1402 mov 248($context),%rbx # pull context->Rip

1404 lea .Lbody(%rip),%r10
1405 cmp %r10,%rbx # context->Rip<prologue label
1406 jb .Lin_prologue

1408 mov 152($context),%rax # pull context->Rsp

1410 lea .Lepilogue(%rip),%r10
1411 cmp %r10,%rbx # context->Rip>=epilogue label
1412 jae .Lin_prologue

1414 mov $rsp_offset(%rax),%rax # pull saved Rsp

1416 mov 32(%rax),%rbx
1417 mov 40(%rax),%rbp
1418 mov 24(%rax),%r12
1419 mov 16(%rax),%r13
1420 mov 8(%rax),%r14
1421 mov 0(%rax),%r15
1422 lea 48(%rax),%rax
1423 mov %rbx,144($context) # restore context->Rbx
1424 mov %rbp,160($context) # restore context->Rbp
1425 mov %r12,216($context) # restore context->R12
1426 mov %r13,224($context) # restore context->R13
1427 mov %r14,232($context) # restore context->R14
1428 mov %r15,240($context) # restore context->R15

1430 .Lin_prologue:
1431 mov 8(%rax),%rdi
1432 mov 16(%rax),%rsi
1433 mov %rax,152($context) # restore context->Rsp
1434 mov %rsi,168($context) # restore context->Rsi
1435 mov %rdi,176($context) # restore context->Rdi

1437 mov 40($disp),%rdi # disp->ContextRecord
1438 mov $context,%rsi # context
1439 mov \$154,%ecx # sizeof(CONTEXT)
1440 .long 0xa548f3fc # cld; rep movsq

1442 mov $disp,%rsi
1443 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
1444 mov 8(%rsi),%rdx # arg2, disp->ImageBase
1445 mov 0(%rsi),%r8 # arg3, disp->ControlPc
1446 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
1447 mov 40(%rsi),%r10 # disp->ContextRecord

new/usr/src/lib/openssl/libsunw_crypto/pl/modexp512-x86_64.pl 23

1448 lea 56(%rsi),%r11 # &disp->HandlerData
1449 lea 24(%rsi),%r12 # &disp->EstablisherFrame
1450 mov %r10,32(%rsp) # arg5
1451 mov %r11,40(%rsp) # arg6
1452 mov %r12,48(%rsp) # arg7
1453 mov %rcx,56(%rsp) # arg8, (NULL)
1454 call *__imp_RtlVirtualUnwind(%rip)

1456 mov \$1,%eax # ExceptionContinueSearch
1457 add \$64,%rsp
1458 popfq
1459 pop %r15
1460 pop %r14
1461 pop %r13
1462 pop %r12
1463 pop %rbp
1464 pop %rbx
1465 pop %rdi
1466 pop %rsi
1467 ret
1468 .size mod_exp_512_se_handler,.-mod_exp_512_se_handler

1470 .section .pdata
1471 .align 4
1472 .rva .LSEH_begin_mod_exp_512
1473 .rva .LSEH_end_mod_exp_512
1474 .rva .LSEH_info_mod_exp_512

1476 .section .xdata
1477 .align 8
1478 .LSEH_info_mod_exp_512:
1479 .byte 9,0,0,0
1480 .rva mod_exp_512_se_handler
1481 ___
1482 }

1484 sub reg_part {
1485 my ($reg,$conv)=@_;
1486 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
1487 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
1488 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
1489 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
1490 return $reg;
1491 }

1493 $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
1494 $code =~ s/\‘([^\‘]*)\‘/eval $1/gem;
1495 $code =~ s/(\(\+[^)]+\))/eval $1/gem;
1496 print $code;
1497 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-586.pl 1

**
 11986 Fri May 30 18:32:04 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-586.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 # ==
4 # [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==

10 # At some point it became apparent that the original SSLeay RC4
11 # assembler implementation performs suboptimally on latest IA-32
12 # microarchitectures. After re-tuning performance has changed as
13 # following:
14 #
15 # Pentium -10%
16 # Pentium III +12%
17 # AMD +50%(*)
18 # P4 +250%(**)
19 #
20 # (*) This number is actually a trade-off:-) It’s possible to
21 # achieve +72%, but at the cost of -48% off PIII performance.
22 # In other words code performing further 13% faster on AMD
23 # would perform almost 2 times slower on Intel PIII...
24 # For reference! This code delivers ~80% of rc4-amd64.pl
25 # performance on the same Opteron machine.
26 # (**) This number requires compressed key schedule set up by
27 # RC4_set_key [see commentary below for further details].
28 #
29 # <appro@fy.chalmers.se>

31 # May 2011
32 #
33 # Optimize for Core2 and Westmere [and incidentally Opteron]. Current
34 # performance in cycles per processed byte (less is better) and
35 # improvement relative to previous version of this module is:
36 #
37 # Pentium 10.2 # original numbers
38 # Pentium III 7.8(*)
39 # Intel P4 7.5
40 #
41 # Opteron 6.1/+20% # new MMX numbers
42 # Core2 5.3/+67%(**)
43 # Westmere 5.1/+94%(**)
44 # Sandy Bridge 5.0/+8%
45 # Atom 12.6/+6%
46 #
47 # (*) PIII can actually deliver 6.6 cycles per byte with MMX code,
48 # but this specific code performs poorly on Core2. And vice
49 # versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
50 # poorly on PIII, at 8.0/14.5:-(As PIII is not a "hot" CPU
51 # [anymore], I chose to discard PIII-specific code path and opt
52 # for original IALU-only code, which is why MMX/SSE code path
53 # is guarded by SSE2 bit (see below), not MMX/SSE.
54 # (**) Performance vs. block size on Core2 and Westmere had a maximum
55 # at ... 64 bytes block size. And it was quite a maximum, 40-60%
56 # in comparison to largest 8KB block size. Above improvement
57 # coefficients are for the largest block size.

59 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
60 push(@INC,"${dir}","${dir}../../perlasm");
61 require "x86asm.pl";

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-586.pl 2

63 &asm_init($ARGV[0],"rc4-586.pl");

65 $xx="eax";
66 $yy="ebx";
67 $tx="ecx";
68 $ty="edx";
69 $inp="esi";
70 $out="ebp";
71 $dat="edi";

73 sub RC4_loop {
74 my $i=shift;
75 my $func = ($i==0)?*mov:*or;

77 &add (&LB($yy),&LB($tx));
78 &mov ($ty,&DWP(0,$dat,$yy,4));
79 &mov (&DWP(0,$dat,$yy,4),$tx);
80 &mov (&DWP(0,$dat,$xx,4),$ty);
81 &add ($ty,$tx);
82 &inc (&LB($xx));
83 &and ($ty,0xff);
84 &ror ($out,8) if ($i!=0);
85 if ($i<3) {
86 &mov ($tx,&DWP(0,$dat,$xx,4));
87 } else {
88 &mov ($tx,&wparam(3)); # reload [re-biased] out
89 }
90 &$func ($out,&DWP(0,$dat,$ty,4));
91 }

93 if ($alt=0) {
94 # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
95 # but ~40% slower on Core2 and Westmere... Attempt to add movz
96 # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
97 # on Core2 with movz it’s almost 20% slower than below alternative
98 # code... Yes, it’s a total mess...
99 my @XX=($xx,$out);
100 $RC4_loop_mmx = sub { # SSE actually...
101 my $i=shift;
102 my $j=$i<=0?0:$i>>1;
103 my $mm=$i<=0?"mm0":"mm".($i&1);

105 &add (&LB($yy),&LB($tx));
106 &lea (@XX[1],&DWP(1,@XX[0]));
107 &pxor ("mm2","mm0") if ($i==0);
108 &psllq ("mm1",8) if ($i==0);
109 &and (@XX[1],0xff);
110 &pxor ("mm0","mm0") if ($i<=0);
111 &mov ($ty,&DWP(0,$dat,$yy,4));
112 &mov (&DWP(0,$dat,$yy,4),$tx);
113 &pxor ("mm1","mm2") if ($i==0);
114 &mov (&DWP(0,$dat,$XX[0],4),$ty);
115 &add (&LB($ty),&LB($tx));
116 &movd (@XX[0],"mm7") if ($i==0);
117 &mov ($tx,&DWP(0,$dat,@XX[1],4));
118 &pxor ("mm1","mm1") if ($i==1);
119 &movq ("mm2",&QWP(0,$inp)) if ($i==1);
120 &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0);
121 &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j);

123 push (@XX,shift(@XX)) if ($i>=0);
124 }
125 } else {
126 # Using pinsrw here improves performane on Intel CPUs by 2-3%, but
127 # brings down AMD by 7%...

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-586.pl 3

128 $RC4_loop_mmx = sub {
129 my $i=shift;

131 &add (&LB($yy),&LB($tx));
132 &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1);
133 &mov ($ty,&DWP(0,$dat,$yy,4));
134 &mov (&DWP(0,$dat,$yy,4),$tx);
135 &mov (&DWP(0,$dat,$xx,4),$ty);
136 &inc ($xx);
137 &add ($ty,$tx);
138 &movz ($xx,&LB($xx)); # (*)
139 &movz ($ty,&LB($ty)); # (*)
140 &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0);
141 &movq ("mm0",&QWP(0,$inp)) if ($i<=0);
142 &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0);
143 &mov ($tx,&DWP(0,$dat,$xx,4));
144 &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));

146 # (*) This is the key to Core2 and Westmere performance.
147 # Whithout movz out-of-order execution logic confuses
148 # itself and fails to reorder loads and stores. Problem
149 # appears to be fixed in Sandy Bridge...
150 }
151 }

153 &external_label("OPENSSL_ia32cap_P");

155 # void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
156 &function_begin("RC4");
157 &mov ($dat,&wparam(0)); # load key schedule pointer
158 &mov ($ty, &wparam(1)); # load len
159 &mov ($inp,&wparam(2)); # load inp
160 &mov ($out,&wparam(3)); # load out

162 &xor ($xx,$xx); # avoid partial register stalls
163 &xor ($yy,$yy);

165 &cmp ($ty,0); # safety net
166 &je (&label("abort"));

168 &mov (&LB($xx),&BP(0,$dat)); # load key->x
169 &mov (&LB($yy),&BP(4,$dat)); # load key->y
170 &add ($dat,8);

172 &lea ($tx,&DWP(0,$inp,$ty));
173 &sub ($out,$inp); # re-bias out
174 &mov (&wparam(1),$tx); # save input+len

176 &inc (&LB($xx));

178 # detect compressed key schedule...
179 &cmp (&DWP(256,$dat),-1);
180 &je (&label("RC4_CHAR"));

182 &mov ($tx,&DWP(0,$dat,$xx,4));

184 &and ($ty,-4); # how many 4-byte chunks?
185 &jz (&label("loop1"));

187 &test ($ty,-8);
188 &mov (&wparam(3),$out); # $out as accumulator in these loops
189 &jz (&label("go4loop4"));

191 &picmeup($out,"OPENSSL_ia32cap_P");
192 &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX]
193 &jnc (&label("go4loop4"));

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-586.pl 4

195 &mov ($out,&wparam(3)) if (!$alt);
196 &movd ("mm7",&wparam(3)) if ($alt);
197 &and ($ty,-8);
198 &lea ($ty,&DWP(-8,$inp,$ty));
199 &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8

201 &$RC4_loop_mmx(-1);
202 &jmp(&label("loop_mmx_enter"));

204 &set_label("loop_mmx",16);
205 &$RC4_loop_mmx(0);
206 &set_label("loop_mmx_enter");
207 for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
208 &mov ($ty,$yy);
209 &xor ($yy,$yy); # this is second key to Core2
210 &mov (&LB($yy),&LB($ty)); # and Westmere performance...
211 &cmp ($inp,&DWP(-4,$dat));
212 &lea ($inp,&DWP(8,$inp));
213 &jb (&label("loop_mmx"));

215 if ($alt) {
216 &movd ($out,"mm7");
217 &pxor ("mm2","mm0");
218 &psllq ("mm1",8);
219 &pxor ("mm1","mm2");
220 &movq (&QWP(-8,$out,$inp),"mm1");
221 } else {
222 &psllq ("mm1",56);
223 &pxor ("mm2","mm1");
224 &movq (&QWP(-8,$out,$inp),"mm2");
225 }
226 &emms ();

228 &cmp ($inp,&wparam(1)); # compare to input+len
229 &je (&label("done"));
230 &jmp (&label("loop1"));

232 &set_label("go4loop4",16);
233 &lea ($ty,&DWP(-4,$inp,$ty));
234 &mov (&wparam(2),$ty); # save input+(len/4)*4-4

236 &set_label("loop4");
237 for ($i=0;$i<4;$i++) { RC4_loop($i); }
238 &ror ($out,8);
239 &xor ($out,&DWP(0,$inp));
240 &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4
241 &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
242 &lea ($inp,&DWP(4,$inp));
243 &mov ($tx,&DWP(0,$dat,$xx,4));
244 &jb (&label("loop4"));

246 &cmp ($inp,&wparam(1)); # compare to input+len
247 &je (&label("done"));
248 &mov ($out,&wparam(3)); # restore $out

250 &set_label("loop1",16);
251 &add (&LB($yy),&LB($tx));
252 &mov ($ty,&DWP(0,$dat,$yy,4));
253 &mov (&DWP(0,$dat,$yy,4),$tx);
254 &mov (&DWP(0,$dat,$xx,4),$ty);
255 &add ($ty,$tx);
256 &inc (&LB($xx));
257 &and ($ty,0xff);
258 &mov ($ty,&DWP(0,$dat,$ty,4));
259 &xor (&LB($ty),&BP(0,$inp));

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-586.pl 5

260 &lea ($inp,&DWP(1,$inp));
261 &mov ($tx,&DWP(0,$dat,$xx,4));
262 &cmp ($inp,&wparam(1)); # compare to input+len
263 &mov (&BP(-1,$out,$inp),&LB($ty));
264 &jb (&label("loop1"));

266 &jmp (&label("done"));

268 # this is essentially Intel P4 specific codepath...
269 &set_label("RC4_CHAR",16);
270 &movz ($tx,&BP(0,$dat,$xx));
271 # strangely enough unrolled loop performs over 20% slower...
272 &set_label("cloop1");
273 &add (&LB($yy),&LB($tx));
274 &movz ($ty,&BP(0,$dat,$yy));
275 &mov (&BP(0,$dat,$yy),&LB($tx));
276 &mov (&BP(0,$dat,$xx),&LB($ty));
277 &add (&LB($ty),&LB($tx));
278 &movz ($ty,&BP(0,$dat,$ty));
279 &add (&LB($xx),1);
280 &xor (&LB($ty),&BP(0,$inp));
281 &lea ($inp,&DWP(1,$inp));
282 &movz ($tx,&BP(0,$dat,$xx));
283 &cmp ($inp,&wparam(1));
284 &mov (&BP(-1,$out,$inp),&LB($ty));
285 &jb (&label("cloop1"));

287 &set_label("done");
288 &dec (&LB($xx));
289 &mov (&DWP(-4,$dat),$yy); # save key->y
290 &mov (&BP(-8,$dat),&LB($xx)); # save key->x
291 &set_label("abort");
292 &function_end("RC4");

294 ##

296 $inp="esi";
297 $out="edi";
298 $idi="ebp";
299 $ido="ecx";
300 $idx="edx";

302 # void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
303 &function_begin("private_RC4_set_key");
304 &mov ($out,&wparam(0)); # load key
305 &mov ($idi,&wparam(1)); # load len
306 &mov ($inp,&wparam(2)); # load data
307 &picmeup($idx,"OPENSSL_ia32cap_P");

309 &lea ($out,&DWP(2*4,$out)); # &key->data
310 &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end
311 &neg ($idi);
312 &xor ("eax","eax");
313 &mov (&DWP(-4,$out),$idi); # borrow key->y

315 &bt (&DWP(0,$idx),20); # check for bit#20
316 &jc (&label("c1stloop"));

318 &set_label("w1stloop",16);
319 &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i;
320 &add (&LB("eax"),1); # i++;
321 &jnc (&label("w1stloop"));

323 &xor ($ido,$ido);
324 &xor ($idx,$idx);

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-586.pl 6

326 &set_label("w2ndloop",16);
327 &mov ("eax",&DWP(0,$out,$ido,4));
328 &add (&LB($idx),&BP(0,$inp,$idi));
329 &add (&LB($idx),&LB("eax"));
330 &add ($idi,1);
331 &mov ("ebx",&DWP(0,$out,$idx,4));
332 &jnz (&label("wnowrap"));
333 &mov ($idi,&DWP(-4,$out));
334 &set_label("wnowrap");
335 &mov (&DWP(0,$out,$idx,4),"eax");
336 &mov (&DWP(0,$out,$ido,4),"ebx");
337 &add (&LB($ido),1);
338 &jnc (&label("w2ndloop"));
339 &jmp (&label("exit"));

341 # Unlike all other x86 [and x86_64] implementations, Intel P4 core
342 # [including EM64T] was found to perform poorly with above "32-bit" key
343 # schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
344 # assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
345 # a.k.a. RC4_CHAR! It’s however inappropriate to just switch to 8-bit
346 # schedule for x86[_64], because non-P4 implementations suffer from
347 # significant performance losses then, e.g. PIII exhibits >2x
348 # deterioration, and so does Opteron. In order to assure optimal
349 # all-round performance, we detect P4 at run-time and set up compressed
350 # key schedule, which is recognized by RC4 procedure.

352 &set_label("c1stloop",16);
353 &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i;
354 &add (&LB("eax"),1); # i++;
355 &jnc (&label("c1stloop"));

357 &xor ($ido,$ido);
358 &xor ($idx,$idx);
359 &xor ("ebx","ebx");

361 &set_label("c2ndloop",16);
362 &mov (&LB("eax"),&BP(0,$out,$ido));
363 &add (&LB($idx),&BP(0,$inp,$idi));
364 &add (&LB($idx),&LB("eax"));
365 &add ($idi,1);
366 &mov (&LB("ebx"),&BP(0,$out,$idx));
367 &jnz (&label("cnowrap"));
368 &mov ($idi,&DWP(-4,$out));
369 &set_label("cnowrap");
370 &mov (&BP(0,$out,$idx),&LB("eax"));
371 &mov (&BP(0,$out,$ido),&LB("ebx"));
372 &add (&LB($ido),1);
373 &jnc (&label("c2ndloop"));

375 &mov (&DWP(256,$out),-1); # mark schedule as compressed

377 &set_label("exit");
378 &xor ("eax","eax");
379 &mov (&DWP(-8,$out),"eax"); # key->x=0;
380 &mov (&DWP(-4,$out),"eax"); # key->y=0;
381 &function_end("private_RC4_set_key");

383 # const char *RC4_options(void);
384 &function_begin_B("RC4_options");
385 &call (&label("pic_point"));
386 &set_label("pic_point");
387 &blindpop("eax");
388 &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
389 &picmeup("edx","OPENSSL_ia32cap_P");
390 &mov ("edx",&DWP(0,"edx"));
391 &bt ("edx",20);

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-586.pl 7

392 &jc (&label("1xchar"));
393 &bt ("edx",26);
394 &jnc (&label("ret"));
395 &add ("eax",25);
396 &ret ();
397 &set_label("1xchar");
398 &add ("eax",12);
399 &set_label("ret");
400 &ret ();
401 &set_label("opts",64);
402 &asciz ("rc4(4x,int)");
403 &asciz ("rc4(1x,char)");
404 &asciz ("rc4(8x,mmx)");
405 &asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
406 &align (64);
407 &function_end_B("RC4_options");

409 &asm_finish();

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-md5-x86_64.pl 1

**
 15970 Fri May 30 18:32:04 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-md5-x86_64.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl
2 #
3 # ==
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==

10 # June 2011
11 #
12 # This is RC4+MD5 "stitch" implementation. The idea, as spelled in
13 # http://download.intel.com/design/intarch/papers/323686.pdf, is that
14 # since both algorithms exhibit instruction-level parallelism, ILP,
15 # below theoretical maximum, interleaving them would allow to utilize
16 # processor resources better and achieve better performance. RC4
17 # instruction sequence is virtually identical to rc4-x86_64.pl, which
18 # is heavily based on submission by Maxim Perminov, Maxim Locktyukhin
19 # and Jim Guilford of Intel. MD5 is fresh implementation aiming to
20 # minimize register usage, which was used as "main thread" with RC4
21 # weaved into it, one RC4 round per one MD5 round. In addition to the
22 # stiched subroutine the script can generate standalone replacement
23 # md5_block_asm_data_order and RC4. Below are performance numbers in
24 # cycles per processed byte, less is better, for these the standalone
25 # subroutines, sum of them, and stitched one:
26 #
27 # RC4 MD5 RC4+MD5 stitch gain
28 # Opteron 6.5(*) 5.4 11.9 7.0 +70%(*)
29 # Core2 6.5 5.8 12.3 7.7 +60%
30 # Westmere 4.3 5.2 9.5 7.0 +36%
31 # Sandy Bridge 4.2 5.5 9.7 6.8 +43%
32 # Atom 9.3 6.5 15.8 11.1 +42%
33 #
34 # (*) rc4-x86_64.pl delivers 5.3 on Opteron, so real improvement
35 # is +53%...

37 my ($rc4,$md5)=(1,1); # what to generate?
38 my $D="#" if (!$md5); # if set to "#", MD5 is stitched into RC4(),
39 # but its result is discarded. Idea here is
40 # to be able to use ’openssl speed rc4’ for
41 # benchmarking the stitched subroutine...

43 my $flavour = shift;
44 my $output = shift;
45 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

47 my $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

49 $0 =~ m/(.*[\/\\])[^\/\\]+$/; my $dir=$1; my $xlate;
50 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
51 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
52 die "can’t locate x86_64-xlate.pl";

54 open OUT,"| \"$^X\" $xlate $flavour $output";
55 *STDOUT=*OUT;

57 my ($dat,$in0,$out,$ctx,$inp,$len, $func,$nargs);

59 if ($rc4 && !$md5) {
60 ($dat,$len,$in0,$out) = ("%rdi","%rsi","%rdx","%rcx");
61 $func="RC4"; $nargs=4;

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-md5-x86_64.pl 2

62 } elsif ($md5 && !$rc4) {
63 ($ctx,$inp,$len) = ("%rdi","%rsi","%rdx");
64 $func="md5_block_asm_data_order"; $nargs=3;
65 } else {
66 ($dat,$in0,$out,$ctx,$inp,$len) = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
67 $func="rc4_md5_enc"; $nargs=6;
68 # void rc4_md5_enc(
69 # RC4_KEY *key, #
70 # const void *in0, # RC4 input
71 # void *out, # RC4 output
72 # MD5_CTX *ctx, #
73 # const void *inp, # MD5 input
74 # size_t len); # number of 64-byte blocks
75 }

77 my @K=(0xd76aa478,0xe8c7b756,0x242070db,0xc1bdceee,
78 0xf57c0faf,0x4787c62a,0xa8304613,0xfd469501,
79 0x698098d8,0x8b44f7af,0xffff5bb1,0x895cd7be,
80 0x6b901122,0xfd987193,0xa679438e,0x49b40821,

82 0xf61e2562,0xc040b340,0x265e5a51,0xe9b6c7aa,
83 0xd62f105d,0x02441453,0xd8a1e681,0xe7d3fbc8,
84 0x21e1cde6,0xc33707d6,0xf4d50d87,0x455a14ed,
85 0xa9e3e905,0xfcefa3f8,0x676f02d9,0x8d2a4c8a,

87 0xfffa3942,0x8771f681,0x6d9d6122,0xfde5380c,
88 0xa4beea44,0x4bdecfa9,0xf6bb4b60,0xbebfbc70,
89 0x289b7ec6,0xeaa127fa,0xd4ef3085,0x04881d05,
90 0xd9d4d039,0xe6db99e5,0x1fa27cf8,0xc4ac5665,

92 0xf4292244,0x432aff97,0xab9423a7,0xfc93a039,
93 0x655b59c3,0x8f0ccc92,0xffeff47d,0x85845dd1,
94 0x6fa87e4f,0xfe2ce6e0,0xa3014314,0x4e0811a1,
95 0xf7537e82,0xbd3af235,0x2ad7d2bb,0xeb86d391);

97 my @V=("%r8d","%r9d","%r10d","%r11d"); # MD5 registers
98 my $tmp="%r12d";

100 my @XX=("%rbp","%rsi"); # RC4 registers
101 my @TX=("%rax","%rbx");
102 my $YY="%rcx";
103 my $TY="%rdx";

105 my $MOD=32; # 16, 32 or 64

107 $code.=<<___;
108 .text
109 .align 16

111 .globl $func
112 .type $func,\@function,$nargs
113 $func:
114 cmp \$0,$len
115 je .Labort
116 push %rbx
117 push %rbp
118 push %r12
119 push %r13
120 push %r14
121 push %r15
122 sub \$40,%rsp
123 .Lbody:
124 ___
125 if ($rc4) {
126 $code.=<<___;
127 $D#md5# mov $ctx,%r11 # reassign arguments

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-md5-x86_64.pl 3

128 mov $len,%r12
129 mov $in0,%r13
130 mov $out,%r14
131 $D#md5# mov $inp,%r15
132 ___
133 $ctx="%r11" if ($md5); # reassign arguments
134 $len="%r12";
135 $in0="%r13";
136 $out="%r14";
137 $inp="%r15" if ($md5);
138 $inp=$in0 if (!$md5);
139 $code.=<<___;
140 xor $XX[0],$XX[0]
141 xor $YY,$YY

143 lea 8($dat),$dat
144 mov -8($dat),$XX[0]#b
145 mov -4($dat),$YY#b

147 inc $XX[0]#b
148 sub $in0,$out
149 movl ($dat,$XX[0],4),$TX[0]#d
150 ___
151 $code.=<<___ if (!$md5);
152 xor $TX[1],$TX[1]
153 test \$-128,$len
154 jz .Loop1
155 sub $XX[0],$TX[1]
156 and \$‘$MOD-1‘,$TX[1]
157 jz .Loop${MOD}_is_hot
158 sub $TX[1],$len
159 .Loop${MOD}_warmup:
160 add $TX[0]#b,$YY#b
161 movl ($dat,$YY,4),$TY#d
162 movl $TX[0]#d,($dat,$YY,4)
163 movl $TY#d,($dat,$XX[0],4)
164 add $TY#b,$TX[0]#b
165 inc $XX[0]#b
166 movl ($dat,$TX[0],4),$TY#d
167 movl ($dat,$XX[0],4),$TX[0]#d
168 xorb ($in0),$TY#b
169 movb $TY#b,($out,$in0)
170 lea 1($in0),$in0
171 dec $TX[1]
172 jnz .Loop${MOD}_warmup

174 mov $YY,$TX[1]
175 xor $YY,$YY
176 mov $TX[1]#b,$YY#b

178 .Loop${MOD}_is_hot:
179 mov $len,32(%rsp) # save original $len
180 shr \$6,$len # number of 64-byte blocks
181 ___
182 if ($D && !$md5) { # stitch in dummy MD5
183 $md5=1;
184 $ctx="%r11";
185 $inp="%r15";
186 $code.=<<___;
187 mov %rsp,$ctx
188 mov $in0,$inp
189 ___
190 }
191 }
192 $code.=<<___;
193 #rc4# add $TX[0]#b,$YY#b

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-md5-x86_64.pl 4

194 #rc4# lea ($dat,$XX[0],4),$XX[1]
195 shl \$6,$len
196 add $inp,$len # pointer to the end of input
197 mov $len,16(%rsp)

199 #md5# mov $ctx,24(%rsp) # save pointer to MD5_CTX
200 #md5# mov 0*4($ctx),$V[0] # load current hash value from MD5_CTX
201 #md5# mov 1*4($ctx),$V[1]
202 #md5# mov 2*4($ctx),$V[2]
203 #md5# mov 3*4($ctx),$V[3]
204 jmp .Loop

206 .align 16
207 .Loop:
208 #md5# mov $V[0],0*4(%rsp) # put aside current hash value
209 #md5# mov $V[1],1*4(%rsp)
210 #md5# mov $V[2],2*4(%rsp)
211 #md5# mov $V[3],$tmp # forward reference
212 #md5# mov $V[3],3*4(%rsp)
213 ___

215 sub R0 {
216 my ($i,$a,$b,$c,$d)=@_;
217 my @rot0=(7,12,17,22);
218 my $j=$i%16;
219 my $k=$i%$MOD;
220 my $xmm="%xmm".($j&1);
221 $code.=" movdqu ($in0),%xmm2\n" if ($rc4 && $j==15);
222 $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1
223 $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
224 $code.=<<___;
225 #rc4# movl ($dat,$YY,4),$TY#d
226 #md5# xor $c,$tmp
227 #rc4# movl $TX[0]#d,($dat,$YY,4)
228 #md5# and $b,$tmp
229 #md5# add 4*‘$j‘($inp),$a
230 #rc4# add $TY#b,$TX[0]#b
231 #rc4# movl ‘4*(($k+1)%$MOD)‘(‘$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"‘),$TX[1]#
232 #md5# add \$$K[$i],$a
233 #md5# xor $d,$tmp
234 #rc4# movz $TX[0]#b,$TX[0]#d
235 #rc4# movl $TY#d,4*$k($XX[1])
236 #md5# add $tmp,$a
237 #rc4# add $TX[1]#b,$YY#b
238 #md5# rol \$$rot0[$j%4],$a
239 #md5# mov ‘$j==15?"$b":"$c"‘,$tmp # forward reference
240 #rc4# pinsrw \$‘($j>>1)&7‘,($dat,$TX[0],4),$xmm\n
241 #md5# add $b,$a
242 ___
243 $code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1);
244 mov $YY,$XX[1]
245 xor $YY,$YY # keyword to partial register
246 mov $XX[1]#b,$YY#b
247 lea ($dat,$XX[0],4),$XX[1]
248 ___
249 $code.=<<___ if ($rc4 && $j==15);
250 psllq \$8,%xmm1
251 pxor %xmm0,%xmm2
252 pxor %xmm1,%xmm2
253 ___
254 }
255 sub R1 {
256 my ($i,$a,$b,$c,$d)=@_;
257 my @rot1=(5,9,14,20);
258 my $j=$i%16;
259 my $k=$i%$MOD;

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-md5-x86_64.pl 5

260 my $xmm="%xmm".($j&1);
261 $code.=" movdqu 16($in0),%xmm3\n" if ($rc4 && $j==15);
262 $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1
263 $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
264 $code.=<<___;
265 #rc4# movl ($dat,$YY,4),$TY#d
266 #md5# xor $b,$tmp
267 #rc4# movl $TX[0]#d,($dat,$YY,4)
268 #md5# and $d,$tmp
269 #md5# add 4*‘((1+5*$j)%16)‘($inp),$a
270 #rc4# add $TY#b,$TX[0]#b
271 #rc4# movl ‘4*(($k+1)%$MOD)‘(‘$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"‘),$TX[1]#
272 #md5# add \$$K[$i],$a
273 #md5# xor $c,$tmp
274 #rc4# movz $TX[0]#b,$TX[0]#d
275 #rc4# movl $TY#d,4*$k($XX[1])
276 #md5# add $tmp,$a
277 #rc4# add $TX[1]#b,$YY#b
278 #md5# rol \$$rot1[$j%4],$a
279 #md5# mov ‘$j==15?"$c":"$b"‘,$tmp # forward reference
280 #rc4# pinsrw \$‘($j>>1)&7‘,($dat,$TX[0],4),$xmm\n
281 #md5# add $b,$a
282 ___
283 $code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1);
284 mov $YY,$XX[1]
285 xor $YY,$YY # keyword to partial register
286 mov $XX[1]#b,$YY#b
287 lea ($dat,$XX[0],4),$XX[1]
288 ___
289 $code.=<<___ if ($rc4 && $j==15);
290 psllq \$8,%xmm1
291 pxor %xmm0,%xmm3
292 pxor %xmm1,%xmm3
293 ___
294 }
295 sub R2 {
296 my ($i,$a,$b,$c,$d)=@_;
297 my @rot2=(4,11,16,23);
298 my $j=$i%16;
299 my $k=$i%$MOD;
300 my $xmm="%xmm".($j&1);
301 $code.=" movdqu 32($in0),%xmm4\n" if ($rc4 && $j==15);
302 $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1
303 $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
304 $code.=<<___;
305 #rc4# movl ($dat,$YY,4),$TY#d
306 #md5# xor $c,$tmp
307 #rc4# movl $TX[0]#d,($dat,$YY,4)
308 #md5# xor $b,$tmp
309 #md5# add 4*‘((5+3*$j)%16)‘($inp),$a
310 #rc4# add $TY#b,$TX[0]#b
311 #rc4# movl ‘4*(($k+1)%$MOD)‘(‘$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"‘),$TX[1]#
312 #md5# add \$$K[$i],$a
313 #rc4# movz $TX[0]#b,$TX[0]#d
314 #md5# add $tmp,$a
315 #rc4# movl $TY#d,4*$k($XX[1])
316 #rc4# add $TX[1]#b,$YY#b
317 #md5# rol \$$rot2[$j%4],$a
318 #md5# mov ‘$j==15?"\\\$-1":"$c"‘,$tmp # forward reference
319 #rc4# pinsrw \$‘($j>>1)&7‘,($dat,$TX[0],4),$xmm\n
320 #md5# add $b,$a
321 ___
322 $code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1);
323 mov $YY,$XX[1]
324 xor $YY,$YY # keyword to partial register
325 mov $XX[1]#b,$YY#b

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-md5-x86_64.pl 6

326 lea ($dat,$XX[0],4),$XX[1]
327 ___
328 $code.=<<___ if ($rc4 && $j==15);
329 psllq \$8,%xmm1
330 pxor %xmm0,%xmm4
331 pxor %xmm1,%xmm4
332 ___
333 }
334 sub R3 {
335 my ($i,$a,$b,$c,$d)=@_;
336 my @rot3=(6,10,15,21);
337 my $j=$i%16;
338 my $k=$i%$MOD;
339 my $xmm="%xmm".($j&1);
340 $code.=" movdqu 48($in0),%xmm5\n" if ($rc4 && $j==15);
341 $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1
342 $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
343 $code.=<<___;
344 #rc4# movl ($dat,$YY,4),$TY#d
345 #md5# xor $d,$tmp
346 #rc4# movl $TX[0]#d,($dat,$YY,4)
347 #md5# or $b,$tmp
348 #md5# add 4*‘((7*$j)%16)‘($inp),$a
349 #rc4# add $TY#b,$TX[0]#b
350 #rc4# movl ‘4*(($k+1)%$MOD)‘(‘$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"‘),$TX[1]#
351 #md5# add \$$K[$i],$a
352 #rc4# movz $TX[0]#b,$TX[0]#d
353 #md5# xor $c,$tmp
354 #rc4# movl $TY#d,4*$k($XX[1])
355 #md5# add $tmp,$a
356 #rc4# add $TX[1]#b,$YY#b
357 #md5# rol \$$rot3[$j%4],$a
358 #md5# mov \$-1,$tmp # forward reference
359 #rc4# pinsrw \$‘($j>>1)&7‘,($dat,$TX[0],4),$xmm\n
360 #md5# add $b,$a
361 ___
362 $code.=<<___ if ($rc4 && $j==15);
363 mov $XX[0],$XX[1]
364 xor $XX[0],$XX[0] # keyword to partial register
365 mov $XX[1]#b,$XX[0]#b
366 mov $YY,$XX[1]
367 xor $YY,$YY # keyword to partial register
368 mov $XX[1]#b,$YY#b
369 lea ($dat,$XX[0],4),$XX[1]
370 psllq \$8,%xmm1
371 pxor %xmm0,%xmm5
372 pxor %xmm1,%xmm5
373 ___
374 }

376 my $i=0;
377 for(;$i<16;$i++) { R0($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }
378 for(;$i<32;$i++) { R1($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }
379 for(;$i<48;$i++) { R2($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }
380 for(;$i<64;$i++) { R3($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }

382 $code.=<<___;
383 #md5# add 0*4(%rsp),$V[0] # accumulate hash value
384 #md5# add 1*4(%rsp),$V[1]
385 #md5# add 2*4(%rsp),$V[2]
386 #md5# add 3*4(%rsp),$V[3]

388 #rc4# movdqu %xmm2,($out,$in0) # write RC4 output
389 #rc4# movdqu %xmm3,16($out,$in0)
390 #rc4# movdqu %xmm4,32($out,$in0)
391 #rc4# movdqu %xmm5,48($out,$in0)

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-md5-x86_64.pl 7

392 #md5# lea 64($inp),$inp
393 #rc4# lea 64($in0),$in0
394 cmp 16(%rsp),$inp # are we done?
395 jb .Loop

397 #md5# mov 24(%rsp),$len # restore pointer to MD5_CTX
398 #rc4# sub $TX[0]#b,$YY#b # correct $YY
399 #md5# mov $V[0],0*4($len) # write MD5_CTX
400 #md5# mov $V[1],1*4($len)
401 #md5# mov $V[2],2*4($len)
402 #md5# mov $V[3],3*4($len)
403 ___
404 $code.=<<___ if ($rc4 && (!$md5 || $D));
405 mov 32(%rsp),$len # restore original $len
406 and \$63,$len # remaining bytes
407 jnz .Loop1
408 jmp .Ldone
409
410 .align 16
411 .Loop1:
412 add $TX[0]#b,$YY#b
413 movl ($dat,$YY,4),$TY#d
414 movl $TX[0]#d,($dat,$YY,4)
415 movl $TY#d,($dat,$XX[0],4)
416 add $TY#b,$TX[0]#b
417 inc $XX[0]#b
418 movl ($dat,$TX[0],4),$TY#d
419 movl ($dat,$XX[0],4),$TX[0]#d
420 xorb ($in0),$TY#b
421 movb $TY#b,($out,$in0)
422 lea 1($in0),$in0
423 dec $len
424 jnz .Loop1

426 .Ldone:
427 ___
428 $code.=<<___;
429 #rc4# sub \$1,$XX[0]#b
430 #rc4# movl $XX[0]#d,-8($dat)
431 #rc4# movl $YY#d,-4($dat)

433 mov 40(%rsp),%r15
434 mov 48(%rsp),%r14
435 mov 56(%rsp),%r13
436 mov 64(%rsp),%r12
437 mov 72(%rsp),%rbp
438 mov 80(%rsp),%rbx
439 lea 88(%rsp),%rsp
440 .Lepilogue:
441 .Labort:
442 ret
443 .size $func,.-$func
444 ___

446 if ($rc4 && $D) { # sole purpose of this section is to provide
447 # option to use the generated module as drop-in
448 # replacement for rc4-x86_64.pl for debugging
449 # and testing purposes...
450 my ($idx,$ido)=("%r8","%r9");
451 my ($dat,$len,$inp)=("%rdi","%rsi","%rdx");

453 $code.=<<___;
454 .globl RC4_set_key
455 .type RC4_set_key,\@function,3
456 .align 16
457 RC4_set_key:

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-md5-x86_64.pl 8

458 lea 8($dat),$dat
459 lea ($inp,$len),$inp
460 neg $len
461 mov $len,%rcx
462 xor %eax,%eax
463 xor $ido,$ido
464 xor %r10,%r10
465 xor %r11,%r11
466 jmp .Lw1stloop

468 .align 16
469 .Lw1stloop:
470 mov %eax,($dat,%rax,4)
471 add \$1,%al
472 jnc .Lw1stloop

474 xor $ido,$ido
475 xor $idx,$idx
476 .align 16
477 .Lw2ndloop:
478 mov ($dat,$ido,4),%r10d
479 add ($inp,$len,1),$idx#b
480 add %r10b,$idx#b
481 add \$1,$len
482 mov ($dat,$idx,4),%r11d
483 cmovz %rcx,$len
484 mov %r10d,($dat,$idx,4)
485 mov %r11d,($dat,$ido,4)
486 add \$1,$ido#b
487 jnc .Lw2ndloop

489 xor %eax,%eax
490 mov %eax,-8($dat)
491 mov %eax,-4($dat)
492 ret
493 .size RC4_set_key,.-RC4_set_key

495 .globl RC4_options
496 .type RC4_options,\@abi-omnipotent
497 .align 16
498 RC4_options:
499 lea .Lopts(%rip),%rax
500 ret
501 .align 64
502 .Lopts:
503 .asciz "rc4(64x,int)"
504 .align 64
505 .size RC4_options,.-RC4_options
506 ___
507 }
508 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
509 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
510 if ($win64) {
511 my $rec="%rcx";
512 my $frame="%rdx";
513 my $context="%r8";
514 my $disp="%r9";

516 $code.=<<___;
517 .extern __imp_RtlVirtualUnwind
518 .type se_handler,\@abi-omnipotent
519 .align 16
520 se_handler:
521 push %rsi
522 push %rdi
523 push %rbx

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-md5-x86_64.pl 9

524 push %rbp
525 push %r12
526 push %r13
527 push %r14
528 push %r15
529 pushfq
530 sub \$64,%rsp

532 mov 120($context),%rax # pull context->Rax
533 mov 248($context),%rbx # pull context->Rip

535 lea .Lbody(%rip),%r10
536 cmp %r10,%rbx # context->Rip<.Lbody
537 jb .Lin_prologue

539 mov 152($context),%rax # pull context->Rsp

541 lea .Lepilogue(%rip),%r10
542 cmp %r10,%rbx # context->Rip>=.Lepilogue
543 jae .Lin_prologue

545 mov 40(%rax),%r15
546 mov 48(%rax),%r14
547 mov 56(%rax),%r13
548 mov 64(%rax),%r12
549 mov 72(%rax),%rbp
550 mov 80(%rax),%rbx
551 lea 88(%rax),%rax

553 mov %rbx,144($context) # restore context->Rbx
554 mov %rbp,160($context) # restore context->Rbp
555 mov %r12,216($context) # restore context->R12
556 mov %r13,224($context) # restore context->R12
557 mov %r14,232($context) # restore context->R14
558 mov %r15,240($context) # restore context->R15

560 .Lin_prologue:
561 mov 8(%rax),%rdi
562 mov 16(%rax),%rsi
563 mov %rax,152($context) # restore context->Rsp
564 mov %rsi,168($context) # restore context->Rsi
565 mov %rdi,176($context) # restore context->Rdi

567 mov 40($disp),%rdi # disp->ContextRecord
568 mov $context,%rsi # context
569 mov \$154,%ecx # sizeof(CONTEXT)
570 .long 0xa548f3fc # cld; rep movsq

572 mov $disp,%rsi
573 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
574 mov 8(%rsi),%rdx # arg2, disp->ImageBase
575 mov 0(%rsi),%r8 # arg3, disp->ControlPc
576 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
577 mov 40(%rsi),%r10 # disp->ContextRecord
578 lea 56(%rsi),%r11 # &disp->HandlerData
579 lea 24(%rsi),%r12 # &disp->EstablisherFrame
580 mov %r10,32(%rsp) # arg5
581 mov %r11,40(%rsp) # arg6
582 mov %r12,48(%rsp) # arg7
583 mov %rcx,56(%rsp) # arg8, (NULL)
584 call *__imp_RtlVirtualUnwind(%rip)

586 mov \$1,%eax # ExceptionContinueSearch
587 add \$64,%rsp
588 popfq
589 pop %r15

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-md5-x86_64.pl 10

590 pop %r14
591 pop %r13
592 pop %r12
593 pop %rbp
594 pop %rbx
595 pop %rdi
596 pop %rsi
597 ret
598 .size se_handler,.-se_handler

600 .section .pdata
601 .align 4
602 .rva .LSEH_begin_$func
603 .rva .LSEH_end_$func
604 .rva .LSEH_info_$func

606 .section .xdata
607 .align 8
608 .LSEH_info_$func:
609 .byte 9,0,0,0
610 .rva se_handler
611 ___
612 }

614 sub reg_part {
615 my ($reg,$conv)=@_;
616 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
617 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
618 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
619 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
620 return $reg;
621 }

623 $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
624 $code =~ s/\‘([^\‘]*)\‘/eval $1/gem;
625 $code =~ s/pinsrw\s+\$0,/movd /gm;

627 $code =~ s/#md5#//gm if ($md5);
628 $code =~ s/#rc4#//gm if ($rc4);

630 print $code;

632 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-x86_64.pl 1

**
 15813 Fri May 30 18:32:04 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-x86_64.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl
2 #
3 # ==
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==
9 #
10 # July 2004
11 #
12 # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
13 # "hand-coded assembler"] doesn’t stand for the whole improvement
14 # coefficient. It turned out that eliminating RC4_CHAR from config
15 # line results in ~40% improvement (yes, even for C implementation).
16 # Presumably it has everything to do with AMD cache architecture and
17 # RAW or whatever penalties. Once again! The module *requires* config
18 # line *without* RC4_CHAR! As for coding "secret," I bet on partial
19 # register arithmetics. For example instead of ’inc %r8; and $255,%r8’
20 # I simply ’inc %r8b’. Even though optimization manual discourages
21 # to operate on partial registers, it turned out to be the best bet.
22 # At least for AMD... How IA32E would perform remains to be seen...

24 # November 2004
25 #
26 # As was shown by Marc Bevand reordering of couple of load operations
27 # results in even higher performance gain of 3.3x:-) At least on
28 # Opteron... For reference, 1x in this case is RC4_CHAR C-code
29 # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
30 # Latter means that if you want to *estimate* what to expect from
31 # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.

33 # November 2004
34 #
35 # Intel P4 EM64T core was found to run the AMD64 code really slow...
36 # The only way to achieve comparable performance on P4 was to keep
37 # RC4_CHAR. Kind of ironic, huh? As it’s apparently impossible to
38 # compose blended code, which would perform even within 30% marginal
39 # on either AMD and Intel platforms, I implement both cases. See
40 # rc4_skey.c for further details...

42 # April 2005
43 #
44 # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
45 # those with add/sub results in 50% performance improvement of folded
46 # loop...

48 # May 2005
49 #
50 # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
51 # performance by >30% [unlike P4 32-bit case that is]. But this is
52 # provided that loads are reordered even more aggressively! Both code
53 # pathes, AMD64 and EM64T, reorder loads in essentially same manner
54 # as my IA-64 implementation. On Opteron this resulted in modest 5%
55 # improvement [I had to test it], while final Intel P4 performance
56 # achieves respectful 432MBps on 2.8GHz processor now. For reference.
57 # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
58 # RC4_INT code-path. While if executed on Opteron, it’s only 25%
59 # slower than the RC4_INT one [meaning that if CPU µ-arch detection
60 # is not implemented, then this final RC4_CHAR code-path should be
61 # preferred, as it provides better *all-round* performance].

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-x86_64.pl 2

63 # March 2007
64 #
65 # Intel Core2 was observed to perform poorly on both code paths:-(It
66 # apparently suffers from some kind of partial register stall, which
67 # occurs in 64-bit mode only [as virtually identical 32-bit loop was
68 # observed to outperform 64-bit one by almost 50%]. Adding two movzb to
69 # cloop1 boosts its performance by 80%! This loop appears to be optimal
70 # fit for Core2 and therefore the code was modified to skip cloop8 on
71 # this CPU.

73 # May 2010
74 #
75 # Intel Westmere was observed to perform suboptimally. Adding yet
76 # another movzb to cloop1 improved performance by almost 50%! Core2
77 # performance is improved too, but nominally...

79 # May 2011
80 #
81 # The only code path that was not modified is P4-specific one. Non-P4
82 # Intel code path optimization is heavily based on submission by Maxim
83 # Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I’ve used
84 # some of the ideas even in attempt to optmize the original RC4_INT
85 # code path... Current performance in cycles per processed byte (less
86 # is better) and improvement coefficients relative to previous
87 # version of this module are:
88 #
89 # Opteron 5.3/+0%(*)
90 # P4 6.5
91 # Core2 6.2/+15%(**)
92 # Westmere 4.2/+60%
93 # Sandy Bridge 4.2/+120%
94 # Atom 9.3/+80%
95 #
96 # (*) But corresponding loop has less instructions, which should have
97 # positive effect on upcoming Bulldozer, which has one less ALU.
98 # For reference, Intel code runs at 6.8 cpb rate on Opteron.
99 # (**) Note that Core2 result is ~15% lower than corresponding result
100 # for 32-bit code, meaning that it’s possible to improve it,
101 # but more than likely at the cost of the others (see rc4-586.pl
102 # to get the idea)...

104 $flavour = shift;
105 $output = shift;
106 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

108 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

110 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
111 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
112 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
113 die "can’t locate x86_64-xlate.pl";

115 open OUT,"| \"$^X\" $xlate $flavour $output";
116 *STDOUT=*OUT;

118 $dat="%rdi"; # arg1
119 $len="%rsi"; # arg2
120 $inp="%rdx"; # arg3
121 $out="%rcx"; # arg4

123 {
124 $code=<<___;
125 .text
126 .extern OPENSSL_ia32cap_P

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-x86_64.pl 3

128 .globl RC4
129 .type RC4,\@function,4
130 .align 16
131 RC4: or $len,$len
132 jne .Lentry
133 ret
134 .Lentry:
135 push %rbx
136 push %r12
137 push %r13
138 .Lprologue:
139 mov $len,%r11
140 mov $inp,%r12
141 mov $out,%r13
142 ___
143 my $len="%r11"; # reassign input arguments
144 my $inp="%r12";
145 my $out="%r13";

147 my @XX=("%r10","%rsi");
148 my @TX=("%rax","%rbx");
149 my $YY="%rcx";
150 my $TY="%rdx";

152 $code.=<<___;
153 xor $XX[0],$XX[0]
154 xor $YY,$YY

156 lea 8($dat),$dat
157 mov -8($dat),$XX[0]#b
158 mov -4($dat),$YY#b
159 cmpl \$-1,256($dat)
160 je .LRC4_CHAR
161 mov OPENSSL_ia32cap_P(%rip),%r8d
162 xor $TX[1],$TX[1]
163 inc $XX[0]#b
164 sub $XX[0],$TX[1]
165 sub $inp,$out
166 movl ($dat,$XX[0],4),$TX[0]#d
167 test \$-16,$len
168 jz .Lloop1
169 bt \$30,%r8d # Intel CPU?
170 jc .Lintel
171 and \$7,$TX[1]
172 lea 1($XX[0]),$XX[1]
173 jz .Loop8
174 sub $TX[1],$len
175 .Loop8_warmup:
176 add $TX[0]#b,$YY#b
177 movl ($dat,$YY,4),$TY#d
178 movl $TX[0]#d,($dat,$YY,4)
179 movl $TY#d,($dat,$XX[0],4)
180 add $TY#b,$TX[0]#b
181 inc $XX[0]#b
182 movl ($dat,$TX[0],4),$TY#d
183 movl ($dat,$XX[0],4),$TX[0]#d
184 xorb ($inp),$TY#b
185 movb $TY#b,($out,$inp)
186 lea 1($inp),$inp
187 dec $TX[1]
188 jnz .Loop8_warmup

190 lea 1($XX[0]),$XX[1]
191 jmp .Loop8
192 .align 16
193 .Loop8:

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-x86_64.pl 4

194 ___
195 for ($i=0;$i<8;$i++) {
196 $code.=<<___ if ($i==7);
197 add \$8,$XX[1]#b
198 ___
199 $code.=<<___;
200 add $TX[0]#b,$YY#b
201 movl ($dat,$YY,4),$TY#d
202 movl $TX[0]#d,($dat,$YY,4)
203 movl ‘4*($i==7?-1:$i)‘($dat,$XX[1],4),$TX[1]#d
204 ror \$8,%r8 # ror is redundant when $i=0
205 movl $TY#d,4*$i($dat,$XX[0],4)
206 add $TX[0]#b,$TY#b
207 movb ($dat,$TY,4),%r8b
208 ___
209 push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
210 }
211 $code.=<<___;
212 add \$8,$XX[0]#b
213 ror \$8,%r8
214 sub \$8,$len

216 xor ($inp),%r8
217 mov %r8,($out,$inp)
218 lea 8($inp),$inp

220 test \$-8,$len
221 jnz .Loop8
222 cmp \$0,$len
223 jne .Lloop1
224 jmp .Lexit

226 .align 16
227 .Lintel:
228 test \$-32,$len
229 jz .Lloop1
230 and \$15,$TX[1]
231 jz .Loop16_is_hot
232 sub $TX[1],$len
233 .Loop16_warmup:
234 add $TX[0]#b,$YY#b
235 movl ($dat,$YY,4),$TY#d
236 movl $TX[0]#d,($dat,$YY,4)
237 movl $TY#d,($dat,$XX[0],4)
238 add $TY#b,$TX[0]#b
239 inc $XX[0]#b
240 movl ($dat,$TX[0],4),$TY#d
241 movl ($dat,$XX[0],4),$TX[0]#d
242 xorb ($inp),$TY#b
243 movb $TY#b,($out,$inp)
244 lea 1($inp),$inp
245 dec $TX[1]
246 jnz .Loop16_warmup

248 mov $YY,$TX[1]
249 xor $YY,$YY
250 mov $TX[1]#b,$YY#b

252 .Loop16_is_hot:
253 lea ($dat,$XX[0],4),$XX[1]
254 ___
255 sub RC4_loop {
256 my $i=shift;
257 my $j=$i<0?0:$i;
258 my $xmm="%xmm".($j&1);

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-x86_64.pl 5

260 $code.=" add \$16,$XX[0]#b\n" if ($i==15);
261 $code.=" movdqu ($inp),%xmm2\n" if ($i==15);
262 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
263 $code.=" movl ($dat,$YY,4),$TY#d\n";
264 $code.=" pxor %xmm0,%xmm2\n" if ($i==0);
265 $code.=" psllq \$8,%xmm1\n" if ($i==0);
266 $code.=" pxor $xmm,$xmm\n" if ($i<=1);
267 $code.=" movl $TX[0]#d,($dat,$YY,4)\n";
268 $code.=" add $TY#b,$TX[0]#b\n";
269 $code.=" movl ‘4*($j+1)‘($XX[1]),$TX[1]#d\n" if ($i<15);
270 $code.=" movz $TX[0]#b,$TX[0]#d\n";
271 $code.=" movl $TY#d,4*$j($XX[1])\n";
272 $code.=" pxor %xmm1,%xmm2\n" if ($i==0);
273 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
274 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
275 $code.=" pinsrw \$‘($j>>1)&7‘,($dat,$TX[0],4),$xmm\n";
276 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
277 $code.=" lea 16($inp),$inp\n" if ($i==0);
278 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
279 }
280 RC4_loop(-1);
281 $code.=<<___;
282 jmp .Loop16_enter
283 .align 16
284 .Loop16:
285 ___

287 for ($i=0;$i<16;$i++) {
288 $code.=".Loop16_enter:\n" if ($i==1);
289 RC4_loop($i);
290 push(@TX,shift(@TX)); # "rotate" registers
291 }
292 $code.=<<___;
293 mov $YY,$TX[1]
294 xor $YY,$YY # keyword to partial register
295 sub \$16,$len
296 mov $TX[1]#b,$YY#b
297 test \$-16,$len
298 jnz .Loop16

300 psllq \$8,%xmm1
301 pxor %xmm0,%xmm2
302 pxor %xmm1,%xmm2
303 movdqu %xmm2,($out,$inp)
304 lea 16($inp),$inp

306 cmp \$0,$len
307 jne .Lloop1
308 jmp .Lexit

310 .align 16
311 .Lloop1:
312 add $TX[0]#b,$YY#b
313 movl ($dat,$YY,4),$TY#d
314 movl $TX[0]#d,($dat,$YY,4)
315 movl $TY#d,($dat,$XX[0],4)
316 add $TY#b,$TX[0]#b
317 inc $XX[0]#b
318 movl ($dat,$TX[0],4),$TY#d
319 movl ($dat,$XX[0],4),$TX[0]#d
320 xorb ($inp),$TY#b
321 movb $TY#b,($out,$inp)
322 lea 1($inp),$inp
323 dec $len
324 jnz .Lloop1
325 jmp .Lexit

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-x86_64.pl 6

327 .align 16
328 .LRC4_CHAR:
329 add \$1,$XX[0]#b
330 movzb ($dat,$XX[0]),$TX[0]#d
331 test \$-8,$len
332 jz .Lcloop1
333 jmp .Lcloop8
334 .align 16
335 .Lcloop8:
336 mov ($inp),%r8d
337 mov 4($inp),%r9d
338 ___
339 # unroll 2x4-wise, because 64-bit rotates kill Intel P4...
340 for ($i=0;$i<4;$i++) {
341 $code.=<<___;
342 add $TX[0]#b,$YY#b
343 lea 1($XX[0]),$XX[1]
344 movzb ($dat,$YY),$TY#d
345 movzb $XX[1]#b,$XX[1]#d
346 movzb ($dat,$XX[1]),$TX[1]#d
347 movb $TX[0]#b,($dat,$YY)
348 cmp $XX[1],$YY
349 movb $TY#b,($dat,$XX[0])
350 jne .Lcmov$i # Intel cmov is sloooow...
351 mov $TX[0],$TX[1]
352 .Lcmov$i:
353 add $TX[0]#b,$TY#b
354 xor ($dat,$TY),%r8b
355 ror \$8,%r8d
356 ___
357 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
358 }
359 for ($i=4;$i<8;$i++) {
360 $code.=<<___;
361 add $TX[0]#b,$YY#b
362 lea 1($XX[0]),$XX[1]
363 movzb ($dat,$YY),$TY#d
364 movzb $XX[1]#b,$XX[1]#d
365 movzb ($dat,$XX[1]),$TX[1]#d
366 movb $TX[0]#b,($dat,$YY)
367 cmp $XX[1],$YY
368 movb $TY#b,($dat,$XX[0])
369 jne .Lcmov$i # Intel cmov is sloooow...
370 mov $TX[0],$TX[1]
371 .Lcmov$i:
372 add $TX[0]#b,$TY#b
373 xor ($dat,$TY),%r9b
374 ror \$8,%r9d
375 ___
376 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
377 }
378 $code.=<<___;
379 lea -8($len),$len
380 mov %r8d,($out)
381 lea 8($inp),$inp
382 mov %r9d,4($out)
383 lea 8($out),$out

385 test \$-8,$len
386 jnz .Lcloop8
387 cmp \$0,$len
388 jne .Lcloop1
389 jmp .Lexit
390 ___
391 $code.=<<___;

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-x86_64.pl 7

392 .align 16
393 .Lcloop1:
394 add $TX[0]#b,$YY#b
395 movzb $YY#b,$YY#d
396 movzb ($dat,$YY),$TY#d
397 movb $TX[0]#b,($dat,$YY)
398 movb $TY#b,($dat,$XX[0])
399 add $TX[0]#b,$TY#b
400 add \$1,$XX[0]#b
401 movzb $TY#b,$TY#d
402 movzb $XX[0]#b,$XX[0]#d
403 movzb ($dat,$TY),$TY#d
404 movzb ($dat,$XX[0]),$TX[0]#d
405 xorb ($inp),$TY#b
406 lea 1($inp),$inp
407 movb $TY#b,($out)
408 lea 1($out),$out
409 sub \$1,$len
410 jnz .Lcloop1
411 jmp .Lexit

413 .align 16
414 .Lexit:
415 sub \$1,$XX[0]#b
416 movl $XX[0]#d,-8($dat)
417 movl $YY#d,-4($dat)

419 mov (%rsp),%r13
420 mov 8(%rsp),%r12
421 mov 16(%rsp),%rbx
422 add \$24,%rsp
423 .Lepilogue:
424 ret
425 .size RC4,.-RC4
426 ___
427 }

429 $idx="%r8";
430 $ido="%r9";

432 $code.=<<___;
433 .globl private_RC4_set_key
434 .type private_RC4_set_key,\@function,3
435 .align 16
436 private_RC4_set_key:
437 lea 8($dat),$dat
438 lea ($inp,$len),$inp
439 neg $len
440 mov $len,%rcx
441 xor %eax,%eax
442 xor $ido,$ido
443 xor %r10,%r10
444 xor %r11,%r11

446 mov OPENSSL_ia32cap_P(%rip),$idx#d
447 bt \$20,$idx#d # RC4_CHAR?
448 jc .Lc1stloop
449 jmp .Lw1stloop

451 .align 16
452 .Lw1stloop:
453 mov %eax,($dat,%rax,4)
454 add \$1,%al
455 jnc .Lw1stloop

457 xor $ido,$ido

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-x86_64.pl 8

458 xor $idx,$idx
459 .align 16
460 .Lw2ndloop:
461 mov ($dat,$ido,4),%r10d
462 add ($inp,$len,1),$idx#b
463 add %r10b,$idx#b
464 add \$1,$len
465 mov ($dat,$idx,4),%r11d
466 cmovz %rcx,$len
467 mov %r10d,($dat,$idx,4)
468 mov %r11d,($dat,$ido,4)
469 add \$1,$ido#b
470 jnc .Lw2ndloop
471 jmp .Lexit_key

473 .align 16
474 .Lc1stloop:
475 mov %al,($dat,%rax)
476 add \$1,%al
477 jnc .Lc1stloop

479 xor $ido,$ido
480 xor $idx,$idx
481 .align 16
482 .Lc2ndloop:
483 mov ($dat,$ido),%r10b
484 add ($inp,$len),$idx#b
485 add %r10b,$idx#b
486 add \$1,$len
487 mov ($dat,$idx),%r11b
488 jnz .Lcnowrap
489 mov %rcx,$len
490 .Lcnowrap:
491 mov %r10b,($dat,$idx)
492 mov %r11b,($dat,$ido)
493 add \$1,$ido#b
494 jnc .Lc2ndloop
495 movl \$-1,256($dat)

497 .align 16
498 .Lexit_key:
499 xor %eax,%eax
500 mov %eax,-8($dat)
501 mov %eax,-4($dat)
502 ret
503 .size private_RC4_set_key,.-private_RC4_set_key

505 .globl RC4_options
506 .type RC4_options,\@abi-omnipotent
507 .align 16
508 RC4_options:
509 lea .Lopts(%rip),%rax
510 mov OPENSSL_ia32cap_P(%rip),%edx
511 bt \$20,%edx
512 jc .L8xchar
513 bt \$30,%edx
514 jnc .Ldone
515 add \$25,%rax
516 ret
517 .L8xchar:
518 add \$12,%rax
519 .Ldone:
520 ret
521 .align 64
522 .Lopts:
523 .asciz "rc4(8x,int)"

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-x86_64.pl 9

524 .asciz "rc4(8x,char)"
525 .asciz "rc4(16x,int)"
526 .asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
527 .align 64
528 .size RC4_options,.-RC4_options
529 ___

531 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
532 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
533 if ($win64) {
534 $rec="%rcx";
535 $frame="%rdx";
536 $context="%r8";
537 $disp="%r9";

539 $code.=<<___;
540 .extern __imp_RtlVirtualUnwind
541 .type stream_se_handler,\@abi-omnipotent
542 .align 16
543 stream_se_handler:
544 push %rsi
545 push %rdi
546 push %rbx
547 push %rbp
548 push %r12
549 push %r13
550 push %r14
551 push %r15
552 pushfq
553 sub \$64,%rsp

555 mov 120($context),%rax # pull context->Rax
556 mov 248($context),%rbx # pull context->Rip

558 lea .Lprologue(%rip),%r10
559 cmp %r10,%rbx # context->Rip<prologue label
560 jb .Lin_prologue

562 mov 152($context),%rax # pull context->Rsp

564 lea .Lepilogue(%rip),%r10
565 cmp %r10,%rbx # context->Rip>=epilogue label
566 jae .Lin_prologue

568 lea 24(%rax),%rax

570 mov -8(%rax),%rbx
571 mov -16(%rax),%r12
572 mov -24(%rax),%r13
573 mov %rbx,144($context) # restore context->Rbx
574 mov %r12,216($context) # restore context->R12
575 mov %r13,224($context) # restore context->R13

577 .Lin_prologue:
578 mov 8(%rax),%rdi
579 mov 16(%rax),%rsi
580 mov %rax,152($context) # restore context->Rsp
581 mov %rsi,168($context) # restore context->Rsi
582 mov %rdi,176($context) # restore context->Rdi

584 jmp .Lcommon_seh_exit
585 .size stream_se_handler,.-stream_se_handler

587 .type key_se_handler,\@abi-omnipotent
588 .align 16
589 key_se_handler:

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-x86_64.pl 10

590 push %rsi
591 push %rdi
592 push %rbx
593 push %rbp
594 push %r12
595 push %r13
596 push %r14
597 push %r15
598 pushfq
599 sub \$64,%rsp

601 mov 152($context),%rax # pull context->Rsp
602 mov 8(%rax),%rdi
603 mov 16(%rax),%rsi
604 mov %rsi,168($context) # restore context->Rsi
605 mov %rdi,176($context) # restore context->Rdi

607 .Lcommon_seh_exit:

609 mov 40($disp),%rdi # disp->ContextRecord
610 mov $context,%rsi # context
611 mov \$154,%ecx # sizeof(CONTEXT)
612 .long 0xa548f3fc # cld; rep movsq

614 mov $disp,%rsi
615 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
616 mov 8(%rsi),%rdx # arg2, disp->ImageBase
617 mov 0(%rsi),%r8 # arg3, disp->ControlPc
618 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
619 mov 40(%rsi),%r10 # disp->ContextRecord
620 lea 56(%rsi),%r11 # &disp->HandlerData
621 lea 24(%rsi),%r12 # &disp->EstablisherFrame
622 mov %r10,32(%rsp) # arg5
623 mov %r11,40(%rsp) # arg6
624 mov %r12,48(%rsp) # arg7
625 mov %rcx,56(%rsp) # arg8, (NULL)
626 call *__imp_RtlVirtualUnwind(%rip)

628 mov \$1,%eax # ExceptionContinueSearch
629 add \$64,%rsp
630 popfq
631 pop %r15
632 pop %r14
633 pop %r13
634 pop %r12
635 pop %rbp
636 pop %rbx
637 pop %rdi
638 pop %rsi
639 ret
640 .size key_se_handler,.-key_se_handler

642 .section .pdata
643 .align 4
644 .rva .LSEH_begin_RC4
645 .rva .LSEH_end_RC4
646 .rva .LSEH_info_RC4

648 .rva .LSEH_begin_private_RC4_set_key
649 .rva .LSEH_end_private_RC4_set_key
650 .rva .LSEH_info_private_RC4_set_key

652 .section .xdata
653 .align 8
654 .LSEH_info_RC4:
655 .byte 9,0,0,0

new/usr/src/lib/openssl/libsunw_crypto/pl/rc4-x86_64.pl 11

656 .rva stream_se_handler
657 .LSEH_info_private_RC4_set_key:
658 .byte 9,0,0,0
659 .rva key_se_handler
660 ___
661 }

663 sub reg_part {
664 my ($reg,$conv)=@_;
665 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
666 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
667 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
668 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
669 return $reg;
670 }

672 $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
673 $code =~ s/\‘([^\‘]*)\‘/eval $1/gem;

675 print $code;

677 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/rmd-586.pl 1

**
 16243 Fri May 30 18:32:04 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/rmd-586.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/local/bin/perl

3 # Normal is the
4 # ripemd160_block_asm_data_order(RIPEMD160_CTX *c, ULONG *X,int blocks);

6 $normal=0;

8 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
9 push(@INC,"${dir}","${dir}../../perlasm");
10 require "x86asm.pl";

12 &asm_init($ARGV[0],$0);

14 $A="ecx";
15 $B="esi";
16 $C="edi";
17 $D="ebx";
18 $E="ebp";
19 $tmp1="eax";
20 $tmp2="edx";

22 $KL1=0x5A827999;
23 $KL2=0x6ED9EBA1;
24 $KL3=0x8F1BBCDC;
25 $KL4=0xA953FD4E;
26 $KR0=0x50A28BE6;
27 $KR1=0x5C4DD124;
28 $KR2=0x6D703EF3;
29 $KR3=0x7A6D76E9;

32 @wl=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,
33 7, 4,13, 1,10, 6,15, 3,12, 0, 9, 5, 2,14,11, 8,
34 3,10,14, 4, 9,15, 8, 1, 2, 7, 0, 6,13,11, 5,12,
35 1, 9,11,10, 0, 8,12, 4,13, 3, 7,15,14, 5, 6, 2,
36 4, 0, 5, 9, 7,12, 2,10,14, 1, 3, 8,11, 6,15,13,
37);

39 @wr=(5,14, 7, 0, 9, 2,11, 4,13, 6,15, 8, 1,10, 3,12,
40 6,11, 3, 7, 0,13, 5,10,14,15, 8,12, 4, 9, 1, 2,
41 15, 5, 1, 3, 7,14, 6, 9,11, 8,12, 2,10, 0, 4,13,
42 8, 6, 4, 1, 3,11,15, 0, 5,12, 2,13, 9, 7,10,14,
43 12,15,10, 4, 1, 5, 8, 7, 6, 2,13,14, 0, 3, 9,11,
44);

46 @sl=(11,14,15,12, 5, 8, 7, 9,11,13,14,15, 6, 7, 9, 8,
47 7, 6, 8,13,11, 9, 7,15, 7,12,15, 9,11, 7,13,12,
48 11,13, 6, 7,14, 9,13,15,14, 8,13, 6, 5,12, 7, 5,
49 11,12,14,15,14,15, 9, 8, 9,14, 5, 6, 8, 6, 5,12,
50 9,15, 5,11, 6, 8,13,12, 5,12,13,14,11, 8, 5, 6,
51);

53 @sr=(8, 9, 9,11,13,15,15, 5, 7, 7, 8,11,14,14,12, 6,
54 9,13,15, 7,12, 8, 9,11, 7, 7,12, 7, 6,15,13,11,
55 9, 7,15,11, 8, 6, 6,14,12,13, 5,14,13,13, 7, 5,
56 15, 5, 8,11,14,14, 6,14, 6, 9,12, 9,12, 5,15, 8,
57 8, 5,12, 9,12, 5,14, 6, 8,13, 6, 5,15,13,11,11,
58);

60 &ripemd160_block("ripemd160_block_asm_data_order");
61 &asm_finish();

new/usr/src/lib/openssl/libsunw_crypto/pl/rmd-586.pl 2

63 sub Xv
64 {
65 local($n)=@_;
66 return(&swtmp($n));
67 # tmp on stack
68 }

70 sub Np
71 {
72 local($p)=@_;
73 local(%n)=($A,$E,$B,$A,$C,$B,$D,$C,$E,$D);
74 return($n{$p});
75 }

77 sub RIP1
78 {
79 local($a,$b,$c,$d,$e,$pos,$s,$o,$pos2)=@_;

81 &comment($p++);
82 if ($p & 1)
83 {
84 #&mov($tmp1, $c) if $o == -1;
85 &xor($tmp1, $d) if $o == -1;
86 &mov($tmp2, &Xv($pos));
87 &xor($tmp1, $b);
88 &add($a, $tmp2);
89 &rotl($c, 10);
90 &add($a, $tmp1);
91 &mov($tmp1, &Np($c)); # NEXT
92 # XXX
93 &rotl($a, $s);
94 &add($a, $e);
95 }
96 else
97 {
98 &xor($tmp1, $d);
99 &mov($tmp2, &Xv($pos));
100 &xor($tmp1, $b);
101 &add($a, $tmp1);
102 &mov($tmp1, &Np($c)) if $o <= 0;
103 &mov($tmp1, -1) if $o == 1;
104 # XXX if $o == 2;
105 &rotl($c, 10);
106 &add($a, $tmp2);
107 &xor($tmp1, &Np($d)) if $o <= 0;
108 &mov($tmp2, &Xv($pos2)) if $o == 1;
109 &mov($tmp2, &wparam(0)) if $o == 2;
110 &rotl($a, $s);
111 &add($a, $e);
112 }
113 }

115 sub RIP2
116 {
117 local($a,$b,$c,$d,$e,$pos,$pos2,$s,$K,$o)=@_;

119 # XXXXXX
120 &comment($p++);
121 if ($p & 1)
122 {
123 # &mov($tmp2, &Xv($pos)) if $o < -1;
124 # &mov($tmp1, -1) if $o < -1;

126 &add($a, $tmp2);
127 &mov($tmp2, $c);

new/usr/src/lib/openssl/libsunw_crypto/pl/rmd-586.pl 3

128 &sub($tmp1, $b);
129 &and($tmp2, $b);
130 &and($tmp1, $d);
131 &or($tmp2, $tmp1);
132 &mov($tmp1, &Xv($pos2)) if $o <= 0; # XXXXXXXXXXXXXX
133 # XXX
134 &rotl($c, 10);
135 &lea($a, &DWP($K,$a,$tmp2,1));
136 &mov($tmp2, -1) if $o <= 0;
137 # XXX
138 &rotl($a, $s);
139 &add($a, $e);
140 }
141 else
142 {
143 # XXX
144 &add($a, $tmp1);
145 &mov($tmp1, $c);
146 &sub($tmp2, $b);
147 &and($tmp1, $b);
148 &and($tmp2, $d);
149 if ($o != 2)
150 {
151 &or($tmp1, $tmp2);
152 &mov($tmp2, &Xv($pos2)) if $o <= 0;
153 &mov($tmp2, -1) if $o == 1;
154 &rotl($c, 10);
155 &lea($a, &DWP($K,$a,$tmp1,1));
156 &mov($tmp1, -1) if $o <= 0;
157 &sub($tmp2, &Np($c)) if $o == 1;
158 } else {
159 &or($tmp2, $tmp1);
160 &mov($tmp1, &Np($c));
161 &rotl($c, 10);
162 &lea($a, &DWP($K,$a,$tmp2,1));
163 &xor($tmp1, &Np($d));
164 }
165 &rotl($a, $s);
166 &add($a, $e);
167 }
168 }

170 sub RIP3
171 {
172 local($a,$b,$c,$d,$e,$pos,$s,$K,$o,$pos2)=@_;

174 &comment($p++);
175 if ($p & 1)
176 {
177 # &mov($tmp2, -1) if $o < -1;
178 # &sub($tmp2, $c) if $o < -1;
179 &mov($tmp1, &Xv($pos));
180 &or($tmp2, $b);
181 &add($a, $tmp1);
182 &xor($tmp2, $d);
183 &mov($tmp1, -1) if $o <= 0; # NEXT
184 # XXX
185 &rotl($c, 10);
186 &lea($a, &DWP($K,$a,$tmp2,1));
187 &sub($tmp1, &Np($c)) if $o <= 0; # NEXT
188 # XXX
189 &rotl($a, $s);
190 &add($a, $e);
191 }
192 else
193 {

new/usr/src/lib/openssl/libsunw_crypto/pl/rmd-586.pl 4

194 &mov($tmp2, &Xv($pos));
195 &or($tmp1, $b);
196 &add($a, $tmp2);
197 &xor($tmp1, $d);
198 &mov($tmp2, -1) if $o <= 0; # NEXT
199 &mov($tmp2, -1) if $o == 1;
200 &mov($tmp2, &Xv($pos2)) if $o == 2;
201 &rotl($c, 10);
202 &lea($a, &DWP($K,$a,$tmp1,1));
203 &sub($tmp2, &Np($c)) if $o <= 0; # NEXT
204 &mov($tmp1, &Np($d)) if $o == 1;
205 &mov($tmp1, -1) if $o == 2;
206 &rotl($a, $s);
207 &add($a, $e);
208 }
209 }

211 sub RIP4
212 {
213 local($a,$b,$c,$d,$e,$pos,$s,$K,$o)=@_;

215 &comment($p++);
216 if ($p & 1)
217 {
218 # &mov($tmp2, -1) if $o == -2;
219 # &mov($tmp1, $d) if $o == -2;
220 &sub($tmp2, $d);
221 &and($tmp1, $b);
222 &and($tmp2, $c);
223 &or($tmp2, $tmp1);
224 &mov($tmp1, &Xv($pos));
225 &rotl($c, 10);
226 &lea($a, &DWP($K,$a,$tmp2));
227 &mov($tmp2, -1) unless $o > 0; # NEXT
228 # XXX
229 &add($a, $tmp1);
230 &mov($tmp1, &Np($d)) unless $o > 0; # NEXT
231 # XXX
232 &rotl($a, $s);
233 &add($a, $e);
234 }
235 else
236 {
237 &sub($tmp2, $d);
238 &and($tmp1, $b);
239 &and($tmp2, $c);
240 &or($tmp2, $tmp1);
241 &mov($tmp1, &Xv($pos));
242 &rotl($c, 10);
243 &lea($a, &DWP($K,$a,$tmp2));
244 &mov($tmp2, -1) if $o == 0; # NEXT
245 &mov($tmp2, -1) if $o == 1;
246 &mov($tmp2, -1) if $o == 2;
247 # XXX
248 &add($a, $tmp1);
249 &mov($tmp1, &Np($d)) if $o == 0; # NEXT
250 &sub($tmp2, &Np($d)) if $o == 1;
251 &sub($tmp2, &Np($c)) if $o == 2;
252 # XXX
253 &rotl($a, $s);
254 &add($a, $e);
255 }
256 }

258 sub RIP5
259 {

new/usr/src/lib/openssl/libsunw_crypto/pl/rmd-586.pl 5

260 local($a,$b,$c,$d,$e,$pos,$s,$K,$o)=@_;

262 &comment($p++);
263 if ($p & 1)
264 {
265 &mov($tmp2, -1) if $o == -2;
266 &sub($tmp2, $d) if $o == -2;
267 &mov($tmp1, &Xv($pos));
268 &or($tmp2, $c);
269 &add($a, $tmp1);
270 &xor($tmp2, $b);
271 &mov($tmp1, -1) if $o <= 0;
272 # XXX
273 &rotl($c, 10);
274 &lea($a, &DWP($K,$a,$tmp2,1));
275 &sub($tmp1, &Np($d)) if $o <= 0;
276 # XXX
277 &rotl($a, $s);
278 &add($a, $e);
279 }
280 else
281 {
282 &mov($tmp2, &Xv($pos));
283 &or($tmp1, $c);
284 &add($a, $tmp2);
285 &xor($tmp1, $b);
286 &mov($tmp2, -1) if $o <= 0;
287 &mov($tmp2, &wparam(0)) if $o == 1; # Middle code
288 &mov($tmp2, -1) if $o == 2;
289 &rotl($c, 10);
290 &lea($a, &DWP($K,$a,$tmp1,1));
291 &sub($tmp2, &Np($d)) if $o <= 0;
292 &mov(&swtmp(16), $A) if $o == 1;
293 &mov($tmp1, &Np($d)) if $o == 2;
294 &rotl($a, $s);
295 &add($a, $e);
296 }
297 }

299 sub ripemd160_block
300 {
301 local($name)=@_;

303 &function_begin_B($name,"",3);

305 # parameter 1 is the RIPEMD160_CTX structure.
306 # A 0
307 # B 4
308 # C 8
309 # D 12
310 # E 16

312 &mov($tmp2, &wparam(0));
313 &mov($tmp1, &wparam(1));
314 &push("esi");
315 &mov($A, &DWP(0,$tmp2,"",0));
316 &push("edi");
317 &mov($B, &DWP(4,$tmp2,"",0));
318 &push("ebp");
319 &mov($C, &DWP(8,$tmp2,"",0));
320 &push("ebx");
321 &stack_push(16+5+6);
322 # Special comment about the figure of 6.
323 # Idea is to pad the current frame so
324 # that the top of the stack gets fairly
325 # aligned. Well, as you realize it would

new/usr/src/lib/openssl/libsunw_crypto/pl/rmd-586.pl 6

326 # always depend on how the frame below is
327 # aligned. The good news are that gcc-2.95
328 # and later does keep first argument at
329 # least double-wise aligned.
330 # <appro@fy.chalmers.se>

332 &set_label("start") unless $normal;
333 &comment("");

335 # &mov($tmp1, &wparam(1)); # Done at end of loop
336 # &mov($tmp2, &wparam(0)); # Done at end of loop

338 for ($z=0; $z<16; $z+=2)
339 {
340 &mov($D, &DWP($z*4,$tmp1,"",0));
341 &mov($E, &DWP(($z+1)*4,$tmp1,"",0));
342 &mov(&swtmp($z), $D);
343 &mov(&swtmp($z+1), $E);
344 }
345 &mov($tmp1, $C);
346 &mov($D, &DWP(12,$tmp2,"",0));
347 &mov($E, &DWP(16,$tmp2,"",0));

349 &RIP1($A,$B,$C,$D,$E,$wl[0],$sl[0],-1);
350 &RIP1($E,$A,$B,$C,$D,$wl[1],$sl[1],0);
351 &RIP1($D,$E,$A,$B,$C,$wl[2],$sl[2],0);
352 &RIP1($C,$D,$E,$A,$B,$wl[3],$sl[3],0);
353 &RIP1($B,$C,$D,$E,$A,$wl[4],$sl[4],0);
354 &RIP1($A,$B,$C,$D,$E,$wl[5],$sl[5],0);
355 &RIP1($E,$A,$B,$C,$D,$wl[6],$sl[6],0);
356 &RIP1($D,$E,$A,$B,$C,$wl[7],$sl[7],0);
357 &RIP1($C,$D,$E,$A,$B,$wl[8],$sl[8],0);
358 &RIP1($B,$C,$D,$E,$A,$wl[9],$sl[9],0);
359 &RIP1($A,$B,$C,$D,$E,$wl[10],$sl[10],0);
360 &RIP1($E,$A,$B,$C,$D,$wl[11],$sl[11],0);
361 &RIP1($D,$E,$A,$B,$C,$wl[12],$sl[12],0);
362 &RIP1($C,$D,$E,$A,$B,$wl[13],$sl[13],0);
363 &RIP1($B,$C,$D,$E,$A,$wl[14],$sl[14],0);
364 &RIP1($A,$B,$C,$D,$E,$wl[15],$sl[15],1,$wl[16]);

366 &RIP2($E,$A,$B,$C,$D,$wl[16],$wl[17],$sl[16],$KL1,-1);
367 &RIP2($D,$E,$A,$B,$C,$wl[17],$wl[18],$sl[17],$KL1,0);
368 &RIP2($C,$D,$E,$A,$B,$wl[18],$wl[19],$sl[18],$KL1,0);
369 &RIP2($B,$C,$D,$E,$A,$wl[19],$wl[20],$sl[19],$KL1,0);
370 &RIP2($A,$B,$C,$D,$E,$wl[20],$wl[21],$sl[20],$KL1,0);
371 &RIP2($E,$A,$B,$C,$D,$wl[21],$wl[22],$sl[21],$KL1,0);
372 &RIP2($D,$E,$A,$B,$C,$wl[22],$wl[23],$sl[22],$KL1,0);
373 &RIP2($C,$D,$E,$A,$B,$wl[23],$wl[24],$sl[23],$KL1,0);
374 &RIP2($B,$C,$D,$E,$A,$wl[24],$wl[25],$sl[24],$KL1,0);
375 &RIP2($A,$B,$C,$D,$E,$wl[25],$wl[26],$sl[25],$KL1,0);
376 &RIP2($E,$A,$B,$C,$D,$wl[26],$wl[27],$sl[26],$KL1,0);
377 &RIP2($D,$E,$A,$B,$C,$wl[27],$wl[28],$sl[27],$KL1,0);
378 &RIP2($C,$D,$E,$A,$B,$wl[28],$wl[29],$sl[28],$KL1,0);
379 &RIP2($B,$C,$D,$E,$A,$wl[29],$wl[30],$sl[29],$KL1,0);
380 &RIP2($A,$B,$C,$D,$E,$wl[30],$wl[31],$sl[30],$KL1,0);
381 &RIP2($E,$A,$B,$C,$D,$wl[31],$wl[32],$sl[31],$KL1,1);

383 &RIP3($D,$E,$A,$B,$C,$wl[32],$sl[32],$KL2,-1);
384 &RIP3($C,$D,$E,$A,$B,$wl[33],$sl[33],$KL2,0);
385 &RIP3($B,$C,$D,$E,$A,$wl[34],$sl[34],$KL2,0);
386 &RIP3($A,$B,$C,$D,$E,$wl[35],$sl[35],$KL2,0);
387 &RIP3($E,$A,$B,$C,$D,$wl[36],$sl[36],$KL2,0);
388 &RIP3($D,$E,$A,$B,$C,$wl[37],$sl[37],$KL2,0);
389 &RIP3($C,$D,$E,$A,$B,$wl[38],$sl[38],$KL2,0);
390 &RIP3($B,$C,$D,$E,$A,$wl[39],$sl[39],$KL2,0);
391 &RIP3($A,$B,$C,$D,$E,$wl[40],$sl[40],$KL2,0);

new/usr/src/lib/openssl/libsunw_crypto/pl/rmd-586.pl 7

392 &RIP3($E,$A,$B,$C,$D,$wl[41],$sl[41],$KL2,0);
393 &RIP3($D,$E,$A,$B,$C,$wl[42],$sl[42],$KL2,0);
394 &RIP3($C,$D,$E,$A,$B,$wl[43],$sl[43],$KL2,0);
395 &RIP3($B,$C,$D,$E,$A,$wl[44],$sl[44],$KL2,0);
396 &RIP3($A,$B,$C,$D,$E,$wl[45],$sl[45],$KL2,0);
397 &RIP3($E,$A,$B,$C,$D,$wl[46],$sl[46],$KL2,0);
398 &RIP3($D,$E,$A,$B,$C,$wl[47],$sl[47],$KL2,1);

400 &RIP4($C,$D,$E,$A,$B,$wl[48],$sl[48],$KL3,-1);
401 &RIP4($B,$C,$D,$E,$A,$wl[49],$sl[49],$KL3,0);
402 &RIP4($A,$B,$C,$D,$E,$wl[50],$sl[50],$KL3,0);
403 &RIP4($E,$A,$B,$C,$D,$wl[51],$sl[51],$KL3,0);
404 &RIP4($D,$E,$A,$B,$C,$wl[52],$sl[52],$KL3,0);
405 &RIP4($C,$D,$E,$A,$B,$wl[53],$sl[53],$KL3,0);
406 &RIP4($B,$C,$D,$E,$A,$wl[54],$sl[54],$KL3,0);
407 &RIP4($A,$B,$C,$D,$E,$wl[55],$sl[55],$KL3,0);
408 &RIP4($E,$A,$B,$C,$D,$wl[56],$sl[56],$KL3,0);
409 &RIP4($D,$E,$A,$B,$C,$wl[57],$sl[57],$KL3,0);
410 &RIP4($C,$D,$E,$A,$B,$wl[58],$sl[58],$KL3,0);
411 &RIP4($B,$C,$D,$E,$A,$wl[59],$sl[59],$KL3,0);
412 &RIP4($A,$B,$C,$D,$E,$wl[60],$sl[60],$KL3,0);
413 &RIP4($E,$A,$B,$C,$D,$wl[61],$sl[61],$KL3,0);
414 &RIP4($D,$E,$A,$B,$C,$wl[62],$sl[62],$KL3,0);
415 &RIP4($C,$D,$E,$A,$B,$wl[63],$sl[63],$KL3,1);

417 &RIP5($B,$C,$D,$E,$A,$wl[64],$sl[64],$KL4,-1);
418 &RIP5($A,$B,$C,$D,$E,$wl[65],$sl[65],$KL4,0);
419 &RIP5($E,$A,$B,$C,$D,$wl[66],$sl[66],$KL4,0);
420 &RIP5($D,$E,$A,$B,$C,$wl[67],$sl[67],$KL4,0);
421 &RIP5($C,$D,$E,$A,$B,$wl[68],$sl[68],$KL4,0);
422 &RIP5($B,$C,$D,$E,$A,$wl[69],$sl[69],$KL4,0);
423 &RIP5($A,$B,$C,$D,$E,$wl[70],$sl[70],$KL4,0);
424 &RIP5($E,$A,$B,$C,$D,$wl[71],$sl[71],$KL4,0);
425 &RIP5($D,$E,$A,$B,$C,$wl[72],$sl[72],$KL4,0);
426 &RIP5($C,$D,$E,$A,$B,$wl[73],$sl[73],$KL4,0);
427 &RIP5($B,$C,$D,$E,$A,$wl[74],$sl[74],$KL4,0);
428 &RIP5($A,$B,$C,$D,$E,$wl[75],$sl[75],$KL4,0);
429 &RIP5($E,$A,$B,$C,$D,$wl[76],$sl[76],$KL4,0);
430 &RIP5($D,$E,$A,$B,$C,$wl[77],$sl[77],$KL4,0);
431 &RIP5($C,$D,$E,$A,$B,$wl[78],$sl[78],$KL4,0);
432 &RIP5($B,$C,$D,$E,$A,$wl[79],$sl[79],$KL4,1);

434 # &mov($tmp2, &wparam(0)); # moved into last RIP5
435 # &mov(&swtmp(16), $A);
436 &mov($A, &DWP(0,$tmp2,"",0));
437 &mov(&swtmp(16+1), $B);
438 &mov(&swtmp(16+2), $C);
439 &mov($B, &DWP(4,$tmp2,"",0));
440 &mov(&swtmp(16+3), $D);
441 &mov($C, &DWP(8,$tmp2,"",0));
442 &mov(&swtmp(16+4), $E);
443 &mov($D, &DWP(12,$tmp2,"",0));
444 &mov($E, &DWP(16,$tmp2,"",0));

446 &RIP5($A,$B,$C,$D,$E,$wr[0],$sr[0],$KR0,-2);
447 &RIP5($E,$A,$B,$C,$D,$wr[1],$sr[1],$KR0,0);
448 &RIP5($D,$E,$A,$B,$C,$wr[2],$sr[2],$KR0,0);
449 &RIP5($C,$D,$E,$A,$B,$wr[3],$sr[3],$KR0,0);
450 &RIP5($B,$C,$D,$E,$A,$wr[4],$sr[4],$KR0,0);
451 &RIP5($A,$B,$C,$D,$E,$wr[5],$sr[5],$KR0,0);
452 &RIP5($E,$A,$B,$C,$D,$wr[6],$sr[6],$KR0,0);
453 &RIP5($D,$E,$A,$B,$C,$wr[7],$sr[7],$KR0,0);
454 &RIP5($C,$D,$E,$A,$B,$wr[8],$sr[8],$KR0,0);
455 &RIP5($B,$C,$D,$E,$A,$wr[9],$sr[9],$KR0,0);
456 &RIP5($A,$B,$C,$D,$E,$wr[10],$sr[10],$KR0,0);
457 &RIP5($E,$A,$B,$C,$D,$wr[11],$sr[11],$KR0,0);

new/usr/src/lib/openssl/libsunw_crypto/pl/rmd-586.pl 8

458 &RIP5($D,$E,$A,$B,$C,$wr[12],$sr[12],$KR0,0);
459 &RIP5($C,$D,$E,$A,$B,$wr[13],$sr[13],$KR0,0);
460 &RIP5($B,$C,$D,$E,$A,$wr[14],$sr[14],$KR0,0);
461 &RIP5($A,$B,$C,$D,$E,$wr[15],$sr[15],$KR0,2);

463 &RIP4($E,$A,$B,$C,$D,$wr[16],$sr[16],$KR1,-2);
464 &RIP4($D,$E,$A,$B,$C,$wr[17],$sr[17],$KR1,0);
465 &RIP4($C,$D,$E,$A,$B,$wr[18],$sr[18],$KR1,0);
466 &RIP4($B,$C,$D,$E,$A,$wr[19],$sr[19],$KR1,0);
467 &RIP4($A,$B,$C,$D,$E,$wr[20],$sr[20],$KR1,0);
468 &RIP4($E,$A,$B,$C,$D,$wr[21],$sr[21],$KR1,0);
469 &RIP4($D,$E,$A,$B,$C,$wr[22],$sr[22],$KR1,0);
470 &RIP4($C,$D,$E,$A,$B,$wr[23],$sr[23],$KR1,0);
471 &RIP4($B,$C,$D,$E,$A,$wr[24],$sr[24],$KR1,0);
472 &RIP4($A,$B,$C,$D,$E,$wr[25],$sr[25],$KR1,0);
473 &RIP4($E,$A,$B,$C,$D,$wr[26],$sr[26],$KR1,0);
474 &RIP4($D,$E,$A,$B,$C,$wr[27],$sr[27],$KR1,0);
475 &RIP4($C,$D,$E,$A,$B,$wr[28],$sr[28],$KR1,0);
476 &RIP4($B,$C,$D,$E,$A,$wr[29],$sr[29],$KR1,0);
477 &RIP4($A,$B,$C,$D,$E,$wr[30],$sr[30],$KR1,0);
478 &RIP4($E,$A,$B,$C,$D,$wr[31],$sr[31],$KR1,2);

480 &RIP3($D,$E,$A,$B,$C,$wr[32],$sr[32],$KR2,-2);
481 &RIP3($C,$D,$E,$A,$B,$wr[33],$sr[33],$KR2,0);
482 &RIP3($B,$C,$D,$E,$A,$wr[34],$sr[34],$KR2,0);
483 &RIP3($A,$B,$C,$D,$E,$wr[35],$sr[35],$KR2,0);
484 &RIP3($E,$A,$B,$C,$D,$wr[36],$sr[36],$KR2,0);
485 &RIP3($D,$E,$A,$B,$C,$wr[37],$sr[37],$KR2,0);
486 &RIP3($C,$D,$E,$A,$B,$wr[38],$sr[38],$KR2,0);
487 &RIP3($B,$C,$D,$E,$A,$wr[39],$sr[39],$KR2,0);
488 &RIP3($A,$B,$C,$D,$E,$wr[40],$sr[40],$KR2,0);
489 &RIP3($E,$A,$B,$C,$D,$wr[41],$sr[41],$KR2,0);
490 &RIP3($D,$E,$A,$B,$C,$wr[42],$sr[42],$KR2,0);
491 &RIP3($C,$D,$E,$A,$B,$wr[43],$sr[43],$KR2,0);
492 &RIP3($B,$C,$D,$E,$A,$wr[44],$sr[44],$KR2,0);
493 &RIP3($A,$B,$C,$D,$E,$wr[45],$sr[45],$KR2,0);
494 &RIP3($E,$A,$B,$C,$D,$wr[46],$sr[46],$KR2,0);
495 &RIP3($D,$E,$A,$B,$C,$wr[47],$sr[47],$KR2,2,$wr[48]);

497 &RIP2($C,$D,$E,$A,$B,$wr[48],$wr[49],$sr[48],$KR3,-2);
498 &RIP2($B,$C,$D,$E,$A,$wr[49],$wr[50],$sr[49],$KR3,0);
499 &RIP2($A,$B,$C,$D,$E,$wr[50],$wr[51],$sr[50],$KR3,0);
500 &RIP2($E,$A,$B,$C,$D,$wr[51],$wr[52],$sr[51],$KR3,0);
501 &RIP2($D,$E,$A,$B,$C,$wr[52],$wr[53],$sr[52],$KR3,0);
502 &RIP2($C,$D,$E,$A,$B,$wr[53],$wr[54],$sr[53],$KR3,0);
503 &RIP2($B,$C,$D,$E,$A,$wr[54],$wr[55],$sr[54],$KR3,0);
504 &RIP2($A,$B,$C,$D,$E,$wr[55],$wr[56],$sr[55],$KR3,0);
505 &RIP2($E,$A,$B,$C,$D,$wr[56],$wr[57],$sr[56],$KR3,0);
506 &RIP2($D,$E,$A,$B,$C,$wr[57],$wr[58],$sr[57],$KR3,0);
507 &RIP2($C,$D,$E,$A,$B,$wr[58],$wr[59],$sr[58],$KR3,0);
508 &RIP2($B,$C,$D,$E,$A,$wr[59],$wr[60],$sr[59],$KR3,0);
509 &RIP2($A,$B,$C,$D,$E,$wr[60],$wr[61],$sr[60],$KR3,0);
510 &RIP2($E,$A,$B,$C,$D,$wr[61],$wr[62],$sr[61],$KR3,0);
511 &RIP2($D,$E,$A,$B,$C,$wr[62],$wr[63],$sr[62],$KR3,0);
512 &RIP2($C,$D,$E,$A,$B,$wr[63],$wr[64],$sr[63],$KR3,2);

514 &RIP1($B,$C,$D,$E,$A,$wr[64],$sr[64],-2);
515 &RIP1($A,$B,$C,$D,$E,$wr[65],$sr[65],0);
516 &RIP1($E,$A,$B,$C,$D,$wr[66],$sr[66],0);
517 &RIP1($D,$E,$A,$B,$C,$wr[67],$sr[67],0);
518 &RIP1($C,$D,$E,$A,$B,$wr[68],$sr[68],0);
519 &RIP1($B,$C,$D,$E,$A,$wr[69],$sr[69],0);
520 &RIP1($A,$B,$C,$D,$E,$wr[70],$sr[70],0);
521 &RIP1($E,$A,$B,$C,$D,$wr[71],$sr[71],0);
522 &RIP1($D,$E,$A,$B,$C,$wr[72],$sr[72],0);
523 &RIP1($C,$D,$E,$A,$B,$wr[73],$sr[73],0);

new/usr/src/lib/openssl/libsunw_crypto/pl/rmd-586.pl 9

524 &RIP1($B,$C,$D,$E,$A,$wr[74],$sr[74],0);
525 &RIP1($A,$B,$C,$D,$E,$wr[75],$sr[75],0);
526 &RIP1($E,$A,$B,$C,$D,$wr[76],$sr[76],0);
527 &RIP1($D,$E,$A,$B,$C,$wr[77],$sr[77],0);
528 &RIP1($C,$D,$E,$A,$B,$wr[78],$sr[78],0);
529 &RIP1($B,$C,$D,$E,$A,$wr[79],$sr[79],2);

531 # &mov($tmp2, &wparam(0)); # Moved into last round

533 &mov($tmp1, &DWP(4,$tmp2,"",0)); # ctx->B
534 &add($D, $tmp1);
535 &mov($tmp1, &swtmp(16+2)); # $c
536 &add($D, $tmp1);

538 &mov($tmp1, &DWP(8,$tmp2,"",0)); # ctx->C
539 &add($E, $tmp1);
540 &mov($tmp1, &swtmp(16+3)); # $d
541 &add($E, $tmp1);

543 &mov($tmp1, &DWP(12,$tmp2,"",0)); # ctx->D
544 &add($A, $tmp1);
545 &mov($tmp1, &swtmp(16+4)); # $e
546 &add($A, $tmp1);

549 &mov($tmp1, &DWP(16,$tmp2,"",0)); # ctx->E
550 &add($B, $tmp1);
551 &mov($tmp1, &swtmp(16+0)); # $a
552 &add($B, $tmp1);

554 &mov($tmp1, &DWP(0,$tmp2,"",0)); # ctx->A
555 &add($C, $tmp1);
556 &mov($tmp1, &swtmp(16+1)); # $b
557 &add($C, $tmp1);

559 &mov($tmp1, &wparam(2));

561 &mov(&DWP(0,$tmp2,"",0), $D);
562 &mov(&DWP(4,$tmp2,"",0), $E);
563 &mov(&DWP(8,$tmp2,"",0), $A);
564 &sub($tmp1,1);
565 &mov(&DWP(12,$tmp2,"",0), $B);
566 &mov(&DWP(16,$tmp2,"",0), $C);

568 &jle(&label("get_out"));

570 &mov(&wparam(2),$tmp1);
571 &mov($C, $A);
572 &mov($tmp1, &wparam(1));
573 &mov($A, $D);
574 &add($tmp1, 64);
575 &mov($B, $E);
576 &mov(&wparam(1),$tmp1);

578 &jmp(&label("start"));

580 &set_label("get_out");

582 &stack_pop(16+5+6);

584 &pop("ebx");
585 &pop("ebp");
586 &pop("edi");
587 &pop("esi");
588 &ret();
589 &function_end_B($name);

new/usr/src/lib/openssl/libsunw_crypto/pl/rmd-586.pl 10

590 }

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 1

**
 37090 Fri May 30 18:32:05 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 # ==
4 # [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==

10 # "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
11 # functions were re-implemented to address P4 performance issue [see
12 # commentary below], and in 2006 the rest was rewritten in order to
13 # gain freedom to liberate licensing terms.

15 # January, September 2004.
16 #
17 # It was noted that Intel IA-32 C compiler generates code which
18 # performs ~30% *faster* on P4 CPU than original *hand-coded*
19 # SHA1 assembler implementation. To address this problem (and
20 # prove that humans are still better than machines:-), the
21 # original code was overhauled, which resulted in following
22 # performance changes:
23 #
24 # compared with original compared with Intel cc
25 # assembler impl. generated code
26 # Pentium -16% +48%
27 # PIII/AMD +8% +16%
28 # P4 +85%(!) +45%
29 #
30 # As you can see Pentium came out as looser:-(Yet I reckoned that
31 # improvement on P4 outweights the loss and incorporate this
32 # re-tuned code to 0.9.7 and later.
33 # --
34 # <appro@fy.chalmers.se>

36 # August 2009.
37 #
38 # George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
39 # ’(c&d) + (b&(c^d))’, which allows to accumulate partial results
40 # and lighten "pressure" on scratch registers. This resulted in
41 # >12% performance improvement on contemporary AMD cores (with no
42 # degradation on other CPUs:-). Also, the code was revised to maximize
43 # "distance" between instructions producing input to ’lea’ instruction
44 # and the ’lea’ instruction itself, which is essential for Intel Atom
45 # core and resulted in ~15% improvement.

47 # October 2010.
48 #
49 # Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
50 # is to offload message schedule denoted by Wt in NIST specification,
51 # or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
52 # and in SSE2 context was first explored by Dean Gaudet in 2004, see
53 # http://arctic.org/~dean/crypto/sha1.html. Since then several things
54 # have changed that made it interesting again:
55 #
56 # a) XMM units became faster and wider;
57 # b) instruction set became more versatile;
58 # c) an important observation was made by Max Locktykhin, which made
59 # it possible to reduce amount of instructions required to perform
60 # the operation in question, for further details see
61 # http://software.intel.com/en-us/articles/improving-the-performance-of-the-s

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 2

63 # April 2011.
64 #
65 # Add AVX code path, probably most controversial... The thing is that
66 # switch to AVX alone improves performance by as little as 4% in
67 # comparison to SSSE3 code path. But below result doesn’t look like
68 # 4% improvement... Trouble is that Sandy Bridge decodes ’ro[rl]’ as
69 # pair of µ-ops, and it’s the additional µ-ops, two per round, that
70 # make it run slower than Core2 and Westmere. But ’sh[rl]d’ is decoded
71 # as single µ-op by Sandy Bridge and it’s replacing ’ro[rl]’ with
72 # equivalent ’sh[rl]d’ that is responsible for the impressive 5.1
73 # cycles per processed byte. But ’sh[rl]d’ is not something that used
74 # to be fast, nor does it appear to be fast in upcoming Bulldozer
75 # [according to its optimization manual]. Which is why AVX code path
76 # is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
77 # One can argue that it’s unfair to AMD, but without ’sh[rl]d’ it
78 # makes no sense to keep the AVX code path. If somebody feels that
79 # strongly, it’s probably more appropriate to discuss possibility of
80 # using vector rotate XOP on AMD...

82 ##
83 # Current performance is summarized in following table. Numbers are
84 # CPU clock cycles spent to process single byte (less is better).
85 #
86 # x86 SSSE3 AVX
87 # Pentium 15.7 -
88 # PIII 11.5 -
89 # P4 10.6 -
90 # AMD K8 7.1 -
91 # Core2 7.3 6.1/+20% -
92 # Atom 12.5 9.5(*)/+32% -
93 # Westmere 7.3 5.6/+30% -
94 # Sandy Bridge 8.8 6.2/+40% 5.1(**)/+70%
95 #
96 # (*) Loop is 1056 instructions long and expected result is ~8.25.
97 # It remains mystery [to me] why ILP is limited to 1.7.
98 #
99 # (**) As per above comment, the result is for AVX *plus* sh[rl]d.

101 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
102 push(@INC,"${dir}","${dir}../../perlasm");
103 require "x86asm.pl";

105 &asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");

107 $xmm=$ymm=0;
108 for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }

110 $ymm=1 if ($xmm &&
111 ‘$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1‘
112 =~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
113 $1>=2.19); # first version supporting AVX

115 $ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" &&
116 ‘nasm -v 2>&1‘ =~ /NASM version ([2-9]\.[0-9]+)/ &&
117 $1>=2.03); # first version supporting AVX

119 &external_label("OPENSSL_ia32cap_P") if ($xmm);

122 $A="eax";
123 $B="ebx";
124 $C="ecx";
125 $D="edx";
126 $E="edi";
127 $T="esi";

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 3

128 $tmp1="ebp";

130 @V=($A,$B,$C,$D,$E,$T);

132 $alt=0; # 1 denotes alternative IALU implementation, which performs
133 # 8% *worse* on P4, same on Westmere and Atom, 2% better on
134 # Sandy Bridge...

136 sub BODY_00_15
137 {
138 local($n,$a,$b,$c,$d,$e,$f)=@_;

140 &comment("00_15 $n");

142 &mov($f,$c); # f to hold F_00_19(b,c,d)
143 if ($n==0) { &mov($tmp1,$a); }
144 else { &mov($a,$tmp1); }
145 &rotl($tmp1,5); # tmp1=ROTATE(a,5)
146 &xor($f,$d);
147 &add($tmp1,$e); # tmp1+=e;
148 &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
149 # with xi, also note that e becomes
150 # f in next round...
151 &and($f,$b);
152 &rotr($b,2); # b=ROTATE(b,30)
153 &xor($f,$d); # f holds F_00_19(b,c,d)
154 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi

156 if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
157 &add($f,$tmp1); } # f+=tmp1
158 else { &add($tmp1,$f); } # f becomes a in next round
159 &mov($tmp1,$a) if ($alt && $n==15);
160 }

162 sub BODY_16_19
163 {
164 local($n,$a,$b,$c,$d,$e,$f)=@_;

166 &comment("16_19 $n");

168 if ($alt) {
169 &xor($c,$d);
170 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
171 &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d
172 &xor($f,&swtmp(($n+8)%16));
173 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
174 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
175 &rotl($f,1); # f=ROTATE(f,1)
176 &add($e,$tmp1); # e+=F_00_19(b,c,d)
177 &xor($c,$d); # restore $c
178 &mov($tmp1,$a); # b in next round
179 &rotr($b,$n==16?2:7); # b=ROTATE(b,30)
180 &mov(&swtmp($n%16),$f); # xi=f
181 &rotl($a,5); # ROTATE(a,5)
182 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
183 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
184 &add($f,$a); # f+=ROTATE(a,5)
185 } else {
186 &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d)
187 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
188 &xor($tmp1,$d);
189 &xor($f,&swtmp(($n+8)%16));
190 &and($tmp1,$b);
191 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
192 &rotl($f,1); # f=ROTATE(f,1)
193 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 4

194 &add($e,$tmp1); # e+=F_00_19(b,c,d)
195 &mov($tmp1,$a);
196 &rotr($b,2); # b=ROTATE(b,30)
197 &mov(&swtmp($n%16),$f); # xi=f
198 &rotl($tmp1,5); # ROTATE(a,5)
199 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
200 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
201 &add($f,$tmp1); # f+=ROTATE(a,5)
202 }
203 }

205 sub BODY_20_39
206 {
207 local($n,$a,$b,$c,$d,$e,$f)=@_;
208 local $K=($n<40)?0x6ed9eba1:0xca62c1d6;

210 &comment("20_39 $n");

212 if ($alt) {
213 &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c
214 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
215 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
216 &xor($f,&swtmp(($n+8)%16));
217 &add($e,$tmp1); # e+=F_20_39(b,c,d)
218 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
219 &rotl($f,1); # f=ROTATE(f,1)
220 &mov($tmp1,$a); # b in next round
221 &rotr($b,7); # b=ROTATE(b,30)
222 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
223 &rotl($a,5); # ROTATE(a,5)
224 &xor($b,$c) if($n==39);# warm up for BODY_40_59
225 &and($tmp1,$b) if($n==39);
226 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
227 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
228 &add($f,$a); # f+=ROTATE(a,5)
229 &rotr($a,5) if ($n==79);
230 } else {
231 &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d)
232 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
233 &xor($tmp1,$c);
234 &xor($f,&swtmp(($n+8)%16));
235 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
236 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
237 &rotl($f,1); # f=ROTATE(f,1)
238 &add($e,$tmp1); # e+=F_20_39(b,c,d)
239 &rotr($b,2); # b=ROTATE(b,30)
240 &mov($tmp1,$a);
241 &rotl($tmp1,5); # ROTATE(a,5)
242 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
243 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
244 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
245 &add($f,$tmp1); # f+=ROTATE(a,5)
246 }
247 }

249 sub BODY_40_59
250 {
251 local($n,$a,$b,$c,$d,$e,$f)=@_;

253 &comment("40_59 $n");

255 if ($alt) {
256 &add($e,$tmp1); # e+=b&(c^d)
257 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
258 &mov($tmp1,$d);
259 &xor($f,&swtmp(($n+8)%16));

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 5

260 &xor($c,$d); # restore $c
261 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
262 &rotl($f,1); # f=ROTATE(f,1)
263 &and($tmp1,$c);
264 &rotr($b,7); # b=ROTATE(b,30)
265 &add($e,$tmp1); # e+=c&d
266 &mov($tmp1,$a); # b in next round
267 &mov(&swtmp($n%16),$f); # xi=f
268 &rotl($a,5); # ROTATE(a,5)
269 &xor($b,$c) if ($n<59);
270 &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d)
271 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
272 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
273 &add($f,$a); # f+=ROTATE(a,5)
274 } else {
275 &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d)
276 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
277 &xor($tmp1,$d);
278 &xor($f,&swtmp(($n+8)%16));
279 &and($tmp1,$b);
280 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
281 &rotl($f,1); # f=ROTATE(f,1)
282 &add($tmp1,$e); # b&(c^d)+=e
283 &rotr($b,2); # b=ROTATE(b,30)
284 &mov($e,$a); # e becomes volatile
285 &rotl($e,5); # ROTATE(a,5)
286 &mov(&swtmp($n%16),$f); # xi=f
287 &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
288 &mov($tmp1,$c);
289 &add($f,$e); # f+=ROTATE(a,5)
290 &and($tmp1,$d);
291 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
292 &add($f,$tmp1); # f+=c&d
293 }
294 }

296 &function_begin("sha1_block_data_order");
297 if ($xmm) {
298 &static_label("ssse3_shortcut");
299 &static_label("avx_shortcut") if ($ymm);
300 &static_label("K_XX_XX");

302 &call (&label("pic_point")); # make it PIC!
303 &set_label("pic_point");
304 &blindpop($tmp1);
305 &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
306 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));

308 &mov ($A,&DWP(0,$T));
309 &mov ($D,&DWP(4,$T));
310 &test ($D,1<<9); # check SSSE3 bit
311 &jz (&label("x86"));
312 &test ($A,1<<24); # check FXSR bit
313 &jz (&label("x86"));
314 if ($ymm) {
315 &and ($D,1<<28); # mask AVX bit
316 &and ($A,1<<30); # mask "Intel CPU" bit
317 &or ($A,$D);
318 &cmp ($A,1<<28|1<<30);
319 &je (&label("avx_shortcut"));
320 }
321 &jmp (&label("ssse3_shortcut"));
322 &set_label("x86",16);
323 }
324 &mov($tmp1,&wparam(0)); # SHA_CTX *c
325 &mov($T,&wparam(1)); # const void *input

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 6

326 &mov($A,&wparam(2)); # size_t num
327 &stack_push(16+3); # allocate X[16]
328 &shl($A,6);
329 &add($A,$T);
330 &mov(&wparam(2),$A); # pointer beyond the end of input
331 &mov($E,&DWP(16,$tmp1));# pre-load E
332 &jmp(&label("loop"));

334 &set_label("loop",16);

336 # copy input chunk to X, but reversing byte order!
337 for ($i=0; $i<16; $i+=4)
338 {
339 &mov($A,&DWP(4*($i+0),$T));
340 &mov($B,&DWP(4*($i+1),$T));
341 &mov($C,&DWP(4*($i+2),$T));
342 &mov($D,&DWP(4*($i+3),$T));
343 &bswap($A);
344 &bswap($B);
345 &bswap($C);
346 &bswap($D);
347 &mov(&swtmp($i+0),$A);
348 &mov(&swtmp($i+1),$B);
349 &mov(&swtmp($i+2),$C);
350 &mov(&swtmp($i+3),$D);
351 }
352 &mov(&wparam(1),$T); # redundant in 1st spin

354 &mov($A,&DWP(0,$tmp1)); # load SHA_CTX
355 &mov($B,&DWP(4,$tmp1));
356 &mov($C,&DWP(8,$tmp1));
357 &mov($D,&DWP(12,$tmp1));
358 # E is pre-loaded

360 for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
361 for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
362 for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
363 for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
364 for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }

366 (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check

368 &mov($tmp1,&wparam(0)); # re-load SHA_CTX*
369 &mov($D,&wparam(1)); # D is last "T" and is discarded

371 &add($E,&DWP(0,$tmp1)); # E is last "A"...
372 &add($T,&DWP(4,$tmp1));
373 &add($A,&DWP(8,$tmp1));
374 &add($B,&DWP(12,$tmp1));
375 &add($C,&DWP(16,$tmp1));

377 &mov(&DWP(0,$tmp1),$E); # update SHA_CTX
378 &add($D,64); # advance input pointer
379 &mov(&DWP(4,$tmp1),$T);
380 &cmp($D,&wparam(2)); # have we reached the end yet?
381 &mov(&DWP(8,$tmp1),$A);
382 &mov($E,$C); # C is last "E" which needs to be "pre-loaded"
383 &mov(&DWP(12,$tmp1),$B);
384 &mov($T,$D); # input pointer
385 &mov(&DWP(16,$tmp1),$C);
386 &jb(&label("loop"));

388 &stack_pop(16+3);
389 &function_end("sha1_block_data_order");

391 if ($xmm) {

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 7

392 ##
393 # The SSSE3 implementation.
394 #
395 # %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
396 # 32 elements of the message schedule or Xupdate outputs. First 4
397 # quadruples are simply byte-swapped input, next 4 are calculated
398 # according to method originally suggested by Dean Gaudet (modulo
399 # being implemented in SSSE3). Once 8 quadruples or 32 elements are
400 # collected, it switches to routine proposed by Max Locktyukhin.
401 #
402 # Calculations inevitably require temporary reqisters, and there are
403 # no %xmm registers left to spare. For this reason part of the ring
404 # buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
405 # buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
406 # X[-5], and X[4] - X[-4]...
407 #
408 # Another notable optimization is aggressive stack frame compression
409 # aiming to minimize amount of 9-byte instructions...
410 #
411 # Yet another notable optimization is "jumping" $B variable. It means
412 # that there is no register permanently allocated for $B value. This
413 # allowed to eliminate one instruction from body_20_39...
414 #
415 my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
416 my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
417 my @V=($A,$B,$C,$D,$E);
418 my $j=0; # hash round
419 my @T=($T,$tmp1);
420 my $inp;

422 my $_rol=sub { &rol(@_) };
423 my $_ror=sub { &ror(@_) };

425 &function_begin("_sha1_block_data_order_ssse3");
426 &call (&label("pic_point")); # make it PIC!
427 &set_label("pic_point");
428 &blindpop($tmp1);
429 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
430 &set_label("ssse3_shortcut");

432 &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19
433 &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39
434 &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59
435 &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79
436 &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask

438 &mov ($E,&wparam(0)); # load argument block
439 &mov ($inp=@T[1],&wparam(1));
440 &mov ($D,&wparam(2));
441 &mov (@T[0],"esp");

443 # stack frame layout
444 #
445 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
446 # X[4]+K X[5]+K X[6]+K X[7]+K
447 # X[8]+K X[9]+K X[10]+K X[11]+K
448 # X[12]+K X[13]+K X[14]+K X[15]+K
449 #
450 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
451 # X[4] X[5] X[6] X[7]
452 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
453 #
454 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
455 # K_40_59 K_40_59 K_40_59 K_40_59
456 # K_60_79 K_60_79 K_60_79 K_60_79
457 # K_00_19 K_00_19 K_00_19 K_00_19

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 8

458 # pbswap mask
459 #
460 # +192 ctx # argument block
461 # +196 inp
462 # +200 end
463 # +204 esp
464 &sub ("esp",208);
465 &and ("esp",-64);

467 &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants
468 &movdqa (&QWP(112+16,"esp"),@X[5]);
469 &movdqa (&QWP(112+32,"esp"),@X[6]);
470 &shl ($D,6); # len*64
471 &movdqa (&QWP(112+48,"esp"),@X[3]);
472 &add ($D,$inp); # end of input
473 &movdqa (&QWP(112+64,"esp"),@X[2]);
474 &add ($inp,64);
475 &mov (&DWP(192+0,"esp"),$E); # save argument block
476 &mov (&DWP(192+4,"esp"),$inp);
477 &mov (&DWP(192+8,"esp"),$D);
478 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp

480 &mov ($A,&DWP(0,$E)); # load context
481 &mov ($B,&DWP(4,$E));
482 &mov ($C,&DWP(8,$E));
483 &mov ($D,&DWP(12,$E));
484 &mov ($E,&DWP(16,$E));
485 &mov (@T[0],$B); # magic seed

487 &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
488 &movdqu (@X[-3&7],&QWP(-48,$inp));
489 &movdqu (@X[-2&7],&QWP(-32,$inp));
490 &movdqu (@X[-1&7],&QWP(-16,$inp));
491 &pshufb (@X[-4&7],@X[2]); # byte swap
492 &pshufb (@X[-3&7],@X[2]);
493 &pshufb (@X[-2&7],@X[2]);
494 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
495 &pshufb (@X[-1&7],@X[2]);
496 &paddd (@X[-4&7],@X[3]); # add K_00_19
497 &paddd (@X[-3&7],@X[3]);
498 &paddd (@X[-2&7],@X[3]);
499 &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU
500 &psubd (@X[-4&7],@X[3]); # restore X[]
501 &movdqa (&QWP(0+16,"esp"),@X[-3&7]);
502 &psubd (@X[-3&7],@X[3]);
503 &movdqa (&QWP(0+32,"esp"),@X[-2&7]);
504 &psubd (@X[-2&7],@X[3]);
505 &movdqa (@X[0],@X[-3&7]);
506 &jmp (&label("loop"));

508 ##
509 # SSE instruction sequence is first broken to groups of indepentent
510 # instructions, independent in respect to their inputs and shifter
511 # (not all architectures have more than one). Then IALU instructions
512 # are "knitted in" between the SSE groups. Distance is maintained for
513 # SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
514 # [which allegedly also implements SSSE3]...
515 #
516 # Temporary registers usage. X[2] is volatile at the entry and at the
517 # end is restored from backtrace ring buffer. X[3] is expected to
518 # contain current K_XX_XX constant and is used to caclulate X[-1]+K
519 # from previous round, it becomes volatile the moment the value is
520 # saved to stack for transfer to IALU. X[4] becomes volatile whenever
521 # X[-4] is accumulated and offloaded to backtrace ring buffer, at the
522 # end it is loaded with next K_XX_XX [which becomes X[3] in next
523 # round]...

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 9

524 #
525 sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4
526 { use integer;
527 my $body = shift;
528 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
529 my ($a,$b,$c,$d,$e);

531 eval(shift(@insns));
532 eval(shift(@insns));
533 &palignr(@X[0],@X[-4&7],8); # compose "X[-14]" in "X[0]"
534 &movdqa (@X[2],@X[-1&7]);
535 eval(shift(@insns));
536 eval(shift(@insns));

538 &paddd (@X[3],@X[-1&7]);
539 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to b
540 eval(shift(@insns));
541 eval(shift(@insns));
542 &psrldq (@X[2],4); # "X[-3]", 3 dwords
543 eval(shift(@insns));
544 eval(shift(@insns));
545 &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
546 eval(shift(@insns));
547 eval(shift(@insns));

549 &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
550 eval(shift(@insns));
551 eval(shift(@insns));
552 eval(shift(@insns));
553 eval(shift(@insns));

555 &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
556 eval(shift(@insns));
557 eval(shift(@insns));
558 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to
559 eval(shift(@insns));
560 eval(shift(@insns));

562 &movdqa (@X[4],@X[0]);
563 &movdqa (@X[2],@X[0]);
564 eval(shift(@insns));
565 eval(shift(@insns));
566 eval(shift(@insns));
567 eval(shift(@insns));

569 &pslldq (@X[4],12); # "X[0]"<<96, extract one dword
570 &paddd (@X[0],@X[0]);
571 eval(shift(@insns));
572 eval(shift(@insns));
573 eval(shift(@insns));
574 eval(shift(@insns));

576 &psrld (@X[2],31);
577 eval(shift(@insns));
578 eval(shift(@insns));
579 &movdqa (@X[3],@X[4]);
580 eval(shift(@insns));
581 eval(shift(@insns));

583 &psrld (@X[4],30);
584 &por (@X[0],@X[2]); # "X[0]"<<<=1
585 eval(shift(@insns));
586 eval(shift(@insns));
587 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);
588 eval(shift(@insns));
589 eval(shift(@insns));

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 10

591 &pslld (@X[3],2);
592 &pxor (@X[0],@X[4]);
593 eval(shift(@insns));
594 eval(shift(@insns));
595 &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_X
596 eval(shift(@insns));
597 eval(shift(@insns));

599 &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2
600 &movdqa (@X[1],@X[-2&7]) if ($Xi<7);
601 eval(shift(@insns));
602 eval(shift(@insns));

604 foreach (@insns) { eval; } # remaining instructions [if any]

606 $Xi++; push(@X,shift(@X)); # "rotate" X[]
607 }

609 sub Xupdate_ssse3_32_79()
610 { use integer;
611 my $body = shift;
612 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
613 my ($a,$b,$c,$d,$e);

615 &movdqa (@X[2],@X[-1&7]) if ($Xi==8);
616 eval(shift(@insns)); # body_20_39
617 &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
618 &palignr(@X[2],@X[-2&7],8); # compose "X[-6]"
619 eval(shift(@insns));
620 eval(shift(@insns));
621 eval(shift(@insns)); # rol

623 &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
624 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X
625 eval(shift(@insns));
626 eval(shift(@insns));
627 if ($Xi%5) {
628 &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
629 } else { # ... or load next one
630 &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
631 }
632 &paddd (@X[3],@X[-1&7]);
633 eval(shift(@insns)); # ror
634 eval(shift(@insns));

636 &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]"
637 eval(shift(@insns)); # body_20_39
638 eval(shift(@insns));
639 eval(shift(@insns));
640 eval(shift(@insns)); # rol

642 &movdqa (@X[2],@X[0]);
643 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to
644 eval(shift(@insns));
645 eval(shift(@insns));
646 eval(shift(@insns)); # ror
647 eval(shift(@insns));

649 &pslld (@X[0],2);
650 eval(shift(@insns)); # body_20_39
651 eval(shift(@insns));
652 &psrld (@X[2],30);
653 eval(shift(@insns));
654 eval(shift(@insns)); # rol
655 eval(shift(@insns));

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 11

656 eval(shift(@insns));
657 eval(shift(@insns)); # ror
658 eval(shift(@insns));

660 &por (@X[0],@X[2]); # "X[0]"<<<=2
661 eval(shift(@insns)); # body_20_39
662 eval(shift(@insns));
663 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);
664 eval(shift(@insns));
665 eval(shift(@insns)); # rol
666 eval(shift(@insns));
667 eval(shift(@insns));
668 eval(shift(@insns)); # ror
669 &movdqa (@X[3],@X[0]) if ($Xi<19);
670 eval(shift(@insns));

672 foreach (@insns) { eval; } # remaining instructions

674 $Xi++; push(@X,shift(@X)); # "rotate" X[]
675 }

677 sub Xuplast_ssse3_80()
678 { use integer;
679 my $body = shift;
680 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
681 my ($a,$b,$c,$d,$e);

683 eval(shift(@insns));
684 &paddd (@X[3],@X[-1&7]);
685 eval(shift(@insns));
686 eval(shift(@insns));
687 eval(shift(@insns));
688 eval(shift(@insns));

690 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IAL

692 foreach (@insns) { eval; } # remaining instructions

694 &mov ($inp=@T[1],&DWP(192+4,"esp"));
695 &cmp ($inp,&DWP(192+8,"esp"));
696 &je (&label("done"));

698 &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19
699 &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask
700 &movdqu (@X[-4&7],&QWP(0,$inp)); # load input
701 &movdqu (@X[-3&7],&QWP(16,$inp));
702 &movdqu (@X[-2&7],&QWP(32,$inp));
703 &movdqu (@X[-1&7],&QWP(48,$inp));
704 &add ($inp,64);
705 &pshufb (@X[-4&7],@X[2]); # byte swap
706 &mov (&DWP(192+4,"esp"),$inp);
707 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot

709 $Xi=0;
710 }

712 sub Xloop_ssse3()
713 { use integer;
714 my $body = shift;
715 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
716 my ($a,$b,$c,$d,$e);

718 eval(shift(@insns));
719 eval(shift(@insns));
720 &pshufb (@X[($Xi-3)&7],@X[2]);
721 eval(shift(@insns));

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 12

722 eval(shift(@insns));
723 &paddd (@X[($Xi-4)&7],@X[3]);
724 eval(shift(@insns));
725 eval(shift(@insns));
726 eval(shift(@insns));
727 eval(shift(@insns));
728 &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU
729 eval(shift(@insns));
730 eval(shift(@insns));
731 &psubd (@X[($Xi-4)&7],@X[3]);

733 foreach (@insns) { eval; }
734 $Xi++;
735 }

737 sub Xtail_ssse3()
738 { use integer;
739 my $body = shift;
740 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
741 my ($a,$b,$c,$d,$e);

743 foreach (@insns) { eval; }
744 }

746 sub body_00_19 () {
747 (
748 ’($a,$b,$c,$d,$e)=@V;’.
749 ’&add ($e,&DWP(4*($j&15),"esp"));’, # X[]+K xfer
750 ’&xor ($c,$d);’,
751 ’&mov (@T[1],$a);’, # $b in next round
752 ’&$_rol ($a,5);’,
753 ’&and (@T[0],$c);’, # ($b&($c^$d))
754 ’&xor ($c,$d);’, # restore $c
755 ’&xor (@T[0],$d);’,
756 ’&add ($e,$a);’,
757 ’&$_ror ($b,$j?7:2);’, # $b>>>2
758 ’&add ($e,@T[0]);’ .’$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T))
759);
760 }

762 sub body_20_39 () {
763 (
764 ’($a,$b,$c,$d,$e)=@V;’.
765 ’&add ($e,&DWP(4*($j++&15),"esp"));’, # X[]+K xfer
766 ’&xor (@T[0],$d);’, # ($b^$d)
767 ’&mov (@T[1],$a);’, # $b in next round
768 ’&$_rol ($a,5);’,
769 ’&xor (@T[0],$c);’, # ($b^$d^$c)
770 ’&add ($e,$a);’,
771 ’&$_ror ($b,7);’, # $b>>>2
772 ’&add ($e,@T[0]);’ .’unshift(@V,pop(@V)); unshift(@T,pop(@T));’
773);
774 }

776 sub body_40_59 () {
777 (
778 ’($a,$b,$c,$d,$e)=@V;’.
779 ’&mov (@T[1],$c);’,
780 ’&xor ($c,$d);’,
781 ’&add ($e,&DWP(4*($j++&15),"esp"));’, # X[]+K xfer
782 ’&and (@T[1],$d);’,
783 ’&and (@T[0],$c);’, # ($b&($c^$d))
784 ’&$_ror ($b,7);’, # $b>>>2
785 ’&add ($e,@T[1]);’,
786 ’&mov (@T[1],$a);’, # $b in next round
787 ’&$_rol ($a,5);’,

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 13

788 ’&add ($e,@T[0]);’,
789 ’&xor ($c,$d);’, # restore $c
790 ’&add ($e,$a);’ .’unshift(@V,pop(@V)); unshift(@T,pop(@T));’
791);
792 }

794 &set_label("loop",16);
795 &Xupdate_ssse3_16_31(\&body_00_19);
796 &Xupdate_ssse3_16_31(\&body_00_19);
797 &Xupdate_ssse3_16_31(\&body_00_19);
798 &Xupdate_ssse3_16_31(\&body_00_19);
799 &Xupdate_ssse3_32_79(\&body_00_19);
800 &Xupdate_ssse3_32_79(\&body_20_39);
801 &Xupdate_ssse3_32_79(\&body_20_39);
802 &Xupdate_ssse3_32_79(\&body_20_39);
803 &Xupdate_ssse3_32_79(\&body_20_39);
804 &Xupdate_ssse3_32_79(\&body_20_39);
805 &Xupdate_ssse3_32_79(\&body_40_59);
806 &Xupdate_ssse3_32_79(\&body_40_59);
807 &Xupdate_ssse3_32_79(\&body_40_59);
808 &Xupdate_ssse3_32_79(\&body_40_59);
809 &Xupdate_ssse3_32_79(\&body_40_59);
810 &Xupdate_ssse3_32_79(\&body_20_39);
811 &Xuplast_ssse3_80(\&body_20_39); # can jump to "done"

813 $saved_j=$j; @saved_V=@V;

815 &Xloop_ssse3(\&body_20_39);
816 &Xloop_ssse3(\&body_20_39);
817 &Xloop_ssse3(\&body_20_39);

819 &mov (@T[1],&DWP(192,"esp")); # update context
820 &add ($A,&DWP(0,@T[1]));
821 &add (@T[0],&DWP(4,@T[1])); # $b
822 &add ($C,&DWP(8,@T[1]));
823 &mov (&DWP(0,@T[1]),$A);
824 &add ($D,&DWP(12,@T[1]));
825 &mov (&DWP(4,@T[1]),@T[0]);
826 &add ($E,&DWP(16,@T[1]));
827 &mov (&DWP(8,@T[1]),$C);
828 &mov ($B,@T[0]);
829 &mov (&DWP(12,@T[1]),$D);
830 &mov (&DWP(16,@T[1]),$E);
831 &movdqa (@X[0],@X[-3&7]);

833 &jmp (&label("loop"));

835 &set_label("done",16); $j=$saved_j; @V=@saved_V;

837 &Xtail_ssse3(\&body_20_39);
838 &Xtail_ssse3(\&body_20_39);
839 &Xtail_ssse3(\&body_20_39);

841 &mov (@T[1],&DWP(192,"esp")); # update context
842 &add ($A,&DWP(0,@T[1]));
843 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
844 &add (@T[0],&DWP(4,@T[1])); # $b
845 &add ($C,&DWP(8,@T[1]));
846 &mov (&DWP(0,@T[1]),$A);
847 &add ($D,&DWP(12,@T[1]));
848 &mov (&DWP(4,@T[1]),@T[0]);
849 &add ($E,&DWP(16,@T[1]));
850 &mov (&DWP(8,@T[1]),$C);
851 &mov (&DWP(12,@T[1]),$D);
852 &mov (&DWP(16,@T[1]),$E);

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 14

854 &function_end("_sha1_block_data_order_ssse3");

856 if ($ymm) {
857 my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
858 my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
859 my @V=($A,$B,$C,$D,$E);
860 my $j=0; # hash round
861 my @T=($T,$tmp1);
862 my $inp;

864 my $_rol=sub { &shld(@_[0],@_) };
865 my $_ror=sub { &shrd(@_[0],@_) };

867 &function_begin("_sha1_block_data_order_avx");
868 &call (&label("pic_point")); # make it PIC!
869 &set_label("pic_point");
870 &blindpop($tmp1);
871 &lea ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
872 &set_label("avx_shortcut");
873 &vzeroall();

875 &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19
876 &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39
877 &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59
878 &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79
879 &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask

881 &mov ($E,&wparam(0)); # load argument block
882 &mov ($inp=@T[1],&wparam(1));
883 &mov ($D,&wparam(2));
884 &mov (@T[0],"esp");

886 # stack frame layout
887 #
888 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
889 # X[4]+K X[5]+K X[6]+K X[7]+K
890 # X[8]+K X[9]+K X[10]+K X[11]+K
891 # X[12]+K X[13]+K X[14]+K X[15]+K
892 #
893 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
894 # X[4] X[5] X[6] X[7]
895 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
896 #
897 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
898 # K_40_59 K_40_59 K_40_59 K_40_59
899 # K_60_79 K_60_79 K_60_79 K_60_79
900 # K_00_19 K_00_19 K_00_19 K_00_19
901 # pbswap mask
902 #
903 # +192 ctx # argument block
904 # +196 inp
905 # +200 end
906 # +204 esp
907 &sub ("esp",208);
908 &and ("esp",-64);

910 &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants
911 &vmovdqa(&QWP(112+16,"esp"),@X[5]);
912 &vmovdqa(&QWP(112+32,"esp"),@X[6]);
913 &shl ($D,6); # len*64
914 &vmovdqa(&QWP(112+48,"esp"),@X[3]);
915 &add ($D,$inp); # end of input
916 &vmovdqa(&QWP(112+64,"esp"),@X[2]);
917 &add ($inp,64);
918 &mov (&DWP(192+0,"esp"),$E); # save argument block
919 &mov (&DWP(192+4,"esp"),$inp);

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 15

920 &mov (&DWP(192+8,"esp"),$D);
921 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp

923 &mov ($A,&DWP(0,$E)); # load context
924 &mov ($B,&DWP(4,$E));
925 &mov ($C,&DWP(8,$E));
926 &mov ($D,&DWP(12,$E));
927 &mov ($E,&DWP(16,$E));
928 &mov (@T[0],$B); # magic seed

930 &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
931 &vmovdqu(@X[-3&7],&QWP(-48,$inp));
932 &vmovdqu(@X[-2&7],&QWP(-32,$inp));
933 &vmovdqu(@X[-1&7],&QWP(-16,$inp));
934 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
935 &vpshufb(@X[-3&7],@X[-3&7],@X[2]);
936 &vpshufb(@X[-2&7],@X[-2&7],@X[2]);
937 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
938 &vpshufb(@X[-1&7],@X[-1&7],@X[2]);
939 &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19
940 &vpaddd (@X[1],@X[-3&7],@X[3]);
941 &vpaddd (@X[2],@X[-2&7],@X[3]);
942 &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU
943 &vmovdqa(&QWP(0+16,"esp"),@X[1]);
944 &vmovdqa(&QWP(0+32,"esp"),@X[2]);
945 &jmp (&label("loop"));

947 sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4
948 { use integer;
949 my $body = shift;
950 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
951 my ($a,$b,$c,$d,$e);

953 eval(shift(@insns));
954 eval(shift(@insns));
955 &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
956 eval(shift(@insns));
957 eval(shift(@insns));

959 &vpaddd (@X[3],@X[3],@X[-1&7]);
960 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to b
961 eval(shift(@insns));
962 eval(shift(@insns));
963 &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords
964 eval(shift(@insns));
965 eval(shift(@insns));
966 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
967 eval(shift(@insns));
968 eval(shift(@insns));

970 &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
971 eval(shift(@insns));
972 eval(shift(@insns));
973 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to
974 eval(shift(@insns));
975 eval(shift(@insns));

977 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
978 eval(shift(@insns));
979 eval(shift(@insns));
980 eval(shift(@insns));
981 eval(shift(@insns));

983 &vpsrld (@X[2],@X[0],31);
984 eval(shift(@insns));
985 eval(shift(@insns));

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 16

986 eval(shift(@insns));
987 eval(shift(@insns));

989 &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword
990 &vpaddd (@X[0],@X[0],@X[0]);
991 eval(shift(@insns));
992 eval(shift(@insns));
993 eval(shift(@insns));
994 eval(shift(@insns));

996 &vpsrld (@X[3],@X[4],30);
997 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1
998 eval(shift(@insns));
999 eval(shift(@insns));

1000 eval(shift(@insns));
1001 eval(shift(@insns));

1003 &vpslld (@X[4],@X[4],2);
1004 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);
1005 eval(shift(@insns));
1006 eval(shift(@insns));
1007 &vpxor (@X[0],@X[0],@X[3]);
1008 eval(shift(@insns));
1009 eval(shift(@insns));
1010 eval(shift(@insns));
1011 eval(shift(@insns));

1013 &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2
1014 eval(shift(@insns));
1015 eval(shift(@insns));
1016 &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_X
1017 eval(shift(@insns));
1018 eval(shift(@insns));

1020 foreach (@insns) { eval; } # remaining instructions [if any]

1022 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1023 }

1025 sub Xupdate_avx_32_79()
1026 { use integer;
1027 my $body = shift;
1028 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
1029 my ($a,$b,$c,$d,$e);

1031 &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
1032 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
1033 eval(shift(@insns)); # body_20_39
1034 eval(shift(@insns));
1035 eval(shift(@insns));
1036 eval(shift(@insns)); # rol

1038 &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
1039 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X
1040 eval(shift(@insns));
1041 eval(shift(@insns));
1042 if ($Xi%5) {
1043 &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
1044 } else { # ... or load next one
1045 &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1046 }
1047 &vpaddd (@X[3],@X[3],@X[-1&7]);
1048 eval(shift(@insns)); # ror
1049 eval(shift(@insns));

1051 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]"

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 17

1052 eval(shift(@insns)); # body_20_39
1053 eval(shift(@insns));
1054 eval(shift(@insns));
1055 eval(shift(@insns)); # rol

1057 &vpsrld (@X[2],@X[0],30);
1058 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to
1059 eval(shift(@insns));
1060 eval(shift(@insns));
1061 eval(shift(@insns)); # ror
1062 eval(shift(@insns));

1064 &vpslld (@X[0],@X[0],2);
1065 eval(shift(@insns)); # body_20_39
1066 eval(shift(@insns));
1067 eval(shift(@insns));
1068 eval(shift(@insns)); # rol
1069 eval(shift(@insns));
1070 eval(shift(@insns));
1071 eval(shift(@insns)); # ror
1072 eval(shift(@insns));

1074 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2
1075 eval(shift(@insns)); # body_20_39
1076 eval(shift(@insns));
1077 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);
1078 eval(shift(@insns));
1079 eval(shift(@insns)); # rol
1080 eval(shift(@insns));
1081 eval(shift(@insns));
1082 eval(shift(@insns)); # ror
1083 eval(shift(@insns));

1085 foreach (@insns) { eval; } # remaining instructions

1087 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1088 }

1090 sub Xuplast_avx_80()
1091 { use integer;
1092 my $body = shift;
1093 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1094 my ($a,$b,$c,$d,$e);

1096 eval(shift(@insns));
1097 &vpaddd (@X[3],@X[3],@X[-1&7]);
1098 eval(shift(@insns));
1099 eval(shift(@insns));
1100 eval(shift(@insns));
1101 eval(shift(@insns));

1103 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IAL

1105 foreach (@insns) { eval; } # remaining instructions

1107 &mov ($inp=@T[1],&DWP(192+4,"esp"));
1108 &cmp ($inp,&DWP(192+8,"esp"));
1109 &je (&label("done"));

1111 &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19
1112 &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask
1113 &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input
1114 &vmovdqu(@X[-3&7],&QWP(16,$inp));
1115 &vmovdqu(@X[-2&7],&QWP(32,$inp));
1116 &vmovdqu(@X[-1&7],&QWP(48,$inp));
1117 &add ($inp,64);

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 18

1118 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
1119 &mov (&DWP(192+4,"esp"),$inp);
1120 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot

1122 $Xi=0;
1123 }

1125 sub Xloop_avx()
1126 { use integer;
1127 my $body = shift;
1128 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1129 my ($a,$b,$c,$d,$e);

1131 eval(shift(@insns));
1132 eval(shift(@insns));
1133 &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1134 eval(shift(@insns));
1135 eval(shift(@insns));
1136 &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1137 eval(shift(@insns));
1138 eval(shift(@insns));
1139 eval(shift(@insns));
1140 eval(shift(@insns));
1141 &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to
1142 eval(shift(@insns));
1143 eval(shift(@insns));

1145 foreach (@insns) { eval; }
1146 $Xi++;
1147 }

1149 sub Xtail_avx()
1150 { use integer;
1151 my $body = shift;
1152 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1153 my ($a,$b,$c,$d,$e);

1155 foreach (@insns) { eval; }
1156 }

1158 &set_label("loop",16);
1159 &Xupdate_avx_16_31(\&body_00_19);
1160 &Xupdate_avx_16_31(\&body_00_19);
1161 &Xupdate_avx_16_31(\&body_00_19);
1162 &Xupdate_avx_16_31(\&body_00_19);
1163 &Xupdate_avx_32_79(\&body_00_19);
1164 &Xupdate_avx_32_79(\&body_20_39);
1165 &Xupdate_avx_32_79(\&body_20_39);
1166 &Xupdate_avx_32_79(\&body_20_39);
1167 &Xupdate_avx_32_79(\&body_20_39);
1168 &Xupdate_avx_32_79(\&body_20_39);
1169 &Xupdate_avx_32_79(\&body_40_59);
1170 &Xupdate_avx_32_79(\&body_40_59);
1171 &Xupdate_avx_32_79(\&body_40_59);
1172 &Xupdate_avx_32_79(\&body_40_59);
1173 &Xupdate_avx_32_79(\&body_40_59);
1174 &Xupdate_avx_32_79(\&body_20_39);
1175 &Xuplast_avx_80(\&body_20_39); # can jump to "done"

1177 $saved_j=$j; @saved_V=@V;

1179 &Xloop_avx(\&body_20_39);
1180 &Xloop_avx(\&body_20_39);
1181 &Xloop_avx(\&body_20_39);

1183 &mov (@T[1],&DWP(192,"esp")); # update context

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-586.pl 19

1184 &add ($A,&DWP(0,@T[1]));
1185 &add (@T[0],&DWP(4,@T[1])); # $b
1186 &add ($C,&DWP(8,@T[1]));
1187 &mov (&DWP(0,@T[1]),$A);
1188 &add ($D,&DWP(12,@T[1]));
1189 &mov (&DWP(4,@T[1]),@T[0]);
1190 &add ($E,&DWP(16,@T[1]));
1191 &mov (&DWP(8,@T[1]),$C);
1192 &mov ($B,@T[0]);
1193 &mov (&DWP(12,@T[1]),$D);
1194 &mov (&DWP(16,@T[1]),$E);

1196 &jmp (&label("loop"));

1198 &set_label("done",16); $j=$saved_j; @V=@saved_V;

1200 &Xtail_avx(\&body_20_39);
1201 &Xtail_avx(\&body_20_39);
1202 &Xtail_avx(\&body_20_39);

1204 &vzeroall();

1206 &mov (@T[1],&DWP(192,"esp")); # update context
1207 &add ($A,&DWP(0,@T[1]));
1208 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
1209 &add (@T[0],&DWP(4,@T[1])); # $b
1210 &add ($C,&DWP(8,@T[1]));
1211 &mov (&DWP(0,@T[1]),$A);
1212 &add ($D,&DWP(12,@T[1]));
1213 &mov (&DWP(4,@T[1]),@T[0]);
1214 &add ($E,&DWP(16,@T[1]));
1215 &mov (&DWP(8,@T[1]),$C);
1216 &mov (&DWP(12,@T[1]),$D);
1217 &mov (&DWP(16,@T[1]),$E);
1218 &function_end("_sha1_block_data_order_avx");
1219 }
1220 &set_label("K_XX_XX",64);
1221 &data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19
1222 &data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39
1223 &data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59
1224 &data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79
1225 &data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask
1226 }
1227 &asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");

1229 &asm_finish();

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 1

**
 30275 Fri May 30 18:32:05 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl
2 #
3 # ==
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==
9 #
10 # sha1_block procedure for x86_64.
11 #
12 # It was brought to my attention that on EM64T compiler-generated code
13 # was far behind 32-bit assembler implementation. This is unlike on
14 # Opteron where compiler-generated code was only 15% behind 32-bit
15 # assembler, which originally made it hard to motivate the effort.
16 # There was suggestion to mechanically translate 32-bit code, but I
17 # dismissed it, reasoning that x86_64 offers enough register bank
18 # capacity to fully utilize SHA-1 parallelism. Therefore this fresh
19 # implementation:-) However! While 64-bit code does perform better
20 # on Opteron, I failed to beat 32-bit assembler on EM64T core. Well,
21 # x86_64 does offer larger *addressable* bank, but out-of-order core
22 # reaches for even more registers through dynamic aliasing, and EM64T
23 # core must have managed to run-time optimize even 32-bit code just as
24 # good as 64-bit one. Performance improvement is summarized in the
25 # following table:
26 #
27 # gcc 3.4 32-bit asm cycles/byte
28 # Opteron +45% +20% 6.8
29 # Xeon P4 +65% +0% 9.9
30 # Core2 +60% +10% 7.0

32 # August 2009.
33 #
34 # The code was revised to minimize code size and to maximize
35 # "distance" between instructions producing input to ’lea’
36 # instruction and the ’lea’ instruction itself, which is essential
37 # for Intel Atom core.

39 # October 2010.
40 #
41 # Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
42 # is to offload message schedule denoted by Wt in NIST specification,
43 # or Xupdate in OpenSSL source, to SIMD unit. See sha1-586.pl module
44 # for background and implementation details. The only difference from
45 # 32-bit code is that 64-bit code doesn’t have to spill @X[] elements
46 # to free temporary registers.

48 # April 2011.
49 #
50 # Add AVX code path. See sha1-586.pl for further information.

52 ##
53 # Current performance is summarized in following table. Numbers are
54 # CPU clock cycles spent to process single byte (less is better).
55 #
56 # x86_64 SSSE3 AVX
57 # P4 9.8 -
58 # Opteron 6.6 -
59 # Core2 6.7 6.1/+10% -
60 # Atom 11.0 9.7/+13% -
61 # Westmere 7.1 5.6/+27% -

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 2

62 # Sandy Bridge 7.9 6.3/+25% 5.2/+51%

64 $flavour = shift;
65 $output = shift;
66 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

68 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

70 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
71 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
72 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
73 die "can’t locate x86_64-xlate.pl";

75 $avx=1 if (‘$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1‘
76 =~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
77 $1>=2.19);
78 $avx=1 if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
79 ‘nasm -v 2>&1‘ =~ /NASM version ([2-9]\.[0-9]+)/ &&
80 $1>=2.09);
81 $avx=1 if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
82 ‘ml64 2>&1‘ =~ /Version ([0-9]+)\./ &&
83 $1>=10);

85 open OUT,"| \"$^X\" $xlate $flavour $output";
86 *STDOUT=*OUT;

88 $ctx="%rdi"; # 1st arg
89 $inp="%rsi"; # 2nd arg
90 $num="%rdx"; # 3rd arg

92 # reassign arguments in order to produce more compact code
93 $ctx="%r8";
94 $inp="%r9";
95 $num="%r10";

97 $t0="%eax";
98 $t1="%ebx";
99 $t2="%ecx";
100 @xi=("%edx","%ebp");
101 $A="%esi";
102 $B="%edi";
103 $C="%r11d";
104 $D="%r12d";
105 $E="%r13d";

107 @V=($A,$B,$C,$D,$E);

109 sub BODY_00_19 {
110 my ($i,$a,$b,$c,$d,$e)=@_;
111 my $j=$i+1;
112 $code.=<<___ if ($i==0);
113 mov ‘4*$i‘($inp),$xi[0]
114 bswap $xi[0]
115 mov $xi[0],‘4*$i‘(%rsp)
116 ___
117 $code.=<<___ if ($i<15);
118 mov $c,$t0
119 mov ‘4*$j‘($inp),$xi[1]
120 mov $a,$t2
121 xor $d,$t0
122 bswap $xi[1]
123 rol \$5,$t2
124 lea 0x5a827999($xi[0],$e),$e
125 and $b,$t0
126 mov $xi[1],‘4*$j‘(%rsp)
127 add $t2,$e

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 3

128 xor $d,$t0
129 rol \$30,$b
130 add $t0,$e
131 ___
132 $code.=<<___ if ($i>=15);
133 mov ‘4*($j%16)‘(%rsp),$xi[1]
134 mov $c,$t0
135 mov $a,$t2
136 xor ‘4*(($j+2)%16)‘(%rsp),$xi[1]
137 xor $d,$t0
138 rol \$5,$t2
139 xor ‘4*(($j+8)%16)‘(%rsp),$xi[1]
140 and $b,$t0
141 lea 0x5a827999($xi[0],$e),$e
142 xor ‘4*(($j+13)%16)‘(%rsp),$xi[1]
143 xor $d,$t0
144 rol \$1,$xi[1]
145 add $t2,$e
146 rol \$30,$b
147 mov $xi[1],‘4*($j%16)‘(%rsp)
148 add $t0,$e
149 ___
150 unshift(@xi,pop(@xi));
151 }

153 sub BODY_20_39 {
154 my ($i,$a,$b,$c,$d,$e)=@_;
155 my $j=$i+1;
156 my $K=($i<40)?0x6ed9eba1:0xca62c1d6;
157 $code.=<<___ if ($i<79);
158 mov ‘4*($j%16)‘(%rsp),$xi[1]
159 mov $c,$t0
160 mov $a,$t2
161 xor ‘4*(($j+2)%16)‘(%rsp),$xi[1]
162 xor $b,$t0
163 rol \$5,$t2
164 lea $K($xi[0],$e),$e
165 xor ‘4*(($j+8)%16)‘(%rsp),$xi[1]
166 xor $d,$t0
167 add $t2,$e
168 xor ‘4*(($j+13)%16)‘(%rsp),$xi[1]
169 rol \$30,$b
170 add $t0,$e
171 rol \$1,$xi[1]
172 ___
173 $code.=<<___ if ($i<76);
174 mov $xi[1],‘4*($j%16)‘(%rsp)
175 ___
176 $code.=<<___ if ($i==79);
177 mov $c,$t0
178 mov $a,$t2
179 xor $b,$t0
180 lea $K($xi[0],$e),$e
181 rol \$5,$t2
182 xor $d,$t0
183 add $t2,$e
184 rol \$30,$b
185 add $t0,$e
186 ___
187 unshift(@xi,pop(@xi));
188 }

190 sub BODY_40_59 {
191 my ($i,$a,$b,$c,$d,$e)=@_;
192 my $j=$i+1;
193 $code.=<<___;

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 4

194 mov ‘4*($j%16)‘(%rsp),$xi[1]
195 mov $c,$t0
196 mov $c,$t1
197 xor ‘4*(($j+2)%16)‘(%rsp),$xi[1]
198 and $d,$t0
199 mov $a,$t2
200 xor ‘4*(($j+8)%16)‘(%rsp),$xi[1]
201 xor $d,$t1
202 lea 0x8f1bbcdc($xi[0],$e),$e
203 rol \$5,$t2
204 xor ‘4*(($j+13)%16)‘(%rsp),$xi[1]
205 add $t0,$e
206 and $b,$t1
207 rol \$1,$xi[1]
208 add $t1,$e
209 rol \$30,$b
210 mov $xi[1],‘4*($j%16)‘(%rsp)
211 add $t2,$e
212 ___
213 unshift(@xi,pop(@xi));
214 }

216 $code.=<<___;
217 .text
218 .extern OPENSSL_ia32cap_P

220 .globl sha1_block_data_order
221 .type sha1_block_data_order,\@function,3
222 .align 16
223 sha1_block_data_order:
224 mov OPENSSL_ia32cap_P+0(%rip),%r9d
225 mov OPENSSL_ia32cap_P+4(%rip),%r8d
226 test \$‘1<<9‘,%r8d # check SSSE3 bit
227 jz .Lialu
228 ___
229 $code.=<<___ if ($avx);
230 and \$‘1<<28‘,%r8d # mask AVX bit
231 and \$‘1<<30‘,%r9d # mask "Intel CPU" bit
232 or %r9d,%r8d
233 cmp \$‘1<<28|1<<30‘,%r8d
234 je _avx_shortcut
235 ___
236 $code.=<<___;
237 jmp _ssse3_shortcut

239 .align 16
240 .Lialu:
241 push %rbx
242 push %rbp
243 push %r12
244 push %r13
245 mov %rsp,%r11
246 mov %rdi,$ctx # reassigned argument
247 sub \$‘8+16*4‘,%rsp
248 mov %rsi,$inp # reassigned argument
249 and \$-64,%rsp
250 mov %rdx,$num # reassigned argument
251 mov %r11,‘16*4‘(%rsp)
252 .Lprologue:

254 mov 0($ctx),$A
255 mov 4($ctx),$B
256 mov 8($ctx),$C
257 mov 12($ctx),$D
258 mov 16($ctx),$E
259 jmp .Lloop

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 5

261 .align 16
262 .Lloop:
263 ___
264 for($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); }
265 for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
266 for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
267 for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
268 $code.=<<___;
269 add 0($ctx),$A
270 add 4($ctx),$B
271 add 8($ctx),$C
272 add 12($ctx),$D
273 add 16($ctx),$E
274 mov $A,0($ctx)
275 mov $B,4($ctx)
276 mov $C,8($ctx)
277 mov $D,12($ctx)
278 mov $E,16($ctx)

280 sub \$1,$num
281 lea ‘16*4‘($inp),$inp
282 jnz .Lloop

284 mov ‘16*4‘(%rsp),%rsi
285 mov (%rsi),%r13
286 mov 8(%rsi),%r12
287 mov 16(%rsi),%rbp
288 mov 24(%rsi),%rbx
289 lea 32(%rsi),%rsp
290 .Lepilogue:
291 ret
292 .size sha1_block_data_order,.-sha1_block_data_order
293 ___
294 {{{
295 my $Xi=4;
296 my @X=map("%xmm$_",(4..7,0..3));
297 my @Tx=map("%xmm$_",(8..10));
298 my @V=($A,$B,$C,$D,$E)=("%eax","%ebx","%ecx","%edx","%ebp"); # size optimizat
299 my @T=("%esi","%edi");
300 my $j=0;
301 my $K_XX_XX="%r11";

303 my $_rol=sub { &rol(@_) };
304 my $_ror=sub { &ror(@_) };

306 $code.=<<___;
307 .type sha1_block_data_order_ssse3,\@function,3
308 .align 16
309 sha1_block_data_order_ssse3:
310 _ssse3_shortcut:
311 push %rbx
312 push %rbp
313 push %r12
314 lea ‘-64-($win64?5*16:0)‘(%rsp),%rsp
315 ___
316 $code.=<<___ if ($win64);
317 movaps %xmm6,64+0(%rsp)
318 movaps %xmm7,64+16(%rsp)
319 movaps %xmm8,64+32(%rsp)
320 movaps %xmm9,64+48(%rsp)
321 movaps %xmm10,64+64(%rsp)
322 .Lprologue_ssse3:
323 ___
324 $code.=<<___;
325 mov %rdi,$ctx # reassigned argument

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 6

326 mov %rsi,$inp # reassigned argument
327 mov %rdx,$num # reassigned argument

329 shl \$6,$num
330 add $inp,$num
331 lea K_XX_XX(%rip),$K_XX_XX

333 mov 0($ctx),$A # load context
334 mov 4($ctx),$B
335 mov 8($ctx),$C
336 mov 12($ctx),$D
337 mov $B,@T[0] # magic seed
338 mov 16($ctx),$E

340 movdqa 64($K_XX_XX),@X[2] # pbswap mask
341 movdqa 0($K_XX_XX),@Tx[1] # K_00_19
342 movdqu 0($inp),@X[-4&7] # load input to %xmm[0-3]
343 movdqu 16($inp),@X[-3&7]
344 movdqu 32($inp),@X[-2&7]
345 movdqu 48($inp),@X[-1&7]
346 pshufb @X[2],@X[-4&7] # byte swap
347 add \$64,$inp
348 pshufb @X[2],@X[-3&7]
349 pshufb @X[2],@X[-2&7]
350 pshufb @X[2],@X[-1&7]
351 paddd @Tx[1],@X[-4&7] # add K_00_19
352 paddd @Tx[1],@X[-3&7]
353 paddd @Tx[1],@X[-2&7]
354 movdqa @X[-4&7],0(%rsp) # X[]+K xfer to IALU
355 psubd @Tx[1],@X[-4&7] # restore X[]
356 movdqa @X[-3&7],16(%rsp)
357 psubd @Tx[1],@X[-3&7]
358 movdqa @X[-2&7],32(%rsp)
359 psubd @Tx[1],@X[-2&7]
360 jmp .Loop_ssse3
361 ___

363 sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm
364 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
365 my $arg = pop;
366 $arg = "\$$arg" if ($arg*1 eq $arg);
367 $code .= "\t$opcode\t".join(’,’,$arg,reverse @_)."\n";
368 }

370 sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4
371 { use integer;
372 my $body = shift;
373 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
374 my ($a,$b,$c,$d,$e);

376 &movdqa (@X[0],@X[-3&7]);
377 eval(shift(@insns));
378 eval(shift(@insns));
379 &movdqa (@Tx[0],@X[-1&7]);
380 &palignr(@X[0],@X[-4&7],8); # compose "X[-14]" in "X[0]"
381 eval(shift(@insns));
382 eval(shift(@insns));

384 &paddd (@Tx[1],@X[-1&7]);
385 eval(shift(@insns));
386 eval(shift(@insns));
387 &psrldq (@Tx[0],4); # "X[-3]", 3 dwords
388 eval(shift(@insns));
389 eval(shift(@insns));
390 &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
391 eval(shift(@insns));

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 7

392 eval(shift(@insns));

394 &pxor (@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]"
395 eval(shift(@insns));
396 eval(shift(@insns));
397 eval(shift(@insns));
398 eval(shift(@insns));

400 &pxor (@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]"
401 eval(shift(@insns));
402 eval(shift(@insns));
403 &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to
404 eval(shift(@insns));
405 eval(shift(@insns));

407 &movdqa (@Tx[2],@X[0]);
408 &movdqa (@Tx[0],@X[0]);
409 eval(shift(@insns));
410 eval(shift(@insns));
411 eval(shift(@insns));
412 eval(shift(@insns));

414 &pslldq (@Tx[2],12); # "X[0]"<<96, extract one dword
415 &paddd (@X[0],@X[0]);
416 eval(shift(@insns));
417 eval(shift(@insns));
418 eval(shift(@insns));
419 eval(shift(@insns));

421 &psrld (@Tx[0],31);
422 eval(shift(@insns));
423 eval(shift(@insns));
424 &movdqa (@Tx[1],@Tx[2]);
425 eval(shift(@insns));
426 eval(shift(@insns));

428 &psrld (@Tx[2],30);
429 &por (@X[0],@Tx[0]); # "X[0]"<<<=1
430 eval(shift(@insns));
431 eval(shift(@insns));
432 eval(shift(@insns));
433 eval(shift(@insns));

435 &pslld (@Tx[1],2);
436 &pxor (@X[0],@Tx[2]);
437 eval(shift(@insns));
438 eval(shift(@insns));
439 &movdqa (@Tx[2],eval(16*(($Xi)/5))."($K_XX_XX)"); # K_XX_X
440 eval(shift(@insns));
441 eval(shift(@insns));

443 &pxor (@X[0],@Tx[1]); # "X[0]"^=("X[0]">>96)<<<2

445 foreach (@insns) { eval; } # remaining instructions [if any]

447 $Xi++; push(@X,shift(@X)); # "rotate" X[]
448 push(@Tx,shift(@Tx));
449 }

451 sub Xupdate_ssse3_32_79()
452 { use integer;
453 my $body = shift;
454 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
455 my ($a,$b,$c,$d,$e);

457 &movdqa (@Tx[0],@X[-1&7]) if ($Xi==8);

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 8

458 eval(shift(@insns)); # body_20_39
459 &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
460 &palignr(@Tx[0],@X[-2&7],8); # compose "X[-6]"
461 eval(shift(@insns));
462 eval(shift(@insns));
463 eval(shift(@insns)); # rol

465 &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
466 eval(shift(@insns));
467 eval(shift(@insns)) if (@insns[0] !~ /&ro[rl]/);
468 if ($Xi%5) {
469 &movdqa (@Tx[2],@Tx[1]);# "perpetuate" K_XX_XX...
470 } else { # ... or load next one
471 &movdqa (@Tx[2],eval(16*($Xi/5))."($K_XX_XX)");
472 }
473 &paddd (@Tx[1],@X[-1&7]);
474 eval(shift(@insns)); # ror
475 eval(shift(@insns));

477 &pxor (@X[0],@Tx[0]); # "X[0]"^="X[-6]"
478 eval(shift(@insns)); # body_20_39
479 eval(shift(@insns));
480 eval(shift(@insns));
481 eval(shift(@insns)); # rol

483 &movdqa (@Tx[0],@X[0]);
484 &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to
485 eval(shift(@insns));
486 eval(shift(@insns));
487 eval(shift(@insns)); # ror
488 eval(shift(@insns));

490 &pslld (@X[0],2);
491 eval(shift(@insns)); # body_20_39
492 eval(shift(@insns));
493 &psrld (@Tx[0],30);
494 eval(shift(@insns));
495 eval(shift(@insns)); # rol
496 eval(shift(@insns));
497 eval(shift(@insns));
498 eval(shift(@insns)); # ror
499 eval(shift(@insns));

501 &por (@X[0],@Tx[0]); # "X[0]"<<<=2
502 eval(shift(@insns)); # body_20_39
503 eval(shift(@insns));
504 &movdqa (@Tx[1],@X[0]) if ($Xi<19);
505 eval(shift(@insns));
506 eval(shift(@insns)); # rol
507 eval(shift(@insns));
508 eval(shift(@insns));
509 eval(shift(@insns)); # rol
510 eval(shift(@insns));

512 foreach (@insns) { eval; } # remaining instructions

514 $Xi++; push(@X,shift(@X)); # "rotate" X[]
515 push(@Tx,shift(@Tx));
516 }

518 sub Xuplast_ssse3_80()
519 { use integer;
520 my $body = shift;
521 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
522 my ($a,$b,$c,$d,$e);

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 9

524 eval(shift(@insns));
525 &paddd (@Tx[1],@X[-1&7]);
526 eval(shift(@insns));
527 eval(shift(@insns));
528 eval(shift(@insns));
529 eval(shift(@insns));

531 &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer IAL

533 foreach (@insns) { eval; } # remaining instructions

535 &cmp ($inp,$num);
536 &je (".Ldone_ssse3");

538 unshift(@Tx,pop(@Tx));

540 &movdqa (@X[2],"64($K_XX_XX)"); # pbswap mask
541 &movdqa (@Tx[1],"0($K_XX_XX)"); # K_00_19
542 &movdqu (@X[-4&7],"0($inp)"); # load input
543 &movdqu (@X[-3&7],"16($inp)");
544 &movdqu (@X[-2&7],"32($inp)");
545 &movdqu (@X[-1&7],"48($inp)");
546 &pshufb (@X[-4&7],@X[2]); # byte swap
547 &add ($inp,64);

549 $Xi=0;
550 }

552 sub Xloop_ssse3()
553 { use integer;
554 my $body = shift;
555 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
556 my ($a,$b,$c,$d,$e);

558 eval(shift(@insns));
559 eval(shift(@insns));
560 &pshufb (@X[($Xi-3)&7],@X[2]);
561 eval(shift(@insns));
562 eval(shift(@insns));
563 &paddd (@X[($Xi-4)&7],@Tx[1]);
564 eval(shift(@insns));
565 eval(shift(@insns));
566 eval(shift(@insns));
567 eval(shift(@insns));
568 &movdqa (eval(16*$Xi)."(%rsp)",@X[($Xi-4)&7]); # X[]+K xfer to IALU
569 eval(shift(@insns));
570 eval(shift(@insns));
571 &psubd (@X[($Xi-4)&7],@Tx[1]);

573 foreach (@insns) { eval; }
574 $Xi++;
575 }

577 sub Xtail_ssse3()
578 { use integer;
579 my $body = shift;
580 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
581 my ($a,$b,$c,$d,$e);

583 foreach (@insns) { eval; }
584 }

586 sub body_00_19 () {
587 (
588 ’($a,$b,$c,$d,$e)=@V;’.
589 ’&add ($e,eval(4*($j&15))."(%rsp)");’, # X[]+K xfer

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 10

590 ’&xor ($c,$d);’,
591 ’&mov (@T[1],$a);’, # $b in next round
592 ’&$_rol ($a,5);’,
593 ’&and (@T[0],$c);’, # ($b&($c^$d))
594 ’&xor ($c,$d);’, # restore $c
595 ’&xor (@T[0],$d);’,
596 ’&add ($e,$a);’,
597 ’&$_ror ($b,$j?7:2);’, # $b>>>2
598 ’&add ($e,@T[0]);’ .’$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T))
599);
600 }

602 sub body_20_39 () {
603 (
604 ’($a,$b,$c,$d,$e)=@V;’.
605 ’&add ($e,eval(4*($j++&15))."(%rsp)");’, # X[]+K xfer
606 ’&xor (@T[0],$d);’, # ($b^$d)
607 ’&mov (@T[1],$a);’, # $b in next round
608 ’&$_rol ($a,5);’,
609 ’&xor (@T[0],$c);’, # ($b^$d^$c)
610 ’&add ($e,$a);’,
611 ’&$_ror ($b,7);’, # $b>>>2
612 ’&add ($e,@T[0]);’ .’unshift(@V,pop(@V)); unshift(@T,pop(@T));’
613);
614 }

616 sub body_40_59 () {
617 (
618 ’($a,$b,$c,$d,$e)=@V;’.
619 ’&mov (@T[1],$c);’,
620 ’&xor ($c,$d);’,
621 ’&add ($e,eval(4*($j++&15))."(%rsp)");’, # X[]+K xfer
622 ’&and (@T[1],$d);’,
623 ’&and (@T[0],$c);’, # ($b&($c^$d))
624 ’&$_ror ($b,7);’, # $b>>>2
625 ’&add ($e,@T[1]);’,
626 ’&mov (@T[1],$a);’, # $b in next round
627 ’&$_rol ($a,5);’,
628 ’&add ($e,@T[0]);’,
629 ’&xor ($c,$d);’, # restore $c
630 ’&add ($e,$a);’ .’unshift(@V,pop(@V)); unshift(@T,pop(@T));’
631);
632 }
633 $code.=<<___;
634 .align 16
635 .Loop_ssse3:
636 ___
637 &Xupdate_ssse3_16_31(\&body_00_19);
638 &Xupdate_ssse3_16_31(\&body_00_19);
639 &Xupdate_ssse3_16_31(\&body_00_19);
640 &Xupdate_ssse3_16_31(\&body_00_19);
641 &Xupdate_ssse3_32_79(\&body_00_19);
642 &Xupdate_ssse3_32_79(\&body_20_39);
643 &Xupdate_ssse3_32_79(\&body_20_39);
644 &Xupdate_ssse3_32_79(\&body_20_39);
645 &Xupdate_ssse3_32_79(\&body_20_39);
646 &Xupdate_ssse3_32_79(\&body_20_39);
647 &Xupdate_ssse3_32_79(\&body_40_59);
648 &Xupdate_ssse3_32_79(\&body_40_59);
649 &Xupdate_ssse3_32_79(\&body_40_59);
650 &Xupdate_ssse3_32_79(\&body_40_59);
651 &Xupdate_ssse3_32_79(\&body_40_59);
652 &Xupdate_ssse3_32_79(\&body_20_39);
653 &Xuplast_ssse3_80(\&body_20_39); # can jump to "done"

655 $saved_j=$j; @saved_V=@V;

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 11

657 &Xloop_ssse3(\&body_20_39);
658 &Xloop_ssse3(\&body_20_39);
659 &Xloop_ssse3(\&body_20_39);

661 $code.=<<___;
662 add 0($ctx),$A # update context
663 add 4($ctx),@T[0]
664 add 8($ctx),$C
665 add 12($ctx),$D
666 mov $A,0($ctx)
667 add 16($ctx),$E
668 mov @T[0],4($ctx)
669 mov @T[0],$B # magic seed
670 mov $C,8($ctx)
671 mov $D,12($ctx)
672 mov $E,16($ctx)
673 jmp .Loop_ssse3

675 .align 16
676 .Ldone_ssse3:
677 ___
678 $j=$saved_j; @V=@saved_V;

680 &Xtail_ssse3(\&body_20_39);
681 &Xtail_ssse3(\&body_20_39);
682 &Xtail_ssse3(\&body_20_39);

684 $code.=<<___;
685 add 0($ctx),$A # update context
686 add 4($ctx),@T[0]
687 add 8($ctx),$C
688 mov $A,0($ctx)
689 add 12($ctx),$D
690 mov @T[0],4($ctx)
691 add 16($ctx),$E
692 mov $C,8($ctx)
693 mov $D,12($ctx)
694 mov $E,16($ctx)
695 ___
696 $code.=<<___ if ($win64);
697 movaps 64+0(%rsp),%xmm6
698 movaps 64+16(%rsp),%xmm7
699 movaps 64+32(%rsp),%xmm8
700 movaps 64+48(%rsp),%xmm9
701 movaps 64+64(%rsp),%xmm10
702 ___
703 $code.=<<___;
704 lea ‘64+($win64?5*16:0)‘(%rsp),%rsi
705 mov 0(%rsi),%r12
706 mov 8(%rsi),%rbp
707 mov 16(%rsi),%rbx
708 lea 24(%rsi),%rsp
709 .Lepilogue_ssse3:
710 ret
711 .size sha1_block_data_order_ssse3,.-sha1_block_data_order_ssse3
712 ___

714 if ($avx) {
715 my $Xi=4;
716 my @X=map("%xmm$_",(4..7,0..3));
717 my @Tx=map("%xmm$_",(8..10));
718 my @V=($A,$B,$C,$D,$E)=("%eax","%ebx","%ecx","%edx","%ebp"); # size optimizat
719 my @T=("%esi","%edi");
720 my $j=0;
721 my $K_XX_XX="%r11";

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 12

723 my $_rol=sub { &shld(@_[0],@_) };
724 my $_ror=sub { &shrd(@_[0],@_) };

726 $code.=<<___;
727 .type sha1_block_data_order_avx,\@function,3
728 .align 16
729 sha1_block_data_order_avx:
730 _avx_shortcut:
731 push %rbx
732 push %rbp
733 push %r12
734 lea ‘-64-($win64?5*16:0)‘(%rsp),%rsp
735 ___
736 $code.=<<___ if ($win64);
737 movaps %xmm6,64+0(%rsp)
738 movaps %xmm7,64+16(%rsp)
739 movaps %xmm8,64+32(%rsp)
740 movaps %xmm9,64+48(%rsp)
741 movaps %xmm10,64+64(%rsp)
742 .Lprologue_avx:
743 ___
744 $code.=<<___;
745 mov %rdi,$ctx # reassigned argument
746 mov %rsi,$inp # reassigned argument
747 mov %rdx,$num # reassigned argument
748 vzeroupper

750 shl \$6,$num
751 add $inp,$num
752 lea K_XX_XX(%rip),$K_XX_XX

754 mov 0($ctx),$A # load context
755 mov 4($ctx),$B
756 mov 8($ctx),$C
757 mov 12($ctx),$D
758 mov $B,@T[0] # magic seed
759 mov 16($ctx),$E

761 vmovdqa 64($K_XX_XX),@X[2] # pbswap mask
762 vmovdqa 0($K_XX_XX),@Tx[1] # K_00_19
763 vmovdqu 0($inp),@X[-4&7] # load input to %xmm[0-3]
764 vmovdqu 16($inp),@X[-3&7]
765 vmovdqu 32($inp),@X[-2&7]
766 vmovdqu 48($inp),@X[-1&7]
767 vpshufb @X[2],@X[-4&7],@X[-4&7] # byte swap
768 add \$64,$inp
769 vpshufb @X[2],@X[-3&7],@X[-3&7]
770 vpshufb @X[2],@X[-2&7],@X[-2&7]
771 vpshufb @X[2],@X[-1&7],@X[-1&7]
772 vpaddd @Tx[1],@X[-4&7],@X[0] # add K_00_19
773 vpaddd @Tx[1],@X[-3&7],@X[1]
774 vpaddd @Tx[1],@X[-2&7],@X[2]
775 vmovdqa @X[0],0(%rsp) # X[]+K xfer to IALU
776 vmovdqa @X[1],16(%rsp)
777 vmovdqa @X[2],32(%rsp)
778 jmp .Loop_avx
779 ___

781 sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4
782 { use integer;
783 my $body = shift;
784 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
785 my ($a,$b,$c,$d,$e);

787 eval(shift(@insns));

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 13

788 eval(shift(@insns));
789 &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
790 eval(shift(@insns));
791 eval(shift(@insns));

793 &vpaddd (@Tx[1],@Tx[1],@X[-1&7]);
794 eval(shift(@insns));
795 eval(shift(@insns));
796 &vpsrldq(@Tx[0],@X[-1&7],4); # "X[-3]", 3 dwords
797 eval(shift(@insns));
798 eval(shift(@insns));
799 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
800 eval(shift(@insns));
801 eval(shift(@insns));

803 &vpxor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]"
804 eval(shift(@insns));
805 eval(shift(@insns));
806 eval(shift(@insns));
807 eval(shift(@insns));

809 &vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]"
810 eval(shift(@insns));
811 eval(shift(@insns));
812 &vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to
813 eval(shift(@insns));
814 eval(shift(@insns));

816 &vpsrld (@Tx[0],@X[0],31);
817 eval(shift(@insns));
818 eval(shift(@insns));
819 eval(shift(@insns));
820 eval(shift(@insns));

822 &vpslldq(@Tx[2],@X[0],12); # "X[0]"<<96, extract one dword
823 &vpaddd (@X[0],@X[0],@X[0]);
824 eval(shift(@insns));
825 eval(shift(@insns));
826 eval(shift(@insns));
827 eval(shift(@insns));

829 &vpsrld (@Tx[1],@Tx[2],30);
830 &vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=1
831 eval(shift(@insns));
832 eval(shift(@insns));
833 eval(shift(@insns));
834 eval(shift(@insns));

836 &vpslld (@Tx[2],@Tx[2],2);
837 &vpxor (@X[0],@X[0],@Tx[1]);
838 eval(shift(@insns));
839 eval(shift(@insns));
840 eval(shift(@insns));
841 eval(shift(@insns));

843 &vpxor (@X[0],@X[0],@Tx[2]); # "X[0]"^=("X[0]">>96)<<<2
844 eval(shift(@insns));
845 eval(shift(@insns));
846 &vmovdqa (@Tx[2],eval(16*(($Xi)/5))."($K_XX_XX)"); # K_XX_X
847 eval(shift(@insns));
848 eval(shift(@insns));

851 foreach (@insns) { eval; } # remaining instructions [if any]

853 $Xi++; push(@X,shift(@X)); # "rotate" X[]

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 14

854 push(@Tx,shift(@Tx));
855 }

857 sub Xupdate_avx_32_79()
858 { use integer;
859 my $body = shift;
860 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
861 my ($a,$b,$c,$d,$e);

863 &vpalignr(@Tx[0],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
864 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
865 eval(shift(@insns)); # body_20_39
866 eval(shift(@insns));
867 eval(shift(@insns));
868 eval(shift(@insns)); # rol

870 &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
871 eval(shift(@insns));
872 eval(shift(@insns)) if (@insns[0] !~ /&ro[rl]/);
873 if ($Xi%5) {
874 &vmovdqa (@Tx[2],@Tx[1]);# "perpetuate" K_XX_XX...
875 } else { # ... or load next one
876 &vmovdqa (@Tx[2],eval(16*($Xi/5))."($K_XX_XX)");
877 }
878 &vpaddd (@Tx[1],@Tx[1],@X[-1&7]);
879 eval(shift(@insns)); # ror
880 eval(shift(@insns));

882 &vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-6]"
883 eval(shift(@insns)); # body_20_39
884 eval(shift(@insns));
885 eval(shift(@insns));
886 eval(shift(@insns)); # rol

888 &vpsrld (@Tx[0],@X[0],30);
889 &vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to
890 eval(shift(@insns));
891 eval(shift(@insns));
892 eval(shift(@insns)); # ror
893 eval(shift(@insns));

895 &vpslld (@X[0],@X[0],2);
896 eval(shift(@insns)); # body_20_39
897 eval(shift(@insns));
898 eval(shift(@insns));
899 eval(shift(@insns)); # rol
900 eval(shift(@insns));
901 eval(shift(@insns));
902 eval(shift(@insns)); # ror
903 eval(shift(@insns));

905 &vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=2
906 eval(shift(@insns)); # body_20_39
907 eval(shift(@insns));
908 &vmovdqa (@Tx[1],@X[0]) if ($Xi<19);
909 eval(shift(@insns));
910 eval(shift(@insns)); # rol
911 eval(shift(@insns));
912 eval(shift(@insns));
913 eval(shift(@insns)); # rol
914 eval(shift(@insns));

916 foreach (@insns) { eval; } # remaining instructions

918 $Xi++; push(@X,shift(@X)); # "rotate" X[]
919 push(@Tx,shift(@Tx));

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 15

920 }

922 sub Xuplast_avx_80()
923 { use integer;
924 my $body = shift;
925 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
926 my ($a,$b,$c,$d,$e);

928 eval(shift(@insns));
929 &vpaddd (@Tx[1],@Tx[1],@X[-1&7]);
930 eval(shift(@insns));
931 eval(shift(@insns));
932 eval(shift(@insns));
933 eval(shift(@insns));

935 &movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer IAL

937 foreach (@insns) { eval; } # remaining instructions

939 &cmp ($inp,$num);
940 &je (".Ldone_avx");

942 unshift(@Tx,pop(@Tx));

944 &vmovdqa(@X[2],"64($K_XX_XX)"); # pbswap mask
945 &vmovdqa(@Tx[1],"0($K_XX_XX)"); # K_00_19
946 &vmovdqu(@X[-4&7],"0($inp)"); # load input
947 &vmovdqu(@X[-3&7],"16($inp)");
948 &vmovdqu(@X[-2&7],"32($inp)");
949 &vmovdqu(@X[-1&7],"48($inp)");
950 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
951 &add ($inp,64);

953 $Xi=0;
954 }

956 sub Xloop_avx()
957 { use integer;
958 my $body = shift;
959 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
960 my ($a,$b,$c,$d,$e);

962 eval(shift(@insns));
963 eval(shift(@insns));
964 &vpshufb(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
965 eval(shift(@insns));
966 eval(shift(@insns));
967 &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@Tx[1]);
968 eval(shift(@insns));
969 eval(shift(@insns));
970 eval(shift(@insns));
971 eval(shift(@insns));
972 &vmovdqa(eval(16*$Xi)."(%rsp)",@X[$Xi&7]); # X[]+K xfer to IALU
973 eval(shift(@insns));
974 eval(shift(@insns));

976 foreach (@insns) { eval; }
977 $Xi++;
978 }

980 sub Xtail_avx()
981 { use integer;
982 my $body = shift;
983 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
984 my ($a,$b,$c,$d,$e);

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 16

986 foreach (@insns) { eval; }
987 }

989 $code.=<<___;
990 .align 16
991 .Loop_avx:
992 ___
993 &Xupdate_avx_16_31(\&body_00_19);
994 &Xupdate_avx_16_31(\&body_00_19);
995 &Xupdate_avx_16_31(\&body_00_19);
996 &Xupdate_avx_16_31(\&body_00_19);
997 &Xupdate_avx_32_79(\&body_00_19);
998 &Xupdate_avx_32_79(\&body_20_39);
999 &Xupdate_avx_32_79(\&body_20_39);

1000 &Xupdate_avx_32_79(\&body_20_39);
1001 &Xupdate_avx_32_79(\&body_20_39);
1002 &Xupdate_avx_32_79(\&body_20_39);
1003 &Xupdate_avx_32_79(\&body_40_59);
1004 &Xupdate_avx_32_79(\&body_40_59);
1005 &Xupdate_avx_32_79(\&body_40_59);
1006 &Xupdate_avx_32_79(\&body_40_59);
1007 &Xupdate_avx_32_79(\&body_40_59);
1008 &Xupdate_avx_32_79(\&body_20_39);
1009 &Xuplast_avx_80(\&body_20_39); # can jump to "done"

1011 $saved_j=$j; @saved_V=@V;

1013 &Xloop_avx(\&body_20_39);
1014 &Xloop_avx(\&body_20_39);
1015 &Xloop_avx(\&body_20_39);

1017 $code.=<<___;
1018 add 0($ctx),$A # update context
1019 add 4($ctx),@T[0]
1020 add 8($ctx),$C
1021 add 12($ctx),$D
1022 mov $A,0($ctx)
1023 add 16($ctx),$E
1024 mov @T[0],4($ctx)
1025 mov @T[0],$B # magic seed
1026 mov $C,8($ctx)
1027 mov $D,12($ctx)
1028 mov $E,16($ctx)
1029 jmp .Loop_avx

1031 .align 16
1032 .Ldone_avx:
1033 ___
1034 $j=$saved_j; @V=@saved_V;

1036 &Xtail_avx(\&body_20_39);
1037 &Xtail_avx(\&body_20_39);
1038 &Xtail_avx(\&body_20_39);

1040 $code.=<<___;
1041 vzeroupper

1043 add 0($ctx),$A # update context
1044 add 4($ctx),@T[0]
1045 add 8($ctx),$C
1046 mov $A,0($ctx)
1047 add 12($ctx),$D
1048 mov @T[0],4($ctx)
1049 add 16($ctx),$E
1050 mov $C,8($ctx)
1051 mov $D,12($ctx)

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 17

1052 mov $E,16($ctx)
1053 ___
1054 $code.=<<___ if ($win64);
1055 movaps 64+0(%rsp),%xmm6
1056 movaps 64+16(%rsp),%xmm7
1057 movaps 64+32(%rsp),%xmm8
1058 movaps 64+48(%rsp),%xmm9
1059 movaps 64+64(%rsp),%xmm10
1060 ___
1061 $code.=<<___;
1062 lea ‘64+($win64?5*16:0)‘(%rsp),%rsi
1063 mov 0(%rsi),%r12
1064 mov 8(%rsi),%rbp
1065 mov 16(%rsi),%rbx
1066 lea 24(%rsi),%rsp
1067 .Lepilogue_avx:
1068 ret
1069 .size sha1_block_data_order_avx,.-sha1_block_data_order_avx
1070 ___
1071 }
1072 $code.=<<___;
1073 .align 64
1074 K_XX_XX:
1075 .long 0x5a827999,0x5a827999,0x5a827999,0x5a827999 # K_00_19
1076 .long 0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1 # K_20_39
1077 .long 0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc # K_40_59
1078 .long 0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6 # K_60_79
1079 .long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f # pbswap mask
1080 ___
1081 }}}
1082 $code.=<<___;
1083 .asciz "SHA1 block transform for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
1084 .align 64
1085 ___

1087 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1088 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
1089 if ($win64) {
1090 $rec="%rcx";
1091 $frame="%rdx";
1092 $context="%r8";
1093 $disp="%r9";

1095 $code.=<<___;
1096 .extern __imp_RtlVirtualUnwind
1097 .type se_handler,\@abi-omnipotent
1098 .align 16
1099 se_handler:
1100 push %rsi
1101 push %rdi
1102 push %rbx
1103 push %rbp
1104 push %r12
1105 push %r13
1106 push %r14
1107 push %r15
1108 pushfq
1109 sub \$64,%rsp

1111 mov 120($context),%rax # pull context->Rax
1112 mov 248($context),%rbx # pull context->Rip

1114 lea .Lprologue(%rip),%r10
1115 cmp %r10,%rbx # context->Rip<.Lprologue
1116 jb .Lcommon_seh_tail

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 18

1118 mov 152($context),%rax # pull context->Rsp

1120 lea .Lepilogue(%rip),%r10
1121 cmp %r10,%rbx # context->Rip>=.Lepilogue
1122 jae .Lcommon_seh_tail

1124 mov ‘16*4‘(%rax),%rax # pull saved stack pointer
1125 lea 32(%rax),%rax

1127 mov -8(%rax),%rbx
1128 mov -16(%rax),%rbp
1129 mov -24(%rax),%r12
1130 mov -32(%rax),%r13
1131 mov %rbx,144($context) # restore context->Rbx
1132 mov %rbp,160($context) # restore context->Rbp
1133 mov %r12,216($context) # restore context->R12
1134 mov %r13,224($context) # restore context->R13

1136 jmp .Lcommon_seh_tail
1137 .size se_handler,.-se_handler

1139 .type ssse3_handler,\@abi-omnipotent
1140 .align 16
1141 ssse3_handler:
1142 push %rsi
1143 push %rdi
1144 push %rbx
1145 push %rbp
1146 push %r12
1147 push %r13
1148 push %r14
1149 push %r15
1150 pushfq
1151 sub \$64,%rsp

1153 mov 120($context),%rax # pull context->Rax
1154 mov 248($context),%rbx # pull context->Rip

1156 mov 8($disp),%rsi # disp->ImageBase
1157 mov 56($disp),%r11 # disp->HandlerData

1159 mov 0(%r11),%r10d # HandlerData[0]
1160 lea (%rsi,%r10),%r10 # prologue label
1161 cmp %r10,%rbx # context->Rip<prologue label
1162 jb .Lcommon_seh_tail

1164 mov 152($context),%rax # pull context->Rsp

1166 mov 4(%r11),%r10d # HandlerData[1]
1167 lea (%rsi,%r10),%r10 # epilogue label
1168 cmp %r10,%rbx # context->Rip>=epilogue label
1169 jae .Lcommon_seh_tail

1171 lea 64(%rax),%rsi
1172 lea 512($context),%rdi # &context.Xmm6
1173 mov \$10,%ecx
1174 .long 0xa548f3fc # cld; rep movsq
1175 lea ‘24+64+5*16‘(%rax),%rax # adjust stack pointer

1177 mov -8(%rax),%rbx
1178 mov -16(%rax),%rbp
1179 mov -24(%rax),%r12
1180 mov %rbx,144($context) # restore context->Rbx
1181 mov %rbp,160($context) # restore context->Rbp
1182 mov %r12,216($context) # restore cotnext->R12

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 19

1184 .Lcommon_seh_tail:
1185 mov 8(%rax),%rdi
1186 mov 16(%rax),%rsi
1187 mov %rax,152($context) # restore context->Rsp
1188 mov %rsi,168($context) # restore context->Rsi
1189 mov %rdi,176($context) # restore context->Rdi

1191 mov 40($disp),%rdi # disp->ContextRecord
1192 mov $context,%rsi # context
1193 mov \$154,%ecx # sizeof(CONTEXT)
1194 .long 0xa548f3fc # cld; rep movsq

1196 mov $disp,%rsi
1197 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
1198 mov 8(%rsi),%rdx # arg2, disp->ImageBase
1199 mov 0(%rsi),%r8 # arg3, disp->ControlPc
1200 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
1201 mov 40(%rsi),%r10 # disp->ContextRecord
1202 lea 56(%rsi),%r11 # &disp->HandlerData
1203 lea 24(%rsi),%r12 # &disp->EstablisherFrame
1204 mov %r10,32(%rsp) # arg5
1205 mov %r11,40(%rsp) # arg6
1206 mov %r12,48(%rsp) # arg7
1207 mov %rcx,56(%rsp) # arg8, (NULL)
1208 call *__imp_RtlVirtualUnwind(%rip)

1210 mov \$1,%eax # ExceptionContinueSearch
1211 add \$64,%rsp
1212 popfq
1213 pop %r15
1214 pop %r14
1215 pop %r13
1216 pop %r12
1217 pop %rbp
1218 pop %rbx
1219 pop %rdi
1220 pop %rsi
1221 ret
1222 .size ssse3_handler,.-ssse3_handler

1224 .section .pdata
1225 .align 4
1226 .rva .LSEH_begin_sha1_block_data_order
1227 .rva .LSEH_end_sha1_block_data_order
1228 .rva .LSEH_info_sha1_block_data_order
1229 .rva .LSEH_begin_sha1_block_data_order_ssse3
1230 .rva .LSEH_end_sha1_block_data_order_ssse3
1231 .rva .LSEH_info_sha1_block_data_order_ssse3
1232 ___
1233 $code.=<<___ if ($avx);
1234 .rva .LSEH_begin_sha1_block_data_order_avx
1235 .rva .LSEH_end_sha1_block_data_order_avx
1236 .rva .LSEH_info_sha1_block_data_order_avx
1237 ___
1238 $code.=<<___;
1239 .section .xdata
1240 .align 8
1241 .LSEH_info_sha1_block_data_order:
1242 .byte 9,0,0,0
1243 .rva se_handler
1244 .LSEH_info_sha1_block_data_order_ssse3:
1245 .byte 9,0,0,0
1246 .rva ssse3_handler
1247 .rva .Lprologue_ssse3,.Lepilogue_ssse3 # HandlerData[]
1248 ___
1249 $code.=<<___ if ($avx);

new/usr/src/lib/openssl/libsunw_crypto/pl/sha1-x86_64.pl 20

1250 .LSEH_info_sha1_block_data_order_avx:
1251 .byte 9,0,0,0
1252 .rva ssse3_handler
1253 .rva .Lprologue_avx,.Lepilogue_avx # HandlerData[]
1254 ___
1255 }

1257 ##

1259 $code =~ s/\‘([^\‘]*)\‘/eval $1/gem;
1260 print $code;
1261 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/sha256-586.pl 1

**
 6976 Fri May 30 18:32:05 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/sha256-586.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl
2 #
3 # ==
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==
9 #
10 # SHA256 block transform for x86. September 2007.
11 #
12 # Performance in clock cycles per processed byte (less is better):
13 #
14 # Pentium PIII P4 AMD K8 Core2
15 # gcc 46 36 41 27 26
16 # icc 57 33 38 25 23
17 # x86 asm 40 30 33 20 18
18 # x86_64 asm(*) - - 21 16 16
19 #
20 # (*) x86_64 assembler performance is presented for reference
21 # purposes.
22 #
23 # Performance improvement over compiler generated code varies from
24 # 10% to 40% [see above]. Not very impressive on some µ-archs, but
25 # it’s 5 times smaller and optimizies amount of writes.

27 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
28 push(@INC,"${dir}","${dir}../../perlasm");
29 require "x86asm.pl";

31 &asm_init($ARGV[0],"sha512-586.pl",$ARGV[$#ARGV] eq "386");

33 $A="eax";
34 $E="edx";
35 $T="ebx";
36 $Aoff=&DWP(0,"esp");
37 $Boff=&DWP(4,"esp");
38 $Coff=&DWP(8,"esp");
39 $Doff=&DWP(12,"esp");
40 $Eoff=&DWP(16,"esp");
41 $Foff=&DWP(20,"esp");
42 $Goff=&DWP(24,"esp");
43 $Hoff=&DWP(28,"esp");
44 $Xoff=&DWP(32,"esp");
45 $K256="ebp";

47 sub BODY_00_15() {
48 my $in_16_63=shift;

50 &mov ("ecx",$E);
51 &add ($T,"edi") if ($in_16_63); # T += sigma1(X[
52 &ror ("ecx",25-11);
53 &mov ("esi",$Foff);
54 &xor ("ecx",$E);
55 &ror ("ecx",11-6);
56 &mov (&DWP(4*(8+15),"esp"),$T) if ($in_16_63); # save X[0]
57 &xor ("ecx",$E);
58 &ror ("ecx",6); # Sigma1(e)
59 &mov ("edi",$Goff);
60 &add ($T,"ecx"); # T += Sigma1(e)

new/usr/src/lib/openssl/libsunw_crypto/pl/sha256-586.pl 2

62 &xor ("esi","edi");
63 &mov ($Eoff,$E); # modulo-scheduled
64 &mov ("ecx",$A);
65 &and ("esi",$E);
66 &mov ($E,$Doff); # e becomes d, which is e in next iteration
67 &xor ("esi","edi"); # Ch(e,f,g)
68 &mov ("edi",$A);
69 &add ($T,"esi"); # T += Ch(e,f,g)

71 &ror ("ecx",22-13);
72 &add ($T,$Hoff); # T += h
73 &xor ("ecx",$A);
74 &ror ("ecx",13-2);
75 &mov ("esi",$Boff);
76 &xor ("ecx",$A);
77 &ror ("ecx",2); # Sigma0(a)
78 &add ($E,$T); # d += T
79 &mov ("edi",$Coff);

81 &add ($T,"ecx"); # T += Sigma0(a)
82 &mov ($Aoff,$A); # modulo-scheduled

84 &mov ("ecx",$A);
85 &sub ("esp",4);
86 &or ($A,"esi"); # a becomes h, which is a in next iteration
87 &and ("ecx","esi");
88 &and ($A,"edi");
89 &mov ("esi",&DWP(0,$K256));
90 &or ($A,"ecx"); # h=Maj(a,b,c)

92 &add ($K256,4);
93 &add ($A,$T); # h += T
94 &mov ($T,&DWP(4*(8+15+16-1),"esp")) if ($in_16_63); # preload T
95 &add ($E,"esi"); # d += K256[i]
96 &add ($A,"esi"); # h += K256[i]
97 }

99 &function_begin("sha256_block_data_order");
100 &mov ("esi",wparam(0)); # ctx
101 &mov ("edi",wparam(1)); # inp
102 &mov ("eax",wparam(2)); # num
103 &mov ("ebx","esp"); # saved sp

105 &call (&label("pic_point")); # make it PIC!
106 &set_label("pic_point");
107 &blindpop($K256);
108 &lea ($K256,&DWP(&label("K256")."-".&label("pic_point"),$K256));

110 &sub ("esp",16);
111 &and ("esp",-64);

113 &shl ("eax",6);
114 &add ("eax","edi");
115 &mov (&DWP(0,"esp"),"esi"); # ctx
116 &mov (&DWP(4,"esp"),"edi"); # inp
117 &mov (&DWP(8,"esp"),"eax"); # inp+num*128
118 &mov (&DWP(12,"esp"),"ebx"); # saved sp

120 &set_label("loop",16);
121 # copy input block to stack reversing byte and dword order
122 for($i=0;$i<4;$i++) {
123 &mov ("eax",&DWP($i*16+0,"edi"));
124 &mov ("ebx",&DWP($i*16+4,"edi"));
125 &mov ("ecx",&DWP($i*16+8,"edi"));
126 &mov ("edx",&DWP($i*16+12,"edi"));
127 &bswap ("eax");

new/usr/src/lib/openssl/libsunw_crypto/pl/sha256-586.pl 3

128 &bswap ("ebx");
129 &bswap ("ecx");
130 &bswap ("edx");
131 &push ("eax");
132 &push ("ebx");
133 &push ("ecx");
134 &push ("edx");
135 }
136 &add ("edi",64);
137 &sub ("esp",4*8); # place for A,B,C,D,E,F,G,H
138 &mov (&DWP(4*(8+16)+4,"esp"),"edi");

140 # copy ctx->h[0-7] to A,B,C,D,E,F,G,H on stack
141 &mov ($A,&DWP(0,"esi"));
142 &mov ("ebx",&DWP(4,"esi"));
143 &mov ("ecx",&DWP(8,"esi"));
144 &mov ("edi",&DWP(12,"esi"));
145 # &mov ($Aoff,$A);
146 &mov ($Boff,"ebx");
147 &mov ($Coff,"ecx");
148 &mov ($Doff,"edi");
149 &mov ($E,&DWP(16,"esi"));
150 &mov ("ebx",&DWP(20,"esi"));
151 &mov ("ecx",&DWP(24,"esi"));
152 &mov ("edi",&DWP(28,"esi"));
153 # &mov ($Eoff,$E);
154 &mov ($Foff,"ebx");
155 &mov ($Goff,"ecx");
156 &mov ($Hoff,"edi");

158 &set_label("00_15",16);
159 &mov ($T,&DWP(4*(8+15),"esp"));

161 &BODY_00_15();

163 &cmp ("esi",0xc19bf174);
164 &jne (&label("00_15"));

166 &mov ($T,&DWP(4*(8+15+16-1),"esp")); # preloaded in BODY_00_15(1)
167 &set_label("16_63",16);
168 &mov ("esi",$T);
169 &mov ("ecx",&DWP(4*(8+15+16-14),"esp"));
170 &ror ("esi",18-7);
171 &mov ("edi","ecx");
172 &xor ("esi",$T);
173 &ror ("esi",7);
174 &shr ($T,3);

176 &ror ("edi",19-17);
177 &xor ($T,"esi"); # T = sigma0(X[-15])
178 &xor ("edi","ecx");
179 &ror ("edi",17);
180 &shr ("ecx",10);
181 &add ($T,&DWP(4*(8+15+16),"esp")); # T += X[-16]
182 &xor ("edi","ecx"); # sigma1(X[-2])

184 &add ($T,&DWP(4*(8+15+16-9),"esp")); # T += X[-7]
185 # &add ($T,"edi"); # T += sigma1(X[-2])
186 # &mov (&DWP(4*(8+15),"esp"),$T); # save X[0]

188 &BODY_00_15(1);

190 &cmp ("esi",0xc67178f2);
191 &jne (&label("16_63"));

193 &mov ("esi",&DWP(4*(8+16+64)+0,"esp"));#ctx

new/usr/src/lib/openssl/libsunw_crypto/pl/sha256-586.pl 4

194 # &mov ($A,$Aoff);
195 &mov ("ebx",$Boff);
196 &mov ("ecx",$Coff);
197 &mov ("edi",$Doff);
198 &add ($A,&DWP(0,"esi"));
199 &add ("ebx",&DWP(4,"esi"));
200 &add ("ecx",&DWP(8,"esi"));
201 &add ("edi",&DWP(12,"esi"));
202 &mov (&DWP(0,"esi"),$A);
203 &mov (&DWP(4,"esi"),"ebx");
204 &mov (&DWP(8,"esi"),"ecx");
205 &mov (&DWP(12,"esi"),"edi");
206 # &mov ($E,$Eoff);
207 &mov ("eax",$Foff);
208 &mov ("ebx",$Goff);
209 &mov ("ecx",$Hoff);
210 &mov ("edi",&DWP(4*(8+16+64)+4,"esp"));#inp
211 &add ($E,&DWP(16,"esi"));
212 &add ("eax",&DWP(20,"esi"));
213 &add ("ebx",&DWP(24,"esi"));
214 &add ("ecx",&DWP(28,"esi"));
215 &mov (&DWP(16,"esi"),$E);
216 &mov (&DWP(20,"esi"),"eax");
217 &mov (&DWP(24,"esi"),"ebx");
218 &mov (&DWP(28,"esi"),"ecx");

220 &add ("esp",4*(8+16+64)); # destroy frame
221 &sub ($K256,4*64); # rewind K

223 &cmp ("edi",&DWP(8,"esp")); # are we done yet?
224 &jb (&label("loop"));

226 &mov ("esp",&DWP(12,"esp")); # restore sp
227 &function_end_A();

229 &set_label("K256",64); # Yes! I keep it in the code segment!
230 &data_word(0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5);
231 &data_word(0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5);
232 &data_word(0xd807aa98,0x12835b01,0x243185be,0x550c7dc3);
233 &data_word(0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174);
234 &data_word(0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc);
235 &data_word(0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da);
236 &data_word(0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7);
237 &data_word(0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967);
238 &data_word(0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13);
239 &data_word(0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85);
240 &data_word(0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3);
241 &data_word(0xd192e819,0xd6990624,0xf40e3585,0x106aa070);
242 &data_word(0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5);
243 &data_word(0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3);
244 &data_word(0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208);
245 &data_word(0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2);
246 &function_end_B("sha256_block_data_order");
247 &asciz("SHA256 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");

249 &asm_finish();

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-586.pl 1

**
 18166 Fri May 30 18:32:05 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-586.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl
2 #
3 # ==
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==
9 #
10 # SHA512 block transform for x86. September 2007.
11 #
12 # Performance in clock cycles per processed byte (less is better):
13 #
14 # Pentium PIII P4 AMD K8 Core2
15 # gcc 100 75 116 54 66
16 # icc 97 77 95 55 57
17 # x86 asm 61 56 82 36 40
18 # SSE2 asm - - 38 24 20
19 # x86_64 asm(*) - - 30 10.0 10.5
20 #
21 # (*) x86_64 assembler performance is presented for reference
22 # purposes.
23 #
24 # IALU code-path is optimized for elder Pentiums. On vanilla Pentium
25 # performance improvement over compiler generated code reaches ~60%,
26 # while on PIII - ~35%. On newer µ-archs improvement varies from 15%
27 # to 50%, but it’s less important as they are expected to execute SSE2
28 # code-path, which is commonly ~2-3x faster [than compiler generated
29 # code]. SSE2 code-path is as fast as original sha512-sse2.pl, even
30 # though it does not use 128-bit operations. The latter means that
31 # SSE2-aware kernel is no longer required to execute the code. Another
32 # difference is that new code optimizes amount of writes, but at the
33 # cost of increased data cache "footprint" by 1/2KB.

35 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
36 push(@INC,"${dir}","${dir}../../perlasm");
37 require "x86asm.pl";

39 &asm_init($ARGV[0],"sha512-586.pl",$ARGV[$#ARGV] eq "386");

41 $sse2=0;
42 for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }

44 &external_label("OPENSSL_ia32cap_P") if ($sse2);

46 $Tlo=&DWP(0,"esp"); $Thi=&DWP(4,"esp");
47 $Alo=&DWP(8,"esp"); $Ahi=&DWP(8+4,"esp");
48 $Blo=&DWP(16,"esp"); $Bhi=&DWP(16+4,"esp");
49 $Clo=&DWP(24,"esp"); $Chi=&DWP(24+4,"esp");
50 $Dlo=&DWP(32,"esp"); $Dhi=&DWP(32+4,"esp");
51 $Elo=&DWP(40,"esp"); $Ehi=&DWP(40+4,"esp");
52 $Flo=&DWP(48,"esp"); $Fhi=&DWP(48+4,"esp");
53 $Glo=&DWP(56,"esp"); $Ghi=&DWP(56+4,"esp");
54 $Hlo=&DWP(64,"esp"); $Hhi=&DWP(64+4,"esp");
55 $K512="ebp";

57 $Asse2=&QWP(0,"esp");
58 $Bsse2=&QWP(8,"esp");
59 $Csse2=&QWP(16,"esp");
60 $Dsse2=&QWP(24,"esp");
61 $Esse2=&QWP(32,"esp");

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-586.pl 2

62 $Fsse2=&QWP(40,"esp");
63 $Gsse2=&QWP(48,"esp");
64 $Hsse2=&QWP(56,"esp");

66 $A="mm0"; # B-D and
67 $E="mm4"; # F-H are commonly loaded to respectively mm1-mm3 and
68 # mm5-mm7, but it’s done on on-demand basis...

70 sub BODY_00_15_sse2 {
71 my $prefetch=shift;

73 &movq ("mm5",$Fsse2); # load f
74 &movq ("mm6",$Gsse2); # load g
75 &movq ("mm7",$Hsse2); # load h

77 &movq ("mm1",$E); # %mm1 is sliding right
78 &movq ("mm2",$E); # %mm2 is sliding left
79 &psrlq ("mm1",14);
80 &movq ($Esse2,$E); # modulo-scheduled save e
81 &psllq ("mm2",23);
82 &movq ("mm3","mm1"); # %mm3 is T1
83 &psrlq ("mm1",4);
84 &pxor ("mm3","mm2");
85 &psllq ("mm2",23);
86 &pxor ("mm3","mm1");
87 &psrlq ("mm1",23);
88 &pxor ("mm3","mm2");
89 &psllq ("mm2",4);
90 &pxor ("mm3","mm1");
91 &paddq ("mm7",QWP(0,$K512)); # h+=K512[i]
92 &pxor ("mm3","mm2"); # T1=Sigma1_512(e)

94 &pxor ("mm5","mm6"); # f^=g
95 &movq ("mm1",$Bsse2); # load b
96 &pand ("mm5",$E); # f&=e
97 &movq ("mm2",$Csse2); # load c
98 &pxor ("mm5","mm6"); # f^=g
99 &movq ($E,$Dsse2); # e = load d
100 &paddq ("mm3","mm5"); # T1+=Ch(e,f,g)
101 &movq (&QWP(0,"esp"),$A); # modulo-scheduled save a
102 &paddq ("mm3","mm7"); # T1+=h

104 &movq ("mm5",$A); # %mm5 is sliding right
105 &movq ("mm6",$A); # %mm6 is sliding left
106 &paddq ("mm3",&QWP(8*9,"esp")); # T1+=X[0]
107 &psrlq ("mm5",28);
108 &paddq ($E,"mm3"); # e += T1
109 &psllq ("mm6",25);
110 &movq ("mm7","mm5"); # %mm7 is T2
111 &psrlq ("mm5",6);
112 &pxor ("mm7","mm6");
113 &psllq ("mm6",5);
114 &pxor ("mm7","mm5");
115 &psrlq ("mm5",5);
116 &pxor ("mm7","mm6");
117 &psllq ("mm6",6);
118 &pxor ("mm7","mm5");
119 &sub ("esp",8);
120 &pxor ("mm7","mm6"); # T2=Sigma0_512(a)

122 &movq ("mm5",$A); # %mm5=a
123 &por ($A,"mm2"); # a=a|c
124 &movq ("mm6",&QWP(8*(9+16-14),"esp")) if ($prefetch);
125 &pand ("mm5","mm2"); # %mm5=a&c
126 &pand ($A,"mm1"); # a=(a|c)&b
127 &movq ("mm2",&QWP(8*(9+16-1),"esp")) if ($prefetch);

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-586.pl 3

128 &por ("mm5",$A); # %mm5=(a&c)|((a|c)&b)
129 &paddq ("mm7","mm5"); # T2+=Maj(a,b,c)
130 &movq ($A,"mm3"); # a=T1

132 &mov (&LB("edx"),&BP(0,$K512));
133 &paddq ($A,"mm7"); # a+=T2
134 &add ($K512,8);
135 }

137 sub BODY_00_15_x86 {
138 #define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
139 # LO lo>>14^hi<<18 ^ lo>>18^hi<<14 ^ hi>>9^lo<<23
140 # HI hi>>14^lo<<18 ^ hi>>18^lo<<14 ^ lo>>9^hi<<23
141 &mov ("ecx",$Elo);
142 &mov ("edx",$Ehi);
143 &mov ("esi","ecx");

145 &shr ("ecx",9); # lo>>9
146 &mov ("edi","edx");
147 &shr ("edx",9); # hi>>9
148 &mov ("ebx","ecx");
149 &shl ("esi",14); # lo<<14
150 &mov ("eax","edx");
151 &shl ("edi",14); # hi<<14
152 &xor ("ebx","esi");

154 &shr ("ecx",14-9); # lo>>14
155 &xor ("eax","edi");
156 &shr ("edx",14-9); # hi>>14
157 &xor ("eax","ecx");
158 &shl ("esi",18-14); # lo<<18
159 &xor ("ebx","edx");
160 &shl ("edi",18-14); # hi<<18
161 &xor ("ebx","esi");

163 &shr ("ecx",18-14); # lo>>18
164 &xor ("eax","edi");
165 &shr ("edx",18-14); # hi>>18
166 &xor ("eax","ecx");
167 &shl ("esi",23-18); # lo<<23
168 &xor ("ebx","edx");
169 &shl ("edi",23-18); # hi<<23
170 &xor ("eax","esi");
171 &xor ("ebx","edi"); # T1 = Sigma1(e)

173 &mov ("ecx",$Flo);
174 &mov ("edx",$Fhi);
175 &mov ("esi",$Glo);
176 &mov ("edi",$Ghi);
177 &add ("eax",$Hlo);
178 &adc ("ebx",$Hhi); # T1 += h
179 &xor ("ecx","esi");
180 &xor ("edx","edi");
181 &and ("ecx",$Elo);
182 &and ("edx",$Ehi);
183 &add ("eax",&DWP(8*(9+15)+0,"esp"));
184 &adc ("ebx",&DWP(8*(9+15)+4,"esp")); # T1 += X[0]
185 &xor ("ecx","esi");
186 &xor ("edx","edi"); # Ch(e,f,g) = (f^g)&e)^g

188 &mov ("esi",&DWP(0,$K512));
189 &mov ("edi",&DWP(4,$K512)); # K[i]
190 &add ("eax","ecx");
191 &adc ("ebx","edx"); # T1 += Ch(e,f,g)
192 &mov ("ecx",$Dlo);
193 &mov ("edx",$Dhi);

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-586.pl 4

194 &add ("eax","esi");
195 &adc ("ebx","edi"); # T1 += K[i]
196 &mov ($Tlo,"eax");
197 &mov ($Thi,"ebx"); # put T1 away
198 &add ("eax","ecx");
199 &adc ("ebx","edx"); # d += T1

201 #define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
202 # LO lo>>28^hi<<4 ^ hi>>2^lo<<30 ^ hi>>7^lo<<25
203 # HI hi>>28^lo<<4 ^ lo>>2^hi<<30 ^ lo>>7^hi<<25
204 &mov ("ecx",$Alo);
205 &mov ("edx",$Ahi);
206 &mov ($Dlo,"eax");
207 &mov ($Dhi,"ebx");
208 &mov ("esi","ecx");

210 &shr ("ecx",2); # lo>>2
211 &mov ("edi","edx");
212 &shr ("edx",2); # hi>>2
213 &mov ("ebx","ecx");
214 &shl ("esi",4); # lo<<4
215 &mov ("eax","edx");
216 &shl ("edi",4); # hi<<4
217 &xor ("ebx","esi");

219 &shr ("ecx",7-2); # lo>>7
220 &xor ("eax","edi");
221 &shr ("edx",7-2); # hi>>7
222 &xor ("ebx","ecx");
223 &shl ("esi",25-4); # lo<<25
224 &xor ("eax","edx");
225 &shl ("edi",25-4); # hi<<25
226 &xor ("eax","esi");

228 &shr ("ecx",28-7); # lo>>28
229 &xor ("ebx","edi");
230 &shr ("edx",28-7); # hi>>28
231 &xor ("eax","ecx");
232 &shl ("esi",30-25); # lo<<30
233 &xor ("ebx","edx");
234 &shl ("edi",30-25); # hi<<30
235 &xor ("eax","esi");
236 &xor ("ebx","edi"); # Sigma0(a)

238 &mov ("ecx",$Alo);
239 &mov ("edx",$Ahi);
240 &mov ("esi",$Blo);
241 &mov ("edi",$Bhi);
242 &add ("eax",$Tlo);
243 &adc ("ebx",$Thi); # T1 = Sigma0(a)+T1
244 &or ("ecx","esi");
245 &or ("edx","edi");
246 &and ("ecx",$Clo);
247 &and ("edx",$Chi);
248 &and ("esi",$Alo);
249 &and ("edi",$Ahi);
250 &or ("ecx","esi");
251 &or ("edx","edi"); # Maj(a,b,c) = ((a|b)&c)|(a&b)

253 &add ("eax","ecx");
254 &adc ("ebx","edx"); # T1 += Maj(a,b,c)
255 &mov ($Tlo,"eax");
256 &mov ($Thi,"ebx");

258 &mov (&LB("edx"),&BP(0,$K512)); # pre-fetch LSB of *K
259 &sub ("esp",8);

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-586.pl 5

260 &lea ($K512,&DWP(8,$K512)); # K++
261 }

264 &function_begin("sha512_block_data_order");
265 &mov ("esi",wparam(0)); # ctx
266 &mov ("edi",wparam(1)); # inp
267 &mov ("eax",wparam(2)); # num
268 &mov ("ebx","esp"); # saved sp

270 &call (&label("pic_point")); # make it PIC!
271 &set_label("pic_point");
272 &blindpop($K512);
273 &lea ($K512,&DWP(&label("K512")."-".&label("pic_point"),$K512));

275 &sub ("esp",16);
276 &and ("esp",-64);

278 &shl ("eax",7);
279 &add ("eax","edi");
280 &mov (&DWP(0,"esp"),"esi"); # ctx
281 &mov (&DWP(4,"esp"),"edi"); # inp
282 &mov (&DWP(8,"esp"),"eax"); # inp+num*128
283 &mov (&DWP(12,"esp"),"ebx"); # saved sp

285 if ($sse2) {
286 &picmeup("edx","OPENSSL_ia32cap_P",$K512,&label("K512"));
287 &bt (&DWP(0,"edx"),26);
288 &jnc (&label("loop_x86"));

290 # load ctx->h[0-7]
291 &movq ($A,&QWP(0,"esi"));
292 &movq ("mm1",&QWP(8,"esi"));
293 &movq ("mm2",&QWP(16,"esi"));
294 &movq ("mm3",&QWP(24,"esi"));
295 &movq ($E,&QWP(32,"esi"));
296 &movq ("mm5",&QWP(40,"esi"));
297 &movq ("mm6",&QWP(48,"esi"));
298 &movq ("mm7",&QWP(56,"esi"));
299 &sub ("esp",8*10);

301 &set_label("loop_sse2",16);
302 # &movq ($Asse2,$A);
303 &movq ($Bsse2,"mm1");
304 &movq ($Csse2,"mm2");
305 &movq ($Dsse2,"mm3");
306 # &movq ($Esse2,$E);
307 &movq ($Fsse2,"mm5");
308 &movq ($Gsse2,"mm6");
309 &movq ($Hsse2,"mm7");

311 &mov ("ecx",&DWP(0,"edi"));
312 &mov ("edx",&DWP(4,"edi"));
313 &add ("edi",8);
314 &bswap ("ecx");
315 &bswap ("edx");
316 &mov (&DWP(8*9+4,"esp"),"ecx");
317 &mov (&DWP(8*9+0,"esp"),"edx");

319 &set_label("00_14_sse2",16);
320 &mov ("eax",&DWP(0,"edi"));
321 &mov ("ebx",&DWP(4,"edi"));
322 &add ("edi",8);
323 &bswap ("eax");
324 &bswap ("ebx");
325 &mov (&DWP(8*8+4,"esp"),"eax");

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-586.pl 6

326 &mov (&DWP(8*8+0,"esp"),"ebx");

328 &BODY_00_15_sse2();

330 &cmp (&LB("edx"),0x35);
331 &jne (&label("00_14_sse2"));

333 &BODY_00_15_sse2(1);

335 &set_label("16_79_sse2",16);
336 #&movq ("mm2",&QWP(8*(9+16-1),"esp")); #prefetched in BODY_00_15
337 #&movq ("mm6",&QWP(8*(9+16-14),"esp"));
338 &movq ("mm1","mm2");

340 &psrlq ("mm2",1);
341 &movq ("mm7","mm6");
342 &psrlq ("mm6",6);
343 &movq ("mm3","mm2");

345 &psrlq ("mm2",7-1);
346 &movq ("mm5","mm6");
347 &psrlq ("mm6",19-6);
348 &pxor ("mm3","mm2");

350 &psrlq ("mm2",8-7);
351 &pxor ("mm5","mm6");
352 &psrlq ("mm6",61-19);
353 &pxor ("mm3","mm2");

355 &movq ("mm2",&QWP(8*(9+16),"esp"));

357 &psllq ("mm1",56);
358 &pxor ("mm5","mm6");
359 &psllq ("mm7",3);
360 &pxor ("mm3","mm1");

362 &paddq ("mm2",&QWP(8*(9+16-9),"esp"));

364 &psllq ("mm1",63-56);
365 &pxor ("mm5","mm7");
366 &psllq ("mm7",45-3);
367 &pxor ("mm3","mm1");
368 &pxor ("mm5","mm7");

370 &paddq ("mm3","mm5");
371 &paddq ("mm3","mm2");
372 &movq (&QWP(8*9,"esp"),"mm3");

374 &BODY_00_15_sse2(1);

376 &cmp (&LB("edx"),0x17);
377 &jne (&label("16_79_sse2"));

379 # &movq ($A,$Asse2);
380 &movq ("mm1",$Bsse2);
381 &movq ("mm2",$Csse2);
382 &movq ("mm3",$Dsse2);
383 # &movq ($E,$Esse2);
384 &movq ("mm5",$Fsse2);
385 &movq ("mm6",$Gsse2);
386 &movq ("mm7",$Hsse2);

388 &paddq ($A,&QWP(0,"esi"));
389 &paddq ("mm1",&QWP(8,"esi"));
390 &paddq ("mm2",&QWP(16,"esi"));
391 &paddq ("mm3",&QWP(24,"esi"));

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-586.pl 7

392 &paddq ($E,&QWP(32,"esi"));
393 &paddq ("mm5",&QWP(40,"esi"));
394 &paddq ("mm6",&QWP(48,"esi"));
395 &paddq ("mm7",&QWP(56,"esi"));

397 &movq (&QWP(0,"esi"),$A);
398 &movq (&QWP(8,"esi"),"mm1");
399 &movq (&QWP(16,"esi"),"mm2");
400 &movq (&QWP(24,"esi"),"mm3");
401 &movq (&QWP(32,"esi"),$E);
402 &movq (&QWP(40,"esi"),"mm5");
403 &movq (&QWP(48,"esi"),"mm6");
404 &movq (&QWP(56,"esi"),"mm7");

406 &add ("esp",8*80); # destroy frame
407 &sub ($K512,8*80); # rewind K

409 &cmp ("edi",&DWP(8*10+8,"esp")); # are we done yet?
410 &jb (&label("loop_sse2"));

412 &emms ();
413 &mov ("esp",&DWP(8*10+12,"esp")); # restore sp
414 &function_end_A();
415 }
416 &set_label("loop_x86",16);
417 # copy input block to stack reversing byte and qword order
418 for ($i=0;$i<8;$i++) {
419 &mov ("eax",&DWP($i*16+0,"edi"));
420 &mov ("ebx",&DWP($i*16+4,"edi"));
421 &mov ("ecx",&DWP($i*16+8,"edi"));
422 &mov ("edx",&DWP($i*16+12,"edi"));
423 &bswap ("eax");
424 &bswap ("ebx");
425 &bswap ("ecx");
426 &bswap ("edx");
427 &push ("eax");
428 &push ("ebx");
429 &push ("ecx");
430 &push ("edx");
431 }
432 &add ("edi",128);
433 &sub ("esp",9*8); # place for T,A,B,C,D,E,F,G,H
434 &mov (&DWP(8*(9+16)+4,"esp"),"edi");

436 # copy ctx->h[0-7] to A,B,C,D,E,F,G,H on stack
437 &lea ("edi",&DWP(8,"esp"));
438 &mov ("ecx",16);
439 &data_word(0xA5F3F689); # rep movsd

441 &set_label("00_15_x86",16);
442 &BODY_00_15_x86();

444 &cmp (&LB("edx"),0x94);
445 &jne (&label("00_15_x86"));

447 &set_label("16_79_x86",16);
448 #define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
449 # LO lo>>1^hi<<31 ^ lo>>8^hi<<24 ^ lo>>7^hi<<25
450 # HI hi>>1^lo<<31 ^ hi>>8^lo<<24 ^ hi>>7
451 &mov ("ecx",&DWP(8*(9+15+16-1)+0,"esp"));
452 &mov ("edx",&DWP(8*(9+15+16-1)+4,"esp"));
453 &mov ("esi","ecx");

455 &shr ("ecx",1); # lo>>1
456 &mov ("edi","edx");
457 &shr ("edx",1); # hi>>1

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-586.pl 8

458 &mov ("eax","ecx");
459 &shl ("esi",24); # lo<<24
460 &mov ("ebx","edx");
461 &shl ("edi",24); # hi<<24
462 &xor ("ebx","esi");

464 &shr ("ecx",7-1); # lo>>7
465 &xor ("eax","edi");
466 &shr ("edx",7-1); # hi>>7
467 &xor ("eax","ecx");
468 &shl ("esi",31-24); # lo<<31
469 &xor ("ebx","edx");
470 &shl ("edi",25-24); # hi<<25
471 &xor ("ebx","esi");

473 &shr ("ecx",8-7); # lo>>8
474 &xor ("eax","edi");
475 &shr ("edx",8-7); # hi>>8
476 &xor ("eax","ecx");
477 &shl ("edi",31-25); # hi<<31
478 &xor ("ebx","edx");
479 &xor ("eax","edi"); # T1 = sigma0(X[-15])

481 &mov (&DWP(0,"esp"),"eax");
482 &mov (&DWP(4,"esp"),"ebx"); # put T1 away

484 #define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
485 # LO lo>>19^hi<<13 ^ hi>>29^lo<<3 ^ lo>>6^hi<<26
486 # HI hi>>19^lo<<13 ^ lo>>29^hi<<3 ^ hi>>6
487 &mov ("ecx",&DWP(8*(9+15+16-14)+0,"esp"));
488 &mov ("edx",&DWP(8*(9+15+16-14)+4,"esp"));
489 &mov ("esi","ecx");

491 &shr ("ecx",6); # lo>>6
492 &mov ("edi","edx");
493 &shr ("edx",6); # hi>>6
494 &mov ("eax","ecx");
495 &shl ("esi",3); # lo<<3
496 &mov ("ebx","edx");
497 &shl ("edi",3); # hi<<3
498 &xor ("eax","esi");

500 &shr ("ecx",19-6); # lo>>19
501 &xor ("ebx","edi");
502 &shr ("edx",19-6); # hi>>19
503 &xor ("eax","ecx");
504 &shl ("esi",13-3); # lo<<13
505 &xor ("ebx","edx");
506 &shl ("edi",13-3); # hi<<13
507 &xor ("ebx","esi");

509 &shr ("ecx",29-19); # lo>>29
510 &xor ("eax","edi");
511 &shr ("edx",29-19); # hi>>29
512 &xor ("ebx","ecx");
513 &shl ("edi",26-13); # hi<<26
514 &xor ("eax","edx");
515 &xor ("eax","edi"); # sigma1(X[-2])

517 &mov ("ecx",&DWP(8*(9+15+16)+0,"esp"));
518 &mov ("edx",&DWP(8*(9+15+16)+4,"esp"));
519 &add ("eax",&DWP(0,"esp"));
520 &adc ("ebx",&DWP(4,"esp")); # T1 = sigma1(X[-2])+T1
521 &mov ("esi",&DWP(8*(9+15+16-9)+0,"esp"));
522 &mov ("edi",&DWP(8*(9+15+16-9)+4,"esp"));
523 &add ("eax","ecx");

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-586.pl 9

524 &adc ("ebx","edx"); # T1 += X[-16]
525 &add ("eax","esi");
526 &adc ("ebx","edi"); # T1 += X[-7]
527 &mov (&DWP(8*(9+15)+0,"esp"),"eax");
528 &mov (&DWP(8*(9+15)+4,"esp"),"ebx"); # save X[0]

530 &BODY_00_15_x86();

532 &cmp (&LB("edx"),0x17);
533 &jne (&label("16_79_x86"));

535 &mov ("esi",&DWP(8*(9+16+80)+0,"esp"));# ctx
536 &mov ("edi",&DWP(8*(9+16+80)+4,"esp"));# inp
537 for($i=0;$i<4;$i++) {
538 &mov ("eax",&DWP($i*16+0,"esi"));
539 &mov ("ebx",&DWP($i*16+4,"esi"));
540 &mov ("ecx",&DWP($i*16+8,"esi"));
541 &mov ("edx",&DWP($i*16+12,"esi"));
542 &add ("eax",&DWP(8+($i*16)+0,"esp"));
543 &adc ("ebx",&DWP(8+($i*16)+4,"esp"));
544 &mov (&DWP($i*16+0,"esi"),"eax");
545 &mov (&DWP($i*16+4,"esi"),"ebx");
546 &add ("ecx",&DWP(8+($i*16)+8,"esp"));
547 &adc ("edx",&DWP(8+($i*16)+12,"esp"));
548 &mov (&DWP($i*16+8,"esi"),"ecx");
549 &mov (&DWP($i*16+12,"esi"),"edx");
550 }
551 &add ("esp",8*(9+16+80)); # destroy frame
552 &sub ($K512,8*80); # rewind K

554 &cmp ("edi",&DWP(8,"esp")); # are we done yet?
555 &jb (&label("loop_x86"));

557 &mov ("esp",&DWP(12,"esp")); # restore sp
558 &function_end_A();

560 &set_label("K512",64); # Yes! I keep it in the code segment!
561 &data_word(0xd728ae22,0x428a2f98); # u64
562 &data_word(0x23ef65cd,0x71374491); # u64
563 &data_word(0xec4d3b2f,0xb5c0fbcf); # u64
564 &data_word(0x8189dbbc,0xe9b5dba5); # u64
565 &data_word(0xf348b538,0x3956c25b); # u64
566 &data_word(0xb605d019,0x59f111f1); # u64
567 &data_word(0xaf194f9b,0x923f82a4); # u64
568 &data_word(0xda6d8118,0xab1c5ed5); # u64
569 &data_word(0xa3030242,0xd807aa98); # u64
570 &data_word(0x45706fbe,0x12835b01); # u64
571 &data_word(0x4ee4b28c,0x243185be); # u64
572 &data_word(0xd5ffb4e2,0x550c7dc3); # u64
573 &data_word(0xf27b896f,0x72be5d74); # u64
574 &data_word(0x3b1696b1,0x80deb1fe); # u64
575 &data_word(0x25c71235,0x9bdc06a7); # u64
576 &data_word(0xcf692694,0xc19bf174); # u64
577 &data_word(0x9ef14ad2,0xe49b69c1); # u64
578 &data_word(0x384f25e3,0xefbe4786); # u64
579 &data_word(0x8b8cd5b5,0x0fc19dc6); # u64
580 &data_word(0x77ac9c65,0x240ca1cc); # u64
581 &data_word(0x592b0275,0x2de92c6f); # u64
582 &data_word(0x6ea6e483,0x4a7484aa); # u64
583 &data_word(0xbd41fbd4,0x5cb0a9dc); # u64
584 &data_word(0x831153b5,0x76f988da); # u64
585 &data_word(0xee66dfab,0x983e5152); # u64
586 &data_word(0x2db43210,0xa831c66d); # u64
587 &data_word(0x98fb213f,0xb00327c8); # u64
588 &data_word(0xbeef0ee4,0xbf597fc7); # u64
589 &data_word(0x3da88fc2,0xc6e00bf3); # u64

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-586.pl 10

590 &data_word(0x930aa725,0xd5a79147); # u64
591 &data_word(0xe003826f,0x06ca6351); # u64
592 &data_word(0x0a0e6e70,0x14292967); # u64
593 &data_word(0x46d22ffc,0x27b70a85); # u64
594 &data_word(0x5c26c926,0x2e1b2138); # u64
595 &data_word(0x5ac42aed,0x4d2c6dfc); # u64
596 &data_word(0x9d95b3df,0x53380d13); # u64
597 &data_word(0x8baf63de,0x650a7354); # u64
598 &data_word(0x3c77b2a8,0x766a0abb); # u64
599 &data_word(0x47edaee6,0x81c2c92e); # u64
600 &data_word(0x1482353b,0x92722c85); # u64
601 &data_word(0x4cf10364,0xa2bfe8a1); # u64
602 &data_word(0xbc423001,0xa81a664b); # u64
603 &data_word(0xd0f89791,0xc24b8b70); # u64
604 &data_word(0x0654be30,0xc76c51a3); # u64
605 &data_word(0xd6ef5218,0xd192e819); # u64
606 &data_word(0x5565a910,0xd6990624); # u64
607 &data_word(0x5771202a,0xf40e3585); # u64
608 &data_word(0x32bbd1b8,0x106aa070); # u64
609 &data_word(0xb8d2d0c8,0x19a4c116); # u64
610 &data_word(0x5141ab53,0x1e376c08); # u64
611 &data_word(0xdf8eeb99,0x2748774c); # u64
612 &data_word(0xe19b48a8,0x34b0bcb5); # u64
613 &data_word(0xc5c95a63,0x391c0cb3); # u64
614 &data_word(0xe3418acb,0x4ed8aa4a); # u64
615 &data_word(0x7763e373,0x5b9cca4f); # u64
616 &data_word(0xd6b2b8a3,0x682e6ff3); # u64
617 &data_word(0x5defb2fc,0x748f82ee); # u64
618 &data_word(0x43172f60,0x78a5636f); # u64
619 &data_word(0xa1f0ab72,0x84c87814); # u64
620 &data_word(0x1a6439ec,0x8cc70208); # u64
621 &data_word(0x23631e28,0x90befffa); # u64
622 &data_word(0xde82bde9,0xa4506ceb); # u64
623 &data_word(0xb2c67915,0xbef9a3f7); # u64
624 &data_word(0xe372532b,0xc67178f2); # u64
625 &data_word(0xea26619c,0xca273ece); # u64
626 &data_word(0x21c0c207,0xd186b8c7); # u64
627 &data_word(0xcde0eb1e,0xeada7dd6); # u64
628 &data_word(0xee6ed178,0xf57d4f7f); # u64
629 &data_word(0x72176fba,0x06f067aa); # u64
630 &data_word(0xa2c898a6,0x0a637dc5); # u64
631 &data_word(0xbef90dae,0x113f9804); # u64
632 &data_word(0x131c471b,0x1b710b35); # u64
633 &data_word(0x23047d84,0x28db77f5); # u64
634 &data_word(0x40c72493,0x32caab7b); # u64
635 &data_word(0x15c9bebc,0x3c9ebe0a); # u64
636 &data_word(0x9c100d4c,0x431d67c4); # u64
637 &data_word(0xcb3e42b6,0x4cc5d4be); # u64
638 &data_word(0xfc657e2a,0x597f299c); # u64
639 &data_word(0x3ad6faec,0x5fcb6fab); # u64
640 &data_word(0x4a475817,0x6c44198c); # u64
641 &function_end_B("sha512_block_data_order");
642 &asciz("SHA512 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");

644 &asm_finish();

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-x86_64.pl 1

**
 11902 Fri May 30 18:32:05 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-x86_64.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl
2 #
3 # ==
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. Rights for redistribution and usage in source and binary
6 # forms are granted according to the OpenSSL license.
7 # ==
8 #
9 # sha256/512_block procedure for x86_64.
10 #
11 # 40% improvement over compiler-generated code on Opteron. On EM64T
12 # sha256 was observed to run >80% faster and sha512 - >40%. No magical
13 # tricks, just straight implementation... I really wonder why gcc
14 # [being armed with inline assembler] fails to generate as fast code.
15 # The only thing which is cool about this module is that it’s very
16 # same instruction sequence used for both SHA-256 and SHA-512. In
17 # former case the instructions operate on 32-bit operands, while in
18 # latter - on 64-bit ones. All I had to do is to get one flavor right,
19 # the other one passed the test right away:-)
20 #
21 # sha256_block runs in ~1005 cycles on Opteron, which gives you
22 # asymptotic performance of 64*1000/1005=63.7MBps times CPU clock
23 # frequency in GHz. sha512_block runs in ~1275 cycles, which results
24 # in 128*1000/1275=100MBps per GHz. Is there room for improvement?
25 # Well, if you compare it to IA-64 implementation, which maintains
26 # X[16] in register bank[!], tends to 4 instructions per CPU clock
27 # cycle and runs in 1003 cycles, 1275 is very good result for 3-way
28 # issue Opteron pipeline and X[16] maintained in memory. So that *if*
29 # there is a way to improve it, *then* the only way would be to try to
30 # offload X[16] updates to SSE unit, but that would require "deeper"
31 # loop unroll, which in turn would naturally cause size blow-up, not
32 # to mention increased complexity! And once again, only *if* it’s
33 # actually possible to noticeably improve overall ILP, instruction
34 # level parallelism, on a given CPU implementation in this case.
35 #
36 # Special note on Intel EM64T. While Opteron CPU exhibits perfect
37 # perfromance ratio of 1.5 between 64- and 32-bit flavors [see above],
38 # [currently available] EM64T CPUs apparently are far from it. On the
39 # contrary, 64-bit version, sha512_block, is ~30% *slower* than 32-bit
40 # sha256_block:-(This is presumably because 64-bit shifts/rotates
41 # apparently are not atomic instructions, but implemented in microcode.

43 $flavour = shift;
44 $output = shift;
45 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

47 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

49 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
50 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
51 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
52 die "can’t locate x86_64-xlate.pl";

54 open OUT,"| \"$^X\" $xlate $flavour $output";
55 *STDOUT=*OUT;

57 if ($output =~ /512/) {
58 $func="sha512_block_data_order";
59 $TABLE="K512";
60 $SZ=8;
61 @ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%rax","%rbx","%rcx","%rdx",

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-x86_64.pl 2

62 "%r8", "%r9", "%r10","%r11");
63 ($T1,$a0,$a1,$a2)=("%r12","%r13","%r14","%r15");
64 @Sigma0=(28,34,39);
65 @Sigma1=(14,18,41);
66 @sigma0=(1, 8, 7);
67 @sigma1=(19,61, 6);
68 $rounds=80;
69 } else {
70 $func="sha256_block_data_order";
71 $TABLE="K256";
72 $SZ=4;
73 @ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%eax","%ebx","%ecx","%edx",
74 "%r8d","%r9d","%r10d","%r11d");
75 ($T1,$a0,$a1,$a2)=("%r12d","%r13d","%r14d","%r15d");
76 @Sigma0=(2,13,22);
77 @Sigma1=(6,11,25);
78 @sigma0=(7,18, 3);
79 @sigma1=(17,19,10);
80 $rounds=64;
81 }

83 $ctx="%rdi"; # 1st arg
84 $round="%rdi"; # zaps $ctx
85 $inp="%rsi"; # 2nd arg
86 $Tbl="%rbp";

88 $_ctx="16*$SZ+0*8(%rsp)";
89 $_inp="16*$SZ+1*8(%rsp)";
90 $_end="16*$SZ+2*8(%rsp)";
91 $_rsp="16*$SZ+3*8(%rsp)";
92 $framesz="16*$SZ+4*8";

95 sub ROUND_00_15()
96 { my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;

98 $code.=<<___;
99 ror \$‘$Sigma1[2]-$Sigma1[1]‘,$a0
100 mov $f,$a2
101 mov $T1,‘$SZ*($i&0xf)‘(%rsp)

103 ror \$‘$Sigma0[2]-$Sigma0[1]‘,$a1
104 xor $e,$a0
105 xor $g,$a2 # f^g

107 ror \$‘$Sigma1[1]-$Sigma1[0]‘,$a0
108 add $h,$T1 # T1+=h
109 xor $a,$a1

111 add ($Tbl,$round,$SZ),$T1 # T1+=K[round]
112 and $e,$a2 # (f^g)&e
113 mov $b,$h

115 ror \$‘$Sigma0[1]-$Sigma0[0]‘,$a1
116 xor $e,$a0
117 xor $g,$a2 # Ch(e,f,g)=((f^g)&e)^g

119 xor $c,$h # b^c
120 xor $a,$a1
121 add $a2,$T1 # T1+=Ch(e,f,g)
122 mov $b,$a2

124 ror \$$Sigma1[0],$a0 # Sigma1(e)
125 and $a,$h # h=(b^c)&a
126 and $c,$a2 # b&c

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-x86_64.pl 3

128 ror \$$Sigma0[0],$a1 # Sigma0(a)
129 add $a0,$T1 # T1+=Sigma1(e)
130 add $a2,$h # h+=b&c (completes +=Maj(a,b,c)

132 add $T1,$d # d+=T1
133 add $T1,$h # h+=T1
134 lea 1($round),$round # round++
135 add $a1,$h # h+=Sigma0(a)

137 ___
138 }

140 sub ROUND_16_XX()
141 { my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;

143 $code.=<<___;
144 mov ‘$SZ*(($i+1)&0xf)‘(%rsp),$a0
145 mov ‘$SZ*(($i+14)&0xf)‘(%rsp),$a1
146 mov $a0,$T1
147 mov $a1,$a2

149 ror \$‘$sigma0[1]-$sigma0[0]‘,$T1
150 xor $a0,$T1
151 shr \$$sigma0[2],$a0

153 ror \$$sigma0[0],$T1
154 xor $T1,$a0 # sigma0(X[(i+1)&0xf])
155 mov ‘$SZ*(($i+9)&0xf)‘(%rsp),$T1

157 ror \$‘$sigma1[1]-$sigma1[0]‘,$a2
158 xor $a1,$a2
159 shr \$$sigma1[2],$a1

161 ror \$$sigma1[0],$a2
162 add $a0,$T1
163 xor $a2,$a1 # sigma1(X[(i+14)&0xf])

165 add ‘$SZ*($i&0xf)‘(%rsp),$T1
166 mov $e,$a0
167 add $a1,$T1
168 mov $a,$a1
169 ___
170 &ROUND_00_15(@_);
171 }

173 $code=<<___;
174 .text

176 .globl $func
177 .type $func,\@function,4
178 .align 16
179 $func:
180 push %rbx
181 push %rbp
182 push %r12
183 push %r13
184 push %r14
185 push %r15
186 mov %rsp,%r11 # copy %rsp
187 shl \$4,%rdx # num*16
188 sub \$$framesz,%rsp
189 lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ
190 and \$-64,%rsp # align stack frame
191 mov $ctx,$_ctx # save ctx, 1st arg
192 mov $inp,$_inp # save inp, 2nd arh
193 mov %rdx,$_end # save end pointer, "3rd" arg

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-x86_64.pl 4

194 mov %r11,$_rsp # save copy of %rsp
195 .Lprologue:

197 lea $TABLE(%rip),$Tbl

199 mov $SZ*0($ctx),$A
200 mov $SZ*1($ctx),$B
201 mov $SZ*2($ctx),$C
202 mov $SZ*3($ctx),$D
203 mov $SZ*4($ctx),$E
204 mov $SZ*5($ctx),$F
205 mov $SZ*6($ctx),$G
206 mov $SZ*7($ctx),$H
207 jmp .Lloop

209 .align 16
210 .Lloop:
211 xor $round,$round
212 ___
213 for($i=0;$i<16;$i++) {
214 $code.=" mov $SZ*$i($inp),$T1\n";
215 $code.=" mov @ROT[4],$a0\n";
216 $code.=" mov @ROT[0],$a1\n";
217 $code.=" bswap $T1\n";
218 &ROUND_00_15($i,@ROT);
219 unshift(@ROT,pop(@ROT));
220 }
221 $code.=<<___;
222 jmp .Lrounds_16_xx
223 .align 16
224 .Lrounds_16_xx:
225 ___
226 for(;$i<32;$i++) {
227 &ROUND_16_XX($i,@ROT);
228 unshift(@ROT,pop(@ROT));
229 }

231 $code.=<<___;
232 cmp \$$rounds,$round
233 jb .Lrounds_16_xx

235 mov $_ctx,$ctx
236 lea 16*$SZ($inp),$inp

238 add $SZ*0($ctx),$A
239 add $SZ*1($ctx),$B
240 add $SZ*2($ctx),$C
241 add $SZ*3($ctx),$D
242 add $SZ*4($ctx),$E
243 add $SZ*5($ctx),$F
244 add $SZ*6($ctx),$G
245 add $SZ*7($ctx),$H

247 cmp $_end,$inp

249 mov $A,$SZ*0($ctx)
250 mov $B,$SZ*1($ctx)
251 mov $C,$SZ*2($ctx)
252 mov $D,$SZ*3($ctx)
253 mov $E,$SZ*4($ctx)
254 mov $F,$SZ*5($ctx)
255 mov $G,$SZ*6($ctx)
256 mov $H,$SZ*7($ctx)
257 jb .Lloop

259 mov $_rsp,%rsi

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-x86_64.pl 5

260 mov (%rsi),%r15
261 mov 8(%rsi),%r14
262 mov 16(%rsi),%r13
263 mov 24(%rsi),%r12
264 mov 32(%rsi),%rbp
265 mov 40(%rsi),%rbx
266 lea 48(%rsi),%rsp
267 .Lepilogue:
268 ret
269 .size $func,.-$func
270 ___

272 if ($SZ==4) {
273 $code.=<<___;
274 .align 64
275 .type $TABLE,\@object
276 $TABLE:
277 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
278 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
279 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
280 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
281 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
282 .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
283 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
284 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
285 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
286 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
287 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
288 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
289 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
290 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
291 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
292 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
293 ___
294 } else {
295 $code.=<<___;
296 .align 64
297 .type $TABLE,\@object
298 $TABLE:
299 .quad 0x428a2f98d728ae22,0x7137449123ef65cd
300 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
301 .quad 0x3956c25bf348b538,0x59f111f1b605d019
302 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
303 .quad 0xd807aa98a3030242,0x12835b0145706fbe
304 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
305 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
306 .quad 0x9bdc06a725c71235,0xc19bf174cf692694
307 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
308 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
309 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
310 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
311 .quad 0x983e5152ee66dfab,0xa831c66d2db43210
312 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
313 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
314 .quad 0x06ca6351e003826f,0x142929670a0e6e70
315 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
316 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
317 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
318 .quad 0x81c2c92e47edaee6,0x92722c851482353b
319 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
320 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
321 .quad 0xd192e819d6ef5218,0xd69906245565a910
322 .quad 0xf40e35855771202a,0x106aa07032bbd1b8
323 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
324 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
325 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-x86_64.pl 6

326 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
327 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
328 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
329 .quad 0x90befffa23631e28,0xa4506cebde82bde9
330 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
331 .quad 0xca273eceea26619c,0xd186b8c721c0c207
332 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
333 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
334 .quad 0x113f9804bef90dae,0x1b710b35131c471b
335 .quad 0x28db77f523047d84,0x32caab7b40c72493
336 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
337 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
338 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
339 ___
340 }

342 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
343 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
344 if ($win64) {
345 $rec="%rcx";
346 $frame="%rdx";
347 $context="%r8";
348 $disp="%r9";

350 $code.=<<___;
351 .extern __imp_RtlVirtualUnwind
352 .type se_handler,\@abi-omnipotent
353 .align 16
354 se_handler:
355 push %rsi
356 push %rdi
357 push %rbx
358 push %rbp
359 push %r12
360 push %r13
361 push %r14
362 push %r15
363 pushfq
364 sub \$64,%rsp

366 mov 120($context),%rax # pull context->Rax
367 mov 248($context),%rbx # pull context->Rip

369 lea .Lprologue(%rip),%r10
370 cmp %r10,%rbx # context->Rip<.Lprologue
371 jb .Lin_prologue

373 mov 152($context),%rax # pull context->Rsp

375 lea .Lepilogue(%rip),%r10
376 cmp %r10,%rbx # context->Rip>=.Lepilogue
377 jae .Lin_prologue

379 mov 16*$SZ+3*8(%rax),%rax # pull $_rsp
380 lea 48(%rax),%rax

382 mov -8(%rax),%rbx
383 mov -16(%rax),%rbp
384 mov -24(%rax),%r12
385 mov -32(%rax),%r13
386 mov -40(%rax),%r14
387 mov -48(%rax),%r15
388 mov %rbx,144($context) # restore context->Rbx
389 mov %rbp,160($context) # restore context->Rbp
390 mov %r12,216($context) # restore context->R12
391 mov %r13,224($context) # restore context->R13

new/usr/src/lib/openssl/libsunw_crypto/pl/sha512-x86_64.pl 7

392 mov %r14,232($context) # restore context->R14
393 mov %r15,240($context) # restore context->R15

395 .Lin_prologue:
396 mov 8(%rax),%rdi
397 mov 16(%rax),%rsi
398 mov %rax,152($context) # restore context->Rsp
399 mov %rsi,168($context) # restore context->Rsi
400 mov %rdi,176($context) # restore context->Rdi

402 mov 40($disp),%rdi # disp->ContextRecord
403 mov $context,%rsi # context
404 mov \$154,%ecx # sizeof(CONTEXT)
405 .long 0xa548f3fc # cld; rep movsq

407 mov $disp,%rsi
408 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
409 mov 8(%rsi),%rdx # arg2, disp->ImageBase
410 mov 0(%rsi),%r8 # arg3, disp->ControlPc
411 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
412 mov 40(%rsi),%r10 # disp->ContextRecord
413 lea 56(%rsi),%r11 # &disp->HandlerData
414 lea 24(%rsi),%r12 # &disp->EstablisherFrame
415 mov %r10,32(%rsp) # arg5
416 mov %r11,40(%rsp) # arg6
417 mov %r12,48(%rsp) # arg7
418 mov %rcx,56(%rsp) # arg8, (NULL)
419 call *__imp_RtlVirtualUnwind(%rip)

421 mov \$1,%eax # ExceptionContinueSearch
422 add \$64,%rsp
423 popfq
424 pop %r15
425 pop %r14
426 pop %r13
427 pop %r12
428 pop %rbp
429 pop %rbx
430 pop %rdi
431 pop %rsi
432 ret
433 .size se_handler,.-se_handler

435 .section .pdata
436 .align 4
437 .rva .LSEH_begin_$func
438 .rva .LSEH_end_$func
439 .rva .LSEH_info_$func

441 .section .xdata
442 .align 8
443 .LSEH_info_$func:
444 .byte 9,0,0,0
445 .rva se_handler
446 ___
447 }

449 $code =~ s/\‘([^\‘]*)\‘/eval $1/gem;
450 print $code;
451 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86.pl 1

**
 27667 Fri May 30 18:32:05 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 ##
4 ## Constant-time SSSE3 AES core implementation.
5 ## version 0.1
6 ##
7 ## By Mike Hamburg (Stanford University), 2009
8 ## Public domain.
9 ##
10 ## For details see http://shiftleft.org/papers/vector_aes/ and
11 ## http://crypto.stanford.edu/vpaes/.

13 ##
14 # September 2011.
15 #
16 # Port vpaes-x86_64.pl as 32-bit "almost" drop-in replacement for
17 # aes-586.pl. "Almost" refers to the fact that AES_cbc_encrypt
18 # doesn’t handle partial vectors (doesn’t have to if called from
19 # EVP only). "Drop-in" implies that this module doesn’t share key
20 # schedule structure with the original nor does it make assumption
21 # about its alignment...
22 #
23 # Performance summary. aes-586.pl column lists large-block CBC
24 # encrypt/decrypt/with-hyper-threading-off(*) results in cycles per
25 # byte processed with 128-bit key, and vpaes-x86.pl column - [also
26 # large-block CBC] encrypt/decrypt.
27 #
28 # aes-586.pl vpaes-x86.pl
29 #
30 # Core 2(**) 29.1/42.3/18.3 22.0/25.6(***)
31 # Nehalem 27.9/40.4/18.1 10.3/12.0
32 # Atom 102./119./60.1 64.5/85.3(***)
33 #
34 # (*) "Hyper-threading" in the context refers rather to cache shared
35 # among multiple cores, than to specifically Intel HTT. As vast
36 # majority of contemporary cores share cache, slower code path
37 # is common place. In other words "with-hyper-threading-off"
38 # results are presented mostly for reference purposes.
39 #
40 # (**) "Core 2" refers to initial 65nm design, a.k.a. Conroe.
41 #
42 # (***) Less impressive improvement on Core 2 and Atom is due to slow
43 # pshufb, yet it’s respectable +32%/65% improvement on Core 2
44 # and +58%/40% on Atom (as implied, over "hyper-threading-safe"
45 # code path).
46 #
47 # <appro@openssl.org>

49 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
50 push(@INC,"${dir}","${dir}../../perlasm");
51 require "x86asm.pl";

53 &asm_init($ARGV[0],"vpaes-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");

55 $PREFIX="vpaes";

57 my ($round, $base, $magic, $key, $const, $inp, $out)=
58 ("eax", "ebx", "ecx", "edx","ebp", "esi","edi");

60 &static_label("_vpaes_consts");
61 &static_label("_vpaes_schedule_low_round");

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86.pl 2

63 &set_label("_vpaes_consts",64);
64 $k_inv=-0x30; # inv, inva
65 &data_word(0x0D080180,0x0E05060F,0x0A0B0C02,0x04070309);
66 &data_word(0x0F0B0780,0x01040A06,0x02050809,0x030D0E0C);

68 $k_s0F=-0x10; # s0F
69 &data_word(0x0F0F0F0F,0x0F0F0F0F,0x0F0F0F0F,0x0F0F0F0F);

71 $k_ipt=0x00; # input transform (lo, hi)
72 &data_word(0x5A2A7000,0xC2B2E898,0x52227808,0xCABAE090);
73 &data_word(0x317C4D00,0x4C01307D,0xB0FDCC81,0xCD80B1FC);

75 $k_sb1=0x20; # sb1u, sb1t
76 &data_word(0xCB503E00,0xB19BE18F,0x142AF544,0xA5DF7A6E);
77 &data_word(0xFAE22300,0x3618D415,0x0D2ED9EF,0x3BF7CCC1);
78 $k_sb2=0x40; # sb2u, sb2t
79 &data_word(0x0B712400,0xE27A93C6,0xBC982FCD,0x5EB7E955);
80 &data_word(0x0AE12900,0x69EB8840,0xAB82234A,0xC2A163C8);
81 $k_sbo=0x60; # sbou, sbot
82 &data_word(0x6FBDC700,0xD0D26D17,0xC502A878,0x15AABF7A);
83 &data_word(0x5FBB6A00,0xCFE474A5,0x412B35FA,0x8E1E90D1);

85 $k_mc_forward=0x80; # mc_forward
86 &data_word(0x00030201,0x04070605,0x080B0A09,0x0C0F0E0D);
87 &data_word(0x04070605,0x080B0A09,0x0C0F0E0D,0x00030201);
88 &data_word(0x080B0A09,0x0C0F0E0D,0x00030201,0x04070605);
89 &data_word(0x0C0F0E0D,0x00030201,0x04070605,0x080B0A09);

91 $k_mc_backward=0xc0; # mc_backward
92 &data_word(0x02010003,0x06050407,0x0A09080B,0x0E0D0C0F);
93 &data_word(0x0E0D0C0F,0x02010003,0x06050407,0x0A09080B);
94 &data_word(0x0A09080B,0x0E0D0C0F,0x02010003,0x06050407);
95 &data_word(0x06050407,0x0A09080B,0x0E0D0C0F,0x02010003);

97 $k_sr=0x100; # sr
98 &data_word(0x03020100,0x07060504,0x0B0A0908,0x0F0E0D0C);
99 &data_word(0x0F0A0500,0x030E0904,0x07020D08,0x0B06010C);
100 &data_word(0x0B020900,0x0F060D04,0x030A0108,0x070E050C);
101 &data_word(0x070A0D00,0x0B0E0104,0x0F020508,0x0306090C);

103 $k_rcon=0x140; # rcon
104 &data_word(0xAF9DEEB6,0x1F8391B9,0x4D7C7D81,0x702A9808);

106 $k_s63=0x150; # s63: all equal to 0x63 transformed
107 &data_word(0x5B5B5B5B,0x5B5B5B5B,0x5B5B5B5B,0x5B5B5B5B);

109 $k_opt=0x160; # output transform
110 &data_word(0xD6B66000,0xFF9F4929,0xDEBE6808,0xF7974121);
111 &data_word(0x50BCEC00,0x01EDBD51,0xB05C0CE0,0xE10D5DB1);

113 $k_deskew=0x180; # deskew tables: inverts the sbox’s "skew"
114 &data_word(0x47A4E300,0x07E4A340,0x5DBEF91A,0x1DFEB95A);
115 &data_word(0x83EA6900,0x5F36B5DC,0xF49D1E77,0x2841C2AB);
116 ##
117 ## Decryption stuff
118 ## Key schedule constants
119 ##
120 $k_dksd=0x1a0; # decryption key schedule: invskew x*D
121 &data_word(0xA3E44700,0xFEB91A5D,0x5A1DBEF9,0x0740E3A4);
122 &data_word(0xB5368300,0x41C277F4,0xAB289D1E,0x5FDC69EA);
123 $k_dksb=0x1c0; # decryption key schedule: invskew x*B
124 &data_word(0x8550D500,0x9A4FCA1F,0x1CC94C99,0x03D65386);
125 &data_word(0xB6FC4A00,0x115BEDA7,0x7E3482C8,0xD993256F);
126 $k_dkse=0x1e0; # decryption key schedule: invskew x*E + 0x63
127 &data_word(0x1FC9D600,0xD5031CCA,0x994F5086,0x53859A4C);

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86.pl 3

128 &data_word(0x4FDC7BE8,0xA2319605,0x20B31487,0xCD5EF96A);
129 $k_dks9=0x200; # decryption key schedule: invskew x*9
130 &data_word(0x7ED9A700,0xB6116FC8,0x82255BFC,0x4AED9334);
131 &data_word(0x27143300,0x45765162,0xE9DAFDCE,0x8BB89FAC);

133 ##
134 ## Decryption stuff
135 ## Round function constants
136 ##
137 $k_dipt=0x220; # decryption input transform
138 &data_word(0x0B545F00,0x0F505B04,0x114E451A,0x154A411E);
139 &data_word(0x60056500,0x86E383E6,0xF491F194,0x12771772);

141 $k_dsb9=0x240; # decryption sbox output *9*u, *9*t
142 &data_word(0x9A86D600,0x851C0353,0x4F994CC9,0xCAD51F50);
143 &data_word(0xECD74900,0xC03B1789,0xB2FBA565,0x725E2C9E);
144 $k_dsbd=0x260; # decryption sbox output *D*u, *D*t
145 &data_word(0xE6B1A200,0x7D57CCDF,0x882A4439,0xF56E9B13);
146 &data_word(0x24C6CB00,0x3CE2FAF7,0x15DEEFD3,0x2931180D);
147 $k_dsbb=0x280; # decryption sbox output *B*u, *B*t
148 &data_word(0x96B44200,0xD0226492,0xB0F2D404,0x602646F6);
149 &data_word(0xCD596700,0xC19498A6,0x3255AA6B,0xF3FF0C3E);
150 $k_dsbe=0x2a0; # decryption sbox output *E*u, *E*t
151 &data_word(0x26D4D000,0x46F29296,0x64B4F6B0,0x22426004);
152 &data_word(0xFFAAC100,0x0C55A6CD,0x98593E32,0x9467F36B);
153 $k_dsbo=0x2c0; # decryption sbox final output
154 &data_word(0x7EF94000,0x1387EA53,0xD4943E2D,0xC7AA6DB9);
155 &data_word(0x93441D00,0x12D7560F,0xD8C58E9C,0xCA4B8159);
156 &asciz ("Vector Permutation AES for x86/SSSE3, Mike Hamburg (Stanford Universit
157 &align (64);

159 &function_begin_B("_vpaes_preheat");
160 &add ($const,&DWP(0,"esp"));
161 &movdqa ("xmm7",&QWP($k_inv,$const));
162 &movdqa ("xmm6",&QWP($k_s0F,$const));
163 &ret ();
164 &function_end_B("_vpaes_preheat");

166 ##
167 ## _aes_encrypt_core
168 ##
169 ## AES-encrypt %xmm0.
170 ##
171 ## Inputs:
172 ## %xmm0 = input
173 ## %xmm6-%xmm7 as in _vpaes_preheat
174 ## (%edx) = scheduled keys
175 ##
176 ## Output in %xmm0
177 ## Clobbers %xmm1-%xmm5, %eax, %ebx, %ecx, %edx
178 ##
179 ##
180 &function_begin_B("_vpaes_encrypt_core");
181 &mov ($magic,16);
182 &mov ($round,&DWP(240,$key));
183 &movdqa ("xmm1","xmm6")
184 &movdqa ("xmm2",&QWP($k_ipt,$const));
185 &pandn ("xmm1","xmm0");
186 &movdqu ("xmm5",&QWP(0,$key));
187 &psrld ("xmm1",4);
188 &pand ("xmm0","xmm6");
189 &pshufb ("xmm2","xmm0");
190 &movdqa ("xmm0",&QWP($k_ipt+16,$const));
191 &pshufb ("xmm0","xmm1");
192 &pxor ("xmm2","xmm5");
193 &pxor ("xmm0","xmm2");

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86.pl 4

194 &add ($key,16);
195 &lea ($base,&DWP($k_mc_backward,$const));
196 &jmp (&label("enc_entry"));

199 &set_label("enc_loop",16);
200 # middle of middle round
201 &movdqa ("xmm4",&QWP($k_sb1,$const)); # 4 : sb1u
202 &pshufb ("xmm4","xmm2"); # 4 = sb1u
203 &pxor ("xmm4","xmm5"); # 4 = sb1u + k
204 &movdqa ("xmm0",&QWP($k_sb1+16,$const));# 0 : sb1t
205 &pshufb ("xmm0","xmm3"); # 0 = sb1t
206 &pxor ("xmm0","xmm4"); # 0 = A
207 &movdqa ("xmm5",&QWP($k_sb2,$const)); # 4 : sb2u
208 &pshufb ("xmm5","xmm2"); # 4 = sb2u
209 &movdqa ("xmm1",&QWP(-0x40,$base,$magic));# .Lk_mc_forward[]
210 &movdqa ("xmm2",&QWP($k_sb2+16,$const));# 2 : sb2t
211 &pshufb ("xmm2","xmm3"); # 2 = sb2t
212 &pxor ("xmm2","xmm5"); # 2 = 2A
213 &movdqa ("xmm4",&QWP(0,$base,$magic)); # .Lk_mc_backward[]
214 &movdqa ("xmm3","xmm0"); # 3 = A
215 &pshufb ("xmm0","xmm1"); # 0 = B
216 &add ($key,16); # next key
217 &pxor ("xmm0","xmm2"); # 0 = 2A+B
218 &pshufb ("xmm3","xmm4"); # 3 = D
219 &add ($magic,16); # next mc
220 &pxor ("xmm3","xmm0"); # 3 = 2A+B+D
221 &pshufb ("xmm0","xmm1"); # 0 = 2B+C
222 &and ($magic,0x30); # ... mod 4
223 &pxor ("xmm0","xmm3"); # 0 = 2A+3B+C+D
224 &sub ($round,1); # nr--

226 &set_label("enc_entry");
227 # top of round
228 &movdqa ("xmm1","xmm6"); # 1 : i
229 &pandn ("xmm1","xmm0"); # 1 = i<<4
230 &psrld ("xmm1",4); # 1 = i
231 &pand ("xmm0","xmm6"); # 0 = k
232 &movdqa ("xmm5",&QWP($k_inv+16,$const));# 2 : a/k
233 &pshufb ("xmm5","xmm0"); # 2 = a/k
234 &pxor ("xmm0","xmm1"); # 0 = j
235 &movdqa ("xmm3","xmm7"); # 3 : 1/i
236 &pshufb ("xmm3","xmm1"); # 3 = 1/i
237 &pxor ("xmm3","xmm5"); # 3 = iak = 1/i + a/k
238 &movdqa ("xmm4","xmm7"); # 4 : 1/j
239 &pshufb ("xmm4","xmm0"); # 4 = 1/j
240 &pxor ("xmm4","xmm5"); # 4 = jak = 1/j + a/k
241 &movdqa ("xmm2","xmm7"); # 2 : 1/iak
242 &pshufb ("xmm2","xmm3"); # 2 = 1/iak
243 &pxor ("xmm2","xmm0"); # 2 = io
244 &movdqa ("xmm3","xmm7"); # 3 : 1/jak
245 &movdqu ("xmm5",&QWP(0,$key));
246 &pshufb ("xmm3","xmm4"); # 3 = 1/jak
247 &pxor ("xmm3","xmm1"); # 3 = jo
248 &jnz (&label("enc_loop"));

250 # middle of last round
251 &movdqa ("xmm4",&QWP($k_sbo,$const)); # 3 : sbou .Lk_sbo
252 &movdqa ("xmm0",&QWP($k_sbo+16,$const));# 3 : sbot .Lk_sbo+16
253 &pshufb ("xmm4","xmm2"); # 4 = sbou
254 &pxor ("xmm4","xmm5"); # 4 = sb1u + k
255 &pshufb ("xmm0","xmm3"); # 0 = sb1t
256 &movdqa ("xmm1",&QWP(0x40,$base,$magic));# .Lk_sr[]
257 &pxor ("xmm0","xmm4"); # 0 = A
258 &pshufb ("xmm0","xmm1");
259 &ret ();

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86.pl 5

260 &function_end_B("_vpaes_encrypt_core");

262 ##
263 ## Decryption core
264 ##
265 ## Same API as encryption core.
266 ##
267 &function_begin_B("_vpaes_decrypt_core");
268 &mov ($round,&DWP(240,$key));
269 &lea ($base,&DWP($k_dsbd,$const));
270 &movdqa ("xmm1","xmm6");
271 &movdqa ("xmm2",&QWP(k_dipt-k_dsbd,$base));
272 &pandn ("xmm1","xmm0");
273 &mov ($magic,$round);
274 &psrld ("xmm1",4)
275 &movdqu ("xmm5",&QWP(0,$key));
276 &shl ($magic,4);
277 &pand ("xmm0","xmm6");
278 &pshufb ("xmm2","xmm0");
279 &movdqa ("xmm0",&QWP(k_dipt-k_dsbd+16,$base));
280 &xor ($magic,0x30);
281 &pshufb ("xmm0","xmm1");
282 &and ($magic,0x30);
283 &pxor ("xmm2","xmm5");
284 &movdqa ("xmm5",&QWP($k_mc_forward+48,$const));
285 &pxor ("xmm0","xmm2");
286 &add ($key,16);
287 &lea ($magic,&DWP($k_sr-$k_dsbd,$base,$magic));
288 &jmp (&label("dec_entry"));

290 &set_label("dec_loop",16);
291 ##
292 ## Inverse mix columns
293 ##
294 &movdqa ("xmm4",&QWP(-0x20,$base)); # 4 : sb9u
295 &pshufb ("xmm4","xmm2"); # 4 = sb9u
296 &pxor ("xmm4","xmm0");
297 &movdqa ("xmm0",&QWP(-0x10,$base)); # 0 : sb9t
298 &pshufb ("xmm0","xmm3"); # 0 = sb9t
299 &pxor ("xmm0","xmm4"); # 0 = ch
300 &add ($key,16); # next round key

302 &pshufb ("xmm0","xmm5"); # MC ch
303 &movdqa ("xmm4",&QWP(0,$base)); # 4 : sbdu
304 &pshufb ("xmm4","xmm2"); # 4 = sbdu
305 &pxor ("xmm4","xmm0"); # 4 = ch
306 &movdqa ("xmm0",&QWP(0x10,$base)); # 0 : sbdt
307 &pshufb ("xmm0","xmm3"); # 0 = sbdt
308 &pxor ("xmm0","xmm4"); # 0 = ch
309 &sub ($round,1); # nr--

311 &pshufb ("xmm0","xmm5"); # MC ch
312 &movdqa ("xmm4",&QWP(0x20,$base)); # 4 : sbbu
313 &pshufb ("xmm4","xmm2"); # 4 = sbbu
314 &pxor ("xmm4","xmm0"); # 4 = ch
315 &movdqa ("xmm0",&QWP(0x30,$base)); # 0 : sbbt
316 &pshufb ("xmm0","xmm3"); # 0 = sbbt
317 &pxor ("xmm0","xmm4"); # 0 = ch

319 &pshufb ("xmm0","xmm5"); # MC ch
320 &movdqa ("xmm4",&QWP(0x40,$base)); # 4 : sbeu
321 &pshufb ("xmm4","xmm2"); # 4 = sbeu
322 &pxor ("xmm4","xmm0"); # 4 = ch
323 &movdqa ("xmm0",&QWP(0x50,$base)); # 0 : sbet
324 &pshufb ("xmm0","xmm3"); # 0 = sbet
325 &pxor ("xmm0","xmm4"); # 0 = ch

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86.pl 6

327 &palignr("xmm5","xmm5",12);

329 &set_label("dec_entry");
330 # top of round
331 &movdqa ("xmm1","xmm6"); # 1 : i
332 &pandn ("xmm1","xmm0"); # 1 = i<<4
333 &psrld ("xmm1",4); # 1 = i
334 &pand ("xmm0","xmm6"); # 0 = k
335 &movdqa ("xmm2",&QWP($k_inv+16,$const));# 2 : a/k
336 &pshufb ("xmm2","xmm0"); # 2 = a/k
337 &pxor ("xmm0","xmm1"); # 0 = j
338 &movdqa ("xmm3","xmm7"); # 3 : 1/i
339 &pshufb ("xmm3","xmm1"); # 3 = 1/i
340 &pxor ("xmm3","xmm2"); # 3 = iak = 1/i + a/k
341 &movdqa ("xmm4","xmm7"); # 4 : 1/j
342 &pshufb ("xmm4","xmm0"); # 4 = 1/j
343 &pxor ("xmm4","xmm2"); # 4 = jak = 1/j + a/k
344 &movdqa ("xmm2","xmm7"); # 2 : 1/iak
345 &pshufb ("xmm2","xmm3"); # 2 = 1/iak
346 &pxor ("xmm2","xmm0"); # 2 = io
347 &movdqa ("xmm3","xmm7"); # 3 : 1/jak
348 &pshufb ("xmm3","xmm4"); # 3 = 1/jak
349 &pxor ("xmm3","xmm1"); # 3 = jo
350 &movdqu ("xmm0",&QWP(0,$key));
351 &jnz (&label("dec_loop"));

353 # middle of last round
354 &movdqa ("xmm4",&QWP(0x60,$base)); # 3 : sbou
355 &pshufb ("xmm4","xmm2"); # 4 = sbou
356 &pxor ("xmm4","xmm0"); # 4 = sb1u + k
357 &movdqa ("xmm0",&QWP(0x70,$base)); # 0 : sbot
358 &movdqa ("xmm2",&QWP(0,$magic));
359 &pshufb ("xmm0","xmm3"); # 0 = sb1t
360 &pxor ("xmm0","xmm4"); # 0 = A
361 &pshufb ("xmm0","xmm2");
362 &ret ();
363 &function_end_B("_vpaes_decrypt_core");

365 ##
366 ## ##
367 ## AES key schedule ##
368 ## ##
369 ##
370 &function_begin_B("_vpaes_schedule_core");
371 &add ($const,&DWP(0,"esp"));
372 &movdqu ("xmm0",&QWP(0,$inp)); # load key (unaligned)
373 &movdqa ("xmm2",&QWP($k_rcon,$const)); # load rcon

375 # input transform
376 &movdqa ("xmm3","xmm0");
377 &lea ($base,&DWP($k_ipt,$const));
378 &movdqa (&QWP(4,"esp"),"xmm2"); # xmm8
379 &call ("_vpaes_schedule_transform");
380 &movdqa ("xmm7","xmm0");

382 &test ($out,$out);
383 &jnz (&label("schedule_am_decrypting"));

385 # encrypting, output zeroth round key after transform
386 &movdqu (&QWP(0,$key),"xmm0");
387 &jmp (&label("schedule_go"));

389 &set_label("schedule_am_decrypting");
390 # decrypting, output zeroth round key after shiftrows
391 &movdqa ("xmm1",&QWP($k_sr,$const,$magic));

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86.pl 7

392 &pshufb ("xmm3","xmm1");
393 &movdqu (&QWP(0,$key),"xmm3");
394 &xor ($magic,0x30);

396 &set_label("schedule_go");
397 &cmp ($round,192);
398 &ja (&label("schedule_256"));
399 &je (&label("schedule_192"));
400 # 128: fall though

402 ##
403 ## .schedule_128
404 ##
405 ## 128-bit specific part of key schedule.
406 ##
407 ## This schedule is really simple, because all its parts
408 ## are accomplished by the subroutines.
409 ##
410 &set_label("schedule_128");
411 &mov ($round,10);

413 &set_label("loop_schedule_128");
414 &call ("_vpaes_schedule_round");
415 &dec ($round);
416 &jz (&label("schedule_mangle_last"));
417 &call ("_vpaes_schedule_mangle"); # write output
418 &jmp (&label("loop_schedule_128"));

420 ##
421 ## .aes_schedule_192
422 ##
423 ## 192-bit specific part of key schedule.
424 ##
425 ## The main body of this schedule is the same as the 128-bit
426 ## schedule, but with more smearing. The long, high side is
427 ## stored in %xmm7 as before, and the short, low side is in
428 ## the high bits of %xmm6.
429 ##
430 ## This schedule is somewhat nastier, however, because each
431 ## round produces 192 bits of key material, or 1.5 round keys.
432 ## Therefore, on each cycle we do 2 rounds and produce 3 round
433 ## keys.
434 ##
435 &set_label("schedule_192",16);
436 &movdqu ("xmm0",&QWP(8,$inp)); # load key part 2 (very unaligne
437 &call ("_vpaes_schedule_transform"); # input transform
438 &movdqa ("xmm6","xmm0"); # save short part
439 &pxor ("xmm4","xmm4"); # clear 4
440 &movhlps("xmm6","xmm4"); # clobber low side with zeros
441 &mov ($round,4);

443 &set_label("loop_schedule_192");
444 &call ("_vpaes_schedule_round");
445 &palignr("xmm0","xmm6",8);
446 &call ("_vpaes_schedule_mangle"); # save key n
447 &call ("_vpaes_schedule_192_smear");
448 &call ("_vpaes_schedule_mangle"); # save key n+1
449 &call ("_vpaes_schedule_round");
450 &dec ($round);
451 &jz (&label("schedule_mangle_last"));
452 &call ("_vpaes_schedule_mangle"); # save key n+2
453 &call ("_vpaes_schedule_192_smear");
454 &jmp (&label("loop_schedule_192"));

456 ##
457 ## .aes_schedule_256

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86.pl 8

458 ##
459 ## 256-bit specific part of key schedule.
460 ##
461 ## The structure here is very similar to the 128-bit
462 ## schedule, but with an additional "low side" in
463 ## %xmm6. The low side’s rounds are the same as the
464 ## high side’s, except no rcon and no rotation.
465 ##
466 &set_label("schedule_256",16);
467 &movdqu ("xmm0",&QWP(16,$inp)); # load key part 2 (unaligned)
468 &call ("_vpaes_schedule_transform"); # input transform
469 &mov ($round,7);

471 &set_label("loop_schedule_256");
472 &call ("_vpaes_schedule_mangle"); # output low result
473 &movdqa ("xmm6","xmm0"); # save cur_lo in xmm6

475 # high round
476 &call ("_vpaes_schedule_round");
477 &dec ($round);
478 &jz (&label("schedule_mangle_last"));
479 &call ("_vpaes_schedule_mangle");

481 # low round. swap xmm7 and xmm6
482 &pshufd ("xmm0","xmm0",0xFF);
483 &movdqa (&QWP(20,"esp"),"xmm7");
484 &movdqa ("xmm7","xmm6");
485 &call ("_vpaes_schedule_low_round");
486 &movdqa ("xmm7",&QWP(20,"esp"));

488 &jmp (&label("loop_schedule_256"));

490 ##
491 ## .aes_schedule_mangle_last
492 ##
493 ## Mangler for last round of key schedule
494 ## Mangles %xmm0
495 ## when encrypting, outputs out(%xmm0) ^ 63
496 ## when decrypting, outputs unskew(%xmm0)
497 ##
498 ## Always called right before return... jumps to cleanup and exits
499 ##
500 &set_label("schedule_mangle_last",16);
501 # schedule last round key from xmm0
502 &lea ($base,&DWP($k_deskew,$const));
503 &test ($out,$out);
504 &jnz (&label("schedule_mangle_last_dec"));

506 # encrypting
507 &movdqa ("xmm1",&QWP($k_sr,$const,$magic));
508 &pshufb ("xmm0","xmm1"); # output permute
509 &lea ($base,&DWP($k_opt,$const)); # prepare to output transform
510 &add ($key,32);

512 &set_label("schedule_mangle_last_dec");
513 &add ($key,-16);
514 &pxor ("xmm0",&QWP($k_s63,$const));
515 &call ("_vpaes_schedule_transform"); # output transform
516 &movdqu (&QWP(0,$key),"xmm0"); # save last key

518 # cleanup
519 &pxor ("xmm0","xmm0");
520 &pxor ("xmm1","xmm1");
521 &pxor ("xmm2","xmm2");
522 &pxor ("xmm3","xmm3");
523 &pxor ("xmm4","xmm4");

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86.pl 9

524 &pxor ("xmm5","xmm5");
525 &pxor ("xmm6","xmm6");
526 &pxor ("xmm7","xmm7");
527 &ret ();
528 &function_end_B("_vpaes_schedule_core");

530 ##
531 ## .aes_schedule_192_smear
532 ##
533 ## Smear the short, low side in the 192-bit key schedule.
534 ##
535 ## Inputs:
536 ## %xmm7: high side, b a x y
537 ## %xmm6: low side, d c 0 0
538 ## %xmm13: 0
539 ##
540 ## Outputs:
541 ## %xmm6: b+c+d b+c 0 0
542 ## %xmm0: b+c+d b+c b a
543 ##
544 &function_begin_B("_vpaes_schedule_192_smear");
545 &pshufd ("xmm0","xmm6",0x80); # d c 0 0 -> c 0 0 0
546 &pxor ("xmm6","xmm0"); # -> c+d c 0 0
547 &pshufd ("xmm0","xmm7",0xFE); # b a _ _ -> b b b a
548 &pxor ("xmm6","xmm0"); # -> b+c+d b+c b a
549 &movdqa ("xmm0","xmm6");
550 &pxor ("xmm1","xmm1");
551 &movhlps("xmm6","xmm1"); # clobber low side with zeros
552 &ret ();
553 &function_end_B("_vpaes_schedule_192_smear");

555 ##
556 ## .aes_schedule_round
557 ##
558 ## Runs one main round of the key schedule on %xmm0, %xmm7
559 ##
560 ## Specifically, runs subbytes on the high dword of %xmm0
561 ## then rotates it by one byte and xors into the low dword of
562 ## %xmm7.
563 ##
564 ## Adds rcon from low byte of %xmm8, then rotates %xmm8 for
565 ## next rcon.
566 ##
567 ## Smears the dwords of %xmm7 by xoring the low into the
568 ## second low, result into third, result into highest.
569 ##
570 ## Returns results in %xmm7 = %xmm0.
571 ## Clobbers %xmm1-%xmm5.
572 ##
573 &function_begin_B("_vpaes_schedule_round");
574 # extract rcon from xmm8
575 &movdqa ("xmm2",&QWP(8,"esp")); # xmm8
576 &pxor ("xmm1","xmm1");
577 &palignr("xmm1","xmm2",15);
578 &palignr("xmm2","xmm2",15);
579 &pxor ("xmm7","xmm1");

581 # rotate
582 &pshufd ("xmm0","xmm0",0xFF);
583 &palignr("xmm0","xmm0",1);

585 # fall through...
586 &movdqa (&QWP(8,"esp"),"xmm2"); # xmm8

588 # low round: same as high round, but no rotation and no rcon.
589 &set_label("_vpaes_schedule_low_round");

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86.pl 10

590 # smear xmm7
591 &movdqa ("xmm1","xmm7");
592 &pslldq ("xmm7",4);
593 &pxor ("xmm7","xmm1");
594 &movdqa ("xmm1","xmm7");
595 &pslldq ("xmm7",8);
596 &pxor ("xmm7","xmm1");
597 &pxor ("xmm7",&QWP($k_s63,$const));

599 # subbyte
600 &movdqa ("xmm4",&QWP($k_s0F,$const));
601 &movdqa ("xmm5",&QWP($k_inv,$const)); # 4 : 1/j
602 &movdqa ("xmm1","xmm4");
603 &pandn ("xmm1","xmm0");
604 &psrld ("xmm1",4); # 1 = i
605 &pand ("xmm0","xmm4"); # 0 = k
606 &movdqa ("xmm2",&QWP($k_inv+16,$const));# 2 : a/k
607 &pshufb ("xmm2","xmm0"); # 2 = a/k
608 &pxor ("xmm0","xmm1"); # 0 = j
609 &movdqa ("xmm3","xmm5"); # 3 : 1/i
610 &pshufb ("xmm3","xmm1"); # 3 = 1/i
611 &pxor ("xmm3","xmm2"); # 3 = iak = 1/i + a/k
612 &movdqa ("xmm4","xmm5"); # 4 : 1/j
613 &pshufb ("xmm4","xmm0"); # 4 = 1/j
614 &pxor ("xmm4","xmm2"); # 4 = jak = 1/j + a/k
615 &movdqa ("xmm2","xmm5"); # 2 : 1/iak
616 &pshufb ("xmm2","xmm3"); # 2 = 1/iak
617 &pxor ("xmm2","xmm0"); # 2 = io
618 &movdqa ("xmm3","xmm5"); # 3 : 1/jak
619 &pshufb ("xmm3","xmm4"); # 3 = 1/jak
620 &pxor ("xmm3","xmm1"); # 3 = jo
621 &movdqa ("xmm4",&QWP($k_sb1,$const)); # 4 : sbou
622 &pshufb ("xmm4","xmm2"); # 4 = sbou
623 &movdqa ("xmm0",&QWP($k_sb1+16,$const));# 0 : sbot
624 &pshufb ("xmm0","xmm3"); # 0 = sb1t
625 &pxor ("xmm0","xmm4"); # 0 = sbox output

627 # add in smeared stuff
628 &pxor ("xmm0","xmm7");
629 &movdqa ("xmm7","xmm0");
630 &ret ();
631 &function_end_B("_vpaes_schedule_round");

633 ##
634 ## .aes_schedule_transform
635 ##
636 ## Linear-transform %xmm0 according to tables at (%ebx)
637 ##
638 ## Output in %xmm0
639 ## Clobbers %xmm1, %xmm2
640 ##
641 &function_begin_B("_vpaes_schedule_transform");
642 &movdqa ("xmm2",&QWP($k_s0F,$const));
643 &movdqa ("xmm1","xmm2");
644 &pandn ("xmm1","xmm0");
645 &psrld ("xmm1",4);
646 &pand ("xmm0","xmm2");
647 &movdqa ("xmm2",&QWP(0,$base));
648 &pshufb ("xmm2","xmm0");
649 &movdqa ("xmm0",&QWP(16,$base));
650 &pshufb ("xmm0","xmm1");
651 &pxor ("xmm0","xmm2");
652 &ret ();
653 &function_end_B("_vpaes_schedule_transform");

655 ##

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86.pl 11

656 ## .aes_schedule_mangle
657 ##
658 ## Mangle xmm0 from (basis-transformed) standard version
659 ## to our version.
660 ##
661 ## On encrypt,
662 ## xor with 0x63
663 ## multiply by circulant 0,1,1,1
664 ## apply shiftrows transform
665 ##
666 ## On decrypt,
667 ## xor with 0x63
668 ## multiply by "inverse mixcolumns" circulant E,B,D,9
669 ## deskew
670 ## apply shiftrows transform
671 ##
672 ##
673 ## Writes out to (%edx), and increments or decrements it
674 ## Keeps track of round number mod 4 in %ecx
675 ## Preserves xmm0
676 ## Clobbers xmm1-xmm5
677 ##
678 &function_begin_B("_vpaes_schedule_mangle");
679 &movdqa ("xmm4","xmm0"); # save xmm0 for later
680 &movdqa ("xmm5",&QWP($k_mc_forward,$const));
681 &test ($out,$out);
682 &jnz (&label("schedule_mangle_dec"));

684 # encrypting
685 &add ($key,16);
686 &pxor ("xmm4",&QWP($k_s63,$const));
687 &pshufb ("xmm4","xmm5");
688 &movdqa ("xmm3","xmm4");
689 &pshufb ("xmm4","xmm5");
690 &pxor ("xmm3","xmm4");
691 &pshufb ("xmm4","xmm5");
692 &pxor ("xmm3","xmm4");

694 &jmp (&label("schedule_mangle_both"));

696 &set_label("schedule_mangle_dec",16);
697 # inverse mix columns
698 &movdqa ("xmm2",&QWP($k_s0F,$const));
699 &lea ($inp,&DWP($k_dksd,$const));
700 &movdqa ("xmm1","xmm2");
701 &pandn ("xmm1","xmm4");
702 &psrld ("xmm1",4); # 1 = hi
703 &pand ("xmm4","xmm2"); # 4 = lo

705 &movdqa ("xmm2",&QWP(0,$inp));
706 &pshufb ("xmm2","xmm4");
707 &movdqa ("xmm3",&QWP(0x10,$inp));
708 &pshufb ("xmm3","xmm1");
709 &pxor ("xmm3","xmm2");
710 &pshufb ("xmm3","xmm5");

712 &movdqa ("xmm2",&QWP(0x20,$inp));
713 &pshufb ("xmm2","xmm4");
714 &pxor ("xmm2","xmm3");
715 &movdqa ("xmm3",&QWP(0x30,$inp));
716 &pshufb ("xmm3","xmm1");
717 &pxor ("xmm3","xmm2");
718 &pshufb ("xmm3","xmm5");

720 &movdqa ("xmm2",&QWP(0x40,$inp));
721 &pshufb ("xmm2","xmm4");

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86.pl 12

722 &pxor ("xmm2","xmm3");
723 &movdqa ("xmm3",&QWP(0x50,$inp));
724 &pshufb ("xmm3","xmm1");
725 &pxor ("xmm3","xmm2");
726 &pshufb ("xmm3","xmm5");

728 &movdqa ("xmm2",&QWP(0x60,$inp));
729 &pshufb ("xmm2","xmm4");
730 &pxor ("xmm2","xmm3");
731 &movdqa ("xmm3",&QWP(0x70,$inp));
732 &pshufb ("xmm3","xmm1");
733 &pxor ("xmm3","xmm2");

735 &add ($key,-16);

737 &set_label("schedule_mangle_both");
738 &movdqa ("xmm1",&QWP($k_sr,$const,$magic));
739 &pshufb ("xmm3","xmm1");
740 &add ($magic,-16);
741 &and ($magic,0x30);
742 &movdqu (&QWP(0,$key),"xmm3");
743 &ret ();
744 &function_end_B("_vpaes_schedule_mangle");

746 #
747 # Interface to OpenSSL
748 #
749 &function_begin("${PREFIX}_set_encrypt_key");
750 &mov ($inp,&wparam(0)); # inp
751 &lea ($base,&DWP(-56,"esp"));
752 &mov ($round,&wparam(1)); # bits
753 &and ($base,-16);
754 &mov ($key,&wparam(2)); # key
755 &xchg ($base,"esp"); # alloca
756 &mov (&DWP(48,"esp"),$base);

758 &mov ($base,$round);
759 &shr ($base,5);
760 &add ($base,5);
761 &mov (&DWP(240,$key),$base); # AES_KEY->rounds = nbits/32+5;
762 &mov ($magic,0x30);
763 &mov ($out,0);

765 &lea ($const,&DWP(&label("_vpaes_consts")."+0x30-".&label("pic_point"
766 &call ("_vpaes_schedule_core");
767 &set_label("pic_point");

769 &mov ("esp",&DWP(48,"esp"));
770 &xor ("eax","eax");
771 &function_end("${PREFIX}_set_encrypt_key");

773 &function_begin("${PREFIX}_set_decrypt_key");
774 &mov ($inp,&wparam(0)); # inp
775 &lea ($base,&DWP(-56,"esp"));
776 &mov ($round,&wparam(1)); # bits
777 &and ($base,-16);
778 &mov ($key,&wparam(2)); # key
779 &xchg ($base,"esp"); # alloca
780 &mov (&DWP(48,"esp"),$base);

782 &mov ($base,$round);
783 &shr ($base,5);
784 &add ($base,5);
785 &mov (&DWP(240,$key),$base); # AES_KEY->rounds = nbits/32+5;
786 &shl ($base,4);
787 &lea ($key,&DWP(16,$key,$base));

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86.pl 13

789 &mov ($out,1);
790 &mov ($magic,$round);
791 &shr ($magic,1);
792 &and ($magic,32);
793 &xor ($magic,32); # nbist==192?0:32;

795 &lea ($const,&DWP(&label("_vpaes_consts")."+0x30-".&label("pic_point"
796 &call ("_vpaes_schedule_core");
797 &set_label("pic_point");

799 &mov ("esp",&DWP(48,"esp"));
800 &xor ("eax","eax");
801 &function_end("${PREFIX}_set_decrypt_key");

803 &function_begin("${PREFIX}_encrypt");
804 &lea ($const,&DWP(&label("_vpaes_consts")."+0x30-".&label("pic_point"
805 &call ("_vpaes_preheat");
806 &set_label("pic_point");
807 &mov ($inp,&wparam(0)); # inp
808 &lea ($base,&DWP(-56,"esp"));
809 &mov ($out,&wparam(1)); # out
810 &and ($base,-16);
811 &mov ($key,&wparam(2)); # key
812 &xchg ($base,"esp"); # alloca
813 &mov (&DWP(48,"esp"),$base);

815 &movdqu ("xmm0",&QWP(0,$inp));
816 &call ("_vpaes_encrypt_core");
817 &movdqu (&QWP(0,$out),"xmm0");

819 &mov ("esp",&DWP(48,"esp"));
820 &function_end("${PREFIX}_encrypt");

822 &function_begin("${PREFIX}_decrypt");
823 &lea ($const,&DWP(&label("_vpaes_consts")."+0x30-".&label("pic_point"
824 &call ("_vpaes_preheat");
825 &set_label("pic_point");
826 &mov ($inp,&wparam(0)); # inp
827 &lea ($base,&DWP(-56,"esp"));
828 &mov ($out,&wparam(1)); # out
829 &and ($base,-16);
830 &mov ($key,&wparam(2)); # key
831 &xchg ($base,"esp"); # alloca
832 &mov (&DWP(48,"esp"),$base);

834 &movdqu ("xmm0",&QWP(0,$inp));
835 &call ("_vpaes_decrypt_core");
836 &movdqu (&QWP(0,$out),"xmm0");

838 &mov ("esp",&DWP(48,"esp"));
839 &function_end("${PREFIX}_decrypt");

841 &function_begin("${PREFIX}_cbc_encrypt");
842 &mov ($inp,&wparam(0)); # inp
843 &mov ($out,&wparam(1)); # out
844 &mov ($round,&wparam(2)); # len
845 &mov ($key,&wparam(3)); # key
846 &sub ($round,16);
847 &jc (&label("cbc_abort"));
848 &lea ($base,&DWP(-56,"esp"));
849 &mov ($const,&wparam(4)); # ivp
850 &and ($base,-16);
851 &mov ($magic,&wparam(5)); # enc
852 &xchg ($base,"esp"); # alloca
853 &movdqu ("xmm1",&QWP(0,$const)); # load IV

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86.pl 14

854 &sub ($out,$inp);
855 &mov (&DWP(48,"esp"),$base);

857 &mov (&DWP(0,"esp"),$out); # save out
858 &mov (&DWP(4,"esp"),$key) # save key
859 &mov (&DWP(8,"esp"),$const); # save ivp
860 &mov ($out,$round); # $out works as $len

862 &lea ($const,&DWP(&label("_vpaes_consts")."+0x30-".&label("pic_point"
863 &call ("_vpaes_preheat");
864 &set_label("pic_point");
865 &cmp ($magic,0);
866 &je (&label("cbc_dec_loop"));
867 &jmp (&label("cbc_enc_loop"));

869 &set_label("cbc_enc_loop",16);
870 &movdqu ("xmm0",&QWP(0,$inp)); # load input
871 &pxor ("xmm0","xmm1"); # inp^=iv
872 &call ("_vpaes_encrypt_core");
873 &mov ($base,&DWP(0,"esp")); # restore out
874 &mov ($key,&DWP(4,"esp")); # restore key
875 &movdqa ("xmm1","xmm0");
876 &movdqu (&QWP(0,$base,$inp),"xmm0"); # write output
877 &lea ($inp,&DWP(16,$inp));
878 &sub ($out,16);
879 &jnc (&label("cbc_enc_loop"));
880 &jmp (&label("cbc_done"));

882 &set_label("cbc_dec_loop",16);
883 &movdqu ("xmm0",&QWP(0,$inp)); # load input
884 &movdqa (&QWP(16,"esp"),"xmm1"); # save IV
885 &movdqa (&QWP(32,"esp"),"xmm0"); # save future IV
886 &call ("_vpaes_decrypt_core");
887 &mov ($base,&DWP(0,"esp")); # restore out
888 &mov ($key,&DWP(4,"esp")); # restore key
889 &pxor ("xmm0",&QWP(16,"esp")); # out^=iv
890 &movdqa ("xmm1",&QWP(32,"esp")); # load next IV
891 &movdqu (&QWP(0,$base,$inp),"xmm0"); # write output
892 &lea ($inp,&DWP(16,$inp));
893 &sub ($out,16);
894 &jnc (&label("cbc_dec_loop"));

896 &set_label("cbc_done");
897 &mov ($base,&DWP(8,"esp")); # restore ivp
898 &mov ("esp",&DWP(48,"esp"));
899 &movdqu (&QWP(0,$base),"xmm1"); # write IV
900 &set_label("cbc_abort");
901 &function_end("${PREFIX}_cbc_encrypt");

903 &asm_finish();

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 1

**
 30553 Fri May 30 18:32:05 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 ##
4 ## Constant-time SSSE3 AES core implementation.
5 ## version 0.1
6 ##
7 ## By Mike Hamburg (Stanford University), 2009
8 ## Public domain.
9 ##
10 ## For details see http://shiftleft.org/papers/vector_aes/ and
11 ## http://crypto.stanford.edu/vpaes/.

13 ##
14 # September 2011.
15 #
16 # Interface to OpenSSL as "almost" drop-in replacement for
17 # aes-x86_64.pl. "Almost" refers to the fact that AES_cbc_encrypt
18 # doesn’t handle partial vectors (doesn’t have to if called from
19 # EVP only). "Drop-in" implies that this module doesn’t share key
20 # schedule structure with the original nor does it make assumption
21 # about its alignment...
22 #
23 # Performance summary. aes-x86_64.pl column lists large-block CBC
24 # encrypt/decrypt/with-hyper-threading-off(*) results in cycles per
25 # byte processed with 128-bit key, and vpaes-x86_64.pl column -
26 # [also large-block CBC] encrypt/decrypt.
27 #
28 # aes-x86_64.pl vpaes-x86_64.pl
29 #
30 # Core 2(**) 30.5/43.7/14.3 21.8/25.7(***)
31 # Nehalem 30.5/42.2/14.6 9.8/11.8
32 # Atom 63.9/79.0/32.1 64.0/84.8(***)
33 #
34 # (*) "Hyper-threading" in the context refers rather to cache shared
35 # among multiple cores, than to specifically Intel HTT. As vast
36 # majority of contemporary cores share cache, slower code path
37 # is common place. In other words "with-hyper-threading-off"
38 # results are presented mostly for reference purposes.
39 #
40 # (**) "Core 2" refers to initial 65nm design, a.k.a. Conroe.
41 #
42 # (***) Less impressive improvement on Core 2 and Atom is due to slow
43 # pshufb, yet it’s respectable +40%/78% improvement on Core 2
44 # (as implied, over "hyper-threading-safe" code path).
45 #
46 # <appro@openssl.org>

48 $flavour = shift;
49 $output = shift;
50 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

52 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

54 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
55 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
56 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
57 die "can’t locate x86_64-xlate.pl";

59 open OUT,"| \"$^X\" $xlate $flavour $output";
60 *STDOUT=*OUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 2

62 $PREFIX="vpaes";

64 $code.=<<___;
65 .text

67 ##
68 ## _aes_encrypt_core
69 ##
70 ## AES-encrypt %xmm0.
71 ##
72 ## Inputs:
73 ## %xmm0 = input
74 ## %xmm9-%xmm15 as in _vpaes_preheat
75 ## (%rdx) = scheduled keys
76 ##
77 ## Output in %xmm0
78 ## Clobbers %xmm1-%xmm5, %r9, %r10, %r11, %rax
79 ## Preserves %xmm6 - %xmm8 so you get some local vectors
80 ##
81 ##
82 .type _vpaes_encrypt_core,\@abi-omnipotent
83 .align 16
84 _vpaes_encrypt_core:
85 mov %rdx, %r9
86 mov \$16, %r11
87 mov 240(%rdx),%eax
88 movdqa %xmm9, %xmm1
89 movdqa .Lk_ipt(%rip), %xmm2 # iptlo
90 pandn %xmm0, %xmm1
91 movdqu (%r9), %xmm5 # round0 key
92 psrld \$4, %xmm1
93 pand %xmm9, %xmm0
94 pshufb %xmm0, %xmm2
95 movdqa .Lk_ipt+16(%rip), %xmm0 # ipthi
96 pshufb %xmm1, %xmm0
97 pxor %xmm5, %xmm2
98 pxor %xmm2, %xmm0
99 add \$16, %r9
100 lea .Lk_mc_backward(%rip),%r10
101 jmp .Lenc_entry

103 .align 16
104 .Lenc_loop:
105 # middle of middle round
106 movdqa %xmm13, %xmm4 # 4 : sb1u
107 pshufb %xmm2, %xmm4 # 4 = sb1u
108 pxor %xmm5, %xmm4 # 4 = sb1u + k
109 movdqa %xmm12, %xmm0 # 0 : sb1t
110 pshufb %xmm3, %xmm0 # 0 = sb1t
111 pxor %xmm4, %xmm0 # 0 = A
112 movdqa %xmm15, %xmm5 # 4 : sb2u
113 pshufb %xmm2, %xmm5 # 4 = sb2u
114 movdqa -0x40(%r11,%r10), %xmm1 # .Lk_mc_forward[]
115 movdqa %xmm14, %xmm2 # 2 : sb2t
116 pshufb %xmm3, %xmm2 # 2 = sb2t
117 pxor %xmm5, %xmm2 # 2 = 2A
118 movdqa (%r11,%r10), %xmm4 # .Lk_mc_backward[]
119 movdqa %xmm0, %xmm3 # 3 = A
120 pshufb %xmm1, %xmm0 # 0 = B
121 add \$16, %r9 # next key
122 pxor %xmm2, %xmm0 # 0 = 2A+B
123 pshufb %xmm4, %xmm3 # 3 = D
124 add \$16, %r11 # next mc
125 pxor %xmm0, %xmm3 # 3 = 2A+B+D
126 pshufb %xmm1, %xmm0 # 0 = 2B+C
127 and \$0x30, %r11 # ... mod 4

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 3

128 pxor %xmm3, %xmm0 # 0 = 2A+3B+C+D
129 sub \$1,%rax # nr--

131 .Lenc_entry:
132 # top of round
133 movdqa %xmm9, %xmm1 # 1 : i
134 pandn %xmm0, %xmm1 # 1 = i<<4
135 psrld \$4, %xmm1 # 1 = i
136 pand %xmm9, %xmm0 # 0 = k
137 movdqa %xmm11, %xmm5 # 2 : a/k
138 pshufb %xmm0, %xmm5 # 2 = a/k
139 pxor %xmm1, %xmm0 # 0 = j
140 movdqa %xmm10, %xmm3 # 3 : 1/i
141 pshufb %xmm1, %xmm3 # 3 = 1/i
142 pxor %xmm5, %xmm3 # 3 = iak = 1/i + a/k
143 movdqa %xmm10, %xmm4 # 4 : 1/j
144 pshufb %xmm0, %xmm4 # 4 = 1/j
145 pxor %xmm5, %xmm4 # 4 = jak = 1/j + a/k
146 movdqa %xmm10, %xmm2 # 2 : 1/iak
147 pshufb %xmm3, %xmm2 # 2 = 1/iak
148 pxor %xmm0, %xmm2 # 2 = io
149 movdqa %xmm10, %xmm3 # 3 : 1/jak
150 movdqu (%r9), %xmm5
151 pshufb %xmm4, %xmm3 # 3 = 1/jak
152 pxor %xmm1, %xmm3 # 3 = jo
153 jnz .Lenc_loop

155 # middle of last round
156 movdqa -0x60(%r10), %xmm4 # 3 : sbou .Lk_sbo
157 movdqa -0x50(%r10), %xmm0 # 0 : sbot .Lk_sbo+16
158 pshufb %xmm2, %xmm4 # 4 = sbou
159 pxor %xmm5, %xmm4 # 4 = sb1u + k
160 pshufb %xmm3, %xmm0 # 0 = sb1t
161 movdqa 0x40(%r11,%r10), %xmm1 # .Lk_sr[]
162 pxor %xmm4, %xmm0 # 0 = A
163 pshufb %xmm1, %xmm0
164 ret
165 .size _vpaes_encrypt_core,.-_vpaes_encrypt_core
166
167 ##
168 ## Decryption core
169 ##
170 ## Same API as encryption core.
171 ##
172 .type _vpaes_decrypt_core,\@abi-omnipotent
173 .align 16
174 _vpaes_decrypt_core:
175 mov %rdx, %r9 # load key
176 mov 240(%rdx),%eax
177 movdqa %xmm9, %xmm1
178 movdqa .Lk_dipt(%rip), %xmm2 # iptlo
179 pandn %xmm0, %xmm1
180 mov %rax, %r11
181 psrld \$4, %xmm1
182 movdqu (%r9), %xmm5 # round0 key
183 shl \$4, %r11
184 pand %xmm9, %xmm0
185 pshufb %xmm0, %xmm2
186 movdqa .Lk_dipt+16(%rip), %xmm0 # ipthi
187 xor \$0x30, %r11
188 lea .Lk_dsbd(%rip),%r10
189 pshufb %xmm1, %xmm0
190 and \$0x30, %r11
191 pxor %xmm5, %xmm2
192 movdqa .Lk_mc_forward+48(%rip), %xmm5
193 pxor %xmm2, %xmm0

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 4

194 add \$16, %r9
195 add %r10, %r11
196 jmp .Ldec_entry

198 .align 16
199 .Ldec_loop:
200 ##
201 ## Inverse mix columns
202 ##
203 movdqa -0x20(%r10),%xmm4 # 4 : sb9u
204 pshufb %xmm2, %xmm4 # 4 = sb9u
205 pxor %xmm0, %xmm4
206 movdqa -0x10(%r10),%xmm0 # 0 : sb9t
207 pshufb %xmm3, %xmm0 # 0 = sb9t
208 pxor %xmm4, %xmm0 # 0 = ch
209 add \$16, %r9 # next round key

211 pshufb %xmm5, %xmm0 # MC ch
212 movdqa 0x00(%r10),%xmm4 # 4 : sbdu
213 pshufb %xmm2, %xmm4 # 4 = sbdu
214 pxor %xmm0, %xmm4 # 4 = ch
215 movdqa 0x10(%r10),%xmm0 # 0 : sbdt
216 pshufb %xmm3, %xmm0 # 0 = sbdt
217 pxor %xmm4, %xmm0 # 0 = ch
218 sub \$1,%rax # nr--
219
220 pshufb %xmm5, %xmm0 # MC ch
221 movdqa 0x20(%r10),%xmm4 # 4 : sbbu
222 pshufb %xmm2, %xmm4 # 4 = sbbu
223 pxor %xmm0, %xmm4 # 4 = ch
224 movdqa 0x30(%r10),%xmm0 # 0 : sbbt
225 pshufb %xmm3, %xmm0 # 0 = sbbt
226 pxor %xmm4, %xmm0 # 0 = ch
227
228 pshufb %xmm5, %xmm0 # MC ch
229 movdqa 0x40(%r10),%xmm4 # 4 : sbeu
230 pshufb %xmm2, %xmm4 # 4 = sbeu
231 pxor %xmm0, %xmm4 # 4 = ch
232 movdqa 0x50(%r10),%xmm0 # 0 : sbet
233 pshufb %xmm3, %xmm0 # 0 = sbet
234 pxor %xmm4, %xmm0 # 0 = ch

236 palignr \$12, %xmm5, %xmm5
237
238 .Ldec_entry:
239 # top of round
240 movdqa %xmm9, %xmm1 # 1 : i
241 pandn %xmm0, %xmm1 # 1 = i<<4
242 psrld \$4, %xmm1 # 1 = i
243 pand %xmm9, %xmm0 # 0 = k
244 movdqa %xmm11, %xmm2 # 2 : a/k
245 pshufb %xmm0, %xmm2 # 2 = a/k
246 pxor %xmm1, %xmm0 # 0 = j
247 movdqa %xmm10, %xmm3 # 3 : 1/i
248 pshufb %xmm1, %xmm3 # 3 = 1/i
249 pxor %xmm2, %xmm3 # 3 = iak = 1/i + a/k
250 movdqa %xmm10, %xmm4 # 4 : 1/j
251 pshufb %xmm0, %xmm4 # 4 = 1/j
252 pxor %xmm2, %xmm4 # 4 = jak = 1/j + a/k
253 movdqa %xmm10, %xmm2 # 2 : 1/iak
254 pshufb %xmm3, %xmm2 # 2 = 1/iak
255 pxor %xmm0, %xmm2 # 2 = io
256 movdqa %xmm10, %xmm3 # 3 : 1/jak
257 pshufb %xmm4, %xmm3 # 3 = 1/jak
258 pxor %xmm1, %xmm3 # 3 = jo
259 movdqu (%r9), %xmm0

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 5

260 jnz .Ldec_loop

262 # middle of last round
263 movdqa 0x60(%r10), %xmm4 # 3 : sbou
264 pshufb %xmm2, %xmm4 # 4 = sbou
265 pxor %xmm0, %xmm4 # 4 = sb1u + k
266 movdqa 0x70(%r10), %xmm0 # 0 : sbot
267 movdqa -0x160(%r11), %xmm2 # .Lk_sr-.Lk_dsbd=-0x160
268 pshufb %xmm3, %xmm0 # 0 = sb1t
269 pxor %xmm4, %xmm0 # 0 = A
270 pshufb %xmm2, %xmm0
271 ret
272 .size _vpaes_decrypt_core,.-_vpaes_decrypt_core

274 ##
275 ## ##
276 ## AES key schedule ##
277 ## ##
278 ##
279 .type _vpaes_schedule_core,\@abi-omnipotent
280 .align 16
281 _vpaes_schedule_core:
282 # rdi = key
283 # rsi = size in bits
284 # rdx = buffer
285 # rcx = direction. 0=encrypt, 1=decrypt

287 call _vpaes_preheat # load the tables
288 movdqa .Lk_rcon(%rip), %xmm8 # load rcon
289 movdqu (%rdi), %xmm0 # load key (unaligned)

291 # input transform
292 movdqa %xmm0, %xmm3
293 lea .Lk_ipt(%rip), %r11
294 call _vpaes_schedule_transform
295 movdqa %xmm0, %xmm7

297 lea .Lk_sr(%rip),%r10
298 test %rcx, %rcx
299 jnz .Lschedule_am_decrypting

301 # encrypting, output zeroth round key after transform
302 movdqu %xmm0, (%rdx)
303 jmp .Lschedule_go

305 .Lschedule_am_decrypting:
306 # decrypting, output zeroth round key after shiftrows
307 movdqa (%r8,%r10),%xmm1
308 pshufb %xmm1, %xmm3
309 movdqu %xmm3, (%rdx)
310 xor \$0x30, %r8

312 .Lschedule_go:
313 cmp \$192, %esi
314 ja .Lschedule_256
315 je .Lschedule_192
316 # 128: fall though

318 ##
319 ## .schedule_128
320 ##
321 ## 128-bit specific part of key schedule.
322 ##
323 ## This schedule is really simple, because all its parts
324 ## are accomplished by the subroutines.
325 ##

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 6

326 .Lschedule_128:
327 mov \$10, %esi
328
329 .Loop_schedule_128:
330 call _vpaes_schedule_round
331 dec %rsi
332 jz .Lschedule_mangle_last
333 call _vpaes_schedule_mangle # write output
334 jmp .Loop_schedule_128

336 ##
337 ## .aes_schedule_192
338 ##
339 ## 192-bit specific part of key schedule.
340 ##
341 ## The main body of this schedule is the same as the 128-bit
342 ## schedule, but with more smearing. The long, high side is
343 ## stored in %xmm7 as before, and the short, low side is in
344 ## the high bits of %xmm6.
345 ##
346 ## This schedule is somewhat nastier, however, because each
347 ## round produces 192 bits of key material, or 1.5 round keys.
348 ## Therefore, on each cycle we do 2 rounds and produce 3 round
349 ## keys.
350 ##
351 .align 16
352 .Lschedule_192:
353 movdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned)
354 call _vpaes_schedule_transform # input transform
355 movdqa %xmm0, %xmm6 # save short part
356 pxor %xmm4, %xmm4 # clear 4
357 movhlps %xmm4, %xmm6 # clobber low side with zeros
358 mov \$4, %esi

360 .Loop_schedule_192:
361 call _vpaes_schedule_round
362 palignr \$8,%xmm6,%xmm0
363 call _vpaes_schedule_mangle # save key n
364 call _vpaes_schedule_192_smear
365 call _vpaes_schedule_mangle # save key n+1
366 call _vpaes_schedule_round
367 dec %rsi
368 jz .Lschedule_mangle_last
369 call _vpaes_schedule_mangle # save key n+2
370 call _vpaes_schedule_192_smear
371 jmp .Loop_schedule_192

373 ##
374 ## .aes_schedule_256
375 ##
376 ## 256-bit specific part of key schedule.
377 ##
378 ## The structure here is very similar to the 128-bit
379 ## schedule, but with an additional "low side" in
380 ## %xmm6. The low side’s rounds are the same as the
381 ## high side’s, except no rcon and no rotation.
382 ##
383 .align 16
384 .Lschedule_256:
385 movdqu 16(%rdi),%xmm0 # load key part 2 (unaligned)
386 call _vpaes_schedule_transform # input transform
387 mov \$7, %esi
388
389 .Loop_schedule_256:
390 call _vpaes_schedule_mangle # output low result
391 movdqa %xmm0, %xmm6 # save cur_lo in xmm6

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 7

393 # high round
394 call _vpaes_schedule_round
395 dec %rsi
396 jz .Lschedule_mangle_last
397 call _vpaes_schedule_mangle

399 # low round. swap xmm7 and xmm6
400 pshufd \$0xFF, %xmm0, %xmm0
401 movdqa %xmm7, %xmm5
402 movdqa %xmm6, %xmm7
403 call _vpaes_schedule_low_round
404 movdqa %xmm5, %xmm7
405
406 jmp .Loop_schedule_256

408
409 ##
410 ## .aes_schedule_mangle_last
411 ##
412 ## Mangler for last round of key schedule
413 ## Mangles %xmm0
414 ## when encrypting, outputs out(%xmm0) ^ 63
415 ## when decrypting, outputs unskew(%xmm0)
416 ##
417 ## Always called right before return... jumps to cleanup and exits
418 ##
419 .align 16
420 .Lschedule_mangle_last:
421 # schedule last round key from xmm0
422 lea .Lk_deskew(%rip),%r11 # prepare to deskew
423 test %rcx, %rcx
424 jnz .Lschedule_mangle_last_dec

426 # encrypting
427 movdqa (%r8,%r10),%xmm1
428 pshufb %xmm1, %xmm0 # output permute
429 lea .Lk_opt(%rip), %r11 # prepare to output transform
430 add \$32, %rdx

432 .Lschedule_mangle_last_dec:
433 add \$-16, %rdx
434 pxor .Lk_s63(%rip), %xmm0
435 call _vpaes_schedule_transform # output transform
436 movdqu %xmm0, (%rdx) # save last key

438 # cleanup
439 pxor %xmm0, %xmm0
440 pxor %xmm1, %xmm1
441 pxor %xmm2, %xmm2
442 pxor %xmm3, %xmm3
443 pxor %xmm4, %xmm4
444 pxor %xmm5, %xmm5
445 pxor %xmm6, %xmm6
446 pxor %xmm7, %xmm7
447 ret
448 .size _vpaes_schedule_core,.-_vpaes_schedule_core

450 ##
451 ## .aes_schedule_192_smear
452 ##
453 ## Smear the short, low side in the 192-bit key schedule.
454 ##
455 ## Inputs:
456 ## %xmm7: high side, b a x y
457 ## %xmm6: low side, d c 0 0

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 8

458 ## %xmm13: 0
459 ##
460 ## Outputs:
461 ## %xmm6: b+c+d b+c 0 0
462 ## %xmm0: b+c+d b+c b a
463 ##
464 .type _vpaes_schedule_192_smear,\@abi-omnipotent
465 .align 16
466 _vpaes_schedule_192_smear:
467 pshufd \$0x80, %xmm6, %xmm0 # d c 0 0 -> c 0 0 0
468 pxor %xmm0, %xmm6 # -> c+d c 0 0
469 pshufd \$0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a
470 pxor %xmm0, %xmm6 # -> b+c+d b+c b a
471 movdqa %xmm6, %xmm0
472 pxor %xmm1, %xmm1
473 movhlps %xmm1, %xmm6 # clobber low side with zeros
474 ret
475 .size _vpaes_schedule_192_smear,.-_vpaes_schedule_192_smear

477 ##
478 ## .aes_schedule_round
479 ##
480 ## Runs one main round of the key schedule on %xmm0, %xmm7
481 ##
482 ## Specifically, runs subbytes on the high dword of %xmm0
483 ## then rotates it by one byte and xors into the low dword of
484 ## %xmm7.
485 ##
486 ## Adds rcon from low byte of %xmm8, then rotates %xmm8 for
487 ## next rcon.
488 ##
489 ## Smears the dwords of %xmm7 by xoring the low into the
490 ## second low, result into third, result into highest.
491 ##
492 ## Returns results in %xmm7 = %xmm0.
493 ## Clobbers %xmm1-%xmm4, %r11.
494 ##
495 .type _vpaes_schedule_round,\@abi-omnipotent
496 .align 16
497 _vpaes_schedule_round:
498 # extract rcon from xmm8
499 pxor %xmm1, %xmm1
500 palignr \$15, %xmm8, %xmm1
501 palignr \$15, %xmm8, %xmm8
502 pxor %xmm1, %xmm7

504 # rotate
505 pshufd \$0xFF, %xmm0, %xmm0
506 palignr \$1, %xmm0, %xmm0
507
508 # fall through...
509
510 # low round: same as high round, but no rotation and no rcon.
511 _vpaes_schedule_low_round:
512 # smear xmm7
513 movdqa %xmm7, %xmm1
514 pslldq \$4, %xmm7
515 pxor %xmm1, %xmm7
516 movdqa %xmm7, %xmm1
517 pslldq \$8, %xmm7
518 pxor %xmm1, %xmm7
519 pxor .Lk_s63(%rip), %xmm7

521 # subbytes
522 movdqa %xmm9, %xmm1
523 pandn %xmm0, %xmm1

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 9

524 psrld \$4, %xmm1 # 1 = i
525 pand %xmm9, %xmm0 # 0 = k
526 movdqa %xmm11, %xmm2 # 2 : a/k
527 pshufb %xmm0, %xmm2 # 2 = a/k
528 pxor %xmm1, %xmm0 # 0 = j
529 movdqa %xmm10, %xmm3 # 3 : 1/i
530 pshufb %xmm1, %xmm3 # 3 = 1/i
531 pxor %xmm2, %xmm3 # 3 = iak = 1/i + a/k
532 movdqa %xmm10, %xmm4 # 4 : 1/j
533 pshufb %xmm0, %xmm4 # 4 = 1/j
534 pxor %xmm2, %xmm4 # 4 = jak = 1/j + a/k
535 movdqa %xmm10, %xmm2 # 2 : 1/iak
536 pshufb %xmm3, %xmm2 # 2 = 1/iak
537 pxor %xmm0, %xmm2 # 2 = io
538 movdqa %xmm10, %xmm3 # 3 : 1/jak
539 pshufb %xmm4, %xmm3 # 3 = 1/jak
540 pxor %xmm1, %xmm3 # 3 = jo
541 movdqa %xmm13, %xmm4 # 4 : sbou
542 pshufb %xmm2, %xmm4 # 4 = sbou
543 movdqa %xmm12, %xmm0 # 0 : sbot
544 pshufb %xmm3, %xmm0 # 0 = sb1t
545 pxor %xmm4, %xmm0 # 0 = sbox output

547 # add in smeared stuff
548 pxor %xmm7, %xmm0
549 movdqa %xmm0, %xmm7
550 ret
551 .size _vpaes_schedule_round,.-_vpaes_schedule_round

553 ##
554 ## .aes_schedule_transform
555 ##
556 ## Linear-transform %xmm0 according to tables at (%r11)
557 ##
558 ## Requires that %xmm9 = 0x0F0F... as in preheat
559 ## Output in %xmm0
560 ## Clobbers %xmm1, %xmm2
561 ##
562 .type _vpaes_schedule_transform,\@abi-omnipotent
563 .align 16
564 _vpaes_schedule_transform:
565 movdqa %xmm9, %xmm1
566 pandn %xmm0, %xmm1
567 psrld \$4, %xmm1
568 pand %xmm9, %xmm0
569 movdqa (%r11), %xmm2 # lo
570 pshufb %xmm0, %xmm2
571 movdqa 16(%r11), %xmm0 # hi
572 pshufb %xmm1, %xmm0
573 pxor %xmm2, %xmm0
574 ret
575 .size _vpaes_schedule_transform,.-_vpaes_schedule_transform

577 ##
578 ## .aes_schedule_mangle
579 ##
580 ## Mangle xmm0 from (basis-transformed) standard version
581 ## to our version.
582 ##
583 ## On encrypt,
584 ## xor with 0x63
585 ## multiply by circulant 0,1,1,1
586 ## apply shiftrows transform
587 ##
588 ## On decrypt,
589 ## xor with 0x63

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 10

590 ## multiply by "inverse mixcolumns" circulant E,B,D,9
591 ## deskew
592 ## apply shiftrows transform
593 ##
594 ##
595 ## Writes out to (%rdx), and increments or decrements it
596 ## Keeps track of round number mod 4 in %r8
597 ## Preserves xmm0
598 ## Clobbers xmm1-xmm5
599 ##
600 .type _vpaes_schedule_mangle,\@abi-omnipotent
601 .align 16
602 _vpaes_schedule_mangle:
603 movdqa %xmm0, %xmm4 # save xmm0 for later
604 movdqa .Lk_mc_forward(%rip),%xmm5
605 test %rcx, %rcx
606 jnz .Lschedule_mangle_dec

608 # encrypting
609 add \$16, %rdx
610 pxor .Lk_s63(%rip),%xmm4
611 pshufb %xmm5, %xmm4
612 movdqa %xmm4, %xmm3
613 pshufb %xmm5, %xmm4
614 pxor %xmm4, %xmm3
615 pshufb %xmm5, %xmm4
616 pxor %xmm4, %xmm3

618 jmp .Lschedule_mangle_both
619 .align 16
620 .Lschedule_mangle_dec:
621 # inverse mix columns
622 lea .Lk_dksd(%rip),%r11
623 movdqa %xmm9, %xmm1
624 pandn %xmm4, %xmm1
625 psrld \$4, %xmm1 # 1 = hi
626 pand %xmm9, %xmm4 # 4 = lo

628 movdqa 0x00(%r11), %xmm2
629 pshufb %xmm4, %xmm2
630 movdqa 0x10(%r11), %xmm3
631 pshufb %xmm1, %xmm3
632 pxor %xmm2, %xmm3
633 pshufb %xmm5, %xmm3

635 movdqa 0x20(%r11), %xmm2
636 pshufb %xmm4, %xmm2
637 pxor %xmm3, %xmm2
638 movdqa 0x30(%r11), %xmm3
639 pshufb %xmm1, %xmm3
640 pxor %xmm2, %xmm3
641 pshufb %xmm5, %xmm3

643 movdqa 0x40(%r11), %xmm2
644 pshufb %xmm4, %xmm2
645 pxor %xmm3, %xmm2
646 movdqa 0x50(%r11), %xmm3
647 pshufb %xmm1, %xmm3
648 pxor %xmm2, %xmm3
649 pshufb %xmm5, %xmm3

651 movdqa 0x60(%r11), %xmm2
652 pshufb %xmm4, %xmm2
653 pxor %xmm3, %xmm2
654 movdqa 0x70(%r11), %xmm3
655 pshufb %xmm1, %xmm3

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 11

656 pxor %xmm2, %xmm3

658 add \$-16, %rdx

660 .Lschedule_mangle_both:
661 movdqa (%r8,%r10),%xmm1
662 pshufb %xmm1,%xmm3
663 add \$-16, %r8
664 and \$0x30, %r8
665 movdqu %xmm3, (%rdx)
666 ret
667 .size _vpaes_schedule_mangle,.-_vpaes_schedule_mangle

669 #
670 # Interface to OpenSSL
671 #
672 .globl ${PREFIX}_set_encrypt_key
673 .type ${PREFIX}_set_encrypt_key,\@function,3
674 .align 16
675 ${PREFIX}_set_encrypt_key:
676 ___
677 $code.=<<___ if ($win64);
678 lea -0xb8(%rsp),%rsp
679 movaps %xmm6,0x10(%rsp)
680 movaps %xmm7,0x20(%rsp)
681 movaps %xmm8,0x30(%rsp)
682 movaps %xmm9,0x40(%rsp)
683 movaps %xmm10,0x50(%rsp)
684 movaps %xmm11,0x60(%rsp)
685 movaps %xmm12,0x70(%rsp)
686 movaps %xmm13,0x80(%rsp)
687 movaps %xmm14,0x90(%rsp)
688 movaps %xmm15,0xa0(%rsp)
689 .Lenc_key_body:
690 ___
691 $code.=<<___;
692 mov %esi,%eax
693 shr \$5,%eax
694 add \$5,%eax
695 mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5;

697 mov \$0,%ecx
698 mov \$0x30,%r8d
699 call _vpaes_schedule_core
700 ___
701 $code.=<<___ if ($win64);
702 movaps 0x10(%rsp),%xmm6
703 movaps 0x20(%rsp),%xmm7
704 movaps 0x30(%rsp),%xmm8
705 movaps 0x40(%rsp),%xmm9
706 movaps 0x50(%rsp),%xmm10
707 movaps 0x60(%rsp),%xmm11
708 movaps 0x70(%rsp),%xmm12
709 movaps 0x80(%rsp),%xmm13
710 movaps 0x90(%rsp),%xmm14
711 movaps 0xa0(%rsp),%xmm15
712 lea 0xb8(%rsp),%rsp
713 .Lenc_key_epilogue:
714 ___
715 $code.=<<___;
716 xor %eax,%eax
717 ret
718 .size ${PREFIX}_set_encrypt_key,.-${PREFIX}_set_encrypt_key

720 .globl ${PREFIX}_set_decrypt_key
721 .type ${PREFIX}_set_decrypt_key,\@function,3

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 12

722 .align 16
723 ${PREFIX}_set_decrypt_key:
724 ___
725 $code.=<<___ if ($win64);
726 lea -0xb8(%rsp),%rsp
727 movaps %xmm6,0x10(%rsp)
728 movaps %xmm7,0x20(%rsp)
729 movaps %xmm8,0x30(%rsp)
730 movaps %xmm9,0x40(%rsp)
731 movaps %xmm10,0x50(%rsp)
732 movaps %xmm11,0x60(%rsp)
733 movaps %xmm12,0x70(%rsp)
734 movaps %xmm13,0x80(%rsp)
735 movaps %xmm14,0x90(%rsp)
736 movaps %xmm15,0xa0(%rsp)
737 .Ldec_key_body:
738 ___
739 $code.=<<___;
740 mov %esi,%eax
741 shr \$5,%eax
742 add \$5,%eax
743 mov %eax,240(%rdx) # AES_KEY->rounds = nbits/32+5;
744 shl \$4,%eax
745 lea 16(%rdx,%rax),%rdx

747 mov \$1,%ecx
748 mov %esi,%r8d
749 shr \$1,%r8d
750 and \$32,%r8d
751 xor \$32,%r8d # nbits==192?0:32
752 call _vpaes_schedule_core
753 ___
754 $code.=<<___ if ($win64);
755 movaps 0x10(%rsp),%xmm6
756 movaps 0x20(%rsp),%xmm7
757 movaps 0x30(%rsp),%xmm8
758 movaps 0x40(%rsp),%xmm9
759 movaps 0x50(%rsp),%xmm10
760 movaps 0x60(%rsp),%xmm11
761 movaps 0x70(%rsp),%xmm12
762 movaps 0x80(%rsp),%xmm13
763 movaps 0x90(%rsp),%xmm14
764 movaps 0xa0(%rsp),%xmm15
765 lea 0xb8(%rsp),%rsp
766 .Ldec_key_epilogue:
767 ___
768 $code.=<<___;
769 xor %eax,%eax
770 ret
771 .size ${PREFIX}_set_decrypt_key,.-${PREFIX}_set_decrypt_key

773 .globl ${PREFIX}_encrypt
774 .type ${PREFIX}_encrypt,\@function,3
775 .align 16
776 ${PREFIX}_encrypt:
777 ___
778 $code.=<<___ if ($win64);
779 lea -0xb8(%rsp),%rsp
780 movaps %xmm6,0x10(%rsp)
781 movaps %xmm7,0x20(%rsp)
782 movaps %xmm8,0x30(%rsp)
783 movaps %xmm9,0x40(%rsp)
784 movaps %xmm10,0x50(%rsp)
785 movaps %xmm11,0x60(%rsp)
786 movaps %xmm12,0x70(%rsp)
787 movaps %xmm13,0x80(%rsp)

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 13

788 movaps %xmm14,0x90(%rsp)
789 movaps %xmm15,0xa0(%rsp)
790 .Lenc_body:
791 ___
792 $code.=<<___;
793 movdqu (%rdi),%xmm0
794 call _vpaes_preheat
795 call _vpaes_encrypt_core
796 movdqu %xmm0,(%rsi)
797 ___
798 $code.=<<___ if ($win64);
799 movaps 0x10(%rsp),%xmm6
800 movaps 0x20(%rsp),%xmm7
801 movaps 0x30(%rsp),%xmm8
802 movaps 0x40(%rsp),%xmm9
803 movaps 0x50(%rsp),%xmm10
804 movaps 0x60(%rsp),%xmm11
805 movaps 0x70(%rsp),%xmm12
806 movaps 0x80(%rsp),%xmm13
807 movaps 0x90(%rsp),%xmm14
808 movaps 0xa0(%rsp),%xmm15
809 lea 0xb8(%rsp),%rsp
810 .Lenc_epilogue:
811 ___
812 $code.=<<___;
813 ret
814 .size ${PREFIX}_encrypt,.-${PREFIX}_encrypt

816 .globl ${PREFIX}_decrypt
817 .type ${PREFIX}_decrypt,\@function,3
818 .align 16
819 ${PREFIX}_decrypt:
820 ___
821 $code.=<<___ if ($win64);
822 lea -0xb8(%rsp),%rsp
823 movaps %xmm6,0x10(%rsp)
824 movaps %xmm7,0x20(%rsp)
825 movaps %xmm8,0x30(%rsp)
826 movaps %xmm9,0x40(%rsp)
827 movaps %xmm10,0x50(%rsp)
828 movaps %xmm11,0x60(%rsp)
829 movaps %xmm12,0x70(%rsp)
830 movaps %xmm13,0x80(%rsp)
831 movaps %xmm14,0x90(%rsp)
832 movaps %xmm15,0xa0(%rsp)
833 .Ldec_body:
834 ___
835 $code.=<<___;
836 movdqu (%rdi),%xmm0
837 call _vpaes_preheat
838 call _vpaes_decrypt_core
839 movdqu %xmm0,(%rsi)
840 ___
841 $code.=<<___ if ($win64);
842 movaps 0x10(%rsp),%xmm6
843 movaps 0x20(%rsp),%xmm7
844 movaps 0x30(%rsp),%xmm8
845 movaps 0x40(%rsp),%xmm9
846 movaps 0x50(%rsp),%xmm10
847 movaps 0x60(%rsp),%xmm11
848 movaps 0x70(%rsp),%xmm12
849 movaps 0x80(%rsp),%xmm13
850 movaps 0x90(%rsp),%xmm14
851 movaps 0xa0(%rsp),%xmm15
852 lea 0xb8(%rsp),%rsp
853 .Ldec_epilogue:

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 14

854 ___
855 $code.=<<___;
856 ret
857 .size ${PREFIX}_decrypt,.-${PREFIX}_decrypt
858 ___
859 {
860 my ($inp,$out,$len,$key,$ivp,$enc)=("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
861 # void AES_cbc_encrypt (const void char *inp, unsigned char *out,
862 # size_t length, const AES_KEY *key,
863 # unsigned char *ivp,const int enc);
864 $code.=<<___;
865 .globl ${PREFIX}_cbc_encrypt
866 .type ${PREFIX}_cbc_encrypt,\@function,6
867 .align 16
868 ${PREFIX}_cbc_encrypt:
869 xchg $key,$len
870 ___
871 ($len,$key)=($key,$len);
872 $code.=<<___;
873 sub \$16,$len
874 jc .Lcbc_abort
875 ___
876 $code.=<<___ if ($win64);
877 lea -0xb8(%rsp),%rsp
878 movaps %xmm6,0x10(%rsp)
879 movaps %xmm7,0x20(%rsp)
880 movaps %xmm8,0x30(%rsp)
881 movaps %xmm9,0x40(%rsp)
882 movaps %xmm10,0x50(%rsp)
883 movaps %xmm11,0x60(%rsp)
884 movaps %xmm12,0x70(%rsp)
885 movaps %xmm13,0x80(%rsp)
886 movaps %xmm14,0x90(%rsp)
887 movaps %xmm15,0xa0(%rsp)
888 .Lcbc_body:
889 ___
890 $code.=<<___;
891 movdqu ($ivp),%xmm6 # load IV
892 sub $inp,$out
893 call _vpaes_preheat
894 cmp \$0,${enc}d
895 je .Lcbc_dec_loop
896 jmp .Lcbc_enc_loop
897 .align 16
898 .Lcbc_enc_loop:
899 movdqu ($inp),%xmm0
900 pxor %xmm6,%xmm0
901 call _vpaes_encrypt_core
902 movdqa %xmm0,%xmm6
903 movdqu %xmm0,($out,$inp)
904 lea 16($inp),$inp
905 sub \$16,$len
906 jnc .Lcbc_enc_loop
907 jmp .Lcbc_done
908 .align 16
909 .Lcbc_dec_loop:
910 movdqu ($inp),%xmm0
911 movdqa %xmm0,%xmm7
912 call _vpaes_decrypt_core
913 pxor %xmm6,%xmm0
914 movdqa %xmm7,%xmm6
915 movdqu %xmm0,($out,$inp)
916 lea 16($inp),$inp
917 sub \$16,$len
918 jnc .Lcbc_dec_loop
919 .Lcbc_done:

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 15

920 movdqu %xmm6,($ivp) # save IV
921 ___
922 $code.=<<___ if ($win64);
923 movaps 0x10(%rsp),%xmm6
924 movaps 0x20(%rsp),%xmm7
925 movaps 0x30(%rsp),%xmm8
926 movaps 0x40(%rsp),%xmm9
927 movaps 0x50(%rsp),%xmm10
928 movaps 0x60(%rsp),%xmm11
929 movaps 0x70(%rsp),%xmm12
930 movaps 0x80(%rsp),%xmm13
931 movaps 0x90(%rsp),%xmm14
932 movaps 0xa0(%rsp),%xmm15
933 lea 0xb8(%rsp),%rsp
934 .Lcbc_epilogue:
935 ___
936 $code.=<<___;
937 .Lcbc_abort:
938 ret
939 .size ${PREFIX}_cbc_encrypt,.-${PREFIX}_cbc_encrypt
940 ___
941 }
942 $code.=<<___;
943 ##
944 ## _aes_preheat
945 ##
946 ## Fills register %r10 -> .aes_consts (so you can -fPIC)
947 ## and %xmm9-%xmm15 as specified below.
948 ##
949 .type _vpaes_preheat,\@abi-omnipotent
950 .align 16
951 _vpaes_preheat:
952 lea .Lk_s0F(%rip), %r10
953 movdqa -0x20(%r10), %xmm10 # .Lk_inv
954 movdqa -0x10(%r10), %xmm11 # .Lk_inv+16
955 movdqa 0x00(%r10), %xmm9 # .Lk_s0F
956 movdqa 0x30(%r10), %xmm13 # .Lk_sb1
957 movdqa 0x40(%r10), %xmm12 # .Lk_sb1+16
958 movdqa 0x50(%r10), %xmm15 # .Lk_sb2
959 movdqa 0x60(%r10), %xmm14 # .Lk_sb2+16
960 ret
961 .size _vpaes_preheat,.-_vpaes_preheat
962 ##
963 ## ##
964 ## Constants ##
965 ## ##
966 ##
967 .type _vpaes_consts,\@object
968 .align 64
969 _vpaes_consts:
970 .Lk_inv: # inv, inva
971 .quad 0x0E05060F0D080180, 0x040703090A0B0C02
972 .quad 0x01040A060F0B0780, 0x030D0E0C02050809

974 .Lk_s0F: # s0F
975 .quad 0x0F0F0F0F0F0F0F0F, 0x0F0F0F0F0F0F0F0F

977 .Lk_ipt: # input transform (lo, hi)
978 .quad 0xC2B2E8985A2A7000, 0xCABAE09052227808
979 .quad 0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81

981 .Lk_sb1: # sb1u, sb1t
982 .quad 0xB19BE18FCB503E00, 0xA5DF7A6E142AF544
983 .quad 0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF
984 .Lk_sb2: # sb2u, sb2t
985 .quad 0xE27A93C60B712400, 0x5EB7E955BC982FCD

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 16

986 .quad 0x69EB88400AE12900, 0xC2A163C8AB82234A
987 .Lk_sbo: # sbou, sbot
988 .quad 0xD0D26D176FBDC700, 0x15AABF7AC502A878
989 .quad 0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA

991 .Lk_mc_forward: # mc_forward
992 .quad 0x0407060500030201, 0x0C0F0E0D080B0A09
993 .quad 0x080B0A0904070605, 0x000302010C0F0E0D
994 .quad 0x0C0F0E0D080B0A09, 0x0407060500030201
995 .quad 0x000302010C0F0E0D, 0x080B0A0904070605

997 .Lk_mc_backward:# mc_backward
998 .quad 0x0605040702010003, 0x0E0D0C0F0A09080B
999 .quad 0x020100030E0D0C0F, 0x0A09080B06050407

1000 .quad 0x0E0D0C0F0A09080B, 0x0605040702010003
1001 .quad 0x0A09080B06050407, 0x020100030E0D0C0F

1003 .Lk_sr: # sr
1004 .quad 0x0706050403020100, 0x0F0E0D0C0B0A0908
1005 .quad 0x030E09040F0A0500, 0x0B06010C07020D08
1006 .quad 0x0F060D040B020900, 0x070E050C030A0108
1007 .quad 0x0B0E0104070A0D00, 0x0306090C0F020508

1009 .Lk_rcon: # rcon
1010 .quad 0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81

1012 .Lk_s63: # s63: all equal to 0x63 transformed
1013 .quad 0x5B5B5B5B5B5B5B5B, 0x5B5B5B5B5B5B5B5B

1015 .Lk_opt: # output transform
1016 .quad 0xFF9F4929D6B66000, 0xF7974121DEBE6808
1017 .quad 0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0

1019 .Lk_deskew: # deskew tables: inverts the sbox’s "skew"
1020 .quad 0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A
1021 .quad 0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77

1023 ##
1024 ## Decryption stuff
1025 ## Key schedule constants
1026 ##
1027 .Lk_dksd: # decryption key schedule: invskew x*D
1028 .quad 0xFEB91A5DA3E44700, 0x0740E3A45A1DBEF9
1029 .quad 0x41C277F4B5368300, 0x5FDC69EAAB289D1E
1030 .Lk_dksb: # decryption key schedule: invskew x*B
1031 .quad 0x9A4FCA1F8550D500, 0x03D653861CC94C99
1032 .quad 0x115BEDA7B6FC4A00, 0xD993256F7E3482C8
1033 .Lk_dkse: # decryption key schedule: invskew x*E + 0x63
1034 .quad 0xD5031CCA1FC9D600, 0x53859A4C994F5086
1035 .quad 0xA23196054FDC7BE8, 0xCD5EF96A20B31487
1036 .Lk_dks9: # decryption key schedule: invskew x*9
1037 .quad 0xB6116FC87ED9A700, 0x4AED933482255BFC
1038 .quad 0x4576516227143300, 0x8BB89FACE9DAFDCE

1040 ##
1041 ## Decryption stuff
1042 ## Round function constants
1043 ##
1044 .Lk_dipt: # decryption input transform
1045 .quad 0x0F505B040B545F00, 0x154A411E114E451A
1046 .quad 0x86E383E660056500, 0x12771772F491F194

1048 .Lk_dsb9: # decryption sbox output *9*u, *9*t
1049 .quad 0x851C03539A86D600, 0xCAD51F504F994CC9
1050 .quad 0xC03B1789ECD74900, 0x725E2C9EB2FBA565
1051 .Lk_dsbd: # decryption sbox output *D*u, *D*t

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 17

1052 .quad 0x7D57CCDFE6B1A200, 0xF56E9B13882A4439
1053 .quad 0x3CE2FAF724C6CB00, 0x2931180D15DEEFD3
1054 .Lk_dsbb: # decryption sbox output *B*u, *B*t
1055 .quad 0xD022649296B44200, 0x602646F6B0F2D404
1056 .quad 0xC19498A6CD596700, 0xF3FF0C3E3255AA6B
1057 .Lk_dsbe: # decryption sbox output *E*u, *E*t
1058 .quad 0x46F2929626D4D000, 0x2242600464B4F6B0
1059 .quad 0x0C55A6CDFFAAC100, 0x9467F36B98593E32
1060 .Lk_dsbo: # decryption sbox final output
1061 .quad 0x1387EA537EF94000, 0xC7AA6DB9D4943E2D
1062 .quad 0x12D7560F93441D00, 0xCA4B8159D8C58E9C
1063 .asciz "Vector Permutation AES for x86_64/SSSE3, Mike Hamburg (Stanford Univers
1064 .align 64
1065 .size _vpaes_consts,.-_vpaes_consts
1066 ___

1068 if ($win64) {
1069 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1070 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
1071 $rec="%rcx";
1072 $frame="%rdx";
1073 $context="%r8";
1074 $disp="%r9";

1076 $code.=<<___;
1077 .extern __imp_RtlVirtualUnwind
1078 .type se_handler,\@abi-omnipotent
1079 .align 16
1080 se_handler:
1081 push %rsi
1082 push %rdi
1083 push %rbx
1084 push %rbp
1085 push %r12
1086 push %r13
1087 push %r14
1088 push %r15
1089 pushfq
1090 sub \$64,%rsp

1092 mov 120($context),%rax # pull context->Rax
1093 mov 248($context),%rbx # pull context->Rip

1095 mov 8($disp),%rsi # disp->ImageBase
1096 mov 56($disp),%r11 # disp->HandlerData

1098 mov 0(%r11),%r10d # HandlerData[0]
1099 lea (%rsi,%r10),%r10 # prologue label
1100 cmp %r10,%rbx # context->Rip<prologue label
1101 jb .Lin_prologue

1103 mov 152($context),%rax # pull context->Rsp

1105 mov 4(%r11),%r10d # HandlerData[1]
1106 lea (%rsi,%r10),%r10 # epilogue label
1107 cmp %r10,%rbx # context->Rip>=epilogue label
1108 jae .Lin_prologue

1110 lea 16(%rax),%rsi # %xmm save area
1111 lea 512($context),%rdi # &context.Xmm6
1112 mov \$20,%ecx # 10*sizeof(%xmm0)/sizeof(%rax)
1113 .long 0xa548f3fc # cld; rep movsq
1114 lea 0xb8(%rax),%rax # adjust stack pointer

1116 .Lin_prologue:
1117 mov 8(%rax),%rdi

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 18

1118 mov 16(%rax),%rsi
1119 mov %rax,152($context) # restore context->Rsp
1120 mov %rsi,168($context) # restore context->Rsi
1121 mov %rdi,176($context) # restore context->Rdi

1123 mov 40($disp),%rdi # disp->ContextRecord
1124 mov $context,%rsi # context
1125 mov \$‘1232/8‘,%ecx # sizeof(CONTEXT)
1126 .long 0xa548f3fc # cld; rep movsq

1128 mov $disp,%rsi
1129 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
1130 mov 8(%rsi),%rdx # arg2, disp->ImageBase
1131 mov 0(%rsi),%r8 # arg3, disp->ControlPc
1132 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
1133 mov 40(%rsi),%r10 # disp->ContextRecord
1134 lea 56(%rsi),%r11 # &disp->HandlerData
1135 lea 24(%rsi),%r12 # &disp->EstablisherFrame
1136 mov %r10,32(%rsp) # arg5
1137 mov %r11,40(%rsp) # arg6
1138 mov %r12,48(%rsp) # arg7
1139 mov %rcx,56(%rsp) # arg8, (NULL)
1140 call *__imp_RtlVirtualUnwind(%rip)

1142 mov \$1,%eax # ExceptionContinueSearch
1143 add \$64,%rsp
1144 popfq
1145 pop %r15
1146 pop %r14
1147 pop %r13
1148 pop %r12
1149 pop %rbp
1150 pop %rbx
1151 pop %rdi
1152 pop %rsi
1153 ret
1154 .size se_handler,.-se_handler

1156 .section .pdata
1157 .align 4
1158 .rva .LSEH_begin_${PREFIX}_set_encrypt_key
1159 .rva .LSEH_end_${PREFIX}_set_encrypt_key
1160 .rva .LSEH_info_${PREFIX}_set_encrypt_key

1162 .rva .LSEH_begin_${PREFIX}_set_decrypt_key
1163 .rva .LSEH_end_${PREFIX}_set_decrypt_key
1164 .rva .LSEH_info_${PREFIX}_set_decrypt_key

1166 .rva .LSEH_begin_${PREFIX}_encrypt
1167 .rva .LSEH_end_${PREFIX}_encrypt
1168 .rva .LSEH_info_${PREFIX}_encrypt

1170 .rva .LSEH_begin_${PREFIX}_decrypt
1171 .rva .LSEH_end_${PREFIX}_decrypt
1172 .rva .LSEH_info_${PREFIX}_decrypt

1174 .rva .LSEH_begin_${PREFIX}_cbc_encrypt
1175 .rva .LSEH_end_${PREFIX}_cbc_encrypt
1176 .rva .LSEH_info_${PREFIX}_cbc_encrypt

1178 .section .xdata
1179 .align 8
1180 .LSEH_info_${PREFIX}_set_encrypt_key:
1181 .byte 9,0,0,0
1182 .rva se_handler
1183 .rva .Lenc_key_body,.Lenc_key_epilogue # HandlerData[]

new/usr/src/lib/openssl/libsunw_crypto/pl/vpaes-x86_64.pl 19

1184 .LSEH_info_${PREFIX}_set_decrypt_key:
1185 .byte 9,0,0,0
1186 .rva se_handler
1187 .rva .Ldec_key_body,.Ldec_key_epilogue # HandlerData[]
1188 .LSEH_info_${PREFIX}_encrypt:
1189 .byte 9,0,0,0
1190 .rva se_handler
1191 .rva .Lenc_body,.Lenc_epilogue # HandlerData[]
1192 .LSEH_info_${PREFIX}_decrypt:
1193 .byte 9,0,0,0
1194 .rva se_handler
1195 .rva .Ldec_body,.Ldec_epilogue # HandlerData[]
1196 .LSEH_info_${PREFIX}_cbc_encrypt:
1197 .byte 9,0,0,0
1198 .rva se_handler
1199 .rva .Lcbc_body,.Lcbc_epilogue # HandlerData[]
1200 ___
1201 }

1203 $code =~ s/\‘([^\‘]*)\‘/eval($1)/gem;

1205 print $code;

1207 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-gf2m.pl 1

**
 7713 Fri May 30 18:32:05 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/x86-gf2m.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl
2 #
3 # ==
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==
9 #
10 # May 2011
11 #
12 # The module implements bn_GF2m_mul_2x2 polynomial multiplication used
13 # in bn_gf2m.c. It’s kind of low-hanging mechanical port from C for
14 # the time being... Except that it has three code paths: pure integer
15 # code suitable for any x86 CPU, MMX code suitable for PIII and later
16 # and PCLMULQDQ suitable for Westmere and later. Improvement varies
17 # from one benchmark and µ-arch to another. Below are interval values
18 # for 163- and 571-bit ECDH benchmarks relative to compiler-generated
19 # code:
20 #
21 # PIII 16%-30%
22 # P4 12%-12%
23 # Opteron 18%-40%
24 # Core2 19%-44%
25 # Atom 38%-64%
26 # Westmere 53%-121%(PCLMULQDQ)/20%-32%(MMX)
27 # Sandy Bridge 72%-127%(PCLMULQDQ)/27%-23%(MMX)
28 #
29 # Note that above improvement coefficients are not coefficients for
30 # bn_GF2m_mul_2x2 itself. For example 120% ECDH improvement is result
31 # of bn_GF2m_mul_2x2 being >4x faster. As it gets faster, benchmark
32 # is more and more dominated by other subroutines, most notably by
33 # BN_GF2m_mod[_mul]_arr...

35 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
36 push(@INC,"${dir}","${dir}../../perlasm");
37 require "x86asm.pl";

39 &asm_init($ARGV[0],$0,$x86only = $ARGV[$#ARGV] eq "386");

41 $sse2=0;
42 for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }

44 &external_label("OPENSSL_ia32cap_P") if ($sse2);

46 $a="eax";
47 $b="ebx";
48 ($a1,$a2,$a4)=("ecx","edx","ebp");

50 $R="mm0";
51 @T=("mm1","mm2");
52 ($A,$B,$B30,$B31)=("mm2","mm3","mm4","mm5");
53 @i=("esi","edi");

55 if (!$x86only) {
56 &function_begin_B("_mul_1x1_mmx");
57 &sub ("esp",32+4);
58 &mov ($a1,$a);
59 &lea ($a2,&DWP(0,$a,$a));
60 &and ($a1,0x3fffffff);
61 &lea ($a4,&DWP(0,$a2,$a2));

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-gf2m.pl 2

62 &mov (&DWP(0*4,"esp"),0);
63 &and ($a2,0x7fffffff);
64 &movd ($A,$a);
65 &movd ($B,$b);
66 &mov (&DWP(1*4,"esp"),$a1); # a1
67 &xor ($a1,$a2); # a1^a2
68 &pxor ($B31,$B31);
69 &pxor ($B30,$B30);
70 &mov (&DWP(2*4,"esp"),$a2); # a2
71 &xor ($a2,$a4); # a2^a4
72 &mov (&DWP(3*4,"esp"),$a1); # a1^a2
73 &pcmpgtd($B31,$A); # broadcast 31st bit
74 &paddd ($A,$A); # $A<<=1
75 &xor ($a1,$a2); # a1^a4=a1^a2^a2^a4
76 &mov (&DWP(4*4,"esp"),$a4); # a4
77 &xor ($a4,$a2); # a2=a4^a2^a4
78 &pand ($B31,$B);
79 &pcmpgtd($B30,$A); # broadcast 30th bit
80 &mov (&DWP(5*4,"esp"),$a1); # a1^a4
81 &xor ($a4,$a1); # a1^a2^a4
82 &psllq ($B31,31);
83 &pand ($B30,$B);
84 &mov (&DWP(6*4,"esp"),$a2); # a2^a4
85 &mov (@i[0],0x7);
86 &mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4
87 &mov ($a4,@i[0]);
88 &and (@i[0],$b);
89 &shr ($b,3);
90 &mov (@i[1],$a4);
91 &psllq ($B30,30);
92 &and (@i[1],$b);
93 &shr ($b,3);
94 &movd ($R,&DWP(0,"esp",@i[0],4));
95 &mov (@i[0],$a4);
96 &and (@i[0],$b);
97 &shr ($b,3);
98 for($n=1;$n<9;$n++) {
99 &movd (@T[1],&DWP(0,"esp",@i[1],4));
100 &mov (@i[1],$a4);
101 &psllq (@T[1],3*$n);
102 &and (@i[1],$b);
103 &shr ($b,3);
104 &pxor ($R,@T[1]);

106 push(@i,shift(@i)); push(@T,shift(@T));
107 }
108 &movd (@T[1],&DWP(0,"esp",@i[1],4));
109 &pxor ($R,$B30);
110 &psllq (@T[1],3*$n++);
111 &pxor ($R,@T[1]);

113 &movd (@T[0],&DWP(0,"esp",@i[0],4));
114 &pxor ($R,$B31);
115 &psllq (@T[0],3*$n);
116 &add ("esp",32+4);
117 &pxor ($R,@T[0]);
118 &ret ();
119 &function_end_B("_mul_1x1_mmx");
120 }

122 ($lo,$hi)=("eax","edx");
123 @T=("ecx","ebp");

125 &function_begin_B("_mul_1x1_ialu");
126 &sub ("esp",32+4);
127 &mov ($a1,$a);

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-gf2m.pl 3

128 &lea ($a2,&DWP(0,$a,$a));
129 &lea ($a4,&DWP(0,"",$a,4));
130 &and ($a1,0x3fffffff);
131 &lea (@i[1],&DWP(0,$lo,$lo));
132 &sar ($lo,31); # broadcast 31st bit
133 &mov (&DWP(0*4,"esp"),0);
134 &and ($a2,0x7fffffff);
135 &mov (&DWP(1*4,"esp"),$a1); # a1
136 &xor ($a1,$a2); # a1^a2
137 &mov (&DWP(2*4,"esp"),$a2); # a2
138 &xor ($a2,$a4); # a2^a4
139 &mov (&DWP(3*4,"esp"),$a1); # a1^a2
140 &xor ($a1,$a2); # a1^a4=a1^a2^a2^a4
141 &mov (&DWP(4*4,"esp"),$a4); # a4
142 &xor ($a4,$a2); # a2=a4^a2^a4
143 &mov (&DWP(5*4,"esp"),$a1); # a1^a4
144 &xor ($a4,$a1); # a1^a2^a4
145 &sar (@i[1],31); # broardcast 30th bit
146 &and ($lo,$b);
147 &mov (&DWP(6*4,"esp"),$a2); # a2^a4
148 &and (@i[1],$b);
149 &mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4
150 &mov ($hi,$lo);
151 &shl ($lo,31);
152 &mov (@T[0],@i[1]);
153 &shr ($hi,1);

155 &mov (@i[0],0x7);
156 &shl (@i[1],30);
157 &and (@i[0],$b);
158 &shr (@T[0],2);
159 &xor ($lo,@i[1]);

161 &shr ($b,3);
162 &mov (@i[1],0x7); # 5-byte instruction!?
163 &and (@i[1],$b);
164 &shr ($b,3);
165 &xor ($hi,@T[0]);
166 &xor ($lo,&DWP(0,"esp",@i[0],4));
167 &mov (@i[0],0x7);
168 &and (@i[0],$b);
169 &shr ($b,3);
170 for($n=1;$n<9;$n++) {
171 &mov (@T[1],&DWP(0,"esp",@i[1],4));
172 &mov (@i[1],0x7);
173 &mov (@T[0],@T[1]);
174 &shl (@T[1],3*$n);
175 &and (@i[1],$b);
176 &shr (@T[0],32-3*$n);
177 &xor ($lo,@T[1]);
178 &shr ($b,3);
179 &xor ($hi,@T[0]);

181 push(@i,shift(@i)); push(@T,shift(@T));
182 }
183 &mov (@T[1],&DWP(0,"esp",@i[1],4));
184 &mov (@T[0],@T[1]);
185 &shl (@T[1],3*$n);
186 &mov (@i[1],&DWP(0,"esp",@i[0],4));
187 &shr (@T[0],32-3*$n); $n++;
188 &mov (@i[0],@i[1]);
189 &xor ($lo,@T[1]);
190 &shl (@i[1],3*$n);
191 &xor ($hi,@T[0]);
192 &shr (@i[0],32-3*$n);
193 &xor ($lo,@i[1]);

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-gf2m.pl 4

194 &xor ($hi,@i[0]);

196 &add ("esp",32+4);
197 &ret ();
198 &function_end_B("_mul_1x1_ialu");

200 # void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_UL
201 &function_begin_B("bn_GF2m_mul_2x2");
202 if (!$x86only) {
203 &picmeup("edx","OPENSSL_ia32cap_P");
204 &mov ("eax",&DWP(0,"edx"));
205 &mov ("edx",&DWP(4,"edx"));
206 &test ("eax",1<<23); # check MMX bit
207 &jz (&label("ialu"));
208 if ($sse2) {
209 &test ("eax",1<<24); # check FXSR bit
210 &jz (&label("mmx"));
211 &test ("edx",1<<1); # check PCLMULQDQ bit
212 &jz (&label("mmx"));

214 &movups ("xmm0",&QWP(8,"esp"));
215 &shufps ("xmm0","xmm0",0b10110001);
216 &pclmulqdq ("xmm0","xmm0",1);
217 &mov ("eax",&DWP(4,"esp"));
218 &movups (&QWP(0,"eax"),"xmm0");
219 &ret ();

221 &set_label("mmx",16);
222 }
223 &push ("ebp");
224 &push ("ebx");
225 &push ("esi");
226 &push ("edi");
227 &mov ($a,&wparam(1));
228 &mov ($b,&wparam(3));
229 &call ("_mul_1x1_mmx"); # a1•b1
230 &movq ("mm7",$R);

232 &mov ($a,&wparam(2));
233 &mov ($b,&wparam(4));
234 &call ("_mul_1x1_mmx"); # a0•b0
235 &movq ("mm6",$R);

237 &mov ($a,&wparam(1));
238 &mov ($b,&wparam(3));
239 &xor ($a,&wparam(2));
240 &xor ($b,&wparam(4));
241 &call ("_mul_1x1_mmx"); # (a0+a1)•(b0+b1)
242 &pxor ($R,"mm7");
243 &mov ($a,&wparam(0));
244 &pxor ($R,"mm6"); # (a0+a1)•(b0+b1)-a1•b1-a0•b0

246 &movq ($A,$R);
247 &psllq ($R,32);
248 &pop ("edi");
249 &psrlq ($A,32);
250 &pop ("esi");
251 &pxor ($R,"mm6");
252 &pop ("ebx");
253 &pxor ($A,"mm7");
254 &movq (&QWP(0,$a),$R);
255 &pop ("ebp");
256 &movq (&QWP(8,$a),$A);
257 &emms ();
258 &ret ();
259 &set_label("ialu",16);

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-gf2m.pl 5

260 }
261 &push ("ebp");
262 &push ("ebx");
263 &push ("esi");
264 &push ("edi");
265 &stack_push(4+1);

267 &mov ($a,&wparam(1));
268 &mov ($b,&wparam(3));
269 &call ("_mul_1x1_ialu"); # a1•b1
270 &mov (&DWP(8,"esp"),$lo);
271 &mov (&DWP(12,"esp"),$hi);

273 &mov ($a,&wparam(2));
274 &mov ($b,&wparam(4));
275 &call ("_mul_1x1_ialu"); # a0•b0
276 &mov (&DWP(0,"esp"),$lo);
277 &mov (&DWP(4,"esp"),$hi);

279 &mov ($a,&wparam(1));
280 &mov ($b,&wparam(3));
281 &xor ($a,&wparam(2));
282 &xor ($b,&wparam(4));
283 &call ("_mul_1x1_ialu"); # (a0+a1)•(b0+b1)

285 &mov ("ebp",&wparam(0));
286 @r=("ebx","ecx","edi","esi");
287 &mov (@r[0],&DWP(0,"esp"));
288 &mov (@r[1],&DWP(4,"esp"));
289 &mov (@r[2],&DWP(8,"esp"));
290 &mov (@r[3],&DWP(12,"esp"));

292 &xor ($lo,$hi);
293 &xor ($hi,@r[1]);
294 &xor ($lo,@r[0]);
295 &mov (&DWP(0,"ebp"),@r[0]);
296 &xor ($hi,@r[2]);
297 &mov (&DWP(12,"ebp"),@r[3]);
298 &xor ($lo,@r[3]);
299 &stack_pop(4+1);
300 &xor ($hi,@r[3]);
301 &pop ("edi");
302 &xor ($lo,$hi);
303 &pop ("esi");
304 &mov (&DWP(8,"ebp"),$hi);
305 &pop ("ebx");
306 &mov (&DWP(4,"ebp"),$lo);
307 &pop ("ebp");
308 &ret ();
309 &function_end_B("bn_GF2m_mul_2x2");

311 &asciz ("GF(2^m) Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>");

313 &asm_finish();

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl 1

**
 16468 Fri May 30 18:32:05 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 # ==
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==

10 # October 2005
11 #
12 # This is a "teaser" code, as it can be improved in several ways...
13 # First of all non-SSE2 path should be implemented (yes, for now it
14 # performs Montgomery multiplication/convolution only on SSE2-capable
15 # CPUs such as P4, others fall down to original code). Then inner loop
16 # can be unrolled and modulo-scheduled to improve ILP and possibly
17 # moved to 128-bit XMM register bank (though it would require input
18 # rearrangement and/or increase bus bandwidth utilization). Dedicated
19 # squaring procedure should give further performance improvement...
20 # Yet, for being draft, the code improves rsa512 *sign* benchmark by
21 # 110%(!), rsa1024 one - by 70% and rsa4096 - by 20%:-)

23 # December 2006
24 #
25 # Modulo-scheduling SSE2 loops results in further 15-20% improvement.
26 # Integer-only code [being equipped with dedicated squaring procedure]
27 # gives ~40% on rsa512 sign benchmark...

29 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
30 push(@INC,"${dir}","${dir}../../perlasm");
31 require "x86asm.pl";

33 &asm_init($ARGV[0],$0);

35 $sse2=0;
36 for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }

38 &external_label("OPENSSL_ia32cap_P") if ($sse2);

40 &function_begin("bn_mul_mont");

42 $i="edx";
43 $j="ecx";
44 $ap="esi"; $tp="esi"; # overlapping variables!!!
45 $rp="edi"; $bp="edi"; # overlapping variables!!!
46 $np="ebp";
47 $num="ebx";

49 $_num=&DWP(4*0,"esp"); # stack top layout
50 $_rp=&DWP(4*1,"esp");
51 $_ap=&DWP(4*2,"esp");
52 $_bp=&DWP(4*3,"esp");
53 $_np=&DWP(4*4,"esp");
54 $_n0=&DWP(4*5,"esp"); $_n0q=&QWP(4*5,"esp");
55 $_sp=&DWP(4*6,"esp");
56 $_bpend=&DWP(4*7,"esp");
57 $frame=32; # size of above frame rounded up to 16n

59 &xor ("eax","eax");
60 &mov ("edi",&wparam(5)); # int num
61 &cmp ("edi",4);

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl 2

62 &jl (&label("just_leave"));

64 &lea ("esi",&wparam(0)); # put aside pointer to argument block
65 &lea ("edx",&wparam(1)); # load ap
66 &mov ("ebp","esp"); # saved stack pointer!
67 &add ("edi",2); # extra two words on top of tp
68 &neg ("edi");
69 &lea ("esp",&DWP(-$frame,"esp","edi",4)); # alloca($frame+4*(num+2
70 &neg ("edi");

72 # minimize cache contention by arraning 2K window between stack
73 # pointer and ap argument [np is also position sensitive vector,
74 # but it’s assumed to be near ap, as it’s allocated at ~same
75 # time].
76 &mov ("eax","esp");
77 &sub ("eax","edx");
78 &and ("eax",2047);
79 &sub ("esp","eax"); # this aligns sp and ap modulo 2048

81 &xor ("edx","esp");
82 &and ("edx",2048);
83 &xor ("edx",2048);
84 &sub ("esp","edx"); # this splits them apart modulo 4096

86 &and ("esp",-64); # align to cache line

88 ################################# load argument block...
89 &mov ("eax",&DWP(0*4,"esi"));# BN_ULONG *rp
90 &mov ("ebx",&DWP(1*4,"esi"));# const BN_ULONG *ap
91 &mov ("ecx",&DWP(2*4,"esi"));# const BN_ULONG *bp
92 &mov ("edx",&DWP(3*4,"esi"));# const BN_ULONG *np
93 &mov ("esi",&DWP(4*4,"esi"));# const BN_ULONG *n0
94 #&mov ("edi",&DWP(5*4,"esi"));# int num

96 &mov ("esi",&DWP(0,"esi")); # pull n0[0]
97 &mov ($_rp,"eax"); # ... save a copy of argument block
98 &mov ($_ap,"ebx");
99 &mov ($_bp,"ecx");
100 &mov ($_np,"edx");
101 &mov ($_n0,"esi");
102 &lea ($num,&DWP(-3,"edi")); # num=num-1 to assist modulo-scheduling
103 #&mov ($_num,$num); # redundant as $num is not reused
104 &mov ($_sp,"ebp"); # saved stack pointer!

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl 3

105 if($sse2) {
106 $acc0="mm0"; # mmx register bank layout
107 $acc1="mm1";
108 $car0="mm2";
109 $car1="mm3";
110 $mul0="mm4";
111 $mul1="mm5";
112 $temp="mm6";
113 $mask="mm7";

115 &picmeup("eax","OPENSSL_ia32cap_P");
116 &bt (&DWP(0,"eax"),26);
117 &jnc (&label("non_sse2"));

119 &mov ("eax",-1);
120 &movd ($mask,"eax"); # mask 32 lower bits

122 &mov ($ap,$_ap); # load input pointers
123 &mov ($bp,$_bp);
124 &mov ($np,$_np);

126 &xor ($i,$i); # i=0
127 &xor ($j,$j); # j=0

129 &movd ($mul0,&DWP(0,$bp)); # bp[0]
130 &movd ($mul1,&DWP(0,$ap)); # ap[0]
131 &movd ($car1,&DWP(0,$np)); # np[0]

133 &pmuludq($mul1,$mul0); # ap[0]*bp[0]
134 &movq ($car0,$mul1);
135 &movq ($acc0,$mul1); # I wish movd worked for
136 &pand ($acc0,$mask); # inter-register transfers

138 &pmuludq($mul1,$_n0q); # *=n0

140 &pmuludq($car1,$mul1); # "t[0]"*np[0]*n0
141 &paddq ($car1,$acc0);

143 &movd ($acc1,&DWP(4,$np)); # np[1]
144 &movd ($acc0,&DWP(4,$ap)); # ap[1]

146 &psrlq ($car0,32);
147 &psrlq ($car1,32);

149 &inc ($j); # j++
150 &set_label("1st",16);
151 &pmuludq($acc0,$mul0); # ap[j]*bp[0]
152 &pmuludq($acc1,$mul1); # np[j]*m1
153 &paddq ($car0,$acc0); # +=c0
154 &paddq ($car1,$acc1); # +=c1

156 &movq ($acc0,$car0);
157 &pand ($acc0,$mask);
158 &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1]
159 &paddq ($car1,$acc0); # +=ap[j]*bp[0];
160 &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1]
161 &psrlq ($car0,32);
162 &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[j-1]=
163 &psrlq ($car1,32);

165 &lea ($j,&DWP(1,$j));
166 &cmp ($j,$num);
167 &jl (&label("1st"));

169 &pmuludq($acc0,$mul0); # ap[num-1]*bp[0]
170 &pmuludq($acc1,$mul1); # np[num-1]*m1

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl 4

171 &paddq ($car0,$acc0); # +=c0
172 &paddq ($car1,$acc1); # +=c1

174 &movq ($acc0,$car0);
175 &pand ($acc0,$mask);
176 &paddq ($car1,$acc0); # +=ap[num-1]*bp[0];
177 &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]=

179 &psrlq ($car0,32);
180 &psrlq ($car1,32);

182 &paddq ($car1,$car0);
183 &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1]

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl 5

184 &inc ($i); # i++
185 &set_label("outer");
186 &xor ($j,$j); # j=0

188 &movd ($mul0,&DWP(0,$bp,$i,4)); # bp[i]
189 &movd ($mul1,&DWP(0,$ap)); # ap[0]
190 &movd ($temp,&DWP($frame,"esp")); # tp[0]
191 &movd ($car1,&DWP(0,$np)); # np[0]
192 &pmuludq($mul1,$mul0); # ap[0]*bp[i]

194 &paddq ($mul1,$temp); # +=tp[0]
195 &movq ($acc0,$mul1);
196 &movq ($car0,$mul1);
197 &pand ($acc0,$mask);

199 &pmuludq($mul1,$_n0q); # *=n0

201 &pmuludq($car1,$mul1);
202 &paddq ($car1,$acc0);

204 &movd ($temp,&DWP($frame+4,"esp")); # tp[1]
205 &movd ($acc1,&DWP(4,$np)); # np[1]
206 &movd ($acc0,&DWP(4,$ap)); # ap[1]

208 &psrlq ($car0,32);
209 &psrlq ($car1,32);
210 &paddq ($car0,$temp); # +=tp[1]

212 &inc ($j); # j++
213 &dec ($num);
214 &set_label("inner");
215 &pmuludq($acc0,$mul0); # ap[j]*bp[i]
216 &pmuludq($acc1,$mul1); # np[j]*m1
217 &paddq ($car0,$acc0); # +=c0
218 &paddq ($car1,$acc1); # +=c1

220 &movq ($acc0,$car0);
221 &movd ($temp,&DWP($frame+4,"esp",$j,4));# tp[j+1]
222 &pand ($acc0,$mask);
223 &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1]
224 &paddq ($car1,$acc0); # +=ap[j]*bp[i]+tp[j]
225 &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1]
226 &psrlq ($car0,32);
227 &movd (&DWP($frame-4,"esp",$j,4),$car1);# tp[j-1]=
228 &psrlq ($car1,32);
229 &paddq ($car0,$temp); # +=tp[j+1]

231 &dec ($num);
232 &lea ($j,&DWP(1,$j)); # j++
233 &jnz (&label("inner"));

235 &mov ($num,$j);
236 &pmuludq($acc0,$mul0); # ap[num-1]*bp[i]
237 &pmuludq($acc1,$mul1); # np[num-1]*m1
238 &paddq ($car0,$acc0); # +=c0
239 &paddq ($car1,$acc1); # +=c1

241 &movq ($acc0,$car0);
242 &pand ($acc0,$mask);
243 &paddq ($car1,$acc0); # +=ap[num-1]*bp[i]+tp[num-1]
244 &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]=
245 &psrlq ($car0,32);
246 &psrlq ($car1,32);

248 &movd ($temp,&DWP($frame+4,"esp",$num,4)); # += tp[num]
249 &paddq ($car1,$car0);

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl 6

250 &paddq ($car1,$temp);
251 &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1]

253 &lea ($i,&DWP(1,$i)); # i++
254 &cmp ($i,$num);
255 &jle (&label("outer"));

257 &emms (); # done with mmx bank
258 &jmp (&label("common_tail"));

260 &set_label("non_sse2",16);
261 }

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl 7

262 if (0) {
263 &mov ("esp",$_sp);
264 &xor ("eax","eax"); # signal "not fast enough [yet]"
265 &jmp (&label("just_leave"));
266 # While the below code provides competitive performance for
267 # all key lengthes on modern Intel cores, it’s still more
268 # than 10% slower for 4096-bit key elsewhere:-("Competitive"
269 # means compared to the original integer-only assembler.
270 # 512-bit RSA sign is better by ~40%, but that’s about all
271 # one can say about all CPUs...
272 } else {
273 $inp="esi"; # integer path uses these registers differently
274 $word="edi";
275 $carry="ebp";

277 &mov ($inp,$_ap);
278 &lea ($carry,&DWP(1,$num));
279 &mov ($word,$_bp);
280 &xor ($j,$j); # j=0
281 &mov ("edx",$inp);
282 &and ($carry,1); # see if num is even
283 &sub ("edx",$word); # see if ap==bp
284 &lea ("eax",&DWP(4,$word,$num,4)); # &bp[num]
285 &or ($carry,"edx");
286 &mov ($word,&DWP(0,$word)); # bp[0]
287 &jz (&label("bn_sqr_mont"));
288 &mov ($_bpend,"eax");
289 &mov ("eax",&DWP(0,$inp));
290 &xor ("edx","edx");

292 &set_label("mull",16);
293 &mov ($carry,"edx");
294 &mul ($word); # ap[j]*bp[0]
295 &add ($carry,"eax");
296 &lea ($j,&DWP(1,$j));
297 &adc ("edx",0);
298 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1]
299 &cmp ($j,$num);
300 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
301 &jl (&label("mull"));

303 &mov ($carry,"edx");
304 &mul ($word); # ap[num-1]*bp[0]
305 &mov ($word,$_n0);
306 &add ("eax",$carry);
307 &mov ($inp,$_np);
308 &adc ("edx",0);
309 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]

311 &mov (&DWP($frame,"esp",$num,4),"eax"); # tp[num-1]=
312 &xor ($j,$j);
313 &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]=
314 &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]=

316 &mov ("eax",&DWP(0,$inp)); # np[0]
317 &mul ($word); # np[0]*m
318 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
319 &mov ("eax",&DWP(4,$inp)); # np[1]
320 &adc ("edx",0);
321 &inc ($j);

323 &jmp (&label("2ndmadd"));

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl 8

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl 9

324 &set_label("1stmadd",16);
325 &mov ($carry,"edx");
326 &mul ($word); # ap[j]*bp[i]
327 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
328 &lea ($j,&DWP(1,$j));
329 &adc ("edx",0);
330 &add ($carry,"eax");
331 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1]
332 &adc ("edx",0);
333 &cmp ($j,$num);
334 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
335 &jl (&label("1stmadd"));

337 &mov ($carry,"edx");
338 &mul ($word); # ap[num-1]*bp[i]
339 &add ("eax",&DWP($frame,"esp",$num,4)); # +=tp[num-1]
340 &mov ($word,$_n0);
341 &adc ("edx",0);
342 &mov ($inp,$_np);
343 &add ($carry,"eax");
344 &adc ("edx",0);
345 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]

347 &xor ($j,$j);
348 &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
349 &mov (&DWP($frame,"esp",$num,4),$carry); # tp[num-1]=
350 &adc ($j,0);
351 &mov ("eax",&DWP(0,$inp)); # np[0]
352 &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]=
353 &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]=

355 &mul ($word); # np[0]*m
356 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
357 &mov ("eax",&DWP(4,$inp)); # np[1]
358 &adc ("edx",0);
359 &mov ($j,1);

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl 10

360 &set_label("2ndmadd",16);
361 &mov ($carry,"edx");
362 &mul ($word); # np[j]*m
363 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
364 &lea ($j,&DWP(1,$j));
365 &adc ("edx",0);
366 &add ($carry,"eax");
367 &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+1]
368 &adc ("edx",0);
369 &cmp ($j,$num);
370 &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j-1]=
371 &jl (&label("2ndmadd"));

373 &mov ($carry,"edx");
374 &mul ($word); # np[j]*m
375 &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1]
376 &adc ("edx",0);
377 &add ($carry,"eax");
378 &adc ("edx",0);
379 &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]=

381 &xor ("eax","eax");
382 &mov ($j,$_bp); # &bp[i]
383 &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
384 &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1]
385 &lea ($j,&DWP(4,$j));
386 &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]=
387 &cmp ($j,$_bpend);
388 &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]=
389 &je (&label("common_tail"));

391 &mov ($word,&DWP(0,$j)); # bp[i+1]
392 &mov ($inp,$_ap);
393 &mov ($_bp,$j); # &bp[++i]
394 &xor ($j,$j);
395 &xor ("edx","edx");
396 &mov ("eax",&DWP(0,$inp));
397 &jmp (&label("1stmadd"));

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl 11

398 &set_label("bn_sqr_mont",16);
399 $sbit=$num;
400 &mov ($_num,$num);
401 &mov ($_bp,$j); # i=0

403 &mov ("eax",$word); # ap[0]
404 &mul ($word); # ap[0]*ap[0]
405 &mov (&DWP($frame,"esp"),"eax"); # tp[0]=
406 &mov ($sbit,"edx");
407 &shr ("edx",1);
408 &and ($sbit,1);
409 &inc ($j);
410 &set_label("sqr",16);
411 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j]
412 &mov ($carry,"edx");
413 &mul ($word); # ap[j]*ap[0]
414 &add ("eax",$carry);
415 &lea ($j,&DWP(1,$j));
416 &adc ("edx",0);
417 &lea ($carry,&DWP(0,$sbit,"eax",2));
418 &shr ("eax",31);
419 &cmp ($j,$_num);
420 &mov ($sbit,"eax");
421 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
422 &jl (&label("sqr"));

424 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[num-1]
425 &mov ($carry,"edx");
426 &mul ($word); # ap[num-1]*ap[0]
427 &add ("eax",$carry);
428 &mov ($word,$_n0);
429 &adc ("edx",0);
430 &mov ($inp,$_np);
431 &lea ($carry,&DWP(0,$sbit,"eax",2));
432 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
433 &shr ("eax",31);
434 &mov (&DWP($frame,"esp",$j,4),$carry); # tp[num-1]=

436 &lea ($carry,&DWP(0,"eax","edx",2));
437 &mov ("eax",&DWP(0,$inp)); # np[0]
438 &shr ("edx",31);
439 &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num]=
440 &mov (&DWP($frame+8,"esp",$j,4),"edx"); # tp[num+1]=

442 &mul ($word); # np[0]*m
443 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
444 &mov ($num,$j);
445 &adc ("edx",0);
446 &mov ("eax",&DWP(4,$inp)); # np[1]
447 &mov ($j,1);

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl 12

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl 13

448 &set_label("3rdmadd",16);
449 &mov ($carry,"edx");
450 &mul ($word); # np[j]*m
451 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
452 &adc ("edx",0);
453 &add ($carry,"eax");
454 &mov ("eax",&DWP(4,$inp,$j,4)); # np[j+1]
455 &adc ("edx",0);
456 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j-1]=

458 &mov ($carry,"edx");
459 &mul ($word); # np[j+1]*m
460 &add ($carry,&DWP($frame+4,"esp",$j,4)); # +=tp[j+1]
461 &lea ($j,&DWP(2,$j));
462 &adc ("edx",0);
463 &add ($carry,"eax");
464 &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+2]
465 &adc ("edx",0);
466 &cmp ($j,$num);
467 &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j]=
468 &jl (&label("3rdmadd"));

470 &mov ($carry,"edx");
471 &mul ($word); # np[j]*m
472 &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1]
473 &adc ("edx",0);
474 &add ($carry,"eax");
475 &adc ("edx",0);
476 &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]=

478 &mov ($j,$_bp); # i
479 &xor ("eax","eax");
480 &mov ($inp,$_ap);
481 &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
482 &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1]
483 &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]=
484 &cmp ($j,$num);
485 &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]=
486 &je (&label("common_tail"));

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl 14

487 &mov ($word,&DWP(4,$inp,$j,4)); # ap[i]
488 &lea ($j,&DWP(1,$j));
489 &mov ("eax",$word);
490 &mov ($_bp,$j); # ++i
491 &mul ($word); # ap[i]*ap[i]
492 &add ("eax",&DWP($frame,"esp",$j,4)); # +=tp[i]
493 &adc ("edx",0);
494 &mov (&DWP($frame,"esp",$j,4),"eax"); # tp[i]=
495 &xor ($carry,$carry);
496 &cmp ($j,$num);
497 &lea ($j,&DWP(1,$j));
498 &je (&label("sqrlast"));

500 &mov ($sbit,"edx"); # zaps $num
501 &shr ("edx",1);
502 &and ($sbit,1);
503 &set_label("sqradd",16);
504 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j]
505 &mov ($carry,"edx");
506 &mul ($word); # ap[j]*ap[i]
507 &add ("eax",$carry);
508 &lea ($carry,&DWP(0,"eax","eax"));
509 &adc ("edx",0);
510 &shr ("eax",31);
511 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
512 &lea ($j,&DWP(1,$j));
513 &adc ("eax",0);
514 &add ($carry,$sbit);
515 &adc ("eax",0);
516 &cmp ($j,$_num);
517 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
518 &mov ($sbit,"eax");
519 &jle (&label("sqradd"));

521 &mov ($carry,"edx");
522 &add ("edx","edx");
523 &shr ($carry,31);
524 &add ("edx",$sbit);
525 &adc ($carry,0);
526 &set_label("sqrlast");
527 &mov ($word,$_n0);
528 &mov ($inp,$_np);
529 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]

531 &add ("edx",&DWP($frame,"esp",$j,4)); # +=tp[num]
532 &mov ("eax",&DWP(0,$inp)); # np[0]
533 &adc ($carry,0);
534 &mov (&DWP($frame,"esp",$j,4),"edx"); # tp[num]=
535 &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num+1]=

537 &mul ($word); # np[0]*m
538 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
539 &lea ($num,&DWP(-1,$j));
540 &adc ("edx",0);
541 &mov ($j,1);
542 &mov ("eax",&DWP(4,$inp)); # np[1]

544 &jmp (&label("3rdmadd"));
545 }

new/usr/src/lib/openssl/libsunw_crypto/pl/x86-mont.pl 15

546 &set_label("common_tail",16);
547 &mov ($np,$_np); # load modulus pointer
548 &mov ($rp,$_rp); # load result pointer
549 &lea ($tp,&DWP($frame,"esp")); # [$ap and $bp are zapped]

551 &mov ("eax",&DWP(0,$tp)); # tp[0]
552 &mov ($j,$num); # j=num-1
553 &xor ($i,$i); # i=0 and clear CF!

555 &set_label("sub",16);
556 &sbb ("eax",&DWP(0,$np,$i,4));
557 &mov (&DWP(0,$rp,$i,4),"eax"); # rp[i]=tp[i]-np[i]
558 &dec ($j); # doesn’t affect CF!
559 &mov ("eax",&DWP(4,$tp,$i,4)); # tp[i+1]
560 &lea ($i,&DWP(1,$i)); # i++
561 &jge (&label("sub"));

563 &sbb ("eax",0); # handle upmost overflow bit
564 &and ($tp,"eax");
565 ¬ ("eax");
566 &mov ($np,$rp);
567 &and ($np,"eax");
568 &or ($tp,$np); # tp=carry?tp:rp

570 &set_label("copy",16); # copy or in-place refresh
571 &mov ("eax",&DWP(0,$tp,$num,4));
572 &mov (&DWP(0,$rp,$num,4),"eax"); # rp[i]=tp[i]
573 &mov (&DWP($frame,"esp",$num,4),$j); # zap temporary vector
574 &dec ($num);
575 &jge (&label("copy"));

577 &mov ("esp",$_sp); # pull saved stack pointer
578 &mov ("eax",1);
579 &set_label("just_leave");
580 &function_end("bn_mul_mont");

582 &asciz("Montgomery Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>");

584 &asm_finish();

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-gf2m.pl 1

**
 8577 Fri May 30 18:32:05 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-gf2m.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl
2 #
3 # ==
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==
9 #
10 # May 2011
11 #
12 # The module implements bn_GF2m_mul_2x2 polynomial multiplication used
13 # in bn_gf2m.c. It’s kind of low-hanging mechanical port from C for
14 # the time being... Except that it has two code paths: code suitable
15 # for any x86_64 CPU and PCLMULQDQ one suitable for Westmere and
16 # later. Improvement varies from one benchmark and µ-arch to another.
17 # Vanilla code path is at most 20% faster than compiler-generated code
18 # [not very impressive], while PCLMULQDQ - whole 85%-160% better on
19 # 163- and 571-bit ECDH benchmarks on Intel CPUs. Keep in mind that
20 # these coefficients are not ones for bn_GF2m_mul_2x2 itself, as not
21 # all CPU time is burnt in it...

23 $flavour = shift;
24 $output = shift;
25 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

27 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

29 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
30 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
31 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
32 die "can’t locate x86_64-xlate.pl";

34 open OUT,"| \"$^X\" $xlate $flavour $output";
35 *STDOUT=*OUT;

37 ($lo,$hi)=("%rax","%rdx"); $a=$lo;
38 ($i0,$i1)=("%rsi","%rdi");
39 ($t0,$t1)=("%rbx","%rcx");
40 ($b,$mask)=("%rbp","%r8");
41 ($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(9..15));
42 ($R,$Tx)=("%xmm0","%xmm1");

44 $code.=<<___;
45 .text

47 .type _mul_1x1,\@abi-omnipotent
48 .align 16
49 _mul_1x1:
50 sub \$128+8,%rsp
51 mov \$-1,$a1
52 lea ($a,$a),$i0
53 shr \$3,$a1
54 lea (,$a,4),$i1
55 and $a,$a1 # a1=a&0x1fffffffffffffff
56 lea (,$a,8),$a8
57 sar \$63,$a # broadcast 63rd bit
58 lea ($a1,$a1),$a2
59 sar \$63,$i0 # broadcast 62nd bit
60 lea (,$a1,4),$a4
61 and $b,$a

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-gf2m.pl 2

62 sar \$63,$i1 # boardcast 61st bit
63 mov $a,$hi # $a is $lo
64 shl \$63,$lo
65 and $b,$i0
66 shr \$1,$hi
67 mov $i0,$t1
68 shl \$62,$i0
69 and $b,$i1
70 shr \$2,$t1
71 xor $i0,$lo
72 mov $i1,$t0
73 shl \$61,$i1
74 xor $t1,$hi
75 shr \$3,$t0
76 xor $i1,$lo
77 xor $t0,$hi

79 mov $a1,$a12
80 movq \$0,0(%rsp) # tab[0]=0
81 xor $a2,$a12 # a1^a2
82 mov $a1,8(%rsp) # tab[1]=a1
83 mov $a4,$a48
84 mov $a2,16(%rsp) # tab[2]=a2
85 xor $a8,$a48 # a4^a8
86 mov $a12,24(%rsp) # tab[3]=a1^a2

88 xor $a4,$a1
89 mov $a4,32(%rsp) # tab[4]=a4
90 xor $a4,$a2
91 mov $a1,40(%rsp) # tab[5]=a1^a4
92 xor $a4,$a12
93 mov $a2,48(%rsp) # tab[6]=a2^a4
94 xor $a48,$a1 # a1^a4^a4^a8=a1^a8
95 mov $a12,56(%rsp) # tab[7]=a1^a2^a4
96 xor $a48,$a2 # a2^a4^a4^a8=a1^a8

98 mov $a8,64(%rsp) # tab[8]=a8
99 xor $a48,$a12 # a1^a2^a4^a4^a8=a1^a2^a8
100 mov $a1,72(%rsp) # tab[9]=a1^a8
101 xor $a4,$a1 # a1^a8^a4
102 mov $a2,80(%rsp) # tab[10]=a2^a8
103 xor $a4,$a2 # a2^a8^a4
104 mov $a12,88(%rsp) # tab[11]=a1^a2^a8

106 xor $a4,$a12 # a1^a2^a8^a4
107 mov $a48,96(%rsp) # tab[12]=a4^a8
108 mov $mask,$i0
109 mov $a1,104(%rsp) # tab[13]=a1^a4^a8
110 and $b,$i0
111 mov $a2,112(%rsp) # tab[14]=a2^a4^a8
112 shr \$4,$b
113 mov $a12,120(%rsp) # tab[15]=a1^a2^a4^a8
114 mov $mask,$i1
115 and $b,$i1
116 shr \$4,$b

118 movq (%rsp,$i0,8),$R # half of calculations is done in SSE2
119 mov $mask,$i0
120 and $b,$i0
121 shr \$4,$b
122 ___
123 for ($n=1;$n<8;$n++) {
124 $code.=<<___;
125 mov (%rsp,$i1,8),$t1
126 mov $mask,$i1
127 mov $t1,$t0

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-gf2m.pl 3

128 shl \$‘8*$n-4‘,$t1
129 and $b,$i1
130 movq (%rsp,$i0,8),$Tx
131 shr \$‘64-(8*$n-4)‘,$t0
132 xor $t1,$lo
133 pslldq \$$n,$Tx
134 mov $mask,$i0
135 shr \$4,$b
136 xor $t0,$hi
137 and $b,$i0
138 shr \$4,$b
139 pxor $Tx,$R
140 ___
141 }
142 $code.=<<___;
143 mov (%rsp,$i1,8),$t1
144 mov $t1,$t0
145 shl \$‘8*$n-4‘,$t1
146 movq $R,$i0
147 shr \$‘64-(8*$n-4)‘,$t0
148 xor $t1,$lo
149 psrldq \$8,$R
150 xor $t0,$hi
151 movq $R,$i1
152 xor $i0,$lo
153 xor $i1,$hi

155 add \$128+8,%rsp
156 ret
157 .Lend_mul_1x1:
158 .size _mul_1x1,.-_mul_1x1
159 ___

161 ($rp,$a1,$a0,$b1,$b0) = $win64? ("%rcx","%rdx","%r8", "%r9","%r10") : # Win64
162 ("%rdi","%rsi","%rdx","%rcx","%r8"); # Unix o

164 $code.=<<___;
165 .extern OPENSSL_ia32cap_P
166 .globl bn_GF2m_mul_2x2
167 .type bn_GF2m_mul_2x2,\@abi-omnipotent
168 .align 16
169 bn_GF2m_mul_2x2:
170 mov OPENSSL_ia32cap_P(%rip),%rax
171 bt \$33,%rax
172 jnc .Lvanilla_mul_2x2

174 movq $a1,%xmm0
175 movq $b1,%xmm1
176 movq $a0,%xmm2
177 ___
178 $code.=<<___ if ($win64);
179 movq 40(%rsp),%xmm3
180 ___
181 $code.=<<___ if (!$win64);
182 movq $b0,%xmm3
183 ___
184 $code.=<<___;
185 movdqa %xmm0,%xmm4
186 movdqa %xmm1,%xmm5
187 pclmulqdq \$0,%xmm1,%xmm0 # a1•b1
188 pxor %xmm2,%xmm4
189 pxor %xmm3,%xmm5
190 pclmulqdq \$0,%xmm3,%xmm2 # a0•b0
191 pclmulqdq \$0,%xmm5,%xmm4 # (a0+a1)•(b0+b1)
192 xorps %xmm0,%xmm4
193 xorps %xmm2,%xmm4 # (a0+a1)•(b0+b1)-a0•b0-a1•b1

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-gf2m.pl 4

194 movdqa %xmm4,%xmm5
195 pslldq \$8,%xmm4
196 psrldq \$8,%xmm5
197 pxor %xmm4,%xmm2
198 pxor %xmm5,%xmm0
199 movdqu %xmm2,0($rp)
200 movdqu %xmm0,16($rp)
201 ret

203 .align 16
204 .Lvanilla_mul_2x2:
205 lea -8*17(%rsp),%rsp
206 ___
207 $code.=<<___ if ($win64);
208 mov ‘8*17+40‘(%rsp),$b0
209 mov %rdi,8*15(%rsp)
210 mov %rsi,8*16(%rsp)
211 ___
212 $code.=<<___;
213 mov %r14,8*10(%rsp)
214 mov %r13,8*11(%rsp)
215 mov %r12,8*12(%rsp)
216 mov %rbp,8*13(%rsp)
217 mov %rbx,8*14(%rsp)
218 .Lbody_mul_2x2:
219 mov $rp,32(%rsp) # save the arguments
220 mov $a1,40(%rsp)
221 mov $a0,48(%rsp)
222 mov $b1,56(%rsp)
223 mov $b0,64(%rsp)

225 mov \$0xf,$mask
226 mov $a1,$a
227 mov $b1,$b
228 call _mul_1x1 # a1•b1
229 mov $lo,16(%rsp)
230 mov $hi,24(%rsp)

232 mov 48(%rsp),$a
233 mov 64(%rsp),$b
234 call _mul_1x1 # a0•b0
235 mov $lo,0(%rsp)
236 mov $hi,8(%rsp)

238 mov 40(%rsp),$a
239 mov 56(%rsp),$b
240 xor 48(%rsp),$a
241 xor 64(%rsp),$b
242 call _mul_1x1 # (a0+a1)•(b0+b1)
243 ___
244 @r=("%rbx","%rcx","%rdi","%rsi");
245 $code.=<<___;
246 mov 0(%rsp),@r[0]
247 mov 8(%rsp),@r[1]
248 mov 16(%rsp),@r[2]
249 mov 24(%rsp),@r[3]
250 mov 32(%rsp),%rbp

252 xor $hi,$lo
253 xor @r[1],$hi
254 xor @r[0],$lo
255 mov @r[0],0(%rbp)
256 xor @r[2],$hi
257 mov @r[3],24(%rbp)
258 xor @r[3],$lo
259 xor @r[3],$hi

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-gf2m.pl 5

260 xor $hi,$lo
261 mov $hi,16(%rbp)
262 mov $lo,8(%rbp)

264 mov 8*10(%rsp),%r14
265 mov 8*11(%rsp),%r13
266 mov 8*12(%rsp),%r12
267 mov 8*13(%rsp),%rbp
268 mov 8*14(%rsp),%rbx
269 ___
270 $code.=<<___ if ($win64);
271 mov 8*15(%rsp),%rdi
272 mov 8*16(%rsp),%rsi
273 ___
274 $code.=<<___;
275 lea 8*17(%rsp),%rsp
276 ret
277 .Lend_mul_2x2:
278 .size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2
279 .asciz "GF(2^m) Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
280 .align 16
281 ___

283 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
284 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
285 if ($win64) {
286 $rec="%rcx";
287 $frame="%rdx";
288 $context="%r8";
289 $disp="%r9";

291 $code.=<<___;
292 .extern __imp_RtlVirtualUnwind

294 .type se_handler,\@abi-omnipotent
295 .align 16
296 se_handler:
297 push %rsi
298 push %rdi
299 push %rbx
300 push %rbp
301 push %r12
302 push %r13
303 push %r14
304 push %r15
305 pushfq
306 sub \$64,%rsp

308 mov 152($context),%rax # pull context->Rsp
309 mov 248($context),%rbx # pull context->Rip

311 lea .Lbody_mul_2x2(%rip),%r10
312 cmp %r10,%rbx # context->Rip<"prologue" label
313 jb .Lin_prologue

315 mov 8*10(%rax),%r14 # mimic epilogue
316 mov 8*11(%rax),%r13
317 mov 8*12(%rax),%r12
318 mov 8*13(%rax),%rbp
319 mov 8*14(%rax),%rbx
320 mov 8*15(%rax),%rdi
321 mov 8*16(%rax),%rsi

323 mov %rbx,144($context) # restore context->Rbx
324 mov %rbp,160($context) # restore context->Rbp
325 mov %rsi,168($context) # restore context->Rsi

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-gf2m.pl 6

326 mov %rdi,176($context) # restore context->Rdi
327 mov %r12,216($context) # restore context->R12
328 mov %r13,224($context) # restore context->R13
329 mov %r14,232($context) # restore context->R14

331 .Lin_prologue:
332 lea 8*17(%rax),%rax
333 mov %rax,152($context) # restore context->Rsp

335 mov 40($disp),%rdi # disp->ContextRecord
336 mov $context,%rsi # context
337 mov \$154,%ecx # sizeof(CONTEXT)
338 .long 0xa548f3fc # cld; rep movsq

340 mov $disp,%rsi
341 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
342 mov 8(%rsi),%rdx # arg2, disp->ImageBase
343 mov 0(%rsi),%r8 # arg3, disp->ControlPc
344 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
345 mov 40(%rsi),%r10 # disp->ContextRecord
346 lea 56(%rsi),%r11 # &disp->HandlerData
347 lea 24(%rsi),%r12 # &disp->EstablisherFrame
348 mov %r10,32(%rsp) # arg5
349 mov %r11,40(%rsp) # arg6
350 mov %r12,48(%rsp) # arg7
351 mov %rcx,56(%rsp) # arg8, (NULL)
352 call *__imp_RtlVirtualUnwind(%rip)

354 mov \$1,%eax # ExceptionContinueSearch
355 add \$64,%rsp
356 popfq
357 pop %r15
358 pop %r14
359 pop %r13
360 pop %r12
361 pop %rbp
362 pop %rbx
363 pop %rdi
364 pop %rsi
365 ret
366 .size se_handler,.-se_handler

368 .section .pdata
369 .align 4
370 .rva _mul_1x1
371 .rva .Lend_mul_1x1
372 .rva .LSEH_info_1x1

374 .rva .Lvanilla_mul_2x2
375 .rva .Lend_mul_2x2
376 .rva .LSEH_info_2x2
377 .section .xdata
378 .align 8
379 .LSEH_info_1x1:
380 .byte 0x01,0x07,0x02,0x00
381 .byte 0x07,0x01,0x11,0x00 # sub rsp,128+8
382 .LSEH_info_2x2:
383 .byte 9,0,0,0
384 .rva se_handler
385 ___
386 }

388 $code =~ s/\‘([^\‘]*)\‘/eval($1)/gem;
389 print $code;
390 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 1

**
 36986 Fri May 30 18:32:06 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 # ==
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==

10 # October 2005.
11 #
12 # Montgomery multiplication routine for x86_64. While it gives modest
13 # 9% improvement of rsa4096 sign on Opteron, rsa512 sign runs more
14 # than twice, >2x, as fast. Most common rsa1024 sign is improved by
15 # respectful 50%. It remains to be seen if loop unrolling and
16 # dedicated squaring routine can provide further improvement...

18 # July 2011.
19 #
20 # Add dedicated squaring procedure. Performance improvement varies
21 # from platform to platform, but in average it’s ~5%/15%/25%/33%
22 # for 512-/1024-/2048-/4096-bit RSA *sign* benchmarks respectively.

24 # August 2011.
25 #
26 # Unroll and modulo-schedule inner loops in such manner that they
27 # are "fallen through" for input lengths of 8, which is critical for
28 # 1024-bit RSA *sign*. Average performance improvement in comparison
29 # to *initial* version of this module from 2005 is ~0%/30%/40%/45%
30 # for 512-/1024-/2048-/4096-bit RSA *sign* benchmarks respectively.

32 $flavour = shift;
33 $output = shift;
34 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

36 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

38 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
39 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
40 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
41 die "can’t locate x86_64-xlate.pl";

43 open OUT,"| \"$^X\" $xlate $flavour $output";
44 *STDOUT=*OUT;

46 # int bn_mul_mont(
47 $rp="%rdi"; # BN_ULONG *rp,
48 $ap="%rsi"; # const BN_ULONG *ap,
49 $bp="%rdx"; # const BN_ULONG *bp,
50 $np="%rcx"; # const BN_ULONG *np,
51 $n0="%r8"; # const BN_ULONG *n0,
52 $num="%r9"; # int num);
53 $lo0="%r10";
54 $hi0="%r11";
55 $hi1="%r13";
56 $i="%r14";
57 $j="%r15";
58 $m0="%rbx";
59 $m1="%rbp";

61 $code=<<___;

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 2

62 .text

64 .globl bn_mul_mont
65 .type bn_mul_mont,\@function,6
66 .align 16
67 bn_mul_mont:
68 test \$3,${num}d
69 jnz .Lmul_enter
70 cmp \$8,${num}d
71 jb .Lmul_enter
72 cmp $ap,$bp
73 jne .Lmul4x_enter
74 jmp .Lsqr4x_enter

76 .align 16
77 .Lmul_enter:
78 push %rbx
79 push %rbp
80 push %r12
81 push %r13
82 push %r14
83 push %r15

85 mov ${num}d,${num}d
86 lea 2($num),%r10
87 mov %rsp,%r11
88 neg %r10
89 lea (%rsp,%r10,8),%rsp # tp=alloca(8*(num+2))
90 and \$-1024,%rsp # minimize TLB usage

92 mov %r11,8(%rsp,$num,8) # tp[num+1]=%rsp
93 .Lmul_body:
94 mov $bp,%r12 # reassign $bp
95 ___
96 $bp="%r12";
97 $code.=<<___;
98 mov ($n0),$n0 # pull n0[0] value
99 mov ($bp),$m0 # m0=bp[0]
100 mov ($ap),%rax

102 xor $i,$i # i=0
103 xor $j,$j # j=0

105 mov $n0,$m1
106 mulq $m0 # ap[0]*bp[0]
107 mov %rax,$lo0
108 mov ($np),%rax

110 imulq $lo0,$m1 # "tp[0]"*n0
111 mov %rdx,$hi0

113 mulq $m1 # np[0]*m1
114 add %rax,$lo0 # discarded
115 mov 8($ap),%rax
116 adc \$0,%rdx
117 mov %rdx,$hi1

119 lea 1($j),$j # j++
120 jmp .L1st_enter

122 .align 16
123 .L1st:
124 add %rax,$hi1
125 mov ($ap,$j,8),%rax
126 adc \$0,%rdx
127 add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0]

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 3

128 mov $lo0,$hi0
129 adc \$0,%rdx
130 mov $hi1,-16(%rsp,$j,8) # tp[j-1]
131 mov %rdx,$hi1

133 .L1st_enter:
134 mulq $m0 # ap[j]*bp[0]
135 add %rax,$hi0
136 mov ($np,$j,8),%rax
137 adc \$0,%rdx
138 lea 1($j),$j # j++
139 mov %rdx,$lo0

141 mulq $m1 # np[j]*m1
142 cmp $num,$j
143 jne .L1st

145 add %rax,$hi1
146 mov ($ap),%rax # ap[0]
147 adc \$0,%rdx
148 add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0]
149 adc \$0,%rdx
150 mov $hi1,-16(%rsp,$j,8) # tp[j-1]
151 mov %rdx,$hi1
152 mov $lo0,$hi0

154 xor %rdx,%rdx
155 add $hi0,$hi1
156 adc \$0,%rdx
157 mov $hi1,-8(%rsp,$num,8)
158 mov %rdx,(%rsp,$num,8) # store upmost overflow bit

160 lea 1($i),$i # i++
161 jmp .Louter
162 .align 16
163 .Louter:
164 mov ($bp,$i,8),$m0 # m0=bp[i]
165 xor $j,$j # j=0
166 mov $n0,$m1
167 mov (%rsp),$lo0
168 mulq $m0 # ap[0]*bp[i]
169 add %rax,$lo0 # ap[0]*bp[i]+tp[0]
170 mov ($np),%rax
171 adc \$0,%rdx

173 imulq $lo0,$m1 # tp[0]*n0
174 mov %rdx,$hi0

176 mulq $m1 # np[0]*m1
177 add %rax,$lo0 # discarded
178 mov 8($ap),%rax
179 adc \$0,%rdx
180 mov 8(%rsp),$lo0 # tp[1]
181 mov %rdx,$hi1

183 lea 1($j),$j # j++
184 jmp .Linner_enter

186 .align 16
187 .Linner:
188 add %rax,$hi1
189 mov ($ap,$j,8),%rax
190 adc \$0,%rdx
191 add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j]
192 mov (%rsp,$j,8),$lo0
193 adc \$0,%rdx

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 4

194 mov $hi1,-16(%rsp,$j,8) # tp[j-1]
195 mov %rdx,$hi1

197 .Linner_enter:
198 mulq $m0 # ap[j]*bp[i]
199 add %rax,$hi0
200 mov ($np,$j,8),%rax
201 adc \$0,%rdx
202 add $hi0,$lo0 # ap[j]*bp[i]+tp[j]
203 mov %rdx,$hi0
204 adc \$0,$hi0
205 lea 1($j),$j # j++

207 mulq $m1 # np[j]*m1
208 cmp $num,$j
209 jne .Linner

211 add %rax,$hi1
212 mov ($ap),%rax # ap[0]
213 adc \$0,%rdx
214 add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j]
215 mov (%rsp,$j,8),$lo0
216 adc \$0,%rdx
217 mov $hi1,-16(%rsp,$j,8) # tp[j-1]
218 mov %rdx,$hi1

220 xor %rdx,%rdx
221 add $hi0,$hi1
222 adc \$0,%rdx
223 add $lo0,$hi1 # pull upmost overflow bit
224 adc \$0,%rdx
225 mov $hi1,-8(%rsp,$num,8)
226 mov %rdx,(%rsp,$num,8) # store upmost overflow bit

228 lea 1($i),$i # i++
229 cmp $num,$i
230 jl .Louter

232 xor $i,$i # i=0 and clear CF!
233 mov (%rsp),%rax # tp[0]
234 lea (%rsp),$ap # borrow ap for tp
235 mov $num,$j # j=num
236 jmp .Lsub
237 .align 16
238 .Lsub: sbb ($np,$i,8),%rax
239 mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i]
240 mov 8($ap,$i,8),%rax # tp[i+1]
241 lea 1($i),$i # i++
242 dec $j # doesnn’t affect CF!
243 jnz .Lsub

245 sbb \$0,%rax # handle upmost overflow bit
246 xor $i,$i
247 and %rax,$ap
248 not %rax
249 mov $rp,$np
250 and %rax,$np
251 mov $num,$j # j=num
252 or $np,$ap # ap=borrow?tp:rp
253 .align 16
254 .Lcopy: # copy or in-place refresh
255 mov ($ap,$i,8),%rax
256 mov $i,(%rsp,$i,8) # zap temporary vector
257 mov %rax,($rp,$i,8) # rp[i]=tp[i]
258 lea 1($i),$i
259 sub \$1,$j

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 5

260 jnz .Lcopy

262 mov 8(%rsp,$num,8),%rsi # restore %rsp
263 mov \$1,%rax
264 mov (%rsi),%r15
265 mov 8(%rsi),%r14
266 mov 16(%rsi),%r13
267 mov 24(%rsi),%r12
268 mov 32(%rsi),%rbp
269 mov 40(%rsi),%rbx
270 lea 48(%rsi),%rsp
271 .Lmul_epilogue:
272 ret
273 .size bn_mul_mont,.-bn_mul_mont
274 ___
275 {{{
276 my @A=("%r10","%r11");
277 my @N=("%r13","%rdi");
278 $code.=<<___;
279 .type bn_mul4x_mont,\@function,6
280 .align 16
281 bn_mul4x_mont:
282 .Lmul4x_enter:
283 push %rbx
284 push %rbp
285 push %r12
286 push %r13
287 push %r14
288 push %r15

290 mov ${num}d,${num}d
291 lea 4($num),%r10
292 mov %rsp,%r11
293 neg %r10
294 lea (%rsp,%r10,8),%rsp # tp=alloca(8*(num+4))
295 and \$-1024,%rsp # minimize TLB usage

297 mov %r11,8(%rsp,$num,8) # tp[num+1]=%rsp
298 .Lmul4x_body:
299 mov $rp,16(%rsp,$num,8) # tp[num+2]=$rp
300 mov %rdx,%r12 # reassign $bp
301 ___
302 $bp="%r12";
303 $code.=<<___;
304 mov ($n0),$n0 # pull n0[0] value
305 mov ($bp),$m0 # m0=bp[0]
306 mov ($ap),%rax

308 xor $i,$i # i=0
309 xor $j,$j # j=0

311 mov $n0,$m1
312 mulq $m0 # ap[0]*bp[0]
313 mov %rax,$A[0]
314 mov ($np),%rax

316 imulq $A[0],$m1 # "tp[0]"*n0
317 mov %rdx,$A[1]

319 mulq $m1 # np[0]*m1
320 add %rax,$A[0] # discarded
321 mov 8($ap),%rax
322 adc \$0,%rdx
323 mov %rdx,$N[1]

325 mulq $m0

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 6

326 add %rax,$A[1]
327 mov 8($np),%rax
328 adc \$0,%rdx
329 mov %rdx,$A[0]

331 mulq $m1
332 add %rax,$N[1]
333 mov 16($ap),%rax
334 adc \$0,%rdx
335 add $A[1],$N[1]
336 lea 4($j),$j # j++
337 adc \$0,%rdx
338 mov $N[1],(%rsp)
339 mov %rdx,$N[0]
340 jmp .L1st4x
341 .align 16
342 .L1st4x:
343 mulq $m0 # ap[j]*bp[0]
344 add %rax,$A[0]
345 mov -16($np,$j,8),%rax
346 adc \$0,%rdx
347 mov %rdx,$A[1]

349 mulq $m1 # np[j]*m1
350 add %rax,$N[0]
351 mov -8($ap,$j,8),%rax
352 adc \$0,%rdx
353 add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0]
354 adc \$0,%rdx
355 mov $N[0],-24(%rsp,$j,8) # tp[j-1]
356 mov %rdx,$N[1]

358 mulq $m0 # ap[j]*bp[0]
359 add %rax,$A[1]
360 mov -8($np,$j,8),%rax
361 adc \$0,%rdx
362 mov %rdx,$A[0]

364 mulq $m1 # np[j]*m1
365 add %rax,$N[1]
366 mov ($ap,$j,8),%rax
367 adc \$0,%rdx
368 add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0]
369 adc \$0,%rdx
370 mov $N[1],-16(%rsp,$j,8) # tp[j-1]
371 mov %rdx,$N[0]

373 mulq $m0 # ap[j]*bp[0]
374 add %rax,$A[0]
375 mov ($np,$j,8),%rax
376 adc \$0,%rdx
377 mov %rdx,$A[1]

379 mulq $m1 # np[j]*m1
380 add %rax,$N[0]
381 mov 8($ap,$j,8),%rax
382 adc \$0,%rdx
383 add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0]
384 adc \$0,%rdx
385 mov $N[0],-8(%rsp,$j,8) # tp[j-1]
386 mov %rdx,$N[1]

388 mulq $m0 # ap[j]*bp[0]
389 add %rax,$A[1]
390 mov 8($np,$j,8),%rax
391 adc \$0,%rdx

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 7

392 lea 4($j),$j # j++
393 mov %rdx,$A[0]

395 mulq $m1 # np[j]*m1
396 add %rax,$N[1]
397 mov -16($ap,$j,8),%rax
398 adc \$0,%rdx
399 add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0]
400 adc \$0,%rdx
401 mov $N[1],-32(%rsp,$j,8) # tp[j-1]
402 mov %rdx,$N[0]
403 cmp $num,$j
404 jl .L1st4x

406 mulq $m0 # ap[j]*bp[0]
407 add %rax,$A[0]
408 mov -16($np,$j,8),%rax
409 adc \$0,%rdx
410 mov %rdx,$A[1]

412 mulq $m1 # np[j]*m1
413 add %rax,$N[0]
414 mov -8($ap,$j,8),%rax
415 adc \$0,%rdx
416 add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0]
417 adc \$0,%rdx
418 mov $N[0],-24(%rsp,$j,8) # tp[j-1]
419 mov %rdx,$N[1]

421 mulq $m0 # ap[j]*bp[0]
422 add %rax,$A[1]
423 mov -8($np,$j,8),%rax
424 adc \$0,%rdx
425 mov %rdx,$A[0]

427 mulq $m1 # np[j]*m1
428 add %rax,$N[1]
429 mov ($ap),%rax # ap[0]
430 adc \$0,%rdx
431 add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0]
432 adc \$0,%rdx
433 mov $N[1],-16(%rsp,$j,8) # tp[j-1]
434 mov %rdx,$N[0]

436 xor $N[1],$N[1]
437 add $A[0],$N[0]
438 adc \$0,$N[1]
439 mov $N[0],-8(%rsp,$j,8)
440 mov $N[1],(%rsp,$j,8) # store upmost overflow bit

442 lea 1($i),$i # i++
443 .align 4
444 .Louter4x:
445 mov ($bp,$i,8),$m0 # m0=bp[i]
446 xor $j,$j # j=0
447 mov (%rsp),$A[0]
448 mov $n0,$m1
449 mulq $m0 # ap[0]*bp[i]
450 add %rax,$A[0] # ap[0]*bp[i]+tp[0]
451 mov ($np),%rax
452 adc \$0,%rdx

454 imulq $A[0],$m1 # tp[0]*n0
455 mov %rdx,$A[1]

457 mulq $m1 # np[0]*m1

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 8

458 add %rax,$A[0] # "$N[0]", discarded
459 mov 8($ap),%rax
460 adc \$0,%rdx
461 mov %rdx,$N[1]

463 mulq $m0 # ap[j]*bp[i]
464 add %rax,$A[1]
465 mov 8($np),%rax
466 adc \$0,%rdx
467 add 8(%rsp),$A[1] # +tp[1]
468 adc \$0,%rdx
469 mov %rdx,$A[0]

471 mulq $m1 # np[j]*m1
472 add %rax,$N[1]
473 mov 16($ap),%rax
474 adc \$0,%rdx
475 add $A[1],$N[1] # np[j]*m1+ap[j]*bp[i]+tp[j]
476 lea 4($j),$j # j+=2
477 adc \$0,%rdx
478 mov $N[1],(%rsp) # tp[j-1]
479 mov %rdx,$N[0]
480 jmp .Linner4x
481 .align 16
482 .Linner4x:
483 mulq $m0 # ap[j]*bp[i]
484 add %rax,$A[0]
485 mov -16($np,$j,8),%rax
486 adc \$0,%rdx
487 add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j]
488 adc \$0,%rdx
489 mov %rdx,$A[1]

491 mulq $m1 # np[j]*m1
492 add %rax,$N[0]
493 mov -8($ap,$j,8),%rax
494 adc \$0,%rdx
495 add $A[0],$N[0]
496 adc \$0,%rdx
497 mov $N[0],-24(%rsp,$j,8) # tp[j-1]
498 mov %rdx,$N[1]

500 mulq $m0 # ap[j]*bp[i]
501 add %rax,$A[1]
502 mov -8($np,$j,8),%rax
503 adc \$0,%rdx
504 add -8(%rsp,$j,8),$A[1]
505 adc \$0,%rdx
506 mov %rdx,$A[0]

508 mulq $m1 # np[j]*m1
509 add %rax,$N[1]
510 mov ($ap,$j,8),%rax
511 adc \$0,%rdx
512 add $A[1],$N[1]
513 adc \$0,%rdx
514 mov $N[1],-16(%rsp,$j,8) # tp[j-1]
515 mov %rdx,$N[0]

517 mulq $m0 # ap[j]*bp[i]
518 add %rax,$A[0]
519 mov ($np,$j,8),%rax
520 adc \$0,%rdx
521 add (%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j]
522 adc \$0,%rdx
523 mov %rdx,$A[1]

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 9

525 mulq $m1 # np[j]*m1
526 add %rax,$N[0]
527 mov 8($ap,$j,8),%rax
528 adc \$0,%rdx
529 add $A[0],$N[0]
530 adc \$0,%rdx
531 mov $N[0],-8(%rsp,$j,8) # tp[j-1]
532 mov %rdx,$N[1]

534 mulq $m0 # ap[j]*bp[i]
535 add %rax,$A[1]
536 mov 8($np,$j,8),%rax
537 adc \$0,%rdx
538 add 8(%rsp,$j,8),$A[1]
539 adc \$0,%rdx
540 lea 4($j),$j # j++
541 mov %rdx,$A[0]

543 mulq $m1 # np[j]*m1
544 add %rax,$N[1]
545 mov -16($ap,$j,8),%rax
546 adc \$0,%rdx
547 add $A[1],$N[1]
548 adc \$0,%rdx
549 mov $N[1],-32(%rsp,$j,8) # tp[j-1]
550 mov %rdx,$N[0]
551 cmp $num,$j
552 jl .Linner4x

554 mulq $m0 # ap[j]*bp[i]
555 add %rax,$A[0]
556 mov -16($np,$j,8),%rax
557 adc \$0,%rdx
558 add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j]
559 adc \$0,%rdx
560 mov %rdx,$A[1]

562 mulq $m1 # np[j]*m1
563 add %rax,$N[0]
564 mov -8($ap,$j,8),%rax
565 adc \$0,%rdx
566 add $A[0],$N[0]
567 adc \$0,%rdx
568 mov $N[0],-24(%rsp,$j,8) # tp[j-1]
569 mov %rdx,$N[1]

571 mulq $m0 # ap[j]*bp[i]
572 add %rax,$A[1]
573 mov -8($np,$j,8),%rax
574 adc \$0,%rdx
575 add -8(%rsp,$j,8),$A[1]
576 adc \$0,%rdx
577 lea 1($i),$i # i++
578 mov %rdx,$A[0]

580 mulq $m1 # np[j]*m1
581 add %rax,$N[1]
582 mov ($ap),%rax # ap[0]
583 adc \$0,%rdx
584 add $A[1],$N[1]
585 adc \$0,%rdx
586 mov $N[1],-16(%rsp,$j,8) # tp[j-1]
587 mov %rdx,$N[0]

589 xor $N[1],$N[1]

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 10

590 add $A[0],$N[0]
591 adc \$0,$N[1]
592 add (%rsp,$num,8),$N[0] # pull upmost overflow bit
593 adc \$0,$N[1]
594 mov $N[0],-8(%rsp,$j,8)
595 mov $N[1],(%rsp,$j,8) # store upmost overflow bit

597 cmp $num,$i
598 jl .Louter4x
599 ___
600 {
601 my @ri=("%rax","%rdx",$m0,$m1);
602 $code.=<<___;
603 mov 16(%rsp,$num,8),$rp # restore $rp
604 mov 0(%rsp),@ri[0] # tp[0]
605 pxor %xmm0,%xmm0
606 mov 8(%rsp),@ri[1] # tp[1]
607 shr \$2,$num # num/=4
608 lea (%rsp),$ap # borrow ap for tp
609 xor $i,$i # i=0 and clear CF!

611 sub 0($np),@ri[0]
612 mov 16($ap),@ri[2] # tp[2]
613 mov 24($ap),@ri[3] # tp[3]
614 sbb 8($np),@ri[1]
615 lea -1($num),$j # j=num/4-1
616 jmp .Lsub4x
617 .align 16
618 .Lsub4x:
619 mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i]
620 mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i]
621 sbb 16($np,$i,8),@ri[2]
622 mov 32($ap,$i,8),@ri[0] # tp[i+1]
623 mov 40($ap,$i,8),@ri[1]
624 sbb 24($np,$i,8),@ri[3]
625 mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i]
626 mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i]
627 sbb 32($np,$i,8),@ri[0]
628 mov 48($ap,$i,8),@ri[2]
629 mov 56($ap,$i,8),@ri[3]
630 sbb 40($np,$i,8),@ri[1]
631 lea 4($i),$i # i++
632 dec $j # doesnn’t affect CF!
633 jnz .Lsub4x

635 mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i]
636 mov 32($ap,$i,8),@ri[0] # load overflow bit
637 sbb 16($np,$i,8),@ri[2]
638 mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i]
639 sbb 24($np,$i,8),@ri[3]
640 mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i]

642 sbb \$0,@ri[0] # handle upmost overflow bit
643 mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i]
644 xor $i,$i # i=0
645 and @ri[0],$ap
646 not @ri[0]
647 mov $rp,$np
648 and @ri[0],$np
649 lea -1($num),$j
650 or $np,$ap # ap=borrow?tp:rp

652 movdqu ($ap),%xmm1
653 movdqa %xmm0,(%rsp)
654 movdqu %xmm1,($rp)
655 jmp .Lcopy4x

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 11

656 .align 16
657 .Lcopy4x: # copy or in-place refresh
658 movdqu 16($ap,$i),%xmm2
659 movdqu 32($ap,$i),%xmm1
660 movdqa %xmm0,16(%rsp,$i)
661 movdqu %xmm2,16($rp,$i)
662 movdqa %xmm0,32(%rsp,$i)
663 movdqu %xmm1,32($rp,$i)
664 lea 32($i),$i
665 dec $j
666 jnz .Lcopy4x

668 shl \$2,$num
669 movdqu 16($ap,$i),%xmm2
670 movdqa %xmm0,16(%rsp,$i)
671 movdqu %xmm2,16($rp,$i)
672 ___
673 }
674 $code.=<<___;
675 mov 8(%rsp,$num,8),%rsi # restore %rsp
676 mov \$1,%rax
677 mov (%rsi),%r15
678 mov 8(%rsi),%r14
679 mov 16(%rsi),%r13
680 mov 24(%rsi),%r12
681 mov 32(%rsi),%rbp
682 mov 40(%rsi),%rbx
683 lea 48(%rsi),%rsp
684 .Lmul4x_epilogue:
685 ret
686 .size bn_mul4x_mont,.-bn_mul4x_mont
687 ___
688 }}}

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 12

689 {{{
690 ##
691 # void bn_sqr4x_mont(
692 my $rptr="%rdi"; # const BN_ULONG *rptr,
693 my $aptr="%rsi"; # const BN_ULONG *aptr,
694 my $bptr="%rdx"; # not used
695 my $nptr="%rcx"; # const BN_ULONG *nptr,
696 my $n0 ="%r8"; # const BN_ULONG *n0);
697 my $num ="%r9"; # int num, has to be divisible by 4 and
698 # not less than 8

700 my ($i,$j,$tptr)=("%rbp","%rcx",$rptr);
701 my @A0=("%r10","%r11");
702 my @A1=("%r12","%r13");
703 my ($a0,$a1,$ai)=("%r14","%r15","%rbx");

705 $code.=<<___;
706 .type bn_sqr4x_mont,\@function,6
707 .align 16
708 bn_sqr4x_mont:
709 .Lsqr4x_enter:
710 push %rbx
711 push %rbp
712 push %r12
713 push %r13
714 push %r14
715 push %r15

717 shl \$3,${num}d # convert $num to bytes
718 xor %r10,%r10
719 mov %rsp,%r11 # put aside %rsp
720 sub $num,%r10 # -$num
721 mov ($n0),$n0 # *n0
722 lea -72(%rsp,%r10,2),%rsp # alloca(frame+2*$num)
723 and \$-1024,%rsp # minimize TLB usage
724 ##
725 # Stack layout
726 #
727 # +0 saved $num, used in reduction section
728 # +8 &t[2*$num], used in reduction section
729 # +32 saved $rptr
730 # +40 saved $nptr
731 # +48 saved *n0
732 # +56 saved %rsp
733 # +64 t[2*$num]
734 #
735 mov $rptr,32(%rsp) # save $rptr
736 mov $nptr,40(%rsp)
737 mov $n0, 48(%rsp)
738 mov %r11, 56(%rsp) # save original %rsp
739 .Lsqr4x_body:
740 ##
741 # Squaring part:
742 #
743 # a) multiply-n-add everything but a[i]*a[i];
744 # b) shift result of a) by 1 to the left and accumulate
745 # a[i]*a[i] products;
746 #
747 lea 32(%r10),$i # $i=-($num-32)
748 lea ($aptr,$num),$aptr # end of a[] buffer, ($aptr,$i)=&ap[2]

750 mov $num,$j # $j=$num

752 # comments apply to $num==8 case
753 mov -32($aptr,$i),$a0 # a[0]
754 lea 64(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num]

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 13

755 mov -24($aptr,$i),%rax # a[1]
756 lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"]
757 mov -16($aptr,$i),$ai # a[2]
758 mov %rax,$a1

760 mul $a0 # a[1]*a[0]
761 mov %rax,$A0[0] # a[1]*a[0]
762 mov $ai,%rax # a[2]
763 mov %rdx,$A0[1]
764 mov $A0[0],-24($tptr,$i) # t[1]

766 xor $A0[0],$A0[0]
767 mul $a0 # a[2]*a[0]
768 add %rax,$A0[1]
769 mov $ai,%rax
770 adc %rdx,$A0[0]
771 mov $A0[1],-16($tptr,$i) # t[2]

773 lea -16($i),$j # j=-16

776 mov 8($aptr,$j),$ai # a[3]
777 mul $a1 # a[2]*a[1]
778 mov %rax,$A1[0] # a[2]*a[1]+t[3]
779 mov $ai,%rax
780 mov %rdx,$A1[1]

782 xor $A0[1],$A0[1]
783 add $A1[0],$A0[0]
784 lea 16($j),$j
785 adc \$0,$A0[1]
786 mul $a0 # a[3]*a[0]
787 add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3]
788 mov $ai,%rax
789 adc %rdx,$A0[1]
790 mov $A0[0],-8($tptr,$j) # t[3]
791 jmp .Lsqr4x_1st

793 .align 16
794 .Lsqr4x_1st:
795 mov ($aptr,$j),$ai # a[4]
796 xor $A1[0],$A1[0]
797 mul $a1 # a[3]*a[1]
798 add %rax,$A1[1] # a[3]*a[1]+t[4]
799 mov $ai,%rax
800 adc %rdx,$A1[0]

802 xor $A0[0],$A0[0]
803 add $A1[1],$A0[1]
804 adc \$0,$A0[0]
805 mul $a0 # a[4]*a[0]
806 add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4]
807 mov $ai,%rax # a[3]
808 adc %rdx,$A0[0]
809 mov $A0[1],($tptr,$j) # t[4]

812 mov 8($aptr,$j),$ai # a[5]
813 xor $A1[1],$A1[1]
814 mul $a1 # a[4]*a[3]
815 add %rax,$A1[0] # a[4]*a[3]+t[5]
816 mov $ai,%rax
817 adc %rdx,$A1[1]

819 xor $A0[1],$A0[1]
820 add $A1[0],$A0[0]

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 14

821 adc \$0,$A0[1]
822 mul $a0 # a[5]*a[2]
823 add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5]
824 mov $ai,%rax
825 adc %rdx,$A0[1]
826 mov $A0[0],8($tptr,$j) # t[5]

828 mov 16($aptr,$j),$ai # a[6]
829 xor $A1[0],$A1[0]
830 mul $a1 # a[5]*a[3]
831 add %rax,$A1[1] # a[5]*a[3]+t[6]
832 mov $ai,%rax
833 adc %rdx,$A1[0]

835 xor $A0[0],$A0[0]
836 add $A1[1],$A0[1]
837 adc \$0,$A0[0]
838 mul $a0 # a[6]*a[2]
839 add %rax,$A0[1] # a[6]*a[2]+a[5]*a[3]+t[6]
840 mov $ai,%rax # a[3]
841 adc %rdx,$A0[0]
842 mov $A0[1],16($tptr,$j) # t[6]

845 mov 24($aptr,$j),$ai # a[7]
846 xor $A1[1],$A1[1]
847 mul $a1 # a[6]*a[5]
848 add %rax,$A1[0] # a[6]*a[5]+t[7]
849 mov $ai,%rax
850 adc %rdx,$A1[1]

852 xor $A0[1],$A0[1]
853 add $A1[0],$A0[0]
854 lea 32($j),$j
855 adc \$0,$A0[1]
856 mul $a0 # a[7]*a[4]
857 add %rax,$A0[0] # a[7]*a[4]+a[6]*a[5]+t[6]
858 mov $ai,%rax
859 adc %rdx,$A0[1]
860 mov $A0[0],-8($tptr,$j) # t[7]

862 cmp \$0,$j
863 jne .Lsqr4x_1st

865 xor $A1[0],$A1[0]
866 add $A0[1],$A1[1]
867 adc \$0,$A1[0]
868 mul $a1 # a[7]*a[5]
869 add %rax,$A1[1]
870 adc %rdx,$A1[0]

872 mov $A1[1],($tptr) # t[8]
873 lea 16($i),$i
874 mov $A1[0],8($tptr) # t[9]
875 jmp .Lsqr4x_outer

877 .align 16
878 .Lsqr4x_outer: # comments apply to $num==6 case
879 mov -32($aptr,$i),$a0 # a[0]
880 lea 64(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num]
881 mov -24($aptr,$i),%rax # a[1]
882 lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"]
883 mov -16($aptr,$i),$ai # a[2]
884 mov %rax,$a1

886 mov -24($tptr,$i),$A0[0] # t[1]

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 15

887 xor $A0[1],$A0[1]
888 mul $a0 # a[1]*a[0]
889 add %rax,$A0[0] # a[1]*a[0]+t[1]
890 mov $ai,%rax # a[2]
891 adc %rdx,$A0[1]
892 mov $A0[0],-24($tptr,$i) # t[1]

894 xor $A0[0],$A0[0]
895 add -16($tptr,$i),$A0[1] # a[2]*a[0]+t[2]
896 adc \$0,$A0[0]
897 mul $a0 # a[2]*a[0]
898 add %rax,$A0[1]
899 mov $ai,%rax
900 adc %rdx,$A0[0]
901 mov $A0[1],-16($tptr,$i) # t[2]

903 lea -16($i),$j # j=-16
904 xor $A1[0],$A1[0]

907 mov 8($aptr,$j),$ai # a[3]
908 xor $A1[1],$A1[1]
909 add 8($tptr,$j),$A1[0]
910 adc \$0,$A1[1]
911 mul $a1 # a[2]*a[1]
912 add %rax,$A1[0] # a[2]*a[1]+t[3]
913 mov $ai,%rax
914 adc %rdx,$A1[1]

916 xor $A0[1],$A0[1]
917 add $A1[0],$A0[0]
918 adc \$0,$A0[1]
919 mul $a0 # a[3]*a[0]
920 add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3]
921 mov $ai,%rax
922 adc %rdx,$A0[1]
923 mov $A0[0],8($tptr,$j) # t[3]

925 lea 16($j),$j
926 jmp .Lsqr4x_inner

928 .align 16
929 .Lsqr4x_inner:
930 mov ($aptr,$j),$ai # a[4]
931 xor $A1[0],$A1[0]
932 add ($tptr,$j),$A1[1]
933 adc \$0,$A1[0]
934 mul $a1 # a[3]*a[1]
935 add %rax,$A1[1] # a[3]*a[1]+t[4]
936 mov $ai,%rax
937 adc %rdx,$A1[0]

939 xor $A0[0],$A0[0]
940 add $A1[1],$A0[1]
941 adc \$0,$A0[0]
942 mul $a0 # a[4]*a[0]
943 add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4]
944 mov $ai,%rax # a[3]
945 adc %rdx,$A0[0]
946 mov $A0[1],($tptr,$j) # t[4]

948 mov 8($aptr,$j),$ai # a[5]
949 xor $A1[1],$A1[1]
950 add 8($tptr,$j),$A1[0]
951 adc \$0,$A1[1]
952 mul $a1 # a[4]*a[3]

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 16

953 add %rax,$A1[0] # a[4]*a[3]+t[5]
954 mov $ai,%rax
955 adc %rdx,$A1[1]

957 xor $A0[1],$A0[1]
958 add $A1[0],$A0[0]
959 lea 16($j),$j # j++
960 adc \$0,$A0[1]
961 mul $a0 # a[5]*a[2]
962 add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5]
963 mov $ai,%rax
964 adc %rdx,$A0[1]
965 mov $A0[0],-8($tptr,$j) # t[5], "preloaded t[1]" below

967 cmp \$0,$j
968 jne .Lsqr4x_inner

970 xor $A1[0],$A1[0]
971 add $A0[1],$A1[1]
972 adc \$0,$A1[0]
973 mul $a1 # a[5]*a[3]
974 add %rax,$A1[1]
975 adc %rdx,$A1[0]

977 mov $A1[1],($tptr) # t[6], "preloaded t[2]" below
978 mov $A1[0],8($tptr) # t[7], "preloaded t[3]" below

980 add \$16,$i
981 jnz .Lsqr4x_outer

983 # comments apply to $num==4 case
984 mov -32($aptr),$a0 # a[0]
985 lea 64(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num]
986 mov -24($aptr),%rax # a[1]
987 lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"]
988 mov -16($aptr),$ai # a[2]
989 mov %rax,$a1

991 xor $A0[1],$A0[1]
992 mul $a0 # a[1]*a[0]
993 add %rax,$A0[0] # a[1]*a[0]+t[1], preloaded t[1]
994 mov $ai,%rax # a[2]
995 adc %rdx,$A0[1]
996 mov $A0[0],-24($tptr) # t[1]

998 xor $A0[0],$A0[0]
999 add $A1[1],$A0[1] # a[2]*a[0]+t[2], preloaded t[2]

1000 adc \$0,$A0[0]
1001 mul $a0 # a[2]*a[0]
1002 add %rax,$A0[1]
1003 mov $ai,%rax
1004 adc %rdx,$A0[0]
1005 mov $A0[1],-16($tptr) # t[2]

1007 mov -8($aptr),$ai # a[3]
1008 mul $a1 # a[2]*a[1]
1009 add %rax,$A1[0] # a[2]*a[1]+t[3], preloaded t[3]
1010 mov $ai,%rax
1011 adc \$0,%rdx

1013 xor $A0[1],$A0[1]
1014 add $A1[0],$A0[0]
1015 mov %rdx,$A1[1]
1016 adc \$0,$A0[1]
1017 mul $a0 # a[3]*a[0]
1018 add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3]

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 17

1019 mov $ai,%rax
1020 adc %rdx,$A0[1]
1021 mov $A0[0],-8($tptr) # t[3]

1023 xor $A1[0],$A1[0]
1024 add $A0[1],$A1[1]
1025 adc \$0,$A1[0]
1026 mul $a1 # a[3]*a[1]
1027 add %rax,$A1[1]
1028 mov -16($aptr),%rax # a[2]
1029 adc %rdx,$A1[0]

1031 mov $A1[1],($tptr) # t[4]
1032 mov $A1[0],8($tptr) # t[5]

1034 mul $ai # a[2]*a[3]
1035 ___
1036 {
1037 my ($shift,$carry)=($a0,$a1);
1038 my @S=(@A1,$ai,$n0);
1039 $code.=<<___;
1040 add \$16,$i
1041 xor $shift,$shift
1042 sub $num,$i # $i=16-$num
1043 xor $carry,$carry

1045 add $A1[0],%rax # t[5]
1046 adc \$0,%rdx
1047 mov %rax,8($tptr) # t[5]
1048 mov %rdx,16($tptr) # t[6]
1049 mov $carry,24($tptr) # t[7]

1051 mov -16($aptr,$i),%rax # a[0]
1052 lea 64(%rsp,$num,2),$tptr
1053 xor $A0[0],$A0[0] # t[0]
1054 mov -24($tptr,$i,2),$A0[1] # t[1]

1056 lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift
1057 shr \$63,$A0[0]
1058 lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 |
1059 shr \$63,$A0[1]
1060 or $A0[0],$S[1] # | t[2*i]>>63
1061 mov -16($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch
1062 mov $A0[1],$shift # shift=t[2*i+1]>>63
1063 mul %rax # a[i]*a[i]
1064 neg $carry # mov $carry,cf
1065 mov -8($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch
1066 adc %rax,$S[0]
1067 mov -8($aptr,$i),%rax # a[i+1] # prefetch
1068 mov $S[0],-32($tptr,$i,2)
1069 adc %rdx,$S[1]

1071 lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift
1072 mov $S[1],-24($tptr,$i,2)
1073 sbb $carry,$carry # mov cf,$carry
1074 shr \$63,$A0[0]
1075 lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 |
1076 shr \$63,$A0[1]
1077 or $A0[0],$S[3] # | t[2*i]>>63
1078 mov 0($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch
1079 mov $A0[1],$shift # shift=t[2*i+1]>>63
1080 mul %rax # a[i]*a[i]
1081 neg $carry # mov $carry,cf
1082 mov 8($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch
1083 adc %rax,$S[2]
1084 mov 0($aptr,$i),%rax # a[i+1] # prefetch

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 18

1085 mov $S[2],-16($tptr,$i,2)
1086 adc %rdx,$S[3]
1087 lea 16($i),$i
1088 mov $S[3],-40($tptr,$i,2)
1089 sbb $carry,$carry # mov cf,$carry
1090 jmp .Lsqr4x_shift_n_add

1092 .align 16
1093 .Lsqr4x_shift_n_add:
1094 lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift
1095 shr \$63,$A0[0]
1096 lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 |
1097 shr \$63,$A0[1]
1098 or $A0[0],$S[1] # | t[2*i]>>63
1099 mov -16($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch
1100 mov $A0[1],$shift # shift=t[2*i+1]>>63
1101 mul %rax # a[i]*a[i]
1102 neg $carry # mov $carry,cf
1103 mov -8($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch
1104 adc %rax,$S[0]
1105 mov -8($aptr,$i),%rax # a[i+1] # prefetch
1106 mov $S[0],-32($tptr,$i,2)
1107 adc %rdx,$S[1]

1109 lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift
1110 mov $S[1],-24($tptr,$i,2)
1111 sbb $carry,$carry # mov cf,$carry
1112 shr \$63,$A0[0]
1113 lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 |
1114 shr \$63,$A0[1]
1115 or $A0[0],$S[3] # | t[2*i]>>63
1116 mov 0($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch
1117 mov $A0[1],$shift # shift=t[2*i+1]>>63
1118 mul %rax # a[i]*a[i]
1119 neg $carry # mov $carry,cf
1120 mov 8($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch
1121 adc %rax,$S[2]
1122 mov 0($aptr,$i),%rax # a[i+1] # prefetch
1123 mov $S[2],-16($tptr,$i,2)
1124 adc %rdx,$S[3]

1126 lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift
1127 mov $S[3],-8($tptr,$i,2)
1128 sbb $carry,$carry # mov cf,$carry
1129 shr \$63,$A0[0]
1130 lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 |
1131 shr \$63,$A0[1]
1132 or $A0[0],$S[1] # | t[2*i]>>63
1133 mov 16($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch
1134 mov $A0[1],$shift # shift=t[2*i+1]>>63
1135 mul %rax # a[i]*a[i]
1136 neg $carry # mov $carry,cf
1137 mov 24($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch
1138 adc %rax,$S[0]
1139 mov 8($aptr,$i),%rax # a[i+1] # prefetch
1140 mov $S[0],0($tptr,$i,2)
1141 adc %rdx,$S[1]

1143 lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift
1144 mov $S[1],8($tptr,$i,2)
1145 sbb $carry,$carry # mov cf,$carry
1146 shr \$63,$A0[0]
1147 lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 |
1148 shr \$63,$A0[1]
1149 or $A0[0],$S[3] # | t[2*i]>>63
1150 mov 32($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 19

1151 mov $A0[1],$shift # shift=t[2*i+1]>>63
1152 mul %rax # a[i]*a[i]
1153 neg $carry # mov $carry,cf
1154 mov 40($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch
1155 adc %rax,$S[2]
1156 mov 16($aptr,$i),%rax # a[i+1] # prefetch
1157 mov $S[2],16($tptr,$i,2)
1158 adc %rdx,$S[3]
1159 mov $S[3],24($tptr,$i,2)
1160 sbb $carry,$carry # mov cf,$carry
1161 add \$32,$i
1162 jnz .Lsqr4x_shift_n_add

1164 lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift
1165 shr \$63,$A0[0]
1166 lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 |
1167 shr \$63,$A0[1]
1168 or $A0[0],$S[1] # | t[2*i]>>63
1169 mov -16($tptr),$A0[0] # t[2*i+2] # prefetch
1170 mov $A0[1],$shift # shift=t[2*i+1]>>63
1171 mul %rax # a[i]*a[i]
1172 neg $carry # mov $carry,cf
1173 mov -8($tptr),$A0[1] # t[2*i+2+1] # prefetch
1174 adc %rax,$S[0]
1175 mov -8($aptr),%rax # a[i+1] # prefetch
1176 mov $S[0],-32($tptr)
1177 adc %rdx,$S[1]

1179 lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1|shift
1180 mov $S[1],-24($tptr)
1181 sbb $carry,$carry # mov cf,$carry
1182 shr \$63,$A0[0]
1183 lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 |
1184 shr \$63,$A0[1]
1185 or $A0[0],$S[3] # | t[2*i]>>63
1186 mul %rax # a[i]*a[i]
1187 neg $carry # mov $carry,cf
1188 adc %rax,$S[2]
1189 adc %rdx,$S[3]
1190 mov $S[2],-16($tptr)
1191 mov $S[3],-8($tptr)
1192 ___
1193 }

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 20

1194 ##
1195 # Montgomery reduction part, "word-by-word" algorithm.
1196 #
1197 {
1198 my ($topbit,$nptr)=("%rbp",$aptr);
1199 my ($m0,$m1)=($a0,$a1);
1200 my @Ni=("%rbx","%r9");
1201 $code.=<<___;
1202 mov 40(%rsp),$nptr # restore $nptr
1203 mov 48(%rsp),$n0 # restore *n0
1204 xor $j,$j
1205 mov $num,0(%rsp) # save $num
1206 sub $num,$j # $j=-$num
1207 mov 64(%rsp),$A0[0] # t[0] # modsched #
1208 mov $n0,$m0 # # modsched #
1209 lea 64(%rsp,$num,2),%rax # end of t[] buffer
1210 lea 64(%rsp,$num),$tptr # end of t[] window
1211 mov %rax,8(%rsp) # save end of t[] buffer
1212 lea ($nptr,$num),$nptr # end of n[] buffer
1213 xor $topbit,$topbit # $topbit=0

1215 mov 0($nptr,$j),%rax # n[0] # modsched #
1216 mov 8($nptr,$j),$Ni[1] # n[1] # modsched #
1217 imulq $A0[0],$m0 # m0=t[0]*n0 # modsched #
1218 mov %rax,$Ni[0] # # modsched #
1219 jmp .Lsqr4x_mont_outer

1221 .align 16
1222 .Lsqr4x_mont_outer:
1223 xor $A0[1],$A0[1]
1224 mul $m0 # n[0]*m0
1225 add %rax,$A0[0] # n[0]*m0+t[0]
1226 mov $Ni[1],%rax
1227 adc %rdx,$A0[1]
1228 mov $n0,$m1

1230 xor $A0[0],$A0[0]
1231 add 8($tptr,$j),$A0[1]
1232 adc \$0,$A0[0]
1233 mul $m0 # n[1]*m0
1234 add %rax,$A0[1] # n[1]*m0+t[1]
1235 mov $Ni[0],%rax
1236 adc %rdx,$A0[0]

1238 imulq $A0[1],$m1

1240 mov 16($nptr,$j),$Ni[0] # n[2]
1241 xor $A1[1],$A1[1]
1242 add $A0[1],$A1[0]
1243 adc \$0,$A1[1]
1244 mul $m1 # n[0]*m1
1245 add %rax,$A1[0] # n[0]*m1+"t[1]"
1246 mov $Ni[0],%rax
1247 adc %rdx,$A1[1]
1248 mov $A1[0],8($tptr,$j) # "t[1]"

1250 xor $A0[1],$A0[1]
1251 add 16($tptr,$j),$A0[0]
1252 adc \$0,$A0[1]
1253 mul $m0 # n[2]*m0
1254 add %rax,$A0[0] # n[2]*m0+t[2]
1255 mov $Ni[1],%rax
1256 adc %rdx,$A0[1]

1258 mov 24($nptr,$j),$Ni[1] # n[3]
1259 xor $A1[0],$A1[0]

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 21

1260 add $A0[0],$A1[1]
1261 adc \$0,$A1[0]
1262 mul $m1 # n[1]*m1
1263 add %rax,$A1[1] # n[1]*m1+"t[2]"
1264 mov $Ni[1],%rax
1265 adc %rdx,$A1[0]
1266 mov $A1[1],16($tptr,$j) # "t[2]"

1268 xor $A0[0],$A0[0]
1269 add 24($tptr,$j),$A0[1]
1270 lea 32($j),$j
1271 adc \$0,$A0[0]
1272 mul $m0 # n[3]*m0
1273 add %rax,$A0[1] # n[3]*m0+t[3]
1274 mov $Ni[0],%rax
1275 adc %rdx,$A0[0]
1276 jmp .Lsqr4x_mont_inner

1278 .align 16
1279 .Lsqr4x_mont_inner:
1280 mov ($nptr,$j),$Ni[0] # n[4]
1281 xor $A1[1],$A1[1]
1282 add $A0[1],$A1[0]
1283 adc \$0,$A1[1]
1284 mul $m1 # n[2]*m1
1285 add %rax,$A1[0] # n[2]*m1+"t[3]"
1286 mov $Ni[0],%rax
1287 adc %rdx,$A1[1]
1288 mov $A1[0],-8($tptr,$j) # "t[3]"

1290 xor $A0[1],$A0[1]
1291 add ($tptr,$j),$A0[0]
1292 adc \$0,$A0[1]
1293 mul $m0 # n[4]*m0
1294 add %rax,$A0[0] # n[4]*m0+t[4]
1295 mov $Ni[1],%rax
1296 adc %rdx,$A0[1]

1298 mov 8($nptr,$j),$Ni[1] # n[5]
1299 xor $A1[0],$A1[0]
1300 add $A0[0],$A1[1]
1301 adc \$0,$A1[0]
1302 mul $m1 # n[3]*m1
1303 add %rax,$A1[1] # n[3]*m1+"t[4]"
1304 mov $Ni[1],%rax
1305 adc %rdx,$A1[0]
1306 mov $A1[1],($tptr,$j) # "t[4]"

1308 xor $A0[0],$A0[0]
1309 add 8($tptr,$j),$A0[1]
1310 adc \$0,$A0[0]
1311 mul $m0 # n[5]*m0
1312 add %rax,$A0[1] # n[5]*m0+t[5]
1313 mov $Ni[0],%rax
1314 adc %rdx,$A0[0]

1317 mov 16($nptr,$j),$Ni[0] # n[6]
1318 xor $A1[1],$A1[1]
1319 add $A0[1],$A1[0]
1320 adc \$0,$A1[1]
1321 mul $m1 # n[4]*m1
1322 add %rax,$A1[0] # n[4]*m1+"t[5]"
1323 mov $Ni[0],%rax
1324 adc %rdx,$A1[1]
1325 mov $A1[0],8($tptr,$j) # "t[5]"

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 22

1327 xor $A0[1],$A0[1]
1328 add 16($tptr,$j),$A0[0]
1329 adc \$0,$A0[1]
1330 mul $m0 # n[6]*m0
1331 add %rax,$A0[0] # n[6]*m0+t[6]
1332 mov $Ni[1],%rax
1333 adc %rdx,$A0[1]

1335 mov 24($nptr,$j),$Ni[1] # n[7]
1336 xor $A1[0],$A1[0]
1337 add $A0[0],$A1[1]
1338 adc \$0,$A1[0]
1339 mul $m1 # n[5]*m1
1340 add %rax,$A1[1] # n[5]*m1+"t[6]"
1341 mov $Ni[1],%rax
1342 adc %rdx,$A1[0]
1343 mov $A1[1],16($tptr,$j) # "t[6]"

1345 xor $A0[0],$A0[0]
1346 add 24($tptr,$j),$A0[1]
1347 lea 32($j),$j
1348 adc \$0,$A0[0]
1349 mul $m0 # n[7]*m0
1350 add %rax,$A0[1] # n[7]*m0+t[7]
1351 mov $Ni[0],%rax
1352 adc %rdx,$A0[0]
1353 cmp \$0,$j
1354 jne .Lsqr4x_mont_inner

1356 sub 0(%rsp),$j # $j=-$num # modsched #
1357 mov $n0,$m0 # # modsched #

1359 xor $A1[1],$A1[1]
1360 add $A0[1],$A1[0]
1361 adc \$0,$A1[1]
1362 mul $m1 # n[6]*m1
1363 add %rax,$A1[0] # n[6]*m1+"t[7]"
1364 mov $Ni[1],%rax
1365 adc %rdx,$A1[1]
1366 mov $A1[0],-8($tptr) # "t[7]"

1368 xor $A0[1],$A0[1]
1369 add ($tptr),$A0[0] # +t[8]
1370 adc \$0,$A0[1]
1371 mov 0($nptr,$j),$Ni[0] # n[0] # modsched #
1372 add $topbit,$A0[0]
1373 adc \$0,$A0[1]

1375 imulq 16($tptr,$j),$m0 # m0=t[0]*n0 # modsched #
1376 xor $A1[0],$A1[0]
1377 mov 8($nptr,$j),$Ni[1] # n[1] # modsched #
1378 add $A0[0],$A1[1]
1379 mov 16($tptr,$j),$A0[0] # t[0] # modsched #
1380 adc \$0,$A1[0]
1381 mul $m1 # n[7]*m1
1382 add %rax,$A1[1] # n[7]*m1+"t[8]"
1383 mov $Ni[0],%rax # # modsched #
1384 adc %rdx,$A1[0]
1385 mov $A1[1],($tptr) # "t[8]"

1387 xor $topbit,$topbit
1388 add 8($tptr),$A1[0] # +t[9]
1389 adc $topbit,$topbit
1390 add $A0[1],$A1[0]
1391 lea 16($tptr),$tptr # "t[$num]>>128"

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 23

1392 adc \$0,$topbit
1393 mov $A1[0],-8($tptr) # "t[9]"
1394 cmp 8(%rsp),$tptr # are we done?
1395 jb .Lsqr4x_mont_outer

1397 mov 0(%rsp),$num # restore $num
1398 mov $topbit,($tptr) # save $topbit
1399 ___
1400 }

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 24

1401 ##
1402 # Post-condition, 4x unrolled copy from bn_mul_mont
1403 #
1404 {
1405 my ($tptr,$nptr)=("%rbx",$aptr);
1406 my @ri=("%rax","%rdx","%r10","%r11");
1407 $code.=<<___;
1408 mov 64(%rsp,$num),@ri[0] # tp[0]
1409 lea 64(%rsp,$num),$tptr # upper half of t[2*$num] holds result
1410 mov 40(%rsp),$nptr # restore $nptr
1411 shr \$5,$num # num/4
1412 mov 8($tptr),@ri[1] # t[1]
1413 xor $i,$i # i=0 and clear CF!

1415 mov 32(%rsp),$rptr # restore $rptr
1416 sub 0($nptr),@ri[0]
1417 mov 16($tptr),@ri[2] # t[2]
1418 mov 24($tptr),@ri[3] # t[3]
1419 sbb 8($nptr),@ri[1]
1420 lea -1($num),$j # j=num/4-1
1421 jmp .Lsqr4x_sub
1422 .align 16
1423 .Lsqr4x_sub:
1424 mov @ri[0],0($rptr,$i,8) # rp[i]=tp[i]-np[i]
1425 mov @ri[1],8($rptr,$i,8) # rp[i]=tp[i]-np[i]
1426 sbb 16($nptr,$i,8),@ri[2]
1427 mov 32($tptr,$i,8),@ri[0] # tp[i+1]
1428 mov 40($tptr,$i,8),@ri[1]
1429 sbb 24($nptr,$i,8),@ri[3]
1430 mov @ri[2],16($rptr,$i,8) # rp[i]=tp[i]-np[i]
1431 mov @ri[3],24($rptr,$i,8) # rp[i]=tp[i]-np[i]
1432 sbb 32($nptr,$i,8),@ri[0]
1433 mov 48($tptr,$i,8),@ri[2]
1434 mov 56($tptr,$i,8),@ri[3]
1435 sbb 40($nptr,$i,8),@ri[1]
1436 lea 4($i),$i # i++
1437 dec $j # doesn’t affect CF!
1438 jnz .Lsqr4x_sub

1440 mov @ri[0],0($rptr,$i,8) # rp[i]=tp[i]-np[i]
1441 mov 32($tptr,$i,8),@ri[0] # load overflow bit
1442 sbb 16($nptr,$i,8),@ri[2]
1443 mov @ri[1],8($rptr,$i,8) # rp[i]=tp[i]-np[i]
1444 sbb 24($nptr,$i,8),@ri[3]
1445 mov @ri[2],16($rptr,$i,8) # rp[i]=tp[i]-np[i]

1447 sbb \$0,@ri[0] # handle upmost overflow bit
1448 mov @ri[3],24($rptr,$i,8) # rp[i]=tp[i]-np[i]
1449 xor $i,$i # i=0
1450 and @ri[0],$tptr
1451 not @ri[0]
1452 mov $rptr,$nptr
1453 and @ri[0],$nptr
1454 lea -1($num),$j
1455 or $nptr,$tptr # tp=borrow?tp:rp

1457 pxor %xmm0,%xmm0
1458 lea 64(%rsp,$num,8),$nptr
1459 movdqu ($tptr),%xmm1
1460 lea ($nptr,$num,8),$nptr
1461 movdqa %xmm0,64(%rsp) # zap lower half of temporary vector
1462 movdqa %xmm0,($nptr) # zap upper half of temporary vector
1463 movdqu %xmm1,($rptr)
1464 jmp .Lsqr4x_copy
1465 .align 16
1466 .Lsqr4x_copy: # copy or in-place refresh

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 25

1467 movdqu 16($tptr,$i),%xmm2
1468 movdqu 32($tptr,$i),%xmm1
1469 movdqa %xmm0,80(%rsp,$i) # zap lower half of temporary vector
1470 movdqa %xmm0,96(%rsp,$i) # zap lower half of temporary vector
1471 movdqa %xmm0,16($nptr,$i) # zap upper half of temporary vector
1472 movdqa %xmm0,32($nptr,$i) # zap upper half of temporary vector
1473 movdqu %xmm2,16($rptr,$i)
1474 movdqu %xmm1,32($rptr,$i)
1475 lea 32($i),$i
1476 dec $j
1477 jnz .Lsqr4x_copy

1479 movdqu 16($tptr,$i),%xmm2
1480 movdqa %xmm0,80(%rsp,$i) # zap lower half of temporary vector
1481 movdqa %xmm0,16($nptr,$i) # zap upper half of temporary vector
1482 movdqu %xmm2,16($rptr,$i)
1483 ___
1484 }
1485 $code.=<<___;
1486 mov 56(%rsp),%rsi # restore %rsp
1487 mov \$1,%rax
1488 mov 0(%rsi),%r15
1489 mov 8(%rsi),%r14
1490 mov 16(%rsi),%r13
1491 mov 24(%rsi),%r12
1492 mov 32(%rsi),%rbp
1493 mov 40(%rsi),%rbx
1494 lea 48(%rsi),%rsp
1495 .Lsqr4x_epilogue:
1496 ret
1497 .size bn_sqr4x_mont,.-bn_sqr4x_mont
1498 ___
1499 }}}
1500 $code.=<<___;
1501 .asciz "Montgomery Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org
1502 .align 16
1503 ___

1505 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1506 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
1507 if ($win64) {
1508 $rec="%rcx";
1509 $frame="%rdx";
1510 $context="%r8";
1511 $disp="%r9";

1513 $code.=<<___;
1514 .extern __imp_RtlVirtualUnwind
1515 .type mul_handler,\@abi-omnipotent
1516 .align 16
1517 mul_handler:
1518 push %rsi
1519 push %rdi
1520 push %rbx
1521 push %rbp
1522 push %r12
1523 push %r13
1524 push %r14
1525 push %r15
1526 pushfq
1527 sub \$64,%rsp

1529 mov 120($context),%rax # pull context->Rax
1530 mov 248($context),%rbx # pull context->Rip

1532 mov 8($disp),%rsi # disp->ImageBase

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 26

1533 mov 56($disp),%r11 # disp->HandlerData

1535 mov 0(%r11),%r10d # HandlerData[0]
1536 lea (%rsi,%r10),%r10 # end of prologue label
1537 cmp %r10,%rbx # context->Rip<end of prologue label
1538 jb .Lcommon_seh_tail

1540 mov 152($context),%rax # pull context->Rsp

1542 mov 4(%r11),%r10d # HandlerData[1]
1543 lea (%rsi,%r10),%r10 # epilogue label
1544 cmp %r10,%rbx # context->Rip>=epilogue label
1545 jae .Lcommon_seh_tail

1547 mov 192($context),%r10 # pull $num
1548 mov 8(%rax,%r10,8),%rax # pull saved stack pointer
1549 lea 48(%rax),%rax

1551 mov -8(%rax),%rbx
1552 mov -16(%rax),%rbp
1553 mov -24(%rax),%r12
1554 mov -32(%rax),%r13
1555 mov -40(%rax),%r14
1556 mov -48(%rax),%r15
1557 mov %rbx,144($context) # restore context->Rbx
1558 mov %rbp,160($context) # restore context->Rbp
1559 mov %r12,216($context) # restore context->R12
1560 mov %r13,224($context) # restore context->R13
1561 mov %r14,232($context) # restore context->R14
1562 mov %r15,240($context) # restore context->R15

1564 jmp .Lcommon_seh_tail
1565 .size mul_handler,.-mul_handler

1567 .type sqr_handler,\@abi-omnipotent
1568 .align 16
1569 sqr_handler:
1570 push %rsi
1571 push %rdi
1572 push %rbx
1573 push %rbp
1574 push %r12
1575 push %r13
1576 push %r14
1577 push %r15
1578 pushfq
1579 sub \$64,%rsp

1581 mov 120($context),%rax # pull context->Rax
1582 mov 248($context),%rbx # pull context->Rip

1584 lea .Lsqr4x_body(%rip),%r10
1585 cmp %r10,%rbx # context->Rip<.Lsqr_body
1586 jb .Lcommon_seh_tail

1588 mov 152($context),%rax # pull context->Rsp

1590 lea .Lsqr4x_epilogue(%rip),%r10
1591 cmp %r10,%rbx # context->Rip>=.Lsqr_epilogue
1592 jae .Lcommon_seh_tail

1594 mov 56(%rax),%rax # pull saved stack pointer
1595 lea 48(%rax),%rax

1597 mov -8(%rax),%rbx
1598 mov -16(%rax),%rbp

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 27

1599 mov -24(%rax),%r12
1600 mov -32(%rax),%r13
1601 mov -40(%rax),%r14
1602 mov -48(%rax),%r15
1603 mov %rbx,144($context) # restore context->Rbx
1604 mov %rbp,160($context) # restore context->Rbp
1605 mov %r12,216($context) # restore context->R12
1606 mov %r13,224($context) # restore context->R13
1607 mov %r14,232($context) # restore context->R14
1608 mov %r15,240($context) # restore context->R15

1610 .Lcommon_seh_tail:
1611 mov 8(%rax),%rdi
1612 mov 16(%rax),%rsi
1613 mov %rax,152($context) # restore context->Rsp
1614 mov %rsi,168($context) # restore context->Rsi
1615 mov %rdi,176($context) # restore context->Rdi

1617 mov 40($disp),%rdi # disp->ContextRecord
1618 mov $context,%rsi # context
1619 mov \$154,%ecx # sizeof(CONTEXT)
1620 .long 0xa548f3fc # cld; rep movsq

1622 mov $disp,%rsi
1623 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
1624 mov 8(%rsi),%rdx # arg2, disp->ImageBase
1625 mov 0(%rsi),%r8 # arg3, disp->ControlPc
1626 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
1627 mov 40(%rsi),%r10 # disp->ContextRecord
1628 lea 56(%rsi),%r11 # &disp->HandlerData
1629 lea 24(%rsi),%r12 # &disp->EstablisherFrame
1630 mov %r10,32(%rsp) # arg5
1631 mov %r11,40(%rsp) # arg6
1632 mov %r12,48(%rsp) # arg7
1633 mov %rcx,56(%rsp) # arg8, (NULL)
1634 call *__imp_RtlVirtualUnwind(%rip)

1636 mov \$1,%eax # ExceptionContinueSearch
1637 add \$64,%rsp
1638 popfq
1639 pop %r15
1640 pop %r14
1641 pop %r13
1642 pop %r12
1643 pop %rbp
1644 pop %rbx
1645 pop %rdi
1646 pop %rsi
1647 ret
1648 .size sqr_handler,.-sqr_handler

1650 .section .pdata
1651 .align 4
1652 .rva .LSEH_begin_bn_mul_mont
1653 .rva .LSEH_end_bn_mul_mont
1654 .rva .LSEH_info_bn_mul_mont

1656 .rva .LSEH_begin_bn_mul4x_mont
1657 .rva .LSEH_end_bn_mul4x_mont
1658 .rva .LSEH_info_bn_mul4x_mont

1660 .rva .LSEH_begin_bn_sqr4x_mont
1661 .rva .LSEH_end_bn_sqr4x_mont
1662 .rva .LSEH_info_bn_sqr4x_mont

1664 .section .xdata

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont.pl 28

1665 .align 8
1666 .LSEH_info_bn_mul_mont:
1667 .byte 9,0,0,0
1668 .rva mul_handler
1669 .rva .Lmul_body,.Lmul_epilogue # HandlerData[]
1670 .LSEH_info_bn_mul4x_mont:
1671 .byte 9,0,0,0
1672 .rva mul_handler
1673 .rva .Lmul4x_body,.Lmul4x_epilogue # HandlerData[]
1674 .LSEH_info_bn_sqr4x_mont:
1675 .byte 9,0,0,0
1676 .rva sqr_handler
1677 ___
1678 }

1680 print $code;
1681 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 1

**
 22488 Fri May 30 18:32:06 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 # ==
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ==

10 # August 2011.
11 #
12 # Companion to x86_64-mont.pl that optimizes cache-timing attack
13 # countermeasures. The subroutines are produced by replacing bp[i]
14 # references in their x86_64-mont.pl counterparts with cache-neutral
15 # references to powers table computed in BN_mod_exp_mont_consttime.
16 # In addition subroutine that scatters elements of the powers table
17 # is implemented, so that scatter-/gathering can be tuned without
18 # bn_exp.c modifications.

20 $flavour = shift;
21 $output = shift;
22 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

24 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

26 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
27 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
28 ($xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
29 die "can’t locate x86_64-xlate.pl";

31 open OUT,"| \"$^X\" $xlate $flavour $output";
32 *STDOUT=*OUT;

34 # int bn_mul_mont_gather5(
35 $rp="%rdi"; # BN_ULONG *rp,
36 $ap="%rsi"; # const BN_ULONG *ap,
37 $bp="%rdx"; # const BN_ULONG *bp,
38 $np="%rcx"; # const BN_ULONG *np,
39 $n0="%r8"; # const BN_ULONG *n0,
40 $num="%r9"; # int num,
41 # int idx); # 0 to 2^5-1, "index" in $bp holding
42 # pre-computed powers of a’, interlaced
43 # in such manner that b[0] is $bp[idx],
44 # b[1] is [2^5+idx], etc.
45 $lo0="%r10";
46 $hi0="%r11";
47 $hi1="%r13";
48 $i="%r14";
49 $j="%r15";
50 $m0="%rbx";
51 $m1="%rbp";

53 $code=<<___;
54 .text

56 .globl bn_mul_mont_gather5
57 .type bn_mul_mont_gather5,\@function,6
58 .align 64
59 bn_mul_mont_gather5:
60 test \$3,${num}d
61 jnz .Lmul_enter

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 2

62 cmp \$8,${num}d
63 jb .Lmul_enter
64 jmp .Lmul4x_enter

66 .align 16
67 .Lmul_enter:
68 mov ${num}d,${num}d
69 mov ‘($win64?56:8)‘(%rsp),%r10d # load 7th argument
70 push %rbx
71 push %rbp
72 push %r12
73 push %r13
74 push %r14
75 push %r15
76 ___
77 $code.=<<___ if ($win64);
78 lea -0x28(%rsp),%rsp
79 movaps %xmm6,(%rsp)
80 movaps %xmm7,0x10(%rsp)
81 .Lmul_alloca:
82 ___
83 $code.=<<___;
84 mov %rsp,%rax
85 lea 2($num),%r11
86 neg %r11
87 lea (%rsp,%r11,8),%rsp # tp=alloca(8*(num+2))
88 and \$-1024,%rsp # minimize TLB usage

90 mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp
91 .Lmul_body:
92 mov $bp,%r12 # reassign $bp
93 ___
94 $bp="%r12";
95 $STRIDE=2**5*8; # 5 is "window size"
96 $N=$STRIDE/4; # should match cache line size
97 $code.=<<___;
98 mov %r10,%r11
99 shr \$‘log($N/8)/log(2)‘,%r10
100 and \$‘$N/8-1‘,%r11
101 not %r10
102 lea .Lmagic_masks(%rip),%rax
103 and \$‘2**5/($N/8)-1‘,%r10 # 5 is "window size"
104 lea 96($bp,%r11,8),$bp # pointer within 1st cache line
105 movq 0(%rax,%r10,8),%xmm4 # set of masks denoting which
106 movq 8(%rax,%r10,8),%xmm5 # cache line contains element
107 movq 16(%rax,%r10,8),%xmm6 # denoted by 7th argument
108 movq 24(%rax,%r10,8),%xmm7

110 movq ‘0*$STRIDE/4-96‘($bp),%xmm0
111 movq ‘1*$STRIDE/4-96‘($bp),%xmm1
112 pand %xmm4,%xmm0
113 movq ‘2*$STRIDE/4-96‘($bp),%xmm2
114 pand %xmm5,%xmm1
115 movq ‘3*$STRIDE/4-96‘($bp),%xmm3
116 pand %xmm6,%xmm2
117 por %xmm1,%xmm0
118 pand %xmm7,%xmm3
119 por %xmm2,%xmm0
120 lea $STRIDE($bp),$bp
121 por %xmm3,%xmm0

123 movq %xmm0,$m0 # m0=bp[0]

125 mov ($n0),$n0 # pull n0[0] value
126 mov ($ap),%rax

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 3

128 xor $i,$i # i=0
129 xor $j,$j # j=0

131 movq ‘0*$STRIDE/4-96‘($bp),%xmm0
132 movq ‘1*$STRIDE/4-96‘($bp),%xmm1
133 pand %xmm4,%xmm0
134 movq ‘2*$STRIDE/4-96‘($bp),%xmm2
135 pand %xmm5,%xmm1

137 mov $n0,$m1
138 mulq $m0 # ap[0]*bp[0]
139 mov %rax,$lo0
140 mov ($np),%rax

142 movq ‘3*$STRIDE/4-96‘($bp),%xmm3
143 pand %xmm6,%xmm2
144 por %xmm1,%xmm0
145 pand %xmm7,%xmm3

147 imulq $lo0,$m1 # "tp[0]"*n0
148 mov %rdx,$hi0

150 por %xmm2,%xmm0
151 lea $STRIDE($bp),$bp
152 por %xmm3,%xmm0

154 mulq $m1 # np[0]*m1
155 add %rax,$lo0 # discarded
156 mov 8($ap),%rax
157 adc \$0,%rdx
158 mov %rdx,$hi1

160 lea 1($j),$j # j++
161 jmp .L1st_enter

163 .align 16
164 .L1st:
165 add %rax,$hi1
166 mov ($ap,$j,8),%rax
167 adc \$0,%rdx
168 add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0]
169 mov $lo0,$hi0
170 adc \$0,%rdx
171 mov $hi1,-16(%rsp,$j,8) # tp[j-1]
172 mov %rdx,$hi1

174 .L1st_enter:
175 mulq $m0 # ap[j]*bp[0]
176 add %rax,$hi0
177 mov ($np,$j,8),%rax
178 adc \$0,%rdx
179 lea 1($j),$j # j++
180 mov %rdx,$lo0

182 mulq $m1 # np[j]*m1
183 cmp $num,$j
184 jne .L1st

186 movq %xmm0,$m0 # bp[1]

188 add %rax,$hi1
189 mov ($ap),%rax # ap[0]
190 adc \$0,%rdx
191 add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0]
192 adc \$0,%rdx
193 mov $hi1,-16(%rsp,$j,8) # tp[j-1]

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 4

194 mov %rdx,$hi1
195 mov $lo0,$hi0

197 xor %rdx,%rdx
198 add $hi0,$hi1
199 adc \$0,%rdx
200 mov $hi1,-8(%rsp,$num,8)
201 mov %rdx,(%rsp,$num,8) # store upmost overflow bit

203 lea 1($i),$i # i++
204 jmp .Louter
205 .align 16
206 .Louter:
207 xor $j,$j # j=0
208 mov $n0,$m1
209 mov (%rsp),$lo0

211 movq ‘0*$STRIDE/4-96‘($bp),%xmm0
212 movq ‘1*$STRIDE/4-96‘($bp),%xmm1
213 pand %xmm4,%xmm0
214 movq ‘2*$STRIDE/4-96‘($bp),%xmm2
215 pand %xmm5,%xmm1

217 mulq $m0 # ap[0]*bp[i]
218 add %rax,$lo0 # ap[0]*bp[i]+tp[0]
219 mov ($np),%rax
220 adc \$0,%rdx

222 movq ‘3*$STRIDE/4-96‘($bp),%xmm3
223 pand %xmm6,%xmm2
224 por %xmm1,%xmm0
225 pand %xmm7,%xmm3

227 imulq $lo0,$m1 # tp[0]*n0
228 mov %rdx,$hi0

230 por %xmm2,%xmm0
231 lea $STRIDE($bp),$bp
232 por %xmm3,%xmm0

234 mulq $m1 # np[0]*m1
235 add %rax,$lo0 # discarded
236 mov 8($ap),%rax
237 adc \$0,%rdx
238 mov 8(%rsp),$lo0 # tp[1]
239 mov %rdx,$hi1

241 lea 1($j),$j # j++
242 jmp .Linner_enter

244 .align 16
245 .Linner:
246 add %rax,$hi1
247 mov ($ap,$j,8),%rax
248 adc \$0,%rdx
249 add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j]
250 mov (%rsp,$j,8),$lo0
251 adc \$0,%rdx
252 mov $hi1,-16(%rsp,$j,8) # tp[j-1]
253 mov %rdx,$hi1

255 .Linner_enter:
256 mulq $m0 # ap[j]*bp[i]
257 add %rax,$hi0
258 mov ($np,$j,8),%rax
259 adc \$0,%rdx

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 5

260 add $hi0,$lo0 # ap[j]*bp[i]+tp[j]
261 mov %rdx,$hi0
262 adc \$0,$hi0
263 lea 1($j),$j # j++

265 mulq $m1 # np[j]*m1
266 cmp $num,$j
267 jne .Linner

269 movq %xmm0,$m0 # bp[i+1]

271 add %rax,$hi1
272 mov ($ap),%rax # ap[0]
273 adc \$0,%rdx
274 add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j]
275 mov (%rsp,$j,8),$lo0
276 adc \$0,%rdx
277 mov $hi1,-16(%rsp,$j,8) # tp[j-1]
278 mov %rdx,$hi1

280 xor %rdx,%rdx
281 add $hi0,$hi1
282 adc \$0,%rdx
283 add $lo0,$hi1 # pull upmost overflow bit
284 adc \$0,%rdx
285 mov $hi1,-8(%rsp,$num,8)
286 mov %rdx,(%rsp,$num,8) # store upmost overflow bit

288 lea 1($i),$i # i++
289 cmp $num,$i
290 jl .Louter

292 xor $i,$i # i=0 and clear CF!
293 mov (%rsp),%rax # tp[0]
294 lea (%rsp),$ap # borrow ap for tp
295 mov $num,$j # j=num
296 jmp .Lsub
297 .align 16
298 .Lsub: sbb ($np,$i,8),%rax
299 mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i]
300 mov 8($ap,$i,8),%rax # tp[i+1]
301 lea 1($i),$i # i++
302 dec $j # doesnn’t affect CF!
303 jnz .Lsub

305 sbb \$0,%rax # handle upmost overflow bit
306 xor $i,$i
307 and %rax,$ap
308 not %rax
309 mov $rp,$np
310 and %rax,$np
311 mov $num,$j # j=num
312 or $np,$ap # ap=borrow?tp:rp
313 .align 16
314 .Lcopy: # copy or in-place refresh
315 mov ($ap,$i,8),%rax
316 mov $i,(%rsp,$i,8) # zap temporary vector
317 mov %rax,($rp,$i,8) # rp[i]=tp[i]
318 lea 1($i),$i
319 sub \$1,$j
320 jnz .Lcopy

322 mov 8(%rsp,$num,8),%rsi # restore %rsp
323 mov \$1,%rax
324 ___
325 $code.=<<___ if ($win64);

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 6

326 movaps (%rsi),%xmm6
327 movaps 0x10(%rsi),%xmm7
328 lea 0x28(%rsi),%rsi
329 ___
330 $code.=<<___;
331 mov (%rsi),%r15
332 mov 8(%rsi),%r14
333 mov 16(%rsi),%r13
334 mov 24(%rsi),%r12
335 mov 32(%rsi),%rbp
336 mov 40(%rsi),%rbx
337 lea 48(%rsi),%rsp
338 .Lmul_epilogue:
339 ret
340 .size bn_mul_mont_gather5,.-bn_mul_mont_gather5
341 ___
342 {{{
343 my @A=("%r10","%r11");
344 my @N=("%r13","%rdi");
345 $code.=<<___;
346 .type bn_mul4x_mont_gather5,\@function,6
347 .align 16
348 bn_mul4x_mont_gather5:
349 .Lmul4x_enter:
350 mov ${num}d,${num}d
351 mov ‘($win64?56:8)‘(%rsp),%r10d # load 7th argument
352 push %rbx
353 push %rbp
354 push %r12
355 push %r13
356 push %r14
357 push %r15
358 ___
359 $code.=<<___ if ($win64);
360 lea -0x28(%rsp),%rsp
361 movaps %xmm6,(%rsp)
362 movaps %xmm7,0x10(%rsp)
363 .Lmul4x_alloca:
364 ___
365 $code.=<<___;
366 mov %rsp,%rax
367 lea 4($num),%r11
368 neg %r11
369 lea (%rsp,%r11,8),%rsp # tp=alloca(8*(num+4))
370 and \$-1024,%rsp # minimize TLB usage

372 mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp
373 .Lmul4x_body:
374 mov $rp,16(%rsp,$num,8) # tp[num+2]=$rp
375 mov %rdx,%r12 # reassign $bp
376 ___
377 $bp="%r12";
378 $STRIDE=2**5*8; # 5 is "window size"
379 $N=$STRIDE/4; # should match cache line size
380 $code.=<<___;
381 mov %r10,%r11
382 shr \$‘log($N/8)/log(2)‘,%r10
383 and \$‘$N/8-1‘,%r11
384 not %r10
385 lea .Lmagic_masks(%rip),%rax
386 and \$‘2**5/($N/8)-1‘,%r10 # 5 is "window size"
387 lea 96($bp,%r11,8),$bp # pointer within 1st cache line
388 movq 0(%rax,%r10,8),%xmm4 # set of masks denoting which
389 movq 8(%rax,%r10,8),%xmm5 # cache line contains element
390 movq 16(%rax,%r10,8),%xmm6 # denoted by 7th argument
391 movq 24(%rax,%r10,8),%xmm7

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 7

393 movq ‘0*$STRIDE/4-96‘($bp),%xmm0
394 movq ‘1*$STRIDE/4-96‘($bp),%xmm1
395 pand %xmm4,%xmm0
396 movq ‘2*$STRIDE/4-96‘($bp),%xmm2
397 pand %xmm5,%xmm1
398 movq ‘3*$STRIDE/4-96‘($bp),%xmm3
399 pand %xmm6,%xmm2
400 por %xmm1,%xmm0
401 pand %xmm7,%xmm3
402 por %xmm2,%xmm0
403 lea $STRIDE($bp),$bp
404 por %xmm3,%xmm0

406 movq %xmm0,$m0 # m0=bp[0]
407 mov ($n0),$n0 # pull n0[0] value
408 mov ($ap),%rax

410 xor $i,$i # i=0
411 xor $j,$j # j=0

413 movq ‘0*$STRIDE/4-96‘($bp),%xmm0
414 movq ‘1*$STRIDE/4-96‘($bp),%xmm1
415 pand %xmm4,%xmm0
416 movq ‘2*$STRIDE/4-96‘($bp),%xmm2
417 pand %xmm5,%xmm1

419 mov $n0,$m1
420 mulq $m0 # ap[0]*bp[0]
421 mov %rax,$A[0]
422 mov ($np),%rax

424 movq ‘3*$STRIDE/4-96‘($bp),%xmm3
425 pand %xmm6,%xmm2
426 por %xmm1,%xmm0
427 pand %xmm7,%xmm3

429 imulq $A[0],$m1 # "tp[0]"*n0
430 mov %rdx,$A[1]

432 por %xmm2,%xmm0
433 lea $STRIDE($bp),$bp
434 por %xmm3,%xmm0

436 mulq $m1 # np[0]*m1
437 add %rax,$A[0] # discarded
438 mov 8($ap),%rax
439 adc \$0,%rdx
440 mov %rdx,$N[1]

442 mulq $m0
443 add %rax,$A[1]
444 mov 8($np),%rax
445 adc \$0,%rdx
446 mov %rdx,$A[0]

448 mulq $m1
449 add %rax,$N[1]
450 mov 16($ap),%rax
451 adc \$0,%rdx
452 add $A[1],$N[1]
453 lea 4($j),$j # j++
454 adc \$0,%rdx
455 mov $N[1],(%rsp)
456 mov %rdx,$N[0]
457 jmp .L1st4x

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 8

458 .align 16
459 .L1st4x:
460 mulq $m0 # ap[j]*bp[0]
461 add %rax,$A[0]
462 mov -16($np,$j,8),%rax
463 adc \$0,%rdx
464 mov %rdx,$A[1]

466 mulq $m1 # np[j]*m1
467 add %rax,$N[0]
468 mov -8($ap,$j,8),%rax
469 adc \$0,%rdx
470 add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0]
471 adc \$0,%rdx
472 mov $N[0],-24(%rsp,$j,8) # tp[j-1]
473 mov %rdx,$N[1]

475 mulq $m0 # ap[j]*bp[0]
476 add %rax,$A[1]
477 mov -8($np,$j,8),%rax
478 adc \$0,%rdx
479 mov %rdx,$A[0]

481 mulq $m1 # np[j]*m1
482 add %rax,$N[1]
483 mov ($ap,$j,8),%rax
484 adc \$0,%rdx
485 add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0]
486 adc \$0,%rdx
487 mov $N[1],-16(%rsp,$j,8) # tp[j-1]
488 mov %rdx,$N[0]

490 mulq $m0 # ap[j]*bp[0]
491 add %rax,$A[0]
492 mov ($np,$j,8),%rax
493 adc \$0,%rdx
494 mov %rdx,$A[1]

496 mulq $m1 # np[j]*m1
497 add %rax,$N[0]
498 mov 8($ap,$j,8),%rax
499 adc \$0,%rdx
500 add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0]
501 adc \$0,%rdx
502 mov $N[0],-8(%rsp,$j,8) # tp[j-1]
503 mov %rdx,$N[1]

505 mulq $m0 # ap[j]*bp[0]
506 add %rax,$A[1]
507 mov 8($np,$j,8),%rax
508 adc \$0,%rdx
509 lea 4($j),$j # j++
510 mov %rdx,$A[0]

512 mulq $m1 # np[j]*m1
513 add %rax,$N[1]
514 mov -16($ap,$j,8),%rax
515 adc \$0,%rdx
516 add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0]
517 adc \$0,%rdx
518 mov $N[1],-32(%rsp,$j,8) # tp[j-1]
519 mov %rdx,$N[0]
520 cmp $num,$j
521 jl .L1st4x

523 mulq $m0 # ap[j]*bp[0]

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 9

524 add %rax,$A[0]
525 mov -16($np,$j,8),%rax
526 adc \$0,%rdx
527 mov %rdx,$A[1]

529 mulq $m1 # np[j]*m1
530 add %rax,$N[0]
531 mov -8($ap,$j,8),%rax
532 adc \$0,%rdx
533 add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0]
534 adc \$0,%rdx
535 mov $N[0],-24(%rsp,$j,8) # tp[j-1]
536 mov %rdx,$N[1]

538 mulq $m0 # ap[j]*bp[0]
539 add %rax,$A[1]
540 mov -8($np,$j,8),%rax
541 adc \$0,%rdx
542 mov %rdx,$A[0]

544 mulq $m1 # np[j]*m1
545 add %rax,$N[1]
546 mov ($ap),%rax # ap[0]
547 adc \$0,%rdx
548 add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0]
549 adc \$0,%rdx
550 mov $N[1],-16(%rsp,$j,8) # tp[j-1]
551 mov %rdx,$N[0]

553 movq %xmm0,$m0 # bp[1]

555 xor $N[1],$N[1]
556 add $A[0],$N[0]
557 adc \$0,$N[1]
558 mov $N[0],-8(%rsp,$j,8)
559 mov $N[1],(%rsp,$j,8) # store upmost overflow bit

561 lea 1($i),$i # i++
562 .align 4
563 .Louter4x:
564 xor $j,$j # j=0
565 movq ‘0*$STRIDE/4-96‘($bp),%xmm0
566 movq ‘1*$STRIDE/4-96‘($bp),%xmm1
567 pand %xmm4,%xmm0
568 movq ‘2*$STRIDE/4-96‘($bp),%xmm2
569 pand %xmm5,%xmm1

571 mov (%rsp),$A[0]
572 mov $n0,$m1
573 mulq $m0 # ap[0]*bp[i]
574 add %rax,$A[0] # ap[0]*bp[i]+tp[0]
575 mov ($np),%rax
576 adc \$0,%rdx

578 movq ‘3*$STRIDE/4-96‘($bp),%xmm3
579 pand %xmm6,%xmm2
580 por %xmm1,%xmm0
581 pand %xmm7,%xmm3

583 imulq $A[0],$m1 # tp[0]*n0
584 mov %rdx,$A[1]

586 por %xmm2,%xmm0
587 lea $STRIDE($bp),$bp
588 por %xmm3,%xmm0

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 10

590 mulq $m1 # np[0]*m1
591 add %rax,$A[0] # "$N[0]", discarded
592 mov 8($ap),%rax
593 adc \$0,%rdx
594 mov %rdx,$N[1]

596 mulq $m0 # ap[j]*bp[i]
597 add %rax,$A[1]
598 mov 8($np),%rax
599 adc \$0,%rdx
600 add 8(%rsp),$A[1] # +tp[1]
601 adc \$0,%rdx
602 mov %rdx,$A[0]

604 mulq $m1 # np[j]*m1
605 add %rax,$N[1]
606 mov 16($ap),%rax
607 adc \$0,%rdx
608 add $A[1],$N[1] # np[j]*m1+ap[j]*bp[i]+tp[j]
609 lea 4($j),$j # j+=2
610 adc \$0,%rdx
611 mov %rdx,$N[0]
612 jmp .Linner4x
613 .align 16
614 .Linner4x:
615 mulq $m0 # ap[j]*bp[i]
616 add %rax,$A[0]
617 mov -16($np,$j,8),%rax
618 adc \$0,%rdx
619 add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j]
620 adc \$0,%rdx
621 mov %rdx,$A[1]

623 mulq $m1 # np[j]*m1
624 add %rax,$N[0]
625 mov -8($ap,$j,8),%rax
626 adc \$0,%rdx
627 add $A[0],$N[0]
628 adc \$0,%rdx
629 mov $N[1],-32(%rsp,$j,8) # tp[j-1]
630 mov %rdx,$N[1]

632 mulq $m0 # ap[j]*bp[i]
633 add %rax,$A[1]
634 mov -8($np,$j,8),%rax
635 adc \$0,%rdx
636 add -8(%rsp,$j,8),$A[1]
637 adc \$0,%rdx
638 mov %rdx,$A[0]

640 mulq $m1 # np[j]*m1
641 add %rax,$N[1]
642 mov ($ap,$j,8),%rax
643 adc \$0,%rdx
644 add $A[1],$N[1]
645 adc \$0,%rdx
646 mov $N[0],-24(%rsp,$j,8) # tp[j-1]
647 mov %rdx,$N[0]

649 mulq $m0 # ap[j]*bp[i]
650 add %rax,$A[0]
651 mov ($np,$j,8),%rax
652 adc \$0,%rdx
653 add (%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j]
654 adc \$0,%rdx
655 mov %rdx,$A[1]

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 11

657 mulq $m1 # np[j]*m1
658 add %rax,$N[0]
659 mov 8($ap,$j,8),%rax
660 adc \$0,%rdx
661 add $A[0],$N[0]
662 adc \$0,%rdx
663 mov $N[1],-16(%rsp,$j,8) # tp[j-1]
664 mov %rdx,$N[1]

666 mulq $m0 # ap[j]*bp[i]
667 add %rax,$A[1]
668 mov 8($np,$j,8),%rax
669 adc \$0,%rdx
670 add 8(%rsp,$j,8),$A[1]
671 adc \$0,%rdx
672 lea 4($j),$j # j++
673 mov %rdx,$A[0]

675 mulq $m1 # np[j]*m1
676 add %rax,$N[1]
677 mov -16($ap,$j,8),%rax
678 adc \$0,%rdx
679 add $A[1],$N[1]
680 adc \$0,%rdx
681 mov $N[0],-40(%rsp,$j,8) # tp[j-1]
682 mov %rdx,$N[0]
683 cmp $num,$j
684 jl .Linner4x

686 mulq $m0 # ap[j]*bp[i]
687 add %rax,$A[0]
688 mov -16($np,$j,8),%rax
689 adc \$0,%rdx
690 add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j]
691 adc \$0,%rdx
692 mov %rdx,$A[1]

694 mulq $m1 # np[j]*m1
695 add %rax,$N[0]
696 mov -8($ap,$j,8),%rax
697 adc \$0,%rdx
698 add $A[0],$N[0]
699 adc \$0,%rdx
700 mov $N[1],-32(%rsp,$j,8) # tp[j-1]
701 mov %rdx,$N[1]

703 mulq $m0 # ap[j]*bp[i]
704 add %rax,$A[1]
705 mov -8($np,$j,8),%rax
706 adc \$0,%rdx
707 add -8(%rsp,$j,8),$A[1]
708 adc \$0,%rdx
709 lea 1($i),$i # i++
710 mov %rdx,$A[0]

712 mulq $m1 # np[j]*m1
713 add %rax,$N[1]
714 mov ($ap),%rax # ap[0]
715 adc \$0,%rdx
716 add $A[1],$N[1]
717 adc \$0,%rdx
718 mov $N[0],-24(%rsp,$j,8) # tp[j-1]
719 mov %rdx,$N[0]

721 movq %xmm0,$m0 # bp[i+1]

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 12

722 mov $N[1],-16(%rsp,$j,8) # tp[j-1]

724 xor $N[1],$N[1]
725 add $A[0],$N[0]
726 adc \$0,$N[1]
727 add (%rsp,$num,8),$N[0] # pull upmost overflow bit
728 adc \$0,$N[1]
729 mov $N[0],-8(%rsp,$j,8)
730 mov $N[1],(%rsp,$j,8) # store upmost overflow bit

732 cmp $num,$i
733 jl .Louter4x
734 ___
735 {
736 my @ri=("%rax","%rdx",$m0,$m1);
737 $code.=<<___;
738 mov 16(%rsp,$num,8),$rp # restore $rp
739 mov 0(%rsp),@ri[0] # tp[0]
740 pxor %xmm0,%xmm0
741 mov 8(%rsp),@ri[1] # tp[1]
742 shr \$2,$num # num/=4
743 lea (%rsp),$ap # borrow ap for tp
744 xor $i,$i # i=0 and clear CF!

746 sub 0($np),@ri[0]
747 mov 16($ap),@ri[2] # tp[2]
748 mov 24($ap),@ri[3] # tp[3]
749 sbb 8($np),@ri[1]
750 lea -1($num),$j # j=num/4-1
751 jmp .Lsub4x
752 .align 16
753 .Lsub4x:
754 mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i]
755 mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i]
756 sbb 16($np,$i,8),@ri[2]
757 mov 32($ap,$i,8),@ri[0] # tp[i+1]
758 mov 40($ap,$i,8),@ri[1]
759 sbb 24($np,$i,8),@ri[3]
760 mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i]
761 mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i]
762 sbb 32($np,$i,8),@ri[0]
763 mov 48($ap,$i,8),@ri[2]
764 mov 56($ap,$i,8),@ri[3]
765 sbb 40($np,$i,8),@ri[1]
766 lea 4($i),$i # i++
767 dec $j # doesnn’t affect CF!
768 jnz .Lsub4x

770 mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i]
771 mov 32($ap,$i,8),@ri[0] # load overflow bit
772 sbb 16($np,$i,8),@ri[2]
773 mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i]
774 sbb 24($np,$i,8),@ri[3]
775 mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i]

777 sbb \$0,@ri[0] # handle upmost overflow bit
778 mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i]
779 xor $i,$i # i=0
780 and @ri[0],$ap
781 not @ri[0]
782 mov $rp,$np
783 and @ri[0],$np
784 lea -1($num),$j
785 or $np,$ap # ap=borrow?tp:rp

787 movdqu ($ap),%xmm1

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 13

788 movdqa %xmm0,(%rsp)
789 movdqu %xmm1,($rp)
790 jmp .Lcopy4x
791 .align 16
792 .Lcopy4x: # copy or in-place refresh
793 movdqu 16($ap,$i),%xmm2
794 movdqu 32($ap,$i),%xmm1
795 movdqa %xmm0,16(%rsp,$i)
796 movdqu %xmm2,16($rp,$i)
797 movdqa %xmm0,32(%rsp,$i)
798 movdqu %xmm1,32($rp,$i)
799 lea 32($i),$i
800 dec $j
801 jnz .Lcopy4x

803 shl \$2,$num
804 movdqu 16($ap,$i),%xmm2
805 movdqa %xmm0,16(%rsp,$i)
806 movdqu %xmm2,16($rp,$i)
807 ___
808 }
809 $code.=<<___;
810 mov 8(%rsp,$num,8),%rsi # restore %rsp
811 mov \$1,%rax
812 ___
813 $code.=<<___ if ($win64);
814 movaps (%rsi),%xmm6
815 movaps 0x10(%rsi),%xmm7
816 lea 0x28(%rsi),%rsi
817 ___
818 $code.=<<___;
819 mov (%rsi),%r15
820 mov 8(%rsi),%r14
821 mov 16(%rsi),%r13
822 mov 24(%rsi),%r12
823 mov 32(%rsi),%rbp
824 mov 40(%rsi),%rbx
825 lea 48(%rsi),%rsp
826 .Lmul4x_epilogue:
827 ret
828 .size bn_mul4x_mont_gather5,.-bn_mul4x_mont_gather5
829 ___
830 }}}

832 {
833 my ($inp,$num,$tbl,$idx)=$win64?("%rcx","%rdx","%r8", "%r9") : # Win64 order
834 ("%rdi","%rsi","%rdx","%rcx"); # Unix order
835 my $out=$inp;
836 my $STRIDE=2**5*8;
837 my $N=$STRIDE/4;

839 $code.=<<___;
840 .globl bn_scatter5
841 .type bn_scatter5,\@abi-omnipotent
842 .align 16
843 bn_scatter5:
844 cmp \$0, $num
845 jz .Lscatter_epilogue
846 lea ($tbl,$idx,8),$tbl
847 .Lscatter:
848 mov ($inp),%rax
849 lea 8($inp),$inp
850 mov %rax,($tbl)
851 lea 32*8($tbl),$tbl
852 sub \$1,$num
853 jnz .Lscatter

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 14

854 .Lscatter_epilogue:
855 ret
856 .size bn_scatter5,.-bn_scatter5

858 .globl bn_gather5
859 .type bn_gather5,\@abi-omnipotent
860 .align 16
861 bn_gather5:
862 ___
863 $code.=<<___ if ($win64);
864 .LSEH_begin_bn_gather5:
865 # I can’t trust assembler to use specific encoding:-(
866 .byte 0x48,0x83,0xec,0x28 #sub \$0x28,%rsp
867 .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp)
868 .byte 0x0f,0x29,0x7c,0x24,0x10 #movdqa %xmm7,0x10(%rsp)
869 ___
870 $code.=<<___;
871 mov $idx,%r11
872 shr \$‘log($N/8)/log(2)‘,$idx
873 and \$‘$N/8-1‘,%r11
874 not $idx
875 lea .Lmagic_masks(%rip),%rax
876 and \$‘2**5/($N/8)-1‘,$idx # 5 is "window size"
877 lea 96($tbl,%r11,8),$tbl # pointer within 1st cache line
878 movq 0(%rax,$idx,8),%xmm4 # set of masks denoting which
879 movq 8(%rax,$idx,8),%xmm5 # cache line contains element
880 movq 16(%rax,$idx,8),%xmm6 # denoted by 7th argument
881 movq 24(%rax,$idx,8),%xmm7
882 jmp .Lgather
883 .align 16
884 .Lgather:
885 movq ‘0*$STRIDE/4-96‘($tbl),%xmm0
886 movq ‘1*$STRIDE/4-96‘($tbl),%xmm1
887 pand %xmm4,%xmm0
888 movq ‘2*$STRIDE/4-96‘($tbl),%xmm2
889 pand %xmm5,%xmm1
890 movq ‘3*$STRIDE/4-96‘($tbl),%xmm3
891 pand %xmm6,%xmm2
892 por %xmm1,%xmm0
893 pand %xmm7,%xmm3
894 por %xmm2,%xmm0
895 lea $STRIDE($tbl),$tbl
896 por %xmm3,%xmm0

898 movq %xmm0,($out) # m0=bp[0]
899 lea 8($out),$out
900 sub \$1,$num
901 jnz .Lgather
902 ___
903 $code.=<<___ if ($win64);
904 movaps (%rsp),%xmm6
905 movaps 0x10(%rsp),%xmm7
906 lea 0x28(%rsp),%rsp
907 ___
908 $code.=<<___;
909 ret
910 .LSEH_end_bn_gather5:
911 .size bn_gather5,.-bn_gather5
912 ___
913 }
914 $code.=<<___;
915 .align 64
916 .Lmagic_masks:
917 .long 0,0, 0,0, 0,0, -1,-1
918 .long 0,0, 0,0, 0,0, 0,0
919 .asciz "Montgomery Multiplication with scatter/gather for x86_64, CRYPTOGAMS by

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 15

920 ___

922 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
923 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
924 if ($win64) {
925 $rec="%rcx";
926 $frame="%rdx";
927 $context="%r8";
928 $disp="%r9";

930 $code.=<<___;
931 .extern __imp_RtlVirtualUnwind
932 .type mul_handler,\@abi-omnipotent
933 .align 16
934 mul_handler:
935 push %rsi
936 push %rdi
937 push %rbx
938 push %rbp
939 push %r12
940 push %r13
941 push %r14
942 push %r15
943 pushfq
944 sub \$64,%rsp

946 mov 120($context),%rax # pull context->Rax
947 mov 248($context),%rbx # pull context->Rip

949 mov 8($disp),%rsi # disp->ImageBase
950 mov 56($disp),%r11 # disp->HandlerData

952 mov 0(%r11),%r10d # HandlerData[0]
953 lea (%rsi,%r10),%r10 # end of prologue label
954 cmp %r10,%rbx # context->Rip<end of prologue label
955 jb .Lcommon_seh_tail

957 lea ‘40+48‘(%rax),%rax

959 mov 4(%r11),%r10d # HandlerData[1]
960 lea (%rsi,%r10),%r10 # end of alloca label
961 cmp %r10,%rbx # context->Rip<end of alloca label
962 jb .Lcommon_seh_tail

964 mov 152($context),%rax # pull context->Rsp

966 mov 8(%r11),%r10d # HandlerData[2]
967 lea (%rsi,%r10),%r10 # epilogue label
968 cmp %r10,%rbx # context->Rip>=epilogue label
969 jae .Lcommon_seh_tail

971 mov 192($context),%r10 # pull $num
972 mov 8(%rax,%r10,8),%rax # pull saved stack pointer

974 movaps (%rax),%xmm0
975 movaps 16(%rax),%xmm1
976 lea ‘40+48‘(%rax),%rax

978 mov -8(%rax),%rbx
979 mov -16(%rax),%rbp
980 mov -24(%rax),%r12
981 mov -32(%rax),%r13
982 mov -40(%rax),%r14
983 mov -48(%rax),%r15
984 mov %rbx,144($context) # restore context->Rbx
985 mov %rbp,160($context) # restore context->Rbp

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 16

986 mov %r12,216($context) # restore context->R12
987 mov %r13,224($context) # restore context->R13
988 mov %r14,232($context) # restore context->R14
989 mov %r15,240($context) # restore context->R15
990 movups %xmm0,512($context) # restore context->Xmm6
991 movups %xmm1,528($context) # restore context->Xmm7

993 .Lcommon_seh_tail:
994 mov 8(%rax),%rdi
995 mov 16(%rax),%rsi
996 mov %rax,152($context) # restore context->Rsp
997 mov %rsi,168($context) # restore context->Rsi
998 mov %rdi,176($context) # restore context->Rdi

1000 mov 40($disp),%rdi # disp->ContextRecord
1001 mov $context,%rsi # context
1002 mov \$154,%ecx # sizeof(CONTEXT)
1003 .long 0xa548f3fc # cld; rep movsq

1005 mov $disp,%rsi
1006 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
1007 mov 8(%rsi),%rdx # arg2, disp->ImageBase
1008 mov 0(%rsi),%r8 # arg3, disp->ControlPc
1009 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
1010 mov 40(%rsi),%r10 # disp->ContextRecord
1011 lea 56(%rsi),%r11 # &disp->HandlerData
1012 lea 24(%rsi),%r12 # &disp->EstablisherFrame
1013 mov %r10,32(%rsp) # arg5
1014 mov %r11,40(%rsp) # arg6
1015 mov %r12,48(%rsp) # arg7
1016 mov %rcx,56(%rsp) # arg8, (NULL)
1017 call *__imp_RtlVirtualUnwind(%rip)

1019 mov \$1,%eax # ExceptionContinueSearch
1020 add \$64,%rsp
1021 popfq
1022 pop %r15
1023 pop %r14
1024 pop %r13
1025 pop %r12
1026 pop %rbp
1027 pop %rbx
1028 pop %rdi
1029 pop %rsi
1030 ret
1031 .size mul_handler,.-mul_handler

1033 .section .pdata
1034 .align 4
1035 .rva .LSEH_begin_bn_mul_mont_gather5
1036 .rva .LSEH_end_bn_mul_mont_gather5
1037 .rva .LSEH_info_bn_mul_mont_gather5

1039 .rva .LSEH_begin_bn_mul4x_mont_gather5
1040 .rva .LSEH_end_bn_mul4x_mont_gather5
1041 .rva .LSEH_info_bn_mul4x_mont_gather5

1043 .rva .LSEH_begin_bn_gather5
1044 .rva .LSEH_end_bn_gather5
1045 .rva .LSEH_info_bn_gather5

1047 .section .xdata
1048 .align 8
1049 .LSEH_info_bn_mul_mont_gather5:
1050 .byte 9,0,0,0
1051 .rva mul_handler

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-mont5.pl 17

1052 .rva .Lmul_alloca,.Lmul_body,.Lmul_epilogue # HandlerData[]
1053 .align 8
1054 .LSEH_info_bn_mul4x_mont_gather5:
1055 .byte 9,0,0,0
1056 .rva mul_handler
1057 .rva .Lmul4x_alloca,.Lmul4x_body,.Lmul4x_epilogue # HandlerData[]
1058 .align 8
1059 .LSEH_info_bn_gather5:
1060 .byte 0x01,0x0d,0x05,0x00
1061 .byte 0x0d,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7
1062 .byte 0x08,0x68,0x00,0x00 #movaps (rsp),xmm6
1063 .byte 0x04,0x42,0x00,0x00 #sub rsp,0x28
1064 .align 8
1065 ___
1066 }

1068 $code =~ s/\‘([^\‘]*)\‘/eval($1)/gem;

1070 print $code;
1071 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 1

**
 34231 Fri May 30 18:32:06 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 # Ascetic x86_64 AT&T to MASM/NASM assembler translator by <appro>.
4 #
5 # Why AT&T to MASM and not vice versa? Several reasons. Because AT&T
6 # format is way easier to parse. Because it’s simpler to "gear" from
7 # Unix ABI to Windows one [see cross-reference "card" at the end of
8 # file]. Because Linux targets were available first...
9 #
10 # In addition the script also "distills" code suitable for GNU
11 # assembler, so that it can be compiled with more rigid assemblers,
12 # such as Solaris /usr/ccs/bin/as.
13 #
14 # This translator is not designed to convert *arbitrary* assembler
15 # code from AT&T format to MASM one. It’s designed to convert just
16 # enough to provide for dual-ABI OpenSSL modules development...
17 # There *are* limitations and you might have to modify your assembler
18 # code or this script to achieve the desired result...
19 #
20 # Currently recognized limitations:
21 #
22 # - can’t use multiple ops per line;
23 #
24 # Dual-ABI styling rules.
25 #
26 # 1. Adhere to Unix register and stack layout [see cross-reference
27 # ABI "card" at the end for explanation].
28 # 2. Forget about "red zone," stick to more traditional blended
29 # stack frame allocation. If volatile storage is actually required
30 # that is. If not, just leave the stack as is.
31 # 3. Functions tagged with ".type name,@function" get crafted with
32 # unified Win64 prologue and epilogue automatically. If you want
33 # to take care of ABI differences yourself, tag functions as
34 # ".type name,@abi-omnipotent" instead.
35 # 4. To optimize the Win64 prologue you can specify number of input
36 # arguments as ".type name,@function,N." Keep in mind that if N is
37 # larger than 6, then you *have to* write "abi-omnipotent" code,
38 # because >6 cases can’t be addressed with unified prologue.
39 # 5. Name local labels as .L*, do *not* use dynamic labels such as 1:
40 # (sorry about latter).
41 # 6. Don’t use [or hand-code with .byte] "rep ret." "ret" mnemonic is
42 # required to identify the spots, where to inject Win64 epilogue!
43 # But on the pros, it’s then prefixed with rep automatically:-)
44 # 7. Stick to explicit ip-relative addressing. If you have to use
45 # GOTPCREL addressing, stick to mov symbol@GOTPCREL(%rip),%r??.
46 # Both are recognized and translated to proper Win64 addressing
47 # modes. To support legacy code a synthetic directive, .picmeup,
48 # is implemented. It puts address of the *next* instruction into
49 # target register, e.g.:
50 #
51 # .picmeup %rax
52 # lea .Label-.(%rax),%rax
53 #
54 # 8. In order to provide for structured exception handling unified
55 # Win64 prologue copies %rsp value to %rax. For further details
56 # see SEH paragraph at the end.
57 # 9. .init segment is allowed to contain calls to functions only.
58 # a. If function accepts more than 4 arguments *and* >4th argument
59 # is declared as non 64-bit value, do clear its upper part.

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 2

60 my $flavour = shift;
61 my $output = shift;
62 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

64 open STDOUT,">$output" || die "can’t open $output: $!"
65 if (defined($output));

67 my $gas=1; $gas=0 if ($output =~ /\.asm$/);
68 my $elf=1; $elf=0 if (!$gas);
69 my $win64=0;
70 my $prefix="sunw_";
71 my $decor=".L";

73 my $masmref=8 + 50727*2**-32; # 8.00.50727 shipped with VS2005
74 my $masm=0;
75 my $PTR=" PTR";

77 my $nasmref=2.03;
78 my $nasm=0;

80 if ($flavour eq "mingw64") { $gas=1; $elf=0; $win64=1;
81 $prefix=‘echo __USER_LABEL_PREFIX__ | $ENV{CC}
82 chomp($prefix);
83 }
84 elsif ($flavour eq "macosx") { $gas=1; $elf=0; $prefix="_"; $decor="L\$"; }
85 elsif ($flavour eq "masm") { $gas=0; $elf=0; $masm=$masmref; $win64=1; $dec
86 elsif ($flavour eq "nasm") { $gas=0; $elf=0; $nasm=$nasmref; $win64=1; $dec
87 elsif (!$gas)
88 { if ($ENV{ASM} =~ m/nasm/ && ‘nasm -v‘ =~ m/version ([0-9]+)\.([0-9]+)/i)
89 { $nasm = $1 + $2*0.01; $PTR=""; }
90 elsif (‘ml64 2>&1‘ =~ m/Version ([0-9]+)\.([0-9]+)(\.([0-9]+))?/)
91 { $masm = $1 + $2*2**-16 + $4*2**-32; }
92 die "no assembler found on %PATH" if (!($nasm || $masm));
93 $win64=1;
94 $elf=0;
95 $decor="\$L\$";
96 }

98 my $current_segment;
99 my $current_function;
100 my %globals;

102 { package opcode; # pick up opcodes
103 sub re {
104 my $self = shift; # single instance in enough...
105 local *line = shift;
106 undef $ret;

108 if ($line =~ /^([a-z][a-z0-9]*)/i) {
109 $self->{op} = $1;
110 $ret = $self;
111 $line = substr($line,@+[0]); $line =~ s/^\s+//;

113 undef $self->{sz};
114 if ($self->{op} =~ /^(movz)x?([bw]).*/) { # movz is pain...
115 $self->{op} = $1;
116 $self->{sz} = $2;
117 } elsif ($self->{op} =~ /call|jmp/) {
118 $self->{sz} = "";
119 } elsif ($self->{op} =~ /^p/ && $’ !~ /^(ush|op|insrw)/) { # SSEn
120 $self->{sz} = "";
121 } elsif ($self->{op} =~ /^v/) { # VEX
122 $self->{sz} = "";
123 } elsif ($self->{op} =~ /movq/ && $line =~ /%xmm/) {
124 $self->{sz} = "";
125 } elsif ($self->{op} =~ /([a-z]{3,})([qlwb])$/) {

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 3

126 $self->{op} = $1;
127 $self->{sz} = $2;
128 }
129 }
130 $ret;
131 }
132 sub size {
133 my $self = shift;
134 my $sz = shift;
135 $self->{sz} = $sz if (defined($sz) && !defined($self->{sz}));
136 $self->{sz};
137 }
138 sub out {
139 my $self = shift;
140 if ($gas) {
141 if ($self->{op} eq "movz") { # movz is pain...
142 sprintf "%s%s%s",$self->{op},$self->{sz},shift;
143 } elsif ($self->{op} =~ /^set/) {
144 "$self->{op}";
145 } elsif ($self->{op} eq "ret") {
146 my $epilogue = "";
147 if ($win64 && $current_function->{abi} eq "svr4") {
148 $epilogue = "movq 8(%rsp),%rdi\n\t" .
149 "movq 16(%rsp),%rsi\n\t";
150 }
151 $epilogue . ".byte 0xf3,0xc3";
152 } elsif ($self->{op} eq "call" && !$elf && $current_segment eq ".ini
153 ".p2align\t3\n\t.quad";
154 } else {
155 "$self->{op}$self->{sz}";
156 }
157 } else {
158 $self->{op} =~ s/^movz/movzx/;
159 if ($self->{op} eq "ret") {
160 $self->{op} = "";
161 if ($win64 && $current_function->{abi} eq "svr4") {
162 $self->{op} = "mov rdi,QWORD${PTR}[8+rsp]\t;WIN64 epilogue\
163 "mov rsi,QWORD${PTR}[16+rsp]\n\t";
164 }
165 $self->{op} .= "DB\t0F3h,0C3h\t\t;repret";
166 } elsif ($self->{op} =~ /^(pop|push)f/) {
167 $self->{op} .= $self->{sz};
168 } elsif ($self->{op} eq "call" && $current_segment eq ".CRT\$XCU") {
169 $self->{op} = "\tDQ";
170 }
171 $self->{op};
172 }
173 }
174 sub mnemonic {
175 my $self=shift;
176 my $op=shift;
177 $self->{op}=$op if (defined($op));
178 $self->{op};
179 }
180 }
181 { package const; # pick up constants, which start with $
182 sub re {
183 my $self = shift; # single instance in enough...
184 local *line = shift;
185 undef $ret;

187 if ($line =~ /^\$([^,]+)/) {
188 $self->{value} = $1;
189 $ret = $self;
190 $line = substr($line,@+[0]); $line =~ s/^\s+//;
191 }

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 4

192 $ret;
193 }
194 sub out {
195 my $self = shift;

197 if ($gas) {
198 # Solaris /usr/ccs/bin/as can’t handle multiplications
199 # in $self->{value}
200 $self->{value} =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
201 $self->{value} =~ s/([0-9]+\s*[*\/\%]\s*[0-9]+)/eval($1)/eg;
202 sprintf "\$%s",$self->{value};
203 } else {
204 $self->{value} =~ s/(0b[0-1]+)/oct($1)/eig;
205 $self->{value} =~ s/0x([0-9a-f]+)/0$1h/ig if ($masm);
206 sprintf "%s",$self->{value};
207 }
208 }
209 }
210 { package ea; # pick up effective addresses: expr(%reg,%reg,scale)
211 sub re {
212 my $self = shift; # single instance in enough...
213 local *line = shift;
214 undef $ret;

216 # optional * ---vvv--- appears in indirect jmp/call
217 if ($line =~ /^(*?)([^\(,]*)\(([%\w,]+)\)/) {
218 $self->{asterisk} = $1;
219 $self->{label} = $2;
220 ($self->{base},$self->{index},$self->{scale})=split(/,/,$3);
221 $self->{scale} = 1 if (!defined($self->{scale}));
222 $ret = $self;
223 $line = substr($line,@+[0]); $line =~ s/^\s+//;

225 if ($win64 && $self->{label} =~ s/\@GOTPCREL//) {
226 die if (opcode->mnemonic() ne "mov");
227 opcode->mnemonic("lea");
228 }
229 $self->{base} =~ s/^%//;
230 $self->{index} =~ s/^%// if (defined($self->{index}));
231 }
232 $ret;
233 }
234 sub size {}
235 sub out {
236 my $self = shift;
237 my $sz = shift;

239 $self->{label} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
240 $self->{label} =~ s/\.L/$decor/g;

242 # Silently convert all EAs to 64-bit. This is required for
243 # elder GNU assembler and results in more compact code,
244 # *but* most importantly AES module depends on this feature!
245 $self->{index} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;
246 $self->{base} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;

248 # Solaris /usr/ccs/bin/as can’t handle multiplications
249 # in $self->{label}, new gas requires sign extension...
250 use integer;
251 $self->{label} =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
252 $self->{label} =~ s/([0-9]+\s*[*\/\%]\s*[0-9]+)/eval($1)/eg;
253 $self->{label} =~ s/([0-9]+)/$1<<32>>32/eg;

255 if ($gas) {
256 $self->{label} =~ s/^___imp_/__imp__/ if ($flavour eq "mingw64");

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 5

258 if (defined($self->{index})) {
259 sprintf "%s%s(%s,%%%s,%d)",$self->{asterisk},
260 $self->{label},
261 $self->{base}?"%$self->{base}":"",
262 $self->{index},$self->{scale};
263 } else {
264 sprintf "%s%s(%%%s)", $self->{asterisk},$self->{label},$self->
265 }
266 } else {
267 %szmap = (b=>"BYTE$PTR", w=>"WORD$PTR", l=>"DWORD$PTR",
268 q=>"QWORD$PTR",o=>"OWORD$PTR",x=>"XMMWORD$PTR");

270 $self->{label} =~ s/\./\$/g;
271 $self->{label} =~ s/(?<![\w\$\.])0x([0-9a-f]+)/0$1h/ig;
272 $self->{label} = "($self->{label})" if ($self->{label} =~ /[*\+\-\/
273 $sz="q" if ($self->{asterisk} || opcode->mnemonic() eq "movq");
274 $sz="l" if (opcode->mnemonic() eq "movd");

276 if (defined($self->{index})) {
277 sprintf "%s[%s%s*%d%s]",$szmap{$sz},
278 $self->{label}?"$self->{label}+":"",
279 $self->{index},$self->{scale},
280 $self->{base}?"+$self->{base}":"";
281 } elsif ($self->{base} eq "rip") {
282 sprintf "%s[%s]",$szmap{$sz},$self->{label};
283 } else {
284 sprintf "%s[%s%s]",$szmap{$sz},
285 $self->{label}?"$self->{label}+":"",
286 $self->{base};
287 }
288 }
289 }
290 }
291 { package register; # pick up registers, which start with %.
292 sub re {
293 my $class = shift; # muliple instances...
294 my $self = {};
295 local *line = shift;
296 undef $ret;

298 # optional * ---vvv--- appears in indirect jmp/call
299 if ($line =~ /^(*?)%(\w+)/) {
300 bless $self,$class;
301 $self->{asterisk} = $1;
302 $self->{value} = $2;
303 $ret = $self;
304 $line = substr($line,@+[0]); $line =~ s/^\s+//;
305 }
306 $ret;
307 }
308 sub size {
309 my $self = shift;
310 undef $ret;

312 if ($self->{value} =~ /^r[\d]+b$/i) { $ret="b"; }
313 elsif ($self->{value} =~ /^r[\d]+w$/i) { $ret="w"; }
314 elsif ($self->{value} =~ /^r[\d]+d$/i) { $ret="l"; }
315 elsif ($self->{value} =~ /^r[\w]+$/i) { $ret="q"; }
316 elsif ($self->{value} =~ /^[a-d][hl]$/i){ $ret="b"; }
317 elsif ($self->{value} =~ /^[\w]{2}l$/i) { $ret="b"; }
318 elsif ($self->{value} =~ /^[\w]{2}$/i) { $ret="w"; }
319 elsif ($self->{value} =~ /^e[a-z]{2}$/i){ $ret="l"; }

321 $ret;
322 }
323 sub out {

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 6

324 my $self = shift;
325 if ($gas) { sprintf "%s%%%s",$self->{asterisk},$self->{value}; }
326 else { $self->{value}; }
327 }
328 }
329 { package label; # pick up labels, which end with :
330 sub re {
331 my $self = shift; # single instance is enough...
332 local *line = shift;
333 undef $ret;

335 if ($line =~ /(^[\.\w]+)\:/) {
336 $self->{value} = $1;
337 $ret = $self;
338 $line = substr($line,@+[0]); $line =~ s/^\s+//;

340 $self->{value} =~ s/^\.L/$decor/;
341 }
342 $ret;
343 }
344 sub out {
345 my $self = shift;

347 if ($gas) {
348 my $func = ($globals{$self->{value}} or $self->{value}) . ":";
349 if ($win64 &&
350 $current_function->{name} eq $self->{value} &&
351 $current_function->{abi} eq "svr4") {
352 $func .= "\n";
353 $func .= " movq %rdi,8(%rsp)\n";
354 $func .= " movq %rsi,16(%rsp)\n";
355 $func .= " movq %rsp,%rax\n";
356 $func .= "${decor}SEH_begin_$current_function->{name}:\n";
357 my $narg = $current_function->{narg};
358 $narg=6 if (!defined($narg));
359 $func .= " movq %rcx,%rdi\n" if ($narg>0);
360 $func .= " movq %rdx,%rsi\n" if ($narg>1);
361 $func .= " movq %r8,%rdx\n" if ($narg>2);
362 $func .= " movq %r9,%rcx\n" if ($narg>3);
363 $func .= " movq 40(%rsp),%r8\n" if ($narg>4);
364 $func .= " movq 48(%rsp),%r9\n" if ($narg>5);
365 }
366 $func;
367 } elsif ($self->{value} ne "$current_function->{name}") {
368 $self->{value} .= ":" if ($masm && $ret!~m/^\$/);
369 $self->{value} . ":";
370 } elsif ($win64 && $current_function->{abi} eq "svr4") {
371 my $func = "$current_function->{name}" .
372 ($nasm ? ":" : "\tPROC $current_function->{scope}") .
373 "\n";
374 $func .= " mov QWORD${PTR}[8+rsp],rdi\t;WIN64 prologue\n";
375 $func .= " mov QWORD${PTR}[16+rsp],rsi\n";
376 $func .= " mov rax,rsp\n";
377 $func .= "${decor}SEH_begin_$current_function->{name}:";
378 $func .= ":" if ($masm);
379 $func .= "\n";
380 my $narg = $current_function->{narg};
381 $narg=6 if (!defined($narg));
382 $func .= " mov rdi,rcx\n" if ($narg>0);
383 $func .= " mov rsi,rdx\n" if ($narg>1);
384 $func .= " mov rdx,r8\n" if ($narg>2);
385 $func .= " mov rcx,r9\n" if ($narg>3);
386 $func .= " mov r8,QWORD${PTR}[40+rsp]\n" if ($narg>4);
387 $func .= " mov r9,QWORD${PTR}[48+rsp]\n" if ($narg>5);
388 $func .= "\n";
389 } else {

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 7

390 "$current_function->{name}".
391 ($nasm ? ":" : "\tPROC $current_function->{scope}");
392 }
393 }
394 }
395 { package expr; # pick up expressioins
396 sub re {
397 my $self = shift; # single instance is enough...
398 local *line = shift;
399 undef $ret;

401 if ($line =~ /(^[^,]+)/) {
402 $self->{value} = $1;
403 $ret = $self;
404 $line = substr($line,@+[0]); $line =~ s/^\s+//;

406 $self->{value} =~ s/\@PLT// if (!$elf);
407 $self->{value} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
408 $self->{value} =~ s/\.L/$decor/g;
409 }
410 $ret;
411 }
412 sub out {
413 my $self = shift;
414 if ($nasm && opcode->mnemonic()=~m/^j/) {
415 "NEAR ".$self->{value};
416 } else {
417 $self->{value};
418 }
419 }
420 }
421 { package directive; # pick up directives, which start with .
422 sub re {
423 my $self = shift; # single instance is enough...
424 local *line = shift;
425 undef $ret;
426 my $dir;
427 my %opcode = # lea 2f-1f(%rip),%dst; 1: nop; 2:
428 ("%rax"=>0x01058d48, "%rcx"=>0x010d8d48,
429 "%rdx"=>0x01158d48, "%rbx"=>0x011d8d48,
430 "%rsp"=>0x01258d48, "%rbp"=>0x012d8d48,
431 "%rsi"=>0x01358d48, "%rdi"=>0x013d8d48,
432 "%r8" =>0x01058d4c, "%r9" =>0x010d8d4c,
433 "%r10"=>0x01158d4c, "%r11"=>0x011d8d4c,
434 "%r12"=>0x01258d4c, "%r13"=>0x012d8d4c,
435 "%r14"=>0x01358d4c, "%r15"=>0x013d8d4c);

437 if ($line =~ /^\s*(\.\w+)/) {
438 $dir = $1;
439 $ret = $self;
440 undef $self->{value};
441 $line = substr($line,@+[0]); $line =~ s/^\s+//;

443 SWITCH: for ($dir) {
444 /\.picmeup/ && do { if ($line =~ /(%r[\w]+)/i) {
445 $dir="\t.long";
446 $line=sprintf "0x%x,0x90000000",$opcode{
447 }
448 last;
449 };
450 /\.global|\.globl|\.extern/
451 && do { $globals{$line} = $prefix . $line;
452 $line = $globals{$line} if ($prefix);
453 last;
454 };
455 /\.type/ && do { ($sym,$type,$narg) = split(’,’,$line);

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 8

456 if ($type eq "\@function") {
457 undef $current_function;
458 $current_function->{name} = $sym;
459 $current_function->{abi} = "svr4";
460 $current_function->{narg} = $narg;
461 $current_function->{scope} = defined($gl
462 } elsif ($type eq "\@abi-omnipotent") {
463 undef $current_function;
464 $current_function->{name} = $sym;
465 $current_function->{scope} = defined($gl
466 }
467 $line =~ s/\@abi\-omnipotent/\@function/;
468 $line =~ s/\@function.*/\@function/;
469 $line =~ s/$sym/$globals{$sym} or $sym/e;
470 last;
471 };
472 /\.asciz/ && do { if ($line =~ /^"(.*)"$/) {
473 $dir = ".byte";
474 $line = join(",",unpack("C*",$1),0);
475 }
476 last;
477 };
478 /\.rva|\.long|\.quad/
479 && do { $line =~ s/([_a-z][_a-z0-9]*)/$globals{$1} o
480 $line =~ s/\.L/$decor/g;
481 last;
482 };
483 /\.size/ && do { $line =~ s/([_a-z][_a-z0-9]*)/$globals{$1} o
484 last;
485 };
486 }

488 if ($gas) {
489 $self->{value} = $dir . "\t" . $line;

491 if ($dir =~ /\.extern/) {
492 $self->{value} = ""; # swallow extern
493 } elsif (!$elf && $dir =~ /\.type/) {
494 $self->{value} = "";
495 $self->{value} = ".def\t" . ($globals{$1} or $1) . ";\t" .
496 (defined($globals{$1})?".scl 2;":".scl 3;") .
497 "\t.type 32;\t.endef"
498 if ($win64 && $line =~ /([^,]+),\@function/);
499 } elsif (!$elf && $dir =~ /\.size/) {
500 $self->{value} = "";
501 if (defined($current_function)) {
502 $self->{value} .= "${decor}SEH_end_$current_function->{n
503 if ($win64 && $current_function->{abi} eq "svr4"
504 undef $current_function;
505 }
506 } elsif (!$elf && $dir =~ /\.align/) {
507 $self->{value} = ".p2align\t" . (log($line)/log(2));
508 } elsif ($dir eq ".section") {
509 $current_segment=$line;
510 if (!$elf && $current_segment eq ".init") {
511 if ($flavour eq "macosx") { $self->{value} = ".mod
512 elsif ($flavour eq "mingw64") { $self->{value} = ".sec
513 }
514 } elsif ($dir =~ /\.(text|data)/) {
515 $current_segment=".$1";
516 } elsif ($dir =~ /\.hidden/) {
517 if ($flavour eq "macosx") { $self->{value} = ".private_e
518 elsif ($flavour eq "mingw64") { $self->{value} = ""; }
519 else { $self->{value} = ".hidden\t$prefix$line"; }
520 } elsif ($dir =~ /\.comm/) {
521 $self->{value} = "$dir\t$prefix$line";

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 9

522 $self->{value} =~ s|,([0-9]+),([0-9]+)$|",$1,".log($2)/log(2
523 }
524 $line = "";
525 return $self;
526 }

528 # non-gas case or nasm/masm
529 SWITCH: for ($dir) {
530 /\.text/ && do { my $v=undef;
531 if ($nasm) {
532 $v="section .text code align=64\n";
533 } else {
534 $v="$current_segment\tENDS\n" if ($curre
535 $current_segment = ".text\$";
536 $v.="$current_segment\tSEGMENT ";
537 $v.=$masm>=$masmref ? "ALIGN(64)" : "PAG
538 $v.=" ’CODE’";
539 }
540 $self->{value} = $v;
541 last;
542 };
543 /\.data/ && do { my $v=undef;
544 if ($nasm) {
545 $v="section .data data align=8\n";
546 } else {
547 $v="$current_segment\tENDS\n" if ($curre
548 $current_segment = "_DATA";
549 $v.="$current_segment\tSEGMENT";
550 }
551 $self->{value} = $v;
552 last;
553 };
554 /\.section/ && do { my $v=undef;
555 $line =~ s/([^,]*).*/$1/;
556 $line = ".CRT\$XCU" if ($line eq ".init");
557 if ($nasm) {
558 $v="section $line";
559 if ($line=~/\.([px])data/) {
560 $v.=" rdata align=";
561 $v.=$1 eq "p"? 4 : 8;
562 } elsif ($line=~/\.CRT\$/i) {
563 $v.=" rdata align=8";
564 }
565 } else {
566 $v="$current_segment\tENDS\n" if ($curre
567 $v.="$line\tSEGMENT";
568 if ($line=~/\.([px])data/) {
569 $v.=" READONLY";
570 $v.=" ALIGN(".($1 eq "p" ? 4 : 8).")
571 } elsif ($line=~/\.CRT\$/i) {
572 $v.=" READONLY ";
573 $v.=$masm>=$masmref ? "ALIGN(8)" : "
574 }
575 }
576 $current_segment = $line;
577 $self->{value} = $v;
578 last;
579 };
580 /\.extern/ && do { $self->{value} = "EXTERN\t".$line;
581 $self->{value} .= ":NEAR" if ($masm);
582 last;
583 };
584 /\.globl|.global/
585 && do { $self->{value} = $masm?"PUBLIC":"global";
586 $self->{value} .= "\t".$line;
587 last;

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 10

588 };
589 /\.size/ && do { if (defined($current_function)) {
590 undef $self->{value};
591 if ($current_function->{abi} eq "svr4")
592 $self->{value}="${decor}SEH_end_$cur
593 $self->{value}.=":\n" if($masm);
594 }
595 $self->{value}.="$current_function->{nam
596 undef $current_function;
597 }
598 last;
599 };
600 /\.align/ && do { $self->{value} = "ALIGN\t".$line; last; };
601 /\.(value|long|rva|quad)/
602 && do { my $sz = substr($1,0,1);
603 my @arr = split(/,\s*/,$line);
604 my $last = pop(@arr);
605 my $conv = sub { my $var=shift;
606 $var=~s/^(0b[0-1]+)/oct(
607 $var=~s/^0x([0-9a-f]+)/0
608 if ($sz eq "D" && ($curr
609 { $var=~s/([_a-z\$\@][_a
610 $var;
611 };

613 $sz =~ tr/bvlrq/BWDDQ/;
614 $self->{value} = "\tD$sz\t";
615 for (@arr) { $self->{value} .= &$conv($_).",
616 $self->{value} .= &$conv($last);
617 last;
618 };
619 /\.byte/ && do { my @str=split(/,\s*/,$line);
620 map(s/(0b[0-1]+)/oct($1)/eig,@str);
621 map(s/0x([0-9a-f]+)/0$1h/ig,@str) if ($masm)
622 while ($#str>15) {
623 $self->{value}.="DB\t"
624 .join(",",@str[0..15])."\n";
625 foreach (0..15) { shift @str; }
626 }
627 $self->{value}.="DB\t"
628 .join(",",@str) if (@str);
629 last;
630 };
631 /\.comm/ && do { my @str=split(/,\s*/,$line);
632 my $v=undef;
633 if ($nasm) {
634 $v.="common $prefix@str[0] @str[1]";
635 } else {
636 $v="$current_segment\tENDS\n" if ($curre
637 $current_segment = "_DATA";
638 $v.="$current_segment\tSEGMENT\n";
639 $v.="COMM @str[0]:DWORD:".@str[1]/
640 }
641 $self->{value} = $v;
642 last;
643 };
644 }
645 $line = "";
646 }

648 $ret;
649 }
650 sub out {
651 my $self = shift;
652 $self->{value};
653 }

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 11

654 }

656 sub rex {
657 local *opcode=shift;
658 my ($dst,$src,$rex)=@_;

660 $rex|=0x04 if($dst>=8);
661 $rex|=0x01 if($src>=8);
662 push @opcode,($rex|0x40) if ($rex);
663 }

665 # older gas and ml64 don’t handle SSE>2 instructions
666 my %regrm = ("%eax"=>0, "%ecx"=>1, "%edx"=>2, "%ebx"=>3,
667 "%esp"=>4, "%ebp"=>5, "%esi"=>6, "%edi"=>7);

669 my $movq = sub { # elderly gas can’t handle inter-register movq
670 my $arg = shift;
671 my @opcode=(0x66);
672 if ($arg =~ /%xmm([0-9]+),\s*%r(\w+)/) {
673 my ($src,$dst)=($1,$2);
674 if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
675 rex(\@opcode,$src,$dst,0x8);
676 push @opcode,0x0f,0x7e;
677 push @opcode,0xc0|(($src&7)<<3)|($dst&7); # ModR/M
678 @opcode;
679 } elsif ($arg =~ /%r(\w+),\s*%xmm([0-9]+)/) {
680 my ($src,$dst)=($2,$1);
681 if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
682 rex(\@opcode,$src,$dst,0x8);
683 push @opcode,0x0f,0x6e;
684 push @opcode,0xc0|(($src&7)<<3)|($dst&7); # ModR/M
685 @opcode;
686 } else {
687 ();
688 }
689 };

691 my $pextrd = sub {
692 if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*(%\w+)/) {
693 my @opcode=(0x66);
694 $imm=$1;
695 $src=$2;
696 $dst=$3;
697 if ($dst =~ /%r([0-9]+)d/) { $dst = $1; }
698 elsif ($dst =~ /%e/) { $dst = $regrm{$dst}; }
699 rex(\@opcode,$src,$dst);
700 push @opcode,0x0f,0x3a,0x16;
701 push @opcode,0xc0|(($src&7)<<3)|($dst&7); # ModR/M
702 push @opcode,$imm;
703 @opcode;
704 } else {
705 ();
706 }
707 };

709 my $pinsrd = sub {
710 if (shift =~ /\$([0-9]+),\s*(%\w+),\s*%xmm([0-9]+)/) {
711 my @opcode=(0x66);
712 $imm=$1;
713 $src=$2;
714 $dst=$3;
715 if ($src =~ /%r([0-9]+)/) { $src = $1; }
716 elsif ($src =~ /%e/) { $src = $regrm{$src}; }
717 rex(\@opcode,$dst,$src);
718 push @opcode,0x0f,0x3a,0x22;
719 push @opcode,0xc0|(($dst&7)<<3)|($src&7); # ModR/M

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 12

720 push @opcode,$imm;
721 @opcode;
722 } else {
723 ();
724 }
725 };

727 my $pshufb = sub {
728 if (shift =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) {
729 my @opcode=(0x66);
730 rex(\@opcode,$2,$1);
731 push @opcode,0x0f,0x38,0x00;
732 push @opcode,0xc0|($1&7)|(($2&7)<<3); # ModR/M
733 @opcode;
734 } else {
735 ();
736 }
737 };

739 my $palignr = sub {
740 if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
741 my @opcode=(0x66);
742 rex(\@opcode,$3,$2);
743 push @opcode,0x0f,0x3a,0x0f;
744 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
745 push @opcode,$1;
746 @opcode;
747 } else {
748 ();
749 }
750 };

752 my $pclmulqdq = sub {
753 if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
754 my @opcode=(0x66);
755 rex(\@opcode,$3,$2);
756 push @opcode,0x0f,0x3a,0x44;
757 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
758 my $c=$1;
759 push @opcode,$c=~/^0/?oct($c):$c;
760 @opcode;
761 } else {
762 ();
763 }
764 };

766 my $rdrand = sub {
767 if (shift =~ /%[er](\w+)/) {
768 my @opcode=();
769 my $dst=$1;
770 if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
771 rex(\@opcode,0,$1,8);
772 push @opcode,0x0f,0xc7,0xf0|($dst&7);
773 @opcode;
774 } else {
775 ();
776 }
777 };

779 if ($nasm) {
780 print <<___;
781 default rel
782 %define XMMWORD
783 ___
784 } elsif ($masm) {
785 print <<___;

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 13

786 OPTION DOTNAME
787 ___
788 }
789 while($line=<>) {

791 chomp($line);

793 $line =~ s|[#!].*$||; # get rid of asm-style comments...
794 $line =~ s|/*.**/||; # ... and C-style comments...
795 $line =~ s|^\s+||; # ... and skip white spaces in beginning

797 undef $label;
798 undef $opcode;
799 undef @args;

801 if ($label=label->re(\$line)) { print $label->out(); }

803 if (directive->re(\$line)) {
804 printf "%s",directive->out();
805 } elsif ($opcode=opcode->re(\$line)) {
806 my $asm = eval("\$".$opcode->mnemonic());
807 undef @bytes;
808
809 if ((ref($asm) eq ’CODE’) && scalar(@bytes=&$asm($line))) {
810 print $gas?".byte\t":"DB\t",join(’,’,@bytes),"\n";
811 next;
812 }

814 ARGUMENT: while (1) {
815 my $arg;

817 if ($arg=register->re(\$line)) { opcode->size($arg->size()); }
818 elsif ($arg=const->re(\$line)) { }
819 elsif ($arg=ea->re(\$line)) { }
820 elsif ($arg=expr->re(\$line)) { }
821 else { last ARGUMENT; }

823 push @args,$arg;

825 last ARGUMENT if ($line !~ /^,/);

827 $line =~ s/^,\s*//;
828 } # ARGUMENT:

830 if ($#args>=0) {
831 my $insn;
832 my $sz=opcode->size();

834 if ($gas) {
835 $insn = $opcode->out($#args>=1?$args[$#args]->size():$sz);
836 @args = map($_->out($sz),@args);
837 printf "\t%s\t%s",$insn,join(",",@args);
838 } else {
839 $insn = $opcode->out();
840 foreach (@args) {
841 my $arg = $_->out();
842 # $insn.=$sz compensates for movq, pinsrw, ...
843 if ($arg =~ /^xmm[0-9]+$/) { $insn.=$sz; $sz="x" if(!$sz); l
844 if ($arg =~ /^mm[0-9]+$/) { $insn.=$sz; $sz="q" if(!$sz); l
845 }
846 @args = reverse(@args);
847 undef $sz if ($nasm && $opcode->mnemonic() eq "lea");
848 printf "\t%s\t%s",$insn,join(",",map($_->out($sz),@args));
849 }
850 } else {
851 printf "\t%s",$opcode->out();

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 14

852 }
853 }

855 print $line,"\n";
856 }

858 print "\n$current_segment\tENDS\n" if ($current_segment && $masm);
859 print "END\n" if ($masm);

861 close STDOUT;

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 15

863 ###
864 # Cross-reference x86_64 ABI "card"
865 #
866 # Unix Win64
867 # %rax * *
868 # %rbx - -
869 # %rcx #4 #1
870 # %rdx #3 #2
871 # %rsi #2 -
872 # %rdi #1 -
873 # %rbp - -
874 # %rsp - -
875 # %r8 #5 #3
876 # %r9 #6 #4
877 # %r10 * *
878 # %r11 * *
879 # %r12 - -
880 # %r13 - -
881 # %r14 - -
882 # %r15 - -
883 #
884 # (*) volatile register
885 # (-) preserved by callee
886 # (#) Nth argument, volatile
887 #
888 # In Unix terms top of stack is argument transfer area for arguments
889 # which could not be accomodated in registers. Or in other words 7th
890 # [integer] argument resides at 8(%rsp) upon function entry point.
891 # 128 bytes above %rsp constitute a "red zone" which is not touched
892 # by signal handlers and can be used as temporal storage without
893 # allocating a frame.
894 #
895 # In Win64 terms N*8 bytes on top of stack is argument transfer area,
896 # which belongs to/can be overwritten by callee. N is the number of
897 # arguments passed to callee, *but* not less than 4! This means that
898 # upon function entry point 5th argument resides at 40(%rsp), as well
899 # as that 32 bytes from 8(%rsp) can always be used as temporal
900 # storage [without allocating a frame]. One can actually argue that
901 # one can assume a "red zone" above stack pointer under Win64 as well.
902 # Point is that at apparently no occasion Windows kernel would alter
903 # the area above user stack pointer in true asynchronous manner...
904 #
905 # All the above means that if assembler programmer adheres to Unix
906 # register and stack layout, but disregards the "red zone" existense,
907 # it’s possible to use following prologue and epilogue to "gear" from
908 # Unix to Win64 ABI in leaf functions with not more than 6 arguments.
909 #
910 # omnipotent_function:
911 # ifdef WIN64
912 # movq %rdi,8(%rsp)
913 # movq %rsi,16(%rsp)
914 # movq %rcx,%rdi ; if 1st argument is actually present
915 # movq %rdx,%rsi ; if 2nd argument is actually ...
916 # movq %r8,%rdx ; if 3rd argument is ...
917 # movq %r9,%rcx ; if 4th argument ...
918 # movq 40(%rsp),%r8 ; if 5th ...
919 # movq 48(%rsp),%r9 ; if 6th ...
920 # endif
921 # ...
922 # ifdef WIN64
923 # movq 8(%rsp),%rdi
924 # movq 16(%rsp),%rsi
925 # endif
926 # ret
927 #

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 16

928 ###
929 # Win64 SEH, Structured Exception Handling.
930 #
931 # Unlike on Unix systems(*) lack of Win64 stack unwinding information
932 # has undesired side-effect at run-time: if an exception is raised in
933 # assembler subroutine such as those in question (basically we’re
934 # referring to segmentation violations caused by malformed input
935 # parameters), the application is briskly terminated without invoking
936 # any exception handlers, most notably without generating memory dump
937 # or any user notification whatsoever. This poses a problem. It’s
938 # possible to address it by registering custom language-specific
939 # handler that would restore processor context to the state at
940 # subroutine entry point and return "exception is not handled, keep
941 # unwinding" code. Writing such handler can be a challenge... But it’s
942 # doable, though requires certain coding convention. Consider following
943 # snippet:
944 #
945 # .type function,@function
946 # function:
947 # movq %rsp,%rax # copy rsp to volatile register
948 # pushq %r15 # save non-volatile registers
949 # pushq %rbx
950 # pushq %rbp
951 # movq %rsp,%r11
952 # subq %rdi,%r11 # prepare [variable] stack frame
953 # andq $-64,%r11
954 # movq %rax,0(%r11) # check for exceptions
955 # movq %r11,%rsp # allocate [variable] stack frame
956 # movq %rax,0(%rsp) # save original rsp value
957 # magic_point:
958 # ...
959 # movq 0(%rsp),%rcx # pull original rsp value
960 # movq -24(%rcx),%rbp # restore non-volatile registers
961 # movq -16(%rcx),%rbx
962 # movq -8(%rcx),%r15
963 # movq %rcx,%rsp # restore original rsp
964 # ret
965 # .size function,.-function
966 #
967 # The key is that up to magic_point copy of original rsp value remains
968 # in chosen volatile register and no non-volatile register, except for
969 # rsp, is modified. While past magic_point rsp remains constant till
970 # the very end of the function. In this case custom language-specific
971 # exception handler would look like this:
972 #
973 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
974 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
975 # { ULONG64 *rsp = (ULONG64 *)context->Rax;
976 # if (context->Rip >= magic_point)
977 # { rsp = ((ULONG64 **)context->Rsp)[0];
978 # context->Rbp = rsp[-3];
979 # context->Rbx = rsp[-2];
980 # context->R15 = rsp[-1];
981 # }
982 # context->Rsp = (ULONG64)rsp;
983 # context->Rdi = rsp[1];
984 # context->Rsi = rsp[2];
985 #
986 # memcpy (disp->ContextRecord,context,sizeof(CONTEXT));
987 # RtlVirtualUnwind(UNW_FLAG_NHANDLER,disp->ImageBase,
988 # dips->ControlPc,disp->FunctionEntry,disp->ContextRecord,
989 # &disp->HandlerData,&disp->EstablisherFrame,NULL);
990 # return ExceptionContinueSearch;
991 # }
992 #
993 # It’s appropriate to implement this handler in assembler, directly in

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 17

994 # function’s module. In order to do that one has to know members’
995 # offsets in CONTEXT and DISPATCHER_CONTEXT structures and some constant
996 # values. Here they are:
997 #
998 # CONTEXT.Rax 120
999 # CONTEXT.Rcx 128
1000 # CONTEXT.Rdx 136
1001 # CONTEXT.Rbx 144
1002 # CONTEXT.Rsp 152
1003 # CONTEXT.Rbp 160
1004 # CONTEXT.Rsi 168
1005 # CONTEXT.Rdi 176
1006 # CONTEXT.R8 184
1007 # CONTEXT.R9 192
1008 # CONTEXT.R10 200
1009 # CONTEXT.R11 208
1010 # CONTEXT.R12 216
1011 # CONTEXT.R13 224
1012 # CONTEXT.R14 232
1013 # CONTEXT.R15 240
1014 # CONTEXT.Rip 248
1015 # CONTEXT.Xmm6 512
1016 # sizeof(CONTEXT) 1232
1017 # DISPATCHER_CONTEXT.ControlPc 0
1018 # DISPATCHER_CONTEXT.ImageBase 8
1019 # DISPATCHER_CONTEXT.FunctionEntry 16
1020 # DISPATCHER_CONTEXT.EstablisherFrame 24
1021 # DISPATCHER_CONTEXT.TargetIp 32
1022 # DISPATCHER_CONTEXT.ContextRecord 40
1023 # DISPATCHER_CONTEXT.LanguageHandler 48
1024 # DISPATCHER_CONTEXT.HandlerData 56
1025 # UNW_FLAG_NHANDLER 0
1026 # ExceptionContinueSearch 1
1027 #
1028 # In order to tie the handler to the function one has to compose
1029 # couple of structures: one for .xdata segment and one for .pdata.
1030 #
1031 # UNWIND_INFO structure for .xdata segment would be
1032 #
1033 # function_unwind_info:
1034 # .byte 9,0,0,0
1035 # .rva handler
1036 #
1037 # This structure designates exception handler for a function with
1038 # zero-length prologue, no stack frame or frame register.
1039 #
1040 # To facilitate composing of .pdata structures, auto-generated "gear"
1041 # prologue copies rsp value to rax and denotes next instruction with
1042 # .LSEH_begin_{function_name} label. This essentially defines the SEH
1043 # styling rule mentioned in the beginning. Position of this label is
1044 # chosen in such manner that possible exceptions raised in the "gear"
1045 # prologue would be accounted to caller and unwound from latter’s frame.
1046 # End of function is marked with respective .LSEH_end_{function_name}
1047 # label. To summarize, .pdata segment would contain
1048 #
1049 # .rva .LSEH_begin_function
1050 # .rva .LSEH_end_function
1051 # .rva function_unwind_info
1052 #
1053 # Reference to functon_unwind_info from .xdata segment is the anchor.
1054 # In case you wonder why references are 32-bit .rvas and not 64-bit
1055 # .quads. References put into these two segments are required to be
1056 # *relative* to the base address of the current binary module, a.k.a.
1057 # image base. No Win64 module, be it .exe or .dll, can be larger than
1058 # 2GB and thus such relative references can be and are accommodated in
1059 # 32 bits.

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64-xlate.pl 18

1060 #
1061 # Having reviewed the example function code, one can argue that "movq
1062 # %rsp,%rax" above is redundant. It is not! Keep in mind that on Unix
1063 # rax would contain an undefined value. If this "offends" you, use
1064 # another register and refrain from modifying rax till magic_point is
1065 # reached, i.e. as if it was a non-volatile register. If more registers
1066 # are required prior [variable] frame setup is completed, note that
1067 # nobody says that you can have only one "magic point." You can
1068 # "liberate" non-volatile registers by denoting last stack off-load
1069 # instruction and reflecting it in finer grade unwind logic in handler.
1070 # After all, isn’t it why it’s called *language-specific* handler...
1071 #
1072 # Attentive reader can notice that exceptions would be mishandled in
1073 # auto-generated "gear" epilogue. Well, exception effectively can’t
1074 # occur there, because if memory area used by it was subject to
1075 # segmentation violation, then it would be raised upon call to the
1076 # function (and as already mentioned be accounted to caller, which is
1077 # not a problem). If you’re still not comfortable, then define tail
1078 # "magic point" just prior ret instruction and have handler treat it...
1079 #
1080 # (*) Note that we’re talking about run-time, not debug-time. Lack of
1081 # unwind information makes debugging hard on both Windows and
1082 # Unix. "Unlike" referes to the fact that on Unix signal handler
1083 # will always be invoked, core dumped and appropriate exit code
1084 # returned to parent (for user notification).

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64cpuid.pl 1

**
 5680 Fri May 30 18:32:06 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64cpuid.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 $flavour = shift;
4 $output = shift;
5 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

7 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

9 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
10 ($xlate="${dir}x86_64-xlate.pl" and -f $xlate) or
11 ($xlate="${dir}perlasm/x86_64-xlate.pl" and -f $xlate) or
12 die "can’t locate x86_64-xlate.pl";

14 open OUT,"| \"$^X\" $xlate $flavour $output";
15 *STDOUT=*OUT;

17 ($arg1,$arg2,$arg3,$arg4)=$win64?("%rcx","%rdx","%r8", "%r9") : # Win64 order
18 ("%rdi","%rsi","%rdx","%rcx"); # Unix order

20 print<<___;
21 .extern OPENSSL_cpuid_setup
22 .hidden OPENSSL_cpuid_setup
23 .extern solaris_locking_setup
24 .hidden solaris_locking_setup
25 .section .init
26 call solaris_locking_setup
27 call OPENSSL_cpuid_setup

29 .hidden OPENSSL_ia32cap_P
30 .comm OPENSSL_ia32cap_P,8,4

32 .text

34 .globl OPENSSL_atomic_add
35 .type OPENSSL_atomic_add,\@abi-omnipotent
36 .align 16
37 OPENSSL_atomic_add:
38 movl ($arg1),%eax
39 .Lspin: leaq ($arg2,%rax),%r8
40 .byte 0xf0 # lock
41 cmpxchgl %r8d,($arg1)
42 jne .Lspin
43 movl %r8d,%eax
44 .byte 0x48,0x98 # cltq/cdqe
45 ret
46 .size OPENSSL_atomic_add,.-OPENSSL_atomic_add

48 .globl OPENSSL_rdtsc
49 .type OPENSSL_rdtsc,\@abi-omnipotent
50 .align 16
51 OPENSSL_rdtsc:
52 rdtsc
53 shl \$32,%rdx
54 or %rdx,%rax
55 ret
56 .size OPENSSL_rdtsc,.-OPENSSL_rdtsc

58 .globl OPENSSL_ia32_cpuid
59 .type OPENSSL_ia32_cpuid,\@abi-omnipotent
60 .align 16
61 OPENSSL_ia32_cpuid:

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64cpuid.pl 2

62 mov %rbx,%r8 # save %rbx

64 xor %eax,%eax
65 cpuid
66 mov %eax,%r11d # max value for standard query level

68 xor %eax,%eax
69 cmp \$0x756e6547,%ebx # "Genu"
70 setne %al
71 mov %eax,%r9d
72 cmp \$0x49656e69,%edx # "ineI"
73 setne %al
74 or %eax,%r9d
75 cmp \$0x6c65746e,%ecx # "ntel"
76 setne %al
77 or %eax,%r9d # 0 indicates Intel CPU
78 jz .Lintel

80 cmp \$0x68747541,%ebx # "Auth"
81 setne %al
82 mov %eax,%r10d
83 cmp \$0x69746E65,%edx # "enti"
84 setne %al
85 or %eax,%r10d
86 cmp \$0x444D4163,%ecx # "cAMD"
87 setne %al
88 or %eax,%r10d # 0 indicates AMD CPU
89 jnz .Lintel

91 # AMD specific
92 mov \$0x80000000,%eax
93 cpuid
94 cmp \$0x80000001,%eax
95 jb .Lintel
96 mov %eax,%r10d
97 mov \$0x80000001,%eax
98 cpuid
99 or %ecx,%r9d
100 and \$0x00000801,%r9d # isolate AMD XOP bit, 1<<11

102 cmp \$0x80000008,%r10d
103 jb .Lintel

105 mov \$0x80000008,%eax
106 cpuid
107 movzb %cl,%r10 # number of cores - 1
108 inc %r10 # number of cores

110 mov \$1,%eax
111 cpuid
112 bt \$28,%edx # test hyper-threading bit
113 jnc .Lgeneric
114 shr \$16,%ebx # number of logical processors
115 cmp %r10b,%bl
116 ja .Lgeneric
117 and \$0xefffffff,%edx # ~(1<<28)
118 jmp .Lgeneric

120 .Lintel:
121 cmp \$4,%r11d
122 mov \$-1,%r10d
123 jb .Lnocacheinfo

125 mov \$4,%eax
126 mov \$0,%ecx # query L1D
127 cpuid

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64cpuid.pl 3

128 mov %eax,%r10d
129 shr \$14,%r10d
130 and \$0xfff,%r10d # number of cores -1 per L1D

132 .Lnocacheinfo:
133 mov \$1,%eax
134 cpuid
135 and \$0xbfefffff,%edx # force reserved bits to 0
136 cmp \$0,%r9d
137 jne .Lnotintel
138 or \$0x40000000,%edx # set reserved bit#30 on Intel CPUs
139 and \$15,%ah
140 cmp \$15,%ah # examine Family ID
141 jne .Lnotintel
142 or \$0x00100000,%edx # set reserved bit#20 to engage RC4_CHAR
143 .Lnotintel:
144 bt \$28,%edx # test hyper-threading bit
145 jnc .Lgeneric
146 and \$0xefffffff,%edx # ~(1<<28)
147 cmp \$0,%r10d
148 je .Lgeneric

150 or \$0x10000000,%edx # 1<<28
151 shr \$16,%ebx
152 cmp \$1,%bl # see if cache is shared
153 ja .Lgeneric
154 and \$0xefffffff,%edx # ~(1<<28)
155 .Lgeneric:
156 and \$0x00000800,%r9d # isolate AMD XOP flag
157 and \$0xfffff7ff,%ecx
158 or %ecx,%r9d # merge AMD XOP flag

160 mov %edx,%r10d # %r9d:%r10d is copy of %ecx:%edx
161 bt \$27,%r9d # check OSXSAVE bit
162 jnc .Lclear_avx
163 xor %ecx,%ecx # XCR0
164 .byte 0x0f,0x01,0xd0 # xgetbv
165 and \$6,%eax # isolate XMM and YMM state support
166 cmp \$6,%eax
167 je .Ldone
168 .Lclear_avx:
169 mov \$0xefffe7ff,%eax # ~(1<<28|1<<12|1<<11)
170 and %eax,%r9d # clear AVX, FMA and AMD XOP bits
171 .Ldone:
172 shl \$32,%r9
173 mov %r10d,%eax
174 mov %r8,%rbx # restore %rbx
175 or %r9,%rax
176 ret
177 .size OPENSSL_ia32_cpuid,.-OPENSSL_ia32_cpuid

179 .globl OPENSSL_cleanse
180 .type OPENSSL_cleanse,\@abi-omnipotent
181 .align 16
182 OPENSSL_cleanse:
183 xor %rax,%rax
184 cmp \$15,$arg2
185 jae .Lot
186 cmp \$0,$arg2
187 je .Lret
188 .Little:
189 mov %al,($arg1)
190 sub \$1,$arg2
191 lea 1($arg1),$arg1
192 jnz .Little
193 .Lret:

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64cpuid.pl 4

194 ret
195 .align 16
196 .Lot:
197 test \$7,$arg1
198 jz .Laligned
199 mov %al,($arg1)
200 lea -1($arg2),$arg2
201 lea 1($arg1),$arg1
202 jmp .Lot
203 .Laligned:
204 mov %rax,($arg1)
205 lea -8($arg2),$arg2
206 test \$-8,$arg2
207 lea 8($arg1),$arg1
208 jnz .Laligned
209 cmp \$0,$arg2
210 jne .Little
211 ret
212 .size OPENSSL_cleanse,.-OPENSSL_cleanse
213 ___

215 print<<___ if (!$win64);
216 .globl OPENSSL_wipe_cpu
217 .type OPENSSL_wipe_cpu,\@abi-omnipotent
218 .align 16
219 OPENSSL_wipe_cpu:
220 pxor %xmm0,%xmm0
221 pxor %xmm1,%xmm1
222 pxor %xmm2,%xmm2
223 pxor %xmm3,%xmm3
224 pxor %xmm4,%xmm4
225 pxor %xmm5,%xmm5
226 pxor %xmm6,%xmm6
227 pxor %xmm7,%xmm7
228 pxor %xmm8,%xmm8
229 pxor %xmm9,%xmm9
230 pxor %xmm10,%xmm10
231 pxor %xmm11,%xmm11
232 pxor %xmm12,%xmm12
233 pxor %xmm13,%xmm13
234 pxor %xmm14,%xmm14
235 pxor %xmm15,%xmm15
236 xorq %rcx,%rcx
237 xorq %rdx,%rdx
238 xorq %rsi,%rsi
239 xorq %rdi,%rdi
240 xorq %r8,%r8
241 xorq %r9,%r9
242 xorq %r10,%r10
243 xorq %r11,%r11
244 leaq 8(%rsp),%rax
245 ret
246 .size OPENSSL_wipe_cpu,.-OPENSSL_wipe_cpu
247 ___
248 print<<___ if ($win64);
249 .globl OPENSSL_wipe_cpu
250 .type OPENSSL_wipe_cpu,\@abi-omnipotent
251 .align 16
252 OPENSSL_wipe_cpu:
253 pxor %xmm0,%xmm0
254 pxor %xmm1,%xmm1
255 pxor %xmm2,%xmm2
256 pxor %xmm3,%xmm3
257 pxor %xmm4,%xmm4
258 pxor %xmm5,%xmm5
259 xorq %rcx,%rcx

new/usr/src/lib/openssl/libsunw_crypto/pl/x86_64cpuid.pl 5

260 xorq %rdx,%rdx
261 xorq %r8,%r8
262 xorq %r9,%r9
263 xorq %r10,%r10
264 xorq %r11,%r11
265 leaq 8(%rsp),%rax
266 ret
267 .size OPENSSL_wipe_cpu,.-OPENSSL_wipe_cpu
268 ___

270 print<<___;
271 .globl OPENSSL_ia32_rdrand
272 .type OPENSSL_ia32_rdrand,\@abi-omnipotent
273 .align 16
274 OPENSSL_ia32_rdrand:
275 mov \$8,%ecx
276 .Loop_rdrand:
277 rdrand %rax
278 jc .Lbreak_rdrand
279 loop .Loop_rdrand
280 .Lbreak_rdrand:
281 cmp \$0,%rax
282 cmove %rcx,%rax
283 ret
284 .size OPENSSL_ia32_rdrand,.-OPENSSL_ia32_rdrand
285 ___

287 close STDOUT; # flush

new/usr/src/lib/openssl/libsunw_crypto/pl/x86asm.pl 1

**
 6344 Fri May 30 18:32:06 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/x86asm.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 # require ’x86asm.pl’;
4 # &asm_init(<flavor>,"des-586.pl"[,$i386only]);
5 # &function_begin("foo");
6 # ...
7 # &function_end("foo");
8 # &asm_finish

10 $out=();
11 $i386=0;

13 # AUTOLOAD is this context has quite unpleasant side effect, namely
14 # that typos in function calls effectively go to assembler output,
15 # but on the pros side we don’t have to implement one subroutine per
16 # each opcode...
17 sub ::AUTOLOAD
18 { my $opcode = $AUTOLOAD;

20 die "more than 4 arguments passed to $opcode" if ($#_>3);

22 $opcode =~ s/.*:://;
23 if ($opcode =~ /^push/) { $stack+=4; }
24 elsif ($opcode =~ /^pop/) { $stack-=4; }

26 &generic($opcode,@_) or die "undefined subroutine \&$AUTOLOAD";
27 }

29 sub ::emit
30 { my $opcode=shift;

32 if ($#_==-1) { push(@out,"\t$opcode\n"); }
33 else { push(@out,"\t$opcode\t".join(’,’,@_)."\n"); }
34 }

36 sub ::LB
37 { $_[0] =~ m/^e?([a-d])x$/o or die "$_[0] does not have a ’low byte’";
38 $1."l";
39 }
40 sub ::HB
41 { $_[0] =~ m/^e?([a-d])x$/o or die "$_[0] does not have a ’high byte’";
42 $1."h";
43 }
44 sub ::stack_push{ my $num=$_[0]*4; $stack+=$num; &sub("esp",$num); }
45 sub ::stack_pop { my $num=$_[0]*4; $stack-=$num; &add("esp",$num); }
46 sub ::blindpop { &pop($_[0]); $stack+=4; }
47 sub ::wparam { &DWP($stack+4*$_[0],"esp"); }
48 sub ::swtmp { &DWP(4*$_[0],"esp"); }

50 sub ::bswap
51 { if ($i386) # emulate bswap for i386
52 { &comment("bswap @_");
53 &xchg(&HB(@_),&LB(@_));
54 &ror (@_,16);
55 &xchg(&HB(@_),&LB(@_));
56 }
57 else
58 { &generic("bswap",@_); }
59 }
60 # These are made-up opcodes introduced over the years essentially
61 # by ignorance, just alias them to real ones...

new/usr/src/lib/openssl/libsunw_crypto/pl/x86asm.pl 2

62 sub ::movb { &mov(@_); }
63 sub ::xorb { &xor(@_); }
64 sub ::rotl { &rol(@_); }
65 sub ::rotr { &ror(@_); }
66 sub ::exch { &xchg(@_); }
67 sub ::halt { &hlt; }
68 sub ::movz { &movzx(@_); }
69 sub ::pushf { &pushfd; }
70 sub ::popf { &popfd; }

72 # 3 argument instructions
73 sub ::movq
74 { my($p1,$p2,$optimize)=@_;

76 if ($optimize && $p1=~/^mm[0-7]$/ && $p2=~/^mm[0-7]$/)
77 # movq between mmx registers can sink Intel CPUs
78 { &::pshufw($p1,$p2,0xe4); }
79 else
80 { &::generic("movq",@_); }
81 }

83 # SSE>2 instructions
84 my %regrm = ("eax"=>0, "ecx"=>1, "edx"=>2, "ebx"=>3,
85 "esp"=>4, "ebp"=>5, "esi"=>6, "edi"=>7);
86 sub ::pextrd
87 { my($dst,$src,$imm)=@_;
88 if ("$dst:$src" =~ /(e[a-dsd][ixp]):xmm([0-7])/)
89 { &::data_byte(0x66,0x0f,0x3a,0x16,0xc0|($2<<3)|$regrm{$1},$imm); }
90 else
91 { &::generic("pextrd",@_); }
92 }

94 sub ::pinsrd
95 { my($dst,$src,$imm)=@_;
96 if ("$dst:$src" =~ /xmm([0-7]):(e[a-dsd][ixp])/)
97 { &::data_byte(0x66,0x0f,0x3a,0x22,0xc0|($1<<3)|$regrm{$2},$imm); }
98 else
99 { &::generic("pinsrd",@_); }
100 }

102 sub ::pshufb
103 { my($dst,$src)=@_;
104 if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
105 { &data_byte(0x66,0x0f,0x38,0x00,0xc0|($1<<3)|$2); }
106 else
107 { &::generic("pshufb",@_); }
108 }

110 sub ::palignr
111 { my($dst,$src,$imm)=@_;
112 if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
113 { &::data_byte(0x66,0x0f,0x3a,0x0f,0xc0|($1<<3)|$2,$imm); }
114 else
115 { &::generic("palignr",@_); }
116 }

118 sub ::pclmulqdq
119 { my($dst,$src,$imm)=@_;
120 if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
121 { &::data_byte(0x66,0x0f,0x3a,0x44,0xc0|($1<<3)|$2,$imm); }
122 else
123 { &::generic("pclmulqdq",@_); }
124 }

126 sub ::rdrand
127 { my ($dst)=@_;

new/usr/src/lib/openssl/libsunw_crypto/pl/x86asm.pl 3

128 if ($dst =~ /(e[a-dsd][ixp])/)
129 { &::data_byte(0x0f,0xc7,0xf0|$regrm{$dst}); }
130 else
131 { &::generic("rdrand",@_); }
132 }

134 # label management
135 $lbdecor="L"; # local label decoration, set by package
136 $label="000";

138 sub ::islabel # see is argument is a known label
139 { my $i;
140 if ($_[0] eq "_GLOBAL_OFFSET_TABLE_") { return $_[0]; }
141 foreach $i (values %label) { return $i if ($i eq $_[0]); }
142 $label{$_[0]}; # can be undef
143 }

145 sub ::label # instantiate a function-scope label
146 { if (!defined($label{$_[0]}))
147 { $label{$_[0]}="${lbdecor}${label}${_[0]}"; $label++; }
148 $label{$_[0]};
149 }

151 sub ::LABEL # instantiate a file-scope label
152 { $label{$_[0]}=$_[1] if (!defined($label{$_[0]}));
153 $label{$_[0]};
154 }

156 sub ::static_label { &::LABEL($_[0],$lbdecor.$_[0]); }

158 sub ::set_label_B { push(@out,"@_:\n"); }
159 sub ::set_label
160 { my $label=&::label($_[0]);
161 &::align($_[1]) if ($_[1]>1);
162 &::set_label_B($label);
163 $label;
164 }

166 sub ::wipe_labels # wipes function-scope labels
167 { foreach $i (keys %label)
168 { delete $label{$i} if ($label{$i} =~ /^\Q${lbdecor}\E[0-9]{3}/); }
169 }

171 # subroutine management
172 sub ::function_begin
173 { &function_begin_B(@_);
174 $stack=4;
175 &push("ebp");
176 &push("ebx");
177 &push("esi");
178 &push("edi");
179 }

181 sub ::function_end
182 { &pop("edi");
183 &pop("esi");
184 &pop("ebx");
185 &pop("ebp");
186 &ret();
187 &function_end_B(@_);
188 $stack=0;
189 &wipe_labels();
190 }

192 sub ::function_end_A
193 { &pop("edi");

new/usr/src/lib/openssl/libsunw_crypto/pl/x86asm.pl 4

194 &pop("esi");
195 &pop("ebx");
196 &pop("ebp");
197 &ret();
198 $stack+=16; # readjust esp as if we didn’t pop anything
199 }

201 sub ::asciz
202 { my @str=unpack("C*",shift);
203 push @str,0;
204 while ($#str>15) {
205 &data_byte(@str[0..15]);
206 foreach (0..15) { shift @str; }
207 }
208 &data_byte(@str) if (@str);
209 }

211 sub ::asm_finish
212 { &file_end();
213 print @out;
214 }

216 sub ::asm_init
217 { my ($type,$fn,$cpu)=@_;

219 $filename=$fn;
220 $i386=$cpu;

222 $elf=$cpp=$coff=$aout=$macosx=$win32=$netware=$mwerks=$android=0;
223 if (($type eq "elf"))
224 { $elf=1; require "x86gas.pl"; }
225 elsif (($type eq "a\.out"))
226 { $aout=1; require "x86gas.pl"; }
227 elsif (($type eq "coff" or $type eq "gaswin"))
228 { $coff=1; require "x86gas.pl"; }
229 elsif (($type eq "win32n"))
230 { $win32=1; require "x86nasm.pl"; }
231 elsif (($type eq "nw-nasm"))
232 { $netware=1; require "x86nasm.pl"; }
233 #elsif (($type eq "nw-mwasm"))
234 #{ $netware=1; $mwerks=1; require "x86nasm.pl"; }
235 elsif (($type eq "win32"))
236 { $win32=1; require "x86masm.pl"; }
237 elsif (($type eq "macosx"))
238 { $aout=1; $macosx=1; require "x86gas.pl"; }
239 elsif (($type eq "android"))
240 { $elf=1; $android=1; require "x86gas.pl"; }
241 else
242 { print STDERR <<"EOF";
243 Pick one target type from
244 elf - Linux, FreeBSD, Solaris x86, etc.
245 a.out - DJGPP, elder OpenBSD, etc.
246 coff - GAS/COFF such as Win32 targets
247 win32n - Windows 95/Windows NT NASM format
248 nw-nasm - NetWare NASM format
249 macosx - Mac OS X
250 EOF
251 exit(1);
252 }

254 $pic=0;
255 for (@ARGV) { $pic=1 if (/\-[fK]PIC/i); }

257 $filename =~ s/\.pl$//;
258 &file($filename);
259 }

new/usr/src/lib/openssl/libsunw_crypto/pl/x86asm.pl 5

261 sub ::hidden {}

263 1;

new/usr/src/lib/openssl/libsunw_crypto/pl/x86cpuid.pl 1

**
 9113 Fri May 30 18:32:06 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/x86cpuid.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
4 push(@INC, "${dir}", "perlasm");
5 require "x86asm.pl";

7 &asm_init($ARGV[0],"x86cpuid");

9 for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }

11 &function_begin("OPENSSL_ia32_cpuid");
12 &xor ("edx","edx");
13 &pushf ();
14 &pop ("eax");
15 &mov ("ecx","eax");
16 &xor ("eax",1<<21);
17 &push ("eax");
18 &popf ();
19 &pushf ();
20 &pop ("eax");
21 &xor ("ecx","eax");
22 &xor ("eax","eax");
23 &bt ("ecx",21);
24 &jnc (&label("nocpuid"));
25 &cpuid ();
26 &mov ("edi","eax"); # max value for standard query level

28 &xor ("eax","eax");
29 &cmp ("ebx",0x756e6547); # "Genu"
30 &setne (&LB("eax"));
31 &mov ("ebp","eax");
32 &cmp ("edx",0x49656e69); # "ineI"
33 &setne (&LB("eax"));
34 &or ("ebp","eax");
35 &cmp ("ecx",0x6c65746e); # "ntel"
36 &setne (&LB("eax"));
37 &or ("ebp","eax"); # 0 indicates Intel CPU
38 &jz (&label("intel"));

40 &cmp ("ebx",0x68747541); # "Auth"
41 &setne (&LB("eax"));
42 &mov ("esi","eax");
43 &cmp ("edx",0x69746E65); # "enti"
44 &setne (&LB("eax"));
45 &or ("esi","eax");
46 &cmp ("ecx",0x444D4163); # "cAMD"
47 &setne (&LB("eax"));
48 &or ("esi","eax"); # 0 indicates AMD CPU
49 &jnz (&label("intel"));

51 # AMD specific
52 &mov ("eax",0x80000000);
53 &cpuid ();
54 &cmp ("eax",0x80000001);
55 &jb (&label("intel"));
56 &mov ("esi","eax");
57 &mov ("eax",0x80000001);
58 &cpuid ();
59 &or ("ebp","ecx");
60 &and ("ebp",1<<11|1); # isolate XOP bit
61 &cmp ("esi",0x80000008);

new/usr/src/lib/openssl/libsunw_crypto/pl/x86cpuid.pl 2

62 &jb (&label("intel"));

64 &mov ("eax",0x80000008);
65 &cpuid ();
66 &movz ("esi",&LB("ecx")); # number of cores - 1
67 &inc ("esi"); # number of cores

69 &mov ("eax",1);
70 &xor ("ecx","ecx");
71 &cpuid ();
72 &bt ("edx",28);
73 &jnc (&label("generic"));
74 &shr ("ebx",16);
75 &and ("ebx",0xff);
76 &cmp ("ebx","esi");
77 &ja (&label("generic"));
78 &and ("edx",0xefffffff); # clear hyper-threading bit
79 &jmp (&label("generic"));
80
81 &set_label("intel");
82 &cmp ("edi",4);
83 &mov ("edi",-1);
84 &jb (&label("nocacheinfo"));

86 &mov ("eax",4);
87 &mov ("ecx",0); # query L1D
88 &cpuid ();
89 &mov ("edi","eax");
90 &shr ("edi",14);
91 &and ("edi",0xfff); # number of cores -1 per L1D

93 &set_label("nocacheinfo");
94 &mov ("eax",1);
95 &xor ("ecx","ecx");
96 &cpuid ();
97 &and ("edx",0xbfefffff); # force reserved bits #20, #30 to 0
98 &cmp ("ebp",0);
99 &jne (&label("notintel"));
100 &or ("edx",1<<30); # set reserved bit#30 on Intel CPUs
101 &and (&HB("eax"),15); # familiy ID
102 &cmp (&HB("eax"),15); # P4?
103 &jne (&label("notintel"));
104 &or ("edx",1<<20); # set reserved bit#20 to engage RC4_CHAR
105 &set_label("notintel");
106 &bt ("edx",28); # test hyper-threading bit
107 &jnc (&label("generic"));
108 &and ("edx",0xefffffff);
109 &cmp ("edi",0);
110 &je (&label("generic"));

112 &or ("edx",0x10000000);
113 &shr ("ebx",16);
114 &cmp (&LB("ebx"),1);
115 &ja (&label("generic"));
116 &and ("edx",0xefffffff); # clear hyper-threading bit if not

118 &set_label("generic");
119 &and ("ebp",1<<11); # isolate AMD XOP flag
120 &and ("ecx",0xfffff7ff); # force 11th bit to 0
121 &mov ("esi","edx");
122 &or ("ebp","ecx"); # merge AMD XOP flag

124 &bt ("ecx",27); # check OSXSAVE bit
125 &jnc (&label("clear_avx"));
126 &xor ("ecx","ecx");
127 &data_byte(0x0f,0x01,0xd0); # xgetbv

new/usr/src/lib/openssl/libsunw_crypto/pl/x86cpuid.pl 3

128 &and ("eax",6);
129 &cmp ("eax",6);
130 &je (&label("done"));
131 &cmp ("eax",2);
132 &je (&label("clear_avx"));
133 &set_label("clear_xmm");
134 &and ("ebp",0xfdfffffd); # clear AESNI and PCLMULQDQ bits
135 &and ("esi",0xfeffffff); # clear FXSR
136 &set_label("clear_avx");
137 &and ("ebp",0xefffe7ff); # clear AVX, FMA and AMD XOP bits
138 &set_label("done");
139 &mov ("eax","esi");
140 &mov ("edx","ebp");
141 &set_label("nocpuid");
142 &function_end("OPENSSL_ia32_cpuid");

144 &external_label("OPENSSL_ia32cap_P");

146 &function_begin_B("OPENSSL_rdtsc","EXTRN\t_OPENSSL_ia32cap_P:DWORD");
147 &xor ("eax","eax");
148 &xor ("edx","edx");
149 &picmeup("ecx","OPENSSL_ia32cap_P");
150 &bt (&DWP(0,"ecx"),4);
151 &jnc (&label("notsc"));
152 &rdtsc ();
153 &set_label("notsc");
154 &ret ();
155 &function_end_B("OPENSSL_rdtsc");

157 # This works in Ring 0 only [read DJGPP+MS-DOS+privileged DPMI host],
158 # but it’s safe to call it on any [supported] 32-bit platform...
159 # Just check for [non-]zero return value...
160 &function_begin_B("OPENSSL_instrument_halt","EXTRN\t_OPENSSL_ia32cap_P:DWORD");
161 &picmeup("ecx","OPENSSL_ia32cap_P");
162 &bt (&DWP(0,"ecx"),4);
163 &jnc (&label("nohalt")); # no TSC

165 &data_word(0x9058900e); # push %cs; pop %eax
166 &and ("eax",3);
167 &jnz (&label("nohalt")); # not enough privileges

169 &pushf ();
170 &pop ("eax");
171 &bt ("eax",9);
172 &jnc (&label("nohalt")); # interrupts are disabled

174 &rdtsc ();
175 &push ("edx");
176 &push ("eax");
177 &halt ();
178 &rdtsc ();

180 &sub ("eax",&DWP(0,"esp"));
181 &sbb ("edx",&DWP(4,"esp"));
182 &add ("esp",8);
183 &ret ();

185 &set_label("nohalt");
186 &xor ("eax","eax");
187 &xor ("edx","edx");
188 &ret ();
189 &function_end_B("OPENSSL_instrument_halt");

191 # Essentially there is only one use for this function. Under DJGPP:
192 #
193 # #include <go32.h>

new/usr/src/lib/openssl/libsunw_crypto/pl/x86cpuid.pl 4

194 # ...
195 # i=OPENSSL_far_spin(_dos_ds,0x46c);
196 # ...
197 # to obtain the number of spins till closest timer interrupt.

199 &function_begin_B("OPENSSL_far_spin");
200 &pushf ();
201 &pop ("eax")
202 &bt ("eax",9);
203 &jnc (&label("nospin")); # interrupts are disabled

205 &mov ("eax",&DWP(4,"esp"));
206 &mov ("ecx",&DWP(8,"esp"));
207 &data_word (0x90d88e1e); # push %ds, mov %eax,%ds
208 &xor ("eax","eax");
209 &mov ("edx",&DWP(0,"ecx"));
210 &jmp (&label("spin"));

212 &align (16);
213 &set_label("spin");
214 &inc ("eax");
215 &cmp ("edx",&DWP(0,"ecx"));
216 &je (&label("spin"));

218 &data_word (0x1f909090); # pop %ds
219 &ret ();

221 &set_label("nospin");
222 &xor ("eax","eax");
223 &xor ("edx","edx");
224 &ret ();
225 &function_end_B("OPENSSL_far_spin");

227 &function_begin_B("OPENSSL_wipe_cpu","EXTRN\t_OPENSSL_ia32cap_P:DWORD");
228 &xor ("eax","eax");
229 &xor ("edx","edx");
230 &picmeup("ecx","OPENSSL_ia32cap_P");
231 &mov ("ecx",&DWP(0,"ecx"));
232 &bt (&DWP(0,"ecx"),1);
233 &jnc (&label("no_x87"));
234 if ($sse2) {
235 &and ("ecx",1<<26|1<<24); # check SSE2 and FXSR bits
236 &cmp ("ecx",1<<26|1<<24);
237 &jne (&label("no_sse2"));
238 &pxor ("xmm0","xmm0");
239 &pxor ("xmm1","xmm1");
240 &pxor ("xmm2","xmm2");
241 &pxor ("xmm3","xmm3");
242 &pxor ("xmm4","xmm4");
243 &pxor ("xmm5","xmm5");
244 &pxor ("xmm6","xmm6");
245 &pxor ("xmm7","xmm7");
246 &set_label("no_sse2");
247 }
248 # just a bunch of fldz to zap the fp/mm bank followed by finit...
249 &data_word(0xeed9eed9,0xeed9eed9,0xeed9eed9,0xeed9eed9,0x90e3db9b);
250 &set_label("no_x87");
251 &lea ("eax",&DWP(4,"esp"));
252 &ret ();
253 &function_end_B("OPENSSL_wipe_cpu");

255 &function_begin_B("OPENSSL_atomic_add");
256 &mov ("edx",&DWP(4,"esp")); # fetch the pointer, 1st arg
257 &mov ("ecx",&DWP(8,"esp")); # fetch the increment, 2nd arg
258 &push ("ebx");
259 &nop ();

new/usr/src/lib/openssl/libsunw_crypto/pl/x86cpuid.pl 5

260 &mov ("eax",&DWP(0,"edx"));
261 &set_label("spin");
262 &lea ("ebx",&DWP(0,"eax","ecx"));
263 &nop ();
264 &data_word(0x1ab10ff0); # lock; cmpxchg %ebx,(%edx) # %eax is envolv
265 &jne (&label("spin"));
266 &mov ("eax","ebx"); # OpenSSL expects the new value
267 &pop ("ebx");
268 &ret ();
269 &function_end_B("OPENSSL_atomic_add");

271 # This function can become handy under Win32 in situations when
272 # we don’t know which calling convention, __stdcall or __cdecl(*),
273 # indirect callee is using. In C it can be deployed as
274 #
275 #ifdef OPENSSL_CPUID_OBJ
276 # type OPENSSL_indirect_call(void *f,...);
277 # ...
278 # OPENSSL_indirect_call(func,[up to $max arguments]);
279 #endif
280 #
281 # (*) it’s designed to work even for __fastcall if number of
282 # arguments is 1 or 2!
283 &function_begin_B("OPENSSL_indirect_call");
284 {
285 my ($max,$i)=(7,); # $max has to be chosen as 4*n-1
286 # in order to preserve eventual
287 # stack alignment
288 &push ("ebp");
289 &mov ("ebp","esp");
290 &sub ("esp",$max*4);
291 &mov ("ecx",&DWP(12,"ebp"));
292 &mov (&DWP(0,"esp"),"ecx");
293 &mov ("edx",&DWP(16,"ebp"));
294 &mov (&DWP(4,"esp"),"edx");
295 for($i=2;$i<$max;$i++)
296 {
297 # Some copies will be redundant/bogus...
298 &mov ("eax",&DWP(12+$i*4,"ebp"));
299 &mov (&DWP(0+$i*4,"esp"),"eax");
300 }
301 &call_ptr (&DWP(8,"ebp"));# make the call...
302 &mov ("esp","ebp"); # ... and just restore the stack pointer
303 # without paying attention to what we called,
304 # (__cdecl *func) or (__stdcall *one).
305 &pop ("ebp");
306 &ret ();
307 }
308 &function_end_B("OPENSSL_indirect_call");

310 &function_begin_B("OPENSSL_cleanse");
311 &mov ("edx",&wparam(0));
312 &mov ("ecx",&wparam(1));
313 &xor ("eax","eax");
314 &cmp ("ecx",7);
315 &jae (&label("lot"));
316 &cmp ("ecx",0);
317 &je (&label("ret"));
318 &set_label("little");
319 &mov (&BP(0,"edx"),"al");
320 &sub ("ecx",1);
321 &lea ("edx",&DWP(1,"edx"));
322 &jnz (&label("little"));
323 &set_label("ret");
324 &ret ();

new/usr/src/lib/openssl/libsunw_crypto/pl/x86cpuid.pl 6

326 &set_label("lot",16);
327 &test ("edx",3);
328 &jz (&label("aligned"));
329 &mov (&BP(0,"edx"),"al");
330 &lea ("ecx",&DWP(-1,"ecx"));
331 &lea ("edx",&DWP(1,"edx"));
332 &jmp (&label("lot"));
333 &set_label("aligned");
334 &mov (&DWP(0,"edx"),"eax");
335 &lea ("ecx",&DWP(-4,"ecx"));
336 &test ("ecx",-4);
337 &lea ("edx",&DWP(4,"edx"));
338 &jnz (&label("aligned"));
339 &cmp ("ecx",0);
340 &jne (&label("little"));
341 &ret ();
342 &function_end_B("OPENSSL_cleanse");

344 &function_begin_B("OPENSSL_ia32_rdrand");
345 &mov ("ecx",8);
346 &set_label("loop");
347 &rdrand ("eax");
348 &jc (&label("break"));
349 &loop (&label("loop"));
350 &set_label("break");
351 &cmp ("eax",0);
352 &cmove ("eax","ecx");
353 &ret ();
354 &function_end_B("OPENSSL_ia32_rdrand");

356 &initseg("solaris_locking_setup");
357 &initseg("OPENSSL_cpuid_setup");

359 &hidden("solaris_locking_setup");
360 &hidden("OPENSSL_cpuid_setup");
361 &hidden("OPENSSL_ia32cap_P");

363 &asm_finish();

new/usr/src/lib/openssl/libsunw_crypto/pl/x86gas.pl 1

**
 5990 Fri May 30 18:32:06 2014
new/usr/src/lib/openssl/libsunw_crypto/pl/x86gas.pl
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #!/usr/bin/env perl

3 package x86gas;

5 *out=\@::out;

7 $::lbdecor=$::aout?"L":".L"; # local label decoration
8 $nmdecor=($::aout or $::coff)?"_":"sunw_"; # external name decoration

10 $initseg="";

12 $align=16;
13 $align=log($align)/log(2) if ($::aout);
14 $com_start="#" if ($::aout or $::coff);

16 sub opsize()
17 { my $reg=shift;
18 if ($reg =~ m/^%e/o) { "l"; }
19 elsif ($reg =~ m/^%[a-d][hl]$/o) { "b"; }
20 elsif ($reg =~ m/^%[xm]/o) { undef; }
21 else { "w"; }
22 }

24 # swap arguments;
25 # expand opcode with size suffix;
26 # prefix numeric constants with $;
27 sub ::generic
28 { my($opcode,@arg)=@_;
29 my($suffix,$dst,$src);

31 @arg=reverse(@arg);

33 for (@arg)
34 { s/^(*?)(e?[a-dsixphl]{2})$/$1%$2/o; # gp registers
35 s/^([xy]?mm[0-7])$/%$1/o; # xmm/mmx registers
36 s/^(\-?[0-9]+)$/\$$1/o; # constants
37 s/^(\-?0x[0-9a-f]+)$/\$$1/o; # constants
38 }

40 $dst = $arg[$#arg] if ($#arg>=0);
41 $src = $arg[$#arg-1] if ($#arg>=1);
42 if ($dst =~ m/^%/o) { $suffix=&opsize($dst); }
43 elsif ($src =~ m/^%/o) { $suffix=&opsize($src); }
44 else { $suffix="l"; }
45 undef $suffix if ($dst =~ m/^%[xm]/o || $src =~ m/^%[xm]/o);

47 if ($#_==0) { &::emit($opcode); }
48 elsif ($#_==1 && $opcode =~ m/^(call|clflush|j|loop|set)/o)
49 { &::emit($opcode,@arg); }
50 else { &::emit($opcode.$suffix,@arg);}

52 1;
53 }
54 #
55 # opcodes not covered by ::generic above, mostly inconsistent namings...
56 #
57 sub ::movzx { &::movzb(@_); }
58 sub ::pushfd { &::pushfl; }
59 sub ::popfd { &::popfl; }
60 sub ::cpuid { &::emit(".byte\t0x0f,0xa2"); }
61 sub ::rdtsc { &::emit(".byte\t0x0f,0x31"); }

new/usr/src/lib/openssl/libsunw_crypto/pl/x86gas.pl 2

63 sub ::call { &::emit("call",(&::islabel($_[0]) or "$nmdecor$_[0]")); }
64 sub ::call_ptr { &::generic("call","*$_[0]"); }
65 sub ::jmp_ptr { &::generic("jmp","*$_[0]"); }

67 *::bswap = sub { &::emit("bswap","%$_[0]"); } if (!$::i386);

69 sub ::DWP
70 { my($addr,$reg1,$reg2,$idx)=@_;
71 my $ret="";

73 $addr =~ s/^\s+//;
74 # prepend global references with optional underscore
75 $addr =~ s/^([^\+\-0-9][^\+\-]*)/&::islabel($1) or "$nmdecor$1"/ige;

77 $reg1 = "%$reg1" if ($reg1);
78 $reg2 = "%$reg2" if ($reg2);

80 $ret .= $addr if (($addr ne "") && ($addr ne 0));

82 if ($reg2)
83 { $idx!= 0 or $idx=1;
84 $ret .= "($reg1,$reg2,$idx)";
85 }
86 elsif ($reg1)
87 { $ret .= "($reg1)"; }

89 $ret;
90 }
91 sub ::QWP { &::DWP(@_); }
92 sub ::BP { &::DWP(@_); }
93 sub ::WP { &::DWP(@_); }
94 sub ::BC { @_; }
95 sub ::DWC { @_; }

97 sub ::file
98 { push(@out,".file\t\"$_[0].s\"\n.text\n"); }

100 sub ::function_begin_B
101 { my $func=shift;
102 my $global=($func !~ /^_/);
103 my $begin="${::lbdecor}_${func}_begin";

105 &::LABEL($func,$global?"$begin":"$nmdecor$func");
106 $func=$nmdecor.$func;

108 push(@out,".globl\t$func\n") if ($global);
109 if ($::coff)
110 { push(@out,".def\t$func;\t.scl\t".(3-$global).";\t.type\t32;\t.endef\n");
111 elsif (($::aout and !$::pic) or $::macosx)
112 { }
113 else
114 { push(@out,".type $func,\@function\n"); }
115 push(@out,".align\t$align\n");
116 push(@out,"$func:\n");
117 push(@out,"$begin:\n") if ($global);
118 $::stack=4;
119 }

121 sub ::function_end_B
122 { my $func=shift;
123 push(@out,".size\t$nmdecor$func,.-".&::LABEL($func)."\n") if ($::elf);
124 $::stack=0;
125 &::wipe_labels();
126 }

new/usr/src/lib/openssl/libsunw_crypto/pl/x86gas.pl 3

128 sub ::comment
129 {
130 if (!defined($com_start) or $::elf)
131 { # Regarding $::elf above...
132 # GNU and SVR4 as’es use different comment delimiters,
133 push(@out,"\n"); # so we just skip ELF comments...
134 return;
135 }
136 foreach (@_)
137 {
138 if (/^\s*$/)
139 { push(@out,"\n"); }
140 else
141 { push(@out,"\t$com_start $_ $com_end\n"); }
142 }
143 }

145 sub ::external_label
146 { foreach(@_) { &::LABEL($_,$nmdecor.$_); } }

148 sub ::public_label
149 { push(@out,".globl\t".&::LABEL($_[0],$nmdecor.$_[0])."\n"); }

151 sub ::file_end
152 { if ($::macosx)
153 { if (%non_lazy_ptr)
154 { push(@out,".section __IMPORT,__pointers,non_lazy_symbol_pointers\n")
155 foreach $i (keys %non_lazy_ptr)
156 { push(@out,"$non_lazy_ptr{$i}:\n.indirect_symbol\t$i\n.long\t0\n"
157 }
158 }
159 if (grep {/\b${nmdecor}OPENSSL_ia32cap_P\b/i} @out) {
160 my $tmp=".comm\t${nmdecor}OPENSSL_ia32cap_P,8";
161 if ($::macosx) { push (@out,"$tmp,2\n"); }
162 elsif ($::elf) { push (@out,"$tmp,4\n"); }
163 else { push (@out,"$tmp\n"); }
164 }
165 push(@out,$initseg) if ($initseg);
166 }

168 sub ::data_byte { push(@out,".byte\t".join(’,’,@_)."\n"); }
169 sub ::data_short{ push(@out,".value\t".join(’,’,@_)."\n"); }
170 sub ::data_word { push(@out,".long\t".join(’,’,@_)."\n"); }

172 sub ::align
173 { my $val=$_[0],$p2,$i;
174 if ($::aout)
175 { for ($p2=0;$val!=0;$val>>=1) { $p2++; }
176 $val=$p2-1;
177 $val.=",0x90";
178 }
179 push(@out,".align\t$val\n");
180 }

182 sub ::picmeup
183 { my($dst,$sym,$base,$reflabel)=@_;

185 if (($::pic && ($::elf || $::aout)) || $::macosx)
186 { if (!defined($base))
187 { &::call(&::label("PIC_me_up"));
188 &::set_label("PIC_me_up");
189 &::blindpop($dst);
190 $base=$dst;
191 $reflabel=&::label("PIC_me_up");
192 }
193 if ($::macosx)

new/usr/src/lib/openssl/libsunw_crypto/pl/x86gas.pl 4

194 { my $indirect=&::static_label("$nmdecor$sym\$non_lazy_ptr");
195 &::mov($dst,&::DWP("$indirect-$reflabel",$base));
196 $non_lazy_ptr{"$nmdecor$sym"}=$indirect;
197 }
198 else
199 { &::lea($dst,&::DWP("_GLOBAL_OFFSET_TABLE_+[.-$reflabel]",
200 $base));
201 &::mov($dst,&::DWP("$sym\@GOT",$dst));
202 }
203 }
204 else
205 { &::lea($dst,&::DWP($sym)); }
206 }

208 sub ::initseg
209 { my $f=$nmdecor.shift;

211 if ($::android)
212 { $initseg.=<<___;
213 .section .init_array
214 .align 4
215 .long $f
216 ___
217 }
218 elsif ($::elf)
219 { $initseg.=<<___;
220 .section .init
221 call $f
222 ___
223 }
224 elsif ($::coff)
225 { $initseg.=<<___; # applies to both Cygwin and Mingw
226 .section .ctors
227 .long $f
228 ___
229 }
230 elsif ($::macosx)
231 { $initseg.=<<___;
232 .mod_init_func
233 .align 2
234 .long $f
235 ___
236 }
237 elsif ($::aout)
238 { my $ctor="${nmdecor}_GLOBAL_\$I\$$f";
239 $initseg.=".text\n";
240 $initseg.=".type $ctor,\@function\n" if ($::pic);
241 $initseg.=<<___; # OpenBSD way...
242 .globl $ctor
243 .align 2
244 $ctor:
245 jmp $f
246 ___
247 }
248 }

250 sub ::dataseg
251 { push(@out,".data\n"); }

253 *::hidden = sub { push(@out,".hidden\t$nmdecor$_[0]\n"); } if ($::elf);

255 1;

new/usr/src/lib/openssl/libsunw_crypto/pqueue/pqueue.c 1

**
 5691 Fri May 30 18:32:06 2014
new/usr/src/lib/openssl/libsunw_crypto/pqueue/pqueue.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/pqueue/pqueue.c */
2 /*
3 * DTLS implementation written by Nagendra Modadugu
4 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
5 */
6 /* ==
7 * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * openssl-core@OpenSSL.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */

60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/pqueue/pqueue.c 2

62 #include <openssl/pqueue.h>

64 typedef struct _pqueue
65 {
66 pitem *items;
67 int count;
68 } pqueue_s;

70 pitem *
71 pitem_new(unsigned char *prio64be, void *data)
72 {
73 pitem *item = (pitem *) OPENSSL_malloc(sizeof(pitem));
74 if (item == NULL) return NULL;

76 memcpy(item->priority,prio64be,sizeof(item->priority));

78 item->data = data;
79 item->next = NULL;

81 return item;
82 }

84 void
85 pitem_free(pitem *item)
86 {
87 if (item == NULL) return;

89 OPENSSL_free(item);
90 }

92 pqueue_s *
93 pqueue_new()
94 {
95 pqueue_s *pq = (pqueue_s *) OPENSSL_malloc(sizeof(pqueue_s));
96 if (pq == NULL) return NULL;

98 memset(pq, 0x00, sizeof(pqueue_s));
99 return pq;
100 }

102 void
103 pqueue_free(pqueue_s *pq)
104 {
105 if (pq == NULL) return;

107 OPENSSL_free(pq);
108 }

110 pitem *
111 pqueue_insert(pqueue_s *pq, pitem *item)
112 {
113 pitem *curr, *next;

115 if (pq->items == NULL)
116 {
117 pq->items = item;
118 return item;
119 }

121 for(curr = NULL, next = pq->items;
122 next != NULL;
123 curr = next, next = next->next)
124 {
125 /* we can compare 64-bit value in big-endian encoding
126 * with memcmp:-) */
127 int cmp = memcmp(next->priority, item->priority,8);

new/usr/src/lib/openssl/libsunw_crypto/pqueue/pqueue.c 3

128 if (cmp > 0) /* next > item */
129 {
130 item->next = next;

132 if (curr == NULL)
133 pq->items = item;
134 else
135 curr->next = item;

137 return item;
138 }
139
140 else if (cmp == 0) /* duplicates not allowed */
141 return NULL;
142 }

144 item->next = NULL;
145 curr->next = item;

147 return item;
148 }

150 pitem *
151 pqueue_peek(pqueue_s *pq)
152 {
153 return pq->items;
154 }

156 pitem *
157 pqueue_pop(pqueue_s *pq)
158 {
159 pitem *item = pq->items;

161 if (pq->items != NULL)
162 pq->items = pq->items->next;

164 return item;
165 }

167 pitem *
168 pqueue_find(pqueue_s *pq, unsigned char *prio64be)
169 {
170 pitem *next;
171 pitem *found = NULL;

173 if (pq->items == NULL)
174 return NULL;

176 for (next = pq->items; next->next != NULL; next = next->next)
177 {
178 if (memcmp(next->priority, prio64be,8) == 0)
179 {
180 found = next;
181 break;
182 }
183 }
184
185 /* check the one last node */
186 if (memcmp(next->priority, prio64be,8) ==0)
187 found = next;

189 if (! found)
190 return NULL;

192 #if 0 /* find works in peek mode */
193 if (prev == NULL)

new/usr/src/lib/openssl/libsunw_crypto/pqueue/pqueue.c 4

194 pq->items = next->next;
195 else
196 prev->next = next->next;
197 #endif

199 return found;
200 }

202 void
203 pqueue_print(pqueue_s *pq)
204 {
205 pitem *item = pq->items;

207 while(item != NULL)
208 {
209 printf("item\t%02x%02x%02x%02x%02x%02x%02x%02x\n",
210 item->priority[0],item->priority[1],
211 item->priority[2],item->priority[3],
212 item->priority[4],item->priority[5],
213 item->priority[6],item->priority[7]);
214 item = item->next;
215 }
216 }

218 pitem *
219 pqueue_iterator(pqueue_s *pq)
220 {
221 return pqueue_peek(pq);
222 }

224 pitem *
225 pqueue_next(pitem **item)
226 {
227 pitem *ret;

229 if (item == NULL || *item == NULL)
230 return NULL;

233 /* *item != NULL */
234 ret = *item;
235 *item = (*item)->next;

237 return ret;
238 }

240 int
241 pqueue_size(pqueue_s *pq)
242 {
243 pitem *item = pq->items;
244 int count = 0;
245
246 while(item != NULL)
247 {
248 count++;
249 item = item->next;
250 }
251 return count;
252 }

new/usr/src/lib/openssl/libsunw_crypto/rand/md_rand.c 1

**
 18938 Fri May 30 18:32:06 2014
new/usr/src/lib/openssl/libsunw_crypto/rand/md_rand.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rand/md_rand.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/rand/md_rand.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #define OPENSSL_FIPSEVP

114 #ifdef MD_RAND_DEBUG
115 # ifndef NDEBUG
116 # define NDEBUG
117 # endif
118 #endif

120 #include <assert.h>
121 #include <stdio.h>
122 #include <string.h>

124 #include "e_os.h"

126 #include <openssl/crypto.h>
127 #include <openssl/rand.h>

new/usr/src/lib/openssl/libsunw_crypto/rand/md_rand.c 3

128 #include "rand_lcl.h"

130 #include <openssl/err.h>

132 #ifdef BN_DEBUG
133 # define PREDICT
134 #endif

136 /* #define PREDICT 1 */

138 #define STATE_SIZE 1023
139 static int state_num=0,state_index=0;
140 static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
141 static unsigned char md[MD_DIGEST_LENGTH];
142 static long md_count[2]={0,0};
143 static double entropy=0;
144 static int initialized=0;

146 static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
147 * holds CRYPTO_LOCK_RAND
148 * (to prevent double locking) */
149 /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
150 static CRYPTO_THREADID locking_threadid; /* valid iff crypto_lock_rand is set */

153 #ifdef PREDICT
154 int rand_predictable=0;
155 #endif

157 const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;

159 static void ssleay_rand_cleanup(void);
160 static void ssleay_rand_seed(const void *buf, int num);
161 static void ssleay_rand_add(const void *buf, int num, double add_entropy);
162 static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo);
163 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num);
164 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
165 static int ssleay_rand_status(void);

167 RAND_METHOD rand_ssleay_meth={
168 ssleay_rand_seed,
169 ssleay_rand_nopseudo_bytes,
170 ssleay_rand_cleanup,
171 ssleay_rand_add,
172 ssleay_rand_pseudo_bytes,
173 ssleay_rand_status
174 };

176 RAND_METHOD *RAND_SSLeay(void)
177 {
178 return(&rand_ssleay_meth);
179 }

181 static void ssleay_rand_cleanup(void)
182 {
183 OPENSSL_cleanse(state,sizeof(state));
184 state_num=0;
185 state_index=0;
186 OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
187 md_count[0]=0;
188 md_count[1]=0;
189 entropy=0;
190 initialized=0;
191 }

193 static void ssleay_rand_add(const void *buf, int num, double add)

new/usr/src/lib/openssl/libsunw_crypto/rand/md_rand.c 4

194 {
195 int i,j,k,st_idx;
196 long md_c[2];
197 unsigned char local_md[MD_DIGEST_LENGTH];
198 EVP_MD_CTX m;
199 int do_not_lock;

201 if (!num)
202 return;

204 /*
205 * (Based on the rand(3) manpage)
206 *
207 * The input is chopped up into units of 20 bytes (or less for
208 * the last block). Each of these blocks is run through the hash
209 * function as follows: The data passed to the hash function
210 * is the current ’md’, the same number of bytes from the ’state’
211 * (the location determined by in incremented looping index) as
212 * the current ’block’, the new key data ’block’, and ’count’
213 * (which is incremented after each use).
214 * The result of this is kept in ’md’ and also xored into the
215 * ’state’ at the same locations that were used as input into the
216 * hash function.
217 */

219 /* check if we already have the lock */
220 if (crypto_lock_rand)
221 {
222 CRYPTO_THREADID cur;
223 CRYPTO_THREADID_current(&cur);
224 CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
225 do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
226 CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
227 }
228 else
229 do_not_lock = 0;

231 if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
232 st_idx=state_index;

234 /* use our own copies of the counters so that even
235 * if a concurrent thread seeds with exactly the
236 * same data and uses the same subarray there’s _some_
237 * difference */
238 md_c[0] = md_count[0];
239 md_c[1] = md_count[1];

241 memcpy(local_md, md, sizeof md);

243 /* state_index <= state_num <= STATE_SIZE */
244 state_index += num;
245 if (state_index >= STATE_SIZE)
246 {
247 state_index%=STATE_SIZE;
248 state_num=STATE_SIZE;
249 }
250 else if (state_num < STATE_SIZE)
251 {
252 if (state_index > state_num)
253 state_num=state_index;
254 }
255 /* state_index <= state_num <= STATE_SIZE */

257 /* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
258 * are what we will use now, but other threads may use them
259 * as well */

new/usr/src/lib/openssl/libsunw_crypto/rand/md_rand.c 5

261 md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);

263 if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);

265 EVP_MD_CTX_init(&m);
266 for (i=0; i<num; i+=MD_DIGEST_LENGTH)
267 {
268 j=(num-i);
269 j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;

271 MD_Init(&m);
272 MD_Update(&m,local_md,MD_DIGEST_LENGTH);
273 k=(st_idx+j)-STATE_SIZE;
274 if (k > 0)
275 {
276 MD_Update(&m,&(state[st_idx]),j-k);
277 MD_Update(&m,&(state[0]),k);
278 }
279 else
280 MD_Update(&m,&(state[st_idx]),j);

282 /* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
283 MD_Update(&m,buf,j);
284 /* We know that line may cause programs such as
285 purify and valgrind to complain about use of
286 uninitialized data. The problem is not, it’s
287 with the caller. Removing that line will make
288 sure you get really bad randomness and thereby
289 other problems such as very insecure keys. */

291 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
292 MD_Final(&m,local_md);
293 md_c[1]++;

295 buf=(const char *)buf + j;

297 for (k=0; k<j; k++)
298 {
299 /* Parallel threads may interfere with this,
300 * but always each byte of the new state is
301 * the XOR of some previous value of its
302 * and local_md (itermediate values may be lost).
303 * Alway using locking could hurt performance more
304 * than necessary given that conflicts occur only
305 * when the total seeding is longer than the random
306 * state. */
307 state[st_idx++]^=local_md[k];
308 if (st_idx >= STATE_SIZE)
309 st_idx=0;
310 }
311 }
312 EVP_MD_CTX_cleanup(&m);

314 if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
315 /* Don’t just copy back local_md into md -- this could mean that
316 * other thread’s seeding remains without effect (except for
317 * the incremented counter). By XORing it we keep at least as
318 * much entropy as fits into md. */
319 for (k = 0; k < (int)sizeof(md); k++)
320 {
321 md[k] ^= local_md[k];
322 }
323 if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
324 entropy += add;
325 if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);

new/usr/src/lib/openssl/libsunw_crypto/rand/md_rand.c 6

326
327 #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
328 assert(md_c[1] == md_count[1]);
329 #endif
330 }

332 static void ssleay_rand_seed(const void *buf, int num)
333 {
334 ssleay_rand_add(buf, num, (double)num);
335 }

337 static int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo)
338 {
339 static volatile int stirred_pool = 0;
340 int i,j,k,st_num,st_idx;
341 int num_ceil;
342 int ok;
343 long md_c[2];
344 unsigned char local_md[MD_DIGEST_LENGTH];
345 EVP_MD_CTX m;
346 #ifndef GETPID_IS_MEANINGLESS
347 pid_t curr_pid = getpid();
348 #endif
349 int do_stir_pool = 0;

351 #ifdef PREDICT
352 if (rand_predictable)
353 {
354 static unsigned char val=0;

356 for (i=0; i<num; i++)
357 buf[i]=val++;
358 return(1);
359 }
360 #endif

362 if (num <= 0)
363 return 1;

365 EVP_MD_CTX_init(&m);
366 /* round upwards to multiple of MD_DIGEST_LENGTH/2 */
367 num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);

369 /*
370 * (Based on the rand(3) manpage:)
371 *
372 * For each group of 10 bytes (or less), we do the following:
373 *
374 * Input into the hash function the local ’md’ (which is initialized fro
375 * the global ’md’ before any bytes are generated), the bytes that are t
376 * be overwritten by the random bytes, and bytes from the ’state’
377 * (incrementing looping index). From this digest output (which is kept
378 * in ’md’), the top (up to) 10 bytes are returned to the caller and the
379 * bottom 10 bytes are xored into the ’state’.
380 *
381 * Finally, after we have finished ’num’ random bytes for the
382 * caller, ’count’ (which is incremented) and the local and global ’md’
383 * are fed into the hash function and the results are kept in the
384 * global ’md’.
385 */
386 #ifdef OPENSSL_FIPS
387 /* NB: in FIPS mode we are already under a lock */
388 if (!FIPS_mode())
389 #endif
390 CRYPTO_w_lock(CRYPTO_LOCK_RAND);

new/usr/src/lib/openssl/libsunw_crypto/rand/md_rand.c 7

392 /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
393 CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
394 CRYPTO_THREADID_current(&locking_threadid);
395 CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
396 crypto_lock_rand = 1;

398 if (!initialized)
399 {
400 RAND_poll();
401 initialized = 1;
402 }
403
404 if (!stirred_pool)
405 do_stir_pool = 1;
406
407 ok = (entropy >= ENTROPY_NEEDED);
408 if (!ok)
409 {
410 /* If the PRNG state is not yet unpredictable, then seeing
411 * the PRNG output may help attackers to determine the new
412 * state; thus we have to decrease the entropy estimate.
413 * Once we’ve had enough initial seeding we don’t bother to
414 * adjust the entropy count, though, because we’re not ambitious
415 * to provide *information-theoretic* randomness.
416 *
417 * NOTE: This approach fails if the program forks before
418 * we have enough entropy. Entropy should be collected
419 * in a separate input pool and be transferred to the
420 * output pool only when the entropy limit has been reached.
421 */
422 entropy -= num;
423 if (entropy < 0)
424 entropy = 0;
425 }

427 if (do_stir_pool)
428 {
429 /* In the output function only half of ’md’ remains secret,
430 * so we better make sure that the required entropy gets
431 * ’evenly distributed’ through ’state’, our randomness pool.
432 * The input function (ssleay_rand_add) chains all of ’md’,
433 * which makes it more suitable for this purpose.
434 */

436 int n = STATE_SIZE; /* so that the complete pool gets accessed *
437 while (n > 0)
438 {
439 #if MD_DIGEST_LENGTH > 20
440 # error "Please adjust DUMMY_SEED."
441 #endif
442 #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
443 /* Note that the seed does not matter, it’s just that
444 * ssleay_rand_add expects to have something to hash. */
445 ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
446 n -= MD_DIGEST_LENGTH;
447 }
448 if (ok)
449 stirred_pool = 1;
450 }

452 st_idx=state_index;
453 st_num=state_num;
454 md_c[0] = md_count[0];
455 md_c[1] = md_count[1];
456 memcpy(local_md, md, sizeof md);

new/usr/src/lib/openssl/libsunw_crypto/rand/md_rand.c 8

458 state_index+=num_ceil;
459 if (state_index > state_num)
460 state_index %= state_num;

462 /* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
463 * are now ours (but other threads may use them too) */

465 md_count[0] += 1;

467 /* before unlocking, we must clear ’crypto_lock_rand’ */
468 crypto_lock_rand = 0;
469 #ifdef OPENSSL_FIPS
470 if (!FIPS_mode())
471 #endif
472 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);

474 while (num > 0)
475 {
476 /* num_ceil -= MD_DIGEST_LENGTH/2 */
477 j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
478 num-=j;
479 MD_Init(&m);
480 #ifndef GETPID_IS_MEANINGLESS
481 if (curr_pid) /* just in the first iteration to save time */
482 {
483 MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
484 curr_pid = 0;
485 }
486 #endif
487 MD_Update(&m,local_md,MD_DIGEST_LENGTH);
488 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));

490 #ifndef PURIFY /* purify complains */
491 /* The following line uses the supplied buffer as a small
492 * source of entropy: since this buffer is often uninitialised
493 * it may cause programs such as purify or valgrind to
494 * complain. So for those builds it is not used: the removal
495 * of such a small source of entropy has negligible impact on
496 * security.
497 */
498 MD_Update(&m,buf,j);
499 #endif

501 k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
502 if (k > 0)
503 {
504 MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
505 MD_Update(&m,&(state[0]),k);
506 }
507 else
508 MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
509 MD_Final(&m,local_md);

511 for (i=0; i<MD_DIGEST_LENGTH/2; i++)
512 {
513 state[st_idx++]^=local_md[i]; /* may compete with other
514 if (st_idx >= st_num)
515 st_idx=0;
516 if (i < j)
517 *(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
518 }
519 }

521 MD_Init(&m);
522 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
523 MD_Update(&m,local_md,MD_DIGEST_LENGTH);

new/usr/src/lib/openssl/libsunw_crypto/rand/md_rand.c 9

524 #ifdef OPENSSL_FIPS
525 if (!FIPS_mode())
526 #endif
527 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
528 MD_Update(&m,md,MD_DIGEST_LENGTH);
529 MD_Final(&m,md);
530 #ifdef OPENSSL_FIPS
531 if (!FIPS_mode())
532 #endif
533 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);

535 EVP_MD_CTX_cleanup(&m);
536 if (ok)
537 return(1);
538 else if (pseudo)
539 return 0;
540 else
541 {
542 RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
543 ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
544 "http://www.openssl.org/support/faq.html");
545 return(0);
546 }
547 }

549 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num)
550 {
551 return ssleay_rand_bytes(buf, num, 0);
552 }

554 /* pseudo-random bytes that are guaranteed to be unique but not
555 unpredictable */
556 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
557 {
558 return ssleay_rand_bytes(buf, num, 1);
559 }

561 static int ssleay_rand_status(void)
562 {
563 CRYPTO_THREADID cur;
564 int ret;
565 int do_not_lock;

567 CRYPTO_THREADID_current(&cur);
568 /* check if we already have the lock
569 * (could happen if a RAND_poll() implementation calls RAND_status()) */
570 if (crypto_lock_rand)
571 {
572 CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
573 do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
574 CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
575 }
576 else
577 do_not_lock = 0;
578
579 if (!do_not_lock)
580 {
581 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
582
583 /* prevent ssleay_rand_bytes() from trying to obtain the lock ag
584 CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
585 CRYPTO_THREADID_cpy(&locking_threadid, &cur);
586 CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
587 crypto_lock_rand = 1;
588 }
589

new/usr/src/lib/openssl/libsunw_crypto/rand/md_rand.c 10

590 if (!initialized)
591 {
592 RAND_poll();
593 initialized = 1;
594 }

596 ret = entropy >= ENTROPY_NEEDED;

598 if (!do_not_lock)
599 {
600 /* before unlocking, we must clear ’crypto_lock_rand’ */
601 crypto_lock_rand = 0;
602
603 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
604 }
605
606 return ret;
607 }

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_egd.c 1

**
 8633 Fri May 30 18:32:06 2014
new/usr/src/lib/openssl/libsunw_crypto/rand/rand_egd.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rand/rand_egd.c */
2 /* Written by Ulf Moeller and Lutz Jaenicke for the OpenSSL project. */
3 /* ==
4 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 *
18 * 3. All advertising materials mentioning features or use of this
19 * software must display the following acknowledgment:
20 * "This product includes software developed by the OpenSSL Project
21 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
22 *
23 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
24 * endorse or promote products derived from this software without
25 * prior written permission. For written permission, please contact
26 * openssl-core@openssl.org.
27 *
28 * 5. Products derived from this software may not be called "OpenSSL"
29 * nor may "OpenSSL" appear in their names without prior written
30 * permission of the OpenSSL Project.
31 *
32 * 6. Redistributions of any form whatsoever must retain the following
33 * acknowledgment:
34 * "This product includes software developed by the OpenSSL Project
35 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
38 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
40 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
41 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
43 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
44 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
45 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
46 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
48 * OF THE POSSIBILITY OF SUCH DAMAGE.
49 * ==
50 *
51 * This product includes cryptographic software written by Eric Young
52 * (eay@cryptsoft.com). This product includes software written by Tim
53 * Hudson (tjh@cryptsoft.com).
54 *
55 */

57 #include <openssl/e_os2.h>
58 #include <openssl/rand.h>
59 #include <openssl/buffer.h>

61 /*

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_egd.c 2

62 * Query the EGD <URL: http://www.lothar.com/tech/crypto/>.
63 *
64 * This module supplies three routines:
65 *
66 * RAND_query_egd_bytes(path, buf, bytes)
67 * will actually query "bytes" bytes of entropy form the egd-socket located
68 * at path and will write them to buf (if supplied) or will directly feed
69 * it to RAND_seed() if buf==NULL.
70 * The number of bytes is not limited by the maximum chunk size of EGD,
71 * which is 255 bytes. If more than 255 bytes are wanted, several chunks
72 * of entropy bytes are requested. The connection is left open until the
73 * query is competed.
74 * RAND_query_egd_bytes() returns with
75 * -1 if an error occured during connection or communication.
76 * num the number of bytes read from the EGD socket. This number is either
77 * the number of bytes requested or smaller, if the EGD pool is
78 * drained and the daemon signals that the pool is empty.
79 * This routine does not touch any RAND_status(). This is necessary, since
80 * PRNG functions may call it during initialization.
81 *
82 * RAND_egd_bytes(path, bytes) will query "bytes" bytes and have them
83 * used to seed the PRNG.
84 * RAND_egd_bytes() is a wrapper for RAND_query_egd_bytes() with buf=NULL.
85 * Unlike RAND_query_egd_bytes(), RAND_status() is used to test the
86 * seed status so that the return value can reflect the seed state:
87 * -1 if an error occured during connection or communication _or_
88 * if the PRNG has still not received the required seeding.
89 * num the number of bytes read from the EGD socket. This number is either
90 * the number of bytes requested or smaller, if the EGD pool is
91 * drained and the daemon signals that the pool is empty.
92 *
93 * RAND_egd(path) will query 255 bytes and use the bytes retreived to seed
94 * the PRNG.
95 * RAND_egd() is a wrapper for RAND_egd_bytes() with numbytes=255.
96 */

98 #if defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SY
99 int RAND_query_egd_bytes(const char *path, unsigned char *buf, int bytes)
100 {
101 return(-1);
102 }
103 int RAND_egd(const char *path)
104 {
105 return(-1);
106 }

108 int RAND_egd_bytes(const char *path,int bytes)
109 {
110 return(-1);
111 }
112 #else
113 #include <openssl/opensslconf.h>
114 #include OPENSSL_UNISTD
115 #include <sys/types.h>
116 #include <sys/socket.h>
117 #ifndef NO_SYS_UN_H
118 # ifdef OPENSSL_SYS_VXWORKS
119 # include <streams/un.h>
120 # else
121 # include <sys/un.h>
122 # endif
123 #else
124 struct sockaddr_un {
125 short sun_family; /* AF_UNIX */
126 char sun_path[108]; /* path name (gag) */
127 };

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_egd.c 3

128 #endif /* NO_SYS_UN_H */
129 #include <string.h>
130 #include <errno.h>

132 #ifndef offsetof
133 # define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
134 #endif

136 int RAND_query_egd_bytes(const char *path, unsigned char *buf, int bytes)
137 {
138 int ret = 0;
139 struct sockaddr_un addr;
140 int len, num, numbytes;
141 int fd = -1;
142 int success;
143 unsigned char egdbuf[2], tempbuf[255], *retrievebuf;

145 memset(&addr, 0, sizeof(addr));
146 addr.sun_family = AF_UNIX;
147 if (strlen(path) >= sizeof(addr.sun_path))
148 return (-1);
149 BUF_strlcpy(addr.sun_path,path,sizeof addr.sun_path);
150 len = offsetof(struct sockaddr_un, sun_path) + strlen(path);
151 fd = socket(AF_UNIX, SOCK_STREAM, 0);
152 if (fd == -1) return (-1);
153 success = 0;
154 while (!success)
155 {
156 if (connect(fd, (struct sockaddr *)&addr, len) == 0)
157 success = 1;
158 else
159 {
160 switch (errno)
161 {
162 #ifdef EINTR
163 case EINTR:
164 #endif
165 #ifdef EAGAIN
166 case EAGAIN:
167 #endif
168 #ifdef EINPROGRESS
169 case EINPROGRESS:
170 #endif
171 #ifdef EALREADY
172 case EALREADY:
173 #endif
174 /* No error, try again */
175 break;
176 #ifdef EISCONN
177 case EISCONN:
178 success = 1;
179 break;
180 #endif
181 default:
182 goto err; /* failure */
183 }
184 }
185 }

187 while(bytes > 0)
188 {
189 egdbuf[0] = 1;
190 egdbuf[1] = bytes < 255 ? bytes : 255;
191 numbytes = 0;
192 while (numbytes != 2)
193 {

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_egd.c 4

194 num = write(fd, egdbuf + numbytes, 2 - numbytes);
195 if (num >= 0)
196 numbytes += num;
197 else
198 {
199 switch (errno)
200 {
201 #ifdef EINTR
202 case EINTR:
203 #endif
204 #ifdef EAGAIN
205 case EAGAIN:
206 #endif
207 /* No error, try again */
208 break;
209 default:
210 ret = -1;
211 goto err; /* failure */
212 }
213 }
214 }
215 numbytes = 0;
216 while (numbytes != 1)
217 {
218 num = read(fd, egdbuf, 1);
219 if (num == 0)
220 goto err; /* descriptor closed */
221 else if (num > 0)
222 numbytes += num;
223 else
224 {
225 switch (errno)
226 {
227 #ifdef EINTR
228 case EINTR:
229 #endif
230 #ifdef EAGAIN
231 case EAGAIN:
232 #endif
233 /* No error, try again */
234 break;
235 default:
236 ret = -1;
237 goto err; /* failure */
238 }
239 }
240 }
241 if(egdbuf[0] == 0)
242 goto err;
243 if (buf)
244 retrievebuf = buf + ret;
245 else
246 retrievebuf = tempbuf;
247 numbytes = 0;
248 while (numbytes != egdbuf[0])
249 {
250 num = read(fd, retrievebuf + numbytes, egdbuf[0] - numbytes);
251 if (num == 0)
252 goto err; /* descriptor closed */
253 else if (num > 0)
254 numbytes += num;
255 else
256 {
257 switch (errno)
258 {
259 #ifdef EINTR

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_egd.c 5

260 case EINTR:
261 #endif
262 #ifdef EAGAIN
263 case EAGAIN:
264 #endif
265 /* No error, try again */
266 break;
267 default:
268 ret = -1;
269 goto err; /* failure */
270 }
271 }
272 }
273 ret += egdbuf[0];
274 bytes -= egdbuf[0];
275 if (!buf)
276 RAND_seed(tempbuf, egdbuf[0]);
277 }
278 err:
279 if (fd != -1) close(fd);
280 return(ret);
281 }

284 int RAND_egd_bytes(const char *path, int bytes)
285 {
286 int num, ret = 0;

288 num = RAND_query_egd_bytes(path, NULL, bytes);
289 if (num < 1) goto err;
290 if (RAND_status() == 1)
291 ret = num;
292 err:
293 return(ret);
294 }

297 int RAND_egd(const char *path)
298 {
299 return (RAND_egd_bytes(path, 255));
300 }

303 #endif

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_err.c 1

**
 3966 Fri May 30 18:32:06 2014
new/usr/src/lib/openssl/libsunw_crypto/rand/rand_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rand/rand_err.c */
2 /* ==
3 * Copyright (c) 1999-2011 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/rand.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_RAND,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_RAND,0,reason)

71 static ERR_STRING_DATA RAND_str_functs[]=
72 {
73 {ERR_FUNC(RAND_F_RAND_GET_RAND_METHOD), "RAND_get_rand_method"},
74 {ERR_FUNC(RAND_F_RAND_INIT_FIPS), "RAND_init_fips"},
75 {ERR_FUNC(RAND_F_SSLEAY_RAND_BYTES), "SSLEAY_RAND_BYTES"},
76 {0,NULL}
77 };

79 static ERR_STRING_DATA RAND_str_reasons[]=
80 {
81 {ERR_REASON(RAND_R_DUAL_EC_DRBG_DISABLED),"dual ec drbg disabled"},
82 {ERR_REASON(RAND_R_ERROR_INITIALISING_DRBG),"error initialising drbg"},
83 {ERR_REASON(RAND_R_ERROR_INSTANTIATING_DRBG),"error instantiating drbg"},
84 {ERR_REASON(RAND_R_NO_FIPS_RANDOM_METHOD_SET),"no fips random method set"},
85 {ERR_REASON(RAND_R_PRNG_NOT_SEEDED) ,"PRNG not seeded"},
86 {0,NULL}
87 };

89 #endif

91 void ERR_load_RAND_strings(void)
92 {
93 #ifndef OPENSSL_NO_ERR

95 if (ERR_func_error_string(RAND_str_functs[0].error) == NULL)
96 {
97 ERR_load_strings(0,RAND_str_functs);
98 ERR_load_strings(0,RAND_str_reasons);
99 }
100 #endif
101 }

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_lib.c 1

**
 8652 Fri May 30 18:32:07 2014
new/usr/src/lib/openssl/libsunw_crypto/rand/rand_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rand/rand_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <time.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_lib.c 2

62 #include <openssl/rand.h>

64 #ifndef OPENSSL_NO_ENGINE
65 #include <openssl/engine.h>
66 #endif

68 #ifdef OPENSSL_FIPS
69 #include <openssl/fips.h>
70 #include <openssl/fips_rand.h>
71 #endif

73 #ifndef OPENSSL_NO_ENGINE
74 /* non-NULL if default_RAND_meth is ENGINE-provided */
75 static ENGINE *funct_ref =NULL;
76 #endif
77 static const RAND_METHOD *default_RAND_meth = NULL;

79 int RAND_set_rand_method(const RAND_METHOD *meth)
80 {
81 #ifndef OPENSSL_NO_ENGINE
82 if(funct_ref)
83 {
84 ENGINE_finish(funct_ref);
85 funct_ref = NULL;
86 }
87 #endif
88 default_RAND_meth = meth;
89 return 1;
90 }

92 const RAND_METHOD *RAND_get_rand_method(void)
93 {
94 if (!default_RAND_meth)
95 {
96 #ifndef OPENSSL_NO_ENGINE
97 ENGINE *e = ENGINE_get_default_RAND();
98 if(e)
99 {
100 default_RAND_meth = ENGINE_get_RAND(e);
101 if(!default_RAND_meth)
102 {
103 ENGINE_finish(e);
104 e = NULL;
105 }
106 }
107 if(e)
108 funct_ref = e;
109 else
110 #endif
111 default_RAND_meth = RAND_SSLeay();
112 }
113 return default_RAND_meth;
114 }

116 #ifndef OPENSSL_NO_ENGINE
117 int RAND_set_rand_engine(ENGINE *engine)
118 {
119 const RAND_METHOD *tmp_meth = NULL;
120 if(engine)
121 {
122 if(!ENGINE_init(engine))
123 return 0;
124 tmp_meth = ENGINE_get_RAND(engine);
125 if(!tmp_meth)
126 {
127 ENGINE_finish(engine);

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_lib.c 3

128 return 0;
129 }
130 }
131 /* This function releases any prior ENGINE so call it first */
132 RAND_set_rand_method(tmp_meth);
133 funct_ref = engine;
134 return 1;
135 }
136 #endif

138 void RAND_cleanup(void)
139 {
140 const RAND_METHOD *meth = RAND_get_rand_method();
141 if (meth && meth->cleanup)
142 meth->cleanup();
143 RAND_set_rand_method(NULL);
144 }

146 void RAND_seed(const void *buf, int num)
147 {
148 const RAND_METHOD *meth = RAND_get_rand_method();
149 if (meth && meth->seed)
150 meth->seed(buf,num);
151 }

153 void RAND_add(const void *buf, int num, double entropy)
154 {
155 const RAND_METHOD *meth = RAND_get_rand_method();
156 if (meth && meth->add)
157 meth->add(buf,num,entropy);
158 }

160 int RAND_bytes(unsigned char *buf, int num)
161 {
162 const RAND_METHOD *meth = RAND_get_rand_method();
163 if (meth && meth->bytes)
164 return meth->bytes(buf,num);
165 return(-1);
166 }

168 int RAND_pseudo_bytes(unsigned char *buf, int num)
169 {
170 const RAND_METHOD *meth = RAND_get_rand_method();
171 if (meth && meth->pseudorand)
172 return meth->pseudorand(buf,num);
173 return(-1);
174 }

176 int RAND_status(void)
177 {
178 const RAND_METHOD *meth = RAND_get_rand_method();
179 if (meth && meth->status)
180 return meth->status();
181 return 0;
182 }

184 #ifdef OPENSSL_FIPS

186 /* FIPS DRBG initialisation code. This sets up the DRBG for use by the
187 * rest of OpenSSL.
188 */

190 /* Entropy gatherer: use standard OpenSSL PRNG to seed (this will gather
191 * entropy internally through RAND_poll().
192 */

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_lib.c 4

194 static size_t drbg_get_entropy(DRBG_CTX *ctx, unsigned char **pout,
195 int entropy, size_t min_len, size_t max_len)
196 {
197 /* Round up request to multiple of block size */
198 min_len = ((min_len + 19) / 20) * 20;
199 *pout = OPENSSL_malloc(min_len);
200 if (!*pout)
201 return 0;
202 if (RAND_SSLeay()->bytes(*pout, min_len) <= 0)
203 {
204 OPENSSL_free(*pout);
205 *pout = NULL;
206 return 0;
207 }
208 return min_len;
209 }

211 static void drbg_free_entropy(DRBG_CTX *ctx, unsigned char *out, size_t olen)
212 {
213 if (out)
214 {
215 OPENSSL_cleanse(out, olen);
216 OPENSSL_free(out);
217 }
218 }

220 /* Set "additional input" when generating random data. This uses the
221 * current PID, a time value and a counter.
222 */

224 static size_t drbg_get_adin(DRBG_CTX *ctx, unsigned char **pout)
225 {
226 /* Use of static variables is OK as this happens under a lock */
227 static unsigned char buf[16];
228 static unsigned long counter;
229 FIPS_get_timevec(buf, &counter);
230 *pout = buf;
231 return sizeof(buf);
232 }

234 /* RAND_add() and RAND_seed() pass through to OpenSSL PRNG so it is
235 * correctly seeded by RAND_poll().
236 */

238 static int drbg_rand_add(DRBG_CTX *ctx, const void *in, int inlen,
239 double entropy)
240 {
241 RAND_SSLeay()->add(in, inlen, entropy);
242 return 1;
243 }

245 static int drbg_rand_seed(DRBG_CTX *ctx, const void *in, int inlen)
246 {
247 RAND_SSLeay()->seed(in, inlen);
248 return 1;
249 }

251 #ifndef OPENSSL_DRBG_DEFAULT_TYPE
252 #define OPENSSL_DRBG_DEFAULT_TYPE NID_aes_256_ctr
253 #endif
254 #ifndef OPENSSL_DRBG_DEFAULT_FLAGS
255 #define OPENSSL_DRBG_DEFAULT_FLAGS DRBG_FLAG_CTR_USE_DF
256 #endif

258 static int fips_drbg_type = OPENSSL_DRBG_DEFAULT_TYPE;
259 static int fips_drbg_flags = OPENSSL_DRBG_DEFAULT_FLAGS;

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_lib.c 5

261 void RAND_set_fips_drbg_type(int type, int flags)
262 {
263 fips_drbg_type = type;
264 fips_drbg_flags = flags;
265 }

267 int RAND_init_fips(void)
268 {
269 DRBG_CTX *dctx;
270 size_t plen;
271 unsigned char pers[32], *p;
272 #ifndef OPENSSL_ALLOW_DUAL_EC_DRBG
273 if (fips_drbg_type >> 16)
274 {
275 RANDerr(RAND_F_RAND_INIT_FIPS, RAND_R_DUAL_EC_DRBG_DISABLED);
276 return 0;
277 }
278 #endif
279
280 dctx = FIPS_get_default_drbg();
281 if (FIPS_drbg_init(dctx, fips_drbg_type, fips_drbg_flags) <= 0)
282 {
283 RANDerr(RAND_F_RAND_INIT_FIPS, RAND_R_ERROR_INITIALISING_DRBG);
284 return 0;
285 }
286
287 FIPS_drbg_set_callbacks(dctx,
288 drbg_get_entropy, drbg_free_entropy, 20,
289 drbg_get_entropy, drbg_free_entropy);
290 FIPS_drbg_set_rand_callbacks(dctx, drbg_get_adin, 0,
291 drbg_rand_seed, drbg_rand_add);
292 /* Personalisation string: a string followed by date time vector */
293 strcpy((char *)pers, "OpenSSL DRBG2.0");
294 plen = drbg_get_adin(dctx, &p);
295 memcpy(pers + 16, p, plen);

297 if (FIPS_drbg_instantiate(dctx, pers, sizeof(pers)) <= 0)
298 {
299 RANDerr(RAND_F_RAND_INIT_FIPS, RAND_R_ERROR_INSTANTIATING_DRBG);
300 return 0;
301 }
302 FIPS_rand_set_method(FIPS_drbg_method());
303 return 1;
304 }

306 #endif

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_nw.c 1

**
 7722 Fri May 30 18:32:07 2014
new/usr/src/lib/openssl/libsunw_crypto/rand/rand_nw.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rand/rand_nw.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_nw.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include "cryptlib.h"
113 #include <openssl/rand.h>
114 #include "rand_lcl.h"

116 #if defined (OPENSSL_SYS_NETWARE)

118 #if defined(NETWARE_LIBC)
119 #include <nks/thread.h>
120 #else
121 #include <nwthread.h>
122 #endif

124 extern int GetProcessSwitchCount(void);
125 #if !defined(NETWARE_LIBC) || (CURRENT_NDK_THRESHOLD < 509220000)
126 extern void *RunningProcess; /* declare here same as found in newer NDKs */
127 extern unsigned long GetSuperHighResolutionTimer(void);

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_nw.c 3

128 #endif

130 /* the FAQ indicates we need to provide at least 20 bytes (160 bits) of seed
131 */
132 int RAND_poll(void)
133 {
134 unsigned long l;
135 unsigned long tsc;
136 int i;

138 /* There are several options to gather miscellaneous data
139 * but for now we will loop checking the time stamp counter (rdtsc) and
140 * the SuperHighResolutionTimer. Each iteration will collect 8 bytes
141 * of data but it is treated as only 1 byte of entropy. The call to
142 * ThreadSwitchWithDelay() will introduce additional variability into
143 * the data returned by rdtsc.
144 *
145 * Applications can agument the seed material by adding additional
146 * stuff with RAND_add() and should probably do so.
147 */
148 l = GetProcessSwitchCount();
149 RAND_add(&l,sizeof(l),1);
150
151 /* need to cast the void* to unsigned long here */
152 l = (unsigned long)RunningProcess;
153 RAND_add(&l,sizeof(l),1);

155 for(i=2; i<ENTROPY_NEEDED; i++)
156 {
157 #ifdef __MWERKS__
158 asm
159 {
160 rdtsc
161 mov tsc, eax
162 }
163 #elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(O
164 asm volatile("rdtsc":"=a"(tsc)::"edx");
165 #endif

167 RAND_add(&tsc, sizeof(tsc), 1);

169 l = GetSuperHighResolutionTimer();
170 RAND_add(&l, sizeof(l), 0);

172 # if defined(NETWARE_LIBC)
173 NXThreadYield();
174 # else /* NETWARE_CLIB */
175 ThreadSwitchWithDelay();
176 # endif
177 }

179 return 1;
180 }

182 #endif

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_os2.c 1

**
 5687 Fri May 30 18:32:07 2014
new/usr/src/lib/openssl/libsunw_crypto/rand/rand_os2.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rand/rand_os2.c */
2 /* ==
3 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 #include "cryptlib.h"
57 #include <openssl/rand.h>
58 #include "rand_lcl.h"

60 #ifdef OPENSSL_SYS_OS2

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_os2.c 2

62 #define INCL_DOSPROCESS
63 #define INCL_DOSPROFILE
64 #define INCL_DOSMISC
65 #define INCL_DOSMODULEMGR
66 #include <os2.h>

68 #define CMD_KI_RDCNT (0x63)

70 typedef struct _CPUUTIL {
71 ULONG ulTimeLow; /* Low 32 bits of time stamp */
72 ULONG ulTimeHigh; /* High 32 bits of time stamp */
73 ULONG ulIdleLow; /* Low 32 bits of idle time */
74 ULONG ulIdleHigh; /* High 32 bits of idle time */
75 ULONG ulBusyLow; /* Low 32 bits of busy time */
76 ULONG ulBusyHigh; /* High 32 bits of busy time */
77 ULONG ulIntrLow; /* Low 32 bits of interrupt time */
78 ULONG ulIntrHigh; /* High 32 bits of interrupt time */
79 } CPUUTIL;

81 #ifndef __KLIBC__
82 APIRET APIENTRY(*DosPerfSysCall) (ULONG ulCommand, ULONG ulParm1, ULONG ulParm2,
83 APIRET APIENTRY(*DosQuerySysState) (ULONG func, ULONG arg1, ULONG pid, ULONG _re
84 #endif
85 HMODULE hDoscalls = 0;

87 int RAND_poll(void)
88 {
89 char failed_module[20];
90 QWORD qwTime;
91 ULONG SysVars[QSV_FOREGROUND_PROCESS];

93 if (hDoscalls == 0) {
94 ULONG rc = DosLoadModule(failed_module, sizeof(failed_module), "DOSCALLS

96 #ifndef __KLIBC__
97 if (rc == 0) {
98 rc = DosQueryProcAddr(hDoscalls, 976, NULL, (PFN *)&DosPerfSysCall);

100 if (rc)
101 DosPerfSysCall = NULL;

103 rc = DosQueryProcAddr(hDoscalls, 368, NULL, (PFN *)&DosQuerySysState

105 if (rc)
106 DosQuerySysState = NULL;
107 }
108 #endif
109 }

111 /* Sample the hi-res timer, runs at around 1.1 MHz */
112 DosTmrQueryTime(&qwTime);
113 RAND_add(&qwTime, sizeof(qwTime), 2);

115 /* Sample a bunch of system variables, includes various process & memory sta
116 DosQuerySysInfo(1, QSV_FOREGROUND_PROCESS, SysVars, sizeof(SysVars));
117 RAND_add(SysVars, sizeof(SysVars), 4);

119 /* If available, sample CPU registers that count at CPU MHz
120 * Only fairly new CPUs (PPro & K6 onwards) & OS/2 versions support this
121 */
122 if (DosPerfSysCall) {
123 CPUUTIL util;

125 if (DosPerfSysCall(CMD_KI_RDCNT, (ULONG)&util, 0, 0) == 0) {
126 RAND_add(&util, sizeof(util), 10);
127 }

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_os2.c 3

128 else {
129 #ifndef __KLIBC__
130 DosPerfSysCall = NULL;
131 #endif
132 }
133 }

135 /* DosQuerySysState() gives us a huge quantity of process, thread, memory &
136 if (DosQuerySysState) {
137 char *buffer = OPENSSL_malloc(256 * 1024);

139 if (DosQuerySysState(0x1F, 0, 0, 0, buffer, 256 * 1024) == 0) {
140 /* First 4 bytes in buffer is a pointer to the thread count
141 * there should be at least 1 byte of entropy per thread
142 */
143 RAND_add(buffer, 256 * 1024, **(ULONG **)buffer);
144 }

146 OPENSSL_free(buffer);
147 return 1;
148 }

150 return 0;
151 }

153 #endif /* OPENSSL_SYS_OS2 */

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_unix.c 1

**
 13510 Fri May 30 18:32:07 2014
new/usr/src/lib/openssl/libsunw_crypto/rand/rand_unix.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rand/rand_unix.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_unix.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 #include <stdio.h>

113 #define USE_SOCKETS
114 #include "e_os.h"
115 #include "cryptlib.h"
116 #include <openssl/rand.h>
117 #include "rand_lcl.h"

119 #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) || defined(OPEN

121 #include <sys/types.h>
122 #include <sys/time.h>
123 #include <sys/times.h>
124 #include <sys/stat.h>
125 #include <fcntl.h>
126 #include <unistd.h>
127 #include <time.h>

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_unix.c 3

128 #if defined(OPENSSL_SYS_LINUX) /* should actually be available virtually everywh
129 # include <poll.h>
130 #endif
131 #include <limits.h>
132 #ifndef FD_SETSIZE
133 # define FD_SETSIZE (8*sizeof(fd_set))
134 #endif

136 #if defined(OPENSSL_SYS_VOS)

138 /* The following algorithm repeatedly samples the real-time clock
139 (RTC) to generate a sequence of unpredictable data. The algorithm
140 relies upon the uneven execution speed of the code (due to factors
141 such as cache misses, interrupts, bus activity, and scheduling) and
142 upon the rather large relative difference between the speed of the
143 clock and the rate at which it can be read.

145 If this code is ported to an environment where execution speed is
146 more constant or where the RTC ticks at a much slower rate, or the
147 clock can be read with fewer instructions, it is likely that the
148 results would be far more predictable.

150 As a precaution, we generate 4 times the minimum required amount of
151 seed data. */

153 int RAND_poll(void)
154 {
155 short int code;
156 gid_t curr_gid;
157 pid_t curr_pid;
158 uid_t curr_uid;
159 int i, k;
160 struct timespec ts;
161 unsigned char v;

163 #ifdef OPENSSL_SYS_VOS_HPPA
164 long duration;
165 extern void s$sleep (long *_duration, short int *_code);
166 #else
167 #ifdef OPENSSL_SYS_VOS_IA32
168 long long duration;
169 extern void s$sleep2 (long long *_duration, short int *_code);
170 #else
171 #error "Unsupported Platform."
172 #endif /* OPENSSL_SYS_VOS_IA32 */
173 #endif /* OPENSSL_SYS_VOS_HPPA */

175 /* Seed with the gid, pid, and uid, to ensure *some*
176 variation between different processes. */

178 curr_gid = getgid();
179 RAND_add (&curr_gid, sizeof curr_gid, 1);
180 curr_gid = 0;

182 curr_pid = getpid();
183 RAND_add (&curr_pid, sizeof curr_pid, 1);
184 curr_pid = 0;

186 curr_uid = getuid();
187 RAND_add (&curr_uid, sizeof curr_uid, 1);
188 curr_uid = 0;

190 for (i=0; i<(ENTROPY_NEEDED*4); i++)
191 {
192 /* burn some cpu; hope for interrupts, cache
193 collisions, bus interference, etc. */

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_unix.c 4

194 for (k=0; k<99; k++)
195 ts.tv_nsec = random ();

197 #ifdef OPENSSL_SYS_VOS_HPPA
198 /* sleep for 1/1024 of a second (976 us). */
199 duration = 1;
200 s$sleep (&duration, &code);
201 #else
202 #ifdef OPENSSL_SYS_VOS_IA32
203 /* sleep for 1/65536 of a second (15 us). */
204 duration = 1;
205 s$sleep2 (&duration, &code);
206 #endif /* OPENSSL_SYS_VOS_IA32 */
207 #endif /* OPENSSL_SYS_VOS_HPPA */

209 /* get wall clock time. */
210 clock_gettime (CLOCK_REALTIME, &ts);

212 /* take 8 bits */
213 v = (unsigned char) (ts.tv_nsec % 256);
214 RAND_add (&v, sizeof v, 1);
215 v = 0;
216 }
217 return 1;
218 }
219 #elif defined __OpenBSD__
220 int RAND_poll(void)
221 {
222 u_int32_t rnd = 0, i;
223 unsigned char buf[ENTROPY_NEEDED];

225 for (i = 0; i < sizeof(buf); i++) {
226 if (i % 4 == 0)
227 rnd = arc4random();
228 buf[i] = rnd;
229 rnd >>= 8;
230 }
231 RAND_add(buf, sizeof(buf), ENTROPY_NEEDED);
232 memset(buf, 0, sizeof(buf));

234 return 1;
235 }
236 #else /* !defined(__OpenBSD__) */
237 int RAND_poll(void)
238 {
239 unsigned long l;
240 pid_t curr_pid = getpid();
241 #if defined(DEVRANDOM) || defined(DEVRANDOM_EGD)
242 unsigned char tmpbuf[ENTROPY_NEEDED];
243 int n = 0;
244 #endif
245 #ifdef DEVRANDOM
246 static const char *randomfiles[] = { DEVRANDOM };
247 struct stat randomstats[sizeof(randomfiles)/sizeof(randomfiles[0])];
248 int fd;
249 unsigned int i;
250 #endif
251 #ifdef DEVRANDOM_EGD
252 static const char *egdsockets[] = { DEVRANDOM_EGD, NULL };
253 const char **egdsocket = NULL;
254 #endif

256 #ifdef DEVRANDOM
257 memset(randomstats,0,sizeof(randomstats));
258 /* Use a random entropy pool device. Linux, FreeBSD and OpenBSD
259 * have this. Use /dev/urandom if you can as /dev/random may block

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_unix.c 5

260 * if it runs out of random entries. */

262 for (i = 0; (i < sizeof(randomfiles)/sizeof(randomfiles[0])) &&
263 (n < ENTROPY_NEEDED); i++)
264 {
265 if ((fd = open(randomfiles[i], O_RDONLY
266 #ifdef O_NONBLOCK
267 |O_NONBLOCK
268 #endif
269 #ifdef O_BINARY
270 |O_BINARY
271 #endif
272 #ifdef O_NOCTTY /* If it happens to be a TTY (god forbid), do not make it
273 our controlling tty */
274 |O_NOCTTY
275 #endif
276)) >= 0)
277 {
278 int usec = 10*1000; /* spend 10ms on each file */
279 int r;
280 unsigned int j;
281 struct stat *st=&randomstats[i];

283 /* Avoid using same input... Used to be O_NOFOLLOW
284 * above, but it’s not universally appropriate... */
285 if (fstat(fd,st) != 0) { close(fd); continue; }
286 for (j=0;j<i;j++)
287 {
288 if (randomstats[j].st_ino==st->st_ino &&
289 randomstats[j].st_dev==st->st_dev)
290 break;
291 }
292 if (j<i) { close(fd); continue; }

294 do
295 {
296 int try_read = 0;

298 #if defined(OPENSSL_SYS_BEOS_R5)
299 /* select() is broken in BeOS R5, so we simply
300 * try to read something and snooze if we could
301 try_read = 1;

303 #elif defined(OPENSSL_SYS_LINUX)
304 /* use poll() */
305 struct pollfd pset;
306
307 pset.fd = fd;
308 pset.events = POLLIN;
309 pset.revents = 0;

311 if (poll(&pset, 1, usec / 1000) < 0)
312 usec = 0;
313 else
314 try_read = (pset.revents & POLLIN) != 0;

316 #else
317 /* use select() */
318 fd_set fset;
319 struct timeval t;
320
321 t.tv_sec = 0;
322 t.tv_usec = usec;

324 if (FD_SETSIZE > 0 && (unsigned)fd >= FD_SETSIZE
325 {

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_unix.c 6

326 /* can’t use select, so just try to read
327 try_read = 1;
328 }
329 else
330 {
331 FD_ZERO(&fset);
332 FD_SET(fd, &fset);
333
334 if (select(fd+1,&fset,NULL,NULL,&t) >= 0
335 {
336 usec = t.tv_usec;
337 if (FD_ISSET(fd, &fset))
338 try_read = 1;
339 }
340 else
341 usec = 0;
342 }
343 #endif
344
345 if (try_read)
346 {
347 r = read(fd,(unsigned char *)tmpbuf+n, E
348 if (r > 0)
349 n += r;
350 #if defined(OPENSSL_SYS_BEOS_R5)
351 if (r == 0)
352 snooze(t.tv_usec);
353 #endif
354 }
355 else
356 r = -1;
357
358 /* Some Unixen will update t in select(), some
359 won’t. For those who won’t, or if we
360 didn’t use select() in the first place,
361 give up here, otherwise, we will do
362 this once again for the remaining
363 time. */
364 if (usec == 10*1000)
365 usec = 0;
366 }
367 while ((r > 0 ||
368 (errno == EINTR || errno == EAGAIN)) && usec != 0

370 close(fd);
371 }
372 }
373 #endif /* defined(DEVRANDOM) */

375 #ifdef DEVRANDOM_EGD
376 /* Use an EGD socket to read entropy from an EGD or PRNGD entropy
377 * collecting daemon. */

379 for (egdsocket = egdsockets; *egdsocket && n < ENTROPY_NEEDED; egdsocket
380 {
381 int r;

383 r = RAND_query_egd_bytes(*egdsocket, (unsigned char *)tmpbuf+n,
384 ENTROPY_NEEDED-n);
385 if (r > 0)
386 n += r;
387 }
388 #endif /* defined(DEVRANDOM_EGD) */

390 #if defined(DEVRANDOM) || defined(DEVRANDOM_EGD)
391 if (n > 0)

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_unix.c 7

392 {
393 RAND_add(tmpbuf,sizeof tmpbuf,(double)n);
394 OPENSSL_cleanse(tmpbuf,n);
395 }
396 #endif

398 /* put in some default random data, we need more than just this */
399 l=curr_pid;
400 RAND_add(&l,sizeof(l),0.0);
401 l=getuid();
402 RAND_add(&l,sizeof(l),0.0);

404 l=time(NULL);
405 RAND_add(&l,sizeof(l),0.0);

407 #if defined(OPENSSL_SYS_BEOS)
408 {
409 system_info sysInfo;
410 get_system_info(&sysInfo);
411 RAND_add(&sysInfo,sizeof(sysInfo),0);
412 }
413 #endif

415 #if defined(DEVRANDOM) || defined(DEVRANDOM_EGD)
416 return 1;
417 #else
418 return 0;
419 #endif
420 }

422 #endif /* defined(__OpenBSD__) */
423 #endif /* !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) || define

426 #if defined(OPENSSL_SYS_VXWORKS)
427 int RAND_poll(void)
428 {
429 return 0;
430 }
431 #endif

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_win.c 1

**
 26805 Fri May 30 18:32:07 2014
new/usr/src/lib/openssl/libsunw_crypto/rand/rand_win.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rand/rand_win.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_win.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include "cryptlib.h"
113 #include <openssl/rand.h>
114 #include "rand_lcl.h"

116 #if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32)
117 #include <windows.h>
118 #ifndef _WIN32_WINNT
119 # define _WIN32_WINNT 0x0400
120 #endif
121 #include <wincrypt.h>
122 #include <tlhelp32.h>

124 /* Limit the time spent walking through the heap, processes, threads and modules
125 a maximum of 1000 miliseconds each, unless CryptoGenRandom failed */
126 #define MAXDELAY 1000

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_win.c 3

128 /* Intel hardware RNG CSP -- available from
129 * http://developer.intel.com/design/security/rng/redist_license.htm
130 */
131 #define PROV_INTEL_SEC 22
132 #define INTEL_DEF_PROV L"Intel Hardware Cryptographic Service Provider"

134 static void readtimer(void);
135 static void readscreen(void);

137 /* It appears like CURSORINFO, PCURSORINFO and LPCURSORINFO are only defined
138 when WINVER is 0x0500 and up, which currently only happens on Win2000.
139 Unfortunately, those are typedefs, so they’re a little bit difficult to
140 detect properly. On the other hand, the macro CURSOR_SHOWING is defined
141 within the same conditional, so it can be use to detect the absence of said
142 typedefs. */

144 #ifndef CURSOR_SHOWING
145 /*
146 * Information about the global cursor.
147 */
148 typedef struct tagCURSORINFO
149 {
150 DWORD cbSize;
151 DWORD flags;
152 HCURSOR hCursor;
153 POINT ptScreenPos;
154 } CURSORINFO, *PCURSORINFO, *LPCURSORINFO;

156 #define CURSOR_SHOWING 0x00000001
157 #endif /* CURSOR_SHOWING */

159 #if !defined(OPENSSL_SYS_WINCE)
160 typedef BOOL (WINAPI *CRYPTACQUIRECONTEXTW)(HCRYPTPROV *, LPCWSTR, LPCWSTR,
161 DWORD, DWORD);
162 typedef BOOL (WINAPI *CRYPTGENRANDOM)(HCRYPTPROV, DWORD, BYTE *);
163 typedef BOOL (WINAPI *CRYPTRELEASECONTEXT)(HCRYPTPROV, DWORD);

165 typedef HWND (WINAPI *GETFOREGROUNDWINDOW)(VOID);
166 typedef BOOL (WINAPI *GETCURSORINFO)(PCURSORINFO);
167 typedef DWORD (WINAPI *GETQUEUESTATUS)(UINT);

169 typedef HANDLE (WINAPI *CREATETOOLHELP32SNAPSHOT)(DWORD, DWORD);
170 typedef BOOL (WINAPI *CLOSETOOLHELP32SNAPSHOT)(HANDLE);
171 typedef BOOL (WINAPI *HEAP32FIRST)(LPHEAPENTRY32, DWORD, size_t);
172 typedef BOOL (WINAPI *HEAP32NEXT)(LPHEAPENTRY32);
173 typedef BOOL (WINAPI *HEAP32LIST)(HANDLE, LPHEAPLIST32);
174 typedef BOOL (WINAPI *PROCESS32)(HANDLE, LPPROCESSENTRY32);
175 typedef BOOL (WINAPI *THREAD32)(HANDLE, LPTHREADENTRY32);
176 typedef BOOL (WINAPI *MODULE32)(HANDLE, LPMODULEENTRY32);

178 #include <lmcons.h>
179 #include <lmstats.h>
180 #if 1 /* The NET API is Unicode only. It requires the use of the UNICODE
181 * macro. When UNICODE is defined LPTSTR becomes LPWSTR. LMSTR was
182 * was added to the Platform SDK to allow the NET API to be used in
183 * non-Unicode applications provided that Unicode strings were still
184 * used for input. LMSTR is defined as LPWSTR.
185 */
186 typedef NET_API_STATUS (NET_API_FUNCTION * NETSTATGET)
187 (LPWSTR, LPWSTR, DWORD, DWORD, LPBYTE*);
188 typedef NET_API_STATUS (NET_API_FUNCTION * NETFREE)(LPBYTE);
189 #endif /* 1 */
190 #endif /* !OPENSSL_SYS_WINCE */

192 int RAND_poll(void)
193 {

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_win.c 4

194 MEMORYSTATUS m;
195 HCRYPTPROV hProvider = 0;
196 DWORD w;
197 int good = 0;

199 /* Determine the OS version we are on so we can turn off things
200 * that do not work properly.
201 */
202 OSVERSIONINFO osverinfo ;
203 osverinfo.dwOSVersionInfoSize = sizeof(OSVERSIONINFO) ;
204 GetVersionEx(&osverinfo) ;

206 #if defined(OPENSSL_SYS_WINCE)
207 # if defined(_WIN32_WCE) && _WIN32_WCE>=300
208 /* Even though MSDN says _WIN32_WCE>=210, it doesn’t seem to be available
209 * in commonly available implementations prior 300... */
210 {
211 BYTE buf[64];
212 /* poll the CryptoAPI PRNG */
213 /* The CryptoAPI returns sizeof(buf) bytes of randomness */
214 if (CryptAcquireContextW(&hProvider, NULL, NULL, PROV_RSA_FULL,
215 CRYPT_VERIFYCONTEXT))
216 {
217 if (CryptGenRandom(hProvider, sizeof(buf), buf))
218 RAND_add(buf, sizeof(buf), sizeof(buf));
219 CryptReleaseContext(hProvider, 0);
220 }
221 }
222 # endif
223 #else /* OPENSSL_SYS_WINCE */
224 /*
225 * None of below libraries are present on Windows CE, which is
226 * why we #ifndef the whole section. This also excuses us from
227 * handling the GetProcAddress issue. The trouble is that in
228 * real Win32 API GetProcAddress is available in ANSI flavor
229 * only. In WinCE on the other hand GetProcAddress is a macro
230 * most commonly defined as GetProcAddressW, which accepts
231 * Unicode argument. If we were to call GetProcAddress under
232 * WinCE, I’d recommend to either redefine GetProcAddress as
233 * GetProcAddressA (there seem to be one in common CE spec) or
234 * implement own shim routine, which would accept ANSI argument
235 * and expand it to Unicode.
236 */
237 {
238 /* load functions dynamically - not available on all systems */
239 HMODULE advapi = LoadLibrary(TEXT("ADVAPI32.DLL"));
240 HMODULE kernel = LoadLibrary(TEXT("KERNEL32.DLL"));
241 HMODULE user = NULL;
242 HMODULE netapi = LoadLibrary(TEXT("NETAPI32.DLL"));
243 CRYPTACQUIRECONTEXTW acquire = NULL;
244 CRYPTGENRANDOM gen = NULL;
245 CRYPTRELEASECONTEXT release = NULL;
246 NETSTATGET netstatget = NULL;
247 NETFREE netfree = NULL;
248 BYTE buf[64];

250 if (netapi)
251 {
252 netstatget = (NETSTATGET) GetProcAddress(netapi,"NetStatisticsGe
253 netfree = (NETFREE) GetProcAddress(netapi,"NetApiBufferFree");
254 }

256 if (netstatget && netfree)
257 {
258 LPBYTE outbuf;
259 /* NetStatisticsGet() is a Unicode only function

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_win.c 5

260 * STAT_WORKSTATION_0 contains 45 fields and STAT_SERVER_0
261 * contains 17 fields. We treat each field as a source of
262 * one byte of entropy.
263 */

265 if (netstatget(NULL, L"LanmanWorkstation", 0, 0, &outbuf) == 0)
266 {
267 RAND_add(outbuf, sizeof(STAT_WORKSTATION_0), 45);
268 netfree(outbuf);
269 }
270 if (netstatget(NULL, L"LanmanServer", 0, 0, &outbuf) == 0)
271 {
272 RAND_add(outbuf, sizeof(STAT_SERVER_0), 17);
273 netfree(outbuf);
274 }
275 }

277 if (netapi)
278 FreeLibrary(netapi);

280 /* It appears like this can cause an exception deep within ADVAPI32.DLL
281 * at random times on Windows 2000. Reported by Jeffrey Altman.
282 * Only use it on NT.
283 */
284 /* Wolfgang Marczy <WMarczy@topcall.co.at> reports that
285 * the RegQueryValueEx call below can hang on NT4.0 (SP6).
286 * So we don’t use this at all for now. */
287 #if 0
288 if (osverinfo.dwPlatformId == VER_PLATFORM_WIN32_NT &&
289 osverinfo.dwMajorVersion < 5)
290 {
291 /* Read Performance Statistics from NT/2000 registry
292 * The size of the performance data can vary from call
293 * to call so we must guess the size of the buffer to use
294 * and increase its size if we get an ERROR_MORE_DATA
295 * return instead of ERROR_SUCCESS.
296 */
297 LONG rc=ERROR_MORE_DATA;
298 char * buf=NULL;
299 DWORD bufsz=0;
300 DWORD length;

302 while (rc == ERROR_MORE_DATA)
303 {
304 buf = realloc(buf,bufsz+8192);
305 if (!buf)
306 break;
307 bufsz += 8192;

309 length = bufsz;
310 rc = RegQueryValueEx(HKEY_PERFORMANCE_DATA, TEXT("Global
311 NULL, NULL, buf, &length);
312 }
313 if (rc == ERROR_SUCCESS)
314 {
315 /* For entropy count assume only least significant
316 * byte of each DWORD is random.
317 */
318 RAND_add(&length, sizeof(length), 0);
319 RAND_add(buf, length, length / 4.0);

321 /* Close the Registry Key to allow Windows to cleanup/cl
322 * the open handle
323 * Note: The ’HKEY_PERFORMANCE_DATA’ key is implicitly o
324 * when the RegQueryValueEx above is done. Howeve
325 * it is not explicitly closed, it can cause disk

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_win.c 6

326 * partition manipulation problems.
327 */
328 RegCloseKey(HKEY_PERFORMANCE_DATA);
329 }
330 if (buf)
331 free(buf);
332 }
333 #endif

335 if (advapi)
336 {
337 /*
338 * If it’s available, then it’s available in both ANSI
339 * and UNICODE flavors even in Win9x, documentation says.
340 * We favor Unicode...
341 */
342 acquire = (CRYPTACQUIRECONTEXTW) GetProcAddress(advapi,
343 "CryptAcquireContextW");
344 gen = (CRYPTGENRANDOM) GetProcAddress(advapi,
345 "CryptGenRandom");
346 release = (CRYPTRELEASECONTEXT) GetProcAddress(advapi,
347 "CryptReleaseContext");
348 }

350 if (acquire && gen && release)
351 {
352 /* poll the CryptoAPI PRNG */
353 /* The CryptoAPI returns sizeof(buf) bytes of randomness */
354 if (acquire(&hProvider, NULL, NULL, PROV_RSA_FULL,
355 CRYPT_VERIFYCONTEXT))
356 {
357 if (gen(hProvider, sizeof(buf), buf) != 0)
358 {
359 RAND_add(buf, sizeof(buf), 0);
360 good = 1;
361 #if 0
362 printf("randomness from PROV_RSA_FULL\n");
363 #endif
364 }
365 release(hProvider, 0);
366 }
367
368 /* poll the Pentium PRG with CryptoAPI */
369 if (acquire(&hProvider, 0, INTEL_DEF_PROV, PROV_INTEL_SEC, 0))
370 {
371 if (gen(hProvider, sizeof(buf), buf) != 0)
372 {
373 RAND_add(buf, sizeof(buf), sizeof(buf));
374 good = 1;
375 #if 0
376 printf("randomness from PROV_INTEL_SEC\n");
377 #endif
378 }
379 release(hProvider, 0);
380 }
381 }

383 if (advapi)
384 FreeLibrary(advapi);

386 if ((osverinfo.dwPlatformId != VER_PLATFORM_WIN32_NT ||
387 !OPENSSL_isservice()) &&
388 (user = LoadLibrary(TEXT("USER32.DLL"))))
389 {
390 GETCURSORINFO cursor;
391 GETFOREGROUNDWINDOW win;

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_win.c 7

392 GETQUEUESTATUS queue;

394 win = (GETFOREGROUNDWINDOW) GetProcAddress(user, "GetForegroundW
395 cursor = (GETCURSORINFO) GetProcAddress(user, "GetCursorInfo");
396 queue = (GETQUEUESTATUS) GetProcAddress(user, "GetQueueStatus");

398 if (win)
399 {
400 /* window handle */
401 HWND h = win();
402 RAND_add(&h, sizeof(h), 0);
403 }
404 if (cursor)
405 {
406 /* unfortunately, its not safe to call GetCursorInfo()
407 * on NT4 even though it exists in SP3 (or SP6) and
408 * higher.
409 */
410 if (osverinfo.dwPlatformId == VER_PLATFORM_WIN32_NT &&
411 osverinfo.dwMajorVersion < 5)
412 cursor = 0;
413 }
414 if (cursor)
415 {
416 /* cursor position */
417 /* assume 2 bytes of entropy */
418 CURSORINFO ci;
419 ci.cbSize = sizeof(CURSORINFO);
420 if (cursor(&ci))
421 RAND_add(&ci, ci.cbSize, 2);
422 }

424 if (queue)
425 {
426 /* message queue status */
427 /* assume 1 byte of entropy */
428 w = queue(QS_ALLEVENTS);
429 RAND_add(&w, sizeof(w), 1);
430 }

432 FreeLibrary(user);
433 }

435 /* Toolhelp32 snapshot: enumerate processes, threads, modules and heap
436 * http://msdn.microsoft.com/library/psdk/winbase/toolhelp_5pfd.htm
437 * (Win 9x and 2000 only, not available on NT)
438 *
439 * This seeding method was proposed in Peter Gutmann, Software
440 * Generation of Practically Strong Random Numbers,
441 * http://www.usenix.org/publications/library/proceedings/sec98/gutmann.
442 * revised version at http://www.cryptoengines.com/~peter/06_random.pdf
443 * (The assignment of entropy estimates below is arbitrary, but based
444 * on Peter’s analysis the full poll appears to be safe. Additional
445 * interactive seeding is encouraged.)
446 */

448 if (kernel)
449 {
450 CREATETOOLHELP32SNAPSHOT snap;
451 CLOSETOOLHELP32SNAPSHOT close_snap;
452 HANDLE handle;

454 HEAP32FIRST heap_first;
455 HEAP32NEXT heap_next;
456 HEAP32LIST heaplist_first, heaplist_next;
457 PROCESS32 process_first, process_next;

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_win.c 8

458 THREAD32 thread_first, thread_next;
459 MODULE32 module_first, module_next;

461 HEAPLIST32 hlist;
462 HEAPENTRY32 hentry;
463 PROCESSENTRY32 p;
464 THREADENTRY32 t;
465 MODULEENTRY32 m;
466 DWORD starttime = 0;

468 snap = (CREATETOOLHELP32SNAPSHOT)
469 GetProcAddress(kernel, "CreateToolhelp32Snapshot");
470 close_snap = (CLOSETOOLHELP32SNAPSHOT)
471 GetProcAddress(kernel, "CloseToolhelp32Snapshot");
472 heap_first = (HEAP32FIRST) GetProcAddress(kernel, "Heap32First")
473 heap_next = (HEAP32NEXT) GetProcAddress(kernel, "Heap32Next");
474 heaplist_first = (HEAP32LIST) GetProcAddress(kernel, "Heap32List
475 heaplist_next = (HEAP32LIST) GetProcAddress(kernel, "Heap32ListN
476 process_first = (PROCESS32) GetProcAddress(kernel, "Process32Fir
477 process_next = (PROCESS32) GetProcAddress(kernel, "Process32Next
478 thread_first = (THREAD32) GetProcAddress(kernel, "Thread32First"
479 thread_next = (THREAD32) GetProcAddress(kernel, "Thread32Next");
480 module_first = (MODULE32) GetProcAddress(kernel, "Module32First"
481 module_next = (MODULE32) GetProcAddress(kernel, "Module32Next");

483 if (snap && heap_first && heap_next && heaplist_first &&
484 heaplist_next && process_first && process_next &&
485 thread_first && thread_next && module_first &&
486 module_next && (handle = snap(TH32CS_SNAPALL,0))
487 != INVALID_HANDLE_VALUE)
488 {
489 /* heap list and heap walking */
490 /* HEAPLIST32 contains 3 fields that will change with
491 * each entry. Consider each field a source of 1 byte
492 * of entropy.
493 * HEAPENTRY32 contains 5 fields that will change with
494 * each entry. Consider each field a source of 1 byte
495 * of entropy.
496 */
497 ZeroMemory(&hlist, sizeof(HEAPLIST32));
498 hlist.dwSize = sizeof(HEAPLIST32);
499 if (good) starttime = GetTickCount();
500 #ifdef _MSC_VER
501 if (heaplist_first(handle, &hlist))
502 {
503 /*
504 following discussion on dev ML, exception on
505 platform) is theoretically of unknown origin;
506 loop here when this theoretical case occurs;
507 the expected (MSDN documented) exception-thro
508 Heap32Next() on WinCE.

510 based on patch in original message by Tanguy
511 Subject: RAND_poll() and CreateToolhelp32Snap
512 */
513 int ex_cnt_limit = 42;
514 do
515 {
516 RAND_add(&hlist, hlist.dwSize, 3);
517 __try
518 {
519 ZeroMemory(&hentry, sizeof(HEAPE
520 hentry.dwSize = sizeof(HEAPENTRY32);
521 if (heap_first(&hentry,
522 hlist.th32ProcessID,
523 hlist.th32HeapID))

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_win.c 9

524 {
525 int entrycnt = 80;
526 do
527 RAND_add(&hentry,
528 hentry.dwSize, 5
529 while (heap_next(&hentry)
530 && (!good || (GetTickCount()-sta
531 && --entrycnt > 0);
532 }
533 }
534 __except (EXCEPTION_EXECUTE_HANDLER)
535 {
536 /* ignore access violati
537 ex_cnt_limit--;
538 }
539 } while (heaplist_next(handle, &hlist)
540 && (!good || (GetTickCount()-sta
541 && ex_cnt_limit > 0);
542 }

544 #else
545 if (heaplist_first(handle, &hlist))
546 {
547 do
548 {
549 RAND_add(&hlist, hlist.dwSize, 3);
550 hentry.dwSize = sizeof(HEAPENTRY32);
551 if (heap_first(&hentry,
552 hlist.th32ProcessID,
553 hlist.th32HeapID))
554 {
555 int entrycnt = 80;
556 do
557 RAND_add(&hentry,
558 hentry.dwSize, 5
559 while (heap_next(&hentry)
560 && --entrycnt > 0);
561 }
562 } while (heaplist_next(handle, &hlist)
563 && (!good || (GetTickCount()-sta
564 }
565 #endif

567 /* process walking */
568 /* PROCESSENTRY32 contains 9 fields that will change
569 * with each entry. Consider each field a source of
570 * 1 byte of entropy.
571 */
572 p.dwSize = sizeof(PROCESSENTRY32);
573
574 if (good) starttime = GetTickCount();
575 if (process_first(handle, &p))
576 do
577 RAND_add(&p, p.dwSize, 9);
578 while (process_next(handle, &p) && (!good || (Ge

580 /* thread walking */
581 /* THREADENTRY32 contains 6 fields that will change
582 * with each entry. Consider each field a source of
583 * 1 byte of entropy.
584 */
585 t.dwSize = sizeof(THREADENTRY32);
586 if (good) starttime = GetTickCount();
587 if (thread_first(handle, &t))
588 do
589 RAND_add(&t, t.dwSize, 6);

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_win.c 10

590 while (thread_next(handle, &t) && (!good || (Get

592 /* module walking */
593 /* MODULEENTRY32 contains 9 fields that will change
594 * with each entry. Consider each field a source of
595 * 1 byte of entropy.
596 */
597 m.dwSize = sizeof(MODULEENTRY32);
598 if (good) starttime = GetTickCount();
599 if (module_first(handle, &m))
600 do
601 RAND_add(&m, m.dwSize, 9);
602 while (module_next(handle, &m)
603 && (!good || (GetTickCount()-sta
604 if (close_snap)
605 close_snap(handle);
606 else
607 CloseHandle(handle);

609 }

611 FreeLibrary(kernel);
612 }
613 }
614 #endif /* !OPENSSL_SYS_WINCE */

616 /* timer data */
617 readtimer();
618
619 /* memory usage statistics */
620 GlobalMemoryStatus(&m);
621 RAND_add(&m, sizeof(m), 1);

623 /* process ID */
624 w = GetCurrentProcessId();
625 RAND_add(&w, sizeof(w), 1);

627 #if 0
628 printf("Exiting RAND_poll\n");
629 #endif

631 return(1);
632 }

634 int RAND_event(UINT iMsg, WPARAM wParam, LPARAM lParam)
635 {
636 double add_entropy=0;

638 switch (iMsg)
639 {
640 case WM_KEYDOWN:
641 {
642 static WPARAM key;
643 if (key != wParam)
644 add_entropy = 0.05;
645 key = wParam;
646 }
647 break;
648 case WM_MOUSEMOVE:
649 {
650 static int lastx,lasty,lastdx,lastdy;
651 int x,y,dx,dy;

653 x=LOWORD(lParam);
654 y=HIWORD(lParam);
655 dx=lastx-x;

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_win.c 11

656 dy=lasty-y;
657 if (dx != 0 && dy != 0 && dx-lastdx != 0 && dy-lastdy !=
658 add_entropy=.2;
659 lastx=x, lasty=y;
660 lastdx=dx, lastdy=dy;
661 }
662 break;
663 }

665 readtimer();
666 RAND_add(&iMsg, sizeof(iMsg), add_entropy);
667 RAND_add(&wParam, sizeof(wParam), 0);
668 RAND_add(&lParam, sizeof(lParam), 0);
669
670 return (RAND_status());
671 }

674 void RAND_screen(void) /* function available for backward compatibility */
675 {
676 RAND_poll();
677 readscreen();
678 }

681 /* feed timing information to the PRNG */
682 static void readtimer(void)
683 {
684 DWORD w;
685 LARGE_INTEGER l;
686 static int have_perfc = 1;
687 #if defined(_MSC_VER) && defined(_M_X86)
688 static int have_tsc = 1;
689 DWORD cyclecount;

691 if (have_tsc) {
692 __try {
693 __asm {
694 _emit 0x0f
695 _emit 0x31
696 mov cyclecount, eax
697 }
698 RAND_add(&cyclecount, sizeof(cyclecount), 1);
699 } __except(EXCEPTION_EXECUTE_HANDLER) {
700 have_tsc = 0;
701 }
702 }
703 #else
704 # define have_tsc 0
705 #endif

707 if (have_perfc) {
708 if (QueryPerformanceCounter(&l) == 0)
709 have_perfc = 0;
710 else
711 RAND_add(&l, sizeof(l), 0);
712 }

714 if (!have_tsc && !have_perfc) {
715 w = GetTickCount();
716 RAND_add(&w, sizeof(w), 0);
717 }
718 }

720 /* feed screen contents to PRNG */
721 /***

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_win.c 12

722 *
723 * Created 960901 by Gertjan van Oosten, gertjan@West.NL, West Consulting B.V.
724 *
725 * Code adapted from
726 * <URL:http://support.microsoft.com/default.aspx?scid=kb;[LN];97193>;
727 * the original copyright message is:
728 *
729 * (C) Copyright Microsoft Corp. 1993. All rights reserved.
730 *
731 * You have a royalty-free right to use, modify, reproduce and
732 * distribute the Sample Files (and/or any modified version) in
733 * any way you find useful, provided that you agree that
734 * Microsoft has no warranty obligations or liability for any
735 * Sample Application Files which are modified.
736 */

738 static void readscreen(void)
739 {
740 #if !defined(OPENSSL_SYS_WINCE) && !defined(OPENSSL_SYS_WIN32_CYGWIN)
741 HDC hScrDC; /* screen DC */
742 HDC hMemDC; /* memory DC */
743 HBITMAP hBitmap; /* handle for our bitmap */
744 HBITMAP hOldBitmap; /* handle for previous bitmap */
745 BITMAP bm; /* bitmap properties */
746 unsigned int size; /* size of bitmap */
747 char *bmbits; /* contents of bitmap */
748 int w; /* screen width */
749 int h; /* screen height */
750 int y; /* y-coordinate of screen lines to grab */
751 int n = 16; /* number of screen lines to grab at a time */

753 if (check_winnt() && OPENSSL_isservice()>0)
754 return;

756 /* Create a screen DC and a memory DC compatible to screen DC */
757 hScrDC = CreateDC(TEXT("DISPLAY"), NULL, NULL, NULL);
758 hMemDC = CreateCompatibleDC(hScrDC);

760 /* Get screen resolution */
761 w = GetDeviceCaps(hScrDC, HORZRES);
762 h = GetDeviceCaps(hScrDC, VERTRES);

764 /* Create a bitmap compatible with the screen DC */
765 hBitmap = CreateCompatibleBitmap(hScrDC, w, n);

767 /* Select new bitmap into memory DC */
768 hOldBitmap = SelectObject(hMemDC, hBitmap);

770 /* Get bitmap properties */
771 GetObject(hBitmap, sizeof(BITMAP), (LPSTR)&bm);
772 size = (unsigned int)bm.bmWidthBytes * bm.bmHeight * bm.bmPlanes;

774 bmbits = OPENSSL_malloc(size);
775 if (bmbits) {
776 /* Now go through the whole screen, repeatedly grabbing n lines */
777 for (y = 0; y < h-n; y += n)
778 {
779 unsigned char md[MD_DIGEST_LENGTH];

781 /* Bitblt screen DC to memory DC */
782 BitBlt(hMemDC, 0, 0, w, n, hScrDC, 0, y, SRCCOPY);

784 /* Copy bitmap bits from memory DC to bmbits */
785 GetBitmapBits(hBitmap, size, bmbits);

787 /* Get the hash of the bitmap */

new/usr/src/lib/openssl/libsunw_crypto/rand/rand_win.c 13

788 MD(bmbits,size,md);

790 /* Seed the random generator with the hash value */
791 RAND_add(md, MD_DIGEST_LENGTH, 0);
792 }

794 OPENSSL_free(bmbits);
795 }

797 /* Select old bitmap back into memory DC */
798 hBitmap = SelectObject(hMemDC, hOldBitmap);

800 /* Clean up */
801 DeleteObject(hBitmap);
802 DeleteDC(hMemDC);
803 DeleteDC(hScrDC);
804 #endif /* !OPENSSL_SYS_WINCE */
805 }

807 #endif

new/usr/src/lib/openssl/libsunw_crypto/rand/randfile.c 1

**
 9941 Fri May 30 18:32:07 2014
new/usr/src/lib/openssl/libsunw_crypto/rand/randfile.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rand/randfile.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* We need to define this to get macros like S_IFBLK and S_IFCHR */
60 #if !defined(OPENSSL_SYS_VXWORKS)
61 #define _XOPEN_SOURCE 500

new/usr/src/lib/openssl/libsunw_crypto/rand/randfile.c 2

62 #endif

64 #include <errno.h>
65 #include <stdio.h>
66 #include <stdlib.h>
67 #include <string.h>

69 #include "e_os.h"
70 #include <openssl/crypto.h>
71 #include <openssl/rand.h>
72 #include <openssl/buffer.h>

74 #ifdef OPENSSL_SYS_VMS
75 #include <unixio.h>
76 #endif
77 #ifndef NO_SYS_TYPES_H
78 # include <sys/types.h>
79 #endif
80 #ifndef OPENSSL_NO_POSIX_IO
81 # include <sys/stat.h>
82 #endif

84 #ifdef _WIN32
85 #define stat _stat
86 #define chmod _chmod
87 #define open _open
88 #define fdopen _fdopen
89 #endif

91 #undef BUFSIZE
92 #define BUFSIZE 1024
93 #define RAND_DATA 1024

95 #ifdef OPENSSL_SYS_VMS
96 /* This declaration is a nasty hack to get around vms’ extension to fopen
97 * for passing in sharing options being disabled by our /STANDARD=ANSI89 */
98 static FILE *(*const vms_fopen)(const char *, const char *, ...) =
99 (FILE *(*)(const char *, const char *, ...))fopen;
100 #define VMS_OPEN_ATTRS "shr=get,put,upd,del","ctx=bin,stm","rfm=stm","rat=none",
101 #endif

103 /* #define RFILE ".rnd" - defined in ../../e_os.h */

105 /* Note that these functions are intended for seed files only.
106 * Entropy devices and EGD sockets are handled in rand_unix.c */

108 int RAND_load_file(const char *file, long bytes)
109 {
110 /* If bytes >= 0, read up to ’bytes’ bytes.
111 * if bytes == -1, read complete file. */

113 MS_STATIC unsigned char buf[BUFSIZE];
114 #ifndef OPENSSL_NO_POSIX_IO
115 struct stat sb;
116 #endif
117 int i,ret=0,n;
118 FILE *in;

120 if (file == NULL) return(0);

122 #ifndef OPENSSL_NO_POSIX_IO
123 #ifdef PURIFY
124 /* struct stat can have padding and unused fields that may not be
125 * initialized in the call to stat(). We need to clear the entire
126 * structure before calling RAND_add() to avoid complaints from
127 * applications such as Valgrind.

new/usr/src/lib/openssl/libsunw_crypto/rand/randfile.c 3

128 */
129 memset(&sb, 0, sizeof(sb));
130 #endif
131 if (stat(file,&sb) < 0) return(0);
132 RAND_add(&sb,sizeof(sb),0.0);
133 #endif
134 if (bytes == 0) return(ret);

136 #ifdef OPENSSL_SYS_VMS
137 in=vms_fopen(file,"rb",VMS_OPEN_ATTRS);
138 #else
139 in=fopen(file,"rb");
140 #endif
141 if (in == NULL) goto err;
142 #if defined(S_IFBLK) && defined(S_IFCHR) && !defined(OPENSSL_NO_POSIX_IO)
143 if (sb.st_mode & (S_IFBLK | S_IFCHR)) {
144 /* this file is a device. we don’t want read an infinite number
145 * of bytes from a random device, nor do we want to use buffered
146 * I/O because we will waste system entropy.
147 */
148 bytes = (bytes == -1) ? 2048 : bytes; /* ok, is 2048 enough? */
149 #ifndef OPENSSL_NO_SETVBUF_IONBF
150 setvbuf(in, NULL, _IONBF, 0); /* don’t do buffered reads */
151 #endif /* ndef OPENSSL_NO_SETVBUF_IONBF */
152 }
153 #endif
154 for (;;)
155 {
156 if (bytes > 0)
157 n = (bytes < BUFSIZE)?(int)bytes:BUFSIZE;
158 else
159 n = BUFSIZE;
160 i=fread(buf,1,n,in);
161 if (i <= 0) break;
162 #ifdef PURIFY
163 RAND_add(buf,i,(double)i);
164 #else
165 /* even if n != i, use the full array */
166 RAND_add(buf,n,(double)i);
167 #endif
168 ret+=i;
169 if (bytes > 0)
170 {
171 bytes-=n;
172 if (bytes <= 0) break;
173 }
174 }
175 fclose(in);
176 OPENSSL_cleanse(buf,BUFSIZE);
177 err:
178 return(ret);
179 }

181 int RAND_write_file(const char *file)
182 {
183 unsigned char buf[BUFSIZE];
184 int i,ret=0,rand_err=0;
185 FILE *out = NULL;
186 int n;
187 #ifndef OPENSSL_NO_POSIX_IO
188 struct stat sb;
189
190 i=stat(file,&sb);
191 if (i != -1) {
192 #if defined(S_ISBLK) && defined(S_ISCHR)
193 if (S_ISBLK(sb.st_mode) || S_ISCHR(sb.st_mode)) {

new/usr/src/lib/openssl/libsunw_crypto/rand/randfile.c 4

194 /* this file is a device. we don’t write back to it.
195 * we "succeed" on the assumption this is some sort
196 * of random device. Otherwise attempting to write to
197 * and chmod the device causes problems.
198 */
199 return(1);
200 }
201 #endif
202 }
203 #endif

205 #if defined(O_CREAT) && !defined(OPENSSL_NO_POSIX_IO) && !defined(OPENSSL_SYS_VM
206 {
207 #ifndef O_BINARY
208 #define O_BINARY 0
209 #endif
210 /* chmod(..., 0600) is too late to protect the file,
211 * permissions should be restrictive from the start */
212 int fd = open(file, O_WRONLY|O_CREAT|O_BINARY, 0600);
213 if (fd != -1)
214 out = fdopen(fd, "wb");
215 }
216 #endif

218 #ifdef OPENSSL_SYS_VMS
219 /* VMS NOTE: Prior versions of this routine created a _new_
220 * version of the rand file for each call into this routine, then
221 * deleted all existing versions named ;-1, and finally renamed
222 * the current version as ’;1’. Under concurrent usage, this
223 * resulted in an RMS race condition in rename() which could
224 * orphan files (see vms message help for RMS$_REENT). With the
225 * fopen() calls below, openssl/VMS now shares the top-level
226 * version of the rand file. Note that there may still be
227 * conditions where the top-level rand file is locked. If so, this
228 * code will then create a new version of the rand file. Without
229 * the delete and rename code, this can result in ascending file
230 * versions that stop at version 32767, and this routine will then
231 * return an error. The remedy for this is to recode the calling
232 * application to avoid concurrent use of the rand file, or
233 * synchronize usage at the application level. Also consider
234 * whether or not you NEED a persistent rand file in a concurrent
235 * use situation.
236 */

238 out = vms_fopen(file,"rb+",VMS_OPEN_ATTRS);
239 if (out == NULL)
240 out = vms_fopen(file,"wb",VMS_OPEN_ATTRS);
241 #else
242 if (out == NULL)
243 out = fopen(file,"wb");
244 #endif
245 if (out == NULL) goto err;

247 #ifndef NO_CHMOD
248 chmod(file,0600);
249 #endif
250 n=RAND_DATA;
251 for (;;)
252 {
253 i=(n > BUFSIZE)?BUFSIZE:n;
254 n-=BUFSIZE;
255 if (RAND_bytes(buf,i) <= 0)
256 rand_err=1;
257 i=fwrite(buf,1,i,out);
258 if (i <= 0)
259 {

new/usr/src/lib/openssl/libsunw_crypto/rand/randfile.c 5

260 ret=0;
261 break;
262 }
263 ret+=i;
264 if (n <= 0) break;
265 }

267 fclose(out);
268 OPENSSL_cleanse(buf,BUFSIZE);
269 err:
270 return (rand_err ? -1 : ret);
271 }

273 const char *RAND_file_name(char *buf, size_t size)
274 {
275 char *s=NULL;
276 #ifdef __OpenBSD__
277 struct stat sb;
278 #endif

280 if (OPENSSL_issetugid() == 0)
281 s=getenv("RANDFILE");
282 if (s != NULL && *s && strlen(s) + 1 < size)
283 {
284 if (BUF_strlcpy(buf,s,size) >= size)
285 return NULL;
286 }
287 else
288 {
289 if (OPENSSL_issetugid() == 0)
290 s=getenv("HOME");
291 #ifdef DEFAULT_HOME
292 if (s == NULL)
293 {
294 s = DEFAULT_HOME;
295 }
296 #endif
297 if (s && *s && strlen(s)+strlen(RFILE)+2 < size)
298 {
299 BUF_strlcpy(buf,s,size);
300 #ifndef OPENSSL_SYS_VMS
301 BUF_strlcat(buf,"/",size);
302 #endif
303 BUF_strlcat(buf,RFILE,size);
304 }
305 else
306 buf[0] = ’\0’; /* no file name */
307 }

309 #ifdef __OpenBSD__
310 /* given that all random loads just fail if the file can’t be
311 * seen on a stat, we stat the file we’re returning, if it
312 * fails, use /dev/arandom instead. this allows the user to
313 * use their own source for good random data, but defaults
314 * to something hopefully decent if that isn’t available.
315 */

317 if (!buf[0])
318 if (BUF_strlcpy(buf,"/dev/arandom",size) >= size) {
319 return(NULL);
320 }
321 if (stat(buf,&sb) == -1)
322 if (BUF_strlcpy(buf,"/dev/arandom",size) >= size) {
323 return(NULL);
324 }

new/usr/src/lib/openssl/libsunw_crypto/rand/randfile.c 6

326 #endif
327 return(buf);
328 }

new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2_cbc.c 1

**
 6446 Fri May 30 18:32:07 2014
new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2_cbc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rc2/rc2_cbc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/rc2.h>
60 #include "rc2_locl.h"

new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2_cbc.c 2

62 void RC2_cbc_encrypt(const unsigned char *in, unsigned char *out, long length,
63 RC2_KEY *ks, unsigned char *iv, int encrypt)
64 {
65 register unsigned long tin0,tin1;
66 register unsigned long tout0,tout1,xor0,xor1;
67 register long l=length;
68 unsigned long tin[2];

70 if (encrypt)
71 {
72 c2l(iv,tout0);
73 c2l(iv,tout1);
74 iv-=8;
75 for (l-=8; l>=0; l-=8)
76 {
77 c2l(in,tin0);
78 c2l(in,tin1);
79 tin0^=tout0;
80 tin1^=tout1;
81 tin[0]=tin0;
82 tin[1]=tin1;
83 RC2_encrypt(tin,ks);
84 tout0=tin[0]; l2c(tout0,out);
85 tout1=tin[1]; l2c(tout1,out);
86 }
87 if (l != -8)
88 {
89 c2ln(in,tin0,tin1,l+8);
90 tin0^=tout0;
91 tin1^=tout1;
92 tin[0]=tin0;
93 tin[1]=tin1;
94 RC2_encrypt(tin,ks);
95 tout0=tin[0]; l2c(tout0,out);
96 tout1=tin[1]; l2c(tout1,out);
97 }
98 l2c(tout0,iv);
99 l2c(tout1,iv);
100 }
101 else
102 {
103 c2l(iv,xor0);
104 c2l(iv,xor1);
105 iv-=8;
106 for (l-=8; l>=0; l-=8)
107 {
108 c2l(in,tin0); tin[0]=tin0;
109 c2l(in,tin1); tin[1]=tin1;
110 RC2_decrypt(tin,ks);
111 tout0=tin[0]^xor0;
112 tout1=tin[1]^xor1;
113 l2c(tout0,out);
114 l2c(tout1,out);
115 xor0=tin0;
116 xor1=tin1;
117 }
118 if (l != -8)
119 {
120 c2l(in,tin0); tin[0]=tin0;
121 c2l(in,tin1); tin[1]=tin1;
122 RC2_decrypt(tin,ks);
123 tout0=tin[0]^xor0;
124 tout1=tin[1]^xor1;
125 l2cn(tout0,tout1,out,l+8);
126 xor0=tin0;
127 xor1=tin1;

new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2_cbc.c 3

128 }
129 l2c(xor0,iv);
130 l2c(xor1,iv);
131 }
132 tin0=tin1=tout0=tout1=xor0=xor1=0;
133 tin[0]=tin[1]=0;
134 }

136 void RC2_encrypt(unsigned long *d, RC2_KEY *key)
137 {
138 int i,n;
139 register RC2_INT *p0,*p1;
140 register RC2_INT x0,x1,x2,x3,t;
141 unsigned long l;

143 l=d[0];
144 x0=(RC2_INT)l&0xffff;
145 x1=(RC2_INT)(l>>16L);
146 l=d[1];
147 x2=(RC2_INT)l&0xffff;
148 x3=(RC2_INT)(l>>16L);

150 n=3;
151 i=5;

153 p0=p1= &(key->data[0]);
154 for (;;)
155 {
156 t=(x0+(x1& ~x3)+(x2&x3)+ *(p0++))&0xffff;
157 x0=(t<<1)|(t>>15);
158 t=(x1+(x2& ~x0)+(x3&x0)+ *(p0++))&0xffff;
159 x1=(t<<2)|(t>>14);
160 t=(x2+(x3& ~x1)+(x0&x1)+ *(p0++))&0xffff;
161 x2=(t<<3)|(t>>13);
162 t=(x3+(x0& ~x2)+(x1&x2)+ *(p0++))&0xffff;
163 x3=(t<<5)|(t>>11);

165 if (--i == 0)
166 {
167 if (--n == 0) break;
168 i=(n == 2)?6:5;

170 x0+=p1[x3&0x3f];
171 x1+=p1[x0&0x3f];
172 x2+=p1[x1&0x3f];
173 x3+=p1[x2&0x3f];
174 }
175 }

177 d[0]=(unsigned long)(x0&0xffff)|((unsigned long)(x1&0xffff)<<16L);
178 d[1]=(unsigned long)(x2&0xffff)|((unsigned long)(x3&0xffff)<<16L);
179 }

181 void RC2_decrypt(unsigned long *d, RC2_KEY *key)
182 {
183 int i,n;
184 register RC2_INT *p0,*p1;
185 register RC2_INT x0,x1,x2,x3,t;
186 unsigned long l;

188 l=d[0];
189 x0=(RC2_INT)l&0xffff;
190 x1=(RC2_INT)(l>>16L);
191 l=d[1];
192 x2=(RC2_INT)l&0xffff;
193 x3=(RC2_INT)(l>>16L);

new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2_cbc.c 4

195 n=3;
196 i=5;

198 p0= &(key->data[63]);
199 p1= &(key->data[0]);
200 for (;;)
201 {
202 t=((x3<<11)|(x3>>5))&0xffff;
203 x3=(t-(x0& ~x2)-(x1&x2)- *(p0--))&0xffff;
204 t=((x2<<13)|(x2>>3))&0xffff;
205 x2=(t-(x3& ~x1)-(x0&x1)- *(p0--))&0xffff;
206 t=((x1<<14)|(x1>>2))&0xffff;
207 x1=(t-(x2& ~x0)-(x3&x0)- *(p0--))&0xffff;
208 t=((x0<<15)|(x0>>1))&0xffff;
209 x0=(t-(x1& ~x3)-(x2&x3)- *(p0--))&0xffff;

211 if (--i == 0)
212 {
213 if (--n == 0) break;
214 i=(n == 2)?6:5;

216 x3=(x3-p1[x2&0x3f])&0xffff;
217 x2=(x2-p1[x1&0x3f])&0xffff;
218 x1=(x1-p1[x0&0x3f])&0xffff;
219 x0=(x0-p1[x3&0x3f])&0xffff;
220 }
221 }

223 d[0]=(unsigned long)(x0&0xffff)|((unsigned long)(x1&0xffff)<<16L);
224 d[1]=(unsigned long)(x2&0xffff)|((unsigned long)(x3&0xffff)<<16L);
225 }

new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2_ecb.c 1

**
 3878 Fri May 30 18:32:07 2014
new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2_ecb.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rc2/rc2_ecb.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/rc2.h>
60 #include "rc2_locl.h"
61 #include <openssl/opensslv.h>

new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2_ecb.c 2

63 const char RC2_version[]="RC2" OPENSSL_VERSION_PTEXT;

65 /* RC2 as implemented frm a posting from
66 * Newsgroups: sci.crypt
67 * Sender: pgut01@cs.auckland.ac.nz (Peter Gutmann)
68 * Subject: Specification for Ron Rivests Cipher No.2
69 * Message-ID: <4fk39f$f70@net.auckland.ac.nz>
70 * Date: 11 Feb 1996 06:45:03 GMT
71 */

73 void RC2_ecb_encrypt(const unsigned char *in, unsigned char *out, RC2_KEY *ks,
74 int encrypt)
75 {
76 unsigned long l,d[2];

78 c2l(in,l); d[0]=l;
79 c2l(in,l); d[1]=l;
80 if (encrypt)
81 RC2_encrypt(d,ks);
82 else
83 RC2_decrypt(d,ks);
84 l=d[0]; l2c(l,out);
85 l=d[1]; l2c(l,out);
86 l=d[0]=d[1]=0;
87 }

new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2_skey.c 1

**
 6112 Fri May 30 18:32:07 2014
new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2_skey.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rc2/rc2_skey.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/crypto.h>
60 #include <openssl/rc2.h>
61 #include "rc2_locl.h"

new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2_skey.c 2

63 static const unsigned char key_table[256]={
64 0xd9,0x78,0xf9,0xc4,0x19,0xdd,0xb5,0xed,0x28,0xe9,0xfd,0x79,
65 0x4a,0xa0,0xd8,0x9d,0xc6,0x7e,0x37,0x83,0x2b,0x76,0x53,0x8e,
66 0x62,0x4c,0x64,0x88,0x44,0x8b,0xfb,0xa2,0x17,0x9a,0x59,0xf5,
67 0x87,0xb3,0x4f,0x13,0x61,0x45,0x6d,0x8d,0x09,0x81,0x7d,0x32,
68 0xbd,0x8f,0x40,0xeb,0x86,0xb7,0x7b,0x0b,0xf0,0x95,0x21,0x22,
69 0x5c,0x6b,0x4e,0x82,0x54,0xd6,0x65,0x93,0xce,0x60,0xb2,0x1c,
70 0x73,0x56,0xc0,0x14,0xa7,0x8c,0xf1,0xdc,0x12,0x75,0xca,0x1f,
71 0x3b,0xbe,0xe4,0xd1,0x42,0x3d,0xd4,0x30,0xa3,0x3c,0xb6,0x26,
72 0x6f,0xbf,0x0e,0xda,0x46,0x69,0x07,0x57,0x27,0xf2,0x1d,0x9b,
73 0xbc,0x94,0x43,0x03,0xf8,0x11,0xc7,0xf6,0x90,0xef,0x3e,0xe7,
74 0x06,0xc3,0xd5,0x2f,0xc8,0x66,0x1e,0xd7,0x08,0xe8,0xea,0xde,
75 0x80,0x52,0xee,0xf7,0x84,0xaa,0x72,0xac,0x35,0x4d,0x6a,0x2a,
76 0x96,0x1a,0xd2,0x71,0x5a,0x15,0x49,0x74,0x4b,0x9f,0xd0,0x5e,
77 0x04,0x18,0xa4,0xec,0xc2,0xe0,0x41,0x6e,0x0f,0x51,0xcb,0xcc,
78 0x24,0x91,0xaf,0x50,0xa1,0xf4,0x70,0x39,0x99,0x7c,0x3a,0x85,
79 0x23,0xb8,0xb4,0x7a,0xfc,0x02,0x36,0x5b,0x25,0x55,0x97,0x31,
80 0x2d,0x5d,0xfa,0x98,0xe3,0x8a,0x92,0xae,0x05,0xdf,0x29,0x10,
81 0x67,0x6c,0xba,0xc9,0xd3,0x00,0xe6,0xcf,0xe1,0x9e,0xa8,0x2c,
82 0x63,0x16,0x01,0x3f,0x58,0xe2,0x89,0xa9,0x0d,0x38,0x34,0x1b,
83 0xab,0x33,0xff,0xb0,0xbb,0x48,0x0c,0x5f,0xb9,0xb1,0xcd,0x2e,
84 0xc5,0xf3,0xdb,0x47,0xe5,0xa5,0x9c,0x77,0x0a,0xa6,0x20,0x68,
85 0xfe,0x7f,0xc1,0xad,
86 };

88 #if defined(_MSC_VER) && defined(_ARM_)
89 #pragma optimize("g",off)
90 #endif

92 /* It has come to my attention that there are 2 versions of the RC2
93 * key schedule. One which is normal, and anther which has a hook to
94 * use a reduced key length.
95 * BSAFE uses the ’retarded’ version. What I previously shipped is
96 * the same as specifying 1024 for the ’bits’ parameter. Bsafe uses
97 * a version where the bits parameter is the same as len*8 */
98 void RC2_set_key(RC2_KEY *key, int len, const unsigned char *data, int bits)
99 #ifdef OPENSSL_FIPS
100 {
101 fips_cipher_abort(RC2);
102 private_RC2_set_key(key, len, data, bits);
103 }
104 void private_RC2_set_key(RC2_KEY *key, int len, const unsigned char *data, int b
105 #endif
106 {
107 int i,j;
108 unsigned char *k;
109 RC2_INT *ki;
110 unsigned int c,d;

112 k= (unsigned char *)&(key->data[0]);
113 *k=0; /* for if there is a zero length key */

115 if (len > 128) len=128;
116 if (bits <= 0) bits=1024;
117 if (bits > 1024) bits=1024;

119 for (i=0; i<len; i++)
120 k[i]=data[i];

122 /* expand table */
123 d=k[len-1];
124 j=0;
125 for (i=len; i < 128; i++,j++)
126 {
127 d=key_table[(k[j]+d)&0xff];

new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2_skey.c 3

128 k[i]=d;
129 }

131 /* hmm.... key reduction to ’bits’ bits */

133 j=(bits+7)>>3;
134 i=128-j;
135 c= (0xff>>(-bits & 0x07));

137 d=key_table[k[i]&c];
138 k[i]=d;
139 while (i--)
140 {
141 d=key_table[k[i+j]^d];
142 k[i]=d;
143 }

145 /* copy from bytes into RC2_INT’s */
146 ki= &(key->data[63]);
147 for (i=127; i>=0; i-=2)
148 *(ki--)=((k[i]<<8)|k[i-1])&0xffff;
149 }

151 #if defined(_MSC_VER)
152 #pragma optimize("",on)
153 #endif

new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2cfb64.c 1

**
 4489 Fri May 30 18:32:07 2014
new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2cfb64.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rc2/rc2cfb64.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/rc2.h>
60 #include "rc2_locl.h"

new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2cfb64.c 2

62 /* The input and output encrypted as though 64bit cfb mode is being
63 * used. The extra state information to record how much of the
64 * 64bit block we have used is contained in *num;
65 */

67 void RC2_cfb64_encrypt(const unsigned char *in, unsigned char *out,
68 long length, RC2_KEY *schedule, unsigned char *ivec,
69 int *num, int encrypt)
70 {
71 register unsigned long v0,v1,t;
72 register int n= *num;
73 register long l=length;
74 unsigned long ti[2];
75 unsigned char *iv,c,cc;

77 iv=(unsigned char *)ivec;
78 if (encrypt)
79 {
80 while (l--)
81 {
82 if (n == 0)
83 {
84 c2l(iv,v0); ti[0]=v0;
85 c2l(iv,v1); ti[1]=v1;
86 RC2_encrypt((unsigned long *)ti,schedule);
87 iv=(unsigned char *)ivec;
88 t=ti[0]; l2c(t,iv);
89 t=ti[1]; l2c(t,iv);
90 iv=(unsigned char *)ivec;
91 }
92 c= *(in++)^iv[n];
93 *(out++)=c;
94 iv[n]=c;
95 n=(n+1)&0x07;
96 }
97 }
98 else
99 {
100 while (l--)
101 {
102 if (n == 0)
103 {
104 c2l(iv,v0); ti[0]=v0;
105 c2l(iv,v1); ti[1]=v1;
106 RC2_encrypt((unsigned long *)ti,schedule);
107 iv=(unsigned char *)ivec;
108 t=ti[0]; l2c(t,iv);
109 t=ti[1]; l2c(t,iv);
110 iv=(unsigned char *)ivec;
111 }
112 cc= *(in++);
113 c=iv[n];
114 iv[n]=cc;
115 *(out++)=c^cc;
116 n=(n+1)&0x07;
117 }
118 }
119 v0=v1=ti[0]=ti[1]=t=c=cc=0;
120 *num=n;
121 }

new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2ofb64.c 1

**
 4221 Fri May 30 18:32:07 2014
new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2ofb64.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rc2/rc2ofb64.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/rc2.h>
60 #include "rc2_locl.h"

new/usr/src/lib/openssl/libsunw_crypto/rc2/rc2ofb64.c 2

62 /* The input and output encrypted as though 64bit ofb mode is being
63 * used. The extra state information to record how much of the
64 * 64bit block we have used is contained in *num;
65 */
66 void RC2_ofb64_encrypt(const unsigned char *in, unsigned char *out,
67 long length, RC2_KEY *schedule, unsigned char *ivec,
68 int *num)
69 {
70 register unsigned long v0,v1,t;
71 register int n= *num;
72 register long l=length;
73 unsigned char d[8];
74 register char *dp;
75 unsigned long ti[2];
76 unsigned char *iv;
77 int save=0;

79 iv=(unsigned char *)ivec;
80 c2l(iv,v0);
81 c2l(iv,v1);
82 ti[0]=v0;
83 ti[1]=v1;
84 dp=(char *)d;
85 l2c(v0,dp);
86 l2c(v1,dp);
87 while (l--)
88 {
89 if (n == 0)
90 {
91 RC2_encrypt((unsigned long *)ti,schedule);
92 dp=(char *)d;
93 t=ti[0]; l2c(t,dp);
94 t=ti[1]; l2c(t,dp);
95 save++;
96 }
97 *(out++)= *(in++)^d[n];
98 n=(n+1)&0x07;
99 }
100 if (save)
101 {
102 v0=ti[0];
103 v1=ti[1];
104 iv=(unsigned char *)ivec;
105 l2c(v0,iv);
106 l2c(v1,iv);
107 }
108 t=v0=v1=ti[0]=ti[1]=0;
109 *num=n;
110 }

new/usr/src/lib/openssl/libsunw_crypto/rc4/rc4_utl.c 1

**
 2765 Fri May 30 18:32:08 2014
new/usr/src/lib/openssl/libsunw_crypto/rc4/rc4_utl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rc4/rc4_utl.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 2011 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 */

52 #include <openssl/opensslv.h>
53 #include <openssl/crypto.h>
54 #include <openssl/rc4.h>

56 void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data)
57 {
58 #ifdef OPENSSL_FIPS
59 fips_cipher_abort(RC4);
60 #endif
61 private_RC4_set_key(key, len, data);

new/usr/src/lib/openssl/libsunw_crypto/rc4/rc4_utl.c 2

62 }

new/usr/src/lib/openssl/libsunw_crypto/ripemd/rmd_dgst.c 1

**
 10102 Fri May 30 18:32:08 2014
new/usr/src/lib/openssl/libsunw_crypto/ripemd/rmd_dgst.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ripemd/rmd_dgst.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "rmd_locl.h"
61 #include <openssl/opensslv.h>

new/usr/src/lib/openssl/libsunw_crypto/ripemd/rmd_dgst.c 2

62 #include <openssl/crypto.h>

64 const char RMD160_version[]="RIPE-MD160" OPENSSL_VERSION_PTEXT;

66 # ifdef RMD160_ASM
67 void ripemd160_block_x86(RIPEMD160_CTX *c, unsigned long *p,size_t num);
68 # define ripemd160_block ripemd160_block_x86
69 # else
70 void ripemd160_block(RIPEMD160_CTX *c, unsigned long *p,size_t num);
71 # endif

73 fips_md_init(RIPEMD160)
74 {
75 memset (c,0,sizeof(*c));
76 c->A=RIPEMD160_A;
77 c->B=RIPEMD160_B;
78 c->C=RIPEMD160_C;
79 c->D=RIPEMD160_D;
80 c->E=RIPEMD160_E;
81 return 1;
82 }

84 #ifndef ripemd160_block_data_order
85 #ifdef X
86 #undef X
87 #endif
88 void ripemd160_block_data_order (RIPEMD160_CTX *ctx, const void *p, size_t num)
89 {
90 const unsigned char *data=p;
91 register unsigned MD32_REG_T A,B,C,D,E;
92 unsigned MD32_REG_T a,b,c,d,e,l;
93 #ifndef MD32_XARRAY
94 /* See comment in crypto/sha/sha_locl.h for details. */
95 unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
96 XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15;
97 # define X(i) XX##i
98 #else
99 RIPEMD160_LONG XX[16];
100 # define X(i) XX[i]
101 #endif

103 for (;num--;)
104 {

106 A=ctx->A; B=ctx->B; C=ctx->C; D=ctx->D; E=ctx->E;

108 (void)HOST_c2l(data,l); X(0)=l;(void)HOST_c2l(data,l); X(1)=l;
109 RIP1(A,B,C,D,E,WL00,SL00); (void)HOST_c2l(data,l); X(2)=l;
110 RIP1(E,A,B,C,D,WL01,SL01); (void)HOST_c2l(data,l); X(3)=l;
111 RIP1(D,E,A,B,C,WL02,SL02); (void)HOST_c2l(data,l); X(4)=l;
112 RIP1(C,D,E,A,B,WL03,SL03); (void)HOST_c2l(data,l); X(5)=l;
113 RIP1(B,C,D,E,A,WL04,SL04); (void)HOST_c2l(data,l); X(6)=l;
114 RIP1(A,B,C,D,E,WL05,SL05); (void)HOST_c2l(data,l); X(7)=l;
115 RIP1(E,A,B,C,D,WL06,SL06); (void)HOST_c2l(data,l); X(8)=l;
116 RIP1(D,E,A,B,C,WL07,SL07); (void)HOST_c2l(data,l); X(9)=l;
117 RIP1(C,D,E,A,B,WL08,SL08); (void)HOST_c2l(data,l); X(10)=l;
118 RIP1(B,C,D,E,A,WL09,SL09); (void)HOST_c2l(data,l); X(11)=l;
119 RIP1(A,B,C,D,E,WL10,SL10); (void)HOST_c2l(data,l); X(12)=l;
120 RIP1(E,A,B,C,D,WL11,SL11); (void)HOST_c2l(data,l); X(13)=l;
121 RIP1(D,E,A,B,C,WL12,SL12); (void)HOST_c2l(data,l); X(14)=l;
122 RIP1(C,D,E,A,B,WL13,SL13); (void)HOST_c2l(data,l); X(15)=l;
123 RIP1(B,C,D,E,A,WL14,SL14);
124 RIP1(A,B,C,D,E,WL15,SL15);

126 RIP2(E,A,B,C,D,WL16,SL16,KL1);
127 RIP2(D,E,A,B,C,WL17,SL17,KL1);

new/usr/src/lib/openssl/libsunw_crypto/ripemd/rmd_dgst.c 3

128 RIP2(C,D,E,A,B,WL18,SL18,KL1);
129 RIP2(B,C,D,E,A,WL19,SL19,KL1);
130 RIP2(A,B,C,D,E,WL20,SL20,KL1);
131 RIP2(E,A,B,C,D,WL21,SL21,KL1);
132 RIP2(D,E,A,B,C,WL22,SL22,KL1);
133 RIP2(C,D,E,A,B,WL23,SL23,KL1);
134 RIP2(B,C,D,E,A,WL24,SL24,KL1);
135 RIP2(A,B,C,D,E,WL25,SL25,KL1);
136 RIP2(E,A,B,C,D,WL26,SL26,KL1);
137 RIP2(D,E,A,B,C,WL27,SL27,KL1);
138 RIP2(C,D,E,A,B,WL28,SL28,KL1);
139 RIP2(B,C,D,E,A,WL29,SL29,KL1);
140 RIP2(A,B,C,D,E,WL30,SL30,KL1);
141 RIP2(E,A,B,C,D,WL31,SL31,KL1);

143 RIP3(D,E,A,B,C,WL32,SL32,KL2);
144 RIP3(C,D,E,A,B,WL33,SL33,KL2);
145 RIP3(B,C,D,E,A,WL34,SL34,KL2);
146 RIP3(A,B,C,D,E,WL35,SL35,KL2);
147 RIP3(E,A,B,C,D,WL36,SL36,KL2);
148 RIP3(D,E,A,B,C,WL37,SL37,KL2);
149 RIP3(C,D,E,A,B,WL38,SL38,KL2);
150 RIP3(B,C,D,E,A,WL39,SL39,KL2);
151 RIP3(A,B,C,D,E,WL40,SL40,KL2);
152 RIP3(E,A,B,C,D,WL41,SL41,KL2);
153 RIP3(D,E,A,B,C,WL42,SL42,KL2);
154 RIP3(C,D,E,A,B,WL43,SL43,KL2);
155 RIP3(B,C,D,E,A,WL44,SL44,KL2);
156 RIP3(A,B,C,D,E,WL45,SL45,KL2);
157 RIP3(E,A,B,C,D,WL46,SL46,KL2);
158 RIP3(D,E,A,B,C,WL47,SL47,KL2);

160 RIP4(C,D,E,A,B,WL48,SL48,KL3);
161 RIP4(B,C,D,E,A,WL49,SL49,KL3);
162 RIP4(A,B,C,D,E,WL50,SL50,KL3);
163 RIP4(E,A,B,C,D,WL51,SL51,KL3);
164 RIP4(D,E,A,B,C,WL52,SL52,KL3);
165 RIP4(C,D,E,A,B,WL53,SL53,KL3);
166 RIP4(B,C,D,E,A,WL54,SL54,KL3);
167 RIP4(A,B,C,D,E,WL55,SL55,KL3);
168 RIP4(E,A,B,C,D,WL56,SL56,KL3);
169 RIP4(D,E,A,B,C,WL57,SL57,KL3);
170 RIP4(C,D,E,A,B,WL58,SL58,KL3);
171 RIP4(B,C,D,E,A,WL59,SL59,KL3);
172 RIP4(A,B,C,D,E,WL60,SL60,KL3);
173 RIP4(E,A,B,C,D,WL61,SL61,KL3);
174 RIP4(D,E,A,B,C,WL62,SL62,KL3);
175 RIP4(C,D,E,A,B,WL63,SL63,KL3);

177 RIP5(B,C,D,E,A,WL64,SL64,KL4);
178 RIP5(A,B,C,D,E,WL65,SL65,KL4);
179 RIP5(E,A,B,C,D,WL66,SL66,KL4);
180 RIP5(D,E,A,B,C,WL67,SL67,KL4);
181 RIP5(C,D,E,A,B,WL68,SL68,KL4);
182 RIP5(B,C,D,E,A,WL69,SL69,KL4);
183 RIP5(A,B,C,D,E,WL70,SL70,KL4);
184 RIP5(E,A,B,C,D,WL71,SL71,KL4);
185 RIP5(D,E,A,B,C,WL72,SL72,KL4);
186 RIP5(C,D,E,A,B,WL73,SL73,KL4);
187 RIP5(B,C,D,E,A,WL74,SL74,KL4);
188 RIP5(A,B,C,D,E,WL75,SL75,KL4);
189 RIP5(E,A,B,C,D,WL76,SL76,KL4);
190 RIP5(D,E,A,B,C,WL77,SL77,KL4);
191 RIP5(C,D,E,A,B,WL78,SL78,KL4);
192 RIP5(B,C,D,E,A,WL79,SL79,KL4);

new/usr/src/lib/openssl/libsunw_crypto/ripemd/rmd_dgst.c 4

194 a=A; b=B; c=C; d=D; e=E;
195 /* Do other half */
196 A=ctx->A; B=ctx->B; C=ctx->C; D=ctx->D; E=ctx->E;

198 RIP5(A,B,C,D,E,WR00,SR00,KR0);
199 RIP5(E,A,B,C,D,WR01,SR01,KR0);
200 RIP5(D,E,A,B,C,WR02,SR02,KR0);
201 RIP5(C,D,E,A,B,WR03,SR03,KR0);
202 RIP5(B,C,D,E,A,WR04,SR04,KR0);
203 RIP5(A,B,C,D,E,WR05,SR05,KR0);
204 RIP5(E,A,B,C,D,WR06,SR06,KR0);
205 RIP5(D,E,A,B,C,WR07,SR07,KR0);
206 RIP5(C,D,E,A,B,WR08,SR08,KR0);
207 RIP5(B,C,D,E,A,WR09,SR09,KR0);
208 RIP5(A,B,C,D,E,WR10,SR10,KR0);
209 RIP5(E,A,B,C,D,WR11,SR11,KR0);
210 RIP5(D,E,A,B,C,WR12,SR12,KR0);
211 RIP5(C,D,E,A,B,WR13,SR13,KR0);
212 RIP5(B,C,D,E,A,WR14,SR14,KR0);
213 RIP5(A,B,C,D,E,WR15,SR15,KR0);

215 RIP4(E,A,B,C,D,WR16,SR16,KR1);
216 RIP4(D,E,A,B,C,WR17,SR17,KR1);
217 RIP4(C,D,E,A,B,WR18,SR18,KR1);
218 RIP4(B,C,D,E,A,WR19,SR19,KR1);
219 RIP4(A,B,C,D,E,WR20,SR20,KR1);
220 RIP4(E,A,B,C,D,WR21,SR21,KR1);
221 RIP4(D,E,A,B,C,WR22,SR22,KR1);
222 RIP4(C,D,E,A,B,WR23,SR23,KR1);
223 RIP4(B,C,D,E,A,WR24,SR24,KR1);
224 RIP4(A,B,C,D,E,WR25,SR25,KR1);
225 RIP4(E,A,B,C,D,WR26,SR26,KR1);
226 RIP4(D,E,A,B,C,WR27,SR27,KR1);
227 RIP4(C,D,E,A,B,WR28,SR28,KR1);
228 RIP4(B,C,D,E,A,WR29,SR29,KR1);
229 RIP4(A,B,C,D,E,WR30,SR30,KR1);
230 RIP4(E,A,B,C,D,WR31,SR31,KR1);

232 RIP3(D,E,A,B,C,WR32,SR32,KR2);
233 RIP3(C,D,E,A,B,WR33,SR33,KR2);
234 RIP3(B,C,D,E,A,WR34,SR34,KR2);
235 RIP3(A,B,C,D,E,WR35,SR35,KR2);
236 RIP3(E,A,B,C,D,WR36,SR36,KR2);
237 RIP3(D,E,A,B,C,WR37,SR37,KR2);
238 RIP3(C,D,E,A,B,WR38,SR38,KR2);
239 RIP3(B,C,D,E,A,WR39,SR39,KR2);
240 RIP3(A,B,C,D,E,WR40,SR40,KR2);
241 RIP3(E,A,B,C,D,WR41,SR41,KR2);
242 RIP3(D,E,A,B,C,WR42,SR42,KR2);
243 RIP3(C,D,E,A,B,WR43,SR43,KR2);
244 RIP3(B,C,D,E,A,WR44,SR44,KR2);
245 RIP3(A,B,C,D,E,WR45,SR45,KR2);
246 RIP3(E,A,B,C,D,WR46,SR46,KR2);
247 RIP3(D,E,A,B,C,WR47,SR47,KR2);

249 RIP2(C,D,E,A,B,WR48,SR48,KR3);
250 RIP2(B,C,D,E,A,WR49,SR49,KR3);
251 RIP2(A,B,C,D,E,WR50,SR50,KR3);
252 RIP2(E,A,B,C,D,WR51,SR51,KR3);
253 RIP2(D,E,A,B,C,WR52,SR52,KR3);
254 RIP2(C,D,E,A,B,WR53,SR53,KR3);
255 RIP2(B,C,D,E,A,WR54,SR54,KR3);
256 RIP2(A,B,C,D,E,WR55,SR55,KR3);
257 RIP2(E,A,B,C,D,WR56,SR56,KR3);
258 RIP2(D,E,A,B,C,WR57,SR57,KR3);
259 RIP2(C,D,E,A,B,WR58,SR58,KR3);

new/usr/src/lib/openssl/libsunw_crypto/ripemd/rmd_dgst.c 5

260 RIP2(B,C,D,E,A,WR59,SR59,KR3);
261 RIP2(A,B,C,D,E,WR60,SR60,KR3);
262 RIP2(E,A,B,C,D,WR61,SR61,KR3);
263 RIP2(D,E,A,B,C,WR62,SR62,KR3);
264 RIP2(C,D,E,A,B,WR63,SR63,KR3);

266 RIP1(B,C,D,E,A,WR64,SR64);
267 RIP1(A,B,C,D,E,WR65,SR65);
268 RIP1(E,A,B,C,D,WR66,SR66);
269 RIP1(D,E,A,B,C,WR67,SR67);
270 RIP1(C,D,E,A,B,WR68,SR68);
271 RIP1(B,C,D,E,A,WR69,SR69);
272 RIP1(A,B,C,D,E,WR70,SR70);
273 RIP1(E,A,B,C,D,WR71,SR71);
274 RIP1(D,E,A,B,C,WR72,SR72);
275 RIP1(C,D,E,A,B,WR73,SR73);
276 RIP1(B,C,D,E,A,WR74,SR74);
277 RIP1(A,B,C,D,E,WR75,SR75);
278 RIP1(E,A,B,C,D,WR76,SR76);
279 RIP1(D,E,A,B,C,WR77,SR77);
280 RIP1(C,D,E,A,B,WR78,SR78);
281 RIP1(B,C,D,E,A,WR79,SR79);

283 D =ctx->B+c+D;
284 ctx->B=ctx->C+d+E;
285 ctx->C=ctx->D+e+A;
286 ctx->D=ctx->E+a+B;
287 ctx->E=ctx->A+b+C;
288 ctx->A=D;

290 }
291 }
292 #endif

new/usr/src/lib/openssl/libsunw_crypto/ripemd/rmd_one.c 1

**
 3646 Fri May 30 18:32:08 2014
new/usr/src/lib/openssl/libsunw_crypto/ripemd/rmd_one.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ripemd/rmd_one.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <string.h>
61 #include <openssl/ripemd.h>

new/usr/src/lib/openssl/libsunw_crypto/ripemd/rmd_one.c 2

62 #include <openssl/crypto.h>

64 unsigned char *RIPEMD160(const unsigned char *d, size_t n,
65 unsigned char *md)
66 {
67 RIPEMD160_CTX c;
68 static unsigned char m[RIPEMD160_DIGEST_LENGTH];

70 if (md == NULL) md=m;
71 if (!RIPEMD160_Init(&c))
72 return NULL;
73 RIPEMD160_Update(&c,d,n);
74 RIPEMD160_Final(md,&c);
75 OPENSSL_cleanse(&c,sizeof(c)); /* security consideration */
76 return(md);
77 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ameth.c 1

**
 16570 Fri May 30 18:32:08 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ameth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_ameth.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2006.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ameth.c 2

62 #include <openssl/x509.h>
63 #include <openssl/rsa.h>
64 #include <openssl/bn.h>
65 #ifndef OPENSSL_NO_CMS
66 #include <openssl/cms.h>
67 #endif
68 #include "asn1_locl.h"

70 static int rsa_pub_encode(X509_PUBKEY *pk, const EVP_PKEY *pkey)
71 {
72 unsigned char *penc = NULL;
73 int penclen;
74 penclen = i2d_RSAPublicKey(pkey->pkey.rsa, &penc);
75 if (penclen <= 0)
76 return 0;
77 if (X509_PUBKEY_set0_param(pk, OBJ_nid2obj(EVP_PKEY_RSA),
78 V_ASN1_NULL, NULL, penc, penclen))
79 return 1;

81 OPENSSL_free(penc);
82 return 0;
83 }

85 static int rsa_pub_decode(EVP_PKEY *pkey, X509_PUBKEY *pubkey)
86 {
87 const unsigned char *p;
88 int pklen;
89 RSA *rsa = NULL;
90 if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, NULL, pubkey))
91 return 0;
92 if (!(rsa = d2i_RSAPublicKey(NULL, &p, pklen)))
93 {
94 RSAerr(RSA_F_RSA_PUB_DECODE, ERR_R_RSA_LIB);
95 return 0;
96 }
97 EVP_PKEY_assign_RSA (pkey, rsa);
98 return 1;
99 }

101 static int rsa_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b)
102 {
103 if (BN_cmp(b->pkey.rsa->n,a->pkey.rsa->n) != 0
104 || BN_cmp(b->pkey.rsa->e,a->pkey.rsa->e) != 0)
105 return 0;
106 return 1;
107 }

109 static int old_rsa_priv_decode(EVP_PKEY *pkey,
110 const unsigned char **pder, int derlen)
111 {
112 RSA *rsa;
113 if (!(rsa = d2i_RSAPrivateKey (NULL, pder, derlen)))
114 {
115 RSAerr(RSA_F_OLD_RSA_PRIV_DECODE, ERR_R_RSA_LIB);
116 return 0;
117 }
118 EVP_PKEY_assign_RSA(pkey, rsa);
119 return 1;
120 }

122 static int old_rsa_priv_encode(const EVP_PKEY *pkey, unsigned char **pder)
123 {
124 return i2d_RSAPrivateKey(pkey->pkey.rsa, pder);
125 }

127 static int rsa_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey)

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ameth.c 3

128 {
129 unsigned char *rk = NULL;
130 int rklen;
131 rklen = i2d_RSAPrivateKey(pkey->pkey.rsa, &rk);

133 if (rklen <= 0)
134 {
135 RSAerr(RSA_F_RSA_PRIV_ENCODE,ERR_R_MALLOC_FAILURE);
136 return 0;
137 }

139 if (!PKCS8_pkey_set0(p8, OBJ_nid2obj(NID_rsaEncryption), 0,
140 V_ASN1_NULL, NULL, rk, rklen))
141 {
142 RSAerr(RSA_F_RSA_PRIV_ENCODE,ERR_R_MALLOC_FAILURE);
143 return 0;
144 }

146 return 1;
147 }

149 static int rsa_priv_decode(EVP_PKEY *pkey, PKCS8_PRIV_KEY_INFO *p8)
150 {
151 const unsigned char *p;
152 int pklen;
153 if (!PKCS8_pkey_get0(NULL, &p, &pklen, NULL, p8))
154 return 0;
155 return old_rsa_priv_decode(pkey, &p, pklen);
156 }

158 static int int_rsa_size(const EVP_PKEY *pkey)
159 {
160 return RSA_size(pkey->pkey.rsa);
161 }

163 static int rsa_bits(const EVP_PKEY *pkey)
164 {
165 return BN_num_bits(pkey->pkey.rsa->n);
166 }

168 static void int_rsa_free(EVP_PKEY *pkey)
169 {
170 RSA_free(pkey->pkey.rsa);
171 }

174 static void update_buflen(const BIGNUM *b, size_t *pbuflen)
175 {
176 size_t i;
177 if (!b)
178 return;
179 if (*pbuflen < (i = (size_t)BN_num_bytes(b)))
180 *pbuflen = i;
181 }

183 static int do_rsa_print(BIO *bp, const RSA *x, int off, int priv)
184 {
185 char *str;
186 const char *s;
187 unsigned char *m=NULL;
188 int ret=0, mod_len = 0;
189 size_t buf_len=0;

191 update_buflen(x->n, &buf_len);
192 update_buflen(x->e, &buf_len);

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ameth.c 4

194 if (priv)
195 {
196 update_buflen(x->d, &buf_len);
197 update_buflen(x->p, &buf_len);
198 update_buflen(x->q, &buf_len);
199 update_buflen(x->dmp1, &buf_len);
200 update_buflen(x->dmq1, &buf_len);
201 update_buflen(x->iqmp, &buf_len);
202 }

204 m=(unsigned char *)OPENSSL_malloc(buf_len+10);
205 if (m == NULL)
206 {
207 RSAerr(RSA_F_DO_RSA_PRINT,ERR_R_MALLOC_FAILURE);
208 goto err;
209 }

211 if (x->n != NULL)
212 mod_len = BN_num_bits(x->n);

214 if(!BIO_indent(bp,off,128))
215 goto err;

217 if (priv && x->d)
218 {
219 if (BIO_printf(bp,"Private-Key: (%d bit)\n", mod_len)
220 <= 0) goto err;
221 str = "modulus:";
222 s = "publicExponent:";
223 }
224 else
225 {
226 if (BIO_printf(bp,"Public-Key: (%d bit)\n", mod_len)
227 <= 0) goto err;
228 str = "Modulus:";
229 s= "Exponent:";
230 }
231 if (!ASN1_bn_print(bp,str,x->n,m,off)) goto err;
232 if (!ASN1_bn_print(bp,s,x->e,m,off))
233 goto err;
234 if (priv)
235 {
236 if (!ASN1_bn_print(bp,"privateExponent:",x->d,m,off))
237 goto err;
238 if (!ASN1_bn_print(bp,"prime1:",x->p,m,off))
239 goto err;
240 if (!ASN1_bn_print(bp,"prime2:",x->q,m,off))
241 goto err;
242 if (!ASN1_bn_print(bp,"exponent1:",x->dmp1,m,off))
243 goto err;
244 if (!ASN1_bn_print(bp,"exponent2:",x->dmq1,m,off))
245 goto err;
246 if (!ASN1_bn_print(bp,"coefficient:",x->iqmp,m,off))
247 goto err;
248 }
249 ret=1;
250 err:
251 if (m != NULL) OPENSSL_free(m);
252 return(ret);
253 }

255 static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent,
256 ASN1_PCTX *ctx)
257 {
258 return do_rsa_print(bp, pkey->pkey.rsa, indent, 0);
259 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ameth.c 5

262 static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent,
263 ASN1_PCTX *ctx)
264 {
265 return do_rsa_print(bp, pkey->pkey.rsa, indent, 1);
266 }

268 static RSA_PSS_PARAMS *rsa_pss_decode(const X509_ALGOR *alg,
269 X509_ALGOR **pmaskHash)
270 {
271 const unsigned char *p;
272 int plen;
273 RSA_PSS_PARAMS *pss;

275 *pmaskHash = NULL;

277 if (!alg->parameter || alg->parameter->type != V_ASN1_SEQUENCE)
278 return NULL;
279 p = alg->parameter->value.sequence->data;
280 plen = alg->parameter->value.sequence->length;
281 pss = d2i_RSA_PSS_PARAMS(NULL, &p, plen);

283 if (!pss)
284 return NULL;
285
286 if (pss->maskGenAlgorithm)
287 {
288 ASN1_TYPE *param = pss->maskGenAlgorithm->parameter;
289 if (OBJ_obj2nid(pss->maskGenAlgorithm->algorithm) == NID_mgf1
290 && param->type == V_ASN1_SEQUENCE)
291 {
292 p = param->value.sequence->data;
293 plen = param->value.sequence->length;
294 *pmaskHash = d2i_X509_ALGOR(NULL, &p, plen);
295 }
296 }

298 return pss;
299 }

301 static int rsa_pss_param_print(BIO *bp, RSA_PSS_PARAMS *pss,
302 X509_ALGOR *maskHash, int indent)
303 {
304 int rv = 0;
305 if (!pss)
306 {
307 if (BIO_puts(bp, " (INVALID PSS PARAMETERS)\n") <= 0)
308 return 0;
309 return 1;
310 }
311 if (BIO_puts(bp, "\n") <= 0)
312 goto err;
313 if (!BIO_indent(bp, indent, 128))
314 goto err;
315 if (BIO_puts(bp, "Hash Algorithm: ") <= 0)
316 goto err;

318 if (pss->hashAlgorithm)
319 {
320 if (i2a_ASN1_OBJECT(bp, pss->hashAlgorithm->algorithm) <= 0)
321 goto err;
322 }
323 else if (BIO_puts(bp, "sha1 (default)") <= 0)
324 goto err;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ameth.c 6

326 if (BIO_puts(bp, "\n") <= 0)
327 goto err;

329 if (!BIO_indent(bp, indent, 128))
330 goto err;

332 if (BIO_puts(bp, "Mask Algorithm: ") <= 0)
333 goto err;
334 if (pss->maskGenAlgorithm)
335 {
336 if (i2a_ASN1_OBJECT(bp, pss->maskGenAlgorithm->algorithm) <= 0)
337 goto err;
338 if (BIO_puts(bp, " with ") <= 0)
339 goto err;
340 if (maskHash)
341 {
342 if (i2a_ASN1_OBJECT(bp, maskHash->algorithm) <= 0)
343 goto err;
344 }
345 else if (BIO_puts(bp, "INVALID") <= 0)
346 goto err;
347 }
348 else if (BIO_puts(bp, "mgf1 with sha1 (default)") <= 0)
349 goto err;
350 BIO_puts(bp, "\n");

352 if (!BIO_indent(bp, indent, 128))
353 goto err;
354 if (BIO_puts(bp, "Salt Length: 0x") <= 0)
355 goto err;
356 if (pss->saltLength)
357 {
358 if (i2a_ASN1_INTEGER(bp, pss->saltLength) <= 0)
359 goto err;
360 }
361 else if (BIO_puts(bp, "0x14 (default)") <= 0)
362 goto err;
363 BIO_puts(bp, "\n");

365 if (!BIO_indent(bp, indent, 128))
366 goto err;
367 if (BIO_puts(bp, "Trailer Field: 0x") <= 0)
368 goto err;
369 if (pss->trailerField)
370 {
371 if (i2a_ASN1_INTEGER(bp, pss->trailerField) <= 0)
372 goto err;
373 }
374 else if (BIO_puts(bp, "BC (default)") <= 0)
375 goto err;
376 BIO_puts(bp, "\n");
377
378 rv = 1;

380 err:
381 return rv;

383 }

385 static int rsa_sig_print(BIO *bp, const X509_ALGOR *sigalg,
386 const ASN1_STRING *sig,
387 int indent, ASN1_PCTX *pctx)
388 {
389 if (OBJ_obj2nid(sigalg->algorithm) == NID_rsassaPss)
390 {
391 int rv;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ameth.c 7

392 RSA_PSS_PARAMS *pss;
393 X509_ALGOR *maskHash;
394 pss = rsa_pss_decode(sigalg, &maskHash);
395 rv = rsa_pss_param_print(bp, pss, maskHash, indent);
396 if (pss)
397 RSA_PSS_PARAMS_free(pss);
398 if (maskHash)
399 X509_ALGOR_free(maskHash);
400 if (!rv)
401 return 0;
402 }
403 else if (!sig && BIO_puts(bp, "\n") <= 0)
404 return 0;
405 if (sig)
406 return X509_signature_dump(bp, sig, indent);
407 return 1;
408 }

410 static int rsa_pkey_ctrl(EVP_PKEY *pkey, int op, long arg1, void *arg2)
411 {
412 X509_ALGOR *alg = NULL;
413 switch (op)
414 {

416 case ASN1_PKEY_CTRL_PKCS7_SIGN:
417 if (arg1 == 0)
418 PKCS7_SIGNER_INFO_get0_algs(arg2, NULL, NULL, &alg);
419 break;

421 case ASN1_PKEY_CTRL_PKCS7_ENCRYPT:
422 if (arg1 == 0)
423 PKCS7_RECIP_INFO_get0_alg(arg2, &alg);
424 break;
425 #ifndef OPENSSL_NO_CMS
426 case ASN1_PKEY_CTRL_CMS_SIGN:
427 if (arg1 == 0)
428 CMS_SignerInfo_get0_algs(arg2, NULL, NULL, NULL, &alg);
429 break;

431 case ASN1_PKEY_CTRL_CMS_ENVELOPE:
432 if (arg1 == 0)
433 CMS_RecipientInfo_ktri_get0_algs(arg2, NULL, NULL, &alg)
434 break;
435 #endif

437 case ASN1_PKEY_CTRL_DEFAULT_MD_NID:
438 *(int *)arg2 = NID_sha1;
439 return 1;

441 default:
442 return -2;

444 }

446 if (alg)
447 X509_ALGOR_set0(alg, OBJ_nid2obj(NID_rsaEncryption),
448 V_ASN1_NULL, 0);

450 return 1;

452 }

454 /* Customised RSA item verification routine. This is called
455 * when a signature is encountered requiring special handling. We
456 * currently only handle PSS.
457 */

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ameth.c 8

460 static int rsa_item_verify(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn,
461 X509_ALGOR *sigalg, ASN1_BIT_STRING *sig,
462 EVP_PKEY *pkey)
463 {
464 int rv = -1;
465 int saltlen;
466 const EVP_MD *mgf1md = NULL, *md = NULL;
467 RSA_PSS_PARAMS *pss;
468 X509_ALGOR *maskHash;
469 EVP_PKEY_CTX *pkctx;
470 /* Sanity check: make sure it is PSS */
471 if (OBJ_obj2nid(sigalg->algorithm) != NID_rsassaPss)
472 {
473 RSAerr(RSA_F_RSA_ITEM_VERIFY, RSA_R_UNSUPPORTED_SIGNATURE_TYPE);
474 return -1;
475 }
476 /* Decode PSS parameters */
477 pss = rsa_pss_decode(sigalg, &maskHash);

479 if (pss == NULL)
480 {
481 RSAerr(RSA_F_RSA_ITEM_VERIFY, RSA_R_INVALID_PSS_PARAMETERS);
482 goto err;
483 }
484 /* Check mask and lookup mask hash algorithm */
485 if (pss->maskGenAlgorithm)
486 {
487 if (OBJ_obj2nid(pss->maskGenAlgorithm->algorithm) != NID_mgf1)
488 {
489 RSAerr(RSA_F_RSA_ITEM_VERIFY, RSA_R_UNSUPPORTED_MASK_ALG
490 goto err;
491 }
492 if (!maskHash)
493 {
494 RSAerr(RSA_F_RSA_ITEM_VERIFY, RSA_R_UNSUPPORTED_MASK_PAR
495 goto err;
496 }
497 mgf1md = EVP_get_digestbyobj(maskHash->algorithm);
498 if (mgf1md == NULL)
499 {
500 RSAerr(RSA_F_RSA_ITEM_VERIFY, RSA_R_UNKNOWN_MASK_DIGEST)
501 goto err;
502 }
503 }
504 else
505 mgf1md = EVP_sha1();

507 if (pss->hashAlgorithm)
508 {
509 md = EVP_get_digestbyobj(pss->hashAlgorithm->algorithm);
510 if (md == NULL)
511 {
512 RSAerr(RSA_F_RSA_ITEM_VERIFY, RSA_R_UNKNOWN_PSS_DIGEST);
513 goto err;
514 }
515 }
516 else
517 md = EVP_sha1();

519 if (pss->saltLength)
520 {
521 saltlen = ASN1_INTEGER_get(pss->saltLength);

523 /* Could perform more salt length sanity checks but the main

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ameth.c 9

524 * RSA routines will trap other invalid values anyway.
525 */
526 if (saltlen < 0)
527 {
528 RSAerr(RSA_F_RSA_ITEM_VERIFY, RSA_R_INVALID_SALT_LENGTH)
529 goto err;
530 }
531 }
532 else
533 saltlen = 20;

535 /* low-level routines support only trailer field 0xbc (value 1)
536 * and PKCS#1 says we should reject any other value anyway.
537 */
538 if (pss->trailerField && ASN1_INTEGER_get(pss->trailerField) != 1)
539 {
540 RSAerr(RSA_F_RSA_ITEM_VERIFY, RSA_R_INVALID_TRAILER);
541 goto err;
542 }

544 /* We have all parameters now set up context */

546 if (!EVP_DigestVerifyInit(ctx, &pkctx, md, NULL, pkey))
547 goto err;

549 if (EVP_PKEY_CTX_set_rsa_padding(pkctx, RSA_PKCS1_PSS_PADDING) <= 0)
550 goto err;

552 if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkctx, saltlen) <= 0)
553 goto err;

555 if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkctx, mgf1md) <= 0)
556 goto err;
557 /* Carry on */
558 rv = 2;

560 err:
561 RSA_PSS_PARAMS_free(pss);
562 if (maskHash)
563 X509_ALGOR_free(maskHash);
564 return rv;
565 }

567 static int rsa_item_sign(EVP_MD_CTX *ctx, const ASN1_ITEM *it, void *asn,
568 X509_ALGOR *alg1, X509_ALGOR *alg2,
569 ASN1_BIT_STRING *sig)
570 {
571 int pad_mode;
572 EVP_PKEY_CTX *pkctx = ctx->pctx;
573 if (EVP_PKEY_CTX_get_rsa_padding(pkctx, &pad_mode) <= 0)
574 return 0;
575 if (pad_mode == RSA_PKCS1_PADDING)
576 return 2;
577 if (pad_mode == RSA_PKCS1_PSS_PADDING)
578 {
579 const EVP_MD *sigmd, *mgf1md;
580 RSA_PSS_PARAMS *pss = NULL;
581 X509_ALGOR *mgf1alg = NULL;
582 ASN1_STRING *os1 = NULL, *os2 = NULL;
583 EVP_PKEY *pk = EVP_PKEY_CTX_get0_pkey(pkctx);
584 int saltlen, rv = 0;
585 sigmd = EVP_MD_CTX_md(ctx);
586 if (EVP_PKEY_CTX_get_rsa_mgf1_md(pkctx, &mgf1md) <= 0)
587 goto err;
588 if (!EVP_PKEY_CTX_get_rsa_pss_saltlen(pkctx, &saltlen))
589 goto err;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ameth.c 10

590 if (saltlen == -1)
591 saltlen = EVP_MD_size(sigmd);
592 else if (saltlen == -2)
593 {
594 saltlen = EVP_PKEY_size(pk) - EVP_MD_size(sigmd) - 2;
595 if (((EVP_PKEY_bits(pk) - 1) & 0x7) == 0)
596 saltlen--;
597 }
598 pss = RSA_PSS_PARAMS_new();
599 if (!pss)
600 goto err;
601 if (saltlen != 20)
602 {
603 pss->saltLength = ASN1_INTEGER_new();
604 if (!pss->saltLength)
605 goto err;
606 if (!ASN1_INTEGER_set(pss->saltLength, saltlen))
607 goto err;
608 }
609 if (EVP_MD_type(sigmd) != NID_sha1)
610 {
611 pss->hashAlgorithm = X509_ALGOR_new();
612 if (!pss->hashAlgorithm)
613 goto err;
614 X509_ALGOR_set_md(pss->hashAlgorithm, sigmd);
615 }
616 if (EVP_MD_type(mgf1md) != NID_sha1)
617 {
618 ASN1_STRING *stmp = NULL;
619 /* need to embed algorithm ID inside another */
620 mgf1alg = X509_ALGOR_new();
621 X509_ALGOR_set_md(mgf1alg, mgf1md);
622 if (!ASN1_item_pack(mgf1alg, ASN1_ITEM_rptr(X509_ALGOR),
623 &stmp))
624 goto err;
625 pss->maskGenAlgorithm = X509_ALGOR_new();
626 if (!pss->maskGenAlgorithm)
627 goto err;
628 X509_ALGOR_set0(pss->maskGenAlgorithm,
629 OBJ_nid2obj(NID_mgf1),
630 V_ASN1_SEQUENCE, stmp);
631 }
632 /* Finally create string with pss parameter encoding. */
633 if (!ASN1_item_pack(pss, ASN1_ITEM_rptr(RSA_PSS_PARAMS), &os1))
634 goto err;
635 if (alg2)
636 {
637 os2 = ASN1_STRING_dup(os1);
638 if (!os2)
639 goto err;
640 X509_ALGOR_set0(alg2, OBJ_nid2obj(NID_rsassaPss),
641 V_ASN1_SEQUENCE, os2);
642 }
643 X509_ALGOR_set0(alg1, OBJ_nid2obj(NID_rsassaPss),
644 V_ASN1_SEQUENCE, os1);
645 os1 = os2 = NULL;
646 rv = 3;
647 err:
648 if (mgf1alg)
649 X509_ALGOR_free(mgf1alg);
650 if (pss)
651 RSA_PSS_PARAMS_free(pss);
652 if (os1)
653 ASN1_STRING_free(os1);
654 return rv;
655

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ameth.c 11

656 }
657 return 2;
658 }

660 const EVP_PKEY_ASN1_METHOD rsa_asn1_meths[] =
661 {
662 {
663 EVP_PKEY_RSA,
664 EVP_PKEY_RSA,
665 ASN1_PKEY_SIGPARAM_NULL,

667 "RSA",
668 "OpenSSL RSA method",

670 rsa_pub_decode,
671 rsa_pub_encode,
672 rsa_pub_cmp,
673 rsa_pub_print,

675 rsa_priv_decode,
676 rsa_priv_encode,
677 rsa_priv_print,

679 int_rsa_size,
680 rsa_bits,

682 0,0,0,0,0,0,

684 rsa_sig_print,
685 int_rsa_free,
686 rsa_pkey_ctrl,
687 old_rsa_priv_decode,
688 old_rsa_priv_encode,
689 rsa_item_verify,
690 rsa_item_sign
691 },

693 {
694 EVP_PKEY_RSA2,
695 EVP_PKEY_RSA,
696 ASN1_PKEY_ALIAS
697 }
698 };

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_asn1.c 1

**
 4473 Fri May 30 18:32:08 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_asn1.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* rsa_asn1.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2000.
4 */
5 /* ==
6 * Copyright (c) 2000-2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_asn1.c 2

62 #include <openssl/rsa.h>
63 #include <openssl/x509.h>
64 #include <openssl/asn1t.h>

66 /* Override the default free and new methods */
67 static int rsa_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
68 void *exarg)
69 {
70 if(operation == ASN1_OP_NEW_PRE) {
71 *pval = (ASN1_VALUE *)RSA_new();
72 if(*pval) return 2;
73 return 0;
74 } else if(operation == ASN1_OP_FREE_PRE) {
75 RSA_free((RSA *)*pval);
76 *pval = NULL;
77 return 2;
78 }
79 return 1;
80 }

82 ASN1_SEQUENCE_cb(RSAPrivateKey, rsa_cb) = {
83 ASN1_SIMPLE(RSA, version, LONG),
84 ASN1_SIMPLE(RSA, n, BIGNUM),
85 ASN1_SIMPLE(RSA, e, BIGNUM),
86 ASN1_SIMPLE(RSA, d, BIGNUM),
87 ASN1_SIMPLE(RSA, p, BIGNUM),
88 ASN1_SIMPLE(RSA, q, BIGNUM),
89 ASN1_SIMPLE(RSA, dmp1, BIGNUM),
90 ASN1_SIMPLE(RSA, dmq1, BIGNUM),
91 ASN1_SIMPLE(RSA, iqmp, BIGNUM)
92 } ASN1_SEQUENCE_END_cb(RSA, RSAPrivateKey)

95 ASN1_SEQUENCE_cb(RSAPublicKey, rsa_cb) = {
96 ASN1_SIMPLE(RSA, n, BIGNUM),
97 ASN1_SIMPLE(RSA, e, BIGNUM),
98 } ASN1_SEQUENCE_END_cb(RSA, RSAPublicKey)

100 ASN1_SEQUENCE(RSA_PSS_PARAMS) = {
101 ASN1_EXP_OPT(RSA_PSS_PARAMS, hashAlgorithm, X509_ALGOR,0),
102 ASN1_EXP_OPT(RSA_PSS_PARAMS, maskGenAlgorithm, X509_ALGOR,1),
103 ASN1_EXP_OPT(RSA_PSS_PARAMS, saltLength, ASN1_INTEGER,2),
104 ASN1_EXP_OPT(RSA_PSS_PARAMS, trailerField, ASN1_INTEGER,3)
105 } ASN1_SEQUENCE_END(RSA_PSS_PARAMS)

107 IMPLEMENT_ASN1_FUNCTIONS(RSA_PSS_PARAMS)

109 IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(RSA, RSAPrivateKey, RSAPrivateKey)

111 IMPLEMENT_ASN1_ENCODE_FUNCTIONS_const_fname(RSA, RSAPublicKey, RSAPublicKey)

113 RSA *RSAPublicKey_dup(RSA *rsa)
114 {
115 return ASN1_item_dup(ASN1_ITEM_rptr(RSAPublicKey), rsa);
116 }

118 RSA *RSAPrivateKey_dup(RSA *rsa)
119 {
120 return ASN1_item_dup(ASN1_ITEM_rptr(RSAPrivateKey), rsa);
121 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_chk.c 1

**
 5364 Fri May 30 18:32:08 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_chk.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_chk.c -*- Mode: C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 */

51 #include <openssl/bn.h>
52 #include <openssl/err.h>
53 #include <openssl/rsa.h>

56 int RSA_check_key(const RSA *key)
57 {
58 BIGNUM *i, *j, *k, *l, *m;
59 BN_CTX *ctx;
60 int r;
61 int ret=1;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_chk.c 2

63 if (!key->p || !key->q || !key->n || !key->e || !key->d)
64 {
65 RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_VALUE_MISSING);
66 return 0;
67 }
68
69 i = BN_new();
70 j = BN_new();
71 k = BN_new();
72 l = BN_new();
73 m = BN_new();
74 ctx = BN_CTX_new();
75 if (i == NULL || j == NULL || k == NULL || l == NULL ||
76 m == NULL || ctx == NULL)
77 {
78 ret = -1;
79 RSAerr(RSA_F_RSA_CHECK_KEY, ERR_R_MALLOC_FAILURE);
80 goto err;
81 }
82
83 /* p prime? */
84 r = BN_is_prime_ex(key->p, BN_prime_checks, NULL, NULL);
85 if (r != 1)
86 {
87 ret = r;
88 if (r != 0)
89 goto err;
90 RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_P_NOT_PRIME);
91 }
92
93 /* q prime? */
94 r = BN_is_prime_ex(key->q, BN_prime_checks, NULL, NULL);
95 if (r != 1)
96 {
97 ret = r;
98 if (r != 0)
99 goto err;
100 RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_Q_NOT_PRIME);
101 }
102
103 /* n = p*q? */
104 r = BN_mul(i, key->p, key->q, ctx);
105 if (!r) { ret = -1; goto err; }
106
107 if (BN_cmp(i, key->n) != 0)
108 {
109 ret = 0;
110 RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_N_DOES_NOT_EQUAL_P_Q);
111 }
112
113 /* d*e = 1 mod lcm(p-1,q-1)? */

115 r = BN_sub(i, key->p, BN_value_one());
116 if (!r) { ret = -1; goto err; }
117 r = BN_sub(j, key->q, BN_value_one());
118 if (!r) { ret = -1; goto err; }

120 /* now compute k = lcm(i,j) */
121 r = BN_mul(l, i, j, ctx);
122 if (!r) { ret = -1; goto err; }
123 r = BN_gcd(m, i, j, ctx);
124 if (!r) { ret = -1; goto err; }
125 r = BN_div(k, NULL, l, m, ctx); /* remainder is 0 */
126 if (!r) { ret = -1; goto err; }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_chk.c 3

128 r = BN_mod_mul(i, key->d, key->e, k, ctx);
129 if (!r) { ret = -1; goto err; }

131 if (!BN_is_one(i))
132 {
133 ret = 0;
134 RSAerr(RSA_F_RSA_CHECK_KEY, RSA_R_D_E_NOT_CONGRUENT_TO_1);
135 }
136
137 if (key->dmp1 != NULL && key->dmq1 != NULL && key->iqmp != NULL)
138 {
139 /* dmp1 = d mod (p-1)? */
140 r = BN_sub(i, key->p, BN_value_one());
141 if (!r) { ret = -1; goto err; }

143 r = BN_mod(j, key->d, i, ctx);
144 if (!r) { ret = -1; goto err; }

146 if (BN_cmp(j, key->dmp1) != 0)
147 {
148 ret = 0;
149 RSAerr(RSA_F_RSA_CHECK_KEY,
150 RSA_R_DMP1_NOT_CONGRUENT_TO_D);
151 }
152
153 /* dmq1 = d mod (q-1)? */
154 r = BN_sub(i, key->q, BN_value_one());
155 if (!r) { ret = -1; goto err; }
156
157 r = BN_mod(j, key->d, i, ctx);
158 if (!r) { ret = -1; goto err; }

160 if (BN_cmp(j, key->dmq1) != 0)
161 {
162 ret = 0;
163 RSAerr(RSA_F_RSA_CHECK_KEY,
164 RSA_R_DMQ1_NOT_CONGRUENT_TO_D);
165 }
166
167 /* iqmp = q^-1 mod p? */
168 if(!BN_mod_inverse(i, key->q, key->p, ctx))
169 {
170 ret = -1;
171 goto err;
172 }

174 if (BN_cmp(i, key->iqmp) != 0)
175 {
176 ret = 0;
177 RSAerr(RSA_F_RSA_CHECK_KEY,
178 RSA_R_IQMP_NOT_INVERSE_OF_Q);
179 }
180 }

182 err:
183 if (i != NULL) BN_free(i);
184 if (j != NULL) BN_free(j);
185 if (k != NULL) BN_free(k);
186 if (l != NULL) BN_free(l);
187 if (m != NULL) BN_free(m);
188 if (ctx != NULL) BN_CTX_free(ctx);
189 return (ret);
190 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_crpt.c 1

**
 7540 Fri May 30 18:32:08 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_crpt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/crypto.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_crpt.c 2

62 #include <openssl/lhash.h>
63 #include <openssl/bn.h>
64 #include <openssl/rsa.h>
65 #include <openssl/rand.h>
66 #ifndef OPENSSL_NO_ENGINE
67 #include <openssl/engine.h>
68 #endif

70 int RSA_size(const RSA *r)
71 {
72 return(BN_num_bytes(r->n));
73 }

75 int RSA_public_encrypt(int flen, const unsigned char *from, unsigned char *to,
76 RSA *rsa, int padding)
77 {
78 #ifdef OPENSSL_FIPS
79 if (FIPS_mode() && !(rsa->meth->flags & RSA_FLAG_FIPS_METHOD)
80 && !(rsa->flags & RSA_FLAG_NON_FIPS_ALLOW))
81 {
82 RSAerr(RSA_F_RSA_PUBLIC_ENCRYPT, RSA_R_NON_FIPS_RSA_METHOD);
83 return -1;
84 }
85 #endif
86 return(rsa->meth->rsa_pub_enc(flen, from, to, rsa, padding));
87 }

89 int RSA_private_encrypt(int flen, const unsigned char *from, unsigned char *to,
90 RSA *rsa, int padding)
91 {
92 #ifdef OPENSSL_FIPS
93 if (FIPS_mode() && !(rsa->meth->flags & RSA_FLAG_FIPS_METHOD)
94 && !(rsa->flags & RSA_FLAG_NON_FIPS_ALLOW))
95 {
96 RSAerr(RSA_F_RSA_PRIVATE_ENCRYPT, RSA_R_NON_FIPS_RSA_METHOD);
97 return -1;
98 }
99 #endif
100 return(rsa->meth->rsa_priv_enc(flen, from, to, rsa, padding));
101 }

103 int RSA_private_decrypt(int flen, const unsigned char *from, unsigned char *to,
104 RSA *rsa, int padding)
105 {
106 #ifdef OPENSSL_FIPS
107 if (FIPS_mode() && !(rsa->meth->flags & RSA_FLAG_FIPS_METHOD)
108 && !(rsa->flags & RSA_FLAG_NON_FIPS_ALLOW))
109 {
110 RSAerr(RSA_F_RSA_PRIVATE_DECRYPT, RSA_R_NON_FIPS_RSA_METHOD);
111 return -1;
112 }
113 #endif
114 return(rsa->meth->rsa_priv_dec(flen, from, to, rsa, padding));
115 }

117 int RSA_public_decrypt(int flen, const unsigned char *from, unsigned char *to,
118 RSA *rsa, int padding)
119 {
120 #ifdef OPENSSL_FIPS
121 if (FIPS_mode() && !(rsa->meth->flags & RSA_FLAG_FIPS_METHOD)
122 && !(rsa->flags & RSA_FLAG_NON_FIPS_ALLOW))
123 {
124 RSAerr(RSA_F_RSA_PUBLIC_DECRYPT, RSA_R_NON_FIPS_RSA_METHOD);
125 return -1;
126 }
127 #endif

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_crpt.c 3

128 return(rsa->meth->rsa_pub_dec(flen, from, to, rsa, padding));
129 }

131 int RSA_flags(const RSA *r)
132 {
133 return((r == NULL)?0:r->meth->flags);
134 }

136 void RSA_blinding_off(RSA *rsa)
137 {
138 if (rsa->blinding != NULL)
139 {
140 BN_BLINDING_free(rsa->blinding);
141 rsa->blinding=NULL;
142 }
143 rsa->flags &= ~RSA_FLAG_BLINDING;
144 rsa->flags |= RSA_FLAG_NO_BLINDING;
145 }

147 int RSA_blinding_on(RSA *rsa, BN_CTX *ctx)
148 {
149 int ret=0;

151 if (rsa->blinding != NULL)
152 RSA_blinding_off(rsa);

154 rsa->blinding = RSA_setup_blinding(rsa, ctx);
155 if (rsa->blinding == NULL)
156 goto err;

158 rsa->flags |= RSA_FLAG_BLINDING;
159 rsa->flags &= ~RSA_FLAG_NO_BLINDING;
160 ret=1;
161 err:
162 return(ret);
163 }

165 static BIGNUM *rsa_get_public_exp(const BIGNUM *d, const BIGNUM *p,
166 const BIGNUM *q, BN_CTX *ctx)
167 {
168 BIGNUM *ret = NULL, *r0, *r1, *r2;

170 if (d == NULL || p == NULL || q == NULL)
171 return NULL;

173 BN_CTX_start(ctx);
174 r0 = BN_CTX_get(ctx);
175 r1 = BN_CTX_get(ctx);
176 r2 = BN_CTX_get(ctx);
177 if (r2 == NULL)
178 goto err;

180 if (!BN_sub(r1, p, BN_value_one())) goto err;
181 if (!BN_sub(r2, q, BN_value_one())) goto err;
182 if (!BN_mul(r0, r1, r2, ctx)) goto err;

184 ret = BN_mod_inverse(NULL, d, r0, ctx);
185 err:
186 BN_CTX_end(ctx);
187 return ret;
188 }

190 BN_BLINDING *RSA_setup_blinding(RSA *rsa, BN_CTX *in_ctx)
191 {
192 BIGNUM local_n;
193 BIGNUM *e,*n;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_crpt.c 4

194 BN_CTX *ctx;
195 BN_BLINDING *ret = NULL;

197 if (in_ctx == NULL)
198 {
199 if ((ctx = BN_CTX_new()) == NULL) return 0;
200 }
201 else
202 ctx = in_ctx;

204 BN_CTX_start(ctx);
205 e = BN_CTX_get(ctx);
206 if (e == NULL)
207 {
208 RSAerr(RSA_F_RSA_SETUP_BLINDING, ERR_R_MALLOC_FAILURE);
209 goto err;
210 }

212 if (rsa->e == NULL)
213 {
214 e = rsa_get_public_exp(rsa->d, rsa->p, rsa->q, ctx);
215 if (e == NULL)
216 {
217 RSAerr(RSA_F_RSA_SETUP_BLINDING, RSA_R_NO_PUBLIC_EXPONEN
218 goto err;
219 }
220 }
221 else
222 e = rsa->e;

224
225 if ((RAND_status() == 0) && rsa->d != NULL && rsa->d->d != NULL)
226 {
227 /* if PRNG is not properly seeded, resort to secret
228 * exponent as unpredictable seed */
229 RAND_add(rsa->d->d, rsa->d->dmax * sizeof rsa->d->d[0], 0.0);
230 }

232 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
233 {
234 /* Set BN_FLG_CONSTTIME flag */
235 n = &local_n;
236 BN_with_flags(n, rsa->n, BN_FLG_CONSTTIME);
237 }
238 else
239 n = rsa->n;

241 ret = BN_BLINDING_create_param(NULL, e, n, ctx,
242 rsa->meth->bn_mod_exp, rsa->_method_mod_n);
243 if (ret == NULL)
244 {
245 RSAerr(RSA_F_RSA_SETUP_BLINDING, ERR_R_BN_LIB);
246 goto err;
247 }
248 CRYPTO_THREADID_current(BN_BLINDING_thread_id(ret));
249 err:
250 BN_CTX_end(ctx);
251 if (in_ctx == NULL)
252 BN_CTX_free(ctx);
253 if(rsa->e == NULL)
254 BN_free(e);

256 return ret;
257 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_depr.c 1

**
 3558 Fri May 30 18:32:08 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_depr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_depr.c */
2 /* ==
3 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NB: This file contains deprecated functions (compatibility wrappers to the
57 * "new" versions). */

59 #include <stdio.h>
60 #include <time.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_depr.c 2

62 #include <openssl/bn.h>
63 #include <openssl/rsa.h>

65 #ifdef OPENSSL_NO_DEPRECATED

67 static void *dummy=&dummy;

69 #else

71 RSA *RSA_generate_key(int bits, unsigned long e_value,
72 void (*callback)(int,int,void *), void *cb_arg)
73 {
74 BN_GENCB cb;
75 int i;
76 RSA *rsa = RSA_new();
77 BIGNUM *e = BN_new();

79 if(!rsa || !e) goto err;

81 /* The problem is when building with 8, 16, or 32 BN_ULONG,
82 * unsigned long can be larger */
83 for (i=0; i<(int)sizeof(unsigned long)*8; i++)
84 {
85 if (e_value & (1UL<<i))
86 if (BN_set_bit(e,i) == 0)
87 goto err;
88 }

90 BN_GENCB_set_old(&cb, callback, cb_arg);

92 if(RSA_generate_key_ex(rsa, bits, e, &cb)) {
93 BN_free(e);
94 return rsa;
95 }
96 err:
97 if(e) BN_free(e);
98 if(rsa) RSA_free(rsa);
99 return 0;
100 }
101 #endif

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_eay.c 1

**
 25183 Fri May 30 18:32:08 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_eay.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_eay.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_eay.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include <stdio.h>
113 #include "cryptlib.h"
114 #include <openssl/bn.h>
115 #include <openssl/rsa.h>
116 #include <openssl/rand.h>

118 #ifndef RSA_NULL

120 static int RSA_eay_public_encrypt(int flen, const unsigned char *from,
121 unsigned char *to, RSA *rsa,int padding);
122 static int RSA_eay_private_encrypt(int flen, const unsigned char *from,
123 unsigned char *to, RSA *rsa,int padding);
124 static int RSA_eay_public_decrypt(int flen, const unsigned char *from,
125 unsigned char *to, RSA *rsa,int padding);
126 static int RSA_eay_private_decrypt(int flen, const unsigned char *from,
127 unsigned char *to, RSA *rsa,int padding);

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_eay.c 3

128 static int RSA_eay_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa, BN_CTX *ctx);
129 static int RSA_eay_init(RSA *rsa);
130 static int RSA_eay_finish(RSA *rsa);
131 static RSA_METHOD rsa_pkcs1_eay_meth={
132 "Eric Young’s PKCS#1 RSA",
133 RSA_eay_public_encrypt,
134 RSA_eay_public_decrypt, /* signature verification */
135 RSA_eay_private_encrypt, /* signing */
136 RSA_eay_private_decrypt,
137 RSA_eay_mod_exp,
138 BN_mod_exp_mont, /* XXX probably we should not use Montgomery if e == 3
139 RSA_eay_init,
140 RSA_eay_finish,
141 0, /* flags */
142 NULL,
143 0, /* rsa_sign */
144 0, /* rsa_verify */
145 NULL /* rsa_keygen */
146 };

148 const RSA_METHOD *RSA_PKCS1_SSLeay(void)
149 {
150 return(&rsa_pkcs1_eay_meth);
151 }

153 static int RSA_eay_public_encrypt(int flen, const unsigned char *from,
154 unsigned char *to, RSA *rsa, int padding)
155 {
156 BIGNUM *f,*ret;
157 int i,j,k,num=0,r= -1;
158 unsigned char *buf=NULL;
159 BN_CTX *ctx=NULL;

161 if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS)
162 {
163 RSAerr(RSA_F_RSA_EAY_PUBLIC_ENCRYPT, RSA_R_MODULUS_TOO_LARGE);
164 return -1;
165 }

167 if (BN_ucmp(rsa->n, rsa->e) <= 0)
168 {
169 RSAerr(RSA_F_RSA_EAY_PUBLIC_ENCRYPT, RSA_R_BAD_E_VALUE);
170 return -1;
171 }

173 /* for large moduli, enforce exponent limit */
174 if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS)
175 {
176 if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS)
177 {
178 RSAerr(RSA_F_RSA_EAY_PUBLIC_ENCRYPT, RSA_R_BAD_E_VALUE);
179 return -1;
180 }
181 }
182
183 if ((ctx=BN_CTX_new()) == NULL) goto err;
184 BN_CTX_start(ctx);
185 f = BN_CTX_get(ctx);
186 ret = BN_CTX_get(ctx);
187 num=BN_num_bytes(rsa->n);
188 buf = OPENSSL_malloc(num);
189 if (!f || !ret || !buf)
190 {
191 RSAerr(RSA_F_RSA_EAY_PUBLIC_ENCRYPT,ERR_R_MALLOC_FAILURE);
192 goto err;
193 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_eay.c 4

195 switch (padding)
196 {
197 case RSA_PKCS1_PADDING:
198 i=RSA_padding_add_PKCS1_type_2(buf,num,from,flen);
199 break;
200 #ifndef OPENSSL_NO_SHA
201 case RSA_PKCS1_OAEP_PADDING:
202 i=RSA_padding_add_PKCS1_OAEP(buf,num,from,flen,NULL,0);
203 break;
204 #endif
205 case RSA_SSLV23_PADDING:
206 i=RSA_padding_add_SSLv23(buf,num,from,flen);
207 break;
208 case RSA_NO_PADDING:
209 i=RSA_padding_add_none(buf,num,from,flen);
210 break;
211 default:
212 RSAerr(RSA_F_RSA_EAY_PUBLIC_ENCRYPT,RSA_R_UNKNOWN_PADDING_TYPE);
213 goto err;
214 }
215 if (i <= 0) goto err;

217 if (BN_bin2bn(buf,num,f) == NULL) goto err;
218
219 if (BN_ucmp(f, rsa->n) >= 0)
220 {
221 /* usually the padding functions would catch this */
222 RSAerr(RSA_F_RSA_EAY_PUBLIC_ENCRYPT,RSA_R_DATA_TOO_LARGE_FOR_MOD
223 goto err;
224 }

226 if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
227 if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, CRYPTO_LOCK_RSA
228 goto err;

230 if (!rsa->meth->bn_mod_exp(ret,f,rsa->e,rsa->n,ctx,
231 rsa->_method_mod_n)) goto err;

233 /* put in leading 0 bytes if the number is less than the
234 * length of the modulus */
235 j=BN_num_bytes(ret);
236 i=BN_bn2bin(ret,&(to[num-j]));
237 for (k=0; k<(num-i); k++)
238 to[k]=0;

240 r=num;
241 err:
242 if (ctx != NULL)
243 {
244 BN_CTX_end(ctx);
245 BN_CTX_free(ctx);
246 }
247 if (buf != NULL)
248 {
249 OPENSSL_cleanse(buf,num);
250 OPENSSL_free(buf);
251 }
252 return(r);
253 }

255 static BN_BLINDING *rsa_get_blinding(RSA *rsa, int *local, BN_CTX *ctx)
256 {
257 BN_BLINDING *ret;
258 int got_write_lock = 0;
259 CRYPTO_THREADID cur;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_eay.c 5

261 CRYPTO_r_lock(CRYPTO_LOCK_RSA);

263 if (rsa->blinding == NULL)
264 {
265 CRYPTO_r_unlock(CRYPTO_LOCK_RSA);
266 CRYPTO_w_lock(CRYPTO_LOCK_RSA);
267 got_write_lock = 1;

269 if (rsa->blinding == NULL)
270 rsa->blinding = RSA_setup_blinding(rsa, ctx);
271 }

273 ret = rsa->blinding;
274 if (ret == NULL)
275 goto err;

277 CRYPTO_THREADID_current(&cur);
278 if (!CRYPTO_THREADID_cmp(&cur, BN_BLINDING_thread_id(ret)))
279 {
280 /* rsa->blinding is ours! */

282 *local = 1;
283 }
284 else
285 {
286 /* resort to rsa->mt_blinding instead */

288 *local = 0; /* instructs rsa_blinding_convert(), rsa_blinding_in
289 * that the BN_BLINDING is shared, meaning that acce
290 * require locks, and that the blinding factor must
291 * stored outside the BN_BLINDING
292 */

294 if (rsa->mt_blinding == NULL)
295 {
296 if (!got_write_lock)
297 {
298 CRYPTO_r_unlock(CRYPTO_LOCK_RSA);
299 CRYPTO_w_lock(CRYPTO_LOCK_RSA);
300 got_write_lock = 1;
301 }
302
303 if (rsa->mt_blinding == NULL)
304 rsa->mt_blinding = RSA_setup_blinding(rsa, ctx);
305 }
306 ret = rsa->mt_blinding;
307 }

309 err:
310 if (got_write_lock)
311 CRYPTO_w_unlock(CRYPTO_LOCK_RSA);
312 else
313 CRYPTO_r_unlock(CRYPTO_LOCK_RSA);
314 return ret;
315 }

317 static int rsa_blinding_convert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind,
318 BN_CTX *ctx)
319 {
320 if (unblind == NULL)
321 /* Local blinding: store the unblinding factor
322 * in BN_BLINDING. */
323 return BN_BLINDING_convert_ex(f, NULL, b, ctx);
324 else
325 {

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_eay.c 6

326 /* Shared blinding: store the unblinding factor
327 * outside BN_BLINDING. */
328 int ret;
329 CRYPTO_w_lock(CRYPTO_LOCK_RSA_BLINDING);
330 ret = BN_BLINDING_convert_ex(f, unblind, b, ctx);
331 CRYPTO_w_unlock(CRYPTO_LOCK_RSA_BLINDING);
332 return ret;
333 }
334 }

336 static int rsa_blinding_invert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind,
337 BN_CTX *ctx)
338 {
339 /* For local blinding, unblind is set to NULL, and BN_BLINDING_invert_ex
340 * will use the unblinding factor stored in BN_BLINDING.
341 * If BN_BLINDING is shared between threads, unblind must be non-null:
342 * BN_BLINDING_invert_ex will then use the local unblinding factor,
343 * and will only read the modulus from BN_BLINDING.
344 * In both cases it’s safe to access the blinding without a lock.
345 */
346 return BN_BLINDING_invert_ex(f, unblind, b, ctx);
347 }

349 /* signing */
350 static int RSA_eay_private_encrypt(int flen, const unsigned char *from,
351 unsigned char *to, RSA *rsa, int padding)
352 {
353 BIGNUM *f, *ret, *res;
354 int i,j,k,num=0,r= -1;
355 unsigned char *buf=NULL;
356 BN_CTX *ctx=NULL;
357 int local_blinding = 0;
358 /* Used only if the blinding structure is shared. A non-NULL unblind
359 * instructs rsa_blinding_convert() and rsa_blinding_invert() to store
360 * the unblinding factor outside the blinding structure. */
361 BIGNUM *unblind = NULL;
362 BN_BLINDING *blinding = NULL;

364 if ((ctx=BN_CTX_new()) == NULL) goto err;
365 BN_CTX_start(ctx);
366 f = BN_CTX_get(ctx);
367 ret = BN_CTX_get(ctx);
368 num = BN_num_bytes(rsa->n);
369 buf = OPENSSL_malloc(num);
370 if(!f || !ret || !buf)
371 {
372 RSAerr(RSA_F_RSA_EAY_PRIVATE_ENCRYPT,ERR_R_MALLOC_FAILURE);
373 goto err;
374 }

376 switch (padding)
377 {
378 case RSA_PKCS1_PADDING:
379 i=RSA_padding_add_PKCS1_type_1(buf,num,from,flen);
380 break;
381 case RSA_X931_PADDING:
382 i=RSA_padding_add_X931(buf,num,from,flen);
383 break;
384 case RSA_NO_PADDING:
385 i=RSA_padding_add_none(buf,num,from,flen);
386 break;
387 case RSA_SSLV23_PADDING:
388 default:
389 RSAerr(RSA_F_RSA_EAY_PRIVATE_ENCRYPT,RSA_R_UNKNOWN_PADDING_TYPE)
390 goto err;
391 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_eay.c 7

392 if (i <= 0) goto err;

394 if (BN_bin2bn(buf,num,f) == NULL) goto err;
395
396 if (BN_ucmp(f, rsa->n) >= 0)
397 {
398 /* usually the padding functions would catch this */
399 RSAerr(RSA_F_RSA_EAY_PRIVATE_ENCRYPT,RSA_R_DATA_TOO_LARGE_FOR_MO
400 goto err;
401 }

403 if (!(rsa->flags & RSA_FLAG_NO_BLINDING))
404 {
405 blinding = rsa_get_blinding(rsa, &local_blinding, ctx);
406 if (blinding == NULL)
407 {
408 RSAerr(RSA_F_RSA_EAY_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERR
409 goto err;
410 }
411 }
412
413 if (blinding != NULL)
414 {
415 if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL))
416 {
417 RSAerr(RSA_F_RSA_EAY_PRIVATE_ENCRYPT,ERR_R_MALLOC_FAILUR
418 goto err;
419 }
420 if (!rsa_blinding_convert(blinding, f, unblind, ctx))
421 goto err;
422 }

424 if ((rsa->flags & RSA_FLAG_EXT_PKEY) ||
425 ((rsa->p != NULL) &&
426 (rsa->q != NULL) &&
427 (rsa->dmp1 != NULL) &&
428 (rsa->dmq1 != NULL) &&
429 (rsa->iqmp != NULL)))
430 {
431 if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) goto err;
432 }
433 else
434 {
435 BIGNUM local_d;
436 BIGNUM *d = NULL;
437
438 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
439 {
440 BN_init(&local_d);
441 d = &local_d;
442 BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
443 }
444 else
445 d= rsa->d;

447 if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
448 if(!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, CRYPTO_L
449 goto err;

451 if (!rsa->meth->bn_mod_exp(ret,f,d,rsa->n,ctx,
452 rsa->_method_mod_n)) goto err;
453 }

455 if (blinding)
456 if (!rsa_blinding_invert(blinding, ret, unblind, ctx))
457 goto err;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_eay.c 8

459 if (padding == RSA_X931_PADDING)
460 {
461 BN_sub(f, rsa->n, ret);
462 if (BN_cmp(ret, f))
463 res = f;
464 else
465 res = ret;
466 }
467 else
468 res = ret;

470 /* put in leading 0 bytes if the number is less than the
471 * length of the modulus */
472 j=BN_num_bytes(res);
473 i=BN_bn2bin(res,&(to[num-j]));
474 for (k=0; k<(num-i); k++)
475 to[k]=0;

477 r=num;
478 err:
479 if (ctx != NULL)
480 {
481 BN_CTX_end(ctx);
482 BN_CTX_free(ctx);
483 }
484 if (buf != NULL)
485 {
486 OPENSSL_cleanse(buf,num);
487 OPENSSL_free(buf);
488 }
489 return(r);
490 }

492 static int RSA_eay_private_decrypt(int flen, const unsigned char *from,
493 unsigned char *to, RSA *rsa, int padding)
494 {
495 BIGNUM *f, *ret;
496 int j,num=0,r= -1;
497 unsigned char *p;
498 unsigned char *buf=NULL;
499 BN_CTX *ctx=NULL;
500 int local_blinding = 0;
501 /* Used only if the blinding structure is shared. A non-NULL unblind
502 * instructs rsa_blinding_convert() and rsa_blinding_invert() to store
503 * the unblinding factor outside the blinding structure. */
504 BIGNUM *unblind = NULL;
505 BN_BLINDING *blinding = NULL;

507 if((ctx = BN_CTX_new()) == NULL) goto err;
508 BN_CTX_start(ctx);
509 f = BN_CTX_get(ctx);
510 ret = BN_CTX_get(ctx);
511 num = BN_num_bytes(rsa->n);
512 buf = OPENSSL_malloc(num);
513 if(!f || !ret || !buf)
514 {
515 RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT,ERR_R_MALLOC_FAILURE);
516 goto err;
517 }

519 /* This check was for equality but PGP does evil things
520 * and chops off the top ’0’ bytes */
521 if (flen > num)
522 {
523 RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT,RSA_R_DATA_GREATER_THAN_MOD

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_eay.c 9

524 goto err;
525 }

527 /* make data into a big number */
528 if (BN_bin2bn(from,(int)flen,f) == NULL) goto err;

530 if (BN_ucmp(f, rsa->n) >= 0)
531 {
532 RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT,RSA_R_DATA_TOO_LARGE_FOR_MO
533 goto err;
534 }

536 if (!(rsa->flags & RSA_FLAG_NO_BLINDING))
537 {
538 blinding = rsa_get_blinding(rsa, &local_blinding, ctx);
539 if (blinding == NULL)
540 {
541 RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT, ERR_R_INTERNAL_ERR
542 goto err;
543 }
544 }
545
546 if (blinding != NULL)
547 {
548 if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL))
549 {
550 RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT,ERR_R_MALLOC_FAILUR
551 goto err;
552 }
553 if (!rsa_blinding_convert(blinding, f, unblind, ctx))
554 goto err;
555 }

557 /* do the decrypt */
558 if ((rsa->flags & RSA_FLAG_EXT_PKEY) ||
559 ((rsa->p != NULL) &&
560 (rsa->q != NULL) &&
561 (rsa->dmp1 != NULL) &&
562 (rsa->dmq1 != NULL) &&
563 (rsa->iqmp != NULL)))
564 {
565 if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) goto err;
566 }
567 else
568 {
569 BIGNUM local_d;
570 BIGNUM *d = NULL;
571
572 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
573 {
574 d = &local_d;
575 BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
576 }
577 else
578 d = rsa->d;

580 if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
581 if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, CRYPTO_
582 goto err;
583 if (!rsa->meth->bn_mod_exp(ret,f,d,rsa->n,ctx,
584 rsa->_method_mod_n))
585 goto err;
586 }

588 if (blinding)
589 if (!rsa_blinding_invert(blinding, ret, unblind, ctx))

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_eay.c 10

590 goto err;

592 p=buf;
593 j=BN_bn2bin(ret,p); /* j is only used with no-padding mode */

595 switch (padding)
596 {
597 case RSA_PKCS1_PADDING:
598 r=RSA_padding_check_PKCS1_type_2(to,num,buf,j,num);
599 break;
600 #ifndef OPENSSL_NO_SHA
601 case RSA_PKCS1_OAEP_PADDING:
602 r=RSA_padding_check_PKCS1_OAEP(to,num,buf,j,num,NULL,0);
603 break;
604 #endif
605 case RSA_SSLV23_PADDING:
606 r=RSA_padding_check_SSLv23(to,num,buf,j,num);
607 break;
608 case RSA_NO_PADDING:
609 r=RSA_padding_check_none(to,num,buf,j,num);
610 break;
611 default:
612 RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT,RSA_R_UNKNOWN_PADDING_TYPE)
613 goto err;
614 }
615 if (r < 0)
616 RSAerr(RSA_F_RSA_EAY_PRIVATE_DECRYPT,RSA_R_PADDING_CHECK_FAILED)

618 err:
619 if (ctx != NULL)
620 {
621 BN_CTX_end(ctx);
622 BN_CTX_free(ctx);
623 }
624 if (buf != NULL)
625 {
626 OPENSSL_cleanse(buf,num);
627 OPENSSL_free(buf);
628 }
629 return(r);
630 }

632 /* signature verification */
633 static int RSA_eay_public_decrypt(int flen, const unsigned char *from,
634 unsigned char *to, RSA *rsa, int padding)
635 {
636 BIGNUM *f,*ret;
637 int i,num=0,r= -1;
638 unsigned char *p;
639 unsigned char *buf=NULL;
640 BN_CTX *ctx=NULL;

642 if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS)
643 {
644 RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT, RSA_R_MODULUS_TOO_LARGE);
645 return -1;
646 }

648 if (BN_ucmp(rsa->n, rsa->e) <= 0)
649 {
650 RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT, RSA_R_BAD_E_VALUE);
651 return -1;
652 }

654 /* for large moduli, enforce exponent limit */
655 if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS)

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_eay.c 11

656 {
657 if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS)
658 {
659 RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT, RSA_R_BAD_E_VALUE);
660 return -1;
661 }
662 }
663
664 if((ctx = BN_CTX_new()) == NULL) goto err;
665 BN_CTX_start(ctx);
666 f = BN_CTX_get(ctx);
667 ret = BN_CTX_get(ctx);
668 num=BN_num_bytes(rsa->n);
669 buf = OPENSSL_malloc(num);
670 if(!f || !ret || !buf)
671 {
672 RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT,ERR_R_MALLOC_FAILURE);
673 goto err;
674 }

676 /* This check was for equality but PGP does evil things
677 * and chops off the top ’0’ bytes */
678 if (flen > num)
679 {
680 RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT,RSA_R_DATA_GREATER_THAN_MOD_
681 goto err;
682 }

684 if (BN_bin2bn(from,flen,f) == NULL) goto err;

686 if (BN_ucmp(f, rsa->n) >= 0)
687 {
688 RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT,RSA_R_DATA_TOO_LARGE_FOR_MOD
689 goto err;
690 }

692 if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
693 if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, CRYPTO_LOCK_RSA
694 goto err;

696 if (!rsa->meth->bn_mod_exp(ret,f,rsa->e,rsa->n,ctx,
697 rsa->_method_mod_n)) goto err;

699 if ((padding == RSA_X931_PADDING) && ((ret->d[0] & 0xf) != 12))
700 if (!BN_sub(ret, rsa->n, ret)) goto err;

702 p=buf;
703 i=BN_bn2bin(ret,p);

705 switch (padding)
706 {
707 case RSA_PKCS1_PADDING:
708 r=RSA_padding_check_PKCS1_type_1(to,num,buf,i,num);
709 break;
710 case RSA_X931_PADDING:
711 r=RSA_padding_check_X931(to,num,buf,i,num);
712 break;
713 case RSA_NO_PADDING:
714 r=RSA_padding_check_none(to,num,buf,i,num);
715 break;
716 default:
717 RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT,RSA_R_UNKNOWN_PADDING_TYPE);
718 goto err;
719 }
720 if (r < 0)
721 RSAerr(RSA_F_RSA_EAY_PUBLIC_DECRYPT,RSA_R_PADDING_CHECK_FAILED);

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_eay.c 12

723 err:
724 if (ctx != NULL)
725 {
726 BN_CTX_end(ctx);
727 BN_CTX_free(ctx);
728 }
729 if (buf != NULL)
730 {
731 OPENSSL_cleanse(buf,num);
732 OPENSSL_free(buf);
733 }
734 return(r);
735 }

737 static int RSA_eay_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
738 {
739 BIGNUM *r1,*m1,*vrfy;
740 BIGNUM local_dmp1,local_dmq1,local_c,local_r1;
741 BIGNUM *dmp1,*dmq1,*c,*pr1;
742 int ret=0;

744 BN_CTX_start(ctx);
745 r1 = BN_CTX_get(ctx);
746 m1 = BN_CTX_get(ctx);
747 vrfy = BN_CTX_get(ctx);

749 {
750 BIGNUM local_p, local_q;
751 BIGNUM *p = NULL, *q = NULL;

753 /* Make sure BN_mod_inverse in Montgomery intialization uses the
754 * BN_FLG_CONSTTIME flag (unless RSA_FLAG_NO_CONSTTIME is set)
755 */
756 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
757 {
758 BN_init(&local_p);
759 p = &local_p;
760 BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);

762 BN_init(&local_q);
763 q = &local_q;
764 BN_with_flags(q, rsa->q, BN_FLG_CONSTTIME);
765 }
766 else
767 {
768 p = rsa->p;
769 q = rsa->q;
770 }

772 if (rsa->flags & RSA_FLAG_CACHE_PRIVATE)
773 {
774 if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_p, CRYPTO_
775 goto err;
776 if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_q, CRYPTO_
777 goto err;
778 }
779 }

781 if (rsa->flags & RSA_FLAG_CACHE_PUBLIC)
782 if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, CRYPTO_LOCK_RSA
783 goto err;

785 /* compute I mod q */
786 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
787 {

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_eay.c 13

788 c = &local_c;
789 BN_with_flags(c, I, BN_FLG_CONSTTIME);
790 if (!BN_mod(r1,c,rsa->q,ctx)) goto err;
791 }
792 else
793 {
794 if (!BN_mod(r1,I,rsa->q,ctx)) goto err;
795 }

797 /* compute r1^dmq1 mod q */
798 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
799 {
800 dmq1 = &local_dmq1;
801 BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME);
802 }
803 else
804 dmq1 = rsa->dmq1;
805 if (!rsa->meth->bn_mod_exp(m1,r1,dmq1,rsa->q,ctx,
806 rsa->_method_mod_q)) goto err;

808 /* compute I mod p */
809 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
810 {
811 c = &local_c;
812 BN_with_flags(c, I, BN_FLG_CONSTTIME);
813 if (!BN_mod(r1,c,rsa->p,ctx)) goto err;
814 }
815 else
816 {
817 if (!BN_mod(r1,I,rsa->p,ctx)) goto err;
818 }

820 /* compute r1^dmp1 mod p */
821 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
822 {
823 dmp1 = &local_dmp1;
824 BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME);
825 }
826 else
827 dmp1 = rsa->dmp1;
828 if (!rsa->meth->bn_mod_exp(r0,r1,dmp1,rsa->p,ctx,
829 rsa->_method_mod_p)) goto err;

831 if (!BN_sub(r0,r0,m1)) goto err;
832 /* This will help stop the size of r0 increasing, which does
833 * affect the multiply if it optimised for a power of 2 size */
834 if (BN_is_negative(r0))
835 if (!BN_add(r0,r0,rsa->p)) goto err;

837 if (!BN_mul(r1,r0,rsa->iqmp,ctx)) goto err;

839 /* Turn BN_FLG_CONSTTIME flag on before division operation */
840 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
841 {
842 pr1 = &local_r1;
843 BN_with_flags(pr1, r1, BN_FLG_CONSTTIME);
844 }
845 else
846 pr1 = r1;
847 if (!BN_mod(r0,pr1,rsa->p,ctx)) goto err;

849 /* If p < q it is occasionally possible for the correction of
850 * adding ’p’ if r0 is negative above to leave the result still
851 * negative. This can break the private key operations: the following
852 * second correction should *always* correct this rare occurrence.
853 * This will *never* happen with OpenSSL generated keys because

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_eay.c 14

854 * they ensure p > q [steve]
855 */
856 if (BN_is_negative(r0))
857 if (!BN_add(r0,r0,rsa->p)) goto err;
858 if (!BN_mul(r1,r0,rsa->q,ctx)) goto err;
859 if (!BN_add(r0,r1,m1)) goto err;

861 if (rsa->e && rsa->n)
862 {
863 if (!rsa->meth->bn_mod_exp(vrfy,r0,rsa->e,rsa->n,ctx,rsa->_metho
864 /* If ’I’ was greater than (or equal to) rsa->n, the operation
865 * will be equivalent to using ’I mod n’. However, the result of
866 * the verify will *always* be less than ’n’ so we don’t check
867 * for absolute equality, just congruency. */
868 if (!BN_sub(vrfy, vrfy, I)) goto err;
869 if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) goto err;
870 if (BN_is_negative(vrfy))
871 if (!BN_add(vrfy, vrfy, rsa->n)) goto err;
872 if (!BN_is_zero(vrfy))
873 {
874 /* ’I’ and ’vrfy’ aren’t congruent mod n. Don’t leak
875 * miscalculated CRT output, just do a raw (slower)
876 * mod_exp and return that instead. */

878 BIGNUM local_d;
879 BIGNUM *d = NULL;
880
881 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
882 {
883 d = &local_d;
884 BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
885 }
886 else
887 d = rsa->d;
888 if (!rsa->meth->bn_mod_exp(r0,I,d,rsa->n,ctx,
889 rsa->_method_mod_n)) goto err
890 }
891 }
892 ret=1;
893 err:
894 BN_CTX_end(ctx);
895 return(ret);
896 }

898 static int RSA_eay_init(RSA *rsa)
899 {
900 rsa->flags|=RSA_FLAG_CACHE_PUBLIC|RSA_FLAG_CACHE_PRIVATE;
901 return(1);
902 }

904 static int RSA_eay_finish(RSA *rsa)
905 {
906 if (rsa->_method_mod_n != NULL)
907 BN_MONT_CTX_free(rsa->_method_mod_n);
908 if (rsa->_method_mod_p != NULL)
909 BN_MONT_CTX_free(rsa->_method_mod_p);
910 if (rsa->_method_mod_q != NULL)
911 BN_MONT_CTX_free(rsa->_method_mod_q);
912 return(1);
913 }

915 #endif

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_err.c 1

**
 11138 Fri May 30 18:32:08 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_err.c */
2 /* ==
3 * Copyright (c) 1999-2011 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/rsa.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_RSA,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_RSA,0,reason)

71 static ERR_STRING_DATA RSA_str_functs[]=
72 {
73 {ERR_FUNC(RSA_F_CHECK_PADDING_MD), "CHECK_PADDING_MD"},
74 {ERR_FUNC(RSA_F_DO_RSA_PRINT), "DO_RSA_PRINT"},
75 {ERR_FUNC(RSA_F_INT_RSA_VERIFY), "INT_RSA_VERIFY"},
76 {ERR_FUNC(RSA_F_MEMORY_LOCK), "MEMORY_LOCK"},
77 {ERR_FUNC(RSA_F_OLD_RSA_PRIV_DECODE), "OLD_RSA_PRIV_DECODE"},
78 {ERR_FUNC(RSA_F_PKEY_RSA_CTRL), "PKEY_RSA_CTRL"},
79 {ERR_FUNC(RSA_F_PKEY_RSA_CTRL_STR), "PKEY_RSA_CTRL_STR"},
80 {ERR_FUNC(RSA_F_PKEY_RSA_SIGN), "PKEY_RSA_SIGN"},
81 {ERR_FUNC(RSA_F_PKEY_RSA_VERIFY), "PKEY_RSA_VERIFY"},
82 {ERR_FUNC(RSA_F_PKEY_RSA_VERIFYRECOVER), "PKEY_RSA_VERIFYRECOVER"},
83 {ERR_FUNC(RSA_F_RSA_BUILTIN_KEYGEN), "RSA_BUILTIN_KEYGEN"},
84 {ERR_FUNC(RSA_F_RSA_CHECK_KEY), "RSA_check_key"},
85 {ERR_FUNC(RSA_F_RSA_EAY_PRIVATE_DECRYPT), "RSA_EAY_PRIVATE_DECRYPT"},
86 {ERR_FUNC(RSA_F_RSA_EAY_PRIVATE_ENCRYPT), "RSA_EAY_PRIVATE_ENCRYPT"},
87 {ERR_FUNC(RSA_F_RSA_EAY_PUBLIC_DECRYPT), "RSA_EAY_PUBLIC_DECRYPT"},
88 {ERR_FUNC(RSA_F_RSA_EAY_PUBLIC_ENCRYPT), "RSA_EAY_PUBLIC_ENCRYPT"},
89 {ERR_FUNC(RSA_F_RSA_GENERATE_KEY), "RSA_generate_key"},
90 {ERR_FUNC(RSA_F_RSA_GENERATE_KEY_EX), "RSA_generate_key_ex"},
91 {ERR_FUNC(RSA_F_RSA_ITEM_VERIFY), "RSA_ITEM_VERIFY"},
92 {ERR_FUNC(RSA_F_RSA_MEMORY_LOCK), "RSA_memory_lock"},
93 {ERR_FUNC(RSA_F_RSA_NEW_METHOD), "RSA_new_method"},
94 {ERR_FUNC(RSA_F_RSA_NULL), "RSA_NULL"},
95 {ERR_FUNC(RSA_F_RSA_NULL_MOD_EXP), "RSA_NULL_MOD_EXP"},
96 {ERR_FUNC(RSA_F_RSA_NULL_PRIVATE_DECRYPT), "RSA_NULL_PRIVATE_DECRYPT"},
97 {ERR_FUNC(RSA_F_RSA_NULL_PRIVATE_ENCRYPT), "RSA_NULL_PRIVATE_ENCRYPT"},
98 {ERR_FUNC(RSA_F_RSA_NULL_PUBLIC_DECRYPT), "RSA_NULL_PUBLIC_DECRYPT"},
99 {ERR_FUNC(RSA_F_RSA_NULL_PUBLIC_ENCRYPT), "RSA_NULL_PUBLIC_ENCRYPT"},
100 {ERR_FUNC(RSA_F_RSA_PADDING_ADD_NONE), "RSA_padding_add_none"},
101 {ERR_FUNC(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP), "RSA_padding_add_PKCS1_OAEP"},
102 {ERR_FUNC(RSA_F_RSA_PADDING_ADD_PKCS1_PSS), "RSA_padding_add_PKCS1_PSS"},
103 {ERR_FUNC(RSA_F_RSA_PADDING_ADD_PKCS1_PSS_MGF1), "RSA_padding_add_PKCS1_P
104 {ERR_FUNC(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_1), "RSA_padding_add_PKCS1_type_1"},
105 {ERR_FUNC(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_2), "RSA_padding_add_PKCS1_type_2"},
106 {ERR_FUNC(RSA_F_RSA_PADDING_ADD_SSLV23), "RSA_padding_add_SSLv23"},
107 {ERR_FUNC(RSA_F_RSA_PADDING_ADD_X931), "RSA_padding_add_X931"},
108 {ERR_FUNC(RSA_F_RSA_PADDING_CHECK_NONE), "RSA_padding_check_none"},
109 {ERR_FUNC(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP), "RSA_padding_check_PKCS1_OAEP"},
110 {ERR_FUNC(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1), "RSA_padding_check_PKCS1
111 {ERR_FUNC(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2), "RSA_padding_check_PKCS1
112 {ERR_FUNC(RSA_F_RSA_PADDING_CHECK_SSLV23), "RSA_padding_check_SSLv23"},
113 {ERR_FUNC(RSA_F_RSA_PADDING_CHECK_X931), "RSA_padding_check_X931"},
114 {ERR_FUNC(RSA_F_RSA_PRINT), "RSA_print"},
115 {ERR_FUNC(RSA_F_RSA_PRINT_FP), "RSA_print_fp"},
116 {ERR_FUNC(RSA_F_RSA_PRIVATE_DECRYPT), "RSA_private_decrypt"},
117 {ERR_FUNC(RSA_F_RSA_PRIVATE_ENCRYPT), "RSA_private_encrypt"},
118 {ERR_FUNC(RSA_F_RSA_PRIV_DECODE), "RSA_PRIV_DECODE"},
119 {ERR_FUNC(RSA_F_RSA_PRIV_ENCODE), "RSA_PRIV_ENCODE"},
120 {ERR_FUNC(RSA_F_RSA_PUBLIC_DECRYPT), "RSA_public_decrypt"},
121 {ERR_FUNC(RSA_F_RSA_PUBLIC_ENCRYPT), "RSA_public_encrypt"},
122 {ERR_FUNC(RSA_F_RSA_PUB_DECODE), "RSA_PUB_DECODE"},
123 {ERR_FUNC(RSA_F_RSA_SETUP_BLINDING), "RSA_setup_blinding"},
124 {ERR_FUNC(RSA_F_RSA_SIGN), "RSA_sign"},
125 {ERR_FUNC(RSA_F_RSA_SIGN_ASN1_OCTET_STRING), "RSA_sign_ASN1_OCTET_STRING"},
126 {ERR_FUNC(RSA_F_RSA_VERIFY), "RSA_verify"},
127 {ERR_FUNC(RSA_F_RSA_VERIFY_ASN1_OCTET_STRING), "RSA_verify_ASN1_OCTET_STRING"},

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_err.c 3

128 {ERR_FUNC(RSA_F_RSA_VERIFY_PKCS1_PSS), "RSA_verify_PKCS1_PSS"},
129 {ERR_FUNC(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1), "RSA_verify_PKCS1_PSS_mgf1"},
130 {0,NULL}
131 };

133 static ERR_STRING_DATA RSA_str_reasons[]=
134 {
135 {ERR_REASON(RSA_R_ALGORITHM_MISMATCH) ,"algorithm mismatch"},
136 {ERR_REASON(RSA_R_BAD_E_VALUE) ,"bad e value"},
137 {ERR_REASON(RSA_R_BAD_FIXED_HEADER_DECRYPT),"bad fixed header decrypt"},
138 {ERR_REASON(RSA_R_BAD_PAD_BYTE_COUNT) ,"bad pad byte count"},
139 {ERR_REASON(RSA_R_BAD_SIGNATURE) ,"bad signature"},
140 {ERR_REASON(RSA_R_BLOCK_TYPE_IS_NOT_01) ,"block type is not 01"},
141 {ERR_REASON(RSA_R_BLOCK_TYPE_IS_NOT_02) ,"block type is not 02"},
142 {ERR_REASON(RSA_R_DATA_GREATER_THAN_MOD_LEN),"data greater than mod len"},
143 {ERR_REASON(RSA_R_DATA_TOO_LARGE) ,"data too large"},
144 {ERR_REASON(RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE),"data too large for key size"},
145 {ERR_REASON(RSA_R_DATA_TOO_LARGE_FOR_MODULUS),"data too large for modulus"},
146 {ERR_REASON(RSA_R_DATA_TOO_SMALL) ,"data too small"},
147 {ERR_REASON(RSA_R_DATA_TOO_SMALL_FOR_KEY_SIZE),"data too small for key size"},
148 {ERR_REASON(RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY),"digest too big for rsa key"},
149 {ERR_REASON(RSA_R_DMP1_NOT_CONGRUENT_TO_D),"dmp1 not congruent to d"},
150 {ERR_REASON(RSA_R_DMQ1_NOT_CONGRUENT_TO_D),"dmq1 not congruent to d"},
151 {ERR_REASON(RSA_R_D_E_NOT_CONGRUENT_TO_1),"d e not congruent to 1"},
152 {ERR_REASON(RSA_R_FIRST_OCTET_INVALID) ,"first octet invalid"},
153 {ERR_REASON(RSA_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE),"illegal or unsupported p
154 {ERR_REASON(RSA_R_INVALID_DIGEST_LENGTH) ,"invalid digest length"},
155 {ERR_REASON(RSA_R_INVALID_HEADER) ,"invalid header"},
156 {ERR_REASON(RSA_R_INVALID_KEYBITS) ,"invalid keybits"},
157 {ERR_REASON(RSA_R_INVALID_MESSAGE_LENGTH),"invalid message length"},
158 {ERR_REASON(RSA_R_INVALID_MGF1_MD) ,"invalid mgf1 md"},
159 {ERR_REASON(RSA_R_INVALID_PADDING) ,"invalid padding"},
160 {ERR_REASON(RSA_R_INVALID_PADDING_MODE) ,"invalid padding mode"},
161 {ERR_REASON(RSA_R_INVALID_PSS_PARAMETERS),"invalid pss parameters"},
162 {ERR_REASON(RSA_R_INVALID_PSS_SALTLEN) ,"invalid pss saltlen"},
163 {ERR_REASON(RSA_R_INVALID_SALT_LENGTH) ,"invalid salt length"},
164 {ERR_REASON(RSA_R_INVALID_TRAILER) ,"invalid trailer"},
165 {ERR_REASON(RSA_R_INVALID_X931_DIGEST) ,"invalid x931 digest"},
166 {ERR_REASON(RSA_R_IQMP_NOT_INVERSE_OF_Q) ,"iqmp not inverse of q"},
167 {ERR_REASON(RSA_R_KEY_SIZE_TOO_SMALL) ,"key size too small"},
168 {ERR_REASON(RSA_R_LAST_OCTET_INVALID) ,"last octet invalid"},
169 {ERR_REASON(RSA_R_MODULUS_TOO_LARGE) ,"modulus too large"},
170 {ERR_REASON(RSA_R_NON_FIPS_RSA_METHOD) ,"non fips rsa method"},
171 {ERR_REASON(RSA_R_NO_PUBLIC_EXPONENT) ,"no public exponent"},
172 {ERR_REASON(RSA_R_NULL_BEFORE_BLOCK_MISSING),"null before block missing"},
173 {ERR_REASON(RSA_R_N_DOES_NOT_EQUAL_P_Q) ,"n does not equal p q"},
174 {ERR_REASON(RSA_R_OAEP_DECODING_ERROR) ,"oaep decoding error"},
175 {ERR_REASON(RSA_R_OPERATION_NOT_ALLOWED_IN_FIPS_MODE),"operation not allowed in
176 {ERR_REASON(RSA_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE),"operation not suppo
177 {ERR_REASON(RSA_R_PADDING_CHECK_FAILED) ,"padding check failed"},
178 {ERR_REASON(RSA_R_P_NOT_PRIME) ,"p not prime"},
179 {ERR_REASON(RSA_R_Q_NOT_PRIME) ,"q not prime"},
180 {ERR_REASON(RSA_R_RSA_OPERATIONS_NOT_SUPPORTED),"rsa operations not supported"},
181 {ERR_REASON(RSA_R_SLEN_CHECK_FAILED) ,"salt length check failed"},
182 {ERR_REASON(RSA_R_SLEN_RECOVERY_FAILED) ,"salt length recovery failed"},
183 {ERR_REASON(RSA_R_SSLV3_ROLLBACK_ATTACK) ,"sslv3 rollback attack"},
184 {ERR_REASON(RSA_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD),"the asn1
185 {ERR_REASON(RSA_R_UNKNOWN_ALGORITHM_TYPE),"unknown algorithm type"},
186 {ERR_REASON(RSA_R_UNKNOWN_MASK_DIGEST) ,"unknown mask digest"},
187 {ERR_REASON(RSA_R_UNKNOWN_PADDING_TYPE) ,"unknown padding type"},
188 {ERR_REASON(RSA_R_UNKNOWN_PSS_DIGEST) ,"unknown pss digest"},
189 {ERR_REASON(RSA_R_UNSUPPORTED_MASK_ALGORITHM),"unsupported mask algorithm"},
190 {ERR_REASON(RSA_R_UNSUPPORTED_MASK_PARAMETER),"unsupported mask parameter"},
191 {ERR_REASON(RSA_R_UNSUPPORTED_SIGNATURE_TYPE),"unsupported signature type"},
192 {ERR_REASON(RSA_R_VALUE_MISSING) ,"value missing"},
193 {ERR_REASON(RSA_R_WRONG_SIGNATURE_LENGTH),"wrong signature length"},

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_err.c 4

194 {0,NULL}
195 };

197 #endif

199 void ERR_load_RSA_strings(void)
200 {
201 #ifndef OPENSSL_NO_ERR

203 if (ERR_func_error_string(RSA_str_functs[0].error) == NULL)
204 {
205 ERR_load_strings(0,RSA_str_functs);
206 ERR_load_strings(0,RSA_str_reasons);
207 }
208 #endif
209 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_gen.c 1

**
 7844 Fri May 30 18:32:08 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_gen.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_gen.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

60 /* NB: these functions have been "upgraded", the deprecated versions (which are
61 * compatibility wrappers using these functions) are in rsa_depr.c.

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_gen.c 2

62 * - Geoff
63 */

65 #include <stdio.h>
66 #include <time.h>
67 #include "cryptlib.h"
68 #include <openssl/bn.h>
69 #include <openssl/rsa.h>
70 #ifdef OPENSSL_FIPS
71 #include <openssl/fips.h>
72 #endif

74 static int rsa_builtin_keygen(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)

76 /* NB: this wrapper would normally be placed in rsa_lib.c and the static
77 * implementation would probably be in rsa_eay.c. Nonetheless, is kept here so
78 * that we don’t introduce a new linker dependency. Eg. any application that
79 * wasn’t previously linking object code related to key-generation won’t have to
80 * now just because key-generation is part of RSA_METHOD. */
81 int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
82 {
83 #ifdef OPENSSL_FIPS
84 if (FIPS_mode() && !(rsa->meth->flags & RSA_FLAG_FIPS_METHOD)
85 && !(rsa->flags & RSA_FLAG_NON_FIPS_ALLOW))
86 {
87 RSAerr(RSA_F_RSA_GENERATE_KEY_EX, RSA_R_NON_FIPS_RSA_METHOD);
88 return 0;
89 }
90 #endif
91 if(rsa->meth->rsa_keygen)
92 return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
93 #ifdef OPENSSL_FIPS
94 if (FIPS_mode())
95 return FIPS_rsa_generate_key_ex(rsa, bits, e_value, cb);
96 #endif
97 return rsa_builtin_keygen(rsa, bits, e_value, cb);
98 }

100 static int rsa_builtin_keygen(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
101 {
102 BIGNUM *r0=NULL,*r1=NULL,*r2=NULL,*r3=NULL,*tmp;
103 BIGNUM local_r0,local_d,local_p;
104 BIGNUM *pr0,*d,*p;
105 int bitsp,bitsq,ok= -1,n=0;
106 BN_CTX *ctx=NULL;

108 ctx=BN_CTX_new();
109 if (ctx == NULL) goto err;
110 BN_CTX_start(ctx);
111 r0 = BN_CTX_get(ctx);
112 r1 = BN_CTX_get(ctx);
113 r2 = BN_CTX_get(ctx);
114 r3 = BN_CTX_get(ctx);
115 if (r3 == NULL) goto err;

117 bitsp=(bits+1)/2;
118 bitsq=bits-bitsp;

120 /* We need the RSA components non-NULL */
121 if(!rsa->n && ((rsa->n=BN_new()) == NULL)) goto err;
122 if(!rsa->d && ((rsa->d=BN_new()) == NULL)) goto err;
123 if(!rsa->e && ((rsa->e=BN_new()) == NULL)) goto err;
124 if(!rsa->p && ((rsa->p=BN_new()) == NULL)) goto err;
125 if(!rsa->q && ((rsa->q=BN_new()) == NULL)) goto err;
126 if(!rsa->dmp1 && ((rsa->dmp1=BN_new()) == NULL)) goto err;
127 if(!rsa->dmq1 && ((rsa->dmq1=BN_new()) == NULL)) goto err;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_gen.c 3

128 if(!rsa->iqmp && ((rsa->iqmp=BN_new()) == NULL)) goto err;

130 BN_copy(rsa->e, e_value);

132 /* generate p and q */
133 for (;;)
134 {
135 if(!BN_generate_prime_ex(rsa->p, bitsp, 0, NULL, NULL, cb))
136 goto err;
137 if (!BN_sub(r2,rsa->p,BN_value_one())) goto err;
138 if (!BN_gcd(r1,r2,rsa->e,ctx)) goto err;
139 if (BN_is_one(r1)) break;
140 if(!BN_GENCB_call(cb, 2, n++))
141 goto err;
142 }
143 if(!BN_GENCB_call(cb, 3, 0))
144 goto err;
145 for (;;)
146 {
147 /* When generating ridiculously small keys, we can get stuck
148 * continually regenerating the same prime values. Check for
149 * this and bail if it happens 3 times. */
150 unsigned int degenerate = 0;
151 do
152 {
153 if(!BN_generate_prime_ex(rsa->q, bitsq, 0, NULL, NULL, c
154 goto err;
155 } while((BN_cmp(rsa->p, rsa->q) == 0) && (++degenerate <
156 if(degenerate == 3)
157 {
158 ok = 0; /* we set our own err */
159 RSAerr(RSA_F_RSA_BUILTIN_KEYGEN,RSA_R_KEY_SIZE_TOO_SMALL
160 goto err;
161 }
162 if (!BN_sub(r2,rsa->q,BN_value_one())) goto err;
163 if (!BN_gcd(r1,r2,rsa->e,ctx)) goto err;
164 if (BN_is_one(r1))
165 break;
166 if(!BN_GENCB_call(cb, 2, n++))
167 goto err;
168 }
169 if(!BN_GENCB_call(cb, 3, 1))
170 goto err;
171 if (BN_cmp(rsa->p,rsa->q) < 0)
172 {
173 tmp=rsa->p;
174 rsa->p=rsa->q;
175 rsa->q=tmp;
176 }

178 /* calculate n */
179 if (!BN_mul(rsa->n,rsa->p,rsa->q,ctx)) goto err;

181 /* calculate d */
182 if (!BN_sub(r1,rsa->p,BN_value_one())) goto err; /* p-1 */
183 if (!BN_sub(r2,rsa->q,BN_value_one())) goto err; /* q-1 */
184 if (!BN_mul(r0,r1,r2,ctx)) goto err; /* (p-1)(q-1) */
185 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
186 {
187 pr0 = &local_r0;
188 BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
189 }
190 else
191 pr0 = r0;
192 if (!BN_mod_inverse(rsa->d,rsa->e,pr0,ctx)) goto err; /* d */

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_gen.c 4

194 /* set up d for correct BN_FLG_CONSTTIME flag */
195 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
196 {
197 d = &local_d;
198 BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
199 }
200 else
201 d = rsa->d;

203 /* calculate d mod (p-1) */
204 if (!BN_mod(rsa->dmp1,d,r1,ctx)) goto err;

206 /* calculate d mod (q-1) */
207 if (!BN_mod(rsa->dmq1,d,r2,ctx)) goto err;

209 /* calculate inverse of q mod p */
210 if (!(rsa->flags & RSA_FLAG_NO_CONSTTIME))
211 {
212 p = &local_p;
213 BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
214 }
215 else
216 p = rsa->p;
217 if (!BN_mod_inverse(rsa->iqmp,rsa->q,p,ctx)) goto err;

219 ok=1;
220 err:
221 if (ok == -1)
222 {
223 RSAerr(RSA_F_RSA_BUILTIN_KEYGEN,ERR_LIB_BN);
224 ok=0;
225 }
226 if (ctx != NULL)
227 {
228 BN_CTX_end(ctx);
229 BN_CTX_free(ctx);
230 }

232 return ok;
233 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_lib.c 1

**
 8769 Fri May 30 18:32:08 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/crypto.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_lib.c 2

62 #include <openssl/lhash.h>
63 #include <openssl/bn.h>
64 #include <openssl/rsa.h>
65 #include <openssl/rand.h>
66 #ifndef OPENSSL_NO_ENGINE
67 #include <openssl/engine.h>
68 #endif

70 #ifdef OPENSSL_FIPS
71 #include <openssl/fips.h>
72 #endif

74 const char RSA_version[]="RSA" OPENSSL_VERSION_PTEXT;

76 static const RSA_METHOD *default_RSA_meth=NULL;

78 RSA *RSA_new(void)
79 {
80 RSA *r=RSA_new_method(NULL);

82 return r;
83 }

85 void RSA_set_default_method(const RSA_METHOD *meth)
86 {
87 default_RSA_meth = meth;
88 }

90 const RSA_METHOD *RSA_get_default_method(void)
91 {
92 if (default_RSA_meth == NULL)
93 {
94 #ifdef OPENSSL_FIPS
95 if (FIPS_mode())
96 return FIPS_rsa_pkcs1_ssleay();
97 else
98 return RSA_PKCS1_SSLeay();
99 #else
100 #ifdef RSA_NULL
101 default_RSA_meth=RSA_null_method();
102 #else
103 default_RSA_meth=RSA_PKCS1_SSLeay();
104 #endif
105 #endif
106 }

108 return default_RSA_meth;
109 }

111 const RSA_METHOD *RSA_get_method(const RSA *rsa)
112 {
113 return rsa->meth;
114 }

116 int RSA_set_method(RSA *rsa, const RSA_METHOD *meth)
117 {
118 /* NB: The caller is specifically setting a method, so it’s not up to us
119 * to deal with which ENGINE it comes from. */
120 const RSA_METHOD *mtmp;
121 mtmp = rsa->meth;
122 if (mtmp->finish) mtmp->finish(rsa);
123 #ifndef OPENSSL_NO_ENGINE
124 if (rsa->engine)
125 {
126 ENGINE_finish(rsa->engine);
127 rsa->engine = NULL;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_lib.c 3

128 }
129 #endif
130 rsa->meth = meth;
131 if (meth->init) meth->init(rsa);
132 return 1;
133 }

135 RSA *RSA_new_method(ENGINE *engine)
136 {
137 RSA *ret;

139 ret=(RSA *)OPENSSL_malloc(sizeof(RSA));
140 if (ret == NULL)
141 {
142 RSAerr(RSA_F_RSA_NEW_METHOD,ERR_R_MALLOC_FAILURE);
143 return NULL;
144 }

146 ret->meth = RSA_get_default_method();
147 #ifndef OPENSSL_NO_ENGINE
148 if (engine)
149 {
150 if (!ENGINE_init(engine))
151 {
152 RSAerr(RSA_F_RSA_NEW_METHOD, ERR_R_ENGINE_LIB);
153 OPENSSL_free(ret);
154 return NULL;
155 }
156 ret->engine = engine;
157 }
158 else
159 ret->engine = ENGINE_get_default_RSA();
160 if(ret->engine)
161 {
162 ret->meth = ENGINE_get_RSA(ret->engine);
163 if(!ret->meth)
164 {
165 RSAerr(RSA_F_RSA_NEW_METHOD,
166 ERR_R_ENGINE_LIB);
167 ENGINE_finish(ret->engine);
168 OPENSSL_free(ret);
169 return NULL;
170 }
171 }
172 #endif

174 ret->pad=0;
175 ret->version=0;
176 ret->n=NULL;
177 ret->e=NULL;
178 ret->d=NULL;
179 ret->p=NULL;
180 ret->q=NULL;
181 ret->dmp1=NULL;
182 ret->dmq1=NULL;
183 ret->iqmp=NULL;
184 ret->references=1;
185 ret->_method_mod_n=NULL;
186 ret->_method_mod_p=NULL;
187 ret->_method_mod_q=NULL;
188 ret->blinding=NULL;
189 ret->mt_blinding=NULL;
190 ret->bignum_data=NULL;
191 ret->flags=ret->meth->flags & ~RSA_FLAG_NON_FIPS_ALLOW;
192 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data))
193 {

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_lib.c 4

194 #ifndef OPENSSL_NO_ENGINE
195 if (ret->engine)
196 ENGINE_finish(ret->engine);
197 #endif
198 OPENSSL_free(ret);
199 return(NULL);
200 }

202 if ((ret->meth->init != NULL) && !ret->meth->init(ret))
203 {
204 #ifndef OPENSSL_NO_ENGINE
205 if (ret->engine)
206 ENGINE_finish(ret->engine);
207 #endif
208 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, ret, &ret->ex_data);
209 OPENSSL_free(ret);
210 ret=NULL;
211 }
212 return(ret);
213 }

215 void RSA_free(RSA *r)
216 {
217 int i;

219 if (r == NULL) return;

221 i=CRYPTO_add(&r->references,-1,CRYPTO_LOCK_RSA);
222 #ifdef REF_PRINT
223 REF_PRINT("RSA",r);
224 #endif
225 if (i > 0) return;
226 #ifdef REF_CHECK
227 if (i < 0)
228 {
229 fprintf(stderr,"RSA_free, bad reference count\n");
230 abort();
231 }
232 #endif

234 if (r->meth->finish)
235 r->meth->finish(r);
236 #ifndef OPENSSL_NO_ENGINE
237 if (r->engine)
238 ENGINE_finish(r->engine);
239 #endif

241 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, r, &r->ex_data);

243 if (r->n != NULL) BN_clear_free(r->n);
244 if (r->e != NULL) BN_clear_free(r->e);
245 if (r->d != NULL) BN_clear_free(r->d);
246 if (r->p != NULL) BN_clear_free(r->p);
247 if (r->q != NULL) BN_clear_free(r->q);
248 if (r->dmp1 != NULL) BN_clear_free(r->dmp1);
249 if (r->dmq1 != NULL) BN_clear_free(r->dmq1);
250 if (r->iqmp != NULL) BN_clear_free(r->iqmp);
251 if (r->blinding != NULL) BN_BLINDING_free(r->blinding);
252 if (r->mt_blinding != NULL) BN_BLINDING_free(r->mt_blinding);
253 if (r->bignum_data != NULL) OPENSSL_free_locked(r->bignum_data);
254 OPENSSL_free(r);
255 }

257 int RSA_up_ref(RSA *r)
258 {
259 int i = CRYPTO_add(&r->references, 1, CRYPTO_LOCK_RSA);

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_lib.c 5

260 #ifdef REF_PRINT
261 REF_PRINT("RSA",r);
262 #endif
263 #ifdef REF_CHECK
264 if (i < 2)
265 {
266 fprintf(stderr, "RSA_up_ref, bad reference count\n");
267 abort();
268 }
269 #endif
270 return ((i > 1) ? 1 : 0);
271 }

273 int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
274 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func)
275 {
276 return CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_RSA, argl, argp,
277 new_func, dup_func, free_func);
278 }

280 int RSA_set_ex_data(RSA *r, int idx, void *arg)
281 {
282 return(CRYPTO_set_ex_data(&r->ex_data,idx,arg));
283 }

285 void *RSA_get_ex_data(const RSA *r, int idx)
286 {
287 return(CRYPTO_get_ex_data(&r->ex_data,idx));
288 }

290 int RSA_memory_lock(RSA *r)
291 {
292 int i,j,k,off;
293 char *p;
294 BIGNUM *bn,**t[6],*b;
295 BN_ULONG *ul;

297 if (r->d == NULL) return(1);
298 t[0]= &r->d;
299 t[1]= &r->p;
300 t[2]= &r->q;
301 t[3]= &r->dmp1;
302 t[4]= &r->dmq1;
303 t[5]= &r->iqmp;
304 k=sizeof(BIGNUM)*6;
305 off=k/sizeof(BN_ULONG)+1;
306 j=1;
307 for (i=0; i<6; i++)
308 j+= (*t[i])->top;
309 if ((p=OPENSSL_malloc_locked((off+j)*sizeof(BN_ULONG))) == NULL)
310 {
311 RSAerr(RSA_F_RSA_MEMORY_LOCK,ERR_R_MALLOC_FAILURE);
312 return(0);
313 }
314 bn=(BIGNUM *)p;
315 ul=(BN_ULONG *)&(p[off]);
316 for (i=0; i<6; i++)
317 {
318 b= *(t[i]);
319 *(t[i])= &(bn[i]);
320 memcpy((char *)&(bn[i]),(char *)b,sizeof(BIGNUM));
321 bn[i].flags=BN_FLG_STATIC_DATA;
322 bn[i].d=ul;
323 memcpy((char *)ul,b->d,sizeof(BN_ULONG)*b->top);
324 ul+=b->top;
325 BN_clear_free(b);

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_lib.c 6

326 }
327
328 /* I should fix this so it can still be done */
329 r->flags&= ~(RSA_FLAG_CACHE_PRIVATE|RSA_FLAG_CACHE_PUBLIC);

331 r->bignum_data=p;
332 return(1);
333 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_none.c 1

**
 3974 Fri May 30 18:32:09 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_none.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_none.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_none.c 2

62 #include <openssl/rsa.h>
63 #include <openssl/rand.h>

65 int RSA_padding_add_none(unsigned char *to, int tlen,
66 const unsigned char *from, int flen)
67 {
68 if (flen > tlen)
69 {
70 RSAerr(RSA_F_RSA_PADDING_ADD_NONE,RSA_R_DATA_TOO_LARGE_FOR_KEY_S
71 return(0);
72 }

74 if (flen < tlen)
75 {
76 RSAerr(RSA_F_RSA_PADDING_ADD_NONE,RSA_R_DATA_TOO_SMALL_FOR_KEY_S
77 return(0);
78 }
79
80 memcpy(to,from,(unsigned int)flen);
81 return(1);
82 }

84 int RSA_padding_check_none(unsigned char *to, int tlen,
85 const unsigned char *from, int flen, int num)
86 {

88 if (flen > tlen)
89 {
90 RSAerr(RSA_F_RSA_PADDING_CHECK_NONE,RSA_R_DATA_TOO_LARGE);
91 return(-1);
92 }

94 memset(to,0,tlen-flen);
95 memcpy(to+tlen-flen,from,flen);
96 return(tlen);
97 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_null.c 1

**
 5333 Fri May 30 18:32:09 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_null.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* rsa_null.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_null.c 2

62 #include <openssl/rsa.h>
63 #include <openssl/rand.h>

65 /* This is a dummy RSA implementation that just returns errors when called.
66 * It is designed to allow some RSA functions to work while stopping those
67 * covered by the RSA patent. That is RSA, encryption, decryption, signing
68 * and verify is not allowed but RSA key generation, key checking and other
69 * operations (like storing RSA keys) are permitted.
70 */

72 static int RSA_null_public_encrypt(int flen, const unsigned char *from,
73 unsigned char *to, RSA *rsa,int padding);
74 static int RSA_null_private_encrypt(int flen, const unsigned char *from,
75 unsigned char *to, RSA *rsa,int padding);
76 static int RSA_null_public_decrypt(int flen, const unsigned char *from,
77 unsigned char *to, RSA *rsa,int padding);
78 static int RSA_null_private_decrypt(int flen, const unsigned char *from,
79 unsigned char *to, RSA *rsa,int padding);
80 #if 0 /* not currently used */
81 static int RSA_null_mod_exp(const BIGNUM *r0, const BIGNUM *i, RSA *rsa);
82 #endif
83 static int RSA_null_init(RSA *rsa);
84 static int RSA_null_finish(RSA *rsa);
85 static RSA_METHOD rsa_null_meth={
86 "Null RSA",
87 RSA_null_public_encrypt,
88 RSA_null_public_decrypt,
89 RSA_null_private_encrypt,
90 RSA_null_private_decrypt,
91 NULL,
92 NULL,
93 RSA_null_init,
94 RSA_null_finish,
95 0,
96 NULL,
97 NULL,
98 NULL,
99 NULL
100 };

102 const RSA_METHOD *RSA_null_method(void)
103 {
104 return(&rsa_null_meth);
105 }

107 static int RSA_null_public_encrypt(int flen, const unsigned char *from,
108 unsigned char *to, RSA *rsa, int padding)
109 {
110 RSAerr(RSA_F_RSA_NULL_PUBLIC_ENCRYPT, RSA_R_RSA_OPERATIONS_NOT_SUPPORTED
111 return -1;
112 }

114 static int RSA_null_private_encrypt(int flen, const unsigned char *from,
115 unsigned char *to, RSA *rsa, int padding)
116 {
117 RSAerr(RSA_F_RSA_NULL_PRIVATE_ENCRYPT, RSA_R_RSA_OPERATIONS_NOT_SUPPORTE
118 return -1;
119 }

121 static int RSA_null_private_decrypt(int flen, const unsigned char *from,
122 unsigned char *to, RSA *rsa, int padding)
123 {
124 RSAerr(RSA_F_RSA_NULL_PRIVATE_DECRYPT, RSA_R_RSA_OPERATIONS_NOT_SUPPORTE
125 return -1;
126 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_null.c 3

128 static int RSA_null_public_decrypt(int flen, const unsigned char *from,
129 unsigned char *to, RSA *rsa, int padding)
130 {
131 RSAerr(RSA_F_RSA_NULL_PUBLIC_DECRYPT, RSA_R_RSA_OPERATIONS_NOT_SUPPORTED
132 return -1;
133 }

135 #if 0 /* not currently used */
136 static int RSA_null_mod_exp(BIGNUM *r0, BIGNUM *I, RSA *rsa)
137 {
138 ...err(RSA_F_RSA_NULL_MOD_EXP, RSA_R_RSA_OPERATIONS_NOT_SUPPORTED);
139 return -1;
140 }
141 #endif

143 static int RSA_null_init(RSA *rsa)
144 {
145 return(1);
146 }

148 static int RSA_null_finish(RSA *rsa)
149 {
150 return(1);
151 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_oaep.c 1

**
 6288 Fri May 30 18:32:09 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_oaep.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_oaep.c */
2 /* Written by Ulf Moeller. This software is distributed on an "AS IS"
3 basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. */

5 /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */

7 /* See Victor Shoup, "OAEP reconsidered," Nov. 2000,
8 * <URL: http://www.shoup.net/papers/oaep.ps.Z>
9 * for problems with the security proof for the
10 * original OAEP scheme, which EME-OAEP is based on.
11 *
12 * A new proof can be found in E. Fujisaki, T. Okamoto,
13 * D. Pointcheval, J. Stern, "RSA-OEAP is Still Alive!",
14 * Dec. 2000, <URL: http://eprint.iacr.org/2000/061/>.
15 * The new proof has stronger requirements for the
16 * underlying permutation: "partial-one-wayness" instead
17 * of one-wayness. For the RSA function, this is
18 * an equivalent notion.
19 */

22 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1)
23 #include <stdio.h>
24 #include "cryptlib.h"
25 #include <openssl/bn.h>
26 #include <openssl/rsa.h>
27 #include <openssl/evp.h>
28 #include <openssl/rand.h>
29 #include <openssl/sha.h>

31 static int MGF1(unsigned char *mask, long len,
32 const unsigned char *seed, long seedlen);

34 int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
35 const unsigned char *from, int flen,
36 const unsigned char *param, int plen)
37 {
38 int i, emlen = tlen - 1;
39 unsigned char *db, *seed;
40 unsigned char *dbmask, seedmask[SHA_DIGEST_LENGTH];

42 if (flen > emlen - 2 * SHA_DIGEST_LENGTH - 1)
43 {
44 RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP,
45 RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
46 return 0;
47 }

49 if (emlen < 2 * SHA_DIGEST_LENGTH + 1)
50 {
51 RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, RSA_R_KEY_SIZE_TOO_SMAL
52 return 0;
53 }

55 to[0] = 0;
56 seed = to + 1;
57 db = to + SHA_DIGEST_LENGTH + 1;

59 if (!EVP_Digest((void *)param, plen, db, NULL, EVP_sha1(), NULL))
60 return 0;
61 memset(db + SHA_DIGEST_LENGTH, 0,

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_oaep.c 2

62 emlen - flen - 2 * SHA_DIGEST_LENGTH - 1);
63 db[emlen - flen - SHA_DIGEST_LENGTH - 1] = 0x01;
64 memcpy(db + emlen - flen - SHA_DIGEST_LENGTH, from, (unsigned int) flen)
65 if (RAND_bytes(seed, SHA_DIGEST_LENGTH) <= 0)
66 return 0;
67 #ifdef PKCS_TESTVECT
68 memcpy(seed,
69 "\xaa\xfd\x12\xf6\x59\xca\xe6\x34\x89\xb4\x79\xe5\x07\x6d\xde\xc2\xf0
70 20);
71 #endif

73 dbmask = OPENSSL_malloc(emlen - SHA_DIGEST_LENGTH);
74 if (dbmask == NULL)
75 {
76 RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, ERR_R_MALLOC_FAILURE);
77 return 0;
78 }

80 if (MGF1(dbmask, emlen - SHA_DIGEST_LENGTH, seed, SHA_DIGEST_LENGTH) < 0
81 return 0;
82 for (i = 0; i < emlen - SHA_DIGEST_LENGTH; i++)
83 db[i] ^= dbmask[i];

85 if (MGF1(seedmask, SHA_DIGEST_LENGTH, db, emlen - SHA_DIGEST_LENGTH) < 0
86 return 0;
87 for (i = 0; i < SHA_DIGEST_LENGTH; i++)
88 seed[i] ^= seedmask[i];

90 OPENSSL_free(dbmask);
91 return 1;
92 }

94 int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
95 const unsigned char *from, int flen, int num,
96 const unsigned char *param, int plen)
97 {
98 int i, dblen, mlen = -1;
99 const unsigned char *maskeddb;
100 int lzero;
101 unsigned char *db = NULL, seed[SHA_DIGEST_LENGTH], phash[SHA_DIGEST_LENG
102 unsigned char *padded_from;
103 int bad = 0;

105 if (--num < 2 * SHA_DIGEST_LENGTH + 1)
106 /* ’num’ is the length of the modulus, i.e. does not depend on t
107 * particular ciphertext. */
108 goto decoding_err;

110 lzero = num - flen;
111 if (lzero < 0)
112 {
113 /* signalling this error immediately after detection might allow
114 * for side-channel attacks (e.g. timing if ’plen’ is huge
115 * -- cf. James H. Manger, "A Chosen Ciphertext Attack on RSA Op
116 * Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001),
117 * so we use a ’bad’ flag */
118 bad = 1;
119 lzero = 0;
120 flen = num; /* don’t overflow the memcpy to padded_from */
121 }

123 dblen = num - SHA_DIGEST_LENGTH;
124 db = OPENSSL_malloc(dblen + num);
125 if (db == NULL)
126 {
127 RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, ERR_R_MALLOC_FAILURE)

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_oaep.c 3

128 return -1;
129 }

131 /* Always do this zero-padding copy (even when lzero == 0)
132 * to avoid leaking timing info about the value of lzero. */
133 padded_from = db + dblen;
134 memset(padded_from, 0, lzero);
135 memcpy(padded_from + lzero, from, flen);

137 maskeddb = padded_from + SHA_DIGEST_LENGTH;

139 if (MGF1(seed, SHA_DIGEST_LENGTH, maskeddb, dblen))
140 return -1;
141 for (i = 0; i < SHA_DIGEST_LENGTH; i++)
142 seed[i] ^= padded_from[i];
143
144 if (MGF1(db, dblen, seed, SHA_DIGEST_LENGTH))
145 return -1;
146 for (i = 0; i < dblen; i++)
147 db[i] ^= maskeddb[i];

149 if (!EVP_Digest((void *)param, plen, phash, NULL, EVP_sha1(), NULL))
150 return -1;

152 if (CRYPTO_memcmp(db, phash, SHA_DIGEST_LENGTH) != 0 || bad)
153 goto decoding_err;
154 else
155 {
156 for (i = SHA_DIGEST_LENGTH; i < dblen; i++)
157 if (db[i] != 0x00)
158 break;
159 if (i == dblen || db[i] != 0x01)
160 goto decoding_err;
161 else
162 {
163 /* everything looks OK */

165 mlen = dblen - ++i;
166 if (tlen < mlen)
167 {
168 RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, RSA_R
169 mlen = -1;
170 }
171 else
172 memcpy(to, db + i, mlen);
173 }
174 }
175 OPENSSL_free(db);
176 return mlen;

178 decoding_err:
179 /* to avoid chosen ciphertext attacks, the error message should not reve
180 * which kind of decoding error happened */
181 RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, RSA_R_OAEP_DECODING_ERROR);
182 if (db != NULL) OPENSSL_free(db);
183 return -1;
184 }

186 int PKCS1_MGF1(unsigned char *mask, long len,
187 const unsigned char *seed, long seedlen, const EVP_MD *dgst)
188 {
189 long i, outlen = 0;
190 unsigned char cnt[4];
191 EVP_MD_CTX c;
192 unsigned char md[EVP_MAX_MD_SIZE];
193 int mdlen;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_oaep.c 4

194 int rv = -1;

196 EVP_MD_CTX_init(&c);
197 mdlen = EVP_MD_size(dgst);
198 if (mdlen < 0)
199 goto err;
200 for (i = 0; outlen < len; i++)
201 {
202 cnt[0] = (unsigned char)((i >> 24) & 255);
203 cnt[1] = (unsigned char)((i >> 16) & 255);
204 cnt[2] = (unsigned char)((i >> 8)) & 255;
205 cnt[3] = (unsigned char)(i & 255);
206 if (!EVP_DigestInit_ex(&c,dgst, NULL)
207 || !EVP_DigestUpdate(&c, seed, seedlen)
208 || !EVP_DigestUpdate(&c, cnt, 4))
209 goto err;
210 if (outlen + mdlen <= len)
211 {
212 if (!EVP_DigestFinal_ex(&c, mask + outlen, NULL))
213 goto err;
214 outlen += mdlen;
215 }
216 else
217 {
218 if (!EVP_DigestFinal_ex(&c, md, NULL))
219 goto err;
220 memcpy(mask + outlen, md, len - outlen);
221 outlen = len;
222 }
223 }
224 rv = 0;
225 err:
226 EVP_MD_CTX_cleanup(&c);
227 return rv;
228 }

230 static int MGF1(unsigned char *mask, long len, const unsigned char *seed,
231 long seedlen)
232 {
233 return PKCS1_MGF1(mask, len, seed, seedlen, EVP_sha1());
234 }
235 #endif

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pk1.c 1

**
 6356 Fri May 30 18:32:09 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pk1.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_pk1.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pk1.c 2

62 #include <openssl/rsa.h>
63 #include <openssl/rand.h>

65 int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen,
66 const unsigned char *from, int flen)
67 {
68 int j;
69 unsigned char *p;

71 if (flen > (tlen-RSA_PKCS1_PADDING_SIZE))
72 {
73 RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_1,RSA_R_DATA_TOO_LARGE_F
74 return(0);
75 }
76
77 p=(unsigned char *)to;

79 *(p++)=0;
80 *(p++)=1; /* Private Key BT (Block Type) */

82 /* pad out with 0xff data */
83 j=tlen-3-flen;
84 memset(p,0xff,j);
85 p+=j;
86 *(p++)=’\0’;
87 memcpy(p,from,(unsigned int)flen);
88 return(1);
89 }

91 int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen,
92 const unsigned char *from, int flen, int num)
93 {
94 int i,j;
95 const unsigned char *p;

97 p=from;
98 if ((num != (flen+1)) || (*(p++) != 01))
99 {
100 RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,RSA_R_BLOCK_TYPE_IS_
101 return(-1);
102 }

104 /* scan over padding data */
105 j=flen-1; /* one for type. */
106 for (i=0; i<j; i++)
107 {
108 if (*p != 0xff) /* should decrypt to 0xff */
109 {
110 if (*p == 0)
111 { p++; break; }
112 else {
113 RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,RSA_
114 return(-1);
115 }
116 }
117 p++;
118 }

120 if (i == j)
121 {
122 RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,RSA_R_NULL_BEFORE_BL
123 return(-1);
124 }

126 if (i < 8)
127 {

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pk1.c 3

128 RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,RSA_R_BAD_PAD_BYTE_C
129 return(-1);
130 }
131 i++; /* Skip over the ’\0’ */
132 j-=i;
133 if (j > tlen)
134 {
135 RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,RSA_R_DATA_TOO_LARGE
136 return(-1);
137 }
138 memcpy(to,p,(unsigned int)j);

140 return(j);
141 }

143 int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen,
144 const unsigned char *from, int flen)
145 {
146 int i,j;
147 unsigned char *p;
148
149 if (flen > (tlen-11))
150 {
151 RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_2,RSA_R_DATA_TOO_LARGE_F
152 return(0);
153 }
154
155 p=(unsigned char *)to;

157 *(p++)=0;
158 *(p++)=2; /* Public Key BT (Block Type) */

160 /* pad out with non-zero random data */
161 j=tlen-3-flen;

163 if (RAND_bytes(p,j) <= 0)
164 return(0);
165 for (i=0; i<j; i++)
166 {
167 if (*p == ’\0’)
168 do {
169 if (RAND_bytes(p,1) <= 0)
170 return(0);
171 } while (*p == ’\0’);
172 p++;
173 }

175 *(p++)=’\0’;

177 memcpy(p,from,(unsigned int)flen);
178 return(1);
179 }

181 int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen,
182 const unsigned char *from, int flen, int num)
183 {
184 int i,j;
185 const unsigned char *p;

187 p=from;
188 if ((num != (flen+1)) || (*(p++) != 02))
189 {
190 RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2,RSA_R_BLOCK_TYPE_IS_
191 return(-1);
192 }
193 #ifdef PKCS1_CHECK

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pk1.c 4

194 return(num-11);
195 #endif

197 /* scan over padding data */
198 j=flen-1; /* one for type. */
199 for (i=0; i<j; i++)
200 if (*(p++) == 0) break;

202 if (i == j)
203 {
204 RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2,RSA_R_NULL_BEFORE_BL
205 return(-1);
206 }

208 if (i < 8)
209 {
210 RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2,RSA_R_BAD_PAD_BYTE_C
211 return(-1);
212 }
213 i++; /* Skip over the ’\0’ */
214 j-=i;
215 if (j > tlen)
216 {
217 RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2,RSA_R_DATA_TOO_LARGE
218 return(-1);
219 }
220 memcpy(to,p,(unsigned int)j);

222 return(j);
223 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pmeth.c 1

**
 16336 Fri May 30 18:32:09 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pmeth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_pmeth.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2006.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pmeth.c 2

62 #include <openssl/x509.h>
63 #include <openssl/rsa.h>
64 #include <openssl/bn.h>
65 #include <openssl/evp.h>
66 #ifndef OPENSSL_NO_CMS
67 #include <openssl/cms.h>
68 #endif
69 #ifdef OPENSSL_FIPS
70 #include <openssl/fips.h>
71 #endif
72 #include "evp_locl.h"
73 #include "rsa_locl.h"

75 /* RSA pkey context structure */

77 typedef struct
78 {
79 /* Key gen parameters */
80 int nbits;
81 BIGNUM *pub_exp;
82 /* Keygen callback info */
83 int gentmp[2];
84 /* RSA padding mode */
85 int pad_mode;
86 /* message digest */
87 const EVP_MD *md;
88 /* message digest for MGF1 */
89 const EVP_MD *mgf1md;
90 /* PSS/OAEP salt length */
91 int saltlen;
92 /* Temp buffer */
93 unsigned char *tbuf;
94 } RSA_PKEY_CTX;

96 static int pkey_rsa_init(EVP_PKEY_CTX *ctx)
97 {
98 RSA_PKEY_CTX *rctx;
99 rctx = OPENSSL_malloc(sizeof(RSA_PKEY_CTX));
100 if (!rctx)
101 return 0;
102 rctx->nbits = 1024;
103 rctx->pub_exp = NULL;
104 rctx->pad_mode = RSA_PKCS1_PADDING;
105 rctx->md = NULL;
106 rctx->mgf1md = NULL;
107 rctx->tbuf = NULL;

109 rctx->saltlen = -2;

111 ctx->data = rctx;
112 ctx->keygen_info = rctx->gentmp;
113 ctx->keygen_info_count = 2;
114
115 return 1;
116 }

118 static int pkey_rsa_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src)
119 {
120 RSA_PKEY_CTX *dctx, *sctx;
121 if (!pkey_rsa_init(dst))
122 return 0;
123 sctx = src->data;
124 dctx = dst->data;
125 dctx->nbits = sctx->nbits;
126 if (sctx->pub_exp)
127 {

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pmeth.c 3

128 dctx->pub_exp = BN_dup(sctx->pub_exp);
129 if (!dctx->pub_exp)
130 return 0;
131 }
132 dctx->pad_mode = sctx->pad_mode;
133 dctx->md = sctx->md;
134 return 1;
135 }

137 static int setup_tbuf(RSA_PKEY_CTX *ctx, EVP_PKEY_CTX *pk)
138 {
139 if (ctx->tbuf)
140 return 1;
141 ctx->tbuf = OPENSSL_malloc(EVP_PKEY_size(pk->pkey));
142 if (!ctx->tbuf)
143 return 0;
144 return 1;
145 }

147 static void pkey_rsa_cleanup(EVP_PKEY_CTX *ctx)
148 {
149 RSA_PKEY_CTX *rctx = ctx->data;
150 if (rctx)
151 {
152 if (rctx->pub_exp)
153 BN_free(rctx->pub_exp);
154 if (rctx->tbuf)
155 OPENSSL_free(rctx->tbuf);
156 OPENSSL_free(rctx);
157 }
158 }
159 #ifdef OPENSSL_FIPS
160 /* FIP checker. Return value indicates status of context parameters:
161 * 1 : redirect to FIPS.
162 * 0 : don’t redirect to FIPS.
163 * -1 : illegal operation in FIPS mode.
164 */

166 static int pkey_fips_check_ctx(EVP_PKEY_CTX *ctx)
167 {
168 RSA_PKEY_CTX *rctx = ctx->data;
169 RSA *rsa = ctx->pkey->pkey.rsa;
170 int rv = -1;
171 if (!FIPS_mode())
172 return 0;
173 if (rsa->flags & RSA_FLAG_NON_FIPS_ALLOW)
174 rv = 0;
175 if (!(rsa->meth->flags & RSA_FLAG_FIPS_METHOD) && rv)
176 return -1;
177 if (rctx->md && !(rctx->md->flags & EVP_MD_FLAG_FIPS))
178 return rv;
179 if (rctx->mgf1md && !(rctx->mgf1md->flags & EVP_MD_FLAG_FIPS))
180 return rv;
181 return 1;
182 }
183 #endif

185 static int pkey_rsa_sign(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen,
186 const unsigned char *tbs, size_t tbslen)
187 {
188 int ret;
189 RSA_PKEY_CTX *rctx = ctx->data;
190 RSA *rsa = ctx->pkey->pkey.rsa;

192 #ifdef OPENSSL_FIPS
193 ret = pkey_fips_check_ctx(ctx);

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pmeth.c 4

194 if (ret < 0)
195 {
196 RSAerr(RSA_F_PKEY_RSA_SIGN, RSA_R_OPERATION_NOT_ALLOWED_IN_FIPS_
197 return -1;
198 }
199 #endif

201 if (rctx->md)
202 {
203 if (tbslen != (size_t)EVP_MD_size(rctx->md))
204 {
205 RSAerr(RSA_F_PKEY_RSA_SIGN,
206 RSA_R_INVALID_DIGEST_LENGTH);
207 return -1;
208 }
209 #ifdef OPENSSL_FIPS
210 if (ret > 0)
211 {
212 unsigned int slen;
213 ret = FIPS_rsa_sign_digest(rsa, tbs, tbslen, rctx->md,
214 rctx->pad_mode,
215 rctx->saltlen,
216 rctx->mgf1md,
217 sig, &slen);
218 if (ret > 0)
219 *siglen = slen;
220 else
221 *siglen = 0;
222 return ret;
223 }
224 #endif

226 if (EVP_MD_type(rctx->md) == NID_mdc2)
227 {
228 unsigned int sltmp;
229 if (rctx->pad_mode != RSA_PKCS1_PADDING)
230 return -1;
231 ret = RSA_sign_ASN1_OCTET_STRING(NID_mdc2,
232 tbs, tbslen, sig, &sltmp, rsa);

234 if (ret <= 0)
235 return ret;
236 ret = sltmp;
237 }
238 else if (rctx->pad_mode == RSA_X931_PADDING)
239 {
240 if (!setup_tbuf(rctx, ctx))
241 return -1;
242 memcpy(rctx->tbuf, tbs, tbslen);
243 rctx->tbuf[tbslen] =
244 RSA_X931_hash_id(EVP_MD_type(rctx->md));
245 ret = RSA_private_encrypt(tbslen + 1, rctx->tbuf,
246 sig, rsa, RSA_X931_PADDING);
247 }
248 else if (rctx->pad_mode == RSA_PKCS1_PADDING)
249 {
250 unsigned int sltmp;
251 ret = RSA_sign(EVP_MD_type(rctx->md),
252 tbs, tbslen, sig, &sltmp, rsa);
253 if (ret <= 0)
254 return ret;
255 ret = sltmp;
256 }
257 else if (rctx->pad_mode == RSA_PKCS1_PSS_PADDING)
258 {
259 if (!setup_tbuf(rctx, ctx))

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pmeth.c 5

260 return -1;
261 if (!RSA_padding_add_PKCS1_PSS_mgf1(rsa,
262 rctx->tbuf, tbs,
263 rctx->md, rctx->mgf1md,
264 rctx->saltlen))
265 return -1;
266 ret = RSA_private_encrypt(RSA_size(rsa), rctx->tbuf,
267 sig, rsa, RSA_NO_PADDING);
268 }
269 else
270 return -1;
271 }
272 else
273 ret = RSA_private_encrypt(tbslen, tbs, sig, ctx->pkey->pkey.rsa,
274 rctx->pad_mode);
275 if (ret < 0)
276 return ret;
277 *siglen = ret;
278 return 1;
279 }

282 static int pkey_rsa_verifyrecover(EVP_PKEY_CTX *ctx,
283 unsigned char *rout, size_t *routlen,
284 const unsigned char *sig, size_t siglen)
285 {
286 int ret;
287 RSA_PKEY_CTX *rctx = ctx->data;

289 if (rctx->md)
290 {
291 if (rctx->pad_mode == RSA_X931_PADDING)
292 {
293 if (!setup_tbuf(rctx, ctx))
294 return -1;
295 ret = RSA_public_decrypt(siglen, sig,
296 rctx->tbuf, ctx->pkey->pkey.rsa,
297 RSA_X931_PADDING);
298 if (ret < 1)
299 return 0;
300 ret--;
301 if (rctx->tbuf[ret] !=
302 RSA_X931_hash_id(EVP_MD_type(rctx->md)))
303 {
304 RSAerr(RSA_F_PKEY_RSA_VERIFYRECOVER,
305 RSA_R_ALGORITHM_MISMATCH);
306 return 0;
307 }
308 if (ret != EVP_MD_size(rctx->md))
309 {
310 RSAerr(RSA_F_PKEY_RSA_VERIFYRECOVER,
311 RSA_R_INVALID_DIGEST_LENGTH);
312 return 0;
313 }
314 if (rout)
315 memcpy(rout, rctx->tbuf, ret);
316 }
317 else if (rctx->pad_mode == RSA_PKCS1_PADDING)
318 {
319 size_t sltmp;
320 ret = int_rsa_verify(EVP_MD_type(rctx->md),
321 NULL, 0, rout, &sltmp,
322 sig, siglen, ctx->pkey->pkey.rsa);
323 if (ret <= 0)
324 return 0;
325 ret = sltmp;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pmeth.c 6

326 }
327 else
328 return -1;
329 }
330 else
331 ret = RSA_public_decrypt(siglen, sig, rout, ctx->pkey->pkey.rsa,
332 rctx->pad_mode);
333 if (ret < 0)
334 return ret;
335 *routlen = ret;
336 return 1;
337 }

339 static int pkey_rsa_verify(EVP_PKEY_CTX *ctx,
340 const unsigned char *sig, size_t siglen,
341 const unsigned char *tbs, size_t tbslen)
342 {
343 RSA_PKEY_CTX *rctx = ctx->data;
344 RSA *rsa = ctx->pkey->pkey.rsa;
345 size_t rslen;
346 #ifdef OPENSSL_FIPS
347 int rv;
348 rv = pkey_fips_check_ctx(ctx);
349 if (rv < 0)
350 {
351 RSAerr(RSA_F_PKEY_RSA_VERIFY, RSA_R_OPERATION_NOT_ALLOWED_IN_FIP
352 return -1;
353 }
354 #endif
355 if (rctx->md)
356 {
357 #ifdef OPENSSL_FIPS
358 if (rv > 0)
359 {
360 return FIPS_rsa_verify_digest(rsa,
361 tbs, tbslen,
362 rctx->md,
363 rctx->pad_mode,
364 rctx->saltlen,
365 rctx->mgf1md,
366 sig, siglen);
367
368 }
369 #endif
370 if (rctx->pad_mode == RSA_PKCS1_PADDING)
371 return RSA_verify(EVP_MD_type(rctx->md), tbs, tbslen,
372 sig, siglen, rsa);
373 if (rctx->pad_mode == RSA_X931_PADDING)
374 {
375 if (pkey_rsa_verifyrecover(ctx, NULL, &rslen,
376 sig, siglen) <= 0)
377 return 0;
378 }
379 else if (rctx->pad_mode == RSA_PKCS1_PSS_PADDING)
380 {
381 int ret;
382 if (!setup_tbuf(rctx, ctx))
383 return -1;
384 ret = RSA_public_decrypt(siglen, sig, rctx->tbuf,
385 rsa, RSA_NO_PADDING);
386 if (ret <= 0)
387 return 0;
388 ret = RSA_verify_PKCS1_PSS_mgf1(rsa, tbs,
389 rctx->md, rctx->mgf1md,
390 rctx->tbuf, rctx->saltlen);
391 if (ret <= 0)

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pmeth.c 7

392 return 0;
393 return 1;
394 }
395 else
396 return -1;
397 }
398 else
399 {
400 if (!setup_tbuf(rctx, ctx))
401 return -1;
402 rslen = RSA_public_decrypt(siglen, sig, rctx->tbuf,
403 rsa, rctx->pad_mode);
404 if (rslen == 0)
405 return 0;
406 }

408 if ((rslen != tbslen) || memcmp(tbs, rctx->tbuf, rslen))
409 return 0;

411 return 1;
412
413 }
414

416 static int pkey_rsa_encrypt(EVP_PKEY_CTX *ctx,
417 unsigned char *out, size_t *outlen,
418 const unsigned char *in, size_t inlen)
419 {
420 int ret;
421 RSA_PKEY_CTX *rctx = ctx->data;
422 ret = RSA_public_encrypt(inlen, in, out, ctx->pkey->pkey.rsa,
423 rctx->pad_mode);
424 if (ret < 0)
425 return ret;
426 *outlen = ret;
427 return 1;
428 }

430 static int pkey_rsa_decrypt(EVP_PKEY_CTX *ctx,
431 unsigned char *out, size_t *outlen,
432 const unsigned char *in, size_t inlen)
433 {
434 int ret;
435 RSA_PKEY_CTX *rctx = ctx->data;
436 ret = RSA_private_decrypt(inlen, in, out, ctx->pkey->pkey.rsa,
437 rctx->pad_mode);
438 if (ret < 0)
439 return ret;
440 *outlen = ret;
441 return 1;
442 }

444 static int check_padding_md(const EVP_MD *md, int padding)
445 {
446 if (!md)
447 return 1;

449 if (padding == RSA_NO_PADDING)
450 {
451 RSAerr(RSA_F_CHECK_PADDING_MD, RSA_R_INVALID_PADDING_MODE);
452 return 0;
453 }

455 if (padding == RSA_X931_PADDING)
456 {
457 if (RSA_X931_hash_id(EVP_MD_type(md)) == -1)

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pmeth.c 8

458 {
459 RSAerr(RSA_F_CHECK_PADDING_MD,
460 RSA_R_INVALID_X931_DIGEST);
461 return 0;
462 }
463 return 1;
464 }

466 return 1;
467 }
468

470 static int pkey_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2)
471 {
472 RSA_PKEY_CTX *rctx = ctx->data;
473 switch (type)
474 {
475 case EVP_PKEY_CTRL_RSA_PADDING:
476 if ((p1 >= RSA_PKCS1_PADDING) && (p1 <= RSA_PKCS1_PSS_PADDING))
477 {
478 if (!check_padding_md(rctx->md, p1))
479 return 0;
480 if (p1 == RSA_PKCS1_PSS_PADDING)
481 {
482 if (!(ctx->operation &
483 (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY)))
484 goto bad_pad;
485 if (!rctx->md)
486 rctx->md = EVP_sha1();
487 }
488 if (p1 == RSA_PKCS1_OAEP_PADDING)
489 {
490 if (!(ctx->operation & EVP_PKEY_OP_TYPE_CRYPT))
491 goto bad_pad;
492 if (!rctx->md)
493 rctx->md = EVP_sha1();
494 }
495 rctx->pad_mode = p1;
496 return 1;
497 }
498 bad_pad:
499 RSAerr(RSA_F_PKEY_RSA_CTRL,
500 RSA_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE);
501 return -2;

503 case EVP_PKEY_CTRL_GET_RSA_PADDING:
504 *(int *)p2 = rctx->pad_mode;
505 return 1;

507 case EVP_PKEY_CTRL_RSA_PSS_SALTLEN:
508 case EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN:
509 if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING)
510 {
511 RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_INVALID_PSS_SALTLEN);
512 return -2;
513 }
514 if (type == EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN)
515 *(int *)p2 = rctx->saltlen;
516 else
517 {
518 if (p1 < -2)
519 return -2;
520 rctx->saltlen = p1;
521 }
522 return 1;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pmeth.c 9

524 case EVP_PKEY_CTRL_RSA_KEYGEN_BITS:
525 if (p1 < 256)
526 {
527 RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_INVALID_KEYBITS);
528 return -2;
529 }
530 rctx->nbits = p1;
531 return 1;

533 case EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP:
534 if (!p2)
535 return -2;
536 rctx->pub_exp = p2;
537 return 1;

539 case EVP_PKEY_CTRL_MD:
540 if (!check_padding_md(p2, rctx->pad_mode))
541 return 0;
542 rctx->md = p2;
543 return 1;

545 case EVP_PKEY_CTRL_RSA_MGF1_MD:
546 case EVP_PKEY_CTRL_GET_RSA_MGF1_MD:
547 if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING)
548 {
549 RSAerr(RSA_F_PKEY_RSA_CTRL, RSA_R_INVALID_MGF1_MD);
550 return -2;
551 }
552 if (type == EVP_PKEY_CTRL_GET_RSA_MGF1_MD)
553 {
554 if (rctx->mgf1md)
555 *(const EVP_MD **)p2 = rctx->mgf1md;
556 else
557 *(const EVP_MD **)p2 = rctx->md;
558 }
559 else
560 rctx->mgf1md = p2;
561 return 1;

563 case EVP_PKEY_CTRL_DIGESTINIT:
564 case EVP_PKEY_CTRL_PKCS7_ENCRYPT:
565 case EVP_PKEY_CTRL_PKCS7_DECRYPT:
566 case EVP_PKEY_CTRL_PKCS7_SIGN:
567 return 1;
568 #ifndef OPENSSL_NO_CMS
569 case EVP_PKEY_CTRL_CMS_DECRYPT:
570 {
571 X509_ALGOR *alg = NULL;
572 ASN1_OBJECT *encalg = NULL;
573 if (p2)
574 CMS_RecipientInfo_ktri_get0_algs(p2, NULL, NULL, &alg);
575 if (alg)
576 X509_ALGOR_get0(&encalg, NULL, NULL, alg);
577 if (encalg && OBJ_obj2nid(encalg) == NID_rsaesOaep)
578 rctx->pad_mode = RSA_PKCS1_OAEP_PADDING;
579 }
580 case EVP_PKEY_CTRL_CMS_ENCRYPT:
581 case EVP_PKEY_CTRL_CMS_SIGN:
582 return 1;
583 #endif
584 case EVP_PKEY_CTRL_PEER_KEY:
585 RSAerr(RSA_F_PKEY_RSA_CTRL,
586 RSA_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
587 return -2;

589 default:

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pmeth.c 10

590 return -2;

592 }
593 }
594
595 static int pkey_rsa_ctrl_str(EVP_PKEY_CTX *ctx,
596 const char *type, const char *value)
597 {
598 if (!value)
599 {
600 RSAerr(RSA_F_PKEY_RSA_CTRL_STR, RSA_R_VALUE_MISSING);
601 return 0;
602 }
603 if (!strcmp(type, "rsa_padding_mode"))
604 {
605 int pm;
606 if (!strcmp(value, "pkcs1"))
607 pm = RSA_PKCS1_PADDING;
608 else if (!strcmp(value, "sslv23"))
609 pm = RSA_SSLV23_PADDING;
610 else if (!strcmp(value, "none"))
611 pm = RSA_NO_PADDING;
612 else if (!strcmp(value, "oeap"))
613 pm = RSA_PKCS1_OAEP_PADDING;
614 else if (!strcmp(value, "oaep"))
615 pm = RSA_PKCS1_OAEP_PADDING;
616 else if (!strcmp(value, "x931"))
617 pm = RSA_X931_PADDING;
618 else if (!strcmp(value, "pss"))
619 pm = RSA_PKCS1_PSS_PADDING;
620 else
621 {
622 RSAerr(RSA_F_PKEY_RSA_CTRL_STR,
623 RSA_R_UNKNOWN_PADDING_TYPE);
624 return -2;
625 }
626 return EVP_PKEY_CTX_set_rsa_padding(ctx, pm);
627 }

629 if (!strcmp(type, "rsa_pss_saltlen"))
630 {
631 int saltlen;
632 saltlen = atoi(value);
633 return EVP_PKEY_CTX_set_rsa_pss_saltlen(ctx, saltlen);
634 }

636 if (!strcmp(type, "rsa_keygen_bits"))
637 {
638 int nbits;
639 nbits = atoi(value);
640 return EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, nbits);
641 }

643 if (!strcmp(type, "rsa_keygen_pubexp"))
644 {
645 int ret;
646 BIGNUM *pubexp = NULL;
647 if (!BN_asc2bn(&pubexp, value))
648 return 0;
649 ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp);
650 if (ret <= 0)
651 BN_free(pubexp);
652 return ret;
653 }

655 return -2;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pmeth.c 11

656 }

658 static int pkey_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey)
659 {
660 RSA *rsa = NULL;
661 RSA_PKEY_CTX *rctx = ctx->data;
662 BN_GENCB *pcb, cb;
663 int ret;
664 if (!rctx->pub_exp)
665 {
666 rctx->pub_exp = BN_new();
667 if (!rctx->pub_exp || !BN_set_word(rctx->pub_exp, RSA_F4))
668 return 0;
669 }
670 rsa = RSA_new();
671 if (!rsa)
672 return 0;
673 if (ctx->pkey_gencb)
674 {
675 pcb = &cb;
676 evp_pkey_set_cb_translate(pcb, ctx);
677 }
678 else
679 pcb = NULL;
680 ret = RSA_generate_key_ex(rsa, rctx->nbits, rctx->pub_exp, pcb);
681 if (ret > 0)
682 EVP_PKEY_assign_RSA(pkey, rsa);
683 else
684 RSA_free(rsa);
685 return ret;
686 }

688 const EVP_PKEY_METHOD rsa_pkey_meth =
689 {
690 EVP_PKEY_RSA,
691 EVP_PKEY_FLAG_AUTOARGLEN,
692 pkey_rsa_init,
693 pkey_rsa_copy,
694 pkey_rsa_cleanup,

696 0,0,

698 0,
699 pkey_rsa_keygen,

701 0,
702 pkey_rsa_sign,

704 0,
705 pkey_rsa_verify,

707 0,
708 pkey_rsa_verifyrecover,

711 0,0,0,0,

713 0,
714 pkey_rsa_encrypt,

716 0,
717 pkey_rsa_decrypt,

719 0,0,

721 pkey_rsa_ctrl,

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pmeth.c 12

722 pkey_rsa_ctrl_str

725 };

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_prn.c 1

**
 3377 Fri May 30 18:32:09 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_prn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_prn.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2006.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/rsa.h>

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_prn.c 2

62 #include <openssl/evp.h>

64 #ifndef OPENSSL_NO_FP_API
65 int RSA_print_fp(FILE *fp, const RSA *x, int off)
66 {
67 BIO *b;
68 int ret;

70 if ((b=BIO_new(BIO_s_file())) == NULL)
71 {
72 RSAerr(RSA_F_RSA_PRINT_FP,ERR_R_BUF_LIB);
73 return(0);
74 }
75 BIO_set_fp(b,fp,BIO_NOCLOSE);
76 ret=RSA_print(b,x,off);
77 BIO_free(b);
78 return(ret);
79 }
80 #endif

82 int RSA_print(BIO *bp, const RSA *x, int off)
83 {
84 EVP_PKEY *pk;
85 int ret;
86 pk = EVP_PKEY_new();
87 if (!pk || !EVP_PKEY_set1_RSA(pk, (RSA *)x))
88 return 0;
89 ret = EVP_PKEY_print_private(bp, pk, off, NULL);
90 EVP_PKEY_free(pk);
91 return ret;
92 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pss.c 1

**
 8064 Fri May 30 18:32:09 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pss.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* rsa_pss.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2005.
4 */
5 /* ==
6 * Copyright (c) 2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pss.c 2

62 #include <openssl/rsa.h>
63 #include <openssl/evp.h>
64 #include <openssl/rand.h>
65 #include <openssl/sha.h>

67 static const unsigned char zeroes[] = {0,0,0,0,0,0,0,0};

69 #if defined(_MSC_VER) && defined(_ARM_)
70 #pragma optimize("g", off)
71 #endif

73 int RSA_verify_PKCS1_PSS(RSA *rsa, const unsigned char *mHash,
74 const EVP_MD *Hash, const unsigned char *EM, int sLen)
75 {
76 return RSA_verify_PKCS1_PSS_mgf1(rsa, mHash, Hash, NULL, EM, sLen);
77 }

79 int RSA_verify_PKCS1_PSS_mgf1(RSA *rsa, const unsigned char *mHash,
80 const EVP_MD *Hash, const EVP_MD *mgf1Hash,
81 const unsigned char *EM, int sLen)
82 {
83 int i;
84 int ret = 0;
85 int hLen, maskedDBLen, MSBits, emLen;
86 const unsigned char *H;
87 unsigned char *DB = NULL;
88 EVP_MD_CTX ctx;
89 unsigned char H_[EVP_MAX_MD_SIZE];
90 EVP_MD_CTX_init(&ctx);

92 if (mgf1Hash == NULL)
93 mgf1Hash = Hash;

95 hLen = EVP_MD_size(Hash);
96 if (hLen < 0)
97 goto err;
98 /*
99 * Negative sLen has special meanings:
100 * -1 sLen == hLen
101 * -2 salt length is autorecovered from signature
102 * -N reserved
103 */
104 if (sLen == -1) sLen = hLen;
105 else if (sLen == -2) sLen = -2;
106 else if (sLen < -2)
107 {
108 RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, RSA_R_SLEN_CHECK_FAILED)
109 goto err;
110 }

112 MSBits = (BN_num_bits(rsa->n) - 1) & 0x7;
113 emLen = RSA_size(rsa);
114 if (EM[0] & (0xFF << MSBits))
115 {
116 RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, RSA_R_FIRST_OCTET_INVALI
117 goto err;
118 }
119 if (MSBits == 0)
120 {
121 EM++;
122 emLen--;
123 }
124 if (emLen < (hLen + sLen + 2)) /* sLen can be small negative */
125 {
126 RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, RSA_R_DATA_TOO_LARGE);
127 goto err;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pss.c 3

128 }
129 if (EM[emLen - 1] != 0xbc)
130 {
131 RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, RSA_R_LAST_OCTET_INVALID
132 goto err;
133 }
134 maskedDBLen = emLen - hLen - 1;
135 H = EM + maskedDBLen;
136 DB = OPENSSL_malloc(maskedDBLen);
137 if (!DB)
138 {
139 RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, ERR_R_MALLOC_FAILURE);
140 goto err;
141 }
142 if (PKCS1_MGF1(DB, maskedDBLen, H, hLen, mgf1Hash) < 0)
143 goto err;
144 for (i = 0; i < maskedDBLen; i++)
145 DB[i] ^= EM[i];
146 if (MSBits)
147 DB[0] &= 0xFF >> (8 - MSBits);
148 for (i = 0; DB[i] == 0 && i < (maskedDBLen-1); i++) ;
149 if (DB[i++] != 0x1)
150 {
151 RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, RSA_R_SLEN_RECOVERY_FAIL
152 goto err;
153 }
154 if (sLen >= 0 && (maskedDBLen - i) != sLen)
155 {
156 RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, RSA_R_SLEN_CHECK_FAILED)
157 goto err;
158 }
159 if (!EVP_DigestInit_ex(&ctx, Hash, NULL)
160 || !EVP_DigestUpdate(&ctx, zeroes, sizeof zeroes)
161 || !EVP_DigestUpdate(&ctx, mHash, hLen))
162 goto err;
163 if (maskedDBLen - i)
164 {
165 if (!EVP_DigestUpdate(&ctx, DB + i, maskedDBLen - i))
166 goto err;
167 }
168 if (!EVP_DigestFinal_ex(&ctx, H_, NULL))
169 goto err;
170 if (memcmp(H_, H, hLen))
171 {
172 RSAerr(RSA_F_RSA_VERIFY_PKCS1_PSS_MGF1, RSA_R_BAD_SIGNATURE);
173 ret = 0;
174 }
175 else
176 ret = 1;

178 err:
179 if (DB)
180 OPENSSL_free(DB);
181 EVP_MD_CTX_cleanup(&ctx);

183 return ret;

185 }

187 int RSA_padding_add_PKCS1_PSS(RSA *rsa, unsigned char *EM,
188 const unsigned char *mHash,
189 const EVP_MD *Hash, int sLen)
190 {
191 return RSA_padding_add_PKCS1_PSS_mgf1(rsa, EM, mHash, Hash, NULL, sLen);
192 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pss.c 4

194 int RSA_padding_add_PKCS1_PSS_mgf1(RSA *rsa, unsigned char *EM,
195 const unsigned char *mHash,
196 const EVP_MD *Hash, const EVP_MD *mgf1Hash, int sLen)
197 {
198 int i;
199 int ret = 0;
200 int hLen, maskedDBLen, MSBits, emLen;
201 unsigned char *H, *salt = NULL, *p;
202 EVP_MD_CTX ctx;

204 if (mgf1Hash == NULL)
205 mgf1Hash = Hash;

207 hLen = EVP_MD_size(Hash);
208 if (hLen < 0)
209 goto err;
210 /*
211 * Negative sLen has special meanings:
212 * -1 sLen == hLen
213 * -2 salt length is maximized
214 * -N reserved
215 */
216 if (sLen == -1) sLen = hLen;
217 else if (sLen == -2) sLen = -2;
218 else if (sLen < -2)
219 {
220 RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_PSS_MGF1, RSA_R_SLEN_CHECK_FA
221 goto err;
222 }

224 MSBits = (BN_num_bits(rsa->n) - 1) & 0x7;
225 emLen = RSA_size(rsa);
226 if (MSBits == 0)
227 {
228 *EM++ = 0;
229 emLen--;
230 }
231 if (sLen == -2)
232 {
233 sLen = emLen - hLen - 2;
234 }
235 else if (emLen < (hLen + sLen + 2))
236 {
237 RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_PSS_MGF1,RSA_R_DATA_TOO_LARGE
238 goto err;
239 }
240 if (sLen > 0)
241 {
242 salt = OPENSSL_malloc(sLen);
243 if (!salt)
244 {
245 RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_PSS_MGF1,ERR_R_MALLOC
246 goto err;
247 }
248 if (RAND_bytes(salt, sLen) <= 0)
249 goto err;
250 }
251 maskedDBLen = emLen - hLen - 1;
252 H = EM + maskedDBLen;
253 EVP_MD_CTX_init(&ctx);
254 if (!EVP_DigestInit_ex(&ctx, Hash, NULL)
255 || !EVP_DigestUpdate(&ctx, zeroes, sizeof zeroes)
256 || !EVP_DigestUpdate(&ctx, mHash, hLen))
257 goto err;
258 if (sLen && !EVP_DigestUpdate(&ctx, salt, sLen))
259 goto err;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_pss.c 5

260 if (!EVP_DigestFinal_ex(&ctx, H, NULL))
261 goto err;
262 EVP_MD_CTX_cleanup(&ctx);

264 /* Generate dbMask in place then perform XOR on it */
265 if (PKCS1_MGF1(EM, maskedDBLen, H, hLen, mgf1Hash))
266 goto err;

268 p = EM;

270 /* Initial PS XORs with all zeroes which is a NOP so just update
271 * pointer. Note from a test above this value is guaranteed to
272 * be non-negative.
273 */
274 p += emLen - sLen - hLen - 2;
275 *p++ ^= 0x1;
276 if (sLen > 0)
277 {
278 for (i = 0; i < sLen; i++)
279 *p++ ^= salt[i];
280 }
281 if (MSBits)
282 EM[0] &= 0xFF >> (8 - MSBits);

284 /* H is already in place so just set final 0xbc */

286 EM[emLen - 1] = 0xbc;

288 ret = 1;

290 err:
291 if (salt)
292 OPENSSL_free(salt);

294 return ret;

296 }

298 #if defined(_MSC_VER)
299 #pragma optimize("",on)
300 #endif

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_saos.c 1

**
 5234 Fri May 30 18:32:09 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_saos.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_saos.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_saos.c 2

62 #include <openssl/rsa.h>
63 #include <openssl/objects.h>
64 #include <openssl/x509.h>

66 int RSA_sign_ASN1_OCTET_STRING(int type,
67 const unsigned char *m, unsigned int m_len,
68 unsigned char *sigret, unsigned int *siglen, RSA *rsa)
69 {
70 ASN1_OCTET_STRING sig;
71 int i,j,ret=1;
72 unsigned char *p,*s;

74 sig.type=V_ASN1_OCTET_STRING;
75 sig.length=m_len;
76 sig.data=(unsigned char *)m;

78 i=i2d_ASN1_OCTET_STRING(&sig,NULL);
79 j=RSA_size(rsa);
80 if (i > (j-RSA_PKCS1_PADDING_SIZE))
81 {
82 RSAerr(RSA_F_RSA_SIGN_ASN1_OCTET_STRING,RSA_R_DIGEST_TOO_BIG_FOR
83 return(0);
84 }
85 s=(unsigned char *)OPENSSL_malloc((unsigned int)j+1);
86 if (s == NULL)
87 {
88 RSAerr(RSA_F_RSA_SIGN_ASN1_OCTET_STRING,ERR_R_MALLOC_FAILURE);
89 return(0);
90 }
91 p=s;
92 i2d_ASN1_OCTET_STRING(&sig,&p);
93 i=RSA_private_encrypt(i,s,sigret,rsa,RSA_PKCS1_PADDING);
94 if (i <= 0)
95 ret=0;
96 else
97 *siglen=i;

99 OPENSSL_cleanse(s,(unsigned int)j+1);
100 OPENSSL_free(s);
101 return(ret);
102 }

104 int RSA_verify_ASN1_OCTET_STRING(int dtype,
105 const unsigned char *m,
106 unsigned int m_len, unsigned char *sigbuf, unsigned int siglen,
107 RSA *rsa)
108 {
109 int i,ret=0;
110 unsigned char *s;
111 const unsigned char *p;
112 ASN1_OCTET_STRING *sig=NULL;

114 if (siglen != (unsigned int)RSA_size(rsa))
115 {
116 RSAerr(RSA_F_RSA_VERIFY_ASN1_OCTET_STRING,RSA_R_WRONG_SIGNATURE_
117 return(0);
118 }

120 s=(unsigned char *)OPENSSL_malloc((unsigned int)siglen);
121 if (s == NULL)
122 {
123 RSAerr(RSA_F_RSA_VERIFY_ASN1_OCTET_STRING,ERR_R_MALLOC_FAILURE);
124 goto err;
125 }
126 i=RSA_public_decrypt((int)siglen,sigbuf,s,rsa,RSA_PKCS1_PADDING);

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_saos.c 3

128 if (i <= 0) goto err;

130 p=s;
131 sig=d2i_ASN1_OCTET_STRING(NULL,&p,(long)i);
132 if (sig == NULL) goto err;

134 if (((unsigned int)sig->length != m_len) ||
135 (memcmp(m,sig->data,m_len) != 0))
136 {
137 RSAerr(RSA_F_RSA_VERIFY_ASN1_OCTET_STRING,RSA_R_BAD_SIGNATURE);
138 }
139 else
140 ret=1;
141 err:
142 if (sig != NULL) M_ASN1_OCTET_STRING_free(sig);
143 if (s != NULL)
144 {
145 OPENSSL_cleanse(s,(unsigned int)siglen);
146 OPENSSL_free(s);
147 }
148 return(ret);
149 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_sign.c 1

**
 9367 Fri May 30 18:32:09 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_sign.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_sign.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_sign.c 2

62 #include <openssl/rsa.h>
63 #include <openssl/objects.h>
64 #include <openssl/x509.h>
65 #include "rsa_locl.h"

67 /* Size of an SSL signature: MD5+SHA1 */
68 #define SSL_SIG_LENGTH 36

70 int RSA_sign(int type, const unsigned char *m, unsigned int m_len,
71 unsigned char *sigret, unsigned int *siglen, RSA *rsa)
72 {
73 X509_SIG sig;
74 ASN1_TYPE parameter;
75 int i,j,ret=1;
76 unsigned char *p, *tmps = NULL;
77 const unsigned char *s = NULL;
78 X509_ALGOR algor;
79 ASN1_OCTET_STRING digest;
80 #ifdef OPENSSL_FIPS
81 if (FIPS_mode() && !(rsa->meth->flags & RSA_FLAG_FIPS_METHOD)
82 && !(rsa->flags & RSA_FLAG_NON_FIPS_ALLOW))
83 {
84 RSAerr(RSA_F_RSA_SIGN, RSA_R_NON_FIPS_RSA_METHOD);
85 return 0;
86 }
87 #endif
88 if((rsa->flags & RSA_FLAG_SIGN_VER) && rsa->meth->rsa_sign)
89 {
90 return rsa->meth->rsa_sign(type, m, m_len,
91 sigret, siglen, rsa);
92 }
93 /* Special case: SSL signature, just check the length */
94 if(type == NID_md5_sha1) {
95 if(m_len != SSL_SIG_LENGTH) {
96 RSAerr(RSA_F_RSA_SIGN,RSA_R_INVALID_MESSAGE_LENGTH);
97 return(0);
98 }
99 i = SSL_SIG_LENGTH;
100 s = m;
101 } else {
102 sig.algor= &algor;
103 sig.algor->algorithm=OBJ_nid2obj(type);
104 if (sig.algor->algorithm == NULL)
105 {
106 RSAerr(RSA_F_RSA_SIGN,RSA_R_UNKNOWN_ALGORITHM_TYPE);
107 return(0);
108 }
109 if (sig.algor->algorithm->length == 0)
110 {
111 RSAerr(RSA_F_RSA_SIGN,RSA_R_THE_ASN1_OBJECT_IDENTIFIER_I
112 return(0);
113 }
114 parameter.type=V_ASN1_NULL;
115 parameter.value.ptr=NULL;
116 sig.algor->parameter= ¶meter;

118 sig.digest= &digest;
119 sig.digest->data=(unsigned char *)m; /* TMP UGLY CAST */
120 sig.digest->length=m_len;

122 i=i2d_X509_SIG(&sig,NULL);
123 }
124 j=RSA_size(rsa);
125 if (i > (j-RSA_PKCS1_PADDING_SIZE))
126 {
127 RSAerr(RSA_F_RSA_SIGN,RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY);

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_sign.c 3

128 return(0);
129 }
130 if(type != NID_md5_sha1) {
131 tmps=(unsigned char *)OPENSSL_malloc((unsigned int)j+1);
132 if (tmps == NULL)
133 {
134 RSAerr(RSA_F_RSA_SIGN,ERR_R_MALLOC_FAILURE);
135 return(0);
136 }
137 p=tmps;
138 i2d_X509_SIG(&sig,&p);
139 s=tmps;
140 }
141 i=RSA_private_encrypt(i,s,sigret,rsa,RSA_PKCS1_PADDING);
142 if (i <= 0)
143 ret=0;
144 else
145 *siglen=i;

147 if(type != NID_md5_sha1) {
148 OPENSSL_cleanse(tmps,(unsigned int)j+1);
149 OPENSSL_free(tmps);
150 }
151 return(ret);
152 }

154 int int_rsa_verify(int dtype, const unsigned char *m,
155 unsigned int m_len,
156 unsigned char *rm, size_t *prm_len,
157 const unsigned char *sigbuf, size_t siglen,
158 RSA *rsa)
159 {
160 int i,ret=0,sigtype;
161 unsigned char *s;
162 X509_SIG *sig=NULL;

164 #ifdef OPENSSL_FIPS
165 if (FIPS_mode() && !(rsa->meth->flags & RSA_FLAG_FIPS_METHOD)
166 && !(rsa->flags & RSA_FLAG_NON_FIPS_ALLOW))
167 {
168 RSAerr(RSA_F_INT_RSA_VERIFY, RSA_R_NON_FIPS_RSA_METHOD);
169 return 0;
170 }
171 #endif

173 if (siglen != (unsigned int)RSA_size(rsa))
174 {
175 RSAerr(RSA_F_INT_RSA_VERIFY,RSA_R_WRONG_SIGNATURE_LENGTH);
176 return(0);
177 }

179 if((dtype == NID_md5_sha1) && rm)
180 {
181 i = RSA_public_decrypt((int)siglen,
182 sigbuf,rm,rsa,RSA_PKCS1_PADDING);
183 if (i <= 0)
184 return 0;
185 *prm_len = i;
186 return 1;
187 }

189 s=(unsigned char *)OPENSSL_malloc((unsigned int)siglen);
190 if (s == NULL)
191 {
192 RSAerr(RSA_F_INT_RSA_VERIFY,ERR_R_MALLOC_FAILURE);
193 goto err;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_sign.c 4

194 }
195 if((dtype == NID_md5_sha1) && (m_len != SSL_SIG_LENGTH)) {
196 RSAerr(RSA_F_INT_RSA_VERIFY,RSA_R_INVALID_MESSAGE_LENGTH
197 goto err;
198 }
199 i=RSA_public_decrypt((int)siglen,sigbuf,s,rsa,RSA_PKCS1_PADDING);

201 if (i <= 0) goto err;
202 /* Oddball MDC2 case: signature can be OCTET STRING.
203 * check for correct tag and length octets.
204 */
205 if (dtype == NID_mdc2 && i == 18 && s[0] == 0x04 && s[1] == 0x10)
206 {
207 if (rm)
208 {
209 memcpy(rm, s + 2, 16);
210 *prm_len = 16;
211 ret = 1;
212 }
213 else if(memcmp(m, s + 2, 16))
214 RSAerr(RSA_F_INT_RSA_VERIFY,RSA_R_BAD_SIGNATURE);
215 else
216 ret = 1;
217 }

219 /* Special case: SSL signature */
220 if(dtype == NID_md5_sha1) {
221 if((i != SSL_SIG_LENGTH) || memcmp(s, m, SSL_SIG_LENGTH))
222 RSAerr(RSA_F_INT_RSA_VERIFY,RSA_R_BAD_SIGNATURE)
223 else ret = 1;
224 } else {
225 const unsigned char *p=s;
226 sig=d2i_X509_SIG(NULL,&p,(long)i);

228 if (sig == NULL) goto err;

230 /* Excess data can be used to create forgeries */
231 if(p != s+i)
232 {
233 RSAerr(RSA_F_INT_RSA_VERIFY,RSA_R_BAD_SIGNATURE);
234 goto err;
235 }

237 /* Parameters to the signature algorithm can also be used to
238 create forgeries */
239 if(sig->algor->parameter
240 && ASN1_TYPE_get(sig->algor->parameter) != V_ASN1_NULL)
241 {
242 RSAerr(RSA_F_INT_RSA_VERIFY,RSA_R_BAD_SIGNATURE);
243 goto err;
244 }

246 sigtype=OBJ_obj2nid(sig->algor->algorithm);

249 #ifdef RSA_DEBUG
250 /* put a backward compatibility flag in EAY */
251 fprintf(stderr,"in(%s) expect(%s)\n",OBJ_nid2ln(sigtype),
252 OBJ_nid2ln(dtype));
253 #endif
254 if (sigtype != dtype)
255 {
256 if (((dtype == NID_md5) &&
257 (sigtype == NID_md5WithRSAEncryption)) ||
258 ((dtype == NID_md2) &&
259 (sigtype == NID_md2WithRSAEncryption)))

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_sign.c 5

260 {
261 /* ok, we will let it through */
262 #if !defined(OPENSSL_NO_STDIO) && !defined(OPENSSL_SYS_WIN16)
263 fprintf(stderr,"signature has problems, re-make
264 #endif
265 }
266 else
267 {
268 RSAerr(RSA_F_INT_RSA_VERIFY,
269 RSA_R_ALGORITHM_MISMATCH);
270 goto err;
271 }
272 }
273 if (rm)
274 {
275 const EVP_MD *md;
276 md = EVP_get_digestbynid(dtype);
277 if (md && (EVP_MD_size(md) != sig->digest->length))
278 RSAerr(RSA_F_INT_RSA_VERIFY,
279 RSA_R_INVALID_DIGEST_LENGTH);
280 else
281 {
282 memcpy(rm, sig->digest->data,
283 sig->digest->length);
284 *prm_len = sig->digest->length;
285 ret = 1;
286 }
287 }
288 else if (((unsigned int)sig->digest->length != m_len) ||
289 (memcmp(m,sig->digest->data,m_len) != 0))
290 {
291 RSAerr(RSA_F_INT_RSA_VERIFY,RSA_R_BAD_SIGNATURE);
292 }
293 else
294 ret=1;
295 }
296 err:
297 if (sig != NULL) X509_SIG_free(sig);
298 if (s != NULL)
299 {
300 OPENSSL_cleanse(s,(unsigned int)siglen);
301 OPENSSL_free(s);
302 }
303 return(ret);
304 }

306 int RSA_verify(int dtype, const unsigned char *m, unsigned int m_len,
307 const unsigned char *sigbuf, unsigned int siglen,
308 RSA *rsa)
309 {

311 if((rsa->flags & RSA_FLAG_SIGN_VER) && rsa->meth->rsa_verify)
312 {
313 return rsa->meth->rsa_verify(dtype, m, m_len,
314 sigbuf, siglen, rsa);
315 }

317 return int_rsa_verify(dtype, m, m_len, NULL, NULL, sigbuf, siglen, rsa);
318 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ssl.c 1

**
 4942 Fri May 30 18:32:09 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ssl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/rsa/rsa_ssl.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ssl.c 2

62 #include <openssl/rsa.h>
63 #include <openssl/rand.h>

65 int RSA_padding_add_SSLv23(unsigned char *to, int tlen,
66 const unsigned char *from, int flen)
67 {
68 int i,j;
69 unsigned char *p;
70
71 if (flen > (tlen-11))
72 {
73 RSAerr(RSA_F_RSA_PADDING_ADD_SSLV23,RSA_R_DATA_TOO_LARGE_FOR_KEY
74 return(0);
75 }
76
77 p=(unsigned char *)to;

79 *(p++)=0;
80 *(p++)=2; /* Public Key BT (Block Type) */

82 /* pad out with non-zero random data */
83 j=tlen-3-8-flen;

85 if (RAND_bytes(p,j) <= 0)
86 return(0);
87 for (i=0; i<j; i++)
88 {
89 if (*p == ’\0’)
90 do {
91 if (RAND_bytes(p,1) <= 0)
92 return(0);
93 } while (*p == ’\0’);
94 p++;
95 }

97 memset(p,3,8);
98 p+=8;
99 *(p++)=’\0’;

101 memcpy(p,from,(unsigned int)flen);
102 return(1);
103 }

105 int RSA_padding_check_SSLv23(unsigned char *to, int tlen,
106 const unsigned char *from, int flen, int num)
107 {
108 int i,j,k;
109 const unsigned char *p;

111 p=from;
112 if (flen < 10)
113 {
114 RSAerr(RSA_F_RSA_PADDING_CHECK_SSLV23,RSA_R_DATA_TOO_SMALL);
115 return(-1);
116 }
117 if ((num != (flen+1)) || (*(p++) != 02))
118 {
119 RSAerr(RSA_F_RSA_PADDING_CHECK_SSLV23,RSA_R_BLOCK_TYPE_IS_NOT_02
120 return(-1);
121 }

123 /* scan over padding data */
124 j=flen-1; /* one for type */
125 for (i=0; i<j; i++)
126 if (*(p++) == 0) break;

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_ssl.c 3

128 if ((i == j) || (i < 8))
129 {
130 RSAerr(RSA_F_RSA_PADDING_CHECK_SSLV23,RSA_R_NULL_BEFORE_BLOCK_MI
131 return(-1);
132 }
133 for (k = -9; k<-1; k++)
134 {
135 if (p[k] != 0x03) break;
136 }
137 if (k == -1)
138 {
139 RSAerr(RSA_F_RSA_PADDING_CHECK_SSLV23,RSA_R_SSLV3_ROLLBACK_ATTAC
140 return(-1);
141 }

143 i++; /* Skip over the ’\0’ */
144 j-=i;
145 if (j > tlen)
146 {
147 RSAerr(RSA_F_RSA_PADDING_CHECK_SSLV23,RSA_R_DATA_TOO_LARGE);
148 return(-1);
149 }
150 memcpy(to,p,(unsigned int)j);

152 return(j);
153 }

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_x931.c 1

**
 4667 Fri May 30 18:32:09 2014
new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_x931.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* rsa_x931.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2005.
4 */
5 /* ==
6 * Copyright (c) 2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_x931.c 2

62 #include <openssl/rsa.h>
63 #include <openssl/rand.h>
64 #include <openssl/objects.h>

66 int RSA_padding_add_X931(unsigned char *to, int tlen,
67 const unsigned char *from, int flen)
68 {
69 int j;
70 unsigned char *p;

72 /* Absolute minimum amount of padding is 1 header nibble, 1 padding
73 * nibble and 2 trailer bytes: but 1 hash if is already in ’from’.
74 */

76 j = tlen - flen - 2;

78 if (j < 0)
79 {
80 RSAerr(RSA_F_RSA_PADDING_ADD_X931,RSA_R_DATA_TOO_LARGE_FOR_KEY_S
81 return -1;
82 }
83
84 p=(unsigned char *)to;

86 /* If no padding start and end nibbles are in one byte */
87 if (j == 0)
88 *p++ = 0x6A;
89 else
90 {
91 *p++ = 0x6B;
92 if (j > 1)
93 {
94 memset(p, 0xBB, j - 1);
95 p += j - 1;
96 }
97 *p++ = 0xBA;
98 }
99 memcpy(p,from,(unsigned int)flen);
100 p += flen;
101 *p = 0xCC;
102 return(1);
103 }

105 int RSA_padding_check_X931(unsigned char *to, int tlen,
106 const unsigned char *from, int flen, int num)
107 {
108 int i = 0,j;
109 const unsigned char *p;

111 p=from;
112 if ((num != flen) || ((*p != 0x6A) && (*p != 0x6B)))
113 {
114 RSAerr(RSA_F_RSA_PADDING_CHECK_X931,RSA_R_INVALID_HEADER);
115 return -1;
116 }

118 if (*p++ == 0x6B)
119 {
120 j=flen-3;
121 for (i = 0; i < j; i++)
122 {
123 unsigned char c = *p++;
124 if (c == 0xBA)
125 break;
126 if (c != 0xBB)
127 {

new/usr/src/lib/openssl/libsunw_crypto/rsa/rsa_x931.c 3

128 RSAerr(RSA_F_RSA_PADDING_CHECK_X931,
129 RSA_R_INVALID_PADDING);
130 return -1;
131 }
132 }

134 j -= i;

136 if (i == 0)
137 {
138 RSAerr(RSA_F_RSA_PADDING_CHECK_X931, RSA_R_INVALID_PADDI
139 return -1;
140 }

142 }
143 else j = flen - 2;

145 if (p[j] != 0xCC)
146 {
147 RSAerr(RSA_F_RSA_PADDING_CHECK_X931, RSA_R_INVALID_TRAILER);
148 return -1;
149 }

151 memcpy(to,p,(unsigned int)j);

153 return(j);
154 }

156 /* Translate between X931 hash ids and NIDs */

158 int RSA_X931_hash_id(int nid)
159 {
160 switch (nid)
161 {
162 case NID_sha1:
163 return 0x33;

165 case NID_sha256:
166 return 0x34;

168 case NID_sha384:
169 return 0x36;

171 case NID_sha512:
172 return 0x35;

174 }
175 return -1;
176 }

new/usr/src/lib/openssl/libsunw_crypto/sha/sha1_one.c 1

**
 3604 Fri May 30 18:32:10 2014
new/usr/src/lib/openssl/libsunw_crypto/sha/sha1_one.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/sha/sha1_one.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <string.h>
61 #include <openssl/crypto.h>

new/usr/src/lib/openssl/libsunw_crypto/sha/sha1_one.c 2

62 #include <openssl/sha.h>

64 #ifndef OPENSSL_NO_SHA1
65 unsigned char *SHA1(const unsigned char *d, size_t n, unsigned char *md)
66 {
67 SHA_CTX c;
68 static unsigned char m[SHA_DIGEST_LENGTH];

70 if (md == NULL) md=m;
71 if (!SHA1_Init(&c))
72 return NULL;
73 SHA1_Update(&c,d,n);
74 SHA1_Final(md,&c);
75 OPENSSL_cleanse(&c,sizeof(c));
76 return(md);
77 }
78 #endif

new/usr/src/lib/openssl/libsunw_crypto/sha/sha1dgst.c 1

**
 3515 Fri May 30 18:32:10 2014
new/usr/src/lib/openssl/libsunw_crypto/sha/sha1dgst.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/sha/sha1dgst.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/crypto.h>
60 #include <openssl/opensslconf.h>
61 #if !defined(OPENSSL_NO_SHA1) && !defined(OPENSSL_NO_SHA)

new/usr/src/lib/openssl/libsunw_crypto/sha/sha1dgst.c 2

63 #undef SHA_0
64 #define SHA_1

66 #include <openssl/opensslv.h>

68 const char SHA1_version[]="SHA1" OPENSSL_VERSION_PTEXT;

70 /* The implementation is in ../md32_common.h */

72 #include "sha_locl.h"

74 #endif

new/usr/src/lib/openssl/libsunw_crypto/sha/sha256.c 1

**
 9306 Fri May 30 18:32:10 2014
new/usr/src/lib/openssl/libsunw_crypto/sha/sha256.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/sha/sha256.c */
2 /* ==
3 * Copyright (c) 2004 The OpenSSL Project. All rights reserved
4 * according to the OpenSSL license [found in ../../LICENSE].
5 * ==
6 */
7 #include <openssl/opensslconf.h>
8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)

10 #include <stdlib.h>
11 #include <string.h>

13 #include <openssl/crypto.h>
14 #include <openssl/sha.h>
15 #include <openssl/opensslv.h>

17 const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT;

19 fips_md_init_ctx(SHA224, SHA256)
20 {
21 memset (c,0,sizeof(*c));
22 c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL;
23 c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL;
24 c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL;
25 c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL;
26 c->md_len=SHA224_DIGEST_LENGTH;
27 return 1;
28 }

30 fips_md_init(SHA256)
31 {
32 memset (c,0,sizeof(*c));
33 c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL;
34 c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL;
35 c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL;
36 c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL;
37 c->md_len=SHA256_DIGEST_LENGTH;
38 return 1;
39 }

41 unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
42 {
43 SHA256_CTX c;
44 static unsigned char m[SHA224_DIGEST_LENGTH];

46 if (md == NULL) md=m;
47 SHA224_Init(&c);
48 SHA256_Update(&c,d,n);
49 SHA256_Final(md,&c);
50 OPENSSL_cleanse(&c,sizeof(c));
51 return(md);
52 }

54 unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
55 {
56 SHA256_CTX c;
57 static unsigned char m[SHA256_DIGEST_LENGTH];

59 if (md == NULL) md=m;
60 SHA256_Init(&c);
61 SHA256_Update(&c,d,n);

new/usr/src/lib/openssl/libsunw_crypto/sha/sha256.c 2

62 SHA256_Final(md,&c);
63 OPENSSL_cleanse(&c,sizeof(c));
64 return(md);
65 }

67 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
68 { return SHA256_Update (c,data,len); }
69 int SHA224_Final (unsigned char *md, SHA256_CTX *c)
70 { return SHA256_Final (md,c); }

72 #define DATA_ORDER_IS_BIG_ENDIAN

74 #define HASH_LONG SHA_LONG
75 #define HASH_CTX SHA256_CTX
76 #define HASH_CBLOCK SHA_CBLOCK
77 /*
78 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
79 * default: case below covers for it. It’s not clear however if it’s
80 * permitted to truncate to amount of bytes not divisible by 4. I bet not,
81 * but if it is, then default: case shall be extended. For reference.
82 * Idea behind separate cases for pre-defined lenghts is to let the
83 * compiler decide if it’s appropriate to unroll small loops.
84 */
85 #define HASH_MAKE_STRING(c,s) do { \
86 unsigned long ll; \
87 unsigned int nn; \
88 switch ((c)->md_len) \
89 { case SHA224_DIGEST_LENGTH: \
90 for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) \
91 { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
92 break; \
93 case SHA256_DIGEST_LENGTH: \
94 for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) \
95 { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
96 break; \
97 default: \
98 if ((c)->md_len > SHA256_DIGEST_LENGTH) \
99 return 0; \
100 for (nn=0;nn<(c)->md_len/4;nn++) \
101 { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
102 break; \
103 } \
104 } while (0)

106 #define HASH_UPDATE SHA256_Update
107 #define HASH_TRANSFORM SHA256_Transform
108 #define HASH_FINAL SHA256_Final
109 #define HASH_BLOCK_DATA_ORDER sha256_block_data_order
110 #ifndef SHA256_ASM
111 static
112 #endif
113 void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);

115 #include "md32_common.h"

117 #ifndef SHA256_ASM
118 static const SHA_LONG K256[64] = {
119 0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
120 0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
121 0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
122 0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
123 0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
124 0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
125 0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
126 0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
127 0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,

new/usr/src/lib/openssl/libsunw_crypto/sha/sha256.c 3

128 0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
129 0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
130 0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
131 0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
132 0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
133 0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
134 0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };

136 /*
137 * FIPS specification refers to right rotations, while our ROTATE macro
138 * is left one. This is why you might notice that rotation coefficients
139 * differ from those observed in FIPS document by 32-N...
140 */
141 #define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
142 #define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
143 #define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
144 #define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))

146 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
147 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

149 #ifdef OPENSSL_SMALL_FOOTPRINT

151 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num
152 {
153 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
154 SHA_LONG X[16],l;
155 int i;
156 const unsigned char *data=in;

158 while (num--) {

160 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
161 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];

163 for (i=0;i<16;i++)
164 {
165 HOST_c2l(data,l); T1 = X[i] = l;
166 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
167 T2 = Sigma0(a) + Maj(a,b,c);
168 h = g; g = f; f = e; e = d + T1;
169 d = c; c = b; b = a; a = T1 + T2;
170 }

172 for (;i<64;i++)
173 {
174 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
175 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);

177 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
178 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
179 T2 = Sigma0(a) + Maj(a,b,c);
180 h = g; g = f; f = e; e = d + T1;
181 d = c; c = b; b = a; a = T1 + T2;
182 }

184 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
185 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;

187 }
188 }

190 #else

192 #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
193 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \

new/usr/src/lib/openssl/libsunw_crypto/sha/sha256.c 4

194 h = Sigma0(a) + Maj(a,b,c); \
195 d += T1; h += T1; } while (0)

197 #define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \
198 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
199 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
200 T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
201 ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)

203 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num
204 {
205 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
206 SHA_LONG X[16];
207 int i;
208 const unsigned char *data=in;
209 const union { long one; char little; } is_endian = {1};

211 while (num--) {

213 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
214 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];

216 if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
217 {
218 const SHA_LONG *W=(const SHA_LONG *)data;

220 T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
221 T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
222 T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
223 T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
224 T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
225 T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
226 T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
227 T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
228 T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
229 T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
230 T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
231 T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
232 T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
233 T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
234 T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
235 T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);

237 data += SHA256_CBLOCK;
238 }
239 else
240 {
241 SHA_LONG l;

243 HOST_c2l(data,l); T1 = X[0] = l; ROUND_00_15(0,a,b,c,d,e,f,g,h)
244 HOST_c2l(data,l); T1 = X[1] = l; ROUND_00_15(1,h,a,b,c,d,e,f,g)
245 HOST_c2l(data,l); T1 = X[2] = l; ROUND_00_15(2,g,h,a,b,c,d,e,f)
246 HOST_c2l(data,l); T1 = X[3] = l; ROUND_00_15(3,f,g,h,a,b,c,d,e)
247 HOST_c2l(data,l); T1 = X[4] = l; ROUND_00_15(4,e,f,g,h,a,b,c,d)
248 HOST_c2l(data,l); T1 = X[5] = l; ROUND_00_15(5,d,e,f,g,h,a,b,c)
249 HOST_c2l(data,l); T1 = X[6] = l; ROUND_00_15(6,c,d,e,f,g,h,a,b)
250 HOST_c2l(data,l); T1 = X[7] = l; ROUND_00_15(7,b,c,d,e,f,g,h,a)
251 HOST_c2l(data,l); T1 = X[8] = l; ROUND_00_15(8,a,b,c,d,e,f,g,h)
252 HOST_c2l(data,l); T1 = X[9] = l; ROUND_00_15(9,h,a,b,c,d,e,f,g)
253 HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f
254 HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e
255 HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d
256 HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c
257 HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b
258 HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a
259 }

new/usr/src/lib/openssl/libsunw_crypto/sha/sha256.c 5

261 for (i=16;i<64;i+=8)
262 {
263 ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
264 ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
265 ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
266 ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
267 ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
268 ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
269 ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
270 ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
271 }

273 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
274 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;

276 }
277 }

279 #endif
280 #endif /* SHA256_ASM */

282 #endif /* OPENSSL_NO_SHA256 */

new/usr/src/lib/openssl/libsunw_crypto/sha/sha512.c 1

**
 18710 Fri May 30 18:32:10 2014
new/usr/src/lib/openssl/libsunw_crypto/sha/sha512.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/sha/sha512.c */
2 /* ==
3 * Copyright (c) 2004 The OpenSSL Project. All rights reserved
4 * according to the OpenSSL license [found in ../../LICENSE].
5 * ==
6 */
7 #include <openssl/opensslconf.h>
8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
9 /*
10 * IMPLEMENTATION NOTES.
11 *
12 * As you might have noticed 32-bit hash algorithms:
13 *
14 * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
15 * - optimized versions implement two transform functions: one operating
16 * on [aligned] data in host byte order and one - on data in input
17 * stream byte order;
18 * - share common byte-order neutral collector and padding function
19 * implementations, ../md32_common.h;
20 *
21 * Neither of the above applies to this SHA-512 implementations. Reasons
22 * [in reverse order] are:
23 *
24 * - it’s the only 64-bit hash algorithm for the moment of this writing,
25 * there is no need for common collector/padding implementation [yet];
26 * - by supporting only one transform function [which operates on
27 * *aligned* data in input stream byte order, big-endian in this case]
28 * we minimize burden of maintenance in two ways: a) collector/padding
29 * function is simpler; b) only one transform function to stare at;
30 * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
31 * apply a number of optimizations to mitigate potential performance
32 * penalties caused by previous design decision;
33 *
34 * Caveat lector.
35 *
36 * Implementation relies on the fact that "long long" is 64-bit on
37 * both 32- and 64-bit platforms. If some compiler vendor comes up
38 * with 128-bit long long, adjustment to sha.h would be required.
39 * As this implementation relies on 64-bit integer type, it’s totally
40 * inappropriate for platforms which don’t support it, most notably
41 * 16-bit platforms.
42 * <appro@fy.chalmers.se>
43 */
44 #include <stdlib.h>
45 #include <string.h>

47 #include <openssl/crypto.h>
48 #include <openssl/sha.h>
49 #include <openssl/opensslv.h>

51 #include "cryptlib.h"

53 const char SHA512_version[]="SHA-512" OPENSSL_VERSION_PTEXT;

55 #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
56 defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
57 defined(__s390__) || defined(__s390x__) || \
58 defined(SHA512_ASM)
59 #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
60 #endif

new/usr/src/lib/openssl/libsunw_crypto/sha/sha512.c 2

62 fips_md_init_ctx(SHA384, SHA512)
63 {
64 c->h[0]=U64(0xcbbb9d5dc1059ed8);
65 c->h[1]=U64(0x629a292a367cd507);
66 c->h[2]=U64(0x9159015a3070dd17);
67 c->h[3]=U64(0x152fecd8f70e5939);
68 c->h[4]=U64(0x67332667ffc00b31);
69 c->h[5]=U64(0x8eb44a8768581511);
70 c->h[6]=U64(0xdb0c2e0d64f98fa7);
71 c->h[7]=U64(0x47b5481dbefa4fa4);

73 c->Nl=0; c->Nh=0;
74 c->num=0; c->md_len=SHA384_DIGEST_LENGTH;
75 return 1;
76 }

78 fips_md_init(SHA512)
79 {
80 c->h[0]=U64(0x6a09e667f3bcc908);
81 c->h[1]=U64(0xbb67ae8584caa73b);
82 c->h[2]=U64(0x3c6ef372fe94f82b);
83 c->h[3]=U64(0xa54ff53a5f1d36f1);
84 c->h[4]=U64(0x510e527fade682d1);
85 c->h[5]=U64(0x9b05688c2b3e6c1f);
86 c->h[6]=U64(0x1f83d9abfb41bd6b);
87 c->h[7]=U64(0x5be0cd19137e2179);

89 c->Nl=0; c->Nh=0;
90 c->num=0; c->md_len=SHA512_DIGEST_LENGTH;
91 return 1;
92 }

94 #ifndef SHA512_ASM
95 static
96 #endif
97 void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num);

99 int SHA512_Final (unsigned char *md, SHA512_CTX *c)
100 {
101 unsigned char *p=(unsigned char *)c->u.p;
102 size_t n=c->num;

104 p[n]=0x80; /* There always is a room for one */
105 n++;
106 if (n > (sizeof(c->u)-16))
107 memset (p+n,0,sizeof(c->u)-n), n=0,
108 sha512_block_data_order (c,p,1);

110 memset (p+n,0,sizeof(c->u)-16-n);
111 #ifdef B_ENDIAN
112 c->u.d[SHA_LBLOCK-2] = c->Nh;
113 c->u.d[SHA_LBLOCK-1] = c->Nl;
114 #else
115 p[sizeof(c->u)-1] = (unsigned char)(c->Nl);
116 p[sizeof(c->u)-2] = (unsigned char)(c->Nl>>8);
117 p[sizeof(c->u)-3] = (unsigned char)(c->Nl>>16);
118 p[sizeof(c->u)-4] = (unsigned char)(c->Nl>>24);
119 p[sizeof(c->u)-5] = (unsigned char)(c->Nl>>32);
120 p[sizeof(c->u)-6] = (unsigned char)(c->Nl>>40);
121 p[sizeof(c->u)-7] = (unsigned char)(c->Nl>>48);
122 p[sizeof(c->u)-8] = (unsigned char)(c->Nl>>56);
123 p[sizeof(c->u)-9] = (unsigned char)(c->Nh);
124 p[sizeof(c->u)-10] = (unsigned char)(c->Nh>>8);
125 p[sizeof(c->u)-11] = (unsigned char)(c->Nh>>16);
126 p[sizeof(c->u)-12] = (unsigned char)(c->Nh>>24);
127 p[sizeof(c->u)-13] = (unsigned char)(c->Nh>>32);

new/usr/src/lib/openssl/libsunw_crypto/sha/sha512.c 3

128 p[sizeof(c->u)-14] = (unsigned char)(c->Nh>>40);
129 p[sizeof(c->u)-15] = (unsigned char)(c->Nh>>48);
130 p[sizeof(c->u)-16] = (unsigned char)(c->Nh>>56);
131 #endif

133 sha512_block_data_order (c,p,1);

135 if (md==0) return 0;

137 switch (c->md_len)
138 {
139 /* Let compiler decide if it’s appropriate to unroll... */
140 case SHA384_DIGEST_LENGTH:
141 for (n=0;n<SHA384_DIGEST_LENGTH/8;n++)
142 {
143 SHA_LONG64 t = c->h[n];

145 *(md++) = (unsigned char)(t>>56);
146 *(md++) = (unsigned char)(t>>48);
147 *(md++) = (unsigned char)(t>>40);
148 *(md++) = (unsigned char)(t>>32);
149 *(md++) = (unsigned char)(t>>24);
150 *(md++) = (unsigned char)(t>>16);
151 *(md++) = (unsigned char)(t>>8);
152 *(md++) = (unsigned char)(t);
153 }
154 break;
155 case SHA512_DIGEST_LENGTH:
156 for (n=0;n<SHA512_DIGEST_LENGTH/8;n++)
157 {
158 SHA_LONG64 t = c->h[n];

160 *(md++) = (unsigned char)(t>>56);
161 *(md++) = (unsigned char)(t>>48);
162 *(md++) = (unsigned char)(t>>40);
163 *(md++) = (unsigned char)(t>>32);
164 *(md++) = (unsigned char)(t>>24);
165 *(md++) = (unsigned char)(t>>16);
166 *(md++) = (unsigned char)(t>>8);
167 *(md++) = (unsigned char)(t);
168 }
169 break;
170 /* ... as well as make sure md_len is not abused. */
171 default: return 0;
172 }

174 return 1;
175 }

177 int SHA384_Final (unsigned char *md,SHA512_CTX *c)
178 { return SHA512_Final (md,c); }

180 int SHA512_Update (SHA512_CTX *c, const void *_data, size_t len)
181 {
182 SHA_LONG64 l;
183 unsigned char *p=c->u.p;
184 const unsigned char *data=(const unsigned char *)_data;

186 if (len==0) return 1;

188 l = (c->Nl+(((SHA_LONG64)len)<<3))&U64(0xffffffffffffffff);
189 if (l < c->Nl) c->Nh++;
190 if (sizeof(len)>=8) c->Nh+=(((SHA_LONG64)len)>>61);
191 c->Nl=l;

193 if (c->num != 0)

new/usr/src/lib/openssl/libsunw_crypto/sha/sha512.c 4

194 {
195 size_t n = sizeof(c->u) - c->num;

197 if (len < n)
198 {
199 memcpy (p+c->num,data,len), c->num += (unsigned int)len;
200 return 1;
201 }
202 else {
203 memcpy (p+c->num,data,n), c->num = 0;
204 len-=n, data+=n;
205 sha512_block_data_order (c,p,1);
206 }
207 }

209 if (len >= sizeof(c->u))
210 {
211 #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
212 if ((size_t)data%sizeof(c->u.d[0]) != 0)
213 while (len >= sizeof(c->u))
214 memcpy (p,data,sizeof(c->u)),
215 sha512_block_data_order (c,p,1),
216 len -= sizeof(c->u),
217 data += sizeof(c->u);
218 else
219 #endif
220 sha512_block_data_order (c,data,len/sizeof(c->u)),
221 data += len,
222 len %= sizeof(c->u),
223 data -= len;
224 }

226 if (len != 0) memcpy (p,data,len), c->num = (int)len;

228 return 1;
229 }

231 int SHA384_Update (SHA512_CTX *c, const void *data, size_t len)
232 { return SHA512_Update (c,data,len); }

234 void SHA512_Transform (SHA512_CTX *c, const unsigned char *data)
235 {
236 #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
237 if ((size_t)data%sizeof(c->u.d[0]) != 0)
238 memcpy(c->u.p,data,sizeof(c->u.p)),
239 data = c->u.p;
240 #endif
241 sha512_block_data_order (c,data,1);
242 }

244 unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
245 {
246 SHA512_CTX c;
247 static unsigned char m[SHA384_DIGEST_LENGTH];

249 if (md == NULL) md=m;
250 SHA384_Init(&c);
251 SHA512_Update(&c,d,n);
252 SHA512_Final(md,&c);
253 OPENSSL_cleanse(&c,sizeof(c));
254 return(md);
255 }

257 unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
258 {
259 SHA512_CTX c;

new/usr/src/lib/openssl/libsunw_crypto/sha/sha512.c 5

260 static unsigned char m[SHA512_DIGEST_LENGTH];

262 if (md == NULL) md=m;
263 SHA512_Init(&c);
264 SHA512_Update(&c,d,n);
265 SHA512_Final(md,&c);
266 OPENSSL_cleanse(&c,sizeof(c));
267 return(md);
268 }

270 #ifndef SHA512_ASM
271 static const SHA_LONG64 K512[80] = {
272 U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd),
273 U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc),
274 U64(0x3956c25bf348b538),U64(0x59f111f1b605d019),
275 U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118),
276 U64(0xd807aa98a3030242),U64(0x12835b0145706fbe),
277 U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2),
278 U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1),
279 U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694),
280 U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3),
281 U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65),
282 U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483),
283 U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5),
284 U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210),
285 U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4),
286 U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725),
287 U64(0x06ca6351e003826f),U64(0x142929670a0e6e70),
288 U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926),
289 U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df),
290 U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8),
291 U64(0x81c2c92e47edaee6),U64(0x92722c851482353b),
292 U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001),
293 U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30),
294 U64(0xd192e819d6ef5218),U64(0xd69906245565a910),
295 U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8),
296 U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53),
297 U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8),
298 U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb),
299 U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3),
300 U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60),
301 U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec),
302 U64(0x90befffa23631e28),U64(0xa4506cebde82bde9),
303 U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b),
304 U64(0xca273eceea26619c),U64(0xd186b8c721c0c207),
305 U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178),
306 U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6),
307 U64(0x113f9804bef90dae),U64(0x1b710b35131c471b),
308 U64(0x28db77f523047d84),U64(0x32caab7b40c72493),
309 U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c),
310 U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a),
311 U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) };

313 #ifndef PEDANTIC
314 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OP
315 # if defined(__x86_64) || defined(__x86_64__)
316 # define ROTR(a,n) ({ SHA_LONG64 ret; \
317 asm ("rorq %1,%0" \
318 : "=r"(ret) \
319 : "J"(n),"0"(a) \
320 : "cc"); ret; })
321 # if !defined(B_ENDIAN)
322 # define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
323 asm ("bswapq %0" \
324 : "=r"(ret) \
325 : "0"(ret)); ret; })

new/usr/src/lib/openssl/libsunw_crypto/sha/sha512.c 6

326 # endif
327 # elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
328 # if defined(I386_ONLY)
329 # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
330 unsigned int hi=p[0],lo=p[1]; \
331 asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
332 "roll $16,%%eax; roll $16,%%edx; "\
333 "xchgb %%ah,%%al;xchgb %%dh,%%dl;" \
334 : "=a"(lo),"=d"(hi) \
335 : "0"(lo),"1"(hi) : "cc"); \
336 ((SHA_LONG64)hi)<<32|lo; })
337 # else
338 # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
339 unsigned int hi=p[0],lo=p[1]; \
340 asm ("bswapl %0; bswapl %1;" \
341 : "=r"(lo),"=r"(hi) \
342 : "0"(lo),"1"(hi)); \
343 ((SHA_LONG64)hi)<<32|lo; })
344 # endif
345 # elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
346 # define ROTR(a,n) ({ SHA_LONG64 ret; \
347 asm ("rotrdi %0,%1,%2" \
348 : "=r"(ret) \
349 : "r"(a),"K"(n)); ret; })
350 # endif
351 # elif defined(_MSC_VER)
352 # if defined(_WIN64) /* applies to both IA-64 and AMD64 */
353 # pragma intrinsic(_rotr64)
354 # define ROTR(a,n) _rotr64((a),n)
355 # endif
356 # if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE
357 # if defined(I386_ONLY)
358 static SHA_LONG64 __fastcall __pull64be(const void *x)
359 { _asm mov edx, [ecx + 0]
360 _asm mov eax, [ecx + 4]
361 _asm xchg dh,dl
362 _asm xchg ah,al
363 _asm rol edx,16
364 _asm rol eax,16
365 _asm xchg dh,dl
366 _asm xchg ah,al
367 }
368 # else
369 static SHA_LONG64 __fastcall __pull64be(const void *x)
370 { _asm mov edx, [ecx + 0]
371 _asm mov eax, [ecx + 4]
372 _asm bswap edx
373 _asm bswap eax
374 }
375 # endif
376 # define PULL64(x) __pull64be(&(x))
377 # if _MSC_VER<=1200
378 # pragma inline_depth(0)
379 # endif
380 # endif
381 # endif
382 #endif

384 #ifndef PULL64
385 #define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8)
386 #define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
387 #endif

389 #ifndef ROTR
390 #define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
391 #endif

new/usr/src/lib/openssl/libsunw_crypto/sha/sha512.c 7

393 #define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
394 #define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
395 #define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
396 #define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))

398 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
399 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

402 #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
403 /*
404 * This code should give better results on 32-bit CPU with less than
405 * ~24 registers, both size and performance wise...
406 */
407 static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num
408 {
409 const SHA_LONG64 *W=in;
410 SHA_LONG64 A,E,T;
411 SHA_LONG64 X[9+80],*F;
412 int i;

414 while (num--) {

416 F = X+80;
417 A = ctx->h[0]; F[1] = ctx->h[1];
418 F[2] = ctx->h[2]; F[3] = ctx->h[3];
419 E = ctx->h[4]; F[5] = ctx->h[5];
420 F[6] = ctx->h[6]; F[7] = ctx->h[7];

422 for (i=0;i<16;i++,F--)
423 {
424 #ifdef B_ENDIAN
425 T = W[i];
426 #else
427 T = PULL64(W[i]);
428 #endif
429 F[0] = A;
430 F[4] = E;
431 F[8] = T;
432 T += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i];
433 E = F[3] + T;
434 A = T + Sigma0(A) + Maj(A,F[1],F[2]);
435 }

437 for (;i<80;i++,F--)
438 {
439 T = sigma0(F[8+16-1]);
440 T += sigma1(F[8+16-14]);
441 T += F[8+16] + F[8+16-9];

443 F[0] = A;
444 F[4] = E;
445 F[8] = T;
446 T += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i];
447 E = F[3] + T;
448 A = T + Sigma0(A) + Maj(A,F[1],F[2]);
449 }

451 ctx->h[0] += A; ctx->h[1] += F[1];
452 ctx->h[2] += F[2]; ctx->h[3] += F[3];
453 ctx->h[4] += E; ctx->h[5] += F[5];
454 ctx->h[6] += F[6]; ctx->h[7] += F[7];

456 W+=SHA_LBLOCK;
457 }

new/usr/src/lib/openssl/libsunw_crypto/sha/sha512.c 8

458 }

460 #elif defined(OPENSSL_SMALL_FOOTPRINT)

462 static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num
463 {
464 const SHA_LONG64 *W=in;
465 SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1,T2;
466 SHA_LONG64 X[16];
467 int i;

469 while (num--) {

471 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
472 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];

474 for (i=0;i<16;i++)
475 {
476 #ifdef B_ENDIAN
477 T1 = X[i] = W[i];
478 #else
479 T1 = X[i] = PULL64(W[i]);
480 #endif
481 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
482 T2 = Sigma0(a) + Maj(a,b,c);
483 h = g; g = f; f = e; e = d + T1;
484 d = c; c = b; b = a; a = T1 + T2;
485 }

487 for (;i<80;i++)
488 {
489 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0);
490 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1);

492 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
493 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
494 T2 = Sigma0(a) + Maj(a,b,c);
495 h = g; g = f; f = e; e = d + T1;
496 d = c; c = b; b = a; a = T1 + T2;
497 }

499 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
500 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;

502 W+=SHA_LBLOCK;
503 }
504 }

506 #else

508 #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
509 T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
510 h = Sigma0(a) + Maj(a,b,c); \
511 d += T1; h += T1; } while (0)

513 #define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X) do { \
514 s0 = X[(j+1)&0x0f]; s0 = sigma0(s0); \
515 s1 = X[(j+14)&0x0f]; s1 = sigma1(s1); \
516 T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f]; \
517 ROUND_00_15(i+j,a,b,c,d,e,f,g,h); } while (0)

519 static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num
520 {
521 const SHA_LONG64 *W=in;
522 SHA_LONG64 a,b,c,d,e,f,g,h,s0,s1,T1;
523 SHA_LONG64 X[16];

new/usr/src/lib/openssl/libsunw_crypto/sha/sha512.c 9

524 int i;

526 while (num--) {

528 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3];
529 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7];

531 #ifdef B_ENDIAN
532 T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h);
533 T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g);
534 T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f);
535 T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e);
536 T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d);
537 T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c);
538 T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b);
539 T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a);
540 T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h);
541 T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g);
542 T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f);
543 T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e);
544 T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d);
545 T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c);
546 T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b);
547 T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a);
548 #else
549 T1 = X[0] = PULL64(W[0]); ROUND_00_15(0,a,b,c,d,e,f,g,h);
550 T1 = X[1] = PULL64(W[1]); ROUND_00_15(1,h,a,b,c,d,e,f,g);
551 T1 = X[2] = PULL64(W[2]); ROUND_00_15(2,g,h,a,b,c,d,e,f);
552 T1 = X[3] = PULL64(W[3]); ROUND_00_15(3,f,g,h,a,b,c,d,e);
553 T1 = X[4] = PULL64(W[4]); ROUND_00_15(4,e,f,g,h,a,b,c,d);
554 T1 = X[5] = PULL64(W[5]); ROUND_00_15(5,d,e,f,g,h,a,b,c);
555 T1 = X[6] = PULL64(W[6]); ROUND_00_15(6,c,d,e,f,g,h,a,b);
556 T1 = X[7] = PULL64(W[7]); ROUND_00_15(7,b,c,d,e,f,g,h,a);
557 T1 = X[8] = PULL64(W[8]); ROUND_00_15(8,a,b,c,d,e,f,g,h);
558 T1 = X[9] = PULL64(W[9]); ROUND_00_15(9,h,a,b,c,d,e,f,g);
559 T1 = X[10] = PULL64(W[10]); ROUND_00_15(10,g,h,a,b,c,d,e,f);
560 T1 = X[11] = PULL64(W[11]); ROUND_00_15(11,f,g,h,a,b,c,d,e);
561 T1 = X[12] = PULL64(W[12]); ROUND_00_15(12,e,f,g,h,a,b,c,d);
562 T1 = X[13] = PULL64(W[13]); ROUND_00_15(13,d,e,f,g,h,a,b,c);
563 T1 = X[14] = PULL64(W[14]); ROUND_00_15(14,c,d,e,f,g,h,a,b);
564 T1 = X[15] = PULL64(W[15]); ROUND_00_15(15,b,c,d,e,f,g,h,a);
565 #endif

567 for (i=16;i<80;i+=16)
568 {
569 ROUND_16_80(i, 0,a,b,c,d,e,f,g,h,X);
570 ROUND_16_80(i, 1,h,a,b,c,d,e,f,g,X);
571 ROUND_16_80(i, 2,g,h,a,b,c,d,e,f,X);
572 ROUND_16_80(i, 3,f,g,h,a,b,c,d,e,X);
573 ROUND_16_80(i, 4,e,f,g,h,a,b,c,d,X);
574 ROUND_16_80(i, 5,d,e,f,g,h,a,b,c,X);
575 ROUND_16_80(i, 6,c,d,e,f,g,h,a,b,X);
576 ROUND_16_80(i, 7,b,c,d,e,f,g,h,a,X);
577 ROUND_16_80(i, 8,a,b,c,d,e,f,g,h,X);
578 ROUND_16_80(i, 9,h,a,b,c,d,e,f,g,X);
579 ROUND_16_80(i,10,g,h,a,b,c,d,e,f,X);
580 ROUND_16_80(i,11,f,g,h,a,b,c,d,e,X);
581 ROUND_16_80(i,12,e,f,g,h,a,b,c,d,X);
582 ROUND_16_80(i,13,d,e,f,g,h,a,b,c,X);
583 ROUND_16_80(i,14,c,d,e,f,g,h,a,b,X);
584 ROUND_16_80(i,15,b,c,d,e,f,g,h,a,X);
585 }

587 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
588 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;

new/usr/src/lib/openssl/libsunw_crypto/sha/sha512.c 10

590 W+=SHA_LBLOCK;
591 }
592 }

594 #endif

596 #endif /* SHA512_ASM */

598 #else /* !OPENSSL_NO_SHA512 */

600 #if defined(PEDANTIC) || defined(__DECC) || defined(OPENSSL_SYS_MACOSX)
601 static void *dummy=&dummy;
602 #endif

604 #endif /* !OPENSSL_NO_SHA512 */

new/usr/src/lib/openssl/libsunw_crypto/sha/sha_dgst.c 1

**
 3513 Fri May 30 18:32:10 2014
new/usr/src/lib/openssl/libsunw_crypto/sha/sha_dgst.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/sha/sha1dgst.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <openssl/crypto.h>
60 #include <openssl/opensslconf.h>
61 #if !defined(OPENSSL_NO_SHA0) && !defined(OPENSSL_NO_SHA)

new/usr/src/lib/openssl/libsunw_crypto/sha/sha_dgst.c 2

63 #undef SHA_1
64 #define SHA_0

66 #include <openssl/opensslv.h>

68 const char SHA_version[]="SHA" OPENSSL_VERSION_PTEXT;

70 /* The implementation is in ../md32_common.h */

72 #include "sha_locl.h"

74 #endif

new/usr/src/lib/openssl/libsunw_crypto/sha/sha_one.c 1

**
 3599 Fri May 30 18:32:10 2014
new/usr/src/lib/openssl/libsunw_crypto/sha/sha_one.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/sha/sha_one.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <string.h>
61 #include <openssl/sha.h>

new/usr/src/lib/openssl/libsunw_crypto/sha/sha_one.c 2

62 #include <openssl/crypto.h>

64 #ifndef OPENSSL_NO_SHA0
65 unsigned char *SHA(const unsigned char *d, size_t n, unsigned char *md)
66 {
67 SHA_CTX c;
68 static unsigned char m[SHA_DIGEST_LENGTH];

70 if (md == NULL) md=m;
71 if (!SHA_Init(&c))
72 return NULL;
73 SHA_Update(&c,d,n);
74 SHA_Final(md,&c);
75 OPENSSL_cleanse(&c,sizeof(c));
76 return(md);
77 }
78 #endif

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_lib.c 1

**
 9485 Fri May 30 18:32:10 2014
new/usr/src/lib/openssl/libsunw_crypto/srp/srp_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/srp/srp_lib.c */
2 /* Written by Christophe Renou (christophe.renou@edelweb.fr) with
3 * the precious help of Peter Sylvester (peter.sylvester@edelweb.fr)
4 * for the EdelKey project and contributed to the OpenSSL project 2004.
5 */
6 /* ==
7 * Copyright (c) 2004 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * licensing@OpenSSL.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */
59 #ifndef OPENSSL_NO_SRP
60 #include "cryptlib.h"
61 #include "srp_lcl.h"

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_lib.c 2

62 #include <openssl/srp.h>
63 #include <openssl/evp.h>

65 #if (BN_BYTES == 8)
66 # if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__)
67 # define bn_pack4(a1,a2,a3,a4) ((a1##UI64<<48)|(a2##UI64<<32)|(a3##UI64<<16)|a4
68 # elif defined(__arch64__)
69 # define bn_pack4(a1,a2,a3,a4) ((a1##UL<<48)|(a2##UL<<32)|(a3##UL<<16)|a4##UL)
70 # else
71 # define bn_pack4(a1,a2,a3,a4) ((a1##ULL<<48)|(a2##ULL<<32)|(a3##ULL<<16)|a4##U
72 # endif
73 #elif (BN_BYTES == 4)
74 # define bn_pack4(a1,a2,a3,a4) ((a3##UL<<16)|a4##UL), ((a1##UL<<16)|a2##UL)
75 #else
76 # error "unsupported BN_BYTES"
77 #endif

80 #include "srp_grps.h"

82 static BIGNUM *srp_Calc_k(BIGNUM *N, BIGNUM *g)
83 {
84 /* k = SHA1(N | PAD(g)) -- tls-srp draft 8 */

86 unsigned char digest[SHA_DIGEST_LENGTH];
87 unsigned char *tmp;
88 EVP_MD_CTX ctxt;
89 int longg ;
90 int longN = BN_num_bytes(N);

92 if ((tmp = OPENSSL_malloc(longN)) == NULL)
93 return NULL;
94 BN_bn2bin(N,tmp) ;

96 EVP_MD_CTX_init(&ctxt);
97 EVP_DigestInit_ex(&ctxt, EVP_sha1(), NULL);
98 EVP_DigestUpdate(&ctxt, tmp, longN);

100 memset(tmp, 0, longN);
101 longg = BN_bn2bin(g,tmp) ;
102 /* use the zeros behind to pad on left */
103 EVP_DigestUpdate(&ctxt, tmp + longg, longN-longg);
104 EVP_DigestUpdate(&ctxt, tmp, longg);
105 OPENSSL_free(tmp);

107 EVP_DigestFinal_ex(&ctxt, digest, NULL);
108 EVP_MD_CTX_cleanup(&ctxt);
109 return BN_bin2bn(digest, sizeof(digest), NULL);
110 }

112 BIGNUM *SRP_Calc_u(BIGNUM *A, BIGNUM *B, BIGNUM *N)
113 {
114 /* k = SHA1(PAD(A) || PAD(B)) -- tls-srp draft 8 */

116 BIGNUM *u;
117 unsigned char cu[SHA_DIGEST_LENGTH];
118 unsigned char *cAB;
119 EVP_MD_CTX ctxt;
120 int longN;
121 if ((A == NULL) ||(B == NULL) || (N == NULL))
122 return NULL;

124 longN= BN_num_bytes(N);

126 if ((cAB = OPENSSL_malloc(2*longN)) == NULL)
127 return NULL;

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_lib.c 3

129 memset(cAB, 0, longN);

131 EVP_MD_CTX_init(&ctxt);
132 EVP_DigestInit_ex(&ctxt, EVP_sha1(), NULL);
133 EVP_DigestUpdate(&ctxt, cAB + BN_bn2bin(A,cAB+longN), longN);
134 EVP_DigestUpdate(&ctxt, cAB + BN_bn2bin(B,cAB+longN), longN);
135 OPENSSL_free(cAB);
136 EVP_DigestFinal_ex(&ctxt, cu, NULL);
137 EVP_MD_CTX_cleanup(&ctxt);

139 if (!(u = BN_bin2bn(cu, sizeof(cu), NULL)))
140 return NULL;
141 if (!BN_is_zero(u))
142 return u;
143 BN_free(u);
144 return NULL;
145 }

147 BIGNUM *SRP_Calc_server_key(BIGNUM *A, BIGNUM *v, BIGNUM *u, BIGNUM *b, BIGNUM *
148 {
149 BIGNUM *tmp = NULL, *S = NULL;
150 BN_CTX *bn_ctx;
151
152 if (u == NULL || A == NULL || v == NULL || b == NULL || N == NULL)
153 return NULL;

155 if ((bn_ctx = BN_CTX_new()) == NULL ||
156 (tmp = BN_new()) == NULL ||
157 (S = BN_new()) == NULL)
158 goto err;

160 /* S = (A*v**u) ** b */

162 if (!BN_mod_exp(tmp,v,u,N,bn_ctx))
163 goto err;
164 if (!BN_mod_mul(tmp,A,tmp,N,bn_ctx))
165 goto err;
166 if (!BN_mod_exp(S,tmp,b,N,bn_ctx))
167 goto err;
168 err:
169 BN_CTX_free(bn_ctx);
170 BN_clear_free(tmp);
171 return S;
172 }

174 BIGNUM *SRP_Calc_B(BIGNUM *b, BIGNUM *N, BIGNUM *g, BIGNUM *v)
175 {
176 BIGNUM *kv = NULL, *gb = NULL;
177 BIGNUM *B = NULL, *k = NULL;
178 BN_CTX *bn_ctx;

180 if (b == NULL || N == NULL || g == NULL || v == NULL ||
181 (bn_ctx = BN_CTX_new()) == NULL)
182 return NULL;

184 if ((kv = BN_new()) == NULL ||
185 (gb = BN_new()) == NULL ||
186 (B = BN_new())== NULL)
187 goto err;

189 /* B = g**b + k*v */

191 if (!BN_mod_exp(gb,g,b,N,bn_ctx) ||
192 !(k = srp_Calc_k(N,g)) ||
193 !BN_mod_mul(kv,v,k,N,bn_ctx) ||

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_lib.c 4

194 !BN_mod_add(B,gb,kv,N,bn_ctx))
195 {
196 BN_free(B);
197 B = NULL;
198 }
199 err:
200 BN_CTX_free(bn_ctx);
201 BN_clear_free(kv);
202 BN_clear_free(gb);
203 BN_free(k);
204 return B;
205 }

207 BIGNUM *SRP_Calc_x(BIGNUM *s, const char *user, const char *pass)
208 {
209 unsigned char dig[SHA_DIGEST_LENGTH];
210 EVP_MD_CTX ctxt;
211 unsigned char *cs;

213 if ((s == NULL) ||
214 (user == NULL) ||
215 (pass == NULL))
216 return NULL;

218 if ((cs = OPENSSL_malloc(BN_num_bytes(s))) == NULL)
219 return NULL;

221 EVP_MD_CTX_init(&ctxt);
222 EVP_DigestInit_ex(&ctxt, EVP_sha1(), NULL);
223 EVP_DigestUpdate(&ctxt, user, strlen(user));
224 EVP_DigestUpdate(&ctxt, ":", 1);
225 EVP_DigestUpdate(&ctxt, pass, strlen(pass));
226 EVP_DigestFinal_ex(&ctxt, dig, NULL);

228 EVP_DigestInit_ex(&ctxt, EVP_sha1(), NULL);
229 BN_bn2bin(s,cs);
230 EVP_DigestUpdate(&ctxt, cs, BN_num_bytes(s));
231 OPENSSL_free(cs);
232 EVP_DigestUpdate(&ctxt, dig, sizeof(dig));
233 EVP_DigestFinal_ex(&ctxt, dig, NULL);
234 EVP_MD_CTX_cleanup(&ctxt);

236 return BN_bin2bn(dig, sizeof(dig), NULL);
237 }

239 BIGNUM *SRP_Calc_A(BIGNUM *a, BIGNUM *N, BIGNUM *g)
240 {
241 BN_CTX *bn_ctx;
242 BIGNUM * A = NULL;

244 if (a == NULL || N == NULL || g == NULL ||
245 (bn_ctx = BN_CTX_new()) == NULL)
246 return NULL;

248 if ((A = BN_new()) != NULL &&
249 !BN_mod_exp(A,g,a,N,bn_ctx))
250 {
251 BN_free(A);
252 A = NULL;
253 }
254 BN_CTX_free(bn_ctx);
255 return A;
256 }

259 BIGNUM *SRP_Calc_client_key(BIGNUM *N, BIGNUM *B, BIGNUM *g, BIGNUM *x, BIGNUM *

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_lib.c 5

260 {
261 BIGNUM *tmp = NULL, *tmp2 = NULL, *tmp3 = NULL , *k = NULL, *K = NULL;
262 BN_CTX *bn_ctx;

264 if (u == NULL || B == NULL || N == NULL || g == NULL || x == NULL || a =
265 (bn_ctx = BN_CTX_new()) == NULL)
266 return NULL;

268 if ((tmp = BN_new()) == NULL ||
269 (tmp2 = BN_new())== NULL ||
270 (tmp3 = BN_new())== NULL ||
271 (K = BN_new()) == NULL)
272 goto err;
273
274 if (!BN_mod_exp(tmp,g,x,N,bn_ctx))
275 goto err;
276 if (!(k = srp_Calc_k(N,g)))
277 goto err;
278 if (!BN_mod_mul(tmp2,tmp,k,N,bn_ctx))
279 goto err;
280 if (!BN_mod_sub(tmp,B,tmp2,N,bn_ctx))
281 goto err;

283 if (!BN_mod_mul(tmp3,u,x,N,bn_ctx))
284 goto err;
285 if (!BN_mod_add(tmp2,a,tmp3,N,bn_ctx))
286 goto err;
287 if (!BN_mod_exp(K,tmp,tmp2,N,bn_ctx))
288 goto err;

290 err :
291 BN_CTX_free(bn_ctx);
292 BN_clear_free(tmp);
293 BN_clear_free(tmp2);
294 BN_clear_free(tmp3);
295 BN_free(k);
296 return K;
297 }

299 int SRP_Verify_B_mod_N(BIGNUM *B, BIGNUM *N)
300 {
301 BIGNUM *r;
302 BN_CTX *bn_ctx;
303 int ret = 0;

305 if (B == NULL || N == NULL ||
306 (bn_ctx = BN_CTX_new()) == NULL)
307 return 0;

309 if ((r = BN_new()) == NULL)
310 goto err;
311 /* Checks if B % N == 0 */
312 if (!BN_nnmod(r,B,N,bn_ctx))
313 goto err;
314 ret = !BN_is_zero(r);
315 err:
316 BN_CTX_free(bn_ctx);
317 BN_free(r);
318 return ret;
319 }

321 int SRP_Verify_A_mod_N(BIGNUM *A, BIGNUM *N)
322 {
323 /* Checks if A % N == 0 */
324 return SRP_Verify_B_mod_N(A,N) ;
325 }

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_lib.c 6

328 /* Check if G and N are kwown parameters.
329 The values have been generated from the ietf-tls-srp draft version 8
330 */
331 char *SRP_check_known_gN_param(BIGNUM *g, BIGNUM *N)
332 {
333 size_t i;
334 if ((g == NULL) || (N == NULL))
335 return 0;

337 srp_bn_print(g);
338 srp_bn_print(N);

340 for(i = 0; i < KNOWN_GN_NUMBER; i++)
341 {
342 if (BN_cmp(knowngN[i].g, g) == 0 && BN_cmp(knowngN[i].N, N) == 0
343 return knowngN[i].id;
344 }
345 return NULL;
346 }

348 SRP_gN *SRP_get_default_gN(const char *id)
349 {
350 size_t i;

352 if (id == NULL)
353 return knowngN;
354 for(i = 0; i < KNOWN_GN_NUMBER; i++)
355 {
356 if (strcmp(knowngN[i].id, id)==0)
357 return knowngN + i;
358 }
359 return NULL;
360 }
361 #endif

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_vfy.c 1

**
 15193 Fri May 30 18:32:10 2014
new/usr/src/lib/openssl/libsunw_crypto/srp/srp_vfy.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/srp/srp_vfy.c */
2 /* Written by Christophe Renou (christophe.renou@edelweb.fr) with
3 * the precious help of Peter Sylvester (peter.sylvester@edelweb.fr)
4 * for the EdelKey project and contributed to the OpenSSL project 2004.
5 */
6 /* ==
7 * Copyright (c) 2004 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * licensing@OpenSSL.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */
59 #ifndef OPENSSL_NO_SRP
60 #include "cryptlib.h"
61 #include "srp_lcl.h"

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_vfy.c 2

62 #include <openssl/srp.h>
63 #include <openssl/evp.h>
64 #include <openssl/buffer.h>
65 #include <openssl/rand.h>
66 #include <openssl/txt_db.h>

68 #define SRP_RANDOM_SALT_LEN 20
69 #define MAX_LEN 2500

71 static char b64table[] =
72 "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz./";

74 /* the following two conversion routines have been inspired by code from Stanfor

76 /*
77 * Convert a base64 string into raw byte array representation.
78 */
79 static int t_fromb64(unsigned char *a, const char *src)
80 {
81 char *loc;
82 int i, j;
83 int size;

85 while(*src && (*src == ’ ’ || *src == ’\t’ || *src == ’\n’))
86 ++src;
87 size = strlen(src);
88 i = 0;
89 while(i < size)
90 {
91 loc = strchr(b64table, src[i]);
92 if(loc == (char *) 0) break;
93 else a[i] = loc - b64table;
94 ++i;
95 }
96 size = i;
97 i = size - 1;
98 j = size;
99 while(1)
100 {
101 a[j] = a[i];
102 if(--i < 0) break;
103 a[j] |= (a[i] & 3) << 6;
104 --j;
105 a[j] = (unsigned char) ((a[i] & 0x3c) >> 2);
106 if(--i < 0) break;
107 a[j] |= (a[i] & 0xf) << 4;
108 --j;
109 a[j] = (unsigned char) ((a[i] & 0x30) >> 4);
110 if(--i < 0) break;
111 a[j] |= (a[i] << 2);

113 a[--j] = 0;
114 if(--i < 0) break;
115 }
116 while(a[j] == 0 && j <= size) ++j;
117 i = 0;
118 while (j <= size) a[i++] = a[j++];
119 return i;
120 }

123 /*
124 * Convert a raw byte string into a null-terminated base64 ASCII string.
125 */
126 static char *t_tob64(char *dst, const unsigned char *src, int size)
127 {

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_vfy.c 3

128 int c, pos = size % 3;
129 unsigned char b0 = 0, b1 = 0, b2 = 0, notleading = 0;
130 char *olddst = dst;

132 switch(pos)
133 {
134 case 1:
135 b2 = src[0];
136 break;
137 case 2:
138 b1 = src[0];
139 b2 = src[1];
140 break;
141 }

143 while(1)
144 {
145 c = (b0 & 0xfc) >> 2;
146 if(notleading || c != 0)
147 {
148 *dst++ = b64table[c];
149 notleading = 1;
150 }
151 c = ((b0 & 3) << 4) | ((b1 & 0xf0) >> 4);
152 if(notleading || c != 0)
153 {
154 *dst++ = b64table[c];
155 notleading = 1;
156 }
157 c = ((b1 & 0xf) << 2) | ((b2 & 0xc0) >> 6);
158 if(notleading || c != 0)
159 {
160 *dst++ = b64table[c];
161 notleading = 1;
162 }
163 c = b2 & 0x3f;
164 if(notleading || c != 0)
165 {
166 *dst++ = b64table[c];
167 notleading = 1;
168 }
169 if(pos >= size) break;
170 else
171 {
172 b0 = src[pos++];
173 b1 = src[pos++];
174 b2 = src[pos++];
175 }
176 }

178 *dst++ = ’\0’;
179 return olddst;
180 }

182 static void SRP_user_pwd_free(SRP_user_pwd *user_pwd)
183 {
184 if (user_pwd == NULL)
185 return;
186 BN_free(user_pwd->s);
187 BN_clear_free(user_pwd->v);
188 OPENSSL_free(user_pwd->id);
189 OPENSSL_free(user_pwd->info);
190 OPENSSL_free(user_pwd);
191 }

193 static SRP_user_pwd *SRP_user_pwd_new()

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_vfy.c 4

194 {
195 SRP_user_pwd *ret = OPENSSL_malloc(sizeof(SRP_user_pwd));
196 if (ret == NULL)
197 return NULL;
198 ret->N = NULL;
199 ret->g = NULL;
200 ret->s = NULL;
201 ret->v = NULL;
202 ret->id = NULL ;
203 ret->info = NULL;
204 return ret;
205 }

207 static void SRP_user_pwd_set_gN(SRP_user_pwd *vinfo, const BIGNUM *g,
208 const BIGNUM *N)
209 {
210 vinfo->N = N;
211 vinfo->g = g;
212 }

214 static int SRP_user_pwd_set_ids(SRP_user_pwd *vinfo, const char *id,
215 const char *info)
216 {
217 if (id != NULL && NULL == (vinfo->id = BUF_strdup(id)))
218 return 0;
219 return (info == NULL || NULL != (vinfo->info = BUF_strdup(info))) ;
220 }

222 static int SRP_user_pwd_set_sv(SRP_user_pwd *vinfo, const char *s,
223 const char *v)
224 {
225 unsigned char tmp[MAX_LEN];
226 int len;

228 if (strlen(s) > MAX_LEN || strlen(v) > MAX_LEN)
229 return 0;
230 len = t_fromb64(tmp, v);
231 if (NULL == (vinfo->v = BN_bin2bn(tmp, len, NULL)))
232 return 0;
233 len = t_fromb64(tmp, s);
234 return ((vinfo->s = BN_bin2bn(tmp, len, NULL)) != NULL) ;
235 }

237 static int SRP_user_pwd_set_sv_BN(SRP_user_pwd *vinfo, BIGNUM *s, BIGNUM *v)
238 {
239 vinfo->v = v;
240 vinfo->s = s;
241 return (vinfo->s != NULL && vinfo->v != NULL) ;
242 }

244 SRP_VBASE *SRP_VBASE_new(char *seed_key)
245 {
246 SRP_VBASE *vb = (SRP_VBASE *) OPENSSL_malloc(sizeof(SRP_VBASE));

248 if (vb == NULL)
249 return NULL;
250 if (!(vb->users_pwd = sk_SRP_user_pwd_new_null()) ||
251 !(vb->gN_cache = sk_SRP_gN_cache_new_null()))
252 {
253 OPENSSL_free(vb);
254 return NULL;
255 }
256 vb->default_g = NULL;
257 vb->default_N = NULL;
258 vb->seed_key = NULL;
259 if ((seed_key != NULL) &&

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_vfy.c 5

260 (vb->seed_key = BUF_strdup(seed_key)) == NULL)
261 {
262 sk_SRP_user_pwd_free(vb->users_pwd);
263 sk_SRP_gN_cache_free(vb->gN_cache);
264 OPENSSL_free(vb);
265 return NULL;
266 }
267 return vb;
268 }

271 int SRP_VBASE_free(SRP_VBASE *vb)
272 {
273 sk_SRP_user_pwd_pop_free(vb->users_pwd,SRP_user_pwd_free);
274 sk_SRP_gN_cache_free(vb->gN_cache);
275 OPENSSL_free(vb->seed_key);
276 OPENSSL_free(vb);
277 return 0;
278 }

281 static SRP_gN_cache *SRP_gN_new_init(const char *ch)
282 {
283 unsigned char tmp[MAX_LEN];
284 int len;

286 SRP_gN_cache *newgN = (SRP_gN_cache *)OPENSSL_malloc(sizeof(SRP_gN_cache
287 if (newgN == NULL)
288 return NULL;

290 if ((newgN->b64_bn = BUF_strdup(ch)) == NULL)
291 goto err;

293 len = t_fromb64(tmp, ch);
294 if ((newgN->bn = BN_bin2bn(tmp, len, NULL)))
295 return newgN;

297 OPENSSL_free(newgN->b64_bn);
298 err:
299 OPENSSL_free(newgN);
300 return NULL;
301 }

304 static void SRP_gN_free(SRP_gN_cache *gN_cache)
305 {
306 if (gN_cache == NULL)
307 return;
308 OPENSSL_free(gN_cache->b64_bn);
309 BN_free(gN_cache->bn);
310 OPENSSL_free(gN_cache);
311 }

313 static SRP_gN *SRP_get_gN_by_id(const char *id, STACK_OF(SRP_gN) *gN_tab)
314 {
315 int i;

317 SRP_gN *gN;
318 if (gN_tab != NULL)
319 for(i = 0; i < sk_SRP_gN_num(gN_tab); i++)
320 {
321 gN = sk_SRP_gN_value(gN_tab, i);
322 if (gN && (id == NULL || strcmp(gN->id,id)==0))
323 return gN;
324 }
325

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_vfy.c 6

326 return SRP_get_default_gN(id);
327 }

329 static BIGNUM *SRP_gN_place_bn(STACK_OF(SRP_gN_cache) *gN_cache, char *ch)
330 {
331 int i;
332 if (gN_cache == NULL)
333 return NULL;

335 /* search if we have already one... */
336 for(i = 0; i < sk_SRP_gN_cache_num(gN_cache); i++)
337 {
338 SRP_gN_cache *cache = sk_SRP_gN_cache_value(gN_cache, i);
339 if (strcmp(cache->b64_bn,ch)==0)
340 return cache->bn;
341 }
342 { /* it is the first time that we find it */
343 SRP_gN_cache *newgN = SRP_gN_new_init(ch);
344 if (newgN)
345 {
346 if (sk_SRP_gN_cache_insert(gN_cache,newgN,0)>0)
347 return newgN->bn;
348 SRP_gN_free(newgN);
349 }
350 }
351 return NULL;
352 }

354 /* this function parses verifier file. Format is:
355 * string(index):base64(N):base64(g):0
356 * string(username):base64(v):base64(salt):int(index)
357 */

360 int SRP_VBASE_init(SRP_VBASE *vb, char *verifier_file)
361 {
362 int error_code ;
363 STACK_OF(SRP_gN) *SRP_gN_tab = sk_SRP_gN_new_null();
364 char *last_index = NULL;
365 int i;
366 char **pp;

368 SRP_gN *gN = NULL;
369 SRP_user_pwd *user_pwd = NULL ;

371 TXT_DB *tmpdb = NULL;
372 BIO *in = BIO_new(BIO_s_file());

374 error_code = SRP_ERR_OPEN_FILE;

376 if (in == NULL || BIO_read_filename(in,verifier_file) <= 0)
377 goto err;

379 error_code = SRP_ERR_VBASE_INCOMPLETE_FILE;

381 if ((tmpdb =TXT_DB_read(in,DB_NUMBER)) == NULL)
382 goto err;

384 error_code = SRP_ERR_MEMORY;

387 if (vb->seed_key)
388 {
389 last_index = SRP_get_default_gN(NULL)->id;
390 }
391 for (i = 0; i < sk_OPENSSL_PSTRING_num(tmpdb->data); i++)

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_vfy.c 7

392 {
393 pp = sk_OPENSSL_PSTRING_value(tmpdb->data,i);
394 if (pp[DB_srptype][0] == DB_SRP_INDEX)
395 {
396 /*we add this couple in the internal Stack */

398 if ((gN = (SRP_gN *)OPENSSL_malloc(sizeof(SRP_gN))) == N
399 goto err;

401 if (!(gN->id = BUF_strdup(pp[DB_srpid]))
402 || !(gN->N = SRP_gN_place_bn(vb->gN_cache,pp[DB_srpveri
403 || !(gN->g = SRP_gN_place_bn(vb->gN_cache,pp[DB_srpsalt
404 || sk_SRP_gN_insert(SRP_gN_tab,gN,0) == 0)
405 goto err;

407 gN = NULL;

409 if (vb->seed_key != NULL)
410 {
411 last_index = pp[DB_srpid];
412 }
413 }
414 else if (pp[DB_srptype][0] == DB_SRP_VALID)
415 {
416 /* it is a user */
417 SRP_gN *lgN;
418 if ((lgN = SRP_get_gN_by_id(pp[DB_srpgN],SRP_gN_tab))!=N
419 {
420 error_code = SRP_ERR_MEMORY;
421 if ((user_pwd = SRP_user_pwd_new()) == NULL)
422 goto err;
423
424 SRP_user_pwd_set_gN(user_pwd,lgN->g,lgN->N);
425 if (!SRP_user_pwd_set_ids(user_pwd, pp[DB_srpid]
426 goto err;
427
428 error_code = SRP_ERR_VBASE_BN_LIB;
429 if (!SRP_user_pwd_set_sv(user_pwd, pp[DB_srpsalt
430 goto err;

432 if (sk_SRP_user_pwd_insert(vb->users_pwd, user_p
433 goto err;
434 user_pwd = NULL; /* abandon responsability */
435 }
436 }
437 }
438
439 if (last_index != NULL)
440 {
441 /* this means that we want to simulate a default user */

443 if (((gN = SRP_get_gN_by_id(last_index,SRP_gN_tab))==NULL))
444 {
445 error_code = SRP_ERR_VBASE_BN_LIB;
446 goto err;
447 }
448 vb->default_g = gN->g ;
449 vb->default_N = gN->N ;
450 gN = NULL ;
451 }
452 error_code = SRP_NO_ERROR;

454 err:
455 /* there may be still some leaks to fix, if this fails, the application

457 if (gN != NULL)

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_vfy.c 8

458 {
459 OPENSSL_free(gN->id);
460 OPENSSL_free(gN);
461 }

463 SRP_user_pwd_free(user_pwd);

465 if (tmpdb) TXT_DB_free(tmpdb);
466 if (in) BIO_free_all(in);

468 sk_SRP_gN_free(SRP_gN_tab);

470 return error_code;

472 }

475 SRP_user_pwd *SRP_VBASE_get_by_user(SRP_VBASE *vb, char *username)
476 {
477 int i;
478 SRP_user_pwd *user;
479 unsigned char digv[SHA_DIGEST_LENGTH];
480 unsigned char digs[SHA_DIGEST_LENGTH];
481 EVP_MD_CTX ctxt;

483 if (vb == NULL)
484 return NULL;
485 for(i = 0; i < sk_SRP_user_pwd_num(vb->users_pwd); i++)
486 {
487 user = sk_SRP_user_pwd_value(vb->users_pwd, i);
488 if (strcmp(user->id,username)==0)
489 return user;
490 }
491 if ((vb->seed_key == NULL) ||
492 (vb->default_g == NULL) ||
493 (vb->default_N == NULL))
494 return NULL;

496 /* if the user is unknown we set parameters as well if we have a seed_key */

498 if ((user = SRP_user_pwd_new()) == NULL)
499 return NULL;

501 SRP_user_pwd_set_gN(user,vb->default_g,vb->default_N);
502
503 if (!SRP_user_pwd_set_ids(user,username,NULL))
504 goto err;
505
506 RAND_pseudo_bytes(digv, SHA_DIGEST_LENGTH);
507 EVP_MD_CTX_init(&ctxt);
508 EVP_DigestInit_ex(&ctxt, EVP_sha1(), NULL);
509 EVP_DigestUpdate(&ctxt, vb->seed_key, strlen(vb->seed_key));
510 EVP_DigestUpdate(&ctxt, username, strlen(username));
511 EVP_DigestFinal_ex(&ctxt, digs, NULL);
512 EVP_MD_CTX_cleanup(&ctxt);
513 if (SRP_user_pwd_set_sv_BN(user, BN_bin2bn(digs,SHA_DIGEST_LENGTH,NULL),
514 return user;

516 err: SRP_user_pwd_free(user);
517 return NULL;
518 }

521 /*
522 create a verifier (*salt,*verifier,g and N are in base64)
523 */

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_vfy.c 9

524 char *SRP_create_verifier(const char *user, const char *pass, char **salt,
525 char **verifier, const char *N, const char *g)
526 {
527 int len;
528 char * result=NULL;
529 char *vf;
530 BIGNUM *N_bn = NULL, *g_bn = NULL, *s = NULL, *v = NULL;
531 unsigned char tmp[MAX_LEN];
532 unsigned char tmp2[MAX_LEN];
533 char * defgNid = NULL;

535 if ((user == NULL)||
536 (pass == NULL)||
537 (salt == NULL)||
538 (verifier == NULL))
539 goto err;

541 if (N)
542 {
543 if (!(len = t_fromb64(tmp, N))) goto err;
544 N_bn = BN_bin2bn(tmp, len, NULL);
545 if (!(len = t_fromb64(tmp, g))) goto err;
546 g_bn = BN_bin2bn(tmp, len, NULL);
547 defgNid = "*";
548 }
549 else
550 {
551 SRP_gN * gN = SRP_get_gN_by_id(g, NULL) ;
552 if (gN == NULL)
553 goto err;
554 N_bn = gN->N;
555 g_bn = gN->g;
556 defgNid = gN->id;
557 }

559 if (*salt == NULL)
560 {
561 RAND_pseudo_bytes(tmp2, SRP_RANDOM_SALT_LEN);

563 s = BN_bin2bn(tmp2, SRP_RANDOM_SALT_LEN, NULL);
564 }
565 else
566 {
567 if (!(len = t_fromb64(tmp2, *salt)))
568 goto err;
569 s = BN_bin2bn(tmp2, len, NULL);
570 }

573 if(!SRP_create_verifier_BN(user, pass, &s, &v, N_bn, g_bn)) goto err;

575 BN_bn2bin(v,tmp);
576 if (((vf = OPENSSL_malloc(BN_num_bytes(v)*2)) == NULL))
577 goto err;
578 t_tob64(vf, tmp, BN_num_bytes(v));

580 *verifier = vf;
581 if (*salt == NULL)
582 {
583 char *tmp_salt;

585 if ((tmp_salt = OPENSSL_malloc(SRP_RANDOM_SALT_LEN * 2)) == NULL
586 {
587 OPENSSL_free(vf);
588 goto err;
589 }

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_vfy.c 10

590 t_tob64(tmp_salt, tmp2, SRP_RANDOM_SALT_LEN);
591 *salt = tmp_salt;
592 }

594 result=defgNid;

596 err:
597 if(N)
598 {
599 BN_free(N_bn);
600 BN_free(g_bn);
601 }
602 return result;
603 }

605 /*
606 create a verifier (*salt,*verifier,g and N are BIGNUMs)
607 */
608 int SRP_create_verifier_BN(const char *user, const char *pass, BIGNUM **salt, BI
609 {
610 int result=0;
611 BIGNUM *x = NULL;
612 BN_CTX *bn_ctx = BN_CTX_new();
613 unsigned char tmp2[MAX_LEN];

615 if ((user == NULL)||
616 (pass == NULL)||
617 (salt == NULL)||
618 (verifier == NULL)||
619 (N == NULL)||
620 (g == NULL)||
621 (bn_ctx == NULL))
622 goto err;

624 srp_bn_print(N);
625 srp_bn_print(g);

627 if (*salt == NULL)
628 {
629 RAND_pseudo_bytes(tmp2, SRP_RANDOM_SALT_LEN);

631 *salt = BN_bin2bn(tmp2,SRP_RANDOM_SALT_LEN,NULL);
632 }

634 x = SRP_Calc_x(*salt,user,pass);

636 *verifier = BN_new();
637 if(*verifier == NULL) goto err;

639 if (!BN_mod_exp(*verifier,g,x,N,bn_ctx))
640 {
641 BN_clear_free(*verifier);
642 goto err;
643 }

645 srp_bn_print(*verifier);

647 result=1;

649 err:

651 BN_clear_free(x);
652 BN_CTX_free(bn_ctx);
653 return result;
654 }

new/usr/src/lib/openssl/libsunw_crypto/srp/srp_vfy.c 11

658 #endif

new/usr/src/lib/openssl/libsunw_crypto/stack/stack.c 1

**
 8562 Fri May 30 18:32:10 2014
new/usr/src/lib/openssl/libsunw_crypto/stack/stack.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/stack/stack.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 /* Code for stacks
60 * Author - Eric Young v 1.0
61 * 1.2 eay 12-Mar-97 - Modified sk_find so that it _DOES_ return the

new/usr/src/lib/openssl/libsunw_crypto/stack/stack.c 2

62 * lowest index for the searched item.
63 *
64 * 1.1 eay - Take from netdb and added to SSLeay
65 *
66 * 1.0 eay - First version 29/07/92
67 */
68 #include <stdio.h>
69 #include "cryptlib.h"
70 #include <openssl/stack.h>
71 #include <openssl/objects.h>

73 #undef MIN_NODES
74 #define MIN_NODES 4

76 const char STACK_version[]="Stack" OPENSSL_VERSION_PTEXT;

78 #include <errno.h>

80 int (*sk_set_cmp_func(_STACK *sk, int (*c)(const void *, const void *)))
81 (const void *, const void *)
82 {
83 int (*old)(const void *,const void *)=sk->comp;

85 if (sk->comp != c)
86 sk->sorted=0;
87 sk->comp=c;

89 return old;
90 }

92 _STACK *sk_dup(_STACK *sk)
93 {
94 _STACK *ret;
95 char **s;

97 if ((ret=sk_new(sk->comp)) == NULL) goto err;
98 s=(char **)OPENSSL_realloc((char *)ret->data,
99 (unsigned int)sizeof(char *)*sk->num_alloc);
100 if (s == NULL) goto err;
101 ret->data=s;

103 ret->num=sk->num;
104 memcpy(ret->data,sk->data,sizeof(char *)*sk->num);
105 ret->sorted=sk->sorted;
106 ret->num_alloc=sk->num_alloc;
107 ret->comp=sk->comp;
108 return(ret);
109 err:
110 if(ret)
111 sk_free(ret);
112 return(NULL);
113 }

115 _STACK *sk_new_null(void)
116 {
117 return sk_new((int (*)(const void *, const void *))0);
118 }

120 _STACK *sk_new(int (*c)(const void *, const void *))
121 {
122 _STACK *ret;
123 int i;

125 if ((ret=OPENSSL_malloc(sizeof(_STACK))) == NULL)
126 goto err;
127 if ((ret->data=OPENSSL_malloc(sizeof(char *)*MIN_NODES)) == NULL)

new/usr/src/lib/openssl/libsunw_crypto/stack/stack.c 3

128 goto err;
129 for (i=0; i<MIN_NODES; i++)
130 ret->data[i]=NULL;
131 ret->comp=c;
132 ret->num_alloc=MIN_NODES;
133 ret->num=0;
134 ret->sorted=0;
135 return(ret);
136 err:
137 if(ret)
138 OPENSSL_free(ret);
139 return(NULL);
140 }

142 int sk_insert(_STACK *st, void *data, int loc)
143 {
144 char **s;

146 if(st == NULL) return 0;
147 if (st->num_alloc <= st->num+1)
148 {
149 s=OPENSSL_realloc((char *)st->data,
150 (unsigned int)sizeof(char *)*st->num_alloc*2);
151 if (s == NULL)
152 return(0);
153 st->data=s;
154 st->num_alloc*=2;
155 }
156 if ((loc >= (int)st->num) || (loc < 0))
157 st->data[st->num]=data;
158 else
159 {
160 int i;
161 char **f,**t;

163 f=st->data;
164 t=&(st->data[1]);
165 for (i=st->num; i>=loc; i--)
166 t[i]=f[i];
167
168 #ifdef undef /* no memmove on sunos :-(*/
169 memmove(&(st->data[loc+1]),
170 &(st->data[loc]),
171 sizeof(char *)*(st->num-loc));
172 #endif
173 st->data[loc]=data;
174 }
175 st->num++;
176 st->sorted=0;
177 return(st->num);
178 }

180 void *sk_delete_ptr(_STACK *st, void *p)
181 {
182 int i;

184 for (i=0; i<st->num; i++)
185 if (st->data[i] == p)
186 return(sk_delete(st,i));
187 return(NULL);
188 }

190 void *sk_delete(_STACK *st, int loc)
191 {
192 char *ret;
193 int i,j;

new/usr/src/lib/openssl/libsunw_crypto/stack/stack.c 4

195 if(!st || (loc < 0) || (loc >= st->num)) return NULL;

197 ret=st->data[loc];
198 if (loc != st->num-1)
199 {
200 j=st->num-1;
201 for (i=loc; i<j; i++)
202 st->data[i]=st->data[i+1];
203 /* In theory memcpy is not safe for this
204 * memcpy(&(st->data[loc]),
205 * &(st->data[loc+1]),
206 * sizeof(char *)*(st->num-loc-1));
207 */
208 }
209 st->num--;
210 return(ret);
211 }

213 static int internal_find(_STACK *st, void *data, int ret_val_options)
214 {
215 const void * const *r;
216 int i;

218 if(st == NULL) return -1;

220 if (st->comp == NULL)
221 {
222 for (i=0; i<st->num; i++)
223 if (st->data[i] == data)
224 return(i);
225 return(-1);
226 }
227 sk_sort(st);
228 if (data == NULL) return(-1);
229 r=OBJ_bsearch_ex_(&data,st->data,st->num,sizeof(void *),st->comp,
230 ret_val_options);
231 if (r == NULL) return(-1);
232 return (int)((char **)r-st->data);
233 }

235 int sk_find(_STACK *st, void *data)
236 {
237 return internal_find(st, data, OBJ_BSEARCH_FIRST_VALUE_ON_MATCH);
238 }
239 int sk_find_ex(_STACK *st, void *data)
240 {
241 return internal_find(st, data, OBJ_BSEARCH_VALUE_ON_NOMATCH);
242 }

244 int sk_push(_STACK *st, void *data)
245 {
246 return(sk_insert(st,data,st->num));
247 }

249 int sk_unshift(_STACK *st, void *data)
250 {
251 return(sk_insert(st,data,0));
252 }

254 void *sk_shift(_STACK *st)
255 {
256 if (st == NULL) return(NULL);
257 if (st->num <= 0) return(NULL);
258 return(sk_delete(st,0));
259 }

new/usr/src/lib/openssl/libsunw_crypto/stack/stack.c 5

261 void *sk_pop(_STACK *st)
262 {
263 if (st == NULL) return(NULL);
264 if (st->num <= 0) return(NULL);
265 return(sk_delete(st,st->num-1));
266 }

268 void sk_zero(_STACK *st)
269 {
270 if (st == NULL) return;
271 if (st->num <= 0) return;
272 memset((char *)st->data,0,sizeof(st->data)*st->num);
273 st->num=0;
274 }

276 void sk_pop_free(_STACK *st, void (*func)(void *))
277 {
278 int i;

280 if (st == NULL) return;
281 for (i=0; i<st->num; i++)
282 if (st->data[i] != NULL)
283 func(st->data[i]);
284 sk_free(st);
285 }

287 void sk_free(_STACK *st)
288 {
289 if (st == NULL) return;
290 if (st->data != NULL) OPENSSL_free(st->data);
291 OPENSSL_free(st);
292 }

294 int sk_num(const _STACK *st)
295 {
296 if(st == NULL) return -1;
297 return st->num;
298 }

300 void *sk_value(const _STACK *st, int i)
301 {
302 if(!st || (i < 0) || (i >= st->num)) return NULL;
303 return st->data[i];
304 }

306 void *sk_set(_STACK *st, int i, void *value)
307 {
308 if(!st || (i < 0) || (i >= st->num)) return NULL;
309 return (st->data[i] = value);
310 }

312 void sk_sort(_STACK *st)
313 {
314 if (st && !st->sorted)
315 {
316 int (*comp_func)(const void *,const void *);

318 /* same comment as in sk_find ... previously st->comp was declar
319 * as a (void*,void*) callback type, but this made the populatio
320 * of the callback pointer illogical - our callbacks compare
321 * type** with type**, so we leave the casting until absolutely
322 * necessary (ie. "now"). */
323 comp_func=(int (*)(const void *,const void *))(st->comp);
324 qsort(st->data,st->num,sizeof(char *), comp_func);
325 st->sorted=1;

new/usr/src/lib/openssl/libsunw_crypto/stack/stack.c 6

326 }
327 }

329 int sk_is_sorted(const _STACK *st)
330 {
331 if (!st)
332 return 1;
333 return st->sorted;
334 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_asn1.c 1

**
 10368 Fri May 30 18:32:10 2014
new/usr/src/lib/openssl/libsunw_crypto/ts/ts_asn1.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ts/ts_asn1.c */
2 /* Written by Nils Larsch for the OpenSSL project 2004.
3 */
4 /* ==
5 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ==
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */

58 #include <openssl/ts.h>
59 #include <openssl/err.h>
60 #include <openssl/asn1t.h>

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_asn1.c 2

62 ASN1_SEQUENCE(TS_MSG_IMPRINT) = {
63 ASN1_SIMPLE(TS_MSG_IMPRINT, hash_algo, X509_ALGOR),
64 ASN1_SIMPLE(TS_MSG_IMPRINT, hashed_msg, ASN1_OCTET_STRING)
65 } ASN1_SEQUENCE_END(TS_MSG_IMPRINT)

67 IMPLEMENT_ASN1_FUNCTIONS_const(TS_MSG_IMPRINT)
68 IMPLEMENT_ASN1_DUP_FUNCTION(TS_MSG_IMPRINT)
69 #ifndef OPENSSL_NO_BIO
70 TS_MSG_IMPRINT *d2i_TS_MSG_IMPRINT_bio(BIO *bp, TS_MSG_IMPRINT **a)
71 {
72 return ASN1_d2i_bio_of(TS_MSG_IMPRINT, TS_MSG_IMPRINT_new, d2i_TS_MSG_IM
73 }

75 int i2d_TS_MSG_IMPRINT_bio(BIO *bp, TS_MSG_IMPRINT *a)
76 {
77 return ASN1_i2d_bio_of_const(TS_MSG_IMPRINT, i2d_TS_MSG_IMPRINT, bp, a);
78 }
79 #endif
80 #ifndef OPENSSL_NO_FP_API
81 TS_MSG_IMPRINT *d2i_TS_MSG_IMPRINT_fp(FILE *fp, TS_MSG_IMPRINT **a)
82 {
83 return ASN1_d2i_fp_of(TS_MSG_IMPRINT, TS_MSG_IMPRINT_new, d2i_TS_MSG_IMP
84 }

86 int i2d_TS_MSG_IMPRINT_fp(FILE *fp, TS_MSG_IMPRINT *a)
87 {
88 return ASN1_i2d_fp_of_const(TS_MSG_IMPRINT, i2d_TS_MSG_IMPRINT, fp, a);
89 }
90 #endif

92 ASN1_SEQUENCE(TS_REQ) = {
93 ASN1_SIMPLE(TS_REQ, version, ASN1_INTEGER),
94 ASN1_SIMPLE(TS_REQ, msg_imprint, TS_MSG_IMPRINT),
95 ASN1_OPT(TS_REQ, policy_id, ASN1_OBJECT),
96 ASN1_OPT(TS_REQ, nonce, ASN1_INTEGER),
97 ASN1_OPT(TS_REQ, cert_req, ASN1_FBOOLEAN),
98 ASN1_IMP_SEQUENCE_OF_OPT(TS_REQ, extensions, X509_EXTENSION, 0)
99 } ASN1_SEQUENCE_END(TS_REQ)

101 IMPLEMENT_ASN1_FUNCTIONS_const(TS_REQ)
102 IMPLEMENT_ASN1_DUP_FUNCTION(TS_REQ)
103 #ifndef OPENSSL_NO_BIO
104 TS_REQ *d2i_TS_REQ_bio(BIO *bp, TS_REQ **a)
105 {
106 return ASN1_d2i_bio_of(TS_REQ, TS_REQ_new, d2i_TS_REQ, bp, a);
107 }

109 int i2d_TS_REQ_bio(BIO *bp, TS_REQ *a)
110 {
111 return ASN1_i2d_bio_of_const(TS_REQ, i2d_TS_REQ, bp, a);
112 }
113 #endif
114 #ifndef OPENSSL_NO_FP_API
115 TS_REQ *d2i_TS_REQ_fp(FILE *fp, TS_REQ **a)
116 {
117 return ASN1_d2i_fp_of(TS_REQ, TS_REQ_new, d2i_TS_REQ, fp, a);
118 }

120 int i2d_TS_REQ_fp(FILE *fp, TS_REQ *a)
121 {
122 return ASN1_i2d_fp_of_const(TS_REQ, i2d_TS_REQ, fp, a);
123 }
124 #endif

126 ASN1_SEQUENCE(TS_ACCURACY) = {
127 ASN1_OPT(TS_ACCURACY, seconds, ASN1_INTEGER),

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_asn1.c 3

128 ASN1_IMP_OPT(TS_ACCURACY, millis, ASN1_INTEGER, 0),
129 ASN1_IMP_OPT(TS_ACCURACY, micros, ASN1_INTEGER, 1)
130 } ASN1_SEQUENCE_END(TS_ACCURACY)

132 IMPLEMENT_ASN1_FUNCTIONS_const(TS_ACCURACY)
133 IMPLEMENT_ASN1_DUP_FUNCTION(TS_ACCURACY)

135 ASN1_SEQUENCE(TS_TST_INFO) = {
136 ASN1_SIMPLE(TS_TST_INFO, version, ASN1_INTEGER),
137 ASN1_SIMPLE(TS_TST_INFO, policy_id, ASN1_OBJECT),
138 ASN1_SIMPLE(TS_TST_INFO, msg_imprint, TS_MSG_IMPRINT),
139 ASN1_SIMPLE(TS_TST_INFO, serial, ASN1_INTEGER),
140 ASN1_SIMPLE(TS_TST_INFO, time, ASN1_GENERALIZEDTIME),
141 ASN1_OPT(TS_TST_INFO, accuracy, TS_ACCURACY),
142 ASN1_OPT(TS_TST_INFO, ordering, ASN1_FBOOLEAN),
143 ASN1_OPT(TS_TST_INFO, nonce, ASN1_INTEGER),
144 ASN1_EXP_OPT(TS_TST_INFO, tsa, GENERAL_NAME, 0),
145 ASN1_IMP_SEQUENCE_OF_OPT(TS_TST_INFO, extensions, X509_EXTENSION, 1)
146 } ASN1_SEQUENCE_END(TS_TST_INFO)

148 IMPLEMENT_ASN1_FUNCTIONS_const(TS_TST_INFO)
149 IMPLEMENT_ASN1_DUP_FUNCTION(TS_TST_INFO)
150 #ifndef OPENSSL_NO_BIO
151 TS_TST_INFO *d2i_TS_TST_INFO_bio(BIO *bp, TS_TST_INFO **a)
152 {
153 return ASN1_d2i_bio_of(TS_TST_INFO, TS_TST_INFO_new, d2i_TS_TST_INFO, bp
154 }

156 int i2d_TS_TST_INFO_bio(BIO *bp, TS_TST_INFO *a)
157 {
158 return ASN1_i2d_bio_of_const(TS_TST_INFO, i2d_TS_TST_INFO, bp, a);
159 }
160 #endif
161 #ifndef OPENSSL_NO_FP_API
162 TS_TST_INFO *d2i_TS_TST_INFO_fp(FILE *fp, TS_TST_INFO **a)
163 {
164 return ASN1_d2i_fp_of(TS_TST_INFO, TS_TST_INFO_new, d2i_TS_TST_INFO, fp,
165 }

167 int i2d_TS_TST_INFO_fp(FILE *fp, TS_TST_INFO *a)
168 {
169 return ASN1_i2d_fp_of_const(TS_TST_INFO, i2d_TS_TST_INFO, fp, a);
170 }
171 #endif

173 ASN1_SEQUENCE(TS_STATUS_INFO) = {
174 ASN1_SIMPLE(TS_STATUS_INFO, status, ASN1_INTEGER),
175 ASN1_SEQUENCE_OF_OPT(TS_STATUS_INFO, text, ASN1_UTF8STRING),
176 ASN1_OPT(TS_STATUS_INFO, failure_info, ASN1_BIT_STRING)
177 } ASN1_SEQUENCE_END(TS_STATUS_INFO)

179 IMPLEMENT_ASN1_FUNCTIONS_const(TS_STATUS_INFO)
180 IMPLEMENT_ASN1_DUP_FUNCTION(TS_STATUS_INFO)

182 static int ts_resp_set_tst_info(TS_RESP *a)
183 {
184 long status;

186 status = ASN1_INTEGER_get(a->status_info->status);

188 if (a->token) {
189 if (status != 0 && status != 1) {
190 TSerr(TS_F_TS_RESP_SET_TST_INFO, TS_R_TOKEN_PRESENT);
191 return 0;
192 }
193 if (a->tst_info != NULL)

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_asn1.c 4

194 TS_TST_INFO_free(a->tst_info);
195 a->tst_info = PKCS7_to_TS_TST_INFO(a->token);
196 if (!a->tst_info) {
197 TSerr(TS_F_TS_RESP_SET_TST_INFO, TS_R_PKCS7_TO_TS_TST_IN
198 return 0;
199 }
200 } else if (status == 0 || status == 1) {
201 TSerr(TS_F_TS_RESP_SET_TST_INFO, TS_R_TOKEN_NOT_PRESENT);
202 return 0;
203 }

205 return 1;
206 }

208 static int ts_resp_cb(int op, ASN1_VALUE **pval, const ASN1_ITEM *it,
209 void *exarg)
210 {
211 TS_RESP *ts_resp = (TS_RESP *)*pval;
212 if (op == ASN1_OP_NEW_POST) {
213 ts_resp->tst_info = NULL;
214 } else if (op == ASN1_OP_FREE_POST) {
215 if (ts_resp->tst_info != NULL)
216 TS_TST_INFO_free(ts_resp->tst_info);
217 } else if (op == ASN1_OP_D2I_POST) {
218 if (ts_resp_set_tst_info(ts_resp) == 0)
219 return 0;
220 }
221 return 1;
222 }

224 ASN1_SEQUENCE_cb(TS_RESP, ts_resp_cb) = {
225 ASN1_SIMPLE(TS_RESP, status_info, TS_STATUS_INFO),
226 ASN1_OPT(TS_RESP, token, PKCS7),
227 } ASN1_SEQUENCE_END_cb(TS_RESP, TS_RESP)

229 IMPLEMENT_ASN1_FUNCTIONS_const(TS_RESP)
230 IMPLEMENT_ASN1_DUP_FUNCTION(TS_RESP)
231 #ifndef OPENSSL_NO_BIO
232 TS_RESP *d2i_TS_RESP_bio(BIO *bp, TS_RESP **a)
233 {
234 return ASN1_d2i_bio_of(TS_RESP, TS_RESP_new, d2i_TS_RESP, bp, a);
235 }

237 int i2d_TS_RESP_bio(BIO *bp, TS_RESP *a)
238 {
239 return ASN1_i2d_bio_of_const(TS_RESP, i2d_TS_RESP, bp, a);
240 }
241 #endif
242 #ifndef OPENSSL_NO_FP_API
243 TS_RESP *d2i_TS_RESP_fp(FILE *fp, TS_RESP **a)
244 {
245 return ASN1_d2i_fp_of(TS_RESP, TS_RESP_new, d2i_TS_RESP, fp, a);
246 }

248 int i2d_TS_RESP_fp(FILE *fp, TS_RESP *a)
249 {
250 return ASN1_i2d_fp_of_const(TS_RESP, i2d_TS_RESP, fp, a);
251 }
252 #endif

254 ASN1_SEQUENCE(ESS_ISSUER_SERIAL) = {
255 ASN1_SEQUENCE_OF(ESS_ISSUER_SERIAL, issuer, GENERAL_NAME),
256 ASN1_SIMPLE(ESS_ISSUER_SERIAL, serial, ASN1_INTEGER)
257 } ASN1_SEQUENCE_END(ESS_ISSUER_SERIAL)

259 IMPLEMENT_ASN1_FUNCTIONS_const(ESS_ISSUER_SERIAL)

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_asn1.c 5

260 IMPLEMENT_ASN1_DUP_FUNCTION(ESS_ISSUER_SERIAL)

262 ASN1_SEQUENCE(ESS_CERT_ID) = {
263 ASN1_SIMPLE(ESS_CERT_ID, hash, ASN1_OCTET_STRING),
264 ASN1_OPT(ESS_CERT_ID, issuer_serial, ESS_ISSUER_SERIAL)
265 } ASN1_SEQUENCE_END(ESS_CERT_ID)

267 IMPLEMENT_ASN1_FUNCTIONS_const(ESS_CERT_ID)
268 IMPLEMENT_ASN1_DUP_FUNCTION(ESS_CERT_ID)

270 ASN1_SEQUENCE(ESS_SIGNING_CERT) = {
271 ASN1_SEQUENCE_OF(ESS_SIGNING_CERT, cert_ids, ESS_CERT_ID),
272 ASN1_SEQUENCE_OF_OPT(ESS_SIGNING_CERT, policy_info, POLICYINFO)
273 } ASN1_SEQUENCE_END(ESS_SIGNING_CERT)

275 IMPLEMENT_ASN1_FUNCTIONS_const(ESS_SIGNING_CERT)
276 IMPLEMENT_ASN1_DUP_FUNCTION(ESS_SIGNING_CERT)

278 /* Getting encapsulated TS_TST_INFO object from PKCS7. */
279 TS_TST_INFO *PKCS7_to_TS_TST_INFO(PKCS7 *token)
280 {
281 PKCS7_SIGNED *pkcs7_signed;
282 PKCS7 *enveloped;
283 ASN1_TYPE *tst_info_wrapper;
284 ASN1_OCTET_STRING *tst_info_der;
285 const unsigned char *p;

287 if (!PKCS7_type_is_signed(token))
288 {
289 TSerr(TS_F_PKCS7_TO_TS_TST_INFO, TS_R_BAD_PKCS7_TYPE);
290 return NULL;
291 }

293 /* Content must be present. */
294 if (PKCS7_get_detached(token))
295 {
296 TSerr(TS_F_PKCS7_TO_TS_TST_INFO, TS_R_DETACHED_CONTENT);
297 return NULL;
298 }

300 /* We have a signed data with content. */
301 pkcs7_signed = token->d.sign;
302 enveloped = pkcs7_signed->contents;
303 if (OBJ_obj2nid(enveloped->type) != NID_id_smime_ct_TSTInfo)
304 {
305 TSerr(TS_F_PKCS7_TO_TS_TST_INFO, TS_R_BAD_PKCS7_TYPE);
306 return NULL;
307 }

309 /* We have a DER encoded TST_INFO as the signed data. */
310 tst_info_wrapper = enveloped->d.other;
311 if (tst_info_wrapper->type != V_ASN1_OCTET_STRING)
312 {
313 TSerr(TS_F_PKCS7_TO_TS_TST_INFO, TS_R_BAD_TYPE);
314 return NULL;
315 }

317 /* We have the correct ASN1_OCTET_STRING type. */
318 tst_info_der = tst_info_wrapper->value.octet_string;
319 /* At last, decode the TST_INFO. */
320 p = tst_info_der->data;
321 return d2i_TS_TST_INFO(NULL, &p, tst_info_der->length);
322 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_conf.c 1

**
 13427 Fri May 30 18:32:10 2014
new/usr/src/lib/openssl/libsunw_crypto/ts/ts_conf.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ts/ts_conf.c */
2 /* Written by Zoltan Glozik (zglozik@stones.com) for the OpenSSL
3 * project 2002.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <string.h>

61 #include <openssl/crypto.h>

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_conf.c 2

62 #include "cryptlib.h"
63 #include <openssl/pem.h>
64 #ifndef OPENSSL_NO_ENGINE
65 #include <openssl/engine.h>
66 #endif
67 #include <openssl/ts.h>

69 /* Macro definitions for the configuration file. */

71 #define BASE_SECTION "tsa"
72 #define ENV_DEFAULT_TSA "default_tsa"
73 #define ENV_SERIAL "serial"
74 #define ENV_CRYPTO_DEVICE "crypto_device"
75 #define ENV_SIGNER_CERT "signer_cert"
76 #define ENV_CERTS "certs"
77 #define ENV_SIGNER_KEY "signer_key"
78 #define ENV_DEFAULT_POLICY "default_policy"
79 #define ENV_OTHER_POLICIES "other_policies"
80 #define ENV_DIGESTS "digests"
81 #define ENV_ACCURACY "accuracy"
82 #define ENV_ORDERING "ordering"
83 #define ENV_TSA_NAME "tsa_name"
84 #define ENV_ESS_CERT_ID_CHAIN "ess_cert_id_chain"
85 #define ENV_VALUE_SECS "secs"
86 #define ENV_VALUE_MILLISECS "millisecs"
87 #define ENV_VALUE_MICROSECS "microsecs"
88 #define ENV_CLOCK_PRECISION_DIGITS "clock_precision_digits"
89 #define ENV_VALUE_YES "yes"
90 #define ENV_VALUE_NO "no"

92 /* Function definitions for certificate and key loading. */

94 X509 *TS_CONF_load_cert(const char *file)
95 {
96 BIO *cert = NULL;
97 X509 *x = NULL;

99 if ((cert = BIO_new_file(file, "r")) == NULL) goto end;
100 x = PEM_read_bio_X509_AUX(cert, NULL, NULL, NULL);
101 end:
102 if (x == NULL)
103 fprintf(stderr, "unable to load certificate: %s\n", file);
104 BIO_free(cert);
105 return x;
106 }

108 STACK_OF(X509) *TS_CONF_load_certs(const char *file)
109 {
110 BIO *certs = NULL;
111 STACK_OF(X509) *othercerts = NULL;
112 STACK_OF(X509_INFO) *allcerts = NULL;
113 int i;

115 if (!(certs = BIO_new_file(file, "r"))) goto end;

117 if (!(othercerts = sk_X509_new_null())) goto end;
118 allcerts = PEM_X509_INFO_read_bio(certs, NULL, NULL, NULL);
119 for(i = 0; i < sk_X509_INFO_num(allcerts); i++)
120 {
121 X509_INFO *xi = sk_X509_INFO_value(allcerts, i);
122 if (xi->x509)
123 {
124 sk_X509_push(othercerts, xi->x509);
125 xi->x509 = NULL;
126 }
127 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_conf.c 3

128 end:
129 if (othercerts == NULL)
130 fprintf(stderr, "unable to load certificates: %s\n", file);
131 sk_X509_INFO_pop_free(allcerts, X509_INFO_free);
132 BIO_free(certs);
133 return othercerts;
134 }

136 EVP_PKEY *TS_CONF_load_key(const char *file, const char *pass)
137 {
138 BIO *key = NULL;
139 EVP_PKEY *pkey = NULL;

141 if (!(key = BIO_new_file(file, "r"))) goto end;
142 pkey = PEM_read_bio_PrivateKey(key, NULL, NULL, (char *) pass);
143 end:
144 if (pkey == NULL)
145 fprintf(stderr, "unable to load private key: %s\n", file);
146 BIO_free(key);
147 return pkey;
148 }

150 /* Function definitions for handling configuration options. */

152 static void TS_CONF_lookup_fail(const char *name, const char *tag)
153 {
154 fprintf(stderr, "variable lookup failed for %s::%s\n", name, tag);
155 }

157 static void TS_CONF_invalid(const char *name, const char *tag)
158 {
159 fprintf(stderr, "invalid variable value for %s::%s\n", name, tag);
160 }

162 const char *TS_CONF_get_tsa_section(CONF *conf, const char *section)
163 {
164 if (!section)
165 {
166 section = NCONF_get_string(conf, BASE_SECTION, ENV_DEFAULT_TSA);
167 if (!section)
168 TS_CONF_lookup_fail(BASE_SECTION, ENV_DEFAULT_TSA);
169 }
170 return section;
171 }

173 int TS_CONF_set_serial(CONF *conf, const char *section, TS_serial_cb cb,
174 TS_RESP_CTX *ctx)
175 {
176 int ret = 0;
177 char *serial = NCONF_get_string(conf, section, ENV_SERIAL);
178 if (!serial)
179 {
180 TS_CONF_lookup_fail(section, ENV_SERIAL);
181 goto err;
182 }
183 TS_RESP_CTX_set_serial_cb(ctx, cb, serial);

185 ret = 1;
186 err:
187 return ret;
188 }

190 #ifndef OPENSSL_NO_ENGINE

192 int TS_CONF_set_crypto_device(CONF *conf, const char *section,
193 const char *device)

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_conf.c 4

194 {
195 int ret = 0;
196
197 if (!device)
198 device = NCONF_get_string(conf, section,
199 ENV_CRYPTO_DEVICE);

201 if (device && !TS_CONF_set_default_engine(device))
202 {
203 TS_CONF_invalid(section, ENV_CRYPTO_DEVICE);
204 goto err;
205 }
206 ret = 1;
207 err:
208 return ret;
209 }

211 int TS_CONF_set_default_engine(const char *name)
212 {
213 ENGINE *e = NULL;
214 int ret = 0;

216 /* Leave the default if builtin specified. */
217 if (strcmp(name, "builtin") == 0) return 1;

219 if (!(e = ENGINE_by_id(name))) goto err;
220 /* Enable the use of the NCipher HSM for forked children. */
221 if (strcmp(name, "chil") == 0)
222 ENGINE_ctrl(e, ENGINE_CTRL_CHIL_SET_FORKCHECK, 1, 0, 0);
223 /* All the operations are going to be carried out by the engine. */
224 if (!ENGINE_set_default(e, ENGINE_METHOD_ALL)) goto err;
225 ret = 1;
226 err:
227 if (!ret)
228 {
229 TSerr(TS_F_TS_CONF_SET_DEFAULT_ENGINE,
230 TS_R_COULD_NOT_SET_ENGINE);
231 ERR_add_error_data(2, "engine:", name);
232 }
233 if (e) ENGINE_free(e);
234 return ret;
235 }

237 #endif

239 int TS_CONF_set_signer_cert(CONF *conf, const char *section,
240 const char *cert, TS_RESP_CTX *ctx)
241 {
242 int ret = 0;
243 X509 *cert_obj = NULL;
244 if (!cert)
245 cert = NCONF_get_string(conf, section, ENV_SIGNER_CERT);
246 if (!cert)
247 {
248 TS_CONF_lookup_fail(section, ENV_SIGNER_CERT);
249 goto err;
250 }
251 if (!(cert_obj = TS_CONF_load_cert(cert)))
252 goto err;
253 if (!TS_RESP_CTX_set_signer_cert(ctx, cert_obj))
254 goto err;

256 ret = 1;
257 err:
258 X509_free(cert_obj);
259 return ret;

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_conf.c 5

260 }

262 int TS_CONF_set_certs(CONF *conf, const char *section, const char *certs,
263 TS_RESP_CTX *ctx)
264 {
265 int ret = 0;
266 STACK_OF(X509) *certs_obj = NULL;
267 if (!certs)
268 certs = NCONF_get_string(conf, section, ENV_CERTS);
269 /* Certificate chain is optional. */
270 if (!certs) goto end;
271 if (!(certs_obj = TS_CONF_load_certs(certs))) goto err;
272 if (!TS_RESP_CTX_set_certs(ctx, certs_obj)) goto err;
273 end:
274 ret = 1;
275 err:
276 sk_X509_pop_free(certs_obj, X509_free);
277 return ret;
278 }

280 int TS_CONF_set_signer_key(CONF *conf, const char *section,
281 const char *key, const char *pass,
282 TS_RESP_CTX *ctx)
283 {
284 int ret = 0;
285 EVP_PKEY *key_obj = NULL;
286 if (!key)
287 key = NCONF_get_string(conf, section, ENV_SIGNER_KEY);
288 if (!key)
289 {
290 TS_CONF_lookup_fail(section, ENV_SIGNER_KEY);
291 goto err;
292 }
293 if (!(key_obj = TS_CONF_load_key(key, pass))) goto err;
294 if (!TS_RESP_CTX_set_signer_key(ctx, key_obj)) goto err;

296 ret = 1;
297 err:
298 EVP_PKEY_free(key_obj);
299 return ret;
300 }

302 int TS_CONF_set_def_policy(CONF *conf, const char *section,
303 const char *policy, TS_RESP_CTX *ctx)
304 {
305 int ret = 0;
306 ASN1_OBJECT *policy_obj = NULL;
307 if (!policy)
308 policy = NCONF_get_string(conf, section,
309 ENV_DEFAULT_POLICY);
310 if (!policy)
311 {
312 TS_CONF_lookup_fail(section, ENV_DEFAULT_POLICY);
313 goto err;
314 }
315 if (!(policy_obj = OBJ_txt2obj(policy, 0)))
316 {
317 TS_CONF_invalid(section, ENV_DEFAULT_POLICY);
318 goto err;
319 }
320 if (!TS_RESP_CTX_set_def_policy(ctx, policy_obj))
321 goto err;

323 ret = 1;
324 err:
325 ASN1_OBJECT_free(policy_obj);

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_conf.c 6

326 return ret;
327 }

329 int TS_CONF_set_policies(CONF *conf, const char *section,
330 TS_RESP_CTX *ctx)
331 {
332 int ret = 0;
333 int i;
334 STACK_OF(CONF_VALUE) *list = NULL;
335 char *policies = NCONF_get_string(conf, section,
336 ENV_OTHER_POLICIES);
337 /* If no other policy is specified, that’s fine. */
338 if (policies && !(list = X509V3_parse_list(policies)))
339 {
340 TS_CONF_invalid(section, ENV_OTHER_POLICIES);
341 goto err;
342 }
343 for (i = 0; i < sk_CONF_VALUE_num(list); ++i)
344 {
345 CONF_VALUE *val = sk_CONF_VALUE_value(list, i);
346 const char *extval = val->value ? val->value : val->name;
347 ASN1_OBJECT *objtmp;
348 if (!(objtmp = OBJ_txt2obj(extval, 0)))
349 {
350 TS_CONF_invalid(section, ENV_OTHER_POLICIES);
351 goto err;
352 }
353 if (!TS_RESP_CTX_add_policy(ctx, objtmp))
354 goto err;
355 ASN1_OBJECT_free(objtmp);
356 }

358 ret = 1;
359 err:
360 sk_CONF_VALUE_pop_free(list, X509V3_conf_free);
361 return ret;
362 }

364 int TS_CONF_set_digests(CONF *conf, const char *section,
365 TS_RESP_CTX *ctx)
366 {
367 int ret = 0;
368 int i;
369 STACK_OF(CONF_VALUE) *list = NULL;
370 char *digests = NCONF_get_string(conf, section, ENV_DIGESTS);
371 if (!digests)
372 {
373 TS_CONF_lookup_fail(section, ENV_DIGESTS);
374 goto err;
375 }
376 if (!(list = X509V3_parse_list(digests)))
377 {
378 TS_CONF_invalid(section, ENV_DIGESTS);
379 goto err;
380 }
381 if (sk_CONF_VALUE_num(list) == 0)
382 {
383 TS_CONF_invalid(section, ENV_DIGESTS);
384 goto err;
385 }
386 for (i = 0; i < sk_CONF_VALUE_num(list); ++i)
387 {
388 CONF_VALUE *val = sk_CONF_VALUE_value(list, i);
389 const char *extval = val->value ? val->value : val->name;
390 const EVP_MD *md;
391 if (!(md = EVP_get_digestbyname(extval)))

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_conf.c 7

392 {
393 TS_CONF_invalid(section, ENV_DIGESTS);
394 goto err;
395 }
396 if (!TS_RESP_CTX_add_md(ctx, md))
397 goto err;
398 }

400 ret = 1;
401 err:
402 sk_CONF_VALUE_pop_free(list, X509V3_conf_free);
403 return ret;
404 }

406 int TS_CONF_set_accuracy(CONF *conf, const char *section, TS_RESP_CTX *ctx)
407 {
408 int ret = 0;
409 int i;
410 int secs = 0, millis = 0, micros = 0;
411 STACK_OF(CONF_VALUE) *list = NULL;
412 char *accuracy = NCONF_get_string(conf, section, ENV_ACCURACY);

414 if (accuracy && !(list = X509V3_parse_list(accuracy)))
415 {
416 TS_CONF_invalid(section, ENV_ACCURACY);
417 goto err;
418 }
419 for (i = 0; i < sk_CONF_VALUE_num(list); ++i)
420 {
421 CONF_VALUE *val = sk_CONF_VALUE_value(list, i);
422 if (strcmp(val->name, ENV_VALUE_SECS) == 0)
423 {
424 if (val->value) secs = atoi(val->value);
425 }
426 else if (strcmp(val->name, ENV_VALUE_MILLISECS) == 0)
427 {
428 if (val->value) millis = atoi(val->value);
429 }
430 else if (strcmp(val->name, ENV_VALUE_MICROSECS) == 0)
431 {
432 if (val->value) micros = atoi(val->value);
433 }
434 else
435 {
436 TS_CONF_invalid(section, ENV_ACCURACY);
437 goto err;
438 }
439 }
440 if (!TS_RESP_CTX_set_accuracy(ctx, secs, millis, micros))
441 goto err;

443 ret = 1;
444 err:
445 sk_CONF_VALUE_pop_free(list, X509V3_conf_free);
446 return ret;
447 }

449 int TS_CONF_set_clock_precision_digits(CONF *conf, const char *section,
450 TS_RESP_CTX *ctx)
451 {
452 int ret = 0;
453 long digits = 0;
454
455 /* If not specified, set the default value to 0, i.e. sec precision */
456 if (!NCONF_get_number_e(conf, section, ENV_CLOCK_PRECISION_DIGITS,
457 &digits))

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_conf.c 8

458 digits = 0;
459 if (digits < 0 || digits > TS_MAX_CLOCK_PRECISION_DIGITS)
460 {
461 TS_CONF_invalid(section, ENV_CLOCK_PRECISION_DIGITS);
462 goto err;
463 }

465 if (!TS_RESP_CTX_set_clock_precision_digits(ctx, digits))
466 goto err;

468 return 1;
469 err:
470 return ret;
471 }

473 static int TS_CONF_add_flag(CONF *conf, const char *section, const char *field,
474 int flag, TS_RESP_CTX *ctx)
475 {
476 /* Default is false. */
477 const char *value = NCONF_get_string(conf, section, field);
478 if (value)
479 {
480 if (strcmp(value, ENV_VALUE_YES) == 0)
481 TS_RESP_CTX_add_flags(ctx, flag);
482 else if (strcmp(value, ENV_VALUE_NO) != 0)
483 {
484 TS_CONF_invalid(section, field);
485 return 0;
486 }
487 }

489 return 1;
490 }

492 int TS_CONF_set_ordering(CONF *conf, const char *section, TS_RESP_CTX *ctx)
493 {
494 return TS_CONF_add_flag(conf, section, ENV_ORDERING, TS_ORDERING, ctx);
495 }

497 int TS_CONF_set_tsa_name(CONF *conf, const char *section, TS_RESP_CTX *ctx)
498 {
499 return TS_CONF_add_flag(conf, section, ENV_TSA_NAME, TS_TSA_NAME, ctx);
500 }

502 int TS_CONF_set_ess_cert_id_chain(CONF *conf, const char *section,
503 TS_RESP_CTX *ctx)
504 {
505 return TS_CONF_add_flag(conf, section, ENV_ESS_CERT_ID_CHAIN,
506 TS_ESS_CERT_ID_CHAIN, ctx);
507 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_err.c 1

**
 9072 Fri May 30 18:32:10 2014
new/usr/src/lib/openssl/libsunw_crypto/ts/ts_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ts/ts_err.c */
2 /* ==
3 * Copyright (c) 1999-2007 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/ts.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_TS,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_TS,0,reason)

71 static ERR_STRING_DATA TS_str_functs[]=
72 {
73 {ERR_FUNC(TS_F_D2I_TS_RESP), "d2i_TS_RESP"},
74 {ERR_FUNC(TS_F_DEF_SERIAL_CB), "DEF_SERIAL_CB"},
75 {ERR_FUNC(TS_F_DEF_TIME_CB), "DEF_TIME_CB"},
76 {ERR_FUNC(TS_F_ESS_ADD_SIGNING_CERT), "ESS_ADD_SIGNING_CERT"},
77 {ERR_FUNC(TS_F_ESS_CERT_ID_NEW_INIT), "ESS_CERT_ID_NEW_INIT"},
78 {ERR_FUNC(TS_F_ESS_SIGNING_CERT_NEW_INIT), "ESS_SIGNING_CERT_NEW_INIT"},
79 {ERR_FUNC(TS_F_INT_TS_RESP_VERIFY_TOKEN), "INT_TS_RESP_VERIFY_TOKEN"},
80 {ERR_FUNC(TS_F_PKCS7_TO_TS_TST_INFO), "PKCS7_to_TS_TST_INFO"},
81 {ERR_FUNC(TS_F_TS_ACCURACY_SET_MICROS), "TS_ACCURACY_set_micros"},
82 {ERR_FUNC(TS_F_TS_ACCURACY_SET_MILLIS), "TS_ACCURACY_set_millis"},
83 {ERR_FUNC(TS_F_TS_ACCURACY_SET_SECONDS), "TS_ACCURACY_set_seconds"},
84 {ERR_FUNC(TS_F_TS_CHECK_IMPRINTS), "TS_CHECK_IMPRINTS"},
85 {ERR_FUNC(TS_F_TS_CHECK_NONCES), "TS_CHECK_NONCES"},
86 {ERR_FUNC(TS_F_TS_CHECK_POLICY), "TS_CHECK_POLICY"},
87 {ERR_FUNC(TS_F_TS_CHECK_SIGNING_CERTS), "TS_CHECK_SIGNING_CERTS"},
88 {ERR_FUNC(TS_F_TS_CHECK_STATUS_INFO), "TS_CHECK_STATUS_INFO"},
89 {ERR_FUNC(TS_F_TS_COMPUTE_IMPRINT), "TS_COMPUTE_IMPRINT"},
90 {ERR_FUNC(TS_F_TS_CONF_SET_DEFAULT_ENGINE), "TS_CONF_set_default_engine"},
91 {ERR_FUNC(TS_F_TS_GET_STATUS_TEXT), "TS_GET_STATUS_TEXT"},
92 {ERR_FUNC(TS_F_TS_MSG_IMPRINT_SET_ALGO), "TS_MSG_IMPRINT_set_algo"},
93 {ERR_FUNC(TS_F_TS_REQ_SET_MSG_IMPRINT), "TS_REQ_set_msg_imprint"},
94 {ERR_FUNC(TS_F_TS_REQ_SET_NONCE), "TS_REQ_set_nonce"},
95 {ERR_FUNC(TS_F_TS_REQ_SET_POLICY_ID), "TS_REQ_set_policy_id"},
96 {ERR_FUNC(TS_F_TS_RESP_CREATE_RESPONSE), "TS_RESP_create_response"},
97 {ERR_FUNC(TS_F_TS_RESP_CREATE_TST_INFO), "TS_RESP_CREATE_TST_INFO"},
98 {ERR_FUNC(TS_F_TS_RESP_CTX_ADD_FAILURE_INFO), "TS_RESP_CTX_add_failure_info"},
99 {ERR_FUNC(TS_F_TS_RESP_CTX_ADD_MD), "TS_RESP_CTX_add_md"},
100 {ERR_FUNC(TS_F_TS_RESP_CTX_ADD_POLICY), "TS_RESP_CTX_add_policy"},
101 {ERR_FUNC(TS_F_TS_RESP_CTX_NEW), "TS_RESP_CTX_new"},
102 {ERR_FUNC(TS_F_TS_RESP_CTX_SET_ACCURACY), "TS_RESP_CTX_set_accuracy"},
103 {ERR_FUNC(TS_F_TS_RESP_CTX_SET_CERTS), "TS_RESP_CTX_set_certs"},
104 {ERR_FUNC(TS_F_TS_RESP_CTX_SET_DEF_POLICY), "TS_RESP_CTX_set_def_policy"},
105 {ERR_FUNC(TS_F_TS_RESP_CTX_SET_SIGNER_CERT), "TS_RESP_CTX_set_signer_cert"},
106 {ERR_FUNC(TS_F_TS_RESP_CTX_SET_STATUS_INFO), "TS_RESP_CTX_set_status_info"},
107 {ERR_FUNC(TS_F_TS_RESP_GET_POLICY), "TS_RESP_GET_POLICY"},
108 {ERR_FUNC(TS_F_TS_RESP_SET_GENTIME_WITH_PRECISION), "TS_RESP_SET_GENTIME_WIT
109 {ERR_FUNC(TS_F_TS_RESP_SET_STATUS_INFO), "TS_RESP_set_status_info"},
110 {ERR_FUNC(TS_F_TS_RESP_SET_TST_INFO), "TS_RESP_set_tst_info"},
111 {ERR_FUNC(TS_F_TS_RESP_SIGN), "TS_RESP_SIGN"},
112 {ERR_FUNC(TS_F_TS_RESP_VERIFY_SIGNATURE), "TS_RESP_verify_signature"},
113 {ERR_FUNC(TS_F_TS_RESP_VERIFY_TOKEN), "TS_RESP_verify_token"},
114 {ERR_FUNC(TS_F_TS_TST_INFO_SET_ACCURACY), "TS_TST_INFO_set_accuracy"},
115 {ERR_FUNC(TS_F_TS_TST_INFO_SET_MSG_IMPRINT), "TS_TST_INFO_set_msg_imprint"},
116 {ERR_FUNC(TS_F_TS_TST_INFO_SET_NONCE), "TS_TST_INFO_set_nonce"},
117 {ERR_FUNC(TS_F_TS_TST_INFO_SET_POLICY_ID), "TS_TST_INFO_set_policy_id"},
118 {ERR_FUNC(TS_F_TS_TST_INFO_SET_SERIAL), "TS_TST_INFO_set_serial"},
119 {ERR_FUNC(TS_F_TS_TST_INFO_SET_TIME), "TS_TST_INFO_set_time"},
120 {ERR_FUNC(TS_F_TS_TST_INFO_SET_TSA), "TS_TST_INFO_set_tsa"},
121 {ERR_FUNC(TS_F_TS_VERIFY), "TS_VERIFY"},
122 {ERR_FUNC(TS_F_TS_VERIFY_CERT), "TS_VERIFY_CERT"},
123 {ERR_FUNC(TS_F_TS_VERIFY_CTX_NEW), "TS_VERIFY_CTX_new"},
124 {0,NULL}
125 };

127 static ERR_STRING_DATA TS_str_reasons[]=

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_err.c 3

128 {
129 {ERR_REASON(TS_R_BAD_PKCS7_TYPE) ,"bad pkcs7 type"},
130 {ERR_REASON(TS_R_BAD_TYPE) ,"bad type"},
131 {ERR_REASON(TS_R_CERTIFICATE_VERIFY_ERROR),"certificate verify error"},
132 {ERR_REASON(TS_R_COULD_NOT_SET_ENGINE) ,"could not set engine"},
133 {ERR_REASON(TS_R_COULD_NOT_SET_TIME) ,"could not set time"},
134 {ERR_REASON(TS_R_D2I_TS_RESP_INT_FAILED) ,"d2i ts resp int failed"},
135 {ERR_REASON(TS_R_DETACHED_CONTENT) ,"detached content"},
136 {ERR_REASON(TS_R_ESS_ADD_SIGNING_CERT_ERROR),"ess add signing cert error"},
137 {ERR_REASON(TS_R_ESS_SIGNING_CERTIFICATE_ERROR),"ess signing certificate error"}
138 {ERR_REASON(TS_R_INVALID_NULL_POINTER) ,"invalid null pointer"},
139 {ERR_REASON(TS_R_INVALID_SIGNER_CERTIFICATE_PURPOSE),"invalid signer certificate
140 {ERR_REASON(TS_R_MESSAGE_IMPRINT_MISMATCH),"message imprint mismatch"},
141 {ERR_REASON(TS_R_NONCE_MISMATCH) ,"nonce mismatch"},
142 {ERR_REASON(TS_R_NONCE_NOT_RETURNED) ,"nonce not returned"},
143 {ERR_REASON(TS_R_NO_CONTENT) ,"no content"},
144 {ERR_REASON(TS_R_NO_TIME_STAMP_TOKEN) ,"no time stamp token"},
145 {ERR_REASON(TS_R_PKCS7_ADD_SIGNATURE_ERROR),"pkcs7 add signature error"},
146 {ERR_REASON(TS_R_PKCS7_ADD_SIGNED_ATTR_ERROR),"pkcs7 add signed attr error"},
147 {ERR_REASON(TS_R_PKCS7_TO_TS_TST_INFO_FAILED),"pkcs7 to ts tst info failed"},
148 {ERR_REASON(TS_R_POLICY_MISMATCH) ,"policy mismatch"},
149 {ERR_REASON(TS_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE),"private key does not m
150 {ERR_REASON(TS_R_RESPONSE_SETUP_ERROR) ,"response setup error"},
151 {ERR_REASON(TS_R_SIGNATURE_FAILURE) ,"signature failure"},
152 {ERR_REASON(TS_R_THERE_MUST_BE_ONE_SIGNER),"there must be one signer"},
153 {ERR_REASON(TS_R_TIME_SYSCALL_ERROR) ,"time syscall error"},
154 {ERR_REASON(TS_R_TOKEN_NOT_PRESENT) ,"token not present"},
155 {ERR_REASON(TS_R_TOKEN_PRESENT) ,"token present"},
156 {ERR_REASON(TS_R_TSA_NAME_MISMATCH) ,"tsa name mismatch"},
157 {ERR_REASON(TS_R_TSA_UNTRUSTED) ,"tsa untrusted"},
158 {ERR_REASON(TS_R_TST_INFO_SETUP_ERROR) ,"tst info setup error"},
159 {ERR_REASON(TS_R_TS_DATASIGN) ,"ts datasign"},
160 {ERR_REASON(TS_R_UNACCEPTABLE_POLICY) ,"unacceptable policy"},
161 {ERR_REASON(TS_R_UNSUPPORTED_MD_ALGORITHM),"unsupported md algorithm"},
162 {ERR_REASON(TS_R_UNSUPPORTED_VERSION) ,"unsupported version"},
163 {ERR_REASON(TS_R_WRONG_CONTENT_TYPE) ,"wrong content type"},
164 {0,NULL}
165 };

167 #endif

169 void ERR_load_TS_strings(void)
170 {
171 #ifndef OPENSSL_NO_ERR

173 if (ERR_func_error_string(TS_str_functs[0].error) == NULL)
174 {
175 ERR_load_strings(0,TS_str_functs);
176 ERR_load_strings(0,TS_str_reasons);
177 }
178 #endif
179 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_lib.c 1

**
 4694 Fri May 30 18:32:11 2014
new/usr/src/lib/openssl/libsunw_crypto/ts/ts_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ts/ts_lib.c */
2 /* Written by Zoltan Glozik (zglozik@stones.com) for the OpenSSL
3 * project 2002.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/objects.h>

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_lib.c 2

62 #include <openssl/bn.h>
63 #include <openssl/x509v3.h>
64 #include <openssl/ts.h>

66 /* Local function declarations. */

68 /* Function definitions. */

70 int TS_ASN1_INTEGER_print_bio(BIO *bio, const ASN1_INTEGER *num)
71 {
72 BIGNUM num_bn;
73 int result = 0;
74 char *hex;

76 BN_init(&num_bn);
77 ASN1_INTEGER_to_BN(num, &num_bn);
78 if ((hex = BN_bn2hex(&num_bn)))
79 {
80 result = BIO_write(bio, "0x", 2) > 0;
81 result = result && BIO_write(bio, hex, strlen(hex)) > 0;
82 OPENSSL_free(hex);
83 }
84 BN_free(&num_bn);

86 return result;
87 }

89 int TS_OBJ_print_bio(BIO *bio, const ASN1_OBJECT *obj)
90 {
91 char obj_txt[128];

93 int len = OBJ_obj2txt(obj_txt, sizeof(obj_txt), obj, 0);
94 BIO_write(bio, obj_txt, len);
95 BIO_write(bio, "\n", 1);

97 return 1;
98 }

100 int TS_ext_print_bio(BIO *bio, const STACK_OF(X509_EXTENSION) *extensions)
101 {
102 int i, critical, n;
103 X509_EXTENSION *ex;
104 ASN1_OBJECT *obj;

106 BIO_printf(bio, "Extensions:\n");
107 n = X509v3_get_ext_count(extensions);
108 for (i = 0; i < n; i++)
109 {
110 ex = X509v3_get_ext(extensions, i);
111 obj = X509_EXTENSION_get_object(ex);
112 i2a_ASN1_OBJECT(bio, obj);
113 critical = X509_EXTENSION_get_critical(ex);
114 BIO_printf(bio, ": %s\n", critical ? "critical" : "");
115 if (!X509V3_EXT_print(bio, ex, 0, 4))
116 {
117 BIO_printf(bio, "%4s", "");
118 M_ASN1_OCTET_STRING_print(bio, ex->value);
119 }
120 BIO_write(bio, "\n", 1);
121 }

123 return 1;
124 }

126 int TS_X509_ALGOR_print_bio(BIO *bio, const X509_ALGOR *alg)
127 {

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_lib.c 3

128 int i = OBJ_obj2nid(alg->algorithm);
129 return BIO_printf(bio, "Hash Algorithm: %s\n",
130 (i == NID_undef) ? "UNKNOWN" : OBJ_nid2ln(i));
131 }

133 int TS_MSG_IMPRINT_print_bio(BIO *bio, TS_MSG_IMPRINT *a)
134 {
135 const ASN1_OCTET_STRING *msg;

137 TS_X509_ALGOR_print_bio(bio, TS_MSG_IMPRINT_get_algo(a));

139 BIO_printf(bio, "Message data:\n");
140 msg = TS_MSG_IMPRINT_get_msg(a);
141 BIO_dump_indent(bio, (const char *)M_ASN1_STRING_data(msg),
142 M_ASN1_STRING_length(msg), 4);

144 return 1;
145 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_req_print.c 1

**
 3697 Fri May 30 18:32:11 2014
new/usr/src/lib/openssl/libsunw_crypto/ts/ts_req_print.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ts/ts_req_print.c */
2 /* Written by Zoltan Glozik (zglozik@stones.com) for the OpenSSL
3 * project 2002.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/objects.h>

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_req_print.c 2

62 #include <openssl/bn.h>
63 #include <openssl/x509v3.h>
64 #include <openssl/ts.h>

66 /* Function definitions. */

68 int TS_REQ_print_bio(BIO *bio, TS_REQ *a)
69 {
70 int v;
71 ASN1_OBJECT *policy_id;
72 const ASN1_INTEGER *nonce;

74 if (a == NULL) return 0;

76 v = TS_REQ_get_version(a);
77 BIO_printf(bio, "Version: %d\n", v);

79 TS_MSG_IMPRINT_print_bio(bio, TS_REQ_get_msg_imprint(a));

81 BIO_printf(bio, "Policy OID: ");
82 policy_id = TS_REQ_get_policy_id(a);
83 if (policy_id == NULL)
84 BIO_printf(bio, "unspecified\n");
85 else
86 TS_OBJ_print_bio(bio, policy_id);

88 BIO_printf(bio, "Nonce: ");
89 nonce = TS_REQ_get_nonce(a);
90 if (nonce == NULL)
91 BIO_printf(bio, "unspecified");
92 else
93 TS_ASN1_INTEGER_print_bio(bio, nonce);
94 BIO_write(bio, "\n", 1);

96 BIO_printf(bio, "Certificate required: %s\n",
97 TS_REQ_get_cert_req(a) ? "yes" : "no");

99 TS_ext_print_bio(bio, TS_REQ_get_exts(a));

101 return 1;
102 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_req_utils.c 1

**
 6356 Fri May 30 18:32:11 2014
new/usr/src/lib/openssl/libsunw_crypto/ts/ts_req_utils.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ts/ts_req_utils.c */
2 /* Written by Zoltan Glozik (zglozik@stones.com) for the OpenSSL
3 * project 2002.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/objects.h>

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_req_utils.c 2

62 #include <openssl/x509v3.h>
63 #include <openssl/ts.h>

65 int TS_REQ_set_version(TS_REQ *a, long version)
66 {
67 return ASN1_INTEGER_set(a->version, version);
68 }

70 long TS_REQ_get_version(const TS_REQ *a)
71 {
72 return ASN1_INTEGER_get(a->version);
73 }

75 int TS_REQ_set_msg_imprint(TS_REQ *a, TS_MSG_IMPRINT *msg_imprint)
76 {
77 TS_MSG_IMPRINT *new_msg_imprint;

79 if (a->msg_imprint == msg_imprint)
80 return 1;
81 new_msg_imprint = TS_MSG_IMPRINT_dup(msg_imprint);
82 if (new_msg_imprint == NULL)
83 {
84 TSerr(TS_F_TS_REQ_SET_MSG_IMPRINT, ERR_R_MALLOC_FAILURE);
85 return 0;
86 }
87 TS_MSG_IMPRINT_free(a->msg_imprint);
88 a->msg_imprint = new_msg_imprint;
89 return 1;
90 }

92 TS_MSG_IMPRINT *TS_REQ_get_msg_imprint(TS_REQ *a)
93 {
94 return a->msg_imprint;
95 }

97 int TS_MSG_IMPRINT_set_algo(TS_MSG_IMPRINT *a, X509_ALGOR *alg)
98 {
99 X509_ALGOR *new_alg;

101 if (a->hash_algo == alg)
102 return 1;
103 new_alg = X509_ALGOR_dup(alg);
104 if (new_alg == NULL)
105 {
106 TSerr(TS_F_TS_MSG_IMPRINT_SET_ALGO, ERR_R_MALLOC_FAILURE);
107 return 0;
108 }
109 X509_ALGOR_free(a->hash_algo);
110 a->hash_algo = new_alg;
111 return 1;
112 }

114 X509_ALGOR *TS_MSG_IMPRINT_get_algo(TS_MSG_IMPRINT *a)
115 {
116 return a->hash_algo;
117 }

119 int TS_MSG_IMPRINT_set_msg(TS_MSG_IMPRINT *a, unsigned char *d, int len)
120 {
121 return ASN1_OCTET_STRING_set(a->hashed_msg, d, len);
122 }

124 ASN1_OCTET_STRING *TS_MSG_IMPRINT_get_msg(TS_MSG_IMPRINT *a)
125 {
126 return a->hashed_msg;
127 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_req_utils.c 3

129 int TS_REQ_set_policy_id(TS_REQ *a, ASN1_OBJECT *policy)
130 {
131 ASN1_OBJECT *new_policy;

133 if (a->policy_id == policy)
134 return 1;
135 new_policy = OBJ_dup(policy);
136 if (new_policy == NULL)
137 {
138 TSerr(TS_F_TS_REQ_SET_POLICY_ID, ERR_R_MALLOC_FAILURE);
139 return 0;
140 }
141 ASN1_OBJECT_free(a->policy_id);
142 a->policy_id = new_policy;
143 return 1;
144 }

146 ASN1_OBJECT *TS_REQ_get_policy_id(TS_REQ *a)
147 {
148 return a->policy_id;
149 }

151 int TS_REQ_set_nonce(TS_REQ *a, const ASN1_INTEGER *nonce)
152 {
153 ASN1_INTEGER *new_nonce;

155 if (a->nonce == nonce)
156 return 1;
157 new_nonce = ASN1_INTEGER_dup(nonce);
158 if (new_nonce == NULL)
159 {
160 TSerr(TS_F_TS_REQ_SET_NONCE, ERR_R_MALLOC_FAILURE);
161 return 0;
162 }
163 ASN1_INTEGER_free(a->nonce);
164 a->nonce = new_nonce;
165 return 1;
166 }

168 const ASN1_INTEGER *TS_REQ_get_nonce(const TS_REQ *a)
169 {
170 return a->nonce;
171 }

173 int TS_REQ_set_cert_req(TS_REQ *a, int cert_req)
174 {
175 a->cert_req = cert_req ? 0xFF : 0x00;
176 return 1;
177 }

179 int TS_REQ_get_cert_req(const TS_REQ *a)
180 {
181 return a->cert_req ? 1 : 0;
182 }

184 STACK_OF(X509_EXTENSION) *TS_REQ_get_exts(TS_REQ *a)
185 {
186 return a->extensions;
187 }

189 void TS_REQ_ext_free(TS_REQ *a)
190 {
191 if (!a) return;
192 sk_X509_EXTENSION_pop_free(a->extensions, X509_EXTENSION_free);
193 a->extensions = NULL;

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_req_utils.c 4

194 }

196 int TS_REQ_get_ext_count(TS_REQ *a)
197 {
198 return X509v3_get_ext_count(a->extensions);
199 }

201 int TS_REQ_get_ext_by_NID(TS_REQ *a, int nid, int lastpos)
202 {
203 return X509v3_get_ext_by_NID(a->extensions, nid, lastpos);
204 }

206 int TS_REQ_get_ext_by_OBJ(TS_REQ *a, ASN1_OBJECT *obj, int lastpos)
207 {
208 return X509v3_get_ext_by_OBJ(a->extensions, obj, lastpos);
209 }

211 int TS_REQ_get_ext_by_critical(TS_REQ *a, int crit, int lastpos)
212 {
213 return X509v3_get_ext_by_critical(a->extensions, crit, lastpos);
214 }

216 X509_EXTENSION *TS_REQ_get_ext(TS_REQ *a, int loc)
217 {
218 return X509v3_get_ext(a->extensions,loc);
219 }

221 X509_EXTENSION *TS_REQ_delete_ext(TS_REQ *a, int loc)
222 {
223 return X509v3_delete_ext(a->extensions,loc);
224 }

226 int TS_REQ_add_ext(TS_REQ *a, X509_EXTENSION *ex, int loc)
227 {
228 return X509v3_add_ext(&a->extensions,ex,loc) != NULL;
229 }

231 void *TS_REQ_get_ext_d2i(TS_REQ *a, int nid, int *crit, int *idx)
232 {
233 return X509V3_get_d2i(a->extensions, nid, crit, idx);
234 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_print.c 1

**
 8426 Fri May 30 18:32:11 2014
new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_print.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ts/ts_resp_print.c */
2 /* Written by Zoltan Glozik (zglozik@stones.com) for the OpenSSL
3 * project 2002.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/objects.h>

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_print.c 2

62 #include <openssl/bn.h>
63 #include <openssl/x509v3.h>
64 #include <openssl/ts.h>

66 struct status_map_st
67 {
68 int bit;
69 const char *text;
70 };

72 /* Local function declarations. */

74 static int TS_status_map_print(BIO *bio, struct status_map_st *a,
75 ASN1_BIT_STRING *v);
76 static int TS_ACCURACY_print_bio(BIO *bio, const TS_ACCURACY *accuracy);

78 /* Function definitions. */

80 int TS_RESP_print_bio(BIO *bio, TS_RESP *a)
81 {
82 TS_TST_INFO *tst_info;

84 BIO_printf(bio, "Status info:\n");
85 TS_STATUS_INFO_print_bio(bio, TS_RESP_get_status_info(a));

87 BIO_printf(bio, "\nTST info:\n");
88 tst_info = TS_RESP_get_tst_info(a);
89 if (tst_info != NULL)
90 TS_TST_INFO_print_bio(bio, TS_RESP_get_tst_info(a));
91 else
92 BIO_printf(bio, "Not included.\n");
93
94 return 1;
95 }

97 int TS_STATUS_INFO_print_bio(BIO *bio, TS_STATUS_INFO *a)
98 {
99 static const char *status_map[] =
100 {
101 "Granted.",
102 "Granted with modifications.",
103 "Rejected.",
104 "Waiting.",
105 "Revocation warning.",
106 "Revoked."
107 };
108 static struct status_map_st failure_map[] =
109 {
110 { TS_INFO_BAD_ALG,
111 "unrecognized or unsupported algorithm identifier" },
112 { TS_INFO_BAD_REQUEST,
113 "transaction not permitted or supported" },
114 { TS_INFO_BAD_DATA_FORMAT,
115 "the data submitted has the wrong format" },
116 { TS_INFO_TIME_NOT_AVAILABLE,
117 "the TSA’s time source is not available" },
118 { TS_INFO_UNACCEPTED_POLICY,
119 "the requested TSA policy is not supported by the TSA" },
120 { TS_INFO_UNACCEPTED_EXTENSION,
121 "the requested extension is not supported by the TSA" },
122 { TS_INFO_ADD_INFO_NOT_AVAILABLE,
123 "the additional information requested could not be understood "
124 "or is not available" },
125 { TS_INFO_SYSTEM_FAILURE,
126 "the request cannot be handled due to system failure" },
127 { -1, NULL }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_print.c 3

128 };
129 long status;
130 int i, lines = 0;

132 /* Printing status code. */
133 BIO_printf(bio, "Status: ");
134 status = ASN1_INTEGER_get(a->status);
135 if (0 <= status && status < (long)(sizeof(status_map)/sizeof(status_map[
136 BIO_printf(bio, "%s\n", status_map[status]);
137 else
138 BIO_printf(bio, "out of bounds\n");
139
140 /* Printing status description. */
141 BIO_printf(bio, "Status description: ");
142 for (i = 0; i < sk_ASN1_UTF8STRING_num(a->text); ++i)
143 {
144 if (i > 0)
145 BIO_puts(bio, "\t");
146 ASN1_STRING_print_ex(bio, sk_ASN1_UTF8STRING_value(a->text, i),
147 0);
148 BIO_puts(bio, "\n");
149 }
150 if (i == 0)
151 BIO_printf(bio, "unspecified\n");

153 /* Printing failure information. */
154 BIO_printf(bio, "Failure info: ");
155 if (a->failure_info != NULL)
156 lines = TS_status_map_print(bio, failure_map,
157 a->failure_info);
158 if (lines == 0)
159 BIO_printf(bio, "unspecified");
160 BIO_printf(bio, "\n");

162 return 1;
163 }

165 static int TS_status_map_print(BIO *bio, struct status_map_st *a,
166 ASN1_BIT_STRING *v)
167 {
168 int lines = 0;

170 for (; a->bit >= 0; ++a)
171 {
172 if (ASN1_BIT_STRING_get_bit(v, a->bit))
173 {
174 if (++lines > 1)
175 BIO_printf(bio, ", ");
176 BIO_printf(bio, "%s", a->text);
177 }
178 }

180 return lines;
181 }

183 int TS_TST_INFO_print_bio(BIO *bio, TS_TST_INFO *a)
184 {
185 int v;
186 ASN1_OBJECT *policy_id;
187 const ASN1_INTEGER *serial;
188 const ASN1_GENERALIZEDTIME *gtime;
189 TS_ACCURACY *accuracy;
190 const ASN1_INTEGER *nonce;
191 GENERAL_NAME *tsa_name;

193 if (a == NULL) return 0;

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_print.c 4

195 /* Print version. */
196 v = TS_TST_INFO_get_version(a);
197 BIO_printf(bio, "Version: %d\n", v);

199 /* Print policy id. */
200 BIO_printf(bio, "Policy OID: ");
201 policy_id = TS_TST_INFO_get_policy_id(a);
202 TS_OBJ_print_bio(bio, policy_id);

204 /* Print message imprint. */
205 TS_MSG_IMPRINT_print_bio(bio, TS_TST_INFO_get_msg_imprint(a));

207 /* Print serial number. */
208 BIO_printf(bio, "Serial number: ");
209 serial = TS_TST_INFO_get_serial(a);
210 if (serial == NULL)
211 BIO_printf(bio, "unspecified");
212 else
213 TS_ASN1_INTEGER_print_bio(bio, serial);
214 BIO_write(bio, "\n", 1);

216 /* Print time stamp. */
217 BIO_printf(bio, "Time stamp: ");
218 gtime = TS_TST_INFO_get_time(a);
219 ASN1_GENERALIZEDTIME_print(bio, gtime);
220 BIO_write(bio, "\n", 1);

222 /* Print accuracy. */
223 BIO_printf(bio, "Accuracy: ");
224 accuracy = TS_TST_INFO_get_accuracy(a);
225 if (accuracy == NULL)
226 BIO_printf(bio, "unspecified");
227 else
228 TS_ACCURACY_print_bio(bio, accuracy);
229 BIO_write(bio, "\n", 1);

231 /* Print ordering. */
232 BIO_printf(bio, "Ordering: %s\n",
233 TS_TST_INFO_get_ordering(a) ? "yes" : "no");

235 /* Print nonce. */
236 BIO_printf(bio, "Nonce: ");
237 nonce = TS_TST_INFO_get_nonce(a);
238 if (nonce == NULL)
239 BIO_printf(bio, "unspecified");
240 else
241 TS_ASN1_INTEGER_print_bio(bio, nonce);
242 BIO_write(bio, "\n", 1);

244 /* Print TSA name. */
245 BIO_printf(bio, "TSA: ");
246 tsa_name = TS_TST_INFO_get_tsa(a);
247 if (tsa_name == NULL)
248 BIO_printf(bio, "unspecified");
249 else
250 {
251 STACK_OF(CONF_VALUE) *nval;
252 if ((nval = i2v_GENERAL_NAME(NULL, tsa_name, NULL)))
253 X509V3_EXT_val_prn(bio, nval, 0, 0);
254 sk_CONF_VALUE_pop_free(nval, X509V3_conf_free);
255 }
256 BIO_write(bio, "\n", 1);

258 /* Print extensions. */
259 TS_ext_print_bio(bio, TS_TST_INFO_get_exts(a));

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_print.c 5

261 return 1;
262 }

264 static int TS_ACCURACY_print_bio(BIO *bio, const TS_ACCURACY *accuracy)
265 {
266 const ASN1_INTEGER *seconds = TS_ACCURACY_get_seconds(accuracy);
267 const ASN1_INTEGER *millis = TS_ACCURACY_get_millis(accuracy);
268 const ASN1_INTEGER *micros = TS_ACCURACY_get_micros(accuracy);

270 if (seconds != NULL)
271 TS_ASN1_INTEGER_print_bio(bio, seconds);
272 else
273 BIO_printf(bio, "unspecified");
274 BIO_printf(bio, " seconds, ");
275 if (millis != NULL)
276 TS_ASN1_INTEGER_print_bio(bio, millis);
277 else
278 BIO_printf(bio, "unspecified");
279 BIO_printf(bio, " millis, ");
280 if (micros != NULL)
281 TS_ASN1_INTEGER_print_bio(bio, micros);
282 else
283 BIO_printf(bio, "unspecified");
284 BIO_printf(bio, " micros");

286 return 1;
287 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 1

**
 29405 Fri May 30 18:32:11 2014
new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ts/ts_resp_sign.c */
2 /* Written by Zoltan Glozik (zglozik@stones.com) for the OpenSSL
3 * project 2002.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include "cryptlib.h"

61 #if defined(OPENSSL_SYS_UNIX)

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 2

62 #include <sys/time.h>
63 #endif

65 #include <openssl/objects.h>
66 #include <openssl/ts.h>
67 #include <openssl/pkcs7.h>

69 /* Private function declarations. */

71 static ASN1_INTEGER *def_serial_cb(struct TS_resp_ctx *, void *);
72 static int def_time_cb(struct TS_resp_ctx *, void *, long *sec, long *usec);
73 static int def_extension_cb(struct TS_resp_ctx *, X509_EXTENSION *, void *);

75 static void TS_RESP_CTX_init(TS_RESP_CTX *ctx);
76 static void TS_RESP_CTX_cleanup(TS_RESP_CTX *ctx);
77 static int TS_RESP_check_request(TS_RESP_CTX *ctx);
78 static ASN1_OBJECT *TS_RESP_get_policy(TS_RESP_CTX *ctx);
79 static TS_TST_INFO *TS_RESP_create_tst_info(TS_RESP_CTX *ctx,
80 ASN1_OBJECT *policy);
81 static int TS_RESP_process_extensions(TS_RESP_CTX *ctx);
82 static int TS_RESP_sign(TS_RESP_CTX *ctx);

84 static ESS_SIGNING_CERT *ESS_SIGNING_CERT_new_init(X509 *signcert,
85 STACK_OF(X509) *certs);
86 static ESS_CERT_ID *ESS_CERT_ID_new_init(X509 *cert, int issuer_needed);
87 static int TS_TST_INFO_content_new(PKCS7 *p7);
88 static int ESS_add_signing_cert(PKCS7_SIGNER_INFO *si, ESS_SIGNING_CERT *sc);

90 static ASN1_GENERALIZEDTIME *TS_RESP_set_genTime_with_precision(
91 ASN1_GENERALIZEDTIME *, long, long, unsigned);

93 /* Default callbacks for response generation. */

95 static ASN1_INTEGER *def_serial_cb(struct TS_resp_ctx *ctx, void *data)
96 {
97 ASN1_INTEGER *serial = ASN1_INTEGER_new();
98 if (!serial) goto err;
99 if (!ASN1_INTEGER_set(serial, 1)) goto err;
100 return serial;
101 err:
102 TSerr(TS_F_DEF_SERIAL_CB, ERR_R_MALLOC_FAILURE);
103 TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION,
104 "Error during serial number generation.");
105 return NULL;
106 }

108 #if defined(OPENSSL_SYS_UNIX)

110 /* Use the gettimeofday function call. */
111 static int def_time_cb(struct TS_resp_ctx *ctx, void *data,
112 long *sec, long *usec)
113 {
114 struct timeval tv;
115 if (gettimeofday(&tv, NULL) != 0)
116 {
117 TSerr(TS_F_DEF_TIME_CB, TS_R_TIME_SYSCALL_ERROR);
118 TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION,
119 "Time is not available.");
120 TS_RESP_CTX_add_failure_info(ctx, TS_INFO_TIME_NOT_AVAILABLE);
121 return 0;
122 }
123 /* Return time to caller. */
124 *sec = tv.tv_sec;
125 *usec = tv.tv_usec;

127 return 1;

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 3

128 }

130 #else

132 /* Use the time function call that provides only seconds precision. */
133 static int def_time_cb(struct TS_resp_ctx *ctx, void *data,
134 long *sec, long *usec)
135 {
136 time_t t;
137 if (time(&t) == (time_t) -1)
138 {
139 TSerr(TS_F_DEF_TIME_CB, TS_R_TIME_SYSCALL_ERROR);
140 TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION,
141 "Time is not available.");
142 TS_RESP_CTX_add_failure_info(ctx, TS_INFO_TIME_NOT_AVAILABLE);
143 return 0;
144 }
145 /* Return time to caller, only second precision. */
146 *sec = (long) t;
147 *usec = 0;

149 return 1;
150 }

152 #endif

154 static int def_extension_cb(struct TS_resp_ctx *ctx, X509_EXTENSION *ext,
155 void *data)
156 {
157 /* No extensions are processed here. */
158 TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION,
159 "Unsupported extension.");
160 TS_RESP_CTX_add_failure_info(ctx, TS_INFO_UNACCEPTED_EXTENSION);
161 return 0;
162 }

164 /* TS_RESP_CTX management functions. */

166 TS_RESP_CTX *TS_RESP_CTX_new()
167 {
168 TS_RESP_CTX *ctx;

170 if (!(ctx = (TS_RESP_CTX *) OPENSSL_malloc(sizeof(TS_RESP_CTX))))
171 {
172 TSerr(TS_F_TS_RESP_CTX_NEW, ERR_R_MALLOC_FAILURE);
173 return NULL;
174 }
175 memset(ctx, 0, sizeof(TS_RESP_CTX));

177 /* Setting default callbacks. */
178 ctx->serial_cb = def_serial_cb;
179 ctx->time_cb = def_time_cb;
180 ctx->extension_cb = def_extension_cb;

182 return ctx;
183 }

185 void TS_RESP_CTX_free(TS_RESP_CTX *ctx)
186 {
187 if (!ctx) return;

189 X509_free(ctx->signer_cert);
190 EVP_PKEY_free(ctx->signer_key);
191 sk_X509_pop_free(ctx->certs, X509_free);
192 sk_ASN1_OBJECT_pop_free(ctx->policies, ASN1_OBJECT_free);
193 ASN1_OBJECT_free(ctx->default_policy);

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 4

194 sk_EVP_MD_free(ctx->mds); /* No EVP_MD_free method exists. */
195 ASN1_INTEGER_free(ctx->seconds);
196 ASN1_INTEGER_free(ctx->millis);
197 ASN1_INTEGER_free(ctx->micros);
198 OPENSSL_free(ctx);
199 }

201 int TS_RESP_CTX_set_signer_cert(TS_RESP_CTX *ctx, X509 *signer)
202 {
203 if (X509_check_purpose(signer, X509_PURPOSE_TIMESTAMP_SIGN, 0) != 1)
204 {
205 TSerr(TS_F_TS_RESP_CTX_SET_SIGNER_CERT,
206 TS_R_INVALID_SIGNER_CERTIFICATE_PURPOSE);
207 return 0;
208 }
209 if (ctx->signer_cert) X509_free(ctx->signer_cert);
210 ctx->signer_cert = signer;
211 CRYPTO_add(&ctx->signer_cert->references, +1, CRYPTO_LOCK_X509);
212 return 1;
213 }

215 int TS_RESP_CTX_set_signer_key(TS_RESP_CTX *ctx, EVP_PKEY *key)
216 {
217 if (ctx->signer_key) EVP_PKEY_free(ctx->signer_key);
218 ctx->signer_key = key;
219 CRYPTO_add(&ctx->signer_key->references, +1, CRYPTO_LOCK_EVP_PKEY);

221 return 1;
222 }

224 int TS_RESP_CTX_set_def_policy(TS_RESP_CTX *ctx, ASN1_OBJECT *def_policy)
225 {
226 if (ctx->default_policy) ASN1_OBJECT_free(ctx->default_policy);
227 if (!(ctx->default_policy = OBJ_dup(def_policy))) goto err;
228 return 1;
229 err:
230 TSerr(TS_F_TS_RESP_CTX_SET_DEF_POLICY, ERR_R_MALLOC_FAILURE);
231 return 0;
232 }

234 int TS_RESP_CTX_set_certs(TS_RESP_CTX *ctx, STACK_OF(X509) *certs)
235 {
236 int i;

238 if (ctx->certs)
239 {
240 sk_X509_pop_free(ctx->certs, X509_free);
241 ctx->certs = NULL;
242 }
243 if (!certs) return 1;
244 if (!(ctx->certs = sk_X509_dup(certs)))
245 {
246 TSerr(TS_F_TS_RESP_CTX_SET_CERTS, ERR_R_MALLOC_FAILURE);
247 return 0;
248 }
249 for (i = 0; i < sk_X509_num(ctx->certs); ++i)
250 {
251 X509 *cert = sk_X509_value(ctx->certs, i);
252 CRYPTO_add(&cert->references, +1, CRYPTO_LOCK_X509);
253 }

255 return 1;
256 }

258 int TS_RESP_CTX_add_policy(TS_RESP_CTX *ctx, ASN1_OBJECT *policy)
259 {

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 5

260 ASN1_OBJECT *copy = NULL;

262 /* Create new policy stack if necessary. */
263 if (!ctx->policies && !(ctx->policies = sk_ASN1_OBJECT_new_null()))
264 goto err;
265 if (!(copy = OBJ_dup(policy))) goto err;
266 if (!sk_ASN1_OBJECT_push(ctx->policies, copy)) goto err;

268 return 1;
269 err:
270 TSerr(TS_F_TS_RESP_CTX_ADD_POLICY, ERR_R_MALLOC_FAILURE);
271 ASN1_OBJECT_free(copy);
272 return 0;
273 }

275 int TS_RESP_CTX_add_md(TS_RESP_CTX *ctx, const EVP_MD *md)
276 {
277 /* Create new md stack if necessary. */
278 if (!ctx->mds && !(ctx->mds = sk_EVP_MD_new_null()))
279 goto err;
280 /* Add the shared md, no copy needed. */
281 if (!sk_EVP_MD_push(ctx->mds, (EVP_MD *)md)) goto err;

283 return 1;
284 err:
285 TSerr(TS_F_TS_RESP_CTX_ADD_MD, ERR_R_MALLOC_FAILURE);
286 return 0;
287 }

289 #define TS_RESP_CTX_accuracy_free(ctx) \
290 ASN1_INTEGER_free(ctx->seconds); \
291 ctx->seconds = NULL; \
292 ASN1_INTEGER_free(ctx->millis); \
293 ctx->millis = NULL; \
294 ASN1_INTEGER_free(ctx->micros); \
295 ctx->micros = NULL;

297 int TS_RESP_CTX_set_accuracy(TS_RESP_CTX *ctx,
298 int secs, int millis, int micros)
299 {

301 TS_RESP_CTX_accuracy_free(ctx);
302 if (secs && (!(ctx->seconds = ASN1_INTEGER_new())
303 || !ASN1_INTEGER_set(ctx->seconds, secs)))
304 goto err;
305 if (millis && (!(ctx->millis = ASN1_INTEGER_new())
306 || !ASN1_INTEGER_set(ctx->millis, millis)))
307 goto err;
308 if (micros && (!(ctx->micros = ASN1_INTEGER_new())
309 || !ASN1_INTEGER_set(ctx->micros, micros)))
310 goto err;

312 return 1;
313 err:
314 TS_RESP_CTX_accuracy_free(ctx);
315 TSerr(TS_F_TS_RESP_CTX_SET_ACCURACY, ERR_R_MALLOC_FAILURE);
316 return 0;
317 }

319 void TS_RESP_CTX_add_flags(TS_RESP_CTX *ctx, int flags)
320 {
321 ctx->flags |= flags;
322 }

324 void TS_RESP_CTX_set_serial_cb(TS_RESP_CTX *ctx, TS_serial_cb cb, void *data)
325 {

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 6

326 ctx->serial_cb = cb;
327 ctx->serial_cb_data = data;
328 }

330 void TS_RESP_CTX_set_time_cb(TS_RESP_CTX *ctx, TS_time_cb cb, void *data)
331 {
332 ctx->time_cb = cb;
333 ctx->time_cb_data = data;
334 }

336 void TS_RESP_CTX_set_extension_cb(TS_RESP_CTX *ctx,
337 TS_extension_cb cb, void *data)
338 {
339 ctx->extension_cb = cb;
340 ctx->extension_cb_data = data;
341 }

343 int TS_RESP_CTX_set_status_info(TS_RESP_CTX *ctx,
344 int status, const char *text)
345 {
346 TS_STATUS_INFO *si = NULL;
347 ASN1_UTF8STRING *utf8_text = NULL;
348 int ret = 0;

350 if (!(si = TS_STATUS_INFO_new())) goto err;
351 if (!ASN1_INTEGER_set(si->status, status)) goto err;
352 if (text)
353 {
354 if (!(utf8_text = ASN1_UTF8STRING_new())
355 || !ASN1_STRING_set(utf8_text, text, strlen(text)))
356 goto err;
357 if (!si->text && !(si->text = sk_ASN1_UTF8STRING_new_null()))
358 goto err;
359 if (!sk_ASN1_UTF8STRING_push(si->text, utf8_text)) goto err;
360 utf8_text = NULL; /* Ownership is lost. */
361 }
362 if (!TS_RESP_set_status_info(ctx->response, si)) goto err;
363 ret = 1;
364 err:
365 if (!ret)
366 TSerr(TS_F_TS_RESP_CTX_SET_STATUS_INFO, ERR_R_MALLOC_FAILURE);
367 TS_STATUS_INFO_free(si);
368 ASN1_UTF8STRING_free(utf8_text);
369 return ret;
370 }

372 int TS_RESP_CTX_set_status_info_cond(TS_RESP_CTX *ctx,
373 int status, const char *text)
374 {
375 int ret = 1;
376 TS_STATUS_INFO *si = TS_RESP_get_status_info(ctx->response);

378 if (ASN1_INTEGER_get(si->status) == TS_STATUS_GRANTED)
379 {
380 /* Status has not been set, set it now. */
381 ret = TS_RESP_CTX_set_status_info(ctx, status, text);
382 }
383 return ret;
384 }

386 int TS_RESP_CTX_add_failure_info(TS_RESP_CTX *ctx, int failure)
387 {
388 TS_STATUS_INFO *si = TS_RESP_get_status_info(ctx->response);
389 if (!si->failure_info && !(si->failure_info = ASN1_BIT_STRING_new()))
390 goto err;
391 if (!ASN1_BIT_STRING_set_bit(si->failure_info, failure, 1))

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 7

392 goto err;
393 return 1;
394 err:
395 TSerr(TS_F_TS_RESP_CTX_ADD_FAILURE_INFO, ERR_R_MALLOC_FAILURE);
396 return 0;
397 }

399 TS_REQ *TS_RESP_CTX_get_request(TS_RESP_CTX *ctx)
400 {
401 return ctx->request;
402 }

404 TS_TST_INFO *TS_RESP_CTX_get_tst_info(TS_RESP_CTX *ctx)
405 {
406 return ctx->tst_info;
407 }

409 int TS_RESP_CTX_set_clock_precision_digits(TS_RESP_CTX *ctx, unsigned precision)
410 {
411 if (precision > TS_MAX_CLOCK_PRECISION_DIGITS)
412 return 0;
413 ctx->clock_precision_digits = precision;
414 return 1;
415 }

417 /* Main entry method of the response generation. */
418 TS_RESP *TS_RESP_create_response(TS_RESP_CTX *ctx, BIO *req_bio)
419 {
420 ASN1_OBJECT *policy;
421 TS_RESP *response;
422 int result = 0;

424 TS_RESP_CTX_init(ctx);

426 /* Creating the response object. */
427 if (!(ctx->response = TS_RESP_new()))
428 {
429 TSerr(TS_F_TS_RESP_CREATE_RESPONSE, ERR_R_MALLOC_FAILURE);
430 goto end;
431 }

433 /* Parsing DER request. */
434 if (!(ctx->request = d2i_TS_REQ_bio(req_bio, NULL)))
435 {
436 TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION,
437 "Bad request format or "
438 "system error.");
439 TS_RESP_CTX_add_failure_info(ctx, TS_INFO_BAD_DATA_FORMAT);
440 goto end;
441 }

443 /* Setting default status info. */
444 if (!TS_RESP_CTX_set_status_info(ctx, TS_STATUS_GRANTED, NULL))
445 goto end;

447 /* Checking the request format. */
448 if (!TS_RESP_check_request(ctx)) goto end;

450 /* Checking acceptable policies. */
451 if (!(policy = TS_RESP_get_policy(ctx))) goto end;

453 /* Creating the TS_TST_INFO object. */
454 if (!(ctx->tst_info = TS_RESP_create_tst_info(ctx, policy)))
455 goto end;

457 /* Processing extensions. */

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 8

458 if (!TS_RESP_process_extensions(ctx)) goto end;

460 /* Generating the signature. */
461 if (!TS_RESP_sign(ctx)) goto end;

463 /* Everything was successful. */
464 result = 1;
465 end:
466 if (!result)
467 {
468 TSerr(TS_F_TS_RESP_CREATE_RESPONSE, TS_R_RESPONSE_SETUP_ERROR);
469 if (ctx->response != NULL)
470 {
471 if (TS_RESP_CTX_set_status_info_cond(ctx,
472 TS_STATUS_REJECTION, "Error during response "
473 "generation.") == 0)
474 {
475 TS_RESP_free(ctx->response);
476 ctx->response = NULL;
477 }
478 }
479 }
480 response = ctx->response;
481 ctx->response = NULL; /* Ownership will be returned to caller. */
482 TS_RESP_CTX_cleanup(ctx);
483 return response;
484 }

486 /* Initializes the variable part of the context. */
487 static void TS_RESP_CTX_init(TS_RESP_CTX *ctx)
488 {
489 ctx->request = NULL;
490 ctx->response = NULL;
491 ctx->tst_info = NULL;
492 }

494 /* Cleans up the variable part of the context. */
495 static void TS_RESP_CTX_cleanup(TS_RESP_CTX *ctx)
496 {
497 TS_REQ_free(ctx->request);
498 ctx->request = NULL;
499 TS_RESP_free(ctx->response);
500 ctx->response = NULL;
501 TS_TST_INFO_free(ctx->tst_info);
502 ctx->tst_info = NULL;
503 }

505 /* Checks the format and content of the request. */
506 static int TS_RESP_check_request(TS_RESP_CTX *ctx)
507 {
508 TS_REQ *request = ctx->request;
509 TS_MSG_IMPRINT *msg_imprint;
510 X509_ALGOR *md_alg;
511 int md_alg_id;
512 const ASN1_OCTET_STRING *digest;
513 EVP_MD *md = NULL;
514 int i;

516 /* Checking request version. */
517 if (TS_REQ_get_version(request) != 1)
518 {
519 TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION,
520 "Bad request version.");
521 TS_RESP_CTX_add_failure_info(ctx, TS_INFO_BAD_REQUEST);
522 return 0;
523 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 9

525 /* Checking message digest algorithm. */
526 msg_imprint = TS_REQ_get_msg_imprint(request);
527 md_alg = TS_MSG_IMPRINT_get_algo(msg_imprint);
528 md_alg_id = OBJ_obj2nid(md_alg->algorithm);
529 for (i = 0; !md && i < sk_EVP_MD_num(ctx->mds); ++i)
530 {
531 EVP_MD *current_md = sk_EVP_MD_value(ctx->mds, i);
532 if (md_alg_id == EVP_MD_type(current_md))
533 md = current_md;
534 }
535 if (!md)
536 {
537 TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION,
538 "Message digest algorithm is "
539 "not supported.");
540 TS_RESP_CTX_add_failure_info(ctx, TS_INFO_BAD_ALG);
541 return 0;
542 }

544 /* No message digest takes parameter. */
545 if (md_alg->parameter
546 && ASN1_TYPE_get(md_alg->parameter) != V_ASN1_NULL)
547 {
548 TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION,
549 "Superfluous message digest "
550 "parameter.");
551 TS_RESP_CTX_add_failure_info(ctx, TS_INFO_BAD_ALG);
552 return 0;
553 }
554 /* Checking message digest size. */
555 digest = TS_MSG_IMPRINT_get_msg(msg_imprint);
556 if (digest->length != EVP_MD_size(md))
557 {
558 TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION,
559 "Bad message digest.");
560 TS_RESP_CTX_add_failure_info(ctx, TS_INFO_BAD_DATA_FORMAT);
561 return 0;
562 }

564 return 1;
565 }

567 /* Returns the TSA policy based on the requested and acceptable policies. */
568 static ASN1_OBJECT *TS_RESP_get_policy(TS_RESP_CTX *ctx)
569 {
570 ASN1_OBJECT *requested = TS_REQ_get_policy_id(ctx->request);
571 ASN1_OBJECT *policy = NULL;
572 int i;

574 if (ctx->default_policy == NULL)
575 {
576 TSerr(TS_F_TS_RESP_GET_POLICY, TS_R_INVALID_NULL_POINTER);
577 return NULL;
578 }
579 /* Return the default policy if none is requested or the default is
580 requested. */
581 if (!requested || !OBJ_cmp(requested, ctx->default_policy))
582 policy = ctx->default_policy;

584 /* Check if the policy is acceptable. */
585 for (i = 0; !policy && i < sk_ASN1_OBJECT_num(ctx->policies); ++i)
586 {
587 ASN1_OBJECT *current = sk_ASN1_OBJECT_value(ctx->policies, i);
588 if (!OBJ_cmp(requested, current))
589 policy = current;

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 10

590 }
591 if (!policy)
592 {
593 TSerr(TS_F_TS_RESP_GET_POLICY, TS_R_UNACCEPTABLE_POLICY);
594 TS_RESP_CTX_set_status_info(ctx, TS_STATUS_REJECTION,
595 "Requested policy is not "
596 "supported.");
597 TS_RESP_CTX_add_failure_info(ctx, TS_INFO_UNACCEPTED_POLICY);
598 }
599 return policy;
600 }

602 /* Creates the TS_TST_INFO object based on the settings of the context. */
603 static TS_TST_INFO *TS_RESP_create_tst_info(TS_RESP_CTX *ctx,
604 ASN1_OBJECT *policy)
605 {
606 int result = 0;
607 TS_TST_INFO *tst_info = NULL;
608 ASN1_INTEGER *serial = NULL;
609 ASN1_GENERALIZEDTIME *asn1_time = NULL;
610 long sec, usec;
611 TS_ACCURACY *accuracy = NULL;
612 const ASN1_INTEGER *nonce;
613 GENERAL_NAME *tsa_name = NULL;

615 if (!(tst_info = TS_TST_INFO_new())) goto end;
616 if (!TS_TST_INFO_set_version(tst_info, 1)) goto end;
617 if (!TS_TST_INFO_set_policy_id(tst_info, policy)) goto end;
618 if (!TS_TST_INFO_set_msg_imprint(tst_info, ctx->request->msg_imprint))
619 goto end;
620 if (!(serial = (*ctx->serial_cb)(ctx, ctx->serial_cb_data))
621 || !TS_TST_INFO_set_serial(tst_info, serial))
622 goto end;
623 if (!(*ctx->time_cb)(ctx, ctx->time_cb_data, &sec, &usec)
624 || !(asn1_time = TS_RESP_set_genTime_with_precision(NULL,
625 sec, usec,
626 ctx->clock_precision_digits))
627 || !TS_TST_INFO_set_time(tst_info, asn1_time))
628 goto end;

630 /* Setting accuracy if needed. */
631 if ((ctx->seconds || ctx->millis || ctx->micros)
632 && !(accuracy = TS_ACCURACY_new()))
633 goto end;

635 if (ctx->seconds && !TS_ACCURACY_set_seconds(accuracy, ctx->seconds))
636 goto end;
637 if (ctx->millis && !TS_ACCURACY_set_millis(accuracy, ctx->millis))
638 goto end;
639 if (ctx->micros && !TS_ACCURACY_set_micros(accuracy, ctx->micros))
640 goto end;
641 if (accuracy && !TS_TST_INFO_set_accuracy(tst_info, accuracy))
642 goto end;

644 /* Setting ordering. */
645 if ((ctx->flags & TS_ORDERING)
646 && !TS_TST_INFO_set_ordering(tst_info, 1))
647 goto end;
648
649 /* Setting nonce if needed. */
650 if ((nonce = TS_REQ_get_nonce(ctx->request)) != NULL
651 && !TS_TST_INFO_set_nonce(tst_info, nonce))
652 goto end;

654 /* Setting TSA name to subject of signer certificate. */
655 if (ctx->flags & TS_TSA_NAME)

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 11

656 {
657 if (!(tsa_name = GENERAL_NAME_new())) goto end;
658 tsa_name->type = GEN_DIRNAME;
659 tsa_name->d.dirn =
660 X509_NAME_dup(ctx->signer_cert->cert_info->subject);
661 if (!tsa_name->d.dirn) goto end;
662 if (!TS_TST_INFO_set_tsa(tst_info, tsa_name)) goto end;
663 }

665 result = 1;
666 end:
667 if (!result)
668 {
669 TS_TST_INFO_free(tst_info);
670 tst_info = NULL;
671 TSerr(TS_F_TS_RESP_CREATE_TST_INFO, TS_R_TST_INFO_SETUP_ERROR);
672 TS_RESP_CTX_set_status_info_cond(ctx, TS_STATUS_REJECTION,
673 "Error during TSTInfo "
674 "generation.");
675 }
676 GENERAL_NAME_free(tsa_name);
677 TS_ACCURACY_free(accuracy);
678 ASN1_GENERALIZEDTIME_free(asn1_time);
679 ASN1_INTEGER_free(serial);
680
681 return tst_info;
682 }

684 /* Processing the extensions of the request. */
685 static int TS_RESP_process_extensions(TS_RESP_CTX *ctx)
686 {
687 STACK_OF(X509_EXTENSION) *exts = TS_REQ_get_exts(ctx->request);
688 int i;
689 int ok = 1;

691 for (i = 0; ok && i < sk_X509_EXTENSION_num(exts); ++i)
692 {
693 X509_EXTENSION *ext = sk_X509_EXTENSION_value(exts, i);
694 /* XXXXX The last argument was previously
695 (void *)ctx->extension_cb, but ISO C doesn’t permit
696 converting a function pointer to void *. For lack of
697 better information, I’m placing a NULL there instead.
698 The callback can pick its own address out from the ctx
699 anyway...
700 */
701 ok = (*ctx->extension_cb)(ctx, ext, NULL);
702 }

704 return ok;
705 }

707 /* Functions for signing the TS_TST_INFO structure of the context. */
708 static int TS_RESP_sign(TS_RESP_CTX *ctx)
709 {
710 int ret = 0;
711 PKCS7 *p7 = NULL;
712 PKCS7_SIGNER_INFO *si;
713 STACK_OF(X509) *certs; /* Certificates to include in sc. */
714 ESS_SIGNING_CERT *sc = NULL;
715 ASN1_OBJECT *oid;
716 BIO *p7bio = NULL;
717 int i;

719 /* Check if signcert and pkey match. */
720 if (!X509_check_private_key(ctx->signer_cert, ctx->signer_key)) {
721 TSerr(TS_F_TS_RESP_SIGN,

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 12

722 TS_R_PRIVATE_KEY_DOES_NOT_MATCH_CERTIFICATE);
723 goto err;
724 }

726 /* Create a new PKCS7 signed object. */
727 if (!(p7 = PKCS7_new())) {
728 TSerr(TS_F_TS_RESP_SIGN, ERR_R_MALLOC_FAILURE);
729 goto err;
730 }
731 if (!PKCS7_set_type(p7, NID_pkcs7_signed)) goto err;

733 /* Force SignedData version to be 3 instead of the default 1. */
734 if (!ASN1_INTEGER_set(p7->d.sign->version, 3)) goto err;

736 /* Add signer certificate and optional certificate chain. */
737 if (TS_REQ_get_cert_req(ctx->request))
738 {
739 PKCS7_add_certificate(p7, ctx->signer_cert);
740 if (ctx->certs)
741 {
742 for(i = 0; i < sk_X509_num(ctx->certs); ++i)
743 {
744 X509 *cert = sk_X509_value(ctx->certs, i);
745 PKCS7_add_certificate(p7, cert);
746 }
747 }
748 }

750 /* Add a new signer info. */
751 if (!(si = PKCS7_add_signature(p7, ctx->signer_cert,
752 ctx->signer_key, EVP_sha1())))
753 {
754 TSerr(TS_F_TS_RESP_SIGN, TS_R_PKCS7_ADD_SIGNATURE_ERROR);
755 goto err;
756 }

758 /* Add content type signed attribute to the signer info. */
759 oid = OBJ_nid2obj(NID_id_smime_ct_TSTInfo);
760 if (!PKCS7_add_signed_attribute(si, NID_pkcs9_contentType,
761 V_ASN1_OBJECT, oid))
762 {
763 TSerr(TS_F_TS_RESP_SIGN, TS_R_PKCS7_ADD_SIGNED_ATTR_ERROR);
764 goto err;
765 }

767 /* Create the ESS SigningCertificate attribute which contains
768 the signer certificate id and optionally the certificate chain. */
769 certs = ctx->flags & TS_ESS_CERT_ID_CHAIN ? ctx->certs : NULL;
770 if (!(sc = ESS_SIGNING_CERT_new_init(ctx->signer_cert, certs)))
771 goto err;

773 /* Add SigningCertificate signed attribute to the signer info. */
774 if (!ESS_add_signing_cert(si, sc))
775 {
776 TSerr(TS_F_TS_RESP_SIGN, TS_R_ESS_ADD_SIGNING_CERT_ERROR);
777 goto err;
778 }

780 /* Add a new empty NID_id_smime_ct_TSTInfo encapsulated content. */
781 if (!TS_TST_INFO_content_new(p7)) goto err;

783 /* Add the DER encoded tst_info to the PKCS7 structure. */
784 if (!(p7bio = PKCS7_dataInit(p7, NULL))) {
785 TSerr(TS_F_TS_RESP_SIGN, ERR_R_MALLOC_FAILURE);
786 goto err;
787 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 13

789 /* Convert tst_info to DER. */
790 if (!i2d_TS_TST_INFO_bio(p7bio, ctx->tst_info))
791 {
792 TSerr(TS_F_TS_RESP_SIGN, TS_R_TS_DATASIGN);
793 goto err;
794 }

796 /* Create the signature and add it to the signer info. */
797 if (!PKCS7_dataFinal(p7, p7bio))
798 {
799 TSerr(TS_F_TS_RESP_SIGN, TS_R_TS_DATASIGN);
800 goto err;
801 }

803 /* Set new PKCS7 and TST_INFO objects. */
804 TS_RESP_set_tst_info(ctx->response, p7, ctx->tst_info);
805 p7 = NULL; /* Ownership is lost. */
806 ctx->tst_info = NULL; /* Ownership is lost. */

808 ret = 1;
809 err:
810 if (!ret)
811 TS_RESP_CTX_set_status_info_cond(ctx, TS_STATUS_REJECTION,
812 "Error during signature "
813 "generation.");
814 BIO_free_all(p7bio);
815 ESS_SIGNING_CERT_free(sc);
816 PKCS7_free(p7);
817 return ret;
818 }

820 static ESS_SIGNING_CERT *ESS_SIGNING_CERT_new_init(X509 *signcert,
821 STACK_OF(X509) *certs)
822 {
823 ESS_CERT_ID *cid;
824 ESS_SIGNING_CERT *sc = NULL;
825 int i;

827 /* Creating the ESS_CERT_ID stack. */
828 if (!(sc = ESS_SIGNING_CERT_new())) goto err;
829 if (!sc->cert_ids && !(sc->cert_ids = sk_ESS_CERT_ID_new_null()))
830 goto err;

832 /* Adding the signing certificate id. */
833 if (!(cid = ESS_CERT_ID_new_init(signcert, 0))
834 || !sk_ESS_CERT_ID_push(sc->cert_ids, cid))
835 goto err;
836 /* Adding the certificate chain ids. */
837 for (i = 0; i < sk_X509_num(certs); ++i)
838 {
839 X509 *cert = sk_X509_value(certs, i);
840 if (!(cid = ESS_CERT_ID_new_init(cert, 1))
841 || !sk_ESS_CERT_ID_push(sc->cert_ids, cid))
842 goto err;
843 }

845 return sc;
846 err:
847 ESS_SIGNING_CERT_free(sc);
848 TSerr(TS_F_ESS_SIGNING_CERT_NEW_INIT, ERR_R_MALLOC_FAILURE);
849 return NULL;
850 }

852 static ESS_CERT_ID *ESS_CERT_ID_new_init(X509 *cert, int issuer_needed)
853 {

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 14

854 ESS_CERT_ID *cid = NULL;
855 GENERAL_NAME *name = NULL;
856
857 /* Recompute SHA1 hash of certificate if necessary (side effect). */
858 X509_check_purpose(cert, -1, 0);

860 if (!(cid = ESS_CERT_ID_new())) goto err;
861 if (!ASN1_OCTET_STRING_set(cid->hash, cert->sha1_hash,
862 sizeof(cert->sha1_hash)))
863 goto err;

865 /* Setting the issuer/serial if requested. */
866 if (issuer_needed)
867 {
868 /* Creating issuer/serial structure. */
869 if (!cid->issuer_serial
870 && !(cid->issuer_serial = ESS_ISSUER_SERIAL_new()))
871 goto err;
872 /* Creating general name from the certificate issuer. */
873 if (!(name = GENERAL_NAME_new())) goto err;
874 name->type = GEN_DIRNAME;
875 if (!(name->d.dirn = X509_NAME_dup(cert->cert_info->issuer)))
876 goto err;
877 if (!sk_GENERAL_NAME_push(cid->issuer_serial->issuer, name))
878 goto err;
879 name = NULL; /* Ownership is lost. */
880 /* Setting the serial number. */
881 ASN1_INTEGER_free(cid->issuer_serial->serial);
882 if (!(cid->issuer_serial->serial =
883 ASN1_INTEGER_dup(cert->cert_info->serialNumber)))
884 goto err;
885 }

887 return cid;
888 err:
889 GENERAL_NAME_free(name);
890 ESS_CERT_ID_free(cid);
891 TSerr(TS_F_ESS_CERT_ID_NEW_INIT, ERR_R_MALLOC_FAILURE);
892 return NULL;
893 }

895 static int TS_TST_INFO_content_new(PKCS7 *p7)
896 {
897 PKCS7 *ret = NULL;
898 ASN1_OCTET_STRING *octet_string = NULL;

900 /* Create new encapsulated NID_id_smime_ct_TSTInfo content. */
901 if (!(ret = PKCS7_new())) goto err;
902 if (!(ret->d.other = ASN1_TYPE_new())) goto err;
903 ret->type = OBJ_nid2obj(NID_id_smime_ct_TSTInfo);
904 if (!(octet_string = ASN1_OCTET_STRING_new())) goto err;
905 ASN1_TYPE_set(ret->d.other, V_ASN1_OCTET_STRING, octet_string);
906 octet_string = NULL;

908 /* Add encapsulated content to signed PKCS7 structure. */
909 if (!PKCS7_set_content(p7, ret)) goto err;

911 return 1;
912 err:
913 ASN1_OCTET_STRING_free(octet_string);
914 PKCS7_free(ret);
915 return 0;
916 }

918 static int ESS_add_signing_cert(PKCS7_SIGNER_INFO *si, ESS_SIGNING_CERT *sc)
919 {

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 15

920 ASN1_STRING *seq = NULL;
921 unsigned char *p, *pp = NULL;
922 int len;

924 len = i2d_ESS_SIGNING_CERT(sc, NULL);
925 if (!(pp = (unsigned char *) OPENSSL_malloc(len)))
926 {
927 TSerr(TS_F_ESS_ADD_SIGNING_CERT, ERR_R_MALLOC_FAILURE);
928 goto err;
929 }
930 p = pp;
931 i2d_ESS_SIGNING_CERT(sc, &p);
932 if (!(seq = ASN1_STRING_new()) || !ASN1_STRING_set(seq, pp, len))
933 {
934 TSerr(TS_F_ESS_ADD_SIGNING_CERT, ERR_R_MALLOC_FAILURE);
935 goto err;
936 }
937 OPENSSL_free(pp); pp = NULL;
938 return PKCS7_add_signed_attribute(si,
939 NID_id_smime_aa_signingCertificate,
940 V_ASN1_SEQUENCE, seq);
941 err:
942 ASN1_STRING_free(seq);
943 OPENSSL_free(pp);

945 return 0;
946 }

949 static ASN1_GENERALIZEDTIME *
950 TS_RESP_set_genTime_with_precision(ASN1_GENERALIZEDTIME *asn1_time,
951 long sec, long usec, unsigned precision)
952 {
953 time_t time_sec = (time_t) sec;
954 struct tm *tm = NULL;
955 char genTime_str[17 + TS_MAX_CLOCK_PRECISION_DIGITS];
956 char *p = genTime_str;
957 char *p_end = genTime_str + sizeof(genTime_str);

959 if (precision > TS_MAX_CLOCK_PRECISION_DIGITS)
960 goto err;

962
963 if (!(tm = gmtime(&time_sec)))
964 goto err;

966 /*
967 * Put "genTime_str" in GeneralizedTime format. We work around the
968 * restrictions imposed by rfc3280 (i.e. "GeneralizedTime values MUST
969 * NOT include fractional seconds") and OpenSSL related functions to
970 * meet the rfc3161 requirement: "GeneralizedTime syntax can include
971 * fraction-of-second details".
972 */
973 p += BIO_snprintf(p, p_end - p,
974 "%04d%02d%02d%02d%02d%02d",
975 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
976 tm->tm_hour, tm->tm_min, tm->tm_sec);
977 if (precision > 0)
978 {
979 /* Add fraction of seconds (leave space for dot and null). */
980 BIO_snprintf(p, 2 + precision, ".%ld", usec);
981 /* We cannot use the snprintf return value,
982 because it might have been truncated. */
983 p += strlen(p);

985 /* To make things a bit harder, X.690 | ISO/IEC 8825-1 provides

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_sign.c 16

986 the following restrictions for a DER-encoding, which OpenSSL
987 (specifically ASN1_GENERALIZEDTIME_check() function) doesn’t
988 support:
989 "The encoding MUST terminate with a "Z" (which means "Zulu"
990 time). The decimal point element, if present, MUST be the
991 point option ".". The fractional-seconds elements,
992 if present, MUST omit all trailing 0’s;
993 if the elements correspond to 0, they MUST be wholly
994 omitted, and the decimal point element also MUST be
995 omitted." */
996 /* Remove trailing zeros. The dot guarantees the exit
997 condition of this loop even if all the digits are zero. */
998 while (*--p == ’0’)
999 /* empty */;

1000 /* p points to either the dot or the last non-zero digit. */
1001 if (*p != ’.’) ++p;
1002 }
1003 /* Add the trailing Z and the terminating null. */
1004 *p++ = ’Z’;
1005 *p++ = ’\0’;

1007 /* Now call OpenSSL to check and set our genTime value */
1008 if (!asn1_time && !(asn1_time = M_ASN1_GENERALIZEDTIME_new()))
1009 goto err;
1010 if (!ASN1_GENERALIZEDTIME_set_string(asn1_time, genTime_str))
1011 {
1012 ASN1_GENERALIZEDTIME_free(asn1_time);
1013 goto err;
1014 }

1016 return asn1_time;
1017 err:
1018 TSerr(TS_F_TS_RESP_SET_GENTIME_WITH_PRECISION, TS_R_COULD_NOT_SET_TIME);
1019 return NULL;
1020 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_utils.c 1

**
 10072 Fri May 30 18:32:11 2014
new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_utils.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ts/ts_resp_utils.c */
2 /* Written by Zoltan Glozik (zglozik@stones.com) for the OpenSSL
3 * project 2002.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/objects.h>

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_utils.c 2

62 #include <openssl/ts.h>
63 #include <openssl/pkcs7.h>

65 /* Function definitions. */

67 int TS_RESP_set_status_info(TS_RESP *a, TS_STATUS_INFO *status_info)
68 {
69 TS_STATUS_INFO *new_status_info;

71 if (a->status_info == status_info)
72 return 1;
73 new_status_info = TS_STATUS_INFO_dup(status_info);
74 if (new_status_info == NULL)
75 {
76 TSerr(TS_F_TS_RESP_SET_STATUS_INFO, ERR_R_MALLOC_FAILURE);
77 return 0;
78 }
79 TS_STATUS_INFO_free(a->status_info);
80 a->status_info = new_status_info;

82 return 1;
83 }

85 TS_STATUS_INFO *TS_RESP_get_status_info(TS_RESP *a)
86 {
87 return a->status_info;
88 }

90 /* Caller loses ownership of PKCS7 and TS_TST_INFO objects. */
91 void TS_RESP_set_tst_info(TS_RESP *a, PKCS7 *p7, TS_TST_INFO *tst_info)
92 {
93 /* Set new PKCS7 and TST_INFO objects. */
94 PKCS7_free(a->token);
95 a->token = p7;
96 TS_TST_INFO_free(a->tst_info);
97 a->tst_info = tst_info;
98 }

100 PKCS7 *TS_RESP_get_token(TS_RESP *a)
101 {
102 return a->token;
103 }

105 TS_TST_INFO *TS_RESP_get_tst_info(TS_RESP *a)
106 {
107 return a->tst_info;
108 }

110 int TS_TST_INFO_set_version(TS_TST_INFO *a, long version)
111 {
112 return ASN1_INTEGER_set(a->version, version);
113 }

115 long TS_TST_INFO_get_version(const TS_TST_INFO *a)
116 {
117 return ASN1_INTEGER_get(a->version);
118 }

120 int TS_TST_INFO_set_policy_id(TS_TST_INFO *a, ASN1_OBJECT *policy)
121 {
122 ASN1_OBJECT *new_policy;

124 if (a->policy_id == policy)
125 return 1;
126 new_policy = OBJ_dup(policy);
127 if (new_policy == NULL)

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_utils.c 3

128 {
129 TSerr(TS_F_TS_TST_INFO_SET_POLICY_ID, ERR_R_MALLOC_FAILURE);
130 return 0;
131 }
132 ASN1_OBJECT_free(a->policy_id);
133 a->policy_id = new_policy;
134 return 1;
135 }

137 ASN1_OBJECT *TS_TST_INFO_get_policy_id(TS_TST_INFO *a)
138 {
139 return a->policy_id;
140 }

142 int TS_TST_INFO_set_msg_imprint(TS_TST_INFO *a, TS_MSG_IMPRINT *msg_imprint)
143 {
144 TS_MSG_IMPRINT *new_msg_imprint;

146 if (a->msg_imprint == msg_imprint)
147 return 1;
148 new_msg_imprint = TS_MSG_IMPRINT_dup(msg_imprint);
149 if (new_msg_imprint == NULL)
150 {
151 TSerr(TS_F_TS_TST_INFO_SET_MSG_IMPRINT, ERR_R_MALLOC_FAILURE);
152 return 0;
153 }
154 TS_MSG_IMPRINT_free(a->msg_imprint);
155 a->msg_imprint = new_msg_imprint;
156 return 1;
157 }

159 TS_MSG_IMPRINT *TS_TST_INFO_get_msg_imprint(TS_TST_INFO *a)
160 {
161 return a->msg_imprint;
162 }

164 int TS_TST_INFO_set_serial(TS_TST_INFO *a, const ASN1_INTEGER *serial)
165 {
166 ASN1_INTEGER *new_serial;

168 if (a->serial == serial)
169 return 1;
170 new_serial = ASN1_INTEGER_dup(serial);
171 if (new_serial == NULL)
172 {
173 TSerr(TS_F_TS_TST_INFO_SET_SERIAL, ERR_R_MALLOC_FAILURE);
174 return 0;
175 }
176 ASN1_INTEGER_free(a->serial);
177 a->serial = new_serial;
178 return 1;
179 }

181 const ASN1_INTEGER *TS_TST_INFO_get_serial(const TS_TST_INFO *a)
182 {
183 return a->serial;
184 }

186 int TS_TST_INFO_set_time(TS_TST_INFO *a, const ASN1_GENERALIZEDTIME *gtime)
187 {
188 ASN1_GENERALIZEDTIME *new_time;

190 if (a->time == gtime)
191 return 1;
192 new_time = M_ASN1_GENERALIZEDTIME_dup(gtime);
193 if (new_time == NULL)

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_utils.c 4

194 {
195 TSerr(TS_F_TS_TST_INFO_SET_TIME, ERR_R_MALLOC_FAILURE);
196 return 0;
197 }
198 ASN1_GENERALIZEDTIME_free(a->time);
199 a->time = new_time;
200 return 1;
201 }

203 const ASN1_GENERALIZEDTIME *TS_TST_INFO_get_time(const TS_TST_INFO *a)
204 {
205 return a->time;
206 }

208 int TS_TST_INFO_set_accuracy(TS_TST_INFO *a, TS_ACCURACY *accuracy)
209 {
210 TS_ACCURACY *new_accuracy;

212 if (a->accuracy == accuracy)
213 return 1;
214 new_accuracy = TS_ACCURACY_dup(accuracy);
215 if (new_accuracy == NULL)
216 {
217 TSerr(TS_F_TS_TST_INFO_SET_ACCURACY, ERR_R_MALLOC_FAILURE);
218 return 0;
219 }
220 TS_ACCURACY_free(a->accuracy);
221 a->accuracy = new_accuracy;
222 return 1;
223 }

225 TS_ACCURACY *TS_TST_INFO_get_accuracy(TS_TST_INFO *a)
226 {
227 return a->accuracy;
228 }

230 int TS_ACCURACY_set_seconds(TS_ACCURACY *a, const ASN1_INTEGER *seconds)
231 {
232 ASN1_INTEGER *new_seconds;

234 if (a->seconds == seconds)
235 return 1;
236 new_seconds = ASN1_INTEGER_dup(seconds);
237 if (new_seconds == NULL)
238 {
239 TSerr(TS_F_TS_ACCURACY_SET_SECONDS, ERR_R_MALLOC_FAILURE);
240 return 0;
241 }
242 ASN1_INTEGER_free(a->seconds);
243 a->seconds = new_seconds;
244 return 1;
245 }

247 const ASN1_INTEGER *TS_ACCURACY_get_seconds(const TS_ACCURACY *a)
248 {
249 return a->seconds;
250 }

252 int TS_ACCURACY_set_millis(TS_ACCURACY *a, const ASN1_INTEGER *millis)
253 {
254 ASN1_INTEGER *new_millis = NULL;

256 if (a->millis == millis)
257 return 1;
258 if (millis != NULL)
259 {

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_utils.c 5

260 new_millis = ASN1_INTEGER_dup(millis);
261 if (new_millis == NULL)
262 {
263 TSerr(TS_F_TS_ACCURACY_SET_MILLIS,
264 ERR_R_MALLOC_FAILURE);
265 return 0;
266 }
267 }
268 ASN1_INTEGER_free(a->millis);
269 a->millis = new_millis;
270 return 1;
271 }

273 const ASN1_INTEGER *TS_ACCURACY_get_millis(const TS_ACCURACY *a)
274 {
275 return a->millis;
276 }

278 int TS_ACCURACY_set_micros(TS_ACCURACY *a, const ASN1_INTEGER *micros)
279 {
280 ASN1_INTEGER *new_micros = NULL;

282 if (a->micros == micros)
283 return 1;
284 if (micros != NULL)
285 {
286 new_micros = ASN1_INTEGER_dup(micros);
287 if (new_micros == NULL)
288 {
289 TSerr(TS_F_TS_ACCURACY_SET_MICROS,
290 ERR_R_MALLOC_FAILURE);
291 return 0;
292 }
293 }
294 ASN1_INTEGER_free(a->micros);
295 a->micros = new_micros;
296 return 1;
297 }

299 const ASN1_INTEGER *TS_ACCURACY_get_micros(const TS_ACCURACY *a)
300 {
301 return a->micros;
302 }

304 int TS_TST_INFO_set_ordering(TS_TST_INFO *a, int ordering)
305 {
306 a->ordering = ordering ? 0xFF : 0x00;
307 return 1;
308 }

310 int TS_TST_INFO_get_ordering(const TS_TST_INFO *a)
311 {
312 return a->ordering ? 1 : 0;
313 }

315 int TS_TST_INFO_set_nonce(TS_TST_INFO *a, const ASN1_INTEGER *nonce)
316 {
317 ASN1_INTEGER *new_nonce;

319 if (a->nonce == nonce)
320 return 1;
321 new_nonce = ASN1_INTEGER_dup(nonce);
322 if (new_nonce == NULL)
323 {
324 TSerr(TS_F_TS_TST_INFO_SET_NONCE, ERR_R_MALLOC_FAILURE);
325 return 0;

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_utils.c 6

326 }
327 ASN1_INTEGER_free(a->nonce);
328 a->nonce = new_nonce;
329 return 1;
330 }

332 const ASN1_INTEGER *TS_TST_INFO_get_nonce(const TS_TST_INFO *a)
333 {
334 return a->nonce;
335 }

337 int TS_TST_INFO_set_tsa(TS_TST_INFO *a, GENERAL_NAME *tsa)
338 {
339 GENERAL_NAME *new_tsa;

341 if (a->tsa == tsa)
342 return 1;
343 new_tsa = GENERAL_NAME_dup(tsa);
344 if (new_tsa == NULL)
345 {
346 TSerr(TS_F_TS_TST_INFO_SET_TSA, ERR_R_MALLOC_FAILURE);
347 return 0;
348 }
349 GENERAL_NAME_free(a->tsa);
350 a->tsa = new_tsa;
351 return 1;
352 }

354 GENERAL_NAME *TS_TST_INFO_get_tsa(TS_TST_INFO *a)
355 {
356 return a->tsa;
357 }

359 STACK_OF(X509_EXTENSION) *TS_TST_INFO_get_exts(TS_TST_INFO *a)
360 {
361 return a->extensions;
362 }

364 void TS_TST_INFO_ext_free(TS_TST_INFO *a)
365 {
366 if (!a) return;
367 sk_X509_EXTENSION_pop_free(a->extensions, X509_EXTENSION_free);
368 a->extensions = NULL;
369 }

371 int TS_TST_INFO_get_ext_count(TS_TST_INFO *a)
372 {
373 return X509v3_get_ext_count(a->extensions);
374 }

376 int TS_TST_INFO_get_ext_by_NID(TS_TST_INFO *a, int nid, int lastpos)
377 {
378 return X509v3_get_ext_by_NID(a->extensions, nid, lastpos);
379 }

381 int TS_TST_INFO_get_ext_by_OBJ(TS_TST_INFO *a, ASN1_OBJECT *obj, int lastpos)
382 {
383 return X509v3_get_ext_by_OBJ(a->extensions, obj, lastpos);
384 }

386 int TS_TST_INFO_get_ext_by_critical(TS_TST_INFO *a, int crit, int lastpos)
387 {
388 return X509v3_get_ext_by_critical(a->extensions, crit, lastpos);
389 }

391 X509_EXTENSION *TS_TST_INFO_get_ext(TS_TST_INFO *a, int loc)

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_utils.c 7

392 {
393 return X509v3_get_ext(a->extensions,loc);
394 }

396 X509_EXTENSION *TS_TST_INFO_delete_ext(TS_TST_INFO *a, int loc)
397 {
398 return X509v3_delete_ext(a->extensions,loc);
399 }

401 int TS_TST_INFO_add_ext(TS_TST_INFO *a, X509_EXTENSION *ex, int loc)
402 {
403 return X509v3_add_ext(&a->extensions,ex,loc) != NULL;
404 }

406 void *TS_TST_INFO_get_ext_d2i(TS_TST_INFO *a, int nid, int *crit, int *idx)
407 {
408 return X509V3_get_d2i(a->extensions, nid, crit, idx);
409 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_verify.c 1

**
 21702 Fri May 30 18:32:11 2014
new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_verify.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ts/ts_resp_verify.c */
2 /* Written by Zoltan Glozik (zglozik@stones.com) for the OpenSSL
3 * project 2002.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/objects.h>

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_verify.c 2

62 #include <openssl/ts.h>
63 #include <openssl/pkcs7.h>

65 /* Private function declarations. */

67 static int TS_verify_cert(X509_STORE *store, STACK_OF(X509) *untrusted,
68 X509 *signer, STACK_OF(X509) **chain);
69 static int TS_check_signing_certs(PKCS7_SIGNER_INFO *si, STACK_OF(X509) *chain);
70 static ESS_SIGNING_CERT *ESS_get_signing_cert(PKCS7_SIGNER_INFO *si);
71 static int TS_find_cert(STACK_OF(ESS_CERT_ID) *cert_ids, X509 *cert);
72 static int TS_issuer_serial_cmp(ESS_ISSUER_SERIAL *is, X509_CINF *cinfo);
73 static int int_TS_RESP_verify_token(TS_VERIFY_CTX *ctx,
74 PKCS7 *token, TS_TST_INFO *tst_info);
75 static int TS_check_status_info(TS_RESP *response);
76 static char *TS_get_status_text(STACK_OF(ASN1_UTF8STRING) *text);
77 static int TS_check_policy(ASN1_OBJECT *req_oid, TS_TST_INFO *tst_info);
78 static int TS_compute_imprint(BIO *data, TS_TST_INFO *tst_info,
79 X509_ALGOR **md_alg,
80 unsigned char **imprint, unsigned *imprint_len);
81 static int TS_check_imprints(X509_ALGOR *algor_a,
82 unsigned char *imprint_a, unsigned len_a,
83 TS_TST_INFO *tst_info);
84 static int TS_check_nonces(const ASN1_INTEGER *a, TS_TST_INFO *tst_info);
85 static int TS_check_signer_name(GENERAL_NAME *tsa_name, X509 *signer);
86 static int TS_find_name(STACK_OF(GENERAL_NAME) *gen_names, GENERAL_NAME *name);

88 /*
89 * Local mapping between response codes and descriptions.
90 * Don’t forget to change TS_STATUS_BUF_SIZE when modifying
91 * the elements of this array.
92 */
93 static const char *TS_status_text[] =
94 { "granted",
95 "grantedWithMods",
96 "rejection",
97 "waiting",
98 "revocationWarning",
99 "revocationNotification" };

101 #define TS_STATUS_TEXT_SIZE (sizeof(TS_status_text)/sizeof(*TS_status_text))

103 /*
104 * This must be greater or equal to the sum of the strings in TS_status_text
105 * plus the number of its elements.
106 */
107 #define TS_STATUS_BUF_SIZE 256

109 static struct
110 {
111 int code;
112 const char *text;
113 } TS_failure_info[] =
114 { { TS_INFO_BAD_ALG, "badAlg" },
115 { TS_INFO_BAD_REQUEST, "badRequest" },
116 { TS_INFO_BAD_DATA_FORMAT, "badDataFormat" },
117 { TS_INFO_TIME_NOT_AVAILABLE, "timeNotAvailable" },
118 { TS_INFO_UNACCEPTED_POLICY, "unacceptedPolicy" },
119 { TS_INFO_UNACCEPTED_EXTENSION, "unacceptedExtension" },
120 { TS_INFO_ADD_INFO_NOT_AVAILABLE, "addInfoNotAvailable" },
121 { TS_INFO_SYSTEM_FAILURE, "systemFailure" } };

123 #define TS_FAILURE_INFO_SIZE (sizeof(TS_failure_info) / \
124 sizeof(*TS_failure_info))

126 /* Functions for verifying a signed TS_TST_INFO structure. */

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_verify.c 3

128 /*
129 * This function carries out the following tasks:
130 * - Checks if there is one and only one signer.
131 * - Search for the signing certificate in ’certs’ and in the response.
132 * - Check the extended key usage and key usage fields of the signer
133 * certificate (done by the path validation).
134 * - Build and validate the certificate path.
135 * - Check if the certificate path meets the requirements of the
136 * SigningCertificate ESS signed attribute.
137 * - Verify the signature value.
138 * - Returns the signer certificate in ’signer’, if ’signer’ is not NULL.
139 */
140 int TS_RESP_verify_signature(PKCS7 *token, STACK_OF(X509) *certs,
141 X509_STORE *store, X509 **signer_out)
142 {
143 STACK_OF(PKCS7_SIGNER_INFO) *sinfos = NULL;
144 PKCS7_SIGNER_INFO *si;
145 STACK_OF(X509) *signers = NULL;
146 X509 *signer;
147 STACK_OF(X509) *chain = NULL;
148 char buf[4096];
149 int i, j = 0, ret = 0;
150 BIO *p7bio = NULL;

152 /* Some sanity checks first. */
153 if (!token)
154 {
155 TSerr(TS_F_TS_RESP_VERIFY_SIGNATURE, TS_R_INVALID_NULL_POINTER);
156 goto err;
157 }

159 /* Check for the correct content type */
160 if(!PKCS7_type_is_signed(token))
161 {
162 TSerr(TS_F_TS_RESP_VERIFY_SIGNATURE, TS_R_WRONG_CONTENT_TYPE);
163 goto err;
164 }

166 /* Check if there is one and only one signer. */
167 sinfos = PKCS7_get_signer_info(token);
168 if (!sinfos || sk_PKCS7_SIGNER_INFO_num(sinfos) != 1)
169 {
170 TSerr(TS_F_TS_RESP_VERIFY_SIGNATURE,
171 TS_R_THERE_MUST_BE_ONE_SIGNER);
172 goto err;
173 }
174 si = sk_PKCS7_SIGNER_INFO_value(sinfos, 0);

176 /* Check for no content: no data to verify signature. */
177 if (PKCS7_get_detached(token))
178 {
179 TSerr(TS_F_TS_RESP_VERIFY_SIGNATURE, TS_R_NO_CONTENT);
180 goto err;
181 }
182
183 /* Get hold of the signer certificate, search only internal
184 certificates if it was requested. */
185 signers = PKCS7_get0_signers(token, certs, 0);
186 if (!signers || sk_X509_num(signers) != 1) goto err;
187 signer = sk_X509_value(signers, 0);

189 /* Now verify the certificate. */
190 if (!TS_verify_cert(store, certs, signer, &chain)) goto err;

192 /* Check if the signer certificate is consistent with the
193 ESS extension. */

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_verify.c 4

194 if (!TS_check_signing_certs(si, chain)) goto err;

196 /* Creating the message digest. */
197 p7bio = PKCS7_dataInit(token, NULL);

199 /* We now have to ’read’ from p7bio to calculate digests etc. */
200 while ((i = BIO_read(p7bio,buf,sizeof(buf))) > 0);

202 /* Verifying the signature. */
203 j = PKCS7_signatureVerify(p7bio, token, si, signer);
204 if (j <= 0)
205 {
206 TSerr(TS_F_TS_RESP_VERIFY_SIGNATURE, TS_R_SIGNATURE_FAILURE);
207 goto err;
208 }

210 /* Return the signer certificate if needed. */
211 if (signer_out)
212 {
213 *signer_out = signer;
214 CRYPTO_add(&signer->references, 1, CRYPTO_LOCK_X509);
215 }

217 ret = 1;

219 err:
220 BIO_free_all(p7bio);
221 sk_X509_pop_free(chain, X509_free);
222 sk_X509_free(signers);

224 return ret;
225 }

227 /*
228 * The certificate chain is returned in chain. Caller is responsible for
229 * freeing the vector.
230 */
231 static int TS_verify_cert(X509_STORE *store, STACK_OF(X509) *untrusted,
232 X509 *signer, STACK_OF(X509) **chain)
233 {
234 X509_STORE_CTX cert_ctx;
235 int i;
236 int ret = 1;

238 /* chain is an out argument. */
239 *chain = NULL;
240 X509_STORE_CTX_init(&cert_ctx, store, signer, untrusted);
241 X509_STORE_CTX_set_purpose(&cert_ctx, X509_PURPOSE_TIMESTAMP_SIGN);
242 i = X509_verify_cert(&cert_ctx);
243 if (i <= 0)
244 {
245 int j = X509_STORE_CTX_get_error(&cert_ctx);
246 TSerr(TS_F_TS_VERIFY_CERT, TS_R_CERTIFICATE_VERIFY_ERROR);
247 ERR_add_error_data(2, "Verify error:",
248 X509_verify_cert_error_string(j));
249 ret = 0;
250 }
251 else
252 {
253 /* Get a copy of the certificate chain. */
254 *chain = X509_STORE_CTX_get1_chain(&cert_ctx);
255 }

257 X509_STORE_CTX_cleanup(&cert_ctx);

259 return ret;

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_verify.c 5

260 }

262 static int TS_check_signing_certs(PKCS7_SIGNER_INFO *si, STACK_OF(X509) *chain)
263 {
264 ESS_SIGNING_CERT *ss = ESS_get_signing_cert(si);
265 STACK_OF(ESS_CERT_ID) *cert_ids = NULL;
266 X509 *cert;
267 int i = 0;
268 int ret = 0;

270 if (!ss) goto err;
271 cert_ids = ss->cert_ids;
272 /* The signer certificate must be the first in cert_ids. */
273 cert = sk_X509_value(chain, 0);
274 if (TS_find_cert(cert_ids, cert) != 0) goto err;
275
276 /* Check the other certificates of the chain if there are more
277 than one certificate ids in cert_ids. */
278 if (sk_ESS_CERT_ID_num(cert_ids) > 1)
279 {
280 /* All the certificates of the chain must be in cert_ids. */
281 for (i = 1; i < sk_X509_num(chain); ++i)
282 {
283 cert = sk_X509_value(chain, i);
284 if (TS_find_cert(cert_ids, cert) < 0) goto err;
285 }
286 }
287 ret = 1;
288 err:
289 if (!ret)
290 TSerr(TS_F_TS_CHECK_SIGNING_CERTS,
291 TS_R_ESS_SIGNING_CERTIFICATE_ERROR);
292 ESS_SIGNING_CERT_free(ss);
293 return ret;
294 }

296 static ESS_SIGNING_CERT *ESS_get_signing_cert(PKCS7_SIGNER_INFO *si)
297 {
298 ASN1_TYPE *attr;
299 const unsigned char *p;
300 attr = PKCS7_get_signed_attribute(si,
301 NID_id_smime_aa_signingCertificate);
302 if (!attr) return NULL;
303 p = attr->value.sequence->data;
304 return d2i_ESS_SIGNING_CERT(NULL, &p, attr->value.sequence->length);
305 }

307 /* Returns < 0 if certificate is not found, certificate index otherwise. */
308 static int TS_find_cert(STACK_OF(ESS_CERT_ID) *cert_ids, X509 *cert)
309 {
310 int i;

312 if (!cert_ids || !cert) return -1;

314 /* Recompute SHA1 hash of certificate if necessary (side effect). */
315 X509_check_purpose(cert, -1, 0);

317 /* Look for cert in the cert_ids vector. */
318 for (i = 0; i < sk_ESS_CERT_ID_num(cert_ids); ++i)
319 {
320 ESS_CERT_ID *cid = sk_ESS_CERT_ID_value(cert_ids, i);

322 /* Check the SHA-1 hash first. */
323 if (cid->hash->length == sizeof(cert->sha1_hash)
324 && !memcmp(cid->hash->data, cert->sha1_hash,
325 sizeof(cert->sha1_hash)))

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_verify.c 6

326 {
327 /* Check the issuer/serial as well if specified. */
328 ESS_ISSUER_SERIAL *is = cid->issuer_serial;
329 if (!is || !TS_issuer_serial_cmp(is, cert->cert_info))
330 return i;
331 }
332 }
333
334 return -1;
335 }

337 static int TS_issuer_serial_cmp(ESS_ISSUER_SERIAL *is, X509_CINF *cinfo)
338 {
339 GENERAL_NAME *issuer;

341 if (!is || !cinfo || sk_GENERAL_NAME_num(is->issuer) != 1) return -1;

343 /* Check the issuer first. It must be a directory name. */
344 issuer = sk_GENERAL_NAME_value(is->issuer, 0);
345 if (issuer->type != GEN_DIRNAME
346 || X509_NAME_cmp(issuer->d.dirn, cinfo->issuer))
347 return -1;

349 /* Check the serial number, too. */
350 if (ASN1_INTEGER_cmp(is->serial, cinfo->serialNumber))
351 return -1;

353 return 0;
354 }

356 /*
357 * Verifies whether ’response’ contains a valid response with regards
358 * to the settings of the context:
359 * - Gives an error message if the TS_TST_INFO is not present.
360 * - Calls _TS_RESP_verify_token to verify the token content.
361 */
362 int TS_RESP_verify_response(TS_VERIFY_CTX *ctx, TS_RESP *response)
363 {
364 PKCS7 *token = TS_RESP_get_token(response);
365 TS_TST_INFO *tst_info = TS_RESP_get_tst_info(response);
366 int ret = 0;

368 /* Check if we have a successful TS_TST_INFO object in place. */
369 if (!TS_check_status_info(response)) goto err;

371 /* Check the contents of the time stamp token. */
372 if (!int_TS_RESP_verify_token(ctx, token, tst_info))
373 goto err;

375 ret = 1;
376 err:
377 return ret;
378 }

380 /*
381 * Tries to extract a TS_TST_INFO structure from the PKCS7 token and
382 * calls the internal int_TS_RESP_verify_token function for verifying it.
383 */
384 int TS_RESP_verify_token(TS_VERIFY_CTX *ctx, PKCS7 *token)
385 {
386 TS_TST_INFO *tst_info = PKCS7_to_TS_TST_INFO(token);
387 int ret = 0;
388 if (tst_info)
389 {
390 ret = int_TS_RESP_verify_token(ctx, token, tst_info);
391 TS_TST_INFO_free(tst_info);

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_verify.c 7

392 }
393 return ret;
394 }

396 /*
397 * Verifies whether the ’token’ contains a valid time stamp token
398 * with regards to the settings of the context. Only those checks are
399 * carried out that are specified in the context:
400 * - Verifies the signature of the TS_TST_INFO.
401 * - Checks the version number of the response.
402 * - Check if the requested and returned policies math.
403 * - Check if the message imprints are the same.
404 * - Check if the nonces are the same.
405 * - Check if the TSA name matches the signer.
406 * - Check if the TSA name is the expected TSA.
407 */
408 static int int_TS_RESP_verify_token(TS_VERIFY_CTX *ctx,
409 PKCS7 *token, TS_TST_INFO *tst_info)
410 {
411 X509 *signer = NULL;
412 GENERAL_NAME *tsa_name = TS_TST_INFO_get_tsa(tst_info);
413 X509_ALGOR *md_alg = NULL;
414 unsigned char *imprint = NULL;
415 unsigned imprint_len = 0;
416 int ret = 0;

418 /* Verify the signature. */
419 if ((ctx->flags & TS_VFY_SIGNATURE)
420 && !TS_RESP_verify_signature(token, ctx->certs, ctx->store,
421 &signer))
422 goto err;
423
424 /* Check version number of response. */
425 if ((ctx->flags & TS_VFY_VERSION)
426 && TS_TST_INFO_get_version(tst_info) != 1)
427 {
428 TSerr(TS_F_INT_TS_RESP_VERIFY_TOKEN, TS_R_UNSUPPORTED_VERSION);
429 goto err;
430 }

432 /* Check policies. */
433 if ((ctx->flags & TS_VFY_POLICY)
434 && !TS_check_policy(ctx->policy, tst_info))
435 goto err;
436
437 /* Check message imprints. */
438 if ((ctx->flags & TS_VFY_IMPRINT)
439 && !TS_check_imprints(ctx->md_alg, ctx->imprint, ctx->imprint_len,
440 tst_info))
441 goto err;

443 /* Compute and check message imprints. */
444 if ((ctx->flags & TS_VFY_DATA)
445 && (!TS_compute_imprint(ctx->data, tst_info,
446 &md_alg, &imprint, &imprint_len)
447 || !TS_check_imprints(md_alg, imprint, imprint_len, tst_info)))
448 goto err;

450 /* Check nonces. */
451 if ((ctx->flags & TS_VFY_NONCE)
452 && !TS_check_nonces(ctx->nonce, tst_info))
453 goto err;

455 /* Check whether TSA name and signer certificate match. */
456 if ((ctx->flags & TS_VFY_SIGNER)
457 && tsa_name && !TS_check_signer_name(tsa_name, signer))

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_verify.c 8

458 {
459 TSerr(TS_F_INT_TS_RESP_VERIFY_TOKEN, TS_R_TSA_NAME_MISMATCH);
460 goto err;
461 }

463 /* Check whether the TSA is the expected one. */
464 if ((ctx->flags & TS_VFY_TSA_NAME)
465 && !TS_check_signer_name(ctx->tsa_name, signer))
466 {
467 TSerr(TS_F_INT_TS_RESP_VERIFY_TOKEN, TS_R_TSA_UNTRUSTED);
468 goto err;
469 }

471 ret = 1;
472 err:
473 X509_free(signer);
474 X509_ALGOR_free(md_alg);
475 OPENSSL_free(imprint);
476 return ret;
477 }

479 static int TS_check_status_info(TS_RESP *response)
480 {
481 TS_STATUS_INFO *info = TS_RESP_get_status_info(response);
482 long status = ASN1_INTEGER_get(info->status);
483 const char *status_text = NULL;
484 char *embedded_status_text = NULL;
485 char failure_text[TS_STATUS_BUF_SIZE] = "";

487 /* Check if everything went fine. */
488 if (status == 0 || status == 1) return 1;

490 /* There was an error, get the description in status_text. */
491 if (0 <= status && status < (long)TS_STATUS_TEXT_SIZE)
492 status_text = TS_status_text[status];
493 else
494 status_text = "unknown code";

496 /* Set the embedded_status_text to the returned description. */
497 if (sk_ASN1_UTF8STRING_num(info->text) > 0
498 && !(embedded_status_text = TS_get_status_text(info->text)))
499 return 0;
500
501 /* Filling in failure_text with the failure information. */
502 if (info->failure_info)
503 {
504 int i;
505 int first = 1;
506 for (i = 0; i < (int)TS_FAILURE_INFO_SIZE; ++i)
507 {
508 if (ASN1_BIT_STRING_get_bit(info->failure_info,
509 TS_failure_info[i].code))
510 {
511 if (!first)
512 strcpy(failure_text, ",");
513 else
514 first = 0;
515 strcat(failure_text, TS_failure_info[i].text);
516 }
517 }
518 }
519 if (failure_text[0] == ’\0’)
520 strcpy(failure_text, "unspecified");

522 /* Making up the error string. */
523 TSerr(TS_F_TS_CHECK_STATUS_INFO, TS_R_NO_TIME_STAMP_TOKEN);

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_verify.c 9

524 ERR_add_error_data(6,
525 "status code: ", status_text,
526 ", status text: ", embedded_status_text ?
527 embedded_status_text : "unspecified",
528 ", failure codes: ", failure_text);
529 OPENSSL_free(embedded_status_text);

531 return 0;
532 }

534 static char *TS_get_status_text(STACK_OF(ASN1_UTF8STRING) *text)
535 {
536 int i;
537 unsigned int length = 0;
538 char *result = NULL;
539 char *p;

541 /* Determine length first. */
542 for (i = 0; i < sk_ASN1_UTF8STRING_num(text); ++i)
543 {
544 ASN1_UTF8STRING *current = sk_ASN1_UTF8STRING_value(text, i);
545 length += ASN1_STRING_length(current);
546 length += 1; /* separator character */
547 }
548 /* Allocate memory (closing ’\0’ included). */
549 if (!(result = OPENSSL_malloc(length)))
550 {
551 TSerr(TS_F_TS_GET_STATUS_TEXT, ERR_R_MALLOC_FAILURE);
552 return NULL;
553 }
554 /* Concatenate the descriptions. */
555 for (i = 0, p = result; i < sk_ASN1_UTF8STRING_num(text); ++i)
556 {
557 ASN1_UTF8STRING *current = sk_ASN1_UTF8STRING_value(text, i);
558 length = ASN1_STRING_length(current);
559 if (i > 0) *p++ = ’/’;
560 strncpy(p, (const char *)ASN1_STRING_data(current), length);
561 p += length;
562 }
563 /* We do have space for this, too. */
564 *p = ’\0’;
565
566 return result;
567 }

569 static int TS_check_policy(ASN1_OBJECT *req_oid, TS_TST_INFO *tst_info)
570 {
571 ASN1_OBJECT *resp_oid = TS_TST_INFO_get_policy_id(tst_info);

573 if (OBJ_cmp(req_oid, resp_oid) != 0)
574 {
575 TSerr(TS_F_TS_CHECK_POLICY, TS_R_POLICY_MISMATCH);
576 return 0;
577 }

579 return 1;
580 }

582 static int TS_compute_imprint(BIO *data, TS_TST_INFO *tst_info,
583 X509_ALGOR **md_alg,
584 unsigned char **imprint, unsigned *imprint_len)
585 {
586 TS_MSG_IMPRINT *msg_imprint = TS_TST_INFO_get_msg_imprint(tst_info);
587 X509_ALGOR *md_alg_resp = TS_MSG_IMPRINT_get_algo(msg_imprint);
588 const EVP_MD *md;
589 EVP_MD_CTX md_ctx;

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_verify.c 10

590 unsigned char buffer[4096];
591 int length;

593 *md_alg = NULL;
594 *imprint = NULL;

596 /* Return the MD algorithm of the response. */
597 if (!(*md_alg = X509_ALGOR_dup(md_alg_resp))) goto err;

599 /* Getting the MD object. */
600 if (!(md = EVP_get_digestbyobj((*md_alg)->algorithm)))
601 {
602 TSerr(TS_F_TS_COMPUTE_IMPRINT, TS_R_UNSUPPORTED_MD_ALGORITHM);
603 goto err;
604 }

606 /* Compute message digest. */
607 length = EVP_MD_size(md);
608 if (length < 0)
609 goto err;
610 *imprint_len = length;
611 if (!(*imprint = OPENSSL_malloc(*imprint_len)))
612 {
613 TSerr(TS_F_TS_COMPUTE_IMPRINT, ERR_R_MALLOC_FAILURE);
614 goto err;
615 }

617 if (!EVP_DigestInit(&md_ctx, md))
618 goto err;
619 while ((length = BIO_read(data, buffer, sizeof(buffer))) > 0)
620 {
621 if (!EVP_DigestUpdate(&md_ctx, buffer, length))
622 goto err;
623 }
624 if (!EVP_DigestFinal(&md_ctx, *imprint, NULL))
625 goto err;

627 return 1;
628 err:
629 X509_ALGOR_free(*md_alg);
630 OPENSSL_free(*imprint);
631 *imprint_len = 0;
632 return 0;
633 }

635 static int TS_check_imprints(X509_ALGOR *algor_a,
636 unsigned char *imprint_a, unsigned len_a,
637 TS_TST_INFO *tst_info)
638 {
639 TS_MSG_IMPRINT *b = TS_TST_INFO_get_msg_imprint(tst_info);
640 X509_ALGOR *algor_b = TS_MSG_IMPRINT_get_algo(b);
641 int ret = 0;

643 /* algor_a is optional. */
644 if (algor_a)
645 {
646 /* Compare algorithm OIDs. */
647 if (OBJ_cmp(algor_a->algorithm, algor_b->algorithm)) goto err;

649 /* The parameter must be NULL in both. */
650 if ((algor_a->parameter
651 && ASN1_TYPE_get(algor_a->parameter) != V_ASN1_NULL)
652 || (algor_b->parameter
653 && ASN1_TYPE_get(algor_b->parameter) != V_ASN1_NULL))
654 goto err;
655 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_verify.c 11

657 /* Compare octet strings. */
658 ret = len_a == (unsigned) ASN1_STRING_length(b->hashed_msg) &&
659 memcmp(imprint_a, ASN1_STRING_data(b->hashed_msg), len_a) == 0;
660 err:
661 if (!ret)
662 TSerr(TS_F_TS_CHECK_IMPRINTS, TS_R_MESSAGE_IMPRINT_MISMATCH);
663 return ret;
664 }

666 static int TS_check_nonces(const ASN1_INTEGER *a, TS_TST_INFO *tst_info)
667 {
668 const ASN1_INTEGER *b = TS_TST_INFO_get_nonce(tst_info);

670 /* Error if nonce is missing. */
671 if (!b)
672 {
673 TSerr(TS_F_TS_CHECK_NONCES, TS_R_NONCE_NOT_RETURNED);
674 return 0;
675 }

677 /* No error if a nonce is returned without being requested. */
678 if (ASN1_INTEGER_cmp(a, b) != 0)
679 {
680 TSerr(TS_F_TS_CHECK_NONCES, TS_R_NONCE_MISMATCH);
681 return 0;
682 }

684 return 1;
685 }

687 /* Check if the specified TSA name matches either the subject
688 or one of the subject alternative names of the TSA certificate. */
689 static int TS_check_signer_name(GENERAL_NAME *tsa_name, X509 *signer)
690 {
691 STACK_OF(GENERAL_NAME) *gen_names = NULL;
692 int idx = -1;
693 int found = 0;

695 /* Check the subject name first. */
696 if (tsa_name->type == GEN_DIRNAME
697 && X509_name_cmp(tsa_name->d.dirn, signer->cert_info->subject) == 0)
698 return 1;

700 /* Check all the alternative names. */
701 gen_names = X509_get_ext_d2i(signer, NID_subject_alt_name,
702 NULL, &idx);
703 while (gen_names != NULL
704 && !(found = TS_find_name(gen_names, tsa_name) >= 0))
705 {
706 /* Get the next subject alternative name,
707 although there should be no more than one. */
708 GENERAL_NAMES_free(gen_names);
709 gen_names = X509_get_ext_d2i(signer, NID_subject_alt_name,
710 NULL, &idx);
711 }
712 if (gen_names) GENERAL_NAMES_free(gen_names);
713
714 return found;
715 }

717 /* Returns 1 if name is in gen_names, 0 otherwise. */
718 static int TS_find_name(STACK_OF(GENERAL_NAME) *gen_names, GENERAL_NAME *name)
719 {
720 int i, found;
721 for (i = 0, found = 0; !found && i < sk_GENERAL_NAME_num(gen_names);

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_rsp_verify.c 12

722 ++i)
723 {
724 GENERAL_NAME *current = sk_GENERAL_NAME_value(gen_names, i);
725 found = GENERAL_NAME_cmp(current, name) == 0;
726 }
727 return found ? i - 1 : -1;
728 }

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_verify_ctx.c 1

**
 4983 Fri May 30 18:32:11 2014
new/usr/src/lib/openssl/libsunw_crypto/ts/ts_verify_ctx.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ts/ts_verify_ctx.c */
2 /* Written by Zoltan Glozik (zglozik@stones.com) for the OpenSSL
3 * project 2003.
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include "cryptlib.h"
60 #include <openssl/objects.h>
61 #include <openssl/ts.h>

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_verify_ctx.c 2

63 TS_VERIFY_CTX *TS_VERIFY_CTX_new(void)
64 {
65 TS_VERIFY_CTX *ctx =
66 (TS_VERIFY_CTX *) OPENSSL_malloc(sizeof(TS_VERIFY_CTX));
67 if (ctx)
68 memset(ctx, 0, sizeof(TS_VERIFY_CTX));
69 else
70 TSerr(TS_F_TS_VERIFY_CTX_NEW, ERR_R_MALLOC_FAILURE);
71 return ctx;
72 }

74 void TS_VERIFY_CTX_init(TS_VERIFY_CTX *ctx)
75 {
76 OPENSSL_assert(ctx != NULL);
77 memset(ctx, 0, sizeof(TS_VERIFY_CTX));
78 }

80 void TS_VERIFY_CTX_free(TS_VERIFY_CTX *ctx)
81 {
82 if (!ctx) return;

84 TS_VERIFY_CTX_cleanup(ctx);
85 OPENSSL_free(ctx);
86 }

88 void TS_VERIFY_CTX_cleanup(TS_VERIFY_CTX *ctx)
89 {
90 if (!ctx) return;

92 X509_STORE_free(ctx->store);
93 sk_X509_pop_free(ctx->certs, X509_free);

95 ASN1_OBJECT_free(ctx->policy);

97 X509_ALGOR_free(ctx->md_alg);
98 OPENSSL_free(ctx->imprint);
99
100 BIO_free_all(ctx->data);

102 ASN1_INTEGER_free(ctx->nonce);

104 GENERAL_NAME_free(ctx->tsa_name);

106 TS_VERIFY_CTX_init(ctx);
107 }

109 TS_VERIFY_CTX *TS_REQ_to_TS_VERIFY_CTX(TS_REQ *req, TS_VERIFY_CTX *ctx)
110 {
111 TS_VERIFY_CTX *ret = ctx;
112 ASN1_OBJECT *policy;
113 TS_MSG_IMPRINT *imprint;
114 X509_ALGOR *md_alg;
115 ASN1_OCTET_STRING *msg;
116 const ASN1_INTEGER *nonce;

118 OPENSSL_assert(req != NULL);
119 if (ret)
120 TS_VERIFY_CTX_cleanup(ret);
121 else
122 if (!(ret = TS_VERIFY_CTX_new())) return NULL;

124 /* Setting flags. */
125 ret->flags = TS_VFY_ALL_IMPRINT & ~(TS_VFY_TSA_NAME | TS_VFY_SIGNATURE);

127 /* Setting policy. */

new/usr/src/lib/openssl/libsunw_crypto/ts/ts_verify_ctx.c 3

128 if ((policy = TS_REQ_get_policy_id(req)) != NULL)
129 {
130 if (!(ret->policy = OBJ_dup(policy))) goto err;
131 }
132 else
133 ret->flags &= ~TS_VFY_POLICY;

135 /* Setting md_alg, imprint and imprint_len. */
136 imprint = TS_REQ_get_msg_imprint(req);
137 md_alg = TS_MSG_IMPRINT_get_algo(imprint);
138 if (!(ret->md_alg = X509_ALGOR_dup(md_alg))) goto err;
139 msg = TS_MSG_IMPRINT_get_msg(imprint);
140 ret->imprint_len = ASN1_STRING_length(msg);
141 if (!(ret->imprint = OPENSSL_malloc(ret->imprint_len))) goto err;
142 memcpy(ret->imprint, ASN1_STRING_data(msg), ret->imprint_len);

144 /* Setting nonce. */
145 if ((nonce = TS_REQ_get_nonce(req)) != NULL)
146 {
147 if (!(ret->nonce = ASN1_INTEGER_dup(nonce))) goto err;
148 }
149 else
150 ret->flags &= ~TS_VFY_NONCE;

152 return ret;
153 err:
154 if (ctx)
155 TS_VERIFY_CTX_cleanup(ctx);
156 else
157 TS_VERIFY_CTX_free(ret);
158 return NULL;
159 }

new/usr/src/lib/openssl/libsunw_crypto/txt_db/txt_db.c 1

**
 9967 Fri May 30 18:32:11 2014
new/usr/src/lib/openssl/libsunw_crypto/txt_db/txt_db.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/txt_db/txt_db.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>

new/usr/src/lib/openssl/libsunw_crypto/txt_db/txt_db.c 2

62 #include "cryptlib.h"
63 #include <openssl/buffer.h>
64 #include <openssl/txt_db.h>

66 #undef BUFSIZE
67 #define BUFSIZE 512

69 const char TXT_DB_version[]="TXT_DB" OPENSSL_VERSION_PTEXT;

71 TXT_DB *TXT_DB_read(BIO *in, int num)
72 {
73 TXT_DB *ret=NULL;
74 int er=1;
75 int esc=0;
76 long ln=0;
77 int i,add,n;
78 int size=BUFSIZE;
79 int offset=0;
80 char *p,*f;
81 OPENSSL_STRING *pp;
82 BUF_MEM *buf=NULL;

84 if ((buf=BUF_MEM_new()) == NULL) goto err;
85 if (!BUF_MEM_grow(buf,size)) goto err;

87 if ((ret=OPENSSL_malloc(sizeof(TXT_DB))) == NULL)
88 goto err;
89 ret->num_fields=num;
90 ret->index=NULL;
91 ret->qual=NULL;
92 if ((ret->data=sk_OPENSSL_PSTRING_new_null()) == NULL)
93 goto err;
94 if ((ret->index=OPENSSL_malloc(sizeof(*ret->index)*num)) == NULL)
95 goto err;
96 if ((ret->qual=OPENSSL_malloc(sizeof(*(ret->qual))*num)) == NULL)
97 goto err;
98 for (i=0; i<num; i++)
99 {
100 ret->index[i]=NULL;
101 ret->qual[i]=NULL;
102 }

104 add=(num+1)*sizeof(char *);
105 buf->data[size-1]=’\0’;
106 offset=0;
107 for (;;)
108 {
109 if (offset != 0)
110 {
111 size+=BUFSIZE;
112 if (!BUF_MEM_grow_clean(buf,size)) goto err;
113 }
114 buf->data[offset]=’\0’;
115 BIO_gets(in,&(buf->data[offset]),size-offset);
116 ln++;
117 if (buf->data[offset] == ’\0’) break;
118 if ((offset == 0) && (buf->data[0] == ’#’)) continue;
119 i=strlen(&(buf->data[offset]));
120 offset+=i;
121 if (buf->data[offset-1] != ’\n’)
122 continue;
123 else
124 {
125 buf->data[offset-1]=’\0’; /* blat the ’\n’ */
126 if (!(p=OPENSSL_malloc(add+offset))) goto err;
127 offset=0;

new/usr/src/lib/openssl/libsunw_crypto/txt_db/txt_db.c 3

128 }
129 pp=(char **)p;
130 p+=add;
131 n=0;
132 pp[n++]=p;
133 i=0;
134 f=buf->data;

136 esc=0;
137 for (;;)
138 {
139 if (*f == ’\0’) break;
140 if (*f == ’\t’)
141 {
142 if (esc)
143 p--;
144 else
145 {
146 *(p++)=’\0’;
147 f++;
148 if (n >= num) break;
149 pp[n++]=p;
150 continue;
151 }
152 }
153 esc=(*f == ’\\’);
154 *(p++)= *(f++);
155 }
156 *(p++)=’\0’;
157 if ((n != num) || (*f != ’\0’))
158 {
159 #if !defined(OPENSSL_NO_STDIO) && !defined(OPENSSL_SYS_WIN16) /* temporary fix
160 fprintf(stderr,"wrong number of fields on line %ld (look
161 #endif
162 er=2;
163 goto err;
164 }
165 pp[n]=p;
166 if (!sk_OPENSSL_PSTRING_push(ret->data,pp))
167 {
168 #if !defined(OPENSSL_NO_STDIO) && !defined(OPENSSL_SYS_WIN16) /* temporary fix
169 fprintf(stderr,"failure in sk_push\n");
170 #endif
171 er=2;
172 goto err;
173 }
174 }
175 er=0;
176 err:
177 BUF_MEM_free(buf);
178 if (er)
179 {
180 #if !defined(OPENSSL_NO_STDIO) && !defined(OPENSSL_SYS_WIN16)
181 if (er == 1) fprintf(stderr,"OPENSSL_malloc failure\n");
182 #endif
183 if (ret != NULL)
184 {
185 if (ret->data != NULL) sk_OPENSSL_PSTRING_free(ret->data
186 if (ret->index != NULL) OPENSSL_free(ret->index);
187 if (ret->qual != NULL) OPENSSL_free(ret->qual);
188 if (ret != NULL) OPENSSL_free(ret);
189 }
190 return(NULL);
191 }
192 else
193 return(ret);

new/usr/src/lib/openssl/libsunw_crypto/txt_db/txt_db.c 4

194 }

196 OPENSSL_STRING *TXT_DB_get_by_index(TXT_DB *db, int idx, OPENSSL_STRING *value)
197 {
198 OPENSSL_STRING *ret;
199 LHASH_OF(OPENSSL_STRING) *lh;

201 if (idx >= db->num_fields)
202 {
203 db->error=DB_ERROR_INDEX_OUT_OF_RANGE;
204 return(NULL);
205 }
206 lh=db->index[idx];
207 if (lh == NULL)
208 {
209 db->error=DB_ERROR_NO_INDEX;
210 return(NULL);
211 }
212 ret=lh_OPENSSL_STRING_retrieve(lh,value);
213 db->error=DB_ERROR_OK;
214 return(ret);
215 }

217 int TXT_DB_create_index(TXT_DB *db, int field, int (*qual)(OPENSSL_STRING *),
218 LHASH_HASH_FN_TYPE hash, LHASH_COMP_FN_TYPE cmp)
219 {
220 LHASH_OF(OPENSSL_STRING) *idx;
221 OPENSSL_STRING *r;
222 int i,n;

224 if (field >= db->num_fields)
225 {
226 db->error=DB_ERROR_INDEX_OUT_OF_RANGE;
227 return(0);
228 }
229 /* FIXME: we lose type checking at this point */
230 if ((idx=(LHASH_OF(OPENSSL_STRING) *)lh_new(hash,cmp)) == NULL)
231 {
232 db->error=DB_ERROR_MALLOC;
233 return(0);
234 }
235 n=sk_OPENSSL_PSTRING_num(db->data);
236 for (i=0; i<n; i++)
237 {
238 r=sk_OPENSSL_PSTRING_value(db->data,i);
239 if ((qual != NULL) && (qual(r) == 0)) continue;
240 if ((r=lh_OPENSSL_STRING_insert(idx,r)) != NULL)
241 {
242 db->error=DB_ERROR_INDEX_CLASH;
243 db->arg1=sk_OPENSSL_PSTRING_find(db->data,r);
244 db->arg2=i;
245 lh_OPENSSL_STRING_free(idx);
246 return(0);
247 }
248 }
249 if (db->index[field] != NULL) lh_OPENSSL_STRING_free(db->index[field]);
250 db->index[field]=idx;
251 db->qual[field]=qual;
252 return(1);
253 }

255 long TXT_DB_write(BIO *out, TXT_DB *db)
256 {
257 long i,j,n,nn,l,tot=0;
258 char *p,**pp,*f;
259 BUF_MEM *buf=NULL;

new/usr/src/lib/openssl/libsunw_crypto/txt_db/txt_db.c 5

260 long ret= -1;

262 if ((buf=BUF_MEM_new()) == NULL)
263 goto err;
264 n=sk_OPENSSL_PSTRING_num(db->data);
265 nn=db->num_fields;
266 for (i=0; i<n; i++)
267 {
268 pp=sk_OPENSSL_PSTRING_value(db->data,i);

270 l=0;
271 for (j=0; j<nn; j++)
272 {
273 if (pp[j] != NULL)
274 l+=strlen(pp[j]);
275 }
276 if (!BUF_MEM_grow_clean(buf,(int)(l*2+nn))) goto err;

278 p=buf->data;
279 for (j=0; j<nn; j++)
280 {
281 f=pp[j];
282 if (f != NULL)
283 for (;;)
284 {
285 if (*f == ’\0’) break;
286 if (*f == ’\t’) *(p++)=’\\’;
287 *(p++)= *(f++);
288 }
289 *(p++)=’\t’;
290 }
291 p[-1]=’\n’;
292 j=p-buf->data;
293 if (BIO_write(out,buf->data,(int)j) != j)
294 goto err;
295 tot+=j;
296 }
297 ret=tot;
298 err:
299 if (buf != NULL) BUF_MEM_free(buf);
300 return(ret);
301 }

303 int TXT_DB_insert(TXT_DB *db, OPENSSL_STRING *row)
304 {
305 int i;
306 OPENSSL_STRING *r;

308 for (i=0; i<db->num_fields; i++)
309 {
310 if (db->index[i] != NULL)
311 {
312 if ((db->qual[i] != NULL) &&
313 (db->qual[i](row) == 0)) continue;
314 r=lh_OPENSSL_STRING_retrieve(db->index[i],row);
315 if (r != NULL)
316 {
317 db->error=DB_ERROR_INDEX_CLASH;
318 db->arg1=i;
319 db->arg_row=r;
320 goto err;
321 }
322 }
323 }
324 /* We have passed the index checks, now just append and insert */
325 if (!sk_OPENSSL_PSTRING_push(db->data,row))

new/usr/src/lib/openssl/libsunw_crypto/txt_db/txt_db.c 6

326 {
327 db->error=DB_ERROR_MALLOC;
328 goto err;
329 }

331 for (i=0; i<db->num_fields; i++)
332 {
333 if (db->index[i] != NULL)
334 {
335 if ((db->qual[i] != NULL) &&
336 (db->qual[i](row) == 0)) continue;
337 (void)lh_OPENSSL_STRING_insert(db->index[i],row);
338 }
339 }
340 return(1);
341 err:
342 return(0);
343 }

345 void TXT_DB_free(TXT_DB *db)
346 {
347 int i,n;
348 char **p,*max;

350 if(db == NULL)
351 return;

353 if (db->index != NULL)
354 {
355 for (i=db->num_fields-1; i>=0; i--)
356 if (db->index[i] != NULL) lh_OPENSSL_STRING_free(db->ind
357 OPENSSL_free(db->index);
358 }
359 if (db->qual != NULL)
360 OPENSSL_free(db->qual);
361 if (db->data != NULL)
362 {
363 for (i=sk_OPENSSL_PSTRING_num(db->data)-1; i>=0; i--)
364 {
365 /* check if any ’fields’ have been allocated
366 * from outside of the initial block */
367 p=sk_OPENSSL_PSTRING_value(db->data,i);
368 max=p[db->num_fields]; /* last address */
369 if (max == NULL) /* new row */
370 {
371 for (n=0; n<db->num_fields; n++)
372 if (p[n] != NULL) OPENSSL_free(p[n]);
373 }
374 else
375 {
376 for (n=0; n<db->num_fields; n++)
377 {
378 if (((p[n] < (char *)p) || (p[n] > max))
379 && (p[n] != NULL))
380 OPENSSL_free(p[n]);
381 }
382 }
383 OPENSSL_free(sk_OPENSSL_PSTRING_value(db->data,i));
384 }
385 sk_OPENSSL_PSTRING_free(db->data);
386 }
387 OPENSSL_free(db);
388 }

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_compat.c 1

**
 3055 Fri May 30 18:32:11 2014
new/usr/src/lib/openssl/libsunw_crypto/ui/ui_compat.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ui/ui_compat.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 2001-2002 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 #include <string.h>
57 #include <openssl/ui_compat.h>

59 int _ossl_old_des_read_pw_string(char *buf,int length,const char *prompt,int ver
60 {
61 return UI_UTIL_read_pw_string(buf, length, prompt, verify);

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_compat.c 2

62 }

64 int _ossl_old_des_read_pw(char *buf,char *buff,int size,const char *prompt,int v
65 {
66 return UI_UTIL_read_pw(buf, buff, size, prompt, verify);
67 }

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_err.c 1

**
 4586 Fri May 30 18:32:11 2014
new/usr/src/lib/openssl/libsunw_crypto/ui/ui_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ui/ui_err.c */
2 /* ==
3 * Copyright (c) 1999-2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/ui.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_UI,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_UI,0,reason)

71 static ERR_STRING_DATA UI_str_functs[]=
72 {
73 {ERR_FUNC(UI_F_GENERAL_ALLOCATE_BOOLEAN), "GENERAL_ALLOCATE_BOOLEAN"},
74 {ERR_FUNC(UI_F_GENERAL_ALLOCATE_PROMPT), "GENERAL_ALLOCATE_PROMPT"},
75 {ERR_FUNC(UI_F_GENERAL_ALLOCATE_STRING), "GENERAL_ALLOCATE_STRING"},
76 {ERR_FUNC(UI_F_UI_CTRL), "UI_ctrl"},
77 {ERR_FUNC(UI_F_UI_DUP_ERROR_STRING), "UI_dup_error_string"},
78 {ERR_FUNC(UI_F_UI_DUP_INFO_STRING), "UI_dup_info_string"},
79 {ERR_FUNC(UI_F_UI_DUP_INPUT_BOOLEAN), "UI_dup_input_boolean"},
80 {ERR_FUNC(UI_F_UI_DUP_INPUT_STRING), "UI_dup_input_string"},
81 {ERR_FUNC(UI_F_UI_DUP_VERIFY_STRING), "UI_dup_verify_string"},
82 {ERR_FUNC(UI_F_UI_GET0_RESULT), "UI_get0_result"},
83 {ERR_FUNC(UI_F_UI_NEW_METHOD), "UI_new_method"},
84 {ERR_FUNC(UI_F_UI_SET_RESULT), "UI_set_result"},
85 {0,NULL}
86 };

88 static ERR_STRING_DATA UI_str_reasons[]=
89 {
90 {ERR_REASON(UI_R_COMMON_OK_AND_CANCEL_CHARACTERS),"common ok and cancel characte
91 {ERR_REASON(UI_R_INDEX_TOO_LARGE) ,"index too large"},
92 {ERR_REASON(UI_R_INDEX_TOO_SMALL) ,"index too small"},
93 {ERR_REASON(UI_R_NO_RESULT_BUFFER) ,"no result buffer"},
94 {ERR_REASON(UI_R_RESULT_TOO_LARGE) ,"result too large"},
95 {ERR_REASON(UI_R_RESULT_TOO_SMALL) ,"result too small"},
96 {ERR_REASON(UI_R_UNKNOWN_CONTROL_COMMAND),"unknown control command"},
97 {0,NULL}
98 };

100 #endif

102 void ERR_load_UI_strings(void)
103 {
104 #ifndef OPENSSL_NO_ERR

106 if (ERR_func_error_string(UI_str_functs[0].error) == NULL)
107 {
108 ERR_load_strings(0,UI_str_functs);
109 ERR_load_strings(0,UI_str_reasons);
110 }
111 #endif
112 }

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c 1

**
 20587 Fri May 30 18:32:12 2014
new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ui/ui_lib.c -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Richard Levitte (richard@levitte.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <string.h>
60 #include "cryptlib.h"
61 #include <openssl/e_os2.h>

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c 2

62 #include <openssl/buffer.h>
63 #include <openssl/ui.h>
64 #include <openssl/err.h>
65 #include "ui_locl.h"

67 IMPLEMENT_STACK_OF(UI_STRING_ST)

69 static const UI_METHOD *default_UI_meth=NULL;

71 UI *UI_new(void)
72 {
73 return(UI_new_method(NULL));
74 }

76 UI *UI_new_method(const UI_METHOD *method)
77 {
78 UI *ret;

80 ret=(UI *)OPENSSL_malloc(sizeof(UI));
81 if (ret == NULL)
82 {
83 UIerr(UI_F_UI_NEW_METHOD,ERR_R_MALLOC_FAILURE);
84 return NULL;
85 }
86 if (method == NULL)
87 ret->meth=UI_get_default_method();
88 else
89 ret->meth=method;

91 ret->strings=NULL;
92 ret->user_data=NULL;
93 ret->flags=0;
94 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_UI, ret, &ret->ex_data);
95 return ret;
96 }

98 static void free_string(UI_STRING *uis)
99 {
100 if (uis->flags & OUT_STRING_FREEABLE)
101 {
102 OPENSSL_free((char *)uis->out_string);
103 switch(uis->type)
104 {
105 case UIT_BOOLEAN:
106 OPENSSL_free((char *)uis->_.boolean_data.action_desc);
107 OPENSSL_free((char *)uis->_.boolean_data.ok_chars);
108 OPENSSL_free((char *)uis->_.boolean_data.cancel_chars);
109 break;
110 default:
111 break;
112 }
113 }
114 OPENSSL_free(uis);
115 }

117 void UI_free(UI *ui)
118 {
119 if (ui == NULL)
120 return;
121 sk_UI_STRING_pop_free(ui->strings,free_string);
122 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_UI, ui, &ui->ex_data);
123 OPENSSL_free(ui);
124 }

126 static int allocate_string_stack(UI *ui)
127 {

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c 3

128 if (ui->strings == NULL)
129 {
130 ui->strings=sk_UI_STRING_new_null();
131 if (ui->strings == NULL)
132 {
133 return -1;
134 }
135 }
136 return 0;
137 }

139 static UI_STRING *general_allocate_prompt(UI *ui, const char *prompt,
140 int prompt_freeable, enum UI_string_types type, int input_flags,
141 char *result_buf)
142 {
143 UI_STRING *ret = NULL;

145 if (prompt == NULL)
146 {
147 UIerr(UI_F_GENERAL_ALLOCATE_PROMPT,ERR_R_PASSED_NULL_PARAMETER);
148 }
149 else if ((type == UIT_PROMPT || type == UIT_VERIFY
150 || type == UIT_BOOLEAN) && result_buf == NULL)
151 {
152 UIerr(UI_F_GENERAL_ALLOCATE_PROMPT,UI_R_NO_RESULT_BUFFER);
153 }
154 else if ((ret = (UI_STRING *)OPENSSL_malloc(sizeof(UI_STRING))))
155 {
156 ret->out_string=prompt;
157 ret->flags=prompt_freeable ? OUT_STRING_FREEABLE : 0;
158 ret->input_flags=input_flags;
159 ret->type=type;
160 ret->result_buf=result_buf;
161 }
162 return ret;
163 }

165 static int general_allocate_string(UI *ui, const char *prompt,
166 int prompt_freeable, enum UI_string_types type, int input_flags,
167 char *result_buf, int minsize, int maxsize, const char *test_buf)
168 {
169 int ret = -1;
170 UI_STRING *s = general_allocate_prompt(ui, prompt, prompt_freeable,
171 type, input_flags, result_buf);

173 if (s)
174 {
175 if (allocate_string_stack(ui) >= 0)
176 {
177 s->_.string_data.result_minsize=minsize;
178 s->_.string_data.result_maxsize=maxsize;
179 s->_.string_data.test_buf=test_buf;
180 ret=sk_UI_STRING_push(ui->strings, s);
181 /* sk_push() returns 0 on error. Let’s addapt that */
182 if (ret <= 0) ret--;
183 }
184 else
185 free_string(s);
186 }
187 return ret;
188 }

190 static int general_allocate_boolean(UI *ui,
191 const char *prompt, const char *action_desc,
192 const char *ok_chars, const char *cancel_chars,
193 int prompt_freeable, enum UI_string_types type, int input_flags,

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c 4

194 char *result_buf)
195 {
196 int ret = -1;
197 UI_STRING *s;
198 const char *p;

200 if (ok_chars == NULL)
201 {
202 UIerr(UI_F_GENERAL_ALLOCATE_BOOLEAN,ERR_R_PASSED_NULL_PARAMETER)
203 }
204 else if (cancel_chars == NULL)
205 {
206 UIerr(UI_F_GENERAL_ALLOCATE_BOOLEAN,ERR_R_PASSED_NULL_PARAMETER)
207 }
208 else
209 {
210 for(p = ok_chars; *p; p++)
211 {
212 if (strchr(cancel_chars, *p))
213 {
214 UIerr(UI_F_GENERAL_ALLOCATE_BOOLEAN,
215 UI_R_COMMON_OK_AND_CANCEL_CHARACTERS);
216 }
217 }

219 s = general_allocate_prompt(ui, prompt, prompt_freeable,
220 type, input_flags, result_buf);

222 if (s)
223 {
224 if (allocate_string_stack(ui) >= 0)
225 {
226 s->_.boolean_data.action_desc = action_desc;
227 s->_.boolean_data.ok_chars = ok_chars;
228 s->_.boolean_data.cancel_chars = cancel_chars;
229 ret=sk_UI_STRING_push(ui->strings, s);
230 /* sk_push() returns 0 on error.
231 Let’s addapt that */
232 if (ret <= 0) ret--;
233 }
234 else
235 free_string(s);
236 }
237 }
238 return ret;
239 }

241 /* Returns the index to the place in the stack or -1 for error. Uses a
242 direct reference to the prompt. */
243 int UI_add_input_string(UI *ui, const char *prompt, int flags,
244 char *result_buf, int minsize, int maxsize)
245 {
246 return general_allocate_string(ui, prompt, 0,
247 UIT_PROMPT, flags, result_buf, minsize, maxsize, NULL);
248 }

250 /* Same as UI_add_input_string(), excepts it takes a copy of the prompt */
251 int UI_dup_input_string(UI *ui, const char *prompt, int flags,
252 char *result_buf, int minsize, int maxsize)
253 {
254 char *prompt_copy=NULL;

256 if (prompt)
257 {
258 prompt_copy=BUF_strdup(prompt);
259 if (prompt_copy == NULL)

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c 5

260 {
261 UIerr(UI_F_UI_DUP_INPUT_STRING,ERR_R_MALLOC_FAILURE);
262 return 0;
263 }
264 }
265
266 return general_allocate_string(ui, prompt_copy, 1,
267 UIT_PROMPT, flags, result_buf, minsize, maxsize, NULL);
268 }

270 int UI_add_verify_string(UI *ui, const char *prompt, int flags,
271 char *result_buf, int minsize, int maxsize, const char *test_buf)
272 {
273 return general_allocate_string(ui, prompt, 0,
274 UIT_VERIFY, flags, result_buf, minsize, maxsize, test_buf);
275 }

277 int UI_dup_verify_string(UI *ui, const char *prompt, int flags,
278 char *result_buf, int minsize, int maxsize, const char *test_buf)
279 {
280 char *prompt_copy=NULL;

282 if (prompt)
283 {
284 prompt_copy=BUF_strdup(prompt);
285 if (prompt_copy == NULL)
286 {
287 UIerr(UI_F_UI_DUP_VERIFY_STRING,ERR_R_MALLOC_FAILURE);
288 return -1;
289 }
290 }
291
292 return general_allocate_string(ui, prompt_copy, 1,
293 UIT_VERIFY, flags, result_buf, minsize, maxsize, test_buf);
294 }

296 int UI_add_input_boolean(UI *ui, const char *prompt, const char *action_desc,
297 const char *ok_chars, const char *cancel_chars,
298 int flags, char *result_buf)
299 {
300 return general_allocate_boolean(ui, prompt, action_desc,
301 ok_chars, cancel_chars, 0, UIT_BOOLEAN, flags, result_buf);
302 }

304 int UI_dup_input_boolean(UI *ui, const char *prompt, const char *action_desc,
305 const char *ok_chars, const char *cancel_chars,
306 int flags, char *result_buf)
307 {
308 char *prompt_copy = NULL;
309 char *action_desc_copy = NULL;
310 char *ok_chars_copy = NULL;
311 char *cancel_chars_copy = NULL;

313 if (prompt)
314 {
315 prompt_copy=BUF_strdup(prompt);
316 if (prompt_copy == NULL)
317 {
318 UIerr(UI_F_UI_DUP_INPUT_BOOLEAN,ERR_R_MALLOC_FAILURE);
319 goto err;
320 }
321 }
322
323 if (action_desc)
324 {
325 action_desc_copy=BUF_strdup(action_desc);

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c 6

326 if (action_desc_copy == NULL)
327 {
328 UIerr(UI_F_UI_DUP_INPUT_BOOLEAN,ERR_R_MALLOC_FAILURE);
329 goto err;
330 }
331 }
332
333 if (ok_chars)
334 {
335 ok_chars_copy=BUF_strdup(ok_chars);
336 if (ok_chars_copy == NULL)
337 {
338 UIerr(UI_F_UI_DUP_INPUT_BOOLEAN,ERR_R_MALLOC_FAILURE);
339 goto err;
340 }
341 }
342
343 if (cancel_chars)
344 {
345 cancel_chars_copy=BUF_strdup(cancel_chars);
346 if (cancel_chars_copy == NULL)
347 {
348 UIerr(UI_F_UI_DUP_INPUT_BOOLEAN,ERR_R_MALLOC_FAILURE);
349 goto err;
350 }
351 }
352
353 return general_allocate_boolean(ui, prompt_copy, action_desc_copy,
354 ok_chars_copy, cancel_chars_copy, 1, UIT_BOOLEAN, flags,
355 result_buf);
356 err:
357 if (prompt_copy) OPENSSL_free(prompt_copy);
358 if (action_desc_copy) OPENSSL_free(action_desc_copy);
359 if (ok_chars_copy) OPENSSL_free(ok_chars_copy);
360 if (cancel_chars_copy) OPENSSL_free(cancel_chars_copy);
361 return -1;
362 }

364 int UI_add_info_string(UI *ui, const char *text)
365 {
366 return general_allocate_string(ui, text, 0, UIT_INFO, 0, NULL, 0, 0,
367 NULL);
368 }

370 int UI_dup_info_string(UI *ui, const char *text)
371 {
372 char *text_copy=NULL;

374 if (text)
375 {
376 text_copy=BUF_strdup(text);
377 if (text_copy == NULL)
378 {
379 UIerr(UI_F_UI_DUP_INFO_STRING,ERR_R_MALLOC_FAILURE);
380 return -1;
381 }
382 }

384 return general_allocate_string(ui, text_copy, 1, UIT_INFO, 0, NULL,
385 0, 0, NULL);
386 }

388 int UI_add_error_string(UI *ui, const char *text)
389 {
390 return general_allocate_string(ui, text, 0, UIT_ERROR, 0, NULL, 0, 0,
391 NULL);

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c 7

392 }

394 int UI_dup_error_string(UI *ui, const char *text)
395 {
396 char *text_copy=NULL;

398 if (text)
399 {
400 text_copy=BUF_strdup(text);
401 if (text_copy == NULL)
402 {
403 UIerr(UI_F_UI_DUP_ERROR_STRING,ERR_R_MALLOC_FAILURE);
404 return -1;
405 }
406 }
407 return general_allocate_string(ui, text_copy, 1, UIT_ERROR, 0, NULL,
408 0, 0, NULL);
409 }

411 char *UI_construct_prompt(UI *ui, const char *object_desc,
412 const char *object_name)
413 {
414 char *prompt = NULL;

416 if (ui->meth->ui_construct_prompt)
417 prompt = ui->meth->ui_construct_prompt(ui,
418 object_desc, object_name);
419 else
420 {
421 char prompt1[] = "Enter ";
422 char prompt2[] = " for ";
423 char prompt3[] = ":";
424 int len = 0;

426 if (object_desc == NULL)
427 return NULL;
428 len = sizeof(prompt1) - 1 + strlen(object_desc);
429 if (object_name)
430 len += sizeof(prompt2) - 1 + strlen(object_name);
431 len += sizeof(prompt3) - 1;

433 prompt = (char *)OPENSSL_malloc(len + 1);
434 BUF_strlcpy(prompt, prompt1, len + 1);
435 BUF_strlcat(prompt, object_desc, len + 1);
436 if (object_name)
437 {
438 BUF_strlcat(prompt, prompt2, len + 1);
439 BUF_strlcat(prompt, object_name, len + 1);
440 }
441 BUF_strlcat(prompt, prompt3, len + 1);
442 }
443 return prompt;
444 }

446 void *UI_add_user_data(UI *ui, void *user_data)
447 {
448 void *old_data = ui->user_data;
449 ui->user_data = user_data;
450 return old_data;
451 }

453 void *UI_get0_user_data(UI *ui)
454 {
455 return ui->user_data;
456 }

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c 8

458 const char *UI_get0_result(UI *ui, int i)
459 {
460 if (i < 0)
461 {
462 UIerr(UI_F_UI_GET0_RESULT,UI_R_INDEX_TOO_SMALL);
463 return NULL;
464 }
465 if (i >= sk_UI_STRING_num(ui->strings))
466 {
467 UIerr(UI_F_UI_GET0_RESULT,UI_R_INDEX_TOO_LARGE);
468 return NULL;
469 }
470 return UI_get0_result_string(sk_UI_STRING_value(ui->strings, i));
471 }

473 static int print_error(const char *str, size_t len, UI *ui)
474 {
475 UI_STRING uis;

477 memset(&uis, 0, sizeof(uis));
478 uis.type = UIT_ERROR;
479 uis.out_string = str;

481 if (ui->meth->ui_write_string
482 && !ui->meth->ui_write_string(ui, &uis))
483 return -1;
484 return 0;
485 }

487 int UI_process(UI *ui)
488 {
489 int i, ok=0;

491 if (ui->meth->ui_open_session && !ui->meth->ui_open_session(ui))
492 return -1;

494 if (ui->flags & UI_FLAG_PRINT_ERRORS)
495 ERR_print_errors_cb(
496 (int (*)(const char *, size_t, void *))print_error,
497 (void *)ui);

499 for(i=0; i<sk_UI_STRING_num(ui->strings); i++)
500 {
501 if (ui->meth->ui_write_string
502 && !ui->meth->ui_write_string(ui,
503 sk_UI_STRING_value(ui->strings, i)))
504 {
505 ok=-1;
506 goto err;
507 }
508 }

510 if (ui->meth->ui_flush)
511 switch(ui->meth->ui_flush(ui))
512 {
513 case -1: /* Interrupt/Cancel/something... */
514 ok = -2;
515 goto err;
516 case 0: /* Errors */
517 ok = -1;
518 goto err;
519 default: /* Success */
520 ok = 0;
521 break;
522 }

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c 9

524 for(i=0; i<sk_UI_STRING_num(ui->strings); i++)
525 {
526 if (ui->meth->ui_read_string)
527 {
528 switch(ui->meth->ui_read_string(ui,
529 sk_UI_STRING_value(ui->strings, i)))
530 {
531 case -1: /* Interrupt/Cancel/something... */
532 ok = -2;
533 goto err;
534 case 0: /* Errors */
535 ok = -1;
536 goto err;
537 default: /* Success */
538 ok = 0;
539 break;
540 }
541 }
542 }
543 err:
544 if (ui->meth->ui_close_session && !ui->meth->ui_close_session(ui))
545 return -1;
546 return ok;
547 }

549 int UI_ctrl(UI *ui, int cmd, long i, void *p, void (*f)(void))
550 {
551 if (ui == NULL)
552 {
553 UIerr(UI_F_UI_CTRL,ERR_R_PASSED_NULL_PARAMETER);
554 return -1;
555 }
556 switch(cmd)
557 {
558 case UI_CTRL_PRINT_ERRORS:
559 {
560 int save_flag = !!(ui->flags & UI_FLAG_PRINT_ERRORS);
561 if (i)
562 ui->flags |= UI_FLAG_PRINT_ERRORS;
563 else
564 ui->flags &= ~UI_FLAG_PRINT_ERRORS;
565 return save_flag;
566 }
567 case UI_CTRL_IS_REDOABLE:
568 return !!(ui->flags & UI_FLAG_REDOABLE);
569 default:
570 break;
571 }
572 UIerr(UI_F_UI_CTRL,UI_R_UNKNOWN_CONTROL_COMMAND);
573 return -1;
574 }

576 int UI_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
577 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func)
578 {
579 return CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_UI, argl, argp,
580 new_func, dup_func, free_func);
581 }

583 int UI_set_ex_data(UI *r, int idx, void *arg)
584 {
585 return(CRYPTO_set_ex_data(&r->ex_data,idx,arg));
586 }

588 void *UI_get_ex_data(UI *r, int idx)
589 {

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c 10

590 return(CRYPTO_get_ex_data(&r->ex_data,idx));
591 }

593 void UI_set_default_method(const UI_METHOD *meth)
594 {
595 default_UI_meth=meth;
596 }

598 const UI_METHOD *UI_get_default_method(void)
599 {
600 if (default_UI_meth == NULL)
601 {
602 default_UI_meth=UI_OpenSSL();
603 }
604 return default_UI_meth;
605 }

607 const UI_METHOD *UI_get_method(UI *ui)
608 {
609 return ui->meth;
610 }

612 const UI_METHOD *UI_set_method(UI *ui, const UI_METHOD *meth)
613 {
614 ui->meth=meth;
615 return ui->meth;
616 }

619 UI_METHOD *UI_create_method(char *name)
620 {
621 UI_METHOD *ui_method = (UI_METHOD *)OPENSSL_malloc(sizeof(UI_METHOD));

623 if (ui_method)
624 {
625 memset(ui_method, 0, sizeof(*ui_method));
626 ui_method->name = BUF_strdup(name);
627 }
628 return ui_method;
629 }

631 /* BIG FSCKING WARNING!!!! If you use this on a statically allocated method
632 (that is, it hasn’t been allocated using UI_create_method(), you deserve
633 anything Murphy can throw at you and more! You have been warned. */
634 void UI_destroy_method(UI_METHOD *ui_method)
635 {
636 OPENSSL_free(ui_method->name);
637 ui_method->name = NULL;
638 OPENSSL_free(ui_method);
639 }

641 int UI_method_set_opener(UI_METHOD *method, int (*opener)(UI *ui))
642 {
643 if (method)
644 {
645 method->ui_open_session = opener;
646 return 0;
647 }
648 else
649 return -1;
650 }

652 int UI_method_set_writer(UI_METHOD *method, int (*writer)(UI *ui, UI_STRING *uis
653 {
654 if (method)
655 {

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c 11

656 method->ui_write_string = writer;
657 return 0;
658 }
659 else
660 return -1;
661 }

663 int UI_method_set_flusher(UI_METHOD *method, int (*flusher)(UI *ui))
664 {
665 if (method)
666 {
667 method->ui_flush = flusher;
668 return 0;
669 }
670 else
671 return -1;
672 }

674 int UI_method_set_reader(UI_METHOD *method, int (*reader)(UI *ui, UI_STRING *uis
675 {
676 if (method)
677 {
678 method->ui_read_string = reader;
679 return 0;
680 }
681 else
682 return -1;
683 }

685 int UI_method_set_closer(UI_METHOD *method, int (*closer)(UI *ui))
686 {
687 if (method)
688 {
689 method->ui_close_session = closer;
690 return 0;
691 }
692 else
693 return -1;
694 }

696 int UI_method_set_prompt_constructor(UI_METHOD *method, char *(*prompt_construct
697 {
698 if (method)
699 {
700 method->ui_construct_prompt = prompt_constructor;
701 return 0;
702 }
703 else
704 return -1;
705 }

707 int (*UI_method_get_opener(UI_METHOD *method))(UI*)
708 {
709 if (method)
710 return method->ui_open_session;
711 else
712 return NULL;
713 }

715 int (*UI_method_get_writer(UI_METHOD *method))(UI*,UI_STRING*)
716 {
717 if (method)
718 return method->ui_write_string;
719 else
720 return NULL;
721 }

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c 12

723 int (*UI_method_get_flusher(UI_METHOD *method))(UI*)
724 {
725 if (method)
726 return method->ui_flush;
727 else
728 return NULL;
729 }

731 int (*UI_method_get_reader(UI_METHOD *method))(UI*,UI_STRING*)
732 {
733 if (method)
734 return method->ui_read_string;
735 else
736 return NULL;
737 }

739 int (*UI_method_get_closer(UI_METHOD *method))(UI*)
740 {
741 if (method)
742 return method->ui_close_session;
743 else
744 return NULL;
745 }

747 char* (*UI_method_get_prompt_constructor(UI_METHOD *method))(UI*, const char*, c
748 {
749 if (method)
750 return method->ui_construct_prompt;
751 else
752 return NULL;
753 }

755 enum UI_string_types UI_get_string_type(UI_STRING *uis)
756 {
757 if (!uis)
758 return UIT_NONE;
759 return uis->type;
760 }

762 int UI_get_input_flags(UI_STRING *uis)
763 {
764 if (!uis)
765 return 0;
766 return uis->input_flags;
767 }

769 const char *UI_get0_output_string(UI_STRING *uis)
770 {
771 if (!uis)
772 return NULL;
773 return uis->out_string;
774 }

776 const char *UI_get0_action_string(UI_STRING *uis)
777 {
778 if (!uis)
779 return NULL;
780 switch(uis->type)
781 {
782 case UIT_PROMPT:
783 case UIT_BOOLEAN:
784 return uis->_.boolean_data.action_desc;
785 default:
786 return NULL;
787 }

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c 13

788 }

790 const char *UI_get0_result_string(UI_STRING *uis)
791 {
792 if (!uis)
793 return NULL;
794 switch(uis->type)
795 {
796 case UIT_PROMPT:
797 case UIT_VERIFY:
798 return uis->result_buf;
799 default:
800 return NULL;
801 }
802 }

804 const char *UI_get0_test_string(UI_STRING *uis)
805 {
806 if (!uis)
807 return NULL;
808 switch(uis->type)
809 {
810 case UIT_VERIFY:
811 return uis->_.string_data.test_buf;
812 default:
813 return NULL;
814 }
815 }

817 int UI_get_result_minsize(UI_STRING *uis)
818 {
819 if (!uis)
820 return -1;
821 switch(uis->type)
822 {
823 case UIT_PROMPT:
824 case UIT_VERIFY:
825 return uis->_.string_data.result_minsize;
826 default:
827 return -1;
828 }
829 }

831 int UI_get_result_maxsize(UI_STRING *uis)
832 {
833 if (!uis)
834 return -1;
835 switch(uis->type)
836 {
837 case UIT_PROMPT:
838 case UIT_VERIFY:
839 return uis->_.string_data.result_maxsize;
840 default:
841 return -1;
842 }
843 }

845 int UI_set_result(UI *ui, UI_STRING *uis, const char *result)
846 {
847 int l = strlen(result);

849 ui->flags &= ~UI_FLAG_REDOABLE;

851 if (!uis)
852 return -1;
853 switch (uis->type)

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c 14

854 {
855 case UIT_PROMPT:
856 case UIT_VERIFY:
857 {
858 char number1[DECIMAL_SIZE(uis->_.string_data.result_minsize)+1];
859 char number2[DECIMAL_SIZE(uis->_.string_data.result_maxsize)+1];

861 BIO_snprintf(number1, sizeof(number1), "%d",
862 uis->_.string_data.result_minsize);
863 BIO_snprintf(number2, sizeof(number2), "%d",
864 uis->_.string_data.result_maxsize);

866 if (l < uis->_.string_data.result_minsize)
867 {
868 ui->flags |= UI_FLAG_REDOABLE;
869 UIerr(UI_F_UI_SET_RESULT,UI_R_RESULT_TOO_SMALL);
870 ERR_add_error_data(5,"You must type in ",
871 number1," to ",number2," characters");
872 return -1;
873 }
874 if (l > uis->_.string_data.result_maxsize)
875 {
876 ui->flags |= UI_FLAG_REDOABLE;
877 UIerr(UI_F_UI_SET_RESULT,UI_R_RESULT_TOO_LARGE);
878 ERR_add_error_data(5,"You must type in ",
879 number1," to ",number2," characters");
880 return -1;
881 }
882 }

884 if (!uis->result_buf)
885 {
886 UIerr(UI_F_UI_SET_RESULT,UI_R_NO_RESULT_BUFFER);
887 return -1;
888 }

890 BUF_strlcpy(uis->result_buf, result,
891 uis->_.string_data.result_maxsize + 1);
892 break;
893 case UIT_BOOLEAN:
894 {
895 const char *p;

897 if (!uis->result_buf)
898 {
899 UIerr(UI_F_UI_SET_RESULT,UI_R_NO_RESULT_BUFFER);
900 return -1;
901 }

903 uis->result_buf[0] = ’\0’;
904 for(p = result; *p; p++)
905 {
906 if (strchr(uis->_.boolean_data.ok_chars, *p))
907 {
908 uis->result_buf[0] =
909 uis->_.boolean_data.ok_chars[0];
910 break;
911 }
912 if (strchr(uis->_.boolean_data.cancel_chars, *p))
913 {
914 uis->result_buf[0] =
915 uis->_.boolean_data.cancel_chars[0];
916 break;
917 }
918 }
919 default:

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_lib.c 15

920 break;
921 }
922 }
923 return 0;
924 }

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_openssl.c 1

**
 18958 Fri May 30 18:32:12 2014
new/usr/src/lib/openssl/libsunw_crypto/ui/ui_openssl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ui/ui_openssl.c -*- mode:C; c-file-style: "eay" -*- */
2 /* Written by Richard Levitte (richard@levitte.org) and others
3 * for the OpenSSL project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 /* The lowest level part of this file was previously in crypto/des/read_pwd.c,
60 * Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
61 * All rights reserved.

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_openssl.c 2

62 *
63 * This package is an SSL implementation written
64 * by Eric Young (eay@cryptsoft.com).
65 * The implementation was written so as to conform with Netscapes SSL.
66 *
67 * This library is free for commercial and non-commercial use as long as
68 * the following conditions are aheared to. The following conditions
69 * apply to all code found in this distribution, be it the RC4, RSA,
70 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
71 * included with this distribution is covered by the same copyright terms
72 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
73 *
74 * Copyright remains Eric Young’s, and as such any Copyright notices in
75 * the code are not to be removed.
76 * If this package is used in a product, Eric Young should be given attribution
77 * as the author of the parts of the library used.
78 * This can be in the form of a textual message at program startup or
79 * in documentation (online or textual) provided with the package.
80 *
81 * Redistribution and use in source and binary forms, with or without
82 * modification, are permitted provided that the following conditions
83 * are met:
84 * 1. Redistributions of source code must retain the copyright
85 * notice, this list of conditions and the following disclaimer.
86 * 2. Redistributions in binary form must reproduce the above copyright
87 * notice, this list of conditions and the following disclaimer in the
88 * documentation and/or other materials provided with the distribution.
89 * 3. All advertising materials mentioning features or use of this software
90 * must display the following acknowledgement:
91 * "This product includes cryptographic software written by
92 * Eric Young (eay@cryptsoft.com)"
93 * The word ’cryptographic’ can be left out if the rouines from the library
94 * being used are not cryptographic related :-).
95 * 4. If you include any Windows specific code (or a derivative thereof) from
96 * the apps directory (application code) you must include an acknowledgement:
97 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
98 *
99 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
100 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
101 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
102 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
103 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
104 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
105 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
106 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
107 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
108 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
109 * SUCH DAMAGE.
110 *
111 * The licence and distribution terms for any publically available version or
112 * derivative of this code cannot be changed. i.e. this code cannot simply be
113 * copied and put under another distribution licence
114 * [including the GNU Public Licence.]
115 */

118 #include <openssl/e_os2.h>

120 /* need for #define _POSIX_C_SOURCE arises whenever you pass -ansi to gcc
121 * [maybe others?], because it masks interfaces not discussed in standard,
122 * sigaction and fileno included. -pedantic would be more appropriate for
123 * the intended purposes, but we can’t prevent users from adding -ansi.
124 */
125 #if defined(OPENSSL_SYSNAME_VXWORKS)
126 #include <sys/types.h>
127 #endif

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_openssl.c 3

129 #if !defined(_POSIX_C_SOURCE) && defined(OPENSSL_SYS_VMS)
130 #ifndef _POSIX_C_SOURCE
131 #define _POSIX_C_SOURCE 2
132 #endif
133 #endif
134 #include <signal.h>
135 #include <stdio.h>
136 #include <string.h>
137 #include <errno.h>

139 #if !defined(OPENSSL_SYS_MSDOS) && !defined(OPENSSL_SYS_VMS)
140 # ifdef OPENSSL_UNISTD
141 # include OPENSSL_UNISTD
142 # else
143 # include <unistd.h>
144 # endif
145 /* If unistd.h defines _POSIX_VERSION, we conclude that we
146 * are on a POSIX system and have sigaction and termios. */
147 # if defined(_POSIX_VERSION)

149 # define SIGACTION
150 # if !defined(TERMIOS) && !defined(TERMIO) && !defined(SGTTY)
151 # define TERMIOS
152 # endif

154 # endif
155 #endif

157 #ifdef WIN16TTY
158 # undef OPENSSL_SYS_WIN16
159 # undef WIN16
160 # undef _WINDOWS
161 # include <graph.h>
162 #endif

164 /* 06-Apr-92 Luke Brennan Support for VMS */
165 #include "ui_locl.h"
166 #include "cryptlib.h"

168 #ifdef OPENSSL_SYS_VMS /* prototypes for sys$whatever */
169 # include <starlet.h>
170 # ifdef __DECC
171 # pragma message disable DOLLARID
172 # endif
173 #endif

175 #ifdef WIN_CONSOLE_BUG
176 # include <windows.h>
177 #ifndef OPENSSL_SYS_WINCE
178 # include <wincon.h>
179 #endif
180 #endif

183 /* There are 5 types of terminal interface supported,
184 * TERMIO, TERMIOS, VMS, MSDOS and SGTTY
185 */

187 #if defined(__sgi) && !defined(TERMIOS)
188 # define TERMIOS
189 # undef TERMIO
190 # undef SGTTY
191 #endif

193 #if defined(linux) && !defined(TERMIO)

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_openssl.c 4

194 # undef TERMIOS
195 # define TERMIO
196 # undef SGTTY
197 #endif

199 #ifdef _LIBC
200 # undef TERMIOS
201 # define TERMIO
202 # undef SGTTY
203 #endif

205 #if !defined(TERMIO) && !defined(TERMIOS) && !defined(OPENSSL_SYS_VMS) && !defin
206 # undef TERMIOS
207 # undef TERMIO
208 # define SGTTY
209 #endif

211 #if defined(OPENSSL_SYS_VXWORKS)
212 #undef TERMIOS
213 #undef TERMIO
214 #undef SGTTY
215 #endif

217 #if defined(OPENSSL_SYS_NETWARE)
218 #undef TERMIOS
219 #undef TERMIO
220 #undef SGTTY
221 #endif

223 #ifdef TERMIOS
224 # include <termios.h>
225 # define TTY_STRUCT struct termios
226 # define TTY_FLAGS c_lflag
227 # define TTY_get(tty,data) tcgetattr(tty,data)
228 # define TTY_set(tty,data) tcsetattr(tty,TCSANOW,data)
229 #endif

231 #ifdef TERMIO
232 # include <termio.h>
233 # define TTY_STRUCT struct termio
234 # define TTY_FLAGS c_lflag
235 # define TTY_get(tty,data) ioctl(tty,TCGETA,data)
236 # define TTY_set(tty,data) ioctl(tty,TCSETA,data)
237 #endif

239 #ifdef SGTTY
240 # include <sgtty.h>
241 # define TTY_STRUCT struct sgttyb
242 # define TTY_FLAGS sg_flags
243 # define TTY_get(tty,data) ioctl(tty,TIOCGETP,data)
244 # define TTY_set(tty,data) ioctl(tty,TIOCSETP,data)
245 #endif

247 #if !defined(_LIBC) && !defined(OPENSSL_SYS_MSDOS) && !defined(OPENSSL_SYS_VMS)
248 # include <sys/ioctl.h>
249 #endif

251 #ifdef OPENSSL_SYS_MSDOS
252 # include <conio.h>
253 #endif

255 #ifdef OPENSSL_SYS_VMS
256 # include <ssdef.h>
257 # include <iodef.h>
258 # include <ttdef.h>
259 # include <descrip.h>

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_openssl.c 5

260 struct IOSB {
261 short iosb$w_value;
262 short iosb$w_count;
263 long iosb$l_info;
264 };
265 #endif

267 #ifdef OPENSSL_SYS_SUNOS
268 typedef int sig_atomic_t;
269 #endif

271 #if defined(OPENSSL_SYS_MACINTOSH_CLASSIC) || defined(MAC_OS_GUSI_SOURCE) || def
272 /*
273 * This one needs work. As a matter of fact the code is unoperational
274 * and this is only a trick to get it compiled.
275 * <appro@fy.chalmers.se>
276 */
277 # define TTY_STRUCT int
278 #endif

280 #ifndef NX509_SIG
281 # define NX509_SIG 32
282 #endif

285 /* Define globals. They are protected by a lock */
286 #ifdef SIGACTION
287 static struct sigaction savsig[NX509_SIG];
288 #else
289 static void (*savsig[NX509_SIG])(int);
290 #endif

292 #ifdef OPENSSL_SYS_VMS
293 static struct IOSB iosb;
294 static $DESCRIPTOR(terminal,"TT");
295 static long tty_orig[3], tty_new[3]; /* XXX Is there any guarantee that this w
296 static long status;
297 static unsigned short channel = 0;
298 #else
299 #if !defined(OPENSSL_SYS_MSDOS) || defined(__DJGPP__)
300 static TTY_STRUCT tty_orig,tty_new;
301 #endif
302 #endif
303 static FILE *tty_in, *tty_out;
304 static int is_a_tty;

306 /* Declare static functions */
307 #if !defined(OPENSSL_SYS_WIN16) && !defined(OPENSSL_SYS_WINCE)
308 static int read_till_nl(FILE *);
309 static void recsig(int);
310 static void pushsig(void);
311 static void popsig(void);
312 #endif
313 #if defined(OPENSSL_SYS_MSDOS) && !defined(OPENSSL_SYS_WIN16)
314 static int noecho_fgets(char *buf, int size, FILE *tty);
315 #endif
316 static int read_string_inner(UI *ui, UI_STRING *uis, int echo, int strip_nl);

318 static int read_string(UI *ui, UI_STRING *uis);
319 static int write_string(UI *ui, UI_STRING *uis);

321 static int open_console(UI *ui);
322 static int echo_console(UI *ui);
323 static int noecho_console(UI *ui);
324 static int close_console(UI *ui);

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_openssl.c 6

326 static UI_METHOD ui_openssl =
327 {
328 "OpenSSL default user interface",
329 open_console,
330 write_string,
331 NULL, /* No flusher is needed for command lines */
332 read_string,
333 close_console,
334 NULL
335 };

337 /* The method with all the built-in thingies */
338 UI_METHOD *UI_OpenSSL(void)
339 {
340 return &ui_openssl;
341 }

343 /* The following function makes sure that info and error strings are printed
344 before any prompt. */
345 static int write_string(UI *ui, UI_STRING *uis)
346 {
347 switch (UI_get_string_type(uis))
348 {
349 case UIT_ERROR:
350 case UIT_INFO:
351 fputs(UI_get0_output_string(uis), tty_out);
352 fflush(tty_out);
353 break;
354 default:
355 break;
356 }
357 return 1;
358 }

360 static int read_string(UI *ui, UI_STRING *uis)
361 {
362 int ok = 0;

364 switch (UI_get_string_type(uis))
365 {
366 case UIT_BOOLEAN:
367 fputs(UI_get0_output_string(uis), tty_out);
368 fputs(UI_get0_action_string(uis), tty_out);
369 fflush(tty_out);
370 return read_string_inner(ui, uis,
371 UI_get_input_flags(uis) & UI_INPUT_FLAG_ECHO, 0);
372 case UIT_PROMPT:
373 fputs(UI_get0_output_string(uis), tty_out);
374 fflush(tty_out);
375 return read_string_inner(ui, uis,
376 UI_get_input_flags(uis) & UI_INPUT_FLAG_ECHO, 1);
377 case UIT_VERIFY:
378 fprintf(tty_out,"Verifying - %s",
379 UI_get0_output_string(uis));
380 fflush(tty_out);
381 if ((ok = read_string_inner(ui, uis,
382 UI_get_input_flags(uis) & UI_INPUT_FLAG_ECHO, 1)) <= 0)
383 return ok;
384 if (strcmp(UI_get0_result_string(uis),
385 UI_get0_test_string(uis)) != 0)
386 {
387 fprintf(tty_out,"Verify failure\n");
388 fflush(tty_out);
389 return 0;
390 }
391 break;

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_openssl.c 7

392 default:
393 break;
394 }
395 return 1;
396 }

399 #if !defined(OPENSSL_SYS_WIN16) && !defined(OPENSSL_SYS_WINCE)
400 /* Internal functions to read a string without echoing */
401 static int read_till_nl(FILE *in)
402 {
403 #define SIZE 4
404 char buf[SIZE+1];

406 do {
407 if (!fgets(buf,SIZE,in))
408 return 0;
409 } while (strchr(buf,’\n’) == NULL);
410 return 1;
411 }

413 static volatile sig_atomic_t intr_signal;
414 #endif

416 static int read_string_inner(UI *ui, UI_STRING *uis, int echo, int strip_nl)
417 {
418 static int ps;
419 int ok;
420 char result[BUFSIZ];
421 int maxsize = BUFSIZ-1;
422 #if !defined(OPENSSL_SYS_WIN16) && !defined(OPENSSL_SYS_WINCE)
423 char *p;

425 intr_signal=0;
426 ok=0;
427 ps=0;

429 pushsig();
430 ps=1;

432 if (!echo && !noecho_console(ui))
433 goto error;
434 ps=2;

436 result[0]=’\0’;
437 #ifdef OPENSSL_SYS_MSDOS
438 if (!echo)
439 {
440 noecho_fgets(result,maxsize,tty_in);
441 p=result; /* FIXME: noecho_fgets doesn’t return errors */
442 }
443 else
444 p=fgets(result,maxsize,tty_in);
445 #else
446 p=fgets(result,maxsize,tty_in);
447 #endif
448 if(!p)
449 goto error;
450 if (feof(tty_in)) goto error;
451 if (ferror(tty_in)) goto error;
452 if ((p=(char *)strchr(result,’\n’)) != NULL)
453 {
454 if (strip_nl)
455 *p=’\0’;
456 }
457 else

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_openssl.c 8

458 if (!read_till_nl(tty_in))
459 goto error;
460 if (UI_set_result(ui, uis, result) >= 0)
461 ok=1;

463 error:
464 if (intr_signal == SIGINT)
465 ok=-1;
466 if (!echo) fprintf(tty_out,"\n");
467 if (ps >= 2 && !echo && !echo_console(ui))
468 ok=0;

470 if (ps >= 1)
471 popsig();
472 #else
473 ok=1;
474 #endif

476 OPENSSL_cleanse(result,BUFSIZ);
477 return ok;
478 }

481 /* Internal functions to open, handle and close a channel to the console. */
482 static int open_console(UI *ui)
483 {
484 CRYPTO_w_lock(CRYPTO_LOCK_UI);
485 is_a_tty = 1;

487 #if defined(OPENSSL_SYS_MACINTOSH_CLASSIC) || defined(OPENSSL_SYS_VXWORKS) || de
488 tty_in=stdin;
489 tty_out=stderr;
490 #else
491 # ifdef OPENSSL_SYS_MSDOS
492 # define DEV_TTY "con"
493 # else
494 # define DEV_TTY "/dev/tty"
495 # endif
496 if ((tty_in=fopen(DEV_TTY,"r")) == NULL)
497 tty_in=stdin;
498 if ((tty_out=fopen(DEV_TTY,"w")) == NULL)
499 tty_out=stderr;
500 #endif

502 #if defined(TTY_get) && !defined(OPENSSL_SYS_VMS)
503 if (TTY_get(fileno(tty_in),&tty_orig) == -1)
504 {
505 #ifdef ENOTTY
506 if (errno == ENOTTY)
507 is_a_tty=0;
508 else
509 #endif
510 #ifdef EINVAL
511 /* Ariel Glenn ariel@columbia.edu reports that solaris
512 * can return EINVAL instead. This should be ok */
513 if (errno == EINVAL)
514 is_a_tty=0;
515 else
516 #endif
517 return 0;
518 }
519 #endif
520 #ifdef OPENSSL_SYS_VMS
521 status = sys$assign(&terminal,&channel,0,0);
522 if (status != SS$_NORMAL)
523 return 0;

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_openssl.c 9

524 status=sys$qiow(0,channel,IO$_SENSEMODE,&iosb,0,0,tty_orig,12,0,0,0,0);
525 if ((status != SS$_NORMAL) || (iosb.iosb$w_value != SS$_NORMAL))
526 return 0;
527 #endif
528 return 1;
529 }

531 static int noecho_console(UI *ui)
532 {
533 #ifdef TTY_FLAGS
534 memcpy(&(tty_new),&(tty_orig),sizeof(tty_orig));
535 tty_new.TTY_FLAGS &= ~ECHO;
536 #endif

538 #if defined(TTY_set) && !defined(OPENSSL_SYS_VMS)
539 if (is_a_tty && (TTY_set(fileno(tty_in),&tty_new) == -1))
540 return 0;
541 #endif
542 #ifdef OPENSSL_SYS_VMS
543 tty_new[0] = tty_orig[0];
544 tty_new[1] = tty_orig[1] | TT$M_NOECHO;
545 tty_new[2] = tty_orig[2];
546 status = sys$qiow(0,channel,IO$_SETMODE,&iosb,0,0,tty_new,12,0,0,0,0);
547 if ((status != SS$_NORMAL) || (iosb.iosb$w_value != SS$_NORMAL))
548 return 0;
549 #endif
550 return 1;
551 }

553 static int echo_console(UI *ui)
554 {
555 #if defined(TTY_set) && !defined(OPENSSL_SYS_VMS)
556 memcpy(&(tty_new),&(tty_orig),sizeof(tty_orig));
557 tty_new.TTY_FLAGS |= ECHO;
558 #endif

560 #if defined(TTY_set) && !defined(OPENSSL_SYS_VMS)
561 if (is_a_tty && (TTY_set(fileno(tty_in),&tty_new) == -1))
562 return 0;
563 #endif
564 #ifdef OPENSSL_SYS_VMS
565 tty_new[0] = tty_orig[0];
566 tty_new[1] = tty_orig[1] & ~TT$M_NOECHO;
567 tty_new[2] = tty_orig[2];
568 status = sys$qiow(0,channel,IO$_SETMODE,&iosb,0,0,tty_new,12,0,0,0,0);
569 if ((status != SS$_NORMAL) || (iosb.iosb$w_value != SS$_NORMAL))
570 return 0;
571 #endif
572 return 1;
573 }

575 static int close_console(UI *ui)
576 {
577 if (tty_in != stdin) fclose(tty_in);
578 if (tty_out != stderr) fclose(tty_out);
579 #ifdef OPENSSL_SYS_VMS
580 status = sys$dassgn(channel);
581 #endif
582 CRYPTO_w_unlock(CRYPTO_LOCK_UI);

584 return 1;
585 }

588 #if !defined(OPENSSL_SYS_WIN16) && !defined(OPENSSL_SYS_WINCE)
589 /* Internal functions to handle signals and act on them */

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_openssl.c 10

590 static void pushsig(void)
591 {
592 #ifndef OPENSSL_SYS_WIN32
593 int i;
594 #endif
595 #ifdef SIGACTION
596 struct sigaction sa;

598 memset(&sa,0,sizeof sa);
599 sa.sa_handler=recsig;
600 #endif

602 #ifdef OPENSSL_SYS_WIN32
603 savsig[SIGABRT]=signal(SIGABRT,recsig);
604 savsig[SIGFPE]=signal(SIGFPE,recsig);
605 savsig[SIGILL]=signal(SIGILL,recsig);
606 savsig[SIGINT]=signal(SIGINT,recsig);
607 savsig[SIGSEGV]=signal(SIGSEGV,recsig);
608 savsig[SIGTERM]=signal(SIGTERM,recsig);
609 #else
610 for (i=1; i<NX509_SIG; i++)
611 {
612 #ifdef SIGUSR1
613 if (i == SIGUSR1)
614 continue;
615 #endif
616 #ifdef SIGUSR2
617 if (i == SIGUSR2)
618 continue;
619 #endif
620 #ifdef SIGKILL
621 if (i == SIGKILL) /* We can’t make any action on that. */
622 continue;
623 #endif
624 #ifdef SIGACTION
625 sigaction(i,&sa,&savsig[i]);
626 #else
627 savsig[i]=signal(i,recsig);
628 #endif
629 }
630 #endif

632 #ifdef SIGWINCH
633 signal(SIGWINCH,SIG_DFL);
634 #endif
635 }

637 static void popsig(void)
638 {
639 #ifdef OPENSSL_SYS_WIN32
640 signal(SIGABRT,savsig[SIGABRT]);
641 signal(SIGFPE,savsig[SIGFPE]);
642 signal(SIGILL,savsig[SIGILL]);
643 signal(SIGINT,savsig[SIGINT]);
644 signal(SIGSEGV,savsig[SIGSEGV]);
645 signal(SIGTERM,savsig[SIGTERM]);
646 #else
647 int i;
648 for (i=1; i<NX509_SIG; i++)
649 {
650 #ifdef SIGUSR1
651 if (i == SIGUSR1)
652 continue;
653 #endif
654 #ifdef SIGUSR2
655 if (i == SIGUSR2)

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_openssl.c 11

656 continue;
657 #endif
658 #ifdef SIGACTION
659 sigaction(i,&savsig[i],NULL);
660 #else
661 signal(i,savsig[i]);
662 #endif
663 }
664 #endif
665 }

667 static void recsig(int i)
668 {
669 intr_signal=i;
670 }
671 #endif

673 /* Internal functions specific for Windows */
674 #if defined(OPENSSL_SYS_MSDOS) && !defined(OPENSSL_SYS_WIN16) && !defined(OPENSS
675 static int noecho_fgets(char *buf, int size, FILE *tty)
676 {
677 int i;
678 char *p;

680 p=buf;
681 for (;;)
682 {
683 if (size == 0)
684 {
685 *p=’\0’;
686 break;
687 }
688 size--;
689 #ifdef WIN16TTY
690 i=_inchar();
691 #elif defined(_WIN32)
692 i=_getch();
693 #else
694 i=getch();
695 #endif
696 if (i == ’\r’) i=’\n’;
697 *(p++)=i;
698 if (i == ’\n’)
699 {
700 *p=’\0’;
701 break;
702 }
703 }
704 #ifdef WIN_CONSOLE_BUG
705 /* Win95 has several evil console bugs: one of these is that the
706 * last character read using getch() is passed to the next read: this is
707 * usually a CR so this can be trouble. No STDIO fix seems to work but
708 * flushing the console appears to do the trick.
709 */
710 {
711 HANDLE inh;
712 inh = GetStdHandle(STD_INPUT_HANDLE);
713 FlushConsoleInputBuffer(inh);
714 }
715 #endif
716 return(strlen(buf));
717 }
718 #endif

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_util.c 1

**
 3382 Fri May 30 18:32:12 2014
new/usr/src/lib/openssl/libsunw_crypto/ui/ui_util.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/ui/ui_util.c -*- mode:C; c-file-style: "eay" -*- */
2 /* ==
3 * Copyright (c) 2001-2002 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 #include <string.h>
57 #include "ui_locl.h"

59 int UI_UTIL_read_pw_string(char *buf,int length,const char *prompt,int verify)
60 {
61 char buff[BUFSIZ];

new/usr/src/lib/openssl/libsunw_crypto/ui/ui_util.c 2

62 int ret;

64 ret=UI_UTIL_read_pw(buf,buff,(length>BUFSIZ)?BUFSIZ:length,prompt,verify
65 OPENSSL_cleanse(buff,BUFSIZ);
66 return(ret);
67 }

69 int UI_UTIL_read_pw(char *buf,char *buff,int size,const char *prompt,int verify)
70 {
71 int ok = 0;
72 UI *ui;

74 if (size < 1)
75 return -1;

77 ui = UI_new();
78 if (ui)
79 {
80 ok = UI_add_input_string(ui,prompt,0,buf,0,size-1);
81 if (ok >= 0 && verify)
82 ok = UI_add_verify_string(ui,prompt,0,buff,0,size-1,
83 buf);
84 if (ok >= 0)
85 ok=UI_process(ui);
86 UI_free(ui);
87 }
88 if (ok > 0)
89 ok = 0;
90 return(ok);
91 }

new/usr/src/lib/openssl/libsunw_crypto/uid.c 1

**
 3190 Fri May 30 18:32:12 2014
new/usr/src/lib/openssl/libsunw_crypto/uid.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/uid.c */
2 /* ==
3 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * licensing@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 #include <openssl/crypto.h>
57 #include <openssl/opensslconf.h>

59 #if defined(__OpenBSD__) || (defined(__FreeBSD__) && __FreeBSD__ > 2)

61 #include OPENSSL_UNISTD

new/usr/src/lib/openssl/libsunw_crypto/uid.c 2

63 int OPENSSL_issetugid(void)
64 {
65 return issetugid();
66 }

68 #elif defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VXWORKS) || defined(OPEN

70 int OPENSSL_issetugid(void)
71 {
72 return 0;
73 }

75 #else

77 #include OPENSSL_UNISTD
78 #include <sys/types.h>

80 int OPENSSL_issetugid(void)
81 {
82 if (getuid() != geteuid()) return 1;
83 if (getgid() != getegid()) return 1;
84 return 0;
85 }
86 #endif

new/usr/src/lib/openssl/libsunw_crypto/x509/by_dir.c 1

**
 11909 Fri May 30 18:32:12 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/by_dir.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/by_dir.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <time.h>
61 #include <errno.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/by_dir.c 2

63 #include "cryptlib.h"

65 #ifndef NO_SYS_TYPES_H
66 # include <sys/types.h>
67 #endif
68 #ifndef OPENSSL_NO_POSIX_IO
69 # include <sys/stat.h>
70 #endif

72 #include <openssl/lhash.h>
73 #include <openssl/x509.h>

76 typedef struct lookup_dir_hashes_st
77 {
78 unsigned long hash;
79 int suffix;
80 } BY_DIR_HASH;

82 typedef struct lookup_dir_entry_st
83 {
84 char *dir;
85 int dir_type;
86 STACK_OF(BY_DIR_HASH) *hashes;
87 } BY_DIR_ENTRY;

89 typedef struct lookup_dir_st
90 {
91 BUF_MEM *buffer;
92 STACK_OF(BY_DIR_ENTRY) *dirs;
93 } BY_DIR;

95 DECLARE_STACK_OF(BY_DIR_HASH)
96 DECLARE_STACK_OF(BY_DIR_ENTRY)

98 static int dir_ctrl(X509_LOOKUP *ctx, int cmd, const char *argp, long argl,
99 char **ret);
100 static int new_dir(X509_LOOKUP *lu);
101 static void free_dir(X509_LOOKUP *lu);
102 static int add_cert_dir(BY_DIR *ctx,const char *dir,int type);
103 static int get_cert_by_subject(X509_LOOKUP *xl,int type,X509_NAME *name,
104 X509_OBJECT *ret);
105 X509_LOOKUP_METHOD x509_dir_lookup=
106 {
107 "Load certs from files in a directory",
108 new_dir, /* new */
109 free_dir, /* free */
110 NULL, /* init */
111 NULL, /* shutdown */
112 dir_ctrl, /* ctrl */
113 get_cert_by_subject, /* get_by_subject */
114 NULL, /* get_by_issuer_serial */
115 NULL, /* get_by_fingerprint */
116 NULL, /* get_by_alias */
117 };

119 X509_LOOKUP_METHOD *X509_LOOKUP_hash_dir(void)
120 {
121 return(&x509_dir_lookup);
122 }

124 static int dir_ctrl(X509_LOOKUP *ctx, int cmd, const char *argp, long argl,
125 char **retp)
126 {
127 int ret=0;

new/usr/src/lib/openssl/libsunw_crypto/x509/by_dir.c 3

128 BY_DIR *ld;
129 char *dir = NULL;

131 ld=(BY_DIR *)ctx->method_data;

133 switch (cmd)
134 {
135 case X509_L_ADD_DIR:
136 if (argl == X509_FILETYPE_DEFAULT)
137 {
138 dir=(char *)getenv(X509_get_default_cert_dir_env());
139 if (dir)
140 ret=add_cert_dir(ld,dir,X509_FILETYPE_PEM);
141 else
142 ret=add_cert_dir(ld,X509_get_default_cert_dir(),
143 X509_FILETYPE_PEM);
144 if (!ret)
145 {
146 X509err(X509_F_DIR_CTRL,X509_R_LOADING_CERT_DIR)
147 }
148 }
149 else
150 ret=add_cert_dir(ld,argp,(int)argl);
151 break;
152 }
153 return(ret);
154 }

156 static int new_dir(X509_LOOKUP *lu)
157 {
158 BY_DIR *a;

160 if ((a=(BY_DIR *)OPENSSL_malloc(sizeof(BY_DIR))) == NULL)
161 return(0);
162 if ((a->buffer=BUF_MEM_new()) == NULL)
163 {
164 OPENSSL_free(a);
165 return(0);
166 }
167 a->dirs=NULL;
168 lu->method_data=(char *)a;
169 return(1);
170 }

172 static void by_dir_hash_free(BY_DIR_HASH *hash)
173 {
174 OPENSSL_free(hash);
175 }

177 static int by_dir_hash_cmp(const BY_DIR_HASH * const *a,
178 const BY_DIR_HASH * const *b)
179 {
180 if ((*a)->hash > (*b)->hash)
181 return 1;
182 if ((*a)->hash < (*b)->hash)
183 return -1;
184 return 0;
185 }

187 static void by_dir_entry_free(BY_DIR_ENTRY *ent)
188 {
189 if (ent->dir)
190 OPENSSL_free(ent->dir);
191 if (ent->hashes)
192 sk_BY_DIR_HASH_pop_free(ent->hashes, by_dir_hash_free);
193 OPENSSL_free(ent);

new/usr/src/lib/openssl/libsunw_crypto/x509/by_dir.c 4

194 }

196 static void free_dir(X509_LOOKUP *lu)
197 {
198 BY_DIR *a;

200 a=(BY_DIR *)lu->method_data;
201 if (a->dirs != NULL)
202 sk_BY_DIR_ENTRY_pop_free(a->dirs, by_dir_entry_free);
203 if (a->buffer != NULL)
204 BUF_MEM_free(a->buffer);
205 OPENSSL_free(a);
206 }

208 static int add_cert_dir(BY_DIR *ctx, const char *dir, int type)
209 {
210 int j,len;
211 const char *s,*ss,*p;

213 if (dir == NULL || !*dir)
214 {
215 X509err(X509_F_ADD_CERT_DIR,X509_R_INVALID_DIRECTORY);
216 return 0;
217 }

219 s=dir;
220 p=s;
221 do
222 {
223 if ((*p == LIST_SEPARATOR_CHAR) || (*p == ’\0’))
224 {
225 BY_DIR_ENTRY *ent;
226 ss=s;
227 s=p+1;
228 len=(int)(p-ss);
229 if (len == 0) continue;
230 for (j=0; j < sk_BY_DIR_ENTRY_num(ctx->dirs); j++)
231 {
232 ent = sk_BY_DIR_ENTRY_value(ctx->dirs, j);
233 if (strlen(ent->dir) == (size_t)len &&
234 strncmp(ent->dir,ss,(unsigned int)len) == 0)
235 break;
236 }
237 if (j < sk_BY_DIR_ENTRY_num(ctx->dirs))
238 continue;
239 if (ctx->dirs == NULL)
240 {
241 ctx->dirs = sk_BY_DIR_ENTRY_new_null();
242 if (!ctx->dirs)
243 {
244 X509err(X509_F_ADD_CERT_DIR,ERR_R_MALLOC
245 return 0;
246 }
247 }
248 ent = OPENSSL_malloc(sizeof(BY_DIR_ENTRY));
249 if (!ent)
250 return 0;
251 ent->dir_type = type;
252 ent->hashes = sk_BY_DIR_HASH_new(by_dir_hash_cmp);
253 ent->dir = OPENSSL_malloc((unsigned int)len+1);
254 if (!ent->dir || !ent->hashes)
255 {
256 by_dir_entry_free(ent);
257 return 0;
258 }
259 strncpy(ent->dir,ss,(unsigned int)len);

new/usr/src/lib/openssl/libsunw_crypto/x509/by_dir.c 5

260 ent->dir[len] = ’\0’;
261 if (!sk_BY_DIR_ENTRY_push(ctx->dirs, ent))
262 {
263 by_dir_entry_free(ent);
264 return 0;
265 }
266 }
267 } while (*p++ != ’\0’);
268 return 1;
269 }

271 static int get_cert_by_subject(X509_LOOKUP *xl, int type, X509_NAME *name,
272 X509_OBJECT *ret)
273 {
274 BY_DIR *ctx;
275 union {
276 struct {
277 X509 st_x509;
278 X509_CINF st_x509_cinf;
279 } x509;
280 struct {
281 X509_CRL st_crl;
282 X509_CRL_INFO st_crl_info;
283 } crl;
284 } data;
285 int ok=0;
286 int i,j,k;
287 unsigned long h;
288 BUF_MEM *b=NULL;
289 X509_OBJECT stmp,*tmp;
290 const char *postfix="";

292 if (name == NULL) return(0);

294 stmp.type=type;
295 if (type == X509_LU_X509)
296 {
297 data.x509.st_x509.cert_info= &data.x509.st_x509_cinf;
298 data.x509.st_x509_cinf.subject=name;
299 stmp.data.x509= &data.x509.st_x509;
300 postfix="";
301 }
302 else if (type == X509_LU_CRL)
303 {
304 data.crl.st_crl.crl= &data.crl.st_crl_info;
305 data.crl.st_crl_info.issuer=name;
306 stmp.data.crl= &data.crl.st_crl;
307 postfix="r";
308 }
309 else
310 {
311 X509err(X509_F_GET_CERT_BY_SUBJECT,X509_R_WRONG_LOOKUP_TYPE);
312 goto finish;
313 }

315 if ((b=BUF_MEM_new()) == NULL)
316 {
317 X509err(X509_F_GET_CERT_BY_SUBJECT,ERR_R_BUF_LIB);
318 goto finish;
319 }
320
321 ctx=(BY_DIR *)xl->method_data;

323 h=X509_NAME_hash(name);
324 for (i=0; i < sk_BY_DIR_ENTRY_num(ctx->dirs); i++)
325 {

new/usr/src/lib/openssl/libsunw_crypto/x509/by_dir.c 6

326 BY_DIR_ENTRY *ent;
327 int idx;
328 BY_DIR_HASH htmp, *hent;
329 ent = sk_BY_DIR_ENTRY_value(ctx->dirs, i);
330 j=strlen(ent->dir)+1+8+6+1+1;
331 if (!BUF_MEM_grow(b,j))
332 {
333 X509err(X509_F_GET_CERT_BY_SUBJECT,ERR_R_MALLOC_FAILURE)
334 goto finish;
335 }
336 if (type == X509_LU_CRL && ent->hashes)
337 {
338 htmp.hash = h;
339 CRYPTO_r_lock(CRYPTO_LOCK_X509_STORE);
340 idx = sk_BY_DIR_HASH_find(ent->hashes, &htmp);
341 if (idx >= 0)
342 {
343 hent = sk_BY_DIR_HASH_value(ent->hashes, idx);
344 k = hent->suffix;
345 }
346 else
347 {
348 hent = NULL;
349 k=0;
350 }
351 CRYPTO_r_unlock(CRYPTO_LOCK_X509_STORE);
352 }
353 else
354 {
355 k = 0;
356 hent = NULL;
357 }
358 for (;;)
359 {
360 char c = ’/’;
361 #ifdef OPENSSL_SYS_VMS
362 c = ent->dir[strlen(ent->dir)-1];
363 if (c != ’:’ && c != ’>’ && c != ’]’)
364 {
365 /* If no separator is present, we assume the
366 directory specifier is a logical name, and
367 add a colon. We really should use better
368 VMS routines for merging things like this,
369 but this will do for now...
370 -- Richard Levitte */
371 c = ’:’;
372 }
373 else
374 {
375 c = ’\0’;
376 }
377 #endif
378 if (c == ’\0’)
379 {
380 /* This is special. When c == ’\0’, no
381 directory separator should be added. */
382 BIO_snprintf(b->data,b->max,
383 "%s%08lx.%s%d",ent->dir,h,
384 postfix,k);
385 }
386 else
387 {
388 BIO_snprintf(b->data,b->max,
389 "%s%c%08lx.%s%d",ent->dir,c,h,
390 postfix,k);
391 }

new/usr/src/lib/openssl/libsunw_crypto/x509/by_dir.c 7

392 #ifndef OPENSSL_NO_POSIX_IO
393 #ifdef _WIN32
394 #define stat _stat
395 #endif
396 {
397 struct stat st;
398 if (stat(b->data,&st) < 0)
399 break;
400 }
401 #endif
402 /* found one. */
403 if (type == X509_LU_X509)
404 {
405 if ((X509_load_cert_file(xl,b->data,
406 ent->dir_type)) == 0)
407 break;
408 }
409 else if (type == X509_LU_CRL)
410 {
411 if ((X509_load_crl_file(xl,b->data,
412 ent->dir_type)) == 0)
413 break;
414 }
415 /* else case will caught higher up */
416 k++;
417 }

419 /* we have added it to the cache so now pull
420 * it out again */
421 CRYPTO_w_lock(CRYPTO_LOCK_X509_STORE);
422 j = sk_X509_OBJECT_find(xl->store_ctx->objs,&stmp);
423 if(j != -1) tmp=sk_X509_OBJECT_value(xl->store_ctx->objs,j);
424 else tmp = NULL;
425 CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);

428 /* If a CRL, update the last file suffix added for this */

430 if (type == X509_LU_CRL)
431 {
432 CRYPTO_w_lock(CRYPTO_LOCK_X509_STORE);
433 /* Look for entry again in case another thread added
434 * an entry first.
435 */
436 if (!hent)
437 {
438 htmp.hash = h;
439 idx = sk_BY_DIR_HASH_find(ent->hashes, &htmp);
440 if (idx >= 0)
441 hent =
442 sk_BY_DIR_HASH_value(ent->hashes, idx);
443 }
444 if (!hent)
445 {
446 hent = OPENSSL_malloc(sizeof(BY_DIR_HASH));
447 hent->hash = h;
448 hent->suffix = k;
449 if (!sk_BY_DIR_HASH_push(ent->hashes, hent))
450 {
451 CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);
452 OPENSSL_free(hent);
453 ok = 0;
454 goto finish;
455 }
456 }
457 else if (hent->suffix < k)

new/usr/src/lib/openssl/libsunw_crypto/x509/by_dir.c 8

458 hent->suffix = k;

460 CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);

462 }

464 if (tmp != NULL)
465 {
466 ok=1;
467 ret->type=tmp->type;
468 memcpy(&ret->data,&tmp->data,sizeof(ret->data));
469 /* If we were going to up the reference count,
470 * we would need to do it on a perl ’type’
471 * basis */
472 /* CRYPTO_add(&tmp->data.x509->references,1,
473 CRYPTO_LOCK_X509);*/
474 goto finish;
475 }
476 }
477 finish:
478 if (b != NULL) BUF_MEM_free(b);
479 return(ok);
480 }

new/usr/src/lib/openssl/libsunw_crypto/x509/by_file.c 1

**
 8007 Fri May 30 18:32:12 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/by_file.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/by_file.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <time.h>
61 #include <errno.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/by_file.c 2

63 #include "cryptlib.h"
64 #include <openssl/lhash.h>
65 #include <openssl/buffer.h>
66 #include <openssl/x509.h>
67 #include <openssl/pem.h>

69 #ifndef OPENSSL_NO_STDIO

71 static int by_file_ctrl(X509_LOOKUP *ctx, int cmd, const char *argc,
72 long argl, char **ret);
73 X509_LOOKUP_METHOD x509_file_lookup=
74 {
75 "Load file into cache",
76 NULL, /* new */
77 NULL, /* free */
78 NULL, /* init */
79 NULL, /* shutdown */
80 by_file_ctrl, /* ctrl */
81 NULL, /* get_by_subject */
82 NULL, /* get_by_issuer_serial */
83 NULL, /* get_by_fingerprint */
84 NULL, /* get_by_alias */
85 };

87 X509_LOOKUP_METHOD *X509_LOOKUP_file(void)
88 {
89 return(&x509_file_lookup);
90 }

92 static int by_file_ctrl(X509_LOOKUP *ctx, int cmd, const char *argp, long argl,
93 char **ret)
94 {
95 int ok=0;
96 char *file;

98 switch (cmd)
99 {
100 case X509_L_FILE_LOAD:
101 if (argl == X509_FILETYPE_DEFAULT)
102 {
103 file = (char *)getenv(X509_get_default_cert_file_env());
104 if (file)
105 ok = (X509_load_cert_crl_file(ctx,file,
106 X509_FILETYPE_PEM) != 0);

108 else
109 ok = (X509_load_cert_crl_file(ctx,X509_get_defau
110 X509_FILETYPE_PEM) != 0);

112 if (!ok)
113 {
114 X509err(X509_F_BY_FILE_CTRL,X509_R_LOADING_DEFAU
115 }
116 }
117 else
118 {
119 if(argl == X509_FILETYPE_PEM)
120 ok = (X509_load_cert_crl_file(ctx,argp,
121 X509_FILETYPE_PEM) != 0);
122 else
123 ok = (X509_load_cert_file(ctx,argp,(int)argl) !=
124 }
125 break;
126 }
127 return(ok);

new/usr/src/lib/openssl/libsunw_crypto/x509/by_file.c 3

128 }

130 int X509_load_cert_file(X509_LOOKUP *ctx, const char *file, int type)
131 {
132 int ret=0;
133 BIO *in=NULL;
134 int i,count=0;
135 X509 *x=NULL;

137 if (file == NULL) return(1);
138 in=BIO_new(BIO_s_file_internal());

140 if ((in == NULL) || (BIO_read_filename(in,file) <= 0))
141 {
142 X509err(X509_F_X509_LOAD_CERT_FILE,ERR_R_SYS_LIB);
143 goto err;
144 }

146 if (type == X509_FILETYPE_PEM)
147 {
148 for (;;)
149 {
150 x=PEM_read_bio_X509_AUX(in,NULL,NULL,NULL);
151 if (x == NULL)
152 {
153 if ((ERR_GET_REASON(ERR_peek_last_error()) ==
154 PEM_R_NO_START_LINE) && (count > 0))
155 {
156 ERR_clear_error();
157 break;
158 }
159 else
160 {
161 X509err(X509_F_X509_LOAD_CERT_FILE,
162 ERR_R_PEM_LIB);
163 goto err;
164 }
165 }
166 i=X509_STORE_add_cert(ctx->store_ctx,x);
167 if (!i) goto err;
168 count++;
169 X509_free(x);
170 x=NULL;
171 }
172 ret=count;
173 }
174 else if (type == X509_FILETYPE_ASN1)
175 {
176 x=d2i_X509_bio(in,NULL);
177 if (x == NULL)
178 {
179 X509err(X509_F_X509_LOAD_CERT_FILE,ERR_R_ASN1_LIB);
180 goto err;
181 }
182 i=X509_STORE_add_cert(ctx->store_ctx,x);
183 if (!i) goto err;
184 ret=i;
185 }
186 else
187 {
188 X509err(X509_F_X509_LOAD_CERT_FILE,X509_R_BAD_X509_FILETYPE);
189 goto err;
190 }
191 err:
192 if (x != NULL) X509_free(x);
193 if (in != NULL) BIO_free(in);

new/usr/src/lib/openssl/libsunw_crypto/x509/by_file.c 4

194 return(ret);
195 }

197 int X509_load_crl_file(X509_LOOKUP *ctx, const char *file, int type)
198 {
199 int ret=0;
200 BIO *in=NULL;
201 int i,count=0;
202 X509_CRL *x=NULL;

204 if (file == NULL) return(1);
205 in=BIO_new(BIO_s_file_internal());

207 if ((in == NULL) || (BIO_read_filename(in,file) <= 0))
208 {
209 X509err(X509_F_X509_LOAD_CRL_FILE,ERR_R_SYS_LIB);
210 goto err;
211 }

213 if (type == X509_FILETYPE_PEM)
214 {
215 for (;;)
216 {
217 x=PEM_read_bio_X509_CRL(in,NULL,NULL,NULL);
218 if (x == NULL)
219 {
220 if ((ERR_GET_REASON(ERR_peek_last_error()) ==
221 PEM_R_NO_START_LINE) && (count > 0))
222 {
223 ERR_clear_error();
224 break;
225 }
226 else
227 {
228 X509err(X509_F_X509_LOAD_CRL_FILE,
229 ERR_R_PEM_LIB);
230 goto err;
231 }
232 }
233 i=X509_STORE_add_crl(ctx->store_ctx,x);
234 if (!i) goto err;
235 count++;
236 X509_CRL_free(x);
237 x=NULL;
238 }
239 ret=count;
240 }
241 else if (type == X509_FILETYPE_ASN1)
242 {
243 x=d2i_X509_CRL_bio(in,NULL);
244 if (x == NULL)
245 {
246 X509err(X509_F_X509_LOAD_CRL_FILE,ERR_R_ASN1_LIB);
247 goto err;
248 }
249 i=X509_STORE_add_crl(ctx->store_ctx,x);
250 if (!i) goto err;
251 ret=i;
252 }
253 else
254 {
255 X509err(X509_F_X509_LOAD_CRL_FILE,X509_R_BAD_X509_FILETYPE);
256 goto err;
257 }
258 err:
259 if (x != NULL) X509_CRL_free(x);

new/usr/src/lib/openssl/libsunw_crypto/x509/by_file.c 5

260 if (in != NULL) BIO_free(in);
261 return(ret);
262 }

264 int X509_load_cert_crl_file(X509_LOOKUP *ctx, const char *file, int type)
265 {
266 STACK_OF(X509_INFO) *inf;
267 X509_INFO *itmp;
268 BIO *in;
269 int i, count = 0;
270 if(type != X509_FILETYPE_PEM)
271 return X509_load_cert_file(ctx, file, type);
272 in = BIO_new_file(file, "r");
273 if(!in) {
274 X509err(X509_F_X509_LOAD_CERT_CRL_FILE,ERR_R_SYS_LIB);
275 return 0;
276 }
277 inf = PEM_X509_INFO_read_bio(in, NULL, NULL, NULL);
278 BIO_free(in);
279 if(!inf) {
280 X509err(X509_F_X509_LOAD_CERT_CRL_FILE,ERR_R_PEM_LIB);
281 return 0;
282 }
283 for(i = 0; i < sk_X509_INFO_num(inf); i++) {
284 itmp = sk_X509_INFO_value(inf, i);
285 if(itmp->x509) {
286 X509_STORE_add_cert(ctx->store_ctx, itmp->x509);
287 count++;
288 }
289 if(itmp->crl) {
290 X509_STORE_add_crl(ctx->store_ctx, itmp->crl);
291 count++;
292 }
293 }
294 sk_X509_INFO_pop_free(inf, X509_INFO_free);
295 return count;
296 }

299 #endif /* OPENSSL_NO_STDIO */

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_att.c 1

**
 10651 Fri May 30 18:32:12 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_att.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509_att.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/stack.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_att.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/objects.h>
64 #include <openssl/evp.h>
65 #include <openssl/x509.h>
66 #include <openssl/x509v3.h>

68 int X509at_get_attr_count(const STACK_OF(X509_ATTRIBUTE) *x)
69 {
70 return sk_X509_ATTRIBUTE_num(x);
71 }

73 int X509at_get_attr_by_NID(const STACK_OF(X509_ATTRIBUTE) *x, int nid,
74 int lastpos)
75 {
76 ASN1_OBJECT *obj;

78 obj=OBJ_nid2obj(nid);
79 if (obj == NULL) return(-2);
80 return(X509at_get_attr_by_OBJ(x,obj,lastpos));
81 }

83 int X509at_get_attr_by_OBJ(const STACK_OF(X509_ATTRIBUTE) *sk, ASN1_OBJECT *obj,
84 int lastpos)
85 {
86 int n;
87 X509_ATTRIBUTE *ex;

89 if (sk == NULL) return(-1);
90 lastpos++;
91 if (lastpos < 0)
92 lastpos=0;
93 n=sk_X509_ATTRIBUTE_num(sk);
94 for (; lastpos < n; lastpos++)
95 {
96 ex=sk_X509_ATTRIBUTE_value(sk,lastpos);
97 if (OBJ_cmp(ex->object,obj) == 0)
98 return(lastpos);
99 }
100 return(-1);
101 }

103 X509_ATTRIBUTE *X509at_get_attr(const STACK_OF(X509_ATTRIBUTE) *x, int loc)
104 {
105 if (x == NULL || sk_X509_ATTRIBUTE_num(x) <= loc || loc < 0)
106 return NULL;
107 else
108 return sk_X509_ATTRIBUTE_value(x,loc);
109 }

111 X509_ATTRIBUTE *X509at_delete_attr(STACK_OF(X509_ATTRIBUTE) *x, int loc)
112 {
113 X509_ATTRIBUTE *ret;

115 if (x == NULL || sk_X509_ATTRIBUTE_num(x) <= loc || loc < 0)
116 return(NULL);
117 ret=sk_X509_ATTRIBUTE_delete(x,loc);
118 return(ret);
119 }

121 STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr(STACK_OF(X509_ATTRIBUTE) **x,
122 X509_ATTRIBUTE *attr)
123 {
124 X509_ATTRIBUTE *new_attr=NULL;
125 STACK_OF(X509_ATTRIBUTE) *sk=NULL;

127 if (x == NULL)

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_att.c 3

128 {
129 X509err(X509_F_X509AT_ADD1_ATTR, ERR_R_PASSED_NULL_PARAMETER);
130 goto err2;
131 }

133 if (*x == NULL)
134 {
135 if ((sk=sk_X509_ATTRIBUTE_new_null()) == NULL)
136 goto err;
137 }
138 else
139 sk= *x;

141 if ((new_attr=X509_ATTRIBUTE_dup(attr)) == NULL)
142 goto err2;
143 if (!sk_X509_ATTRIBUTE_push(sk,new_attr))
144 goto err;
145 if (*x == NULL)
146 *x=sk;
147 return(sk);
148 err:
149 X509err(X509_F_X509AT_ADD1_ATTR,ERR_R_MALLOC_FAILURE);
150 err2:
151 if (new_attr != NULL) X509_ATTRIBUTE_free(new_attr);
152 if (sk != NULL) sk_X509_ATTRIBUTE_free(sk);
153 return(NULL);
154 }

156 STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr_by_OBJ(STACK_OF(X509_ATTRIBUTE) **x,
157 const ASN1_OBJECT *obj, int type,
158 const unsigned char *bytes, int len)
159 {
160 X509_ATTRIBUTE *attr;
161 STACK_OF(X509_ATTRIBUTE) *ret;
162 attr = X509_ATTRIBUTE_create_by_OBJ(NULL, obj, type, bytes, len);
163 if(!attr) return 0;
164 ret = X509at_add1_attr(x, attr);
165 X509_ATTRIBUTE_free(attr);
166 return ret;
167 }

169 STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr_by_NID(STACK_OF(X509_ATTRIBUTE) **x,
170 int nid, int type,
171 const unsigned char *bytes, int len)
172 {
173 X509_ATTRIBUTE *attr;
174 STACK_OF(X509_ATTRIBUTE) *ret;
175 attr = X509_ATTRIBUTE_create_by_NID(NULL, nid, type, bytes, len);
176 if(!attr) return 0;
177 ret = X509at_add1_attr(x, attr);
178 X509_ATTRIBUTE_free(attr);
179 return ret;
180 }

182 STACK_OF(X509_ATTRIBUTE) *X509at_add1_attr_by_txt(STACK_OF(X509_ATTRIBUTE) **x,
183 const char *attrname, int type,
184 const unsigned char *bytes, int len)
185 {
186 X509_ATTRIBUTE *attr;
187 STACK_OF(X509_ATTRIBUTE) *ret;
188 attr = X509_ATTRIBUTE_create_by_txt(NULL, attrname, type, bytes, len);
189 if(!attr) return 0;
190 ret = X509at_add1_attr(x, attr);
191 X509_ATTRIBUTE_free(attr);
192 return ret;
193 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_att.c 4

195 void *X509at_get0_data_by_OBJ(STACK_OF(X509_ATTRIBUTE) *x,
196 ASN1_OBJECT *obj, int lastpos, int type)
197 {
198 int i;
199 X509_ATTRIBUTE *at;
200 i = X509at_get_attr_by_OBJ(x, obj, lastpos);
201 if (i == -1)
202 return NULL;
203 if ((lastpos <= -2) && (X509at_get_attr_by_OBJ(x, obj, i) != -1))
204 return NULL;
205 at = X509at_get_attr(x, i);
206 if (lastpos <= -3 && (X509_ATTRIBUTE_count(at) != 1))
207 return NULL;
208 return X509_ATTRIBUTE_get0_data(at, 0, type, NULL);
209 }

211 X509_ATTRIBUTE *X509_ATTRIBUTE_create_by_NID(X509_ATTRIBUTE **attr, int nid,
212 int atrtype, const void *data, int len)
213 {
214 ASN1_OBJECT *obj;
215 X509_ATTRIBUTE *ret;

217 obj=OBJ_nid2obj(nid);
218 if (obj == NULL)
219 {
220 X509err(X509_F_X509_ATTRIBUTE_CREATE_BY_NID,X509_R_UNKNOWN_NID);
221 return(NULL);
222 }
223 ret=X509_ATTRIBUTE_create_by_OBJ(attr,obj,atrtype,data,len);
224 if (ret == NULL) ASN1_OBJECT_free(obj);
225 return(ret);
226 }

228 X509_ATTRIBUTE *X509_ATTRIBUTE_create_by_OBJ(X509_ATTRIBUTE **attr,
229 const ASN1_OBJECT *obj, int atrtype, const void *data, int len)
230 {
231 X509_ATTRIBUTE *ret;

233 if ((attr == NULL) || (*attr == NULL))
234 {
235 if ((ret=X509_ATTRIBUTE_new()) == NULL)
236 {
237 X509err(X509_F_X509_ATTRIBUTE_CREATE_BY_OBJ,ERR_R_MALLOC
238 return(NULL);
239 }
240 }
241 else
242 ret= *attr;

244 if (!X509_ATTRIBUTE_set1_object(ret,obj))
245 goto err;
246 if (!X509_ATTRIBUTE_set1_data(ret,atrtype,data,len))
247 goto err;

249 if ((attr != NULL) && (*attr == NULL)) *attr=ret;
250 return(ret);
251 err:
252 if ((attr == NULL) || (ret != *attr))
253 X509_ATTRIBUTE_free(ret);
254 return(NULL);
255 }

257 X509_ATTRIBUTE *X509_ATTRIBUTE_create_by_txt(X509_ATTRIBUTE **attr,
258 const char *atrname, int type, const unsigned char *bytes, int l
259 {

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_att.c 5

260 ASN1_OBJECT *obj;
261 X509_ATTRIBUTE *nattr;

263 obj=OBJ_txt2obj(atrname, 0);
264 if (obj == NULL)
265 {
266 X509err(X509_F_X509_ATTRIBUTE_CREATE_BY_TXT,
267 X509_R_INVALID_FIELD_NAME);
268 ERR_add_error_data(2, "name=", atrname);
269 return(NULL);
270 }
271 nattr = X509_ATTRIBUTE_create_by_OBJ(attr,obj,type,bytes,len);
272 ASN1_OBJECT_free(obj);
273 return nattr;
274 }

276 int X509_ATTRIBUTE_set1_object(X509_ATTRIBUTE *attr, const ASN1_OBJECT *obj)
277 {
278 if ((attr == NULL) || (obj == NULL))
279 return(0);
280 ASN1_OBJECT_free(attr->object);
281 attr->object=OBJ_dup(obj);
282 return(1);
283 }

285 int X509_ATTRIBUTE_set1_data(X509_ATTRIBUTE *attr, int attrtype, const void *dat
286 {
287 ASN1_TYPE *ttmp;
288 ASN1_STRING *stmp = NULL;
289 int atype = 0;
290 if (!attr) return 0;
291 if(attrtype & MBSTRING_FLAG) {
292 stmp = ASN1_STRING_set_by_NID(NULL, data, len, attrtype,
293 OBJ_obj2nid(attr->object));
294 if(!stmp) {
295 X509err(X509_F_X509_ATTRIBUTE_SET1_DATA, ERR_R_ASN1_LIB)
296 return 0;
297 }
298 atype = stmp->type;
299 } else if (len != -1){
300 if(!(stmp = ASN1_STRING_type_new(attrtype))) goto err;
301 if(!ASN1_STRING_set(stmp, data, len)) goto err;
302 atype = attrtype;
303 }
304 if(!(attr->value.set = sk_ASN1_TYPE_new_null())) goto err;
305 attr->single = 0;
306 /* This is a bit naughty because the attribute should really have
307 * at least one value but some types use and zero length SET and
308 * require this.
309 */
310 if (attrtype == 0)
311 return 1;
312 if(!(ttmp = ASN1_TYPE_new())) goto err;
313 if ((len == -1) && !(attrtype & MBSTRING_FLAG))
314 {
315 if (!ASN1_TYPE_set1(ttmp, attrtype, data))
316 goto err;
317 }
318 else
319 ASN1_TYPE_set(ttmp, atype, stmp);
320 if(!sk_ASN1_TYPE_push(attr->value.set, ttmp)) goto err;
321 return 1;
322 err:
323 X509err(X509_F_X509_ATTRIBUTE_SET1_DATA, ERR_R_MALLOC_FAILURE);
324 return 0;
325 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_att.c 6

327 int X509_ATTRIBUTE_count(X509_ATTRIBUTE *attr)
328 {
329 if(!attr->single) return sk_ASN1_TYPE_num(attr->value.set);
330 if(attr->value.single) return 1;
331 return 0;
332 }

334 ASN1_OBJECT *X509_ATTRIBUTE_get0_object(X509_ATTRIBUTE *attr)
335 {
336 if (attr == NULL) return(NULL);
337 return(attr->object);
338 }

340 void *X509_ATTRIBUTE_get0_data(X509_ATTRIBUTE *attr, int idx,
341 int atrtype, void *data)
342 {
343 ASN1_TYPE *ttmp;
344 ttmp = X509_ATTRIBUTE_get0_type(attr, idx);
345 if(!ttmp) return NULL;
346 if(atrtype != ASN1_TYPE_get(ttmp)){
347 X509err(X509_F_X509_ATTRIBUTE_GET0_DATA, X509_R_WRONG_TYPE);
348 return NULL;
349 }
350 return ttmp->value.ptr;
351 }

353 ASN1_TYPE *X509_ATTRIBUTE_get0_type(X509_ATTRIBUTE *attr, int idx)
354 {
355 if (attr == NULL) return(NULL);
356 if(idx >= X509_ATTRIBUTE_count(attr)) return NULL;
357 if(!attr->single) return sk_ASN1_TYPE_value(attr->value.set, idx);
358 else return attr->value.single;
359 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_cmp.c 1

**
 9566 Fri May 30 18:32:12 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_cmp.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509_cmp.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <ctype.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_cmp.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/objects.h>
64 #include <openssl/x509.h>
65 #include <openssl/x509v3.h>

67 int X509_issuer_and_serial_cmp(const X509 *a, const X509 *b)
68 {
69 int i;
70 X509_CINF *ai,*bi;

72 ai=a->cert_info;
73 bi=b->cert_info;
74 i=M_ASN1_INTEGER_cmp(ai->serialNumber,bi->serialNumber);
75 if (i) return(i);
76 return(X509_NAME_cmp(ai->issuer,bi->issuer));
77 }

79 #ifndef OPENSSL_NO_MD5
80 unsigned long X509_issuer_and_serial_hash(X509 *a)
81 {
82 unsigned long ret=0;
83 EVP_MD_CTX ctx;
84 unsigned char md[16];
85 char *f;

87 EVP_MD_CTX_init(&ctx);
88 f=X509_NAME_oneline(a->cert_info->issuer,NULL,0);
89 if (!EVP_DigestInit_ex(&ctx, EVP_md5(), NULL))
90 goto err;
91 if (!EVP_DigestUpdate(&ctx,(unsigned char *)f,strlen(f)))
92 goto err;
93 OPENSSL_free(f);
94 if(!EVP_DigestUpdate(&ctx,(unsigned char *)a->cert_info->serialNumber->d
95 (unsigned long)a->cert_info->serialNumber->length))
96 goto err;
97 if (!EVP_DigestFinal_ex(&ctx,&(md[0]),NULL))
98 goto err;
99 ret=(((unsigned long)md[0])|((unsigned long)md[1]<<8L)|
100 ((unsigned long)md[2]<<16L)|((unsigned long)md[3]<<24L)
101)&0xffffffffL;
102 err:
103 EVP_MD_CTX_cleanup(&ctx);
104 return(ret);
105 }
106 #endif
107
108 int X509_issuer_name_cmp(const X509 *a, const X509 *b)
109 {
110 return(X509_NAME_cmp(a->cert_info->issuer,b->cert_info->issuer));
111 }

113 int X509_subject_name_cmp(const X509 *a, const X509 *b)
114 {
115 return(X509_NAME_cmp(a->cert_info->subject,b->cert_info->subject));
116 }

118 int X509_CRL_cmp(const X509_CRL *a, const X509_CRL *b)
119 {
120 return(X509_NAME_cmp(a->crl->issuer,b->crl->issuer));
121 }

123 #ifndef OPENSSL_NO_SHA
124 int X509_CRL_match(const X509_CRL *a, const X509_CRL *b)
125 {
126 return memcmp(a->sha1_hash, b->sha1_hash, 20);
127 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_cmp.c 3

128 #endif

130 X509_NAME *X509_get_issuer_name(X509 *a)
131 {
132 return(a->cert_info->issuer);
133 }

135 unsigned long X509_issuer_name_hash(X509 *x)
136 {
137 return(X509_NAME_hash(x->cert_info->issuer));
138 }

140 #ifndef OPENSSL_NO_MD5
141 unsigned long X509_issuer_name_hash_old(X509 *x)
142 {
143 return(X509_NAME_hash_old(x->cert_info->issuer));
144 }
145 #endif

147 X509_NAME *X509_get_subject_name(X509 *a)
148 {
149 return(a->cert_info->subject);
150 }

152 ASN1_INTEGER *X509_get_serialNumber(X509 *a)
153 {
154 return(a->cert_info->serialNumber);
155 }

157 unsigned long X509_subject_name_hash(X509 *x)
158 {
159 return(X509_NAME_hash(x->cert_info->subject));
160 }

162 #ifndef OPENSSL_NO_MD5
163 unsigned long X509_subject_name_hash_old(X509 *x)
164 {
165 return(X509_NAME_hash_old(x->cert_info->subject));
166 }
167 #endif

169 #ifndef OPENSSL_NO_SHA
170 /* Compare two certificates: they must be identical for
171 * this to work. NB: Although "cmp" operations are generally
172 * prototyped to take "const" arguments (eg. for use in
173 * STACKs), the way X509 handling is - these operations may
174 * involve ensuring the hashes are up-to-date and ensuring
175 * certain cert information is cached. So this is the point
176 * where the "depth-first" constification tree has to halt
177 * with an evil cast.
178 */
179 int X509_cmp(const X509 *a, const X509 *b)
180 {
181 /* ensure hash is valid */
182 X509_check_purpose((X509 *)a, -1, 0);
183 X509_check_purpose((X509 *)b, -1, 0);

185 return memcmp(a->sha1_hash, b->sha1_hash, SHA_DIGEST_LENGTH);
186 }
187 #endif

190 int X509_NAME_cmp(const X509_NAME *a, const X509_NAME *b)
191 {
192 int ret;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_cmp.c 4

194 /* Ensure canonical encoding is present and up to date */

196 if (!a->canon_enc || a->modified)
197 {
198 ret = i2d_X509_NAME((X509_NAME *)a, NULL);
199 if (ret < 0)
200 return -2;
201 }

203 if (!b->canon_enc || b->modified)
204 {
205 ret = i2d_X509_NAME((X509_NAME *)b, NULL);
206 if (ret < 0)
207 return -2;
208 }

210 ret = a->canon_enclen - b->canon_enclen;

212 if (ret)
213 return ret;

215 return memcmp(a->canon_enc, b->canon_enc, a->canon_enclen);

217 }

219 unsigned long X509_NAME_hash(X509_NAME *x)
220 {
221 unsigned long ret=0;
222 unsigned char md[SHA_DIGEST_LENGTH];

224 /* Make sure X509_NAME structure contains valid cached encoding */
225 i2d_X509_NAME(x,NULL);
226 if (!EVP_Digest(x->canon_enc, x->canon_enclen, md, NULL, EVP_sha1(),
227 NULL))
228 return 0;

230 ret=(((unsigned long)md[0])|((unsigned long)md[1]<<8L)|
231 ((unsigned long)md[2]<<16L)|((unsigned long)md[3]<<24L)
232)&0xffffffffL;
233 return(ret);
234 }

237 #ifndef OPENSSL_NO_MD5
238 /* I now DER encode the name and hash it. Since I cache the DER encoding,
239 * this is reasonably efficient. */

241 unsigned long X509_NAME_hash_old(X509_NAME *x)
242 {
243 EVP_MD_CTX md_ctx;
244 unsigned long ret=0;
245 unsigned char md[16];

247 /* Make sure X509_NAME structure contains valid cached encoding */
248 i2d_X509_NAME(x,NULL);
249 EVP_MD_CTX_init(&md_ctx);
250 EVP_MD_CTX_set_flags(&md_ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
251 if (EVP_DigestInit_ex(&md_ctx, EVP_md5(), NULL)
252 && EVP_DigestUpdate(&md_ctx, x->bytes->data, x->bytes->length)
253 && EVP_DigestFinal_ex(&md_ctx,md,NULL))
254 ret=(((unsigned long)md[0])|((unsigned long)md[1]<<8L)|
255 ((unsigned long)md[2]<<16L)|((unsigned long)md[3]<<24L)
256)&0xffffffffL;
257 EVP_MD_CTX_cleanup(&md_ctx);

259 return(ret);

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_cmp.c 5

260 }
261 #endif

263 /* Search a stack of X509 for a match */
264 X509 *X509_find_by_issuer_and_serial(STACK_OF(X509) *sk, X509_NAME *name,
265 ASN1_INTEGER *serial)
266 {
267 int i;
268 X509_CINF cinf;
269 X509 x,*x509=NULL;

271 if(!sk) return NULL;

273 x.cert_info= &cinf;
274 cinf.serialNumber=serial;
275 cinf.issuer=name;

277 for (i=0; i<sk_X509_num(sk); i++)
278 {
279 x509=sk_X509_value(sk,i);
280 if (X509_issuer_and_serial_cmp(x509,&x) == 0)
281 return(x509);
282 }
283 return(NULL);
284 }

286 X509 *X509_find_by_subject(STACK_OF(X509) *sk, X509_NAME *name)
287 {
288 X509 *x509;
289 int i;

291 for (i=0; i<sk_X509_num(sk); i++)
292 {
293 x509=sk_X509_value(sk,i);
294 if (X509_NAME_cmp(X509_get_subject_name(x509),name) == 0)
295 return(x509);
296 }
297 return(NULL);
298 }

300 EVP_PKEY *X509_get_pubkey(X509 *x)
301 {
302 if ((x == NULL) || (x->cert_info == NULL))
303 return(NULL);
304 return(X509_PUBKEY_get(x->cert_info->key));
305 }

307 ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x)
308 {
309 if(!x) return NULL;
310 return x->cert_info->key->public_key;
311 }

313 int X509_check_private_key(X509 *x, EVP_PKEY *k)
314 {
315 EVP_PKEY *xk;
316 int ret;

318 xk=X509_get_pubkey(x);

320 if (xk)
321 ret = EVP_PKEY_cmp(xk, k);
322 else
323 ret = -2;

325 switch (ret)

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_cmp.c 6

326 {
327 case 1:
328 break;
329 case 0:
330 X509err(X509_F_X509_CHECK_PRIVATE_KEY,X509_R_KEY_VALUES_MISMATCH
331 break;
332 case -1:
333 X509err(X509_F_X509_CHECK_PRIVATE_KEY,X509_R_KEY_TYPE_MISMATCH);
334 break;
335 case -2:
336 X509err(X509_F_X509_CHECK_PRIVATE_KEY,X509_R_UNKNOWN_KEY_TYPE);
337 }
338 if (xk)
339 EVP_PKEY_free(xk);
340 if (ret > 0)
341 return 1;
342 return 0;
343 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_d2.c 1

**
 4337 Fri May 30 18:32:12 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_d2.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509_d2.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/crypto.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_d2.c 2

62 #include <openssl/x509.h>

64 #ifndef OPENSSL_NO_STDIO
65 int X509_STORE_set_default_paths(X509_STORE *ctx)
66 {
67 X509_LOOKUP *lookup;

69 lookup=X509_STORE_add_lookup(ctx,X509_LOOKUP_file());
70 if (lookup == NULL) return(0);
71 X509_LOOKUP_load_file(lookup,NULL,X509_FILETYPE_DEFAULT);

73 lookup=X509_STORE_add_lookup(ctx,X509_LOOKUP_hash_dir());
74 if (lookup == NULL) return(0);
75 X509_LOOKUP_add_dir(lookup,NULL,X509_FILETYPE_DEFAULT);
76
77 /* clear any errors */
78 ERR_clear_error();

80 return(1);
81 }

83 int X509_STORE_load_locations(X509_STORE *ctx, const char *file,
84 const char *path)
85 {
86 X509_LOOKUP *lookup;

88 if (file != NULL)
89 {
90 lookup=X509_STORE_add_lookup(ctx,X509_LOOKUP_file());
91 if (lookup == NULL) return(0);
92 if (X509_LOOKUP_load_file(lookup,file,X509_FILETYPE_PEM) != 1)
93 return(0);
94 }
95 if (path != NULL)
96 {
97 lookup=X509_STORE_add_lookup(ctx,X509_LOOKUP_hash_dir());
98 if (lookup == NULL) return(0);
99 if (X509_LOOKUP_add_dir(lookup,path,X509_FILETYPE_PEM) != 1)
100 return(0);
101 }
102 if ((path == NULL) && (file == NULL))
103 return(0);
104 return(1);
105 }

107 #endif

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_def.c 1

**
 3762 Fri May 30 18:32:12 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_def.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509_def.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/crypto.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_def.c 2

62 #include <openssl/x509.h>

64 const char *X509_get_default_private_dir(void)
65 { return(X509_PRIVATE_DIR); }
66
67 const char *X509_get_default_cert_area(void)
68 { return(X509_CERT_AREA); }

70 const char *X509_get_default_cert_dir(void)
71 { return(X509_CERT_DIR); }

73 const char *X509_get_default_cert_file(void)
74 { return(X509_CERT_FILE); }

76 const char *X509_get_default_cert_dir_env(void)
77 { return(X509_CERT_DIR_EVP); }

79 const char *X509_get_default_cert_file_env(void)
80 { return(X509_CERT_FILE_EVP); }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_err.c 1

**
 8110 Fri May 30 18:32:12 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509_err.c */
2 /* ==
3 * Copyright (c) 1999-2006 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/x509.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_X509,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_X509,0,reason)

71 static ERR_STRING_DATA X509_str_functs[]=
72 {
73 {ERR_FUNC(X509_F_ADD_CERT_DIR), "ADD_CERT_DIR"},
74 {ERR_FUNC(X509_F_BY_FILE_CTRL), "BY_FILE_CTRL"},
75 {ERR_FUNC(X509_F_CHECK_POLICY), "CHECK_POLICY"},
76 {ERR_FUNC(X509_F_DIR_CTRL), "DIR_CTRL"},
77 {ERR_FUNC(X509_F_GET_CERT_BY_SUBJECT), "GET_CERT_BY_SUBJECT"},
78 {ERR_FUNC(X509_F_NETSCAPE_SPKI_B64_DECODE), "NETSCAPE_SPKI_b64_decode"},
79 {ERR_FUNC(X509_F_NETSCAPE_SPKI_B64_ENCODE), "NETSCAPE_SPKI_b64_encode"},
80 {ERR_FUNC(X509_F_X509AT_ADD1_ATTR), "X509at_add1_attr"},
81 {ERR_FUNC(X509_F_X509V3_ADD_EXT), "X509v3_add_ext"},
82 {ERR_FUNC(X509_F_X509_ATTRIBUTE_CREATE_BY_NID), "X509_ATTRIBUTE_create_by_NID"},
83 {ERR_FUNC(X509_F_X509_ATTRIBUTE_CREATE_BY_OBJ), "X509_ATTRIBUTE_create_by_OBJ"},
84 {ERR_FUNC(X509_F_X509_ATTRIBUTE_CREATE_BY_TXT), "X509_ATTRIBUTE_create_by_txt"},
85 {ERR_FUNC(X509_F_X509_ATTRIBUTE_GET0_DATA), "X509_ATTRIBUTE_get0_data"},
86 {ERR_FUNC(X509_F_X509_ATTRIBUTE_SET1_DATA), "X509_ATTRIBUTE_set1_data"},
87 {ERR_FUNC(X509_F_X509_CHECK_PRIVATE_KEY), "X509_check_private_key"},
88 {ERR_FUNC(X509_F_X509_CRL_PRINT_FP), "X509_CRL_print_fp"},
89 {ERR_FUNC(X509_F_X509_EXTENSION_CREATE_BY_NID), "X509_EXTENSION_create_by_NID"},
90 {ERR_FUNC(X509_F_X509_EXTENSION_CREATE_BY_OBJ), "X509_EXTENSION_create_by_OBJ"},
91 {ERR_FUNC(X509_F_X509_GET_PUBKEY_PARAMETERS), "X509_get_pubkey_parameters"},
92 {ERR_FUNC(X509_F_X509_LOAD_CERT_CRL_FILE), "X509_load_cert_crl_file"},
93 {ERR_FUNC(X509_F_X509_LOAD_CERT_FILE), "X509_load_cert_file"},
94 {ERR_FUNC(X509_F_X509_LOAD_CRL_FILE), "X509_load_crl_file"},
95 {ERR_FUNC(X509_F_X509_NAME_ADD_ENTRY), "X509_NAME_add_entry"},
96 {ERR_FUNC(X509_F_X509_NAME_ENTRY_CREATE_BY_NID), "X509_NAME_ENTRY_create_
97 {ERR_FUNC(X509_F_X509_NAME_ENTRY_CREATE_BY_TXT), "X509_NAME_ENTRY_create_
98 {ERR_FUNC(X509_F_X509_NAME_ENTRY_SET_OBJECT), "X509_NAME_ENTRY_set_object"},
99 {ERR_FUNC(X509_F_X509_NAME_ONELINE), "X509_NAME_oneline"},
100 {ERR_FUNC(X509_F_X509_NAME_PRINT), "X509_NAME_print"},
101 {ERR_FUNC(X509_F_X509_PRINT_EX_FP), "X509_print_ex_fp"},
102 {ERR_FUNC(X509_F_X509_PUBKEY_GET), "X509_PUBKEY_get"},
103 {ERR_FUNC(X509_F_X509_PUBKEY_SET), "X509_PUBKEY_set"},
104 {ERR_FUNC(X509_F_X509_REQ_CHECK_PRIVATE_KEY), "X509_REQ_check_private_key"},
105 {ERR_FUNC(X509_F_X509_REQ_PRINT_EX), "X509_REQ_print_ex"},
106 {ERR_FUNC(X509_F_X509_REQ_PRINT_FP), "X509_REQ_print_fp"},
107 {ERR_FUNC(X509_F_X509_REQ_TO_X509), "X509_REQ_to_X509"},
108 {ERR_FUNC(X509_F_X509_STORE_ADD_CERT), "X509_STORE_add_cert"},
109 {ERR_FUNC(X509_F_X509_STORE_ADD_CRL), "X509_STORE_add_crl"},
110 {ERR_FUNC(X509_F_X509_STORE_CTX_GET1_ISSUER), "X509_STORE_CTX_get1_issuer"},
111 {ERR_FUNC(X509_F_X509_STORE_CTX_INIT), "X509_STORE_CTX_init"},
112 {ERR_FUNC(X509_F_X509_STORE_CTX_NEW), "X509_STORE_CTX_new"},
113 {ERR_FUNC(X509_F_X509_STORE_CTX_PURPOSE_INHERIT), "X509_STORE_CTX_purpose_
114 {ERR_FUNC(X509_F_X509_TO_X509_REQ), "X509_to_X509_REQ"},
115 {ERR_FUNC(X509_F_X509_TRUST_ADD), "X509_TRUST_add"},
116 {ERR_FUNC(X509_F_X509_TRUST_SET), "X509_TRUST_set"},
117 {ERR_FUNC(X509_F_X509_VERIFY_CERT), "X509_verify_cert"},
118 {0,NULL}
119 };

121 static ERR_STRING_DATA X509_str_reasons[]=
122 {
123 {ERR_REASON(X509_R_BAD_X509_FILETYPE) ,"bad x509 filetype"},
124 {ERR_REASON(X509_R_BASE64_DECODE_ERROR) ,"base64 decode error"},
125 {ERR_REASON(X509_R_CANT_CHECK_DH_KEY) ,"cant check dh key"},
126 {ERR_REASON(X509_R_CERT_ALREADY_IN_HASH_TABLE),"cert already in hash table"},
127 {ERR_REASON(X509_R_ERR_ASN1_LIB) ,"err asn1 lib"},

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_err.c 3

128 {ERR_REASON(X509_R_INVALID_DIRECTORY) ,"invalid directory"},
129 {ERR_REASON(X509_R_INVALID_FIELD_NAME) ,"invalid field name"},
130 {ERR_REASON(X509_R_INVALID_TRUST) ,"invalid trust"},
131 {ERR_REASON(X509_R_KEY_TYPE_MISMATCH) ,"key type mismatch"},
132 {ERR_REASON(X509_R_KEY_VALUES_MISMATCH) ,"key values mismatch"},
133 {ERR_REASON(X509_R_LOADING_CERT_DIR) ,"loading cert dir"},
134 {ERR_REASON(X509_R_LOADING_DEFAULTS) ,"loading defaults"},
135 {ERR_REASON(X509_R_METHOD_NOT_SUPPORTED) ,"method not supported"},
136 {ERR_REASON(X509_R_NO_CERT_SET_FOR_US_TO_VERIFY),"no cert set for us to verify"}
137 {ERR_REASON(X509_R_PUBLIC_KEY_DECODE_ERROR),"public key decode error"},
138 {ERR_REASON(X509_R_PUBLIC_KEY_ENCODE_ERROR),"public key encode error"},
139 {ERR_REASON(X509_R_SHOULD_RETRY) ,"should retry"},
140 {ERR_REASON(X509_R_UNABLE_TO_FIND_PARAMETERS_IN_CHAIN),"unable to find parameter
141 {ERR_REASON(X509_R_UNABLE_TO_GET_CERTS_PUBLIC_KEY),"unable to get certs public k
142 {ERR_REASON(X509_R_UNKNOWN_KEY_TYPE) ,"unknown key type"},
143 {ERR_REASON(X509_R_UNKNOWN_NID) ,"unknown nid"},
144 {ERR_REASON(X509_R_UNKNOWN_PURPOSE_ID) ,"unknown purpose id"},
145 {ERR_REASON(X509_R_UNKNOWN_TRUST_ID) ,"unknown trust id"},
146 {ERR_REASON(X509_R_UNSUPPORTED_ALGORITHM),"unsupported algorithm"},
147 {ERR_REASON(X509_R_WRONG_LOOKUP_TYPE) ,"wrong lookup type"},
148 {ERR_REASON(X509_R_WRONG_TYPE) ,"wrong type"},
149 {0,NULL}
150 };

152 #endif

154 void ERR_load_X509_strings(void)
155 {
156 #ifndef OPENSSL_NO_ERR

158 if (ERR_func_error_string(X509_str_functs[0].error) == NULL)
159 {
160 ERR_load_strings(0,X509_str_functs);
161 ERR_load_strings(0,X509_str_reasons);
162 }
163 #endif
164 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_ext.c 1

**
 7074 Fri May 30 18:32:12 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_ext.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509_ext.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/stack.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_ext.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/objects.h>
64 #include <openssl/evp.h>
65 #include <openssl/x509.h>
66 #include <openssl/x509v3.h>

69 int X509_CRL_get_ext_count(X509_CRL *x)
70 {
71 return(X509v3_get_ext_count(x->crl->extensions));
72 }

74 int X509_CRL_get_ext_by_NID(X509_CRL *x, int nid, int lastpos)
75 {
76 return(X509v3_get_ext_by_NID(x->crl->extensions,nid,lastpos));
77 }

79 int X509_CRL_get_ext_by_OBJ(X509_CRL *x, ASN1_OBJECT *obj, int lastpos)
80 {
81 return(X509v3_get_ext_by_OBJ(x->crl->extensions,obj,lastpos));
82 }

84 int X509_CRL_get_ext_by_critical(X509_CRL *x, int crit, int lastpos)
85 {
86 return(X509v3_get_ext_by_critical(x->crl->extensions,crit,lastpos));
87 }

89 X509_EXTENSION *X509_CRL_get_ext(X509_CRL *x, int loc)
90 {
91 return(X509v3_get_ext(x->crl->extensions,loc));
92 }

94 X509_EXTENSION *X509_CRL_delete_ext(X509_CRL *x, int loc)
95 {
96 return(X509v3_delete_ext(x->crl->extensions,loc));
97 }

99 void *X509_CRL_get_ext_d2i(X509_CRL *x, int nid, int *crit, int *idx)
100 {
101 return X509V3_get_d2i(x->crl->extensions, nid, crit, idx);
102 }

104 int X509_CRL_add1_ext_i2d(X509_CRL *x, int nid, void *value, int crit,
105 unsigned long flags)
106 {
107 return X509V3_add1_i2d(&x->crl->extensions, nid, value, crit, flags);
108 }

110 int X509_CRL_add_ext(X509_CRL *x, X509_EXTENSION *ex, int loc)
111 {
112 return(X509v3_add_ext(&(x->crl->extensions),ex,loc) != NULL);
113 }

115 int X509_get_ext_count(X509 *x)
116 {
117 return(X509v3_get_ext_count(x->cert_info->extensions));
118 }

120 int X509_get_ext_by_NID(X509 *x, int nid, int lastpos)
121 {
122 return(X509v3_get_ext_by_NID(x->cert_info->extensions,nid,lastpos));
123 }

125 int X509_get_ext_by_OBJ(X509 *x, ASN1_OBJECT *obj, int lastpos)
126 {
127 return(X509v3_get_ext_by_OBJ(x->cert_info->extensions,obj,lastpos));

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_ext.c 3

128 }

130 int X509_get_ext_by_critical(X509 *x, int crit, int lastpos)
131 {
132 return(X509v3_get_ext_by_critical(x->cert_info->extensions,crit,lastpos)
133 }

135 X509_EXTENSION *X509_get_ext(X509 *x, int loc)
136 {
137 return(X509v3_get_ext(x->cert_info->extensions,loc));
138 }

140 X509_EXTENSION *X509_delete_ext(X509 *x, int loc)
141 {
142 return(X509v3_delete_ext(x->cert_info->extensions,loc));
143 }

145 int X509_add_ext(X509 *x, X509_EXTENSION *ex, int loc)
146 {
147 return(X509v3_add_ext(&(x->cert_info->extensions),ex,loc) != NULL);
148 }

150 void *X509_get_ext_d2i(X509 *x, int nid, int *crit, int *idx)
151 {
152 return X509V3_get_d2i(x->cert_info->extensions, nid, crit, idx);
153 }

155 int X509_add1_ext_i2d(X509 *x, int nid, void *value, int crit,
156 unsigned long flags)
157 {
158 return X509V3_add1_i2d(&x->cert_info->extensions, nid, value, crit,
159 flags);
160 }

162 int X509_REVOKED_get_ext_count(X509_REVOKED *x)
163 {
164 return(X509v3_get_ext_count(x->extensions));
165 }

167 int X509_REVOKED_get_ext_by_NID(X509_REVOKED *x, int nid, int lastpos)
168 {
169 return(X509v3_get_ext_by_NID(x->extensions,nid,lastpos));
170 }

172 int X509_REVOKED_get_ext_by_OBJ(X509_REVOKED *x, ASN1_OBJECT *obj,
173 int lastpos)
174 {
175 return(X509v3_get_ext_by_OBJ(x->extensions,obj,lastpos));
176 }

178 int X509_REVOKED_get_ext_by_critical(X509_REVOKED *x, int crit, int lastpos)
179 {
180 return(X509v3_get_ext_by_critical(x->extensions,crit,lastpos));
181 }

183 X509_EXTENSION *X509_REVOKED_get_ext(X509_REVOKED *x, int loc)
184 {
185 return(X509v3_get_ext(x->extensions,loc));
186 }

188 X509_EXTENSION *X509_REVOKED_delete_ext(X509_REVOKED *x, int loc)
189 {
190 return(X509v3_delete_ext(x->extensions,loc));
191 }

193 int X509_REVOKED_add_ext(X509_REVOKED *x, X509_EXTENSION *ex, int loc)

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_ext.c 4

194 {
195 return(X509v3_add_ext(&(x->extensions),ex,loc) != NULL);
196 }

198 void *X509_REVOKED_get_ext_d2i(X509_REVOKED *x, int nid, int *crit, int *idx)
199 {
200 return X509V3_get_d2i(x->extensions, nid, crit, idx);
201 }

203 int X509_REVOKED_add1_ext_i2d(X509_REVOKED *x, int nid, void *value, int crit,
204 unsigned long flags)
205 {
206 return X509V3_add1_i2d(&x->extensions, nid, value, crit, flags);
207 }

209 IMPLEMENT_STACK_OF(X509_EXTENSION)
210 IMPLEMENT_ASN1_SET_OF(X509_EXTENSION)

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_lu.c 1

**
 17798 Fri May 30 18:32:13 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_lu.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509_lu.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/lhash.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_lu.c 2

62 #include <openssl/x509.h>
63 #include <openssl/x509v3.h>

65 X509_LOOKUP *X509_LOOKUP_new(X509_LOOKUP_METHOD *method)
66 {
67 X509_LOOKUP *ret;

69 ret=(X509_LOOKUP *)OPENSSL_malloc(sizeof(X509_LOOKUP));
70 if (ret == NULL) return NULL;

72 ret->init=0;
73 ret->skip=0;
74 ret->method=method;
75 ret->method_data=NULL;
76 ret->store_ctx=NULL;
77 if ((method->new_item != NULL) && !method->new_item(ret))
78 {
79 OPENSSL_free(ret);
80 return NULL;
81 }
82 return ret;
83 }

85 void X509_LOOKUP_free(X509_LOOKUP *ctx)
86 {
87 if (ctx == NULL) return;
88 if ((ctx->method != NULL) &&
89 (ctx->method->free != NULL))
90 (*ctx->method->free)(ctx);
91 OPENSSL_free(ctx);
92 }

94 int X509_LOOKUP_init(X509_LOOKUP *ctx)
95 {
96 if (ctx->method == NULL) return 0;
97 if (ctx->method->init != NULL)
98 return ctx->method->init(ctx);
99 else
100 return 1;
101 }

103 int X509_LOOKUP_shutdown(X509_LOOKUP *ctx)
104 {
105 if (ctx->method == NULL) return 0;
106 if (ctx->method->shutdown != NULL)
107 return ctx->method->shutdown(ctx);
108 else
109 return 1;
110 }

112 int X509_LOOKUP_ctrl(X509_LOOKUP *ctx, int cmd, const char *argc, long argl,
113 char **ret)
114 {
115 if (ctx->method == NULL) return -1;
116 if (ctx->method->ctrl != NULL)
117 return ctx->method->ctrl(ctx,cmd,argc,argl,ret);
118 else
119 return 1;
120 }

122 int X509_LOOKUP_by_subject(X509_LOOKUP *ctx, int type, X509_NAME *name,
123 X509_OBJECT *ret)
124 {
125 if ((ctx->method == NULL) || (ctx->method->get_by_subject == NULL))
126 return X509_LU_FAIL;
127 if (ctx->skip) return 0;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_lu.c 3

128 return ctx->method->get_by_subject(ctx,type,name,ret);
129 }

131 int X509_LOOKUP_by_issuer_serial(X509_LOOKUP *ctx, int type, X509_NAME *name,
132 ASN1_INTEGER *serial, X509_OBJECT *ret)
133 {
134 if ((ctx->method == NULL) ||
135 (ctx->method->get_by_issuer_serial == NULL))
136 return X509_LU_FAIL;
137 return ctx->method->get_by_issuer_serial(ctx,type,name,serial,ret);
138 }

140 int X509_LOOKUP_by_fingerprint(X509_LOOKUP *ctx, int type,
141 unsigned char *bytes, int len, X509_OBJECT *ret)
142 {
143 if ((ctx->method == NULL) || (ctx->method->get_by_fingerprint == NULL))
144 return X509_LU_FAIL;
145 return ctx->method->get_by_fingerprint(ctx,type,bytes,len,ret);
146 }

148 int X509_LOOKUP_by_alias(X509_LOOKUP *ctx, int type, char *str, int len,
149 X509_OBJECT *ret)
150 {
151 if ((ctx->method == NULL) || (ctx->method->get_by_alias == NULL))
152 return X509_LU_FAIL;
153 return ctx->method->get_by_alias(ctx,type,str,len,ret);
154 }

156
157 static int x509_object_cmp(const X509_OBJECT * const *a, const X509_OBJECT * con
158 {
159 int ret;

161 ret=((*a)->type - (*b)->type);
162 if (ret) return ret;
163 switch ((*a)->type)
164 {
165 case X509_LU_X509:
166 ret=X509_subject_name_cmp((*a)->data.x509,(*b)->data.x509);
167 break;
168 case X509_LU_CRL:
169 ret=X509_CRL_cmp((*a)->data.crl,(*b)->data.crl);
170 break;
171 default:
172 /* abort(); */
173 return 0;
174 }
175 return ret;
176 }

178 X509_STORE *X509_STORE_new(void)
179 {
180 X509_STORE *ret;

182 if ((ret=(X509_STORE *)OPENSSL_malloc(sizeof(X509_STORE))) == NULL)
183 return NULL;
184 ret->objs = sk_X509_OBJECT_new(x509_object_cmp);
185 ret->cache=1;
186 ret->get_cert_methods=sk_X509_LOOKUP_new_null();
187 ret->verify=0;
188 ret->verify_cb=0;

190 if ((ret->param = X509_VERIFY_PARAM_new()) == NULL)
191 return NULL;

193 ret->get_issuer = 0;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_lu.c 4

194 ret->check_issued = 0;
195 ret->check_revocation = 0;
196 ret->get_crl = 0;
197 ret->check_crl = 0;
198 ret->cert_crl = 0;
199 ret->lookup_certs = 0;
200 ret->lookup_crls = 0;
201 ret->cleanup = 0;

203 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_X509_STORE, ret, &ret->ex_data))
204 {
205 sk_X509_OBJECT_free(ret->objs);
206 OPENSSL_free(ret);
207 return NULL;
208 }

210 ret->references=1;
211 return ret;
212 }

214 static void cleanup(X509_OBJECT *a)
215 {
216 if (a->type == X509_LU_X509)
217 {
218 X509_free(a->data.x509);
219 }
220 else if (a->type == X509_LU_CRL)
221 {
222 X509_CRL_free(a->data.crl);
223 }
224 else
225 {
226 /* abort(); */
227 }

229 OPENSSL_free(a);
230 }

232 void X509_STORE_free(X509_STORE *vfy)
233 {
234 int i;
235 STACK_OF(X509_LOOKUP) *sk;
236 X509_LOOKUP *lu;

238 if (vfy == NULL)
239 return;

241 sk=vfy->get_cert_methods;
242 for (i=0; i<sk_X509_LOOKUP_num(sk); i++)
243 {
244 lu=sk_X509_LOOKUP_value(sk,i);
245 X509_LOOKUP_shutdown(lu);
246 X509_LOOKUP_free(lu);
247 }
248 sk_X509_LOOKUP_free(sk);
249 sk_X509_OBJECT_pop_free(vfy->objs, cleanup);

251 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509_STORE, vfy, &vfy->ex_data);
252 if (vfy->param)
253 X509_VERIFY_PARAM_free(vfy->param);
254 OPENSSL_free(vfy);
255 }

257 X509_LOOKUP *X509_STORE_add_lookup(X509_STORE *v, X509_LOOKUP_METHOD *m)
258 {
259 int i;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_lu.c 5

260 STACK_OF(X509_LOOKUP) *sk;
261 X509_LOOKUP *lu;

263 sk=v->get_cert_methods;
264 for (i=0; i<sk_X509_LOOKUP_num(sk); i++)
265 {
266 lu=sk_X509_LOOKUP_value(sk,i);
267 if (m == lu->method)
268 {
269 return lu;
270 }
271 }
272 /* a new one */
273 lu=X509_LOOKUP_new(m);
274 if (lu == NULL)
275 return NULL;
276 else
277 {
278 lu->store_ctx=v;
279 if (sk_X509_LOOKUP_push(v->get_cert_methods,lu))
280 return lu;
281 else
282 {
283 X509_LOOKUP_free(lu);
284 return NULL;
285 }
286 }
287 }

289 int X509_STORE_get_by_subject(X509_STORE_CTX *vs, int type, X509_NAME *name,
290 X509_OBJECT *ret)
291 {
292 X509_STORE *ctx=vs->ctx;
293 X509_LOOKUP *lu;
294 X509_OBJECT stmp,*tmp;
295 int i,j;

297 CRYPTO_w_lock(CRYPTO_LOCK_X509_STORE);
298 tmp=X509_OBJECT_retrieve_by_subject(ctx->objs,type,name);
299 CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);

301 if (tmp == NULL || type == X509_LU_CRL)
302 {
303 for (i=vs->current_method; i<sk_X509_LOOKUP_num(ctx->get_cert_me
304 {
305 lu=sk_X509_LOOKUP_value(ctx->get_cert_methods,i);
306 j=X509_LOOKUP_by_subject(lu,type,name,&stmp);
307 if (j < 0)
308 {
309 vs->current_method=j;
310 return j;
311 }
312 else if (j)
313 {
314 tmp= &stmp;
315 break;
316 }
317 }
318 vs->current_method=0;
319 if (tmp == NULL)
320 return 0;
321 }

323 /* if (ret->data.ptr != NULL)
324 X509_OBJECT_free_contents(ret); */

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_lu.c 6

326 ret->type=tmp->type;
327 ret->data.ptr=tmp->data.ptr;

329 X509_OBJECT_up_ref_count(ret);

331 return 1;
332 }

334 int X509_STORE_add_cert(X509_STORE *ctx, X509 *x)
335 {
336 X509_OBJECT *obj;
337 int ret=1;

339 if (x == NULL) return 0;
340 obj=(X509_OBJECT *)OPENSSL_malloc(sizeof(X509_OBJECT));
341 if (obj == NULL)
342 {
343 X509err(X509_F_X509_STORE_ADD_CERT,ERR_R_MALLOC_FAILURE);
344 return 0;
345 }
346 obj->type=X509_LU_X509;
347 obj->data.x509=x;

349 CRYPTO_w_lock(CRYPTO_LOCK_X509_STORE);

351 X509_OBJECT_up_ref_count(obj);

353 if (X509_OBJECT_retrieve_match(ctx->objs, obj))
354 {
355 X509_OBJECT_free_contents(obj);
356 OPENSSL_free(obj);
357 X509err(X509_F_X509_STORE_ADD_CERT,X509_R_CERT_ALREADY_IN_HASH_T
358 ret=0;
359 }
360 else sk_X509_OBJECT_push(ctx->objs, obj);

362 CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);

364 return ret;
365 }

367 int X509_STORE_add_crl(X509_STORE *ctx, X509_CRL *x)
368 {
369 X509_OBJECT *obj;
370 int ret=1;

372 if (x == NULL) return 0;
373 obj=(X509_OBJECT *)OPENSSL_malloc(sizeof(X509_OBJECT));
374 if (obj == NULL)
375 {
376 X509err(X509_F_X509_STORE_ADD_CRL,ERR_R_MALLOC_FAILURE);
377 return 0;
378 }
379 obj->type=X509_LU_CRL;
380 obj->data.crl=x;

382 CRYPTO_w_lock(CRYPTO_LOCK_X509_STORE);

384 X509_OBJECT_up_ref_count(obj);

386 if (X509_OBJECT_retrieve_match(ctx->objs, obj))
387 {
388 X509_OBJECT_free_contents(obj);
389 OPENSSL_free(obj);
390 X509err(X509_F_X509_STORE_ADD_CRL,X509_R_CERT_ALREADY_IN_HASH_TA
391 ret=0;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_lu.c 7

392 }
393 else sk_X509_OBJECT_push(ctx->objs, obj);

395 CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);

397 return ret;
398 }

400 void X509_OBJECT_up_ref_count(X509_OBJECT *a)
401 {
402 switch (a->type)
403 {
404 case X509_LU_X509:
405 CRYPTO_add(&a->data.x509->references,1,CRYPTO_LOCK_X509);
406 break;
407 case X509_LU_CRL:
408 CRYPTO_add(&a->data.crl->references,1,CRYPTO_LOCK_X509_CRL);
409 break;
410 }
411 }

413 void X509_OBJECT_free_contents(X509_OBJECT *a)
414 {
415 switch (a->type)
416 {
417 case X509_LU_X509:
418 X509_free(a->data.x509);
419 break;
420 case X509_LU_CRL:
421 X509_CRL_free(a->data.crl);
422 break;
423 }
424 }

426 static int x509_object_idx_cnt(STACK_OF(X509_OBJECT) *h, int type,
427 X509_NAME *name, int *pnmatch)
428 {
429 X509_OBJECT stmp;
430 X509 x509_s;
431 X509_CINF cinf_s;
432 X509_CRL crl_s;
433 X509_CRL_INFO crl_info_s;
434 int idx;

436 stmp.type=type;
437 switch (type)
438 {
439 case X509_LU_X509:
440 stmp.data.x509= &x509_s;
441 x509_s.cert_info= &cinf_s;
442 cinf_s.subject=name;
443 break;
444 case X509_LU_CRL:
445 stmp.data.crl= &crl_s;
446 crl_s.crl= &crl_info_s;
447 crl_info_s.issuer=name;
448 break;
449 default:
450 /* abort(); */
451 return -1;
452 }

454 idx = sk_X509_OBJECT_find(h,&stmp);
455 if (idx >= 0 && pnmatch)
456 {
457 int tidx;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_lu.c 8

458 const X509_OBJECT *tobj, *pstmp;
459 *pnmatch = 1;
460 pstmp = &stmp;
461 for (tidx = idx + 1; tidx < sk_X509_OBJECT_num(h); tidx++)
462 {
463 tobj = sk_X509_OBJECT_value(h, tidx);
464 if (x509_object_cmp(&tobj, &pstmp))
465 break;
466 (*pnmatch)++;
467 }
468 }
469 return idx;
470 }

473 int X509_OBJECT_idx_by_subject(STACK_OF(X509_OBJECT) *h, int type,
474 X509_NAME *name)
475 {
476 return x509_object_idx_cnt(h, type, name, NULL);
477 }

479 X509_OBJECT *X509_OBJECT_retrieve_by_subject(STACK_OF(X509_OBJECT) *h, int type,
480 X509_NAME *name)
481 {
482 int idx;
483 idx = X509_OBJECT_idx_by_subject(h, type, name);
484 if (idx==-1) return NULL;
485 return sk_X509_OBJECT_value(h, idx);
486 }

488 STACK_OF(X509)* X509_STORE_get1_certs(X509_STORE_CTX *ctx, X509_NAME *nm)
489 {
490 int i, idx, cnt;
491 STACK_OF(X509) *sk;
492 X509 *x;
493 X509_OBJECT *obj;
494 sk = sk_X509_new_null();
495 CRYPTO_w_lock(CRYPTO_LOCK_X509_STORE);
496 idx = x509_object_idx_cnt(ctx->ctx->objs, X509_LU_X509, nm, &cnt);
497 if (idx < 0)
498 {
499 /* Nothing found in cache: do lookup to possibly add new
500 * objects to cache
501 */
502 X509_OBJECT xobj;
503 CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);
504 if (!X509_STORE_get_by_subject(ctx, X509_LU_X509, nm, &xobj))
505 {
506 sk_X509_free(sk);
507 return NULL;
508 }
509 X509_OBJECT_free_contents(&xobj);
510 CRYPTO_w_lock(CRYPTO_LOCK_X509_STORE);
511 idx = x509_object_idx_cnt(ctx->ctx->objs,X509_LU_X509,nm, &cnt);
512 if (idx < 0)
513 {
514 CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);
515 sk_X509_free(sk);
516 return NULL;
517 }
518 }
519 for (i = 0; i < cnt; i++, idx++)
520 {
521 obj = sk_X509_OBJECT_value(ctx->ctx->objs, idx);
522 x = obj->data.x509;
523 CRYPTO_add(&x->references, 1, CRYPTO_LOCK_X509);

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_lu.c 9

524 if (!sk_X509_push(sk, x))
525 {
526 CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);
527 X509_free(x);
528 sk_X509_pop_free(sk, X509_free);
529 return NULL;
530 }
531 }
532 CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);
533 return sk;

535 }

537 STACK_OF(X509_CRL)* X509_STORE_get1_crls(X509_STORE_CTX *ctx, X509_NAME *nm)
538 {
539 int i, idx, cnt;
540 STACK_OF(X509_CRL) *sk;
541 X509_CRL *x;
542 X509_OBJECT *obj, xobj;
543 sk = sk_X509_CRL_new_null();
544 CRYPTO_w_lock(CRYPTO_LOCK_X509_STORE);
545 /* Check cache first */
546 idx = x509_object_idx_cnt(ctx->ctx->objs, X509_LU_CRL, nm, &cnt);

548 /* Always do lookup to possibly add new CRLs to cache
549 */
550 CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);
551 if (!X509_STORE_get_by_subject(ctx, X509_LU_CRL, nm, &xobj))
552 {
553 sk_X509_CRL_free(sk);
554 return NULL;
555 }
556 X509_OBJECT_free_contents(&xobj);
557 CRYPTO_w_lock(CRYPTO_LOCK_X509_STORE);
558 idx = x509_object_idx_cnt(ctx->ctx->objs,X509_LU_CRL, nm, &cnt);
559 if (idx < 0)
560 {
561 CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);
562 sk_X509_CRL_free(sk);
563 return NULL;
564 }

566 for (i = 0; i < cnt; i++, idx++)
567 {
568 obj = sk_X509_OBJECT_value(ctx->ctx->objs, idx);
569 x = obj->data.crl;
570 CRYPTO_add(&x->references, 1, CRYPTO_LOCK_X509_CRL);
571 if (!sk_X509_CRL_push(sk, x))
572 {
573 CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);
574 X509_CRL_free(x);
575 sk_X509_CRL_pop_free(sk, X509_CRL_free);
576 return NULL;
577 }
578 }
579 CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);
580 return sk;
581 }

583 X509_OBJECT *X509_OBJECT_retrieve_match(STACK_OF(X509_OBJECT) *h, X509_OBJECT *x
584 {
585 int idx, i;
586 X509_OBJECT *obj;
587 idx = sk_X509_OBJECT_find(h, x);
588 if (idx == -1) return NULL;
589 if ((x->type != X509_LU_X509) && (x->type != X509_LU_CRL))

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_lu.c 10

590 return sk_X509_OBJECT_value(h, idx);
591 for (i = idx; i < sk_X509_OBJECT_num(h); i++)
592 {
593 obj = sk_X509_OBJECT_value(h, i);
594 if (x509_object_cmp((const X509_OBJECT **)&obj, (const X509_OBJE
595 return NULL;
596 if (x->type == X509_LU_X509)
597 {
598 if (!X509_cmp(obj->data.x509, x->data.x509))
599 return obj;
600 }
601 else if (x->type == X509_LU_CRL)
602 {
603 if (!X509_CRL_match(obj->data.crl, x->data.crl))
604 return obj;
605 }
606 else
607 return obj;
608 }
609 return NULL;
610 }

613 /* Try to get issuer certificate from store. Due to limitations
614 * of the API this can only retrieve a single certificate matching
615 * a given subject name. However it will fill the cache with all
616 * matching certificates, so we can examine the cache for all
617 * matches.
618 *
619 * Return values are:
620 * 1 lookup successful.
621 * 0 certificate not found.
622 * -1 some other error.
623 */
624 int X509_STORE_CTX_get1_issuer(X509 **issuer, X509_STORE_CTX *ctx, X509 *x)
625 {
626 X509_NAME *xn;
627 X509_OBJECT obj, *pobj;
628 int i, ok, idx, ret;
629 xn=X509_get_issuer_name(x);
630 ok=X509_STORE_get_by_subject(ctx,X509_LU_X509,xn,&obj);
631 if (ok != X509_LU_X509)
632 {
633 if (ok == X509_LU_RETRY)
634 {
635 X509_OBJECT_free_contents(&obj);
636 X509err(X509_F_X509_STORE_CTX_GET1_ISSUER,X509_R_SHOULD_
637 return -1;
638 }
639 else if (ok != X509_LU_FAIL)
640 {
641 X509_OBJECT_free_contents(&obj);
642 /* not good :-(, break anyway */
643 return -1;
644 }
645 return 0;
646 }
647 /* If certificate matches all OK */
648 if (ctx->check_issued(ctx, x, obj.data.x509))
649 {
650 *issuer = obj.data.x509;
651 return 1;
652 }
653 X509_OBJECT_free_contents(&obj);

655 /* Else find index of first cert accepted by ’check_issued’ */

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_lu.c 11

656 ret = 0;
657 CRYPTO_w_lock(CRYPTO_LOCK_X509_STORE);
658 idx = X509_OBJECT_idx_by_subject(ctx->ctx->objs, X509_LU_X509, xn);
659 if (idx != -1) /* should be true as we’ve had at least one match */
660 {
661 /* Look through all matching certs for suitable issuer */
662 for (i = idx; i < sk_X509_OBJECT_num(ctx->ctx->objs); i++)
663 {
664 pobj = sk_X509_OBJECT_value(ctx->ctx->objs, i);
665 /* See if we’ve run past the matches */
666 if (pobj->type != X509_LU_X509)
667 break;
668 if (X509_NAME_cmp(xn, X509_get_subject_name(pobj->data.x
669 break;
670 if (ctx->check_issued(ctx, x, pobj->data.x509))
671 {
672 *issuer = pobj->data.x509;
673 X509_OBJECT_up_ref_count(pobj);
674 ret = 1;
675 break;
676 }
677 }
678 }
679 CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);
680 return ret;
681 }

683 int X509_STORE_set_flags(X509_STORE *ctx, unsigned long flags)
684 {
685 return X509_VERIFY_PARAM_set_flags(ctx->param, flags);
686 }

688 int X509_STORE_set_depth(X509_STORE *ctx, int depth)
689 {
690 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
691 return 1;
692 }

694 int X509_STORE_set_purpose(X509_STORE *ctx, int purpose)
695 {
696 return X509_VERIFY_PARAM_set_purpose(ctx->param, purpose);
697 }

699 int X509_STORE_set_trust(X509_STORE *ctx, int trust)
700 {
701 return X509_VERIFY_PARAM_set_trust(ctx->param, trust);
702 }

704 int X509_STORE_set1_param(X509_STORE *ctx, X509_VERIFY_PARAM *param)
705 {
706 return X509_VERIFY_PARAM_set1(ctx->param, param);
707 }

709 void X509_STORE_set_verify_cb(X509_STORE *ctx,
710 int (*verify_cb)(int, X509_STORE_CTX *))
711 {
712 ctx->verify_cb = verify_cb;
713 }

715 IMPLEMENT_STACK_OF(X509_LOOKUP)
716 IMPLEMENT_STACK_OF(X509_OBJECT)

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_obj.c 1

**
 6508 Fri May 30 18:32:13 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_obj.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509_obj.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/lhash.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_obj.c 2

62 #include <openssl/objects.h>
63 #include <openssl/x509.h>
64 #include <openssl/buffer.h>

66 char *X509_NAME_oneline(X509_NAME *a, char *buf, int len)
67 {
68 X509_NAME_ENTRY *ne;
69 int i;
70 int n,lold,l,l1,l2,num,j,type;
71 const char *s;
72 char *p;
73 unsigned char *q;
74 BUF_MEM *b=NULL;
75 static const char hex[17]="0123456789ABCDEF";
76 int gs_doit[4];
77 char tmp_buf[80];
78 #ifdef CHARSET_EBCDIC
79 char ebcdic_buf[1024];
80 #endif

82 if (buf == NULL)
83 {
84 if ((b=BUF_MEM_new()) == NULL) goto err;
85 if (!BUF_MEM_grow(b,200)) goto err;
86 b->data[0]=’\0’;
87 len=200;
88 }
89 if (a == NULL)
90 {
91 if(b)
92 {
93 buf=b->data;
94 OPENSSL_free(b);
95 }
96 strncpy(buf,"NO X509_NAME",len);
97 buf[len-1]=’\0’;
98 return buf;
99 }

101 len--; /* space for ’\0’ */
102 l=0;
103 for (i=0; i<sk_X509_NAME_ENTRY_num(a->entries); i++)
104 {
105 ne=sk_X509_NAME_ENTRY_value(a->entries,i);
106 n=OBJ_obj2nid(ne->object);
107 if ((n == NID_undef) || ((s=OBJ_nid2sn(n)) == NULL))
108 {
109 i2t_ASN1_OBJECT(tmp_buf,sizeof(tmp_buf),ne->object);
110 s=tmp_buf;
111 }
112 l1=strlen(s);

114 type=ne->value->type;
115 num=ne->value->length;
116 q=ne->value->data;
117 #ifdef CHARSET_EBCDIC
118 if (type == V_ASN1_GENERALSTRING ||
119 type == V_ASN1_VISIBLESTRING ||
120 type == V_ASN1_PRINTABLESTRING ||
121 type == V_ASN1_TELETEXSTRING ||
122 type == V_ASN1_VISIBLESTRING ||
123 type == V_ASN1_IA5STRING) {
124 ascii2ebcdic(ebcdic_buf, q,
125 (num > sizeof ebcdic_buf)
126 ? sizeof ebcdic_buf : num);
127 q=ebcdic_buf;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_obj.c 3

128 }
129 #endif

131 if ((type == V_ASN1_GENERALSTRING) && ((num%4) == 0))
132 {
133 gs_doit[0]=gs_doit[1]=gs_doit[2]=gs_doit[3]=0;
134 for (j=0; j<num; j++)
135 if (q[j] != 0) gs_doit[j&3]=1;

137 if (gs_doit[0]|gs_doit[1]|gs_doit[2])
138 gs_doit[0]=gs_doit[1]=gs_doit[2]=gs_doit[3]=1;
139 else
140 {
141 gs_doit[0]=gs_doit[1]=gs_doit[2]=0;
142 gs_doit[3]=1;
143 }
144 }
145 else
146 gs_doit[0]=gs_doit[1]=gs_doit[2]=gs_doit[3]=1;

148 for (l2=j=0; j<num; j++)
149 {
150 if (!gs_doit[j&3]) continue;
151 l2++;
152 #ifndef CHARSET_EBCDIC
153 if ((q[j] < ’ ’) || (q[j] > ’~’)) l2+=3;
154 #else
155 if ((os_toascii[q[j]] < os_toascii[’ ’]) ||
156 (os_toascii[q[j]] > os_toascii[’~’])) l2+=3;
157 #endif
158 }

160 lold=l;
161 l+=1+l1+1+l2;
162 if (b != NULL)
163 {
164 if (!BUF_MEM_grow(b,l+1)) goto err;
165 p= &(b->data[lold]);
166 }
167 else if (l > len)
168 {
169 break;
170 }
171 else
172 p= &(buf[lold]);
173 *(p++)=’/’;
174 memcpy(p,s,(unsigned int)l1); p+=l1;
175 *(p++)=’=’;

177 #ifndef CHARSET_EBCDIC /* q was assigned above already. */
178 q=ne->value->data;
179 #endif

181 for (j=0; j<num; j++)
182 {
183 if (!gs_doit[j&3]) continue;
184 #ifndef CHARSET_EBCDIC
185 n=q[j];
186 if ((n < ’ ’) || (n > ’~’))
187 {
188 *(p++)=’\\’;
189 *(p++)=’x’;
190 *(p++)=hex[(n>>4)&0x0f];
191 *(p++)=hex[n&0x0f];
192 }
193 else

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_obj.c 4

194 *(p++)=n;
195 #else
196 n=os_toascii[q[j]];
197 if ((n < os_toascii[’ ’]) ||
198 (n > os_toascii[’~’]))
199 {
200 *(p++)=’\\’;
201 *(p++)=’x’;
202 *(p++)=hex[(n>>4)&0x0f];
203 *(p++)=hex[n&0x0f];
204 }
205 else
206 *(p++)=q[j];
207 #endif
208 }
209 *p=’\0’;
210 }
211 if (b != NULL)
212 {
213 p=b->data;
214 OPENSSL_free(b);
215 }
216 else
217 p=buf;
218 if (i == 0)
219 *p = ’\0’;
220 return(p);
221 err:
222 X509err(X509_F_X509_NAME_ONELINE,ERR_R_MALLOC_FAILURE);
223 if (b != NULL) BUF_MEM_free(b);
224 return(NULL);
225 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_r2x.c 1

**
 4439 Fri May 30 18:32:13 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_r2x.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509_r2x.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_r2x.c 2

62 #include <openssl/evp.h>
63 #include <openssl/asn1.h>
64 #include <openssl/x509.h>
65 #include <openssl/objects.h>
66 #include <openssl/buffer.h>

68 X509 *X509_REQ_to_X509(X509_REQ *r, int days, EVP_PKEY *pkey)
69 {
70 X509 *ret=NULL;
71 X509_CINF *xi=NULL;
72 X509_NAME *xn;

74 if ((ret=X509_new()) == NULL)
75 {
76 X509err(X509_F_X509_REQ_TO_X509,ERR_R_MALLOC_FAILURE);
77 goto err;
78 }

80 /* duplicate the request */
81 xi=ret->cert_info;

83 if (sk_X509_ATTRIBUTE_num(r->req_info->attributes) != 0)
84 {
85 if ((xi->version=M_ASN1_INTEGER_new()) == NULL) goto err;
86 if (!ASN1_INTEGER_set(xi->version,2)) goto err;
87 /* xi->extensions=ri->attributes; <- bad, should not ever be done
88 ri->attributes=NULL; */
89 }

91 xn=X509_REQ_get_subject_name(r);
92 if (X509_set_subject_name(ret,X509_NAME_dup(xn)) == 0)
93 goto err;
94 if (X509_set_issuer_name(ret,X509_NAME_dup(xn)) == 0)
95 goto err;

97 if (X509_gmtime_adj(xi->validity->notBefore,0) == NULL)
98 goto err;
99 if (X509_gmtime_adj(xi->validity->notAfter,(long)60*60*24*days) == NULL)
100 goto err;

102 X509_set_pubkey(ret,X509_REQ_get_pubkey(r));

104 if (!X509_sign(ret,pkey,EVP_md5()))
105 goto err;
106 if (0)
107 {
108 err:
109 X509_free(ret);
110 ret=NULL;
111 }
112 return(ret);
113 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_req.c 1

**
 9390 Fri May 30 18:32:13 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_req.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509_req.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/bn.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_req.c 2

62 #include <openssl/evp.h>
63 #include <openssl/asn1.h>
64 #include <openssl/asn1t.h>
65 #include <openssl/x509.h>
66 #include <openssl/objects.h>
67 #include <openssl/buffer.h>
68 #include <openssl/pem.h>

70 X509_REQ *X509_to_X509_REQ(X509 *x, EVP_PKEY *pkey, const EVP_MD *md)
71 {
72 X509_REQ *ret;
73 X509_REQ_INFO *ri;
74 int i;
75 EVP_PKEY *pktmp;

77 ret=X509_REQ_new();
78 if (ret == NULL)
79 {
80 X509err(X509_F_X509_TO_X509_REQ,ERR_R_MALLOC_FAILURE);
81 goto err;
82 }

84 ri=ret->req_info;

86 ri->version->length=1;
87 ri->version->data=(unsigned char *)OPENSSL_malloc(1);
88 if (ri->version->data == NULL) goto err;
89 ri->version->data[0]=0; /* version == 0 */

91 if (!X509_REQ_set_subject_name(ret,X509_get_subject_name(x)))
92 goto err;

94 pktmp = X509_get_pubkey(x);
95 i=X509_REQ_set_pubkey(ret,pktmp);
96 EVP_PKEY_free(pktmp);
97 if (!i) goto err;

99 if (pkey != NULL)
100 {
101 if (!X509_REQ_sign(ret,pkey,md))
102 goto err;
103 }
104 return(ret);
105 err:
106 X509_REQ_free(ret);
107 return(NULL);
108 }

110 EVP_PKEY *X509_REQ_get_pubkey(X509_REQ *req)
111 {
112 if ((req == NULL) || (req->req_info == NULL))
113 return(NULL);
114 return(X509_PUBKEY_get(req->req_info->pubkey));
115 }

117 int X509_REQ_check_private_key(X509_REQ *x, EVP_PKEY *k)
118 {
119 EVP_PKEY *xk=NULL;
120 int ok=0;

122 xk=X509_REQ_get_pubkey(x);
123 switch (EVP_PKEY_cmp(xk, k))
124 {
125 case 1:
126 ok=1;
127 break;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_req.c 3

128 case 0:
129 X509err(X509_F_X509_REQ_CHECK_PRIVATE_KEY,X509_R_KEY_VALUES_MISM
130 break;
131 case -1:
132 X509err(X509_F_X509_REQ_CHECK_PRIVATE_KEY,X509_R_KEY_TYPE_MISMAT
133 break;
134 case -2:
135 #ifndef OPENSSL_NO_EC
136 if (k->type == EVP_PKEY_EC)
137 {
138 X509err(X509_F_X509_REQ_CHECK_PRIVATE_KEY, ERR_R_EC_LIB)
139 break;
140 }
141 #endif
142 #ifndef OPENSSL_NO_DH
143 if (k->type == EVP_PKEY_DH)
144 {
145 /* No idea */
146 X509err(X509_F_X509_REQ_CHECK_PRIVATE_KEY,X509_R_CANT_CH
147 break;
148 }
149 #endif
150 X509err(X509_F_X509_REQ_CHECK_PRIVATE_KEY,X509_R_UNKNOWN_KEY_TYP
151 }

153 EVP_PKEY_free(xk);
154 return(ok);
155 }

157 /* It seems several organisations had the same idea of including a list of
158 * extensions in a certificate request. There are at least two OIDs that are
159 * used and there may be more: so the list is configurable.
160 */

162 static int ext_nid_list[] = { NID_ext_req, NID_ms_ext_req, NID_undef};

164 static int *ext_nids = ext_nid_list;

166 int X509_REQ_extension_nid(int req_nid)
167 {
168 int i, nid;
169 for(i = 0; ; i++) {
170 nid = ext_nids[i];
171 if(nid == NID_undef) return 0;
172 else if (req_nid == nid) return 1;
173 }
174 }

176 int *X509_REQ_get_extension_nids(void)
177 {
178 return ext_nids;
179 }
180
181 void X509_REQ_set_extension_nids(int *nids)
182 {
183 ext_nids = nids;
184 }

186 STACK_OF(X509_EXTENSION) *X509_REQ_get_extensions(X509_REQ *req)
187 {
188 X509_ATTRIBUTE *attr;
189 ASN1_TYPE *ext = NULL;
190 int idx, *pnid;
191 const unsigned char *p;

193 if ((req == NULL) || (req->req_info == NULL) || !ext_nids)

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_req.c 4

194 return(NULL);
195 for (pnid = ext_nids; *pnid != NID_undef; pnid++)
196 {
197 idx = X509_REQ_get_attr_by_NID(req, *pnid, -1);
198 if (idx == -1)
199 continue;
200 attr = X509_REQ_get_attr(req, idx);
201 if(attr->single) ext = attr->value.single;
202 else if(sk_ASN1_TYPE_num(attr->value.set))
203 ext = sk_ASN1_TYPE_value(attr->value.set, 0);
204 break;
205 }
206 if(!ext || (ext->type != V_ASN1_SEQUENCE))
207 return NULL;
208 p = ext->value.sequence->data;
209 return (STACK_OF(X509_EXTENSION) *)
210 ASN1_item_d2i(NULL, &p, ext->value.sequence->length,
211 ASN1_ITEM_rptr(X509_EXTENSIONS));
212 }

214 /* Add a STACK_OF extensions to a certificate request: allow alternative OIDs
215 * in case we want to create a non standard one.
216 */

218 int X509_REQ_add_extensions_nid(X509_REQ *req, STACK_OF(X509_EXTENSION) *exts,
219 int nid)
220 {
221 ASN1_TYPE *at = NULL;
222 X509_ATTRIBUTE *attr = NULL;
223 if(!(at = ASN1_TYPE_new()) ||
224 !(at->value.sequence = ASN1_STRING_new())) goto err;

226 at->type = V_ASN1_SEQUENCE;
227 /* Generate encoding of extensions */
228 at->value.sequence->length =
229 ASN1_item_i2d((ASN1_VALUE *)exts,
230 &at->value.sequence->data,
231 ASN1_ITEM_rptr(X509_EXTENSIONS));
232 if(!(attr = X509_ATTRIBUTE_new())) goto err;
233 if(!(attr->value.set = sk_ASN1_TYPE_new_null())) goto err;
234 if(!sk_ASN1_TYPE_push(attr->value.set, at)) goto err;
235 at = NULL;
236 attr->single = 0;
237 attr->object = OBJ_nid2obj(nid);
238 if (!req->req_info->attributes)
239 {
240 if (!(req->req_info->attributes = sk_X509_ATTRIBUTE_new_null()))
241 goto err;
242 }
243 if(!sk_X509_ATTRIBUTE_push(req->req_info->attributes, attr)) goto err;
244 return 1;
245 err:
246 X509_ATTRIBUTE_free(attr);
247 ASN1_TYPE_free(at);
248 return 0;
249 }
250 /* This is the normal usage: use the "official" OID */
251 int X509_REQ_add_extensions(X509_REQ *req, STACK_OF(X509_EXTENSION) *exts)
252 {
253 return X509_REQ_add_extensions_nid(req, exts, NID_ext_req);
254 }

256 /* Request attribute functions */

258 int X509_REQ_get_attr_count(const X509_REQ *req)
259 {

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_req.c 5

260 return X509at_get_attr_count(req->req_info->attributes);
261 }

263 int X509_REQ_get_attr_by_NID(const X509_REQ *req, int nid,
264 int lastpos)
265 {
266 return X509at_get_attr_by_NID(req->req_info->attributes, nid, lastpos);
267 }

269 int X509_REQ_get_attr_by_OBJ(const X509_REQ *req, ASN1_OBJECT *obj,
270 int lastpos)
271 {
272 return X509at_get_attr_by_OBJ(req->req_info->attributes, obj, lastpos);
273 }

275 X509_ATTRIBUTE *X509_REQ_get_attr(const X509_REQ *req, int loc)
276 {
277 return X509at_get_attr(req->req_info->attributes, loc);
278 }

280 X509_ATTRIBUTE *X509_REQ_delete_attr(X509_REQ *req, int loc)
281 {
282 return X509at_delete_attr(req->req_info->attributes, loc);
283 }

285 int X509_REQ_add1_attr(X509_REQ *req, X509_ATTRIBUTE *attr)
286 {
287 if(X509at_add1_attr(&req->req_info->attributes, attr)) return 1;
288 return 0;
289 }

291 int X509_REQ_add1_attr_by_OBJ(X509_REQ *req,
292 const ASN1_OBJECT *obj, int type,
293 const unsigned char *bytes, int len)
294 {
295 if(X509at_add1_attr_by_OBJ(&req->req_info->attributes, obj,
296 type, bytes, len)) return 1;
297 return 0;
298 }

300 int X509_REQ_add1_attr_by_NID(X509_REQ *req,
301 int nid, int type,
302 const unsigned char *bytes, int len)
303 {
304 if(X509at_add1_attr_by_NID(&req->req_info->attributes, nid,
305 type, bytes, len)) return 1;
306 return 0;
307 }

309 int X509_REQ_add1_attr_by_txt(X509_REQ *req,
310 const char *attrname, int type,
311 const unsigned char *bytes, int len)
312 {
313 if(X509at_add1_attr_by_txt(&req->req_info->attributes, attrname,
314 type, bytes, len)) return 1;
315 return 0;
316 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_set.c 1

**
 5181 Fri May 30 18:32:13 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_set.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509_set.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_set.c 2

62 #include <openssl/objects.h>
63 #include <openssl/evp.h>
64 #include <openssl/x509.h>

66 int X509_set_version(X509 *x, long version)
67 {
68 if (x == NULL) return(0);
69 if (x->cert_info->version == NULL)
70 {
71 if ((x->cert_info->version=M_ASN1_INTEGER_new()) == NULL)
72 return(0);
73 }
74 return(ASN1_INTEGER_set(x->cert_info->version,version));
75 }

77 int X509_set_serialNumber(X509 *x, ASN1_INTEGER *serial)
78 {
79 ASN1_INTEGER *in;

81 if (x == NULL) return(0);
82 in=x->cert_info->serialNumber;
83 if (in != serial)
84 {
85 in=M_ASN1_INTEGER_dup(serial);
86 if (in != NULL)
87 {
88 M_ASN1_INTEGER_free(x->cert_info->serialNumber);
89 x->cert_info->serialNumber=in;
90 }
91 }
92 return(in != NULL);
93 }

95 int X509_set_issuer_name(X509 *x, X509_NAME *name)
96 {
97 if ((x == NULL) || (x->cert_info == NULL)) return(0);
98 return(X509_NAME_set(&x->cert_info->issuer,name));
99 }

101 int X509_set_subject_name(X509 *x, X509_NAME *name)
102 {
103 if ((x == NULL) || (x->cert_info == NULL)) return(0);
104 return(X509_NAME_set(&x->cert_info->subject,name));
105 }

107 int X509_set_notBefore(X509 *x, const ASN1_TIME *tm)
108 {
109 ASN1_TIME *in;

111 if ((x == NULL) || (x->cert_info->validity == NULL)) return(0);
112 in=x->cert_info->validity->notBefore;
113 if (in != tm)
114 {
115 in=M_ASN1_TIME_dup(tm);
116 if (in != NULL)
117 {
118 M_ASN1_TIME_free(x->cert_info->validity->notBefore);
119 x->cert_info->validity->notBefore=in;
120 }
121 }
122 return(in != NULL);
123 }

125 int X509_set_notAfter(X509 *x, const ASN1_TIME *tm)
126 {
127 ASN1_TIME *in;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_set.c 3

129 if ((x == NULL) || (x->cert_info->validity == NULL)) return(0);
130 in=x->cert_info->validity->notAfter;
131 if (in != tm)
132 {
133 in=M_ASN1_TIME_dup(tm);
134 if (in != NULL)
135 {
136 M_ASN1_TIME_free(x->cert_info->validity->notAfter);
137 x->cert_info->validity->notAfter=in;
138 }
139 }
140 return(in != NULL);
141 }

143 int X509_set_pubkey(X509 *x, EVP_PKEY *pkey)
144 {
145 if ((x == NULL) || (x->cert_info == NULL)) return(0);
146 return(X509_PUBKEY_set(&(x->cert_info->key),pkey));
147 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_trs.c 1

**
 9015 Fri May 30 18:32:13 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_trs.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* x509_trs.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/x509v3.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_trs.c 2

64 static int tr_cmp(const X509_TRUST * const *a,
65 const X509_TRUST * const *b);
66 static void trtable_free(X509_TRUST *p);

68 static int trust_1oidany(X509_TRUST *trust, X509 *x, int flags);
69 static int trust_1oid(X509_TRUST *trust, X509 *x, int flags);
70 static int trust_compat(X509_TRUST *trust, X509 *x, int flags);

72 static int obj_trust(int id, X509 *x, int flags);
73 static int (*default_trust)(int id, X509 *x, int flags) = obj_trust;

75 /* WARNING: the following table should be kept in order of trust
76 * and without any gaps so we can just subtract the minimum trust
77 * value to get an index into the table
78 */

80 static X509_TRUST trstandard[] = {
81 {X509_TRUST_COMPAT, 0, trust_compat, "compatible", 0, NULL},
82 {X509_TRUST_SSL_CLIENT, 0, trust_1oidany, "SSL Client", NID_client_auth, NULL},
83 {X509_TRUST_SSL_SERVER, 0, trust_1oidany, "SSL Server", NID_server_auth, NULL},
84 {X509_TRUST_EMAIL, 0, trust_1oidany, "S/MIME email", NID_email_protect, NULL},
85 {X509_TRUST_OBJECT_SIGN, 0, trust_1oidany, "Object Signer", NID_code_sign, NULL}
86 {X509_TRUST_OCSP_SIGN, 0, trust_1oid, "OCSP responder", NID_OCSP_sign, NULL},
87 {X509_TRUST_OCSP_REQUEST, 0, trust_1oid, "OCSP request", NID_ad_OCSP, NULL},
88 {X509_TRUST_TSA, 0, trust_1oidany, "TSA server", NID_time_stamp, NULL}
89 };

91 #define X509_TRUST_COUNT (sizeof(trstandard)/sizeof(X509_TRUST))

93 IMPLEMENT_STACK_OF(X509_TRUST)

95 static STACK_OF(X509_TRUST) *trtable = NULL;

97 static int tr_cmp(const X509_TRUST * const *a,
98 const X509_TRUST * const *b)
99 {
100 return (*a)->trust - (*b)->trust;
101 }

103 int (*X509_TRUST_set_default(int (*trust)(int , X509 *, int)))(int, X509 *, int)
104 {
105 int (*oldtrust)(int , X509 *, int);
106 oldtrust = default_trust;
107 default_trust = trust;
108 return oldtrust;
109 }

112 int X509_check_trust(X509 *x, int id, int flags)
113 {
114 X509_TRUST *pt;
115 int idx;
116 if(id == -1) return 1;
117 /* We get this as a default value */
118 if (id == 0)
119 {
120 int rv;
121 rv = obj_trust(NID_anyExtendedKeyUsage, x, 0);
122 if (rv != X509_TRUST_UNTRUSTED)
123 return rv;
124 return trust_compat(NULL, x, 0);
125 }
126 idx = X509_TRUST_get_by_id(id);
127 if(idx == -1) return default_trust(id, x, flags);

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_trs.c 3

128 pt = X509_TRUST_get0(idx);
129 return pt->check_trust(pt, x, flags);
130 }

132 int X509_TRUST_get_count(void)
133 {
134 if(!trtable) return X509_TRUST_COUNT;
135 return sk_X509_TRUST_num(trtable) + X509_TRUST_COUNT;
136 }

138 X509_TRUST * X509_TRUST_get0(int idx)
139 {
140 if(idx < 0) return NULL;
141 if(idx < (int)X509_TRUST_COUNT) return trstandard + idx;
142 return sk_X509_TRUST_value(trtable, idx - X509_TRUST_COUNT);
143 }

145 int X509_TRUST_get_by_id(int id)
146 {
147 X509_TRUST tmp;
148 int idx;
149 if((id >= X509_TRUST_MIN) && (id <= X509_TRUST_MAX))
150 return id - X509_TRUST_MIN;
151 tmp.trust = id;
152 if(!trtable) return -1;
153 idx = sk_X509_TRUST_find(trtable, &tmp);
154 if(idx == -1) return -1;
155 return idx + X509_TRUST_COUNT;
156 }

158 int X509_TRUST_set(int *t, int trust)
159 {
160 if(X509_TRUST_get_by_id(trust) == -1) {
161 X509err(X509_F_X509_TRUST_SET, X509_R_INVALID_TRUST);
162 return 0;
163 }
164 *t = trust;
165 return 1;
166 }

168 int X509_TRUST_add(int id, int flags, int (*ck)(X509_TRUST *, X509 *, int),
169 char *name, int arg1, void *arg2)
170 {
171 int idx;
172 X509_TRUST *trtmp;
173 /* This is set according to what we change: application can’t set it */
174 flags &= ~X509_TRUST_DYNAMIC;
175 /* This will always be set for application modified trust entries */
176 flags |= X509_TRUST_DYNAMIC_NAME;
177 /* Get existing entry if any */
178 idx = X509_TRUST_get_by_id(id);
179 /* Need a new entry */
180 if(idx == -1) {
181 if(!(trtmp = OPENSSL_malloc(sizeof(X509_TRUST)))) {
182 X509err(X509_F_X509_TRUST_ADD,ERR_R_MALLOC_FAILURE);
183 return 0;
184 }
185 trtmp->flags = X509_TRUST_DYNAMIC;
186 } else trtmp = X509_TRUST_get0(idx);

188 /* OPENSSL_free existing name if dynamic */
189 if(trtmp->flags & X509_TRUST_DYNAMIC_NAME) OPENSSL_free(trtmp->name);
190 /* dup supplied name */
191 if(!(trtmp->name = BUF_strdup(name))) {
192 X509err(X509_F_X509_TRUST_ADD,ERR_R_MALLOC_FAILURE);
193 return 0;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_trs.c 4

194 }
195 /* Keep the dynamic flag of existing entry */
196 trtmp->flags &= X509_TRUST_DYNAMIC;
197 /* Set all other flags */
198 trtmp->flags |= flags;

200 trtmp->trust = id;
201 trtmp->check_trust = ck;
202 trtmp->arg1 = arg1;
203 trtmp->arg2 = arg2;

205 /* If its a new entry manage the dynamic table */
206 if(idx == -1) {
207 if(!trtable && !(trtable = sk_X509_TRUST_new(tr_cmp))) {
208 X509err(X509_F_X509_TRUST_ADD,ERR_R_MALLOC_FAILURE);
209 return 0;
210 }
211 if (!sk_X509_TRUST_push(trtable, trtmp)) {
212 X509err(X509_F_X509_TRUST_ADD,ERR_R_MALLOC_FAILURE);
213 return 0;
214 }
215 }
216 return 1;
217 }

219 static void trtable_free(X509_TRUST *p)
220 {
221 if(!p) return;
222 if (p->flags & X509_TRUST_DYNAMIC)
223 {
224 if (p->flags & X509_TRUST_DYNAMIC_NAME)
225 OPENSSL_free(p->name);
226 OPENSSL_free(p);
227 }
228 }

230 void X509_TRUST_cleanup(void)
231 {
232 unsigned int i;
233 for(i = 0; i < X509_TRUST_COUNT; i++) trtable_free(trstandard + i);
234 sk_X509_TRUST_pop_free(trtable, trtable_free);
235 trtable = NULL;
236 }

238 int X509_TRUST_get_flags(X509_TRUST *xp)
239 {
240 return xp->flags;
241 }

243 char *X509_TRUST_get0_name(X509_TRUST *xp)
244 {
245 return xp->name;
246 }

248 int X509_TRUST_get_trust(X509_TRUST *xp)
249 {
250 return xp->trust;
251 }

253 static int trust_1oidany(X509_TRUST *trust, X509 *x, int flags)
254 {
255 if(x->aux && (x->aux->trust || x->aux->reject))
256 return obj_trust(trust->arg1, x, flags);
257 /* we don’t have any trust settings: for compatibility
258 * we return trusted if it is self signed
259 */

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_trs.c 5

260 return trust_compat(trust, x, flags);
261 }

263 static int trust_1oid(X509_TRUST *trust, X509 *x, int flags)
264 {
265 if(x->aux) return obj_trust(trust->arg1, x, flags);
266 return X509_TRUST_UNTRUSTED;
267 }

269 static int trust_compat(X509_TRUST *trust, X509 *x, int flags)
270 {
271 X509_check_purpose(x, -1, 0);
272 if(x->ex_flags & EXFLAG_SS) return X509_TRUST_TRUSTED;
273 else return X509_TRUST_UNTRUSTED;
274 }

276 static int obj_trust(int id, X509 *x, int flags)
277 {
278 ASN1_OBJECT *obj;
279 int i;
280 X509_CERT_AUX *ax;
281 ax = x->aux;
282 if(!ax) return X509_TRUST_UNTRUSTED;
283 if(ax->reject) {
284 for(i = 0; i < sk_ASN1_OBJECT_num(ax->reject); i++) {
285 obj = sk_ASN1_OBJECT_value(ax->reject, i);
286 if(OBJ_obj2nid(obj) == id) return X509_TRUST_REJECTED;
287 }
288 }
289 if(ax->trust) {
290 for(i = 0; i < sk_ASN1_OBJECT_num(ax->trust); i++) {
291 obj = sk_ASN1_OBJECT_value(ax->trust, i);
292 if(OBJ_obj2nid(obj) == id) return X509_TRUST_TRUSTED;
293 }
294 }
295 return X509_TRUST_UNTRUSTED;
296 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_txt.c 1

**
 8366 Fri May 30 18:32:13 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_txt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509_txt.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <time.h>
61 #include <errno.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_txt.c 2

63 #include "cryptlib.h"
64 #include <openssl/lhash.h>
65 #include <openssl/buffer.h>
66 #include <openssl/evp.h>
67 #include <openssl/asn1.h>
68 #include <openssl/x509.h>
69 #include <openssl/objects.h>

71 const char *X509_verify_cert_error_string(long n)
72 {
73 static char buf[100];

75 switch ((int)n)
76 {
77 case X509_V_OK:
78 return("ok");
79 case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
80 return("unable to get issuer certificate");
81 case X509_V_ERR_UNABLE_TO_GET_CRL:
82 return("unable to get certificate CRL");
83 case X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE:
84 return("unable to decrypt certificate’s signature");
85 case X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE:
86 return("unable to decrypt CRL’s signature");
87 case X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY:
88 return("unable to decode issuer public key");
89 case X509_V_ERR_CERT_SIGNATURE_FAILURE:
90 return("certificate signature failure");
91 case X509_V_ERR_CRL_SIGNATURE_FAILURE:
92 return("CRL signature failure");
93 case X509_V_ERR_CERT_NOT_YET_VALID:
94 return("certificate is not yet valid");
95 case X509_V_ERR_CRL_NOT_YET_VALID:
96 return("CRL is not yet valid");
97 case X509_V_ERR_CERT_HAS_EXPIRED:
98 return("certificate has expired");
99 case X509_V_ERR_CRL_HAS_EXPIRED:
100 return("CRL has expired");
101 case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
102 return("format error in certificate’s notBefore field");
103 case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
104 return("format error in certificate’s notAfter field");
105 case X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD:
106 return("format error in CRL’s lastUpdate field");
107 case X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD:
108 return("format error in CRL’s nextUpdate field");
109 case X509_V_ERR_OUT_OF_MEM:
110 return("out of memory");
111 case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT:
112 return("self signed certificate");
113 case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN:
114 return("self signed certificate in certificate chain");
115 case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY:
116 return("unable to get local issuer certificate");
117 case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE:
118 return("unable to verify the first certificate");
119 case X509_V_ERR_CERT_CHAIN_TOO_LONG:
120 return("certificate chain too long");
121 case X509_V_ERR_CERT_REVOKED:
122 return("certificate revoked");
123 case X509_V_ERR_INVALID_CA:
124 return ("invalid CA certificate");
125 case X509_V_ERR_INVALID_NON_CA:
126 return ("invalid non-CA certificate (has CA markings)");
127 case X509_V_ERR_PATH_LENGTH_EXCEEDED:

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_txt.c 3

128 return ("path length constraint exceeded");
129 case X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED:
130 return("proxy path length constraint exceeded");
131 case X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED:
132 return("proxy certificates not allowed, please set the appropria
133 case X509_V_ERR_INVALID_PURPOSE:
134 return ("unsupported certificate purpose");
135 case X509_V_ERR_CERT_UNTRUSTED:
136 return ("certificate not trusted");
137 case X509_V_ERR_CERT_REJECTED:
138 return ("certificate rejected");
139 case X509_V_ERR_APPLICATION_VERIFICATION:
140 return("application verification failure");
141 case X509_V_ERR_SUBJECT_ISSUER_MISMATCH:
142 return("subject issuer mismatch");
143 case X509_V_ERR_AKID_SKID_MISMATCH:
144 return("authority and subject key identifier mismatch");
145 case X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH:
146 return("authority and issuer serial number mismatch");
147 case X509_V_ERR_KEYUSAGE_NO_CERTSIGN:
148 return("key usage does not include certificate signing");
149 case X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER:
150 return("unable to get CRL issuer certificate");
151 case X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION:
152 return("unhandled critical extension");
153 case X509_V_ERR_KEYUSAGE_NO_CRL_SIGN:
154 return("key usage does not include CRL signing");
155 case X509_V_ERR_KEYUSAGE_NO_DIGITAL_SIGNATURE:
156 return("key usage does not include digital signature");
157 case X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION:
158 return("unhandled critical CRL extension");
159 case X509_V_ERR_INVALID_EXTENSION:
160 return("invalid or inconsistent certificate extension");
161 case X509_V_ERR_INVALID_POLICY_EXTENSION:
162 return("invalid or inconsistent certificate policy extension");
163 case X509_V_ERR_NO_EXPLICIT_POLICY:
164 return("no explicit policy");
165 case X509_V_ERR_DIFFERENT_CRL_SCOPE:
166 return("Different CRL scope");
167 case X509_V_ERR_UNSUPPORTED_EXTENSION_FEATURE:
168 return("Unsupported extension feature");
169 case X509_V_ERR_UNNESTED_RESOURCE:
170 return("RFC 3779 resource not subset of parent’s resources");

172 case X509_V_ERR_PERMITTED_VIOLATION:
173 return("permitted subtree violation");
174 case X509_V_ERR_EXCLUDED_VIOLATION:
175 return("excluded subtree violation");
176 case X509_V_ERR_SUBTREE_MINMAX:
177 return("name constraints minimum and maximum not supported");
178 case X509_V_ERR_UNSUPPORTED_CONSTRAINT_TYPE:
179 return("unsupported name constraint type");
180 case X509_V_ERR_UNSUPPORTED_CONSTRAINT_SYNTAX:
181 return("unsupported or invalid name constraint syntax");
182 case X509_V_ERR_UNSUPPORTED_NAME_SYNTAX:
183 return("unsupported or invalid name syntax");
184 case X509_V_ERR_CRL_PATH_VALIDATION_ERROR:
185 return("CRL path validation error");

187 default:
188 BIO_snprintf(buf,sizeof buf,"error number %ld",n);
189 return(buf);
190 }
191 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_txt.c 4

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_v3.c 1

**
 7785 Fri May 30 18:32:13 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_v3.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509_v3.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/stack.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_v3.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/objects.h>
64 #include <openssl/evp.h>
65 #include <openssl/x509.h>
66 #include <openssl/x509v3.h>

68 int X509v3_get_ext_count(const STACK_OF(X509_EXTENSION) *x)
69 {
70 if (x == NULL) return(0);
71 return(sk_X509_EXTENSION_num(x));
72 }

74 int X509v3_get_ext_by_NID(const STACK_OF(X509_EXTENSION) *x, int nid,
75 int lastpos)
76 {
77 ASN1_OBJECT *obj;

79 obj=OBJ_nid2obj(nid);
80 if (obj == NULL) return(-2);
81 return(X509v3_get_ext_by_OBJ(x,obj,lastpos));
82 }

84 int X509v3_get_ext_by_OBJ(const STACK_OF(X509_EXTENSION) *sk, ASN1_OBJECT *obj,
85 int lastpos)
86 {
87 int n;
88 X509_EXTENSION *ex;

90 if (sk == NULL) return(-1);
91 lastpos++;
92 if (lastpos < 0)
93 lastpos=0;
94 n=sk_X509_EXTENSION_num(sk);
95 for (; lastpos < n; lastpos++)
96 {
97 ex=sk_X509_EXTENSION_value(sk,lastpos);
98 if (OBJ_cmp(ex->object,obj) == 0)
99 return(lastpos);
100 }
101 return(-1);
102 }

104 int X509v3_get_ext_by_critical(const STACK_OF(X509_EXTENSION) *sk, int crit,
105 int lastpos)
106 {
107 int n;
108 X509_EXTENSION *ex;

110 if (sk == NULL) return(-1);
111 lastpos++;
112 if (lastpos < 0)
113 lastpos=0;
114 n=sk_X509_EXTENSION_num(sk);
115 for (; lastpos < n; lastpos++)
116 {
117 ex=sk_X509_EXTENSION_value(sk,lastpos);
118 if (((ex->critical > 0) && crit) ||
119 ((ex->critical <= 0) && !crit))
120 return(lastpos);
121 }
122 return(-1);
123 }

125 X509_EXTENSION *X509v3_get_ext(const STACK_OF(X509_EXTENSION) *x, int loc)
126 {
127 if (x == NULL || sk_X509_EXTENSION_num(x) <= loc || loc < 0)

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_v3.c 3

128 return NULL;
129 else
130 return sk_X509_EXTENSION_value(x,loc);
131 }

133 X509_EXTENSION *X509v3_delete_ext(STACK_OF(X509_EXTENSION) *x, int loc)
134 {
135 X509_EXTENSION *ret;

137 if (x == NULL || sk_X509_EXTENSION_num(x) <= loc || loc < 0)
138 return(NULL);
139 ret=sk_X509_EXTENSION_delete(x,loc);
140 return(ret);
141 }

143 STACK_OF(X509_EXTENSION) *X509v3_add_ext(STACK_OF(X509_EXTENSION) **x,
144 X509_EXTENSION *ex, int loc)
145 {
146 X509_EXTENSION *new_ex=NULL;
147 int n;
148 STACK_OF(X509_EXTENSION) *sk=NULL;

150 if (x == NULL)
151 {
152 X509err(X509_F_X509V3_ADD_EXT,ERR_R_PASSED_NULL_PARAMETER);
153 goto err2;
154 }

156 if (*x == NULL)
157 {
158 if ((sk=sk_X509_EXTENSION_new_null()) == NULL)
159 goto err;
160 }
161 else
162 sk= *x;

164 n=sk_X509_EXTENSION_num(sk);
165 if (loc > n) loc=n;
166 else if (loc < 0) loc=n;

168 if ((new_ex=X509_EXTENSION_dup(ex)) == NULL)
169 goto err2;
170 if (!sk_X509_EXTENSION_insert(sk,new_ex,loc))
171 goto err;
172 if (*x == NULL)
173 *x=sk;
174 return(sk);
175 err:
176 X509err(X509_F_X509V3_ADD_EXT,ERR_R_MALLOC_FAILURE);
177 err2:
178 if (new_ex != NULL) X509_EXTENSION_free(new_ex);
179 if (sk != NULL) sk_X509_EXTENSION_free(sk);
180 return(NULL);
181 }

183 X509_EXTENSION *X509_EXTENSION_create_by_NID(X509_EXTENSION **ex, int nid,
184 int crit, ASN1_OCTET_STRING *data)
185 {
186 ASN1_OBJECT *obj;
187 X509_EXTENSION *ret;

189 obj=OBJ_nid2obj(nid);
190 if (obj == NULL)
191 {
192 X509err(X509_F_X509_EXTENSION_CREATE_BY_NID,X509_R_UNKNOWN_NID);
193 return(NULL);

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_v3.c 4

194 }
195 ret=X509_EXTENSION_create_by_OBJ(ex,obj,crit,data);
196 if (ret == NULL) ASN1_OBJECT_free(obj);
197 return(ret);
198 }

200 X509_EXTENSION *X509_EXTENSION_create_by_OBJ(X509_EXTENSION **ex,
201 ASN1_OBJECT *obj, int crit, ASN1_OCTET_STRING *data)
202 {
203 X509_EXTENSION *ret;

205 if ((ex == NULL) || (*ex == NULL))
206 {
207 if ((ret=X509_EXTENSION_new()) == NULL)
208 {
209 X509err(X509_F_X509_EXTENSION_CREATE_BY_OBJ,ERR_R_MALLOC
210 return(NULL);
211 }
212 }
213 else
214 ret= *ex;

216 if (!X509_EXTENSION_set_object(ret,obj))
217 goto err;
218 if (!X509_EXTENSION_set_critical(ret,crit))
219 goto err;
220 if (!X509_EXTENSION_set_data(ret,data))
221 goto err;
222
223 if ((ex != NULL) && (*ex == NULL)) *ex=ret;
224 return(ret);
225 err:
226 if ((ex == NULL) || (ret != *ex))
227 X509_EXTENSION_free(ret);
228 return(NULL);
229 }

231 int X509_EXTENSION_set_object(X509_EXTENSION *ex, ASN1_OBJECT *obj)
232 {
233 if ((ex == NULL) || (obj == NULL))
234 return(0);
235 ASN1_OBJECT_free(ex->object);
236 ex->object=OBJ_dup(obj);
237 return(1);
238 }

240 int X509_EXTENSION_set_critical(X509_EXTENSION *ex, int crit)
241 {
242 if (ex == NULL) return(0);
243 ex->critical=(crit)?0xFF:-1;
244 return(1);
245 }

247 int X509_EXTENSION_set_data(X509_EXTENSION *ex, ASN1_OCTET_STRING *data)
248 {
249 int i;

251 if (ex == NULL) return(0);
252 i=M_ASN1_OCTET_STRING_set(ex->value,data->data,data->length);
253 if (!i) return(0);
254 return(1);
255 }

257 ASN1_OBJECT *X509_EXTENSION_get_object(X509_EXTENSION *ex)
258 {
259 if (ex == NULL) return(NULL);

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_v3.c 5

260 return(ex->object);
261 }

263 ASN1_OCTET_STRING *X509_EXTENSION_get_data(X509_EXTENSION *ex)
264 {
265 if (ex == NULL) return(NULL);
266 return(ex->value);
267 }

269 int X509_EXTENSION_get_critical(X509_EXTENSION *ex)
270 {
271 if (ex == NULL) return(0);
272 if(ex->critical > 0) return 1;
273 return 0;
274 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 1

**
 54663 Fri May 30 18:32:13 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509_vfy.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <time.h>
61 #include <errno.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 2

63 #include "cryptlib.h"
64 #include <openssl/crypto.h>
65 #include <openssl/lhash.h>
66 #include <openssl/buffer.h>
67 #include <openssl/evp.h>
68 #include <openssl/asn1.h>
69 #include <openssl/x509.h>
70 #include <openssl/x509v3.h>
71 #include <openssl/objects.h>

73 /* CRL score values */

75 /* No unhandled critical extensions */

77 #define CRL_SCORE_NOCRITICAL 0x100

79 /* certificate is within CRL scope */

81 #define CRL_SCORE_SCOPE 0x080

83 /* CRL times valid */

85 #define CRL_SCORE_TIME 0x040

87 /* Issuer name matches certificate */

89 #define CRL_SCORE_ISSUER_NAME 0x020

91 /* If this score or above CRL is probably valid */

93 #define CRL_SCORE_VALID (CRL_SCORE_NOCRITICAL|CRL_SCORE_TIME|CRL_SCORE_SCOPE)

95 /* CRL issuer is certificate issuer */

97 #define CRL_SCORE_ISSUER_CERT 0x018

99 /* CRL issuer is on certificate path */

101 #define CRL_SCORE_SAME_PATH 0x008

103 /* CRL issuer matches CRL AKID */

105 #define CRL_SCORE_AKID 0x004

107 /* Have a delta CRL with valid times */

109 #define CRL_SCORE_TIME_DELTA 0x002

111 static int null_callback(int ok,X509_STORE_CTX *e);
112 static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer);
113 static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x);
114 static int check_chain_extensions(X509_STORE_CTX *ctx);
115 static int check_name_constraints(X509_STORE_CTX *ctx);
116 static int check_trust(X509_STORE_CTX *ctx);
117 static int check_revocation(X509_STORE_CTX *ctx);
118 static int check_cert(X509_STORE_CTX *ctx);
119 static int check_policy(X509_STORE_CTX *ctx);

121 static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer,
122 unsigned int *preasons,
123 X509_CRL *crl, X509 *x);
124 static int get_crl_delta(X509_STORE_CTX *ctx,
125 X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x);
126 static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl, int *pcrl_score,
127 X509_CRL *base, STACK_OF(X509_CRL) *crls);

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 3

128 static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl,
129 X509 **pissuer, int *pcrl_score);
130 static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score,
131 unsigned int *preasons);
132 static int check_crl_path(X509_STORE_CTX *ctx, X509 *x);
133 static int check_crl_chain(X509_STORE_CTX *ctx,
134 STACK_OF(X509) *cert_path,
135 STACK_OF(X509) *crl_path);

137 static int internal_verify(X509_STORE_CTX *ctx);
138 const char X509_version[]="X.509" OPENSSL_VERSION_PTEXT;

141 static int null_callback(int ok, X509_STORE_CTX *e)
142 {
143 return ok;
144 }

146 #if 0
147 static int x509_subject_cmp(X509 **a, X509 **b)
148 {
149 return X509_subject_name_cmp(*a,*b);
150 }
151 #endif

153 /* Given a certificate try and find an exact match in the store */

155 static X509 *lookup_cert_match(X509_STORE_CTX *ctx, X509 *x)
156 {
157 STACK_OF(X509) *certs;
158 X509 *xtmp = NULL;
159 int i;
160 /* Lookup all certs with matching subject name */
161 certs = ctx->lookup_certs(ctx, X509_get_subject_name(x));
162 if (certs == NULL)
163 return NULL;
164 /* Look for exact match */
165 for (i = 0; i < sk_X509_num(certs); i++)
166 {
167 xtmp = sk_X509_value(certs, i);
168 if (!X509_cmp(xtmp, x))
169 break;
170 }
171 if (i < sk_X509_num(certs))
172 CRYPTO_add(&xtmp->references,1,CRYPTO_LOCK_X509);
173 else
174 xtmp = NULL;
175 sk_X509_pop_free(certs, X509_free);
176 return xtmp;
177 }

180 int X509_verify_cert(X509_STORE_CTX *ctx)
181 {
182 X509 *x,*xtmp,*chain_ss=NULL;
183 int bad_chain = 0;
184 X509_VERIFY_PARAM *param = ctx->param;
185 int depth,i,ok=0;
186 int num;
187 int (*cb)(int xok,X509_STORE_CTX *xctx);
188 STACK_OF(X509) *sktmp=NULL;
189 if (ctx->cert == NULL)
190 {
191 X509err(X509_F_X509_VERIFY_CERT,X509_R_NO_CERT_SET_FOR_US_TO_VER
192 return -1;
193 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 4

195 cb=ctx->verify_cb;

197 /* first we make sure the chain we are going to build is
198 * present and that the first entry is in place */
199 if (ctx->chain == NULL)
200 {
201 if (((ctx->chain=sk_X509_new_null()) == NULL) ||
202 (!sk_X509_push(ctx->chain,ctx->cert)))
203 {
204 X509err(X509_F_X509_VERIFY_CERT,ERR_R_MALLOC_FAILURE);
205 goto end;
206 }
207 CRYPTO_add(&ctx->cert->references,1,CRYPTO_LOCK_X509);
208 ctx->last_untrusted=1;
209 }

211 /* We use a temporary STACK so we can chop and hack at it */
212 if (ctx->untrusted != NULL
213 && (sktmp=sk_X509_dup(ctx->untrusted)) == NULL)
214 {
215 X509err(X509_F_X509_VERIFY_CERT,ERR_R_MALLOC_FAILURE);
216 goto end;
217 }

219 num=sk_X509_num(ctx->chain);
220 x=sk_X509_value(ctx->chain,num-1);
221 depth=param->depth;

224 for (;;)
225 {
226 /* If we have enough, we break */
227 if (depth < num) break; /* FIXME: If this happens, we should tak
228 * note of it and, if appropriate, use t
229 * X509_V_ERR_CERT_CHAIN_TOO_LONG error
230 * code later.
231 */

233 /* If we are self signed, we break */
234 if (ctx->check_issued(ctx, x,x)) break;

236 /* If we were passed a cert chain, use it first */
237 if (ctx->untrusted != NULL)
238 {
239 xtmp=find_issuer(ctx, sktmp,x);
240 if (xtmp != NULL)
241 {
242 if (!sk_X509_push(ctx->chain,xtmp))
243 {
244 X509err(X509_F_X509_VERIFY_CERT,ERR_R_MA
245 goto end;
246 }
247 CRYPTO_add(&xtmp->references,1,CRYPTO_LOCK_X509)
248 (void)sk_X509_delete_ptr(sktmp,xtmp);
249 ctx->last_untrusted++;
250 x=xtmp;
251 num++;
252 /* reparse the full chain for
253 * the next one */
254 continue;
255 }
256 }
257 break;
258 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 5

260 /* at this point, chain should contain a list of untrusted
261 * certificates. We now need to add at least one trusted one,
262 * if possible, otherwise we complain. */

264 /* Examine last certificate in chain and see if it
265 * is self signed.
266 */

268 i=sk_X509_num(ctx->chain);
269 x=sk_X509_value(ctx->chain,i-1);
270 if (ctx->check_issued(ctx, x, x))
271 {
272 /* we have a self signed certificate */
273 if (sk_X509_num(ctx->chain) == 1)
274 {
275 /* We have a single self signed certificate: see if
276 * we can find it in the store. We must have an exact
277 * match to avoid possible impersonation.
278 */
279 ok = ctx->get_issuer(&xtmp, ctx, x);
280 if ((ok <= 0) || X509_cmp(x, xtmp))
281 {
282 ctx->error=X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CER
283 ctx->current_cert=x;
284 ctx->error_depth=i-1;
285 if (ok == 1) X509_free(xtmp);
286 bad_chain = 1;
287 ok=cb(0,ctx);
288 if (!ok) goto end;
289 }
290 else
291 {
292 /* We have a match: replace certificate with sto
293 * so we get any trust settings.
294 */
295 X509_free(x);
296 x = xtmp;
297 (void)sk_X509_set(ctx->chain, i - 1, x);
298 ctx->last_untrusted=0;
299 }
300 }
301 else
302 {
303 /* extract and save self signed certificate for later us
304 chain_ss=sk_X509_pop(ctx->chain);
305 ctx->last_untrusted--;
306 num--;
307 x=sk_X509_value(ctx->chain,num-1);
308 }
309 }

311 /* We now lookup certs from the certificate store */
312 for (;;)
313 {
314 /* If we have enough, we break */
315 if (depth < num) break;

317 /* If we are self signed, we break */
318 if (ctx->check_issued(ctx,x,x)) break;

320 ok = ctx->get_issuer(&xtmp, ctx, x);

322 if (ok < 0) return ok;
323 if (ok == 0) break;

325 x = xtmp;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 6

326 if (!sk_X509_push(ctx->chain,x))
327 {
328 X509_free(xtmp);
329 X509err(X509_F_X509_VERIFY_CERT,ERR_R_MALLOC_FAILURE);
330 return 0;
331 }
332 num++;
333 }

335 /* we now have our chain, lets check it... */

337 i = check_trust(ctx);

339 /* If explicitly rejected error */
340 if (i == X509_TRUST_REJECTED)
341 goto end;
342 /* If not explicitly trusted then indicate error */
343 if (i != X509_TRUST_TRUSTED)
344 {
345 if ((chain_ss == NULL) || !ctx->check_issued(ctx, x, chain_ss))
346 {
347 if (ctx->last_untrusted >= num)
348 ctx->error=X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_
349 else
350 ctx->error=X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT;
351 ctx->current_cert=x;
352 }
353 else
354 {

356 sk_X509_push(ctx->chain,chain_ss);
357 num++;
358 ctx->last_untrusted=num;
359 ctx->current_cert=chain_ss;
360 ctx->error=X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN;
361 chain_ss=NULL;
362 }

364 ctx->error_depth=num-1;
365 bad_chain = 1;
366 ok=cb(0,ctx);
367 if (!ok) goto end;
368 }

370 /* We have the chain complete: now we need to check its purpose */
371 ok = check_chain_extensions(ctx);

373 if (!ok) goto end;

375 /* Check name constraints */

377 ok = check_name_constraints(ctx);
378
379 if (!ok) goto end;

381 /* We may as well copy down any DSA parameters that are required */
382 X509_get_pubkey_parameters(NULL,ctx->chain);

384 /* Check revocation status: we do this after copying parameters
385 * because they may be needed for CRL signature verification.
386 */

388 ok = ctx->check_revocation(ctx);
389 if(!ok) goto end;

391 /* At this point, we have a chain and need to verify it */

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 7

392 if (ctx->verify != NULL)
393 ok=ctx->verify(ctx);
394 else
395 ok=internal_verify(ctx);
396 if(!ok) goto end;

398 #ifndef OPENSSL_NO_RFC3779
399 /* RFC 3779 path validation, now that CRL check has been done */
400 ok = v3_asid_validate_path(ctx);
401 if (!ok) goto end;
402 ok = v3_addr_validate_path(ctx);
403 if (!ok) goto end;
404 #endif

406 /* If we get this far evaluate policies */
407 if (!bad_chain && (ctx->param->flags & X509_V_FLAG_POLICY_CHECK))
408 ok = ctx->check_policy(ctx);
409 if(!ok) goto end;
410 if (0)
411 {
412 end:
413 X509_get_pubkey_parameters(NULL,ctx->chain);
414 }
415 if (sktmp != NULL) sk_X509_free(sktmp);
416 if (chain_ss != NULL) X509_free(chain_ss);
417 return ok;
418 }

421 /* Given a STACK_OF(X509) find the issuer of cert (if any)
422 */

424 static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x)
425 {
426 int i;
427 X509 *issuer;
428 for (i = 0; i < sk_X509_num(sk); i++)
429 {
430 issuer = sk_X509_value(sk, i);
431 if (ctx->check_issued(ctx, x, issuer))
432 return issuer;
433 }
434 return NULL;
435 }

437 /* Given a possible certificate and issuer check them */

439 static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer)
440 {
441 int ret;
442 ret = X509_check_issued(issuer, x);
443 if (ret == X509_V_OK)
444 return 1;
445 /* If we haven’t asked for issuer errors don’t set ctx */
446 if (!(ctx->param->flags & X509_V_FLAG_CB_ISSUER_CHECK))
447 return 0;

449 ctx->error = ret;
450 ctx->current_cert = x;
451 ctx->current_issuer = issuer;
452 return ctx->verify_cb(0, ctx);
453 return 0;
454 }

456 /* Alternative lookup method: look from a STACK stored in other_ctx */

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 8

458 static int get_issuer_sk(X509 **issuer, X509_STORE_CTX *ctx, X509 *x)
459 {
460 *issuer = find_issuer(ctx, ctx->other_ctx, x);
461 if (*issuer)
462 {
463 CRYPTO_add(&(*issuer)->references,1,CRYPTO_LOCK_X509);
464 return 1;
465 }
466 else
467 return 0;
468 }
469

471 /* Check a certificate chains extensions for consistency
472 * with the supplied purpose
473 */

475 static int check_chain_extensions(X509_STORE_CTX *ctx)
476 {
477 #ifdef OPENSSL_NO_CHAIN_VERIFY
478 return 1;
479 #else
480 int i, ok=0, must_be_ca, plen = 0;
481 X509 *x;
482 int (*cb)(int xok,X509_STORE_CTX *xctx);
483 int proxy_path_length = 0;
484 int purpose;
485 int allow_proxy_certs;
486 cb=ctx->verify_cb;

488 /* must_be_ca can have 1 of 3 values:
489 -1: we accept both CA and non-CA certificates, to allow direct
490 use of self-signed certificates (which are marked as CA).
491 0: we only accept non-CA certificates. This is currently not
492 used, but the possibility is present for future extensions.
493 1: we only accept CA certificates. This is currently used for
494 all certificates in the chain except the leaf certificate.
495 */
496 must_be_ca = -1;

498 /* CRL path validation */
499 if (ctx->parent)
500 {
501 allow_proxy_certs = 0;
502 purpose = X509_PURPOSE_CRL_SIGN;
503 }
504 else
505 {
506 allow_proxy_certs =
507 !!(ctx->param->flags & X509_V_FLAG_ALLOW_PROXY_CERTS);
508 /* A hack to keep people who don’t want to modify their
509 software happy */
510 if (getenv("OPENSSL_ALLOW_PROXY_CERTS"))
511 allow_proxy_certs = 1;
512 purpose = ctx->param->purpose;
513 }

515 /* Check all untrusted certificates */
516 for (i = 0; i < ctx->last_untrusted; i++)
517 {
518 int ret;
519 x = sk_X509_value(ctx->chain, i);
520 if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL)
521 && (x->ex_flags & EXFLAG_CRITICAL))
522 {
523 ctx->error = X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 9

524 ctx->error_depth = i;
525 ctx->current_cert = x;
526 ok=cb(0,ctx);
527 if (!ok) goto end;
528 }
529 if (!allow_proxy_certs && (x->ex_flags & EXFLAG_PROXY))
530 {
531 ctx->error = X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED;
532 ctx->error_depth = i;
533 ctx->current_cert = x;
534 ok=cb(0,ctx);
535 if (!ok) goto end;
536 }
537 ret = X509_check_ca(x);
538 switch(must_be_ca)
539 {
540 case -1:
541 if ((ctx->param->flags & X509_V_FLAG_X509_STRICT)
542 && (ret != 1) && (ret != 0))
543 {
544 ret = 0;
545 ctx->error = X509_V_ERR_INVALID_CA;
546 }
547 else
548 ret = 1;
549 break;
550 case 0:
551 if (ret != 0)
552 {
553 ret = 0;
554 ctx->error = X509_V_ERR_INVALID_NON_CA;
555 }
556 else
557 ret = 1;
558 break;
559 default:
560 if ((ret == 0)
561 || ((ctx->param->flags & X509_V_FLAG_X509_STRICT
562 && (ret != 1)))
563 {
564 ret = 0;
565 ctx->error = X509_V_ERR_INVALID_CA;
566 }
567 else
568 ret = 1;
569 break;
570 }
571 if (ret == 0)
572 {
573 ctx->error_depth = i;
574 ctx->current_cert = x;
575 ok=cb(0,ctx);
576 if (!ok) goto end;
577 }
578 if (ctx->param->purpose > 0)
579 {
580 ret = X509_check_purpose(x, purpose, must_be_ca > 0);
581 if ((ret == 0)
582 || ((ctx->param->flags & X509_V_FLAG_X509_STRICT
583 && (ret != 1)))
584 {
585 ctx->error = X509_V_ERR_INVALID_PURPOSE;
586 ctx->error_depth = i;
587 ctx->current_cert = x;
588 ok=cb(0,ctx);
589 if (!ok) goto end;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 10

590 }
591 }
592 /* Check pathlen if not self issued */
593 if ((i > 1) && !(x->ex_flags & EXFLAG_SI)
594 && (x->ex_pathlen != -1)
595 && (plen > (x->ex_pathlen + proxy_path_length + 1)))
596 {
597 ctx->error = X509_V_ERR_PATH_LENGTH_EXCEEDED;
598 ctx->error_depth = i;
599 ctx->current_cert = x;
600 ok=cb(0,ctx);
601 if (!ok) goto end;
602 }
603 /* Increment path length if not self issued */
604 if (!(x->ex_flags & EXFLAG_SI))
605 plen++;
606 /* If this certificate is a proxy certificate, the next
607 certificate must be another proxy certificate or a EE
608 certificate. If not, the next certificate must be a
609 CA certificate. */
610 if (x->ex_flags & EXFLAG_PROXY)
611 {
612 if (x->ex_pcpathlen != -1 && i > x->ex_pcpathlen)
613 {
614 ctx->error =
615 X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED;
616 ctx->error_depth = i;
617 ctx->current_cert = x;
618 ok=cb(0,ctx);
619 if (!ok) goto end;
620 }
621 proxy_path_length++;
622 must_be_ca = 0;
623 }
624 else
625 must_be_ca = 1;
626 }
627 ok = 1;
628 end:
629 return ok;
630 #endif
631 }

633 static int check_name_constraints(X509_STORE_CTX *ctx)
634 {
635 X509 *x;
636 int i, j, rv;
637 /* Check name constraints for all certificates */
638 for (i = sk_X509_num(ctx->chain) - 1; i >= 0; i--)
639 {
640 x = sk_X509_value(ctx->chain, i);
641 /* Ignore self issued certs unless last in chain */
642 if (i && (x->ex_flags & EXFLAG_SI))
643 continue;
644 /* Check against constraints for all certificates higher in
645 * chain including trust anchor. Trust anchor not strictly
646 * speaking needed but if it includes constraints it is to be
647 * assumed it expects them to be obeyed.
648 */
649 for (j = sk_X509_num(ctx->chain) - 1; j > i; j--)
650 {
651 NAME_CONSTRAINTS *nc = sk_X509_value(ctx->chain, j)->nc;
652 if (nc)
653 {
654 rv = NAME_CONSTRAINTS_check(x, nc);
655 if (rv != X509_V_OK)

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 11

656 {
657 ctx->error = rv;
658 ctx->error_depth = i;
659 ctx->current_cert = x;
660 if (!ctx->verify_cb(0,ctx))
661 return 0;
662 }
663 }
664 }
665 }
666 return 1;
667 }

669 static int check_trust(X509_STORE_CTX *ctx)
670 {
671 int i, ok;
672 X509 *x = NULL;
673 int (*cb)(int xok,X509_STORE_CTX *xctx);
674 cb=ctx->verify_cb;
675 /* Check all trusted certificates in chain */
676 for (i = ctx->last_untrusted; i < sk_X509_num(ctx->chain); i++)
677 {
678 x = sk_X509_value(ctx->chain, i);
679 ok = X509_check_trust(x, ctx->param->trust, 0);
680 /* If explicitly trusted return trusted */
681 if (ok == X509_TRUST_TRUSTED)
682 return X509_TRUST_TRUSTED;
683 /* If explicitly rejected notify callback and reject if
684 * not overridden.
685 */
686 if (ok == X509_TRUST_REJECTED)
687 {
688 ctx->error_depth = i;
689 ctx->current_cert = x;
690 ctx->error = X509_V_ERR_CERT_REJECTED;
691 ok = cb(0, ctx);
692 if (!ok)
693 return X509_TRUST_REJECTED;
694 }
695 }
696 /* If we accept partial chains and have at least one trusted
697 * certificate return success.
698 */
699 if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN)
700 {
701 X509 *mx;
702 if (ctx->last_untrusted < sk_X509_num(ctx->chain))
703 return X509_TRUST_TRUSTED;
704 x = sk_X509_value(ctx->chain, 0);
705 mx = lookup_cert_match(ctx, x);
706 if (mx)
707 {
708 (void)sk_X509_set(ctx->chain, 0, mx);
709 X509_free(x);
710 ctx->last_untrusted = 0;
711 return X509_TRUST_TRUSTED;
712 }
713 }

715 /* If no trusted certs in chain at all return untrusted and
716 * allow standard (no issuer cert) etc errors to be indicated.
717 */
718 return X509_TRUST_UNTRUSTED;
719 }

721 static int check_revocation(X509_STORE_CTX *ctx)

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 12

722 {
723 int i, last, ok;
724 if (!(ctx->param->flags & X509_V_FLAG_CRL_CHECK))
725 return 1;
726 if (ctx->param->flags & X509_V_FLAG_CRL_CHECK_ALL)
727 last = sk_X509_num(ctx->chain) - 1;
728 else
729 {
730 /* If checking CRL paths this isn’t the EE certificate */
731 if (ctx->parent)
732 return 1;
733 last = 0;
734 }
735 for(i = 0; i <= last; i++)
736 {
737 ctx->error_depth = i;
738 ok = check_cert(ctx);
739 if (!ok) return ok;
740 }
741 return 1;
742 }

744 static int check_cert(X509_STORE_CTX *ctx)
745 {
746 X509_CRL *crl = NULL, *dcrl = NULL;
747 X509 *x;
748 int ok, cnum;
749 unsigned int last_reasons;
750 cnum = ctx->error_depth;
751 x = sk_X509_value(ctx->chain, cnum);
752 ctx->current_cert = x;
753 ctx->current_issuer = NULL;
754 ctx->current_crl_score = 0;
755 ctx->current_reasons = 0;
756 while (ctx->current_reasons != CRLDP_ALL_REASONS)
757 {
758 last_reasons = ctx->current_reasons;
759 /* Try to retrieve relevant CRL */
760 if (ctx->get_crl)
761 ok = ctx->get_crl(ctx, &crl, x);
762 else
763 ok = get_crl_delta(ctx, &crl, &dcrl, x);
764 /* If error looking up CRL, nothing we can do except
765 * notify callback
766 */
767 if(!ok)
768 {
769 ctx->error = X509_V_ERR_UNABLE_TO_GET_CRL;
770 ok = ctx->verify_cb(0, ctx);
771 goto err;
772 }
773 ctx->current_crl = crl;
774 ok = ctx->check_crl(ctx, crl);
775 if (!ok)
776 goto err;

778 if (dcrl)
779 {
780 ok = ctx->check_crl(ctx, dcrl);
781 if (!ok)
782 goto err;
783 ok = ctx->cert_crl(ctx, dcrl, x);
784 if (!ok)
785 goto err;
786 }
787 else

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 13

788 ok = 1;

790 /* Don’t look in full CRL if delta reason is removefromCRL */
791 if (ok != 2)
792 {
793 ok = ctx->cert_crl(ctx, crl, x);
794 if (!ok)
795 goto err;
796 }

798 X509_CRL_free(crl);
799 X509_CRL_free(dcrl);
800 crl = NULL;
801 dcrl = NULL;
802 /* If reasons not updated we wont get anywhere by
803 * another iteration, so exit loop.
804 */
805 if (last_reasons == ctx->current_reasons)
806 {
807 ctx->error = X509_V_ERR_UNABLE_TO_GET_CRL;
808 ok = ctx->verify_cb(0, ctx);
809 goto err;
810 }
811 }
812 err:
813 X509_CRL_free(crl);
814 X509_CRL_free(dcrl);

816 ctx->current_crl = NULL;
817 return ok;

819 }

821 /* Check CRL times against values in X509_STORE_CTX */

823 static int check_crl_time(X509_STORE_CTX *ctx, X509_CRL *crl, int notify)
824 {
825 time_t *ptime;
826 int i;
827 if (notify)
828 ctx->current_crl = crl;
829 if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME)
830 ptime = &ctx->param->check_time;
831 else
832 ptime = NULL;

834 i=X509_cmp_time(X509_CRL_get_lastUpdate(crl), ptime);
835 if (i == 0)
836 {
837 if (!notify)
838 return 0;
839 ctx->error=X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD;
840 if (!ctx->verify_cb(0, ctx))
841 return 0;
842 }

844 if (i > 0)
845 {
846 if (!notify)
847 return 0;
848 ctx->error=X509_V_ERR_CRL_NOT_YET_VALID;
849 if (!ctx->verify_cb(0, ctx))
850 return 0;
851 }

853 if(X509_CRL_get_nextUpdate(crl))

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 14

854 {
855 i=X509_cmp_time(X509_CRL_get_nextUpdate(crl), ptime);

857 if (i == 0)
858 {
859 if (!notify)
860 return 0;
861 ctx->error=X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD;
862 if (!ctx->verify_cb(0, ctx))
863 return 0;
864 }
865 /* Ignore expiry of base CRL is delta is valid */
866 if ((i < 0) && !(ctx->current_crl_score & CRL_SCORE_TIME_DELTA))
867 {
868 if (!notify)
869 return 0;
870 ctx->error=X509_V_ERR_CRL_HAS_EXPIRED;
871 if (!ctx->verify_cb(0, ctx))
872 return 0;
873 }
874 }

876 if (notify)
877 ctx->current_crl = NULL;

879 return 1;
880 }

882 static int get_crl_sk(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509_CRL **pdcrl,
883 X509 **pissuer, int *pscore, unsigned int *preasons,
884 STACK_OF(X509_CRL) *crls)
885 {
886 int i, crl_score, best_score = *pscore;
887 unsigned int reasons, best_reasons = 0;
888 X509 *x = ctx->current_cert;
889 X509_CRL *crl, *best_crl = NULL;
890 X509 *crl_issuer = NULL, *best_crl_issuer = NULL;

892 for (i = 0; i < sk_X509_CRL_num(crls); i++)
893 {
894 crl = sk_X509_CRL_value(crls, i);
895 reasons = *preasons;
896 crl_score = get_crl_score(ctx, &crl_issuer, &reasons, crl, x);

898 if (crl_score > best_score)
899 {
900 best_crl = crl;
901 best_crl_issuer = crl_issuer;
902 best_score = crl_score;
903 best_reasons = reasons;
904 }
905 }

907 if (best_crl)
908 {
909 if (*pcrl)
910 X509_CRL_free(*pcrl);
911 *pcrl = best_crl;
912 *pissuer = best_crl_issuer;
913 *pscore = best_score;
914 *preasons = best_reasons;
915 CRYPTO_add(&best_crl->references, 1, CRYPTO_LOCK_X509_CRL);
916 if (*pdcrl)
917 {
918 X509_CRL_free(*pdcrl);
919 *pdcrl = NULL;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 15

920 }
921 get_delta_sk(ctx, pdcrl, pscore, best_crl, crls);
922 }

924 if (best_score >= CRL_SCORE_VALID)
925 return 1;

927 return 0;
928 }

930 /* Compare two CRL extensions for delta checking purposes. They should be
931 * both present or both absent. If both present all fields must be identical.
932 */

934 static int crl_extension_match(X509_CRL *a, X509_CRL *b, int nid)
935 {
936 ASN1_OCTET_STRING *exta, *extb;
937 int i;
938 i = X509_CRL_get_ext_by_NID(a, nid, -1);
939 if (i >= 0)
940 {
941 /* Can’t have multiple occurrences */
942 if (X509_CRL_get_ext_by_NID(a, nid, i) != -1)
943 return 0;
944 exta = X509_EXTENSION_get_data(X509_CRL_get_ext(a, i));
945 }
946 else
947 exta = NULL;

949 i = X509_CRL_get_ext_by_NID(b, nid, -1);

951 if (i >= 0)
952 {

954 if (X509_CRL_get_ext_by_NID(b, nid, i) != -1)
955 return 0;
956 extb = X509_EXTENSION_get_data(X509_CRL_get_ext(b, i));
957 }
958 else
959 extb = NULL;

961 if (!exta && !extb)
962 return 1;

964 if (!exta || !extb)
965 return 0;

968 if (ASN1_OCTET_STRING_cmp(exta, extb))
969 return 0;

971 return 1;
972 }

974 /* See if a base and delta are compatible */

976 static int check_delta_base(X509_CRL *delta, X509_CRL *base)
977 {
978 /* Delta CRL must be a delta */
979 if (!delta->base_crl_number)
980 return 0;
981 /* Base must have a CRL number */
982 if (!base->crl_number)
983 return 0;
984 /* Issuer names must match */
985 if (X509_NAME_cmp(X509_CRL_get_issuer(base),

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 16

986 X509_CRL_get_issuer(delta)))
987 return 0;
988 /* AKID and IDP must match */
989 if (!crl_extension_match(delta, base, NID_authority_key_identifier))
990 return 0;
991 if (!crl_extension_match(delta, base, NID_issuing_distribution_point))
992 return 0;
993 /* Delta CRL base number must not exceed Full CRL number. */
994 if (ASN1_INTEGER_cmp(delta->base_crl_number, base->crl_number) > 0)
995 return 0;
996 /* Delta CRL number must exceed full CRL number */
997 if (ASN1_INTEGER_cmp(delta->crl_number, base->crl_number) > 0)
998 return 1;
999 return 0;

1000 }

1002 /* For a given base CRL find a delta... maybe extend to delta scoring
1003 * or retrieve a chain of deltas...
1004 */

1006 static void get_delta_sk(X509_STORE_CTX *ctx, X509_CRL **dcrl, int *pscore,
1007 X509_CRL *base, STACK_OF(X509_CRL) *crls)
1008 {
1009 X509_CRL *delta;
1010 int i;
1011 if (!(ctx->param->flags & X509_V_FLAG_USE_DELTAS))
1012 return;
1013 if (!((ctx->current_cert->ex_flags | base->flags) & EXFLAG_FRESHEST))
1014 return;
1015 for (i = 0; i < sk_X509_CRL_num(crls); i++)
1016 {
1017 delta = sk_X509_CRL_value(crls, i);
1018 if (check_delta_base(delta, base))
1019 {
1020 if (check_crl_time(ctx, delta, 0))
1021 *pscore |= CRL_SCORE_TIME_DELTA;
1022 CRYPTO_add(&delta->references, 1, CRYPTO_LOCK_X509_CRL);
1023 *dcrl = delta;
1024 return;
1025 }
1026 }
1027 *dcrl = NULL;
1028 }

1030 /* For a given CRL return how suitable it is for the supplied certificate ’x’.
1031 * The return value is a mask of several criteria.
1032 * If the issuer is not the certificate issuer this is returned in *pissuer.
1033 * The reasons mask is also used to determine if the CRL is suitable: if
1034 * no new reasons the CRL is rejected, otherwise reasons is updated.
1035 */

1037 static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer,
1038 unsigned int *preasons,
1039 X509_CRL *crl, X509 *x)
1040 {

1042 int crl_score = 0;
1043 unsigned int tmp_reasons = *preasons, crl_reasons;

1045 /* First see if we can reject CRL straight away */

1047 /* Invalid IDP cannot be processed */
1048 if (crl->idp_flags & IDP_INVALID)
1049 return 0;
1050 /* Reason codes or indirect CRLs need extended CRL support */
1051 if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT))

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 17

1052 {
1053 if (crl->idp_flags & (IDP_INDIRECT | IDP_REASONS))
1054 return 0;
1055 }
1056 else if (crl->idp_flags & IDP_REASONS)
1057 {
1058 /* If no new reasons reject */
1059 if (!(crl->idp_reasons & ~tmp_reasons))
1060 return 0;
1061 }
1062 /* Don’t process deltas at this stage */
1063 else if (crl->base_crl_number)
1064 return 0;
1065 /* If issuer name doesn’t match certificate need indirect CRL */
1066 if (X509_NAME_cmp(X509_get_issuer_name(x), X509_CRL_get_issuer(crl)))
1067 {
1068 if (!(crl->idp_flags & IDP_INDIRECT))
1069 return 0;
1070 }
1071 else
1072 crl_score |= CRL_SCORE_ISSUER_NAME;

1074 if (!(crl->flags & EXFLAG_CRITICAL))
1075 crl_score |= CRL_SCORE_NOCRITICAL;

1077 /* Check expiry */
1078 if (check_crl_time(ctx, crl, 0))
1079 crl_score |= CRL_SCORE_TIME;

1081 /* Check authority key ID and locate certificate issuer */
1082 crl_akid_check(ctx, crl, pissuer, &crl_score);

1084 /* If we can’t locate certificate issuer at this point forget it */

1086 if (!(crl_score & CRL_SCORE_AKID))
1087 return 0;

1089 /* Check cert for matching CRL distribution points */

1091 if (crl_crldp_check(x, crl, crl_score, &crl_reasons))
1092 {
1093 /* If no new reasons reject */
1094 if (!(crl_reasons & ~tmp_reasons))
1095 return 0;
1096 tmp_reasons |= crl_reasons;
1097 crl_score |= CRL_SCORE_SCOPE;
1098 }

1100 *preasons = tmp_reasons;

1102 return crl_score;

1104 }

1106 static void crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl,
1107 X509 **pissuer, int *pcrl_score)
1108 {
1109 X509 *crl_issuer = NULL;
1110 X509_NAME *cnm = X509_CRL_get_issuer(crl);
1111 int cidx = ctx->error_depth;
1112 int i;

1114 if (cidx != sk_X509_num(ctx->chain) - 1)
1115 cidx++;

1117 crl_issuer = sk_X509_value(ctx->chain, cidx);

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 18

1119 if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK)
1120 {
1121 if (*pcrl_score & CRL_SCORE_ISSUER_NAME)
1122 {
1123 *pcrl_score |= CRL_SCORE_AKID|CRL_SCORE_ISSUER_CERT;
1124 *pissuer = crl_issuer;
1125 return;
1126 }
1127 }

1129 for (cidx++; cidx < sk_X509_num(ctx->chain); cidx++)
1130 {
1131 crl_issuer = sk_X509_value(ctx->chain, cidx);
1132 if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm))
1133 continue;
1134 if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK)
1135 {
1136 *pcrl_score |= CRL_SCORE_AKID|CRL_SCORE_SAME_PATH;
1137 *pissuer = crl_issuer;
1138 return;
1139 }
1140 }

1142 /* Anything else needs extended CRL support */

1144 if (!(ctx->param->flags & X509_V_FLAG_EXTENDED_CRL_SUPPORT))
1145 return;

1147 /* Otherwise the CRL issuer is not on the path. Look for it in the
1148 * set of untrusted certificates.
1149 */
1150 for (i = 0; i < sk_X509_num(ctx->untrusted); i++)
1151 {
1152 crl_issuer = sk_X509_value(ctx->untrusted, i);
1153 if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm))
1154 continue;
1155 if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK)
1156 {
1157 *pissuer = crl_issuer;
1158 *pcrl_score |= CRL_SCORE_AKID;
1159 return;
1160 }
1161 }
1162 }

1164 /* Check the path of a CRL issuer certificate. This creates a new
1165 * X509_STORE_CTX and populates it with most of the parameters from the
1166 * parent. This could be optimised somewhat since a lot of path checking
1167 * will be duplicated by the parent, but this will rarely be used in
1168 * practice.
1169 */

1171 static int check_crl_path(X509_STORE_CTX *ctx, X509 *x)
1172 {
1173 X509_STORE_CTX crl_ctx;
1174 int ret;
1175 /* Don’t allow recursive CRL path validation */
1176 if (ctx->parent)
1177 return 0;
1178 if (!X509_STORE_CTX_init(&crl_ctx, ctx->ctx, x, ctx->untrusted))
1179 return -1;

1181 crl_ctx.crls = ctx->crls;
1182 /* Copy verify params across */
1183 X509_STORE_CTX_set0_param(&crl_ctx, ctx->param);

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 19

1185 crl_ctx.parent = ctx;
1186 crl_ctx.verify_cb = ctx->verify_cb;

1188 /* Verify CRL issuer */
1189 ret = X509_verify_cert(&crl_ctx);

1191 if (ret <= 0)
1192 goto err;

1194 /* Check chain is acceptable */

1196 ret = check_crl_chain(ctx, ctx->chain, crl_ctx.chain);
1197 err:
1198 X509_STORE_CTX_cleanup(&crl_ctx);
1199 return ret;
1200 }

1202 /* RFC3280 says nothing about the relationship between CRL path
1203 * and certificate path, which could lead to situations where a
1204 * certificate could be revoked or validated by a CA not authorised
1205 * to do so. RFC5280 is more strict and states that the two paths must
1206 * end in the same trust anchor, though some discussions remain...
1207 * until this is resolved we use the RFC5280 version
1208 */

1210 static int check_crl_chain(X509_STORE_CTX *ctx,
1211 STACK_OF(X509) *cert_path,
1212 STACK_OF(X509) *crl_path)
1213 {
1214 X509 *cert_ta, *crl_ta;
1215 cert_ta = sk_X509_value(cert_path, sk_X509_num(cert_path) - 1);
1216 crl_ta = sk_X509_value(crl_path, sk_X509_num(crl_path) - 1);
1217 if (!X509_cmp(cert_ta, crl_ta))
1218 return 1;
1219 return 0;
1220 }

1222 /* Check for match between two dist point names: three separate cases.
1223 * 1. Both are relative names and compare X509_NAME types.
1224 * 2. One full, one relative. Compare X509_NAME to GENERAL_NAMES.
1225 * 3. Both are full names and compare two GENERAL_NAMES.
1226 * 4. One is NULL: automatic match.
1227 */

1230 static int idp_check_dp(DIST_POINT_NAME *a, DIST_POINT_NAME *b)
1231 {
1232 X509_NAME *nm = NULL;
1233 GENERAL_NAMES *gens = NULL;
1234 GENERAL_NAME *gena, *genb;
1235 int i, j;
1236 if (!a || !b)
1237 return 1;
1238 if (a->type == 1)
1239 {
1240 if (!a->dpname)
1241 return 0;
1242 /* Case 1: two X509_NAME */
1243 if (b->type == 1)
1244 {
1245 if (!b->dpname)
1246 return 0;
1247 if (!X509_NAME_cmp(a->dpname, b->dpname))
1248 return 1;
1249 else

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 20

1250 return 0;
1251 }
1252 /* Case 2: set name and GENERAL_NAMES appropriately */
1253 nm = a->dpname;
1254 gens = b->name.fullname;
1255 }
1256 else if (b->type == 1)
1257 {
1258 if (!b->dpname)
1259 return 0;
1260 /* Case 2: set name and GENERAL_NAMES appropriately */
1261 gens = a->name.fullname;
1262 nm = b->dpname;
1263 }

1265 /* Handle case 2 with one GENERAL_NAMES and one X509_NAME */
1266 if (nm)
1267 {
1268 for (i = 0; i < sk_GENERAL_NAME_num(gens); i++)
1269 {
1270 gena = sk_GENERAL_NAME_value(gens, i);
1271 if (gena->type != GEN_DIRNAME)
1272 continue;
1273 if (!X509_NAME_cmp(nm, gena->d.directoryName))
1274 return 1;
1275 }
1276 return 0;
1277 }

1279 /* Else case 3: two GENERAL_NAMES */

1281 for (i = 0; i < sk_GENERAL_NAME_num(a->name.fullname); i++)
1282 {
1283 gena = sk_GENERAL_NAME_value(a->name.fullname, i);
1284 for (j = 0; j < sk_GENERAL_NAME_num(b->name.fullname); j++)
1285 {
1286 genb = sk_GENERAL_NAME_value(b->name.fullname, j);
1287 if (!GENERAL_NAME_cmp(gena, genb))
1288 return 1;
1289 }
1290 }

1292 return 0;

1294 }

1296 static int crldp_check_crlissuer(DIST_POINT *dp, X509_CRL *crl, int crl_score)
1297 {
1298 int i;
1299 X509_NAME *nm = X509_CRL_get_issuer(crl);
1300 /* If no CRLissuer return is successful iff don’t need a match */
1301 if (!dp->CRLissuer)
1302 return !!(crl_score & CRL_SCORE_ISSUER_NAME);
1303 for (i = 0; i < sk_GENERAL_NAME_num(dp->CRLissuer); i++)
1304 {
1305 GENERAL_NAME *gen = sk_GENERAL_NAME_value(dp->CRLissuer, i);
1306 if (gen->type != GEN_DIRNAME)
1307 continue;
1308 if (!X509_NAME_cmp(gen->d.directoryName, nm))
1309 return 1;
1310 }
1311 return 0;
1312 }

1314 /* Check CRLDP and IDP */

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 21

1316 static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score,
1317 unsigned int *preasons)
1318 {
1319 int i;
1320 if (crl->idp_flags & IDP_ONLYATTR)
1321 return 0;
1322 if (x->ex_flags & EXFLAG_CA)
1323 {
1324 if (crl->idp_flags & IDP_ONLYUSER)
1325 return 0;
1326 }
1327 else
1328 {
1329 if (crl->idp_flags & IDP_ONLYCA)
1330 return 0;
1331 }
1332 *preasons = crl->idp_reasons;
1333 for (i = 0; i < sk_DIST_POINT_num(x->crldp); i++)
1334 {
1335 DIST_POINT *dp = sk_DIST_POINT_value(x->crldp, i);
1336 if (crldp_check_crlissuer(dp, crl, crl_score))
1337 {
1338 if (!crl->idp ||
1339 idp_check_dp(dp->distpoint, crl->idp->distpoint))
1340 {
1341 *preasons &= dp->dp_reasons;
1342 return 1;
1343 }
1344 }
1345 }
1346 if ((!crl->idp || !crl->idp->distpoint) && (crl_score & CRL_SCORE_ISSUER
1347 return 1;
1348 return 0;
1349 }

1351 /* Retrieve CRL corresponding to current certificate.
1352 * If deltas enabled try to find a delta CRL too
1353 */
1354
1355 static int get_crl_delta(X509_STORE_CTX *ctx,
1356 X509_CRL **pcrl, X509_CRL **pdcrl, X509 *x)
1357 {
1358 int ok;
1359 X509 *issuer = NULL;
1360 int crl_score = 0;
1361 unsigned int reasons;
1362 X509_CRL *crl = NULL, *dcrl = NULL;
1363 STACK_OF(X509_CRL) *skcrl;
1364 X509_NAME *nm = X509_get_issuer_name(x);
1365 reasons = ctx->current_reasons;
1366 ok = get_crl_sk(ctx, &crl, &dcrl,
1367 &issuer, &crl_score, &reasons, ctx->crls);

1369 if (ok)
1370 goto done;

1372 /* Lookup CRLs from store */

1374 skcrl = ctx->lookup_crls(ctx, nm);

1376 /* If no CRLs found and a near match from get_crl_sk use that */
1377 if (!skcrl && crl)
1378 goto done;

1380 get_crl_sk(ctx, &crl, &dcrl, &issuer, &crl_score, &reasons, skcrl);

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 22

1382 sk_X509_CRL_pop_free(skcrl, X509_CRL_free);

1384 done:

1386 /* If we got any kind of CRL use it and return success */
1387 if (crl)
1388 {
1389 ctx->current_issuer = issuer;
1390 ctx->current_crl_score = crl_score;
1391 ctx->current_reasons = reasons;
1392 *pcrl = crl;
1393 *pdcrl = dcrl;
1394 return 1;
1395 }

1397 return 0;
1398 }

1400 /* Check CRL validity */
1401 static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl)
1402 {
1403 X509 *issuer = NULL;
1404 EVP_PKEY *ikey = NULL;
1405 int ok = 0, chnum, cnum;
1406 cnum = ctx->error_depth;
1407 chnum = sk_X509_num(ctx->chain) - 1;
1408 /* if we have an alternative CRL issuer cert use that */
1409 if (ctx->current_issuer)
1410 issuer = ctx->current_issuer;

1412 /* Else find CRL issuer: if not last certificate then issuer
1413 * is next certificate in chain.
1414 */
1415 else if (cnum < chnum)
1416 issuer = sk_X509_value(ctx->chain, cnum + 1);
1417 else
1418 {
1419 issuer = sk_X509_value(ctx->chain, chnum);
1420 /* If not self signed, can’t check signature */
1421 if(!ctx->check_issued(ctx, issuer, issuer))
1422 {
1423 ctx->error = X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER;
1424 ok = ctx->verify_cb(0, ctx);
1425 if(!ok) goto err;
1426 }
1427 }

1429 if(issuer)
1430 {
1431 /* Skip most tests for deltas because they have already
1432 * been done
1433 */
1434 if (!crl->base_crl_number)
1435 {
1436 /* Check for cRLSign bit if keyUsage present */
1437 if ((issuer->ex_flags & EXFLAG_KUSAGE) &&
1438 !(issuer->ex_kusage & KU_CRL_SIGN))
1439 {
1440 ctx->error = X509_V_ERR_KEYUSAGE_NO_CRL_SIGN;
1441 ok = ctx->verify_cb(0, ctx);
1442 if(!ok) goto err;
1443 }

1445 if (!(ctx->current_crl_score & CRL_SCORE_SCOPE))
1446 {
1447 ctx->error = X509_V_ERR_DIFFERENT_CRL_SCOPE;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 23

1448 ok = ctx->verify_cb(0, ctx);
1449 if(!ok) goto err;
1450 }

1452 if (!(ctx->current_crl_score & CRL_SCORE_SAME_PATH))
1453 {
1454 if (check_crl_path(ctx, ctx->current_issuer) <=
1455 {
1456 ctx->error = X509_V_ERR_CRL_PATH_VALIDAT
1457 ok = ctx->verify_cb(0, ctx);
1458 if(!ok) goto err;
1459 }
1460 }

1462 if (crl->idp_flags & IDP_INVALID)
1463 {
1464 ctx->error = X509_V_ERR_INVALID_EXTENSION;
1465 ok = ctx->verify_cb(0, ctx);
1466 if(!ok) goto err;
1467 }

1470 }

1472 if (!(ctx->current_crl_score & CRL_SCORE_TIME))
1473 {
1474 ok = check_crl_time(ctx, crl, 1);
1475 if (!ok)
1476 goto err;
1477 }

1479 /* Attempt to get issuer certificate public key */
1480 ikey = X509_get_pubkey(issuer);

1482 if(!ikey)
1483 {
1484 ctx->error=X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY
1485 ok = ctx->verify_cb(0, ctx);
1486 if (!ok) goto err;
1487 }
1488 else
1489 {
1490 /* Verify CRL signature */
1491 if(X509_CRL_verify(crl, ikey) <= 0)
1492 {
1493 ctx->error=X509_V_ERR_CRL_SIGNATURE_FAILURE;
1494 ok = ctx->verify_cb(0, ctx);
1495 if (!ok) goto err;
1496 }
1497 }
1498 }

1500 ok = 1;

1502 err:
1503 EVP_PKEY_free(ikey);
1504 return ok;
1505 }

1507 /* Check certificate against CRL */
1508 static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x)
1509 {
1510 int ok;
1511 X509_REVOKED *rev;
1512 /* The rules changed for this... previously if a CRL contained
1513 * unhandled critical extensions it could still be used to indicate

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 24

1514 * a certificate was revoked. This has since been changed since
1515 * critical extension can change the meaning of CRL entries.
1516 */
1517 if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL)
1518 && (crl->flags & EXFLAG_CRITICAL))
1519 {
1520 ctx->error = X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION;
1521 ok = ctx->verify_cb(0, ctx);
1522 if(!ok)
1523 return 0;
1524 }
1525 /* Look for serial number of certificate in CRL
1526 * If found make sure reason is not removeFromCRL.
1527 */
1528 if (X509_CRL_get0_by_cert(crl, &rev, x))
1529 {
1530 if (rev->reason == CRL_REASON_REMOVE_FROM_CRL)
1531 return 2;
1532 ctx->error = X509_V_ERR_CERT_REVOKED;
1533 ok = ctx->verify_cb(0, ctx);
1534 if (!ok)
1535 return 0;
1536 }

1538 return 1;
1539 }

1541 static int check_policy(X509_STORE_CTX *ctx)
1542 {
1543 int ret;
1544 if (ctx->parent)
1545 return 1;
1546 ret = X509_policy_check(&ctx->tree, &ctx->explicit_policy, ctx->chain,
1547 ctx->param->policies, ctx->param->flags);
1548 if (ret == 0)
1549 {
1550 X509err(X509_F_CHECK_POLICY,ERR_R_MALLOC_FAILURE);
1551 return 0;
1552 }
1553 /* Invalid or inconsistent extensions */
1554 if (ret == -1)
1555 {
1556 /* Locate certificates with bad extensions and notify
1557 * callback.
1558 */
1559 X509 *x;
1560 int i;
1561 for (i = 1; i < sk_X509_num(ctx->chain); i++)
1562 {
1563 x = sk_X509_value(ctx->chain, i);
1564 if (!(x->ex_flags & EXFLAG_INVALID_POLICY))
1565 continue;
1566 ctx->current_cert = x;
1567 ctx->error = X509_V_ERR_INVALID_POLICY_EXTENSION;
1568 if(!ctx->verify_cb(0, ctx))
1569 return 0;
1570 }
1571 return 1;
1572 }
1573 if (ret == -2)
1574 {
1575 ctx->current_cert = NULL;
1576 ctx->error = X509_V_ERR_NO_EXPLICIT_POLICY;
1577 return ctx->verify_cb(0, ctx);
1578 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 25

1580 if (ctx->param->flags & X509_V_FLAG_NOTIFY_POLICY)
1581 {
1582 ctx->current_cert = NULL;
1583 ctx->error = X509_V_OK;
1584 if (!ctx->verify_cb(2, ctx))
1585 return 0;
1586 }

1588 return 1;
1589 }

1591 static int check_cert_time(X509_STORE_CTX *ctx, X509 *x)
1592 {
1593 time_t *ptime;
1594 int i;

1596 if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME)
1597 ptime = &ctx->param->check_time;
1598 else
1599 ptime = NULL;

1601 i=X509_cmp_time(X509_get_notBefore(x), ptime);
1602 if (i == 0)
1603 {
1604 ctx->error=X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD;
1605 ctx->current_cert=x;
1606 if (!ctx->verify_cb(0, ctx))
1607 return 0;
1608 }

1610 if (i > 0)
1611 {
1612 ctx->error=X509_V_ERR_CERT_NOT_YET_VALID;
1613 ctx->current_cert=x;
1614 if (!ctx->verify_cb(0, ctx))
1615 return 0;
1616 }

1618 i=X509_cmp_time(X509_get_notAfter(x), ptime);
1619 if (i == 0)
1620 {
1621 ctx->error=X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD;
1622 ctx->current_cert=x;
1623 if (!ctx->verify_cb(0, ctx))
1624 return 0;
1625 }

1627 if (i < 0)
1628 {
1629 ctx->error=X509_V_ERR_CERT_HAS_EXPIRED;
1630 ctx->current_cert=x;
1631 if (!ctx->verify_cb(0, ctx))
1632 return 0;
1633 }

1635 return 1;
1636 }

1638 static int internal_verify(X509_STORE_CTX *ctx)
1639 {
1640 int ok=0,n;
1641 X509 *xs,*xi;
1642 EVP_PKEY *pkey=NULL;
1643 int (*cb)(int xok,X509_STORE_CTX *xctx);

1645 cb=ctx->verify_cb;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 26

1647 n=sk_X509_num(ctx->chain);
1648 ctx->error_depth=n-1;
1649 n--;
1650 xi=sk_X509_value(ctx->chain,n);

1652 if (ctx->check_issued(ctx, xi, xi))
1653 xs=xi;
1654 else
1655 {
1656 if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN && n == 0)
1657 return check_cert_time(ctx, xi);
1658 if (n <= 0)
1659 {
1660 ctx->error=X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE;
1661 ctx->current_cert=xi;
1662 ok=cb(0,ctx);
1663 goto end;
1664 }
1665 else
1666 {
1667 n--;
1668 ctx->error_depth=n;
1669 xs=sk_X509_value(ctx->chain,n);
1670 }
1671 }

1673 /* ctx->error=0; not needed */
1674 while (n >= 0)
1675 {
1676 ctx->error_depth=n;

1678 /* Skip signature check for self signed certificates unless
1679 * explicitly asked for. It doesn’t add any security and
1680 * just wastes time.
1681 */
1682 if (!xs->valid && (xs != xi || (ctx->param->flags & X509_V_FLAG_
1683 {
1684 if ((pkey=X509_get_pubkey(xi)) == NULL)
1685 {
1686 ctx->error=X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PU
1687 ctx->current_cert=xi;
1688 ok=(*cb)(0,ctx);
1689 if (!ok) goto end;
1690 }
1691 else if (X509_verify(xs,pkey) <= 0)
1692 {
1693 ctx->error=X509_V_ERR_CERT_SIGNATURE_FAILURE;
1694 ctx->current_cert=xs;
1695 ok=(*cb)(0,ctx);
1696 if (!ok)
1697 {
1698 EVP_PKEY_free(pkey);
1699 goto end;
1700 }
1701 }
1702 EVP_PKEY_free(pkey);
1703 pkey=NULL;
1704 }

1706 xs->valid = 1;

1708 ok = check_cert_time(ctx, xs);
1709 if (!ok)
1710 goto end;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 27

1712 /* The last error (if any) is still in the error value */
1713 ctx->current_issuer=xi;
1714 ctx->current_cert=xs;
1715 ok=(*cb)(1,ctx);
1716 if (!ok) goto end;

1718 n--;
1719 if (n >= 0)
1720 {
1721 xi=xs;
1722 xs=sk_X509_value(ctx->chain,n);
1723 }
1724 }
1725 ok=1;
1726 end:
1727 return ok;
1728 }

1730 int X509_cmp_current_time(const ASN1_TIME *ctm)
1731 {
1732 return X509_cmp_time(ctm, NULL);
1733 }

1735 int X509_cmp_time(const ASN1_TIME *ctm, time_t *cmp_time)
1736 {
1737 char *str;
1738 ASN1_TIME atm;
1739 long offset;
1740 char buff1[24],buff2[24],*p;
1741 int i,j;

1743 p=buff1;
1744 i=ctm->length;
1745 str=(char *)ctm->data;
1746 if (ctm->type == V_ASN1_UTCTIME)
1747 {
1748 if ((i < 11) || (i > 17)) return 0;
1749 memcpy(p,str,10);
1750 p+=10;
1751 str+=10;
1752 }
1753 else
1754 {
1755 if (i < 13) return 0;
1756 memcpy(p,str,12);
1757 p+=12;
1758 str+=12;
1759 }

1761 if ((*str == ’Z’) || (*str == ’-’) || (*str == ’+’))
1762 { *(p++)=’0’; *(p++)=’0’; }
1763 else
1764 {
1765 *(p++)= *(str++);
1766 *(p++)= *(str++);
1767 /* Skip any fractional seconds... */
1768 if (*str == ’.’)
1769 {
1770 str++;
1771 while ((*str >= ’0’) && (*str <= ’9’)) str++;
1772 }
1773
1774 }
1775 *(p++)=’Z’;
1776 *(p++)=’\0’;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 28

1778 if (*str == ’Z’)
1779 offset=0;
1780 else
1781 {
1782 if ((*str != ’+’) && (*str != ’-’))
1783 return 0;
1784 offset=((str[1]-’0’)*10+(str[2]-’0’))*60;
1785 offset+=(str[3]-’0’)*10+(str[4]-’0’);
1786 if (*str == ’-’)
1787 offset= -offset;
1788 }
1789 atm.type=ctm->type;
1790 atm.flags = 0;
1791 atm.length=sizeof(buff2);
1792 atm.data=(unsigned char *)buff2;

1794 if (X509_time_adj(&atm, offset*60, cmp_time) == NULL)
1795 return 0;

1797 if (ctm->type == V_ASN1_UTCTIME)
1798 {
1799 i=(buff1[0]-’0’)*10+(buff1[1]-’0’);
1800 if (i < 50) i+=100; /* cf. RFC 2459 */
1801 j=(buff2[0]-’0’)*10+(buff2[1]-’0’);
1802 if (j < 50) j+=100;

1804 if (i < j) return -1;
1805 if (i > j) return 1;
1806 }
1807 i=strcmp(buff1,buff2);
1808 if (i == 0) /* wait a second then return younger :-) */
1809 return -1;
1810 else
1811 return i;
1812 }

1814 ASN1_TIME *X509_gmtime_adj(ASN1_TIME *s, long adj)
1815 {
1816 return X509_time_adj(s, adj, NULL);
1817 }

1819 ASN1_TIME *X509_time_adj(ASN1_TIME *s, long offset_sec, time_t *in_tm)
1820 {
1821 return X509_time_adj_ex(s, 0, offset_sec, in_tm);
1822 }

1824 ASN1_TIME *X509_time_adj_ex(ASN1_TIME *s,
1825 int offset_day, long offset_sec, time_t *in_tm)
1826 {
1827 time_t t;

1829 if (in_tm) t = *in_tm;
1830 else time(&t);

1832 if (s && !(s->flags & ASN1_STRING_FLAG_MSTRING))
1833 {
1834 if (s->type == V_ASN1_UTCTIME)
1835 return ASN1_UTCTIME_adj(s,t, offset_day, offset_sec);
1836 if (s->type == V_ASN1_GENERALIZEDTIME)
1837 return ASN1_GENERALIZEDTIME_adj(s, t, offset_day,
1838 offset_sec);
1839 }
1840 return ASN1_TIME_adj(s, t, offset_day, offset_sec);
1841 }

1843 int X509_get_pubkey_parameters(EVP_PKEY *pkey, STACK_OF(X509) *chain)

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 29

1844 {
1845 EVP_PKEY *ktmp=NULL,*ktmp2;
1846 int i,j;

1848 if ((pkey != NULL) && !EVP_PKEY_missing_parameters(pkey)) return 1;

1850 for (i=0; i<sk_X509_num(chain); i++)
1851 {
1852 ktmp=X509_get_pubkey(sk_X509_value(chain,i));
1853 if (ktmp == NULL)
1854 {
1855 X509err(X509_F_X509_GET_PUBKEY_PARAMETERS,X509_R_UNABLE_
1856 return 0;
1857 }
1858 if (!EVP_PKEY_missing_parameters(ktmp))
1859 break;
1860 else
1861 {
1862 EVP_PKEY_free(ktmp);
1863 ktmp=NULL;
1864 }
1865 }
1866 if (ktmp == NULL)
1867 {
1868 X509err(X509_F_X509_GET_PUBKEY_PARAMETERS,X509_R_UNABLE_TO_FIND_
1869 return 0;
1870 }

1872 /* first, populate the other certs */
1873 for (j=i-1; j >= 0; j--)
1874 {
1875 ktmp2=X509_get_pubkey(sk_X509_value(chain,j));
1876 EVP_PKEY_copy_parameters(ktmp2,ktmp);
1877 EVP_PKEY_free(ktmp2);
1878 }
1879
1880 if (pkey != NULL) EVP_PKEY_copy_parameters(pkey,ktmp);
1881 EVP_PKEY_free(ktmp);
1882 return 1;
1883 }

1885 int X509_STORE_CTX_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_fu
1886 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func)
1887 {
1888 /* This function is (usually) called only once, by
1889 * SSL_get_ex_data_X509_STORE_CTX_idx (ssl/ssl_cert.c). */
1890 return CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_X509_STORE_CTX, argl, arg
1891 new_func, dup_func, free_func);
1892 }

1894 int X509_STORE_CTX_set_ex_data(X509_STORE_CTX *ctx, int idx, void *data)
1895 {
1896 return CRYPTO_set_ex_data(&ctx->ex_data,idx,data);
1897 }

1899 void *X509_STORE_CTX_get_ex_data(X509_STORE_CTX *ctx, int idx)
1900 {
1901 return CRYPTO_get_ex_data(&ctx->ex_data,idx);
1902 }

1904 int X509_STORE_CTX_get_error(X509_STORE_CTX *ctx)
1905 {
1906 return ctx->error;
1907 }

1909 void X509_STORE_CTX_set_error(X509_STORE_CTX *ctx, int err)

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 30

1910 {
1911 ctx->error=err;
1912 }

1914 int X509_STORE_CTX_get_error_depth(X509_STORE_CTX *ctx)
1915 {
1916 return ctx->error_depth;
1917 }

1919 X509 *X509_STORE_CTX_get_current_cert(X509_STORE_CTX *ctx)
1920 {
1921 return ctx->current_cert;
1922 }

1924 STACK_OF(X509) *X509_STORE_CTX_get_chain(X509_STORE_CTX *ctx)
1925 {
1926 return ctx->chain;
1927 }

1929 STACK_OF(X509) *X509_STORE_CTX_get1_chain(X509_STORE_CTX *ctx)
1930 {
1931 int i;
1932 X509 *x;
1933 STACK_OF(X509) *chain;
1934 if (!ctx->chain || !(chain = sk_X509_dup(ctx->chain))) return NULL;
1935 for (i = 0; i < sk_X509_num(chain); i++)
1936 {
1937 x = sk_X509_value(chain, i);
1938 CRYPTO_add(&x->references, 1, CRYPTO_LOCK_X509);
1939 }
1940 return chain;
1941 }

1943 X509 *X509_STORE_CTX_get0_current_issuer(X509_STORE_CTX *ctx)
1944 {
1945 return ctx->current_issuer;
1946 }

1948 X509_CRL *X509_STORE_CTX_get0_current_crl(X509_STORE_CTX *ctx)
1949 {
1950 return ctx->current_crl;
1951 }

1953 X509_STORE_CTX *X509_STORE_CTX_get0_parent_ctx(X509_STORE_CTX *ctx)
1954 {
1955 return ctx->parent;
1956 }

1958 void X509_STORE_CTX_set_cert(X509_STORE_CTX *ctx, X509 *x)
1959 {
1960 ctx->cert=x;
1961 }

1963 void X509_STORE_CTX_set_chain(X509_STORE_CTX *ctx, STACK_OF(X509) *sk)
1964 {
1965 ctx->untrusted=sk;
1966 }

1968 void X509_STORE_CTX_set0_crls(X509_STORE_CTX *ctx, STACK_OF(X509_CRL) *sk)
1969 {
1970 ctx->crls=sk;
1971 }

1973 int X509_STORE_CTX_set_purpose(X509_STORE_CTX *ctx, int purpose)
1974 {
1975 return X509_STORE_CTX_purpose_inherit(ctx, 0, purpose, 0);

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 31

1976 }

1978 int X509_STORE_CTX_set_trust(X509_STORE_CTX *ctx, int trust)
1979 {
1980 return X509_STORE_CTX_purpose_inherit(ctx, 0, 0, trust);
1981 }

1983 /* This function is used to set the X509_STORE_CTX purpose and trust
1984 * values. This is intended to be used when another structure has its
1985 * own trust and purpose values which (if set) will be inherited by
1986 * the ctx. If they aren’t set then we will usually have a default
1987 * purpose in mind which should then be used to set the trust value.
1988 * An example of this is SSL use: an SSL structure will have its own
1989 * purpose and trust settings which the application can set: if they
1990 * aren’t set then we use the default of SSL client/server.
1991 */

1993 int X509_STORE_CTX_purpose_inherit(X509_STORE_CTX *ctx, int def_purpose,
1994 int purpose, int trust)
1995 {
1996 int idx;
1997 /* If purpose not set use default */
1998 if (!purpose) purpose = def_purpose;
1999 /* If we have a purpose then check it is valid */
2000 if (purpose)
2001 {
2002 X509_PURPOSE *ptmp;
2003 idx = X509_PURPOSE_get_by_id(purpose);
2004 if (idx == -1)
2005 {
2006 X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT,
2007 X509_R_UNKNOWN_PURPOSE_ID);
2008 return 0;
2009 }
2010 ptmp = X509_PURPOSE_get0(idx);
2011 if (ptmp->trust == X509_TRUST_DEFAULT)
2012 {
2013 idx = X509_PURPOSE_get_by_id(def_purpose);
2014 if (idx == -1)
2015 {
2016 X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT,
2017 X509_R_UNKNOWN_PURPOSE_ID);
2018 return 0;
2019 }
2020 ptmp = X509_PURPOSE_get0(idx);
2021 }
2022 /* If trust not set then get from purpose default */
2023 if (!trust) trust = ptmp->trust;
2024 }
2025 if (trust)
2026 {
2027 idx = X509_TRUST_get_by_id(trust);
2028 if (idx == -1)
2029 {
2030 X509err(X509_F_X509_STORE_CTX_PURPOSE_INHERIT,
2031 X509_R_UNKNOWN_TRUST_ID);
2032 return 0;
2033 }
2034 }

2036 if (purpose && !ctx->param->purpose) ctx->param->purpose = purpose;
2037 if (trust && !ctx->param->trust) ctx->param->trust = trust;
2038 return 1;
2039 }

2041 X509_STORE_CTX *X509_STORE_CTX_new(void)

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 32

2042 {
2043 X509_STORE_CTX *ctx;
2044 ctx = (X509_STORE_CTX *)OPENSSL_malloc(sizeof(X509_STORE_CTX));
2045 if (!ctx)
2046 {
2047 X509err(X509_F_X509_STORE_CTX_NEW,ERR_R_MALLOC_FAILURE);
2048 return NULL;
2049 }
2050 memset(ctx, 0, sizeof(X509_STORE_CTX));
2051 return ctx;
2052 }

2054 void X509_STORE_CTX_free(X509_STORE_CTX *ctx)
2055 {
2056 X509_STORE_CTX_cleanup(ctx);
2057 OPENSSL_free(ctx);
2058 }

2060 int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store, X509 *x509,
2061 STACK_OF(X509) *chain)
2062 {
2063 int ret = 1;
2064 ctx->ctx=store;
2065 ctx->current_method=0;
2066 ctx->cert=x509;
2067 ctx->untrusted=chain;
2068 ctx->crls = NULL;
2069 ctx->last_untrusted=0;
2070 ctx->other_ctx=NULL;
2071 ctx->valid=0;
2072 ctx->chain=NULL;
2073 ctx->error=0;
2074 ctx->explicit_policy=0;
2075 ctx->error_depth=0;
2076 ctx->current_cert=NULL;
2077 ctx->current_issuer=NULL;
2078 ctx->current_crl=NULL;
2079 ctx->current_crl_score=0;
2080 ctx->current_reasons=0;
2081 ctx->tree = NULL;
2082 ctx->parent = NULL;

2084 ctx->param = X509_VERIFY_PARAM_new();

2086 if (!ctx->param)
2087 {
2088 X509err(X509_F_X509_STORE_CTX_INIT,ERR_R_MALLOC_FAILURE);
2089 return 0;
2090 }

2092 /* Inherit callbacks and flags from X509_STORE if not set
2093 * use defaults.
2094 */

2097 if (store)
2098 ret = X509_VERIFY_PARAM_inherit(ctx->param, store->param);
2099 else
2100 ctx->param->inh_flags |= X509_VP_FLAG_DEFAULT|X509_VP_FLAG_ONCE;

2102 if (store)
2103 {
2104 ctx->verify_cb = store->verify_cb;
2105 ctx->cleanup = store->cleanup;
2106 }
2107 else

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 33

2108 ctx->cleanup = 0;

2110 if (ret)
2111 ret = X509_VERIFY_PARAM_inherit(ctx->param,
2112 X509_VERIFY_PARAM_lookup("default"));

2114 if (ret == 0)
2115 {
2116 X509err(X509_F_X509_STORE_CTX_INIT,ERR_R_MALLOC_FAILURE);
2117 return 0;
2118 }

2120 if (store && store->check_issued)
2121 ctx->check_issued = store->check_issued;
2122 else
2123 ctx->check_issued = check_issued;

2125 if (store && store->get_issuer)
2126 ctx->get_issuer = store->get_issuer;
2127 else
2128 ctx->get_issuer = X509_STORE_CTX_get1_issuer;

2130 if (store && store->verify_cb)
2131 ctx->verify_cb = store->verify_cb;
2132 else
2133 ctx->verify_cb = null_callback;

2135 if (store && store->verify)
2136 ctx->verify = store->verify;
2137 else
2138 ctx->verify = internal_verify;

2140 if (store && store->check_revocation)
2141 ctx->check_revocation = store->check_revocation;
2142 else
2143 ctx->check_revocation = check_revocation;

2145 if (store && store->get_crl)
2146 ctx->get_crl = store->get_crl;
2147 else
2148 ctx->get_crl = NULL;

2150 if (store && store->check_crl)
2151 ctx->check_crl = store->check_crl;
2152 else
2153 ctx->check_crl = check_crl;

2155 if (store && store->cert_crl)
2156 ctx->cert_crl = store->cert_crl;
2157 else
2158 ctx->cert_crl = cert_crl;

2160 if (store && store->lookup_certs)
2161 ctx->lookup_certs = store->lookup_certs;
2162 else
2163 ctx->lookup_certs = X509_STORE_get1_certs;

2165 if (store && store->lookup_crls)
2166 ctx->lookup_crls = store->lookup_crls;
2167 else
2168 ctx->lookup_crls = X509_STORE_get1_crls;

2170 ctx->check_policy = check_policy;

2173 /* This memset() can’t make any sense anyway, so it’s removed. As

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 34

2174 * X509_STORE_CTX_cleanup does a proper "free" on the ex_data, we put a
2175 * corresponding "new" here and remove this bogus initialisation. */
2176 /* memset(&(ctx->ex_data),0,sizeof(CRYPTO_EX_DATA)); */
2177 if(!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx,
2178 &(ctx->ex_data)))
2179 {
2180 OPENSSL_free(ctx);
2181 X509err(X509_F_X509_STORE_CTX_INIT,ERR_R_MALLOC_FAILURE);
2182 return 0;
2183 }
2184 return 1;
2185 }

2187 /* Set alternative lookup method: just a STACK of trusted certificates.
2188 * This avoids X509_STORE nastiness where it isn’t needed.
2189 */

2191 void X509_STORE_CTX_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk)
2192 {
2193 ctx->other_ctx = sk;
2194 ctx->get_issuer = get_issuer_sk;
2195 }

2197 void X509_STORE_CTX_cleanup(X509_STORE_CTX *ctx)
2198 {
2199 if (ctx->cleanup) ctx->cleanup(ctx);
2200 if (ctx->param != NULL)
2201 {
2202 if (ctx->parent == NULL)
2203 X509_VERIFY_PARAM_free(ctx->param);
2204 ctx->param=NULL;
2205 }
2206 if (ctx->tree != NULL)
2207 {
2208 X509_policy_tree_free(ctx->tree);
2209 ctx->tree=NULL;
2210 }
2211 if (ctx->chain != NULL)
2212 {
2213 sk_X509_pop_free(ctx->chain,X509_free);
2214 ctx->chain=NULL;
2215 }
2216 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_X509_STORE_CTX, ctx, &(ctx->ex_data)
2217 memset(&ctx->ex_data,0,sizeof(CRYPTO_EX_DATA));
2218 }

2220 void X509_STORE_CTX_set_depth(X509_STORE_CTX *ctx, int depth)
2221 {
2222 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
2223 }

2225 void X509_STORE_CTX_set_flags(X509_STORE_CTX *ctx, unsigned long flags)
2226 {
2227 X509_VERIFY_PARAM_set_flags(ctx->param, flags);
2228 }

2230 void X509_STORE_CTX_set_time(X509_STORE_CTX *ctx, unsigned long flags, time_t t)
2231 {
2232 X509_VERIFY_PARAM_set_time(ctx->param, t);
2233 }

2235 void X509_STORE_CTX_set_verify_cb(X509_STORE_CTX *ctx,
2236 int (*verify_cb)(int, X509_STORE_CTX *))
2237 {
2238 ctx->verify_cb=verify_cb;
2239 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vfy.c 35

2241 X509_POLICY_TREE *X509_STORE_CTX_get0_policy_tree(X509_STORE_CTX *ctx)
2242 {
2243 return ctx->tree;
2244 }

2246 int X509_STORE_CTX_get_explicit_policy(X509_STORE_CTX *ctx)
2247 {
2248 return ctx->explicit_policy;
2249 }

2251 int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name)
2252 {
2253 const X509_VERIFY_PARAM *param;
2254 param = X509_VERIFY_PARAM_lookup(name);
2255 if (!param)
2256 return 0;
2257 return X509_VERIFY_PARAM_inherit(ctx->param, param);
2258 }

2260 X509_VERIFY_PARAM *X509_STORE_CTX_get0_param(X509_STORE_CTX *ctx)
2261 {
2262 return ctx->param;
2263 }

2265 void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param)
2266 {
2267 if (ctx->param)
2268 X509_VERIFY_PARAM_free(ctx->param);
2269 ctx->param = param;
2270 }

2272 IMPLEMENT_STACK_OF(X509)
2273 IMPLEMENT_ASN1_SET_OF(X509)

2275 IMPLEMENT_STACK_OF(X509_NAME)

2277 IMPLEMENT_STACK_OF(X509_ATTRIBUTE)
2278 IMPLEMENT_ASN1_SET_OF(X509_ATTRIBUTE)

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vpm.c 1

**
 12002 Fri May 30 18:32:13 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vpm.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* x509_vpm.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2004.
4 */
5 /* ==
6 * Copyright (c) 2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>

61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vpm.c 2

62 #include <openssl/crypto.h>
63 #include <openssl/lhash.h>
64 #include <openssl/buffer.h>
65 #include <openssl/x509.h>
66 #include <openssl/x509v3.h>

68 /* X509_VERIFY_PARAM functions */

70 static void x509_verify_param_zero(X509_VERIFY_PARAM *param)
71 {
72 if (!param)
73 return;
74 param->name = NULL;
75 param->purpose = 0;
76 param->trust = 0;
77 /*param->inh_flags = X509_VP_FLAG_DEFAULT;*/
78 param->inh_flags = 0;
79 param->flags = 0;
80 param->depth = -1;
81 if (param->policies)
82 {
83 sk_ASN1_OBJECT_pop_free(param->policies, ASN1_OBJECT_free);
84 param->policies = NULL;
85 }
86 }

88 X509_VERIFY_PARAM *X509_VERIFY_PARAM_new(void)
89 {
90 X509_VERIFY_PARAM *param;
91 param = OPENSSL_malloc(sizeof(X509_VERIFY_PARAM));
92 memset(param, 0, sizeof(X509_VERIFY_PARAM));
93 x509_verify_param_zero(param);
94 return param;
95 }

97 void X509_VERIFY_PARAM_free(X509_VERIFY_PARAM *param)
98 {
99 x509_verify_param_zero(param);
100 OPENSSL_free(param);
101 }

103 /* This function determines how parameters are "inherited" from one structure
104 * to another. There are several different ways this can happen.
105 *
106 * 1. If a child structure needs to have its values initialized from a parent
107 * they are simply copied across. For example SSL_CTX copied to SSL.
108 * 2. If the structure should take on values only if they are currently unset.
109 * For example the values in an SSL structure will take appropriate value
110 * for SSL servers or clients but only if the application has not set new
111 * ones.
112 *
113 * The "inh_flags" field determines how this function behaves.
114 *
115 * Normally any values which are set in the default are not copied from the
116 * destination and verify flags are ORed together.
117 *
118 * If X509_VP_FLAG_DEFAULT is set then anything set in the source is copied
119 * to the destination. Effectively the values in "to" become default values
120 * which will be used only if nothing new is set in "from".
121 *
122 * If X509_VP_FLAG_OVERWRITE is set then all value are copied across whether
123 * they are set or not. Flags is still Ored though.
124 *
125 * If X509_VP_FLAG_RESET_FLAGS is set then the flags value is copied instead
126 * of ORed.
127 *

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vpm.c 3

128 * If X509_VP_FLAG_LOCKED is set then no values are copied.
129 *
130 * If X509_VP_FLAG_ONCE is set then the current inh_flags setting is zeroed
131 * after the next call.
132 */

134 /* Macro to test if a field should be copied from src to dest */

136 #define test_x509_verify_param_copy(field, def) \
137 (to_overwrite || \
138 ((src->field != def) && (to_default || (dest->field == def))))

140 /* Macro to test and copy a field if necessary */

142 #define x509_verify_param_copy(field, def) \
143 if (test_x509_verify_param_copy(field, def)) \
144 dest->field = src->field
145

147 int X509_VERIFY_PARAM_inherit(X509_VERIFY_PARAM *dest,
148 const X509_VERIFY_PARAM *src)
149 {
150 unsigned long inh_flags;
151 int to_default, to_overwrite;
152 if (!src)
153 return 1;
154 inh_flags = dest->inh_flags | src->inh_flags;

156 if (inh_flags & X509_VP_FLAG_ONCE)
157 dest->inh_flags = 0;

159 if (inh_flags & X509_VP_FLAG_LOCKED)
160 return 1;

162 if (inh_flags & X509_VP_FLAG_DEFAULT)
163 to_default = 1;
164 else
165 to_default = 0;

167 if (inh_flags & X509_VP_FLAG_OVERWRITE)
168 to_overwrite = 1;
169 else
170 to_overwrite = 0;

172 x509_verify_param_copy(purpose, 0);
173 x509_verify_param_copy(trust, 0);
174 x509_verify_param_copy(depth, -1);

176 /* If overwrite or check time not set, copy across */

178 if (to_overwrite || !(dest->flags & X509_V_FLAG_USE_CHECK_TIME))
179 {
180 dest->check_time = src->check_time;
181 dest->flags &= ~X509_V_FLAG_USE_CHECK_TIME;
182 /* Don’t need to copy flag: that is done below */
183 }

185 if (inh_flags & X509_VP_FLAG_RESET_FLAGS)
186 dest->flags = 0;

188 dest->flags |= src->flags;

190 if (test_x509_verify_param_copy(policies, NULL))
191 {
192 if (!X509_VERIFY_PARAM_set1_policies(dest, src->policies))
193 return 0;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vpm.c 4

194 }

196 return 1;
197 }

199 int X509_VERIFY_PARAM_set1(X509_VERIFY_PARAM *to,
200 const X509_VERIFY_PARAM *from)
201 {
202 unsigned long save_flags = to->inh_flags;
203 int ret;
204 to->inh_flags |= X509_VP_FLAG_DEFAULT;
205 ret = X509_VERIFY_PARAM_inherit(to, from);
206 to->inh_flags = save_flags;
207 return ret;
208 }

210 int X509_VERIFY_PARAM_set1_name(X509_VERIFY_PARAM *param, const char *name)
211 {
212 if (param->name)
213 OPENSSL_free(param->name);
214 param->name = BUF_strdup(name);
215 if (param->name)
216 return 1;
217 return 0;
218 }

220 int X509_VERIFY_PARAM_set_flags(X509_VERIFY_PARAM *param, unsigned long flags)
221 {
222 param->flags |= flags;
223 if (flags & X509_V_FLAG_POLICY_MASK)
224 param->flags |= X509_V_FLAG_POLICY_CHECK;
225 return 1;
226 }

228 int X509_VERIFY_PARAM_clear_flags(X509_VERIFY_PARAM *param, unsigned long flags)
229 {
230 param->flags &= ~flags;
231 return 1;
232 }

234 unsigned long X509_VERIFY_PARAM_get_flags(X509_VERIFY_PARAM *param)
235 {
236 return param->flags;
237 }

239 int X509_VERIFY_PARAM_set_purpose(X509_VERIFY_PARAM *param, int purpose)
240 {
241 return X509_PURPOSE_set(¶m->purpose, purpose);
242 }

244 int X509_VERIFY_PARAM_set_trust(X509_VERIFY_PARAM *param, int trust)
245 {
246 return X509_TRUST_set(¶m->trust, trust);
247 }

249 void X509_VERIFY_PARAM_set_depth(X509_VERIFY_PARAM *param, int depth)
250 {
251 param->depth = depth;
252 }

254 void X509_VERIFY_PARAM_set_time(X509_VERIFY_PARAM *param, time_t t)
255 {
256 param->check_time = t;
257 param->flags |= X509_V_FLAG_USE_CHECK_TIME;
258 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vpm.c 5

260 int X509_VERIFY_PARAM_add0_policy(X509_VERIFY_PARAM *param, ASN1_OBJECT *policy)
261 {
262 if (!param->policies)
263 {
264 param->policies = sk_ASN1_OBJECT_new_null();
265 if (!param->policies)
266 return 0;
267 }
268 if (!sk_ASN1_OBJECT_push(param->policies, policy))
269 return 0;
270 return 1;
271 }

273 int X509_VERIFY_PARAM_set1_policies(X509_VERIFY_PARAM *param,
274 STACK_OF(ASN1_OBJECT) *policies)
275 {
276 int i;
277 ASN1_OBJECT *oid, *doid;
278 if (!param)
279 return 0;
280 if (param->policies)
281 sk_ASN1_OBJECT_pop_free(param->policies, ASN1_OBJECT_free);

283 if (!policies)
284 {
285 param->policies = NULL;
286 return 1;
287 }

289 param->policies = sk_ASN1_OBJECT_new_null();
290 if (!param->policies)
291 return 0;

293 for (i = 0; i < sk_ASN1_OBJECT_num(policies); i++)
294 {
295 oid = sk_ASN1_OBJECT_value(policies, i);
296 doid = OBJ_dup(oid);
297 if (!doid)
298 return 0;
299 if (!sk_ASN1_OBJECT_push(param->policies, doid))
300 {
301 ASN1_OBJECT_free(doid);
302 return 0;
303 }
304 }
305 param->flags |= X509_V_FLAG_POLICY_CHECK;
306 return 1;
307 }

309 int X509_VERIFY_PARAM_get_depth(const X509_VERIFY_PARAM *param)
310 {
311 return param->depth;
312 }

314 /* Default verify parameters: these are used for various
315 * applications and can be overridden by the user specified table.
316 * NB: the ’name’ field *must* be in alphabetical order because it
317 * will be searched using OBJ_search.
318 */

320 static const X509_VERIFY_PARAM default_table[] = {
321 {
322 "default", /* X509 default parameters */
323 0, /* Check time */
324 0, /* internal flags */
325 0, /* flags */

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vpm.c 6

326 0, /* purpose */
327 0, /* trust */
328 100, /* depth */
329 NULL /* policies */
330 },
331 {
332 "pkcs7", /* S/MIME sign parameters */
333 0, /* Check time */
334 0, /* internal flags */
335 0, /* flags */
336 X509_PURPOSE_SMIME_SIGN, /* purpose */
337 X509_TRUST_EMAIL, /* trust */
338 -1, /* depth */
339 NULL /* policies */
340 },
341 {
342 "smime_sign", /* S/MIME sign parameters */
343 0, /* Check time */
344 0, /* internal flags */
345 0, /* flags */
346 X509_PURPOSE_SMIME_SIGN, /* purpose */
347 X509_TRUST_EMAIL, /* trust */
348 -1, /* depth */
349 NULL /* policies */
350 },
351 {
352 "ssl_client", /* SSL/TLS client parameters */
353 0, /* Check time */
354 0, /* internal flags */
355 0, /* flags */
356 X509_PURPOSE_SSL_CLIENT, /* purpose */
357 X509_TRUST_SSL_CLIENT, /* trust */
358 -1, /* depth */
359 NULL /* policies */
360 },
361 {
362 "ssl_server", /* SSL/TLS server parameters */
363 0, /* Check time */
364 0, /* internal flags */
365 0, /* flags */
366 X509_PURPOSE_SSL_SERVER, /* purpose */
367 X509_TRUST_SSL_SERVER, /* trust */
368 -1, /* depth */
369 NULL /* policies */
370 }};

372 static STACK_OF(X509_VERIFY_PARAM) *param_table = NULL;

374 static int table_cmp(const X509_VERIFY_PARAM *a, const X509_VERIFY_PARAM *b)

376 {
377 return strcmp(a->name, b->name);
378 }

380 DECLARE_OBJ_BSEARCH_CMP_FN(X509_VERIFY_PARAM, X509_VERIFY_PARAM,
381 table);
382 IMPLEMENT_OBJ_BSEARCH_CMP_FN(X509_VERIFY_PARAM, X509_VERIFY_PARAM,
383 table);

385 static int param_cmp(const X509_VERIFY_PARAM * const *a,
386 const X509_VERIFY_PARAM * const *b)
387 {
388 return strcmp((*a)->name, (*b)->name);
389 }

391 int X509_VERIFY_PARAM_add0_table(X509_VERIFY_PARAM *param)

new/usr/src/lib/openssl/libsunw_crypto/x509/x509_vpm.c 7

392 {
393 int idx;
394 X509_VERIFY_PARAM *ptmp;
395 if (!param_table)
396 {
397 param_table = sk_X509_VERIFY_PARAM_new(param_cmp);
398 if (!param_table)
399 return 0;
400 }
401 else
402 {
403 idx = sk_X509_VERIFY_PARAM_find(param_table, param);
404 if (idx != -1)
405 {
406 ptmp = sk_X509_VERIFY_PARAM_value(param_table, idx);
407 X509_VERIFY_PARAM_free(ptmp);
408 (void)sk_X509_VERIFY_PARAM_delete(param_table, idx);
409 }
410 }
411 if (!sk_X509_VERIFY_PARAM_push(param_table, param))
412 return 0;
413 return 1;
414 }

416 const X509_VERIFY_PARAM *X509_VERIFY_PARAM_lookup(const char *name)
417 {
418 int idx;
419 X509_VERIFY_PARAM pm;

421 pm.name = (char *)name;
422 if (param_table)
423 {
424 idx = sk_X509_VERIFY_PARAM_find(param_table, &pm);
425 if (idx != -1)
426 return sk_X509_VERIFY_PARAM_value(param_table, idx);
427 }
428 return OBJ_bsearch_table(&pm, default_table,
429 sizeof(default_table)/sizeof(X509_VERIFY_PARAM));
430 }

432 void X509_VERIFY_PARAM_table_cleanup(void)
433 {
434 if (param_table)
435 sk_X509_VERIFY_PARAM_pop_free(param_table,
436 X509_VERIFY_PARAM_free);
437 param_table = NULL;
438 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509cset.c 1

**
 4869 Fri May 30 18:32:14 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509cset.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509cset.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 2001 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/x509cset.c 2

62 #include <openssl/objects.h>
63 #include <openssl/evp.h>
64 #include <openssl/x509.h>

66 int X509_CRL_set_version(X509_CRL *x, long version)
67 {
68 if (x == NULL) return(0);
69 if (x->crl->version == NULL)
70 {
71 if ((x->crl->version=M_ASN1_INTEGER_new()) == NULL)
72 return(0);
73 }
74 return(ASN1_INTEGER_set(x->crl->version,version));
75 }

77 int X509_CRL_set_issuer_name(X509_CRL *x, X509_NAME *name)
78 {
79 if ((x == NULL) || (x->crl == NULL)) return(0);
80 return(X509_NAME_set(&x->crl->issuer,name));
81 }

84 int X509_CRL_set_lastUpdate(X509_CRL *x, const ASN1_TIME *tm)
85 {
86 ASN1_TIME *in;

88 if (x == NULL) return(0);
89 in=x->crl->lastUpdate;
90 if (in != tm)
91 {
92 in=M_ASN1_TIME_dup(tm);
93 if (in != NULL)
94 {
95 M_ASN1_TIME_free(x->crl->lastUpdate);
96 x->crl->lastUpdate=in;
97 }
98 }
99 return(in != NULL);
100 }

102 int X509_CRL_set_nextUpdate(X509_CRL *x, const ASN1_TIME *tm)
103 {
104 ASN1_TIME *in;

106 if (x == NULL) return(0);
107 in=x->crl->nextUpdate;
108 if (in != tm)
109 {
110 in=M_ASN1_TIME_dup(tm);
111 if (in != NULL)
112 {
113 M_ASN1_TIME_free(x->crl->nextUpdate);
114 x->crl->nextUpdate=in;
115 }
116 }
117 return(in != NULL);
118 }

120 int X509_CRL_sort(X509_CRL *c)
121 {
122 int i;
123 X509_REVOKED *r;
124 /* sort the data so it will be written in serial
125 * number order */
126 sk_X509_REVOKED_sort(c->crl->revoked);
127 for (i=0; i<sk_X509_REVOKED_num(c->crl->revoked); i++)

new/usr/src/lib/openssl/libsunw_crypto/x509/x509cset.c 3

128 {
129 r=sk_X509_REVOKED_value(c->crl->revoked,i);
130 r->sequence=i;
131 }
132 c->crl->enc.modified = 1;
133 return 1;
134 }

136 int X509_REVOKED_set_revocationDate(X509_REVOKED *x, ASN1_TIME *tm)
137 {
138 ASN1_TIME *in;

140 if (x == NULL) return(0);
141 in=x->revocationDate;
142 if (in != tm)
143 {
144 in=M_ASN1_TIME_dup(tm);
145 if (in != NULL)
146 {
147 M_ASN1_TIME_free(x->revocationDate);
148 x->revocationDate=in;
149 }
150 }
151 return(in != NULL);
152 }

154 int X509_REVOKED_set_serialNumber(X509_REVOKED *x, ASN1_INTEGER *serial)
155 {
156 ASN1_INTEGER *in;

158 if (x == NULL) return(0);
159 in=x->serialNumber;
160 if (in != serial)
161 {
162 in=M_ASN1_INTEGER_dup(serial);
163 if (in != NULL)
164 {
165 M_ASN1_INTEGER_free(x->serialNumber);
166 x->serialNumber=in;
167 }
168 }
169 return(in != NULL);
170 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509name.c 1

**
 10804 Fri May 30 18:32:14 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509name.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509name.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/stack.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509/x509name.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/objects.h>
64 #include <openssl/evp.h>
65 #include <openssl/x509.h>

67 int X509_NAME_get_text_by_NID(X509_NAME *name, int nid, char *buf, int len)
68 {
69 ASN1_OBJECT *obj;

71 obj=OBJ_nid2obj(nid);
72 if (obj == NULL) return(-1);
73 return(X509_NAME_get_text_by_OBJ(name,obj,buf,len));
74 }

76 int X509_NAME_get_text_by_OBJ(X509_NAME *name, ASN1_OBJECT *obj, char *buf,
77 int len)
78 {
79 int i;
80 ASN1_STRING *data;

82 i=X509_NAME_get_index_by_OBJ(name,obj,-1);
83 if (i < 0) return(-1);
84 data=X509_NAME_ENTRY_get_data(X509_NAME_get_entry(name,i));
85 i=(data->length > (len-1))?(len-1):data->length;
86 if (buf == NULL) return(data->length);
87 memcpy(buf,data->data,i);
88 buf[i]=’\0’;
89 return(i);
90 }

92 int X509_NAME_entry_count(X509_NAME *name)
93 {
94 if (name == NULL) return(0);
95 return(sk_X509_NAME_ENTRY_num(name->entries));
96 }

98 int X509_NAME_get_index_by_NID(X509_NAME *name, int nid, int lastpos)
99 {
100 ASN1_OBJECT *obj;

102 obj=OBJ_nid2obj(nid);
103 if (obj == NULL) return(-2);
104 return(X509_NAME_get_index_by_OBJ(name,obj,lastpos));
105 }

107 /* NOTE: you should be passsing -1, not 0 as lastpos */
108 int X509_NAME_get_index_by_OBJ(X509_NAME *name, ASN1_OBJECT *obj,
109 int lastpos)
110 {
111 int n;
112 X509_NAME_ENTRY *ne;
113 STACK_OF(X509_NAME_ENTRY) *sk;

115 if (name == NULL) return(-1);
116 if (lastpos < 0)
117 lastpos= -1;
118 sk=name->entries;
119 n=sk_X509_NAME_ENTRY_num(sk);
120 for (lastpos++; lastpos < n; lastpos++)
121 {
122 ne=sk_X509_NAME_ENTRY_value(sk,lastpos);
123 if (OBJ_cmp(ne->object,obj) == 0)
124 return(lastpos);
125 }
126 return(-1);
127 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509name.c 3

129 X509_NAME_ENTRY *X509_NAME_get_entry(X509_NAME *name, int loc)
130 {
131 if(name == NULL || sk_X509_NAME_ENTRY_num(name->entries) <= loc
132 || loc < 0)
133 return(NULL);
134 else
135 return(sk_X509_NAME_ENTRY_value(name->entries,loc));
136 }

138 X509_NAME_ENTRY *X509_NAME_delete_entry(X509_NAME *name, int loc)
139 {
140 X509_NAME_ENTRY *ret;
141 int i,n,set_prev,set_next;
142 STACK_OF(X509_NAME_ENTRY) *sk;

144 if (name == NULL || sk_X509_NAME_ENTRY_num(name->entries) <= loc
145 || loc < 0)
146 return(NULL);
147 sk=name->entries;
148 ret=sk_X509_NAME_ENTRY_delete(sk,loc);
149 n=sk_X509_NAME_ENTRY_num(sk);
150 name->modified=1;
151 if (loc == n) return(ret);

153 /* else we need to fixup the set field */
154 if (loc != 0)
155 set_prev=(sk_X509_NAME_ENTRY_value(sk,loc-1))->set;
156 else
157 set_prev=ret->set-1;
158 set_next=sk_X509_NAME_ENTRY_value(sk,loc)->set;

160 /* set_prev is the previous set
161 * set is the current set
162 * set_next is the following
163 * prev 1 1 1 1 1 1 1 1
164 * set 1 1 2 2
165 * next 1 1 2 2 2 2 3 2
166 * so basically only if prev and next differ by 2, then
167 * re-number down by 1 */
168 if (set_prev+1 < set_next)
169 for (i=loc; i<n; i++)
170 sk_X509_NAME_ENTRY_value(sk,i)->set--;
171 return(ret);
172 }

174 int X509_NAME_add_entry_by_OBJ(X509_NAME *name, ASN1_OBJECT *obj, int type,
175 unsigned char *bytes, int len, int loc, int set)
176 {
177 X509_NAME_ENTRY *ne;
178 int ret;
179 ne = X509_NAME_ENTRY_create_by_OBJ(NULL, obj, type, bytes, len);
180 if(!ne) return 0;
181 ret = X509_NAME_add_entry(name, ne, loc, set);
182 X509_NAME_ENTRY_free(ne);
183 return ret;
184 }

186 int X509_NAME_add_entry_by_NID(X509_NAME *name, int nid, int type,
187 unsigned char *bytes, int len, int loc, int set)
188 {
189 X509_NAME_ENTRY *ne;
190 int ret;
191 ne = X509_NAME_ENTRY_create_by_NID(NULL, nid, type, bytes, len);
192 if(!ne) return 0;
193 ret = X509_NAME_add_entry(name, ne, loc, set);

new/usr/src/lib/openssl/libsunw_crypto/x509/x509name.c 4

194 X509_NAME_ENTRY_free(ne);
195 return ret;
196 }

198 int X509_NAME_add_entry_by_txt(X509_NAME *name, const char *field, int type,
199 const unsigned char *bytes, int len, int loc, int set)
200 {
201 X509_NAME_ENTRY *ne;
202 int ret;
203 ne = X509_NAME_ENTRY_create_by_txt(NULL, field, type, bytes, len);
204 if(!ne) return 0;
205 ret = X509_NAME_add_entry(name, ne, loc, set);
206 X509_NAME_ENTRY_free(ne);
207 return ret;
208 }

210 /* if set is -1, append to previous set, 0 ’a new one’, and 1,
211 * prepend to the guy we are about to stomp on. */
212 int X509_NAME_add_entry(X509_NAME *name, X509_NAME_ENTRY *ne, int loc,
213 int set)
214 {
215 X509_NAME_ENTRY *new_name=NULL;
216 int n,i,inc;
217 STACK_OF(X509_NAME_ENTRY) *sk;

219 if (name == NULL) return(0);
220 sk=name->entries;
221 n=sk_X509_NAME_ENTRY_num(sk);
222 if (loc > n) loc=n;
223 else if (loc < 0) loc=n;

225 name->modified=1;

227 if (set == -1)
228 {
229 if (loc == 0)
230 {
231 set=0;
232 inc=1;
233 }
234 else
235 {
236 set=sk_X509_NAME_ENTRY_value(sk,loc-1)->set;
237 inc=0;
238 }
239 }
240 else /* if (set >= 0) */
241 {
242 if (loc >= n)
243 {
244 if (loc != 0)
245 set=sk_X509_NAME_ENTRY_value(sk,loc-1)->set+1;
246 else
247 set=0;
248 }
249 else
250 set=sk_X509_NAME_ENTRY_value(sk,loc)->set;
251 inc=(set == 0)?1:0;
252 }

254 if ((new_name=X509_NAME_ENTRY_dup(ne)) == NULL)
255 goto err;
256 new_name->set=set;
257 if (!sk_X509_NAME_ENTRY_insert(sk,new_name,loc))
258 {
259 X509err(X509_F_X509_NAME_ADD_ENTRY,ERR_R_MALLOC_FAILURE);

new/usr/src/lib/openssl/libsunw_crypto/x509/x509name.c 5

260 goto err;
261 }
262 if (inc)
263 {
264 n=sk_X509_NAME_ENTRY_num(sk);
265 for (i=loc+1; i<n; i++)
266 sk_X509_NAME_ENTRY_value(sk,i-1)->set+=1;
267 }
268 return(1);
269 err:
270 if (new_name != NULL)
271 X509_NAME_ENTRY_free(new_name);
272 return(0);
273 }

275 X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_txt(X509_NAME_ENTRY **ne,
276 const char *field, int type, const unsigned char *bytes, int len
277 {
278 ASN1_OBJECT *obj;
279 X509_NAME_ENTRY *nentry;

281 obj=OBJ_txt2obj(field, 0);
282 if (obj == NULL)
283 {
284 X509err(X509_F_X509_NAME_ENTRY_CREATE_BY_TXT,
285 X509_R_INVALID_FIELD_NAME);
286 ERR_add_error_data(2, "name=", field);
287 return(NULL);
288 }
289 nentry = X509_NAME_ENTRY_create_by_OBJ(ne,obj,type,bytes,len);
290 ASN1_OBJECT_free(obj);
291 return nentry;
292 }

294 X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_NID(X509_NAME_ENTRY **ne, int nid,
295 int type, unsigned char *bytes, int len)
296 {
297 ASN1_OBJECT *obj;
298 X509_NAME_ENTRY *nentry;

300 obj=OBJ_nid2obj(nid);
301 if (obj == NULL)
302 {
303 X509err(X509_F_X509_NAME_ENTRY_CREATE_BY_NID,X509_R_UNKNOWN_NID)
304 return(NULL);
305 }
306 nentry = X509_NAME_ENTRY_create_by_OBJ(ne,obj,type,bytes,len);
307 ASN1_OBJECT_free(obj);
308 return nentry;
309 }

311 X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_OBJ(X509_NAME_ENTRY **ne,
312 ASN1_OBJECT *obj, int type, const unsigned char *bytes, int len)
313 {
314 X509_NAME_ENTRY *ret;

316 if ((ne == NULL) || (*ne == NULL))
317 {
318 if ((ret=X509_NAME_ENTRY_new()) == NULL)
319 return(NULL);
320 }
321 else
322 ret= *ne;

324 if (!X509_NAME_ENTRY_set_object(ret,obj))
325 goto err;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509name.c 6

326 if (!X509_NAME_ENTRY_set_data(ret,type,bytes,len))
327 goto err;

329 if ((ne != NULL) && (*ne == NULL)) *ne=ret;
330 return(ret);
331 err:
332 if ((ne == NULL) || (ret != *ne))
333 X509_NAME_ENTRY_free(ret);
334 return(NULL);
335 }

337 int X509_NAME_ENTRY_set_object(X509_NAME_ENTRY *ne, ASN1_OBJECT *obj)
338 {
339 if ((ne == NULL) || (obj == NULL))
340 {
341 X509err(X509_F_X509_NAME_ENTRY_SET_OBJECT,ERR_R_PASSED_NULL_PARA
342 return(0);
343 }
344 ASN1_OBJECT_free(ne->object);
345 ne->object=OBJ_dup(obj);
346 return((ne->object == NULL)?0:1);
347 }

349 int X509_NAME_ENTRY_set_data(X509_NAME_ENTRY *ne, int type,
350 const unsigned char *bytes, int len)
351 {
352 int i;

354 if ((ne == NULL) || ((bytes == NULL) && (len != 0))) return(0);
355 if((type > 0) && (type & MBSTRING_FLAG))
356 return ASN1_STRING_set_by_NID(&ne->value, bytes,
357 len, type,
358 OBJ_obj2nid(ne->object)) ? 1 : 0;
359 if (len < 0) len=strlen((const char *)bytes);
360 i=ASN1_STRING_set(ne->value,bytes,len);
361 if (!i) return(0);
362 if (type != V_ASN1_UNDEF)
363 {
364 if (type == V_ASN1_APP_CHOOSE)
365 ne->value->type=ASN1_PRINTABLE_type(bytes,len);
366 else
367 ne->value->type=type;
368 }
369 return(1);
370 }

372 ASN1_OBJECT *X509_NAME_ENTRY_get_object(X509_NAME_ENTRY *ne)
373 {
374 if (ne == NULL) return(NULL);
375 return(ne->object);
376 }

378 ASN1_STRING *X509_NAME_ENTRY_get_data(X509_NAME_ENTRY *ne)
379 {
380 if (ne == NULL) return(NULL);
381 return(ne->value);
382 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509rset.c 1

**
 3830 Fri May 30 18:32:14 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509rset.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509rset.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/x509rset.c 2

62 #include <openssl/objects.h>
63 #include <openssl/evp.h>
64 #include <openssl/x509.h>

66 int X509_REQ_set_version(X509_REQ *x, long version)
67 {
68 if (x == NULL) return(0);
69 return(ASN1_INTEGER_set(x->req_info->version,version));
70 }

72 int X509_REQ_set_subject_name(X509_REQ *x, X509_NAME *name)
73 {
74 if ((x == NULL) || (x->req_info == NULL)) return(0);
75 return(X509_NAME_set(&x->req_info->subject,name));
76 }

78 int X509_REQ_set_pubkey(X509_REQ *x, EVP_PKEY *pkey)
79 {
80 if ((x == NULL) || (x->req_info == NULL)) return(0);
81 return(X509_PUBKEY_set(&x->req_info->pubkey,pkey));
82 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509spki.c 1

**
 4379 Fri May 30 18:32:14 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509spki.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* x509spki.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/x509.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/x509spki.c 2

63 int NETSCAPE_SPKI_set_pubkey(NETSCAPE_SPKI *x, EVP_PKEY *pkey)
64 {
65 if ((x == NULL) || (x->spkac == NULL)) return(0);
66 return(X509_PUBKEY_set(&(x->spkac->pubkey),pkey));
67 }

69 EVP_PKEY *NETSCAPE_SPKI_get_pubkey(NETSCAPE_SPKI *x)
70 {
71 if ((x == NULL) || (x->spkac == NULL))
72 return(NULL);
73 return(X509_PUBKEY_get(x->spkac->pubkey));
74 }

76 /* Load a Netscape SPKI from a base64 encoded string */

78 NETSCAPE_SPKI * NETSCAPE_SPKI_b64_decode(const char *str, int len)
79 {
80 unsigned char *spki_der;
81 const unsigned char *p;
82 int spki_len;
83 NETSCAPE_SPKI *spki;
84 if(len <= 0) len = strlen(str);
85 if (!(spki_der = OPENSSL_malloc(len + 1))) {
86 X509err(X509_F_NETSCAPE_SPKI_B64_DECODE, ERR_R_MALLOC_FAILURE);
87 return NULL;
88 }
89 spki_len = EVP_DecodeBlock(spki_der, (const unsigned char *)str, len);
90 if(spki_len < 0) {
91 X509err(X509_F_NETSCAPE_SPKI_B64_DECODE,
92 X509_R_BASE64_DECODE_ERROR);
93 OPENSSL_free(spki_der);
94 return NULL;
95 }
96 p = spki_der;
97 spki = d2i_NETSCAPE_SPKI(NULL, &p, spki_len);
98 OPENSSL_free(spki_der);
99 return spki;
100 }

102 /* Generate a base64 encoded string from an SPKI */

104 char * NETSCAPE_SPKI_b64_encode(NETSCAPE_SPKI *spki)
105 {
106 unsigned char *der_spki, *p;
107 char *b64_str;
108 int der_len;
109 der_len = i2d_NETSCAPE_SPKI(spki, NULL);
110 der_spki = OPENSSL_malloc(der_len);
111 b64_str = OPENSSL_malloc(der_len * 2);
112 if(!der_spki || !b64_str) {
113 X509err(X509_F_NETSCAPE_SPKI_B64_ENCODE, ERR_R_MALLOC_FAILURE);
114 return NULL;
115 }
116 p = der_spki;
117 i2d_NETSCAPE_SPKI(spki, &p);
118 EVP_EncodeBlock((unsigned char *)b64_str, der_spki, der_len);
119 OPENSSL_free(der_spki);
120 return b64_str;
121 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x509type.c 1

**
 4479 Fri May 30 18:32:14 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x509type.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x509type.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/evp.h>

new/usr/src/lib/openssl/libsunw_crypto/x509/x509type.c 2

62 #include <openssl/objects.h>
63 #include <openssl/x509.h>

65 int X509_certificate_type(X509 *x, EVP_PKEY *pkey)
66 {
67 EVP_PKEY *pk;
68 int ret=0,i;

70 if (x == NULL) return(0);

72 if (pkey == NULL)
73 pk=X509_get_pubkey(x);
74 else
75 pk=pkey;

77 if (pk == NULL) return(0);

79 switch (pk->type)
80 {
81 case EVP_PKEY_RSA:
82 ret=EVP_PK_RSA|EVP_PKT_SIGN;
83 /* if (!sign only extension) */
84 ret|=EVP_PKT_ENC;
85 break;
86 case EVP_PKEY_DSA:
87 ret=EVP_PK_DSA|EVP_PKT_SIGN;
88 break;
89 case EVP_PKEY_EC:
90 ret=EVP_PK_EC|EVP_PKT_SIGN|EVP_PKT_EXCH;
91 break;
92 case EVP_PKEY_DH:
93 ret=EVP_PK_DH|EVP_PKT_EXCH;
94 break;
95 case NID_id_GostR3410_94:
96 case NID_id_GostR3410_2001:
97 ret=EVP_PKT_EXCH|EVP_PKT_SIGN;
98 break;
99 default:
100 break;
101 }

103 i=OBJ_obj2nid(x->sig_alg->algorithm);
104 if (i && OBJ_find_sigid_algs(i, NULL, &i))
105 {

107 switch (i)
108 {
109 case NID_rsaEncryption:
110 case NID_rsa:
111 ret|=EVP_PKS_RSA;
112 break;
113 case NID_dsa:
114 case NID_dsa_2:
115 ret|=EVP_PKS_DSA;
116 break;
117 case NID_X9_62_id_ecPublicKey:
118 ret|=EVP_PKS_EC;
119 break;
120 default:
121 break;
122 }
123 }

125 if (EVP_PKEY_size(pk) <= 1024/8)/* /8 because it’s 1024 bits we look
126 for, not bytes */
127 ret|=EVP_PKT_EXP;

new/usr/src/lib/openssl/libsunw_crypto/x509/x509type.c 3

128 if(pkey==NULL) EVP_PKEY_free(pk);
129 return(ret);
130 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x_all.c 1

**
 14640 Fri May 30 18:32:14 2014
new/usr/src/lib/openssl/libsunw_crypto/x509/x_all.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509/x_all.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/stack.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509/x_all.c 2

62 #include <openssl/buffer.h>
63 #include <openssl/asn1.h>
64 #include <openssl/evp.h>
65 #include <openssl/x509.h>
66 #ifndef OPENSSL_NO_RSA
67 #include <openssl/rsa.h>
68 #endif
69 #ifndef OPENSSL_NO_DSA
70 #include <openssl/dsa.h>
71 #endif

73 int X509_verify(X509 *a, EVP_PKEY *r)
74 {
75 return(ASN1_item_verify(ASN1_ITEM_rptr(X509_CINF),a->sig_alg,
76 a->signature,a->cert_info,r));
77 }

79 int X509_REQ_verify(X509_REQ *a, EVP_PKEY *r)
80 {
81 return(ASN1_item_verify(ASN1_ITEM_rptr(X509_REQ_INFO),
82 a->sig_alg,a->signature,a->req_info,r));
83 }

85 int NETSCAPE_SPKI_verify(NETSCAPE_SPKI *a, EVP_PKEY *r)
86 {
87 return(ASN1_item_verify(ASN1_ITEM_rptr(NETSCAPE_SPKAC),
88 a->sig_algor,a->signature,a->spkac,r));
89 }

91 int X509_sign(X509 *x, EVP_PKEY *pkey, const EVP_MD *md)
92 {
93 x->cert_info->enc.modified = 1;
94 return(ASN1_item_sign(ASN1_ITEM_rptr(X509_CINF), x->cert_info->signature
95 x->sig_alg, x->signature, x->cert_info,pkey,md));
96 }

98 int X509_sign_ctx(X509 *x, EVP_MD_CTX *ctx)
99 {
100 x->cert_info->enc.modified = 1;
101 return ASN1_item_sign_ctx(ASN1_ITEM_rptr(X509_CINF),
102 x->cert_info->signature,
103 x->sig_alg, x->signature, x->cert_info, ctx);
104 }

106 int X509_REQ_sign(X509_REQ *x, EVP_PKEY *pkey, const EVP_MD *md)
107 {
108 return(ASN1_item_sign(ASN1_ITEM_rptr(X509_REQ_INFO),x->sig_alg, NULL,
109 x->signature, x->req_info,pkey,md));
110 }

112 int X509_REQ_sign_ctx(X509_REQ *x, EVP_MD_CTX *ctx)
113 {
114 return ASN1_item_sign_ctx(ASN1_ITEM_rptr(X509_REQ_INFO),
115 x->sig_alg, NULL, x->signature, x->req_info, ctx);
116 }

118 int X509_CRL_sign(X509_CRL *x, EVP_PKEY *pkey, const EVP_MD *md)
119 {
120 x->crl->enc.modified = 1;
121 return(ASN1_item_sign(ASN1_ITEM_rptr(X509_CRL_INFO),x->crl->sig_alg,
122 x->sig_alg, x->signature, x->crl,pkey,md));
123 }

125 int X509_CRL_sign_ctx(X509_CRL *x, EVP_MD_CTX *ctx)
126 {
127 x->crl->enc.modified = 1;

new/usr/src/lib/openssl/libsunw_crypto/x509/x_all.c 3

128 return ASN1_item_sign_ctx(ASN1_ITEM_rptr(X509_CRL_INFO),
129 x->crl->sig_alg, x->sig_alg, x->signature, x->crl, ctx);
130 }

132 int NETSCAPE_SPKI_sign(NETSCAPE_SPKI *x, EVP_PKEY *pkey, const EVP_MD *md)
133 {
134 return(ASN1_item_sign(ASN1_ITEM_rptr(NETSCAPE_SPKAC), x->sig_algor,NULL,
135 x->signature, x->spkac,pkey,md));
136 }

138 #ifndef OPENSSL_NO_FP_API
139 X509 *d2i_X509_fp(FILE *fp, X509 **x509)
140 {
141 return ASN1_item_d2i_fp(ASN1_ITEM_rptr(X509), fp, x509);
142 }

144 int i2d_X509_fp(FILE *fp, X509 *x509)
145 {
146 return ASN1_item_i2d_fp(ASN1_ITEM_rptr(X509), fp, x509);
147 }
148 #endif

150 X509 *d2i_X509_bio(BIO *bp, X509 **x509)
151 {
152 return ASN1_item_d2i_bio(ASN1_ITEM_rptr(X509), bp, x509);
153 }

155 int i2d_X509_bio(BIO *bp, X509 *x509)
156 {
157 return ASN1_item_i2d_bio(ASN1_ITEM_rptr(X509), bp, x509);
158 }

160 #ifndef OPENSSL_NO_FP_API
161 X509_CRL *d2i_X509_CRL_fp(FILE *fp, X509_CRL **crl)
162 {
163 return ASN1_item_d2i_fp(ASN1_ITEM_rptr(X509_CRL), fp, crl);
164 }

166 int i2d_X509_CRL_fp(FILE *fp, X509_CRL *crl)
167 {
168 return ASN1_item_i2d_fp(ASN1_ITEM_rptr(X509_CRL), fp, crl);
169 }
170 #endif

172 X509_CRL *d2i_X509_CRL_bio(BIO *bp, X509_CRL **crl)
173 {
174 return ASN1_item_d2i_bio(ASN1_ITEM_rptr(X509_CRL), bp, crl);
175 }

177 int i2d_X509_CRL_bio(BIO *bp, X509_CRL *crl)
178 {
179 return ASN1_item_i2d_bio(ASN1_ITEM_rptr(X509_CRL), bp, crl);
180 }

182 #ifndef OPENSSL_NO_FP_API
183 PKCS7 *d2i_PKCS7_fp(FILE *fp, PKCS7 **p7)
184 {
185 return ASN1_item_d2i_fp(ASN1_ITEM_rptr(PKCS7), fp, p7);
186 }

188 int i2d_PKCS7_fp(FILE *fp, PKCS7 *p7)
189 {
190 return ASN1_item_i2d_fp(ASN1_ITEM_rptr(PKCS7), fp, p7);
191 }
192 #endif

new/usr/src/lib/openssl/libsunw_crypto/x509/x_all.c 4

194 PKCS7 *d2i_PKCS7_bio(BIO *bp, PKCS7 **p7)
195 {
196 return ASN1_item_d2i_bio(ASN1_ITEM_rptr(PKCS7), bp, p7);
197 }

199 int i2d_PKCS7_bio(BIO *bp, PKCS7 *p7)
200 {
201 return ASN1_item_i2d_bio(ASN1_ITEM_rptr(PKCS7), bp, p7);
202 }

204 #ifndef OPENSSL_NO_FP_API
205 X509_REQ *d2i_X509_REQ_fp(FILE *fp, X509_REQ **req)
206 {
207 return ASN1_item_d2i_fp(ASN1_ITEM_rptr(X509_REQ), fp, req);
208 }

210 int i2d_X509_REQ_fp(FILE *fp, X509_REQ *req)
211 {
212 return ASN1_item_i2d_fp(ASN1_ITEM_rptr(X509_REQ), fp, req);
213 }
214 #endif

216 X509_REQ *d2i_X509_REQ_bio(BIO *bp, X509_REQ **req)
217 {
218 return ASN1_item_d2i_bio(ASN1_ITEM_rptr(X509_REQ), bp, req);
219 }

221 int i2d_X509_REQ_bio(BIO *bp, X509_REQ *req)
222 {
223 return ASN1_item_i2d_bio(ASN1_ITEM_rptr(X509_REQ), bp, req);
224 }

226 #ifndef OPENSSL_NO_RSA

228 #ifndef OPENSSL_NO_FP_API
229 RSA *d2i_RSAPrivateKey_fp(FILE *fp, RSA **rsa)
230 {
231 return ASN1_item_d2i_fp(ASN1_ITEM_rptr(RSAPrivateKey), fp, rsa);
232 }

234 int i2d_RSAPrivateKey_fp(FILE *fp, RSA *rsa)
235 {
236 return ASN1_item_i2d_fp(ASN1_ITEM_rptr(RSAPrivateKey), fp, rsa);
237 }

239 RSA *d2i_RSAPublicKey_fp(FILE *fp, RSA **rsa)
240 {
241 return ASN1_item_d2i_fp(ASN1_ITEM_rptr(RSAPublicKey), fp, rsa);
242 }

245 RSA *d2i_RSA_PUBKEY_fp(FILE *fp, RSA **rsa)
246 {
247 return ASN1_d2i_fp((void *(*)(void))
248 RSA_new,(D2I_OF(void))d2i_RSA_PUBKEY, fp,
249 (void **)rsa);
250 }

252 int i2d_RSAPublicKey_fp(FILE *fp, RSA *rsa)
253 {
254 return ASN1_item_i2d_fp(ASN1_ITEM_rptr(RSAPublicKey), fp, rsa);
255 }

257 int i2d_RSA_PUBKEY_fp(FILE *fp, RSA *rsa)
258 {
259 return ASN1_i2d_fp((I2D_OF(void))i2d_RSA_PUBKEY,fp,rsa);

new/usr/src/lib/openssl/libsunw_crypto/x509/x_all.c 5

260 }
261 #endif

263 RSA *d2i_RSAPrivateKey_bio(BIO *bp, RSA **rsa)
264 {
265 return ASN1_item_d2i_bio(ASN1_ITEM_rptr(RSAPrivateKey), bp, rsa);
266 }

268 int i2d_RSAPrivateKey_bio(BIO *bp, RSA *rsa)
269 {
270 return ASN1_item_i2d_bio(ASN1_ITEM_rptr(RSAPrivateKey), bp, rsa);
271 }

273 RSA *d2i_RSAPublicKey_bio(BIO *bp, RSA **rsa)
274 {
275 return ASN1_item_d2i_bio(ASN1_ITEM_rptr(RSAPublicKey), bp, rsa);
276 }

279 RSA *d2i_RSA_PUBKEY_bio(BIO *bp, RSA **rsa)
280 {
281 return ASN1_d2i_bio_of(RSA,RSA_new,d2i_RSA_PUBKEY,bp,rsa);
282 }

284 int i2d_RSAPublicKey_bio(BIO *bp, RSA *rsa)
285 {
286 return ASN1_item_i2d_bio(ASN1_ITEM_rptr(RSAPublicKey), bp, rsa);
287 }

289 int i2d_RSA_PUBKEY_bio(BIO *bp, RSA *rsa)
290 {
291 return ASN1_i2d_bio_of(RSA,i2d_RSA_PUBKEY,bp,rsa);
292 }
293 #endif

295 #ifndef OPENSSL_NO_DSA
296 #ifndef OPENSSL_NO_FP_API
297 DSA *d2i_DSAPrivateKey_fp(FILE *fp, DSA **dsa)
298 {
299 return ASN1_d2i_fp_of(DSA,DSA_new,d2i_DSAPrivateKey,fp,dsa);
300 }

302 int i2d_DSAPrivateKey_fp(FILE *fp, DSA *dsa)
303 {
304 return ASN1_i2d_fp_of_const(DSA,i2d_DSAPrivateKey,fp,dsa);
305 }

307 DSA *d2i_DSA_PUBKEY_fp(FILE *fp, DSA **dsa)
308 {
309 return ASN1_d2i_fp_of(DSA,DSA_new,d2i_DSA_PUBKEY,fp,dsa);
310 }

312 int i2d_DSA_PUBKEY_fp(FILE *fp, DSA *dsa)
313 {
314 return ASN1_i2d_fp_of(DSA,i2d_DSA_PUBKEY,fp,dsa);
315 }
316 #endif

318 DSA *d2i_DSAPrivateKey_bio(BIO *bp, DSA **dsa)
319 {
320 return ASN1_d2i_bio_of(DSA,DSA_new,d2i_DSAPrivateKey,bp,dsa
321);
322 }

324 int i2d_DSAPrivateKey_bio(BIO *bp, DSA *dsa)
325 {

new/usr/src/lib/openssl/libsunw_crypto/x509/x_all.c 6

326 return ASN1_i2d_bio_of_const(DSA,i2d_DSAPrivateKey,bp,dsa);
327 }

329 DSA *d2i_DSA_PUBKEY_bio(BIO *bp, DSA **dsa)
330 {
331 return ASN1_d2i_bio_of(DSA,DSA_new,d2i_DSA_PUBKEY,bp,dsa);
332 }

334 int i2d_DSA_PUBKEY_bio(BIO *bp, DSA *dsa)
335 {
336 return ASN1_i2d_bio_of(DSA,i2d_DSA_PUBKEY,bp,dsa);
337 }

339 #endif

341 #ifndef OPENSSL_NO_EC
342 #ifndef OPENSSL_NO_FP_API
343 EC_KEY *d2i_EC_PUBKEY_fp(FILE *fp, EC_KEY **eckey)
344 {
345 return ASN1_d2i_fp_of(EC_KEY,EC_KEY_new,d2i_EC_PUBKEY,fp,eckey);
346 }
347
348 int i2d_EC_PUBKEY_fp(FILE *fp, EC_KEY *eckey)
349 {
350 return ASN1_i2d_fp_of(EC_KEY,i2d_EC_PUBKEY,fp,eckey);
351 }

353 EC_KEY *d2i_ECPrivateKey_fp(FILE *fp, EC_KEY **eckey)
354 {
355 return ASN1_d2i_fp_of(EC_KEY,EC_KEY_new,d2i_ECPrivateKey,fp,eckey);
356 }
357
358 int i2d_ECPrivateKey_fp(FILE *fp, EC_KEY *eckey)
359 {
360 return ASN1_i2d_fp_of(EC_KEY,i2d_ECPrivateKey,fp,eckey);
361 }
362 #endif
363 EC_KEY *d2i_EC_PUBKEY_bio(BIO *bp, EC_KEY **eckey)
364 {
365 return ASN1_d2i_bio_of(EC_KEY,EC_KEY_new,d2i_EC_PUBKEY,bp,eckey);
366 }
367
368 int i2d_EC_PUBKEY_bio(BIO *bp, EC_KEY *ecdsa)
369 {
370 return ASN1_i2d_bio_of(EC_KEY,i2d_EC_PUBKEY,bp,ecdsa);
371 }

373 EC_KEY *d2i_ECPrivateKey_bio(BIO *bp, EC_KEY **eckey)
374 {
375 return ASN1_d2i_bio_of(EC_KEY,EC_KEY_new,d2i_ECPrivateKey,bp,eckey);
376 }
377
378 int i2d_ECPrivateKey_bio(BIO *bp, EC_KEY *eckey)
379 {
380 return ASN1_i2d_bio_of(EC_KEY,i2d_ECPrivateKey,bp,eckey);
381 }
382 #endif

385 int X509_pubkey_digest(const X509 *data, const EVP_MD *type, unsigned char *md,
386 unsigned int *len)
387 {
388 ASN1_BIT_STRING *key;
389 key = X509_get0_pubkey_bitstr(data);
390 if(!key) return 0;
391 return EVP_Digest(key->data, key->length, md, len, type, NULL);

new/usr/src/lib/openssl/libsunw_crypto/x509/x_all.c 7

392 }

394 int X509_digest(const X509 *data, const EVP_MD *type, unsigned char *md,
395 unsigned int *len)
396 {
397 return(ASN1_item_digest(ASN1_ITEM_rptr(X509),type,(char *)data,md,len));
398 }

400 int X509_CRL_digest(const X509_CRL *data, const EVP_MD *type, unsigned char *md,
401 unsigned int *len)
402 {
403 return(ASN1_item_digest(ASN1_ITEM_rptr(X509_CRL),type,(char *)data,md,le
404 }

406 int X509_REQ_digest(const X509_REQ *data, const EVP_MD *type, unsigned char *md,
407 unsigned int *len)
408 {
409 return(ASN1_item_digest(ASN1_ITEM_rptr(X509_REQ),type,(char *)data,md,le
410 }

412 int X509_NAME_digest(const X509_NAME *data, const EVP_MD *type, unsigned char *m
413 unsigned int *len)
414 {
415 return(ASN1_item_digest(ASN1_ITEM_rptr(X509_NAME),type,(char *)data,md,l
416 }

418 int PKCS7_ISSUER_AND_SERIAL_digest(PKCS7_ISSUER_AND_SERIAL *data, const EVP_MD *
419 unsigned char *md, unsigned int *len)
420 {
421 return(ASN1_item_digest(ASN1_ITEM_rptr(PKCS7_ISSUER_AND_SERIAL),type,
422 (char *)data,md,len));
423 }

426 #ifndef OPENSSL_NO_FP_API
427 X509_SIG *d2i_PKCS8_fp(FILE *fp, X509_SIG **p8)
428 {
429 return ASN1_d2i_fp_of(X509_SIG,X509_SIG_new,d2i_X509_SIG,fp,p8);
430 }

432 int i2d_PKCS8_fp(FILE *fp, X509_SIG *p8)
433 {
434 return ASN1_i2d_fp_of(X509_SIG,i2d_X509_SIG,fp,p8);
435 }
436 #endif

438 X509_SIG *d2i_PKCS8_bio(BIO *bp, X509_SIG **p8)
439 {
440 return ASN1_d2i_bio_of(X509_SIG,X509_SIG_new,d2i_X509_SIG,bp,p8);
441 }

443 int i2d_PKCS8_bio(BIO *bp, X509_SIG *p8)
444 {
445 return ASN1_i2d_bio_of(X509_SIG,i2d_X509_SIG,bp,p8);
446 }

448 #ifndef OPENSSL_NO_FP_API
449 PKCS8_PRIV_KEY_INFO *d2i_PKCS8_PRIV_KEY_INFO_fp(FILE *fp,
450 PKCS8_PRIV_KEY_INFO **p8inf)
451 {
452 return ASN1_d2i_fp_of(PKCS8_PRIV_KEY_INFO,PKCS8_PRIV_KEY_INFO_new,
453 d2i_PKCS8_PRIV_KEY_INFO,fp,p8inf);
454 }

456 int i2d_PKCS8_PRIV_KEY_INFO_fp(FILE *fp, PKCS8_PRIV_KEY_INFO *p8inf)
457 {

new/usr/src/lib/openssl/libsunw_crypto/x509/x_all.c 8

458 return ASN1_i2d_fp_of(PKCS8_PRIV_KEY_INFO,i2d_PKCS8_PRIV_KEY_INFO,fp,
459 p8inf);
460 }

462 int i2d_PKCS8PrivateKeyInfo_fp(FILE *fp, EVP_PKEY *key)
463 {
464 PKCS8_PRIV_KEY_INFO *p8inf;
465 int ret;
466 p8inf = EVP_PKEY2PKCS8(key);
467 if(!p8inf) return 0;
468 ret = i2d_PKCS8_PRIV_KEY_INFO_fp(fp, p8inf);
469 PKCS8_PRIV_KEY_INFO_free(p8inf);
470 return ret;
471 }

473 int i2d_PrivateKey_fp(FILE *fp, EVP_PKEY *pkey)
474 {
475 return ASN1_i2d_fp_of(EVP_PKEY,i2d_PrivateKey,fp,pkey);
476 }

478 EVP_PKEY *d2i_PrivateKey_fp(FILE *fp, EVP_PKEY **a)
479 {
480 return ASN1_d2i_fp_of(EVP_PKEY,EVP_PKEY_new,d2i_AutoPrivateKey,fp,a);
481 }

483 int i2d_PUBKEY_fp(FILE *fp, EVP_PKEY *pkey)
484 {
485 return ASN1_i2d_fp_of(EVP_PKEY,i2d_PUBKEY,fp,pkey);
486 }

488 EVP_PKEY *d2i_PUBKEY_fp(FILE *fp, EVP_PKEY **a)
489 {
490 return ASN1_d2i_fp_of(EVP_PKEY,EVP_PKEY_new,d2i_PUBKEY,fp,a);
491 }

493 #endif

495 PKCS8_PRIV_KEY_INFO *d2i_PKCS8_PRIV_KEY_INFO_bio(BIO *bp,
496 PKCS8_PRIV_KEY_INFO **p8inf)
497 {
498 return ASN1_d2i_bio_of(PKCS8_PRIV_KEY_INFO,PKCS8_PRIV_KEY_INFO_new,
499 d2i_PKCS8_PRIV_KEY_INFO,bp,p8inf);
500 }

502 int i2d_PKCS8_PRIV_KEY_INFO_bio(BIO *bp, PKCS8_PRIV_KEY_INFO *p8inf)
503 {
504 return ASN1_i2d_bio_of(PKCS8_PRIV_KEY_INFO,i2d_PKCS8_PRIV_KEY_INFO,bp,
505 p8inf);
506 }

508 int i2d_PKCS8PrivateKeyInfo_bio(BIO *bp, EVP_PKEY *key)
509 {
510 PKCS8_PRIV_KEY_INFO *p8inf;
511 int ret;
512 p8inf = EVP_PKEY2PKCS8(key);
513 if(!p8inf) return 0;
514 ret = i2d_PKCS8_PRIV_KEY_INFO_bio(bp, p8inf);
515 PKCS8_PRIV_KEY_INFO_free(p8inf);
516 return ret;
517 }

519 int i2d_PrivateKey_bio(BIO *bp, EVP_PKEY *pkey)
520 {
521 return ASN1_i2d_bio_of(EVP_PKEY,i2d_PrivateKey,bp,pkey);
522 }

new/usr/src/lib/openssl/libsunw_crypto/x509/x_all.c 9

524 EVP_PKEY *d2i_PrivateKey_bio(BIO *bp, EVP_PKEY **a)
525 {
526 return ASN1_d2i_bio_of(EVP_PKEY,EVP_PKEY_new,d2i_AutoPrivateKey,bp,a);
527 }

529 int i2d_PUBKEY_bio(BIO *bp, EVP_PKEY *pkey)
530 {
531 return ASN1_i2d_bio_of(EVP_PKEY,i2d_PUBKEY,bp,pkey);
532 }

534 EVP_PKEY *d2i_PUBKEY_bio(BIO *bp, EVP_PKEY **a)
535 {
536 return ASN1_d2i_bio_of(EVP_PKEY,EVP_PKEY_new,d2i_PUBKEY,bp,a);
537 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_cache.c 1

**
 7726 Fri May 30 18:32:14 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_cache.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pcy_cache.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2004.
4 */
5 /* ==
6 * Copyright (c) 2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include "cryptlib.h"
60 #include <openssl/x509.h>
61 #include <openssl/x509v3.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_cache.c 2

63 #include "pcy_int.h"

65 static int policy_data_cmp(const X509_POLICY_DATA * const *a,
66 const X509_POLICY_DATA * const *b);
67 static int policy_cache_set_int(long *out, ASN1_INTEGER *value);

69 /* Set cache entry according to CertificatePolicies extension.
70 * Note: this destroys the passed CERTIFICATEPOLICIES structure.
71 */

73 static int policy_cache_create(X509 *x,
74 CERTIFICATEPOLICIES *policies, int crit)
75 {
76 int i;
77 int ret = 0;
78 X509_POLICY_CACHE *cache = x->policy_cache;
79 X509_POLICY_DATA *data = NULL;
80 POLICYINFO *policy;
81 if (sk_POLICYINFO_num(policies) == 0)
82 goto bad_policy;
83 cache->data = sk_X509_POLICY_DATA_new(policy_data_cmp);
84 if (!cache->data)
85 goto bad_policy;
86 for (i = 0; i < sk_POLICYINFO_num(policies); i++)
87 {
88 policy = sk_POLICYINFO_value(policies, i);
89 data = policy_data_new(policy, NULL, crit);
90 if (!data)
91 goto bad_policy;
92 /* Duplicate policy OIDs are illegal: reject if matches
93 * found.
94 */
95 if (OBJ_obj2nid(data->valid_policy) == NID_any_policy)
96 {
97 if (cache->anyPolicy)
98 {
99 ret = -1;
100 goto bad_policy;
101 }
102 cache->anyPolicy = data;
103 }
104 else if (sk_X509_POLICY_DATA_find(cache->data, data) != -1)
105 {
106 ret = -1;
107 goto bad_policy;
108 }
109 else if (!sk_X509_POLICY_DATA_push(cache->data, data))
110 goto bad_policy;
111 data = NULL;
112 }
113 ret = 1;
114 bad_policy:
115 if (ret == -1)
116 x->ex_flags |= EXFLAG_INVALID_POLICY;
117 if (data)
118 policy_data_free(data);
119 sk_POLICYINFO_pop_free(policies, POLICYINFO_free);
120 if (ret <= 0)
121 {
122 sk_X509_POLICY_DATA_pop_free(cache->data, policy_data_free);
123 cache->data = NULL;
124 }
125 return ret;
126 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_cache.c 3

128
129 static int policy_cache_new(X509 *x)
130 {
131 X509_POLICY_CACHE *cache;
132 ASN1_INTEGER *ext_any = NULL;
133 POLICY_CONSTRAINTS *ext_pcons = NULL;
134 CERTIFICATEPOLICIES *ext_cpols = NULL;
135 POLICY_MAPPINGS *ext_pmaps = NULL;
136 int i;
137 cache = OPENSSL_malloc(sizeof(X509_POLICY_CACHE));
138 if (!cache)
139 return 0;
140 cache->anyPolicy = NULL;
141 cache->data = NULL;
142 cache->any_skip = -1;
143 cache->explicit_skip = -1;
144 cache->map_skip = -1;

146 x->policy_cache = cache;

148 /* Handle requireExplicitPolicy *first*. Need to process this
149 * even if we don’t have any policies.
150 */
151 ext_pcons = X509_get_ext_d2i(x, NID_policy_constraints, &i, NULL);

153 if (!ext_pcons)
154 {
155 if (i != -1)
156 goto bad_cache;
157 }
158 else
159 {
160 if (!ext_pcons->requireExplicitPolicy
161 && !ext_pcons->inhibitPolicyMapping)
162 goto bad_cache;
163 if (!policy_cache_set_int(&cache->explicit_skip,
164 ext_pcons->requireExplicitPolicy))
165 goto bad_cache;
166 if (!policy_cache_set_int(&cache->map_skip,
167 ext_pcons->inhibitPolicyMapping))
168 goto bad_cache;
169 }

171 /* Process CertificatePolicies */

173 ext_cpols = X509_get_ext_d2i(x, NID_certificate_policies, &i, NULL);
174 /* If no CertificatePolicies extension or problem decoding then
175 * there is no point continuing because the valid policies will be
176 * NULL.
177 */
178 if (!ext_cpols)
179 {
180 /* If not absent some problem with extension */
181 if (i != -1)
182 goto bad_cache;
183 return 1;
184 }

186 i = policy_cache_create(x, ext_cpols, i);

188 /* NB: ext_cpols freed by policy_cache_set_policies */

190 if (i <= 0)
191 return i;

193 ext_pmaps = X509_get_ext_d2i(x, NID_policy_mappings, &i, NULL);

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_cache.c 4

195 if (!ext_pmaps)
196 {
197 /* If not absent some problem with extension */
198 if (i != -1)
199 goto bad_cache;
200 }
201 else
202 {
203 i = policy_cache_set_mapping(x, ext_pmaps);
204 if (i <= 0)
205 goto bad_cache;
206 }

208 ext_any = X509_get_ext_d2i(x, NID_inhibit_any_policy, &i, NULL);

210 if (!ext_any)
211 {
212 if (i != -1)
213 goto bad_cache;
214 }
215 else if (!policy_cache_set_int(&cache->any_skip, ext_any))
216 goto bad_cache;

218 if (0)
219 {
220 bad_cache:
221 x->ex_flags |= EXFLAG_INVALID_POLICY;
222 }

224 if(ext_pcons)
225 POLICY_CONSTRAINTS_free(ext_pcons);

227 if (ext_any)
228 ASN1_INTEGER_free(ext_any);

230 return 1;

232
233 }

235 void policy_cache_free(X509_POLICY_CACHE *cache)
236 {
237 if (!cache)
238 return;
239 if (cache->anyPolicy)
240 policy_data_free(cache->anyPolicy);
241 if (cache->data)
242 sk_X509_POLICY_DATA_pop_free(cache->data, policy_data_free);
243 OPENSSL_free(cache);
244 }

246 const X509_POLICY_CACHE *policy_cache_set(X509 *x)
247 {

249 if (x->policy_cache == NULL)
250 {
251 CRYPTO_w_lock(CRYPTO_LOCK_X509);
252 policy_cache_new(x);
253 CRYPTO_w_unlock(CRYPTO_LOCK_X509);
254 }

256 return x->policy_cache;

258 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_cache.c 5

260 X509_POLICY_DATA *policy_cache_find_data(const X509_POLICY_CACHE *cache,
261 const ASN1_OBJECT *id)
262 {
263 int idx;
264 X509_POLICY_DATA tmp;
265 tmp.valid_policy = (ASN1_OBJECT *)id;
266 idx = sk_X509_POLICY_DATA_find(cache->data, &tmp);
267 if (idx == -1)
268 return NULL;
269 return sk_X509_POLICY_DATA_value(cache->data, idx);
270 }

272 static int policy_data_cmp(const X509_POLICY_DATA * const *a,
273 const X509_POLICY_DATA * const *b)
274 {
275 return OBJ_cmp((*a)->valid_policy, (*b)->valid_policy);
276 }

278 static int policy_cache_set_int(long *out, ASN1_INTEGER *value)
279 {
280 if (value == NULL)
281 return 1;
282 if (value->type == V_ASN1_NEG_INTEGER)
283 return 0;
284 *out = ASN1_INTEGER_get(value);
285 return 1;
286 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_data.c 1

**
 4377 Fri May 30 18:32:14 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_data.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pcy_data.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2004.
4 */
5 /* ==
6 * Copyright (c) 2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include "cryptlib.h"
60 #include <openssl/x509.h>
61 #include <openssl/x509v3.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_data.c 2

63 #include "pcy_int.h"

65 /* Policy Node routines */

67 void policy_data_free(X509_POLICY_DATA *data)
68 {
69 ASN1_OBJECT_free(data->valid_policy);
70 /* Don’t free qualifiers if shared */
71 if (!(data->flags & POLICY_DATA_FLAG_SHARED_QUALIFIERS))
72 sk_POLICYQUALINFO_pop_free(data->qualifier_set,
73 POLICYQUALINFO_free);
74 sk_ASN1_OBJECT_pop_free(data->expected_policy_set, ASN1_OBJECT_free);
75 OPENSSL_free(data);
76 }

78 /* Create a data based on an existing policy. If ’id’ is NULL use the
79 * oid in the policy, otherwise use ’id’. This behaviour covers the two
80 * types of data in RFC3280: data with from a CertificatePolcies extension
81 * and additional data with just the qualifiers of anyPolicy and ID from
82 * another source.
83 */

85 X509_POLICY_DATA *policy_data_new(POLICYINFO *policy,
86 const ASN1_OBJECT *cid, int crit)
87 {
88 X509_POLICY_DATA *ret;
89 ASN1_OBJECT *id;
90 if (!policy && !cid)
91 return NULL;
92 if (cid)
93 {
94 id = OBJ_dup(cid);
95 if (!id)
96 return NULL;
97 }
98 else
99 id = NULL;
100 ret = OPENSSL_malloc(sizeof(X509_POLICY_DATA));
101 if (!ret)
102 return NULL;
103 ret->expected_policy_set = sk_ASN1_OBJECT_new_null();
104 if (!ret->expected_policy_set)
105 {
106 OPENSSL_free(ret);
107 if (id)
108 ASN1_OBJECT_free(id);
109 return NULL;
110 }

112 if (crit)
113 ret->flags = POLICY_DATA_FLAG_CRITICAL;
114 else
115 ret->flags = 0;

117 if (id)
118 ret->valid_policy = id;
119 else
120 {
121 ret->valid_policy = policy->policyid;
122 policy->policyid = NULL;
123 }

125 if (policy)
126 {
127 ret->qualifier_set = policy->qualifiers;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_data.c 3

128 policy->qualifiers = NULL;
129 }
130 else
131 ret->qualifier_set = NULL;

133 return ret;
134 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_lib.c 1

**
 4692 Fri May 30 18:32:14 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pcy_lib.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2004.
4 */
5 /* ==
6 * Copyright (c) 2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include "cryptlib.h"
61 #include <openssl/x509.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_lib.c 2

62 #include <openssl/x509v3.h>

64 #include "pcy_int.h"

66 /* accessor functions */

68 /* X509_POLICY_TREE stuff */

70 int X509_policy_tree_level_count(const X509_POLICY_TREE *tree)
71 {
72 if (!tree)
73 return 0;
74 return tree->nlevel;
75 }

77 X509_POLICY_LEVEL *
78 X509_policy_tree_get0_level(const X509_POLICY_TREE *tree, int i)
79 {
80 if (!tree || (i < 0) || (i >= tree->nlevel))
81 return NULL;
82 return tree->levels + i;
83 }

85 STACK_OF(X509_POLICY_NODE) *
86 X509_policy_tree_get0_policies(const X509_POLICY_TREE *tree)
87 {
88 if (!tree)
89 return NULL;
90 return tree->auth_policies;
91 }

93 STACK_OF(X509_POLICY_NODE) *
94 X509_policy_tree_get0_user_policies(const X509_POLICY_TREE *tree)
95 {
96 if (!tree)
97 return NULL;
98 if (tree->flags & POLICY_FLAG_ANY_POLICY)
99 return tree->auth_policies;
100 else
101 return tree->user_policies;
102 }

104 /* X509_POLICY_LEVEL stuff */

106 int X509_policy_level_node_count(X509_POLICY_LEVEL *level)
107 {
108 int n;
109 if (!level)
110 return 0;
111 if (level->anyPolicy)
112 n = 1;
113 else
114 n = 0;
115 if (level->nodes)
116 n += sk_X509_POLICY_NODE_num(level->nodes);
117 return n;
118 }

120 X509_POLICY_NODE *X509_policy_level_get0_node(X509_POLICY_LEVEL *level, int i)
121 {
122 if (!level)
123 return NULL;
124 if (level->anyPolicy)
125 {
126 if (i == 0)
127 return level->anyPolicy;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_lib.c 3

128 i--;
129 }
130 return sk_X509_POLICY_NODE_value(level->nodes, i);
131 }

133 /* X509_POLICY_NODE stuff */

135 const ASN1_OBJECT *X509_policy_node_get0_policy(const X509_POLICY_NODE *node)
136 {
137 if (!node)
138 return NULL;
139 return node->data->valid_policy;
140 }

142 #if 0
143 int X509_policy_node_get_critical(const X509_POLICY_NODE *node)
144 {
145 if (node_critical(node))
146 return 1;
147 return 0;
148 }
149 #endif

151 STACK_OF(POLICYQUALINFO) *
152 X509_policy_node_get0_qualifiers(const X509_POLICY_NODE *node)
153 {
154 if (!node)
155 return NULL;
156 return node->data->qualifier_set;
157 }

159 const X509_POLICY_NODE *
160 X509_policy_node_get0_parent(const X509_POLICY_NODE *node)
161 {
162 if (!node)
163 return NULL;
164 return node->parent;
165 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_map.c 1

**
 4597 Fri May 30 18:32:14 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_map.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pcy_map.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2004.
4 */
5 /* ==
6 * Copyright (c) 2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include "cryptlib.h"
60 #include <openssl/x509.h>
61 #include <openssl/x509v3.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_map.c 2

63 #include "pcy_int.h"

65 /* Set policy mapping entries in cache.
66 * Note: this modifies the passed POLICY_MAPPINGS structure
67 */

69 int policy_cache_set_mapping(X509 *x, POLICY_MAPPINGS *maps)
70 {
71 POLICY_MAPPING *map;
72 X509_POLICY_DATA *data;
73 X509_POLICY_CACHE *cache = x->policy_cache;
74 int i;
75 int ret = 0;
76 if (sk_POLICY_MAPPING_num(maps) == 0)
77 {
78 ret = -1;
79 goto bad_mapping;
80 }
81 for (i = 0; i < sk_POLICY_MAPPING_num(maps); i++)
82 {
83 map = sk_POLICY_MAPPING_value(maps, i);
84 /* Reject if map to or from anyPolicy */
85 if ((OBJ_obj2nid(map->subjectDomainPolicy) == NID_any_policy)
86 || (OBJ_obj2nid(map->issuerDomainPolicy) == NID_any_policy))
87 {
88 ret = -1;
89 goto bad_mapping;
90 }

92 /* Attempt to find matching policy data */
93 data = policy_cache_find_data(cache, map->issuerDomainPolicy);
94 /* If we don’t have anyPolicy can’t map */
95 if (!data && !cache->anyPolicy)
96 continue;

98 /* Create a NODE from anyPolicy */
99 if (!data)
100 {
101 data = policy_data_new(NULL, map->issuerDomainPolicy,
102 cache->anyPolicy->flags
103 & POLICY_DATA_FLAG_CRITICAL);
104 if (!data)
105 goto bad_mapping;
106 data->qualifier_set = cache->anyPolicy->qualifier_set;
107 /*map->issuerDomainPolicy = NULL;*/
108 data->flags |= POLICY_DATA_FLAG_MAPPED_ANY;
109 data->flags |= POLICY_DATA_FLAG_SHARED_QUALIFIERS;
110 if (!sk_X509_POLICY_DATA_push(cache->data, data))
111 {
112 policy_data_free(data);
113 goto bad_mapping;
114 }
115 }
116 else
117 data->flags |= POLICY_DATA_FLAG_MAPPED;
118 if (!sk_ASN1_OBJECT_push(data->expected_policy_set,
119 map->subjectDomainPolicy))
120 goto bad_mapping;
121 map->subjectDomainPolicy = NULL;

123 }

125 ret = 1;
126 bad_mapping:
127 if (ret == -1)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_map.c 3

128 x->ex_flags |= EXFLAG_INVALID_POLICY;
129 sk_POLICY_MAPPING_pop_free(maps, POLICY_MAPPING_free);
130 return ret;

132 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_node.c 1

**
 5624 Fri May 30 18:32:14 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_node.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pcy_node.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2004.
4 */
5 /* ==
6 * Copyright (c) 2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <openssl/asn1.h>
60 #include <openssl/x509.h>
61 #include <openssl/x509v3.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_node.c 2

63 #include "pcy_int.h"

65 static int node_cmp(const X509_POLICY_NODE * const *a,
66 const X509_POLICY_NODE * const *b)
67 {
68 return OBJ_cmp((*a)->data->valid_policy, (*b)->data->valid_policy);
69 }

71 STACK_OF(X509_POLICY_NODE) *policy_node_cmp_new(void)
72 {
73 return sk_X509_POLICY_NODE_new(node_cmp);
74 }

76 X509_POLICY_NODE *tree_find_sk(STACK_OF(X509_POLICY_NODE) *nodes,
77 const ASN1_OBJECT *id)
78 {
79 X509_POLICY_DATA n;
80 X509_POLICY_NODE l;
81 int idx;

83 n.valid_policy = (ASN1_OBJECT *)id;
84 l.data = &n;

86 idx = sk_X509_POLICY_NODE_find(nodes, &l);
87 if (idx == -1)
88 return NULL;

90 return sk_X509_POLICY_NODE_value(nodes, idx);

92 }

94 X509_POLICY_NODE *level_find_node(const X509_POLICY_LEVEL *level,
95 const X509_POLICY_NODE *parent,
96 const ASN1_OBJECT *id)
97 {
98 X509_POLICY_NODE *node;
99 int i;
100 for (i = 0; i < sk_X509_POLICY_NODE_num(level->nodes); i++)
101 {
102 node = sk_X509_POLICY_NODE_value(level->nodes, i);
103 if (node->parent == parent)
104 {
105 if (!OBJ_cmp(node->data->valid_policy, id))
106 return node;
107 }
108 }
109 return NULL;
110 }

112 X509_POLICY_NODE *level_add_node(X509_POLICY_LEVEL *level,
113 const X509_POLICY_DATA *data,
114 X509_POLICY_NODE *parent,
115 X509_POLICY_TREE *tree)
116 {
117 X509_POLICY_NODE *node;
118 node = OPENSSL_malloc(sizeof(X509_POLICY_NODE));
119 if (!node)
120 return NULL;
121 node->data = data;
122 node->parent = parent;
123 node->nchild = 0;
124 if (level)
125 {
126 if (OBJ_obj2nid(data->valid_policy) == NID_any_policy)
127 {

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_node.c 3

128 if (level->anyPolicy)
129 goto node_error;
130 level->anyPolicy = node;
131 }
132 else
133 {

135 if (!level->nodes)
136 level->nodes = policy_node_cmp_new();
137 if (!level->nodes)
138 goto node_error;
139 if (!sk_X509_POLICY_NODE_push(level->nodes, node))
140 goto node_error;
141 }
142 }

144 if (tree)
145 {
146 if (!tree->extra_data)
147 tree->extra_data = sk_X509_POLICY_DATA_new_null();
148 if (!tree->extra_data)
149 goto node_error;
150 if (!sk_X509_POLICY_DATA_push(tree->extra_data, data))
151 goto node_error;
152 }

154 if (parent)
155 parent->nchild++;

157 return node;

159 node_error:
160 policy_node_free(node);
161 return 0;

163 }

165 void policy_node_free(X509_POLICY_NODE *node)
166 {
167 OPENSSL_free(node);
168 }

170 /* See if a policy node matches a policy OID. If mapping enabled look through
171 * expected policy set otherwise just valid policy.
172 */

174 int policy_node_match(const X509_POLICY_LEVEL *lvl,
175 const X509_POLICY_NODE *node, const ASN1_OBJECT *oid)
176 {
177 int i;
178 ASN1_OBJECT *policy_oid;
179 const X509_POLICY_DATA *x = node->data;

181 if ((lvl->flags & X509_V_FLAG_INHIBIT_MAP)
182 || !(x->flags & POLICY_DATA_FLAG_MAP_MASK))
183 {
184 if (!OBJ_cmp(x->valid_policy, oid))
185 return 1;
186 return 0;
187 }

189 for (i = 0; i < sk_ASN1_OBJECT_num(x->expected_policy_set); i++)
190 {
191 policy_oid = sk_ASN1_OBJECT_value(x->expected_policy_set, i);
192 if (!OBJ_cmp(policy_oid, oid))
193 return 1;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_node.c 4

194 }
195 return 0;

197 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_tree.c 1

**
 21274 Fri May 30 18:32:14 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_tree.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* pcy_tree.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2004.
4 */
5 /* ==
6 * Copyright (c) 2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include "cryptlib.h"
60 #include <openssl/x509.h>
61 #include <openssl/x509v3.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_tree.c 2

63 #include "pcy_int.h"

65 /* Enable this to print out the complete policy tree at various point during
66 * evaluation.
67 */

69 /*#define OPENSSL_POLICY_DEBUG*/

71 #ifdef OPENSSL_POLICY_DEBUG

73 static void expected_print(BIO *err, X509_POLICY_LEVEL *lev,
74 X509_POLICY_NODE *node, int indent)
75 {
76 if ((lev->flags & X509_V_FLAG_INHIBIT_MAP)
77 || !(node->data->flags & POLICY_DATA_FLAG_MAP_MASK))
78 BIO_puts(err, " Not Mapped\n");
79 else
80 {
81 int i;
82 STACK_OF(ASN1_OBJECT) *pset = node->data->expected_policy_set;
83 ASN1_OBJECT *oid;
84 BIO_puts(err, " Expected: ");
85 for (i = 0; i < sk_ASN1_OBJECT_num(pset); i++)
86 {
87 oid = sk_ASN1_OBJECT_value(pset, i);
88 if (i)
89 BIO_puts(err, ", ");
90 i2a_ASN1_OBJECT(err, oid);
91 }
92 BIO_puts(err, "\n");
93 }
94 }

96 static void tree_print(char *str, X509_POLICY_TREE *tree,
97 X509_POLICY_LEVEL *curr)
98 {
99 X509_POLICY_LEVEL *plev;
100 X509_POLICY_NODE *node;
101 int i;
102 BIO *err;
103 err = BIO_new_fp(stderr, BIO_NOCLOSE);
104 if (!curr)
105 curr = tree->levels + tree->nlevel;
106 else
107 curr++;
108 BIO_printf(err, "Level print after %s\n", str);
109 BIO_printf(err, "Printing Up to Level %ld\n", curr - tree->levels);
110 for (plev = tree->levels; plev != curr; plev++)
111 {
112 BIO_printf(err, "Level %ld, flags = %x\n",
113 plev - tree->levels, plev->flags);
114 for (i = 0; i < sk_X509_POLICY_NODE_num(plev->nodes); i++)
115 {
116 node = sk_X509_POLICY_NODE_value(plev->nodes, i);
117 X509_POLICY_NODE_print(err, node, 2);
118 expected_print(err, plev, node, 2);
119 BIO_printf(err, " Flags: %x\n", node->data->flags);
120 }
121 if (plev->anyPolicy)
122 X509_POLICY_NODE_print(err, plev->anyPolicy, 2);
123 }

125 BIO_free(err);

127 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_tree.c 3

128 #else

130 #define tree_print(a,b,c) /* */

132 #endif

134 /* Initialize policy tree. Return values:
135 * 0 Some internal error occured.
136 * -1 Inconsistent or invalid extensions in certificates.
137 * 1 Tree initialized OK.
138 * 2 Policy tree is empty.
139 * 5 Tree OK and requireExplicitPolicy true.
140 * 6 Tree empty and requireExplicitPolicy true.
141 */

143 static int tree_init(X509_POLICY_TREE **ptree, STACK_OF(X509) *certs,
144 unsigned int flags)
145 {
146 X509_POLICY_TREE *tree;
147 X509_POLICY_LEVEL *level;
148 const X509_POLICY_CACHE *cache;
149 X509_POLICY_DATA *data = NULL;
150 X509 *x;
151 int ret = 1;
152 int i, n;
153 int explicit_policy;
154 int any_skip;
155 int map_skip;
156 *ptree = NULL;
157 n = sk_X509_num(certs);

159 #if 0
160 /* Disable policy mapping for now... */
161 flags |= X509_V_FLAG_INHIBIT_MAP;
162 #endif

164 if (flags & X509_V_FLAG_EXPLICIT_POLICY)
165 explicit_policy = 0;
166 else
167 explicit_policy = n + 1;

169 if (flags & X509_V_FLAG_INHIBIT_ANY)
170 any_skip = 0;
171 else
172 any_skip = n + 1;

174 if (flags & X509_V_FLAG_INHIBIT_MAP)
175 map_skip = 0;
176 else
177 map_skip = n + 1;

179 /* Can’t do anything with just a trust anchor */
180 if (n == 1)
181 return 1;
182 /* First setup policy cache in all certificates apart from the
183 * trust anchor. Note any bad cache results on the way. Also can
184 * calculate explicit_policy value at this point.
185 */
186 for (i = n - 2; i >= 0; i--)
187 {
188 x = sk_X509_value(certs, i);
189 X509_check_purpose(x, -1, -1);
190 cache = policy_cache_set(x);
191 /* If cache NULL something bad happened: return immediately */
192 if (cache == NULL)
193 return 0;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_tree.c 4

194 /* If inconsistent extensions keep a note of it but continue */
195 if (x->ex_flags & EXFLAG_INVALID_POLICY)
196 ret = -1;
197 /* Otherwise if we have no data (hence no CertificatePolicies)
198 * and haven’t already set an inconsistent code note it.
199 */
200 else if ((ret == 1) && !cache->data)
201 ret = 2;
202 if (explicit_policy > 0)
203 {
204 if (!(x->ex_flags & EXFLAG_SI))
205 explicit_policy--;
206 if ((cache->explicit_skip != -1)
207 && (cache->explicit_skip < explicit_policy))
208 explicit_policy = cache->explicit_skip;
209 }
210 }

212 if (ret != 1)
213 {
214 if (ret == 2 && !explicit_policy)
215 return 6;
216 return ret;
217 }

220 /* If we get this far initialize the tree */

222 tree = OPENSSL_malloc(sizeof(X509_POLICY_TREE));

224 if (!tree)
225 return 0;

227 tree->flags = 0;
228 tree->levels = OPENSSL_malloc(sizeof(X509_POLICY_LEVEL) * n);
229 tree->nlevel = 0;
230 tree->extra_data = NULL;
231 tree->auth_policies = NULL;
232 tree->user_policies = NULL;

234 if (!tree->levels)
235 {
236 OPENSSL_free(tree);
237 return 0;
238 }

240 memset(tree->levels, 0, n * sizeof(X509_POLICY_LEVEL));

242 tree->nlevel = n;

244 level = tree->levels;

246 /* Root data: initialize to anyPolicy */

248 data = policy_data_new(NULL, OBJ_nid2obj(NID_any_policy), 0);

250 if (!data || !level_add_node(level, data, NULL, tree))
251 goto bad_tree;

253 for (i = n - 2; i >= 0; i--)
254 {
255 level++;
256 x = sk_X509_value(certs, i);
257 cache = policy_cache_set(x);
258 CRYPTO_add(&x->references, 1, CRYPTO_LOCK_X509);
259 level->cert = x;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_tree.c 5

261 if (!cache->anyPolicy)
262 level->flags |= X509_V_FLAG_INHIBIT_ANY;

264 /* Determine inhibit any and inhibit map flags */
265 if (any_skip == 0)
266 {
267 /* Any matching allowed if certificate is self
268 * issued and not the last in the chain.
269 */
270 if (!(x->ex_flags & EXFLAG_SI) || (i == 0))
271 level->flags |= X509_V_FLAG_INHIBIT_ANY;
272 }
273 else
274 {
275 if (!(x->ex_flags & EXFLAG_SI))
276 any_skip--;
277 if ((cache->any_skip >= 0)
278 && (cache->any_skip < any_skip))
279 any_skip = cache->any_skip;
280 }

282 if (map_skip == 0)
283 level->flags |= X509_V_FLAG_INHIBIT_MAP;
284 else
285 {
286 if (!(x->ex_flags & EXFLAG_SI))
287 map_skip--;
288 if ((cache->map_skip >= 0)
289 && (cache->map_skip < map_skip))
290 map_skip = cache->map_skip;
291 }

293 }

295 *ptree = tree;

297 if (explicit_policy)
298 return 1;
299 else
300 return 5;

302 bad_tree:

304 X509_policy_tree_free(tree);

306 return 0;

308 }

310 static int tree_link_matching_nodes(X509_POLICY_LEVEL *curr,
311 const X509_POLICY_DATA *data)
312 {
313 X509_POLICY_LEVEL *last = curr - 1;
314 X509_POLICY_NODE *node;
315 int i, matched = 0;
316 /* Iterate through all in nodes linking matches */
317 for (i = 0; i < sk_X509_POLICY_NODE_num(last->nodes); i++)
318 {
319 node = sk_X509_POLICY_NODE_value(last->nodes, i);
320 if (policy_node_match(last, node, data->valid_policy))
321 {
322 if (!level_add_node(curr, data, node, NULL))
323 return 0;
324 matched = 1;
325 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_tree.c 6

326 }
327 if (!matched && last->anyPolicy)
328 {
329 if (!level_add_node(curr, data, last->anyPolicy, NULL))
330 return 0;
331 }
332 return 1;
333 }

335 /* This corresponds to RFC3280 6.1.3(d)(1):
336 * link any data from CertificatePolicies onto matching parent
337 * or anyPolicy if no match.
338 */

340 static int tree_link_nodes(X509_POLICY_LEVEL *curr,
341 const X509_POLICY_CACHE *cache)
342 {
343 int i;
344 X509_POLICY_DATA *data;

346 for (i = 0; i < sk_X509_POLICY_DATA_num(cache->data); i++)
347 {
348 data = sk_X509_POLICY_DATA_value(cache->data, i);
349 /* If a node is mapped any it doesn’t have a corresponding
350 * CertificatePolicies entry.
351 * However such an identical node would be created
352 * if anyPolicy matching is enabled because there would be
353 * no match with the parent valid_policy_set. So we create
354 * link because then it will have the mapping flags
355 * right and we can prune it later.
356 */
357 #if 0
358 if ((data->flags & POLICY_DATA_FLAG_MAPPED_ANY)
359 && !(curr->flags & X509_V_FLAG_INHIBIT_ANY))
360 continue;
361 #endif
362 /* Look for matching nodes in previous level */
363 if (!tree_link_matching_nodes(curr, data))
364 return 0;
365 }
366 return 1;
367 }

369 /* This corresponds to RFC3280 6.1.3(d)(2):
370 * Create new data for any unmatched policies in the parent and link
371 * to anyPolicy.
372 */

374 static int tree_add_unmatched(X509_POLICY_LEVEL *curr,
375 const X509_POLICY_CACHE *cache,
376 const ASN1_OBJECT *id,
377 X509_POLICY_NODE *node,
378 X509_POLICY_TREE *tree)
379 {
380 X509_POLICY_DATA *data;
381 if (id == NULL)
382 id = node->data->valid_policy;
383 /* Create a new node with qualifiers from anyPolicy and
384 * id from unmatched node.
385 */
386 data = policy_data_new(NULL, id, node_critical(node));

388 if (data == NULL)
389 return 0;
390 /* Curr may not have anyPolicy */
391 data->qualifier_set = cache->anyPolicy->qualifier_set;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_tree.c 7

392 data->flags |= POLICY_DATA_FLAG_SHARED_QUALIFIERS;
393 if (!level_add_node(curr, data, node, tree))
394 {
395 policy_data_free(data);
396 return 0;
397 }

399 return 1;
400 }

402 static int tree_link_unmatched(X509_POLICY_LEVEL *curr,
403 const X509_POLICY_CACHE *cache,
404 X509_POLICY_NODE *node,
405 X509_POLICY_TREE *tree)
406 {
407 const X509_POLICY_LEVEL *last = curr - 1;
408 int i;

410 if ((last->flags & X509_V_FLAG_INHIBIT_MAP)
411 || !(node->data->flags & POLICY_DATA_FLAG_MAPPED))
412 {
413 /* If no policy mapping: matched if one child present */
414 if (node->nchild)
415 return 1;
416 if (!tree_add_unmatched(curr, cache, NULL, node, tree))
417 return 0;
418 /* Add it */
419 }
420 else
421 {
422 /* If mapping: matched if one child per expected policy set */
423 STACK_OF(ASN1_OBJECT) *expset = node->data->expected_policy_set;
424 if (node->nchild == sk_ASN1_OBJECT_num(expset))
425 return 1;
426 /* Locate unmatched nodes */
427 for (i = 0; i < sk_ASN1_OBJECT_num(expset); i++)
428 {
429 ASN1_OBJECT *oid = sk_ASN1_OBJECT_value(expset, i);
430 if (level_find_node(curr, node, oid))
431 continue;
432 if (!tree_add_unmatched(curr, cache, oid, node, tree))
433 return 0;
434 }

436 }

438 return 1;

440 }

442 static int tree_link_any(X509_POLICY_LEVEL *curr,
443 const X509_POLICY_CACHE *cache,
444 X509_POLICY_TREE *tree)
445 {
446 int i;
447 /*X509_POLICY_DATA *data;*/
448 X509_POLICY_NODE *node;
449 X509_POLICY_LEVEL *last = curr - 1;

451 for (i = 0; i < sk_X509_POLICY_NODE_num(last->nodes); i++)
452 {
453 node = sk_X509_POLICY_NODE_value(last->nodes, i);

455 if (!tree_link_unmatched(curr, cache, node, tree))
456 return 0;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_tree.c 8

458 #if 0

460 /* Skip any node with any children: we only want unmathced
461 * nodes.
462 *
463 * Note: need something better for policy mapping
464 * because each node may have multiple children
465 */
466 if (node->nchild)
467 continue;

469 /* Create a new node with qualifiers from anyPolicy and
470 * id from unmatched node.
471 */
472 data = policy_data_new(NULL, node->data->valid_policy,
473 node_critical(node));

475 if (data == NULL)
476 return 0;
477 /* Curr may not have anyPolicy */
478 data->qualifier_set = cache->anyPolicy->qualifier_set;
479 data->flags |= POLICY_DATA_FLAG_SHARED_QUALIFIERS;
480 if (!level_add_node(curr, data, node, tree))
481 {
482 policy_data_free(data);
483 return 0;
484 }

486 #endif

488 }
489 /* Finally add link to anyPolicy */
490 if (last->anyPolicy)
491 {
492 if (!level_add_node(curr, cache->anyPolicy,
493 last->anyPolicy, NULL))
494 return 0;
495 }
496 return 1;
497 }

499 /* Prune the tree: delete any child mapped child data on the current level
500 * then proceed up the tree deleting any data with no children. If we ever
501 * have no data on a level we can halt because the tree will be empty.
502 */

504 static int tree_prune(X509_POLICY_TREE *tree, X509_POLICY_LEVEL *curr)
505 {
506 STACK_OF(X509_POLICY_NODE) *nodes;
507 X509_POLICY_NODE *node;
508 int i;
509 nodes = curr->nodes;
510 if (curr->flags & X509_V_FLAG_INHIBIT_MAP)
511 {
512 for (i = sk_X509_POLICY_NODE_num(nodes) - 1; i >= 0; i--)
513 {
514 node = sk_X509_POLICY_NODE_value(nodes, i);
515 /* Delete any mapped data: see RFC3280 XXXX */
516 if (node->data->flags & POLICY_DATA_FLAG_MAP_MASK)
517 {
518 node->parent->nchild--;
519 OPENSSL_free(node);
520 (void)sk_X509_POLICY_NODE_delete(nodes,i);
521 }
522 }
523 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_tree.c 9

525 for(;;) {
526 --curr;
527 nodes = curr->nodes;
528 for (i = sk_X509_POLICY_NODE_num(nodes) - 1; i >= 0; i--)
529 {
530 node = sk_X509_POLICY_NODE_value(nodes, i);
531 if (node->nchild == 0)
532 {
533 node->parent->nchild--;
534 OPENSSL_free(node);
535 (void)sk_X509_POLICY_NODE_delete(nodes, i);
536 }
537 }
538 if (curr->anyPolicy && !curr->anyPolicy->nchild)
539 {
540 if (curr->anyPolicy->parent)
541 curr->anyPolicy->parent->nchild--;
542 OPENSSL_free(curr->anyPolicy);
543 curr->anyPolicy = NULL;
544 }
545 if (curr == tree->levels)
546 {
547 /* If we zapped anyPolicy at top then tree is empty */
548 if (!curr->anyPolicy)
549 return 2;
550 return 1;
551 }
552 }

554 return 1;

556 }

558 static int tree_add_auth_node(STACK_OF(X509_POLICY_NODE) **pnodes,
559 X509_POLICY_NODE *pcy)
560 {
561 if (!*pnodes)
562 {
563 *pnodes = policy_node_cmp_new();
564 if (!*pnodes)
565 return 0;
566 }
567 else if (sk_X509_POLICY_NODE_find(*pnodes, pcy) != -1)
568 return 1;

570 if (!sk_X509_POLICY_NODE_push(*pnodes, pcy))
571 return 0;

573 return 1;

575 }

577 /* Calculate the authority set based on policy tree.
578 * The ’pnodes’ parameter is used as a store for the set of policy nodes
579 * used to calculate the user set. If the authority set is not anyPolicy
580 * then pnodes will just point to the authority set. If however the authority
581 * set is anyPolicy then the set of valid policies (other than anyPolicy)
582 * is store in pnodes. The return value of ’2’ is used in this case to indicate
583 * that pnodes should be freed.
584 */

586 static int tree_calculate_authority_set(X509_POLICY_TREE *tree,
587 STACK_OF(X509_POLICY_NODE) **pnodes)
588 {
589 X509_POLICY_LEVEL *curr;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_tree.c 10

590 X509_POLICY_NODE *node, *anyptr;
591 STACK_OF(X509_POLICY_NODE) **addnodes;
592 int i, j;
593 curr = tree->levels + tree->nlevel - 1;

595 /* If last level contains anyPolicy set is anyPolicy */
596 if (curr->anyPolicy)
597 {
598 if (!tree_add_auth_node(&tree->auth_policies, curr->anyPolicy))
599 return 0;
600 addnodes = pnodes;
601 }
602 else
603 /* Add policies to authority set */
604 addnodes = &tree->auth_policies;

606 curr = tree->levels;
607 for (i = 1; i < tree->nlevel; i++)
608 {
609 /* If no anyPolicy node on this this level it can’t
610 * appear on lower levels so end search.
611 */
612 if (!(anyptr = curr->anyPolicy))
613 break;
614 curr++;
615 for (j = 0; j < sk_X509_POLICY_NODE_num(curr->nodes); j++)
616 {
617 node = sk_X509_POLICY_NODE_value(curr->nodes, j);
618 if ((node->parent == anyptr)
619 && !tree_add_auth_node(addnodes, node))
620 return 0;
621 }
622 }

624 if (addnodes == pnodes)
625 return 2;

627 *pnodes = tree->auth_policies;

629 return 1;
630 }

632 static int tree_calculate_user_set(X509_POLICY_TREE *tree,
633 STACK_OF(ASN1_OBJECT) *policy_oids,
634 STACK_OF(X509_POLICY_NODE) *auth_nodes)
635 {
636 int i;
637 X509_POLICY_NODE *node;
638 ASN1_OBJECT *oid;

640 X509_POLICY_NODE *anyPolicy;
641 X509_POLICY_DATA *extra;

643 /* Check if anyPolicy present in authority constrained policy set:
644 * this will happen if it is a leaf node.
645 */

647 if (sk_ASN1_OBJECT_num(policy_oids) <= 0)
648 return 1;

650 anyPolicy = tree->levels[tree->nlevel - 1].anyPolicy;

652 for (i = 0; i < sk_ASN1_OBJECT_num(policy_oids); i++)
653 {
654 oid = sk_ASN1_OBJECT_value(policy_oids, i);
655 if (OBJ_obj2nid(oid) == NID_any_policy)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_tree.c 11

656 {
657 tree->flags |= POLICY_FLAG_ANY_POLICY;
658 return 1;
659 }
660 }

662 for (i = 0; i < sk_ASN1_OBJECT_num(policy_oids); i++)
663 {
664 oid = sk_ASN1_OBJECT_value(policy_oids, i);
665 node = tree_find_sk(auth_nodes, oid);
666 if (!node)
667 {
668 if (!anyPolicy)
669 continue;
670 /* Create a new node with policy ID from user set
671 * and qualifiers from anyPolicy.
672 */
673 extra = policy_data_new(NULL, oid,
674 node_critical(anyPolicy));
675 if (!extra)
676 return 0;
677 extra->qualifier_set = anyPolicy->data->qualifier_set;
678 extra->flags = POLICY_DATA_FLAG_SHARED_QUALIFIERS
679 | POLICY_DATA_FLAG_EXTRA_NODE;
680 node = level_add_node(NULL, extra, anyPolicy->parent,
681 tree);
682 }
683 if (!tree->user_policies)
684 {
685 tree->user_policies = sk_X509_POLICY_NODE_new_null();
686 if (!tree->user_policies)
687 return 1;
688 }
689 if (!sk_X509_POLICY_NODE_push(tree->user_policies, node))
690 return 0;
691 }
692 return 1;

694 }

696 static int tree_evaluate(X509_POLICY_TREE *tree)
697 {
698 int ret, i;
699 X509_POLICY_LEVEL *curr = tree->levels + 1;
700 const X509_POLICY_CACHE *cache;

702 for(i = 1; i < tree->nlevel; i++, curr++)
703 {
704 cache = policy_cache_set(curr->cert);
705 if (!tree_link_nodes(curr, cache))
706 return 0;

708 if (!(curr->flags & X509_V_FLAG_INHIBIT_ANY)
709 && !tree_link_any(curr, cache, tree))
710 return 0;
711 tree_print("before tree_prune()", tree, curr);
712 ret = tree_prune(tree, curr);
713 if (ret != 1)
714 return ret;
715 }

717 return 1;

719 }

721 static void exnode_free(X509_POLICY_NODE *node)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_tree.c 12

722 {
723 if (node->data && (node->data->flags & POLICY_DATA_FLAG_EXTRA_NODE))
724 OPENSSL_free(node);
725 }

728 void X509_policy_tree_free(X509_POLICY_TREE *tree)
729 {
730 X509_POLICY_LEVEL *curr;
731 int i;

733 if (!tree)
734 return;

736 sk_X509_POLICY_NODE_free(tree->auth_policies);
737 sk_X509_POLICY_NODE_pop_free(tree->user_policies, exnode_free);

739 for(i = 0, curr = tree->levels; i < tree->nlevel; i++, curr++)
740 {
741 if (curr->cert)
742 X509_free(curr->cert);
743 if (curr->nodes)
744 sk_X509_POLICY_NODE_pop_free(curr->nodes,
745 policy_node_free);
746 if (curr->anyPolicy)
747 policy_node_free(curr->anyPolicy);
748 }

750 if (tree->extra_data)
751 sk_X509_POLICY_DATA_pop_free(tree->extra_data,
752 policy_data_free);

754 OPENSSL_free(tree->levels);
755 OPENSSL_free(tree);

757 }

759 /* Application policy checking function.
760 * Return codes:
761 * 0 Internal Error.
762 * 1 Successful.
763 * -1 One or more certificates contain invalid or inconsistent extensions
764 * -2 User constrained policy set empty and requireExplicit true.
765 */

767 int X509_policy_check(X509_POLICY_TREE **ptree, int *pexplicit_policy,
768 STACK_OF(X509) *certs,
769 STACK_OF(ASN1_OBJECT) *policy_oids,
770 unsigned int flags)
771 {
772 int ret;
773 X509_POLICY_TREE *tree = NULL;
774 STACK_OF(X509_POLICY_NODE) *nodes, *auth_nodes = NULL;
775 *ptree = NULL;

777 *pexplicit_policy = 0;
778 ret = tree_init(&tree, certs, flags);

780 switch (ret)
781 {

783 /* Tree empty requireExplicit False: OK */
784 case 2:
785 return 1;

787 /* Some internal error */

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_tree.c 13

788 case -1:
789 return -1;

791 /* Some internal error */
792 case 0:
793 return 0;

795 /* Tree empty requireExplicit True: Error */

797 case 6:
798 *pexplicit_policy = 1;
799 return -2;

801 /* Tree OK requireExplicit True: OK and continue */
802 case 5:
803 *pexplicit_policy = 1;
804 break;

806 /* Tree OK: continue */

808 case 1:
809 if (!tree)
810 /*
811 * tree_init() returns success and a null tree
812 * if it’s just looking at a trust anchor.
813 * I’m not sure that returning success here is
814 * correct, but I’m sure that reporting this
815 * as an internal error which our caller
816 * interprets as a malloc failure is wrong.
817 */
818 return 1;
819 break;
820 }

822 if (!tree) goto error;
823 ret = tree_evaluate(tree);

825 tree_print("tree_evaluate()", tree, NULL);

827 if (ret <= 0)
828 goto error;

830 /* Return value 2 means tree empty */
831 if (ret == 2)
832 {
833 X509_policy_tree_free(tree);
834 if (*pexplicit_policy)
835 return -2;
836 else
837 return 1;
838 }

840 /* Tree is not empty: continue */

842 ret = tree_calculate_authority_set(tree, &auth_nodes);

844 if (!ret)
845 goto error;

847 if (!tree_calculate_user_set(tree, policy_oids, auth_nodes))
848 goto error;
849
850 if (ret == 2)
851 sk_X509_POLICY_NODE_free(auth_nodes);

853 if (tree)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/pcy_tree.c 14

854 *ptree = tree;

856 if (*pexplicit_policy)
857 {
858 nodes = X509_policy_tree_get0_user_policies(tree);
859 if (sk_X509_POLICY_NODE_num(nodes) <= 0)
860 return -2;
861 }

863 return 1;

865 error:

867 X509_policy_tree_free(tree);

869 return 0;

871 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 1

**
 37252 Fri May 30 18:32:15 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Contributed to the OpenSSL Project by the American Registry for
3 * Internet Numbers ("ARIN").
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 */

58 /*
59 * Implementation of RFC 3779 section 2.2.
60 */

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 2

62 #include <stdio.h>
63 #include <stdlib.h>

65 #include "cryptlib.h"
66 #include <openssl/conf.h>
67 #include <openssl/asn1.h>
68 #include <openssl/asn1t.h>
69 #include <openssl/buffer.h>
70 #include <openssl/x509v3.h>

72 #ifndef OPENSSL_NO_RFC3779

74 /*
75 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
76 */

78 ASN1_SEQUENCE(IPAddressRange) = {
79 ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80 ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81 } ASN1_SEQUENCE_END(IPAddressRange)

83 ASN1_CHOICE(IPAddressOrRange) = {
84 ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85 ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
86 } ASN1_CHOICE_END(IPAddressOrRange)

88 ASN1_CHOICE(IPAddressChoice) = {
89 ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
90 ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91 } ASN1_CHOICE_END(IPAddressChoice)

93 ASN1_SEQUENCE(IPAddressFamily) = {
94 ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
95 ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96 } ASN1_SEQUENCE_END(IPAddressFamily)

98 ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
99 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100 IPAddrBlocks, IPAddressFamily)
101 ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)

103 IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104 IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105 IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106 IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)

108 /*
109 * How much buffer space do we need for a raw address?
110 */
111 #define ADDR_RAW_BUF_LEN 16

113 /*
114 * What’s the address length associated with this AFI?
115 */
116 static int length_from_afi(const unsigned afi)
117 {
118 switch (afi) {
119 case IANA_AFI_IPV4:
120 return 4;
121 case IANA_AFI_IPV6:
122 return 16;
123 default:
124 return 0;
125 }
126 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 3

128 /*
129 * Extract the AFI from an IPAddressFamily.
130 */
131 unsigned int v3_addr_get_afi(const IPAddressFamily *f)
132 {
133 return ((f != NULL &&
134 f->addressFamily != NULL &&
135 f->addressFamily->data != NULL)
136 ? ((f->addressFamily->data[0] << 8) |
137 (f->addressFamily->data[1]))
138 : 0);
139 }

141 /*
142 * Expand the bitstring form of an address into a raw byte array.
143 * At the moment this is coded for simplicity, not speed.
144 */
145 static int addr_expand(unsigned char *addr,
146 const ASN1_BIT_STRING *bs,
147 const int length,
148 const unsigned char fill)
149 {
150 if (bs->length < 0 || bs->length > length)
151 return 0;
152 if (bs->length > 0) {
153 memcpy(addr, bs->data, bs->length);
154 if ((bs->flags & 7) != 0) {
155 unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
156 if (fill == 0)
157 addr[bs->length - 1] &= ~mask;
158 else
159 addr[bs->length - 1] |= mask;
160 }
161 }
162 memset(addr + bs->length, fill, length - bs->length);
163 return 1;
164 }

166 /*
167 * Extract the prefix length from a bitstring.
168 */
169 #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))

171 /*
172 * i2r handler for one address bitstring.
173 */
174 static int i2r_address(BIO *out,
175 const unsigned afi,
176 const unsigned char fill,
177 const ASN1_BIT_STRING *bs)
178 {
179 unsigned char addr[ADDR_RAW_BUF_LEN];
180 int i, n;

182 if (bs->length < 0)
183 return 0;
184 switch (afi) {
185 case IANA_AFI_IPV4:
186 if (!addr_expand(addr, bs, 4, fill))
187 return 0;
188 BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
189 break;
190 case IANA_AFI_IPV6:
191 if (!addr_expand(addr, bs, 16, fill))
192 return 0;
193 for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 4

194 ;
195 for (i = 0; i < n; i += 2)
196 BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : ""));
197 if (i < 16)
198 BIO_puts(out, ":");
199 if (i == 0)
200 BIO_puts(out, ":");
201 break;
202 default:
203 for (i = 0; i < bs->length; i++)
204 BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
205 BIO_printf(out, "[%d]", (int) (bs->flags & 7));
206 break;
207 }
208 return 1;
209 }

211 /*
212 * i2r handler for a sequence of addresses and ranges.
213 */
214 static int i2r_IPAddressOrRanges(BIO *out,
215 const int indent,
216 const IPAddressOrRanges *aors,
217 const unsigned afi)
218 {
219 int i;
220 for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
221 const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
222 BIO_printf(out, "%*s", indent, "");
223 switch (aor->type) {
224 case IPAddressOrRange_addressPrefix:
225 if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
226 return 0;
227 BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
228 continue;
229 case IPAddressOrRange_addressRange:
230 if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
231 return 0;
232 BIO_puts(out, "-");
233 if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
234 return 0;
235 BIO_puts(out, "\n");
236 continue;
237 }
238 }
239 return 1;
240 }

242 /*
243 * i2r handler for an IPAddrBlocks extension.
244 */
245 static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
246 void *ext,
247 BIO *out,
248 int indent)
249 {
250 const IPAddrBlocks *addr = ext;
251 int i;
252 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
253 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
254 const unsigned int afi = v3_addr_get_afi(f);
255 switch (afi) {
256 case IANA_AFI_IPV4:
257 BIO_printf(out, "%*sIPv4", indent, "");
258 break;
259 case IANA_AFI_IPV6:

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 5

260 BIO_printf(out, "%*sIPv6", indent, "");
261 break;
262 default:
263 BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
264 break;
265 }
266 if (f->addressFamily->length > 2) {
267 switch (f->addressFamily->data[2]) {
268 case 1:
269 BIO_puts(out, " (Unicast)");
270 break;
271 case 2:
272 BIO_puts(out, " (Multicast)");
273 break;
274 case 3:
275 BIO_puts(out, " (Unicast/Multicast)");
276 break;
277 case 4:
278 BIO_puts(out, " (MPLS)");
279 break;
280 case 64:
281 BIO_puts(out, " (Tunnel)");
282 break;
283 case 65:
284 BIO_puts(out, " (VPLS)");
285 break;
286 case 66:
287 BIO_puts(out, " (BGP MDT)");
288 break;
289 case 128:
290 BIO_puts(out, " (MPLS-labeled VPN)");
291 break;
292 default:
293 BIO_printf(out, " (Unknown SAFI %u)",
294 (unsigned) f->addressFamily->data[2]);
295 break;
296 }
297 }
298 switch (f->ipAddressChoice->type) {
299 case IPAddressChoice_inherit:
300 BIO_puts(out, ": inherit\n");
301 break;
302 case IPAddressChoice_addressesOrRanges:
303 BIO_puts(out, ":\n");
304 if (!i2r_IPAddressOrRanges(out,
305 indent + 2,
306 f->ipAddressChoice->u.addressesOrRanges,
307 afi))
308 return 0;
309 break;
310 }
311 }
312 return 1;
313 }

315 /*
316 * Sort comparison function for a sequence of IPAddressOrRange
317 * elements.
318 *
319 * There’s no sane answer we can give if addr_expand() fails, and an
320 * assertion failure on externally supplied data is seriously uncool,
321 * so we just arbitrarily declare that if given invalid inputs this
322 * function returns -1. If this messes up your preferred sort order
323 * for garbage input, tough noogies.
324 */
325 static int IPAddressOrRange_cmp(const IPAddressOrRange *a,

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 6

326 const IPAddressOrRange *b,
327 const int length)
328 {
329 unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
330 int prefixlen_a = 0, prefixlen_b = 0;
331 int r;

333 switch (a->type) {
334 case IPAddressOrRange_addressPrefix:
335 if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
336 return -1;
337 prefixlen_a = addr_prefixlen(a->u.addressPrefix);
338 break;
339 case IPAddressOrRange_addressRange:
340 if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
341 return -1;
342 prefixlen_a = length * 8;
343 break;
344 }

346 switch (b->type) {
347 case IPAddressOrRange_addressPrefix:
348 if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
349 return -1;
350 prefixlen_b = addr_prefixlen(b->u.addressPrefix);
351 break;
352 case IPAddressOrRange_addressRange:
353 if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
354 return -1;
355 prefixlen_b = length * 8;
356 break;
357 }

359 if ((r = memcmp(addr_a, addr_b, length)) != 0)
360 return r;
361 else
362 return prefixlen_a - prefixlen_b;
363 }

365 /*
366 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
367 * comparision routines are only allowed two arguments.
368 */
369 static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
370 const IPAddressOrRange * const *b)
371 {
372 return IPAddressOrRange_cmp(*a, *b, 4);
373 }

375 /*
376 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
377 * comparision routines are only allowed two arguments.
378 */
379 static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
380 const IPAddressOrRange * const *b)
381 {
382 return IPAddressOrRange_cmp(*a, *b, 16);
383 }

385 /*
386 * Calculate whether a range collapses to a prefix.
387 * See last paragraph of RFC 3779 2.2.3.7.
388 */
389 static int range_should_be_prefix(const unsigned char *min,
390 const unsigned char *max,
391 const int length)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 7

392 {
393 unsigned char mask;
394 int i, j;

396 OPENSSL_assert(memcmp(min, max, length) <= 0);
397 for (i = 0; i < length && min[i] == max[i]; i++)
398 ;
399 for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
400 ;
401 if (i < j)
402 return -1;
403 if (i > j)
404 return i * 8;
405 mask = min[i] ^ max[i];
406 switch (mask) {
407 case 0x01: j = 7; break;
408 case 0x03: j = 6; break;
409 case 0x07: j = 5; break;
410 case 0x0F: j = 4; break;
411 case 0x1F: j = 3; break;
412 case 0x3F: j = 2; break;
413 case 0x7F: j = 1; break;
414 default: return -1;
415 }
416 if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
417 return -1;
418 else
419 return i * 8 + j;
420 }

422 /*
423 * Construct a prefix.
424 */
425 static int make_addressPrefix(IPAddressOrRange **result,
426 unsigned char *addr,
427 const int prefixlen)
428 {
429 int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
430 IPAddressOrRange *aor = IPAddressOrRange_new();

432 if (aor == NULL)
433 return 0;
434 aor->type = IPAddressOrRange_addressPrefix;
435 if (aor->u.addressPrefix == NULL &&
436 (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
437 goto err;
438 if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
439 goto err;
440 aor->u.addressPrefix->flags &= ~7;
441 aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
442 if (bitlen > 0) {
443 aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
444 aor->u.addressPrefix->flags |= 8 - bitlen;
445 }
446
447 *result = aor;
448 return 1;

450 err:
451 IPAddressOrRange_free(aor);
452 return 0;
453 }

455 /*
456 * Construct a range. If it can be expressed as a prefix,
457 * return a prefix instead. Doing this here simplifies

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 8

458 * the rest of the code considerably.
459 */
460 static int make_addressRange(IPAddressOrRange **result,
461 unsigned char *min,
462 unsigned char *max,
463 const int length)
464 {
465 IPAddressOrRange *aor;
466 int i, prefixlen;

468 if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
469 return make_addressPrefix(result, min, prefixlen);

471 if ((aor = IPAddressOrRange_new()) == NULL)
472 return 0;
473 aor->type = IPAddressOrRange_addressRange;
474 OPENSSL_assert(aor->u.addressRange == NULL);
475 if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
476 goto err;
477 if (aor->u.addressRange->min == NULL &&
478 (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
479 goto err;
480 if (aor->u.addressRange->max == NULL &&
481 (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
482 goto err;

484 for (i = length; i > 0 && min[i - 1] == 0x00; --i)
485 ;
486 if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
487 goto err;
488 aor->u.addressRange->min->flags &= ~7;
489 aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
490 if (i > 0) {
491 unsigned char b = min[i - 1];
492 int j = 1;
493 while ((b & (0xFFU >> j)) != 0)
494 ++j;
495 aor->u.addressRange->min->flags |= 8 - j;
496 }

498 for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
499 ;
500 if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
501 goto err;
502 aor->u.addressRange->max->flags &= ~7;
503 aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
504 if (i > 0) {
505 unsigned char b = max[i - 1];
506 int j = 1;
507 while ((b & (0xFFU >> j)) != (0xFFU >> j))
508 ++j;
509 aor->u.addressRange->max->flags |= 8 - j;
510 }

512 *result = aor;
513 return 1;

515 err:
516 IPAddressOrRange_free(aor);
517 return 0;
518 }

520 /*
521 * Construct a new address family or find an existing one.
522 */
523 static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 9

524 const unsigned afi,
525 const unsigned *safi)
526 {
527 IPAddressFamily *f;
528 unsigned char key[3];
529 unsigned keylen;
530 int i;

532 key[0] = (afi >> 8) & 0xFF;
533 key[1] = afi & 0xFF;
534 if (safi != NULL) {
535 key[2] = *safi & 0xFF;
536 keylen = 3;
537 } else {
538 keylen = 2;
539 }

541 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
542 f = sk_IPAddressFamily_value(addr, i);
543 OPENSSL_assert(f->addressFamily->data != NULL);
544 if (f->addressFamily->length == keylen &&
545 !memcmp(f->addressFamily->data, key, keylen))
546 return f;
547 }

549 if ((f = IPAddressFamily_new()) == NULL)
550 goto err;
551 if (f->ipAddressChoice == NULL &&
552 (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
553 goto err;
554 if (f->addressFamily == NULL &&
555 (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
556 goto err;
557 if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
558 goto err;
559 if (!sk_IPAddressFamily_push(addr, f))
560 goto err;

562 return f;

564 err:
565 IPAddressFamily_free(f);
566 return NULL;
567 }

569 /*
570 * Add an inheritance element.
571 */
572 int v3_addr_add_inherit(IPAddrBlocks *addr,
573 const unsigned afi,
574 const unsigned *safi)
575 {
576 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
577 if (f == NULL ||
578 f->ipAddressChoice == NULL ||
579 (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
580 f->ipAddressChoice->u.addressesOrRanges != NULL))
581 return 0;
582 if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
583 f->ipAddressChoice->u.inherit != NULL)
584 return 1;
585 if (f->ipAddressChoice->u.inherit == NULL &&
586 (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
587 return 0;
588 f->ipAddressChoice->type = IPAddressChoice_inherit;
589 return 1;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 10

590 }

592 /*
593 * Construct an IPAddressOrRange sequence, or return an existing one.
594 */
595 static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
596 const unsigned afi,
597 const unsigned *safi)
598 {
599 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
600 IPAddressOrRanges *aors = NULL;

602 if (f == NULL ||
603 f->ipAddressChoice == NULL ||
604 (f->ipAddressChoice->type == IPAddressChoice_inherit &&
605 f->ipAddressChoice->u.inherit != NULL))
606 return NULL;
607 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
608 aors = f->ipAddressChoice->u.addressesOrRanges;
609 if (aors != NULL)
610 return aors;
611 if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
612 return NULL;
613 switch (afi) {
614 case IANA_AFI_IPV4:
615 (void) sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
616 break;
617 case IANA_AFI_IPV6:
618 (void) sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
619 break;
620 }
621 f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
622 f->ipAddressChoice->u.addressesOrRanges = aors;
623 return aors;
624 }

626 /*
627 * Add a prefix.
628 */
629 int v3_addr_add_prefix(IPAddrBlocks *addr,
630 const unsigned afi,
631 const unsigned *safi,
632 unsigned char *a,
633 const int prefixlen)
634 {
635 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
636 IPAddressOrRange *aor;
637 if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
638 return 0;
639 if (sk_IPAddressOrRange_push(aors, aor))
640 return 1;
641 IPAddressOrRange_free(aor);
642 return 0;
643 }

645 /*
646 * Add a range.
647 */
648 int v3_addr_add_range(IPAddrBlocks *addr,
649 const unsigned afi,
650 const unsigned *safi,
651 unsigned char *min,
652 unsigned char *max)
653 {
654 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
655 IPAddressOrRange *aor;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 11

656 int length = length_from_afi(afi);
657 if (aors == NULL)
658 return 0;
659 if (!make_addressRange(&aor, min, max, length))
660 return 0;
661 if (sk_IPAddressOrRange_push(aors, aor))
662 return 1;
663 IPAddressOrRange_free(aor);
664 return 0;
665 }

667 /*
668 * Extract min and max values from an IPAddressOrRange.
669 */
670 static int extract_min_max(IPAddressOrRange *aor,
671 unsigned char *min,
672 unsigned char *max,
673 int length)
674 {
675 if (aor == NULL || min == NULL || max == NULL)
676 return 0;
677 switch (aor->type) {
678 case IPAddressOrRange_addressPrefix:
679 return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
680 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
681 case IPAddressOrRange_addressRange:
682 return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
683 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
684 }
685 return 0;
686 }

688 /*
689 * Public wrapper for extract_min_max().
690 */
691 int v3_addr_get_range(IPAddressOrRange *aor,
692 const unsigned afi,
693 unsigned char *min,
694 unsigned char *max,
695 const int length)
696 {
697 int afi_length = length_from_afi(afi);
698 if (aor == NULL || min == NULL || max == NULL ||
699 afi_length == 0 || length < afi_length ||
700 (aor->type != IPAddressOrRange_addressPrefix &&
701 aor->type != IPAddressOrRange_addressRange) ||
702 !extract_min_max(aor, min, max, afi_length))
703 return 0;

705 return afi_length;
706 }

708 /*
709 * Sort comparision function for a sequence of IPAddressFamily.
710 *
711 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
712 * the ordering: I can read it as meaning that IPv6 without a SAFI
713 * comes before IPv4 with a SAFI, which seems pretty weird. The
714 * examples in appendix B suggest that the author intended the
715 * null-SAFI rule to apply only within a single AFI, which is what I
716 * would have expected and is what the following code implements.
717 */
718 static int IPAddressFamily_cmp(const IPAddressFamily * const *a_,
719 const IPAddressFamily * const *b_)
720 {
721 const ASN1_OCTET_STRING *a = (*a_)->addressFamily;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 12

722 const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
723 int len = ((a->length <= b->length) ? a->length : b->length);
724 int cmp = memcmp(a->data, b->data, len);
725 return cmp ? cmp : a->length - b->length;
726 }

728 /*
729 * Check whether an IPAddrBLocks is in canonical form.
730 */
731 int v3_addr_is_canonical(IPAddrBlocks *addr)
732 {
733 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
734 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
735 IPAddressOrRanges *aors;
736 int i, j, k;

738 /*
739 * Empty extension is cannonical.
740 */
741 if (addr == NULL)
742 return 1;

744 /*
745 * Check whether the top-level list is in order.
746 */
747 for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
748 const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
749 const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
750 if (IPAddressFamily_cmp(&a, &b) >= 0)
751 return 0;
752 }

754 /*
755 * Top level’s ok, now check each address family.
756 */
757 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
758 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
759 int length = length_from_afi(v3_addr_get_afi(f));

761 /*
762 * Inheritance is canonical. Anything other than inheritance or
763 * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
764 */
765 if (f == NULL || f->ipAddressChoice == NULL)
766 return 0;
767 switch (f->ipAddressChoice->type) {
768 case IPAddressChoice_inherit:
769 continue;
770 case IPAddressChoice_addressesOrRanges:
771 break;
772 default:
773 return 0;
774 }

776 /*
777 * It’s an IPAddressOrRanges sequence, check it.
778 */
779 aors = f->ipAddressChoice->u.addressesOrRanges;
780 if (sk_IPAddressOrRange_num(aors) == 0)
781 return 0;
782 for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
783 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
784 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);

786 if (!extract_min_max(a, a_min, a_max, length) ||
787 !extract_min_max(b, b_min, b_max, length))

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 13

788 return 0;

790 /*
791 * Punt misordered list, overlapping start, or inverted range.
792 */
793 if (memcmp(a_min, b_min, length) >= 0 ||
794 memcmp(a_min, a_max, length) > 0 ||
795 memcmp(b_min, b_max, length) > 0)
796 return 0;

798 /*
799 * Punt if adjacent or overlapping. Check for adjacency by
800 * subtracting one from b_min first.
801 */
802 for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
803 ;
804 if (memcmp(a_max, b_min, length) >= 0)
805 return 0;

807 /*
808 * Check for range that should be expressed as a prefix.
809 */
810 if (a->type == IPAddressOrRange_addressRange &&
811 range_should_be_prefix(a_min, a_max, length) >= 0)
812 return 0;
813 }

815 /*
816 * Check range to see if it’s inverted or should be a
817 * prefix.
818 */
819 j = sk_IPAddressOrRange_num(aors) - 1;
820 {
821 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
822 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
823 if (!extract_min_max(a, a_min, a_max, length))
824 return 0;
825 if (memcmp(a_min, a_max, length) > 0 ||
826 range_should_be_prefix(a_min, a_max, length) >= 0)
827 return 0;
828 }
829 }
830 }

832 /*
833 * If we made it through all that, we’re happy.
834 */
835 return 1;
836 }

838 /*
839 * Whack an IPAddressOrRanges into canonical form.
840 */
841 static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
842 const unsigned afi)
843 {
844 int i, j, length = length_from_afi(afi);

846 /*
847 * Sort the IPAddressOrRanges sequence.
848 */
849 sk_IPAddressOrRange_sort(aors);

851 /*
852 * Clean up representation issues, punt on duplicates or overlaps.
853 */

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 14

854 for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
855 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
856 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
857 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
858 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];

860 if (!extract_min_max(a, a_min, a_max, length) ||
861 !extract_min_max(b, b_min, b_max, length))
862 return 0;

864 /*
865 * Punt inverted ranges.
866 */
867 if (memcmp(a_min, a_max, length) > 0 ||
868 memcmp(b_min, b_max, length) > 0)
869 return 0;

871 /*
872 * Punt overlaps.
873 */
874 if (memcmp(a_max, b_min, length) >= 0)
875 return 0;

877 /*
878 * Merge if a and b are adjacent. We check for
879 * adjacency by subtracting one from b_min first.
880 */
881 for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
882 ;
883 if (memcmp(a_max, b_min, length) == 0) {
884 IPAddressOrRange *merged;
885 if (!make_addressRange(&merged, a_min, b_max, length))
886 return 0;
887 (void) sk_IPAddressOrRange_set(aors, i, merged);
888 (void) sk_IPAddressOrRange_delete(aors, i + 1);
889 IPAddressOrRange_free(a);
890 IPAddressOrRange_free(b);
891 --i;
892 continue;
893 }
894 }

896 /*
897 * Check for inverted final range.
898 */
899 j = sk_IPAddressOrRange_num(aors) - 1;
900 {
901 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
902 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
903 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
904 extract_min_max(a, a_min, a_max, length);
905 if (memcmp(a_min, a_max, length) > 0)
906 return 0;
907 }
908 }

910 return 1;
911 }

913 /*
914 * Whack an IPAddrBlocks extension into canonical form.
915 */
916 int v3_addr_canonize(IPAddrBlocks *addr)
917 {
918 int i;
919 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 15

920 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
921 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
922 !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges,
923 v3_addr_get_afi(f)))
924 return 0;
925 }
926 (void) sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
927 sk_IPAddressFamily_sort(addr);
928 OPENSSL_assert(v3_addr_is_canonical(addr));
929 return 1;
930 }

932 /*
933 * v2i handler for the IPAddrBlocks extension.
934 */
935 static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
936 struct v3_ext_ctx *ctx,
937 STACK_OF(CONF_VALUE) *values)
938 {
939 static const char v4addr_chars[] = "0123456789.";
940 static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
941 IPAddrBlocks *addr = NULL;
942 char *s = NULL, *t;
943 int i;
944
945 if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
946 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
947 return NULL;
948 }

950 for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
951 CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
952 unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
953 unsigned afi, *safi = NULL, safi_;
954 const char *addr_chars;
955 int prefixlen, i1, i2, delim, length;

957 if (!name_cmp(val->name, "IPv4")) {
958 afi = IANA_AFI_IPV4;
959 } else if (!name_cmp(val->name, "IPv6")) {
960 afi = IANA_AFI_IPV6;
961 } else if (!name_cmp(val->name, "IPv4-SAFI")) {
962 afi = IANA_AFI_IPV4;
963 safi = &safi_;
964 } else if (!name_cmp(val->name, "IPv6-SAFI")) {
965 afi = IANA_AFI_IPV6;
966 safi = &safi_;
967 } else {
968 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR);
969 X509V3_conf_err(val);
970 goto err;
971 }

973 switch (afi) {
974 case IANA_AFI_IPV4:
975 addr_chars = v4addr_chars;
976 break;
977 case IANA_AFI_IPV6:
978 addr_chars = v6addr_chars;
979 break;
980 }

982 length = length_from_afi(afi);

984 /*
985 * Handle SAFI, if any, and BUF_strdup() so we can null-terminate

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 16

986 * the other input values.
987 */
988 if (safi != NULL) {
989 *safi = strtoul(val->value, &t, 0);
990 t += strspn(t, " \t");
991 if (*safi > 0xFF || *t++ != ’:’) {
992 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
993 X509V3_conf_err(val);
994 goto err;
995 }
996 t += strspn(t, " \t");
997 s = BUF_strdup(t);
998 } else {
999 s = BUF_strdup(val->value);

1000 }
1001 if (s == NULL) {
1002 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1003 goto err;
1004 }

1006 /*
1007 * Check for inheritance. Not worth additional complexity to
1008 * optimize this (seldom-used) case.
1009 */
1010 if (!strcmp(s, "inherit")) {
1011 if (!v3_addr_add_inherit(addr, afi, safi)) {
1012 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE);
1013 X509V3_conf_err(val);
1014 goto err;
1015 }
1016 OPENSSL_free(s);
1017 s = NULL;
1018 continue;
1019 }

1021 i1 = strspn(s, addr_chars);
1022 i2 = i1 + strspn(s + i1, " \t");
1023 delim = s[i2++];
1024 s[i1] = ’\0’;

1026 if (a2i_ipadd(min, s) != length) {
1027 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1028 X509V3_conf_err(val);
1029 goto err;
1030 }

1032 switch (delim) {
1033 case ’/’:
1034 prefixlen = (int) strtoul(s + i2, &t, 10);
1035 if (t == s + i2 || *t != ’\0’) {
1036 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1037 X509V3_conf_err(val);
1038 goto err;
1039 }
1040 if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1041 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1042 goto err;
1043 }
1044 break;
1045 case ’-’:
1046 i1 = i2 + strspn(s + i2, " \t");
1047 i2 = i1 + strspn(s + i1, addr_chars);
1048 if (i1 == i2 || s[i2] != ’\0’) {
1049 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1050 X509V3_conf_err(val);
1051 goto err;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 17

1052 }
1053 if (a2i_ipadd(max, s + i1) != length) {
1054 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1055 X509V3_conf_err(val);
1056 goto err;
1057 }
1058 if (memcmp(min, max, length_from_afi(afi)) > 0) {
1059 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1060 X509V3_conf_err(val);
1061 goto err;
1062 }
1063 if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1064 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1065 goto err;
1066 }
1067 break;
1068 case ’\0’:
1069 if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1070 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1071 goto err;
1072 }
1073 break;
1074 default:
1075 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1076 X509V3_conf_err(val);
1077 goto err;
1078 }

1080 OPENSSL_free(s);
1081 s = NULL;
1082 }

1084 /*
1085 * Canonize the result, then we’re done.
1086 */
1087 if (!v3_addr_canonize(addr))
1088 goto err;
1089 return addr;

1091 err:
1092 OPENSSL_free(s);
1093 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1094 return NULL;
1095 }

1097 /*
1098 * OpenSSL dispatch
1099 */
1100 const X509V3_EXT_METHOD v3_addr = {
1101 NID_sbgp_ipAddrBlock, /* nid */
1102 0, /* flags */
1103 ASN1_ITEM_ref(IPAddrBlocks), /* template */
1104 0, 0, 0, 0, /* old functions, ignored */
1105 0, /* i2s */
1106 0, /* s2i */
1107 0, /* i2v */
1108 v2i_IPAddrBlocks, /* v2i */
1109 i2r_IPAddrBlocks, /* i2r */
1110 0, /* r2i */
1111 NULL /* extension-specific data */
1112 };

1114 /*
1115 * Figure out whether extension sues inheritance.
1116 */
1117 int v3_addr_inherits(IPAddrBlocks *addr)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 18

1118 {
1119 int i;
1120 if (addr == NULL)
1121 return 0;
1122 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1123 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1124 if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1125 return 1;
1126 }
1127 return 0;
1128 }

1130 /*
1131 * Figure out whether parent contains child.
1132 */
1133 static int addr_contains(IPAddressOrRanges *parent,
1134 IPAddressOrRanges *child,
1135 int length)
1136 {
1137 unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1138 unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1139 int p, c;

1141 if (child == NULL || parent == child)
1142 return 1;
1143 if (parent == NULL)
1144 return 0;

1146 p = 0;
1147 for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1148 if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1149 c_min, c_max, length))
1150 return -1;
1151 for (;; p++) {
1152 if (p >= sk_IPAddressOrRange_num(parent))
1153 return 0;
1154 if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1155 p_min, p_max, length))
1156 return 0;
1157 if (memcmp(p_max, c_max, length) < 0)
1158 continue;
1159 if (memcmp(p_min, c_min, length) > 0)
1160 return 0;
1161 break;
1162 }
1163 }

1165 return 1;
1166 }

1168 /*
1169 * Test whether a is a subset of b.
1170 */
1171 int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1172 {
1173 int i;
1174 if (a == NULL || a == b)
1175 return 1;
1176 if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1177 return 0;
1178 (void) sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1179 for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1180 IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1181 int j = sk_IPAddressFamily_find(b, fa);
1182 IPAddressFamily *fb;
1183 fb = sk_IPAddressFamily_value(b, j);

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 19

1184 if (fb == NULL)
1185 return 0;
1186 if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1187 fa->ipAddressChoice->u.addressesOrRanges,
1188 length_from_afi(v3_addr_get_afi(fb))))
1189 return 0;
1190 }
1191 return 1;
1192 }

1194 /*
1195 * Validation error handling via callback.
1196 */
1197 #define validation_err(_err_) \
1198 do { \
1199 if (ctx != NULL) { \
1200 ctx->error = _err_; \
1201 ctx->error_depth = i; \
1202 ctx->current_cert = x; \
1203 ret = ctx->verify_cb(0, ctx); \
1204 } else { \
1205 ret = 0; \
1206 } \
1207 if (!ret) \
1208 goto done; \
1209 } while (0)

1211 /*
1212 * Core code for RFC 3779 2.3 path validation.
1213 */
1214 static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1215 STACK_OF(X509) *chain,
1216 IPAddrBlocks *ext)
1217 {
1218 IPAddrBlocks *child = NULL;
1219 int i, j, ret = 1;
1220 X509 *x;

1222 OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
1223 OPENSSL_assert(ctx != NULL || ext != NULL);
1224 OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);

1226 /*
1227 * Figure out where to start. If we don’t have an extension to
1228 * check, we’re done. Otherwise, check canonical form and
1229 * set up for walking up the chain.
1230 */
1231 if (ext != NULL) {
1232 i = -1;
1233 x = NULL;
1234 } else {
1235 i = 0;
1236 x = sk_X509_value(chain, i);
1237 OPENSSL_assert(x != NULL);
1238 if ((ext = x->rfc3779_addr) == NULL)
1239 goto done;
1240 }
1241 if (!v3_addr_is_canonical(ext))
1242 validation_err(X509_V_ERR_INVALID_EXTENSION);
1243 (void) sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1244 if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1245 X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE);
1246 ret = 0;
1247 goto done;
1248 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 20

1250 /*
1251 * Now walk up the chain. No cert may list resources that its
1252 * parent doesn’t list.
1253 */
1254 for (i++; i < sk_X509_num(chain); i++) {
1255 x = sk_X509_value(chain, i);
1256 OPENSSL_assert(x != NULL);
1257 if (!v3_addr_is_canonical(x->rfc3779_addr))
1258 validation_err(X509_V_ERR_INVALID_EXTENSION);
1259 if (x->rfc3779_addr == NULL) {
1260 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1261 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1262 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1263 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1264 break;
1265 }
1266 }
1267 continue;
1268 }
1269 (void) sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp)
1270 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1271 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1272 int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1273 IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
1274 if (fp == NULL) {
1275 if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1276 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1277 break;
1278 }
1279 continue;
1280 }
1281 if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1282 if (fc->ipAddressChoice->type == IPAddressChoice_inherit ||
1283 addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1284 fc->ipAddressChoice->u.addressesOrRanges,
1285 length_from_afi(v3_addr_get_afi(fc))))
1286 sk_IPAddressFamily_set(child, j, fp);
1287 else
1288 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1289 }
1290 }
1291 }

1293 /*
1294 * Trust anchor can’t inherit.
1295 */
1296 OPENSSL_assert(x != NULL);
1297 if (x->rfc3779_addr != NULL) {
1298 for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1299 IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1300 if (fp->ipAddressChoice->type == IPAddressChoice_inherit &&
1301 sk_IPAddressFamily_find(child, fp) >= 0)
1302 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1303 }
1304 }

1306 done:
1307 sk_IPAddressFamily_free(child);
1308 return ret;
1309 }

1311 #undef validation_err

1313 /*
1314 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1315 */

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_addr.c 21

1316 int v3_addr_validate_path(X509_STORE_CTX *ctx)
1317 {
1318 return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1319 }

1321 /*
1322 * RFC 3779 2.3 path validation of an extension.
1323 * Test whether chain covers extension.
1324 */
1325 int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1326 IPAddrBlocks *ext,
1327 int allow_inheritance)
1328 {
1329 if (ext == NULL)
1330 return 1;
1331 if (chain == NULL || sk_X509_num(chain) == 0)
1332 return 0;
1333 if (!allow_inheritance && v3_addr_inherits(ext))
1334 return 0;
1335 return v3_addr_validate_path_internal(NULL, chain, ext);
1336 }

1338 #endif /* OPENSSL_NO_RFC3779 */

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_akey.c 1

**
 6531 Fri May 30 18:32:15 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_akey.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_akey.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/conf.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_akey.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/asn1t.h>
64 #include <openssl/x509v3.h>

66 static STACK_OF(CONF_VALUE) *i2v_AUTHORITY_KEYID(X509V3_EXT_METHOD *method,
67 AUTHORITY_KEYID *akeyid, STACK_OF(CONF_VALUE) *extlist);
68 static AUTHORITY_KEYID *v2i_AUTHORITY_KEYID(X509V3_EXT_METHOD *method,
69 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *values);

71 const X509V3_EXT_METHOD v3_akey_id =
72 {
73 NID_authority_key_identifier,
74 X509V3_EXT_MULTILINE, ASN1_ITEM_ref(AUTHORITY_KEYID),
75 0,0,0,0,
76 0,0,
77 (X509V3_EXT_I2V)i2v_AUTHORITY_KEYID,
78 (X509V3_EXT_V2I)v2i_AUTHORITY_KEYID,
79 0,0,
80 NULL
81 };

83 static STACK_OF(CONF_VALUE) *i2v_AUTHORITY_KEYID(X509V3_EXT_METHOD *method,
84 AUTHORITY_KEYID *akeyid, STACK_OF(CONF_VALUE) *extlist)
85 {
86 char *tmp;
87 if(akeyid->keyid) {
88 tmp = hex_to_string(akeyid->keyid->data, akeyid->keyid->length);
89 X509V3_add_value("keyid", tmp, &extlist);
90 OPENSSL_free(tmp);
91 }
92 if(akeyid->issuer)
93 extlist = i2v_GENERAL_NAMES(NULL, akeyid->issuer, extlist);
94 if(akeyid->serial) {
95 tmp = hex_to_string(akeyid->serial->data,
96 akeyid->serial->length);
97 X509V3_add_value("serial", tmp, &extlist);
98 OPENSSL_free(tmp);
99 }
100 return extlist;
101 }

103 /* Currently two options:
104 * keyid: use the issuers subject keyid, the value ’always’ means its is
105 * an error if the issuer certificate doesn’t have a key id.
106 * issuer: use the issuers cert issuer and serial number. The default is
107 * to only use this if keyid is not present. With the option ’always’
108 * this is always included.
109 */

111 static AUTHORITY_KEYID *v2i_AUTHORITY_KEYID(X509V3_EXT_METHOD *method,
112 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *values)
113 {
114 char keyid=0, issuer=0;
115 int i;
116 CONF_VALUE *cnf;
117 ASN1_OCTET_STRING *ikeyid = NULL;
118 X509_NAME *isname = NULL;
119 GENERAL_NAMES * gens = NULL;
120 GENERAL_NAME *gen = NULL;
121 ASN1_INTEGER *serial = NULL;
122 X509_EXTENSION *ext;
123 X509 *cert;
124 AUTHORITY_KEYID *akeyid;

126 for(i = 0; i < sk_CONF_VALUE_num(values); i++)
127 {

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_akey.c 3

128 cnf = sk_CONF_VALUE_value(values, i);
129 if(!strcmp(cnf->name, "keyid"))
130 {
131 keyid = 1;
132 if(cnf->value && !strcmp(cnf->value, "always"))
133 keyid = 2;
134 }
135 else if(!strcmp(cnf->name, "issuer"))
136 {
137 issuer = 1;
138 if(cnf->value && !strcmp(cnf->value, "always"))
139 issuer = 2;
140 }
141 else
142 {
143 X509V3err(X509V3_F_V2I_AUTHORITY_KEYID,X509V3_R_UNKNOWN_
144 ERR_add_error_data(2, "name=", cnf->name);
145 return NULL;
146 }
147 }

149 if(!ctx || !ctx->issuer_cert)
150 {
151 if(ctx && (ctx->flags==CTX_TEST))
152 return AUTHORITY_KEYID_new();
153 X509V3err(X509V3_F_V2I_AUTHORITY_KEYID,X509V3_R_NO_ISSUER_CERTIF
154 return NULL;
155 }

157 cert = ctx->issuer_cert;

159 if(keyid)
160 {
161 i = X509_get_ext_by_NID(cert, NID_subject_key_identifier, -1);
162 if((i >= 0) && (ext = X509_get_ext(cert, i)))
163 ikeyid = X509V3_EXT_d2i(ext);
164 if(keyid==2 && !ikeyid)
165 {
166 X509V3err(X509V3_F_V2I_AUTHORITY_KEYID,X509V3_R_UNABLE_T
167 return NULL;
168 }
169 }

171 if((issuer && !ikeyid) || (issuer == 2))
172 {
173 isname = X509_NAME_dup(X509_get_issuer_name(cert));
174 serial = M_ASN1_INTEGER_dup(X509_get_serialNumber(cert));
175 if(!isname || !serial)
176 {
177 X509V3err(X509V3_F_V2I_AUTHORITY_KEYID,X509V3_R_UNABLE_T
178 goto err;
179 }
180 }

182 if(!(akeyid = AUTHORITY_KEYID_new())) goto err;

184 if(isname)
185 {
186 if(!(gens = sk_GENERAL_NAME_new_null())
187 || !(gen = GENERAL_NAME_new())
188 || !sk_GENERAL_NAME_push(gens, gen))
189 {
190 X509V3err(X509V3_F_V2I_AUTHORITY_KEYID,ERR_R_MALLOC_FAIL
191 goto err;
192 }
193 gen->type = GEN_DIRNAME;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_akey.c 4

194 gen->d.dirn = isname;
195 }

197 akeyid->issuer = gens;
198 akeyid->serial = serial;
199 akeyid->keyid = ikeyid;

201 return akeyid;

203 err:
204 X509_NAME_free(isname);
205 M_ASN1_INTEGER_free(serial);
206 M_ASN1_OCTET_STRING_free(ikeyid);
207 return NULL;
208 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_akeya.c 1

**
 3189 Fri May 30 18:32:15 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_akeya.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_akey_asn1.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/conf.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_akeya.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/asn1t.h>
64 #include <openssl/x509v3.h>

66 ASN1_SEQUENCE(AUTHORITY_KEYID) = {
67 ASN1_IMP_OPT(AUTHORITY_KEYID, keyid, ASN1_OCTET_STRING, 0),
68 ASN1_IMP_SEQUENCE_OF_OPT(AUTHORITY_KEYID, issuer, GENERAL_NAME, 1),
69 ASN1_IMP_OPT(AUTHORITY_KEYID, serial, ASN1_INTEGER, 2)
70 } ASN1_SEQUENCE_END(AUTHORITY_KEYID)

72 IMPLEMENT_ASN1_FUNCTIONS(AUTHORITY_KEYID)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_alt.c 1

**
 15706 Fri May 30 18:32:15 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_alt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_alt.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 1999-2003 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/conf.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_alt.c 2

62 #include <openssl/x509v3.h>

64 static GENERAL_NAMES *v2i_subject_alt(X509V3_EXT_METHOD *method, X509V3_CTX *ctx
65 static GENERAL_NAMES *v2i_issuer_alt(X509V3_EXT_METHOD *method, X509V3_CTX *ctx,
66 static int copy_email(X509V3_CTX *ctx, GENERAL_NAMES *gens, int move_p);
67 static int copy_issuer(X509V3_CTX *ctx, GENERAL_NAMES *gens);
68 static int do_othername(GENERAL_NAME *gen, char *value, X509V3_CTX *ctx);
69 static int do_dirname(GENERAL_NAME *gen, char *value, X509V3_CTX *ctx);

71 const X509V3_EXT_METHOD v3_alt[] = {
72 { NID_subject_alt_name, 0, ASN1_ITEM_ref(GENERAL_NAMES),
73 0,0,0,0,
74 0,0,
75 (X509V3_EXT_I2V)i2v_GENERAL_NAMES,
76 (X509V3_EXT_V2I)v2i_subject_alt,
77 NULL, NULL, NULL},

79 { NID_issuer_alt_name, 0, ASN1_ITEM_ref(GENERAL_NAMES),
80 0,0,0,0,
81 0,0,
82 (X509V3_EXT_I2V)i2v_GENERAL_NAMES,
83 (X509V3_EXT_V2I)v2i_issuer_alt,
84 NULL, NULL, NULL},

86 { NID_certificate_issuer, 0, ASN1_ITEM_ref(GENERAL_NAMES),
87 0,0,0,0,
88 0,0,
89 (X509V3_EXT_I2V)i2v_GENERAL_NAMES,
90 NULL, NULL, NULL, NULL},
91 };

93 STACK_OF(CONF_VALUE) *i2v_GENERAL_NAMES(X509V3_EXT_METHOD *method,
94 GENERAL_NAMES *gens, STACK_OF(CONF_VALUE) *ret)
95 {
96 int i;
97 GENERAL_NAME *gen;
98 for(i = 0; i < sk_GENERAL_NAME_num(gens); i++) {
99 gen = sk_GENERAL_NAME_value(gens, i);
100 ret = i2v_GENERAL_NAME(method, gen, ret);
101 }
102 if(!ret) return sk_CONF_VALUE_new_null();
103 return ret;
104 }

106 STACK_OF(CONF_VALUE) *i2v_GENERAL_NAME(X509V3_EXT_METHOD *method,
107 GENERAL_NAME *gen, STACK_OF(CONF_VALUE) *ret)
108 {
109 unsigned char *p;
110 char oline[256], htmp[5];
111 int i;
112 switch (gen->type)
113 {
114 case GEN_OTHERNAME:
115 X509V3_add_value("othername","<unsupported>", &ret);
116 break;

118 case GEN_X400:
119 X509V3_add_value("X400Name","<unsupported>", &ret);
120 break;

122 case GEN_EDIPARTY:
123 X509V3_add_value("EdiPartyName","<unsupported>", &ret);
124 break;

126 case GEN_EMAIL:
127 X509V3_add_value_uchar("email",gen->d.ia5->data, &ret);

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_alt.c 3

128 break;

130 case GEN_DNS:
131 X509V3_add_value_uchar("DNS",gen->d.ia5->data, &ret);
132 break;

134 case GEN_URI:
135 X509V3_add_value_uchar("URI",gen->d.ia5->data, &ret);
136 break;

138 case GEN_DIRNAME:
139 X509_NAME_oneline(gen->d.dirn, oline, 256);
140 X509V3_add_value("DirName",oline, &ret);
141 break;

143 case GEN_IPADD:
144 p = gen->d.ip->data;
145 if(gen->d.ip->length == 4)
146 BIO_snprintf(oline, sizeof oline,
147 "%d.%d.%d.%d", p[0], p[1], p[2], p[3]);
148 else if(gen->d.ip->length == 16)
149 {
150 oline[0] = 0;
151 for (i = 0; i < 8; i++)
152 {
153 BIO_snprintf(htmp, sizeof htmp,
154 "%X", p[0] << 8 | p[1]);
155 p += 2;
156 strcat(oline, htmp);
157 if (i != 7)
158 strcat(oline, ":");
159 }
160 }
161 else
162 {
163 X509V3_add_value("IP Address","<invalid>", &ret);
164 break;
165 }
166 X509V3_add_value("IP Address",oline, &ret);
167 break;

169 case GEN_RID:
170 i2t_ASN1_OBJECT(oline, 256, gen->d.rid);
171 X509V3_add_value("Registered ID",oline, &ret);
172 break;
173 }
174 return ret;
175 }

177 int GENERAL_NAME_print(BIO *out, GENERAL_NAME *gen)
178 {
179 unsigned char *p;
180 int i;
181 switch (gen->type)
182 {
183 case GEN_OTHERNAME:
184 BIO_printf(out, "othername:<unsupported>");
185 break;

187 case GEN_X400:
188 BIO_printf(out, "X400Name:<unsupported>");
189 break;

191 case GEN_EDIPARTY:
192 /* Maybe fix this: it is supported now */
193 BIO_printf(out, "EdiPartyName:<unsupported>");

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_alt.c 4

194 break;

196 case GEN_EMAIL:
197 BIO_printf(out, "email:%s",gen->d.ia5->data);
198 break;

200 case GEN_DNS:
201 BIO_printf(out, "DNS:%s",gen->d.ia5->data);
202 break;

204 case GEN_URI:
205 BIO_printf(out, "URI:%s",gen->d.ia5->data);
206 break;

208 case GEN_DIRNAME:
209 BIO_printf(out, "DirName: ");
210 X509_NAME_print_ex(out, gen->d.dirn, 0, XN_FLAG_ONELINE);
211 break;

213 case GEN_IPADD:
214 p = gen->d.ip->data;
215 if(gen->d.ip->length == 4)
216 BIO_printf(out, "IP Address:%d.%d.%d.%d",
217 p[0], p[1], p[2], p[3]);
218 else if(gen->d.ip->length == 16)
219 {
220 BIO_printf(out, "IP Address");
221 for (i = 0; i < 8; i++)
222 {
223 BIO_printf(out, ":%X", p[0] << 8 | p[1]);
224 p += 2;
225 }
226 BIO_puts(out, "\n");
227 }
228 else
229 {
230 BIO_printf(out,"IP Address:<invalid>");
231 break;
232 }
233 break;

235 case GEN_RID:
236 BIO_printf(out, "Registered ID");
237 i2a_ASN1_OBJECT(out, gen->d.rid);
238 break;
239 }
240 return 1;
241 }

243 static GENERAL_NAMES *v2i_issuer_alt(X509V3_EXT_METHOD *method,
244 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval)
245 {
246 GENERAL_NAMES *gens = NULL;
247 CONF_VALUE *cnf;
248 int i;
249 if(!(gens = sk_GENERAL_NAME_new_null())) {
250 X509V3err(X509V3_F_V2I_ISSUER_ALT,ERR_R_MALLOC_FAILURE);
251 return NULL;
252 }
253 for(i = 0; i < sk_CONF_VALUE_num(nval); i++) {
254 cnf = sk_CONF_VALUE_value(nval, i);
255 if(!name_cmp(cnf->name, "issuer") && cnf->value &&
256 !strcmp(cnf->value, "copy")) {
257 if(!copy_issuer(ctx, gens)) goto err;
258 } else {
259 GENERAL_NAME *gen;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_alt.c 5

260 if(!(gen = v2i_GENERAL_NAME(method, ctx, cnf)))
261 goto err;
262 sk_GENERAL_NAME_push(gens, gen);
263 }
264 }
265 return gens;
266 err:
267 sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free);
268 return NULL;
269 }

271 /* Append subject altname of issuer to issuer alt name of subject */

273 static int copy_issuer(X509V3_CTX *ctx, GENERAL_NAMES *gens)
274 {
275 GENERAL_NAMES *ialt;
276 GENERAL_NAME *gen;
277 X509_EXTENSION *ext;
278 int i;
279 if(ctx && (ctx->flags == CTX_TEST)) return 1;
280 if(!ctx || !ctx->issuer_cert) {
281 X509V3err(X509V3_F_COPY_ISSUER,X509V3_R_NO_ISSUER_DETAILS);
282 goto err;
283 }
284 i = X509_get_ext_by_NID(ctx->issuer_cert, NID_subject_alt_name, -1);
285 if(i < 0) return 1;
286 if(!(ext = X509_get_ext(ctx->issuer_cert, i)) ||
287 !(ialt = X509V3_EXT_d2i(ext))) {
288 X509V3err(X509V3_F_COPY_ISSUER,X509V3_R_ISSUER_DECODE_ERROR);
289 goto err;
290 }

292 for(i = 0; i < sk_GENERAL_NAME_num(ialt); i++) {
293 gen = sk_GENERAL_NAME_value(ialt, i);
294 if(!sk_GENERAL_NAME_push(gens, gen)) {
295 X509V3err(X509V3_F_COPY_ISSUER,ERR_R_MALLOC_FAILURE);
296 goto err;
297 }
298 }
299 sk_GENERAL_NAME_free(ialt);

301 return 1;
302
303 err:
304 return 0;
305
306 }

308 static GENERAL_NAMES *v2i_subject_alt(X509V3_EXT_METHOD *method,
309 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval)
310 {
311 GENERAL_NAMES *gens = NULL;
312 CONF_VALUE *cnf;
313 int i;
314 if(!(gens = sk_GENERAL_NAME_new_null())) {
315 X509V3err(X509V3_F_V2I_SUBJECT_ALT,ERR_R_MALLOC_FAILURE);
316 return NULL;
317 }
318 for(i = 0; i < sk_CONF_VALUE_num(nval); i++) {
319 cnf = sk_CONF_VALUE_value(nval, i);
320 if(!name_cmp(cnf->name, "email") && cnf->value &&
321 !strcmp(cnf->value, "copy")) {
322 if(!copy_email(ctx, gens, 0)) goto err;
323 } else if(!name_cmp(cnf->name, "email") && cnf->value &&
324 !strcmp(cnf->value, "move")) {
325 if(!copy_email(ctx, gens, 1)) goto err;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_alt.c 6

326 } else {
327 GENERAL_NAME *gen;
328 if(!(gen = v2i_GENERAL_NAME(method, ctx, cnf)))
329 goto err;
330 sk_GENERAL_NAME_push(gens, gen);
331 }
332 }
333 return gens;
334 err:
335 sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free);
336 return NULL;
337 }

339 /* Copy any email addresses in a certificate or request to
340 * GENERAL_NAMES
341 */

343 static int copy_email(X509V3_CTX *ctx, GENERAL_NAMES *gens, int move_p)
344 {
345 X509_NAME *nm;
346 ASN1_IA5STRING *email = NULL;
347 X509_NAME_ENTRY *ne;
348 GENERAL_NAME *gen = NULL;
349 int i;
350 if(ctx != NULL && ctx->flags == CTX_TEST)
351 return 1;
352 if(!ctx || (!ctx->subject_cert && !ctx->subject_req)) {
353 X509V3err(X509V3_F_COPY_EMAIL,X509V3_R_NO_SUBJECT_DETAILS);
354 goto err;
355 }
356 /* Find the subject name */
357 if(ctx->subject_cert) nm = X509_get_subject_name(ctx->subject_cert);
358 else nm = X509_REQ_get_subject_name(ctx->subject_req);

360 /* Now add any email address(es) to STACK */
361 i = -1;
362 while((i = X509_NAME_get_index_by_NID(nm,
363 NID_pkcs9_emailAddress, i)) >= 0) {
364 ne = X509_NAME_get_entry(nm, i);
365 email = M_ASN1_IA5STRING_dup(X509_NAME_ENTRY_get_data(ne));
366 if (move_p)
367 {
368 X509_NAME_delete_entry(nm, i);
369 X509_NAME_ENTRY_free(ne);
370 i--;
371 }
372 if(!email || !(gen = GENERAL_NAME_new())) {
373 X509V3err(X509V3_F_COPY_EMAIL,ERR_R_MALLOC_FAILURE);
374 goto err;
375 }
376 gen->d.ia5 = email;
377 email = NULL;
378 gen->type = GEN_EMAIL;
379 if(!sk_GENERAL_NAME_push(gens, gen)) {
380 X509V3err(X509V3_F_COPY_EMAIL,ERR_R_MALLOC_FAILURE);
381 goto err;
382 }
383 gen = NULL;
384 }

386
387 return 1;
388
389 err:
390 GENERAL_NAME_free(gen);
391 M_ASN1_IA5STRING_free(email);

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_alt.c 7

392 return 0;
393
394 }

396 GENERAL_NAMES *v2i_GENERAL_NAMES(const X509V3_EXT_METHOD *method,
397 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval)
398 {
399 GENERAL_NAME *gen;
400 GENERAL_NAMES *gens = NULL;
401 CONF_VALUE *cnf;
402 int i;
403 if(!(gens = sk_GENERAL_NAME_new_null())) {
404 X509V3err(X509V3_F_V2I_GENERAL_NAMES,ERR_R_MALLOC_FAILURE);
405 return NULL;
406 }
407 for(i = 0; i < sk_CONF_VALUE_num(nval); i++) {
408 cnf = sk_CONF_VALUE_value(nval, i);
409 if(!(gen = v2i_GENERAL_NAME(method, ctx, cnf))) goto err;
410 sk_GENERAL_NAME_push(gens, gen);
411 }
412 return gens;
413 err:
414 sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free);
415 return NULL;
416 }

418 GENERAL_NAME *v2i_GENERAL_NAME(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx,
419 CONF_VALUE *cnf)
420 {
421 return v2i_GENERAL_NAME_ex(NULL, method, ctx, cnf, 0);
422 }

424 GENERAL_NAME *a2i_GENERAL_NAME(GENERAL_NAME *out,
425 const X509V3_EXT_METHOD *method, X509V3_CTX *ctx,
426 int gen_type, char *value, int is_nc)
427 {
428 char is_string = 0;
429 GENERAL_NAME *gen = NULL;

431 if(!value)
432 {
433 X509V3err(X509V3_F_A2I_GENERAL_NAME,X509V3_R_MISSING_VALUE);
434 return NULL;
435 }

437 if (out)
438 gen = out;
439 else
440 {
441 gen = GENERAL_NAME_new();
442 if(gen == NULL)
443 {
444 X509V3err(X509V3_F_A2I_GENERAL_NAME,ERR_R_MALLOC_FAILURE
445 return NULL;
446 }
447 }

449 switch (gen_type)
450 {
451 case GEN_URI:
452 case GEN_EMAIL:
453 case GEN_DNS:
454 is_string = 1;
455 break;
456
457 case GEN_RID:

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_alt.c 8

458 {
459 ASN1_OBJECT *obj;
460 if(!(obj = OBJ_txt2obj(value,0)))
461 {
462 X509V3err(X509V3_F_A2I_GENERAL_NAME,X509V3_R_BAD_OBJECT)
463 ERR_add_error_data(2, "value=", value);
464 goto err;
465 }
466 gen->d.rid = obj;
467 }
468 break;

470 case GEN_IPADD:
471 if (is_nc)
472 gen->d.ip = a2i_IPADDRESS_NC(value);
473 else
474 gen->d.ip = a2i_IPADDRESS(value);
475 if(gen->d.ip == NULL)
476 {
477 X509V3err(X509V3_F_A2I_GENERAL_NAME,X509V3_R_BAD_IP_ADDR
478 ERR_add_error_data(2, "value=", value);
479 goto err;
480 }
481 break;

483 case GEN_DIRNAME:
484 if (!do_dirname(gen, value, ctx))
485 {
486 X509V3err(X509V3_F_A2I_GENERAL_NAME,X509V3_R_DIRNAME_ERR
487 goto err;
488 }
489 break;

491 case GEN_OTHERNAME:
492 if (!do_othername(gen, value, ctx))
493 {
494 X509V3err(X509V3_F_A2I_GENERAL_NAME,X509V3_R_OTHERNAME_E
495 goto err;
496 }
497 break;
498 default:
499 X509V3err(X509V3_F_A2I_GENERAL_NAME,X509V3_R_UNSUPPORTED_TYPE);
500 goto err;
501 }

503 if(is_string)
504 {
505 if(!(gen->d.ia5 = M_ASN1_IA5STRING_new()) ||
506 !ASN1_STRING_set(gen->d.ia5, (unsigned char*)value
507 strlen(value)))
508 {
509 X509V3err(X509V3_F_A2I_GENERAL_NAME,ERR_R_MALLOC_FAILURE
510 goto err;
511 }
512 }

514 gen->type = gen_type;

516 return gen;

518 err:
519 if (!out)
520 GENERAL_NAME_free(gen);
521 return NULL;
522 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_alt.c 9

524 GENERAL_NAME *v2i_GENERAL_NAME_ex(GENERAL_NAME *out,
525 const X509V3_EXT_METHOD *method,
526 X509V3_CTX *ctx, CONF_VALUE *cnf, int is_nc)
527 {
528 int type;

530 char *name, *value;

532 name = cnf->name;
533 value = cnf->value;

535 if(!value)
536 {
537 X509V3err(X509V3_F_V2I_GENERAL_NAME_EX,X509V3_R_MISSING_VALUE);
538 return NULL;
539 }

541 if(!name_cmp(name, "email"))
542 type = GEN_EMAIL;
543 else if(!name_cmp(name, "URI"))
544 type = GEN_URI;
545 else if(!name_cmp(name, "DNS"))
546 type = GEN_DNS;
547 else if(!name_cmp(name, "RID"))
548 type = GEN_RID;
549 else if(!name_cmp(name, "IP"))
550 type = GEN_IPADD;
551 else if(!name_cmp(name, "dirName"))
552 type = GEN_DIRNAME;
553 else if(!name_cmp(name, "otherName"))
554 type = GEN_OTHERNAME;
555 else
556 {
557 X509V3err(X509V3_F_V2I_GENERAL_NAME_EX,X509V3_R_UNSUPPORTED_OPTI
558 ERR_add_error_data(2, "name=", name);
559 return NULL;
560 }

562 return a2i_GENERAL_NAME(out, method, ctx, type, value, is_nc);

564 }

566 static int do_othername(GENERAL_NAME *gen, char *value, X509V3_CTX *ctx)
567 {
568 char *objtmp = NULL, *p;
569 int objlen;
570 if (!(p = strchr(value, ’;’)))
571 return 0;
572 if (!(gen->d.otherName = OTHERNAME_new()))
573 return 0;
574 /* Free this up because we will overwrite it.
575 * no need to free type_id because it is static
576 */
577 ASN1_TYPE_free(gen->d.otherName->value);
578 if (!(gen->d.otherName->value = ASN1_generate_v3(p + 1, ctx)))
579 return 0;
580 objlen = p - value;
581 objtmp = OPENSSL_malloc(objlen + 1);
582 strncpy(objtmp, value, objlen);
583 objtmp[objlen] = 0;
584 gen->d.otherName->type_id = OBJ_txt2obj(objtmp, 0);
585 OPENSSL_free(objtmp);
586 if (!gen->d.otherName->type_id)
587 return 0;
588 return 1;
589 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_alt.c 10

591 static int do_dirname(GENERAL_NAME *gen, char *value, X509V3_CTX *ctx)
592 {
593 int ret;
594 STACK_OF(CONF_VALUE) *sk;
595 X509_NAME *nm;
596 if (!(nm = X509_NAME_new()))
597 return 0;
598 sk = X509V3_get_section(ctx, value);
599 if (!sk)
600 {
601 X509V3err(X509V3_F_DO_DIRNAME,X509V3_R_SECTION_NOT_FOUND);
602 ERR_add_error_data(2, "section=", value);
603 X509_NAME_free(nm);
604 return 0;
605 }
606 /* FIXME: should allow other character types... */
607 ret = X509V3_NAME_from_section(nm, sk, MBSTRING_ASC);
608 if (!ret)
609 X509_NAME_free(nm);
610 gen->d.dirn = nm;
611 X509V3_section_free(ctx, sk);
612
613 return ret;
614 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_asid.c 1

**
 24159 Fri May 30 18:32:15 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_asid.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * Contributed to the OpenSSL Project by the American Registry for
3 * Internet Numbers ("ARIN").
4 */
5 /* ==
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 */

58 /*
59 * Implementation of RFC 3779 section 3.2.
60 */

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_asid.c 2

62 #include <stdio.h>
63 #include <string.h>
64 #include "cryptlib.h"
65 #include <openssl/conf.h>
66 #include <openssl/asn1.h>
67 #include <openssl/asn1t.h>
68 #include <openssl/x509v3.h>
69 #include <openssl/x509.h>
70 #include <openssl/bn.h>

72 #ifndef OPENSSL_NO_RFC3779

74 /*
75 * OpenSSL ASN.1 template translation of RFC 3779 3.2.3.
76 */

78 ASN1_SEQUENCE(ASRange) = {
79 ASN1_SIMPLE(ASRange, min, ASN1_INTEGER),
80 ASN1_SIMPLE(ASRange, max, ASN1_INTEGER)
81 } ASN1_SEQUENCE_END(ASRange)

83 ASN1_CHOICE(ASIdOrRange) = {
84 ASN1_SIMPLE(ASIdOrRange, u.id, ASN1_INTEGER),
85 ASN1_SIMPLE(ASIdOrRange, u.range, ASRange)
86 } ASN1_CHOICE_END(ASIdOrRange)

88 ASN1_CHOICE(ASIdentifierChoice) = {
89 ASN1_SIMPLE(ASIdentifierChoice, u.inherit, ASN1_NULL),
90 ASN1_SEQUENCE_OF(ASIdentifierChoice, u.asIdsOrRanges, ASIdOrRange)
91 } ASN1_CHOICE_END(ASIdentifierChoice)

93 ASN1_SEQUENCE(ASIdentifiers) = {
94 ASN1_EXP_OPT(ASIdentifiers, asnum, ASIdentifierChoice, 0),
95 ASN1_EXP_OPT(ASIdentifiers, rdi, ASIdentifierChoice, 1)
96 } ASN1_SEQUENCE_END(ASIdentifiers)

98 IMPLEMENT_ASN1_FUNCTIONS(ASRange)
99 IMPLEMENT_ASN1_FUNCTIONS(ASIdOrRange)
100 IMPLEMENT_ASN1_FUNCTIONS(ASIdentifierChoice)
101 IMPLEMENT_ASN1_FUNCTIONS(ASIdentifiers)

103 /*
104 * i2r method for an ASIdentifierChoice.
105 */
106 static int i2r_ASIdentifierChoice(BIO *out,
107 ASIdentifierChoice *choice,
108 int indent,
109 const char *msg)
110 {
111 int i;
112 char *s;
113 if (choice == NULL)
114 return 1;
115 BIO_printf(out, "%*s%s:\n", indent, "", msg);
116 switch (choice->type) {
117 case ASIdentifierChoice_inherit:
118 BIO_printf(out, "%*sinherit\n", indent + 2, "");
119 break;
120 case ASIdentifierChoice_asIdsOrRanges:
121 for (i = 0; i < sk_ASIdOrRange_num(choice->u.asIdsOrRanges); i++) {
122 ASIdOrRange *aor = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i);
123 switch (aor->type) {
124 case ASIdOrRange_id:
125 if ((s = i2s_ASN1_INTEGER(NULL, aor->u.id)) == NULL)
126 return 0;
127 BIO_printf(out, "%*s%s\n", indent + 2, "", s);

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_asid.c 3

128 OPENSSL_free(s);
129 break;
130 case ASIdOrRange_range:
131 if ((s = i2s_ASN1_INTEGER(NULL, aor->u.range->min)) == NULL)
132 return 0;
133 BIO_printf(out, "%*s%s-", indent + 2, "", s);
134 OPENSSL_free(s);
135 if ((s = i2s_ASN1_INTEGER(NULL, aor->u.range->max)) == NULL)
136 return 0;
137 BIO_printf(out, "%s\n", s);
138 OPENSSL_free(s);
139 break;
140 default:
141 return 0;
142 }
143 }
144 break;
145 default:
146 return 0;
147 }
148 return 1;
149 }

151 /*
152 * i2r method for an ASIdentifier extension.
153 */
154 static int i2r_ASIdentifiers(const X509V3_EXT_METHOD *method,
155 void *ext,
156 BIO *out,
157 int indent)
158 {
159 ASIdentifiers *asid = ext;
160 return (i2r_ASIdentifierChoice(out, asid->asnum, indent,
161 "Autonomous System Numbers") &&
162 i2r_ASIdentifierChoice(out, asid->rdi, indent,
163 "Routing Domain Identifiers"));
164 }

166 /*
167 * Sort comparision function for a sequence of ASIdOrRange elements.
168 */
169 static int ASIdOrRange_cmp(const ASIdOrRange * const *a_,
170 const ASIdOrRange * const *b_)
171 {
172 const ASIdOrRange *a = *a_, *b = *b_;

174 OPENSSL_assert((a->type == ASIdOrRange_id && a->u.id != NULL) ||
175 (a->type == ASIdOrRange_range && a->u.range != NULL &&
176 a->u.range->min != NULL && a->u.range->max != NULL));

178 OPENSSL_assert((b->type == ASIdOrRange_id && b->u.id != NULL) ||
179 (b->type == ASIdOrRange_range && b->u.range != NULL &&
180 b->u.range->min != NULL && b->u.range->max != NULL));

182 if (a->type == ASIdOrRange_id && b->type == ASIdOrRange_id)
183 return ASN1_INTEGER_cmp(a->u.id, b->u.id);

185 if (a->type == ASIdOrRange_range && b->type == ASIdOrRange_range) {
186 int r = ASN1_INTEGER_cmp(a->u.range->min, b->u.range->min);
187 return r != 0 ? r : ASN1_INTEGER_cmp(a->u.range->max, b->u.range->max);
188 }

190 if (a->type == ASIdOrRange_id)
191 return ASN1_INTEGER_cmp(a->u.id, b->u.range->min);
192 else
193 return ASN1_INTEGER_cmp(a->u.range->min, b->u.id);

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_asid.c 4

194 }

196 /*
197 * Add an inherit element.
198 */
199 int v3_asid_add_inherit(ASIdentifiers *asid, int which)
200 {
201 ASIdentifierChoice **choice;
202 if (asid == NULL)
203 return 0;
204 switch (which) {
205 case V3_ASID_ASNUM:
206 choice = &asid->asnum;
207 break;
208 case V3_ASID_RDI:
209 choice = &asid->rdi;
210 break;
211 default:
212 return 0;
213 }
214 if (*choice == NULL) {
215 if ((*choice = ASIdentifierChoice_new()) == NULL)
216 return 0;
217 OPENSSL_assert((*choice)->u.inherit == NULL);
218 if (((*choice)->u.inherit = ASN1_NULL_new()) == NULL)
219 return 0;
220 (*choice)->type = ASIdentifierChoice_inherit;
221 }
222 return (*choice)->type == ASIdentifierChoice_inherit;
223 }

225 /*
226 * Add an ID or range to an ASIdentifierChoice.
227 */
228 int v3_asid_add_id_or_range(ASIdentifiers *asid,
229 int which,
230 ASN1_INTEGER *min,
231 ASN1_INTEGER *max)
232 {
233 ASIdentifierChoice **choice;
234 ASIdOrRange *aor;
235 if (asid == NULL)
236 return 0;
237 switch (which) {
238 case V3_ASID_ASNUM:
239 choice = &asid->asnum;
240 break;
241 case V3_ASID_RDI:
242 choice = &asid->rdi;
243 break;
244 default:
245 return 0;
246 }
247 if (*choice != NULL && (*choice)->type == ASIdentifierChoice_inherit)
248 return 0;
249 if (*choice == NULL) {
250 if ((*choice = ASIdentifierChoice_new()) == NULL)
251 return 0;
252 OPENSSL_assert((*choice)->u.asIdsOrRanges == NULL);
253 (*choice)->u.asIdsOrRanges = sk_ASIdOrRange_new(ASIdOrRange_cmp);
254 if ((*choice)->u.asIdsOrRanges == NULL)
255 return 0;
256 (*choice)->type = ASIdentifierChoice_asIdsOrRanges;
257 }
258 if ((aor = ASIdOrRange_new()) == NULL)
259 return 0;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_asid.c 5

260 if (max == NULL) {
261 aor->type = ASIdOrRange_id;
262 aor->u.id = min;
263 } else {
264 aor->type = ASIdOrRange_range;
265 if ((aor->u.range = ASRange_new()) == NULL)
266 goto err;
267 ASN1_INTEGER_free(aor->u.range->min);
268 aor->u.range->min = min;
269 ASN1_INTEGER_free(aor->u.range->max);
270 aor->u.range->max = max;
271 }
272 if (!(sk_ASIdOrRange_push((*choice)->u.asIdsOrRanges, aor)))
273 goto err;
274 return 1;

276 err:
277 ASIdOrRange_free(aor);
278 return 0;
279 }

281 /*
282 * Extract min and max values from an ASIdOrRange.
283 */
284 static void extract_min_max(ASIdOrRange *aor,
285 ASN1_INTEGER **min,
286 ASN1_INTEGER **max)
287 {
288 OPENSSL_assert(aor != NULL && min != NULL && max != NULL);
289 switch (aor->type) {
290 case ASIdOrRange_id:
291 *min = aor->u.id;
292 *max = aor->u.id;
293 return;
294 case ASIdOrRange_range:
295 *min = aor->u.range->min;
296 *max = aor->u.range->max;
297 return;
298 }
299 }

301 /*
302 * Check whether an ASIdentifierChoice is in canonical form.
303 */
304 static int ASIdentifierChoice_is_canonical(ASIdentifierChoice *choice)
305 {
306 ASN1_INTEGER *a_max_plus_one = NULL;
307 BIGNUM *bn = NULL;
308 int i, ret = 0;

310 /*
311 * Empty element or inheritance is canonical.
312 */
313 if (choice == NULL || choice->type == ASIdentifierChoice_inherit)
314 return 1;

316 /*
317 * If not a list, or if empty list, it’s broken.
318 */
319 if (choice->type != ASIdentifierChoice_asIdsOrRanges ||
320 sk_ASIdOrRange_num(choice->u.asIdsOrRanges) == 0)
321 return 0;

323 /*
324 * It’s a list, check it.
325 */

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_asid.c 6

326 for (i = 0; i < sk_ASIdOrRange_num(choice->u.asIdsOrRanges) - 1; i++) {
327 ASIdOrRange *a = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i);
328 ASIdOrRange *b = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i + 1);
329 ASN1_INTEGER *a_min, *a_max, *b_min, *b_max;

331 extract_min_max(a, &a_min, &a_max);
332 extract_min_max(b, &b_min, &b_max);

334 /*
335 * Punt misordered list, overlapping start, or inverted range.
336 */
337 if (ASN1_INTEGER_cmp(a_min, b_min) >= 0 ||
338 ASN1_INTEGER_cmp(a_min, a_max) > 0 ||
339 ASN1_INTEGER_cmp(b_min, b_max) > 0)
340 goto done;

342 /*
343 * Calculate a_max + 1 to check for adjacency.
344 */
345 if ((bn == NULL && (bn = BN_new()) == NULL) ||
346 ASN1_INTEGER_to_BN(a_max, bn) == NULL ||
347 !BN_add_word(bn, 1) ||
348 (a_max_plus_one = BN_to_ASN1_INTEGER(bn, a_max_plus_one)) == NULL) {
349 X509V3err(X509V3_F_ASIDENTIFIERCHOICE_IS_CANONICAL,
350 ERR_R_MALLOC_FAILURE);
351 goto done;
352 }
353
354 /*
355 * Punt if adjacent or overlapping.
356 */
357 if (ASN1_INTEGER_cmp(a_max_plus_one, b_min) >= 0)
358 goto done;
359 }

361 /*
362 * Check for inverted range.
363 */
364 i = sk_ASIdOrRange_num(choice->u.asIdsOrRanges) - 1;
365 {
366 ASIdOrRange *a = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i);
367 ASN1_INTEGER *a_min, *a_max;
368 if (a != NULL && a->type == ASIdOrRange_range) {
369 extract_min_max(a, &a_min, &a_max);
370 if (ASN1_INTEGER_cmp(a_min, a_max) > 0)
371 goto done;
372 }
373 }

375 ret = 1;

377 done:
378 ASN1_INTEGER_free(a_max_plus_one);
379 BN_free(bn);
380 return ret;
381 }

383 /*
384 * Check whether an ASIdentifier extension is in canonical form.
385 */
386 int v3_asid_is_canonical(ASIdentifiers *asid)
387 {
388 return (asid == NULL ||
389 (ASIdentifierChoice_is_canonical(asid->asnum) &&
390 ASIdentifierChoice_is_canonical(asid->rdi)));
391 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_asid.c 7

393 /*
394 * Whack an ASIdentifierChoice into canonical form.
395 */
396 static int ASIdentifierChoice_canonize(ASIdentifierChoice *choice)
397 {
398 ASN1_INTEGER *a_max_plus_one = NULL;
399 BIGNUM *bn = NULL;
400 int i, ret = 0;

402 /*
403 * Nothing to do for empty element or inheritance.
404 */
405 if (choice == NULL || choice->type == ASIdentifierChoice_inherit)
406 return 1;

408 /*
409 * If not a list, or if empty list, it’s broken.
410 */
411 if (choice->type != ASIdentifierChoice_asIdsOrRanges ||
412 sk_ASIdOrRange_num(choice->u.asIdsOrRanges) == 0) {
413 X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE,
414 X509V3_R_EXTENSION_VALUE_ERROR);
415 return 0;
416 }

418 /*
419 * We have a non-empty list. Sort it.
420 */
421 sk_ASIdOrRange_sort(choice->u.asIdsOrRanges);

423 /*
424 * Now check for errors and suboptimal encoding, rejecting the
425 * former and fixing the latter.
426 */
427 for (i = 0; i < sk_ASIdOrRange_num(choice->u.asIdsOrRanges) - 1; i++) {
428 ASIdOrRange *a = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i);
429 ASIdOrRange *b = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i + 1);
430 ASN1_INTEGER *a_min, *a_max, *b_min, *b_max;

432 extract_min_max(a, &a_min, &a_max);
433 extract_min_max(b, &b_min, &b_max);

435 /*
436 * Make sure we’re properly sorted (paranoia).
437 */
438 OPENSSL_assert(ASN1_INTEGER_cmp(a_min, b_min) <= 0);

440 /*
441 * Punt inverted ranges.
442 */
443 if (ASN1_INTEGER_cmp(a_min, a_max) > 0 ||
444 ASN1_INTEGER_cmp(b_min, b_max) > 0)
445 goto done;

447 /*
448 * Check for overlaps.
449 */
450 if (ASN1_INTEGER_cmp(a_max, b_min) >= 0) {
451 X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE,
452 X509V3_R_EXTENSION_VALUE_ERROR);
453 goto done;
454 }

456 /*
457 * Calculate a_max + 1 to check for adjacency.

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_asid.c 8

458 */
459 if ((bn == NULL && (bn = BN_new()) == NULL) ||
460 ASN1_INTEGER_to_BN(a_max, bn) == NULL ||
461 !BN_add_word(bn, 1) ||
462 (a_max_plus_one = BN_to_ASN1_INTEGER(bn, a_max_plus_one)) == NULL) {
463 X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE, ERR_R_MALLOC_FAILURE);
464 goto done;
465 }
466
467 /*
468 * If a and b are adjacent, merge them.
469 */
470 if (ASN1_INTEGER_cmp(a_max_plus_one, b_min) == 0) {
471 ASRange *r;
472 switch (a->type) {
473 case ASIdOrRange_id:
474 if ((r = OPENSSL_malloc(sizeof(ASRange))) == NULL) {
475 X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE,
476 ERR_R_MALLOC_FAILURE);
477 goto done;
478 }
479 r->min = a_min;
480 r->max = b_max;
481 a->type = ASIdOrRange_range;
482 a->u.range = r;
483 break;
484 case ASIdOrRange_range:
485 ASN1_INTEGER_free(a->u.range->max);
486 a->u.range->max = b_max;
487 break;
488 }
489 switch (b->type) {
490 case ASIdOrRange_id:
491 b->u.id = NULL;
492 break;
493 case ASIdOrRange_range:
494 b->u.range->max = NULL;
495 break;
496 }
497 ASIdOrRange_free(b);
498 (void) sk_ASIdOrRange_delete(choice->u.asIdsOrRanges, i + 1);
499 i--;
500 continue;
501 }
502 }

504 /*
505 * Check for final inverted range.
506 */
507 i = sk_ASIdOrRange_num(choice->u.asIdsOrRanges) - 1;
508 {
509 ASIdOrRange *a = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i);
510 ASN1_INTEGER *a_min, *a_max;
511 if (a != NULL && a->type == ASIdOrRange_range) {
512 extract_min_max(a, &a_min, &a_max);
513 if (ASN1_INTEGER_cmp(a_min, a_max) > 0)
514 goto done;
515 }
516 }

518 OPENSSL_assert(ASIdentifierChoice_is_canonical(choice)); /* Paranoia */

520 ret = 1;

522 done:
523 ASN1_INTEGER_free(a_max_plus_one);

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_asid.c 9

524 BN_free(bn);
525 return ret;
526 }

528 /*
529 * Whack an ASIdentifier extension into canonical form.
530 */
531 int v3_asid_canonize(ASIdentifiers *asid)
532 {
533 return (asid == NULL ||
534 (ASIdentifierChoice_canonize(asid->asnum) &&
535 ASIdentifierChoice_canonize(asid->rdi)));
536 }

538 /*
539 * v2i method for an ASIdentifier extension.
540 */
541 static void *v2i_ASIdentifiers(const struct v3_ext_method *method,
542 struct v3_ext_ctx *ctx,
543 STACK_OF(CONF_VALUE) *values)
544 {
545 ASN1_INTEGER *min = NULL, *max = NULL;
546 ASIdentifiers *asid = NULL;
547 int i;

549 if ((asid = ASIdentifiers_new()) == NULL) {
550 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE);
551 return NULL;
552 }

554 for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
555 CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
556 int i1, i2, i3, is_range, which;

558 /*
559 * Figure out whether this is an AS or an RDI.
560 */
561 if (!name_cmp(val->name, "AS")) {
562 which = V3_ASID_ASNUM;
563 } else if (!name_cmp(val->name, "RDI")) {
564 which = V3_ASID_RDI;
565 } else {
566 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_EXTENSION_NAME_ERROR);
567 X509V3_conf_err(val);
568 goto err;
569 }

571 /*
572 * Handle inheritance.
573 */
574 if (!strcmp(val->value, "inherit")) {
575 if (v3_asid_add_inherit(asid, which))
576 continue;
577 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_INVALID_INHERITANCE);
578 X509V3_conf_err(val);
579 goto err;
580 }

582 /*
583 * Number, range, or mistake, pick it apart and figure out which.
584 */
585 i1 = strspn(val->value, "0123456789");
586 if (val->value[i1] == ’\0’) {
587 is_range = 0;
588 } else {
589 is_range = 1;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_asid.c 10

590 i2 = i1 + strspn(val->value + i1, " \t");
591 if (val->value[i2] != ’-’) {
592 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_INVALID_ASNUMBER);
593 X509V3_conf_err(val);
594 goto err;
595 }
596 i2++;
597 i2 = i2 + strspn(val->value + i2, " \t");
598 i3 = i2 + strspn(val->value + i2, "0123456789");
599 if (val->value[i3] != ’\0’) {
600 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_INVALID_ASRANGE);
601 X509V3_conf_err(val);
602 goto err;
603 }
604 }

606 /*
607 * Syntax is ok, read and add it.
608 */
609 if (!is_range) {
610 if (!X509V3_get_value_int(val, &min)) {
611 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE);
612 goto err;
613 }
614 } else {
615 char *s = BUF_strdup(val->value);
616 if (s == NULL) {
617 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE);
618 goto err;
619 }
620 s[i1] = ’\0’;
621 min = s2i_ASN1_INTEGER(NULL, s);
622 max = s2i_ASN1_INTEGER(NULL, s + i2);
623 OPENSSL_free(s);
624 if (min == NULL || max == NULL) {
625 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE);
626 goto err;
627 }
628 if (ASN1_INTEGER_cmp(min, max) > 0) {
629 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_EXTENSION_VALUE_ERROR);
630 goto err;
631 }
632 }
633 if (!v3_asid_add_id_or_range(asid, which, min, max)) {
634 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE);
635 goto err;
636 }
637 min = max = NULL;
638 }

640 /*
641 * Canonize the result, then we’re done.
642 */
643 if (!v3_asid_canonize(asid))
644 goto err;
645 return asid;

647 err:
648 ASIdentifiers_free(asid);
649 ASN1_INTEGER_free(min);
650 ASN1_INTEGER_free(max);
651 return NULL;
652 }

654 /*
655 * OpenSSL dispatch.

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_asid.c 11

656 */
657 const X509V3_EXT_METHOD v3_asid = {
658 NID_sbgp_autonomousSysNum, /* nid */
659 0, /* flags */
660 ASN1_ITEM_ref(ASIdentifiers), /* template */
661 0, 0, 0, 0, /* old functions, ignored */
662 0, /* i2s */
663 0, /* s2i */
664 0, /* i2v */
665 v2i_ASIdentifiers, /* v2i */
666 i2r_ASIdentifiers, /* i2r */
667 0, /* r2i */
668 NULL /* extension-specific data */
669 };

671 /*
672 * Figure out whether extension uses inheritance.
673 */
674 int v3_asid_inherits(ASIdentifiers *asid)
675 {
676 return (asid != NULL &&
677 ((asid->asnum != NULL &&
678 asid->asnum->type == ASIdentifierChoice_inherit) ||
679 (asid->rdi != NULL &&
680 asid->rdi->type == ASIdentifierChoice_inherit)));
681 }

683 /*
684 * Figure out whether parent contains child.
685 */
686 static int asid_contains(ASIdOrRanges *parent, ASIdOrRanges *child)
687 {
688 ASN1_INTEGER *p_min, *p_max, *c_min, *c_max;
689 int p, c;

691 if (child == NULL || parent == child)
692 return 1;
693 if (parent == NULL)
694 return 0;

696 p = 0;
697 for (c = 0; c < sk_ASIdOrRange_num(child); c++) {
698 extract_min_max(sk_ASIdOrRange_value(child, c), &c_min, &c_max);
699 for (;; p++) {
700 if (p >= sk_ASIdOrRange_num(parent))
701 return 0;
702 extract_min_max(sk_ASIdOrRange_value(parent, p), &p_min, &p_max);
703 if (ASN1_INTEGER_cmp(p_max, c_max) < 0)
704 continue;
705 if (ASN1_INTEGER_cmp(p_min, c_min) > 0)
706 return 0;
707 break;
708 }
709 }

711 return 1;
712 }

714 /*
715 * Test whether a is a subet of b.
716 */
717 int v3_asid_subset(ASIdentifiers *a, ASIdentifiers *b)
718 {
719 return (a == NULL ||
720 a == b ||
721 (b != NULL &&

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_asid.c 12

722 !v3_asid_inherits(a) &&
723 !v3_asid_inherits(b) &&
724 asid_contains(b->asnum->u.asIdsOrRanges,
725 a->asnum->u.asIdsOrRanges) &&
726 asid_contains(b->rdi->u.asIdsOrRanges,
727 a->rdi->u.asIdsOrRanges)));
728 }

730 /*
731 * Validation error handling via callback.
732 */
733 #define validation_err(_err_) \
734 do { \
735 if (ctx != NULL) { \
736 ctx->error = _err_; \
737 ctx->error_depth = i; \
738 ctx->current_cert = x; \
739 ret = ctx->verify_cb(0, ctx); \
740 } else { \
741 ret = 0; \
742 } \
743 if (!ret) \
744 goto done; \
745 } while (0)

747 /*
748 * Core code for RFC 3779 3.3 path validation.
749 */
750 static int v3_asid_validate_path_internal(X509_STORE_CTX *ctx,
751 STACK_OF(X509) *chain,
752 ASIdentifiers *ext)
753 {
754 ASIdOrRanges *child_as = NULL, *child_rdi = NULL;
755 int i, ret = 1, inherit_as = 0, inherit_rdi = 0;
756 X509 *x;

758 OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0);
759 OPENSSL_assert(ctx != NULL || ext != NULL);
760 OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL);

762 /*
763 * Figure out where to start. If we don’t have an extension to
764 * check, we’re done. Otherwise, check canonical form and
765 * set up for walking up the chain.
766 */
767 if (ext != NULL) {
768 i = -1;
769 x = NULL;
770 } else {
771 i = 0;
772 x = sk_X509_value(chain, i);
773 OPENSSL_assert(x != NULL);
774 if ((ext = x->rfc3779_asid) == NULL)
775 goto done;
776 }
777 if (!v3_asid_is_canonical(ext))
778 validation_err(X509_V_ERR_INVALID_EXTENSION);
779 if (ext->asnum != NULL) {
780 switch (ext->asnum->type) {
781 case ASIdentifierChoice_inherit:
782 inherit_as = 1;
783 break;
784 case ASIdentifierChoice_asIdsOrRanges:
785 child_as = ext->asnum->u.asIdsOrRanges;
786 break;
787 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_asid.c 13

788 }
789 if (ext->rdi != NULL) {
790 switch (ext->rdi->type) {
791 case ASIdentifierChoice_inherit:
792 inherit_rdi = 1;
793 break;
794 case ASIdentifierChoice_asIdsOrRanges:
795 child_rdi = ext->rdi->u.asIdsOrRanges;
796 break;
797 }
798 }

800 /*
801 * Now walk up the chain. Extensions must be in canonical form, no
802 * cert may list resources that its parent doesn’t list.
803 */
804 for (i++; i < sk_X509_num(chain); i++) {
805 x = sk_X509_value(chain, i);
806 OPENSSL_assert(x != NULL);
807 if (x->rfc3779_asid == NULL) {
808 if (child_as != NULL || child_rdi != NULL)
809 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
810 continue;
811 }
812 if (!v3_asid_is_canonical(x->rfc3779_asid))
813 validation_err(X509_V_ERR_INVALID_EXTENSION);
814 if (x->rfc3779_asid->asnum == NULL && child_as != NULL) {
815 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
816 child_as = NULL;
817 inherit_as = 0;
818 }
819 if (x->rfc3779_asid->asnum != NULL &&
820 x->rfc3779_asid->asnum->type == ASIdentifierChoice_asIdsOrRanges) {
821 if (inherit_as ||
822 asid_contains(x->rfc3779_asid->asnum->u.asIdsOrRanges, child_as)) {
823 child_as = x->rfc3779_asid->asnum->u.asIdsOrRanges;
824 inherit_as = 0;
825 } else {
826 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
827 }
828 }
829 if (x->rfc3779_asid->rdi == NULL && child_rdi != NULL) {
830 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
831 child_rdi = NULL;
832 inherit_rdi = 0;
833 }
834 if (x->rfc3779_asid->rdi != NULL &&
835 x->rfc3779_asid->rdi->type == ASIdentifierChoice_asIdsOrRanges) {
836 if (inherit_rdi ||
837 asid_contains(x->rfc3779_asid->rdi->u.asIdsOrRanges, child_rdi)) {
838 child_rdi = x->rfc3779_asid->rdi->u.asIdsOrRanges;
839 inherit_rdi = 0;
840 } else {
841 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
842 }
843 }
844 }

846 /*
847 * Trust anchor can’t inherit.
848 */
849 OPENSSL_assert(x != NULL);
850 if (x->rfc3779_asid != NULL) {
851 if (x->rfc3779_asid->asnum != NULL &&
852 x->rfc3779_asid->asnum->type == ASIdentifierChoice_inherit)
853 validation_err(X509_V_ERR_UNNESTED_RESOURCE);

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_asid.c 14

854 if (x->rfc3779_asid->rdi != NULL &&
855 x->rfc3779_asid->rdi->type == ASIdentifierChoice_inherit)
856 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
857 }

859 done:
860 return ret;
861 }

863 #undef validation_err

865 /*
866 * RFC 3779 3.3 path validation -- called from X509_verify_cert().
867 */
868 int v3_asid_validate_path(X509_STORE_CTX *ctx)
869 {
870 return v3_asid_validate_path_internal(ctx, ctx->chain, NULL);
871 }

873 /*
874 * RFC 3779 3.3 path validation of an extension.
875 * Test whether chain covers extension.
876 */
877 int v3_asid_validate_resource_set(STACK_OF(X509) *chain,
878 ASIdentifiers *ext,
879 int allow_inheritance)
880 {
881 if (ext == NULL)
882 return 1;
883 if (chain == NULL || sk_X509_num(chain) == 0)
884 return 0;
885 if (!allow_inheritance && v3_asid_inherits(ext))
886 return 0;
887 return v3_asid_validate_path_internal(NULL, chain, ext);
888 }

890 #endif /* OPENSSL_NO_RFC3779 */

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_bcons.c 1

**
 4648 Fri May 30 18:32:15 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_bcons.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_bcons.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include <stdio.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_bcons.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/asn1t.h>
64 #include <openssl/conf.h>
65 #include <openssl/x509v3.h>

67 static STACK_OF(CONF_VALUE) *i2v_BASIC_CONSTRAINTS(X509V3_EXT_METHOD *method, BA
68 static BASIC_CONSTRAINTS *v2i_BASIC_CONSTRAINTS(X509V3_EXT_METHOD *method, X509V

70 const X509V3_EXT_METHOD v3_bcons = {
71 NID_basic_constraints, 0,
72 ASN1_ITEM_ref(BASIC_CONSTRAINTS),
73 0,0,0,0,
74 0,0,
75 (X509V3_EXT_I2V)i2v_BASIC_CONSTRAINTS,
76 (X509V3_EXT_V2I)v2i_BASIC_CONSTRAINTS,
77 NULL,NULL,
78 NULL
79 };

81 ASN1_SEQUENCE(BASIC_CONSTRAINTS) = {
82 ASN1_OPT(BASIC_CONSTRAINTS, ca, ASN1_FBOOLEAN),
83 ASN1_OPT(BASIC_CONSTRAINTS, pathlen, ASN1_INTEGER)
84 } ASN1_SEQUENCE_END(BASIC_CONSTRAINTS)

86 IMPLEMENT_ASN1_FUNCTIONS(BASIC_CONSTRAINTS)

89 static STACK_OF(CONF_VALUE) *i2v_BASIC_CONSTRAINTS(X509V3_EXT_METHOD *method,
90 BASIC_CONSTRAINTS *bcons, STACK_OF(CONF_VALUE) *extlist)
91 {
92 X509V3_add_value_bool("CA", bcons->ca, &extlist);
93 X509V3_add_value_int("pathlen", bcons->pathlen, &extlist);
94 return extlist;
95 }

97 static BASIC_CONSTRAINTS *v2i_BASIC_CONSTRAINTS(X509V3_EXT_METHOD *method,
98 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *values)
99 {
100 BASIC_CONSTRAINTS *bcons=NULL;
101 CONF_VALUE *val;
102 int i;
103 if(!(bcons = BASIC_CONSTRAINTS_new())) {
104 X509V3err(X509V3_F_V2I_BASIC_CONSTRAINTS, ERR_R_MALLOC_FAILURE);
105 return NULL;
106 }
107 for(i = 0; i < sk_CONF_VALUE_num(values); i++) {
108 val = sk_CONF_VALUE_value(values, i);
109 if(!strcmp(val->name, "CA")) {
110 if(!X509V3_get_value_bool(val, &bcons->ca)) goto err;
111 } else if(!strcmp(val->name, "pathlen")) {
112 if(!X509V3_get_value_int(val, &bcons->pathlen)) goto err
113 } else {
114 X509V3err(X509V3_F_V2I_BASIC_CONSTRAINTS, X509V3_R_INVAL
115 X509V3_conf_err(val);
116 goto err;
117 }
118 }
119 return bcons;
120 err:
121 BASIC_CONSTRAINTS_free(bcons);
122 return NULL;
123 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_bitst.c 1

**
 5025 Fri May 30 18:32:15 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_bitst.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_bitst.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/conf.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_bitst.c 2

62 #include <openssl/x509v3.h>

64 static BIT_STRING_BITNAME ns_cert_type_table[] = {
65 {0, "SSL Client", "client"},
66 {1, "SSL Server", "server"},
67 {2, "S/MIME", "email"},
68 {3, "Object Signing", "objsign"},
69 {4, "Unused", "reserved"},
70 {5, "SSL CA", "sslCA"},
71 {6, "S/MIME CA", "emailCA"},
72 {7, "Object Signing CA", "objCA"},
73 {-1, NULL, NULL}
74 };

76 static BIT_STRING_BITNAME key_usage_type_table[] = {
77 {0, "Digital Signature", "digitalSignature"},
78 {1, "Non Repudiation", "nonRepudiation"},
79 {2, "Key Encipherment", "keyEncipherment"},
80 {3, "Data Encipherment", "dataEncipherment"},
81 {4, "Key Agreement", "keyAgreement"},
82 {5, "Certificate Sign", "keyCertSign"},
83 {6, "CRL Sign", "cRLSign"},
84 {7, "Encipher Only", "encipherOnly"},
85 {8, "Decipher Only", "decipherOnly"},
86 {-1, NULL, NULL}
87 };

91 const X509V3_EXT_METHOD v3_nscert = EXT_BITSTRING(NID_netscape_cert_type, ns_cer
92 const X509V3_EXT_METHOD v3_key_usage = EXT_BITSTRING(NID_key_usage, key_usage_ty

94 STACK_OF(CONF_VALUE) *i2v_ASN1_BIT_STRING(X509V3_EXT_METHOD *method,
95 ASN1_BIT_STRING *bits, STACK_OF(CONF_VALUE) *ret)
96 {
97 BIT_STRING_BITNAME *bnam;
98 for(bnam =method->usr_data; bnam->lname; bnam++) {
99 if(ASN1_BIT_STRING_get_bit(bits, bnam->bitnum))
100 X509V3_add_value(bnam->lname, NULL, &ret);
101 }
102 return ret;
103 }
104
105 ASN1_BIT_STRING *v2i_ASN1_BIT_STRING(X509V3_EXT_METHOD *method,
106 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval)
107 {
108 CONF_VALUE *val;
109 ASN1_BIT_STRING *bs;
110 int i;
111 BIT_STRING_BITNAME *bnam;
112 if(!(bs = M_ASN1_BIT_STRING_new())) {
113 X509V3err(X509V3_F_V2I_ASN1_BIT_STRING,ERR_R_MALLOC_FAILURE);
114 return NULL;
115 }
116 for(i = 0; i < sk_CONF_VALUE_num(nval); i++) {
117 val = sk_CONF_VALUE_value(nval, i);
118 for(bnam = method->usr_data; bnam->lname; bnam++) {
119 if(!strcmp(bnam->sname, val->name) ||
120 !strcmp(bnam->lname, val->name)) {
121 if(!ASN1_BIT_STRING_set_bit(bs, bnam->bitnum, 1)
122 X509V3err(X509V3_F_V2I_ASN1_BIT_STRING,
123 ERR_R_MALLOC_FAILURE);
124 M_ASN1_BIT_STRING_free(bs);
125 return NULL;
126 }
127 break;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_bitst.c 3

128 }
129 }
130 if(!bnam->lname) {
131 X509V3err(X509V3_F_V2I_ASN1_BIT_STRING,
132 X509V3_R_UNKNOWN_BIT_STRING_ARGUMENT);
133 X509V3_conf_err(val);
134 M_ASN1_BIT_STRING_free(bs);
135 return NULL;
136 }
137 }
138 return bs;
139 }
140

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_conf.c 1

**
 14854 Fri May 30 18:32:15 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_conf.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_conf.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999-2002 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 /* extension creation utilities */

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_conf.c 2

62 #include <stdio.h>
63 #include <ctype.h>
64 #include "cryptlib.h"
65 #include <openssl/conf.h>
66 #include <openssl/x509.h>
67 #include <openssl/x509v3.h>

69 static int v3_check_critical(char **value);
70 static int v3_check_generic(char **value);
71 static X509_EXTENSION *do_ext_nconf(CONF *conf, X509V3_CTX *ctx, int ext_nid, in
72 static X509_EXTENSION *v3_generic_extension(const char *ext, char *value, int cr
73 static char *conf_lhash_get_string(void *db, char *section, char *value);
74 static STACK_OF(CONF_VALUE) *conf_lhash_get_section(void *db, char *section);
75 static X509_EXTENSION *do_ext_i2d(const X509V3_EXT_METHOD *method, int ext_nid,
76 int crit, void *ext_struc);
77 static unsigned char *generic_asn1(char *value, X509V3_CTX *ctx, long *ext_len);
78 /* CONF *conf: Config file */
79 /* char *name: Name */
80 /* char *value: Value */
81 X509_EXTENSION *X509V3_EXT_nconf(CONF *conf, X509V3_CTX *ctx, char *name,
82 char *value)
83 {
84 int crit;
85 int ext_type;
86 X509_EXTENSION *ret;
87 crit = v3_check_critical(&value);
88 if ((ext_type = v3_check_generic(&value)))
89 return v3_generic_extension(name, value, crit, ext_type, ctx);
90 ret = do_ext_nconf(conf, ctx, OBJ_sn2nid(name), crit, value);
91 if (!ret)
92 {
93 X509V3err(X509V3_F_X509V3_EXT_NCONF,X509V3_R_ERROR_IN_EXTENSION)
94 ERR_add_error_data(4,"name=", name, ", value=", value);
95 }
96 return ret;
97 }

99 /* CONF *conf: Config file */
100 /* char *value: Value */
101 X509_EXTENSION *X509V3_EXT_nconf_nid(CONF *conf, X509V3_CTX *ctx, int ext_nid,
102 char *value)
103 {
104 int crit;
105 int ext_type;
106 crit = v3_check_critical(&value);
107 if ((ext_type = v3_check_generic(&value)))
108 return v3_generic_extension(OBJ_nid2sn(ext_nid),
109 value, crit, ext_type, ctx);
110 return do_ext_nconf(conf, ctx, ext_nid, crit, value);
111 }

113 /* CONF *conf: Config file */
114 /* char *value: Value */
115 static X509_EXTENSION *do_ext_nconf(CONF *conf, X509V3_CTX *ctx, int ext_nid,
116 int crit, char *value)
117 {
118 const X509V3_EXT_METHOD *method;
119 X509_EXTENSION *ext;
120 STACK_OF(CONF_VALUE) *nval;
121 void *ext_struc;
122 if (ext_nid == NID_undef)
123 {
124 X509V3err(X509V3_F_DO_EXT_NCONF,X509V3_R_UNKNOWN_EXTENSION_NAME)
125 return NULL;
126 }
127 if (!(method = X509V3_EXT_get_nid(ext_nid)))

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_conf.c 3

128 {
129 X509V3err(X509V3_F_DO_EXT_NCONF,X509V3_R_UNKNOWN_EXTENSION);
130 return NULL;
131 }
132 /* Now get internal extension representation based on type */
133 if (method->v2i)
134 {
135 if(*value == ’@’) nval = NCONF_get_section(conf, value + 1);
136 else nval = X509V3_parse_list(value);
137 if(sk_CONF_VALUE_num(nval) <= 0)
138 {
139 X509V3err(X509V3_F_DO_EXT_NCONF,X509V3_R_INVALID_EXTENSI
140 ERR_add_error_data(4, "name=", OBJ_nid2sn(ext_nid), ",se
141 return NULL;
142 }
143 ext_struc = method->v2i(method, ctx, nval);
144 if(*value != ’@’) sk_CONF_VALUE_pop_free(nval,
145 X509V3_conf_free);
146 if(!ext_struc) return NULL;
147 }
148 else if(method->s2i)
149 {
150 if(!(ext_struc = method->s2i(method, ctx, value))) return NULL;
151 }
152 else if(method->r2i)
153 {
154 if(!ctx->db || !ctx->db_meth)
155 {
156 X509V3err(X509V3_F_DO_EXT_NCONF,X509V3_R_NO_CONFIG_DATAB
157 return NULL;
158 }
159 if(!(ext_struc = method->r2i(method, ctx, value))) return NULL;
160 }
161 else
162 {
163 X509V3err(X509V3_F_DO_EXT_NCONF,X509V3_R_EXTENSION_SETTING_NOT_S
164 ERR_add_error_data(2, "name=", OBJ_nid2sn(ext_nid));
165 return NULL;
166 }

168 ext = do_ext_i2d(method, ext_nid, crit, ext_struc);
169 if(method->it) ASN1_item_free(ext_struc, ASN1_ITEM_ptr(method->it));
170 else method->ext_free(ext_struc);
171 return ext;

173 }

175 static X509_EXTENSION *do_ext_i2d(const X509V3_EXT_METHOD *method, int ext_nid,
176 int crit, void *ext_struc)
177 {
178 unsigned char *ext_der;
179 int ext_len;
180 ASN1_OCTET_STRING *ext_oct;
181 X509_EXTENSION *ext;
182 /* Convert internal representation to DER */
183 if (method->it)
184 {
185 ext_der = NULL;
186 ext_len = ASN1_item_i2d(ext_struc, &ext_der, ASN1_ITEM_ptr(metho
187 if (ext_len < 0) goto merr;
188 }
189 else
190 {
191 unsigned char *p;
192 ext_len = method->i2d(ext_struc, NULL);
193 if(!(ext_der = OPENSSL_malloc(ext_len))) goto merr;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_conf.c 4

194 p = ext_der;
195 method->i2d(ext_struc, &p);
196 }
197 if (!(ext_oct = M_ASN1_OCTET_STRING_new())) goto merr;
198 ext_oct->data = ext_der;
199 ext_oct->length = ext_len;

201 ext = X509_EXTENSION_create_by_NID(NULL, ext_nid, crit, ext_oct);
202 if (!ext) goto merr;
203 M_ASN1_OCTET_STRING_free(ext_oct);

205 return ext;

207 merr:
208 X509V3err(X509V3_F_DO_EXT_I2D,ERR_R_MALLOC_FAILURE);
209 return NULL;

211 }

213 /* Given an internal structure, nid and critical flag create an extension */

215 X509_EXTENSION *X509V3_EXT_i2d(int ext_nid, int crit, void *ext_struc)
216 {
217 const X509V3_EXT_METHOD *method;
218 if (!(method = X509V3_EXT_get_nid(ext_nid))) {
219 X509V3err(X509V3_F_X509V3_EXT_I2D,X509V3_R_UNKNOWN_EXTENSION);
220 return NULL;
221 }
222 return do_ext_i2d(method, ext_nid, crit, ext_struc);
223 }

225 /* Check the extension string for critical flag */
226 static int v3_check_critical(char **value)
227 {
228 char *p = *value;
229 if ((strlen(p) < 9) || strncmp(p, "critical,", 9)) return 0;
230 p+=9;
231 while(isspace((unsigned char)*p)) p++;
232 *value = p;
233 return 1;
234 }

236 /* Check extension string for generic extension and return the type */
237 static int v3_check_generic(char **value)
238 {
239 int gen_type = 0;
240 char *p = *value;
241 if ((strlen(p) >= 4) && !strncmp(p, "DER:", 4))
242 {
243 p+=4;
244 gen_type = 1;
245 }
246 else if ((strlen(p) >= 5) && !strncmp(p, "ASN1:", 5))
247 {
248 p+=5;
249 gen_type = 2;
250 }
251 else
252 return 0;

254 while (isspace((unsigned char)*p)) p++;
255 *value = p;
256 return gen_type;
257 }

259 /* Create a generic extension: for now just handle DER type */

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_conf.c 5

260 static X509_EXTENSION *v3_generic_extension(const char *ext, char *value,
261 int crit, int gen_type,
262 X509V3_CTX *ctx)
263 {
264 unsigned char *ext_der=NULL;
265 long ext_len;
266 ASN1_OBJECT *obj=NULL;
267 ASN1_OCTET_STRING *oct=NULL;
268 X509_EXTENSION *extension=NULL;
269 if (!(obj = OBJ_txt2obj(ext, 0)))
270 {
271 X509V3err(X509V3_F_V3_GENERIC_EXTENSION,X509V3_R_EXTENSION_NAME_
272 ERR_add_error_data(2, "name=", ext);
273 goto err;
274 }

276 if (gen_type == 1)
277 ext_der = string_to_hex(value, &ext_len);
278 else if (gen_type == 2)
279 ext_der = generic_asn1(value, ctx, &ext_len);

281 if (ext_der == NULL)
282 {
283 X509V3err(X509V3_F_V3_GENERIC_EXTENSION,X509V3_R_EXTENSION_VALUE
284 ERR_add_error_data(2, "value=", value);
285 goto err;
286 }

288 if (!(oct = M_ASN1_OCTET_STRING_new()))
289 {
290 X509V3err(X509V3_F_V3_GENERIC_EXTENSION,ERR_R_MALLOC_FAILURE);
291 goto err;
292 }

294 oct->data = ext_der;
295 oct->length = ext_len;
296 ext_der = NULL;

298 extension = X509_EXTENSION_create_by_OBJ(NULL, obj, crit, oct);

300 err:
301 ASN1_OBJECT_free(obj);
302 M_ASN1_OCTET_STRING_free(oct);
303 if(ext_der) OPENSSL_free(ext_der);
304 return extension;

306 }

308 static unsigned char *generic_asn1(char *value, X509V3_CTX *ctx, long *ext_len)
309 {
310 ASN1_TYPE *typ;
311 unsigned char *ext_der = NULL;
312 typ = ASN1_generate_v3(value, ctx);
313 if (typ == NULL)
314 return NULL;
315 *ext_len = i2d_ASN1_TYPE(typ, &ext_der);
316 ASN1_TYPE_free(typ);
317 return ext_der;
318 }

320 /* This is the main function: add a bunch of extensions based on a config file
321 * section to an extension STACK.
322 */

325 int X509V3_EXT_add_nconf_sk(CONF *conf, X509V3_CTX *ctx, char *section,

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_conf.c 6

326 STACK_OF(X509_EXTENSION) **sk)
327 {
328 X509_EXTENSION *ext;
329 STACK_OF(CONF_VALUE) *nval;
330 CONF_VALUE *val;
331 int i;
332 if (!(nval = NCONF_get_section(conf, section))) return 0;
333 for (i = 0; i < sk_CONF_VALUE_num(nval); i++)
334 {
335 val = sk_CONF_VALUE_value(nval, i);
336 if (!(ext = X509V3_EXT_nconf(conf, ctx, val->name, val->value)))
337 return 0;
338 if (sk) X509v3_add_ext(sk, ext, -1);
339 X509_EXTENSION_free(ext);
340 }
341 return 1;
342 }

344 /* Convenience functions to add extensions to a certificate, CRL and request */

346 int X509V3_EXT_add_nconf(CONF *conf, X509V3_CTX *ctx, char *section,
347 X509 *cert)
348 {
349 STACK_OF(X509_EXTENSION) **sk = NULL;
350 if (cert)
351 sk = &cert->cert_info->extensions;
352 return X509V3_EXT_add_nconf_sk(conf, ctx, section, sk);
353 }

355 /* Same as above but for a CRL */

357 int X509V3_EXT_CRL_add_nconf(CONF *conf, X509V3_CTX *ctx, char *section,
358 X509_CRL *crl)
359 {
360 STACK_OF(X509_EXTENSION) **sk = NULL;
361 if (crl)
362 sk = &crl->crl->extensions;
363 return X509V3_EXT_add_nconf_sk(conf, ctx, section, sk);
364 }

366 /* Add extensions to certificate request */

368 int X509V3_EXT_REQ_add_nconf(CONF *conf, X509V3_CTX *ctx, char *section,
369 X509_REQ *req)
370 {
371 STACK_OF(X509_EXTENSION) *extlist = NULL, **sk = NULL;
372 int i;
373 if (req)
374 sk = &extlist;
375 i = X509V3_EXT_add_nconf_sk(conf, ctx, section, sk);
376 if (!i || !sk)
377 return i;
378 i = X509_REQ_add_extensions(req, extlist);
379 sk_X509_EXTENSION_pop_free(extlist, X509_EXTENSION_free);
380 return i;
381 }

383 /* Config database functions */

385 char * X509V3_get_string(X509V3_CTX *ctx, char *name, char *section)
386 {
387 if(!ctx->db || !ctx->db_meth || !ctx->db_meth->get_string)
388 {
389 X509V3err(X509V3_F_X509V3_GET_STRING,X509V3_R_OPERATION_NOT_DEFI
390 return NULL;
391 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_conf.c 7

392 if (ctx->db_meth->get_string)
393 return ctx->db_meth->get_string(ctx->db, name, section);
394 return NULL;
395 }

397 STACK_OF(CONF_VALUE) * X509V3_get_section(X509V3_CTX *ctx, char *section)
398 {
399 if(!ctx->db || !ctx->db_meth || !ctx->db_meth->get_section)
400 {
401 X509V3err(X509V3_F_X509V3_GET_SECTION,X509V3_R_OPERATION_NOT_DEF
402 return NULL;
403 }
404 if (ctx->db_meth->get_section)
405 return ctx->db_meth->get_section(ctx->db, section);
406 return NULL;
407 }

409 void X509V3_string_free(X509V3_CTX *ctx, char *str)
410 {
411 if (!str) return;
412 if (ctx->db_meth->free_string)
413 ctx->db_meth->free_string(ctx->db, str);
414 }

416 void X509V3_section_free(X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *section)
417 {
418 if (!section) return;
419 if (ctx->db_meth->free_section)
420 ctx->db_meth->free_section(ctx->db, section);
421 }

423 static char *nconf_get_string(void *db, char *section, char *value)
424 {
425 return NCONF_get_string(db, section, value);
426 }

428 static STACK_OF(CONF_VALUE) *nconf_get_section(void *db, char *section)
429 {
430 return NCONF_get_section(db, section);
431 }

433 static X509V3_CONF_METHOD nconf_method = {
434 nconf_get_string,
435 nconf_get_section,
436 NULL,
437 NULL
438 };

440 void X509V3_set_nconf(X509V3_CTX *ctx, CONF *conf)
441 {
442 ctx->db_meth = &nconf_method;
443 ctx->db = conf;
444 }

446 void X509V3_set_ctx(X509V3_CTX *ctx, X509 *issuer, X509 *subj, X509_REQ *req,
447 X509_CRL *crl, int flags)
448 {
449 ctx->issuer_cert = issuer;
450 ctx->subject_cert = subj;
451 ctx->crl = crl;
452 ctx->subject_req = req;
453 ctx->flags = flags;
454 }

456 /* Old conf compatibility functions */

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_conf.c 8

458 X509_EXTENSION *X509V3_EXT_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx,
459 char *name, char *value)
460 {
461 CONF ctmp;
462 CONF_set_nconf(&ctmp, conf);
463 return X509V3_EXT_nconf(&ctmp, ctx, name, value);
464 }

466 /* LHASH *conf: Config file */
467 /* char *value: Value */
468 X509_EXTENSION *X509V3_EXT_conf_nid(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx,
469 int ext_nid, char *value)
470 {
471 CONF ctmp;
472 CONF_set_nconf(&ctmp, conf);
473 return X509V3_EXT_nconf_nid(&ctmp, ctx, ext_nid, value);
474 }

476 static char *conf_lhash_get_string(void *db, char *section, char *value)
477 {
478 return CONF_get_string(db, section, value);
479 }

481 static STACK_OF(CONF_VALUE) *conf_lhash_get_section(void *db, char *section)
482 {
483 return CONF_get_section(db, section);
484 }

486 static X509V3_CONF_METHOD conf_lhash_method = {
487 conf_lhash_get_string,
488 conf_lhash_get_section,
489 NULL,
490 NULL
491 };

493 void X509V3_set_conf_lhash(X509V3_CTX *ctx, LHASH_OF(CONF_VALUE) *lhash)
494 {
495 ctx->db_meth = &conf_lhash_method;
496 ctx->db = lhash;
497 }

499 int X509V3_EXT_add_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx,
500 char *section, X509 *cert)
501 {
502 CONF ctmp;
503 CONF_set_nconf(&ctmp, conf);
504 return X509V3_EXT_add_nconf(&ctmp, ctx, section, cert);
505 }

507 /* Same as above but for a CRL */

509 int X509V3_EXT_CRL_add_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx,
510 char *section, X509_CRL *crl)
511 {
512 CONF ctmp;
513 CONF_set_nconf(&ctmp, conf);
514 return X509V3_EXT_CRL_add_nconf(&ctmp, ctx, section, crl);
515 }

517 /* Add extensions to certificate request */

519 int X509V3_EXT_REQ_add_conf(LHASH_OF(CONF_VALUE) *conf, X509V3_CTX *ctx,
520 char *section, X509_REQ *req)
521 {
522 CONF ctmp;
523 CONF_set_nconf(&ctmp, conf);

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_conf.c 9

524 return X509V3_EXT_REQ_add_nconf(&ctmp, ctx, section, req);
525 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_cpols.c 1

**
 13924 Fri May 30 18:32:15 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_cpols.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_cpols.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999-2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/conf.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_cpols.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/asn1t.h>
64 #include <openssl/x509v3.h>

66 #include "pcy_int.h"

68 /* Certificate policies extension support: this one is a bit complex... */

70 static int i2r_certpol(X509V3_EXT_METHOD *method, STACK_OF(POLICYINFO) *pol, BIO
71 static STACK_OF(POLICYINFO) *r2i_certpol(X509V3_EXT_METHOD *method, X509V3_CTX *
72 static void print_qualifiers(BIO *out, STACK_OF(POLICYQUALINFO) *quals, int inde
73 static void print_notice(BIO *out, USERNOTICE *notice, int indent);
74 static POLICYINFO *policy_section(X509V3_CTX *ctx,
75 STACK_OF(CONF_VALUE) *polstrs, int ia5org);
76 static POLICYQUALINFO *notice_section(X509V3_CTX *ctx,
77 STACK_OF(CONF_VALUE) *unot, int ia5org);
78 static int nref_nos(STACK_OF(ASN1_INTEGER) *nnums, STACK_OF(CONF_VALUE) *nos);

80 const X509V3_EXT_METHOD v3_cpols = {
81 NID_certificate_policies, 0,ASN1_ITEM_ref(CERTIFICATEPOLICIES),
82 0,0,0,0,
83 0,0,
84 0,0,
85 (X509V3_EXT_I2R)i2r_certpol,
86 (X509V3_EXT_R2I)r2i_certpol,
87 NULL
88 };

90 ASN1_ITEM_TEMPLATE(CERTIFICATEPOLICIES) =
91 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, CERTIFICATEPOLICIES, POL
92 ASN1_ITEM_TEMPLATE_END(CERTIFICATEPOLICIES)

94 IMPLEMENT_ASN1_FUNCTIONS(CERTIFICATEPOLICIES)

96 ASN1_SEQUENCE(POLICYINFO) = {
97 ASN1_SIMPLE(POLICYINFO, policyid, ASN1_OBJECT),
98 ASN1_SEQUENCE_OF_OPT(POLICYINFO, qualifiers, POLICYQUALINFO)
99 } ASN1_SEQUENCE_END(POLICYINFO)

101 IMPLEMENT_ASN1_FUNCTIONS(POLICYINFO)

103 ASN1_ADB_TEMPLATE(policydefault) = ASN1_SIMPLE(POLICYQUALINFO, d.other, ASN1_ANY

105 ASN1_ADB(POLICYQUALINFO) = {
106 ADB_ENTRY(NID_id_qt_cps, ASN1_SIMPLE(POLICYQUALINFO, d.cpsuri, ASN1_IA5S
107 ADB_ENTRY(NID_id_qt_unotice, ASN1_SIMPLE(POLICYQUALINFO, d.usernotice, U
108 } ASN1_ADB_END(POLICYQUALINFO, 0, pqualid, 0, &policydefault_tt, NULL);

110 ASN1_SEQUENCE(POLICYQUALINFO) = {
111 ASN1_SIMPLE(POLICYQUALINFO, pqualid, ASN1_OBJECT),
112 ASN1_ADB_OBJECT(POLICYQUALINFO)
113 } ASN1_SEQUENCE_END(POLICYQUALINFO)

115 IMPLEMENT_ASN1_FUNCTIONS(POLICYQUALINFO)

117 ASN1_SEQUENCE(USERNOTICE) = {
118 ASN1_OPT(USERNOTICE, noticeref, NOTICEREF),
119 ASN1_OPT(USERNOTICE, exptext, DISPLAYTEXT)
120 } ASN1_SEQUENCE_END(USERNOTICE)

122 IMPLEMENT_ASN1_FUNCTIONS(USERNOTICE)

124 ASN1_SEQUENCE(NOTICEREF) = {
125 ASN1_SIMPLE(NOTICEREF, organization, DISPLAYTEXT),
126 ASN1_SEQUENCE_OF(NOTICEREF, noticenos, ASN1_INTEGER)
127 } ASN1_SEQUENCE_END(NOTICEREF)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_cpols.c 3

129 IMPLEMENT_ASN1_FUNCTIONS(NOTICEREF)

131 static STACK_OF(POLICYINFO) *r2i_certpol(X509V3_EXT_METHOD *method,
132 X509V3_CTX *ctx, char *value)
133 {
134 STACK_OF(POLICYINFO) *pols = NULL;
135 char *pstr;
136 POLICYINFO *pol;
137 ASN1_OBJECT *pobj;
138 STACK_OF(CONF_VALUE) *vals;
139 CONF_VALUE *cnf;
140 int i, ia5org;
141 pols = sk_POLICYINFO_new_null();
142 if (pols == NULL) {
143 X509V3err(X509V3_F_R2I_CERTPOL, ERR_R_MALLOC_FAILURE);
144 return NULL;
145 }
146 vals = X509V3_parse_list(value);
147 if (vals == NULL) {
148 X509V3err(X509V3_F_R2I_CERTPOL, ERR_R_X509V3_LIB);
149 goto err;
150 }
151 ia5org = 0;
152 for(i = 0; i < sk_CONF_VALUE_num(vals); i++) {
153 cnf = sk_CONF_VALUE_value(vals, i);
154 if(cnf->value || !cnf->name) {
155 X509V3err(X509V3_F_R2I_CERTPOL,X509V3_R_INVALID_POLICY_I
156 X509V3_conf_err(cnf);
157 goto err;
158 }
159 pstr = cnf->name;
160 if(!strcmp(pstr,"ia5org")) {
161 ia5org = 1;
162 continue;
163 } else if(*pstr == ’@’) {
164 STACK_OF(CONF_VALUE) *polsect;
165 polsect = X509V3_get_section(ctx, pstr + 1);
166 if(!polsect) {
167 X509V3err(X509V3_F_R2I_CERTPOL,X509V3_R_INVALID_

169 X509V3_conf_err(cnf);
170 goto err;
171 }
172 pol = policy_section(ctx, polsect, ia5org);
173 X509V3_section_free(ctx, polsect);
174 if(!pol) goto err;
175 } else {
176 if(!(pobj = OBJ_txt2obj(cnf->name, 0))) {
177 X509V3err(X509V3_F_R2I_CERTPOL,X509V3_R_INVALID_
178 X509V3_conf_err(cnf);
179 goto err;
180 }
181 pol = POLICYINFO_new();
182 pol->policyid = pobj;
183 }
184 if (!sk_POLICYINFO_push(pols, pol)){
185 POLICYINFO_free(pol);
186 X509V3err(X509V3_F_R2I_CERTPOL, ERR_R_MALLOC_FAILURE);
187 goto err;
188 }
189 }
190 sk_CONF_VALUE_pop_free(vals, X509V3_conf_free);
191 return pols;
192 err:
193 sk_CONF_VALUE_pop_free(vals, X509V3_conf_free);

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_cpols.c 4

194 sk_POLICYINFO_pop_free(pols, POLICYINFO_free);
195 return NULL;
196 }

198 static POLICYINFO *policy_section(X509V3_CTX *ctx,
199 STACK_OF(CONF_VALUE) *polstrs, int ia5org)
200 {
201 int i;
202 CONF_VALUE *cnf;
203 POLICYINFO *pol;
204 POLICYQUALINFO *qual;
205 if(!(pol = POLICYINFO_new())) goto merr;
206 for(i = 0; i < sk_CONF_VALUE_num(polstrs); i++) {
207 cnf = sk_CONF_VALUE_value(polstrs, i);
208 if(!strcmp(cnf->name, "policyIdentifier")) {
209 ASN1_OBJECT *pobj;
210 if(!(pobj = OBJ_txt2obj(cnf->value, 0))) {
211 X509V3err(X509V3_F_POLICY_SECTION,X509V3_R_INVAL
212 X509V3_conf_err(cnf);
213 goto err;
214 }
215 pol->policyid = pobj;

217 } else if(!name_cmp(cnf->name, "CPS")) {
218 if(!pol->qualifiers) pol->qualifiers =
219 sk_POLICYQUALINFO_new_null();
220 if(!(qual = POLICYQUALINFO_new())) goto merr;
221 if(!sk_POLICYQUALINFO_push(pol->qualifiers, qual))
222 goto merr;
223 qual->pqualid = OBJ_nid2obj(NID_id_qt_cps);
224 qual->d.cpsuri = M_ASN1_IA5STRING_new();
225 if(!ASN1_STRING_set(qual->d.cpsuri, cnf->value,
226 strlen(cnf->value))) goto merr;
227 } else if(!name_cmp(cnf->name, "userNotice")) {
228 STACK_OF(CONF_VALUE) *unot;
229 if(*cnf->value != ’@’) {
230 X509V3err(X509V3_F_POLICY_SECTION,X509V3_R_EXPEC
231 X509V3_conf_err(cnf);
232 goto err;
233 }
234 unot = X509V3_get_section(ctx, cnf->value + 1);
235 if(!unot) {
236 X509V3err(X509V3_F_POLICY_SECTION,X509V3_R_INVAL

238 X509V3_conf_err(cnf);
239 goto err;
240 }
241 qual = notice_section(ctx, unot, ia5org);
242 X509V3_section_free(ctx, unot);
243 if(!qual) goto err;
244 if(!pol->qualifiers) pol->qualifiers =
245 sk_POLICYQUALINFO_new_null();
246 if(!sk_POLICYQUALINFO_push(pol->qualifiers, qual))
247 goto merr;
248 } else {
249 X509V3err(X509V3_F_POLICY_SECTION,X509V3_R_INVALID_OPTIO

251 X509V3_conf_err(cnf);
252 goto err;
253 }
254 }
255 if(!pol->policyid) {
256 X509V3err(X509V3_F_POLICY_SECTION,X509V3_R_NO_POLICY_IDENTIFIER)
257 goto err;
258 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_cpols.c 5

260 return pol;

262 merr:
263 X509V3err(X509V3_F_POLICY_SECTION,ERR_R_MALLOC_FAILURE);

265 err:
266 POLICYINFO_free(pol);
267 return NULL;
268
269
270 }

272 static POLICYQUALINFO *notice_section(X509V3_CTX *ctx,
273 STACK_OF(CONF_VALUE) *unot, int ia5org)
274 {
275 int i, ret;
276 CONF_VALUE *cnf;
277 USERNOTICE *not;
278 POLICYQUALINFO *qual;
279 if(!(qual = POLICYQUALINFO_new())) goto merr;
280 qual->pqualid = OBJ_nid2obj(NID_id_qt_unotice);
281 if(!(not = USERNOTICE_new())) goto merr;
282 qual->d.usernotice = not;
283 for(i = 0; i < sk_CONF_VALUE_num(unot); i++) {
284 cnf = sk_CONF_VALUE_value(unot, i);
285 if(!strcmp(cnf->name, "explicitText")) {
286 not->exptext = M_ASN1_VISIBLESTRING_new();
287 if(!ASN1_STRING_set(not->exptext, cnf->value,
288 strlen(cnf->value))) goto merr;
289 } else if(!strcmp(cnf->name, "organization")) {
290 NOTICEREF *nref;
291 if(!not->noticeref) {
292 if(!(nref = NOTICEREF_new())) goto merr;
293 not->noticeref = nref;
294 } else nref = not->noticeref;
295 if(ia5org) nref->organization->type = V_ASN1_IA5STRING;
296 else nref->organization->type = V_ASN1_VISIBLESTRING;
297 if(!ASN1_STRING_set(nref->organization, cnf->value,
298 strlen(cnf->value))) goto merr;
299 } else if(!strcmp(cnf->name, "noticeNumbers")) {
300 NOTICEREF *nref;
301 STACK_OF(CONF_VALUE) *nos;
302 if(!not->noticeref) {
303 if(!(nref = NOTICEREF_new())) goto merr;
304 not->noticeref = nref;
305 } else nref = not->noticeref;
306 nos = X509V3_parse_list(cnf->value);
307 if(!nos || !sk_CONF_VALUE_num(nos)) {
308 X509V3err(X509V3_F_NOTICE_SECTION,X509V3_R_INVAL
309 X509V3_conf_err(cnf);
310 goto err;
311 }
312 ret = nref_nos(nref->noticenos, nos);
313 sk_CONF_VALUE_pop_free(nos, X509V3_conf_free);
314 if (!ret)
315 goto err;
316 } else {
317 X509V3err(X509V3_F_NOTICE_SECTION,X509V3_R_INVALID_OPTIO
318 X509V3_conf_err(cnf);
319 goto err;
320 }
321 }

323 if(not->noticeref &&
324 (!not->noticeref->noticenos || !not->noticeref->organization)) {
325 X509V3err(X509V3_F_NOTICE_SECTION,X509V3_R_NEED_ORGANIZA

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_cpols.c 6

326 goto err;
327 }

329 return qual;

331 merr:
332 X509V3err(X509V3_F_NOTICE_SECTION,ERR_R_MALLOC_FAILURE);

334 err:
335 POLICYQUALINFO_free(qual);
336 return NULL;
337 }

339 static int nref_nos(STACK_OF(ASN1_INTEGER) *nnums, STACK_OF(CONF_VALUE) *nos)
340 {
341 CONF_VALUE *cnf;
342 ASN1_INTEGER *aint;

344 int i;

346 for(i = 0; i < sk_CONF_VALUE_num(nos); i++) {
347 cnf = sk_CONF_VALUE_value(nos, i);
348 if(!(aint = s2i_ASN1_INTEGER(NULL, cnf->name))) {
349 X509V3err(X509V3_F_NREF_NOS,X509V3_R_INVALID_NUMBER);
350 goto err;
351 }
352 if(!sk_ASN1_INTEGER_push(nnums, aint)) goto merr;
353 }
354 return 1;

356 merr:
357 X509V3err(X509V3_F_NREF_NOS,ERR_R_MALLOC_FAILURE);

359 err:
360 sk_ASN1_INTEGER_pop_free(nnums, ASN1_STRING_free);
361 return 0;
362 }

365 static int i2r_certpol(X509V3_EXT_METHOD *method, STACK_OF(POLICYINFO) *pol,
366 BIO *out, int indent)
367 {
368 int i;
369 POLICYINFO *pinfo;
370 /* First print out the policy OIDs */
371 for(i = 0; i < sk_POLICYINFO_num(pol); i++) {
372 pinfo = sk_POLICYINFO_value(pol, i);
373 BIO_printf(out, "%*sPolicy: ", indent, "");
374 i2a_ASN1_OBJECT(out, pinfo->policyid);
375 BIO_puts(out, "\n");
376 if(pinfo->qualifiers)
377 print_qualifiers(out, pinfo->qualifiers, indent + 2);
378 }
379 return 1;
380 }

382 static void print_qualifiers(BIO *out, STACK_OF(POLICYQUALINFO) *quals,
383 int indent)
384 {
385 POLICYQUALINFO *qualinfo;
386 int i;
387 for(i = 0; i < sk_POLICYQUALINFO_num(quals); i++) {
388 qualinfo = sk_POLICYQUALINFO_value(quals, i);
389 switch(OBJ_obj2nid(qualinfo->pqualid))
390 {
391 case NID_id_qt_cps:

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_cpols.c 7

392 BIO_printf(out, "%*sCPS: %s\n", indent, "",
393 qualinfo->d.cpsuri->data);
394 break;
395
396 case NID_id_qt_unotice:
397 BIO_printf(out, "%*sUser Notice:\n", indent, "");
398 print_notice(out, qualinfo->d.usernotice, indent + 2);
399 break;

401 default:
402 BIO_printf(out, "%*sUnknown Qualifier: ",
403 indent + 2, "");
404
405 i2a_ASN1_OBJECT(out, qualinfo->pqualid);
406 BIO_puts(out, "\n");
407 break;
408 }
409 }
410 }

412 static void print_notice(BIO *out, USERNOTICE *notice, int indent)
413 {
414 int i;
415 if(notice->noticeref) {
416 NOTICEREF *ref;
417 ref = notice->noticeref;
418 BIO_printf(out, "%*sOrganization: %s\n", indent, "",
419 ref->organization->data);
420 BIO_printf(out, "%*sNumber%s: ", indent, "",
421 sk_ASN1_INTEGER_num(ref->noticenos) > 1 ? "s" : "");
422 for(i = 0; i < sk_ASN1_INTEGER_num(ref->noticenos); i++) {
423 ASN1_INTEGER *num;
424 char *tmp;
425 num = sk_ASN1_INTEGER_value(ref->noticenos, i);
426 if(i) BIO_puts(out, ", ");
427 tmp = i2s_ASN1_INTEGER(NULL, num);
428 BIO_puts(out, tmp);
429 OPENSSL_free(tmp);
430 }
431 BIO_puts(out, "\n");
432 }
433 if(notice->exptext)
434 BIO_printf(out, "%*sExplicit Text: %s\n", indent, "",
435 notice->exptext->data);
436 }

438 void X509_POLICY_NODE_print(BIO *out, X509_POLICY_NODE *node, int indent)
439 {
440 const X509_POLICY_DATA *dat = node->data;

442 BIO_printf(out, "%*sPolicy: ", indent, "");
443
444 i2a_ASN1_OBJECT(out, dat->valid_policy);
445 BIO_puts(out, "\n");
446 BIO_printf(out, "%*s%s\n", indent + 2, "",
447 node_data_critical(dat) ? "Critical" : "Non Critical");
448 if (dat->qualifier_set)
449 print_qualifiers(out, dat->qualifier_set, indent + 2);
450 else
451 BIO_printf(out, "%*sNo Qualifiers\n", indent + 2, "");
452 }

455 IMPLEMENT_STACK_OF(X509_POLICY_NODE)
456 IMPLEMENT_STACK_OF(X509_POLICY_DATA)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_cpols.c 8

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_crld.c 1

**
 15748 Fri May 30 18:32:15 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_crld.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_crld.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999-2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/conf.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_crld.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/asn1t.h>
64 #include <openssl/x509v3.h>

66 static void *v2i_crld(const X509V3_EXT_METHOD *method,
67 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval);
68 static int i2r_crldp(const X509V3_EXT_METHOD *method, void *pcrldp, BIO *out,
69 int indent);

71 const X509V3_EXT_METHOD v3_crld =
72 {
73 NID_crl_distribution_points, 0, ASN1_ITEM_ref(CRL_DIST_POINTS),
74 0,0,0,0,
75 0,0,
76 0,
77 v2i_crld,
78 i2r_crldp,0,
79 NULL
80 };

82 const X509V3_EXT_METHOD v3_freshest_crl =
83 {
84 NID_freshest_crl, 0, ASN1_ITEM_ref(CRL_DIST_POINTS),
85 0,0,0,0,
86 0,0,
87 0,
88 v2i_crld,
89 i2r_crldp,0,
90 NULL
91 };

93 static STACK_OF(GENERAL_NAME) *gnames_from_sectname(X509V3_CTX *ctx, char *sect)
94 {
95 STACK_OF(CONF_VALUE) *gnsect;
96 STACK_OF(GENERAL_NAME) *gens;
97 if (*sect == ’@’)
98 gnsect = X509V3_get_section(ctx, sect + 1);
99 else
100 gnsect = X509V3_parse_list(sect);
101 if (!gnsect)
102 {
103 X509V3err(X509V3_F_GNAMES_FROM_SECTNAME,
104 X509V3_R_SECTION_NOT_FOUND);
105 return NULL;
106 }
107 gens = v2i_GENERAL_NAMES(NULL, ctx, gnsect);
108 if (*sect == ’@’)
109 X509V3_section_free(ctx, gnsect);
110 else
111 sk_CONF_VALUE_pop_free(gnsect, X509V3_conf_free);
112 return gens;
113 }

115 static int set_dist_point_name(DIST_POINT_NAME **pdp, X509V3_CTX *ctx,
116 CONF_VALUE *cnf)
117 {
118 STACK_OF(GENERAL_NAME) *fnm = NULL;
119 STACK_OF(X509_NAME_ENTRY) *rnm = NULL;
120 if (!strncmp(cnf->name, "fullname", 9))
121 {
122 fnm = gnames_from_sectname(ctx, cnf->value);
123 if (!fnm)
124 goto err;
125 }
126 else if (!strcmp(cnf->name, "relativename"))
127 {

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_crld.c 3

128 int ret;
129 STACK_OF(CONF_VALUE) *dnsect;
130 X509_NAME *nm;
131 nm = X509_NAME_new();
132 if (!nm)
133 return -1;
134 dnsect = X509V3_get_section(ctx, cnf->value);
135 if (!dnsect)
136 {
137 X509V3err(X509V3_F_SET_DIST_POINT_NAME,
138 X509V3_R_SECTION_NOT_FOUND);
139 return -1;
140 }
141 ret = X509V3_NAME_from_section(nm, dnsect, MBSTRING_ASC);
142 X509V3_section_free(ctx, dnsect);
143 rnm = nm->entries;
144 nm->entries = NULL;
145 X509_NAME_free(nm);
146 if (!ret || sk_X509_NAME_ENTRY_num(rnm) <= 0)
147 goto err;
148 /* Since its a name fragment can’t have more than one
149 * RDNSequence
150 */
151 if (sk_X509_NAME_ENTRY_value(rnm,
152 sk_X509_NAME_ENTRY_num(rnm) - 1)->set)
153 {
154 X509V3err(X509V3_F_SET_DIST_POINT_NAME,
155 X509V3_R_INVALID_MULTIPLE_RDNS);
156 goto err;
157 }
158 }
159 else
160 return 0;

162 if (*pdp)
163 {
164 X509V3err(X509V3_F_SET_DIST_POINT_NAME,
165 X509V3_R_DISTPOINT_ALREADY_SET);
166 goto err;
167 }

169 *pdp = DIST_POINT_NAME_new();
170 if (!*pdp)
171 goto err;
172 if (fnm)
173 {
174 (*pdp)->type = 0;
175 (*pdp)->name.fullname = fnm;
176 }
177 else
178 {
179 (*pdp)->type = 1;
180 (*pdp)->name.relativename = rnm;
181 }

183 return 1;
184
185 err:
186 if (fnm)
187 sk_GENERAL_NAME_pop_free(fnm, GENERAL_NAME_free);
188 if (rnm)
189 sk_X509_NAME_ENTRY_pop_free(rnm, X509_NAME_ENTRY_free);
190 return -1;
191 }

193 static const BIT_STRING_BITNAME reason_flags[] = {

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_crld.c 4

194 {0, "Unused", "unused"},
195 {1, "Key Compromise", "keyCompromise"},
196 {2, "CA Compromise", "CACompromise"},
197 {3, "Affiliation Changed", "affiliationChanged"},
198 {4, "Superseded", "superseded"},
199 {5, "Cessation Of Operation", "cessationOfOperation"},
200 {6, "Certificate Hold", "certificateHold"},
201 {7, "Privilege Withdrawn", "privilegeWithdrawn"},
202 {8, "AA Compromise", "AACompromise"},
203 {-1, NULL, NULL}
204 };

206 static int set_reasons(ASN1_BIT_STRING **preas, char *value)
207 {
208 STACK_OF(CONF_VALUE) *rsk = NULL;
209 const BIT_STRING_BITNAME *pbn;
210 const char *bnam;
211 int i, ret = 0;
212 rsk = X509V3_parse_list(value);
213 if (!rsk)
214 return 0;
215 if (*preas)
216 return 0;
217 for (i = 0; i < sk_CONF_VALUE_num(rsk); i++)
218 {
219 bnam = sk_CONF_VALUE_value(rsk, i)->name;
220 if (!*preas)
221 {
222 *preas = ASN1_BIT_STRING_new();
223 if (!*preas)
224 goto err;
225 }
226 for (pbn = reason_flags; pbn->lname; pbn++)
227 {
228 if (!strcmp(pbn->sname, bnam))
229 {
230 if (!ASN1_BIT_STRING_set_bit(*preas,
231 pbn->bitnum, 1))
232 goto err;
233 break;
234 }
235 }
236 if (!pbn->lname)
237 goto err;
238 }
239 ret = 1;

241 err:
242 sk_CONF_VALUE_pop_free(rsk, X509V3_conf_free);
243 return ret;
244 }

246 static int print_reasons(BIO *out, const char *rname,
247 ASN1_BIT_STRING *rflags, int indent)
248 {
249 int first = 1;
250 const BIT_STRING_BITNAME *pbn;
251 BIO_printf(out, "%*s%s:\n%*s", indent, "", rname, indent + 2, "");
252 for (pbn = reason_flags; pbn->lname; pbn++)
253 {
254 if (ASN1_BIT_STRING_get_bit(rflags, pbn->bitnum))
255 {
256 if (first)
257 first = 0;
258 else
259 BIO_puts(out, ", ");

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_crld.c 5

260 BIO_puts(out, pbn->lname);
261 }
262 }
263 if (first)
264 BIO_puts(out, "<EMPTY>\n");
265 else
266 BIO_puts(out, "\n");
267 return 1;
268 }

270 static DIST_POINT *crldp_from_section(X509V3_CTX *ctx,
271 STACK_OF(CONF_VALUE) *nval)
272 {
273 int i;
274 CONF_VALUE *cnf;
275 DIST_POINT *point = NULL;
276 point = DIST_POINT_new();
277 if (!point)
278 goto err;
279 for(i = 0; i < sk_CONF_VALUE_num(nval); i++)
280 {
281 int ret;
282 cnf = sk_CONF_VALUE_value(nval, i);
283 ret = set_dist_point_name(&point->distpoint, ctx, cnf);
284 if (ret > 0)
285 continue;
286 if (ret < 0)
287 goto err;
288 if (!strcmp(cnf->name, "reasons"))
289 {
290 if (!set_reasons(&point->reasons, cnf->value))
291 goto err;
292 }
293 else if (!strcmp(cnf->name, "CRLissuer"))
294 {
295 point->CRLissuer =
296 gnames_from_sectname(ctx, cnf->value);
297 if (!point->CRLissuer)
298 goto err;
299 }
300 }

302 return point;
303

305 err:
306 if (point)
307 DIST_POINT_free(point);
308 return NULL;
309 }

311 static void *v2i_crld(const X509V3_EXT_METHOD *method,
312 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval)
313 {
314 STACK_OF(DIST_POINT) *crld = NULL;
315 GENERAL_NAMES *gens = NULL;
316 GENERAL_NAME *gen = NULL;
317 CONF_VALUE *cnf;
318 int i;
319 if(!(crld = sk_DIST_POINT_new_null())) goto merr;
320 for(i = 0; i < sk_CONF_VALUE_num(nval); i++) {
321 DIST_POINT *point;
322 cnf = sk_CONF_VALUE_value(nval, i);
323 if (!cnf->value)
324 {
325 STACK_OF(CONF_VALUE) *dpsect;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_crld.c 6

326 dpsect = X509V3_get_section(ctx, cnf->name);
327 if (!dpsect)
328 goto err;
329 point = crldp_from_section(ctx, dpsect);
330 X509V3_section_free(ctx, dpsect);
331 if (!point)
332 goto err;
333 if(!sk_DIST_POINT_push(crld, point))
334 {
335 DIST_POINT_free(point);
336 goto merr;
337 }
338 }
339 else
340 {
341 if(!(gen = v2i_GENERAL_NAME(method, ctx, cnf)))
342 goto err;
343 if(!(gens = GENERAL_NAMES_new()))
344 goto merr;
345 if(!sk_GENERAL_NAME_push(gens, gen))
346 goto merr;
347 gen = NULL;
348 if(!(point = DIST_POINT_new()))
349 goto merr;
350 if(!sk_DIST_POINT_push(crld, point))
351 {
352 DIST_POINT_free(point);
353 goto merr;
354 }
355 if(!(point->distpoint = DIST_POINT_NAME_new()))
356 goto merr;
357 point->distpoint->name.fullname = gens;
358 point->distpoint->type = 0;
359 gens = NULL;
360 }
361 }
362 return crld;

364 merr:
365 X509V3err(X509V3_F_V2I_CRLD,ERR_R_MALLOC_FAILURE);
366 err:
367 GENERAL_NAME_free(gen);
368 GENERAL_NAMES_free(gens);
369 sk_DIST_POINT_pop_free(crld, DIST_POINT_free);
370 return NULL;
371 }

373 IMPLEMENT_STACK_OF(DIST_POINT)
374 IMPLEMENT_ASN1_SET_OF(DIST_POINT)

376 static int dpn_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
377 void *exarg)
378 {
379 DIST_POINT_NAME *dpn = (DIST_POINT_NAME *)*pval;

381 switch(operation)
382 {
383 case ASN1_OP_NEW_POST:
384 dpn->dpname = NULL;
385 break;

387 case ASN1_OP_FREE_POST:
388 if (dpn->dpname)
389 X509_NAME_free(dpn->dpname);
390 break;
391 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_crld.c 7

392 return 1;
393 }

396 ASN1_CHOICE_cb(DIST_POINT_NAME, dpn_cb) = {
397 ASN1_IMP_SEQUENCE_OF(DIST_POINT_NAME, name.fullname, GENERAL_NAME, 0),
398 ASN1_IMP_SET_OF(DIST_POINT_NAME, name.relativename, X509_NAME_ENTRY, 1)
399 } ASN1_CHOICE_END_cb(DIST_POINT_NAME, DIST_POINT_NAME, type)

402 IMPLEMENT_ASN1_FUNCTIONS(DIST_POINT_NAME)

404 ASN1_SEQUENCE(DIST_POINT) = {
405 ASN1_EXP_OPT(DIST_POINT, distpoint, DIST_POINT_NAME, 0),
406 ASN1_IMP_OPT(DIST_POINT, reasons, ASN1_BIT_STRING, 1),
407 ASN1_IMP_SEQUENCE_OF_OPT(DIST_POINT, CRLissuer, GENERAL_NAME, 2)
408 } ASN1_SEQUENCE_END(DIST_POINT)

410 IMPLEMENT_ASN1_FUNCTIONS(DIST_POINT)

412 ASN1_ITEM_TEMPLATE(CRL_DIST_POINTS) =
413 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, CRLDistributionPoints, D
414 ASN1_ITEM_TEMPLATE_END(CRL_DIST_POINTS)

416 IMPLEMENT_ASN1_FUNCTIONS(CRL_DIST_POINTS)

418 ASN1_SEQUENCE(ISSUING_DIST_POINT) = {
419 ASN1_EXP_OPT(ISSUING_DIST_POINT, distpoint, DIST_POINT_NAME, 0),
420 ASN1_IMP_OPT(ISSUING_DIST_POINT, onlyuser, ASN1_FBOOLEAN, 1),
421 ASN1_IMP_OPT(ISSUING_DIST_POINT, onlyCA, ASN1_FBOOLEAN, 2),
422 ASN1_IMP_OPT(ISSUING_DIST_POINT, onlysomereasons, ASN1_BIT_STRING, 3),
423 ASN1_IMP_OPT(ISSUING_DIST_POINT, indirectCRL, ASN1_FBOOLEAN, 4),
424 ASN1_IMP_OPT(ISSUING_DIST_POINT, onlyattr, ASN1_FBOOLEAN, 5)
425 } ASN1_SEQUENCE_END(ISSUING_DIST_POINT)

427 IMPLEMENT_ASN1_FUNCTIONS(ISSUING_DIST_POINT)

429 static int i2r_idp(const X509V3_EXT_METHOD *method, void *pidp, BIO *out,
430 int indent);
431 static void *v2i_idp(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx,
432 STACK_OF(CONF_VALUE) *nval);

434 const X509V3_EXT_METHOD v3_idp =
435 {
436 NID_issuing_distribution_point, X509V3_EXT_MULTILINE,
437 ASN1_ITEM_ref(ISSUING_DIST_POINT),
438 0,0,0,0,
439 0,0,
440 0,
441 v2i_idp,
442 i2r_idp,0,
443 NULL
444 };

446 static void *v2i_idp(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx,
447 STACK_OF(CONF_VALUE) *nval)
448 {
449 ISSUING_DIST_POINT *idp = NULL;
450 CONF_VALUE *cnf;
451 char *name, *val;
452 int i, ret;
453 idp = ISSUING_DIST_POINT_new();
454 if (!idp)
455 goto merr;
456 for(i = 0; i < sk_CONF_VALUE_num(nval); i++)
457 {

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_crld.c 8

458 cnf = sk_CONF_VALUE_value(nval, i);
459 name = cnf->name;
460 val = cnf->value;
461 ret = set_dist_point_name(&idp->distpoint, ctx, cnf);
462 if (ret > 0)
463 continue;
464 if (ret < 0)
465 goto err;
466 if (!strcmp(name, "onlyuser"))
467 {
468 if (!X509V3_get_value_bool(cnf, &idp->onlyuser))
469 goto err;
470 }
471 else if (!strcmp(name, "onlyCA"))
472 {
473 if (!X509V3_get_value_bool(cnf, &idp->onlyCA))
474 goto err;
475 }
476 else if (!strcmp(name, "onlyAA"))
477 {
478 if (!X509V3_get_value_bool(cnf, &idp->onlyattr))
479 goto err;
480 }
481 else if (!strcmp(name, "indirectCRL"))
482 {
483 if (!X509V3_get_value_bool(cnf, &idp->indirectCRL))
484 goto err;
485 }
486 else if (!strcmp(name, "onlysomereasons"))
487 {
488 if (!set_reasons(&idp->onlysomereasons, val))
489 goto err;
490 }
491 else
492 {
493 X509V3err(X509V3_F_V2I_IDP, X509V3_R_INVALID_NAME);
494 X509V3_conf_err(cnf);
495 goto err;
496 }
497 }
498 return idp;

500 merr:
501 X509V3err(X509V3_F_V2I_IDP,ERR_R_MALLOC_FAILURE);
502 err:
503 ISSUING_DIST_POINT_free(idp);
504 return NULL;
505 }

507 static int print_gens(BIO *out, STACK_OF(GENERAL_NAME) *gens, int indent)
508 {
509 int i;
510 for (i = 0; i < sk_GENERAL_NAME_num(gens); i++)
511 {
512 BIO_printf(out, "%*s", indent + 2, "");
513 GENERAL_NAME_print(out, sk_GENERAL_NAME_value(gens, i));
514 BIO_puts(out, "\n");
515 }
516 return 1;
517 }

519 static int print_distpoint(BIO *out, DIST_POINT_NAME *dpn, int indent)
520 {
521 if (dpn->type == 0)
522 {
523 BIO_printf(out, "%*sFull Name:\n", indent, "");

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_crld.c 9

524 print_gens(out, dpn->name.fullname, indent);
525 }
526 else
527 {
528 X509_NAME ntmp;
529 ntmp.entries = dpn->name.relativename;
530 BIO_printf(out, "%*sRelative Name:\n%*s",
531 indent, "", indent + 2, "");
532 X509_NAME_print_ex(out, &ntmp, 0, XN_FLAG_ONELINE);
533 BIO_puts(out, "\n");
534 }
535 return 1;
536 }

538 static int i2r_idp(const X509V3_EXT_METHOD *method, void *pidp, BIO *out,
539 int indent)
540 {
541 ISSUING_DIST_POINT *idp = pidp;
542 if (idp->distpoint)
543 print_distpoint(out, idp->distpoint, indent);
544 if (idp->onlyuser > 0)
545 BIO_printf(out, "%*sOnly User Certificates\n", indent, "");
546 if (idp->onlyCA > 0)
547 BIO_printf(out, "%*sOnly CA Certificates\n", indent, "");
548 if (idp->indirectCRL > 0)
549 BIO_printf(out, "%*sIndirect CRL\n", indent, "");
550 if (idp->onlysomereasons)
551 print_reasons(out, "Only Some Reasons",
552 idp->onlysomereasons, indent);
553 if (idp->onlyattr > 0)
554 BIO_printf(out, "%*sOnly Attribute Certificates\n", indent, "");
555 if (!idp->distpoint && (idp->onlyuser <= 0) && (idp->onlyCA <= 0)
556 && (idp->indirectCRL <= 0) && !idp->onlysomereasons
557 && (idp->onlyattr <= 0))
558 BIO_printf(out, "%*s<EMPTY>\n", indent, "");
559
560 return 1;
561 }

563 static int i2r_crldp(const X509V3_EXT_METHOD *method, void *pcrldp, BIO *out,
564 int indent)
565 {
566 STACK_OF(DIST_POINT) *crld = pcrldp;
567 DIST_POINT *point;
568 int i;
569 for(i = 0; i < sk_DIST_POINT_num(crld); i++)
570 {
571 BIO_puts(out, "\n");
572 point = sk_DIST_POINT_value(crld, i);
573 if(point->distpoint)
574 print_distpoint(out, point->distpoint, indent);
575 if(point->reasons)
576 print_reasons(out, "Reasons", point->reasons,
577 indent);
578 if(point->CRLissuer)
579 {
580 BIO_printf(out, "%*sCRL Issuer:\n", indent, "");
581 print_gens(out, point->CRLissuer, indent);
582 }
583 }
584 return 1;
585 }

587 int DIST_POINT_set_dpname(DIST_POINT_NAME *dpn, X509_NAME *iname)
588 {
589 int i;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_crld.c 10

590 STACK_OF(X509_NAME_ENTRY) *frag;
591 X509_NAME_ENTRY *ne;
592 if (!dpn || (dpn->type != 1))
593 return 1;
594 frag = dpn->name.relativename;
595 dpn->dpname = X509_NAME_dup(iname);
596 if (!dpn->dpname)
597 return 0;
598 for (i = 0; i < sk_X509_NAME_ENTRY_num(frag); i++)
599 {
600 ne = sk_X509_NAME_ENTRY_value(frag, i);
601 if (!X509_NAME_add_entry(dpn->dpname, ne, -1, i ? 0 : 1))
602 {
603 X509_NAME_free(dpn->dpname);
604 dpn->dpname = NULL;
605 return 0;
606 }
607 }
608 /* generate cached encoding of name */
609 if (i2d_X509_NAME(dpn->dpname, NULL) < 0)
610 {
611 X509_NAME_free(dpn->dpname);
612 dpn->dpname = NULL;
613 return 0;
614 }
615 return 1;
616 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_enum.c 1

**
 4048 Fri May 30 18:32:15 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_enum.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_enum.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/x509v3.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_enum.c 2

63 static ENUMERATED_NAMES crl_reasons[] = {
64 {CRL_REASON_UNSPECIFIED, "Unspecified", "unspecified"},
65 {CRL_REASON_KEY_COMPROMISE, "Key Compromise", "keyCompromise"},
66 {CRL_REASON_CA_COMPROMISE, "CA Compromise", "CACompromise"},
67 {CRL_REASON_AFFILIATION_CHANGED, "Affiliation Changed", "affiliationChanged"},
68 {CRL_REASON_SUPERSEDED, "Superseded", "superseded"},
69 {CRL_REASON_CESSATION_OF_OPERATION,
70 "Cessation Of Operation", "cessationOfOperation"},
71 {CRL_REASON_CERTIFICATE_HOLD, "Certificate Hold", "certificateHold"},
72 {CRL_REASON_REMOVE_FROM_CRL, "Remove From CRL", "removeFromCRL"},
73 {CRL_REASON_PRIVILEGE_WITHDRAWN, "Privilege Withdrawn", "privilegeWithdrawn"},
74 {CRL_REASON_AA_COMPROMISE, "AA Compromise", "AACompromise"},
75 {-1, NULL, NULL}
76 };

78 const X509V3_EXT_METHOD v3_crl_reason = {
79 NID_crl_reason, 0, ASN1_ITEM_ref(ASN1_ENUMERATED),
80 0,0,0,0,
81 (X509V3_EXT_I2S)i2s_ASN1_ENUMERATED_TABLE,
82 0,
83 0,0,0,0,
84 crl_reasons};

87 char *i2s_ASN1_ENUMERATED_TABLE(X509V3_EXT_METHOD *method,
88 ASN1_ENUMERATED *e)
89 {
90 ENUMERATED_NAMES *enam;
91 long strval;
92 strval = ASN1_ENUMERATED_get(e);
93 for(enam = method->usr_data; enam->lname; enam++) {
94 if(strval == enam->bitnum) return BUF_strdup(enam->lname);
95 }
96 return i2s_ASN1_ENUMERATED(method, e);
97 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_extku.c 1

**
 4964 Fri May 30 18:32:16 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_extku.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_extku.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include <stdio.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_extku.c 2

62 #include <openssl/asn1t.h>
63 #include <openssl/conf.h>
64 #include <openssl/x509v3.h>

66 static void *v2i_EXTENDED_KEY_USAGE(const X509V3_EXT_METHOD *method,
67 X509V3_CTX *ctx,
68 STACK_OF(CONF_VALUE) *nval);
69 static STACK_OF(CONF_VALUE) *i2v_EXTENDED_KEY_USAGE(const X509V3_EXT_METHOD *met
70 void *eku, STACK_OF(CONF_VALUE) *extlist);

72 const X509V3_EXT_METHOD v3_ext_ku = {
73 NID_ext_key_usage, 0,
74 ASN1_ITEM_ref(EXTENDED_KEY_USAGE),
75 0,0,0,0,
76 0,0,
77 i2v_EXTENDED_KEY_USAGE,
78 v2i_EXTENDED_KEY_USAGE,
79 0,0,
80 NULL
81 };

83 /* NB OCSP acceptable responses also is a SEQUENCE OF OBJECT */
84 const X509V3_EXT_METHOD v3_ocsp_accresp = {
85 NID_id_pkix_OCSP_acceptableResponses, 0,
86 ASN1_ITEM_ref(EXTENDED_KEY_USAGE),
87 0,0,0,0,
88 0,0,
89 i2v_EXTENDED_KEY_USAGE,
90 v2i_EXTENDED_KEY_USAGE,
91 0,0,
92 NULL
93 };

95 ASN1_ITEM_TEMPLATE(EXTENDED_KEY_USAGE) =
96 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, EXTENDED_KEY_USAGE, ASN1
97 ASN1_ITEM_TEMPLATE_END(EXTENDED_KEY_USAGE)

99 IMPLEMENT_ASN1_FUNCTIONS(EXTENDED_KEY_USAGE)

101 static STACK_OF(CONF_VALUE) *
102 i2v_EXTENDED_KEY_USAGE(const X509V3_EXT_METHOD *method, void *a,
103 STACK_OF(CONF_VALUE) *ext_list)
104 {
105 EXTENDED_KEY_USAGE *eku = a;
106 int i;
107 ASN1_OBJECT *obj;
108 char obj_tmp[80];
109 for(i = 0; i < sk_ASN1_OBJECT_num(eku); i++) {
110 obj = sk_ASN1_OBJECT_value(eku, i);
111 i2t_ASN1_OBJECT(obj_tmp, 80, obj);
112 X509V3_add_value(NULL, obj_tmp, &ext_list);
113 }
114 return ext_list;
115 }

117 static void *v2i_EXTENDED_KEY_USAGE(const X509V3_EXT_METHOD *method,
118 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval)
119 {
120 EXTENDED_KEY_USAGE *extku;
121 char *extval;
122 ASN1_OBJECT *objtmp;
123 CONF_VALUE *val;
124 int i;

126 if(!(extku = sk_ASN1_OBJECT_new_null())) {
127 X509V3err(X509V3_F_V2I_EXTENDED_KEY_USAGE,ERR_R_MALLOC_FAILURE);

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_extku.c 3

128 return NULL;
129 }

131 for(i = 0; i < sk_CONF_VALUE_num(nval); i++) {
132 val = sk_CONF_VALUE_value(nval, i);
133 if(val->value) extval = val->value;
134 else extval = val->name;
135 if(!(objtmp = OBJ_txt2obj(extval, 0))) {
136 sk_ASN1_OBJECT_pop_free(extku, ASN1_OBJECT_free);
137 X509V3err(X509V3_F_V2I_EXTENDED_KEY_USAGE,X509V3_R_INVAL
138 X509V3_conf_err(val);
139 return NULL;
140 }
141 sk_ASN1_OBJECT_push(extku, objtmp);
142 }
143 return extku;
144 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_genn.c 1

**
 6959 Fri May 30 18:32:16 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_genn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_genn.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999-2008 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include <stdio.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_genn.c 2

62 #include <openssl/asn1t.h>
63 #include <openssl/conf.h>
64 #include <openssl/x509v3.h>

66 ASN1_SEQUENCE(OTHERNAME) = {
67 ASN1_SIMPLE(OTHERNAME, type_id, ASN1_OBJECT),
68 /* Maybe have a true ANY DEFINED BY later */
69 ASN1_EXP(OTHERNAME, value, ASN1_ANY, 0)
70 } ASN1_SEQUENCE_END(OTHERNAME)

72 IMPLEMENT_ASN1_FUNCTIONS(OTHERNAME)

74 ASN1_SEQUENCE(EDIPARTYNAME) = {
75 ASN1_IMP_OPT(EDIPARTYNAME, nameAssigner, DIRECTORYSTRING, 0),
76 ASN1_IMP_OPT(EDIPARTYNAME, partyName, DIRECTORYSTRING, 1)
77 } ASN1_SEQUENCE_END(EDIPARTYNAME)

79 IMPLEMENT_ASN1_FUNCTIONS(EDIPARTYNAME)

81 ASN1_CHOICE(GENERAL_NAME) = {
82 ASN1_IMP(GENERAL_NAME, d.otherName, OTHERNAME, GEN_OTHERNAME),
83 ASN1_IMP(GENERAL_NAME, d.rfc822Name, ASN1_IA5STRING, GEN_EMAIL),
84 ASN1_IMP(GENERAL_NAME, d.dNSName, ASN1_IA5STRING, GEN_DNS),
85 /* Don’t decode this */
86 ASN1_IMP(GENERAL_NAME, d.x400Address, ASN1_SEQUENCE, GEN_X400),
87 /* X509_NAME is a CHOICE type so use EXPLICIT */
88 ASN1_EXP(GENERAL_NAME, d.directoryName, X509_NAME, GEN_DIRNAME),
89 ASN1_IMP(GENERAL_NAME, d.ediPartyName, EDIPARTYNAME, GEN_EDIPARTY),
90 ASN1_IMP(GENERAL_NAME, d.uniformResourceIdentifier, ASN1_IA5STRING, GEN_
91 ASN1_IMP(GENERAL_NAME, d.iPAddress, ASN1_OCTET_STRING, GEN_IPADD),
92 ASN1_IMP(GENERAL_NAME, d.registeredID, ASN1_OBJECT, GEN_RID)
93 } ASN1_CHOICE_END(GENERAL_NAME)

95 IMPLEMENT_ASN1_FUNCTIONS(GENERAL_NAME)

97 ASN1_ITEM_TEMPLATE(GENERAL_NAMES) =
98 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, GeneralNames, GENERAL_NA
99 ASN1_ITEM_TEMPLATE_END(GENERAL_NAMES)

101 IMPLEMENT_ASN1_FUNCTIONS(GENERAL_NAMES)

103 GENERAL_NAME *GENERAL_NAME_dup(GENERAL_NAME *a)
104 {
105 return (GENERAL_NAME *) ASN1_dup((i2d_of_void *) i2d_GENERAL_NAME,
106 (d2i_of_void *) d2i_GENERAL_NAME,
107 (char *) a);
108 }

110 /* Returns 0 if they are equal, != 0 otherwise. */
111 int GENERAL_NAME_cmp(GENERAL_NAME *a, GENERAL_NAME *b)
112 {
113 int result = -1;

115 if (!a || !b || a->type != b->type) return -1;
116 switch(a->type)
117 {
118 case GEN_X400:
119 case GEN_EDIPARTY:
120 result = ASN1_TYPE_cmp(a->d.other, b->d.other);
121 break;

123 case GEN_OTHERNAME:
124 result = OTHERNAME_cmp(a->d.otherName, b->d.otherName);
125 break;

127 case GEN_EMAIL:

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_genn.c 3

128 case GEN_DNS:
129 case GEN_URI:
130 result = ASN1_STRING_cmp(a->d.ia5, b->d.ia5);
131 break;

133 case GEN_DIRNAME:
134 result = X509_NAME_cmp(a->d.dirn, b->d.dirn);
135 break;

137 case GEN_IPADD:
138 result = ASN1_OCTET_STRING_cmp(a->d.ip, b->d.ip);
139 break;
140
141 case GEN_RID:
142 result = OBJ_cmp(a->d.rid, b->d.rid);
143 break;
144 }
145 return result;
146 }

148 /* Returns 0 if they are equal, != 0 otherwise. */
149 int OTHERNAME_cmp(OTHERNAME *a, OTHERNAME *b)
150 {
151 int result = -1;

153 if (!a || !b) return -1;
154 /* Check their type first. */
155 if ((result = OBJ_cmp(a->type_id, b->type_id)) != 0)
156 return result;
157 /* Check the value. */
158 result = ASN1_TYPE_cmp(a->value, b->value);
159 return result;
160 }

162 void GENERAL_NAME_set0_value(GENERAL_NAME *a, int type, void *value)
163 {
164 switch(type)
165 {
166 case GEN_X400:
167 case GEN_EDIPARTY:
168 a->d.other = value;
169 break;

171 case GEN_OTHERNAME:
172 a->d.otherName = value;
173 break;

175 case GEN_EMAIL:
176 case GEN_DNS:
177 case GEN_URI:
178 a->d.ia5 = value;
179 break;

181 case GEN_DIRNAME:
182 a->d.dirn = value;
183 break;

185 case GEN_IPADD:
186 a->d.ip = value;
187 break;
188
189 case GEN_RID:
190 a->d.rid = value;
191 break;
192 }
193 a->type = type;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_genn.c 4

194 }

196 void *GENERAL_NAME_get0_value(GENERAL_NAME *a, int *ptype)
197 {
198 if (ptype)
199 *ptype = a->type;
200 switch(a->type)
201 {
202 case GEN_X400:
203 case GEN_EDIPARTY:
204 return a->d.other;

206 case GEN_OTHERNAME:
207 return a->d.otherName;

209 case GEN_EMAIL:
210 case GEN_DNS:
211 case GEN_URI:
212 return a->d.ia5;

214 case GEN_DIRNAME:
215 return a->d.dirn;

217 case GEN_IPADD:
218 return a->d.ip;
219
220 case GEN_RID:
221 return a->d.rid;

223 default:
224 return NULL;
225 }
226 }

228 int GENERAL_NAME_set0_othername(GENERAL_NAME *gen,
229 ASN1_OBJECT *oid, ASN1_TYPE *value)
230 {
231 OTHERNAME *oth;
232 oth = OTHERNAME_new();
233 if (!oth)
234 return 0;
235 oth->type_id = oid;
236 oth->value = value;
237 GENERAL_NAME_set0_value(gen, GEN_OTHERNAME, oth);
238 return 1;
239 }

241 int GENERAL_NAME_get0_otherName(GENERAL_NAME *gen,
242 ASN1_OBJECT **poid, ASN1_TYPE **pvalue)
243 {
244 if (gen->type != GEN_OTHERNAME)
245 return 0;
246 if (poid)
247 *poid = gen->d.otherName->type_id;
248 if (pvalue)
249 *pvalue = gen->d.otherName->value;
250 return 1;
251 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ia5.c 1

**
 4344 Fri May 30 18:32:16 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ia5.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_ia5.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include <stdio.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ia5.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/conf.h>
64 #include <openssl/x509v3.h>

66 static char *i2s_ASN1_IA5STRING(X509V3_EXT_METHOD *method, ASN1_IA5STRING *ia5);
67 static ASN1_IA5STRING *s2i_ASN1_IA5STRING(X509V3_EXT_METHOD *method, X509V3_CTX
68 const X509V3_EXT_METHOD v3_ns_ia5_list[] = {
69 EXT_IA5STRING(NID_netscape_base_url),
70 EXT_IA5STRING(NID_netscape_revocation_url),
71 EXT_IA5STRING(NID_netscape_ca_revocation_url),
72 EXT_IA5STRING(NID_netscape_renewal_url),
73 EXT_IA5STRING(NID_netscape_ca_policy_url),
74 EXT_IA5STRING(NID_netscape_ssl_server_name),
75 EXT_IA5STRING(NID_netscape_comment),
76 EXT_END
77 };

80 static char *i2s_ASN1_IA5STRING(X509V3_EXT_METHOD *method,
81 ASN1_IA5STRING *ia5)
82 {
83 char *tmp;
84 if(!ia5 || !ia5->length) return NULL;
85 if(!(tmp = OPENSSL_malloc(ia5->length + 1))) {
86 X509V3err(X509V3_F_I2S_ASN1_IA5STRING,ERR_R_MALLOC_FAILURE);
87 return NULL;
88 }
89 memcpy(tmp, ia5->data, ia5->length);
90 tmp[ia5->length] = 0;
91 return tmp;
92 }

94 static ASN1_IA5STRING *s2i_ASN1_IA5STRING(X509V3_EXT_METHOD *method,
95 X509V3_CTX *ctx, char *str)
96 {
97 ASN1_IA5STRING *ia5;
98 if(!str) {
99 X509V3err(X509V3_F_S2I_ASN1_IA5STRING,X509V3_R_INVALID_NULL_ARGU
100 return NULL;
101 }
102 if(!(ia5 = M_ASN1_IA5STRING_new())) goto err;
103 if(!ASN1_STRING_set((ASN1_STRING *)ia5, (unsigned char*)str,
104 strlen(str))) {
105 M_ASN1_IA5STRING_free(ia5);
106 goto err;
107 }
108 #ifdef CHARSET_EBCDIC
109 ebcdic2ascii(ia5->data, ia5->data, ia5->length);
110 #endif /*CHARSET_EBCDIC*/
111 return ia5;
112 err:
113 X509V3err(X509V3_F_S2I_ASN1_IA5STRING,ERR_R_MALLOC_FAILURE);
114 return NULL;
115 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_info.c 1

**
 6684 Fri May 30 18:32:16 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_info.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_info.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/conf.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_info.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/asn1t.h>
64 #include <openssl/x509v3.h>

66 static STACK_OF(CONF_VALUE) *i2v_AUTHORITY_INFO_ACCESS(X509V3_EXT_METHOD *method
67 AUTHORITY_INFO_ACCESS *ainfo,
68 STACK_OF(CONF_VALUE) *ret);
69 static AUTHORITY_INFO_ACCESS *v2i_AUTHORITY_INFO_ACCESS(X509V3_EXT_METHOD *metho
70 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval);

72 const X509V3_EXT_METHOD v3_info =
73 { NID_info_access, X509V3_EXT_MULTILINE, ASN1_ITEM_ref(AUTHORITY_INFO_ACCESS),
74 0,0,0,0,
75 0,0,
76 (X509V3_EXT_I2V)i2v_AUTHORITY_INFO_ACCESS,
77 (X509V3_EXT_V2I)v2i_AUTHORITY_INFO_ACCESS,
78 0,0,
79 NULL};

81 const X509V3_EXT_METHOD v3_sinfo =
82 { NID_sinfo_access, X509V3_EXT_MULTILINE, ASN1_ITEM_ref(AUTHORITY_INFO_ACCESS),
83 0,0,0,0,
84 0,0,
85 (X509V3_EXT_I2V)i2v_AUTHORITY_INFO_ACCESS,
86 (X509V3_EXT_V2I)v2i_AUTHORITY_INFO_ACCESS,
87 0,0,
88 NULL};

90 ASN1_SEQUENCE(ACCESS_DESCRIPTION) = {
91 ASN1_SIMPLE(ACCESS_DESCRIPTION, method, ASN1_OBJECT),
92 ASN1_SIMPLE(ACCESS_DESCRIPTION, location, GENERAL_NAME)
93 } ASN1_SEQUENCE_END(ACCESS_DESCRIPTION)

95 IMPLEMENT_ASN1_FUNCTIONS(ACCESS_DESCRIPTION)

97 ASN1_ITEM_TEMPLATE(AUTHORITY_INFO_ACCESS) =
98 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, GeneralNames, ACCESS_DES
99 ASN1_ITEM_TEMPLATE_END(AUTHORITY_INFO_ACCESS)

101 IMPLEMENT_ASN1_FUNCTIONS(AUTHORITY_INFO_ACCESS)

103 static STACK_OF(CONF_VALUE) *i2v_AUTHORITY_INFO_ACCESS(X509V3_EXT_METHOD *method
104 AUTHORITY_INFO_ACCESS *ainfo,
105 STACK_OF(CONF_VALUE) *ret)
106 {
107 ACCESS_DESCRIPTION *desc;
108 int i,nlen;
109 char objtmp[80], *ntmp;
110 CONF_VALUE *vtmp;
111 for(i = 0; i < sk_ACCESS_DESCRIPTION_num(ainfo); i++) {
112 desc = sk_ACCESS_DESCRIPTION_value(ainfo, i);
113 ret = i2v_GENERAL_NAME(method, desc->location, ret);
114 if(!ret) break;
115 vtmp = sk_CONF_VALUE_value(ret, i);
116 i2t_ASN1_OBJECT(objtmp, sizeof objtmp, desc->method);
117 nlen = strlen(objtmp) + strlen(vtmp->name) + 5;
118 ntmp = OPENSSL_malloc(nlen);
119 if(!ntmp) {
120 X509V3err(X509V3_F_I2V_AUTHORITY_INFO_ACCESS,
121 ERR_R_MALLOC_FAILURE);
122 return NULL;
123 }
124 BUF_strlcpy(ntmp, objtmp, nlen);
125 BUF_strlcat(ntmp, " - ", nlen);
126 BUF_strlcat(ntmp, vtmp->name, nlen);
127 OPENSSL_free(vtmp->name);

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_info.c 3

128 vtmp->name = ntmp;
129
130 }
131 if(!ret) return sk_CONF_VALUE_new_null();
132 return ret;
133 }

135 static AUTHORITY_INFO_ACCESS *v2i_AUTHORITY_INFO_ACCESS(X509V3_EXT_METHOD *metho
136 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval)
137 {
138 AUTHORITY_INFO_ACCESS *ainfo = NULL;
139 CONF_VALUE *cnf, ctmp;
140 ACCESS_DESCRIPTION *acc;
141 int i, objlen;
142 char *objtmp, *ptmp;
143 if(!(ainfo = sk_ACCESS_DESCRIPTION_new_null())) {
144 X509V3err(X509V3_F_V2I_AUTHORITY_INFO_ACCESS,ERR_R_MALLOC_FAILUR
145 return NULL;
146 }
147 for(i = 0; i < sk_CONF_VALUE_num(nval); i++) {
148 cnf = sk_CONF_VALUE_value(nval, i);
149 if(!(acc = ACCESS_DESCRIPTION_new())
150 || !sk_ACCESS_DESCRIPTION_push(ainfo, acc)) {
151 X509V3err(X509V3_F_V2I_AUTHORITY_INFO_ACCESS,ERR_R_MALLO
152 goto err;
153 }
154 ptmp = strchr(cnf->name, ’;’);
155 if(!ptmp) {
156 X509V3err(X509V3_F_V2I_AUTHORITY_INFO_ACCESS,X509V3_R_IN
157 goto err;
158 }
159 objlen = ptmp - cnf->name;
160 ctmp.name = ptmp + 1;
161 ctmp.value = cnf->value;
162 if(!v2i_GENERAL_NAME_ex(acc->location, method, ctx, &ctmp, 0))
163 goto err;
164 if(!(objtmp = OPENSSL_malloc(objlen + 1))) {
165 X509V3err(X509V3_F_V2I_AUTHORITY_INFO_ACCESS,ERR_R_MALLO
166 goto err;
167 }
168 strncpy(objtmp, cnf->name, objlen);
169 objtmp[objlen] = 0;
170 acc->method = OBJ_txt2obj(objtmp, 0);
171 if(!acc->method) {
172 X509V3err(X509V3_F_V2I_AUTHORITY_INFO_ACCESS,X509V3_R_BA
173 ERR_add_error_data(2, "value=", objtmp);
174 OPENSSL_free(objtmp);
175 goto err;
176 }
177 OPENSSL_free(objtmp);

179 }
180 return ainfo;
181 err:
182 sk_ACCESS_DESCRIPTION_pop_free(ainfo, ACCESS_DESCRIPTION_free);
183 return NULL;
184 }

186 int i2a_ACCESS_DESCRIPTION(BIO *bp, ACCESS_DESCRIPTION* a)
187 {
188 i2a_ASN1_OBJECT(bp, a->method);
189 #ifdef UNDEF
190 i2a_GENERAL_NAME(bp, a->location);
191 #endif
192 return 2;
193 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_info.c 4

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_int.c 1

**
 3446 Fri May 30 18:32:16 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_int.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_int.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999-2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/x509v3.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_int.c 2

63 const X509V3_EXT_METHOD v3_crl_num = {
64 NID_crl_number, 0, ASN1_ITEM_ref(ASN1_INTEGER),
65 0,0,0,0,
66 (X509V3_EXT_I2S)i2s_ASN1_INTEGER,
67 0,
68 0,0,0,0, NULL};

70 const X509V3_EXT_METHOD v3_delta_crl = {
71 NID_delta_crl, 0, ASN1_ITEM_ref(ASN1_INTEGER),
72 0,0,0,0,
73 (X509V3_EXT_I2S)i2s_ASN1_INTEGER,
74 0,
75 0,0,0,0, NULL};

77 static void * s2i_asn1_int(X509V3_EXT_METHOD *meth, X509V3_CTX *ctx, char *value
78 {
79 return s2i_ASN1_INTEGER(meth, value);
80 }

82 const X509V3_EXT_METHOD v3_inhibit_anyp = {
83 NID_inhibit_any_policy, 0, ASN1_ITEM_ref(ASN1_INTEGER),
84 0,0,0,0,
85 (X509V3_EXT_I2S)i2s_ASN1_INTEGER,
86 (X509V3_EXT_S2I)s2i_asn1_int,
87 0,0,0,0, NULL};

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_lib.c 1

**
 9352 Fri May 30 18:32:16 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_lib.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 /* X509 v3 extension utilities */

60 #include <stdio.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_lib.c 2

62 #include <openssl/conf.h>
63 #include <openssl/x509v3.h>

65 #include "ext_dat.h"

67 static STACK_OF(X509V3_EXT_METHOD) *ext_list = NULL;

69 static int ext_cmp(const X509V3_EXT_METHOD * const *a,
70 const X509V3_EXT_METHOD * const *b);
71 static void ext_list_free(X509V3_EXT_METHOD *ext);

73 int X509V3_EXT_add(X509V3_EXT_METHOD *ext)
74 {
75 if(!ext_list && !(ext_list = sk_X509V3_EXT_METHOD_new(ext_cmp))) {
76 X509V3err(X509V3_F_X509V3_EXT_ADD,ERR_R_MALLOC_FAILURE);
77 return 0;
78 }
79 if(!sk_X509V3_EXT_METHOD_push(ext_list, ext)) {
80 X509V3err(X509V3_F_X509V3_EXT_ADD,ERR_R_MALLOC_FAILURE);
81 return 0;
82 }
83 return 1;
84 }

86 static int ext_cmp(const X509V3_EXT_METHOD * const *a,
87 const X509V3_EXT_METHOD * const *b)
88 {
89 return ((*a)->ext_nid - (*b)->ext_nid);
90 }

92 DECLARE_OBJ_BSEARCH_CMP_FN(const X509V3_EXT_METHOD *, const X509V3_EXT_METHOD *,
93 ext);
94 IMPLEMENT_OBJ_BSEARCH_CMP_FN(const X509V3_EXT_METHOD *,
95 const X509V3_EXT_METHOD *, ext);

97 const X509V3_EXT_METHOD *X509V3_EXT_get_nid(int nid)
98 {
99 X509V3_EXT_METHOD tmp;
100 const X509V3_EXT_METHOD *t = &tmp, * const *ret;
101 int idx;
102 if(nid < 0) return NULL;
103 tmp.ext_nid = nid;
104 ret = OBJ_bsearch_ext(&t, standard_exts, STANDARD_EXTENSION_COUNT);
105 if(ret) return *ret;
106 if(!ext_list) return NULL;
107 idx = sk_X509V3_EXT_METHOD_find(ext_list, &tmp);
108 if(idx == -1) return NULL;
109 return sk_X509V3_EXT_METHOD_value(ext_list, idx);
110 }

112 const X509V3_EXT_METHOD *X509V3_EXT_get(X509_EXTENSION *ext)
113 {
114 int nid;
115 if((nid = OBJ_obj2nid(ext->object)) == NID_undef) return NULL;
116 return X509V3_EXT_get_nid(nid);
117 }

120 int X509V3_EXT_add_list(X509V3_EXT_METHOD *extlist)
121 {
122 for(;extlist->ext_nid!=-1;extlist++)
123 if(!X509V3_EXT_add(extlist)) return 0;
124 return 1;
125 }

127 int X509V3_EXT_add_alias(int nid_to, int nid_from)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_lib.c 3

128 {
129 const X509V3_EXT_METHOD *ext;
130 X509V3_EXT_METHOD *tmpext;

132 if(!(ext = X509V3_EXT_get_nid(nid_from))) {
133 X509V3err(X509V3_F_X509V3_EXT_ADD_ALIAS,X509V3_R_EXTENSION_NOT_F
134 return 0;
135 }
136 if(!(tmpext = (X509V3_EXT_METHOD *)OPENSSL_malloc(sizeof(X509V3_EXT_METH
137 X509V3err(X509V3_F_X509V3_EXT_ADD_ALIAS,ERR_R_MALLOC_FAILURE);
138 return 0;
139 }
140 *tmpext = *ext;
141 tmpext->ext_nid = nid_to;
142 tmpext->ext_flags |= X509V3_EXT_DYNAMIC;
143 return X509V3_EXT_add(tmpext);
144 }

146 void X509V3_EXT_cleanup(void)
147 {
148 sk_X509V3_EXT_METHOD_pop_free(ext_list, ext_list_free);
149 ext_list = NULL;
150 }

152 static void ext_list_free(X509V3_EXT_METHOD *ext)
153 {
154 if(ext->ext_flags & X509V3_EXT_DYNAMIC) OPENSSL_free(ext);
155 }

157 /* Legacy function: we don’t need to add standard extensions
158 * any more because they are now kept in ext_dat.h.
159 */

161 int X509V3_add_standard_extensions(void)
162 {
163 return 1;
164 }

166 /* Return an extension internal structure */

168 void *X509V3_EXT_d2i(X509_EXTENSION *ext)
169 {
170 const X509V3_EXT_METHOD *method;
171 const unsigned char *p;

173 if(!(method = X509V3_EXT_get(ext))) return NULL;
174 p = ext->value->data;
175 if(method->it) return ASN1_item_d2i(NULL, &p, ext->value->length, ASN1_I
176 return method->d2i(NULL, &p, ext->value->length);
177 }

179 /* Get critical flag and decoded version of extension from a NID.
180 * The "idx" variable returns the last found extension and can
181 * be used to retrieve multiple extensions of the same NID.
182 * However multiple extensions with the same NID is usually
183 * due to a badly encoded certificate so if idx is NULL we
184 * choke if multiple extensions exist.
185 * The "crit" variable is set to the critical value.
186 * The return value is the decoded extension or NULL on
187 * error. The actual error can have several different causes,
188 * the value of *crit reflects the cause:
189 * >= 0, extension found but not decoded (reflects critical value).
190 * -1 extension not found.
191 * -2 extension occurs more than once.
192 */

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_lib.c 4

194 void *X509V3_get_d2i(STACK_OF(X509_EXTENSION) *x, int nid, int *crit, int *idx)
195 {
196 int lastpos, i;
197 X509_EXTENSION *ex, *found_ex = NULL;
198 if(!x) {
199 if(idx) *idx = -1;
200 if(crit) *crit = -1;
201 return NULL;
202 }
203 if(idx) lastpos = *idx + 1;
204 else lastpos = 0;
205 if(lastpos < 0) lastpos = 0;
206 for(i = lastpos; i < sk_X509_EXTENSION_num(x); i++)
207 {
208 ex = sk_X509_EXTENSION_value(x, i);
209 if(OBJ_obj2nid(ex->object) == nid) {
210 if(idx) {
211 *idx = i;
212 found_ex = ex;
213 break;
214 } else if(found_ex) {
215 /* Found more than one */
216 if(crit) *crit = -2;
217 return NULL;
218 }
219 found_ex = ex;
220 }
221 }
222 if(found_ex) {
223 /* Found it */
224 if(crit) *crit = X509_EXTENSION_get_critical(found_ex);
225 return X509V3_EXT_d2i(found_ex);
226 }

228 /* Extension not found */
229 if(idx) *idx = -1;
230 if(crit) *crit = -1;
231 return NULL;
232 }

234 /* This function is a general extension append, replace and delete utility.
235 * The precise operation is governed by the ’flags’ value. The ’crit’ and
236 * ’value’ arguments (if relevant) are the extensions internal structure.
237 */

239 int X509V3_add1_i2d(STACK_OF(X509_EXTENSION) **x, int nid, void *value,
240 int crit, unsigned long flags)
241 {
242 int extidx = -1;
243 int errcode;
244 X509_EXTENSION *ext, *extmp;
245 unsigned long ext_op = flags & X509V3_ADD_OP_MASK;

247 /* If appending we don’t care if it exists, otherwise
248 * look for existing extension.
249 */
250 if(ext_op != X509V3_ADD_APPEND)
251 extidx = X509v3_get_ext_by_NID(*x, nid, -1);

253 /* See if extension exists */
254 if(extidx >= 0) {
255 /* If keep existing, nothing to do */
256 if(ext_op == X509V3_ADD_KEEP_EXISTING)
257 return 1;
258 /* If default then its an error */
259 if(ext_op == X509V3_ADD_DEFAULT) {

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_lib.c 5

260 errcode = X509V3_R_EXTENSION_EXISTS;
261 goto err;
262 }
263 /* If delete, just delete it */
264 if(ext_op == X509V3_ADD_DELETE) {
265 if(!sk_X509_EXTENSION_delete(*x, extidx)) return -1;
266 return 1;
267 }
268 } else {
269 /* If replace existing or delete, error since
270 * extension must exist
271 */
272 if((ext_op == X509V3_ADD_REPLACE_EXISTING) ||
273 (ext_op == X509V3_ADD_DELETE)) {
274 errcode = X509V3_R_EXTENSION_NOT_FOUND;
275 goto err;
276 }
277 }

279 /* If we get this far then we have to create an extension:
280 * could have some flags for alternative encoding schemes...
281 */

283 ext = X509V3_EXT_i2d(nid, crit, value);

285 if(!ext) {
286 X509V3err(X509V3_F_X509V3_ADD1_I2D, X509V3_R_ERROR_CREATING_EXTE
287 return 0;
288 }

290 /* If extension exists replace it.. */
291 if(extidx >= 0) {
292 extmp = sk_X509_EXTENSION_value(*x, extidx);
293 X509_EXTENSION_free(extmp);
294 if(!sk_X509_EXTENSION_set(*x, extidx, ext)) return -1;
295 return 1;
296 }

298 if(!*x && !(*x = sk_X509_EXTENSION_new_null())) return -1;
299 if(!sk_X509_EXTENSION_push(*x, ext)) return -1;

301 return 1;

303 err:
304 if(!(flags & X509V3_ADD_SILENT))
305 X509V3err(X509V3_F_X509V3_ADD1_I2D, errcode);
306 return 0;
307 }

309 IMPLEMENT_STACK_OF(X509V3_EXT_METHOD)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ncons.c 1

**
 14031 Fri May 30 18:32:16 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ncons.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_ncons.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2003 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include <stdio.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ncons.c 2

62 #include <openssl/asn1t.h>
63 #include <openssl/conf.h>
64 #include <openssl/x509v3.h>

66 static void *v2i_NAME_CONSTRAINTS(const X509V3_EXT_METHOD *method,
67 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval);
68 static int i2r_NAME_CONSTRAINTS(const X509V3_EXT_METHOD *method,
69 void *a, BIO *bp, int ind);
70 static int do_i2r_name_constraints(const X509V3_EXT_METHOD *method,
71 STACK_OF(GENERAL_SUBTREE) *trees,
72 BIO *bp, int ind, char *name);
73 static int print_nc_ipadd(BIO *bp, ASN1_OCTET_STRING *ip);

75 static int nc_match(GENERAL_NAME *gen, NAME_CONSTRAINTS *nc);
76 static int nc_match_single(GENERAL_NAME *sub, GENERAL_NAME *gen);
77 static int nc_dn(X509_NAME *sub, X509_NAME *nm);
78 static int nc_dns(ASN1_IA5STRING *sub, ASN1_IA5STRING *dns);
79 static int nc_email(ASN1_IA5STRING *sub, ASN1_IA5STRING *eml);
80 static int nc_uri(ASN1_IA5STRING *uri, ASN1_IA5STRING *base);

82 const X509V3_EXT_METHOD v3_name_constraints = {
83 NID_name_constraints, 0,
84 ASN1_ITEM_ref(NAME_CONSTRAINTS),
85 0,0,0,0,
86 0,0,
87 0, v2i_NAME_CONSTRAINTS,
88 i2r_NAME_CONSTRAINTS,0,
89 NULL
90 };

92 ASN1_SEQUENCE(GENERAL_SUBTREE) = {
93 ASN1_SIMPLE(GENERAL_SUBTREE, base, GENERAL_NAME),
94 ASN1_IMP_OPT(GENERAL_SUBTREE, minimum, ASN1_INTEGER, 0),
95 ASN1_IMP_OPT(GENERAL_SUBTREE, maximum, ASN1_INTEGER, 1)
96 } ASN1_SEQUENCE_END(GENERAL_SUBTREE)

98 ASN1_SEQUENCE(NAME_CONSTRAINTS) = {
99 ASN1_IMP_SEQUENCE_OF_OPT(NAME_CONSTRAINTS, permittedSubtrees,
100 GENERAL_SUBTREE, 0),
101 ASN1_IMP_SEQUENCE_OF_OPT(NAME_CONSTRAINTS, excludedSubtrees,
102 GENERAL_SUBTREE, 1),
103 } ASN1_SEQUENCE_END(NAME_CONSTRAINTS)
104

106 IMPLEMENT_ASN1_ALLOC_FUNCTIONS(GENERAL_SUBTREE)
107 IMPLEMENT_ASN1_ALLOC_FUNCTIONS(NAME_CONSTRAINTS)

109 static void *v2i_NAME_CONSTRAINTS(const X509V3_EXT_METHOD *method,
110 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval)
111 {
112 int i;
113 CONF_VALUE tval, *val;
114 STACK_OF(GENERAL_SUBTREE) **ptree = NULL;
115 NAME_CONSTRAINTS *ncons = NULL;
116 GENERAL_SUBTREE *sub = NULL;
117 ncons = NAME_CONSTRAINTS_new();
118 if (!ncons)
119 goto memerr;
120 for(i = 0; i < sk_CONF_VALUE_num(nval); i++)
121 {
122 val = sk_CONF_VALUE_value(nval, i);
123 if (!strncmp(val->name, "permitted", 9) && val->name[9])
124 {
125 ptree = &ncons->permittedSubtrees;
126 tval.name = val->name + 10;
127 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ncons.c 3

128 else if (!strncmp(val->name, "excluded", 8) && val->name[8])
129 {
130 ptree = &ncons->excludedSubtrees;
131 tval.name = val->name + 9;
132 }
133 else
134 {
135 X509V3err(X509V3_F_V2I_NAME_CONSTRAINTS, X509V3_R_INVALI
136 goto err;
137 }
138 tval.value = val->value;
139 sub = GENERAL_SUBTREE_new();
140 if (!v2i_GENERAL_NAME_ex(sub->base, method, ctx, &tval, 1))
141 goto err;
142 if (!*ptree)
143 *ptree = sk_GENERAL_SUBTREE_new_null();
144 if (!*ptree || !sk_GENERAL_SUBTREE_push(*ptree, sub))
145 goto memerr;
146 sub = NULL;
147 }

149 return ncons;

151 memerr:
152 X509V3err(X509V3_F_V2I_NAME_CONSTRAINTS, ERR_R_MALLOC_FAILURE);
153 err:
154 if (ncons)
155 NAME_CONSTRAINTS_free(ncons);
156 if (sub)
157 GENERAL_SUBTREE_free(sub);

159 return NULL;
160 }
161

163

165 static int i2r_NAME_CONSTRAINTS(const X509V3_EXT_METHOD *method, void *a,
166 BIO *bp, int ind)
167 {
168 NAME_CONSTRAINTS *ncons = a;
169 do_i2r_name_constraints(method, ncons->permittedSubtrees,
170 bp, ind, "Permitted");
171 do_i2r_name_constraints(method, ncons->excludedSubtrees,
172 bp, ind, "Excluded");
173 return 1;
174 }

176 static int do_i2r_name_constraints(const X509V3_EXT_METHOD *method,
177 STACK_OF(GENERAL_SUBTREE) *trees,
178 BIO *bp, int ind, char *name)
179 {
180 GENERAL_SUBTREE *tree;
181 int i;
182 if (sk_GENERAL_SUBTREE_num(trees) > 0)
183 BIO_printf(bp, "%*s%s:\n", ind, "", name);
184 for(i = 0; i < sk_GENERAL_SUBTREE_num(trees); i++)
185 {
186 tree = sk_GENERAL_SUBTREE_value(trees, i);
187 BIO_printf(bp, "%*s", ind + 2, "");
188 if (tree->base->type == GEN_IPADD)
189 print_nc_ipadd(bp, tree->base->d.ip);
190 else
191 GENERAL_NAME_print(bp, tree->base);
192 BIO_puts(bp, "\n");
193 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ncons.c 4

194 return 1;
195 }

197 static int print_nc_ipadd(BIO *bp, ASN1_OCTET_STRING *ip)
198 {
199 int i, len;
200 unsigned char *p;
201 p = ip->data;
202 len = ip->length;
203 BIO_puts(bp, "IP:");
204 if(len == 8)
205 {
206 BIO_printf(bp, "%d.%d.%d.%d/%d.%d.%d.%d",
207 p[0], p[1], p[2], p[3],
208 p[4], p[5], p[6], p[7]);
209 }
210 else if(len == 32)
211 {
212 for (i = 0; i < 16; i++)
213 {
214 BIO_printf(bp, "%X", p[0] << 8 | p[1]);
215 p += 2;
216 if (i == 7)
217 BIO_puts(bp, "/");
218 else if (i != 15)
219 BIO_puts(bp, ":");
220 }
221 }
222 else
223 BIO_printf(bp, "IP Address:<invalid>");
224 return 1;
225 }

227 /* Check a certificate conforms to a specified set of constraints.
228 * Return values:
229 * X509_V_OK: All constraints obeyed.
230 * X509_V_ERR_PERMITTED_VIOLATION: Permitted subtree violation.
231 * X509_V_ERR_EXCLUDED_VIOLATION: Excluded subtree violation.
232 * X509_V_ERR_SUBTREE_MINMAX: Min or max values present and matching type.
233 * X509_V_ERR_UNSUPPORTED_CONSTRAINT_TYPE: Unsupported constraint type.
234 * X509_V_ERR_UNSUPPORTED_CONSTRAINT_SYNTAX: bad unsupported constraint syntax.
235 * X509_V_ERR_UNSUPPORTED_NAME_SYNTAX: bad or unsupported syntax of name

237 */

239 int NAME_CONSTRAINTS_check(X509 *x, NAME_CONSTRAINTS *nc)
240 {
241 int r, i;
242 X509_NAME *nm;

244 nm = X509_get_subject_name(x);

246 if (X509_NAME_entry_count(nm) > 0)
247 {
248 GENERAL_NAME gntmp;
249 gntmp.type = GEN_DIRNAME;
250 gntmp.d.directoryName = nm;

252 r = nc_match(&gntmp, nc);

254 if (r != X509_V_OK)
255 return r;

257 gntmp.type = GEN_EMAIL;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ncons.c 5

260 /* Process any email address attributes in subject name */

262 for (i = -1;;)
263 {
264 X509_NAME_ENTRY *ne;
265 i = X509_NAME_get_index_by_NID(nm,
266 NID_pkcs9_emailAddress,
267 i);
268 if (i == -1)
269 break;
270 ne = X509_NAME_get_entry(nm, i);
271 gntmp.d.rfc822Name = X509_NAME_ENTRY_get_data(ne);
272 if (gntmp.d.rfc822Name->type != V_ASN1_IA5STRING)
273 return X509_V_ERR_UNSUPPORTED_NAME_SYNTAX;

275 r = nc_match(&gntmp, nc);

277 if (r != X509_V_OK)
278 return r;
279 }
280
281 }

283 for (i = 0; i < sk_GENERAL_NAME_num(x->altname); i++)
284 {
285 GENERAL_NAME *gen = sk_GENERAL_NAME_value(x->altname, i);
286 r = nc_match(gen, nc);
287 if (r != X509_V_OK)
288 return r;
289 }

291 return X509_V_OK;

293 }

295 static int nc_match(GENERAL_NAME *gen, NAME_CONSTRAINTS *nc)
296 {
297 GENERAL_SUBTREE *sub;
298 int i, r, match = 0;

300 /* Permitted subtrees: if any subtrees exist of matching the type
301 * at least one subtree must match.
302 */

304 for (i = 0; i < sk_GENERAL_SUBTREE_num(nc->permittedSubtrees); i++)
305 {
306 sub = sk_GENERAL_SUBTREE_value(nc->permittedSubtrees, i);
307 if (gen->type != sub->base->type)
308 continue;
309 if (sub->minimum || sub->maximum)
310 return X509_V_ERR_SUBTREE_MINMAX;
311 /* If we already have a match don’t bother trying any more */
312 if (match == 2)
313 continue;
314 if (match == 0)
315 match = 1;
316 r = nc_match_single(gen, sub->base);
317 if (r == X509_V_OK)
318 match = 2;
319 else if (r != X509_V_ERR_PERMITTED_VIOLATION)
320 return r;
321 }

323 if (match == 1)
324 return X509_V_ERR_PERMITTED_VIOLATION;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ncons.c 6

326 /* Excluded subtrees: must not match any of these */

328 for (i = 0; i < sk_GENERAL_SUBTREE_num(nc->excludedSubtrees); i++)
329 {
330 sub = sk_GENERAL_SUBTREE_value(nc->excludedSubtrees, i);
331 if (gen->type != sub->base->type)
332 continue;
333 if (sub->minimum || sub->maximum)
334 return X509_V_ERR_SUBTREE_MINMAX;

336 r = nc_match_single(gen, sub->base);
337 if (r == X509_V_OK)
338 return X509_V_ERR_EXCLUDED_VIOLATION;
339 else if (r != X509_V_ERR_PERMITTED_VIOLATION)
340 return r;

342 }

344 return X509_V_OK;

346 }

348 static int nc_match_single(GENERAL_NAME *gen, GENERAL_NAME *base)
349 {
350 switch(base->type)
351 {
352 case GEN_DIRNAME:
353 return nc_dn(gen->d.directoryName, base->d.directoryName);

355 case GEN_DNS:
356 return nc_dns(gen->d.dNSName, base->d.dNSName);

358 case GEN_EMAIL:
359 return nc_email(gen->d.rfc822Name, base->d.rfc822Name);

361 case GEN_URI:
362 return nc_uri(gen->d.uniformResourceIdentifier,
363 base->d.uniformResourceIdentifier);

365 default:
366 return X509_V_ERR_UNSUPPORTED_CONSTRAINT_TYPE;
367 }

369 }

371 /* directoryName name constraint matching.
372 * The canonical encoding of X509_NAME makes this comparison easy. It is
373 * matched if the subtree is a subset of the name.
374 */

376 static int nc_dn(X509_NAME *nm, X509_NAME *base)
377 {
378 /* Ensure canonical encodings are up to date. */
379 if (nm->modified && i2d_X509_NAME(nm, NULL) < 0)
380 return X509_V_ERR_OUT_OF_MEM;
381 if (base->modified && i2d_X509_NAME(base, NULL) < 0)
382 return X509_V_ERR_OUT_OF_MEM;
383 if (base->canon_enclen > nm->canon_enclen)
384 return X509_V_ERR_PERMITTED_VIOLATION;
385 if (memcmp(base->canon_enc, nm->canon_enc, base->canon_enclen))
386 return X509_V_ERR_PERMITTED_VIOLATION;
387 return X509_V_OK;
388 }

390 static int nc_dns(ASN1_IA5STRING *dns, ASN1_IA5STRING *base)
391 {

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ncons.c 7

392 char *baseptr = (char *)base->data;
393 char *dnsptr = (char *)dns->data;
394 /* Empty matches everything */
395 if (!*baseptr)
396 return X509_V_OK;
397 /* Otherwise can add zero or more components on the left so
398 * compare RHS and if dns is longer and expect ’.’ as preceding
399 * character.
400 */
401 if (dns->length > base->length)
402 {
403 dnsptr += dns->length - base->length;
404 if (dnsptr[-1] != ’.’)
405 return X509_V_ERR_PERMITTED_VIOLATION;
406 }

408 if (strcasecmp(baseptr, dnsptr))
409 return X509_V_ERR_PERMITTED_VIOLATION;

411 return X509_V_OK;

413 }

415 static int nc_email(ASN1_IA5STRING *eml, ASN1_IA5STRING *base)
416 {
417 const char *baseptr = (char *)base->data;
418 const char *emlptr = (char *)eml->data;

420 const char *baseat = strchr(baseptr, ’@’);
421 const char *emlat = strchr(emlptr, ’@’);
422 if (!emlat)
423 return X509_V_ERR_UNSUPPORTED_NAME_SYNTAX;
424 /* Special case: inital ’.’ is RHS match */
425 if (!baseat && (*baseptr == ’.’))
426 {
427 if (eml->length > base->length)
428 {
429 emlptr += eml->length - base->length;
430 if (!strcasecmp(baseptr, emlptr))
431 return X509_V_OK;
432 }
433 return X509_V_ERR_PERMITTED_VIOLATION;
434 }

436 /* If we have anything before ’@’ match local part */

438 if (baseat)
439 {
440 if (baseat != baseptr)
441 {
442 if ((baseat - baseptr) != (emlat - emlptr))
443 return X509_V_ERR_PERMITTED_VIOLATION;
444 /* Case sensitive match of local part */
445 if (strncmp(baseptr, emlptr, emlat - emlptr))
446 return X509_V_ERR_PERMITTED_VIOLATION;
447 }
448 /* Position base after ’@’ */
449 baseptr = baseat + 1;
450 }
451 emlptr = emlat + 1;
452 /* Just have hostname left to match: case insensitive */
453 if (strcasecmp(baseptr, emlptr))
454 return X509_V_ERR_PERMITTED_VIOLATION;

456 return X509_V_OK;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ncons.c 8

458 }

460 static int nc_uri(ASN1_IA5STRING *uri, ASN1_IA5STRING *base)
461 {
462 const char *baseptr = (char *)base->data;
463 const char *hostptr = (char *)uri->data;
464 const char *p = strchr(hostptr, ’:’);
465 int hostlen;
466 /* Check for foo:// and skip past it */
467 if (!p || (p[1] != ’/’) || (p[2] != ’/’))
468 return X509_V_ERR_UNSUPPORTED_NAME_SYNTAX;
469 hostptr = p + 3;

471 /* Determine length of hostname part of URI */

473 /* Look for a port indicator as end of hostname first */

475 p = strchr(hostptr, ’:’);
476 /* Otherwise look for trailing slash */
477 if (!p)
478 p = strchr(hostptr, ’/’);

480 if (!p)
481 hostlen = strlen(hostptr);
482 else
483 hostlen = p - hostptr;

485 if (hostlen == 0)
486 return X509_V_ERR_UNSUPPORTED_NAME_SYNTAX;

488 /* Special case: inital ’.’ is RHS match */
489 if (*baseptr == ’.’)
490 {
491 if (hostlen > base->length)
492 {
493 p = hostptr + hostlen - base->length;
494 if (!strncasecmp(p, baseptr, base->length))
495 return X509_V_OK;
496 }
497 return X509_V_ERR_PERMITTED_VIOLATION;
498 }

500 if ((base->length != (int)hostlen) || strncasecmp(hostptr, baseptr, host
501 return X509_V_ERR_PERMITTED_VIOLATION;

503 return X509_V_OK;

505 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ocsp.c 1

**
 8387 Fri May 30 18:32:16 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ocsp.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_ocsp.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #ifndef OPENSSL_NO_OCSP

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ocsp.c 2

62 #include "cryptlib.h"
63 #include <openssl/conf.h>
64 #include <openssl/asn1.h>
65 #include <openssl/ocsp.h>
66 #include <openssl/x509v3.h>

68 /* OCSP extensions and a couple of CRL entry extensions
69 */

71 static int i2r_ocsp_crlid(const X509V3_EXT_METHOD *method, void *nonce,
72 BIO *out, int indent);
73 static int i2r_ocsp_acutoff(const X509V3_EXT_METHOD *method, void *nonce,
74 BIO *out, int indent);
75 static int i2r_object(const X509V3_EXT_METHOD *method, void *obj, BIO *out,
76 int indent);

78 static void *ocsp_nonce_new(void);
79 static int i2d_ocsp_nonce(void *a, unsigned char **pp);
80 static void *d2i_ocsp_nonce(void *a, const unsigned char **pp, long length);
81 static void ocsp_nonce_free(void *a);
82 static int i2r_ocsp_nonce(const X509V3_EXT_METHOD *method, void *nonce,
83 BIO *out, int indent);

85 static int i2r_ocsp_nocheck(const X509V3_EXT_METHOD *method,
86 void *nocheck, BIO *out, int indent);
87 static void *s2i_ocsp_nocheck(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx,
88 const char *str);
89 static int i2r_ocsp_serviceloc(const X509V3_EXT_METHOD *method, void *in,
90 BIO *bp, int ind);

92 const X509V3_EXT_METHOD v3_ocsp_crlid = {
93 NID_id_pkix_OCSP_CrlID, 0, ASN1_ITEM_ref(OCSP_CRLID),
94 0,0,0,0,
95 0,0,
96 0,0,
97 i2r_ocsp_crlid,0,
98 NULL
99 };

101 const X509V3_EXT_METHOD v3_ocsp_acutoff = {
102 NID_id_pkix_OCSP_archiveCutoff, 0, ASN1_ITEM_ref(ASN1_GENERALIZEDTIME),
103 0,0,0,0,
104 0,0,
105 0,0,
106 i2r_ocsp_acutoff,0,
107 NULL
108 };

110 const X509V3_EXT_METHOD v3_crl_invdate = {
111 NID_invalidity_date, 0, ASN1_ITEM_ref(ASN1_GENERALIZEDTIME),
112 0,0,0,0,
113 0,0,
114 0,0,
115 i2r_ocsp_acutoff,0,
116 NULL
117 };

119 const X509V3_EXT_METHOD v3_crl_hold = {
120 NID_hold_instruction_code, 0, ASN1_ITEM_ref(ASN1_OBJECT),
121 0,0,0,0,
122 0,0,
123 0,0,
124 i2r_object,0,
125 NULL
126 };

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ocsp.c 3

128 const X509V3_EXT_METHOD v3_ocsp_nonce = {
129 NID_id_pkix_OCSP_Nonce, 0, NULL,
130 ocsp_nonce_new,
131 ocsp_nonce_free,
132 d2i_ocsp_nonce,
133 i2d_ocsp_nonce,
134 0,0,
135 0,0,
136 i2r_ocsp_nonce,0,
137 NULL
138 };

140 const X509V3_EXT_METHOD v3_ocsp_nocheck = {
141 NID_id_pkix_OCSP_noCheck, 0, ASN1_ITEM_ref(ASN1_NULL),
142 0,0,0,0,
143 0,s2i_ocsp_nocheck,
144 0,0,
145 i2r_ocsp_nocheck,0,
146 NULL
147 };

149 const X509V3_EXT_METHOD v3_ocsp_serviceloc = {
150 NID_id_pkix_OCSP_serviceLocator, 0, ASN1_ITEM_ref(OCSP_SERVICELOC),
151 0,0,0,0,
152 0,0,
153 0,0,
154 i2r_ocsp_serviceloc,0,
155 NULL
156 };

158 static int i2r_ocsp_crlid(const X509V3_EXT_METHOD *method, void *in, BIO *bp,
159 int ind)
160 {
161 OCSP_CRLID *a = in;
162 if (a->crlUrl)
163 {
164 if (BIO_printf(bp, "%*scrlUrl: ", ind, "") <= 0) goto err;
165 if (!ASN1_STRING_print(bp, (ASN1_STRING*)a->crlUrl)) goto err;
166 if (BIO_write(bp, "\n", 1) <= 0) goto err;
167 }
168 if (a->crlNum)
169 {
170 if (BIO_printf(bp, "%*scrlNum: ", ind, "") <= 0) goto err;
171 if (i2a_ASN1_INTEGER(bp, a->crlNum) <= 0) goto err;
172 if (BIO_write(bp, "\n", 1) <= 0) goto err;
173 }
174 if (a->crlTime)
175 {
176 if (BIO_printf(bp, "%*scrlTime: ", ind, "") <= 0) goto err;
177 if (!ASN1_GENERALIZEDTIME_print(bp, a->crlTime)) goto err;
178 if (BIO_write(bp, "\n", 1) <= 0) goto err;
179 }
180 return 1;
181 err:
182 return 0;
183 }

185 static int i2r_ocsp_acutoff(const X509V3_EXT_METHOD *method, void *cutoff,
186 BIO *bp, int ind)
187 {
188 if (BIO_printf(bp, "%*s", ind, "") <= 0) return 0;
189 if(!ASN1_GENERALIZEDTIME_print(bp, cutoff)) return 0;
190 return 1;
191 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ocsp.c 4

194 static int i2r_object(const X509V3_EXT_METHOD *method, void *oid, BIO *bp,
195 int ind)
196 {
197 if (BIO_printf(bp, "%*s", ind, "") <= 0) return 0;
198 if(i2a_ASN1_OBJECT(bp, oid) <= 0) return 0;
199 return 1;
200 }

202 /* OCSP nonce. This is needs special treatment because it doesn’t have
203 * an ASN1 encoding at all: it just contains arbitrary data.
204 */

206 static void *ocsp_nonce_new(void)
207 {
208 return ASN1_OCTET_STRING_new();
209 }

211 static int i2d_ocsp_nonce(void *a, unsigned char **pp)
212 {
213 ASN1_OCTET_STRING *os = a;
214 if(pp) {
215 memcpy(*pp, os->data, os->length);
216 *pp += os->length;
217 }
218 return os->length;
219 }

221 static void *d2i_ocsp_nonce(void *a, const unsigned char **pp, long length)
222 {
223 ASN1_OCTET_STRING *os, **pos;
224 pos = a;
225 if(!pos || !*pos) os = ASN1_OCTET_STRING_new();
226 else os = *pos;
227 if(!ASN1_OCTET_STRING_set(os, *pp, length)) goto err;

229 *pp += length;

231 if(pos) *pos = os;
232 return os;

234 err:
235 if(os && (!pos || (*pos != os))) M_ASN1_OCTET_STRING_free(os);
236 OCSPerr(OCSP_F_D2I_OCSP_NONCE, ERR_R_MALLOC_FAILURE);
237 return NULL;
238 }

240 static void ocsp_nonce_free(void *a)
241 {
242 M_ASN1_OCTET_STRING_free(a);
243 }

245 static int i2r_ocsp_nonce(const X509V3_EXT_METHOD *method, void *nonce,
246 BIO *out, int indent)
247 {
248 if(BIO_printf(out, "%*s", indent, "") <= 0) return 0;
249 if(i2a_ASN1_STRING(out, nonce, V_ASN1_OCTET_STRING) <= 0) return 0;
250 return 1;
251 }

253 /* Nocheck is just a single NULL. Don’t print anything and always set it */

255 static int i2r_ocsp_nocheck(const X509V3_EXT_METHOD *method, void *nocheck,
256 BIO *out, int indent)
257 {
258 return 1;
259 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_ocsp.c 5

261 static void *s2i_ocsp_nocheck(const X509V3_EXT_METHOD *method, X509V3_CTX *ctx,
262 const char *str)
263 {
264 return ASN1_NULL_new();
265 }

267 static int i2r_ocsp_serviceloc(const X509V3_EXT_METHOD *method, void *in,
268 BIO *bp, int ind)
269 {
270 int i;
271 OCSP_SERVICELOC *a = in;
272 ACCESS_DESCRIPTION *ad;

274 if (BIO_printf(bp, "%*sIssuer: ", ind, "") <= 0) goto err;
275 if (X509_NAME_print_ex(bp, a->issuer, 0, XN_FLAG_ONELINE) <= 0) goto err
276 for (i = 0; i < sk_ACCESS_DESCRIPTION_num(a->locator); i++)
277 {
278 ad = sk_ACCESS_DESCRIPTION_value(a->locator,i);
279 if (BIO_printf(bp, "\n%*s", (2*ind), "") <= 0)
280 goto err;
281 if(i2a_ASN1_OBJECT(bp, ad->method) <= 0) goto er
282 if(BIO_puts(bp, " - ") <= 0) goto err;
283 if(GENERAL_NAME_print(bp, ad->location) <= 0) go
284 }
285 return 1;
286 err:
287 return 0;
288 }
289 #endif

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pci.c 1

**
 9051 Fri May 30 18:32:16 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pci.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_pci.c -*- mode:C; c-file-style: "eay" -*- */
2 /* Contributed to the OpenSSL Project 2004
3 * by Richard Levitte (richard@levitte.org)
4 */
5 /* Copyright (c) 2004 Kungliga Tekniska Högskolan
6 * (Royal Institute of Technology, Stockholm, Sweden).
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * 3. Neither the name of the Institute nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ‘‘AS IS’’ AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */

37 #include <stdio.h>
38 #include "cryptlib.h"
39 #include <openssl/conf.h>
40 #include <openssl/x509v3.h>

42 static int i2r_pci(X509V3_EXT_METHOD *method, PROXY_CERT_INFO_EXTENSION *ext,
43 BIO *out, int indent);
44 static PROXY_CERT_INFO_EXTENSION *r2i_pci(X509V3_EXT_METHOD *method,
45 X509V3_CTX *ctx, char *str);

47 const X509V3_EXT_METHOD v3_pci =
48 { NID_proxyCertInfo, 0, ASN1_ITEM_ref(PROXY_CERT_INFO_EXTENSION),
49 0,0,0,0,
50 0,0,
51 NULL, NULL,
52 (X509V3_EXT_I2R)i2r_pci,
53 (X509V3_EXT_R2I)r2i_pci,
54 NULL,
55 };

57 static int i2r_pci(X509V3_EXT_METHOD *method, PROXY_CERT_INFO_EXTENSION *pci,
58 BIO *out, int indent)
59 {
60 BIO_printf(out, "%*sPath Length Constraint: ", indent, "");
61 if (pci->pcPathLengthConstraint)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pci.c 2

62 i2a_ASN1_INTEGER(out, pci->pcPathLengthConstraint);
63 else
64 BIO_printf(out, "infinite");
65 BIO_puts(out, "\n");
66 BIO_printf(out, "%*sPolicy Language: ", indent, "");
67 i2a_ASN1_OBJECT(out, pci->proxyPolicy->policyLanguage);
68 BIO_puts(out, "\n");
69 if (pci->proxyPolicy->policy && pci->proxyPolicy->policy->data)
70 BIO_printf(out, "%*sPolicy Text: %s\n", indent, "",
71 pci->proxyPolicy->policy->data);
72 return 1;
73 }

75 static int process_pci_value(CONF_VALUE *val,
76 ASN1_OBJECT **language, ASN1_INTEGER **pathlen,
77 ASN1_OCTET_STRING **policy)
78 {
79 int free_policy = 0;

81 if (strcmp(val->name, "language") == 0)
82 {
83 if (*language)
84 {
85 X509V3err(X509V3_F_PROCESS_PCI_VALUE,X509V3_R_POLICY_LAN
86 X509V3_conf_err(val);
87 return 0;
88 }
89 if (!(*language = OBJ_txt2obj(val->value, 0)))
90 {
91 X509V3err(X509V3_F_PROCESS_PCI_VALUE,X509V3_R_INVALID_OB
92 X509V3_conf_err(val);
93 return 0;
94 }
95 }
96 else if (strcmp(val->name, "pathlen") == 0)
97 {
98 if (*pathlen)
99 {
100 X509V3err(X509V3_F_PROCESS_PCI_VALUE,X509V3_R_POLICY_PAT
101 X509V3_conf_err(val);
102 return 0;
103 }
104 if (!X509V3_get_value_int(val, pathlen))
105 {
106 X509V3err(X509V3_F_PROCESS_PCI_VALUE,X509V3_R_POLICY_PAT
107 X509V3_conf_err(val);
108 return 0;
109 }
110 }
111 else if (strcmp(val->name, "policy") == 0)
112 {
113 unsigned char *tmp_data = NULL;
114 long val_len;
115 if (!*policy)
116 {
117 *policy = ASN1_OCTET_STRING_new();
118 if (!*policy)
119 {
120 X509V3err(X509V3_F_PROCESS_PCI_VALUE,ERR_R_MALLO
121 X509V3_conf_err(val);
122 return 0;
123 }
124 free_policy = 1;
125 }
126 if (strncmp(val->value, "hex:", 4) == 0)
127 {

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pci.c 3

128 unsigned char *tmp_data2 =
129 string_to_hex(val->value + 4, &val_len);

131 if (!tmp_data2)
132 {
133 X509V3err(X509V3_F_PROCESS_PCI_VALUE,X509V3_R_IL
134 X509V3_conf_err(val);
135 goto err;
136 }

138 tmp_data = OPENSSL_realloc((*policy)->data,
139 (*policy)->length + val_len + 1);
140 if (tmp_data)
141 {
142 (*policy)->data = tmp_data;
143 memcpy(&(*policy)->data[(*policy)->length],
144 tmp_data2, val_len);
145 (*policy)->length += val_len;
146 (*policy)->data[(*policy)->length] = ’\0’;
147 }
148 else
149 {
150 OPENSSL_free(tmp_data2);
151 /* realloc failure implies the original data spa
152 (*policy)->data = NULL;
153 (*policy)->length = 0;
154 X509V3err(X509V3_F_PROCESS_PCI_VALUE,ERR_R_MALLO
155 X509V3_conf_err(val);
156 goto err;
157 }
158 OPENSSL_free(tmp_data2);
159 }
160 else if (strncmp(val->value, "file:", 5) == 0)
161 {
162 unsigned char buf[2048];
163 int n;
164 BIO *b = BIO_new_file(val->value + 5, "r");
165 if (!b)
166 {
167 X509V3err(X509V3_F_PROCESS_PCI_VALUE,ERR_R_BIO_L
168 X509V3_conf_err(val);
169 goto err;
170 }
171 while((n = BIO_read(b, buf, sizeof(buf))) > 0
172 || (n == 0 && BIO_should_retry(b)))
173 {
174 if (!n) continue;

176 tmp_data = OPENSSL_realloc((*policy)->data,
177 (*policy)->length + n + 1);

179 if (!tmp_data)
180 break;

182 (*policy)->data = tmp_data;
183 memcpy(&(*policy)->data[(*policy)->length],
184 buf, n);
185 (*policy)->length += n;
186 (*policy)->data[(*policy)->length] = ’\0’;
187 }
188 BIO_free_all(b);

190 if (n < 0)
191 {
192 X509V3err(X509V3_F_PROCESS_PCI_VALUE,ERR_R_BIO_L
193 X509V3_conf_err(val);

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pci.c 4

194 goto err;
195 }
196 }
197 else if (strncmp(val->value, "text:", 5) == 0)
198 {
199 val_len = strlen(val->value + 5);
200 tmp_data = OPENSSL_realloc((*policy)->data,
201 (*policy)->length + val_len + 1);
202 if (tmp_data)
203 {
204 (*policy)->data = tmp_data;
205 memcpy(&(*policy)->data[(*policy)->length],
206 val->value + 5, val_len);
207 (*policy)->length += val_len;
208 (*policy)->data[(*policy)->length] = ’\0’;
209 }
210 else
211 {
212 /* realloc failure implies the original data spa
213 (*policy)->data = NULL;
214 (*policy)->length = 0;
215 X509V3err(X509V3_F_PROCESS_PCI_VALUE,ERR_R_MALLO
216 X509V3_conf_err(val);
217 goto err;
218 }
219 }
220 else
221 {
222 X509V3err(X509V3_F_PROCESS_PCI_VALUE,X509V3_R_INCORRECT_
223 X509V3_conf_err(val);
224 goto err;
225 }
226 if (!tmp_data)
227 {
228 X509V3err(X509V3_F_PROCESS_PCI_VALUE,ERR_R_MALLOC_FAILUR
229 X509V3_conf_err(val);
230 goto err;
231 }
232 }
233 return 1;
234 err:
235 if (free_policy)
236 {
237 ASN1_OCTET_STRING_free(*policy);
238 *policy = NULL;
239 }
240 return 0;
241 }

243 static PROXY_CERT_INFO_EXTENSION *r2i_pci(X509V3_EXT_METHOD *method,
244 X509V3_CTX *ctx, char *value)
245 {
246 PROXY_CERT_INFO_EXTENSION *pci = NULL;
247 STACK_OF(CONF_VALUE) *vals;
248 ASN1_OBJECT *language = NULL;
249 ASN1_INTEGER *pathlen = NULL;
250 ASN1_OCTET_STRING *policy = NULL;
251 int i, j;

253 vals = X509V3_parse_list(value);
254 for (i = 0; i < sk_CONF_VALUE_num(vals); i++)
255 {
256 CONF_VALUE *cnf = sk_CONF_VALUE_value(vals, i);
257 if (!cnf->name || (*cnf->name != ’@’ && !cnf->value))
258 {
259 X509V3err(X509V3_F_R2I_PCI,X509V3_R_INVALID_PROXY_POLICY

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pci.c 5

260 X509V3_conf_err(cnf);
261 goto err;
262 }
263 if (*cnf->name == ’@’)
264 {
265 STACK_OF(CONF_VALUE) *sect;
266 int success_p = 1;

268 sect = X509V3_get_section(ctx, cnf->name + 1);
269 if (!sect)
270 {
271 X509V3err(X509V3_F_R2I_PCI,X509V3_R_INVALID_SECT
272 X509V3_conf_err(cnf);
273 goto err;
274 }
275 for (j = 0; success_p && j < sk_CONF_VALUE_num(sect); j+
276 {
277 success_p =
278 process_pci_value(sk_CONF_VALUE_value(se
279 &language, &pathlen, &policy);
280 }
281 X509V3_section_free(ctx, sect);
282 if (!success_p)
283 goto err;
284 }
285 else
286 {
287 if (!process_pci_value(cnf,
288 &language, &pathlen, &policy))
289 {
290 X509V3_conf_err(cnf);
291 goto err;
292 }
293 }
294 }

296 /* Language is mandatory */
297 if (!language)
298 {
299 X509V3err(X509V3_F_R2I_PCI,X509V3_R_NO_PROXY_CERT_POLICY_LANGUAG
300 goto err;
301 }
302 i = OBJ_obj2nid(language);
303 if ((i == NID_Independent || i == NID_id_ppl_inheritAll) && policy)
304 {
305 X509V3err(X509V3_F_R2I_PCI,X509V3_R_POLICY_WHEN_PROXY_LANGUAGE_R
306 goto err;
307 }

309 pci = PROXY_CERT_INFO_EXTENSION_new();
310 if (!pci)
311 {
312 X509V3err(X509V3_F_R2I_PCI,ERR_R_MALLOC_FAILURE);
313 goto err;
314 }

316 pci->proxyPolicy->policyLanguage = language; language = NULL;
317 pci->proxyPolicy->policy = policy; policy = NULL;
318 pci->pcPathLengthConstraint = pathlen; pathlen = NULL;
319 goto end;
320 err:
321 if (language) { ASN1_OBJECT_free(language); language = NULL; }
322 if (pathlen) { ASN1_INTEGER_free(pathlen); pathlen = NULL; }
323 if (policy) { ASN1_OCTET_STRING_free(policy); policy = NULL; }
324 if (pci) { PROXY_CERT_INFO_EXTENSION_free(pci); pci = NULL; }
325 end:

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pci.c 6

326 sk_CONF_VALUE_pop_free(vals, X509V3_conf_free);
327 return pci;
328 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pcia.c 1

**
 2357 Fri May 30 18:32:16 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pcia.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_pcia.c -*- mode:C; c-file-style: "eay" -*- */
2 /* Contributed to the OpenSSL Project 2004
3 * by Richard Levitte (richard@levitte.org)
4 */
5 /* Copyright (c) 2004 Kungliga Tekniska Högskolan
6 * (Royal Institute of Technology, Stockholm, Sweden).
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * 3. Neither the name of the Institute nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ‘‘AS IS’’ AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */

37 #include <openssl/asn1.h>
38 #include <openssl/asn1t.h>
39 #include <openssl/x509v3.h>

41 ASN1_SEQUENCE(PROXY_POLICY) =
42 {
43 ASN1_SIMPLE(PROXY_POLICY,policyLanguage,ASN1_OBJECT),
44 ASN1_OPT(PROXY_POLICY,policy,ASN1_OCTET_STRING)
45 } ASN1_SEQUENCE_END(PROXY_POLICY)

47 IMPLEMENT_ASN1_FUNCTIONS(PROXY_POLICY)

49 ASN1_SEQUENCE(PROXY_CERT_INFO_EXTENSION) =
50 {
51 ASN1_OPT(PROXY_CERT_INFO_EXTENSION,pcPathLengthConstraint,ASN1_INTEGER),
52 ASN1_SIMPLE(PROXY_CERT_INFO_EXTENSION,proxyPolicy,PROXY_POLICY)
53 } ASN1_SEQUENCE_END(PROXY_CERT_INFO_EXTENSION)

55 IMPLEMENT_ASN1_FUNCTIONS(PROXY_CERT_INFO_EXTENSION)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pcons.c 1

**
 5041 Fri May 30 18:32:16 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pcons.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_pcons.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2003 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include <stdio.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pcons.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/asn1t.h>
64 #include <openssl/conf.h>
65 #include <openssl/x509v3.h>

67 static STACK_OF(CONF_VALUE) *
68 i2v_POLICY_CONSTRAINTS(const X509V3_EXT_METHOD *method, void *bcons,
69 STACK_OF(CONF_VALUE) *extlist);
70 static void *v2i_POLICY_CONSTRAINTS(const X509V3_EXT_METHOD *method,
71 X509V3_CTX *ctx,
72 STACK_OF(CONF_VALUE) *values);

74 const X509V3_EXT_METHOD v3_policy_constraints = {
75 NID_policy_constraints, 0,
76 ASN1_ITEM_ref(POLICY_CONSTRAINTS),
77 0,0,0,0,
78 0,0,
79 i2v_POLICY_CONSTRAINTS,
80 v2i_POLICY_CONSTRAINTS,
81 NULL,NULL,
82 NULL
83 };

85 ASN1_SEQUENCE(POLICY_CONSTRAINTS) = {
86 ASN1_IMP_OPT(POLICY_CONSTRAINTS, requireExplicitPolicy, ASN1_INTEGER,0),
87 ASN1_IMP_OPT(POLICY_CONSTRAINTS, inhibitPolicyMapping, ASN1_INTEGER,1)
88 } ASN1_SEQUENCE_END(POLICY_CONSTRAINTS)

90 IMPLEMENT_ASN1_ALLOC_FUNCTIONS(POLICY_CONSTRAINTS)

93 static STACK_OF(CONF_VALUE) *
94 i2v_POLICY_CONSTRAINTS(const X509V3_EXT_METHOD *method, void *a,
95 STACK_OF(CONF_VALUE) *extlist)
96 {
97 POLICY_CONSTRAINTS *pcons = a;
98 X509V3_add_value_int("Require Explicit Policy",
99 pcons->requireExplicitPolicy, &extlist);
100 X509V3_add_value_int("Inhibit Policy Mapping",
101 pcons->inhibitPolicyMapping, &extlist);
102 return extlist;
103 }

105 static void *v2i_POLICY_CONSTRAINTS(const X509V3_EXT_METHOD *method,
106 X509V3_CTX *ctx,
107 STACK_OF(CONF_VALUE) *values)
108 {
109 POLICY_CONSTRAINTS *pcons=NULL;
110 CONF_VALUE *val;
111 int i;
112 if(!(pcons = POLICY_CONSTRAINTS_new())) {
113 X509V3err(X509V3_F_V2I_POLICY_CONSTRAINTS, ERR_R_MALLOC_FAILURE)
114 return NULL;
115 }
116 for(i = 0; i < sk_CONF_VALUE_num(values); i++) {
117 val = sk_CONF_VALUE_value(values, i);
118 if(!strcmp(val->name, "requireExplicitPolicy")) {
119 if(!X509V3_get_value_int(val,
120 &pcons->requireExplicitPolicy)) goto err;
121 } else if(!strcmp(val->name, "inhibitPolicyMapping")) {
122 if(!X509V3_get_value_int(val,
123 &pcons->inhibitPolicyMapping)) goto err;
124 } else {
125 X509V3err(X509V3_F_V2I_POLICY_CONSTRAINTS, X509V3_R_INVA
126 X509V3_conf_err(val);
127 goto err;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pcons.c 3

128 }
129 }
130 if (!pcons->inhibitPolicyMapping && !pcons->requireExplicitPolicy) {
131 X509V3err(X509V3_F_V2I_POLICY_CONSTRAINTS, X509V3_R_ILLEGAL_EMPT
132 goto err;
133 }

135 return pcons;
136 err:
137 POLICY_CONSTRAINTS_free(pcons);
138 return NULL;
139 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pku.c 1

**
 4155 Fri May 30 18:32:17 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pku.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_pku.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/asn1.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pku.c 2

62 #include <openssl/asn1t.h>
63 #include <openssl/x509v3.h>

65 static int i2r_PKEY_USAGE_PERIOD(X509V3_EXT_METHOD *method, PKEY_USAGE_PERIOD *u
66 /*
67 static PKEY_USAGE_PERIOD *v2i_PKEY_USAGE_PERIOD(X509V3_EXT_METHOD *method, X509V
68 */
69 const X509V3_EXT_METHOD v3_pkey_usage_period = {
70 NID_private_key_usage_period, 0, ASN1_ITEM_ref(PKEY_USAGE_PERIOD),
71 0,0,0,0,
72 0,0,0,0,
73 (X509V3_EXT_I2R)i2r_PKEY_USAGE_PERIOD, NULL,
74 NULL
75 };

77 ASN1_SEQUENCE(PKEY_USAGE_PERIOD) = {
78 ASN1_IMP_OPT(PKEY_USAGE_PERIOD, notBefore, ASN1_GENERALIZEDTIME, 0),
79 ASN1_IMP_OPT(PKEY_USAGE_PERIOD, notAfter, ASN1_GENERALIZEDTIME, 1)
80 } ASN1_SEQUENCE_END(PKEY_USAGE_PERIOD)

82 IMPLEMENT_ASN1_FUNCTIONS(PKEY_USAGE_PERIOD)

84 static int i2r_PKEY_USAGE_PERIOD(X509V3_EXT_METHOD *method,
85 PKEY_USAGE_PERIOD *usage, BIO *out, int indent)
86 {
87 BIO_printf(out, "%*s", indent, "");
88 if(usage->notBefore) {
89 BIO_write(out, "Not Before: ", 12);
90 ASN1_GENERALIZEDTIME_print(out, usage->notBefore);
91 if(usage->notAfter) BIO_write(out, ", ", 2);
92 }
93 if(usage->notAfter) {
94 BIO_write(out, "Not After: ", 11);
95 ASN1_GENERALIZEDTIME_print(out, usage->notAfter);
96 }
97 return 1;
98 }

100 /*
101 static PKEY_USAGE_PERIOD *v2i_PKEY_USAGE_PERIOD(method, ctx, values)
102 X509V3_EXT_METHOD *method;
103 X509V3_CTX *ctx;
104 STACK_OF(CONF_VALUE) *values;
105 {
106 return NULL;
107 }
108 */

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pmaps.c 1

**
 5477 Fri May 30 18:32:17 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pmaps.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_pmaps.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 2003 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include <stdio.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pmaps.c 2

62 #include <openssl/asn1t.h>
63 #include <openssl/conf.h>
64 #include <openssl/x509v3.h>

66 static void *v2i_POLICY_MAPPINGS(const X509V3_EXT_METHOD *method,
67 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval);
68 static STACK_OF(CONF_VALUE) *
69 i2v_POLICY_MAPPINGS(const X509V3_EXT_METHOD *method, void *pmps,
70 STACK_OF(CONF_VALUE) *extlist);

72 const X509V3_EXT_METHOD v3_policy_mappings = {
73 NID_policy_mappings, 0,
74 ASN1_ITEM_ref(POLICY_MAPPINGS),
75 0,0,0,0,
76 0,0,
77 i2v_POLICY_MAPPINGS,
78 v2i_POLICY_MAPPINGS,
79 0,0,
80 NULL
81 };

83 ASN1_SEQUENCE(POLICY_MAPPING) = {
84 ASN1_SIMPLE(POLICY_MAPPING, issuerDomainPolicy, ASN1_OBJECT),
85 ASN1_SIMPLE(POLICY_MAPPING, subjectDomainPolicy, ASN1_OBJECT)
86 } ASN1_SEQUENCE_END(POLICY_MAPPING)

88 ASN1_ITEM_TEMPLATE(POLICY_MAPPINGS) =
89 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, POLICY_MAPPINGS,
90 POLICY_MAPPING)
91 ASN1_ITEM_TEMPLATE_END(POLICY_MAPPINGS)

93 IMPLEMENT_ASN1_ALLOC_FUNCTIONS(POLICY_MAPPING)

96 static STACK_OF(CONF_VALUE) *
97 i2v_POLICY_MAPPINGS(const X509V3_EXT_METHOD *method, void *a,
98 STACK_OF(CONF_VALUE) *ext_list)
99 {
100 POLICY_MAPPINGS *pmaps = a;
101 POLICY_MAPPING *pmap;
102 int i;
103 char obj_tmp1[80];
104 char obj_tmp2[80];
105 for(i = 0; i < sk_POLICY_MAPPING_num(pmaps); i++) {
106 pmap = sk_POLICY_MAPPING_value(pmaps, i);
107 i2t_ASN1_OBJECT(obj_tmp1, 80, pmap->issuerDomainPolicy);
108 i2t_ASN1_OBJECT(obj_tmp2, 80, pmap->subjectDomainPolicy);
109 X509V3_add_value(obj_tmp1, obj_tmp2, &ext_list);
110 }
111 return ext_list;
112 }

114 static void *v2i_POLICY_MAPPINGS(const X509V3_EXT_METHOD *method,
115 X509V3_CTX *ctx, STACK_OF(CONF_VALUE) *nval)
116 {
117 POLICY_MAPPINGS *pmaps;
118 POLICY_MAPPING *pmap;
119 ASN1_OBJECT *obj1, *obj2;
120 CONF_VALUE *val;
121 int i;

123 if(!(pmaps = sk_POLICY_MAPPING_new_null())) {
124 X509V3err(X509V3_F_V2I_POLICY_MAPPINGS,ERR_R_MALLOC_FAILURE);
125 return NULL;
126 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_pmaps.c 3

128 for(i = 0; i < sk_CONF_VALUE_num(nval); i++) {
129 val = sk_CONF_VALUE_value(nval, i);
130 if(!val->value || !val->name) {
131 sk_POLICY_MAPPING_pop_free(pmaps, POLICY_MAPPING_free);
132 X509V3err(X509V3_F_V2I_POLICY_MAPPINGS,X509V3_R_INVALID_
133 X509V3_conf_err(val);
134 return NULL;
135 }
136 obj1 = OBJ_txt2obj(val->name, 0);
137 obj2 = OBJ_txt2obj(val->value, 0);
138 if(!obj1 || !obj2) {
139 sk_POLICY_MAPPING_pop_free(pmaps, POLICY_MAPPING_free);
140 X509V3err(X509V3_F_V2I_POLICY_MAPPINGS,X509V3_R_INVALID_
141 X509V3_conf_err(val);
142 return NULL;
143 }
144 pmap = POLICY_MAPPING_new();
145 if (!pmap) {
146 sk_POLICY_MAPPING_pop_free(pmaps, POLICY_MAPPING_free);
147 X509V3err(X509V3_F_V2I_POLICY_MAPPINGS,ERR_R_MALLOC_FAIL
148 return NULL;
149 }
150 pmap->issuerDomainPolicy = obj1;
151 pmap->subjectDomainPolicy = obj2;
152 sk_POLICY_MAPPING_push(pmaps, pmap);
153 }
154 return pmaps;
155 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_prn.c 1

**
 7215 Fri May 30 18:32:17 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_prn.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_prn.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 /* X509 v3 extension utilities */

60 #include <stdio.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_prn.c 2

62 #include <openssl/conf.h>
63 #include <openssl/x509v3.h>

65 /* Extension printing routines */

67 static int unknown_ext_print(BIO *out, X509_EXTENSION *ext, unsigned long flag,

69 /* Print out a name+value stack */

71 void X509V3_EXT_val_prn(BIO *out, STACK_OF(CONF_VALUE) *val, int indent, int ml)
72 {
73 int i;
74 CONF_VALUE *nval;
75 if(!val) return;
76 if(!ml || !sk_CONF_VALUE_num(val)) {
77 BIO_printf(out, "%*s", indent, "");
78 if(!sk_CONF_VALUE_num(val)) BIO_puts(out, "<EMPTY>\n");
79 }
80 for(i = 0; i < sk_CONF_VALUE_num(val); i++) {
81 if(ml) BIO_printf(out, "%*s", indent, "");
82 else if(i > 0) BIO_printf(out, ", ");
83 nval = sk_CONF_VALUE_value(val, i);
84 if(!nval->name) BIO_puts(out, nval->value);
85 else if(!nval->value) BIO_puts(out, nval->name);
86 #ifndef CHARSET_EBCDIC
87 else BIO_printf(out, "%s:%s", nval->name, nval->value);
88 #else
89 else {
90 int len;
91 char *tmp;
92 len = strlen(nval->value)+1;
93 tmp = OPENSSL_malloc(len);
94 if (tmp)
95 {
96 ascii2ebcdic(tmp, nval->value, len);
97 BIO_printf(out, "%s:%s", nval->name, tmp);
98 OPENSSL_free(tmp);
99 }
100 }
101 #endif
102 if(ml) BIO_puts(out, "\n");
103 }
104 }

106 /* Main routine: print out a general extension */

108 int X509V3_EXT_print(BIO *out, X509_EXTENSION *ext, unsigned long flag, int inde
109 {
110 void *ext_str = NULL;
111 char *value = NULL;
112 const unsigned char *p;
113 const X509V3_EXT_METHOD *method;
114 STACK_OF(CONF_VALUE) *nval = NULL;
115 int ok = 1;

117 if(!(method = X509V3_EXT_get(ext)))
118 return unknown_ext_print(out, ext, flag, indent, 0);
119 p = ext->value->data;
120 if(method->it) ext_str = ASN1_item_d2i(NULL, &p, ext->value->length, ASN
121 else ext_str = method->d2i(NULL, &p, ext->value->length);

123 if(!ext_str) return unknown_ext_print(out, ext, flag, indent, 1);

125 if(method->i2s) {
126 if(!(value = method->i2s(method, ext_str))) {
127 ok = 0;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_prn.c 3

128 goto err;
129 }
130 #ifndef CHARSET_EBCDIC
131 BIO_printf(out, "%*s%s", indent, "", value);
132 #else
133 {
134 int len;
135 char *tmp;
136 len = strlen(value)+1;
137 tmp = OPENSSL_malloc(len);
138 if (tmp)
139 {
140 ascii2ebcdic(tmp, value, len);
141 BIO_printf(out, "%*s%s", indent, "", tmp);
142 OPENSSL_free(tmp);
143 }
144 }
145 #endif
146 } else if(method->i2v) {
147 if(!(nval = method->i2v(method, ext_str, NULL))) {
148 ok = 0;
149 goto err;
150 }
151 X509V3_EXT_val_prn(out, nval, indent,
152 method->ext_flags & X509V3_EXT_MULTILINE);
153 } else if(method->i2r) {
154 if(!method->i2r(method, ext_str, out, indent)) ok = 0;
155 } else ok = 0;

157 err:
158 sk_CONF_VALUE_pop_free(nval, X509V3_conf_free);
159 if(value) OPENSSL_free(value);
160 if(method->it) ASN1_item_free(ext_str, ASN1_ITEM_ptr(method->it)
161 else method->ext_free(ext_str);
162 return ok;
163 }

165 int X509V3_extensions_print(BIO *bp, char *title, STACK_OF(X509_EXTENSION) *exts
166 {
167 int i, j;

169 if(sk_X509_EXTENSION_num(exts) <= 0) return 1;

171 if(title)
172 {
173 BIO_printf(bp,"%*s%s:\n",indent, "", title);
174 indent += 4;
175 }

177 for (i=0; i<sk_X509_EXTENSION_num(exts); i++)
178 {
179 ASN1_OBJECT *obj;
180 X509_EXTENSION *ex;
181 ex=sk_X509_EXTENSION_value(exts, i);
182 if (indent && BIO_printf(bp,"%*s",indent, "") <= 0) return 0;
183 obj=X509_EXTENSION_get_object(ex);
184 i2a_ASN1_OBJECT(bp,obj);
185 j=X509_EXTENSION_get_critical(ex);
186 if (BIO_printf(bp,": %s\n",j?"critical":"") <= 0)
187 return 0;
188 if(!X509V3_EXT_print(bp, ex, flag, indent + 4))
189 {
190 BIO_printf(bp, "%*s", indent + 4, "");
191 M_ASN1_OCTET_STRING_print(bp,ex->value);
192 }
193 if (BIO_write(bp,"\n",1) <= 0) return 0;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_prn.c 4

194 }
195 return 1;
196 }

198 static int unknown_ext_print(BIO *out, X509_EXTENSION *ext, unsigned long flag,
199 {
200 switch(flag & X509V3_EXT_UNKNOWN_MASK) {

202 case X509V3_EXT_DEFAULT:
203 return 0;

205 case X509V3_EXT_ERROR_UNKNOWN:
206 if(supported)
207 BIO_printf(out, "%*s<Parse Error>", indent, "");
208 else
209 BIO_printf(out, "%*s<Not Supported>", indent, "");
210 return 1;

212 case X509V3_EXT_PARSE_UNKNOWN:
213 return ASN1_parse_dump(out,
214 ext->value->data, ext->value->length, indent, -1
215 case X509V3_EXT_DUMP_UNKNOWN:
216 return BIO_dump_indent(out, (char *)ext->value->data, ex

218 default:
219 return 1;
220 }
221 }
222

224 #ifndef OPENSSL_NO_FP_API
225 int X509V3_EXT_print_fp(FILE *fp, X509_EXTENSION *ext, int flag, int indent)
226 {
227 BIO *bio_tmp;
228 int ret;
229 if(!(bio_tmp = BIO_new_fp(fp, BIO_NOCLOSE))) return 0;
230 ret = X509V3_EXT_print(bio_tmp, ext, flag, indent);
231 BIO_free(bio_tmp);
232 return ret;
233 }
234 #endif

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_purp.c 1

**
 22909 Fri May 30 18:32:17 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_purp.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_purp.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 2001.
4 */
5 /* ==
6 * Copyright (c) 1999-2004 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/x509v3.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_purp.c 2

62 #include <openssl/x509_vfy.h>

64 static void x509v3_cache_extensions(X509 *x);

66 static int check_ssl_ca(const X509 *x);
67 static int check_purpose_ssl_client(const X509_PURPOSE *xp, const X509 *x, int c
68 static int check_purpose_ssl_server(const X509_PURPOSE *xp, const X509 *x, int c
69 static int check_purpose_ns_ssl_server(const X509_PURPOSE *xp, const X509 *x, in
70 static int purpose_smime(const X509 *x, int ca);
71 static int check_purpose_smime_sign(const X509_PURPOSE *xp, const X509 *x, int c
72 static int check_purpose_smime_encrypt(const X509_PURPOSE *xp, const X509 *x, in
73 static int check_purpose_crl_sign(const X509_PURPOSE *xp, const X509 *x, int ca)
74 static int check_purpose_timestamp_sign(const X509_PURPOSE *xp, const X509 *x, i
75 static int no_check(const X509_PURPOSE *xp, const X509 *x, int ca);
76 static int ocsp_helper(const X509_PURPOSE *xp, const X509 *x, int ca);

78 static int xp_cmp(const X509_PURPOSE * const *a,
79 const X509_PURPOSE * const *b);
80 static void xptable_free(X509_PURPOSE *p);

82 static X509_PURPOSE xstandard[] = {
83 {X509_PURPOSE_SSL_CLIENT, X509_TRUST_SSL_CLIENT, 0, check_purpose_ssl_cl
84 {X509_PURPOSE_SSL_SERVER, X509_TRUST_SSL_SERVER, 0, check_purpose_ssl_se
85 {X509_PURPOSE_NS_SSL_SERVER, X509_TRUST_SSL_SERVER, 0, check_purpose_ns_
86 {X509_PURPOSE_SMIME_SIGN, X509_TRUST_EMAIL, 0, check_purpose_smime_sign,
87 {X509_PURPOSE_SMIME_ENCRYPT, X509_TRUST_EMAIL, 0, check_purpose_smime_en
88 {X509_PURPOSE_CRL_SIGN, X509_TRUST_COMPAT, 0, check_purpose_crl_sign, "C
89 {X509_PURPOSE_ANY, X509_TRUST_DEFAULT, 0, no_check, "Any Purpose", "any"
90 {X509_PURPOSE_OCSP_HELPER, X509_TRUST_COMPAT, 0, ocsp_helper, "OCSP help
91 {X509_PURPOSE_TIMESTAMP_SIGN, X509_TRUST_TSA, 0, check_purpose_timestamp
92 };

94 #define X509_PURPOSE_COUNT (sizeof(xstandard)/sizeof(X509_PURPOSE))

96 IMPLEMENT_STACK_OF(X509_PURPOSE)

98 static STACK_OF(X509_PURPOSE) *xptable = NULL;

100 static int xp_cmp(const X509_PURPOSE * const *a,
101 const X509_PURPOSE * const *b)
102 {
103 return (*a)->purpose - (*b)->purpose;
104 }

106 /* As much as I’d like to make X509_check_purpose use a "const" X509*
107 * I really can’t because it does recalculate hashes and do other non-const
108 * things. */
109 int X509_check_purpose(X509 *x, int id, int ca)
110 {
111 int idx;
112 const X509_PURPOSE *pt;
113 if(!(x->ex_flags & EXFLAG_SET)) {
114 CRYPTO_w_lock(CRYPTO_LOCK_X509);
115 x509v3_cache_extensions(x);
116 CRYPTO_w_unlock(CRYPTO_LOCK_X509);
117 }
118 if(id == -1) return 1;
119 idx = X509_PURPOSE_get_by_id(id);
120 if(idx == -1) return -1;
121 pt = X509_PURPOSE_get0(idx);
122 return pt->check_purpose(pt, x, ca);
123 }

125 int X509_PURPOSE_set(int *p, int purpose)
126 {
127 if(X509_PURPOSE_get_by_id(purpose) == -1) {

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_purp.c 3

128 X509V3err(X509V3_F_X509_PURPOSE_SET, X509V3_R_INVALID_PURPOSE);
129 return 0;
130 }
131 *p = purpose;
132 return 1;
133 }

135 int X509_PURPOSE_get_count(void)
136 {
137 if(!xptable) return X509_PURPOSE_COUNT;
138 return sk_X509_PURPOSE_num(xptable) + X509_PURPOSE_COUNT;
139 }

141 X509_PURPOSE * X509_PURPOSE_get0(int idx)
142 {
143 if(idx < 0) return NULL;
144 if(idx < (int)X509_PURPOSE_COUNT) return xstandard + idx;
145 return sk_X509_PURPOSE_value(xptable, idx - X509_PURPOSE_COUNT);
146 }

148 int X509_PURPOSE_get_by_sname(char *sname)
149 {
150 int i;
151 X509_PURPOSE *xptmp;
152 for(i = 0; i < X509_PURPOSE_get_count(); i++) {
153 xptmp = X509_PURPOSE_get0(i);
154 if(!strcmp(xptmp->sname, sname)) return i;
155 }
156 return -1;
157 }

159 int X509_PURPOSE_get_by_id(int purpose)
160 {
161 X509_PURPOSE tmp;
162 int idx;
163 if((purpose >= X509_PURPOSE_MIN) && (purpose <= X509_PURPOSE_MAX))
164 return purpose - X509_PURPOSE_MIN;
165 tmp.purpose = purpose;
166 if(!xptable) return -1;
167 idx = sk_X509_PURPOSE_find(xptable, &tmp);
168 if(idx == -1) return -1;
169 return idx + X509_PURPOSE_COUNT;
170 }

172 int X509_PURPOSE_add(int id, int trust, int flags,
173 int (*ck)(const X509_PURPOSE *, const X509 *, int),
174 char *name, char *sname, void *arg)
175 {
176 int idx;
177 X509_PURPOSE *ptmp;
178 /* This is set according to what we change: application can’t set it */
179 flags &= ~X509_PURPOSE_DYNAMIC;
180 /* This will always be set for application modified trust entries */
181 flags |= X509_PURPOSE_DYNAMIC_NAME;
182 /* Get existing entry if any */
183 idx = X509_PURPOSE_get_by_id(id);
184 /* Need a new entry */
185 if(idx == -1) {
186 if(!(ptmp = OPENSSL_malloc(sizeof(X509_PURPOSE)))) {
187 X509V3err(X509V3_F_X509_PURPOSE_ADD,ERR_R_MALLOC_FAILURE
188 return 0;
189 }
190 ptmp->flags = X509_PURPOSE_DYNAMIC;
191 } else ptmp = X509_PURPOSE_get0(idx);

193 /* OPENSSL_free existing name if dynamic */

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_purp.c 4

194 if(ptmp->flags & X509_PURPOSE_DYNAMIC_NAME) {
195 OPENSSL_free(ptmp->name);
196 OPENSSL_free(ptmp->sname);
197 }
198 /* dup supplied name */
199 ptmp->name = BUF_strdup(name);
200 ptmp->sname = BUF_strdup(sname);
201 if(!ptmp->name || !ptmp->sname) {
202 X509V3err(X509V3_F_X509_PURPOSE_ADD,ERR_R_MALLOC_FAILURE);
203 return 0;
204 }
205 /* Keep the dynamic flag of existing entry */
206 ptmp->flags &= X509_PURPOSE_DYNAMIC;
207 /* Set all other flags */
208 ptmp->flags |= flags;

210 ptmp->purpose = id;
211 ptmp->trust = trust;
212 ptmp->check_purpose = ck;
213 ptmp->usr_data = arg;

215 /* If its a new entry manage the dynamic table */
216 if(idx == -1) {
217 if(!xptable && !(xptable = sk_X509_PURPOSE_new(xp_cmp))) {
218 X509V3err(X509V3_F_X509_PURPOSE_ADD,ERR_R_MALLOC_FAILURE
219 return 0;
220 }
221 if (!sk_X509_PURPOSE_push(xptable, ptmp)) {
222 X509V3err(X509V3_F_X509_PURPOSE_ADD,ERR_R_MALLOC_FAILURE
223 return 0;
224 }
225 }
226 return 1;
227 }

229 static void xptable_free(X509_PURPOSE *p)
230 {
231 if(!p) return;
232 if (p->flags & X509_PURPOSE_DYNAMIC)
233 {
234 if (p->flags & X509_PURPOSE_DYNAMIC_NAME) {
235 OPENSSL_free(p->name);
236 OPENSSL_free(p->sname);
237 }
238 OPENSSL_free(p);
239 }
240 }

242 void X509_PURPOSE_cleanup(void)
243 {
244 unsigned int i;
245 sk_X509_PURPOSE_pop_free(xptable, xptable_free);
246 for(i = 0; i < X509_PURPOSE_COUNT; i++) xptable_free(xstandard + i);
247 xptable = NULL;
248 }

250 int X509_PURPOSE_get_id(X509_PURPOSE *xp)
251 {
252 return xp->purpose;
253 }

255 char *X509_PURPOSE_get0_name(X509_PURPOSE *xp)
256 {
257 return xp->name;
258 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_purp.c 5

260 char *X509_PURPOSE_get0_sname(X509_PURPOSE *xp)
261 {
262 return xp->sname;
263 }

265 int X509_PURPOSE_get_trust(X509_PURPOSE *xp)
266 {
267 return xp->trust;
268 }

270 static int nid_cmp(const int *a, const int *b)
271 {
272 return *a - *b;
273 }

275 DECLARE_OBJ_BSEARCH_CMP_FN(int, int, nid);
276 IMPLEMENT_OBJ_BSEARCH_CMP_FN(int, int, nid);

278 int X509_supported_extension(X509_EXTENSION *ex)
279 {
280 /* This table is a list of the NIDs of supported extensions:
281 * that is those which are used by the verify process. If
282 * an extension is critical and doesn’t appear in this list
283 * then the verify process will normally reject the certificate.
284 * The list must be kept in numerical order because it will be
285 * searched using bsearch.
286 */

288 static const int supported_nids[] = {
289 NID_netscape_cert_type, /* 71 */
290 NID_key_usage, /* 83 */
291 NID_subject_alt_name, /* 85 */
292 NID_basic_constraints, /* 87 */
293 NID_certificate_policies, /* 89 */
294 NID_ext_key_usage, /* 126 */
295 #ifndef OPENSSL_NO_RFC3779
296 NID_sbgp_ipAddrBlock, /* 290 */
297 NID_sbgp_autonomousSysNum, /* 291 */
298 #endif
299 NID_policy_constraints, /* 401 */
300 NID_proxyCertInfo, /* 663 */
301 NID_name_constraints, /* 666 */
302 NID_policy_mappings, /* 747 */
303 NID_inhibit_any_policy /* 748 */
304 };

306 int ex_nid = OBJ_obj2nid(X509_EXTENSION_get_object(ex));

308 if (ex_nid == NID_undef)
309 return 0;

311 if (OBJ_bsearch_nid(&ex_nid, supported_nids,
312 sizeof(supported_nids)/sizeof(int)))
313 return 1;
314 return 0;
315 }

317 static void setup_dp(X509 *x, DIST_POINT *dp)
318 {
319 X509_NAME *iname = NULL;
320 int i;
321 if (dp->reasons)
322 {
323 if (dp->reasons->length > 0)
324 dp->dp_reasons = dp->reasons->data[0];
325 if (dp->reasons->length > 1)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_purp.c 6

326 dp->dp_reasons |= (dp->reasons->data[1] << 8);
327 dp->dp_reasons &= CRLDP_ALL_REASONS;
328 }
329 else
330 dp->dp_reasons = CRLDP_ALL_REASONS;
331 if (!dp->distpoint || (dp->distpoint->type != 1))
332 return;
333 for (i = 0; i < sk_GENERAL_NAME_num(dp->CRLissuer); i++)
334 {
335 GENERAL_NAME *gen = sk_GENERAL_NAME_value(dp->CRLissuer, i);
336 if (gen->type == GEN_DIRNAME)
337 {
338 iname = gen->d.directoryName;
339 break;
340 }
341 }
342 if (!iname)
343 iname = X509_get_issuer_name(x);

345 DIST_POINT_set_dpname(dp->distpoint, iname);

347 }

349 static void setup_crldp(X509 *x)
350 {
351 int i;
352 x->crldp = X509_get_ext_d2i(x, NID_crl_distribution_points, NULL, NULL);
353 for (i = 0; i < sk_DIST_POINT_num(x->crldp); i++)
354 setup_dp(x, sk_DIST_POINT_value(x->crldp, i));
355 }

357 static void x509v3_cache_extensions(X509 *x)
358 {
359 BASIC_CONSTRAINTS *bs;
360 PROXY_CERT_INFO_EXTENSION *pci;
361 ASN1_BIT_STRING *usage;
362 ASN1_BIT_STRING *ns;
363 EXTENDED_KEY_USAGE *extusage;
364 X509_EXTENSION *ex;
365
366 int i;
367 if(x->ex_flags & EXFLAG_SET) return;
368 #ifndef OPENSSL_NO_SHA
369 X509_digest(x, EVP_sha1(), x->sha1_hash, NULL);
370 #endif
371 /* Does subject name match issuer ? */
372 if(!X509_NAME_cmp(X509_get_subject_name(x), X509_get_issuer_name(x)))
373 x->ex_flags |= EXFLAG_SI;
374 /* V1 should mean no extensions ... */
375 if(!X509_get_version(x)) x->ex_flags |= EXFLAG_V1;
376 /* Handle basic constraints */
377 if((bs=X509_get_ext_d2i(x, NID_basic_constraints, NULL, NULL))) {
378 if(bs->ca) x->ex_flags |= EXFLAG_CA;
379 if(bs->pathlen) {
380 if((bs->pathlen->type == V_ASN1_NEG_INTEGER)
381 || !bs->ca) {
382 x->ex_flags |= EXFLAG_INVALID;
383 x->ex_pathlen = 0;
384 } else x->ex_pathlen = ASN1_INTEGER_get(bs->pathlen);
385 } else x->ex_pathlen = -1;
386 BASIC_CONSTRAINTS_free(bs);
387 x->ex_flags |= EXFLAG_BCONS;
388 }
389 /* Handle proxy certificates */
390 if((pci=X509_get_ext_d2i(x, NID_proxyCertInfo, NULL, NULL))) {
391 if (x->ex_flags & EXFLAG_CA

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_purp.c 7

392 || X509_get_ext_by_NID(x, NID_subject_alt_name, 0) >= 0
393 || X509_get_ext_by_NID(x, NID_issuer_alt_name, 0) >= 0) {
394 x->ex_flags |= EXFLAG_INVALID;
395 }
396 if (pci->pcPathLengthConstraint) {
397 x->ex_pcpathlen =
398 ASN1_INTEGER_get(pci->pcPathLengthConstraint);
399 } else x->ex_pcpathlen = -1;
400 PROXY_CERT_INFO_EXTENSION_free(pci);
401 x->ex_flags |= EXFLAG_PROXY;
402 }
403 /* Handle key usage */
404 if((usage=X509_get_ext_d2i(x, NID_key_usage, NULL, NULL))) {
405 if(usage->length > 0) {
406 x->ex_kusage = usage->data[0];
407 if(usage->length > 1)
408 x->ex_kusage |= usage->data[1] << 8;
409 } else x->ex_kusage = 0;
410 x->ex_flags |= EXFLAG_KUSAGE;
411 ASN1_BIT_STRING_free(usage);
412 }
413 x->ex_xkusage = 0;
414 if((extusage=X509_get_ext_d2i(x, NID_ext_key_usage, NULL, NULL))) {
415 x->ex_flags |= EXFLAG_XKUSAGE;
416 for(i = 0; i < sk_ASN1_OBJECT_num(extusage); i++) {
417 switch(OBJ_obj2nid(sk_ASN1_OBJECT_value(extusage,i))) {
418 case NID_server_auth:
419 x->ex_xkusage |= XKU_SSL_SERVER;
420 break;

422 case NID_client_auth:
423 x->ex_xkusage |= XKU_SSL_CLIENT;
424 break;

426 case NID_email_protect:
427 x->ex_xkusage |= XKU_SMIME;
428 break;

430 case NID_code_sign:
431 x->ex_xkusage |= XKU_CODE_SIGN;
432 break;

434 case NID_ms_sgc:
435 case NID_ns_sgc:
436 x->ex_xkusage |= XKU_SGC;
437 break;

439 case NID_OCSP_sign:
440 x->ex_xkusage |= XKU_OCSP_SIGN;
441 break;

443 case NID_time_stamp:
444 x->ex_xkusage |= XKU_TIMESTAMP;
445 break;

447 case NID_dvcs:
448 x->ex_xkusage |= XKU_DVCS;
449 break;
450 }
451 }
452 sk_ASN1_OBJECT_pop_free(extusage, ASN1_OBJECT_free);
453 }

455 if((ns=X509_get_ext_d2i(x, NID_netscape_cert_type, NULL, NULL))) {
456 if(ns->length > 0) x->ex_nscert = ns->data[0];
457 else x->ex_nscert = 0;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_purp.c 8

458 x->ex_flags |= EXFLAG_NSCERT;
459 ASN1_BIT_STRING_free(ns);
460 }
461 x->skid =X509_get_ext_d2i(x, NID_subject_key_identifier, NULL, NULL);
462 x->akid =X509_get_ext_d2i(x, NID_authority_key_identifier, NULL, NULL);
463 x->altname = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL);
464 x->nc = X509_get_ext_d2i(x, NID_name_constraints, &i, NULL);
465 if (!x->nc && (i != -1))
466 x->ex_flags |= EXFLAG_INVALID;
467 setup_crldp(x);

469 #ifndef OPENSSL_NO_RFC3779
470 x->rfc3779_addr =X509_get_ext_d2i(x, NID_sbgp_ipAddrBlock, NULL, NULL);
471 x->rfc3779_asid =X509_get_ext_d2i(x, NID_sbgp_autonomousSysNum,
472 NULL, NULL);
473 #endif
474 for (i = 0; i < X509_get_ext_count(x); i++)
475 {
476 ex = X509_get_ext(x, i);
477 if (OBJ_obj2nid(X509_EXTENSION_get_object(ex))
478 == NID_freshest_crl)
479 x->ex_flags |= EXFLAG_FRESHEST;
480 if (!X509_EXTENSION_get_critical(ex))
481 continue;
482 if (!X509_supported_extension(ex))
483 {
484 x->ex_flags |= EXFLAG_CRITICAL;
485 break;
486 }
487 }
488 x->ex_flags |= EXFLAG_SET;
489 }

491 /* CA checks common to all purposes
492 * return codes:
493 * 0 not a CA
494 * 1 is a CA
495 * 2 basicConstraints absent so "maybe" a CA
496 * 3 basicConstraints absent but self signed V1.
497 * 4 basicConstraints absent but keyUsage present and keyCertSign asserted.
498 */

500 #define V1_ROOT (EXFLAG_V1|EXFLAG_SS)
501 #define ku_reject(x, usage) \
502 (((x)->ex_flags & EXFLAG_KUSAGE) && !((x)->ex_kusage & (usage)))
503 #define xku_reject(x, usage) \
504 (((x)->ex_flags & EXFLAG_XKUSAGE) && !((x)->ex_xkusage & (usage)))
505 #define ns_reject(x, usage) \
506 (((x)->ex_flags & EXFLAG_NSCERT) && !((x)->ex_nscert & (usage)))

508 static int check_ca(const X509 *x)
509 {
510 /* keyUsage if present should allow cert signing */
511 if(ku_reject(x, KU_KEY_CERT_SIGN)) return 0;
512 if(x->ex_flags & EXFLAG_BCONS) {
513 if(x->ex_flags & EXFLAG_CA) return 1;
514 /* If basicConstraints says not a CA then say so */
515 else return 0;
516 } else {
517 /* we support V1 roots for... uh, I don’t really know why. */
518 if((x->ex_flags & V1_ROOT) == V1_ROOT) return 3;
519 /* If key usage present it must have certSign so tolerate it */
520 else if (x->ex_flags & EXFLAG_KUSAGE) return 4;
521 /* Older certificates could have Netscape-specific CA types */
522 else if (x->ex_flags & EXFLAG_NSCERT
523 && x->ex_nscert & NS_ANY_CA) return 5;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_purp.c 9

524 /* can this still be regarded a CA certificate? I doubt it */
525 return 0;
526 }
527 }

529 int X509_check_ca(X509 *x)
530 {
531 if(!(x->ex_flags & EXFLAG_SET)) {
532 CRYPTO_w_lock(CRYPTO_LOCK_X509);
533 x509v3_cache_extensions(x);
534 CRYPTO_w_unlock(CRYPTO_LOCK_X509);
535 }

537 return check_ca(x);
538 }

540 /* Check SSL CA: common checks for SSL client and server */
541 static int check_ssl_ca(const X509 *x)
542 {
543 int ca_ret;
544 ca_ret = check_ca(x);
545 if(!ca_ret) return 0;
546 /* check nsCertType if present */
547 if(ca_ret != 5 || x->ex_nscert & NS_SSL_CA) return ca_ret;
548 else return 0;
549 }

552 static int check_purpose_ssl_client(const X509_PURPOSE *xp, const X509 *x, int c
553 {
554 if(xku_reject(x,XKU_SSL_CLIENT)) return 0;
555 if(ca) return check_ssl_ca(x);
556 /* We need to do digital signatures with it */
557 if(ku_reject(x,KU_DIGITAL_SIGNATURE)) return 0;
558 /* nsCertType if present should allow SSL client use */
559 if(ns_reject(x, NS_SSL_CLIENT)) return 0;
560 return 1;
561 }

563 static int check_purpose_ssl_server(const X509_PURPOSE *xp, const X509 *x, int c
564 {
565 if(xku_reject(x,XKU_SSL_SERVER|XKU_SGC)) return 0;
566 if(ca) return check_ssl_ca(x);

568 if(ns_reject(x, NS_SSL_SERVER)) return 0;
569 /* Now as for keyUsage: we’ll at least need to sign OR encipher */
570 if(ku_reject(x, KU_DIGITAL_SIGNATURE|KU_KEY_ENCIPHERMENT)) return 0;
571
572 return 1;

574 }

576 static int check_purpose_ns_ssl_server(const X509_PURPOSE *xp, const X509 *x, in
577 {
578 int ret;
579 ret = check_purpose_ssl_server(xp, x, ca);
580 if(!ret || ca) return ret;
581 /* We need to encipher or Netscape complains */
582 if(ku_reject(x, KU_KEY_ENCIPHERMENT)) return 0;
583 return ret;
584 }

586 /* common S/MIME checks */
587 static int purpose_smime(const X509 *x, int ca)
588 {
589 if(xku_reject(x,XKU_SMIME)) return 0;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_purp.c 10

590 if(ca) {
591 int ca_ret;
592 ca_ret = check_ca(x);
593 if(!ca_ret) return 0;
594 /* check nsCertType if present */
595 if(ca_ret != 5 || x->ex_nscert & NS_SMIME_CA) return ca_ret;
596 else return 0;
597 }
598 if(x->ex_flags & EXFLAG_NSCERT) {
599 if(x->ex_nscert & NS_SMIME) return 1;
600 /* Workaround for some buggy certificates */
601 if(x->ex_nscert & NS_SSL_CLIENT) return 2;
602 return 0;
603 }
604 return 1;
605 }

607 static int check_purpose_smime_sign(const X509_PURPOSE *xp, const X509 *x, int c
608 {
609 int ret;
610 ret = purpose_smime(x, ca);
611 if(!ret || ca) return ret;
612 if(ku_reject(x, KU_DIGITAL_SIGNATURE|KU_NON_REPUDIATION)) return 0;
613 return ret;
614 }

616 static int check_purpose_smime_encrypt(const X509_PURPOSE *xp, const X509 *x, in
617 {
618 int ret;
619 ret = purpose_smime(x, ca);
620 if(!ret || ca) return ret;
621 if(ku_reject(x, KU_KEY_ENCIPHERMENT)) return 0;
622 return ret;
623 }

625 static int check_purpose_crl_sign(const X509_PURPOSE *xp, const X509 *x, int ca)
626 {
627 if(ca) {
628 int ca_ret;
629 if((ca_ret = check_ca(x)) != 2) return ca_ret;
630 else return 0;
631 }
632 if(ku_reject(x, KU_CRL_SIGN)) return 0;
633 return 1;
634 }

636 /* OCSP helper: this is *not* a full OCSP check. It just checks that
637 * each CA is valid. Additional checks must be made on the chain.
638 */

640 static int ocsp_helper(const X509_PURPOSE *xp, const X509 *x, int ca)
641 {
642 /* Must be a valid CA. Should we really support the "I don’t know"
643 value (2)? */
644 if(ca) return check_ca(x);
645 /* leaf certificate is checked in OCSP_verify() */
646 return 1;
647 }

649 static int check_purpose_timestamp_sign(const X509_PURPOSE *xp, const X509 *x,
650 int ca)
651 {
652 int i_ext;

654 /* If ca is true we must return if this is a valid CA certificate. */
655 if (ca) return check_ca(x);

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_purp.c 11

657 /*
658 * Check the optional key usage field:
659 * if Key Usage is present, it must be one of digitalSignature
660 * and/or nonRepudiation (other values are not consistent and shall
661 * be rejected).
662 */
663 if ((x->ex_flags & EXFLAG_KUSAGE)
664 && ((x->ex_kusage & ~(KU_NON_REPUDIATION | KU_DIGITAL_SIGNATURE)) ||
665 !(x->ex_kusage & (KU_NON_REPUDIATION | KU_DIGITAL_SIGNATURE))))
666 return 0;

668 /* Only time stamp key usage is permitted and it’s required. */
669 if (!(x->ex_flags & EXFLAG_XKUSAGE) || x->ex_xkusage != XKU_TIMESTAMP)
670 return 0;

672 /* Extended Key Usage MUST be critical */
673 i_ext = X509_get_ext_by_NID((X509 *) x, NID_ext_key_usage, 0);
674 if (i_ext >= 0)
675 {
676 X509_EXTENSION *ext = X509_get_ext((X509 *) x, i_ext);
677 if (!X509_EXTENSION_get_critical(ext))
678 return 0;
679 }

681 return 1;
682 }

684 static int no_check(const X509_PURPOSE *xp, const X509 *x, int ca)
685 {
686 return 1;
687 }

689 /* Various checks to see if one certificate issued the second.
690 * This can be used to prune a set of possible issuer certificates
691 * which have been looked up using some simple method such as by
692 * subject name.
693 * These are:
694 * 1. Check issuer_name(subject) == subject_name(issuer)
695 * 2. If akid(subject) exists check it matches issuer
696 * 3. If key_usage(issuer) exists check it supports certificate signing
697 * returns 0 for OK, positive for reason for mismatch, reasons match
698 * codes for X509_verify_cert()
699 */

701 int X509_check_issued(X509 *issuer, X509 *subject)
702 {
703 if(X509_NAME_cmp(X509_get_subject_name(issuer),
704 X509_get_issuer_name(subject)))
705 return X509_V_ERR_SUBJECT_ISSUER_MISMATCH;
706 x509v3_cache_extensions(issuer);
707 x509v3_cache_extensions(subject);

709 if(subject->akid)
710 {
711 int ret = X509_check_akid(issuer, subject->akid);
712 if (ret != X509_V_OK)
713 return ret;
714 }

716 if(subject->ex_flags & EXFLAG_PROXY)
717 {
718 if(ku_reject(issuer, KU_DIGITAL_SIGNATURE))
719 return X509_V_ERR_KEYUSAGE_NO_DIGITAL_SIGNATURE;
720 }
721 else if(ku_reject(issuer, KU_KEY_CERT_SIGN))

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_purp.c 12

722 return X509_V_ERR_KEYUSAGE_NO_CERTSIGN;
723 return X509_V_OK;
724 }

726 int X509_check_akid(X509 *issuer, AUTHORITY_KEYID *akid)
727 {

729 if(!akid)
730 return X509_V_OK;

732 /* Check key ids (if present) */
733 if(akid->keyid && issuer->skid &&
734 ASN1_OCTET_STRING_cmp(akid->keyid, issuer->skid))
735 return X509_V_ERR_AKID_SKID_MISMATCH;
736 /* Check serial number */
737 if(akid->serial &&
738 ASN1_INTEGER_cmp(X509_get_serialNumber(issuer), akid->serial))
739 return X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH;
740 /* Check issuer name */
741 if(akid->issuer)
742 {
743 /* Ugh, for some peculiar reason AKID includes
744 * SEQUENCE OF GeneralName. So look for a DirName.
745 * There may be more than one but we only take any
746 * notice of the first.
747 */
748 GENERAL_NAMES *gens;
749 GENERAL_NAME *gen;
750 X509_NAME *nm = NULL;
751 int i;
752 gens = akid->issuer;
753 for(i = 0; i < sk_GENERAL_NAME_num(gens); i++)
754 {
755 gen = sk_GENERAL_NAME_value(gens, i);
756 if(gen->type == GEN_DIRNAME)
757 {
758 nm = gen->d.dirn;
759 break;
760 }
761 }
762 if(nm && X509_NAME_cmp(nm, X509_get_issuer_name(issuer)))
763 return X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH;
764 }
765 return X509_V_OK;
766 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_skey.c 1

**
 4742 Fri May 30 18:32:17 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_skey.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_skey.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

60 #include <stdio.h>
61 #include "cryptlib.h"

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_skey.c 2

62 #include <openssl/x509v3.h>

64 static ASN1_OCTET_STRING *s2i_skey_id(X509V3_EXT_METHOD *method, X509V3_CTX *ctx
65 const X509V3_EXT_METHOD v3_skey_id = {
66 NID_subject_key_identifier, 0, ASN1_ITEM_ref(ASN1_OCTET_STRING),
67 0,0,0,0,
68 (X509V3_EXT_I2S)i2s_ASN1_OCTET_STRING,
69 (X509V3_EXT_S2I)s2i_skey_id,
70 0,0,0,0,
71 NULL};

73 char *i2s_ASN1_OCTET_STRING(X509V3_EXT_METHOD *method,
74 ASN1_OCTET_STRING *oct)
75 {
76 return hex_to_string(oct->data, oct->length);
77 }

79 ASN1_OCTET_STRING *s2i_ASN1_OCTET_STRING(X509V3_EXT_METHOD *method,
80 X509V3_CTX *ctx, char *str)
81 {
82 ASN1_OCTET_STRING *oct;
83 long length;

85 if(!(oct = M_ASN1_OCTET_STRING_new())) {
86 X509V3err(X509V3_F_S2I_ASN1_OCTET_STRING,ERR_R_MALLOC_FAILURE);
87 return NULL;
88 }

90 if(!(oct->data = string_to_hex(str, &length))) {
91 M_ASN1_OCTET_STRING_free(oct);
92 return NULL;
93 }

95 oct->length = length;

97 return oct;

99 }

101 static ASN1_OCTET_STRING *s2i_skey_id(X509V3_EXT_METHOD *method,
102 X509V3_CTX *ctx, char *str)
103 {
104 ASN1_OCTET_STRING *oct;
105 ASN1_BIT_STRING *pk;
106 unsigned char pkey_dig[EVP_MAX_MD_SIZE];
107 unsigned int diglen;

109 if(strcmp(str, "hash")) return s2i_ASN1_OCTET_STRING(method, ctx, str);

111 if(!(oct = M_ASN1_OCTET_STRING_new())) {
112 X509V3err(X509V3_F_S2I_SKEY_ID,ERR_R_MALLOC_FAILURE);
113 return NULL;
114 }

116 if(ctx && (ctx->flags == CTX_TEST)) return oct;

118 if(!ctx || (!ctx->subject_req && !ctx->subject_cert)) {
119 X509V3err(X509V3_F_S2I_SKEY_ID,X509V3_R_NO_PUBLIC_KEY);
120 goto err;
121 }

123 if(ctx->subject_req)
124 pk = ctx->subject_req->req_info->pubkey->public_key;
125 else pk = ctx->subject_cert->cert_info->key->public_key;

127 if(!pk) {

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_skey.c 3

128 X509V3err(X509V3_F_S2I_SKEY_ID,X509V3_R_NO_PUBLIC_KEY);
129 goto err;
130 }

132 if (!EVP_Digest(pk->data, pk->length, pkey_dig, &diglen, EVP_sha1(), NUL
133 goto err;

135 if(!M_ASN1_OCTET_STRING_set(oct, pkey_dig, diglen)) {
136 X509V3err(X509V3_F_S2I_SKEY_ID,ERR_R_MALLOC_FAILURE);
137 goto err;
138 }

140 return oct;
141
142 err:
143 M_ASN1_OCTET_STRING_free(oct);
144 return NULL;
145 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_sxnet.c 1

**
 7836 Fri May 30 18:32:17 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_sxnet.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_sxnet.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project 1999.
4 */
5 /* ==
6 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */

59 #include <stdio.h>
60 #include "cryptlib.h"
61 #include <openssl/conf.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_sxnet.c 2

62 #include <openssl/asn1.h>
63 #include <openssl/asn1t.h>
64 #include <openssl/x509v3.h>

66 /* Support for Thawte strong extranet extension */

68 #define SXNET_TEST

70 static int sxnet_i2r(X509V3_EXT_METHOD *method, SXNET *sx, BIO *out, int indent)
71 #ifdef SXNET_TEST
72 static SXNET * sxnet_v2i(X509V3_EXT_METHOD *method, X509V3_CTX *ctx,
73 STACK_OF(CONF_VALUE) *nval);
74 #endif
75 const X509V3_EXT_METHOD v3_sxnet = {
76 NID_sxnet, X509V3_EXT_MULTILINE, ASN1_ITEM_ref(SXNET),
77 0,0,0,0,
78 0,0,
79 0,
80 #ifdef SXNET_TEST
81 (X509V3_EXT_V2I)sxnet_v2i,
82 #else
83 0,
84 #endif
85 (X509V3_EXT_I2R)sxnet_i2r,
86 0,
87 NULL
88 };

90 ASN1_SEQUENCE(SXNETID) = {
91 ASN1_SIMPLE(SXNETID, zone, ASN1_INTEGER),
92 ASN1_SIMPLE(SXNETID, user, ASN1_OCTET_STRING)
93 } ASN1_SEQUENCE_END(SXNETID)

95 IMPLEMENT_ASN1_FUNCTIONS(SXNETID)

97 ASN1_SEQUENCE(SXNET) = {
98 ASN1_SIMPLE(SXNET, version, ASN1_INTEGER),
99 ASN1_SEQUENCE_OF(SXNET, ids, SXNETID)
100 } ASN1_SEQUENCE_END(SXNET)

102 IMPLEMENT_ASN1_FUNCTIONS(SXNET)

104 static int sxnet_i2r(X509V3_EXT_METHOD *method, SXNET *sx, BIO *out,
105 int indent)
106 {
107 long v;
108 char *tmp;
109 SXNETID *id;
110 int i;
111 v = ASN1_INTEGER_get(sx->version);
112 BIO_printf(out, "%*sVersion: %ld (0x%lX)", indent, "", v + 1, v);
113 for(i = 0; i < sk_SXNETID_num(sx->ids); i++) {
114 id = sk_SXNETID_value(sx->ids, i);
115 tmp = i2s_ASN1_INTEGER(NULL, id->zone);
116 BIO_printf(out, "\n%*sZone: %s, User: ", indent, "", tmp);
117 OPENSSL_free(tmp);
118 M_ASN1_OCTET_STRING_print(out, id->user);
119 }
120 return 1;
121 }

123 #ifdef SXNET_TEST

125 /* NBB: this is used for testing only. It should *not* be used for anything
126 * else because it will just take static IDs from the configuration file and
127 * they should really be separate values for each user.

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_sxnet.c 3

128 */

131 static SXNET * sxnet_v2i(X509V3_EXT_METHOD *method, X509V3_CTX *ctx,
132 STACK_OF(CONF_VALUE) *nval)
133 {
134 CONF_VALUE *cnf;
135 SXNET *sx = NULL;
136 int i;
137 for(i = 0; i < sk_CONF_VALUE_num(nval); i++) {
138 cnf = sk_CONF_VALUE_value(nval, i);
139 if(!SXNET_add_id_asc(&sx, cnf->name, cnf->value, -1))
140 return NULL;
141 }
142 return sx;
143 }
144
145
146 #endif

148 /* Strong Extranet utility functions */

150 /* Add an id given the zone as an ASCII number */

152 int SXNET_add_id_asc(SXNET **psx, char *zone, char *user,
153 int userlen)
154 {
155 ASN1_INTEGER *izone = NULL;
156 if(!(izone = s2i_ASN1_INTEGER(NULL, zone))) {
157 X509V3err(X509V3_F_SXNET_ADD_ID_ASC,X509V3_R_ERROR_CONVERTING_ZO
158 return 0;
159 }
160 return SXNET_add_id_INTEGER(psx, izone, user, userlen);
161 }

163 /* Add an id given the zone as an unsigned long */

165 int SXNET_add_id_ulong(SXNET **psx, unsigned long lzone, char *user,
166 int userlen)
167 {
168 ASN1_INTEGER *izone = NULL;
169 if(!(izone = M_ASN1_INTEGER_new()) || !ASN1_INTEGER_set(izone, lzone)) {
170 X509V3err(X509V3_F_SXNET_ADD_ID_ULONG,ERR_R_MALLOC_FAILURE);
171 M_ASN1_INTEGER_free(izone);
172 return 0;
173 }
174 return SXNET_add_id_INTEGER(psx, izone, user, userlen);
175
176 }

178 /* Add an id given the zone as an ASN1_INTEGER.
179 * Note this version uses the passed integer and doesn’t make a copy so don’t
180 * free it up afterwards.
181 */

183 int SXNET_add_id_INTEGER(SXNET **psx, ASN1_INTEGER *zone, char *user,
184 int userlen)
185 {
186 SXNET *sx = NULL;
187 SXNETID *id = NULL;
188 if(!psx || !zone || !user) {
189 X509V3err(X509V3_F_SXNET_ADD_ID_INTEGER,X509V3_R_INVALID_NULL_AR
190 return 0;
191 }
192 if(userlen == -1) userlen = strlen(user);
193 if(userlen > 64) {

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_sxnet.c 4

194 X509V3err(X509V3_F_SXNET_ADD_ID_INTEGER,X509V3_R_USER_TOO_LONG);
195 return 0;
196 }
197 if(!*psx) {
198 if(!(sx = SXNET_new())) goto err;
199 if(!ASN1_INTEGER_set(sx->version, 0)) goto err;
200 *psx = sx;
201 } else sx = *psx;
202 if(SXNET_get_id_INTEGER(sx, zone)) {
203 X509V3err(X509V3_F_SXNET_ADD_ID_INTEGER,X509V3_R_DUPLICATE_ZONE_
204 return 0;
205 }

207 if(!(id = SXNETID_new())) goto err;
208 if(userlen == -1) userlen = strlen(user);
209
210 if(!M_ASN1_OCTET_STRING_set(id->user, user, userlen)) goto err;
211 if(!sk_SXNETID_push(sx->ids, id)) goto err;
212 id->zone = zone;
213 return 1;
214
215 err:
216 X509V3err(X509V3_F_SXNET_ADD_ID_INTEGER,ERR_R_MALLOC_FAILURE);
217 SXNETID_free(id);
218 SXNET_free(sx);
219 *psx = NULL;
220 return 0;
221 }

223 ASN1_OCTET_STRING *SXNET_get_id_asc(SXNET *sx, char *zone)
224 {
225 ASN1_INTEGER *izone = NULL;
226 ASN1_OCTET_STRING *oct;
227 if(!(izone = s2i_ASN1_INTEGER(NULL, zone))) {
228 X509V3err(X509V3_F_SXNET_GET_ID_ASC,X509V3_R_ERROR_CONVERTING_ZO
229 return NULL;
230 }
231 oct = SXNET_get_id_INTEGER(sx, izone);
232 M_ASN1_INTEGER_free(izone);
233 return oct;
234 }

236 ASN1_OCTET_STRING *SXNET_get_id_ulong(SXNET *sx, unsigned long lzone)
237 {
238 ASN1_INTEGER *izone = NULL;
239 ASN1_OCTET_STRING *oct;
240 if(!(izone = M_ASN1_INTEGER_new()) || !ASN1_INTEGER_set(izone, lzone)) {
241 X509V3err(X509V3_F_SXNET_GET_ID_ULONG,ERR_R_MALLOC_FAILURE);
242 M_ASN1_INTEGER_free(izone);
243 return NULL;
244 }
245 oct = SXNET_get_id_INTEGER(sx, izone);
246 M_ASN1_INTEGER_free(izone);
247 return oct;
248 }

250 ASN1_OCTET_STRING *SXNET_get_id_INTEGER(SXNET *sx, ASN1_INTEGER *zone)
251 {
252 SXNETID *id;
253 int i;
254 for(i = 0; i < sk_SXNETID_num(sx->ids); i++) {
255 id = sk_SXNETID_value(sx->ids, i);
256 if(!M_ASN1_INTEGER_cmp(id->zone, zone)) return id->user;
257 }
258 return NULL;
259 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_sxnet.c 5

261 IMPLEMENT_STACK_OF(SXNETID)
262 IMPLEMENT_ASN1_SET_OF(SXNETID)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_utl.c 1

**
 21060 Fri May 30 18:32:17 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_utl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* v3_utl.c */
2 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
3 * project.
4 */
5 /* ==
6 * Copyright (c) 1999-2003 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ==
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58 /* X509 v3 extension utilities */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_utl.c 2

62 #include <ctype.h>
63 #include "cryptlib.h"
64 #include <openssl/conf.h>
65 #include <openssl/x509v3.h>
66 #include <openssl/bn.h>

68 static char *strip_spaces(char *name);
69 static int sk_strcmp(const char * const *a, const char * const *b);
70 static STACK_OF(OPENSSL_STRING) *get_email(X509_NAME *name, GENERAL_NAMES *gens)
71 static void str_free(OPENSSL_STRING str);
72 static int append_ia5(STACK_OF(OPENSSL_STRING) **sk, ASN1_IA5STRING *email);

74 static int ipv4_from_asc(unsigned char *v4, const char *in);
75 static int ipv6_from_asc(unsigned char *v6, const char *in);
76 static int ipv6_cb(const char *elem, int len, void *usr);
77 static int ipv6_hex(unsigned char *out, const char *in, int inlen);

79 /* Add a CONF_VALUE name value pair to stack */

81 int X509V3_add_value(const char *name, const char *value,
82 STACK_OF(CONF_VALUE) **extlist)
83 {
84 CONF_VALUE *vtmp = NULL;
85 char *tname = NULL, *tvalue = NULL;
86 if(name && !(tname = BUF_strdup(name))) goto err;
87 if(value && !(tvalue = BUF_strdup(value))) goto err;
88 if(!(vtmp = (CONF_VALUE *)OPENSSL_malloc(sizeof(CONF_VALUE)))) goto err;
89 if(!*extlist && !(*extlist = sk_CONF_VALUE_new_null())) goto err;
90 vtmp->section = NULL;
91 vtmp->name = tname;
92 vtmp->value = tvalue;
93 if(!sk_CONF_VALUE_push(*extlist, vtmp)) goto err;
94 return 1;
95 err:
96 X509V3err(X509V3_F_X509V3_ADD_VALUE,ERR_R_MALLOC_FAILURE);
97 if(vtmp) OPENSSL_free(vtmp);
98 if(tname) OPENSSL_free(tname);
99 if(tvalue) OPENSSL_free(tvalue);
100 return 0;
101 }

103 int X509V3_add_value_uchar(const char *name, const unsigned char *value,
104 STACK_OF(CONF_VALUE) **extlist)
105 {
106 return X509V3_add_value(name,(const char *)value,extlist);
107 }

109 /* Free function for STACK_OF(CONF_VALUE) */

111 void X509V3_conf_free(CONF_VALUE *conf)
112 {
113 if(!conf) return;
114 if(conf->name) OPENSSL_free(conf->name);
115 if(conf->value) OPENSSL_free(conf->value);
116 if(conf->section) OPENSSL_free(conf->section);
117 OPENSSL_free(conf);
118 }

120 int X509V3_add_value_bool(const char *name, int asn1_bool,
121 STACK_OF(CONF_VALUE) **extlist)
122 {
123 if(asn1_bool) return X509V3_add_value(name, "TRUE", extlist);
124 return X509V3_add_value(name, "FALSE", extlist);
125 }

127 int X509V3_add_value_bool_nf(char *name, int asn1_bool,

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_utl.c 3

128 STACK_OF(CONF_VALUE) **extlist)
129 {
130 if(asn1_bool) return X509V3_add_value(name, "TRUE", extlist);
131 return 1;
132 }

135 char *i2s_ASN1_ENUMERATED(X509V3_EXT_METHOD *method, ASN1_ENUMERATED *a)
136 {
137 BIGNUM *bntmp = NULL;
138 char *strtmp = NULL;
139 if(!a) return NULL;
140 if(!(bntmp = ASN1_ENUMERATED_to_BN(a, NULL)) ||
141 !(strtmp = BN_bn2dec(bntmp)))
142 X509V3err(X509V3_F_I2S_ASN1_ENUMERATED,ERR_R_MALLOC_FAILURE);
143 BN_free(bntmp);
144 return strtmp;
145 }

147 char *i2s_ASN1_INTEGER(X509V3_EXT_METHOD *method, ASN1_INTEGER *a)
148 {
149 BIGNUM *bntmp = NULL;
150 char *strtmp = NULL;
151 if(!a) return NULL;
152 if(!(bntmp = ASN1_INTEGER_to_BN(a, NULL)) ||
153 !(strtmp = BN_bn2dec(bntmp)))
154 X509V3err(X509V3_F_I2S_ASN1_INTEGER,ERR_R_MALLOC_FAILURE);
155 BN_free(bntmp);
156 return strtmp;
157 }

159 ASN1_INTEGER *s2i_ASN1_INTEGER(X509V3_EXT_METHOD *method, char *value)
160 {
161 BIGNUM *bn = NULL;
162 ASN1_INTEGER *aint;
163 int isneg, ishex;
164 int ret;
165 if (!value) {
166 X509V3err(X509V3_F_S2I_ASN1_INTEGER,X509V3_R_INVALID_NULL_VALUE)
167 return 0;
168 }
169 bn = BN_new();
170 if (value[0] == ’-’) {
171 value++;
172 isneg = 1;
173 } else isneg = 0;

175 if (value[0] == ’0’ && ((value[1] == ’x’) || (value[1] == ’X’))) {
176 value += 2;
177 ishex = 1;
178 } else ishex = 0;

180 if (ishex) ret = BN_hex2bn(&bn, value);
181 else ret = BN_dec2bn(&bn, value);

183 if (!ret || value[ret]) {
184 BN_free(bn);
185 X509V3err(X509V3_F_S2I_ASN1_INTEGER,X509V3_R_BN_DEC2BN_ERROR);
186 return 0;
187 }

189 if (isneg && BN_is_zero(bn)) isneg = 0;

191 aint = BN_to_ASN1_INTEGER(bn, NULL);
192 BN_free(bn);
193 if (!aint) {

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_utl.c 4

194 X509V3err(X509V3_F_S2I_ASN1_INTEGER,X509V3_R_BN_TO_ASN1_INTEGER_
195 return 0;
196 }
197 if (isneg) aint->type |= V_ASN1_NEG;
198 return aint;
199 }

201 int X509V3_add_value_int(const char *name, ASN1_INTEGER *aint,
202 STACK_OF(CONF_VALUE) **extlist)
203 {
204 char *strtmp;
205 int ret;
206 if(!aint) return 1;
207 if(!(strtmp = i2s_ASN1_INTEGER(NULL, aint))) return 0;
208 ret = X509V3_add_value(name, strtmp, extlist);
209 OPENSSL_free(strtmp);
210 return ret;
211 }

213 int X509V3_get_value_bool(CONF_VALUE *value, int *asn1_bool)
214 {
215 char *btmp;
216 if(!(btmp = value->value)) goto err;
217 if(!strcmp(btmp, "TRUE") || !strcmp(btmp, "true")
218 || !strcmp(btmp, "Y") || !strcmp(btmp, "y")
219 || !strcmp(btmp, "YES") || !strcmp(btmp, "yes")) {
220 *asn1_bool = 0xff;
221 return 1;
222 } else if(!strcmp(btmp, "FALSE") || !strcmp(btmp, "false")
223 || !strcmp(btmp, "N") || !strcmp(btmp, "n")
224 || !strcmp(btmp, "NO") || !strcmp(btmp, "no")) {
225 *asn1_bool = 0;
226 return 1;
227 }
228 err:
229 X509V3err(X509V3_F_X509V3_GET_VALUE_BOOL,X509V3_R_INVALID_BOOLEAN_STRING
230 X509V3_conf_err(value);
231 return 0;
232 }

234 int X509V3_get_value_int(CONF_VALUE *value, ASN1_INTEGER **aint)
235 {
236 ASN1_INTEGER *itmp;
237 if(!(itmp = s2i_ASN1_INTEGER(NULL, value->value))) {
238 X509V3_conf_err(value);
239 return 0;
240 }
241 *aint = itmp;
242 return 1;
243 }

245 #define HDR_NAME 1
246 #define HDR_VALUE 2

248 /*#define DEBUG*/

250 STACK_OF(CONF_VALUE) *X509V3_parse_list(const char *line)
251 {
252 char *p, *q, c;
253 char *ntmp, *vtmp;
254 STACK_OF(CONF_VALUE) *values = NULL;
255 char *linebuf;
256 int state;
257 /* We are going to modify the line so copy it first */
258 linebuf = BUF_strdup(line);
259 state = HDR_NAME;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_utl.c 5

260 ntmp = NULL;
261 /* Go through all characters */
262 for(p = linebuf, q = linebuf; (c = *p) && (c!=’\r’) && (c!=’\n’); p++) {

264 switch(state) {
265 case HDR_NAME:
266 if(c == ’:’) {
267 state = HDR_VALUE;
268 *p = 0;
269 ntmp = strip_spaces(q);
270 if(!ntmp) {
271 X509V3err(X509V3_F_X509V3_PARSE_LIST, X5
272 goto err;
273 }
274 q = p + 1;
275 } else if(c == ’,’) {
276 *p = 0;
277 ntmp = strip_spaces(q);
278 q = p + 1;
279 #if 0
280 printf("%s\n", ntmp);
281 #endif
282 if(!ntmp) {
283 X509V3err(X509V3_F_X509V3_PARSE_LIST, X5
284 goto err;
285 }
286 X509V3_add_value(ntmp, NULL, &values);
287 }
288 break ;

290 case HDR_VALUE:
291 if(c == ’,’) {
292 state = HDR_NAME;
293 *p = 0;
294 vtmp = strip_spaces(q);
295 #if 0
296 printf("%s\n", ntmp);
297 #endif
298 if(!vtmp) {
299 X509V3err(X509V3_F_X509V3_PARSE_LIST, X5
300 goto err;
301 }
302 X509V3_add_value(ntmp, vtmp, &values);
303 ntmp = NULL;
304 q = p + 1;
305 }

307 }
308 }

310 if(state == HDR_VALUE) {
311 vtmp = strip_spaces(q);
312 #if 0
313 printf("%s=%s\n", ntmp, vtmp);
314 #endif
315 if(!vtmp) {
316 X509V3err(X509V3_F_X509V3_PARSE_LIST, X509V3_R_INVALID_N
317 goto err;
318 }
319 X509V3_add_value(ntmp, vtmp, &values);
320 } else {
321 ntmp = strip_spaces(q);
322 #if 0
323 printf("%s\n", ntmp);
324 #endif
325 if(!ntmp) {

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_utl.c 6

326 X509V3err(X509V3_F_X509V3_PARSE_LIST, X509V3_R_INVALID_N
327 goto err;
328 }
329 X509V3_add_value(ntmp, NULL, &values);
330 }
331 OPENSSL_free(linebuf);
332 return values;

334 err:
335 OPENSSL_free(linebuf);
336 sk_CONF_VALUE_pop_free(values, X509V3_conf_free);
337 return NULL;

339 }

341 /* Delete leading and trailing spaces from a string */
342 static char *strip_spaces(char *name)
343 {
344 char *p, *q;
345 /* Skip over leading spaces */
346 p = name;
347 while(*p && isspace((unsigned char)*p)) p++;
348 if(!*p) return NULL;
349 q = p + strlen(p) - 1;
350 while((q != p) && isspace((unsigned char)*q)) q--;
351 if(p != q) q[1] = 0;
352 if(!*p) return NULL;
353 return p;
354 }

356 /* hex string utilities */

358 /* Given a buffer of length ’len’ return a OPENSSL_malloc’ed string with its
359 * hex representation
360 * @@@ (Contents of buffer are always kept in ASCII, also on EBCDIC machines)
361 */

363 char *hex_to_string(const unsigned char *buffer, long len)
364 {
365 char *tmp, *q;
366 const unsigned char *p;
367 int i;
368 static const char hexdig[] = "0123456789ABCDEF";
369 if(!buffer || !len) return NULL;
370 if(!(tmp = OPENSSL_malloc(len * 3 + 1))) {
371 X509V3err(X509V3_F_HEX_TO_STRING,ERR_R_MALLOC_FAILURE);
372 return NULL;
373 }
374 q = tmp;
375 for(i = 0, p = buffer; i < len; i++,p++) {
376 *q++ = hexdig[(*p >> 4) & 0xf];
377 *q++ = hexdig[*p & 0xf];
378 *q++ = ’:’;
379 }
380 q[-1] = 0;
381 #ifdef CHARSET_EBCDIC
382 ebcdic2ascii(tmp, tmp, q - tmp - 1);
383 #endif

385 return tmp;
386 }

388 /* Give a string of hex digits convert to
389 * a buffer
390 */

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_utl.c 7

392 unsigned char *string_to_hex(const char *str, long *len)
393 {
394 unsigned char *hexbuf, *q;
395 unsigned char ch, cl, *p;
396 if(!str) {
397 X509V3err(X509V3_F_STRING_TO_HEX,X509V3_R_INVALID_NULL_ARGUMENT)
398 return NULL;
399 }
400 if(!(hexbuf = OPENSSL_malloc(strlen(str) >> 1))) goto err;
401 for(p = (unsigned char *)str, q = hexbuf; *p;) {
402 ch = *p++;
403 #ifdef CHARSET_EBCDIC
404 ch = os_toebcdic[ch];
405 #endif
406 if(ch == ’:’) continue;
407 cl = *p++;
408 #ifdef CHARSET_EBCDIC
409 cl = os_toebcdic[cl];
410 #endif
411 if(!cl) {
412 X509V3err(X509V3_F_STRING_TO_HEX,X509V3_R_ODD_NUMBER_OF_
413 OPENSSL_free(hexbuf);
414 return NULL;
415 }
416 if(isupper(ch)) ch = tolower(ch);
417 if(isupper(cl)) cl = tolower(cl);

419 if((ch >= ’0’) && (ch <= ’9’)) ch -= ’0’;
420 else if ((ch >= ’a’) && (ch <= ’f’)) ch -= ’a’ - 10;
421 else goto badhex;

423 if((cl >= ’0’) && (cl <= ’9’)) cl -= ’0’;
424 else if ((cl >= ’a’) && (cl <= ’f’)) cl -= ’a’ - 10;
425 else goto badhex;

427 *q++ = (ch << 4) | cl;
428 }

430 if(len) *len = q - hexbuf;

432 return hexbuf;

434 err:
435 if(hexbuf) OPENSSL_free(hexbuf);
436 X509V3err(X509V3_F_STRING_TO_HEX,ERR_R_MALLOC_FAILURE);
437 return NULL;

439 badhex:
440 OPENSSL_free(hexbuf);
441 X509V3err(X509V3_F_STRING_TO_HEX,X509V3_R_ILLEGAL_HEX_DIGIT);
442 return NULL;

444 }

446 /* V2I name comparison function: returns zero if ’name’ matches
447 * cmp or cmp.*
448 */

450 int name_cmp(const char *name, const char *cmp)
451 {
452 int len, ret;
453 char c;
454 len = strlen(cmp);
455 if((ret = strncmp(name, cmp, len))) return ret;
456 c = name[len];
457 if(!c || (c==’.’)) return 0;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_utl.c 8

458 return 1;
459 }

461 static int sk_strcmp(const char * const *a, const char * const *b)
462 {
463 return strcmp(*a, *b);
464 }

466 STACK_OF(OPENSSL_STRING) *X509_get1_email(X509 *x)
467 {
468 GENERAL_NAMES *gens;
469 STACK_OF(OPENSSL_STRING) *ret;

471 gens = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL);
472 ret = get_email(X509_get_subject_name(x), gens);
473 sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free);
474 return ret;
475 }

477 STACK_OF(OPENSSL_STRING) *X509_get1_ocsp(X509 *x)
478 {
479 AUTHORITY_INFO_ACCESS *info;
480 STACK_OF(OPENSSL_STRING) *ret = NULL;
481 int i;

483 info = X509_get_ext_d2i(x, NID_info_access, NULL, NULL);
484 if (!info)
485 return NULL;
486 for (i = 0; i < sk_ACCESS_DESCRIPTION_num(info); i++)
487 {
488 ACCESS_DESCRIPTION *ad = sk_ACCESS_DESCRIPTION_value(info, i);
489 if (OBJ_obj2nid(ad->method) == NID_ad_OCSP)
490 {
491 if (ad->location->type == GEN_URI)
492 {
493 if (!append_ia5(&ret, ad->location->d.uniformRes
494 break;
495 }
496 }
497 }
498 AUTHORITY_INFO_ACCESS_free(info);
499 return ret;
500 }

502 STACK_OF(OPENSSL_STRING) *X509_REQ_get1_email(X509_REQ *x)
503 {
504 GENERAL_NAMES *gens;
505 STACK_OF(X509_EXTENSION) *exts;
506 STACK_OF(OPENSSL_STRING) *ret;

508 exts = X509_REQ_get_extensions(x);
509 gens = X509V3_get_d2i(exts, NID_subject_alt_name, NULL, NULL);
510 ret = get_email(X509_REQ_get_subject_name(x), gens);
511 sk_GENERAL_NAME_pop_free(gens, GENERAL_NAME_free);
512 sk_X509_EXTENSION_pop_free(exts, X509_EXTENSION_free);
513 return ret;
514 }

517 static STACK_OF(OPENSSL_STRING) *get_email(X509_NAME *name, GENERAL_NAMES *gens)
518 {
519 STACK_OF(OPENSSL_STRING) *ret = NULL;
520 X509_NAME_ENTRY *ne;
521 ASN1_IA5STRING *email;
522 GENERAL_NAME *gen;
523 int i;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_utl.c 9

524 /* Now add any email address(es) to STACK */
525 i = -1;
526 /* First supplied X509_NAME */
527 while((i = X509_NAME_get_index_by_NID(name,
528 NID_pkcs9_emailAddress, i)) >= 0) {
529 ne = X509_NAME_get_entry(name, i);
530 email = X509_NAME_ENTRY_get_data(ne);
531 if(!append_ia5(&ret, email)) return NULL;
532 }
533 for(i = 0; i < sk_GENERAL_NAME_num(gens); i++)
534 {
535 gen = sk_GENERAL_NAME_value(gens, i);
536 if(gen->type != GEN_EMAIL) continue;
537 if(!append_ia5(&ret, gen->d.ia5)) return NULL;
538 }
539 return ret;
540 }

542 static void str_free(OPENSSL_STRING str)
543 {
544 OPENSSL_free(str);
545 }

547 static int append_ia5(STACK_OF(OPENSSL_STRING) **sk, ASN1_IA5STRING *email)
548 {
549 char *emtmp;
550 /* First some sanity checks */
551 if(email->type != V_ASN1_IA5STRING) return 1;
552 if(!email->data || !email->length) return 1;
553 if(!*sk) *sk = sk_OPENSSL_STRING_new(sk_strcmp);
554 if(!*sk) return 0;
555 /* Don’t add duplicates */
556 if(sk_OPENSSL_STRING_find(*sk, (char *)email->data) != -1) return 1;
557 emtmp = BUF_strdup((char *)email->data);
558 if(!emtmp || !sk_OPENSSL_STRING_push(*sk, emtmp)) {
559 X509_email_free(*sk);
560 *sk = NULL;
561 return 0;
562 }
563 return 1;
564 }

566 void X509_email_free(STACK_OF(OPENSSL_STRING) *sk)
567 {
568 sk_OPENSSL_STRING_pop_free(sk, str_free);
569 }

571 /* Convert IP addresses both IPv4 and IPv6 into an
572 * OCTET STRING compatible with RFC3280.
573 */

575 ASN1_OCTET_STRING *a2i_IPADDRESS(const char *ipasc)
576 {
577 unsigned char ipout[16];
578 ASN1_OCTET_STRING *ret;
579 int iplen;

581 /* If string contains a ’:’ assume IPv6 */

583 iplen = a2i_ipadd(ipout, ipasc);

585 if (!iplen)
586 return NULL;

588 ret = ASN1_OCTET_STRING_new();
589 if (!ret)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_utl.c 10

590 return NULL;
591 if (!ASN1_OCTET_STRING_set(ret, ipout, iplen))
592 {
593 ASN1_OCTET_STRING_free(ret);
594 return NULL;
595 }
596 return ret;
597 }

599 ASN1_OCTET_STRING *a2i_IPADDRESS_NC(const char *ipasc)
600 {
601 ASN1_OCTET_STRING *ret = NULL;
602 unsigned char ipout[32];
603 char *iptmp = NULL, *p;
604 int iplen1, iplen2;
605 p = strchr(ipasc,’/’);
606 if (!p)
607 return NULL;
608 iptmp = BUF_strdup(ipasc);
609 if (!iptmp)
610 return NULL;
611 p = iptmp + (p - ipasc);
612 *p++ = 0;

614 iplen1 = a2i_ipadd(ipout, iptmp);

616 if (!iplen1)
617 goto err;

619 iplen2 = a2i_ipadd(ipout + iplen1, p);

621 OPENSSL_free(iptmp);
622 iptmp = NULL;

624 if (!iplen2 || (iplen1 != iplen2))
625 goto err;

627 ret = ASN1_OCTET_STRING_new();
628 if (!ret)
629 goto err;
630 if (!ASN1_OCTET_STRING_set(ret, ipout, iplen1 + iplen2))
631 goto err;

633 return ret;

635 err:
636 if (iptmp)
637 OPENSSL_free(iptmp);
638 if (ret)
639 ASN1_OCTET_STRING_free(ret);
640 return NULL;
641 }
642

644 int a2i_ipadd(unsigned char *ipout, const char *ipasc)
645 {
646 /* If string contains a ’:’ assume IPv6 */

648 if (strchr(ipasc, ’:’))
649 {
650 if (!ipv6_from_asc(ipout, ipasc))
651 return 0;
652 return 16;
653 }
654 else
655 {

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_utl.c 11

656 if (!ipv4_from_asc(ipout, ipasc))
657 return 0;
658 return 4;
659 }
660 }

662 static int ipv4_from_asc(unsigned char *v4, const char *in)
663 {
664 int a0, a1, a2, a3;
665 if (sscanf(in, "%d.%d.%d.%d", &a0, &a1, &a2, &a3) != 4)
666 return 0;
667 if ((a0 < 0) || (a0 > 255) || (a1 < 0) || (a1 > 255)
668 || (a2 < 0) || (a2 > 255) || (a3 < 0) || (a3 > 255))
669 return 0;
670 v4[0] = a0;
671 v4[1] = a1;
672 v4[2] = a2;
673 v4[3] = a3;
674 return 1;
675 }

677 typedef struct {
678 /* Temporary store for IPV6 output */
679 unsigned char tmp[16];
680 /* Total number of bytes in tmp */
681 int total;
682 /* The position of a zero (corresponding to ’::’) */
683 int zero_pos;
684 /* Number of zeroes */
685 int zero_cnt;
686 } IPV6_STAT;

689 static int ipv6_from_asc(unsigned char *v6, const char *in)
690 {
691 IPV6_STAT v6stat;
692 v6stat.total = 0;
693 v6stat.zero_pos = -1;
694 v6stat.zero_cnt = 0;
695 /* Treat the IPv6 representation as a list of values
696 * separated by ’:’. The presence of a ’::’ will parse
697 * as one, two or three zero length elements.
698 */
699 if (!CONF_parse_list(in, ’:’, 0, ipv6_cb, &v6stat))
700 return 0;

702 /* Now for some sanity checks */

704 if (v6stat.zero_pos == -1)
705 {
706 /* If no ’::’ must have exactly 16 bytes */
707 if (v6stat.total != 16)
708 return 0;
709 }
710 else
711 {
712 /* If ’::’ must have less than 16 bytes */
713 if (v6stat.total == 16)
714 return 0;
715 /* More than three zeroes is an error */
716 if (v6stat.zero_cnt > 3)
717 return 0;
718 /* Can only have three zeroes if nothing else present */
719 else if (v6stat.zero_cnt == 3)
720 {
721 if (v6stat.total > 0)

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_utl.c 12

722 return 0;
723 }
724 /* Can only have two zeroes if at start or end */
725 else if (v6stat.zero_cnt == 2)
726 {
727 if ((v6stat.zero_pos != 0)
728 && (v6stat.zero_pos != v6stat.total))
729 return 0;
730 }
731 else
732 /* Can only have one zero if *not* start or end */
733 {
734 if ((v6stat.zero_pos == 0)
735 || (v6stat.zero_pos == v6stat.total))
736 return 0;
737 }
738 }

740 /* Format result */

742 if (v6stat.zero_pos >= 0)
743 {
744 /* Copy initial part */
745 memcpy(v6, v6stat.tmp, v6stat.zero_pos);
746 /* Zero middle */
747 memset(v6 + v6stat.zero_pos, 0, 16 - v6stat.total);
748 /* Copy final part */
749 if (v6stat.total != v6stat.zero_pos)
750 memcpy(v6 + v6stat.zero_pos + 16 - v6stat.total,
751 v6stat.tmp + v6stat.zero_pos,
752 v6stat.total - v6stat.zero_pos);
753 }
754 else
755 memcpy(v6, v6stat.tmp, 16);

757 return 1;
758 }

760 static int ipv6_cb(const char *elem, int len, void *usr)
761 {
762 IPV6_STAT *s = usr;
763 /* Error if 16 bytes written */
764 if (s->total == 16)
765 return 0;
766 if (len == 0)
767 {
768 /* Zero length element, corresponds to ’::’ */
769 if (s->zero_pos == -1)
770 s->zero_pos = s->total;
771 /* If we’ve already got a :: its an error */
772 else if (s->zero_pos != s->total)
773 return 0;
774 s->zero_cnt++;
775 }
776 else
777 {
778 /* If more than 4 characters could be final a.b.c.d form */
779 if (len > 4)
780 {
781 /* Need at least 4 bytes left */
782 if (s->total > 12)
783 return 0;
784 /* Must be end of string */
785 if (elem[len])
786 return 0;
787 if (!ipv4_from_asc(s->tmp + s->total, elem))

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_utl.c 13

788 return 0;
789 s->total += 4;
790 }
791 else
792 {
793 if (!ipv6_hex(s->tmp + s->total, elem, len))
794 return 0;
795 s->total += 2;
796 }
797 }
798 return 1;
799 }

801 /* Convert a string of up to 4 hex digits into the corresponding
802 * IPv6 form.
803 */

805 static int ipv6_hex(unsigned char *out, const char *in, int inlen)
806 {
807 unsigned char c;
808 unsigned int num = 0;
809 if (inlen > 4)
810 return 0;
811 while(inlen--)
812 {
813 c = *in++;
814 num <<= 4;
815 if ((c >= ’0’) && (c <= ’9’))
816 num |= c - ’0’;
817 else if ((c >= ’A’) && (c <= ’F’))
818 num |= c - ’A’ + 10;
819 else if ((c >= ’a’) && (c <= ’f’))
820 num |= c - ’a’ + 10;
821 else
822 return 0;
823 }
824 out[0] = num >> 8;
825 out[1] = num & 0xff;
826 return 1;
827 }

830 int X509V3_NAME_from_section(X509_NAME *nm, STACK_OF(CONF_VALUE)*dn_sk,
831 unsigned long chtype)
832 {
833 CONF_VALUE *v;
834 int i, mval;
835 char *p, *type;
836 if (!nm)
837 return 0;

839 for (i = 0; i < sk_CONF_VALUE_num(dn_sk); i++)
840 {
841 v=sk_CONF_VALUE_value(dn_sk,i);
842 type=v->name;
843 /* Skip past any leading X. X: X, etc to allow for
844 * multiple instances
845 */
846 for(p = type; *p ; p++)
847 #ifndef CHARSET_EBCDIC
848 if ((*p == ’:’) || (*p == ’,’) || (*p == ’.’))
849 #else
850 if ((*p == os_toascii[’:’]) || (*p == os_toascii[’,’]) |
851 #endif
852 {
853 p++;

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3_utl.c 14

854 if(*p) type = p;
855 break;
856 }
857 #ifndef CHARSET_EBCDIC
858 if (*type == ’+’)
859 #else
860 if (*type == os_toascii[’+’])
861 #endif
862 {
863 mval = -1;
864 type++;
865 }
866 else
867 mval = 0;
868 if (!X509_NAME_add_entry_by_txt(nm,type, chtype,
869 (unsigned char *) v->value,-1,-1,mval))
870 return 0;

872 }
873 return 1;
874 }

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3err.c 1

**
 12172 Fri May 30 18:32:17 2014
new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* crypto/x509v3/v3err.c */
2 /* ==
3 * Copyright (c) 1999-2007 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3err.c 2

62 #include <openssl/err.h>
63 #include <openssl/x509v3.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_X509V3,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_X509V3,0,reason)

71 static ERR_STRING_DATA X509V3_str_functs[]=
72 {
73 {ERR_FUNC(X509V3_F_A2I_GENERAL_NAME), "A2I_GENERAL_NAME"},
74 {ERR_FUNC(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE), "ASIDENTIFIERCHOICE_CANO
75 {ERR_FUNC(X509V3_F_ASIDENTIFIERCHOICE_IS_CANONICAL), "ASIDENTIFIERCHOICE_IS_C
76 {ERR_FUNC(X509V3_F_COPY_EMAIL), "COPY_EMAIL"},
77 {ERR_FUNC(X509V3_F_COPY_ISSUER), "COPY_ISSUER"},
78 {ERR_FUNC(X509V3_F_DO_DIRNAME), "DO_DIRNAME"},
79 {ERR_FUNC(X509V3_F_DO_EXT_CONF), "DO_EXT_CONF"},
80 {ERR_FUNC(X509V3_F_DO_EXT_I2D), "DO_EXT_I2D"},
81 {ERR_FUNC(X509V3_F_DO_EXT_NCONF), "DO_EXT_NCONF"},
82 {ERR_FUNC(X509V3_F_DO_I2V_NAME_CONSTRAINTS), "DO_I2V_NAME_CONSTRAINTS"},
83 {ERR_FUNC(X509V3_F_GNAMES_FROM_SECTNAME), "GNAMES_FROM_SECTNAME"},
84 {ERR_FUNC(X509V3_F_HEX_TO_STRING), "hex_to_string"},
85 {ERR_FUNC(X509V3_F_I2S_ASN1_ENUMERATED), "i2s_ASN1_ENUMERATED"},
86 {ERR_FUNC(X509V3_F_I2S_ASN1_IA5STRING), "I2S_ASN1_IA5STRING"},
87 {ERR_FUNC(X509V3_F_I2S_ASN1_INTEGER), "i2s_ASN1_INTEGER"},
88 {ERR_FUNC(X509V3_F_I2V_AUTHORITY_INFO_ACCESS), "I2V_AUTHORITY_INFO_ACCESS"},
89 {ERR_FUNC(X509V3_F_NOTICE_SECTION), "NOTICE_SECTION"},
90 {ERR_FUNC(X509V3_F_NREF_NOS), "NREF_NOS"},
91 {ERR_FUNC(X509V3_F_POLICY_SECTION), "POLICY_SECTION"},
92 {ERR_FUNC(X509V3_F_PROCESS_PCI_VALUE), "PROCESS_PCI_VALUE"},
93 {ERR_FUNC(X509V3_F_R2I_CERTPOL), "R2I_CERTPOL"},
94 {ERR_FUNC(X509V3_F_R2I_PCI), "R2I_PCI"},
95 {ERR_FUNC(X509V3_F_S2I_ASN1_IA5STRING), "S2I_ASN1_IA5STRING"},
96 {ERR_FUNC(X509V3_F_S2I_ASN1_INTEGER), "s2i_ASN1_INTEGER"},
97 {ERR_FUNC(X509V3_F_S2I_ASN1_OCTET_STRING), "s2i_ASN1_OCTET_STRING"},
98 {ERR_FUNC(X509V3_F_S2I_ASN1_SKEY_ID), "S2I_ASN1_SKEY_ID"},
99 {ERR_FUNC(X509V3_F_S2I_SKEY_ID), "S2I_SKEY_ID"},
100 {ERR_FUNC(X509V3_F_SET_DIST_POINT_NAME), "SET_DIST_POINT_NAME"},
101 {ERR_FUNC(X509V3_F_STRING_TO_HEX), "string_to_hex"},
102 {ERR_FUNC(X509V3_F_SXNET_ADD_ID_ASC), "SXNET_add_id_asc"},
103 {ERR_FUNC(X509V3_F_SXNET_ADD_ID_INTEGER), "SXNET_add_id_INTEGER"},
104 {ERR_FUNC(X509V3_F_SXNET_ADD_ID_ULONG), "SXNET_add_id_ulong"},
105 {ERR_FUNC(X509V3_F_SXNET_GET_ID_ASC), "SXNET_get_id_asc"},
106 {ERR_FUNC(X509V3_F_SXNET_GET_ID_ULONG), "SXNET_get_id_ulong"},
107 {ERR_FUNC(X509V3_F_V2I_ASIDENTIFIERS), "V2I_ASIDENTIFIERS"},
108 {ERR_FUNC(X509V3_F_V2I_ASN1_BIT_STRING), "v2i_ASN1_BIT_STRING"},
109 {ERR_FUNC(X509V3_F_V2I_AUTHORITY_INFO_ACCESS), "V2I_AUTHORITY_INFO_ACCESS"},
110 {ERR_FUNC(X509V3_F_V2I_AUTHORITY_KEYID), "V2I_AUTHORITY_KEYID"},
111 {ERR_FUNC(X509V3_F_V2I_BASIC_CONSTRAINTS), "V2I_BASIC_CONSTRAINTS"},
112 {ERR_FUNC(X509V3_F_V2I_CRLD), "V2I_CRLD"},
113 {ERR_FUNC(X509V3_F_V2I_EXTENDED_KEY_USAGE), "V2I_EXTENDED_KEY_USAGE"},
114 {ERR_FUNC(X509V3_F_V2I_GENERAL_NAMES), "v2i_GENERAL_NAMES"},
115 {ERR_FUNC(X509V3_F_V2I_GENERAL_NAME_EX), "v2i_GENERAL_NAME_ex"},
116 {ERR_FUNC(X509V3_F_V2I_IDP), "V2I_IDP"},
117 {ERR_FUNC(X509V3_F_V2I_IPADDRBLOCKS), "V2I_IPADDRBLOCKS"},
118 {ERR_FUNC(X509V3_F_V2I_ISSUER_ALT), "V2I_ISSUER_ALT"},
119 {ERR_FUNC(X509V3_F_V2I_NAME_CONSTRAINTS), "V2I_NAME_CONSTRAINTS"},
120 {ERR_FUNC(X509V3_F_V2I_POLICY_CONSTRAINTS), "V2I_POLICY_CONSTRAINTS"},
121 {ERR_FUNC(X509V3_F_V2I_POLICY_MAPPINGS), "V2I_POLICY_MAPPINGS"},
122 {ERR_FUNC(X509V3_F_V2I_SUBJECT_ALT), "V2I_SUBJECT_ALT"},
123 {ERR_FUNC(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL), "V3_ADDR_VALIDATE_PATH_I
124 {ERR_FUNC(X509V3_F_V3_GENERIC_EXTENSION), "V3_GENERIC_EXTENSION"},
125 {ERR_FUNC(X509V3_F_X509V3_ADD1_I2D), "X509V3_add1_i2d"},
126 {ERR_FUNC(X509V3_F_X509V3_ADD_VALUE), "X509V3_add_value"},
127 {ERR_FUNC(X509V3_F_X509V3_EXT_ADD), "X509V3_EXT_add"},

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3err.c 3

128 {ERR_FUNC(X509V3_F_X509V3_EXT_ADD_ALIAS), "X509V3_EXT_add_alias"},
129 {ERR_FUNC(X509V3_F_X509V3_EXT_CONF), "X509V3_EXT_conf"},
130 {ERR_FUNC(X509V3_F_X509V3_EXT_I2D), "X509V3_EXT_i2d"},
131 {ERR_FUNC(X509V3_F_X509V3_EXT_NCONF), "X509V3_EXT_nconf"},
132 {ERR_FUNC(X509V3_F_X509V3_GET_SECTION), "X509V3_get_section"},
133 {ERR_FUNC(X509V3_F_X509V3_GET_STRING), "X509V3_get_string"},
134 {ERR_FUNC(X509V3_F_X509V3_GET_VALUE_BOOL), "X509V3_get_value_bool"},
135 {ERR_FUNC(X509V3_F_X509V3_PARSE_LIST), "X509V3_parse_list"},
136 {ERR_FUNC(X509V3_F_X509_PURPOSE_ADD), "X509_PURPOSE_add"},
137 {ERR_FUNC(X509V3_F_X509_PURPOSE_SET), "X509_PURPOSE_set"},
138 {0,NULL}
139 };

141 static ERR_STRING_DATA X509V3_str_reasons[]=
142 {
143 {ERR_REASON(X509V3_R_BAD_IP_ADDRESS) ,"bad ip address"},
144 {ERR_REASON(X509V3_R_BAD_OBJECT) ,"bad object"},
145 {ERR_REASON(X509V3_R_BN_DEC2BN_ERROR) ,"bn dec2bn error"},
146 {ERR_REASON(X509V3_R_BN_TO_ASN1_INTEGER_ERROR),"bn to asn1 integer error"},
147 {ERR_REASON(X509V3_R_DIRNAME_ERROR) ,"dirname error"},
148 {ERR_REASON(X509V3_R_DISTPOINT_ALREADY_SET),"distpoint already set"},
149 {ERR_REASON(X509V3_R_DUPLICATE_ZONE_ID) ,"duplicate zone id"},
150 {ERR_REASON(X509V3_R_ERROR_CONVERTING_ZONE),"error converting zone"},
151 {ERR_REASON(X509V3_R_ERROR_CREATING_EXTENSION),"error creating extension"},
152 {ERR_REASON(X509V3_R_ERROR_IN_EXTENSION) ,"error in extension"},
153 {ERR_REASON(X509V3_R_EXPECTED_A_SECTION_NAME),"expected a section name"},
154 {ERR_REASON(X509V3_R_EXTENSION_EXISTS) ,"extension exists"},
155 {ERR_REASON(X509V3_R_EXTENSION_NAME_ERROR),"extension name error"},
156 {ERR_REASON(X509V3_R_EXTENSION_NOT_FOUND),"extension not found"},
157 {ERR_REASON(X509V3_R_EXTENSION_SETTING_NOT_SUPPORTED),"extension setting not sup
158 {ERR_REASON(X509V3_R_EXTENSION_VALUE_ERROR),"extension value error"},
159 {ERR_REASON(X509V3_R_ILLEGAL_EMPTY_EXTENSION),"illegal empty extension"},
160 {ERR_REASON(X509V3_R_ILLEGAL_HEX_DIGIT) ,"illegal hex digit"},
161 {ERR_REASON(X509V3_R_INCORRECT_POLICY_SYNTAX_TAG),"incorrect policy syntax tag"}
162 {ERR_REASON(X509V3_R_INVALID_MULTIPLE_RDNS),"invalid multiple rdns"},
163 {ERR_REASON(X509V3_R_INVALID_ASNUMBER) ,"invalid asnumber"},
164 {ERR_REASON(X509V3_R_INVALID_ASRANGE) ,"invalid asrange"},
165 {ERR_REASON(X509V3_R_INVALID_BOOLEAN_STRING),"invalid boolean string"},
166 {ERR_REASON(X509V3_R_INVALID_EXTENSION_STRING),"invalid extension string"},
167 {ERR_REASON(X509V3_R_INVALID_INHERITANCE),"invalid inheritance"},
168 {ERR_REASON(X509V3_R_INVALID_IPADDRESS) ,"invalid ipaddress"},
169 {ERR_REASON(X509V3_R_INVALID_NAME) ,"invalid name"},
170 {ERR_REASON(X509V3_R_INVALID_NULL_ARGUMENT),"invalid null argument"},
171 {ERR_REASON(X509V3_R_INVALID_NULL_NAME) ,"invalid null name"},
172 {ERR_REASON(X509V3_R_INVALID_NULL_VALUE) ,"invalid null value"},
173 {ERR_REASON(X509V3_R_INVALID_NUMBER) ,"invalid number"},
174 {ERR_REASON(X509V3_R_INVALID_NUMBERS) ,"invalid numbers"},
175 {ERR_REASON(X509V3_R_INVALID_OBJECT_IDENTIFIER),"invalid object identifier"},
176 {ERR_REASON(X509V3_R_INVALID_OPTION) ,"invalid option"},
177 {ERR_REASON(X509V3_R_INVALID_POLICY_IDENTIFIER),"invalid policy identifier"},
178 {ERR_REASON(X509V3_R_INVALID_PROXY_POLICY_SETTING),"invalid proxy policy setting
179 {ERR_REASON(X509V3_R_INVALID_PURPOSE) ,"invalid purpose"},
180 {ERR_REASON(X509V3_R_INVALID_SAFI) ,"invalid safi"},
181 {ERR_REASON(X509V3_R_INVALID_SECTION) ,"invalid section"},
182 {ERR_REASON(X509V3_R_INVALID_SYNTAX) ,"invalid syntax"},
183 {ERR_REASON(X509V3_R_ISSUER_DECODE_ERROR),"issuer decode error"},
184 {ERR_REASON(X509V3_R_MISSING_VALUE) ,"missing value"},
185 {ERR_REASON(X509V3_R_NEED_ORGANIZATION_AND_NUMBERS),"need organization and numbe
186 {ERR_REASON(X509V3_R_NO_CONFIG_DATABASE) ,"no config database"},
187 {ERR_REASON(X509V3_R_NO_ISSUER_CERTIFICATE),"no issuer certificate"},
188 {ERR_REASON(X509V3_R_NO_ISSUER_DETAILS) ,"no issuer details"},
189 {ERR_REASON(X509V3_R_NO_POLICY_IDENTIFIER),"no policy identifier"},
190 {ERR_REASON(X509V3_R_NO_PROXY_CERT_POLICY_LANGUAGE_DEFINED),"no proxy cert polic
191 {ERR_REASON(X509V3_R_NO_PUBLIC_KEY) ,"no public key"},
192 {ERR_REASON(X509V3_R_NO_SUBJECT_DETAILS) ,"no subject details"},
193 {ERR_REASON(X509V3_R_ODD_NUMBER_OF_DIGITS),"odd number of digits"},

new/usr/src/lib/openssl/libsunw_crypto/x509v3/v3err.c 4

194 {ERR_REASON(X509V3_R_OPERATION_NOT_DEFINED),"operation not defined"},
195 {ERR_REASON(X509V3_R_OTHERNAME_ERROR) ,"othername error"},
196 {ERR_REASON(X509V3_R_POLICY_LANGUAGE_ALREADY_DEFINED),"policy language already d
197 {ERR_REASON(X509V3_R_POLICY_PATH_LENGTH) ,"policy path length"},
198 {ERR_REASON(X509V3_R_POLICY_PATH_LENGTH_ALREADY_DEFINED),"policy path length alr
199 {ERR_REASON(X509V3_R_POLICY_SYNTAX_NOT_CURRENTLY_SUPPORTED),"policy syntax not c
200 {ERR_REASON(X509V3_R_POLICY_WHEN_PROXY_LANGUAGE_REQUIRES_NO_POLICY),"policy when
201 {ERR_REASON(X509V3_R_SECTION_NOT_FOUND) ,"section not found"},
202 {ERR_REASON(X509V3_R_UNABLE_TO_GET_ISSUER_DETAILS),"unable to get issuer details
203 {ERR_REASON(X509V3_R_UNABLE_TO_GET_ISSUER_KEYID),"unable to get issuer keyid"},
204 {ERR_REASON(X509V3_R_UNKNOWN_BIT_STRING_ARGUMENT),"unknown bit string argument"}
205 {ERR_REASON(X509V3_R_UNKNOWN_EXTENSION) ,"unknown extension"},
206 {ERR_REASON(X509V3_R_UNKNOWN_EXTENSION_NAME),"unknown extension name"},
207 {ERR_REASON(X509V3_R_UNKNOWN_OPTION) ,"unknown option"},
208 {ERR_REASON(X509V3_R_UNSUPPORTED_OPTION) ,"unsupported option"},
209 {ERR_REASON(X509V3_R_UNSUPPORTED_TYPE) ,"unsupported type"},
210 {ERR_REASON(X509V3_R_USER_TOO_LONG) ,"user too long"},
211 {0,NULL}
212 };

214 #endif

216 void ERR_load_X509V3_strings(void)
217 {
218 #ifndef OPENSSL_NO_ERR

220 if (ERR_func_error_string(X509V3_str_functs[0].error) == NULL)
221 {
222 ERR_load_strings(0,X509V3_str_functs);
223 ERR_load_strings(0,X509V3_str_reasons);
224 }
225 #endif
226 }

new/usr/src/lib/openssl/libsunw_ssl/Makefile 1

**
 1588 Fri May 30 18:32:17 2014
new/usr/src/lib/openssl/libsunw_ssl/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #

27 include $(SRC)/lib/Makefile.lib

29 SUBDIRS = .WAIT $(MACH) $(BUILD64) $(MACH64)

31 # conditional assignments
32 all := TARGET= all
33 install := TARGET= install
34 clean := TARGET= clean
35 clobber := TARGET= clobber
36 lint := TARGET= lint
37 _msg := TARGET= _msg

39 sparc_HDRS=
40 sparcv9_HDRS=
41 i386_HDRS=
42 HDRS= $($(MACH)_HDRS)
43 ROOTHDRDIR= $(ROOT)/usr/include
44 ROOTHDRS= $(HDRS:%=$(ROOTHDRDIR)/%)
45 CHECKHDRS= $(HDRS:%.h=%.check)

47 .KEEP_STATE:

49 all install clean clobber lint: $(SUBDIRS)

51 _msg: $(MACH) $(MACH64)

54 $(ROOTHDRDIR)/%: %
55 $(INS.file)

57 $(ROOTHDRDIR):
58 $(INS.dir)

60 check: $(CHECKHDRS)

new/usr/src/lib/openssl/libsunw_ssl/Makefile 2

62 $(MACH) $(MACH64): FRC
63 @cd $@; pwd; $(MAKE) $(TARGET)

65 FRC:

new/usr/src/lib/openssl/libsunw_ssl/Makefile.com 1

**
 2896 Fri May 30 18:32:17 2014
new/usr/src/lib/openssl/libsunw_ssl/Makefile.com
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 LIBRARY= libsunw_ssl.a
27 VERS= .1

29 OBJECTS= bio_ssl.o \
30 d1_both.o \
31 d1_clnt.o \
32 d1_enc.o \
33 d1_lib.o \
34 d1_meth.o \
35 d1_pkt.o \
36 d1_srtp.o \
37 d1_srvr.o \
38 kssl.o \
39 s23_clnt.o \
40 s23_lib.o \
41 s23_meth.o \
42 s23_pkt.o \
43 s23_srvr.o \
44 s2_clnt.o \
45 s2_enc.o \
46 s2_lib.o \
47 s2_meth.o \
48 s2_pkt.o \
49 s2_srvr.o \
50 s3_both.o \
51 s3_cbc.o \
52 s3_clnt.o \
53 s3_enc.o \
54 s3_lib.o \
55 s3_meth.o \
56 s3_pkt.o \
57 s3_srvr.o \
58 ssl_algs.o \
59 ssl_asn1.o \
60 ssl_cert.o \
61 ssl_ciph.o \

new/usr/src/lib/openssl/libsunw_ssl/Makefile.com 2

62 ssl_err.o \
63 ssl_err2.o \
64 ssl_lib.o \
65 ssl_rsa.o \
66 ssl_sess.o \
67 ssl_stat.o \
68 ssl_txt.o \
69 t1_clnt.o \
70 t1_enc.o \
71 t1_lib.o \
72 t1_meth.o \
73 t1_reneg.o \
74 t1_srvr.o \
75 tls_srp.o

77 # include library definitions
78 include $(SRC)/lib/Makefile.lib

80 CLOBBERFILES += $(LIBLINKS)

82 LIBS = $(DYNLIB)

84 LDLIBS += -lc -lsunw_crypto

86 LINTFLAGS = -uxn
87 LINTFLAGS64 = $(LINTFLAGS) -m64
88 LINTOUT= lint.out
89 LINTSRC = $(LINTLIB:%.ln=%)
90 ROOTLINTDIR = $(ROOTLIBDIR)
91 ROOTLINT = $(LINTSRC:%=$(ROOTLINTDIR)/%)

93 CPPFLAGS += -I.. \
94 -I$(SRC)/lib/openssl/include

96 CPPFLAGS += -D_REENTRANT
97 CPPFLAGS += -DOPENSSL_THREADS
98 CPPFLAGS += -DDSO_DLFCN
99 CPPFLAGS += -DHAVE_DLFCN_H
100 CPPFLAGS += -DSOLARIS_OPENSSL
101 CPPFLAGS += -DNO_WINDOWS_BRAINDEATH
102 CPPFLAGS += -DOPENSSL_BN_ASM_GF2m
103 CPPFLAGS += -DSHA1_ASM
104 CPPFLAGS += -DSHA256_ASM
105 CPPFLAGS += -DSHA512_ASM
106 CPPFLAGS += -DMD5_ASM
107 CPPFLAGS += -DAES_ASM
108 CPPFLAGS += -DVPAES_ASM
109 CPPFLAGS += -DGHASH_ASM
110 CPPFLAGS += -DVPAES_ASM
111 CPPFLAGS += -DOPENSSL_BN_ASM_MONT

113 CFLAGS += $(CCVERBOSE)

115 CERRWARN += -erroff=E_END_OF_LOOP_CODE_NOT_REACHED
116 CERRWARN += -erroff=E_CONST_PROMOTED_UNSIGNED_LONG
117 CERRWARN += -erroff=E_INIT_DOES_NOT_FIT

119 $(LINTLIB) := LINTFLAGS = -nvx -I..
120 $(LINTLIB) := LINTFLAGS64 = -nvx -m64 -I..

122 .KEEP_STATE:

124 all : $(LIBS)

126 lint : lintcheck

new/usr/src/lib/openssl/libsunw_ssl/Makefile.com 3

128 # include library targets
129 include $(SRC)/lib/Makefile.targ

131 pics/%.o: ../%.c
132 $(COMPILE.c) -o $@ $<

134 $(ROOTLINTDIR)/%: ../%
135 $(INS.file)

new/usr/src/lib/openssl/libsunw_ssl/amd64/Makefile 1

**
 1265 Fri May 30 18:32:17 2014
new/usr/src/lib/openssl/libsunw_ssl/amd64/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.

25 include ../Makefile.com
26 include $(SRC)/lib/Makefile.lib.64

28 .KEEP_STATE:

30 CPPFLAGS += -DL_ENDIAN
31 CPPFLAGS += -DOPENSSL_IA32_SSE2
32 CPPFLAGS += -DOPENSSL_BN_ASM_MONT5
33 CPPFLAGS += -DBSAES_ASM

35 all: $(ROOTLIBDIR64) $(LIBS) $(LIBLINKS)

37 $(LIBLINKS): FRC
38 $(RM) $@; $(SYMLINK) $(DYNLIB) $@

40 $(ROOTLIBDIR64):
41 $(INS.dir)

43 install: all $(ROOTLIBS64) $(ROOTLINKS64)

45 FRC:

new/usr/src/lib/openssl/libsunw_ssl/bio_ssl.c 1

**
 14285 Fri May 30 18:32:17 2014
new/usr/src/lib/openssl/libsunw_ssl/bio_ssl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/bio_ssl.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>

new/usr/src/lib/openssl/libsunw_ssl/bio_ssl.c 2

62 #include <errno.h>
63 #include <openssl/opensslconf.h>
64 #include <openssl/crypto.h>
65 #include <openssl/bio.h>
66 #include <openssl/err.h>
67 #include <openssl/ssl.h>

69 static int ssl_write(BIO *h, const char *buf, int num);
70 static int ssl_read(BIO *h, char *buf, int size);
71 static int ssl_puts(BIO *h, const char *str);
72 static long ssl_ctrl(BIO *h, int cmd, long arg1, void *arg2);
73 static int ssl_new(BIO *h);
74 static int ssl_free(BIO *data);
75 static long ssl_callback_ctrl(BIO *h, int cmd, bio_info_cb *fp);
76 typedef struct bio_ssl_st
77 {
78 SSL *ssl; /* The ssl handle :-) */
79 /* re-negotiate every time the total number of bytes is this size */
80 int num_renegotiates;
81 unsigned long renegotiate_count;
82 unsigned long byte_count;
83 unsigned long renegotiate_timeout;
84 unsigned long last_time;
85 } BIO_SSL;

87 static BIO_METHOD methods_sslp=
88 {
89 BIO_TYPE_SSL,"ssl",
90 ssl_write,
91 ssl_read,
92 ssl_puts,
93 NULL, /* ssl_gets, */
94 ssl_ctrl,
95 ssl_new,
96 ssl_free,
97 ssl_callback_ctrl,
98 };

100 BIO_METHOD *BIO_f_ssl(void)
101 {
102 return(&methods_sslp);
103 }

105 static int ssl_new(BIO *bi)
106 {
107 BIO_SSL *bs;

109 bs=(BIO_SSL *)OPENSSL_malloc(sizeof(BIO_SSL));
110 if (bs == NULL)
111 {
112 BIOerr(BIO_F_SSL_NEW,ERR_R_MALLOC_FAILURE);
113 return(0);
114 }
115 memset(bs,0,sizeof(BIO_SSL));
116 bi->init=0;
117 bi->ptr=(char *)bs;
118 bi->flags=0;
119 return(1);
120 }

122 static int ssl_free(BIO *a)
123 {
124 BIO_SSL *bs;

126 if (a == NULL) return(0);
127 bs=(BIO_SSL *)a->ptr;

new/usr/src/lib/openssl/libsunw_ssl/bio_ssl.c 3

128 if (bs->ssl != NULL) SSL_shutdown(bs->ssl);
129 if (a->shutdown)
130 {
131 if (a->init && (bs->ssl != NULL))
132 SSL_free(bs->ssl);
133 a->init=0;
134 a->flags=0;
135 }
136 if (a->ptr != NULL)
137 OPENSSL_free(a->ptr);
138 return(1);
139 }
140
141 static int ssl_read(BIO *b, char *out, int outl)
142 {
143 int ret=1;
144 BIO_SSL *sb;
145 SSL *ssl;
146 int retry_reason=0;
147 int r=0;

149 if (out == NULL) return(0);
150 sb=(BIO_SSL *)b->ptr;
151 ssl=sb->ssl;

153 BIO_clear_retry_flags(b);

155 #if 0
156 if (!SSL_is_init_finished(ssl))
157 {
158 /* ret=SSL_do_handshake(ssl); */
159 if (ret > 0)
160 {

162 outflags=(BIO_FLAGS_READ|BIO_FLAGS_SHOULD_RETRY);
163 ret= -1;
164 goto end;
165 }
166 }
167 #endif
168 /* if (ret > 0) */
169 ret=SSL_read(ssl,out,outl);

171 switch (SSL_get_error(ssl,ret))
172 {
173 case SSL_ERROR_NONE:
174 if (ret <= 0) break;
175 if (sb->renegotiate_count > 0)
176 {
177 sb->byte_count+=ret;
178 if (sb->byte_count > sb->renegotiate_count)
179 {
180 sb->byte_count=0;
181 sb->num_renegotiates++;
182 SSL_renegotiate(ssl);
183 r=1;
184 }
185 }
186 if ((sb->renegotiate_timeout > 0) && (!r))
187 {
188 unsigned long tm;

190 tm=(unsigned long)time(NULL);
191 if (tm > sb->last_time+sb->renegotiate_timeout)
192 {
193 sb->last_time=tm;

new/usr/src/lib/openssl/libsunw_ssl/bio_ssl.c 4

194 sb->num_renegotiates++;
195 SSL_renegotiate(ssl);
196 }
197 }

199 break;
200 case SSL_ERROR_WANT_READ:
201 BIO_set_retry_read(b);
202 break;
203 case SSL_ERROR_WANT_WRITE:
204 BIO_set_retry_write(b);
205 break;
206 case SSL_ERROR_WANT_X509_LOOKUP:
207 BIO_set_retry_special(b);
208 retry_reason=BIO_RR_SSL_X509_LOOKUP;
209 break;
210 case SSL_ERROR_WANT_ACCEPT:
211 BIO_set_retry_special(b);
212 retry_reason=BIO_RR_ACCEPT;
213 break;
214 case SSL_ERROR_WANT_CONNECT:
215 BIO_set_retry_special(b);
216 retry_reason=BIO_RR_CONNECT;
217 break;
218 case SSL_ERROR_SYSCALL:
219 case SSL_ERROR_SSL:
220 case SSL_ERROR_ZERO_RETURN:
221 default:
222 break;
223 }

225 b->retry_reason=retry_reason;
226 return(ret);
227 }

229 static int ssl_write(BIO *b, const char *out, int outl)
230 {
231 int ret,r=0;
232 int retry_reason=0;
233 SSL *ssl;
234 BIO_SSL *bs;

236 if (out == NULL) return(0);
237 bs=(BIO_SSL *)b->ptr;
238 ssl=bs->ssl;

240 BIO_clear_retry_flags(b);

242 /* ret=SSL_do_handshake(ssl);
243 if (ret > 0) */
244 ret=SSL_write(ssl,out,outl);

246 switch (SSL_get_error(ssl,ret))
247 {
248 case SSL_ERROR_NONE:
249 if (ret <= 0) break;
250 if (bs->renegotiate_count > 0)
251 {
252 bs->byte_count+=ret;
253 if (bs->byte_count > bs->renegotiate_count)
254 {
255 bs->byte_count=0;
256 bs->num_renegotiates++;
257 SSL_renegotiate(ssl);
258 r=1;
259 }

new/usr/src/lib/openssl/libsunw_ssl/bio_ssl.c 5

260 }
261 if ((bs->renegotiate_timeout > 0) && (!r))
262 {
263 unsigned long tm;

265 tm=(unsigned long)time(NULL);
266 if (tm > bs->last_time+bs->renegotiate_timeout)
267 {
268 bs->last_time=tm;
269 bs->num_renegotiates++;
270 SSL_renegotiate(ssl);
271 }
272 }
273 break;
274 case SSL_ERROR_WANT_WRITE:
275 BIO_set_retry_write(b);
276 break;
277 case SSL_ERROR_WANT_READ:
278 BIO_set_retry_read(b);
279 break;
280 case SSL_ERROR_WANT_X509_LOOKUP:
281 BIO_set_retry_special(b);
282 retry_reason=BIO_RR_SSL_X509_LOOKUP;
283 break;
284 case SSL_ERROR_WANT_CONNECT:
285 BIO_set_retry_special(b);
286 retry_reason=BIO_RR_CONNECT;
287 case SSL_ERROR_SYSCALL:
288 case SSL_ERROR_SSL:
289 default:
290 break;
291 }

293 b->retry_reason=retry_reason;
294 return(ret);
295 }

297 static long ssl_ctrl(BIO *b, int cmd, long num, void *ptr)
298 {
299 SSL **sslp,*ssl;
300 BIO_SSL *bs;
301 BIO *dbio,*bio;
302 long ret=1;

304 bs=(BIO_SSL *)b->ptr;
305 ssl=bs->ssl;
306 if ((ssl == NULL) && (cmd != BIO_C_SET_SSL))
307 return(0);
308 switch (cmd)
309 {
310 case BIO_CTRL_RESET:
311 SSL_shutdown(ssl);

313 if (ssl->handshake_func == ssl->method->ssl_connect)
314 SSL_set_connect_state(ssl);
315 else if (ssl->handshake_func == ssl->method->ssl_accept)
316 SSL_set_accept_state(ssl);

318 SSL_clear(ssl);

320 if (b->next_bio != NULL)
321 ret=BIO_ctrl(b->next_bio,cmd,num,ptr);
322 else if (ssl->rbio != NULL)
323 ret=BIO_ctrl(ssl->rbio,cmd,num,ptr);
324 else
325 ret=1;

new/usr/src/lib/openssl/libsunw_ssl/bio_ssl.c 6

326 break;
327 case BIO_CTRL_INFO:
328 ret=0;
329 break;
330 case BIO_C_SSL_MODE:
331 if (num) /* client mode */
332 SSL_set_connect_state(ssl);
333 else
334 SSL_set_accept_state(ssl);
335 break;
336 case BIO_C_SET_SSL_RENEGOTIATE_TIMEOUT:
337 ret=bs->renegotiate_timeout;
338 if (num < 60) num=5;
339 bs->renegotiate_timeout=(unsigned long)num;
340 bs->last_time=(unsigned long)time(NULL);
341 break;
342 case BIO_C_SET_SSL_RENEGOTIATE_BYTES:
343 ret=bs->renegotiate_count;
344 if ((long)num >=512)
345 bs->renegotiate_count=(unsigned long)num;
346 break;
347 case BIO_C_GET_SSL_NUM_RENEGOTIATES:
348 ret=bs->num_renegotiates;
349 break;
350 case BIO_C_SET_SSL:
351 if (ssl != NULL)
352 {
353 ssl_free(b);
354 if (!ssl_new(b))
355 return 0;
356 }
357 b->shutdown=(int)num;
358 ssl=(SSL *)ptr;
359 ((BIO_SSL *)b->ptr)->ssl=ssl;
360 bio=SSL_get_rbio(ssl);
361 if (bio != NULL)
362 {
363 if (b->next_bio != NULL)
364 BIO_push(bio,b->next_bio);
365 b->next_bio=bio;
366 CRYPTO_add(&bio->references,1,CRYPTO_LOCK_BIO);
367 }
368 b->init=1;
369 break;
370 case BIO_C_GET_SSL:
371 if (ptr != NULL)
372 {
373 sslp=(SSL **)ptr;
374 *sslp=ssl;
375 }
376 else
377 ret=0;
378 break;
379 case BIO_CTRL_GET_CLOSE:
380 ret=b->shutdown;
381 break;
382 case BIO_CTRL_SET_CLOSE:
383 b->shutdown=(int)num;
384 break;
385 case BIO_CTRL_WPENDING:
386 ret=BIO_ctrl(ssl->wbio,cmd,num,ptr);
387 break;
388 case BIO_CTRL_PENDING:
389 ret=SSL_pending(ssl);
390 if (ret == 0)
391 ret=BIO_pending(ssl->rbio);

new/usr/src/lib/openssl/libsunw_ssl/bio_ssl.c 7

392 break;
393 case BIO_CTRL_FLUSH:
394 BIO_clear_retry_flags(b);
395 ret=BIO_ctrl(ssl->wbio,cmd,num,ptr);
396 BIO_copy_next_retry(b);
397 break;
398 case BIO_CTRL_PUSH:
399 if ((b->next_bio != NULL) && (b->next_bio != ssl->rbio))
400 {
401 SSL_set_bio(ssl,b->next_bio,b->next_bio);
402 CRYPTO_add(&b->next_bio->references,1,CRYPTO_LOCK_BIO);
403 }
404 break;
405 case BIO_CTRL_POP:
406 /* Only detach if we are the BIO explicitly being popped */
407 if (b == ptr)
408 {
409 /* Shouldn’t happen in practice because the
410 * rbio and wbio are the same when pushed.
411 */
412 if (ssl->rbio != ssl->wbio)
413 BIO_free_all(ssl->wbio);
414 if (b->next_bio != NULL)
415 CRYPTO_add(&b->next_bio->references,-1,CRYPTO_LO
416 ssl->wbio=NULL;
417 ssl->rbio=NULL;
418 }
419 break;
420 case BIO_C_DO_STATE_MACHINE:
421 BIO_clear_retry_flags(b);

423 b->retry_reason=0;
424 ret=(int)SSL_do_handshake(ssl);

426 switch (SSL_get_error(ssl,(int)ret))
427 {
428 case SSL_ERROR_WANT_READ:
429 BIO_set_flags(b,
430 BIO_FLAGS_READ|BIO_FLAGS_SHOULD_RETRY);
431 break;
432 case SSL_ERROR_WANT_WRITE:
433 BIO_set_flags(b,
434 BIO_FLAGS_WRITE|BIO_FLAGS_SHOULD_RETRY);
435 break;
436 case SSL_ERROR_WANT_CONNECT:
437 BIO_set_flags(b,
438 BIO_FLAGS_IO_SPECIAL|BIO_FLAGS_SHOULD_RETRY);
439 b->retry_reason=b->next_bio->retry_reason;
440 break;
441 default:
442 break;
443 }
444 break;
445 case BIO_CTRL_DUP:
446 dbio=(BIO *)ptr;
447 if (((BIO_SSL *)dbio->ptr)->ssl != NULL)
448 SSL_free(((BIO_SSL *)dbio->ptr)->ssl);
449 ((BIO_SSL *)dbio->ptr)->ssl=SSL_dup(ssl);
450 ((BIO_SSL *)dbio->ptr)->renegotiate_count=
451 ((BIO_SSL *)b->ptr)->renegotiate_count;
452 ((BIO_SSL *)dbio->ptr)->byte_count=
453 ((BIO_SSL *)b->ptr)->byte_count;
454 ((BIO_SSL *)dbio->ptr)->renegotiate_timeout=
455 ((BIO_SSL *)b->ptr)->renegotiate_timeout;
456 ((BIO_SSL *)dbio->ptr)->last_time=
457 ((BIO_SSL *)b->ptr)->last_time;

new/usr/src/lib/openssl/libsunw_ssl/bio_ssl.c 8

458 ret=(((BIO_SSL *)dbio->ptr)->ssl != NULL);
459 break;
460 case BIO_C_GET_FD:
461 ret=BIO_ctrl(ssl->rbio,cmd,num,ptr);
462 break;
463 case BIO_CTRL_SET_CALLBACK:
464 {
465 #if 0 /* FIXME: Should this be used? -- Richard Levitte */
466 SSLerr(SSL_F_SSL_CTRL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
467 ret = -1;
468 #else
469 ret=0;
470 #endif
471 }
472 break;
473 case BIO_CTRL_GET_CALLBACK:
474 {
475 void (**fptr)(const SSL *xssl,int type,int val);

477 fptr=(void (**)(const SSL *xssl,int type,int val))ptr;
478 *fptr=SSL_get_info_callback(ssl);
479 }
480 break;
481 default:
482 ret=BIO_ctrl(ssl->rbio,cmd,num,ptr);
483 break;
484 }
485 return(ret);
486 }

488 static long ssl_callback_ctrl(BIO *b, int cmd, bio_info_cb *fp)
489 {
490 SSL *ssl;
491 BIO_SSL *bs;
492 long ret=1;

494 bs=(BIO_SSL *)b->ptr;
495 ssl=bs->ssl;
496 switch (cmd)
497 {
498 case BIO_CTRL_SET_CALLBACK:
499 {
500 /* FIXME: setting this via a completely different prototype
501 seems like a crap idea */
502 SSL_set_info_callback(ssl,(void (*)(const SSL *,int,int))fp);
503 }
504 break;
505 default:
506 ret=BIO_callback_ctrl(ssl->rbio,cmd,fp);
507 break;
508 }
509 return(ret);
510 }

512 static int ssl_puts(BIO *bp, const char *str)
513 {
514 int n,ret;

516 n=strlen(str);
517 ret=BIO_write(bp,str,n);
518 return(ret);
519 }

521 BIO *BIO_new_buffer_ssl_connect(SSL_CTX *ctx)
522 {
523 #ifndef OPENSSL_NO_SOCK

new/usr/src/lib/openssl/libsunw_ssl/bio_ssl.c 9

524 BIO *ret=NULL,*buf=NULL,*ssl=NULL;

526 if ((buf=BIO_new(BIO_f_buffer())) == NULL)
527 return(NULL);
528 if ((ssl=BIO_new_ssl_connect(ctx)) == NULL)
529 goto err;
530 if ((ret=BIO_push(buf,ssl)) == NULL)
531 goto err;
532 return(ret);
533 err:
534 if (buf != NULL) BIO_free(buf);
535 if (ssl != NULL) BIO_free(ssl);
536 #endif
537 return(NULL);
538 }

540 BIO *BIO_new_ssl_connect(SSL_CTX *ctx)
541 {
542 #ifndef OPENSSL_NO_SOCK
543 BIO *ret=NULL,*con=NULL,*ssl=NULL;

545 if ((con=BIO_new(BIO_s_connect())) == NULL)
546 return(NULL);
547 if ((ssl=BIO_new_ssl(ctx,1)) == NULL)
548 goto err;
549 if ((ret=BIO_push(ssl,con)) == NULL)
550 goto err;
551 return(ret);
552 err:
553 if (con != NULL) BIO_free(con);
554 #endif
555 return(NULL);
556 }

558 BIO *BIO_new_ssl(SSL_CTX *ctx, int client)
559 {
560 BIO *ret;
561 SSL *ssl;

563 if ((ret=BIO_new(BIO_f_ssl())) == NULL)
564 return(NULL);
565 if ((ssl=SSL_new(ctx)) == NULL)
566 {
567 BIO_free(ret);
568 return(NULL);
569 }
570 if (client)
571 SSL_set_connect_state(ssl);
572 else
573 SSL_set_accept_state(ssl);
574
575 BIO_set_ssl(ret,ssl,BIO_CLOSE);
576 return(ret);
577 }

579 int BIO_ssl_copy_session_id(BIO *t, BIO *f)
580 {
581 t=BIO_find_type(t,BIO_TYPE_SSL);
582 f=BIO_find_type(f,BIO_TYPE_SSL);
583 if ((t == NULL) || (f == NULL))
584 return(0);
585 if ((((BIO_SSL *)t->ptr)->ssl == NULL) ||
586 (((BIO_SSL *)f->ptr)->ssl == NULL))
587 return(0);
588 SSL_copy_session_id(((BIO_SSL *)t->ptr)->ssl,((BIO_SSL *)f->ptr)->ssl);
589 return(1);

new/usr/src/lib/openssl/libsunw_ssl/bio_ssl.c 10

590 }

592 void BIO_ssl_shutdown(BIO *b)
593 {
594 SSL *s;

596 while (b != NULL)
597 {
598 if (b->method->type == BIO_TYPE_SSL)
599 {
600 s=((BIO_SSL *)b->ptr)->ssl;
601 SSL_shutdown(s);
602 break;
603 }
604 b=b->next_bio;
605 }
606 }

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 1

**
 44715 Fri May 30 18:32:18 2014
new/usr/src/lib/openssl/libsunw_ssl/d1_both.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/d1_both.c */
2 /*
3 * DTLS implementation written by Nagendra Modadugu
4 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
5 */
6 /* ==
7 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * openssl-core@openssl.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */
59 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
60 * All rights reserved.
61 *

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 2

62 * This package is an SSL implementation written
63 * by Eric Young (eay@cryptsoft.com).
64 * The implementation was written so as to conform with Netscapes SSL.
65 *
66 * This library is free for commercial and non-commercial use as long as
67 * the following conditions are aheared to. The following conditions
68 * apply to all code found in this distribution, be it the RC4, RSA,
69 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
70 * included with this distribution is covered by the same copyright terms
71 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
72 *
73 * Copyright remains Eric Young’s, and as such any Copyright notices in
74 * the code are not to be removed.
75 * If this package is used in a product, Eric Young should be given attribution
76 * as the author of the parts of the library used.
77 * This can be in the form of a textual message at program startup or
78 * in documentation (online or textual) provided with the package.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * "This product includes cryptographic software written by
91 * Eric Young (eay@cryptsoft.com)"
92 * The word ’cryptographic’ can be left out if the rouines from the library
93 * being used are not cryptographic related :-).
94 * 4. If you include any Windows specific code (or a derivative thereof) from
95 * the apps directory (application code) you must include an acknowledgement:
96 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
97 *
98 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * The licence and distribution terms for any publically available version or
111 * derivative of this code cannot be changed. i.e. this code cannot simply be
112 * copied and put under another distribution licence
113 * [including the GNU Public Licence.]
114 */

116 #include <limits.h>
117 #include <string.h>
118 #include <stdio.h>
119 #include "ssl_locl.h"
120 #include <openssl/buffer.h>
121 #include <openssl/rand.h>
122 #include <openssl/objects.h>
123 #include <openssl/evp.h>
124 #include <openssl/x509.h>

126 #define RSMBLY_BITMASK_SIZE(msg_len) (((msg_len) + 7) / 8)

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 3

128 #define RSMBLY_BITMASK_MARK(bitmask, start, end) { \
129 if ((end) - (start) <= 8) { \
130 long ii; \
131 for (ii = (start); ii < (end); ii++) bitmask[((i
132 } else { \
133 long ii; \
134 bitmask[((start) >> 3)] |= bitmask_start_values[
135 for (ii = (((start) >> 3) + 1); ii < ((((end) -
136 bitmask[(((end) - 1) >> 3)] |= bitmask_end_value
137 } }

139 #define RSMBLY_BITMASK_IS_COMPLETE(bitmask, msg_len, is_complete) { \
140 long ii; \
141 OPENSSL_assert((msg_len) > 0); \
142 is_complete = 1; \
143 if (bitmask[(((msg_len) - 1) >> 3)] != bitmask_end_value
144 if (is_complete) for (ii = (((msg_len) - 1) >> 3) - 1; i
145 if (bitmask[ii] != 0xff) { is_complete = 0; brea

147 #if 0
148 #define RSMBLY_BITMASK_PRINT(bitmask, msg_len) { \
149 long ii; \
150 printf("bitmask: "); for (ii = 0; ii < (msg_len); ii++)
151 printf("%d ", (bitmask[ii >> 3] & (1 << (ii & 7))) >> (i
152 printf("\n"); }
153 #endif

155 static unsigned char bitmask_start_values[] = {0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe
156 static unsigned char bitmask_end_values[] = {0xff, 0x01, 0x03, 0x07, 0x0f, 0x1

158 /* XDTLS: figure out the right values */
159 static unsigned int g_probable_mtu[] = {1500 - 28, 512 - 28, 256 - 28};

161 static unsigned int dtls1_guess_mtu(unsigned int curr_mtu);
162 static void dtls1_fix_message_header(SSL *s, unsigned long frag_off,
163 unsigned long frag_len);
164 static unsigned char *dtls1_write_message_header(SSL *s,
165 unsigned char *p);
166 static void dtls1_set_message_header_int(SSL *s, unsigned char mt,
167 unsigned long len, unsigned short seq_num, unsigned long frag_off,
168 unsigned long frag_len);
169 static long dtls1_get_message_fragment(SSL *s, int st1, int stn,
170 long max, int *ok);

172 static hm_fragment *
173 dtls1_hm_fragment_new(unsigned long frag_len, int reassembly)
174 {
175 hm_fragment *frag = NULL;
176 unsigned char *buf = NULL;
177 unsigned char *bitmask = NULL;

179 frag = (hm_fragment *)OPENSSL_malloc(sizeof(hm_fragment));
180 if (frag == NULL)
181 return NULL;

183 if (frag_len)
184 {
185 buf = (unsigned char *)OPENSSL_malloc(frag_len);
186 if (buf == NULL)
187 {
188 OPENSSL_free(frag);
189 return NULL;
190 }
191 }

193 /* zero length fragment gets zero frag->fragment */

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 4

194 frag->fragment = buf;

196 /* Initialize reassembly bitmask if necessary */
197 if (reassembly)
198 {
199 bitmask = (unsigned char *)OPENSSL_malloc(RSMBLY_BITMASK_SIZE(fr
200 if (bitmask == NULL)
201 {
202 if (buf != NULL) OPENSSL_free(buf);
203 OPENSSL_free(frag);
204 return NULL;
205 }
206 memset(bitmask, 0, RSMBLY_BITMASK_SIZE(frag_len));
207 }

209 frag->reassembly = bitmask;

211 return frag;
212 }

214 static void
215 dtls1_hm_fragment_free(hm_fragment *frag)
216 {

218 if (frag->msg_header.is_ccs)
219 {
220 EVP_CIPHER_CTX_free(frag->msg_header.saved_retransmit_state.enc_
221 EVP_MD_CTX_destroy(frag->msg_header.saved_retransmit_state.write
222 }
223 if (frag->fragment) OPENSSL_free(frag->fragment);
224 if (frag->reassembly) OPENSSL_free(frag->reassembly);
225 OPENSSL_free(frag);
226 }

228 /* send s->init_buf in records of type ’type’ (SSL3_RT_HANDSHAKE or SSL3_RT_CHAN
229 int dtls1_do_write(SSL *s, int type)
230 {
231 int ret;
232 int curr_mtu;
233 unsigned int len, frag_off, mac_size, blocksize;

235 /* AHA! Figure out the MTU, and stick to the right size */
236 if (s->d1->mtu < dtls1_min_mtu() && !(SSL_get_options(s) & SSL_OP_NO_QUE
237 {
238 s->d1->mtu =
239 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_QUERY_MTU, 0, N

241 /* I’ve seen the kernel return bogus numbers when it doesn’t kno
242 * (initial write), so just make sure we have a reasonable numbe
243 if (s->d1->mtu < dtls1_min_mtu())
244 {
245 s->d1->mtu = 0;
246 s->d1->mtu = dtls1_guess_mtu(s->d1->mtu);
247 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SET_MTU,
248 s->d1->mtu, NULL);
249 }
250 }
251 #if 0
252 mtu = s->d1->mtu;

254 fprintf(stderr, "using MTU = %d\n", mtu);

256 mtu -= (DTLS1_HM_HEADER_LENGTH + DTLS1_RT_HEADER_LENGTH);

258 curr_mtu = mtu - BIO_wpending(SSL_get_wbio(s));

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 5

260 if (curr_mtu > 0)
261 mtu = curr_mtu;
262 else if ((ret = BIO_flush(SSL_get_wbio(s))) <= 0)
263 return ret;

265 if (BIO_wpending(SSL_get_wbio(s)) + s->init_num >= mtu)
266 {
267 ret = BIO_flush(SSL_get_wbio(s));
268 if (ret <= 0)
269 return ret;
270 mtu = s->d1->mtu - (DTLS1_HM_HEADER_LENGTH + DTLS1_RT_HEADER_LEN
271 }
272 #endif

274 OPENSSL_assert(s->d1->mtu >= dtls1_min_mtu()); /* should have something

276 if (s->init_off == 0 && type == SSL3_RT_HANDSHAKE)
277 OPENSSL_assert(s->init_num ==
278 (int)s->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH);

280 if (s->write_hash)
281 mac_size = EVP_MD_CTX_size(s->write_hash);
282 else
283 mac_size = 0;

285 if (s->enc_write_ctx &&
286 (EVP_CIPHER_mode(s->enc_write_ctx->cipher) & EVP_CIPH_CBC_MODE)
287 blocksize = 2 * EVP_CIPHER_block_size(s->enc_write_ctx->cipher);
288 else
289 blocksize = 0;

291 frag_off = 0;
292 while(s->init_num)
293 {
294 curr_mtu = s->d1->mtu - BIO_wpending(SSL_get_wbio(s)) -
295 DTLS1_RT_HEADER_LENGTH - mac_size - blocksize;

297 if (curr_mtu <= DTLS1_HM_HEADER_LENGTH)
298 {
299 /* grr.. we could get an error if MTU picked was wrong *
300 ret = BIO_flush(SSL_get_wbio(s));
301 if (ret <= 0)
302 return ret;
303 curr_mtu = s->d1->mtu - DTLS1_RT_HEADER_LENGTH -
304 mac_size - blocksize;
305 }

307 if (s->init_num > curr_mtu)
308 len = curr_mtu;
309 else
310 len = s->init_num;

313 /* XDTLS: this function is too long. split out the CCS part */
314 if (type == SSL3_RT_HANDSHAKE)
315 {
316 if (s->init_off != 0)
317 {
318 OPENSSL_assert(s->init_off > DTLS1_HM_HEADER_LEN
319 s->init_off -= DTLS1_HM_HEADER_LENGTH;
320 s->init_num += DTLS1_HM_HEADER_LENGTH;

322 if (s->init_num > curr_mtu)
323 len = curr_mtu;
324 else
325 len = s->init_num;

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 6

326 }

328 dtls1_fix_message_header(s, frag_off,
329 len - DTLS1_HM_HEADER_LENGTH);

331 dtls1_write_message_header(s, (unsigned char *)&s->init_

333 OPENSSL_assert(len >= DTLS1_HM_HEADER_LENGTH);
334 }

336 ret=dtls1_write_bytes(s,type,&s->init_buf->data[s->init_off],
337 len);
338 if (ret < 0)
339 {
340 /* might need to update MTU here, but we don’t know
341 * which previous packet caused the failure -- so can’t
342 * really retransmit anything. continue as if everythin
343 * is fine and wait for an alert to handle the
344 * retransmit
345 */
346 if (BIO_ctrl(SSL_get_wbio(s),
347 BIO_CTRL_DGRAM_MTU_EXCEEDED, 0, NULL) > 0)
348 s->d1->mtu = BIO_ctrl(SSL_get_wbio(s),
349 BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
350 else
351 return(-1);
352 }
353 else
354 {

356 /* bad if this assert fails, only part of the handshake
357 * message got sent. but why would this happen? */
358 OPENSSL_assert(len == (unsigned int)ret);

360 if (type == SSL3_RT_HANDSHAKE && ! s->d1->retransmitting
361 {
362 /* should not be done for ’Hello Request’s, but
363 * we’ll ignore the result anyway */
364 unsigned char *p = (unsigned char *)&s->init_buf
365 const struct hm_header_st *msg_hdr = &s->d1->w_m
366 int xlen;

368 if (frag_off == 0 && s->version != DTLS1_BAD_VER
369 {
370 /* reconstruct message header is if it
371 * is being sent in single fragment */
372 *p++ = msg_hdr->type;
373 l2n3(msg_hdr->msg_len,p);
374 s2n (msg_hdr->seq,p);
375 l2n3(0,p);
376 l2n3(msg_hdr->msg_len,p);
377 p -= DTLS1_HM_HEADER_LENGTH;
378 xlen = ret;
379 }
380 else
381 {
382 p += DTLS1_HM_HEADER_LENGTH;
383 xlen = ret - DTLS1_HM_HEADER_LENGTH;
384 }

386 ssl3_finish_mac(s, p, xlen);
387 }

389 if (ret == s->init_num)
390 {
391 if (s->msg_callback)

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 7

392 s->msg_callback(1, s->version, type, s->
393 (size_t)(s->init_off + s->init_n
394 s->msg_callback_arg);

396 s->init_off = 0; /* done writing this message *
397 s->init_num = 0;

399 return(1);
400 }
401 s->init_off+=ret;
402 s->init_num-=ret;
403 frag_off += (ret -= DTLS1_HM_HEADER_LENGTH);
404 }
405 }
406 return(0);
407 }

410 /* Obtain handshake message of message type ’mt’ (any if mt == -1),
411 * maximum acceptable body length ’max’.
412 * Read an entire handshake message. Handshake messages arrive in
413 * fragments.
414 */
415 long dtls1_get_message(SSL *s, int st1, int stn, int mt, long max, int *ok)
416 {
417 int i, al;
418 struct hm_header_st *msg_hdr;
419 unsigned char *p;
420 unsigned long msg_len;

422 /* s3->tmp is used to store messages that are unexpected, caused
423 * by the absence of an optional handshake message */
424 if (s->s3->tmp.reuse_message)
425 {
426 s->s3->tmp.reuse_message=0;
427 if ((mt >= 0) && (s->s3->tmp.message_type != mt))
428 {
429 al=SSL_AD_UNEXPECTED_MESSAGE;
430 SSLerr(SSL_F_DTLS1_GET_MESSAGE,SSL_R_UNEXPECTED_MESSAGE)
431 goto f_err;
432 }
433 *ok=1;
434 s->init_msg = s->init_buf->data + DTLS1_HM_HEADER_LENGTH;
435 s->init_num = (int)s->s3->tmp.message_size;
436 return s->init_num;
437 }

439 msg_hdr = &s->d1->r_msg_hdr;
440 memset(msg_hdr, 0x00, sizeof(struct hm_header_st));

442 again:
443 i = dtls1_get_message_fragment(s, st1, stn, max, ok);
444 if (i == DTLS1_HM_BAD_FRAGMENT ||
445 i == DTLS1_HM_FRAGMENT_RETRY) /* bad fragment received */
446 goto again;
447 else if (i <= 0 && !*ok)
448 return i;

450 p = (unsigned char *)s->init_buf->data;
451 msg_len = msg_hdr->msg_len;

453 /* reconstruct message header */
454 *(p++) = msg_hdr->type;
455 l2n3(msg_len,p);
456 s2n (msg_hdr->seq,p);
457 l2n3(0,p);

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 8

458 l2n3(msg_len,p);
459 if (s->version != DTLS1_BAD_VER) {
460 p -= DTLS1_HM_HEADER_LENGTH;
461 msg_len += DTLS1_HM_HEADER_LENGTH;
462 }

464 ssl3_finish_mac(s, p, msg_len);
465 if (s->msg_callback)
466 s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE,
467 p, msg_len,
468 s, s->msg_callback_arg);

470 memset(msg_hdr, 0x00, sizeof(struct hm_header_st));

472 /* Don’t change sequence numbers while listening */
473 if (!s->d1->listen)
474 s->d1->handshake_read_seq++;

476 s->init_msg = s->init_buf->data + DTLS1_HM_HEADER_LENGTH;
477 return s->init_num;

479 f_err:
480 ssl3_send_alert(s,SSL3_AL_FATAL,al);
481 *ok = 0;
482 return -1;
483 }

486 static int dtls1_preprocess_fragment(SSL *s,struct hm_header_st *msg_hdr,int max
487 {
488 size_t frag_off,frag_len,msg_len;

490 msg_len = msg_hdr->msg_len;
491 frag_off = msg_hdr->frag_off;
492 frag_len = msg_hdr->frag_len;

494 /* sanity checking */
495 if ((frag_off+frag_len) > msg_len)
496 {
497 SSLerr(SSL_F_DTLS1_PREPROCESS_FRAGMENT,SSL_R_EXCESSIVE_MESSAGE_S
498 return SSL_AD_ILLEGAL_PARAMETER;
499 }

501 if ((frag_off+frag_len) > (unsigned long)max)
502 {
503 SSLerr(SSL_F_DTLS1_PREPROCESS_FRAGMENT,SSL_R_EXCESSIVE_MESSAGE_S
504 return SSL_AD_ILLEGAL_PARAMETER;
505 }

507 if (s->d1->r_msg_hdr.frag_off == 0) /* first fragment */
508 {
509 /* msg_len is limited to 2^24, but is effectively checked
510 * against max above */
511 if (!BUF_MEM_grow_clean(s->init_buf,msg_len+DTLS1_HM_HEADER_LENG
512 {
513 SSLerr(SSL_F_DTLS1_PREPROCESS_FRAGMENT,ERR_R_BUF_LIB);
514 return SSL_AD_INTERNAL_ERROR;
515 }

517 s->s3->tmp.message_size = msg_len;
518 s->d1->r_msg_hdr.msg_len = msg_len;
519 s->s3->tmp.message_type = msg_hdr->type;
520 s->d1->r_msg_hdr.type = msg_hdr->type;
521 s->d1->r_msg_hdr.seq = msg_hdr->seq;
522 }
523 else if (msg_len != s->d1->r_msg_hdr.msg_len)

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 9

524 {
525 /* They must be playing with us! BTW, failure to enforce
526 * upper limit would open possibility for buffer overrun. */
527 SSLerr(SSL_F_DTLS1_PREPROCESS_FRAGMENT,SSL_R_EXCESSIVE_MESSAGE_S
528 return SSL_AD_ILLEGAL_PARAMETER;
529 }

531 return 0; /* no error */
532 }

535 static int
536 dtls1_retrieve_buffered_fragment(SSL *s, long max, int *ok)
537 {
538 /* (0) check whether the desired fragment is available
539 * if so:
540 * (1) copy over the fragment to s->init_buf->data[]
541 * (2) update s->init_num
542 */
543 pitem *item;
544 hm_fragment *frag;
545 int al;

547 *ok = 0;
548 item = pqueue_peek(s->d1->buffered_messages);
549 if (item == NULL)
550 return 0;

552 frag = (hm_fragment *)item->data;
553
554 /* Don’t return if reassembly still in progress */
555 if (frag->reassembly != NULL)
556 return 0;

558 if (s->d1->handshake_read_seq == frag->msg_header.seq)
559 {
560 unsigned long frag_len = frag->msg_header.frag_len;
561 pqueue_pop(s->d1->buffered_messages);

563 al=dtls1_preprocess_fragment(s,&frag->msg_header,max);

565 if (al==0) /* no alert */
566 {
567 unsigned char *p = (unsigned char *)s->init_buf->data+DT
568 memcpy(&p[frag->msg_header.frag_off],
569 frag->fragment,frag->msg_header.frag_len);
570 }

572 dtls1_hm_fragment_free(frag);
573 pitem_free(item);

575 if (al==0)
576 {
577 *ok = 1;
578 return frag_len;
579 }

581 ssl3_send_alert(s,SSL3_AL_FATAL,al);
582 s->init_num = 0;
583 *ok = 0;
584 return -1;
585 }
586 else
587 return 0;
588 }

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 10

591 static int
592 dtls1_reassemble_fragment(SSL *s, struct hm_header_st* msg_hdr, int *ok)
593 {
594 hm_fragment *frag = NULL;
595 pitem *item = NULL;
596 int i = -1, is_complete;
597 unsigned char seq64be[8];
598 unsigned long frag_len = msg_hdr->frag_len, max_len;

600 if ((msg_hdr->frag_off+frag_len) > msg_hdr->msg_len)
601 goto err;

603 /* Determine maximum allowed message size. Depends on (user set)
604 * maximum certificate length, but 16k is minimum.
605 */
606 if (DTLS1_HM_HEADER_LENGTH + SSL3_RT_MAX_ENCRYPTED_LENGTH < s->max_cert_
607 max_len = s->max_cert_list;
608 else
609 max_len = DTLS1_HM_HEADER_LENGTH + SSL3_RT_MAX_ENCRYPTED_LENGTH;

611 if ((msg_hdr->frag_off+frag_len) > max_len)
612 goto err;

614 /* Try to find item in queue */
615 memset(seq64be,0,sizeof(seq64be));
616 seq64be[6] = (unsigned char) (msg_hdr->seq>>8);
617 seq64be[7] = (unsigned char) msg_hdr->seq;
618 item = pqueue_find(s->d1->buffered_messages, seq64be);

620 if (item == NULL)
621 {
622 frag = dtls1_hm_fragment_new(msg_hdr->msg_len, 1);
623 if (frag == NULL)
624 goto err;
625 memcpy(&(frag->msg_header), msg_hdr, sizeof(*msg_hdr));
626 frag->msg_header.frag_len = frag->msg_header.msg_len;
627 frag->msg_header.frag_off = 0;
628 }
629 else
630 frag = (hm_fragment*) item->data;

632 /* If message is already reassembled, this must be a
633 * retransmit and can be dropped.
634 */
635 if (frag->reassembly == NULL)
636 {
637 unsigned char devnull [256];

639 while (frag_len)
640 {
641 i = s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,
642 devnull,
643 frag_len>sizeof(devnull)?sizeof(devnull):frag_le
644 if (i<=0) goto err;
645 frag_len -= i;
646 }
647 return DTLS1_HM_FRAGMENT_RETRY;
648 }

650 /* read the body of the fragment (header has already been read */
651 i = s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,
652 frag->fragment + msg_hdr->frag_off,frag_len,0);
653 if (i<=0 || (unsigned long)i!=frag_len)
654 goto err;

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 11

656 RSMBLY_BITMASK_MARK(frag->reassembly, (long)msg_hdr->frag_off,
657 (long)(msg_hdr->frag_off + frag_len));

659 RSMBLY_BITMASK_IS_COMPLETE(frag->reassembly, (long)msg_hdr->msg_len,
660 is_complete);

662 if (is_complete)
663 {
664 OPENSSL_free(frag->reassembly);
665 frag->reassembly = NULL;
666 }

668 if (item == NULL)
669 {
670 memset(seq64be,0,sizeof(seq64be));
671 seq64be[6] = (unsigned char)(msg_hdr->seq>>8);
672 seq64be[7] = (unsigned char)(msg_hdr->seq);

674 item = pitem_new(seq64be, frag);
675 if (item == NULL)
676 {
677 goto err;
678 i = -1;
679 }

681 pqueue_insert(s->d1->buffered_messages, item);
682 }

684 return DTLS1_HM_FRAGMENT_RETRY;

686 err:
687 if (frag != NULL) dtls1_hm_fragment_free(frag);
688 if (item != NULL) OPENSSL_free(item);
689 *ok = 0;
690 return i;
691 }

694 static int
695 dtls1_process_out_of_seq_message(SSL *s, struct hm_header_st* msg_hdr, int *ok)
696 {
697 int i=-1;
698 hm_fragment *frag = NULL;
699 pitem *item = NULL;
700 unsigned char seq64be[8];
701 unsigned long frag_len = msg_hdr->frag_len;

703 if ((msg_hdr->frag_off+frag_len) > msg_hdr->msg_len)
704 goto err;

706 /* Try to find item in queue, to prevent duplicate entries */
707 memset(seq64be,0,sizeof(seq64be));
708 seq64be[6] = (unsigned char) (msg_hdr->seq>>8);
709 seq64be[7] = (unsigned char) msg_hdr->seq;
710 item = pqueue_find(s->d1->buffered_messages, seq64be);

712 /* If we already have an entry and this one is a fragment,
713 * don’t discard it and rather try to reassemble it.
714 */
715 if (item != NULL && frag_len < msg_hdr->msg_len)
716 item = NULL;

718 /* Discard the message if sequence number was already there, is
719 * too far in the future, already in the queue or if we received
720 * a FINISHED before the SERVER_HELLO, which then must be a stale
721 * retransmit.

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 12

722 */
723 if (msg_hdr->seq <= s->d1->handshake_read_seq ||
724 msg_hdr->seq > s->d1->handshake_read_seq + 10 || item != NULL ||
725 (s->d1->handshake_read_seq == 0 && msg_hdr->type == SSL3_MT_FINI
726 {
727 unsigned char devnull [256];

729 while (frag_len)
730 {
731 i = s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,
732 devnull,
733 frag_len>sizeof(devnull)?sizeof(devnull):frag_le
734 if (i<=0) goto err;
735 frag_len -= i;
736 }
737 }
738 else
739 {
740 if (frag_len && frag_len < msg_hdr->msg_len)
741 return dtls1_reassemble_fragment(s, msg_hdr, ok);

743 frag = dtls1_hm_fragment_new(frag_len, 0);
744 if (frag == NULL)
745 goto err;

747 memcpy(&(frag->msg_header), msg_hdr, sizeof(*msg_hdr));

749 if (frag_len)
750 {
751 /* read the body of the fragment (header has already bee
752 i = s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,
753 frag->fragment,frag_len,0);
754 if (i<=0 || (unsigned long)i!=frag_len)
755 goto err;
756 }

758 memset(seq64be,0,sizeof(seq64be));
759 seq64be[6] = (unsigned char)(msg_hdr->seq>>8);
760 seq64be[7] = (unsigned char)(msg_hdr->seq);

762 item = pitem_new(seq64be, frag);
763 if (item == NULL)
764 goto err;

766 pqueue_insert(s->d1->buffered_messages, item);
767 }

769 return DTLS1_HM_FRAGMENT_RETRY;

771 err:
772 if (frag != NULL) dtls1_hm_fragment_free(frag);
773 if (item != NULL) OPENSSL_free(item);
774 *ok = 0;
775 return i;
776 }

779 static long
780 dtls1_get_message_fragment(SSL *s, int st1, int stn, long max, int *ok)
781 {
782 unsigned char wire[DTLS1_HM_HEADER_LENGTH];
783 unsigned long len, frag_off, frag_len;
784 int i,al;
785 struct hm_header_st msg_hdr;

787 /* see if we have the required fragment already */

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 13

788 if ((frag_len = dtls1_retrieve_buffered_fragment(s,max,ok)) || *ok)
789 {
790 if (*ok) s->init_num = frag_len;
791 return frag_len;
792 }

794 /* read handshake message header */
795 i=s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,wire,
796 DTLS1_HM_HEADER_LENGTH, 0);
797 if (i <= 0) /* nbio, or an error */
798 {
799 s->rwstate=SSL_READING;
800 *ok = 0;
801 return i;
802 }
803 /* Handshake fails if message header is incomplete */
804 if (i != DTLS1_HM_HEADER_LENGTH)
805 {
806 al=SSL_AD_UNEXPECTED_MESSAGE;
807 SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT,SSL_R_UNEXPECTED_MESSAGE
808 goto f_err;
809 }

811 /* parse the message fragment header */
812 dtls1_get_message_header(wire, &msg_hdr);

814 /*
815 * if this is a future (or stale) message it gets buffered
816 * (or dropped)--no further processing at this time
817 * While listening, we accept seq 1 (ClientHello with cookie)
818 * although we’re still expecting seq 0 (ClientHello)
819 */
820 if (msg_hdr.seq != s->d1->handshake_read_seq && !(s->d1->listen && msg_h
821 return dtls1_process_out_of_seq_message(s, &msg_hdr, ok);

823 len = msg_hdr.msg_len;
824 frag_off = msg_hdr.frag_off;
825 frag_len = msg_hdr.frag_len;

827 if (frag_len && frag_len < len)
828 return dtls1_reassemble_fragment(s, &msg_hdr, ok);

830 if (!s->server && s->d1->r_msg_hdr.frag_off == 0 &&
831 wire[0] == SSL3_MT_HELLO_REQUEST)
832 {
833 /* The server may always send ’Hello Request’ messages --
834 * we are doing a handshake anyway now, so ignore them
835 * if their format is correct. Does not count for
836 * ’Finished’ MAC. */
837 if (wire[1] == 0 && wire[2] == 0 && wire[3] == 0)
838 {
839 if (s->msg_callback)
840 s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE
841 wire, DTLS1_HM_HEADER_LENGTH, s,
842 s->msg_callback_arg);
843
844 s->init_num = 0;
845 return dtls1_get_message_fragment(s, st1, stn,
846 max, ok);
847 }
848 else /* Incorrectly formated Hello request */
849 {
850 al=SSL_AD_UNEXPECTED_MESSAGE;
851 SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT,SSL_R_UNEXPECTED
852 goto f_err;
853 }

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 14

854 }

856 if ((al=dtls1_preprocess_fragment(s,&msg_hdr,max)))
857 goto f_err;

859 /* XDTLS: ressurect this when restart is in place */
860 s->state=stn;

862 if (frag_len > 0)
863 {
864 unsigned char *p=(unsigned char *)s->init_buf->data+DTLS1_HM_HEA

866 i=s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,
867 &p[frag_off],frag_len,0);
868 /* XDTLS: fix this--message fragments cannot span multiple pack
869 if (i <= 0)
870 {
871 s->rwstate=SSL_READING;
872 *ok = 0;
873 return i;
874 }
875 }
876 else
877 i = 0;

879 /* XDTLS: an incorrectly formatted fragment should cause the
880 * handshake to fail */
881 if (i != (int)frag_len)
882 {
883 al=SSL3_AD_ILLEGAL_PARAMETER;
884 SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT,SSL3_AD_ILLEGAL_PARAMETE
885 goto f_err;
886 }

888 *ok = 1;

890 /* Note that s->init_num is *not* used as current offset in
891 * s->init_buf->data, but as a counter summing up fragments’
892 * lengths: as soon as they sum up to handshake packet
893 * length, we assume we have got all the fragments. */
894 s->init_num = frag_len;
895 return frag_len;

897 f_err:
898 ssl3_send_alert(s,SSL3_AL_FATAL,al);
899 s->init_num = 0;

901 *ok=0;
902 return(-1);
903 }

905 int dtls1_send_finished(SSL *s, int a, int b, const char *sender, int slen)
906 {
907 unsigned char *p,*d;
908 int i;
909 unsigned long l;

911 if (s->state == a)
912 {
913 d=(unsigned char *)s->init_buf->data;
914 p= &(d[DTLS1_HM_HEADER_LENGTH]);

916 i=s->method->ssl3_enc->final_finish_mac(s,
917 sender,slen,s->s3->tmp.finish_md);
918 s->s3->tmp.finish_md_len = i;
919 memcpy(p, s->s3->tmp.finish_md, i);

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 15

920 p+=i;
921 l=i;

923 /* Copy the finished so we can use it for
924 * renegotiation checks
925 */
926 if(s->type == SSL_ST_CONNECT)
927 {
928 OPENSSL_assert(i <= EVP_MAX_MD_SIZE);
929 memcpy(s->s3->previous_client_finished,
930 s->s3->tmp.finish_md, i);
931 s->s3->previous_client_finished_len=i;
932 }
933 else
934 {
935 OPENSSL_assert(i <= EVP_MAX_MD_SIZE);
936 memcpy(s->s3->previous_server_finished,
937 s->s3->tmp.finish_md, i);
938 s->s3->previous_server_finished_len=i;
939 }

941 #ifdef OPENSSL_SYS_WIN16
942 /* MSVC 1.5 does not clear the top bytes of the word unless
943 * I do this.
944 */
945 l&=0xffff;
946 #endif

948 d = dtls1_set_message_header(s, d, SSL3_MT_FINISHED, l, 0, l);
949 s->init_num=(int)l+DTLS1_HM_HEADER_LENGTH;
950 s->init_off=0;

952 /* buffer the message to handle re-xmits */
953 dtls1_buffer_message(s, 0);

955 s->state=b;
956 }

958 /* SSL3_ST_SEND_xxxxxx_HELLO_B */
959 return(dtls1_do_write(s,SSL3_RT_HANDSHAKE));
960 }

962 /* for these 2 messages, we need to
963 * ssl->enc_read_ctx re-init
964 * ssl->s3->read_sequence zero
965 * ssl->s3->read_mac_secret re-init
966 * ssl->session->read_sym_enc assign
967 * ssl->session->read_compression assign
968 * ssl->session->read_hash assign
969 */
970 int dtls1_send_change_cipher_spec(SSL *s, int a, int b)
971 {
972 unsigned char *p;

974 if (s->state == a)
975 {
976 p=(unsigned char *)s->init_buf->data;
977 *p++=SSL3_MT_CCS;
978 s->d1->handshake_write_seq = s->d1->next_handshake_write_seq;
979 s->init_num=DTLS1_CCS_HEADER_LENGTH;

981 if (s->version == DTLS1_BAD_VER) {
982 s->d1->next_handshake_write_seq++;
983 s2n(s->d1->handshake_write_seq,p);
984 s->init_num+=2;
985 }

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 16

987 s->init_off=0;

989 dtls1_set_message_header_int(s, SSL3_MT_CCS, 0,
990 s->d1->handshake_write_seq, 0, 0);

992 /* buffer the message to handle re-xmits */
993 dtls1_buffer_message(s, 1);

995 s->state=b;
996 }

998 /* SSL3_ST_CW_CHANGE_B */
999 return(dtls1_do_write(s,SSL3_RT_CHANGE_CIPHER_SPEC));

1000 }

1002 static int dtls1_add_cert_to_buf(BUF_MEM *buf, unsigned long *l, X509 *x)
1003 {
1004 int n;
1005 unsigned char *p;

1007 n=i2d_X509(x,NULL);
1008 if (!BUF_MEM_grow_clean(buf,(int)(n+(*l)+3)))
1009 {
1010 SSLerr(SSL_F_DTLS1_ADD_CERT_TO_BUF,ERR_R_BUF_LIB);
1011 return 0;
1012 }
1013 p=(unsigned char *)&(buf->data[*l]);
1014 l2n3(n,p);
1015 i2d_X509(x,&p);
1016 *l+=n+3;

1018 return 1;
1019 }
1020 unsigned long dtls1_output_cert_chain(SSL *s, X509 *x)
1021 {
1022 unsigned char *p;
1023 int i;
1024 unsigned long l= 3 + DTLS1_HM_HEADER_LENGTH;
1025 BUF_MEM *buf;

1027 /* TLSv1 sends a chain with nothing in it, instead of an alert */
1028 buf=s->init_buf;
1029 if (!BUF_MEM_grow_clean(buf,10))
1030 {
1031 SSLerr(SSL_F_DTLS1_OUTPUT_CERT_CHAIN,ERR_R_BUF_LIB);
1032 return(0);
1033 }
1034 if (x != NULL)
1035 {
1036 X509_STORE_CTX xs_ctx;

1038 if (!X509_STORE_CTX_init(&xs_ctx,s->ctx->cert_store,x,NULL))
1039 {
1040 SSLerr(SSL_F_DTLS1_OUTPUT_CERT_CHAIN,ERR_R_X509_LIB);
1041 return(0);
1042 }
1043
1044 X509_verify_cert(&xs_ctx);
1045 /* Don’t leave errors in the queue */
1046 ERR_clear_error();
1047 for (i=0; i < sk_X509_num(xs_ctx.chain); i++)
1048 {
1049 x = sk_X509_value(xs_ctx.chain, i);

1051 if (!dtls1_add_cert_to_buf(buf, &l, x))

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 17

1052 {
1053 X509_STORE_CTX_cleanup(&xs_ctx);
1054 return 0;
1055 }
1056 }
1057 X509_STORE_CTX_cleanup(&xs_ctx);
1058 }
1059 /* Thawte special :-) */
1060 for (i=0; i<sk_X509_num(s->ctx->extra_certs); i++)
1061 {
1062 x=sk_X509_value(s->ctx->extra_certs,i);
1063 if (!dtls1_add_cert_to_buf(buf, &l, x))
1064 return 0;
1065 }

1067 l-= (3 + DTLS1_HM_HEADER_LENGTH);

1069 p=(unsigned char *)&(buf->data[DTLS1_HM_HEADER_LENGTH]);
1070 l2n3(l,p);
1071 l+=3;
1072 p=(unsigned char *)&(buf->data[0]);
1073 p = dtls1_set_message_header(s, p, SSL3_MT_CERTIFICATE, l, 0, l);

1075 l+=DTLS1_HM_HEADER_LENGTH;
1076 return(l);
1077 }

1079 int dtls1_read_failed(SSL *s, int code)
1080 {
1081 if (code > 0)
1082 {
1083 fprintf(stderr, "invalid state reached %s:%d", __FILE__, __LINE
1084 return 1;
1085 }

1087 if (!dtls1_is_timer_expired(s))
1088 {
1089 /* not a timeout, none of our business,
1090 let higher layers handle this. in fact it’s probably an erro
1091 return code;
1092 }

1094 #ifndef OPENSSL_NO_HEARTBEATS
1095 if (!SSL_in_init(s) && !s->tlsext_hb_pending) /* done, no need to send
1096 #else
1097 if (!SSL_in_init(s)) /* done, no need to send a retransmit */
1098 #endif
1099 {
1100 BIO_set_flags(SSL_get_rbio(s), BIO_FLAGS_READ);
1101 return code;
1102 }

1104 #if 0 /* for now, each alert contains only one record number */
1105 item = pqueue_peek(state->rcvd_records);
1106 if (item)
1107 {
1108 /* send an alert immediately for all the missing records */
1109 }
1110 else
1111 #endif

1113 #if 0 /* no more alert sending, just retransmit the last set of messages */
1114 if (state->timeout.read_timeouts >= DTLS1_TMO_READ_COUNT)
1115 ssl3_send_alert(s,SSL3_AL_WARNING,
1116 DTLS1_AD_MISSING_HANDSHAKE_MESSAGE);
1117 #endif

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 18

1119 return dtls1_handle_timeout(s);
1120 }

1122 int
1123 dtls1_get_queue_priority(unsigned short seq, int is_ccs)
1124 {
1125 /* The index of the retransmission queue actually is the message sequenc
1126 * since the queue only contains messages of a single handshake. However
1127 * ChangeCipherSpec has no message sequence number and so using only the
1128 * will result in the CCS and Finished having the same index. To prevent
1129 * the sequence number is multiplied by 2. In case of a CCS 1 is subtrac
1130 * This does not only differ CSS and Finished, it also maintains the ord
1131 * index (important for priority queues) and fits in the unsigned short
1132 */
1133 return seq * 2 - is_ccs;
1134 }

1136 int
1137 dtls1_retransmit_buffered_messages(SSL *s)
1138 {
1139 pqueue sent = s->d1->sent_messages;
1140 piterator iter;
1141 pitem *item;
1142 hm_fragment *frag;
1143 int found = 0;

1145 iter = pqueue_iterator(sent);

1147 for (item = pqueue_next(&iter); item != NULL; item = pqueue_next(&iter)
1148 {
1149 frag = (hm_fragment *)item->data;
1150 if (dtls1_retransmit_message(s,
1151 (unsigned short)dtls1_get_queue_priority(frag->m
1152 0, &found) <= 0 && found)
1153 {
1154 fprintf(stderr, "dtls1_retransmit_message() failed\n");
1155 return -1;
1156 }
1157 }

1159 return 1;
1160 }

1162 int
1163 dtls1_buffer_message(SSL *s, int is_ccs)
1164 {
1165 pitem *item;
1166 hm_fragment *frag;
1167 unsigned char seq64be[8];

1169 /* this function is called immediately after a message has
1170 * been serialized */
1171 OPENSSL_assert(s->init_off == 0);

1173 frag = dtls1_hm_fragment_new(s->init_num, 0);

1175 memcpy(frag->fragment, s->init_buf->data, s->init_num);

1177 if (is_ccs)
1178 {
1179 OPENSSL_assert(s->d1->w_msg_hdr.msg_len +
1180 ((s->version==DTLS1_VERSION)?DTLS1_CCS_HEADER_LEN
1181 }
1182 else
1183 {

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 19

1184 OPENSSL_assert(s->d1->w_msg_hdr.msg_len +
1185 DTLS1_HM_HEADER_LENGTH == (unsigned int)s->init_num);
1186 }

1188 frag->msg_header.msg_len = s->d1->w_msg_hdr.msg_len;
1189 frag->msg_header.seq = s->d1->w_msg_hdr.seq;
1190 frag->msg_header.type = s->d1->w_msg_hdr.type;
1191 frag->msg_header.frag_off = 0;
1192 frag->msg_header.frag_len = s->d1->w_msg_hdr.msg_len;
1193 frag->msg_header.is_ccs = is_ccs;

1195 /* save current state*/
1196 frag->msg_header.saved_retransmit_state.enc_write_ctx = s->enc_write_ctx
1197 frag->msg_header.saved_retransmit_state.write_hash = s->write_hash;
1198 frag->msg_header.saved_retransmit_state.compress = s->compress;
1199 frag->msg_header.saved_retransmit_state.session = s->session;
1200 frag->msg_header.saved_retransmit_state.epoch = s->d1->w_epoch;
1201
1202 memset(seq64be,0,sizeof(seq64be));
1203 seq64be[6] = (unsigned char)(dtls1_get_queue_priority(frag->msg_header.s
1204
1205 seq64be[7] = (unsigned char)(dtls1_get_queue_priority(frag->msg_header.s
1206

1208 item = pitem_new(seq64be, frag);
1209 if (item == NULL)
1210 {
1211 dtls1_hm_fragment_free(frag);
1212 return 0;
1213 }

1215 #if 0
1216 fprintf(stderr, "buffered messge: \ttype = %xx\n", msg_buf->type);
1217 fprintf(stderr, "\t\t\t\t\tlen = %d\n", msg_buf->len);
1218 fprintf(stderr, "\t\t\t\t\tseq_num = %d\n", msg_buf->seq_num);
1219 #endif

1221 pqueue_insert(s->d1->sent_messages, item);
1222 return 1;
1223 }

1225 int
1226 dtls1_retransmit_message(SSL *s, unsigned short seq, unsigned long frag_off,
1227 int *found)
1228 {
1229 int ret;
1230 /* XDTLS: for now assuming that read/writes are blocking */
1231 pitem *item;
1232 hm_fragment *frag ;
1233 unsigned long header_length;
1234 unsigned char seq64be[8];
1235 struct dtls1_retransmit_state saved_state;
1236 unsigned char save_write_sequence[8];

1238 /*
1239 OPENSSL_assert(s->init_num == 0);
1240 OPENSSL_assert(s->init_off == 0);
1241 */

1243 /* XDTLS: the requested message ought to be found, otherwise error */
1244 memset(seq64be,0,sizeof(seq64be));
1245 seq64be[6] = (unsigned char)(seq>>8);
1246 seq64be[7] = (unsigned char)seq;

1248 item = pqueue_find(s->d1->sent_messages, seq64be);
1249 if (item == NULL)

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 20

1250 {
1251 fprintf(stderr, "retransmit: message %d non-existant\n", seq);
1252 *found = 0;
1253 return 0;
1254 }

1256 *found = 1;
1257 frag = (hm_fragment *)item->data;

1259 if (frag->msg_header.is_ccs)
1260 header_length = DTLS1_CCS_HEADER_LENGTH;
1261 else
1262 header_length = DTLS1_HM_HEADER_LENGTH;

1264 memcpy(s->init_buf->data, frag->fragment,
1265 frag->msg_header.msg_len + header_length);
1266 s->init_num = frag->msg_header.msg_len + header_length;

1268 dtls1_set_message_header_int(s, frag->msg_header.type,
1269 frag->msg_header.msg_len, frag->msg_header.seq, 0,
1270 frag->msg_header.frag_len);

1272 /* save current state */
1273 saved_state.enc_write_ctx = s->enc_write_ctx;
1274 saved_state.write_hash = s->write_hash;
1275 saved_state.compress = s->compress;
1276 saved_state.session = s->session;
1277 saved_state.epoch = s->d1->w_epoch;
1278 saved_state.epoch = s->d1->w_epoch;
1279
1280 s->d1->retransmitting = 1;
1281
1282 /* restore state in which the message was originally sent */
1283 s->enc_write_ctx = frag->msg_header.saved_retransmit_state.enc_write_ctx
1284 s->write_hash = frag->msg_header.saved_retransmit_state.write_hash;
1285 s->compress = frag->msg_header.saved_retransmit_state.compress;
1286 s->session = frag->msg_header.saved_retransmit_state.session;
1287 s->d1->w_epoch = frag->msg_header.saved_retransmit_state.epoch;
1288
1289 if (frag->msg_header.saved_retransmit_state.epoch == saved_state.epoch -
1290 {
1291 memcpy(save_write_sequence, s->s3->write_sequence, sizeof(s->s3-
1292 memcpy(s->s3->write_sequence, s->d1->last_write_sequence, sizeof
1293 }
1294
1295 ret = dtls1_do_write(s, frag->msg_header.is_ccs ?
1296 SSL3_RT_CHANGE_CIPHER_SPEC : SS
1297
1298 /* restore current state */
1299 s->enc_write_ctx = saved_state.enc_write_ctx;
1300 s->write_hash = saved_state.write_hash;
1301 s->compress = saved_state.compress;
1302 s->session = saved_state.session;
1303 s->d1->w_epoch = saved_state.epoch;
1304
1305 if (frag->msg_header.saved_retransmit_state.epoch == saved_state.epoch -
1306 {
1307 memcpy(s->d1->last_write_sequence, s->s3->write_sequence, sizeof
1308 memcpy(s->s3->write_sequence, save_write_sequence, sizeof(s->s3-
1309 }

1311 s->d1->retransmitting = 0;

1313 (void)BIO_flush(SSL_get_wbio(s));
1314 return ret;
1315 }

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 21

1317 /* call this function when the buffered messages are no longer needed */
1318 void
1319 dtls1_clear_record_buffer(SSL *s)
1320 {
1321 pitem *item;

1323 for(item = pqueue_pop(s->d1->sent_messages);
1324 item != NULL; item = pqueue_pop(s->d1->sent_messages))
1325 {
1326 dtls1_hm_fragment_free((hm_fragment *)item->data);
1327 pitem_free(item);
1328 }
1329 }

1332 unsigned char *
1333 dtls1_set_message_header(SSL *s, unsigned char *p, unsigned char mt,
1334 unsigned long len, unsigned long frag_off, unsigned long
1335 {
1336 /* Don’t change sequence numbers while listening */
1337 if (frag_off == 0 && !s->d1->listen)
1338 {
1339 s->d1->handshake_write_seq = s->d1->next_handshake_write_seq;
1340 s->d1->next_handshake_write_seq++;
1341 }

1343 dtls1_set_message_header_int(s, mt, len, s->d1->handshake_write_seq,
1344 frag_off, frag_len);

1346 return p += DTLS1_HM_HEADER_LENGTH;
1347 }

1350 /* don’t actually do the writing, wait till the MTU has been retrieved */
1351 static void
1352 dtls1_set_message_header_int(SSL *s, unsigned char mt,
1353 unsigned long len, unsigned short seq_num, unsigned
1354 unsigned long frag_len)
1355 {
1356 struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;

1358 msg_hdr->type = mt;
1359 msg_hdr->msg_len = len;
1360 msg_hdr->seq = seq_num;
1361 msg_hdr->frag_off = frag_off;
1362 msg_hdr->frag_len = frag_len;
1363 }

1365 static void
1366 dtls1_fix_message_header(SSL *s, unsigned long frag_off,
1367 unsigned long frag_len)
1368 {
1369 struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;

1371 msg_hdr->frag_off = frag_off;
1372 msg_hdr->frag_len = frag_len;
1373 }

1375 static unsigned char *
1376 dtls1_write_message_header(SSL *s, unsigned char *p)
1377 {
1378 struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;

1380 *p++ = msg_hdr->type;
1381 l2n3(msg_hdr->msg_len, p);

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 22

1383 s2n(msg_hdr->seq, p);
1384 l2n3(msg_hdr->frag_off, p);
1385 l2n3(msg_hdr->frag_len, p);

1387 return p;
1388 }

1390 unsigned int
1391 dtls1_min_mtu(void)
1392 {
1393 return (g_probable_mtu[(sizeof(g_probable_mtu) /
1394 sizeof(g_probable_mtu[0])) - 1]);
1395 }

1397 static unsigned int
1398 dtls1_guess_mtu(unsigned int curr_mtu)
1399 {
1400 unsigned int i;

1402 if (curr_mtu == 0)
1403 return g_probable_mtu[0] ;

1405 for (i = 0; i < sizeof(g_probable_mtu)/sizeof(g_probable_mtu[0]); i++)
1406 if (curr_mtu > g_probable_mtu[i])
1407 return g_probable_mtu[i];

1409 return curr_mtu;
1410 }

1412 void
1413 dtls1_get_message_header(unsigned char *data, struct hm_header_st *msg_hdr)
1414 {
1415 memset(msg_hdr, 0x00, sizeof(struct hm_header_st));
1416 msg_hdr->type = *(data++);
1417 n2l3(data, msg_hdr->msg_len);

1419 n2s(data, msg_hdr->seq);
1420 n2l3(data, msg_hdr->frag_off);
1421 n2l3(data, msg_hdr->frag_len);
1422 }

1424 void
1425 dtls1_get_ccs_header(unsigned char *data, struct ccs_header_st *ccs_hdr)
1426 {
1427 memset(ccs_hdr, 0x00, sizeof(struct ccs_header_st));

1429 ccs_hdr->type = *(data++);
1430 }

1432 int dtls1_shutdown(SSL *s)
1433 {
1434 int ret;
1435 #ifndef OPENSSL_NO_SCTP
1436 if (BIO_dgram_is_sctp(SSL_get_wbio(s)) &&
1437 !(s->shutdown & SSL_SENT_SHUTDOWN))
1438 {
1439 ret = BIO_dgram_sctp_wait_for_dry(SSL_get_wbio(s));
1440 if (ret < 0) return -1;

1442 if (ret == 0)
1443 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_SAVE_SHUTD
1444 }
1445 #endif
1446 ret = ssl3_shutdown(s);
1447 #ifndef OPENSSL_NO_SCTP

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 23

1448 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_SAVE_SHUTDOWN, 0, NULL);
1449 #endif
1450 return ret;
1451 }

1453 #ifndef OPENSSL_NO_HEARTBEATS
1454 int
1455 dtls1_process_heartbeat(SSL *s)
1456 {
1457 unsigned char *p = &s->s3->rrec.data[0], *pl;
1458 unsigned short hbtype;
1459 unsigned int payload;
1460 unsigned int padding = 16; /* Use minimum padding */

1462 if (s->msg_callback)
1463 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
1464 &s->s3->rrec.data[0], s->s3->rrec.length,
1465 s, s->msg_callback_arg);

1467 /* Read type and payload length first */
1468 if (1 + 2 + 16 > s->s3->rrec.length)
1469 return 0; /* silently discard */
1470 hbtype = *p++;
1471 n2s(p, payload);
1472 if (1 + 2 + payload + 16 > s->s3->rrec.length)
1473 return 0; /* silently discard per RFC 6520 sec. 4 */
1474 pl = p;

1476 if (hbtype == TLS1_HB_REQUEST)
1477 {
1478 unsigned char *buffer, *bp;
1479 unsigned int write_length = 1 /* heartbeat type */ +
1480 2 /* heartbeat length */ +
1481 payload + padding;
1482 int r;

1484 if (write_length > SSL3_RT_MAX_PLAIN_LENGTH)
1485 return 0;

1487 /* Allocate memory for the response, size is 1 byte
1488 * message type, plus 2 bytes payload length, plus
1489 * payload, plus padding
1490 */
1491 buffer = OPENSSL_malloc(write_length);
1492 bp = buffer;

1494 /* Enter response type, length and copy payload */
1495 *bp++ = TLS1_HB_RESPONSE;
1496 s2n(payload, bp);
1497 memcpy(bp, pl, payload);
1498 bp += payload;
1499 /* Random padding */
1500 RAND_pseudo_bytes(bp, padding);

1502 r = dtls1_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, write_length

1504 if (r >= 0 && s->msg_callback)
1505 s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT,
1506 buffer, write_length,
1507 s, s->msg_callback_arg);

1509 OPENSSL_free(buffer);

1511 if (r < 0)
1512 return r;
1513 }

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 24

1514 else if (hbtype == TLS1_HB_RESPONSE)
1515 {
1516 unsigned int seq;

1518 /* We only send sequence numbers (2 bytes unsigned int),
1519 * and 16 random bytes, so we just try to read the
1520 * sequence number */
1521 n2s(pl, seq);

1523 if (payload == 18 && seq == s->tlsext_hb_seq)
1524 {
1525 dtls1_stop_timer(s);
1526 s->tlsext_hb_seq++;
1527 s->tlsext_hb_pending = 0;
1528 }
1529 }

1531 return 0;
1532 }

1534 int
1535 dtls1_heartbeat(SSL *s)
1536 {
1537 unsigned char *buf, *p;
1538 int ret;
1539 unsigned int payload = 18; /* Sequence number + random bytes */
1540 unsigned int padding = 16; /* Use minimum padding */

1542 /* Only send if peer supports and accepts HB requests... */
1543 if (!(s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) ||
1544 s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_SEND_REQUESTS)
1545 {
1546 SSLerr(SSL_F_DTLS1_HEARTBEAT,SSL_R_TLS_HEARTBEAT_PEER_DOESNT_ACC
1547 return -1;
1548 }

1550 /* ...and there is none in flight yet... */
1551 if (s->tlsext_hb_pending)
1552 {
1553 SSLerr(SSL_F_DTLS1_HEARTBEAT,SSL_R_TLS_HEARTBEAT_PENDING);
1554 return -1;
1555 }

1557 /* ...and no handshake in progress. */
1558 if (SSL_in_init(s) || s->in_handshake)
1559 {
1560 SSLerr(SSL_F_DTLS1_HEARTBEAT,SSL_R_UNEXPECTED_MESSAGE);
1561 return -1;
1562 }

1564 /* Check if padding is too long, payload and padding
1565 * must not exceed 2^14 - 3 = 16381 bytes in total.
1566 */
1567 OPENSSL_assert(payload + padding <= 16381);

1569 /* Create HeartBeat message, we just use a sequence number
1570 * as payload to distuingish different messages and add
1571 * some random stuff.
1572 * - Message Type, 1 byte
1573 * - Payload Length, 2 bytes (unsigned int)
1574 * - Payload, the sequence number (2 bytes uint)
1575 * - Payload, random bytes (16 bytes uint)
1576 * - Padding
1577 */
1578 buf = OPENSSL_malloc(1 + 2 + payload + padding);
1579 p = buf;

new/usr/src/lib/openssl/libsunw_ssl/d1_both.c 25

1580 /* Message Type */
1581 *p++ = TLS1_HB_REQUEST;
1582 /* Payload length (18 bytes here) */
1583 s2n(payload, p);
1584 /* Sequence number */
1585 s2n(s->tlsext_hb_seq, p);
1586 /* 16 random bytes */
1587 RAND_pseudo_bytes(p, 16);
1588 p += 16;
1589 /* Random padding */
1590 RAND_pseudo_bytes(p, padding);

1592 ret = dtls1_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding
1593 if (ret >= 0)
1594 {
1595 if (s->msg_callback)
1596 s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT,
1597 buf, 3 + payload + padding,
1598 s, s->msg_callback_arg);

1600 dtls1_start_timer(s);
1601 s->tlsext_hb_pending = 1;
1602 }

1604 OPENSSL_free(buf);

1606 return ret;
1607 }
1608 #endif

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 1

**
 44718 Fri May 30 18:32:18 2014
new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/d1_clnt.c */
2 /*
3 * DTLS implementation written by Nagendra Modadugu
4 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
5 */
6 /* ==
7 * Copyright (c) 1999-2007 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * openssl-core@OpenSSL.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */
59 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
60 * All rights reserved.
61 *

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 2

62 * This package is an SSL implementation written
63 * by Eric Young (eay@cryptsoft.com).
64 * The implementation was written so as to conform with Netscapes SSL.
65 *
66 * This library is free for commercial and non-commercial use as long as
67 * the following conditions are aheared to. The following conditions
68 * apply to all code found in this distribution, be it the RC4, RSA,
69 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
70 * included with this distribution is covered by the same copyright terms
71 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
72 *
73 * Copyright remains Eric Young’s, and as such any Copyright notices in
74 * the code are not to be removed.
75 * If this package is used in a product, Eric Young should be given attribution
76 * as the author of the parts of the library used.
77 * This can be in the form of a textual message at program startup or
78 * in documentation (online or textual) provided with the package.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * "This product includes cryptographic software written by
91 * Eric Young (eay@cryptsoft.com)"
92 * The word ’cryptographic’ can be left out if the rouines from the library
93 * being used are not cryptographic related :-).
94 * 4. If you include any Windows specific code (or a derivative thereof) from
95 * the apps directory (application code) you must include an acknowledgement:
96 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
97 *
98 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * The licence and distribution terms for any publically available version or
111 * derivative of this code cannot be changed. i.e. this code cannot simply be
112 * copied and put under another distribution licence
113 * [including the GNU Public Licence.]
114 */

116 #include <stdio.h>
117 #include "ssl_locl.h"
118 #ifndef OPENSSL_NO_KRB5
119 #include "kssl_lcl.h"
120 #endif
121 #include <openssl/buffer.h>
122 #include <openssl/rand.h>
123 #include <openssl/objects.h>
124 #include <openssl/evp.h>
125 #include <openssl/md5.h>
126 #include <openssl/bn.h>
127 #ifndef OPENSSL_NO_DH

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 3

128 #include <openssl/dh.h>
129 #endif

131 static const SSL_METHOD *dtls1_get_client_method(int ver);
132 static int dtls1_get_hello_verify(SSL *s);

134 static const SSL_METHOD *dtls1_get_client_method(int ver)
135 {
136 if (ver == DTLS1_VERSION || ver == DTLS1_BAD_VER)
137 return(DTLSv1_client_method());
138 else
139 return(NULL);
140 }

142 IMPLEMENT_dtls1_meth_func(DTLSv1_client_method,
143 ssl_undefined_function,
144 dtls1_connect,
145 dtls1_get_client_method)

147 int dtls1_connect(SSL *s)
148 {
149 BUF_MEM *buf=NULL;
150 unsigned long Time=(unsigned long)time(NULL);
151 void (*cb)(const SSL *ssl,int type,int val)=NULL;
152 int ret= -1;
153 int new_state,state,skip=0;
154 #ifndef OPENSSL_NO_SCTP
155 unsigned char sctpauthkey[64];
156 char labelbuffer[sizeof(DTLS1_SCTP_AUTH_LABEL)];
157 #endif

159 RAND_add(&Time,sizeof(Time),0);
160 ERR_clear_error();
161 clear_sys_error();

163 if (s->info_callback != NULL)
164 cb=s->info_callback;
165 else if (s->ctx->info_callback != NULL)
166 cb=s->ctx->info_callback;
167
168 s->in_handshake++;
169 if (!SSL_in_init(s) || SSL_in_before(s)) SSL_clear(s);

171 #ifndef OPENSSL_NO_SCTP
172 /* Notify SCTP BIO socket to enter handshake
173 * mode and prevent stream identifier other
174 * than 0. Will be ignored if no SCTP is used.
175 */
176 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE, s->in_ha
177 #endif

179 #ifndef OPENSSL_NO_HEARTBEATS
180 /* If we’re awaiting a HeartbeatResponse, pretend we
181 * already got and don’t await it anymore, because
182 * Heartbeats don’t make sense during handshakes anyway.
183 */
184 if (s->tlsext_hb_pending)
185 {
186 dtls1_stop_timer(s);
187 s->tlsext_hb_pending = 0;
188 s->tlsext_hb_seq++;
189 }
190 #endif

192 for (;;)
193 {

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 4

194 state=s->state;

196 switch(s->state)
197 {
198 case SSL_ST_RENEGOTIATE:
199 s->renegotiate=1;
200 s->state=SSL_ST_CONNECT;
201 s->ctx->stats.sess_connect_renegotiate++;
202 /* break */
203 case SSL_ST_BEFORE:
204 case SSL_ST_CONNECT:
205 case SSL_ST_BEFORE|SSL_ST_CONNECT:
206 case SSL_ST_OK|SSL_ST_CONNECT:

208 s->server=0;
209 if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_START,1);

211 if ((s->version & 0xff00) != (DTLS1_VERSION & 0xff00) &
212 (s->version & 0xff00) != (DTLS1_BAD_VER & 0xff00))
213 {
214 SSLerr(SSL_F_DTLS1_CONNECT, ERR_R_INTERNAL_ERROR
215 ret = -1;
216 goto end;
217 }
218
219 /* s->version=SSL3_VERSION; */
220 s->type=SSL_ST_CONNECT;

222 if (s->init_buf == NULL)
223 {
224 if ((buf=BUF_MEM_new()) == NULL)
225 {
226 ret= -1;
227 goto end;
228 }
229 if (!BUF_MEM_grow(buf,SSL3_RT_MAX_PLAIN_LENGTH))
230 {
231 ret= -1;
232 goto end;
233 }
234 s->init_buf=buf;
235 buf=NULL;
236 }

238 if (!ssl3_setup_buffers(s)) { ret= -1; goto end; }

240 /* setup buffing BIO */
241 if (!ssl_init_wbio_buffer(s,0)) { ret= -1; goto end; }

243 /* don’t push the buffering BIO quite yet */

245 s->state=SSL3_ST_CW_CLNT_HELLO_A;
246 s->ctx->stats.sess_connect++;
247 s->init_num=0;
248 /* mark client_random uninitialized */
249 memset(s->s3->client_random,0,sizeof(s->s3->client_rando
250 s->d1->send_cookie = 0;
251 s->hit = 0;
252 break;

254 #ifndef OPENSSL_NO_SCTP
255 case DTLS1_SCTP_ST_CR_READ_SOCK:

257 if (BIO_dgram_sctp_msg_waiting(SSL_get_rbio(s)))
258 {
259 s->s3->in_read_app_data=2;

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 5

260 s->rwstate=SSL_READING;
261 BIO_clear_retry_flags(SSL_get_rbio(s));
262 BIO_set_retry_read(SSL_get_rbio(s));
263 ret = -1;
264 goto end;
265 }

267 s->state=s->s3->tmp.next_state;
268 break;

270 case DTLS1_SCTP_ST_CW_WRITE_SOCK:
271 /* read app data until dry event */

273 ret = BIO_dgram_sctp_wait_for_dry(SSL_get_wbio(s));
274 if (ret < 0) goto end;

276 if (ret == 0)
277 {
278 s->s3->in_read_app_data=2;
279 s->rwstate=SSL_READING;
280 BIO_clear_retry_flags(SSL_get_rbio(s));
281 BIO_set_retry_read(SSL_get_rbio(s));
282 ret = -1;
283 goto end;
284 }

286 s->state=s->d1->next_state;
287 break;
288 #endif

290 case SSL3_ST_CW_CLNT_HELLO_A:
291 case SSL3_ST_CW_CLNT_HELLO_B:

293 s->shutdown=0;

295 /* every DTLS ClientHello resets Finished MAC */
296 ssl3_init_finished_mac(s);

298 dtls1_start_timer(s);
299 ret=dtls1_client_hello(s);
300 if (ret <= 0) goto end;

302 if (s->d1->send_cookie)
303 {
304 s->state=SSL3_ST_CW_FLUSH;
305 s->s3->tmp.next_state=SSL3_ST_CR_SRVR_HELLO_A;
306 }
307 else
308 s->state=SSL3_ST_CR_SRVR_HELLO_A;

310 s->init_num=0;

312 #ifndef OPENSSL_NO_SCTP
313 /* Disable buffering for SCTP */
314 if (!BIO_dgram_is_sctp(SSL_get_wbio(s)))
315 {
316 #endif
317 /* turn on buffering for the next lot of output
318 if (s->bbio != s->wbio)
319 s->wbio=BIO_push(s->bbio,s->wbio);
320 #ifndef OPENSSL_NO_SCTP
321 }
322 #endif

324 break;

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 6

326 case SSL3_ST_CR_SRVR_HELLO_A:
327 case SSL3_ST_CR_SRVR_HELLO_B:
328 ret=ssl3_get_server_hello(s);
329 if (ret <= 0) goto end;
330 else
331 {
332 if (s->hit)
333 {
334 #ifndef OPENSSL_NO_SCTP
335 /* Add new shared key for SCTP-Auth,
336 * will be ignored if no SCTP used.
337 */
338 snprintf((char*) labelbuffer, sizeof(DTL
339 DTLS1_SCTP_AUTH_LABEL);

341 SSL_export_keying_material(s, sctpauthke
342 sizeof(sctpau
343 sizeof(labelb

345 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM
346 sizeof(sctpauthkey), sc
347 #endif

349 s->state=SSL3_ST_CR_FINISHED_A;
350 }
351 else
352 s->state=DTLS1_ST_CR_HELLO_VERIFY_REQUES
353 }
354 s->init_num=0;
355 break;

357 case DTLS1_ST_CR_HELLO_VERIFY_REQUEST_A:
358 case DTLS1_ST_CR_HELLO_VERIFY_REQUEST_B:

360 ret = dtls1_get_hello_verify(s);
361 if (ret <= 0)
362 goto end;
363 dtls1_stop_timer(s);
364 if (s->d1->send_cookie) /* start again, with a cookie *
365 s->state=SSL3_ST_CW_CLNT_HELLO_A;
366 else
367 s->state = SSL3_ST_CR_CERT_A;
368 s->init_num = 0;
369 break;

371 case SSL3_ST_CR_CERT_A:
372 case SSL3_ST_CR_CERT_B:
373 #ifndef OPENSSL_NO_TLSEXT
374 ret=ssl3_check_finished(s);
375 if (ret <= 0) goto end;
376 if (ret == 2)
377 {
378 s->hit = 1;
379 if (s->tlsext_ticket_expected)
380 s->state=SSL3_ST_CR_SESSION_TICKET_A;
381 else
382 s->state=SSL3_ST_CR_FINISHED_A;
383 s->init_num=0;
384 break;
385 }
386 #endif
387 /* Check if it is anon DH or PSK */
388 if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL)
389 !(s->s3->tmp.new_cipher->algorithm_mkey & SSL_kPSK))
390 {
391 ret=ssl3_get_server_certificate(s);

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 7

392 if (ret <= 0) goto end;
393 #ifndef OPENSSL_NO_TLSEXT
394 if (s->tlsext_status_expected)
395 s->state=SSL3_ST_CR_CERT_STATUS_A;
396 else
397 s->state=SSL3_ST_CR_KEY_EXCH_A;
398 }
399 else
400 {
401 skip = 1;
402 s->state=SSL3_ST_CR_KEY_EXCH_A;
403 }
404 #else
405 }
406 else
407 skip=1;

409 s->state=SSL3_ST_CR_KEY_EXCH_A;
410 #endif
411 s->init_num=0;
412 break;

414 case SSL3_ST_CR_KEY_EXCH_A:
415 case SSL3_ST_CR_KEY_EXCH_B:
416 ret=ssl3_get_key_exchange(s);
417 if (ret <= 0) goto end;
418 s->state=SSL3_ST_CR_CERT_REQ_A;
419 s->init_num=0;

421 /* at this point we check that we have the
422 * required stuff from the server */
423 if (!ssl3_check_cert_and_algorithm(s))
424 {
425 ret= -1;
426 goto end;
427 }
428 break;

430 case SSL3_ST_CR_CERT_REQ_A:
431 case SSL3_ST_CR_CERT_REQ_B:
432 ret=ssl3_get_certificate_request(s);
433 if (ret <= 0) goto end;
434 s->state=SSL3_ST_CR_SRVR_DONE_A;
435 s->init_num=0;
436 break;

438 case SSL3_ST_CR_SRVR_DONE_A:
439 case SSL3_ST_CR_SRVR_DONE_B:
440 ret=ssl3_get_server_done(s);
441 if (ret <= 0) goto end;
442 dtls1_stop_timer(s);
443 if (s->s3->tmp.cert_req)
444 s->s3->tmp.next_state=SSL3_ST_CW_CERT_A;
445 else
446 s->s3->tmp.next_state=SSL3_ST_CW_KEY_EXCH_A;
447 s->init_num=0;

449 #ifndef OPENSSL_NO_SCTP
450 if (BIO_dgram_is_sctp(SSL_get_wbio(s)) &&
451 state == SSL_ST_RENEGOTIATE)
452 s->state=DTLS1_SCTP_ST_CR_READ_SOCK;
453 else
454 #endif
455 s->state=s->s3->tmp.next_state;
456 break;

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 8

458 case SSL3_ST_CW_CERT_A:
459 case SSL3_ST_CW_CERT_B:
460 case SSL3_ST_CW_CERT_C:
461 case SSL3_ST_CW_CERT_D:
462 dtls1_start_timer(s);
463 ret=dtls1_send_client_certificate(s);
464 if (ret <= 0) goto end;
465 s->state=SSL3_ST_CW_KEY_EXCH_A;
466 s->init_num=0;
467 break;

469 case SSL3_ST_CW_KEY_EXCH_A:
470 case SSL3_ST_CW_KEY_EXCH_B:
471 dtls1_start_timer(s);
472 ret=dtls1_send_client_key_exchange(s);
473 if (ret <= 0) goto end;

475 #ifndef OPENSSL_NO_SCTP
476 /* Add new shared key for SCTP-Auth,
477 * will be ignored if no SCTP used.
478 */
479 snprintf((char*) labelbuffer, sizeof(DTLS1_SCTP_AUTH_LAB
480 DTLS1_SCTP_AUTH_LABEL);

482 SSL_export_keying_material(s, sctpauthkey,
483 sizeof(sctpauthkey), labelbuf
484 sizeof(labelbuffer), NULL, 0,

486 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_ADD_AUTH_K
487 sizeof(sctpauthkey), sctpauthkey);
488 #endif

490 /* EAY EAY EAY need to check for DH fix cert
491 * sent back */
492 /* For TLS, cert_req is set to 2, so a cert chain
493 * of nothing is sent, but no verify packet is sent */
494 if (s->s3->tmp.cert_req == 1)
495 {
496 s->state=SSL3_ST_CW_CERT_VRFY_A;
497 }
498 else
499 {
500 #ifndef OPENSSL_NO_SCTP
501 if (BIO_dgram_is_sctp(SSL_get_wbio(s)))
502 {
503 s->d1->next_state=SSL3_ST_CW_CHANGE_A;
504 s->state=DTLS1_SCTP_ST_CW_WRITE_SOCK;
505 }
506 else
507 #endif
508 s->state=SSL3_ST_CW_CHANGE_A;
509 s->s3->change_cipher_spec=0;
510 }

512 s->init_num=0;
513 break;

515 case SSL3_ST_CW_CERT_VRFY_A:
516 case SSL3_ST_CW_CERT_VRFY_B:
517 dtls1_start_timer(s);
518 ret=dtls1_send_client_verify(s);
519 if (ret <= 0) goto end;
520 #ifndef OPENSSL_NO_SCTP
521 if (BIO_dgram_is_sctp(SSL_get_wbio(s)))
522 {
523 s->d1->next_state=SSL3_ST_CW_CHANGE_A;

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 9

524 s->state=DTLS1_SCTP_ST_CW_WRITE_SOCK;
525 }
526 else
527 #endif
528 s->state=SSL3_ST_CW_CHANGE_A;
529 s->init_num=0;
530 s->s3->change_cipher_spec=0;
531 break;

533 case SSL3_ST_CW_CHANGE_A:
534 case SSL3_ST_CW_CHANGE_B:
535 if (!s->hit)
536 dtls1_start_timer(s);
537 ret=dtls1_send_change_cipher_spec(s,
538 SSL3_ST_CW_CHANGE_A,SSL3_ST_CW_CHANGE_B);
539 if (ret <= 0) goto end;

541 s->state=SSL3_ST_CW_FINISHED_A;
542 s->init_num=0;

544 s->session->cipher=s->s3->tmp.new_cipher;
545 #ifdef OPENSSL_NO_COMP
546 s->session->compress_meth=0;
547 #else
548 if (s->s3->tmp.new_compression == NULL)
549 s->session->compress_meth=0;
550 else
551 s->session->compress_meth=
552 s->s3->tmp.new_compression->id;
553 #endif
554 if (!s->method->ssl3_enc->setup_key_block(s))
555 {
556 ret= -1;
557 goto end;
558 }

560 if (!s->method->ssl3_enc->change_cipher_state(s,
561 SSL3_CHANGE_CIPHER_CLIENT_WRITE))
562 {
563 ret= -1;
564 goto end;
565 }
566
567 #ifndef OPENSSL_NO_SCTP
568 if (s->hit)
569 {
570 /* Change to new shared key of SCTP-Auth
571 * will be ignored if no SCTP used.
572 */
573 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM
574 }
575 #endif

577 dtls1_reset_seq_numbers(s, SSL3_CC_WRITE);
578 break;

580 case SSL3_ST_CW_FINISHED_A:
581 case SSL3_ST_CW_FINISHED_B:
582 if (!s->hit)
583 dtls1_start_timer(s);
584 ret=dtls1_send_finished(s,
585 SSL3_ST_CW_FINISHED_A,SSL3_ST_CW_FINISHED_B,
586 s->method->ssl3_enc->client_finished_label,
587 s->method->ssl3_enc->client_finished_label_len);
588 if (ret <= 0) goto end;
589 s->state=SSL3_ST_CW_FLUSH;

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 10

591 /* clear flags */
592 s->s3->flags&= ~SSL3_FLAGS_POP_BUFFER;
593 if (s->hit)
594 {
595 s->s3->tmp.next_state=SSL_ST_OK;
596 #ifndef OPENSSL_NO_SCTP
597 if (BIO_dgram_is_sctp(SSL_get_wbio(s)))
598 {
599 s->d1->next_state = s->s3->tmp.n
600 s->s3->tmp.next_state=DTLS1_SCTP
601 }
602 #endif
603 if (s->s3->flags & SSL3_FLAGS_DELAY_CLIENT_FINIS
604 {
605 s->state=SSL_ST_OK;
606 #ifndef OPENSSL_NO_SCTP
607 if (BIO_dgram_is_sctp(SSL_get_wbio(s)))
608 {
609 s->d1->next_state = SSL_
610 s->state=DTLS1_SCTP_ST_C
611 }
612 #endif
613 s->s3->flags|=SSL3_FLAGS_POP_BUFFER;
614 s->s3->delay_buf_pop_ret=0;
615 }
616 }
617 else
618 {
619 #ifndef OPENSSL_NO_SCTP
620 /* Change to new shared key of SCTP-Auth,
621 * will be ignored if no SCTP used.
622 */
623 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_NE
624 #endif

626 #ifndef OPENSSL_NO_TLSEXT
627 /* Allow NewSessionTicket if ticket expected */
628 if (s->tlsext_ticket_expected)
629 s->s3->tmp.next_state=SSL3_ST_CR_SESSION
630 else
631 #endif
632
633 s->s3->tmp.next_state=SSL3_ST_CR_FINISHED_A;
634 }
635 s->init_num=0;
636 break;

638 #ifndef OPENSSL_NO_TLSEXT
639 case SSL3_ST_CR_SESSION_TICKET_A:
640 case SSL3_ST_CR_SESSION_TICKET_B:
641 ret=ssl3_get_new_session_ticket(s);
642 if (ret <= 0) goto end;
643 s->state=SSL3_ST_CR_FINISHED_A;
644 s->init_num=0;
645 break;

647 case SSL3_ST_CR_CERT_STATUS_A:
648 case SSL3_ST_CR_CERT_STATUS_B:
649 ret=ssl3_get_cert_status(s);
650 if (ret <= 0) goto end;
651 s->state=SSL3_ST_CR_KEY_EXCH_A;
652 s->init_num=0;
653 break;
654 #endif

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 11

656 case SSL3_ST_CR_FINISHED_A:
657 case SSL3_ST_CR_FINISHED_B:
658 s->d1->change_cipher_spec_ok = 1;
659 ret=ssl3_get_finished(s,SSL3_ST_CR_FINISHED_A,
660 SSL3_ST_CR_FINISHED_B);
661 if (ret <= 0) goto end;
662 dtls1_stop_timer(s);

664 if (s->hit)
665 s->state=SSL3_ST_CW_CHANGE_A;
666 else
667 s->state=SSL_ST_OK;

669 #ifndef OPENSSL_NO_SCTP
670 if (BIO_dgram_is_sctp(SSL_get_wbio(s)) &&
671 state == SSL_ST_RENEGOTIATE)
672 {
673 s->d1->next_state=s->state;
674 s->state=DTLS1_SCTP_ST_CW_WRITE_SOCK;
675 }
676 #endif

678 s->init_num=0;
679 break;

681 case SSL3_ST_CW_FLUSH:
682 s->rwstate=SSL_WRITING;
683 if (BIO_flush(s->wbio) <= 0)
684 {
685 /* If the write error was fatal, stop trying */
686 if (!BIO_should_retry(s->wbio))
687 {
688 s->rwstate=SSL_NOTHING;
689 s->state=s->s3->tmp.next_state;
690 }
691
692 ret= -1;
693 goto end;
694 }
695 s->rwstate=SSL_NOTHING;
696 s->state=s->s3->tmp.next_state;
697 break;

699 case SSL_ST_OK:
700 /* clean a few things up */
701 ssl3_cleanup_key_block(s);

703 #if 0
704 if (s->init_buf != NULL)
705 {
706 BUF_MEM_free(s->init_buf);
707 s->init_buf=NULL;
708 }
709 #endif

711 /* If we are not ’joining’ the last two packets,
712 * remove the buffering now */
713 if (!(s->s3->flags & SSL3_FLAGS_POP_BUFFER))
714 ssl_free_wbio_buffer(s);
715 /* else do it later in ssl3_write */

717 s->init_num=0;
718 s->renegotiate=0;
719 s->new_session=0;

721 ssl_update_cache(s,SSL_SESS_CACHE_CLIENT);

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 12

722 if (s->hit) s->ctx->stats.sess_hit++;

724 ret=1;
725 /* s->server=0; */
726 s->handshake_func=dtls1_connect;
727 s->ctx->stats.sess_connect_good++;

729 if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_DONE,1);

731 /* done with handshaking */
732 s->d1->handshake_read_seq = 0;
733 s->d1->next_handshake_write_seq = 0;
734 goto end;
735 /* break; */
736
737 default:
738 SSLerr(SSL_F_DTLS1_CONNECT,SSL_R_UNKNOWN_STATE);
739 ret= -1;
740 goto end;
741 /* break; */
742 }

744 /* did we do anything */
745 if (!s->s3->tmp.reuse_message && !skip)
746 {
747 if (s->debug)
748 {
749 if ((ret=BIO_flush(s->wbio)) <= 0)
750 goto end;
751 }

753 if ((cb != NULL) && (s->state != state))
754 {
755 new_state=s->state;
756 s->state=state;
757 cb(s,SSL_CB_CONNECT_LOOP,1);
758 s->state=new_state;
759 }
760 }
761 skip=0;
762 }
763 end:
764 s->in_handshake--;
765
766 #ifndef OPENSSL_NO_SCTP
767 /* Notify SCTP BIO socket to leave handshake
768 * mode and allow stream identifier other
769 * than 0. Will be ignored if no SCTP is used.
770 */
771 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE, s->in_ha
772 #endif

774 if (buf != NULL)
775 BUF_MEM_free(buf);
776 if (cb != NULL)
777 cb(s,SSL_CB_CONNECT_EXIT,ret);
778 return(ret);
779 }

781 int dtls1_client_hello(SSL *s)
782 {
783 unsigned char *buf;
784 unsigned char *p,*d;
785 unsigned int i,j;
786 unsigned long l;
787 SSL_COMP *comp;

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 13

789 buf=(unsigned char *)s->init_buf->data;
790 if (s->state == SSL3_ST_CW_CLNT_HELLO_A)
791 {
792 SSL_SESSION *sess = s->session;
793 if ((s->session == NULL) ||
794 (s->session->ssl_version != s->version) ||
795 #ifdef OPENSSL_NO_TLSEXT
796 !sess->session_id_length ||
797 #else
798 (!sess->session_id_length && !sess->tlsext_tick) ||
799 #endif
800 (s->session->not_resumable))
801 {
802 if (!ssl_get_new_session(s,0))
803 goto err;
804 }
805 /* else use the pre-loaded session */

807 p=s->s3->client_random;

809 /* if client_random is initialized, reuse it, we are
810 * required to use same upon reply to HelloVerify */
811 for (i=0;p[i]==’\0’ && i<sizeof(s->s3->client_random);i++)
812 ;
813 if (i==sizeof(s->s3->client_random))
814 ssl_fill_hello_random(s, 0, p,
815 sizeof(s->s3->client_random));

817 /* Do the message type and length last */
818 d=p= &(buf[DTLS1_HM_HEADER_LENGTH]);

820 *(p++)=s->version>>8;
821 *(p++)=s->version&0xff;
822 s->client_version=s->version;

824 /* Random stuff */
825 memcpy(p,s->s3->client_random,SSL3_RANDOM_SIZE);
826 p+=SSL3_RANDOM_SIZE;

828 /* Session ID */
829 if (s->new_session)
830 i=0;
831 else
832 i=s->session->session_id_length;
833 *(p++)=i;
834 if (i != 0)
835 {
836 if (i > sizeof s->session->session_id)
837 {
838 SSLerr(SSL_F_DTLS1_CLIENT_HELLO, ERR_R_INTERNAL_
839 goto err;
840 }
841 memcpy(p,s->session->session_id,i);
842 p+=i;
843 }
844
845 /* cookie stuff */
846 if (s->d1->cookie_len > sizeof(s->d1->cookie))
847 {
848 SSLerr(SSL_F_DTLS1_CLIENT_HELLO, ERR_R_INTERNAL_ERROR);
849 goto err;
850 }
851 *(p++) = s->d1->cookie_len;
852 memcpy(p, s->d1->cookie, s->d1->cookie_len);
853 p += s->d1->cookie_len;

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 14

855 /* Ciphers supported */
856 i=ssl_cipher_list_to_bytes(s,SSL_get_ciphers(s),&(p[2]),0);
857 if (i == 0)
858 {
859 SSLerr(SSL_F_DTLS1_CLIENT_HELLO,SSL_R_NO_CIPHERS_AVAILAB
860 goto err;
861 }
862 s2n(i,p);
863 p+=i;

865 /* COMPRESSION */
866 if (s->ctx->comp_methods == NULL)
867 j=0;
868 else
869 j=sk_SSL_COMP_num(s->ctx->comp_methods);
870 *(p++)=1+j;
871 for (i=0; i<j; i++)
872 {
873 comp=sk_SSL_COMP_value(s->ctx->comp_methods,i);
874 *(p++)=comp->id;
875 }
876 *(p++)=0; /* Add the NULL method */

878 #ifndef OPENSSL_NO_TLSEXT
879 if ((p = ssl_add_clienthello_tlsext(s, p, buf+SSL3_RT_MAX_PLAIN_
880 {
881 SSLerr(SSL_F_DTLS1_CLIENT_HELLO,ERR_R_INTERNAL_ERROR);
882 goto err;
883 }
884 #endif

886 l=(p-d);
887 d=buf;

889 d = dtls1_set_message_header(s, d, SSL3_MT_CLIENT_HELLO, l, 0, l

891 s->state=SSL3_ST_CW_CLNT_HELLO_B;
892 /* number of bytes to write */
893 s->init_num=p-buf;
894 s->init_off=0;

896 /* buffer the message to handle re-xmits */
897 dtls1_buffer_message(s, 0);
898 }

900 /* SSL3_ST_CW_CLNT_HELLO_B */
901 return(dtls1_do_write(s,SSL3_RT_HANDSHAKE));
902 err:
903 return(-1);
904 }

906 static int dtls1_get_hello_verify(SSL *s)
907 {
908 int n, al, ok = 0;
909 unsigned char *data;
910 unsigned int cookie_len;

912 n=s->method->ssl_get_message(s,
913 DTLS1_ST_CR_HELLO_VERIFY_REQUEST_A,
914 DTLS1_ST_CR_HELLO_VERIFY_REQUEST_B,
915 -1,
916 s->max_cert_list,
917 &ok);

919 if (!ok) return((int)n);

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 15

921 if (s->s3->tmp.message_type != DTLS1_MT_HELLO_VERIFY_REQUEST)
922 {
923 s->d1->send_cookie = 0;
924 s->s3->tmp.reuse_message=1;
925 return(1);
926 }

928 data = (unsigned char *)s->init_msg;

930 if ((data[0] != (s->version>>8)) || (data[1] != (s->version&0xff)))
931 {
932 SSLerr(SSL_F_DTLS1_GET_HELLO_VERIFY,SSL_R_WRONG_SSL_VERSION);
933 s->version=(s->version&0xff00)|data[1];
934 al = SSL_AD_PROTOCOL_VERSION;
935 goto f_err;
936 }
937 data+=2;

939 cookie_len = *(data++);
940 if (cookie_len > sizeof(s->d1->cookie))
941 {
942 al=SSL_AD_ILLEGAL_PARAMETER;
943 goto f_err;
944 }

946 memcpy(s->d1->cookie, data, cookie_len);
947 s->d1->cookie_len = cookie_len;

949 s->d1->send_cookie = 1;
950 return 1;

952 f_err:
953 ssl3_send_alert(s, SSL3_AL_FATAL, al);
954 return -1;
955 }

957 int dtls1_send_client_key_exchange(SSL *s)
958 {
959 unsigned char *p,*d;
960 int n;
961 unsigned long alg_k;
962 #ifndef OPENSSL_NO_RSA
963 unsigned char *q;
964 EVP_PKEY *pkey=NULL;
965 #endif
966 #ifndef OPENSSL_NO_KRB5
967 KSSL_ERR kssl_err;
968 #endif /* OPENSSL_NO_KRB5 */
969 #ifndef OPENSSL_NO_ECDH
970 EC_KEY *clnt_ecdh = NULL;
971 const EC_POINT *srvr_ecpoint = NULL;
972 EVP_PKEY *srvr_pub_pkey = NULL;
973 unsigned char *encodedPoint = NULL;
974 int encoded_pt_len = 0;
975 BN_CTX * bn_ctx = NULL;
976 #endif

978 if (s->state == SSL3_ST_CW_KEY_EXCH_A)
979 {
980 d=(unsigned char *)s->init_buf->data;
981 p= &(d[DTLS1_HM_HEADER_LENGTH]);
982
983 alg_k=s->s3->tmp.new_cipher->algorithm_mkey;

985 /* Fool emacs indentation */

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 16

986 if (0) {}
987 #ifndef OPENSSL_NO_RSA
988 else if (alg_k & SSL_kRSA)
989 {
990 RSA *rsa;
991 unsigned char tmp_buf[SSL_MAX_MASTER_KEY_LENGTH];

993 if (s->session->sess_cert->peer_rsa_tmp != NULL)
994 rsa=s->session->sess_cert->peer_rsa_tmp;
995 else
996 {
997 pkey=X509_get_pubkey(s->session->sess_cert->peer
998 if ((pkey == NULL) ||
999 (pkey->type != EVP_PKEY_RSA) ||

1000 (pkey->pkey.rsa == NULL))
1001 {
1002 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHA
1003 goto err;
1004 }
1005 rsa=pkey->pkey.rsa;
1006 EVP_PKEY_free(pkey);
1007 }
1008
1009 tmp_buf[0]=s->client_version>>8;
1010 tmp_buf[1]=s->client_version&0xff;
1011 if (RAND_bytes(&(tmp_buf[2]),sizeof tmp_buf-2) <= 0)
1012 goto err;

1014 s->session->master_key_length=sizeof tmp_buf;

1016 q=p;
1017 /* Fix buf for TLS and [incidentally] DTLS */
1018 if (s->version > SSL3_VERSION)
1019 p+=2;
1020 n=RSA_public_encrypt(sizeof tmp_buf,
1021 tmp_buf,p,rsa,RSA_PKCS1_PADDING);
1022 #ifdef PKCS1_CHECK
1023 if (s->options & SSL_OP_PKCS1_CHECK_1) p[1]++;
1024 if (s->options & SSL_OP_PKCS1_CHECK_2) tmp_buf[0]=0x70;
1025 #endif
1026 if (n <= 0)
1027 {
1028 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,SSL_
1029 goto err;
1030 }

1032 /* Fix buf for TLS and [incidentally] DTLS */
1033 if (s->version > SSL3_VERSION)
1034 {
1035 s2n(n,q);
1036 n+=2;
1037 }

1039 s->session->master_key_length=
1040 s->method->ssl3_enc->generate_master_secret(s,
1041 s->session->master_key,
1042 tmp_buf,sizeof tmp_buf);
1043 OPENSSL_cleanse(tmp_buf,sizeof tmp_buf);
1044 }
1045 #endif
1046 #ifndef OPENSSL_NO_KRB5
1047 else if (alg_k & SSL_kKRB5)
1048 {
1049 krb5_error_code krb5rc;
1050 KSSL_CTX *kssl_ctx = s->kssl_ctx;
1051 /* krb5_data krb5_ap_req; */

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 17

1052 krb5_data *enc_ticket;
1053 krb5_data authenticator, *authp = NULL;
1054 EVP_CIPHER_CTX ciph_ctx;
1055 const EVP_CIPHER *enc = NULL;
1056 unsigned char iv[EVP_MAX_IV_LENGTH];
1057 unsigned char tmp_buf[SSL_MAX_MASTER_KEY_LENGTH];
1058 unsigned char epms[SSL_MAX_MASTER_KEY_LENGTH
1059 + EVP_MAX_IV_LENGTH];
1060 int padl, outl = sizeof(epms);

1062 EVP_CIPHER_CTX_init(&ciph_ctx);

1064 #ifdef KSSL_DEBUG
1065 printf("ssl3_send_client_key_exchange(%lx & %lx)\n",
1066 alg_k, SSL_kKRB5);
1067 #endif /* KSSL_DEBUG */

1069 authp = NULL;
1070 #ifdef KRB5SENDAUTH
1071 if (KRB5SENDAUTH) authp = &authenticator;
1072 #endif /* KRB5SENDAUTH */

1074 krb5rc = kssl_cget_tkt(kssl_ctx, &enc_ticket, authp,
1075 &kssl_err);
1076 enc = kssl_map_enc(kssl_ctx->enctype);
1077 if (enc == NULL)
1078 goto err;
1079 #ifdef KSSL_DEBUG
1080 {
1081 printf("kssl_cget_tkt rtn %d\n", krb5rc);
1082 if (krb5rc && kssl_err.text)
1083 printf("kssl_cget_tkt kssl_err=%s\n", kssl_err.text);
1084 }
1085 #endif /* KSSL_DEBUG */

1087 if (krb5rc)
1088 {
1089 ssl3_send_alert(s,SSL3_AL_FATAL,
1090 SSL_AD_HANDSHAKE_FAILURE);
1091 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,
1092 kssl_err.reason);
1093 goto err;
1094 }

1096 /* 20010406 VRS - Earlier versions used KRB5 AP_REQ
1097 ** in place of RFC 2712 KerberosWrapper, as in:
1098 **
1099 ** Send ticket (copy to *p, set n = length)
1100 ** n = krb5_ap_req.length;
1101 ** memcpy(p, krb5_ap_req.data, krb5_ap_req.length);
1102 ** if (krb5_ap_req.data)
1103 ** kssl_krb5_free_data_contents(NULL,&krb5_ap_req);
1104 **
1105 ** Now using real RFC 2712 KerberosWrapper
1106 ** (Thanks to Simon Wilkinson <sxw@sxw.org.uk>)
1107 ** Note: 2712 "opaque" types are here replaced
1108 ** with a 2-byte length followed by the value.
1109 ** Example:
1110 ** KerberosWrapper= xx xx asn1ticket 0 0 xx xx encpms
1111 ** Where "xx xx" = length bytes. Shown here with
1112 ** optional authenticator omitted.
1113 */

1115 /* KerberosWrapper.Ticket */
1116 s2n(enc_ticket->length,p);
1117 memcpy(p, enc_ticket->data, enc_ticket->length);

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 18

1118 p+= enc_ticket->length;
1119 n = enc_ticket->length + 2;

1121 /* KerberosWrapper.Authenticator */
1122 if (authp && authp->length)
1123 {
1124 s2n(authp->length,p);
1125 memcpy(p, authp->data, authp->length);
1126 p+= authp->length;
1127 n+= authp->length + 2;
1128
1129 free(authp->data);
1130 authp->data = NULL;
1131 authp->length = 0;
1132 }
1133 else
1134 {
1135 s2n(0,p);/* null authenticator length */
1136 n+=2;
1137 }
1138
1139 if (RAND_bytes(tmp_buf,sizeof tmp_buf) <= 0)
1140 goto err;

1142 /* 20010420 VRS. Tried it this way; failed.
1143 ** EVP_EncryptInit_ex(&ciph_ctx,enc, NULL,NULL);
1144 ** EVP_CIPHER_CTX_set_key_length(&ciph_ctx,
1145 ** kssl_ctx->length);
1146 ** EVP_EncryptInit_ex(&ciph_ctx,NULL, key,iv);
1147 */

1149 memset(iv, 0, sizeof iv); /* per RFC 1510 */
1150 EVP_EncryptInit_ex(&ciph_ctx,enc, NULL,
1151 kssl_ctx->key,iv);
1152 EVP_EncryptUpdate(&ciph_ctx,epms,&outl,tmp_buf,
1153 sizeof tmp_buf);
1154 EVP_EncryptFinal_ex(&ciph_ctx,&(epms[outl]),&padl);
1155 outl += padl;
1156 if (outl > (int)sizeof epms)
1157 {
1158 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE, ERR
1159 goto err;
1160 }
1161 EVP_CIPHER_CTX_cleanup(&ciph_ctx);

1163 /* KerberosWrapper.EncryptedPreMasterSecret */
1164 s2n(outl,p);
1165 memcpy(p, epms, outl);
1166 p+=outl;
1167 n+=outl + 2;

1169 s->session->master_key_length=
1170 s->method->ssl3_enc->generate_master_secret(s,
1171 s->session->master_key,
1172 tmp_buf, sizeof tmp_buf);

1174 OPENSSL_cleanse(tmp_buf, sizeof tmp_buf);
1175 OPENSSL_cleanse(epms, outl);
1176 }
1177 #endif
1178 #ifndef OPENSSL_NO_DH
1179 else if (alg_k & (SSL_kEDH|SSL_kDHr|SSL_kDHd))
1180 {
1181 DH *dh_srvr,*dh_clnt;

1183 if (s->session->sess_cert->peer_dh_tmp != NULL)

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 19

1184 dh_srvr=s->session->sess_cert->peer_dh_tmp;
1185 else
1186 {
1187 /* we get them from the cert */
1188 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_HANDSHAKE
1189 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,SSL_
1190 goto err;
1191 }
1192
1193 /* generate a new random key */
1194 if ((dh_clnt=DHparams_dup(dh_srvr)) == NULL)
1195 {
1196 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,ERR_
1197 goto err;
1198 }
1199 if (!DH_generate_key(dh_clnt))
1200 {
1201 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,ERR_
1202 goto err;
1203 }

1205 /* use the ’p’ output buffer for the DH key, but
1206 * make sure to clear it out afterwards */

1208 n=DH_compute_key(p,dh_srvr->pub_key,dh_clnt);

1210 if (n <= 0)
1211 {
1212 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,ERR_
1213 goto err;
1214 }

1216 /* generate master key from the result */
1217 s->session->master_key_length=
1218 s->method->ssl3_enc->generate_master_secret(s,
1219 s->session->master_key,p,n);
1220 /* clean up */
1221 memset(p,0,n);

1223 /* send off the data */
1224 n=BN_num_bytes(dh_clnt->pub_key);
1225 s2n(n,p);
1226 BN_bn2bin(dh_clnt->pub_key,p);
1227 n+=2;

1229 DH_free(dh_clnt);

1231 /* perhaps clean things up a bit EAY EAY EAY EAY*/
1232 }
1233 #endif
1234 #ifndef OPENSSL_NO_ECDH
1235 else if (alg_k & (SSL_kEECDH|SSL_kECDHr|SSL_kECDHe))
1236 {
1237 const EC_GROUP *srvr_group = NULL;
1238 EC_KEY *tkey;
1239 int ecdh_clnt_cert = 0;
1240 int field_size = 0;

1242 /* Did we send out the client’s
1243 * ECDH share for use in premaster
1244 * computation as part of client certificate?
1245 * If so, set ecdh_clnt_cert to 1.
1246 */
1247 if ((alg_k & (SSL_kECDHr|SSL_kECDHe)) && (s->cert != NUL
1248 {
1249 /* XXX: For now, we do not support client

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 20

1250 * authentication using ECDH certificates.
1251 * To add such support, one needs to add
1252 * code that checks for appropriate
1253 * conditions and sets ecdh_clnt_cert to 1.
1254 * For example, the cert have an ECC
1255 * key on the same curve as the server’s
1256 * and the key should be authorized for
1257 * key agreement.
1258 *
1259 * One also needs to add code in ssl3_connect
1260 * to skip sending the certificate verify
1261 * message.
1262 *
1263 * if ((s->cert->key->privatekey != NULL) &&
1264 * (s->cert->key->privatekey->type ==
1265 * EVP_PKEY_EC) && ...)
1266 * ecdh_clnt_cert = 1;
1267 */
1268 }

1270 if (s->session->sess_cert->peer_ecdh_tmp != NULL)
1271 {
1272 tkey = s->session->sess_cert->peer_ecdh_tmp;
1273 }
1274 else
1275 {
1276 /* Get the Server Public Key from Cert */
1277 srvr_pub_pkey = X509_get_pubkey(s->session-> \
1278 sess_cert->peer_pkeys[SSL_PKEY_ECC].x509);
1279 if ((srvr_pub_pkey == NULL) ||
1280 (srvr_pub_pkey->type != EVP_PKEY_EC) ||
1281 (srvr_pub_pkey->pkey.ec == NULL))
1282 {
1283 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHA
1284 ERR_R_INTERNAL_ERROR);
1285 goto err;
1286 }

1288 tkey = srvr_pub_pkey->pkey.ec;
1289 }

1291 srvr_group = EC_KEY_get0_group(tkey);
1292 srvr_ecpoint = EC_KEY_get0_public_key(tkey);

1294 if ((srvr_group == NULL) || (srvr_ecpoint == NULL))
1295 {
1296 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,
1297 ERR_R_INTERNAL_ERROR);
1298 goto err;
1299 }

1301 if ((clnt_ecdh=EC_KEY_new()) == NULL)
1302 {
1303 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,ERR_
1304 goto err;
1305 }

1307 if (!EC_KEY_set_group(clnt_ecdh, srvr_group))
1308 {
1309 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,ERR_
1310 goto err;
1311 }
1312 if (ecdh_clnt_cert)
1313 {
1314 /* Reuse key info from our certificate
1315 * We only need our private key to perform

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 21

1316 * the ECDH computation.
1317 */
1318 const BIGNUM *priv_key;
1319 tkey = s->cert->key->privatekey->pkey.ec;
1320 priv_key = EC_KEY_get0_private_key(tkey);
1321 if (priv_key == NULL)
1322 {
1323 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHA
1324 goto err;
1325 }
1326 if (!EC_KEY_set_private_key(clnt_ecdh, priv_key)
1327 {
1328 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHA
1329 goto err;
1330 }
1331 }
1332 else
1333 {
1334 /* Generate a new ECDH key pair */
1335 if (!(EC_KEY_generate_key(clnt_ecdh)))
1336 {
1337 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHA
1338 goto err;
1339 }
1340 }

1342 /* use the ’p’ output buffer for the ECDH key, but
1343 * make sure to clear it out afterwards
1344 */

1346 field_size = EC_GROUP_get_degree(srvr_group);
1347 if (field_size <= 0)
1348 {
1349 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,
1350 ERR_R_ECDH_LIB);
1351 goto err;
1352 }
1353 n=ECDH_compute_key(p, (field_size+7)/8, srvr_ecpoint, cl
1354 if (n <= 0)
1355 {
1356 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,
1357 ERR_R_ECDH_LIB);
1358 goto err;
1359 }

1361 /* generate master key from the result */
1362 s->session->master_key_length = s->method->ssl3_enc \
1363 -> generate_master_secret(s,
1364 s->session->master_key,
1365 p, n);

1367 memset(p, 0, n); /* clean up */

1369 if (ecdh_clnt_cert)
1370 {
1371 /* Send empty client key exch message */
1372 n = 0;
1373 }
1374 else
1375 {
1376 /* First check the size of encoding and
1377 * allocate memory accordingly.
1378 */
1379 encoded_pt_len =
1380 EC_POINT_point2oct(srvr_group,
1381 EC_KEY_get0_public_key(clnt_ecdh),

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 22

1382 POINT_CONVERSION_UNCOMPRESSED,
1383 NULL, 0, NULL);

1385 encodedPoint = (unsigned char *)
1386 OPENSSL_malloc(encoded_pt_len *
1387 sizeof(unsigned char));
1388 bn_ctx = BN_CTX_new();
1389 if ((encodedPoint == NULL) ||
1390 (bn_ctx == NULL))
1391 {
1392 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHA
1393 goto err;
1394 }

1396 /* Encode the public key */
1397 n = EC_POINT_point2oct(srvr_group,
1398 EC_KEY_get0_public_key(clnt_ecdh),
1399 POINT_CONVERSION_UNCOMPRESSED,
1400 encodedPoint, encoded_pt_len, bn_ctx);

1402 *p = n; /* length of encoded point */
1403 /* Encoded point will be copied here */
1404 p += 1;
1405 /* copy the point */
1406 memcpy((unsigned char *)p, encodedPoint, n);
1407 /* increment n to account for length field */
1408 n += 1;
1409 }

1411 /* Free allocated memory */
1412 BN_CTX_free(bn_ctx);
1413 if (encodedPoint != NULL) OPENSSL_free(encodedPoint);
1414 if (clnt_ecdh != NULL)
1415 EC_KEY_free(clnt_ecdh);
1416 EVP_PKEY_free(srvr_pub_pkey);
1417 }
1418 #endif /* !OPENSSL_NO_ECDH */

1420 #ifndef OPENSSL_NO_PSK
1421 else if (alg_k & SSL_kPSK)
1422 {
1423 char identity[PSK_MAX_IDENTITY_LEN];
1424 unsigned char *t = NULL;
1425 unsigned char psk_or_pre_ms[PSK_MAX_PSK_LEN*2+4];
1426 unsigned int pre_ms_len = 0, psk_len = 0;
1427 int psk_err = 1;

1429 n = 0;
1430 if (s->psk_client_callback == NULL)
1431 {
1432 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,
1433 SSL_R_PSK_NO_CLIENT_CB);
1434 goto err;
1435 }

1437 psk_len = s->psk_client_callback(s, s->ctx->psk_identity
1438 identity, PSK_MAX_IDENTITY_LEN,
1439 psk_or_pre_ms, sizeof(psk_or_pre_ms));
1440 if (psk_len > PSK_MAX_PSK_LEN)
1441 {
1442 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,
1443 ERR_R_INTERNAL_ERROR);
1444 goto psk_err;
1445 }
1446 else if (psk_len == 0)
1447 {

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 23

1448 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,
1449 SSL_R_PSK_IDENTITY_NOT_FOUND);
1450 goto psk_err;
1451 }

1453 /* create PSK pre_master_secret */
1454 pre_ms_len = 2+psk_len+2+psk_len;
1455 t = psk_or_pre_ms;
1456 memmove(psk_or_pre_ms+psk_len+4, psk_or_pre_ms, psk_len)
1457 s2n(psk_len, t);
1458 memset(t, 0, psk_len);
1459 t+=psk_len;
1460 s2n(psk_len, t);

1462 if (s->session->psk_identity_hint != NULL)
1463 OPENSSL_free(s->session->psk_identity_hint);
1464 s->session->psk_identity_hint = BUF_strdup(s->ctx->psk_i
1465 if (s->ctx->psk_identity_hint != NULL &&
1466 s->session->psk_identity_hint == NULL)
1467 {
1468 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,
1469 ERR_R_MALLOC_FAILURE);
1470 goto psk_err;
1471 }

1473 if (s->session->psk_identity != NULL)
1474 OPENSSL_free(s->session->psk_identity);
1475 s->session->psk_identity = BUF_strdup(identity);
1476 if (s->session->psk_identity == NULL)
1477 {
1478 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,
1479 ERR_R_MALLOC_FAILURE);
1480 goto psk_err;
1481 }

1483 s->session->master_key_length =
1484 s->method->ssl3_enc->generate_master_secret(s,
1485 s->session->master_key,
1486 psk_or_pre_ms, pre_ms_len);
1487 n = strlen(identity);
1488 s2n(n, p);
1489 memcpy(p, identity, n);
1490 n+=2;
1491 psk_err = 0;
1492 psk_err:
1493 OPENSSL_cleanse(identity, PSK_MAX_IDENTITY_LEN);
1494 OPENSSL_cleanse(psk_or_pre_ms, sizeof(psk_or_pre_ms));
1495 if (psk_err != 0)
1496 {
1497 ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_HANDSHA
1498 goto err;
1499 }
1500 }
1501 #endif
1502 else
1503 {
1504 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_HANDSHAKE_FAILURE
1505 SSLerr(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE,ERR_R_INTERN
1506 goto err;
1507 }
1508
1509 d = dtls1_set_message_header(s, d,
1510 SSL3_MT_CLIENT_KEY_EXCHANGE, n, 0, n);
1511 /*
1512 *(d++)=SSL3_MT_CLIENT_KEY_EXCHANGE;
1513 l2n3(n,d);

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 24

1514 l2n(s->d1->handshake_write_seq,d);
1515 s->d1->handshake_write_seq++;
1516 */
1517
1518 s->state=SSL3_ST_CW_KEY_EXCH_B;
1519 /* number of bytes to write */
1520 s->init_num=n+DTLS1_HM_HEADER_LENGTH;
1521 s->init_off=0;

1523 /* buffer the message to handle re-xmits */
1524 dtls1_buffer_message(s, 0);
1525 }
1526
1527 /* SSL3_ST_CW_KEY_EXCH_B */
1528 return(dtls1_do_write(s,SSL3_RT_HANDSHAKE));
1529 err:
1530 #ifndef OPENSSL_NO_ECDH
1531 BN_CTX_free(bn_ctx);
1532 if (encodedPoint != NULL) OPENSSL_free(encodedPoint);
1533 if (clnt_ecdh != NULL)
1534 EC_KEY_free(clnt_ecdh);
1535 EVP_PKEY_free(srvr_pub_pkey);
1536 #endif
1537 return(-1);
1538 }

1540 int dtls1_send_client_verify(SSL *s)
1541 {
1542 unsigned char *p,*d;
1543 unsigned char data[MD5_DIGEST_LENGTH+SHA_DIGEST_LENGTH];
1544 EVP_PKEY *pkey;
1545 #ifndef OPENSSL_NO_RSA
1546 unsigned u=0;
1547 #endif
1548 unsigned long n;
1549 #if !defined(OPENSSL_NO_DSA) || !defined(OPENSSL_NO_ECDSA)
1550 int j;
1551 #endif

1553 if (s->state == SSL3_ST_CW_CERT_VRFY_A)
1554 {
1555 d=(unsigned char *)s->init_buf->data;
1556 p= &(d[DTLS1_HM_HEADER_LENGTH]);
1557 pkey=s->cert->key->privatekey;

1559 s->method->ssl3_enc->cert_verify_mac(s,
1560 NID_sha1,
1561 &(data[MD5_DIGEST_LENGTH]));

1563 #ifndef OPENSSL_NO_RSA
1564 if (pkey->type == EVP_PKEY_RSA)
1565 {
1566 s->method->ssl3_enc->cert_verify_mac(s,
1567 NID_md5,
1568 &(data[0]));
1569 if (RSA_sign(NID_md5_sha1, data,
1570 MD5_DIGEST_LENGTH+SHA_DIGEST_LENGTH,
1571 &(p[2]), &u, pkey->pkey.rsa) <= 0)
1572 {
1573 SSLerr(SSL_F_DTLS1_SEND_CLIENT_VERIFY,ERR_R_RSA_
1574 goto err;
1575 }
1576 s2n(u,p);
1577 n=u+2;
1578 }
1579 else

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 25

1580 #endif
1581 #ifndef OPENSSL_NO_DSA
1582 if (pkey->type == EVP_PKEY_DSA)
1583 {
1584 if (!DSA_sign(pkey->save_type,
1585 &(data[MD5_DIGEST_LENGTH]),
1586 SHA_DIGEST_LENGTH,&(p[2]),
1587 (unsigned int *)&j,pkey->pkey.dsa))
1588 {
1589 SSLerr(SSL_F_DTLS1_SEND_CLIENT_VERIFY,ERR_R_DSA_
1590 goto err;
1591 }
1592 s2n(j,p);
1593 n=j+2;
1594 }
1595 else
1596 #endif
1597 #ifndef OPENSSL_NO_ECDSA
1598 if (pkey->type == EVP_PKEY_EC)
1599 {
1600 if (!ECDSA_sign(pkey->save_type,
1601 &(data[MD5_DIGEST_LENGTH]),
1602 SHA_DIGEST_LENGTH,&(p[2]),
1603 (unsigned int *)&j,pkey->pkey.ec))
1604 {
1605 SSLerr(SSL_F_DTLS1_SEND_CLIENT_VERIFY,
1606 ERR_R_ECDSA_LIB);
1607 goto err;
1608 }
1609 s2n(j,p);
1610 n=j+2;
1611 }
1612 else
1613 #endif
1614 {
1615 SSLerr(SSL_F_DTLS1_SEND_CLIENT_VERIFY,ERR_R_INTERNAL_ERR
1616 goto err;
1617 }

1619 d = dtls1_set_message_header(s, d,
1620 SSL3_MT_CERTIFICATE_VERIFY, n, 0, n) ;

1622 s->init_num=(int)n+DTLS1_HM_HEADER_LENGTH;
1623 s->init_off=0;

1625 /* buffer the message to handle re-xmits */
1626 dtls1_buffer_message(s, 0);

1628 s->state = SSL3_ST_CW_CERT_VRFY_B;
1629 }

1631 /* s->state = SSL3_ST_CW_CERT_VRFY_B */
1632 return(dtls1_do_write(s,SSL3_RT_HANDSHAKE));
1633 err:
1634 return(-1);
1635 }

1637 int dtls1_send_client_certificate(SSL *s)
1638 {
1639 X509 *x509=NULL;
1640 EVP_PKEY *pkey=NULL;
1641 int i;
1642 unsigned long l;

1644 if (s->state == SSL3_ST_CW_CERT_A)
1645 {

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 26

1646 if ((s->cert == NULL) ||
1647 (s->cert->key->x509 == NULL) ||
1648 (s->cert->key->privatekey == NULL))
1649 s->state=SSL3_ST_CW_CERT_B;
1650 else
1651 s->state=SSL3_ST_CW_CERT_C;
1652 }

1654 /* We need to get a client cert */
1655 if (s->state == SSL3_ST_CW_CERT_B)
1656 {
1657 /* If we get an error, we need to
1658 * ssl->rwstate=SSL_X509_LOOKUP; return(-1);
1659 * We then get retied later */
1660 i=0;
1661 i = ssl_do_client_cert_cb(s, &x509, &pkey);
1662 if (i < 0)
1663 {
1664 s->rwstate=SSL_X509_LOOKUP;
1665 return(-1);
1666 }
1667 s->rwstate=SSL_NOTHING;
1668 if ((i == 1) && (pkey != NULL) && (x509 != NULL))
1669 {
1670 s->state=SSL3_ST_CW_CERT_B;
1671 if (!SSL_use_certificate(s,x509) ||
1672 !SSL_use_PrivateKey(s,pkey))
1673 i=0;
1674 }
1675 else if (i == 1)
1676 {
1677 i=0;
1678 SSLerr(SSL_F_DTLS1_SEND_CLIENT_CERTIFICATE,SSL_R_BAD_DAT
1679 }

1681 if (x509 != NULL) X509_free(x509);
1682 if (pkey != NULL) EVP_PKEY_free(pkey);
1683 if (i == 0)
1684 {
1685 if (s->version == SSL3_VERSION)
1686 {
1687 s->s3->tmp.cert_req=0;
1688 ssl3_send_alert(s,SSL3_AL_WARNING,SSL_AD_NO_CERT
1689 return(1);
1690 }
1691 else
1692 {
1693 s->s3->tmp.cert_req=2;
1694 }
1695 }

1697 /* Ok, we have a cert */
1698 s->state=SSL3_ST_CW_CERT_C;
1699 }

1701 if (s->state == SSL3_ST_CW_CERT_C)
1702 {
1703 s->state=SSL3_ST_CW_CERT_D;
1704 l=dtls1_output_cert_chain(s,
1705 (s->s3->tmp.cert_req == 2)?NULL:s->cert->key->x509);
1706 s->init_num=(int)l;
1707 s->init_off=0;

1709 /* set header called by dtls1_output_cert_chain() */

1711 /* buffer the message to handle re-xmits */

new/usr/src/lib/openssl/libsunw_ssl/d1_clnt.c 27

1712 dtls1_buffer_message(s, 0);
1713 }
1714 /* SSL3_ST_CW_CERT_D */
1715 return(dtls1_do_write(s,SSL3_RT_HANDSHAKE));
1716 }

new/usr/src/lib/openssl/libsunw_ssl/d1_enc.c 1

**
 9369 Fri May 30 18:32:18 2014
new/usr/src/lib/openssl/libsunw_ssl/d1_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/d1_enc.c */
2 /*
3 * DTLS implementation written by Nagendra Modadugu
4 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
5 */
6 /* ==
7 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * openssl-core@openssl.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */
59 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
60 * All rights reserved.
61 *

new/usr/src/lib/openssl/libsunw_ssl/d1_enc.c 2

62 * This package is an SSL implementation written
63 * by Eric Young (eay@cryptsoft.com).
64 * The implementation was written so as to conform with Netscapes SSL.
65 *
66 * This library is free for commercial and non-commercial use as long as
67 * the following conditions are aheared to. The following conditions
68 * apply to all code found in this distribution, be it the RC4, RSA,
69 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
70 * included with this distribution is covered by the same copyright terms
71 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
72 *
73 * Copyright remains Eric Young’s, and as such any Copyright notices in
74 * the code are not to be removed.
75 * If this package is used in a product, Eric Young should be given attribution
76 * as the author of the parts of the library used.
77 * This can be in the form of a textual message at program startup or
78 * in documentation (online or textual) provided with the package.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * "This product includes cryptographic software written by
91 * Eric Young (eay@cryptsoft.com)"
92 * The word ’cryptographic’ can be left out if the rouines from the library
93 * being used are not cryptographic related :-).
94 * 4. If you include any Windows specific code (or a derivative thereof) from
95 * the apps directory (application code) you must include an acknowledgement:
96 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
97 *
98 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * The licence and distribution terms for any publically available version or
111 * derivative of this code cannot be changed. i.e. this code cannot simply be
112 * copied and put under another distribution licence
113 * [including the GNU Public Licence.]
114 */

116 #include <stdio.h>
117 #include "ssl_locl.h"
118 #ifndef OPENSSL_NO_COMP
119 #include <openssl/comp.h>
120 #endif
121 #include <openssl/evp.h>
122 #include <openssl/hmac.h>
123 #include <openssl/md5.h>
124 #include <openssl/rand.h>
125 #ifdef KSSL_DEBUG
126 #include <openssl/des.h>
127 #endif

new/usr/src/lib/openssl/libsunw_ssl/d1_enc.c 3

129 /* dtls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively
130 *
131 * Returns:
132 * 0: (in non-constant time) if the record is publically invalid (i.e. too
133 * short etc).
134 * 1: if the record’s padding is valid / the encryption was successful.
135 * -1: if the record’s padding/AEAD-authenticator is invalid or, if sending,
136 * an internal error occured. */
137 int dtls1_enc(SSL *s, int send)
138 {
139 SSL3_RECORD *rec;
140 EVP_CIPHER_CTX *ds;
141 unsigned long l;
142 int bs,i,j,k,mac_size=0;
143 const EVP_CIPHER *enc;

145 if (send)
146 {
147 if (EVP_MD_CTX_md(s->write_hash))
148 {
149 mac_size=EVP_MD_CTX_size(s->write_hash);
150 if (mac_size < 0)
151 return -1;
152 }
153 ds=s->enc_write_ctx;
154 rec= &(s->s3->wrec);
155 if (s->enc_write_ctx == NULL)
156 enc=NULL;
157 else
158 {
159 enc=EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
160 if (rec->data != rec->input)
161 /* we can’t write into the input stream */
162 fprintf(stderr, "%s:%d: rec->data != rec->input\
163 __FILE__, __LINE__);
164 else if (EVP_CIPHER_block_size(ds->cipher) > 1)
165 {
166 if (RAND_bytes(rec->input, EVP_CIPHER_block_size
167 return -1;
168 }
169 }
170 }
171 else
172 {
173 if (EVP_MD_CTX_md(s->read_hash))
174 {
175 mac_size=EVP_MD_CTX_size(s->read_hash);
176 OPENSSL_assert(mac_size >= 0);
177 }
178 ds=s->enc_read_ctx;
179 rec= &(s->s3->rrec);
180 if (s->enc_read_ctx == NULL)
181 enc=NULL;
182 else
183 enc=EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
184 }

186 #ifdef KSSL_DEBUG
187 printf("dtls1_enc(%d)\n", send);
188 #endif /* KSSL_DEBUG */

190 if ((s->session == NULL) || (ds == NULL) ||
191 (enc == NULL))
192 {
193 memmove(rec->data,rec->input,rec->length);

new/usr/src/lib/openssl/libsunw_ssl/d1_enc.c 4

194 rec->input=rec->data;
195 }
196 else
197 {
198 l=rec->length;
199 bs=EVP_CIPHER_block_size(ds->cipher);

201 if ((bs != 1) && send)
202 {
203 i=bs-((int)l%bs);

205 /* Add weird padding of upto 256 bytes */

207 /* we need to add ’i’ padding bytes of value j */
208 j=i-1;
209 if (s->options & SSL_OP_TLS_BLOCK_PADDING_BUG)
210 {
211 if (s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG)
212 j++;
213 }
214 for (k=(int)l; k<(int)(l+i); k++)
215 rec->input[k]=j;
216 l+=i;
217 rec->length+=i;
218 }

220 #ifdef KSSL_DEBUG
221 {
222 unsigned long ui;
223 printf("EVP_Cipher(ds=%p,rec->data=%p,rec->input=%p,l=%ld) ==>\n
224 ds,rec->data,rec->input,l);
225 printf("\tEVP_CIPHER_CTX: %d buf_len, %d key_len [%d %d], %d iv_
226 ds->buf_len, ds->cipher->key_len,
227 DES_KEY_SZ, DES_SCHEDULE_SZ,
228 ds->cipher->iv_len);
229 printf("\t\tIV: ");
230 for (i=0; i<ds->cipher->iv_len; i++) printf("%02X", ds->iv[i]);
231 printf("\n");
232 printf("\trec->input=");
233 for (ui=0; ui<l; ui++) printf(" %02x", rec->input[ui]);
234 printf("\n");
235 }
236 #endif /* KSSL_DEBUG */

238 if (!send)
239 {
240 if (l == 0 || l%bs != 0)
241 return 0;
242 }
243
244 EVP_Cipher(ds,rec->data,rec->input,l);

246 #ifdef KSSL_DEBUG
247 {
248 unsigned long i;
249 printf("\trec->data=");
250 for (i=0; i<l; i++)
251 printf(" %02x", rec->data[i]); printf("\n");
252 }
253 #endif /* KSSL_DEBUG */

255 if ((bs != 1) && !send)
256 return tls1_cbc_remove_padding(s, rec, bs, mac_size);
257 }
258 return(1);
259 }

new/usr/src/lib/openssl/libsunw_ssl/d1_enc.c 5

new/usr/src/lib/openssl/libsunw_ssl/d1_lib.c 1

**
 12630 Fri May 30 18:32:18 2014
new/usr/src/lib/openssl/libsunw_ssl/d1_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/d1_lib.c */
2 /*
3 * DTLS implementation written by Nagendra Modadugu
4 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
5 */
6 /* ==
7 * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * openssl-core@OpenSSL.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */

60 #include <stdio.h>
61 #define USE_SOCKETS

new/usr/src/lib/openssl/libsunw_ssl/d1_lib.c 2

62 #include <openssl/objects.h>
63 #include "ssl_locl.h"

65 #if defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VMS)
66 #include <sys/timeb.h>
67 #endif

69 static void get_current_time(struct timeval *t);
70 const char dtls1_version_str[]="DTLSv1" OPENSSL_VERSION_PTEXT;
71 int dtls1_listen(SSL *s, struct sockaddr *client);

73 SSL3_ENC_METHOD DTLSv1_enc_data={
74 dtls1_enc,
75 tls1_mac,
76 tls1_setup_key_block,
77 tls1_generate_master_secret,
78 tls1_change_cipher_state,
79 tls1_final_finish_mac,
80 TLS1_FINISH_MAC_LENGTH,
81 tls1_cert_verify_mac,
82 TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
83 TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
84 tls1_alert_code,
85 tls1_export_keying_material,
86 };

88 long dtls1_default_timeout(void)
89 {
90 /* 2 hours, the 24 hours mentioned in the DTLSv1 spec
91 * is way too long for http, the cache would over fill */
92 return(60*60*2);
93 }

95 int dtls1_new(SSL *s)
96 {
97 DTLS1_STATE *d1;

99 if (!ssl3_new(s)) return(0);
100 if ((d1=OPENSSL_malloc(sizeof *d1)) == NULL) return (0);
101 memset(d1,0, sizeof *d1);

103 /* d1->handshake_epoch=0; */

105 d1->unprocessed_rcds.q=pqueue_new();
106 d1->processed_rcds.q=pqueue_new();
107 d1->buffered_messages = pqueue_new();
108 d1->sent_messages=pqueue_new();
109 d1->buffered_app_data.q=pqueue_new();

111 if (s->server)
112 {
113 d1->cookie_len = sizeof(s->d1->cookie);
114 }

116 if(! d1->unprocessed_rcds.q || ! d1->processed_rcds.q
117 || ! d1->buffered_messages || ! d1->sent_messages || ! d1->buffered_app_
118 {
119 if (d1->unprocessed_rcds.q) pqueue_free(d1->unprocessed_rcds.q);
120 if (d1->processed_rcds.q) pqueue_free(d1->processed_rcds.q);
121 if (d1->buffered_messages) pqueue_free(d1->buffered_messages);
122 if (d1->sent_messages) pqueue_free(d1->sent_messages);
123 if (d1->buffered_app_data.q) pqueue_free(d1->buffered_app_data.
124 OPENSSL_free(d1);
125 return (0);
126 }

new/usr/src/lib/openssl/libsunw_ssl/d1_lib.c 3

128 s->d1=d1;
129 s->method->ssl_clear(s);
130 return(1);
131 }

133 static void dtls1_clear_queues(SSL *s)
134 {
135 pitem *item = NULL;
136 hm_fragment *frag = NULL;
137 DTLS1_RECORD_DATA *rdata;

139 while((item = pqueue_pop(s->d1->unprocessed_rcds.q)) != NULL)
140 {
141 rdata = (DTLS1_RECORD_DATA *) item->data;
142 if (rdata->rbuf.buf)
143 {
144 OPENSSL_free(rdata->rbuf.buf);
145 }
146 OPENSSL_free(item->data);
147 pitem_free(item);
148 }

150 while((item = pqueue_pop(s->d1->processed_rcds.q)) != NULL)
151 {
152 rdata = (DTLS1_RECORD_DATA *) item->data;
153 if (rdata->rbuf.buf)
154 {
155 OPENSSL_free(rdata->rbuf.buf);
156 }
157 OPENSSL_free(item->data);
158 pitem_free(item);
159 }

161 while((item = pqueue_pop(s->d1->buffered_messages)) != NULL)
162 {
163 frag = (hm_fragment *)item->data;
164 OPENSSL_free(frag->fragment);
165 OPENSSL_free(frag);
166 pitem_free(item);
167 }

169 while ((item = pqueue_pop(s->d1->sent_messages)) != NULL)
170 {
171 frag = (hm_fragment *)item->data;
172 OPENSSL_free(frag->fragment);
173 OPENSSL_free(frag);
174 pitem_free(item);
175 }

177 while ((item = pqueue_pop(s->d1->buffered_app_data.q)) != NULL)
178 {
179 frag = (hm_fragment *)item->data;
180 OPENSSL_free(frag->fragment);
181 OPENSSL_free(frag);
182 pitem_free(item);
183 }
184 }

186 void dtls1_free(SSL *s)
187 {
188 ssl3_free(s);

190 dtls1_clear_queues(s);

192 pqueue_free(s->d1->unprocessed_rcds.q);
193 pqueue_free(s->d1->processed_rcds.q);

new/usr/src/lib/openssl/libsunw_ssl/d1_lib.c 4

194 pqueue_free(s->d1->buffered_messages);
195 pqueue_free(s->d1->sent_messages);
196 pqueue_free(s->d1->buffered_app_data.q);

198 OPENSSL_free(s->d1);
199 s->d1 = NULL;
200 }

202 void dtls1_clear(SSL *s)
203 {
204 pqueue unprocessed_rcds;
205 pqueue processed_rcds;
206 pqueue buffered_messages;
207 pqueue sent_messages;
208 pqueue buffered_app_data;
209 unsigned int mtu;

211 if (s->d1)
212 {
213 unprocessed_rcds = s->d1->unprocessed_rcds.q;
214 processed_rcds = s->d1->processed_rcds.q;
215 buffered_messages = s->d1->buffered_messages;
216 sent_messages = s->d1->sent_messages;
217 buffered_app_data = s->d1->buffered_app_data.q;
218 mtu = s->d1->mtu;

220 dtls1_clear_queues(s);

222 memset(s->d1, 0, sizeof(*(s->d1)));

224 if (s->server)
225 {
226 s->d1->cookie_len = sizeof(s->d1->cookie);
227 }

229 if (SSL_get_options(s) & SSL_OP_NO_QUERY_MTU)
230 {
231 s->d1->mtu = mtu;
232 }

234 s->d1->unprocessed_rcds.q = unprocessed_rcds;
235 s->d1->processed_rcds.q = processed_rcds;
236 s->d1->buffered_messages = buffered_messages;
237 s->d1->sent_messages = sent_messages;
238 s->d1->buffered_app_data.q = buffered_app_data;
239 }

241 ssl3_clear(s);
242 if (s->options & SSL_OP_CISCO_ANYCONNECT)
243 s->version=DTLS1_BAD_VER;
244 else
245 s->version=DTLS1_VERSION;
246 }

248 long dtls1_ctrl(SSL *s, int cmd, long larg, void *parg)
249 {
250 int ret=0;

252 switch (cmd)
253 {
254 case DTLS_CTRL_GET_TIMEOUT:
255 if (dtls1_get_timeout(s, (struct timeval*) parg) != NULL)
256 {
257 ret = 1;
258 }
259 break;

new/usr/src/lib/openssl/libsunw_ssl/d1_lib.c 5

260 case DTLS_CTRL_HANDLE_TIMEOUT:
261 ret = dtls1_handle_timeout(s);
262 break;
263 case DTLS_CTRL_LISTEN:
264 ret = dtls1_listen(s, parg);
265 break;

267 default:
268 ret = ssl3_ctrl(s, cmd, larg, parg);
269 break;
270 }
271 return(ret);
272 }

274 /*
275 * As it’s impossible to use stream ciphers in "datagram" mode, this
276 * simple filter is designed to disengage them in DTLS. Unfortunately
277 * there is no universal way to identify stream SSL_CIPHER, so we have
278 * to explicitly list their SSL_* codes. Currently RC4 is the only one
279 * available, but if new ones emerge, they will have to be added...
280 */
281 const SSL_CIPHER *dtls1_get_cipher(unsigned int u)
282 {
283 const SSL_CIPHER *ciph = ssl3_get_cipher(u);

285 if (ciph != NULL)
286 {
287 if (ciph->algorithm_enc == SSL_RC4)
288 return NULL;
289 }

291 return ciph;
292 }

294 void dtls1_start_timer(SSL *s)
295 {
296 #ifndef OPENSSL_NO_SCTP
297 /* Disable timer for SCTP */
298 if (BIO_dgram_is_sctp(SSL_get_wbio(s)))
299 {
300 memset(&(s->d1->next_timeout), 0, sizeof(struct timeval));
301 return;
302 }
303 #endif

305 /* If timer is not set, initialize duration with 1 second */
306 if (s->d1->next_timeout.tv_sec == 0 && s->d1->next_timeout.tv_usec == 0)
307 {
308 s->d1->timeout_duration = 1;
309 }
310
311 /* Set timeout to current time */
312 get_current_time(&(s->d1->next_timeout));

314 /* Add duration to current time */
315 s->d1->next_timeout.tv_sec += s->d1->timeout_duration;
316 BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT, 0, &(s->d1->n
317 }

319 struct timeval* dtls1_get_timeout(SSL *s, struct timeval* timeleft)
320 {
321 struct timeval timenow;

323 /* If no timeout is set, just return NULL */
324 if (s->d1->next_timeout.tv_sec == 0 && s->d1->next_timeout.tv_usec == 0)
325 {

new/usr/src/lib/openssl/libsunw_ssl/d1_lib.c 6

326 return NULL;
327 }

329 /* Get current time */
330 get_current_time(&timenow);

332 /* If timer already expired, set remaining time to 0 */
333 if (s->d1->next_timeout.tv_sec < timenow.tv_sec ||
334 (s->d1->next_timeout.tv_sec == timenow.tv_sec &&
335 s->d1->next_timeout.tv_usec <= timenow.tv_usec))
336 {
337 memset(timeleft, 0, sizeof(struct timeval));
338 return timeleft;
339 }

341 /* Calculate time left until timer expires */
342 memcpy(timeleft, &(s->d1->next_timeout), sizeof(struct timeval));
343 timeleft->tv_sec -= timenow.tv_sec;
344 timeleft->tv_usec -= timenow.tv_usec;
345 if (timeleft->tv_usec < 0)
346 {
347 timeleft->tv_sec--;
348 timeleft->tv_usec += 1000000;
349 }

351 /* If remaining time is less than 15 ms, set it to 0
352 * to prevent issues because of small devergences with
353 * socket timeouts.
354 */
355 if (timeleft->tv_sec == 0 && timeleft->tv_usec < 15000)
356 {
357 memset(timeleft, 0, sizeof(struct timeval));
358 }
359

361 return timeleft;
362 }

364 int dtls1_is_timer_expired(SSL *s)
365 {
366 struct timeval timeleft;

368 /* Get time left until timeout, return false if no timer running */
369 if (dtls1_get_timeout(s, &timeleft) == NULL)
370 {
371 return 0;
372 }

374 /* Return false if timer is not expired yet */
375 if (timeleft.tv_sec > 0 || timeleft.tv_usec > 0)
376 {
377 return 0;
378 }

380 /* Timer expired, so return true */
381 return 1;
382 }

384 void dtls1_double_timeout(SSL *s)
385 {
386 s->d1->timeout_duration *= 2;
387 if (s->d1->timeout_duration > 60)
388 s->d1->timeout_duration = 60;
389 dtls1_start_timer(s);
390 }

new/usr/src/lib/openssl/libsunw_ssl/d1_lib.c 7

392 void dtls1_stop_timer(SSL *s)
393 {
394 /* Reset everything */
395 memset(&(s->d1->timeout), 0, sizeof(struct dtls1_timeout_st));
396 memset(&(s->d1->next_timeout), 0, sizeof(struct timeval));
397 s->d1->timeout_duration = 1;
398 BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT, 0, &(s->d1->n
399 /* Clear retransmission buffer */
400 dtls1_clear_record_buffer(s);
401 }

403 int dtls1_check_timeout_num(SSL *s)
404 {
405 s->d1->timeout.num_alerts++;

407 /* Reduce MTU after 2 unsuccessful retransmissions */
408 if (s->d1->timeout.num_alerts > 2)
409 {
410 s->d1->mtu = BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_GET_FALLBA
411 }

413 if (s->d1->timeout.num_alerts > DTLS1_TMO_ALERT_COUNT)
414 {
415 /* fail the connection, enough alerts have been sent */
416 SSLerr(SSL_F_DTLS1_CHECK_TIMEOUT_NUM,SSL_R_READ_TIMEOUT_EXPIRED)
417 return -1;
418 }

420 return 0;
421 }

423 int dtls1_handle_timeout(SSL *s)
424 {
425 /* if no timer is expired, don’t do anything */
426 if (!dtls1_is_timer_expired(s))
427 {
428 return 0;
429 }

431 dtls1_double_timeout(s);

433 if (dtls1_check_timeout_num(s) < 0)
434 return -1;

436 s->d1->timeout.read_timeouts++;
437 if (s->d1->timeout.read_timeouts > DTLS1_TMO_READ_COUNT)
438 {
439 s->d1->timeout.read_timeouts = 1;
440 }

442 #ifndef OPENSSL_NO_HEARTBEATS
443 if (s->tlsext_hb_pending)
444 {
445 s->tlsext_hb_pending = 0;
446 return dtls1_heartbeat(s);
447 }
448 #endif

450 dtls1_start_timer(s);
451 return dtls1_retransmit_buffered_messages(s);
452 }

454 static void get_current_time(struct timeval *t)
455 {
456 #ifdef OPENSSL_SYS_WIN32
457 struct _timeb tb;

new/usr/src/lib/openssl/libsunw_ssl/d1_lib.c 8

458 _ftime(&tb);
459 t->tv_sec = (long)tb.time;
460 t->tv_usec = (long)tb.millitm * 1000;
461 #elif defined(OPENSSL_SYS_VMS)
462 struct timeb tb;
463 ftime(&tb);
464 t->tv_sec = (long)tb.time;
465 t->tv_usec = (long)tb.millitm * 1000;
466 #else
467 gettimeofday(t, NULL);
468 #endif
469 }

471 int dtls1_listen(SSL *s, struct sockaddr *client)
472 {
473 int ret;

475 SSL_set_options(s, SSL_OP_COOKIE_EXCHANGE);
476 s->d1->listen = 1;

478 ret = SSL_accept(s);
479 if (ret <= 0) return ret;
480
481 (void) BIO_dgram_get_peer(SSL_get_rbio(s), client);
482 return 1;
483 }

new/usr/src/lib/openssl/libsunw_ssl/d1_meth.c 1

**
 3132 Fri May 30 18:32:18 2014
new/usr/src/lib/openssl/libsunw_ssl/d1_meth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/d1_meth.h */
2 /*
3 * DTLS implementation written by Nagendra Modadugu
4 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
5 */
6 /* ==
7 * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * openssl-core@OpenSSL.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */

60 #include <stdio.h>
61 #include <openssl/objects.h>

new/usr/src/lib/openssl/libsunw_ssl/d1_meth.c 2

62 #include "ssl_locl.h"

64 static const SSL_METHOD *dtls1_get_method(int ver);
65 static const SSL_METHOD *dtls1_get_method(int ver)
66 {
67 if (ver == DTLS1_VERSION)
68 return(DTLSv1_method());
69 else
70 return(NULL);
71 }

73 IMPLEMENT_dtls1_meth_func(DTLSv1_method,
74 dtls1_accept,
75 dtls1_connect,
76 dtls1_get_method)

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 1

**
 52612 Fri May 30 18:32:18 2014
new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/d1_pkt.c */
2 /*
3 * DTLS implementation written by Nagendra Modadugu
4 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
5 */
6 /* ==
7 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * openssl-core@openssl.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */
59 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
60 * All rights reserved.
61 *

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 2

62 * This package is an SSL implementation written
63 * by Eric Young (eay@cryptsoft.com).
64 * The implementation was written so as to conform with Netscapes SSL.
65 *
66 * This library is free for commercial and non-commercial use as long as
67 * the following conditions are aheared to. The following conditions
68 * apply to all code found in this distribution, be it the RC4, RSA,
69 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
70 * included with this distribution is covered by the same copyright terms
71 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
72 *
73 * Copyright remains Eric Young’s, and as such any Copyright notices in
74 * the code are not to be removed.
75 * If this package is used in a product, Eric Young should be given attribution
76 * as the author of the parts of the library used.
77 * This can be in the form of a textual message at program startup or
78 * in documentation (online or textual) provided with the package.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * "This product includes cryptographic software written by
91 * Eric Young (eay@cryptsoft.com)"
92 * The word ’cryptographic’ can be left out if the rouines from the library
93 * being used are not cryptographic related :-).
94 * 4. If you include any Windows specific code (or a derivative thereof) from
95 * the apps directory (application code) you must include an acknowledgement:
96 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
97 *
98 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * The licence and distribution terms for any publically available version or
111 * derivative of this code cannot be changed. i.e. this code cannot simply be
112 * copied and put under another distribution licence
113 * [including the GNU Public Licence.]
114 */

116 #include <stdio.h>
117 #include <errno.h>
118 #define USE_SOCKETS
119 #include "ssl_locl.h"
120 #include <openssl/evp.h>
121 #include <openssl/buffer.h>
122 #include <openssl/pqueue.h>
123 #include <openssl/rand.h>

125 /* mod 128 saturating subtract of two 64-bit values in big-endian order */
126 static int satsub64be(const unsigned char *v1,const unsigned char *v2)
127 { int ret,sat,brw,i;

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 3

129 if (sizeof(long) == 8) do
130 { const union { long one; char little; } is_endian = {1};
131 long l;

133 if (is_endian.little) break;
134 /* not reached on little-endians */
135 /* following test is redundant, because input is
136 * always aligned, but I take no chances... */
137 if (((size_t)v1|(size_t)v2)&0x7) break;

139 l = *((long *)v1);
140 l -= *((long *)v2);
141 if (l>128) return 128;
142 else if (l<-128) return -128;
143 else return (int)l;
144 } while (0);

146 ret = (int)v1[7]-(int)v2[7];
147 sat = 0;
148 brw = ret>>8; /* brw is either 0 or -1 */
149 if (ret & 0x80)
150 { for (i=6;i>=0;i--)
151 { brw += (int)v1[i]-(int)v2[i];
152 sat |= ~brw;
153 brw >>= 8;
154 }
155 }
156 else
157 { for (i=6;i>=0;i--)
158 { brw += (int)v1[i]-(int)v2[i];
159 sat |= brw;
160 brw >>= 8;
161 }
162 }
163 brw <<= 8; /* brw is either 0 or -256 */

165 if (sat&0xff) return brw | 0x80;
166 else return brw + (ret&0xFF);
167 }

169 static int have_handshake_fragment(SSL *s, int type, unsigned char *buf,
170 int len, int peek);
171 static int dtls1_record_replay_check(SSL *s, DTLS1_BITMAP *bitmap);
172 static void dtls1_record_bitmap_update(SSL *s, DTLS1_BITMAP *bitmap);
173 static DTLS1_BITMAP *dtls1_get_bitmap(SSL *s, SSL3_RECORD *rr,
174 unsigned int *is_next_epoch);
175 #if 0
176 static int dtls1_record_needs_buffering(SSL *s, SSL3_RECORD *rr,
177 unsigned short *priority, unsigned long *offset);
178 #endif
179 static int dtls1_buffer_record(SSL *s, record_pqueue *q,
180 unsigned char *priority);
181 static int dtls1_process_record(SSL *s);

183 /* copy buffered record into SSL structure */
184 static int
185 dtls1_copy_record(SSL *s, pitem *item)
186 {
187 DTLS1_RECORD_DATA *rdata;

189 rdata = (DTLS1_RECORD_DATA *)item->data;
190
191 if (s->s3->rbuf.buf != NULL)
192 OPENSSL_free(s->s3->rbuf.buf);
193

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 4

194 s->packet = rdata->packet;
195 s->packet_length = rdata->packet_length;
196 memcpy(&(s->s3->rbuf), &(rdata->rbuf), sizeof(SSL3_BUFFER));
197 memcpy(&(s->s3->rrec), &(rdata->rrec), sizeof(SSL3_RECORD));
198
199 /* Set proper sequence number for mac calculation */
200 memcpy(&(s->s3->read_sequence[2]), &(rdata->packet[5]), 6);
201
202 return(1);
203 }

206 static int
207 dtls1_buffer_record(SSL *s, record_pqueue *queue, unsigned char *priority)
208 {
209 DTLS1_RECORD_DATA *rdata;
210 pitem *item;

212 /* Limit the size of the queue to prevent DOS attacks */
213 if (pqueue_size(queue->q) >= 100)
214 return 0;
215
216 rdata = OPENSSL_malloc(sizeof(DTLS1_RECORD_DATA));
217 item = pitem_new(priority, rdata);
218 if (rdata == NULL || item == NULL)
219 {
220 if (rdata != NULL) OPENSSL_free(rdata);
221 if (item != NULL) pitem_free(item);
222
223 SSLerr(SSL_F_DTLS1_BUFFER_RECORD, ERR_R_INTERNAL_ERROR);
224 return(0);
225 }
226
227 rdata->packet = s->packet;
228 rdata->packet_length = s->packet_length;
229 memcpy(&(rdata->rbuf), &(s->s3->rbuf), sizeof(SSL3_BUFFER));
230 memcpy(&(rdata->rrec), &(s->s3->rrec), sizeof(SSL3_RECORD));

232 item->data = rdata;

234 #ifndef OPENSSL_NO_SCTP
235 /* Store bio_dgram_sctp_rcvinfo struct */
236 if (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
237 (s->state == SSL3_ST_SR_FINISHED_A || s->state == SSL3_ST_CR_FINISHE
238 BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SCTP_GET_RCVINFO, sizeo
239 }
240 #endif

242 /* insert should not fail, since duplicates are dropped */
243 if (pqueue_insert(queue->q, item) == NULL)
244 {
245 OPENSSL_free(rdata);
246 pitem_free(item);
247 return(0);
248 }

250 s->packet = NULL;
251 s->packet_length = 0;
252 memset(&(s->s3->rbuf), 0, sizeof(SSL3_BUFFER));
253 memset(&(s->s3->rrec), 0, sizeof(SSL3_RECORD));
254
255 if (!ssl3_setup_buffers(s))
256 {
257 SSLerr(SSL_F_DTLS1_BUFFER_RECORD, ERR_R_INTERNAL_ERROR);
258 OPENSSL_free(rdata);
259 pitem_free(item);

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 5

260 return(0);
261 }
262
263 return(1);
264 }

267 static int
268 dtls1_retrieve_buffered_record(SSL *s, record_pqueue *queue)
269 {
270 pitem *item;

272 item = pqueue_pop(queue->q);
273 if (item)
274 {
275 dtls1_copy_record(s, item);

277 OPENSSL_free(item->data);
278 pitem_free(item);

280 return(1);
281 }

283 return(0);
284 }

287 /* retrieve a buffered record that belongs to the new epoch, i.e., not processed
288 * yet */
289 #define dtls1_get_unprocessed_record(s) \
290 dtls1_retrieve_buffered_record((s), \
291 &((s)->d1->unprocessed_rcds))

293 /* retrieve a buffered record that belongs to the current epoch, ie, processed *
294 #define dtls1_get_processed_record(s) \
295 dtls1_retrieve_buffered_record((s), \
296 &((s)->d1->processed_rcds))

298 static int
299 dtls1_process_buffered_records(SSL *s)
300 {
301 pitem *item;
302
303 item = pqueue_peek(s->d1->unprocessed_rcds.q);
304 if (item)
305 {
306 /* Check if epoch is current. */
307 if (s->d1->unprocessed_rcds.epoch != s->d1->r_epoch)
308 return(1); /* Nothing to do. */
309
310 /* Process all the records. */
311 while (pqueue_peek(s->d1->unprocessed_rcds.q))
312 {
313 dtls1_get_unprocessed_record(s);
314 if (! dtls1_process_record(s))
315 return(0);
316 dtls1_buffer_record(s, &(s->d1->processed_rcds),
317 s->s3->rrec.seq_num);
318 }
319 }

321 /* sync epoch numbers once all the unprocessed records
322 * have been processed */
323 s->d1->processed_rcds.epoch = s->d1->r_epoch;
324 s->d1->unprocessed_rcds.epoch = s->d1->r_epoch + 1;

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 6

326 return(1);
327 }

330 #if 0

332 static int
333 dtls1_get_buffered_record(SSL *s)
334 {
335 pitem *item;
336 PQ_64BIT priority =
337 (((PQ_64BIT)s->d1->handshake_read_seq) << 32) |
338 ((PQ_64BIT)s->d1->r_msg_hdr.frag_off);
339
340 if (! SSL_in_init(s)) /* if we’re not (re)negotiating,
341 nothing buffered */
342 return 0;

345 item = pqueue_peek(s->d1->rcvd_records);
346 if (item && item->priority == priority)
347 {
348 /* Check if we’ve received the record of interest. It must be
349 * a handshake record, since data records as passed up without
350 * buffering */
351 DTLS1_RECORD_DATA *rdata;
352 item = pqueue_pop(s->d1->rcvd_records);
353 rdata = (DTLS1_RECORD_DATA *)item->data;
354
355 if (s->s3->rbuf.buf != NULL)
356 OPENSSL_free(s->s3->rbuf.buf);
357
358 s->packet = rdata->packet;
359 s->packet_length = rdata->packet_length;
360 memcpy(&(s->s3->rbuf), &(rdata->rbuf), sizeof(SSL3_BUFFER));
361 memcpy(&(s->s3->rrec), &(rdata->rrec), sizeof(SSL3_RECORD));
362
363 OPENSSL_free(item->data);
364 pitem_free(item);
365
366 /* s->d1->next_expected_seq_num++; */
367 return(1);
368 }
369
370 return 0;
371 }

373 #endif

375 static int
376 dtls1_process_record(SSL *s)
377 {
378 int i,al;
379 int enc_err;
380 SSL_SESSION *sess;
381 SSL3_RECORD *rr;
382 unsigned int mac_size, orig_len;
383 unsigned char md[EVP_MAX_MD_SIZE];

385 rr= &(s->s3->rrec);
386 sess = s->session;

388 /* At this point, s->packet_length == SSL3_RT_HEADER_LNGTH + rr->length,
389 * and we have that many bytes in s->packet
390 */
391 rr->input= &(s->packet[DTLS1_RT_HEADER_LENGTH]);

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 7

393 /* ok, we can now read from ’s->packet’ data into ’rr’
394 * rr->input points at rr->length bytes, which
395 * need to be copied into rr->data by either
396 * the decryption or by the decompression
397 * When the data is ’copied’ into the rr->data buffer,
398 * rr->input will be pointed at the new buffer */

400 /* We now have - encrypted [MAC [compressed [plain]]]
401 * rr->length bytes of encrypted compressed stuff. */

403 /* check is not needed I believe */
404 if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH)
405 {
406 al=SSL_AD_RECORD_OVERFLOW;
407 SSLerr(SSL_F_DTLS1_PROCESS_RECORD,SSL_R_ENCRYPTED_LENGTH_TOO_LON
408 goto f_err;
409 }

411 /* decrypt in place in ’rr->input’ */
412 rr->data=rr->input;

414 enc_err = s->method->ssl3_enc->enc(s,0);
415 /* enc_err is:
416 * 0: (in non-constant time) if the record is publically invalid.
417 * 1: if the padding is valid
418 * -1: if the padding is invalid */
419 if (enc_err == 0)
420 {
421 /* For DTLS we simply ignore bad packets. */
422 rr->length = 0;
423 s->packet_length = 0;
424 goto err;
425 }

427 #ifdef TLS_DEBUG
428 printf("dec %d\n",rr->length);
429 { unsigned int z; for (z=0; z<rr->length; z++) printf("%02X%c",rr->data[z],((z+1
430 printf("\n");
431 #endif

433 /* r->length is now the compressed data plus mac */
434 if ((sess != NULL) &&
435 (s->enc_read_ctx != NULL) &&
436 (EVP_MD_CTX_md(s->read_hash) != NULL))
437 {
438 /* s->read_hash != NULL => mac_size != -1 */
439 unsigned char *mac = NULL;
440 unsigned char mac_tmp[EVP_MAX_MD_SIZE];
441 mac_size=EVP_MD_CTX_size(s->read_hash);
442 OPENSSL_assert(mac_size <= EVP_MAX_MD_SIZE);

444 /* kludge: *_cbc_remove_padding passes padding length in rr->typ
445 orig_len = rr->length+((unsigned int)rr->type>>8);

447 /* orig_len is the length of the record before any padding was
448 * removed. This is public information, as is the MAC in use,
449 * therefore we can safely process the record in a different
450 * amount of time if it’s too short to possibly contain a MAC.
451 */
452 if (orig_len < mac_size ||
453 /* CBC records must have a padding length byte too. */
454 (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE &
455 orig_len < mac_size+1))
456 {
457 al=SSL_AD_DECODE_ERROR;

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 8

458 SSLerr(SSL_F_DTLS1_PROCESS_RECORD,SSL_R_LENGTH_TOO_SHORT
459 goto f_err;
460 }

462 if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE)
463 {
464 /* We update the length so that the TLS header bytes
465 * can be constructed correctly but we need to extract
466 * the MAC in constant time from within the record,
467 * without leaking the contents of the padding bytes.
468 * */
469 mac = mac_tmp;
470 ssl3_cbc_copy_mac(mac_tmp, rr, mac_size, orig_len);
471 rr->length -= mac_size;
472 }
473 else
474 {
475 /* In this case there’s no padding, so |orig_len|
476 * equals |rec->length| and we checked that there’s
477 * enough bytes for |mac_size| above. */
478 rr->length -= mac_size;
479 mac = &rr->data[rr->length];
480 }

482 i=s->method->ssl3_enc->mac(s,md,0 /* not send */);
483 if (i < 0 || mac == NULL || CRYPTO_memcmp(md, mac, (size_t)mac_s
484 enc_err = -1;
485 if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH+mac_size)
486 enc_err = -1;
487 }

489 if (enc_err < 0)
490 {
491 /* decryption failed, silently discard message */
492 rr->length = 0;
493 s->packet_length = 0;
494 goto err;
495 }

497 /* r->length is now just compressed */
498 if (s->expand != NULL)
499 {
500 if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH)
501 {
502 al=SSL_AD_RECORD_OVERFLOW;
503 SSLerr(SSL_F_DTLS1_PROCESS_RECORD,SSL_R_COMPRESSED_LENGT
504 goto f_err;
505 }
506 if (!ssl3_do_uncompress(s))
507 {
508 al=SSL_AD_DECOMPRESSION_FAILURE;
509 SSLerr(SSL_F_DTLS1_PROCESS_RECORD,SSL_R_BAD_DECOMPRESSIO
510 goto f_err;
511 }
512 }

514 if (rr->length > SSL3_RT_MAX_PLAIN_LENGTH)
515 {
516 al=SSL_AD_RECORD_OVERFLOW;
517 SSLerr(SSL_F_DTLS1_PROCESS_RECORD,SSL_R_DATA_LENGTH_TOO_LONG);
518 goto f_err;
519 }

521 rr->off=0;
522 /* So at this point the following is true
523 * ssl->s3->rrec.type is the type of record

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 9

524 * ssl->s3->rrec.length == number of bytes in record
525 * ssl->s3->rrec.off == offset to first valid byte
526 * ssl->s3->rrec.data == where to take bytes from, increment
527 * after use :-).
528 */

530 /* we have pulled in a full packet so zero things */
531 s->packet_length=0;
532 dtls1_record_bitmap_update(s, &(s->d1->bitmap));/* Mark receipt of recor
533 return(1);

535 f_err:
536 ssl3_send_alert(s,SSL3_AL_FATAL,al);
537 err:
538 return(0);
539 }

542 /* Call this to get a new input record.
543 * It will return <= 0 if more data is needed, normally due to an error
544 * or non-blocking IO.
545 * When it finishes, one packet has been decoded and can be found in
546 * ssl->s3->rrec.type - is the type of record
547 * ssl->s3->rrec.data, - data
548 * ssl->s3->rrec.length, - number of bytes
549 */
550 /* used only by dtls1_read_bytes */
551 int dtls1_get_record(SSL *s)
552 {
553 int ssl_major,ssl_minor;
554 int i,n;
555 SSL3_RECORD *rr;
556 unsigned char *p = NULL;
557 unsigned short version;
558 DTLS1_BITMAP *bitmap;
559 unsigned int is_next_epoch;

561 rr= &(s->s3->rrec);

563 /* The epoch may have changed. If so, process all the
564 * pending records. This is a non-blocking operation. */
565 dtls1_process_buffered_records(s);

567 /* if we’re renegotiating, then there may be buffered records */
568 if (dtls1_get_processed_record(s))
569 return 1;

571 /* get something from the wire */
572 again:
573 /* check if we have the header */
574 if ((s->rstate != SSL_ST_READ_BODY) ||
575 (s->packet_length < DTLS1_RT_HEADER_LENGTH))
576 {
577 n=ssl3_read_n(s, DTLS1_RT_HEADER_LENGTH, s->s3->rbuf.len, 0);
578 /* read timeout is handled by dtls1_read_bytes */
579 if (n <= 0) return(n); /* error or non-blocking */

581 /* this packet contained a partial record, dump it */
582 if (s->packet_length != DTLS1_RT_HEADER_LENGTH)
583 {
584 s->packet_length = 0;
585 goto again;
586 }

588 s->rstate=SSL_ST_READ_BODY;

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 10

590 p=s->packet;

592 /* Pull apart the header into the DTLS1_RECORD */
593 rr->type= *(p++);
594 ssl_major= *(p++);
595 ssl_minor= *(p++);
596 version=(ssl_major<<8)|ssl_minor;

598 /* sequence number is 64 bits, with top 2 bytes = epoch */
599 n2s(p,rr->epoch);

601 memcpy(&(s->s3->read_sequence[2]), p, 6);
602 p+=6;

604 n2s(p,rr->length);

606 /* Lets check version */
607 if (!s->first_packet)
608 {
609 if (version != s->version)
610 {
611 /* unexpected version, silently discard */
612 rr->length = 0;
613 s->packet_length = 0;
614 goto again;
615 }
616 }

618 if ((version & 0xff00) != (s->version & 0xff00))
619 {
620 /* wrong version, silently discard record */
621 rr->length = 0;
622 s->packet_length = 0;
623 goto again;
624 }

626 if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH)
627 {
628 /* record too long, silently discard it */
629 rr->length = 0;
630 s->packet_length = 0;
631 goto again;
632 }

634 /* now s->rstate == SSL_ST_READ_BODY */
635 }

637 /* s->rstate == SSL_ST_READ_BODY, get and decode the data */

639 if (rr->length > s->packet_length-DTLS1_RT_HEADER_LENGTH)
640 {
641 /* now s->packet_length == DTLS1_RT_HEADER_LENGTH */
642 i=rr->length;
643 n=ssl3_read_n(s,i,i,1);
644 if (n <= 0) return(n); /* error or non-blocking io */

646 /* this packet contained a partial record, dump it */
647 if (n != i)
648 {
649 rr->length = 0;
650 s->packet_length = 0;
651 goto again;
652 }

654 /* now n == rr->length,
655 * and s->packet_length == DTLS1_RT_HEADER_LENGTH + rr->length *

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 11

656 }
657 s->rstate=SSL_ST_READ_HEADER; /* set state for later operations */

659 /* match epochs. NULL means the packet is dropped on the floor */
660 bitmap = dtls1_get_bitmap(s, rr, &is_next_epoch);
661 if (bitmap == NULL)
662 {
663 rr->length = 0;
664 s->packet_length = 0; /* dump this record */
665 goto again; /* get another record */
666 }

668 #ifndef OPENSSL_NO_SCTP
669 /* Only do replay check if no SCTP bio */
670 if (!BIO_dgram_is_sctp(SSL_get_rbio(s)))
671 {
672 #endif
673 /* Check whether this is a repeat, or aged record.
674 * Don’t check if we’re listening and this message is
675 * a ClientHello. They can look as if they’re replayed,
676 * since they arrive from different connections and
677 * would be dropped unnecessarily.
678 */
679 if (!(s->d1->listen && rr->type == SSL3_RT_HANDSHAKE &&
680 *p == SSL3_MT_CLIENT_HELLO) &&
681 !dtls1_record_replay_check(s, bitmap))
682 {
683 rr->length = 0;
684 s->packet_length=0; /* dump this record */
685 goto again; /* get another record */
686 }
687 #ifndef OPENSSL_NO_SCTP
688 }
689 #endif

691 /* just read a 0 length packet */
692 if (rr->length == 0) goto again;

694 /* If this record is from the next epoch (either HM or ALERT),
695 * and a handshake is currently in progress, buffer it since it
696 * cannot be processed at this time. However, do not buffer
697 * anything while listening.
698 */
699 if (is_next_epoch)
700 {
701 if ((SSL_in_init(s) || s->in_handshake) && !s->d1->listen)
702 {
703 dtls1_buffer_record(s, &(s->d1->unprocessed_rcds), rr->s
704 }
705 rr->length = 0;
706 s->packet_length = 0;
707 goto again;
708 }

710 if (!dtls1_process_record(s))
711 {
712 rr->length = 0;
713 s->packet_length = 0; /* dump this record */
714 goto again; /* get another record */
715 }

717 return(1);

719 }

721 /* Return up to ’len’ payload bytes received in ’type’ records.

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 12

722 * ’type’ is one of the following:
723 *
724 * - SSL3_RT_HANDSHAKE (when ssl3_get_message calls us)
725 * - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us)
726 * - 0 (during a shutdown, no data has to be returned)
727 *
728 * If we don’t have stored data to work from, read a SSL/TLS record first
729 * (possibly multiple records if we still don’t have anything to return).
730 *
731 * This function must handle any surprises the peer may have for us, such as
732 * Alert records (e.g. close_notify), ChangeCipherSpec records (not really
733 * a surprise, but handled as if it were), or renegotiation requests.
734 * Also if record payloads contain fragments too small to process, we store
735 * them until there is enough for the respective protocol (the record protocol
736 * may use arbitrary fragmentation and even interleaving):
737 * Change cipher spec protocol
738 * just 1 byte needed, no need for keeping anything stored
739 * Alert protocol
740 * 2 bytes needed (AlertLevel, AlertDescription)
741 * Handshake protocol
742 * 4 bytes needed (HandshakeType, uint24 length) -- we just have
743 * to detect unexpected Client Hello and Hello Request messages
744 * here, anything else is handled by higher layers
745 * Application data protocol
746 * none of our business
747 */
748 int dtls1_read_bytes(SSL *s, int type, unsigned char *buf, int len, int peek)
749 {
750 int al,i,j,ret;
751 unsigned int n;
752 SSL3_RECORD *rr;
753 void (*cb)(const SSL *ssl,int type2,int val)=NULL;

755 if (s->s3->rbuf.buf == NULL) /* Not initialized yet */
756 if (!ssl3_setup_buffers(s))
757 return(-1);

759 /* XXX: check what the second ’&& type’ is about */
760 if ((type && (type != SSL3_RT_APPLICATION_DATA) &&
761 (type != SSL3_RT_HANDSHAKE) && type) ||
762 (peek && (type != SSL3_RT_APPLICATION_DATA)))
763 {
764 SSLerr(SSL_F_DTLS1_READ_BYTES, ERR_R_INTERNAL_ERROR);
765 return -1;
766 }

768 /* check whether there’s a handshake message (client hello?) waiting */
769 if ((ret = have_handshake_fragment(s, type, buf, len, peek)))
770 return ret;

772 /* Now s->d1->handshake_fragment_len == 0 if type == SSL3_RT_HANDSHAKE.

774 #ifndef OPENSSL_NO_SCTP
775 /* Continue handshake if it had to be interrupted to read
776 * app data with SCTP.
777 */
778 if ((!s->in_handshake && SSL_in_init(s)) ||
779 (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
780 (s->state == DTLS1_SCTP_ST_SR_READ_SOCK || s->state == DTLS1_SCTP_S
781 s->s3->in_read_app_data != 2))
782 #else
783 if (!s->in_handshake && SSL_in_init(s))
784 #endif
785 {
786 /* type == SSL3_RT_APPLICATION_DATA */
787 i=s->handshake_func(s);

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 13

788 if (i < 0) return(i);
789 if (i == 0)
790 {
791 SSLerr(SSL_F_DTLS1_READ_BYTES,SSL_R_SSL_HANDSHAKE_FAILUR
792 return(-1);
793 }
794 }

796 start:
797 s->rwstate=SSL_NOTHING;

799 /* s->s3->rrec.type - is the type of record
800 * s->s3->rrec.data, - data
801 * s->s3->rrec.off, - offset into ’data’ for next read
802 * s->s3->rrec.length, - number of bytes. */
803 rr = &(s->s3->rrec);

805 /* We are not handshaking and have no data yet,
806 * so process data buffered during the last handshake
807 * in advance, if any.
808 */
809 if (s->state == SSL_ST_OK && rr->length == 0)
810 {
811 pitem *item;
812 item = pqueue_pop(s->d1->buffered_app_data.q);
813 if (item)
814 {
815 #ifndef OPENSSL_NO_SCTP
816 /* Restore bio_dgram_sctp_rcvinfo struct */
817 if (BIO_dgram_is_sctp(SSL_get_rbio(s)))
818 {
819 DTLS1_RECORD_DATA *rdata = (DTLS1_RECORD_DATA *)
820 BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SCTP_SE
821 }
822 #endif

824 dtls1_copy_record(s, item);

826 OPENSSL_free(item->data);
827 pitem_free(item);
828 }
829 }

831 /* Check for timeout */
832 if (dtls1_handle_timeout(s) > 0)
833 goto start;

835 /* get new packet if necessary */
836 if ((rr->length == 0) || (s->rstate == SSL_ST_READ_BODY))
837 {
838 ret=dtls1_get_record(s);
839 if (ret <= 0)
840 {
841 ret = dtls1_read_failed(s, ret);
842 /* anything other than a timeout is an error */
843 if (ret <= 0)
844 return(ret);
845 else
846 goto start;
847 }
848 }

850 if (s->d1->listen && rr->type != SSL3_RT_HANDSHAKE)
851 {
852 rr->length = 0;
853 goto start;

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 14

854 }

856 /* we now have a packet which can be read and processed */

858 if (s->s3->change_cipher_spec /* set when we receive ChangeCipherSpec,
859 * reset by ssl3_get_finished */
860 && (rr->type != SSL3_RT_HANDSHAKE))
861 {
862 /* We now have application data between CCS and Finished.
863 * Most likely the packets were reordered on their way, so
864 * buffer the application data for later processing rather
865 * than dropping the connection.
866 */
867 dtls1_buffer_record(s, &(s->d1->buffered_app_data), rr->seq_num)
868 rr->length = 0;
869 goto start;
870 }

872 /* If the other end has shut down, throw anything we read away
873 * (even in ’peek’ mode) */
874 if (s->shutdown & SSL_RECEIVED_SHUTDOWN)
875 {
876 rr->length=0;
877 s->rwstate=SSL_NOTHING;
878 return(0);
879 }

882 if (type == rr->type) /* SSL3_RT_APPLICATION_DATA or SSL3_RT_HANDSHAKE *
883 {
884 /* make sure that we are not getting application data when we
885 * are doing a handshake for the first time */
886 if (SSL_in_init(s) && (type == SSL3_RT_APPLICATION_DATA) &&
887 (s->enc_read_ctx == NULL))
888 {
889 al=SSL_AD_UNEXPECTED_MESSAGE;
890 SSLerr(SSL_F_DTLS1_READ_BYTES,SSL_R_APP_DATA_IN_HANDSHAK
891 goto f_err;
892 }

894 if (len <= 0) return(len);

896 if ((unsigned int)len > rr->length)
897 n = rr->length;
898 else
899 n = (unsigned int)len;

901 memcpy(buf,&(rr->data[rr->off]),n);
902 if (!peek)
903 {
904 rr->length-=n;
905 rr->off+=n;
906 if (rr->length == 0)
907 {
908 s->rstate=SSL_ST_READ_HEADER;
909 rr->off=0;
910 }
911 }

913 #ifndef OPENSSL_NO_SCTP
914 /* We were about to renegotiate but had to read
915 * belated application data first, so retry.
916 */
917 if (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
918 rr->type == SSL3_RT_APPLICATION_DATA &&
919 (s->state == DTLS1_SCTP_ST_SR_READ_SOCK || s->state

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 15

920 {
921 s->rwstate=SSL_READING;
922 BIO_clear_retry_flags(SSL_get_rbio(s));
923 BIO_set_retry_read(SSL_get_rbio(s));
924 }

926 /* We might had to delay a close_notify alert because
927 * of reordered app data. If there was an alert and ther
928 * is no message to read anymore, finally set shutdown.
929 */
930 if (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
931 s->d1->shutdown_received && !BIO_dgram_sctp_msg_wait
932 {
933 s->shutdown |= SSL_RECEIVED_SHUTDOWN;
934 return(0);
935 }
936 #endif
937 return(n);
938 }

941 /* If we get here, then type != rr->type; if we have a handshake
942 * message, then it was unexpected (Hello Request or Client Hello). */

944 /* In case of record types for which we have ’fragment’ storage,
945 * fill that so that we can process the data at a fixed place.
946 */
947 {
948 unsigned int k, dest_maxlen = 0;
949 unsigned char *dest = NULL;
950 unsigned int *dest_len = NULL;

952 if (rr->type == SSL3_RT_HANDSHAKE)
953 {
954 dest_maxlen = sizeof s->d1->handshake_fragment;
955 dest = s->d1->handshake_fragment;
956 dest_len = &s->d1->handshake_fragment_len;
957 }
958 else if (rr->type == SSL3_RT_ALERT)
959 {
960 dest_maxlen = sizeof(s->d1->alert_fragment);
961 dest = s->d1->alert_fragment;
962 dest_len = &s->d1->alert_fragment_len;
963 }
964 #ifndef OPENSSL_NO_HEARTBEATS
965 else if (rr->type == TLS1_RT_HEARTBEAT)
966 {
967 dtls1_process_heartbeat(s);

969 /* Exit and notify application to read again */
970 rr->length = 0;
971 s->rwstate=SSL_READING;
972 BIO_clear_retry_flags(SSL_get_rbio(s));
973 BIO_set_retry_read(SSL_get_rbio(s));
974 return(-1);
975 }
976 #endif
977 /* else it’s a CCS message, or application data or wrong */
978 else if (rr->type != SSL3_RT_CHANGE_CIPHER_SPEC)
979 {
980 /* Application data while renegotiating
981 * is allowed. Try again reading.
982 */
983 if (rr->type == SSL3_RT_APPLICATION_DATA)
984 {
985 BIO *bio;

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 16

986 s->s3->in_read_app_data=2;
987 bio=SSL_get_rbio(s);
988 s->rwstate=SSL_READING;
989 BIO_clear_retry_flags(bio);
990 BIO_set_retry_read(bio);
991 return(-1);
992 }

994 /* Not certain if this is the right error handling */
995 al=SSL_AD_UNEXPECTED_MESSAGE;
996 SSLerr(SSL_F_DTLS1_READ_BYTES,SSL_R_UNEXPECTED_RECORD);
997 goto f_err;
998 }

1000 if (dest_maxlen > 0)
1001 {
1002 /* XDTLS: In a pathalogical case, the Client Hello
1003 * may be fragmented--don’t always expect dest_maxlen bytes */
1004 if (rr->length < dest_maxlen)
1005 {
1006 #ifdef DTLS1_AD_MISSING_HANDSHAKE_MESSAGE
1007 /*
1008 * for normal alerts rr->length is 2, while
1009 * dest_maxlen is 7 if we were to handle this
1010 * non-existing alert...
1011 */
1012 FIX ME
1013 #endif
1014 s->rstate=SSL_ST_READ_HEADER;
1015 rr->length = 0;
1016 goto start;
1017 }

1019 /* now move ’n’ bytes: */
1020 for (k = 0; k < dest_maxlen; k++)
1021 {
1022 dest[k] = rr->data[rr->off++];
1023 rr->length--;
1024 }
1025 *dest_len = dest_maxlen;
1026 }
1027 }

1029 /* s->d1->handshake_fragment_len == 12 iff rr->type == SSL3_RT_HANDSHA
1030 * s->d1->alert_fragment_len == 7 iff rr->type == SSL3_RT_ALERT.
1031 * (Possibly rr is ’empty’ now, i.e. rr->length may be 0.) */

1033 /* If we are a client, check for an incoming ’Hello Request’: */
1034 if ((!s->server) &&
1035 (s->d1->handshake_fragment_len >= DTLS1_HM_HEADER_LENGTH) &&
1036 (s->d1->handshake_fragment[0] == SSL3_MT_HELLO_REQUEST) &&
1037 (s->session != NULL) && (s->session->cipher != NULL))
1038 {
1039 s->d1->handshake_fragment_len = 0;

1041 if ((s->d1->handshake_fragment[1] != 0) ||
1042 (s->d1->handshake_fragment[2] != 0) ||
1043 (s->d1->handshake_fragment[3] != 0))
1044 {
1045 al=SSL_AD_DECODE_ERROR;
1046 SSLerr(SSL_F_DTLS1_READ_BYTES,SSL_R_BAD_HELLO_REQUEST);
1047 goto err;
1048 }

1050 /* no need to check sequence number on HELLO REQUEST messages */

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 17

1052 if (s->msg_callback)
1053 s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE,
1054 s->d1->handshake_fragment, 4, s, s->msg_callback

1056 if (SSL_is_init_finished(s) &&
1057 !(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS) &&
1058 !s->s3->renegotiate)
1059 {
1060 s->d1->handshake_read_seq++;
1061 s->new_session = 1;
1062 ssl3_renegotiate(s);
1063 if (ssl3_renegotiate_check(s))
1064 {
1065 i=s->handshake_func(s);
1066 if (i < 0) return(i);
1067 if (i == 0)
1068 {
1069 SSLerr(SSL_F_DTLS1_READ_BYTES,SSL_R_SSL_
1070 return(-1);
1071 }

1073 if (!(s->mode & SSL_MODE_AUTO_RETRY))
1074 {
1075 if (s->s3->rbuf.left == 0) /* no read-ah
1076 {
1077 BIO *bio;
1078 /* In the case where we try to r
1079 * but we trigger an SSL handsha
1080 * the retry option set. Otherw
1081 * cause nasty problems in the b
1082 s->rwstate=SSL_READING;
1083 bio=SSL_get_rbio(s);
1084 BIO_clear_retry_flags(bio);
1085 BIO_set_retry_read(bio);
1086 return(-1);
1087 }
1088 }
1089 }
1090 }
1091 /* we either finished a handshake or ignored the request,
1092 * now try again to obtain the (application) data we were asked
1093 goto start;
1094 }

1096 if (s->d1->alert_fragment_len >= DTLS1_AL_HEADER_LENGTH)
1097 {
1098 int alert_level = s->d1->alert_fragment[0];
1099 int alert_descr = s->d1->alert_fragment[1];

1101 s->d1->alert_fragment_len = 0;

1103 if (s->msg_callback)
1104 s->msg_callback(0, s->version, SSL3_RT_ALERT,
1105 s->d1->alert_fragment, 2, s, s->msg_callback_arg

1107 if (s->info_callback != NULL)
1108 cb=s->info_callback;
1109 else if (s->ctx->info_callback != NULL)
1110 cb=s->ctx->info_callback;

1112 if (cb != NULL)
1113 {
1114 j = (alert_level << 8) | alert_descr;
1115 cb(s, SSL_CB_READ_ALERT, j);
1116 }

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 18

1118 if (alert_level == 1) /* warning */
1119 {
1120 s->s3->warn_alert = alert_descr;
1121 if (alert_descr == SSL_AD_CLOSE_NOTIFY)
1122 {
1123 #ifndef OPENSSL_NO_SCTP
1124 /* With SCTP and streams the socket may deliver
1125 * after a close_notify alert. We have to check
1126 * first so that nothing gets discarded.
1127 */
1128 if (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
1129 BIO_dgram_sctp_msg_waiting(SSL_get_rbio(
1130 {
1131 s->d1->shutdown_received = 1;
1132 s->rwstate=SSL_READING;
1133 BIO_clear_retry_flags(SSL_get_rbio(s));
1134 BIO_set_retry_read(SSL_get_rbio(s));
1135 return -1;
1136 }
1137 #endif
1138 s->shutdown |= SSL_RECEIVED_SHUTDOWN;
1139 return(0);
1140 }
1141 #if 0
1142 /* XXX: this is a possible improvement in the future */
1143 /* now check if it’s a missing record */
1144 if (alert_descr == DTLS1_AD_MISSING_HANDSHAKE_MESSAGE)
1145 {
1146 unsigned short seq;
1147 unsigned int frag_off;
1148 unsigned char *p = &(s->d1->alert_fragment[2]);

1150 n2s(p, seq);
1151 n2l3(p, frag_off);

1153 dtls1_retransmit_message(s,
1154
1155
1156 if (! found && SSL_in_init(s))
1157 {
1158 /* fprintf(stderr,"in init = %d\n", SSL
1159 /* requested a message not yet sent,
1160 send an alert ourselves */
1161 ssl3_send_alert(s,SSL3_AL_WARNING,
1162 DTLS1_AD_MISSING_HANDSHAKE_MESSA
1163 }
1164 }
1165 #endif
1166 }
1167 else if (alert_level == 2) /* fatal */
1168 {
1169 char tmp[16];

1171 s->rwstate=SSL_NOTHING;
1172 s->s3->fatal_alert = alert_descr;
1173 SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_AD_REASON_OFFSET + al
1174 BIO_snprintf(tmp,sizeof tmp,"%d",alert_descr);
1175 ERR_add_error_data(2,"SSL alert number ",tmp);
1176 s->shutdown|=SSL_RECEIVED_SHUTDOWN;
1177 SSL_CTX_remove_session(s->ctx,s->session);
1178 return(0);
1179 }
1180 else
1181 {
1182 al=SSL_AD_ILLEGAL_PARAMETER;
1183 SSLerr(SSL_F_DTLS1_READ_BYTES,SSL_R_UNKNOWN_ALERT_TYPE);

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 19

1184 goto f_err;
1185 }

1187 goto start;
1188 }

1190 if (s->shutdown & SSL_SENT_SHUTDOWN) /* but we have not received a shutd
1191 {
1192 s->rwstate=SSL_NOTHING;
1193 rr->length=0;
1194 return(0);
1195 }

1197 if (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC)
1198 {
1199 struct ccs_header_st ccs_hdr;
1200 unsigned int ccs_hdr_len = DTLS1_CCS_HEADER_LENGTH;

1202 dtls1_get_ccs_header(rr->data, &ccs_hdr);

1204 if (s->version == DTLS1_BAD_VER)
1205 ccs_hdr_len = 3;

1207 /* ’Change Cipher Spec’ is just a single byte, so we know
1208 * exactly what the record payload has to look like */
1209 /* XDTLS: check that epoch is consistent */
1210 if ((rr->length != ccs_hdr_len) ||
1211 (rr->off != 0) || (rr->data[0] != SSL3_MT_CCS))
1212 {
1213 i=SSL_AD_ILLEGAL_PARAMETER;
1214 SSLerr(SSL_F_DTLS1_READ_BYTES,SSL_R_BAD_CHANGE_CIPHER_SP
1215 goto err;
1216 }

1218 rr->length=0;

1220 if (s->msg_callback)
1221 s->msg_callback(0, s->version, SSL3_RT_CHANGE_CIPHER_SPE
1222 rr->data, 1, s, s->msg_callback_arg);

1224 /* We can’t process a CCS now, because previous handshake
1225 * messages are still missing, so just drop it.
1226 */
1227 if (!s->d1->change_cipher_spec_ok)
1228 {
1229 goto start;
1230 }

1232 s->d1->change_cipher_spec_ok = 0;

1234 s->s3->change_cipher_spec=1;
1235 if (!ssl3_do_change_cipher_spec(s))
1236 goto err;

1238 /* do this whenever CCS is processed */
1239 dtls1_reset_seq_numbers(s, SSL3_CC_READ);

1241 if (s->version == DTLS1_BAD_VER)
1242 s->d1->handshake_read_seq++;

1244 #ifndef OPENSSL_NO_SCTP
1245 /* Remember that a CCS has been received,
1246 * so that an old key of SCTP-Auth can be
1247 * deleted when a CCS is sent. Will be ignored
1248 * if no SCTP is used
1249 */

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 20

1250 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD, 1,
1251 #endif

1253 goto start;
1254 }

1256 /* Unexpected handshake message (Client Hello, or protocol violation) */
1257 if ((s->d1->handshake_fragment_len >= DTLS1_HM_HEADER_LENGTH) &&
1258 !s->in_handshake)
1259 {
1260 struct hm_header_st msg_hdr;
1261
1262 /* this may just be a stale retransmit */
1263 dtls1_get_message_header(rr->data, &msg_hdr);
1264 if(rr->epoch != s->d1->r_epoch)
1265 {
1266 rr->length = 0;
1267 goto start;
1268 }

1270 /* If we are server, we may have a repeated FINISHED of the
1271 * client here, then retransmit our CCS and FINISHED.
1272 */
1273 if (msg_hdr.type == SSL3_MT_FINISHED)
1274 {
1275 if (dtls1_check_timeout_num(s) < 0)
1276 return -1;

1278 dtls1_retransmit_buffered_messages(s);
1279 rr->length = 0;
1280 goto start;
1281 }

1283 if (((s->state&SSL_ST_MASK) == SSL_ST_OK) &&
1284 !(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS))
1285 {
1286 #if 0 /* worked only because C operator preferences are not as expected (and
1287 * because this is not really needed for clients except for detecting
1288 * protocol violations): */
1289 s->state=SSL_ST_BEFORE|(s->server)
1290 ?SSL_ST_ACCEPT
1291 :SSL_ST_CONNECT;
1292 #else
1293 s->state = s->server ? SSL_ST_ACCEPT : SSL_ST_CONNECT;
1294 #endif
1295 s->renegotiate=1;
1296 s->new_session=1;
1297 }
1298 i=s->handshake_func(s);
1299 if (i < 0) return(i);
1300 if (i == 0)
1301 {
1302 SSLerr(SSL_F_DTLS1_READ_BYTES,SSL_R_SSL_HANDSHAKE_FAILUR
1303 return(-1);
1304 }

1306 if (!(s->mode & SSL_MODE_AUTO_RETRY))
1307 {
1308 if (s->s3->rbuf.left == 0) /* no read-ahead left? */
1309 {
1310 BIO *bio;
1311 /* In the case where we try to read application
1312 * but we trigger an SSL handshake, we return -1
1313 * the retry option set. Otherwise renegotiatio
1314 * cause nasty problems in the blocking world */
1315 s->rwstate=SSL_READING;

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 21

1316 bio=SSL_get_rbio(s);
1317 BIO_clear_retry_flags(bio);
1318 BIO_set_retry_read(bio);
1319 return(-1);
1320 }
1321 }
1322 goto start;
1323 }

1325 switch (rr->type)
1326 {
1327 default:
1328 #ifndef OPENSSL_NO_TLS
1329 /* TLS just ignores unknown message types */
1330 if (s->version == TLS1_VERSION)
1331 {
1332 rr->length = 0;
1333 goto start;
1334 }
1335 #endif
1336 al=SSL_AD_UNEXPECTED_MESSAGE;
1337 SSLerr(SSL_F_DTLS1_READ_BYTES,SSL_R_UNEXPECTED_RECORD);
1338 goto f_err;
1339 case SSL3_RT_CHANGE_CIPHER_SPEC:
1340 case SSL3_RT_ALERT:
1341 case SSL3_RT_HANDSHAKE:
1342 /* we already handled all of these, with the possible exception
1343 * of SSL3_RT_HANDSHAKE when s->in_handshake is set, but that
1344 * should not happen when type != rr->type */
1345 al=SSL_AD_UNEXPECTED_MESSAGE;
1346 SSLerr(SSL_F_DTLS1_READ_BYTES,ERR_R_INTERNAL_ERROR);
1347 goto f_err;
1348 case SSL3_RT_APPLICATION_DATA:
1349 /* At this point, we were expecting handshake data,
1350 * but have application data. If the library was
1351 * running inside ssl3_read() (i.e. in_read_app_data
1352 * is set) and it makes sense to read application data
1353 * at this point (session renegotiation not yet started),
1354 * we will indulge it.
1355 */
1356 if (s->s3->in_read_app_data &&
1357 (s->s3->total_renegotiations != 0) &&
1358 ((
1359 (s->state & SSL_ST_CONNECT) &&
1360 (s->state >= SSL3_ST_CW_CLNT_HELLO_A) &&
1361 (s->state <= SSL3_ST_CR_SRVR_HELLO_A)
1362) || (
1363 (s->state & SSL_ST_ACCEPT) &&
1364 (s->state <= SSL3_ST_SW_HELLO_REQ_A) &&
1365 (s->state >= SSL3_ST_SR_CLNT_HELLO_A)
1366)
1367))
1368 {
1369 s->s3->in_read_app_data=2;
1370 return(-1);
1371 }
1372 else
1373 {
1374 al=SSL_AD_UNEXPECTED_MESSAGE;
1375 SSLerr(SSL_F_DTLS1_READ_BYTES,SSL_R_UNEXPECTED_RECORD);
1376 goto f_err;
1377 }
1378 }
1379 /* not reached */

1381 f_err:

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 22

1382 ssl3_send_alert(s,SSL3_AL_FATAL,al);
1383 err:
1384 return(-1);
1385 }

1387 int
1388 dtls1_write_app_data_bytes(SSL *s, int type, const void *buf_, int len)
1389 {
1390 int i;

1392 #ifndef OPENSSL_NO_SCTP
1393 /* Check if we have to continue an interrupted handshake
1394 * for reading belated app data with SCTP.
1395 */
1396 if ((SSL_in_init(s) && !s->in_handshake) ||
1397 (BIO_dgram_is_sctp(SSL_get_wbio(s)) &&
1398 (s->state == DTLS1_SCTP_ST_SR_READ_SOCK || s->state == DTLS
1399 #else
1400 if (SSL_in_init(s) && !s->in_handshake)
1401 #endif
1402 {
1403 i=s->handshake_func(s);
1404 if (i < 0) return(i);
1405 if (i == 0)
1406 {
1407 SSLerr(SSL_F_DTLS1_WRITE_APP_DATA_BYTES,SSL_R_SSL_HANDSH
1408 return -1;
1409 }
1410 }

1412 if (len > SSL3_RT_MAX_PLAIN_LENGTH)
1413 {
1414 SSLerr(SSL_F_DTLS1_WRITE_APP_DATA_BYTES,SSL_R_DTLS_MESSA
1415 return -1;
1416 }

1418 i = dtls1_write_bytes(s, type, buf_, len);
1419 return i;
1420 }

1423 /* this only happens when a client hello is received and a handshake
1424 * is started. */
1425 static int
1426 have_handshake_fragment(SSL *s, int type, unsigned char *buf,
1427 int len, int peek)
1428 {
1429
1430 if ((type == SSL3_RT_HANDSHAKE) && (s->d1->handshake_fragment_len > 0))
1431 /* (partially) satisfy request from storage */
1432 {
1433 unsigned char *src = s->d1->handshake_fragment;
1434 unsigned char *dst = buf;
1435 unsigned int k,n;
1436
1437 /* peek == 0 */
1438 n = 0;
1439 while ((len > 0) && (s->d1->handshake_fragment_len > 0))
1440 {
1441 *dst++ = *src++;
1442 len--; s->d1->handshake_fragment_len--;
1443 n++;
1444 }
1445 /* move any remaining fragment bytes: */
1446 for (k = 0; k < s->d1->handshake_fragment_len; k++)
1447 s->d1->handshake_fragment[k] = *src++;

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 23

1448 return n;
1449 }
1450
1451 return 0;
1452 }

1457 /* Call this to write data in records of type ’type’
1458 * It will return <= 0 if not all data has been sent or non-blocking IO.
1459 */
1460 int dtls1_write_bytes(SSL *s, int type, const void *buf, int len)
1461 {
1462 int i;

1464 OPENSSL_assert(len <= SSL3_RT_MAX_PLAIN_LENGTH);
1465 s->rwstate=SSL_NOTHING;
1466 i=do_dtls1_write(s, type, buf, len, 0);
1467 return i;
1468 }

1470 int do_dtls1_write(SSL *s, int type, const unsigned char *buf, unsigned int len,
1471 {
1472 unsigned char *p,*pseq;
1473 int i,mac_size,clear=0;
1474 int prefix_len = 0;
1475 SSL3_RECORD *wr;
1476 SSL3_BUFFER *wb;
1477 SSL_SESSION *sess;
1478 int bs;

1480 /* first check if there is a SSL3_BUFFER still being written
1481 * out. This will happen with non blocking IO */
1482 if (s->s3->wbuf.left != 0)
1483 {
1484 OPENSSL_assert(0); /* XDTLS: want to see if we ever get here */
1485 return(ssl3_write_pending(s,type,buf,len));
1486 }

1488 /* If we have an alert to send, lets send it */
1489 if (s->s3->alert_dispatch)
1490 {
1491 i=s->method->ssl_dispatch_alert(s);
1492 if (i <= 0)
1493 return(i);
1494 /* if it went, fall through and send more stuff */
1495 }

1497 if (len == 0 && !create_empty_fragment)
1498 return 0;

1500 wr= &(s->s3->wrec);
1501 wb= &(s->s3->wbuf);
1502 sess=s->session;

1504 if ((sess == NULL) ||
1505 (s->enc_write_ctx == NULL) ||
1506 (EVP_MD_CTX_md(s->write_hash) == NULL))
1507 clear=1;

1509 if (clear)
1510 mac_size=0;
1511 else
1512 {
1513 mac_size=EVP_MD_CTX_size(s->write_hash);

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 24

1514 if (mac_size < 0)
1515 goto err;
1516 }

1518 /* DTLS implements explicit IV, so no need for empty fragments */
1519 #if 0
1520 /* ’create_empty_fragment’ is true only when this function calls itself
1521 if (!clear && !create_empty_fragment && !s->s3->empty_fragment_done
1522 && SSL_version(s) != DTLS1_VERSION && SSL_version(s) != DTLS1_BAD_VE
1523 {
1524 /* countermeasure against known-IV weakness in CBC ciphersuites
1525 * (see http://www.openssl.org/~bodo/tls-cbc.txt)
1526 */

1528 if (s->s3->need_empty_fragments && type == SSL3_RT_APPLICATION_D
1529 {
1530 /* recursive function call with ’create_empty_fragment’
1531 * this prepares and buffers the data for an empty fragm
1532 * (these ’prefix_len’ bytes are sent out later
1533 * together with the actual payload) */
1534 prefix_len = s->method->do_ssl_write(s, type, buf, 0, 1)
1535 if (prefix_len <= 0)
1536 goto err;

1538 if (s->s3->wbuf.len < (size_t)prefix_len + SSL3_RT_MAX_P
1539 {
1540 /* insufficient space */
1541 SSLerr(SSL_F_DO_DTLS1_WRITE, ERR_R_INTERNAL_ERRO
1542 goto err;
1543 }
1544 }
1545
1546 s->s3->empty_fragment_done = 1;
1547 }
1548 #endif
1549 p = wb->buf + prefix_len;

1551 /* write the header */

1553 *(p++)=type&0xff;
1554 wr->type=type;

1556 *(p++)=(s->version>>8);
1557 *(p++)=s->version&0xff;

1559 /* field where we are to write out packet epoch, seq num and len */
1560 pseq=p;
1561 p+=10;

1563 /* lets setup the record stuff. */

1565 /* Make space for the explicit IV in case of CBC.
1566 * (this is a bit of a boundary violation, but what the heck).
1567 */
1568 if (s->enc_write_ctx &&
1569 (EVP_CIPHER_mode(s->enc_write_ctx->cipher) & EVP_CIPH_CBC_MODE
1570 bs = EVP_CIPHER_block_size(s->enc_write_ctx->cipher);
1571 else
1572 bs = 0;

1574 wr->data=p + bs; /* make room for IV in case of CBC */
1575 wr->length=(int)len;
1576 wr->input=(unsigned char *)buf;

1578 /* we now ’read’ from wr->input, wr->length bytes into
1579 * wr->data */

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 25

1581 /* first we compress */
1582 if (s->compress != NULL)
1583 {
1584 if (!ssl3_do_compress(s))
1585 {
1586 SSLerr(SSL_F_DO_DTLS1_WRITE,SSL_R_COMPRESSION_FAILURE);
1587 goto err;
1588 }
1589 }
1590 else
1591 {
1592 memcpy(wr->data,wr->input,wr->length);
1593 wr->input=wr->data;
1594 }

1596 /* we should still have the output to wr->data and the input
1597 * from wr->input. Length should be wr->length.
1598 * wr->data still points in the wb->buf */

1600 if (mac_size != 0)
1601 {
1602 if(s->method->ssl3_enc->mac(s,&(p[wr->length + bs]),1) < 0)
1603 goto err;
1604 wr->length+=mac_size;
1605 }

1607 /* this is true regardless of mac size */
1608 wr->input=p;
1609 wr->data=p;

1612 /* ssl3_enc can only have an error on read */
1613 if (bs) /* bs != 0 in case of CBC */
1614 {
1615 RAND_pseudo_bytes(p,bs);
1616 /* master IV and last CBC residue stand for
1617 * the rest of randomness */
1618 wr->length += bs;
1619 }

1621 s->method->ssl3_enc->enc(s,1);

1623 /* record length after mac and block padding */
1624 /* if (type == SSL3_RT_APPLICATION_DATA ||
1625 (type == SSL3_RT_ALERT && ! SSL_in_init(s))) */
1626
1627 /* there’s only one epoch between handshake and app data */
1628
1629 s2n(s->d1->w_epoch, pseq);

1631 /* XDTLS: ?? */
1632 /* else
1633 s2n(s->d1->handshake_epoch, pseq); */

1635 memcpy(pseq, &(s->s3->write_sequence[2]), 6);
1636 pseq+=6;
1637 s2n(wr->length,pseq);

1639 /* we should now have
1640 * wr->data pointing to the encrypted data, which is
1641 * wr->length long */
1642 wr->type=type; /* not needed but helps for debugging */
1643 wr->length+=DTLS1_RT_HEADER_LENGTH;

1645 #if 0 /* this is now done at the message layer */

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 26

1646 /* buffer the record, making it easy to handle retransmits */
1647 if (type == SSL3_RT_HANDSHAKE || type == SSL3_RT_CHANGE_CIPHER_SPEC)
1648 dtls1_buffer_record(s, wr->data, wr->length,
1649 *((PQ_64BIT *)&(s->s3->write_sequence[0])));
1650 #endif

1652 ssl3_record_sequence_update(&(s->s3->write_sequence[0]));

1654 if (create_empty_fragment)
1655 {
1656 /* we are in a recursive call;
1657 * just return the length, don’t write out anything here
1658 */
1659 return wr->length;
1660 }

1662 /* now let’s set up wb */
1663 wb->left = prefix_len + wr->length;
1664 wb->offset = 0;

1666 /* memorize arguments so that ssl3_write_pending can detect bad write re
1667 s->s3->wpend_tot=len;
1668 s->s3->wpend_buf=buf;
1669 s->s3->wpend_type=type;
1670 s->s3->wpend_ret=len;

1672 /* we now just need to write the buffer */
1673 return ssl3_write_pending(s,type,buf,len);
1674 err:
1675 return -1;
1676 }

1680 static int dtls1_record_replay_check(SSL *s, DTLS1_BITMAP *bitmap)
1681 {
1682 int cmp;
1683 unsigned int shift;
1684 const unsigned char *seq = s->s3->read_sequence;

1686 cmp = satsub64be(seq,bitmap->max_seq_num);
1687 if (cmp > 0)
1688 {
1689 memcpy (s->s3->rrec.seq_num,seq,8);
1690 return 1; /* this record in new */
1691 }
1692 shift = -cmp;
1693 if (shift >= sizeof(bitmap->map)*8)
1694 return 0; /* stale, outside the window */
1695 else if (bitmap->map & (1UL<<shift))
1696 return 0; /* record previously received */

1698 memcpy (s->s3->rrec.seq_num,seq,8);
1699 return 1;
1700 }

1703 static void dtls1_record_bitmap_update(SSL *s, DTLS1_BITMAP *bitmap)
1704 {
1705 int cmp;
1706 unsigned int shift;
1707 const unsigned char *seq = s->s3->read_sequence;

1709 cmp = satsub64be(seq,bitmap->max_seq_num);
1710 if (cmp > 0)
1711 {

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 27

1712 shift = cmp;
1713 if (shift < sizeof(bitmap->map)*8)
1714 bitmap->map <<= shift, bitmap->map |= 1UL;
1715 else
1716 bitmap->map = 1UL;
1717 memcpy(bitmap->max_seq_num,seq,8);
1718 }
1719 else {
1720 shift = -cmp;
1721 if (shift < sizeof(bitmap->map)*8)
1722 bitmap->map |= 1UL<<shift;
1723 }
1724 }

1727 int dtls1_dispatch_alert(SSL *s)
1728 {
1729 int i,j;
1730 void (*cb)(const SSL *ssl,int type,int val)=NULL;
1731 unsigned char buf[DTLS1_AL_HEADER_LENGTH];
1732 unsigned char *ptr = &buf[0];

1734 s->s3->alert_dispatch=0;

1736 memset(buf, 0x00, sizeof(buf));
1737 *ptr++ = s->s3->send_alert[0];
1738 *ptr++ = s->s3->send_alert[1];

1740 #ifdef DTLS1_AD_MISSING_HANDSHAKE_MESSAGE
1741 if (s->s3->send_alert[1] == DTLS1_AD_MISSING_HANDSHAKE_MESSAGE)
1742 {
1743 s2n(s->d1->handshake_read_seq, ptr);
1744 #if 0
1745 if (s->d1->r_msg_hdr.frag_off == 0) /* waiting for a new msg *

1747 else
1748 s2n(s->d1->r_msg_hdr.seq, ptr); /* partial msg read */
1749 #endif

1751 #if 0
1752 fprintf(stderr, "s->d1->handshake_read_seq = %d, s->d1->r_msg_hd
1753 #endif
1754 l2n3(s->d1->r_msg_hdr.frag_off, ptr);
1755 }
1756 #endif

1758 i = do_dtls1_write(s, SSL3_RT_ALERT, &buf[0], sizeof(buf), 0);
1759 if (i <= 0)
1760 {
1761 s->s3->alert_dispatch=1;
1762 /* fprintf(stderr, "not done with alert\n"); */
1763 }
1764 else
1765 {
1766 if (s->s3->send_alert[0] == SSL3_AL_FATAL
1767 #ifdef DTLS1_AD_MISSING_HANDSHAKE_MESSAGE
1768 || s->s3->send_alert[1] == DTLS1_AD_MISSING_HANDSHAKE_MESSAG
1769 #endif
1770)
1771 (void)BIO_flush(s->wbio);

1773 if (s->msg_callback)
1774 s->msg_callback(1, s->version, SSL3_RT_ALERT, s->s3->sen
1775 2, s, s->msg_callback_arg);

1777 if (s->info_callback != NULL)

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 28

1778 cb=s->info_callback;
1779 else if (s->ctx->info_callback != NULL)
1780 cb=s->ctx->info_callback;

1782 if (cb != NULL)
1783 {
1784 j=(s->s3->send_alert[0]<<8)|s->s3->send_alert[1];
1785 cb(s,SSL_CB_WRITE_ALERT,j);
1786 }
1787 }
1788 return(i);
1789 }

1792 static DTLS1_BITMAP *
1793 dtls1_get_bitmap(SSL *s, SSL3_RECORD *rr, unsigned int *is_next_epoch)
1794 {
1795
1796 *is_next_epoch = 0;

1798 /* In current epoch, accept HM, CCS, DATA, & ALERT */
1799 if (rr->epoch == s->d1->r_epoch)
1800 return &s->d1->bitmap;

1802 /* Only HM and ALERT messages can be from the next epoch */
1803 else if (rr->epoch == (unsigned long)(s->d1->r_epoch + 1) &&
1804 (rr->type == SSL3_RT_HANDSHAKE ||
1805 rr->type == SSL3_RT_ALERT))
1806 {
1807 *is_next_epoch = 1;
1808 return &s->d1->next_bitmap;
1809 }

1811 return NULL;
1812 }

1814 #if 0
1815 static int
1816 dtls1_record_needs_buffering(SSL *s, SSL3_RECORD *rr, unsigned short *priority,
1817 unsigned long *offset)
1818 {

1820 /* alerts are passed up immediately */
1821 if (rr->type == SSL3_RT_APPLICATION_DATA ||
1822 rr->type == SSL3_RT_ALERT)
1823 return 0;

1825 /* Only need to buffer if a handshake is underway.
1826 * (this implies that Hello Request and Client Hello are passed up
1827 * immediately) */
1828 if (SSL_in_init(s))
1829 {
1830 unsigned char *data = rr->data;
1831 /* need to extract the HM/CCS sequence number here */
1832 if (rr->type == SSL3_RT_HANDSHAKE ||
1833 rr->type == SSL3_RT_CHANGE_CIPHER_SPEC)
1834 {
1835 unsigned short seq_num;
1836 struct hm_header_st msg_hdr;
1837 struct ccs_header_st ccs_hdr;

1839 if (rr->type == SSL3_RT_HANDSHAKE)
1840 {
1841 dtls1_get_message_header(data, &msg_hdr);
1842 seq_num = msg_hdr.seq;
1843 *offset = msg_hdr.frag_off;

new/usr/src/lib/openssl/libsunw_ssl/d1_pkt.c 29

1844 }
1845 else
1846 {
1847 dtls1_get_ccs_header(data, &ccs_hdr);
1848 seq_num = ccs_hdr.seq;
1849 *offset = 0;
1850 }
1851
1852 /* this is either a record we’re waiting for, or a
1853 * retransmit of something we happened to previously
1854 * receive (higher layers will drop the repeat silently
1855 if (seq_num < s->d1->handshake_read_seq)
1856 return 0;
1857 if (rr->type == SSL3_RT_HANDSHAKE &&
1858 seq_num == s->d1->handshake_read_seq &&
1859 msg_hdr.frag_off < s->d1->r_msg_hdr.frag_off)
1860 return 0;
1861 else if (seq_num == s->d1->handshake_read_seq &&
1862 (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC ||
1863 msg_hdr.frag_off == s->d1->r_msg_hdr.fra
1864 return 0;
1865 else
1866 {
1867 *priority = seq_num;
1868 return 1;
1869 }
1870 }
1871 else /* unknown record type */
1872 return 0;
1873 }

1875 return 0;
1876 }
1877 #endif

1879 void
1880 dtls1_reset_seq_numbers(SSL *s, int rw)
1881 {
1882 unsigned char *seq;
1883 unsigned int seq_bytes = sizeof(s->s3->read_sequence);

1885 if (rw & SSL3_CC_READ)
1886 {
1887 seq = s->s3->read_sequence;
1888 s->d1->r_epoch++;
1889 memcpy(&(s->d1->bitmap), &(s->d1->next_bitmap), sizeof(DTLS1_BIT
1890 memset(&(s->d1->next_bitmap), 0x00, sizeof(DTLS1_BITMAP));
1891 }
1892 else
1893 {
1894 seq = s->s3->write_sequence;
1895 memcpy(s->d1->last_write_sequence, seq, sizeof(s->s3->write_sequ
1896 s->d1->w_epoch++;
1897 }

1899 memset(seq, 0x00, seq_bytes);
1900 }

new/usr/src/lib/openssl/libsunw_ssl/d1_srtp.c 1

**
 13410 Fri May 30 18:32:18 2014
new/usr/src/lib/openssl/libsunw_ssl/d1_srtp.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/t1_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/d1_srtp.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /*
112 DTLS code by Eric Rescorla <ekr@rtfm.com>

114 Copyright (C) 2006, Network Resonance, Inc.
115 Copyright (C) 2011, RTFM, Inc.
116 */

118 #include <stdio.h>
119 #include <openssl/objects.h>
120 #include "ssl_locl.h"

122 #ifndef OPENSSL_NO_SRTP

124 #include <openssl/srtp.h>

127 static SRTP_PROTECTION_PROFILE srtp_known_profiles[]=

new/usr/src/lib/openssl/libsunw_ssl/d1_srtp.c 3

128 {
129 {
130 "SRTP_AES128_CM_SHA1_80",
131 SRTP_AES128_CM_SHA1_80,
132 },
133 {
134 "SRTP_AES128_CM_SHA1_32",
135 SRTP_AES128_CM_SHA1_32,
136 },
137 #if 0
138 {
139 "SRTP_NULL_SHA1_80",
140 SRTP_NULL_SHA1_80,
141 },
142 {
143 "SRTP_NULL_SHA1_32",
144 SRTP_NULL_SHA1_32,
145 },
146 #endif
147 {0}
148 };

150 static int find_profile_by_name(char *profile_name,
151 SRTP_PROTECTION_PROFILE **pptr,unsigned len)
152 {
153 SRTP_PROTECTION_PROFILE *p;

155 p=srtp_known_profiles;
156 while(p->name)
157 {
158 if((len == strlen(p->name)) && !strncmp(p->name,profile_name,
159 len))
160 {
161 *pptr=p;
162 return 0;
163 }

165 p++;
166 }

168 return 1;
169 }

171 static int find_profile_by_num(unsigned profile_num,
172 SRTP_PROTECTION_PROFILE **pptr)
173 {
174 SRTP_PROTECTION_PROFILE *p;

176 p=srtp_known_profiles;
177 while(p->name)
178 {
179 if(p->id == profile_num)
180 {
181 *pptr=p;
182 return 0;
183 }
184 p++;
185 }

187 return 1;
188 }

190 static int ssl_ctx_make_profiles(const char *profiles_string,STACK_OF(SRTP_PROTE
191 {
192 STACK_OF(SRTP_PROTECTION_PROFILE) *profiles;

new/usr/src/lib/openssl/libsunw_ssl/d1_srtp.c 4

194 char *col;
195 char *ptr=(char *)profiles_string;
196
197 SRTP_PROTECTION_PROFILE *p;

199 if(!(profiles=sk_SRTP_PROTECTION_PROFILE_new_null()))
200 {
201 SSLerr(SSL_F_SSL_CTX_MAKE_PROFILES, SSL_R_SRTP_COULD_NOT_ALLOCAT
202 return 1;
203 }
204
205 do
206 {
207 col=strchr(ptr,’:’);

209 if(!find_profile_by_name(ptr,&p,
210 col ? col-ptr : (int)strlen(ptr)))
211 {
212 sk_SRTP_PROTECTION_PROFILE_push(profiles,p);
213 }
214 else
215 {
216 SSLerr(SSL_F_SSL_CTX_MAKE_PROFILES,SSL_R_SRTP_UNKNOWN_PR
217 return 1;
218 }

220 if(col) ptr=col+1;
221 } while (col);

223 *out=profiles;
224
225 return 0;
226 }
227
228 int SSL_CTX_set_tlsext_use_srtp(SSL_CTX *ctx,const char *profiles)
229 {
230 return ssl_ctx_make_profiles(profiles,&ctx->srtp_profiles);
231 }

233 int SSL_set_tlsext_use_srtp(SSL *s,const char *profiles)
234 {
235 return ssl_ctx_make_profiles(profiles,&s->srtp_profiles);
236 }

239 STACK_OF(SRTP_PROTECTION_PROFILE) *SSL_get_srtp_profiles(SSL *s)
240 {
241 if(s != NULL)
242 {
243 if(s->srtp_profiles != NULL)
244 {
245 return s->srtp_profiles;
246 }
247 else if((s->ctx != NULL) &&
248 (s->ctx->srtp_profiles != NULL))
249 {
250 return s->ctx->srtp_profiles;
251 }
252 }

254 return NULL;
255 }

257 SRTP_PROTECTION_PROFILE *SSL_get_selected_srtp_profile(SSL *s)
258 {
259 return s->srtp_profile;

new/usr/src/lib/openssl/libsunw_ssl/d1_srtp.c 5

260 }

262 /* Note: this function returns 0 length if there are no
263 profiles specified */
264 int ssl_add_clienthello_use_srtp_ext(SSL *s, unsigned char *p, int *len, int max
265 {
266 int ct=0;
267 int i;
268 STACK_OF(SRTP_PROTECTION_PROFILE) *clnt=0;
269 SRTP_PROTECTION_PROFILE *prof;
270
271 clnt=SSL_get_srtp_profiles(s);
272 ct=sk_SRTP_PROTECTION_PROFILE_num(clnt); /* -1 if clnt == 0 */

274 if(p)
275 {
276 if(ct==0)
277 {
278 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_USE_SRTP_EXT,SSL_R_EMPT
279 return 1;
280 }

282 if((2 + ct*2 + 1) > maxlen)
283 {
284 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_USE_SRTP_EXT,SSL_R_SRTP
285 return 1;
286 }

288 /* Add the length */
289 s2n(ct * 2, p);
290 for(i=0;i<ct;i++)
291 {
292 prof=sk_SRTP_PROTECTION_PROFILE_value(clnt,i);
293 s2n(prof->id,p);
294 }

296 /* Add an empty use_mki value */
297 *p++ = 0;
298 }

300 *len=2 + ct*2 + 1;
301
302 return 0;
303 }

306 int ssl_parse_clienthello_use_srtp_ext(SSL *s, unsigned char *d, int len,int *al
307 {
308 SRTP_PROTECTION_PROFILE *cprof,*sprof;
309 STACK_OF(SRTP_PROTECTION_PROFILE) *clnt=0,*srvr;
310 int ct;
311 int mki_len;
312 int i,j;
313 int id;
314 int ret;

316 /* Length value + the MKI length */
317 if(len < 3)
318 {
319 SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_USE_SRTP_EXT,SSL_R_BAD_SRTP_P
320 *al=SSL_AD_DECODE_ERROR;
321 return 1;
322 }

324 /* Pull off the length of the cipher suite list */
325 n2s(d, ct);

new/usr/src/lib/openssl/libsunw_ssl/d1_srtp.c 6

326 len -= 2;
327
328 /* Check that it is even */
329 if(ct%2)
330 {
331 SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_USE_SRTP_EXT,SSL_R_BAD_SRTP_P
332 *al=SSL_AD_DECODE_ERROR;
333 return 1;
334 }
335
336 /* Check that lengths are consistent */
337 if(len < (ct + 1))
338 {
339 SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_USE_SRTP_EXT,SSL_R_BAD_SRTP_P
340 *al=SSL_AD_DECODE_ERROR;
341 return 1;
342 }

344
345 clnt=sk_SRTP_PROTECTION_PROFILE_new_null();

347 while(ct)
348 {
349 n2s(d,id);
350 ct-=2;
351 len-=2;

353 if(!find_profile_by_num(id,&cprof))
354 {
355 sk_SRTP_PROTECTION_PROFILE_push(clnt,cprof);
356 }
357 else
358 {
359 ; /* Ignore */
360 }
361 }

363 /* Now extract the MKI value as a sanity check, but discard it for now *
364 mki_len = *d;
365 d++; len--;

367 if (mki_len != len)
368 {
369 SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_USE_SRTP_EXT,SSL_R_BAD_SRTP_M
370 *al=SSL_AD_DECODE_ERROR;
371 return 1;
372 }

374 srvr=SSL_get_srtp_profiles(s);

376 /* Pick our most preferred profile. If no profiles have been
377 configured then the outer loop doesn’t run
378 (sk_SRTP_PROTECTION_PROFILE_num() = -1)
379 and so we just return without doing anything */
380 for(i=0;i<sk_SRTP_PROTECTION_PROFILE_num(srvr);i++)
381 {
382 sprof=sk_SRTP_PROTECTION_PROFILE_value(srvr,i);

384 for(j=0;j<sk_SRTP_PROTECTION_PROFILE_num(clnt);j++)
385 {
386 cprof=sk_SRTP_PROTECTION_PROFILE_value(clnt,j);
387
388 if(cprof->id==sprof->id)
389 {
390 s->srtp_profile=sprof;
391 *al=0;

new/usr/src/lib/openssl/libsunw_ssl/d1_srtp.c 7

392 ret=0;
393 goto done;
394 }
395 }
396 }

398 ret=0;
399
400 done:
401 if(clnt) sk_SRTP_PROTECTION_PROFILE_free(clnt);

403 return ret;
404 }

406 int ssl_add_serverhello_use_srtp_ext(SSL *s, unsigned char *p, int *len, int max
407 {
408 if(p)
409 {
410 if(maxlen < 5)
411 {
412 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_USE_SRTP_EXT,SSL_R_SRTP
413 return 1;
414 }

416 if(s->srtp_profile==0)
417 {
418 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_USE_SRTP_EXT,SSL_R_USE_
419 return 1;
420 }
421 s2n(2, p);
422 s2n(s->srtp_profile->id,p);
423 *p++ = 0;
424 }
425 *len=5;
426
427 return 0;
428 }
429

431 int ssl_parse_serverhello_use_srtp_ext(SSL *s, unsigned char *d, int len,int *al
432 {
433 unsigned id;
434 int i;
435 int ct;

437 STACK_OF(SRTP_PROTECTION_PROFILE) *clnt;
438 SRTP_PROTECTION_PROFILE *prof;

440 if(len!=5)
441 {
442 SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_USE_SRTP_EXT,SSL_R_BAD_SRTP_P
443 *al=SSL_AD_DECODE_ERROR;
444 return 1;
445 }

447 n2s(d, ct);
448 if(ct!=2)
449 {
450 SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_USE_SRTP_EXT,SSL_R_BAD_SRTP_P
451 *al=SSL_AD_DECODE_ERROR;
452 return 1;
453 }

455 n2s(d,id);
456 if (*d) /* Must be no MKI, since we never offer one */
457 {

new/usr/src/lib/openssl/libsunw_ssl/d1_srtp.c 8

458 SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_USE_SRTP_EXT,SSL_R_BAD_SRTP_M
459 *al=SSL_AD_ILLEGAL_PARAMETER;
460 return 1;
461 }

463 clnt=SSL_get_srtp_profiles(s);

465 /* Throw an error if the server gave us an unsolicited extension */
466 if (clnt == NULL)
467 {
468 SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_USE_SRTP_EXT,SSL_R_NO_SRTP_PR
469 *al=SSL_AD_DECODE_ERROR;
470 return 1;
471 }
472
473 /* Check to see if the server gave us something we support
474 (and presumably offered)
475 */
476 for(i=0;i<sk_SRTP_PROTECTION_PROFILE_num(clnt);i++)
477 {
478 prof=sk_SRTP_PROTECTION_PROFILE_value(clnt,i);
479
480 if(prof->id == id)
481 {
482 s->srtp_profile=prof;
483 *al=0;
484 return 0;
485 }
486 }

488 SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_USE_SRTP_EXT,SSL_R_BAD_SRTP_PROTECTIO
489 *al=SSL_AD_DECODE_ERROR;
490 return 1;
491 }

494 #endif

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 1

**
 45087 Fri May 30 18:32:18 2014
new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/d1_srvr.c */
2 /*
3 * DTLS implementation written by Nagendra Modadugu
4 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
5 */
6 /* ==
7 * Copyright (c) 1999-2007 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * openssl-core@OpenSSL.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */
59 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
60 * All rights reserved.
61 *

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 2

62 * This package is an SSL implementation written
63 * by Eric Young (eay@cryptsoft.com).
64 * The implementation was written so as to conform with Netscapes SSL.
65 *
66 * This library is free for commercial and non-commercial use as long as
67 * the following conditions are aheared to. The following conditions
68 * apply to all code found in this distribution, be it the RC4, RSA,
69 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
70 * included with this distribution is covered by the same copyright terms
71 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
72 *
73 * Copyright remains Eric Young’s, and as such any Copyright notices in
74 * the code are not to be removed.
75 * If this package is used in a product, Eric Young should be given attribution
76 * as the author of the parts of the library used.
77 * This can be in the form of a textual message at program startup or
78 * in documentation (online or textual) provided with the package.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * "This product includes cryptographic software written by
91 * Eric Young (eay@cryptsoft.com)"
92 * The word ’cryptographic’ can be left out if the rouines from the library
93 * being used are not cryptographic related :-).
94 * 4. If you include any Windows specific code (or a derivative thereof) from
95 * the apps directory (application code) you must include an acknowledgement:
96 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
97 *
98 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
99 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
100 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
101 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
102 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
103 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
104 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * The licence and distribution terms for any publically available version or
111 * derivative of this code cannot be changed. i.e. this code cannot simply be
112 * copied and put under another distribution licence
113 * [including the GNU Public Licence.]
114 */

116 #include <stdio.h>
117 #include "ssl_locl.h"
118 #include <openssl/buffer.h>
119 #include <openssl/rand.h>
120 #include <openssl/objects.h>
121 #include <openssl/evp.h>
122 #include <openssl/x509.h>
123 #include <openssl/md5.h>
124 #include <openssl/bn.h>
125 #ifndef OPENSSL_NO_DH
126 #include <openssl/dh.h>
127 #endif

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 3

129 static const SSL_METHOD *dtls1_get_server_method(int ver);
130 static int dtls1_send_hello_verify_request(SSL *s);

132 static const SSL_METHOD *dtls1_get_server_method(int ver)
133 {
134 if (ver == DTLS1_VERSION)
135 return(DTLSv1_server_method());
136 else
137 return(NULL);
138 }

140 IMPLEMENT_dtls1_meth_func(DTLSv1_server_method,
141 dtls1_accept,
142 ssl_undefined_function,
143 dtls1_get_server_method)

145 int dtls1_accept(SSL *s)
146 {
147 BUF_MEM *buf;
148 unsigned long Time=(unsigned long)time(NULL);
149 void (*cb)(const SSL *ssl,int type,int val)=NULL;
150 unsigned long alg_k;
151 int ret= -1;
152 int new_state,state,skip=0;
153 int listen;
154 #ifndef OPENSSL_NO_SCTP
155 unsigned char sctpauthkey[64];
156 char labelbuffer[sizeof(DTLS1_SCTP_AUTH_LABEL)];
157 #endif

159 RAND_add(&Time,sizeof(Time),0);
160 ERR_clear_error();
161 clear_sys_error();

163 if (s->info_callback != NULL)
164 cb=s->info_callback;
165 else if (s->ctx->info_callback != NULL)
166 cb=s->ctx->info_callback;
167
168 listen = s->d1->listen;

170 /* init things to blank */
171 s->in_handshake++;
172 if (!SSL_in_init(s) || SSL_in_before(s)) SSL_clear(s);

174 s->d1->listen = listen;
175 #ifndef OPENSSL_NO_SCTP
176 /* Notify SCTP BIO socket to enter handshake
177 * mode and prevent stream identifier other
178 * than 0. Will be ignored if no SCTP is used.
179 */
180 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE, s->in_ha
181 #endif

183 if (s->cert == NULL)
184 {
185 SSLerr(SSL_F_DTLS1_ACCEPT,SSL_R_NO_CERTIFICATE_SET);
186 return(-1);
187 }

189 #ifndef OPENSSL_NO_HEARTBEATS
190 /* If we’re awaiting a HeartbeatResponse, pretend we
191 * already got and don’t await it anymore, because
192 * Heartbeats don’t make sense during handshakes anyway.
193 */

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 4

194 if (s->tlsext_hb_pending)
195 {
196 dtls1_stop_timer(s);
197 s->tlsext_hb_pending = 0;
198 s->tlsext_hb_seq++;
199 }
200 #endif

202 for (;;)
203 {
204 state=s->state;

206 switch (s->state)
207 {
208 case SSL_ST_RENEGOTIATE:
209 s->renegotiate=1;
210 /* s->state=SSL_ST_ACCEPT; */

212 case SSL_ST_BEFORE:
213 case SSL_ST_ACCEPT:
214 case SSL_ST_BEFORE|SSL_ST_ACCEPT:
215 case SSL_ST_OK|SSL_ST_ACCEPT:

217 s->server=1;
218 if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_START,1);

220 if ((s->version & 0xff00) != (DTLS1_VERSION & 0xff00))
221 {
222 SSLerr(SSL_F_DTLS1_ACCEPT, ERR_R_INTERNAL_ERROR)
223 return -1;
224 }
225 s->type=SSL_ST_ACCEPT;

227 if (s->init_buf == NULL)
228 {
229 if ((buf=BUF_MEM_new()) == NULL)
230 {
231 ret= -1;
232 goto end;
233 }
234 if (!BUF_MEM_grow(buf,SSL3_RT_MAX_PLAIN_LENGTH))
235 {
236 ret= -1;
237 goto end;
238 }
239 s->init_buf=buf;
240 }

242 if (!ssl3_setup_buffers(s))
243 {
244 ret= -1;
245 goto end;
246 }

248 s->init_num=0;

250 if (s->state != SSL_ST_RENEGOTIATE)
251 {
252 /* Ok, we now need to push on a buffering BIO so
253 * the output is sent in a way that TCP likes :-
254 * ...but not with SCTP :-)
255 */
256 #ifndef OPENSSL_NO_SCTP
257 if (!BIO_dgram_is_sctp(SSL_get_wbio(s)))
258 #endif
259 if (!ssl_init_wbio_buffer(s,1)) { ret= -

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 5

261 ssl3_init_finished_mac(s);
262 s->state=SSL3_ST_SR_CLNT_HELLO_A;
263 s->ctx->stats.sess_accept++;
264 }
265 else
266 {
267 /* s->state == SSL_ST_RENEGOTIATE,
268 * we will just send a HelloRequest */
269 s->ctx->stats.sess_accept_renegotiate++;
270 s->state=SSL3_ST_SW_HELLO_REQ_A;
271 }

273 break;

275 case SSL3_ST_SW_HELLO_REQ_A:
276 case SSL3_ST_SW_HELLO_REQ_B:

278 s->shutdown=0;
279 dtls1_clear_record_buffer(s);
280 dtls1_start_timer(s);
281 ret=dtls1_send_hello_request(s);
282 if (ret <= 0) goto end;
283 s->s3->tmp.next_state=SSL3_ST_SR_CLNT_HELLO_A;
284 s->state=SSL3_ST_SW_FLUSH;
285 s->init_num=0;

287 ssl3_init_finished_mac(s);
288 break;

290 case SSL3_ST_SW_HELLO_REQ_C:
291 s->state=SSL_ST_OK;
292 break;

294 case SSL3_ST_SR_CLNT_HELLO_A:
295 case SSL3_ST_SR_CLNT_HELLO_B:
296 case SSL3_ST_SR_CLNT_HELLO_C:

298 s->shutdown=0;
299 ret=ssl3_get_client_hello(s);
300 if (ret <= 0) goto end;
301 dtls1_stop_timer(s);

303 if (ret == 1 && (SSL_get_options(s) & SSL_OP_COOKIE_EXCH
304 s->state = DTLS1_ST_SW_HELLO_VERIFY_REQUEST_A;
305 else
306 s->state = SSL3_ST_SW_SRVR_HELLO_A;

308 s->init_num=0;

310 /* Reflect ClientHello sequence to remain stateless whil
311 if (listen)
312 {
313 memcpy(s->s3->write_sequence, s->s3->read_sequen
314 }

316 /* If we’re just listening, stop here */
317 if (listen && s->state == SSL3_ST_SW_SRVR_HELLO_A)
318 {
319 ret = 2;
320 s->d1->listen = 0;
321 /* Set expected sequence numbers
322 * to continue the handshake.
323 */
324 s->d1->handshake_read_seq = 2;
325 s->d1->handshake_write_seq = 1;

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 6

326 s->d1->next_handshake_write_seq = 1;
327 goto end;
328 }
329
330 break;
331
332 case DTLS1_ST_SW_HELLO_VERIFY_REQUEST_A:
333 case DTLS1_ST_SW_HELLO_VERIFY_REQUEST_B:

335 ret = dtls1_send_hello_verify_request(s);
336 if (ret <= 0) goto end;
337 s->state=SSL3_ST_SW_FLUSH;
338 s->s3->tmp.next_state=SSL3_ST_SR_CLNT_HELLO_A;

340 /* HelloVerifyRequest resets Finished MAC */
341 if (s->version != DTLS1_BAD_VER)
342 ssl3_init_finished_mac(s);
343 break;
344
345 #ifndef OPENSSL_NO_SCTP
346 case DTLS1_SCTP_ST_SR_READ_SOCK:
347
348 if (BIO_dgram_sctp_msg_waiting(SSL_get_rbio(s)))
349 {
350 s->s3->in_read_app_data=2;
351 s->rwstate=SSL_READING;
352 BIO_clear_retry_flags(SSL_get_rbio(s));
353 BIO_set_retry_read(SSL_get_rbio(s));
354 ret = -1;
355 goto end;
356 }
357
358 s->state=SSL3_ST_SR_FINISHED_A;
359 break;
360
361 case DTLS1_SCTP_ST_SW_WRITE_SOCK:
362 ret = BIO_dgram_sctp_wait_for_dry(SSL_get_wbio(s));
363 if (ret < 0) goto end;
364
365 if (ret == 0)
366 {
367 if (s->d1->next_state != SSL_ST_OK)
368 {
369 s->s3->in_read_app_data=2;
370 s->rwstate=SSL_READING;
371 BIO_clear_retry_flags(SSL_get_rbio(s));
372 BIO_set_retry_read(SSL_get_rbio(s));
373 ret = -1;
374 goto end;
375 }
376 }

378 s->state=s->d1->next_state;
379 break;
380 #endif

382 case SSL3_ST_SW_SRVR_HELLO_A:
383 case SSL3_ST_SW_SRVR_HELLO_B:
384 s->renegotiate = 2;
385 dtls1_start_timer(s);
386 ret=dtls1_send_server_hello(s);
387 if (ret <= 0) goto end;

389 if (s->hit)
390 {
391 #ifndef OPENSSL_NO_SCTP

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 7

392 /* Add new shared key for SCTP-Auth,
393 * will be ignored if no SCTP used.
394 */
395 snprintf((char*) labelbuffer, sizeof(DTLS1_SCTP_
396 DTLS1_SCTP_AUTH_LABEL);

398 SSL_export_keying_material(s, sctpauthkey,
399 sizeof(sctpauthkey),
400 sizeof(labelbuffer),
401
402 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_AD
403 sizeof(sctpauthkey), sctpauthkey);
404 #endif
405 #ifndef OPENSSL_NO_TLSEXT
406 if (s->tlsext_ticket_expected)
407 s->state=SSL3_ST_SW_SESSION_TICKET_A;
408 else
409 s->state=SSL3_ST_SW_CHANGE_A;
410 #else
411 s->state=SSL3_ST_SW_CHANGE_A;
412 #endif
413 }
414 else
415 s->state=SSL3_ST_SW_CERT_A;
416 s->init_num=0;
417 break;

419 case SSL3_ST_SW_CERT_A:
420 case SSL3_ST_SW_CERT_B:
421 /* Check if it is anon DH or normal PSK */
422 if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL)
423 && !(s->s3->tmp.new_cipher->algorithm_mkey & SSL
424 {
425 dtls1_start_timer(s);
426 ret=dtls1_send_server_certificate(s);
427 if (ret <= 0) goto end;
428 #ifndef OPENSSL_NO_TLSEXT
429 if (s->tlsext_status_expected)
430 s->state=SSL3_ST_SW_CERT_STATUS_A;
431 else
432 s->state=SSL3_ST_SW_KEY_EXCH_A;
433 }
434 else
435 {
436 skip = 1;
437 s->state=SSL3_ST_SW_KEY_EXCH_A;
438 }
439 #else
440 }
441 else
442 skip=1;

444 s->state=SSL3_ST_SW_KEY_EXCH_A;
445 #endif
446 s->init_num=0;
447 break;

449 case SSL3_ST_SW_KEY_EXCH_A:
450 case SSL3_ST_SW_KEY_EXCH_B:
451 alg_k = s->s3->tmp.new_cipher->algorithm_mkey;

453 /* clear this, it may get reset by
454 * send_server_key_exchange */
455 if ((s->options & SSL_OP_EPHEMERAL_RSA)
456 #ifndef OPENSSL_NO_KRB5
457 && !(alg_k & SSL_kKRB5)

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 8

458 #endif /* OPENSSL_NO_KRB5 */
459)
460 /* option SSL_OP_EPHEMERAL_RSA sends temporary R
461 * even when forbidden by protocol specs
462 * (handshake may fail as clients are not requir
463 * be able to handle this) */
464 s->s3->tmp.use_rsa_tmp=1;
465 else
466 s->s3->tmp.use_rsa_tmp=0;

468 /* only send if a DH key exchange or
469 * RSA but we have a sign only certificate */
470 if (s->s3->tmp.use_rsa_tmp
471 /* PSK: send ServerKeyExchange if PSK identity
472 * hint if provided */
473 #ifndef OPENSSL_NO_PSK
474 || ((alg_k & SSL_kPSK) && s->ctx->psk_identity_hint)
475 #endif
476 || (alg_k & (SSL_kEDH|SSL_kDHr|SSL_kDHd))
477 || (alg_k & SSL_kEECDH)
478 || ((alg_k & SSL_kRSA)
479 && (s->cert->pkeys[SSL_PKEY_RSA_ENC].privatekey
480 || (SSL_C_IS_EXPORT(s->s3->tmp.new_cipher)
481 && EVP_PKEY_size(s->cert->pkeys[SSL_PKEY
482)
483)
484)
485)
486 {
487 dtls1_start_timer(s);
488 ret=dtls1_send_server_key_exchange(s);
489 if (ret <= 0) goto end;
490 }
491 else
492 skip=1;

494 s->state=SSL3_ST_SW_CERT_REQ_A;
495 s->init_num=0;
496 break;

498 case SSL3_ST_SW_CERT_REQ_A:
499 case SSL3_ST_SW_CERT_REQ_B:
500 if (/* don’t request cert unless asked for it: */
501 !(s->verify_mode & SSL_VERIFY_PEER) ||
502 /* if SSL_VERIFY_CLIENT_ONCE is set,
503 * don’t request cert during re-negotiation: */
504 ((s->session->peer != NULL) &&
505 (s->verify_mode & SSL_VERIFY_CLIENT_ONCE)) ||
506 /* never request cert in anonymous ciphersuites
507 * (see section "Certificate request" in SSL 3 d
508 * and in RFC 2246): */
509 ((s->s3->tmp.new_cipher->algorithm_auth & SSL_aN
510 /* ... except when the application insists on v
511 * (against the specs, but s3_clnt.c accepts th
512 !(s->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_C
513 /* never request cert in Kerberos ciphersuites
514 (s->s3->tmp.new_cipher->algorithm_auth & SSL_aKR
515 /* With normal PSK Certificates and
516 * Certificate Requests are omitted */
517 || (s->s3->tmp.new_cipher->algorithm_mkey & SSL_
518 {
519 /* no cert request */
520 skip=1;
521 s->s3->tmp.cert_request=0;
522 s->state=SSL3_ST_SW_SRVR_DONE_A;
523 #ifndef OPENSSL_NO_SCTP

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 9

524 if (BIO_dgram_is_sctp(SSL_get_wbio(s)))
525 {
526 s->d1->next_state = SSL3_ST_SW_SRVR_DONE
527 s->state = DTLS1_SCTP_ST_SW_WRITE_SOCK;
528 }
529 #endif
530 }
531 else
532 {
533 s->s3->tmp.cert_request=1;
534 dtls1_start_timer(s);
535 ret=dtls1_send_certificate_request(s);
536 if (ret <= 0) goto end;
537 #ifndef NETSCAPE_HANG_BUG
538 s->state=SSL3_ST_SW_SRVR_DONE_A;
539 #ifndef OPENSSL_NO_SCTP
540 if (BIO_dgram_is_sctp(SSL_get_wbio(s)))
541 {
542 s->d1->next_state = SSL3_ST_SW_SRVR_DONE
543 s->state = DTLS1_SCTP_ST_SW_WRITE_SOCK;
544 }
545 #endif
546 #else
547 s->state=SSL3_ST_SW_FLUSH;
548 s->s3->tmp.next_state=SSL3_ST_SR_CERT_A;
549 #ifndef OPENSSL_NO_SCTP
550 if (BIO_dgram_is_sctp(SSL_get_wbio(s)))
551 {
552 s->d1->next_state = s->s3->tmp.next_stat
553 s->s3->tmp.next_state=DTLS1_SCTP_ST_SW_W
554 }
555 #endif
556 #endif
557 s->init_num=0;
558 }
559 break;

561 case SSL3_ST_SW_SRVR_DONE_A:
562 case SSL3_ST_SW_SRVR_DONE_B:
563 dtls1_start_timer(s);
564 ret=dtls1_send_server_done(s);
565 if (ret <= 0) goto end;
566 s->s3->tmp.next_state=SSL3_ST_SR_CERT_A;
567 s->state=SSL3_ST_SW_FLUSH;
568 s->init_num=0;
569 break;
570
571 case SSL3_ST_SW_FLUSH:
572 s->rwstate=SSL_WRITING;
573 if (BIO_flush(s->wbio) <= 0)
574 {
575 /* If the write error was fatal, stop trying */
576 if (!BIO_should_retry(s->wbio))
577 {
578 s->rwstate=SSL_NOTHING;
579 s->state=s->s3->tmp.next_state;
580 }
581
582 ret= -1;
583 goto end;
584 }
585 s->rwstate=SSL_NOTHING;
586 s->state=s->s3->tmp.next_state;
587 break;

589 case SSL3_ST_SR_CERT_A:

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 10

590 case SSL3_ST_SR_CERT_B:
591 /* Check for second client hello (MS SGC) */
592 ret = ssl3_check_client_hello(s);
593 if (ret <= 0)
594 goto end;
595 if (ret == 2)
596 {
597 dtls1_stop_timer(s);
598 s->state = SSL3_ST_SR_CLNT_HELLO_C;
599 }
600 else {
601 /* could be sent for a DH cert, even if we
602 * have not asked for it :-) */
603 ret=ssl3_get_client_certificate(s);
604 if (ret <= 0) goto end;
605 s->init_num=0;
606 s->state=SSL3_ST_SR_KEY_EXCH_A;
607 }
608 break;

610 case SSL3_ST_SR_KEY_EXCH_A:
611 case SSL3_ST_SR_KEY_EXCH_B:
612 ret=ssl3_get_client_key_exchange(s);
613 if (ret <= 0) goto end;
614 #ifndef OPENSSL_NO_SCTP
615 /* Add new shared key for SCTP-Auth,
616 * will be ignored if no SCTP used.
617 */
618 snprintf((char *) labelbuffer, sizeof(DTLS1_SCTP_AUTH_LA
619 DTLS1_SCTP_AUTH_LABEL);

621 SSL_export_keying_material(s, sctpauthkey,
622 sizeof(sctpauthkey), labelbuf
623 sizeof(labelbuffer), NULL, 0,

625 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_ADD_AUTH_K
626 sizeof(sctpauthkey), sctpauthkey);
627 #endif

629 s->state=SSL3_ST_SR_CERT_VRFY_A;
630 s->init_num=0;

632 if (ret == 2)
633 {
634 /* For the ECDH ciphersuites when
635 * the client sends its ECDH pub key in
636 * a certificate, the CertificateVerify
637 * message is not sent.
638 */
639 s->state=SSL3_ST_SR_FINISHED_A;
640 s->init_num = 0;
641 }
642 else
643 {
644 s->state=SSL3_ST_SR_CERT_VRFY_A;
645 s->init_num=0;

647 /* We need to get hashes here so if there is
648 * a client cert, it can be verified */
649 s->method->ssl3_enc->cert_verify_mac(s,
650 NID_md5,
651 &(s->s3->tmp.cert_verify_md[0]));
652 s->method->ssl3_enc->cert_verify_mac(s,
653 NID_sha1,
654 &(s->s3->tmp.cert_verify_md[MD5_DIGEST_L
655 }

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 11

656 break;

658 case SSL3_ST_SR_CERT_VRFY_A:
659 case SSL3_ST_SR_CERT_VRFY_B:

661 s->d1->change_cipher_spec_ok = 1;
662 /* we should decide if we expected this one */
663 ret=ssl3_get_cert_verify(s);
664 if (ret <= 0) goto end;
665 #ifndef OPENSSL_NO_SCTP
666 if (BIO_dgram_is_sctp(SSL_get_wbio(s)) &&
667 state == SSL_ST_RENEGOTIATE)
668 s->state=DTLS1_SCTP_ST_SR_READ_SOCK;
669 else
670 #endif
671 s->state=SSL3_ST_SR_FINISHED_A;
672 s->init_num=0;
673 break;

675 case SSL3_ST_SR_FINISHED_A:
676 case SSL3_ST_SR_FINISHED_B:
677 s->d1->change_cipher_spec_ok = 1;
678 ret=ssl3_get_finished(s,SSL3_ST_SR_FINISHED_A,
679 SSL3_ST_SR_FINISHED_B);
680 if (ret <= 0) goto end;
681 dtls1_stop_timer(s);
682 if (s->hit)
683 s->state=SSL_ST_OK;
684 #ifndef OPENSSL_NO_TLSEXT
685 else if (s->tlsext_ticket_expected)
686 s->state=SSL3_ST_SW_SESSION_TICKET_A;
687 #endif
688 else
689 s->state=SSL3_ST_SW_CHANGE_A;
690 s->init_num=0;
691 break;

693 #ifndef OPENSSL_NO_TLSEXT
694 case SSL3_ST_SW_SESSION_TICKET_A:
695 case SSL3_ST_SW_SESSION_TICKET_B:
696 ret=dtls1_send_newsession_ticket(s);
697 if (ret <= 0) goto end;
698 s->state=SSL3_ST_SW_CHANGE_A;
699 s->init_num=0;
700 break;

702 case SSL3_ST_SW_CERT_STATUS_A:
703 case SSL3_ST_SW_CERT_STATUS_B:
704 ret=ssl3_send_cert_status(s);
705 if (ret <= 0) goto end;
706 s->state=SSL3_ST_SW_KEY_EXCH_A;
707 s->init_num=0;
708 break;

710 #endif

712 case SSL3_ST_SW_CHANGE_A:
713 case SSL3_ST_SW_CHANGE_B:

715 s->session->cipher=s->s3->tmp.new_cipher;
716 if (!s->method->ssl3_enc->setup_key_block(s))
717 { ret= -1; goto end; }

719 ret=dtls1_send_change_cipher_spec(s,
720 SSL3_ST_SW_CHANGE_A,SSL3_ST_SW_CHANGE_B);

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 12

722 if (ret <= 0) goto end;

724 #ifndef OPENSSL_NO_SCTP
725 if (!s->hit)
726 {
727 /* Change to new shared key of SCTP-Auth,
728 * will be ignored if no SCTP used.
729 */
730 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_NE
731 }
732 #endif

734 s->state=SSL3_ST_SW_FINISHED_A;
735 s->init_num=0;

737 if (!s->method->ssl3_enc->change_cipher_state(s,
738 SSL3_CHANGE_CIPHER_SERVER_WRITE))
739 {
740 ret= -1;
741 goto end;
742 }

744 dtls1_reset_seq_numbers(s, SSL3_CC_WRITE);
745 break;

747 case SSL3_ST_SW_FINISHED_A:
748 case SSL3_ST_SW_FINISHED_B:
749 ret=dtls1_send_finished(s,
750 SSL3_ST_SW_FINISHED_A,SSL3_ST_SW_FINISHED_B,
751 s->method->ssl3_enc->server_finished_label,
752 s->method->ssl3_enc->server_finished_label_len);
753 if (ret <= 0) goto end;
754 s->state=SSL3_ST_SW_FLUSH;
755 if (s->hit)
756 {
757 s->s3->tmp.next_state=SSL3_ST_SR_FINISHED_A;

759 #ifndef OPENSSL_NO_SCTP
760 /* Change to new shared key of SCTP-Auth,
761 * will be ignored if no SCTP used.
762 */
763 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_NE
764 #endif
765 }
766 else
767 {
768 s->s3->tmp.next_state=SSL_ST_OK;
769 #ifndef OPENSSL_NO_SCTP
770 if (BIO_dgram_is_sctp(SSL_get_wbio(s)))
771 {
772 s->d1->next_state = s->s3->tmp.next_stat
773 s->s3->tmp.next_state=DTLS1_SCTP_ST_SW_W
774 }
775 #endif
776 }
777 s->init_num=0;
778 break;

780 case SSL_ST_OK:
781 /* clean a few things up */
782 ssl3_cleanup_key_block(s);

784 #if 0
785 BUF_MEM_free(s->init_buf);
786 s->init_buf=NULL;
787 #endif

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 13

789 /* remove buffering on output */
790 ssl_free_wbio_buffer(s);

792 s->init_num=0;

794 if (s->renegotiate == 2) /* skipped if we just sent a He
795 {
796 s->renegotiate=0;
797 s->new_session=0;
798
799 ssl_update_cache(s,SSL_SESS_CACHE_SERVER);
800
801 s->ctx->stats.sess_accept_good++;
802 /* s->server=1; */
803 s->handshake_func=dtls1_accept;

805 if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_DONE,1);
806 }
807
808 ret = 1;

810 /* done handshaking, next message is client hello */
811 s->d1->handshake_read_seq = 0;
812 /* next message is server hello */
813 s->d1->handshake_write_seq = 0;
814 s->d1->next_handshake_write_seq = 0;
815 goto end;
816 /* break; */

818 default:
819 SSLerr(SSL_F_DTLS1_ACCEPT,SSL_R_UNKNOWN_STATE);
820 ret= -1;
821 goto end;
822 /* break; */
823 }
824
825 if (!s->s3->tmp.reuse_message && !skip)
826 {
827 if (s->debug)
828 {
829 if ((ret=BIO_flush(s->wbio)) <= 0)
830 goto end;
831 }

834 if ((cb != NULL) && (s->state != state))
835 {
836 new_state=s->state;
837 s->state=state;
838 cb(s,SSL_CB_ACCEPT_LOOP,1);
839 s->state=new_state;
840 }
841 }
842 skip=0;
843 }
844 end:
845 /* BIO_flush(s->wbio); */

847 s->in_handshake--;
848 #ifndef OPENSSL_NO_SCTP
849 /* Notify SCTP BIO socket to leave handshake
850 * mode and prevent stream identifier other
851 * than 0. Will be ignored if no SCTP is used.
852 */
853 BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE,

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 14

854 #endif

856 if (cb != NULL)
857 cb(s,SSL_CB_ACCEPT_EXIT,ret);
858 return(ret);
859 }

861 int dtls1_send_hello_request(SSL *s)
862 {
863 unsigned char *p;

865 if (s->state == SSL3_ST_SW_HELLO_REQ_A)
866 {
867 p=(unsigned char *)s->init_buf->data;
868 p = dtls1_set_message_header(s, p, SSL3_MT_HELLO_REQUEST, 0, 0,

870 s->state=SSL3_ST_SW_HELLO_REQ_B;
871 /* number of bytes to write */
872 s->init_num=DTLS1_HM_HEADER_LENGTH;
873 s->init_off=0;

875 /* no need to buffer this message, since there are no retransmit
876 * requests for it */
877 }

879 /* SSL3_ST_SW_HELLO_REQ_B */
880 return(dtls1_do_write(s,SSL3_RT_HANDSHAKE));
881 }

883 int dtls1_send_hello_verify_request(SSL *s)
884 {
885 unsigned int msg_len;
886 unsigned char *msg, *buf, *p;

888 if (s->state == DTLS1_ST_SW_HELLO_VERIFY_REQUEST_A)
889 {
890 buf = (unsigned char *)s->init_buf->data;

892 msg = p = &(buf[DTLS1_HM_HEADER_LENGTH]);
893 *(p++) = s->version >> 8;
894 *(p++) = s->version & 0xFF;

896 if (s->ctx->app_gen_cookie_cb == NULL ||
897 s->ctx->app_gen_cookie_cb(s, s->d1->cookie,
898 &(s->d1->cookie_len)) == 0)
899 {
900 SSLerr(SSL_F_DTLS1_SEND_HELLO_VERIFY_REQUEST,ERR_R_INTER
901 return 0;
902 }

904 *(p++) = (unsigned char) s->d1->cookie_len;
905 memcpy(p, s->d1->cookie, s->d1->cookie_len);
906 p += s->d1->cookie_len;
907 msg_len = p - msg;

909 dtls1_set_message_header(s, buf,
910 DTLS1_MT_HELLO_VERIFY_REQUEST, msg_len, 0, msg_len);

912 s->state=DTLS1_ST_SW_HELLO_VERIFY_REQUEST_B;
913 /* number of bytes to write */
914 s->init_num=p-buf;
915 s->init_off=0;
916 }

918 /* s->state = DTLS1_ST_SW_HELLO_VERIFY_REQUEST_B */
919 return(dtls1_do_write(s,SSL3_RT_HANDSHAKE));

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 15

920 }

922 int dtls1_send_server_hello(SSL *s)
923 {
924 unsigned char *buf;
925 unsigned char *p,*d;
926 int i;
927 unsigned int sl;
928 unsigned long l;

930 if (s->state == SSL3_ST_SW_SRVR_HELLO_A)
931 {
932 buf=(unsigned char *)s->init_buf->data;
933 p=s->s3->server_random;
934 ssl_fill_hello_random(s, 1, p, SSL3_RANDOM_SIZE);
935 /* Do the message type and length last */
936 d=p= &(buf[DTLS1_HM_HEADER_LENGTH]);

938 *(p++)=s->version>>8;
939 *(p++)=s->version&0xff;

941 /* Random stuff */
942 memcpy(p,s->s3->server_random,SSL3_RANDOM_SIZE);
943 p+=SSL3_RANDOM_SIZE;

945 /* now in theory we have 3 options to sending back the
946 * session id. If it is a re-use, we send back the
947 * old session-id, if it is a new session, we send
948 * back the new session-id or we send back a 0 length
949 * session-id if we want it to be single use.
950 * Currently I will not implement the ’0’ length session-id
951 * 12-Jan-98 - I’ll now support the ’0’ length stuff.
952 */
953 if (!(s->ctx->session_cache_mode & SSL_SESS_CACHE_SERVER))
954 s->session->session_id_length=0;

956 sl=s->session->session_id_length;
957 if (sl > sizeof s->session->session_id)
958 {
959 SSLerr(SSL_F_DTLS1_SEND_SERVER_HELLO, ERR_R_INTERNAL_ERR
960 return -1;
961 }
962 *(p++)=sl;
963 memcpy(p,s->session->session_id,sl);
964 p+=sl;

966 /* put the cipher */
967 if (s->s3->tmp.new_cipher == NULL)
968 return -1;
969 i=ssl3_put_cipher_by_char(s->s3->tmp.new_cipher,p);
970 p+=i;

972 /* put the compression method */
973 #ifdef OPENSSL_NO_COMP
974 *(p++)=0;
975 #else
976 if (s->s3->tmp.new_compression == NULL)
977 *(p++)=0;
978 else
979 *(p++)=s->s3->tmp.new_compression->id;
980 #endif

982 #ifndef OPENSSL_NO_TLSEXT
983 if ((p = ssl_add_serverhello_tlsext(s, p, buf+SSL3_RT_MAX_PLAIN_
984 {
985 SSLerr(SSL_F_DTLS1_SEND_SERVER_HELLO,ERR_R_INTERNAL_ERRO

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 16

986 return -1;
987 }
988 #endif

990 /* do the header */
991 l=(p-d);
992 d=buf;

994 d = dtls1_set_message_header(s, d, SSL3_MT_SERVER_HELLO, l, 0, l

996 s->state=SSL3_ST_SW_SRVR_HELLO_B;
997 /* number of bytes to write */
998 s->init_num=p-buf;
999 s->init_off=0;

1001 /* buffer the message to handle re-xmits */
1002 dtls1_buffer_message(s, 0);
1003 }

1005 /* SSL3_ST_SW_SRVR_HELLO_B */
1006 return(dtls1_do_write(s,SSL3_RT_HANDSHAKE));
1007 }

1009 int dtls1_send_server_done(SSL *s)
1010 {
1011 unsigned char *p;

1013 if (s->state == SSL3_ST_SW_SRVR_DONE_A)
1014 {
1015 p=(unsigned char *)s->init_buf->data;

1017 /* do the header */
1018 p = dtls1_set_message_header(s, p, SSL3_MT_SERVER_DONE, 0, 0, 0)

1020 s->state=SSL3_ST_SW_SRVR_DONE_B;
1021 /* number of bytes to write */
1022 s->init_num=DTLS1_HM_HEADER_LENGTH;
1023 s->init_off=0;

1025 /* buffer the message to handle re-xmits */
1026 dtls1_buffer_message(s, 0);
1027 }

1029 /* SSL3_ST_SW_SRVR_DONE_B */
1030 return(dtls1_do_write(s,SSL3_RT_HANDSHAKE));
1031 }

1033 int dtls1_send_server_key_exchange(SSL *s)
1034 {
1035 #ifndef OPENSSL_NO_RSA
1036 unsigned char *q;
1037 int j,num;
1038 RSA *rsa;
1039 unsigned char md_buf[MD5_DIGEST_LENGTH+SHA_DIGEST_LENGTH];
1040 unsigned int u;
1041 #endif
1042 #ifndef OPENSSL_NO_DH
1043 DH *dh=NULL,*dhp;
1044 #endif
1045 #ifndef OPENSSL_NO_ECDH
1046 EC_KEY *ecdh=NULL, *ecdhp;
1047 unsigned char *encodedPoint = NULL;
1048 int encodedlen = 0;
1049 int curve_id = 0;
1050 BN_CTX *bn_ctx = NULL;
1051 #endif

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 17

1052 EVP_PKEY *pkey;
1053 unsigned char *p,*d;
1054 int al,i;
1055 unsigned long type;
1056 int n;
1057 CERT *cert;
1058 BIGNUM *r[4];
1059 int nr[4],kn;
1060 BUF_MEM *buf;
1061 EVP_MD_CTX md_ctx;

1063 EVP_MD_CTX_init(&md_ctx);
1064 if (s->state == SSL3_ST_SW_KEY_EXCH_A)
1065 {
1066 type=s->s3->tmp.new_cipher->algorithm_mkey;
1067 cert=s->cert;

1069 buf=s->init_buf;

1071 r[0]=r[1]=r[2]=r[3]=NULL;
1072 n=0;
1073 #ifndef OPENSSL_NO_RSA
1074 if (type & SSL_kRSA)
1075 {
1076 rsa=cert->rsa_tmp;
1077 if ((rsa == NULL) && (s->cert->rsa_tmp_cb != NULL))
1078 {
1079 rsa=s->cert->rsa_tmp_cb(s,
1080 SSL_C_IS_EXPORT(s->s3->tmp.new_cipher),
1081 SSL_C_EXPORT_PKEYLENGTH(s->s3->tmp.new_cip
1082 if(rsa == NULL)
1083 {
1084 al=SSL_AD_HANDSHAKE_FAILURE;
1085 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHA
1086 goto f_err;
1087 }
1088 RSA_up_ref(rsa);
1089 cert->rsa_tmp=rsa;
1090 }
1091 if (rsa == NULL)
1092 {
1093 al=SSL_AD_HANDSHAKE_FAILURE;
1094 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,SSL_
1095 goto f_err;
1096 }
1097 r[0]=rsa->n;
1098 r[1]=rsa->e;
1099 s->s3->tmp.use_rsa_tmp=1;
1100 }
1101 else
1102 #endif
1103 #ifndef OPENSSL_NO_DH
1104 if (type & SSL_kEDH)
1105 {
1106 dhp=cert->dh_tmp;
1107 if ((dhp == NULL) && (s->cert->dh_tmp_cb != NULL))
1108 dhp=s->cert->dh_tmp_cb(s,
1109 SSL_C_IS_EXPORT(s->s3->tmp.new_cipher),
1110 SSL_C_EXPORT_PKEYLENGTH(s->s3->tmp.new_cip
1111 if (dhp == NULL)
1112 {
1113 al=SSL_AD_HANDSHAKE_FAILURE;
1114 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,SSL_
1115 goto f_err;
1116 }

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 18

1118 if (s->s3->tmp.dh != NULL)
1119 {
1120 DH_free(dh);
1121 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE, ERR
1122 goto err;
1123 }

1125 if ((dh=DHparams_dup(dhp)) == NULL)
1126 {
1127 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,ERR_
1128 goto err;
1129 }

1131 s->s3->tmp.dh=dh;
1132 if ((dhp->pub_key == NULL ||
1133 dhp->priv_key == NULL ||
1134 (s->options & SSL_OP_SINGLE_DH_USE)))
1135 {
1136 if(!DH_generate_key(dh))
1137 {
1138 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,
1139 ERR_R_DH_LIB);
1140 goto err;
1141 }
1142 }
1143 else
1144 {
1145 dh->pub_key=BN_dup(dhp->pub_key);
1146 dh->priv_key=BN_dup(dhp->priv_key);
1147 if ((dh->pub_key == NULL) ||
1148 (dh->priv_key == NULL))
1149 {
1150 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHA
1151 goto err;
1152 }
1153 }
1154 r[0]=dh->p;
1155 r[1]=dh->g;
1156 r[2]=dh->pub_key;
1157 }
1158 else
1159 #endif
1160 #ifndef OPENSSL_NO_ECDH
1161 if (type & SSL_kEECDH)
1162 {
1163 const EC_GROUP *group;

1165 ecdhp=cert->ecdh_tmp;
1166 if ((ecdhp == NULL) && (s->cert->ecdh_tmp_cb != NULL))
1167 {
1168 ecdhp=s->cert->ecdh_tmp_cb(s,
1169 SSL_C_IS_EXPORT(s->s3->tmp.new_cipher),
1170 SSL_C_EXPORT_PKEYLENGTH(s->s3->tmp.new_cip
1171 }
1172 if (ecdhp == NULL)
1173 {
1174 al=SSL_AD_HANDSHAKE_FAILURE;
1175 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,SSL_
1176 goto f_err;
1177 }

1179 if (s->s3->tmp.ecdh != NULL)
1180 {
1181 EC_KEY_free(s->s3->tmp.ecdh);
1182 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE, ERR
1183 goto err;

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 19

1184 }

1186 /* Duplicate the ECDH structure. */
1187 if (ecdhp == NULL)
1188 {
1189 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,ERR_
1190 goto err;
1191 }
1192 if ((ecdh = EC_KEY_dup(ecdhp)) == NULL)
1193 {
1194 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,ERR_
1195 goto err;
1196 }

1198 s->s3->tmp.ecdh=ecdh;
1199 if ((EC_KEY_get0_public_key(ecdh) == NULL) ||
1200 (EC_KEY_get0_private_key(ecdh) == NULL) ||
1201 (s->options & SSL_OP_SINGLE_ECDH_USE))
1202 {
1203 if(!EC_KEY_generate_key(ecdh))
1204 {
1205 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,
1206 goto err;
1207 }
1208 }

1210 if (((group = EC_KEY_get0_group(ecdh)) == NULL) ||
1211 (EC_KEY_get0_public_key(ecdh) == NULL) ||
1212 (EC_KEY_get0_private_key(ecdh) == NULL))
1213 {
1214 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,ERR_
1215 goto err;
1216 }

1218 if (SSL_C_IS_EXPORT(s->s3->tmp.new_cipher) &&
1219 (EC_GROUP_get_degree(group) > 163))
1220 {
1221 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,SSL_
1222 goto err;
1223 }

1225 /* XXX: For now, we only support ephemeral ECDH
1226 * keys over named (not generic) curves. For
1227 * supported named curves, curve_id is non-zero.
1228 */
1229 if ((curve_id =
1230 tls1_ec_nid2curve_id(EC_GROUP_get_curve_name(group))
1231 == 0)
1232 {
1233 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,SSL_
1234 goto err;
1235 }

1237 /* Encode the public key.
1238 * First check the size of encoding and
1239 * allocate memory accordingly.
1240 */
1241 encodedlen = EC_POINT_point2oct(group,
1242 EC_KEY_get0_public_key(ecdh),
1243 POINT_CONVERSION_UNCOMPRESSED,
1244 NULL, 0, NULL);

1246 encodedPoint = (unsigned char *)
1247 OPENSSL_malloc(encodedlen*sizeof(unsigned char));
1248 bn_ctx = BN_CTX_new();
1249 if ((encodedPoint == NULL) || (bn_ctx == NULL))

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 20

1250 {
1251 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,ERR_
1252 goto err;
1253 }

1256 encodedlen = EC_POINT_point2oct(group,
1257 EC_KEY_get0_public_key(ecdh),
1258 POINT_CONVERSION_UNCOMPRESSED,
1259 encodedPoint, encodedlen, bn_ctx);

1261 if (encodedlen == 0)
1262 {
1263 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,ERR_
1264 goto err;
1265 }

1267 BN_CTX_free(bn_ctx); bn_ctx=NULL;

1269 /* XXX: For now, we only support named (not
1270 * generic) curves in ECDH ephemeral key exchanges.
1271 * In this situation, we need four additional bytes
1272 * to encode the entire ServerECDHParams
1273 * structure.
1274 */
1275 n = 4 + encodedlen;

1277 /* We’ll generate the serverKeyExchange message
1278 * explicitly so we can set these to NULLs
1279 */
1280 r[0]=NULL;
1281 r[1]=NULL;
1282 r[2]=NULL;
1283 r[3]=NULL;
1284 }
1285 else
1286 #endif /* !OPENSSL_NO_ECDH */
1287 #ifndef OPENSSL_NO_PSK
1288 if (type & SSL_kPSK)
1289 {
1290 /* reserve size for record length and PSK identi
1291 n+=2+strlen(s->ctx->psk_identity_hint);
1292 }
1293 else
1294 #endif /* !OPENSSL_NO_PSK */
1295 {
1296 al=SSL_AD_HANDSHAKE_FAILURE;
1297 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,SSL_R_UNKNOW
1298 goto f_err;
1299 }
1300 for (i=0; r[i] != NULL; i++)
1301 {
1302 nr[i]=BN_num_bytes(r[i]);
1303 n+=2+nr[i];
1304 }

1306 if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL)
1307 && !(s->s3->tmp.new_cipher->algorithm_mkey & SSL_kPSK))
1308 {
1309 if ((pkey=ssl_get_sign_pkey(s,s->s3->tmp.new_cipher, NUL
1310 == NULL)
1311 {
1312 al=SSL_AD_DECODE_ERROR;
1313 goto f_err;
1314 }
1315 kn=EVP_PKEY_size(pkey);

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 21

1316 }
1317 else
1318 {
1319 pkey=NULL;
1320 kn=0;
1321 }

1323 if (!BUF_MEM_grow_clean(buf,n+DTLS1_HM_HEADER_LENGTH+kn))
1324 {
1325 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,ERR_LIB_BUF)
1326 goto err;
1327 }
1328 d=(unsigned char *)s->init_buf->data;
1329 p= &(d[DTLS1_HM_HEADER_LENGTH]);

1331 for (i=0; r[i] != NULL; i++)
1332 {
1333 s2n(nr[i],p);
1334 BN_bn2bin(r[i],p);
1335 p+=nr[i];
1336 }

1338 #ifndef OPENSSL_NO_ECDH
1339 if (type & SSL_kEECDH)
1340 {
1341 /* XXX: For now, we only support named (not generic) cur
1342 * In this situation, the serverKeyExchange message has:
1343 * [1 byte CurveType], [2 byte CurveName]
1344 * [1 byte length of encoded point], followed by
1345 * the actual encoded point itself
1346 */
1347 *p = NAMED_CURVE_TYPE;
1348 p += 1;
1349 *p = 0;
1350 p += 1;
1351 *p = curve_id;
1352 p += 1;
1353 *p = encodedlen;
1354 p += 1;
1355 memcpy((unsigned char*)p,
1356 (unsigned char *)encodedPoint,
1357 encodedlen);
1358 OPENSSL_free(encodedPoint);
1359 p += encodedlen;
1360 }
1361 #endif

1363 #ifndef OPENSSL_NO_PSK
1364 if (type & SSL_kPSK)
1365 {
1366 /* copy PSK identity hint */
1367 s2n(strlen(s->ctx->psk_identity_hint), p);
1368 strncpy((char *)p, s->ctx->psk_identity_hint, strlen(s->
1369 p+=strlen(s->ctx->psk_identity_hint);
1370 }
1371 #endif

1373 /* not anonymous */
1374 if (pkey != NULL)
1375 {
1376 /* n is the length of the params, they start at
1377 * &(d[DTLS1_HM_HEADER_LENGTH]) and p points to the spac
1378 * at the end. */
1379 #ifndef OPENSSL_NO_RSA
1380 if (pkey->type == EVP_PKEY_RSA)
1381 {

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 22

1382 q=md_buf;
1383 j=0;
1384 for (num=2; num > 0; num--)
1385 {
1386 EVP_DigestInit_ex(&md_ctx,(num == 2)
1387 ?s->ctx->md5:s->ctx->sha1, NULL)
1388 EVP_DigestUpdate(&md_ctx,&(s->s3->client
1389 EVP_DigestUpdate(&md_ctx,&(s->s3->server
1390 EVP_DigestUpdate(&md_ctx,&(d[DTLS1_HM_HE
1391 EVP_DigestFinal_ex(&md_ctx,q,
1392 (unsigned int *)&i);
1393 q+=i;
1394 j+=i;
1395 }
1396 if (RSA_sign(NID_md5_sha1, md_buf, j,
1397 &(p[2]), &u, pkey->pkey.rsa) <= 0)
1398 {
1399 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHA
1400 goto err;
1401 }
1402 s2n(u,p);
1403 n+=u+2;
1404 }
1405 else
1406 #endif
1407 #if !defined(OPENSSL_NO_DSA)
1408 if (pkey->type == EVP_PKEY_DSA)
1409 {
1410 /* lets do DSS */
1411 EVP_SignInit_ex(&md_ctx,EVP_dss1(), NULL);
1412 EVP_SignUpdate(&md_ctx,&(s->s3->client_random[0]
1413 EVP_SignUpdate(&md_ctx,&(s->s3->server_random[0]
1414 EVP_SignUpdate(&md_ctx,&(d[DTLS1_HM_HEADER_LENGT
1415 if (!EVP_SignFinal(&md_ctx,&(p[2]),
1416 (unsigned int *)&i,pkey))
1417 {
1418 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHA
1419 goto err;
1420 }
1421 s2n(i,p);
1422 n+=i+2;
1423 }
1424 else
1425 #endif
1426 #if !defined(OPENSSL_NO_ECDSA)
1427 if (pkey->type == EVP_PKEY_EC)
1428 {
1429 /* let’s do ECDSA */
1430 EVP_SignInit_ex(&md_ctx,EVP_ecdsa(), NULL);
1431 EVP_SignUpdate(&md_ctx,&(s->s3->client_random[0]
1432 EVP_SignUpdate(&md_ctx,&(s->s3->server_random[0]
1433 EVP_SignUpdate(&md_ctx,&(d[DTLS1_HM_HEADER_LENGT
1434 if (!EVP_SignFinal(&md_ctx,&(p[2]),
1435 (unsigned int *)&i,pkey))
1436 {
1437 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHA
1438 goto err;
1439 }
1440 s2n(i,p);
1441 n+=i+2;
1442 }
1443 else
1444 #endif
1445 {
1446 /* Is this error check actually needed? */
1447 al=SSL_AD_HANDSHAKE_FAILURE;

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 23

1448 SSLerr(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE,SSL_
1449 goto f_err;
1450 }
1451 }

1453 d = dtls1_set_message_header(s, d,
1454 SSL3_MT_SERVER_KEY_EXCHANGE, n, 0, n);

1456 /* we should now have things packed up, so lets send
1457 * it off */
1458 s->init_num=n+DTLS1_HM_HEADER_LENGTH;
1459 s->init_off=0;

1461 /* buffer the message to handle re-xmits */
1462 dtls1_buffer_message(s, 0);
1463 }

1465 s->state = SSL3_ST_SW_KEY_EXCH_B;
1466 EVP_MD_CTX_cleanup(&md_ctx);
1467 return(dtls1_do_write(s,SSL3_RT_HANDSHAKE));
1468 f_err:
1469 ssl3_send_alert(s,SSL3_AL_FATAL,al);
1470 err:
1471 #ifndef OPENSSL_NO_ECDH
1472 if (encodedPoint != NULL) OPENSSL_free(encodedPoint);
1473 BN_CTX_free(bn_ctx);
1474 #endif
1475 EVP_MD_CTX_cleanup(&md_ctx);
1476 return(-1);
1477 }

1479 int dtls1_send_certificate_request(SSL *s)
1480 {
1481 unsigned char *p,*d;
1482 int i,j,nl,off,n;
1483 STACK_OF(X509_NAME) *sk=NULL;
1484 X509_NAME *name;
1485 BUF_MEM *buf;
1486 unsigned int msg_len;

1488 if (s->state == SSL3_ST_SW_CERT_REQ_A)
1489 {
1490 buf=s->init_buf;

1492 d=p=(unsigned char *)&(buf->data[DTLS1_HM_HEADER_LENGTH]);

1494 /* get the list of acceptable cert types */
1495 p++;
1496 n=ssl3_get_req_cert_type(s,p);
1497 d[0]=n;
1498 p+=n;
1499 n++;

1501 off=n;
1502 p+=2;
1503 n+=2;

1505 sk=SSL_get_client_CA_list(s);
1506 nl=0;
1507 if (sk != NULL)
1508 {
1509 for (i=0; i<sk_X509_NAME_num(sk); i++)
1510 {
1511 name=sk_X509_NAME_value(sk,i);
1512 j=i2d_X509_NAME(name,NULL);
1513 if (!BUF_MEM_grow_clean(buf,DTLS1_HM_HEADER_LENG

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 24

1514 {
1515 SSLerr(SSL_F_DTLS1_SEND_CERTIFICATE_REQU
1516 goto err;
1517 }
1518 p=(unsigned char *)&(buf->data[DTLS1_HM_HEADER_L
1519 if (!(s->options & SSL_OP_NETSCAPE_CA_DN_BUG))
1520 {
1521 s2n(j,p);
1522 i2d_X509_NAME(name,&p);
1523 n+=2+j;
1524 nl+=2+j;
1525 }
1526 else
1527 {
1528 d=p;
1529 i2d_X509_NAME(name,&p);
1530 j-=2; s2n(j,d); j+=2;
1531 n+=j;
1532 nl+=j;
1533 }
1534 }
1535 }
1536 /* else no CA names */
1537 p=(unsigned char *)&(buf->data[DTLS1_HM_HEADER_LENGTH+off]);
1538 s2n(nl,p);

1540 d=(unsigned char *)buf->data;
1541 *(d++)=SSL3_MT_CERTIFICATE_REQUEST;
1542 l2n3(n,d);
1543 s2n(s->d1->handshake_write_seq,d);
1544 s->d1->handshake_write_seq++;

1546 /* we should now have things packed up, so lets send
1547 * it off */

1549 s->init_num=n+DTLS1_HM_HEADER_LENGTH;
1550 s->init_off=0;
1551 #ifdef NETSCAPE_HANG_BUG
1552 /* XXX: what to do about this? */
1553 p=(unsigned char *)s->init_buf->data + s->init_num;

1555 /* do the header */
1556 *(p++)=SSL3_MT_SERVER_DONE;
1557 *(p++)=0;
1558 *(p++)=0;
1559 *(p++)=0;
1560 s->init_num += 4;
1561 #endif

1563 /* XDTLS: set message header ? */
1564 msg_len = s->init_num - DTLS1_HM_HEADER_LENGTH;
1565 dtls1_set_message_header(s, (void *)s->init_buf->data,
1566 SSL3_MT_CERTIFICATE_REQUEST, msg_len, 0, msg_len);

1568 /* buffer the message to handle re-xmits */
1569 dtls1_buffer_message(s, 0);

1571 s->state = SSL3_ST_SW_CERT_REQ_B;
1572 }

1574 /* SSL3_ST_SW_CERT_REQ_B */
1575 return(dtls1_do_write(s,SSL3_RT_HANDSHAKE));
1576 err:
1577 return(-1);
1578 }

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 25

1580 int dtls1_send_server_certificate(SSL *s)
1581 {
1582 unsigned long l;
1583 X509 *x;

1585 if (s->state == SSL3_ST_SW_CERT_A)
1586 {
1587 x=ssl_get_server_send_cert(s);
1588 if (x == NULL)
1589 {
1590 /* VRS: allow null cert if auth == KRB5 */
1591 if ((s->s3->tmp.new_cipher->algorithm_mkey != SSL_kKRB5)
1592 (s->s3->tmp.new_cipher->algorithm_auth != SSL_aKRB5)
1593 {
1594 SSLerr(SSL_F_DTLS1_SEND_SERVER_CERTIFICATE,ERR_R
1595 return(0);
1596 }
1597 }

1599 l=dtls1_output_cert_chain(s,x);
1600 s->state=SSL3_ST_SW_CERT_B;
1601 s->init_num=(int)l;
1602 s->init_off=0;

1604 /* buffer the message to handle re-xmits */
1605 dtls1_buffer_message(s, 0);
1606 }

1608 /* SSL3_ST_SW_CERT_B */
1609 return(dtls1_do_write(s,SSL3_RT_HANDSHAKE));
1610 }

1612 #ifndef OPENSSL_NO_TLSEXT
1613 int dtls1_send_newsession_ticket(SSL *s)
1614 {
1615 if (s->state == SSL3_ST_SW_SESSION_TICKET_A)
1616 {
1617 unsigned char *p, *senc, *macstart;
1618 int len, slen;
1619 unsigned int hlen, msg_len;
1620 EVP_CIPHER_CTX ctx;
1621 HMAC_CTX hctx;
1622 SSL_CTX *tctx = s->initial_ctx;
1623 unsigned char iv[EVP_MAX_IV_LENGTH];
1624 unsigned char key_name[16];

1626 /* get session encoding length */
1627 slen = i2d_SSL_SESSION(s->session, NULL);
1628 /* Some length values are 16 bits, so forget it if session is
1629 * too long
1630 */
1631 if (slen > 0xFF00)
1632 return -1;
1633 /* Grow buffer if need be: the length calculation is as
1634 * follows 12 (DTLS handshake message header) +
1635 * 4 (ticket lifetime hint) + 2 (ticket length) +
1636 * 16 (key name) + max_iv_len (iv length) +
1637 * session_length + max_enc_block_size (max encrypted session
1638 * length) + max_md_size (HMAC).
1639 */
1640 if (!BUF_MEM_grow(s->init_buf,
1641 DTLS1_HM_HEADER_LENGTH + 22 + EVP_MAX_IV_LENGTH +
1642 EVP_MAX_BLOCK_LENGTH + EVP_MAX_MD_SIZE + slen))
1643 return -1;
1644 senc = OPENSSL_malloc(slen);
1645 if (!senc)

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 26

1646 return -1;
1647 p = senc;
1648 i2d_SSL_SESSION(s->session, &p);

1650 p=(unsigned char *)&(s->init_buf->data[DTLS1_HM_HEADER_LENGTH]);
1651 EVP_CIPHER_CTX_init(&ctx);
1652 HMAC_CTX_init(&hctx);
1653 /* Initialize HMAC and cipher contexts. If callback present
1654 * it does all the work otherwise use generated values
1655 * from parent ctx.
1656 */
1657 if (tctx->tlsext_ticket_key_cb)
1658 {
1659 if (tctx->tlsext_ticket_key_cb(s, key_name, iv, &ctx,
1660 &hctx, 1) < 0)
1661 {
1662 OPENSSL_free(senc);
1663 return -1;
1664 }
1665 }
1666 else
1667 {
1668 RAND_pseudo_bytes(iv, 16);
1669 EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL,
1670 tctx->tlsext_tick_aes_key, iv);
1671 HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16,
1672 tlsext_tick_md(), NULL);
1673 memcpy(key_name, tctx->tlsext_tick_key_name, 16);
1674 }
1675 l2n(s->session->tlsext_tick_lifetime_hint, p);
1676 /* Skip ticket length for now */
1677 p += 2;
1678 /* Output key name */
1679 macstart = p;
1680 memcpy(p, key_name, 16);
1681 p += 16;
1682 /* output IV */
1683 memcpy(p, iv, EVP_CIPHER_CTX_iv_length(&ctx));
1684 p += EVP_CIPHER_CTX_iv_length(&ctx);
1685 /* Encrypt session data */
1686 EVP_EncryptUpdate(&ctx, p, &len, senc, slen);
1687 p += len;
1688 EVP_EncryptFinal(&ctx, p, &len);
1689 p += len;
1690 EVP_CIPHER_CTX_cleanup(&ctx);

1692 HMAC_Update(&hctx, macstart, p - macstart);
1693 HMAC_Final(&hctx, p, &hlen);
1694 HMAC_CTX_cleanup(&hctx);

1696 p += hlen;
1697 /* Now write out lengths: p points to end of data written */
1698 /* Total length */
1699 len = p - (unsigned char *)(s->init_buf->data);
1700 /* Ticket length */
1701 p=(unsigned char *)&(s->init_buf->data[DTLS1_HM_HEADER_LENGTH])
1702 s2n(len - DTLS1_HM_HEADER_LENGTH - 6, p);

1704 /* number of bytes to write */
1705 s->init_num= len;
1706 s->state=SSL3_ST_SW_SESSION_TICKET_B;
1707 s->init_off=0;
1708 OPENSSL_free(senc);

1710 /* XDTLS: set message header ? */
1711 msg_len = s->init_num - DTLS1_HM_HEADER_LENGTH;

new/usr/src/lib/openssl/libsunw_ssl/d1_srvr.c 27

1712 dtls1_set_message_header(s, (void *)s->init_buf->data,
1713 SSL3_MT_NEWSESSION_TICKET, msg_len, 0, msg_len);

1715 /* buffer the message to handle re-xmits */
1716 dtls1_buffer_message(s, 0);
1717 }

1719 /* SSL3_ST_SW_SESSION_TICKET_B */
1720 return(dtls1_do_write(s,SSL3_RT_HANDSHAKE));
1721 }
1722 #endif

new/usr/src/lib/openssl/libsunw_ssl/i386/Makefile 1

**
 1289 Fri May 30 18:32:19 2014
new/usr/src/lib/openssl/libsunw_ssl/i386/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 include ../Makefile.com

28 CPPFLAGS += -DL_ENDIAN
29 CPPFLAGS += -DOPENSSL_NO_INLINE_ASM
30 CPPFLAGS += -DOPENSSL_BN_ASM_PART_WORDS
31 CPPFLAGS += -DOPENSSL_IA32_SSE2
32 CPPFLAGS += -DRMD160_ASM
33 CPPFLAGS += -DAES_ASM

35 .KEEP_STATE:

37 all: $(ROOTLIBDIR) $(LIBS) $(LIBLINKS)

39 $(LIBLINKS): FRC
40 $(RM) $@; $(SYMLINK) $(DYNLIB) $@

42 $(ROOTLIBDIR):
43 $(INS.dir)

45 install: all $(ROOTLIBS) $(ROOTLINKS)

47 FRC:

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 1

**
 69597 Fri May 30 18:32:19 2014
new/usr/src/lib/openssl/libsunw_ssl/kssl.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/kssl.c -*- mode: C; c-file-style: "eay" -*- */
2 /* Written by Vern Staats <staatsvr@asc.hpc.mil> for the OpenSSL project 2000.
3 */
4 /* ==
5 * Copyright (c) 2000 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ==
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com).
55 *
56 */

59 /* ssl/kssl.c -- Routines to support (& debug) Kerberos5 auth for openssl
60 **
61 ** 19990701 VRS Started.

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 2

62 ** 200011?? Jeffrey Altman, Richard Levitte
63 ** Generalized for Heimdal, Newer MIT, & Win32.
64 ** Integrated into main OpenSSL 0.9.7 snapshots.
65 ** 20010413 Simon Wilkinson, VRS
66 ** Real RFC2712 KerberosWrapper replaces AP_REQ.
67 */

69 #include <openssl/opensslconf.h>

71 #include <string.h>

73 #define KRB5_PRIVATE 1

75 #include <openssl/ssl.h>
76 #include <openssl/evp.h>
77 #include <openssl/objects.h>
78 #include <openssl/krb5_asn.h>
79 #include "kssl_lcl.h"

81 #ifndef OPENSSL_NO_KRB5

83 #ifndef ENOMEM
84 #define ENOMEM KRB5KRB_ERR_GENERIC
85 #endif

87 /*
88 * When OpenSSL is built on Windows, we do not want to require that
89 * the Kerberos DLLs be available in order for the OpenSSL DLLs to
90 * work. Therefore, all Kerberos routines are loaded at run time
91 * and we do not link to a .LIB file.
92 */

94 #if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32)
95 /*
96 * The purpose of the following pre-processor statements is to provide
97 * compatibility with different releases of MIT Kerberos for Windows.
98 * All versions up to 1.2 used macros. But macros do not allow for
99 * a binary compatible interface for DLLs. Therefore, all macros are
100 * being replaced by function calls. The following code will allow
101 * an OpenSSL DLL built on Windows to work whether or not the macro
102 * or function form of the routines are utilized.
103 */
104 #ifdef krb5_cc_get_principal
105 #define NO_DEF_KRB5_CCACHE
106 #undef krb5_cc_get_principal
107 #endif
108 #define krb5_cc_get_principal kssl_krb5_cc_get_principal

110 #define krb5_free_data_contents kssl_krb5_free_data_contents
111 #define krb5_free_context kssl_krb5_free_context
112 #define krb5_auth_con_free kssl_krb5_auth_con_free
113 #define krb5_free_principal kssl_krb5_free_principal
114 #define krb5_mk_req_extended kssl_krb5_mk_req_extended
115 #define krb5_get_credentials kssl_krb5_get_credentials
116 #define krb5_cc_default kssl_krb5_cc_default
117 #define krb5_sname_to_principal kssl_krb5_sname_to_principal
118 #define krb5_init_context kssl_krb5_init_context
119 #define krb5_free_ticket kssl_krb5_free_ticket
120 #define krb5_rd_req kssl_krb5_rd_req
121 #define krb5_kt_default kssl_krb5_kt_default
122 #define krb5_kt_resolve kssl_krb5_kt_resolve
123 /* macros in mit 1.2.2 and earlier; functions in mit 1.2.3 and greater */
124 #ifndef krb5_kt_close
125 #define krb5_kt_close kssl_krb5_kt_close
126 #endif /* krb5_kt_close */
127 #ifndef krb5_kt_get_entry

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 3

128 #define krb5_kt_get_entry kssl_krb5_kt_get_entry
129 #endif /* krb5_kt_get_entry */
130 #define krb5_auth_con_init kssl_krb5_auth_con_init

132 #define krb5_principal_compare kssl_krb5_principal_compare
133 #define krb5_decrypt_tkt_part kssl_krb5_decrypt_tkt_part
134 #define krb5_timeofday kssl_krb5_timeofday
135 #define krb5_rc_default kssl_krb5_rc_default

137 #ifdef krb5_rc_initialize
138 #undef krb5_rc_initialize
139 #endif
140 #define krb5_rc_initialize kssl_krb5_rc_initialize

142 #ifdef krb5_rc_get_lifespan
143 #undef krb5_rc_get_lifespan
144 #endif
145 #define krb5_rc_get_lifespan kssl_krb5_rc_get_lifespan

147 #ifdef krb5_rc_destroy
148 #undef krb5_rc_destroy
149 #endif
150 #define krb5_rc_destroy kssl_krb5_rc_destroy

152 #define valid_cksumtype kssl_valid_cksumtype
153 #define krb5_checksum_size kssl_krb5_checksum_size
154 #define krb5_kt_free_entry kssl_krb5_kt_free_entry
155 #define krb5_auth_con_setrcache kssl_krb5_auth_con_setrcache
156 #define krb5_auth_con_getrcache kssl_krb5_auth_con_getrcache
157 #define krb5_get_server_rcache kssl_krb5_get_server_rcache

159 /* Prototypes for built in stubs */
160 void kssl_krb5_free_data_contents(krb5_context, krb5_data *);
161 void kssl_krb5_free_principal(krb5_context, krb5_principal);
162 krb5_error_code kssl_krb5_kt_resolve(krb5_context,
163 krb5_const char *,
164 krb5_keytab *);
165 krb5_error_code kssl_krb5_kt_default(krb5_context,
166 krb5_keytab *);
167 krb5_error_code kssl_krb5_free_ticket(krb5_context, krb5_ticket *);
168 krb5_error_code kssl_krb5_rd_req(krb5_context, krb5_auth_context *,
169 krb5_const krb5_data *,
170 krb5_const_principal, krb5_keytab,
171 krb5_flags *,krb5_ticket **);

173 krb5_boolean kssl_krb5_principal_compare(krb5_context, krb5_const_principal,
174 krb5_const_principal);
175 krb5_error_code kssl_krb5_mk_req_extended(krb5_context,
176 krb5_auth_context *,
177 krb5_const krb5_flags,
178 krb5_data *,
179 krb5_creds *,
180 krb5_data *);
181 krb5_error_code kssl_krb5_init_context(krb5_context *);
182 void kssl_krb5_free_context(krb5_context);
183 krb5_error_code kssl_krb5_cc_default(krb5_context,krb5_ccache *);
184 krb5_error_code kssl_krb5_sname_to_principal(krb5_context,
185 krb5_const char *,
186 krb5_const char *,
187 krb5_int32,
188 krb5_principal *);
189 krb5_error_code kssl_krb5_get_credentials(krb5_context,
190 krb5_const krb5_flags,
191 krb5_ccache,
192 krb5_creds *,
193 krb5_creds * *);

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 4

194 krb5_error_code kssl_krb5_auth_con_init(krb5_context,
195 krb5_auth_context *);
196 krb5_error_code kssl_krb5_cc_get_principal(krb5_context context,
197 krb5_ccache cache,
198 krb5_principal *principal);
199 krb5_error_code kssl_krb5_auth_con_free(krb5_context,krb5_auth_context);
200 size_t kssl_krb5_checksum_size(krb5_context context,krb5_cksumtype ctype);
201 krb5_boolean kssl_valid_cksumtype(krb5_cksumtype ctype);
202 krb5_error_code krb5_kt_free_entry(krb5_context,krb5_keytab_entry FAR *);
203 krb5_error_code kssl_krb5_auth_con_setrcache(krb5_context,
204 krb5_auth_context,
205 krb5_rcache);
206 krb5_error_code kssl_krb5_get_server_rcache(krb5_context,
207 krb5_const krb5_data *,
208 krb5_rcache *);
209 krb5_error_code kssl_krb5_auth_con_getrcache(krb5_context,
210 krb5_auth_context,
211 krb5_rcache *);

213 /* Function pointers (almost all Kerberos functions are _stdcall) */
214 static void (_stdcall *p_krb5_free_data_contents)(krb5_context, krb5_data *)
215 =NULL;
216 static void (_stdcall *p_krb5_free_principal)(krb5_context, krb5_principal)
217 =NULL;
218 static krb5_error_code(_stdcall *p_krb5_kt_resolve)
219 (krb5_context, krb5_const char *, krb5_keytab *)=NULL;
220 static krb5_error_code (_stdcall *p_krb5_kt_default)(krb5_context,
221 krb5_keytab *)=NULL;
222 static krb5_error_code (_stdcall *p_krb5_free_ticket)(krb5_context,
223 krb5_ticket *)=NULL;
224 static krb5_error_code (_stdcall *p_krb5_rd_req)(krb5_context,
225 krb5_auth_context *,
226 krb5_const krb5_data *,
227 krb5_const_principal,
228 krb5_keytab, krb5_flags *,
229 krb5_ticket **)=NULL;
230 static krb5_error_code (_stdcall *p_krb5_mk_req_extended)
231 (krb5_context, krb5_auth_context *,
232 krb5_const krb5_flags, krb5_data *, krb5_creds *,
233 krb5_data *)=NULL;
234 static krb5_error_code (_stdcall *p_krb5_init_context)(krb5_context *)=NULL;
235 static void (_stdcall *p_krb5_free_context)(krb5_context)=NULL;
236 static krb5_error_code (_stdcall *p_krb5_cc_default)(krb5_context,
237 krb5_ccache *)=NULL;
238 static krb5_error_code (_stdcall *p_krb5_sname_to_principal)
239 (krb5_context, krb5_const char *, krb5_const char *,
240 krb5_int32, krb5_principal *)=NULL;
241 static krb5_error_code (_stdcall *p_krb5_get_credentials)
242 (krb5_context, krb5_const krb5_flags, krb5_ccache,
243 krb5_creds *, krb5_creds **)=NULL;
244 static krb5_error_code (_stdcall *p_krb5_auth_con_init)
245 (krb5_context, krb5_auth_context *)=NULL;
246 static krb5_error_code (_stdcall *p_krb5_cc_get_principal)
247 (krb5_context context, krb5_ccache cache,
248 krb5_principal *principal)=NULL;
249 static krb5_error_code (_stdcall *p_krb5_auth_con_free)
250 (krb5_context, krb5_auth_context)=NULL;
251 static krb5_error_code (_stdcall *p_krb5_decrypt_tkt_part)
252 (krb5_context, krb5_const krb5_keyblock *,
253 krb5_ticket *)=NULL;
254 static krb5_error_code (_stdcall *p_krb5_timeofday)
255 (krb5_context context, krb5_int32 *timeret)=NULL;
256 static krb5_error_code (_stdcall *p_krb5_rc_default)
257 (krb5_context context, krb5_rcache *rc)=NULL;
258 static krb5_error_code (_stdcall *p_krb5_rc_initialize)
259 (krb5_context context, krb5_rcache rc,

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 5

260 krb5_deltat lifespan)=NULL;
261 static krb5_error_code (_stdcall *p_krb5_rc_get_lifespan)
262 (krb5_context context, krb5_rcache rc,
263 krb5_deltat *lifespan)=NULL;
264 static krb5_error_code (_stdcall *p_krb5_rc_destroy)
265 (krb5_context context, krb5_rcache rc)=NULL;
266 static krb5_boolean (_stdcall *p_krb5_principal_compare)
267 (krb5_context, krb5_const_principal, krb5_const_principal)=
268 static size_t (_stdcall *p_krb5_checksum_size)(krb5_context context,krb5_cksumty
269 static krb5_boolean (_stdcall *p_valid_cksumtype)(krb5_cksumtype ctype)=NULL;
270 static krb5_error_code (_stdcall *p_krb5_kt_free_entry)
271 (krb5_context,krb5_keytab_entry *)=NULL;
272 static krb5_error_code (_stdcall * p_krb5_auth_con_setrcache)(krb5_context,
273 krb5_auth_context
274 krb5_rcache)=NULL
275 static krb5_error_code (_stdcall * p_krb5_get_server_rcache)(krb5_context,
276 krb5_const krb5_da
277 krb5_rcache *)=NUL
278 static krb5_error_code (* p_krb5_auth_con_getrcache)(krb5_context,
279 krb5_auth_context,
280 krb5_rcache *)=NULL;
281 static krb5_error_code (_stdcall * p_krb5_kt_close)(krb5_context context,
282 krb5_keytab keytab)=NULL;
283 static krb5_error_code (_stdcall * p_krb5_kt_get_entry)(krb5_context context,
284 krb5_keytab keytab,
285 krb5_const_principal principal, krb5_kvno vno,
286 krb5_enctype enctype, krb5_keytab_entry *entry)=NULL;
287 static int krb5_loaded = 0; /* only attempt to initialize func ptrs once */

289 /* Function to Load the Kerberos 5 DLL and initialize function pointers */
290 void
291 load_krb5_dll(void)
292 {
293 HANDLE hKRB5_32;
294
295 krb5_loaded++;
296 hKRB5_32 = LoadLibrary(TEXT("KRB5_32"));
297 if (!hKRB5_32)
298 return;

300 (FARPROC) p_krb5_free_data_contents =
301 GetProcAddress(hKRB5_32, "krb5_free_data_contents");
302 (FARPROC) p_krb5_free_context =
303 GetProcAddress(hKRB5_32, "krb5_free_context");
304 (FARPROC) p_krb5_auth_con_free =
305 GetProcAddress(hKRB5_32, "krb5_auth_con_free");
306 (FARPROC) p_krb5_free_principal =
307 GetProcAddress(hKRB5_32, "krb5_free_principal");
308 (FARPROC) p_krb5_mk_req_extended =
309 GetProcAddress(hKRB5_32, "krb5_mk_req_extended");
310 (FARPROC) p_krb5_get_credentials =
311 GetProcAddress(hKRB5_32, "krb5_get_credentials");
312 (FARPROC) p_krb5_cc_get_principal =
313 GetProcAddress(hKRB5_32, "krb5_cc_get_principal");
314 (FARPROC) p_krb5_cc_default =
315 GetProcAddress(hKRB5_32, "krb5_cc_default");
316 (FARPROC) p_krb5_sname_to_principal =
317 GetProcAddress(hKRB5_32, "krb5_sname_to_principal");
318 (FARPROC) p_krb5_init_context =
319 GetProcAddress(hKRB5_32, "krb5_init_context");
320 (FARPROC) p_krb5_free_ticket =
321 GetProcAddress(hKRB5_32, "krb5_free_ticket");
322 (FARPROC) p_krb5_rd_req =
323 GetProcAddress(hKRB5_32, "krb5_rd_req");
324 (FARPROC) p_krb5_principal_compare =
325 GetProcAddress(hKRB5_32, "krb5_principal_compare");

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 6

326 (FARPROC) p_krb5_decrypt_tkt_part =
327 GetProcAddress(hKRB5_32, "krb5_decrypt_tkt_part");
328 (FARPROC) p_krb5_timeofday =
329 GetProcAddress(hKRB5_32, "krb5_timeofday");
330 (FARPROC) p_krb5_rc_default =
331 GetProcAddress(hKRB5_32, "krb5_rc_default");
332 (FARPROC) p_krb5_rc_initialize =
333 GetProcAddress(hKRB5_32, "krb5_rc_initialize");
334 (FARPROC) p_krb5_rc_get_lifespan =
335 GetProcAddress(hKRB5_32, "krb5_rc_get_lifespan");
336 (FARPROC) p_krb5_rc_destroy =
337 GetProcAddress(hKRB5_32, "krb5_rc_destroy");
338 (FARPROC) p_krb5_kt_default =
339 GetProcAddress(hKRB5_32, "krb5_kt_default");
340 (FARPROC) p_krb5_kt_resolve =
341 GetProcAddress(hKRB5_32, "krb5_kt_resolve");
342 (FARPROC) p_krb5_auth_con_init =
343 GetProcAddress(hKRB5_32, "krb5_auth_con_init");
344 (FARPROC) p_valid_cksumtype =
345 GetProcAddress(hKRB5_32, "valid_cksumtype");
346 (FARPROC) p_krb5_checksum_size =
347 GetProcAddress(hKRB5_32, "krb5_checksum_size");
348 (FARPROC) p_krb5_kt_free_entry =
349 GetProcAddress(hKRB5_32, "krb5_kt_free_entry");
350 (FARPROC) p_krb5_auth_con_setrcache =
351 GetProcAddress(hKRB5_32, "krb5_auth_con_setrcache");
352 (FARPROC) p_krb5_get_server_rcache =
353 GetProcAddress(hKRB5_32, "krb5_get_server_rcache");
354 (FARPROC) p_krb5_auth_con_getrcache =
355 GetProcAddress(hKRB5_32, "krb5_auth_con_getrcache");
356 (FARPROC) p_krb5_kt_close =
357 GetProcAddress(hKRB5_32, "krb5_kt_close");
358 (FARPROC) p_krb5_kt_get_entry =
359 GetProcAddress(hKRB5_32, "krb5_kt_get_entry");
360 }

362 /* Stubs for each function to be dynamicly loaded */
363 void
364 kssl_krb5_free_data_contents(krb5_context CO, krb5_data * data)
365 {
366 if (!krb5_loaded)
367 load_krb5_dll();

369 if (p_krb5_free_data_contents)
370 p_krb5_free_data_contents(CO,data);
371 }

373 krb5_error_code
374 kssl_krb5_mk_req_extended (krb5_context CO,
375 krb5_auth_context * pACO,
376 krb5_const krb5_flags F,
377 krb5_data * pD1,
378 krb5_creds * pC,
379 krb5_data * pD2)
380 {
381 if (!krb5_loaded)
382 load_krb5_dll();

384 if (p_krb5_mk_req_extended)
385 return(p_krb5_mk_req_extended(CO,pACO,F,pD1,pC,pD2));
386 else
387 return KRB5KRB_ERR_GENERIC;
388 }
389 krb5_error_code
390 kssl_krb5_auth_con_init(krb5_context CO,
391 krb5_auth_context * pACO)

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 7

392 {
393 if (!krb5_loaded)
394 load_krb5_dll();

396 if (p_krb5_auth_con_init)
397 return(p_krb5_auth_con_init(CO,pACO));
398 else
399 return KRB5KRB_ERR_GENERIC;
400 }
401 krb5_error_code
402 kssl_krb5_auth_con_free (krb5_context CO,
403 krb5_auth_context ACO)
404 {
405 if (!krb5_loaded)
406 load_krb5_dll();

408 if (p_krb5_auth_con_free)
409 return(p_krb5_auth_con_free(CO,ACO));
410 else
411 return KRB5KRB_ERR_GENERIC;
412 }
413 krb5_error_code
414 kssl_krb5_get_credentials(krb5_context CO,
415 krb5_const krb5_flags F,
416 krb5_ccache CC,
417 krb5_creds * pCR,
418 krb5_creds ** ppCR)
419 {
420 if (!krb5_loaded)
421 load_krb5_dll();

423 if (p_krb5_get_credentials)
424 return(p_krb5_get_credentials(CO,F,CC,pCR,ppCR));
425 else
426 return KRB5KRB_ERR_GENERIC;
427 }
428 krb5_error_code
429 kssl_krb5_sname_to_principal(krb5_context CO,
430 krb5_const char * pC1,
431 krb5_const char * pC2,
432 krb5_int32 I,
433 krb5_principal * pPR)
434 {
435 if (!krb5_loaded)
436 load_krb5_dll();

438 if (p_krb5_sname_to_principal)
439 return(p_krb5_sname_to_principal(CO,pC1,pC2,I,pPR));
440 else
441 return KRB5KRB_ERR_GENERIC;
442 }

444 krb5_error_code
445 kssl_krb5_cc_default(krb5_context CO,
446 krb5_ccache * pCC)
447 {
448 if (!krb5_loaded)
449 load_krb5_dll();

451 if (p_krb5_cc_default)
452 return(p_krb5_cc_default(CO,pCC));
453 else
454 return KRB5KRB_ERR_GENERIC;
455 }

457 krb5_error_code

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 8

458 kssl_krb5_init_context(krb5_context * pCO)
459 {
460 if (!krb5_loaded)
461 load_krb5_dll();

463 if (p_krb5_init_context)
464 return(p_krb5_init_context(pCO));
465 else
466 return KRB5KRB_ERR_GENERIC;
467 }

469 void
470 kssl_krb5_free_context(krb5_context CO)
471 {
472 if (!krb5_loaded)
473 load_krb5_dll();

475 if (p_krb5_free_context)
476 p_krb5_free_context(CO);
477 }

479 void
480 kssl_krb5_free_principal(krb5_context c, krb5_principal p)
481 {
482 if (!krb5_loaded)
483 load_krb5_dll();

485 if (p_krb5_free_principal)
486 p_krb5_free_principal(c,p);
487 }

489 krb5_error_code
490 kssl_krb5_kt_resolve(krb5_context con,
491 krb5_const char * sz,
492 krb5_keytab * kt)
493 {
494 if (!krb5_loaded)
495 load_krb5_dll();

497 if (p_krb5_kt_resolve)
498 return(p_krb5_kt_resolve(con,sz,kt));
499 else
500 return KRB5KRB_ERR_GENERIC;
501 }

503 krb5_error_code
504 kssl_krb5_kt_default(krb5_context con,
505 krb5_keytab * kt)
506 {
507 if (!krb5_loaded)
508 load_krb5_dll();

510 if (p_krb5_kt_default)
511 return(p_krb5_kt_default(con,kt));
512 else
513 return KRB5KRB_ERR_GENERIC;
514 }

516 krb5_error_code
517 kssl_krb5_free_ticket(krb5_context con,
518 krb5_ticket * kt)
519 {
520 if (!krb5_loaded)
521 load_krb5_dll();

523 if (p_krb5_free_ticket)

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 9

524 return(p_krb5_free_ticket(con,kt));
525 else
526 return KRB5KRB_ERR_GENERIC;
527 }

529 krb5_error_code
530 kssl_krb5_rd_req(krb5_context con, krb5_auth_context * pacon,
531 krb5_const krb5_data * data,
532 krb5_const_principal princ, krb5_keytab keytab,
533 krb5_flags * flags, krb5_ticket ** pptkt)
534 {
535 if (!krb5_loaded)
536 load_krb5_dll();

538 if (p_krb5_rd_req)
539 return(p_krb5_rd_req(con,pacon,data,princ,keytab,flags,pptkt));
540 else
541 return KRB5KRB_ERR_GENERIC;
542 }

544 krb5_boolean
545 krb5_principal_compare(krb5_context con, krb5_const_principal princ1,
546 krb5_const_principal princ2)
547 {
548 if (!krb5_loaded)
549 load_krb5_dll();

551 if (p_krb5_principal_compare)
552 return(p_krb5_principal_compare(con,princ1,princ2));
553 else
554 return KRB5KRB_ERR_GENERIC;
555 }

557 krb5_error_code
558 krb5_decrypt_tkt_part(krb5_context con, krb5_const krb5_keyblock *keys,
559 krb5_ticket *ticket)
560 {
561 if (!krb5_loaded)
562 load_krb5_dll();

564 if (p_krb5_decrypt_tkt_part)
565 return(p_krb5_decrypt_tkt_part(con,keys,ticket));
566 else
567 return KRB5KRB_ERR_GENERIC;
568 }

570 krb5_error_code
571 krb5_timeofday(krb5_context con, krb5_int32 *timeret)
572 {
573 if (!krb5_loaded)
574 load_krb5_dll();

576 if (p_krb5_timeofday)
577 return(p_krb5_timeofday(con,timeret));
578 else
579 return KRB5KRB_ERR_GENERIC;
580 }

582 krb5_error_code
583 krb5_rc_default(krb5_context con, krb5_rcache *rc)
584 {
585 if (!krb5_loaded)
586 load_krb5_dll();

588 if (p_krb5_rc_default)
589 return(p_krb5_rc_default(con,rc));

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 10

590 else
591 return KRB5KRB_ERR_GENERIC;
592 }

594 krb5_error_code
595 krb5_rc_initialize(krb5_context con, krb5_rcache rc, krb5_deltat lifespan)
596 {
597 if (!krb5_loaded)
598 load_krb5_dll();

600 if (p_krb5_rc_initialize)
601 return(p_krb5_rc_initialize(con, rc, lifespan));
602 else
603 return KRB5KRB_ERR_GENERIC;
604 }

606 krb5_error_code
607 krb5_rc_get_lifespan(krb5_context con, krb5_rcache rc, krb5_deltat *lifespanp)
608 {
609 if (!krb5_loaded)
610 load_krb5_dll();

612 if (p_krb5_rc_get_lifespan)
613 return(p_krb5_rc_get_lifespan(con, rc, lifespanp));
614 else
615 return KRB5KRB_ERR_GENERIC;
616 }

618 krb5_error_code
619 krb5_rc_destroy(krb5_context con, krb5_rcache rc)
620 {
621 if (!krb5_loaded)
622 load_krb5_dll();

624 if (p_krb5_rc_destroy)
625 return(p_krb5_rc_destroy(con, rc));
626 else
627 return KRB5KRB_ERR_GENERIC;
628 }

630 size_t
631 krb5_checksum_size(krb5_context context,krb5_cksumtype ctype)
632 {
633 if (!krb5_loaded)
634 load_krb5_dll();

636 if (p_krb5_checksum_size)
637 return(p_krb5_checksum_size(context, ctype));
638 else
639 return KRB5KRB_ERR_GENERIC;
640 }

642 krb5_boolean
643 valid_cksumtype(krb5_cksumtype ctype)
644 {
645 if (!krb5_loaded)
646 load_krb5_dll();

648 if (p_valid_cksumtype)
649 return(p_valid_cksumtype(ctype));
650 else
651 return KRB5KRB_ERR_GENERIC;
652 }

654 krb5_error_code
655 krb5_kt_free_entry(krb5_context con,krb5_keytab_entry * entry)

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 11

656 {
657 if (!krb5_loaded)
658 load_krb5_dll();

660 if (p_krb5_kt_free_entry)
661 return(p_krb5_kt_free_entry(con,entry));
662 else
663 return KRB5KRB_ERR_GENERIC;
664 }
665
666 /* Structure definitions */
667 #ifndef NO_DEF_KRB5_CCACHE
668 #ifndef krb5_x
669 #define krb5_x(ptr,args) ((ptr)?((*(ptr)) args):(abort(),1))
670 #define krb5_xc(ptr,args) ((ptr)?((*(ptr)) args):(abort(),(char*)0))
671 #endif

673 typedef krb5_pointer krb5_cc_cursor; /* cursor for sequential lookup */

675 typedef struct _krb5_ccache
676 {
677 krb5_magic magic;
678 struct _krb5_cc_ops FAR *ops;
679 krb5_pointer data;
680 } *krb5_ccache;

682 typedef struct _krb5_cc_ops
683 {
684 krb5_magic magic;
685 char *prefix;
686 char * (KRB5_CALLCONV *get_name)
687 (krb5_context, krb5_ccache);
688 krb5_error_code (KRB5_CALLCONV *resolve)
689 (krb5_context, krb5_ccache *, const char *);
690 krb5_error_code (KRB5_CALLCONV *gen_new)
691 (krb5_context, krb5_ccache *);
692 krb5_error_code (KRB5_CALLCONV *init)
693 (krb5_context, krb5_ccache, krb5_principal);
694 krb5_error_code (KRB5_CALLCONV *destroy)
695 (krb5_context, krb5_ccache);
696 krb5_error_code (KRB5_CALLCONV *close)
697 (krb5_context, krb5_ccache);
698 krb5_error_code (KRB5_CALLCONV *store)
699 (krb5_context, krb5_ccache, krb5_creds *);
700 krb5_error_code (KRB5_CALLCONV *retrieve)
701 (krb5_context, krb5_ccache,
702 krb5_flags, krb5_creds *, krb5_creds *);
703 krb5_error_code (KRB5_CALLCONV *get_princ)
704 (krb5_context, krb5_ccache, krb5_principal *);
705 krb5_error_code (KRB5_CALLCONV *get_first)
706 (krb5_context, krb5_ccache, krb5_cc_cursor *);
707 krb5_error_code (KRB5_CALLCONV *get_next)
708 (krb5_context, krb5_ccache,
709 krb5_cc_cursor *, krb5_creds *);
710 krb5_error_code (KRB5_CALLCONV *end_get)
711 (krb5_context, krb5_ccache, krb5_cc_cursor *);
712 krb5_error_code (KRB5_CALLCONV *remove_cred)
713 (krb5_context, krb5_ccache,
714 krb5_flags, krb5_creds *);
715 krb5_error_code (KRB5_CALLCONV *set_flags)
716 (krb5_context, krb5_ccache, krb5_flags);
717 } krb5_cc_ops;
718 #endif /* NO_DEF_KRB5_CCACHE */

720 krb5_error_code
721 kssl_krb5_cc_get_principal

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 12

722 (krb5_context context, krb5_ccache cache,
723 krb5_principal *principal)
724 {
725 if (p_krb5_cc_get_principal)
726 return(p_krb5_cc_get_principal(context,cache,principal));
727 else
728 return(krb5_x
729 ((cache)->ops->get_princ,(context, cache, principal)));
730 }

732 krb5_error_code
733 kssl_krb5_auth_con_setrcache(krb5_context con, krb5_auth_context acon,
734 krb5_rcache rcache)
735 {
736 if (p_krb5_auth_con_setrcache)
737 return(p_krb5_auth_con_setrcache(con,acon,rcache));
738 else
739 return KRB5KRB_ERR_GENERIC;
740 }

742 krb5_error_code
743 kssl_krb5_get_server_rcache(krb5_context con, krb5_const krb5_data * data,
744 krb5_rcache * rcache)
745 {
746 if (p_krb5_get_server_rcache)
747 return(p_krb5_get_server_rcache(con,data,rcache));
748 else
749 return KRB5KRB_ERR_GENERIC;
750 }

752 krb5_error_code
753 kssl_krb5_auth_con_getrcache(krb5_context con, krb5_auth_context acon,
754 krb5_rcache * prcache)
755 {
756 if (p_krb5_auth_con_getrcache)
757 return(p_krb5_auth_con_getrcache(con,acon, prcache));
758 else
759 return KRB5KRB_ERR_GENERIC;
760 }
761
762 krb5_error_code
763 kssl_krb5_kt_close(krb5_context context, krb5_keytab keytab)
764 {
765 if (p_krb5_kt_close)
766 return(p_krb5_kt_close(context,keytab));
767 else
768 return KRB5KRB_ERR_GENERIC;
769 }

771 krb5_error_code
772 kssl_krb5_kt_get_entry(krb5_context context, krb5_keytab keytab,
773 krb5_const_principal principal, krb5_kvno vno,
774 krb5_enctype enctype, krb5_keytab_entry *entry)
775 {
776 if (p_krb5_kt_get_entry)
777 return(p_krb5_kt_get_entry(context,keytab,principal,vno,enctype,
778 else
779 return KRB5KRB_ERR_GENERIC;
780 }
781 #endif /* OPENSSL_SYS_WINDOWS || OPENSSL_SYS_WIN32 */

784 /* memory allocation functions for non-temporary storage
785 * (e.g. stuff that gets saved into the kssl context) */
786 static void* kssl_calloc(size_t nmemb, size_t size)
787 {

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 13

788 void* p;
789
790 p=OPENSSL_malloc(nmemb*size);
791 if (p){
792 memset(p, 0, nmemb*size);
793 }
794 return p;
795 }

797 #define kssl_malloc(size) OPENSSL_malloc((size))
798 #define kssl_realloc(ptr, size) OPENSSL_realloc(ptr, size)
799 #define kssl_free(ptr) OPENSSL_free((ptr))

802 char
803 *kstring(char *string)
804 {
805 static char *null = "[NULL]";

807 return ((string == NULL)? null: string);
808 }

810 /* Given KRB5 enctype (basically DES or 3DES),
811 ** return closest match openssl EVP_ encryption algorithm.
812 ** Return NULL for unknown or problematic (krb5_dk_encrypt) enctypes.
813 ** Assume ENCTYPE_*_RAW (krb5_raw_encrypt) are OK.
814 */
815 const EVP_CIPHER *
816 kssl_map_enc(krb5_enctype enctype)
817 {
818 switch (enctype)
819 {
820 case ENCTYPE_DES_HMAC_SHA1: /* EVP_des_cbc(); */
821 case ENCTYPE_DES_CBC_CRC:
822 case ENCTYPE_DES_CBC_MD4:
823 case ENCTYPE_DES_CBC_MD5:
824 case ENCTYPE_DES_CBC_RAW:
825 return EVP_des_cbc();
826 break;
827 case ENCTYPE_DES3_CBC_SHA1: /* EVP_des_ede3_cbc(); */
828 case ENCTYPE_DES3_CBC_SHA:
829 case ENCTYPE_DES3_CBC_RAW:
830 return EVP_des_ede3_cbc();
831 break;
832 default: return NULL;
833 break;
834 }
835 }

838 /* Return true:1 if p "looks like" the start of the real authenticator
839 ** described in kssl_skip_confound() below. The ASN.1 pattern is
840 ** "62 xx 30 yy" (APPLICATION-2, SEQUENCE), where xx-yy =~ 2, and
841 ** xx and yy are possibly multi-byte length fields.
842 */
843 static int kssl_test_confound(unsigned char *p)
844 {
845 int len = 2;
846 int xx = 0, yy = 0;

848 if (*p++ != 0x62) return 0;
849 if (*p > 0x82) return 0;
850 switch(*p) {
851 case 0x82: p++; xx = (*p++ << 8); xx += *p++; break;
852 case 0x81: p++; xx = *p++; break;
853 case 0x80: return 0;

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 14

854 default: xx = *p++; break;
855 }
856 if (*p++ != 0x30) return 0;
857 if (*p > 0x82) return 0;
858 switch(*p) {
859 case 0x82: p++; len+=2; yy = (*p++ << 8); yy += *p++; break;
860 case 0x81: p++; len++; yy = *p++; break;
861 case 0x80: return 0;
862 default: yy = *p++; break;
863 }

865 return (xx - len == yy)? 1: 0;
866 }

868 /* Allocate, fill, and return cksumlens array of checksum lengths.
869 ** This array holds just the unique elements from the krb5_cksumarray[].
870 ** array[n] == 0 signals end of data.
871 **
872 ** The krb5_cksumarray[] was an internal variable that has since been
873 ** replaced by a more general method for storing the data. It should
874 ** not be used. Instead we use real API calls and make a guess for
875 ** what the highest assigned CKSUMTYPE_ constant is. As of 1.2.2
876 ** it is 0x000c (CKSUMTYPE_HMAC_SHA1_DES3). So we will use 0x0010.
877 */
878 static size_t *populate_cksumlens(void)
879 {
880 int i, j, n;
881 static size_t *cklens = NULL;

883 #ifdef KRB5_MIT_OLD11
884 n = krb5_max_cksum;
885 #else
886 n = 0x0010;
887 #endif /* KRB5_MIT_OLD11 */
888
889 #ifdef KRB5CHECKAUTH
890 if (!cklens && !(cklens = (size_t *) calloc(sizeof(int),n+1))) return N

892 for (i=0; i < n; i++) {
893 if (!valid_cksumtype(i)) continue; /* array has holes */
894 for (j=0; j < n; j++) {
895 if (cklens[j] == 0) {
896 cklens[j] = krb5_checksum_size(NULL,i);
897 break; /* krb5 elem was new: add */
898 }
899 if (cklens[j] == krb5_checksum_size(NULL,i)) {
900 break; /* ignore duplicate elements */
901 }
902 }
903 }
904 #endif /* KRB5CHECKAUTH */

906 return cklens;
907 }

909 /* Return pointer to start of real authenticator within authenticator, or
910 ** return NULL on error.
911 ** Decrypted authenticator looks like this:
912 ** [0 or 8 byte confounder] [4-24 byte checksum] [real authent’r]
913 ** This hackery wouldn’t be necessary if MIT KRB5 1.0.6 had the
914 ** krb5_auth_con_getcksumtype() function advertised in its krb5.h.
915 */
916 unsigned char *kssl_skip_confound(krb5_enctype etype, unsigned char *a)
917 {
918 int i, conlen;
919 size_t cklen;

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 15

920 static size_t *cksumlens = NULL;
921 unsigned char *test_auth;

923 conlen = (etype)? 8: 0;

925 if (!cksumlens && !(cksumlens = populate_cksumlens())) return NULL;
926 for (i=0; (cklen = cksumlens[i]) != 0; i++)
927 {
928 test_auth = a + conlen + cklen;
929 if (kssl_test_confound(test_auth)) return test_auth;
930 }

932 return NULL;
933 }

936 /* Set kssl_err error info when reason text is a simple string
937 ** kssl_err = struct { int reason; char text[KSSL_ERR_MAX+1]; }
938 */
939 void
940 kssl_err_set(KSSL_ERR *kssl_err, int reason, char *text)
941 {
942 if (kssl_err == NULL) return;

944 kssl_err->reason = reason;
945 BIO_snprintf(kssl_err->text, KSSL_ERR_MAX, "%s", text);
946 return;
947 }

950 /* Display contents of krb5_data struct, for debugging
951 */
952 void
953 print_krb5_data(char *label, krb5_data *kdata)
954 {
955 int i;

957 printf("%s[%d] ", label, kdata->length);
958 for (i=0; i < (int)kdata->length; i++)
959 {
960 if (0 && isprint((int) kdata->data[i]))
961 printf("%c ", kdata->data[i]);
962 else
963 printf("%02x ", (unsigned char) kdata->data[i]);
964 }
965 printf("\n");
966 }

969 /* Display contents of krb5_authdata struct, for debugging
970 */
971 void
972 print_krb5_authdata(char *label, krb5_authdata **adata)
973 {
974 if (adata == NULL)
975 {
976 printf("%s, authdata==0\n", label);
977 return;
978 }
979 printf("%s [%p]\n", label, (void *)adata);
980 #if 0
981 {
982 int i;
983 printf("%s[at%d:%d] ", label, adata->ad_type, adata->length);
984 for (i=0; i < adata->length; i++)
985 {

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 16

986 printf((isprint(adata->contents[i]))? "%c ": "%02x",
987 adata->contents[i]);
988 }
989 printf("\n");
990 }
991 #endif
992 }

995 /* Display contents of krb5_keyblock struct, for debugging
996 */
997 void
998 print_krb5_keyblock(char *label, krb5_keyblock *keyblk)
999 {

1000 int i;

1002 if (keyblk == NULL)
1003 {
1004 printf("%s, keyblk==0\n", label);
1005 return;
1006 }
1007 #ifdef KRB5_HEIMDAL
1008 printf("%s\n\t[et%d:%d]: ", label, keyblk->keytype,
1009 keyblk->keyvalue->length);
1010 for (i=0; i < (int)keyblk->keyvalue->length; i++)
1011 {
1012 printf("%02x",(unsigned char *)(keyblk->keyvalue->contents)[i]);
1013 }
1014 printf("\n");
1015 #else
1016 printf("%s\n\t[et%d:%d]: ", label, keyblk->enctype, keyblk->length);
1017 for (i=0; i < (int)keyblk->length; i++)
1018 {
1019 printf("%02x",keyblk->contents[i]);
1020 }
1021 printf("\n");
1022 #endif
1023 }

1026 /* Display contents of krb5_principal_data struct, for debugging
1027 ** (krb5_principal is typedef’d == krb5_principal_data *)
1028 */
1029 static void
1030 print_krb5_princ(char *label, krb5_principal_data *princ)
1031 {
1032 int i, ui, uj;

1034 printf("%s principal Realm: ", label);
1035 if (princ == NULL) return;
1036 for (ui=0; ui < (int)princ->realm.length; ui++) putchar(princ->realm.da
1037 printf(" (nametype %d) has %d strings:\n", princ->type,princ->length);
1038 for (i=0; i < (int)princ->length; i++)
1039 {
1040 printf("\t%d [%d]: ", i, princ->data[i].length);
1041 for (uj=0; uj < (int)princ->data[i].length; uj++) {
1042 putchar(princ->data[i].data[uj]);
1043 }
1044 printf("\n");
1045 }
1046 return;
1047 }

1050 /* Given krb5 service (typically "kssl") and hostname in kssl_ctx,
1051 ** Return encrypted Kerberos ticket for service @ hostname.

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 17

1052 ** If authenp is non-NULL, also return encrypted authenticator,
1053 ** whose data should be freed by caller.
1054 ** (Originally was: Create Kerberos AP_REQ message for SSL Client.)
1055 **
1056 ** 19990628 VRS Started; Returns Kerberos AP_REQ message.
1057 ** 20010409 VRS Modified for RFC2712; Returns enc tkt.
1058 ** 20010606 VRS May also return optional authenticator.
1059 */
1060 krb5_error_code
1061 kssl_cget_tkt(/* UPDATE */ KSSL_CTX *kssl_ctx,
1062 /* OUT */ krb5_data **enc_ticketp,
1063 /* UPDATE */ krb5_data *authenp,
1064 /* OUT */ KSSL_ERR *kssl_err)
1065 {
1066 krb5_error_code krb5rc = KRB5KRB_ERR_GENERIC;
1067 krb5_context krb5context = NULL;
1068 krb5_auth_context krb5auth_context = NULL;
1069 krb5_ccache krb5ccdef = NULL;
1070 krb5_creds krb5creds, *krb5credsp = NULL;
1071 krb5_data krb5_app_req;

1073 kssl_err_set(kssl_err, 0, "");
1074 memset((char *)&krb5creds, 0, sizeof(krb5creds));

1076 if (!kssl_ctx)
1077 {
1078 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
1079 "No kssl_ctx defined.\n");
1080 goto err;
1081 }
1082 else if (!kssl_ctx->service_host)
1083 {
1084 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
1085 "kssl_ctx service_host undefined.\n");
1086 goto err;
1087 }

1089 if ((krb5rc = krb5_init_context(&krb5context)) != 0)
1090 {
1091 BIO_snprintf(kssl_err->text,KSSL_ERR_MAX,
1092 "krb5_init_context() fails: %d\n", krb5rc);
1093 kssl_err->reason = SSL_R_KRB5_C_INIT;
1094 goto err;
1095 }

1097 if ((krb5rc = krb5_sname_to_principal(krb5context,
1098 kssl_ctx->service_host,
1099 (kssl_ctx->service_name)? kssl_ctx->service_name: KRB5SVC,
1100 KRB5_NT_SRV_HST, &krb5creds.server)) != 0)
1101 {
1102 BIO_snprintf(kssl_err->text,KSSL_ERR_MAX,
1103 "krb5_sname_to_principal() fails for %s/%s\n",
1104 kssl_ctx->service_host,
1105 (kssl_ctx->service_name)? kssl_ctx->service_name:
1106 KRB5SVC);
1107 kssl_err->reason = SSL_R_KRB5_C_INIT;
1108 goto err;
1109 }

1111 if ((krb5rc = krb5_cc_default(krb5context, &krb5ccdef)) != 0)
1112 {
1113 kssl_err_set(kssl_err, SSL_R_KRB5_C_CC_PRINC,
1114 "krb5_cc_default fails.\n");
1115 goto err;
1116 }

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 18

1118 if ((krb5rc = krb5_cc_get_principal(krb5context, krb5ccdef,
1119 &krb5creds.client)) != 0)
1120 {
1121 kssl_err_set(kssl_err, SSL_R_KRB5_C_CC_PRINC,
1122 "krb5_cc_get_principal() fails.\n");
1123 goto err;
1124 }

1126 if ((krb5rc = krb5_get_credentials(krb5context, 0, krb5ccdef,
1127 &krb5creds, &krb5credsp)) != 0)
1128 {
1129 kssl_err_set(kssl_err, SSL_R_KRB5_C_GET_CRED,
1130 "krb5_get_credentials() fails.\n");
1131 goto err;
1132 }

1134 *enc_ticketp = &krb5credsp->ticket;
1135 #ifdef KRB5_HEIMDAL
1136 kssl_ctx->enctype = krb5credsp->session.keytype;
1137 #else
1138 kssl_ctx->enctype = krb5credsp->keyblock.enctype;
1139 #endif

1141 krb5rc = KRB5KRB_ERR_GENERIC;
1142 /* caller should free data of krb5_app_req */
1143 /* 20010406 VRS deleted for real KerberosWrapper
1144 ** 20010605 VRS reinstated to offer Authenticator to KerberosWrapper
1145 */
1146 krb5_app_req.length = 0;
1147 if (authenp)
1148 {
1149 krb5_data krb5in_data;
1150 const unsigned char *p;
1151 long arlen;
1152 KRB5_APREQBODY *ap_req;

1154 authenp->length = 0;
1155 krb5in_data.data = NULL;
1156 krb5in_data.length = 0;
1157 if ((krb5rc = krb5_mk_req_extended(krb5context,
1158 &krb5auth_context, 0, &krb5in_data, krb5credsp,
1159 &krb5_app_req)) != 0)
1160 {
1161 kssl_err_set(kssl_err, SSL_R_KRB5_C_MK_REQ,
1162 "krb5_mk_req_extended() fails.\n");
1163 goto err;
1164 }

1166 arlen = krb5_app_req.length;
1167 p = (unsigned char *)krb5_app_req.data;
1168 ap_req = (KRB5_APREQBODY *) d2i_KRB5_APREQ(NULL, &p, arlen);
1169 if (ap_req)
1170 {
1171 authenp->length = i2d_KRB5_ENCDATA(
1172 ap_req->authenticator, NULL);
1173 if (authenp->length &&
1174 (authenp->data = malloc(authenp->length)))
1175 {
1176 unsigned char *adp = (unsigned char *)authenp-
1177 authenp->length = i2d_KRB5_ENCDATA(
1178 ap_req->authenticator, &adp);
1179 }
1180 }

1182 if (ap_req) KRB5_APREQ_free((KRB5_APREQ *) ap_req);
1183 if (krb5_app_req.length)

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 19

1184 kssl_krb5_free_data_contents(krb5context,&krb5_app_req);
1185 }
1186 #ifdef KRB5_HEIMDAL
1187 if (kssl_ctx_setkey(kssl_ctx, &krb5credsp->session))
1188 {
1189 kssl_err_set(kssl_err, SSL_R_KRB5_C_INIT,
1190 "kssl_ctx_setkey() fails.\n");
1191 }
1192 #else
1193 if (kssl_ctx_setkey(kssl_ctx, &krb5credsp->keyblock))
1194 {
1195 kssl_err_set(kssl_err, SSL_R_KRB5_C_INIT,
1196 "kssl_ctx_setkey() fails.\n");
1197 }
1198 #endif
1199 else krb5rc = 0;

1201 err:
1202 #ifdef KSSL_DEBUG
1203 kssl_ctx_show(kssl_ctx);
1204 #endif /* KSSL_DEBUG */

1206 if (krb5creds.client) krb5_free_principal(krb5context,
1207 krb5creds.client);
1208 if (krb5creds.server) krb5_free_principal(krb5context,
1209 krb5creds.server);
1210 if (krb5auth_context) krb5_auth_con_free(krb5context,
1211 krb5auth_context);
1212 if (krb5context) krb5_free_context(krb5context);
1213 return (krb5rc);
1214 }

1217 /* Given d2i_-decoded asn1ticket, allocate and return a new krb5_ticket.
1218 ** Return Kerberos error code and kssl_err struct on error.
1219 ** Allocates krb5_ticket and krb5_principal; caller should free these.
1220 **
1221 ** 20010410 VRS Implemented krb5_decode_ticket() as
1222 ** old_krb5_decode_ticket(). Missing from MIT1.0.6.
1223 ** 20010615 VRS Re-cast as openssl/asn1 d2i_*() functions.
1224 ** Re-used some of the old krb5_decode_ticket()
1225 ** code here. This tkt should alloc/free just
1226 ** like the real thing.
1227 */
1228 static krb5_error_code
1229 kssl_TKT2tkt(/* IN */ krb5_context krb5context,
1230 /* IN */ KRB5_TKTBODY *asn1ticket,
1231 /* OUT */ krb5_ticket **krb5ticket,
1232 /* OUT */ KSSL_ERR *kssl_err)
1233 {
1234 krb5_error_code krb5rc = KRB5KRB_ERR_GENERIC;
1235 krb5_ticket *new5ticket = NULL;
1236 ASN1_GENERALSTRING *gstr_svc, *gstr_host;

1238 *krb5ticket = NULL;

1240 if (asn1ticket == NULL || asn1ticket->realm == NULL ||
1241 asn1ticket->sname == NULL ||
1242 sk_ASN1_GENERALSTRING_num(asn1ticket->sname->namestring) < 2)
1243 {
1244 BIO_snprintf(kssl_err->text, KSSL_ERR_MAX,
1245 "Null field in asn1ticket.\n");
1246 kssl_err->reason = SSL_R_KRB5_S_RD_REQ;
1247 return KRB5KRB_ERR_GENERIC;
1248 }

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 20

1250 if ((new5ticket = (krb5_ticket *) calloc(1, sizeof(krb5_ticket)))==NULL)
1251 {
1252 BIO_snprintf(kssl_err->text, KSSL_ERR_MAX,
1253 "Unable to allocate new krb5_ticket.\n");
1254 kssl_err->reason = SSL_R_KRB5_S_RD_REQ;
1255 return ENOMEM; /* or KRB5KRB_ERR_GENERIC; */
1256 }

1258 gstr_svc = sk_ASN1_GENERALSTRING_value(asn1ticket->sname->namestring, 0
1259 gstr_host = sk_ASN1_GENERALSTRING_value(asn1ticket->sname->namestring, 1

1261 if ((krb5rc = kssl_build_principal_2(krb5context,
1262 &new5ticket->server,
1263 asn1ticket->realm->length, (char *)asn1ticket->realm->da
1264 gstr_svc->length, (char *)gstr_svc->data,
1265 gstr_host->length, (char *)gstr_host->data)) != 0)
1266 {
1267 free(new5ticket);
1268 BIO_snprintf(kssl_err->text, KSSL_ERR_MAX,
1269 "Error building ticket server principal.\n");
1270 kssl_err->reason = SSL_R_KRB5_S_RD_REQ;
1271 return krb5rc; /* or KRB5KRB_ERR_GENERIC; */
1272 }

1274 krb5_princ_type(krb5context, new5ticket->server) =
1275 asn1ticket->sname->nametype->data[0];
1276 new5ticket->enc_part.enctype = asn1ticket->encdata->etype->data[0];
1277 new5ticket->enc_part.kvno = asn1ticket->encdata->kvno->data[0];
1278 new5ticket->enc_part.ciphertext.length =
1279 asn1ticket->encdata->cipher->length;
1280 if ((new5ticket->enc_part.ciphertext.data =
1281 calloc(1, asn1ticket->encdata->cipher->length)) == NULL)
1282 {
1283 free(new5ticket);
1284 BIO_snprintf(kssl_err->text, KSSL_ERR_MAX,
1285 "Error allocating cipher in krb5ticket.\n");
1286 kssl_err->reason = SSL_R_KRB5_S_RD_REQ;
1287 return KRB5KRB_ERR_GENERIC;
1288 }
1289 else
1290 {
1291 memcpy(new5ticket->enc_part.ciphertext.data,
1292 asn1ticket->encdata->cipher->data,
1293 asn1ticket->encdata->cipher->length);
1294 }

1296 *krb5ticket = new5ticket;
1297 return 0;
1298 }

1301 /* Given krb5 service name in KSSL_CTX *kssl_ctx (typically "kssl"),
1302 ** and krb5 AP_REQ message & message length,
1303 ** Return Kerberos session key and client principle
1304 ** to SSL Server in KSSL_CTX *kssl_ctx.
1305 **
1306 ** 19990702 VRS Started.
1307 */
1308 krb5_error_code
1309 kssl_sget_tkt(/* UPDATE */ KSSL_CTX *kssl_ctx,
1310 /* IN */ krb5_data *indata,
1311 /* OUT */ krb5_ticket_times *ttimes,
1312 /* OUT */ KSSL_ERR *kssl_err)
1313 {
1314 krb5_error_code krb5rc = KRB5KRB_ERR_GENERIC;
1315 static krb5_context krb5context = NULL;

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 21

1316 static krb5_auth_context krb5auth_context = NULL;
1317 krb5_ticket *krb5ticket = NULL;
1318 KRB5_TKTBODY *asn1ticket = NULL;
1319 const unsigned char *p;
1320 krb5_keytab krb5keytab = NULL;
1321 krb5_keytab_entry kt_entry;
1322 krb5_principal krb5server;
1323 krb5_rcache rcache = NULL;

1325 kssl_err_set(kssl_err, 0, "");

1327 if (!kssl_ctx)
1328 {
1329 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
1330 "No kssl_ctx defined.\n");
1331 goto err;
1332 }

1334 #ifdef KSSL_DEBUG
1335 printf("in kssl_sget_tkt(%s)\n", kstring(kssl_ctx->service_name));
1336 #endif /* KSSL_DEBUG */

1338 if (!krb5context && (krb5rc = krb5_init_context(&krb5context)))
1339 {
1340 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
1341 "krb5_init_context() fails.\n");
1342 goto err;
1343 }
1344 if (krb5auth_context &&
1345 (krb5rc = krb5_auth_con_free(krb5context, krb5auth_context)))
1346 {
1347 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
1348 "krb5_auth_con_free() fails.\n");
1349 goto err;
1350 }
1351 else krb5auth_context = NULL;
1352 if (!krb5auth_context &&
1353 (krb5rc = krb5_auth_con_init(krb5context, &krb5auth_context)))
1354 {
1355 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
1356 "krb5_auth_con_init() fails.\n");
1357 goto err;
1358 }

1360
1361 if ((krb5rc = krb5_auth_con_getrcache(krb5context, krb5auth_context,
1362 &rcache)))
1363 {
1364 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
1365 "krb5_auth_con_getrcache() fails.\n");
1366 goto err;
1367 }
1368
1369 if ((krb5rc = krb5_sname_to_principal(krb5context, NULL,
1370 (kssl_ctx->service_name)? kssl_ctx->service_name: KRB5SVC,
1371 KRB5_NT_SRV_HST, &krb5server)) != 0)
1372 {
1373 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
1374 "krb5_sname_to_principal() fails.\n");
1375 goto err;
1376 }

1378 if (rcache == NULL)
1379 {
1380 if ((krb5rc = krb5_get_server_rcache(krb5context,
1381 krb5_princ_component(krb5context, krb5server, 0),

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 22

1382 &rcache)))
1383 {
1384 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
1385 "krb5_get_server_rcache() fails.\n");
1386 goto err;
1387 }
1388 }

1390 if ((krb5rc = krb5_auth_con_setrcache(krb5context, krb5auth_context, rca
1391 {
1392 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
1393 "krb5_auth_con_setrcache() fails.\n");
1394 goto err;
1395 }

1398 /* kssl_ctx->keytab_file == NULL ==> use Kerberos default
1399 */
1400 if (kssl_ctx->keytab_file)
1401 {
1402 krb5rc = krb5_kt_resolve(krb5context, kssl_ctx->keytab_file,
1403 &krb5keytab);
1404 if (krb5rc)
1405 {
1406 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
1407 "krb5_kt_resolve() fails.\n");
1408 goto err;
1409 }
1410 }
1411 else
1412 {
1413 krb5rc = krb5_kt_default(krb5context,&krb5keytab);
1414 if (krb5rc)
1415 {
1416 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
1417 "krb5_kt_default() fails.\n");
1418 goto err;
1419 }
1420 }

1422 /* Actual Kerberos5 krb5_recvauth() has initial conversation here
1423 ** o check KRB5_SENDAUTH_BADAUTHVERS
1424 ** unless KRB5_RECVAUTH_SKIP_VERSION
1425 ** o check KRB5_SENDAUTH_BADAPPLVERS
1426 ** o send "0" msg if all OK
1427 */

1429 /* 20010411 was using AP_REQ instead of true KerberosWrapper
1430 **
1431 ** if ((krb5rc = krb5_rd_req(krb5context, &krb5auth_context,
1432 ** &krb5in_data, krb5server, krb5keytab,
1433 ** &ap_option, &krb5ticket)) != 0) { Error }
1434 */

1436 p = (unsigned char *)indata->data;
1437 if ((asn1ticket = (KRB5_TKTBODY *) d2i_KRB5_TICKET(NULL, &p,
1438 (long) indata->length)) == NULL)
1439 {
1440 BIO_snprintf(kssl_err->text, KSSL_ERR_MAX,
1441 "d2i_KRB5_TICKET() ASN.1 decode failure.\n");
1442 kssl_err->reason = SSL_R_KRB5_S_RD_REQ;
1443 goto err;
1444 }
1445
1446 /* Was: krb5rc = krb5_decode_ticket(krb5in_data,&krb5ticket)) != 0) */
1447 if ((krb5rc = kssl_TKT2tkt(krb5context, asn1ticket, &krb5ticket,

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 23

1448 kssl_err)) != 0)
1449 {
1450 BIO_snprintf(kssl_err->text, KSSL_ERR_MAX,
1451 "Error converting ASN.1 ticket to krb5_ticket.\n");
1452 kssl_err->reason = SSL_R_KRB5_S_RD_REQ;
1453 goto err;
1454 }

1456 if (! krb5_principal_compare(krb5context, krb5server,
1457 krb5ticket->server)) {
1458 krb5rc = KRB5_PRINC_NOMATCH;
1459 BIO_snprintf(kssl_err->text, KSSL_ERR_MAX,
1460 "server principal != ticket principal\n");
1461 kssl_err->reason = SSL_R_KRB5_S_RD_REQ;
1462 goto err;
1463 }
1464 if ((krb5rc = krb5_kt_get_entry(krb5context, krb5keytab,
1465 krb5ticket->server, krb5ticket->enc_part.kvno,
1466 krb5ticket->enc_part.enctype, &kt_entry)) != 0) {
1467 BIO_snprintf(kssl_err->text, KSSL_ERR_MAX,
1468 "krb5_kt_get_entry() fails with %x.\n", krb5rc);
1469 kssl_err->reason = SSL_R_KRB5_S_RD_REQ;
1470 goto err;
1471 }
1472 if ((krb5rc = krb5_decrypt_tkt_part(krb5context, &kt_entry.key,
1473 krb5ticket)) != 0) {
1474 BIO_snprintf(kssl_err->text, KSSL_ERR_MAX,
1475 "krb5_decrypt_tkt_part() failed.\n");
1476 kssl_err->reason = SSL_R_KRB5_S_RD_REQ;
1477 goto err;
1478 }
1479 else {
1480 krb5_kt_free_entry(krb5context, &kt_entry);
1481 #ifdef KSSL_DEBUG
1482 {
1483 int i; krb5_address **paddr = krb5ticket->enc_part2->caddrs;
1484 printf("Decrypted ticket fields:\n");
1485 printf("\tflags: %X, transit-type: %X",
1486 krb5ticket->enc_part2->flags,
1487 krb5ticket->enc_part2->transited.tr_type);
1488 print_krb5_data("\ttransit-data: ",
1489 &(krb5ticket->enc_part2->transited.tr_contents));
1490 printf("\tcaddrs: %p, authdata: %p\n",
1491 krb5ticket->enc_part2->caddrs,
1492 krb5ticket->enc_part2->authorization_data);
1493 if (paddr)
1494 {
1495 printf("\tcaddrs:\n");
1496 for (i=0; paddr[i] != NULL; i++)
1497 {
1498 krb5_data d;
1499 d.length=paddr[i]->length;
1500 d.data=paddr[i]->contents;
1501 print_krb5_data("\t\tIP: ", &d);
1502 }
1503 }
1504 printf("\tstart/auth/end times: %d / %d / %d\n",
1505 krb5ticket->enc_part2->times.starttime,
1506 krb5ticket->enc_part2->times.authtime,
1507 krb5ticket->enc_part2->times.endtime);
1508 }
1509 #endif /* KSSL_DEBUG */
1510 }

1512 krb5rc = KRB5_NO_TKT_SUPPLIED;
1513 if (!krb5ticket || !krb5ticket->enc_part2 ||

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 24

1514 !krb5ticket->enc_part2->client ||
1515 !krb5ticket->enc_part2->client->data ||
1516 !krb5ticket->enc_part2->session)
1517 {
1518 kssl_err_set(kssl_err, SSL_R_KRB5_S_BAD_TICKET,
1519 "bad ticket from krb5_rd_req.\n");
1520 }
1521 else if (kssl_ctx_setprinc(kssl_ctx, KSSL_CLIENT,
1522 &krb5ticket->enc_part2->client->realm,
1523 krb5ticket->enc_part2->client->data,
1524 krb5ticket->enc_part2->client->length))
1525 {
1526 kssl_err_set(kssl_err, SSL_R_KRB5_S_BAD_TICKET,
1527 "kssl_ctx_setprinc() fails.\n");
1528 }
1529 else if (kssl_ctx_setkey(kssl_ctx, krb5ticket->enc_part2->session))
1530 {
1531 kssl_err_set(kssl_err, SSL_R_KRB5_S_BAD_TICKET,
1532 "kssl_ctx_setkey() fails.\n");
1533 }
1534 else if (krb5ticket->enc_part2->flags & TKT_FLG_INVALID)
1535 {
1536 krb5rc = KRB5KRB_AP_ERR_TKT_INVALID;
1537 kssl_err_set(kssl_err, SSL_R_KRB5_S_BAD_TICKET,
1538 "invalid ticket from krb5_rd_req.\n");
1539 }
1540 else krb5rc = 0;

1542 kssl_ctx->enctype = krb5ticket->enc_part.enctype;
1543 ttimes->authtime = krb5ticket->enc_part2->times.authtime;
1544 ttimes->starttime = krb5ticket->enc_part2->times.starttime;
1545 ttimes->endtime = krb5ticket->enc_part2->times.endtime;
1546 ttimes->renew_till = krb5ticket->enc_part2->times.renew_till;

1548 err:
1549 #ifdef KSSL_DEBUG
1550 kssl_ctx_show(kssl_ctx);
1551 #endif /* KSSL_DEBUG */

1553 if (asn1ticket) KRB5_TICKET_free((KRB5_TICKET *) asn1ticket);
1554 if (krb5keytab) krb5_kt_close(krb5context, krb5keytab);
1555 if (krb5ticket) krb5_free_ticket(krb5context, krb5ticket);
1556 if (krb5server) krb5_free_principal(krb5context, krb5server);
1557 return (krb5rc);
1558 }

1561 /* Allocate & return a new kssl_ctx struct.
1562 */
1563 KSSL_CTX *
1564 kssl_ctx_new(void)
1565 {
1566 return ((KSSL_CTX *) kssl_calloc(1, sizeof(KSSL_CTX)));
1567 }

1570 /* Frees a kssl_ctx struct and any allocated memory it holds.
1571 ** Returns NULL.
1572 */
1573 KSSL_CTX *
1574 kssl_ctx_free(KSSL_CTX *kssl_ctx)
1575 {
1576 if (kssl_ctx == NULL) return kssl_ctx;

1578 if (kssl_ctx->key) OPENSSL_cleanse(kssl_ctx->key,
1579 kssl_ctx->length);

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 25

1580 if (kssl_ctx->key) kssl_free(kssl_ctx->key);
1581 if (kssl_ctx->client_princ) kssl_free(kssl_ctx->client_princ);
1582 if (kssl_ctx->service_host) kssl_free(kssl_ctx->service_host);
1583 if (kssl_ctx->service_name) kssl_free(kssl_ctx->service_name);
1584 if (kssl_ctx->keytab_file) kssl_free(kssl_ctx->keytab_file);

1586 kssl_free(kssl_ctx);
1587 return (KSSL_CTX *) NULL;
1588 }

1591 /* Given an array of (krb5_data *) entity (and optional realm),
1592 ** set the plain (char *) client_princ or service_host member
1593 ** of the kssl_ctx struct.
1594 */
1595 krb5_error_code
1596 kssl_ctx_setprinc(KSSL_CTX *kssl_ctx, int which,
1597 krb5_data *realm, krb5_data *entity, int nentities)
1598 {
1599 char **princ;
1600 int length;
1601 int i;

1603 if (kssl_ctx == NULL || entity == NULL) return KSSL_CTX_ERR;

1605 switch (which)
1606 {
1607 case KSSL_CLIENT: princ = &kssl_ctx->client_princ; break;
1608 case KSSL_SERVER: princ = &kssl_ctx->service_host; break;
1609 default: return KSSL_CTX_ERR; break;
1610 }
1611 if (*princ) kssl_free(*princ);

1613 /* Add up all the entity->lengths */
1614 length = 0;
1615 for (i=0; i < nentities; i++)
1616 {
1617 length += entity[i].length;
1618 }
1619 /* Add in space for the ’/’ character(s) (if any) */
1620 length += nentities-1;
1621 /* Space for the (’@’+realm+NULL | NULL) */
1622 length += ((realm)? realm->length + 2: 1);

1624 if ((*princ = kssl_calloc(1, length)) == NULL)
1625 return KSSL_CTX_ERR;
1626 else
1627 {
1628 for (i = 0; i < nentities; i++)
1629 {
1630 strncat(*princ, entity[i].data, entity[i].length);
1631 if (i < nentities-1)
1632 {
1633 strcat (*princ, "/");
1634 }
1635 }
1636 if (realm)
1637 {
1638 strcat (*princ, "@");
1639 (void) strncat(*princ, realm->data, realm->length);
1640 }
1641 }

1643 return KSSL_CTX_OK;
1644 }

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 26

1647 /* Set one of the plain (char *) string members of the kssl_ctx struct.
1648 ** Default values should be:
1649 ** which == KSSL_SERVICE => "khost" (KRB5SVC)
1650 ** which == KSSL_KEYTAB => "/etc/krb5.keytab" (KRB5KEYTAB)
1651 */
1652 krb5_error_code
1653 kssl_ctx_setstring(KSSL_CTX *kssl_ctx, int which, char *text)
1654 {
1655 char **string;

1657 if (!kssl_ctx) return KSSL_CTX_ERR;

1659 switch (which)
1660 {
1661 case KSSL_SERVICE: string = &kssl_ctx->service_name; break;
1662 case KSSL_SERVER: string = &kssl_ctx->service_host; break;
1663 case KSSL_CLIENT: string = &kssl_ctx->client_princ; break;
1664 case KSSL_KEYTAB: string = &kssl_ctx->keytab_file; break;
1665 default: return KSSL_CTX_ERR; break;
1666 }
1667 if (*string) kssl_free(*string);

1669 if (!text)
1670 {
1671 *string = ’\0’;
1672 return KSSL_CTX_OK;
1673 }

1675 if ((*string = kssl_calloc(1, strlen(text) + 1)) == NULL)
1676 return KSSL_CTX_ERR;
1677 else
1678 strcpy(*string, text);

1680 return KSSL_CTX_OK;
1681 }

1684 /* Copy the Kerberos session key from a (krb5_keyblock *) to a kssl_ctx
1685 ** struct. Clear kssl_ctx->key if Kerberos session key is NULL.
1686 */
1687 krb5_error_code
1688 kssl_ctx_setkey(KSSL_CTX *kssl_ctx, krb5_keyblock *session)
1689 {
1690 int length;
1691 krb5_enctype enctype;
1692 krb5_octet FAR *contents = NULL;

1694 if (!kssl_ctx) return KSSL_CTX_ERR;

1696 if (kssl_ctx->key)
1697 {
1698 OPENSSL_cleanse(kssl_ctx->key, kssl_ctx->length);
1699 kssl_free(kssl_ctx->key);
1700 }

1702 if (session)
1703 {

1705 #ifdef KRB5_HEIMDAL
1706 length = session->keyvalue->length;
1707 enctype = session->keytype;
1708 contents = session->keyvalue->contents;
1709 #else
1710 length = session->length;
1711 enctype = session->enctype;

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 27

1712 contents = session->contents;
1713 #endif
1714 kssl_ctx->enctype = enctype;
1715 kssl_ctx->length = length;
1716 }
1717 else
1718 {
1719 kssl_ctx->enctype = ENCTYPE_UNKNOWN;
1720 kssl_ctx->length = 0;
1721 return KSSL_CTX_OK;
1722 }

1724 if ((kssl_ctx->key =
1725 (krb5_octet FAR *) kssl_calloc(1, kssl_ctx->length)) == NULL)
1726 {
1727 kssl_ctx->length = 0;
1728 return KSSL_CTX_ERR;
1729 }
1730 else
1731 memcpy(kssl_ctx->key, contents, length);

1733 return KSSL_CTX_OK;
1734 }

1737 /* Display contents of kssl_ctx struct
1738 */
1739 void
1740 kssl_ctx_show(KSSL_CTX *kssl_ctx)
1741 {
1742 int i;

1744 printf("kssl_ctx: ");
1745 if (kssl_ctx == NULL)
1746 {
1747 printf("NULL\n");
1748 return;
1749 }
1750 else
1751 printf("%p\n", (void *)kssl_ctx);

1753 printf("\tservice:\t%s\n",
1754 (kssl_ctx->service_name)? kssl_ctx->service_name: "NULL");
1755 printf("\tclient:\t%s\n",
1756 (kssl_ctx->client_princ)? kssl_ctx->client_princ: "NULL");
1757 printf("\tserver:\t%s\n",
1758 (kssl_ctx->service_host)? kssl_ctx->service_host: "NULL");
1759 printf("\tkeytab:\t%s\n",
1760 (kssl_ctx->keytab_file)? kssl_ctx->keytab_file: "NULL");
1761 printf("\tkey [%d:%d]:\t",
1762 kssl_ctx->enctype, kssl_ctx->length);

1764 for (i=0; i < kssl_ctx->length && kssl_ctx->key; i++)
1765 {
1766 printf("%02x", kssl_ctx->key[i]);
1767 }
1768 printf("\n");
1769 return;
1770 }

1772 int
1773 kssl_keytab_is_available(KSSL_CTX *kssl_ctx)
1774 {
1775 krb5_context krb5context = NULL;
1776 krb5_keytab krb5keytab = NULL;
1777 krb5_keytab_entry entry;

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 28

1778 krb5_principal princ = NULL;
1779 krb5_error_code krb5rc = KRB5KRB_ERR_GENERIC;
1780 int rc = 0;

1782 if ((krb5rc = krb5_init_context(&krb5context)))
1783 return(0);

1785 /* kssl_ctx->keytab_file == NULL ==> use Kerberos default
1786 */
1787 if (kssl_ctx->keytab_file)
1788 {
1789 krb5rc = krb5_kt_resolve(krb5context, kssl_ctx->keytab_file,
1790 &krb5keytab);
1791 if (krb5rc)
1792 goto exit;
1793 }
1794 else
1795 {
1796 krb5rc = krb5_kt_default(krb5context,&krb5keytab);
1797 if (krb5rc)
1798 goto exit;
1799 }

1801 /* the host key we are looking for */
1802 krb5rc = krb5_sname_to_principal(krb5context, NULL,
1803 kssl_ctx->service_name ? kssl_ctx->service_
1804 KRB5_NT_SRV_HST, &princ);

1806 if (krb5rc)
1807 goto exit;

1809 krb5rc = krb5_kt_get_entry(krb5context, krb5keytab,
1810 princ,
1811 0 /* IGNORE_VNO */,
1812 0 /* IGNORE_ENCTYPE */,
1813 &entry);
1814 if (krb5rc == KRB5_KT_NOTFOUND) {
1815 rc = 1;
1816 goto exit;
1817 } else if (krb5rc)
1818 goto exit;
1819
1820 krb5_kt_free_entry(krb5context, &entry);
1821 rc = 1;

1823 exit:
1824 if (krb5keytab) krb5_kt_close(krb5context, krb5keytab);
1825 if (princ) krb5_free_principal(krb5context, princ);
1826 if (krb5context) krb5_free_context(krb5context);
1827 return(rc);
1828 }

1830 int
1831 kssl_tgt_is_available(KSSL_CTX *kssl_ctx)
1832 {
1833 krb5_error_code krb5rc = KRB5KRB_ERR_GENERIC;
1834 krb5_context krb5context = NULL;
1835 krb5_ccache krb5ccdef = NULL;
1836 krb5_creds krb5creds, *krb5credsp = NULL;
1837 int rc = 0;

1839 memset((char *)&krb5creds, 0, sizeof(krb5creds));

1841 if (!kssl_ctx)
1842 return(0);

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 29

1844 if (!kssl_ctx->service_host)
1845 return(0);

1847 if ((krb5rc = krb5_init_context(&krb5context)) != 0)
1848 goto err;

1850 if ((krb5rc = krb5_sname_to_principal(krb5context,
1851 kssl_ctx->service_host,
1852 (kssl_ctx->service_name)? kssl_ctx
1853 KRB5_NT_SRV_HST, &krb5creds.server
1854 goto err;

1856 if ((krb5rc = krb5_cc_default(krb5context, &krb5ccdef)) != 0)
1857 goto err;

1859 if ((krb5rc = krb5_cc_get_principal(krb5context, krb5ccdef,
1860 &krb5creds.client)) != 0)
1861 goto err;

1863 if ((krb5rc = krb5_get_credentials(krb5context, 0, krb5ccdef,
1864 &krb5creds, &krb5credsp)) != 0)
1865 goto err;

1867 rc = 1;

1869 err:
1870 #ifdef KSSL_DEBUG
1871 kssl_ctx_show(kssl_ctx);
1872 #endif /* KSSL_DEBUG */

1874 if (krb5creds.client) krb5_free_principal(krb5context, krb5creds.clien
1875 if (krb5creds.server) krb5_free_principal(krb5context, krb5creds.serve
1876 if (krb5context) krb5_free_context(krb5context);
1877 return(rc);
1878 }

1880 #if !defined(OPENSSL_SYS_WINDOWS) && !defined(OPENSSL_SYS_WIN32)
1881 void kssl_krb5_free_data_contents(krb5_context context, krb5_data *data)
1882 {
1883 #ifdef KRB5_HEIMDAL
1884 data->length = 0;
1885 if (data->data)
1886 free(data->data);
1887 #elif defined(KRB5_MIT_OLD11)
1888 if (data->data) {
1889 krb5_xfree(data->data);
1890 data->data = 0;
1891 }
1892 #else
1893 krb5_free_data_contents(NULL, data);
1894 #endif
1895 }
1896 #endif /* !OPENSSL_SYS_WINDOWS && !OPENSSL_SYS_WIN32 */

1899 /* Given pointers to KerberosTime and struct tm structs, convert the
1900 ** KerberosTime string to struct tm. Note that KerberosTime is a
1901 ** ASN1_GENERALIZEDTIME value, constrained to GMT with no fractional
1902 ** seconds as defined in RFC 1510.
1903 ** Return pointer to the (partially) filled in struct tm on success,
1904 ** return NULL on failure.
1905 */
1906 static struct tm *k_gmtime(ASN1_GENERALIZEDTIME *gtime, struct tm *k_tm)
1907 {
1908 char c, *p;

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 30

1910 if (!k_tm) return NULL;
1911 if (gtime == NULL || gtime->length < 14) return NULL;
1912 if (gtime->data == NULL) return NULL;

1914 p = (char *)>ime->data[14];

1916 c = *p; *p = ’\0’; p -= 2; k_tm->tm_sec = atoi(p); *(p+2) = c;
1917 c = *p; *p = ’\0’; p -= 2; k_tm->tm_min = atoi(p); *(p+2) = c;
1918 c = *p; *p = ’\0’; p -= 2; k_tm->tm_hour = atoi(p); *(p+2) = c;
1919 c = *p; *p = ’\0’; p -= 2; k_tm->tm_mday = atoi(p); *(p+2) = c;
1920 c = *p; *p = ’\0’; p -= 2; k_tm->tm_mon = atoi(p)-1; *(p+2) = c;
1921 c = *p; *p = ’\0’; p -= 4; k_tm->tm_year = atoi(p)-1900; *(p+4) = c;

1923 return k_tm;
1924 }

1927 /* Helper function for kssl_validate_times().
1928 ** We need context->clockskew, but krb5_context is an opaque struct.
1929 ** So we try to sneek the clockskew out through the replay cache.
1930 ** If that fails just return a likely default (300 seconds).
1931 */
1932 static krb5_deltat get_rc_clockskew(krb5_context context)
1933 {
1934 krb5_rcache rc;
1935 krb5_deltat clockskew;

1937 if (krb5_rc_default(context, &rc)) return KSSL_CLOCKSKEW;
1938 if (krb5_rc_initialize(context, rc, 0)) return KSSL_CLOCKSKEW;
1939 if (krb5_rc_get_lifespan(context, rc, &clockskew)) {
1940 clockskew = KSSL_CLOCKSKEW;
1941 }
1942 (void) krb5_rc_destroy(context, rc);
1943 return clockskew;
1944 }

1947 /* kssl_validate_times() combines (and more importantly exposes)
1948 ** the MIT KRB5 internal function krb5_validate_times() and the
1949 ** in_clock_skew() macro. The authenticator client time is checked
1950 ** to be within clockskew secs of the current time and the current
1951 ** time is checked to be within the ticket start and expire times.
1952 ** Either check may be omitted by supplying a NULL value.
1953 ** Returns 0 for valid times, SSL_R_KRB5* error codes otherwise.
1954 ** See Also: (Kerberos source)/krb5/lib/krb5/krb/valid_times.c
1955 ** 20010420 VRS
1956 */
1957 krb5_error_code kssl_validate_times(krb5_timestamp atime,
1958 krb5_ticket_times *ttimes)
1959 {
1960 krb5_deltat skew;
1961 krb5_timestamp start, now;
1962 krb5_error_code rc;
1963 krb5_context context;

1965 if ((rc = krb5_init_context(&context))) return SSL_R_KRB5_S_BAD_TICKET;
1966 skew = get_rc_clockskew(context);
1967 if ((rc = krb5_timeofday(context,&now))) return SSL_R_KRB5_S_BAD_TICKET;
1968 krb5_free_context(context);

1970 if (atime && labs(atime - now) >= skew) return SSL_R_KRB5_S_TKT_SKEW;

1972 if (! ttimes) return 0;

1974 start = (ttimes->starttime != 0)? ttimes->starttime: ttimes->authtime;
1975 if (start - now > skew) return SSL_R_KRB5_S_TKT_NYV;

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 31

1976 if ((now - ttimes->endtime) > skew) return SSL_R_KRB5_S_TKT_EXPIRED;

1978 #ifdef KSSL_DEBUG
1979 printf("kssl_validate_times: %d |<- | %d - %d | < %d ->| %d\n",
1980 start, atime, now, skew, ttimes->endtime);
1981 #endif /* KSSL_DEBUG */

1983 return 0;
1984 }

1987 /* Decode and decrypt given DER-encoded authenticator, then pass
1988 ** authenticator ctime back in *atimep (or 0 if time unavailable).
1989 ** Returns krb5_error_code and kssl_err on error. A NULL
1990 ** authenticator (authentp->length == 0) is not considered an error.
1991 ** Note that kssl_check_authent() makes use of the KRB5 session key;
1992 ** you must call kssl_sget_tkt() to get the key before calling this routine.
1993 */
1994 krb5_error_code kssl_check_authent(
1995 /* IN */ KSSL_CTX *kssl_ctx,
1996 /* IN */ krb5_data *authentp,
1997 /* OUT */ krb5_timestamp *atimep,
1998 /* OUT */ KSSL_ERR *kssl_err)
1999 {
2000 krb5_error_code krb5rc = 0;
2001 KRB5_ENCDATA *dec_authent = NULL;
2002 KRB5_AUTHENTBODY *auth = NULL;
2003 krb5_enctype enctype;
2004 EVP_CIPHER_CTX ciph_ctx;
2005 const EVP_CIPHER *enc = NULL;
2006 unsigned char iv[EVP_MAX_IV_LENGTH];
2007 const unsigned char *p;
2008 unsigned char *unenc_authent;
2009 int outl, unencbufsize;
2010 struct tm tm_time, *tm_l, *tm_g;
2011 time_t now, tl, tg, tr, tz_offset;

2013 EVP_CIPHER_CTX_init(&ciph_ctx);
2014 *atimep = 0;
2015 kssl_err_set(kssl_err, 0, "");

2017 #ifndef KRB5CHECKAUTH
2018 authentp = NULL;
2019 #else
2020 #if KRB5CHECKAUTH == 0
2021 authentp = NULL;
2022 #endif
2023 #endif /* KRB5CHECKAUTH */

2025 if (authentp == NULL || authentp->length == 0) return 0;

2027 #ifdef KSSL_DEBUG
2028 {
2029 unsigned int ui;
2030 printf("kssl_check_authent: authenticator[%d]:\n",authentp->length);
2031 p = authentp->data;
2032 for (ui=0; ui < authentp->length; ui++) printf("%02x ",p[ui]);
2033 printf("\n");
2034 }
2035 #endif /* KSSL_DEBUG */

2037 unencbufsize = 2 * authentp->length;
2038 if ((unenc_authent = calloc(1, unencbufsize)) == NULL)
2039 {
2040 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
2041 "Unable to allocate authenticator buffer.\n");

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 32

2042 krb5rc = KRB5KRB_ERR_GENERIC;
2043 goto err;
2044 }

2046 p = (unsigned char *)authentp->data;
2047 if ((dec_authent = d2i_KRB5_ENCDATA(NULL, &p,
2048 (long) authentp->length)) == NULL)
2049 {
2050 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
2051 "Error decoding authenticator.\n");
2052 krb5rc = KRB5KRB_AP_ERR_BAD_INTEGRITY;
2053 goto err;
2054 }

2056 enctype = dec_authent->etype->data[0]; /* should = kssl_ctx->enctype */
2057 #if !defined(KRB5_MIT_OLD11)
2058 switch (enctype) {
2059 case ENCTYPE_DES3_CBC_SHA1: /* EVP_des_ede3_cbc(); */
2060 case ENCTYPE_DES3_CBC_SHA:
2061 case ENCTYPE_DES3_CBC_RAW:
2062 krb5rc = 0; /* Skip, can’t handle derived ke
2063 goto err;
2064 }
2065 #endif
2066 enc = kssl_map_enc(enctype);
2067 memset(iv, 0, sizeof iv); /* per RFC 1510 */

2069 if (enc == NULL)
2070 {
2071 /* Disable kssl_check_authent for ENCTYPE_DES3_CBC_SHA1.
2072 ** This enctype indicates the authenticator was encrypted
2073 ** using key-usage derived keys which openssl cannot decrypt.
2074 */
2075 goto err;
2076 }

2078 if (!EVP_CipherInit(&ciph_ctx,enc,kssl_ctx->key,iv,0))
2079 {
2080 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
2081 "EVP_CipherInit error decrypting authenticator.\n");
2082 krb5rc = KRB5KRB_AP_ERR_BAD_INTEGRITY;
2083 goto err;
2084 }
2085 outl = dec_authent->cipher->length;
2086 if (!EVP_Cipher(&ciph_ctx,unenc_authent,dec_authent->cipher->data,outl))
2087 {
2088 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
2089 "EVP_Cipher error decrypting authenticator.\n");
2090 krb5rc = KRB5KRB_AP_ERR_BAD_INTEGRITY;
2091 goto err;
2092 }
2093 EVP_CIPHER_CTX_cleanup(&ciph_ctx);

2095 #ifdef KSSL_DEBUG
2096 {
2097 int padl;
2098 printf("kssl_check_authent: decrypted authenticator[%d] =\n", outl);
2099 for (padl=0; padl < outl; padl++) printf("%02x ",unenc_authent[padl]);
2100 printf("\n");
2101 }
2102 #endif /* KSSL_DEBUG */

2104 if ((p = kssl_skip_confound(enctype, unenc_authent)) == NULL)
2105 {
2106 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
2107 "confounded by authenticator.\n");

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 33

2108 krb5rc = KRB5KRB_AP_ERR_BAD_INTEGRITY;
2109 goto err;
2110 }
2111 outl -= p - unenc_authent;

2113 if ((auth = (KRB5_AUTHENTBODY *) d2i_KRB5_AUTHENT(NULL, &p,
2114 (long) outl))==NULL)
2115 {
2116 kssl_err_set(kssl_err, SSL_R_KRB5_S_INIT,
2117 "Error decoding authenticator body.\n");
2118 krb5rc = KRB5KRB_AP_ERR_BAD_INTEGRITY;
2119 goto err;
2120 }

2122 memset(&tm_time,0,sizeof(struct tm));
2123 if (k_gmtime(auth->ctime, &tm_time) &&
2124 ((tr = mktime(&tm_time)) != (time_t)(-1)))
2125 {
2126 now = time(&now);
2127 tm_l = localtime(&now); tl = mktime(tm_l);
2128 tm_g = gmtime(&now); tg = mktime(tm_g);
2129 tz_offset = tg - tl;

2131 *atimep = (krb5_timestamp)(tr - tz_offset);
2132 }

2134 #ifdef KSSL_DEBUG
2135 printf("kssl_check_authent: returns %d for client time ", *atimep);
2136 if (auth && auth->ctime && auth->ctime->length && auth->ctime->data)
2137 printf("%.*s\n", auth->ctime->length, auth->ctime->data);
2138 else printf("NULL\n");
2139 #endif /* KSSL_DEBUG */

2141 err:
2142 if (auth) KRB5_AUTHENT_free((KRB5_AUTHENT *) auth);
2143 if (dec_authent) KRB5_ENCDATA_free(dec_authent);
2144 if (unenc_authent) free(unenc_authent);
2145 EVP_CIPHER_CTX_cleanup(&ciph_ctx);
2146 return krb5rc;
2147 }

2150 /* Replaces krb5_build_principal_ext(), with varargs length == 2 (svc, host),
2151 ** because I dont’t know how to stub varargs.
2152 ** Returns krb5_error_code == ENOMEM on alloc error, otherwise
2153 ** passes back newly constructed principal, which should be freed by caller.
2154 */
2155 krb5_error_code kssl_build_principal_2(
2156 /* UPDATE */ krb5_context context,
2157 /* OUT */ krb5_principal *princ,
2158 /* IN */ int rlen, const char *realm,
2159 /* IN */ int slen, const char *svc,
2160 /* IN */ int hlen, const char *host)
2161 {
2162 krb5_data *p_data = NULL;
2163 krb5_principal new_p = NULL;
2164 char *new_r = NULL;

2166 if ((p_data = (krb5_data *) calloc(2, sizeof(krb5_data))) == NULL ||
2167 (new_p = (krb5_principal) calloc(1, sizeof(krb5_principal_data)))
2168 == NULL) goto err;
2169 new_p->length = 2;
2170 new_p->data = p_data;

2172 if ((new_r = calloc(1, rlen + 1)) == NULL) goto err;
2173 memcpy(new_r, realm, rlen);

new/usr/src/lib/openssl/libsunw_ssl/kssl.c 34

2174 krb5_princ_set_realm_length(context, new_p, rlen);
2175 krb5_princ_set_realm_data(context, new_p, new_r);

2177 if ((new_p->data[0].data = calloc(1, slen + 1)) == NULL) goto err;
2178 memcpy(new_p->data[0].data, svc, slen);
2179 new_p->data[0].length = slen;

2181 if ((new_p->data[1].data = calloc(1, hlen + 1)) == NULL) goto err;
2182 memcpy(new_p->data[1].data, host, hlen);
2183 new_p->data[1].length = hlen;
2184
2185 krb5_princ_type(context, new_p) = KRB5_NT_UNKNOWN;
2186 *princ = new_p;
2187 return 0;

2189 err:
2190 if (new_p && new_p[0].data) free(new_p[0].data);
2191 if (new_p && new_p[1].data) free(new_p[1].data);
2192 if (new_p) free(new_p);
2193 if (new_r) free(new_r);
2194 return ENOMEM;
2195 }

2197 void SSL_set0_kssl_ctx(SSL *s, KSSL_CTX *kctx)
2198 {
2199 s->kssl_ctx = kctx;
2200 }

2202 KSSL_CTX * SSL_get0_kssl_ctx(SSL *s)
2203 {
2204 return s->kssl_ctx;
2205 }

2207 char *kssl_ctx_get0_client_princ(KSSL_CTX *kctx)
2208 {
2209 if (kctx)
2210 return kctx->client_princ;
2211 return NULL;
2212 }

2214 #else /* !OPENSSL_NO_KRB5 */

2216 #if defined(PEDANTIC) || defined(OPENSSL_SYS_VMS)
2217 static void *dummy=&dummy;
2218 #endif

2220 #endif /* !OPENSSL_NO_KRB5 */

new/usr/src/lib/openssl/libsunw_ssl/mapfile-vers 1

**
 15597 Fri May 30 18:32:19 2014
new/usr/src/lib/openssl/libsunw_ssl/mapfile-vers
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 $mapfile_version 2

3 SYMBOL_VERSION SUNWprivate_1.1 {
4 global:
5 sunw_BIO_f_ssl;
6 sunw_BIO_new_buffer_ssl_connect;
7 sunw_BIO_new_ssl;
8 sunw_BIO_new_ssl_connect;
9 sunw_BIO_ssl_copy_session_id;
10 sunw_BIO_ssl_shutdown;
11 sunw_d2i_SSL_SESSION;
12 sunw_do_dtls1_write;
13 sunw_dtls1_accept;
14 sunw_dtls1_buffer_message;
15 sunw_dtls1_check_timeout_num;
16 sunw_dtls1_clear;
17 sunw_dtls1_clear_record_buffer;
18 sunw_dtls1_client_hello;
19 sunw_dtls1_connect;
20 sunw_dtls1_ctrl;
21 sunw_dtls1_default_timeout;
22 sunw_dtls1_dispatch_alert;
23 sunw_dtls1_do_write;
24 sunw_dtls1_double_timeout;
25 sunw_dtls1_enc;
26 sunw_dtls1_free;
27 sunw_dtls1_get_ccs_header;
28 sunw_dtls1_get_cipher;
29 sunw_dtls1_get_message;
30 sunw_dtls1_get_message_header;
31 sunw_dtls1_get_queue_priority;
32 sunw_dtls1_get_record;
33 sunw_dtls1_get_timeout;
34 sunw_dtls1_handle_timeout;
35 sunw_dtls1_heartbeat;
36 sunw_dtls1_is_timer_expired;
37 sunw_dtls1_listen;
38 sunw_dtls1_min_mtu;
39 sunw_dtls1_new;
40 sunw_dtls1_output_cert_chain;
41 sunw_dtls1_process_heartbeat;
42 sunw_dtls1_read_bytes;
43 sunw_dtls1_read_failed;
44 sunw_dtls1_reset_seq_numbers;
45 sunw_dtls1_retransmit_buffered_messages;
46 sunw_dtls1_retransmit_message;
47 sunw_dtls1_send_certificate_request;
48 sunw_dtls1_send_change_cipher_spec;
49 sunw_dtls1_send_client_certificate;
50 sunw_dtls1_send_client_key_exchange;
51 sunw_dtls1_send_client_verify;
52 sunw_dtls1_send_finished;
53 sunw_dtls1_send_hello_request;
54 sunw_dtls1_send_newsession_ticket;
55 sunw_dtls1_send_server_certificate;
56 sunw_dtls1_send_server_done;
57 sunw_dtls1_send_server_hello;
58 sunw_dtls1_send_server_key_exchange;
59 sunw_dtls1_set_message_header;
60 sunw_dtls1_shutdown;
61 sunw_dtls1_start_timer;

new/usr/src/lib/openssl/libsunw_ssl/mapfile-vers 2

62 sunw_dtls1_stop_timer;
63 sunw_dtls1_version_str;
64 sunw_dtls1_write_app_data_bytes;
65 sunw_dtls1_write_bytes;
66 sunw_DTLSv1_client_method;
67 sunw_DTLSv1_enc_data;
68 sunw_DTLSv1_method;
69 sunw_DTLSv1_server_method;
70 sunw_ERR_load_SSL_strings;
71 sunw_i2d_SSL_SESSION;
72 sunw_n_ssl3_mac;
73 sunw_OBJ_bsearch_ssl_cipher_id;
74 sunw_PEM_read_bio_SSL_SESSION;
75 sunw_PEM_read_SSL_SESSION;
76 sunw_PEM_write_bio_SSL_SESSION;
77 sunw_PEM_write_SSL_SESSION;
78 sunw_SRP_Calc_A_param;
79 sunw_SRP_generate_client_master_secret;
80 sunw_SRP_generate_server_master_secret;
81 sunw_SSL_accept;
82 sunw_SSL_add_client_CA;
83 sunw_ssl_add_clienthello_renegotiate_ext;
84 sunw_ssl_add_clienthello_tlsext;
85 sunw_ssl_add_clienthello_use_srtp_ext;
86 sunw_SSL_add_dir_cert_subjects_to_stack;
87 sunw_SSL_add_file_cert_subjects_to_stack;
88 sunw_ssl_add_serverhello_renegotiate_ext;
89 sunw_ssl_add_serverhello_tlsext;
90 sunw_ssl_add_serverhello_use_srtp_ext;
91 sunw_SSL_alert_desc_string;
92 sunw_SSL_alert_desc_string_long;
93 sunw_SSL_alert_type_string;
94 sunw_SSL_alert_type_string_long;
95 sunw_ssl_bad_method;
96 sunw_ssl_bytes_to_cipher_list;
97 sunw_SSL_cache_hit;
98 sunw_SSL_callback_ctrl;
99 sunw_ssl_cert_dup;
100 sunw_ssl_cert_free;
101 sunw_ssl_cert_inst;
102 sunw_ssl_cert_new;
103 sunw_ssl_cert_type;
104 sunw_ssl_check_clienthello_tlsext_early;
105 sunw_ssl_check_clienthello_tlsext_late;
106 sunw_SSL_check_private_key;
107 sunw_ssl_check_serverhello_tlsext;
108 sunw_SSL_CIPHER_description;
109 sunw_SSL_CIPHER_get_bits;
110 sunw_ssl_cipher_get_evp;
111 sunw_SSL_CIPHER_get_id;
112 sunw_SSL_CIPHER_get_name;
113 sunw_SSL_CIPHER_get_version;
114 sunw_ssl_cipher_id_cmp;
115 sunw_ssl_cipher_list_to_bytes;
116 sunw_ssl_cipher_ptr_id_cmp;
117 sunw_SSL_clear;
118 sunw_ssl_clear_bad_session;
119 sunw_ssl_clear_cipher_ctx;
120 sunw_ssl_clear_hash_ctx;
121 sunw_SSL_COMP_add_compression_method;
122 sunw_SSL_COMP_get_compression_methods;
123 sunw_SSL_COMP_get_name;
124 sunw_SSL_connect;
125 sunw_SSL_copy_session_id;
126 sunw_ssl_create_cipher_list;
127 sunw_SSL_ctrl;

new/usr/src/lib/openssl/libsunw_ssl/mapfile-vers 3

128 sunw_SSL_CTX_add_client_CA;
129 sunw_SSL_CTX_add_session;
130 sunw_SSL_CTX_callback_ctrl;
131 sunw_SSL_CTX_check_private_key;
132 sunw_SSL_CTX_ctrl;
133 sunw_SSL_CTX_flush_sessions;
134 sunw_SSL_CTX_free;
135 sunw_SSL_CTX_get_cert_store;
136 sunw_SSL_CTX_get_client_CA_list;
137 sunw_SSL_CTX_get_client_cert_cb;
138 sunw_SSL_CTX_get_ex_data;
139 sunw_SSL_CTX_get_ex_new_index;
140 sunw_SSL_CTX_get_info_callback;
141 sunw_SSL_CTX_get_quiet_shutdown;
142 sunw_SSL_CTX_get_timeout;
143 sunw_SSL_CTX_get_verify_callback;
144 sunw_SSL_CTX_get_verify_depth;
145 sunw_SSL_CTX_get_verify_mode;
146 sunw_SSL_CTX_load_verify_locations;
147 sunw_SSL_CTX_new;
148 sunw_SSL_CTX_remove_session;
149 sunw_SSL_CTX_sess_get_get_cb;
150 sunw_SSL_CTX_sess_get_new_cb;
151 sunw_SSL_CTX_sess_get_remove_cb;
152 sunw_SSL_CTX_sess_set_get_cb;
153 sunw_SSL_CTX_sess_set_new_cb;
154 sunw_SSL_CTX_sess_set_remove_cb;
155 sunw_SSL_CTX_sessions;
156 sunw_SSL_CTX_set_cert_store;
157 sunw_SSL_CTX_set_cert_verify_callback;
158 sunw_SSL_CTX_set_cipher_list;
159 sunw_SSL_CTX_set_client_CA_list;
160 sunw_SSL_CTX_set_client_cert_cb;
161 sunw_SSL_CTX_set_client_cert_engine;
162 sunw_SSL_CTX_set_cookie_generate_cb;
163 sunw_SSL_CTX_set_cookie_verify_cb;
164 sunw_SSL_CTX_set_default_passwd_cb;
165 sunw_SSL_CTX_set_default_passwd_cb_userdata;
166 sunw_SSL_CTX_set_default_verify_paths;
167 sunw_SSL_CTX_set_ex_data;
168 sunw_SSL_CTX_set_generate_session_id;
169 sunw_SSL_CTX_set_info_callback;
170 sunw_SSL_CTX_set_msg_callback;
171 sunw_SSL_CTX_set_next_proto_select_cb;
172 sunw_SSL_CTX_set_next_protos_advertised_cb;
173 sunw_SSL_CTX_set_psk_client_callback;
174 sunw_SSL_CTX_set_psk_server_callback;
175 sunw_SSL_CTX_set_purpose;
176 sunw_SSL_CTX_set_quiet_shutdown;
177 sunw_SSL_CTX_set_session_id_context;
178 sunw_SSL_CTX_set_srp_cb_arg;
179 sunw_SSL_CTX_set_srp_client_pwd_callback;
180 sunw_SSL_CTX_set_srp_password;
181 sunw_SSL_CTX_set_srp_strength;
182 sunw_SSL_CTX_set_srp_username;
183 sunw_SSL_CTX_set_srp_username_callback;
184 sunw_SSL_CTX_set_srp_verify_param_callback;
185 sunw_SSL_CTX_set_ssl_version;
186 sunw_SSL_CTX_set_timeout;
187 sunw_SSL_CTX_set_tlsext_use_srtp;
188 sunw_SSL_CTX_set_tmp_dh_callback;
189 sunw_SSL_CTX_set_tmp_rsa_callback;
190 sunw_SSL_CTX_set_trust;
191 sunw_SSL_CTX_set_verify;
192 sunw_SSL_CTX_set_verify_depth;
193 sunw_SSL_CTX_set1_param;

new/usr/src/lib/openssl/libsunw_ssl/mapfile-vers 4

194 sunw_SSL_CTX_SRP_CTX_free;
195 sunw_SSL_CTX_SRP_CTX_init;
196 sunw_SSL_CTX_use_certificate;
197 sunw_SSL_CTX_use_certificate_ASN1;
198 sunw_SSL_CTX_use_certificate_chain_file;
199 sunw_SSL_CTX_use_certificate_file;
200 sunw_SSL_CTX_use_PrivateKey;
201 sunw_SSL_CTX_use_PrivateKey_ASN1;
202 sunw_SSL_CTX_use_PrivateKey_file;
203 sunw_SSL_CTX_use_psk_identity_hint;
204 sunw_SSL_CTX_use_RSAPrivateKey;
205 sunw_SSL_CTX_use_RSAPrivateKey_ASN1;
206 sunw_SSL_CTX_use_RSAPrivateKey_file;
207 sunw_ssl_do_client_cert_cb;
208 sunw_SSL_do_handshake;
209 sunw_SSL_dup;
210 sunw_SSL_dup_CA_list;
211 sunw_SSL_export_keying_material;
212 sunw_ssl_fill_hello_random;
213 sunw_SSL_free;
214 sunw_ssl_free_wbio_buffer;
215 sunw_ssl_get_algorithm2;
216 sunw_SSL_get_certificate;
217 sunw_SSL_get_cipher_list;
218 sunw_SSL_get_ciphers;
219 sunw_ssl_get_ciphers_by_id;
220 sunw_SSL_get_client_CA_list;
221 sunw_SSL_get_current_cipher;
222 sunw_SSL_get_current_compression;
223 sunw_SSL_get_current_expansion;
224 sunw_SSL_get_default_timeout;
225 sunw_SSL_get_error;
226 sunw_SSL_get_ex_data;
227 sunw_SSL_get_ex_data_X509_STORE_CTX_idx;
228 sunw_SSL_get_ex_new_index;
229 sunw_SSL_get_fd;
230 sunw_SSL_get_finished;
231 sunw_ssl_get_handshake_digest;
232 sunw_SSL_get_info_callback;
233 sunw_ssl_get_new_session;
234 sunw_SSL_get_peer_cert_chain;
235 sunw_SSL_get_peer_certificate;
236 sunw_SSL_get_peer_finished;
237 sunw_ssl_get_prev_session;
238 sunw_SSL_get_privatekey;
239 sunw_SSL_get_psk_identity;
240 sunw_SSL_get_psk_identity_hint;
241 sunw_SSL_get_quiet_shutdown;
242 sunw_SSL_get_rbio;
243 sunw_SSL_get_read_ahead;
244 sunw_SSL_get_rfd;
245 sunw_SSL_get_selected_srtp_profile;
246 sunw_ssl_get_server_send_cert;
247 sunw_ssl_get_server_send_pkey;
248 sunw_SSL_get_servername;
249 sunw_SSL_get_servername_type;
250 sunw_SSL_get_session;
251 sunw_SSL_get_shared_ciphers;
252 sunw_SSL_get_shutdown;
253 sunw_ssl_get_sign_pkey;
254 sunw_SSL_get_srp_g;
255 sunw_SSL_get_srp_N;
256 sunw_SSL_get_srp_userinfo;
257 sunw_SSL_get_srp_username;
258 sunw_SSL_get_srtp_profiles;
259 sunw_SSL_get_SSL_CTX;

new/usr/src/lib/openssl/libsunw_ssl/mapfile-vers 5

260 sunw_SSL_get_ssl_method;
261 sunw_SSL_get_verify_callback;
262 sunw_SSL_get_verify_depth;
263 sunw_SSL_get_verify_mode;
264 sunw_SSL_get_verify_result;
265 sunw_SSL_get_version;
266 sunw_SSL_get_wbio;
267 sunw_SSL_get_wfd;
268 sunw_SSL_get0_next_proto_negotiated;
269 sunw_SSL_get1_session;
270 sunw_SSL_has_matching_session_id;
271 sunw_ssl_init_wbio_buffer;
272 sunw_SSL_library_init;
273 sunw_ssl_load_ciphers;
274 sunw_SSL_load_client_CA_file;
275 sunw_SSL_load_error_strings;
276 sunw_SSL_new;
277 sunw_ssl_ok;
278 sunw_ssl_parse_clienthello_renegotiate_ext;
279 sunw_ssl_parse_clienthello_tlsext;
280 sunw_ssl_parse_clienthello_use_srtp_ext;
281 sunw_ssl_parse_serverhello_renegotiate_ext;
282 sunw_ssl_parse_serverhello_tlsext;
283 sunw_ssl_parse_serverhello_use_srtp_ext;
284 sunw_SSL_peek;
285 sunw_SSL_pending;
286 sunw_ssl_prepare_clienthello_tlsext;
287 sunw_ssl_prepare_serverhello_tlsext;
288 sunw_SSL_read;
289 sunw_SSL_renegotiate;
290 sunw_SSL_renegotiate_abbreviated;
291 sunw_SSL_renegotiate_pending;
292 sunw_ssl_replace_hash;
293 sunw_SSL_rstate_string;
294 sunw_SSL_rstate_string_long;
295 sunw_SSL_select_next_proto;
296 sunw_ssl_sess_cert_free;
297 sunw_ssl_sess_cert_new;
298 sunw_SSL_SESSION_free;
299 sunw_SSL_SESSION_get_compress_id;
300 sunw_SSL_SESSION_get_ex_data;
301 sunw_SSL_SESSION_get_ex_new_index;
302 sunw_SSL_SESSION_get_id;
303 sunw_SSL_SESSION_get_time;
304 sunw_SSL_SESSION_get_timeout;
305 sunw_SSL_SESSION_get0_peer;
306 sunw_SSL_SESSION_new;
307 sunw_SSL_SESSION_print;
308 sunw_SSL_SESSION_print_fp;
309 sunw_SSL_SESSION_set_ex_data;
310 sunw_SSL_SESSION_set_time;
311 sunw_SSL_SESSION_set_timeout;
312 sunw_SSL_SESSION_set1_id_context;
313 sunw_SSL_set_accept_state;
314 sunw_SSL_set_bio;
315 sunw_ssl_set_cert_masks;
316 sunw_SSL_set_cipher_list;
317 sunw_SSL_set_client_CA_list;
318 sunw_SSL_set_connect_state;
319 sunw_SSL_set_debug;
320 sunw_SSL_set_ex_data;
321 sunw_SSL_set_fd;
322 sunw_SSL_set_generate_session_id;
323 sunw_SSL_set_info_callback;
324 sunw_SSL_set_msg_callback;
325 sunw_ssl_set_peer_cert_type;

new/usr/src/lib/openssl/libsunw_ssl/mapfile-vers 6

326 sunw_SSL_set_psk_client_callback;
327 sunw_SSL_set_psk_server_callback;
328 sunw_SSL_set_purpose;
329 sunw_SSL_set_quiet_shutdown;
330 sunw_SSL_set_read_ahead;
331 sunw_SSL_set_rfd;
332 sunw_SSL_set_session;
333 sunw_SSL_set_session_id_context;
334 sunw_SSL_set_session_secret_cb;
335 sunw_SSL_set_session_ticket_ext;
336 sunw_SSL_set_session_ticket_ext_cb;
337 sunw_SSL_set_shutdown;
338 sunw_SSL_set_srp_server_param;
339 sunw_SSL_set_srp_server_param_pw;
340 sunw_SSL_set_SSL_CTX;
341 sunw_SSL_set_ssl_method;
342 sunw_SSL_set_state;
343 sunw_SSL_set_tlsext_use_srtp;
344 sunw_SSL_set_tmp_dh_callback;
345 sunw_SSL_set_tmp_rsa_callback;
346 sunw_SSL_set_trust;
347 sunw_SSL_set_verify;
348 sunw_SSL_set_verify_depth;
349 sunw_SSL_set_verify_result;
350 sunw_SSL_set_wfd;
351 sunw_SSL_set1_param;
352 sunw_SSL_shutdown;
353 sunw_SSL_SRP_CTX_free;
354 sunw_SSL_SRP_CTX_init;
355 sunw_SSL_srp_server_param_with_username;
356 sunw_SSL_state;
357 sunw_SSL_state_string;
358 sunw_SSL_state_string_long;
359 sunw_ssl_undefined_const_function;
360 sunw_ssl_undefined_function;
361 sunw_ssl_undefined_void_function;
362 sunw_ssl_update_cache;
363 sunw_SSL_use_certificate;
364 sunw_SSL_use_certificate_ASN1;
365 sunw_SSL_use_certificate_file;
366 sunw_SSL_use_PrivateKey;
367 sunw_SSL_use_PrivateKey_ASN1;
368 sunw_SSL_use_PrivateKey_file;
369 sunw_SSL_use_psk_identity_hint;
370 sunw_SSL_use_RSAPrivateKey;
371 sunw_SSL_use_RSAPrivateKey_ASN1;
372 sunw_SSL_use_RSAPrivateKey_file;
373 sunw_ssl_verify_alarm_type;
374 sunw_ssl_verify_cert_chain;
375 sunw_SSL_version;
376 sunw_SSL_version_str;
377 sunw_SSL_want;
378 sunw_SSL_write;
379 sunw_ssl2_accept;
380 sunw_ssl2_callback_ctrl;
381 sunw_ssl2_ciphers;
382 sunw_ssl2_clear;
383 sunw_ssl2_connect;
384 sunw_ssl2_ctrl;
385 sunw_ssl2_ctx_callback_ctrl;
386 sunw_ssl2_ctx_ctrl;
387 sunw_ssl2_default_timeout;
388 sunw_ssl2_do_write;
389 sunw_ssl2_enc;
390 sunw_ssl2_enc_init;
391 sunw_ssl2_free;

new/usr/src/lib/openssl/libsunw_ssl/mapfile-vers 7

392 sunw_ssl2_generate_key_material;
393 sunw_ssl2_get_cipher;
394 sunw_ssl2_get_cipher_by_char;
395 sunw_ssl2_mac;
396 sunw_ssl2_new;
397 sunw_ssl2_num_ciphers;
398 sunw_ssl2_part_read;
399 sunw_ssl2_peek;
400 sunw_ssl2_pending;
401 sunw_ssl2_put_cipher_by_char;
402 sunw_ssl2_read;
403 sunw_ssl2_return_error;
404 sunw_ssl2_set_certificate;
405 sunw_ssl2_shutdown;
406 sunw_ssl2_version_str;
407 sunw_ssl2_write;
408 sunw_ssl2_write_error;
409 sunw_ssl23_accept;
410 sunw_ssl23_connect;
411 sunw_ssl23_default_timeout;
412 sunw_ssl23_get_cipher;
413 sunw_ssl23_get_cipher_by_char;
414 sunw_ssl23_get_client_hello;
415 sunw_ssl23_num_ciphers;
416 sunw_ssl23_peek;
417 sunw_ssl23_put_cipher_by_char;
418 sunw_ssl23_read;
419 sunw_ssl23_read_bytes;
420 sunw_ssl23_write;
421 sunw_ssl23_write_bytes;
422 sunw_ssl3_accept;
423 sunw_ssl3_alert_code;
424 sunw_ssl3_callback_ctrl;
425 sunw_ssl3_cbc_copy_mac;
426 sunw_ssl3_cbc_digest_record;
427 sunw_ssl3_cbc_record_digest_supported;
428 sunw_ssl3_cbc_remove_padding;
429 sunw_ssl3_cert_verify_mac;
430 sunw_ssl3_change_cipher_state;
431 sunw_ssl3_check_cert_and_algorithm;
432 sunw_ssl3_check_client_hello;
433 sunw_ssl3_check_finished;
434 sunw_ssl3_choose_cipher;
435 sunw_ssl3_ciphers;
436 sunw_ssl3_cleanup_key_block;
437 sunw_ssl3_clear;
438 sunw_ssl3_client_hello;
439 sunw_ssl3_comp_find;
440 sunw_ssl3_connect;
441 sunw_ssl3_ctrl;
442 sunw_ssl3_ctx_callback_ctrl;
443 sunw_ssl3_ctx_ctrl;
444 sunw_ssl3_default_timeout;
445 sunw_ssl3_digest_cached_records;
446 sunw_ssl3_dispatch_alert;
447 sunw_ssl3_do_change_cipher_spec;
448 sunw_ssl3_do_compress;
449 sunw_ssl3_do_uncompress;
450 sunw_ssl3_do_write;
451 sunw_ssl3_enc;
452 sunw_ssl3_final_finish_mac;
453 sunw_ssl3_finish_mac;
454 sunw_ssl3_free;
455 sunw_ssl3_free_digest_list;
456 sunw_ssl3_generate_master_secret;
457 sunw_ssl3_get_cert_status;

new/usr/src/lib/openssl/libsunw_ssl/mapfile-vers 8

458 sunw_ssl3_get_cert_verify;
459 sunw_ssl3_get_certificate_request;
460 sunw_ssl3_get_cipher;
461 sunw_ssl3_get_cipher_by_char;
462 sunw_ssl3_get_client_certificate;
463 sunw_ssl3_get_client_hello;
464 sunw_ssl3_get_client_key_exchange;
465 sunw_ssl3_get_finished;
466 sunw_ssl3_get_key_exchange;
467 sunw_ssl3_get_message;
468 sunw_ssl3_get_new_session_ticket;
469 sunw_ssl3_get_next_proto;
470 sunw_ssl3_get_req_cert_type;
471 sunw_ssl3_get_server_certificate;
472 sunw_ssl3_get_server_done;
473 sunw_ssl3_get_server_hello;
474 sunw_ssl3_init_finished_mac;
475 sunw_ssl3_new;
476 sunw_ssl3_num_ciphers;
477 sunw_ssl3_output_cert_chain;
478 sunw_ssl3_peek;
479 sunw_ssl3_pending;
480 sunw_ssl3_put_cipher_by_char;
481 sunw_ssl3_read;
482 sunw_ssl3_read_bytes;
483 sunw_ssl3_read_n;
484 sunw_ssl3_record_sequence_update;
485 sunw_ssl3_release_read_buffer;
486 sunw_ssl3_release_write_buffer;
487 sunw_ssl3_renegotiate;
488 sunw_ssl3_renegotiate_check;
489 sunw_ssl3_send_alert;
490 sunw_ssl3_send_cert_status;
491 sunw_ssl3_send_certificate_request;
492 sunw_ssl3_send_change_cipher_spec;
493 sunw_ssl3_send_client_certificate;
494 sunw_ssl3_send_client_key_exchange;
495 sunw_ssl3_send_client_verify;
496 sunw_ssl3_send_finished;
497 sunw_ssl3_send_hello_request;
498 sunw_ssl3_send_newsession_ticket;
499 sunw_ssl3_send_next_proto;
500 sunw_ssl3_send_server_certificate;
501 sunw_ssl3_send_server_done;
502 sunw_ssl3_send_server_hello;
503 sunw_ssl3_send_server_key_exchange;
504 sunw_ssl3_setup_buffers;
505 sunw_ssl3_setup_key_block;
506 sunw_ssl3_setup_read_buffer;
507 sunw_ssl3_setup_write_buffer;
508 sunw_ssl3_shutdown;
509 sunw_ssl3_undef_enc_method;
510 sunw_ssl3_version_str;
511 sunw_ssl3_write;
512 sunw_ssl3_write_bytes;
513 sunw_ssl3_write_pending;
514 sunw_SSLv2_client_method;
515 sunw_SSLv2_method;
516 sunw_SSLv2_server_method;
517 sunw_SSLv23_client_method;
518 sunw_SSLv23_method;
519 sunw_SSLv23_server_method;
520 sunw_SSLv3_client_method;
521 sunw_SSLv3_enc_data;
522 sunw_SSLv3_method;
523 sunw_SSLv3_server_method;

new/usr/src/lib/openssl/libsunw_ssl/mapfile-vers 9

524 sunw_tls1_alert_code;
525 sunw_tls1_cbc_remove_padding;
526 sunw_tls1_cert_verify_mac;
527 sunw_tls1_change_cipher_state;
528 sunw_tls1_clear;
529 sunw_tls1_default_timeout;
530 sunw_tls1_enc;
531 sunw_tls1_export_keying_material;
532 sunw_tls1_final_finish_mac;
533 sunw_tls1_free;
534 sunw_tls1_generate_master_secret;
535 sunw_tls1_heartbeat;
536 sunw_tls1_mac;
537 sunw_tls1_new;
538 sunw_tls1_process_heartbeat;
539 sunw_tls1_process_sigalgs;
540 sunw_tls1_process_ticket;
541 sunw_tls1_setup_key_block;
542 sunw_tls1_version_str;
543 sunw_tls12_get_hash;
544 sunw_tls12_get_req_sig_algs;
545 sunw_tls12_get_sigandhash;
546 sunw_tls12_get_sigid;
547 sunw_TLSv1_1_client_method;
548 sunw_TLSv1_1_method;
549 sunw_TLSv1_1_server_method;
550 sunw_TLSv1_2_client_method;
551 sunw_TLSv1_2_method;
552 sunw_TLSv1_2_server_method;
553 sunw_TLSv1_client_method;
554 sunw_TLSv1_enc_data;
555 sunw_TLSv1_method;
556 sunw_TLSv1_server_method;
557 local:
558 *;
559 };

new/usr/src/lib/openssl/libsunw_ssl/s23_clnt.c 1

**
 21954 Fri May 30 18:32:19 2014
new/usr/src/lib/openssl/libsunw_ssl/s23_clnt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s23_clnt.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/s23_clnt.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include <stdio.h>
113 #include "ssl_locl.h"
114 #include <openssl/buffer.h>
115 #include <openssl/rand.h>
116 #include <openssl/objects.h>
117 #include <openssl/evp.h>

119 static const SSL_METHOD *ssl23_get_client_method(int ver);
120 static int ssl23_client_hello(SSL *s);
121 static int ssl23_get_server_hello(SSL *s);
122 static const SSL_METHOD *ssl23_get_client_method(int ver)
123 {
124 #ifndef OPENSSL_NO_SSL2
125 if (ver == SSL2_VERSION)
126 return(SSLv2_client_method());
127 #endif

new/usr/src/lib/openssl/libsunw_ssl/s23_clnt.c 3

128 if (ver == SSL3_VERSION)
129 return(SSLv3_client_method());
130 else if (ver == TLS1_VERSION)
131 return(TLSv1_client_method());
132 else if (ver == TLS1_1_VERSION)
133 return(TLSv1_1_client_method());
134 else if (ver == TLS1_2_VERSION)
135 return(TLSv1_2_client_method());
136 else
137 return(NULL);
138 }

140 IMPLEMENT_ssl23_meth_func(SSLv23_client_method,
141 ssl_undefined_function,
142 ssl23_connect,
143 ssl23_get_client_method)

145 int ssl23_connect(SSL *s)
146 {
147 BUF_MEM *buf=NULL;
148 unsigned long Time=(unsigned long)time(NULL);
149 void (*cb)(const SSL *ssl,int type,int val)=NULL;
150 int ret= -1;
151 int new_state,state;

153 RAND_add(&Time,sizeof(Time),0);
154 ERR_clear_error();
155 clear_sys_error();

157 if (s->info_callback != NULL)
158 cb=s->info_callback;
159 else if (s->ctx->info_callback != NULL)
160 cb=s->ctx->info_callback;
161
162 s->in_handshake++;
163 if (!SSL_in_init(s) || SSL_in_before(s)) SSL_clear(s);

165 for (;;)
166 {
167 state=s->state;

169 switch(s->state)
170 {
171 case SSL_ST_BEFORE:
172 case SSL_ST_CONNECT:
173 case SSL_ST_BEFORE|SSL_ST_CONNECT:
174 case SSL_ST_OK|SSL_ST_CONNECT:

176 if (s->session != NULL)
177 {
178 SSLerr(SSL_F_SSL23_CONNECT,SSL_R_SSL23_DOING_SES
179 ret= -1;
180 goto end;
181 }
182 s->server=0;
183 if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_START,1);

185 /* s->version=TLS1_VERSION; */
186 s->type=SSL_ST_CONNECT;

188 if (s->init_buf == NULL)
189 {
190 if ((buf=BUF_MEM_new()) == NULL)
191 {
192 ret= -1;
193 goto end;

new/usr/src/lib/openssl/libsunw_ssl/s23_clnt.c 4

194 }
195 if (!BUF_MEM_grow(buf,SSL3_RT_MAX_PLAIN_LENGTH))
196 {
197 ret= -1;
198 goto end;
199 }
200 s->init_buf=buf;
201 buf=NULL;
202 }

204 if (!ssl3_setup_buffers(s)) { ret= -1; goto end; }

206 ssl3_init_finished_mac(s);

208 s->state=SSL23_ST_CW_CLNT_HELLO_A;
209 s->ctx->stats.sess_connect++;
210 s->init_num=0;
211 break;

213 case SSL23_ST_CW_CLNT_HELLO_A:
214 case SSL23_ST_CW_CLNT_HELLO_B:

216 s->shutdown=0;
217 ret=ssl23_client_hello(s);
218 if (ret <= 0) goto end;
219 s->state=SSL23_ST_CR_SRVR_HELLO_A;
220 s->init_num=0;

222 break;

224 case SSL23_ST_CR_SRVR_HELLO_A:
225 case SSL23_ST_CR_SRVR_HELLO_B:
226 ret=ssl23_get_server_hello(s);
227 if (ret >= 0) cb=NULL;
228 goto end;
229 /* break; */

231 default:
232 SSLerr(SSL_F_SSL23_CONNECT,SSL_R_UNKNOWN_STATE);
233 ret= -1;
234 goto end;
235 /* break; */
236 }

238 if (s->debug) { (void)BIO_flush(s->wbio); }

240 if ((cb != NULL) && (s->state != state))
241 {
242 new_state=s->state;
243 s->state=state;
244 cb(s,SSL_CB_CONNECT_LOOP,1);
245 s->state=new_state;
246 }
247 }
248 end:
249 s->in_handshake--;
250 if (buf != NULL)
251 BUF_MEM_free(buf);
252 if (cb != NULL)
253 cb(s,SSL_CB_CONNECT_EXIT,ret);
254 return(ret);
255 }

257 static int ssl23_no_ssl2_ciphers(SSL *s)
258 {
259 SSL_CIPHER *cipher;

new/usr/src/lib/openssl/libsunw_ssl/s23_clnt.c 5

260 STACK_OF(SSL_CIPHER) *ciphers;
261 int i;
262 ciphers = SSL_get_ciphers(s);
263 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++)
264 {
265 cipher = sk_SSL_CIPHER_value(ciphers, i);
266 if (cipher->algorithm_ssl == SSL_SSLV2)
267 return 0;
268 }
269 return 1;
270 }

272 /* Fill a ClientRandom or ServerRandom field of length len. Returns <= 0
273 * on failure, 1 on success. */
274 int ssl_fill_hello_random(SSL *s, int server, unsigned char *result, int len)
275 {
276 int send_time = 0;

278 if (len < 4)
279 return 0;
280 if (server)
281 send_time = (s->mode & SSL_MODE_SEND_SERVERHELLO_TIME) != 0;
282 else
283 send_time = (s->mode & SSL_MODE_SEND_CLIENTHELLO_TIME) != 0;
284 if (send_time)
285 {
286 unsigned long Time = (unsigned long)time(NULL);
287 unsigned char *p = result;
288 l2n(Time, p);
289 return RAND_pseudo_bytes(p, len-4);
290 }
291 else
292 return RAND_pseudo_bytes(result, len);
293 }

295 static int ssl23_client_hello(SSL *s)
296 {
297 unsigned char *buf;
298 unsigned char *p,*d;
299 int i,ch_len;
300 unsigned long l;
301 int ssl2_compat;
302 int version = 0, version_major, version_minor;
303 #ifndef OPENSSL_NO_COMP
304 int j;
305 SSL_COMP *comp;
306 #endif
307 int ret;
308 unsigned long mask, options = s->options;

310 ssl2_compat = (options & SSL_OP_NO_SSLv2) ? 0 : 1;

312 if (ssl2_compat && ssl23_no_ssl2_ciphers(s))
313 ssl2_compat = 0;

315 /*
316 * SSL_OP_NO_X disables all protocols above X *if* there are
317 * some protocols below X enabled. This is required in order
318 * to maintain "version capability" vector contiguous. So
319 * that if application wants to disable TLS1.0 in favour of
320 * TLS1>=1, it would be insufficient to pass SSL_NO_TLSv1, the
321 * answer is SSL_OP_NO_TLSv1|SSL_OP_NO_SSLv3|SSL_OP_NO_SSLv2.
322 */
323 mask = SSL_OP_NO_TLSv1_1|SSL_OP_NO_TLSv1
324 #if !defined(OPENSSL_NO_SSL3)
325 |SSL_OP_NO_SSLv3

new/usr/src/lib/openssl/libsunw_ssl/s23_clnt.c 6

326 #endif
327 #if !defined(OPENSSL_NO_SSL2)
328 |(ssl2_compat?SSL_OP_NO_SSLv2:0)
329 #endif
330 ;
331 #if !defined(OPENSSL_NO_TLS1_2_CLIENT)
332 version = TLS1_2_VERSION;

334 if ((options & SSL_OP_NO_TLSv1_2) && (options & mask) != mask)
335 version = TLS1_1_VERSION;
336 #else
337 version = TLS1_1_VERSION;
338 #endif
339 mask &= ~SSL_OP_NO_TLSv1_1;
340 if ((options & SSL_OP_NO_TLSv1_1) && (options & mask) != mask)
341 version = TLS1_VERSION;
342 mask &= ~SSL_OP_NO_TLSv1;
343 #if !defined(OPENSSL_NO_SSL3)
344 if ((options & SSL_OP_NO_TLSv1) && (options & mask) != mask)
345 version = SSL3_VERSION;
346 mask &= ~SSL_OP_NO_SSLv3;
347 #endif
348 #if !defined(OPENSSL_NO_SSL2)
349 if ((options & SSL_OP_NO_SSLv3) && (options & mask) != mask)
350 version = SSL2_VERSION;
351 #endif

353 #ifndef OPENSSL_NO_TLSEXT
354 if (version != SSL2_VERSION)
355 {
356 /* have to disable SSL 2.0 compatibility if we need TLS extensio

358 if (s->tlsext_hostname != NULL)
359 ssl2_compat = 0;
360 if (s->tlsext_status_type != -1)
361 ssl2_compat = 0;
362 #ifdef TLSEXT_TYPE_opaque_prf_input
363 if (s->ctx->tlsext_opaque_prf_input_callback != 0 || s->tlsext_o
364 ssl2_compat = 0;
365 #endif
366 }
367 #endif

369 buf=(unsigned char *)s->init_buf->data;
370 if (s->state == SSL23_ST_CW_CLNT_HELLO_A)
371 {
372 #if 0
373 /* don’t reuse session-id’s */
374 if (!ssl_get_new_session(s,0))
375 {
376 return(-1);
377 }
378 #endif

380 p=s->s3->client_random;
381 if (ssl_fill_hello_random(s, 0, p, SSL3_RANDOM_SIZE) <= 0)
382 return -1;

384 if (version == TLS1_2_VERSION)
385 {
386 version_major = TLS1_2_VERSION_MAJOR;
387 version_minor = TLS1_2_VERSION_MINOR;
388 }
389 else if (version == TLS1_1_VERSION)
390 {
391 version_major = TLS1_1_VERSION_MAJOR;

new/usr/src/lib/openssl/libsunw_ssl/s23_clnt.c 7

392 version_minor = TLS1_1_VERSION_MINOR;
393 }
394 else if (version == TLS1_VERSION)
395 {
396 version_major = TLS1_VERSION_MAJOR;
397 version_minor = TLS1_VERSION_MINOR;
398 }
399 #ifdef OPENSSL_FIPS
400 else if(FIPS_mode())
401 {
402 SSLerr(SSL_F_SSL23_CLIENT_HELLO,
403 SSL_R_ONLY_TLS_ALLOWED_IN_FIPS_MODE);
404 return -1;
405 }
406 #endif
407 else if (version == SSL3_VERSION)
408 {
409 version_major = SSL3_VERSION_MAJOR;
410 version_minor = SSL3_VERSION_MINOR;
411 }
412 else if (version == SSL2_VERSION)
413 {
414 version_major = SSL2_VERSION_MAJOR;
415 version_minor = SSL2_VERSION_MINOR;
416 }
417 else
418 {
419 SSLerr(SSL_F_SSL23_CLIENT_HELLO,SSL_R_NO_PROTOCOLS_AVAIL
420 return(-1);
421 }

423 s->client_version = version;

425 if (ssl2_compat)
426 {
427 /* create SSL 2.0 compatible Client Hello */

429 /* two byte record header will be written last */
430 d = &(buf[2]);
431 p = d + 9; /* leave space for message type, version, ind

433 *(d++) = SSL2_MT_CLIENT_HELLO;
434 *(d++) = version_major;
435 *(d++) = version_minor;
436
437 /* Ciphers supported */
438 i=ssl_cipher_list_to_bytes(s,SSL_get_ciphers(s),p,0);
439 if (i == 0)
440 {
441 /* no ciphers */
442 SSLerr(SSL_F_SSL23_CLIENT_HELLO,SSL_R_NO_CIPHERS
443 return -1;
444 }
445 s2n(i,d);
446 p+=i;
447
448 /* put in the session-id length (zero since there is no
449 #if 0
450 s->session->session_id_length=0;
451 #endif
452 s2n(0,d);

454 if (s->options & SSL_OP_NETSCAPE_CHALLENGE_BUG)
455 ch_len=SSL2_CHALLENGE_LENGTH;
456 else
457 ch_len=SSL2_MAX_CHALLENGE_LENGTH;

new/usr/src/lib/openssl/libsunw_ssl/s23_clnt.c 8

459 /* write out sslv2 challenge */
460 /* Note that ch_len must be <= SSL3_RANDOM_SIZE (32),
461 because it is one of SSL2_MAX_CHALLENGE_LENGTH (32)
462 or SSL2_MAX_CHALLENGE_LENGTH (16), but leave the
463 check in for futurproofing */
464 if (SSL3_RANDOM_SIZE < ch_len)
465 i=SSL3_RANDOM_SIZE;
466 else
467 i=ch_len;
468 s2n(i,d);
469 memset(&(s->s3->client_random[0]),0,SSL3_RANDOM_SIZE);
470 if (RAND_pseudo_bytes(&(s->s3->client_random[SSL3_RANDOM
471 return -1;

473 memcpy(p,&(s->s3->client_random[SSL3_RANDOM_SIZE-i]),i);
474 p+=i;

476 i= p- &(buf[2]);
477 buf[0]=((i>>8)&0xff)|0x80;
478 buf[1]=(i&0xff);

480 /* number of bytes to write */
481 s->init_num=i+2;
482 s->init_off=0;

484 ssl3_finish_mac(s,&(buf[2]),i);
485 }
486 else
487 {
488 /* create Client Hello in SSL 3.0/TLS 1.0 format */

490 /* do the record header (5 bytes) and handshake message
491 d = p = &(buf[9]);
492
493 *(p++) = version_major;
494 *(p++) = version_minor;

496 /* Random stuff */
497 memcpy(p, s->s3->client_random, SSL3_RANDOM_SIZE);
498 p += SSL3_RANDOM_SIZE;

500 /* Session ID (zero since there is no reuse) */
501 *(p++) = 0;

503 /* Ciphers supported (using SSL 3.0/TLS 1.0 format) */
504 i=ssl_cipher_list_to_bytes(s,SSL_get_ciphers(s),&(p[2]),
505 if (i == 0)
506 {
507 SSLerr(SSL_F_SSL23_CLIENT_HELLO,SSL_R_NO_CIPHERS
508 return -1;
509 }
510 #ifdef OPENSSL_MAX_TLS1_2_CIPHER_LENGTH
511 /* Some servers hang if client hello > 256 bytes
512 * as hack workaround chop number of supported ciphers
513 * to keep it well below this if we use TLS v1.2
514 */
515 if (TLS1_get_version(s) >= TLS1_2_VERSION
516 && i > OPENSSL_MAX_TLS1_2_CIPHER_LENGTH)
517 i = OPENSSL_MAX_TLS1_2_CIPHER_LENGTH & ~1;
518 #endif
519 s2n(i,p);
520 p+=i;

522 /* COMPRESSION */
523 #ifdef OPENSSL_NO_COMP

new/usr/src/lib/openssl/libsunw_ssl/s23_clnt.c 9

524 *(p++)=1;
525 #else
526 if ((s->options & SSL_OP_NO_COMPRESSION)
527 || !s->ctx->comp_methods)
528 j=0;
529 else
530 j=sk_SSL_COMP_num(s->ctx->comp_methods);
531 *(p++)=1+j;
532 for (i=0; i<j; i++)
533 {
534 comp=sk_SSL_COMP_value(s->ctx->comp_methods,i);
535 *(p++)=comp->id;
536 }
537 #endif
538 *(p++)=0; /* Add the NULL method */

540 #ifndef OPENSSL_NO_TLSEXT
541 /* TLS extensions*/
542 if (ssl_prepare_clienthello_tlsext(s) <= 0)
543 {
544 SSLerr(SSL_F_SSL23_CLIENT_HELLO,SSL_R_CLIENTHELL
545 return -1;
546 }
547 if ((p = ssl_add_clienthello_tlsext(s, p, buf+SSL3_RT_MA
548 {
549 SSLerr(SSL_F_SSL23_CLIENT_HELLO,ERR_R_INTERNAL_E
550 return -1;
551 }
552 #endif
553
554 l = p-d;

556 /* fill in 4-byte handshake header */
557 d=&(buf[5]);
558 *(d++)=SSL3_MT_CLIENT_HELLO;
559 l2n3(l,d);

561 l += 4;

563 if (l > SSL3_RT_MAX_PLAIN_LENGTH)
564 {
565 SSLerr(SSL_F_SSL23_CLIENT_HELLO,ERR_R_INTERNAL_E
566 return -1;
567 }
568
569 /* fill in 5-byte record header */
570 d=buf;
571 *(d++) = SSL3_RT_HANDSHAKE;
572 *(d++) = version_major;
573 /* Some servers hang if we use long client hellos
574 * and a record number > TLS 1.0.
575 */
576 if (TLS1_get_client_version(s) > TLS1_VERSION)
577 *(d++) = 1;
578 else
579 *(d++) = version_minor;
580 s2n((int)l,d);

582 /* number of bytes to write */
583 s->init_num=p-buf;
584 s->init_off=0;

586 ssl3_finish_mac(s,&(buf[5]), s->init_num - 5);
587 }

589 s->state=SSL23_ST_CW_CLNT_HELLO_B;

new/usr/src/lib/openssl/libsunw_ssl/s23_clnt.c 10

590 s->init_off=0;
591 }

593 /* SSL3_ST_CW_CLNT_HELLO_B */
594 ret = ssl23_write_bytes(s);

596 if ((ret >= 2) && s->msg_callback)
597 {
598 /* Client Hello has been sent; tell msg_callback */

600 if (ssl2_compat)
601 s->msg_callback(1, SSL2_VERSION, 0, s->init_buf->data+2,
602 else
603 s->msg_callback(1, version, SSL3_RT_HANDSHAKE, s->init_b
604 }

606 return ret;
607 }

609 static int ssl23_get_server_hello(SSL *s)
610 {
611 char buf[8];
612 unsigned char *p;
613 int i;
614 int n;

616 n=ssl23_read_bytes(s,7);

618 if (n != 7) return(n);
619 p=s->packet;

621 memcpy(buf,p,n);

623 if ((p[0] & 0x80) && (p[2] == SSL2_MT_SERVER_HELLO) &&
624 (p[5] == 0x00) && (p[6] == 0x02))
625 {
626 #ifdef OPENSSL_NO_SSL2
627 SSLerr(SSL_F_SSL23_GET_SERVER_HELLO,SSL_R_UNSUPPORTED_PROTOCOL);
628 goto err;
629 #else
630 /* we are talking sslv2 */
631 /* we need to clean up the SSLv3 setup and put in the
632 * sslv2 stuff. */
633 int ch_len;

635 if (s->options & SSL_OP_NO_SSLv2)
636 {
637 SSLerr(SSL_F_SSL23_GET_SERVER_HELLO,SSL_R_UNSUPPORTED_PR
638 goto err;
639 }
640 if (s->s2 == NULL)
641 {
642 if (!ssl2_new(s))
643 goto err;
644 }
645 else
646 ssl2_clear(s);

648 if (s->options & SSL_OP_NETSCAPE_CHALLENGE_BUG)
649 ch_len=SSL2_CHALLENGE_LENGTH;
650 else
651 ch_len=SSL2_MAX_CHALLENGE_LENGTH;

653 /* write out sslv2 challenge */
654 /* Note that ch_len must be <= SSL3_RANDOM_SIZE (32), because
655 it is one of SSL2_MAX_CHALLENGE_LENGTH (32) or

new/usr/src/lib/openssl/libsunw_ssl/s23_clnt.c 11

656 SSL2_MAX_CHALLENGE_LENGTH (16), but leave the check in for
657 futurproofing */
658 i=(SSL3_RANDOM_SIZE < ch_len)
659 ?SSL3_RANDOM_SIZE:ch_len;
660 s->s2->challenge_length=i;
661 memcpy(s->s2->challenge,
662 &(s->s3->client_random[SSL3_RANDOM_SIZE-i]),i);

664 if (s->s3 != NULL) ssl3_free(s);

666 if (!BUF_MEM_grow_clean(s->init_buf,
667 SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER))
668 {
669 SSLerr(SSL_F_SSL23_GET_SERVER_HELLO,ERR_R_BUF_LIB);
670 goto err;
671 }

673 s->state=SSL2_ST_GET_SERVER_HELLO_A;
674 if (!(s->client_version == SSL2_VERSION))
675 /* use special padding (SSL 3.0 draft/RFC 2246, App. E.2
676 s->s2->ssl2_rollback=1;

678 /* setup the 7 bytes we have read so we get them from
679 * the sslv2 buffer */
680 s->rstate=SSL_ST_READ_HEADER;
681 s->packet_length=n;
682 s->packet= &(s->s2->rbuf[0]);
683 memcpy(s->packet,buf,n);
684 s->s2->rbuf_left=n;
685 s->s2->rbuf_offs=0;

687 /* we have already written one */
688 s->s2->write_sequence=1;

690 s->method=SSLv2_client_method();
691 s->handshake_func=s->method->ssl_connect;
692 #endif
693 }
694 else if (p[1] == SSL3_VERSION_MAJOR &&
695 p[2] <= TLS1_2_VERSION_MINOR &&
696 ((p[0] == SSL3_RT_HANDSHAKE && p[5] == SSL3_MT_SERVER_HELLO) ||
697 (p[0] == SSL3_RT_ALERT && p[3] == 0 && p[4] == 2)))
698 {
699 /* we have sslv3 or tls1 (server hello or alert) */

701 if ((p[2] == SSL3_VERSION_MINOR) &&
702 !(s->options & SSL_OP_NO_SSLv3))
703 {
704 #ifdef OPENSSL_FIPS
705 if(FIPS_mode())
706 {
707 SSLerr(SSL_F_SSL23_GET_SERVER_HELLO,
708 SSL_R_ONLY_TLS_ALLOWED_IN_FIPS_MODE);
709 goto err;
710 }
711 #endif
712 s->version=SSL3_VERSION;
713 s->method=SSLv3_client_method();
714 }
715 else if ((p[2] == TLS1_VERSION_MINOR) &&
716 !(s->options & SSL_OP_NO_TLSv1))
717 {
718 s->version=TLS1_VERSION;
719 s->method=TLSv1_client_method();
720 }
721 else if ((p[2] == TLS1_1_VERSION_MINOR) &&

new/usr/src/lib/openssl/libsunw_ssl/s23_clnt.c 12

722 !(s->options & SSL_OP_NO_TLSv1_1))
723 {
724 s->version=TLS1_1_VERSION;
725 s->method=TLSv1_1_client_method();
726 }
727 else if ((p[2] == TLS1_2_VERSION_MINOR) &&
728 !(s->options & SSL_OP_NO_TLSv1_2))
729 {
730 s->version=TLS1_2_VERSION;
731 s->method=TLSv1_2_client_method();
732 }
733 else
734 {
735 SSLerr(SSL_F_SSL23_GET_SERVER_HELLO,SSL_R_UNSUPPORTED_PR
736 goto err;
737 }

739 if (p[0] == SSL3_RT_ALERT && p[5] != SSL3_AL_WARNING)
740 {
741 /* fatal alert */

743 void (*cb)(const SSL *ssl,int type,int val)=NULL;
744 int j;

746 if (s->info_callback != NULL)
747 cb=s->info_callback;
748 else if (s->ctx->info_callback != NULL)
749 cb=s->ctx->info_callback;
750
751 i=p[5];
752 if (cb != NULL)
753 {
754 j=(i<<8)|p[6];
755 cb(s,SSL_CB_READ_ALERT,j);
756 }
757
758 if (s->msg_callback)
759 s->msg_callback(0, s->version, SSL3_RT_ALERT, p+

761 s->rwstate=SSL_NOTHING;
762 SSLerr(SSL_F_SSL23_GET_SERVER_HELLO,SSL_AD_REASON_OFFSET
763 goto err;
764 }

766 if (!ssl_init_wbio_buffer(s,1)) goto err;

768 /* we are in this state */
769 s->state=SSL3_ST_CR_SRVR_HELLO_A;

771 /* put the 7 bytes we have read into the input buffer
772 * for SSLv3 */
773 s->rstate=SSL_ST_READ_HEADER;
774 s->packet_length=n;
775 if (s->s3->rbuf.buf == NULL)
776 if (!ssl3_setup_read_buffer(s))
777 goto err;
778 s->packet= &(s->s3->rbuf.buf[0]);
779 memcpy(s->packet,buf,n);
780 s->s3->rbuf.left=n;
781 s->s3->rbuf.offset=0;

783 s->handshake_func=s->method->ssl_connect;
784 }
785 else
786 {
787 SSLerr(SSL_F_SSL23_GET_SERVER_HELLO,SSL_R_UNKNOWN_PROTOCOL);

new/usr/src/lib/openssl/libsunw_ssl/s23_clnt.c 13

788 goto err;
789 }
790 s->init_num=0;

792 /* Since, if we are sending a ssl23 client hello, we are not
793 * reusing a session-id */
794 if (!ssl_get_new_session(s,0))
795 goto err;

797 return(SSL_connect(s));
798 err:
799 return(-1);
800 }

new/usr/src/lib/openssl/libsunw_ssl/s23_lib.c 1

**
 5378 Fri May 30 18:32:19 2014
new/usr/src/lib/openssl/libsunw_ssl/s23_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s23_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/objects.h>
61 #include "ssl_locl.h"

new/usr/src/lib/openssl/libsunw_ssl/s23_lib.c 2

63 long ssl23_default_timeout(void)
64 {
65 return(300);
66 }

68 int ssl23_num_ciphers(void)
69 {
70 return(ssl3_num_ciphers()
71 #ifndef OPENSSL_NO_SSL2
72 + ssl2_num_ciphers()
73 #endif
74);
75 }

77 const SSL_CIPHER *ssl23_get_cipher(unsigned int u)
78 {
79 unsigned int uu=ssl3_num_ciphers();

81 if (u < uu)
82 return(ssl3_get_cipher(u));
83 else
84 #ifndef OPENSSL_NO_SSL2
85 return(ssl2_get_cipher(u-uu));
86 #else
87 return(NULL);
88 #endif
89 }

91 /* This function needs to check if the ciphers required are actually
92 * available */
93 const SSL_CIPHER *ssl23_get_cipher_by_char(const unsigned char *p)
94 {
95 const SSL_CIPHER *cp;

97 cp=ssl3_get_cipher_by_char(p);
98 #ifndef OPENSSL_NO_SSL2
99 if (cp == NULL)
100 cp=ssl2_get_cipher_by_char(p);
101 #endif
102 return(cp);
103 }

105 int ssl23_put_cipher_by_char(const SSL_CIPHER *c, unsigned char *p)
106 {
107 long l;

109 /* We can write SSLv2 and SSLv3 ciphers */
110 if (p != NULL)
111 {
112 l=c->id;
113 p[0]=((unsigned char)(l>>16L))&0xFF;
114 p[1]=((unsigned char)(l>> 8L))&0xFF;
115 p[2]=((unsigned char)(l))&0xFF;
116 }
117 return(3);
118 }

120 int ssl23_read(SSL *s, void *buf, int len)
121 {
122 int n;

124 clear_sys_error();
125 if (SSL_in_init(s) && (!s->in_handshake))
126 {
127 n=s->handshake_func(s);

new/usr/src/lib/openssl/libsunw_ssl/s23_lib.c 3

128 if (n < 0) return(n);
129 if (n == 0)
130 {
131 SSLerr(SSL_F_SSL23_READ,SSL_R_SSL_HANDSHAKE_FAILURE);
132 return(-1);
133 }
134 return(SSL_read(s,buf,len));
135 }
136 else
137 {
138 ssl_undefined_function(s);
139 return(-1);
140 }
141 }

143 int ssl23_peek(SSL *s, void *buf, int len)
144 {
145 int n;

147 clear_sys_error();
148 if (SSL_in_init(s) && (!s->in_handshake))
149 {
150 n=s->handshake_func(s);
151 if (n < 0) return(n);
152 if (n == 0)
153 {
154 SSLerr(SSL_F_SSL23_PEEK,SSL_R_SSL_HANDSHAKE_FAILURE);
155 return(-1);
156 }
157 return(SSL_peek(s,buf,len));
158 }
159 else
160 {
161 ssl_undefined_function(s);
162 return(-1);
163 }
164 }

166 int ssl23_write(SSL *s, const void *buf, int len)
167 {
168 int n;

170 clear_sys_error();
171 if (SSL_in_init(s) && (!s->in_handshake))
172 {
173 n=s->handshake_func(s);
174 if (n < 0) return(n);
175 if (n == 0)
176 {
177 SSLerr(SSL_F_SSL23_WRITE,SSL_R_SSL_HANDSHAKE_FAILURE);
178 return(-1);
179 }
180 return(SSL_write(s,buf,len));
181 }
182 else
183 {
184 ssl_undefined_function(s);
185 return(-1);
186 }
187 }

new/usr/src/lib/openssl/libsunw_ssl/s23_meth.c 1

**
 3875 Fri May 30 18:32:19 2014
new/usr/src/lib/openssl/libsunw_ssl/s23_meth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s23_meth.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/objects.h>
61 #include "ssl_locl.h"

new/usr/src/lib/openssl/libsunw_ssl/s23_meth.c 2

63 static const SSL_METHOD *ssl23_get_method(int ver);
64 static const SSL_METHOD *ssl23_get_method(int ver)
65 {
66 #ifndef OPENSSL_NO_SSL2
67 if (ver == SSL2_VERSION)
68 return(SSLv2_method());
69 else
70 #endif
71 #ifndef OPENSSL_NO_SSL3
72 if (ver == SSL3_VERSION)
73 return(SSLv3_method());
74 else
75 #endif
76 #ifndef OPENSSL_NO_TLS1
77 if (ver == TLS1_VERSION)
78 return(TLSv1_method());
79 else if (ver == TLS1_1_VERSION)
80 return(TLSv1_1_method());
81 else if (ver == TLS1_2_VERSION)
82 return(TLSv1_2_method());
83 else
84 #endif
85 return(NULL);
86 }

88 IMPLEMENT_ssl23_meth_func(SSLv23_method,
89 ssl23_accept,
90 ssl23_connect,
91 ssl23_get_method)

new/usr/src/lib/openssl/libsunw_ssl/s23_pkt.c 1

**
 4187 Fri May 30 18:32:19 2014
new/usr/src/lib/openssl/libsunw_ssl/s23_pkt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s23_pkt.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <errno.h>
61 #define USE_SOCKETS

new/usr/src/lib/openssl/libsunw_ssl/s23_pkt.c 2

62 #include "ssl_locl.h"
63 #include <openssl/evp.h>
64 #include <openssl/buffer.h>

66 int ssl23_write_bytes(SSL *s)
67 {
68 int i,num,tot;
69 char *buf;

71 buf=s->init_buf->data;
72 tot=s->init_off;
73 num=s->init_num;
74 for (;;)
75 {
76 s->rwstate=SSL_WRITING;
77 i=BIO_write(s->wbio,&(buf[tot]),num);
78 if (i <= 0)
79 {
80 s->init_off=tot;
81 s->init_num=num;
82 return(i);
83 }
84 s->rwstate=SSL_NOTHING;
85 if (i == num) return(tot+i);

87 num-=i;
88 tot+=i;
89 }
90 }

92 /* return regularly only when we have read (at least) ’n’ bytes */
93 int ssl23_read_bytes(SSL *s, int n)
94 {
95 unsigned char *p;
96 int j;

98 if (s->packet_length < (unsigned int)n)
99 {
100 p=s->packet;

102 for (;;)
103 {
104 s->rwstate=SSL_READING;
105 j=BIO_read(s->rbio,(char *)&(p[s->packet_length]),
106 n-s->packet_length);
107 if (j <= 0)
108 return(j);
109 s->rwstate=SSL_NOTHING;
110 s->packet_length+=j;
111 if (s->packet_length >= (unsigned int)n)
112 return(s->packet_length);
113 }
114 }
115 return(n);
116 }

new/usr/src/lib/openssl/libsunw_ssl/s23_srvr.c 1

**
 18370 Fri May 30 18:32:19 2014
new/usr/src/lib/openssl/libsunw_ssl/s23_srvr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s23_srvr.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/s23_srvr.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include <stdio.h>
113 #include "ssl_locl.h"
114 #include <openssl/buffer.h>
115 #include <openssl/rand.h>
116 #include <openssl/objects.h>
117 #include <openssl/evp.h>
118 #ifdef OPENSSL_FIPS
119 #include <openssl/fips.h>
120 #endif

122 static const SSL_METHOD *ssl23_get_server_method(int ver);
123 int ssl23_get_client_hello(SSL *s);
124 static const SSL_METHOD *ssl23_get_server_method(int ver)
125 {
126 #ifndef OPENSSL_NO_SSL2
127 if (ver == SSL2_VERSION)

new/usr/src/lib/openssl/libsunw_ssl/s23_srvr.c 3

128 return(SSLv2_server_method());
129 #endif
130 if (ver == SSL3_VERSION)
131 return(SSLv3_server_method());
132 else if (ver == TLS1_VERSION)
133 return(TLSv1_server_method());
134 else if (ver == TLS1_1_VERSION)
135 return(TLSv1_1_server_method());
136 else if (ver == TLS1_2_VERSION)
137 return(TLSv1_2_server_method());
138 else
139 return(NULL);
140 }

142 IMPLEMENT_ssl23_meth_func(SSLv23_server_method,
143 ssl23_accept,
144 ssl_undefined_function,
145 ssl23_get_server_method)

147 int ssl23_accept(SSL *s)
148 {
149 BUF_MEM *buf;
150 unsigned long Time=(unsigned long)time(NULL);
151 void (*cb)(const SSL *ssl,int type,int val)=NULL;
152 int ret= -1;
153 int new_state,state;

155 RAND_add(&Time,sizeof(Time),0);
156 ERR_clear_error();
157 clear_sys_error();

159 if (s->info_callback != NULL)
160 cb=s->info_callback;
161 else if (s->ctx->info_callback != NULL)
162 cb=s->ctx->info_callback;
163
164 s->in_handshake++;
165 if (!SSL_in_init(s) || SSL_in_before(s)) SSL_clear(s);

167 for (;;)
168 {
169 state=s->state;

171 switch(s->state)
172 {
173 case SSL_ST_BEFORE:
174 case SSL_ST_ACCEPT:
175 case SSL_ST_BEFORE|SSL_ST_ACCEPT:
176 case SSL_ST_OK|SSL_ST_ACCEPT:

178 s->server=1;
179 if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_START,1);

181 /* s->version=SSL3_VERSION; */
182 s->type=SSL_ST_ACCEPT;

184 if (s->init_buf == NULL)
185 {
186 if ((buf=BUF_MEM_new()) == NULL)
187 {
188 ret= -1;
189 goto end;
190 }
191 if (!BUF_MEM_grow(buf,SSL3_RT_MAX_PLAIN_LENGTH))
192 {
193 ret= -1;

new/usr/src/lib/openssl/libsunw_ssl/s23_srvr.c 4

194 goto end;
195 }
196 s->init_buf=buf;
197 }

199 ssl3_init_finished_mac(s);

201 s->state=SSL23_ST_SR_CLNT_HELLO_A;
202 s->ctx->stats.sess_accept++;
203 s->init_num=0;
204 break;

206 case SSL23_ST_SR_CLNT_HELLO_A:
207 case SSL23_ST_SR_CLNT_HELLO_B:

209 s->shutdown=0;
210 ret=ssl23_get_client_hello(s);
211 if (ret >= 0) cb=NULL;
212 goto end;
213 /* break; */

215 default:
216 SSLerr(SSL_F_SSL23_ACCEPT,SSL_R_UNKNOWN_STATE);
217 ret= -1;
218 goto end;
219 /* break; */
220 }

222 if ((cb != NULL) && (s->state != state))
223 {
224 new_state=s->state;
225 s->state=state;
226 cb(s,SSL_CB_ACCEPT_LOOP,1);
227 s->state=new_state;
228 }
229 }
230 end:
231 s->in_handshake--;
232 if (cb != NULL)
233 cb(s,SSL_CB_ACCEPT_EXIT,ret);
234 return(ret);
235 }

238 int ssl23_get_client_hello(SSL *s)
239 {
240 char buf_space[11]; /* Request this many bytes in initial read.
241 * We can detect SSL 3.0/TLS 1.0 Client Hellos
242 * (’type == 3’) correctly only when the following
243 * is in a single record, which is not guaranteed by
244 * the protocol specification:
245 * Byte Content
246 * 0 type \
247 * 1/2 version > record header
248 * 3/4 length /
249 * 5 msg_type \
250 * 6-8 length > Client Hello message
251 * 9/10 client_version /
252 */
253 char *buf= &(buf_space[0]);
254 unsigned char *p,*d,*d_len,*dd;
255 unsigned int i;
256 unsigned int csl,sil,cl;
257 int n=0,j;
258 int type=0;
259 int v[2];

new/usr/src/lib/openssl/libsunw_ssl/s23_srvr.c 5

261 if (s->state == SSL23_ST_SR_CLNT_HELLO_A)
262 {
263 /* read the initial header */
264 v[0]=v[1]=0;

266 if (!ssl3_setup_buffers(s)) goto err;

268 n=ssl23_read_bytes(s, sizeof buf_space);
269 if (n != sizeof buf_space) return(n); /* n == -1 || n == 0 */

271 p=s->packet;

273 memcpy(buf,p,n);

275 if ((p[0] & 0x80) && (p[2] == SSL2_MT_CLIENT_HELLO))
276 {
277 /*
278 * SSLv2 header
279 */
280 if ((p[3] == 0x00) && (p[4] == 0x02))
281 {
282 v[0]=p[3]; v[1]=p[4];
283 /* SSLv2 */
284 if (!(s->options & SSL_OP_NO_SSLv2))
285 type=1;
286 }
287 else if (p[3] == SSL3_VERSION_MAJOR)
288 {
289 v[0]=p[3]; v[1]=p[4];
290 /* SSLv3/TLSv1 */
291 if (p[4] >= TLS1_VERSION_MINOR)
292 {
293 if (p[4] >= TLS1_2_VERSION_MINOR &&
294 !(s->options & SSL_OP_NO_TLSv1_2))
295 {
296 s->version=TLS1_2_VERSION;
297 s->state=SSL23_ST_SR_CLNT_HELLO_
298 }
299 else if (p[4] >= TLS1_1_VERSION_MINOR &&
300 !(s->options & SSL_OP_NO_TLSv1_1))
301 {
302 s->version=TLS1_1_VERSION;
303 /* type=2; */ /* done later to s
304 s->state=SSL23_ST_SR_CLNT_HELLO_
305 }
306 else if (!(s->options & SSL_OP_NO_TLSv1)
307 {
308 s->version=TLS1_VERSION;
309 /* type=2; */ /* done later to s
310 s->state=SSL23_ST_SR_CLNT_HELLO_
311 }
312 else if (!(s->options & SSL_OP_NO_SSLv3)
313 {
314 s->version=SSL3_VERSION;
315 /* type=2; */
316 s->state=SSL23_ST_SR_CLNT_HELLO_
317 }
318 else if (!(s->options & SSL_OP_NO_SSLv2)
319 {
320 type=1;
321 }
322 }
323 else if (!(s->options & SSL_OP_NO_SSLv3))
324 {
325 s->version=SSL3_VERSION;

new/usr/src/lib/openssl/libsunw_ssl/s23_srvr.c 6

326 /* type=2; */
327 s->state=SSL23_ST_SR_CLNT_HELLO_B;
328 }
329 else if (!(s->options & SSL_OP_NO_SSLv2))
330 type=1;

332 }
333 }
334 else if ((p[0] == SSL3_RT_HANDSHAKE) &&
335 (p[1] == SSL3_VERSION_MAJOR) &&
336 (p[5] == SSL3_MT_CLIENT_HELLO) &&
337 ((p[3] == 0 && p[4] < 5 /* silly record length? */)
338 || (p[9] >= p[1])))
339 {
340 /*
341 * SSLv3 or tls1 header
342 */
343
344 v[0]=p[1]; /* major version (= SSL3_VERSION_MAJOR) */
345 /* We must look at client_version inside the Client Hell
346 * to get the correct minor version.
347 * However if we have only a pathologically small fragme
348 * Client Hello message, this would be difficult, and we
349 * to read more records to find out.
350 * No known SSL 3.0 client fragments ClientHello like th
351 * so we simply assume TLS 1.0 to avoid protocol version
352 * attacks. */
353 if (p[3] == 0 && p[4] < 6)
354 {
355 #if 0
356 SSLerr(SSL_F_SSL23_GET_CLIENT_HELLO,SSL_R_RECORD
357 goto err;
358 #else
359 v[1] = TLS1_VERSION_MINOR;
360 #endif
361 }
362 /* if major version number > 3 set minor to a value
363 * which will use the highest version 3 we support.
364 * If TLS 2.0 ever appears we will need to revise
365 * this....
366 */
367 else if (p[9] > SSL3_VERSION_MAJOR)
368 v[1]=0xff;
369 else
370 v[1]=p[10]; /* minor version according to client
371 if (v[1] >= TLS1_VERSION_MINOR)
372 {
373 if (v[1] >= TLS1_2_VERSION_MINOR &&
374 !(s->options & SSL_OP_NO_TLSv1_2))
375 {
376 s->version=TLS1_2_VERSION;
377 type=3;
378 }
379 else if (v[1] >= TLS1_1_VERSION_MINOR &&
380 !(s->options & SSL_OP_NO_TLSv1_1))
381 {
382 s->version=TLS1_1_VERSION;
383 type=3;
384 }
385 else if (!(s->options & SSL_OP_NO_TLSv1))
386 {
387 s->version=TLS1_VERSION;
388 type=3;
389 }
390 else if (!(s->options & SSL_OP_NO_SSLv3))
391 {

new/usr/src/lib/openssl/libsunw_ssl/s23_srvr.c 7

392 s->version=SSL3_VERSION;
393 type=3;
394 }
395 }
396 else
397 {
398 /* client requests SSL 3.0 */
399 if (!(s->options & SSL_OP_NO_SSLv3))
400 {
401 s->version=SSL3_VERSION;
402 type=3;
403 }
404 else if (!(s->options & SSL_OP_NO_TLSv1))
405 {
406 /* we won’t be able to use TLS of course
407 * but this will send an appropriate ale
408 s->version=TLS1_VERSION;
409 type=3;
410 }
411 }
412 }
413 else if ((strncmp("GET ", (char *)p,4) == 0) ||
414 (strncmp("POST ",(char *)p,5) == 0) ||
415 (strncmp("HEAD ",(char *)p,5) == 0) ||
416 (strncmp("PUT ", (char *)p,4) == 0))
417 {
418 SSLerr(SSL_F_SSL23_GET_CLIENT_HELLO,SSL_R_HTTP_REQUEST);
419 goto err;
420 }
421 else if (strncmp("CONNECT",(char *)p,7) == 0)
422 {
423 SSLerr(SSL_F_SSL23_GET_CLIENT_HELLO,SSL_R_HTTPS_PROXY_RE
424 goto err;
425 }
426 }

428 #ifdef OPENSSL_FIPS
429 if (FIPS_mode() && (s->version < TLS1_VERSION))
430 {
431 SSLerr(SSL_F_SSL23_GET_CLIENT_HELLO,
432 SSL_R_ONLY_TLS_ALLOWED_IN_FIPS_MODE);
433 goto err;
434 }
435 #endif

437 if (s->state == SSL23_ST_SR_CLNT_HELLO_B)
438 {
439 /* we have SSLv3/TLSv1 in an SSLv2 header
440 * (other cases skip this state) */

442 type=2;
443 p=s->packet;
444 v[0] = p[3]; /* == SSL3_VERSION_MAJOR */
445 v[1] = p[4];

447 n=((p[0]&0x7f)<<8)|p[1];
448 if (n > (1024*4))
449 {
450 SSLerr(SSL_F_SSL23_GET_CLIENT_HELLO,SSL_R_RECORD_TOO_LAR
451 goto err;
452 }

454 j=ssl23_read_bytes(s,n+2);
455 if (j <= 0) return(j);

457 ssl3_finish_mac(s, s->packet+2, s->packet_length-2);

new/usr/src/lib/openssl/libsunw_ssl/s23_srvr.c 8

458 if (s->msg_callback)
459 s->msg_callback(0, SSL2_VERSION, 0, s->packet+2, s->pack

461 p=s->packet;
462 p+=5;
463 n2s(p,csl);
464 n2s(p,sil);
465 n2s(p,cl);
466 d=(unsigned char *)s->init_buf->data;
467 if ((csl+sil+cl+11) != s->packet_length) /* We can’t have TLS ex
468 * Client Hello, can we
469 * ’>’ otherweise */
470 {
471 SSLerr(SSL_F_SSL23_GET_CLIENT_HELLO,SSL_R_RECORD_LENGTH_
472 goto err;
473 }

475 /* record header: msg_type ... */
476 *(d++) = SSL3_MT_CLIENT_HELLO;
477 /* ... and length (actual value will be written later) */
478 d_len = d;
479 d += 3;

481 /* client_version */
482 *(d++) = SSL3_VERSION_MAJOR; /* == v[0] */
483 *(d++) = v[1];

485 /* lets populate the random area */
486 /* get the challenge_length */
487 i=(cl > SSL3_RANDOM_SIZE)?SSL3_RANDOM_SIZE:cl;
488 memset(d,0,SSL3_RANDOM_SIZE);
489 memcpy(&(d[SSL3_RANDOM_SIZE-i]),&(p[csl+sil]),i);
490 d+=SSL3_RANDOM_SIZE;

492 /* no session-id reuse */
493 *(d++)=0;

495 /* ciphers */
496 j=0;
497 dd=d;
498 d+=2;
499 for (i=0; i<csl; i+=3)
500 {
501 if (p[i] != 0) continue;
502 *(d++)=p[i+1];
503 *(d++)=p[i+2];
504 j+=2;
505 }
506 s2n(j,dd);

508 /* COMPRESSION */
509 *(d++)=1;
510 *(d++)=0;
511
512 #if 0
513 /* copy any remaining data with may be extensions */
514 p = p+csl+sil+cl;
515 while (p < s->packet+s->packet_length)
516 {
517 *(d++)=*(p++);
518 }
519 #endif

521 i = (d-(unsigned char *)s->init_buf->data) - 4;
522 l2n3((long)i, d_len);

new/usr/src/lib/openssl/libsunw_ssl/s23_srvr.c 9

524 /* get the data reused from the init_buf */
525 s->s3->tmp.reuse_message=1;
526 s->s3->tmp.message_type=SSL3_MT_CLIENT_HELLO;
527 s->s3->tmp.message_size=i;
528 }

530 /* imaginary new state (for program structure): */
531 /* s->state = SSL23_SR_CLNT_HELLO_C */

533 if (type == 1)
534 {
535 #ifdef OPENSSL_NO_SSL2
536 SSLerr(SSL_F_SSL23_GET_CLIENT_HELLO,SSL_R_UNSUPPORTED_PROTOCOL);
537 goto err;
538 #else
539 /* we are talking sslv2 */
540 /* we need to clean up the SSLv3/TLSv1 setup and put in the
541 * sslv2 stuff. */

543 if (s->s2 == NULL)
544 {
545 if (!ssl2_new(s))
546 goto err;
547 }
548 else
549 ssl2_clear(s);

551 if (s->s3 != NULL) ssl3_free(s);

553 if (!BUF_MEM_grow_clean(s->init_buf,
554 SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER))
555 {
556 goto err;
557 }

559 s->state=SSL2_ST_GET_CLIENT_HELLO_A;
560 if (s->options & SSL_OP_NO_TLSv1 && s->options & SSL_OP_NO_SSLv3
561 s->s2->ssl2_rollback=0;
562 else
563 /* reject SSL 2.0 session if client supports SSL 3.0 or
564 * (SSL 3.0 draft/RFC 2246, App. E.2) */
565 s->s2->ssl2_rollback=1;

567 /* setup the n bytes we have read so we get them from
568 * the sslv2 buffer */
569 s->rstate=SSL_ST_READ_HEADER;
570 s->packet_length=n;
571 s->packet= &(s->s2->rbuf[0]);
572 memcpy(s->packet,buf,n);
573 s->s2->rbuf_left=n;
574 s->s2->rbuf_offs=0;

576 s->method=SSLv2_server_method();
577 s->handshake_func=s->method->ssl_accept;
578 #endif
579 }

581 if ((type == 2) || (type == 3))
582 {
583 /* we have SSLv3/TLSv1 (type 2: SSL2 style, type 3: SSL3/TLS sty

585 if (!ssl_init_wbio_buffer(s,1)) goto err;

587 /* we are in this state */
588 s->state=SSL3_ST_SR_CLNT_HELLO_A;

new/usr/src/lib/openssl/libsunw_ssl/s23_srvr.c 10

590 if (type == 3)
591 {
592 /* put the ’n’ bytes we have read into the input buffer
593 * for SSLv3 */
594 s->rstate=SSL_ST_READ_HEADER;
595 s->packet_length=n;
596 if (s->s3->rbuf.buf == NULL)
597 if (!ssl3_setup_read_buffer(s))
598 goto err;

600 s->packet= &(s->s3->rbuf.buf[0]);
601 memcpy(s->packet,buf,n);
602 s->s3->rbuf.left=n;
603 s->s3->rbuf.offset=0;
604 }
605 else
606 {
607 s->packet_length=0;
608 s->s3->rbuf.left=0;
609 s->s3->rbuf.offset=0;
610 }
611 if (s->version == TLS1_2_VERSION)
612 s->method = TLSv1_2_server_method();
613 else if (s->version == TLS1_1_VERSION)
614 s->method = TLSv1_1_server_method();
615 else if (s->version == TLS1_VERSION)
616 s->method = TLSv1_server_method();
617 else
618 s->method = SSLv3_server_method();
619 #if 0 /* ssl3_get_client_hello does this */
620 s->client_version=(v[0]<<8)|v[1];
621 #endif
622 s->handshake_func=s->method->ssl_accept;
623 }
624
625 if ((type < 1) || (type > 3))
626 {
627 /* bad, very bad */
628 SSLerr(SSL_F_SSL23_GET_CLIENT_HELLO,SSL_R_UNKNOWN_PROTOCOL);
629 goto err;
630 }
631 s->init_num=0;

633 if (buf != buf_space) OPENSSL_free(buf);
634 return(SSL_accept(s));
635 err:
636 if (buf != buf_space) OPENSSL_free(buf);
637 return(-1);
638 }

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 1

**
 30851 Fri May 30 18:32:19 2014
new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s2_clnt.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include "ssl_locl.h"
113 #ifndef OPENSSL_NO_SSL2
114 #include <stdio.h>
115 #include <openssl/rand.h>
116 #include <openssl/buffer.h>
117 #include <openssl/objects.h>
118 #include <openssl/evp.h>

120 static const SSL_METHOD *ssl2_get_client_method(int ver);
121 static int get_server_finished(SSL *s);
122 static int get_server_verify(SSL *s);
123 static int get_server_hello(SSL *s);
124 static int client_hello(SSL *s);
125 static int client_master_key(SSL *s);
126 static int client_finished(SSL *s);
127 static int client_certificate(SSL *s);

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 3

128 static int ssl_rsa_public_encrypt(SESS_CERT *sc, int len, unsigned char *from,
129 unsigned char *to,int padding);
130 #define BREAK break

132 static const SSL_METHOD *ssl2_get_client_method(int ver)
133 {
134 if (ver == SSL2_VERSION)
135 return(SSLv2_client_method());
136 else
137 return(NULL);
138 }

140 IMPLEMENT_ssl2_meth_func(SSLv2_client_method,
141 ssl_undefined_function,
142 ssl2_connect,
143 ssl2_get_client_method)

145 int ssl2_connect(SSL *s)
146 {
147 unsigned long l=(unsigned long)time(NULL);
148 BUF_MEM *buf=NULL;
149 int ret= -1;
150 void (*cb)(const SSL *ssl,int type,int val)=NULL;
151 int new_state,state;

153 RAND_add(&l,sizeof(l),0);
154 ERR_clear_error();
155 clear_sys_error();

157 if (s->info_callback != NULL)
158 cb=s->info_callback;
159 else if (s->ctx->info_callback != NULL)
160 cb=s->ctx->info_callback;

162 /* init things to blank */
163 s->in_handshake++;
164 if (!SSL_in_init(s) || SSL_in_before(s)) SSL_clear(s);

166 for (;;)
167 {
168 state=s->state;

170 switch (s->state)
171 {
172 case SSL_ST_BEFORE:
173 case SSL_ST_CONNECT:
174 case SSL_ST_BEFORE|SSL_ST_CONNECT:
175 case SSL_ST_OK|SSL_ST_CONNECT:

177 s->server=0;
178 if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_START,1);

180 s->version=SSL2_VERSION;
181 s->type=SSL_ST_CONNECT;

183 buf=s->init_buf;
184 if ((buf == NULL) && ((buf=BUF_MEM_new()) == NULL))
185 {
186 ret= -1;
187 goto end;
188 }
189 if (!BUF_MEM_grow(buf,
190 SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER))
191 {
192 if (buf == s->init_buf)
193 buf=NULL;

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 4

194 ret= -1;
195 goto end;
196 }
197 s->init_buf=buf;
198 buf=NULL;
199 s->init_num=0;
200 s->state=SSL2_ST_SEND_CLIENT_HELLO_A;
201 s->ctx->stats.sess_connect++;
202 s->handshake_func=ssl2_connect;
203 BREAK;

205 case SSL2_ST_SEND_CLIENT_HELLO_A:
206 case SSL2_ST_SEND_CLIENT_HELLO_B:
207 s->shutdown=0;
208 ret=client_hello(s);
209 if (ret <= 0) goto end;
210 s->init_num=0;
211 s->state=SSL2_ST_GET_SERVER_HELLO_A;
212 BREAK;
213
214 case SSL2_ST_GET_SERVER_HELLO_A:
215 case SSL2_ST_GET_SERVER_HELLO_B:
216 ret=get_server_hello(s);
217 if (ret <= 0) goto end;
218 s->init_num=0;
219 if (!s->hit) /* new session */
220 {
221 s->state=SSL2_ST_SEND_CLIENT_MASTER_KEY_A;
222 BREAK;
223 }
224 else
225 {
226 s->state=SSL2_ST_CLIENT_START_ENCRYPTION;
227 break;
228 }
229
230 case SSL2_ST_SEND_CLIENT_MASTER_KEY_A:
231 case SSL2_ST_SEND_CLIENT_MASTER_KEY_B:
232 ret=client_master_key(s);
233 if (ret <= 0) goto end;
234 s->init_num=0;
235 s->state=SSL2_ST_CLIENT_START_ENCRYPTION;
236 break;

238 case SSL2_ST_CLIENT_START_ENCRYPTION:
239 /* Ok, we now have all the stuff needed to
240 * start encrypting, so lets fire it up :-) */
241 if (!ssl2_enc_init(s,1))
242 {
243 ret= -1;
244 goto end;
245 }
246 s->s2->clear_text=0;
247 s->state=SSL2_ST_SEND_CLIENT_FINISHED_A;
248 break;

250 case SSL2_ST_SEND_CLIENT_FINISHED_A:
251 case SSL2_ST_SEND_CLIENT_FINISHED_B:
252 ret=client_finished(s);
253 if (ret <= 0) goto end;
254 s->init_num=0;
255 s->state=SSL2_ST_GET_SERVER_VERIFY_A;
256 break;

258 case SSL2_ST_GET_SERVER_VERIFY_A:
259 case SSL2_ST_GET_SERVER_VERIFY_B:

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 5

260 ret=get_server_verify(s);
261 if (ret <= 0) goto end;
262 s->init_num=0;
263 s->state=SSL2_ST_GET_SERVER_FINISHED_A;
264 break;

266 case SSL2_ST_GET_SERVER_FINISHED_A:
267 case SSL2_ST_GET_SERVER_FINISHED_B:
268 ret=get_server_finished(s);
269 if (ret <= 0) goto end;
270 break;

272 case SSL2_ST_SEND_CLIENT_CERTIFICATE_A:
273 case SSL2_ST_SEND_CLIENT_CERTIFICATE_B:
274 case SSL2_ST_SEND_CLIENT_CERTIFICATE_C:
275 case SSL2_ST_SEND_CLIENT_CERTIFICATE_D:
276 case SSL2_ST_X509_GET_CLIENT_CERTIFICATE:
277 ret=client_certificate(s);
278 if (ret <= 0) goto end;
279 s->init_num=0;
280 s->state=SSL2_ST_GET_SERVER_FINISHED_A;
281 break;

283 case SSL_ST_OK:
284 if (s->init_buf != NULL)
285 {
286 BUF_MEM_free(s->init_buf);
287 s->init_buf=NULL;
288 }
289 s->init_num=0;
290 /* ERR_clear_error();*/

292 /* If we want to cache session-ids in the client
293 * and we successfully add the session-id to the
294 * cache, and there is a callback, then pass it out.
295 * 26/11/96 - eay - only add if not a re-used session.
296 */

298 ssl_update_cache(s,SSL_SESS_CACHE_CLIENT);
299 if (s->hit) s->ctx->stats.sess_hit++;

301 ret=1;
302 /* s->server=0; */
303 s->ctx->stats.sess_connect_good++;

305 if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_DONE,1);

307 goto end;
308 /* break; */
309 default:
310 SSLerr(SSL_F_SSL2_CONNECT,SSL_R_UNKNOWN_STATE);
311 return(-1);
312 /* break; */
313 }

315 if ((cb != NULL) && (s->state != state))
316 {
317 new_state=s->state;
318 s->state=state;
319 cb(s,SSL_CB_CONNECT_LOOP,1);
320 s->state=new_state;
321 }
322 }
323 end:
324 s->in_handshake--;
325 if (buf != NULL)

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 6

326 BUF_MEM_free(buf);
327 if (cb != NULL)
328 cb(s,SSL_CB_CONNECT_EXIT,ret);
329 return(ret);
330 }

332 static int get_server_hello(SSL *s)
333 {
334 unsigned char *buf;
335 unsigned char *p;
336 int i,j;
337 unsigned long len;
338 STACK_OF(SSL_CIPHER) *sk=NULL,*cl, *prio, *allow;

340 buf=(unsigned char *)s->init_buf->data;
341 p=buf;
342 if (s->state == SSL2_ST_GET_SERVER_HELLO_A)
343 {
344 i=ssl2_read(s,(char *)&(buf[s->init_num]),11-s->init_num);
345 if (i < (11-s->init_num))
346 return(ssl2_part_read(s,SSL_F_GET_SERVER_HELLO,i));
347 s->init_num = 11;

349 if (*(p++) != SSL2_MT_SERVER_HELLO)
350 {
351 if (p[-1] != SSL2_MT_ERROR)
352 {
353 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
354 SSLerr(SSL_F_GET_SERVER_HELLO,
355 SSL_R_READ_WRONG_PACKET_TYPE);
356 }
357 else
358 SSLerr(SSL_F_GET_SERVER_HELLO,
359 SSL_R_PEER_ERROR);
360 return(-1);
361 }
362 #if 0
363 s->hit=(*(p++))?1:0;
364 /* Some [PPC?] compilers fail to increment p in above
365 statement, e.g. one provided with Rhapsody 5.5, but
366 most recent example XL C 11.1 for AIX, even without
367 optimization flag... */
368 #else
369 s->hit=(*p)?1:0; p++;
370 #endif
371 s->s2->tmp.cert_type= *(p++);
372 n2s(p,i);
373 if (i < s->version) s->version=i;
374 n2s(p,i); s->s2->tmp.cert_length=i;
375 n2s(p,i); s->s2->tmp.csl=i;
376 n2s(p,i); s->s2->tmp.conn_id_length=i;
377 s->state=SSL2_ST_GET_SERVER_HELLO_B;
378 }

380 /* SSL2_ST_GET_SERVER_HELLO_B */
381 len = 11 + (unsigned long)s->s2->tmp.cert_length + (unsigned long)s->s2-
382 if (len > SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER)
383 {
384 SSLerr(SSL_F_GET_SERVER_HELLO,SSL_R_MESSAGE_TOO_LONG);
385 return -1;
386 }
387 j = (int)len - s->init_num;
388 i = ssl2_read(s,(char *)&(buf[s->init_num]),j);
389 if (i != j) return(ssl2_part_read(s,SSL_F_GET_SERVER_HELLO,i));
390 if (s->msg_callback)
391 s->msg_callback(0, s->version, 0, buf, (size_t)len, s, s->msg_ca

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 7

393 /* things are looking good */

395 p = buf + 11;
396 if (s->hit)
397 {
398 if (s->s2->tmp.cert_length != 0)
399 {
400 SSLerr(SSL_F_GET_SERVER_HELLO,SSL_R_REUSE_CERT_LENGTH_NO
401 return(-1);
402 }
403 if (s->s2->tmp.cert_type != 0)
404 {
405 if (!(s->options &
406 SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG))
407 {
408 SSLerr(SSL_F_GET_SERVER_HELLO,SSL_R_REUSE_CERT_T
409 return(-1);
410 }
411 }
412 if (s->s2->tmp.csl != 0)
413 {
414 SSLerr(SSL_F_GET_SERVER_HELLO,SSL_R_REUSE_CIPHER_LIST_NO
415 return(-1);
416 }
417 }
418 else
419 {
420 #ifdef undef
421 /* very bad */
422 memset(s->session->session_id,0,
423 SSL_MAX_SSL_SESSION_ID_LENGTH_IN_BYTES);
424 s->session->session_id_length=0;
425 */
426 #endif

428 /* we need to do this in case we were trying to reuse a
429 * client session but others are already reusing it.
430 * If this was a new ’blank’ session ID, the session-id
431 * length will still be 0 */
432 if (s->session->session_id_length > 0)
433 {
434 if (!ssl_get_new_session(s,0))
435 {
436 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
437 return(-1);
438 }
439 }

441 if (ssl2_set_certificate(s,s->s2->tmp.cert_type,
442 s->s2->tmp.cert_length,p) <= 0)
443 {
444 ssl2_return_error(s,SSL2_PE_BAD_CERTIFICATE);
445 return(-1);
446 }
447 p+=s->s2->tmp.cert_length;

449 if (s->s2->tmp.csl == 0)
450 {
451 ssl2_return_error(s,SSL2_PE_NO_CIPHER);
452 SSLerr(SSL_F_GET_SERVER_HELLO,SSL_R_NO_CIPHER_LIST);
453 return(-1);
454 }

456 /* We have just received a list of ciphers back from the
457 * server. We need to get the ones that match, then select

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 8

458 * the one we want the most :-). */

460 /* load the ciphers */
461 sk=ssl_bytes_to_cipher_list(s,p,s->s2->tmp.csl,
462 &s->session->ciphers);
463 p+=s->s2->tmp.csl;
464 if (sk == NULL)
465 {
466 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
467 SSLerr(SSL_F_GET_SERVER_HELLO,ERR_R_MALLOC_FAILURE);
468 return(-1);
469 }

471 (void)sk_SSL_CIPHER_set_cmp_func(sk,ssl_cipher_ptr_id_cmp);

473 /* get the array of ciphers we will accept */
474 cl=SSL_get_ciphers(s);
475 (void)sk_SSL_CIPHER_set_cmp_func(cl,ssl_cipher_ptr_id_cmp);

477 /*
478 * If server preference flag set, choose the first
479 * (highest priority) cipher the server sends, otherwise
480 * client preference has priority.
481 */
482 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE)
483 {
484 prio = sk;
485 allow = cl;
486 }
487 else
488 {
489 prio = cl;
490 allow = sk;
491 }
492 /* In theory we could have ciphers sent back that we
493 * don’t want to use but that does not matter since we
494 * will check against the list we originally sent and
495 * for performance reasons we should not bother to match
496 * the two lists up just to check. */
497 for (i=0; i<sk_SSL_CIPHER_num(prio); i++)
498 {
499 if (sk_SSL_CIPHER_find(allow,
500 sk_SSL_CIPHER_value(prio,i)) >= 0)
501 break;
502 }

504 if (i >= sk_SSL_CIPHER_num(prio))
505 {
506 ssl2_return_error(s,SSL2_PE_NO_CIPHER);
507 SSLerr(SSL_F_GET_SERVER_HELLO,SSL_R_NO_CIPHER_MATCH);
508 return(-1);
509 }
510 s->session->cipher=sk_SSL_CIPHER_value(prio,i);

513 if (s->session->peer != NULL) /* can’t happen*/
514 {
515 ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR);
516 SSLerr(SSL_F_GET_SERVER_HELLO, ERR_R_INTERNAL_ERROR);
517 return(-1);
518 }

520 s->session->peer = s->session->sess_cert->peer_key->x509;
521 /* peer_key->x509 has been set by ssl2_set_certificate. */
522 CRYPTO_add(&s->session->peer->references, 1, CRYPTO_LOCK_X509);
523 }

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 9

525 if (s->session->sess_cert == NULL
526 || s->session->peer != s->session->sess_cert->peer_key->x509)
527 /* can’t happen */
528 {
529 ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR);
530 SSLerr(SSL_F_GET_SERVER_HELLO, ERR_R_INTERNAL_ERROR);
531 return(-1);
532 }
533
534 s->s2->conn_id_length=s->s2->tmp.conn_id_length;
535 if (s->s2->conn_id_length > sizeof s->s2->conn_id)
536 {
537 ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR);
538 SSLerr(SSL_F_GET_SERVER_HELLO, SSL_R_SSL2_CONNECTION_ID_TOO_LONG
539 return -1;
540 }
541 memcpy(s->s2->conn_id,p,s->s2->tmp.conn_id_length);
542 return(1);
543 }

545 static int client_hello(SSL *s)
546 {
547 unsigned char *buf;
548 unsigned char *p,*d;
549 /* CIPHER **cipher;*/
550 int i,n,j;

552 buf=(unsigned char *)s->init_buf->data;
553 if (s->state == SSL2_ST_SEND_CLIENT_HELLO_A)
554 {
555 if ((s->session == NULL) ||
556 (s->session->ssl_version != s->version))
557 {
558 if (!ssl_get_new_session(s,0))
559 {
560 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
561 return(-1);
562 }
563 }
564 /* else use the pre-loaded session */

566 p=buf; /* header */
567 d=p+9; /* data section */
568 *(p++)=SSL2_MT_CLIENT_HELLO; /* type */
569 s2n(SSL2_VERSION,p); /* version */
570 n=j=0;

572 n=ssl_cipher_list_to_bytes(s,SSL_get_ciphers(s),d,0);
573 d+=n;

575 if (n == 0)
576 {
577 SSLerr(SSL_F_CLIENT_HELLO,SSL_R_NO_CIPHERS_AVAILABLE);
578 return(-1);
579 }

581 s2n(n,p); /* cipher spec num bytes */

583 if ((s->session->session_id_length > 0) &&
584 (s->session->session_id_length <=
585 SSL2_MAX_SSL_SESSION_ID_LENGTH))
586 {
587 i=s->session->session_id_length;
588 s2n(i,p); /* session id length */
589 memcpy(d,s->session->session_id,(unsigned int)i);

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 10

590 d+=i;
591 }
592 else
593 {
594 s2n(0,p);
595 }

597 s->s2->challenge_length=SSL2_CHALLENGE_LENGTH;
598 s2n(SSL2_CHALLENGE_LENGTH,p); /* challenge length */
599 /*challenge id data*/
600 if (RAND_pseudo_bytes(s->s2->challenge,SSL2_CHALLENGE_LENGTH) <=
601 return -1;
602 memcpy(d,s->s2->challenge,SSL2_CHALLENGE_LENGTH);
603 d+=SSL2_CHALLENGE_LENGTH;

605 s->state=SSL2_ST_SEND_CLIENT_HELLO_B;
606 s->init_num=d-buf;
607 s->init_off=0;
608 }
609 /* SSL2_ST_SEND_CLIENT_HELLO_B */
610 return(ssl2_do_write(s));
611 }

613 static int client_master_key(SSL *s)
614 {
615 unsigned char *buf;
616 unsigned char *p,*d;
617 int clear,enc,karg,i;
618 SSL_SESSION *sess;
619 const EVP_CIPHER *c;
620 const EVP_MD *md;

622 buf=(unsigned char *)s->init_buf->data;
623 if (s->state == SSL2_ST_SEND_CLIENT_MASTER_KEY_A)
624 {

626 if (!ssl_cipher_get_evp(s->session,&c,&md,NULL,NULL,NULL))
627 {
628 ssl2_return_error(s,SSL2_PE_NO_CIPHER);
629 SSLerr(SSL_F_CLIENT_MASTER_KEY,SSL_R_PROBLEMS_MAPPING_CI
630 return(-1);
631 }
632 sess=s->session;
633 p=buf;
634 d=p+10;
635 *(p++)=SSL2_MT_CLIENT_MASTER_KEY;/* type */

637 i=ssl_put_cipher_by_char(s,sess->cipher,p);
638 p+=i;

640 /* make key_arg data */
641 i=EVP_CIPHER_iv_length(c);
642 sess->key_arg_length=i;
643 if (i > SSL_MAX_KEY_ARG_LENGTH)
644 {
645 ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR);
646 SSLerr(SSL_F_CLIENT_MASTER_KEY, ERR_R_INTERNAL_ERROR);
647 return -1;
648 }
649 if (i > 0)
650 if (RAND_pseudo_bytes(sess->key_arg,i) <= 0)
651 return -1;

653 /* make a master key */
654 i=EVP_CIPHER_key_length(c);
655 sess->master_key_length=i;

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 11

656 if (i > 0)
657 {
658 if (i > (int)sizeof(sess->master_key))
659 {
660 ssl2_return_error(s, SSL2_PE_UNDEFINED_ERROR);
661 SSLerr(SSL_F_CLIENT_MASTER_KEY, ERR_R_INTERNAL_E
662 return -1;
663 }
664 if (RAND_bytes(sess->master_key,i) <= 0)
665 {
666 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
667 return(-1);
668 }
669 }

671 if (sess->cipher->algorithm2 & SSL2_CF_8_BYTE_ENC)
672 enc=8;
673 else if (SSL_C_IS_EXPORT(sess->cipher))
674 enc=5;
675 else
676 enc=i;

678 if ((int)i < enc)
679 {
680 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
681 SSLerr(SSL_F_CLIENT_MASTER_KEY,SSL_R_CIPHER_TABLE_SRC_ER
682 return(-1);
683 }
684 clear=i-enc;
685 s2n(clear,p);
686 memcpy(d,sess->master_key,(unsigned int)clear);
687 d+=clear;

689 enc=ssl_rsa_public_encrypt(sess->sess_cert,enc,
690 &(sess->master_key[clear]),d,
691 (s->s2->ssl2_rollback)?RSA_SSLV23_PADDING:RSA_PKCS1_PADD
692 if (enc <= 0)
693 {
694 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
695 SSLerr(SSL_F_CLIENT_MASTER_KEY,SSL_R_PUBLIC_KEY_ENCRYPT_
696 return(-1);
697 }
698 #ifdef PKCS1_CHECK
699 if (s->options & SSL_OP_PKCS1_CHECK_1) d[1]++;
700 if (s->options & SSL_OP_PKCS1_CHECK_2)
701 sess->master_key[clear]++;
702 #endif
703 s2n(enc,p);
704 d+=enc;
705 karg=sess->key_arg_length;
706 s2n(karg,p); /* key arg size */
707 if (karg > (int)sizeof(sess->key_arg))
708 {
709 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
710 SSLerr(SSL_F_CLIENT_MASTER_KEY, ERR_R_INTERNAL_ERROR);
711 return -1;
712 }
713 memcpy(d,sess->key_arg,(unsigned int)karg);
714 d+=karg;

716 s->state=SSL2_ST_SEND_CLIENT_MASTER_KEY_B;
717 s->init_num=d-buf;
718 s->init_off=0;
719 }

721 /* SSL2_ST_SEND_CLIENT_MASTER_KEY_B */

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 12

722 return(ssl2_do_write(s));
723 }

725 static int client_finished(SSL *s)
726 {
727 unsigned char *p;

729 if (s->state == SSL2_ST_SEND_CLIENT_FINISHED_A)
730 {
731 p=(unsigned char *)s->init_buf->data;
732 *(p++)=SSL2_MT_CLIENT_FINISHED;
733 if (s->s2->conn_id_length > sizeof s->s2->conn_id)
734 {
735 SSLerr(SSL_F_CLIENT_FINISHED, ERR_R_INTERNAL_ERROR);
736 return -1;
737 }
738 memcpy(p,s->s2->conn_id,(unsigned int)s->s2->conn_id_length);

740 s->state=SSL2_ST_SEND_CLIENT_FINISHED_B;
741 s->init_num=s->s2->conn_id_length+1;
742 s->init_off=0;
743 }
744 return(ssl2_do_write(s));
745 }

747 /* read the data and then respond */
748 static int client_certificate(SSL *s)
749 {
750 unsigned char *buf;
751 unsigned char *p,*d;
752 int i;
753 unsigned int n;
754 int cert_ch_len;
755 unsigned char *cert_ch;

757 buf=(unsigned char *)s->init_buf->data;

759 /* We have a cert associated with the SSL, so attach it to
760 * the session if it does not have one */

762 if (s->state == SSL2_ST_SEND_CLIENT_CERTIFICATE_A)
763 {
764 i=ssl2_read(s,(char *)&(buf[s->init_num]),
765 SSL2_MAX_CERT_CHALLENGE_LENGTH+2-s->init_num);
766 if (i<(SSL2_MIN_CERT_CHALLENGE_LENGTH+2-s->init_num))
767 return(ssl2_part_read(s,SSL_F_CLIENT_CERTIFICATE,i));
768 s->init_num += i;
769 if (s->msg_callback)
770 s->msg_callback(0, s->version, 0, buf, (size_t)s->init_n

772 /* type=buf[0]; */
773 /* type eq x509 */
774 if (buf[1] != SSL2_AT_MD5_WITH_RSA_ENCRYPTION)
775 {
776 ssl2_return_error(s,SSL2_PE_UNSUPPORTED_CERTIFICATE_TYPE
777 SSLerr(SSL_F_CLIENT_CERTIFICATE,SSL_R_BAD_AUTHENTICATION
778 return(-1);
779 }

781 if ((s->cert == NULL) ||
782 (s->cert->key->x509 == NULL) ||
783 (s->cert->key->privatekey == NULL))
784 {
785 s->state=SSL2_ST_X509_GET_CLIENT_CERTIFICATE;
786 }
787 else

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 13

788 s->state=SSL2_ST_SEND_CLIENT_CERTIFICATE_C;
789 }

791 cert_ch = buf + 2;
792 cert_ch_len = s->init_num - 2;

794 if (s->state == SSL2_ST_X509_GET_CLIENT_CERTIFICATE)
795 {
796 X509 *x509=NULL;
797 EVP_PKEY *pkey=NULL;

799 /* If we get an error we need to
800 * ssl->rwstate=SSL_X509_LOOKUP;
801 * return(error);
802 * We should then be retried when things are ok and we
803 * can get a cert or not */

805 i=0;
806 if (s->ctx->client_cert_cb != NULL)
807 {
808 i=s->ctx->client_cert_cb(s,&(x509),&(pkey));
809 }

811 if (i < 0)
812 {
813 s->rwstate=SSL_X509_LOOKUP;
814 return(-1);
815 }
816 s->rwstate=SSL_NOTHING;

818 if ((i == 1) && (pkey != NULL) && (x509 != NULL))
819 {
820 s->state=SSL2_ST_SEND_CLIENT_CERTIFICATE_C;
821 if (!SSL_use_certificate(s,x509) ||
822 !SSL_use_PrivateKey(s,pkey))
823 {
824 i=0;
825 }
826 X509_free(x509);
827 EVP_PKEY_free(pkey);
828 }
829 else if (i == 1)
830 {
831 if (x509 != NULL) X509_free(x509);
832 if (pkey != NULL) EVP_PKEY_free(pkey);
833 SSLerr(SSL_F_CLIENT_CERTIFICATE,SSL_R_BAD_DATA_RETURNED_
834 i=0;
835 }

837 if (i == 0)
838 {
839 /* We have no client certificate to respond with
840 * so send the correct error message back */
841 s->state=SSL2_ST_SEND_CLIENT_CERTIFICATE_B;
842 p=buf;
843 *(p++)=SSL2_MT_ERROR;
844 s2n(SSL2_PE_NO_CERTIFICATE,p);
845 s->init_off=0;
846 s->init_num=3;
847 /* Write is done at the end */
848 }
849 }

851 if (s->state == SSL2_ST_SEND_CLIENT_CERTIFICATE_B)
852 {
853 return(ssl2_do_write(s));

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 14

854 }

856 if (s->state == SSL2_ST_SEND_CLIENT_CERTIFICATE_C)
857 {
858 EVP_MD_CTX ctx;

860 /* ok, now we calculate the checksum
861 * do it first so we can reuse buf :-) */
862 p=buf;
863 EVP_MD_CTX_init(&ctx);
864 EVP_SignInit_ex(&ctx,s->ctx->rsa_md5, NULL);
865 EVP_SignUpdate(&ctx,s->s2->key_material,
866 s->s2->key_material_length);
867 EVP_SignUpdate(&ctx,cert_ch,(unsigned int)cert_ch_len);
868 i=i2d_X509(s->session->sess_cert->peer_key->x509,&p);
869 /* Don’t update the signature if it fails - FIXME: probably shou
870 if(i > 0)
871 EVP_SignUpdate(&ctx,buf,(unsigned int)i);

873 p=buf;
874 d=p+6;
875 *(p++)=SSL2_MT_CLIENT_CERTIFICATE;
876 *(p++)=SSL2_CT_X509_CERTIFICATE;
877 n=i2d_X509(s->cert->key->x509,&d);
878 s2n(n,p);

880 if (!EVP_SignFinal(&ctx,d,&n,s->cert->key->privatekey))
881 {
882 /* this is not good. If things have failed it
883 * means there so something wrong with the key.
884 * We will continue with a 0 length signature
885 */
886 }
887 EVP_MD_CTX_cleanup(&ctx);
888 s2n(n,p);
889 d+=n;

891 s->state=SSL2_ST_SEND_CLIENT_CERTIFICATE_D;
892 s->init_num=d-buf;
893 s->init_off=0;
894 }
895 /* if (s->state == SSL2_ST_SEND_CLIENT_CERTIFICATE_D) */
896 return(ssl2_do_write(s));
897 }

899 static int get_server_verify(SSL *s)
900 {
901 unsigned char *p;
902 int i, n, len;

904 p=(unsigned char *)s->init_buf->data;
905 if (s->state == SSL2_ST_GET_SERVER_VERIFY_A)
906 {
907 i=ssl2_read(s,(char *)&(p[s->init_num]),1-s->init_num);
908 if (i < (1-s->init_num))
909 return(ssl2_part_read(s,SSL_F_GET_SERVER_VERIFY,i));
910 s->init_num += i;

912 s->state= SSL2_ST_GET_SERVER_VERIFY_B;
913 if (*p != SSL2_MT_SERVER_VERIFY)
914 {
915 if (p[0] != SSL2_MT_ERROR)
916 {
917 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
918 SSLerr(SSL_F_GET_SERVER_VERIFY,
919 SSL_R_READ_WRONG_PACKET_TYPE);

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 15

920 }
921 else
922 {
923 SSLerr(SSL_F_GET_SERVER_VERIFY,SSL_R_PEER_ERROR)
924 /* try to read the error message */
925 i=ssl2_read(s,(char *)&(p[s->init_num]),3-s->ini
926 return ssl2_part_read(s,SSL_F_GET_SERVER_VERIFY,
927 }
928 return(-1);
929 }
930 }
931
932 p=(unsigned char *)s->init_buf->data;
933 len = 1 + s->s2->challenge_length;
934 n = len - s->init_num;
935 i = ssl2_read(s,(char *)&(p[s->init_num]),n);
936 if (i < n)
937 return(ssl2_part_read(s,SSL_F_GET_SERVER_VERIFY,i));
938 if (s->msg_callback)
939 s->msg_callback(0, s->version, 0, p, len, s, s->msg_callback_arg
940 p += 1;

942 if (CRYPTO_memcmp(p,s->s2->challenge,s->s2->challenge_length) != 0)
943 {
944 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
945 SSLerr(SSL_F_GET_SERVER_VERIFY,SSL_R_CHALLENGE_IS_DIFFERENT);
946 return(-1);
947 }
948 return(1);
949 }

951 static int get_server_finished(SSL *s)
952 {
953 unsigned char *buf;
954 unsigned char *p;
955 int i, n, len;

957 buf=(unsigned char *)s->init_buf->data;
958 p=buf;
959 if (s->state == SSL2_ST_GET_SERVER_FINISHED_A)
960 {
961 i=ssl2_read(s,(char *)&(buf[s->init_num]),1-s->init_num);
962 if (i < (1-s->init_num))
963 return(ssl2_part_read(s,SSL_F_GET_SERVER_FINISHED,i));
964 s->init_num += i;

966 if (*p == SSL2_MT_REQUEST_CERTIFICATE)
967 {
968 s->state=SSL2_ST_SEND_CLIENT_CERTIFICATE_A;
969 return(1);
970 }
971 else if (*p != SSL2_MT_SERVER_FINISHED)
972 {
973 if (p[0] != SSL2_MT_ERROR)
974 {
975 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
976 SSLerr(SSL_F_GET_SERVER_FINISHED,SSL_R_READ_WRON
977 }
978 else
979 {
980 SSLerr(SSL_F_GET_SERVER_FINISHED,SSL_R_PEER_ERRO
981 /* try to read the error message */
982 i=ssl2_read(s,(char *)&(p[s->init_num]),3-s->ini
983 return ssl2_part_read(s,SSL_F_GET_SERVER_VERIFY,
984 }
985 return(-1);

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 16

986 }
987 s->state=SSL2_ST_GET_SERVER_FINISHED_B;
988 }

990 len = 1 + SSL2_SSL_SESSION_ID_LENGTH;
991 n = len - s->init_num;
992 i = ssl2_read(s,(char *)&(buf[s->init_num]), n);
993 if (i < n) /* XXX could be shorter than SSL2_SSL_SESSION_ID_LENGTH, that
994 return(ssl2_part_read(s,SSL_F_GET_SERVER_FINISHED,i));
995 s->init_num += i;
996 if (s->msg_callback)
997 s->msg_callback(0, s->version, 0, buf, (size_t)s->init_num, s, s

999 if (!s->hit) /* new session */
1000 {
1001 /* new session-id */
1002 /* Make sure we were not trying to re-use an old SSL_SESSION
1003 * or bad things can happen */
1004 /* ZZZZZZZZZZZZZ */
1005 s->session->session_id_length=SSL2_SSL_SESSION_ID_LENGTH;
1006 memcpy(s->session->session_id,p+1,SSL2_SSL_SESSION_ID_LENGTH);
1007 }
1008 else
1009 {
1010 if (!(s->options & SSL_OP_MICROSOFT_SESS_ID_BUG))
1011 {
1012 if ((s->session->session_id_length > sizeof s->session->
1013 || (0 != memcmp(buf + 1, s->session->session_id,
1014 (unsigned int)s->session->session_id
1015 {
1016 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
1017 SSLerr(SSL_F_GET_SERVER_FINISHED,SSL_R_SSL_SESSI
1018 return(-1);
1019 }
1020 }
1021 }
1022 s->state = SSL_ST_OK;
1023 return(1);
1024 }

1026 /* loads in the certificate from the server */
1027 int ssl2_set_certificate(SSL *s, int type, int len, const unsigned char *data)
1028 {
1029 STACK_OF(X509) *sk=NULL;
1030 EVP_PKEY *pkey=NULL;
1031 SESS_CERT *sc=NULL;
1032 int i;
1033 X509 *x509=NULL;
1034 int ret=0;
1035
1036 x509=d2i_X509(NULL,&data,(long)len);
1037 if (x509 == NULL)
1038 {
1039 SSLerr(SSL_F_SSL2_SET_CERTIFICATE,ERR_R_X509_LIB);
1040 goto err;
1041 }

1043 if ((sk=sk_X509_new_null()) == NULL || !sk_X509_push(sk,x509))
1044 {
1045 SSLerr(SSL_F_SSL2_SET_CERTIFICATE,ERR_R_MALLOC_FAILURE);
1046 goto err;
1047 }

1049 i=ssl_verify_cert_chain(s,sk);
1050
1051 if ((s->verify_mode != SSL_VERIFY_NONE) && (i <= 0))

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 17

1052 {
1053 SSLerr(SSL_F_SSL2_SET_CERTIFICATE,SSL_R_CERTIFICATE_VERIFY_FAILE
1054 goto err;
1055 }
1056 ERR_clear_error(); /* but we keep s->verify_result */
1057 s->session->verify_result = s->verify_result;

1059 /* server’s cert for this session */
1060 sc=ssl_sess_cert_new();
1061 if (sc == NULL)
1062 {
1063 ret= -1;
1064 goto err;
1065 }
1066 if (s->session->sess_cert) ssl_sess_cert_free(s->session->sess_cert);
1067 s->session->sess_cert=sc;

1069 sc->peer_pkeys[SSL_PKEY_RSA_ENC].x509=x509;
1070 sc->peer_key= &(sc->peer_pkeys[SSL_PKEY_RSA_ENC]);

1072 pkey=X509_get_pubkey(x509);
1073 x509=NULL;
1074 if (pkey == NULL)
1075 {
1076 SSLerr(SSL_F_SSL2_SET_CERTIFICATE,SSL_R_UNABLE_TO_EXTRACT_PUBLIC
1077 goto err;
1078 }
1079 if (pkey->type != EVP_PKEY_RSA)
1080 {
1081 SSLerr(SSL_F_SSL2_SET_CERTIFICATE,SSL_R_PUBLIC_KEY_NOT_RSA);
1082 goto err;
1083 }

1085 if (!ssl_set_peer_cert_type(sc,SSL2_CT_X509_CERTIFICATE))
1086 goto err;
1087 ret=1;
1088 err:
1089 sk_X509_free(sk);
1090 X509_free(x509);
1091 EVP_PKEY_free(pkey);
1092 return(ret);
1093 }

1095 static int ssl_rsa_public_encrypt(SESS_CERT *sc, int len, unsigned char *from,
1096 unsigned char *to, int padding)
1097 {
1098 EVP_PKEY *pkey=NULL;
1099 int i= -1;

1101 if ((sc == NULL) || (sc->peer_key->x509 == NULL) ||
1102 ((pkey=X509_get_pubkey(sc->peer_key->x509)) == NULL))
1103 {
1104 SSLerr(SSL_F_SSL_RSA_PUBLIC_ENCRYPT,SSL_R_NO_PUBLICKEY);
1105 return(-1);
1106 }
1107 if (pkey->type != EVP_PKEY_RSA)
1108 {
1109 SSLerr(SSL_F_SSL_RSA_PUBLIC_ENCRYPT,SSL_R_PUBLIC_KEY_IS_NOT_RSA)
1110 goto end;
1111 }

1113 /* we have the public key */
1114 i=RSA_public_encrypt(len,from,to,pkey->pkey.rsa,padding);
1115 if (i < 0)
1116 SSLerr(SSL_F_SSL_RSA_PUBLIC_ENCRYPT,ERR_R_RSA_LIB);
1117 end:

new/usr/src/lib/openssl/libsunw_ssl/s2_clnt.c 18

1118 EVP_PKEY_free(pkey);
1119 return(i);
1120 }
1121 #else /* !OPENSSL_NO_SSL2 */

1123 # if PEDANTIC
1124 static void *dummy=&dummy;
1125 # endif

1127 #endif

new/usr/src/lib/openssl/libsunw_ssl/s2_enc.c 1

**
 6263 Fri May 30 18:32:19 2014
new/usr/src/lib/openssl/libsunw_ssl/s2_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s2_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include "ssl_locl.h"
60 #ifndef OPENSSL_NO_SSL2
61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_ssl/s2_enc.c 2

63 int ssl2_enc_init(SSL *s, int client)
64 {
65 /* Max number of bytes needed */
66 EVP_CIPHER_CTX *rs,*ws;
67 const EVP_CIPHER *c;
68 const EVP_MD *md;
69 int num;

71 if (!ssl_cipher_get_evp(s->session,&c,&md,NULL,NULL,NULL))
72 {
73 ssl2_return_error(s,SSL2_PE_NO_CIPHER);
74 SSLerr(SSL_F_SSL2_ENC_INIT,SSL_R_PROBLEMS_MAPPING_CIPHER_FUNCTIO
75 return(0);
76 }
77 ssl_replace_hash(&s->read_hash,md);
78 ssl_replace_hash(&s->write_hash,md);

80 if ((s->enc_read_ctx == NULL) &&
81 ((s->enc_read_ctx=(EVP_CIPHER_CTX *)
82 OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL))
83 goto err;

85 /* make sure it’s intialized in case the malloc for enc_write_ctx fails
86 * and we exit with an error */
87 rs= s->enc_read_ctx;
88 EVP_CIPHER_CTX_init(rs);

90 if ((s->enc_write_ctx == NULL) &&
91 ((s->enc_write_ctx=(EVP_CIPHER_CTX *)
92 OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL))
93 goto err;

95 ws= s->enc_write_ctx;
96 EVP_CIPHER_CTX_init(ws);

98 num=c->key_len;
99 s->s2->key_material_length=num*2;
100 OPENSSL_assert(s->s2->key_material_length <= sizeof s->s2->key_material)

102 if (ssl2_generate_key_material(s) <= 0)
103 return 0;

105 OPENSSL_assert(c->iv_len <= (int)sizeof(s->session->key_arg));
106 EVP_EncryptInit_ex(ws,c,NULL,&(s->s2->key_material[(client)?num:0]),
107 s->session->key_arg);
108 EVP_DecryptInit_ex(rs,c,NULL,&(s->s2->key_material[(client)?0:num]),
109 s->session->key_arg);
110 s->s2->read_key= &(s->s2->key_material[(client)?0:num]);
111 s->s2->write_key= &(s->s2->key_material[(client)?num:0]);
112 return(1);
113 err:
114 SSLerr(SSL_F_SSL2_ENC_INIT,ERR_R_MALLOC_FAILURE);
115 return(0);
116 }

118 /* read/writes from s->s2->mac_data using length for encrypt and
119 * decrypt. It sets s->s2->padding and s->[rw]length
120 * if we are encrypting */
121 void ssl2_enc(SSL *s, int send)
122 {
123 EVP_CIPHER_CTX *ds;
124 unsigned long l;
125 int bs;

127 if (send)

new/usr/src/lib/openssl/libsunw_ssl/s2_enc.c 3

128 {
129 ds=s->enc_write_ctx;
130 l=s->s2->wlength;
131 }
132 else
133 {
134 ds=s->enc_read_ctx;
135 l=s->s2->rlength;
136 }

138 /* check for NULL cipher */
139 if (ds == NULL) return;

142 bs=ds->cipher->block_size;
143 /* This should be using (bs-1) and bs instead of 7 and 8, but
144 * what the hell. */
145 if (bs == 8)
146 l=(l+7)/8*8;

148 EVP_Cipher(ds,s->s2->mac_data,s->s2->mac_data,l);
149 }

151 void ssl2_mac(SSL *s, unsigned char *md, int send)
152 {
153 EVP_MD_CTX c;
154 unsigned char sequence[4],*p,*sec,*act;
155 unsigned long seq;
156 unsigned int len;

158 if (send)
159 {
160 seq=s->s2->write_sequence;
161 sec=s->s2->write_key;
162 len=s->s2->wact_data_length;
163 act=s->s2->wact_data;
164 }
165 else
166 {
167 seq=s->s2->read_sequence;
168 sec=s->s2->read_key;
169 len=s->s2->ract_data_length;
170 act=s->s2->ract_data;
171 }

173 p= &(sequence[0]);
174 l2n(seq,p);

176 /* There has to be a MAC algorithm. */
177 EVP_MD_CTX_init(&c);
178 EVP_MD_CTX_copy(&c, s->read_hash);
179 EVP_DigestUpdate(&c,sec,
180 EVP_CIPHER_CTX_key_length(s->enc_read_ctx));
181 EVP_DigestUpdate(&c,act,len);
182 /* the above line also does the pad data */
183 EVP_DigestUpdate(&c,sequence,4);
184 EVP_DigestFinal_ex(&c,md,NULL);
185 EVP_MD_CTX_cleanup(&c);
186 }
187 #else /* !OPENSSL_NO_SSL2 */

189 # if PEDANTIC
190 static void *dummy=&dummy;
191 # endif

193 #endif

new/usr/src/lib/openssl/libsunw_ssl/s2_enc.c 4

new/usr/src/lib/openssl/libsunw_ssl/s2_lib.c 1

**
 13424 Fri May 30 18:32:20 2014
new/usr/src/lib/openssl/libsunw_ssl/s2_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s2_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/s2_lib.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include "ssl_locl.h"
113 #ifndef OPENSSL_NO_SSL2
114 #include <stdio.h>
115 #include <openssl/objects.h>
116 #include <openssl/evp.h>
117 #include <openssl/md5.h>

119 const char ssl2_version_str[]="SSLv2" OPENSSL_VERSION_PTEXT;

121 #define SSL2_NUM_CIPHERS (sizeof(ssl2_ciphers)/sizeof(SSL_CIPHER))

123 /* list of available SSLv2 ciphers (sorted by id) */
124 OPENSSL_GLOBAL const SSL_CIPHER ssl2_ciphers[]={
125 #if 0
126 /* NULL_WITH_MD5 v3 */
127 {

new/usr/src/lib/openssl/libsunw_ssl/s2_lib.c 3

128 1,
129 SSL2_TXT_NULL_WITH_MD5,
130 SSL2_CK_NULL_WITH_MD5,
131 SSL_kRSA,
132 SSL_aRSA,
133 SSL_eNULL,
134 SSL_MD5,
135 SSL_SSLV2,
136 SSL_EXPORT|SSL_EXP40|SSL_STRONG_NONE,
137 0,
138 0,
139 0,
140 },
141 #endif

143 /* RC4_128_WITH_MD5 */
144 {
145 1,
146 SSL2_TXT_RC4_128_WITH_MD5,
147 SSL2_CK_RC4_128_WITH_MD5,
148 SSL_kRSA,
149 SSL_aRSA,
150 SSL_RC4,
151 SSL_MD5,
152 SSL_SSLV2,
153 SSL_NOT_EXP|SSL_MEDIUM,
154 0,
155 128,
156 128,
157 },

159 /* RC4_128_EXPORT40_WITH_MD5 */
160 {
161 1,
162 SSL2_TXT_RC4_128_EXPORT40_WITH_MD5,
163 SSL2_CK_RC4_128_EXPORT40_WITH_MD5,
164 SSL_kRSA,
165 SSL_aRSA,
166 SSL_RC4,
167 SSL_MD5,
168 SSL_SSLV2,
169 SSL_EXPORT|SSL_EXP40,
170 SSL2_CF_5_BYTE_ENC,
171 40,
172 128,
173 },

175 /* RC2_128_CBC_WITH_MD5 */
176 {
177 1,
178 SSL2_TXT_RC2_128_CBC_WITH_MD5,
179 SSL2_CK_RC2_128_CBC_WITH_MD5,
180 SSL_kRSA,
181 SSL_aRSA,
182 SSL_RC2,
183 SSL_MD5,
184 SSL_SSLV2,
185 SSL_NOT_EXP|SSL_MEDIUM,
186 0,
187 128,
188 128,
189 },

191 /* RC2_128_CBC_EXPORT40_WITH_MD5 */
192 {
193 1,

new/usr/src/lib/openssl/libsunw_ssl/s2_lib.c 4

194 SSL2_TXT_RC2_128_CBC_EXPORT40_WITH_MD5,
195 SSL2_CK_RC2_128_CBC_EXPORT40_WITH_MD5,
196 SSL_kRSA,
197 SSL_aRSA,
198 SSL_RC2,
199 SSL_MD5,
200 SSL_SSLV2,
201 SSL_EXPORT|SSL_EXP40,
202 SSL2_CF_5_BYTE_ENC,
203 40,
204 128,
205 },

207 #ifndef OPENSSL_NO_IDEA
208 /* IDEA_128_CBC_WITH_MD5 */
209 {
210 1,
211 SSL2_TXT_IDEA_128_CBC_WITH_MD5,
212 SSL2_CK_IDEA_128_CBC_WITH_MD5,
213 SSL_kRSA,
214 SSL_aRSA,
215 SSL_IDEA,
216 SSL_MD5,
217 SSL_SSLV2,
218 SSL_NOT_EXP|SSL_MEDIUM,
219 0,
220 128,
221 128,
222 },
223 #endif

225 /* DES_64_CBC_WITH_MD5 */
226 {
227 1,
228 SSL2_TXT_DES_64_CBC_WITH_MD5,
229 SSL2_CK_DES_64_CBC_WITH_MD5,
230 SSL_kRSA,
231 SSL_aRSA,
232 SSL_DES,
233 SSL_MD5,
234 SSL_SSLV2,
235 SSL_NOT_EXP|SSL_LOW,
236 0,
237 56,
238 56,
239 },

241 /* DES_192_EDE3_CBC_WITH_MD5 */
242 {
243 1,
244 SSL2_TXT_DES_192_EDE3_CBC_WITH_MD5,
245 SSL2_CK_DES_192_EDE3_CBC_WITH_MD5,
246 SSL_kRSA,
247 SSL_aRSA,
248 SSL_3DES,
249 SSL_MD5,
250 SSL_SSLV2,
251 SSL_NOT_EXP|SSL_HIGH,
252 0,
253 168,
254 168,
255 },

257 #if 0
258 /* RC4_64_WITH_MD5 */
259 {

new/usr/src/lib/openssl/libsunw_ssl/s2_lib.c 5

260 1,
261 SSL2_TXT_RC4_64_WITH_MD5,
262 SSL2_CK_RC4_64_WITH_MD5,
263 SSL_kRSA,
264 SSL_aRSA,
265 SSL_RC4,
266 SSL_MD5,
267 SSL_SSLV2,
268 SSL_NOT_EXP|SSL_LOW,
269 SSL2_CF_8_BYTE_ENC,
270 64,
271 64,
272 },
273 #endif

275 #if 0
276 /* NULL SSLeay (testing) */
277 {
278 0,
279 SSL2_TXT_NULL,
280 SSL2_CK_NULL,
281 0,
282 0,
283 0,
284 0,
285 SSL_SSLV2,
286 SSL_STRONG_NONE,
287 0,
288 0,
289 0,
290 },
291 #endif

293 /* end of list :-) */
294 };

296 long ssl2_default_timeout(void)
297 {
298 return(300);
299 }

301 int ssl2_num_ciphers(void)
302 {
303 return(SSL2_NUM_CIPHERS);
304 }

306 const SSL_CIPHER *ssl2_get_cipher(unsigned int u)
307 {
308 if (u < SSL2_NUM_CIPHERS)
309 return(&(ssl2_ciphers[SSL2_NUM_CIPHERS-1-u]));
310 else
311 return(NULL);
312 }

314 int ssl2_pending(const SSL *s)
315 {
316 return SSL_in_init(s) ? 0 : s->s2->ract_data_length;
317 }

319 int ssl2_new(SSL *s)
320 {
321 SSL2_STATE *s2;

323 if ((s2=OPENSSL_malloc(sizeof *s2)) == NULL) goto err;
324 memset(s2,0,sizeof *s2);

new/usr/src/lib/openssl/libsunw_ssl/s2_lib.c 6

326 #if SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER + 3 > SSL2_MAX_RECORD_LENGTH_2_BYTE_HEA
327 # error "assertion failed"
328 #endif

330 if ((s2->rbuf=OPENSSL_malloc(
331 SSL2_MAX_RECORD_LENGTH_2_BYTE_HEADER+2)) == NULL) goto err;
332 /* wbuf needs one byte more because when using two-byte headers,
333 * we leave the first byte unused in do_ssl_write (s2_pkt.c) */
334 if ((s2->wbuf=OPENSSL_malloc(
335 SSL2_MAX_RECORD_LENGTH_2_BYTE_HEADER+3)) == NULL) goto err;
336 s->s2=s2;

338 ssl2_clear(s);
339 return(1);
340 err:
341 if (s2 != NULL)
342 {
343 if (s2->wbuf != NULL) OPENSSL_free(s2->wbuf);
344 if (s2->rbuf != NULL) OPENSSL_free(s2->rbuf);
345 OPENSSL_free(s2);
346 }
347 return(0);
348 }

350 void ssl2_free(SSL *s)
351 {
352 SSL2_STATE *s2;

354 if(s == NULL)
355 return;

357 s2=s->s2;
358 if (s2->rbuf != NULL) OPENSSL_free(s2->rbuf);
359 if (s2->wbuf != NULL) OPENSSL_free(s2->wbuf);
360 OPENSSL_cleanse(s2,sizeof *s2);
361 OPENSSL_free(s2);
362 s->s2=NULL;
363 }

365 void ssl2_clear(SSL *s)
366 {
367 SSL2_STATE *s2;
368 unsigned char *rbuf,*wbuf;

370 s2=s->s2;

372 rbuf=s2->rbuf;
373 wbuf=s2->wbuf;

375 memset(s2,0,sizeof *s2);

377 s2->rbuf=rbuf;
378 s2->wbuf=wbuf;
379 s2->clear_text=1;
380 s->packet=s2->rbuf;
381 s->version=SSL2_VERSION;
382 s->packet_length=0;
383 }

385 long ssl2_ctrl(SSL *s, int cmd, long larg, void *parg)
386 {
387 int ret=0;

389 switch(cmd)
390 {
391 case SSL_CTRL_GET_SESSION_REUSED:

new/usr/src/lib/openssl/libsunw_ssl/s2_lib.c 7

392 ret=s->hit;
393 break;
394 default:
395 break;
396 }
397 return(ret);
398 }

400 long ssl2_callback_ctrl(SSL *s, int cmd, void (*fp)(void))
401 {
402 return(0);
403 }

405 long ssl2_ctx_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
406 {
407 return(0);
408 }

410 long ssl2_ctx_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp)(void))
411 {
412 return(0);
413 }

415 /* This function needs to check if the ciphers required are actually
416 * available */
417 const SSL_CIPHER *ssl2_get_cipher_by_char(const unsigned char *p)
418 {
419 SSL_CIPHER c;
420 const SSL_CIPHER *cp;
421 unsigned long id;

423 id=0x02000000L|((unsigned long)p[0]<<16L)|
424 ((unsigned long)p[1]<<8L)|(unsigned long)p[2];
425 c.id=id;
426 cp = OBJ_bsearch_ssl_cipher_id(&c, ssl2_ciphers, SSL2_NUM_CIPHERS);
427 if ((cp == NULL) || (cp->valid == 0))
428 return NULL;
429 else
430 return cp;
431 }

433 int ssl2_put_cipher_by_char(const SSL_CIPHER *c, unsigned char *p)
434 {
435 long l;

437 if (p != NULL)
438 {
439 l=c->id;
440 if ((l & 0xff000000) != 0x02000000) return(0);
441 p[0]=((unsigned char)(l>>16L))&0xFF;
442 p[1]=((unsigned char)(l>> 8L))&0xFF;
443 p[2]=((unsigned char)(l))&0xFF;
444 }
445 return(3);
446 }

448 int ssl2_generate_key_material(SSL *s)
449 {
450 unsigned int i;
451 EVP_MD_CTX ctx;
452 unsigned char *km;
453 unsigned char c=’0’;
454 const EVP_MD *md5;
455 int md_size;

457 md5 = EVP_md5();

new/usr/src/lib/openssl/libsunw_ssl/s2_lib.c 8

459 #ifdef CHARSET_EBCDIC
460 c = os_toascii[’0’]; /* Must be an ASCII ’0’, not EBCDIC ’0’,
461 see SSLv2 docu */
462 #endif
463 EVP_MD_CTX_init(&ctx);
464 km=s->s2->key_material;

466 if (s->session->master_key_length < 0 ||
467 s->session->master_key_length > (int)sizeof(s->session->
468 {
469 SSLerr(SSL_F_SSL2_GENERATE_KEY_MATERIAL, ERR_R_INTERNAL_ERROR);
470 return 0;
471 }
472 md_size = EVP_MD_size(md5);
473 if (md_size < 0)
474 return 0;
475 for (i=0; i<s->s2->key_material_length; i += md_size)
476 {
477 if (((km - s->s2->key_material) + md_size) >
478 (int)sizeof(s->s2->key_material))
479 {
480 /* EVP_DigestFinal_ex() below would write beyond buffer
481 SSLerr(SSL_F_SSL2_GENERATE_KEY_MATERIAL, ERR_R_INTERNAL_
482 return 0;
483 }

485 EVP_DigestInit_ex(&ctx, md5, NULL);

487 OPENSSL_assert(s->session->master_key_length >= 0
488 && s->session->master_key_length
489 < (int)sizeof(s->session->master_key));
490 EVP_DigestUpdate(&ctx,s->session->master_key,s->session->master_
491 EVP_DigestUpdate(&ctx,&c,1);
492 c++;
493 EVP_DigestUpdate(&ctx,s->s2->challenge,s->s2->challenge_length);
494 EVP_DigestUpdate(&ctx,s->s2->conn_id,s->s2->conn_id_length);
495 EVP_DigestFinal_ex(&ctx,km,NULL);
496 km += md_size;
497 }

499 EVP_MD_CTX_cleanup(&ctx);
500 return 1;
501 }

503 void ssl2_return_error(SSL *s, int err)
504 {
505 if (!s->error)
506 {
507 s->error=3;
508 s->error_code=err;

510 ssl2_write_error(s);
511 }
512 }

515 void ssl2_write_error(SSL *s)
516 {
517 unsigned char buf[3];
518 int i,error;

520 buf[0]=SSL2_MT_ERROR;
521 buf[1]=(s->error_code>>8)&0xff;
522 buf[2]=(s->error_code)&0xff;

new/usr/src/lib/openssl/libsunw_ssl/s2_lib.c 9

524 /* state=s->rwstate;*/

526 error=s->error; /* number of bytes left to write */
527 s->error=0;
528 OPENSSL_assert(error >= 0 && error <= (int)sizeof(buf));
529 i=ssl2_write(s,&(buf[3-error]),error);

531 /* if (i == error) s->rwstate=state; */

533 if (i < 0)
534 s->error=error;
535 else
536 {
537 s->error=error-i;

539 if (s->error == 0)
540 if (s->msg_callback)
541 s->msg_callback(1, s->version, 0, buf, 3, s, s->
542 }
543 }

545 int ssl2_shutdown(SSL *s)
546 {
547 s->shutdown=(SSL_SENT_SHUTDOWN|SSL_RECEIVED_SHUTDOWN);
548 return(1);
549 }
550 #else /* !OPENSSL_NO_SSL2 */

552 # if PEDANTIC
553 static void *dummy=&dummy;
554 # endif

556 #endif

new/usr/src/lib/openssl/libsunw_ssl/s2_meth.c 1

**
 3650 Fri May 30 18:32:20 2014
new/usr/src/lib/openssl/libsunw_ssl/s2_meth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s2_meth.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include "ssl_locl.h"
60 #ifndef OPENSSL_NO_SSL2
61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_ssl/s2_meth.c 2

62 #include <openssl/objects.h>

64 static const SSL_METHOD *ssl2_get_method(int ver);
65 static const SSL_METHOD *ssl2_get_method(int ver)
66 {
67 if (ver == SSL2_VERSION)
68 return(SSLv2_method());
69 else
70 return(NULL);
71 }

73 IMPLEMENT_ssl2_meth_func(SSLv2_method,
74 ssl2_accept,
75 ssl2_connect,
76 ssl2_get_method)

78 #else /* !OPENSSL_NO_SSL2 */

80 # if PEDANTIC
81 static void *dummy=&dummy;
82 # endif

84 #endif

new/usr/src/lib/openssl/libsunw_ssl/s2_pkt.c 1

**
 20201 Fri May 30 18:32:20 2014
new/usr/src/lib/openssl/libsunw_ssl/s2_pkt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s2_pkt.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/s2_pkt.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include "ssl_locl.h"
113 #ifndef OPENSSL_NO_SSL2
114 #include <stdio.h>
115 #include <errno.h>
116 #define USE_SOCKETS

118 static int read_n(SSL *s,unsigned int n,unsigned int max,unsigned int extend);
119 static int n_do_ssl_write(SSL *s, const unsigned char *buf, unsigned int len);
120 static int write_pending(SSL *s, const unsigned char *buf, unsigned int len);
121 static int ssl_mt_error(int n);

124 /* SSL 2.0 imlementation for SSL_read/SSL_peek -
125 * This routine will return 0 to len bytes, decrypted etc if required.
126 */
127 static int ssl2_read_internal(SSL *s, void *buf, int len, int peek)

new/usr/src/lib/openssl/libsunw_ssl/s2_pkt.c 3

128 {
129 int n;
130 unsigned char mac[MAX_MAC_SIZE];
131 unsigned char *p;
132 int i;
133 int mac_size;

135 ssl2_read_again:
136 if (SSL_in_init(s) && !s->in_handshake)
137 {
138 n=s->handshake_func(s);
139 if (n < 0) return(n);
140 if (n == 0)
141 {
142 SSLerr(SSL_F_SSL2_READ_INTERNAL,SSL_R_SSL_HANDSHAKE_FAIL
143 return(-1);
144 }
145 }

147 clear_sys_error();
148 s->rwstate=SSL_NOTHING;
149 if (len <= 0) return(len);

151 if (s->s2->ract_data_length != 0) /* read from buffer */
152 {
153 if (len > s->s2->ract_data_length)
154 n=s->s2->ract_data_length;
155 else
156 n=len;

158 memcpy(buf,s->s2->ract_data,(unsigned int)n);
159 if (!peek)
160 {
161 s->s2->ract_data_length-=n;
162 s->s2->ract_data+=n;
163 if (s->s2->ract_data_length == 0)
164 s->rstate=SSL_ST_READ_HEADER;
165 }

167 return(n);
168 }

170 /* s->s2->ract_data_length == 0
171 *
172 * Fill the buffer, then goto ssl2_read_again.
173 */

175 if (s->rstate == SSL_ST_READ_HEADER)
176 {
177 if (s->first_packet)
178 {
179 n=read_n(s,5,SSL2_MAX_RECORD_LENGTH_2_BYTE_HEADER+2,0);
180 if (n <= 0) return(n); /* error or non-blocking */
181 s->first_packet=0;
182 p=s->packet;
183 if (!((p[0] & 0x80) && (
184 (p[2] == SSL2_MT_CLIENT_HELLO) ||
185 (p[2] == SSL2_MT_SERVER_HELLO))))
186 {
187 SSLerr(SSL_F_SSL2_READ_INTERNAL,SSL_R_NON_SSLV2_
188 return(-1);
189 }
190 }
191 else
192 {
193 n=read_n(s,2,SSL2_MAX_RECORD_LENGTH_2_BYTE_HEADER+2,0);

new/usr/src/lib/openssl/libsunw_ssl/s2_pkt.c 4

194 if (n <= 0) return(n); /* error or non-blocking */
195 }
196 /* part read stuff */

198 s->rstate=SSL_ST_READ_BODY;
199 p=s->packet;
200 /* Do header */
201 /*s->s2->padding=0;*/
202 s->s2->escape=0;
203 s->s2->rlength=(((unsigned int)p[0])<<8)|((unsigned int)p[1]);
204 if ((p[0] & TWO_BYTE_BIT)) /* Two byte header? */
205 {
206 s->s2->three_byte_header=0;
207 s->s2->rlength&=TWO_BYTE_MASK;
208 }
209 else
210 {
211 s->s2->three_byte_header=1;
212 s->s2->rlength&=THREE_BYTE_MASK;

214 /* security >s2->escape */
215 s->s2->escape=((p[0] & SEC_ESC_BIT))?1:0;
216 }
217 }

219 if (s->rstate == SSL_ST_READ_BODY)
220 {
221 n=s->s2->rlength+2+s->s2->three_byte_header;
222 if (n > (int)s->packet_length)
223 {
224 n-=s->packet_length;
225 i=read_n(s,(unsigned int)n,(unsigned int)n,1);
226 if (i <= 0) return(i); /* ERROR */
227 }

229 p= &(s->packet[2]);
230 s->rstate=SSL_ST_READ_HEADER;
231 if (s->s2->three_byte_header)
232 s->s2->padding= *(p++);
233 else s->s2->padding=0;

235 /* Data portion */
236 if (s->s2->clear_text)
237 {
238 mac_size = 0;
239 s->s2->mac_data=p;
240 s->s2->ract_data=p;
241 if (s->s2->padding)
242 {
243 SSLerr(SSL_F_SSL2_READ_INTERNAL,SSL_R_ILLEGAL_PA
244 return(-1);
245 }
246 }
247 else
248 {
249 mac_size=EVP_MD_CTX_size(s->read_hash);
250 if (mac_size < 0)
251 return -1;
252 OPENSSL_assert(mac_size <= MAX_MAC_SIZE);
253 s->s2->mac_data=p;
254 s->s2->ract_data= &p[mac_size];
255 if (s->s2->padding + mac_size > s->s2->rlength)
256 {
257 SSLerr(SSL_F_SSL2_READ_INTERNAL,SSL_R_ILLEGAL_PA
258 return(-1);
259 }

new/usr/src/lib/openssl/libsunw_ssl/s2_pkt.c 5

260 }

262 s->s2->ract_data_length=s->s2->rlength;
263 /* added a check for length > max_size in case
264 * encryption was not turned on yet due to an error */
265 if ((!s->s2->clear_text) &&
266 (s->s2->rlength >= (unsigned int)mac_size))
267 {
268 ssl2_enc(s,0);
269 s->s2->ract_data_length-=mac_size;
270 ssl2_mac(s,mac,0);
271 s->s2->ract_data_length-=s->s2->padding;
272 if ((CRYPTO_memcmp(mac,s->s2->mac_data,mac_size) !=
273 (s->s2->rlength%EVP_CIPHER_CTX_block_size(s->enc
274 {
275 SSLerr(SSL_F_SSL2_READ_INTERNAL,SSL_R_BAD_MAC_DE
276 return(-1);
277 }
278 }
279 INC32(s->s2->read_sequence); /* expect next number */
280 /* s->s2->ract_data is now available for processing */

282 /* Possibly the packet that we just read had 0 actual data bytes
283 * (SSLeay/OpenSSL itself never sends such packets; see ssl2_wri
284 * In this case, returning 0 would be interpreted by the caller
285 * as indicating EOF, so it’s not a good idea. Instead, we just
286 * continue reading; thus ssl2_read_internal may have to process
287 * multiple packets before it can return.
288 *
289 * [Note that using select() for blocking sockets *never* guaran
290 * that the next SSL_read will not block -- the available
291 * data may contain incomplete packets, and except for SSL 2,
292 * renegotiation can confuse things even more.] */

294 goto ssl2_read_again; /* This should really be
295 * "return ssl2_read(s,buf,len)",
296 * but that would allow for
297 * denial-of-service attacks if a
298 * C compiler is used that does not
299 * recognize end-recursion. */
300 }
301 else
302 {
303 SSLerr(SSL_F_SSL2_READ_INTERNAL,SSL_R_BAD_STATE);
304 return(-1);
305 }
306 }

308 int ssl2_read(SSL *s, void *buf, int len)
309 {
310 return ssl2_read_internal(s, buf, len, 0);
311 }

313 int ssl2_peek(SSL *s, void *buf, int len)
314 {
315 return ssl2_read_internal(s, buf, len, 1);
316 }

318 static int read_n(SSL *s, unsigned int n, unsigned int max,
319 unsigned int extend)
320 {
321 int i,off,newb;

323 /* if there is stuff still in the buffer from a previous read,
324 * and there is more than we want, take some. */
325 if (s->s2->rbuf_left >= (int)n)

new/usr/src/lib/openssl/libsunw_ssl/s2_pkt.c 6

326 {
327 if (extend)
328 s->packet_length+=n;
329 else
330 {
331 s->packet= &(s->s2->rbuf[s->s2->rbuf_offs]);
332 s->packet_length=n;
333 }
334 s->s2->rbuf_left-=n;
335 s->s2->rbuf_offs+=n;
336 return(n);
337 }

339 if (!s->read_ahead) max=n;
340 if (max > (unsigned int)(SSL2_MAX_RECORD_LENGTH_2_BYTE_HEADER+2))
341 max=SSL2_MAX_RECORD_LENGTH_2_BYTE_HEADER+2;
342

344 /* Else we want more than we have.
345 * First, if there is some left or we want to extend */
346 off=0;
347 if ((s->s2->rbuf_left != 0) || ((s->packet_length != 0) && extend))
348 {
349 newb=s->s2->rbuf_left;
350 if (extend)
351 {
352 off=s->packet_length;
353 if (s->packet != s->s2->rbuf)
354 memcpy(s->s2->rbuf,s->packet,
355 (unsigned int)newb+off);
356 }
357 else if (s->s2->rbuf_offs != 0)
358 {
359 memcpy(s->s2->rbuf,&(s->s2->rbuf[s->s2->rbuf_offs]),
360 (unsigned int)newb);
361 s->s2->rbuf_offs=0;
362 }
363 s->s2->rbuf_left=0;
364 }
365 else
366 newb=0;

368 /* off is the offset to start writing too.
369 * r->s2->rbuf_offs is the ’unread data’, now 0.
370 * newb is the number of new bytes so far
371 */
372 s->packet=s->s2->rbuf;
373 while (newb < (int)n)
374 {
375 clear_sys_error();
376 if (s->rbio != NULL)
377 {
378 s->rwstate=SSL_READING;
379 i=BIO_read(s->rbio,(char *)&(s->s2->rbuf[off+newb]),
380 max-newb);
381 }
382 else
383 {
384 SSLerr(SSL_F_READ_N,SSL_R_READ_BIO_NOT_SET);
385 i= -1;
386 }
387 #ifdef PKT_DEBUG
388 if (s->debug & 0x01) sleep(1);
389 #endif
390 if (i <= 0)
391 {

new/usr/src/lib/openssl/libsunw_ssl/s2_pkt.c 7

392 s->s2->rbuf_left+=newb;
393 return(i);
394 }
395 newb+=i;
396 }

398 /* record unread data */
399 if (newb > (int)n)
400 {
401 s->s2->rbuf_offs=n+off;
402 s->s2->rbuf_left=newb-n;
403 }
404 else
405 {
406 s->s2->rbuf_offs=0;
407 s->s2->rbuf_left=0;
408 }
409 if (extend)
410 s->packet_length+=n;
411 else
412 s->packet_length=n;
413 s->rwstate=SSL_NOTHING;
414 return(n);
415 }

417 int ssl2_write(SSL *s, const void *_buf, int len)
418 {
419 const unsigned char *buf=_buf;
420 unsigned int n,tot;
421 int i;

423 if (SSL_in_init(s) && !s->in_handshake)
424 {
425 i=s->handshake_func(s);
426 if (i < 0) return(i);
427 if (i == 0)
428 {
429 SSLerr(SSL_F_SSL2_WRITE,SSL_R_SSL_HANDSHAKE_FAILURE);
430 return(-1);
431 }
432 }

434 if (s->error)
435 {
436 ssl2_write_error(s);
437 if (s->error)
438 return(-1);
439 }

441 clear_sys_error();
442 s->rwstate=SSL_NOTHING;
443 if (len <= 0) return(len);

445 tot=s->s2->wnum;
446 s->s2->wnum=0;

448 n=(len-tot);
449 for (;;)
450 {
451 i=n_do_ssl_write(s,&(buf[tot]),n);
452 if (i <= 0)
453 {
454 s->s2->wnum=tot;
455 return(i);
456 }
457 if ((i == (int)n) ||

new/usr/src/lib/openssl/libsunw_ssl/s2_pkt.c 8

458 (s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE))
459 {
460 return(tot+i);
461 }
462
463 n-=i;
464 tot+=i;
465 }
466 }

468 static int write_pending(SSL *s, const unsigned char *buf, unsigned int len)
469 {
470 int i;

472 /* s->s2->wpend_len != 0 MUST be true. */

474 /* check that they have given us the same buffer to
475 * write */
476 if ((s->s2->wpend_tot > (int)len) ||
477 ((s->s2->wpend_buf != buf) &&
478 !(s->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER)))
479 {
480 SSLerr(SSL_F_WRITE_PENDING,SSL_R_BAD_WRITE_RETRY);
481 return(-1);
482 }

484 for (;;)
485 {
486 clear_sys_error();
487 if (s->wbio != NULL)
488 {
489 s->rwstate=SSL_WRITING;
490 i=BIO_write(s->wbio,
491 (char *)&(s->s2->write_ptr[s->s2->wpend_off]),
492 (unsigned int)s->s2->wpend_len);
493 }
494 else
495 {
496 SSLerr(SSL_F_WRITE_PENDING,SSL_R_WRITE_BIO_NOT_SET);
497 i= -1;
498 }
499 #ifdef PKT_DEBUG
500 if (s->debug & 0x01) sleep(1);
501 #endif
502 if (i == s->s2->wpend_len)
503 {
504 s->s2->wpend_len=0;
505 s->rwstate=SSL_NOTHING;
506 return(s->s2->wpend_ret);
507 }
508 else if (i <= 0)
509 return(i);
510 s->s2->wpend_off+=i;
511 s->s2->wpend_len-=i;
512 }
513 }

515 static int n_do_ssl_write(SSL *s, const unsigned char *buf, unsigned int len)
516 {
517 unsigned int j,k,olen,p,bs;
518 int mac_size;
519 register unsigned char *pp;

521 olen=len;

523 /* first check if there is data from an encryption waiting to

new/usr/src/lib/openssl/libsunw_ssl/s2_pkt.c 9

524 * be sent - it must be sent because the other end is waiting.
525 * This will happen with non-blocking IO. We print it and then
526 * return.
527 */
528 if (s->s2->wpend_len != 0) return(write_pending(s,buf,len));

530 /* set mac_size to mac size */
531 if (s->s2->clear_text)
532 mac_size=0;
533 else
534 {
535 mac_size=EVP_MD_CTX_size(s->write_hash);
536 if (mac_size < 0)
537 return -1;
538 }

540 /* lets set the pad p */
541 if (s->s2->clear_text)
542 {
543 if (len > SSL2_MAX_RECORD_LENGTH_2_BYTE_HEADER)
544 len=SSL2_MAX_RECORD_LENGTH_2_BYTE_HEADER;
545 p=0;
546 s->s2->three_byte_header=0;
547 /* len=len; */
548 }
549 else
550 {
551 bs=EVP_CIPHER_CTX_block_size(s->enc_read_ctx);
552 j=len+mac_size;
553 /* Two-byte headers allow for a larger record length than
554 * three-byte headers, but we can’t use them if we need
555 * padding or if we have to set the escape bit. */
556 if ((j > SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER) &&
557 (!s->s2->escape))
558 {
559 if (j > SSL2_MAX_RECORD_LENGTH_2_BYTE_HEADER)
560 j=SSL2_MAX_RECORD_LENGTH_2_BYTE_HEADER;
561 /* set k to the max number of bytes with 2
562 * byte header */
563 k=j-(j%bs);
564 /* how many data bytes? */
565 len=k-mac_size;
566 s->s2->three_byte_header=0;
567 p=0;
568 }
569 else if ((bs <= 1) && (!s->s2->escape))
570 {
571 /* j <= SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER, thus
572 * j < SSL2_MAX_RECORD_LENGTH_2_BYTE_HEADER */
573 s->s2->three_byte_header=0;
574 p=0;
575 }
576 else /* we may have to use a 3 byte header */
577 {
578 /* If s->s2->escape is not set, then
579 * j <= SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER, and thus
580 * j < SSL2_MAX_RECORD_LENGTH_2_BYTE_HEADER. */
581 p=(j%bs);
582 p=(p == 0)?0:(bs-p);
583 if (s->s2->escape)
584 {
585 s->s2->three_byte_header=1;
586 if (j > SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER)
587 j=SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER;
588 }
589 else

new/usr/src/lib/openssl/libsunw_ssl/s2_pkt.c 10

590 s->s2->three_byte_header=(p == 0)?0:1;
591 }
592 }

594 /* Now
595 * j <= SSL2_MAX_RECORD_LENGTH_2_BYTE_HEADER
596 * holds, and if s->s2->three_byte_header is set, then even
597 * j <= SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER.
598 */

600 /* mac_size is the number of MAC bytes
601 * len is the number of data bytes we are going to send
602 * p is the number of padding bytes
603 * (if it is a two-byte header, then p == 0) */

605 s->s2->wlength=len;
606 s->s2->padding=p;
607 s->s2->mac_data= &(s->s2->wbuf[3]);
608 s->s2->wact_data= &(s->s2->wbuf[3+mac_size]);
609 /* we copy the data into s->s2->wbuf */
610 memcpy(s->s2->wact_data,buf,len);
611 if (p)
612 memset(&(s->s2->wact_data[len]),0,p); /* arbitrary padding */

614 if (!s->s2->clear_text)
615 {
616 s->s2->wact_data_length=len+p;
617 ssl2_mac(s,s->s2->mac_data,1);
618 s->s2->wlength+=p+mac_size;
619 ssl2_enc(s,1);
620 }

622 /* package up the header */
623 s->s2->wpend_len=s->s2->wlength;
624 if (s->s2->three_byte_header) /* 3 byte header */
625 {
626 pp=s->s2->mac_data;
627 pp-=3;
628 pp[0]=(s->s2->wlength>>8)&(THREE_BYTE_MASK>>8);
629 if (s->s2->escape) pp[0]|=SEC_ESC_BIT;
630 pp[1]=s->s2->wlength&0xff;
631 pp[2]=s->s2->padding;
632 s->s2->wpend_len+=3;
633 }
634 else
635 {
636 pp=s->s2->mac_data;
637 pp-=2;
638 pp[0]=((s->s2->wlength>>8)&(TWO_BYTE_MASK>>8))|TWO_BYTE_BIT;
639 pp[1]=s->s2->wlength&0xff;
640 s->s2->wpend_len+=2;
641 }
642 s->s2->write_ptr=pp;
643
644 INC32(s->s2->write_sequence); /* expect next number */

646 /* lets try to actually write the data */
647 s->s2->wpend_tot=olen;
648 s->s2->wpend_buf=buf;

650 s->s2->wpend_ret=len;

652 s->s2->wpend_off=0;
653 return(write_pending(s,buf,olen));
654 }

new/usr/src/lib/openssl/libsunw_ssl/s2_pkt.c 11

656 int ssl2_part_read(SSL *s, unsigned long f, int i)
657 {
658 unsigned char *p;
659 int j;

661 if (i < 0)
662 {
663 /* ssl2_return_error(s); */
664 /* for non-blocking io,
665 * this is not necessarily fatal */
666 return(i);
667 }
668 else
669 {
670 s->init_num+=i;

672 /* Check for error. While there are recoverable errors,
673 * this function is not called when those must be expected;
674 * any error detected here is fatal. */
675 if (s->init_num >= 3)
676 {
677 p=(unsigned char *)s->init_buf->data;
678 if (p[0] == SSL2_MT_ERROR)
679 {
680 j=(p[1]<<8)|p[2];
681 SSLerr((int)f,ssl_mt_error(j));
682 s->init_num -= 3;
683 if (s->init_num > 0)
684 memmove(p, p+3, s->init_num);
685 }
686 }

688 /* If it’s not an error message, we have some error anyway --
689 * the message was shorter than expected. This too is treated
690 * as fatal (at least if SSL_get_error is asked for its opinion)
691 return(0);
692 }
693 }

695 int ssl2_do_write(SSL *s)
696 {
697 int ret;

699 ret=ssl2_write(s,&s->init_buf->data[s->init_off],s->init_num);
700 if (ret == s->init_num)
701 {
702 if (s->msg_callback)
703 s->msg_callback(1, s->version, 0, s->init_buf->data, (si
704 return(1);
705 }
706 if (ret < 0)
707 return(-1);
708 s->init_off+=ret;
709 s->init_num-=ret;
710 return(0);
711 }

713 static int ssl_mt_error(int n)
714 {
715 int ret;

717 switch (n)
718 {
719 case SSL2_PE_NO_CIPHER:
720 ret=SSL_R_PEER_ERROR_NO_CIPHER;
721 break;

new/usr/src/lib/openssl/libsunw_ssl/s2_pkt.c 12

722 case SSL2_PE_NO_CERTIFICATE:
723 ret=SSL_R_PEER_ERROR_NO_CERTIFICATE;
724 break;
725 case SSL2_PE_BAD_CERTIFICATE:
726 ret=SSL_R_PEER_ERROR_CERTIFICATE;
727 break;
728 case SSL2_PE_UNSUPPORTED_CERTIFICATE_TYPE:
729 ret=SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE;
730 break;
731 default:
732 ret=SSL_R_UNKNOWN_REMOTE_ERROR_TYPE;
733 break;
734 }
735 return(ret);
736 }
737 #else /* !OPENSSL_NO_SSL2 */

739 # if PEDANTIC
740 static void *dummy=&dummy;
741 # endif

743 #endif

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 1

**
 32266 Fri May 30 18:32:20 2014
new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s2_srvr.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include "ssl_locl.h"
113 #ifndef OPENSSL_NO_SSL2
114 #include <stdio.h>
115 #include <openssl/bio.h>
116 #include <openssl/rand.h>
117 #include <openssl/objects.h>
118 #include <openssl/evp.h>

120 static const SSL_METHOD *ssl2_get_server_method(int ver);
121 static int get_client_master_key(SSL *s);
122 static int get_client_hello(SSL *s);
123 static int server_hello(SSL *s);
124 static int get_client_finished(SSL *s);
125 static int server_verify(SSL *s);
126 static int server_finish(SSL *s);
127 static int request_certificate(SSL *s);

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 3

128 static int ssl_rsa_private_decrypt(CERT *c, int len, unsigned char *from,
129 unsigned char *to,int padding);
130 #define BREAK break

132 static const SSL_METHOD *ssl2_get_server_method(int ver)
133 {
134 if (ver == SSL2_VERSION)
135 return(SSLv2_server_method());
136 else
137 return(NULL);
138 }

140 IMPLEMENT_ssl2_meth_func(SSLv2_server_method,
141 ssl2_accept,
142 ssl_undefined_function,
143 ssl2_get_server_method)

145 int ssl2_accept(SSL *s)
146 {
147 unsigned long l=(unsigned long)time(NULL);
148 BUF_MEM *buf=NULL;
149 int ret= -1;
150 long num1;
151 void (*cb)(const SSL *ssl,int type,int val)=NULL;
152 int new_state,state;

154 RAND_add(&l,sizeof(l),0);
155 ERR_clear_error();
156 clear_sys_error();

158 if (s->info_callback != NULL)
159 cb=s->info_callback;
160 else if (s->ctx->info_callback != NULL)
161 cb=s->ctx->info_callback;

163 /* init things to blank */
164 s->in_handshake++;
165 if (!SSL_in_init(s) || SSL_in_before(s)) SSL_clear(s);

167 if (s->cert == NULL)
168 {
169 SSLerr(SSL_F_SSL2_ACCEPT,SSL_R_NO_CERTIFICATE_SET);
170 return(-1);
171 }

173 clear_sys_error();
174 for (;;)
175 {
176 state=s->state;

178 switch (s->state)
179 {
180 case SSL_ST_BEFORE:
181 case SSL_ST_ACCEPT:
182 case SSL_ST_BEFORE|SSL_ST_ACCEPT:
183 case SSL_ST_OK|SSL_ST_ACCEPT:

185 s->server=1;
186 if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_START,1);

188 s->version=SSL2_VERSION;
189 s->type=SSL_ST_ACCEPT;

191 buf=s->init_buf;
192 if ((buf == NULL) && ((buf=BUF_MEM_new()) == NULL))
193 { ret= -1; goto end; }

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 4

194 if (!BUF_MEM_grow(buf,(int)
195 SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER))
196 { ret= -1; goto end; }
197 s->init_buf=buf;
198 s->init_num=0;
199 s->ctx->stats.sess_accept++;
200 s->handshake_func=ssl2_accept;
201 s->state=SSL2_ST_GET_CLIENT_HELLO_A;
202 BREAK;

204 case SSL2_ST_GET_CLIENT_HELLO_A:
205 case SSL2_ST_GET_CLIENT_HELLO_B:
206 case SSL2_ST_GET_CLIENT_HELLO_C:
207 s->shutdown=0;
208 ret=get_client_hello(s);
209 if (ret <= 0) goto end;
210 s->init_num=0;
211 s->state=SSL2_ST_SEND_SERVER_HELLO_A;
212 BREAK;

214 case SSL2_ST_SEND_SERVER_HELLO_A:
215 case SSL2_ST_SEND_SERVER_HELLO_B:
216 ret=server_hello(s);
217 if (ret <= 0) goto end;
218 s->init_num=0;
219 if (!s->hit)
220 {
221 s->state=SSL2_ST_GET_CLIENT_MASTER_KEY_A;
222 BREAK;
223 }
224 else
225 {
226 s->state=SSL2_ST_SERVER_START_ENCRYPTION;
227 BREAK;
228 }
229 case SSL2_ST_GET_CLIENT_MASTER_KEY_A:
230 case SSL2_ST_GET_CLIENT_MASTER_KEY_B:
231 ret=get_client_master_key(s);
232 if (ret <= 0) goto end;
233 s->init_num=0;
234 s->state=SSL2_ST_SERVER_START_ENCRYPTION;
235 BREAK;

237 case SSL2_ST_SERVER_START_ENCRYPTION:
238 /* Ok we how have sent all the stuff needed to
239 * start encrypting, the next packet back will
240 * be encrypted. */
241 if (!ssl2_enc_init(s,0))
242 { ret= -1; goto end; }
243 s->s2->clear_text=0;
244 s->state=SSL2_ST_SEND_SERVER_VERIFY_A;
245 BREAK;

247 case SSL2_ST_SEND_SERVER_VERIFY_A:
248 case SSL2_ST_SEND_SERVER_VERIFY_B:
249 ret=server_verify(s);
250 if (ret <= 0) goto end;
251 s->init_num=0;
252 if (s->hit)
253 {
254 /* If we are in here, we have been
255 * buffering the output, so we need to
256 * flush it and remove buffering from
257 * future traffic */
258 s->state=SSL2_ST_SEND_SERVER_VERIFY_C;
259 BREAK;

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 5

260 }
261 else
262 {
263 s->state=SSL2_ST_GET_CLIENT_FINISHED_A;
264 break;
265 }

267 case SSL2_ST_SEND_SERVER_VERIFY_C:
268 /* get the number of bytes to write */
269 num1=BIO_ctrl(s->wbio,BIO_CTRL_INFO,0,NULL);
270 if (num1 > 0)
271 {
272 s->rwstate=SSL_WRITING;
273 num1=BIO_flush(s->wbio);
274 if (num1 <= 0) { ret= -1; goto end; }
275 s->rwstate=SSL_NOTHING;
276 }

278 /* flushed and now remove buffering */
279 s->wbio=BIO_pop(s->wbio);

281 s->state=SSL2_ST_GET_CLIENT_FINISHED_A;
282 BREAK;

284 case SSL2_ST_GET_CLIENT_FINISHED_A:
285 case SSL2_ST_GET_CLIENT_FINISHED_B:
286 ret=get_client_finished(s);
287 if (ret <= 0)
288 goto end;
289 s->init_num=0;
290 s->state=SSL2_ST_SEND_REQUEST_CERTIFICATE_A;
291 BREAK;

293 case SSL2_ST_SEND_REQUEST_CERTIFICATE_A:
294 case SSL2_ST_SEND_REQUEST_CERTIFICATE_B:
295 case SSL2_ST_SEND_REQUEST_CERTIFICATE_C:
296 case SSL2_ST_SEND_REQUEST_CERTIFICATE_D:
297 /* don’t do a ’request certificate’ if we
298 * don’t want to, or we already have one, and
299 * we only want to do it once. */
300 if (!(s->verify_mode & SSL_VERIFY_PEER) ||
301 ((s->session->peer != NULL) &&
302 (s->verify_mode & SSL_VERIFY_CLIENT_ONCE)))
303 {
304 s->state=SSL2_ST_SEND_SERVER_FINISHED_A;
305 break;
306 }
307 else
308 {
309 ret=request_certificate(s);
310 if (ret <= 0) goto end;
311 s->init_num=0;
312 s->state=SSL2_ST_SEND_SERVER_FINISHED_A;
313 }
314 BREAK;

316 case SSL2_ST_SEND_SERVER_FINISHED_A:
317 case SSL2_ST_SEND_SERVER_FINISHED_B:
318 ret=server_finish(s);
319 if (ret <= 0) goto end;
320 s->init_num=0;
321 s->state=SSL_ST_OK;
322 break;

324 case SSL_ST_OK:
325 BUF_MEM_free(s->init_buf);

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 6

326 ssl_free_wbio_buffer(s);
327 s->init_buf=NULL;
328 s->init_num=0;
329 /* ERR_clear_error();*/

331 ssl_update_cache(s,SSL_SESS_CACHE_SERVER);

333 s->ctx->stats.sess_accept_good++;
334 /* s->server=1; */
335 ret=1;

337 if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_DONE,1);

339 goto end;
340 /* BREAK; */

342 default:
343 SSLerr(SSL_F_SSL2_ACCEPT,SSL_R_UNKNOWN_STATE);
344 ret= -1;
345 goto end;
346 /* BREAK; */
347 }
348
349 if ((cb != NULL) && (s->state != state))
350 {
351 new_state=s->state;
352 s->state=state;
353 cb(s,SSL_CB_ACCEPT_LOOP,1);
354 s->state=new_state;
355 }
356 }
357 end:
358 s->in_handshake--;
359 if (cb != NULL)
360 cb(s,SSL_CB_ACCEPT_EXIT,ret);
361 return(ret);
362 }

364 static int get_client_master_key(SSL *s)
365 {
366 int is_export,i,n,keya,ek;
367 unsigned long len;
368 unsigned char *p;
369 const SSL_CIPHER *cp;
370 const EVP_CIPHER *c;
371 const EVP_MD *md;

373 p=(unsigned char *)s->init_buf->data;
374 if (s->state == SSL2_ST_GET_CLIENT_MASTER_KEY_A)
375 {
376 i=ssl2_read(s,(char *)&(p[s->init_num]),10-s->init_num);

378 if (i < (10-s->init_num))
379 return(ssl2_part_read(s,SSL_F_GET_CLIENT_MASTER_KEY,i));
380 s->init_num = 10;

382 if (*(p++) != SSL2_MT_CLIENT_MASTER_KEY)
383 {
384 if (p[-1] != SSL2_MT_ERROR)
385 {
386 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
387 SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,SSL_R_READ_WR
388 }
389 else
390 SSLerr(SSL_F_GET_CLIENT_MASTER_KEY, SSL_R_PEER_E
391 return(-1);

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 7

392 }

394 cp=ssl2_get_cipher_by_char(p);
395 if (cp == NULL)
396 {
397 ssl2_return_error(s,SSL2_PE_NO_CIPHER);
398 SSLerr(SSL_F_GET_CLIENT_MASTER_KEY, SSL_R_NO_CIPHER_MATC
399 return(-1);
400 }
401 s->session->cipher= cp;

403 p+=3;
404 n2s(p,i); s->s2->tmp.clear=i;
405 n2s(p,i); s->s2->tmp.enc=i;
406 n2s(p,i);
407 if(i > SSL_MAX_KEY_ARG_LENGTH)
408 {
409 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
410 SSLerr(SSL_F_GET_CLIENT_MASTER_KEY, SSL_R_KEY_ARG_TOO_LO
411 return -1;
412 }
413 s->session->key_arg_length=i;
414 s->state=SSL2_ST_GET_CLIENT_MASTER_KEY_B;
415 }

417 /* SSL2_ST_GET_CLIENT_MASTER_KEY_B */
418 p=(unsigned char *)s->init_buf->data;
419 if (s->init_buf->length < SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER)
420 {
421 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
422 SSLerr(SSL_F_GET_CLIENT_MASTER_KEY, ERR_R_INTERNAL_ERROR);
423 return -1;
424 }
425 keya=s->session->key_arg_length;
426 len = 10 + (unsigned long)s->s2->tmp.clear + (unsigned long)s->s2->tmp.e
427 if (len > SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER)
428 {
429 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
430 SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,SSL_R_MESSAGE_TOO_LONG);
431 return -1;
432 }
433 n = (int)len - s->init_num;
434 i = ssl2_read(s,(char *)&(p[s->init_num]),n);
435 if (i != n) return(ssl2_part_read(s,SSL_F_GET_CLIENT_MASTER_KEY,i));
436 if (s->msg_callback)
437 s->msg_callback(0, s->version, 0, p, (size_t)len, s, s->msg_call
438 p += 10;

440 memcpy(s->session->key_arg,&(p[s->s2->tmp.clear+s->s2->tmp.enc]),
441 (unsigned int)keya);

443 if (s->cert->pkeys[SSL_PKEY_RSA_ENC].privatekey == NULL)
444 {
445 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
446 SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,SSL_R_NO_PRIVATEKEY);
447 return(-1);
448 }
449 i=ssl_rsa_private_decrypt(s->cert,s->s2->tmp.enc,
450 &(p[s->s2->tmp.clear]),&(p[s->s2->tmp.clear]),
451 (s->s2->ssl2_rollback)?RSA_SSLV23_PADDING:RSA_PKCS1_PADDING);

453 is_export=SSL_C_IS_EXPORT(s->session->cipher);
454
455 if (!ssl_cipher_get_evp(s->session,&c,&md,NULL,NULL,NULL))
456 {
457 ssl2_return_error(s,SSL2_PE_NO_CIPHER);

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 8

458 SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,SSL_R_PROBLEMS_MAPPING_CIPHER
459 return(0);
460 }

462 if (s->session->cipher->algorithm2 & SSL2_CF_8_BYTE_ENC)
463 {
464 is_export=1;
465 ek=8;
466 }
467 else
468 ek=5;

470 /* bad decrypt */
471 #if 1
472 /* If a bad decrypt, continue with protocol but with a
473 * random master secret (Bleichenbacher attack) */
474 if ((i < 0) ||
475 ((!is_export && (i != EVP_CIPHER_key_length(c)))
476 || (is_export && ((i != ek) || (s->s2->tmp.clear+(unsigned int)i
477 (unsigned int)EVP_CIPHER_key_length(c))))))
478 {
479 ERR_clear_error();
480 if (is_export)
481 i=ek;
482 else
483 i=EVP_CIPHER_key_length(c);
484 if (RAND_pseudo_bytes(p,i) <= 0)
485 return 0;
486 }
487 #else
488 if (i < 0)
489 {
490 error=1;
491 SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,SSL_R_BAD_RSA_DECRYPT);
492 }
493 /* incorrect number of key bytes for non export cipher */
494 else if ((!is_export && (i != EVP_CIPHER_key_length(c)))
495 || (is_export && ((i != ek) || (s->s2->tmp.clear+i !=
496 EVP_CIPHER_key_length(c)))))
497 {
498 error=1;
499 SSLerr(SSL_F_GET_CLIENT_MASTER_KEY,SSL_R_WRONG_NUMBER_OF_KEY_BIT
500 }
501 if (error)
502 {
503 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
504 return(-1);
505 }
506 #endif

508 if (is_export) i+=s->s2->tmp.clear;

510 if (i > SSL_MAX_MASTER_KEY_LENGTH)
511 {
512 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
513 SSLerr(SSL_F_GET_CLIENT_MASTER_KEY, ERR_R_INTERNAL_ERROR);
514 return -1;
515 }
516 s->session->master_key_length=i;
517 memcpy(s->session->master_key,p,(unsigned int)i);
518 return(1);
519 }

521 static int get_client_hello(SSL *s)
522 {
523 int i,n;

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 9

524 unsigned long len;
525 unsigned char *p;
526 STACK_OF(SSL_CIPHER) *cs; /* a stack of SSL_CIPHERS */
527 STACK_OF(SSL_CIPHER) *cl; /* the ones we want to use */
528 STACK_OF(SSL_CIPHER) *prio, *allow;
529 int z;

531 /* This is a bit of a hack to check for the correct packet
532 * type the first time round. */
533 if (s->state == SSL2_ST_GET_CLIENT_HELLO_A)
534 {
535 s->first_packet=1;
536 s->state=SSL2_ST_GET_CLIENT_HELLO_B;
537 }

539 p=(unsigned char *)s->init_buf->data;
540 if (s->state == SSL2_ST_GET_CLIENT_HELLO_B)
541 {
542 i=ssl2_read(s,(char *)&(p[s->init_num]),9-s->init_num);
543 if (i < (9-s->init_num))
544 return(ssl2_part_read(s,SSL_F_GET_CLIENT_HELLO,i));
545 s->init_num = 9;
546
547 if (*(p++) != SSL2_MT_CLIENT_HELLO)
548 {
549 if (p[-1] != SSL2_MT_ERROR)
550 {
551 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
552 SSLerr(SSL_F_GET_CLIENT_HELLO,SSL_R_READ_WRONG_P
553 }
554 else
555 SSLerr(SSL_F_GET_CLIENT_HELLO,SSL_R_PEER_ERROR);
556 return(-1);
557 }
558 n2s(p,i);
559 if (i < s->version) s->version=i;
560 n2s(p,i); s->s2->tmp.cipher_spec_length=i;
561 n2s(p,i); s->s2->tmp.session_id_length=i;
562 n2s(p,i); s->s2->challenge_length=i;
563 if ((i < SSL2_MIN_CHALLENGE_LENGTH) ||
564 (i > SSL2_MAX_CHALLENGE_LENGTH))
565 {
566 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
567 SSLerr(SSL_F_GET_CLIENT_HELLO,SSL_R_INVALID_CHALLENGE_LE
568 return(-1);
569 }
570 s->state=SSL2_ST_GET_CLIENT_HELLO_C;
571 }

573 /* SSL2_ST_GET_CLIENT_HELLO_C */
574 p=(unsigned char *)s->init_buf->data;
575 len = 9 + (unsigned long)s->s2->tmp.cipher_spec_length + (unsigned long)
576 if (len > SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER)
577 {
578 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
579 SSLerr(SSL_F_GET_CLIENT_HELLO,SSL_R_MESSAGE_TOO_LONG);
580 return -1;
581 }
582 n = (int)len - s->init_num;
583 i = ssl2_read(s,(char *)&(p[s->init_num]),n);
584 if (i != n) return(ssl2_part_read(s,SSL_F_GET_CLIENT_HELLO,i));
585 if (s->msg_callback)
586 s->msg_callback(0, s->version, 0, p, (size_t)len, s, s->msg_call
587 p += 9;

589 /* get session-id before cipher stuff so we can get out session

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 10

590 * structure if it is cached */
591 /* session-id */
592 if ((s->s2->tmp.session_id_length != 0) &&
593 (s->s2->tmp.session_id_length != SSL2_SSL_SESSION_ID_LENGTH))
594 {
595 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
596 SSLerr(SSL_F_GET_CLIENT_HELLO,SSL_R_BAD_SSL_SESSION_ID_LENGTH);
597 return(-1);
598 }

600 if (s->s2->tmp.session_id_length == 0)
601 {
602 if (!ssl_get_new_session(s,1))
603 {
604 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
605 return(-1);
606 }
607 }
608 else
609 {
610 i=ssl_get_prev_session(s,&(p[s->s2->tmp.cipher_spec_length]),
611 s->s2->tmp.session_id_length, NULL);
612 if (i == 1)
613 { /* previous session */
614 s->hit=1;
615 }
616 else if (i == -1)
617 {
618 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
619 return(-1);
620 }
621 else
622 {
623 if (s->cert == NULL)
624 {
625 ssl2_return_error(s,SSL2_PE_NO_CERTIFICATE);
626 SSLerr(SSL_F_GET_CLIENT_HELLO,SSL_R_NO_CERTIFICA
627 return(-1);
628 }

630 if (!ssl_get_new_session(s,1))
631 {
632 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
633 return(-1);
634 }
635 }
636 }

638 if (!s->hit)
639 {
640 cs=ssl_bytes_to_cipher_list(s,p,s->s2->tmp.cipher_spec_length,
641 &s->session->ciphers);
642 if (cs == NULL) goto mem_err;

644 cl=SSL_get_ciphers(s);

646 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE)
647 {
648 prio=sk_SSL_CIPHER_dup(cl);
649 if (prio == NULL) goto mem_err;
650 allow = cs;
651 }
652 else
653 {
654 prio = cs;
655 allow = cl;

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 11

656 }
657 for (z=0; z<sk_SSL_CIPHER_num(prio); z++)
658 {
659 if (sk_SSL_CIPHER_find(allow,sk_SSL_CIPHER_value(prio,z)
660 {
661 (void)sk_SSL_CIPHER_delete(prio,z);
662 z--;
663 }
664 }
665 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE)
666 {
667 sk_SSL_CIPHER_free(s->session->ciphers);
668 s->session->ciphers = prio;
669 }
670 /* s->session->ciphers should now have a list of
671 * ciphers that are on both the client and server.
672 * This list is ordered by the order the client sent
673 * the ciphers or in the order of the server’s preference
674 * if SSL_OP_CIPHER_SERVER_PREFERENCE was set.
675 */
676 }
677 p+=s->s2->tmp.cipher_spec_length;
678 /* done cipher selection */

680 /* session id extracted already */
681 p+=s->s2->tmp.session_id_length;

683 /* challenge */
684 if (s->s2->challenge_length > sizeof s->s2->challenge)
685 {
686 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
687 SSLerr(SSL_F_GET_CLIENT_HELLO, ERR_R_INTERNAL_ERROR);
688 return -1;
689 }
690 memcpy(s->s2->challenge,p,(unsigned int)s->s2->challenge_length);
691 return(1);
692 mem_err:
693 SSLerr(SSL_F_GET_CLIENT_HELLO,ERR_R_MALLOC_FAILURE);
694 return(0);
695 }

697 static int server_hello(SSL *s)
698 {
699 unsigned char *p,*d;
700 int n,hit;

702 p=(unsigned char *)s->init_buf->data;
703 if (s->state == SSL2_ST_SEND_SERVER_HELLO_A)
704 {
705 d=p+11;
706 *(p++)=SSL2_MT_SERVER_HELLO; /* type */
707 hit=s->hit;
708 *(p++)=(unsigned char)hit;
709 #if 1
710 if (!hit)
711 {
712 if (s->session->sess_cert != NULL)
713 /* This can’t really happen because get_client_h
714 * has called ssl_get_new_session, which does no
715 * sess_cert. */
716 ssl_sess_cert_free(s->session->sess_cert);
717 s->session->sess_cert = ssl_sess_cert_new();
718 if (s->session->sess_cert == NULL)
719 {
720 SSLerr(SSL_F_SERVER_HELLO, ERR_R_MALLOC_FAILURE)
721 return(-1);

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 12

722 }
723 }
724 /* If ’hit’ is set, then s->sess_cert may be non-NULL or NULL,
725 * depending on whether it survived in the internal cache
726 * or was retrieved from an external cache.
727 * If it is NULL, we cannot put any useful data in it anyway,
728 * so we don’t touch it.
729 */

731 #else /* That’s what used to be done when cert_st and sess_cert_st were
732 * the same. */
733 if (!hit)
734 { /* else add cert to session */
735 CRYPTO_add(&s->cert->references,1,CRYPTO_LOCK_SSL_CERT);
736 if (s->session->sess_cert != NULL)
737 ssl_cert_free(s->session->sess_cert);
738 s->session->sess_cert=s->cert;
739 }
740 else /* We have a session id-cache hit, if the
741 * session-id has no certificate listed against
742 * the ’cert’ structure, grab the ’old’ one
743 * listed against the SSL connection */
744 {
745 if (s->session->sess_cert == NULL)
746 {
747 CRYPTO_add(&s->cert->references,1,
748 CRYPTO_LOCK_SSL_CERT);
749 s->session->sess_cert=s->cert;
750 }
751 }
752 #endif

754 if (s->cert == NULL)
755 {
756 ssl2_return_error(s,SSL2_PE_NO_CERTIFICATE);
757 SSLerr(SSL_F_SERVER_HELLO,SSL_R_NO_CERTIFICATE_SPECIFIED
758 return(-1);
759 }

761 if (hit)
762 {
763 *(p++)=0; /* no certificate type */
764 s2n(s->version,p); /* version */
765 s2n(0,p); /* cert len */
766 s2n(0,p); /* ciphers len */
767 }
768 else
769 {
770 /* EAY EAY */
771 /* put certificate type */
772 *(p++)=SSL2_CT_X509_CERTIFICATE;
773 s2n(s->version,p); /* version */
774 n=i2d_X509(s->cert->pkeys[SSL_PKEY_RSA_ENC].x509,NULL);
775 s2n(n,p); /* certificate length */
776 i2d_X509(s->cert->pkeys[SSL_PKEY_RSA_ENC].x509,&d);
777 n=0;
778
779 /* lets send out the ciphers we like in the
780 * prefered order */
781 n=ssl_cipher_list_to_bytes(s,s->session->ciphers,d,0);
782 d+=n;
783 s2n(n,p); /* add cipher length */
784 }

786 /* make and send conn_id */
787 s2n(SSL2_CONNECTION_ID_LENGTH,p); /* add conn_id length */

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 13

788 s->s2->conn_id_length=SSL2_CONNECTION_ID_LENGTH;
789 if (RAND_pseudo_bytes(s->s2->conn_id,(int)s->s2->conn_id_length)
790 return -1;
791 memcpy(d,s->s2->conn_id,SSL2_CONNECTION_ID_LENGTH);
792 d+=SSL2_CONNECTION_ID_LENGTH;

794 s->state=SSL2_ST_SEND_SERVER_HELLO_B;
795 s->init_num=d-(unsigned char *)s->init_buf->data;
796 s->init_off=0;
797 }
798 /* SSL2_ST_SEND_SERVER_HELLO_B */
799 /* If we are using TCP/IP, the performance is bad if we do 2
800 * writes without a read between them. This occurs when
801 * Session-id reuse is used, so I will put in a buffering module
802 */
803 if (s->hit)
804 {
805 if (!ssl_init_wbio_buffer(s,1)) return(-1);
806 }
807
808 return(ssl2_do_write(s));
809 }

811 static int get_client_finished(SSL *s)
812 {
813 unsigned char *p;
814 int i, n;
815 unsigned long len;

817 p=(unsigned char *)s->init_buf->data;
818 if (s->state == SSL2_ST_GET_CLIENT_FINISHED_A)
819 {
820 i=ssl2_read(s,(char *)&(p[s->init_num]),1-s->init_num);
821 if (i < 1-s->init_num)
822 return(ssl2_part_read(s,SSL_F_GET_CLIENT_FINISHED,i));
823 s->init_num += i;

825 if (*p != SSL2_MT_CLIENT_FINISHED)
826 {
827 if (*p != SSL2_MT_ERROR)
828 {
829 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
830 SSLerr(SSL_F_GET_CLIENT_FINISHED,SSL_R_READ_WRON
831 }
832 else
833 {
834 SSLerr(SSL_F_GET_CLIENT_FINISHED,SSL_R_PEER_ERRO
835 /* try to read the error message */
836 i=ssl2_read(s,(char *)&(p[s->init_num]),3-s->ini
837 return ssl2_part_read(s,SSL_F_GET_SERVER_VERIFY,
838 }
839 return(-1);
840 }
841 s->state=SSL2_ST_GET_CLIENT_FINISHED_B;
842 }

844 /* SSL2_ST_GET_CLIENT_FINISHED_B */
845 if (s->s2->conn_id_length > sizeof s->s2->conn_id)
846 {
847 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
848 SSLerr(SSL_F_GET_CLIENT_FINISHED, ERR_R_INTERNAL_ERROR);
849 return -1;
850 }
851 len = 1 + (unsigned long)s->s2->conn_id_length;
852 n = (int)len - s->init_num;
853 i = ssl2_read(s,(char *)&(p[s->init_num]),n);

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 14

854 if (i < n)
855 {
856 return(ssl2_part_read(s,SSL_F_GET_CLIENT_FINISHED,i));
857 }
858 if (s->msg_callback)
859 s->msg_callback(0, s->version, 0, p, len, s, s->msg_callback_arg
860 p += 1;
861 if (memcmp(p,s->s2->conn_id,s->s2->conn_id_length) != 0)
862 {
863 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
864 SSLerr(SSL_F_GET_CLIENT_FINISHED,SSL_R_CONNECTION_ID_IS_DIFFEREN
865 return(-1);
866 }
867 return(1);
868 }

870 static int server_verify(SSL *s)
871 {
872 unsigned char *p;

874 if (s->state == SSL2_ST_SEND_SERVER_VERIFY_A)
875 {
876 p=(unsigned char *)s->init_buf->data;
877 *(p++)=SSL2_MT_SERVER_VERIFY;
878 if (s->s2->challenge_length > sizeof s->s2->challenge)
879 {
880 SSLerr(SSL_F_SERVER_VERIFY, ERR_R_INTERNAL_ERROR);
881 return -1;
882 }
883 memcpy(p,s->s2->challenge,(unsigned int)s->s2->challenge_length)
884 /* p+=s->s2->challenge_length; */

886 s->state=SSL2_ST_SEND_SERVER_VERIFY_B;
887 s->init_num=s->s2->challenge_length+1;
888 s->init_off=0;
889 }
890 return(ssl2_do_write(s));
891 }

893 static int server_finish(SSL *s)
894 {
895 unsigned char *p;

897 if (s->state == SSL2_ST_SEND_SERVER_FINISHED_A)
898 {
899 p=(unsigned char *)s->init_buf->data;
900 *(p++)=SSL2_MT_SERVER_FINISHED;

902 if (s->session->session_id_length > sizeof s->session->session_i
903 {
904 SSLerr(SSL_F_SERVER_FINISH, ERR_R_INTERNAL_ERROR);
905 return -1;
906 }
907 memcpy(p,s->session->session_id, (unsigned int)s->session->sessi
908 /* p+=s->session->session_id_length; */

910 s->state=SSL2_ST_SEND_SERVER_FINISHED_B;
911 s->init_num=s->session->session_id_length+1;
912 s->init_off=0;
913 }

915 /* SSL2_ST_SEND_SERVER_FINISHED_B */
916 return(ssl2_do_write(s));
917 }

919 /* send the request and check the response */

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 15

920 static int request_certificate(SSL *s)
921 {
922 const unsigned char *cp;
923 unsigned char *p,*p2,*buf2;
924 unsigned char *ccd;
925 int i,j,ctype,ret= -1;
926 unsigned long len;
927 X509 *x509=NULL;
928 STACK_OF(X509) *sk=NULL;

930 ccd=s->s2->tmp.ccl;
931 if (s->state == SSL2_ST_SEND_REQUEST_CERTIFICATE_A)
932 {
933 p=(unsigned char *)s->init_buf->data;
934 *(p++)=SSL2_MT_REQUEST_CERTIFICATE;
935 *(p++)=SSL2_AT_MD5_WITH_RSA_ENCRYPTION;
936 if (RAND_pseudo_bytes(ccd,SSL2_MIN_CERT_CHALLENGE_LENGTH) <= 0)
937 return -1;
938 memcpy(p,ccd,SSL2_MIN_CERT_CHALLENGE_LENGTH);

940 s->state=SSL2_ST_SEND_REQUEST_CERTIFICATE_B;
941 s->init_num=SSL2_MIN_CERT_CHALLENGE_LENGTH+2;
942 s->init_off=0;
943 }

945 if (s->state == SSL2_ST_SEND_REQUEST_CERTIFICATE_B)
946 {
947 i=ssl2_do_write(s);
948 if (i <= 0)
949 {
950 ret=i;
951 goto end;
952 }

954 s->init_num=0;
955 s->state=SSL2_ST_SEND_REQUEST_CERTIFICATE_C;
956 }

958 if (s->state == SSL2_ST_SEND_REQUEST_CERTIFICATE_C)
959 {
960 p=(unsigned char *)s->init_buf->data;
961 i=ssl2_read(s,(char *)&(p[s->init_num]),6-s->init_num); /* try t
962 if (i < 3-s->init_num) /* ... but don’t call ssl2_part_read now
963 * (probably NO-CERTIFICATE-ERROR) */
964 {
965 ret=ssl2_part_read(s,SSL_F_REQUEST_CERTIFICATE,i);
966 goto end;
967 }
968 s->init_num += i;

970 if ((s->init_num >= 3) && (p[0] == SSL2_MT_ERROR))
971 {
972 n2s(p,i);
973 if (i != SSL2_PE_NO_CERTIFICATE)
974 {
975 /* not the error message we expected -- let ssl2
976 s->init_num -= 3;
977 ret = ssl2_part_read(s,SSL_F_REQUEST_CERTIFICATE
978 goto end;
979 }

981 if (s->msg_callback)
982 s->msg_callback(0, s->version, 0, p, 3, s, s->ms

984 /* this is the one place where we can recover from an SS

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 16

986 if (s->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT)
987 {
988 ssl2_return_error(s,SSL2_PE_BAD_CERTIFICATE);
989 SSLerr(SSL_F_REQUEST_CERTIFICATE,SSL_R_PEER_DID_
990 goto end;
991 }
992 ret=1;
993 goto end;
994 }
995 if ((*(p++) != SSL2_MT_CLIENT_CERTIFICATE) || (s->init_num < 6))
996 {
997 ssl2_return_error(s,SSL2_PE_UNDEFINED_ERROR);
998 SSLerr(SSL_F_REQUEST_CERTIFICATE,SSL_R_SHORT_READ);
999 goto end;

1000 }
1001 if (s->init_num != 6)
1002 {
1003 SSLerr(SSL_F_REQUEST_CERTIFICATE, ERR_R_INTERNAL_ERROR);
1004 goto end;
1005 }
1006
1007 /* ok we have a response */
1008 /* certificate type, there is only one right now. */
1009 ctype= *(p++);
1010 if (ctype != SSL2_AT_MD5_WITH_RSA_ENCRYPTION)
1011 {
1012 ssl2_return_error(s,SSL2_PE_UNSUPPORTED_CERTIFICATE_TYPE
1013 SSLerr(SSL_F_REQUEST_CERTIFICATE,SSL_R_BAD_RESPONSE_ARGU
1014 goto end;
1015 }
1016 n2s(p,i); s->s2->tmp.clen=i;
1017 n2s(p,i); s->s2->tmp.rlen=i;
1018 s->state=SSL2_ST_SEND_REQUEST_CERTIFICATE_D;
1019 }

1021 /* SSL2_ST_SEND_REQUEST_CERTIFICATE_D */
1022 p=(unsigned char *)s->init_buf->data;
1023 len = 6 + (unsigned long)s->s2->tmp.clen + (unsigned long)s->s2->tmp.rle
1024 if (len > SSL2_MAX_RECORD_LENGTH_3_BYTE_HEADER)
1025 {
1026 SSLerr(SSL_F_REQUEST_CERTIFICATE,SSL_R_MESSAGE_TOO_LONG);
1027 goto end;
1028 }
1029 j = (int)len - s->init_num;
1030 i = ssl2_read(s,(char *)&(p[s->init_num]),j);
1031 if (i < j)
1032 {
1033 ret=ssl2_part_read(s,SSL_F_REQUEST_CERTIFICATE,i);
1034 goto end;
1035 }
1036 if (s->msg_callback)
1037 s->msg_callback(0, s->version, 0, p, len, s, s->msg_callback_arg
1038 p += 6;

1040 cp = p;
1041 x509=(X509 *)d2i_X509(NULL,&cp,(long)s->s2->tmp.clen);
1042 if (x509 == NULL)
1043 {
1044 SSLerr(SSL_F_REQUEST_CERTIFICATE,ERR_R_X509_LIB);
1045 goto msg_end;
1046 }

1048 if (((sk=sk_X509_new_null()) == NULL) || (!sk_X509_push(sk,x509)))
1049 {
1050 SSLerr(SSL_F_REQUEST_CERTIFICATE,ERR_R_MALLOC_FAILURE);
1051 goto msg_end;

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 17

1052 }

1054 i=ssl_verify_cert_chain(s,sk);

1056 if (i > 0) /* we like the packet, now check the chksum */
1057 {
1058 EVP_MD_CTX ctx;
1059 EVP_PKEY *pkey=NULL;

1061 EVP_MD_CTX_init(&ctx);
1062 if (!EVP_VerifyInit_ex(&ctx,s->ctx->rsa_md5, NULL)
1063 || !EVP_VerifyUpdate(&ctx,s->s2->key_material,
1064 s->s2->key_material_length)
1065 || !EVP_VerifyUpdate(&ctx,ccd,
1066 SSL2_MIN_CERT_CHALLENGE_LENGTH))
1067 goto msg_end;

1069 i=i2d_X509(s->cert->pkeys[SSL_PKEY_RSA_ENC].x509,NULL);
1070 buf2=OPENSSL_malloc((unsigned int)i);
1071 if (buf2 == NULL)
1072 {
1073 SSLerr(SSL_F_REQUEST_CERTIFICATE,ERR_R_MALLOC_FAILURE);
1074 goto msg_end;
1075 }
1076 p2=buf2;
1077 i=i2d_X509(s->cert->pkeys[SSL_PKEY_RSA_ENC].x509,&p2);
1078 if (!EVP_VerifyUpdate(&ctx,buf2,(unsigned int)i))
1079 {
1080 OPENSSL_free(buf2);
1081 goto msg_end;
1082 }
1083 OPENSSL_free(buf2);

1085 pkey=X509_get_pubkey(x509);
1086 if (pkey == NULL) goto end;
1087 i=EVP_VerifyFinal(&ctx,cp,s->s2->tmp.rlen,pkey);
1088 EVP_PKEY_free(pkey);
1089 EVP_MD_CTX_cleanup(&ctx);

1091 if (i > 0)
1092 {
1093 if (s->session->peer != NULL)
1094 X509_free(s->session->peer);
1095 s->session->peer=x509;
1096 CRYPTO_add(&x509->references,1,CRYPTO_LOCK_X509);
1097 s->session->verify_result = s->verify_result;
1098 ret=1;
1099 goto end;
1100 }
1101 else
1102 {
1103 SSLerr(SSL_F_REQUEST_CERTIFICATE,SSL_R_BAD_CHECKSUM);
1104 goto msg_end;
1105 }
1106 }
1107 else
1108 {
1109 msg_end:
1110 ssl2_return_error(s,SSL2_PE_BAD_CERTIFICATE);
1111 }
1112 end:
1113 sk_X509_free(sk);
1114 X509_free(x509);
1115 return(ret);
1116 }

new/usr/src/lib/openssl/libsunw_ssl/s2_srvr.c 18

1118 static int ssl_rsa_private_decrypt(CERT *c, int len, unsigned char *from,
1119 unsigned char *to, int padding)
1120 {
1121 RSA *rsa;
1122 int i;

1124 if ((c == NULL) || (c->pkeys[SSL_PKEY_RSA_ENC].privatekey == NULL))
1125 {
1126 SSLerr(SSL_F_SSL_RSA_PRIVATE_DECRYPT,SSL_R_NO_PRIVATEKEY);
1127 return(-1);
1128 }
1129 if (c->pkeys[SSL_PKEY_RSA_ENC].privatekey->type != EVP_PKEY_RSA)
1130 {
1131 SSLerr(SSL_F_SSL_RSA_PRIVATE_DECRYPT,SSL_R_PUBLIC_KEY_IS_NOT_RSA
1132 return(-1);
1133 }
1134 rsa=c->pkeys[SSL_PKEY_RSA_ENC].privatekey->pkey.rsa;

1136 /* we have the public key */
1137 i=RSA_private_decrypt(len,from,to,rsa,padding);
1138 if (i < 0)
1139 SSLerr(SSL_F_SSL_RSA_PRIVATE_DECRYPT,ERR_R_RSA_LIB);
1140 return(i);
1141 }
1142 #else /* !OPENSSL_NO_SSL2 */

1144 # if PEDANTIC
1145 static void *dummy=&dummy;
1146 # endif

1148 #endif

new/usr/src/lib/openssl/libsunw_ssl/s3_both.c 1

**
 24114 Fri May 30 18:32:20 2014
new/usr/src/lib/openssl/libsunw_ssl/s3_both.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s3_both.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/s3_both.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /* ==
112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
113 * ECC cipher suite support in OpenSSL originally developed by
114 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
115 */

117 #include <limits.h>
118 #include <string.h>
119 #include <stdio.h>
120 #include "ssl_locl.h"
121 #include <openssl/buffer.h>
122 #include <openssl/rand.h>
123 #include <openssl/objects.h>
124 #include <openssl/evp.h>
125 #include <openssl/x509.h>

127 /* send s->init_buf in records of type ’type’ (SSL3_RT_HANDSHAKE or SSL3_RT_CHAN

new/usr/src/lib/openssl/libsunw_ssl/s3_both.c 3

128 int ssl3_do_write(SSL *s, int type)
129 {
130 int ret;

132 ret=ssl3_write_bytes(s,type,&s->init_buf->data[s->init_off],
133 s->init_num);
134 if (ret < 0) return(-1);
135 if (type == SSL3_RT_HANDSHAKE)
136 /* should not be done for ’Hello Request’s, but in that case
137 * we’ll ignore the result anyway */
138 ssl3_finish_mac(s,(unsigned char *)&s->init_buf->data[s->init_of
139
140 if (ret == s->init_num)
141 {
142 if (s->msg_callback)
143 s->msg_callback(1, s->version, type, s->init_buf->data,
144 return(1);
145 }
146 s->init_off+=ret;
147 s->init_num-=ret;
148 return(0);
149 }

151 int ssl3_send_finished(SSL *s, int a, int b, const char *sender, int slen)
152 {
153 unsigned char *p,*d;
154 int i;
155 unsigned long l;

157 if (s->state == a)
158 {
159 d=(unsigned char *)s->init_buf->data;
160 p= &(d[4]);

162 i=s->method->ssl3_enc->final_finish_mac(s,
163 sender,slen,s->s3->tmp.finish_md);
164 if (i == 0)
165 return 0;
166 s->s3->tmp.finish_md_len = i;
167 memcpy(p, s->s3->tmp.finish_md, i);
168 p+=i;
169 l=i;

171 /* Copy the finished so we can use it for
172 renegotiation checks */
173 if(s->type == SSL_ST_CONNECT)
174 {
175 OPENSSL_assert(i <= EVP_MAX_MD_SIZE);
176 memcpy(s->s3->previous_client_finished,
177 s->s3->tmp.finish_md, i);
178 s->s3->previous_client_finished_len=i;
179 }
180 else
181 {
182 OPENSSL_assert(i <= EVP_MAX_MD_SIZE);
183 memcpy(s->s3->previous_server_finished,
184 s->s3->tmp.finish_md, i);
185 s->s3->previous_server_finished_len=i;
186 }

188 #ifdef OPENSSL_SYS_WIN16
189 /* MSVC 1.5 does not clear the top bytes of the word unless
190 * I do this.
191 */
192 l&=0xffff;
193 #endif

new/usr/src/lib/openssl/libsunw_ssl/s3_both.c 4

195 *(d++)=SSL3_MT_FINISHED;
196 l2n3(l,d);
197 s->init_num=(int)l+4;
198 s->init_off=0;

200 s->state=b;
201 }

203 /* SSL3_ST_SEND_xxxxxx_HELLO_B */
204 return(ssl3_do_write(s,SSL3_RT_HANDSHAKE));
205 }

207 #ifndef OPENSSL_NO_NEXTPROTONEG
208 /* ssl3_take_mac calculates the Finished MAC for the handshakes messages seen to
209 static void ssl3_take_mac(SSL *s)
210 {
211 const char *sender;
212 int slen;
213 /* If no new cipher setup return immediately: other functions will
214 * set the appropriate error.
215 */
216 if (s->s3->tmp.new_cipher == NULL)
217 return;
218 if (s->state & SSL_ST_CONNECT)
219 {
220 sender=s->method->ssl3_enc->server_finished_label;
221 slen=s->method->ssl3_enc->server_finished_label_len;
222 }
223 else
224 {
225 sender=s->method->ssl3_enc->client_finished_label;
226 slen=s->method->ssl3_enc->client_finished_label_len;
227 }

229 s->s3->tmp.peer_finish_md_len = s->method->ssl3_enc->final_finish_mac(s,
230 sender,slen,s->s3->tmp.peer_finish_md);
231 }
232 #endif

234 int ssl3_get_finished(SSL *s, int a, int b)
235 {
236 int al,i,ok;
237 long n;
238 unsigned char *p;

240 #ifdef OPENSSL_NO_NEXTPROTONEG
241 /* the mac has already been generated when we received the
242 * change cipher spec message and is in s->s3->tmp.peer_finish_md.
243 */
244 #endif

246 n=s->method->ssl_get_message(s,
247 a,
248 b,
249 SSL3_MT_FINISHED,
250 64, /* should actually be 36+4 :-) */
251 &ok);

253 if (!ok) return((int)n);

255 /* If this occurs, we have missed a message */
256 if (!s->s3->change_cipher_spec)
257 {
258 al=SSL_AD_UNEXPECTED_MESSAGE;
259 SSLerr(SSL_F_SSL3_GET_FINISHED,SSL_R_GOT_A_FIN_BEFORE_A_CCS);

new/usr/src/lib/openssl/libsunw_ssl/s3_both.c 5

260 goto f_err;
261 }
262 s->s3->change_cipher_spec=0;

264 p = (unsigned char *)s->init_msg;
265 i = s->s3->tmp.peer_finish_md_len;

267 if (i != n)
268 {
269 al=SSL_AD_DECODE_ERROR;
270 SSLerr(SSL_F_SSL3_GET_FINISHED,SSL_R_BAD_DIGEST_LENGTH);
271 goto f_err;
272 }

274 if (CRYPTO_memcmp(p, s->s3->tmp.peer_finish_md, i) != 0)
275 {
276 al=SSL_AD_DECRYPT_ERROR;
277 SSLerr(SSL_F_SSL3_GET_FINISHED,SSL_R_DIGEST_CHECK_FAILED);
278 goto f_err;
279 }

281 /* Copy the finished so we can use it for
282 renegotiation checks */
283 if(s->type == SSL_ST_ACCEPT)
284 {
285 OPENSSL_assert(i <= EVP_MAX_MD_SIZE);
286 memcpy(s->s3->previous_client_finished,
287 s->s3->tmp.peer_finish_md, i);
288 s->s3->previous_client_finished_len=i;
289 }
290 else
291 {
292 OPENSSL_assert(i <= EVP_MAX_MD_SIZE);
293 memcpy(s->s3->previous_server_finished,
294 s->s3->tmp.peer_finish_md, i);
295 s->s3->previous_server_finished_len=i;
296 }

298 return(1);
299 f_err:
300 ssl3_send_alert(s,SSL3_AL_FATAL,al);
301 return(0);
302 }

304 /* for these 2 messages, we need to
305 * ssl->enc_read_ctx re-init
306 * ssl->s3->read_sequence zero
307 * ssl->s3->read_mac_secret re-init
308 * ssl->session->read_sym_enc assign
309 * ssl->session->read_compression assign
310 * ssl->session->read_hash assign
311 */
312 int ssl3_send_change_cipher_spec(SSL *s, int a, int b)
313 {
314 unsigned char *p;

316 if (s->state == a)
317 {
318 p=(unsigned char *)s->init_buf->data;
319 *p=SSL3_MT_CCS;
320 s->init_num=1;
321 s->init_off=0;

323 s->state=b;
324 }

new/usr/src/lib/openssl/libsunw_ssl/s3_both.c 6

326 /* SSL3_ST_CW_CHANGE_B */
327 return(ssl3_do_write(s,SSL3_RT_CHANGE_CIPHER_SPEC));
328 }

330 static int ssl3_add_cert_to_buf(BUF_MEM *buf, unsigned long *l, X509 *x)
331 {
332 int n;
333 unsigned char *p;

335 n=i2d_X509(x,NULL);
336 if (!BUF_MEM_grow_clean(buf,(int)(n+(*l)+3)))
337 {
338 SSLerr(SSL_F_SSL3_ADD_CERT_TO_BUF,ERR_R_BUF_LIB);
339 return(-1);
340 }
341 p=(unsigned char *)&(buf->data[*l]);
342 l2n3(n,p);
343 i2d_X509(x,&p);
344 *l+=n+3;

346 return(0);
347 }

349 unsigned long ssl3_output_cert_chain(SSL *s, X509 *x)
350 {
351 unsigned char *p;
352 int i;
353 unsigned long l=7;
354 BUF_MEM *buf;
355 int no_chain;

357 if ((s->mode & SSL_MODE_NO_AUTO_CHAIN) || s->ctx->extra_certs)
358 no_chain = 1;
359 else
360 no_chain = 0;

362 /* TLSv1 sends a chain with nothing in it, instead of an alert */
363 buf=s->init_buf;
364 if (!BUF_MEM_grow_clean(buf,10))
365 {
366 SSLerr(SSL_F_SSL3_OUTPUT_CERT_CHAIN,ERR_R_BUF_LIB);
367 return(0);
368 }
369 if (x != NULL)
370 {
371 if (no_chain)
372 {
373 if (ssl3_add_cert_to_buf(buf, &l, x))
374 return(0);
375 }
376 else
377 {
378 X509_STORE_CTX xs_ctx;

380 if (!X509_STORE_CTX_init(&xs_ctx,s->ctx->cert_store,x,NU
381 {
382 SSLerr(SSL_F_SSL3_OUTPUT_CERT_CHAIN,ERR_R_X509_L
383 return(0);
384 }
385 X509_verify_cert(&xs_ctx);
386 /* Don’t leave errors in the queue */
387 ERR_clear_error();
388 for (i=0; i < sk_X509_num(xs_ctx.chain); i++)
389 {
390 x = sk_X509_value(xs_ctx.chain, i);

new/usr/src/lib/openssl/libsunw_ssl/s3_both.c 7

392 if (ssl3_add_cert_to_buf(buf, &l, x))
393 {
394 X509_STORE_CTX_cleanup(&xs_ctx);
395 return 0;
396 }
397 }
398 X509_STORE_CTX_cleanup(&xs_ctx);
399 }
400 }
401 /* Thawte special :-) */
402 for (i=0; i<sk_X509_num(s->ctx->extra_certs); i++)
403 {
404 x=sk_X509_value(s->ctx->extra_certs,i);
405 if (ssl3_add_cert_to_buf(buf, &l, x))
406 return(0);
407 }

409 l-=7;
410 p=(unsigned char *)&(buf->data[4]);
411 l2n3(l,p);
412 l+=3;
413 p=(unsigned char *)&(buf->data[0]);
414 *(p++)=SSL3_MT_CERTIFICATE;
415 l2n3(l,p);
416 l+=4;
417 return(l);
418 }

420 /* Obtain handshake message of message type ’mt’ (any if mt == -1),
421 * maximum acceptable body length ’max’.
422 * The first four bytes (msg_type and length) are read in state ’st1’,
423 * the body is read in state ’stn’.
424 */
425 long ssl3_get_message(SSL *s, int st1, int stn, int mt, long max, int *ok)
426 {
427 unsigned char *p;
428 unsigned long l;
429 long n;
430 int i,al;

432 if (s->s3->tmp.reuse_message)
433 {
434 s->s3->tmp.reuse_message=0;
435 if ((mt >= 0) && (s->s3->tmp.message_type != mt))
436 {
437 al=SSL_AD_UNEXPECTED_MESSAGE;
438 SSLerr(SSL_F_SSL3_GET_MESSAGE,SSL_R_UNEXPECTED_MESSAGE);
439 goto f_err;
440 }
441 *ok=1;
442 s->init_msg = s->init_buf->data + 4;
443 s->init_num = (int)s->s3->tmp.message_size;
444 return s->init_num;
445 }

447 p=(unsigned char *)s->init_buf->data;

449 if (s->state == st1) /* s->init_num < 4 */
450 {
451 int skip_message;

453 do
454 {
455 while (s->init_num < 4)
456 {
457 i=s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,

new/usr/src/lib/openssl/libsunw_ssl/s3_both.c 8

458 &p[s->init_num],4 - s->init_num, 0);
459 if (i <= 0)
460 {
461 s->rwstate=SSL_READING;
462 *ok = 0;
463 return i;
464 }
465 s->init_num+=i;
466 }
467
468 skip_message = 0;
469 if (!s->server)
470 if (p[0] == SSL3_MT_HELLO_REQUEST)
471 /* The server may always send ’Hello Req
472 * we are doing a handshake anyway now,
473 * if their format is correct. Does not
474 * ’Finished’ MAC. */
475 if (p[1] == 0 && p[2] == 0 &&p[3] == 0)
476 {
477 s->init_num = 0;
478 skip_message = 1;

480 if (s->msg_callback)
481 s->msg_callback(0, s->ve
482 }
483 }
484 while (skip_message);

486 /* s->init_num == 4 */

488 if ((mt >= 0) && (*p != mt))
489 {
490 al=SSL_AD_UNEXPECTED_MESSAGE;
491 SSLerr(SSL_F_SSL3_GET_MESSAGE,SSL_R_UNEXPECTED_MESSAGE);
492 goto f_err;
493 }
494 if ((mt < 0) && (*p == SSL3_MT_CLIENT_HELLO) &&
495 (st1 == SSL3_ST_SR_CERT_A) &&
496 (stn == SSL3_ST_SR_CERT_B))
497 {
498 /* At this point we have got an MS SGC second client
499 * hello (maybe we should always allow the client to
500 * start a new handshake?). We need to restart the mac.
501 * Don’t increment {num,total}_renegotiations because
502 * we have not completed the handshake. */
503 ssl3_init_finished_mac(s);
504 }

506 s->s3->tmp.message_type= *(p++);

508 n2l3(p,l);
509 if (l > (unsigned long)max)
510 {
511 al=SSL_AD_ILLEGAL_PARAMETER;
512 SSLerr(SSL_F_SSL3_GET_MESSAGE,SSL_R_EXCESSIVE_MESSAGE_SI
513 goto f_err;
514 }
515 if (l > (INT_MAX-4)) /* BUF_MEM_grow takes an ’int’ parameter */
516 {
517 al=SSL_AD_ILLEGAL_PARAMETER;
518 SSLerr(SSL_F_SSL3_GET_MESSAGE,SSL_R_EXCESSIVE_MESSAGE_SI
519 goto f_err;
520 }
521 if (l && !BUF_MEM_grow_clean(s->init_buf,(int)l+4))
522 {
523 SSLerr(SSL_F_SSL3_GET_MESSAGE,ERR_R_BUF_LIB);

new/usr/src/lib/openssl/libsunw_ssl/s3_both.c 9

524 goto err;
525 }
526 s->s3->tmp.message_size=l;
527 s->state=stn;

529 s->init_msg = s->init_buf->data + 4;
530 s->init_num = 0;
531 }

533 /* next state (stn) */
534 p = s->init_msg;
535 n = s->s3->tmp.message_size - s->init_num;
536 while (n > 0)
537 {
538 i=s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,&p[s->init_num],
539 if (i <= 0)
540 {
541 s->rwstate=SSL_READING;
542 *ok = 0;
543 return i;
544 }
545 s->init_num += i;
546 n -= i;
547 }

549 #ifndef OPENSSL_NO_NEXTPROTONEG
550 /* If receiving Finished, record MAC of prior handshake messages for
551 * Finished verification. */
552 if (*s->init_buf->data == SSL3_MT_FINISHED)
553 ssl3_take_mac(s);
554 #endif

556 /* Feed this message into MAC computation. */
557 ssl3_finish_mac(s, (unsigned char *)s->init_buf->data, s->init_num + 4);
558 if (s->msg_callback)
559 s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, s->init_buf->d
560 *ok=1;
561 return s->init_num;
562 f_err:
563 ssl3_send_alert(s,SSL3_AL_FATAL,al);
564 err:
565 *ok=0;
566 return(-1);
567 }

569 int ssl_cert_type(X509 *x, EVP_PKEY *pkey)
570 {
571 EVP_PKEY *pk;
572 int ret= -1,i;

574 if (pkey == NULL)
575 pk=X509_get_pubkey(x);
576 else
577 pk=pkey;
578 if (pk == NULL) goto err;

580 i=pk->type;
581 if (i == EVP_PKEY_RSA)
582 {
583 ret=SSL_PKEY_RSA_ENC;
584 }
585 else if (i == EVP_PKEY_DSA)
586 {
587 ret=SSL_PKEY_DSA_SIGN;
588 }
589 #ifndef OPENSSL_NO_EC

new/usr/src/lib/openssl/libsunw_ssl/s3_both.c 10

590 else if (i == EVP_PKEY_EC)
591 {
592 ret = SSL_PKEY_ECC;
593 }
594 #endif
595 else if (i == NID_id_GostR3410_94 || i == NID_id_GostR3410_94_cc)
596 {
597 ret = SSL_PKEY_GOST94;
598 }
599 else if (i == NID_id_GostR3410_2001 || i == NID_id_GostR3410_2001_cc)
600 {
601 ret = SSL_PKEY_GOST01;
602 }
603 err:
604 if(!pkey) EVP_PKEY_free(pk);
605 return(ret);
606 }

608 int ssl_verify_alarm_type(long type)
609 {
610 int al;

612 switch(type)
613 {
614 case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
615 case X509_V_ERR_UNABLE_TO_GET_CRL:
616 case X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER:
617 al=SSL_AD_UNKNOWN_CA;
618 break;
619 case X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE:
620 case X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE:
621 case X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY:
622 case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
623 case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
624 case X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD:
625 case X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD:
626 case X509_V_ERR_CERT_NOT_YET_VALID:
627 case X509_V_ERR_CRL_NOT_YET_VALID:
628 case X509_V_ERR_CERT_UNTRUSTED:
629 case X509_V_ERR_CERT_REJECTED:
630 al=SSL_AD_BAD_CERTIFICATE;
631 break;
632 case X509_V_ERR_CERT_SIGNATURE_FAILURE:
633 case X509_V_ERR_CRL_SIGNATURE_FAILURE:
634 al=SSL_AD_DECRYPT_ERROR;
635 break;
636 case X509_V_ERR_CERT_HAS_EXPIRED:
637 case X509_V_ERR_CRL_HAS_EXPIRED:
638 al=SSL_AD_CERTIFICATE_EXPIRED;
639 break;
640 case X509_V_ERR_CERT_REVOKED:
641 al=SSL_AD_CERTIFICATE_REVOKED;
642 break;
643 case X509_V_ERR_OUT_OF_MEM:
644 al=SSL_AD_INTERNAL_ERROR;
645 break;
646 case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT:
647 case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN:
648 case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY:
649 case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE:
650 case X509_V_ERR_CERT_CHAIN_TOO_LONG:
651 case X509_V_ERR_PATH_LENGTH_EXCEEDED:
652 case X509_V_ERR_INVALID_CA:
653 al=SSL_AD_UNKNOWN_CA;
654 break;
655 case X509_V_ERR_APPLICATION_VERIFICATION:

new/usr/src/lib/openssl/libsunw_ssl/s3_both.c 11

656 al=SSL_AD_HANDSHAKE_FAILURE;
657 break;
658 case X509_V_ERR_INVALID_PURPOSE:
659 al=SSL_AD_UNSUPPORTED_CERTIFICATE;
660 break;
661 default:
662 al=SSL_AD_CERTIFICATE_UNKNOWN;
663 break;
664 }
665 return(al);
666 }

668 #ifndef OPENSSL_NO_BUF_FREELISTS
669 /* On some platforms, malloc() performance is bad enough that you can’t just
670 * free() and malloc() buffers all the time, so we need to use freelists from
671 * unused buffers. Currently, each freelist holds memory chunks of only a
672 * given size (list->chunklen); other sized chunks are freed and malloced.
673 * This doesn’t help much if you’re using many different SSL option settings
674 * with a given context. (The options affecting buffer size are
675 * max_send_fragment, read buffer vs write buffer,
676 * SSL_OP_MICROSOFT_BIG_WRITE_BUFFER, SSL_OP_NO_COMPRESSION, and
677 * SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS.) Using a separate freelist for every
678 * possible size is not an option, since max_send_fragment can take on many
679 * different values.
680 *
681 * If you are on a platform with a slow malloc(), and you’re using SSL
682 * connections with many different settings for these options, and you need to
683 * use the SSL_MOD_RELEASE_BUFFERS feature, you have a few options:
684 * - Link against a faster malloc implementation.
685 * - Use a separate SSL_CTX for each option set.
686 * - Improve this code.
687 */
688 static void *
689 freelist_extract(SSL_CTX *ctx, int for_read, int sz)
690 {
691 SSL3_BUF_FREELIST *list;
692 SSL3_BUF_FREELIST_ENTRY *ent = NULL;
693 void *result = NULL;

695 CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
696 list = for_read ? ctx->rbuf_freelist : ctx->wbuf_freelist;
697 if (list != NULL && sz == (int)list->chunklen)
698 ent = list->head;
699 if (ent != NULL)
700 {
701 list->head = ent->next;
702 result = ent;
703 if (--list->len == 0)
704 list->chunklen = 0;
705 }
706 CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
707 if (!result)
708 result = OPENSSL_malloc(sz);
709 return result;
710 }

712 static void
713 freelist_insert(SSL_CTX *ctx, int for_read, size_t sz, void *mem)
714 {
715 SSL3_BUF_FREELIST *list;
716 SSL3_BUF_FREELIST_ENTRY *ent;

718 CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
719 list = for_read ? ctx->rbuf_freelist : ctx->wbuf_freelist;
720 if (list != NULL &&
721 (sz == list->chunklen || list->chunklen == 0) &&

new/usr/src/lib/openssl/libsunw_ssl/s3_both.c 12

722 list->len < ctx->freelist_max_len &&
723 sz >= sizeof(*ent))
724 {
725 list->chunklen = sz;
726 ent = mem;
727 ent->next = list->head;
728 list->head = ent;
729 ++list->len;
730 mem = NULL;
731 }

733 CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
734 if (mem)
735 OPENSSL_free(mem);
736 }
737 #else
738 #define freelist_extract(c,fr,sz) OPENSSL_malloc(sz)
739 #define freelist_insert(c,fr,sz,m) OPENSSL_free(m)
740 #endif

742 int ssl3_setup_read_buffer(SSL *s)
743 {
744 unsigned char *p;
745 size_t len,align=0,headerlen;
746
747 if (SSL_version(s) == DTLS1_VERSION || SSL_version(s) == DTLS1_BAD_VER)
748 headerlen = DTLS1_RT_HEADER_LENGTH;
749 else
750 headerlen = SSL3_RT_HEADER_LENGTH;

752 #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
753 align = (-SSL3_RT_HEADER_LENGTH)&(SSL3_ALIGN_PAYLOAD-1);
754 #endif

756 if (s->s3->rbuf.buf == NULL)
757 {
758 len = SSL3_RT_MAX_PLAIN_LENGTH
759 + SSL3_RT_MAX_ENCRYPTED_OVERHEAD
760 + headerlen + align;
761 if (s->options & SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER)
762 {
763 s->s3->init_extra = 1;
764 len += SSL3_RT_MAX_EXTRA;
765 }
766 #ifndef OPENSSL_NO_COMP
767 if (!(s->options & SSL_OP_NO_COMPRESSION))
768 len += SSL3_RT_MAX_COMPRESSED_OVERHEAD;
769 #endif
770 if ((p=freelist_extract(s->ctx, 1, len)) == NULL)
771 goto err;
772 s->s3->rbuf.buf = p;
773 s->s3->rbuf.len = len;
774 }

776 s->packet= &(s->s3->rbuf.buf[0]);
777 return 1;

779 err:
780 SSLerr(SSL_F_SSL3_SETUP_READ_BUFFER,ERR_R_MALLOC_FAILURE);
781 return 0;
782 }

784 int ssl3_setup_write_buffer(SSL *s)
785 {
786 unsigned char *p;
787 size_t len,align=0,headerlen;

new/usr/src/lib/openssl/libsunw_ssl/s3_both.c 13

789 if (SSL_version(s) == DTLS1_VERSION || SSL_version(s) == DTLS1_BAD_VER)
790 headerlen = DTLS1_RT_HEADER_LENGTH + 1;
791 else
792 headerlen = SSL3_RT_HEADER_LENGTH;

794 #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
795 align = (-SSL3_RT_HEADER_LENGTH)&(SSL3_ALIGN_PAYLOAD-1);
796 #endif

798 if (s->s3->wbuf.buf == NULL)
799 {
800 len = s->max_send_fragment
801 + SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD
802 + headerlen + align;
803 #ifndef OPENSSL_NO_COMP
804 if (!(s->options & SSL_OP_NO_COMPRESSION))
805 len += SSL3_RT_MAX_COMPRESSED_OVERHEAD;
806 #endif
807 if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS))
808 len += headerlen + align
809 + SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD;

811 if ((p=freelist_extract(s->ctx, 0, len)) == NULL)
812 goto err;
813 s->s3->wbuf.buf = p;
814 s->s3->wbuf.len = len;
815 }

817 return 1;

819 err:
820 SSLerr(SSL_F_SSL3_SETUP_WRITE_BUFFER,ERR_R_MALLOC_FAILURE);
821 return 0;
822 }

825 int ssl3_setup_buffers(SSL *s)
826 {
827 if (!ssl3_setup_read_buffer(s))
828 return 0;
829 if (!ssl3_setup_write_buffer(s))
830 return 0;
831 return 1;
832 }

834 int ssl3_release_write_buffer(SSL *s)
835 {
836 if (s->s3->wbuf.buf != NULL)
837 {
838 freelist_insert(s->ctx, 0, s->s3->wbuf.len, s->s3->wbuf.buf);
839 s->s3->wbuf.buf = NULL;
840 }
841 return 1;
842 }

844 int ssl3_release_read_buffer(SSL *s)
845 {
846 if (s->s3->rbuf.buf != NULL)
847 {
848 freelist_insert(s->ctx, 1, s->s3->rbuf.len, s->s3->rbuf.buf);
849 s->s3->rbuf.buf = NULL;
850 }
851 return 1;
852 }

new/usr/src/lib/openssl/libsunw_ssl/s3_both.c 14

new/usr/src/lib/openssl/libsunw_ssl/s3_cbc.c 1

**
 28214 Fri May 30 18:32:20 2014
new/usr/src/lib/openssl/libsunw_ssl/s3_cbc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s3_cbc.c */
2 /* ==
3 * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 #include "ssl_locl.h"

58 #include <openssl/md5.h>
59 #include <openssl/sha.h>

61 /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash’s length

new/usr/src/lib/openssl/libsunw_ssl/s3_cbc.c 2

62 * field. (SHA-384/512 have 128-bit length.) */
63 #define MAX_HASH_BIT_COUNT_BYTES 16

65 /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we’ll support.
66 * Currently SHA-384/512 has a 128-byte block size and that’s the largest
67 * supported by TLS.) */
68 #define MAX_HASH_BLOCK_SIZE 128

70 /* Some utility functions are needed:
71 *
72 * These macros return the given value with the MSB copied to all the other
73 * bits. They use the fact that arithmetic shift shifts-in the sign bit.
74 * However, this is not ensured by the C standard so you may need to replace
75 * them with something else on odd CPUs. */
76 #define DUPLICATE_MSB_TO_ALL(x) ((unsigned)((int)(x) >> (sizeof(int)*8-1)))
77 #define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))

79 /* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
80 static unsigned constant_time_lt(unsigned a, unsigned b)
81 {
82 a -= b;
83 return DUPLICATE_MSB_TO_ALL(a);
84 }

86 /* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
87 static unsigned constant_time_ge(unsigned a, unsigned b)
88 {
89 a -= b;
90 return DUPLICATE_MSB_TO_ALL(~a);
91 }

93 /* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
94 static unsigned char constant_time_eq_8(unsigned a, unsigned b)
95 {
96 unsigned c = a ^ b;
97 c--;
98 return DUPLICATE_MSB_TO_ALL_8(c);
99 }

101 /* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
102 * record in |rec| by updating |rec->length| in constant time.
103 *
104 * block_size: the block size of the cipher used to encrypt the record.
105 * returns:
106 * 0: (in non-constant time) if the record is publicly invalid.
107 * 1: if the padding was valid
108 * -1: otherwise. */
109 int ssl3_cbc_remove_padding(const SSL* s,
110 SSL3_RECORD *rec,
111 unsigned block_size,
112 unsigned mac_size)
113 {
114 unsigned padding_length, good;
115 const unsigned overhead = 1 /* padding length byte */ + mac_size;

117 /* These lengths are all public so we can test them in non-constant
118 * time. */
119 if (overhead > rec->length)
120 return 0;

122 padding_length = rec->data[rec->length-1];
123 good = constant_time_ge(rec->length, padding_length+overhead);
124 /* SSLv3 requires that the padding is minimal. */
125 good &= constant_time_ge(block_size, padding_length+1);
126 padding_length = good & (padding_length+1);
127 rec->length -= padding_length;

new/usr/src/lib/openssl/libsunw_ssl/s3_cbc.c 3

128 rec->type |= padding_length<<8; /* kludge: pass padding length */
129 return (int)((good & 1) | (~good & -1));
130 }

132 /* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
133 * record in |rec| in constant time and returns 1 if the padding is valid and
134 * -1 otherwise. It also removes any explicit IV from the start of the record
135 * without leaking any timing about whether there was enough space after the
136 * padding was removed.
137 *
138 * block_size: the block size of the cipher used to encrypt the record.
139 * returns:
140 * 0: (in non-constant time) if the record is publicly invalid.
141 * 1: if the padding was valid
142 * -1: otherwise. */
143 int tls1_cbc_remove_padding(const SSL* s,
144 SSL3_RECORD *rec,
145 unsigned block_size,
146 unsigned mac_size)
147 {
148 unsigned padding_length, good, to_check, i;
149 const unsigned overhead = 1 /* padding length byte */ + mac_size;
150 /* Check if version requires explicit IV */
151 if (s->version >= TLS1_1_VERSION || s->version == DTLS1_BAD_VER)
152 {
153 /* These lengths are all public so we can test them in
154 * non-constant time.
155 */
156 if (overhead + block_size > rec->length)
157 return 0;
158 /* We can now safely skip explicit IV */
159 rec->data += block_size;
160 rec->input += block_size;
161 rec->length -= block_size;
162 }
163 else if (overhead > rec->length)
164 return 0;

166 padding_length = rec->data[rec->length-1];

168 /* NB: if compression is in operation the first packet may not be of
169 * even length so the padding bug check cannot be performed. This bug
170 * workaround has been around since SSLeay so hopefully it is either
171 * fixed now or no buggy implementation supports compression [steve]
172 */
173 if ((s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand)
174 {
175 /* First packet is even in size, so check */
176 if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",8) == 0) &&
177 !(padding_length & 1))
178 {
179 s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG;
180 }
181 if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) &&
182 padding_length > 0)
183 {
184 padding_length--;
185 }
186 }

188 if (EVP_CIPHER_flags(s->enc_read_ctx->cipher)&EVP_CIPH_FLAG_AEAD_CIPHER)
189 {
190 /* padding is already verified */
191 rec->length -= padding_length + 1;
192 return 1;
193 }

new/usr/src/lib/openssl/libsunw_ssl/s3_cbc.c 4

195 good = constant_time_ge(rec->length, overhead+padding_length);
196 /* The padding consists of a length byte at the end of the record and
197 * then that many bytes of padding, all with the same value as the
198 * length byte. Thus, with the length byte included, there are i+1
199 * bytes of padding.
200 *
201 * We can’t check just |padding_length+1| bytes because that leaks
202 * decrypted information. Therefore we always have to check the maximum
203 * amount of padding possible. (Again, the length of the record is
204 * public information so we can use it.) */
205 to_check = 255; /* maximum amount of padding. */
206 if (to_check > rec->length-1)
207 to_check = rec->length-1;

209 for (i = 0; i < to_check; i++)
210 {
211 unsigned char mask = constant_time_ge(padding_length, i);
212 unsigned char b = rec->data[rec->length-1-i];
213 /* The final |padding_length+1| bytes should all have the value
214 * |padding_length|. Therefore the XOR should be zero. */
215 good &= ~(mask&(padding_length ^ b));
216 }

218 /* If any of the final |padding_length+1| bytes had the wrong value,
219 * one or more of the lower eight bits of |good| will be cleared. We
220 * AND the bottom 8 bits together and duplicate the result to all the
221 * bits. */
222 good &= good >> 4;
223 good &= good >> 2;
224 good &= good >> 1;
225 good <<= sizeof(good)*8-1;
226 good = DUPLICATE_MSB_TO_ALL(good);

228 padding_length = good & (padding_length+1);
229 rec->length -= padding_length;
230 rec->type |= padding_length<<8; /* kludge: pass padding length */

232 return (int)((good & 1) | (~good & -1));
233 }

235 /* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
236 * constant time (independent of the concrete value of rec->length, which may
237 * vary within a 256-byte window).
238 *
239 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
240 * this function.
241 *
242 * On entry:
243 * rec->orig_len >= md_size
244 * md_size <= EVP_MAX_MD_SIZE
245 *
246 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
247 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
248 * a single or pair of cache-lines, then the variable memory accesses don’t
249 * actually affect the timing. CPUs with smaller cache-lines [if any] are
250 * not multi-core and are not considered vulnerable to cache-timing attacks.
251 */
252 #define CBC_MAC_ROTATE_IN_PLACE

254 void ssl3_cbc_copy_mac(unsigned char* out,
255 const SSL3_RECORD *rec,
256 unsigned md_size,unsigned orig_len)
257 {
258 #if defined(CBC_MAC_ROTATE_IN_PLACE)
259 unsigned char rotated_mac_buf[64+EVP_MAX_MD_SIZE];

new/usr/src/lib/openssl/libsunw_ssl/s3_cbc.c 5

260 unsigned char *rotated_mac;
261 #else
262 unsigned char rotated_mac[EVP_MAX_MD_SIZE];
263 #endif

265 /* mac_end is the index of |rec->data| just after the end of the MAC. */
266 unsigned mac_end = rec->length;
267 unsigned mac_start = mac_end - md_size;
268 /* scan_start contains the number of bytes that we can ignore because
269 * the MAC’s position can only vary by 255 bytes. */
270 unsigned scan_start = 0;
271 unsigned i, j;
272 unsigned div_spoiler;
273 unsigned rotate_offset;

275 OPENSSL_assert(orig_len >= md_size);
276 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);

278 #if defined(CBC_MAC_ROTATE_IN_PLACE)
279 rotated_mac = rotated_mac_buf + ((0-(size_t)rotated_mac_buf)&63);
280 #endif

282 /* This information is public so it’s safe to branch based on it. */
283 if (orig_len > md_size + 255 + 1)
284 scan_start = orig_len - (md_size + 255 + 1);
285 /* div_spoiler contains a multiple of md_size that is used to cause the
286 * modulo operation to be constant time. Without this, the time varies
287 * based on the amount of padding when running on Intel chips at least.
288 *
289 * The aim of right-shifting md_size is so that the compiler doesn’t
290 * figure out that it can remove div_spoiler as that would require it
291 * to prove that md_size is always even, which I hope is beyond it. */
292 div_spoiler = md_size >> 1;
293 div_spoiler <<= (sizeof(div_spoiler)-1)*8;
294 rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;

296 memset(rotated_mac, 0, md_size);
297 for (i = scan_start, j = 0; i < orig_len; i++)
298 {
299 unsigned char mac_started = constant_time_ge(i, mac_start);
300 unsigned char mac_ended = constant_time_ge(i, mac_end);
301 unsigned char b = rec->data[i];
302 rotated_mac[j++] |= b & mac_started & ~mac_ended;
303 j &= constant_time_lt(j,md_size);
304 }

306 /* Now rotate the MAC */
307 #if defined(CBC_MAC_ROTATE_IN_PLACE)
308 j = 0;
309 for (i = 0; i < md_size; i++)
310 {
311 /* in case cache-line is 32 bytes, touch second line */
312 ((volatile unsigned char *)rotated_mac)[rotate_offset^32];
313 out[j++] = rotated_mac[rotate_offset++];
314 rotate_offset &= constant_time_lt(rotate_offset,md_size);
315 }
316 #else
317 memset(out, 0, md_size);
318 rotate_offset = md_size - rotate_offset;
319 rotate_offset &= constant_time_lt(rotate_offset,md_size);
320 for (i = 0; i < md_size; i++)
321 {
322 for (j = 0; j < md_size; j++)
323 out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_
324 rotate_offset++;
325 rotate_offset &= constant_time_lt(rotate_offset,md_size);

new/usr/src/lib/openssl/libsunw_ssl/s3_cbc.c 6

326 }
327 #endif
328 }

330 /* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
331 * little-endian order. The value of p is advanced by four. */
332 #define u32toLE(n, p) \
333 (*((p)++)=(unsigned char)(n), \
334 *((p)++)=(unsigned char)(n>>8), \
335 *((p)++)=(unsigned char)(n>>16), \
336 *((p)++)=(unsigned char)(n>>24))

338 /* These functions serialize the state of a hash and thus perform the standard
339 * "final" operation without adding the padding and length that such a function
340 * typically does. */
341 static void tls1_md5_final_raw(void* ctx, unsigned char *md_out)
342 {
343 MD5_CTX *md5 = ctx;
344 u32toLE(md5->A, md_out);
345 u32toLE(md5->B, md_out);
346 u32toLE(md5->C, md_out);
347 u32toLE(md5->D, md_out);
348 }

350 static void tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
351 {
352 SHA_CTX *sha1 = ctx;
353 l2n(sha1->h0, md_out);
354 l2n(sha1->h1, md_out);
355 l2n(sha1->h2, md_out);
356 l2n(sha1->h3, md_out);
357 l2n(sha1->h4, md_out);
358 }
359 #define LARGEST_DIGEST_CTX SHA_CTX

361 #ifndef OPENSSL_NO_SHA256
362 static void tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
363 {
364 SHA256_CTX *sha256 = ctx;
365 unsigned i;

367 for (i = 0; i < 8; i++)
368 {
369 l2n(sha256->h[i], md_out);
370 }
371 }
372 #undef LARGEST_DIGEST_CTX
373 #define LARGEST_DIGEST_CTX SHA256_CTX
374 #endif

376 #ifndef OPENSSL_NO_SHA512
377 static void tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
378 {
379 SHA512_CTX *sha512 = ctx;
380 unsigned i;

382 for (i = 0; i < 8; i++)
383 {
384 l2n8(sha512->h[i], md_out);
385 }
386 }
387 #undef LARGEST_DIGEST_CTX
388 #define LARGEST_DIGEST_CTX SHA512_CTX
389 #endif

391 /* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function

new/usr/src/lib/openssl/libsunw_ssl/s3_cbc.c 7

392 * which ssl3_cbc_digest_record supports. */
393 char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
394 {
395 #ifdef OPENSSL_FIPS
396 if (FIPS_mode())
397 return 0;
398 #endif
399 switch (EVP_MD_CTX_type(ctx))
400 {
401 case NID_md5:
402 case NID_sha1:
403 #ifndef OPENSSL_NO_SHA256
404 case NID_sha224:
405 case NID_sha256:
406 #endif
407 #ifndef OPENSSL_NO_SHA512
408 case NID_sha384:
409 case NID_sha512:
410 #endif
411 return 1;
412 default:
413 return 0;
414 }
415 }

417 /* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
418 * record.
419 *
420 * ctx: the EVP_MD_CTX from which we take the hash function.
421 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
422 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
423 * md_out_size: if non-NULL, the number of output bytes is written here.
424 * header: the 13-byte, TLS record header.
425 * data: the record data itself, less any preceeding explicit IV.
426 * data_plus_mac_size: the secret, reported length of the data and MAC
427 * once the padding has been removed.
428 * data_plus_mac_plus_padding_size: the public length of the whole
429 * record, including padding.
430 * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
431 *
432 * On entry: by virtue of having been through one of the remove_padding
433 * functions, above, we know that data_plus_mac_size is large enough to contain
434 * a padding byte and MAC. (If the padding was invalid, it might contain the
435 * padding too.) */
436 void ssl3_cbc_digest_record(
437 const EVP_MD_CTX *ctx,
438 unsigned char* md_out,
439 size_t* md_out_size,
440 const unsigned char header[13],
441 const unsigned char *data,
442 size_t data_plus_mac_size,
443 size_t data_plus_mac_plus_padding_size,
444 const unsigned char *mac_secret,
445 unsigned mac_secret_length,
446 char is_sslv3)
447 {
448 union { double align;
449 unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; } md_state;
450 void (*md_final_raw)(void *ctx, unsigned char *md_out);
451 void (*md_transform)(void *ctx, const unsigned char *block);
452 unsigned md_size, md_block_size = 64;
453 unsigned sslv3_pad_length = 40, header_length, variance_blocks,
454 len, max_mac_bytes, num_blocks,
455 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
456 unsigned int bits; /* at most 18 bits */
457 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];

new/usr/src/lib/openssl/libsunw_ssl/s3_cbc.c 8

458 /* hmac_pad is the masked HMAC key. */
459 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
460 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
461 unsigned char mac_out[EVP_MAX_MD_SIZE];
462 unsigned i, j, md_out_size_u;
463 EVP_MD_CTX md_ctx;
464 /* mdLengthSize is the number of bytes in the length field that terminat
465 * the hash. */
466 unsigned md_length_size = 8;
467 char length_is_big_endian = 1;

469 /* This is a, hopefully redundant, check that allows us to forget about
470 * many possible overflows later in this function. */
471 OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);

473 switch (EVP_MD_CTX_type(ctx))
474 {
475 case NID_md5:
476 MD5_Init((MD5_CTX*)md_state.c);
477 md_final_raw = tls1_md5_final_raw;
478 md_transform = (void(*)(void *ctx, const unsigned char *
479 md_size = 16;
480 sslv3_pad_length = 48;
481 length_is_big_endian = 0;
482 break;
483 case NID_sha1:
484 SHA1_Init((SHA_CTX*)md_state.c);
485 md_final_raw = tls1_sha1_final_raw;
486 md_transform = (void(*)(void *ctx, const unsigned char *
487 md_size = 20;
488 break;
489 #ifndef OPENSSL_NO_SHA256
490 case NID_sha224:
491 SHA224_Init((SHA256_CTX*)md_state.c);
492 md_final_raw = tls1_sha256_final_raw;
493 md_transform = (void(*)(void *ctx, const unsigned char *
494 md_size = 224/8;
495 break;
496 case NID_sha256:
497 SHA256_Init((SHA256_CTX*)md_state.c);
498 md_final_raw = tls1_sha256_final_raw;
499 md_transform = (void(*)(void *ctx, const unsigned char *
500 md_size = 32;
501 break;
502 #endif
503 #ifndef OPENSSL_NO_SHA512
504 case NID_sha384:
505 SHA384_Init((SHA512_CTX*)md_state.c);
506 md_final_raw = tls1_sha512_final_raw;
507 md_transform = (void(*)(void *ctx, const unsigned char *
508 md_size = 384/8;
509 md_block_size = 128;
510 md_length_size = 16;
511 break;
512 case NID_sha512:
513 SHA512_Init((SHA512_CTX*)md_state.c);
514 md_final_raw = tls1_sha512_final_raw;
515 md_transform = (void(*)(void *ctx, const unsigned char *
516 md_size = 64;
517 md_block_size = 128;
518 md_length_size = 16;
519 break;
520 #endif
521 default:
522 /* ssl3_cbc_record_digest_supported should have been
523 * called first to check that the hash function is

new/usr/src/lib/openssl/libsunw_ssl/s3_cbc.c 9

524 * supported. */
525 OPENSSL_assert(0);
526 if (md_out_size)
527 *md_out_size = -1;
528 return;
529 }

531 OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
532 OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
533 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);

535 header_length = 13;
536 if (is_sslv3)
537 {
538 header_length =
539 mac_secret_length +
540 sslv3_pad_length +
541 8 /* sequence number */ +
542 1 /* record type */ +
543 2 /* record length */;
544 }

546 /* variance_blocks is the number of blocks of the hash that we have to
547 * calculate in constant time because they could be altered by the
548 * padding value.
549 *
550 * In SSLv3, the padding must be minimal so the end of the plaintext
551 * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
552 * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
553 * termination (0x80 + 64-bit length) don’t fit in the final block, we
554 * say that the final two blocks can vary based on the padding.
555 *
556 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
557 * required to be minimal. Therefore we say that the final six blocks
558 * can vary based on the padding.
559 *
560 * Later in the function, if the message is short and there obviously
561 * cannot be this many blocks then variance_blocks can be reduced. */
562 variance_blocks = is_sslv3 ? 2 : 6;
563 /* From now on we’re dealing with the MAC, which conceptually has 13
564 * bytes of ‘header’ before the start of the data (TLS) or 71/75 bytes
565 * (SSLv3) */
566 len = data_plus_mac_plus_padding_size + header_length;
567 /* max_mac_bytes contains the maximum bytes of bytes in the MAC, includi
568 * |header|, assuming that there’s no padding. */
569 max_mac_bytes = len - md_size - 1;
570 /* num_blocks is the maximum number of hash blocks. */
571 num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) /
572 /* In order to calculate the MAC in constant time we have to handle
573 * the final blocks specially because the padding value could cause the
574 * end to appear somewhere in the final |variance_blocks| blocks and we
575 * can’t leak where. However, |num_starting_blocks| worth of data can
576 * be hashed right away because no padding value can affect whether
577 * they are plaintext. */
578 num_starting_blocks = 0;
579 /* k is the starting byte offset into the conceptual header||data where
580 * we start processing. */
581 k = 0;
582 /* mac_end_offset is the index just past the end of the data to be
583 * MACed. */
584 mac_end_offset = data_plus_mac_size + header_length - md_size;
585 /* c is the index of the 0x80 byte in the final hash block that
586 * contains application data. */
587 c = mac_end_offset % md_block_size;
588 /* index_a is the hash block number that contains the 0x80 terminating
589 * value. */

new/usr/src/lib/openssl/libsunw_ssl/s3_cbc.c 10

590 index_a = mac_end_offset / md_block_size;
591 /* index_b is the hash block number that contains the 64-bit hash
592 * length, in bits. */
593 index_b = (mac_end_offset + md_length_size) / md_block_size;
594 /* bits is the hash-length in bits. It includes the additional hash
595 * block for the masked HMAC key, or whole of |header| in the case of
596 * SSLv3. */

598 /* For SSLv3, if we’re going to have any starting blocks then we need
599 * at least two because the header is larger than a single block. */
600 if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0))
601 {
602 num_starting_blocks = num_blocks - variance_blocks;
603 k = md_block_size*num_starting_blocks;
604 }

606 bits = 8*mac_end_offset;
607 if (!is_sslv3)
608 {
609 /* Compute the initial HMAC block. For SSLv3, the padding and
610 * secret bytes are included in |header| because they take more
611 * than a single block. */
612 bits += 8*md_block_size;
613 memset(hmac_pad, 0, md_block_size);
614 OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
615 memcpy(hmac_pad, mac_secret, mac_secret_length);
616 for (i = 0; i < md_block_size; i++)
617 hmac_pad[i] ^= 0x36;

619 md_transform(md_state.c, hmac_pad);
620 }

622 if (length_is_big_endian)
623 {
624 memset(length_bytes,0,md_length_size-4);
625 length_bytes[md_length_size-4] = (unsigned char)(bits>>24);
626 length_bytes[md_length_size-3] = (unsigned char)(bits>>16);
627 length_bytes[md_length_size-2] = (unsigned char)(bits>>8);
628 length_bytes[md_length_size-1] = (unsigned char)bits;
629 }
630 else
631 {
632 memset(length_bytes,0,md_length_size);
633 length_bytes[md_length_size-5] = (unsigned char)(bits>>24);
634 length_bytes[md_length_size-6] = (unsigned char)(bits>>16);
635 length_bytes[md_length_size-7] = (unsigned char)(bits>>8);
636 length_bytes[md_length_size-8] = (unsigned char)bits;
637 }

639 if (k > 0)
640 {
641 if (is_sslv3)
642 {
643 /* The SSLv3 header is larger than a single block.
644 * overhang is the number of bytes beyond a single
645 * block that the header consumes: either 7 bytes
646 * (SHA1) or 11 bytes (MD5). */
647 unsigned overhang = header_length-md_block_size;
648 md_transform(md_state.c, header);
649 memcpy(first_block, header + md_block_size, overhang);
650 memcpy(first_block + overhang, data, md_block_size-overh
651 md_transform(md_state.c, first_block);
652 for (i = 1; i < k/md_block_size - 1; i++)
653 md_transform(md_state.c, data + md_block_size*i
654 }
655 else

new/usr/src/lib/openssl/libsunw_ssl/s3_cbc.c 11

656 {
657 /* k is a multiple of md_block_size. */
658 memcpy(first_block, header, 13);
659 memcpy(first_block+13, data, md_block_size-13);
660 md_transform(md_state.c, first_block);
661 for (i = 1; i < k/md_block_size; i++)
662 md_transform(md_state.c, data + md_block_size*i
663 }
664 }

666 memset(mac_out, 0, sizeof(mac_out));

668 /* We now process the final hash blocks. For each block, we construct
669 * it in constant time. If the |i==index_a| then we’ll include the 0x80
670 * bytes and zero pad etc. For each block we selectively copy it, in
671 * constant time, to |mac_out|. */
672 for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks;
673 {
674 unsigned char block[MAX_HASH_BLOCK_SIZE];
675 unsigned char is_block_a = constant_time_eq_8(i, index_a);
676 unsigned char is_block_b = constant_time_eq_8(i, index_b);
677 for (j = 0; j < md_block_size; j++)
678 {
679 unsigned char b = 0, is_past_c, is_past_cp1;
680 if (k < header_length)
681 b = header[k];
682 else if (k < data_plus_mac_plus_padding_size + header_le
683 b = data[k-header_length];
684 k++;

686 is_past_c = is_block_a & constant_time_ge(j, c);
687 is_past_cp1 = is_block_a & constant_time_ge(j, c+1);
688 /* If this is the block containing the end of the
689 * application data, and we are at the offset for the
690 * 0x80 value, then overwrite b with 0x80. */
691 b = (b&~is_past_c) | (0x80&is_past_c);
692 /* If this the the block containing the end of the
693 * application data and we’re past the 0x80 value then
694 * just write zero. */
695 b = b&~is_past_cp1;
696 /* If this is index_b (the final block), but not
697 * index_a (the end of the data), then the 64-bit
698 * length didn’t fit into index_a and we’re having to
699 * add an extra block of zeros. */
700 b &= ~is_block_b | is_block_a;

702 /* The final bytes of one of the blocks contains the
703 * length. */
704 if (j >= md_block_size - md_length_size)
705 {
706 /* If this is index_b, write a length byte. */
707 b = (b&~is_block_b) | (is_block_b&length_bytes[j
708 }
709 block[j] = b;
710 }

712 md_transform(md_state.c, block);
713 md_final_raw(md_state.c, block);
714 /* If this is index_b, copy the hash value to |mac_out|. */
715 for (j = 0; j < md_size; j++)
716 mac_out[j] |= block[j]&is_block_b;
717 }

719 EVP_MD_CTX_init(&md_ctx);
720 EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */);
721 if (is_sslv3)

new/usr/src/lib/openssl/libsunw_ssl/s3_cbc.c 12

722 {
723 /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
724 memset(hmac_pad, 0x5c, sslv3_pad_length);

726 EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
727 EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
728 EVP_DigestUpdate(&md_ctx, mac_out, md_size);
729 }
730 else
731 {
732 /* Complete the HMAC in the standard manner. */
733 for (i = 0; i < md_block_size; i++)
734 hmac_pad[i] ^= 0x6a;

736 EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
737 EVP_DigestUpdate(&md_ctx, mac_out, md_size);
738 }
739 EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
740 if (md_out_size)
741 *md_out_size = md_out_size_u;
742 EVP_MD_CTX_cleanup(&md_ctx);
743 }

745 #ifdef OPENSSL_FIPS

747 /* Due to the need to use EVP in FIPS mode we can’t reimplement digests but
748 * we can ensure the number of blocks processed is equal for all cases
749 * by digesting additional data.
750 */

752 void tls_fips_digest_extra(
753 const EVP_CIPHER_CTX *cipher_ctx, EVP_MD_CTX *mac_ctx,
754 const unsigned char *data, size_t data_len, size_t orig_len)
755 {
756 size_t block_size, digest_pad, blocks_data, blocks_orig;
757 if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
758 return;
759 block_size = EVP_MD_CTX_block_size(mac_ctx);
760 /* We are in FIPS mode if we get this far so we know we have only SHA*
761 * digests and TLS to deal with.
762 * Minimum digest padding length is 17 for SHA384/SHA512 and 9
763 * otherwise.
764 * Additional header is 13 bytes. To get the number of digest blocks
765 * processed round up the amount of data plus padding to the nearest
766 * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
767 * So we have:
768 * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
769 * equivalently:
770 * blocks = (payload_len + digest_pad + 12)/block_size + 1
771 * HMAC adds a constant overhead.
772 * We’re ultimately only interested in differences so this becomes
773 * blocks = (payload_len + 29)/128
774 * for SHA384/SHA512 and
775 * blocks = (payload_len + 21)/64
776 * otherwise.
777 */
778 digest_pad = block_size == 64 ? 21 : 29;
779 blocks_orig = (orig_len + digest_pad)/block_size;
780 blocks_data = (data_len + digest_pad)/block_size;
781 /* MAC enough blocks to make up the difference between the original
782 * and actual lengths plus one extra block to ensure this is never a
783 * no op. The "data" pointer should always have enough space to
784 * perform this operation as it is large enough for a maximum
785 * length TLS buffer.
786 */
787 EVP_DigestSignUpdate(mac_ctx, data,

new/usr/src/lib/openssl/libsunw_ssl/s3_cbc.c 13

788 (blocks_orig - blocks_data + 1) * block_size);
789 }
790 #endif

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 1

**
 85361 Fri May 30 18:32:20 2014
new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s3_clnt.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /* ==
112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
113 *
114 * Portions of the attached software ("Contribution") are developed by
115 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
116 *
117 * The Contribution is licensed pursuant to the OpenSSL open source
118 * license provided above.
119 *
120 * ECC cipher suite support in OpenSSL originally written by
121 * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
122 *
123 */
124 /* ==
125 * Copyright 2005 Nokia. All rights reserved.
126 *
127 * The portions of the attached software ("Contribution") is developed by

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 3

128 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
129 * license.
130 *
131 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
132 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
133 * support (see RFC 4279) to OpenSSL.
134 *
135 * No patent licenses or other rights except those expressly stated in
136 * the OpenSSL open source license shall be deemed granted or received
137 * expressly, by implication, estoppel, or otherwise.
138 *
139 * No assurances are provided by Nokia that the Contribution does not
140 * infringe the patent or other intellectual property rights of any third
141 * party or that the license provides you with all the necessary rights
142 * to make use of the Contribution.
143 *
144 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
145 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
146 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
147 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
148 * OTHERWISE.
149 */

151 #include <stdio.h>
152 #include "ssl_locl.h"
153 #include "kssl_lcl.h"
154 #include <openssl/buffer.h>
155 #include <openssl/rand.h>
156 #include <openssl/objects.h>
157 #include <openssl/evp.h>
158 #include <openssl/md5.h>
159 #ifdef OPENSSL_FIPS
160 #include <openssl/fips.h>
161 #endif
162 #ifndef OPENSSL_NO_DH
163 #include <openssl/dh.h>
164 #endif
165 #include <openssl/bn.h>
166 #ifndef OPENSSL_NO_ENGINE
167 #include <openssl/engine.h>
168 #endif

170 static const SSL_METHOD *ssl3_get_client_method(int ver);
171 static int ca_dn_cmp(const X509_NAME * const *a,const X509_NAME * const *b);

173 static const SSL_METHOD *ssl3_get_client_method(int ver)
174 {
175 if (ver == SSL3_VERSION)
176 return(SSLv3_client_method());
177 else
178 return(NULL);
179 }

181 IMPLEMENT_ssl3_meth_func(SSLv3_client_method,
182 ssl_undefined_function,
183 ssl3_connect,
184 ssl3_get_client_method)

186 int ssl3_connect(SSL *s)
187 {
188 BUF_MEM *buf=NULL;
189 unsigned long Time=(unsigned long)time(NULL);
190 void (*cb)(const SSL *ssl,int type,int val)=NULL;
191 int ret= -1;
192 int new_state,state,skip=0;

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 4

194 RAND_add(&Time,sizeof(Time),0);
195 ERR_clear_error();
196 clear_sys_error();

198 if (s->info_callback != NULL)
199 cb=s->info_callback;
200 else if (s->ctx->info_callback != NULL)
201 cb=s->ctx->info_callback;
202
203 s->in_handshake++;
204 if (!SSL_in_init(s) || SSL_in_before(s)) SSL_clear(s);

206 #ifndef OPENSSL_NO_HEARTBEATS
207 /* If we’re awaiting a HeartbeatResponse, pretend we
208 * already got and don’t await it anymore, because
209 * Heartbeats don’t make sense during handshakes anyway.
210 */
211 if (s->tlsext_hb_pending)
212 {
213 s->tlsext_hb_pending = 0;
214 s->tlsext_hb_seq++;
215 }
216 #endif

218 for (;;)
219 {
220 state=s->state;

222 switch(s->state)
223 {
224 case SSL_ST_RENEGOTIATE:
225 s->renegotiate=1;
226 s->state=SSL_ST_CONNECT;
227 s->ctx->stats.sess_connect_renegotiate++;
228 /* break */
229 case SSL_ST_BEFORE:
230 case SSL_ST_CONNECT:
231 case SSL_ST_BEFORE|SSL_ST_CONNECT:
232 case SSL_ST_OK|SSL_ST_CONNECT:

234 s->server=0;
235 if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_START,1);

237 if ((s->version & 0xff00) != 0x0300)
238 {
239 SSLerr(SSL_F_SSL3_CONNECT, ERR_R_INTERNAL_ERROR)
240 ret = -1;
241 goto end;
242 }
243
244 /* s->version=SSL3_VERSION; */
245 s->type=SSL_ST_CONNECT;

247 if (s->init_buf == NULL)
248 {
249 if ((buf=BUF_MEM_new()) == NULL)
250 {
251 ret= -1;
252 goto end;
253 }
254 if (!BUF_MEM_grow(buf,SSL3_RT_MAX_PLAIN_LENGTH))
255 {
256 ret= -1;
257 goto end;
258 }
259 s->init_buf=buf;

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 5

260 buf=NULL;
261 }

263 if (!ssl3_setup_buffers(s)) { ret= -1; goto end; }

265 /* setup buffing BIO */
266 if (!ssl_init_wbio_buffer(s,0)) { ret= -1; goto end; }

268 /* don’t push the buffering BIO quite yet */

270 ssl3_init_finished_mac(s);

272 s->state=SSL3_ST_CW_CLNT_HELLO_A;
273 s->ctx->stats.sess_connect++;
274 s->init_num=0;
275 break;

277 case SSL3_ST_CW_CLNT_HELLO_A:
278 case SSL3_ST_CW_CLNT_HELLO_B:

280 s->shutdown=0;
281 ret=ssl3_client_hello(s);
282 if (ret <= 0) goto end;
283 s->state=SSL3_ST_CR_SRVR_HELLO_A;
284 s->init_num=0;

286 /* turn on buffering for the next lot of output */
287 if (s->bbio != s->wbio)
288 s->wbio=BIO_push(s->bbio,s->wbio);

290 break;

292 case SSL3_ST_CR_SRVR_HELLO_A:
293 case SSL3_ST_CR_SRVR_HELLO_B:
294 ret=ssl3_get_server_hello(s);
295 if (ret <= 0) goto end;

297 if (s->hit)
298 {
299 s->state=SSL3_ST_CR_FINISHED_A;
300 #ifndef OPENSSL_NO_TLSEXT
301 if (s->tlsext_ticket_expected)
302 {
303 /* receive renewed session ticket */
304 s->state=SSL3_ST_CR_SESSION_TICKET_A;
305 }
306 #endif
307 }
308 else
309 s->state=SSL3_ST_CR_CERT_A;
310 s->init_num=0;
311 break;

313 case SSL3_ST_CR_CERT_A:
314 case SSL3_ST_CR_CERT_B:
315 #ifndef OPENSSL_NO_TLSEXT
316 ret=ssl3_check_finished(s);
317 if (ret <= 0) goto end;
318 if (ret == 2)
319 {
320 s->hit = 1;
321 if (s->tlsext_ticket_expected)
322 s->state=SSL3_ST_CR_SESSION_TICKET_A;
323 else
324 s->state=SSL3_ST_CR_FINISHED_A;
325 s->init_num=0;

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 6

326 break;
327 }
328 #endif
329 /* Check if it is anon DH/ECDH */
330 /* or PSK */
331 if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL)
332 !(s->s3->tmp.new_cipher->algorithm_mkey & SSL_kPSK))
333 {
334 ret=ssl3_get_server_certificate(s);
335 if (ret <= 0) goto end;
336 #ifndef OPENSSL_NO_TLSEXT
337 if (s->tlsext_status_expected)
338 s->state=SSL3_ST_CR_CERT_STATUS_A;
339 else
340 s->state=SSL3_ST_CR_KEY_EXCH_A;
341 }
342 else
343 {
344 skip = 1;
345 s->state=SSL3_ST_CR_KEY_EXCH_A;
346 }
347 #else
348 }
349 else
350 skip=1;

352 s->state=SSL3_ST_CR_KEY_EXCH_A;
353 #endif
354 s->init_num=0;
355 break;

357 case SSL3_ST_CR_KEY_EXCH_A:
358 case SSL3_ST_CR_KEY_EXCH_B:
359 ret=ssl3_get_key_exchange(s);
360 if (ret <= 0) goto end;
361 s->state=SSL3_ST_CR_CERT_REQ_A;
362 s->init_num=0;

364 /* at this point we check that we have the
365 * required stuff from the server */
366 if (!ssl3_check_cert_and_algorithm(s))
367 {
368 ret= -1;
369 goto end;
370 }
371 break;

373 case SSL3_ST_CR_CERT_REQ_A:
374 case SSL3_ST_CR_CERT_REQ_B:
375 ret=ssl3_get_certificate_request(s);
376 if (ret <= 0) goto end;
377 s->state=SSL3_ST_CR_SRVR_DONE_A;
378 s->init_num=0;
379 break;

381 case SSL3_ST_CR_SRVR_DONE_A:
382 case SSL3_ST_CR_SRVR_DONE_B:
383 ret=ssl3_get_server_done(s);
384 if (ret <= 0) goto end;
385 #ifndef OPENSSL_NO_SRP
386 if (s->s3->tmp.new_cipher->algorithm_mkey & SSL_kSRP)
387 {
388 if ((ret = SRP_Calc_A_param(s))<=0)
389 {
390 SSLerr(SSL_F_SSL3_CONNECT,SSL_R_SRP_A_CA
391 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_I

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 7

392 goto end;
393 }
394 }
395 #endif
396 if (s->s3->tmp.cert_req)
397 s->state=SSL3_ST_CW_CERT_A;
398 else
399 s->state=SSL3_ST_CW_KEY_EXCH_A;
400 s->init_num=0;

402 break;

404 case SSL3_ST_CW_CERT_A:
405 case SSL3_ST_CW_CERT_B:
406 case SSL3_ST_CW_CERT_C:
407 case SSL3_ST_CW_CERT_D:
408 ret=ssl3_send_client_certificate(s);
409 if (ret <= 0) goto end;
410 s->state=SSL3_ST_CW_KEY_EXCH_A;
411 s->init_num=0;
412 break;

414 case SSL3_ST_CW_KEY_EXCH_A:
415 case SSL3_ST_CW_KEY_EXCH_B:
416 ret=ssl3_send_client_key_exchange(s);
417 if (ret <= 0) goto end;
418 /* EAY EAY EAY need to check for DH fix cert
419 * sent back */
420 /* For TLS, cert_req is set to 2, so a cert chain
421 * of nothing is sent, but no verify packet is sent */
422 /* XXX: For now, we do not support client
423 * authentication in ECDH cipher suites with
424 * ECDH (rather than ECDSA) certificates.
425 * We need to skip the certificate verify
426 * message when client’s ECDH public key is sent
427 * inside the client certificate.
428 */
429 if (s->s3->tmp.cert_req == 1)
430 {
431 s->state=SSL3_ST_CW_CERT_VRFY_A;
432 }
433 else
434 {
435 s->state=SSL3_ST_CW_CHANGE_A;
436 s->s3->change_cipher_spec=0;
437 }
438 if (s->s3->flags & TLS1_FLAGS_SKIP_CERT_VERIFY)
439 {
440 s->state=SSL3_ST_CW_CHANGE_A;
441 s->s3->change_cipher_spec=0;
442 }

444 s->init_num=0;
445 break;

447 case SSL3_ST_CW_CERT_VRFY_A:
448 case SSL3_ST_CW_CERT_VRFY_B:
449 ret=ssl3_send_client_verify(s);
450 if (ret <= 0) goto end;
451 s->state=SSL3_ST_CW_CHANGE_A;
452 s->init_num=0;
453 s->s3->change_cipher_spec=0;
454 break;

456 case SSL3_ST_CW_CHANGE_A:
457 case SSL3_ST_CW_CHANGE_B:

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 8

458 ret=ssl3_send_change_cipher_spec(s,
459 SSL3_ST_CW_CHANGE_A,SSL3_ST_CW_CHANGE_B);
460 if (ret <= 0) goto end;

462 #if defined(OPENSSL_NO_TLSEXT) || defined(OPENSSL_NO_NEXTPROTONEG)
463 s->state=SSL3_ST_CW_FINISHED_A;
464 #else
465 if (s->s3->next_proto_neg_seen)
466 s->state=SSL3_ST_CW_NEXT_PROTO_A;
467 else
468 s->state=SSL3_ST_CW_FINISHED_A;
469 #endif
470 s->init_num=0;

472 s->session->cipher=s->s3->tmp.new_cipher;
473 #ifdef OPENSSL_NO_COMP
474 s->session->compress_meth=0;
475 #else
476 if (s->s3->tmp.new_compression == NULL)
477 s->session->compress_meth=0;
478 else
479 s->session->compress_meth=
480 s->s3->tmp.new_compression->id;
481 #endif
482 if (!s->method->ssl3_enc->setup_key_block(s))
483 {
484 ret= -1;
485 goto end;
486 }

488 if (!s->method->ssl3_enc->change_cipher_state(s,
489 SSL3_CHANGE_CIPHER_CLIENT_WRITE))
490 {
491 ret= -1;
492 goto end;
493 }

495 break;

497 #if !defined(OPENSSL_NO_TLSEXT) && !defined(OPENSSL_NO_NEXTPROTONEG)
498 case SSL3_ST_CW_NEXT_PROTO_A:
499 case SSL3_ST_CW_NEXT_PROTO_B:
500 ret=ssl3_send_next_proto(s);
501 if (ret <= 0) goto end;
502 s->state=SSL3_ST_CW_FINISHED_A;
503 break;
504 #endif

506 case SSL3_ST_CW_FINISHED_A:
507 case SSL3_ST_CW_FINISHED_B:
508 ret=ssl3_send_finished(s,
509 SSL3_ST_CW_FINISHED_A,SSL3_ST_CW_FINISHED_B,
510 s->method->ssl3_enc->client_finished_label,
511 s->method->ssl3_enc->client_finished_label_len);
512 if (ret <= 0) goto end;
513 s->state=SSL3_ST_CW_FLUSH;

515 /* clear flags */
516 s->s3->flags&= ~SSL3_FLAGS_POP_BUFFER;
517 if (s->hit)
518 {
519 s->s3->tmp.next_state=SSL_ST_OK;
520 if (s->s3->flags & SSL3_FLAGS_DELAY_CLIENT_FINIS
521 {
522 s->state=SSL_ST_OK;
523 s->s3->flags|=SSL3_FLAGS_POP_BUFFER;

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 9

524 s->s3->delay_buf_pop_ret=0;
525 }
526 }
527 else
528 {
529 #ifndef OPENSSL_NO_TLSEXT
530 /* Allow NewSessionTicket if ticket expected */
531 if (s->tlsext_ticket_expected)
532 s->s3->tmp.next_state=SSL3_ST_CR_SESSION
533 else
534 #endif
535
536 s->s3->tmp.next_state=SSL3_ST_CR_FINISHED_A;
537 }
538 s->init_num=0;
539 break;

541 #ifndef OPENSSL_NO_TLSEXT
542 case SSL3_ST_CR_SESSION_TICKET_A:
543 case SSL3_ST_CR_SESSION_TICKET_B:
544 ret=ssl3_get_new_session_ticket(s);
545 if (ret <= 0) goto end;
546 s->state=SSL3_ST_CR_FINISHED_A;
547 s->init_num=0;
548 break;

550 case SSL3_ST_CR_CERT_STATUS_A:
551 case SSL3_ST_CR_CERT_STATUS_B:
552 ret=ssl3_get_cert_status(s);
553 if (ret <= 0) goto end;
554 s->state=SSL3_ST_CR_KEY_EXCH_A;
555 s->init_num=0;
556 break;
557 #endif

559 case SSL3_ST_CR_FINISHED_A:
560 case SSL3_ST_CR_FINISHED_B:

562 ret=ssl3_get_finished(s,SSL3_ST_CR_FINISHED_A,
563 SSL3_ST_CR_FINISHED_B);
564 if (ret <= 0) goto end;

566 if (s->hit)
567 s->state=SSL3_ST_CW_CHANGE_A;
568 else
569 s->state=SSL_ST_OK;
570 s->init_num=0;
571 break;

573 case SSL3_ST_CW_FLUSH:
574 s->rwstate=SSL_WRITING;
575 if (BIO_flush(s->wbio) <= 0)
576 {
577 ret= -1;
578 goto end;
579 }
580 s->rwstate=SSL_NOTHING;
581 s->state=s->s3->tmp.next_state;
582 break;

584 case SSL_ST_OK:
585 /* clean a few things up */
586 ssl3_cleanup_key_block(s);

588 if (s->init_buf != NULL)
589 {

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 10

590 BUF_MEM_free(s->init_buf);
591 s->init_buf=NULL;
592 }

594 /* If we are not ’joining’ the last two packets,
595 * remove the buffering now */
596 if (!(s->s3->flags & SSL3_FLAGS_POP_BUFFER))
597 ssl_free_wbio_buffer(s);
598 /* else do it later in ssl3_write */

600 s->init_num=0;
601 s->renegotiate=0;
602 s->new_session=0;

604 ssl_update_cache(s,SSL_SESS_CACHE_CLIENT);
605 if (s->hit) s->ctx->stats.sess_hit++;

607 ret=1;
608 /* s->server=0; */
609 s->handshake_func=ssl3_connect;
610 s->ctx->stats.sess_connect_good++;

612 if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_DONE,1);

614 goto end;
615 /* break; */
616
617 default:
618 SSLerr(SSL_F_SSL3_CONNECT,SSL_R_UNKNOWN_STATE);
619 ret= -1;
620 goto end;
621 /* break; */
622 }

624 /* did we do anything */
625 if (!s->s3->tmp.reuse_message && !skip)
626 {
627 if (s->debug)
628 {
629 if ((ret=BIO_flush(s->wbio)) <= 0)
630 goto end;
631 }

633 if ((cb != NULL) && (s->state != state))
634 {
635 new_state=s->state;
636 s->state=state;
637 cb(s,SSL_CB_CONNECT_LOOP,1);
638 s->state=new_state;
639 }
640 }
641 skip=0;
642 }
643 end:
644 s->in_handshake--;
645 if (buf != NULL)
646 BUF_MEM_free(buf);
647 if (cb != NULL)
648 cb(s,SSL_CB_CONNECT_EXIT,ret);
649 return(ret);
650 }

653 int ssl3_client_hello(SSL *s)
654 {
655 unsigned char *buf;

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 11

656 unsigned char *p,*d;
657 int i;
658 unsigned long l;
659 #ifndef OPENSSL_NO_COMP
660 int j;
661 SSL_COMP *comp;
662 #endif

664 buf=(unsigned char *)s->init_buf->data;
665 if (s->state == SSL3_ST_CW_CLNT_HELLO_A)
666 {
667 SSL_SESSION *sess = s->session;
668 if ((sess == NULL) ||
669 (sess->ssl_version != s->version) ||
670 #ifdef OPENSSL_NO_TLSEXT
671 !sess->session_id_length ||
672 #else
673 (!sess->session_id_length && !sess->tlsext_tick) ||
674 #endif
675 (sess->not_resumable))
676 {
677 if (!ssl_get_new_session(s,0))
678 goto err;
679 }
680 /* else use the pre-loaded session */

682 p=s->s3->client_random;

684 if (ssl_fill_hello_random(s, 0, p, SSL3_RANDOM_SIZE) <= 0)
685 goto err;

687 /* Do the message type and length last */
688 d=p= &(buf[4]);

690 /* version indicates the negotiated version: for example from
691 * an SSLv2/v3 compatible client hello). The client_version
692 * field is the maximum version we permit and it is also
693 * used in RSA encrypted premaster secrets. Some servers can
694 * choke if we initially report a higher version then
695 * renegotiate to a lower one in the premaster secret. This
696 * didn’t happen with TLS 1.0 as most servers supported it
697 * but it can with TLS 1.1 or later if the server only supports
698 * 1.0.
699 *
700 * Possible scenario with previous logic:
701 * 1. Client hello indicates TLS 1.2
702 * 2. Server hello says TLS 1.0
703 * 3. RSA encrypted premaster secret uses 1.2.
704 * 4. Handhaked proceeds using TLS 1.0.
705 * 5. Server sends hello request to renegotiate.
706 * 6. Client hello indicates TLS v1.0 as we now
707 * know that is maximum server supports.
708 * 7. Server chokes on RSA encrypted premaster secret
709 * containing version 1.0.
710 *
711 * For interoperability it should be OK to always use the
712 * maximum version we support in client hello and then rely
713 * on the checking of version to ensure the servers isn’t
714 * being inconsistent: for example initially negotiating with
715 * TLS 1.0 and renegotiating with TLS 1.2. We do this by using
716 * client_version in client hello and not resetting it to
717 * the negotiated version.
718 */
719 #if 0
720 *(p++)=s->version>>8;
721 *(p++)=s->version&0xff;

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 12

722 s->client_version=s->version;
723 #else
724 *(p++)=s->client_version>>8;
725 *(p++)=s->client_version&0xff;
726 #endif

728 /* Random stuff */
729 memcpy(p,s->s3->client_random,SSL3_RANDOM_SIZE);
730 p+=SSL3_RANDOM_SIZE;

732 /* Session ID */
733 if (s->new_session)
734 i=0;
735 else
736 i=s->session->session_id_length;
737 *(p++)=i;
738 if (i != 0)
739 {
740 if (i > (int)sizeof(s->session->session_id))
741 {
742 SSLerr(SSL_F_SSL3_CLIENT_HELLO, ERR_R_INTERNAL_E
743 goto err;
744 }
745 memcpy(p,s->session->session_id,i);
746 p+=i;
747 }
748
749 /* Ciphers supported */
750 i=ssl_cipher_list_to_bytes(s,SSL_get_ciphers(s),&(p[2]),0);
751 if (i == 0)
752 {
753 SSLerr(SSL_F_SSL3_CLIENT_HELLO,SSL_R_NO_CIPHERS_AVAILABL
754 goto err;
755 }
756 #ifdef OPENSSL_MAX_TLS1_2_CIPHER_LENGTH
757 /* Some servers hang if client hello > 256 bytes
758 * as hack workaround chop number of supported ciphers
759 * to keep it well below this if we use TLS v1.2
760 */
761 if (TLS1_get_version(s) >= TLS1_2_VERSION
762 && i > OPENSSL_MAX_TLS1_2_CIPHER_LENGTH)
763 i = OPENSSL_MAX_TLS1_2_CIPHER_LENGTH & ~1;
764 #endif
765 s2n(i,p);
766 p+=i;

768 /* COMPRESSION */
769 #ifdef OPENSSL_NO_COMP
770 *(p++)=1;
771 #else

773 if ((s->options & SSL_OP_NO_COMPRESSION)
774 || !s->ctx->comp_methods)
775 j=0;
776 else
777 j=sk_SSL_COMP_num(s->ctx->comp_methods);
778 *(p++)=1+j;
779 for (i=0; i<j; i++)
780 {
781 comp=sk_SSL_COMP_value(s->ctx->comp_methods,i);
782 *(p++)=comp->id;
783 }
784 #endif
785 *(p++)=0; /* Add the NULL method */

787 #ifndef OPENSSL_NO_TLSEXT

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 13

788 /* TLS extensions*/
789 if (ssl_prepare_clienthello_tlsext(s) <= 0)
790 {
791 SSLerr(SSL_F_SSL3_CLIENT_HELLO,SSL_R_CLIENTHELLO_TLSEXT)
792 goto err;
793 }
794 if ((p = ssl_add_clienthello_tlsext(s, p, buf+SSL3_RT_MAX_PLAIN_
795 {
796 SSLerr(SSL_F_SSL3_CLIENT_HELLO,ERR_R_INTERNAL_ERROR);
797 goto err;
798 }
799 #endif
800
801 l=(p-d);
802 d=buf;
803 *(d++)=SSL3_MT_CLIENT_HELLO;
804 l2n3(l,d);

806 s->state=SSL3_ST_CW_CLNT_HELLO_B;
807 /* number of bytes to write */
808 s->init_num=p-buf;
809 s->init_off=0;
810 }

812 /* SSL3_ST_CW_CLNT_HELLO_B */
813 return(ssl3_do_write(s,SSL3_RT_HANDSHAKE));
814 err:
815 return(-1);
816 }

818 int ssl3_get_server_hello(SSL *s)
819 {
820 STACK_OF(SSL_CIPHER) *sk;
821 const SSL_CIPHER *c;
822 unsigned char *p,*d;
823 int i,al,ok;
824 unsigned int j;
825 long n;
826 #ifndef OPENSSL_NO_COMP
827 SSL_COMP *comp;
828 #endif

830 n=s->method->ssl_get_message(s,
831 SSL3_ST_CR_SRVR_HELLO_A,
832 SSL3_ST_CR_SRVR_HELLO_B,
833 -1,
834 20000, /* ?? */
835 &ok);

837 if (!ok) return((int)n);

839 if (SSL_version(s) == DTLS1_VERSION || SSL_version(s) == DTLS1_BAD_VER)
840 {
841 if (s->s3->tmp.message_type == DTLS1_MT_HELLO_VERIFY_REQUEST)
842 {
843 if (s->d1->send_cookie == 0)
844 {
845 s->s3->tmp.reuse_message = 1;
846 return 1;
847 }
848 else /* already sent a cookie */
849 {
850 al=SSL_AD_UNEXPECTED_MESSAGE;
851 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_BAD_MES
852 goto f_err;
853 }

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 14

854 }
855 }
856
857 if (s->s3->tmp.message_type != SSL3_MT_SERVER_HELLO)
858 {
859 al=SSL_AD_UNEXPECTED_MESSAGE;
860 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_BAD_MESSAGE_TYPE);
861 goto f_err;
862 }

864 d=p=(unsigned char *)s->init_msg;

866 if ((p[0] != (s->version>>8)) || (p[1] != (s->version&0xff)))
867 {
868 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_WRONG_SSL_VERSION);
869 s->version=(s->version&0xff00)|p[1];
870 al=SSL_AD_PROTOCOL_VERSION;
871 goto f_err;
872 }
873 p+=2;

875 /* load the server hello data */
876 /* load the server random */
877 memcpy(s->s3->server_random,p,SSL3_RANDOM_SIZE);
878 p+=SSL3_RANDOM_SIZE;

880 /* get the session-id */
881 j= *(p++);

883 if ((j > sizeof s->session->session_id) || (j > SSL3_SESSION_ID_SIZE))
884 {
885 al=SSL_AD_ILLEGAL_PARAMETER;
886 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_SSL3_SESSION_ID_TOO_LON
887 goto f_err;
888 }

890 #ifndef OPENSSL_NO_TLSEXT
891 /* check if we want to resume the session based on external pre-shared s
892 if (s->version >= TLS1_VERSION && s->tls_session_secret_cb)
893 {
894 SSL_CIPHER *pref_cipher=NULL;
895 s->session->master_key_length=sizeof(s->session->master_key);
896 if (s->tls_session_secret_cb(s, s->session->master_key,
897 &s->session->master_key_length,
898 NULL, &pref_cipher,
899 s->tls_session_secret_cb_arg))
900 {
901 s->session->cipher = pref_cipher ?
902 pref_cipher : ssl_get_cipher_by_char(s, p+j);
903 }
904 }
905 #endif /* OPENSSL_NO_TLSEXT */

907 if (j != 0 && j == s->session->session_id_length
908 && memcmp(p,s->session->session_id,j) == 0)
909 {
910 if(s->sid_ctx_length != s->session->sid_ctx_length
911 || memcmp(s->session->sid_ctx,s->sid_ctx,s->sid_ctx_length))
912 {
913 /* actually a client application bug */
914 al=SSL_AD_ILLEGAL_PARAMETER;
915 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_ATTEMPT_TO_REUSE_SESSIO
916 goto f_err;
917 }
918 s->hit=1;
919 }

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 15

920 else /* a miss or crap from the other end */
921 {
922 /* If we were trying for session-id reuse, make a new
923 * SSL_SESSION so we don’t stuff up other people */
924 s->hit=0;
925 if (s->session->session_id_length > 0)
926 {
927 if (!ssl_get_new_session(s,0))
928 {
929 al=SSL_AD_INTERNAL_ERROR;
930 goto f_err;
931 }
932 }
933 s->session->session_id_length=j;
934 memcpy(s->session->session_id,p,j); /* j could be 0 */
935 }
936 p+=j;
937 c=ssl_get_cipher_by_char(s,p);
938 if (c == NULL)
939 {
940 /* unknown cipher */
941 al=SSL_AD_ILLEGAL_PARAMETER;
942 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_UNKNOWN_CIPHER_RETURNED
943 goto f_err;
944 }
945 /* TLS v1.2 only ciphersuites require v1.2 or later */
946 if ((c->algorithm_ssl & SSL_TLSV1_2) &&
947 (TLS1_get_version(s) < TLS1_2_VERSION))
948 {
949 al=SSL_AD_ILLEGAL_PARAMETER;
950 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_WRONG_CIPHER_RETURNED);
951 goto f_err;
952 }
953 p+=ssl_put_cipher_by_char(s,NULL,NULL);

955 sk=ssl_get_ciphers_by_id(s);
956 i=sk_SSL_CIPHER_find(sk,c);
957 if (i < 0)
958 {
959 /* we did not say we would use this cipher */
960 al=SSL_AD_ILLEGAL_PARAMETER;
961 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_WRONG_CIPHER_RETURNED);
962 goto f_err;
963 }

965 /* Depending on the session caching (internal/external), the cipher
966 and/or cipher_id values may not be set. Make sure that
967 cipher_id is set and use it for comparison. */
968 if (s->session->cipher)
969 s->session->cipher_id = s->session->cipher->id;
970 if (s->hit && (s->session->cipher_id != c->id))
971 {
972 /* Workaround is now obsolete */
973 #if 0
974 if (!(s->options &
975 SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG))
976 #endif
977 {
978 al=SSL_AD_ILLEGAL_PARAMETER;
979 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_OLD_SESSION_CIP
980 goto f_err;
981 }
982 }
983 s->s3->tmp.new_cipher=c;
984 /* Don’t digest cached records if TLS v1.2: we may need them for
985 * client authentication.

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 16

986 */
987 if (TLS1_get_version(s) < TLS1_2_VERSION && !ssl3_digest_cached_records(
988 {
989 al = SSL_AD_INTERNAL_ERROR;
990 goto f_err;
991 }
992 /* lets get the compression algorithm */
993 /* COMPRESSION */
994 #ifdef OPENSSL_NO_COMP
995 if (*(p++) != 0)
996 {
997 al=SSL_AD_ILLEGAL_PARAMETER;
998 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_UNSUPPORTED_COMPRESSION
999 goto f_err;

1000 }
1001 /* If compression is disabled we’d better not try to resume a session
1002 * using compression.
1003 */
1004 if (s->session->compress_meth != 0)
1005 {
1006 al=SSL_AD_INTERNAL_ERROR;
1007 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_INCONSISTENT_COMPRESSIO
1008 goto f_err;
1009 }
1010 #else
1011 j= *(p++);
1012 if (s->hit && j != s->session->compress_meth)
1013 {
1014 al=SSL_AD_ILLEGAL_PARAMETER;
1015 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_OLD_SESSION_COMPRESSION
1016 goto f_err;
1017 }
1018 if (j == 0)
1019 comp=NULL;
1020 else if (s->options & SSL_OP_NO_COMPRESSION)
1021 {
1022 al=SSL_AD_ILLEGAL_PARAMETER;
1023 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_COMPRESSION_DISABLED);
1024 goto f_err;
1025 }
1026 else
1027 comp=ssl3_comp_find(s->ctx->comp_methods,j);
1028
1029 if ((j != 0) && (comp == NULL))
1030 {
1031 al=SSL_AD_ILLEGAL_PARAMETER;
1032 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_UNSUPPORTED_COMPRESSION
1033 goto f_err;
1034 }
1035 else
1036 {
1037 s->s3->tmp.new_compression=comp;
1038 }
1039 #endif

1041 #ifndef OPENSSL_NO_TLSEXT
1042 /* TLS extensions*/
1043 if (s->version >= SSL3_VERSION)
1044 {
1045 if (!ssl_parse_serverhello_tlsext(s,&p,d,n, &al))
1046 {
1047 /* ’al’ set by ssl_parse_serverhello_tlsext */
1048 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_PARSE_TLSEXT);
1049 goto f_err;
1050 }
1051 if (ssl_check_serverhello_tlsext(s) <= 0)

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 17

1052 {
1053 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_SERVERHELLO_TLS
1054 goto err;
1055 }
1056 }
1057 #endif

1059 if (p != (d+n))
1060 {
1061 /* wrong packet length */
1062 al=SSL_AD_DECODE_ERROR;
1063 SSLerr(SSL_F_SSL3_GET_SERVER_HELLO,SSL_R_BAD_PACKET_LENGTH);
1064 goto f_err;
1065 }

1067 return(1);
1068 f_err:
1069 ssl3_send_alert(s,SSL3_AL_FATAL,al);
1070 err:
1071 return(-1);
1072 }

1074 int ssl3_get_server_certificate(SSL *s)
1075 {
1076 int al,i,ok,ret= -1;
1077 unsigned long n,nc,llen,l;
1078 X509 *x=NULL;
1079 const unsigned char *q,*p;
1080 unsigned char *d;
1081 STACK_OF(X509) *sk=NULL;
1082 SESS_CERT *sc;
1083 EVP_PKEY *pkey=NULL;
1084 int need_cert = 1; /* VRS: 0=> will allow null cert if auth == KRB5 */

1086 n=s->method->ssl_get_message(s,
1087 SSL3_ST_CR_CERT_A,
1088 SSL3_ST_CR_CERT_B,
1089 -1,
1090 s->max_cert_list,
1091 &ok);

1093 if (!ok) return((int)n);

1095 if ((s->s3->tmp.message_type == SSL3_MT_SERVER_KEY_EXCHANGE) ||
1096 ((s->s3->tmp.new_cipher->algorithm_auth & SSL_aKRB5) &&
1097 (s->s3->tmp.message_type == SSL3_MT_SERVER_DONE)))
1098 {
1099 s->s3->tmp.reuse_message=1;
1100 return(1);
1101 }

1103 if (s->s3->tmp.message_type != SSL3_MT_CERTIFICATE)
1104 {
1105 al=SSL_AD_UNEXPECTED_MESSAGE;
1106 SSLerr(SSL_F_SSL3_GET_SERVER_CERTIFICATE,SSL_R_BAD_MESSAGE_TYPE)
1107 goto f_err;
1108 }
1109 p=d=(unsigned char *)s->init_msg;

1111 if ((sk=sk_X509_new_null()) == NULL)
1112 {
1113 SSLerr(SSL_F_SSL3_GET_SERVER_CERTIFICATE,ERR_R_MALLOC_FAILURE);
1114 goto err;
1115 }

1117 n2l3(p,llen);

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 18

1118 if (llen+3 != n)
1119 {
1120 al=SSL_AD_DECODE_ERROR;
1121 SSLerr(SSL_F_SSL3_GET_SERVER_CERTIFICATE,SSL_R_LENGTH_MISMATCH);
1122 goto f_err;
1123 }
1124 for (nc=0; nc<llen;)
1125 {
1126 n2l3(p,l);
1127 if ((l+nc+3) > llen)
1128 {
1129 al=SSL_AD_DECODE_ERROR;
1130 SSLerr(SSL_F_SSL3_GET_SERVER_CERTIFICATE,SSL_R_CERT_LENG
1131 goto f_err;
1132 }

1134 q=p;
1135 x=d2i_X509(NULL,&q,l);
1136 if (x == NULL)
1137 {
1138 al=SSL_AD_BAD_CERTIFICATE;
1139 SSLerr(SSL_F_SSL3_GET_SERVER_CERTIFICATE,ERR_R_ASN1_LIB)
1140 goto f_err;
1141 }
1142 if (q != (p+l))
1143 {
1144 al=SSL_AD_DECODE_ERROR;
1145 SSLerr(SSL_F_SSL3_GET_SERVER_CERTIFICATE,SSL_R_CERT_LENG
1146 goto f_err;
1147 }
1148 if (!sk_X509_push(sk,x))
1149 {
1150 SSLerr(SSL_F_SSL3_GET_SERVER_CERTIFICATE,ERR_R_MALLOC_FA
1151 goto err;
1152 }
1153 x=NULL;
1154 nc+=l+3;
1155 p=q;
1156 }

1158 i=ssl_verify_cert_chain(s,sk);
1159 if ((s->verify_mode != SSL_VERIFY_NONE) && (i <= 0)
1160 #ifndef OPENSSL_NO_KRB5
1161 && !((s->s3->tmp.new_cipher->algorithm_mkey & SSL_kKRB5) &&
1162 (s->s3->tmp.new_cipher->algorithm_auth & SSL_aKRB5))
1163 #endif /* OPENSSL_NO_KRB5 */
1164)
1165 {
1166 al=ssl_verify_alarm_type(s->verify_result);
1167 SSLerr(SSL_F_SSL3_GET_SERVER_CERTIFICATE,SSL_R_CERTIFICATE_VERIF
1168 goto f_err;
1169 }
1170 ERR_clear_error(); /* but we keep s->verify_result */

1172 sc=ssl_sess_cert_new();
1173 if (sc == NULL) goto err;

1175 if (s->session->sess_cert) ssl_sess_cert_free(s->session->sess_cert);
1176 s->session->sess_cert=sc;

1178 sc->cert_chain=sk;
1179 /* Inconsistency alert: cert_chain does include the peer’s
1180 * certificate, which we don’t include in s3_srvr.c */
1181 x=sk_X509_value(sk,0);
1182 sk=NULL;
1183 /* VRS 19990621: possible memory leak; sk=null ==> !sk_pop_free() @end*/

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 19

1185 pkey=X509_get_pubkey(x);

1187 /* VRS: allow null cert if auth == KRB5 */
1188 need_cert = ((s->s3->tmp.new_cipher->algorithm_mkey & SSL_kKRB5) &&
1189 (s->s3->tmp.new_cipher->algorithm_auth & SSL_aKRB5))
1190 ? 0 : 1;

1192 #ifdef KSSL_DEBUG
1193 printf("pkey,x = %p, %p\n", pkey,x);
1194 printf("ssl_cert_type(x,pkey) = %d\n", ssl_cert_type(x,pkey));
1195 printf("cipher, alg, nc = %s, %lx, %lx, %d\n", s->s3->tmp.new_cipher->na
1196 s->s3->tmp.new_cipher->algorithm_mkey, s->s3->tmp.new_cipher->al
1197 #endif /* KSSL_DEBUG */

1199 if (need_cert && ((pkey == NULL) || EVP_PKEY_missing_parameters(pkey)))
1200 {
1201 x=NULL;
1202 al=SSL3_AL_FATAL;
1203 SSLerr(SSL_F_SSL3_GET_SERVER_CERTIFICATE,
1204 SSL_R_UNABLE_TO_FIND_PUBLIC_KEY_PARAMETERS);
1205 goto f_err;
1206 }

1208 i=ssl_cert_type(x,pkey);
1209 if (need_cert && i < 0)
1210 {
1211 x=NULL;
1212 al=SSL3_AL_FATAL;
1213 SSLerr(SSL_F_SSL3_GET_SERVER_CERTIFICATE,
1214 SSL_R_UNKNOWN_CERTIFICATE_TYPE);
1215 goto f_err;
1216 }

1218 if (need_cert)
1219 {
1220 sc->peer_cert_type=i;
1221 CRYPTO_add(&x->references,1,CRYPTO_LOCK_X509);
1222 /* Why would the following ever happen?
1223 * We just created sc a couple of lines ago. */
1224 if (sc->peer_pkeys[i].x509 != NULL)
1225 X509_free(sc->peer_pkeys[i].x509);
1226 sc->peer_pkeys[i].x509=x;
1227 sc->peer_key= &(sc->peer_pkeys[i]);

1229 if (s->session->peer != NULL)
1230 X509_free(s->session->peer);
1231 CRYPTO_add(&x->references,1,CRYPTO_LOCK_X509);
1232 s->session->peer=x;
1233 }
1234 else
1235 {
1236 sc->peer_cert_type=i;
1237 sc->peer_key= NULL;

1239 if (s->session->peer != NULL)
1240 X509_free(s->session->peer);
1241 s->session->peer=NULL;
1242 }
1243 s->session->verify_result = s->verify_result;

1245 x=NULL;
1246 ret=1;

1248 if (0)
1249 {

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 20

1250 f_err:
1251 ssl3_send_alert(s,SSL3_AL_FATAL,al);
1252 }
1253 err:
1254 EVP_PKEY_free(pkey);
1255 X509_free(x);
1256 sk_X509_pop_free(sk,X509_free);
1257 return(ret);
1258 }

1260 int ssl3_get_key_exchange(SSL *s)
1261 {
1262 #ifndef OPENSSL_NO_RSA
1263 unsigned char *q,md_buf[EVP_MAX_MD_SIZE*2];
1264 #endif
1265 EVP_MD_CTX md_ctx;
1266 unsigned char *param,*p;
1267 int al,i,j,param_len,ok;
1268 long n,alg_k,alg_a;
1269 EVP_PKEY *pkey=NULL;
1270 const EVP_MD *md = NULL;
1271 #ifndef OPENSSL_NO_RSA
1272 RSA *rsa=NULL;
1273 #endif
1274 #ifndef OPENSSL_NO_DH
1275 DH *dh=NULL;
1276 #endif
1277 #ifndef OPENSSL_NO_ECDH
1278 EC_KEY *ecdh = NULL;
1279 BN_CTX *bn_ctx = NULL;
1280 EC_POINT *srvr_ecpoint = NULL;
1281 int curve_nid = 0;
1282 int encoded_pt_len = 0;
1283 #endif

1285 /* use same message size as in ssl3_get_certificate_request()
1286 * as ServerKeyExchange message may be skipped */
1287 n=s->method->ssl_get_message(s,
1288 SSL3_ST_CR_KEY_EXCH_A,
1289 SSL3_ST_CR_KEY_EXCH_B,
1290 -1,
1291 s->max_cert_list,
1292 &ok);
1293 if (!ok) return((int)n);

1295 if (s->s3->tmp.message_type != SSL3_MT_SERVER_KEY_EXCHANGE)
1296 {
1297 #ifndef OPENSSL_NO_PSK
1298 /* In plain PSK ciphersuite, ServerKeyExchange can be
1299 omitted if no identity hint is sent. Set
1300 session->sess_cert anyway to avoid problems
1301 later.*/
1302 if (s->s3->tmp.new_cipher->algorithm_mkey & SSL_kPSK)
1303 {
1304 s->session->sess_cert=ssl_sess_cert_new();
1305 if (s->ctx->psk_identity_hint)
1306 OPENSSL_free(s->ctx->psk_identity_hint);
1307 s->ctx->psk_identity_hint = NULL;
1308 }
1309 #endif
1310 s->s3->tmp.reuse_message=1;
1311 return(1);
1312 }

1314 param=p=(unsigned char *)s->init_msg;
1315 if (s->session->sess_cert != NULL)

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 21

1316 {
1317 #ifndef OPENSSL_NO_RSA
1318 if (s->session->sess_cert->peer_rsa_tmp != NULL)
1319 {
1320 RSA_free(s->session->sess_cert->peer_rsa_tmp);
1321 s->session->sess_cert->peer_rsa_tmp=NULL;
1322 }
1323 #endif
1324 #ifndef OPENSSL_NO_DH
1325 if (s->session->sess_cert->peer_dh_tmp)
1326 {
1327 DH_free(s->session->sess_cert->peer_dh_tmp);
1328 s->session->sess_cert->peer_dh_tmp=NULL;
1329 }
1330 #endif
1331 #ifndef OPENSSL_NO_ECDH
1332 if (s->session->sess_cert->peer_ecdh_tmp)
1333 {
1334 EC_KEY_free(s->session->sess_cert->peer_ecdh_tmp);
1335 s->session->sess_cert->peer_ecdh_tmp=NULL;
1336 }
1337 #endif
1338 }
1339 else
1340 {
1341 s->session->sess_cert=ssl_sess_cert_new();
1342 }

1344 param_len=0;
1345 alg_k=s->s3->tmp.new_cipher->algorithm_mkey;
1346 alg_a=s->s3->tmp.new_cipher->algorithm_auth;
1347 EVP_MD_CTX_init(&md_ctx);

1349 #ifndef OPENSSL_NO_PSK
1350 if (alg_k & SSL_kPSK)
1351 {
1352 char tmp_id_hint[PSK_MAX_IDENTITY_LEN+1];

1354 al=SSL_AD_HANDSHAKE_FAILURE;
1355 n2s(p,i);
1356 param_len=i+2;
1357 /* Store PSK identity hint for later use, hint is used
1358 * in ssl3_send_client_key_exchange. Assume that the
1359 * maximum length of a PSK identity hint can be as
1360 * long as the maximum length of a PSK identity. */
1361 if (i > PSK_MAX_IDENTITY_LEN)
1362 {
1363 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,
1364 SSL_R_DATA_LENGTH_TOO_LONG);
1365 goto f_err;
1366 }
1367 if (param_len > n)
1368 {
1369 al=SSL_AD_DECODE_ERROR;
1370 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,
1371 SSL_R_BAD_PSK_IDENTITY_HINT_LENGTH);
1372 goto f_err;
1373 }
1374 /* If received PSK identity hint contains NULL
1375 * characters, the hint is truncated from the first
1376 * NULL. p may not be ending with NULL, so create a
1377 * NULL-terminated string. */
1378 memcpy(tmp_id_hint, p, i);
1379 memset(tmp_id_hint+i, 0, PSK_MAX_IDENTITY_LEN+1-i);
1380 if (s->ctx->psk_identity_hint != NULL)
1381 OPENSSL_free(s->ctx->psk_identity_hint);

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 22

1382 s->ctx->psk_identity_hint = BUF_strdup(tmp_id_hint);
1383 if (s->ctx->psk_identity_hint == NULL)
1384 {
1385 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE, ERR_R_MALLOC_FAILURE
1386 goto f_err;
1387 }

1389 p+=i;
1390 n-=param_len;
1391 }
1392 else
1393 #endif /* !OPENSSL_NO_PSK */
1394 #ifndef OPENSSL_NO_SRP
1395 if (alg_k & SSL_kSRP)
1396 {
1397 n2s(p,i);
1398 param_len=i+2;
1399 if (param_len > n)
1400 {
1401 al=SSL_AD_DECODE_ERROR;
1402 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_BAD_SRP_N_LENGT
1403 goto f_err;
1404 }
1405 if (!(s->srp_ctx.N=BN_bin2bn(p,i,NULL)))
1406 {
1407 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_BN_LIB);
1408 goto err;
1409 }
1410 p+=i;

1412 n2s(p,i);
1413 param_len+=i+2;
1414 if (param_len > n)
1415 {
1416 al=SSL_AD_DECODE_ERROR;
1417 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_BAD_SRP_G_LENGT
1418 goto f_err;
1419 }
1420 if (!(s->srp_ctx.g=BN_bin2bn(p,i,NULL)))
1421 {
1422 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_BN_LIB);
1423 goto err;
1424 }
1425 p+=i;

1427 i = (unsigned int)(p[0]);
1428 p++;
1429 param_len+=i+1;
1430 if (param_len > n)
1431 {
1432 al=SSL_AD_DECODE_ERROR;
1433 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_BAD_SRP_S_LENGT
1434 goto f_err;
1435 }
1436 if (!(s->srp_ctx.s=BN_bin2bn(p,i,NULL)))
1437 {
1438 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_BN_LIB);
1439 goto err;
1440 }
1441 p+=i;

1443 n2s(p,i);
1444 param_len+=i+2;
1445 if (param_len > n)
1446 {
1447 al=SSL_AD_DECODE_ERROR;

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 23

1448 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_BAD_SRP_B_LENGT
1449 goto f_err;
1450 }
1451 if (!(s->srp_ctx.B=BN_bin2bn(p,i,NULL)))
1452 {
1453 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_BN_LIB);
1454 goto err;
1455 }
1456 p+=i;
1457 n-=param_len;

1459 /* We must check if there is a certificate */
1460 #ifndef OPENSSL_NO_RSA
1461 if (alg_a & SSL_aRSA)
1462 pkey=X509_get_pubkey(s->session->sess_cert->peer_pkeys[S
1463 #else
1464 if (0)
1465 ;
1466 #endif
1467 #ifndef OPENSSL_NO_DSA
1468 else if (alg_a & SSL_aDSS)
1469 pkey=X509_get_pubkey(s->session->sess_cert->peer_pkeys[S
1470 #endif
1471 }
1472 else
1473 #endif /* !OPENSSL_NO_SRP */
1474 #ifndef OPENSSL_NO_RSA
1475 if (alg_k & SSL_kRSA)
1476 {
1477 if ((rsa=RSA_new()) == NULL)
1478 {
1479 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_MALLOC_FAILURE)
1480 goto err;
1481 }
1482 n2s(p,i);
1483 param_len=i+2;
1484 if (param_len > n)
1485 {
1486 al=SSL_AD_DECODE_ERROR;
1487 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_BAD_RSA_MODULUS
1488 goto f_err;
1489 }
1490 if (!(rsa->n=BN_bin2bn(p,i,rsa->n)))
1491 {
1492 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_BN_LIB);
1493 goto err;
1494 }
1495 p+=i;

1497 n2s(p,i);
1498 param_len+=i+2;
1499 if (param_len > n)
1500 {
1501 al=SSL_AD_DECODE_ERROR;
1502 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_BAD_RSA_E_LENGT
1503 goto f_err;
1504 }
1505 if (!(rsa->e=BN_bin2bn(p,i,rsa->e)))
1506 {
1507 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_BN_LIB);
1508 goto err;
1509 }
1510 p+=i;
1511 n-=param_len;

1513 /* this should be because we are using an export cipher */

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 24

1514 if (alg_a & SSL_aRSA)
1515 pkey=X509_get_pubkey(s->session->sess_cert->peer_pkeys[S
1516 else
1517 {
1518 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_INTERNAL_ERROR)
1519 goto err;
1520 }
1521 s->session->sess_cert->peer_rsa_tmp=rsa;
1522 rsa=NULL;
1523 }
1524 #else /* OPENSSL_NO_RSA */
1525 if (0)
1526 ;
1527 #endif
1528 #ifndef OPENSSL_NO_DH
1529 else if (alg_k & SSL_kEDH)
1530 {
1531 if ((dh=DH_new()) == NULL)
1532 {
1533 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_DH_LIB);
1534 goto err;
1535 }
1536 n2s(p,i);
1537 param_len=i+2;
1538 if (param_len > n)
1539 {
1540 al=SSL_AD_DECODE_ERROR;
1541 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_BAD_DH_P_LENGTH
1542 goto f_err;
1543 }
1544 if (!(dh->p=BN_bin2bn(p,i,NULL)))
1545 {
1546 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_BN_LIB);
1547 goto err;
1548 }
1549 p+=i;

1551 n2s(p,i);
1552 param_len+=i+2;
1553 if (param_len > n)
1554 {
1555 al=SSL_AD_DECODE_ERROR;
1556 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_BAD_DH_G_LENGTH
1557 goto f_err;
1558 }
1559 if (!(dh->g=BN_bin2bn(p,i,NULL)))
1560 {
1561 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_BN_LIB);
1562 goto err;
1563 }
1564 p+=i;

1566 n2s(p,i);
1567 param_len+=i+2;
1568 if (param_len > n)
1569 {
1570 al=SSL_AD_DECODE_ERROR;
1571 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_BAD_DH_PUB_KEY_
1572 goto f_err;
1573 }
1574 if (!(dh->pub_key=BN_bin2bn(p,i,NULL)))
1575 {
1576 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_BN_LIB);
1577 goto err;
1578 }
1579 p+=i;

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 25

1580 n-=param_len;

1582 #ifndef OPENSSL_NO_RSA
1583 if (alg_a & SSL_aRSA)
1584 pkey=X509_get_pubkey(s->session->sess_cert->peer_pkeys[S
1585 #else
1586 if (0)
1587 ;
1588 #endif
1589 #ifndef OPENSSL_NO_DSA
1590 else if (alg_a & SSL_aDSS)
1591 pkey=X509_get_pubkey(s->session->sess_cert->peer_pkeys[S
1592 #endif
1593 /* else anonymous DH, so no certificate or pkey. */

1595 s->session->sess_cert->peer_dh_tmp=dh;
1596 dh=NULL;
1597 }
1598 else if ((alg_k & SSL_kDHr) || (alg_k & SSL_kDHd))
1599 {
1600 al=SSL_AD_ILLEGAL_PARAMETER;
1601 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_TRIED_TO_USE_UNSUPPORTE
1602 goto f_err;
1603 }
1604 #endif /* !OPENSSL_NO_DH */

1606 #ifndef OPENSSL_NO_ECDH
1607 else if (alg_k & SSL_kEECDH)
1608 {
1609 EC_GROUP *ngroup;
1610 const EC_GROUP *group;

1612 if ((ecdh=EC_KEY_new()) == NULL)
1613 {
1614 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_MALLOC_FAILURE)
1615 goto err;
1616 }

1618 /* Extract elliptic curve parameters and the
1619 * server’s ephemeral ECDH public key.
1620 * Keep accumulating lengths of various components in
1621 * param_len and make sure it never exceeds n.
1622 */

1624 /* XXX: For now we only support named (not generic) curves
1625 * and the ECParameters in this case is just three bytes.
1626 */
1627 param_len=3;
1628 if ((param_len > n) ||
1629 (*p != NAMED_CURVE_TYPE) ||
1630 ((curve_nid = tls1_ec_curve_id2nid(*(p + 2))) == 0))
1631 {
1632 al=SSL_AD_INTERNAL_ERROR;
1633 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_UNABLE_TO_FIND_
1634 goto f_err;
1635 }

1637 ngroup = EC_GROUP_new_by_curve_name(curve_nid);
1638 if (ngroup == NULL)
1639 {
1640 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_EC_LIB);
1641 goto err;
1642 }
1643 if (EC_KEY_set_group(ecdh, ngroup) == 0)
1644 {
1645 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_EC_LIB);

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 26

1646 goto err;
1647 }
1648 EC_GROUP_free(ngroup);

1650 group = EC_KEY_get0_group(ecdh);

1652 if (SSL_C_IS_EXPORT(s->s3->tmp.new_cipher) &&
1653 (EC_GROUP_get_degree(group) > 163))
1654 {
1655 al=SSL_AD_EXPORT_RESTRICTION;
1656 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_ECGROUP_TOO_LAR
1657 goto f_err;
1658 }

1660 p+=3;

1662 /* Next, get the encoded ECPoint */
1663 if (((srvr_ecpoint = EC_POINT_new(group)) == NULL) ||
1664 ((bn_ctx = BN_CTX_new()) == NULL))
1665 {
1666 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_MALLOC_FAILURE)
1667 goto err;
1668 }

1670 encoded_pt_len = *p; /* length of encoded point */
1671 p+=1;
1672 param_len += (1 + encoded_pt_len);
1673 if ((param_len > n) ||
1674 (EC_POINT_oct2point(group, srvr_ecpoint,
1675 p, encoded_pt_len, bn_ctx) == 0))
1676 {
1677 al=SSL_AD_DECODE_ERROR;
1678 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_BAD_ECPOINT);
1679 goto f_err;
1680 }

1682 n-=param_len;
1683 p+=encoded_pt_len;

1685 /* The ECC/TLS specification does not mention
1686 * the use of DSA to sign ECParameters in the server
1687 * key exchange message. We do support RSA and ECDSA.
1688 */
1689 if (0) ;
1690 #ifndef OPENSSL_NO_RSA
1691 else if (alg_a & SSL_aRSA)
1692 pkey=X509_get_pubkey(s->session->sess_cert->peer_pkeys[S
1693 #endif
1694 #ifndef OPENSSL_NO_ECDSA
1695 else if (alg_a & SSL_aECDSA)
1696 pkey=X509_get_pubkey(s->session->sess_cert->peer_pkeys[S
1697 #endif
1698 /* else anonymous ECDH, so no certificate or pkey. */
1699 EC_KEY_set_public_key(ecdh, srvr_ecpoint);
1700 s->session->sess_cert->peer_ecdh_tmp=ecdh;
1701 ecdh=NULL;
1702 BN_CTX_free(bn_ctx);
1703 bn_ctx = NULL;
1704 EC_POINT_free(srvr_ecpoint);
1705 srvr_ecpoint = NULL;
1706 }
1707 else if (alg_k)
1708 {
1709 al=SSL_AD_UNEXPECTED_MESSAGE;
1710 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_UNEXPECTED_MESSAGE);
1711 goto f_err;

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 27

1712 }
1713 #endif /* !OPENSSL_NO_ECDH */

1716 /* p points to the next byte, there are ’n’ bytes left */

1718 /* if it was signed, check the signature */
1719 if (pkey != NULL)
1720 {
1721 if (TLS1_get_version(s) >= TLS1_2_VERSION)
1722 {
1723 int sigalg = tls12_get_sigid(pkey);
1724 /* Should never happen */
1725 if (sigalg == -1)
1726 {
1727 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_INTERNA
1728 goto err;
1729 }
1730 /* Check key type is consistent with signature */
1731 if (sigalg != (int)p[1])
1732 {
1733 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_WRONG_S
1734 al=SSL_AD_DECODE_ERROR;
1735 goto f_err;
1736 }
1737 md = tls12_get_hash(p[0]);
1738 if (md == NULL)
1739 {
1740 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_UNKNOWN
1741 al=SSL_AD_DECODE_ERROR;
1742 goto f_err;
1743 }
1744 #ifdef SSL_DEBUG
1745 fprintf(stderr, "USING TLSv1.2 HASH %s\n", EVP_MD_name(md));
1746 #endif
1747 p += 2;
1748 n -= 2;
1749 }
1750 else
1751 md = EVP_sha1();
1752
1753 n2s(p,i);
1754 n-=2;
1755 j=EVP_PKEY_size(pkey);

1757 if ((i != n) || (n > j) || (n <= 0))
1758 {
1759 /* wrong packet length */
1760 al=SSL_AD_DECODE_ERROR;
1761 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_WRONG_SIGNATURE
1762 goto f_err;
1763 }

1765 #ifndef OPENSSL_NO_RSA
1766 if (pkey->type == EVP_PKEY_RSA && TLS1_get_version(s) < TLS1_2_V
1767 {
1768 int num;

1770 j=0;
1771 q=md_buf;
1772 for (num=2; num > 0; num--)
1773 {
1774 EVP_MD_CTX_set_flags(&md_ctx,
1775 EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
1776 EVP_DigestInit_ex(&md_ctx,(num == 2)
1777 ?s->ctx->md5:s->ctx->sha1, NULL);

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 28

1778 EVP_DigestUpdate(&md_ctx,&(s->s3->client_random[
1779 EVP_DigestUpdate(&md_ctx,&(s->s3->server_random[
1780 EVP_DigestUpdate(&md_ctx,param,param_len);
1781 EVP_DigestFinal_ex(&md_ctx,q,(unsigned int *)&i)
1782 q+=i;
1783 j+=i;
1784 }
1785 i=RSA_verify(NID_md5_sha1, md_buf, j, p, n,
1786 pkey->pkey.rsa);
1787 if (i < 0)
1788 {
1789 al=SSL_AD_DECRYPT_ERROR;
1790 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_BAD_RSA
1791 goto f_err;
1792 }
1793 if (i == 0)
1794 {
1795 /* bad signature */
1796 al=SSL_AD_DECRYPT_ERROR;
1797 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_BAD_SIG
1798 goto f_err;
1799 }
1800 }
1801 else
1802 #endif
1803 {
1804 EVP_VerifyInit_ex(&md_ctx, md, NULL);
1805 EVP_VerifyUpdate(&md_ctx,&(s->s3->client_random[0]),SSL3
1806 EVP_VerifyUpdate(&md_ctx,&(s->s3->server_random[0]),SSL3
1807 EVP_VerifyUpdate(&md_ctx,param,param_len);
1808 if (EVP_VerifyFinal(&md_ctx,p,(int)n,pkey) <= 0)
1809 {
1810 /* bad signature */
1811 al=SSL_AD_DECRYPT_ERROR;
1812 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_BAD_SIG
1813 goto f_err;
1814 }
1815 }
1816 }
1817 else
1818 {
1819 if (!(alg_a & SSL_aNULL) && !(alg_k & SSL_kPSK))
1820 /* aNULL or kPSK do not need public keys */
1821 {
1822 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,ERR_R_INTERNAL_ERROR)
1823 goto err;
1824 }
1825 /* still data left over */
1826 if (n != 0)
1827 {
1828 al=SSL_AD_DECODE_ERROR;
1829 SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_EXTRA_DATA_IN_M
1830 goto f_err;
1831 }
1832 }
1833 EVP_PKEY_free(pkey);
1834 EVP_MD_CTX_cleanup(&md_ctx);
1835 return(1);
1836 f_err:
1837 ssl3_send_alert(s,SSL3_AL_FATAL,al);
1838 err:
1839 EVP_PKEY_free(pkey);
1840 #ifndef OPENSSL_NO_RSA
1841 if (rsa != NULL)
1842 RSA_free(rsa);
1843 #endif

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 29

1844 #ifndef OPENSSL_NO_DH
1845 if (dh != NULL)
1846 DH_free(dh);
1847 #endif
1848 #ifndef OPENSSL_NO_ECDH
1849 BN_CTX_free(bn_ctx);
1850 EC_POINT_free(srvr_ecpoint);
1851 if (ecdh != NULL)
1852 EC_KEY_free(ecdh);
1853 #endif
1854 EVP_MD_CTX_cleanup(&md_ctx);
1855 return(-1);
1856 }

1858 int ssl3_get_certificate_request(SSL *s)
1859 {
1860 int ok,ret=0;
1861 unsigned long n,nc,l;
1862 unsigned int llen, ctype_num,i;
1863 X509_NAME *xn=NULL;
1864 const unsigned char *p,*q;
1865 unsigned char *d;
1866 STACK_OF(X509_NAME) *ca_sk=NULL;

1868 n=s->method->ssl_get_message(s,
1869 SSL3_ST_CR_CERT_REQ_A,
1870 SSL3_ST_CR_CERT_REQ_B,
1871 -1,
1872 s->max_cert_list,
1873 &ok);

1875 if (!ok) return((int)n);

1877 s->s3->tmp.cert_req=0;

1879 if (s->s3->tmp.message_type == SSL3_MT_SERVER_DONE)
1880 {
1881 s->s3->tmp.reuse_message=1;
1882 /* If we get here we don’t need any cached handshake records
1883 * as we wont be doing client auth.
1884 */
1885 if (s->s3->handshake_buffer)
1886 {
1887 if (!ssl3_digest_cached_records(s))
1888 goto err;
1889 }
1890 return(1);
1891 }

1893 if (s->s3->tmp.message_type != SSL3_MT_CERTIFICATE_REQUEST)
1894 {
1895 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_UNEXPECTED_MESSAGE);
1896 SSLerr(SSL_F_SSL3_GET_CERTIFICATE_REQUEST,SSL_R_WRONG_MESSAGE_TY
1897 goto err;
1898 }

1900 /* TLS does not like anon-DH with client cert */
1901 if (s->version > SSL3_VERSION)
1902 {
1903 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL)
1904 {
1905 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_UNEXPECTED_MESSAG
1906 SSLerr(SSL_F_SSL3_GET_CERTIFICATE_REQUEST,SSL_R_TLS_CLIE
1907 goto err;
1908 }
1909 }

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 30

1911 p=d=(unsigned char *)s->init_msg;

1913 if ((ca_sk=sk_X509_NAME_new(ca_dn_cmp)) == NULL)
1914 {
1915 SSLerr(SSL_F_SSL3_GET_CERTIFICATE_REQUEST,ERR_R_MALLOC_FAILURE);
1916 goto err;
1917 }

1919 /* get the certificate types */
1920 ctype_num= *(p++);
1921 if (ctype_num > SSL3_CT_NUMBER)
1922 ctype_num=SSL3_CT_NUMBER;
1923 for (i=0; i<ctype_num; i++)
1924 s->s3->tmp.ctype[i]= p[i];
1925 p+=ctype_num;
1926 if (TLS1_get_version(s) >= TLS1_2_VERSION)
1927 {
1928 n2s(p, llen);
1929 /* Check we have enough room for signature algorithms and
1930 * following length value.
1931 */
1932 if ((unsigned long)(p - d + llen + 2) > n)
1933 {
1934 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR);
1935 SSLerr(SSL_F_SSL3_GET_CERTIFICATE_REQUEST,SSL_R_DATA_LEN
1936 goto err;
1937 }
1938 if ((llen & 1) || !tls1_process_sigalgs(s, p, llen))
1939 {
1940 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR);
1941 SSLerr(SSL_F_SSL3_GET_CERTIFICATE_REQUEST,SSL_R_SIGNATUR
1942 goto err;
1943 }
1944 p += llen;
1945 }

1947 /* get the CA RDNs */
1948 n2s(p,llen);
1949 #if 0
1950 {
1951 FILE *out;
1952 out=fopen("/tmp/vsign.der","w");
1953 fwrite(p,1,llen,out);
1954 fclose(out);
1955 }
1956 #endif

1958 if ((unsigned long)(p - d + llen) != n)
1959 {
1960 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR);
1961 SSLerr(SSL_F_SSL3_GET_CERTIFICATE_REQUEST,SSL_R_LENGTH_MISMATCH)
1962 goto err;
1963 }

1965 for (nc=0; nc<llen;)
1966 {
1967 n2s(p,l);
1968 if ((l+nc+2) > llen)
1969 {
1970 if ((s->options & SSL_OP_NETSCAPE_CA_DN_BUG))
1971 goto cont; /* netscape bugs */
1972 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR);
1973 SSLerr(SSL_F_SSL3_GET_CERTIFICATE_REQUEST,SSL_R_CA_DN_TO
1974 goto err;
1975 }

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 31

1977 q=p;

1979 if ((xn=d2i_X509_NAME(NULL,&q,l)) == NULL)
1980 {
1981 /* If netscape tolerance is on, ignore errors */
1982 if (s->options & SSL_OP_NETSCAPE_CA_DN_BUG)
1983 goto cont;
1984 else
1985 {
1986 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ER
1987 SSLerr(SSL_F_SSL3_GET_CERTIFICATE_REQUEST,ERR_R_
1988 goto err;
1989 }
1990 }

1992 if (q != (p+l))
1993 {
1994 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR);
1995 SSLerr(SSL_F_SSL3_GET_CERTIFICATE_REQUEST,SSL_R_CA_DN_LE
1996 goto err;
1997 }
1998 if (!sk_X509_NAME_push(ca_sk,xn))
1999 {
2000 SSLerr(SSL_F_SSL3_GET_CERTIFICATE_REQUEST,ERR_R_MALLOC_F
2001 goto err;
2002 }

2004 p+=l;
2005 nc+=l+2;
2006 }

2008 if (0)
2009 {
2010 cont:
2011 ERR_clear_error();
2012 }

2014 /* we should setup a certificate to return.... */
2015 s->s3->tmp.cert_req=1;
2016 s->s3->tmp.ctype_num=ctype_num;
2017 if (s->s3->tmp.ca_names != NULL)
2018 sk_X509_NAME_pop_free(s->s3->tmp.ca_names,X509_NAME_free);
2019 s->s3->tmp.ca_names=ca_sk;
2020 ca_sk=NULL;

2022 ret=1;
2023 err:
2024 if (ca_sk != NULL) sk_X509_NAME_pop_free(ca_sk,X509_NAME_free);
2025 return(ret);
2026 }

2028 static int ca_dn_cmp(const X509_NAME * const *a, const X509_NAME * const *b)
2029 {
2030 return(X509_NAME_cmp(*a,*b));
2031 }
2032 #ifndef OPENSSL_NO_TLSEXT
2033 int ssl3_get_new_session_ticket(SSL *s)
2034 {
2035 int ok,al,ret=0, ticklen;
2036 long n;
2037 const unsigned char *p;
2038 unsigned char *d;

2040 n=s->method->ssl_get_message(s,
2041 SSL3_ST_CR_SESSION_TICKET_A,

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 32

2042 SSL3_ST_CR_SESSION_TICKET_B,
2043 -1,
2044 16384,
2045 &ok);

2047 if (!ok)
2048 return((int)n);

2050 if (s->s3->tmp.message_type == SSL3_MT_FINISHED)
2051 {
2052 s->s3->tmp.reuse_message=1;
2053 return(1);
2054 }
2055 if (s->s3->tmp.message_type != SSL3_MT_NEWSESSION_TICKET)
2056 {
2057 al=SSL_AD_UNEXPECTED_MESSAGE;
2058 SSLerr(SSL_F_SSL3_GET_NEW_SESSION_TICKET,SSL_R_BAD_MESSAGE_TYPE)
2059 goto f_err;
2060 }
2061 if (n < 6)
2062 {
2063 /* need at least ticket_lifetime_hint + ticket length */
2064 al = SSL_AD_DECODE_ERROR;
2065 SSLerr(SSL_F_SSL3_GET_NEW_SESSION_TICKET,SSL_R_LENGTH_MISMATCH);
2066 goto f_err;
2067 }

2069 p=d=(unsigned char *)s->init_msg;
2070 n2l(p, s->session->tlsext_tick_lifetime_hint);
2071 n2s(p, ticklen);
2072 /* ticket_lifetime_hint + ticket_length + ticket */
2073 if (ticklen + 6 != n)
2074 {
2075 al = SSL_AD_DECODE_ERROR;
2076 SSLerr(SSL_F_SSL3_GET_NEW_SESSION_TICKET,SSL_R_LENGTH_MISMATCH);
2077 goto f_err;
2078 }
2079 if (s->session->tlsext_tick)
2080 {
2081 OPENSSL_free(s->session->tlsext_tick);
2082 s->session->tlsext_ticklen = 0;
2083 }
2084 s->session->tlsext_tick = OPENSSL_malloc(ticklen);
2085 if (!s->session->tlsext_tick)
2086 {
2087 SSLerr(SSL_F_SSL3_GET_NEW_SESSION_TICKET,ERR_R_MALLOC_FAILURE);
2088 goto err;
2089 }
2090 memcpy(s->session->tlsext_tick, p, ticklen);
2091 s->session->tlsext_ticklen = ticklen;
2092 /* There are two ways to detect a resumed ticket sesion.
2093 * One is to set an appropriate session ID and then the server
2094 * must return a match in ServerHello. This allows the normal
2095 * client session ID matching to work and we know much
2096 * earlier that the ticket has been accepted.
2097 *
2098 * The other way is to set zero length session ID when the
2099 * ticket is presented and rely on the handshake to determine
2100 * session resumption.
2101 *
2102 * We choose the former approach because this fits in with
2103 * assumptions elsewhere in OpenSSL. The session ID is set
2104 * to the SHA256 (or SHA1 is SHA256 is disabled) hash of the
2105 * ticket.
2106 */
2107 EVP_Digest(p, ticklen,

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 33

2108 s->session->session_id, &s->session->session_id_length,
2109 #ifndef OPENSSL_NO_SHA256
2110 EVP_sha256(), NULL);
2111 #else
2112 EVP_sha1(), NULL);
2113 #endif
2114 ret=1;
2115 return(ret);
2116 f_err:
2117 ssl3_send_alert(s,SSL3_AL_FATAL,al);
2118 err:
2119 return(-1);
2120 }

2122 int ssl3_get_cert_status(SSL *s)
2123 {
2124 int ok, al;
2125 unsigned long resplen,n;
2126 const unsigned char *p;

2128 n=s->method->ssl_get_message(s,
2129 SSL3_ST_CR_CERT_STATUS_A,
2130 SSL3_ST_CR_CERT_STATUS_B,
2131 SSL3_MT_CERTIFICATE_STATUS,
2132 16384,
2133 &ok);

2135 if (!ok) return((int)n);
2136 if (n < 4)
2137 {
2138 /* need at least status type + length */
2139 al = SSL_AD_DECODE_ERROR;
2140 SSLerr(SSL_F_SSL3_GET_CERT_STATUS,SSL_R_LENGTH_MISMATCH);
2141 goto f_err;
2142 }
2143 p = (unsigned char *)s->init_msg;
2144 if (*p++ != TLSEXT_STATUSTYPE_ocsp)
2145 {
2146 al = SSL_AD_DECODE_ERROR;
2147 SSLerr(SSL_F_SSL3_GET_CERT_STATUS,SSL_R_UNSUPPORTED_STATUS_TYPE)
2148 goto f_err;
2149 }
2150 n2l3(p, resplen);
2151 if (resplen + 4 != n)
2152 {
2153 al = SSL_AD_DECODE_ERROR;
2154 SSLerr(SSL_F_SSL3_GET_CERT_STATUS,SSL_R_LENGTH_MISMATCH);
2155 goto f_err;
2156 }
2157 if (s->tlsext_ocsp_resp)
2158 OPENSSL_free(s->tlsext_ocsp_resp);
2159 s->tlsext_ocsp_resp = BUF_memdup(p, resplen);
2160 if (!s->tlsext_ocsp_resp)
2161 {
2162 al = SSL_AD_INTERNAL_ERROR;
2163 SSLerr(SSL_F_SSL3_GET_CERT_STATUS,ERR_R_MALLOC_FAILURE);
2164 goto f_err;
2165 }
2166 s->tlsext_ocsp_resplen = resplen;
2167 if (s->ctx->tlsext_status_cb)
2168 {
2169 int ret;
2170 ret = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg);
2171 if (ret == 0)
2172 {
2173 al = SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE;

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 34

2174 SSLerr(SSL_F_SSL3_GET_CERT_STATUS,SSL_R_INVALID_STATUS_R
2175 goto f_err;
2176 }
2177 if (ret < 0)
2178 {
2179 al = SSL_AD_INTERNAL_ERROR;
2180 SSLerr(SSL_F_SSL3_GET_CERT_STATUS,ERR_R_MALLOC_FAILURE);
2181 goto f_err;
2182 }
2183 }
2184 return 1;
2185 f_err:
2186 ssl3_send_alert(s,SSL3_AL_FATAL,al);
2187 return(-1);
2188 }
2189 #endif

2191 int ssl3_get_server_done(SSL *s)
2192 {
2193 int ok,ret=0;
2194 long n;

2196 n=s->method->ssl_get_message(s,
2197 SSL3_ST_CR_SRVR_DONE_A,
2198 SSL3_ST_CR_SRVR_DONE_B,
2199 SSL3_MT_SERVER_DONE,
2200 30, /* should be very small, like 0 :-) */
2201 &ok);

2203 if (!ok) return((int)n);
2204 if (n > 0)
2205 {
2206 /* should contain no data */
2207 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR);
2208 SSLerr(SSL_F_SSL3_GET_SERVER_DONE,SSL_R_LENGTH_MISMATCH);
2209 return -1;
2210 }
2211 ret=1;
2212 return(ret);
2213 }

2216 int ssl3_send_client_key_exchange(SSL *s)
2217 {
2218 unsigned char *p,*d;
2219 int n;
2220 unsigned long alg_k;
2221 #ifndef OPENSSL_NO_RSA
2222 unsigned char *q;
2223 EVP_PKEY *pkey=NULL;
2224 #endif
2225 #ifndef OPENSSL_NO_KRB5
2226 KSSL_ERR kssl_err;
2227 #endif /* OPENSSL_NO_KRB5 */
2228 #ifndef OPENSSL_NO_ECDH
2229 EC_KEY *clnt_ecdh = NULL;
2230 const EC_POINT *srvr_ecpoint = NULL;
2231 EVP_PKEY *srvr_pub_pkey = NULL;
2232 unsigned char *encodedPoint = NULL;
2233 int encoded_pt_len = 0;
2234 BN_CTX * bn_ctx = NULL;
2235 #endif

2237 if (s->state == SSL3_ST_CW_KEY_EXCH_A)
2238 {
2239 d=(unsigned char *)s->init_buf->data;

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 35

2240 p= &(d[4]);

2242 alg_k=s->s3->tmp.new_cipher->algorithm_mkey;

2244 /* Fool emacs indentation */
2245 if (0) {}
2246 #ifndef OPENSSL_NO_RSA
2247 else if (alg_k & SSL_kRSA)
2248 {
2249 RSA *rsa;
2250 unsigned char tmp_buf[SSL_MAX_MASTER_KEY_LENGTH];

2252 if (s->session->sess_cert->peer_rsa_tmp != NULL)
2253 rsa=s->session->sess_cert->peer_rsa_tmp;
2254 else
2255 {
2256 pkey=X509_get_pubkey(s->session->sess_cert->peer
2257 if ((pkey == NULL) ||
2258 (pkey->type != EVP_PKEY_RSA) ||
2259 (pkey->pkey.rsa == NULL))
2260 {
2261 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHAN
2262 goto err;
2263 }
2264 rsa=pkey->pkey.rsa;
2265 EVP_PKEY_free(pkey);
2266 }
2267
2268 tmp_buf[0]=s->client_version>>8;
2269 tmp_buf[1]=s->client_version&0xff;
2270 if (RAND_bytes(&(tmp_buf[2]),sizeof tmp_buf-2) <= 0)
2271 goto err;

2273 s->session->master_key_length=sizeof tmp_buf;

2275 q=p;
2276 /* Fix buf for TLS and beyond */
2277 if (s->version > SSL3_VERSION)
2278 p+=2;
2279 n=RSA_public_encrypt(sizeof tmp_buf,
2280 tmp_buf,p,rsa,RSA_PKCS1_PADDING);
2281 #ifdef PKCS1_CHECK
2282 if (s->options & SSL_OP_PKCS1_CHECK_1) p[1]++;
2283 if (s->options & SSL_OP_PKCS1_CHECK_2) tmp_buf[0]=0x70;
2284 #endif
2285 if (n <= 0)
2286 {
2287 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,SSL_R
2288 goto err;
2289 }

2291 /* Fix buf for TLS and beyond */
2292 if (s->version > SSL3_VERSION)
2293 {
2294 s2n(n,q);
2295 n+=2;
2296 }

2298 s->session->master_key_length=
2299 s->method->ssl3_enc->generate_master_secret(s,
2300 s->session->master_key,
2301 tmp_buf,sizeof tmp_buf);
2302 OPENSSL_cleanse(tmp_buf,sizeof tmp_buf);
2303 }
2304 #endif
2305 #ifndef OPENSSL_NO_KRB5

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 36

2306 else if (alg_k & SSL_kKRB5)
2307 {
2308 krb5_error_code krb5rc;
2309 KSSL_CTX *kssl_ctx = s->kssl_ctx;
2310 /* krb5_data krb5_ap_req; */
2311 krb5_data *enc_ticket;
2312 krb5_data authenticator, *authp = NULL;
2313 EVP_CIPHER_CTX ciph_ctx;
2314 const EVP_CIPHER *enc = NULL;
2315 unsigned char iv[EVP_MAX_IV_LENGTH];
2316 unsigned char tmp_buf[SSL_MAX_MASTER_KEY_LENGTH];
2317 unsigned char epms[SSL_MAX_MASTER_KEY_LENGTH
2318 + EVP_MAX_IV_LENGTH];
2319 int padl, outl = sizeof(epms);

2321 EVP_CIPHER_CTX_init(&ciph_ctx);

2323 #ifdef KSSL_DEBUG
2324 printf("ssl3_send_client_key_exchange(%lx & %lx)\n",
2325 alg_k, SSL_kKRB5);
2326 #endif /* KSSL_DEBUG */

2328 authp = NULL;
2329 #ifdef KRB5SENDAUTH
2330 if (KRB5SENDAUTH) authp = &authenticator;
2331 #endif /* KRB5SENDAUTH */

2333 krb5rc = kssl_cget_tkt(kssl_ctx, &enc_ticket, authp,
2334 &kssl_err);
2335 enc = kssl_map_enc(kssl_ctx->enctype);
2336 if (enc == NULL)
2337 goto err;
2338 #ifdef KSSL_DEBUG
2339 {
2340 printf("kssl_cget_tkt rtn %d\n", krb5rc);
2341 if (krb5rc && kssl_err.text)
2342 printf("kssl_cget_tkt kssl_err=%s\n", kssl_err.text);
2343 }
2344 #endif /* KSSL_DEBUG */

2346 if (krb5rc)
2347 {
2348 ssl3_send_alert(s,SSL3_AL_FATAL,
2349 SSL_AD_HANDSHAKE_FAILURE);
2350 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,
2351 kssl_err.reason);
2352 goto err;
2353 }

2355 /* 20010406 VRS - Earlier versions used KRB5 AP_REQ
2356 ** in place of RFC 2712 KerberosWrapper, as in:
2357 **
2358 ** Send ticket (copy to *p, set n = length)
2359 ** n = krb5_ap_req.length;
2360 ** memcpy(p, krb5_ap_req.data, krb5_ap_req.length);
2361 ** if (krb5_ap_req.data)
2362 ** kssl_krb5_free_data_contents(NULL,&krb5_ap_req);
2363 **
2364 ** Now using real RFC 2712 KerberosWrapper
2365 ** (Thanks to Simon Wilkinson <sxw@sxw.org.uk>)
2366 ** Note: 2712 "opaque" types are here replaced
2367 ** with a 2-byte length followed by the value.
2368 ** Example:
2369 ** KerberosWrapper= xx xx asn1ticket 0 0 xx xx encpms
2370 ** Where "xx xx" = length bytes. Shown here with
2371 ** optional authenticator omitted.

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 37

2372 */

2374 /* KerberosWrapper.Ticket */
2375 s2n(enc_ticket->length,p);
2376 memcpy(p, enc_ticket->data, enc_ticket->length);
2377 p+= enc_ticket->length;
2378 n = enc_ticket->length + 2;

2380 /* KerberosWrapper.Authenticator */
2381 if (authp && authp->length)
2382 {
2383 s2n(authp->length,p);
2384 memcpy(p, authp->data, authp->length);
2385 p+= authp->length;
2386 n+= authp->length + 2;
2387
2388 free(authp->data);
2389 authp->data = NULL;
2390 authp->length = 0;
2391 }
2392 else
2393 {
2394 s2n(0,p);/* null authenticator length */
2395 n+=2;
2396 }
2397
2398 tmp_buf[0]=s->client_version>>8;
2399 tmp_buf[1]=s->client_version&0xff;
2400 if (RAND_bytes(&(tmp_buf[2]),sizeof tmp_buf-2) <= 0)
2401 goto err;

2403 /* 20010420 VRS. Tried it this way; failed.
2404 ** EVP_EncryptInit_ex(&ciph_ctx,enc, NULL,NULL);
2405 ** EVP_CIPHER_CTX_set_key_length(&ciph_ctx,
2406 ** kssl_ctx->length);
2407 ** EVP_EncryptInit_ex(&ciph_ctx,NULL, key,iv);
2408 */

2410 memset(iv, 0, sizeof iv); /* per RFC 1510 */
2411 EVP_EncryptInit_ex(&ciph_ctx,enc, NULL,
2412 kssl_ctx->key,iv);
2413 EVP_EncryptUpdate(&ciph_ctx,epms,&outl,tmp_buf,
2414 sizeof tmp_buf);
2415 EVP_EncryptFinal_ex(&ciph_ctx,&(epms[outl]),&padl);
2416 outl += padl;
2417 if (outl > (int)sizeof epms)
2418 {
2419 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE, ERR_
2420 goto err;
2421 }
2422 EVP_CIPHER_CTX_cleanup(&ciph_ctx);

2424 /* KerberosWrapper.EncryptedPreMasterSecret */
2425 s2n(outl,p);
2426 memcpy(p, epms, outl);
2427 p+=outl;
2428 n+=outl + 2;

2430 s->session->master_key_length=
2431 s->method->ssl3_enc->generate_master_secret(s,
2432 s->session->master_key,
2433 tmp_buf, sizeof tmp_buf);

2435 OPENSSL_cleanse(tmp_buf, sizeof tmp_buf);
2436 OPENSSL_cleanse(epms, outl);
2437 }

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 38

2438 #endif
2439 #ifndef OPENSSL_NO_DH
2440 else if (alg_k & (SSL_kEDH|SSL_kDHr|SSL_kDHd))
2441 {
2442 DH *dh_srvr,*dh_clnt;

2444 if (s->session->sess_cert == NULL)
2445 {
2446 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_UNEXPECTE
2447 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,SSL_R
2448 goto err;
2449 }

2451 if (s->session->sess_cert->peer_dh_tmp != NULL)
2452 dh_srvr=s->session->sess_cert->peer_dh_tmp;
2453 else
2454 {
2455 /* we get them from the cert */
2456 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_HANDSHAKE
2457 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,SSL_R
2458 goto err;
2459 }
2460
2461 /* generate a new random key */
2462 if ((dh_clnt=DHparams_dup(dh_srvr)) == NULL)
2463 {
2464 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,ERR_R
2465 goto err;
2466 }
2467 if (!DH_generate_key(dh_clnt))
2468 {
2469 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,ERR_R
2470 DH_free(dh_clnt);
2471 goto err;
2472 }

2474 /* use the ’p’ output buffer for the DH key, but
2475 * make sure to clear it out afterwards */

2477 n=DH_compute_key(p,dh_srvr->pub_key,dh_clnt);

2479 if (n <= 0)
2480 {
2481 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,ERR_R
2482 DH_free(dh_clnt);
2483 goto err;
2484 }

2486 /* generate master key from the result */
2487 s->session->master_key_length=
2488 s->method->ssl3_enc->generate_master_secret(s,
2489 s->session->master_key,p,n);
2490 /* clean up */
2491 memset(p,0,n);

2493 /* send off the data */
2494 n=BN_num_bytes(dh_clnt->pub_key);
2495 s2n(n,p);
2496 BN_bn2bin(dh_clnt->pub_key,p);
2497 n+=2;

2499 DH_free(dh_clnt);

2501 /* perhaps clean things up a bit EAY EAY EAY EAY*/
2502 }
2503 #endif

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 39

2505 #ifndef OPENSSL_NO_ECDH
2506 else if (alg_k & (SSL_kEECDH|SSL_kECDHr|SSL_kECDHe))
2507 {
2508 const EC_GROUP *srvr_group = NULL;
2509 EC_KEY *tkey;
2510 int ecdh_clnt_cert = 0;
2511 int field_size = 0;

2513 /* Did we send out the client’s
2514 * ECDH share for use in premaster
2515 * computation as part of client certificate?
2516 * If so, set ecdh_clnt_cert to 1.
2517 */
2518 if ((alg_k & (SSL_kECDHr|SSL_kECDHe)) && (s->cert != NUL
2519 {
2520 /* XXX: For now, we do not support client
2521 * authentication using ECDH certificates.
2522 * To add such support, one needs to add
2523 * code that checks for appropriate
2524 * conditions and sets ecdh_clnt_cert to 1.
2525 * For example, the cert have an ECC
2526 * key on the same curve as the server’s
2527 * and the key should be authorized for
2528 * key agreement.
2529 *
2530 * One also needs to add code in ssl3_connect
2531 * to skip sending the certificate verify
2532 * message.
2533 *
2534 * if ((s->cert->key->privatekey != NULL) &&
2535 * (s->cert->key->privatekey->type ==
2536 * EVP_PKEY_EC) && ...)
2537 * ecdh_clnt_cert = 1;
2538 */
2539 }

2541 if (s->session->sess_cert->peer_ecdh_tmp != NULL)
2542 {
2543 tkey = s->session->sess_cert->peer_ecdh_tmp;
2544 }
2545 else
2546 {
2547 /* Get the Server Public Key from Cert */
2548 srvr_pub_pkey = X509_get_pubkey(s->session-> \
2549 sess_cert->peer_pkeys[SSL_PKEY_ECC].x509);
2550 if ((srvr_pub_pkey == NULL) ||
2551 (srvr_pub_pkey->type != EVP_PKEY_EC) ||
2552 (srvr_pub_pkey->pkey.ec == NULL))
2553 {
2554 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHAN
2555 ERR_R_INTERNAL_ERROR);
2556 goto err;
2557 }

2559 tkey = srvr_pub_pkey->pkey.ec;
2560 }

2562 srvr_group = EC_KEY_get0_group(tkey);
2563 srvr_ecpoint = EC_KEY_get0_public_key(tkey);

2565 if ((srvr_group == NULL) || (srvr_ecpoint == NULL))
2566 {
2567 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,
2568 ERR_R_INTERNAL_ERROR);
2569 goto err;

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 40

2570 }

2572 if ((clnt_ecdh=EC_KEY_new()) == NULL)
2573 {
2574 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,ERR_R
2575 goto err;
2576 }

2578 if (!EC_KEY_set_group(clnt_ecdh, srvr_group))
2579 {
2580 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,ERR_R
2581 goto err;
2582 }
2583 if (ecdh_clnt_cert)
2584 {
2585 /* Reuse key info from our certificate
2586 * We only need our private key to perform
2587 * the ECDH computation.
2588 */
2589 const BIGNUM *priv_key;
2590 tkey = s->cert->key->privatekey->pkey.ec;
2591 priv_key = EC_KEY_get0_private_key(tkey);
2592 if (priv_key == NULL)
2593 {
2594 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHAN
2595 goto err;
2596 }
2597 if (!EC_KEY_set_private_key(clnt_ecdh, priv_key)
2598 {
2599 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHAN
2600 goto err;
2601 }
2602 }
2603 else
2604 {
2605 /* Generate a new ECDH key pair */
2606 if (!(EC_KEY_generate_key(clnt_ecdh)))
2607 {
2608 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHAN
2609 goto err;
2610 }
2611 }

2613 /* use the ’p’ output buffer for the ECDH key, but
2614 * make sure to clear it out afterwards
2615 */

2617 field_size = EC_GROUP_get_degree(srvr_group);
2618 if (field_size <= 0)
2619 {
2620 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,
2621 ERR_R_ECDH_LIB);
2622 goto err;
2623 }
2624 n=ECDH_compute_key(p, (field_size+7)/8, srvr_ecpoint, cl
2625 if (n <= 0)
2626 {
2627 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,
2628 ERR_R_ECDH_LIB);
2629 goto err;
2630 }

2632 /* generate master key from the result */
2633 s->session->master_key_length = s->method->ssl3_enc \
2634 -> generate_master_secret(s,
2635 s->session->master_key,

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 41

2636 p, n);

2638 memset(p, 0, n); /* clean up */

2640 if (ecdh_clnt_cert)
2641 {
2642 /* Send empty client key exch message */
2643 n = 0;
2644 }
2645 else
2646 {
2647 /* First check the size of encoding and
2648 * allocate memory accordingly.
2649 */
2650 encoded_pt_len =
2651 EC_POINT_point2oct(srvr_group,
2652 EC_KEY_get0_public_key(clnt_ecdh),
2653 POINT_CONVERSION_UNCOMPRESSED,
2654 NULL, 0, NULL);

2656 encodedPoint = (unsigned char *)
2657 OPENSSL_malloc(encoded_pt_len *
2658 sizeof(unsigned char));
2659 bn_ctx = BN_CTX_new();
2660 if ((encodedPoint == NULL) ||
2661 (bn_ctx == NULL))
2662 {
2663 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHAN
2664 goto err;
2665 }

2667 /* Encode the public key */
2668 n = EC_POINT_point2oct(srvr_group,
2669 EC_KEY_get0_public_key(clnt_ecdh),
2670 POINT_CONVERSION_UNCOMPRESSED,
2671 encodedPoint, encoded_pt_len, bn_ctx);

2673 *p = n; /* length of encoded point */
2674 /* Encoded point will be copied here */
2675 p += 1;
2676 /* copy the point */
2677 memcpy((unsigned char *)p, encodedPoint, n);
2678 /* increment n to account for length field */
2679 n += 1;
2680 }

2682 /* Free allocated memory */
2683 BN_CTX_free(bn_ctx);
2684 if (encodedPoint != NULL) OPENSSL_free(encodedPoint);
2685 if (clnt_ecdh != NULL)
2686 EC_KEY_free(clnt_ecdh);
2687 EVP_PKEY_free(srvr_pub_pkey);
2688 }
2689 #endif /* !OPENSSL_NO_ECDH */
2690 else if (alg_k & SSL_kGOST)
2691 {
2692 /* GOST key exchange message creation */
2693 EVP_PKEY_CTX *pkey_ctx;
2694 X509 *peer_cert;
2695 size_t msglen;
2696 unsigned int md_len;
2697 int keytype;
2698 unsigned char premaster_secret[32],shared_ukm[32], tmp[2
2699 EVP_MD_CTX *ukm_hash;
2700 EVP_PKEY *pub_key;

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 42

2702 /* Get server sertificate PKEY and create ctx from it */
2703 peer_cert=s->session->sess_cert->peer_pkeys[(keytype=SSL
2704 if (!peer_cert)
2705 peer_cert=s->session->sess_cert->peer_pkeys[(key
2706 if (!peer_cert) {
2707 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHAN
2708 goto err;
2709 }
2710
2711 pkey_ctx=EVP_PKEY_CTX_new(pub_key=X509_get_pubkey(peer_c
2712 /* If we have send a certificate, and certificate key

2714 * parameters match those of server certificate, use
2715 * certificate key for key exchange
2716 */

2718 /* Otherwise, generate ephemeral key pair */
2719
2720 EVP_PKEY_encrypt_init(pkey_ctx);
2721 /* Generate session key */
2722 RAND_bytes(premaster_secret,32);
2723 /* If we have client certificate, use its secret as peer
2724 if (s->s3->tmp.cert_req && s->cert->key->privatekey) {
2725 if (EVP_PKEY_derive_set_peer(pkey_ctx,s->cert->k
2726 /* If there was an error - just ignore i
2727 * would be used
2728 */
2729 ERR_clear_error();
2730 }
2731 }
2732 /* Compute shared IV and store it in algorithm-specific
2733 * context data */
2734 ukm_hash = EVP_MD_CTX_create();
2735 EVP_DigestInit(ukm_hash,EVP_get_digestbynid(NID_id_GostR
2736 EVP_DigestUpdate(ukm_hash,s->s3->client_random,SSL3_RAND
2737 EVP_DigestUpdate(ukm_hash,s->s3->server_random,SSL3_RAND
2738 EVP_DigestFinal_ex(ukm_hash, shared_ukm, &md_len);
2739 EVP_MD_CTX_destroy(ukm_hash);
2740 if (EVP_PKEY_CTX_ctrl(pkey_ctx,-1,EVP_PKEY_OP_ENCRYPT,EV
2741 8,shared_ukm)<0) {
2742 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHAN
2743 SSL_R_LIBRARY_BUG);
2744 goto err;
2745 }
2746 /* Make GOST keytransport blob message */
2747 /*Encapsulate it into sequence */
2748 *(p++)=V_ASN1_SEQUENCE | V_ASN1_CONSTRUCTED;
2749 msglen=255;
2750 if (EVP_PKEY_encrypt(pkey_ctx,tmp,&msglen,premaster_secr
2751 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,
2752 SSL_R_LIBRARY_BUG);
2753 goto err;
2754 }
2755 if (msglen >= 0x80)
2756 {
2757 *(p++)=0x81;
2758 *(p++)= msglen & 0xff;
2759 n=msglen+3;
2760 }
2761 else
2762 {
2763 *(p++)= msglen & 0xff;
2764 n=msglen+2;
2765 }
2766 memcpy(p, tmp, msglen);
2767 /* Check if pubkey from client certificate was used */

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 43

2768 if (EVP_PKEY_CTX_ctrl(pkey_ctx, -1, -1, EVP_PKEY_CTRL_PE
2769 {
2770 /* Set flag "skip certificate verify" */
2771 s->s3->flags |= TLS1_FLAGS_SKIP_CERT_VERIFY;
2772 }
2773 EVP_PKEY_CTX_free(pkey_ctx);
2774 s->session->master_key_length=
2775 s->method->ssl3_enc->generate_master_secret(s,
2776 s->session->master_key,premaster_secret,
2777 EVP_PKEY_free(pub_key);

2779 }
2780 #ifndef OPENSSL_NO_SRP
2781 else if (alg_k & SSL_kSRP)
2782 {
2783 if (s->srp_ctx.A != NULL)
2784 {
2785 /* send off the data */
2786 n=BN_num_bytes(s->srp_ctx.A);
2787 s2n(n,p);
2788 BN_bn2bin(s->srp_ctx.A,p);
2789 n+=2;
2790 }
2791 else
2792 {
2793 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,ERR_R
2794 goto err;
2795 }
2796 if (s->session->srp_username != NULL)
2797 OPENSSL_free(s->session->srp_username);
2798 s->session->srp_username = BUF_strdup(s->srp_ctx.login);
2799 if (s->session->srp_username == NULL)
2800 {
2801 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,
2802 ERR_R_MALLOC_FAILURE);
2803 goto err;
2804 }

2806 if ((s->session->master_key_length = SRP_generate_client
2807 {
2808 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,ERR_R
2809 goto err;
2810 }
2811 }
2812 #endif
2813 #ifndef OPENSSL_NO_PSK
2814 else if (alg_k & SSL_kPSK)
2815 {
2816 char identity[PSK_MAX_IDENTITY_LEN];
2817 unsigned char *t = NULL;
2818 unsigned char psk_or_pre_ms[PSK_MAX_PSK_LEN*2+4];
2819 unsigned int pre_ms_len = 0, psk_len = 0;
2820 int psk_err = 1;

2822 n = 0;
2823 if (s->psk_client_callback == NULL)
2824 {
2825 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,
2826 SSL_R_PSK_NO_CLIENT_CB);
2827 goto err;
2828 }

2830 psk_len = s->psk_client_callback(s, s->ctx->psk_identity
2831 identity, PSK_MAX_IDENTITY_LEN,
2832 psk_or_pre_ms, sizeof(psk_or_pre_ms));
2833 if (psk_len > PSK_MAX_PSK_LEN)

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 44

2834 {
2835 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,
2836 ERR_R_INTERNAL_ERROR);
2837 goto psk_err;
2838 }
2839 else if (psk_len == 0)
2840 {
2841 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,
2842 SSL_R_PSK_IDENTITY_NOT_FOUND);
2843 goto psk_err;
2844 }

2846 /* create PSK pre_master_secret */
2847 pre_ms_len = 2+psk_len+2+psk_len;
2848 t = psk_or_pre_ms;
2849 memmove(psk_or_pre_ms+psk_len+4, psk_or_pre_ms, psk_len)
2850 s2n(psk_len, t);
2851 memset(t, 0, psk_len);
2852 t+=psk_len;
2853 s2n(psk_len, t);

2855 if (s->session->psk_identity_hint != NULL)
2856 OPENSSL_free(s->session->psk_identity_hint);
2857 s->session->psk_identity_hint = BUF_strdup(s->ctx->psk_i
2858 if (s->ctx->psk_identity_hint != NULL &&
2859 s->session->psk_identity_hint == NULL)
2860 {
2861 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,
2862 ERR_R_MALLOC_FAILURE);
2863 goto psk_err;
2864 }

2866 if (s->session->psk_identity != NULL)
2867 OPENSSL_free(s->session->psk_identity);
2868 s->session->psk_identity = BUF_strdup(identity);
2869 if (s->session->psk_identity == NULL)
2870 {
2871 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,
2872 ERR_R_MALLOC_FAILURE);
2873 goto psk_err;
2874 }

2876 s->session->master_key_length =
2877 s->method->ssl3_enc->generate_master_secret(s,
2878 s->session->master_key,
2879 psk_or_pre_ms, pre_ms_len);
2880 n = strlen(identity);
2881 s2n(n, p);
2882 memcpy(p, identity, n);
2883 n+=2;
2884 psk_err = 0;
2885 psk_err:
2886 OPENSSL_cleanse(identity, PSK_MAX_IDENTITY_LEN);
2887 OPENSSL_cleanse(psk_or_pre_ms, sizeof(psk_or_pre_ms));
2888 if (psk_err != 0)
2889 {
2890 ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_HANDSHA
2891 goto err;
2892 }
2893 }
2894 #endif
2895 else
2896 {
2897 ssl3_send_alert(s, SSL3_AL_FATAL,
2898 SSL_AD_HANDSHAKE_FAILURE);
2899 SSLerr(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE,

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 45

2900 ERR_R_INTERNAL_ERROR);
2901 goto err;
2902 }
2903
2904 *(d++)=SSL3_MT_CLIENT_KEY_EXCHANGE;
2905 l2n3(n,d);

2907 s->state=SSL3_ST_CW_KEY_EXCH_B;
2908 /* number of bytes to write */
2909 s->init_num=n+4;
2910 s->init_off=0;
2911 }

2913 /* SSL3_ST_CW_KEY_EXCH_B */
2914 return(ssl3_do_write(s,SSL3_RT_HANDSHAKE));
2915 err:
2916 #ifndef OPENSSL_NO_ECDH
2917 BN_CTX_free(bn_ctx);
2918 if (encodedPoint != NULL) OPENSSL_free(encodedPoint);
2919 if (clnt_ecdh != NULL)
2920 EC_KEY_free(clnt_ecdh);
2921 EVP_PKEY_free(srvr_pub_pkey);
2922 #endif
2923 return(-1);
2924 }

2926 int ssl3_send_client_verify(SSL *s)
2927 {
2928 unsigned char *p,*d;
2929 unsigned char data[MD5_DIGEST_LENGTH+SHA_DIGEST_LENGTH];
2930 EVP_PKEY *pkey;
2931 EVP_PKEY_CTX *pctx=NULL;
2932 EVP_MD_CTX mctx;
2933 unsigned u=0;
2934 unsigned long n;
2935 int j;

2937 EVP_MD_CTX_init(&mctx);

2939 if (s->state == SSL3_ST_CW_CERT_VRFY_A)
2940 {
2941 d=(unsigned char *)s->init_buf->data;
2942 p= &(d[4]);
2943 pkey=s->cert->key->privatekey;
2944 /* Create context from key and test if sha1 is allowed as digest */
2945 pctx = EVP_PKEY_CTX_new(pkey,NULL);
2946 EVP_PKEY_sign_init(pctx);
2947 if (EVP_PKEY_CTX_set_signature_md(pctx, EVP_sha1())>0)
2948 {
2949 if (TLS1_get_version(s) < TLS1_2_VERSION)
2950 s->method->ssl3_enc->cert_verify_mac(s,
2951 NID_sha1,
2952 &(data[MD5_DIGEST_LENGTH]));
2953 }
2954 else
2955 {
2956 ERR_clear_error();
2957 }
2958 /* For TLS v1.2 send signature algorithm and signature
2959 * using agreed digest and cached handshake records.
2960 */
2961 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2962 {
2963 long hdatalen = 0;
2964 void *hdata;
2965 const EVP_MD *md = s->cert->key->digest;

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 46

2966 hdatalen = BIO_get_mem_data(s->s3->handshake_buffer,
2967 &hdata);
2968 if (hdatalen <= 0 || !tls12_get_sigandhash(p, pkey, md))
2969 {
2970 SSLerr(SSL_F_SSL3_SEND_CLIENT_VERIFY,
2971 ERR_R_INTERNAL_ERROR);
2972 goto err;
2973 }
2974 p += 2;
2975 #ifdef SSL_DEBUG
2976 fprintf(stderr, "Using TLS 1.2 with client alg %s\n",
2977 EVP_MD_name(md));
2978 #endif
2979 if (!EVP_SignInit_ex(&mctx, md, NULL)
2980 || !EVP_SignUpdate(&mctx, hdata, hdatalen)
2981 || !EVP_SignFinal(&mctx, p + 2, &u, pkey))
2982 {
2983 SSLerr(SSL_F_SSL3_SEND_CLIENT_VERIFY,
2984 ERR_R_EVP_LIB);
2985 goto err;
2986 }
2987 s2n(u,p);
2988 n = u + 4;
2989 if (!ssl3_digest_cached_records(s))
2990 goto err;
2991 }
2992 else
2993 #ifndef OPENSSL_NO_RSA
2994 if (pkey->type == EVP_PKEY_RSA)
2995 {
2996 s->method->ssl3_enc->cert_verify_mac(s,
2997 NID_md5,
2998 &(data[0]));
2999 if (RSA_sign(NID_md5_sha1, data,
3000 MD5_DIGEST_LENGTH+SHA_DIGEST_LENGTH,
3001 &(p[2]), &u, pkey->pkey.rsa) <= 0)
3002 {
3003 SSLerr(SSL_F_SSL3_SEND_CLIENT_VERIFY,ERR_R_RSA_L
3004 goto err;
3005 }
3006 s2n(u,p);
3007 n=u+2;
3008 }
3009 else
3010 #endif
3011 #ifndef OPENSSL_NO_DSA
3012 if (pkey->type == EVP_PKEY_DSA)
3013 {
3014 if (!DSA_sign(pkey->save_type,
3015 &(data[MD5_DIGEST_LENGTH]),
3016 SHA_DIGEST_LENGTH,&(p[2]),
3017 (unsigned int *)&j,pkey->pkey.dsa))
3018 {
3019 SSLerr(SSL_F_SSL3_SEND_CLIENT_VERIFY,ERR_R_DSA_L
3020 goto err;
3021 }
3022 s2n(j,p);
3023 n=j+2;
3024 }
3025 else
3026 #endif
3027 #ifndef OPENSSL_NO_ECDSA
3028 if (pkey->type == EVP_PKEY_EC)
3029 {
3030 if (!ECDSA_sign(pkey->save_type,
3031 &(data[MD5_DIGEST_LENGTH]),

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 47

3032 SHA_DIGEST_LENGTH,&(p[2]),
3033 (unsigned int *)&j,pkey->pkey.ec))
3034 {
3035 SSLerr(SSL_F_SSL3_SEND_CLIENT_VERIFY,
3036 ERR_R_ECDSA_LIB);
3037 goto err;
3038 }
3039 s2n(j,p);
3040 n=j+2;
3041 }
3042 else
3043 #endif
3044 if (pkey->type == NID_id_GostR3410_94 || pkey->type == NID_id_Go
3045 {
3046 unsigned char signbuf[64];
3047 int i;
3048 size_t sigsize=64;
3049 s->method->ssl3_enc->cert_verify_mac(s,
3050 NID_id_GostR3411_94,
3051 data);
3052 if (EVP_PKEY_sign(pctx, signbuf, &sigsize, data, 32) <= 0) {
3053 SSLerr(SSL_F_SSL3_SEND_CLIENT_VERIFY,
3054 ERR_R_INTERNAL_ERROR);
3055 goto err;
3056 }
3057 for (i=63,j=0; i>=0; j++, i--) {
3058 p[2+j]=signbuf[i];
3059 }
3060 s2n(j,p);
3061 n=j+2;
3062 }
3063 else
3064 {
3065 SSLerr(SSL_F_SSL3_SEND_CLIENT_VERIFY,ERR_R_INTERNAL_ERRO
3066 goto err;
3067 }
3068 *(d++)=SSL3_MT_CERTIFICATE_VERIFY;
3069 l2n3(n,d);

3071 s->state=SSL3_ST_CW_CERT_VRFY_B;
3072 s->init_num=(int)n+4;
3073 s->init_off=0;
3074 }
3075 EVP_MD_CTX_cleanup(&mctx);
3076 EVP_PKEY_CTX_free(pctx);
3077 return(ssl3_do_write(s,SSL3_RT_HANDSHAKE));
3078 err:
3079 EVP_MD_CTX_cleanup(&mctx);
3080 EVP_PKEY_CTX_free(pctx);
3081 return(-1);
3082 }

3084 int ssl3_send_client_certificate(SSL *s)
3085 {
3086 X509 *x509=NULL;
3087 EVP_PKEY *pkey=NULL;
3088 int i;
3089 unsigned long l;

3091 if (s->state == SSL3_ST_CW_CERT_A)
3092 {
3093 if ((s->cert == NULL) ||
3094 (s->cert->key->x509 == NULL) ||
3095 (s->cert->key->privatekey == NULL))
3096 s->state=SSL3_ST_CW_CERT_B;
3097 else

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 48

3098 s->state=SSL3_ST_CW_CERT_C;
3099 }

3101 /* We need to get a client cert */
3102 if (s->state == SSL3_ST_CW_CERT_B)
3103 {
3104 /* If we get an error, we need to
3105 * ssl->rwstate=SSL_X509_LOOKUP; return(-1);
3106 * We then get retied later */
3107 i=0;
3108 i = ssl_do_client_cert_cb(s, &x509, &pkey);
3109 if (i < 0)
3110 {
3111 s->rwstate=SSL_X509_LOOKUP;
3112 return(-1);
3113 }
3114 s->rwstate=SSL_NOTHING;
3115 if ((i == 1) && (pkey != NULL) && (x509 != NULL))
3116 {
3117 s->state=SSL3_ST_CW_CERT_B;
3118 if (!SSL_use_certificate(s,x509) ||
3119 !SSL_use_PrivateKey(s,pkey))
3120 i=0;
3121 }
3122 else if (i == 1)
3123 {
3124 i=0;
3125 SSLerr(SSL_F_SSL3_SEND_CLIENT_CERTIFICATE,SSL_R_BAD_DATA
3126 }

3128 if (x509 != NULL) X509_free(x509);
3129 if (pkey != NULL) EVP_PKEY_free(pkey);
3130 if (i == 0)
3131 {
3132 if (s->version == SSL3_VERSION)
3133 {
3134 s->s3->tmp.cert_req=0;
3135 ssl3_send_alert(s,SSL3_AL_WARNING,SSL_AD_NO_CERT
3136 return(1);
3137 }
3138 else
3139 {
3140 s->s3->tmp.cert_req=2;
3141 }
3142 }

3144 /* Ok, we have a cert */
3145 s->state=SSL3_ST_CW_CERT_C;
3146 }

3148 if (s->state == SSL3_ST_CW_CERT_C)
3149 {
3150 s->state=SSL3_ST_CW_CERT_D;
3151 l=ssl3_output_cert_chain(s,
3152 (s->s3->tmp.cert_req == 2)?NULL:s->cert->key->x509);
3153 s->init_num=(int)l;
3154 s->init_off=0;
3155 }
3156 /* SSL3_ST_CW_CERT_D */
3157 return(ssl3_do_write(s,SSL3_RT_HANDSHAKE));
3158 }

3160 #define has_bits(i,m) (((i)&(m)) == (m))

3162 int ssl3_check_cert_and_algorithm(SSL *s)
3163 {

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 49

3164 int i,idx;
3165 long alg_k,alg_a;
3166 EVP_PKEY *pkey=NULL;
3167 SESS_CERT *sc;
3168 #ifndef OPENSSL_NO_RSA
3169 RSA *rsa;
3170 #endif
3171 #ifndef OPENSSL_NO_DH
3172 DH *dh;
3173 #endif

3175 alg_k=s->s3->tmp.new_cipher->algorithm_mkey;
3176 alg_a=s->s3->tmp.new_cipher->algorithm_auth;

3178 /* we don’t have a certificate */
3179 if ((alg_a & (SSL_aDH|SSL_aNULL|SSL_aKRB5)) || (alg_k & SSL_kPSK))
3180 return(1);

3182 sc=s->session->sess_cert;
3183 if (sc == NULL)
3184 {
3185 SSLerr(SSL_F_SSL3_CHECK_CERT_AND_ALGORITHM,ERR_R_INTERNAL_ERROR)
3186 goto err;
3187 }

3189 #ifndef OPENSSL_NO_RSA
3190 rsa=s->session->sess_cert->peer_rsa_tmp;
3191 #endif
3192 #ifndef OPENSSL_NO_DH
3193 dh=s->session->sess_cert->peer_dh_tmp;
3194 #endif

3196 /* This is the passed certificate */

3198 idx=sc->peer_cert_type;
3199 #ifndef OPENSSL_NO_ECDH
3200 if (idx == SSL_PKEY_ECC)
3201 {
3202 if (ssl_check_srvr_ecc_cert_and_alg(sc->peer_pkeys[idx].x509,
3203 s) == 0)
3204 { /* check failed */
3205 SSLerr(SSL_F_SSL3_CHECK_CERT_AND_ALGORITHM,SSL_R_BAD_ECC
3206 goto f_err;
3207 }
3208 else
3209 {
3210 return 1;
3211 }
3212 }
3213 #endif
3214 pkey=X509_get_pubkey(sc->peer_pkeys[idx].x509);
3215 i=X509_certificate_type(sc->peer_pkeys[idx].x509,pkey);
3216 EVP_PKEY_free(pkey);

3218
3219 /* Check that we have a certificate if we require one */
3220 if ((alg_a & SSL_aRSA) && !has_bits(i,EVP_PK_RSA|EVP_PKT_SIGN))
3221 {
3222 SSLerr(SSL_F_SSL3_CHECK_CERT_AND_ALGORITHM,SSL_R_MISSING_RSA_SIG
3223 goto f_err;
3224 }
3225 #ifndef OPENSSL_NO_DSA
3226 else if ((alg_a & SSL_aDSS) && !has_bits(i,EVP_PK_DSA|EVP_PKT_SIGN))
3227 {
3228 SSLerr(SSL_F_SSL3_CHECK_CERT_AND_ALGORITHM,SSL_R_MISSING_DSA_SIG
3229 goto f_err;

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 50

3230 }
3231 #endif
3232 #ifndef OPENSSL_NO_RSA
3233 if ((alg_k & SSL_kRSA) &&
3234 !(has_bits(i,EVP_PK_RSA|EVP_PKT_ENC) || (rsa != NULL)))
3235 {
3236 SSLerr(SSL_F_SSL3_CHECK_CERT_AND_ALGORITHM,SSL_R_MISSING_RSA_ENC
3237 goto f_err;
3238 }
3239 #endif
3240 #ifndef OPENSSL_NO_DH
3241 if ((alg_k & SSL_kEDH) &&
3242 !(has_bits(i,EVP_PK_DH|EVP_PKT_EXCH) || (dh != NULL)))
3243 {
3244 SSLerr(SSL_F_SSL3_CHECK_CERT_AND_ALGORITHM,SSL_R_MISSING_DH_KEY)
3245 goto f_err;
3246 }
3247 else if ((alg_k & SSL_kDHr) && !has_bits(i,EVP_PK_DH|EVP_PKS_RSA))
3248 {
3249 SSLerr(SSL_F_SSL3_CHECK_CERT_AND_ALGORITHM,SSL_R_MISSING_DH_RSA_
3250 goto f_err;
3251 }
3252 #ifndef OPENSSL_NO_DSA
3253 else if ((alg_k & SSL_kDHd) && !has_bits(i,EVP_PK_DH|EVP_PKS_DSA))
3254 {
3255 SSLerr(SSL_F_SSL3_CHECK_CERT_AND_ALGORITHM,SSL_R_MISSING_DH_DSA_
3256 goto f_err;
3257 }
3258 #endif
3259 #endif

3261 if (SSL_C_IS_EXPORT(s->s3->tmp.new_cipher) && !has_bits(i,EVP_PKT_EXP))
3262 {
3263 #ifndef OPENSSL_NO_RSA
3264 if (alg_k & SSL_kRSA)
3265 {
3266 if (rsa == NULL
3267 || RSA_size(rsa)*8 > SSL_C_EXPORT_PKEYLENGTH(s->s3->
3268 {
3269 SSLerr(SSL_F_SSL3_CHECK_CERT_AND_ALGORITHM,SSL_R
3270 goto f_err;
3271 }
3272 }
3273 else
3274 #endif
3275 #ifndef OPENSSL_NO_DH
3276 if (alg_k & (SSL_kEDH|SSL_kDHr|SSL_kDHd))
3277 {
3278 if (dh == NULL
3279 || DH_size(dh)*8 > SSL_C_EXPORT_PKEYLENGTH(s->s3
3280 {
3281 SSLerr(SSL_F_SSL3_CHECK_CERT_AND_ALGORITHM,SSL_R
3282 goto f_err;
3283 }
3284 }
3285 else
3286 #endif
3287 {
3288 SSLerr(SSL_F_SSL3_CHECK_CERT_AND_ALGORITHM,SSL_R_UNKNOWN
3289 goto f_err;
3290 }
3291 }
3292 return(1);
3293 f_err:
3294 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_HANDSHAKE_FAILURE);
3295 err:

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 51

3296 return(0);
3297 }

3299 #if !defined(OPENSSL_NO_TLSEXT) && !defined(OPENSSL_NO_NEXTPROTONEG)
3300 int ssl3_send_next_proto(SSL *s)
3301 {
3302 unsigned int len, padding_len;
3303 unsigned char *d;

3305 if (s->state == SSL3_ST_CW_NEXT_PROTO_A)
3306 {
3307 len = s->next_proto_negotiated_len;
3308 padding_len = 32 - ((len + 2) % 32);
3309 d = (unsigned char *)s->init_buf->data;
3310 d[4] = len;
3311 memcpy(d + 5, s->next_proto_negotiated, len);
3312 d[5 + len] = padding_len;
3313 memset(d + 6 + len, 0, padding_len);
3314 *(d++)=SSL3_MT_NEXT_PROTO;
3315 l2n3(2 + len + padding_len, d);
3316 s->state = SSL3_ST_CW_NEXT_PROTO_B;
3317 s->init_num = 4 + 2 + len + padding_len;
3318 s->init_off = 0;
3319 }

3321 return ssl3_do_write(s, SSL3_RT_HANDSHAKE);
3322 }
3323 #endif /* !OPENSSL_NO_TLSEXT && !OPENSSL_NO_NEXTPROTONEG */

3325 /* Check to see if handshake is full or resumed. Usually this is just a
3326 * case of checking to see if a cache hit has occurred. In the case of
3327 * session tickets we have to check the next message to be sure.
3328 */

3330 #ifndef OPENSSL_NO_TLSEXT
3331 int ssl3_check_finished(SSL *s)
3332 {
3333 int ok;
3334 long n;
3335 /* If we have no ticket it cannot be a resumed session. */
3336 if (!s->session->tlsext_tick)
3337 return 1;
3338 /* this function is called when we really expect a Certificate
3339 * message, so permit appropriate message length */
3340 n=s->method->ssl_get_message(s,
3341 SSL3_ST_CR_CERT_A,
3342 SSL3_ST_CR_CERT_B,
3343 -1,
3344 s->max_cert_list,
3345 &ok);
3346 if (!ok) return((int)n);
3347 s->s3->tmp.reuse_message = 1;
3348 if ((s->s3->tmp.message_type == SSL3_MT_FINISHED)
3349 || (s->s3->tmp.message_type == SSL3_MT_NEWSESSION_TICKET))
3350 return 2;

3352 return 1;
3353 }
3354 #endif

3356 int ssl_do_client_cert_cb(SSL *s, X509 **px509, EVP_PKEY **ppkey)
3357 {
3358 int i = 0;
3359 #ifndef OPENSSL_NO_ENGINE
3360 if (s->ctx->client_cert_engine)
3361 {

new/usr/src/lib/openssl/libsunw_ssl/s3_clnt.c 52

3362 i = ENGINE_load_ssl_client_cert(s->ctx->client_cert_engine, s,
3363 SSL_get_client_CA_list(s),
3364 px509, ppkey, NULL, NULL, NULL);
3365 if (i != 0)
3366 return i;
3367 }
3368 #endif
3369 if (s->ctx->client_cert_cb)
3370 i = s->ctx->client_cert_cb(s,px509,ppkey);
3371 return i;
3372 }

new/usr/src/lib/openssl/libsunw_ssl/s3_enc.c 1

**
 26594 Fri May 30 18:32:20 2014
new/usr/src/lib/openssl/libsunw_ssl/s3_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s3_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/s3_enc.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /* ==
112 * Copyright 2005 Nokia. All rights reserved.
113 *
114 * The portions of the attached software ("Contribution") is developed by
115 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
116 * license.
117 *
118 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
119 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
120 * support (see RFC 4279) to OpenSSL.
121 *
122 * No patent licenses or other rights except those expressly stated in
123 * the OpenSSL open source license shall be deemed granted or received
124 * expressly, by implication, estoppel, or otherwise.
125 *
126 * No assurances are provided by Nokia that the Contribution does not
127 * infringe the patent or other intellectual property rights of any third

new/usr/src/lib/openssl/libsunw_ssl/s3_enc.c 3

128 * party or that the license provides you with all the necessary rights
129 * to make use of the Contribution.
130 *
131 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
132 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
133 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
134 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
135 * OTHERWISE.
136 */

138 #include <stdio.h>
139 #include "ssl_locl.h"
140 #include <openssl/evp.h>
141 #include <openssl/md5.h>

143 static unsigned char ssl3_pad_1[48]={
144 0x36,0x36,0x36,0x36,0x36,0x36,0x36,0x36,
145 0x36,0x36,0x36,0x36,0x36,0x36,0x36,0x36,
146 0x36,0x36,0x36,0x36,0x36,0x36,0x36,0x36,
147 0x36,0x36,0x36,0x36,0x36,0x36,0x36,0x36,
148 0x36,0x36,0x36,0x36,0x36,0x36,0x36,0x36,
149 0x36,0x36,0x36,0x36,0x36,0x36,0x36,0x36 };

151 static unsigned char ssl3_pad_2[48]={
152 0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,
153 0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,
154 0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,
155 0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,
156 0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,
157 0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,0x5c,0x5c };
158 static int ssl3_handshake_mac(SSL *s, int md_nid,
159 const char *sender, int len, unsigned char *p);
160 static int ssl3_generate_key_block(SSL *s, unsigned char *km, int num)
161 {
162 EVP_MD_CTX m5;
163 EVP_MD_CTX s1;
164 unsigned char buf[16],smd[SHA_DIGEST_LENGTH];
165 unsigned char c=’A’;
166 unsigned int i,j,k;

168 #ifdef CHARSET_EBCDIC
169 c = os_toascii[c]; /*’A’ in ASCII */
170 #endif
171 k=0;
172 EVP_MD_CTX_init(&m5);
173 EVP_MD_CTX_set_flags(&m5, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
174 EVP_MD_CTX_init(&s1);
175 for (i=0; (int)i<num; i+=MD5_DIGEST_LENGTH)
176 {
177 k++;
178 if (k > sizeof buf)
179 {
180 /* bug: ’buf’ is too small for this ciphersuite */
181 SSLerr(SSL_F_SSL3_GENERATE_KEY_BLOCK, ERR_R_INTERNAL_ERR
182 return 0;
183 }
184
185 for (j=0; j<k; j++)
186 buf[j]=c;
187 c++;
188 EVP_DigestInit_ex(&s1,EVP_sha1(), NULL);
189 EVP_DigestUpdate(&s1,buf,k);
190 EVP_DigestUpdate(&s1,s->session->master_key,
191 s->session->master_key_length);
192 EVP_DigestUpdate(&s1,s->s3->server_random,SSL3_RANDOM_SIZE);
193 EVP_DigestUpdate(&s1,s->s3->client_random,SSL3_RANDOM_SIZE);

new/usr/src/lib/openssl/libsunw_ssl/s3_enc.c 4

194 EVP_DigestFinal_ex(&s1,smd,NULL);

196 EVP_DigestInit_ex(&m5,EVP_md5(), NULL);
197 EVP_DigestUpdate(&m5,s->session->master_key,
198 s->session->master_key_length);
199 EVP_DigestUpdate(&m5,smd,SHA_DIGEST_LENGTH);
200 if ((int)(i+MD5_DIGEST_LENGTH) > num)
201 {
202 EVP_DigestFinal_ex(&m5,smd,NULL);
203 memcpy(km,smd,(num-i));
204 }
205 else
206 EVP_DigestFinal_ex(&m5,km,NULL);

208 km+=MD5_DIGEST_LENGTH;
209 }
210 OPENSSL_cleanse(smd,SHA_DIGEST_LENGTH);
211 EVP_MD_CTX_cleanup(&m5);
212 EVP_MD_CTX_cleanup(&s1);
213 return 1;
214 }

216 int ssl3_change_cipher_state(SSL *s, int which)
217 {
218 unsigned char *p,*mac_secret;
219 unsigned char exp_key[EVP_MAX_KEY_LENGTH];
220 unsigned char exp_iv[EVP_MAX_IV_LENGTH];
221 unsigned char *ms,*key,*iv,*er1,*er2;
222 EVP_CIPHER_CTX *dd;
223 const EVP_CIPHER *c;
224 #ifndef OPENSSL_NO_COMP
225 COMP_METHOD *comp;
226 #endif
227 const EVP_MD *m;
228 EVP_MD_CTX md;
229 int is_exp,n,i,j,k,cl;
230 int reuse_dd = 0;

232 is_exp=SSL_C_IS_EXPORT(s->s3->tmp.new_cipher);
233 c=s->s3->tmp.new_sym_enc;
234 m=s->s3->tmp.new_hash;
235 /* m == NULL will lead to a crash later */
236 OPENSSL_assert(m);
237 #ifndef OPENSSL_NO_COMP
238 if (s->s3->tmp.new_compression == NULL)
239 comp=NULL;
240 else
241 comp=s->s3->tmp.new_compression->method;
242 #endif

244 if (which & SSL3_CC_READ)
245 {
246 if (s->enc_read_ctx != NULL)
247 reuse_dd = 1;
248 else if ((s->enc_read_ctx=OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))
249 goto err;
250 else
251 /* make sure it’s intialized in case we exit later with
252 EVP_CIPHER_CTX_init(s->enc_read_ctx);
253 dd= s->enc_read_ctx;

255 ssl_replace_hash(&s->read_hash,m);
256 #ifndef OPENSSL_NO_COMP
257 /* COMPRESS */
258 if (s->expand != NULL)
259 {

new/usr/src/lib/openssl/libsunw_ssl/s3_enc.c 5

260 COMP_CTX_free(s->expand);
261 s->expand=NULL;
262 }
263 if (comp != NULL)
264 {
265 s->expand=COMP_CTX_new(comp);
266 if (s->expand == NULL)
267 {
268 SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE,SSL_R_COMP
269 goto err2;
270 }
271 if (s->s3->rrec.comp == NULL)
272 s->s3->rrec.comp=(unsigned char *)
273 OPENSSL_malloc(SSL3_RT_MAX_PLAIN_LENGTH)
274 if (s->s3->rrec.comp == NULL)
275 goto err;
276 }
277 #endif
278 memset(&(s->s3->read_sequence[0]),0,8);
279 mac_secret= &(s->s3->read_mac_secret[0]);
280 }
281 else
282 {
283 if (s->enc_write_ctx != NULL)
284 reuse_dd = 1;
285 else if ((s->enc_write_ctx=OPENSSL_malloc(sizeof(EVP_CIPHER_CTX)
286 goto err;
287 else
288 /* make sure it’s intialized in case we exit later with
289 EVP_CIPHER_CTX_init(s->enc_write_ctx);
290 dd= s->enc_write_ctx;
291 ssl_replace_hash(&s->write_hash,m);
292 #ifndef OPENSSL_NO_COMP
293 /* COMPRESS */
294 if (s->compress != NULL)
295 {
296 COMP_CTX_free(s->compress);
297 s->compress=NULL;
298 }
299 if (comp != NULL)
300 {
301 s->compress=COMP_CTX_new(comp);
302 if (s->compress == NULL)
303 {
304 SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE,SSL_R_COMP
305 goto err2;
306 }
307 }
308 #endif
309 memset(&(s->s3->write_sequence[0]),0,8);
310 mac_secret= &(s->s3->write_mac_secret[0]);
311 }

313 if (reuse_dd)
314 EVP_CIPHER_CTX_cleanup(dd);

316 p=s->s3->tmp.key_block;
317 i=EVP_MD_size(m);
318 if (i < 0)
319 goto err2;
320 cl=EVP_CIPHER_key_length(c);
321 j=is_exp ? (cl < SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher) ?
322 cl : SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher)) : cl;
323 /* Was j=(is_exp)?5:EVP_CIPHER_key_length(c); */
324 k=EVP_CIPHER_iv_length(c);
325 if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||

new/usr/src/lib/openssl/libsunw_ssl/s3_enc.c 6

326 (which == SSL3_CHANGE_CIPHER_SERVER_READ))
327 {
328 ms= &(p[0]); n=i+i;
329 key= &(p[n]); n+=j+j;
330 iv= &(p[n]); n+=k+k;
331 er1= &(s->s3->client_random[0]);
332 er2= &(s->s3->server_random[0]);
333 }
334 else
335 {
336 n=i;
337 ms= &(p[n]); n+=i+j;
338 key= &(p[n]); n+=j+k;
339 iv= &(p[n]); n+=k;
340 er1= &(s->s3->server_random[0]);
341 er2= &(s->s3->client_random[0]);
342 }

344 if (n > s->s3->tmp.key_block_length)
345 {
346 SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE,ERR_R_INTERNAL_ERROR);
347 goto err2;
348 }

350 EVP_MD_CTX_init(&md);
351 memcpy(mac_secret,ms,i);
352 if (is_exp)
353 {
354 /* In here I set both the read and write key/iv to the
355 * same value since only the correct one will be used :-).
356 */
357 EVP_DigestInit_ex(&md,EVP_md5(), NULL);
358 EVP_DigestUpdate(&md,key,j);
359 EVP_DigestUpdate(&md,er1,SSL3_RANDOM_SIZE);
360 EVP_DigestUpdate(&md,er2,SSL3_RANDOM_SIZE);
361 EVP_DigestFinal_ex(&md,&(exp_key[0]),NULL);
362 key= &(exp_key[0]);

364 if (k > 0)
365 {
366 EVP_DigestInit_ex(&md,EVP_md5(), NULL);
367 EVP_DigestUpdate(&md,er1,SSL3_RANDOM_SIZE);
368 EVP_DigestUpdate(&md,er2,SSL3_RANDOM_SIZE);
369 EVP_DigestFinal_ex(&md,&(exp_iv[0]),NULL);
370 iv= &(exp_iv[0]);
371 }
372 }

374 s->session->key_arg_length=0;

376 EVP_CipherInit_ex(dd,c,NULL,key,iv,(which & SSL3_CC_WRITE));

378 OPENSSL_cleanse(&(exp_key[0]),sizeof(exp_key));
379 OPENSSL_cleanse(&(exp_iv[0]),sizeof(exp_iv));
380 EVP_MD_CTX_cleanup(&md);
381 return(1);
382 err:
383 SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE,ERR_R_MALLOC_FAILURE);
384 err2:
385 return(0);
386 }

388 int ssl3_setup_key_block(SSL *s)
389 {
390 unsigned char *p;
391 const EVP_CIPHER *c;

new/usr/src/lib/openssl/libsunw_ssl/s3_enc.c 7

392 const EVP_MD *hash;
393 int num;
394 int ret = 0;
395 SSL_COMP *comp;

397 if (s->s3->tmp.key_block_length != 0)
398 return(1);

400 if (!ssl_cipher_get_evp(s->session,&c,&hash,NULL,NULL,&comp))
401 {
402 SSLerr(SSL_F_SSL3_SETUP_KEY_BLOCK,SSL_R_CIPHER_OR_HASH_UNAVAILAB
403 return(0);
404 }

406 s->s3->tmp.new_sym_enc=c;
407 s->s3->tmp.new_hash=hash;
408 #ifdef OPENSSL_NO_COMP
409 s->s3->tmp.new_compression=NULL;
410 #else
411 s->s3->tmp.new_compression=comp;
412 #endif

414 num=EVP_MD_size(hash);
415 if (num < 0)
416 return 0;

418 num=EVP_CIPHER_key_length(c)+num+EVP_CIPHER_iv_length(c);
419 num*=2;

421 ssl3_cleanup_key_block(s);

423 if ((p=OPENSSL_malloc(num)) == NULL)
424 goto err;

426 s->s3->tmp.key_block_length=num;
427 s->s3->tmp.key_block=p;

429 ret = ssl3_generate_key_block(s,p,num);

431 if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS))
432 {
433 /* enable vulnerability countermeasure for CBC ciphers with
434 * known-IV problem (http://www.openssl.org/~bodo/tls-cbc.txt)
435 */
436 s->s3->need_empty_fragments = 1;

438 if (s->session->cipher != NULL)
439 {
440 if (s->session->cipher->algorithm_enc == SSL_eNULL)
441 s->s3->need_empty_fragments = 0;
442
443 #ifndef OPENSSL_NO_RC4
444 if (s->session->cipher->algorithm_enc == SSL_RC4)
445 s->s3->need_empty_fragments = 0;
446 #endif
447 }
448 }

450 return ret;
451
452 err:
453 SSLerr(SSL_F_SSL3_SETUP_KEY_BLOCK,ERR_R_MALLOC_FAILURE);
454 return(0);
455 }

457 void ssl3_cleanup_key_block(SSL *s)

new/usr/src/lib/openssl/libsunw_ssl/s3_enc.c 8

458 {
459 if (s->s3->tmp.key_block != NULL)
460 {
461 OPENSSL_cleanse(s->s3->tmp.key_block,
462 s->s3->tmp.key_block_length);
463 OPENSSL_free(s->s3->tmp.key_block);
464 s->s3->tmp.key_block=NULL;
465 }
466 s->s3->tmp.key_block_length=0;
467 }

469 /* ssl3_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively.
470 *
471 * Returns:
472 * 0: (in non-constant time) if the record is publically invalid (i.e. too
473 * short etc).
474 * 1: if the record’s padding is valid / the encryption was successful.
475 * -1: if the record’s padding is invalid or, if sending, an internal error
476 * occured.
477 */
478 int ssl3_enc(SSL *s, int send)
479 {
480 SSL3_RECORD *rec;
481 EVP_CIPHER_CTX *ds;
482 unsigned long l;
483 int bs,i,mac_size=0;
484 const EVP_CIPHER *enc;

486 if (send)
487 {
488 ds=s->enc_write_ctx;
489 rec= &(s->s3->wrec);
490 if (s->enc_write_ctx == NULL)
491 enc=NULL;
492 else
493 enc=EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
494 }
495 else
496 {
497 ds=s->enc_read_ctx;
498 rec= &(s->s3->rrec);
499 if (s->enc_read_ctx == NULL)
500 enc=NULL;
501 else
502 enc=EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
503 }

505 if ((s->session == NULL) || (ds == NULL) ||
506 (enc == NULL))
507 {
508 memmove(rec->data,rec->input,rec->length);
509 rec->input=rec->data;
510 }
511 else
512 {
513 l=rec->length;
514 bs=EVP_CIPHER_block_size(ds->cipher);

516 /* COMPRESS */

518 if ((bs != 1) && send)
519 {
520 i=bs-((int)l%bs);

522 /* we need to add ’i-1’ padding bytes */
523 l+=i;

new/usr/src/lib/openssl/libsunw_ssl/s3_enc.c 9

524 /* the last of these zero bytes will be overwritten
525 * with the padding length. */
526 memset(&rec->input[rec->length], 0, i);
527 rec->length+=i;
528 rec->input[l-1]=(i-1);
529 }
530
531 if (!send)
532 {
533 if (l == 0 || l%bs != 0)
534 return 0;
535 /* otherwise, rec->length >= bs */
536 }
537
538 EVP_Cipher(ds,rec->data,rec->input,l);

540 if (EVP_MD_CTX_md(s->read_hash) != NULL)
541 mac_size = EVP_MD_CTX_size(s->read_hash);
542 if ((bs != 1) && !send)
543 return ssl3_cbc_remove_padding(s, rec, bs, mac_size);
544 }
545 return(1);
546 }

548 void ssl3_init_finished_mac(SSL *s)
549 {
550 if (s->s3->handshake_buffer) BIO_free(s->s3->handshake_buffer);
551 if (s->s3->handshake_dgst) ssl3_free_digest_list(s);
552 s->s3->handshake_buffer=BIO_new(BIO_s_mem());
553 (void)BIO_set_close(s->s3->handshake_buffer,BIO_CLOSE);
554 }

556 void ssl3_free_digest_list(SSL *s)
557 {
558 int i;
559 if (!s->s3->handshake_dgst) return;
560 for (i=0;i<SSL_MAX_DIGEST;i++)
561 {
562 if (s->s3->handshake_dgst[i])
563 EVP_MD_CTX_destroy(s->s3->handshake_dgst[i]);
564 }
565 OPENSSL_free(s->s3->handshake_dgst);
566 s->s3->handshake_dgst=NULL;
567 }

571 void ssl3_finish_mac(SSL *s, const unsigned char *buf, int len)
572 {
573 if (s->s3->handshake_buffer && !(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAK
574 {
575 BIO_write (s->s3->handshake_buffer,(void *)buf,len);
576 }
577 else
578 {
579 int i;
580 for (i=0;i< SSL_MAX_DIGEST;i++)
581 {
582 if (s->s3->handshake_dgst[i]!= NULL)
583 EVP_DigestUpdate(s->s3->handshake_dgst[i],buf,len);
584 }
585 }
586 }

588 int ssl3_digest_cached_records(SSL *s)
589 {

new/usr/src/lib/openssl/libsunw_ssl/s3_enc.c 10

590 int i;
591 long mask;
592 const EVP_MD *md;
593 long hdatalen;
594 void *hdata;

596 /* Allocate handshake_dgst array */
597 ssl3_free_digest_list(s);
598 s->s3->handshake_dgst = OPENSSL_malloc(SSL_MAX_DIGEST * sizeof(EVP_MD_CT
599 memset(s->s3->handshake_dgst,0,SSL_MAX_DIGEST *sizeof(EVP_MD_CTX *));
600 hdatalen = BIO_get_mem_data(s->s3->handshake_buffer,&hdata);
601 if (hdatalen <= 0)
602 {
603 SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, SSL_R_BAD_HANDSHAKE_LEN
604 return 0;
605 }

607 /* Loop through bitso of algorithm2 field and create MD_CTX-es */
608 for (i=0;ssl_get_handshake_digest(i,&mask,&md); i++)
609 {
610 if ((mask & ssl_get_algorithm2(s)) && md)
611 {
612 s->s3->handshake_dgst[i]=EVP_MD_CTX_create();
613 #ifdef OPENSSL_FIPS
614 if (EVP_MD_nid(md) == NID_md5)
615 {
616 EVP_MD_CTX_set_flags(s->s3->handshake_dgst[i],
617 EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
618 }
619 #endif
620 EVP_DigestInit_ex(s->s3->handshake_dgst[i],md,NULL);
621 EVP_DigestUpdate(s->s3->handshake_dgst[i],hdata,hdatalen
622 }
623 else
624 {
625 s->s3->handshake_dgst[i]=NULL;
626 }
627 }
628 if (!(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAKE))
629 {
630 /* Free handshake_buffer BIO */
631 BIO_free(s->s3->handshake_buffer);
632 s->s3->handshake_buffer = NULL;
633 }

635 return 1;
636 }

638 int ssl3_cert_verify_mac(SSL *s, int md_nid, unsigned char *p)
639 {
640 return(ssl3_handshake_mac(s,md_nid,NULL,0,p));
641 }
642 int ssl3_final_finish_mac(SSL *s,
643 const char *sender, int len, unsigned char *p)
644 {
645 int ret;
646 ret=ssl3_handshake_mac(s,NID_md5,sender,len,p);
647 p+=ret;
648 ret+=ssl3_handshake_mac(s,NID_sha1,sender,len,p);
649 return(ret);
650 }
651 static int ssl3_handshake_mac(SSL *s, int md_nid,
652 const char *sender, int len, unsigned char *p)
653 {
654 unsigned int ret;
655 int npad,n;

new/usr/src/lib/openssl/libsunw_ssl/s3_enc.c 11

656 unsigned int i;
657 unsigned char md_buf[EVP_MAX_MD_SIZE];
658 EVP_MD_CTX ctx,*d=NULL;

660 if (s->s3->handshake_buffer)
661 if (!ssl3_digest_cached_records(s))
662 return 0;

664 /* Search for digest of specified type in the handshake_dgst
665 * array*/
666 for (i=0;i<SSL_MAX_DIGEST;i++)
667 {
668 if (s->s3->handshake_dgst[i]&&EVP_MD_CTX_type(s->s3->handshake
669 {
670 d=s->s3->handshake_dgst[i];
671 break;
672 }
673 }
674 if (!d) {
675 SSLerr(SSL_F_SSL3_HANDSHAKE_MAC,SSL_R_NO_REQUIRED_DIGEST);
676 return 0;
677 }
678 EVP_MD_CTX_init(&ctx);
679 EVP_MD_CTX_set_flags(&ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
680 EVP_MD_CTX_copy_ex(&ctx,d);
681 n=EVP_MD_CTX_size(&ctx);
682 if (n < 0)
683 return 0;

685 npad=(48/n)*n;
686 if (sender != NULL)
687 EVP_DigestUpdate(&ctx,sender,len);
688 EVP_DigestUpdate(&ctx,s->session->master_key,
689 s->session->master_key_length);
690 EVP_DigestUpdate(&ctx,ssl3_pad_1,npad);
691 EVP_DigestFinal_ex(&ctx,md_buf,&i);

693 EVP_DigestInit_ex(&ctx,EVP_MD_CTX_md(&ctx), NULL);
694 EVP_DigestUpdate(&ctx,s->session->master_key,
695 s->session->master_key_length);
696 EVP_DigestUpdate(&ctx,ssl3_pad_2,npad);
697 EVP_DigestUpdate(&ctx,md_buf,i);
698 EVP_DigestFinal_ex(&ctx,p,&ret);

700 EVP_MD_CTX_cleanup(&ctx);

702 return((int)ret);
703 }

705 int n_ssl3_mac(SSL *ssl, unsigned char *md, int send)
706 {
707 SSL3_RECORD *rec;
708 unsigned char *mac_sec,*seq;
709 EVP_MD_CTX md_ctx;
710 const EVP_MD_CTX *hash;
711 unsigned char *p,rec_char;
712 size_t md_size, orig_len;
713 int npad;
714 int t;

716 if (send)
717 {
718 rec= &(ssl->s3->wrec);
719 mac_sec= &(ssl->s3->write_mac_secret[0]);
720 seq= &(ssl->s3->write_sequence[0]);
721 hash=ssl->write_hash;

new/usr/src/lib/openssl/libsunw_ssl/s3_enc.c 12

722 }
723 else
724 {
725 rec= &(ssl->s3->rrec);
726 mac_sec= &(ssl->s3->read_mac_secret[0]);
727 seq= &(ssl->s3->read_sequence[0]);
728 hash=ssl->read_hash;
729 }

731 t=EVP_MD_CTX_size(hash);
732 if (t < 0)
733 return -1;
734 md_size=t;
735 npad=(48/md_size)*md_size;

737 /* kludge: ssl3_cbc_remove_padding passes padding length in rec->type */
738 orig_len = rec->length+md_size+((unsigned int)rec->type>>8);
739 rec->type &= 0xff;

741 if (!send &&
742 EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
743 ssl3_cbc_record_digest_supported(hash))
744 {
745 /* This is a CBC-encrypted record. We must avoid leaking any
746 * timing-side channel information about how many blocks of
747 * data we are hashing because that gives an attacker a
748 * timing-oracle. */

750 /* npad is, at most, 48 bytes and that’s with MD5:
751 * 16 + 48 + 8 (sequence bytes) + 1 + 2 = 75.
752 *
753 * With SHA-1 (the largest hash speced for SSLv3) the hash size
754 * goes up 4, but npad goes down by 8, resulting in a smaller
755 * total size. */
756 unsigned char header[75];
757 unsigned j = 0;
758 memcpy(header+j, mac_sec, md_size);
759 j += md_size;
760 memcpy(header+j, ssl3_pad_1, npad);
761 j += npad;
762 memcpy(header+j, seq, 8);
763 j += 8;
764 header[j++] = rec->type;
765 header[j++] = rec->length >> 8;
766 header[j++] = rec->length & 0xff;

768 ssl3_cbc_digest_record(
769 hash,
770 md, &md_size,
771 header, rec->input,
772 rec->length + md_size, orig_len,
773 mac_sec, md_size,
774 1 /* is SSLv3 */);
775 }
776 else
777 {
778 unsigned int md_size_u;
779 /* Chop the digest off the end :-) */
780 EVP_MD_CTX_init(&md_ctx);

782 EVP_MD_CTX_copy_ex(&md_ctx,hash);
783 EVP_DigestUpdate(&md_ctx,mac_sec,md_size);
784 EVP_DigestUpdate(&md_ctx,ssl3_pad_1,npad);
785 EVP_DigestUpdate(&md_ctx,seq,8);
786 rec_char=rec->type;
787 EVP_DigestUpdate(&md_ctx,&rec_char,1);

new/usr/src/lib/openssl/libsunw_ssl/s3_enc.c 13

788 p=md;
789 s2n(rec->length,p);
790 EVP_DigestUpdate(&md_ctx,md,2);
791 EVP_DigestUpdate(&md_ctx,rec->input,rec->length);
792 EVP_DigestFinal_ex(&md_ctx,md,NULL);

794 EVP_MD_CTX_copy_ex(&md_ctx,hash);
795 EVP_DigestUpdate(&md_ctx,mac_sec,md_size);
796 EVP_DigestUpdate(&md_ctx,ssl3_pad_2,npad);
797 EVP_DigestUpdate(&md_ctx,md,md_size);
798 EVP_DigestFinal_ex(&md_ctx,md,&md_size_u);
799 md_size = md_size_u;

801 EVP_MD_CTX_cleanup(&md_ctx);
802 }

804 ssl3_record_sequence_update(seq);
805 return(md_size);
806 }

808 void ssl3_record_sequence_update(unsigned char *seq)
809 {
810 int i;

812 for (i=7; i>=0; i--)
813 {
814 ++seq[i];
815 if (seq[i] != 0) break;
816 }
817 }

819 int ssl3_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
820 int len)
821 {
822 static const unsigned char *salt[3]={
823 #ifndef CHARSET_EBCDIC
824 (const unsigned char *)"A",
825 (const unsigned char *)"BB",
826 (const unsigned char *)"CCC",
827 #else
828 (const unsigned char *)"\x41",
829 (const unsigned char *)"\x42\x42",
830 (const unsigned char *)"\x43\x43\x43",
831 #endif
832 };
833 unsigned char buf[EVP_MAX_MD_SIZE];
834 EVP_MD_CTX ctx;
835 int i,ret=0;
836 unsigned int n;

838 EVP_MD_CTX_init(&ctx);
839 for (i=0; i<3; i++)
840 {
841 EVP_DigestInit_ex(&ctx,s->ctx->sha1, NULL);
842 EVP_DigestUpdate(&ctx,salt[i],strlen((const char *)salt[i]));
843 EVP_DigestUpdate(&ctx,p,len);
844 EVP_DigestUpdate(&ctx,&(s->s3->client_random[0]),
845 SSL3_RANDOM_SIZE);
846 EVP_DigestUpdate(&ctx,&(s->s3->server_random[0]),
847 SSL3_RANDOM_SIZE);
848 EVP_DigestFinal_ex(&ctx,buf,&n);

850 EVP_DigestInit_ex(&ctx,s->ctx->md5, NULL);
851 EVP_DigestUpdate(&ctx,p,len);
852 EVP_DigestUpdate(&ctx,buf,n);
853 EVP_DigestFinal_ex(&ctx,out,&n);

new/usr/src/lib/openssl/libsunw_ssl/s3_enc.c 14

854 out+=n;
855 ret+=n;
856 }
857 EVP_MD_CTX_cleanup(&ctx);
858 return(ret);
859 }

861 int ssl3_alert_code(int code)
862 {
863 switch (code)
864 {
865 case SSL_AD_CLOSE_NOTIFY: return(SSL3_AD_CLOSE_NOTIFY);
866 case SSL_AD_UNEXPECTED_MESSAGE: return(SSL3_AD_UNEXPECTED_MESSAGE);
867 case SSL_AD_BAD_RECORD_MAC: return(SSL3_AD_BAD_RECORD_MAC);
868 case SSL_AD_DECRYPTION_FAILED: return(SSL3_AD_BAD_RECORD_MAC);
869 case SSL_AD_RECORD_OVERFLOW: return(SSL3_AD_BAD_RECORD_MAC);
870 case SSL_AD_DECOMPRESSION_FAILURE:return(SSL3_AD_DECOMPRESSION_FAILURE);
871 case SSL_AD_HANDSHAKE_FAILURE: return(SSL3_AD_HANDSHAKE_FAILURE);
872 case SSL_AD_NO_CERTIFICATE: return(SSL3_AD_NO_CERTIFICATE);
873 case SSL_AD_BAD_CERTIFICATE: return(SSL3_AD_BAD_CERTIFICATE);
874 case SSL_AD_UNSUPPORTED_CERTIFICATE:return(SSL3_AD_UNSUPPORTED_CERTIFICA
875 case SSL_AD_CERTIFICATE_REVOKED:return(SSL3_AD_CERTIFICATE_REVOKED);
876 case SSL_AD_CERTIFICATE_EXPIRED:return(SSL3_AD_CERTIFICATE_EXPIRED);
877 case SSL_AD_CERTIFICATE_UNKNOWN:return(SSL3_AD_CERTIFICATE_UNKNOWN);
878 case SSL_AD_ILLEGAL_PARAMETER: return(SSL3_AD_ILLEGAL_PARAMETER);
879 case SSL_AD_UNKNOWN_CA: return(SSL3_AD_BAD_CERTIFICATE);
880 case SSL_AD_ACCESS_DENIED: return(SSL3_AD_HANDSHAKE_FAILURE);
881 case SSL_AD_DECODE_ERROR: return(SSL3_AD_HANDSHAKE_FAILURE);
882 case SSL_AD_DECRYPT_ERROR: return(SSL3_AD_HANDSHAKE_FAILURE);
883 case SSL_AD_EXPORT_RESTRICTION: return(SSL3_AD_HANDSHAKE_FAILURE);
884 case SSL_AD_PROTOCOL_VERSION: return(SSL3_AD_HANDSHAKE_FAILURE);
885 case SSL_AD_INSUFFICIENT_SECURITY:return(SSL3_AD_HANDSHAKE_FAILURE);
886 case SSL_AD_INTERNAL_ERROR: return(SSL3_AD_HANDSHAKE_FAILURE);
887 case SSL_AD_USER_CANCELLED: return(SSL3_AD_HANDSHAKE_FAILURE);
888 case SSL_AD_NO_RENEGOTIATION: return(-1); /* Don’t send it :-) */
889 case SSL_AD_UNSUPPORTED_EXTENSION: return(SSL3_AD_HANDSHAKE_FAILURE);
890 case SSL_AD_CERTIFICATE_UNOBTAINABLE: return(SSL3_AD_HANDSHAKE_FAILURE);
891 case SSL_AD_UNRECOGNIZED_NAME: return(SSL3_AD_HANDSHAKE_FAILURE);
892 case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: return(SSL3_AD_HANDSHAKE_FA
893 case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: return(SSL3_AD_HANDSHAKE_FAILURE
894 case SSL_AD_UNKNOWN_PSK_IDENTITY:return(TLS1_AD_UNKNOWN_PSK_IDENTITY);
895 default: return(-1);
896 }
897 }

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 1

**
 83291 Fri May 30 18:32:21 2014
new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s3_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /* ==
112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
113 *
114 * Portions of the attached software ("Contribution") are developed by
115 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
116 *
117 * The Contribution is licensed pursuant to the OpenSSL open source
118 * license provided above.
119 *
120 * ECC cipher suite support in OpenSSL originally written by
121 * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
122 *
123 */
124 /* ==
125 * Copyright 2005 Nokia. All rights reserved.
126 *
127 * The portions of the attached software ("Contribution") is developed by

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 3

128 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
129 * license.
130 *
131 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
132 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
133 * support (see RFC 4279) to OpenSSL.
134 *
135 * No patent licenses or other rights except those expressly stated in
136 * the OpenSSL open source license shall be deemed granted or received
137 * expressly, by implication, estoppel, or otherwise.
138 *
139 * No assurances are provided by Nokia that the Contribution does not
140 * infringe the patent or other intellectual property rights of any third
141 * party or that the license provides you with all the necessary rights
142 * to make use of the Contribution.
143 *
144 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
145 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
146 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
147 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
148 * OTHERWISE.
149 */

151 #include <stdio.h>
152 #include <openssl/objects.h>
153 #include "ssl_locl.h"
154 #include "kssl_lcl.h"
155 #ifndef OPENSSL_NO_TLSEXT
156 #ifndef OPENSSL_NO_EC
157 #include <ec_lcl.h>
158 #endif /* OPENSSL_NO_EC */
159 #endif /* OPENSSL_NO_TLSEXT */
160 #include <openssl/md5.h>
161 #ifndef OPENSSL_NO_DH
162 #include <openssl/dh.h>
163 #endif

165 const char ssl3_version_str[]="SSLv3" OPENSSL_VERSION_PTEXT;

167 #define SSL3_NUM_CIPHERS (sizeof(ssl3_ciphers)/sizeof(SSL_CIPHER))

169 /* list of available SSLv3 ciphers (sorted by id) */
170 OPENSSL_GLOBAL SSL_CIPHER ssl3_ciphers[]={

172 /* The RSA ciphers */
173 /* Cipher 01 */
174 {
175 1,
176 SSL3_TXT_RSA_NULL_MD5,
177 SSL3_CK_RSA_NULL_MD5,
178 SSL_kRSA,
179 SSL_aRSA,
180 SSL_eNULL,
181 SSL_MD5,
182 SSL_SSLV3,
183 SSL_NOT_EXP|SSL_STRONG_NONE,
184 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
185 0,
186 0,
187 },

189 /* Cipher 02 */
190 {
191 1,
192 SSL3_TXT_RSA_NULL_SHA,
193 SSL3_CK_RSA_NULL_SHA,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 4

194 SSL_kRSA,
195 SSL_aRSA,
196 SSL_eNULL,
197 SSL_SHA1,
198 SSL_SSLV3,
199 SSL_NOT_EXP|SSL_STRONG_NONE|SSL_FIPS,
200 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
201 0,
202 0,
203 },

205 /* Cipher 03 */
206 {
207 1,
208 SSL3_TXT_RSA_RC4_40_MD5,
209 SSL3_CK_RSA_RC4_40_MD5,
210 SSL_kRSA,
211 SSL_aRSA,
212 SSL_RC4,
213 SSL_MD5,
214 SSL_SSLV3,
215 SSL_EXPORT|SSL_EXP40,
216 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
217 40,
218 128,
219 },

221 /* Cipher 04 */
222 {
223 1,
224 SSL3_TXT_RSA_RC4_128_MD5,
225 SSL3_CK_RSA_RC4_128_MD5,
226 SSL_kRSA,
227 SSL_aRSA,
228 SSL_RC4,
229 SSL_MD5,
230 SSL_SSLV3,
231 SSL_NOT_EXP|SSL_MEDIUM,
232 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
233 128,
234 128,
235 },

237 /* Cipher 05 */
238 {
239 1,
240 SSL3_TXT_RSA_RC4_128_SHA,
241 SSL3_CK_RSA_RC4_128_SHA,
242 SSL_kRSA,
243 SSL_aRSA,
244 SSL_RC4,
245 SSL_SHA1,
246 SSL_SSLV3,
247 SSL_NOT_EXP|SSL_MEDIUM,
248 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
249 128,
250 128,
251 },

253 /* Cipher 06 */
254 {
255 1,
256 SSL3_TXT_RSA_RC2_40_MD5,
257 SSL3_CK_RSA_RC2_40_MD5,
258 SSL_kRSA,
259 SSL_aRSA,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 5

260 SSL_RC2,
261 SSL_MD5,
262 SSL_SSLV3,
263 SSL_EXPORT|SSL_EXP40,
264 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
265 40,
266 128,
267 },

269 /* Cipher 07 */
270 #ifndef OPENSSL_NO_IDEA
271 {
272 1,
273 SSL3_TXT_RSA_IDEA_128_SHA,
274 SSL3_CK_RSA_IDEA_128_SHA,
275 SSL_kRSA,
276 SSL_aRSA,
277 SSL_IDEA,
278 SSL_SHA1,
279 SSL_SSLV3,
280 SSL_NOT_EXP|SSL_MEDIUM,
281 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
282 128,
283 128,
284 },
285 #endif

287 /* Cipher 08 */
288 {
289 1,
290 SSL3_TXT_RSA_DES_40_CBC_SHA,
291 SSL3_CK_RSA_DES_40_CBC_SHA,
292 SSL_kRSA,
293 SSL_aRSA,
294 SSL_DES,
295 SSL_SHA1,
296 SSL_SSLV3,
297 SSL_EXPORT|SSL_EXP40,
298 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
299 40,
300 56,
301 },

303 /* Cipher 09 */
304 {
305 1,
306 SSL3_TXT_RSA_DES_64_CBC_SHA,
307 SSL3_CK_RSA_DES_64_CBC_SHA,
308 SSL_kRSA,
309 SSL_aRSA,
310 SSL_DES,
311 SSL_SHA1,
312 SSL_SSLV3,
313 SSL_NOT_EXP|SSL_LOW,
314 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
315 56,
316 56,
317 },

319 /* Cipher 0A */
320 {
321 1,
322 SSL3_TXT_RSA_DES_192_CBC3_SHA,
323 SSL3_CK_RSA_DES_192_CBC3_SHA,
324 SSL_kRSA,
325 SSL_aRSA,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 6

326 SSL_3DES,
327 SSL_SHA1,
328 SSL_SSLV3,
329 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
330 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
331 168,
332 168,
333 },

335 /* The DH ciphers */
336 /* Cipher 0B */
337 {
338 0,
339 SSL3_TXT_DH_DSS_DES_40_CBC_SHA,
340 SSL3_CK_DH_DSS_DES_40_CBC_SHA,
341 SSL_kDHd,
342 SSL_aDH,
343 SSL_DES,
344 SSL_SHA1,
345 SSL_SSLV3,
346 SSL_EXPORT|SSL_EXP40,
347 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
348 40,
349 56,
350 },

352 /* Cipher 0C */
353 {
354 0, /* not implemented (non-ephemeral DH) */
355 SSL3_TXT_DH_DSS_DES_64_CBC_SHA,
356 SSL3_CK_DH_DSS_DES_64_CBC_SHA,
357 SSL_kDHd,
358 SSL_aDH,
359 SSL_DES,
360 SSL_SHA1,
361 SSL_SSLV3,
362 SSL_NOT_EXP|SSL_LOW,
363 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
364 56,
365 56,
366 },

368 /* Cipher 0D */
369 {
370 0, /* not implemented (non-ephemeral DH) */
371 SSL3_TXT_DH_DSS_DES_192_CBC3_SHA,
372 SSL3_CK_DH_DSS_DES_192_CBC3_SHA,
373 SSL_kDHd,
374 SSL_aDH,
375 SSL_3DES,
376 SSL_SHA1,
377 SSL_SSLV3,
378 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
379 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
380 168,
381 168,
382 },

384 /* Cipher 0E */
385 {
386 0, /* not implemented (non-ephemeral DH) */
387 SSL3_TXT_DH_RSA_DES_40_CBC_SHA,
388 SSL3_CK_DH_RSA_DES_40_CBC_SHA,
389 SSL_kDHr,
390 SSL_aDH,
391 SSL_DES,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 7

392 SSL_SHA1,
393 SSL_SSLV3,
394 SSL_EXPORT|SSL_EXP40,
395 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
396 40,
397 56,
398 },

400 /* Cipher 0F */
401 {
402 0, /* not implemented (non-ephemeral DH) */
403 SSL3_TXT_DH_RSA_DES_64_CBC_SHA,
404 SSL3_CK_DH_RSA_DES_64_CBC_SHA,
405 SSL_kDHr,
406 SSL_aDH,
407 SSL_DES,
408 SSL_SHA1,
409 SSL_SSLV3,
410 SSL_NOT_EXP|SSL_LOW,
411 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
412 56,
413 56,
414 },

416 /* Cipher 10 */
417 {
418 0, /* not implemented (non-ephemeral DH) */
419 SSL3_TXT_DH_RSA_DES_192_CBC3_SHA,
420 SSL3_CK_DH_RSA_DES_192_CBC3_SHA,
421 SSL_kDHr,
422 SSL_aDH,
423 SSL_3DES,
424 SSL_SHA1,
425 SSL_SSLV3,
426 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
427 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
428 168,
429 168,
430 },

432 /* The Ephemeral DH ciphers */
433 /* Cipher 11 */
434 {
435 1,
436 SSL3_TXT_EDH_DSS_DES_40_CBC_SHA,
437 SSL3_CK_EDH_DSS_DES_40_CBC_SHA,
438 SSL_kEDH,
439 SSL_aDSS,
440 SSL_DES,
441 SSL_SHA1,
442 SSL_SSLV3,
443 SSL_EXPORT|SSL_EXP40,
444 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
445 40,
446 56,
447 },

449 /* Cipher 12 */
450 {
451 1,
452 SSL3_TXT_EDH_DSS_DES_64_CBC_SHA,
453 SSL3_CK_EDH_DSS_DES_64_CBC_SHA,
454 SSL_kEDH,
455 SSL_aDSS,
456 SSL_DES,
457 SSL_SHA1,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 8

458 SSL_SSLV3,
459 SSL_NOT_EXP|SSL_LOW,
460 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
461 56,
462 56,
463 },

465 /* Cipher 13 */
466 {
467 1,
468 SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA,
469 SSL3_CK_EDH_DSS_DES_192_CBC3_SHA,
470 SSL_kEDH,
471 SSL_aDSS,
472 SSL_3DES,
473 SSL_SHA1,
474 SSL_SSLV3,
475 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
476 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
477 168,
478 168,
479 },

481 /* Cipher 14 */
482 {
483 1,
484 SSL3_TXT_EDH_RSA_DES_40_CBC_SHA,
485 SSL3_CK_EDH_RSA_DES_40_CBC_SHA,
486 SSL_kEDH,
487 SSL_aRSA,
488 SSL_DES,
489 SSL_SHA1,
490 SSL_SSLV3,
491 SSL_EXPORT|SSL_EXP40,
492 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
493 40,
494 56,
495 },

497 /* Cipher 15 */
498 {
499 1,
500 SSL3_TXT_EDH_RSA_DES_64_CBC_SHA,
501 SSL3_CK_EDH_RSA_DES_64_CBC_SHA,
502 SSL_kEDH,
503 SSL_aRSA,
504 SSL_DES,
505 SSL_SHA1,
506 SSL_SSLV3,
507 SSL_NOT_EXP|SSL_LOW,
508 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
509 56,
510 56,
511 },

513 /* Cipher 16 */
514 {
515 1,
516 SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA,
517 SSL3_CK_EDH_RSA_DES_192_CBC3_SHA,
518 SSL_kEDH,
519 SSL_aRSA,
520 SSL_3DES,
521 SSL_SHA1,
522 SSL_SSLV3,
523 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 9

524 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
525 168,
526 168,
527 },

529 /* Cipher 17 */
530 {
531 1,
532 SSL3_TXT_ADH_RC4_40_MD5,
533 SSL3_CK_ADH_RC4_40_MD5,
534 SSL_kEDH,
535 SSL_aNULL,
536 SSL_RC4,
537 SSL_MD5,
538 SSL_SSLV3,
539 SSL_EXPORT|SSL_EXP40,
540 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
541 40,
542 128,
543 },

545 /* Cipher 18 */
546 {
547 1,
548 SSL3_TXT_ADH_RC4_128_MD5,
549 SSL3_CK_ADH_RC4_128_MD5,
550 SSL_kEDH,
551 SSL_aNULL,
552 SSL_RC4,
553 SSL_MD5,
554 SSL_SSLV3,
555 SSL_NOT_EXP|SSL_MEDIUM,
556 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
557 128,
558 128,
559 },

561 /* Cipher 19 */
562 {
563 1,
564 SSL3_TXT_ADH_DES_40_CBC_SHA,
565 SSL3_CK_ADH_DES_40_CBC_SHA,
566 SSL_kEDH,
567 SSL_aNULL,
568 SSL_DES,
569 SSL_SHA1,
570 SSL_SSLV3,
571 SSL_EXPORT|SSL_EXP40,
572 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
573 40,
574 128,
575 },

577 /* Cipher 1A */
578 {
579 1,
580 SSL3_TXT_ADH_DES_64_CBC_SHA,
581 SSL3_CK_ADH_DES_64_CBC_SHA,
582 SSL_kEDH,
583 SSL_aNULL,
584 SSL_DES,
585 SSL_SHA1,
586 SSL_SSLV3,
587 SSL_NOT_EXP|SSL_LOW,
588 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
589 56,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 10

590 56,
591 },

593 /* Cipher 1B */
594 {
595 1,
596 SSL3_TXT_ADH_DES_192_CBC_SHA,
597 SSL3_CK_ADH_DES_192_CBC_SHA,
598 SSL_kEDH,
599 SSL_aNULL,
600 SSL_3DES,
601 SSL_SHA1,
602 SSL_SSLV3,
603 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
604 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
605 168,
606 168,
607 },

609 /* Fortezza ciphersuite from SSL 3.0 spec */
610 #if 0
611 /* Cipher 1C */
612 {
613 0,
614 SSL3_TXT_FZA_DMS_NULL_SHA,
615 SSL3_CK_FZA_DMS_NULL_SHA,
616 SSL_kFZA,
617 SSL_aFZA,
618 SSL_eNULL,
619 SSL_SHA1,
620 SSL_SSLV3,
621 SSL_NOT_EXP|SSL_STRONG_NONE,
622 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
623 0,
624 0,
625 },

627 /* Cipher 1D */
628 {
629 0,
630 SSL3_TXT_FZA_DMS_FZA_SHA,
631 SSL3_CK_FZA_DMS_FZA_SHA,
632 SSL_kFZA,
633 SSL_aFZA,
634 SSL_eFZA,
635 SSL_SHA1,
636 SSL_SSLV3,
637 SSL_NOT_EXP|SSL_STRONG_NONE,
638 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
639 0,
640 0,
641 },

643 /* Cipher 1E */
644 {
645 0,
646 SSL3_TXT_FZA_DMS_RC4_SHA,
647 SSL3_CK_FZA_DMS_RC4_SHA,
648 SSL_kFZA,
649 SSL_aFZA,
650 SSL_RC4,
651 SSL_SHA1,
652 SSL_SSLV3,
653 SSL_NOT_EXP|SSL_MEDIUM,
654 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
655 128,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 11

656 128,
657 },
658 #endif

660 #ifndef OPENSSL_NO_KRB5
661 /* The Kerberos ciphers*/
662 /* Cipher 1E */
663 {
664 1,
665 SSL3_TXT_KRB5_DES_64_CBC_SHA,
666 SSL3_CK_KRB5_DES_64_CBC_SHA,
667 SSL_kKRB5,
668 SSL_aKRB5,
669 SSL_DES,
670 SSL_SHA1,
671 SSL_SSLV3,
672 SSL_NOT_EXP|SSL_LOW,
673 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
674 56,
675 56,
676 },

678 /* Cipher 1F */
679 {
680 1,
681 SSL3_TXT_KRB5_DES_192_CBC3_SHA,
682 SSL3_CK_KRB5_DES_192_CBC3_SHA,
683 SSL_kKRB5,
684 SSL_aKRB5,
685 SSL_3DES,
686 SSL_SHA1,
687 SSL_SSLV3,
688 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
689 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
690 168,
691 168,
692 },

694 /* Cipher 20 */
695 {
696 1,
697 SSL3_TXT_KRB5_RC4_128_SHA,
698 SSL3_CK_KRB5_RC4_128_SHA,
699 SSL_kKRB5,
700 SSL_aKRB5,
701 SSL_RC4,
702 SSL_SHA1,
703 SSL_SSLV3,
704 SSL_NOT_EXP|SSL_MEDIUM,
705 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
706 128,
707 128,
708 },

710 /* Cipher 21 */
711 {
712 1,
713 SSL3_TXT_KRB5_IDEA_128_CBC_SHA,
714 SSL3_CK_KRB5_IDEA_128_CBC_SHA,
715 SSL_kKRB5,
716 SSL_aKRB5,
717 SSL_IDEA,
718 SSL_SHA1,
719 SSL_SSLV3,
720 SSL_NOT_EXP|SSL_MEDIUM,
721 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 12

722 128,
723 128,
724 },

726 /* Cipher 22 */
727 {
728 1,
729 SSL3_TXT_KRB5_DES_64_CBC_MD5,
730 SSL3_CK_KRB5_DES_64_CBC_MD5,
731 SSL_kKRB5,
732 SSL_aKRB5,
733 SSL_DES,
734 SSL_MD5,
735 SSL_SSLV3,
736 SSL_NOT_EXP|SSL_LOW,
737 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
738 56,
739 56,
740 },

742 /* Cipher 23 */
743 {
744 1,
745 SSL3_TXT_KRB5_DES_192_CBC3_MD5,
746 SSL3_CK_KRB5_DES_192_CBC3_MD5,
747 SSL_kKRB5,
748 SSL_aKRB5,
749 SSL_3DES,
750 SSL_MD5,
751 SSL_SSLV3,
752 SSL_NOT_EXP|SSL_HIGH,
753 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
754 168,
755 168,
756 },

758 /* Cipher 24 */
759 {
760 1,
761 SSL3_TXT_KRB5_RC4_128_MD5,
762 SSL3_CK_KRB5_RC4_128_MD5,
763 SSL_kKRB5,
764 SSL_aKRB5,
765 SSL_RC4,
766 SSL_MD5,
767 SSL_SSLV3,
768 SSL_NOT_EXP|SSL_MEDIUM,
769 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
770 128,
771 128,
772 },

774 /* Cipher 25 */
775 {
776 1,
777 SSL3_TXT_KRB5_IDEA_128_CBC_MD5,
778 SSL3_CK_KRB5_IDEA_128_CBC_MD5,
779 SSL_kKRB5,
780 SSL_aKRB5,
781 SSL_IDEA,
782 SSL_MD5,
783 SSL_SSLV3,
784 SSL_NOT_EXP|SSL_MEDIUM,
785 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
786 128,
787 128,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 13

788 },

790 /* Cipher 26 */
791 {
792 1,
793 SSL3_TXT_KRB5_DES_40_CBC_SHA,
794 SSL3_CK_KRB5_DES_40_CBC_SHA,
795 SSL_kKRB5,
796 SSL_aKRB5,
797 SSL_DES,
798 SSL_SHA1,
799 SSL_SSLV3,
800 SSL_EXPORT|SSL_EXP40,
801 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
802 40,
803 56,
804 },

806 /* Cipher 27 */
807 {
808 1,
809 SSL3_TXT_KRB5_RC2_40_CBC_SHA,
810 SSL3_CK_KRB5_RC2_40_CBC_SHA,
811 SSL_kKRB5,
812 SSL_aKRB5,
813 SSL_RC2,
814 SSL_SHA1,
815 SSL_SSLV3,
816 SSL_EXPORT|SSL_EXP40,
817 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
818 40,
819 128,
820 },

822 /* Cipher 28 */
823 {
824 1,
825 SSL3_TXT_KRB5_RC4_40_SHA,
826 SSL3_CK_KRB5_RC4_40_SHA,
827 SSL_kKRB5,
828 SSL_aKRB5,
829 SSL_RC4,
830 SSL_SHA1,
831 SSL_SSLV3,
832 SSL_EXPORT|SSL_EXP40,
833 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
834 40,
835 128,
836 },

838 /* Cipher 29 */
839 {
840 1,
841 SSL3_TXT_KRB5_DES_40_CBC_MD5,
842 SSL3_CK_KRB5_DES_40_CBC_MD5,
843 SSL_kKRB5,
844 SSL_aKRB5,
845 SSL_DES,
846 SSL_MD5,
847 SSL_SSLV3,
848 SSL_EXPORT|SSL_EXP40,
849 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
850 40,
851 56,
852 },

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 14

854 /* Cipher 2A */
855 {
856 1,
857 SSL3_TXT_KRB5_RC2_40_CBC_MD5,
858 SSL3_CK_KRB5_RC2_40_CBC_MD5,
859 SSL_kKRB5,
860 SSL_aKRB5,
861 SSL_RC2,
862 SSL_MD5,
863 SSL_SSLV3,
864 SSL_EXPORT|SSL_EXP40,
865 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
866 40,
867 128,
868 },

870 /* Cipher 2B */
871 {
872 1,
873 SSL3_TXT_KRB5_RC4_40_MD5,
874 SSL3_CK_KRB5_RC4_40_MD5,
875 SSL_kKRB5,
876 SSL_aKRB5,
877 SSL_RC4,
878 SSL_MD5,
879 SSL_SSLV3,
880 SSL_EXPORT|SSL_EXP40,
881 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
882 40,
883 128,
884 },
885 #endif /* OPENSSL_NO_KRB5 */

887 /* New AES ciphersuites */
888 /* Cipher 2F */
889 {
890 1,
891 TLS1_TXT_RSA_WITH_AES_128_SHA,
892 TLS1_CK_RSA_WITH_AES_128_SHA,
893 SSL_kRSA,
894 SSL_aRSA,
895 SSL_AES128,
896 SSL_SHA1,
897 SSL_TLSV1,
898 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
899 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
900 128,
901 128,
902 },
903 /* Cipher 30 */
904 {
905 0,
906 TLS1_TXT_DH_DSS_WITH_AES_128_SHA,
907 TLS1_CK_DH_DSS_WITH_AES_128_SHA,
908 SSL_kDHd,
909 SSL_aDH,
910 SSL_AES128,
911 SSL_SHA1,
912 SSL_TLSV1,
913 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
914 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
915 128,
916 128,
917 },
918 /* Cipher 31 */
919 {

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 15

920 0,
921 TLS1_TXT_DH_RSA_WITH_AES_128_SHA,
922 TLS1_CK_DH_RSA_WITH_AES_128_SHA,
923 SSL_kDHr,
924 SSL_aDH,
925 SSL_AES128,
926 SSL_SHA1,
927 SSL_TLSV1,
928 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
929 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
930 128,
931 128,
932 },
933 /* Cipher 32 */
934 {
935 1,
936 TLS1_TXT_DHE_DSS_WITH_AES_128_SHA,
937 TLS1_CK_DHE_DSS_WITH_AES_128_SHA,
938 SSL_kEDH,
939 SSL_aDSS,
940 SSL_AES128,
941 SSL_SHA1,
942 SSL_TLSV1,
943 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
944 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
945 128,
946 128,
947 },
948 /* Cipher 33 */
949 {
950 1,
951 TLS1_TXT_DHE_RSA_WITH_AES_128_SHA,
952 TLS1_CK_DHE_RSA_WITH_AES_128_SHA,
953 SSL_kEDH,
954 SSL_aRSA,
955 SSL_AES128,
956 SSL_SHA1,
957 SSL_TLSV1,
958 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
959 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
960 128,
961 128,
962 },
963 /* Cipher 34 */
964 {
965 1,
966 TLS1_TXT_ADH_WITH_AES_128_SHA,
967 TLS1_CK_ADH_WITH_AES_128_SHA,
968 SSL_kEDH,
969 SSL_aNULL,
970 SSL_AES128,
971 SSL_SHA1,
972 SSL_TLSV1,
973 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
974 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
975 128,
976 128,
977 },

979 /* Cipher 35 */
980 {
981 1,
982 TLS1_TXT_RSA_WITH_AES_256_SHA,
983 TLS1_CK_RSA_WITH_AES_256_SHA,
984 SSL_kRSA,
985 SSL_aRSA,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 16

986 SSL_AES256,
987 SSL_SHA1,
988 SSL_TLSV1,
989 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
990 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
991 256,
992 256,
993 },
994 /* Cipher 36 */
995 {
996 0,
997 TLS1_TXT_DH_DSS_WITH_AES_256_SHA,
998 TLS1_CK_DH_DSS_WITH_AES_256_SHA,
999 SSL_kDHd,

1000 SSL_aDH,
1001 SSL_AES256,
1002 SSL_SHA1,
1003 SSL_TLSV1,
1004 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1005 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1006 256,
1007 256,
1008 },

1010 /* Cipher 37 */
1011 {
1012 0, /* not implemented (non-ephemeral DH) */
1013 TLS1_TXT_DH_RSA_WITH_AES_256_SHA,
1014 TLS1_CK_DH_RSA_WITH_AES_256_SHA,
1015 SSL_kDHr,
1016 SSL_aDH,
1017 SSL_AES256,
1018 SSL_SHA1,
1019 SSL_TLSV1,
1020 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1021 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1022 256,
1023 256,
1024 },

1026 /* Cipher 38 */
1027 {
1028 1,
1029 TLS1_TXT_DHE_DSS_WITH_AES_256_SHA,
1030 TLS1_CK_DHE_DSS_WITH_AES_256_SHA,
1031 SSL_kEDH,
1032 SSL_aDSS,
1033 SSL_AES256,
1034 SSL_SHA1,
1035 SSL_TLSV1,
1036 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1037 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1038 256,
1039 256,
1040 },

1042 /* Cipher 39 */
1043 {
1044 1,
1045 TLS1_TXT_DHE_RSA_WITH_AES_256_SHA,
1046 TLS1_CK_DHE_RSA_WITH_AES_256_SHA,
1047 SSL_kEDH,
1048 SSL_aRSA,
1049 SSL_AES256,
1050 SSL_SHA1,
1051 SSL_TLSV1,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 17

1052 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1053 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1054 256,
1055 256,
1056 },

1058 /* Cipher 3A */
1059 {
1060 1,
1061 TLS1_TXT_ADH_WITH_AES_256_SHA,
1062 TLS1_CK_ADH_WITH_AES_256_SHA,
1063 SSL_kEDH,
1064 SSL_aNULL,
1065 SSL_AES256,
1066 SSL_SHA1,
1067 SSL_TLSV1,
1068 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1069 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1070 256,
1071 256,
1072 },

1074 /* TLS v1.2 ciphersuites */
1075 /* Cipher 3B */
1076 {
1077 1,
1078 TLS1_TXT_RSA_WITH_NULL_SHA256,
1079 TLS1_CK_RSA_WITH_NULL_SHA256,
1080 SSL_kRSA,
1081 SSL_aRSA,
1082 SSL_eNULL,
1083 SSL_SHA256,
1084 SSL_TLSV1_2,
1085 SSL_NOT_EXP|SSL_STRONG_NONE|SSL_FIPS,
1086 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1087 0,
1088 0,
1089 },

1091 /* Cipher 3C */
1092 {
1093 1,
1094 TLS1_TXT_RSA_WITH_AES_128_SHA256,
1095 TLS1_CK_RSA_WITH_AES_128_SHA256,
1096 SSL_kRSA,
1097 SSL_aRSA,
1098 SSL_AES128,
1099 SSL_SHA256,
1100 SSL_TLSV1_2,
1101 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1102 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1103 128,
1104 128,
1105 },

1107 /* Cipher 3D */
1108 {
1109 1,
1110 TLS1_TXT_RSA_WITH_AES_256_SHA256,
1111 TLS1_CK_RSA_WITH_AES_256_SHA256,
1112 SSL_kRSA,
1113 SSL_aRSA,
1114 SSL_AES256,
1115 SSL_SHA256,
1116 SSL_TLSV1_2,
1117 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 18

1118 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1119 256,
1120 256,
1121 },

1123 /* Cipher 3E */
1124 {
1125 0, /* not implemented (non-ephemeral DH) */
1126 TLS1_TXT_DH_DSS_WITH_AES_128_SHA256,
1127 TLS1_CK_DH_DSS_WITH_AES_128_SHA256,
1128 SSL_kDHd,
1129 SSL_aDH,
1130 SSL_AES128,
1131 SSL_SHA256,
1132 SSL_TLSV1_2,
1133 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1134 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1135 128,
1136 128,
1137 },

1139 /* Cipher 3F */
1140 {
1141 0, /* not implemented (non-ephemeral DH) */
1142 TLS1_TXT_DH_RSA_WITH_AES_128_SHA256,
1143 TLS1_CK_DH_RSA_WITH_AES_128_SHA256,
1144 SSL_kDHr,
1145 SSL_aDH,
1146 SSL_AES128,
1147 SSL_SHA256,
1148 SSL_TLSV1_2,
1149 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1150 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1151 128,
1152 128,
1153 },

1155 /* Cipher 40 */
1156 {
1157 1,
1158 TLS1_TXT_DHE_DSS_WITH_AES_128_SHA256,
1159 TLS1_CK_DHE_DSS_WITH_AES_128_SHA256,
1160 SSL_kEDH,
1161 SSL_aDSS,
1162 SSL_AES128,
1163 SSL_SHA256,
1164 SSL_TLSV1_2,
1165 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1166 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1167 128,
1168 128,
1169 },

1171 #ifndef OPENSSL_NO_CAMELLIA
1172 /* Camellia ciphersuites from RFC4132 (128-bit portion) */

1174 /* Cipher 41 */
1175 {
1176 1,
1177 TLS1_TXT_RSA_WITH_CAMELLIA_128_CBC_SHA,
1178 TLS1_CK_RSA_WITH_CAMELLIA_128_CBC_SHA,
1179 SSL_kRSA,
1180 SSL_aRSA,
1181 SSL_CAMELLIA128,
1182 SSL_SHA1,
1183 SSL_TLSV1,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 19

1184 SSL_NOT_EXP|SSL_HIGH,
1185 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1186 128,
1187 128,
1188 },

1190 /* Cipher 42 */
1191 {
1192 0, /* not implemented (non-ephemeral DH) */
1193 TLS1_TXT_DH_DSS_WITH_CAMELLIA_128_CBC_SHA,
1194 TLS1_CK_DH_DSS_WITH_CAMELLIA_128_CBC_SHA,
1195 SSL_kDHd,
1196 SSL_aDH,
1197 SSL_CAMELLIA128,
1198 SSL_SHA1,
1199 SSL_TLSV1,
1200 SSL_NOT_EXP|SSL_HIGH,
1201 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1202 128,
1203 128,
1204 },

1206 /* Cipher 43 */
1207 {
1208 0, /* not implemented (non-ephemeral DH) */
1209 TLS1_TXT_DH_RSA_WITH_CAMELLIA_128_CBC_SHA,
1210 TLS1_CK_DH_RSA_WITH_CAMELLIA_128_CBC_SHA,
1211 SSL_kDHr,
1212 SSL_aDH,
1213 SSL_CAMELLIA128,
1214 SSL_SHA1,
1215 SSL_TLSV1,
1216 SSL_NOT_EXP|SSL_HIGH,
1217 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1218 128,
1219 128,
1220 },

1222 /* Cipher 44 */
1223 {
1224 1,
1225 TLS1_TXT_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA,
1226 TLS1_CK_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA,
1227 SSL_kEDH,
1228 SSL_aDSS,
1229 SSL_CAMELLIA128,
1230 SSL_SHA1,
1231 SSL_TLSV1,
1232 SSL_NOT_EXP|SSL_HIGH,
1233 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1234 128,
1235 128,
1236 },

1238 /* Cipher 45 */
1239 {
1240 1,
1241 TLS1_TXT_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA,
1242 TLS1_CK_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA,
1243 SSL_kEDH,
1244 SSL_aRSA,
1245 SSL_CAMELLIA128,
1246 SSL_SHA1,
1247 SSL_TLSV1,
1248 SSL_NOT_EXP|SSL_HIGH,
1249 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 20

1250 128,
1251 128,
1252 },

1254 /* Cipher 46 */
1255 {
1256 1,
1257 TLS1_TXT_ADH_WITH_CAMELLIA_128_CBC_SHA,
1258 TLS1_CK_ADH_WITH_CAMELLIA_128_CBC_SHA,
1259 SSL_kEDH,
1260 SSL_aNULL,
1261 SSL_CAMELLIA128,
1262 SSL_SHA1,
1263 SSL_TLSV1,
1264 SSL_NOT_EXP|SSL_HIGH,
1265 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1266 128,
1267 128,
1268 },
1269 #endif /* OPENSSL_NO_CAMELLIA */

1271 #if TLS1_ALLOW_EXPERIMENTAL_CIPHERSUITES
1272 /* New TLS Export CipherSuites from expired ID */
1273 #if 0
1274 /* Cipher 60 */
1275 {
1276 1,
1277 TLS1_TXT_RSA_EXPORT1024_WITH_RC4_56_MD5,
1278 TLS1_CK_RSA_EXPORT1024_WITH_RC4_56_MD5,
1279 SSL_kRSA,
1280 SSL_aRSA,
1281 SSL_RC4,
1282 SSL_MD5,
1283 SSL_TLSV1,
1284 SSL_EXPORT|SSL_EXP56,
1285 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1286 56,
1287 128,
1288 },

1290 /* Cipher 61 */
1291 {
1292 1,
1293 TLS1_TXT_RSA_EXPORT1024_WITH_RC2_CBC_56_MD5,
1294 TLS1_CK_RSA_EXPORT1024_WITH_RC2_CBC_56_MD5,
1295 SSL_kRSA,
1296 SSL_aRSA,
1297 SSL_RC2,
1298 SSL_MD5,
1299 SSL_TLSV1,
1300 SSL_EXPORT|SSL_EXP56,
1301 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1302 56,
1303 128,
1304 },
1305 #endif

1307 /* Cipher 62 */
1308 {
1309 1,
1310 TLS1_TXT_RSA_EXPORT1024_WITH_DES_CBC_SHA,
1311 TLS1_CK_RSA_EXPORT1024_WITH_DES_CBC_SHA,
1312 SSL_kRSA,
1313 SSL_aRSA,
1314 SSL_DES,
1315 SSL_SHA1,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 21

1316 SSL_TLSV1,
1317 SSL_EXPORT|SSL_EXP56,
1318 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1319 56,
1320 56,
1321 },

1323 /* Cipher 63 */
1324 {
1325 1,
1326 TLS1_TXT_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA,
1327 TLS1_CK_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA,
1328 SSL_kEDH,
1329 SSL_aDSS,
1330 SSL_DES,
1331 SSL_SHA1,
1332 SSL_TLSV1,
1333 SSL_EXPORT|SSL_EXP56,
1334 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1335 56,
1336 56,
1337 },

1339 /* Cipher 64 */
1340 {
1341 1,
1342 TLS1_TXT_RSA_EXPORT1024_WITH_RC4_56_SHA,
1343 TLS1_CK_RSA_EXPORT1024_WITH_RC4_56_SHA,
1344 SSL_kRSA,
1345 SSL_aRSA,
1346 SSL_RC4,
1347 SSL_SHA1,
1348 SSL_TLSV1,
1349 SSL_EXPORT|SSL_EXP56,
1350 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1351 56,
1352 128,
1353 },

1355 /* Cipher 65 */
1356 {
1357 1,
1358 TLS1_TXT_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA,
1359 TLS1_CK_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA,
1360 SSL_kEDH,
1361 SSL_aDSS,
1362 SSL_RC4,
1363 SSL_SHA1,
1364 SSL_TLSV1,
1365 SSL_EXPORT|SSL_EXP56,
1366 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1367 56,
1368 128,
1369 },

1371 /* Cipher 66 */
1372 {
1373 1,
1374 TLS1_TXT_DHE_DSS_WITH_RC4_128_SHA,
1375 TLS1_CK_DHE_DSS_WITH_RC4_128_SHA,
1376 SSL_kEDH,
1377 SSL_aDSS,
1378 SSL_RC4,
1379 SSL_SHA1,
1380 SSL_TLSV1,
1381 SSL_NOT_EXP|SSL_MEDIUM,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 22

1382 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1383 128,
1384 128,
1385 },
1386 #endif

1388 /* TLS v1.2 ciphersuites */
1389 /* Cipher 67 */
1390 {
1391 1,
1392 TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256,
1393 TLS1_CK_DHE_RSA_WITH_AES_128_SHA256,
1394 SSL_kEDH,
1395 SSL_aRSA,
1396 SSL_AES128,
1397 SSL_SHA256,
1398 SSL_TLSV1_2,
1399 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1400 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1401 128,
1402 128,
1403 },

1405 /* Cipher 68 */
1406 {
1407 0, /* not implemented (non-ephemeral DH) */
1408 TLS1_TXT_DH_DSS_WITH_AES_256_SHA256,
1409 TLS1_CK_DH_DSS_WITH_AES_256_SHA256,
1410 SSL_kDHd,
1411 SSL_aDH,
1412 SSL_AES256,
1413 SSL_SHA256,
1414 SSL_TLSV1_2,
1415 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1416 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1417 256,
1418 256,
1419 },

1421 /* Cipher 69 */
1422 {
1423 0, /* not implemented (non-ephemeral DH) */
1424 TLS1_TXT_DH_RSA_WITH_AES_256_SHA256,
1425 TLS1_CK_DH_RSA_WITH_AES_256_SHA256,
1426 SSL_kDHr,
1427 SSL_aDH,
1428 SSL_AES256,
1429 SSL_SHA256,
1430 SSL_TLSV1_2,
1431 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1432 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1433 256,
1434 256,
1435 },

1437 /* Cipher 6A */
1438 {
1439 1,
1440 TLS1_TXT_DHE_DSS_WITH_AES_256_SHA256,
1441 TLS1_CK_DHE_DSS_WITH_AES_256_SHA256,
1442 SSL_kEDH,
1443 SSL_aDSS,
1444 SSL_AES256,
1445 SSL_SHA256,
1446 SSL_TLSV1_2,
1447 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 23

1448 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1449 256,
1450 256,
1451 },

1453 /* Cipher 6B */
1454 {
1455 1,
1456 TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256,
1457 TLS1_CK_DHE_RSA_WITH_AES_256_SHA256,
1458 SSL_kEDH,
1459 SSL_aRSA,
1460 SSL_AES256,
1461 SSL_SHA256,
1462 SSL_TLSV1_2,
1463 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1464 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1465 256,
1466 256,
1467 },

1469 /* Cipher 6C */
1470 {
1471 1,
1472 TLS1_TXT_ADH_WITH_AES_128_SHA256,
1473 TLS1_CK_ADH_WITH_AES_128_SHA256,
1474 SSL_kEDH,
1475 SSL_aNULL,
1476 SSL_AES128,
1477 SSL_SHA256,
1478 SSL_TLSV1_2,
1479 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1480 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1481 128,
1482 128,
1483 },

1485 /* Cipher 6D */
1486 {
1487 1,
1488 TLS1_TXT_ADH_WITH_AES_256_SHA256,
1489 TLS1_CK_ADH_WITH_AES_256_SHA256,
1490 SSL_kEDH,
1491 SSL_aNULL,
1492 SSL_AES256,
1493 SSL_SHA256,
1494 SSL_TLSV1_2,
1495 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1496 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1497 256,
1498 256,
1499 },

1501 /* GOST Ciphersuites */

1503 {
1504 1,
1505 "GOST94-GOST89-GOST89",
1506 0x3000080,
1507 SSL_kGOST,
1508 SSL_aGOST94,
1509 SSL_eGOST2814789CNT,
1510 SSL_GOST89MAC,
1511 SSL_TLSV1,
1512 SSL_NOT_EXP|SSL_HIGH,
1513 SSL_HANDSHAKE_MAC_GOST94|TLS1_PRF_GOST94|TLS1_STREAM_MAC,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 24

1514 256,
1515 256
1516 },
1517 {
1518 1,
1519 "GOST2001-GOST89-GOST89",
1520 0x3000081,
1521 SSL_kGOST,
1522 SSL_aGOST01,
1523 SSL_eGOST2814789CNT,
1524 SSL_GOST89MAC,
1525 SSL_TLSV1,
1526 SSL_NOT_EXP|SSL_HIGH,
1527 SSL_HANDSHAKE_MAC_GOST94|TLS1_PRF_GOST94|TLS1_STREAM_MAC,
1528 256,
1529 256
1530 },
1531 {
1532 1,
1533 "GOST94-NULL-GOST94",
1534 0x3000082,
1535 SSL_kGOST,
1536 SSL_aGOST94,
1537 SSL_eNULL,
1538 SSL_GOST94,
1539 SSL_TLSV1,
1540 SSL_NOT_EXP|SSL_STRONG_NONE,
1541 SSL_HANDSHAKE_MAC_GOST94|TLS1_PRF_GOST94,
1542 0,
1543 0
1544 },
1545 {
1546 1,
1547 "GOST2001-NULL-GOST94",
1548 0x3000083,
1549 SSL_kGOST,
1550 SSL_aGOST01,
1551 SSL_eNULL,
1552 SSL_GOST94,
1553 SSL_TLSV1,
1554 SSL_NOT_EXP|SSL_STRONG_NONE,
1555 SSL_HANDSHAKE_MAC_GOST94|TLS1_PRF_GOST94,
1556 0,
1557 0
1558 },

1560 #ifndef OPENSSL_NO_CAMELLIA
1561 /* Camellia ciphersuites from RFC4132 (256-bit portion) */

1563 /* Cipher 84 */
1564 {
1565 1,
1566 TLS1_TXT_RSA_WITH_CAMELLIA_256_CBC_SHA,
1567 TLS1_CK_RSA_WITH_CAMELLIA_256_CBC_SHA,
1568 SSL_kRSA,
1569 SSL_aRSA,
1570 SSL_CAMELLIA256,
1571 SSL_SHA1,
1572 SSL_TLSV1,
1573 SSL_NOT_EXP|SSL_HIGH,
1574 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1575 256,
1576 256,
1577 },
1578 /* Cipher 85 */
1579 {

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 25

1580 0, /* not implemented (non-ephemeral DH) */
1581 TLS1_TXT_DH_DSS_WITH_CAMELLIA_256_CBC_SHA,
1582 TLS1_CK_DH_DSS_WITH_CAMELLIA_256_CBC_SHA,
1583 SSL_kDHd,
1584 SSL_aDH,
1585 SSL_CAMELLIA256,
1586 SSL_SHA1,
1587 SSL_TLSV1,
1588 SSL_NOT_EXP|SSL_HIGH,
1589 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1590 256,
1591 256,
1592 },

1594 /* Cipher 86 */
1595 {
1596 0, /* not implemented (non-ephemeral DH) */
1597 TLS1_TXT_DH_RSA_WITH_CAMELLIA_256_CBC_SHA,
1598 TLS1_CK_DH_RSA_WITH_CAMELLIA_256_CBC_SHA,
1599 SSL_kDHr,
1600 SSL_aDH,
1601 SSL_CAMELLIA256,
1602 SSL_SHA1,
1603 SSL_TLSV1,
1604 SSL_NOT_EXP|SSL_HIGH,
1605 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1606 256,
1607 256,
1608 },

1610 /* Cipher 87 */
1611 {
1612 1,
1613 TLS1_TXT_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA,
1614 TLS1_CK_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA,
1615 SSL_kEDH,
1616 SSL_aDSS,
1617 SSL_CAMELLIA256,
1618 SSL_SHA1,
1619 SSL_TLSV1,
1620 SSL_NOT_EXP|SSL_HIGH,
1621 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1622 256,
1623 256,
1624 },

1626 /* Cipher 88 */
1627 {
1628 1,
1629 TLS1_TXT_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA,
1630 TLS1_CK_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA,
1631 SSL_kEDH,
1632 SSL_aRSA,
1633 SSL_CAMELLIA256,
1634 SSL_SHA1,
1635 SSL_TLSV1,
1636 SSL_NOT_EXP|SSL_HIGH,
1637 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1638 256,
1639 256,
1640 },

1642 /* Cipher 89 */
1643 {
1644 1,
1645 TLS1_TXT_ADH_WITH_CAMELLIA_256_CBC_SHA,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 26

1646 TLS1_CK_ADH_WITH_CAMELLIA_256_CBC_SHA,
1647 SSL_kEDH,
1648 SSL_aNULL,
1649 SSL_CAMELLIA256,
1650 SSL_SHA1,
1651 SSL_TLSV1,
1652 SSL_NOT_EXP|SSL_HIGH,
1653 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1654 256,
1655 256,
1656 },
1657 #endif /* OPENSSL_NO_CAMELLIA */

1659 #ifndef OPENSSL_NO_PSK
1660 /* Cipher 8A */
1661 {
1662 1,
1663 TLS1_TXT_PSK_WITH_RC4_128_SHA,
1664 TLS1_CK_PSK_WITH_RC4_128_SHA,
1665 SSL_kPSK,
1666 SSL_aPSK,
1667 SSL_RC4,
1668 SSL_SHA1,
1669 SSL_TLSV1,
1670 SSL_NOT_EXP|SSL_MEDIUM,
1671 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1672 128,
1673 128,
1674 },

1676 /* Cipher 8B */
1677 {
1678 1,
1679 TLS1_TXT_PSK_WITH_3DES_EDE_CBC_SHA,
1680 TLS1_CK_PSK_WITH_3DES_EDE_CBC_SHA,
1681 SSL_kPSK,
1682 SSL_aPSK,
1683 SSL_3DES,
1684 SSL_SHA1,
1685 SSL_TLSV1,
1686 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1687 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1688 168,
1689 168,
1690 },

1692 /* Cipher 8C */
1693 {
1694 1,
1695 TLS1_TXT_PSK_WITH_AES_128_CBC_SHA,
1696 TLS1_CK_PSK_WITH_AES_128_CBC_SHA,
1697 SSL_kPSK,
1698 SSL_aPSK,
1699 SSL_AES128,
1700 SSL_SHA1,
1701 SSL_TLSV1,
1702 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1703 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1704 128,
1705 128,
1706 },

1708 /* Cipher 8D */
1709 {
1710 1,
1711 TLS1_TXT_PSK_WITH_AES_256_CBC_SHA,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 27

1712 TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
1713 SSL_kPSK,
1714 SSL_aPSK,
1715 SSL_AES256,
1716 SSL_SHA1,
1717 SSL_TLSV1,
1718 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1719 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1720 256,
1721 256,
1722 },
1723 #endif /* OPENSSL_NO_PSK */

1725 #ifndef OPENSSL_NO_SEED
1726 /* SEED ciphersuites from RFC4162 */

1728 /* Cipher 96 */
1729 {
1730 1,
1731 TLS1_TXT_RSA_WITH_SEED_SHA,
1732 TLS1_CK_RSA_WITH_SEED_SHA,
1733 SSL_kRSA,
1734 SSL_aRSA,
1735 SSL_SEED,
1736 SSL_SHA1,
1737 SSL_TLSV1,
1738 SSL_NOT_EXP|SSL_MEDIUM,
1739 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1740 128,
1741 128,
1742 },

1744 /* Cipher 97 */
1745 {
1746 0, /* not implemented (non-ephemeral DH) */
1747 TLS1_TXT_DH_DSS_WITH_SEED_SHA,
1748 TLS1_CK_DH_DSS_WITH_SEED_SHA,
1749 SSL_kDHd,
1750 SSL_aDH,
1751 SSL_SEED,
1752 SSL_SHA1,
1753 SSL_TLSV1,
1754 SSL_NOT_EXP|SSL_MEDIUM,
1755 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1756 128,
1757 128,
1758 },

1760 /* Cipher 98 */
1761 {
1762 0, /* not implemented (non-ephemeral DH) */
1763 TLS1_TXT_DH_RSA_WITH_SEED_SHA,
1764 TLS1_CK_DH_RSA_WITH_SEED_SHA,
1765 SSL_kDHr,
1766 SSL_aDH,
1767 SSL_SEED,
1768 SSL_SHA1,
1769 SSL_TLSV1,
1770 SSL_NOT_EXP|SSL_MEDIUM,
1771 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1772 128,
1773 128,
1774 },

1776 /* Cipher 99 */
1777 {

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 28

1778 1,
1779 TLS1_TXT_DHE_DSS_WITH_SEED_SHA,
1780 TLS1_CK_DHE_DSS_WITH_SEED_SHA,
1781 SSL_kEDH,
1782 SSL_aDSS,
1783 SSL_SEED,
1784 SSL_SHA1,
1785 SSL_TLSV1,
1786 SSL_NOT_EXP|SSL_MEDIUM,
1787 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1788 128,
1789 128,
1790 },

1792 /* Cipher 9A */
1793 {
1794 1,
1795 TLS1_TXT_DHE_RSA_WITH_SEED_SHA,
1796 TLS1_CK_DHE_RSA_WITH_SEED_SHA,
1797 SSL_kEDH,
1798 SSL_aRSA,
1799 SSL_SEED,
1800 SSL_SHA1,
1801 SSL_TLSV1,
1802 SSL_NOT_EXP|SSL_MEDIUM,
1803 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1804 128,
1805 128,
1806 },

1808 /* Cipher 9B */
1809 {
1810 1,
1811 TLS1_TXT_ADH_WITH_SEED_SHA,
1812 TLS1_CK_ADH_WITH_SEED_SHA,
1813 SSL_kEDH,
1814 SSL_aNULL,
1815 SSL_SEED,
1816 SSL_SHA1,
1817 SSL_TLSV1,
1818 SSL_NOT_EXP|SSL_MEDIUM,
1819 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
1820 128,
1821 128,
1822 },

1824 #endif /* OPENSSL_NO_SEED */

1826 /* GCM ciphersuites from RFC5288 */

1828 /* Cipher 9C */
1829 {
1830 1,
1831 TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256,
1832 TLS1_CK_RSA_WITH_AES_128_GCM_SHA256,
1833 SSL_kRSA,
1834 SSL_aRSA,
1835 SSL_AES128GCM,
1836 SSL_AEAD,
1837 SSL_TLSV1_2,
1838 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1839 SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
1840 128,
1841 128,
1842 },

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 29

1844 /* Cipher 9D */
1845 {
1846 1,
1847 TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384,
1848 TLS1_CK_RSA_WITH_AES_256_GCM_SHA384,
1849 SSL_kRSA,
1850 SSL_aRSA,
1851 SSL_AES256GCM,
1852 SSL_AEAD,
1853 SSL_TLSV1_2,
1854 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1855 SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
1856 256,
1857 256,
1858 },

1860 /* Cipher 9E */
1861 {
1862 1,
1863 TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256,
1864 TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256,
1865 SSL_kEDH,
1866 SSL_aRSA,
1867 SSL_AES128GCM,
1868 SSL_AEAD,
1869 SSL_TLSV1_2,
1870 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1871 SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
1872 128,
1873 128,
1874 },

1876 /* Cipher 9F */
1877 {
1878 1,
1879 TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384,
1880 TLS1_CK_DHE_RSA_WITH_AES_256_GCM_SHA384,
1881 SSL_kEDH,
1882 SSL_aRSA,
1883 SSL_AES256GCM,
1884 SSL_AEAD,
1885 SSL_TLSV1_2,
1886 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1887 SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
1888 256,
1889 256,
1890 },

1892 /* Cipher A0 */
1893 {
1894 0,
1895 TLS1_TXT_DH_RSA_WITH_AES_128_GCM_SHA256,
1896 TLS1_CK_DH_RSA_WITH_AES_128_GCM_SHA256,
1897 SSL_kDHr,
1898 SSL_aDH,
1899 SSL_AES128GCM,
1900 SSL_AEAD,
1901 SSL_TLSV1_2,
1902 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1903 SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
1904 128,
1905 128,
1906 },

1908 /* Cipher A1 */
1909 {

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 30

1910 0,
1911 TLS1_TXT_DH_RSA_WITH_AES_256_GCM_SHA384,
1912 TLS1_CK_DH_RSA_WITH_AES_256_GCM_SHA384,
1913 SSL_kDHr,
1914 SSL_aDH,
1915 SSL_AES256GCM,
1916 SSL_AEAD,
1917 SSL_TLSV1_2,
1918 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1919 SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
1920 256,
1921 256,
1922 },

1924 /* Cipher A2 */
1925 {
1926 1,
1927 TLS1_TXT_DHE_DSS_WITH_AES_128_GCM_SHA256,
1928 TLS1_CK_DHE_DSS_WITH_AES_128_GCM_SHA256,
1929 SSL_kEDH,
1930 SSL_aDSS,
1931 SSL_AES128GCM,
1932 SSL_AEAD,
1933 SSL_TLSV1_2,
1934 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1935 SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
1936 128,
1937 128,
1938 },

1940 /* Cipher A3 */
1941 {
1942 1,
1943 TLS1_TXT_DHE_DSS_WITH_AES_256_GCM_SHA384,
1944 TLS1_CK_DHE_DSS_WITH_AES_256_GCM_SHA384,
1945 SSL_kEDH,
1946 SSL_aDSS,
1947 SSL_AES256GCM,
1948 SSL_AEAD,
1949 SSL_TLSV1_2,
1950 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1951 SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
1952 256,
1953 256,
1954 },

1956 /* Cipher A4 */
1957 {
1958 0,
1959 TLS1_TXT_DH_DSS_WITH_AES_128_GCM_SHA256,
1960 TLS1_CK_DH_DSS_WITH_AES_128_GCM_SHA256,
1961 SSL_kDHd,
1962 SSL_aDH,
1963 SSL_AES128GCM,
1964 SSL_AEAD,
1965 SSL_TLSV1_2,
1966 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1967 SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
1968 128,
1969 128,
1970 },

1972 /* Cipher A5 */
1973 {
1974 0,
1975 TLS1_TXT_DH_DSS_WITH_AES_256_GCM_SHA384,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 31

1976 TLS1_CK_DH_DSS_WITH_AES_256_GCM_SHA384,
1977 SSL_kDHd,
1978 SSL_aDH,
1979 SSL_AES256GCM,
1980 SSL_AEAD,
1981 SSL_TLSV1_2,
1982 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1983 SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
1984 256,
1985 256,
1986 },

1988 /* Cipher A6 */
1989 {
1990 1,
1991 TLS1_TXT_ADH_WITH_AES_128_GCM_SHA256,
1992 TLS1_CK_ADH_WITH_AES_128_GCM_SHA256,
1993 SSL_kEDH,
1994 SSL_aNULL,
1995 SSL_AES128GCM,
1996 SSL_AEAD,
1997 SSL_TLSV1_2,
1998 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
1999 SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
2000 128,
2001 128,
2002 },

2004 /* Cipher A7 */
2005 {
2006 1,
2007 TLS1_TXT_ADH_WITH_AES_256_GCM_SHA384,
2008 TLS1_CK_ADH_WITH_AES_256_GCM_SHA384,
2009 SSL_kEDH,
2010 SSL_aNULL,
2011 SSL_AES256GCM,
2012 SSL_AEAD,
2013 SSL_TLSV1_2,
2014 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2015 SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
2016 256,
2017 256,
2018 },

2020 #ifndef OPENSSL_NO_ECDH
2021 /* Cipher C001 */
2022 {
2023 1,
2024 TLS1_TXT_ECDH_ECDSA_WITH_NULL_SHA,
2025 TLS1_CK_ECDH_ECDSA_WITH_NULL_SHA,
2026 SSL_kECDHe,
2027 SSL_aECDH,
2028 SSL_eNULL,
2029 SSL_SHA1,
2030 SSL_TLSV1,
2031 SSL_NOT_EXP|SSL_STRONG_NONE|SSL_FIPS,
2032 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2033 0,
2034 0,
2035 },

2037 /* Cipher C002 */
2038 {
2039 1,
2040 TLS1_TXT_ECDH_ECDSA_WITH_RC4_128_SHA,
2041 TLS1_CK_ECDH_ECDSA_WITH_RC4_128_SHA,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 32

2042 SSL_kECDHe,
2043 SSL_aECDH,
2044 SSL_RC4,
2045 SSL_SHA1,
2046 SSL_TLSV1,
2047 SSL_NOT_EXP|SSL_MEDIUM,
2048 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2049 128,
2050 128,
2051 },

2053 /* Cipher C003 */
2054 {
2055 1,
2056 TLS1_TXT_ECDH_ECDSA_WITH_DES_192_CBC3_SHA,
2057 TLS1_CK_ECDH_ECDSA_WITH_DES_192_CBC3_SHA,
2058 SSL_kECDHe,
2059 SSL_aECDH,
2060 SSL_3DES,
2061 SSL_SHA1,
2062 SSL_TLSV1,
2063 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2064 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2065 168,
2066 168,
2067 },

2069 /* Cipher C004 */
2070 {
2071 1,
2072 TLS1_TXT_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
2073 TLS1_CK_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
2074 SSL_kECDHe,
2075 SSL_aECDH,
2076 SSL_AES128,
2077 SSL_SHA1,
2078 SSL_TLSV1,
2079 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2080 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2081 128,
2082 128,
2083 },

2085 /* Cipher C005 */
2086 {
2087 1,
2088 TLS1_TXT_ECDH_ECDSA_WITH_AES_256_CBC_SHA,
2089 TLS1_CK_ECDH_ECDSA_WITH_AES_256_CBC_SHA,
2090 SSL_kECDHe,
2091 SSL_aECDH,
2092 SSL_AES256,
2093 SSL_SHA1,
2094 SSL_TLSV1,
2095 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2096 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2097 256,
2098 256,
2099 },

2101 /* Cipher C006 */
2102 {
2103 1,
2104 TLS1_TXT_ECDHE_ECDSA_WITH_NULL_SHA,
2105 TLS1_CK_ECDHE_ECDSA_WITH_NULL_SHA,
2106 SSL_kEECDH,
2107 SSL_aECDSA,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 33

2108 SSL_eNULL,
2109 SSL_SHA1,
2110 SSL_TLSV1,
2111 SSL_NOT_EXP|SSL_STRONG_NONE|SSL_FIPS,
2112 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2113 0,
2114 0,
2115 },

2117 /* Cipher C007 */
2118 {
2119 1,
2120 TLS1_TXT_ECDHE_ECDSA_WITH_RC4_128_SHA,
2121 TLS1_CK_ECDHE_ECDSA_WITH_RC4_128_SHA,
2122 SSL_kEECDH,
2123 SSL_aECDSA,
2124 SSL_RC4,
2125 SSL_SHA1,
2126 SSL_TLSV1,
2127 SSL_NOT_EXP|SSL_MEDIUM,
2128 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2129 128,
2130 128,
2131 },

2133 /* Cipher C008 */
2134 {
2135 1,
2136 TLS1_TXT_ECDHE_ECDSA_WITH_DES_192_CBC3_SHA,
2137 TLS1_CK_ECDHE_ECDSA_WITH_DES_192_CBC3_SHA,
2138 SSL_kEECDH,
2139 SSL_aECDSA,
2140 SSL_3DES,
2141 SSL_SHA1,
2142 SSL_TLSV1,
2143 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2144 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2145 168,
2146 168,
2147 },

2149 /* Cipher C009 */
2150 {
2151 1,
2152 TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
2153 TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
2154 SSL_kEECDH,
2155 SSL_aECDSA,
2156 SSL_AES128,
2157 SSL_SHA1,
2158 SSL_TLSV1,
2159 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2160 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2161 128,
2162 128,
2163 },

2165 /* Cipher C00A */
2166 {
2167 1,
2168 TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
2169 TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
2170 SSL_kEECDH,
2171 SSL_aECDSA,
2172 SSL_AES256,
2173 SSL_SHA1,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 34

2174 SSL_TLSV1,
2175 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2176 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2177 256,
2178 256,
2179 },

2181 /* Cipher C00B */
2182 {
2183 1,
2184 TLS1_TXT_ECDH_RSA_WITH_NULL_SHA,
2185 TLS1_CK_ECDH_RSA_WITH_NULL_SHA,
2186 SSL_kECDHr,
2187 SSL_aECDH,
2188 SSL_eNULL,
2189 SSL_SHA1,
2190 SSL_TLSV1,
2191 SSL_NOT_EXP|SSL_STRONG_NONE|SSL_FIPS,
2192 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2193 0,
2194 0,
2195 },

2197 /* Cipher C00C */
2198 {
2199 1,
2200 TLS1_TXT_ECDH_RSA_WITH_RC4_128_SHA,
2201 TLS1_CK_ECDH_RSA_WITH_RC4_128_SHA,
2202 SSL_kECDHr,
2203 SSL_aECDH,
2204 SSL_RC4,
2205 SSL_SHA1,
2206 SSL_TLSV1,
2207 SSL_NOT_EXP|SSL_MEDIUM,
2208 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2209 128,
2210 128,
2211 },

2213 /* Cipher C00D */
2214 {
2215 1,
2216 TLS1_TXT_ECDH_RSA_WITH_DES_192_CBC3_SHA,
2217 TLS1_CK_ECDH_RSA_WITH_DES_192_CBC3_SHA,
2218 SSL_kECDHr,
2219 SSL_aECDH,
2220 SSL_3DES,
2221 SSL_SHA1,
2222 SSL_TLSV1,
2223 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2224 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2225 168,
2226 168,
2227 },

2229 /* Cipher C00E */
2230 {
2231 1,
2232 TLS1_TXT_ECDH_RSA_WITH_AES_128_CBC_SHA,
2233 TLS1_CK_ECDH_RSA_WITH_AES_128_CBC_SHA,
2234 SSL_kECDHr,
2235 SSL_aECDH,
2236 SSL_AES128,
2237 SSL_SHA1,
2238 SSL_TLSV1,
2239 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 35

2240 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2241 128,
2242 128,
2243 },

2245 /* Cipher C00F */
2246 {
2247 1,
2248 TLS1_TXT_ECDH_RSA_WITH_AES_256_CBC_SHA,
2249 TLS1_CK_ECDH_RSA_WITH_AES_256_CBC_SHA,
2250 SSL_kECDHr,
2251 SSL_aECDH,
2252 SSL_AES256,
2253 SSL_SHA1,
2254 SSL_TLSV1,
2255 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2256 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2257 256,
2258 256,
2259 },

2261 /* Cipher C010 */
2262 {
2263 1,
2264 TLS1_TXT_ECDHE_RSA_WITH_NULL_SHA,
2265 TLS1_CK_ECDHE_RSA_WITH_NULL_SHA,
2266 SSL_kEECDH,
2267 SSL_aRSA,
2268 SSL_eNULL,
2269 SSL_SHA1,
2270 SSL_TLSV1,
2271 SSL_NOT_EXP|SSL_STRONG_NONE|SSL_FIPS,
2272 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2273 0,
2274 0,
2275 },

2277 /* Cipher C011 */
2278 {
2279 1,
2280 TLS1_TXT_ECDHE_RSA_WITH_RC4_128_SHA,
2281 TLS1_CK_ECDHE_RSA_WITH_RC4_128_SHA,
2282 SSL_kEECDH,
2283 SSL_aRSA,
2284 SSL_RC4,
2285 SSL_SHA1,
2286 SSL_TLSV1,
2287 SSL_NOT_EXP|SSL_MEDIUM,
2288 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2289 128,
2290 128,
2291 },

2293 /* Cipher C012 */
2294 {
2295 1,
2296 TLS1_TXT_ECDHE_RSA_WITH_DES_192_CBC3_SHA,
2297 TLS1_CK_ECDHE_RSA_WITH_DES_192_CBC3_SHA,
2298 SSL_kEECDH,
2299 SSL_aRSA,
2300 SSL_3DES,
2301 SSL_SHA1,
2302 SSL_TLSV1,
2303 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2304 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2305 168,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 36

2306 168,
2307 },

2309 /* Cipher C013 */
2310 {
2311 1,
2312 TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA,
2313 TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA,
2314 SSL_kEECDH,
2315 SSL_aRSA,
2316 SSL_AES128,
2317 SSL_SHA1,
2318 SSL_TLSV1,
2319 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2320 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2321 128,
2322 128,
2323 },

2325 /* Cipher C014 */
2326 {
2327 1,
2328 TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA,
2329 TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA,
2330 SSL_kEECDH,
2331 SSL_aRSA,
2332 SSL_AES256,
2333 SSL_SHA1,
2334 SSL_TLSV1,
2335 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2336 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2337 256,
2338 256,
2339 },

2341 /* Cipher C015 */
2342 {
2343 1,
2344 TLS1_TXT_ECDH_anon_WITH_NULL_SHA,
2345 TLS1_CK_ECDH_anon_WITH_NULL_SHA,
2346 SSL_kEECDH,
2347 SSL_aNULL,
2348 SSL_eNULL,
2349 SSL_SHA1,
2350 SSL_TLSV1,
2351 SSL_NOT_EXP|SSL_STRONG_NONE|SSL_FIPS,
2352 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2353 0,
2354 0,
2355 },

2357 /* Cipher C016 */
2358 {
2359 1,
2360 TLS1_TXT_ECDH_anon_WITH_RC4_128_SHA,
2361 TLS1_CK_ECDH_anon_WITH_RC4_128_SHA,
2362 SSL_kEECDH,
2363 SSL_aNULL,
2364 SSL_RC4,
2365 SSL_SHA1,
2366 SSL_TLSV1,
2367 SSL_NOT_EXP|SSL_MEDIUM,
2368 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2369 128,
2370 128,
2371 },

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 37

2373 /* Cipher C017 */
2374 {
2375 1,
2376 TLS1_TXT_ECDH_anon_WITH_DES_192_CBC3_SHA,
2377 TLS1_CK_ECDH_anon_WITH_DES_192_CBC3_SHA,
2378 SSL_kEECDH,
2379 SSL_aNULL,
2380 SSL_3DES,
2381 SSL_SHA1,
2382 SSL_TLSV1,
2383 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2384 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2385 168,
2386 168,
2387 },

2389 /* Cipher C018 */
2390 {
2391 1,
2392 TLS1_TXT_ECDH_anon_WITH_AES_128_CBC_SHA,
2393 TLS1_CK_ECDH_anon_WITH_AES_128_CBC_SHA,
2394 SSL_kEECDH,
2395 SSL_aNULL,
2396 SSL_AES128,
2397 SSL_SHA1,
2398 SSL_TLSV1,
2399 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2400 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2401 128,
2402 128,
2403 },

2405 /* Cipher C019 */
2406 {
2407 1,
2408 TLS1_TXT_ECDH_anon_WITH_AES_256_CBC_SHA,
2409 TLS1_CK_ECDH_anon_WITH_AES_256_CBC_SHA,
2410 SSL_kEECDH,
2411 SSL_aNULL,
2412 SSL_AES256,
2413 SSL_SHA1,
2414 SSL_TLSV1,
2415 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2416 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2417 256,
2418 256,
2419 },
2420 #endif /* OPENSSL_NO_ECDH */

2422 #ifndef OPENSSL_NO_SRP
2423 /* Cipher C01A */
2424 {
2425 1,
2426 TLS1_TXT_SRP_SHA_WITH_3DES_EDE_CBC_SHA,
2427 TLS1_CK_SRP_SHA_WITH_3DES_EDE_CBC_SHA,
2428 SSL_kSRP,
2429 SSL_aNULL,
2430 SSL_3DES,
2431 SSL_SHA1,
2432 SSL_TLSV1,
2433 SSL_NOT_EXP|SSL_HIGH,
2434 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2435 168,
2436 168,
2437 },

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 38

2439 /* Cipher C01B */
2440 {
2441 1,
2442 TLS1_TXT_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA,
2443 TLS1_CK_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA,
2444 SSL_kSRP,
2445 SSL_aRSA,
2446 SSL_3DES,
2447 SSL_SHA1,
2448 SSL_TLSV1,
2449 SSL_NOT_EXP|SSL_HIGH,
2450 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2451 168,
2452 168,
2453 },

2455 /* Cipher C01C */
2456 {
2457 1,
2458 TLS1_TXT_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA,
2459 TLS1_CK_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA,
2460 SSL_kSRP,
2461 SSL_aDSS,
2462 SSL_3DES,
2463 SSL_SHA1,
2464 SSL_TLSV1,
2465 SSL_NOT_EXP|SSL_HIGH,
2466 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2467 168,
2468 168,
2469 },

2471 /* Cipher C01D */
2472 {
2473 1,
2474 TLS1_TXT_SRP_SHA_WITH_AES_128_CBC_SHA,
2475 TLS1_CK_SRP_SHA_WITH_AES_128_CBC_SHA,
2476 SSL_kSRP,
2477 SSL_aNULL,
2478 SSL_AES128,
2479 SSL_SHA1,
2480 SSL_TLSV1,
2481 SSL_NOT_EXP|SSL_HIGH,
2482 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2483 128,
2484 128,
2485 },

2487 /* Cipher C01E */
2488 {
2489 1,
2490 TLS1_TXT_SRP_SHA_RSA_WITH_AES_128_CBC_SHA,
2491 TLS1_CK_SRP_SHA_RSA_WITH_AES_128_CBC_SHA,
2492 SSL_kSRP,
2493 SSL_aRSA,
2494 SSL_AES128,
2495 SSL_SHA1,
2496 SSL_TLSV1,
2497 SSL_NOT_EXP|SSL_HIGH,
2498 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2499 128,
2500 128,
2501 },

2503 /* Cipher C01F */

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 39

2504 {
2505 1,
2506 TLS1_TXT_SRP_SHA_DSS_WITH_AES_128_CBC_SHA,
2507 TLS1_CK_SRP_SHA_DSS_WITH_AES_128_CBC_SHA,
2508 SSL_kSRP,
2509 SSL_aDSS,
2510 SSL_AES128,
2511 SSL_SHA1,
2512 SSL_TLSV1,
2513 SSL_NOT_EXP|SSL_HIGH,
2514 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2515 128,
2516 128,
2517 },

2519 /* Cipher C020 */
2520 {
2521 1,
2522 TLS1_TXT_SRP_SHA_WITH_AES_256_CBC_SHA,
2523 TLS1_CK_SRP_SHA_WITH_AES_256_CBC_SHA,
2524 SSL_kSRP,
2525 SSL_aNULL,
2526 SSL_AES256,
2527 SSL_SHA1,
2528 SSL_TLSV1,
2529 SSL_NOT_EXP|SSL_HIGH,
2530 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2531 256,
2532 256,
2533 },

2535 /* Cipher C021 */
2536 {
2537 1,
2538 TLS1_TXT_SRP_SHA_RSA_WITH_AES_256_CBC_SHA,
2539 TLS1_CK_SRP_SHA_RSA_WITH_AES_256_CBC_SHA,
2540 SSL_kSRP,
2541 SSL_aRSA,
2542 SSL_AES256,
2543 SSL_SHA1,
2544 SSL_TLSV1,
2545 SSL_NOT_EXP|SSL_HIGH,
2546 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2547 256,
2548 256,
2549 },

2551 /* Cipher C022 */
2552 {
2553 1,
2554 TLS1_TXT_SRP_SHA_DSS_WITH_AES_256_CBC_SHA,
2555 TLS1_CK_SRP_SHA_DSS_WITH_AES_256_CBC_SHA,
2556 SSL_kSRP,
2557 SSL_aDSS,
2558 SSL_AES256,
2559 SSL_SHA1,
2560 SSL_TLSV1,
2561 SSL_NOT_EXP|SSL_HIGH,
2562 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2563 256,
2564 256,
2565 },
2566 #endif /* OPENSSL_NO_SRP */
2567 #ifndef OPENSSL_NO_ECDH

2569 /* HMAC based TLS v1.2 ciphersuites from RFC5289 */

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 40

2571 /* Cipher C023 */
2572 {
2573 1,
2574 TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256,
2575 TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256,
2576 SSL_kEECDH,
2577 SSL_aECDSA,
2578 SSL_AES128,
2579 SSL_SHA256,
2580 SSL_TLSV1_2,
2581 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2582 SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
2583 128,
2584 128,
2585 },

2587 /* Cipher C024 */
2588 {
2589 1,
2590 TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384,
2591 TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384,
2592 SSL_kEECDH,
2593 SSL_aECDSA,
2594 SSL_AES256,
2595 SSL_SHA384,
2596 SSL_TLSV1_2,
2597 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2598 SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
2599 256,
2600 256,
2601 },

2603 /* Cipher C025 */
2604 {
2605 1,
2606 TLS1_TXT_ECDH_ECDSA_WITH_AES_128_SHA256,
2607 TLS1_CK_ECDH_ECDSA_WITH_AES_128_SHA256,
2608 SSL_kECDHe,
2609 SSL_aECDH,
2610 SSL_AES128,
2611 SSL_SHA256,
2612 SSL_TLSV1_2,
2613 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2614 SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
2615 128,
2616 128,
2617 },

2619 /* Cipher C026 */
2620 {
2621 1,
2622 TLS1_TXT_ECDH_ECDSA_WITH_AES_256_SHA384,
2623 TLS1_CK_ECDH_ECDSA_WITH_AES_256_SHA384,
2624 SSL_kECDHe,
2625 SSL_aECDH,
2626 SSL_AES256,
2627 SSL_SHA384,
2628 SSL_TLSV1_2,
2629 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2630 SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
2631 256,
2632 256,
2633 },

2635 /* Cipher C027 */

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 41

2636 {
2637 1,
2638 TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256,
2639 TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256,
2640 SSL_kEECDH,
2641 SSL_aRSA,
2642 SSL_AES128,
2643 SSL_SHA256,
2644 SSL_TLSV1_2,
2645 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2646 SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
2647 128,
2648 128,
2649 },

2651 /* Cipher C028 */
2652 {
2653 1,
2654 TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384,
2655 TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384,
2656 SSL_kEECDH,
2657 SSL_aRSA,
2658 SSL_AES256,
2659 SSL_SHA384,
2660 SSL_TLSV1_2,
2661 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2662 SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
2663 256,
2664 256,
2665 },

2667 /* Cipher C029 */
2668 {
2669 1,
2670 TLS1_TXT_ECDH_RSA_WITH_AES_128_SHA256,
2671 TLS1_CK_ECDH_RSA_WITH_AES_128_SHA256,
2672 SSL_kECDHr,
2673 SSL_aECDH,
2674 SSL_AES128,
2675 SSL_SHA256,
2676 SSL_TLSV1_2,
2677 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2678 SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
2679 128,
2680 128,
2681 },

2683 /* Cipher C02A */
2684 {
2685 1,
2686 TLS1_TXT_ECDH_RSA_WITH_AES_256_SHA384,
2687 TLS1_CK_ECDH_RSA_WITH_AES_256_SHA384,
2688 SSL_kECDHr,
2689 SSL_aECDH,
2690 SSL_AES256,
2691 SSL_SHA384,
2692 SSL_TLSV1_2,
2693 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2694 SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
2695 256,
2696 256,
2697 },

2699 /* GCM based TLS v1.2 ciphersuites from RFC5289 */

2701 /* Cipher C02B */

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 42

2702 {
2703 1,
2704 TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
2705 TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
2706 SSL_kEECDH,
2707 SSL_aECDSA,
2708 SSL_AES128GCM,
2709 SSL_AEAD,
2710 SSL_TLSV1_2,
2711 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2712 SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
2713 128,
2714 128,
2715 },

2717 /* Cipher C02C */
2718 {
2719 1,
2720 TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
2721 TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
2722 SSL_kEECDH,
2723 SSL_aECDSA,
2724 SSL_AES256GCM,
2725 SSL_AEAD,
2726 SSL_TLSV1_2,
2727 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2728 SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
2729 256,
2730 256,
2731 },

2733 /* Cipher C02D */
2734 {
2735 1,
2736 TLS1_TXT_ECDH_ECDSA_WITH_AES_128_GCM_SHA256,
2737 TLS1_CK_ECDH_ECDSA_WITH_AES_128_GCM_SHA256,
2738 SSL_kECDHe,
2739 SSL_aECDH,
2740 SSL_AES128GCM,
2741 SSL_AEAD,
2742 SSL_TLSV1_2,
2743 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2744 SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
2745 128,
2746 128,
2747 },

2749 /* Cipher C02E */
2750 {
2751 1,
2752 TLS1_TXT_ECDH_ECDSA_WITH_AES_256_GCM_SHA384,
2753 TLS1_CK_ECDH_ECDSA_WITH_AES_256_GCM_SHA384,
2754 SSL_kECDHe,
2755 SSL_aECDH,
2756 SSL_AES256GCM,
2757 SSL_AEAD,
2758 SSL_TLSV1_2,
2759 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2760 SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
2761 256,
2762 256,
2763 },

2765 /* Cipher C02F */
2766 {
2767 1,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 43

2768 TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
2769 TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
2770 SSL_kEECDH,
2771 SSL_aRSA,
2772 SSL_AES128GCM,
2773 SSL_AEAD,
2774 SSL_TLSV1_2,
2775 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2776 SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
2777 128,
2778 128,
2779 },

2781 /* Cipher C030 */
2782 {
2783 1,
2784 TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
2785 TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
2786 SSL_kEECDH,
2787 SSL_aRSA,
2788 SSL_AES256GCM,
2789 SSL_AEAD,
2790 SSL_TLSV1_2,
2791 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2792 SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
2793 256,
2794 256,
2795 },

2797 /* Cipher C031 */
2798 {
2799 1,
2800 TLS1_TXT_ECDH_RSA_WITH_AES_128_GCM_SHA256,
2801 TLS1_CK_ECDH_RSA_WITH_AES_128_GCM_SHA256,
2802 SSL_kECDHr,
2803 SSL_aECDH,
2804 SSL_AES128GCM,
2805 SSL_AEAD,
2806 SSL_TLSV1_2,
2807 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2808 SSL_HANDSHAKE_MAC_SHA256|TLS1_PRF_SHA256,
2809 128,
2810 128,
2811 },

2813 /* Cipher C032 */
2814 {
2815 1,
2816 TLS1_TXT_ECDH_RSA_WITH_AES_256_GCM_SHA384,
2817 TLS1_CK_ECDH_RSA_WITH_AES_256_GCM_SHA384,
2818 SSL_kECDHr,
2819 SSL_aECDH,
2820 SSL_AES256GCM,
2821 SSL_AEAD,
2822 SSL_TLSV1_2,
2823 SSL_NOT_EXP|SSL_HIGH|SSL_FIPS,
2824 SSL_HANDSHAKE_MAC_SHA384|TLS1_PRF_SHA384,
2825 256,
2826 256,
2827 },

2829 #endif /* OPENSSL_NO_ECDH */

2832 #ifdef TEMP_GOST_TLS
2833 /* Cipher FF00 */

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 44

2834 {
2835 1,
2836 "GOST-MD5",
2837 0x0300ff00,
2838 SSL_kRSA,
2839 SSL_aRSA,
2840 SSL_eGOST2814789CNT,
2841 SSL_MD5,
2842 SSL_TLSV1,
2843 SSL_NOT_EXP|SSL_HIGH,
2844 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2845 256,
2846 256,
2847 },
2848 {
2849 1,
2850 "GOST-GOST94",
2851 0x0300ff01,
2852 SSL_kRSA,
2853 SSL_aRSA,
2854 SSL_eGOST2814789CNT,
2855 SSL_GOST94,
2856 SSL_TLSV1,
2857 SSL_NOT_EXP|SSL_HIGH,
2858 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2859 256,
2860 256
2861 },
2862 {
2863 1,
2864 "GOST-GOST89MAC",
2865 0x0300ff02,
2866 SSL_kRSA,
2867 SSL_aRSA,
2868 SSL_eGOST2814789CNT,
2869 SSL_GOST89MAC,
2870 SSL_TLSV1,
2871 SSL_NOT_EXP|SSL_HIGH,
2872 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF,
2873 256,
2874 256
2875 },
2876 {
2877 1,
2878 "GOST-GOST89STREAM",
2879 0x0300ff03,
2880 SSL_kRSA,
2881 SSL_aRSA,
2882 SSL_eGOST2814789CNT,
2883 SSL_GOST89MAC,
2884 SSL_TLSV1,
2885 SSL_NOT_EXP|SSL_HIGH,
2886 SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF|TLS1_STREAM_MAC,
2887 256,
2888 256
2889 },
2890 #endif

2892 /* end of list */
2893 };

2895 SSL3_ENC_METHOD SSLv3_enc_data={
2896 ssl3_enc,
2897 n_ssl3_mac,
2898 ssl3_setup_key_block,
2899 ssl3_generate_master_secret,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 45

2900 ssl3_change_cipher_state,
2901 ssl3_final_finish_mac,
2902 MD5_DIGEST_LENGTH+SHA_DIGEST_LENGTH,
2903 ssl3_cert_verify_mac,
2904 SSL3_MD_CLIENT_FINISHED_CONST,4,
2905 SSL3_MD_SERVER_FINISHED_CONST,4,
2906 ssl3_alert_code,
2907 (int (*)(SSL *, unsigned char *, size_t, const char *,
2908 size_t, const unsigned char *, size_t,
2909 int use_context))ssl_undefined_function,
2910 };

2912 long ssl3_default_timeout(void)
2913 {
2914 /* 2 hours, the 24 hours mentioned in the SSLv3 spec
2915 * is way too long for http, the cache would over fill */
2916 return(60*60*2);
2917 }

2919 int ssl3_num_ciphers(void)
2920 {
2921 return(SSL3_NUM_CIPHERS);
2922 }

2924 const SSL_CIPHER *ssl3_get_cipher(unsigned int u)
2925 {
2926 if (u < SSL3_NUM_CIPHERS)
2927 return(&(ssl3_ciphers[SSL3_NUM_CIPHERS-1-u]));
2928 else
2929 return(NULL);
2930 }

2932 int ssl3_pending(const SSL *s)
2933 {
2934 if (s->rstate == SSL_ST_READ_BODY)
2935 return 0;
2936
2937 return (s->s3->rrec.type == SSL3_RT_APPLICATION_DATA) ? s->s3->rrec.leng
2938 }

2940 int ssl3_new(SSL *s)
2941 {
2942 SSL3_STATE *s3;

2944 if ((s3=OPENSSL_malloc(sizeof *s3)) == NULL) goto err;
2945 memset(s3,0,sizeof *s3);
2946 memset(s3->rrec.seq_num,0,sizeof(s3->rrec.seq_num));
2947 memset(s3->wrec.seq_num,0,sizeof(s3->wrec.seq_num));

2949 s->s3=s3;

2951 #ifndef OPENSSL_NO_SRP
2952 SSL_SRP_CTX_init(s);
2953 #endif
2954 s->method->ssl_clear(s);
2955 return(1);
2956 err:
2957 return(0);
2958 }

2960 void ssl3_free(SSL *s)
2961 {
2962 if(s == NULL)
2963 return;

2965 #ifdef TLSEXT_TYPE_opaque_prf_input

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 46

2966 if (s->s3->client_opaque_prf_input != NULL)
2967 OPENSSL_free(s->s3->client_opaque_prf_input);
2968 if (s->s3->server_opaque_prf_input != NULL)
2969 OPENSSL_free(s->s3->server_opaque_prf_input);
2970 #endif

2972 ssl3_cleanup_key_block(s);
2973 if (s->s3->rbuf.buf != NULL)
2974 ssl3_release_read_buffer(s);
2975 if (s->s3->wbuf.buf != NULL)
2976 ssl3_release_write_buffer(s);
2977 if (s->s3->rrec.comp != NULL)
2978 OPENSSL_free(s->s3->rrec.comp);
2979 #ifndef OPENSSL_NO_DH
2980 if (s->s3->tmp.dh != NULL)
2981 DH_free(s->s3->tmp.dh);
2982 #endif
2983 #ifndef OPENSSL_NO_ECDH
2984 if (s->s3->tmp.ecdh != NULL)
2985 EC_KEY_free(s->s3->tmp.ecdh);
2986 #endif

2988 if (s->s3->tmp.ca_names != NULL)
2989 sk_X509_NAME_pop_free(s->s3->tmp.ca_names,X509_NAME_free);
2990 if (s->s3->handshake_buffer) {
2991 BIO_free(s->s3->handshake_buffer);
2992 }
2993 if (s->s3->handshake_dgst) ssl3_free_digest_list(s);
2994 #ifndef OPENSSL_NO_SRP
2995 SSL_SRP_CTX_free(s);
2996 #endif
2997 OPENSSL_cleanse(s->s3,sizeof *s->s3);
2998 OPENSSL_free(s->s3);
2999 s->s3=NULL;
3000 }

3002 void ssl3_clear(SSL *s)
3003 {
3004 unsigned char *rp,*wp;
3005 size_t rlen, wlen;
3006 int init_extra;

3008 #ifdef TLSEXT_TYPE_opaque_prf_input
3009 if (s->s3->client_opaque_prf_input != NULL)
3010 OPENSSL_free(s->s3->client_opaque_prf_input);
3011 s->s3->client_opaque_prf_input = NULL;
3012 if (s->s3->server_opaque_prf_input != NULL)
3013 OPENSSL_free(s->s3->server_opaque_prf_input);
3014 s->s3->server_opaque_prf_input = NULL;
3015 #endif

3017 ssl3_cleanup_key_block(s);
3018 if (s->s3->tmp.ca_names != NULL)
3019 sk_X509_NAME_pop_free(s->s3->tmp.ca_names,X509_NAME_free);

3021 if (s->s3->rrec.comp != NULL)
3022 {
3023 OPENSSL_free(s->s3->rrec.comp);
3024 s->s3->rrec.comp=NULL;
3025 }
3026 #ifndef OPENSSL_NO_DH
3027 if (s->s3->tmp.dh != NULL)
3028 {
3029 DH_free(s->s3->tmp.dh);
3030 s->s3->tmp.dh = NULL;
3031 }

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 47

3032 #endif
3033 #ifndef OPENSSL_NO_ECDH
3034 if (s->s3->tmp.ecdh != NULL)
3035 {
3036 EC_KEY_free(s->s3->tmp.ecdh);
3037 s->s3->tmp.ecdh = NULL;
3038 }
3039 #endif
3040 #ifndef OPENSSL_NO_TLSEXT
3041 #ifndef OPENSSL_NO_EC
3042 s->s3->is_probably_safari = 0;
3043 #endif /* !OPENSSL_NO_EC */
3044 #endif /* !OPENSSL_NO_TLSEXT */

3046 rp = s->s3->rbuf.buf;
3047 wp = s->s3->wbuf.buf;
3048 rlen = s->s3->rbuf.len;
3049 wlen = s->s3->wbuf.len;
3050 init_extra = s->s3->init_extra;
3051 if (s->s3->handshake_buffer) {
3052 BIO_free(s->s3->handshake_buffer);
3053 s->s3->handshake_buffer = NULL;
3054 }
3055 if (s->s3->handshake_dgst) {
3056 ssl3_free_digest_list(s);
3057 }
3058 memset(s->s3,0,sizeof *s->s3);
3059 s->s3->rbuf.buf = rp;
3060 s->s3->wbuf.buf = wp;
3061 s->s3->rbuf.len = rlen;
3062 s->s3->wbuf.len = wlen;
3063 s->s3->init_extra = init_extra;

3065 ssl_free_wbio_buffer(s);

3067 s->packet_length=0;
3068 s->s3->renegotiate=0;
3069 s->s3->total_renegotiations=0;
3070 s->s3->num_renegotiations=0;
3071 s->s3->in_read_app_data=0;
3072 s->version=SSL3_VERSION;

3074 #if !defined(OPENSSL_NO_TLSEXT) && !defined(OPENSSL_NO_NEXTPROTONEG)
3075 if (s->next_proto_negotiated)
3076 {
3077 OPENSSL_free(s->next_proto_negotiated);
3078 s->next_proto_negotiated = NULL;
3079 s->next_proto_negotiated_len = 0;
3080 }
3081 #endif
3082 }

3084 #ifndef OPENSSL_NO_SRP
3085 static char * MS_CALLBACK srp_password_from_info_cb(SSL *s, void *arg)
3086 {
3087 return BUF_strdup(s->srp_ctx.info) ;
3088 }
3089 #endif

3091 long ssl3_ctrl(SSL *s, int cmd, long larg, void *parg)
3092 {
3093 int ret=0;

3095 #if !defined(OPENSSL_NO_DSA) || !defined(OPENSSL_NO_RSA)
3096 if (
3097 #ifndef OPENSSL_NO_RSA

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 48

3098 cmd == SSL_CTRL_SET_TMP_RSA ||
3099 cmd == SSL_CTRL_SET_TMP_RSA_CB ||
3100 #endif
3101 #ifndef OPENSSL_NO_DSA
3102 cmd == SSL_CTRL_SET_TMP_DH ||
3103 cmd == SSL_CTRL_SET_TMP_DH_CB ||
3104 #endif
3105 0)
3106 {
3107 if (!ssl_cert_inst(&s->cert))
3108 {
3109 SSLerr(SSL_F_SSL3_CTRL, ERR_R_MALLOC_FAILURE);
3110 return(0);
3111 }
3112 }
3113 #endif

3115 switch (cmd)
3116 {
3117 case SSL_CTRL_GET_SESSION_REUSED:
3118 ret=s->hit;
3119 break;
3120 case SSL_CTRL_GET_CLIENT_CERT_REQUEST:
3121 break;
3122 case SSL_CTRL_GET_NUM_RENEGOTIATIONS:
3123 ret=s->s3->num_renegotiations;
3124 break;
3125 case SSL_CTRL_CLEAR_NUM_RENEGOTIATIONS:
3126 ret=s->s3->num_renegotiations;
3127 s->s3->num_renegotiations=0;
3128 break;
3129 case SSL_CTRL_GET_TOTAL_RENEGOTIATIONS:
3130 ret=s->s3->total_renegotiations;
3131 break;
3132 case SSL_CTRL_GET_FLAGS:
3133 ret=(int)(s->s3->flags);
3134 break;
3135 #ifndef OPENSSL_NO_RSA
3136 case SSL_CTRL_NEED_TMP_RSA:
3137 if ((s->cert != NULL) && (s->cert->rsa_tmp == NULL) &&
3138 ((s->cert->pkeys[SSL_PKEY_RSA_ENC].privatekey == NULL) ||
3139 (EVP_PKEY_size(s->cert->pkeys[SSL_PKEY_RSA_ENC].privatekey)
3140 ret = 1;
3141 break;
3142 case SSL_CTRL_SET_TMP_RSA:
3143 {
3144 RSA *rsa = (RSA *)parg;
3145 if (rsa == NULL)
3146 {
3147 SSLerr(SSL_F_SSL3_CTRL, ERR_R_PASSED_NULL_PARAME
3148 return(ret);
3149 }
3150 if ((rsa = RSAPrivateKey_dup(rsa)) == NULL)
3151 {
3152 SSLerr(SSL_F_SSL3_CTRL, ERR_R_RSA_LIB);
3153 return(ret);
3154 }
3155 if (s->cert->rsa_tmp != NULL)
3156 RSA_free(s->cert->rsa_tmp);
3157 s->cert->rsa_tmp = rsa;
3158 ret = 1;
3159 }
3160 break;
3161 case SSL_CTRL_SET_TMP_RSA_CB:
3162 {
3163 SSLerr(SSL_F_SSL3_CTRL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 49

3164 return(ret);
3165 }
3166 break;
3167 #endif
3168 #ifndef OPENSSL_NO_DH
3169 case SSL_CTRL_SET_TMP_DH:
3170 {
3171 DH *dh = (DH *)parg;
3172 if (dh == NULL)
3173 {
3174 SSLerr(SSL_F_SSL3_CTRL, ERR_R_PASSED_NULL_PARAME
3175 return(ret);
3176 }
3177 if ((dh = DHparams_dup(dh)) == NULL)
3178 {
3179 SSLerr(SSL_F_SSL3_CTRL, ERR_R_DH_LIB);
3180 return(ret);
3181 }
3182 if (!(s->options & SSL_OP_SINGLE_DH_USE))
3183 {
3184 if (!DH_generate_key(dh))
3185 {
3186 DH_free(dh);
3187 SSLerr(SSL_F_SSL3_CTRL, ERR_R_DH_LIB);
3188 return(ret);
3189 }
3190 }
3191 if (s->cert->dh_tmp != NULL)
3192 DH_free(s->cert->dh_tmp);
3193 s->cert->dh_tmp = dh;
3194 ret = 1;
3195 }
3196 break;
3197 case SSL_CTRL_SET_TMP_DH_CB:
3198 {
3199 SSLerr(SSL_F_SSL3_CTRL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3200 return(ret);
3201 }
3202 break;
3203 #endif
3204 #ifndef OPENSSL_NO_ECDH
3205 case SSL_CTRL_SET_TMP_ECDH:
3206 {
3207 EC_KEY *ecdh = NULL;
3208
3209 if (parg == NULL)
3210 {
3211 SSLerr(SSL_F_SSL3_CTRL, ERR_R_PASSED_NULL_PARAMETER);
3212 return(ret);
3213 }
3214 if (!EC_KEY_up_ref((EC_KEY *)parg))
3215 {
3216 SSLerr(SSL_F_SSL3_CTRL,ERR_R_ECDH_LIB);
3217 return(ret);
3218 }
3219 ecdh = (EC_KEY *)parg;
3220 if (!(s->options & SSL_OP_SINGLE_ECDH_USE))
3221 {
3222 if (!EC_KEY_generate_key(ecdh))
3223 {
3224 EC_KEY_free(ecdh);
3225 SSLerr(SSL_F_SSL3_CTRL,ERR_R_ECDH_LIB);
3226 return(ret);
3227 }
3228 }
3229 if (s->cert->ecdh_tmp != NULL)

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 50

3230 EC_KEY_free(s->cert->ecdh_tmp);
3231 s->cert->ecdh_tmp = ecdh;
3232 ret = 1;
3233 }
3234 break;
3235 case SSL_CTRL_SET_TMP_ECDH_CB:
3236 {
3237 SSLerr(SSL_F_SSL3_CTRL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3238 return(ret);
3239 }
3240 break;
3241 #endif /* !OPENSSL_NO_ECDH */
3242 #ifndef OPENSSL_NO_TLSEXT
3243 case SSL_CTRL_SET_TLSEXT_HOSTNAME:
3244 if (larg == TLSEXT_NAMETYPE_host_name)
3245 {
3246 if (s->tlsext_hostname != NULL)
3247 OPENSSL_free(s->tlsext_hostname);
3248 s->tlsext_hostname = NULL;

3250 ret = 1;
3251 if (parg == NULL)
3252 break;
3253 if (strlen((char *)parg) > TLSEXT_MAXLEN_host_name)
3254 {
3255 SSLerr(SSL_F_SSL3_CTRL, SSL_R_SSL3_EXT_INVALID_S
3256 return 0;
3257 }
3258 if ((s->tlsext_hostname = BUF_strdup((char *)parg)) == N
3259 {
3260 SSLerr(SSL_F_SSL3_CTRL, ERR_R_INTERNAL_ERROR);
3261 return 0;
3262 }
3263 }
3264 else
3265 {
3266 SSLerr(SSL_F_SSL3_CTRL, SSL_R_SSL3_EXT_INVALID_SERVERNAM
3267 return 0;
3268 }
3269 break;
3270 case SSL_CTRL_SET_TLSEXT_DEBUG_ARG:
3271 s->tlsext_debug_arg=parg;
3272 ret = 1;
3273 break;

3275 #ifdef TLSEXT_TYPE_opaque_prf_input
3276 case SSL_CTRL_SET_TLSEXT_OPAQUE_PRF_INPUT:
3277 if (larg > 12288) /* actual internal limit is 2^16 for the compl
3278 * (including the cert chain and everything) *
3279 {
3280 SSLerr(SSL_F_SSL3_CTRL, SSL_R_OPAQUE_PRF_INPUT_TOO_LONG)
3281 break;
3282 }
3283 if (s->tlsext_opaque_prf_input != NULL)
3284 OPENSSL_free(s->tlsext_opaque_prf_input);
3285 if ((size_t)larg == 0)
3286 s->tlsext_opaque_prf_input = OPENSSL_malloc(1); /* dummy
3287 else
3288 s->tlsext_opaque_prf_input = BUF_memdup(parg, (size_t)la
3289 if (s->tlsext_opaque_prf_input != NULL)
3290 {
3291 s->tlsext_opaque_prf_input_len = (size_t)larg;
3292 ret = 1;
3293 }
3294 else
3295 s->tlsext_opaque_prf_input_len = 0;

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 51

3296 break;
3297 #endif

3299 case SSL_CTRL_SET_TLSEXT_STATUS_REQ_TYPE:
3300 s->tlsext_status_type=larg;
3301 ret = 1;
3302 break;

3304 case SSL_CTRL_GET_TLSEXT_STATUS_REQ_EXTS:
3305 *(STACK_OF(X509_EXTENSION) **)parg = s->tlsext_ocsp_exts;
3306 ret = 1;
3307 break;

3309 case SSL_CTRL_SET_TLSEXT_STATUS_REQ_EXTS:
3310 s->tlsext_ocsp_exts = parg;
3311 ret = 1;
3312 break;

3314 case SSL_CTRL_GET_TLSEXT_STATUS_REQ_IDS:
3315 *(STACK_OF(OCSP_RESPID) **)parg = s->tlsext_ocsp_ids;
3316 ret = 1;
3317 break;

3319 case SSL_CTRL_SET_TLSEXT_STATUS_REQ_IDS:
3320 s->tlsext_ocsp_ids = parg;
3321 ret = 1;
3322 break;

3324 case SSL_CTRL_GET_TLSEXT_STATUS_REQ_OCSP_RESP:
3325 *(unsigned char **)parg = s->tlsext_ocsp_resp;
3326 return s->tlsext_ocsp_resplen;
3327
3328 case SSL_CTRL_SET_TLSEXT_STATUS_REQ_OCSP_RESP:
3329 if (s->tlsext_ocsp_resp)
3330 OPENSSL_free(s->tlsext_ocsp_resp);
3331 s->tlsext_ocsp_resp = parg;
3332 s->tlsext_ocsp_resplen = larg;
3333 ret = 1;
3334 break;

3336 #ifndef OPENSSL_NO_HEARTBEATS
3337 case SSL_CTRL_TLS_EXT_SEND_HEARTBEAT:
3338 if (SSL_version(s) == DTLS1_VERSION || SSL_version(s) == DTLS1_B
3339 ret = dtls1_heartbeat(s);
3340 else
3341 ret = tls1_heartbeat(s);
3342 break;

3344 case SSL_CTRL_GET_TLS_EXT_HEARTBEAT_PENDING:
3345 ret = s->tlsext_hb_pending;
3346 break;

3348 case SSL_CTRL_SET_TLS_EXT_HEARTBEAT_NO_REQUESTS:
3349 if (larg)
3350 s->tlsext_heartbeat |= SSL_TLSEXT_HB_DONT_RECV_REQUESTS;
3351 else
3352 s->tlsext_heartbeat &= ~SSL_TLSEXT_HB_DONT_RECV_REQUESTS
3353 ret = 1;
3354 break;
3355 #endif

3357 #endif /* !OPENSSL_NO_TLSEXT */
3358 default:
3359 break;
3360 }
3361 return(ret);

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 52

3362 }

3364 long ssl3_callback_ctrl(SSL *s, int cmd, void (*fp)(void))
3365 {
3366 int ret=0;

3368 #if !defined(OPENSSL_NO_DSA) || !defined(OPENSSL_NO_RSA)
3369 if (
3370 #ifndef OPENSSL_NO_RSA
3371 cmd == SSL_CTRL_SET_TMP_RSA_CB ||
3372 #endif
3373 #ifndef OPENSSL_NO_DSA
3374 cmd == SSL_CTRL_SET_TMP_DH_CB ||
3375 #endif
3376 0)
3377 {
3378 if (!ssl_cert_inst(&s->cert))
3379 {
3380 SSLerr(SSL_F_SSL3_CALLBACK_CTRL, ERR_R_MALLOC_FAILURE);
3381 return(0);
3382 }
3383 }
3384 #endif

3386 switch (cmd)
3387 {
3388 #ifndef OPENSSL_NO_RSA
3389 case SSL_CTRL_SET_TMP_RSA_CB:
3390 {
3391 s->cert->rsa_tmp_cb = (RSA *(*)(SSL *, int, int))fp;
3392 }
3393 break;
3394 #endif
3395 #ifndef OPENSSL_NO_DH
3396 case SSL_CTRL_SET_TMP_DH_CB:
3397 {
3398 s->cert->dh_tmp_cb = (DH *(*)(SSL *, int, int))fp;
3399 }
3400 break;
3401 #endif
3402 #ifndef OPENSSL_NO_ECDH
3403 case SSL_CTRL_SET_TMP_ECDH_CB:
3404 {
3405 s->cert->ecdh_tmp_cb = (EC_KEY *(*)(SSL *, int, int))fp;
3406 }
3407 break;
3408 #endif
3409 #ifndef OPENSSL_NO_TLSEXT
3410 case SSL_CTRL_SET_TLSEXT_DEBUG_CB:
3411 s->tlsext_debug_cb=(void (*)(SSL *,int ,int,
3412 unsigned char *, int, void *))fp;
3413 break;
3414 #endif
3415 default:
3416 break;
3417 }
3418 return(ret);
3419 }

3421 long ssl3_ctx_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
3422 {
3423 CERT *cert;

3425 cert=ctx->cert;

3427 switch (cmd)

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 53

3428 {
3429 #ifndef OPENSSL_NO_RSA
3430 case SSL_CTRL_NEED_TMP_RSA:
3431 if ((cert->rsa_tmp == NULL) &&
3432 ((cert->pkeys[SSL_PKEY_RSA_ENC].privatekey == NULL) ||
3433 (EVP_PKEY_size(cert->pkeys[SSL_PKEY_RSA_ENC].privatekey
3434)
3435 return(1);
3436 else
3437 return(0);
3438 /* break; */
3439 case SSL_CTRL_SET_TMP_RSA:
3440 {
3441 RSA *rsa;
3442 int i;

3444 rsa=(RSA *)parg;
3445 i=1;
3446 if (rsa == NULL)
3447 i=0;
3448 else
3449 {
3450 if ((rsa=RSAPrivateKey_dup(rsa)) == NULL)
3451 i=0;
3452 }
3453 if (!i)
3454 {
3455 SSLerr(SSL_F_SSL3_CTX_CTRL,ERR_R_RSA_LIB);
3456 return(0);
3457 }
3458 else
3459 {
3460 if (cert->rsa_tmp != NULL)
3461 RSA_free(cert->rsa_tmp);
3462 cert->rsa_tmp=rsa;
3463 return(1);
3464 }
3465 }
3466 /* break; */
3467 case SSL_CTRL_SET_TMP_RSA_CB:
3468 {
3469 SSLerr(SSL_F_SSL3_CTX_CTRL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3470 return(0);
3471 }
3472 break;
3473 #endif
3474 #ifndef OPENSSL_NO_DH
3475 case SSL_CTRL_SET_TMP_DH:
3476 {
3477 DH *new=NULL,*dh;

3479 dh=(DH *)parg;
3480 if ((new=DHparams_dup(dh)) == NULL)
3481 {
3482 SSLerr(SSL_F_SSL3_CTX_CTRL,ERR_R_DH_LIB);
3483 return 0;
3484 }
3485 if (!(ctx->options & SSL_OP_SINGLE_DH_USE))
3486 {
3487 if (!DH_generate_key(new))
3488 {
3489 SSLerr(SSL_F_SSL3_CTX_CTRL,ERR_R_DH_LIB);
3490 DH_free(new);
3491 return 0;
3492 }
3493 }

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 54

3494 if (cert->dh_tmp != NULL)
3495 DH_free(cert->dh_tmp);
3496 cert->dh_tmp=new;
3497 return 1;
3498 }
3499 /*break; */
3500 case SSL_CTRL_SET_TMP_DH_CB:
3501 {
3502 SSLerr(SSL_F_SSL3_CTX_CTRL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3503 return(0);
3504 }
3505 break;
3506 #endif
3507 #ifndef OPENSSL_NO_ECDH
3508 case SSL_CTRL_SET_TMP_ECDH:
3509 {
3510 EC_KEY *ecdh = NULL;
3511
3512 if (parg == NULL)
3513 {
3514 SSLerr(SSL_F_SSL3_CTX_CTRL,ERR_R_ECDH_LIB);
3515 return 0;
3516 }
3517 ecdh = EC_KEY_dup((EC_KEY *)parg);
3518 if (ecdh == NULL)
3519 {
3520 SSLerr(SSL_F_SSL3_CTX_CTRL,ERR_R_EC_LIB);
3521 return 0;
3522 }
3523 if (!(ctx->options & SSL_OP_SINGLE_ECDH_USE))
3524 {
3525 if (!EC_KEY_generate_key(ecdh))
3526 {
3527 EC_KEY_free(ecdh);
3528 SSLerr(SSL_F_SSL3_CTX_CTRL,ERR_R_ECDH_LIB);
3529 return 0;
3530 }
3531 }

3533 if (cert->ecdh_tmp != NULL)
3534 {
3535 EC_KEY_free(cert->ecdh_tmp);
3536 }
3537 cert->ecdh_tmp = ecdh;
3538 return 1;
3539 }
3540 /* break; */
3541 case SSL_CTRL_SET_TMP_ECDH_CB:
3542 {
3543 SSLerr(SSL_F_SSL3_CTX_CTRL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3544 return(0);
3545 }
3546 break;
3547 #endif /* !OPENSSL_NO_ECDH */
3548 #ifndef OPENSSL_NO_TLSEXT
3549 case SSL_CTRL_SET_TLSEXT_SERVERNAME_ARG:
3550 ctx->tlsext_servername_arg=parg;
3551 break;
3552 case SSL_CTRL_SET_TLSEXT_TICKET_KEYS:
3553 case SSL_CTRL_GET_TLSEXT_TICKET_KEYS:
3554 {
3555 unsigned char *keys = parg;
3556 if (!keys)
3557 return 48;
3558 if (larg != 48)
3559 {

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 55

3560 SSLerr(SSL_F_SSL3_CTX_CTRL, SSL_R_INVALID_TICKET_KEYS_LE
3561 return 0;
3562 }
3563 if (cmd == SSL_CTRL_SET_TLSEXT_TICKET_KEYS)
3564 {
3565 memcpy(ctx->tlsext_tick_key_name, keys, 16);
3566 memcpy(ctx->tlsext_tick_hmac_key, keys + 16, 16);
3567 memcpy(ctx->tlsext_tick_aes_key, keys + 32, 16);
3568 }
3569 else
3570 {
3571 memcpy(keys, ctx->tlsext_tick_key_name, 16);
3572 memcpy(keys + 16, ctx->tlsext_tick_hmac_key, 16);
3573 memcpy(keys + 32, ctx->tlsext_tick_aes_key, 16);
3574 }
3575 return 1;
3576 }

3578 #ifdef TLSEXT_TYPE_opaque_prf_input
3579 case SSL_CTRL_SET_TLSEXT_OPAQUE_PRF_INPUT_CB_ARG:
3580 ctx->tlsext_opaque_prf_input_callback_arg = parg;
3581 return 1;
3582 #endif

3584 case SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB_ARG:
3585 ctx->tlsext_status_arg=parg;
3586 return 1;
3587 break;

3589 #ifndef OPENSSL_NO_SRP
3590 case SSL_CTRL_SET_TLS_EXT_SRP_USERNAME:
3591 ctx->srp_ctx.srp_Mask|=SSL_kSRP;
3592 if (ctx->srp_ctx.login != NULL)
3593 OPENSSL_free(ctx->srp_ctx.login);
3594 ctx->srp_ctx.login = NULL;
3595 if (parg == NULL)
3596 break;
3597 if (strlen((const char *)parg) > 255 || strlen((const char *)par
3598 {
3599 SSLerr(SSL_F_SSL3_CTX_CTRL, SSL_R_INVALID_SRP_USERNAME);
3600 return 0;
3601 }
3602 if ((ctx->srp_ctx.login = BUF_strdup((char *)parg)) == NULL)
3603 {
3604 SSLerr(SSL_F_SSL3_CTX_CTRL, ERR_R_INTERNAL_ERROR);
3605 return 0;
3606 }
3607 break;
3608 case SSL_CTRL_SET_TLS_EXT_SRP_PASSWORD:
3609 ctx->srp_ctx.SRP_give_srp_client_pwd_callback=srp_password_from_
3610 ctx->srp_ctx.info=parg;
3611 break;
3612 case SSL_CTRL_SET_SRP_ARG:
3613 ctx->srp_ctx.srp_Mask|=SSL_kSRP;
3614 ctx->srp_ctx.SRP_cb_arg=parg;
3615 break;

3617 case SSL_CTRL_SET_TLS_EXT_SRP_STRENGTH:
3618 ctx->srp_ctx.strength=larg;
3619 break;
3620 #endif
3621 #endif /* !OPENSSL_NO_TLSEXT */

3623 /* A Thawte special :-) */
3624 case SSL_CTRL_EXTRA_CHAIN_CERT:
3625 if (ctx->extra_certs == NULL)

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 56

3626 {
3627 if ((ctx->extra_certs=sk_X509_new_null()) == NULL)
3628 return(0);
3629 }
3630 sk_X509_push(ctx->extra_certs,(X509 *)parg);
3631 break;

3633 case SSL_CTRL_GET_EXTRA_CHAIN_CERTS:
3634 *(STACK_OF(X509) **)parg = ctx->extra_certs;
3635 break;

3637 case SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS:
3638 if (ctx->extra_certs)
3639 {
3640 sk_X509_pop_free(ctx->extra_certs, X509_free);
3641 ctx->extra_certs = NULL;
3642 }
3643 break;

3645 default:
3646 return(0);
3647 }
3648 return(1);
3649 }

3651 long ssl3_ctx_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp)(void))
3652 {
3653 CERT *cert;

3655 cert=ctx->cert;

3657 switch (cmd)
3658 {
3659 #ifndef OPENSSL_NO_RSA
3660 case SSL_CTRL_SET_TMP_RSA_CB:
3661 {
3662 cert->rsa_tmp_cb = (RSA *(*)(SSL *, int, int))fp;
3663 }
3664 break;
3665 #endif
3666 #ifndef OPENSSL_NO_DH
3667 case SSL_CTRL_SET_TMP_DH_CB:
3668 {
3669 cert->dh_tmp_cb = (DH *(*)(SSL *, int, int))fp;
3670 }
3671 break;
3672 #endif
3673 #ifndef OPENSSL_NO_ECDH
3674 case SSL_CTRL_SET_TMP_ECDH_CB:
3675 {
3676 cert->ecdh_tmp_cb = (EC_KEY *(*)(SSL *, int, int))fp;
3677 }
3678 break;
3679 #endif
3680 #ifndef OPENSSL_NO_TLSEXT
3681 case SSL_CTRL_SET_TLSEXT_SERVERNAME_CB:
3682 ctx->tlsext_servername_callback=(int (*)(SSL *,int *,void *))fp;
3683 break;

3685 #ifdef TLSEXT_TYPE_opaque_prf_input
3686 case SSL_CTRL_SET_TLSEXT_OPAQUE_PRF_INPUT_CB:
3687 ctx->tlsext_opaque_prf_input_callback = (int (*)(SSL *,void *, s
3688 break;
3689 #endif

3691 case SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB:

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 57

3692 ctx->tlsext_status_cb=(int (*)(SSL *,void *))fp;
3693 break;

3695 case SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB:
3696 ctx->tlsext_ticket_key_cb=(int (*)(SSL *,unsigned char *,
3697 unsigned char *,
3698 EVP_CIPHER_CTX *,
3699 HMAC_CTX *, int))fp;
3700 break;

3702 #ifndef OPENSSL_NO_SRP
3703 case SSL_CTRL_SET_SRP_VERIFY_PARAM_CB:
3704 ctx->srp_ctx.srp_Mask|=SSL_kSRP;
3705 ctx->srp_ctx.SRP_verify_param_callback=(int (*)(SSL *,void *))fp
3706 break;
3707 case SSL_CTRL_SET_TLS_EXT_SRP_USERNAME_CB:
3708 ctx->srp_ctx.srp_Mask|=SSL_kSRP;
3709 ctx->srp_ctx.TLS_ext_srp_username_callback=(int (*)(SSL *,int *,
3710 break;
3711 case SSL_CTRL_SET_SRP_GIVE_CLIENT_PWD_CB:
3712 ctx->srp_ctx.srp_Mask|=SSL_kSRP;
3713 ctx->srp_ctx.SRP_give_srp_client_pwd_callback=(char *(*)(SSL *,v
3714 break;
3715 #endif
3716 #endif
3717 default:
3718 return(0);
3719 }
3720 return(1);
3721 }

3723 /* This function needs to check if the ciphers required are actually
3724 * available */
3725 const SSL_CIPHER *ssl3_get_cipher_by_char(const unsigned char *p)
3726 {
3727 SSL_CIPHER c;
3728 const SSL_CIPHER *cp;
3729 unsigned long id;

3731 id=0x03000000L|((unsigned long)p[0]<<8L)|(unsigned long)p[1];
3732 c.id=id;
3733 cp = OBJ_bsearch_ssl_cipher_id(&c, ssl3_ciphers, SSL3_NUM_CIPHERS);
3734 #ifdef DEBUG_PRINT_UNKNOWN_CIPHERSUITES
3735 if (cp == NULL) fprintf(stderr, "Unknown cipher ID %x\n", (p[0] << 8) | p[1]);
3736 #endif
3737 if (cp == NULL || cp->valid == 0)
3738 return NULL;
3739 else
3740 return cp;
3741 }

3743 int ssl3_put_cipher_by_char(const SSL_CIPHER *c, unsigned char *p)
3744 {
3745 long l;

3747 if (p != NULL)
3748 {
3749 l=c->id;
3750 if ((l & 0xff000000) != 0x03000000) return(0);
3751 p[0]=((unsigned char)(l>> 8L))&0xFF;
3752 p[1]=((unsigned char)(l))&0xFF;
3753 }
3754 return(2);
3755 }

3757 SSL_CIPHER *ssl3_choose_cipher(SSL *s, STACK_OF(SSL_CIPHER) *clnt,

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 58

3758 STACK_OF(SSL_CIPHER) *srvr)
3759 {
3760 SSL_CIPHER *c,*ret=NULL;
3761 STACK_OF(SSL_CIPHER) *prio, *allow;
3762 int i,ii,ok;
3763 #if !defined(OPENSSL_NO_TLSEXT) && !defined(OPENSSL_NO_EC)
3764 unsigned int j;
3765 int ec_ok, ec_nid;
3766 unsigned char ec_search1 = 0, ec_search2 = 0;
3767 #endif
3768 CERT *cert;
3769 unsigned long alg_k,alg_a,mask_k,mask_a,emask_k,emask_a;

3771 /* Let’s see which ciphers we can support */
3772 cert=s->cert;

3774 #if 0
3775 /* Do not set the compare functions, because this may lead to a
3776 * reordering by "id". We want to keep the original ordering.
3777 * We may pay a price in performance during sk_SSL_CIPHER_find(),
3778 * but would have to pay with the price of sk_SSL_CIPHER_dup().
3779 */
3780 sk_SSL_CIPHER_set_cmp_func(srvr, ssl_cipher_ptr_id_cmp);
3781 sk_SSL_CIPHER_set_cmp_func(clnt, ssl_cipher_ptr_id_cmp);
3782 #endif

3784 #ifdef CIPHER_DEBUG
3785 printf("Server has %d from %p:\n", sk_SSL_CIPHER_num(srvr), (void *)srvr
3786 for(i=0 ; i < sk_SSL_CIPHER_num(srvr) ; ++i)
3787 {
3788 c=sk_SSL_CIPHER_value(srvr,i);
3789 printf("%p:%s\n",(void *)c,c->name);
3790 }
3791 printf("Client sent %d from %p:\n", sk_SSL_CIPHER_num(clnt), (void *)cln
3792 for(i=0 ; i < sk_SSL_CIPHER_num(clnt) ; ++i)
3793 {
3794 c=sk_SSL_CIPHER_value(clnt,i);
3795 printf("%p:%s\n",(void *)c,c->name);
3796 }
3797 #endif

3799 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE)
3800 {
3801 prio = srvr;
3802 allow = clnt;
3803 }
3804 else
3805 {
3806 prio = clnt;
3807 allow = srvr;
3808 }

3810 for (i=0; i<sk_SSL_CIPHER_num(prio); i++)
3811 {
3812 c=sk_SSL_CIPHER_value(prio,i);

3814 /* Skip TLS v1.2 only ciphersuites if lower than v1.2 */
3815 if ((c->algorithm_ssl & SSL_TLSV1_2) &&
3816 (TLS1_get_version(s) < TLS1_2_VERSION))
3817 continue;

3819 ssl_set_cert_masks(cert,c);
3820 mask_k = cert->mask_k;
3821 mask_a = cert->mask_a;
3822 emask_k = cert->export_mask_k;
3823 emask_a = cert->export_mask_a;

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 59

3824 #ifndef OPENSSL_NO_SRP
3825 mask_k=cert->mask_k | s->srp_ctx.srp_Mask;
3826 emask_k=cert->export_mask_k | s->srp_ctx.srp_Mask;
3827 #endif
3828
3829 #ifdef KSSL_DEBUG
3830 /* printf("ssl3_choose_cipher %d alg= %lx\n", i,c->algorithms);*/
3831 #endif /* KSSL_DEBUG */

3833 alg_k=c->algorithm_mkey;
3834 alg_a=c->algorithm_auth;

3836 #ifndef OPENSSL_NO_KRB5
3837 if (alg_k & SSL_kKRB5)
3838 {
3839 if (!kssl_keytab_is_available(s->kssl_ctx))
3840 continue;
3841 }
3842 #endif /* OPENSSL_NO_KRB5 */
3843 #ifndef OPENSSL_NO_PSK
3844 /* with PSK there must be server callback set */
3845 if ((alg_k & SSL_kPSK) && s->psk_server_callback == NULL)
3846 continue;
3847 #endif /* OPENSSL_NO_PSK */

3849 if (SSL_C_IS_EXPORT(c))
3850 {
3851 ok = (alg_k & emask_k) && (alg_a & emask_a);
3852 #ifdef CIPHER_DEBUG
3853 printf("%d:[%08lX:%08lX:%08lX:%08lX]%p:%s (export)\n",ok
3854 (void *)c,c->name);
3855 #endif
3856 }
3857 else
3858 {
3859 ok = (alg_k & mask_k) && (alg_a & mask_a);
3860 #ifdef CIPHER_DEBUG
3861 printf("%d:[%08lX:%08lX:%08lX:%08lX]%p:%s\n",ok,alg_k,al
3862 c->name);
3863 #endif
3864 }

3866 #ifndef OPENSSL_NO_TLSEXT
3867 #ifndef OPENSSL_NO_EC
3868 if (
3869 /* if we are considering an ECC cipher suite that uses o
3870 (alg_a & SSL_aECDSA || alg_a & SSL_aECDH)
3871 /* and we have an ECC certificate */
3872 && (s->cert->pkeys[SSL_PKEY_ECC].x509 != NULL)
3873 /* and the client specified a Supported Point Formats ex
3874 && ((s->session->tlsext_ecpointformatlist_length > 0) &&
3875 /* and our certificate’s point is compressed */
3876 && (
3877 (s->cert->pkeys[SSL_PKEY_ECC].x509->cert_info !=
3878 && (s->cert->pkeys[SSL_PKEY_ECC].x509->cert_info
3879 && (s->cert->pkeys[SSL_PKEY_ECC].x509->cert_info
3880 && (s->cert->pkeys[SSL_PKEY_ECC].x509->cert_info
3881 && (
3882 (*(s->cert->pkeys[SSL_PKEY_ECC].x509->ce
3883 || (*(s->cert->pkeys[SSL_PKEY_ECC].x509-
3884)
3885)
3886)
3887 {
3888 ec_ok = 0;
3889 /* if our certificate’s curve is over a field type that

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 60

3890 * then do not allow this cipher suite to be negotiated
3891 if (
3892 (s->cert->pkeys[SSL_PKEY_ECC].privatekey->pkey.e
3893 && (s->cert->pkeys[SSL_PKEY_ECC].privatekey->pke
3894 && (s->cert->pkeys[SSL_PKEY_ECC].privatekey->pke
3895 && (EC_METHOD_get_field_type(s->cert->pkeys[SSL_
3896)
3897 {
3898 for (j = 0; j < s->session->tlsext_ecpointformat
3899 {
3900 if (s->session->tlsext_ecpointformatlist
3901 {
3902 ec_ok = 1;
3903 break;
3904 }
3905 }
3906 }
3907 else if (EC_METHOD_get_field_type(s->cert->pkeys[SSL_PKE
3908 {
3909 for (j = 0; j < s->session->tlsext_ecpointformat
3910 {
3911 if (s->session->tlsext_ecpointformatlist
3912 {
3913 ec_ok = 1;
3914 break;
3915 }
3916 }
3917 }
3918 ok = ok && ec_ok;
3919 }
3920 if (
3921 /* if we are considering an ECC cipher suite that uses o
3922 (alg_a & SSL_aECDSA || alg_a & SSL_aECDH)
3923 /* and we have an ECC certificate */
3924 && (s->cert->pkeys[SSL_PKEY_ECC].x509 != NULL)
3925 /* and the client specified an EllipticCurves extension
3926 && ((s->session->tlsext_ellipticcurvelist_length > 0) &&
3927)
3928 {
3929 ec_ok = 0;
3930 if (
3931 (s->cert->pkeys[SSL_PKEY_ECC].privatekey->pkey.e
3932 && (s->cert->pkeys[SSL_PKEY_ECC].privatekey->pke
3933)
3934 {
3935 ec_nid = EC_GROUP_get_curve_name(s->cert->pkeys[
3936 if ((ec_nid == 0)
3937 && (s->cert->pkeys[SSL_PKEY_ECC].private
3938)
3939 {
3940 if (EC_METHOD_get_field_type(s->cert->pk
3941 {
3942 ec_search1 = 0xFF;
3943 ec_search2 = 0x01;
3944 }
3945 else if (EC_METHOD_get_field_type(s->cer
3946 {
3947 ec_search1 = 0xFF;
3948 ec_search2 = 0x02;
3949 }
3950 }
3951 else
3952 {
3953 ec_search1 = 0x00;
3954 ec_search2 = tls1_ec_nid2curve_id(ec_nid
3955 }

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 61

3956 if ((ec_search1 != 0) || (ec_search2 != 0))
3957 {
3958 for (j = 0; j < s->session->tlsext_ellip
3959 {
3960 if ((s->session->tlsext_elliptic
3961 {
3962 ec_ok = 1;
3963 break;
3964 }
3965 }
3966 }
3967 }
3968 ok = ok && ec_ok;
3969 }
3970 if (
3971 /* if we are considering an ECC cipher suite that uses a
3972 (alg_k & SSL_kEECDH)
3973 /* and we have an ephemeral EC key */
3974 && (s->cert->ecdh_tmp != NULL)
3975 /* and the client specified an EllipticCurves extension
3976 && ((s->session->tlsext_ellipticcurvelist_length > 0) &&
3977)
3978 {
3979 ec_ok = 0;
3980 if (s->cert->ecdh_tmp->group != NULL)
3981 {
3982 ec_nid = EC_GROUP_get_curve_name(s->cert->ecdh_t
3983 if ((ec_nid == 0)
3984 && (s->cert->ecdh_tmp->group->meth != NU
3985)
3986 {
3987 if (EC_METHOD_get_field_type(s->cert->ec
3988 {
3989 ec_search1 = 0xFF;
3990 ec_search2 = 0x01;
3991 }
3992 else if (EC_METHOD_get_field_type(s->cer
3993 {
3994 ec_search1 = 0xFF;
3995 ec_search2 = 0x02;
3996 }
3997 }
3998 else
3999 {
4000 ec_search1 = 0x00;
4001 ec_search2 = tls1_ec_nid2curve_id(ec_nid
4002 }
4003 if ((ec_search1 != 0) || (ec_search2 != 0))
4004 {
4005 for (j = 0; j < s->session->tlsext_ellip
4006 {
4007 if ((s->session->tlsext_elliptic
4008 {
4009 ec_ok = 1;
4010 break;
4011 }
4012 }
4013 }
4014 }
4015 ok = ok && ec_ok;
4016 }
4017 #endif /* OPENSSL_NO_EC */
4018 #endif /* OPENSSL_NO_TLSEXT */

4020 if (!ok) continue;
4021 ii=sk_SSL_CIPHER_find(allow,c);

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 62

4022 if (ii >= 0)
4023 {
4024 #if !defined(OPENSSL_NO_EC) && !defined(OPENSSL_NO_TLSEXT)
4025 if ((alg_k & SSL_kEECDH) && (alg_a & SSL_aECDSA) && s->s
4026 {
4027 if (!ret) ret=sk_SSL_CIPHER_value(allow,ii);
4028 continue;
4029 }
4030 #endif
4031 ret=sk_SSL_CIPHER_value(allow,ii);
4032 break;
4033 }
4034 }
4035 return(ret);
4036 }

4038 int ssl3_get_req_cert_type(SSL *s, unsigned char *p)
4039 {
4040 int ret=0;
4041 unsigned long alg_k;

4043 alg_k = s->s3->tmp.new_cipher->algorithm_mkey;

4045 #ifndef OPENSSL_NO_GOST
4046 if (s->version >= TLS1_VERSION)
4047 {
4048 if (alg_k & SSL_kGOST)
4049 {
4050 p[ret++]=TLS_CT_GOST94_SIGN;
4051 p[ret++]=TLS_CT_GOST01_SIGN;
4052 return(ret);
4053 }
4054 }
4055 #endif

4057 #ifndef OPENSSL_NO_DH
4058 if (alg_k & (SSL_kDHr|SSL_kEDH))
4059 {
4060 # ifndef OPENSSL_NO_RSA
4061 p[ret++]=SSL3_CT_RSA_FIXED_DH;
4062 # endif
4063 # ifndef OPENSSL_NO_DSA
4064 p[ret++]=SSL3_CT_DSS_FIXED_DH;
4065 # endif
4066 }
4067 if ((s->version == SSL3_VERSION) &&
4068 (alg_k & (SSL_kEDH|SSL_kDHd|SSL_kDHr)))
4069 {
4070 # ifndef OPENSSL_NO_RSA
4071 p[ret++]=SSL3_CT_RSA_EPHEMERAL_DH;
4072 # endif
4073 # ifndef OPENSSL_NO_DSA
4074 p[ret++]=SSL3_CT_DSS_EPHEMERAL_DH;
4075 # endif
4076 }
4077 #endif /* !OPENSSL_NO_DH */
4078 #ifndef OPENSSL_NO_RSA
4079 p[ret++]=SSL3_CT_RSA_SIGN;
4080 #endif
4081 #ifndef OPENSSL_NO_DSA
4082 p[ret++]=SSL3_CT_DSS_SIGN;
4083 #endif
4084 #ifndef OPENSSL_NO_ECDH
4085 if ((alg_k & (SSL_kECDHr|SSL_kECDHe)) && (s->version >= TLS1_VERSION))
4086 {
4087 p[ret++]=TLS_CT_RSA_FIXED_ECDH;

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 63

4088 p[ret++]=TLS_CT_ECDSA_FIXED_ECDH;
4089 }
4090 #endif

4092 #ifndef OPENSSL_NO_ECDSA
4093 /* ECDSA certs can be used with RSA cipher suites as well
4094 * so we don’t need to check for SSL_kECDH or SSL_kEECDH
4095 */
4096 if (s->version >= TLS1_VERSION)
4097 {
4098 p[ret++]=TLS_CT_ECDSA_SIGN;
4099 }
4100 #endif
4101 return(ret);
4102 }

4104 int ssl3_shutdown(SSL *s)
4105 {
4106 int ret;

4108 /* Don’t do anything much if we have not done the handshake or
4109 * we don’t want to send messages :-) */
4110 if ((s->quiet_shutdown) || (s->state == SSL_ST_BEFORE))
4111 {
4112 s->shutdown=(SSL_SENT_SHUTDOWN|SSL_RECEIVED_SHUTDOWN);
4113 return(1);
4114 }

4116 if (!(s->shutdown & SSL_SENT_SHUTDOWN))
4117 {
4118 s->shutdown|=SSL_SENT_SHUTDOWN;
4119 #if 1
4120 ssl3_send_alert(s,SSL3_AL_WARNING,SSL_AD_CLOSE_NOTIFY);
4121 #endif
4122 /* our shutdown alert has been sent now, and if it still needs
4123 * to be written, s->s3->alert_dispatch will be true */
4124 if (s->s3->alert_dispatch)
4125 return(-1); /* return WANT_WRITE */
4126 }
4127 else if (s->s3->alert_dispatch)
4128 {
4129 /* resend it if not sent */
4130 #if 1
4131 ret=s->method->ssl_dispatch_alert(s);
4132 if(ret == -1)
4133 {
4134 /* we only get to return -1 here the 2nd/Nth
4135 * invocation, we must have already signalled
4136 * return 0 upon a previous invoation,
4137 * return WANT_WRITE */
4138 return(ret);
4139 }
4140 #endif
4141 }
4142 else if (!(s->shutdown & SSL_RECEIVED_SHUTDOWN))
4143 {
4144 /* If we are waiting for a close from our peer, we are closed */
4145 s->method->ssl_read_bytes(s,0,NULL,0,0);
4146 if(!(s->shutdown & SSL_RECEIVED_SHUTDOWN))
4147 {
4148 return(-1); /* return WANT_READ */
4149 }
4150 }

4152 if ((s->shutdown == (SSL_SENT_SHUTDOWN|SSL_RECEIVED_SHUTDOWN)) &&
4153 !s->s3->alert_dispatch)

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 64

4154 return(1);
4155 else
4156 return(0);
4157 }

4159 int ssl3_write(SSL *s, const void *buf, int len)
4160 {
4161 int ret,n;

4163 #if 0
4164 if (s->shutdown & SSL_SEND_SHUTDOWN)
4165 {
4166 s->rwstate=SSL_NOTHING;
4167 return(0);
4168 }
4169 #endif
4170 clear_sys_error();
4171 if (s->s3->renegotiate) ssl3_renegotiate_check(s);

4173 /* This is an experimental flag that sends the
4174 * last handshake message in the same packet as the first
4175 * use data - used to see if it helps the TCP protocol during
4176 * session-id reuse */
4177 /* The second test is because the buffer may have been removed */
4178 if ((s->s3->flags & SSL3_FLAGS_POP_BUFFER) && (s->wbio == s->bbio))
4179 {
4180 /* First time through, we write into the buffer */
4181 if (s->s3->delay_buf_pop_ret == 0)
4182 {
4183 ret=ssl3_write_bytes(s,SSL3_RT_APPLICATION_DATA,
4184 buf,len);
4185 if (ret <= 0) return(ret);

4187 s->s3->delay_buf_pop_ret=ret;
4188 }

4190 s->rwstate=SSL_WRITING;
4191 n=BIO_flush(s->wbio);
4192 if (n <= 0) return(n);
4193 s->rwstate=SSL_NOTHING;

4195 /* We have flushed the buffer, so remove it */
4196 ssl_free_wbio_buffer(s);
4197 s->s3->flags&= ~SSL3_FLAGS_POP_BUFFER;

4199 ret=s->s3->delay_buf_pop_ret;
4200 s->s3->delay_buf_pop_ret=0;
4201 }
4202 else
4203 {
4204 ret=s->method->ssl_write_bytes(s,SSL3_RT_APPLICATION_DATA,
4205 buf,len);
4206 if (ret <= 0) return(ret);
4207 }

4209 return(ret);
4210 }

4212 static int ssl3_read_internal(SSL *s, void *buf, int len, int peek)
4213 {
4214 int ret;
4215
4216 clear_sys_error();
4217 if (s->s3->renegotiate) ssl3_renegotiate_check(s);
4218 s->s3->in_read_app_data=1;
4219 ret=s->method->ssl_read_bytes(s,SSL3_RT_APPLICATION_DATA,buf,len,peek);

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 65

4220 if ((ret == -1) && (s->s3->in_read_app_data == 2))
4221 {
4222 /* ssl3_read_bytes decided to call s->handshake_func, which
4223 * called ssl3_read_bytes to read handshake data.
4224 * However, ssl3_read_bytes actually found application data
4225 * and thinks that application data makes sense here; so disable
4226 * handshake processing and try to read application data again.
4227 s->in_handshake++;
4228 ret=s->method->ssl_read_bytes(s,SSL3_RT_APPLICATION_DATA,buf,len
4229 s->in_handshake--;
4230 }
4231 else
4232 s->s3->in_read_app_data=0;

4234 return(ret);
4235 }

4237 int ssl3_read(SSL *s, void *buf, int len)
4238 {
4239 return ssl3_read_internal(s, buf, len, 0);
4240 }

4242 int ssl3_peek(SSL *s, void *buf, int len)
4243 {
4244 return ssl3_read_internal(s, buf, len, 1);
4245 }

4247 int ssl3_renegotiate(SSL *s)
4248 {
4249 if (s->handshake_func == NULL)
4250 return(1);

4252 if (s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS)
4253 return(0);

4255 s->s3->renegotiate=1;
4256 return(1);
4257 }

4259 int ssl3_renegotiate_check(SSL *s)
4260 {
4261 int ret=0;

4263 if (s->s3->renegotiate)
4264 {
4265 if ((s->s3->rbuf.left == 0) &&
4266 (s->s3->wbuf.left == 0) &&
4267 !SSL_in_init(s))
4268 {
4269 /*
4270 if we are the server, and we have sent a ’RENEGOTIATE’ message, we
4271 need to go to SSL_ST_ACCEPT.
4272 */
4273 /* SSL_ST_ACCEPT */
4274 s->state=SSL_ST_RENEGOTIATE;
4275 s->s3->renegotiate=0;
4276 s->s3->num_renegotiations++;
4277 s->s3->total_renegotiations++;
4278 ret=1;
4279 }
4280 }
4281 return(ret);
4282 }
4283 /* If we are using TLS v1.2 or later and default SHA1+MD5 algorithms switch
4284 * to new SHA256 PRF and handshake macs
4285 */

new/usr/src/lib/openssl/libsunw_ssl/s3_lib.c 66

4286 long ssl_get_algorithm2(SSL *s)
4287 {
4288 long alg2 = s->s3->tmp.new_cipher->algorithm2;
4289 if (s->method->version == TLS1_2_VERSION &&
4290 alg2 == (SSL_HANDSHAKE_MAC_DEFAULT|TLS1_PRF))
4291 return SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256;
4292 return alg2;
4293 }
4294

new/usr/src/lib/openssl/libsunw_ssl/s3_meth.c 1

**
 3541 Fri May 30 18:32:21 2014
new/usr/src/lib/openssl/libsunw_ssl/s3_meth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s3_meth.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/objects.h>
61 #include "ssl_locl.h"

new/usr/src/lib/openssl/libsunw_ssl/s3_meth.c 2

63 static const SSL_METHOD *ssl3_get_method(int ver);
64 static const SSL_METHOD *ssl3_get_method(int ver)
65 {
66 if (ver == SSL3_VERSION)
67 return(SSLv3_method());
68 else
69 return(NULL);
70 }

72 IMPLEMENT_ssl3_meth_func(SSLv3_method,
73 ssl3_accept,
74 ssl3_connect,
75 ssl3_get_method)

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 1

**
 43254 Fri May 30 18:32:21 2014
new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s3_pkt.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include <stdio.h>
113 #include <errno.h>
114 #define USE_SOCKETS
115 #include "ssl_locl.h"
116 #include <openssl/evp.h>
117 #include <openssl/buffer.h>
118 #include <openssl/rand.h>

120 static int do_ssl3_write(SSL *s, int type, const unsigned char *buf,
121 unsigned int len, int create_empty_fragment);
122 static int ssl3_get_record(SSL *s);

124 int ssl3_read_n(SSL *s, int n, int max, int extend)
125 {
126 /* If extend == 0, obtain new n-byte packet; if extend == 1, increase
127 * packet by another n bytes.

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 3

128 * The packet will be in the sub-array of s->s3->rbuf.buf specified
129 * by s->packet and s->packet_length.
130 * (If s->read_ahead is set, ’max’ bytes may be stored in rbuf
131 * [plus s->packet_length bytes if extend == 1].)
132 */
133 int i,len,left;
134 long align=0;
135 unsigned char *pkt;
136 SSL3_BUFFER *rb;

138 if (n <= 0) return n;

140 rb = &(s->s3->rbuf);
141 if (rb->buf == NULL)
142 if (!ssl3_setup_read_buffer(s))
143 return -1;

145 left = rb->left;
146 #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
147 align = (long)rb->buf + SSL3_RT_HEADER_LENGTH;
148 align = (-align)&(SSL3_ALIGN_PAYLOAD-1);
149 #endif

151 if (!extend)
152 {
153 /* start with empty packet ... */
154 if (left == 0)
155 rb->offset = align;
156 else if (align != 0 && left >= SSL3_RT_HEADER_LENGTH)
157 {
158 /* check if next packet length is large
159 * enough to justify payload alignment... */
160 pkt = rb->buf + rb->offset;
161 if (pkt[0] == SSL3_RT_APPLICATION_DATA
162 && (pkt[3]<<8|pkt[4]) >= 128)
163 {
164 /* Note that even if packet is corrupted
165 * and its length field is insane, we can
166 * only be led to wrong decision about
167 * whether memmove will occur or not.
168 * Header values has no effect on memmove
169 * arguments and therefore no buffer
170 * overrun can be triggered. */
171 memmove (rb->buf+align,pkt,left);
172 rb->offset = align;
173 }
174 }
175 s->packet = rb->buf + rb->offset;
176 s->packet_length = 0;
177 /* ... now we can act as if ’extend’ was set */
178 }

180 /* For DTLS/UDP reads should not span multiple packets
181 * because the read operation returns the whole packet
182 * at once (as long as it fits into the buffer). */
183 if (SSL_version(s) == DTLS1_VERSION || SSL_version(s) == DTLS1_BAD_VER)
184 {
185 if (left > 0 && n > left)
186 n = left;
187 }

189 /* if there is enough in the buffer from a previous read, take some */
190 if (left >= n)
191 {
192 s->packet_length+=n;
193 rb->left=left-n;

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 4

194 rb->offset+=n;
195 return(n);
196 }

198 /* else we need to read more data */

200 len = s->packet_length;
201 pkt = rb->buf+align;
202 /* Move any available bytes to front of buffer:
203 * ’len’ bytes already pointed to by ’packet’,
204 * ’left’ extra ones at the end */
205 if (s->packet != pkt) /* len > 0 */
206 {
207 memmove(pkt, s->packet, len+left);
208 s->packet = pkt;
209 rb->offset = len + align;
210 }

212 if (n > (int)(rb->len - rb->offset)) /* does not happen */
213 {
214 SSLerr(SSL_F_SSL3_READ_N,ERR_R_INTERNAL_ERROR);
215 return -1;
216 }

218 if (!s->read_ahead)
219 /* ignore max parameter */
220 max = n;
221 else
222 {
223 if (max < n)
224 max = n;
225 if (max > (int)(rb->len - rb->offset))
226 max = rb->len - rb->offset;
227 }

229 while (left < n)
230 {
231 /* Now we have len+left bytes at the front of s->s3->rbuf.buf
232 * and need to read in more until we have len+n (up to
233 * len+max if possible) */

235 clear_sys_error();
236 if (s->rbio != NULL)
237 {
238 s->rwstate=SSL_READING;
239 i=BIO_read(s->rbio,pkt+len+left, max-left);
240 }
241 else
242 {
243 SSLerr(SSL_F_SSL3_READ_N,SSL_R_READ_BIO_NOT_SET);
244 i = -1;
245 }

247 if (i <= 0)
248 {
249 rb->left = left;
250 if (s->mode & SSL_MODE_RELEASE_BUFFERS &&
251 SSL_version(s) != DTLS1_VERSION && SSL_version(s) !=
252 if (len+left == 0)
253 ssl3_release_read_buffer(s);
254 return(i);
255 }
256 left+=i;
257 /* reads should *never* span multiple packets for DTLS because
258 * the underlying transport protocol is message oriented as oppo
259 * to byte oriented as in the TLS case. */

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 5

260 if (SSL_version(s) == DTLS1_VERSION || SSL_version(s) == DTLS1_B
261 {
262 if (n > left)
263 n = left; /* makes the while condition false */
264 }
265 }

267 /* done reading, now the book-keeping */
268 rb->offset += n;
269 rb->left = left - n;
270 s->packet_length += n;
271 s->rwstate=SSL_NOTHING;
272 return(n);
273 }

275 /* Call this to get a new input record.
276 * It will return <= 0 if more data is needed, normally due to an error
277 * or non-blocking IO.
278 * When it finishes, one packet has been decoded and can be found in
279 * ssl->s3->rrec.type - is the type of record
280 * ssl->s3->rrec.data, - data
281 * ssl->s3->rrec.length, - number of bytes
282 */
283 /* used only by ssl3_read_bytes */
284 static int ssl3_get_record(SSL *s)
285 {
286 int ssl_major,ssl_minor,al;
287 int enc_err,n,i,ret= -1;
288 SSL3_RECORD *rr;
289 SSL_SESSION *sess;
290 unsigned char *p;
291 unsigned char md[EVP_MAX_MD_SIZE];
292 short version;
293 unsigned mac_size, orig_len;
294 size_t extra;

296 rr= &(s->s3->rrec);
297 sess=s->session;

299 if (s->options & SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER)
300 extra=SSL3_RT_MAX_EXTRA;
301 else
302 extra=0;
303 if (extra && !s->s3->init_extra)
304 {
305 /* An application error: SLS_OP_MICROSOFT_BIG_SSLV3_BUFFER
306 * set after ssl3_setup_buffers() was done */
307 SSLerr(SSL_F_SSL3_GET_RECORD, ERR_R_INTERNAL_ERROR);
308 return -1;
309 }

311 again:
312 /* check if we have the header */
313 if ((s->rstate != SSL_ST_READ_BODY) ||
314 (s->packet_length < SSL3_RT_HEADER_LENGTH))
315 {
316 n=ssl3_read_n(s, SSL3_RT_HEADER_LENGTH, s->s3->rbuf.len, 0);
317 if (n <= 0) return(n); /* error or non-blocking */
318 s->rstate=SSL_ST_READ_BODY;

320 p=s->packet;

322 /* Pull apart the header into the SSL3_RECORD */
323 rr->type= *(p++);
324 ssl_major= *(p++);
325 ssl_minor= *(p++);

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 6

326 version=(ssl_major<<8)|ssl_minor;
327 n2s(p,rr->length);
328 #if 0
329 fprintf(stderr, "Record type=%d, Length=%d\n", rr->type, rr->length);
330 #endif

332 /* Lets check version */
333 if (!s->first_packet)
334 {
335 if (version != s->version)
336 {
337 SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_WRONG_VERSION
338 if ((s->version & 0xFF00) == (version & 0xFF00)
339 /* Send back error using their minor ver
340 s->version = (unsigned short)version;
341 al=SSL_AD_PROTOCOL_VERSION;
342 goto f_err;
343 }
344 }

346 if ((version>>8) != SSL3_VERSION_MAJOR)
347 {
348 SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_WRONG_VERSION_NUMBER)
349 goto err;
350 }

352 if (rr->length > s->s3->rbuf.len - SSL3_RT_HEADER_LENGTH)
353 {
354 al=SSL_AD_RECORD_OVERFLOW;
355 SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_PACKET_LENGTH_TOO_LON
356 goto f_err;
357 }

359 /* now s->rstate == SSL_ST_READ_BODY */
360 }

362 /* s->rstate == SSL_ST_READ_BODY, get and decode the data */

364 if (rr->length > s->packet_length-SSL3_RT_HEADER_LENGTH)
365 {
366 /* now s->packet_length == SSL3_RT_HEADER_LENGTH */
367 i=rr->length;
368 n=ssl3_read_n(s,i,i,1);
369 if (n <= 0) return(n); /* error or non-blocking io */
370 /* now n == rr->length,
371 * and s->packet_length == SSL3_RT_HEADER_LENGTH + rr->length */
372 }

374 s->rstate=SSL_ST_READ_HEADER; /* set state for later operations */

376 /* At this point, s->packet_length == SSL3_RT_HEADER_LNGTH + rr->length,
377 * and we have that many bytes in s->packet
378 */
379 rr->input= &(s->packet[SSL3_RT_HEADER_LENGTH]);

381 /* ok, we can now read from ’s->packet’ data into ’rr’
382 * rr->input points at rr->length bytes, which
383 * need to be copied into rr->data by either
384 * the decryption or by the decompression
385 * When the data is ’copied’ into the rr->data buffer,
386 * rr->input will be pointed at the new buffer */

388 /* We now have - encrypted [MAC [compressed [plain]]]
389 * rr->length bytes of encrypted compressed stuff. */

391 /* check is not needed I believe */

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 7

392 if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH+extra)
393 {
394 al=SSL_AD_RECORD_OVERFLOW;
395 SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
396 goto f_err;
397 }

399 /* decrypt in place in ’rr->input’ */
400 rr->data=rr->input;

402 enc_err = s->method->ssl3_enc->enc(s,0);
403 /* enc_err is:
404 * 0: (in non-constant time) if the record is publically invalid.
405 * 1: if the padding is valid
406 * -1: if the padding is invalid */
407 if (enc_err == 0)
408 {
409 al=SSL_AD_DECRYPTION_FAILED;
410 SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_BLOCK_CIPHER_PAD_IS_WRONG);
411 goto f_err;
412 }

414 #ifdef TLS_DEBUG
415 printf("dec %d\n",rr->length);
416 { unsigned int z; for (z=0; z<rr->length; z++) printf("%02X%c",rr->data[z],((z+1
417 printf("\n");
418 #endif

420 /* r->length is now the compressed data plus mac */
421 if ((sess != NULL) &&
422 (s->enc_read_ctx != NULL) &&
423 (EVP_MD_CTX_md(s->read_hash) != NULL))
424 {
425 /* s->read_hash != NULL => mac_size != -1 */
426 unsigned char *mac = NULL;
427 unsigned char mac_tmp[EVP_MAX_MD_SIZE];
428 mac_size=EVP_MD_CTX_size(s->read_hash);
429 OPENSSL_assert(mac_size <= EVP_MAX_MD_SIZE);

431 /* kludge: *_cbc_remove_padding passes padding length in rr->typ
432 orig_len = rr->length+((unsigned int)rr->type>>8);

434 /* orig_len is the length of the record before any padding was
435 * removed. This is public information, as is the MAC in use,
436 * therefore we can safely process the record in a different
437 * amount of time if it’s too short to possibly contain a MAC.
438 */
439 if (orig_len < mac_size ||
440 /* CBC records must have a padding length byte too. */
441 (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE &
442 orig_len < mac_size+1))
443 {
444 al=SSL_AD_DECODE_ERROR;
445 SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_LENGTH_TOO_SHORT);
446 goto f_err;
447 }

449 if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE)
450 {
451 /* We update the length so that the TLS header bytes
452 * can be constructed correctly but we need to extract
453 * the MAC in constant time from within the record,
454 * without leaking the contents of the padding bytes.
455 * */
456 mac = mac_tmp;
457 ssl3_cbc_copy_mac(mac_tmp, rr, mac_size, orig_len);

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 8

458 rr->length -= mac_size;
459 }
460 else
461 {
462 /* In this case there’s no padding, so |orig_len|
463 * equals |rec->length| and we checked that there’s
464 * enough bytes for |mac_size| above. */
465 rr->length -= mac_size;
466 mac = &rr->data[rr->length];
467 }

469 i=s->method->ssl3_enc->mac(s,md,0 /* not send */);
470 if (i < 0 || mac == NULL || CRYPTO_memcmp(md, mac, (size_t)mac_s
471 enc_err = -1;
472 if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH+extra+mac_size)
473 enc_err = -1;
474 }

476 if (enc_err < 0)
477 {
478 /* A separate ’decryption_failed’ alert was introduced with TLS
479 * SSL 3.0 only has ’bad_record_mac’. But unless a decryption
480 * failure is directly visible from the ciphertext anyway,
481 * we should not reveal which kind of error occured -- this
482 * might become visible to an attacker (e.g. via a logfile) */
483 al=SSL_AD_BAD_RECORD_MAC;
484 SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_DECRYPTION_FAILED_OR_BAD_RECO
485 goto f_err;
486 }

488 /* r->length is now just compressed */
489 if (s->expand != NULL)
490 {
491 if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH+extra)
492 {
493 al=SSL_AD_RECORD_OVERFLOW;
494 SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_COMPRESSED_LENGTH_TOO
495 goto f_err;
496 }
497 if (!ssl3_do_uncompress(s))
498 {
499 al=SSL_AD_DECOMPRESSION_FAILURE;
500 SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_BAD_DECOMPRESSION);
501 goto f_err;
502 }
503 }

505 if (rr->length > SSL3_RT_MAX_PLAIN_LENGTH+extra)
506 {
507 al=SSL_AD_RECORD_OVERFLOW;
508 SSLerr(SSL_F_SSL3_GET_RECORD,SSL_R_DATA_LENGTH_TOO_LONG);
509 goto f_err;
510 }

512 rr->off=0;
513 /* So at this point the following is true
514 * ssl->s3->rrec.type is the type of record
515 * ssl->s3->rrec.length == number of bytes in record
516 * ssl->s3->rrec.off == offset to first valid byte
517 * ssl->s3->rrec.data == where to take bytes from, increment
518 * after use :-).
519 */

521 /* we have pulled in a full packet so zero things */
522 s->packet_length=0;

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 9

524 /* just read a 0 length packet */
525 if (rr->length == 0) goto again;

527 #if 0
528 fprintf(stderr, "Ultimate Record type=%d, Length=%d\n", rr->type, rr->length);
529 #endif

531 return(1);

533 f_err:
534 ssl3_send_alert(s,SSL3_AL_FATAL,al);
535 err:
536 return(ret);
537 }

539 int ssl3_do_uncompress(SSL *ssl)
540 {
541 #ifndef OPENSSL_NO_COMP
542 int i;
543 SSL3_RECORD *rr;

545 rr= &(ssl->s3->rrec);
546 i=COMP_expand_block(ssl->expand,rr->comp,
547 SSL3_RT_MAX_PLAIN_LENGTH,rr->data,(int)rr->length);
548 if (i < 0)
549 return(0);
550 else
551 rr->length=i;
552 rr->data=rr->comp;
553 #endif
554 return(1);
555 }

557 int ssl3_do_compress(SSL *ssl)
558 {
559 #ifndef OPENSSL_NO_COMP
560 int i;
561 SSL3_RECORD *wr;

563 wr= &(ssl->s3->wrec);
564 i=COMP_compress_block(ssl->compress,wr->data,
565 SSL3_RT_MAX_COMPRESSED_LENGTH,
566 wr->input,(int)wr->length);
567 if (i < 0)
568 return(0);
569 else
570 wr->length=i;

572 wr->input=wr->data;
573 #endif
574 return(1);
575 }

577 /* Call this to write data in records of type ’type’
578 * It will return <= 0 if not all data has been sent or non-blocking IO.
579 */
580 int ssl3_write_bytes(SSL *s, int type, const void *buf_, int len)
581 {
582 const unsigned char *buf=buf_;
583 unsigned int tot,n,nw;
584 int i;

586 s->rwstate=SSL_NOTHING;
587 tot=s->s3->wnum;
588 s->s3->wnum=0;

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 10

590 if (SSL_in_init(s) && !s->in_handshake)
591 {
592 i=s->handshake_func(s);
593 if (i < 0) return(i);
594 if (i == 0)
595 {
596 SSLerr(SSL_F_SSL3_WRITE_BYTES,SSL_R_SSL_HANDSHAKE_FAILUR
597 return -1;
598 }
599 }

601 n=(len-tot);
602 for (;;)
603 {
604 if (n > s->max_send_fragment)
605 nw=s->max_send_fragment;
606 else
607 nw=n;

609 i=do_ssl3_write(s, type, &(buf[tot]), nw, 0);
610 if (i <= 0)
611 {
612 s->s3->wnum=tot;
613 return i;
614 }

616 if ((i == (int)n) ||
617 (type == SSL3_RT_APPLICATION_DATA &&
618 (s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE)))
619 {
620 /* next chunk of data should get another prepended empty
621 * in ciphersuites with known-IV weakness: */
622 s->s3->empty_fragment_done = 0;
623
624 return tot+i;
625 }

627 n-=i;
628 tot+=i;
629 }
630 }

632 static int do_ssl3_write(SSL *s, int type, const unsigned char *buf,
633 unsigned int len, int create_empty_fragment)
634 {
635 unsigned char *p,*plen;
636 int i,mac_size,clear=0;
637 int prefix_len=0;
638 int eivlen;
639 long align=0;
640 SSL3_RECORD *wr;
641 SSL3_BUFFER *wb=&(s->s3->wbuf);
642 SSL_SESSION *sess;

644 if (wb->buf == NULL)
645 if (!ssl3_setup_write_buffer(s))
646 return -1;

648 /* first check if there is a SSL3_BUFFER still being written
649 * out. This will happen with non blocking IO */
650 if (wb->left != 0)
651 return(ssl3_write_pending(s,type,buf,len));

653 /* If we have an alert to send, lets send it */
654 if (s->s3->alert_dispatch)
655 {

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 11

656 i=s->method->ssl_dispatch_alert(s);
657 if (i <= 0)
658 return(i);
659 /* if it went, fall through and send more stuff */
660 }

662 if (len == 0 && !create_empty_fragment)
663 return 0;

665 wr= &(s->s3->wrec);
666 sess=s->session;

668 if ((sess == NULL) ||
669 (s->enc_write_ctx == NULL) ||
670 (EVP_MD_CTX_md(s->write_hash) == NULL))
671 {
672 #if 1
673 clear=s->enc_write_ctx?0:1; /* must be AEAD cipher */
674 #else
675 clear=1;
676 #endif
677 mac_size=0;
678 }
679 else
680 {
681 mac_size=EVP_MD_CTX_size(s->write_hash);
682 if (mac_size < 0)
683 goto err;
684 }

686 /* ’create_empty_fragment’ is true only when this function calls itself
687 if (!clear && !create_empty_fragment && !s->s3->empty_fragment_done)
688 {
689 /* countermeasure against known-IV weakness in CBC ciphersuites
690 * (see http://www.openssl.org/~bodo/tls-cbc.txt) */

692 if (s->s3->need_empty_fragments && type == SSL3_RT_APPLICATION_D
693 {
694 /* recursive function call with ’create_empty_fragment’
695 * this prepares and buffers the data for an empty fragm
696 * (these ’prefix_len’ bytes are sent out later
697 * together with the actual payload) */
698 prefix_len = do_ssl3_write(s, type, buf, 0, 1);
699 if (prefix_len <= 0)
700 goto err;

702 if (prefix_len >
703 (SSL3_RT_HEADER_LENGTH + SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD))
704 {
705 /* insufficient space */
706 SSLerr(SSL_F_DO_SSL3_WRITE, ERR_R_INTERNAL_ERROR
707 goto err;
708 }
709 }
710
711 s->s3->empty_fragment_done = 1;
712 }

714 if (create_empty_fragment)
715 {
716 #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
717 /* extra fragment would be couple of cipher blocks,
718 * which would be multiple of SSL3_ALIGN_PAYLOAD, so
719 * if we want to align the real payload, then we can
720 * just pretent we simply have two headers. */
721 align = (long)wb->buf + 2*SSL3_RT_HEADER_LENGTH;

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 12

722 align = (-align)&(SSL3_ALIGN_PAYLOAD-1);
723 #endif
724 p = wb->buf + align;
725 wb->offset = align;
726 }
727 else if (prefix_len)
728 {
729 p = wb->buf + wb->offset + prefix_len;
730 }
731 else
732 {
733 #if defined(SSL3_ALIGN_PAYLOAD) && SSL3_ALIGN_PAYLOAD!=0
734 align = (long)wb->buf + SSL3_RT_HEADER_LENGTH;
735 align = (-align)&(SSL3_ALIGN_PAYLOAD-1);
736 #endif
737 p = wb->buf + align;
738 wb->offset = align;
739 }

741 /* write the header */

743 *(p++)=type&0xff;
744 wr->type=type;

746 *(p++)=(s->version>>8);
747 /* Some servers hang if iniatial client hello is larger than 256
748 * bytes and record version number > TLS 1.0
749 */
750 if (s->state == SSL3_ST_CW_CLNT_HELLO_B
751 && !s->renegotiate
752 && TLS1_get_version(s) > TLS1_VERSION)
753 *(p++) = 0x1;
754 else
755 *(p++)=s->version&0xff;

757 /* field where we are to write out packet length */
758 plen=p;
759 p+=2;
760 /* Explicit IV length, block ciphers and TLS version 1.1 or later */
761 if (s->enc_write_ctx && s->version >= TLS1_1_VERSION)
762 {
763 int mode = EVP_CIPHER_CTX_mode(s->enc_write_ctx);
764 if (mode == EVP_CIPH_CBC_MODE)
765 {
766 eivlen = EVP_CIPHER_CTX_iv_length(s->enc_write_ctx);
767 if (eivlen <= 1)
768 eivlen = 0;
769 }
770 /* Need explicit part of IV for GCM mode */
771 else if (mode == EVP_CIPH_GCM_MODE)
772 eivlen = EVP_GCM_TLS_EXPLICIT_IV_LEN;
773 else
774 eivlen = 0;
775 }
776 else
777 eivlen = 0;

779 /* lets setup the record stuff. */
780 wr->data=p + eivlen;
781 wr->length=(int)len;
782 wr->input=(unsigned char *)buf;

784 /* we now ’read’ from wr->input, wr->length bytes into
785 * wr->data */

787 /* first we compress */

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 13

788 if (s->compress != NULL)
789 {
790 if (!ssl3_do_compress(s))
791 {
792 SSLerr(SSL_F_DO_SSL3_WRITE,SSL_R_COMPRESSION_FAILURE);
793 goto err;
794 }
795 }
796 else
797 {
798 memcpy(wr->data,wr->input,wr->length);
799 wr->input=wr->data;
800 }

802 /* we should still have the output to wr->data and the input
803 * from wr->input. Length should be wr->length.
804 * wr->data still points in the wb->buf */

806 if (mac_size != 0)
807 {
808 if (s->method->ssl3_enc->mac(s,&(p[wr->length + eivlen]),1) < 0)
809 goto err;
810 wr->length+=mac_size;
811 }

813 wr->input=p;
814 wr->data=p;

816 if (eivlen)
817 {
818 /* if (RAND_pseudo_bytes(p, eivlen) <= 0)
819 goto err; */
820 wr->length += eivlen;
821 }

823 /* ssl3_enc can only have an error on read */
824 s->method->ssl3_enc->enc(s,1);

826 /* record length after mac and block padding */
827 s2n(wr->length,plen);

829 /* we should now have
830 * wr->data pointing to the encrypted data, which is
831 * wr->length long */
832 wr->type=type; /* not needed but helps for debugging */
833 wr->length+=SSL3_RT_HEADER_LENGTH;

835 if (create_empty_fragment)
836 {
837 /* we are in a recursive call;
838 * just return the length, don’t write out anything here
839 */
840 return wr->length;
841 }

843 /* now let’s set up wb */
844 wb->left = prefix_len + wr->length;

846 /* memorize arguments so that ssl3_write_pending can detect bad write re
847 s->s3->wpend_tot=len;
848 s->s3->wpend_buf=buf;
849 s->s3->wpend_type=type;
850 s->s3->wpend_ret=len;

852 /* we now just need to write the buffer */
853 return ssl3_write_pending(s,type,buf,len);

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 14

854 err:
855 return -1;
856 }

858 /* if s->s3->wbuf.left != 0, we need to call this */
859 int ssl3_write_pending(SSL *s, int type, const unsigned char *buf,
860 unsigned int len)
861 {
862 int i;
863 SSL3_BUFFER *wb=&(s->s3->wbuf);

865 /* XXXX */
866 if ((s->s3->wpend_tot > (int)len)
867 || ((s->s3->wpend_buf != buf) &&
868 !(s->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER))
869 || (s->s3->wpend_type != type))
870 {
871 SSLerr(SSL_F_SSL3_WRITE_PENDING,SSL_R_BAD_WRITE_RETRY);
872 return(-1);
873 }

875 for (;;)
876 {
877 clear_sys_error();
878 if (s->wbio != NULL)
879 {
880 s->rwstate=SSL_WRITING;
881 i=BIO_write(s->wbio,
882 (char *)&(wb->buf[wb->offset]),
883 (unsigned int)wb->left);
884 }
885 else
886 {
887 SSLerr(SSL_F_SSL3_WRITE_PENDING,SSL_R_BIO_NOT_SET);
888 i= -1;
889 }
890 if (i == wb->left)
891 {
892 wb->left=0;
893 wb->offset+=i;
894 if (s->mode & SSL_MODE_RELEASE_BUFFERS &&
895 SSL_version(s) != DTLS1_VERSION && SSL_version(s) !=
896 ssl3_release_write_buffer(s);
897 s->rwstate=SSL_NOTHING;
898 return(s->s3->wpend_ret);
899 }
900 else if (i <= 0) {
901 if (s->version == DTLS1_VERSION ||
902 s->version == DTLS1_BAD_VER) {
903 /* For DTLS, just drop it. That’s kind of the wh
904 point in using a datagram service */
905 wb->left = 0;
906 }
907 return(i);
908 }
909 wb->offset+=i;
910 wb->left-=i;
911 }
912 }

914 /* Return up to ’len’ payload bytes received in ’type’ records.
915 * ’type’ is one of the following:
916 *
917 * - SSL3_RT_HANDSHAKE (when ssl3_get_message calls us)
918 * - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us)
919 * - 0 (during a shutdown, no data has to be returned)

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 15

920 *
921 * If we don’t have stored data to work from, read a SSL/TLS record first
922 * (possibly multiple records if we still don’t have anything to return).
923 *
924 * This function must handle any surprises the peer may have for us, such as
925 * Alert records (e.g. close_notify), ChangeCipherSpec records (not really
926 * a surprise, but handled as if it were), or renegotiation requests.
927 * Also if record payloads contain fragments too small to process, we store
928 * them until there is enough for the respective protocol (the record protocol
929 * may use arbitrary fragmentation and even interleaving):
930 * Change cipher spec protocol
931 * just 1 byte needed, no need for keeping anything stored
932 * Alert protocol
933 * 2 bytes needed (AlertLevel, AlertDescription)
934 * Handshake protocol
935 * 4 bytes needed (HandshakeType, uint24 length) -- we just have
936 * to detect unexpected Client Hello and Hello Request messages
937 * here, anything else is handled by higher layers
938 * Application data protocol
939 * none of our business
940 */
941 int ssl3_read_bytes(SSL *s, int type, unsigned char *buf, int len, int peek)
942 {
943 int al,i,j,ret;
944 unsigned int n;
945 SSL3_RECORD *rr;
946 void (*cb)(const SSL *ssl,int type2,int val)=NULL;

948 if (s->s3->rbuf.buf == NULL) /* Not initialized yet */
949 if (!ssl3_setup_read_buffer(s))
950 return(-1);

952 if ((type && (type != SSL3_RT_APPLICATION_DATA) && (type != SSL3_RT_HAND
953 (peek && (type != SSL3_RT_APPLICATION_DATA)))
954 {
955 SSLerr(SSL_F_SSL3_READ_BYTES, ERR_R_INTERNAL_ERROR);
956 return -1;
957 }

959 if ((type == SSL3_RT_HANDSHAKE) && (s->s3->handshake_fragment_len > 0))
960 /* (partially) satisfy request from storage */
961 {
962 unsigned char *src = s->s3->handshake_fragment;
963 unsigned char *dst = buf;
964 unsigned int k;

966 /* peek == 0 */
967 n = 0;
968 while ((len > 0) && (s->s3->handshake_fragment_len > 0))
969 {
970 *dst++ = *src++;
971 len--; s->s3->handshake_fragment_len--;
972 n++;
973 }
974 /* move any remaining fragment bytes: */
975 for (k = 0; k < s->s3->handshake_fragment_len; k++)
976 s->s3->handshake_fragment[k] = *src++;
977 return n;
978 }

980 /* Now s->s3->handshake_fragment_len == 0 if type == SSL3_RT_HANDSHAKE.

982 if (!s->in_handshake && SSL_in_init(s))
983 {
984 /* type == SSL3_RT_APPLICATION_DATA */
985 i=s->handshake_func(s);

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 16

986 if (i < 0) return(i);
987 if (i == 0)
988 {
989 SSLerr(SSL_F_SSL3_READ_BYTES,SSL_R_SSL_HANDSHAKE_FAILURE
990 return(-1);
991 }
992 }
993 start:
994 s->rwstate=SSL_NOTHING;

996 /* s->s3->rrec.type - is the type of record
997 * s->s3->rrec.data, - data
998 * s->s3->rrec.off, - offset into ’data’ for next read
999 * s->s3->rrec.length, - number of bytes. */

1000 rr = &(s->s3->rrec);

1002 /* get new packet if necessary */
1003 if ((rr->length == 0) || (s->rstate == SSL_ST_READ_BODY))
1004 {
1005 ret=ssl3_get_record(s);
1006 if (ret <= 0) return(ret);
1007 }

1009 /* we now have a packet which can be read and processed */

1011 if (s->s3->change_cipher_spec /* set when we receive ChangeCipherSpec,
1012 * reset by ssl3_get_finished */
1013 && (rr->type != SSL3_RT_HANDSHAKE))
1014 {
1015 al=SSL_AD_UNEXPECTED_MESSAGE;
1016 SSLerr(SSL_F_SSL3_READ_BYTES,SSL_R_DATA_BETWEEN_CCS_AND_FINISHED
1017 goto f_err;
1018 }

1020 /* If the other end has shut down, throw anything we read away
1021 * (even in ’peek’ mode) */
1022 if (s->shutdown & SSL_RECEIVED_SHUTDOWN)
1023 {
1024 rr->length=0;
1025 s->rwstate=SSL_NOTHING;
1026 return(0);
1027 }

1030 if (type == rr->type) /* SSL3_RT_APPLICATION_DATA or SSL3_RT_HANDSHAKE *
1031 {
1032 /* make sure that we are not getting application data when we
1033 * are doing a handshake for the first time */
1034 if (SSL_in_init(s) && (type == SSL3_RT_APPLICATION_DATA) &&
1035 (s->enc_read_ctx == NULL))
1036 {
1037 al=SSL_AD_UNEXPECTED_MESSAGE;
1038 SSLerr(SSL_F_SSL3_READ_BYTES,SSL_R_APP_DATA_IN_HANDSHAKE
1039 goto f_err;
1040 }

1042 if (len <= 0) return(len);

1044 if ((unsigned int)len > rr->length)
1045 n = rr->length;
1046 else
1047 n = (unsigned int)len;

1049 memcpy(buf,&(rr->data[rr->off]),n);
1050 if (!peek)
1051 {

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 17

1052 rr->length-=n;
1053 rr->off+=n;
1054 if (rr->length == 0)
1055 {
1056 s->rstate=SSL_ST_READ_HEADER;
1057 rr->off=0;
1058 if (s->mode & SSL_MODE_RELEASE_BUFFERS)
1059 ssl3_release_read_buffer(s);
1060 }
1061 }
1062 return(n);
1063 }

1066 /* If we get here, then type != rr->type; if we have a handshake
1067 * message, then it was unexpected (Hello Request or Client Hello). */

1069 /* In case of record types for which we have ’fragment’ storage,
1070 * fill that so that we can process the data at a fixed place.
1071 */
1072 {
1073 unsigned int dest_maxlen = 0;
1074 unsigned char *dest = NULL;
1075 unsigned int *dest_len = NULL;

1077 if (rr->type == SSL3_RT_HANDSHAKE)
1078 {
1079 dest_maxlen = sizeof s->s3->handshake_fragment;
1080 dest = s->s3->handshake_fragment;
1081 dest_len = &s->s3->handshake_fragment_len;
1082 }
1083 else if (rr->type == SSL3_RT_ALERT)
1084 {
1085 dest_maxlen = sizeof s->s3->alert_fragment;
1086 dest = s->s3->alert_fragment;
1087 dest_len = &s->s3->alert_fragment_len;
1088 }
1089 #ifndef OPENSSL_NO_HEARTBEATS
1090 else if (rr->type == TLS1_RT_HEARTBEAT)
1091 {
1092 tls1_process_heartbeat(s);

1094 /* Exit and notify application to read again */
1095 rr->length = 0;
1096 s->rwstate=SSL_READING;
1097 BIO_clear_retry_flags(SSL_get_rbio(s));
1098 BIO_set_retry_read(SSL_get_rbio(s));
1099 return(-1);
1100 }
1101 #endif

1103 if (dest_maxlen > 0)
1104 {
1105 n = dest_maxlen - *dest_len; /* available space in ’dest
1106 if (rr->length < n)
1107 n = rr->length; /* available bytes */

1109 /* now move ’n’ bytes: */
1110 while (n-- > 0)
1111 {
1112 dest[(*dest_len)++] = rr->data[rr->off++];
1113 rr->length--;
1114 }

1116 if (*dest_len < dest_maxlen)
1117 goto start; /* fragment was too small */

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 18

1118 }
1119 }

1121 /* s->s3->handshake_fragment_len == 4 iff rr->type == SSL3_RT_HANDSHAK
1122 * s->s3->alert_fragment_len == 2 iff rr->type == SSL3_RT_ALERT.
1123 * (Possibly rr is ’empty’ now, i.e. rr->length may be 0.) */

1125 /* If we are a client, check for an incoming ’Hello Request’: */
1126 if ((!s->server) &&
1127 (s->s3->handshake_fragment_len >= 4) &&
1128 (s->s3->handshake_fragment[0] == SSL3_MT_HELLO_REQUEST) &&
1129 (s->session != NULL) && (s->session->cipher != NULL))
1130 {
1131 s->s3->handshake_fragment_len = 0;

1133 if ((s->s3->handshake_fragment[1] != 0) ||
1134 (s->s3->handshake_fragment[2] != 0) ||
1135 (s->s3->handshake_fragment[3] != 0))
1136 {
1137 al=SSL_AD_DECODE_ERROR;
1138 SSLerr(SSL_F_SSL3_READ_BYTES,SSL_R_BAD_HELLO_REQUEST);
1139 goto f_err;
1140 }

1142 if (s->msg_callback)
1143 s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, s->s3-

1145 if (SSL_is_init_finished(s) &&
1146 !(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS) &&
1147 !s->s3->renegotiate)
1148 {
1149 ssl3_renegotiate(s);
1150 if (ssl3_renegotiate_check(s))
1151 {
1152 i=s->handshake_func(s);
1153 if (i < 0) return(i);
1154 if (i == 0)
1155 {
1156 SSLerr(SSL_F_SSL3_READ_BYTES,SSL_R_SSL_H
1157 return(-1);
1158 }

1160 if (!(s->mode & SSL_MODE_AUTO_RETRY))
1161 {
1162 if (s->s3->rbuf.left == 0) /* no read-ah
1163 {
1164 BIO *bio;
1165 /* In the case where we try to r
1166 * but we trigger an SSL handsha
1167 * the retry option set. Otherw
1168 * cause nasty problems in the b
1169 s->rwstate=SSL_READING;
1170 bio=SSL_get_rbio(s);
1171 BIO_clear_retry_flags(bio);
1172 BIO_set_retry_read(bio);
1173 return(-1);
1174 }
1175 }
1176 }
1177 }
1178 /* we either finished a handshake or ignored the request,
1179 * now try again to obtain the (application) data we were asked
1180 goto start;
1181 }
1182 /* If we are a server and get a client hello when renegotiation isn’t
1183 * allowed send back a no renegotiation alert and carry on.

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 19

1184 * WARNING: experimental code, needs reviewing (steve)
1185 */
1186 if (s->server &&
1187 SSL_is_init_finished(s) &&
1188 !s->s3->send_connection_binding &&
1189 (s->version > SSL3_VERSION) &&
1190 (s->s3->handshake_fragment_len >= 4) &&
1191 (s->s3->handshake_fragment[0] == SSL3_MT_CLIENT_HELLO) &&
1192 (s->session != NULL) && (s->session->cipher != NULL) &&
1193 !(s->ctx->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION))
1194
1195 {
1196 /*s->s3->handshake_fragment_len = 0;*/
1197 rr->length = 0;
1198 ssl3_send_alert(s,SSL3_AL_WARNING, SSL_AD_NO_RENEGOTIATION);
1199 goto start;
1200 }
1201 if (s->s3->alert_fragment_len >= 2)
1202 {
1203 int alert_level = s->s3->alert_fragment[0];
1204 int alert_descr = s->s3->alert_fragment[1];

1206 s->s3->alert_fragment_len = 0;

1208 if (s->msg_callback)
1209 s->msg_callback(0, s->version, SSL3_RT_ALERT, s->s3->ale

1211 if (s->info_callback != NULL)
1212 cb=s->info_callback;
1213 else if (s->ctx->info_callback != NULL)
1214 cb=s->ctx->info_callback;

1216 if (cb != NULL)
1217 {
1218 j = (alert_level << 8) | alert_descr;
1219 cb(s, SSL_CB_READ_ALERT, j);
1220 }

1222 if (alert_level == 1) /* warning */
1223 {
1224 s->s3->warn_alert = alert_descr;
1225 if (alert_descr == SSL_AD_CLOSE_NOTIFY)
1226 {
1227 s->shutdown |= SSL_RECEIVED_SHUTDOWN;
1228 return(0);
1229 }
1230 /* This is a warning but we receive it if we requested
1231 * renegotiation and the peer denied it. Terminate with
1232 * a fatal alert because if application tried to
1233 * renegotiatie it presumably had a good reason and
1234 * expects it to succeed.
1235 *
1236 * In future we might have a renegotiation where we
1237 * don’t care if the peer refused it where we carry on.
1238 */
1239 else if (alert_descr == SSL_AD_NO_RENEGOTIATION)
1240 {
1241 al = SSL_AD_HANDSHAKE_FAILURE;
1242 SSLerr(SSL_F_SSL3_READ_BYTES,SSL_R_NO_RENEGOTIAT
1243 goto f_err;
1244 }
1245 #ifdef SSL_AD_MISSING_SRP_USERNAME
1246 else if (alert_descr == SSL_AD_MISSING_SRP_USERNAME)
1247 return(0);
1248 #endif
1249 }

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 20

1250 else if (alert_level == 2) /* fatal */
1251 {
1252 char tmp[16];

1254 s->rwstate=SSL_NOTHING;
1255 s->s3->fatal_alert = alert_descr;
1256 SSLerr(SSL_F_SSL3_READ_BYTES, SSL_AD_REASON_OFFSET + ale
1257 BIO_snprintf(tmp,sizeof tmp,"%d",alert_descr);
1258 ERR_add_error_data(2,"SSL alert number ",tmp);
1259 s->shutdown|=SSL_RECEIVED_SHUTDOWN;
1260 SSL_CTX_remove_session(s->ctx,s->session);
1261 return(0);
1262 }
1263 else
1264 {
1265 al=SSL_AD_ILLEGAL_PARAMETER;
1266 SSLerr(SSL_F_SSL3_READ_BYTES,SSL_R_UNKNOWN_ALERT_TYPE);
1267 goto f_err;
1268 }

1270 goto start;
1271 }

1273 if (s->shutdown & SSL_SENT_SHUTDOWN) /* but we have not received a shutd
1274 {
1275 s->rwstate=SSL_NOTHING;
1276 rr->length=0;
1277 return(0);
1278 }

1280 if (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC)
1281 {
1282 /* ’Change Cipher Spec’ is just a single byte, so we know
1283 * exactly what the record payload has to look like */
1284 if ((rr->length != 1) || (rr->off != 0) ||
1285 (rr->data[0] != SSL3_MT_CCS))
1286 {
1287 al=SSL_AD_ILLEGAL_PARAMETER;
1288 SSLerr(SSL_F_SSL3_READ_BYTES,SSL_R_BAD_CHANGE_CIPHER_SPE
1289 goto f_err;
1290 }

1292 /* Check we have a cipher to change to */
1293 if (s->s3->tmp.new_cipher == NULL)
1294 {
1295 al=SSL_AD_UNEXPECTED_MESSAGE;
1296 SSLerr(SSL_F_SSL3_READ_BYTES,SSL_R_CCS_RECEIVED_EARLY);
1297 goto f_err;
1298 }

1300 rr->length=0;

1302 if (s->msg_callback)
1303 s->msg_callback(0, s->version, SSL3_RT_CHANGE_CIPHER_SPE

1305 s->s3->change_cipher_spec=1;
1306 if (!ssl3_do_change_cipher_spec(s))
1307 goto err;
1308 else
1309 goto start;
1310 }

1312 /* Unexpected handshake message (Client Hello, or protocol violation) */
1313 if ((s->s3->handshake_fragment_len >= 4) && !s->in_handshake)
1314 {
1315 if (((s->state&SSL_ST_MASK) == SSL_ST_OK) &&

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 21

1316 !(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS))
1317 {
1318 #if 0 /* worked only because C operator preferences are not as expected (and
1319 * because this is not really needed for clients except for detecting
1320 * protocol violations): */
1321 s->state=SSL_ST_BEFORE|(s->server)
1322 ?SSL_ST_ACCEPT
1323 :SSL_ST_CONNECT;
1324 #else
1325 s->state = s->server ? SSL_ST_ACCEPT : SSL_ST_CONNECT;
1326 #endif
1327 s->renegotiate=1;
1328 s->new_session=1;
1329 }
1330 i=s->handshake_func(s);
1331 if (i < 0) return(i);
1332 if (i == 0)
1333 {
1334 SSLerr(SSL_F_SSL3_READ_BYTES,SSL_R_SSL_HANDSHAKE_FAILURE
1335 return(-1);
1336 }

1338 if (!(s->mode & SSL_MODE_AUTO_RETRY))
1339 {
1340 if (s->s3->rbuf.left == 0) /* no read-ahead left? */
1341 {
1342 BIO *bio;
1343 /* In the case where we try to read application
1344 * but we trigger an SSL handshake, we return -1
1345 * the retry option set. Otherwise renegotiatio
1346 * cause nasty problems in the blocking world */
1347 s->rwstate=SSL_READING;
1348 bio=SSL_get_rbio(s);
1349 BIO_clear_retry_flags(bio);
1350 BIO_set_retry_read(bio);
1351 return(-1);
1352 }
1353 }
1354 goto start;
1355 }

1357 switch (rr->type)
1358 {
1359 default:
1360 #ifndef OPENSSL_NO_TLS
1361 /* TLS up to v1.1 just ignores unknown message types:
1362 * TLS v1.2 give an unexpected message alert.
1363 */
1364 if (s->version >= TLS1_VERSION && s->version <= TLS1_1_VERSION)
1365 {
1366 rr->length = 0;
1367 goto start;
1368 }
1369 #endif
1370 al=SSL_AD_UNEXPECTED_MESSAGE;
1371 SSLerr(SSL_F_SSL3_READ_BYTES,SSL_R_UNEXPECTED_RECORD);
1372 goto f_err;
1373 case SSL3_RT_CHANGE_CIPHER_SPEC:
1374 case SSL3_RT_ALERT:
1375 case SSL3_RT_HANDSHAKE:
1376 /* we already handled all of these, with the possible exception
1377 * of SSL3_RT_HANDSHAKE when s->in_handshake is set, but that
1378 * should not happen when type != rr->type */
1379 al=SSL_AD_UNEXPECTED_MESSAGE;
1380 SSLerr(SSL_F_SSL3_READ_BYTES,ERR_R_INTERNAL_ERROR);
1381 goto f_err;

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 22

1382 case SSL3_RT_APPLICATION_DATA:
1383 /* At this point, we were expecting handshake data,
1384 * but have application data. If the library was
1385 * running inside ssl3_read() (i.e. in_read_app_data
1386 * is set) and it makes sense to read application data
1387 * at this point (session renegotiation not yet started),
1388 * we will indulge it.
1389 */
1390 if (s->s3->in_read_app_data &&
1391 (s->s3->total_renegotiations != 0) &&
1392 ((
1393 (s->state & SSL_ST_CONNECT) &&
1394 (s->state >= SSL3_ST_CW_CLNT_HELLO_A) &&
1395 (s->state <= SSL3_ST_CR_SRVR_HELLO_A)
1396) || (
1397 (s->state & SSL_ST_ACCEPT) &&
1398 (s->state <= SSL3_ST_SW_HELLO_REQ_A) &&
1399 (s->state >= SSL3_ST_SR_CLNT_HELLO_A)
1400)
1401))
1402 {
1403 s->s3->in_read_app_data=2;
1404 return(-1);
1405 }
1406 else
1407 {
1408 al=SSL_AD_UNEXPECTED_MESSAGE;
1409 SSLerr(SSL_F_SSL3_READ_BYTES,SSL_R_UNEXPECTED_RECORD);
1410 goto f_err;
1411 }
1412 }
1413 /* not reached */

1415 f_err:
1416 ssl3_send_alert(s,SSL3_AL_FATAL,al);
1417 err:
1418 return(-1);
1419 }

1421 int ssl3_do_change_cipher_spec(SSL *s)
1422 {
1423 int i;
1424 const char *sender;
1425 int slen;

1427 if (s->state & SSL_ST_ACCEPT)
1428 i=SSL3_CHANGE_CIPHER_SERVER_READ;
1429 else
1430 i=SSL3_CHANGE_CIPHER_CLIENT_READ;

1432 if (s->s3->tmp.key_block == NULL)
1433 {
1434 if (s->session == NULL)
1435 {
1436 /* might happen if dtls1_read_bytes() calls this */
1437 SSLerr(SSL_F_SSL3_DO_CHANGE_CIPHER_SPEC,SSL_R_CCS_RECEIV
1438 return (0);
1439 }

1441 s->session->cipher=s->s3->tmp.new_cipher;
1442 if (!s->method->ssl3_enc->setup_key_block(s)) return(0);
1443 }

1445 if (!s->method->ssl3_enc->change_cipher_state(s,i))
1446 return(0);

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 23

1448 /* we have to record the message digest at
1449 * this point so we can get it before we read
1450 * the finished message */
1451 if (s->state & SSL_ST_CONNECT)
1452 {
1453 sender=s->method->ssl3_enc->server_finished_label;
1454 slen=s->method->ssl3_enc->server_finished_label_len;
1455 }
1456 else
1457 {
1458 sender=s->method->ssl3_enc->client_finished_label;
1459 slen=s->method->ssl3_enc->client_finished_label_len;
1460 }

1462 i = s->method->ssl3_enc->final_finish_mac(s,
1463 sender,slen,s->s3->tmp.peer_finish_md);
1464 if (i == 0)
1465 {
1466 SSLerr(SSL_F_SSL3_DO_CHANGE_CIPHER_SPEC, ERR_R_INTERNAL_ERROR);
1467 return 0;
1468 }
1469 s->s3->tmp.peer_finish_md_len = i;

1471 return(1);
1472 }

1474 int ssl3_send_alert(SSL *s, int level, int desc)
1475 {
1476 /* Map tls/ssl alert value to correct one */
1477 desc=s->method->ssl3_enc->alert_value(desc);
1478 if (s->version == SSL3_VERSION && desc == SSL_AD_PROTOCOL_VERSION)
1479 desc = SSL_AD_HANDSHAKE_FAILURE; /* SSL 3.0 does not have protoc
1480 if (desc < 0) return -1;
1481 /* If a fatal one, remove from cache */
1482 if ((level == 2) && (s->session != NULL))
1483 SSL_CTX_remove_session(s->ctx,s->session);

1485 s->s3->alert_dispatch=1;
1486 s->s3->send_alert[0]=level;
1487 s->s3->send_alert[1]=desc;
1488 if (s->s3->wbuf.left == 0) /* data still being written out? */
1489 return s->method->ssl_dispatch_alert(s);
1490 /* else data is still being written out, we will get written
1491 * some time in the future */
1492 return -1;
1493 }

1495 int ssl3_dispatch_alert(SSL *s)
1496 {
1497 int i,j;
1498 void (*cb)(const SSL *ssl,int type,int val)=NULL;

1500 s->s3->alert_dispatch=0;
1501 i = do_ssl3_write(s, SSL3_RT_ALERT, &s->s3->send_alert[0], 2, 0);
1502 if (i <= 0)
1503 {
1504 s->s3->alert_dispatch=1;
1505 }
1506 else
1507 {
1508 /* Alert sent to BIO. If it is important, flush it now.
1509 * If the message does not get sent due to non-blocking IO,
1510 * we will not worry too much. */
1511 if (s->s3->send_alert[0] == SSL3_AL_FATAL)
1512 (void)BIO_flush(s->wbio);

new/usr/src/lib/openssl/libsunw_ssl/s3_pkt.c 24

1514 if (s->msg_callback)
1515 s->msg_callback(1, s->version, SSL3_RT_ALERT, s->s3->sen

1517 if (s->info_callback != NULL)
1518 cb=s->info_callback;
1519 else if (s->ctx->info_callback != NULL)
1520 cb=s->ctx->info_callback;

1522 if (cb != NULL)
1523 {
1524 j=(s->s3->send_alert[0]<<8)|s->s3->send_alert[1];
1525 cb(s,SSL_CB_WRITE_ALERT,j);
1526 }
1527 }
1528 return(i);
1529 }

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 1

**
 91471 Fri May 30 18:32:21 2014
new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/s3_srvr.c -*- mode:C; c-file-style: "eay" -*- */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /* ==
112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
113 *
114 * Portions of the attached software ("Contribution") are developed by
115 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
116 *
117 * The Contribution is licensed pursuant to the OpenSSL open source
118 * license provided above.
119 *
120 * ECC cipher suite support in OpenSSL originally written by
121 * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
122 *
123 */
124 /* ==
125 * Copyright 2005 Nokia. All rights reserved.
126 *
127 * The portions of the attached software ("Contribution") is developed by

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 3

128 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
129 * license.
130 *
131 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
132 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
133 * support (see RFC 4279) to OpenSSL.
134 *
135 * No patent licenses or other rights except those expressly stated in
136 * the OpenSSL open source license shall be deemed granted or received
137 * expressly, by implication, estoppel, or otherwise.
138 *
139 * No assurances are provided by Nokia that the Contribution does not
140 * infringe the patent or other intellectual property rights of any third
141 * party or that the license provides you with all the necessary rights
142 * to make use of the Contribution.
143 *
144 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
145 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
146 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
147 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
148 * OTHERWISE.
149 */

151 #define REUSE_CIPHER_BUG
152 #define NETSCAPE_HANG_BUG

154 #include <stdio.h>
155 #include "ssl_locl.h"
156 #include "kssl_lcl.h"
157 #include <openssl/buffer.h>
158 #include <openssl/rand.h>
159 #include <openssl/objects.h>
160 #include <openssl/evp.h>
161 #include <openssl/hmac.h>
162 #include <openssl/x509.h>
163 #ifndef OPENSSL_NO_DH
164 #include <openssl/dh.h>
165 #endif
166 #include <openssl/bn.h>
167 #ifndef OPENSSL_NO_KRB5
168 #include <openssl/krb5_asn.h>
169 #endif
170 #include <openssl/md5.h>

172 static const SSL_METHOD *ssl3_get_server_method(int ver);

174 static const SSL_METHOD *ssl3_get_server_method(int ver)
175 {
176 if (ver == SSL3_VERSION)
177 return(SSLv3_server_method());
178 else
179 return(NULL);
180 }

182 #ifndef OPENSSL_NO_SRP
183 static int ssl_check_srp_ext_ClientHello(SSL *s, int *al)
184 {
185 int ret = SSL_ERROR_NONE;

187 *al = SSL_AD_UNRECOGNIZED_NAME;

189 if ((s->s3->tmp.new_cipher->algorithm_mkey & SSL_kSRP) &&
190 (s->srp_ctx.TLS_ext_srp_username_callback != NULL))
191 {
192 if(s->srp_ctx.login == NULL)
193 {

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 4

194 /* RFC 5054 says SHOULD reject,
195 we do so if There is no srp login name */
196 ret = SSL3_AL_FATAL;
197 *al = SSL_AD_UNKNOWN_PSK_IDENTITY;
198 }
199 else
200 {
201 ret = SSL_srp_server_param_with_username(s,al);
202 }
203 }
204 return ret;
205 }
206 #endif

208 IMPLEMENT_ssl3_meth_func(SSLv3_server_method,
209 ssl3_accept,
210 ssl_undefined_function,
211 ssl3_get_server_method)

213 int ssl3_accept(SSL *s)
214 {
215 BUF_MEM *buf;
216 unsigned long alg_k,Time=(unsigned long)time(NULL);
217 void (*cb)(const SSL *ssl,int type,int val)=NULL;
218 int ret= -1;
219 int new_state,state,skip=0;

221 RAND_add(&Time,sizeof(Time),0);
222 ERR_clear_error();
223 clear_sys_error();

225 if (s->info_callback != NULL)
226 cb=s->info_callback;
227 else if (s->ctx->info_callback != NULL)
228 cb=s->ctx->info_callback;

230 /* init things to blank */
231 s->in_handshake++;
232 if (!SSL_in_init(s) || SSL_in_before(s)) SSL_clear(s);

234 if (s->cert == NULL)
235 {
236 SSLerr(SSL_F_SSL3_ACCEPT,SSL_R_NO_CERTIFICATE_SET);
237 return(-1);
238 }

240 #ifndef OPENSSL_NO_HEARTBEATS
241 /* If we’re awaiting a HeartbeatResponse, pretend we
242 * already got and don’t await it anymore, because
243 * Heartbeats don’t make sense during handshakes anyway.
244 */
245 if (s->tlsext_hb_pending)
246 {
247 s->tlsext_hb_pending = 0;
248 s->tlsext_hb_seq++;
249 }
250 #endif

252 for (;;)
253 {
254 state=s->state;

256 switch (s->state)
257 {
258 case SSL_ST_RENEGOTIATE:
259 s->renegotiate=1;

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 5

260 /* s->state=SSL_ST_ACCEPT; */

262 case SSL_ST_BEFORE:
263 case SSL_ST_ACCEPT:
264 case SSL_ST_BEFORE|SSL_ST_ACCEPT:
265 case SSL_ST_OK|SSL_ST_ACCEPT:

267 s->server=1;
268 if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_START,1);

270 if ((s->version>>8) != 3)
271 {
272 SSLerr(SSL_F_SSL3_ACCEPT, ERR_R_INTERNAL_ERROR);
273 return -1;
274 }
275 s->type=SSL_ST_ACCEPT;

277 if (s->init_buf == NULL)
278 {
279 if ((buf=BUF_MEM_new()) == NULL)
280 {
281 ret= -1;
282 goto end;
283 }
284 if (!BUF_MEM_grow(buf,SSL3_RT_MAX_PLAIN_LENGTH))
285 {
286 ret= -1;
287 goto end;
288 }
289 s->init_buf=buf;
290 }

292 if (!ssl3_setup_buffers(s))
293 {
294 ret= -1;
295 goto end;
296 }

298 s->init_num=0;
299 s->s3->flags &= ~SSL3_FLAGS_SGC_RESTART_DONE;

301 if (s->state != SSL_ST_RENEGOTIATE)
302 {
303 /* Ok, we now need to push on a buffering BIO so
304 * the output is sent in a way that TCP likes :-
305 */
306 if (!ssl_init_wbio_buffer(s,1)) { ret= -1; goto
307
308 ssl3_init_finished_mac(s);
309 s->state=SSL3_ST_SR_CLNT_HELLO_A;
310 s->ctx->stats.sess_accept++;
311 }
312 else if (!s->s3->send_connection_binding &&
313 !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGO
314 {
315 /* Server attempting to renegotiate with
316 * client that doesn’t support secure
317 * renegotiation.
318 */
319 SSLerr(SSL_F_SSL3_ACCEPT, SSL_R_UNSAFE_LEGACY_RE
320 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_HANDSHAKE
321 ret = -1;
322 goto end;
323 }
324 else
325 {

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 6

326 /* s->state == SSL_ST_RENEGOTIATE,
327 * we will just send a HelloRequest */
328 s->ctx->stats.sess_accept_renegotiate++;
329 s->state=SSL3_ST_SW_HELLO_REQ_A;
330 }
331 break;

333 case SSL3_ST_SW_HELLO_REQ_A:
334 case SSL3_ST_SW_HELLO_REQ_B:

336 s->shutdown=0;
337 ret=ssl3_send_hello_request(s);
338 if (ret <= 0) goto end;
339 s->s3->tmp.next_state=SSL3_ST_SW_HELLO_REQ_C;
340 s->state=SSL3_ST_SW_FLUSH;
341 s->init_num=0;

343 ssl3_init_finished_mac(s);
344 break;

346 case SSL3_ST_SW_HELLO_REQ_C:
347 s->state=SSL_ST_OK;
348 break;

350 case SSL3_ST_SR_CLNT_HELLO_A:
351 case SSL3_ST_SR_CLNT_HELLO_B:
352 case SSL3_ST_SR_CLNT_HELLO_C:

354 s->shutdown=0;
355 if (s->rwstate != SSL_X509_LOOKUP)
356 {
357 ret=ssl3_get_client_hello(s);
358 if (ret <= 0) goto end;
359 }
360 #ifndef OPENSSL_NO_SRP
361 {
362 int al;
363 if ((ret = ssl_check_srp_ext_ClientHello(s,&al)) < 0)
364 {
365 /* callback indicates firther work to be
366 s->rwstate=SSL_X509_LOOKUP;
367 goto end;
368 }
369 if (ret != SSL_ERROR_NONE)
370 {
371 ssl3_send_alert(s,SSL3_AL_FATAL,al);
372 /* This is not really an error but the only mean
373 for a client to detect whether srp is support
374 if (al != TLS1_AD_UNKNOWN_PSK_IDENTITY)
375 SSLerr(SSL_F_SSL3_ACCEPT,SSL_R_CLIENTHEL
376 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
377 ret= -1;
378 goto end;
379 }
380 }
381 #endif
382
383 s->renegotiate = 2;
384 s->state=SSL3_ST_SW_SRVR_HELLO_A;
385 s->init_num=0;
386 break;

388 case SSL3_ST_SW_SRVR_HELLO_A:
389 case SSL3_ST_SW_SRVR_HELLO_B:
390 ret=ssl3_send_server_hello(s);
391 if (ret <= 0) goto end;

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 7

392 #ifndef OPENSSL_NO_TLSEXT
393 if (s->hit)
394 {
395 if (s->tlsext_ticket_expected)
396 s->state=SSL3_ST_SW_SESSION_TICKET_A;
397 else
398 s->state=SSL3_ST_SW_CHANGE_A;
399 }
400 #else
401 if (s->hit)
402 s->state=SSL3_ST_SW_CHANGE_A;
403 #endif
404 else
405 s->state=SSL3_ST_SW_CERT_A;
406 s->init_num=0;
407 break;

409 case SSL3_ST_SW_CERT_A:
410 case SSL3_ST_SW_CERT_B:
411 /* Check if it is anon DH or anon ECDH, */
412 /* normal PSK or KRB5 or SRP */
413 if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL)
414 && !(s->s3->tmp.new_cipher->algorithm_mkey & SSL
415 && !(s->s3->tmp.new_cipher->algorithm_auth & SSL
416 {
417 ret=ssl3_send_server_certificate(s);
418 if (ret <= 0) goto end;
419 #ifndef OPENSSL_NO_TLSEXT
420 if (s->tlsext_status_expected)
421 s->state=SSL3_ST_SW_CERT_STATUS_A;
422 else
423 s->state=SSL3_ST_SW_KEY_EXCH_A;
424 }
425 else
426 {
427 skip = 1;
428 s->state=SSL3_ST_SW_KEY_EXCH_A;
429 }
430 #else
431 }
432 else
433 skip=1;

435 s->state=SSL3_ST_SW_KEY_EXCH_A;
436 #endif
437 s->init_num=0;
438 break;

440 case SSL3_ST_SW_KEY_EXCH_A:
441 case SSL3_ST_SW_KEY_EXCH_B:
442 alg_k = s->s3->tmp.new_cipher->algorithm_mkey;

444 /* clear this, it may get reset by
445 * send_server_key_exchange */
446 if ((s->options & SSL_OP_EPHEMERAL_RSA)
447 #ifndef OPENSSL_NO_KRB5
448 && !(alg_k & SSL_kKRB5)
449 #endif /* OPENSSL_NO_KRB5 */
450)
451 /* option SSL_OP_EPHEMERAL_RSA sends temporary R
452 * even when forbidden by protocol specs
453 * (handshake may fail as clients are not requir
454 * be able to handle this) */
455 s->s3->tmp.use_rsa_tmp=1;
456 else
457 s->s3->tmp.use_rsa_tmp=0;

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 8

460 /* only send if a DH key exchange, fortezza or
461 * RSA but we have a sign only certificate
462 *
463 * PSK: may send PSK identity hints
464 *
465 * For ECC ciphersuites, we send a serverKeyExchange
466 * message only if the cipher suite is either
467 * ECDH-anon or ECDHE. In other cases, the
468 * server certificate contains the server’s
469 * public key for key exchange.
470 */
471 if (s->s3->tmp.use_rsa_tmp
472 /* PSK: send ServerKeyExchange if PSK identity
473 * hint if provided */
474 #ifndef OPENSSL_NO_PSK
475 || ((alg_k & SSL_kPSK) && s->ctx->psk_identity_hint)
476 #endif
477 #ifndef OPENSSL_NO_SRP
478 /* SRP: send ServerKeyExchange */
479 || (alg_k & SSL_kSRP)
480 #endif
481 || (alg_k & (SSL_kDHr|SSL_kDHd|SSL_kEDH))
482 || (alg_k & SSL_kEECDH)
483 || ((alg_k & SSL_kRSA)
484 && (s->cert->pkeys[SSL_PKEY_RSA_ENC].privatekey
485 || (SSL_C_IS_EXPORT(s->s3->tmp.new_cipher)
486 && EVP_PKEY_size(s->cert->pkeys[SSL_PKEY
487)
488)
489)
490)
491 {
492 ret=ssl3_send_server_key_exchange(s);
493 if (ret <= 0) goto end;
494 }
495 else
496 skip=1;

498 s->state=SSL3_ST_SW_CERT_REQ_A;
499 s->init_num=0;
500 break;

502 case SSL3_ST_SW_CERT_REQ_A:
503 case SSL3_ST_SW_CERT_REQ_B:
504 if (/* don’t request cert unless asked for it: */
505 !(s->verify_mode & SSL_VERIFY_PEER) ||
506 /* if SSL_VERIFY_CLIENT_ONCE is set,
507 * don’t request cert during re-negotiation: */
508 ((s->session->peer != NULL) &&
509 (s->verify_mode & SSL_VERIFY_CLIENT_ONCE)) ||
510 /* never request cert in anonymous ciphersuites
511 * (see section "Certificate request" in SSL 3 d
512 * and in RFC 2246): */
513 ((s->s3->tmp.new_cipher->algorithm_auth & SSL_aN
514 /* ... except when the application insists on v
515 * (against the specs, but s3_clnt.c accepts th
516 !(s->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_C
517 /* never request cert in Kerberos ciphersuites
518 (s->s3->tmp.new_cipher->algorithm_auth & SSL_aKR
519 /* With normal PSK Certificates and
520 * Certificate Requests are omitted */
521 || (s->s3->tmp.new_cipher->algorithm_mkey & SSL_
522 {
523 /* no cert request */

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 9

524 skip=1;
525 s->s3->tmp.cert_request=0;
526 s->state=SSL3_ST_SW_SRVR_DONE_A;
527 if (s->s3->handshake_buffer)
528 if (!ssl3_digest_cached_records(s))
529 return -1;
530 }
531 else
532 {
533 s->s3->tmp.cert_request=1;
534 ret=ssl3_send_certificate_request(s);
535 if (ret <= 0) goto end;
536 #ifndef NETSCAPE_HANG_BUG
537 s->state=SSL3_ST_SW_SRVR_DONE_A;
538 #else
539 s->state=SSL3_ST_SW_FLUSH;
540 s->s3->tmp.next_state=SSL3_ST_SR_CERT_A;
541 #endif
542 s->init_num=0;
543 }
544 break;

546 case SSL3_ST_SW_SRVR_DONE_A:
547 case SSL3_ST_SW_SRVR_DONE_B:
548 ret=ssl3_send_server_done(s);
549 if (ret <= 0) goto end;
550 s->s3->tmp.next_state=SSL3_ST_SR_CERT_A;
551 s->state=SSL3_ST_SW_FLUSH;
552 s->init_num=0;
553 break;
554
555 case SSL3_ST_SW_FLUSH:

557 /* This code originally checked to see if
558 * any data was pending using BIO_CTRL_INFO
559 * and then flushed. This caused problems
560 * as documented in PR#1939. The proposed
561 * fix doesn’t completely resolve this issue
562 * as buggy implementations of BIO_CTRL_PENDING
563 * still exist. So instead we just flush
564 * unconditionally.
565 */

567 s->rwstate=SSL_WRITING;
568 if (BIO_flush(s->wbio) <= 0)
569 {
570 ret= -1;
571 goto end;
572 }
573 s->rwstate=SSL_NOTHING;

575 s->state=s->s3->tmp.next_state;
576 break;

578 case SSL3_ST_SR_CERT_A:
579 case SSL3_ST_SR_CERT_B:
580 /* Check for second client hello (MS SGC) */
581 ret = ssl3_check_client_hello(s);
582 if (ret <= 0)
583 goto end;
584 if (ret == 2)
585 s->state = SSL3_ST_SR_CLNT_HELLO_C;
586 else {
587 if (s->s3->tmp.cert_request)
588 {
589 ret=ssl3_get_client_certificate(s);

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 10

590 if (ret <= 0) goto end;
591 }
592 s->init_num=0;
593 s->state=SSL3_ST_SR_KEY_EXCH_A;
594 }
595 break;

597 case SSL3_ST_SR_KEY_EXCH_A:
598 case SSL3_ST_SR_KEY_EXCH_B:
599 ret=ssl3_get_client_key_exchange(s);
600 if (ret <= 0)
601 goto end;
602 if (ret == 2)
603 {
604 /* For the ECDH ciphersuites when
605 * the client sends its ECDH pub key in
606 * a certificate, the CertificateVerify
607 * message is not sent.
608 * Also for GOST ciphersuites when
609 * the client uses its key from the certificate
610 * for key exchange.
611 */
612 #if defined(OPENSSL_NO_TLSEXT) || defined(OPENSSL_NO_NEXTPROTONEG)
613 s->state=SSL3_ST_SR_FINISHED_A;
614 #else
615 if (s->s3->next_proto_neg_seen)
616 s->state=SSL3_ST_SR_NEXT_PROTO_A;
617 else
618 s->state=SSL3_ST_SR_FINISHED_A;
619 #endif
620 s->init_num = 0;
621 }
622 else if (TLS1_get_version(s) >= TLS1_2_VERSION)
623 {
624 s->state=SSL3_ST_SR_CERT_VRFY_A;
625 s->init_num=0;
626 if (!s->session->peer)
627 break;
628 /* For TLS v1.2 freeze the handshake buffer
629 * at this point and digest cached records.
630 */
631 if (!s->s3->handshake_buffer)
632 {
633 SSLerr(SSL_F_SSL3_ACCEPT,ERR_R_INTERNAL_
634 return -1;
635 }
636 s->s3->flags |= TLS1_FLAGS_KEEP_HANDSHAKE;
637 if (!ssl3_digest_cached_records(s))
638 return -1;
639 }
640 else
641 {
642 int offset=0;
643 int dgst_num;

645 s->state=SSL3_ST_SR_CERT_VRFY_A;
646 s->init_num=0;

648 /* We need to get hashes here so if there is
649 * a client cert, it can be verified
650 * FIXME - digest processing for CertificateVeri
651 * should be generalized. But it is next step
652 */
653 if (s->s3->handshake_buffer)
654 if (!ssl3_digest_cached_records(s))
655 return -1;

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 11

656 for (dgst_num=0; dgst_num<SSL_MAX_DIGEST;dgst_nu
657 if (s->s3->handshake_dgst[dgst_num])
658 {
659 int dgst_size;

661 s->method->ssl3_enc->cert_verify
662 dgst_size=EVP_MD_CTX_size(s->s3-
663 if (dgst_size < 0)
664 {
665 ret = -1;
666 goto end;
667 }
668 offset+=dgst_size;
669 }
670 }
671 break;

673 case SSL3_ST_SR_CERT_VRFY_A:
674 case SSL3_ST_SR_CERT_VRFY_B:

676 /* we should decide if we expected this one */
677 ret=ssl3_get_cert_verify(s);
678 if (ret <= 0) goto end;

680 #if defined(OPENSSL_NO_TLSEXT) || defined(OPENSSL_NO_NEXTPROTONEG)
681 s->state=SSL3_ST_SR_FINISHED_A;
682 #else
683 if (s->s3->next_proto_neg_seen)
684 s->state=SSL3_ST_SR_NEXT_PROTO_A;
685 else
686 s->state=SSL3_ST_SR_FINISHED_A;
687 #endif
688 s->init_num=0;
689 break;

691 #if !defined(OPENSSL_NO_TLSEXT) && !defined(OPENSSL_NO_NEXTPROTONEG)
692 case SSL3_ST_SR_NEXT_PROTO_A:
693 case SSL3_ST_SR_NEXT_PROTO_B:
694 ret=ssl3_get_next_proto(s);
695 if (ret <= 0) goto end;
696 s->init_num = 0;
697 s->state=SSL3_ST_SR_FINISHED_A;
698 break;
699 #endif

701 case SSL3_ST_SR_FINISHED_A:
702 case SSL3_ST_SR_FINISHED_B:
703 ret=ssl3_get_finished(s,SSL3_ST_SR_FINISHED_A,
704 SSL3_ST_SR_FINISHED_B);
705 if (ret <= 0) goto end;
706 if (s->hit)
707 s->state=SSL_ST_OK;
708 #ifndef OPENSSL_NO_TLSEXT
709 else if (s->tlsext_ticket_expected)
710 s->state=SSL3_ST_SW_SESSION_TICKET_A;
711 #endif
712 else
713 s->state=SSL3_ST_SW_CHANGE_A;
714 s->init_num=0;
715 break;

717 #ifndef OPENSSL_NO_TLSEXT
718 case SSL3_ST_SW_SESSION_TICKET_A:
719 case SSL3_ST_SW_SESSION_TICKET_B:
720 ret=ssl3_send_newsession_ticket(s);
721 if (ret <= 0) goto end;

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 12

722 s->state=SSL3_ST_SW_CHANGE_A;
723 s->init_num=0;
724 break;

726 case SSL3_ST_SW_CERT_STATUS_A:
727 case SSL3_ST_SW_CERT_STATUS_B:
728 ret=ssl3_send_cert_status(s);
729 if (ret <= 0) goto end;
730 s->state=SSL3_ST_SW_KEY_EXCH_A;
731 s->init_num=0;
732 break;

734 #endif

736 case SSL3_ST_SW_CHANGE_A:
737 case SSL3_ST_SW_CHANGE_B:

739 s->session->cipher=s->s3->tmp.new_cipher;
740 if (!s->method->ssl3_enc->setup_key_block(s))
741 { ret= -1; goto end; }

743 ret=ssl3_send_change_cipher_spec(s,
744 SSL3_ST_SW_CHANGE_A,SSL3_ST_SW_CHANGE_B);

746 if (ret <= 0) goto end;
747 s->state=SSL3_ST_SW_FINISHED_A;
748 s->init_num=0;

750 if (!s->method->ssl3_enc->change_cipher_state(s,
751 SSL3_CHANGE_CIPHER_SERVER_WRITE))
752 {
753 ret= -1;
754 goto end;
755 }

757 break;

759 case SSL3_ST_SW_FINISHED_A:
760 case SSL3_ST_SW_FINISHED_B:
761 ret=ssl3_send_finished(s,
762 SSL3_ST_SW_FINISHED_A,SSL3_ST_SW_FINISHED_B,
763 s->method->ssl3_enc->server_finished_label,
764 s->method->ssl3_enc->server_finished_label_len);
765 if (ret <= 0) goto end;
766 s->state=SSL3_ST_SW_FLUSH;
767 if (s->hit)
768 {
769 #if defined(OPENSSL_NO_TLSEXT) || defined(OPENSSL_NO_NEXTPROTONEG)
770 s->s3->tmp.next_state=SSL3_ST_SR_FINISHED_A;
771 #else
772 if (s->s3->next_proto_neg_seen)
773 s->s3->tmp.next_state=SSL3_ST_SR_NEXT_PR
774 else
775 s->s3->tmp.next_state=SSL3_ST_SR_FINISHE
776 #endif
777 }
778 else
779 s->s3->tmp.next_state=SSL_ST_OK;
780 s->init_num=0;
781 break;

783 case SSL_ST_OK:
784 /* clean a few things up */
785 ssl3_cleanup_key_block(s);

787 BUF_MEM_free(s->init_buf);

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 13

788 s->init_buf=NULL;

790 /* remove buffering on output */
791 ssl_free_wbio_buffer(s);

793 s->init_num=0;

795 if (s->renegotiate == 2) /* skipped if we just sent a He
796 {
797 s->renegotiate=0;
798 s->new_session=0;
799
800 ssl_update_cache(s,SSL_SESS_CACHE_SERVER);
801
802 s->ctx->stats.sess_accept_good++;
803 /* s->server=1; */
804 s->handshake_func=ssl3_accept;

806 if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_DONE,1);
807 }
808
809 ret = 1;
810 goto end;
811 /* break; */

813 default:
814 SSLerr(SSL_F_SSL3_ACCEPT,SSL_R_UNKNOWN_STATE);
815 ret= -1;
816 goto end;
817 /* break; */
818 }
819
820 if (!s->s3->tmp.reuse_message && !skip)
821 {
822 if (s->debug)
823 {
824 if ((ret=BIO_flush(s->wbio)) <= 0)
825 goto end;
826 }

829 if ((cb != NULL) && (s->state != state))
830 {
831 new_state=s->state;
832 s->state=state;
833 cb(s,SSL_CB_ACCEPT_LOOP,1);
834 s->state=new_state;
835 }
836 }
837 skip=0;
838 }
839 end:
840 /* BIO_flush(s->wbio); */

842 s->in_handshake--;
843 if (cb != NULL)
844 cb(s,SSL_CB_ACCEPT_EXIT,ret);
845 return(ret);
846 }

848 int ssl3_send_hello_request(SSL *s)
849 {
850 unsigned char *p;

852 if (s->state == SSL3_ST_SW_HELLO_REQ_A)
853 {

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 14

854 p=(unsigned char *)s->init_buf->data;
855 *(p++)=SSL3_MT_HELLO_REQUEST;
856 *(p++)=0;
857 *(p++)=0;
858 *(p++)=0;

860 s->state=SSL3_ST_SW_HELLO_REQ_B;
861 /* number of bytes to write */
862 s->init_num=4;
863 s->init_off=0;
864 }

866 /* SSL3_ST_SW_HELLO_REQ_B */
867 return(ssl3_do_write(s,SSL3_RT_HANDSHAKE));
868 }

870 int ssl3_check_client_hello(SSL *s)
871 {
872 int ok;
873 long n;

875 /* this function is called when we really expect a Certificate message,
876 * so permit appropriate message length */
877 n=s->method->ssl_get_message(s,
878 SSL3_ST_SR_CERT_A,
879 SSL3_ST_SR_CERT_B,
880 -1,
881 s->max_cert_list,
882 &ok);
883 if (!ok) return((int)n);
884 s->s3->tmp.reuse_message = 1;
885 if (s->s3->tmp.message_type == SSL3_MT_CLIENT_HELLO)
886 {
887 /* We only allow the client to restart the handshake once per
888 * negotiation. */
889 if (s->s3->flags & SSL3_FLAGS_SGC_RESTART_DONE)
890 {
891 SSLerr(SSL_F_SSL3_CHECK_CLIENT_HELLO, SSL_R_MULTIPLE_SGC
892 return -1;
893 }
894 /* Throw away what we have done so far in the current handshake,
895 * which will now be aborted. (A full SSL_clear would be too muc
896 #ifndef OPENSSL_NO_DH
897 if (s->s3->tmp.dh != NULL)
898 {
899 DH_free(s->s3->tmp.dh);
900 s->s3->tmp.dh = NULL;
901 }
902 #endif
903 #ifndef OPENSSL_NO_ECDH
904 if (s->s3->tmp.ecdh != NULL)
905 {
906 EC_KEY_free(s->s3->tmp.ecdh);
907 s->s3->tmp.ecdh = NULL;
908 }
909 #endif
910 s->s3->flags |= SSL3_FLAGS_SGC_RESTART_DONE;
911 return 2;
912 }
913 return 1;
914 }

916 int ssl3_get_client_hello(SSL *s)
917 {
918 int i,j,ok,al,ret= -1;
919 unsigned int cookie_len;

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 15

920 long n;
921 unsigned long id;
922 unsigned char *p,*d,*q;
923 SSL_CIPHER *c;
924 #ifndef OPENSSL_NO_COMP
925 SSL_COMP *comp=NULL;
926 #endif
927 STACK_OF(SSL_CIPHER) *ciphers=NULL;

929 /* We do this so that we will respond with our native type.
930 * If we are TLSv1 and we get SSLv3, we will respond with TLSv1,
931 * This down switching should be handled by a different method.
932 * If we are SSLv3, we will respond with SSLv3, even if prompted with
933 * TLSv1.
934 */
935 if (s->state == SSL3_ST_SR_CLNT_HELLO_A
936)
937 {
938 s->state=SSL3_ST_SR_CLNT_HELLO_B;
939 }
940 s->first_packet=1;
941 n=s->method->ssl_get_message(s,
942 SSL3_ST_SR_CLNT_HELLO_B,
943 SSL3_ST_SR_CLNT_HELLO_C,
944 SSL3_MT_CLIENT_HELLO,
945 SSL3_RT_MAX_PLAIN_LENGTH,
946 &ok);

948 if (!ok) return((int)n);
949 s->first_packet=0;
950 d=p=(unsigned char *)s->init_msg;

952 /* use version from inside client hello, not from record header
953 * (may differ: see RFC 2246, Appendix E, second paragraph) */
954 s->client_version=(((int)p[0])<<8)|(int)p[1];
955 p+=2;

957 if ((s->version == DTLS1_VERSION && s->client_version > s->version) ||
958 (s->version != DTLS1_VERSION && s->client_version < s->version))
959 {
960 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO, SSL_R_WRONG_VERSION_NUMBER);
961 if ((s->client_version>>8) == SSL3_VERSION_MAJOR &&
962 !s->enc_write_ctx && !s->write_hash)
963 {
964 /* similar to ssl3_get_record, send alert using remote v
965 s->version = s->client_version;
966 }
967 al = SSL_AD_PROTOCOL_VERSION;
968 goto f_err;
969 }

971 /* If we require cookies and this ClientHello doesn’t
972 * contain one, just return since we do not want to
973 * allocate any memory yet. So check cookie length...
974 */
975 if (SSL_get_options(s) & SSL_OP_COOKIE_EXCHANGE)
976 {
977 unsigned int session_length, cookie_length;
978
979 session_length = *(p + SSL3_RANDOM_SIZE);
980 cookie_length = *(p + SSL3_RANDOM_SIZE + session_length + 1);

982 if (cookie_length == 0)
983 return 1;
984 }

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 16

986 /* load the client random */
987 memcpy(s->s3->client_random,p,SSL3_RANDOM_SIZE);
988 p+=SSL3_RANDOM_SIZE;

990 /* get the session-id */
991 j= *(p++);

993 s->hit=0;
994 /* Versions before 0.9.7 always allow clients to resume sessions in rene
995 * 0.9.7 and later allow this by default, but optionally ignore resumpti
996 * with flag SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION (it’s a new f
997 * than a change to default behavior so that applications relying on thi
998 * won’t even compile against older library versions).
999 *

1000 * 1.0.1 and later also have a function SSL_renegotiate_abbreviated() to
1001 * renegotiation but not a new session (s->new_session remains unset): f
1002 * this essentially just means that the SSL_OP_NO_SESSION_RESUMPTION_ON_
1003 * setting will be ignored.
1004 */
1005 if ((s->new_session && (s->options & SSL_OP_NO_SESSION_RESUMPTION_ON_REN
1006 {
1007 if (!ssl_get_new_session(s,1))
1008 goto err;
1009 }
1010 else
1011 {
1012 i=ssl_get_prev_session(s, p, j, d + n);
1013 if (i == 1)
1014 { /* previous session */
1015 s->hit=1;
1016 }
1017 else if (i == -1)
1018 goto err;
1019 else /* i == 0 */
1020 {
1021 if (!ssl_get_new_session(s,1))
1022 goto err;
1023 }
1024 }

1026 p+=j;

1028 if (s->version == DTLS1_VERSION || s->version == DTLS1_BAD_VER)
1029 {
1030 /* cookie stuff */
1031 cookie_len = *(p++);

1033 /*
1034 * The ClientHello may contain a cookie even if the
1035 * HelloVerify message has not been sent--make sure that it
1036 * does not cause an overflow.
1037 */
1038 if (cookie_len > sizeof(s->d1->rcvd_cookie))
1039 {
1040 /* too much data */
1041 al = SSL_AD_DECODE_ERROR;
1042 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO, SSL_R_COOKIE_MISMATC
1043 goto f_err;
1044 }

1046 /* verify the cookie if appropriate option is set. */
1047 if ((SSL_get_options(s) & SSL_OP_COOKIE_EXCHANGE) &&
1048 cookie_len > 0)
1049 {
1050 memcpy(s->d1->rcvd_cookie, p, cookie_len);

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 17

1052 if (s->ctx->app_verify_cookie_cb != NULL)
1053 {
1054 if (s->ctx->app_verify_cookie_cb(s, s->d1->rcvd
1055 cookie_len) == 0)
1056 {
1057 al=SSL_AD_HANDSHAKE_FAILURE;
1058 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,
1059 SSL_R_COOKIE_MISMATCH);
1060 goto f_err;
1061 }
1062 /* else cookie verification succeeded */
1063 }
1064 else if (memcmp(s->d1->rcvd_cookie, s->d1->cookie,
1065 s->d1->cookie_len) != 0) /* de
1066 {
1067 al=SSL_AD_HANDSHAKE_FAILURE;
1068 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,
1069 SSL_R_COOKIE_MISMATCH);
1070 goto f_err;
1071 }

1073 ret = 2;
1074 }

1076 p += cookie_len;
1077 }

1079 n2s(p,i);
1080 if ((i == 0) && (j != 0))
1081 {
1082 /* we need a cipher if we are not resuming a session */
1083 al=SSL_AD_ILLEGAL_PARAMETER;
1084 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,SSL_R_NO_CIPHERS_SPECIFIED);
1085 goto f_err;
1086 }
1087 if ((p+i) >= (d+n))
1088 {
1089 /* not enough data */
1090 al=SSL_AD_DECODE_ERROR;
1091 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,SSL_R_LENGTH_MISMATCH);
1092 goto f_err;
1093 }
1094 if ((i > 0) && (ssl_bytes_to_cipher_list(s,p,i,&(ciphers))
1095 == NULL))
1096 {
1097 goto err;
1098 }
1099 p+=i;

1101 /* If it is a hit, check that the cipher is in the list */
1102 if ((s->hit) && (i > 0))
1103 {
1104 j=0;
1105 id=s->session->cipher->id;

1107 #ifdef CIPHER_DEBUG
1108 printf("client sent %d ciphers\n",sk_num(ciphers));
1109 #endif
1110 for (i=0; i<sk_SSL_CIPHER_num(ciphers); i++)
1111 {
1112 c=sk_SSL_CIPHER_value(ciphers,i);
1113 #ifdef CIPHER_DEBUG
1114 printf("client [%2d of %2d]:%s\n",
1115 i,sk_num(ciphers),SSL_CIPHER_get_name(c));
1116 #endif
1117 if (c->id == id)

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 18

1118 {
1119 j=1;
1120 break;
1121 }
1122 }
1123 /* Disabled because it can be used in a ciphersuite downgrade
1124 * attack: CVE-2010-4180.
1125 */
1126 #if 0
1127 if (j == 0 && (s->options & SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_
1128 {
1129 /* Special case as client bug workaround: the previously
1130 * not be in the current list, the client instead might
1131 * continue using a cipher that before wasn’t chosen due
1132 * preferences. We’ll have to reject the connection if
1133 * enabled, though. */
1134 c = sk_SSL_CIPHER_value(ciphers, 0);
1135 if (sk_SSL_CIPHER_find(SSL_get_ciphers(s), c) >= 0)
1136 {
1137 s->session->cipher = c;
1138 j = 1;
1139 }
1140 }
1141 #endif
1142 if (j == 0)
1143 {
1144 /* we need to have the cipher in the cipher
1145 * list if we are asked to reuse it */
1146 al=SSL_AD_ILLEGAL_PARAMETER;
1147 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,SSL_R_REQUIRED_CIPHER
1148 goto f_err;
1149 }
1150 }

1152 /* compression */
1153 i= *(p++);
1154 if ((p+i) > (d+n))
1155 {
1156 /* not enough data */
1157 al=SSL_AD_DECODE_ERROR;
1158 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,SSL_R_LENGTH_MISMATCH);
1159 goto f_err;
1160 }
1161 q=p;
1162 for (j=0; j<i; j++)
1163 {
1164 if (p[j] == 0) break;
1165 }

1167 p+=i;
1168 if (j >= i)
1169 {
1170 /* no compress */
1171 al=SSL_AD_DECODE_ERROR;
1172 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,SSL_R_NO_COMPRESSION_SPECIFIE
1173 goto f_err;
1174 }

1176 #ifndef OPENSSL_NO_TLSEXT
1177 /* TLS extensions*/
1178 if (s->version >= SSL3_VERSION)
1179 {
1180 if (!ssl_parse_clienthello_tlsext(s,&p,d,n, &al))
1181 {
1182 /* ’al’ set by ssl_parse_clienthello_tlsext */
1183 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,SSL_R_PARSE_TLSEXT);

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 19

1184 goto f_err;
1185 }
1186 }
1187 if (ssl_check_clienthello_tlsext_early(s) <= 0) {
1188 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,SSL_R_CLIENTHELLO_TLS
1189 goto err;
1190 }

1192 /* Check if we want to use external pre-shared secret for this
1193 * handshake for not reused session only. We need to generate
1194 * server_random before calling tls_session_secret_cb in order to allow
1195 * SessionTicket processing to use it in key derivation. */
1196 {
1197 unsigned char *pos;
1198 pos=s->s3->server_random;
1199 if (ssl_fill_hello_random(s, 1, pos, SSL3_RANDOM_SIZE) <= 0)
1200 {
1201 al=SSL_AD_INTERNAL_ERROR;
1202 goto f_err;
1203 }
1204 }

1206 if (!s->hit && s->version >= TLS1_VERSION && s->tls_session_secret_cb)
1207 {
1208 SSL_CIPHER *pref_cipher=NULL;

1210 s->session->master_key_length=sizeof(s->session->master_key);
1211 if(s->tls_session_secret_cb(s, s->session->master_key, &s->sessi
1212 ciphers, &pref_cipher, s->tls_session_secret_cb_arg))
1213 {
1214 s->hit=1;
1215 s->session->ciphers=ciphers;
1216 s->session->verify_result=X509_V_OK;

1218 ciphers=NULL;

1220 /* check if some cipher was preferred by call back */
1221 pref_cipher=pref_cipher ? pref_cipher : ssl3_choose_ciph
1222 if (pref_cipher == NULL)
1223 {
1224 al=SSL_AD_HANDSHAKE_FAILURE;
1225 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,SSL_R_NO_SHAR
1226 goto f_err;
1227 }

1229 s->session->cipher=pref_cipher;

1231 if (s->cipher_list)
1232 sk_SSL_CIPHER_free(s->cipher_list);

1234 if (s->cipher_list_by_id)
1235 sk_SSL_CIPHER_free(s->cipher_list_by_id);

1237 s->cipher_list = sk_SSL_CIPHER_dup(s->session->ciphers);
1238 s->cipher_list_by_id = sk_SSL_CIPHER_dup(s->session->cip
1239 }
1240 }
1241 #endif

1243 /* Worst case, we will use the NULL compression, but if we have other
1244 * options, we will now look for them. We have i-1 compression
1245 * algorithms from the client, starting at q. */
1246 s->s3->tmp.new_compression=NULL;
1247 #ifndef OPENSSL_NO_COMP
1248 /* This only happens if we have a cache hit */
1249 if (s->session->compress_meth != 0)

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 20

1250 {
1251 int m, comp_id = s->session->compress_meth;
1252 /* Perform sanity checks on resumed compression algorithm */
1253 /* Can’t disable compression */
1254 if (s->options & SSL_OP_NO_COMPRESSION)
1255 {
1256 al=SSL_AD_INTERNAL_ERROR;
1257 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,SSL_R_INCONSISTENT_CO
1258 goto f_err;
1259 }
1260 /* Look for resumed compression method */
1261 for (m = 0; m < sk_SSL_COMP_num(s->ctx->comp_methods); m++)
1262 {
1263 comp=sk_SSL_COMP_value(s->ctx->comp_methods,m);
1264 if (comp_id == comp->id)
1265 {
1266 s->s3->tmp.new_compression=comp;
1267 break;
1268 }
1269 }
1270 if (s->s3->tmp.new_compression == NULL)
1271 {
1272 al=SSL_AD_INTERNAL_ERROR;
1273 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,SSL_R_INVALID_COMPRES
1274 goto f_err;
1275 }
1276 /* Look for resumed method in compression list */
1277 for (m = 0; m < i; m++)
1278 {
1279 if (q[m] == comp_id)
1280 break;
1281 }
1282 if (m >= i)
1283 {
1284 al=SSL_AD_ILLEGAL_PARAMETER;
1285 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,SSL_R_REQUIRED_COMPRE
1286 goto f_err;
1287 }
1288 }
1289 else if (s->hit)
1290 comp = NULL;
1291 else if (!(s->options & SSL_OP_NO_COMPRESSION) && s->ctx->comp_methods)
1292 { /* See if we have a match */
1293 int m,nn,o,v,done=0;

1295 nn=sk_SSL_COMP_num(s->ctx->comp_methods);
1296 for (m=0; m<nn; m++)
1297 {
1298 comp=sk_SSL_COMP_value(s->ctx->comp_methods,m);
1299 v=comp->id;
1300 for (o=0; o<i; o++)
1301 {
1302 if (v == q[o])
1303 {
1304 done=1;
1305 break;
1306 }
1307 }
1308 if (done) break;
1309 }
1310 if (done)
1311 s->s3->tmp.new_compression=comp;
1312 else
1313 comp=NULL;
1314 }
1315 #else

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 21

1316 /* If compression is disabled we’d better not try to resume a session
1317 * using compression.
1318 */
1319 if (s->session->compress_meth != 0)
1320 {
1321 al=SSL_AD_INTERNAL_ERROR;
1322 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,SSL_R_INCONSISTENT_COMPRESSIO
1323 goto f_err;
1324 }
1325 #endif

1327 /* Given s->session->ciphers and SSL_get_ciphers, we must
1328 * pick a cipher */

1330 if (!s->hit)
1331 {
1332 #ifdef OPENSSL_NO_COMP
1333 s->session->compress_meth=0;
1334 #else
1335 s->session->compress_meth=(comp == NULL)?0:comp->id;
1336 #endif
1337 if (s->session->ciphers != NULL)
1338 sk_SSL_CIPHER_free(s->session->ciphers);
1339 s->session->ciphers=ciphers;
1340 if (ciphers == NULL)
1341 {
1342 al=SSL_AD_ILLEGAL_PARAMETER;
1343 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,SSL_R_NO_CIPHERS_PASS
1344 goto f_err;
1345 }
1346 ciphers=NULL;
1347 c=ssl3_choose_cipher(s,s->session->ciphers,
1348 SSL_get_ciphers(s));

1350 if (c == NULL)
1351 {
1352 al=SSL_AD_HANDSHAKE_FAILURE;
1353 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO,SSL_R_NO_SHARED_CIPHE
1354 goto f_err;
1355 }
1356 s->s3->tmp.new_cipher=c;
1357 }
1358 else
1359 {
1360 /* Session-id reuse */
1361 #ifdef REUSE_CIPHER_BUG
1362 STACK_OF(SSL_CIPHER) *sk;
1363 SSL_CIPHER *nc=NULL;
1364 SSL_CIPHER *ec=NULL;

1366 if (s->options & SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG)
1367 {
1368 sk=s->session->ciphers;
1369 for (i=0; i<sk_SSL_CIPHER_num(sk); i++)
1370 {
1371 c=sk_SSL_CIPHER_value(sk,i);
1372 if (c->algorithm_enc & SSL_eNULL)
1373 nc=c;
1374 if (SSL_C_IS_EXPORT(c))
1375 ec=c;
1376 }
1377 if (nc != NULL)
1378 s->s3->tmp.new_cipher=nc;
1379 else if (ec != NULL)
1380 s->s3->tmp.new_cipher=ec;
1381 else

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 22

1382 s->s3->tmp.new_cipher=s->session->cipher;
1383 }
1384 else
1385 #endif
1386 s->s3->tmp.new_cipher=s->session->cipher;
1387 }

1389 if (TLS1_get_version(s) < TLS1_2_VERSION || !(s->verify_mode & SSL_VERIF
1390 {
1391 if (!ssl3_digest_cached_records(s))
1392 {
1393 al = SSL_AD_INTERNAL_ERROR;
1394 goto f_err;
1395 }
1396 }
1397
1398 /* we now have the following setup.
1399 * client_random
1400 * cipher_list - our prefered list of ciphers
1401 * ciphers - the clients prefered list of ciphers
1402 * compression - basically ignored right now
1403 * ssl version is set - sslv3
1404 * s->session - The ssl session has been setup.
1405 * s->hit - session reuse flag
1406 * s->tmp.new_cipher - the new cipher to use.
1407 */

1409 /* Handles TLS extensions that we couldn’t check earlier */
1410 if (s->version >= SSL3_VERSION)
1411 {
1412 if (ssl_check_clienthello_tlsext_late(s) <= 0)
1413 {
1414 SSLerr(SSL_F_SSL3_GET_CLIENT_HELLO, SSL_R_CLIENTHELLO_TL
1415 goto err;
1416 }
1417 }

1419 if (ret < 0) ret=1;
1420 if (0)
1421 {
1422 f_err:
1423 ssl3_send_alert(s,SSL3_AL_FATAL,al);
1424 }
1425 err:
1426 if (ciphers != NULL) sk_SSL_CIPHER_free(ciphers);
1427 return(ret);
1428 }

1430 int ssl3_send_server_hello(SSL *s)
1431 {
1432 unsigned char *buf;
1433 unsigned char *p,*d;
1434 int i,sl;
1435 unsigned long l;

1437 if (s->state == SSL3_ST_SW_SRVR_HELLO_A)
1438 {
1439 buf=(unsigned char *)s->init_buf->data;
1440 #ifdef OPENSSL_NO_TLSEXT
1441 p=s->s3->server_random;
1442 if (ssl_fill_hello_random(s, 1, p, SSL3_RANDOM_SIZE) <= 0)
1443 return -1;
1444 #endif
1445 /* Do the message type and length last */
1446 d=p= &(buf[4]);

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 23

1448 *(p++)=s->version>>8;
1449 *(p++)=s->version&0xff;

1451 /* Random stuff */
1452 memcpy(p,s->s3->server_random,SSL3_RANDOM_SIZE);
1453 p+=SSL3_RANDOM_SIZE;

1455 /* There are several cases for the session ID to send
1456 * back in the server hello:
1457 * - For session reuse from the session cache,
1458 * we send back the old session ID.
1459 * - If stateless session reuse (using a session ticket)
1460 * is successful, we send back the client’s "session ID"
1461 * (which doesn’t actually identify the session).
1462 * - If it is a new session, we send back the new
1463 * session ID.
1464 * - However, if we want the new session to be single-use,
1465 * we send back a 0-length session ID.
1466 * s->hit is non-zero in either case of session reuse,
1467 * so the following won’t overwrite an ID that we’re supposed
1468 * to send back.
1469 */
1470 if (!(s->ctx->session_cache_mode & SSL_SESS_CACHE_SERVER)
1471 && !s->hit)
1472 s->session->session_id_length=0;

1474 sl=s->session->session_id_length;
1475 if (sl > (int)sizeof(s->session->session_id))
1476 {
1477 SSLerr(SSL_F_SSL3_SEND_SERVER_HELLO, ERR_R_INTERNAL_ERRO
1478 return -1;
1479 }
1480 *(p++)=sl;
1481 memcpy(p,s->session->session_id,sl);
1482 p+=sl;

1484 /* put the cipher */
1485 i=ssl3_put_cipher_by_char(s->s3->tmp.new_cipher,p);
1486 p+=i;

1488 /* put the compression method */
1489 #ifdef OPENSSL_NO_COMP
1490 *(p++)=0;
1491 #else
1492 if (s->s3->tmp.new_compression == NULL)
1493 *(p++)=0;
1494 else
1495 *(p++)=s->s3->tmp.new_compression->id;
1496 #endif
1497 #ifndef OPENSSL_NO_TLSEXT
1498 if (ssl_prepare_serverhello_tlsext(s) <= 0)
1499 {
1500 SSLerr(SSL_F_SSL3_SEND_SERVER_HELLO,SSL_R_SERVERHELLO_TL
1501 return -1;
1502 }
1503 if ((p = ssl_add_serverhello_tlsext(s, p, buf+SSL3_RT_MAX_PLAIN_
1504 {
1505 SSLerr(SSL_F_SSL3_SEND_SERVER_HELLO,ERR_R_INTERNAL_ERROR
1506 return -1;
1507 }
1508 #endif
1509 /* do the header */
1510 l=(p-d);
1511 d=buf;
1512 *(d++)=SSL3_MT_SERVER_HELLO;
1513 l2n3(l,d);

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 24

1515 s->state=SSL3_ST_SW_SRVR_HELLO_B;
1516 /* number of bytes to write */
1517 s->init_num=p-buf;
1518 s->init_off=0;
1519 }

1521 /* SSL3_ST_SW_SRVR_HELLO_B */
1522 return(ssl3_do_write(s,SSL3_RT_HANDSHAKE));
1523 }

1525 int ssl3_send_server_done(SSL *s)
1526 {
1527 unsigned char *p;

1529 if (s->state == SSL3_ST_SW_SRVR_DONE_A)
1530 {
1531 p=(unsigned char *)s->init_buf->data;

1533 /* do the header */
1534 *(p++)=SSL3_MT_SERVER_DONE;
1535 *(p++)=0;
1536 *(p++)=0;
1537 *(p++)=0;

1539 s->state=SSL3_ST_SW_SRVR_DONE_B;
1540 /* number of bytes to write */
1541 s->init_num=4;
1542 s->init_off=0;
1543 }

1545 /* SSL3_ST_SW_SRVR_DONE_B */
1546 return(ssl3_do_write(s,SSL3_RT_HANDSHAKE));
1547 }

1549 int ssl3_send_server_key_exchange(SSL *s)
1550 {
1551 #ifndef OPENSSL_NO_RSA
1552 unsigned char *q;
1553 int j,num;
1554 RSA *rsa;
1555 unsigned char md_buf[MD5_DIGEST_LENGTH+SHA_DIGEST_LENGTH];
1556 unsigned int u;
1557 #endif
1558 #ifndef OPENSSL_NO_DH
1559 DH *dh=NULL,*dhp;
1560 #endif
1561 #ifndef OPENSSL_NO_ECDH
1562 EC_KEY *ecdh=NULL, *ecdhp;
1563 unsigned char *encodedPoint = NULL;
1564 int encodedlen = 0;
1565 int curve_id = 0;
1566 BN_CTX *bn_ctx = NULL;
1567 #endif
1568 EVP_PKEY *pkey;
1569 const EVP_MD *md = NULL;
1570 unsigned char *p,*d;
1571 int al,i;
1572 unsigned long type;
1573 int n;
1574 CERT *cert;
1575 BIGNUM *r[4];
1576 int nr[4],kn;
1577 BUF_MEM *buf;
1578 EVP_MD_CTX md_ctx;

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 25

1580 EVP_MD_CTX_init(&md_ctx);
1581 if (s->state == SSL3_ST_SW_KEY_EXCH_A)
1582 {
1583 type=s->s3->tmp.new_cipher->algorithm_mkey;
1584 cert=s->cert;

1586 buf=s->init_buf;

1588 r[0]=r[1]=r[2]=r[3]=NULL;
1589 n=0;
1590 #ifndef OPENSSL_NO_RSA
1591 if (type & SSL_kRSA)
1592 {
1593 rsa=cert->rsa_tmp;
1594 if ((rsa == NULL) && (s->cert->rsa_tmp_cb != NULL))
1595 {
1596 rsa=s->cert->rsa_tmp_cb(s,
1597 SSL_C_IS_EXPORT(s->s3->tmp.new_cipher),
1598 SSL_C_EXPORT_PKEYLENGTH(s->s3->tmp.new_cip
1599 if(rsa == NULL)
1600 {
1601 al=SSL_AD_HANDSHAKE_FAILURE;
1602 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHAN
1603 goto f_err;
1604 }
1605 RSA_up_ref(rsa);
1606 cert->rsa_tmp=rsa;
1607 }
1608 if (rsa == NULL)
1609 {
1610 al=SSL_AD_HANDSHAKE_FAILURE;
1611 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,SSL_R
1612 goto f_err;
1613 }
1614 r[0]=rsa->n;
1615 r[1]=rsa->e;
1616 s->s3->tmp.use_rsa_tmp=1;
1617 }
1618 else
1619 #endif
1620 #ifndef OPENSSL_NO_DH
1621 if (type & SSL_kEDH)
1622 {
1623 dhp=cert->dh_tmp;
1624 if ((dhp == NULL) && (s->cert->dh_tmp_cb != NULL))
1625 dhp=s->cert->dh_tmp_cb(s,
1626 SSL_C_IS_EXPORT(s->s3->tmp.new_cipher),
1627 SSL_C_EXPORT_PKEYLENGTH(s->s3->tmp.new_cip
1628 if (dhp == NULL)
1629 {
1630 al=SSL_AD_HANDSHAKE_FAILURE;
1631 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,SSL_R
1632 goto f_err;
1633 }

1635 if (s->s3->tmp.dh != NULL)
1636 {
1637 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE, ERR_
1638 goto err;
1639 }

1641 if ((dh=DHparams_dup(dhp)) == NULL)
1642 {
1643 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,ERR_R
1644 goto err;
1645 }

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 26

1647 s->s3->tmp.dh=dh;
1648 if ((dhp->pub_key == NULL ||
1649 dhp->priv_key == NULL ||
1650 (s->options & SSL_OP_SINGLE_DH_USE)))
1651 {
1652 if(!DH_generate_key(dh))
1653 {
1654 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,
1655 ERR_R_DH_LIB);
1656 goto err;
1657 }
1658 }
1659 else
1660 {
1661 dh->pub_key=BN_dup(dhp->pub_key);
1662 dh->priv_key=BN_dup(dhp->priv_key);
1663 if ((dh->pub_key == NULL) ||
1664 (dh->priv_key == NULL))
1665 {
1666 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHAN
1667 goto err;
1668 }
1669 }
1670 r[0]=dh->p;
1671 r[1]=dh->g;
1672 r[2]=dh->pub_key;
1673 }
1674 else
1675 #endif
1676 #ifndef OPENSSL_NO_ECDH
1677 if (type & SSL_kEECDH)
1678 {
1679 const EC_GROUP *group;

1681 ecdhp=cert->ecdh_tmp;
1682 if ((ecdhp == NULL) && (s->cert->ecdh_tmp_cb != NULL))
1683 {
1684 ecdhp=s->cert->ecdh_tmp_cb(s,
1685 SSL_C_IS_EXPORT(s->s3->tmp.new_cipher),
1686 SSL_C_EXPORT_PKEYLENGTH(s->s3->tmp.new_cip
1687 }
1688 if (ecdhp == NULL)
1689 {
1690 al=SSL_AD_HANDSHAKE_FAILURE;
1691 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,SSL_R
1692 goto f_err;
1693 }

1695 if (s->s3->tmp.ecdh != NULL)
1696 {
1697 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE, ERR_
1698 goto err;
1699 }

1701 /* Duplicate the ECDH structure. */
1702 if (ecdhp == NULL)
1703 {
1704 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,ERR_R
1705 goto err;
1706 }
1707 if ((ecdh = EC_KEY_dup(ecdhp)) == NULL)
1708 {
1709 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,ERR_R
1710 goto err;
1711 }

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 27

1713 s->s3->tmp.ecdh=ecdh;
1714 if ((EC_KEY_get0_public_key(ecdh) == NULL) ||
1715 (EC_KEY_get0_private_key(ecdh) == NULL) ||
1716 (s->options & SSL_OP_SINGLE_ECDH_USE))
1717 {
1718 if(!EC_KEY_generate_key(ecdh))
1719 {
1720 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,E
1721 goto err;
1722 }
1723 }

1725 if (((group = EC_KEY_get0_group(ecdh)) == NULL) ||
1726 (EC_KEY_get0_public_key(ecdh) == NULL) ||
1727 (EC_KEY_get0_private_key(ecdh) == NULL))
1728 {
1729 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,ERR_R
1730 goto err;
1731 }

1733 if (SSL_C_IS_EXPORT(s->s3->tmp.new_cipher) &&
1734 (EC_GROUP_get_degree(group) > 163))
1735 {
1736 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,SSL_R
1737 goto err;
1738 }

1740 /* XXX: For now, we only support ephemeral ECDH
1741 * keys over named (not generic) curves. For
1742 * supported named curves, curve_id is non-zero.
1743 */
1744 if ((curve_id =
1745 tls1_ec_nid2curve_id(EC_GROUP_get_curve_name(group))
1746 == 0)
1747 {
1748 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,SSL_R
1749 goto err;
1750 }

1752 /* Encode the public key.
1753 * First check the size of encoding and
1754 * allocate memory accordingly.
1755 */
1756 encodedlen = EC_POINT_point2oct(group,
1757 EC_KEY_get0_public_key(ecdh),
1758 POINT_CONVERSION_UNCOMPRESSED,
1759 NULL, 0, NULL);

1761 encodedPoint = (unsigned char *)
1762 OPENSSL_malloc(encodedlen*sizeof(unsigned char));
1763 bn_ctx = BN_CTX_new();
1764 if ((encodedPoint == NULL) || (bn_ctx == NULL))
1765 {
1766 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,ERR_R
1767 goto err;
1768 }

1771 encodedlen = EC_POINT_point2oct(group,
1772 EC_KEY_get0_public_key(ecdh),
1773 POINT_CONVERSION_UNCOMPRESSED,
1774 encodedPoint, encodedlen, bn_ctx);

1776 if (encodedlen == 0)
1777 {

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 28

1778 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,ERR_R
1779 goto err;
1780 }

1782 BN_CTX_free(bn_ctx); bn_ctx=NULL;

1784 /* XXX: For now, we only support named (not
1785 * generic) curves in ECDH ephemeral key exchanges.
1786 * In this situation, we need four additional bytes
1787 * to encode the entire ServerECDHParams
1788 * structure.
1789 */
1790 n = 4 + encodedlen;

1792 /* We’ll generate the serverKeyExchange message
1793 * explicitly so we can set these to NULLs
1794 */
1795 r[0]=NULL;
1796 r[1]=NULL;
1797 r[2]=NULL;
1798 r[3]=NULL;
1799 }
1800 else
1801 #endif /* !OPENSSL_NO_ECDH */
1802 #ifndef OPENSSL_NO_PSK
1803 if (type & SSL_kPSK)
1804 {
1805 /* reserve size for record length and PSK identi
1806 n+=2+strlen(s->ctx->psk_identity_hint);
1807 }
1808 else
1809 #endif /* !OPENSSL_NO_PSK */
1810 #ifndef OPENSSL_NO_SRP
1811 if (type & SSL_kSRP)
1812 {
1813 if ((s->srp_ctx.N == NULL) ||
1814 (s->srp_ctx.g == NULL) ||
1815 (s->srp_ctx.s == NULL) ||
1816 (s->srp_ctx.B == NULL))
1817 {
1818 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,SSL_R
1819 goto err;
1820 }
1821 r[0]=s->srp_ctx.N;
1822 r[1]=s->srp_ctx.g;
1823 r[2]=s->srp_ctx.s;
1824 r[3]=s->srp_ctx.B;
1825 }
1826 else
1827 #endif
1828 {
1829 al=SSL_AD_HANDSHAKE_FAILURE;
1830 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,SSL_R_UNKNOWN
1831 goto f_err;
1832 }
1833 for (i=0; i < 4 && r[i] != NULL; i++)
1834 {
1835 nr[i]=BN_num_bytes(r[i]);
1836 #ifndef OPENSSL_NO_SRP
1837 if ((i == 2) && (type & SSL_kSRP))
1838 n+=1+nr[i];
1839 else
1840 #endif
1841 n+=2+nr[i];
1842 }

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 29

1844 if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL)
1845 && !(s->s3->tmp.new_cipher->algorithm_mkey & SSL_kPSK))
1846 {
1847 if ((pkey=ssl_get_sign_pkey(s,s->s3->tmp.new_cipher,&md)
1848 == NULL)
1849 {
1850 al=SSL_AD_DECODE_ERROR;
1851 goto f_err;
1852 }
1853 kn=EVP_PKEY_size(pkey);
1854 }
1855 else
1856 {
1857 pkey=NULL;
1858 kn=0;
1859 }

1861 if (!BUF_MEM_grow_clean(buf,n+4+kn))
1862 {
1863 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,ERR_LIB_BUF);
1864 goto err;
1865 }
1866 d=(unsigned char *)s->init_buf->data;
1867 p= &(d[4]);

1869 for (i=0; i < 4 && r[i] != NULL; i++)
1870 {
1871 #ifndef OPENSSL_NO_SRP
1872 if ((i == 2) && (type & SSL_kSRP))
1873 {
1874 *p = nr[i];
1875 p++;
1876 }
1877 else
1878 #endif
1879 s2n(nr[i],p);
1880 BN_bn2bin(r[i],p);
1881 p+=nr[i];
1882 }

1884 #ifndef OPENSSL_NO_ECDH
1885 if (type & SSL_kEECDH)
1886 {
1887 /* XXX: For now, we only support named (not generic) cur
1888 * In this situation, the serverKeyExchange message has:
1889 * [1 byte CurveType], [2 byte CurveName]
1890 * [1 byte length of encoded point], followed by
1891 * the actual encoded point itself
1892 */
1893 *p = NAMED_CURVE_TYPE;
1894 p += 1;
1895 *p = 0;
1896 p += 1;
1897 *p = curve_id;
1898 p += 1;
1899 *p = encodedlen;
1900 p += 1;
1901 memcpy((unsigned char*)p,
1902 (unsigned char *)encodedPoint,
1903 encodedlen);
1904 OPENSSL_free(encodedPoint);
1905 encodedPoint = NULL;
1906 p += encodedlen;
1907 }
1908 #endif

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 30

1910 #ifndef OPENSSL_NO_PSK
1911 if (type & SSL_kPSK)
1912 {
1913 /* copy PSK identity hint */
1914 s2n(strlen(s->ctx->psk_identity_hint), p);
1915 strncpy((char *)p, s->ctx->psk_identity_hint, strlen(s->
1916 p+=strlen(s->ctx->psk_identity_hint);
1917 }
1918 #endif

1920 /* not anonymous */
1921 if (pkey != NULL)
1922 {
1923 /* n is the length of the params, they start at &(d[4])
1924 * and p points to the space at the end. */
1925 #ifndef OPENSSL_NO_RSA
1926 if (pkey->type == EVP_PKEY_RSA
1927 && TLS1_get_version(s) < TLS1_2_VERSION)
1928 {
1929 q=md_buf;
1930 j=0;
1931 for (num=2; num > 0; num--)
1932 {
1933 EVP_MD_CTX_set_flags(&md_ctx,
1934 EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
1935 EVP_DigestInit_ex(&md_ctx,(num == 2)
1936 ?s->ctx->md5:s->ctx->sha1, NULL)
1937 EVP_DigestUpdate(&md_ctx,&(s->s3->client
1938 EVP_DigestUpdate(&md_ctx,&(s->s3->server
1939 EVP_DigestUpdate(&md_ctx,&(d[4]),n);
1940 EVP_DigestFinal_ex(&md_ctx,q,
1941 (unsigned int *)&i);
1942 q+=i;
1943 j+=i;
1944 }
1945 if (RSA_sign(NID_md5_sha1, md_buf, j,
1946 &(p[2]), &u, pkey->pkey.rsa) <= 0)
1947 {
1948 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHAN
1949 goto err;
1950 }
1951 s2n(u,p);
1952 n+=u+2;
1953 }
1954 else
1955 #endif
1956 if (md)
1957 {
1958 /* For TLS1.2 and later send signature
1959 * algorithm */
1960 if (TLS1_get_version(s) >= TLS1_2_VERSION)
1961 {
1962 if (!tls12_get_sigandhash(p, pkey, md))
1963 {
1964 /* Should never happen */
1965 al=SSL_AD_INTERNAL_ERROR;
1966 SSLerr(SSL_F_SSL3_SEND_SERVER_KE
1967 goto f_err;
1968 }
1969 p+=2;
1970 }
1971 #ifdef SSL_DEBUG
1972 fprintf(stderr, "Using hash %s\n",
1973 EVP_MD_name(md));
1974 #endif
1975 EVP_SignInit_ex(&md_ctx, md, NULL);

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 31

1976 EVP_SignUpdate(&md_ctx,&(s->s3->client_random[0]
1977 EVP_SignUpdate(&md_ctx,&(s->s3->server_random[0]
1978 EVP_SignUpdate(&md_ctx,&(d[4]),n);
1979 if (!EVP_SignFinal(&md_ctx,&(p[2]),
1980 (unsigned int *)&i,pkey))
1981 {
1982 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHAN
1983 goto err;
1984 }
1985 s2n(i,p);
1986 n+=i+2;
1987 if (TLS1_get_version(s) >= TLS1_2_VERSION)
1988 n+= 2;
1989 }
1990 else
1991 {
1992 /* Is this error check actually needed? */
1993 al=SSL_AD_HANDSHAKE_FAILURE;
1994 SSLerr(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE,SSL_R
1995 goto f_err;
1996 }
1997 }

1999 *(d++)=SSL3_MT_SERVER_KEY_EXCHANGE;
2000 l2n3(n,d);

2002 /* we should now have things packed up, so lets send
2003 * it off */
2004 s->init_num=n+4;
2005 s->init_off=0;
2006 }

2008 s->state = SSL3_ST_SW_KEY_EXCH_B;
2009 EVP_MD_CTX_cleanup(&md_ctx);
2010 return(ssl3_do_write(s,SSL3_RT_HANDSHAKE));
2011 f_err:
2012 ssl3_send_alert(s,SSL3_AL_FATAL,al);
2013 err:
2014 #ifndef OPENSSL_NO_ECDH
2015 if (encodedPoint != NULL) OPENSSL_free(encodedPoint);
2016 BN_CTX_free(bn_ctx);
2017 #endif
2018 EVP_MD_CTX_cleanup(&md_ctx);
2019 return(-1);
2020 }

2022 int ssl3_send_certificate_request(SSL *s)
2023 {
2024 unsigned char *p,*d;
2025 int i,j,nl,off,n;
2026 STACK_OF(X509_NAME) *sk=NULL;
2027 X509_NAME *name;
2028 BUF_MEM *buf;

2030 if (s->state == SSL3_ST_SW_CERT_REQ_A)
2031 {
2032 buf=s->init_buf;

2034 d=p=(unsigned char *)&(buf->data[4]);

2036 /* get the list of acceptable cert types */
2037 p++;
2038 n=ssl3_get_req_cert_type(s,p);
2039 d[0]=n;
2040 p+=n;
2041 n++;

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 32

2043 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2044 {
2045 nl = tls12_get_req_sig_algs(s, p + 2);
2046 s2n(nl, p);
2047 p += nl + 2;
2048 n += nl + 2;
2049 }

2051 off=n;
2052 p+=2;
2053 n+=2;

2055 sk=SSL_get_client_CA_list(s);
2056 nl=0;
2057 if (sk != NULL)
2058 {
2059 for (i=0; i<sk_X509_NAME_num(sk); i++)
2060 {
2061 name=sk_X509_NAME_value(sk,i);
2062 j=i2d_X509_NAME(name,NULL);
2063 if (!BUF_MEM_grow_clean(buf,4+n+j+2))
2064 {
2065 SSLerr(SSL_F_SSL3_SEND_CERTIFICATE_REQUE
2066 goto err;
2067 }
2068 p=(unsigned char *)&(buf->data[4+n]);
2069 if (!(s->options & SSL_OP_NETSCAPE_CA_DN_BUG))
2070 {
2071 s2n(j,p);
2072 i2d_X509_NAME(name,&p);
2073 n+=2+j;
2074 nl+=2+j;
2075 }
2076 else
2077 {
2078 d=p;
2079 i2d_X509_NAME(name,&p);
2080 j-=2; s2n(j,d); j+=2;
2081 n+=j;
2082 nl+=j;
2083 }
2084 }
2085 }
2086 /* else no CA names */
2087 p=(unsigned char *)&(buf->data[4+off]);
2088 s2n(nl,p);

2090 d=(unsigned char *)buf->data;
2091 *(d++)=SSL3_MT_CERTIFICATE_REQUEST;
2092 l2n3(n,d);

2094 /* we should now have things packed up, so lets send
2095 * it off */

2097 s->init_num=n+4;
2098 s->init_off=0;
2099 #ifdef NETSCAPE_HANG_BUG
2100 p=(unsigned char *)s->init_buf->data + s->init_num;

2102 /* do the header */
2103 *(p++)=SSL3_MT_SERVER_DONE;
2104 *(p++)=0;
2105 *(p++)=0;
2106 *(p++)=0;
2107 s->init_num += 4;

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 33

2108 #endif

2110 s->state = SSL3_ST_SW_CERT_REQ_B;
2111 }

2113 /* SSL3_ST_SW_CERT_REQ_B */
2114 return(ssl3_do_write(s,SSL3_RT_HANDSHAKE));
2115 err:
2116 return(-1);
2117 }

2119 int ssl3_get_client_key_exchange(SSL *s)
2120 {
2121 int i,al,ok;
2122 long n;
2123 unsigned long alg_k;
2124 unsigned char *p;
2125 #ifndef OPENSSL_NO_RSA
2126 RSA *rsa=NULL;
2127 EVP_PKEY *pkey=NULL;
2128 #endif
2129 #ifndef OPENSSL_NO_DH
2130 BIGNUM *pub=NULL;
2131 DH *dh_srvr;
2132 #endif
2133 #ifndef OPENSSL_NO_KRB5
2134 KSSL_ERR kssl_err;
2135 #endif /* OPENSSL_NO_KRB5 */

2137 #ifndef OPENSSL_NO_ECDH
2138 EC_KEY *srvr_ecdh = NULL;
2139 EVP_PKEY *clnt_pub_pkey = NULL;
2140 EC_POINT *clnt_ecpoint = NULL;
2141 BN_CTX *bn_ctx = NULL;
2142 #endif

2144 n=s->method->ssl_get_message(s,
2145 SSL3_ST_SR_KEY_EXCH_A,
2146 SSL3_ST_SR_KEY_EXCH_B,
2147 SSL3_MT_CLIENT_KEY_EXCHANGE,
2148 2048, /* ??? */
2149 &ok);

2151 if (!ok) return((int)n);
2152 p=(unsigned char *)s->init_msg;

2154 alg_k=s->s3->tmp.new_cipher->algorithm_mkey;

2156 #ifndef OPENSSL_NO_RSA
2157 if (alg_k & SSL_kRSA)
2158 {
2159 /* FIX THIS UP EAY EAY EAY EAY */
2160 if (s->s3->tmp.use_rsa_tmp)
2161 {
2162 if ((s->cert != NULL) && (s->cert->rsa_tmp != NULL))
2163 rsa=s->cert->rsa_tmp;
2164 /* Don’t do a callback because rsa_tmp should
2165 * be sent already */
2166 if (rsa == NULL)
2167 {
2168 al=SSL_AD_HANDSHAKE_FAILURE;
2169 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,SSL_R_
2170 goto f_err;

2172 }
2173 }

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 34

2174 else
2175 {
2176 pkey=s->cert->pkeys[SSL_PKEY_RSA_ENC].privatekey;
2177 if ((pkey == NULL) ||
2178 (pkey->type != EVP_PKEY_RSA) ||
2179 (pkey->pkey.rsa == NULL))
2180 {
2181 al=SSL_AD_HANDSHAKE_FAILURE;
2182 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,SSL_R_
2183 goto f_err;
2184 }
2185 rsa=pkey->pkey.rsa;
2186 }

2188 /* TLS and [incidentally] DTLS{0xFEFF} */
2189 if (s->version > SSL3_VERSION && s->version != DTLS1_BAD_VER)
2190 {
2191 n2s(p,i);
2192 if (n != i+2)
2193 {
2194 if (!(s->options & SSL_OP_TLS_D5_BUG))
2195 {
2196 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANG
2197 goto err;
2198 }
2199 else
2200 p-=2;
2201 }
2202 else
2203 n=i;
2204 }

2206 i=RSA_private_decrypt((int)n,p,p,rsa,RSA_PKCS1_PADDING);

2208 al = -1;
2209
2210 if (i != SSL_MAX_MASTER_KEY_LENGTH)
2211 {
2212 al=SSL_AD_DECODE_ERROR;
2213 /* SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,SSL_R_BAD_R
2214 }

2216 if ((al == -1) && !((p[0] == (s->client_version>>8)) && (p[1] ==
2217 {
2218 /* The premaster secret must contain the same version nu
2219 * ClientHello to detect version rollback attacks (stran
2220 * protocol does not offer such protection for DH cipher
2221 * However, buggy clients exist that send the negotiated
2222 * version instead if the server does not support the re
2223 * protocol version.
2224 * If SSL_OP_TLS_ROLLBACK_BUG is set, tolerate such clie
2225 if (!((s->options & SSL_OP_TLS_ROLLBACK_BUG) &&
2226 (p[0] == (s->version>>8)) && (p[1] == (s->versio
2227 {
2228 al=SSL_AD_DECODE_ERROR;
2229 /* SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,SSL

2231 /* The Klima-Pokorny-Rosa extension of Bleichenb
2232 * (http://eprint.iacr.org/2003/052/) exploits t
2233 * number check as a "bad version oracle" -- an
2234 * reveal that the plaintext corresponding to so
2235 * made up by the adversary is properly formatte
2236 * that the version number is wrong. To avoid s
2237 * we should treat this just like any other decr
2238 }
2239 }

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 35

2241 if (al != -1)
2242 {
2243 /* Some decryption failure -- use random value instead a
2244 * against Bleichenbacher’s attack on PKCS #1 v1.5 RSA p
2245 * (see RFC 2246, section 7.4.7.1). */
2246 ERR_clear_error();
2247 i = SSL_MAX_MASTER_KEY_LENGTH;
2248 p[0] = s->client_version >> 8;
2249 p[1] = s->client_version & 0xff;
2250 if (RAND_pseudo_bytes(p+2, i-2) <= 0) /* should be RAND_
2251 goto err;
2252 }
2253
2254 s->session->master_key_length=
2255 s->method->ssl3_enc->generate_master_secret(s,
2256 s->session->master_key,
2257 p,i);
2258 OPENSSL_cleanse(p,i);
2259 }
2260 else
2261 #endif
2262 #ifndef OPENSSL_NO_DH
2263 if (alg_k & (SSL_kEDH|SSL_kDHr|SSL_kDHd))
2264 {
2265 n2s(p,i);
2266 if (n != i+2)
2267 {
2268 if (!(s->options & SSL_OP_SSLEAY_080_CLIENT_DH_BUG))
2269 {
2270 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,SSL_R_
2271 goto err;
2272 }
2273 else
2274 {
2275 p-=2;
2276 i=(int)n;
2277 }
2278 }

2280 if (n == 0L) /* the parameters are in the cert */
2281 {
2282 al=SSL_AD_HANDSHAKE_FAILURE;
2283 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,SSL_R_UNABLE_T
2284 goto f_err;
2285 }
2286 else
2287 {
2288 if (s->s3->tmp.dh == NULL)
2289 {
2290 al=SSL_AD_HANDSHAKE_FAILURE;
2291 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,SSL_R_
2292 goto f_err;
2293 }
2294 else
2295 dh_srvr=s->s3->tmp.dh;
2296 }

2298 pub=BN_bin2bn(p,i,NULL);
2299 if (pub == NULL)
2300 {
2301 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,SSL_R_BN_LIB);
2302 goto err;
2303 }

2305 i=DH_compute_key(p,pub,dh_srvr);

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 36

2307 if (i <= 0)
2308 {
2309 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,ERR_R_DH_LIB);
2310 BN_clear_free(pub);
2311 goto err;
2312 }

2314 DH_free(s->s3->tmp.dh);
2315 s->s3->tmp.dh=NULL;

2317 BN_clear_free(pub);
2318 pub=NULL;
2319 s->session->master_key_length=
2320 s->method->ssl3_enc->generate_master_secret(s,
2321 s->session->master_key,p,i);
2322 OPENSSL_cleanse(p,i);
2323 }
2324 else
2325 #endif
2326 #ifndef OPENSSL_NO_KRB5
2327 if (alg_k & SSL_kKRB5)
2328 {
2329 krb5_error_code krb5rc;
2330 krb5_data enc_ticket;
2331 krb5_data authenticator;
2332 krb5_data enc_pms;
2333 KSSL_CTX *kssl_ctx = s->kssl_ctx;
2334 EVP_CIPHER_CTX ciph_ctx;
2335 const EVP_CIPHER *enc = NULL;
2336 unsigned char iv[EVP_MAX_IV_LENGTH];
2337 unsigned char pms[SSL_MAX_MASTER_KEY_LENGTH
2338 + EVP_MAX_BLOCK_LENGTH];
2339 int padl, outl;
2340 krb5_timestamp authtime = 0;
2341 krb5_ticket_times ttimes;

2343 EVP_CIPHER_CTX_init(&ciph_ctx);

2345 if (!kssl_ctx) kssl_ctx = kssl_ctx_new();

2347 n2s(p,i);
2348 enc_ticket.length = i;

2350 if (n < (long)(enc_ticket.length + 6))
2351 {
2352 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2353 SSL_R_DATA_LENGTH_TOO_LONG);
2354 goto err;
2355 }

2357 enc_ticket.data = (char *)p;
2358 p+=enc_ticket.length;

2360 n2s(p,i);
2361 authenticator.length = i;

2363 if (n < (long)(enc_ticket.length + authenticator.length + 6))
2364 {
2365 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2366 SSL_R_DATA_LENGTH_TOO_LONG);
2367 goto err;
2368 }

2370 authenticator.data = (char *)p;
2371 p+=authenticator.length;

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 37

2373 n2s(p,i);
2374 enc_pms.length = i;
2375 enc_pms.data = (char *)p;
2376 p+=enc_pms.length;

2378 /* Note that the length is checked again below,
2379 ** after decryption
2380 */
2381 if(enc_pms.length > sizeof pms)
2382 {
2383 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2384 SSL_R_DATA_LENGTH_TOO_LONG);
2385 goto err;
2386 }

2388 if (n != (long)(enc_ticket.length + authenticator.length +
2389 enc_pms.length + 6))
2390 {
2391 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2392 SSL_R_DATA_LENGTH_TOO_LONG);
2393 goto err;
2394 }

2396 if ((krb5rc = kssl_sget_tkt(kssl_ctx, &enc_ticket, &ttimes,
2397 &kssl_err)) != 0)
2398 {
2399 #ifdef KSSL_DEBUG
2400 printf("kssl_sget_tkt rtn %d [%d]\n",
2401 krb5rc, kssl_err.reason);
2402 if (kssl_err.text)
2403 printf("kssl_err text= %s\n", kssl_err.text);
2404 #endif /* KSSL_DEBUG */
2405 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2406 kssl_err.reason);
2407 goto err;
2408 }

2410 /* Note: no authenticator is not considered an error,
2411 ** but will return authtime == 0.
2412 */
2413 if ((krb5rc = kssl_check_authent(kssl_ctx, &authenticator,
2414 &authtime, &kssl_err)) != 0)
2415 {
2416 #ifdef KSSL_DEBUG
2417 printf("kssl_check_authent rtn %d [%d]\n",
2418 krb5rc, kssl_err.reason);
2419 if (kssl_err.text)
2420 printf("kssl_err text= %s\n", kssl_err.text);
2421 #endif /* KSSL_DEBUG */
2422 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2423 kssl_err.reason);
2424 goto err;
2425 }

2427 if ((krb5rc = kssl_validate_times(authtime, &ttimes)) != 0)
2428 {
2429 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE, krb5rc);
2430 goto err;
2431 }

2433 #ifdef KSSL_DEBUG
2434 kssl_ctx_show(kssl_ctx);
2435 #endif /* KSSL_DEBUG */

2437 enc = kssl_map_enc(kssl_ctx->enctype);

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 38

2438 if (enc == NULL)
2439 goto err;

2441 memset(iv, 0, sizeof iv); /* per RFC 1510 */

2443 if (!EVP_DecryptInit_ex(&ciph_ctx,enc,NULL,kssl_ctx->key,iv))
2444 {
2445 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2446 SSL_R_DECRYPTION_FAILED);
2447 goto err;
2448 }
2449 if (!EVP_DecryptUpdate(&ciph_ctx, pms,&outl,
2450 (unsigned char *)enc_pms.data, enc_pms.l
2451 {
2452 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2453 SSL_R_DECRYPTION_FAILED);
2454 goto err;
2455 }
2456 if (outl > SSL_MAX_MASTER_KEY_LENGTH)
2457 {
2458 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2459 SSL_R_DATA_LENGTH_TOO_LONG);
2460 goto err;
2461 }
2462 if (!EVP_DecryptFinal_ex(&ciph_ctx,&(pms[outl]),&padl))
2463 {
2464 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2465 SSL_R_DECRYPTION_FAILED);
2466 goto err;
2467 }
2468 outl += padl;
2469 if (outl > SSL_MAX_MASTER_KEY_LENGTH)
2470 {
2471 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2472 SSL_R_DATA_LENGTH_TOO_LONG);
2473 goto err;
2474 }
2475 if (!((pms[0] == (s->client_version>>8)) && (pms[1] == (s->clien
2476 {
2477 /* The premaster secret must contain the same version number
2478 * ClientHello to detect version rollback attacks (strangely
2479 * protocol does not offer such protection for DH ciphersuit
2480 * However, buggy clients exist that send random bytes inste
2481 * the protocol version.
2482 * If SSL_OP_TLS_ROLLBACK_BUG is set, tolerate such clients.
2483 * (Perhaps we should have a separate BUG value for the Kerb
2484 */
2485 if (!(s->options & SSL_OP_TLS_ROLLBACK_BUG))
2486 {
2487 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2488 SSL_AD_DECODE_ERROR);
2489 goto err;
2490 }
2491 }

2493 EVP_CIPHER_CTX_cleanup(&ciph_ctx);

2495 s->session->master_key_length=
2496 s->method->ssl3_enc->generate_master_secret(s,
2497 s->session->master_key, pms, outl);

2499 if (kssl_ctx->client_princ)
2500 {
2501 size_t len = strlen(kssl_ctx->client_princ);
2502 if (len < SSL_MAX_KRB5_PRINCIPAL_LENGTH)
2503 {

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 39

2504 s->session->krb5_client_princ_len = len;
2505 memcpy(s->session->krb5_client_princ,kssl_ctx->c
2506 }
2507 }

2510 /* Was doing kssl_ctx_free() here,
2511 ** but it caused problems for apache.
2512 ** kssl_ctx = kssl_ctx_free(kssl_ctx);
2513 ** if (s->kssl_ctx) s->kssl_ctx = NULL;
2514 */
2515 }
2516 else
2517 #endif /* OPENSSL_NO_KRB5 */

2519 #ifndef OPENSSL_NO_ECDH
2520 if (alg_k & (SSL_kEECDH|SSL_kECDHr|SSL_kECDHe))
2521 {
2522 int ret = 1;
2523 int field_size = 0;
2524 const EC_KEY *tkey;
2525 const EC_GROUP *group;
2526 const BIGNUM *priv_key;

2528 /* initialize structures for server’s ECDH key pair */
2529 if ((srvr_ecdh = EC_KEY_new()) == NULL)
2530 {
2531 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2532 ERR_R_MALLOC_FAILURE);
2533 goto err;
2534 }

2536 /* Let’s get server private key and group information */
2537 if (alg_k & (SSL_kECDHr|SSL_kECDHe))
2538 {
2539 /* use the certificate */
2540 tkey = s->cert->pkeys[SSL_PKEY_ECC].privatekey->pkey.ec;
2541 }
2542 else
2543 {
2544 /* use the ephermeral values we saved when
2545 * generating the ServerKeyExchange msg.
2546 */
2547 tkey = s->s3->tmp.ecdh;
2548 }

2550 group = EC_KEY_get0_group(tkey);
2551 priv_key = EC_KEY_get0_private_key(tkey);

2553 if (!EC_KEY_set_group(srvr_ecdh, group) ||
2554 !EC_KEY_set_private_key(srvr_ecdh, priv_key))
2555 {
2556 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2557 ERR_R_EC_LIB);
2558 goto err;
2559 }

2561 /* Let’s get client’s public key */
2562 if ((clnt_ecpoint = EC_POINT_new(group)) == NULL)
2563 {
2564 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2565 ERR_R_MALLOC_FAILURE);
2566 goto err;
2567 }

2569 if (n == 0L)

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 40

2570 {
2571 /* Client Publickey was in Client Certificate */

2573 if (alg_k & SSL_kEECDH)
2574 {
2575 al=SSL_AD_HANDSHAKE_FAILURE;
2576 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,SSL_R
2577 goto f_err;
2578 }
2579 if (((clnt_pub_pkey=X509_get_pubkey(s->session->peer))
2580 == NULL) ||
2581 (clnt_pub_pkey->type != EVP_PKEY_EC))
2582 {
2583 /* XXX: For now, we do not support client
2584 * authentication using ECDH certificates
2585 * so this branch (n == 0L) of the code is
2586 * never executed. When that support is
2587 * added, we ought to ensure the key
2588 * received in the certificate is
2589 * authorized for key agreement.
2590 * ECDH_compute_key implicitly checks that
2591 * the two ECDH shares are for the same
2592 * group.
2593 */
2594 al=SSL_AD_HANDSHAKE_FAILURE;
2595 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2596 SSL_R_UNABLE_TO_DECODE_ECDH_CERTS);
2597 goto f_err;
2598 }

2600 if (EC_POINT_copy(clnt_ecpoint,
2601 EC_KEY_get0_public_key(clnt_pub_pkey->pkey.ec)) == 0
2602 {
2603 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2604 ERR_R_EC_LIB);
2605 goto err;
2606 }
2607 ret = 2; /* Skip certificate verify processing */
2608 }
2609 else
2610 {
2611 /* Get client’s public key from encoded point
2612 * in the ClientKeyExchange message.
2613 */
2614 if ((bn_ctx = BN_CTX_new()) == NULL)
2615 {
2616 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2617 ERR_R_MALLOC_FAILURE);
2618 goto err;
2619 }

2621 /* Get encoded point length */
2622 i = *p;
2623 p += 1;
2624 if (n != 1 + i)
2625 {
2626 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2627 ERR_R_EC_LIB);
2628 goto err;
2629 }
2630 if (EC_POINT_oct2point(group,
2631 clnt_ecpoint, p, i, bn_ctx) == 0)
2632 {
2633 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2634 ERR_R_EC_LIB);
2635 goto err;

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 41

2636 }
2637 /* p is pointing to somewhere in the buffer
2638 * currently, so set it to the start
2639 */
2640 p=(unsigned char *)s->init_buf->data;
2641 }

2643 /* Compute the shared pre-master secret */
2644 field_size = EC_GROUP_get_degree(group);
2645 if (field_size <= 0)
2646 {
2647 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2648 ERR_R_ECDH_LIB);
2649 goto err;
2650 }
2651 i = ECDH_compute_key(p, (field_size+7)/8, clnt_ecpoint, srvr_ecd
2652 if (i <= 0)
2653 {
2654 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2655 ERR_R_ECDH_LIB);
2656 goto err;
2657 }

2659 EVP_PKEY_free(clnt_pub_pkey);
2660 EC_POINT_free(clnt_ecpoint);
2661 EC_KEY_free(srvr_ecdh);
2662 BN_CTX_free(bn_ctx);
2663 EC_KEY_free(s->s3->tmp.ecdh);
2664 s->s3->tmp.ecdh = NULL;

2666 /* Compute the master secret */
2667 s->session->master_key_length = s->method->ssl3_enc-> \
2668 generate_master_secret(s, s->session->master_key, p, i);
2669
2670 OPENSSL_cleanse(p, i);
2671 return (ret);
2672 }
2673 else
2674 #endif
2675 #ifndef OPENSSL_NO_PSK
2676 if (alg_k & SSL_kPSK)
2677 {
2678 unsigned char *t = NULL;
2679 unsigned char psk_or_pre_ms[PSK_MAX_PSK_LEN*2+4];
2680 unsigned int pre_ms_len = 0, psk_len = 0;
2681 int psk_err = 1;
2682 char tmp_id[PSK_MAX_IDENTITY_LEN+1];

2684 al=SSL_AD_HANDSHAKE_FAILURE;

2686 n2s(p,i);
2687 if (n != i+2)
2688 {
2689 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2690 SSL_R_LENGTH_MISMATCH);
2691 goto psk_err;
2692 }
2693 if (i > PSK_MAX_IDENTITY_LEN)
2694 {
2695 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2696 SSL_R_DATA_LENGTH_TOO_LONG);
2697 goto psk_err;
2698 }
2699 if (s->psk_server_callback == NULL)
2700 {
2701 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 42

2702 SSL_R_PSK_NO_SERVER_CB);
2703 goto psk_err;
2704 }

2706 /* Create guaranteed NULL-terminated identity
2707 * string for the callback */
2708 memcpy(tmp_id, p, i);
2709 memset(tmp_id+i, 0, PSK_MAX_IDENTITY_LEN+1-i);
2710 psk_len = s->psk_server_callback(s, tmp_id,
2711 psk_or_pre_ms, sizeof(psk_or_pre_ms));
2712 OPENSSL_cleanse(tmp_id, PSK_MAX_IDENTITY_LEN+1);

2714 if (psk_len > PSK_MAX_PSK_LEN)
2715 {
2716 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2717 ERR_R_INTERNAL_ERROR);
2718 goto psk_err;
2719 }
2720 else if (psk_len == 0)
2721 {
2722 /* PSK related to the given identity not found *
2723 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2724 SSL_R_PSK_IDENTITY_NOT_FOUND);
2725 al=SSL_AD_UNKNOWN_PSK_IDENTITY;
2726 goto psk_err;
2727 }

2729 /* create PSK pre_master_secret */
2730 pre_ms_len=2+psk_len+2+psk_len;
2731 t = psk_or_pre_ms;
2732 memmove(psk_or_pre_ms+psk_len+4, psk_or_pre_ms, psk_len)
2733 s2n(psk_len, t);
2734 memset(t, 0, psk_len);
2735 t+=psk_len;
2736 s2n(psk_len, t);

2738 if (s->session->psk_identity != NULL)
2739 OPENSSL_free(s->session->psk_identity);
2740 s->session->psk_identity = BUF_strdup((char *)p);
2741 if (s->session->psk_identity == NULL)
2742 {
2743 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2744 ERR_R_MALLOC_FAILURE);
2745 goto psk_err;
2746 }

2748 if (s->session->psk_identity_hint != NULL)
2749 OPENSSL_free(s->session->psk_identity_hint);
2750 s->session->psk_identity_hint = BUF_strdup(s->ctx->psk_i
2751 if (s->ctx->psk_identity_hint != NULL &&
2752 s->session->psk_identity_hint == NULL)
2753 {
2754 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2755 ERR_R_MALLOC_FAILURE);
2756 goto psk_err;
2757 }

2759 s->session->master_key_length=
2760 s->method->ssl3_enc->generate_master_secret(s,
2761 s->session->master_key, psk_or_pre_ms, p
2762 psk_err = 0;
2763 psk_err:
2764 OPENSSL_cleanse(psk_or_pre_ms, sizeof(psk_or_pre_ms));
2765 if (psk_err != 0)
2766 goto f_err;
2767 }

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 43

2768 else
2769 #endif
2770 #ifndef OPENSSL_NO_SRP
2771 if (alg_k & SSL_kSRP)
2772 {
2773 int param_len;

2775 n2s(p,i);
2776 param_len=i+2;
2777 if (param_len > n)
2778 {
2779 al=SSL_AD_DECODE_ERROR;
2780 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,SSL_R_
2781 goto f_err;
2782 }
2783 if (!(s->srp_ctx.A=BN_bin2bn(p,i,NULL)))
2784 {
2785 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,ERR_R_
2786 goto err;
2787 }
2788 if (s->session->srp_username != NULL)
2789 OPENSSL_free(s->session->srp_username);
2790 s->session->srp_username = BUF_strdup(s->srp_ctx.login);
2791 if (s->session->srp_username == NULL)
2792 {
2793 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2794 ERR_R_MALLOC_FAILURE);
2795 goto err;
2796 }

2798 if ((s->session->master_key_length = SRP_generate_server
2799 {
2800 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,ERR_R_
2801 goto err;
2802 }

2804 p+=i;
2805 }
2806 else
2807 #endif /* OPENSSL_NO_SRP */
2808 if (alg_k & SSL_kGOST)
2809 {
2810 int ret = 0;
2811 EVP_PKEY_CTX *pkey_ctx;
2812 EVP_PKEY *client_pub_pkey = NULL, *pk = NULL;
2813 unsigned char premaster_secret[32], *start;
2814 size_t outlen=32, inlen;
2815 unsigned long alg_a;

2817 /* Get our certificate private key*/
2818 alg_a = s->s3->tmp.new_cipher->algorithm_auth;
2819 if (alg_a & SSL_aGOST94)
2820 pk = s->cert->pkeys[SSL_PKEY_GOST94].privatekey;
2821 else if (alg_a & SSL_aGOST01)
2822 pk = s->cert->pkeys[SSL_PKEY_GOST01].privatekey;

2824 pkey_ctx = EVP_PKEY_CTX_new(pk,NULL);
2825 EVP_PKEY_decrypt_init(pkey_ctx);
2826 /* If client certificate is present and is of the same t
2827 * use it for key exchange. Don’t mind errors from
2828 * EVP_PKEY_derive_set_peer, because it is completely va
2829 * a client certificate for authorization only. */
2830 client_pub_pkey = X509_get_pubkey(s->session->peer);
2831 if (client_pub_pkey)
2832 {
2833 if (EVP_PKEY_derive_set_peer(pkey_ctx, client_pu

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 44

2834 ERR_clear_error();
2835 }
2836 /* Decrypt session key */
2837 if ((*p!=(V_ASN1_SEQUENCE| V_ASN1_CONSTRUCTED)))
2838 {
2839 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,SSL_R_
2840 goto gerr;
2841 }
2842 if (p[1] == 0x81)
2843 {
2844 start = p+3;
2845 inlen = p[2];
2846 }
2847 else if (p[1] < 0x80)
2848 {
2849 start = p+2;
2850 inlen = p[1];
2851 }
2852 else
2853 {
2854 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,SSL_R_
2855 goto gerr;
2856 }
2857 if (EVP_PKEY_decrypt(pkey_ctx,premaster_secret,&outlen,s

2859 {
2860 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,SSL_R_
2861 goto gerr;
2862 }
2863 /* Generate master secret */
2864 s->session->master_key_length=
2865 s->method->ssl3_enc->generate_master_secret(s,
2866 s->session->master_key,premaster_secret,
2867 /* Check if pubkey from client certificate was used */
2868 if (EVP_PKEY_CTX_ctrl(pkey_ctx, -1, -1, EVP_PKEY_CTRL_PE
2869 ret = 2;
2870 else
2871 ret = 1;
2872 gerr:
2873 EVP_PKEY_free(client_pub_pkey);
2874 EVP_PKEY_CTX_free(pkey_ctx);
2875 if (ret)
2876 return ret;
2877 else
2878 goto err;
2879 }
2880 else
2881 {
2882 al=SSL_AD_HANDSHAKE_FAILURE;
2883 SSLerr(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE,
2884 SSL_R_UNKNOWN_CIPHER_TYPE);
2885 goto f_err;
2886 }

2888 return(1);
2889 f_err:
2890 ssl3_send_alert(s,SSL3_AL_FATAL,al);
2891 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_E
2892 err:
2893 #endif
2894 #ifndef OPENSSL_NO_ECDH
2895 EVP_PKEY_free(clnt_pub_pkey);
2896 EC_POINT_free(clnt_ecpoint);
2897 if (srvr_ecdh != NULL)
2898 EC_KEY_free(srvr_ecdh);
2899 BN_CTX_free(bn_ctx);

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 45

2900 #endif
2901 return(-1);
2902 }

2904 int ssl3_get_cert_verify(SSL *s)
2905 {
2906 EVP_PKEY *pkey=NULL;
2907 unsigned char *p;
2908 int al,ok,ret=0;
2909 long n;
2910 int type=0,i,j;
2911 X509 *peer;
2912 const EVP_MD *md = NULL;
2913 EVP_MD_CTX mctx;
2914 EVP_MD_CTX_init(&mctx);

2916 n=s->method->ssl_get_message(s,
2917 SSL3_ST_SR_CERT_VRFY_A,
2918 SSL3_ST_SR_CERT_VRFY_B,
2919 -1,
2920 516, /* Enough for 4096 bit RSA key with TLS v1.2 */
2921 &ok);

2923 if (!ok) return((int)n);

2925 if (s->session->peer != NULL)
2926 {
2927 peer=s->session->peer;
2928 pkey=X509_get_pubkey(peer);
2929 type=X509_certificate_type(peer,pkey);
2930 }
2931 else
2932 {
2933 peer=NULL;
2934 pkey=NULL;
2935 }

2937 if (s->s3->tmp.message_type != SSL3_MT_CERTIFICATE_VERIFY)
2938 {
2939 s->s3->tmp.reuse_message=1;
2940 if ((peer != NULL) && (type & EVP_PKT_SIGN))
2941 {
2942 al=SSL_AD_UNEXPECTED_MESSAGE;
2943 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,SSL_R_MISSING_VERIFY_M
2944 goto f_err;
2945 }
2946 ret=1;
2947 goto end;
2948 }

2950 if (peer == NULL)
2951 {
2952 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,SSL_R_NO_CLIENT_CERT_RECEIVED)
2953 al=SSL_AD_UNEXPECTED_MESSAGE;
2954 goto f_err;
2955 }

2957 if (!(type & EVP_PKT_SIGN))
2958 {
2959 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,SSL_R_SIGNATURE_FOR_NON_SIGNIN
2960 al=SSL_AD_ILLEGAL_PARAMETER;
2961 goto f_err;
2962 }

2964 if (s->s3->change_cipher_spec)
2965 {

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 46

2966 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,SSL_R_CCS_RECEIVED_EARLY);
2967 al=SSL_AD_UNEXPECTED_MESSAGE;
2968 goto f_err;
2969 }

2971 /* we now have a signature that we need to verify */
2972 p=(unsigned char *)s->init_msg;
2973 /* Check for broken implementations of GOST ciphersuites */
2974 /* If key is GOST and n is exactly 64, it is bare
2975 * signature without length field */
2976 if (n==64 && (pkey->type==NID_id_GostR3410_94 ||
2977 pkey->type == NID_id_GostR3410_2001))
2978 {
2979 i=64;
2980 }
2981 else
2982 {
2983 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2984 {
2985 int sigalg = tls12_get_sigid(pkey);
2986 /* Should never happen */
2987 if (sigalg == -1)
2988 {
2989 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,ERR_R_INTERNAL
2990 al=SSL_AD_INTERNAL_ERROR;
2991 goto f_err;
2992 }
2993 /* Check key type is consistent with signature */
2994 if (sigalg != (int)p[1])
2995 {
2996 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,SSL_R_WRONG_SI
2997 al=SSL_AD_DECODE_ERROR;
2998 goto f_err;
2999 }
3000 md = tls12_get_hash(p[0]);
3001 if (md == NULL)
3002 {
3003 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,SSL_R_UNKNOWN_
3004 al=SSL_AD_DECODE_ERROR;
3005 goto f_err;
3006 }
3007 #ifdef SSL_DEBUG
3008 fprintf(stderr, "USING TLSv1.2 HASH %s\n", EVP_MD_name(md));
3009 #endif
3010 p += 2;
3011 n -= 2;
3012 }
3013 n2s(p,i);
3014 n-=2;
3015 if (i > n)
3016 {
3017 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,SSL_R_LENGTH_MISMATCH)
3018 al=SSL_AD_DECODE_ERROR;
3019 goto f_err;
3020 }
3021 }
3022 j=EVP_PKEY_size(pkey);
3023 if ((i > j) || (n > j) || (n <= 0))
3024 {
3025 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,SSL_R_WRONG_SIGNATURE_SIZE);
3026 al=SSL_AD_DECODE_ERROR;
3027 goto f_err;
3028 }

3030 if (TLS1_get_version(s) >= TLS1_2_VERSION)
3031 {

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 47

3032 long hdatalen = 0;
3033 void *hdata;
3034 hdatalen = BIO_get_mem_data(s->s3->handshake_buffer, &hdata);
3035 if (hdatalen <= 0)
3036 {
3037 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY, ERR_R_INTERNAL_ERROR)
3038 al=SSL_AD_INTERNAL_ERROR;
3039 goto f_err;
3040 }
3041 #ifdef SSL_DEBUG
3042 fprintf(stderr, "Using TLS 1.2 with client verify alg %s\n",
3043 EVP_MD_name(md));
3044 #endif
3045 if (!EVP_VerifyInit_ex(&mctx, md, NULL)
3046 || !EVP_VerifyUpdate(&mctx, hdata, hdatalen))
3047 {
3048 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY, ERR_R_EVP_LIB);
3049 al=SSL_AD_INTERNAL_ERROR;
3050 goto f_err;
3051 }

3053 if (EVP_VerifyFinal(&mctx, p , i, pkey) <= 0)
3054 {
3055 al=SSL_AD_DECRYPT_ERROR;
3056 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,SSL_R_BAD_SIGNATURE);
3057 goto f_err;
3058 }
3059 }
3060 else
3061 #ifndef OPENSSL_NO_RSA
3062 if (pkey->type == EVP_PKEY_RSA)
3063 {
3064 i=RSA_verify(NID_md5_sha1, s->s3->tmp.cert_verify_md,
3065 MD5_DIGEST_LENGTH+SHA_DIGEST_LENGTH, p, i,
3066 pkey->pkey.rsa);
3067 if (i < 0)
3068 {
3069 al=SSL_AD_DECRYPT_ERROR;
3070 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,SSL_R_BAD_RSA_DECRYPT)
3071 goto f_err;
3072 }
3073 if (i == 0)
3074 {
3075 al=SSL_AD_DECRYPT_ERROR;
3076 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,SSL_R_BAD_RSA_SIGNATUR
3077 goto f_err;
3078 }
3079 }
3080 else
3081 #endif
3082 #ifndef OPENSSL_NO_DSA
3083 if (pkey->type == EVP_PKEY_DSA)
3084 {
3085 j=DSA_verify(pkey->save_type,
3086 &(s->s3->tmp.cert_verify_md[MD5_DIGEST_LENGTH]),
3087 SHA_DIGEST_LENGTH,p,i,pkey->pkey.dsa);
3088 if (j <= 0)
3089 {
3090 /* bad signature */
3091 al=SSL_AD_DECRYPT_ERROR;
3092 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,SSL_R_BAD_DSA_SIGNATUR
3093 goto f_err;
3094 }
3095 }
3096 else
3097 #endif

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 48

3098 #ifndef OPENSSL_NO_ECDSA
3099 if (pkey->type == EVP_PKEY_EC)
3100 {
3101 j=ECDSA_verify(pkey->save_type,
3102 &(s->s3->tmp.cert_verify_md[MD5_DIGEST_LENGTH]),
3103 SHA_DIGEST_LENGTH,p,i,pkey->pkey.ec);
3104 if (j <= 0)
3105 {
3106 /* bad signature */
3107 al=SSL_AD_DECRYPT_ERROR;
3108 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,
3109 SSL_R_BAD_ECDSA_SIGNATURE);
3110 goto f_err;
3111 }
3112 }
3113 else
3114 #endif
3115 if (pkey->type == NID_id_GostR3410_94 || pkey->type == NID_id_GostR3410_
3116 { unsigned char signature[64];
3117 int idx;
3118 EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new(pkey,NULL);
3119 EVP_PKEY_verify_init(pctx);
3120 if (i!=64) {
3121 fprintf(stderr,"GOST signature length is %d",i);
3122 }
3123 for (idx=0;idx<64;idx++) {
3124 signature[63-idx]=p[idx];
3125 }
3126 j=EVP_PKEY_verify(pctx,signature,64,s->s3->tmp.cert_veri
3127 EVP_PKEY_CTX_free(pctx);
3128 if (j<=0)
3129 {
3130 al=SSL_AD_DECRYPT_ERROR;
3131 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,
3132 SSL_R_BAD_ECDSA_SIGNATURE);
3133 goto f_err;
3134 }
3135 }
3136 else
3137 {
3138 SSLerr(SSL_F_SSL3_GET_CERT_VERIFY,ERR_R_INTERNAL_ERROR);
3139 al=SSL_AD_UNSUPPORTED_CERTIFICATE;
3140 goto f_err;
3141 }

3144 ret=1;
3145 if (0)
3146 {
3147 f_err:
3148 ssl3_send_alert(s,SSL3_AL_FATAL,al);
3149 }
3150 end:
3151 if (s->s3->handshake_buffer)
3152 {
3153 BIO_free(s->s3->handshake_buffer);
3154 s->s3->handshake_buffer = NULL;
3155 s->s3->flags &= ~TLS1_FLAGS_KEEP_HANDSHAKE;
3156 }
3157 EVP_MD_CTX_cleanup(&mctx);
3158 EVP_PKEY_free(pkey);
3159 return(ret);
3160 }

3162 int ssl3_get_client_certificate(SSL *s)
3163 {

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 49

3164 int i,ok,al,ret= -1;
3165 X509 *x=NULL;
3166 unsigned long l,nc,llen,n;
3167 const unsigned char *p,*q;
3168 unsigned char *d;
3169 STACK_OF(X509) *sk=NULL;

3171 n=s->method->ssl_get_message(s,
3172 SSL3_ST_SR_CERT_A,
3173 SSL3_ST_SR_CERT_B,
3174 -1,
3175 s->max_cert_list,
3176 &ok);

3178 if (!ok) return((int)n);

3180 if (s->s3->tmp.message_type == SSL3_MT_CLIENT_KEY_EXCHANGE)
3181 {
3182 if ((s->verify_mode & SSL_VERIFY_PEER) &&
3183 (s->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT))
3184 {
3185 SSLerr(SSL_F_SSL3_GET_CLIENT_CERTIFICATE,SSL_R_PEER_DID_
3186 al=SSL_AD_HANDSHAKE_FAILURE;
3187 goto f_err;
3188 }
3189 /* If tls asked for a client cert, the client must return a 0 li
3190 if ((s->version > SSL3_VERSION) && s->s3->tmp.cert_request)
3191 {
3192 SSLerr(SSL_F_SSL3_GET_CLIENT_CERTIFICATE,SSL_R_TLS_PEER_
3193 al=SSL_AD_UNEXPECTED_MESSAGE;
3194 goto f_err;
3195 }
3196 s->s3->tmp.reuse_message=1;
3197 return(1);
3198 }

3200 if (s->s3->tmp.message_type != SSL3_MT_CERTIFICATE)
3201 {
3202 al=SSL_AD_UNEXPECTED_MESSAGE;
3203 SSLerr(SSL_F_SSL3_GET_CLIENT_CERTIFICATE,SSL_R_WRONG_MESSAGE_TYP
3204 goto f_err;
3205 }
3206 p=d=(unsigned char *)s->init_msg;

3208 if ((sk=sk_X509_new_null()) == NULL)
3209 {
3210 SSLerr(SSL_F_SSL3_GET_CLIENT_CERTIFICATE,ERR_R_MALLOC_FAILURE);
3211 goto err;
3212 }

3214 n2l3(p,llen);
3215 if (llen+3 != n)
3216 {
3217 al=SSL_AD_DECODE_ERROR;
3218 SSLerr(SSL_F_SSL3_GET_CLIENT_CERTIFICATE,SSL_R_LENGTH_MISMATCH);
3219 goto f_err;
3220 }
3221 for (nc=0; nc<llen;)
3222 {
3223 n2l3(p,l);
3224 if ((l+nc+3) > llen)
3225 {
3226 al=SSL_AD_DECODE_ERROR;
3227 SSLerr(SSL_F_SSL3_GET_CLIENT_CERTIFICATE,SSL_R_CERT_LENG
3228 goto f_err;
3229 }

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 50

3231 q=p;
3232 x=d2i_X509(NULL,&p,l);
3233 if (x == NULL)
3234 {
3235 SSLerr(SSL_F_SSL3_GET_CLIENT_CERTIFICATE,ERR_R_ASN1_LIB)
3236 goto err;
3237 }
3238 if (p != (q+l))
3239 {
3240 al=SSL_AD_DECODE_ERROR;
3241 SSLerr(SSL_F_SSL3_GET_CLIENT_CERTIFICATE,SSL_R_CERT_LENG
3242 goto f_err;
3243 }
3244 if (!sk_X509_push(sk,x))
3245 {
3246 SSLerr(SSL_F_SSL3_GET_CLIENT_CERTIFICATE,ERR_R_MALLOC_FA
3247 goto err;
3248 }
3249 x=NULL;
3250 nc+=l+3;
3251 }

3253 if (sk_X509_num(sk) <= 0)
3254 {
3255 /* TLS does not mind 0 certs returned */
3256 if (s->version == SSL3_VERSION)
3257 {
3258 al=SSL_AD_HANDSHAKE_FAILURE;
3259 SSLerr(SSL_F_SSL3_GET_CLIENT_CERTIFICATE,SSL_R_NO_CERTIF
3260 goto f_err;
3261 }
3262 /* Fail for TLS only if we required a certificate */
3263 else if ((s->verify_mode & SSL_VERIFY_PEER) &&
3264 (s->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT))
3265 {
3266 SSLerr(SSL_F_SSL3_GET_CLIENT_CERTIFICATE,SSL_R_PEER_DID_
3267 al=SSL_AD_HANDSHAKE_FAILURE;
3268 goto f_err;
3269 }
3270 /* No client certificate so digest cached records */
3271 if (s->s3->handshake_buffer && !ssl3_digest_cached_records(s))
3272 {
3273 al=SSL_AD_INTERNAL_ERROR;
3274 goto f_err;
3275 }
3276 }
3277 else
3278 {
3279 i=ssl_verify_cert_chain(s,sk);
3280 if (i <= 0)
3281 {
3282 al=ssl_verify_alarm_type(s->verify_result);
3283 SSLerr(SSL_F_SSL3_GET_CLIENT_CERTIFICATE,SSL_R_NO_CERTIF
3284 goto f_err;
3285 }
3286 }

3288 if (s->session->peer != NULL) /* This should not be needed */
3289 X509_free(s->session->peer);
3290 s->session->peer=sk_X509_shift(sk);
3291 s->session->verify_result = s->verify_result;

3293 /* With the current implementation, sess_cert will always be NULL
3294 * when we arrive here. */
3295 if (s->session->sess_cert == NULL)

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 51

3296 {
3297 s->session->sess_cert = ssl_sess_cert_new();
3298 if (s->session->sess_cert == NULL)
3299 {
3300 SSLerr(SSL_F_SSL3_GET_CLIENT_CERTIFICATE, ERR_R_MALLOC_F
3301 goto err;
3302 }
3303 }
3304 if (s->session->sess_cert->cert_chain != NULL)
3305 sk_X509_pop_free(s->session->sess_cert->cert_chain, X509_free);
3306 s->session->sess_cert->cert_chain=sk;
3307 /* Inconsistency alert: cert_chain does *not* include the
3308 * peer’s own certificate, while we do include it in s3_clnt.c */

3310 sk=NULL;

3312 ret=1;
3313 if (0)
3314 {
3315 f_err:
3316 ssl3_send_alert(s,SSL3_AL_FATAL,al);
3317 }
3318 err:
3319 if (x != NULL) X509_free(x);
3320 if (sk != NULL) sk_X509_pop_free(sk,X509_free);
3321 return(ret);
3322 }

3324 int ssl3_send_server_certificate(SSL *s)
3325 {
3326 unsigned long l;
3327 X509 *x;

3329 if (s->state == SSL3_ST_SW_CERT_A)
3330 {
3331 x=ssl_get_server_send_cert(s);
3332 if (x == NULL)
3333 {
3334 /* VRS: allow null cert if auth == KRB5 */
3335 if ((s->s3->tmp.new_cipher->algorithm_auth != SSL_aKRB5)
3336 (s->s3->tmp.new_cipher->algorithm_mkey & SSL_kKRB5))
3337 {
3338 SSLerr(SSL_F_SSL3_SEND_SERVER_CERTIFICATE,ERR_R_
3339 return(0);
3340 }
3341 }

3343 l=ssl3_output_cert_chain(s,x);
3344 s->state=SSL3_ST_SW_CERT_B;
3345 s->init_num=(int)l;
3346 s->init_off=0;
3347 }

3349 /* SSL3_ST_SW_CERT_B */
3350 return(ssl3_do_write(s,SSL3_RT_HANDSHAKE));
3351 }

3353 #ifndef OPENSSL_NO_TLSEXT
3354 /* send a new session ticket (not necessarily for a new session) */
3355 int ssl3_send_newsession_ticket(SSL *s)
3356 {
3357 if (s->state == SSL3_ST_SW_SESSION_TICKET_A)
3358 {
3359 unsigned char *p, *senc, *macstart;
3360 const unsigned char *const_p;
3361 int len, slen_full, slen;

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 52

3362 SSL_SESSION *sess;
3363 unsigned int hlen;
3364 EVP_CIPHER_CTX ctx;
3365 HMAC_CTX hctx;
3366 SSL_CTX *tctx = s->initial_ctx;
3367 unsigned char iv[EVP_MAX_IV_LENGTH];
3368 unsigned char key_name[16];

3370 /* get session encoding length */
3371 slen_full = i2d_SSL_SESSION(s->session, NULL);
3372 /* Some length values are 16 bits, so forget it if session is
3373 * too long
3374 */
3375 if (slen_full > 0xFF00)
3376 return -1;
3377 senc = OPENSSL_malloc(slen_full);
3378 if (!senc)
3379 return -1;
3380 p = senc;
3381 i2d_SSL_SESSION(s->session, &p);

3383 /* create a fresh copy (not shared with other threads) to clean
3384 const_p = senc;
3385 sess = d2i_SSL_SESSION(NULL, &const_p, slen_full);
3386 if (sess == NULL)
3387 {
3388 OPENSSL_free(senc);
3389 return -1;
3390 }
3391 sess->session_id_length = 0; /* ID is irrelevant for the ticket

3393 slen = i2d_SSL_SESSION(sess, NULL);
3394 if (slen > slen_full) /* shouldn’t ever happen */
3395 {
3396 OPENSSL_free(senc);
3397 return -1;
3398 }
3399 p = senc;
3400 i2d_SSL_SESSION(sess, &p);
3401 SSL_SESSION_free(sess);

3403 /* Grow buffer if need be: the length calculation is as
3404 * follows 1 (size of message name) + 3 (message length
3405 * bytes) + 4 (ticket lifetime hint) + 2 (ticket length) +
3406 * 16 (key name) + max_iv_len (iv length) +
3407 * session_length + max_enc_block_size (max encrypted session
3408 * length) + max_md_size (HMAC).
3409 */
3410 if (!BUF_MEM_grow(s->init_buf,
3411 26 + EVP_MAX_IV_LENGTH + EVP_MAX_BLOCK_LENGTH +
3412 EVP_MAX_MD_SIZE + slen))
3413 return -1;

3415 p=(unsigned char *)s->init_buf->data;
3416 /* do the header */
3417 *(p++)=SSL3_MT_NEWSESSION_TICKET;
3418 /* Skip message length for now */
3419 p += 3;
3420 EVP_CIPHER_CTX_init(&ctx);
3421 HMAC_CTX_init(&hctx);
3422 /* Initialize HMAC and cipher contexts. If callback present
3423 * it does all the work otherwise use generated values
3424 * from parent ctx.
3425 */
3426 if (tctx->tlsext_ticket_key_cb)
3427 {

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 53

3428 if (tctx->tlsext_ticket_key_cb(s, key_name, iv, &ctx,
3429 &hctx, 1) < 0)
3430 {
3431 OPENSSL_free(senc);
3432 return -1;
3433 }
3434 }
3435 else
3436 {
3437 RAND_pseudo_bytes(iv, 16);
3438 EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL,
3439 tctx->tlsext_tick_aes_key, iv);
3440 HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16,
3441 tlsext_tick_md(), NULL);
3442 memcpy(key_name, tctx->tlsext_tick_key_name, 16);
3443 }

3445 /* Ticket lifetime hint (advisory only):
3446 * We leave this unspecified for resumed session (for simplicity
3447 * and guess that tickets for new sessions will live as long
3448 * as their sessions. */
3449 l2n(s->hit ? 0 : s->session->timeout, p);

3451 /* Skip ticket length for now */
3452 p += 2;
3453 /* Output key name */
3454 macstart = p;
3455 memcpy(p, key_name, 16);
3456 p += 16;
3457 /* output IV */
3458 memcpy(p, iv, EVP_CIPHER_CTX_iv_length(&ctx));
3459 p += EVP_CIPHER_CTX_iv_length(&ctx);
3460 /* Encrypt session data */
3461 EVP_EncryptUpdate(&ctx, p, &len, senc, slen);
3462 p += len;
3463 EVP_EncryptFinal(&ctx, p, &len);
3464 p += len;
3465 EVP_CIPHER_CTX_cleanup(&ctx);

3467 HMAC_Update(&hctx, macstart, p - macstart);
3468 HMAC_Final(&hctx, p, &hlen);
3469 HMAC_CTX_cleanup(&hctx);

3471 p += hlen;
3472 /* Now write out lengths: p points to end of data written */
3473 /* Total length */
3474 len = p - (unsigned char *)s->init_buf->data;
3475 p=(unsigned char *)s->init_buf->data + 1;
3476 l2n3(len - 4, p); /* Message length */
3477 p += 4;
3478 s2n(len - 10, p); /* Ticket length */

3480 /* number of bytes to write */
3481 s->init_num= len;
3482 s->state=SSL3_ST_SW_SESSION_TICKET_B;
3483 s->init_off=0;
3484 OPENSSL_free(senc);
3485 }

3487 /* SSL3_ST_SW_SESSION_TICKET_B */
3488 return(ssl3_do_write(s,SSL3_RT_HANDSHAKE));
3489 }

3491 int ssl3_send_cert_status(SSL *s)
3492 {
3493 if (s->state == SSL3_ST_SW_CERT_STATUS_A)

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 54

3494 {
3495 unsigned char *p;
3496 /* Grow buffer if need be: the length calculation is as
3497 * follows 1 (message type) + 3 (message length) +
3498 * 1 (ocsp response type) + 3 (ocsp response length)
3499 * + (ocsp response)
3500 */
3501 if (!BUF_MEM_grow(s->init_buf, 8 + s->tlsext_ocsp_resplen))
3502 return -1;

3504 p=(unsigned char *)s->init_buf->data;

3506 /* do the header */
3507 *(p++)=SSL3_MT_CERTIFICATE_STATUS;
3508 /* message length */
3509 l2n3(s->tlsext_ocsp_resplen + 4, p);
3510 /* status type */
3511 *(p++)= s->tlsext_status_type;
3512 /* length of OCSP response */
3513 l2n3(s->tlsext_ocsp_resplen, p);
3514 /* actual response */
3515 memcpy(p, s->tlsext_ocsp_resp, s->tlsext_ocsp_resplen);
3516 /* number of bytes to write */
3517 s->init_num = 8 + s->tlsext_ocsp_resplen;
3518 s->state=SSL3_ST_SW_CERT_STATUS_B;
3519 s->init_off = 0;
3520 }

3522 /* SSL3_ST_SW_CERT_STATUS_B */
3523 return(ssl3_do_write(s,SSL3_RT_HANDSHAKE));
3524 }

3526 # ifndef OPENSSL_NO_NEXTPROTONEG
3527 /* ssl3_get_next_proto reads a Next Protocol Negotiation handshake message. It
3528 * sets the next_proto member in s if found */
3529 int ssl3_get_next_proto(SSL *s)
3530 {
3531 int ok;
3532 int proto_len, padding_len;
3533 long n;
3534 const unsigned char *p;

3536 /* Clients cannot send a NextProtocol message if we didn’t see the
3537 * extension in their ClientHello */
3538 if (!s->s3->next_proto_neg_seen)
3539 {
3540 SSLerr(SSL_F_SSL3_GET_NEXT_PROTO,SSL_R_GOT_NEXT_PROTO_WITHOUT_EX
3541 return -1;
3542 }

3544 n=s->method->ssl_get_message(s,
3545 SSL3_ST_SR_NEXT_PROTO_A,
3546 SSL3_ST_SR_NEXT_PROTO_B,
3547 SSL3_MT_NEXT_PROTO,
3548 514, /* See the payload format below */
3549 &ok);

3551 if (!ok)
3552 return((int)n);

3554 /* s->state doesn’t reflect whether ChangeCipherSpec has been received
3555 * in this handshake, but s->s3->change_cipher_spec does (will be reset
3556 * by ssl3_get_finished). */
3557 if (!s->s3->change_cipher_spec)
3558 {
3559 SSLerr(SSL_F_SSL3_GET_NEXT_PROTO,SSL_R_GOT_NEXT_PROTO_BEFORE_A_C

new/usr/src/lib/openssl/libsunw_ssl/s3_srvr.c 55

3560 return -1;
3561 }

3563 if (n < 2)
3564 return 0; /* The body must be > 1 bytes long */

3566 p=(unsigned char *)s->init_msg;

3568 /* The payload looks like:
3569 * uint8 proto_len;
3570 * uint8 proto[proto_len];
3571 * uint8 padding_len;
3572 * uint8 padding[padding_len];
3573 */
3574 proto_len = p[0];
3575 if (proto_len + 2 > s->init_num)
3576 return 0;
3577 padding_len = p[proto_len + 1];
3578 if (proto_len + padding_len + 2 != s->init_num)
3579 return 0;

3581 s->next_proto_negotiated = OPENSSL_malloc(proto_len);
3582 if (!s->next_proto_negotiated)
3583 {
3584 SSLerr(SSL_F_SSL3_GET_NEXT_PROTO,ERR_R_MALLOC_FAILURE);
3585 return 0;
3586 }
3587 memcpy(s->next_proto_negotiated, p + 1, proto_len);
3588 s->next_proto_negotiated_len = proto_len;

3590 return 1;
3591 }
3592 # endif
3593 #endif

new/usr/src/lib/openssl/libsunw_ssl/ssl_algs.c 1

**
 5719 Fri May 30 18:32:21 2014
new/usr/src/lib/openssl/libsunw_ssl/ssl_algs.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/ssl_algs.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/objects.h>
61 #include <openssl/lhash.h>

new/usr/src/lib/openssl/libsunw_ssl/ssl_algs.c 2

62 #include "ssl_locl.h"

64 int SSL_library_init(void)
65 {

67 #ifndef OPENSSL_NO_DES
68 EVP_add_cipher(EVP_des_cbc());
69 EVP_add_cipher(EVP_des_ede3_cbc());
70 #endif
71 #ifndef OPENSSL_NO_IDEA
72 EVP_add_cipher(EVP_idea_cbc());
73 #endif
74 #ifndef OPENSSL_NO_RC4
75 EVP_add_cipher(EVP_rc4());
76 #if !defined(OPENSSL_NO_MD5) && (defined(__x86_64) || defined(__x86_64__))
77 EVP_add_cipher(EVP_rc4_hmac_md5());
78 #endif
79 #endif
80 #ifndef OPENSSL_NO_RC2
81 EVP_add_cipher(EVP_rc2_cbc());
82 /* Not actually used for SSL/TLS but this makes PKCS#12 work
83 * if an application only calls SSL_library_init().
84 */
85 EVP_add_cipher(EVP_rc2_40_cbc());
86 #endif
87 #ifndef OPENSSL_NO_AES
88 EVP_add_cipher(EVP_aes_128_cbc());
89 EVP_add_cipher(EVP_aes_192_cbc());
90 EVP_add_cipher(EVP_aes_256_cbc());
91 EVP_add_cipher(EVP_aes_128_gcm());
92 EVP_add_cipher(EVP_aes_256_gcm());
93 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1)
94 EVP_add_cipher(EVP_aes_128_cbc_hmac_sha1());
95 EVP_add_cipher(EVP_aes_256_cbc_hmac_sha1());
96 #endif

98 #endif
99 #ifndef OPENSSL_NO_CAMELLIA
100 EVP_add_cipher(EVP_camellia_128_cbc());
101 EVP_add_cipher(EVP_camellia_256_cbc());
102 #endif

104 #ifndef OPENSSL_NO_SEED
105 EVP_add_cipher(EVP_seed_cbc());
106 #endif
107
108 #ifndef OPENSSL_NO_MD5
109 EVP_add_digest(EVP_md5());
110 EVP_add_digest_alias(SN_md5,"ssl2-md5");
111 EVP_add_digest_alias(SN_md5,"ssl3-md5");
112 #endif
113 #ifndef OPENSSL_NO_SHA
114 EVP_add_digest(EVP_sha1()); /* RSA with sha1 */
115 EVP_add_digest_alias(SN_sha1,"ssl3-sha1");
116 EVP_add_digest_alias(SN_sha1WithRSAEncryption,SN_sha1WithRSA);
117 #endif
118 #ifndef OPENSSL_NO_SHA256
119 EVP_add_digest(EVP_sha224());
120 EVP_add_digest(EVP_sha256());
121 #endif
122 #ifndef OPENSSL_NO_SHA512
123 EVP_add_digest(EVP_sha384());
124 EVP_add_digest(EVP_sha512());
125 #endif
126 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_DSA)
127 EVP_add_digest(EVP_dss1()); /* DSA with sha1 */

new/usr/src/lib/openssl/libsunw_ssl/ssl_algs.c 3

128 EVP_add_digest_alias(SN_dsaWithSHA1,SN_dsaWithSHA1_2);
129 EVP_add_digest_alias(SN_dsaWithSHA1,"DSS1");
130 EVP_add_digest_alias(SN_dsaWithSHA1,"dss1");
131 #endif
132 #ifndef OPENSSL_NO_ECDSA
133 EVP_add_digest(EVP_ecdsa());
134 #endif
135 /* If you want support for phased out ciphers, add the following */
136 #if 0
137 EVP_add_digest(EVP_sha());
138 EVP_add_digest(EVP_dss());
139 #endif
140 #ifndef OPENSSL_NO_COMP
141 /* This will initialise the built-in compression algorithms.
142 The value returned is a STACK_OF(SSL_COMP), but that can
143 be discarded safely */
144 (void)SSL_COMP_get_compression_methods();
145 #endif
146 /* initialize cipher/digest methods table */
147 ssl_load_ciphers();
148 return(1);
149 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_asn1.c 1

**
 20002 Fri May 30 18:32:21 2014
new/usr/src/lib/openssl/libsunw_ssl/ssl_asn1.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/ssl_asn1.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright 2005 Nokia. All rights reserved.
60 *
61 * The portions of the attached software ("Contribution") is developed by

new/usr/src/lib/openssl/libsunw_ssl/ssl_asn1.c 2

62 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
63 * license.
64 *
65 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
66 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
67 * support (see RFC 4279) to OpenSSL.
68 *
69 * No patent licenses or other rights except those expressly stated in
70 * the OpenSSL open source license shall be deemed granted or received
71 * expressly, by implication, estoppel, or otherwise.
72 *
73 * No assurances are provided by Nokia that the Contribution does not
74 * infringe the patent or other intellectual property rights of any third
75 * party or that the license provides you with all the necessary rights
76 * to make use of the Contribution.
77 *
78 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
79 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
80 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
81 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
82 * OTHERWISE.
83 */

85 #include <stdio.h>
86 #include <stdlib.h>
87 #include "ssl_locl.h"
88 #include <openssl/asn1_mac.h>
89 #include <openssl/objects.h>
90 #include <openssl/x509.h>

92 typedef struct ssl_session_asn1_st
93 {
94 ASN1_INTEGER version;
95 ASN1_INTEGER ssl_version;
96 ASN1_OCTET_STRING cipher;
97 ASN1_OCTET_STRING comp_id;
98 ASN1_OCTET_STRING master_key;
99 ASN1_OCTET_STRING session_id;
100 ASN1_OCTET_STRING session_id_context;
101 ASN1_OCTET_STRING key_arg;
102 #ifndef OPENSSL_NO_KRB5
103 ASN1_OCTET_STRING krb5_princ;
104 #endif /* OPENSSL_NO_KRB5 */
105 ASN1_INTEGER time;
106 ASN1_INTEGER timeout;
107 ASN1_INTEGER verify_result;
108 #ifndef OPENSSL_NO_TLSEXT
109 ASN1_OCTET_STRING tlsext_hostname;
110 ASN1_INTEGER tlsext_tick_lifetime;
111 ASN1_OCTET_STRING tlsext_tick;
112 #endif /* OPENSSL_NO_TLSEXT */
113 #ifndef OPENSSL_NO_PSK
114 ASN1_OCTET_STRING psk_identity_hint;
115 ASN1_OCTET_STRING psk_identity;
116 #endif /* OPENSSL_NO_PSK */
117 #ifndef OPENSSL_NO_SRP
118 ASN1_OCTET_STRING srp_username;
119 #endif /* OPENSSL_NO_SRP */
120 } SSL_SESSION_ASN1;

122 int i2d_SSL_SESSION(SSL_SESSION *in, unsigned char **pp)
123 {
124 #define LSIZE2 (sizeof(long)*2)
125 int v1=0,v2=0,v3=0,v4=0,v5=0,v7=0,v8=0;
126 unsigned char buf[4],ibuf1[LSIZE2],ibuf2[LSIZE2];
127 unsigned char ibuf3[LSIZE2],ibuf4[LSIZE2],ibuf5[LSIZE2];

new/usr/src/lib/openssl/libsunw_ssl/ssl_asn1.c 3

128 #ifndef OPENSSL_NO_TLSEXT
129 int v6=0,v9=0,v10=0;
130 unsigned char ibuf6[LSIZE2];
131 #endif
132 #ifndef OPENSSL_NO_COMP
133 unsigned char cbuf;
134 int v11=0;
135 #endif
136 #ifndef OPENSSL_NO_SRP
137 int v12=0;
138 #endif
139 long l;
140 SSL_SESSION_ASN1 a;
141 M_ASN1_I2D_vars(in);

143 if ((in == NULL) || ((in->cipher == NULL) && (in->cipher_id == 0)))
144 return(0);

146 /* Note that I cheat in the following 2 assignments. I know
147 * that if the ASN1_INTEGER passed to ASN1_INTEGER_set
148 * is > sizeof(long)+1, the buffer will not be re-OPENSSL_malloc()ed.
149 * This is a bit evil but makes things simple, no dynamic allocation
150 * to clean up :-) */
151 a.version.length=LSIZE2;
152 a.version.type=V_ASN1_INTEGER;
153 a.version.data=ibuf1;
154 ASN1_INTEGER_set(&(a.version),SSL_SESSION_ASN1_VERSION);

156 a.ssl_version.length=LSIZE2;
157 a.ssl_version.type=V_ASN1_INTEGER;
158 a.ssl_version.data=ibuf2;
159 ASN1_INTEGER_set(&(a.ssl_version),in->ssl_version);

161 a.cipher.type=V_ASN1_OCTET_STRING;
162 a.cipher.data=buf;

164 if (in->cipher == NULL)
165 l=in->cipher_id;
166 else
167 l=in->cipher->id;
168 if (in->ssl_version == SSL2_VERSION)
169 {
170 a.cipher.length=3;
171 buf[0]=((unsigned char)(l>>16L))&0xff;
172 buf[1]=((unsigned char)(l>> 8L))&0xff;
173 buf[2]=((unsigned char)(l))&0xff;
174 }
175 else
176 {
177 a.cipher.length=2;
178 buf[0]=((unsigned char)(l>>8L))&0xff;
179 buf[1]=((unsigned char)(l))&0xff;
180 }

182 #ifndef OPENSSL_NO_COMP
183 if (in->compress_meth)
184 {
185 cbuf = (unsigned char)in->compress_meth;
186 a.comp_id.length = 1;
187 a.comp_id.type = V_ASN1_OCTET_STRING;
188 a.comp_id.data = &cbuf;
189 }
190 #endif

192 a.master_key.length=in->master_key_length;
193 a.master_key.type=V_ASN1_OCTET_STRING;

new/usr/src/lib/openssl/libsunw_ssl/ssl_asn1.c 4

194 a.master_key.data=in->master_key;

196 a.session_id.length=in->session_id_length;
197 a.session_id.type=V_ASN1_OCTET_STRING;
198 a.session_id.data=in->session_id;

200 a.session_id_context.length=in->sid_ctx_length;
201 a.session_id_context.type=V_ASN1_OCTET_STRING;
202 a.session_id_context.data=in->sid_ctx;

204 a.key_arg.length=in->key_arg_length;
205 a.key_arg.type=V_ASN1_OCTET_STRING;
206 a.key_arg.data=in->key_arg;

208 #ifndef OPENSSL_NO_KRB5
209 if (in->krb5_client_princ_len)
210 {
211 a.krb5_princ.length=in->krb5_client_princ_len;
212 a.krb5_princ.type=V_ASN1_OCTET_STRING;
213 a.krb5_princ.data=in->krb5_client_princ;
214 }
215 #endif /* OPENSSL_NO_KRB5 */

217 if (in->time != 0L)
218 {
219 a.time.length=LSIZE2;
220 a.time.type=V_ASN1_INTEGER;
221 a.time.data=ibuf3;
222 ASN1_INTEGER_set(&(a.time),in->time);
223 }

225 if (in->timeout != 0L)
226 {
227 a.timeout.length=LSIZE2;
228 a.timeout.type=V_ASN1_INTEGER;
229 a.timeout.data=ibuf4;
230 ASN1_INTEGER_set(&(a.timeout),in->timeout);
231 }

233 if (in->verify_result != X509_V_OK)
234 {
235 a.verify_result.length=LSIZE2;
236 a.verify_result.type=V_ASN1_INTEGER;
237 a.verify_result.data=ibuf5;
238 ASN1_INTEGER_set(&a.verify_result,in->verify_result);
239 }

241 #ifndef OPENSSL_NO_TLSEXT
242 if (in->tlsext_hostname)
243 {
244 a.tlsext_hostname.length=strlen(in->tlsext_hostname);
245 a.tlsext_hostname.type=V_ASN1_OCTET_STRING;
246 a.tlsext_hostname.data=(unsigned char *)in->tlsext_hostname;
247 }
248 if (in->tlsext_tick)
249 {
250 a.tlsext_tick.length= in->tlsext_ticklen;
251 a.tlsext_tick.type=V_ASN1_OCTET_STRING;
252 a.tlsext_tick.data=(unsigned char *)in->tlsext_tick;
253 }
254 if (in->tlsext_tick_lifetime_hint > 0)
255 {
256 a.tlsext_tick_lifetime.length=LSIZE2;
257 a.tlsext_tick_lifetime.type=V_ASN1_INTEGER;
258 a.tlsext_tick_lifetime.data=ibuf6;
259 ASN1_INTEGER_set(&a.tlsext_tick_lifetime,in->tlsext_tick_lifetim

new/usr/src/lib/openssl/libsunw_ssl/ssl_asn1.c 5

260 }
261 #endif /* OPENSSL_NO_TLSEXT */
262 #ifndef OPENSSL_NO_PSK
263 if (in->psk_identity_hint)
264 {
265 a.psk_identity_hint.length=strlen(in->psk_identity_hint);
266 a.psk_identity_hint.type=V_ASN1_OCTET_STRING;
267 a.psk_identity_hint.data=(unsigned char *)(in->psk_identity_hint
268 }
269 if (in->psk_identity)
270 {
271 a.psk_identity.length=strlen(in->psk_identity);
272 a.psk_identity.type=V_ASN1_OCTET_STRING;
273 a.psk_identity.data=(unsigned char *)(in->psk_identity);
274 }
275 #endif /* OPENSSL_NO_PSK */
276 #ifndef OPENSSL_NO_SRP
277 if (in->srp_username)
278 {
279 a.srp_username.length=strlen(in->srp_username);
280 a.srp_username.type=V_ASN1_OCTET_STRING;
281 a.srp_username.data=(unsigned char *)(in->srp_username);
282 }
283 #endif /* OPENSSL_NO_SRP */

285 M_ASN1_I2D_len(&(a.version), i2d_ASN1_INTEGER);
286 M_ASN1_I2D_len(&(a.ssl_version), i2d_ASN1_INTEGER);
287 M_ASN1_I2D_len(&(a.cipher), i2d_ASN1_OCTET_STRING);
288 M_ASN1_I2D_len(&(a.session_id), i2d_ASN1_OCTET_STRING);
289 M_ASN1_I2D_len(&(a.master_key), i2d_ASN1_OCTET_STRING);
290 #ifndef OPENSSL_NO_KRB5
291 if (in->krb5_client_princ_len)
292 M_ASN1_I2D_len(&(a.krb5_princ), i2d_ASN1_OCTET_STRING);
293 #endif /* OPENSSL_NO_KRB5 */
294 if (in->key_arg_length > 0)
295 M_ASN1_I2D_len_IMP_opt(&(a.key_arg),i2d_ASN1_OCTET_STRING);
296 if (in->time != 0L)
297 M_ASN1_I2D_len_EXP_opt(&(a.time),i2d_ASN1_INTEGER,1,v1);
298 if (in->timeout != 0L)
299 M_ASN1_I2D_len_EXP_opt(&(a.timeout),i2d_ASN1_INTEGER,2,v2);
300 if (in->peer != NULL)
301 M_ASN1_I2D_len_EXP_opt(in->peer,i2d_X509,3,v3);
302 M_ASN1_I2D_len_EXP_opt(&a.session_id_context,i2d_ASN1_OCTET_STRING,4,v4)
303 if (in->verify_result != X509_V_OK)
304 M_ASN1_I2D_len_EXP_opt(&(a.verify_result),i2d_ASN1_INTEGER,5,v5)

306 #ifndef OPENSSL_NO_TLSEXT
307 if (in->tlsext_tick_lifetime_hint > 0)
308 M_ASN1_I2D_len_EXP_opt(&a.tlsext_tick_lifetime, i2d_ASN1_INTEGER
309 if (in->tlsext_tick)
310 M_ASN1_I2D_len_EXP_opt(&(a.tlsext_tick), i2d_ASN1_OCTET_STRING,1
311 if (in->tlsext_hostname)
312 M_ASN1_I2D_len_EXP_opt(&(a.tlsext_hostname), i2d_ASN1_OCTET_STRI
313 #ifndef OPENSSL_NO_COMP
314 if (in->compress_meth)
315 M_ASN1_I2D_len_EXP_opt(&(a.comp_id), i2d_ASN1_OCTET_STRING,11,v1
316 #endif
317 #endif /* OPENSSL_NO_TLSEXT */
318 #ifndef OPENSSL_NO_PSK
319 if (in->psk_identity_hint)
320 M_ASN1_I2D_len_EXP_opt(&(a.psk_identity_hint), i2d_ASN1_OCTET_ST
321 if (in->psk_identity)
322 M_ASN1_I2D_len_EXP_opt(&(a.psk_identity), i2d_ASN1_OCTET_STRING,
323 #endif /* OPENSSL_NO_PSK */
324 #ifndef OPENSSL_NO_SRP
325 if (in->srp_username)

new/usr/src/lib/openssl/libsunw_ssl/ssl_asn1.c 6

326 M_ASN1_I2D_len_EXP_opt(&(a.srp_username), i2d_ASN1_OCTET_STRING,
327 #endif /* OPENSSL_NO_SRP */

329 M_ASN1_I2D_seq_total();

331 M_ASN1_I2D_put(&(a.version), i2d_ASN1_INTEGER);
332 M_ASN1_I2D_put(&(a.ssl_version), i2d_ASN1_INTEGER);
333 M_ASN1_I2D_put(&(a.cipher), i2d_ASN1_OCTET_STRING);
334 M_ASN1_I2D_put(&(a.session_id), i2d_ASN1_OCTET_STRING);
335 M_ASN1_I2D_put(&(a.master_key), i2d_ASN1_OCTET_STRING);
336 #ifndef OPENSSL_NO_KRB5
337 if (in->krb5_client_princ_len)
338 M_ASN1_I2D_put(&(a.krb5_princ), i2d_ASN1_OCTET_STRING);
339 #endif /* OPENSSL_NO_KRB5 */
340 if (in->key_arg_length > 0)
341 M_ASN1_I2D_put_IMP_opt(&(a.key_arg),i2d_ASN1_OCTET_STRING,0);
342 if (in->time != 0L)
343 M_ASN1_I2D_put_EXP_opt(&(a.time),i2d_ASN1_INTEGER,1,v1);
344 if (in->timeout != 0L)
345 M_ASN1_I2D_put_EXP_opt(&(a.timeout),i2d_ASN1_INTEGER,2,v2);
346 if (in->peer != NULL)
347 M_ASN1_I2D_put_EXP_opt(in->peer,i2d_X509,3,v3);
348 M_ASN1_I2D_put_EXP_opt(&a.session_id_context,i2d_ASN1_OCTET_STRING,4,
349 v4);
350 if (in->verify_result != X509_V_OK)
351 M_ASN1_I2D_put_EXP_opt(&a.verify_result,i2d_ASN1_INTEGER,5,v5);
352 #ifndef OPENSSL_NO_TLSEXT
353 if (in->tlsext_hostname)
354 M_ASN1_I2D_put_EXP_opt(&(a.tlsext_hostname), i2d_ASN1_OCTET_STRI
355 #endif /* OPENSSL_NO_TLSEXT */
356 #ifndef OPENSSL_NO_PSK
357 if (in->psk_identity_hint)
358 M_ASN1_I2D_put_EXP_opt(&(a.psk_identity_hint), i2d_ASN1_OCTET_ST
359 if (in->psk_identity)
360 M_ASN1_I2D_put_EXP_opt(&(a.psk_identity), i2d_ASN1_OCTET_STRING,
361 #endif /* OPENSSL_NO_PSK */
362 #ifndef OPENSSL_NO_TLSEXT
363 if (in->tlsext_tick_lifetime_hint > 0)
364 M_ASN1_I2D_put_EXP_opt(&a.tlsext_tick_lifetime, i2d_ASN1_INTEGER
365 if (in->tlsext_tick)
366 M_ASN1_I2D_put_EXP_opt(&(a.tlsext_tick), i2d_ASN1_OCTET_STRING,1
367 #endif /* OPENSSL_NO_TLSEXT */
368 #ifndef OPENSSL_NO_COMP
369 if (in->compress_meth)
370 M_ASN1_I2D_put_EXP_opt(&(a.comp_id), i2d_ASN1_OCTET_STRING,11,v1
371 #endif
372 #ifndef OPENSSL_NO_SRP
373 if (in->srp_username)
374 M_ASN1_I2D_put_EXP_opt(&(a.srp_username), i2d_ASN1_OCTET_STRING,
375 #endif /* OPENSSL_NO_SRP */
376 M_ASN1_I2D_finish();
377 }

379 SSL_SESSION *d2i_SSL_SESSION(SSL_SESSION **a, const unsigned char **pp,
380 long length)
381 {
382 int ssl_version=0,i;
383 long id;
384 ASN1_INTEGER ai,*aip;
385 ASN1_OCTET_STRING os,*osp;
386 M_ASN1_D2I_vars(a,SSL_SESSION *,SSL_SESSION_new);

388 aip= &ai;
389 osp= &os;

391 M_ASN1_D2I_Init();

new/usr/src/lib/openssl/libsunw_ssl/ssl_asn1.c 7

392 M_ASN1_D2I_start_sequence();

394 ai.data=NULL; ai.length=0;
395 M_ASN1_D2I_get_x(ASN1_INTEGER,aip,d2i_ASN1_INTEGER);
396 if (ai.data != NULL) { OPENSSL_free(ai.data); ai.data=NULL; ai.length=0;

398 /* we don’t care about the version right now :-) */
399 M_ASN1_D2I_get_x(ASN1_INTEGER,aip,d2i_ASN1_INTEGER);
400 ssl_version=(int)ASN1_INTEGER_get(aip);
401 ret->ssl_version=ssl_version;
402 if (ai.data != NULL) { OPENSSL_free(ai.data); ai.data=NULL; ai.length=0;

404 os.data=NULL; os.length=0;
405 M_ASN1_D2I_get_x(ASN1_OCTET_STRING,osp,d2i_ASN1_OCTET_STRING);
406 if (ssl_version == SSL2_VERSION)
407 {
408 if (os.length != 3)
409 {
410 c.error=SSL_R_CIPHER_CODE_WRONG_LENGTH;
411 goto err;
412 }
413 id=0x02000000L|
414 ((unsigned long)os.data[0]<<16L)|
415 ((unsigned long)os.data[1]<< 8L)|
416 (unsigned long)os.data[2];
417 }
418 else if ((ssl_version>>8) >= SSL3_VERSION_MAJOR)
419 {
420 if (os.length != 2)
421 {
422 c.error=SSL_R_CIPHER_CODE_WRONG_LENGTH;
423 goto err;
424 }
425 id=0x03000000L|
426 ((unsigned long)os.data[0]<<8L)|
427 (unsigned long)os.data[1];
428 }
429 else
430 {
431 c.error=SSL_R_UNKNOWN_SSL_VERSION;
432 goto err;
433 }
434
435 ret->cipher=NULL;
436 ret->cipher_id=id;

438 M_ASN1_D2I_get_x(ASN1_OCTET_STRING,osp,d2i_ASN1_OCTET_STRING);
439 if ((ssl_version>>8) >= SSL3_VERSION_MAJOR)
440 i=SSL3_MAX_SSL_SESSION_ID_LENGTH;
441 else /* if (ssl_version>>8 == SSL2_VERSION_MAJOR) */
442 i=SSL2_MAX_SSL_SESSION_ID_LENGTH;

444 if (os.length > i)
445 os.length = i;
446 if (os.length > (int)sizeof(ret->session_id)) /* can’t happen */
447 os.length = sizeof(ret->session_id);

449 ret->session_id_length=os.length;
450 OPENSSL_assert(os.length <= (int)sizeof(ret->session_id));
451 memcpy(ret->session_id,os.data,os.length);

453 M_ASN1_D2I_get_x(ASN1_OCTET_STRING,osp,d2i_ASN1_OCTET_STRING);
454 if (os.length > SSL_MAX_MASTER_KEY_LENGTH)
455 ret->master_key_length=SSL_MAX_MASTER_KEY_LENGTH;
456 else
457 ret->master_key_length=os.length;

new/usr/src/lib/openssl/libsunw_ssl/ssl_asn1.c 8

458 memcpy(ret->master_key,os.data,ret->master_key_length);

460 os.length=0;

462 #ifndef OPENSSL_NO_KRB5
463 os.length=0;
464 M_ASN1_D2I_get_opt(osp,d2i_ASN1_OCTET_STRING,V_ASN1_OCTET_STRING);
465 if (os.data)
466 {
467 if (os.length > SSL_MAX_KRB5_PRINCIPAL_LENGTH)
468 ret->krb5_client_princ_len=0;
469 else
470 ret->krb5_client_princ_len=os.length;
471 memcpy(ret->krb5_client_princ,os.data,ret->krb5_client_princ_len
472 OPENSSL_free(os.data);
473 os.data = NULL;
474 os.length = 0;
475 }
476 else
477 ret->krb5_client_princ_len=0;
478 #endif /* OPENSSL_NO_KRB5 */

480 M_ASN1_D2I_get_IMP_opt(osp,d2i_ASN1_OCTET_STRING,0,V_ASN1_OCTET_STRING);
481 if (os.length > SSL_MAX_KEY_ARG_LENGTH)
482 ret->key_arg_length=SSL_MAX_KEY_ARG_LENGTH;
483 else
484 ret->key_arg_length=os.length;
485 memcpy(ret->key_arg,os.data,ret->key_arg_length);
486 if (os.data != NULL) OPENSSL_free(os.data);

488 ai.length=0;
489 M_ASN1_D2I_get_EXP_opt(aip,d2i_ASN1_INTEGER,1);
490 if (ai.data != NULL)
491 {
492 ret->time=ASN1_INTEGER_get(aip);
493 OPENSSL_free(ai.data); ai.data=NULL; ai.length=0;
494 }
495 else
496 ret->time=(unsigned long)time(NULL);

498 ai.length=0;
499 M_ASN1_D2I_get_EXP_opt(aip,d2i_ASN1_INTEGER,2);
500 if (ai.data != NULL)
501 {
502 ret->timeout=ASN1_INTEGER_get(aip);
503 OPENSSL_free(ai.data); ai.data=NULL; ai.length=0;
504 }
505 else
506 ret->timeout=3;

508 if (ret->peer != NULL)
509 {
510 X509_free(ret->peer);
511 ret->peer=NULL;
512 }
513 M_ASN1_D2I_get_EXP_opt(ret->peer,d2i_X509,3);

515 os.length=0;
516 os.data=NULL;
517 M_ASN1_D2I_get_EXP_opt(osp,d2i_ASN1_OCTET_STRING,4);

519 if(os.data != NULL)
520 {
521 if (os.length > SSL_MAX_SID_CTX_LENGTH)
522 {
523 c.error=SSL_R_BAD_LENGTH;

new/usr/src/lib/openssl/libsunw_ssl/ssl_asn1.c 9

524 goto err;
525 }
526 else
527 {
528 ret->sid_ctx_length=os.length;
529 memcpy(ret->sid_ctx,os.data,os.length);
530 }
531 OPENSSL_free(os.data); os.data=NULL; os.length=0;
532 }
533 else
534 ret->sid_ctx_length=0;

536 ai.length=0;
537 M_ASN1_D2I_get_EXP_opt(aip,d2i_ASN1_INTEGER,5);
538 if (ai.data != NULL)
539 {
540 ret->verify_result=ASN1_INTEGER_get(aip);
541 OPENSSL_free(ai.data); ai.data=NULL; ai.length=0;
542 }
543 else
544 ret->verify_result=X509_V_OK;

546 #ifndef OPENSSL_NO_TLSEXT
547 os.length=0;
548 os.data=NULL;
549 M_ASN1_D2I_get_EXP_opt(osp,d2i_ASN1_OCTET_STRING,6);
550 if (os.data)
551 {
552 ret->tlsext_hostname = BUF_strndup((char *)os.data, os.length);
553 OPENSSL_free(os.data);
554 os.data = NULL;
555 os.length = 0;
556 }
557 else
558 ret->tlsext_hostname=NULL;
559 #endif /* OPENSSL_NO_TLSEXT */

561 #ifndef OPENSSL_NO_PSK
562 os.length=0;
563 os.data=NULL;
564 M_ASN1_D2I_get_EXP_opt(osp,d2i_ASN1_OCTET_STRING,7);
565 if (os.data)
566 {
567 ret->psk_identity_hint = BUF_strndup((char *)os.data, os.length)
568 OPENSSL_free(os.data);
569 os.data = NULL;
570 os.length = 0;
571 }
572 else
573 ret->psk_identity_hint=NULL;

575 os.length=0;
576 os.data=NULL;
577 M_ASN1_D2I_get_EXP_opt(osp,d2i_ASN1_OCTET_STRING,8);
578 if (os.data)
579 {
580 ret->psk_identity = BUF_strndup((char *)os.data, os.length);
581 OPENSSL_free(os.data);
582 os.data = NULL;
583 os.length = 0;
584 }
585 else
586 ret->psk_identity=NULL;
587 #endif /* OPENSSL_NO_PSK */

589 #ifndef OPENSSL_NO_TLSEXT

new/usr/src/lib/openssl/libsunw_ssl/ssl_asn1.c 10

590 ai.length=0;
591 M_ASN1_D2I_get_EXP_opt(aip,d2i_ASN1_INTEGER,9);
592 if (ai.data != NULL)
593 {
594 ret->tlsext_tick_lifetime_hint=ASN1_INTEGER_get(aip);
595 OPENSSL_free(ai.data); ai.data=NULL; ai.length=0;
596 }
597 else if (ret->tlsext_ticklen && ret->session_id_length)
598 ret->tlsext_tick_lifetime_hint = -1;
599 else
600 ret->tlsext_tick_lifetime_hint=0;
601 os.length=0;
602 os.data=NULL;
603 M_ASN1_D2I_get_EXP_opt(osp,d2i_ASN1_OCTET_STRING,10);
604 if (os.data)
605 {
606 ret->tlsext_tick = os.data;
607 ret->tlsext_ticklen = os.length;
608 os.data = NULL;
609 os.length = 0;
610 }
611 else
612 ret->tlsext_tick=NULL;
613 #endif /* OPENSSL_NO_TLSEXT */
614 #ifndef OPENSSL_NO_COMP
615 os.length=0;
616 os.data=NULL;
617 M_ASN1_D2I_get_EXP_opt(osp,d2i_ASN1_OCTET_STRING,11);
618 if (os.data)
619 {
620 ret->compress_meth = os.data[0];
621 OPENSSL_free(os.data);
622 os.data = NULL;
623 }
624 #endif

626 #ifndef OPENSSL_NO_SRP
627 os.length=0;
628 os.data=NULL;
629 M_ASN1_D2I_get_EXP_opt(osp,d2i_ASN1_OCTET_STRING,12);
630 if (os.data)
631 {
632 ret->srp_username = BUF_strndup((char *)os.data, os.length);
633 OPENSSL_free(os.data);
634 os.data = NULL;
635 os.length = 0;
636 }
637 else
638 ret->srp_username=NULL;
639 #endif /* OPENSSL_NO_SRP */

641 M_ASN1_D2I_Finish(a,SSL_SESSION_free,SSL_F_D2I_SSL_SESSION);
642 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_cert.c 1

**
 22087 Fri May 30 18:32:22 2014
new/usr/src/lib/openssl/libsunw_ssl/ssl_cert.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*! \file ssl/ssl_cert.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/ssl_cert.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /* ==
112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
113 * ECC cipher suite support in OpenSSL originally developed by
114 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
115 */

117 #include <stdio.h>

119 #include "e_os.h"
120 #ifndef NO_SYS_TYPES_H
121 # include <sys/types.h>
122 #endif

124 #include "o_dir.h"
125 #include <openssl/objects.h>
126 #include <openssl/bio.h>
127 #include <openssl/pem.h>

new/usr/src/lib/openssl/libsunw_ssl/ssl_cert.c 3

128 #include <openssl/x509v3.h>
129 #ifndef OPENSSL_NO_DH
130 #include <openssl/dh.h>
131 #endif
132 #include <openssl/bn.h>
133 #include "ssl_locl.h"

135 int SSL_get_ex_data_X509_STORE_CTX_idx(void)
136 {
137 static volatile int ssl_x509_store_ctx_idx= -1;
138 int got_write_lock = 0;

140 CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX);

142 if (ssl_x509_store_ctx_idx < 0)
143 {
144 CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
145 CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
146 got_write_lock = 1;
147
148 if (ssl_x509_store_ctx_idx < 0)
149 {
150 ssl_x509_store_ctx_idx=X509_STORE_CTX_get_ex_new_index(
151 0,"SSL for verify callback",NULL,NULL,NULL);
152 }
153 }

155 if (got_write_lock)
156 CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
157 else
158 CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
159
160 return ssl_x509_store_ctx_idx;
161 }

163 static void ssl_cert_set_default_md(CERT *cert)
164 {
165 /* Set digest values to defaults */
166 #ifndef OPENSSL_NO_DSA
167 cert->pkeys[SSL_PKEY_DSA_SIGN].digest = EVP_sha1();
168 #endif
169 #ifndef OPENSSL_NO_RSA
170 cert->pkeys[SSL_PKEY_RSA_SIGN].digest = EVP_sha1();
171 cert->pkeys[SSL_PKEY_RSA_ENC].digest = EVP_sha1();
172 #endif
173 #ifndef OPENSSL_NO_ECDSA
174 cert->pkeys[SSL_PKEY_ECC].digest = EVP_sha1();
175 #endif
176 }

178 CERT *ssl_cert_new(void)
179 {
180 CERT *ret;

182 ret=(CERT *)OPENSSL_malloc(sizeof(CERT));
183 if (ret == NULL)
184 {
185 SSLerr(SSL_F_SSL_CERT_NEW,ERR_R_MALLOC_FAILURE);
186 return(NULL);
187 }
188 memset(ret,0,sizeof(CERT));

190 ret->key= &(ret->pkeys[SSL_PKEY_RSA_ENC]);
191 ret->references=1;
192 ssl_cert_set_default_md(ret);
193 return(ret);

new/usr/src/lib/openssl/libsunw_ssl/ssl_cert.c 4

194 }

196 CERT *ssl_cert_dup(CERT *cert)
197 {
198 CERT *ret;
199 int i;

201 ret = (CERT *)OPENSSL_malloc(sizeof(CERT));
202 if (ret == NULL)
203 {
204 SSLerr(SSL_F_SSL_CERT_DUP, ERR_R_MALLOC_FAILURE);
205 return(NULL);
206 }

208 memset(ret, 0, sizeof(CERT));

210 ret->key = &ret->pkeys[cert->key - &cert->pkeys[0]];
211 /* or ret->key = ret->pkeys + (cert->key - cert->pkeys),
212 * if you find that more readable */

214 ret->valid = cert->valid;
215 ret->mask_k = cert->mask_k;
216 ret->mask_a = cert->mask_a;
217 ret->export_mask_k = cert->export_mask_k;
218 ret->export_mask_a = cert->export_mask_a;

220 #ifndef OPENSSL_NO_RSA
221 if (cert->rsa_tmp != NULL)
222 {
223 RSA_up_ref(cert->rsa_tmp);
224 ret->rsa_tmp = cert->rsa_tmp;
225 }
226 ret->rsa_tmp_cb = cert->rsa_tmp_cb;
227 #endif

229 #ifndef OPENSSL_NO_DH
230 if (cert->dh_tmp != NULL)
231 {
232 ret->dh_tmp = DHparams_dup(cert->dh_tmp);
233 if (ret->dh_tmp == NULL)
234 {
235 SSLerr(SSL_F_SSL_CERT_DUP, ERR_R_DH_LIB);
236 goto err;
237 }
238 if (cert->dh_tmp->priv_key)
239 {
240 BIGNUM *b = BN_dup(cert->dh_tmp->priv_key);
241 if (!b)
242 {
243 SSLerr(SSL_F_SSL_CERT_DUP, ERR_R_BN_LIB);
244 goto err;
245 }
246 ret->dh_tmp->priv_key = b;
247 }
248 if (cert->dh_tmp->pub_key)
249 {
250 BIGNUM *b = BN_dup(cert->dh_tmp->pub_key);
251 if (!b)
252 {
253 SSLerr(SSL_F_SSL_CERT_DUP, ERR_R_BN_LIB);
254 goto err;
255 }
256 ret->dh_tmp->pub_key = b;
257 }
258 }
259 ret->dh_tmp_cb = cert->dh_tmp_cb;

new/usr/src/lib/openssl/libsunw_ssl/ssl_cert.c 5

260 #endif

262 #ifndef OPENSSL_NO_ECDH
263 if (cert->ecdh_tmp)
264 {
265 ret->ecdh_tmp = EC_KEY_dup(cert->ecdh_tmp);
266 if (ret->ecdh_tmp == NULL)
267 {
268 SSLerr(SSL_F_SSL_CERT_DUP, ERR_R_EC_LIB);
269 goto err;
270 }
271 }
272 ret->ecdh_tmp_cb = cert->ecdh_tmp_cb;
273 #endif

275 for (i = 0; i < SSL_PKEY_NUM; i++)
276 {
277 if (cert->pkeys[i].x509 != NULL)
278 {
279 ret->pkeys[i].x509 = cert->pkeys[i].x509;
280 CRYPTO_add(&ret->pkeys[i].x509->references, 1,
281 CRYPTO_LOCK_X509);
282 }
283
284 if (cert->pkeys[i].privatekey != NULL)
285 {
286 ret->pkeys[i].privatekey = cert->pkeys[i].privatekey;
287 CRYPTO_add(&ret->pkeys[i].privatekey->references, 1,
288 CRYPTO_LOCK_EVP_PKEY);

290 switch(i)
291 {
292 /* If there was anything special to do for
293 * certain types of keys, we’d do it here.
294 * (Nothing at the moment, I think.) */

296 case SSL_PKEY_RSA_ENC:
297 case SSL_PKEY_RSA_SIGN:
298 /* We have an RSA key. */
299 break;
300
301 case SSL_PKEY_DSA_SIGN:
302 /* We have a DSA key. */
303 break;
304
305 case SSL_PKEY_DH_RSA:
306 case SSL_PKEY_DH_DSA:
307 /* We have a DH key. */
308 break;

310 case SSL_PKEY_ECC:
311 /* We have an ECC key */
312 break;

314 default:
315 /* Can’t happen. */
316 SSLerr(SSL_F_SSL_CERT_DUP, SSL_R_LIBRARY_BUG);
317 }
318 }
319 }
320
321 /* ret->extra_certs *should* exist, but currently the own certificate
322 * chain is held inside SSL_CTX */

324 ret->references=1;
325 /* Set digests to defaults. NB: we don’t copy existing values as they

new/usr/src/lib/openssl/libsunw_ssl/ssl_cert.c 6

326 * will be set during handshake.
327 */
328 ssl_cert_set_default_md(ret);

330 return(ret);
331
332 #if !defined(OPENSSL_NO_DH) || !defined(OPENSSL_NO_ECDH)
333 err:
334 #endif
335 #ifndef OPENSSL_NO_RSA
336 if (ret->rsa_tmp != NULL)
337 RSA_free(ret->rsa_tmp);
338 #endif
339 #ifndef OPENSSL_NO_DH
340 if (ret->dh_tmp != NULL)
341 DH_free(ret->dh_tmp);
342 #endif
343 #ifndef OPENSSL_NO_ECDH
344 if (ret->ecdh_tmp != NULL)
345 EC_KEY_free(ret->ecdh_tmp);
346 #endif

348 for (i = 0; i < SSL_PKEY_NUM; i++)
349 {
350 if (ret->pkeys[i].x509 != NULL)
351 X509_free(ret->pkeys[i].x509);
352 if (ret->pkeys[i].privatekey != NULL)
353 EVP_PKEY_free(ret->pkeys[i].privatekey);
354 }

356 return NULL;
357 }

360 void ssl_cert_free(CERT *c)
361 {
362 int i;

364 if(c == NULL)
365 return;

367 i=CRYPTO_add(&c->references,-1,CRYPTO_LOCK_SSL_CERT);
368 #ifdef REF_PRINT
369 REF_PRINT("CERT",c);
370 #endif
371 if (i > 0) return;
372 #ifdef REF_CHECK
373 if (i < 0)
374 {
375 fprintf(stderr,"ssl_cert_free, bad reference count\n");
376 abort(); /* ok */
377 }
378 #endif

380 #ifndef OPENSSL_NO_RSA
381 if (c->rsa_tmp) RSA_free(c->rsa_tmp);
382 #endif
383 #ifndef OPENSSL_NO_DH
384 if (c->dh_tmp) DH_free(c->dh_tmp);
385 #endif
386 #ifndef OPENSSL_NO_ECDH
387 if (c->ecdh_tmp) EC_KEY_free(c->ecdh_tmp);
388 #endif

390 for (i=0; i<SSL_PKEY_NUM; i++)
391 {

new/usr/src/lib/openssl/libsunw_ssl/ssl_cert.c 7

392 if (c->pkeys[i].x509 != NULL)
393 X509_free(c->pkeys[i].x509);
394 if (c->pkeys[i].privatekey != NULL)
395 EVP_PKEY_free(c->pkeys[i].privatekey);
396 #if 0
397 if (c->pkeys[i].publickey != NULL)
398 EVP_PKEY_free(c->pkeys[i].publickey);
399 #endif
400 }
401 OPENSSL_free(c);
402 }

404 int ssl_cert_inst(CERT **o)
405 {
406 /* Create a CERT if there isn’t already one
407 * (which cannot really happen, as it is initially created in
408 * SSL_CTX_new; but the earlier code usually allows for that one
409 * being non-existant, so we follow that behaviour, as it might
410 * turn out that there actually is a reason for it -- but I’m
411 * not sure that *all* of the existing code could cope with
412 * s->cert being NULL, otherwise we could do without the
413 * initialization in SSL_CTX_new).
414 */
415
416 if (o == NULL)
417 {
418 SSLerr(SSL_F_SSL_CERT_INST, ERR_R_PASSED_NULL_PARAMETER);
419 return(0);
420 }
421 if (*o == NULL)
422 {
423 if ((*o = ssl_cert_new()) == NULL)
424 {
425 SSLerr(SSL_F_SSL_CERT_INST, ERR_R_MALLOC_FAILURE);
426 return(0);
427 }
428 }
429 return(1);
430 }

433 SESS_CERT *ssl_sess_cert_new(void)
434 {
435 SESS_CERT *ret;

437 ret = OPENSSL_malloc(sizeof *ret);
438 if (ret == NULL)
439 {
440 SSLerr(SSL_F_SSL_SESS_CERT_NEW, ERR_R_MALLOC_FAILURE);
441 return NULL;
442 }

444 memset(ret, 0 ,sizeof *ret);
445 ret->peer_key = &(ret->peer_pkeys[SSL_PKEY_RSA_ENC]);
446 ret->references = 1;

448 return ret;
449 }

451 void ssl_sess_cert_free(SESS_CERT *sc)
452 {
453 int i;

455 if (sc == NULL)
456 return;

new/usr/src/lib/openssl/libsunw_ssl/ssl_cert.c 8

458 i = CRYPTO_add(&sc->references, -1, CRYPTO_LOCK_SSL_SESS_CERT);
459 #ifdef REF_PRINT
460 REF_PRINT("SESS_CERT", sc);
461 #endif
462 if (i > 0)
463 return;
464 #ifdef REF_CHECK
465 if (i < 0)
466 {
467 fprintf(stderr,"ssl_sess_cert_free, bad reference count\n");
468 abort(); /* ok */
469 }
470 #endif

472 /* i == 0 */
473 if (sc->cert_chain != NULL)
474 sk_X509_pop_free(sc->cert_chain, X509_free);
475 for (i = 0; i < SSL_PKEY_NUM; i++)
476 {
477 if (sc->peer_pkeys[i].x509 != NULL)
478 X509_free(sc->peer_pkeys[i].x509);
479 #if 0 /* We don’t have the peer’s private key. These lines are just
480 * here as a reminder that we’re still using a not-quite-appropriate
481 * data structure. */
482 if (sc->peer_pkeys[i].privatekey != NULL)
483 EVP_PKEY_free(sc->peer_pkeys[i].privatekey);
484 #endif
485 }

487 #ifndef OPENSSL_NO_RSA
488 if (sc->peer_rsa_tmp != NULL)
489 RSA_free(sc->peer_rsa_tmp);
490 #endif
491 #ifndef OPENSSL_NO_DH
492 if (sc->peer_dh_tmp != NULL)
493 DH_free(sc->peer_dh_tmp);
494 #endif
495 #ifndef OPENSSL_NO_ECDH
496 if (sc->peer_ecdh_tmp != NULL)
497 EC_KEY_free(sc->peer_ecdh_tmp);
498 #endif

500 OPENSSL_free(sc);
501 }

503 int ssl_set_peer_cert_type(SESS_CERT *sc,int type)
504 {
505 sc->peer_cert_type = type;
506 return(1);
507 }

509 int ssl_verify_cert_chain(SSL *s,STACK_OF(X509) *sk)
510 {
511 X509 *x;
512 int i;
513 X509_STORE_CTX ctx;

515 if ((sk == NULL) || (sk_X509_num(sk) == 0))
516 return(0);

518 x=sk_X509_value(sk,0);
519 if(!X509_STORE_CTX_init(&ctx,s->ctx->cert_store,x,sk))
520 {
521 SSLerr(SSL_F_SSL_VERIFY_CERT_CHAIN,ERR_R_X509_LIB);
522 return(0);
523 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_cert.c 9

524 #if 0
525 if (SSL_get_verify_depth(s) >= 0)
526 X509_STORE_CTX_set_depth(&ctx, SSL_get_verify_depth(s));
527 #endif
528 X509_STORE_CTX_set_ex_data(&ctx,SSL_get_ex_data_X509_STORE_CTX_idx(),s);

530 /* We need to inherit the verify parameters. These can be determined by
531 * the context: if its a server it will verify SSL client certificates
532 * or vice versa.
533 */

535 X509_STORE_CTX_set_default(&ctx,
536 s->server ? "ssl_client" : "ssl_server");
537 /* Anything non-default in "param" should overwrite anything in the
538 * ctx.
539 */
540 X509_VERIFY_PARAM_set1(X509_STORE_CTX_get0_param(&ctx), s->param);

542 if (s->verify_callback)
543 X509_STORE_CTX_set_verify_cb(&ctx, s->verify_callback);

545 if (s->ctx->app_verify_callback != NULL)
546 #if 1 /* new with OpenSSL 0.9.7 */
547 i=s->ctx->app_verify_callback(&ctx, s->ctx->app_verify_arg);
548 #else
549 i=s->ctx->app_verify_callback(&ctx); /* should pass app_verify_a
550 #endif
551 else
552 {
553 #ifndef OPENSSL_NO_X509_VERIFY
554 i=X509_verify_cert(&ctx);
555 #else
556 i=0;
557 ctx.error=X509_V_ERR_APPLICATION_VERIFICATION;
558 SSLerr(SSL_F_SSL_VERIFY_CERT_CHAIN,SSL_R_NO_VERIFY_CALLBACK);
559 #endif
560 }

562 s->verify_result=ctx.error;
563 X509_STORE_CTX_cleanup(&ctx);

565 return(i);
566 }

568 static void set_client_CA_list(STACK_OF(X509_NAME) **ca_list,STACK_OF(X509_NAME)
569 {
570 if (*ca_list != NULL)
571 sk_X509_NAME_pop_free(*ca_list,X509_NAME_free);

573 *ca_list=name_list;
574 }

576 STACK_OF(X509_NAME) *SSL_dup_CA_list(STACK_OF(X509_NAME) *sk)
577 {
578 int i;
579 STACK_OF(X509_NAME) *ret;
580 X509_NAME *name;

582 ret=sk_X509_NAME_new_null();
583 for (i=0; i<sk_X509_NAME_num(sk); i++)
584 {
585 name=X509_NAME_dup(sk_X509_NAME_value(sk,i));
586 if ((name == NULL) || !sk_X509_NAME_push(ret,name))
587 {
588 sk_X509_NAME_pop_free(ret,X509_NAME_free);
589 return(NULL);

new/usr/src/lib/openssl/libsunw_ssl/ssl_cert.c 10

590 }
591 }
592 return(ret);
593 }

595 void SSL_set_client_CA_list(SSL *s,STACK_OF(X509_NAME) *name_list)
596 {
597 set_client_CA_list(&(s->client_CA),name_list);
598 }

600 void SSL_CTX_set_client_CA_list(SSL_CTX *ctx,STACK_OF(X509_NAME) *name_list)
601 {
602 set_client_CA_list(&(ctx->client_CA),name_list);
603 }

605 STACK_OF(X509_NAME) *SSL_CTX_get_client_CA_list(const SSL_CTX *ctx)
606 {
607 return(ctx->client_CA);
608 }

610 STACK_OF(X509_NAME) *SSL_get_client_CA_list(const SSL *s)
611 {
612 if (s->type == SSL_ST_CONNECT)
613 { /* we are in the client */
614 if (((s->version>>8) == SSL3_VERSION_MAJOR) &&
615 (s->s3 != NULL))
616 return(s->s3->tmp.ca_names);
617 else
618 return(NULL);
619 }
620 else
621 {
622 if (s->client_CA != NULL)
623 return(s->client_CA);
624 else
625 return(s->ctx->client_CA);
626 }
627 }

629 static int add_client_CA(STACK_OF(X509_NAME) **sk,X509 *x)
630 {
631 X509_NAME *name;

633 if (x == NULL) return(0);
634 if ((*sk == NULL) && ((*sk=sk_X509_NAME_new_null()) == NULL))
635 return(0);
636
637 if ((name=X509_NAME_dup(X509_get_subject_name(x))) == NULL)
638 return(0);

640 if (!sk_X509_NAME_push(*sk,name))
641 {
642 X509_NAME_free(name);
643 return(0);
644 }
645 return(1);
646 }

648 int SSL_add_client_CA(SSL *ssl,X509 *x)
649 {
650 return(add_client_CA(&(ssl->client_CA),x));
651 }

653 int SSL_CTX_add_client_CA(SSL_CTX *ctx,X509 *x)
654 {
655 return(add_client_CA(&(ctx->client_CA),x));

new/usr/src/lib/openssl/libsunw_ssl/ssl_cert.c 11

656 }

658 static int xname_cmp(const X509_NAME * const *a, const X509_NAME * const *b)
659 {
660 return(X509_NAME_cmp(*a,*b));
661 }

663 #ifndef OPENSSL_NO_STDIO
664 /*!
665 * Load CA certs from a file into a ::STACK. Note that it is somewhat misnamed;
666 * it doesn’t really have anything to do with clients (except that a common use
667 * for a stack of CAs is to send it to the client). Actually, it doesn’t have
668 * much to do with CAs, either, since it will load any old cert.
669 * \param file the file containing one or more certs.
670 * \return a ::STACK containing the certs.
671 */
672 STACK_OF(X509_NAME) *SSL_load_client_CA_file(const char *file)
673 {
674 BIO *in;
675 X509 *x=NULL;
676 X509_NAME *xn=NULL;
677 STACK_OF(X509_NAME) *ret = NULL,*sk;

679 sk=sk_X509_NAME_new(xname_cmp);

681 in=BIO_new(BIO_s_file_internal());

683 if ((sk == NULL) || (in == NULL))
684 {
685 SSLerr(SSL_F_SSL_LOAD_CLIENT_CA_FILE,ERR_R_MALLOC_FAILURE);
686 goto err;
687 }
688
689 if (!BIO_read_filename(in,file))
690 goto err;

692 for (;;)
693 {
694 if (PEM_read_bio_X509(in,&x,NULL,NULL) == NULL)
695 break;
696 if (ret == NULL)
697 {
698 ret = sk_X509_NAME_new_null();
699 if (ret == NULL)
700 {
701 SSLerr(SSL_F_SSL_LOAD_CLIENT_CA_FILE,ERR_R_MALLO
702 goto err;
703 }
704 }
705 if ((xn=X509_get_subject_name(x)) == NULL) goto err;
706 /* check for duplicates */
707 xn=X509_NAME_dup(xn);
708 if (xn == NULL) goto err;
709 if (sk_X509_NAME_find(sk,xn) >= 0)
710 X509_NAME_free(xn);
711 else
712 {
713 sk_X509_NAME_push(sk,xn);
714 sk_X509_NAME_push(ret,xn);
715 }
716 }

718 if (0)
719 {
720 err:
721 if (ret != NULL) sk_X509_NAME_pop_free(ret,X509_NAME_free);

new/usr/src/lib/openssl/libsunw_ssl/ssl_cert.c 12

722 ret=NULL;
723 }
724 if (sk != NULL) sk_X509_NAME_free(sk);
725 if (in != NULL) BIO_free(in);
726 if (x != NULL) X509_free(x);
727 if (ret != NULL)
728 ERR_clear_error();
729 return(ret);
730 }
731 #endif

733 /*!
734 * Add a file of certs to a stack.
735 * \param stack the stack to add to.
736 * \param file the file to add from. All certs in this file that are not
737 * already in the stack will be added.
738 * \return 1 for success, 0 for failure. Note that in the case of failure some
739 * certs may have been added to \c stack.
740 */

742 int SSL_add_file_cert_subjects_to_stack(STACK_OF(X509_NAME) *stack,
743 const char *file)
744 {
745 BIO *in;
746 X509 *x=NULL;
747 X509_NAME *xn=NULL;
748 int ret=1;
749 int (*oldcmp)(const X509_NAME * const *a, const X509_NAME * const *b);
750
751 oldcmp=sk_X509_NAME_set_cmp_func(stack,xname_cmp);
752
753 in=BIO_new(BIO_s_file_internal());
754
755 if (in == NULL)
756 {
757 SSLerr(SSL_F_SSL_ADD_FILE_CERT_SUBJECTS_TO_STACK,ERR_R_MALLOC_FA
758 goto err;
759 }
760
761 if (!BIO_read_filename(in,file))
762 goto err;
763
764 for (;;)
765 {
766 if (PEM_read_bio_X509(in,&x,NULL,NULL) == NULL)
767 break;
768 if ((xn=X509_get_subject_name(x)) == NULL) goto err;
769 xn=X509_NAME_dup(xn);
770 if (xn == NULL) goto err;
771 if (sk_X509_NAME_find(stack,xn) >= 0)
772 X509_NAME_free(xn);
773 else
774 sk_X509_NAME_push(stack,xn);
775 }

777 ERR_clear_error();

779 if (0)
780 {
781 err:
782 ret=0;
783 }
784 if(in != NULL)
785 BIO_free(in);
786 if(x != NULL)
787 X509_free(x);

new/usr/src/lib/openssl/libsunw_ssl/ssl_cert.c 13

788
789 (void)sk_X509_NAME_set_cmp_func(stack,oldcmp);

791 return ret;
792 }

794 /*!
795 * Add a directory of certs to a stack.
796 * \param stack the stack to append to.
797 * \param dir the directory to append from. All files in this directory will be
798 * examined as potential certs. Any that are acceptable to
799 * SSL_add_dir_cert_subjects_to_stack() that are not already in the stack will b
800 * included.
801 * \return 1 for success, 0 for failure. Note that in the case of failure some
802 * certs may have been added to \c stack.
803 */

805 int SSL_add_dir_cert_subjects_to_stack(STACK_OF(X509_NAME) *stack,
806 const char *dir)
807 {
808 OPENSSL_DIR_CTX *d = NULL;
809 const char *filename;
810 int ret = 0;

812 CRYPTO_w_lock(CRYPTO_LOCK_READDIR);

814 /* Note that a side effect is that the CAs will be sorted by name */

816 while((filename = OPENSSL_DIR_read(&d, dir)))
817 {
818 char buf[1024];
819 int r;

821 if(strlen(dir)+strlen(filename)+2 > sizeof buf)
822 {
823 SSLerr(SSL_F_SSL_ADD_DIR_CERT_SUBJECTS_TO_STACK,SSL_R_PA
824 goto err;
825 }

827 #ifdef OPENSSL_SYS_VMS
828 r = BIO_snprintf(buf,sizeof buf,"%s%s",dir,filename);
829 #else
830 r = BIO_snprintf(buf,sizeof buf,"%s/%s",dir,filename);
831 #endif
832 if (r <= 0 || r >= (int)sizeof(buf))
833 goto err;
834 if(!SSL_add_file_cert_subjects_to_stack(stack,buf))
835 goto err;
836 }

838 if (errno)
839 {
840 SYSerr(SYS_F_OPENDIR, get_last_sys_error());
841 ERR_add_error_data(3, "OPENSSL_DIR_read(&ctx, ’", dir, "’)");
842 SSLerr(SSL_F_SSL_ADD_DIR_CERT_SUBJECTS_TO_STACK, ERR_R_SYS_LIB);
843 goto err;
844 }

846 ret = 1;

848 err:
849 if (d) OPENSSL_DIR_end(&d);
850 CRYPTO_w_unlock(CRYPTO_LOCK_READDIR);
851 return ret;
852 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_cert.c 14

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 1

**
 52124 Fri May 30 18:32:22 2014
new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/ssl_ciph.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /* ==
112 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
113 * ECC cipher suite support in OpenSSL originally developed by
114 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
115 */
116 /* ==
117 * Copyright 2005 Nokia. All rights reserved.
118 *
119 * The portions of the attached software ("Contribution") is developed by
120 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
121 * license.
122 *
123 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
124 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
125 * support (see RFC 4279) to OpenSSL.
126 *
127 * No patent licenses or other rights except those expressly stated in

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 3

128 * the OpenSSL open source license shall be deemed granted or received
129 * expressly, by implication, estoppel, or otherwise.
130 *
131 * No assurances are provided by Nokia that the Contribution does not
132 * infringe the patent or other intellectual property rights of any third
133 * party or that the license provides you with all the necessary rights
134 * to make use of the Contribution.
135 *
136 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
137 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
138 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
139 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
140 * OTHERWISE.
141 */

143 #include <stdio.h>
144 #include <openssl/objects.h>
145 #ifndef OPENSSL_NO_COMP
146 #include <openssl/comp.h>
147 #endif
148 #ifndef OPENSSL_NO_ENGINE
149 #include <openssl/engine.h>
150 #endif
151 #include "ssl_locl.h"

153 #define SSL_ENC_DES_IDX 0
154 #define SSL_ENC_3DES_IDX 1
155 #define SSL_ENC_RC4_IDX 2
156 #define SSL_ENC_RC2_IDX 3
157 #define SSL_ENC_IDEA_IDX 4
158 #define SSL_ENC_NULL_IDX 5
159 #define SSL_ENC_AES128_IDX 6
160 #define SSL_ENC_AES256_IDX 7
161 #define SSL_ENC_CAMELLIA128_IDX 8
162 #define SSL_ENC_CAMELLIA256_IDX 9
163 #define SSL_ENC_GOST89_IDX 10
164 #define SSL_ENC_SEED_IDX 11
165 #define SSL_ENC_AES128GCM_IDX 12
166 #define SSL_ENC_AES256GCM_IDX 13
167 #define SSL_ENC_NUM_IDX 14

170 static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX]={
171 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL
172 };

174 #define SSL_COMP_NULL_IDX 0
175 #define SSL_COMP_ZLIB_IDX 1
176 #define SSL_COMP_NUM_IDX 2

178 static STACK_OF(SSL_COMP) *ssl_comp_methods=NULL;

180 #define SSL_MD_MD5_IDX 0
181 #define SSL_MD_SHA1_IDX 1
182 #define SSL_MD_GOST94_IDX 2
183 #define SSL_MD_GOST89MAC_IDX 3
184 #define SSL_MD_SHA256_IDX 4
185 #define SSL_MD_SHA384_IDX 5
186 /*Constant SSL_MAX_DIGEST equal to size of digests array should be
187 * defined in the
188 * ssl_locl.h */
189 #define SSL_MD_NUM_IDX SSL_MAX_DIGEST
190 static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX]={
191 NULL,NULL,NULL,NULL,NULL,NULL
192 };
193 /* PKEY_TYPE for GOST89MAC is known in advance, but, because

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 4

194 * implementation is engine-provided, we’ll fill it only if
195 * corresponding EVP_PKEY_METHOD is found
196 */
197 static int ssl_mac_pkey_id[SSL_MD_NUM_IDX]={
198 EVP_PKEY_HMAC,EVP_PKEY_HMAC,EVP_PKEY_HMAC,NID_undef,
199 EVP_PKEY_HMAC,EVP_PKEY_HMAC
200 };

202 static int ssl_mac_secret_size[SSL_MD_NUM_IDX]={
203 0,0,0,0,0,0
204 };

206 static int ssl_handshake_digest_flag[SSL_MD_NUM_IDX]={
207 SSL_HANDSHAKE_MAC_MD5,SSL_HANDSHAKE_MAC_SHA,
208 SSL_HANDSHAKE_MAC_GOST94, 0, SSL_HANDSHAKE_MAC_SHA256,
209 SSL_HANDSHAKE_MAC_SHA384
210 };

212 #define CIPHER_ADD 1
213 #define CIPHER_KILL 2
214 #define CIPHER_DEL 3
215 #define CIPHER_ORD 4
216 #define CIPHER_SPECIAL 5

218 typedef struct cipher_order_st
219 {
220 const SSL_CIPHER *cipher;
221 int active;
222 int dead;
223 struct cipher_order_st *next,*prev;
224 } CIPHER_ORDER;

226 static const SSL_CIPHER cipher_aliases[]={
227 /* "ALL" doesn’t include eNULL (must be specifically enabled) */
228 {0,SSL_TXT_ALL,0, 0,0,~SSL_eNULL,0,0,0,0,0,0},
229 /* "COMPLEMENTOFALL" */
230 {0,SSL_TXT_CMPALL,0, 0,0,SSL_eNULL,0,0,0,0,0,0},

232 /* "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in A
233 {0,SSL_TXT_CMPDEF,0, SSL_kEDH|SSL_kEECDH,SSL_aNULL,~SSL_eNULL,0,0,0,0,0

235 /* key exchange aliases
236 * (some of those using only a single bit here combine
237 * multiple key exchange algs according to the RFCs,
238 * e.g. kEDH combines DHE_DSS and DHE_RSA) */
239 {0,SSL_TXT_kRSA,0, SSL_kRSA, 0,0,0,0,0,0,0,0},

241 {0,SSL_TXT_kDHr,0, SSL_kDHr, 0,0,0,0,0,0,0,0}, /* no such ciphersuit
242 {0,SSL_TXT_kDHd,0, SSL_kDHd, 0,0,0,0,0,0,0,0}, /* no such ciphersuit
243 {0,SSL_TXT_kDH,0, SSL_kDHr|SSL_kDHd,0,0,0,0,0,0,0,0}, /* no such cip
244 {0,SSL_TXT_kEDH,0, SSL_kEDH, 0,0,0,0,0,0,0,0},
245 {0,SSL_TXT_DH,0, SSL_kDHr|SSL_kDHd|SSL_kEDH,0,0,0,0,0,0,0,0},

247 {0,SSL_TXT_kKRB5,0, SSL_kKRB5, 0,0,0,0,0,0,0,0},

249 {0,SSL_TXT_kECDHr,0, SSL_kECDHr,0,0,0,0,0,0,0,0},
250 {0,SSL_TXT_kECDHe,0, SSL_kECDHe,0,0,0,0,0,0,0,0},
251 {0,SSL_TXT_kECDH,0, SSL_kECDHr|SSL_kECDHe,0,0,0,0,0,0,0,0},
252 {0,SSL_TXT_kEECDH,0, SSL_kEECDH,0,0,0,0,0,0,0,0},
253 {0,SSL_TXT_ECDH,0, SSL_kECDHr|SSL_kECDHe|SSL_kEECDH,0,0,0,0,0,0,0,0},

255 {0,SSL_TXT_kPSK,0, SSL_kPSK, 0,0,0,0,0,0,0,0},
256 {0,SSL_TXT_kSRP,0, SSL_kSRP, 0,0,0,0,0,0,0,0},
257 {0,SSL_TXT_kGOST,0, SSL_kGOST,0,0,0,0,0,0,0,0},

259 /* server authentication aliases */

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 5

260 {0,SSL_TXT_aRSA,0, 0,SSL_aRSA, 0,0,0,0,0,0,0},
261 {0,SSL_TXT_aDSS,0, 0,SSL_aDSS, 0,0,0,0,0,0,0},
262 {0,SSL_TXT_DSS,0, 0,SSL_aDSS, 0,0,0,0,0,0,0},
263 {0,SSL_TXT_aKRB5,0, 0,SSL_aKRB5, 0,0,0,0,0,0,0},
264 {0,SSL_TXT_aNULL,0, 0,SSL_aNULL, 0,0,0,0,0,0,0},
265 {0,SSL_TXT_aDH,0, 0,SSL_aDH, 0,0,0,0,0,0,0}, /* no such ciphersuit
266 {0,SSL_TXT_aECDH,0, 0,SSL_aECDH, 0,0,0,0,0,0,0},
267 {0,SSL_TXT_aECDSA,0, 0,SSL_aECDSA,0,0,0,0,0,0,0},
268 {0,SSL_TXT_ECDSA,0, 0,SSL_aECDSA, 0,0,0,0,0,0,0},
269 {0,SSL_TXT_aPSK,0, 0,SSL_aPSK, 0,0,0,0,0,0,0},
270 {0,SSL_TXT_aGOST94,0,0,SSL_aGOST94,0,0,0,0,0,0,0},
271 {0,SSL_TXT_aGOST01,0,0,SSL_aGOST01,0,0,0,0,0,0,0},
272 {0,SSL_TXT_aGOST,0,0,SSL_aGOST94|SSL_aGOST01,0,0,0,0,0,0,0},

274 /* aliases combining key exchange and server authentication */
275 {0,SSL_TXT_EDH,0, SSL_kEDH,~SSL_aNULL,0,0,0,0,0,0,0},
276 {0,SSL_TXT_EECDH,0, SSL_kEECDH,~SSL_aNULL,0,0,0,0,0,0,0},
277 {0,SSL_TXT_NULL,0, 0,0,SSL_eNULL, 0,0,0,0,0,0},
278 {0,SSL_TXT_KRB5,0, SSL_kKRB5,SSL_aKRB5,0,0,0,0,0,0,0},
279 {0,SSL_TXT_RSA,0, SSL_kRSA,SSL_aRSA,0,0,0,0,0,0,0},
280 {0,SSL_TXT_ADH,0, SSL_kEDH,SSL_aNULL,0,0,0,0,0,0,0},
281 {0,SSL_TXT_AECDH,0, SSL_kEECDH,SSL_aNULL,0,0,0,0,0,0,0},
282 {0,SSL_TXT_PSK,0, SSL_kPSK,SSL_aPSK,0,0,0,0,0,0,0},
283 {0,SSL_TXT_SRP,0, SSL_kSRP,0,0,0,0,0,0,0,0},

286 /* symmetric encryption aliases */
287 {0,SSL_TXT_DES,0, 0,0,SSL_DES, 0,0,0,0,0,0},
288 {0,SSL_TXT_3DES,0, 0,0,SSL_3DES, 0,0,0,0,0,0},
289 {0,SSL_TXT_RC4,0, 0,0,SSL_RC4, 0,0,0,0,0,0},
290 {0,SSL_TXT_RC2,0, 0,0,SSL_RC2, 0,0,0,0,0,0},
291 {0,SSL_TXT_IDEA,0, 0,0,SSL_IDEA, 0,0,0,0,0,0},
292 {0,SSL_TXT_SEED,0, 0,0,SSL_SEED, 0,0,0,0,0,0},
293 {0,SSL_TXT_eNULL,0, 0,0,SSL_eNULL, 0,0,0,0,0,0},
294 {0,SSL_TXT_AES128,0, 0,0,SSL_AES128|SSL_AES128GCM,0,0,0,0,0,0},
295 {0,SSL_TXT_AES256,0, 0,0,SSL_AES256|SSL_AES256GCM,0,0,0,0,0,0},
296 {0,SSL_TXT_AES,0, 0,0,SSL_AES,0,0,0,0,0,0},
297 {0,SSL_TXT_AES_GCM,0, 0,0,SSL_AES128GCM|SSL_AES256GCM,0,0,0,0,0,0},
298 {0,SSL_TXT_CAMELLIA128,0,0,0,SSL_CAMELLIA128,0,0,0,0,0,0},
299 {0,SSL_TXT_CAMELLIA256,0,0,0,SSL_CAMELLIA256,0,0,0,0,0,0},
300 {0,SSL_TXT_CAMELLIA ,0,0,0,SSL_CAMELLIA128|SSL_CAMELLIA256,0,0,0,0,0,0

302 /* MAC aliases */
303 {0,SSL_TXT_MD5,0, 0,0,0,SSL_MD5, 0,0,0,0,0},
304 {0,SSL_TXT_SHA1,0, 0,0,0,SSL_SHA1, 0,0,0,0,0},
305 {0,SSL_TXT_SHA,0, 0,0,0,SSL_SHA1, 0,0,0,0,0},
306 {0,SSL_TXT_GOST94,0, 0,0,0,SSL_GOST94, 0,0,0,0,0},
307 {0,SSL_TXT_GOST89MAC,0, 0,0,0,SSL_GOST89MAC, 0,0,0,0,0},
308 {0,SSL_TXT_SHA256,0, 0,0,0,SSL_SHA256, 0,0,0,0,0},
309 {0,SSL_TXT_SHA384,0, 0,0,0,SSL_SHA384, 0,0,0,0,0},

311 /* protocol version aliases */
312 {0,SSL_TXT_SSLV2,0, 0,0,0,0,SSL_SSLV2, 0,0,0,0},
313 {0,SSL_TXT_SSLV3,0, 0,0,0,0,SSL_SSLV3, 0,0,0,0},
314 {0,SSL_TXT_TLSV1,0, 0,0,0,0,SSL_TLSV1, 0,0,0,0},
315 {0,SSL_TXT_TLSV1_2,0, 0,0,0,0,SSL_TLSV1_2, 0,0,0,0},

317 /* export flag */
318 {0,SSL_TXT_EXP,0, 0,0,0,0,0,SSL_EXPORT,0,0,0},
319 {0,SSL_TXT_EXPORT,0, 0,0,0,0,0,SSL_EXPORT,0,0,0},

321 /* strength classes */
322 {0,SSL_TXT_EXP40,0, 0,0,0,0,0,SSL_EXP40, 0,0,0},
323 {0,SSL_TXT_EXP56,0, 0,0,0,0,0,SSL_EXP56, 0,0,0},
324 {0,SSL_TXT_LOW,0, 0,0,0,0,0,SSL_LOW, 0,0,0},
325 {0,SSL_TXT_MEDIUM,0, 0,0,0,0,0,SSL_MEDIUM,0,0,0},

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 6

326 {0,SSL_TXT_HIGH,0, 0,0,0,0,0,SSL_HIGH, 0,0,0},
327 /* FIPS 140-2 approved ciphersuite */
328 {0,SSL_TXT_FIPS,0, 0,0,~SSL_eNULL,0,0,SSL_FIPS, 0,0,0},
329 };
330 /* Search for public key algorithm with given name and
331 * return its pkey_id if it is available. Otherwise return 0
332 */
333 #ifdef OPENSSL_NO_ENGINE

335 static int get_optional_pkey_id(const char *pkey_name)
336 {
337 const EVP_PKEY_ASN1_METHOD *ameth;
338 int pkey_id=0;
339 ameth = EVP_PKEY_asn1_find_str(NULL,pkey_name,-1);
340 if (ameth)
341 {
342 EVP_PKEY_asn1_get0_info(&pkey_id, NULL,NULL,NULL,NULL,ameth);
343 }
344 return pkey_id;
345 }

347 #else

349 static int get_optional_pkey_id(const char *pkey_name)
350 {
351 const EVP_PKEY_ASN1_METHOD *ameth;
352 ENGINE *tmpeng = NULL;
353 int pkey_id=0;
354 ameth = EVP_PKEY_asn1_find_str(&tmpeng,pkey_name,-1);
355 if (ameth)
356 {
357 EVP_PKEY_asn1_get0_info(&pkey_id, NULL,NULL,NULL,NULL,ameth);
358 }
359 if (tmpeng) ENGINE_finish(tmpeng);
360 return pkey_id;
361 }

363 #endif

365 void ssl_load_ciphers(void)
366 {
367 ssl_cipher_methods[SSL_ENC_DES_IDX]=
368 EVP_get_cipherbyname(SN_des_cbc);
369 ssl_cipher_methods[SSL_ENC_3DES_IDX]=
370 EVP_get_cipherbyname(SN_des_ede3_cbc);
371 ssl_cipher_methods[SSL_ENC_RC4_IDX]=
372 EVP_get_cipherbyname(SN_rc4);
373 ssl_cipher_methods[SSL_ENC_RC2_IDX]=
374 EVP_get_cipherbyname(SN_rc2_cbc);
375 #ifndef OPENSSL_NO_IDEA
376 ssl_cipher_methods[SSL_ENC_IDEA_IDX]=
377 EVP_get_cipherbyname(SN_idea_cbc);
378 #else
379 ssl_cipher_methods[SSL_ENC_IDEA_IDX]= NULL;
380 #endif
381 ssl_cipher_methods[SSL_ENC_AES128_IDX]=
382 EVP_get_cipherbyname(SN_aes_128_cbc);
383 ssl_cipher_methods[SSL_ENC_AES256_IDX]=
384 EVP_get_cipherbyname(SN_aes_256_cbc);
385 ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX]=
386 EVP_get_cipherbyname(SN_camellia_128_cbc);
387 ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX]=
388 EVP_get_cipherbyname(SN_camellia_256_cbc);
389 ssl_cipher_methods[SSL_ENC_GOST89_IDX]=
390 EVP_get_cipherbyname(SN_gost89_cnt);
391 ssl_cipher_methods[SSL_ENC_SEED_IDX]=

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 7

392 EVP_get_cipherbyname(SN_seed_cbc);

394 ssl_cipher_methods[SSL_ENC_AES128GCM_IDX]=
395 EVP_get_cipherbyname(SN_aes_128_gcm);
396 ssl_cipher_methods[SSL_ENC_AES256GCM_IDX]=
397 EVP_get_cipherbyname(SN_aes_256_gcm);

399 ssl_digest_methods[SSL_MD_MD5_IDX]=
400 EVP_get_digestbyname(SN_md5);
401 ssl_mac_secret_size[SSL_MD_MD5_IDX]=
402 EVP_MD_size(ssl_digest_methods[SSL_MD_MD5_IDX]);
403 OPENSSL_assert(ssl_mac_secret_size[SSL_MD_MD5_IDX] >= 0);
404 ssl_digest_methods[SSL_MD_SHA1_IDX]=
405 EVP_get_digestbyname(SN_sha1);
406 ssl_mac_secret_size[SSL_MD_SHA1_IDX]=
407 EVP_MD_size(ssl_digest_methods[SSL_MD_SHA1_IDX]);
408 OPENSSL_assert(ssl_mac_secret_size[SSL_MD_SHA1_IDX] >= 0);
409 ssl_digest_methods[SSL_MD_GOST94_IDX]=
410 EVP_get_digestbyname(SN_id_GostR3411_94);
411 if (ssl_digest_methods[SSL_MD_GOST94_IDX])
412 {
413 ssl_mac_secret_size[SSL_MD_GOST94_IDX]=
414 EVP_MD_size(ssl_digest_methods[SSL_MD_GOST94_IDX]);
415 OPENSSL_assert(ssl_mac_secret_size[SSL_MD_GOST94_IDX] >= 0);
416 }
417 ssl_digest_methods[SSL_MD_GOST89MAC_IDX]=
418 EVP_get_digestbyname(SN_id_Gost28147_89_MAC);
419 ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX] = get_optional_pkey_id("go
420 if (ssl_mac_pkey_id[SSL_MD_GOST89MAC_IDX]) {
421 ssl_mac_secret_size[SSL_MD_GOST89MAC_IDX]=32;
422 }

424 ssl_digest_methods[SSL_MD_SHA256_IDX]=
425 EVP_get_digestbyname(SN_sha256);
426 ssl_mac_secret_size[SSL_MD_SHA256_IDX]=
427 EVP_MD_size(ssl_digest_methods[SSL_MD_SHA256_IDX]);
428 ssl_digest_methods[SSL_MD_SHA384_IDX]=
429 EVP_get_digestbyname(SN_sha384);
430 ssl_mac_secret_size[SSL_MD_SHA384_IDX]=
431 EVP_MD_size(ssl_digest_methods[SSL_MD_SHA384_IDX]);
432 }
433 #ifndef OPENSSL_NO_COMP

435 static int sk_comp_cmp(const SSL_COMP * const *a,
436 const SSL_COMP * const *b)
437 {
438 return((*a)->id-(*b)->id);
439 }

441 static void load_builtin_compressions(void)
442 {
443 int got_write_lock = 0;

445 CRYPTO_r_lock(CRYPTO_LOCK_SSL);
446 if (ssl_comp_methods == NULL)
447 {
448 CRYPTO_r_unlock(CRYPTO_LOCK_SSL);
449 CRYPTO_w_lock(CRYPTO_LOCK_SSL);
450 got_write_lock = 1;
451
452 if (ssl_comp_methods == NULL)
453 {
454 SSL_COMP *comp = NULL;

456 MemCheck_off();
457 ssl_comp_methods=sk_SSL_COMP_new(sk_comp_cmp);

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 8

458 if (ssl_comp_methods != NULL)
459 {
460 comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP)
461 if (comp != NULL)
462 {
463 comp->method=COMP_zlib();
464 if (comp->method
465 && comp->method->type == NID_und
466 OPENSSL_free(comp);
467 else
468 {
469 comp->id=SSL_COMP_ZLIB_IDX;
470 comp->name=comp->method->name;
471 sk_SSL_COMP_push(ssl_comp_method
472 }
473 }
474 sk_SSL_COMP_sort(ssl_comp_methods);
475 }
476 MemCheck_on();
477 }
478 }
479
480 if (got_write_lock)
481 CRYPTO_w_unlock(CRYPTO_LOCK_SSL);
482 else
483 CRYPTO_r_unlock(CRYPTO_LOCK_SSL);
484 }
485 #endif

487 int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc,
488 const EVP_MD **md, int *mac_pkey_type, int *mac_secret_size,SSL_COM
489 {
490 int i;
491 const SSL_CIPHER *c;

493 c=s->cipher;
494 if (c == NULL) return(0);
495 if (comp != NULL)
496 {
497 SSL_COMP ctmp;
498 #ifndef OPENSSL_NO_COMP
499 load_builtin_compressions();
500 #endif

502 *comp=NULL;
503 ctmp.id=s->compress_meth;
504 if (ssl_comp_methods != NULL)
505 {
506 i=sk_SSL_COMP_find(ssl_comp_methods,&ctmp);
507 if (i >= 0)
508 *comp=sk_SSL_COMP_value(ssl_comp_methods,i);
509 else
510 *comp=NULL;
511 }
512 }

514 if ((enc == NULL) || (md == NULL)) return(0);

516 switch (c->algorithm_enc)
517 {
518 case SSL_DES:
519 i=SSL_ENC_DES_IDX;
520 break;
521 case SSL_3DES:
522 i=SSL_ENC_3DES_IDX;
523 break;

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 9

524 case SSL_RC4:
525 i=SSL_ENC_RC4_IDX;
526 break;
527 case SSL_RC2:
528 i=SSL_ENC_RC2_IDX;
529 break;
530 case SSL_IDEA:
531 i=SSL_ENC_IDEA_IDX;
532 break;
533 case SSL_eNULL:
534 i=SSL_ENC_NULL_IDX;
535 break;
536 case SSL_AES128:
537 i=SSL_ENC_AES128_IDX;
538 break;
539 case SSL_AES256:
540 i=SSL_ENC_AES256_IDX;
541 break;
542 case SSL_CAMELLIA128:
543 i=SSL_ENC_CAMELLIA128_IDX;
544 break;
545 case SSL_CAMELLIA256:
546 i=SSL_ENC_CAMELLIA256_IDX;
547 break;
548 case SSL_eGOST2814789CNT:
549 i=SSL_ENC_GOST89_IDX;
550 break;
551 case SSL_SEED:
552 i=SSL_ENC_SEED_IDX;
553 break;
554 case SSL_AES128GCM:
555 i=SSL_ENC_AES128GCM_IDX;
556 break;
557 case SSL_AES256GCM:
558 i=SSL_ENC_AES256GCM_IDX;
559 break;
560 default:
561 i= -1;
562 break;
563 }

565 if ((i < 0) || (i > SSL_ENC_NUM_IDX))
566 *enc=NULL;
567 else
568 {
569 if (i == SSL_ENC_NULL_IDX)
570 *enc=EVP_enc_null();
571 else
572 *enc=ssl_cipher_methods[i];
573 }

575 switch (c->algorithm_mac)
576 {
577 case SSL_MD5:
578 i=SSL_MD_MD5_IDX;
579 break;
580 case SSL_SHA1:
581 i=SSL_MD_SHA1_IDX;
582 break;
583 case SSL_SHA256:
584 i=SSL_MD_SHA256_IDX;
585 break;
586 case SSL_SHA384:
587 i=SSL_MD_SHA384_IDX;
588 break;
589 case SSL_GOST94:

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 10

590 i = SSL_MD_GOST94_IDX;
591 break;
592 case SSL_GOST89MAC:
593 i = SSL_MD_GOST89MAC_IDX;
594 break;
595 default:
596 i= -1;
597 break;
598 }
599 if ((i < 0) || (i > SSL_MD_NUM_IDX))
600 {
601 *md=NULL;
602 if (mac_pkey_type!=NULL) *mac_pkey_type = NID_undef;
603 if (mac_secret_size!=NULL) *mac_secret_size = 0;
604 if (c->algorithm_mac == SSL_AEAD)
605 mac_pkey_type = NULL;
606 }
607 else
608 {
609 *md=ssl_digest_methods[i];
610 if (mac_pkey_type!=NULL) *mac_pkey_type = ssl_mac_pkey_id[i];
611 if (mac_secret_size!=NULL) *mac_secret_size = ssl_mac_secret_siz
612 }

614 if ((*enc != NULL) &&
615 (*md != NULL || (EVP_CIPHER_flags(*enc)&EVP_CIPH_FLAG_AEAD_CIPHER))
616 (!mac_pkey_type||*mac_pkey_type != NID_undef))
617 {
618 const EVP_CIPHER *evp;

620 if (s->ssl_version>>8 != TLS1_VERSION_MAJOR ||
621 s->ssl_version < TLS1_VERSION)
622 return 1;

624 #ifdef OPENSSL_FIPS
625 if (FIPS_mode())
626 return 1;
627 #endif

629 if (c->algorithm_enc == SSL_RC4 &&
630 c->algorithm_mac == SSL_MD5 &&
631 (evp=EVP_get_cipherbyname("RC4-HMAC-MD5")))
632 *enc = evp, *md = NULL;
633 else if (c->algorithm_enc == SSL_AES128 &&
634 c->algorithm_mac == SSL_SHA1 &&
635 (evp=EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1")))
636 *enc = evp, *md = NULL;
637 else if (c->algorithm_enc == SSL_AES256 &&
638 c->algorithm_mac == SSL_SHA1 &&
639 (evp=EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1")))
640 *enc = evp, *md = NULL;
641 return(1);
642 }
643 else
644 return(0);
645 }

647 int ssl_get_handshake_digest(int idx, long *mask, const EVP_MD **md)
648 {
649 if (idx <0||idx>=SSL_MD_NUM_IDX)
650 {
651 return 0;
652 }
653 *mask = ssl_handshake_digest_flag[idx];
654 if (*mask)
655 *md = ssl_digest_methods[idx];

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 11

656 else
657 *md = NULL;
658 return 1;
659 }

661 #define ITEM_SEP(a) \
662 (((a) == ’:’) || ((a) == ’ ’) || ((a) == ’;’) || ((a) == ’,’))

664 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
665 CIPHER_ORDER **tail)
666 {
667 if (curr == *tail) return;
668 if (curr == *head)
669 *head=curr->next;
670 if (curr->prev != NULL)
671 curr->prev->next=curr->next;
672 if (curr->next != NULL)
673 curr->next->prev=curr->prev;
674 (*tail)->next=curr;
675 curr->prev= *tail;
676 curr->next=NULL;
677 *tail=curr;
678 }

680 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
681 CIPHER_ORDER **tail)
682 {
683 if (curr == *head) return;
684 if (curr == *tail)
685 *tail=curr->prev;
686 if (curr->next != NULL)
687 curr->next->prev=curr->prev;
688 if (curr->prev != NULL)
689 curr->prev->next=curr->next;
690 (*head)->prev=curr;
691 curr->next= *head;
692 curr->prev=NULL;
693 *head=curr;
694 }

696 static void ssl_cipher_get_disabled(unsigned long *mkey, unsigned long *auth, un
697 {
698 *mkey = 0;
699 *auth = 0;
700 *enc = 0;
701 *mac = 0;
702 *ssl = 0;

704 #ifdef OPENSSL_NO_RSA
705 *mkey |= SSL_kRSA;
706 *auth |= SSL_aRSA;
707 #endif
708 #ifdef OPENSSL_NO_DSA
709 *auth |= SSL_aDSS;
710 #endif
711 *mkey |= SSL_kDHr|SSL_kDHd; /* no such ciphersuites supported! */
712 *auth |= SSL_aDH;
713 #ifdef OPENSSL_NO_DH
714 *mkey |= SSL_kDHr|SSL_kDHd|SSL_kEDH;
715 *auth |= SSL_aDH;
716 #endif
717 #ifdef OPENSSL_NO_KRB5
718 *mkey |= SSL_kKRB5;
719 *auth |= SSL_aKRB5;
720 #endif
721 #ifdef OPENSSL_NO_ECDSA

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 12

722 *auth |= SSL_aECDSA;
723 #endif
724 #ifdef OPENSSL_NO_ECDH
725 *mkey |= SSL_kECDHe|SSL_kECDHr;
726 *auth |= SSL_aECDH;
727 #endif
728 #ifdef OPENSSL_NO_PSK
729 *mkey |= SSL_kPSK;
730 *auth |= SSL_aPSK;
731 #endif
732 #ifdef OPENSSL_NO_SRP
733 *mkey |= SSL_kSRP;
734 #endif
735 /* Check for presence of GOST 34.10 algorithms, and if they
736 * do not present, disable appropriate auth and key exchange */
737 if (!get_optional_pkey_id("gost94")) {
738 *auth |= SSL_aGOST94;
739 }
740 if (!get_optional_pkey_id("gost2001")) {
741 *auth |= SSL_aGOST01;
742 }
743 /* Disable GOST key exchange if no GOST signature algs are available * *
744 if ((*auth & (SSL_aGOST94|SSL_aGOST01)) == (SSL_aGOST94|SSL_aGOST01)) {
745 *mkey |= SSL_kGOST;
746 }
747 #ifdef SSL_FORBID_ENULL
748 *enc |= SSL_eNULL;
749 #endif
750

753 *enc |= (ssl_cipher_methods[SSL_ENC_DES_IDX] == NULL) ? SSL_DES :0;
754 *enc |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES:0;
755 *enc |= (ssl_cipher_methods[SSL_ENC_RC4_IDX] == NULL) ? SSL_RC4 :0;
756 *enc |= (ssl_cipher_methods[SSL_ENC_RC2_IDX] == NULL) ? SSL_RC2 :0;
757 *enc |= (ssl_cipher_methods[SSL_ENC_IDEA_IDX] == NULL) ? SSL_IDEA:0;
758 *enc |= (ssl_cipher_methods[SSL_ENC_AES128_IDX] == NULL) ? SSL_AES128:0;
759 *enc |= (ssl_cipher_methods[SSL_ENC_AES256_IDX] == NULL) ? SSL_AES256:0;
760 *enc |= (ssl_cipher_methods[SSL_ENC_AES128GCM_IDX] == NULL) ? SSL_AES128
761 *enc |= (ssl_cipher_methods[SSL_ENC_AES256GCM_IDX] == NULL) ? SSL_AES256
762 *enc |= (ssl_cipher_methods[SSL_ENC_CAMELLIA128_IDX] == NULL) ? SSL_CAME
763 *enc |= (ssl_cipher_methods[SSL_ENC_CAMELLIA256_IDX] == NULL) ? SSL_CAME
764 *enc |= (ssl_cipher_methods[SSL_ENC_GOST89_IDX] == NULL) ? SSL_eGOST2814
765 *enc |= (ssl_cipher_methods[SSL_ENC_SEED_IDX] == NULL) ? SSL_SEED:0;

767 *mac |= (ssl_digest_methods[SSL_MD_MD5_IDX] == NULL) ? SSL_MD5 :0;
768 *mac |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1:0;
769 *mac |= (ssl_digest_methods[SSL_MD_SHA256_IDX] == NULL) ? SSL_SHA256:0;
770 *mac |= (ssl_digest_methods[SSL_MD_SHA384_IDX] == NULL) ? SSL_SHA384:0;
771 *mac |= (ssl_digest_methods[SSL_MD_GOST94_IDX] == NULL) ? SSL_GOST94:0;
772 *mac |= (ssl_digest_methods[SSL_MD_GOST89MAC_IDX] == NULL || ssl_mac_pke

774 }

776 static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
777 int num_of_ciphers,
778 unsigned long disabled_mkey, unsigned long disabled_auth,
779 unsigned long disabled_enc, unsigned long disabled_mac,
780 unsigned long disabled_ssl,
781 CIPHER_ORDER *co_list,
782 CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
783 {
784 int i, co_list_num;
785 const SSL_CIPHER *c;

787 /*

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 13

788 * We have num_of_ciphers descriptions compiled in, depending on the
789 * method selected (SSLv2 and/or SSLv3, TLSv1 etc).
790 * These will later be sorted in a linked list with at most num
791 * entries.
792 */

794 /* Get the initial list of ciphers */
795 co_list_num = 0; /* actual count of ciphers */
796 for (i = 0; i < num_of_ciphers; i++)
797 {
798 c = ssl_method->get_cipher(i);
799 /* drop those that use any of that is not available */
800 if ((c != NULL) && c->valid &&
801 #ifdef OPENSSL_FIPS
802 (!FIPS_mode() || (c->algo_strength & SSL_FIPS)) &&
803 #endif
804 !(c->algorithm_mkey & disabled_mkey) &&
805 !(c->algorithm_auth & disabled_auth) &&
806 !(c->algorithm_enc & disabled_enc) &&
807 !(c->algorithm_mac & disabled_mac) &&
808 !(c->algorithm_ssl & disabled_ssl))
809 {
810 co_list[co_list_num].cipher = c;
811 co_list[co_list_num].next = NULL;
812 co_list[co_list_num].prev = NULL;
813 co_list[co_list_num].active = 0;
814 co_list_num++;
815 #ifdef KSSL_DEBUG
816 printf("\t%d: %s %lx %lx %lx\n",i,c->name,c->id,c->algor
817 #endif /* KSSL_DEBUG */
818 /*
819 if (!sk_push(ca_list,(char *)c)) goto err;
820 */
821 }
822 }

824 /*
825 * Prepare linked list from list entries
826 */
827 if (co_list_num > 0)
828 {
829 co_list[0].prev = NULL;

831 if (co_list_num > 1)
832 {
833 co_list[0].next = &co_list[1];
834
835 for (i = 1; i < co_list_num - 1; i++)
836 {
837 co_list[i].prev = &co_list[i - 1];
838 co_list[i].next = &co_list[i + 1];
839 }

841 co_list[co_list_num - 1].prev = &co_list[co_list_num - 2
842 }
843
844 co_list[co_list_num - 1].next = NULL;

846 *head_p = &co_list[0];
847 *tail_p = &co_list[co_list_num - 1];
848 }
849 }

851 static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list,
852 int num_of_group_aliases,
853 unsigned long disabled_mkey, unsigned long disabled_auth

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 14

854 unsigned long disabled_enc, unsigned long disabled_mac,
855 unsigned long disabled_ssl,
856 CIPHER_ORDER *head)
857 {
858 CIPHER_ORDER *ciph_curr;
859 const SSL_CIPHER **ca_curr;
860 int i;
861 unsigned long mask_mkey = ~disabled_mkey;
862 unsigned long mask_auth = ~disabled_auth;
863 unsigned long mask_enc = ~disabled_enc;
864 unsigned long mask_mac = ~disabled_mac;
865 unsigned long mask_ssl = ~disabled_ssl;

867 /*
868 * First, add the real ciphers as already collected
869 */
870 ciph_curr = head;
871 ca_curr = ca_list;
872 while (ciph_curr != NULL)
873 {
874 *ca_curr = ciph_curr->cipher;
875 ca_curr++;
876 ciph_curr = ciph_curr->next;
877 }

879 /*
880 * Now we add the available ones from the cipher_aliases[] table.
881 * They represent either one or more algorithms, some of which
882 * in any affected category must be supported (set in enabled_mask),
883 * or represent a cipher strength value (will be added in any case becau
884 */
885 for (i = 0; i < num_of_group_aliases; i++)
886 {
887 unsigned long algorithm_mkey = cipher_aliases[i].algorithm_mkey;
888 unsigned long algorithm_auth = cipher_aliases[i].algorithm_auth;
889 unsigned long algorithm_enc = cipher_aliases[i].algorithm_enc;
890 unsigned long algorithm_mac = cipher_aliases[i].algorithm_mac;
891 unsigned long algorithm_ssl = cipher_aliases[i].algorithm_ssl;

893 if (algorithm_mkey)
894 if ((algorithm_mkey & mask_mkey) == 0)
895 continue;
896
897 if (algorithm_auth)
898 if ((algorithm_auth & mask_auth) == 0)
899 continue;
900
901 if (algorithm_enc)
902 if ((algorithm_enc & mask_enc) == 0)
903 continue;
904
905 if (algorithm_mac)
906 if ((algorithm_mac & mask_mac) == 0)
907 continue;
908
909 if (algorithm_ssl)
910 if ((algorithm_ssl & mask_ssl) == 0)
911 continue;
912
913 *ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
914 ca_curr++;
915 }

917 *ca_curr = NULL; /* end of list */
918 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 15

920 static void ssl_cipher_apply_rule(unsigned long cipher_id,
921 unsigned long alg_mkey, unsigned long alg_auth,
922 unsigned long alg_enc, unsigned long alg_mac,
923 unsigned long alg_ssl,
924 unsigned long algo_strength,
925 int rule, int strength_bits,
926 CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
927 {
928 CIPHER_ORDER *head, *tail, *curr, *curr2, *last;
929 const SSL_CIPHER *cp;
930 int reverse = 0;

932 #ifdef CIPHER_DEBUG
933 printf("Applying rule %d with %08lx/%08lx/%08lx/%08lx/%08lx %08lx (%d)\n
934 rule, alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_streng
935 #endif

937 if (rule == CIPHER_DEL)
938 reverse = 1; /* needed to maintain sorting between currently del

940 head = *head_p;
941 tail = *tail_p;

943 if (reverse)
944 {
945 curr = tail;
946 last = head;
947 }
948 else
949 {
950 curr = head;
951 last = tail;
952 }

954 curr2 = curr;
955 for (;;)
956 {
957 if ((curr == NULL) || (curr == last)) break;
958 curr = curr2;
959 curr2 = reverse ? curr->prev : curr->next;

961 cp = curr->cipher;

963 /*
964 * Selection criteria is either the value of strength_bits
965 * or the algorithms used.
966 */
967 if (strength_bits >= 0)
968 {
969 if (strength_bits != cp->strength_bits)
970 continue;
971 }
972 else
973 {
974 #ifdef CIPHER_DEBUG
975 printf("\nName: %s:\nAlgo = %08lx/%08lx/%08lx/%08lx/%08l
976 #endif

978 if (alg_mkey && !(alg_mkey & cp->algorithm_mkey))
979 continue;
980 if (alg_auth && !(alg_auth & cp->algorithm_auth))
981 continue;
982 if (alg_enc && !(alg_enc & cp->algorithm_enc))
983 continue;
984 if (alg_mac && !(alg_mac & cp->algorithm_mac))
985 continue;

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 16

986 if (alg_ssl && !(alg_ssl & cp->algorithm_ssl))
987 continue;
988 if ((algo_strength & SSL_EXP_MASK) && !(algo_strength &
989 continue;
990 if ((algo_strength & SSL_STRONG_MASK) && !(algo_strength
991 continue;
992 }

994 #ifdef CIPHER_DEBUG
995 printf("Action = %d\n", rule);
996 #endif

998 /* add the cipher if it has not been added yet. */
999 if (rule == CIPHER_ADD)

1000 {
1001 /* reverse == 0 */
1002 if (!curr->active)
1003 {
1004 ll_append_tail(&head, curr, &tail);
1005 curr->active = 1;
1006 }
1007 }
1008 /* Move the added cipher to this location */
1009 else if (rule == CIPHER_ORD)
1010 {
1011 /* reverse == 0 */
1012 if (curr->active)
1013 {
1014 ll_append_tail(&head, curr, &tail);
1015 }
1016 }
1017 else if (rule == CIPHER_DEL)
1018 {
1019 /* reverse == 1 */
1020 if (curr->active)
1021 {
1022 /* most recently deleted ciphersuites get best p
1023 * for any future CIPHER_ADD (note that the CIPH
1024 * works in reverse to maintain the order) */
1025 ll_append_head(&head, curr, &tail);
1026 curr->active = 0;
1027 }
1028 }
1029 else if (rule == CIPHER_KILL)
1030 {
1031 /* reverse == 0 */
1032 if (head == curr)
1033 head = curr->next;
1034 else
1035 curr->prev->next = curr->next;
1036 if (tail == curr)
1037 tail = curr->prev;
1038 curr->active = 0;
1039 if (curr->next != NULL)
1040 curr->next->prev = curr->prev;
1041 if (curr->prev != NULL)
1042 curr->prev->next = curr->next;
1043 curr->next = NULL;
1044 curr->prev = NULL;
1045 }
1046 }

1048 *head_p = head;
1049 *tail_p = tail;
1050 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 17

1052 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
1053 CIPHER_ORDER **tail_p)
1054 {
1055 int max_strength_bits, i, *number_uses;
1056 CIPHER_ORDER *curr;

1058 /*
1059 * This routine sorts the ciphers with descending strength. The sorting
1060 * must keep the pre-sorted sequence, so we apply the normal sorting
1061 * routine as ’+’ movement to the end of the list.
1062 */
1063 max_strength_bits = 0;
1064 curr = *head_p;
1065 while (curr != NULL)
1066 {
1067 if (curr->active &&
1068 (curr->cipher->strength_bits > max_strength_bits))
1069 max_strength_bits = curr->cipher->strength_bits;
1070 curr = curr->next;
1071 }

1073 number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int));
1074 if (!number_uses)
1075 {
1076 SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT,ERR_R_MALLOC_FAILURE);
1077 return(0);
1078 }
1079 memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int));

1081 /*
1082 * Now find the strength_bits values actually used
1083 */
1084 curr = *head_p;
1085 while (curr != NULL)
1086 {
1087 if (curr->active)
1088 number_uses[curr->cipher->strength_bits]++;
1089 curr = curr->next;
1090 }
1091 /*
1092 * Go through the list of used strength_bits values in descending
1093 * order.
1094 */
1095 for (i = max_strength_bits; i >= 0; i--)
1096 if (number_uses[i] > 0)
1097 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i

1099 OPENSSL_free(number_uses);
1100 return(1);
1101 }

1103 static int ssl_cipher_process_rulestr(const char *rule_str,
1104 CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p,
1105 const SSL_CIPHER **ca_list)
1106 {
1107 unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_streng
1108 const char *l, *buf;
1109 int j, multi, found, rule, retval, ok, buflen;
1110 unsigned long cipher_id = 0;
1111 char ch;

1113 retval = 1;
1114 l = rule_str;
1115 for (;;)
1116 {
1117 ch = *l;

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 18

1119 if (ch == ’\0’)
1120 break; /* done */
1121 if (ch == ’-’)
1122 { rule = CIPHER_DEL; l++; }
1123 else if (ch == ’+’)
1124 { rule = CIPHER_ORD; l++; }
1125 else if (ch == ’!’)
1126 { rule = CIPHER_KILL; l++; }
1127 else if (ch == ’@’)
1128 { rule = CIPHER_SPECIAL; l++; }
1129 else
1130 { rule = CIPHER_ADD; }

1132 if (ITEM_SEP(ch))
1133 {
1134 l++;
1135 continue;
1136 }

1138 alg_mkey = 0;
1139 alg_auth = 0;
1140 alg_enc = 0;
1141 alg_mac = 0;
1142 alg_ssl = 0;
1143 algo_strength = 0;

1145 for (;;)
1146 {
1147 ch = *l;
1148 buf = l;
1149 buflen = 0;
1150 #ifndef CHARSET_EBCDIC
1151 while (((ch >= ’A’) && (ch <= ’Z’)) ||
1152 ((ch >= ’0’) && (ch <= ’9’)) ||
1153 ((ch >= ’a’) && (ch <= ’z’)) ||
1154 (ch == ’-’) || (ch == ’.’))
1155 #else
1156 while (isalnum(ch) || (ch == ’-’) || (ch == ’.’))
1157 #endif
1158 {
1159 ch = *(++l);
1160 buflen++;
1161 }

1163 if (buflen == 0)
1164 {
1165 /*
1166 * We hit something we cannot deal with,
1167 * it is no command or separator nor
1168 * alphanumeric, so we call this an error.
1169 */
1170 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
1171 SSL_R_INVALID_COMMAND);
1172 retval = found = 0;
1173 l++;
1174 break;
1175 }

1177 if (rule == CIPHER_SPECIAL)
1178 {
1179 found = 0; /* unused -- avoid compiler warning *
1180 break; /* special treatment */
1181 }

1183 /* check for multi-part specification */

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 19

1184 if (ch == ’+’)
1185 {
1186 multi=1;
1187 l++;
1188 }
1189 else
1190 multi=0;

1192 /*
1193 * Now search for the cipher alias in the ca_list. Be ca
1194 * with the strncmp, because the "buflen" limitation
1195 * will make the rule "ADH:SOME" and the cipher
1196 * "ADH-MY-CIPHER" look like a match for buflen=3.
1197 * So additionally check whether the cipher name found
1198 * has the correct length. We can save a strlen() call:
1199 * just checking for the ’\0’ at the right place is
1200 * sufficient, we have to strncmp() anyway. (We cannot
1201 * use strcmp(), because buf is not ’\0’ terminated.)
1202 */
1203 j = found = 0;
1204 cipher_id = 0;
1205 while (ca_list[j])
1206 {
1207 if (!strncmp(buf, ca_list[j]->name, buflen) &&
1208 (ca_list[j]->name[buflen] == ’\0’))
1209 {
1210 found = 1;
1211 break;
1212 }
1213 else
1214 j++;
1215 }

1217 if (!found)
1218 break; /* ignore this entry */

1220 if (ca_list[j]->algorithm_mkey)
1221 {
1222 if (alg_mkey)
1223 {
1224 alg_mkey &= ca_list[j]->algorithm_mkey;
1225 if (!alg_mkey) { found = 0; break; }
1226 }
1227 else
1228 alg_mkey = ca_list[j]->algorithm_mkey;
1229 }

1231 if (ca_list[j]->algorithm_auth)
1232 {
1233 if (alg_auth)
1234 {
1235 alg_auth &= ca_list[j]->algorithm_auth;
1236 if (!alg_auth) { found = 0; break; }
1237 }
1238 else
1239 alg_auth = ca_list[j]->algorithm_auth;
1240 }
1241
1242 if (ca_list[j]->algorithm_enc)
1243 {
1244 if (alg_enc)
1245 {
1246 alg_enc &= ca_list[j]->algorithm_enc;
1247 if (!alg_enc) { found = 0; break; }
1248 }
1249 else

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 20

1250 alg_enc = ca_list[j]->algorithm_enc;
1251 }
1252
1253 if (ca_list[j]->algorithm_mac)
1254 {
1255 if (alg_mac)
1256 {
1257 alg_mac &= ca_list[j]->algorithm_mac;
1258 if (!alg_mac) { found = 0; break; }
1259 }
1260 else
1261 alg_mac = ca_list[j]->algorithm_mac;
1262 }
1263
1264 if (ca_list[j]->algo_strength & SSL_EXP_MASK)
1265 {
1266 if (algo_strength & SSL_EXP_MASK)
1267 {
1268 algo_strength &= (ca_list[j]->algo_stren
1269 if (!(algo_strength & SSL_EXP_MASK)) { f
1270 }
1271 else
1272 algo_strength |= ca_list[j]->algo_streng
1273 }

1275 if (ca_list[j]->algo_strength & SSL_STRONG_MASK)
1276 {
1277 if (algo_strength & SSL_STRONG_MASK)
1278 {
1279 algo_strength &= (ca_list[j]->algo_stren
1280 if (!(algo_strength & SSL_STRONG_MASK))
1281 }
1282 else
1283 algo_strength |= ca_list[j]->algo_streng
1284 }
1285
1286 if (ca_list[j]->valid)
1287 {
1288 /* explicit ciphersuite found; its protocol vers
1289 * does not become part of the search pattern!*/

1291 cipher_id = ca_list[j]->id;
1292 }
1293 else
1294 {
1295 /* not an explicit ciphersuite; only in this cas
1296 * protocol version is considered part of the se

1298 if (ca_list[j]->algorithm_ssl)
1299 {
1300 if (alg_ssl)
1301 {
1302 alg_ssl &= ca_list[j]->algorithm
1303 if (!alg_ssl) { found = 0; break
1304 }
1305 else
1306 alg_ssl = ca_list[j]->algorithm_
1307 }
1308 }
1309
1310 if (!multi) break;
1311 }

1313 /*
1314 * Ok, we have the rule, now apply it
1315 */

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 21

1316 if (rule == CIPHER_SPECIAL)
1317 { /* special command */
1318 ok = 0;
1319 if ((buflen == 8) &&
1320 !strncmp(buf, "STRENGTH", 8))
1321 ok = ssl_cipher_strength_sort(head_p, tail_p);
1322 else
1323 SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
1324 SSL_R_INVALID_COMMAND);
1325 if (ok == 0)
1326 retval = 0;
1327 /*
1328 * We do not support any "multi" options
1329 * together with "@", so throw away the
1330 * rest of the command, if any left, until
1331 * end or ’:’ is found.
1332 */
1333 while ((*l != ’\0’) && !ITEM_SEP(*l))
1334 l++;
1335 }
1336 else if (found)
1337 {
1338 ssl_cipher_apply_rule(cipher_id,
1339 alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, a
1340 rule, -1, head_p, tail_p);
1341 }
1342 else
1343 {
1344 while ((*l != ’\0’) && !ITEM_SEP(*l))
1345 l++;
1346 }
1347 if (*l == ’\0’) break; /* done */
1348 }

1350 return(retval);
1351 }

1353 STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method,
1354 STACK_OF(SSL_CIPHER) **cipher_list,
1355 STACK_OF(SSL_CIPHER) **cipher_list_by_id,
1356 const char *rule_str)
1357 {
1358 int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases;
1359 unsigned long disabled_mkey, disabled_auth, disabled_enc, disabled_mac,
1360 STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list;
1361 const char *rule_p;
1362 CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1363 const SSL_CIPHER **ca_list = NULL;

1365 /*
1366 * Return with error if nothing to do.
1367 */
1368 if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL
1369 return NULL;

1371 /*
1372 * To reduce the work to do we only want to process the compiled
1373 * in algorithms, so we first get the mask of disabled ciphers.
1374 */
1375 ssl_cipher_get_disabled(&disabled_mkey, &disabled_auth, &disabled_enc, &

1377 /*
1378 * Now we have to collect the available ciphers from the compiled
1379 * in ciphers. We cannot get more than the number compiled in, so
1380 * it is used for allocation.
1381 */

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 22

1382 num_of_ciphers = ssl_method->num_ciphers();
1383 #ifdef KSSL_DEBUG
1384 printf("ssl_create_cipher_list() for %d ciphers\n", num_of_ciphers);
1385 #endif /* KSSL_DEBUG */
1386 co_list = (CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * num_of_c
1387 if (co_list == NULL)
1388 {
1389 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE);
1390 return(NULL); /* Failure */
1391 }

1393 ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers,
1394 disabled_mkey, disabled_auth, disabled_enc, d
1395 co_list, &head, &tail);

1398 /* Now arrange all ciphers by preference: */

1400 /* Everything else being equal, prefer ephemeral ECDH over other key exc
1401 ssl_cipher_apply_rule(0, SSL_kEECDH, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &hea
1402 ssl_cipher_apply_rule(0, SSL_kEECDH, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &hea

1404 /* AES is our preferred symmetric cipher */
1405 ssl_cipher_apply_rule(0, 0, 0, SSL_AES, 0, 0, 0, CIPHER_ADD, -1, &head,

1407 /* Temporarily enable everything else for sorting */
1408 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, &head, &tail)

1410 /* Low priority for MD5 */
1411 ssl_cipher_apply_rule(0, 0, 0, 0, SSL_MD5, 0, 0, CIPHER_ORD, -1, &head,

1413 /* Move anonymous ciphers to the end. Usually, these will remain disabl
1414 * (For applications that allow them, they aren’t too bad, but we prefer
1415 * authenticated ciphers.) */
1416 ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, &head

1418 /* Move ciphers without forward secrecy to the end */
1419 ssl_cipher_apply_rule(0, 0, SSL_aECDH, 0, 0, 0, 0, CIPHER_ORD, -1, &head
1420 /* ssl_cipher_apply_rule(0, 0, SSL_aDH, 0, 0, 0, 0, CIPHER_ORD, -1, &hea
1421 ssl_cipher_apply_rule(0, SSL_kRSA, 0, 0, 0, 0, 0, CIPHER_ORD, -1, &head,
1422 ssl_cipher_apply_rule(0, SSL_kPSK, 0,0, 0, 0, 0, CIPHER_ORD, -1, &head,
1423 ssl_cipher_apply_rule(0, SSL_kKRB5, 0,0, 0, 0, 0, CIPHER_ORD, -1, &head,

1425 /* RC4 is sort-of broken -- move the the end */
1426 ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, 0, 0, 0, CIPHER_ORD, -1, &head,

1428 /* Now sort by symmetric encryption strength. The above ordering remain
1429 * in force within each class */
1430 if (!ssl_cipher_strength_sort(&head, &tail))
1431 {
1432 OPENSSL_free(co_list);
1433 return NULL;
1434 }

1436 /* Now disable everything (maintaining the ordering!) */
1437 ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, &head, &tail)

1440 /*
1441 * We also need cipher aliases for selecting based on the rule_str.
1442 * There might be two types of entries in the rule_str: 1) names
1443 * of ciphers themselves 2) aliases for groups of ciphers.
1444 * For 1) we need the available ciphers and for 2) the cipher
1445 * groups of cipher_aliases added together in one list (otherwise
1446 * we would be happy with just the cipher_aliases table).
1447 */

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 23

1448 num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER);
1449 num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
1450 ca_list = OPENSSL_malloc(sizeof(SSL_CIPHER *) * num_of_alias_max);
1451 if (ca_list == NULL)
1452 {
1453 OPENSSL_free(co_list);
1454 SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE);
1455 return(NULL); /* Failure */
1456 }
1457 ssl_cipher_collect_aliases(ca_list, num_of_group_aliases,
1458 disabled_mkey, disabled_auth, disabled_enc,
1459 disabled_mac, disabled_ssl, head);

1461 /*
1462 * If the rule_string begins with DEFAULT, apply the default rule
1463 * before using the (possibly available) additional rules.
1464 */
1465 ok = 1;
1466 rule_p = rule_str;
1467 if (strncmp(rule_str,"DEFAULT",7) == 0)
1468 {
1469 ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
1470 &head, &tail, ca_list);
1471 rule_p += 7;
1472 if (*rule_p == ’:’)
1473 rule_p++;
1474 }

1476 if (ok && (strlen(rule_p) > 0))
1477 ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list);

1479 OPENSSL_free((void *)ca_list); /* Not needed anymore */

1481 if (!ok)
1482 { /* Rule processing failure */
1483 OPENSSL_free(co_list);
1484 return(NULL);
1485 }
1486
1487 /*
1488 * Allocate new "cipherstack" for the result, return with error
1489 * if we cannot get one.
1490 */
1491 if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL)
1492 {
1493 OPENSSL_free(co_list);
1494 return(NULL);
1495 }

1497 /*
1498 * The cipher selection for the list is done. The ciphers are added
1499 * to the resulting precedence to the STACK_OF(SSL_CIPHER).
1500 */
1501 for (curr = head; curr != NULL; curr = curr->next)
1502 {
1503 #ifdef OPENSSL_FIPS
1504 if (curr->active && (!FIPS_mode() || curr->cipher->algo_strength
1505 #else
1506 if (curr->active)
1507 #endif
1508 {
1509 sk_SSL_CIPHER_push(cipherstack, curr->cipher);
1510 #ifdef CIPHER_DEBUG
1511 printf("<%s>\n",curr->cipher->name);
1512 #endif
1513 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 24

1514 }
1515 OPENSSL_free(co_list); /* Not needed any longer */

1517 tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
1518 if (tmp_cipher_list == NULL)
1519 {
1520 sk_SSL_CIPHER_free(cipherstack);
1521 return NULL;
1522 }
1523 if (*cipher_list != NULL)
1524 sk_SSL_CIPHER_free(*cipher_list);
1525 *cipher_list = cipherstack;
1526 if (*cipher_list_by_id != NULL)
1527 sk_SSL_CIPHER_free(*cipher_list_by_id);
1528 *cipher_list_by_id = tmp_cipher_list;
1529 (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,ssl_cipher_ptr_id_cm

1531 sk_SSL_CIPHER_sort(*cipher_list_by_id);
1532 return(cipherstack);
1533 }

1535 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len)
1536 {
1537 int is_export,pkl,kl;
1538 const char *ver,*exp_str;
1539 const char *kx,*au,*enc,*mac;
1540 unsigned long alg_mkey,alg_auth,alg_enc,alg_mac,alg_ssl,alg2;
1541 #ifdef KSSL_DEBUG
1542 static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s
1543 #else
1544 static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s\
1545 #endif /* KSSL_DEBUG */

1547 alg_mkey = cipher->algorithm_mkey;
1548 alg_auth = cipher->algorithm_auth;
1549 alg_enc = cipher->algorithm_enc;
1550 alg_mac = cipher->algorithm_mac;
1551 alg_ssl = cipher->algorithm_ssl;

1553 alg2=cipher->algorithm2;

1555 is_export=SSL_C_IS_EXPORT(cipher);
1556 pkl=SSL_C_EXPORT_PKEYLENGTH(cipher);
1557 kl=SSL_C_EXPORT_KEYLENGTH(cipher);
1558 exp_str=is_export?" export":"";
1559
1560 if (alg_ssl & SSL_SSLV2)
1561 ver="SSLv2";
1562 else if (alg_ssl & SSL_SSLV3)
1563 ver="SSLv3";
1564 else if (alg_ssl & SSL_TLSV1_2)
1565 ver="TLSv1.2";
1566 else
1567 ver="unknown";

1569 switch (alg_mkey)
1570 {
1571 case SSL_kRSA:
1572 kx=is_export?(pkl == 512 ? "RSA(512)" : "RSA(1024)"):"RSA";
1573 break;
1574 case SSL_kDHr:
1575 kx="DH/RSA";
1576 break;
1577 case SSL_kDHd:
1578 kx="DH/DSS";
1579 break;

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 25

1580 case SSL_kKRB5:
1581 kx="KRB5";
1582 break;
1583 case SSL_kEDH:
1584 kx=is_export?(pkl == 512 ? "DH(512)" : "DH(1024)"):"DH";
1585 break;
1586 case SSL_kECDHr:
1587 kx="ECDH/RSA";
1588 break;
1589 case SSL_kECDHe:
1590 kx="ECDH/ECDSA";
1591 break;
1592 case SSL_kEECDH:
1593 kx="ECDH";
1594 break;
1595 case SSL_kPSK:
1596 kx="PSK";
1597 break;
1598 case SSL_kSRP:
1599 kx="SRP";
1600 break;
1601 default:
1602 kx="unknown";
1603 }

1605 switch (alg_auth)
1606 {
1607 case SSL_aRSA:
1608 au="RSA";
1609 break;
1610 case SSL_aDSS:
1611 au="DSS";
1612 break;
1613 case SSL_aDH:
1614 au="DH";
1615 break;
1616 case SSL_aKRB5:
1617 au="KRB5";
1618 break;
1619 case SSL_aECDH:
1620 au="ECDH";
1621 break;
1622 case SSL_aNULL:
1623 au="None";
1624 break;
1625 case SSL_aECDSA:
1626 au="ECDSA";
1627 break;
1628 case SSL_aPSK:
1629 au="PSK";
1630 break;
1631 default:
1632 au="unknown";
1633 break;
1634 }

1636 switch (alg_enc)
1637 {
1638 case SSL_DES:
1639 enc=(is_export && kl == 5)?"DES(40)":"DES(56)";
1640 break;
1641 case SSL_3DES:
1642 enc="3DES(168)";
1643 break;
1644 case SSL_RC4:
1645 enc=is_export?(kl == 5 ? "RC4(40)" : "RC4(56)")

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 26

1646 :((alg2&SSL2_CF_8_BYTE_ENC)?"RC4(64)":"RC4(128)");
1647 break;
1648 case SSL_RC2:
1649 enc=is_export?(kl == 5 ? "RC2(40)" : "RC2(56)"):"RC2(128)";
1650 break;
1651 case SSL_IDEA:
1652 enc="IDEA(128)";
1653 break;
1654 case SSL_eNULL:
1655 enc="None";
1656 break;
1657 case SSL_AES128:
1658 enc="AES(128)";
1659 break;
1660 case SSL_AES256:
1661 enc="AES(256)";
1662 break;
1663 case SSL_AES128GCM:
1664 enc="AESGCM(128)";
1665 break;
1666 case SSL_AES256GCM:
1667 enc="AESGCM(256)";
1668 break;
1669 case SSL_CAMELLIA128:
1670 enc="Camellia(128)";
1671 break;
1672 case SSL_CAMELLIA256:
1673 enc="Camellia(256)";
1674 break;
1675 case SSL_SEED:
1676 enc="SEED(128)";
1677 break;
1678 default:
1679 enc="unknown";
1680 break;
1681 }

1683 switch (alg_mac)
1684 {
1685 case SSL_MD5:
1686 mac="MD5";
1687 break;
1688 case SSL_SHA1:
1689 mac="SHA1";
1690 break;
1691 case SSL_SHA256:
1692 mac="SHA256";
1693 break;
1694 case SSL_SHA384:
1695 mac="SHA384";
1696 break;
1697 case SSL_AEAD:
1698 mac="AEAD";
1699 break;
1700 default:
1701 mac="unknown";
1702 break;
1703 }

1705 if (buf == NULL)
1706 {
1707 len=128;
1708 buf=OPENSSL_malloc(len);
1709 if (buf == NULL) return("OPENSSL_malloc Error");
1710 }
1711 else if (len < 128)

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 27

1712 return("Buffer too small");

1714 #ifdef KSSL_DEBUG
1715 BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str,alg_m
1716 #else
1717 BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str);
1718 #endif /* KSSL_DEBUG */
1719 return(buf);
1720 }

1722 char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
1723 {
1724 int i;

1726 if (c == NULL) return("(NONE)");
1727 i=(int)(c->id>>24L);
1728 if (i == 3)
1729 return("TLSv1/SSLv3");
1730 else if (i == 2)
1731 return("SSLv2");
1732 else
1733 return("unknown");
1734 }

1736 /* return the actual cipher being used */
1737 const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
1738 {
1739 if (c != NULL)
1740 return(c->name);
1741 return("(NONE)");
1742 }

1744 /* number of bits for symmetric cipher */
1745 int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
1746 {
1747 int ret=0;

1749 if (c != NULL)
1750 {
1751 if (alg_bits != NULL) *alg_bits = c->alg_bits;
1752 ret = c->strength_bits;
1753 }
1754 return(ret);
1755 }

1757 unsigned long SSL_CIPHER_get_id(const SSL_CIPHER *c)
1758 {
1759 return c->id;
1760 }

1762 SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
1763 {
1764 SSL_COMP *ctmp;
1765 int i,nn;

1767 if ((n == 0) || (sk == NULL)) return(NULL);
1768 nn=sk_SSL_COMP_num(sk);
1769 for (i=0; i<nn; i++)
1770 {
1771 ctmp=sk_SSL_COMP_value(sk,i);
1772 if (ctmp->id == n)
1773 return(ctmp);
1774 }
1775 return(NULL);
1776 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 28

1778 #ifdef OPENSSL_NO_COMP
1779 void *SSL_COMP_get_compression_methods(void)
1780 {
1781 return NULL;
1782 }
1783 int SSL_COMP_add_compression_method(int id, void *cm)
1784 {
1785 return 1;
1786 }

1788 const char *SSL_COMP_get_name(const void *comp)
1789 {
1790 return NULL;
1791 }
1792 #else
1793 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
1794 {
1795 load_builtin_compressions();
1796 return(ssl_comp_methods);
1797 }

1799 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
1800 {
1801 SSL_COMP *comp;

1803 if (cm == NULL || cm->type == NID_undef)
1804 return 1;

1806 /* According to draft-ietf-tls-compression-04.txt, the
1807 compression number ranges should be the following:

1809 0 to 63: methods defined by the IETF
1810 64 to 192: external party methods assigned by IANA
1811 193 to 255: reserved for private use */
1812 if (id < 193 || id > 255)
1813 {
1814 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,SSL_R_COMPRESSION_I
1815 return 0;
1816 }

1818 MemCheck_off();
1819 comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP));
1820 comp->id=id;
1821 comp->method=cm;
1822 load_builtin_compressions();
1823 if (ssl_comp_methods
1824 && sk_SSL_COMP_find(ssl_comp_methods,comp) >= 0)
1825 {
1826 OPENSSL_free(comp);
1827 MemCheck_on();
1828 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,SSL_R_DUPLICATE_COM
1829 return(1);
1830 }
1831 else if ((ssl_comp_methods == NULL)
1832 || !sk_SSL_COMP_push(ssl_comp_methods,comp))
1833 {
1834 OPENSSL_free(comp);
1835 MemCheck_on();
1836 SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,ERR_R_MALLOC_FAILUR
1837 return(1);
1838 }
1839 else
1840 {
1841 MemCheck_on();
1842 return(0);
1843 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_ciph.c 29

1844 }

1846 const char *SSL_COMP_get_name(const COMP_METHOD *comp)
1847 {
1848 if (comp)
1849 return comp->name;
1850 return NULL;
1851 }

1853 #endif

new/usr/src/lib/openssl/libsunw_ssl/ssl_err.c 1

**
 39618 Fri May 30 18:32:22 2014
new/usr/src/lib/openssl/libsunw_ssl/ssl_err.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/ssl_err.c */
2 /* ==
3 * Copyright (c) 1999-2011 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@OpenSSL.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ==
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */

56 /* NOTE: this file was auto generated by the mkerr.pl script: any changes
57 * made to it will be overwritten when the script next updates this file,
58 * only reason strings will be preserved.
59 */

61 #include <stdio.h>

new/usr/src/lib/openssl/libsunw_ssl/ssl_err.c 2

62 #include <openssl/err.h>
63 #include <openssl/ssl.h>

65 /* BEGIN ERROR CODES */
66 #ifndef OPENSSL_NO_ERR

68 #define ERR_FUNC(func) ERR_PACK(ERR_LIB_SSL,func,0)
69 #define ERR_REASON(reason) ERR_PACK(ERR_LIB_SSL,0,reason)

71 static ERR_STRING_DATA SSL_str_functs[]=
72 {
73 {ERR_FUNC(SSL_F_CLIENT_CERTIFICATE), "CLIENT_CERTIFICATE"},
74 {ERR_FUNC(SSL_F_CLIENT_FINISHED), "CLIENT_FINISHED"},
75 {ERR_FUNC(SSL_F_CLIENT_HELLO), "CLIENT_HELLO"},
76 {ERR_FUNC(SSL_F_CLIENT_MASTER_KEY), "CLIENT_MASTER_KEY"},
77 {ERR_FUNC(SSL_F_D2I_SSL_SESSION), "d2i_SSL_SESSION"},
78 {ERR_FUNC(SSL_F_DO_DTLS1_WRITE), "DO_DTLS1_WRITE"},
79 {ERR_FUNC(SSL_F_DO_SSL3_WRITE), "DO_SSL3_WRITE"},
80 {ERR_FUNC(SSL_F_DTLS1_ACCEPT), "DTLS1_ACCEPT"},
81 {ERR_FUNC(SSL_F_DTLS1_ADD_CERT_TO_BUF), "DTLS1_ADD_CERT_TO_BUF"},
82 {ERR_FUNC(SSL_F_DTLS1_BUFFER_RECORD), "DTLS1_BUFFER_RECORD"},
83 {ERR_FUNC(SSL_F_DTLS1_CHECK_TIMEOUT_NUM), "DTLS1_CHECK_TIMEOUT_NUM"},
84 {ERR_FUNC(SSL_F_DTLS1_CLIENT_HELLO), "DTLS1_CLIENT_HELLO"},
85 {ERR_FUNC(SSL_F_DTLS1_CONNECT), "DTLS1_CONNECT"},
86 {ERR_FUNC(SSL_F_DTLS1_ENC), "DTLS1_ENC"},
87 {ERR_FUNC(SSL_F_DTLS1_GET_HELLO_VERIFY), "DTLS1_GET_HELLO_VERIFY"},
88 {ERR_FUNC(SSL_F_DTLS1_GET_MESSAGE), "DTLS1_GET_MESSAGE"},
89 {ERR_FUNC(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT), "DTLS1_GET_MESSAGE_FRAGMENT"},
90 {ERR_FUNC(SSL_F_DTLS1_GET_RECORD), "DTLS1_GET_RECORD"},
91 {ERR_FUNC(SSL_F_DTLS1_HANDLE_TIMEOUT), "DTLS1_HANDLE_TIMEOUT"},
92 {ERR_FUNC(SSL_F_DTLS1_HEARTBEAT), "DTLS1_HEARTBEAT"},
93 {ERR_FUNC(SSL_F_DTLS1_OUTPUT_CERT_CHAIN), "DTLS1_OUTPUT_CERT_CHAIN"},
94 {ERR_FUNC(SSL_F_DTLS1_PREPROCESS_FRAGMENT), "DTLS1_PREPROCESS_FRAGMENT"},
95 {ERR_FUNC(SSL_F_DTLS1_PROCESS_OUT_OF_SEQ_MESSAGE), "DTLS1_PROCESS_OUT_OF_SE
96 {ERR_FUNC(SSL_F_DTLS1_PROCESS_RECORD), "DTLS1_PROCESS_RECORD"},
97 {ERR_FUNC(SSL_F_DTLS1_READ_BYTES), "DTLS1_READ_BYTES"},
98 {ERR_FUNC(SSL_F_DTLS1_READ_FAILED), "DTLS1_READ_FAILED"},
99 {ERR_FUNC(SSL_F_DTLS1_SEND_CERTIFICATE_REQUEST), "DTLS1_SEND_CERTIFICATE_
100 {ERR_FUNC(SSL_F_DTLS1_SEND_CLIENT_CERTIFICATE), "DTLS1_SEND_CLIENT_CERTIFICATE"}
101 {ERR_FUNC(SSL_F_DTLS1_SEND_CLIENT_KEY_EXCHANGE), "DTLS1_SEND_CLIENT_KEY_E
102 {ERR_FUNC(SSL_F_DTLS1_SEND_CLIENT_VERIFY), "DTLS1_SEND_CLIENT_VERIFY"},
103 {ERR_FUNC(SSL_F_DTLS1_SEND_HELLO_VERIFY_REQUEST), "DTLS1_SEND_HELLO_VERIFY
104 {ERR_FUNC(SSL_F_DTLS1_SEND_SERVER_CERTIFICATE), "DTLS1_SEND_SERVER_CERTIFICATE"}
105 {ERR_FUNC(SSL_F_DTLS1_SEND_SERVER_HELLO), "DTLS1_SEND_SERVER_HELLO"},
106 {ERR_FUNC(SSL_F_DTLS1_SEND_SERVER_KEY_EXCHANGE), "DTLS1_SEND_SERVER_KEY_E
107 {ERR_FUNC(SSL_F_DTLS1_WRITE_APP_DATA_BYTES), "DTLS1_WRITE_APP_DATA_BYTES"},
108 {ERR_FUNC(SSL_F_GET_CLIENT_FINISHED), "GET_CLIENT_FINISHED"},
109 {ERR_FUNC(SSL_F_GET_CLIENT_HELLO), "GET_CLIENT_HELLO"},
110 {ERR_FUNC(SSL_F_GET_CLIENT_MASTER_KEY), "GET_CLIENT_MASTER_KEY"},
111 {ERR_FUNC(SSL_F_GET_SERVER_FINISHED), "GET_SERVER_FINISHED"},
112 {ERR_FUNC(SSL_F_GET_SERVER_HELLO), "GET_SERVER_HELLO"},
113 {ERR_FUNC(SSL_F_GET_SERVER_VERIFY), "GET_SERVER_VERIFY"},
114 {ERR_FUNC(SSL_F_I2D_SSL_SESSION), "i2d_SSL_SESSION"},
115 {ERR_FUNC(SSL_F_READ_N), "READ_N"},
116 {ERR_FUNC(SSL_F_REQUEST_CERTIFICATE), "REQUEST_CERTIFICATE"},
117 {ERR_FUNC(SSL_F_SERVER_FINISH), "SERVER_FINISH"},
118 {ERR_FUNC(SSL_F_SERVER_HELLO), "SERVER_HELLO"},
119 {ERR_FUNC(SSL_F_SERVER_VERIFY), "SERVER_VERIFY"},
120 {ERR_FUNC(SSL_F_SSL23_ACCEPT), "SSL23_ACCEPT"},
121 {ERR_FUNC(SSL_F_SSL23_CLIENT_HELLO), "SSL23_CLIENT_HELLO"},
122 {ERR_FUNC(SSL_F_SSL23_CONNECT), "SSL23_CONNECT"},
123 {ERR_FUNC(SSL_F_SSL23_GET_CLIENT_HELLO), "SSL23_GET_CLIENT_HELLO"},
124 {ERR_FUNC(SSL_F_SSL23_GET_SERVER_HELLO), "SSL23_GET_SERVER_HELLO"},
125 {ERR_FUNC(SSL_F_SSL23_PEEK), "SSL23_PEEK"},
126 {ERR_FUNC(SSL_F_SSL23_READ), "SSL23_READ"},
127 {ERR_FUNC(SSL_F_SSL23_WRITE), "SSL23_WRITE"},

new/usr/src/lib/openssl/libsunw_ssl/ssl_err.c 3

128 {ERR_FUNC(SSL_F_SSL2_ACCEPT), "SSL2_ACCEPT"},
129 {ERR_FUNC(SSL_F_SSL2_CONNECT), "SSL2_CONNECT"},
130 {ERR_FUNC(SSL_F_SSL2_ENC_INIT), "SSL2_ENC_INIT"},
131 {ERR_FUNC(SSL_F_SSL2_GENERATE_KEY_MATERIAL), "SSL2_GENERATE_KEY_MATERIAL"},
132 {ERR_FUNC(SSL_F_SSL2_PEEK), "SSL2_PEEK"},
133 {ERR_FUNC(SSL_F_SSL2_READ), "SSL2_READ"},
134 {ERR_FUNC(SSL_F_SSL2_READ_INTERNAL), "SSL2_READ_INTERNAL"},
135 {ERR_FUNC(SSL_F_SSL2_SET_CERTIFICATE), "SSL2_SET_CERTIFICATE"},
136 {ERR_FUNC(SSL_F_SSL2_WRITE), "SSL2_WRITE"},
137 {ERR_FUNC(SSL_F_SSL3_ACCEPT), "SSL3_ACCEPT"},
138 {ERR_FUNC(SSL_F_SSL3_ADD_CERT_TO_BUF), "SSL3_ADD_CERT_TO_BUF"},
139 {ERR_FUNC(SSL_F_SSL3_CALLBACK_CTRL), "SSL3_CALLBACK_CTRL"},
140 {ERR_FUNC(SSL_F_SSL3_CHANGE_CIPHER_STATE), "SSL3_CHANGE_CIPHER_STATE"},
141 {ERR_FUNC(SSL_F_SSL3_CHECK_CERT_AND_ALGORITHM), "SSL3_CHECK_CERT_AND_ALGORITHM"}
142 {ERR_FUNC(SSL_F_SSL3_CHECK_CLIENT_HELLO), "SSL3_CHECK_CLIENT_HELLO"},
143 {ERR_FUNC(SSL_F_SSL3_CLIENT_HELLO), "SSL3_CLIENT_HELLO"},
144 {ERR_FUNC(SSL_F_SSL3_CONNECT), "SSL3_CONNECT"},
145 {ERR_FUNC(SSL_F_SSL3_CTRL), "SSL3_CTRL"},
146 {ERR_FUNC(SSL_F_SSL3_CTX_CTRL), "SSL3_CTX_CTRL"},
147 {ERR_FUNC(SSL_F_SSL3_DIGEST_CACHED_RECORDS), "SSL3_DIGEST_CACHED_RECORDS"},
148 {ERR_FUNC(SSL_F_SSL3_DO_CHANGE_CIPHER_SPEC), "SSL3_DO_CHANGE_CIPHER_SPEC"},
149 {ERR_FUNC(SSL_F_SSL3_ENC), "SSL3_ENC"},
150 {ERR_FUNC(SSL_F_SSL3_GENERATE_KEY_BLOCK), "SSL3_GENERATE_KEY_BLOCK"},
151 {ERR_FUNC(SSL_F_SSL3_GET_CERTIFICATE_REQUEST), "SSL3_GET_CERTIFICATE_REQUEST"},
152 {ERR_FUNC(SSL_F_SSL3_GET_CERT_STATUS), "SSL3_GET_CERT_STATUS"},
153 {ERR_FUNC(SSL_F_SSL3_GET_CERT_VERIFY), "SSL3_GET_CERT_VERIFY"},
154 {ERR_FUNC(SSL_F_SSL3_GET_CLIENT_CERTIFICATE), "SSL3_GET_CLIENT_CERTIFICATE"},
155 {ERR_FUNC(SSL_F_SSL3_GET_CLIENT_HELLO), "SSL3_GET_CLIENT_HELLO"},
156 {ERR_FUNC(SSL_F_SSL3_GET_CLIENT_KEY_EXCHANGE), "SSL3_GET_CLIENT_KEY_EXCHANGE"},
157 {ERR_FUNC(SSL_F_SSL3_GET_FINISHED), "SSL3_GET_FINISHED"},
158 {ERR_FUNC(SSL_F_SSL3_GET_KEY_EXCHANGE), "SSL3_GET_KEY_EXCHANGE"},
159 {ERR_FUNC(SSL_F_SSL3_GET_MESSAGE), "SSL3_GET_MESSAGE"},
160 {ERR_FUNC(SSL_F_SSL3_GET_NEW_SESSION_TICKET), "SSL3_GET_NEW_SESSION_TICKET"},
161 {ERR_FUNC(SSL_F_SSL3_GET_NEXT_PROTO), "SSL3_GET_NEXT_PROTO"},
162 {ERR_FUNC(SSL_F_SSL3_GET_RECORD), "SSL3_GET_RECORD"},
163 {ERR_FUNC(SSL_F_SSL3_GET_SERVER_CERTIFICATE), "SSL3_GET_SERVER_CERTIFICATE"},
164 {ERR_FUNC(SSL_F_SSL3_GET_SERVER_DONE), "SSL3_GET_SERVER_DONE"},
165 {ERR_FUNC(SSL_F_SSL3_GET_SERVER_HELLO), "SSL3_GET_SERVER_HELLO"},
166 {ERR_FUNC(SSL_F_SSL3_HANDSHAKE_MAC), "ssl3_handshake_mac"},
167 {ERR_FUNC(SSL_F_SSL3_NEW_SESSION_TICKET), "SSL3_NEW_SESSION_TICKET"},
168 {ERR_FUNC(SSL_F_SSL3_OUTPUT_CERT_CHAIN), "SSL3_OUTPUT_CERT_CHAIN"},
169 {ERR_FUNC(SSL_F_SSL3_PEEK), "SSL3_PEEK"},
170 {ERR_FUNC(SSL_F_SSL3_READ_BYTES), "SSL3_READ_BYTES"},
171 {ERR_FUNC(SSL_F_SSL3_READ_N), "SSL3_READ_N"},
172 {ERR_FUNC(SSL_F_SSL3_SEND_CERTIFICATE_REQUEST), "SSL3_SEND_CERTIFICATE_REQUEST"}
173 {ERR_FUNC(SSL_F_SSL3_SEND_CLIENT_CERTIFICATE), "SSL3_SEND_CLIENT_CERTIFICATE"},
174 {ERR_FUNC(SSL_F_SSL3_SEND_CLIENT_KEY_EXCHANGE), "SSL3_SEND_CLIENT_KEY_EXCHANGE"}
175 {ERR_FUNC(SSL_F_SSL3_SEND_CLIENT_VERIFY), "SSL3_SEND_CLIENT_VERIFY"},
176 {ERR_FUNC(SSL_F_SSL3_SEND_SERVER_CERTIFICATE), "SSL3_SEND_SERVER_CERTIFICATE"},
177 {ERR_FUNC(SSL_F_SSL3_SEND_SERVER_HELLO), "SSL3_SEND_SERVER_HELLO"},
178 {ERR_FUNC(SSL_F_SSL3_SEND_SERVER_KEY_EXCHANGE), "SSL3_SEND_SERVER_KEY_EXCHANGE"}
179 {ERR_FUNC(SSL_F_SSL3_SETUP_KEY_BLOCK), "SSL3_SETUP_KEY_BLOCK"},
180 {ERR_FUNC(SSL_F_SSL3_SETUP_READ_BUFFER), "SSL3_SETUP_READ_BUFFER"},
181 {ERR_FUNC(SSL_F_SSL3_SETUP_WRITE_BUFFER), "SSL3_SETUP_WRITE_BUFFER"},
182 {ERR_FUNC(SSL_F_SSL3_WRITE_BYTES), "SSL3_WRITE_BYTES"},
183 {ERR_FUNC(SSL_F_SSL3_WRITE_PENDING), "SSL3_WRITE_PENDING"},
184 {ERR_FUNC(SSL_F_SSL_ADD_CLIENTHELLO_RENEGOTIATE_EXT), "SSL_ADD_CLIENTHELLO_REN
185 {ERR_FUNC(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT), "SSL_ADD_CLIENTHELLO_TLSEXT"},
186 {ERR_FUNC(SSL_F_SSL_ADD_CLIENTHELLO_USE_SRTP_EXT), "SSL_ADD_CLIENTHELLO_USE
187 {ERR_FUNC(SSL_F_SSL_ADD_DIR_CERT_SUBJECTS_TO_STACK), "SSL_add_dir_cert_subjec
188 {ERR_FUNC(SSL_F_SSL_ADD_FILE_CERT_SUBJECTS_TO_STACK), "SSL_add_file_cert_subje
189 {ERR_FUNC(SSL_F_SSL_ADD_SERVERHELLO_RENEGOTIATE_EXT), "SSL_ADD_SERVERHELLO_REN
190 {ERR_FUNC(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT), "SSL_ADD_SERVERHELLO_TLSEXT"},
191 {ERR_FUNC(SSL_F_SSL_ADD_SERVERHELLO_USE_SRTP_EXT), "SSL_ADD_SERVERHELLO_USE
192 {ERR_FUNC(SSL_F_SSL_BAD_METHOD), "SSL_BAD_METHOD"},
193 {ERR_FUNC(SSL_F_SSL_BYTES_TO_CIPHER_LIST), "SSL_BYTES_TO_CIPHER_LIST"},

new/usr/src/lib/openssl/libsunw_ssl/ssl_err.c 4

194 {ERR_FUNC(SSL_F_SSL_CERT_DUP), "SSL_CERT_DUP"},
195 {ERR_FUNC(SSL_F_SSL_CERT_INST), "SSL_CERT_INST"},
196 {ERR_FUNC(SSL_F_SSL_CERT_INSTANTIATE), "SSL_CERT_INSTANTIATE"},
197 {ERR_FUNC(SSL_F_SSL_CERT_NEW), "SSL_CERT_NEW"},
198 {ERR_FUNC(SSL_F_SSL_CHECK_PRIVATE_KEY), "SSL_check_private_key"},
199 {ERR_FUNC(SSL_F_SSL_CHECK_SERVERHELLO_TLSEXT), "SSL_CHECK_SERVERHELLO_TLSEXT"},
200 {ERR_FUNC(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG), "SSL_CHECK_SRVR_ECC_CERT
201 {ERR_FUNC(SSL_F_SSL_CIPHER_PROCESS_RULESTR), "SSL_CIPHER_PROCESS_RULESTR"},
202 {ERR_FUNC(SSL_F_SSL_CIPHER_STRENGTH_SORT), "SSL_CIPHER_STRENGTH_SORT"},
203 {ERR_FUNC(SSL_F_SSL_CLEAR), "SSL_clear"},
204 {ERR_FUNC(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD), "SSL_COMP_add_compressio
205 {ERR_FUNC(SSL_F_SSL_CREATE_CIPHER_LIST), "SSL_CREATE_CIPHER_LIST"},
206 {ERR_FUNC(SSL_F_SSL_CTRL), "SSL_ctrl"},
207 {ERR_FUNC(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY), "SSL_CTX_check_private_key"},
208 {ERR_FUNC(SSL_F_SSL_CTX_MAKE_PROFILES), "SSL_CTX_MAKE_PROFILES"},
209 {ERR_FUNC(SSL_F_SSL_CTX_NEW), "SSL_CTX_new"},
210 {ERR_FUNC(SSL_F_SSL_CTX_SET_CIPHER_LIST), "SSL_CTX_set_cipher_list"},
211 {ERR_FUNC(SSL_F_SSL_CTX_SET_CLIENT_CERT_ENGINE), "SSL_CTX_set_client_cert
212 {ERR_FUNC(SSL_F_SSL_CTX_SET_PURPOSE), "SSL_CTX_set_purpose"},
213 {ERR_FUNC(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT), "SSL_CTX_set_session_id_
214 {ERR_FUNC(SSL_F_SSL_CTX_SET_SSL_VERSION), "SSL_CTX_set_ssl_version"},
215 {ERR_FUNC(SSL_F_SSL_CTX_SET_TRUST), "SSL_CTX_set_trust"},
216 {ERR_FUNC(SSL_F_SSL_CTX_USE_CERTIFICATE), "SSL_CTX_use_certificate"},
217 {ERR_FUNC(SSL_F_SSL_CTX_USE_CERTIFICATE_ASN1), "SSL_CTX_use_certificate_ASN1"},
218 {ERR_FUNC(SSL_F_SSL_CTX_USE_CERTIFICATE_CHAIN_FILE), "SSL_CTX_use_certificate
219 {ERR_FUNC(SSL_F_SSL_CTX_USE_CERTIFICATE_FILE), "SSL_CTX_use_certificate_file"},
220 {ERR_FUNC(SSL_F_SSL_CTX_USE_PRIVATEKEY), "SSL_CTX_use_PrivateKey"},
221 {ERR_FUNC(SSL_F_SSL_CTX_USE_PRIVATEKEY_ASN1), "SSL_CTX_use_PrivateKey_ASN1"},
222 {ERR_FUNC(SSL_F_SSL_CTX_USE_PRIVATEKEY_FILE), "SSL_CTX_use_PrivateKey_file"},
223 {ERR_FUNC(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT), "SSL_CTX_use_psk_identity_hint"}
224 {ERR_FUNC(SSL_F_SSL_CTX_USE_RSAPRIVATEKEY), "SSL_CTX_use_RSAPrivateKey"},
225 {ERR_FUNC(SSL_F_SSL_CTX_USE_RSAPRIVATEKEY_ASN1), "SSL_CTX_use_RSAPrivateK
226 {ERR_FUNC(SSL_F_SSL_CTX_USE_RSAPRIVATEKEY_FILE), "SSL_CTX_use_RSAPrivateK
227 {ERR_FUNC(SSL_F_SSL_DO_HANDSHAKE), "SSL_do_handshake"},
228 {ERR_FUNC(SSL_F_SSL_GET_NEW_SESSION), "SSL_GET_NEW_SESSION"},
229 {ERR_FUNC(SSL_F_SSL_GET_PREV_SESSION), "SSL_GET_PREV_SESSION"},
230 {ERR_FUNC(SSL_F_SSL_GET_SERVER_SEND_CERT), "SSL_GET_SERVER_SEND_CERT"},
231 {ERR_FUNC(SSL_F_SSL_GET_SERVER_SEND_PKEY), "SSL_GET_SERVER_SEND_PKEY"},
232 {ERR_FUNC(SSL_F_SSL_GET_SIGN_PKEY), "SSL_GET_SIGN_PKEY"},
233 {ERR_FUNC(SSL_F_SSL_INIT_WBIO_BUFFER), "SSL_INIT_WBIO_BUFFER"},
234 {ERR_FUNC(SSL_F_SSL_LOAD_CLIENT_CA_FILE), "SSL_load_client_CA_file"},
235 {ERR_FUNC(SSL_F_SSL_NEW), "SSL_new"},
236 {ERR_FUNC(SSL_F_SSL_PARSE_CLIENTHELLO_RENEGOTIATE_EXT), "SSL_PARSE_CLIENTHELLO_R
237 {ERR_FUNC(SSL_F_SSL_PARSE_CLIENTHELLO_TLSEXT), "SSL_PARSE_CLIENTHELLO_TLSEXT"},
238 {ERR_FUNC(SSL_F_SSL_PARSE_CLIENTHELLO_USE_SRTP_EXT), "SSL_PARSE_CLIENTHELLO_U
239 {ERR_FUNC(SSL_F_SSL_PARSE_SERVERHELLO_RENEGOTIATE_EXT), "SSL_PARSE_SERVERHELLO_R
240 {ERR_FUNC(SSL_F_SSL_PARSE_SERVERHELLO_TLSEXT), "SSL_PARSE_SERVERHELLO_TLSEXT"},
241 {ERR_FUNC(SSL_F_SSL_PARSE_SERVERHELLO_USE_SRTP_EXT), "SSL_PARSE_SERVERHELLO_U
242 {ERR_FUNC(SSL_F_SSL_PEEK), "SSL_peek"},
243 {ERR_FUNC(SSL_F_SSL_PREPARE_CLIENTHELLO_TLSEXT), "SSL_PREPARE_CLIENTHELLO
244 {ERR_FUNC(SSL_F_SSL_PREPARE_SERVERHELLO_TLSEXT), "SSL_PREPARE_SERVERHELLO
245 {ERR_FUNC(SSL_F_SSL_READ), "SSL_read"},
246 {ERR_FUNC(SSL_F_SSL_RSA_PRIVATE_DECRYPT), "SSL_RSA_PRIVATE_DECRYPT"},
247 {ERR_FUNC(SSL_F_SSL_RSA_PUBLIC_ENCRYPT), "SSL_RSA_PUBLIC_ENCRYPT"},
248 {ERR_FUNC(SSL_F_SSL_SESSION_NEW), "SSL_SESSION_new"},
249 {ERR_FUNC(SSL_F_SSL_SESSION_PRINT_FP), "SSL_SESSION_print_fp"},
250 {ERR_FUNC(SSL_F_SSL_SESSION_SET1_ID_CONTEXT), "SSL_SESSION_set1_id_context"},
251 {ERR_FUNC(SSL_F_SSL_SESS_CERT_NEW), "SSL_SESS_CERT_NEW"},
252 {ERR_FUNC(SSL_F_SSL_SET_CERT), "SSL_SET_CERT"},
253 {ERR_FUNC(SSL_F_SSL_SET_CIPHER_LIST), "SSL_set_cipher_list"},
254 {ERR_FUNC(SSL_F_SSL_SET_FD), "SSL_set_fd"},
255 {ERR_FUNC(SSL_F_SSL_SET_PKEY), "SSL_SET_PKEY"},
256 {ERR_FUNC(SSL_F_SSL_SET_PURPOSE), "SSL_set_purpose"},
257 {ERR_FUNC(SSL_F_SSL_SET_RFD), "SSL_set_rfd"},
258 {ERR_FUNC(SSL_F_SSL_SET_SESSION), "SSL_set_session"},
259 {ERR_FUNC(SSL_F_SSL_SET_SESSION_ID_CONTEXT), "SSL_set_session_id_context"},

new/usr/src/lib/openssl/libsunw_ssl/ssl_err.c 5

260 {ERR_FUNC(SSL_F_SSL_SET_SESSION_TICKET_EXT), "SSL_set_session_ticket_ext"},
261 {ERR_FUNC(SSL_F_SSL_SET_TRUST), "SSL_set_trust"},
262 {ERR_FUNC(SSL_F_SSL_SET_WFD), "SSL_set_wfd"},
263 {ERR_FUNC(SSL_F_SSL_SHUTDOWN), "SSL_shutdown"},
264 {ERR_FUNC(SSL_F_SSL_SRP_CTX_INIT), "SSL_SRP_CTX_init"},
265 {ERR_FUNC(SSL_F_SSL_UNDEFINED_CONST_FUNCTION), "SSL_UNDEFINED_CONST_FUNCTION"},
266 {ERR_FUNC(SSL_F_SSL_UNDEFINED_FUNCTION), "SSL_UNDEFINED_FUNCTION"},
267 {ERR_FUNC(SSL_F_SSL_UNDEFINED_VOID_FUNCTION), "SSL_UNDEFINED_VOID_FUNCTION"},
268 {ERR_FUNC(SSL_F_SSL_USE_CERTIFICATE), "SSL_use_certificate"},
269 {ERR_FUNC(SSL_F_SSL_USE_CERTIFICATE_ASN1), "SSL_use_certificate_ASN1"},
270 {ERR_FUNC(SSL_F_SSL_USE_CERTIFICATE_FILE), "SSL_use_certificate_file"},
271 {ERR_FUNC(SSL_F_SSL_USE_PRIVATEKEY), "SSL_use_PrivateKey"},
272 {ERR_FUNC(SSL_F_SSL_USE_PRIVATEKEY_ASN1), "SSL_use_PrivateKey_ASN1"},
273 {ERR_FUNC(SSL_F_SSL_USE_PRIVATEKEY_FILE), "SSL_use_PrivateKey_file"},
274 {ERR_FUNC(SSL_F_SSL_USE_PSK_IDENTITY_HINT), "SSL_use_psk_identity_hint"},
275 {ERR_FUNC(SSL_F_SSL_USE_RSAPRIVATEKEY), "SSL_use_RSAPrivateKey"},
276 {ERR_FUNC(SSL_F_SSL_USE_RSAPRIVATEKEY_ASN1), "SSL_use_RSAPrivateKey_ASN1"},
277 {ERR_FUNC(SSL_F_SSL_USE_RSAPRIVATEKEY_FILE), "SSL_use_RSAPrivateKey_file"},
278 {ERR_FUNC(SSL_F_SSL_VERIFY_CERT_CHAIN), "SSL_VERIFY_CERT_CHAIN"},
279 {ERR_FUNC(SSL_F_SSL_WRITE), "SSL_write"},
280 {ERR_FUNC(SSL_F_TLS1_CERT_VERIFY_MAC), "tls1_cert_verify_mac"},
281 {ERR_FUNC(SSL_F_TLS1_CHANGE_CIPHER_STATE), "TLS1_CHANGE_CIPHER_STATE"},
282 {ERR_FUNC(SSL_F_TLS1_CHECK_SERVERHELLO_TLSEXT), "TLS1_CHECK_SERVERHELLO_TLSEXT"}
283 {ERR_FUNC(SSL_F_TLS1_ENC), "TLS1_ENC"},
284 {ERR_FUNC(SSL_F_TLS1_EXPORT_KEYING_MATERIAL), "TLS1_EXPORT_KEYING_MATERIAL"},
285 {ERR_FUNC(SSL_F_TLS1_HEARTBEAT), "SSL_F_TLS1_HEARTBEAT"},
286 {ERR_FUNC(SSL_F_TLS1_PREPARE_CLIENTHELLO_TLSEXT), "TLS1_PREPARE_CLIENTHELL
287 {ERR_FUNC(SSL_F_TLS1_PREPARE_SERVERHELLO_TLSEXT), "TLS1_PREPARE_SERVERHELL
288 {ERR_FUNC(SSL_F_TLS1_PRF), "tls1_prf"},
289 {ERR_FUNC(SSL_F_TLS1_SETUP_KEY_BLOCK), "TLS1_SETUP_KEY_BLOCK"},
290 {ERR_FUNC(SSL_F_WRITE_PENDING), "WRITE_PENDING"},
291 {0,NULL}
292 };

294 static ERR_STRING_DATA SSL_str_reasons[]=
295 {
296 {ERR_REASON(SSL_R_APP_DATA_IN_HANDSHAKE) ,"app data in handshake"},
297 {ERR_REASON(SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT),"attempt to reu
298 {ERR_REASON(SSL_R_BAD_ALERT_RECORD) ,"bad alert record"},
299 {ERR_REASON(SSL_R_BAD_AUTHENTICATION_TYPE),"bad authentication type"},
300 {ERR_REASON(SSL_R_BAD_CHANGE_CIPHER_SPEC),"bad change cipher spec"},
301 {ERR_REASON(SSL_R_BAD_CHECKSUM) ,"bad checksum"},
302 {ERR_REASON(SSL_R_BAD_DATA_RETURNED_BY_CALLBACK),"bad data returned by callback"
303 {ERR_REASON(SSL_R_BAD_DECOMPRESSION) ,"bad decompression"},
304 {ERR_REASON(SSL_R_BAD_DH_G_LENGTH) ,"bad dh g length"},
305 {ERR_REASON(SSL_R_BAD_DH_PUB_KEY_LENGTH) ,"bad dh pub key length"},
306 {ERR_REASON(SSL_R_BAD_DH_P_LENGTH) ,"bad dh p length"},
307 {ERR_REASON(SSL_R_BAD_DIGEST_LENGTH) ,"bad digest length"},
308 {ERR_REASON(SSL_R_BAD_DSA_SIGNATURE) ,"bad dsa signature"},
309 {ERR_REASON(SSL_R_BAD_ECC_CERT) ,"bad ecc cert"},
310 {ERR_REASON(SSL_R_BAD_ECDSA_SIGNATURE) ,"bad ecdsa signature"},
311 {ERR_REASON(SSL_R_BAD_ECPOINT) ,"bad ecpoint"},
312 {ERR_REASON(SSL_R_BAD_HANDSHAKE_LENGTH) ,"bad handshake length"},
313 {ERR_REASON(SSL_R_BAD_HELLO_REQUEST) ,"bad hello request"},
314 {ERR_REASON(SSL_R_BAD_LENGTH) ,"bad length"},
315 {ERR_REASON(SSL_R_BAD_MAC_DECODE) ,"bad mac decode"},
316 {ERR_REASON(SSL_R_BAD_MAC_LENGTH) ,"bad mac length"},
317 {ERR_REASON(SSL_R_BAD_MESSAGE_TYPE) ,"bad message type"},
318 {ERR_REASON(SSL_R_BAD_PACKET_LENGTH) ,"bad packet length"},
319 {ERR_REASON(SSL_R_BAD_PROTOCOL_VERSION_NUMBER),"bad protocol version number"},
320 {ERR_REASON(SSL_R_BAD_PSK_IDENTITY_HINT_LENGTH),"bad psk identity hint length"},
321 {ERR_REASON(SSL_R_BAD_RESPONSE_ARGUMENT) ,"bad response argument"},
322 {ERR_REASON(SSL_R_BAD_RSA_DECRYPT) ,"bad rsa decrypt"},
323 {ERR_REASON(SSL_R_BAD_RSA_ENCRYPT) ,"bad rsa encrypt"},
324 {ERR_REASON(SSL_R_BAD_RSA_E_LENGTH) ,"bad rsa e length"},
325 {ERR_REASON(SSL_R_BAD_RSA_MODULUS_LENGTH),"bad rsa modulus length"},

new/usr/src/lib/openssl/libsunw_ssl/ssl_err.c 6

326 {ERR_REASON(SSL_R_BAD_RSA_SIGNATURE) ,"bad rsa signature"},
327 {ERR_REASON(SSL_R_BAD_SIGNATURE) ,"bad signature"},
328 {ERR_REASON(SSL_R_BAD_SRP_A_LENGTH) ,"bad srp a length"},
329 {ERR_REASON(SSL_R_BAD_SRP_B_LENGTH) ,"bad srp b length"},
330 {ERR_REASON(SSL_R_BAD_SRP_G_LENGTH) ,"bad srp g length"},
331 {ERR_REASON(SSL_R_BAD_SRP_N_LENGTH) ,"bad srp n length"},
332 {ERR_REASON(SSL_R_BAD_SRP_S_LENGTH) ,"bad srp s length"},
333 {ERR_REASON(SSL_R_BAD_SRTP_MKI_VALUE) ,"bad srtp mki value"},
334 {ERR_REASON(SSL_R_BAD_SRTP_PROTECTION_PROFILE_LIST),"bad srtp protection profile
335 {ERR_REASON(SSL_R_BAD_SSL_FILETYPE) ,"bad ssl filetype"},
336 {ERR_REASON(SSL_R_BAD_SSL_SESSION_ID_LENGTH),"bad ssl session id length"},
337 {ERR_REASON(SSL_R_BAD_STATE) ,"bad state"},
338 {ERR_REASON(SSL_R_BAD_WRITE_RETRY) ,"bad write retry"},
339 {ERR_REASON(SSL_R_BIO_NOT_SET) ,"bio not set"},
340 {ERR_REASON(SSL_R_BLOCK_CIPHER_PAD_IS_WRONG),"block cipher pad is wrong"},
341 {ERR_REASON(SSL_R_BN_LIB) ,"bn lib"},
342 {ERR_REASON(SSL_R_CA_DN_LENGTH_MISMATCH) ,"ca dn length mismatch"},
343 {ERR_REASON(SSL_R_CA_DN_TOO_LONG) ,"ca dn too long"},
344 {ERR_REASON(SSL_R_CCS_RECEIVED_EARLY) ,"ccs received early"},
345 {ERR_REASON(SSL_R_CERTIFICATE_VERIFY_FAILED),"certificate verify failed"},
346 {ERR_REASON(SSL_R_CERT_LENGTH_MISMATCH) ,"cert length mismatch"},
347 {ERR_REASON(SSL_R_CHALLENGE_IS_DIFFERENT),"challenge is different"},
348 {ERR_REASON(SSL_R_CIPHER_CODE_WRONG_LENGTH),"cipher code wrong length"},
349 {ERR_REASON(SSL_R_CIPHER_OR_HASH_UNAVAILABLE),"cipher or hash unavailable"},
350 {ERR_REASON(SSL_R_CIPHER_TABLE_SRC_ERROR),"cipher table src error"},
351 {ERR_REASON(SSL_R_CLIENTHELLO_TLSEXT) ,"clienthello tlsext"},
352 {ERR_REASON(SSL_R_COMPRESSED_LENGTH_TOO_LONG),"compressed length too long"},
353 {ERR_REASON(SSL_R_COMPRESSION_DISABLED) ,"compression disabled"},
354 {ERR_REASON(SSL_R_COMPRESSION_FAILURE) ,"compression failure"},
355 {ERR_REASON(SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE),"compression id not w
356 {ERR_REASON(SSL_R_COMPRESSION_LIBRARY_ERROR),"compression library error"},
357 {ERR_REASON(SSL_R_CONNECTION_ID_IS_DIFFERENT),"connection id is different"},
358 {ERR_REASON(SSL_R_CONNECTION_TYPE_NOT_SET),"connection type not set"},
359 {ERR_REASON(SSL_R_COOKIE_MISMATCH) ,"cookie mismatch"},
360 {ERR_REASON(SSL_R_DATA_BETWEEN_CCS_AND_FINISHED),"data between ccs and finished"
361 {ERR_REASON(SSL_R_DATA_LENGTH_TOO_LONG) ,"data length too long"},
362 {ERR_REASON(SSL_R_DECRYPTION_FAILED) ,"decryption failed"},
363 {ERR_REASON(SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC),"decryption failed or bad
364 {ERR_REASON(SSL_R_DH_PUBLIC_VALUE_LENGTH_IS_WRONG),"dh public value length is wr
365 {ERR_REASON(SSL_R_DIGEST_CHECK_FAILED) ,"digest check failed"},
366 {ERR_REASON(SSL_R_DTLS_MESSAGE_TOO_BIG) ,"dtls message too big"},
367 {ERR_REASON(SSL_R_DUPLICATE_COMPRESSION_ID),"duplicate compression id"},
368 {ERR_REASON(SSL_R_ECC_CERT_NOT_FOR_KEY_AGREEMENT),"ecc cert not for key agreemen
369 {ERR_REASON(SSL_R_ECC_CERT_NOT_FOR_SIGNING),"ecc cert not for signing"},
370 {ERR_REASON(SSL_R_ECC_CERT_SHOULD_HAVE_RSA_SIGNATURE),"ecc cert should have rsa
371 {ERR_REASON(SSL_R_ECC_CERT_SHOULD_HAVE_SHA1_SIGNATURE),"ecc cert should have sha
372 {ERR_REASON(SSL_R_ECGROUP_TOO_LARGE_FOR_CIPHER),"ecgroup too large for cipher"},
373 {ERR_REASON(SSL_R_EMPTY_SRTP_PROTECTION_PROFILE_LIST),"empty srtp protection pro
374 {ERR_REASON(SSL_R_ENCRYPTED_LENGTH_TOO_LONG),"encrypted length too long"},
375 {ERR_REASON(SSL_R_ERROR_GENERATING_TMP_RSA_KEY),"error generating tmp rsa key"},
376 {ERR_REASON(SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST),"error in received cipher list"
377 {ERR_REASON(SSL_R_EXCESSIVE_MESSAGE_SIZE),"excessive message size"},
378 {ERR_REASON(SSL_R_EXTRA_DATA_IN_MESSAGE) ,"extra data in message"},
379 {ERR_REASON(SSL_R_GOT_A_FIN_BEFORE_A_CCS),"got a fin before a ccs"},
380 {ERR_REASON(SSL_R_GOT_NEXT_PROTO_BEFORE_A_CCS),"got next proto before a ccs"},
381 {ERR_REASON(SSL_R_GOT_NEXT_PROTO_WITHOUT_EXTENSION),"got next proto without seei
382 {ERR_REASON(SSL_R_HTTPS_PROXY_REQUEST) ,"https proxy request"},
383 {ERR_REASON(SSL_R_HTTP_REQUEST) ,"http request"},
384 {ERR_REASON(SSL_R_ILLEGAL_PADDING) ,"illegal padding"},
385 {ERR_REASON(SSL_R_INCONSISTENT_COMPRESSION),"inconsistent compression"},
386 {ERR_REASON(SSL_R_INVALID_CHALLENGE_LENGTH),"invalid challenge length"},
387 {ERR_REASON(SSL_R_INVALID_COMMAND) ,"invalid command"},
388 {ERR_REASON(SSL_R_INVALID_COMPRESSION_ALGORITHM),"invalid compression algorithm"
389 {ERR_REASON(SSL_R_INVALID_PURPOSE) ,"invalid purpose"},
390 {ERR_REASON(SSL_R_INVALID_SRP_USERNAME) ,"invalid srp username"},
391 {ERR_REASON(SSL_R_INVALID_STATUS_RESPONSE),"invalid status response"},

new/usr/src/lib/openssl/libsunw_ssl/ssl_err.c 7

392 {ERR_REASON(SSL_R_INVALID_TICKET_KEYS_LENGTH),"invalid ticket keys length"},
393 {ERR_REASON(SSL_R_INVALID_TRUST) ,"invalid trust"},
394 {ERR_REASON(SSL_R_KEY_ARG_TOO_LONG) ,"key arg too long"},
395 {ERR_REASON(SSL_R_KRB5) ,"krb5"},
396 {ERR_REASON(SSL_R_KRB5_C_CC_PRINC) ,"krb5 client cc principal (no tkt?)"},
397 {ERR_REASON(SSL_R_KRB5_C_GET_CRED) ,"krb5 client get cred"},
398 {ERR_REASON(SSL_R_KRB5_C_INIT) ,"krb5 client init"},
399 {ERR_REASON(SSL_R_KRB5_C_MK_REQ) ,"krb5 client mk_req (expired tkt?)"},
400 {ERR_REASON(SSL_R_KRB5_S_BAD_TICKET) ,"krb5 server bad ticket"},
401 {ERR_REASON(SSL_R_KRB5_S_INIT) ,"krb5 server init"},
402 {ERR_REASON(SSL_R_KRB5_S_RD_REQ) ,"krb5 server rd_req (keytab perms?)"},
403 {ERR_REASON(SSL_R_KRB5_S_TKT_EXPIRED) ,"krb5 server tkt expired"},
404 {ERR_REASON(SSL_R_KRB5_S_TKT_NYV) ,"krb5 server tkt not yet valid"},
405 {ERR_REASON(SSL_R_KRB5_S_TKT_SKEW) ,"krb5 server tkt skew"},
406 {ERR_REASON(SSL_R_LENGTH_MISMATCH) ,"length mismatch"},
407 {ERR_REASON(SSL_R_LENGTH_TOO_SHORT) ,"length too short"},
408 {ERR_REASON(SSL_R_LIBRARY_BUG) ,"library bug"},
409 {ERR_REASON(SSL_R_LIBRARY_HAS_NO_CIPHERS),"library has no ciphers"},
410 {ERR_REASON(SSL_R_MESSAGE_TOO_LONG) ,"message too long"},
411 {ERR_REASON(SSL_R_MISSING_DH_DSA_CERT) ,"missing dh dsa cert"},
412 {ERR_REASON(SSL_R_MISSING_DH_KEY) ,"missing dh key"},
413 {ERR_REASON(SSL_R_MISSING_DH_RSA_CERT) ,"missing dh rsa cert"},
414 {ERR_REASON(SSL_R_MISSING_DSA_SIGNING_CERT),"missing dsa signing cert"},
415 {ERR_REASON(SSL_R_MISSING_EXPORT_TMP_DH_KEY),"missing export tmp dh key"},
416 {ERR_REASON(SSL_R_MISSING_EXPORT_TMP_RSA_KEY),"missing export tmp rsa key"},
417 {ERR_REASON(SSL_R_MISSING_RSA_CERTIFICATE),"missing rsa certificate"},
418 {ERR_REASON(SSL_R_MISSING_RSA_ENCRYPTING_CERT),"missing rsa encrypting cert"},
419 {ERR_REASON(SSL_R_MISSING_RSA_SIGNING_CERT),"missing rsa signing cert"},
420 {ERR_REASON(SSL_R_MISSING_SRP_PARAM) ,"can’t find SRP server param"},
421 {ERR_REASON(SSL_R_MISSING_TMP_DH_KEY) ,"missing tmp dh key"},
422 {ERR_REASON(SSL_R_MISSING_TMP_ECDH_KEY) ,"missing tmp ecdh key"},
423 {ERR_REASON(SSL_R_MISSING_TMP_RSA_KEY) ,"missing tmp rsa key"},
424 {ERR_REASON(SSL_R_MISSING_TMP_RSA_PKEY) ,"missing tmp rsa pkey"},
425 {ERR_REASON(SSL_R_MISSING_VERIFY_MESSAGE),"missing verify message"},
426 {ERR_REASON(SSL_R_MULTIPLE_SGC_RESTARTS) ,"multiple sgc restarts"},
427 {ERR_REASON(SSL_R_NON_SSLV2_INITIAL_PACKET),"non sslv2 initial packet"},
428 {ERR_REASON(SSL_R_NO_CERTIFICATES_RETURNED),"no certificates returned"},
429 {ERR_REASON(SSL_R_NO_CERTIFICATE_ASSIGNED),"no certificate assigned"},
430 {ERR_REASON(SSL_R_NO_CERTIFICATE_RETURNED),"no certificate returned"},
431 {ERR_REASON(SSL_R_NO_CERTIFICATE_SET) ,"no certificate set"},
432 {ERR_REASON(SSL_R_NO_CERTIFICATE_SPECIFIED),"no certificate specified"},
433 {ERR_REASON(SSL_R_NO_CIPHERS_AVAILABLE) ,"no ciphers available"},
434 {ERR_REASON(SSL_R_NO_CIPHERS_PASSED) ,"no ciphers passed"},
435 {ERR_REASON(SSL_R_NO_CIPHERS_SPECIFIED) ,"no ciphers specified"},
436 {ERR_REASON(SSL_R_NO_CIPHER_LIST) ,"no cipher list"},
437 {ERR_REASON(SSL_R_NO_CIPHER_MATCH) ,"no cipher match"},
438 {ERR_REASON(SSL_R_NO_CLIENT_CERT_METHOD) ,"no client cert method"},
439 {ERR_REASON(SSL_R_NO_CLIENT_CERT_RECEIVED),"no client cert received"},
440 {ERR_REASON(SSL_R_NO_COMPRESSION_SPECIFIED),"no compression specified"},
441 {ERR_REASON(SSL_R_NO_GOST_CERTIFICATE_SENT_BY_PEER),"Peer haven’t sent GOST cert
442 {ERR_REASON(SSL_R_NO_METHOD_SPECIFIED) ,"no method specified"},
443 {ERR_REASON(SSL_R_NO_PRIVATEKEY) ,"no privatekey"},
444 {ERR_REASON(SSL_R_NO_PRIVATE_KEY_ASSIGNED),"no private key assigned"},
445 {ERR_REASON(SSL_R_NO_PROTOCOLS_AVAILABLE),"no protocols available"},
446 {ERR_REASON(SSL_R_NO_PUBLICKEY) ,"no publickey"},
447 {ERR_REASON(SSL_R_NO_RENEGOTIATION) ,"no renegotiation"},
448 {ERR_REASON(SSL_R_NO_REQUIRED_DIGEST) ,"digest requred for handshake isn’t co
449 {ERR_REASON(SSL_R_NO_SHARED_CIPHER) ,"no shared cipher"},
450 {ERR_REASON(SSL_R_NO_SRTP_PROFILES) ,"no srtp profiles"},
451 {ERR_REASON(SSL_R_NO_VERIFY_CALLBACK) ,"no verify callback"},
452 {ERR_REASON(SSL_R_NULL_SSL_CTX) ,"null ssl ctx"},
453 {ERR_REASON(SSL_R_NULL_SSL_METHOD_PASSED),"null ssl method passed"},
454 {ERR_REASON(SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED),"old session cipher not retur
455 {ERR_REASON(SSL_R_OLD_SESSION_COMPRESSION_ALGORITHM_NOT_RETURNED),"old session c
456 {ERR_REASON(SSL_R_ONLY_TLS_ALLOWED_IN_FIPS_MODE),"only tls allowed in fips mode"
457 {ERR_REASON(SSL_R_OPAQUE_PRF_INPUT_TOO_LONG),"opaque PRF input too long"},

new/usr/src/lib/openssl/libsunw_ssl/ssl_err.c 8

458 {ERR_REASON(SSL_R_PACKET_LENGTH_TOO_LONG),"packet length too long"},
459 {ERR_REASON(SSL_R_PARSE_TLSEXT) ,"parse tlsext"},
460 {ERR_REASON(SSL_R_PATH_TOO_LONG) ,"path too long"},
461 {ERR_REASON(SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE),"peer did not return a cert
462 {ERR_REASON(SSL_R_PEER_ERROR) ,"peer error"},
463 {ERR_REASON(SSL_R_PEER_ERROR_CERTIFICATE),"peer error certificate"},
464 {ERR_REASON(SSL_R_PEER_ERROR_NO_CERTIFICATE),"peer error no certificate"},
465 {ERR_REASON(SSL_R_PEER_ERROR_NO_CIPHER) ,"peer error no cipher"},
466 {ERR_REASON(SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE),"peer error unsupport
467 {ERR_REASON(SSL_R_PRE_MAC_LENGTH_TOO_LONG),"pre mac length too long"},
468 {ERR_REASON(SSL_R_PROBLEMS_MAPPING_CIPHER_FUNCTIONS),"problems mapping cipher fu
469 {ERR_REASON(SSL_R_PROTOCOL_IS_SHUTDOWN) ,"protocol is shutdown"},
470 {ERR_REASON(SSL_R_PSK_IDENTITY_NOT_FOUND),"psk identity not found"},
471 {ERR_REASON(SSL_R_PSK_NO_CLIENT_CB) ,"psk no client cb"},
472 {ERR_REASON(SSL_R_PSK_NO_SERVER_CB) ,"psk no server cb"},
473 {ERR_REASON(SSL_R_PUBLIC_KEY_ENCRYPT_ERROR),"public key encrypt error"},
474 {ERR_REASON(SSL_R_PUBLIC_KEY_IS_NOT_RSA) ,"public key is not rsa"},
475 {ERR_REASON(SSL_R_PUBLIC_KEY_NOT_RSA) ,"public key not rsa"},
476 {ERR_REASON(SSL_R_READ_BIO_NOT_SET) ,"read bio not set"},
477 {ERR_REASON(SSL_R_READ_TIMEOUT_EXPIRED) ,"read timeout expired"},
478 {ERR_REASON(SSL_R_READ_WRONG_PACKET_TYPE),"read wrong packet type"},
479 {ERR_REASON(SSL_R_RECORD_LENGTH_MISMATCH),"record length mismatch"},
480 {ERR_REASON(SSL_R_RECORD_TOO_LARGE) ,"record too large"},
481 {ERR_REASON(SSL_R_RECORD_TOO_SMALL) ,"record too small"},
482 {ERR_REASON(SSL_R_RENEGOTIATE_EXT_TOO_LONG),"renegotiate ext too long"},
483 {ERR_REASON(SSL_R_RENEGOTIATION_ENCODING_ERR),"renegotiation encoding err"},
484 {ERR_REASON(SSL_R_RENEGOTIATION_MISMATCH),"renegotiation mismatch"},
485 {ERR_REASON(SSL_R_REQUIRED_CIPHER_MISSING),"required cipher missing"},
486 {ERR_REASON(SSL_R_REQUIRED_COMPRESSSION_ALGORITHM_MISSING),"required compresssio
487 {ERR_REASON(SSL_R_REUSE_CERT_LENGTH_NOT_ZERO),"reuse cert length not zero"},
488 {ERR_REASON(SSL_R_REUSE_CERT_TYPE_NOT_ZERO),"reuse cert type not zero"},
489 {ERR_REASON(SSL_R_REUSE_CIPHER_LIST_NOT_ZERO),"reuse cipher list not zero"},
490 {ERR_REASON(SSL_R_SCSV_RECEIVED_WHEN_RENEGOTIATING),"scsv received when renegoti
491 {ERR_REASON(SSL_R_SERVERHELLO_TLSEXT) ,"serverhello tlsext"},
492 {ERR_REASON(SSL_R_SESSION_ID_CONTEXT_UNINITIALIZED),"session id context uninitia
493 {ERR_REASON(SSL_R_SHORT_READ) ,"short read"},
494 {ERR_REASON(SSL_R_SIGNATURE_ALGORITHMS_ERROR),"signature algorithms error"},
495 {ERR_REASON(SSL_R_SIGNATURE_FOR_NON_SIGNING_CERTIFICATE),"signature for non sign
496 {ERR_REASON(SSL_R_SRP_A_CALC) ,"error with the srp params"},
497 {ERR_REASON(SSL_R_SRTP_COULD_NOT_ALLOCATE_PROFILES),"srtp could not allocate pro
498 {ERR_REASON(SSL_R_SRTP_PROTECTION_PROFILE_LIST_TOO_LONG),"srtp protection profil
499 {ERR_REASON(SSL_R_SRTP_UNKNOWN_PROTECTION_PROFILE),"srtp unknown protection prof
500 {ERR_REASON(SSL_R_SSL23_DOING_SESSION_ID_REUSE),"ssl23 doing session id reuse"},
501 {ERR_REASON(SSL_R_SSL2_CONNECTION_ID_TOO_LONG),"ssl2 connection id too long"},
502 {ERR_REASON(SSL_R_SSL3_EXT_INVALID_ECPOINTFORMAT),"ssl3 ext invalid ecpointforma
503 {ERR_REASON(SSL_R_SSL3_EXT_INVALID_SERVERNAME),"ssl3 ext invalid servername"},
504 {ERR_REASON(SSL_R_SSL3_EXT_INVALID_SERVERNAME_TYPE),"ssl3 ext invalid servername
505 {ERR_REASON(SSL_R_SSL3_SESSION_ID_TOO_LONG),"ssl3 session id too long"},
506 {ERR_REASON(SSL_R_SSL3_SESSION_ID_TOO_SHORT),"ssl3 session id too short"},
507 {ERR_REASON(SSL_R_SSLV3_ALERT_BAD_CERTIFICATE),"sslv3 alert bad certificate"},
508 {ERR_REASON(SSL_R_SSLV3_ALERT_BAD_RECORD_MAC),"sslv3 alert bad record mac"},
509 {ERR_REASON(SSL_R_SSLV3_ALERT_CERTIFICATE_EXPIRED),"sslv3 alert certificate expi
510 {ERR_REASON(SSL_R_SSLV3_ALERT_CERTIFICATE_REVOKED),"sslv3 alert certificate revo
511 {ERR_REASON(SSL_R_SSLV3_ALERT_CERTIFICATE_UNKNOWN),"sslv3 alert certificate unkn
512 {ERR_REASON(SSL_R_SSLV3_ALERT_DECOMPRESSION_FAILURE),"sslv3 alert decompression
513 {ERR_REASON(SSL_R_SSLV3_ALERT_HANDSHAKE_FAILURE),"sslv3 alert handshake failure"
514 {ERR_REASON(SSL_R_SSLV3_ALERT_ILLEGAL_PARAMETER),"sslv3 alert illegal parameter"
515 {ERR_REASON(SSL_R_SSLV3_ALERT_NO_CERTIFICATE),"sslv3 alert no certificate"},
516 {ERR_REASON(SSL_R_SSLV3_ALERT_UNEXPECTED_MESSAGE),"sslv3 alert unexpected messag
517 {ERR_REASON(SSL_R_SSLV3_ALERT_UNSUPPORTED_CERTIFICATE),"sslv3 alert unsupported
518 {ERR_REASON(SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION),"ssl ctx has no default ss
519 {ERR_REASON(SSL_R_SSL_HANDSHAKE_FAILURE) ,"ssl handshake failure"},
520 {ERR_REASON(SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS),"ssl library has no ciphers"},
521 {ERR_REASON(SSL_R_SSL_SESSION_ID_CALLBACK_FAILED),"ssl session id callback faile
522 {ERR_REASON(SSL_R_SSL_SESSION_ID_CONFLICT),"ssl session id conflict"},
523 {ERR_REASON(SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG),"ssl session id context too l

new/usr/src/lib/openssl/libsunw_ssl/ssl_err.c 9

524 {ERR_REASON(SSL_R_SSL_SESSION_ID_HAS_BAD_LENGTH),"ssl session id has bad length"
525 {ERR_REASON(SSL_R_SSL_SESSION_ID_IS_DIFFERENT),"ssl session id is different"},
526 {ERR_REASON(SSL_R_TLSV1_ALERT_ACCESS_DENIED),"tlsv1 alert access denied"},
527 {ERR_REASON(SSL_R_TLSV1_ALERT_DECODE_ERROR),"tlsv1 alert decode error"},
528 {ERR_REASON(SSL_R_TLSV1_ALERT_DECRYPTION_FAILED),"tlsv1 alert decryption failed"
529 {ERR_REASON(SSL_R_TLSV1_ALERT_DECRYPT_ERROR),"tlsv1 alert decrypt error"},
530 {ERR_REASON(SSL_R_TLSV1_ALERT_EXPORT_RESTRICTION),"tlsv1 alert export restrictio
531 {ERR_REASON(SSL_R_TLSV1_ALERT_INSUFFICIENT_SECURITY),"tlsv1 alert insufficient s
532 {ERR_REASON(SSL_R_TLSV1_ALERT_INTERNAL_ERROR),"tlsv1 alert internal error"},
533 {ERR_REASON(SSL_R_TLSV1_ALERT_NO_RENEGOTIATION),"tlsv1 alert no renegotiation"},
534 {ERR_REASON(SSL_R_TLSV1_ALERT_PROTOCOL_VERSION),"tlsv1 alert protocol version"},
535 {ERR_REASON(SSL_R_TLSV1_ALERT_RECORD_OVERFLOW),"tlsv1 alert record overflow"},
536 {ERR_REASON(SSL_R_TLSV1_ALERT_UNKNOWN_CA),"tlsv1 alert unknown ca"},
537 {ERR_REASON(SSL_R_TLSV1_ALERT_USER_CANCELLED),"tlsv1 alert user cancelled"},
538 {ERR_REASON(SSL_R_TLSV1_BAD_CERTIFICATE_HASH_VALUE),"tlsv1 bad certificate hash
539 {ERR_REASON(SSL_R_TLSV1_BAD_CERTIFICATE_STATUS_RESPONSE),"tlsv1 bad certificate
540 {ERR_REASON(SSL_R_TLSV1_CERTIFICATE_UNOBTAINABLE),"tlsv1 certificate unobtainabl
541 {ERR_REASON(SSL_R_TLSV1_UNRECOGNIZED_NAME),"tlsv1 unrecognized name"},
542 {ERR_REASON(SSL_R_TLSV1_UNSUPPORTED_EXTENSION),"tlsv1 unsupported extension"},
543 {ERR_REASON(SSL_R_TLS_CLIENT_CERT_REQ_WITH_ANON_CIPHER),"tls client cert req wit
544 {ERR_REASON(SSL_R_TLS_HEARTBEAT_PEER_DOESNT_ACCEPT),"peer does not accept heartb
545 {ERR_REASON(SSL_R_TLS_HEARTBEAT_PENDING) ,"heartbeat request already pending"},
546 {ERR_REASON(SSL_R_TLS_ILLEGAL_EXPORTER_LABEL),"tls illegal exporter label"},
547 {ERR_REASON(SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST),"tls invalid ecpointformat lis
548 {ERR_REASON(SSL_R_TLS_PEER_DID_NOT_RESPOND_WITH_CERTIFICATE_LIST),"tls peer did
549 {ERR_REASON(SSL_R_TLS_RSA_ENCRYPTED_VALUE_LENGTH_IS_WRONG),"tls rsa encrypted va
550 {ERR_REASON(SSL_R_TRIED_TO_USE_UNSUPPORTED_CIPHER),"tried to use unsupported cip
551 {ERR_REASON(SSL_R_UNABLE_TO_DECODE_DH_CERTS),"unable to decode dh certs"},
552 {ERR_REASON(SSL_R_UNABLE_TO_DECODE_ECDH_CERTS),"unable to decode ecdh certs"},
553 {ERR_REASON(SSL_R_UNABLE_TO_EXTRACT_PUBLIC_KEY),"unable to extract public key"},
554 {ERR_REASON(SSL_R_UNABLE_TO_FIND_DH_PARAMETERS),"unable to find dh parameters"},
555 {ERR_REASON(SSL_R_UNABLE_TO_FIND_ECDH_PARAMETERS),"unable to find ecdh parameter
556 {ERR_REASON(SSL_R_UNABLE_TO_FIND_PUBLIC_KEY_PARAMETERS),"unable to find public k
557 {ERR_REASON(SSL_R_UNABLE_TO_FIND_SSL_METHOD),"unable to find ssl method"},
558 {ERR_REASON(SSL_R_UNABLE_TO_LOAD_SSL2_MD5_ROUTINES),"unable to load ssl2 md5 rou
559 {ERR_REASON(SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES),"unable to load ssl3 md5 rou
560 {ERR_REASON(SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES),"unable to load ssl3 sha1 r
561 {ERR_REASON(SSL_R_UNEXPECTED_MESSAGE) ,"unexpected message"},
562 {ERR_REASON(SSL_R_UNEXPECTED_RECORD) ,"unexpected record"},
563 {ERR_REASON(SSL_R_UNINITIALIZED) ,"uninitialized"},
564 {ERR_REASON(SSL_R_UNKNOWN_ALERT_TYPE) ,"unknown alert type"},
565 {ERR_REASON(SSL_R_UNKNOWN_CERTIFICATE_TYPE),"unknown certificate type"},
566 {ERR_REASON(SSL_R_UNKNOWN_CIPHER_RETURNED),"unknown cipher returned"},
567 {ERR_REASON(SSL_R_UNKNOWN_CIPHER_TYPE) ,"unknown cipher type"},
568 {ERR_REASON(SSL_R_UNKNOWN_DIGEST) ,"unknown digest"},
569 {ERR_REASON(SSL_R_UNKNOWN_KEY_EXCHANGE_TYPE),"unknown key exchange type"},
570 {ERR_REASON(SSL_R_UNKNOWN_PKEY_TYPE) ,"unknown pkey type"},
571 {ERR_REASON(SSL_R_UNKNOWN_PROTOCOL) ,"unknown protocol"},
572 {ERR_REASON(SSL_R_UNKNOWN_REMOTE_ERROR_TYPE),"unknown remote error type"},
573 {ERR_REASON(SSL_R_UNKNOWN_SSL_VERSION) ,"unknown ssl version"},
574 {ERR_REASON(SSL_R_UNKNOWN_STATE) ,"unknown state"},
575 {ERR_REASON(SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED),"unsafe legacy renegotia
576 {ERR_REASON(SSL_R_UNSUPPORTED_CIPHER) ,"unsupported cipher"},
577 {ERR_REASON(SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM),"unsupported compression al
578 {ERR_REASON(SSL_R_UNSUPPORTED_DIGEST_TYPE),"unsupported digest type"},
579 {ERR_REASON(SSL_R_UNSUPPORTED_ELLIPTIC_CURVE),"unsupported elliptic curve"},
580 {ERR_REASON(SSL_R_UNSUPPORTED_PROTOCOL) ,"unsupported protocol"},
581 {ERR_REASON(SSL_R_UNSUPPORTED_SSL_VERSION),"unsupported ssl version"},
582 {ERR_REASON(SSL_R_UNSUPPORTED_STATUS_TYPE),"unsupported status type"},
583 {ERR_REASON(SSL_R_USE_SRTP_NOT_NEGOTIATED),"use srtp not negotiated"},
584 {ERR_REASON(SSL_R_WRITE_BIO_NOT_SET) ,"write bio not set"},
585 {ERR_REASON(SSL_R_WRONG_CIPHER_RETURNED) ,"wrong cipher returned"},
586 {ERR_REASON(SSL_R_WRONG_MESSAGE_TYPE) ,"wrong message type"},
587 {ERR_REASON(SSL_R_WRONG_NUMBER_OF_KEY_BITS),"wrong number of key bits"},
588 {ERR_REASON(SSL_R_WRONG_SIGNATURE_LENGTH),"wrong signature length"},
589 {ERR_REASON(SSL_R_WRONG_SIGNATURE_SIZE) ,"wrong signature size"},

new/usr/src/lib/openssl/libsunw_ssl/ssl_err.c 10

590 {ERR_REASON(SSL_R_WRONG_SIGNATURE_TYPE) ,"wrong signature type"},
591 {ERR_REASON(SSL_R_WRONG_SSL_VERSION) ,"wrong ssl version"},
592 {ERR_REASON(SSL_R_WRONG_VERSION_NUMBER) ,"wrong version number"},
593 {ERR_REASON(SSL_R_X509_LIB) ,"x509 lib"},
594 {ERR_REASON(SSL_R_X509_VERIFICATION_SETUP_PROBLEMS),"x509 verification setup pro
595 {0,NULL}
596 };

598 #endif

600 void ERR_load_SSL_strings(void)
601 {
602 #ifndef OPENSSL_NO_ERR

604 if (ERR_func_error_string(SSL_str_functs[0].error) == NULL)
605 {
606 ERR_load_strings(0,SSL_str_functs);
607 ERR_load_strings(0,SSL_str_reasons);
608 }
609 #endif
610 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_err2.c 1

**
 3385 Fri May 30 18:32:22 2014
new/usr/src/lib/openssl/libsunw_ssl/ssl_err2.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/ssl_err2.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/err.h>
61 #include <openssl/ssl.h>

new/usr/src/lib/openssl/libsunw_ssl/ssl_err2.c 2

63 void SSL_load_error_strings(void)
64 {
65 #ifndef OPENSSL_NO_ERR
66 ERR_load_crypto_strings();
67 ERR_load_SSL_strings();
68 #endif
69 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 1

**
 83000 Fri May 30 18:32:22 2014
new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*! \file ssl/ssl_lib.c
2 * \brief Version independent SSL functions.
3 */
4 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
5 * All rights reserved.
6 *
7 * This package is an SSL implementation written
8 * by Eric Young (eay@cryptsoft.com).
9 * The implementation was written so as to conform with Netscapes SSL.
10 *
11 * This library is free for commercial and non-commercial use as long as
12 * the following conditions are aheared to. The following conditions
13 * apply to all code found in this distribution, be it the RC4, RSA,
14 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
15 * included with this distribution is covered by the same copyright terms
16 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
17 *
18 * Copyright remains Eric Young’s, and as such any Copyright notices in
19 * the code are not to be removed.
20 * If this package is used in a product, Eric Young should be given attribution
21 * as the author of the parts of the library used.
22 * This can be in the form of a textual message at program startup or
23 * in documentation (online or textual) provided with the package.
24 *
25 * Redistribution and use in source and binary forms, with or without
26 * modification, are permitted provided that the following conditions
27 * are met:
28 * 1. Redistributions of source code must retain the copyright
29 * notice, this list of conditions and the following disclaimer.
30 * 2. Redistributions in binary form must reproduce the above copyright
31 * notice, this list of conditions and the following disclaimer in the
32 * documentation and/or other materials provided with the distribution.
33 * 3. All advertising materials mentioning features or use of this software
34 * must display the following acknowledgement:
35 * "This product includes cryptographic software written by
36 * Eric Young (eay@cryptsoft.com)"
37 * The word ’cryptographic’ can be left out if the rouines from the library
38 * being used are not cryptographic related :-).
39 * 4. If you include any Windows specific code (or a derivative thereof) from
40 * the apps directory (application code) you must include an acknowledgement:
41 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
42 *
43 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
44 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
47 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 *
55 * The licence and distribution terms for any publically available version or
56 * derivative of this code cannot be changed. i.e. this code cannot simply be
57 * copied and put under another distribution licence
58 * [including the GNU Public Licence.]
59 */
60 /* ==
61 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 2

62 *
63 * Redistribution and use in source and binary forms, with or without
64 * modification, are permitted provided that the following conditions
65 * are met:
66 *
67 * 1. Redistributions of source code must retain the above copyright
68 * notice, this list of conditions and the following disclaimer.
69 *
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in
72 * the documentation and/or other materials provided with the
73 * distribution.
74 *
75 * 3. All advertising materials mentioning features or use of this
76 * software must display the following acknowledgment:
77 * "This product includes software developed by the OpenSSL Project
78 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
79 *
80 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
81 * endorse or promote products derived from this software without
82 * prior written permission. For written permission, please contact
83 * openssl-core@openssl.org.
84 *
85 * 5. Products derived from this software may not be called "OpenSSL"
86 * nor may "OpenSSL" appear in their names without prior written
87 * permission of the OpenSSL Project.
88 *
89 * 6. Redistributions of any form whatsoever must retain the following
90 * acknowledgment:
91 * "This product includes software developed by the OpenSSL Project
92 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
93 *
94 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
95 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
96 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
97 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
98 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
99 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
100 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
101 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
102 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
103 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
104 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
105 * OF THE POSSIBILITY OF SUCH DAMAGE.
106 * ==
107 *
108 * This product includes cryptographic software written by Eric Young
109 * (eay@cryptsoft.com). This product includes software written by Tim
110 * Hudson (tjh@cryptsoft.com).
111 *
112 */
113 /* ==
114 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
115 * ECC cipher suite support in OpenSSL originally developed by
116 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
117 */
118 /* ==
119 * Copyright 2005 Nokia. All rights reserved.
120 *
121 * The portions of the attached software ("Contribution") is developed by
122 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
123 * license.
124 *
125 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
126 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
127 * support (see RFC 4279) to OpenSSL.

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 3

128 *
129 * No patent licenses or other rights except those expressly stated in
130 * the OpenSSL open source license shall be deemed granted or received
131 * expressly, by implication, estoppel, or otherwise.
132 *
133 * No assurances are provided by Nokia that the Contribution does not
134 * infringe the patent or other intellectual property rights of any third
135 * party or that the license provides you with all the necessary rights
136 * to make use of the Contribution.
137 *
138 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
139 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
140 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
141 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
142 * OTHERWISE.
143 */

145 #ifdef REF_CHECK
146 # include <assert.h>
147 #endif
148 #include <stdio.h>
149 #include "ssl_locl.h"
150 #include "kssl_lcl.h"
151 #include <openssl/objects.h>
152 #include <openssl/lhash.h>
153 #include <openssl/x509v3.h>
154 #include <openssl/rand.h>
155 #include <openssl/ocsp.h>
156 #ifndef OPENSSL_NO_DH
157 #include <openssl/dh.h>
158 #endif
159 #ifndef OPENSSL_NO_ENGINE
160 #include <openssl/engine.h>
161 #endif

163 const char *SSL_version_str=OPENSSL_VERSION_TEXT;

165 SSL3_ENC_METHOD ssl3_undef_enc_method={
166 /* evil casts, but these functions are only called if there’s a library
167 (int (*)(SSL *,int))ssl_undefined_function,
168 (int (*)(SSL *, unsigned char *, int))ssl_undefined_function,
169 ssl_undefined_function,
170 (int (*)(SSL *, unsigned char *, unsigned char *, int))ssl_undefined_fun
171 (int (*)(SSL*, int))ssl_undefined_function,
172 (int (*)(SSL *, const char*, int, unsigned char *))ssl_undefined_functi
173 0, /* finish_mac_length */
174 (int (*)(SSL *, int, unsigned char *))ssl_undefined_function,
175 NULL, /* client_finished_label */
176 0, /* client_finished_label_len */
177 NULL, /* server_finished_label */
178 0, /* server_finished_label_len */
179 (int (*)(int))ssl_undefined_function,
180 (int (*)(SSL *, unsigned char *, size_t, const char *,
181 size_t, const unsigned char *, size_t,
182 int use_context)) ssl_undefined_function,
183 };

185 int SSL_clear(SSL *s)
186 {

188 if (s->method == NULL)
189 {
190 SSLerr(SSL_F_SSL_CLEAR,SSL_R_NO_METHOD_SPECIFIED);
191 return(0);
192 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 4

194 if (ssl_clear_bad_session(s))
195 {
196 SSL_SESSION_free(s->session);
197 s->session=NULL;
198 }

200 s->error=0;
201 s->hit=0;
202 s->shutdown=0;

204 #if 0 /* Disabled since version 1.10 of this file (early return not
205 * needed because SSL_clear is not called when doing renegotiation) */
206 /* This is set if we are doing dynamic renegotiation so keep
207 * the old cipher. It is sort of a SSL_clear_lite :-) */
208 if (s->renegotiate) return(1);
209 #else
210 if (s->renegotiate)
211 {
212 SSLerr(SSL_F_SSL_CLEAR,ERR_R_INTERNAL_ERROR);
213 return 0;
214 }
215 #endif

217 s->type=0;

219 s->state=SSL_ST_BEFORE|((s->server)?SSL_ST_ACCEPT:SSL_ST_CONNECT);

221 s->version=s->method->version;
222 s->client_version=s->version;
223 s->rwstate=SSL_NOTHING;
224 s->rstate=SSL_ST_READ_HEADER;
225 #if 0
226 s->read_ahead=s->ctx->read_ahead;
227 #endif

229 if (s->init_buf != NULL)
230 {
231 BUF_MEM_free(s->init_buf);
232 s->init_buf=NULL;
233 }

235 ssl_clear_cipher_ctx(s);
236 ssl_clear_hash_ctx(&s->read_hash);
237 ssl_clear_hash_ctx(&s->write_hash);

239 s->first_packet=0;

241 #if 1
242 /* Check to see if we were changed into a different method, if
243 * so, revert back if we are not doing session-id reuse. */
244 if (!s->in_handshake && (s->session == NULL) && (s->method != s->ctx->me
245 {
246 s->method->ssl_free(s);
247 s->method=s->ctx->method;
248 if (!s->method->ssl_new(s))
249 return(0);
250 }
251 else
252 #endif
253 s->method->ssl_clear(s);
254 return(1);
255 }

257 /** Used to change an SSL_CTXs default SSL method type */
258 int SSL_CTX_set_ssl_version(SSL_CTX *ctx,const SSL_METHOD *meth)
259 {

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 5

260 STACK_OF(SSL_CIPHER) *sk;

262 ctx->method=meth;

264 sk=ssl_create_cipher_list(ctx->method,&(ctx->cipher_list),
265 &(ctx->cipher_list_by_id),
266 meth->version == SSL2_VERSION ? "SSLv2" : SSL_DEFAULT_CIPHER_LIS
267 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0))
268 {
269 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION,SSL_R_SSL_LIBRARY_HAS_NO_CI
270 return(0);
271 }
272 return(1);
273 }

275 SSL *SSL_new(SSL_CTX *ctx)
276 {
277 SSL *s;

279 if (ctx == NULL)
280 {
281 SSLerr(SSL_F_SSL_NEW,SSL_R_NULL_SSL_CTX);
282 return(NULL);
283 }
284 if (ctx->method == NULL)
285 {
286 SSLerr(SSL_F_SSL_NEW,SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
287 return(NULL);
288 }

290 s=(SSL *)OPENSSL_malloc(sizeof(SSL));
291 if (s == NULL) goto err;
292 memset(s,0,sizeof(SSL));

294 #ifndef OPENSSL_NO_KRB5
295 s->kssl_ctx = kssl_ctx_new();
296 #endif /* OPENSSL_NO_KRB5 */

298 s->options=ctx->options;
299 s->mode=ctx->mode;
300 s->max_cert_list=ctx->max_cert_list;

302 if (ctx->cert != NULL)
303 {
304 /* Earlier library versions used to copy the pointer to
305 * the CERT, not its contents; only when setting new
306 * parameters for the per-SSL copy, ssl_cert_new would be
307 * called (and the direct reference to the per-SSL_CTX
308 * settings would be lost, but those still were indirectly
309 * accessed for various purposes, and for that reason they
310 * used to be known as s->ctx->default_cert).
311 * Now we don’t look at the SSL_CTX’s CERT after having
312 * duplicated it once. */

314 s->cert = ssl_cert_dup(ctx->cert);
315 if (s->cert == NULL)
316 goto err;
317 }
318 else
319 s->cert=NULL; /* Cannot really happen (see SSL_CTX_new) */

321 s->read_ahead=ctx->read_ahead;
322 s->msg_callback=ctx->msg_callback;
323 s->msg_callback_arg=ctx->msg_callback_arg;
324 s->verify_mode=ctx->verify_mode;
325 #if 0

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 6

326 s->verify_depth=ctx->verify_depth;
327 #endif
328 s->sid_ctx_length=ctx->sid_ctx_length;
329 OPENSSL_assert(s->sid_ctx_length <= sizeof s->sid_ctx);
330 memcpy(&s->sid_ctx,&ctx->sid_ctx,sizeof(s->sid_ctx));
331 s->verify_callback=ctx->default_verify_callback;
332 s->generate_session_id=ctx->generate_session_id;

334 s->param = X509_VERIFY_PARAM_new();
335 if (!s->param)
336 goto err;
337 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
338 #if 0
339 s->purpose = ctx->purpose;
340 s->trust = ctx->trust;
341 #endif
342 s->quiet_shutdown=ctx->quiet_shutdown;
343 s->max_send_fragment = ctx->max_send_fragment;

345 CRYPTO_add(&ctx->references,1,CRYPTO_LOCK_SSL_CTX);
346 s->ctx=ctx;
347 #ifndef OPENSSL_NO_TLSEXT
348 s->tlsext_debug_cb = 0;
349 s->tlsext_debug_arg = NULL;
350 s->tlsext_ticket_expected = 0;
351 s->tlsext_status_type = -1;
352 s->tlsext_status_expected = 0;
353 s->tlsext_ocsp_ids = NULL;
354 s->tlsext_ocsp_exts = NULL;
355 s->tlsext_ocsp_resp = NULL;
356 s->tlsext_ocsp_resplen = -1;
357 CRYPTO_add(&ctx->references,1,CRYPTO_LOCK_SSL_CTX);
358 s->initial_ctx=ctx;
359 # ifndef OPENSSL_NO_NEXTPROTONEG
360 s->next_proto_negotiated = NULL;
361 # endif
362 #endif

364 s->verify_result=X509_V_OK;

366 s->method=ctx->method;

368 if (!s->method->ssl_new(s))
369 goto err;

371 s->references=1;
372 s->server=(ctx->method->ssl_accept == ssl_undefined_function)?0:1;

374 SSL_clear(s);

376 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);

378 #ifndef OPENSSL_NO_PSK
379 s->psk_client_callback=ctx->psk_client_callback;
380 s->psk_server_callback=ctx->psk_server_callback;
381 #endif

383 return(s);
384 err:
385 if (s != NULL)
386 {
387 if (s->cert != NULL)
388 ssl_cert_free(s->cert);
389 if (s->ctx != NULL)
390 SSL_CTX_free(s->ctx); /* decrement reference count */
391 OPENSSL_free(s);

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 7

392 }
393 SSLerr(SSL_F_SSL_NEW,ERR_R_MALLOC_FAILURE);
394 return(NULL);
395 }

397 int SSL_CTX_set_session_id_context(SSL_CTX *ctx,const unsigned char *sid_ctx,
398 unsigned int sid_ctx_len)
399 {
400 if(sid_ctx_len > sizeof ctx->sid_ctx)
401 {
402 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,SSL_R_SSL_SESSION_ID_CONTEXT
403 return 0;
404 }
405 ctx->sid_ctx_length=sid_ctx_len;
406 memcpy(ctx->sid_ctx,sid_ctx,sid_ctx_len);

408 return 1;
409 }

411 int SSL_set_session_id_context(SSL *ssl,const unsigned char *sid_ctx,
412 unsigned int sid_ctx_len)
413 {
414 if(sid_ctx_len > SSL_MAX_SID_CTX_LENGTH)
415 {
416 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,SSL_R_SSL_SESSION_ID_CONTEXT_TOO
417 return 0;
418 }
419 ssl->sid_ctx_length=sid_ctx_len;
420 memcpy(ssl->sid_ctx,sid_ctx,sid_ctx_len);

422 return 1;
423 }

425 int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
426 {
427 CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
428 ctx->generate_session_id = cb;
429 CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
430 return 1;
431 }

433 int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
434 {
435 CRYPTO_w_lock(CRYPTO_LOCK_SSL);
436 ssl->generate_session_id = cb;
437 CRYPTO_w_unlock(CRYPTO_LOCK_SSL);
438 return 1;
439 }

441 int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
442 unsigned int id_len)
443 {
444 /* A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
445 * we can "construct" a session to give us the desired check - ie. to
446 * find if there’s a session in the hash table that would conflict with
447 * any new session built out of this id/id_len and the ssl_version in
448 * use by this SSL. */
449 SSL_SESSION r, *p;

451 if(id_len > sizeof r.session_id)
452 return 0;

454 r.ssl_version = ssl->version;
455 r.session_id_length = id_len;
456 memcpy(r.session_id, id, id_len);
457 /* NB: SSLv2 always uses a fixed 16-byte session ID, so even if a

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 8

458 * callback is calling us to check the uniqueness of a shorter ID, it
459 * must be compared as a padded-out ID because that is what it will be
460 * converted to when the callback has finished choosing it. */
461 if((r.ssl_version == SSL2_VERSION) &&
462 (id_len < SSL2_SSL_SESSION_ID_LENGTH))
463 {
464 memset(r.session_id + id_len, 0,
465 SSL2_SSL_SESSION_ID_LENGTH - id_len);
466 r.session_id_length = SSL2_SSL_SESSION_ID_LENGTH;
467 }

469 CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX);
470 p = lh_SSL_SESSION_retrieve(ssl->ctx->sessions, &r);
471 CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
472 return (p != NULL);
473 }

475 int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
476 {
477 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
478 }

480 int SSL_set_purpose(SSL *s, int purpose)
481 {
482 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
483 }

485 int SSL_CTX_set_trust(SSL_CTX *s, int trust)
486 {
487 return X509_VERIFY_PARAM_set_trust(s->param, trust);
488 }

490 int SSL_set_trust(SSL *s, int trust)
491 {
492 return X509_VERIFY_PARAM_set_trust(s->param, trust);
493 }

495 int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
496 {
497 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
498 }

500 int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
501 {
502 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
503 }

505 void SSL_free(SSL *s)
506 {
507 int i;

509 if(s == NULL)
510 return;

512 i=CRYPTO_add(&s->references,-1,CRYPTO_LOCK_SSL);
513 #ifdef REF_PRINT
514 REF_PRINT("SSL",s);
515 #endif
516 if (i > 0) return;
517 #ifdef REF_CHECK
518 if (i < 0)
519 {
520 fprintf(stderr,"SSL_free, bad reference count\n");
521 abort(); /* ok */
522 }
523 #endif

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 9

525 if (s->param)
526 X509_VERIFY_PARAM_free(s->param);

528 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);

530 if (s->bbio != NULL)
531 {
532 /* If the buffering BIO is in place, pop it off */
533 if (s->bbio == s->wbio)
534 {
535 s->wbio=BIO_pop(s->wbio);
536 }
537 BIO_free(s->bbio);
538 s->bbio=NULL;
539 }
540 if (s->rbio != NULL)
541 BIO_free_all(s->rbio);
542 if ((s->wbio != NULL) && (s->wbio != s->rbio))
543 BIO_free_all(s->wbio);

545 if (s->init_buf != NULL) BUF_MEM_free(s->init_buf);

547 /* add extra stuff */
548 if (s->cipher_list != NULL) sk_SSL_CIPHER_free(s->cipher_list);
549 if (s->cipher_list_by_id != NULL) sk_SSL_CIPHER_free(s->cipher_list_by_i

551 /* Make the next call work :-) */
552 if (s->session != NULL)
553 {
554 ssl_clear_bad_session(s);
555 SSL_SESSION_free(s->session);
556 }

558 ssl_clear_cipher_ctx(s);
559 ssl_clear_hash_ctx(&s->read_hash);
560 ssl_clear_hash_ctx(&s->write_hash);

562 if (s->cert != NULL) ssl_cert_free(s->cert);
563 /* Free up if allocated */

565 #ifndef OPENSSL_NO_TLSEXT
566 if (s->tlsext_hostname)
567 OPENSSL_free(s->tlsext_hostname);
568 if (s->initial_ctx) SSL_CTX_free(s->initial_ctx);
569 #ifndef OPENSSL_NO_EC
570 if (s->tlsext_ecpointformatlist) OPENSSL_free(s->tlsext_ecpointformatlis
571 if (s->tlsext_ellipticcurvelist) OPENSSL_free(s->tlsext_ellipticcurvelis
572 #endif /* OPENSSL_NO_EC */
573 if (s->tlsext_opaque_prf_input) OPENSSL_free(s->tlsext_opaque_prf_input)
574 if (s->tlsext_ocsp_exts)
575 sk_X509_EXTENSION_pop_free(s->tlsext_ocsp_exts,
576 X509_EXTENSION_free);
577 if (s->tlsext_ocsp_ids)
578 sk_OCSP_RESPID_pop_free(s->tlsext_ocsp_ids, OCSP_RESPID_free);
579 if (s->tlsext_ocsp_resp)
580 OPENSSL_free(s->tlsext_ocsp_resp);
581 #endif

583 if (s->client_CA != NULL)
584 sk_X509_NAME_pop_free(s->client_CA,X509_NAME_free);

586 if (s->method != NULL) s->method->ssl_free(s);

588 if (s->ctx) SSL_CTX_free(s->ctx);

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 10

590 #ifndef OPENSSL_NO_KRB5
591 if (s->kssl_ctx != NULL)
592 kssl_ctx_free(s->kssl_ctx);
593 #endif /* OPENSSL_NO_KRB5 */

595 #if !defined(OPENSSL_NO_TLSEXT) && !defined(OPENSSL_NO_NEXTPROTONEG)
596 if (s->next_proto_negotiated)
597 OPENSSL_free(s->next_proto_negotiated);
598 #endif

600 #ifndef OPENSSL_NO_SRTP
601 if (s->srtp_profiles)
602 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
603 #endif

605 OPENSSL_free(s);
606 }

608 void SSL_set_bio(SSL *s,BIO *rbio,BIO *wbio)
609 {
610 /* If the output buffering BIO is still in place, remove it
611 */
612 if (s->bbio != NULL)
613 {
614 if (s->wbio == s->bbio)
615 {
616 s->wbio=s->wbio->next_bio;
617 s->bbio->next_bio=NULL;
618 }
619 }
620 if ((s->rbio != NULL) && (s->rbio != rbio))
621 BIO_free_all(s->rbio);
622 if ((s->wbio != NULL) && (s->wbio != wbio) && (s->rbio != s->wbio))
623 BIO_free_all(s->wbio);
624 s->rbio=rbio;
625 s->wbio=wbio;
626 }

628 BIO *SSL_get_rbio(const SSL *s)
629 { return(s->rbio); }

631 BIO *SSL_get_wbio(const SSL *s)
632 { return(s->wbio); }

634 int SSL_get_fd(const SSL *s)
635 {
636 return(SSL_get_rfd(s));
637 }

639 int SSL_get_rfd(const SSL *s)
640 {
641 int ret= -1;
642 BIO *b,*r;

644 b=SSL_get_rbio(s);
645 r=BIO_find_type(b,BIO_TYPE_DESCRIPTOR);
646 if (r != NULL)
647 BIO_get_fd(r,&ret);
648 return(ret);
649 }

651 int SSL_get_wfd(const SSL *s)
652 {
653 int ret= -1;
654 BIO *b,*r;

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 11

656 b=SSL_get_wbio(s);
657 r=BIO_find_type(b,BIO_TYPE_DESCRIPTOR);
658 if (r != NULL)
659 BIO_get_fd(r,&ret);
660 return(ret);
661 }

663 #ifndef OPENSSL_NO_SOCK
664 int SSL_set_fd(SSL *s,int fd)
665 {
666 int ret=0;
667 BIO *bio=NULL;

669 bio=BIO_new(BIO_s_socket());

671 if (bio == NULL)
672 {
673 SSLerr(SSL_F_SSL_SET_FD,ERR_R_BUF_LIB);
674 goto err;
675 }
676 BIO_set_fd(bio,fd,BIO_NOCLOSE);
677 SSL_set_bio(s,bio,bio);
678 ret=1;
679 err:
680 return(ret);
681 }

683 int SSL_set_wfd(SSL *s,int fd)
684 {
685 int ret=0;
686 BIO *bio=NULL;

688 if ((s->rbio == NULL) || (BIO_method_type(s->rbio) != BIO_TYPE_SOCKET)
689 || ((int)BIO_get_fd(s->rbio,NULL) != fd))
690 {
691 bio=BIO_new(BIO_s_socket());

693 if (bio == NULL)
694 { SSLerr(SSL_F_SSL_SET_WFD,ERR_R_BUF_LIB); goto err; }
695 BIO_set_fd(bio,fd,BIO_NOCLOSE);
696 SSL_set_bio(s,SSL_get_rbio(s),bio);
697 }
698 else
699 SSL_set_bio(s,SSL_get_rbio(s),SSL_get_rbio(s));
700 ret=1;
701 err:
702 return(ret);
703 }

705 int SSL_set_rfd(SSL *s,int fd)
706 {
707 int ret=0;
708 BIO *bio=NULL;

710 if ((s->wbio == NULL) || (BIO_method_type(s->wbio) != BIO_TYPE_SOCKET)
711 || ((int)BIO_get_fd(s->wbio,NULL) != fd))
712 {
713 bio=BIO_new(BIO_s_socket());

715 if (bio == NULL)
716 {
717 SSLerr(SSL_F_SSL_SET_RFD,ERR_R_BUF_LIB);
718 goto err;
719 }
720 BIO_set_fd(bio,fd,BIO_NOCLOSE);
721 SSL_set_bio(s,bio,SSL_get_wbio(s));

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 12

722 }
723 else
724 SSL_set_bio(s,SSL_get_wbio(s),SSL_get_wbio(s));
725 ret=1;
726 err:
727 return(ret);
728 }
729 #endif

732 /* return length of latest Finished message we sent, copy to ’buf’ */
733 size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
734 {
735 size_t ret = 0;
736
737 if (s->s3 != NULL)
738 {
739 ret = s->s3->tmp.finish_md_len;
740 if (count > ret)
741 count = ret;
742 memcpy(buf, s->s3->tmp.finish_md, count);
743 }
744 return ret;
745 }

747 /* return length of latest Finished message we expected, copy to ’buf’ */
748 size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
749 {
750 size_t ret = 0;
751
752 if (s->s3 != NULL)
753 {
754 ret = s->s3->tmp.peer_finish_md_len;
755 if (count > ret)
756 count = ret;
757 memcpy(buf, s->s3->tmp.peer_finish_md, count);
758 }
759 return ret;
760 }

763 int SSL_get_verify_mode(const SSL *s)
764 {
765 return(s->verify_mode);
766 }

768 int SSL_get_verify_depth(const SSL *s)
769 {
770 return X509_VERIFY_PARAM_get_depth(s->param);
771 }

773 int (*SSL_get_verify_callback(const SSL *s))(int,X509_STORE_CTX *)
774 {
775 return(s->verify_callback);
776 }

778 int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
779 {
780 return(ctx->verify_mode);
781 }

783 int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
784 {
785 return X509_VERIFY_PARAM_get_depth(ctx->param);
786 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 13

788 int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx))(int,X509_STORE_CTX *)
789 {
790 return(ctx->default_verify_callback);
791 }

793 void SSL_set_verify(SSL *s,int mode,
794 int (*callback)(int ok,X509_STORE_CTX *ctx))
795 {
796 s->verify_mode=mode;
797 if (callback != NULL)
798 s->verify_callback=callback;
799 }

801 void SSL_set_verify_depth(SSL *s,int depth)
802 {
803 X509_VERIFY_PARAM_set_depth(s->param, depth);
804 }

806 void SSL_set_read_ahead(SSL *s,int yes)
807 {
808 s->read_ahead=yes;
809 }

811 int SSL_get_read_ahead(const SSL *s)
812 {
813 return(s->read_ahead);
814 }

816 int SSL_pending(const SSL *s)
817 {
818 /* SSL_pending cannot work properly if read-ahead is enabled
819 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)),
820 * and it is impossible to fix since SSL_pending cannot report
821 * errors that may be observed while scanning the new data.
822 * (Note that SSL_pending() is often used as a boolean value,
823 * so we’d better not return -1.)
824 */
825 return(s->method->ssl_pending(s));
826 }

828 X509 *SSL_get_peer_certificate(const SSL *s)
829 {
830 X509 *r;
831
832 if ((s == NULL) || (s->session == NULL))
833 r=NULL;
834 else
835 r=s->session->peer;

837 if (r == NULL) return(r);

839 CRYPTO_add(&r->references,1,CRYPTO_LOCK_X509);

841 return(r);
842 }

844 STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
845 {
846 STACK_OF(X509) *r;
847
848 if ((s == NULL) || (s->session == NULL) || (s->session->sess_cert == NUL
849 r=NULL;
850 else
851 r=s->session->sess_cert->cert_chain;

853 /* If we are a client, cert_chain includes the peer’s own

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 14

854 * certificate; if we are a server, it does not. */
855
856 return(r);
857 }

859 /* Now in theory, since the calling process own ’t’ it should be safe to
860 * modify. We need to be able to read f without being hassled */
861 void SSL_copy_session_id(SSL *t,const SSL *f)
862 {
863 CERT *tmp;

865 /* Do we need to to SSL locking? */
866 SSL_set_session(t,SSL_get_session(f));

868 /* what if we are setup as SSLv2 but want to talk SSLv3 or
869 * vice-versa */
870 if (t->method != f->method)
871 {
872 t->method->ssl_free(t); /* cleanup current */
873 t->method=f->method; /* change method */
874 t->method->ssl_new(t); /* setup new */
875 }

877 tmp=t->cert;
878 if (f->cert != NULL)
879 {
880 CRYPTO_add(&f->cert->references,1,CRYPTO_LOCK_SSL_CERT);
881 t->cert=f->cert;
882 }
883 else
884 t->cert=NULL;
885 if (tmp != NULL) ssl_cert_free(tmp);
886 SSL_set_session_id_context(t,f->sid_ctx,f->sid_ctx_length);
887 }

889 /* Fix this so it checks all the valid key/cert options */
890 int SSL_CTX_check_private_key(const SSL_CTX *ctx)
891 {
892 if ((ctx == NULL) ||
893 (ctx->cert == NULL) ||
894 (ctx->cert->key->x509 == NULL))
895 {
896 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY,SSL_R_NO_CERTIFICATE_ASSI
897 return(0);
898 }
899 if (ctx->cert->key->privatekey == NULL)
900 {
901 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY,SSL_R_NO_PRIVATE_KEY_ASSI
902 return(0);
903 }
904 return(X509_check_private_key(ctx->cert->key->x509, ctx->cert->key->priv
905 }

907 /* Fix this function so that it takes an optional type parameter */
908 int SSL_check_private_key(const SSL *ssl)
909 {
910 if (ssl == NULL)
911 {
912 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY,ERR_R_PASSED_NULL_PARAMETER);
913 return(0);
914 }
915 if (ssl->cert == NULL)
916 {
917 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY,SSL_R_NO_CERTIFICATE_ASSIGNED
918 return 0;
919 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 15

920 if (ssl->cert->key->x509 == NULL)
921 {
922 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY,SSL_R_NO_CERTIFICATE_ASSIGNED
923 return(0);
924 }
925 if (ssl->cert->key->privatekey == NULL)
926 {
927 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY,SSL_R_NO_PRIVATE_KEY_ASSIGNED
928 return(0);
929 }
930 return(X509_check_private_key(ssl->cert->key->x509,
931 ssl->cert->key->privatekey));
932 }

934 int SSL_accept(SSL *s)
935 {
936 if (s->handshake_func == 0)
937 /* Not properly initialized yet */
938 SSL_set_accept_state(s);

940 return(s->method->ssl_accept(s));
941 }

943 int SSL_connect(SSL *s)
944 {
945 if (s->handshake_func == 0)
946 /* Not properly initialized yet */
947 SSL_set_connect_state(s);

949 return(s->method->ssl_connect(s));
950 }

952 long SSL_get_default_timeout(const SSL *s)
953 {
954 return(s->method->get_timeout());
955 }

957 int SSL_read(SSL *s,void *buf,int num)
958 {
959 if (s->handshake_func == 0)
960 {
961 SSLerr(SSL_F_SSL_READ, SSL_R_UNINITIALIZED);
962 return -1;
963 }

965 if (s->shutdown & SSL_RECEIVED_SHUTDOWN)
966 {
967 s->rwstate=SSL_NOTHING;
968 return(0);
969 }
970 return(s->method->ssl_read(s,buf,num));
971 }

973 int SSL_peek(SSL *s,void *buf,int num)
974 {
975 if (s->handshake_func == 0)
976 {
977 SSLerr(SSL_F_SSL_PEEK, SSL_R_UNINITIALIZED);
978 return -1;
979 }

981 if (s->shutdown & SSL_RECEIVED_SHUTDOWN)
982 {
983 return(0);
984 }
985 return(s->method->ssl_peek(s,buf,num));

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 16

986 }

988 int SSL_write(SSL *s,const void *buf,int num)
989 {
990 if (s->handshake_func == 0)
991 {
992 SSLerr(SSL_F_SSL_WRITE, SSL_R_UNINITIALIZED);
993 return -1;
994 }

996 if (s->shutdown & SSL_SENT_SHUTDOWN)
997 {
998 s->rwstate=SSL_NOTHING;
999 SSLerr(SSL_F_SSL_WRITE,SSL_R_PROTOCOL_IS_SHUTDOWN);

1000 return(-1);
1001 }
1002 return(s->method->ssl_write(s,buf,num));
1003 }

1005 int SSL_shutdown(SSL *s)
1006 {
1007 /* Note that this function behaves differently from what one might
1008 * expect. Return values are 0 for no success (yet),
1009 * 1 for success; but calling it once is usually not enough,
1010 * even if blocking I/O is used (see ssl3_shutdown).
1011 */

1013 if (s->handshake_func == 0)
1014 {
1015 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
1016 return -1;
1017 }

1019 if ((s != NULL) && !SSL_in_init(s))
1020 return(s->method->ssl_shutdown(s));
1021 else
1022 return(1);
1023 }

1025 int SSL_renegotiate(SSL *s)
1026 {
1027 if (s->renegotiate == 0)
1028 s->renegotiate=1;

1030 s->new_session=1;

1032 return(s->method->ssl_renegotiate(s));
1033 }

1035 int SSL_renegotiate_abbreviated(SSL *s)
1036 {
1037 if (s->renegotiate == 0)
1038 s->renegotiate=1;

1040 s->new_session=0;

1042 return(s->method->ssl_renegotiate(s));
1043 }

1045 int SSL_renegotiate_pending(SSL *s)
1046 {
1047 /* becomes true when negotiation is requested;
1048 * false again once a handshake has finished */
1049 return (s->renegotiate != 0);
1050 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 17

1052 long SSL_ctrl(SSL *s,int cmd,long larg,void *parg)
1053 {
1054 long l;

1056 switch (cmd)
1057 {
1058 case SSL_CTRL_GET_READ_AHEAD:
1059 return(s->read_ahead);
1060 case SSL_CTRL_SET_READ_AHEAD:
1061 l=s->read_ahead;
1062 s->read_ahead=larg;
1063 return(l);

1065 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
1066 s->msg_callback_arg = parg;
1067 return 1;

1069 case SSL_CTRL_OPTIONS:
1070 return(s->options|=larg);
1071 case SSL_CTRL_CLEAR_OPTIONS:
1072 return(s->options&=~larg);
1073 case SSL_CTRL_MODE:
1074 return(s->mode|=larg);
1075 case SSL_CTRL_CLEAR_MODE:
1076 return(s->mode &=~larg);
1077 case SSL_CTRL_GET_MAX_CERT_LIST:
1078 return(s->max_cert_list);
1079 case SSL_CTRL_SET_MAX_CERT_LIST:
1080 l=s->max_cert_list;
1081 s->max_cert_list=larg;
1082 return(l);
1083 case SSL_CTRL_SET_MTU:
1084 #ifndef OPENSSL_NO_DTLS1
1085 if (larg < (long)dtls1_min_mtu())
1086 return 0;
1087 #endif

1089 if (SSL_version(s) == DTLS1_VERSION ||
1090 SSL_version(s) == DTLS1_BAD_VER)
1091 {
1092 s->d1->mtu = larg;
1093 return larg;
1094 }
1095 return 0;
1096 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
1097 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
1098 return 0;
1099 s->max_send_fragment = larg;
1100 return 1;
1101 case SSL_CTRL_GET_RI_SUPPORT:
1102 if (s->s3)
1103 return s->s3->send_connection_binding;
1104 else return 0;
1105 default:
1106 return(s->method->ssl_ctrl(s,cmd,larg,parg));
1107 }
1108 }

1110 long SSL_callback_ctrl(SSL *s, int cmd, void (*fp)(void))
1111 {
1112 switch(cmd)
1113 {
1114 case SSL_CTRL_SET_MSG_CALLBACK:
1115 s->msg_callback = (void (*)(int write_p, int version, int conten
1116 return 1;
1117

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 18

1118 default:
1119 return(s->method->ssl_callback_ctrl(s,cmd,fp));
1120 }
1121 }

1123 LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
1124 {
1125 return ctx->sessions;
1126 }

1128 long SSL_CTX_ctrl(SSL_CTX *ctx,int cmd,long larg,void *parg)
1129 {
1130 long l;

1132 switch (cmd)
1133 {
1134 case SSL_CTRL_GET_READ_AHEAD:
1135 return(ctx->read_ahead);
1136 case SSL_CTRL_SET_READ_AHEAD:
1137 l=ctx->read_ahead;
1138 ctx->read_ahead=larg;
1139 return(l);
1140
1141 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
1142 ctx->msg_callback_arg = parg;
1143 return 1;

1145 case SSL_CTRL_GET_MAX_CERT_LIST:
1146 return(ctx->max_cert_list);
1147 case SSL_CTRL_SET_MAX_CERT_LIST:
1148 l=ctx->max_cert_list;
1149 ctx->max_cert_list=larg;
1150 return(l);

1152 case SSL_CTRL_SET_SESS_CACHE_SIZE:
1153 l=ctx->session_cache_size;
1154 ctx->session_cache_size=larg;
1155 return(l);
1156 case SSL_CTRL_GET_SESS_CACHE_SIZE:
1157 return(ctx->session_cache_size);
1158 case SSL_CTRL_SET_SESS_CACHE_MODE:
1159 l=ctx->session_cache_mode;
1160 ctx->session_cache_mode=larg;
1161 return(l);
1162 case SSL_CTRL_GET_SESS_CACHE_MODE:
1163 return(ctx->session_cache_mode);

1165 case SSL_CTRL_SESS_NUMBER:
1166 return(lh_SSL_SESSION_num_items(ctx->sessions));
1167 case SSL_CTRL_SESS_CONNECT:
1168 return(ctx->stats.sess_connect);
1169 case SSL_CTRL_SESS_CONNECT_GOOD:
1170 return(ctx->stats.sess_connect_good);
1171 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
1172 return(ctx->stats.sess_connect_renegotiate);
1173 case SSL_CTRL_SESS_ACCEPT:
1174 return(ctx->stats.sess_accept);
1175 case SSL_CTRL_SESS_ACCEPT_GOOD:
1176 return(ctx->stats.sess_accept_good);
1177 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
1178 return(ctx->stats.sess_accept_renegotiate);
1179 case SSL_CTRL_SESS_HIT:
1180 return(ctx->stats.sess_hit);
1181 case SSL_CTRL_SESS_CB_HIT:
1182 return(ctx->stats.sess_cb_hit);
1183 case SSL_CTRL_SESS_MISSES:

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 19

1184 return(ctx->stats.sess_miss);
1185 case SSL_CTRL_SESS_TIMEOUTS:
1186 return(ctx->stats.sess_timeout);
1187 case SSL_CTRL_SESS_CACHE_FULL:
1188 return(ctx->stats.sess_cache_full);
1189 case SSL_CTRL_OPTIONS:
1190 return(ctx->options|=larg);
1191 case SSL_CTRL_CLEAR_OPTIONS:
1192 return(ctx->options&=~larg);
1193 case SSL_CTRL_MODE:
1194 return(ctx->mode|=larg);
1195 case SSL_CTRL_CLEAR_MODE:
1196 return(ctx->mode&=~larg);
1197 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
1198 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
1199 return 0;
1200 ctx->max_send_fragment = larg;
1201 return 1;
1202 default:
1203 return(ctx->method->ssl_ctx_ctrl(ctx,cmd,larg,parg));
1204 }
1205 }

1207 long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp)(void))
1208 {
1209 switch(cmd)
1210 {
1211 case SSL_CTRL_SET_MSG_CALLBACK:
1212 ctx->msg_callback = (void (*)(int write_p, int version, int cont
1213 return 1;

1215 default:
1216 return(ctx->method->ssl_ctx_callback_ctrl(ctx,cmd,fp));
1217 }
1218 }

1220 int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
1221 {
1222 long l;

1224 l=a->id-b->id;
1225 if (l == 0L)
1226 return(0);
1227 else
1228 return((l > 0)?1:-1);
1229 }

1231 int ssl_cipher_ptr_id_cmp(const SSL_CIPHER * const *ap,
1232 const SSL_CIPHER * const *bp)
1233 {
1234 long l;

1236 l=(*ap)->id-(*bp)->id;
1237 if (l == 0L)
1238 return(0);
1239 else
1240 return((l > 0)?1:-1);
1241 }

1243 /** return a STACK of the ciphers available for the SSL and in order of
1244 * preference */
1245 STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
1246 {
1247 if (s != NULL)
1248 {
1249 if (s->cipher_list != NULL)

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 20

1250 {
1251 return(s->cipher_list);
1252 }
1253 else if ((s->ctx != NULL) &&
1254 (s->ctx->cipher_list != NULL))
1255 {
1256 return(s->ctx->cipher_list);
1257 }
1258 }
1259 return(NULL);
1260 }

1262 /** return a STACK of the ciphers available for the SSL and in order of
1263 * algorithm id */
1264 STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
1265 {
1266 if (s != NULL)
1267 {
1268 if (s->cipher_list_by_id != NULL)
1269 {
1270 return(s->cipher_list_by_id);
1271 }
1272 else if ((s->ctx != NULL) &&
1273 (s->ctx->cipher_list_by_id != NULL))
1274 {
1275 return(s->ctx->cipher_list_by_id);
1276 }
1277 }
1278 return(NULL);
1279 }

1281 /** The old interface to get the same thing as SSL_get_ciphers() */
1282 const char *SSL_get_cipher_list(const SSL *s,int n)
1283 {
1284 SSL_CIPHER *c;
1285 STACK_OF(SSL_CIPHER) *sk;

1287 if (s == NULL) return(NULL);
1288 sk=SSL_get_ciphers(s);
1289 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
1290 return(NULL);
1291 c=sk_SSL_CIPHER_value(sk,n);
1292 if (c == NULL) return(NULL);
1293 return(c->name);
1294 }

1296 /** specify the ciphers to be used by default by the SSL_CTX */
1297 int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
1298 {
1299 STACK_OF(SSL_CIPHER) *sk;
1300
1301 sk=ssl_create_cipher_list(ctx->method,&ctx->cipher_list,
1302 &ctx->cipher_list_by_id,str);
1303 /* ssl_create_cipher_list may return an empty stack if it
1304 * was unable to find a cipher matching the given rule string
1305 * (for example if the rule string specifies a cipher which
1306 * has been disabled). This is not an error as far as
1307 * ssl_create_cipher_list is concerned, and hence
1308 * ctx->cipher_list and ctx->cipher_list_by_id has been
1309 * updated. */
1310 if (sk == NULL)
1311 return 0;
1312 else if (sk_SSL_CIPHER_num(sk) == 0)
1313 {
1314 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
1315 return 0;

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 21

1316 }
1317 return 1;
1318 }

1320 /** specify the ciphers to be used by the SSL */
1321 int SSL_set_cipher_list(SSL *s,const char *str)
1322 {
1323 STACK_OF(SSL_CIPHER) *sk;
1324
1325 sk=ssl_create_cipher_list(s->ctx->method,&s->cipher_list,
1326 &s->cipher_list_by_id,str);
1327 /* see comment in SSL_CTX_set_cipher_list */
1328 if (sk == NULL)
1329 return 0;
1330 else if (sk_SSL_CIPHER_num(sk) == 0)
1331 {
1332 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
1333 return 0;
1334 }
1335 return 1;
1336 }

1338 /* works well for SSLv2, not so good for SSLv3 */
1339 char *SSL_get_shared_ciphers(const SSL *s,char *buf,int len)
1340 {
1341 char *p;
1342 STACK_OF(SSL_CIPHER) *sk;
1343 SSL_CIPHER *c;
1344 int i;

1346 if ((s->session == NULL) || (s->session->ciphers == NULL) ||
1347 (len < 2))
1348 return(NULL);

1350 p=buf;
1351 sk=s->session->ciphers;
1352 for (i=0; i<sk_SSL_CIPHER_num(sk); i++)
1353 {
1354 int n;

1356 c=sk_SSL_CIPHER_value(sk,i);
1357 n=strlen(c->name);
1358 if (n+1 > len)
1359 {
1360 if (p != buf)
1361 --p;
1362 *p=’\0’;
1363 return buf;
1364 }
1365 strcpy(p,c->name);
1366 p+=n;
1367 *(p++)=’:’;
1368 len-=n+1;
1369 }
1370 p[-1]=’\0’;
1371 return(buf);
1372 }

1374 int ssl_cipher_list_to_bytes(SSL *s,STACK_OF(SSL_CIPHER) *sk,unsigned char *p,
1375 int (*put_cb)(const SSL_CIPHER *, unsigned char *))
1376 {
1377 int i,j=0;
1378 SSL_CIPHER *c;
1379 unsigned char *q;
1380 #ifndef OPENSSL_NO_KRB5
1381 int nokrb5 = !kssl_tgt_is_available(s->kssl_ctx);

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 22

1382 #endif /* OPENSSL_NO_KRB5 */

1384 if (sk == NULL) return(0);
1385 q=p;

1387 for (i=0; i<sk_SSL_CIPHER_num(sk); i++)
1388 {
1389 c=sk_SSL_CIPHER_value(sk,i);
1390 /* Skip TLS v1.2 only ciphersuites if lower than v1.2 */
1391 if ((c->algorithm_ssl & SSL_TLSV1_2) &&
1392 (TLS1_get_client_version(s) < TLS1_2_VERSION))
1393 continue;
1394 #ifndef OPENSSL_NO_KRB5
1395 if (((c->algorithm_mkey & SSL_kKRB5) || (c->algorithm_auth & SSL
1396 nokrb5)
1397 continue;
1398 #endif /* OPENSSL_NO_KRB5 */
1399 #ifndef OPENSSL_NO_PSK
1400 /* with PSK there must be client callback set */
1401 if (((c->algorithm_mkey & SSL_kPSK) || (c->algorithm_auth & SSL_
1402 s->psk_client_callback == NULL)
1403 continue;
1404 #endif /* OPENSSL_NO_PSK */
1405 j = put_cb ? put_cb(c,p) : ssl_put_cipher_by_char(s,c,p);
1406 p+=j;
1407 }
1408 /* If p == q, no ciphers and caller indicates an error. Otherwise
1409 * add SCSV if not renegotiating.
1410 */
1411 if (p != q && !s->renegotiate)
1412 {
1413 static SSL_CIPHER scsv =
1414 {
1415 0, NULL, SSL3_CK_SCSV, 0, 0, 0, 0, 0, 0, 0, 0, 0
1416 };
1417 j = put_cb ? put_cb(&scsv,p) : ssl_put_cipher_by_char(s,&scsv,p)
1418 p+=j;
1419 #ifdef OPENSSL_RI_DEBUG
1420 fprintf(stderr, "SCSV sent by client\n");
1421 #endif
1422 }

1424 return(p-q);
1425 }

1427 STACK_OF(SSL_CIPHER) *ssl_bytes_to_cipher_list(SSL *s,unsigned char *p,int num,
1428 STACK_OF(SSL_CIPHER) **skp)
1429 {
1430 const SSL_CIPHER *c;
1431 STACK_OF(SSL_CIPHER) *sk;
1432 int i,n;
1433 if (s->s3)
1434 s->s3->send_connection_binding = 0;

1436 n=ssl_put_cipher_by_char(s,NULL,NULL);
1437 if ((num%n) != 0)
1438 {
1439 SSLerr(SSL_F_SSL_BYTES_TO_CIPHER_LIST,SSL_R_ERROR_IN_RECEIVED_CI
1440 return(NULL);
1441 }
1442 if ((skp == NULL) || (*skp == NULL))
1443 sk=sk_SSL_CIPHER_new_null(); /* change perhaps later */
1444 else
1445 {
1446 sk= *skp;
1447 sk_SSL_CIPHER_zero(sk);

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 23

1448 }

1450 for (i=0; i<num; i+=n)
1451 {
1452 /* Check for SCSV */
1453 if (s->s3 && (n != 3 || !p[0]) &&
1454 (p[n-2] == ((SSL3_CK_SCSV >> 8) & 0xff)) &&
1455 (p[n-1] == (SSL3_CK_SCSV & 0xff)))
1456 {
1457 /* SCSV fatal if renegotiating */
1458 if (s->renegotiate)
1459 {
1460 SSLerr(SSL_F_SSL_BYTES_TO_CIPHER_LIST,SSL_R_SCSV
1461 ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_HANDSHAKE
1462 goto err;
1463 }
1464 s->s3->send_connection_binding = 1;
1465 p += n;
1466 #ifdef OPENSSL_RI_DEBUG
1467 fprintf(stderr, "SCSV received by server\n");
1468 #endif
1469 continue;
1470 }

1472 c=ssl_get_cipher_by_char(s,p);
1473 p+=n;
1474 if (c != NULL)
1475 {
1476 if (!sk_SSL_CIPHER_push(sk,c))
1477 {
1478 SSLerr(SSL_F_SSL_BYTES_TO_CIPHER_LIST,ERR_R_MALL
1479 goto err;
1480 }
1481 }
1482 }

1484 if (skp != NULL)
1485 *skp=sk;
1486 return(sk);
1487 err:
1488 if ((skp == NULL) || (*skp == NULL))
1489 sk_SSL_CIPHER_free(sk);
1490 return(NULL);
1491 }

1494 #ifndef OPENSSL_NO_TLSEXT
1495 /** return a servername extension value if provided in Client Hello, or NULL.
1496 * So far, only host_name types are defined (RFC 3546).
1497 */

1499 const char *SSL_get_servername(const SSL *s, const int type)
1500 {
1501 if (type != TLSEXT_NAMETYPE_host_name)
1502 return NULL;

1504 return s->session && !s->tlsext_hostname ?
1505 s->session->tlsext_hostname :
1506 s->tlsext_hostname;
1507 }

1509 int SSL_get_servername_type(const SSL *s)
1510 {
1511 if (s->session && (!s->tlsext_hostname ? s->session->tlsext_hostname : s
1512 return TLSEXT_NAMETYPE_host_name;
1513 return -1;

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 24

1514 }

1516 # ifndef OPENSSL_NO_NEXTPROTONEG
1517 /* SSL_select_next_proto implements the standard protocol selection. It is
1518 * expected that this function is called from the callback set by
1519 * SSL_CTX_set_next_proto_select_cb.
1520 *
1521 * The protocol data is assumed to be a vector of 8-bit, length prefixed byte
1522 * strings. The length byte itself is not included in the length. A byte
1523 * string of length 0 is invalid. No byte string may be truncated.
1524 *
1525 * The current, but experimental algorithm for selecting the protocol is:
1526 *
1527 * 1) If the server doesn’t support NPN then this is indicated to the
1528 * callback. In this case, the client application has to abort the connection
1529 * or have a default application level protocol.
1530 *
1531 * 2) If the server supports NPN, but advertises an empty list then the
1532 * client selects the first protcol in its list, but indicates via the
1533 * API that this fallback case was enacted.
1534 *
1535 * 3) Otherwise, the client finds the first protocol in the server’s list
1536 * that it supports and selects this protocol. This is because it’s
1537 * assumed that the server has better information about which protocol
1538 * a client should use.
1539 *
1540 * 4) If the client doesn’t support any of the server’s advertised
1541 * protocols, then this is treated the same as case 2.
1542 *
1543 * It returns either
1544 * OPENSSL_NPN_NEGOTIATED if a common protocol was found, or
1545 * OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
1546 */
1547 int SSL_select_next_proto(unsigned char **out, unsigned char *outlen, const unsi
1548 {
1549 unsigned int i, j;
1550 const unsigned char *result;
1551 int status = OPENSSL_NPN_UNSUPPORTED;

1553 /* For each protocol in server preference order, see if we support it. *
1554 for (i = 0; i < server_len;)
1555 {
1556 for (j = 0; j < client_len;)
1557 {
1558 if (server[i] == client[j] &&
1559 memcmp(&server[i+1], &client[j+1], server[i]) == 0)
1560 {
1561 /* We found a match */
1562 result = &server[i];
1563 status = OPENSSL_NPN_NEGOTIATED;
1564 goto found;
1565 }
1566 j += client[j];
1567 j++;
1568 }
1569 i += server[i];
1570 i++;
1571 }

1573 /* There’s no overlap between our protocols and the server’s list. */
1574 result = client;
1575 status = OPENSSL_NPN_NO_OVERLAP;

1577 found:
1578 *out = (unsigned char *) result + 1;
1579 *outlen = result[0];

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 25

1580 return status;
1581 }

1583 /* SSL_get0_next_proto_negotiated sets *data and *len to point to the client’s
1584 * requested protocol for this connection and returns 0. If the client didn’t
1585 * request any protocol, then *data is set to NULL.
1586 *
1587 * Note that the client can request any protocol it chooses. The value returned
1588 * from this function need not be a member of the list of supported protocols
1589 * provided by the callback.
1590 */
1591 void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data, un
1592 {
1593 *data = s->next_proto_negotiated;
1594 if (!*data) {
1595 *len = 0;
1596 } else {
1597 *len = s->next_proto_negotiated_len;
1598 }
1599 }

1601 /* SSL_CTX_set_next_protos_advertised_cb sets a callback that is called when a
1602 * TLS server needs a list of supported protocols for Next Protocol
1603 * Negotiation. The returned list must be in wire format. The list is returned
1604 * by setting |out| to point to it and |outlen| to its length. This memory will
1605 * not be modified, but one should assume that the SSL* keeps a reference to
1606 * it.
1607 *
1608 * The callback should return SSL_TLSEXT_ERR_OK if it wishes to advertise. Other
1609 * such extension will be included in the ServerHello. */
1610 void SSL_CTX_set_next_protos_advertised_cb(SSL_CTX *ctx, int (*cb) (SSL *ssl, co
1611 {
1612 ctx->next_protos_advertised_cb = cb;
1613 ctx->next_protos_advertised_cb_arg = arg;
1614 }

1616 /* SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
1617 * client needs to select a protocol from the server’s provided list. |out|
1618 * must be set to point to the selected protocol (which may be within |in|).
1619 * The length of the protocol name must be written into |outlen|. The server’s
1620 * advertised protocols are provided in |in| and |inlen|. The callback can
1621 * assume that |in| is syntactically valid.
1622 *
1623 * The client must select a protocol. It is fatal to the connection if this
1624 * callback returns a value other than SSL_TLSEXT_ERR_OK.
1625 */
1626 void SSL_CTX_set_next_proto_select_cb(SSL_CTX *ctx, int (*cb) (SSL *s, unsigned
1627 {
1628 ctx->next_proto_select_cb = cb;
1629 ctx->next_proto_select_cb_arg = arg;
1630 }
1631 # endif
1632 #endif

1634 int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
1635 const char *label, size_t llen, const unsigned char *p, size_t plen,
1636 int use_context)
1637 {
1638 if (s->version < TLS1_VERSION)
1639 return -1;

1641 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
1642 llen, p, plen,
1643 use_context);
1644 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 26

1646 static unsigned long ssl_session_hash(const SSL_SESSION *a)
1647 {
1648 unsigned long l;

1650 l=(unsigned long)
1651 ((unsigned int) a->session_id[0])|
1652 ((unsigned int) a->session_id[1]<< 8L)|
1653 ((unsigned long)a->session_id[2]<<16L)|
1654 ((unsigned long)a->session_id[3]<<24L);
1655 return(l);
1656 }

1658 /* NB: If this function (or indeed the hash function which uses a sort of
1659 * coarser function than this one) is changed, ensure
1660 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on being
1661 * able to construct an SSL_SESSION that will collide with any existing session
1662 * with a matching session ID. */
1663 static int ssl_session_cmp(const SSL_SESSION *a,const SSL_SESSION *b)
1664 {
1665 if (a->ssl_version != b->ssl_version)
1666 return(1);
1667 if (a->session_id_length != b->session_id_length)
1668 return(1);
1669 return(memcmp(a->session_id,b->session_id,a->session_id_length));
1670 }

1672 /* These wrapper functions should remain rather than redeclaring
1673 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
1674 * variable. The reason is that the functions aren’t static, they’re exposed via
1675 * ssl.h. */
1676 static IMPLEMENT_LHASH_HASH_FN(ssl_session, SSL_SESSION)
1677 static IMPLEMENT_LHASH_COMP_FN(ssl_session, SSL_SESSION)

1679 SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
1680 {
1681 SSL_CTX *ret=NULL;

1683 if (meth == NULL)
1684 {
1685 SSLerr(SSL_F_SSL_CTX_NEW,SSL_R_NULL_SSL_METHOD_PASSED);
1686 return(NULL);
1687 }

1689 #ifdef OPENSSL_FIPS
1690 if (FIPS_mode() && (meth->version < TLS1_VERSION))
1691 {
1692 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_ONLY_TLS_ALLOWED_IN_FIPS_MODE);
1693 return NULL;
1694 }
1695 #endif

1697 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0)
1698 {
1699 SSLerr(SSL_F_SSL_CTX_NEW,SSL_R_X509_VERIFICATION_SETUP_PROBLEMS)
1700 goto err;
1701 }
1702 ret=(SSL_CTX *)OPENSSL_malloc(sizeof(SSL_CTX));
1703 if (ret == NULL)
1704 goto err;

1706 memset(ret,0,sizeof(SSL_CTX));

1708 ret->method=meth;

1710 ret->cert_store=NULL;
1711 ret->session_cache_mode=SSL_SESS_CACHE_SERVER;

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 27

1712 ret->session_cache_size=SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
1713 ret->session_cache_head=NULL;
1714 ret->session_cache_tail=NULL;

1716 /* We take the system default */
1717 ret->session_timeout=meth->get_timeout();

1719 ret->new_session_cb=0;
1720 ret->remove_session_cb=0;
1721 ret->get_session_cb=0;
1722 ret->generate_session_id=0;

1724 memset((char *)&ret->stats,0,sizeof(ret->stats));

1726 ret->references=1;
1727 ret->quiet_shutdown=0;

1729 /* ret->cipher=NULL;*/
1730 /* ret->s2->challenge=NULL;
1731 ret->master_key=NULL;
1732 ret->key_arg=NULL;
1733 ret->s2->conn_id=NULL; */

1735 ret->info_callback=NULL;

1737 ret->app_verify_callback=0;
1738 ret->app_verify_arg=NULL;

1740 ret->max_cert_list=SSL_MAX_CERT_LIST_DEFAULT;
1741 ret->read_ahead=0;
1742 ret->msg_callback=0;
1743 ret->msg_callback_arg=NULL;
1744 ret->verify_mode=SSL_VERIFY_NONE;
1745 #if 0
1746 ret->verify_depth=-1; /* Don’t impose a limit (but x509_lu.c does) */
1747 #endif
1748 ret->sid_ctx_length=0;
1749 ret->default_verify_callback=NULL;
1750 if ((ret->cert=ssl_cert_new()) == NULL)
1751 goto err;

1753 ret->default_passwd_callback=0;
1754 ret->default_passwd_callback_userdata=NULL;
1755 ret->client_cert_cb=0;
1756 ret->app_gen_cookie_cb=0;
1757 ret->app_verify_cookie_cb=0;

1759 ret->sessions=lh_SSL_SESSION_new();
1760 if (ret->sessions == NULL) goto err;
1761 ret->cert_store=X509_STORE_new();
1762 if (ret->cert_store == NULL) goto err;

1764 ssl_create_cipher_list(ret->method,
1765 &ret->cipher_list,&ret->cipher_list_by_id,
1766 meth->version == SSL2_VERSION ? "SSLv2" : SSL_DEFAULT_CIPHER_LIS
1767 if (ret->cipher_list == NULL
1768 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0)
1769 {
1770 SSLerr(SSL_F_SSL_CTX_NEW,SSL_R_LIBRARY_HAS_NO_CIPHERS);
1771 goto err2;
1772 }

1774 ret->param = X509_VERIFY_PARAM_new();
1775 if (!ret->param)
1776 goto err;

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 28

1778 if ((ret->rsa_md5=EVP_get_digestbyname("ssl2-md5")) == NULL)
1779 {
1780 SSLerr(SSL_F_SSL_CTX_NEW,SSL_R_UNABLE_TO_LOAD_SSL2_MD5_ROUTINES)
1781 goto err2;
1782 }
1783 if ((ret->md5=EVP_get_digestbyname("ssl3-md5")) == NULL)
1784 {
1785 SSLerr(SSL_F_SSL_CTX_NEW,SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES)
1786 goto err2;
1787 }
1788 if ((ret->sha1=EVP_get_digestbyname("ssl3-sha1")) == NULL)
1789 {
1790 SSLerr(SSL_F_SSL_CTX_NEW,SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES
1791 goto err2;
1792 }

1794 if ((ret->client_CA=sk_X509_NAME_new_null()) == NULL)
1795 goto err;

1797 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data);

1799 ret->extra_certs=NULL;
1800 /* No compression for DTLS */
1801 if (meth->version != DTLS1_VERSION)
1802 ret->comp_methods=SSL_COMP_get_compression_methods();

1804 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;

1806 #ifndef OPENSSL_NO_TLSEXT
1807 ret->tlsext_servername_callback = 0;
1808 ret->tlsext_servername_arg = NULL;
1809 /* Setup RFC4507 ticket keys */
1810 if ((RAND_pseudo_bytes(ret->tlsext_tick_key_name, 16) <= 0)
1811 || (RAND_bytes(ret->tlsext_tick_hmac_key, 16) <= 0)
1812 || (RAND_bytes(ret->tlsext_tick_aes_key, 16) <= 0))
1813 ret->options |= SSL_OP_NO_TICKET;

1815 ret->tlsext_status_cb = 0;
1816 ret->tlsext_status_arg = NULL;

1818 # ifndef OPENSSL_NO_NEXTPROTONEG
1819 ret->next_protos_advertised_cb = 0;
1820 ret->next_proto_select_cb = 0;
1821 # endif
1822 #endif
1823 #ifndef OPENSSL_NO_PSK
1824 ret->psk_identity_hint=NULL;
1825 ret->psk_client_callback=NULL;
1826 ret->psk_server_callback=NULL;
1827 #endif
1828 #ifndef OPENSSL_NO_SRP
1829 SSL_CTX_SRP_CTX_init(ret);
1830 #endif
1831 #ifndef OPENSSL_NO_BUF_FREELISTS
1832 ret->freelist_max_len = SSL_MAX_BUF_FREELIST_LEN_DEFAULT;
1833 ret->rbuf_freelist = OPENSSL_malloc(sizeof(SSL3_BUF_FREELIST));
1834 if (!ret->rbuf_freelist)
1835 goto err;
1836 ret->rbuf_freelist->chunklen = 0;
1837 ret->rbuf_freelist->len = 0;
1838 ret->rbuf_freelist->head = NULL;
1839 ret->wbuf_freelist = OPENSSL_malloc(sizeof(SSL3_BUF_FREELIST));
1840 if (!ret->wbuf_freelist)
1841 {
1842 OPENSSL_free(ret->rbuf_freelist);
1843 goto err;

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 29

1844 }
1845 ret->wbuf_freelist->chunklen = 0;
1846 ret->wbuf_freelist->len = 0;
1847 ret->wbuf_freelist->head = NULL;
1848 #endif
1849 #ifndef OPENSSL_NO_ENGINE
1850 ret->client_cert_engine = NULL;
1851 #ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
1852 #define eng_strx(x) #x
1853 #define eng_str(x) eng_strx(x)
1854 /* Use specific client engine automatically... ignore errors */
1855 {
1856 ENGINE *eng;
1857 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
1858 if (!eng)
1859 {
1860 ERR_clear_error();
1861 ENGINE_load_builtin_engines();
1862 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
1863 }
1864 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
1865 ERR_clear_error();
1866 }
1867 #endif
1868 #endif
1869 /* Default is to connect to non-RI servers. When RI is more widely
1870 * deployed might change this.
1871 */
1872 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;

1874 return(ret);
1875 err:
1876 SSLerr(SSL_F_SSL_CTX_NEW,ERR_R_MALLOC_FAILURE);
1877 err2:
1878 if (ret != NULL) SSL_CTX_free(ret);
1879 return(NULL);
1880 }

1882 #if 0
1883 static void SSL_COMP_free(SSL_COMP *comp)
1884 { OPENSSL_free(comp); }
1885 #endif

1887 #ifndef OPENSSL_NO_BUF_FREELISTS
1888 static void
1889 ssl_buf_freelist_free(SSL3_BUF_FREELIST *list)
1890 {
1891 SSL3_BUF_FREELIST_ENTRY *ent, *next;
1892 for (ent = list->head; ent; ent = next)
1893 {
1894 next = ent->next;
1895 OPENSSL_free(ent);
1896 }
1897 OPENSSL_free(list);
1898 }
1899 #endif

1901 void SSL_CTX_free(SSL_CTX *a)
1902 {
1903 int i;

1905 if (a == NULL) return;

1907 i=CRYPTO_add(&a->references,-1,CRYPTO_LOCK_SSL_CTX);
1908 #ifdef REF_PRINT
1909 REF_PRINT("SSL_CTX",a);

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 30

1910 #endif
1911 if (i > 0) return;
1912 #ifdef REF_CHECK
1913 if (i < 0)
1914 {
1915 fprintf(stderr,"SSL_CTX_free, bad reference count\n");
1916 abort(); /* ok */
1917 }
1918 #endif

1920 if (a->param)
1921 X509_VERIFY_PARAM_free(a->param);

1923 /*
1924 * Free internal session cache. However: the remove_cb() may reference
1925 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
1926 * after the sessions were flushed.
1927 * As the ex_data handling routines might also touch the session cache,
1928 * the most secure solution seems to be: empty (flush) the cache, then
1929 * free ex_data, then finally free the cache.
1930 * (See ticket [openssl.org #212].)
1931 */
1932 if (a->sessions != NULL)
1933 SSL_CTX_flush_sessions(a,0);

1935 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);

1937 if (a->sessions != NULL)
1938 lh_SSL_SESSION_free(a->sessions);

1940 if (a->cert_store != NULL)
1941 X509_STORE_free(a->cert_store);
1942 if (a->cipher_list != NULL)
1943 sk_SSL_CIPHER_free(a->cipher_list);
1944 if (a->cipher_list_by_id != NULL)
1945 sk_SSL_CIPHER_free(a->cipher_list_by_id);
1946 if (a->cert != NULL)
1947 ssl_cert_free(a->cert);
1948 if (a->client_CA != NULL)
1949 sk_X509_NAME_pop_free(a->client_CA,X509_NAME_free);
1950 if (a->extra_certs != NULL)
1951 sk_X509_pop_free(a->extra_certs,X509_free);
1952 #if 0 /* This should never be done, since it removes a global database */
1953 if (a->comp_methods != NULL)
1954 sk_SSL_COMP_pop_free(a->comp_methods,SSL_COMP_free);
1955 #else
1956 a->comp_methods = NULL;
1957 #endif

1959 #ifndef OPENSSL_NO_SRTP
1960 if (a->srtp_profiles)
1961 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
1962 #endif

1964 #ifndef OPENSSL_NO_PSK
1965 if (a->psk_identity_hint)
1966 OPENSSL_free(a->psk_identity_hint);
1967 #endif
1968 #ifndef OPENSSL_NO_SRP
1969 SSL_CTX_SRP_CTX_free(a);
1970 #endif
1971 #ifndef OPENSSL_NO_ENGINE
1972 if (a->client_cert_engine)
1973 ENGINE_finish(a->client_cert_engine);
1974 #endif

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 31

1976 #ifndef OPENSSL_NO_BUF_FREELISTS
1977 if (a->wbuf_freelist)
1978 ssl_buf_freelist_free(a->wbuf_freelist);
1979 if (a->rbuf_freelist)
1980 ssl_buf_freelist_free(a->rbuf_freelist);
1981 #endif

1983 OPENSSL_free(a);
1984 }

1986 void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
1987 {
1988 ctx->default_passwd_callback=cb;
1989 }

1991 void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx,void *u)
1992 {
1993 ctx->default_passwd_callback_userdata=u;
1994 }

1996 void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, int (*cb)(X509_STORE_CTX *,v
1997 {
1998 ctx->app_verify_callback=cb;
1999 ctx->app_verify_arg=arg;
2000 }

2002 void SSL_CTX_set_verify(SSL_CTX *ctx,int mode,int (*cb)(int, X509_STORE_CTX *))
2003 {
2004 ctx->verify_mode=mode;
2005 ctx->default_verify_callback=cb;
2006 }

2008 void SSL_CTX_set_verify_depth(SSL_CTX *ctx,int depth)
2009 {
2010 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
2011 }

2013 void ssl_set_cert_masks(CERT *c, const SSL_CIPHER *cipher)
2014 {
2015 CERT_PKEY *cpk;
2016 int rsa_enc,rsa_tmp,rsa_sign,dh_tmp,dh_rsa,dh_dsa,dsa_sign;
2017 int rsa_enc_export,dh_rsa_export,dh_dsa_export;
2018 int rsa_tmp_export,dh_tmp_export,kl;
2019 unsigned long mask_k,mask_a,emask_k,emask_a;
2020 int have_ecc_cert, ecdh_ok, ecdsa_ok, ecc_pkey_size;
2021 #ifndef OPENSSL_NO_ECDH
2022 int have_ecdh_tmp;
2023 #endif
2024 X509 *x = NULL;
2025 EVP_PKEY *ecc_pkey = NULL;
2026 int signature_nid = 0, pk_nid = 0, md_nid = 0;

2028 if (c == NULL) return;

2030 kl=SSL_C_EXPORT_PKEYLENGTH(cipher);

2032 #ifndef OPENSSL_NO_RSA
2033 rsa_tmp=(c->rsa_tmp != NULL || c->rsa_tmp_cb != NULL);
2034 rsa_tmp_export=(c->rsa_tmp_cb != NULL ||
2035 (rsa_tmp && RSA_size(c->rsa_tmp)*8 <= kl));
2036 #else
2037 rsa_tmp=rsa_tmp_export=0;
2038 #endif
2039 #ifndef OPENSSL_NO_DH
2040 dh_tmp=(c->dh_tmp != NULL || c->dh_tmp_cb != NULL);
2041 dh_tmp_export=(c->dh_tmp_cb != NULL ||

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 32

2042 (dh_tmp && DH_size(c->dh_tmp)*8 <= kl));
2043 #else
2044 dh_tmp=dh_tmp_export=0;
2045 #endif

2047 #ifndef OPENSSL_NO_ECDH
2048 have_ecdh_tmp=(c->ecdh_tmp != NULL || c->ecdh_tmp_cb != NULL);
2049 #endif
2050 cpk= &(c->pkeys[SSL_PKEY_RSA_ENC]);
2051 rsa_enc= (cpk->x509 != NULL && cpk->privatekey != NULL);
2052 rsa_enc_export=(rsa_enc && EVP_PKEY_size(cpk->privatekey)*8 <= kl);
2053 cpk= &(c->pkeys[SSL_PKEY_RSA_SIGN]);
2054 rsa_sign=(cpk->x509 != NULL && cpk->privatekey != NULL);
2055 cpk= &(c->pkeys[SSL_PKEY_DSA_SIGN]);
2056 dsa_sign=(cpk->x509 != NULL && cpk->privatekey != NULL);
2057 cpk= &(c->pkeys[SSL_PKEY_DH_RSA]);
2058 dh_rsa= (cpk->x509 != NULL && cpk->privatekey != NULL);
2059 dh_rsa_export=(dh_rsa && EVP_PKEY_size(cpk->privatekey)*8 <= kl);
2060 cpk= &(c->pkeys[SSL_PKEY_DH_DSA]);
2061 /* FIX THIS EAY EAY EAY */
2062 dh_dsa= (cpk->x509 != NULL && cpk->privatekey != NULL);
2063 dh_dsa_export=(dh_dsa && EVP_PKEY_size(cpk->privatekey)*8 <= kl);
2064 cpk= &(c->pkeys[SSL_PKEY_ECC]);
2065 have_ecc_cert= (cpk->x509 != NULL && cpk->privatekey != NULL);
2066 mask_k=0;
2067 mask_a=0;
2068 emask_k=0;
2069 emask_a=0;

2071

2073 #ifdef CIPHER_DEBUG
2074 printf("rt=%d rte=%d dht=%d ecdht=%d re=%d ree=%d rs=%d ds=%d dhr=%d dhd
2075 rsa_tmp,rsa_tmp_export,dh_tmp,have_ecdh_tmp,
2076 rsa_enc,rsa_enc_export,rsa_sign,dsa_sign,dh_rsa,dh_dsa);
2077 #endif
2078
2079 cpk = &(c->pkeys[SSL_PKEY_GOST01]);
2080 if (cpk->x509 != NULL && cpk->privatekey !=NULL) {
2081 mask_k |= SSL_kGOST;
2082 mask_a |= SSL_aGOST01;
2083 }
2084 cpk = &(c->pkeys[SSL_PKEY_GOST94]);
2085 if (cpk->x509 != NULL && cpk->privatekey !=NULL) {
2086 mask_k |= SSL_kGOST;
2087 mask_a |= SSL_aGOST94;
2088 }

2090 if (rsa_enc || (rsa_tmp && rsa_sign))
2091 mask_k|=SSL_kRSA;
2092 if (rsa_enc_export || (rsa_tmp_export && (rsa_sign || rsa_enc)))
2093 emask_k|=SSL_kRSA;

2095 #if 0
2096 /* The match needs to be both kEDH and aRSA or aDSA, so don’t worry */
2097 if ((dh_tmp || dh_rsa || dh_dsa) &&
2098 (rsa_enc || rsa_sign || dsa_sign))
2099 mask_k|=SSL_kEDH;
2100 if ((dh_tmp_export || dh_rsa_export || dh_dsa_export) &&
2101 (rsa_enc || rsa_sign || dsa_sign))
2102 emask_k|=SSL_kEDH;
2103 #endif

2105 if (dh_tmp_export)
2106 emask_k|=SSL_kEDH;

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 33

2108 if (dh_tmp)
2109 mask_k|=SSL_kEDH;

2111 if (dh_rsa) mask_k|=SSL_kDHr;
2112 if (dh_rsa_export) emask_k|=SSL_kDHr;

2114 if (dh_dsa) mask_k|=SSL_kDHd;
2115 if (dh_dsa_export) emask_k|=SSL_kDHd;

2117 if (rsa_enc || rsa_sign)
2118 {
2119 mask_a|=SSL_aRSA;
2120 emask_a|=SSL_aRSA;
2121 }

2123 if (dsa_sign)
2124 {
2125 mask_a|=SSL_aDSS;
2126 emask_a|=SSL_aDSS;
2127 }

2129 mask_a|=SSL_aNULL;
2130 emask_a|=SSL_aNULL;

2132 #ifndef OPENSSL_NO_KRB5
2133 mask_k|=SSL_kKRB5;
2134 mask_a|=SSL_aKRB5;
2135 emask_k|=SSL_kKRB5;
2136 emask_a|=SSL_aKRB5;
2137 #endif

2139 /* An ECC certificate may be usable for ECDH and/or
2140 * ECDSA cipher suites depending on the key usage extension.
2141 */
2142 if (have_ecc_cert)
2143 {
2144 /* This call populates extension flags (ex_flags) */
2145 x = (c->pkeys[SSL_PKEY_ECC]).x509;
2146 X509_check_purpose(x, -1, 0);
2147 ecdh_ok = (x->ex_flags & EXFLAG_KUSAGE) ?
2148 (x->ex_kusage & X509v3_KU_KEY_AGREEMENT) : 1;
2149 ecdsa_ok = (x->ex_flags & EXFLAG_KUSAGE) ?
2150 (x->ex_kusage & X509v3_KU_DIGITAL_SIGNATURE) : 1;
2151 ecc_pkey = X509_get_pubkey(x);
2152 ecc_pkey_size = (ecc_pkey != NULL) ?
2153 EVP_PKEY_bits(ecc_pkey) : 0;
2154 EVP_PKEY_free(ecc_pkey);
2155 if ((x->sig_alg) && (x->sig_alg->algorithm))
2156 {
2157 signature_nid = OBJ_obj2nid(x->sig_alg->algorithm);
2158 OBJ_find_sigid_algs(signature_nid, &md_nid, &pk_nid);
2159 }
2160 #ifndef OPENSSL_NO_ECDH
2161 if (ecdh_ok)
2162 {

2164 if (pk_nid == NID_rsaEncryption || pk_nid == NID_rsa)
2165 {
2166 mask_k|=SSL_kECDHr;
2167 mask_a|=SSL_aECDH;
2168 if (ecc_pkey_size <= 163)
2169 {
2170 emask_k|=SSL_kECDHr;
2171 emask_a|=SSL_aECDH;
2172 }
2173 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 34

2175 if (pk_nid == NID_X9_62_id_ecPublicKey)
2176 {
2177 mask_k|=SSL_kECDHe;
2178 mask_a|=SSL_aECDH;
2179 if (ecc_pkey_size <= 163)
2180 {
2181 emask_k|=SSL_kECDHe;
2182 emask_a|=SSL_aECDH;
2183 }
2184 }
2185 }
2186 #endif
2187 #ifndef OPENSSL_NO_ECDSA
2188 if (ecdsa_ok)
2189 {
2190 mask_a|=SSL_aECDSA;
2191 emask_a|=SSL_aECDSA;
2192 }
2193 #endif
2194 }

2196 #ifndef OPENSSL_NO_ECDH
2197 if (have_ecdh_tmp)
2198 {
2199 mask_k|=SSL_kEECDH;
2200 emask_k|=SSL_kEECDH;
2201 }
2202 #endif

2204 #ifndef OPENSSL_NO_PSK
2205 mask_k |= SSL_kPSK;
2206 mask_a |= SSL_aPSK;
2207 emask_k |= SSL_kPSK;
2208 emask_a |= SSL_aPSK;
2209 #endif

2211 c->mask_k=mask_k;
2212 c->mask_a=mask_a;
2213 c->export_mask_k=emask_k;
2214 c->export_mask_a=emask_a;
2215 c->valid=1;
2216 }

2218 /* This handy macro borrowed from crypto/x509v3/v3_purp.c */
2219 #define ku_reject(x, usage) \
2220 (((x)->ex_flags & EXFLAG_KUSAGE) && !((x)->ex_kusage & (usage)))

2222 #ifndef OPENSSL_NO_EC

2224 int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
2225 {
2226 unsigned long alg_k, alg_a;
2227 EVP_PKEY *pkey = NULL;
2228 int keysize = 0;
2229 int signature_nid = 0, md_nid = 0, pk_nid = 0;
2230 const SSL_CIPHER *cs = s->s3->tmp.new_cipher;

2232 alg_k = cs->algorithm_mkey;
2233 alg_a = cs->algorithm_auth;

2235 if (SSL_C_IS_EXPORT(cs))
2236 {
2237 /* ECDH key length in export ciphers must be <= 163 bits */
2238 pkey = X509_get_pubkey(x);
2239 if (pkey == NULL) return 0;

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 35

2240 keysize = EVP_PKEY_bits(pkey);
2241 EVP_PKEY_free(pkey);
2242 if (keysize > 163) return 0;
2243 }

2245 /* This call populates the ex_flags field correctly */
2246 X509_check_purpose(x, -1, 0);
2247 if ((x->sig_alg) && (x->sig_alg->algorithm))
2248 {
2249 signature_nid = OBJ_obj2nid(x->sig_alg->algorithm);
2250 OBJ_find_sigid_algs(signature_nid, &md_nid, &pk_nid);
2251 }
2252 if (alg_k & SSL_kECDHe || alg_k & SSL_kECDHr)
2253 {
2254 /* key usage, if present, must allow key agreement */
2255 if (ku_reject(x, X509v3_KU_KEY_AGREEMENT))
2256 {
2257 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG, SSL_R_ECC_
2258 return 0;
2259 }
2260 if ((alg_k & SSL_kECDHe) && TLS1_get_version(s) < TLS1_2_VERSION
2261 {
2262 /* signature alg must be ECDSA */
2263 if (pk_nid != NID_X9_62_id_ecPublicKey)
2264 {
2265 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG, SS
2266 return 0;
2267 }
2268 }
2269 if ((alg_k & SSL_kECDHr) && TLS1_get_version(s) < TLS1_2_VERSION
2270 {
2271 /* signature alg must be RSA */

2273 if (pk_nid != NID_rsaEncryption && pk_nid != NID_rsa)
2274 {
2275 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG, SS
2276 return 0;
2277 }
2278 }
2279 }
2280 if (alg_a & SSL_aECDSA)
2281 {
2282 /* key usage, if present, must allow signing */
2283 if (ku_reject(x, X509v3_KU_DIGITAL_SIGNATURE))
2284 {
2285 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG, SSL_R_ECC_
2286 return 0;
2287 }
2288 }

2290 return 1; /* all checks are ok */
2291 }

2293 #endif

2295 /* THIS NEEDS CLEANING UP */
2296 CERT_PKEY *ssl_get_server_send_pkey(const SSL *s)
2297 {
2298 unsigned long alg_k,alg_a;
2299 CERT *c;
2300 int i;

2302 c=s->cert;
2303 ssl_set_cert_masks(c, s->s3->tmp.new_cipher);
2304
2305 alg_k = s->s3->tmp.new_cipher->algorithm_mkey;

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 36

2306 alg_a = s->s3->tmp.new_cipher->algorithm_auth;

2308 if (alg_k & (SSL_kECDHr|SSL_kECDHe))
2309 {
2310 /* we don’t need to look at SSL_kEECDH
2311 * since no certificate is needed for
2312 * anon ECDH and for authenticated
2313 * EECDH, the check for the auth
2314 * algorithm will set i correctly
2315 * NOTE: For ECDH-RSA, we need an ECC
2316 * not an RSA cert but for EECDH-RSA
2317 * we need an RSA cert. Placing the
2318 * checks for SSL_kECDH before RSA
2319 * checks ensures the correct cert is chosen.
2320 */
2321 i=SSL_PKEY_ECC;
2322 }
2323 else if (alg_a & SSL_aECDSA)
2324 {
2325 i=SSL_PKEY_ECC;
2326 }
2327 else if (alg_k & SSL_kDHr)
2328 i=SSL_PKEY_DH_RSA;
2329 else if (alg_k & SSL_kDHd)
2330 i=SSL_PKEY_DH_DSA;
2331 else if (alg_a & SSL_aDSS)
2332 i=SSL_PKEY_DSA_SIGN;
2333 else if (alg_a & SSL_aRSA)
2334 {
2335 if (c->pkeys[SSL_PKEY_RSA_ENC].x509 == NULL)
2336 i=SSL_PKEY_RSA_SIGN;
2337 else
2338 i=SSL_PKEY_RSA_ENC;
2339 }
2340 else if (alg_a & SSL_aKRB5)
2341 {
2342 /* VRS something else here? */
2343 return(NULL);
2344 }
2345 else if (alg_a & SSL_aGOST94)
2346 i=SSL_PKEY_GOST94;
2347 else if (alg_a & SSL_aGOST01)
2348 i=SSL_PKEY_GOST01;
2349 else /* if (alg_a & SSL_aNULL) */
2350 {
2351 SSLerr(SSL_F_SSL_GET_SERVER_SEND_PKEY,ERR_R_INTERNAL_ERROR);
2352 return(NULL);
2353 }

2355 return c->pkeys + i;
2356 }

2358 X509 *ssl_get_server_send_cert(const SSL *s)
2359 {
2360 CERT_PKEY *cpk;
2361 cpk = ssl_get_server_send_pkey(s);
2362 if (!cpk)
2363 return NULL;
2364 return cpk->x509;
2365 }

2367 EVP_PKEY *ssl_get_sign_pkey(SSL *s,const SSL_CIPHER *cipher, const EVP_MD **pmd)
2368 {
2369 unsigned long alg_a;
2370 CERT *c;
2371 int idx = -1;

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 37

2373 alg_a = cipher->algorithm_auth;
2374 c=s->cert;

2376 if ((alg_a & SSL_aDSS) &&
2377 (c->pkeys[SSL_PKEY_DSA_SIGN].privatekey != NULL))
2378 idx = SSL_PKEY_DSA_SIGN;
2379 else if (alg_a & SSL_aRSA)
2380 {
2381 if (c->pkeys[SSL_PKEY_RSA_SIGN].privatekey != NULL)
2382 idx = SSL_PKEY_RSA_SIGN;
2383 else if (c->pkeys[SSL_PKEY_RSA_ENC].privatekey != NULL)
2384 idx = SSL_PKEY_RSA_ENC;
2385 }
2386 else if ((alg_a & SSL_aECDSA) &&
2387 (c->pkeys[SSL_PKEY_ECC].privatekey != NULL))
2388 idx = SSL_PKEY_ECC;
2389 if (idx == -1)
2390 {
2391 SSLerr(SSL_F_SSL_GET_SIGN_PKEY,ERR_R_INTERNAL_ERROR);
2392 return(NULL);
2393 }
2394 if (pmd)
2395 *pmd = c->pkeys[idx].digest;
2396 return c->pkeys[idx].privatekey;
2397 }

2399 void ssl_update_cache(SSL *s,int mode)
2400 {
2401 int i;

2403 /* If the session_id_length is 0, we are not supposed to cache it,
2404 * and it would be rather hard to do anyway :-) */
2405 if (s->session->session_id_length == 0) return;

2407 i=s->session_ctx->session_cache_mode;
2408 if ((i & mode) && (!s->hit)
2409 && ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE)
2410 || SSL_CTX_add_session(s->session_ctx,s->session))
2411 && (s->session_ctx->new_session_cb != NULL))
2412 {
2413 CRYPTO_add(&s->session->references,1,CRYPTO_LOCK_SSL_SESSION);
2414 if (!s->session_ctx->new_session_cb(s,s->session))
2415 SSL_SESSION_free(s->session);
2416 }

2418 /* auto flush every 255 connections */
2419 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) &&
2420 ((i & mode) == mode))
2421 {
2422 if ((((mode & SSL_SESS_CACHE_CLIENT)
2423 ?s->session_ctx->stats.sess_connect_good
2424 :s->session_ctx->stats.sess_accept_good) & 0xff) == 0xff
2425 {
2426 SSL_CTX_flush_sessions(s->session_ctx,(unsigned long)tim
2427 }
2428 }
2429 }

2431 const SSL_METHOD *SSL_get_ssl_method(SSL *s)
2432 {
2433 return(s->method);
2434 }

2436 int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
2437 {

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 38

2438 int conn= -1;
2439 int ret=1;

2441 if (s->method != meth)
2442 {
2443 if (s->handshake_func != NULL)
2444 conn=(s->handshake_func == s->method->ssl_connect);

2446 if (s->method->version == meth->version)
2447 s->method=meth;
2448 else
2449 {
2450 s->method->ssl_free(s);
2451 s->method=meth;
2452 ret=s->method->ssl_new(s);
2453 }

2455 if (conn == 1)
2456 s->handshake_func=meth->ssl_connect;
2457 else if (conn == 0)
2458 s->handshake_func=meth->ssl_accept;
2459 }
2460 return(ret);
2461 }

2463 int SSL_get_error(const SSL *s,int i)
2464 {
2465 int reason;
2466 unsigned long l;
2467 BIO *bio;

2469 if (i > 0) return(SSL_ERROR_NONE);

2471 /* Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake
2472 * etc, where we do encode the error */
2473 if ((l=ERR_peek_error()) != 0)
2474 {
2475 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
2476 return(SSL_ERROR_SYSCALL);
2477 else
2478 return(SSL_ERROR_SSL);
2479 }

2481 if ((i < 0) && SSL_want_read(s))
2482 {
2483 bio=SSL_get_rbio(s);
2484 if (BIO_should_read(bio))
2485 return(SSL_ERROR_WANT_READ);
2486 else if (BIO_should_write(bio))
2487 /* This one doesn’t make too much sense ... We never try
2488 * to write to the rbio, and an application program wher
2489 * rbio and wbio are separate couldn’t even know what it
2490 * should wait for.
2491 * However if we ever set s->rwstate incorrectly
2492 * (so that we have SSL_want_read(s) instead of
2493 * SSL_want_write(s)) and rbio and wbio *are* the same,
2494 * this test works around that bug; so it might be safer
2495 * to keep it. */
2496 return(SSL_ERROR_WANT_WRITE);
2497 else if (BIO_should_io_special(bio))
2498 {
2499 reason=BIO_get_retry_reason(bio);
2500 if (reason == BIO_RR_CONNECT)
2501 return(SSL_ERROR_WANT_CONNECT);
2502 else if (reason == BIO_RR_ACCEPT)
2503 return(SSL_ERROR_WANT_ACCEPT);

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 39

2504 else
2505 return(SSL_ERROR_SYSCALL); /* unknown */
2506 }
2507 }

2509 if ((i < 0) && SSL_want_write(s))
2510 {
2511 bio=SSL_get_wbio(s);
2512 if (BIO_should_write(bio))
2513 return(SSL_ERROR_WANT_WRITE);
2514 else if (BIO_should_read(bio))
2515 /* See above (SSL_want_read(s) with BIO_should_write(bio
2516 return(SSL_ERROR_WANT_READ);
2517 else if (BIO_should_io_special(bio))
2518 {
2519 reason=BIO_get_retry_reason(bio);
2520 if (reason == BIO_RR_CONNECT)
2521 return(SSL_ERROR_WANT_CONNECT);
2522 else if (reason == BIO_RR_ACCEPT)
2523 return(SSL_ERROR_WANT_ACCEPT);
2524 else
2525 return(SSL_ERROR_SYSCALL);
2526 }
2527 }
2528 if ((i < 0) && SSL_want_x509_lookup(s))
2529 {
2530 return(SSL_ERROR_WANT_X509_LOOKUP);
2531 }

2533 if (i == 0)
2534 {
2535 if (s->version == SSL2_VERSION)
2536 {
2537 /* assume it is the socket being closed */
2538 return(SSL_ERROR_ZERO_RETURN);
2539 }
2540 else
2541 {
2542 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
2543 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
2544 return(SSL_ERROR_ZERO_RETURN);
2545 }
2546 }
2547 return(SSL_ERROR_SYSCALL);
2548 }

2550 int SSL_do_handshake(SSL *s)
2551 {
2552 int ret=1;

2554 if (s->handshake_func == NULL)
2555 {
2556 SSLerr(SSL_F_SSL_DO_HANDSHAKE,SSL_R_CONNECTION_TYPE_NOT_SET);
2557 return(-1);
2558 }

2560 s->method->ssl_renegotiate_check(s);

2562 if (SSL_in_init(s) || SSL_in_before(s))
2563 {
2564 ret=s->handshake_func(s);
2565 }
2566 return(ret);
2567 }

2569 /* For the next 2 functions, SSL_clear() sets shutdown and so

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 40

2570 * one of these calls will reset it */
2571 void SSL_set_accept_state(SSL *s)
2572 {
2573 s->server=1;
2574 s->shutdown=0;
2575 s->state=SSL_ST_ACCEPT|SSL_ST_BEFORE;
2576 s->handshake_func=s->method->ssl_accept;
2577 /* clear the current cipher */
2578 ssl_clear_cipher_ctx(s);
2579 ssl_clear_hash_ctx(&s->read_hash);
2580 ssl_clear_hash_ctx(&s->write_hash);
2581 }

2583 void SSL_set_connect_state(SSL *s)
2584 {
2585 s->server=0;
2586 s->shutdown=0;
2587 s->state=SSL_ST_CONNECT|SSL_ST_BEFORE;
2588 s->handshake_func=s->method->ssl_connect;
2589 /* clear the current cipher */
2590 ssl_clear_cipher_ctx(s);
2591 ssl_clear_hash_ctx(&s->read_hash);
2592 ssl_clear_hash_ctx(&s->write_hash);
2593 }

2595 int ssl_undefined_function(SSL *s)
2596 {
2597 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2598 return(0);
2599 }

2601 int ssl_undefined_void_function(void)
2602 {
2603 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,ERR_R_SHOULD_NOT_HAVE_BEEN_CALL
2604 return(0);
2605 }

2607 int ssl_undefined_const_function(const SSL *s)
2608 {
2609 SSLerr(SSL_F_SSL_UNDEFINED_CONST_FUNCTION,ERR_R_SHOULD_NOT_HAVE_BEEN_CAL
2610 return(0);
2611 }

2613 SSL_METHOD *ssl_bad_method(int ver)
2614 {
2615 SSLerr(SSL_F_SSL_BAD_METHOD,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2616 return(NULL);
2617 }

2619 const char *SSL_get_version(const SSL *s)
2620 {
2621 if (s->version == TLS1_2_VERSION)
2622 return("TLSv1.2");
2623 else if (s->version == TLS1_1_VERSION)
2624 return("TLSv1.1");
2625 else if (s->version == TLS1_VERSION)
2626 return("TLSv1");
2627 else if (s->version == SSL3_VERSION)
2628 return("SSLv3");
2629 else if (s->version == SSL2_VERSION)
2630 return("SSLv2");
2631 else
2632 return("unknown");
2633 }

2635 SSL *SSL_dup(SSL *s)

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 41

2636 {
2637 STACK_OF(X509_NAME) *sk;
2638 X509_NAME *xn;
2639 SSL *ret;
2640 int i;
2641
2642 if ((ret=SSL_new(SSL_get_SSL_CTX(s))) == NULL)
2643 return(NULL);

2645 ret->version = s->version;
2646 ret->type = s->type;
2647 ret->method = s->method;

2649 if (s->session != NULL)
2650 {
2651 /* This copies session-id, SSL_METHOD, sid_ctx, and ’cert’ */
2652 SSL_copy_session_id(ret,s);
2653 }
2654 else
2655 {
2656 /* No session has been established yet, so we have to expect
2657 * that s->cert or ret->cert will be changed later --
2658 * they should not both point to the same object,
2659 * and thus we can’t use SSL_copy_session_id. */

2661 ret->method->ssl_free(ret);
2662 ret->method = s->method;
2663 ret->method->ssl_new(ret);

2665 if (s->cert != NULL)
2666 {
2667 if (ret->cert != NULL)
2668 {
2669 ssl_cert_free(ret->cert);
2670 }
2671 ret->cert = ssl_cert_dup(s->cert);
2672 if (ret->cert == NULL)
2673 goto err;
2674 }
2675
2676 SSL_set_session_id_context(ret,
2677 s->sid_ctx, s->sid_ctx_length);
2678 }

2680 ret->options=s->options;
2681 ret->mode=s->mode;
2682 SSL_set_max_cert_list(ret,SSL_get_max_cert_list(s));
2683 SSL_set_read_ahead(ret,SSL_get_read_ahead(s));
2684 ret->msg_callback = s->msg_callback;
2685 ret->msg_callback_arg = s->msg_callback_arg;
2686 SSL_set_verify(ret,SSL_get_verify_mode(s),
2687 SSL_get_verify_callback(s));
2688 SSL_set_verify_depth(ret,SSL_get_verify_depth(s));
2689 ret->generate_session_id = s->generate_session_id;

2691 SSL_set_info_callback(ret,SSL_get_info_callback(s));
2692
2693 ret->debug=s->debug;

2695 /* copy app data, a little dangerous perhaps */
2696 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data)
2697 goto err;

2699 /* setup rbio, and wbio */
2700 if (s->rbio != NULL)
2701 {

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 42

2702 if (!BIO_dup_state(s->rbio,(char *)&ret->rbio))
2703 goto err;
2704 }
2705 if (s->wbio != NULL)
2706 {
2707 if (s->wbio != s->rbio)
2708 {
2709 if (!BIO_dup_state(s->wbio,(char *)&ret->wbio))
2710 goto err;
2711 }
2712 else
2713 ret->wbio=ret->rbio;
2714 }
2715 ret->rwstate = s->rwstate;
2716 ret->in_handshake = s->in_handshake;
2717 ret->handshake_func = s->handshake_func;
2718 ret->server = s->server;
2719 ret->renegotiate = s->renegotiate;
2720 ret->new_session = s->new_session;
2721 ret->quiet_shutdown = s->quiet_shutdown;
2722 ret->shutdown=s->shutdown;
2723 ret->state=s->state; /* SSL_dup does not really work at any state, thoug
2724 ret->rstate=s->rstate;
2725 ret->init_num = 0; /* would have to copy ret->init_buf, ret->init_msg, r
2726 ret->hit=s->hit;

2728 X509_VERIFY_PARAM_inherit(ret->param, s->param);

2730 /* dup the cipher_list and cipher_list_by_id stacks */
2731 if (s->cipher_list != NULL)
2732 {
2733 if ((ret->cipher_list=sk_SSL_CIPHER_dup(s->cipher_list)) == NULL
2734 goto err;
2735 }
2736 if (s->cipher_list_by_id != NULL)
2737 if ((ret->cipher_list_by_id=sk_SSL_CIPHER_dup(s->cipher_list_by_
2738 == NULL)
2739 goto err;

2741 /* Dup the client_CA list */
2742 if (s->client_CA != NULL)
2743 {
2744 if ((sk=sk_X509_NAME_dup(s->client_CA)) == NULL) goto err;
2745 ret->client_CA=sk;
2746 for (i=0; i<sk_X509_NAME_num(sk); i++)
2747 {
2748 xn=sk_X509_NAME_value(sk,i);
2749 if (sk_X509_NAME_set(sk,i,X509_NAME_dup(xn)) == NULL)
2750 {
2751 X509_NAME_free(xn);
2752 goto err;
2753 }
2754 }
2755 }

2757 if (0)
2758 {
2759 err:
2760 if (ret != NULL) SSL_free(ret);
2761 ret=NULL;
2762 }
2763 return(ret);
2764 }

2766 void ssl_clear_cipher_ctx(SSL *s)
2767 {

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 43

2768 if (s->enc_read_ctx != NULL)
2769 {
2770 EVP_CIPHER_CTX_cleanup(s->enc_read_ctx);
2771 OPENSSL_free(s->enc_read_ctx);
2772 s->enc_read_ctx=NULL;
2773 }
2774 if (s->enc_write_ctx != NULL)
2775 {
2776 EVP_CIPHER_CTX_cleanup(s->enc_write_ctx);
2777 OPENSSL_free(s->enc_write_ctx);
2778 s->enc_write_ctx=NULL;
2779 }
2780 #ifndef OPENSSL_NO_COMP
2781 if (s->expand != NULL)
2782 {
2783 COMP_CTX_free(s->expand);
2784 s->expand=NULL;
2785 }
2786 if (s->compress != NULL)
2787 {
2788 COMP_CTX_free(s->compress);
2789 s->compress=NULL;
2790 }
2791 #endif
2792 }

2794 /* Fix this function so that it takes an optional type parameter */
2795 X509 *SSL_get_certificate(const SSL *s)
2796 {
2797 if (s->cert != NULL)
2798 return(s->cert->key->x509);
2799 else
2800 return(NULL);
2801 }

2803 /* Fix this function so that it takes an optional type parameter */
2804 EVP_PKEY *SSL_get_privatekey(SSL *s)
2805 {
2806 if (s->cert != NULL)
2807 return(s->cert->key->privatekey);
2808 else
2809 return(NULL);
2810 }

2812 const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
2813 {
2814 if ((s->session != NULL) && (s->session->cipher != NULL))
2815 return(s->session->cipher);
2816 return(NULL);
2817 }
2818 #ifdef OPENSSL_NO_COMP
2819 const void *SSL_get_current_compression(SSL *s)
2820 {
2821 return NULL;
2822 }
2823 const void *SSL_get_current_expansion(SSL *s)
2824 {
2825 return NULL;
2826 }
2827 #else

2829 const COMP_METHOD *SSL_get_current_compression(SSL *s)
2830 {
2831 if (s->compress != NULL)
2832 return(s->compress->meth);
2833 return(NULL);

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 44

2834 }

2836 const COMP_METHOD *SSL_get_current_expansion(SSL *s)
2837 {
2838 if (s->expand != NULL)
2839 return(s->expand->meth);
2840 return(NULL);
2841 }
2842 #endif

2844 int ssl_init_wbio_buffer(SSL *s,int push)
2845 {
2846 BIO *bbio;

2848 if (s->bbio == NULL)
2849 {
2850 bbio=BIO_new(BIO_f_buffer());
2851 if (bbio == NULL) return(0);
2852 s->bbio=bbio;
2853 }
2854 else
2855 {
2856 bbio=s->bbio;
2857 if (s->bbio == s->wbio)
2858 s->wbio=BIO_pop(s->wbio);
2859 }
2860 (void)BIO_reset(bbio);
2861 /* if (!BIO_set_write_buffer_size(bbio,16*1024)) */
2862 if (!BIO_set_read_buffer_size(bbio,1))
2863 {
2864 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER,ERR_R_BUF_LIB);
2865 return(0);
2866 }
2867 if (push)
2868 {
2869 if (s->wbio != bbio)
2870 s->wbio=BIO_push(bbio,s->wbio);
2871 }
2872 else
2873 {
2874 if (s->wbio == bbio)
2875 s->wbio=BIO_pop(bbio);
2876 }
2877 return(1);
2878 }

2880 void ssl_free_wbio_buffer(SSL *s)
2881 {
2882 if (s->bbio == NULL) return;

2884 if (s->bbio == s->wbio)
2885 {
2886 /* remove buffering */
2887 s->wbio=BIO_pop(s->wbio);
2888 #ifdef REF_CHECK /* not the usual REF_CHECK, but this avoids adding one more pre
2889 assert(s->wbio != NULL);
2890 #endif
2891 }
2892 BIO_free(s->bbio);
2893 s->bbio=NULL;
2894 }
2895
2896 void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx,int mode)
2897 {
2898 ctx->quiet_shutdown=mode;
2899 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 45

2901 int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
2902 {
2903 return(ctx->quiet_shutdown);
2904 }

2906 void SSL_set_quiet_shutdown(SSL *s,int mode)
2907 {
2908 s->quiet_shutdown=mode;
2909 }

2911 int SSL_get_quiet_shutdown(const SSL *s)
2912 {
2913 return(s->quiet_shutdown);
2914 }

2916 void SSL_set_shutdown(SSL *s,int mode)
2917 {
2918 s->shutdown=mode;
2919 }

2921 int SSL_get_shutdown(const SSL *s)
2922 {
2923 return(s->shutdown);
2924 }

2926 int SSL_version(const SSL *s)
2927 {
2928 return(s->version);
2929 }

2931 SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
2932 {
2933 return(ssl->ctx);
2934 }

2936 SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX* ctx)
2937 {
2938 if (ssl->ctx == ctx)
2939 return ssl->ctx;
2940 #ifndef OPENSSL_NO_TLSEXT
2941 if (ctx == NULL)
2942 ctx = ssl->initial_ctx;
2943 #endif
2944 if (ssl->cert != NULL)
2945 ssl_cert_free(ssl->cert);
2946 ssl->cert = ssl_cert_dup(ctx->cert);
2947 CRYPTO_add(&ctx->references,1,CRYPTO_LOCK_SSL_CTX);
2948 if (ssl->ctx != NULL)
2949 SSL_CTX_free(ssl->ctx); /* decrement reference count */
2950 ssl->ctx = ctx;
2951 return(ssl->ctx);
2952 }

2954 #ifndef OPENSSL_NO_STDIO
2955 int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
2956 {
2957 return(X509_STORE_set_default_paths(ctx->cert_store));
2958 }

2960 int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
2961 const char *CApath)
2962 {
2963 return(X509_STORE_load_locations(ctx->cert_store,CAfile,CApath));
2964 }
2965 #endif

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 46

2967 void SSL_set_info_callback(SSL *ssl,
2968 void (*cb)(const SSL *ssl,int type,int val))
2969 {
2970 ssl->info_callback=cb;
2971 }

2973 /* One compiler (Diab DCC) doesn’t like argument names in returned
2974 function pointer. */
2975 void (*SSL_get_info_callback(const SSL *ssl))(const SSL * /*ssl*/,int /*type*/,i
2976 {
2977 return ssl->info_callback;
2978 }

2980 int SSL_state(const SSL *ssl)
2981 {
2982 return(ssl->state);
2983 }

2985 void SSL_set_state(SSL *ssl, int state)
2986 {
2987 ssl->state = state;
2988 }

2990 void SSL_set_verify_result(SSL *ssl,long arg)
2991 {
2992 ssl->verify_result=arg;
2993 }

2995 long SSL_get_verify_result(const SSL *ssl)
2996 {
2997 return(ssl->verify_result);
2998 }

3000 int SSL_get_ex_new_index(long argl,void *argp,CRYPTO_EX_new *new_func,
3001 CRYPTO_EX_dup *dup_func,CRYPTO_EX_free *free_func)
3002 {
3003 return CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_SSL, argl, argp,
3004 new_func, dup_func, free_func);
3005 }

3007 int SSL_set_ex_data(SSL *s,int idx,void *arg)
3008 {
3009 return(CRYPTO_set_ex_data(&s->ex_data,idx,arg));
3010 }

3012 void *SSL_get_ex_data(const SSL *s,int idx)
3013 {
3014 return(CRYPTO_get_ex_data(&s->ex_data,idx));
3015 }

3017 int SSL_CTX_get_ex_new_index(long argl,void *argp,CRYPTO_EX_new *new_func,
3018 CRYPTO_EX_dup *dup_func,CRYPTO_EX_free *free_func)
3019 {
3020 return CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_SSL_CTX, argl, argp,
3021 new_func, dup_func, free_func);
3022 }

3024 int SSL_CTX_set_ex_data(SSL_CTX *s,int idx,void *arg)
3025 {
3026 return(CRYPTO_set_ex_data(&s->ex_data,idx,arg));
3027 }

3029 void *SSL_CTX_get_ex_data(const SSL_CTX *s,int idx)
3030 {
3031 return(CRYPTO_get_ex_data(&s->ex_data,idx));

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 47

3032 }

3034 int ssl_ok(SSL *s)
3035 {
3036 return(1);
3037 }

3039 X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
3040 {
3041 return(ctx->cert_store);
3042 }

3044 void SSL_CTX_set_cert_store(SSL_CTX *ctx,X509_STORE *store)
3045 {
3046 if (ctx->cert_store != NULL)
3047 X509_STORE_free(ctx->cert_store);
3048 ctx->cert_store=store;
3049 }

3051 int SSL_want(const SSL *s)
3052 {
3053 return(s->rwstate);
3054 }

3056 /*!
3057 * \brief Set the callback for generating temporary RSA keys.
3058 * \param ctx the SSL context.
3059 * \param cb the callback
3060 */

3062 #ifndef OPENSSL_NO_RSA
3063 void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx,RSA *(*cb)(SSL *ssl,
3064 int is_export,
3065 int keylength))
3066 {
3067 SSL_CTX_callback_ctrl(ctx,SSL_CTRL_SET_TMP_RSA_CB,(void (*)(void))cb);
3068 }

3070 void SSL_set_tmp_rsa_callback(SSL *ssl,RSA *(*cb)(SSL *ssl,
3071 int is_export,
3072 int keylength))
3073 {
3074 SSL_callback_ctrl(ssl,SSL_CTRL_SET_TMP_RSA_CB,(void (*)(void))cb);
3075 }
3076 #endif

3078 #ifdef DOXYGEN
3079 /*!
3080 * \brief The RSA temporary key callback function.
3081 * \param ssl the SSL session.
3082 * \param is_export \c TRUE if the temp RSA key is for an export ciphersuite.
3083 * \param keylength if \c is_export is \c TRUE, then \c keylength is the size
3084 * of the required key in bits.
3085 * \return the temporary RSA key.
3086 * \sa SSL_CTX_set_tmp_rsa_callback, SSL_set_tmp_rsa_callback
3087 */

3089 RSA *cb(SSL *ssl,int is_export,int keylength)
3090 {}
3091 #endif

3093 /*!
3094 * \brief Set the callback for generating temporary DH keys.
3095 * \param ctx the SSL context.
3096 * \param dh the callback
3097 */

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 48

3099 #ifndef OPENSSL_NO_DH
3100 void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,DH *(*dh)(SSL *ssl,int is_export,
3101 int keylength))
3102 {
3103 SSL_CTX_callback_ctrl(ctx,SSL_CTRL_SET_TMP_DH_CB,(void (*)(void))dh);
3104 }

3106 void SSL_set_tmp_dh_callback(SSL *ssl,DH *(*dh)(SSL *ssl,int is_export,
3107 int keylength))
3108 {
3109 SSL_callback_ctrl(ssl,SSL_CTRL_SET_TMP_DH_CB,(void (*)(void))dh);
3110 }
3111 #endif

3113 #ifndef OPENSSL_NO_ECDH
3114 void SSL_CTX_set_tmp_ecdh_callback(SSL_CTX *ctx,EC_KEY *(*ecdh)(SSL *ssl,int is_
3115 int keylength))
3116 {
3117 SSL_CTX_callback_ctrl(ctx,SSL_CTRL_SET_TMP_ECDH_CB,(void (*)(void))ecdh)
3118 }

3120 void SSL_set_tmp_ecdh_callback(SSL *ssl,EC_KEY *(*ecdh)(SSL *ssl,int is_export,
3121 int keylength))
3122 {
3123 SSL_callback_ctrl(ssl,SSL_CTRL_SET_TMP_ECDH_CB,(void (*)(void))ecdh);
3124 }
3125 #endif

3127 #ifndef OPENSSL_NO_PSK
3128 int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
3129 {
3130 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LE
3131 {
3132 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TO
3133 return 0;
3134 }
3135 if (ctx->psk_identity_hint != NULL)
3136 OPENSSL_free(ctx->psk_identity_hint);
3137 if (identity_hint != NULL)
3138 {
3139 ctx->psk_identity_hint = BUF_strdup(identity_hint);
3140 if (ctx->psk_identity_hint == NULL)
3141 return 0;
3142 }
3143 else
3144 ctx->psk_identity_hint = NULL;
3145 return 1;
3146 }

3148 int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
3149 {
3150 if (s == NULL)
3151 return 0;

3153 if (s->session == NULL)
3154 return 1; /* session not created yet, ignored */

3156 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LE
3157 {
3158 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LO
3159 return 0;
3160 }
3161 if (s->session->psk_identity_hint != NULL)
3162 OPENSSL_free(s->session->psk_identity_hint);
3163 if (identity_hint != NULL)

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 49

3164 {
3165 s->session->psk_identity_hint = BUF_strdup(identity_hint);
3166 if (s->session->psk_identity_hint == NULL)
3167 return 0;
3168 }
3169 else
3170 s->session->psk_identity_hint = NULL;
3171 return 1;
3172 }

3174 const char *SSL_get_psk_identity_hint(const SSL *s)
3175 {
3176 if (s == NULL || s->session == NULL)
3177 return NULL;
3178 return(s->session->psk_identity_hint);
3179 }

3181 const char *SSL_get_psk_identity(const SSL *s)
3182 {
3183 if (s == NULL || s->session == NULL)
3184 return NULL;
3185 return(s->session->psk_identity);
3186 }

3188 void SSL_set_psk_client_callback(SSL *s,
3189 unsigned int (*cb)(SSL *ssl, const char *hint,
3190 char *identity, unsigned int max_identity_len, unsigned c
3191 unsigned int max_psk_len))
3192 {
3193 s->psk_client_callback = cb;
3194 }

3196 void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx,
3197 unsigned int (*cb)(SSL *ssl, const char *hint,
3198 char *identity, unsigned int max_identity_len, unsigned c
3199 unsigned int max_psk_len))
3200 {
3201 ctx->psk_client_callback = cb;
3202 }

3204 void SSL_set_psk_server_callback(SSL *s,
3205 unsigned int (*cb)(SSL *ssl, const char *identity,
3206 unsigned char *psk, unsigned int max_psk_len))
3207 {
3208 s->psk_server_callback = cb;
3209 }

3211 void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx,
3212 unsigned int (*cb)(SSL *ssl, const char *identity,
3213 unsigned char *psk, unsigned int max_psk_len))
3214 {
3215 ctx->psk_server_callback = cb;
3216 }
3217 #endif

3219 void SSL_CTX_set_msg_callback(SSL_CTX *ctx, void (*cb)(int write_p, int version,
3220 {
3221 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb
3222 }
3223 void SSL_set_msg_callback(SSL *ssl, void (*cb)(int write_p, int version, int con
3224 {
3225 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
3226 }

3228 /* Allocates new EVP_MD_CTX and sets pointer to it into given pointer
3229 * vairable, freeing EVP_MD_CTX previously stored in that variable, if

new/usr/src/lib/openssl/libsunw_ssl/ssl_lib.c 50

3230 * any. If EVP_MD pointer is passed, initializes ctx with this md
3231 * Returns newly allocated ctx;
3232 */

3234 EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash,const EVP_MD *md)
3235 {
3236 ssl_clear_hash_ctx(hash);
3237 *hash = EVP_MD_CTX_create();
3238 if (md) EVP_DigestInit_ex(*hash,md,NULL);
3239 return *hash;
3240 }
3241 void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
3242 {

3244 if (*hash) EVP_MD_CTX_destroy(*hash);
3245 *hash=NULL;
3246 }

3248 void SSL_set_debug(SSL *s, int debug)
3249 {
3250 s->debug = debug;
3251 }

3253 int SSL_cache_hit(SSL *s)
3254 {
3255 return s->hit;
3256 }

3258 #if defined(_WINDLL) && defined(OPENSSL_SYS_WIN16)
3259 #include "../crypto/bio/bss_file.c"
3260 #endif

3262 IMPLEMENT_STACK_OF(SSL_CIPHER)
3263 IMPLEMENT_STACK_OF(SSL_COMP)
3264 IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER,
3265 ssl_cipher_id);

new/usr/src/lib/openssl/libsunw_ssl/ssl_rsa.c 1

**
 18103 Fri May 30 18:32:22 2014
new/usr/src/lib/openssl/libsunw_ssl/ssl_rsa.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/ssl_rsa.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "ssl_locl.h"
61 #include <openssl/bio.h>

new/usr/src/lib/openssl/libsunw_ssl/ssl_rsa.c 2

62 #include <openssl/objects.h>
63 #include <openssl/evp.h>
64 #include <openssl/x509.h>
65 #include <openssl/pem.h>

67 static int ssl_set_cert(CERT *c, X509 *x509);
68 static int ssl_set_pkey(CERT *c, EVP_PKEY *pkey);
69 int SSL_use_certificate(SSL *ssl, X509 *x)
70 {
71 if (x == NULL)
72 {
73 SSLerr(SSL_F_SSL_USE_CERTIFICATE,ERR_R_PASSED_NULL_PARAMETER);
74 return(0);
75 }
76 if (!ssl_cert_inst(&ssl->cert))
77 {
78 SSLerr(SSL_F_SSL_USE_CERTIFICATE,ERR_R_MALLOC_FAILURE);
79 return(0);
80 }
81 return(ssl_set_cert(ssl->cert,x));
82 }

84 #ifndef OPENSSL_NO_STDIO
85 int SSL_use_certificate_file(SSL *ssl, const char *file, int type)
86 {
87 int j;
88 BIO *in;
89 int ret=0;
90 X509 *x=NULL;

92 in=BIO_new(BIO_s_file_internal());
93 if (in == NULL)
94 {
95 SSLerr(SSL_F_SSL_USE_CERTIFICATE_FILE,ERR_R_BUF_LIB);
96 goto end;
97 }

99 if (BIO_read_filename(in,file) <= 0)
100 {
101 SSLerr(SSL_F_SSL_USE_CERTIFICATE_FILE,ERR_R_SYS_LIB);
102 goto end;
103 }
104 if (type == SSL_FILETYPE_ASN1)
105 {
106 j=ERR_R_ASN1_LIB;
107 x=d2i_X509_bio(in,NULL);
108 }
109 else if (type == SSL_FILETYPE_PEM)
110 {
111 j=ERR_R_PEM_LIB;
112 x=PEM_read_bio_X509(in,NULL,ssl->ctx->default_passwd_callback,ss
113 }
114 else
115 {
116 SSLerr(SSL_F_SSL_USE_CERTIFICATE_FILE,SSL_R_BAD_SSL_FILETYPE);
117 goto end;
118 }

120 if (x == NULL)
121 {
122 SSLerr(SSL_F_SSL_USE_CERTIFICATE_FILE,j);
123 goto end;
124 }

126 ret=SSL_use_certificate(ssl,x);
127 end:

new/usr/src/lib/openssl/libsunw_ssl/ssl_rsa.c 3

128 if (x != NULL) X509_free(x);
129 if (in != NULL) BIO_free(in);
130 return(ret);
131 }
132 #endif

134 int SSL_use_certificate_ASN1(SSL *ssl, const unsigned char *d, int len)
135 {
136 X509 *x;
137 int ret;

139 x=d2i_X509(NULL,&d,(long)len);
140 if (x == NULL)
141 {
142 SSLerr(SSL_F_SSL_USE_CERTIFICATE_ASN1,ERR_R_ASN1_LIB);
143 return(0);
144 }

146 ret=SSL_use_certificate(ssl,x);
147 X509_free(x);
148 return(ret);
149 }

151 #ifndef OPENSSL_NO_RSA
152 int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa)
153 {
154 EVP_PKEY *pkey;
155 int ret;

157 if (rsa == NULL)
158 {
159 SSLerr(SSL_F_SSL_USE_RSAPRIVATEKEY,ERR_R_PASSED_NULL_PARAMETER);
160 return(0);
161 }
162 if (!ssl_cert_inst(&ssl->cert))
163 {
164 SSLerr(SSL_F_SSL_USE_RSAPRIVATEKEY,ERR_R_MALLOC_FAILURE);
165 return(0);
166 }
167 if ((pkey=EVP_PKEY_new()) == NULL)
168 {
169 SSLerr(SSL_F_SSL_USE_RSAPRIVATEKEY,ERR_R_EVP_LIB);
170 return(0);
171 }

173 RSA_up_ref(rsa);
174 EVP_PKEY_assign_RSA(pkey,rsa);

176 ret=ssl_set_pkey(ssl->cert,pkey);
177 EVP_PKEY_free(pkey);
178 return(ret);
179 }
180 #endif

182 static int ssl_set_pkey(CERT *c, EVP_PKEY *pkey)
183 {
184 int i;

186 i=ssl_cert_type(NULL,pkey);
187 if (i < 0)
188 {
189 SSLerr(SSL_F_SSL_SET_PKEY,SSL_R_UNKNOWN_CERTIFICATE_TYPE);
190 return(0);
191 }

193 if (c->pkeys[i].x509 != NULL)

new/usr/src/lib/openssl/libsunw_ssl/ssl_rsa.c 4

194 {
195 EVP_PKEY *pktmp;
196 pktmp = X509_get_pubkey(c->pkeys[i].x509);
197 EVP_PKEY_copy_parameters(pktmp,pkey);
198 EVP_PKEY_free(pktmp);
199 ERR_clear_error();

201 #ifndef OPENSSL_NO_RSA
202 /* Don’t check the public/private key, this is mostly
203 * for smart cards. */
204 if ((pkey->type == EVP_PKEY_RSA) &&
205 (RSA_flags(pkey->pkey.rsa) & RSA_METHOD_FLAG_NO_CHECK))
206 ;
207 else
208 #endif
209 if (!X509_check_private_key(c->pkeys[i].x509,pkey))
210 {
211 X509_free(c->pkeys[i].x509);
212 c->pkeys[i].x509 = NULL;
213 return 0;
214 }
215 }

217 if (c->pkeys[i].privatekey != NULL)
218 EVP_PKEY_free(c->pkeys[i].privatekey);
219 CRYPTO_add(&pkey->references,1,CRYPTO_LOCK_EVP_PKEY);
220 c->pkeys[i].privatekey=pkey;
221 c->key= &(c->pkeys[i]);

223 c->valid=0;
224 return(1);
225 }

227 #ifndef OPENSSL_NO_RSA
228 #ifndef OPENSSL_NO_STDIO
229 int SSL_use_RSAPrivateKey_file(SSL *ssl, const char *file, int type)
230 {
231 int j,ret=0;
232 BIO *in;
233 RSA *rsa=NULL;

235 in=BIO_new(BIO_s_file_internal());
236 if (in == NULL)
237 {
238 SSLerr(SSL_F_SSL_USE_RSAPRIVATEKEY_FILE,ERR_R_BUF_LIB);
239 goto end;
240 }

242 if (BIO_read_filename(in,file) <= 0)
243 {
244 SSLerr(SSL_F_SSL_USE_RSAPRIVATEKEY_FILE,ERR_R_SYS_LIB);
245 goto end;
246 }
247 if (type == SSL_FILETYPE_ASN1)
248 {
249 j=ERR_R_ASN1_LIB;
250 rsa=d2i_RSAPrivateKey_bio(in,NULL);
251 }
252 else if (type == SSL_FILETYPE_PEM)
253 {
254 j=ERR_R_PEM_LIB;
255 rsa=PEM_read_bio_RSAPrivateKey(in,NULL,
256 ssl->ctx->default_passwd_callback,ssl->ctx->default_pass
257 }
258 else
259 {

new/usr/src/lib/openssl/libsunw_ssl/ssl_rsa.c 5

260 SSLerr(SSL_F_SSL_USE_RSAPRIVATEKEY_FILE,SSL_R_BAD_SSL_FILETYPE);
261 goto end;
262 }
263 if (rsa == NULL)
264 {
265 SSLerr(SSL_F_SSL_USE_RSAPRIVATEKEY_FILE,j);
266 goto end;
267 }
268 ret=SSL_use_RSAPrivateKey(ssl,rsa);
269 RSA_free(rsa);
270 end:
271 if (in != NULL) BIO_free(in);
272 return(ret);
273 }
274 #endif

276 int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, unsigned char *d, long len)
277 {
278 int ret;
279 const unsigned char *p;
280 RSA *rsa;

282 p=d;
283 if ((rsa=d2i_RSAPrivateKey(NULL,&p,(long)len)) == NULL)
284 {
285 SSLerr(SSL_F_SSL_USE_RSAPRIVATEKEY_ASN1,ERR_R_ASN1_LIB);
286 return(0);
287 }

289 ret=SSL_use_RSAPrivateKey(ssl,rsa);
290 RSA_free(rsa);
291 return(ret);
292 }
293 #endif /* !OPENSSL_NO_RSA */

295 int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey)
296 {
297 int ret;

299 if (pkey == NULL)
300 {
301 SSLerr(SSL_F_SSL_USE_PRIVATEKEY,ERR_R_PASSED_NULL_PARAMETER);
302 return(0);
303 }
304 if (!ssl_cert_inst(&ssl->cert))
305 {
306 SSLerr(SSL_F_SSL_USE_PRIVATEKEY,ERR_R_MALLOC_FAILURE);
307 return(0);
308 }
309 ret=ssl_set_pkey(ssl->cert,pkey);
310 return(ret);
311 }

313 #ifndef OPENSSL_NO_STDIO
314 int SSL_use_PrivateKey_file(SSL *ssl, const char *file, int type)
315 {
316 int j,ret=0;
317 BIO *in;
318 EVP_PKEY *pkey=NULL;

320 in=BIO_new(BIO_s_file_internal());
321 if (in == NULL)
322 {
323 SSLerr(SSL_F_SSL_USE_PRIVATEKEY_FILE,ERR_R_BUF_LIB);
324 goto end;
325 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_rsa.c 6

327 if (BIO_read_filename(in,file) <= 0)
328 {
329 SSLerr(SSL_F_SSL_USE_PRIVATEKEY_FILE,ERR_R_SYS_LIB);
330 goto end;
331 }
332 if (type == SSL_FILETYPE_PEM)
333 {
334 j=ERR_R_PEM_LIB;
335 pkey=PEM_read_bio_PrivateKey(in,NULL,
336 ssl->ctx->default_passwd_callback,ssl->ctx->default_pass
337 }
338 else if (type == SSL_FILETYPE_ASN1)
339 {
340 j = ERR_R_ASN1_LIB;
341 pkey = d2i_PrivateKey_bio(in,NULL);
342 }
343 else
344 {
345 SSLerr(SSL_F_SSL_USE_PRIVATEKEY_FILE,SSL_R_BAD_SSL_FILETYPE);
346 goto end;
347 }
348 if (pkey == NULL)
349 {
350 SSLerr(SSL_F_SSL_USE_PRIVATEKEY_FILE,j);
351 goto end;
352 }
353 ret=SSL_use_PrivateKey(ssl,pkey);
354 EVP_PKEY_free(pkey);
355 end:
356 if (in != NULL) BIO_free(in);
357 return(ret);
358 }
359 #endif

361 int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const unsigned char *d, long len
362 {
363 int ret;
364 const unsigned char *p;
365 EVP_PKEY *pkey;

367 p=d;
368 if ((pkey=d2i_PrivateKey(type,NULL,&p,(long)len)) == NULL)
369 {
370 SSLerr(SSL_F_SSL_USE_PRIVATEKEY_ASN1,ERR_R_ASN1_LIB);
371 return(0);
372 }

374 ret=SSL_use_PrivateKey(ssl,pkey);
375 EVP_PKEY_free(pkey);
376 return(ret);
377 }

379 int SSL_CTX_use_certificate(SSL_CTX *ctx, X509 *x)
380 {
381 if (x == NULL)
382 {
383 SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE,ERR_R_PASSED_NULL_PARAMETER
384 return(0);
385 }
386 if (!ssl_cert_inst(&ctx->cert))
387 {
388 SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE,ERR_R_MALLOC_FAILURE);
389 return(0);
390 }
391 return(ssl_set_cert(ctx->cert, x));

new/usr/src/lib/openssl/libsunw_ssl/ssl_rsa.c 7

392 }

394 static int ssl_set_cert(CERT *c, X509 *x)
395 {
396 EVP_PKEY *pkey;
397 int i;

399 pkey=X509_get_pubkey(x);
400 if (pkey == NULL)
401 {
402 SSLerr(SSL_F_SSL_SET_CERT,SSL_R_X509_LIB);
403 return(0);
404 }

406 i=ssl_cert_type(x,pkey);
407 if (i < 0)
408 {
409 SSLerr(SSL_F_SSL_SET_CERT,SSL_R_UNKNOWN_CERTIFICATE_TYPE);
410 EVP_PKEY_free(pkey);
411 return(0);
412 }

414 if (c->pkeys[i].privatekey != NULL)
415 {
416 EVP_PKEY_copy_parameters(pkey,c->pkeys[i].privatekey);
417 ERR_clear_error();

419 #ifndef OPENSSL_NO_RSA
420 /* Don’t check the public/private key, this is mostly
421 * for smart cards. */
422 if ((c->pkeys[i].privatekey->type == EVP_PKEY_RSA) &&
423 (RSA_flags(c->pkeys[i].privatekey->pkey.rsa) &
424 RSA_METHOD_FLAG_NO_CHECK))
425 ;
426 else
427 #endif /* OPENSSL_NO_RSA */
428 if (!X509_check_private_key(x,c->pkeys[i].privatekey))
429 {
430 /* don’t fail for a cert/key mismatch, just free
431 * current private key (when switching to a different
432 * cert & key, first this function should be used,
433 * then ssl_set_pkey */
434 EVP_PKEY_free(c->pkeys[i].privatekey);
435 c->pkeys[i].privatekey=NULL;
436 /* clear error queue */
437 ERR_clear_error();
438 }
439 }

441 EVP_PKEY_free(pkey);

443 if (c->pkeys[i].x509 != NULL)
444 X509_free(c->pkeys[i].x509);
445 CRYPTO_add(&x->references,1,CRYPTO_LOCK_X509);
446 c->pkeys[i].x509=x;
447 c->key= &(c->pkeys[i]);

449 c->valid=0;
450 return(1);
451 }

453 #ifndef OPENSSL_NO_STDIO
454 int SSL_CTX_use_certificate_file(SSL_CTX *ctx, const char *file, int type)
455 {
456 int j;
457 BIO *in;

new/usr/src/lib/openssl/libsunw_ssl/ssl_rsa.c 8

458 int ret=0;
459 X509 *x=NULL;

461 in=BIO_new(BIO_s_file_internal());
462 if (in == NULL)
463 {
464 SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE_FILE,ERR_R_BUF_LIB);
465 goto end;
466 }

468 if (BIO_read_filename(in,file) <= 0)
469 {
470 SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE_FILE,ERR_R_SYS_LIB);
471 goto end;
472 }
473 if (type == SSL_FILETYPE_ASN1)
474 {
475 j=ERR_R_ASN1_LIB;
476 x=d2i_X509_bio(in,NULL);
477 }
478 else if (type == SSL_FILETYPE_PEM)
479 {
480 j=ERR_R_PEM_LIB;
481 x=PEM_read_bio_X509(in,NULL,ctx->default_passwd_callback,ctx->de
482 }
483 else
484 {
485 SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE_FILE,SSL_R_BAD_SSL_FILETYPE
486 goto end;
487 }

489 if (x == NULL)
490 {
491 SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE_FILE,j);
492 goto end;
493 }

495 ret=SSL_CTX_use_certificate(ctx,x);
496 end:
497 if (x != NULL) X509_free(x);
498 if (in != NULL) BIO_free(in);
499 return(ret);
500 }
501 #endif

503 int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, int len, const unsigned char *d)
504 {
505 X509 *x;
506 int ret;

508 x=d2i_X509(NULL,&d,(long)len);
509 if (x == NULL)
510 {
511 SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE_ASN1,ERR_R_ASN1_LIB);
512 return(0);
513 }

515 ret=SSL_CTX_use_certificate(ctx,x);
516 X509_free(x);
517 return(ret);
518 }

520 #ifndef OPENSSL_NO_RSA
521 int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa)
522 {
523 int ret;

new/usr/src/lib/openssl/libsunw_ssl/ssl_rsa.c 9

524 EVP_PKEY *pkey;

526 if (rsa == NULL)
527 {
528 SSLerr(SSL_F_SSL_CTX_USE_RSAPRIVATEKEY,ERR_R_PASSED_NULL_PARAMET
529 return(0);
530 }
531 if (!ssl_cert_inst(&ctx->cert))
532 {
533 SSLerr(SSL_F_SSL_CTX_USE_RSAPRIVATEKEY,ERR_R_MALLOC_FAILURE);
534 return(0);
535 }
536 if ((pkey=EVP_PKEY_new()) == NULL)
537 {
538 SSLerr(SSL_F_SSL_CTX_USE_RSAPRIVATEKEY,ERR_R_EVP_LIB);
539 return(0);
540 }

542 RSA_up_ref(rsa);
543 EVP_PKEY_assign_RSA(pkey,rsa);

545 ret=ssl_set_pkey(ctx->cert, pkey);
546 EVP_PKEY_free(pkey);
547 return(ret);
548 }

550 #ifndef OPENSSL_NO_STDIO
551 int SSL_CTX_use_RSAPrivateKey_file(SSL_CTX *ctx, const char *file, int type)
552 {
553 int j,ret=0;
554 BIO *in;
555 RSA *rsa=NULL;

557 in=BIO_new(BIO_s_file_internal());
558 if (in == NULL)
559 {
560 SSLerr(SSL_F_SSL_CTX_USE_RSAPRIVATEKEY_FILE,ERR_R_BUF_LIB);
561 goto end;
562 }

564 if (BIO_read_filename(in,file) <= 0)
565 {
566 SSLerr(SSL_F_SSL_CTX_USE_RSAPRIVATEKEY_FILE,ERR_R_SYS_LIB);
567 goto end;
568 }
569 if (type == SSL_FILETYPE_ASN1)
570 {
571 j=ERR_R_ASN1_LIB;
572 rsa=d2i_RSAPrivateKey_bio(in,NULL);
573 }
574 else if (type == SSL_FILETYPE_PEM)
575 {
576 j=ERR_R_PEM_LIB;
577 rsa=PEM_read_bio_RSAPrivateKey(in,NULL,
578 ctx->default_passwd_callback,ctx->default_passwd_callbac
579 }
580 else
581 {
582 SSLerr(SSL_F_SSL_CTX_USE_RSAPRIVATEKEY_FILE,SSL_R_BAD_SSL_FILETY
583 goto end;
584 }
585 if (rsa == NULL)
586 {
587 SSLerr(SSL_F_SSL_CTX_USE_RSAPRIVATEKEY_FILE,j);
588 goto end;
589 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_rsa.c 10

590 ret=SSL_CTX_use_RSAPrivateKey(ctx,rsa);
591 RSA_free(rsa);
592 end:
593 if (in != NULL) BIO_free(in);
594 return(ret);
595 }
596 #endif

598 int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const unsigned char *d, long le
599 {
600 int ret;
601 const unsigned char *p;
602 RSA *rsa;

604 p=d;
605 if ((rsa=d2i_RSAPrivateKey(NULL,&p,(long)len)) == NULL)
606 {
607 SSLerr(SSL_F_SSL_CTX_USE_RSAPRIVATEKEY_ASN1,ERR_R_ASN1_LIB);
608 return(0);
609 }

611 ret=SSL_CTX_use_RSAPrivateKey(ctx,rsa);
612 RSA_free(rsa);
613 return(ret);
614 }
615 #endif /* !OPENSSL_NO_RSA */

617 int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey)
618 {
619 if (pkey == NULL)
620 {
621 SSLerr(SSL_F_SSL_CTX_USE_PRIVATEKEY,ERR_R_PASSED_NULL_PARAMETER)
622 return(0);
623 }
624 if (!ssl_cert_inst(&ctx->cert))
625 {
626 SSLerr(SSL_F_SSL_CTX_USE_PRIVATEKEY,ERR_R_MALLOC_FAILURE);
627 return(0);
628 }
629 return(ssl_set_pkey(ctx->cert,pkey));
630 }

632 #ifndef OPENSSL_NO_STDIO
633 int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, const char *file, int type)
634 {
635 int j,ret=0;
636 BIO *in;
637 EVP_PKEY *pkey=NULL;

639 in=BIO_new(BIO_s_file_internal());
640 if (in == NULL)
641 {
642 SSLerr(SSL_F_SSL_CTX_USE_PRIVATEKEY_FILE,ERR_R_BUF_LIB);
643 goto end;
644 }

646 if (BIO_read_filename(in,file) <= 0)
647 {
648 SSLerr(SSL_F_SSL_CTX_USE_PRIVATEKEY_FILE,ERR_R_SYS_LIB);
649 goto end;
650 }
651 if (type == SSL_FILETYPE_PEM)
652 {
653 j=ERR_R_PEM_LIB;
654 pkey=PEM_read_bio_PrivateKey(in,NULL,
655 ctx->default_passwd_callback,ctx->default_passwd_callbac

new/usr/src/lib/openssl/libsunw_ssl/ssl_rsa.c 11

656 }
657 else if (type == SSL_FILETYPE_ASN1)
658 {
659 j = ERR_R_ASN1_LIB;
660 pkey = d2i_PrivateKey_bio(in,NULL);
661 }
662 else
663 {
664 SSLerr(SSL_F_SSL_CTX_USE_PRIVATEKEY_FILE,SSL_R_BAD_SSL_FILETYPE)
665 goto end;
666 }
667 if (pkey == NULL)
668 {
669 SSLerr(SSL_F_SSL_CTX_USE_PRIVATEKEY_FILE,j);
670 goto end;
671 }
672 ret=SSL_CTX_use_PrivateKey(ctx,pkey);
673 EVP_PKEY_free(pkey);
674 end:
675 if (in != NULL) BIO_free(in);
676 return(ret);
677 }
678 #endif

680 int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const unsigned char *d,
681 long len)
682 {
683 int ret;
684 const unsigned char *p;
685 EVP_PKEY *pkey;

687 p=d;
688 if ((pkey=d2i_PrivateKey(type,NULL,&p,(long)len)) == NULL)
689 {
690 SSLerr(SSL_F_SSL_CTX_USE_PRIVATEKEY_ASN1,ERR_R_ASN1_LIB);
691 return(0);
692 }

694 ret=SSL_CTX_use_PrivateKey(ctx,pkey);
695 EVP_PKEY_free(pkey);
696 return(ret);
697 }

700 #ifndef OPENSSL_NO_STDIO
701 /* Read a file that contains our certificate in "PEM" format,
702 * possibly followed by a sequence of CA certificates that should be
703 * sent to the peer in the Certificate message.
704 */
705 int SSL_CTX_use_certificate_chain_file(SSL_CTX *ctx, const char *file)
706 {
707 BIO *in;
708 int ret=0;
709 X509 *x=NULL;

711 ERR_clear_error(); /* clear error stack for SSL_CTX_use_certificate() */

713 in = BIO_new(BIO_s_file_internal());
714 if (in == NULL)
715 {
716 SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE_CHAIN_FILE,ERR_R_BUF_LIB);
717 goto end;
718 }

720 if (BIO_read_filename(in,file) <= 0)
721 {

new/usr/src/lib/openssl/libsunw_ssl/ssl_rsa.c 12

722 SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE_CHAIN_FILE,ERR_R_SYS_LIB);
723 goto end;
724 }

726 x=PEM_read_bio_X509_AUX(in,NULL,ctx->default_passwd_callback,
727 ctx->default_passwd_callback_userdata);
728 if (x == NULL)
729 {
730 SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE_CHAIN_FILE,ERR_R_PEM_LIB);
731 goto end;
732 }

734 ret = SSL_CTX_use_certificate(ctx, x);

736 if (ERR_peek_error() != 0)
737 ret = 0; /* Key/certificate mismatch doesn’t imply ret==0 ... *
738 if (ret)
739 {
740 /* If we could set up our certificate, now proceed to
741 * the CA certificates.
742 */
743 X509 *ca;
744 int r;
745 unsigned long err;
746
747 if (ctx->extra_certs != NULL)
748 {
749 sk_X509_pop_free(ctx->extra_certs, X509_free);
750 ctx->extra_certs = NULL;
751 }

753 while ((ca = PEM_read_bio_X509(in, NULL,
754 ctx->default_passwd_callback,
755 ctx->default_passwd_callback_userdata))
756 != NULL)
757 {
758 r = SSL_CTX_add_extra_chain_cert(ctx, ca);
759 if (!r)
760 {
761 X509_free(ca);
762 ret = 0;
763 goto end;
764 }
765 /* Note that we must not free r if it was successfully
766 * added to the chain (while we must free the main
767 * certificate, since its reference count is increased
768 * by SSL_CTX_use_certificate). */
769 }
770 /* When the while loop ends, it’s usually just EOF. */
771 err = ERR_peek_last_error();
772 if (ERR_GET_LIB(err) == ERR_LIB_PEM && ERR_GET_REASON(err) == PE
773 ERR_clear_error();
774 else
775 ret = 0; /* some real error */
776 }

778 end:
779 if (x != NULL) X509_free(x);
780 if (in != NULL) BIO_free(in);
781 return(ret);
782 }
783 #endif

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 1

**
 34107 Fri May 30 18:32:22 2014
new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/ssl_sess.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /* ==
112 * Copyright 2005 Nokia. All rights reserved.
113 *
114 * The portions of the attached software ("Contribution") is developed by
115 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
116 * license.
117 *
118 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
119 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
120 * support (see RFC 4279) to OpenSSL.
121 *
122 * No patent licenses or other rights except those expressly stated in
123 * the OpenSSL open source license shall be deemed granted or received
124 * expressly, by implication, estoppel, or otherwise.
125 *
126 * No assurances are provided by Nokia that the Contribution does not
127 * infringe the patent or other intellectual property rights of any third

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 3

128 * party or that the license provides you with all the necessary rights
129 * to make use of the Contribution.
130 *
131 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
132 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
133 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
134 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
135 * OTHERWISE.
136 */

138 #include <stdio.h>
139 #include <openssl/lhash.h>
140 #include <openssl/rand.h>
141 #ifndef OPENSSL_NO_ENGINE
142 #include <openssl/engine.h>
143 #endif
144 #include "ssl_locl.h"

146 static void SSL_SESSION_list_remove(SSL_CTX *ctx, SSL_SESSION *s);
147 static void SSL_SESSION_list_add(SSL_CTX *ctx,SSL_SESSION *s);
148 static int remove_session_lock(SSL_CTX *ctx, SSL_SESSION *c, int lck);

150 SSL_SESSION *SSL_get_session(const SSL *ssl)
151 /* aka SSL_get0_session; gets 0 objects, just returns a copy of the pointer */
152 {
153 return(ssl->session);
154 }

156 SSL_SESSION *SSL_get1_session(SSL *ssl)
157 /* variant of SSL_get_session: caller really gets something */
158 {
159 SSL_SESSION *sess;
160 /* Need to lock this all up rather than just use CRYPTO_add so that
161 * somebody doesn’t free ssl->session between when we check it’s
162 * non-null and when we up the reference count. */
163 CRYPTO_w_lock(CRYPTO_LOCK_SSL_SESSION);
164 sess = ssl->session;
165 if(sess)
166 sess->references++;
167 CRYPTO_w_unlock(CRYPTO_LOCK_SSL_SESSION);
168 return(sess);
169 }

171 int SSL_SESSION_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
172 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func)
173 {
174 return CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_SSL_SESSION, argl, argp,
175 new_func, dup_func, free_func);
176 }

178 int SSL_SESSION_set_ex_data(SSL_SESSION *s, int idx, void *arg)
179 {
180 return(CRYPTO_set_ex_data(&s->ex_data,idx,arg));
181 }

183 void *SSL_SESSION_get_ex_data(const SSL_SESSION *s, int idx)
184 {
185 return(CRYPTO_get_ex_data(&s->ex_data,idx));
186 }

188 SSL_SESSION *SSL_SESSION_new(void)
189 {
190 SSL_SESSION *ss;

192 ss=(SSL_SESSION *)OPENSSL_malloc(sizeof(SSL_SESSION));
193 if (ss == NULL)

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 4

194 {
195 SSLerr(SSL_F_SSL_SESSION_NEW,ERR_R_MALLOC_FAILURE);
196 return(0);
197 }
198 memset(ss,0,sizeof(SSL_SESSION));

200 ss->verify_result = 1; /* avoid 0 (= X509_V_OK) just in case */
201 ss->references=1;
202 ss->timeout=60*5+4; /* 5 minute timeout by default */
203 ss->time=(unsigned long)time(NULL);
204 ss->prev=NULL;
205 ss->next=NULL;
206 ss->compress_meth=0;
207 #ifndef OPENSSL_NO_TLSEXT
208 ss->tlsext_hostname = NULL;
209 #ifndef OPENSSL_NO_EC
210 ss->tlsext_ecpointformatlist_length = 0;
211 ss->tlsext_ecpointformatlist = NULL;
212 ss->tlsext_ellipticcurvelist_length = 0;
213 ss->tlsext_ellipticcurvelist = NULL;
214 #endif
215 #endif
216 CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_SESSION, ss, &ss->ex_data);
217 #ifndef OPENSSL_NO_PSK
218 ss->psk_identity_hint=NULL;
219 ss->psk_identity=NULL;
220 #endif
221 #ifndef OPENSSL_NO_SRP
222 ss->srp_username=NULL;
223 #endif
224 return(ss);
225 }

227 const unsigned char *SSL_SESSION_get_id(const SSL_SESSION *s, unsigned int *len)
228 {
229 if(len)
230 *len = s->session_id_length;
231 return s->session_id;
232 }

234 unsigned int SSL_SESSION_get_compress_id(const SSL_SESSION *s)
235 {
236 return s->compress_meth;
237 }

239 /* Even with SSLv2, we have 16 bytes (128 bits) of session ID space. SSLv3/TLSv1
240 * has 32 bytes (256 bits). As such, filling the ID with random gunk repeatedly
241 * until we have no conflict is going to complete in one iteration pretty much
242 * "most" of the time (btw: understatement). So, if it takes us 10 iterations
243 * and we still can’t avoid a conflict - well that’s a reasonable point to call
244 * it quits. Either the RAND code is broken or someone is trying to open roughly
245 * very close to 2^128 (or 2^256) SSL sessions to our server. How you might
246 * store that many sessions is perhaps a more interesting question ... */

248 #define MAX_SESS_ID_ATTEMPTS 10
249 static int def_generate_session_id(const SSL *ssl, unsigned char *id,
250 unsigned int *id_len)
251 {
252 unsigned int retry = 0;
253 do
254 if (RAND_pseudo_bytes(id, *id_len) <= 0)
255 return 0;
256 while(SSL_has_matching_session_id(ssl, id, *id_len) &&
257 (++retry < MAX_SESS_ID_ATTEMPTS));
258 if(retry < MAX_SESS_ID_ATTEMPTS)
259 return 1;

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 5

260 /* else - woops a session_id match */
261 /* XXX We should also check the external cache --
262 * but the probability of a collision is negligible, and
263 * we could not prevent the concurrent creation of sessions
264 * with identical IDs since we currently don’t have means
265 * to atomically check whether a session ID already exists
266 * and make a reservation for it if it does not
267 * (this problem applies to the internal cache as well).
268 */
269 return 0;
270 }

272 int ssl_get_new_session(SSL *s, int session)
273 {
274 /* This gets used by clients and servers. */

276 unsigned int tmp;
277 SSL_SESSION *ss=NULL;
278 GEN_SESSION_CB cb = def_generate_session_id;

280 if ((ss=SSL_SESSION_new()) == NULL) return(0);

282 /* If the context has a default timeout, use it */
283 if (s->session_ctx->session_timeout == 0)
284 ss->timeout=SSL_get_default_timeout(s);
285 else
286 ss->timeout=s->session_ctx->session_timeout;

288 if (s->session != NULL)
289 {
290 SSL_SESSION_free(s->session);
291 s->session=NULL;
292 }

294 if (session)
295 {
296 if (s->version == SSL2_VERSION)
297 {
298 ss->ssl_version=SSL2_VERSION;
299 ss->session_id_length=SSL2_SSL_SESSION_ID_LENGTH;
300 }
301 else if (s->version == SSL3_VERSION)
302 {
303 ss->ssl_version=SSL3_VERSION;
304 ss->session_id_length=SSL3_SSL_SESSION_ID_LENGTH;
305 }
306 else if (s->version == TLS1_VERSION)
307 {
308 ss->ssl_version=TLS1_VERSION;
309 ss->session_id_length=SSL3_SSL_SESSION_ID_LENGTH;
310 }
311 else if (s->version == TLS1_1_VERSION)
312 {
313 ss->ssl_version=TLS1_1_VERSION;
314 ss->session_id_length=SSL3_SSL_SESSION_ID_LENGTH;
315 }
316 else if (s->version == TLS1_2_VERSION)
317 {
318 ss->ssl_version=TLS1_2_VERSION;
319 ss->session_id_length=SSL3_SSL_SESSION_ID_LENGTH;
320 }
321 else if (s->version == DTLS1_BAD_VER)
322 {
323 ss->ssl_version=DTLS1_BAD_VER;
324 ss->session_id_length=SSL3_SSL_SESSION_ID_LENGTH;
325 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 6

326 else if (s->version == DTLS1_VERSION)
327 {
328 ss->ssl_version=DTLS1_VERSION;
329 ss->session_id_length=SSL3_SSL_SESSION_ID_LENGTH;
330 }
331 else
332 {
333 SSLerr(SSL_F_SSL_GET_NEW_SESSION,SSL_R_UNSUPPORTED_SSL_V
334 SSL_SESSION_free(ss);
335 return(0);
336 }
337 #ifndef OPENSSL_NO_TLSEXT
338 /* If RFC4507 ticket use empty session ID */
339 if (s->tlsext_ticket_expected)
340 {
341 ss->session_id_length = 0;
342 goto sess_id_done;
343 }
344 #endif
345 /* Choose which callback will set the session ID */
346 CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX);
347 if(s->generate_session_id)
348 cb = s->generate_session_id;
349 else if(s->session_ctx->generate_session_id)
350 cb = s->session_ctx->generate_session_id;
351 CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
352 /* Choose a session ID */
353 tmp = ss->session_id_length;
354 if(!cb(s, ss->session_id, &tmp))
355 {
356 /* The callback failed */
357 SSLerr(SSL_F_SSL_GET_NEW_SESSION,
358 SSL_R_SSL_SESSION_ID_CALLBACK_FAILED);
359 SSL_SESSION_free(ss);
360 return(0);
361 }
362 /* Don’t allow the callback to set the session length to zero.
363 * nor set it higher than it was. */
364 if(!tmp || (tmp > ss->session_id_length))
365 {
366 /* The callback set an illegal length */
367 SSLerr(SSL_F_SSL_GET_NEW_SESSION,
368 SSL_R_SSL_SESSION_ID_HAS_BAD_LENGTH);
369 SSL_SESSION_free(ss);
370 return(0);
371 }
372 /* If the session length was shrunk and we’re SSLv2, pad it */
373 if((tmp < ss->session_id_length) && (s->version == SSL2_VERSION)
374 memset(ss->session_id + tmp, 0, ss->session_id_length -
375 else
376 ss->session_id_length = tmp;
377 /* Finally, check for a conflict */
378 if(SSL_has_matching_session_id(s, ss->session_id,
379 ss->session_id_length))
380 {
381 SSLerr(SSL_F_SSL_GET_NEW_SESSION,
382 SSL_R_SSL_SESSION_ID_CONFLICT);
383 SSL_SESSION_free(ss);
384 return(0);
385 }
386 #ifndef OPENSSL_NO_TLSEXT
387 sess_id_done:
388 if (s->tlsext_hostname) {
389 ss->tlsext_hostname = BUF_strdup(s->tlsext_hostname);
390 if (ss->tlsext_hostname == NULL) {
391 SSLerr(SSL_F_SSL_GET_NEW_SESSION, ERR_R_INTERNAL

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 7

392 SSL_SESSION_free(ss);
393 return 0;
394 }
395 }
396 #ifndef OPENSSL_NO_EC
397 if (s->tlsext_ecpointformatlist)
398 {
399 if (ss->tlsext_ecpointformatlist != NULL) OPENSSL_free(s
400 if ((ss->tlsext_ecpointformatlist = OPENSSL_malloc(s->tl
401 {
402 SSLerr(SSL_F_SSL_GET_NEW_SESSION, ERR_R_MALLOC_F
403 SSL_SESSION_free(ss);
404 return 0;
405 }
406 ss->tlsext_ecpointformatlist_length = s->tlsext_ecpointf
407 memcpy(ss->tlsext_ecpointformatlist, s->tlsext_ecpointfo
408 }
409 if (s->tlsext_ellipticcurvelist)
410 {
411 if (ss->tlsext_ellipticcurvelist != NULL) OPENSSL_free(s
412 if ((ss->tlsext_ellipticcurvelist = OPENSSL_malloc(s->tl
413 {
414 SSLerr(SSL_F_SSL_GET_NEW_SESSION, ERR_R_MALLOC_F
415 SSL_SESSION_free(ss);
416 return 0;
417 }
418 ss->tlsext_ellipticcurvelist_length = s->tlsext_elliptic
419 memcpy(ss->tlsext_ellipticcurvelist, s->tlsext_ellipticc
420 }
421 #endif
422 #endif
423 }
424 else
425 {
426 ss->session_id_length=0;
427 }

429 if (s->sid_ctx_length > sizeof ss->sid_ctx)
430 {
431 SSLerr(SSL_F_SSL_GET_NEW_SESSION, ERR_R_INTERNAL_ERROR);
432 SSL_SESSION_free(ss);
433 return 0;
434 }
435 memcpy(ss->sid_ctx,s->sid_ctx,s->sid_ctx_length);
436 ss->sid_ctx_length=s->sid_ctx_length;
437 s->session=ss;
438 ss->ssl_version=s->version;
439 ss->verify_result = X509_V_OK;

441 return(1);
442 }

444 /* ssl_get_prev attempts to find an SSL_SESSION to be used to resume this
445 * connection. It is only called by servers.
446 *
447 * session_id: points at the session ID in the ClientHello. This code will
448 * read past the end of this in order to parse out the session ticket
449 * extension, if any.
450 * len: the length of the session ID.
451 * limit: a pointer to the first byte after the ClientHello.
452 *
453 * Returns:
454 * -1: error
455 * 0: a session may have been found.
456 *
457 * Side effects:

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 8

458 * - If a session is found then s->session is pointed at it (after freeing an
459 * existing session if need be) and s->verify_result is set from the session
460 * - Both for new and resumed sessions, s->tlsext_ticket_expected is set to 1
461 * if the server should issue a new session ticket (to 0 otherwise).
462 */
463 int ssl_get_prev_session(SSL *s, unsigned char *session_id, int len,
464 const unsigned char *limit)
465 {
466 /* This is used only by servers. */

468 SSL_SESSION *ret=NULL;
469 int fatal = 0;
470 int try_session_cache = 1;
471 #ifndef OPENSSL_NO_TLSEXT
472 int r;
473 #endif

475 if (len > SSL_MAX_SSL_SESSION_ID_LENGTH)
476 goto err;

478 if (len == 0)
479 try_session_cache = 0;

481 #ifndef OPENSSL_NO_TLSEXT
482 r = tls1_process_ticket(s, session_id, len, limit, &ret); /* sets s->tls
483 switch (r)
484 {
485 case -1: /* Error during processing */
486 fatal = 1;
487 goto err;
488 case 0: /* No ticket found */
489 case 1: /* Zero length ticket found */
490 break; /* Ok to carry on processing session id. */
491 case 2: /* Ticket found but not decrypted. */
492 case 3: /* Ticket decrypted, *ret has been set. */
493 try_session_cache = 0;
494 break;
495 default:
496 abort();
497 }
498 #endif

500 if (try_session_cache &&
501 ret == NULL &&
502 !(s->session_ctx->session_cache_mode & SSL_SESS_CACHE_NO_INTERNAL_LO
503 {
504 SSL_SESSION data;
505 data.ssl_version=s->version;
506 data.session_id_length=len;
507 if (len == 0)
508 return 0;
509 memcpy(data.session_id,session_id,len);
510 CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX);
511 ret=lh_SSL_SESSION_retrieve(s->session_ctx->sessions,&data);
512 if (ret != NULL)
513 {
514 /* don’t allow other threads to steal it: */
515 CRYPTO_add(&ret->references,1,CRYPTO_LOCK_SSL_SESSION);
516 }
517 CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
518 if (ret == NULL)
519 s->session_ctx->stats.sess_miss++;
520 }

522 if (try_session_cache &&
523 ret == NULL &&

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 9

524 s->session_ctx->get_session_cb != NULL)
525 {
526 int copy=1;
527
528 if ((ret=s->session_ctx->get_session_cb(s,session_id,len,©))
529 {
530 s->session_ctx->stats.sess_cb_hit++;

532 /* Increment reference count now if the session callback
533 * asks us to do so (note that if the session structures
534 * returned by the callback are shared between threads,
535 * it must handle the reference count itself [i.e. copy
536 * or things won’t be thread-safe). */
537 if (copy)
538 CRYPTO_add(&ret->references,1,CRYPTO_LOCK_SSL_SE

540 /* Add the externally cached session to the internal
541 * cache as well if and only if we are supposed to. */
542 if(!(s->session_ctx->session_cache_mode & SSL_SESS_CACHE
543 /* The following should not return 1, otherwise,
544 * things are very strange */
545 SSL_CTX_add_session(s->session_ctx,ret);
546 }
547 }

549 if (ret == NULL)
550 goto err;

552 /* Now ret is non-NULL and we own one of its reference counts. */

554 if (ret->sid_ctx_length != s->sid_ctx_length
555 || memcmp(ret->sid_ctx,s->sid_ctx,ret->sid_ctx_length))
556 {
557 /* We have the session requested by the client, but we don’t
558 * want to use it in this context. */
559 goto err; /* treat like cache miss */
560 }
561
562 if((s->verify_mode & SSL_VERIFY_PEER) && s->sid_ctx_length == 0)
563 {
564 /* We can’t be sure if this session is being used out of
565 * context, which is especially important for SSL_VERIFY_PEER.
566 * The application should have used SSL[_CTX]_set_session_id_con
567 *
568 * For this error case, we generate an error instead of treating
569 * the event like a cache miss (otherwise it would be easy for
570 * applications to effectively disable the session cache by
571 * accident without anyone noticing).
572 */
573
574 SSLerr(SSL_F_SSL_GET_PREV_SESSION,SSL_R_SESSION_ID_CONTEXT_UNINI
575 fatal = 1;
576 goto err;
577 }

579 if (ret->cipher == NULL)
580 {
581 unsigned char buf[5],*p;
582 unsigned long l;

584 p=buf;
585 l=ret->cipher_id;
586 l2n(l,p);
587 if ((ret->ssl_version>>8) >= SSL3_VERSION_MAJOR)
588 ret->cipher=ssl_get_cipher_by_char(s,&(buf[2]));
589 else

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 10

590 ret->cipher=ssl_get_cipher_by_char(s,&(buf[1]));
591 if (ret->cipher == NULL)
592 goto err;
593 }

595 if (ret->timeout < (long)(time(NULL) - ret->time)) /* timeout */
596 {
597 s->session_ctx->stats.sess_timeout++;
598 if (try_session_cache)
599 {
600 /* session was from the cache, so remove it */
601 SSL_CTX_remove_session(s->session_ctx,ret);
602 }
603 goto err;
604 }

606 s->session_ctx->stats.sess_hit++;

608 if (s->session != NULL)
609 SSL_SESSION_free(s->session);
610 s->session=ret;
611 s->verify_result = s->session->verify_result;
612 return 1;

614 err:
615 if (ret != NULL)
616 {
617 SSL_SESSION_free(ret);
618 #ifndef OPENSSL_NO_TLSEXT
619 if (!try_session_cache)
620 {
621 /* The session was from a ticket, so we should
622 * issue a ticket for the new session */
623 s->tlsext_ticket_expected = 1;
624 }
625 #endif
626 }
627 if (fatal)
628 return -1;
629 else
630 return 0;
631 }

633 int SSL_CTX_add_session(SSL_CTX *ctx, SSL_SESSION *c)
634 {
635 int ret=0;
636 SSL_SESSION *s;

638 /* add just 1 reference count for the SSL_CTX’s session cache
639 * even though it has two ways of access: each session is in a
640 * doubly linked list and an lhash */
641 CRYPTO_add(&c->references,1,CRYPTO_LOCK_SSL_SESSION);
642 /* if session c is in already in cache, we take back the increment later

644 CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
645 s=lh_SSL_SESSION_insert(ctx->sessions,c);
646
647 /* s != NULL iff we already had a session with the given PID.
648 * In this case, s == c should hold (then we did not really modify
649 * ctx->sessions), or we’re in trouble. */
650 if (s != NULL && s != c)
651 {
652 /* We *are* in trouble ... */
653 SSL_SESSION_list_remove(ctx,s);
654 SSL_SESSION_free(s);
655 /* ... so pretend the other session did not exist in cache

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 11

656 * (we cannot handle two SSL_SESSION structures with identical
657 * session ID in the same cache, which could happen e.g. when
658 * two threads concurrently obtain the same session from an exte
659 * cache) */
660 s = NULL;
661 }

663 /* Put at the head of the queue unless it is already in the cache */
664 if (s == NULL)
665 SSL_SESSION_list_add(ctx,c);

667 if (s != NULL)
668 {
669 /* existing cache entry -- decrement previously incremented refe
670 * count because it already takes into account the cache */

672 SSL_SESSION_free(s); /* s == c */
673 ret=0;
674 }
675 else
676 {
677 /* new cache entry -- remove old ones if cache has become too la
678
679 ret=1;

681 if (SSL_CTX_sess_get_cache_size(ctx) > 0)
682 {
683 while (SSL_CTX_sess_number(ctx) >
684 SSL_CTX_sess_get_cache_size(ctx))
685 {
686 if (!remove_session_lock(ctx,
687 ctx->session_cache_tail, 0))
688 break;
689 else
690 ctx->stats.sess_cache_full++;
691 }
692 }
693 }
694 CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
695 return(ret);
696 }

698 int SSL_CTX_remove_session(SSL_CTX *ctx, SSL_SESSION *c)
699 {
700 return remove_session_lock(ctx, c, 1);
701 }

703 static int remove_session_lock(SSL_CTX *ctx, SSL_SESSION *c, int lck)
704 {
705 SSL_SESSION *r;
706 int ret=0;

708 if ((c != NULL) && (c->session_id_length != 0))
709 {
710 if(lck) CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
711 if ((r = lh_SSL_SESSION_retrieve(ctx->sessions,c)) == c)
712 {
713 ret=1;
714 r=lh_SSL_SESSION_delete(ctx->sessions,c);
715 SSL_SESSION_list_remove(ctx,c);
716 }

718 if(lck) CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);

720 if (ret)
721 {

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 12

722 r->not_resumable=1;
723 if (ctx->remove_session_cb != NULL)
724 ctx->remove_session_cb(ctx,r);
725 SSL_SESSION_free(r);
726 }
727 }
728 else
729 ret=0;
730 return(ret);
731 }

733 void SSL_SESSION_free(SSL_SESSION *ss)
734 {
735 int i;

737 if(ss == NULL)
738 return;

740 i=CRYPTO_add(&ss->references,-1,CRYPTO_LOCK_SSL_SESSION);
741 #ifdef REF_PRINT
742 REF_PRINT("SSL_SESSION",ss);
743 #endif
744 if (i > 0) return;
745 #ifdef REF_CHECK
746 if (i < 0)
747 {
748 fprintf(stderr,"SSL_SESSION_free, bad reference count\n");
749 abort(); /* ok */
750 }
751 #endif

753 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_SESSION, ss, &ss->ex_data);

755 OPENSSL_cleanse(ss->key_arg,sizeof ss->key_arg);
756 OPENSSL_cleanse(ss->master_key,sizeof ss->master_key);
757 OPENSSL_cleanse(ss->session_id,sizeof ss->session_id);
758 if (ss->sess_cert != NULL) ssl_sess_cert_free(ss->sess_cert);
759 if (ss->peer != NULL) X509_free(ss->peer);
760 if (ss->ciphers != NULL) sk_SSL_CIPHER_free(ss->ciphers);
761 #ifndef OPENSSL_NO_TLSEXT
762 if (ss->tlsext_hostname != NULL) OPENSSL_free(ss->tlsext_hostname);
763 if (ss->tlsext_tick != NULL) OPENSSL_free(ss->tlsext_tick);
764 #ifndef OPENSSL_NO_EC
765 ss->tlsext_ecpointformatlist_length = 0;
766 if (ss->tlsext_ecpointformatlist != NULL) OPENSSL_free(ss->tlsext_ecpoin
767 ss->tlsext_ellipticcurvelist_length = 0;
768 if (ss->tlsext_ellipticcurvelist != NULL) OPENSSL_free(ss->tlsext_ellipt
769 #endif /* OPENSSL_NO_EC */
770 #endif
771 #ifndef OPENSSL_NO_PSK
772 if (ss->psk_identity_hint != NULL)
773 OPENSSL_free(ss->psk_identity_hint);
774 if (ss->psk_identity != NULL)
775 OPENSSL_free(ss->psk_identity);
776 #endif
777 #ifndef OPENSSL_NO_SRP
778 if (ss->srp_username != NULL)
779 OPENSSL_free(ss->srp_username);
780 #endif
781 OPENSSL_cleanse(ss,sizeof(*ss));
782 OPENSSL_free(ss);
783 }

785 int SSL_set_session(SSL *s, SSL_SESSION *session)
786 {
787 int ret=0;

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 13

788 const SSL_METHOD *meth;

790 if (session != NULL)
791 {
792 meth=s->ctx->method->get_ssl_method(session->ssl_version);
793 if (meth == NULL)
794 meth=s->method->get_ssl_method(session->ssl_version);
795 if (meth == NULL)
796 {
797 SSLerr(SSL_F_SSL_SET_SESSION,SSL_R_UNABLE_TO_FIND_SSL_ME
798 return(0);
799 }

801 if (meth != s->method)
802 {
803 if (!SSL_set_ssl_method(s,meth))
804 return(0);
805 }

807 #ifndef OPENSSL_NO_KRB5
808 if (s->kssl_ctx && !s->kssl_ctx->client_princ &&
809 session->krb5_client_princ_len > 0)
810 {
811 s->kssl_ctx->client_princ = (char *)OPENSSL_malloc(session->
812 memcpy(s->kssl_ctx->client_princ,session->krb5_client_princ,
813 session->krb5_client_princ_len);
814 s->kssl_ctx->client_princ[session->krb5_client_princ_len] =
815 }
816 #endif /* OPENSSL_NO_KRB5 */

818 /* CRYPTO_w_lock(CRYPTO_LOCK_SSL);*/
819 CRYPTO_add(&session->references,1,CRYPTO_LOCK_SSL_SESSION);
820 if (s->session != NULL)
821 SSL_SESSION_free(s->session);
822 s->session=session;
823 s->verify_result = s->session->verify_result;
824 /* CRYPTO_w_unlock(CRYPTO_LOCK_SSL);*/
825 ret=1;
826 }
827 else
828 {
829 if (s->session != NULL)
830 {
831 SSL_SESSION_free(s->session);
832 s->session=NULL;
833 }

835 meth=s->ctx->method;
836 if (meth != s->method)
837 {
838 if (!SSL_set_ssl_method(s,meth))
839 return(0);
840 }
841 ret=1;
842 }
843 return(ret);
844 }

846 long SSL_SESSION_set_timeout(SSL_SESSION *s, long t)
847 {
848 if (s == NULL) return(0);
849 s->timeout=t;
850 return(1);
851 }

853 long SSL_SESSION_get_timeout(const SSL_SESSION *s)

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 14

854 {
855 if (s == NULL) return(0);
856 return(s->timeout);
857 }

859 long SSL_SESSION_get_time(const SSL_SESSION *s)
860 {
861 if (s == NULL) return(0);
862 return(s->time);
863 }

865 long SSL_SESSION_set_time(SSL_SESSION *s, long t)
866 {
867 if (s == NULL) return(0);
868 s->time=t;
869 return(t);
870 }

872 X509 *SSL_SESSION_get0_peer(SSL_SESSION *s)
873 {
874 return s->peer;
875 }

877 int SSL_SESSION_set1_id_context(SSL_SESSION *s,const unsigned char *sid_ctx,
878 unsigned int sid_ctx_len)
879 {
880 if(sid_ctx_len > SSL_MAX_SID_CTX_LENGTH)
881 {
882 SSLerr(SSL_F_SSL_SESSION_SET1_ID_CONTEXT,SSL_R_SSL_SESSION_ID_CO
883 return 0;
884 }
885 s->sid_ctx_length=sid_ctx_len;
886 memcpy(s->sid_ctx,sid_ctx,sid_ctx_len);

888 return 1;
889 }

891 long SSL_CTX_set_timeout(SSL_CTX *s, long t)
892 {
893 long l;
894 if (s == NULL) return(0);
895 l=s->session_timeout;
896 s->session_timeout=t;
897 return(l);
898 }

900 long SSL_CTX_get_timeout(const SSL_CTX *s)
901 {
902 if (s == NULL) return(0);
903 return(s->session_timeout);
904 }

906 #ifndef OPENSSL_NO_TLSEXT
907 int SSL_set_session_secret_cb(SSL *s, int (*tls_session_secret_cb)(SSL *s, void
908 STACK_OF(SSL_CIPHER) *peer_ciphers, SSL_CIPHER **cipher, void *arg), voi
909 {
910 if (s == NULL) return(0);
911 s->tls_session_secret_cb = tls_session_secret_cb;
912 s->tls_session_secret_cb_arg = arg;
913 return(1);
914 }

916 int SSL_set_session_ticket_ext_cb(SSL *s, tls_session_ticket_ext_cb_fn cb,
917 void *arg)
918 {
919 if (s == NULL) return(0);

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 15

920 s->tls_session_ticket_ext_cb = cb;
921 s->tls_session_ticket_ext_cb_arg = arg;
922 return(1);
923 }

925 int SSL_set_session_ticket_ext(SSL *s, void *ext_data, int ext_len)
926 {
927 if (s->version >= TLS1_VERSION)
928 {
929 if (s->tlsext_session_ticket)
930 {
931 OPENSSL_free(s->tlsext_session_ticket);
932 s->tlsext_session_ticket = NULL;
933 }

935 s->tlsext_session_ticket = OPENSSL_malloc(sizeof(TLS_SESSION_TIC
936 if (!s->tlsext_session_ticket)
937 {
938 SSLerr(SSL_F_SSL_SET_SESSION_TICKET_EXT, ERR_R_MALLOC_FA
939 return 0;
940 }

942 if (ext_data)
943 {
944 s->tlsext_session_ticket->length = ext_len;
945 s->tlsext_session_ticket->data = s->tlsext_session_ticke
946 memcpy(s->tlsext_session_ticket->data, ext_data, ext_len
947 }
948 else
949 {
950 s->tlsext_session_ticket->length = 0;
951 s->tlsext_session_ticket->data = NULL;
952 }

954 return 1;
955 }

957 return 0;
958 }
959 #endif /* OPENSSL_NO_TLSEXT */

961 typedef struct timeout_param_st
962 {
963 SSL_CTX *ctx;
964 long time;
965 LHASH_OF(SSL_SESSION) *cache;
966 } TIMEOUT_PARAM;

968 static void timeout_doall_arg(SSL_SESSION *s, TIMEOUT_PARAM *p)
969 {
970 if ((p->time == 0) || (p->time > (s->time+s->timeout))) /* timeout */
971 {
972 /* The reason we don’t call SSL_CTX_remove_session() is to
973 * save on locking overhead */
974 (void)lh_SSL_SESSION_delete(p->cache,s);
975 SSL_SESSION_list_remove(p->ctx,s);
976 s->not_resumable=1;
977 if (p->ctx->remove_session_cb != NULL)
978 p->ctx->remove_session_cb(p->ctx,s);
979 SSL_SESSION_free(s);
980 }
981 }

983 static IMPLEMENT_LHASH_DOALL_ARG_FN(timeout, SSL_SESSION, TIMEOUT_PARAM)

985 void SSL_CTX_flush_sessions(SSL_CTX *s, long t)

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 16

986 {
987 unsigned long i;
988 TIMEOUT_PARAM tp;

990 tp.ctx=s;
991 tp.cache=s->sessions;
992 if (tp.cache == NULL) return;
993 tp.time=t;
994 CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
995 i=CHECKED_LHASH_OF(SSL_SESSION, tp.cache)->down_load;
996 CHECKED_LHASH_OF(SSL_SESSION, tp.cache)->down_load=0;
997 lh_SSL_SESSION_doall_arg(tp.cache, LHASH_DOALL_ARG_FN(timeout),
998 TIMEOUT_PARAM, &tp);
999 CHECKED_LHASH_OF(SSL_SESSION, tp.cache)->down_load=i;

1000 CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
1001 }

1003 int ssl_clear_bad_session(SSL *s)
1004 {
1005 if ((s->session != NULL) &&
1006 !(s->shutdown & SSL_SENT_SHUTDOWN) &&
1007 !(SSL_in_init(s) || SSL_in_before(s)))
1008 {
1009 SSL_CTX_remove_session(s->ctx,s->session);
1010 return(1);
1011 }
1012 else
1013 return(0);
1014 }

1016 /* locked by SSL_CTX in the calling function */
1017 static void SSL_SESSION_list_remove(SSL_CTX *ctx, SSL_SESSION *s)
1018 {
1019 if ((s->next == NULL) || (s->prev == NULL)) return;

1021 if (s->next == (SSL_SESSION *)&(ctx->session_cache_tail))
1022 { /* last element in list */
1023 if (s->prev == (SSL_SESSION *)&(ctx->session_cache_head))
1024 { /* only one element in list */
1025 ctx->session_cache_head=NULL;
1026 ctx->session_cache_tail=NULL;
1027 }
1028 else
1029 {
1030 ctx->session_cache_tail=s->prev;
1031 s->prev->next=(SSL_SESSION *)&(ctx->session_cache_tail);
1032 }
1033 }
1034 else
1035 {
1036 if (s->prev == (SSL_SESSION *)&(ctx->session_cache_head))
1037 { /* first element in list */
1038 ctx->session_cache_head=s->next;
1039 s->next->prev=(SSL_SESSION *)&(ctx->session_cache_head);
1040 }
1041 else
1042 { /* middle of list */
1043 s->next->prev=s->prev;
1044 s->prev->next=s->next;
1045 }
1046 }
1047 s->prev=s->next=NULL;
1048 }

1050 static void SSL_SESSION_list_add(SSL_CTX *ctx, SSL_SESSION *s)
1051 {

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 17

1052 if ((s->next != NULL) && (s->prev != NULL))
1053 SSL_SESSION_list_remove(ctx,s);

1055 if (ctx->session_cache_head == NULL)
1056 {
1057 ctx->session_cache_head=s;
1058 ctx->session_cache_tail=s;
1059 s->prev=(SSL_SESSION *)&(ctx->session_cache_head);
1060 s->next=(SSL_SESSION *)&(ctx->session_cache_tail);
1061 }
1062 else
1063 {
1064 s->next=ctx->session_cache_head;
1065 s->next->prev=s;
1066 s->prev=(SSL_SESSION *)&(ctx->session_cache_head);
1067 ctx->session_cache_head=s;
1068 }
1069 }

1071 void SSL_CTX_sess_set_new_cb(SSL_CTX *ctx,
1072 int (*cb)(struct ssl_st *ssl,SSL_SESSION *sess))
1073 {
1074 ctx->new_session_cb=cb;
1075 }

1077 int (*SSL_CTX_sess_get_new_cb(SSL_CTX *ctx))(SSL *ssl, SSL_SESSION *sess)
1078 {
1079 return ctx->new_session_cb;
1080 }

1082 void SSL_CTX_sess_set_remove_cb(SSL_CTX *ctx,
1083 void (*cb)(SSL_CTX *ctx,SSL_SESSION *sess))
1084 {
1085 ctx->remove_session_cb=cb;
1086 }

1088 void (*SSL_CTX_sess_get_remove_cb(SSL_CTX *ctx))(SSL_CTX * ctx,SSL_SESSION *sess
1089 {
1090 return ctx->remove_session_cb;
1091 }

1093 void SSL_CTX_sess_set_get_cb(SSL_CTX *ctx,
1094 SSL_SESSION *(*cb)(struct ssl_st *ssl,
1095 unsigned char *data,int len,int *copy))
1096 {
1097 ctx->get_session_cb=cb;
1098 }

1100 SSL_SESSION * (*SSL_CTX_sess_get_get_cb(SSL_CTX *ctx))(SSL *ssl,
1101 unsigned char *data,int len,int *copy)
1102 {
1103 return ctx->get_session_cb;
1104 }

1106 void SSL_CTX_set_info_callback(SSL_CTX *ctx,
1107 void (*cb)(const SSL *ssl,int type,int val))
1108 {
1109 ctx->info_callback=cb;
1110 }

1112 void (*SSL_CTX_get_info_callback(SSL_CTX *ctx))(const SSL *ssl,int type,int val)
1113 {
1114 return ctx->info_callback;
1115 }

1117 void SSL_CTX_set_client_cert_cb(SSL_CTX *ctx,

new/usr/src/lib/openssl/libsunw_ssl/ssl_sess.c 18

1118 int (*cb)(SSL *ssl, X509 **x509, EVP_PKEY **pkey))
1119 {
1120 ctx->client_cert_cb=cb;
1121 }

1123 int (*SSL_CTX_get_client_cert_cb(SSL_CTX *ctx))(SSL * ssl, X509 ** x509 , EVP_PK
1124 {
1125 return ctx->client_cert_cb;
1126 }

1128 #ifndef OPENSSL_NO_ENGINE
1129 int SSL_CTX_set_client_cert_engine(SSL_CTX *ctx, ENGINE *e)
1130 {
1131 if (!ENGINE_init(e))
1132 {
1133 SSLerr(SSL_F_SSL_CTX_SET_CLIENT_CERT_ENGINE, ERR_R_ENGINE_LIB);
1134 return 0;
1135 }
1136 if(!ENGINE_get_ssl_client_cert_function(e))
1137 {
1138 SSLerr(SSL_F_SSL_CTX_SET_CLIENT_CERT_ENGINE, SSL_R_NO_CLIENT_CER
1139 ENGINE_finish(e);
1140 return 0;
1141 }
1142 ctx->client_cert_engine = e;
1143 return 1;
1144 }
1145 #endif

1147 void SSL_CTX_set_cookie_generate_cb(SSL_CTX *ctx,
1148 int (*cb)(SSL *ssl, unsigned char *cookie, unsigned int *cookie_len))
1149 {
1150 ctx->app_gen_cookie_cb=cb;
1151 }

1153 void SSL_CTX_set_cookie_verify_cb(SSL_CTX *ctx,
1154 int (*cb)(SSL *ssl, unsigned char *cookie, unsigned int cookie_len))
1155 {
1156 ctx->app_verify_cookie_cb=cb;
1157 }

1159 IMPLEMENT_PEM_rw(SSL_SESSION, SSL_SESSION, PEM_STRING_SSL_SESSION, SSL_SESSION)

new/usr/src/lib/openssl/libsunw_ssl/ssl_stat.c 1

**
 24590 Fri May 30 18:32:22 2014
new/usr/src/lib/openssl/libsunw_ssl/ssl_stat.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/ssl_stat.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright 2005 Nokia. All rights reserved.
60 *
61 * The portions of the attached software ("Contribution") is developed by

new/usr/src/lib/openssl/libsunw_ssl/ssl_stat.c 2

62 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
63 * license.
64 *
65 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
66 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
67 * support (see RFC 4279) to OpenSSL.
68 *
69 * No patent licenses or other rights except those expressly stated in
70 * the OpenSSL open source license shall be deemed granted or received
71 * expressly, by implication, estoppel, or otherwise.
72 *
73 * No assurances are provided by Nokia that the Contribution does not
74 * infringe the patent or other intellectual property rights of any third
75 * party or that the license provides you with all the necessary rights
76 * to make use of the Contribution.
77 *
78 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
79 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
80 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
81 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
82 * OTHERWISE.
83 */

85 #include <stdio.h>
86 #include "ssl_locl.h"

88 const char *SSL_state_string_long(const SSL *s)
89 {
90 const char *str;

92 switch (s->state)
93 {
94 case SSL_ST_BEFORE: str="before SSL initialization"; break;
95 case SSL_ST_ACCEPT: str="before accept initialization"; break;
96 case SSL_ST_CONNECT: str="before connect initialization"; break;
97 case SSL_ST_OK: str="SSL negotiation finished successfully"; break;
98 case SSL_ST_RENEGOTIATE: str="SSL renegotiate ciphers"; break;
99 case SSL_ST_BEFORE|SSL_ST_CONNECT: str="before/connect initialization"; break;
100 case SSL_ST_OK|SSL_ST_CONNECT: str="ok/connect SSL initialization"; break;
101 case SSL_ST_BEFORE|SSL_ST_ACCEPT: str="before/accept initialization"; break;
102 case SSL_ST_OK|SSL_ST_ACCEPT: str="ok/accept SSL initialization"; break;
103 #ifndef OPENSSL_NO_SSL2
104 case SSL2_ST_CLIENT_START_ENCRYPTION: str="SSLv2 client start encryption"; break
105 case SSL2_ST_SERVER_START_ENCRYPTION: str="SSLv2 server start encryption"; break
106 case SSL2_ST_SEND_CLIENT_HELLO_A: str="SSLv2 write client hello A"; break;
107 case SSL2_ST_SEND_CLIENT_HELLO_B: str="SSLv2 write client hello B"; break;
108 case SSL2_ST_GET_SERVER_HELLO_A: str="SSLv2 read server hello A"; break;
109 case SSL2_ST_GET_SERVER_HELLO_B: str="SSLv2 read server hello B"; break;
110 case SSL2_ST_SEND_CLIENT_MASTER_KEY_A: str="SSLv2 write client master key A"; br
111 case SSL2_ST_SEND_CLIENT_MASTER_KEY_B: str="SSLv2 write client master key B"; br
112 case SSL2_ST_SEND_CLIENT_FINISHED_A: str="SSLv2 write client finished A"; break;
113 case SSL2_ST_SEND_CLIENT_FINISHED_B: str="SSLv2 write client finished B"; break;
114 case SSL2_ST_SEND_CLIENT_CERTIFICATE_A: str="SSLv2 write client certificate A";
115 case SSL2_ST_SEND_CLIENT_CERTIFICATE_B: str="SSLv2 write client certificate B";
116 case SSL2_ST_SEND_CLIENT_CERTIFICATE_C: str="SSLv2 write client certificate C";
117 case SSL2_ST_SEND_CLIENT_CERTIFICATE_D: str="SSLv2 write client certificate D";
118 case SSL2_ST_GET_SERVER_VERIFY_A: str="SSLv2 read server verify A"; break;
119 case SSL2_ST_GET_SERVER_VERIFY_B: str="SSLv2 read server verify B"; break;
120 case SSL2_ST_GET_SERVER_FINISHED_A: str="SSLv2 read server finished A"; break;
121 case SSL2_ST_GET_SERVER_FINISHED_B: str="SSLv2 read server finished B"; break;
122 case SSL2_ST_GET_CLIENT_HELLO_A: str="SSLv2 read client hello A"; break;
123 case SSL2_ST_GET_CLIENT_HELLO_B: str="SSLv2 read client hello B"; break;
124 case SSL2_ST_GET_CLIENT_HELLO_C: str="SSLv2 read client hello C"; break;
125 case SSL2_ST_SEND_SERVER_HELLO_A: str="SSLv2 write server hello A"; break;
126 case SSL2_ST_SEND_SERVER_HELLO_B: str="SSLv2 write server hello B"; break;
127 case SSL2_ST_GET_CLIENT_MASTER_KEY_A: str="SSLv2 read client master key A"; brea

new/usr/src/lib/openssl/libsunw_ssl/ssl_stat.c 3

128 case SSL2_ST_GET_CLIENT_MASTER_KEY_B: str="SSLv2 read client master key B"; brea
129 case SSL2_ST_SEND_SERVER_VERIFY_A: str="SSLv2 write server verify A"; break;
130 case SSL2_ST_SEND_SERVER_VERIFY_B: str="SSLv2 write server verify B"; break;
131 case SSL2_ST_SEND_SERVER_VERIFY_C: str="SSLv2 write server verify C"; break;
132 case SSL2_ST_GET_CLIENT_FINISHED_A: str="SSLv2 read client finished A"; break;
133 case SSL2_ST_GET_CLIENT_FINISHED_B: str="SSLv2 read client finished B"; break;
134 case SSL2_ST_SEND_SERVER_FINISHED_A: str="SSLv2 write server finished A"; break;
135 case SSL2_ST_SEND_SERVER_FINISHED_B: str="SSLv2 write server finished B"; break;
136 case SSL2_ST_SEND_REQUEST_CERTIFICATE_A: str="SSLv2 write request certificate A"
137 case SSL2_ST_SEND_REQUEST_CERTIFICATE_B: str="SSLv2 write request certificate B"
138 case SSL2_ST_SEND_REQUEST_CERTIFICATE_C: str="SSLv2 write request certificate C"
139 case SSL2_ST_SEND_REQUEST_CERTIFICATE_D: str="SSLv2 write request certificate D"
140 case SSL2_ST_X509_GET_SERVER_CERTIFICATE: str="SSLv2 X509 read server certificat
141 case SSL2_ST_X509_GET_CLIENT_CERTIFICATE: str="SSLv2 X509 read client certificat
142 #endif

144 #ifndef OPENSSL_NO_SSL3
145 /* SSLv3 additions */
146 case SSL3_ST_CW_CLNT_HELLO_A: str="SSLv3 write client hello A"; break;
147 case SSL3_ST_CW_CLNT_HELLO_B: str="SSLv3 write client hello B"; break;
148 case SSL3_ST_CR_SRVR_HELLO_A: str="SSLv3 read server hello A"; break;
149 case SSL3_ST_CR_SRVR_HELLO_B: str="SSLv3 read server hello B"; break;
150 case SSL3_ST_CR_CERT_A: str="SSLv3 read server certificate A"; break;
151 case SSL3_ST_CR_CERT_B: str="SSLv3 read server certificate B"; break;
152 case SSL3_ST_CR_KEY_EXCH_A: str="SSLv3 read server key exchange A"; break;
153 case SSL3_ST_CR_KEY_EXCH_B: str="SSLv3 read server key exchange B"; break;
154 case SSL3_ST_CR_CERT_REQ_A: str="SSLv3 read server certificate request A"; b
155 case SSL3_ST_CR_CERT_REQ_B: str="SSLv3 read server certificate request B"; b
156 case SSL3_ST_CR_SESSION_TICKET_A: str="SSLv3 read server session ticket A";break
157 case SSL3_ST_CR_SESSION_TICKET_B: str="SSLv3 read server session ticket B";break
158 case SSL3_ST_CR_SRVR_DONE_A: str="SSLv3 read server done A"; break;
159 case SSL3_ST_CR_SRVR_DONE_B: str="SSLv3 read server done B"; break;
160 case SSL3_ST_CW_CERT_A: str="SSLv3 write client certificate A"; break;
161 case SSL3_ST_CW_CERT_B: str="SSLv3 write client certificate B"; break;
162 case SSL3_ST_CW_CERT_C: str="SSLv3 write client certificate C"; break;
163 case SSL3_ST_CW_CERT_D: str="SSLv3 write client certificate D"; break;
164 case SSL3_ST_CW_KEY_EXCH_A: str="SSLv3 write client key exchange A"; break;
165 case SSL3_ST_CW_KEY_EXCH_B: str="SSLv3 write client key exchange B"; break;
166 case SSL3_ST_CW_CERT_VRFY_A: str="SSLv3 write certificate verify A"; break;
167 case SSL3_ST_CW_CERT_VRFY_B: str="SSLv3 write certificate verify B"; break;

169 case SSL3_ST_CW_CHANGE_A:
170 case SSL3_ST_SW_CHANGE_A: str="SSLv3 write change cipher spec A"; break;
171 case SSL3_ST_CW_CHANGE_B:
172 case SSL3_ST_SW_CHANGE_B: str="SSLv3 write change cipher spec B"; break;
173 case SSL3_ST_CW_FINISHED_A:
174 case SSL3_ST_SW_FINISHED_A: str="SSLv3 write finished A"; break;
175 case SSL3_ST_CW_FINISHED_B:
176 case SSL3_ST_SW_FINISHED_B: str="SSLv3 write finished B"; break;
177 case SSL3_ST_CR_CHANGE_A:
178 case SSL3_ST_SR_CHANGE_A: str="SSLv3 read change cipher spec A"; break;
179 case SSL3_ST_CR_CHANGE_B:
180 case SSL3_ST_SR_CHANGE_B: str="SSLv3 read change cipher spec B"; break;
181 case SSL3_ST_CR_FINISHED_A:
182 case SSL3_ST_SR_FINISHED_A: str="SSLv3 read finished A"; break;
183 case SSL3_ST_CR_FINISHED_B:
184 case SSL3_ST_SR_FINISHED_B: str="SSLv3 read finished B"; break;

186 case SSL3_ST_CW_FLUSH:
187 case SSL3_ST_SW_FLUSH: str="SSLv3 flush data"; break;

189 case SSL3_ST_SR_CLNT_HELLO_A: str="SSLv3 read client hello A"; break;
190 case SSL3_ST_SR_CLNT_HELLO_B: str="SSLv3 read client hello B"; break;
191 case SSL3_ST_SR_CLNT_HELLO_C: str="SSLv3 read client hello C"; break;
192 case SSL3_ST_SW_HELLO_REQ_A: str="SSLv3 write hello request A"; break;
193 case SSL3_ST_SW_HELLO_REQ_B: str="SSLv3 write hello request B"; break;

new/usr/src/lib/openssl/libsunw_ssl/ssl_stat.c 4

194 case SSL3_ST_SW_HELLO_REQ_C: str="SSLv3 write hello request C"; break;
195 case SSL3_ST_SW_SRVR_HELLO_A: str="SSLv3 write server hello A"; break;
196 case SSL3_ST_SW_SRVR_HELLO_B: str="SSLv3 write server hello B"; break;
197 case SSL3_ST_SW_CERT_A: str="SSLv3 write certificate A"; break;
198 case SSL3_ST_SW_CERT_B: str="SSLv3 write certificate B"; break;
199 case SSL3_ST_SW_KEY_EXCH_A: str="SSLv3 write key exchange A"; break;
200 case SSL3_ST_SW_KEY_EXCH_B: str="SSLv3 write key exchange B"; break;
201 case SSL3_ST_SW_CERT_REQ_A: str="SSLv3 write certificate request A"; break;
202 case SSL3_ST_SW_CERT_REQ_B: str="SSLv3 write certificate request B"; break;
203 case SSL3_ST_SW_SESSION_TICKET_A: str="SSLv3 write session ticket A"; break;
204 case SSL3_ST_SW_SESSION_TICKET_B: str="SSLv3 write session ticket B"; break;
205 case SSL3_ST_SW_SRVR_DONE_A: str="SSLv3 write server done A"; break;
206 case SSL3_ST_SW_SRVR_DONE_B: str="SSLv3 write server done B"; break;
207 case SSL3_ST_SR_CERT_A: str="SSLv3 read client certificate A"; break;
208 case SSL3_ST_SR_CERT_B: str="SSLv3 read client certificate B"; break;
209 case SSL3_ST_SR_KEY_EXCH_A: str="SSLv3 read client key exchange A"; break;
210 case SSL3_ST_SR_KEY_EXCH_B: str="SSLv3 read client key exchange B"; break;
211 case SSL3_ST_SR_CERT_VRFY_A: str="SSLv3 read certificate verify A"; break;
212 case SSL3_ST_SR_CERT_VRFY_B: str="SSLv3 read certificate verify B"; break;
213 #endif

215 #if !defined(OPENSSL_NO_SSL2) && !defined(OPENSSL_NO_SSL3)
216 /* SSLv2/v3 compatibility states */
217 /* client */
218 case SSL23_ST_CW_CLNT_HELLO_A: str="SSLv2/v3 write client hello A"; break;
219 case SSL23_ST_CW_CLNT_HELLO_B: str="SSLv2/v3 write client hello B"; break;
220 case SSL23_ST_CR_SRVR_HELLO_A: str="SSLv2/v3 read server hello A"; break;
221 case SSL23_ST_CR_SRVR_HELLO_B: str="SSLv2/v3 read server hello B"; break;
222 /* server */
223 case SSL23_ST_SR_CLNT_HELLO_A: str="SSLv2/v3 read client hello A"; break;
224 case SSL23_ST_SR_CLNT_HELLO_B: str="SSLv2/v3 read client hello B"; break;
225 #endif

227 /* DTLS */
228 case DTLS1_ST_CR_HELLO_VERIFY_REQUEST_A: str="DTLS1 read hello verify request A"
229 case DTLS1_ST_CR_HELLO_VERIFY_REQUEST_B: str="DTLS1 read hello verify request B"
230 case DTLS1_ST_SW_HELLO_VERIFY_REQUEST_A: str="DTLS1 write hello verify request A
231 case DTLS1_ST_SW_HELLO_VERIFY_REQUEST_B: str="DTLS1 write hello verify request B

233 default: str="unknown state"; break;
234 }
235 return(str);
236 }

238 const char *SSL_rstate_string_long(const SSL *s)
239 {
240 const char *str;

242 switch (s->rstate)
243 {
244 case SSL_ST_READ_HEADER: str="read header"; break;
245 case SSL_ST_READ_BODY: str="read body"; break;
246 case SSL_ST_READ_DONE: str="read done"; break;
247 default: str="unknown"; break;
248 }
249 return(str);
250 }

252 const char *SSL_state_string(const SSL *s)
253 {
254 const char *str;

256 switch (s->state)
257 {
258 case SSL_ST_BEFORE: str="PINIT "; break;
259 case SSL_ST_ACCEPT: str="AINIT "; break;

new/usr/src/lib/openssl/libsunw_ssl/ssl_stat.c 5

260 case SSL_ST_CONNECT: str="CINIT "; break;
261 case SSL_ST_OK: str="SSLOK "; break;
262 #ifndef OPENSSL_NO_SSL2
263 case SSL2_ST_CLIENT_START_ENCRYPTION: str="2CSENC"; break;
264 case SSL2_ST_SERVER_START_ENCRYPTION: str="2SSENC"; break;
265 case SSL2_ST_SEND_CLIENT_HELLO_A: str="2SCH_A"; break;
266 case SSL2_ST_SEND_CLIENT_HELLO_B: str="2SCH_B"; break;
267 case SSL2_ST_GET_SERVER_HELLO_A: str="2GSH_A"; break;
268 case SSL2_ST_GET_SERVER_HELLO_B: str="2GSH_B"; break;
269 case SSL2_ST_SEND_CLIENT_MASTER_KEY_A: str="2SCMKA"; break;
270 case SSL2_ST_SEND_CLIENT_MASTER_KEY_B: str="2SCMKB"; break;
271 case SSL2_ST_SEND_CLIENT_FINISHED_A: str="2SCF_A"; break;
272 case SSL2_ST_SEND_CLIENT_FINISHED_B: str="2SCF_B"; break;
273 case SSL2_ST_SEND_CLIENT_CERTIFICATE_A: str="2SCC_A"; break;
274 case SSL2_ST_SEND_CLIENT_CERTIFICATE_B: str="2SCC_B"; break;
275 case SSL2_ST_SEND_CLIENT_CERTIFICATE_C: str="2SCC_C"; break;
276 case SSL2_ST_SEND_CLIENT_CERTIFICATE_D: str="2SCC_D"; break;
277 case SSL2_ST_GET_SERVER_VERIFY_A: str="2GSV_A"; break;
278 case SSL2_ST_GET_SERVER_VERIFY_B: str="2GSV_B"; break;
279 case SSL2_ST_GET_SERVER_FINISHED_A: str="2GSF_A"; break;
280 case SSL2_ST_GET_SERVER_FINISHED_B: str="2GSF_B"; break;
281 case SSL2_ST_GET_CLIENT_HELLO_A: str="2GCH_A"; break;
282 case SSL2_ST_GET_CLIENT_HELLO_B: str="2GCH_B"; break;
283 case SSL2_ST_GET_CLIENT_HELLO_C: str="2GCH_C"; break;
284 case SSL2_ST_SEND_SERVER_HELLO_A: str="2SSH_A"; break;
285 case SSL2_ST_SEND_SERVER_HELLO_B: str="2SSH_B"; break;
286 case SSL2_ST_GET_CLIENT_MASTER_KEY_A: str="2GCMKA"; break;
287 case SSL2_ST_GET_CLIENT_MASTER_KEY_B: str="2GCMKA"; break;
288 case SSL2_ST_SEND_SERVER_VERIFY_A: str="2SSV_A"; break;
289 case SSL2_ST_SEND_SERVER_VERIFY_B: str="2SSV_B"; break;
290 case SSL2_ST_SEND_SERVER_VERIFY_C: str="2SSV_C"; break;
291 case SSL2_ST_GET_CLIENT_FINISHED_A: str="2GCF_A"; break;
292 case SSL2_ST_GET_CLIENT_FINISHED_B: str="2GCF_B"; break;
293 case SSL2_ST_SEND_SERVER_FINISHED_A: str="2SSF_A"; break;
294 case SSL2_ST_SEND_SERVER_FINISHED_B: str="2SSF_B"; break;
295 case SSL2_ST_SEND_REQUEST_CERTIFICATE_A: str="2SRC_A"; break;
296 case SSL2_ST_SEND_REQUEST_CERTIFICATE_B: str="2SRC_B"; break;
297 case SSL2_ST_SEND_REQUEST_CERTIFICATE_C: str="2SRC_C"; break;
298 case SSL2_ST_SEND_REQUEST_CERTIFICATE_D: str="2SRC_D"; break;
299 case SSL2_ST_X509_GET_SERVER_CERTIFICATE: str="2X9GSC"; break;
300 case SSL2_ST_X509_GET_CLIENT_CERTIFICATE: str="2X9GCC"; break;
301 #endif

303 #ifndef OPENSSL_NO_SSL3
304 /* SSLv3 additions */
305 case SSL3_ST_SW_FLUSH:
306 case SSL3_ST_CW_FLUSH: str="3FLUSH"; break;
307 case SSL3_ST_CW_CLNT_HELLO_A: str="3WCH_A"; break;
308 case SSL3_ST_CW_CLNT_HELLO_B: str="3WCH_B"; break;
309 case SSL3_ST_CR_SRVR_HELLO_A: str="3RSH_A"; break;
310 case SSL3_ST_CR_SRVR_HELLO_B: str="3RSH_B"; break;
311 case SSL3_ST_CR_CERT_A: str="3RSC_A"; break;
312 case SSL3_ST_CR_CERT_B: str="3RSC_B"; break;
313 case SSL3_ST_CR_KEY_EXCH_A: str="3RSKEA"; break;
314 case SSL3_ST_CR_KEY_EXCH_B: str="3RSKEB"; break;
315 case SSL3_ST_CR_CERT_REQ_A: str="3RCR_A"; break;
316 case SSL3_ST_CR_CERT_REQ_B: str="3RCR_B"; break;
317 case SSL3_ST_CR_SRVR_DONE_A: str="3RSD_A"; break;
318 case SSL3_ST_CR_SRVR_DONE_B: str="3RSD_B"; break;
319 case SSL3_ST_CW_CERT_A: str="3WCC_A"; break;
320 case SSL3_ST_CW_CERT_B: str="3WCC_B"; break;
321 case SSL3_ST_CW_CERT_C: str="3WCC_C"; break;
322 case SSL3_ST_CW_CERT_D: str="3WCC_D"; break;
323 case SSL3_ST_CW_KEY_EXCH_A: str="3WCKEA"; break;
324 case SSL3_ST_CW_KEY_EXCH_B: str="3WCKEB"; break;
325 case SSL3_ST_CW_CERT_VRFY_A: str="3WCV_A"; break;

new/usr/src/lib/openssl/libsunw_ssl/ssl_stat.c 6

326 case SSL3_ST_CW_CERT_VRFY_B: str="3WCV_B"; break;

328 case SSL3_ST_SW_CHANGE_A:
329 case SSL3_ST_CW_CHANGE_A: str="3WCCSA"; break;
330 case SSL3_ST_SW_CHANGE_B:
331 case SSL3_ST_CW_CHANGE_B: str="3WCCSB"; break;
332 case SSL3_ST_SW_FINISHED_A:
333 case SSL3_ST_CW_FINISHED_A: str="3WFINA"; break;
334 case SSL3_ST_SW_FINISHED_B:
335 case SSL3_ST_CW_FINISHED_B: str="3WFINB"; break;
336 case SSL3_ST_SR_CHANGE_A:
337 case SSL3_ST_CR_CHANGE_A: str="3RCCSA"; break;
338 case SSL3_ST_SR_CHANGE_B:
339 case SSL3_ST_CR_CHANGE_B: str="3RCCSB"; break;
340 case SSL3_ST_SR_FINISHED_A:
341 case SSL3_ST_CR_FINISHED_A: str="3RFINA"; break;
342 case SSL3_ST_SR_FINISHED_B:
343 case SSL3_ST_CR_FINISHED_B: str="3RFINB"; break;

345 case SSL3_ST_SW_HELLO_REQ_A: str="3WHR_A"; break;
346 case SSL3_ST_SW_HELLO_REQ_B: str="3WHR_B"; break;
347 case SSL3_ST_SW_HELLO_REQ_C: str="3WHR_C"; break;
348 case SSL3_ST_SR_CLNT_HELLO_A: str="3RCH_A"; break;
349 case SSL3_ST_SR_CLNT_HELLO_B: str="3RCH_B"; break;
350 case SSL3_ST_SR_CLNT_HELLO_C: str="3RCH_C"; break;
351 case SSL3_ST_SW_SRVR_HELLO_A: str="3WSH_A"; break;
352 case SSL3_ST_SW_SRVR_HELLO_B: str="3WSH_B"; break;
353 case SSL3_ST_SW_CERT_A: str="3WSC_A"; break;
354 case SSL3_ST_SW_CERT_B: str="3WSC_B"; break;
355 case SSL3_ST_SW_KEY_EXCH_A: str="3WSKEA"; break;
356 case SSL3_ST_SW_KEY_EXCH_B: str="3WSKEB"; break;
357 case SSL3_ST_SW_CERT_REQ_A: str="3WCR_A"; break;
358 case SSL3_ST_SW_CERT_REQ_B: str="3WCR_B"; break;
359 case SSL3_ST_SW_SRVR_DONE_A: str="3WSD_A"; break;
360 case SSL3_ST_SW_SRVR_DONE_B: str="3WSD_B"; break;
361 case SSL3_ST_SR_CERT_A: str="3RCC_A"; break;
362 case SSL3_ST_SR_CERT_B: str="3RCC_B"; break;
363 case SSL3_ST_SR_KEY_EXCH_A: str="3RCKEA"; break;
364 case SSL3_ST_SR_KEY_EXCH_B: str="3RCKEB"; break;
365 case SSL3_ST_SR_CERT_VRFY_A: str="3RCV_A"; break;
366 case SSL3_ST_SR_CERT_VRFY_B: str="3RCV_B"; break;
367 #endif

369 #if !defined(OPENSSL_NO_SSL2) && !defined(OPENSSL_NO_SSL3)
370 /* SSLv2/v3 compatibility states */
371 /* client */
372 case SSL23_ST_CW_CLNT_HELLO_A: str="23WCHA"; break;
373 case SSL23_ST_CW_CLNT_HELLO_B: str="23WCHB"; break;
374 case SSL23_ST_CR_SRVR_HELLO_A: str="23RSHA"; break;
375 case SSL23_ST_CR_SRVR_HELLO_B: str="23RSHA"; break;
376 /* server */
377 case SSL23_ST_SR_CLNT_HELLO_A: str="23RCHA"; break;
378 case SSL23_ST_SR_CLNT_HELLO_B: str="23RCHB"; break;
379 #endif
380 /* DTLS */
381 case DTLS1_ST_CR_HELLO_VERIFY_REQUEST_A: str="DRCHVA"; break;
382 case DTLS1_ST_CR_HELLO_VERIFY_REQUEST_B: str="DRCHVB"; break;
383 case DTLS1_ST_SW_HELLO_VERIFY_REQUEST_A: str="DWCHVA"; break;
384 case DTLS1_ST_SW_HELLO_VERIFY_REQUEST_B: str="DWCHVB"; break;

386 default: str="UNKWN "; break;
387 }
388 return(str);
389 }

391 const char *SSL_alert_type_string_long(int value)

new/usr/src/lib/openssl/libsunw_ssl/ssl_stat.c 7

392 {
393 value>>=8;
394 if (value == SSL3_AL_WARNING)
395 return("warning");
396 else if (value == SSL3_AL_FATAL)
397 return("fatal");
398 else
399 return("unknown");
400 }

402 const char *SSL_alert_type_string(int value)
403 {
404 value>>=8;
405 if (value == SSL3_AL_WARNING)
406 return("W");
407 else if (value == SSL3_AL_FATAL)
408 return("F");
409 else
410 return("U");
411 }

413 const char *SSL_alert_desc_string(int value)
414 {
415 const char *str;

417 switch (value & 0xff)
418 {
419 case SSL3_AD_CLOSE_NOTIFY: str="CN"; break;
420 case SSL3_AD_UNEXPECTED_MESSAGE: str="UM"; break;
421 case SSL3_AD_BAD_RECORD_MAC: str="BM"; break;
422 case SSL3_AD_DECOMPRESSION_FAILURE: str="DF"; break;
423 case SSL3_AD_HANDSHAKE_FAILURE: str="HF"; break;
424 case SSL3_AD_NO_CERTIFICATE: str="NC"; break;
425 case SSL3_AD_BAD_CERTIFICATE: str="BC"; break;
426 case SSL3_AD_UNSUPPORTED_CERTIFICATE: str="UC"; break;
427 case SSL3_AD_CERTIFICATE_REVOKED: str="CR"; break;
428 case SSL3_AD_CERTIFICATE_EXPIRED: str="CE"; break;
429 case SSL3_AD_CERTIFICATE_UNKNOWN: str="CU"; break;
430 case SSL3_AD_ILLEGAL_PARAMETER: str="IP"; break;
431 case TLS1_AD_DECRYPTION_FAILED: str="DC"; break;
432 case TLS1_AD_RECORD_OVERFLOW: str="RO"; break;
433 case TLS1_AD_UNKNOWN_CA: str="CA"; break;
434 case TLS1_AD_ACCESS_DENIED: str="AD"; break;
435 case TLS1_AD_DECODE_ERROR: str="DE"; break;
436 case TLS1_AD_DECRYPT_ERROR: str="CY"; break;
437 case TLS1_AD_EXPORT_RESTRICTION: str="ER"; break;
438 case TLS1_AD_PROTOCOL_VERSION: str="PV"; break;
439 case TLS1_AD_INSUFFICIENT_SECURITY: str="IS"; break;
440 case TLS1_AD_INTERNAL_ERROR: str="IE"; break;
441 case TLS1_AD_USER_CANCELLED: str="US"; break;
442 case TLS1_AD_NO_RENEGOTIATION: str="NR"; break;
443 case TLS1_AD_UNSUPPORTED_EXTENSION: str="UE"; break;
444 case TLS1_AD_CERTIFICATE_UNOBTAINABLE: str="CO"; break;
445 case TLS1_AD_UNRECOGNIZED_NAME: str="UN"; break;
446 case TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE: str="BR"; break;
447 case TLS1_AD_BAD_CERTIFICATE_HASH_VALUE: str="BH"; break;
448 case TLS1_AD_UNKNOWN_PSK_IDENTITY: str="UP"; break;
449 default: str="UK"; break;
450 }
451 return(str);
452 }

454 const char *SSL_alert_desc_string_long(int value)
455 {
456 const char *str;

new/usr/src/lib/openssl/libsunw_ssl/ssl_stat.c 8

458 switch (value & 0xff)
459 {
460 case SSL3_AD_CLOSE_NOTIFY:
461 str="close notify";
462 break;
463 case SSL3_AD_UNEXPECTED_MESSAGE:
464 str="unexpected_message";
465 break;
466 case SSL3_AD_BAD_RECORD_MAC:
467 str="bad record mac";
468 break;
469 case SSL3_AD_DECOMPRESSION_FAILURE:
470 str="decompression failure";
471 break;
472 case SSL3_AD_HANDSHAKE_FAILURE:
473 str="handshake failure";
474 break;
475 case SSL3_AD_NO_CERTIFICATE:
476 str="no certificate";
477 break;
478 case SSL3_AD_BAD_CERTIFICATE:
479 str="bad certificate";
480 break;
481 case SSL3_AD_UNSUPPORTED_CERTIFICATE:
482 str="unsupported certificate";
483 break;
484 case SSL3_AD_CERTIFICATE_REVOKED:
485 str="certificate revoked";
486 break;
487 case SSL3_AD_CERTIFICATE_EXPIRED:
488 str="certificate expired";
489 break;
490 case SSL3_AD_CERTIFICATE_UNKNOWN:
491 str="certificate unknown";
492 break;
493 case SSL3_AD_ILLEGAL_PARAMETER:
494 str="illegal parameter";
495 break;
496 case TLS1_AD_DECRYPTION_FAILED:
497 str="decryption failed";
498 break;
499 case TLS1_AD_RECORD_OVERFLOW:
500 str="record overflow";
501 break;
502 case TLS1_AD_UNKNOWN_CA:
503 str="unknown CA";
504 break;
505 case TLS1_AD_ACCESS_DENIED:
506 str="access denied";
507 break;
508 case TLS1_AD_DECODE_ERROR:
509 str="decode error";
510 break;
511 case TLS1_AD_DECRYPT_ERROR:
512 str="decrypt error";
513 break;
514 case TLS1_AD_EXPORT_RESTRICTION:
515 str="export restriction";
516 break;
517 case TLS1_AD_PROTOCOL_VERSION:
518 str="protocol version";
519 break;
520 case TLS1_AD_INSUFFICIENT_SECURITY:
521 str="insufficient security";
522 break;
523 case TLS1_AD_INTERNAL_ERROR:

new/usr/src/lib/openssl/libsunw_ssl/ssl_stat.c 9

524 str="internal error";
525 break;
526 case TLS1_AD_USER_CANCELLED:
527 str="user canceled";
528 break;
529 case TLS1_AD_NO_RENEGOTIATION:
530 str="no renegotiation";
531 break;
532 case TLS1_AD_UNSUPPORTED_EXTENSION:
533 str="unsupported extension";
534 break;
535 case TLS1_AD_CERTIFICATE_UNOBTAINABLE:
536 str="certificate unobtainable";
537 break;
538 case TLS1_AD_UNRECOGNIZED_NAME:
539 str="unrecognized name";
540 break;
541 case TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
542 str="bad certificate status response";
543 break;
544 case TLS1_AD_BAD_CERTIFICATE_HASH_VALUE:
545 str="bad certificate hash value";
546 break;
547 case TLS1_AD_UNKNOWN_PSK_IDENTITY:
548 str="unknown PSK identity";
549 break;
550 default: str="unknown"; break;
551 }
552 return(str);
553 }

555 const char *SSL_rstate_string(const SSL *s)
556 {
557 const char *str;

559 switch (s->rstate)
560 {
561 case SSL_ST_READ_HEADER:str="RH"; break;
562 case SSL_ST_READ_BODY: str="RB"; break;
563 case SSL_ST_READ_DONE: str="RD"; break;
564 default: str="unknown"; break;
565 }
566 return(str);
567 }

new/usr/src/lib/openssl/libsunw_ssl/ssl_txt.c 1

**
 8704 Fri May 30 18:32:23 2014
new/usr/src/lib/openssl/libsunw_ssl/ssl_txt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/ssl_txt.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright 2005 Nokia. All rights reserved.
60 *
61 * The portions of the attached software ("Contribution") is developed by

new/usr/src/lib/openssl/libsunw_ssl/ssl_txt.c 2

62 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
63 * license.
64 *
65 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
66 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
67 * support (see RFC 4279) to OpenSSL.
68 *
69 * No patent licenses or other rights except those expressly stated in
70 * the OpenSSL open source license shall be deemed granted or received
71 * expressly, by implication, estoppel, or otherwise.
72 *
73 * No assurances are provided by Nokia that the Contribution does not
74 * infringe the patent or other intellectual property rights of any third
75 * party or that the license provides you with all the necessary rights
76 * to make use of the Contribution.
77 *
78 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
79 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
80 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
81 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
82 * OTHERWISE.
83 */

85 #include <stdio.h>
86 #include <openssl/buffer.h>
87 #include "ssl_locl.h"

89 #ifndef OPENSSL_NO_FP_API
90 int SSL_SESSION_print_fp(FILE *fp, const SSL_SESSION *x)
91 {
92 BIO *b;
93 int ret;

95 if ((b=BIO_new(BIO_s_file_internal())) == NULL)
96 {
97 SSLerr(SSL_F_SSL_SESSION_PRINT_FP,ERR_R_BUF_LIB);
98 return(0);
99 }
100 BIO_set_fp(b,fp,BIO_NOCLOSE);
101 ret=SSL_SESSION_print(b,x);
102 BIO_free(b);
103 return(ret);
104 }
105 #endif

107 int SSL_SESSION_print(BIO *bp, const SSL_SESSION *x)
108 {
109 unsigned int i;
110 const char *s;

112 if (x == NULL) goto err;
113 if (BIO_puts(bp,"SSL-Session:\n") <= 0) goto err;
114 if (x->ssl_version == SSL2_VERSION)
115 s="SSLv2";
116 else if (x->ssl_version == SSL3_VERSION)
117 s="SSLv3";
118 else if (x->ssl_version == TLS1_2_VERSION)
119 s="TLSv1.2";
120 else if (x->ssl_version == TLS1_1_VERSION)
121 s="TLSv1.1";
122 else if (x->ssl_version == TLS1_VERSION)
123 s="TLSv1";
124 else if (x->ssl_version == DTLS1_VERSION)
125 s="DTLSv1";
126 else if (x->ssl_version == DTLS1_BAD_VER)
127 s="DTLSv1-bad";

new/usr/src/lib/openssl/libsunw_ssl/ssl_txt.c 3

128 else
129 s="unknown";
130 if (BIO_printf(bp," Protocol : %s\n",s) <= 0) goto err;

132 if (x->cipher == NULL)
133 {
134 if (((x->cipher_id) & 0xff000000) == 0x02000000)
135 {
136 if (BIO_printf(bp," Cipher : %06lX\n",x->cipher_id
137 goto err;
138 }
139 else
140 {
141 if (BIO_printf(bp," Cipher : %04lX\n",x->cipher_id
142 goto err;
143 }
144 }
145 else
146 {
147 if (BIO_printf(bp," Cipher : %s\n",((x->cipher == NULL)?"u
148 goto err;
149 }
150 if (BIO_puts(bp," Session-ID: ") <= 0) goto err;
151 for (i=0; i<x->session_id_length; i++)
152 {
153 if (BIO_printf(bp,"%02X",x->session_id[i]) <= 0) goto err;
154 }
155 if (BIO_puts(bp,"\n Session-ID-ctx: ") <= 0) goto err;
156 for (i=0; i<x->sid_ctx_length; i++)
157 {
158 if (BIO_printf(bp,"%02X",x->sid_ctx[i]) <= 0)
159 goto err;
160 }
161 if (BIO_puts(bp,"\n Master-Key: ") <= 0) goto err;
162 for (i=0; i<(unsigned int)x->master_key_length; i++)
163 {
164 if (BIO_printf(bp,"%02X",x->master_key[i]) <= 0) goto err;
165 }
166 if (BIO_puts(bp,"\n Key-Arg : ") <= 0) goto err;
167 if (x->key_arg_length == 0)
168 {
169 if (BIO_puts(bp,"None") <= 0) goto err;
170 }
171 else
172 for (i=0; i<x->key_arg_length; i++)
173 {
174 if (BIO_printf(bp,"%02X",x->key_arg[i]) <= 0) goto err;
175 }
176 #ifndef OPENSSL_NO_KRB5
177 if (BIO_puts(bp,"\n Krb5 Principal: ") <= 0) goto err;
178 if (x->krb5_client_princ_len == 0)
179 {
180 if (BIO_puts(bp,"None") <= 0) goto err;
181 }
182 else
183 for (i=0; i<x->krb5_client_princ_len; i++)
184 {
185 if (BIO_printf(bp,"%02X",x->krb5_client_princ[i]) <= 0)
186 }
187 #endif /* OPENSSL_NO_KRB5 */
188 #ifndef OPENSSL_NO_PSK
189 if (BIO_puts(bp,"\n PSK identity: ") <= 0) goto err;
190 if (BIO_printf(bp, "%s", x->psk_identity ? x->psk_identity : "None") <=
191 if (BIO_puts(bp,"\n PSK identity hint: ") <= 0) goto err;
192 if (BIO_printf(bp, "%s", x->psk_identity_hint ? x->psk_identity_hint : "
193 #endif

new/usr/src/lib/openssl/libsunw_ssl/ssl_txt.c 4

194 #ifndef OPENSSL_NO_SRP
195 if (BIO_puts(bp,"\n SRP username: ") <= 0) goto err;
196 if (BIO_printf(bp, "%s", x->srp_username ? x->srp_username : "None") <=
197 #endif
198 #ifndef OPENSSL_NO_TLSEXT
199 if (x->tlsext_tick_lifetime_hint)
200 {
201 if (BIO_printf(bp,
202 "\n TLS session ticket lifetime hint: %ld (seconds)",
203 x->tlsext_tick_lifetime_hint) <=0)
204 goto err;
205 }
206 if (x->tlsext_tick)
207 {
208 if (BIO_puts(bp, "\n TLS session ticket:\n") <= 0) goto err;
209 if (BIO_dump_indent(bp, (char *)x->tlsext_tick, x->tlsext_tickle
210 goto err;
211 }
212 #endif

214 #ifndef OPENSSL_NO_COMP
215 if (x->compress_meth != 0)
216 {
217 SSL_COMP *comp = NULL;

219 ssl_cipher_get_evp(x,NULL,NULL,NULL,NULL,&comp);
220 if (comp == NULL)
221 {
222 if (BIO_printf(bp,"\n Compression: %d",x->compress_me
223 }
224 else
225 {
226 if (BIO_printf(bp,"\n Compression: %d (%s)", comp->id
227 }
228 }
229 #endif
230 if (x->time != 0L)
231 {
232 if (BIO_printf(bp, "\n Start Time: %ld",x->time) <= 0) goto e
233 }
234 if (x->timeout != 0L)
235 {
236 if (BIO_printf(bp, "\n Timeout : %ld (sec)",x->timeout) <=
237 }
238 if (BIO_puts(bp,"\n") <= 0) goto err;

240 if (BIO_puts(bp, " Verify return code: ") <= 0) goto err;
241 if (BIO_printf(bp, "%ld (%s)\n", x->verify_result,
242 X509_verify_cert_error_string(x->verify_result)) <= 0) goto err;
243
244 return(1);
245 err:
246 return(0);
247 }

new/usr/src/lib/openssl/libsunw_ssl/t1_clnt.c 1

**
 4059 Fri May 30 18:32:23 2014
new/usr/src/lib/openssl/libsunw_ssl/t1_clnt.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/t1_clnt.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "ssl_locl.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_ssl/t1_clnt.c 2

62 #include <openssl/rand.h>
63 #include <openssl/objects.h>
64 #include <openssl/evp.h>

66 static const SSL_METHOD *tls1_get_client_method(int ver);
67 static const SSL_METHOD *tls1_get_client_method(int ver)
68 {
69 if (ver == TLS1_2_VERSION)
70 return TLSv1_2_client_method();
71 if (ver == TLS1_1_VERSION)
72 return TLSv1_1_client_method();
73 if (ver == TLS1_VERSION)
74 return TLSv1_client_method();
75 return NULL;
76 }

78 IMPLEMENT_tls_meth_func(TLS1_2_VERSION, TLSv1_2_client_method,
79 ssl_undefined_function,
80 ssl3_connect,
81 tls1_get_client_method)

83 IMPLEMENT_tls_meth_func(TLS1_1_VERSION, TLSv1_1_client_method,
84 ssl_undefined_function,
85 ssl3_connect,
86 tls1_get_client_method)

88 IMPLEMENT_tls_meth_func(TLS1_VERSION, TLSv1_client_method,
89 ssl_undefined_function,
90 ssl3_connect,
91 tls1_get_client_method)

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 1

**
 37438 Fri May 30 18:32:23 2014
new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/t1_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 /* ==
112 * Copyright 2005 Nokia. All rights reserved.
113 *
114 * The portions of the attached software ("Contribution") is developed by
115 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
116 * license.
117 *
118 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
119 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
120 * support (see RFC 4279) to OpenSSL.
121 *
122 * No patent licenses or other rights except those expressly stated in
123 * the OpenSSL open source license shall be deemed granted or received
124 * expressly, by implication, estoppel, or otherwise.
125 *
126 * No assurances are provided by Nokia that the Contribution does not
127 * infringe the patent or other intellectual property rights of any third

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 3

128 * party or that the license provides you with all the necessary rights
129 * to make use of the Contribution.
130 *
131 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
132 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
133 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
134 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
135 * OTHERWISE.
136 */

138 #include <stdio.h>
139 #include "ssl_locl.h"
140 #ifndef OPENSSL_NO_COMP
141 #include <openssl/comp.h>
142 #endif
143 #include <openssl/evp.h>
144 #include <openssl/hmac.h>
145 #include <openssl/md5.h>
146 #include <openssl/rand.h>
147 #ifdef KSSL_DEBUG
148 #include <openssl/des.h>
149 #endif

151 /* seed1 through seed5 are virtually concatenated */
152 static int tls1_P_hash(const EVP_MD *md, const unsigned char *sec,
153 int sec_len,
154 const void *seed1, int seed1_len,
155 const void *seed2, int seed2_len,
156 const void *seed3, int seed3_len,
157 const void *seed4, int seed4_len,
158 const void *seed5, int seed5_len,
159 unsigned char *out, int olen)
160 {
161 int chunk;
162 size_t j;
163 EVP_MD_CTX ctx, ctx_tmp;
164 EVP_PKEY *mac_key;
165 unsigned char A1[EVP_MAX_MD_SIZE];
166 size_t A1_len;
167 int ret = 0;
168
169 chunk=EVP_MD_size(md);
170 OPENSSL_assert(chunk >= 0);

172 EVP_MD_CTX_init(&ctx);
173 EVP_MD_CTX_init(&ctx_tmp);
174 EVP_MD_CTX_set_flags(&ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
175 EVP_MD_CTX_set_flags(&ctx_tmp, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
176 mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, sec, sec_len);
177 if (!mac_key)
178 goto err;
179 if (!EVP_DigestSignInit(&ctx,NULL,md, NULL, mac_key))
180 goto err;
181 if (!EVP_DigestSignInit(&ctx_tmp,NULL,md, NULL, mac_key))
182 goto err;
183 if (seed1 && !EVP_DigestSignUpdate(&ctx,seed1,seed1_len))
184 goto err;
185 if (seed2 && !EVP_DigestSignUpdate(&ctx,seed2,seed2_len))
186 goto err;
187 if (seed3 && !EVP_DigestSignUpdate(&ctx,seed3,seed3_len))
188 goto err;
189 if (seed4 && !EVP_DigestSignUpdate(&ctx,seed4,seed4_len))
190 goto err;
191 if (seed5 && !EVP_DigestSignUpdate(&ctx,seed5,seed5_len))
192 goto err;
193 if (!EVP_DigestSignFinal(&ctx,A1,&A1_len))

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 4

194 goto err;

196 for (;;)
197 {
198 /* Reinit mac contexts */
199 if (!EVP_DigestSignInit(&ctx,NULL,md, NULL, mac_key))
200 goto err;
201 if (!EVP_DigestSignInit(&ctx_tmp,NULL,md, NULL, mac_key))
202 goto err;
203 if (!EVP_DigestSignUpdate(&ctx,A1,A1_len))
204 goto err;
205 if (!EVP_DigestSignUpdate(&ctx_tmp,A1,A1_len))
206 goto err;
207 if (seed1 && !EVP_DigestSignUpdate(&ctx,seed1,seed1_len))
208 goto err;
209 if (seed2 && !EVP_DigestSignUpdate(&ctx,seed2,seed2_len))
210 goto err;
211 if (seed3 && !EVP_DigestSignUpdate(&ctx,seed3,seed3_len))
212 goto err;
213 if (seed4 && !EVP_DigestSignUpdate(&ctx,seed4,seed4_len))
214 goto err;
215 if (seed5 && !EVP_DigestSignUpdate(&ctx,seed5,seed5_len))
216 goto err;

218 if (olen > chunk)
219 {
220 if (!EVP_DigestSignFinal(&ctx,out,&j))
221 goto err;
222 out+=j;
223 olen-=j;
224 /* calc the next A1 value */
225 if (!EVP_DigestSignFinal(&ctx_tmp,A1,&A1_len))
226 goto err;
227 }
228 else /* last one */
229 {
230 if (!EVP_DigestSignFinal(&ctx,A1,&A1_len))
231 goto err;
232 memcpy(out,A1,olen);
233 break;
234 }
235 }
236 ret = 1;
237 err:
238 EVP_PKEY_free(mac_key);
239 EVP_MD_CTX_cleanup(&ctx);
240 EVP_MD_CTX_cleanup(&ctx_tmp);
241 OPENSSL_cleanse(A1,sizeof(A1));
242 return ret;
243 }

245 /* seed1 through seed5 are virtually concatenated */
246 static int tls1_PRF(long digest_mask,
247 const void *seed1, int seed1_len,
248 const void *seed2, int seed2_len,
249 const void *seed3, int seed3_len,
250 const void *seed4, int seed4_len,
251 const void *seed5, int seed5_len,
252 const unsigned char *sec, int slen,
253 unsigned char *out1,
254 unsigned char *out2, int olen)
255 {
256 int len,i,idx,count;
257 const unsigned char *S1;
258 long m;
259 const EVP_MD *md;

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 5

260 int ret = 0;

262 /* Count number of digests and partition sec evenly */
263 count=0;
264 for (idx=0;ssl_get_handshake_digest(idx,&m,&md);idx++) {
265 if ((m<<TLS1_PRF_DGST_SHIFT) & digest_mask) count++;
266 }
267 len=slen/count;
268 if (count == 1)
269 slen = 0;
270 S1=sec;
271 memset(out1,0,olen);
272 for (idx=0;ssl_get_handshake_digest(idx,&m,&md);idx++) {
273 if ((m<<TLS1_PRF_DGST_SHIFT) & digest_mask) {
274 if (!md) {
275 SSLerr(SSL_F_TLS1_PRF,
276 SSL_R_UNSUPPORTED_DIGEST_TYPE);
277 goto err;
278 }
279 if (!tls1_P_hash(md ,S1,len+(slen&1),
280 seed1,seed1_len,seed2,seed2_len,seed3,se
281 out2,olen))
282 goto err;
283 S1+=len;
284 for (i=0; i<olen; i++)
285 {
286 out1[i]^=out2[i];
287 }
288 }
289 }
290 ret = 1;
291 err:
292 return ret;
293 }
294 static int tls1_generate_key_block(SSL *s, unsigned char *km,
295 unsigned char *tmp, int num)
296 {
297 int ret;
298 ret = tls1_PRF(ssl_get_algorithm2(s),
299 TLS_MD_KEY_EXPANSION_CONST,TLS_MD_KEY_EXPANSION_CONST_SIZE,
300 s->s3->server_random,SSL3_RANDOM_SIZE,
301 s->s3->client_random,SSL3_RANDOM_SIZE,
302 NULL,0,NULL,0,
303 s->session->master_key,s->session->master_key_length,
304 km,tmp,num);
305 #ifdef KSSL_DEBUG
306 printf("tls1_generate_key_block() ==> %d byte master_key =\n\t",
307 s->session->master_key_length);
308 {
309 int i;
310 for (i=0; i < s->session->master_key_length; i++)
311 {
312 printf("%02X", s->session->master_key[i]);
313 }
314 printf("\n"); }
315 #endif /* KSSL_DEBUG */
316 return ret;
317 }

319 int tls1_change_cipher_state(SSL *s, int which)
320 {
321 static const unsigned char empty[]="";
322 unsigned char *p,*mac_secret;
323 unsigned char *exp_label;
324 unsigned char tmp1[EVP_MAX_KEY_LENGTH];
325 unsigned char tmp2[EVP_MAX_KEY_LENGTH];

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 6

326 unsigned char iv1[EVP_MAX_IV_LENGTH*2];
327 unsigned char iv2[EVP_MAX_IV_LENGTH*2];
328 unsigned char *ms,*key,*iv;
329 int client_write;
330 EVP_CIPHER_CTX *dd;
331 const EVP_CIPHER *c;
332 #ifndef OPENSSL_NO_COMP
333 const SSL_COMP *comp;
334 #endif
335 const EVP_MD *m;
336 int mac_type;
337 int *mac_secret_size;
338 EVP_MD_CTX *mac_ctx;
339 EVP_PKEY *mac_key;
340 int is_export,n,i,j,k,exp_label_len,cl;
341 int reuse_dd = 0;

343 is_export=SSL_C_IS_EXPORT(s->s3->tmp.new_cipher);
344 c=s->s3->tmp.new_sym_enc;
345 m=s->s3->tmp.new_hash;
346 mac_type = s->s3->tmp.new_mac_pkey_type;
347 #ifndef OPENSSL_NO_COMP
348 comp=s->s3->tmp.new_compression;
349 #endif

351 #ifdef KSSL_DEBUG
352 printf("tls1_change_cipher_state(which= %d) w/\n", which);
353 printf("\talg= %ld/%ld, comp= %p\n",
354 s->s3->tmp.new_cipher->algorithm_mkey,
355 s->s3->tmp.new_cipher->algorithm_auth,
356 comp);
357 printf("\tevp_cipher == %p ==? &d_cbc_ede_cipher3\n", c);
358 printf("\tevp_cipher: nid, blksz= %d, %d, keylen=%d, ivlen=%d\n",
359 c->nid,c->block_size,c->key_len,c->iv_len);
360 printf("\tkey_block: len= %d, data= ", s->s3->tmp.key_block_length);
361 {
362 int i;
363 for (i=0; i<s->s3->tmp.key_block_length; i++)
364 printf("%02x", s->s3->tmp.key_block[i]); printf("\n");
365 }
366 #endif /* KSSL_DEBUG */

368 if (which & SSL3_CC_READ)
369 {
370 if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
371 s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM;
372 else
373 s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM;

375 if (s->enc_read_ctx != NULL)
376 reuse_dd = 1;
377 else if ((s->enc_read_ctx=OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))
378 goto err;
379 else
380 /* make sure it’s intialized in case we exit later with
381 EVP_CIPHER_CTX_init(s->enc_read_ctx);
382 dd= s->enc_read_ctx;
383 mac_ctx=ssl_replace_hash(&s->read_hash,NULL);
384 #ifndef OPENSSL_NO_COMP
385 if (s->expand != NULL)
386 {
387 COMP_CTX_free(s->expand);
388 s->expand=NULL;
389 }
390 if (comp != NULL)
391 {

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 7

392 s->expand=COMP_CTX_new(comp->method);
393 if (s->expand == NULL)
394 {
395 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,SSL_R_COMP
396 goto err2;
397 }
398 if (s->s3->rrec.comp == NULL)
399 s->s3->rrec.comp=(unsigned char *)
400 OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LEN
401 if (s->s3->rrec.comp == NULL)
402 goto err;
403 }
404 #endif
405 /* this is done by dtls1_reset_seq_numbers for DTLS1_VERSION */
406 if (s->version != DTLS1_VERSION)
407 memset(&(s->s3->read_sequence[0]),0,8);
408 mac_secret= &(s->s3->read_mac_secret[0]);
409 mac_secret_size=&(s->s3->read_mac_secret_size);
410 }
411 else
412 {
413 if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
414 s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM;
415 else
416 s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM;
417 if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s))
418 reuse_dd = 1;
419 else if ((s->enc_write_ctx=EVP_CIPHER_CTX_new()) == NULL)
420 goto err;
421 dd= s->enc_write_ctx;
422 if (SSL_IS_DTLS(s))
423 {
424 mac_ctx = EVP_MD_CTX_create();
425 if (!mac_ctx)
426 goto err;
427 s->write_hash = mac_ctx;
428 }
429 else
430 mac_ctx = ssl_replace_hash(&s->write_hash,NULL);
431 #ifndef OPENSSL_NO_COMP
432 if (s->compress != NULL)
433 {
434 COMP_CTX_free(s->compress);
435 s->compress=NULL;
436 }
437 if (comp != NULL)
438 {
439 s->compress=COMP_CTX_new(comp->method);
440 if (s->compress == NULL)
441 {
442 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,SSL_R_COMP
443 goto err2;
444 }
445 }
446 #endif
447 /* this is done by dtls1_reset_seq_numbers for DTLS1_VERSION */
448 if (s->version != DTLS1_VERSION)
449 memset(&(s->s3->write_sequence[0]),0,8);
450 mac_secret= &(s->s3->write_mac_secret[0]);
451 mac_secret_size = &(s->s3->write_mac_secret_size);
452 }

454 if (reuse_dd)
455 EVP_CIPHER_CTX_cleanup(dd);

457 p=s->s3->tmp.key_block;

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 8

458 i=*mac_secret_size=s->s3->tmp.new_mac_secret_size;

460 cl=EVP_CIPHER_key_length(c);
461 j=is_export ? (cl < SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher) ?
462 cl : SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher)) : cl;
463 /* Was j=(exp)?5:EVP_CIPHER_key_length(c); */
464 /* If GCM mode only part of IV comes from PRF */
465 if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE)
466 k = EVP_GCM_TLS_FIXED_IV_LEN;
467 else
468 k=EVP_CIPHER_iv_length(c);
469 if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
470 (which == SSL3_CHANGE_CIPHER_SERVER_READ))
471 {
472 ms= &(p[0]); n=i+i;
473 key= &(p[n]); n+=j+j;
474 iv= &(p[n]); n+=k+k;
475 exp_label=(unsigned char *)TLS_MD_CLIENT_WRITE_KEY_CONST;
476 exp_label_len=TLS_MD_CLIENT_WRITE_KEY_CONST_SIZE;
477 client_write=1;
478 }
479 else
480 {
481 n=i;
482 ms= &(p[n]); n+=i+j;
483 key= &(p[n]); n+=j+k;
484 iv= &(p[n]); n+=k;
485 exp_label=(unsigned char *)TLS_MD_SERVER_WRITE_KEY_CONST;
486 exp_label_len=TLS_MD_SERVER_WRITE_KEY_CONST_SIZE;
487 client_write=0;
488 }

490 if (n > s->s3->tmp.key_block_length)
491 {
492 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,ERR_R_INTERNAL_ERROR);
493 goto err2;
494 }

496 memcpy(mac_secret,ms,i);

498 if (!(EVP_CIPHER_flags(c)&EVP_CIPH_FLAG_AEAD_CIPHER))
499 {
500 mac_key = EVP_PKEY_new_mac_key(mac_type, NULL,
501 mac_secret,*mac_secret_size);
502 EVP_DigestSignInit(mac_ctx,NULL,m,NULL,mac_key);
503 EVP_PKEY_free(mac_key);
504 }
505 #ifdef TLS_DEBUG
506 printf("which = %04X\nmac key=",which);
507 { int z; for (z=0; z<i; z++) printf("%02X%c",ms[z],((z+1)%16)?’ ’:’\n’); }
508 #endif
509 if (is_export)
510 {
511 /* In here I set both the read and write key/iv to the
512 * same value since only the correct one will be used :-).
513 */
514 if (!tls1_PRF(ssl_get_algorithm2(s),
515 exp_label,exp_label_len,
516 s->s3->client_random,SSL3_RANDOM_SIZE,
517 s->s3->server_random,SSL3_RANDOM_SIZE,
518 NULL,0,NULL,0,
519 key,j,tmp1,tmp2,EVP_CIPHER_key_length(c)))
520 goto err2;
521 key=tmp1;

523 if (k > 0)

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 9

524 {
525 if (!tls1_PRF(ssl_get_algorithm2(s),
526 TLS_MD_IV_BLOCK_CONST,TLS_MD_IV_BLOCK_CO
527 s->s3->client_random,SSL3_RANDOM_SIZE,
528 s->s3->server_random,SSL3_RANDOM_SIZE,
529 NULL,0,NULL,0,
530 empty,0,iv1,iv2,k*2))
531 goto err2;
532 if (client_write)
533 iv=iv1;
534 else
535 iv= &(iv1[k]);
536 }
537 }

539 s->session->key_arg_length=0;
540 #ifdef KSSL_DEBUG
541 {
542 int i;
543 printf("EVP_CipherInit_ex(dd,c,key=,iv=,which)\n");
544 printf("\tkey= "); for (i=0; i<c->key_len; i++) printf("%02x", key[i]);
545 printf("\n");
546 printf("\t iv= "); for (i=0; i<c->iv_len; i++) printf("%02x", iv[i]);
547 printf("\n");
548 }
549 #endif /* KSSL_DEBUG */

551 if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE)
552 {
553 EVP_CipherInit_ex(dd,c,NULL,key,NULL,(which & SSL3_CC_WRITE));
554 EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_GCM_SET_IV_FIXED, k, iv);
555 }
556 else
557 EVP_CipherInit_ex(dd,c,NULL,key,iv,(which & SSL3_CC_WRITE));

559 /* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */
560 if ((EVP_CIPHER_flags(c)&EVP_CIPH_FLAG_AEAD_CIPHER) && *mac_secret_size)
561 EVP_CIPHER_CTX_ctrl(dd,EVP_CTRL_AEAD_SET_MAC_KEY,
562 *mac_secret_size,mac_secret);

564 #ifdef TLS_DEBUG
565 printf("which = %04X\nkey=",which);
566 { int z; for (z=0; z<EVP_CIPHER_key_length(c); z++) printf("%02X%c",key[z],((z+1
567 printf("\niv=");
568 { int z; for (z=0; z<k; z++) printf("%02X%c",iv[z],((z+1)%16)?’ ’:’\n’); }
569 printf("\n");
570 #endif

572 OPENSSL_cleanse(tmp1,sizeof(tmp1));
573 OPENSSL_cleanse(tmp2,sizeof(tmp1));
574 OPENSSL_cleanse(iv1,sizeof(iv1));
575 OPENSSL_cleanse(iv2,sizeof(iv2));
576 return(1);
577 err:
578 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,ERR_R_MALLOC_FAILURE);
579 err2:
580 return(0);
581 }

583 int tls1_setup_key_block(SSL *s)
584 {
585 unsigned char *p1,*p2=NULL;
586 const EVP_CIPHER *c;
587 const EVP_MD *hash;
588 int num;
589 SSL_COMP *comp;

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 10

590 int mac_type= NID_undef,mac_secret_size=0;
591 int ret=0;

593 #ifdef KSSL_DEBUG
594 printf ("tls1_setup_key_block()\n");
595 #endif /* KSSL_DEBUG */

597 if (s->s3->tmp.key_block_length != 0)
598 return(1);

600 if (!ssl_cipher_get_evp(s->session,&c,&hash,&mac_type,&mac_secret_size,&
601 {
602 SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK,SSL_R_CIPHER_OR_HASH_UNAVAILAB
603 return(0);
604 }

606 s->s3->tmp.new_sym_enc=c;
607 s->s3->tmp.new_hash=hash;
608 s->s3->tmp.new_mac_pkey_type = mac_type;
609 s->s3->tmp.new_mac_secret_size = mac_secret_size;
610 num=EVP_CIPHER_key_length(c)+mac_secret_size+EVP_CIPHER_iv_length(c);
611 num*=2;

613 ssl3_cleanup_key_block(s);

615 if ((p1=(unsigned char *)OPENSSL_malloc(num)) == NULL)
616 {
617 SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK,ERR_R_MALLOC_FAILURE);
618 goto err;
619 }

621 s->s3->tmp.key_block_length=num;
622 s->s3->tmp.key_block=p1;

624 if ((p2=(unsigned char *)OPENSSL_malloc(num)) == NULL)
625 {
626 SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK,ERR_R_MALLOC_FAILURE);
627 goto err;
628 }

630 #ifdef TLS_DEBUG
631 printf("client random\n");
632 { int z; for (z=0; z<SSL3_RANDOM_SIZE; z++) printf("%02X%c",s->s3->client_random
633 printf("server random\n");
634 { int z; for (z=0; z<SSL3_RANDOM_SIZE; z++) printf("%02X%c",s->s3->server_random
635 printf("pre-master\n");
636 { int z; for (z=0; z<s->session->master_key_length; z++) printf("%02X%c",s->sess
637 #endif
638 if (!tls1_generate_key_block(s,p1,p2,num))
639 goto err;
640 #ifdef TLS_DEBUG
641 printf("\nkey block\n");
642 { int z; for (z=0; z<num; z++) printf("%02X%c",p1[z],((z+1)%16)?’ ’:’\n’); }
643 #endif

645 if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS)
646 && s->method->version <= TLS1_VERSION)
647 {
648 /* enable vulnerability countermeasure for CBC ciphers with
649 * known-IV problem (http://www.openssl.org/~bodo/tls-cbc.txt)
650 */
651 s->s3->need_empty_fragments = 1;

653 if (s->session->cipher != NULL)
654 {
655 if (s->session->cipher->algorithm_enc == SSL_eNULL)

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 11

656 s->s3->need_empty_fragments = 0;
657
658 #ifndef OPENSSL_NO_RC4
659 if (s->session->cipher->algorithm_enc == SSL_RC4)
660 s->s3->need_empty_fragments = 0;
661 #endif
662 }
663 }
664
665 ret = 1;
666 err:
667 if (p2)
668 {
669 OPENSSL_cleanse(p2,num);
670 OPENSSL_free(p2);
671 }
672 return(ret);
673 }

675 /* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively.
676 *
677 * Returns:
678 * 0: (in non-constant time) if the record is publically invalid (i.e. too
679 * short etc).
680 * 1: if the record’s padding is valid / the encryption was successful.
681 * -1: if the record’s padding/AEAD-authenticator is invalid or, if sending,
682 * an internal error occured.
683 */
684 int tls1_enc(SSL *s, int send)
685 {
686 SSL3_RECORD *rec;
687 EVP_CIPHER_CTX *ds;
688 unsigned long l;
689 int bs,i,j,k,pad=0,ret,mac_size=0;
690 const EVP_CIPHER *enc;

692 if (send)
693 {
694 if (EVP_MD_CTX_md(s->write_hash))
695 {
696 int n=EVP_MD_CTX_size(s->write_hash);
697 OPENSSL_assert(n >= 0);
698 }
699 ds=s->enc_write_ctx;
700 rec= &(s->s3->wrec);
701 if (s->enc_write_ctx == NULL)
702 enc=NULL;
703 else
704 {
705 int ivlen;
706 enc=EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
707 /* For TLSv1.1 and later explicit IV */
708 if (s->version >= TLS1_1_VERSION
709 && EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE)
710 ivlen = EVP_CIPHER_iv_length(enc);
711 else
712 ivlen = 0;
713 if (ivlen > 1)
714 {
715 if (rec->data != rec->input)
716 /* we can’t write into the input stream:
717 * Can this ever happen?? (steve)
718 */
719 fprintf(stderr,
720 "%s:%d: rec->data != rec->input\
721 __FILE__, __LINE__);

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 12

722 else if (RAND_bytes(rec->input, ivlen) <= 0)
723 return -1;
724 }
725 }
726 }
727 else
728 {
729 if (EVP_MD_CTX_md(s->read_hash))
730 {
731 int n=EVP_MD_CTX_size(s->read_hash);
732 OPENSSL_assert(n >= 0);
733 }
734 ds=s->enc_read_ctx;
735 rec= &(s->s3->rrec);
736 if (s->enc_read_ctx == NULL)
737 enc=NULL;
738 else
739 enc=EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
740 }

742 #ifdef KSSL_DEBUG
743 printf("tls1_enc(%d)\n", send);
744 #endif /* KSSL_DEBUG */

746 if ((s->session == NULL) || (ds == NULL) || (enc == NULL))
747 {
748 memmove(rec->data,rec->input,rec->length);
749 rec->input=rec->data;
750 ret = 1;
751 }
752 else
753 {
754 l=rec->length;
755 bs=EVP_CIPHER_block_size(ds->cipher);

757 if (EVP_CIPHER_flags(ds->cipher)&EVP_CIPH_FLAG_AEAD_CIPHER)
758 {
759 unsigned char buf[13],*seq;

761 seq = send?s->s3->write_sequence:s->s3->read_sequence;

763 if (s->version == DTLS1_VERSION || s->version == DTLS1_B
764 {
765 unsigned char dtlsseq[9],*p=dtlsseq;

767 s2n(send?s->d1->w_epoch:s->d1->r_epoch,p);
768 memcpy(p,&seq[2],6);
769 memcpy(buf,dtlsseq,8);
770 }
771 else
772 {
773 memcpy(buf,seq,8);
774 for (i=7; i>=0; i--) /* increment */
775 {
776 ++seq[i];
777 if (seq[i] != 0) break;
778 }
779 }

781 buf[8]=rec->type;
782 buf[9]=(unsigned char)(s->version>>8);
783 buf[10]=(unsigned char)(s->version);
784 buf[11]=rec->length>>8;
785 buf[12]=rec->length&0xff;
786 pad=EVP_CIPHER_CTX_ctrl(ds,EVP_CTRL_AEAD_TLS1_AAD,13,buf
787 if (send)

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 13

788 {
789 l+=pad;
790 rec->length+=pad;
791 }
792 }
793 else if ((bs != 1) && send)
794 {
795 i=bs-((int)l%bs);

797 /* Add weird padding of upto 256 bytes */

799 /* we need to add ’i’ padding bytes of value j */
800 j=i-1;
801 if (s->options & SSL_OP_TLS_BLOCK_PADDING_BUG)
802 {
803 if (s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG)
804 j++;
805 }
806 for (k=(int)l; k<(int)(l+i); k++)
807 rec->input[k]=j;
808 l+=i;
809 rec->length+=i;
810 }

812 #ifdef KSSL_DEBUG
813 {
814 unsigned long ui;
815 printf("EVP_Cipher(ds=%p,rec->data=%p,rec->input=%p,l=%ld) ==>\n
816 ds,rec->data,rec->input,l);
817 printf("\tEVP_CIPHER_CTX: %d buf_len, %d key_len [%d %d], %d iv_
818 ds->buf_len, ds->cipher->key_len,
819 DES_KEY_SZ, DES_SCHEDULE_SZ,
820 ds->cipher->iv_len);
821 printf("\t\tIV: ");
822 for (i=0; i<ds->cipher->iv_len; i++) printf("%02X", ds->iv[i]);
823 printf("\n");
824 printf("\trec->input=");
825 for (ui=0; ui<l; ui++) printf(" %02x", rec->input[ui]);
826 printf("\n");
827 }
828 #endif /* KSSL_DEBUG */

830 if (!send)
831 {
832 if (l == 0 || l%bs != 0)
833 return 0;
834 }
835
836 i = EVP_Cipher(ds,rec->data,rec->input,l);
837 if ((EVP_CIPHER_flags(ds->cipher)&EVP_CIPH_FLAG_CUSTOM_CIPHER)
838 ?(i<0)
839 :(i==0))
840 return -1; /* AEAD can fail to verify MAC */
841 if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE && !send)
842 {
843 rec->data += EVP_GCM_TLS_EXPLICIT_IV_LEN;
844 rec->input += EVP_GCM_TLS_EXPLICIT_IV_LEN;
845 rec->length -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
846 }

848 #ifdef KSSL_DEBUG
849 {
850 unsigned long i;
851 printf("\trec->data=");
852 for (i=0; i<l; i++)
853 printf(" %02x", rec->data[i]); printf("\n");

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 14

854 }
855 #endif /* KSSL_DEBUG */

857 ret = 1;
858 if (EVP_MD_CTX_md(s->read_hash) != NULL)
859 mac_size = EVP_MD_CTX_size(s->read_hash);
860 if ((bs != 1) && !send)
861 ret = tls1_cbc_remove_padding(s, rec, bs, mac_size);
862 if (pad && !send)
863 rec->length -= pad;
864 }
865 return ret;
866 }

868 int tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *out)
869 {
870 unsigned int ret;
871 EVP_MD_CTX ctx, *d=NULL;
872 int i;

874 if (s->s3->handshake_buffer)
875 if (!ssl3_digest_cached_records(s))
876 return 0;

878 for (i=0;i<SSL_MAX_DIGEST;i++)
879 {
880 if (s->s3->handshake_dgst[i]&&EVP_MD_CTX_type(s->s3->handshake
881 {
882 d=s->s3->handshake_dgst[i];
883 break;
884 }
885 }
886 if (!d) {
887 SSLerr(SSL_F_TLS1_CERT_VERIFY_MAC,SSL_R_NO_REQUIRED_DIGEST);
888 return 0;
889 }

891 EVP_MD_CTX_init(&ctx);
892 EVP_MD_CTX_copy_ex(&ctx,d);
893 EVP_DigestFinal_ex(&ctx,out,&ret);
894 EVP_MD_CTX_cleanup(&ctx);
895 return((int)ret);
896 }

898 int tls1_final_finish_mac(SSL *s,
899 const char *str, int slen, unsigned char *out)
900 {
901 unsigned int i;
902 EVP_MD_CTX ctx;
903 unsigned char buf[2*EVP_MAX_MD_SIZE];
904 unsigned char *q,buf2[12];
905 int idx;
906 long mask;
907 int err=0;
908 const EVP_MD *md;

910 q=buf;

912 if (s->s3->handshake_buffer)
913 if (!ssl3_digest_cached_records(s))
914 return 0;

916 EVP_MD_CTX_init(&ctx);

918 for (idx=0;ssl_get_handshake_digest(idx,&mask,&md);idx++)
919 {

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 15

920 if (mask & ssl_get_algorithm2(s))
921 {
922 int hashsize = EVP_MD_size(md);
923 EVP_MD_CTX *hdgst = s->s3->handshake_dgst[idx];
924 if (!hdgst || hashsize < 0 || hashsize > (int)(sizeof bu
925 {
926 /* internal error: ’buf’ is too small for this c
927 err = 1;
928 }
929 else
930 {
931 if (!EVP_MD_CTX_copy_ex(&ctx, hdgst) ||
932 !EVP_DigestFinal_ex(&ctx,q,&i) ||
933 (i != (unsigned int)hashsize))
934 err = 1;
935 q+=hashsize;
936 }
937 }
938 }
939
940 if (!tls1_PRF(ssl_get_algorithm2(s),
941 str,slen, buf,(int)(q-buf), NULL,0, NULL,0, NULL,0,
942 s->session->master_key,s->session->master_key_length,
943 out,buf2,sizeof buf2))
944 err = 1;
945 EVP_MD_CTX_cleanup(&ctx);

947 if (err)
948 return 0;
949 else
950 return sizeof buf2;
951 }

953 int tls1_mac(SSL *ssl, unsigned char *md, int send)
954 {
955 SSL3_RECORD *rec;
956 unsigned char *seq;
957 EVP_MD_CTX *hash;
958 size_t md_size, orig_len;
959 int i;
960 EVP_MD_CTX hmac, *mac_ctx;
961 unsigned char header[13];
962 int stream_mac = (send?(ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM):
963 int t;

965 if (send)
966 {
967 rec= &(ssl->s3->wrec);
968 seq= &(ssl->s3->write_sequence[0]);
969 hash=ssl->write_hash;
970 }
971 else
972 {
973 rec= &(ssl->s3->rrec);
974 seq= &(ssl->s3->read_sequence[0]);
975 hash=ssl->read_hash;
976 }

978 t=EVP_MD_CTX_size(hash);
979 OPENSSL_assert(t >= 0);
980 md_size=t;

982 /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */
983 if (stream_mac)
984 {
985 mac_ctx = hash;

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 16

986 }
987 else
988 {
989 if (!EVP_MD_CTX_copy(&hmac,hash))
990 return -1;
991 mac_ctx = &hmac;
992 }

994 if (ssl->version == DTLS1_VERSION || ssl->version == DTLS1_BAD_VER)
995 {
996 unsigned char dtlsseq[8],*p=dtlsseq;

998 s2n(send?ssl->d1->w_epoch:ssl->d1->r_epoch, p);
999 memcpy (p,&seq[2],6);

1001 memcpy(header, dtlsseq, 8);
1002 }
1003 else
1004 memcpy(header, seq, 8);

1006 /* kludge: tls1_cbc_remove_padding passes padding length in rec->type */
1007 orig_len = rec->length+md_size+((unsigned int)rec->type>>8);
1008 rec->type &= 0xff;

1010 header[8]=rec->type;
1011 header[9]=(unsigned char)(ssl->version>>8);
1012 header[10]=(unsigned char)(ssl->version);
1013 header[11]=(rec->length)>>8;
1014 header[12]=(rec->length)&0xff;

1016 if (!send &&
1017 EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
1018 ssl3_cbc_record_digest_supported(mac_ctx))
1019 {
1020 /* This is a CBC-encrypted record. We must avoid leaking any
1021 * timing-side channel information about how many blocks of
1022 * data we are hashing because that gives an attacker a
1023 * timing-oracle. */
1024 ssl3_cbc_digest_record(
1025 mac_ctx,
1026 md, &md_size,
1027 header, rec->input,
1028 rec->length + md_size, orig_len,
1029 ssl->s3->read_mac_secret,
1030 ssl->s3->read_mac_secret_size,
1031 0 /* not SSLv3 */);
1032 }
1033 else
1034 {
1035 EVP_DigestSignUpdate(mac_ctx,header,sizeof(header));
1036 EVP_DigestSignUpdate(mac_ctx,rec->input,rec->length);
1037 t=EVP_DigestSignFinal(mac_ctx,md,&md_size);
1038 OPENSSL_assert(t > 0);
1039 #ifdef OPENSSL_FIPS
1040 if (!send && FIPS_mode())
1041 tls_fips_digest_extra(
1042 ssl->enc_read_ctx,
1043 mac_ctx, rec->input,
1044 rec->length, orig_len);
1045 #endif
1046 }
1047
1048 if (!stream_mac)
1049 EVP_MD_CTX_cleanup(&hmac);
1050 #ifdef TLS_DEBUG
1051 printf("sec=");

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 17

1052 {unsigned int z; for (z=0; z<md_size; z++) printf("%02X ",mac_sec[z]); printf("\
1053 printf("seq=");
1054 {int z; for (z=0; z<8; z++) printf("%02X ",seq[z]); printf("\n"); }
1055 printf("buf=");
1056 {int z; for (z=0; z<5; z++) printf("%02X ",buf[z]); printf("\n"); }
1057 printf("rec=");
1058 {unsigned int z; for (z=0; z<rec->length; z++) printf("%02X ",buf[z]); printf("\
1059 #endif

1061 if (ssl->version != DTLS1_VERSION && ssl->version != DTLS1_BAD_VER)
1062 {
1063 for (i=7; i>=0; i--)
1064 {
1065 ++seq[i];
1066 if (seq[i] != 0) break;
1067 }
1068 }

1070 #ifdef TLS_DEBUG
1071 {unsigned int z; for (z=0; z<md_size; z++) printf("%02X ",md[z]); printf("\n");
1072 #endif
1073 return(md_size);
1074 }

1076 int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
1077 int len)
1078 {
1079 unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH];
1080 const void *co = NULL, *so = NULL;
1081 int col = 0, sol = 0;

1084 #ifdef KSSL_DEBUG
1085 printf ("tls1_generate_master_secret(%p,%p, %p, %d)\n", s,out, p,len);
1086 #endif /* KSSL_DEBUG */

1088 #ifdef TLSEXT_TYPE_opaque_prf_input
1089 if (s->s3->client_opaque_prf_input != NULL && s->s3->server_opaque_prf_i
1090 s->s3->client_opaque_prf_input_len > 0 &&
1091 s->s3->client_opaque_prf_input_len == s->s3->server_opaque_prf_input
1092 {
1093 co = s->s3->client_opaque_prf_input;
1094 col = s->s3->server_opaque_prf_input_len;
1095 so = s->s3->server_opaque_prf_input;
1096 sol = s->s3->client_opaque_prf_input_len; /* must be same as col
1097 }
1098 #endif

1100 tls1_PRF(ssl_get_algorithm2(s),
1101 TLS_MD_MASTER_SECRET_CONST,TLS_MD_MASTER_SECRET_CONST_SIZE,
1102 s->s3->client_random,SSL3_RANDOM_SIZE,
1103 co, col,
1104 s->s3->server_random,SSL3_RANDOM_SIZE,
1105 so, sol,
1106 p,len,
1107 s->session->master_key,buff,sizeof buff);
1108 #ifdef SSL_DEBUG
1109 fprintf(stderr, "Premaster Secret:\n");
1110 BIO_dump_fp(stderr, (char *)p, len);
1111 fprintf(stderr, "Client Random:\n");
1112 BIO_dump_fp(stderr, (char *)s->s3->client_random, SSL3_RANDOM_SIZE);
1113 fprintf(stderr, "Server Random:\n");
1114 BIO_dump_fp(stderr, (char *)s->s3->server_random, SSL3_RANDOM_SIZE);
1115 fprintf(stderr, "Master Secret:\n");
1116 BIO_dump_fp(stderr, (char *)s->session->master_key, SSL3_MASTER_SECRET_S
1117 #endif

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 18

1119 #ifdef KSSL_DEBUG
1120 printf ("tls1_generate_master_secret() complete\n");
1121 #endif /* KSSL_DEBUG */
1122 return(SSL3_MASTER_SECRET_SIZE);
1123 }

1125 int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
1126 const char *label, size_t llen, const unsigned char *context,
1127 size_t contextlen, int use_context)
1128 {
1129 unsigned char *buff;
1130 unsigned char *val = NULL;
1131 size_t vallen, currentvalpos;
1132 int rv;

1134 #ifdef KSSL_DEBUG
1135 printf ("tls1_export_keying_material(%p,%p,%d,%s,%d,%p,%d)\n", s, out, o
1136 #endif /* KSSL_DEBUG */

1138 buff = OPENSSL_malloc(olen);
1139 if (buff == NULL) goto err2;

1141 /* construct PRF arguments
1142 * we construct the PRF argument ourself rather than passing separate
1143 * values into the TLS PRF to ensure that the concatenation of values
1144 * does not create a prohibited label.
1145 */
1146 vallen = llen + SSL3_RANDOM_SIZE * 2;
1147 if (use_context)
1148 {
1149 vallen += 2 + contextlen;
1150 }

1152 val = OPENSSL_malloc(vallen);
1153 if (val == NULL) goto err2;
1154 currentvalpos = 0;
1155 memcpy(val + currentvalpos, (unsigned char *) label, llen);
1156 currentvalpos += llen;
1157 memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE);
1158 currentvalpos += SSL3_RANDOM_SIZE;
1159 memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE);
1160 currentvalpos += SSL3_RANDOM_SIZE;

1162 if (use_context)
1163 {
1164 val[currentvalpos] = (contextlen >> 8) & 0xff;
1165 currentvalpos++;
1166 val[currentvalpos] = contextlen & 0xff;
1167 currentvalpos++;
1168 if ((contextlen > 0) || (context != NULL))
1169 {
1170 memcpy(val + currentvalpos, context, contextlen);
1171 }
1172 }

1174 /* disallow prohibited labels
1175 * note that SSL3_RANDOM_SIZE > max(prohibited label len) =
1176 * 15, so size of val > max(prohibited label len) = 15 and the
1177 * comparisons won’t have buffer overflow
1178 */
1179 if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
1180 TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0) goto err1;
1181 if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
1182 TLS_MD_SERVER_FINISH_CONST_SIZE) == 0) goto err1;
1183 if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 19

1184 TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) goto err1;
1185 if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
1186 TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) goto err1;

1188 rv = tls1_PRF(s->s3->tmp.new_cipher->algorithm2,
1189 val, vallen,
1190 NULL, 0,
1191 NULL, 0,
1192 NULL, 0,
1193 NULL, 0,
1194 s->session->master_key,s->session->master_key_length,
1195 out,buff,olen);

1197 #ifdef KSSL_DEBUG
1198 printf ("tls1_export_keying_material() complete\n");
1199 #endif /* KSSL_DEBUG */
1200 goto ret;
1201 err1:
1202 SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, SSL_R_TLS_ILLEGAL_EXPORTER_LAB
1203 rv = 0;
1204 goto ret;
1205 err2:
1206 SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, ERR_R_MALLOC_FAILURE);
1207 rv = 0;
1208 ret:
1209 if (buff != NULL) OPENSSL_free(buff);
1210 if (val != NULL) OPENSSL_free(val);
1211 return(rv);
1212 }

1214 int tls1_alert_code(int code)
1215 {
1216 switch (code)
1217 {
1218 case SSL_AD_CLOSE_NOTIFY: return(SSL3_AD_CLOSE_NOTIFY);
1219 case SSL_AD_UNEXPECTED_MESSAGE: return(SSL3_AD_UNEXPECTED_MESSAGE);
1220 case SSL_AD_BAD_RECORD_MAC: return(SSL3_AD_BAD_RECORD_MAC);
1221 case SSL_AD_DECRYPTION_FAILED: return(TLS1_AD_DECRYPTION_FAILED);
1222 case SSL_AD_RECORD_OVERFLOW: return(TLS1_AD_RECORD_OVERFLOW);
1223 case SSL_AD_DECOMPRESSION_FAILURE:return(SSL3_AD_DECOMPRESSION_FAILURE);
1224 case SSL_AD_HANDSHAKE_FAILURE: return(SSL3_AD_HANDSHAKE_FAILURE);
1225 case SSL_AD_NO_CERTIFICATE: return(-1);
1226 case SSL_AD_BAD_CERTIFICATE: return(SSL3_AD_BAD_CERTIFICATE);
1227 case SSL_AD_UNSUPPORTED_CERTIFICATE:return(SSL3_AD_UNSUPPORTED_CERTIFICA
1228 case SSL_AD_CERTIFICATE_REVOKED:return(SSL3_AD_CERTIFICATE_REVOKED);
1229 case SSL_AD_CERTIFICATE_EXPIRED:return(SSL3_AD_CERTIFICATE_EXPIRED);
1230 case SSL_AD_CERTIFICATE_UNKNOWN:return(SSL3_AD_CERTIFICATE_UNKNOWN);
1231 case SSL_AD_ILLEGAL_PARAMETER: return(SSL3_AD_ILLEGAL_PARAMETER);
1232 case SSL_AD_UNKNOWN_CA: return(TLS1_AD_UNKNOWN_CA);
1233 case SSL_AD_ACCESS_DENIED: return(TLS1_AD_ACCESS_DENIED);
1234 case SSL_AD_DECODE_ERROR: return(TLS1_AD_DECODE_ERROR);
1235 case SSL_AD_DECRYPT_ERROR: return(TLS1_AD_DECRYPT_ERROR);
1236 case SSL_AD_EXPORT_RESTRICTION: return(TLS1_AD_EXPORT_RESTRICTION);
1237 case SSL_AD_PROTOCOL_VERSION: return(TLS1_AD_PROTOCOL_VERSION);
1238 case SSL_AD_INSUFFICIENT_SECURITY:return(TLS1_AD_INSUFFICIENT_SECURITY);
1239 case SSL_AD_INTERNAL_ERROR: return(TLS1_AD_INTERNAL_ERROR);
1240 case SSL_AD_USER_CANCELLED: return(TLS1_AD_USER_CANCELLED);
1241 case SSL_AD_NO_RENEGOTIATION: return(TLS1_AD_NO_RENEGOTIATION);
1242 case SSL_AD_UNSUPPORTED_EXTENSION: return(TLS1_AD_UNSUPPORTED_EXTENSION)
1243 case SSL_AD_CERTIFICATE_UNOBTAINABLE: return(TLS1_AD_CERTIFICATE_UNOBTAI
1244 case SSL_AD_UNRECOGNIZED_NAME: return(TLS1_AD_UNRECOGNIZED_NAME);
1245 case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: return(TLS1_AD_BAD_CERTIFIC
1246 case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: return(TLS1_AD_BAD_CERTIFICATE_H
1247 case SSL_AD_UNKNOWN_PSK_IDENTITY:return(TLS1_AD_UNKNOWN_PSK_IDENTITY);
1248 #if 0 /* not appropriate for TLS, not used for DTLS */
1249 case DTLS1_AD_MISSING_HANDSHAKE_MESSAGE: return

new/usr/src/lib/openssl/libsunw_ssl/t1_enc.c 20

1250 (DTLS1_AD_MISSING_HANDSHAKE_MESSAGE);
1251 #endif
1252 default: return(-1);
1253 }
1254 }

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 1

**
 75561 Fri May 30 18:32:23 2014
new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/t1_lib.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */

112 #include <stdio.h>
113 #include <openssl/objects.h>
114 #include <openssl/evp.h>
115 #include <openssl/hmac.h>
116 #include <openssl/ocsp.h>
117 #include <openssl/rand.h>
118 #include "ssl_locl.h"

120 const char tls1_version_str[]="TLSv1" OPENSSL_VERSION_PTEXT;

122 #ifndef OPENSSL_NO_TLSEXT
123 static int tls_decrypt_ticket(SSL *s, const unsigned char *tick, int ticklen,
124 const unsigned char *sess_id, int sesslen,
125 SSL_SESSION **psess);
126 #endif

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 3

128 SSL3_ENC_METHOD TLSv1_enc_data={
129 tls1_enc,
130 tls1_mac,
131 tls1_setup_key_block,
132 tls1_generate_master_secret,
133 tls1_change_cipher_state,
134 tls1_final_finish_mac,
135 TLS1_FINISH_MAC_LENGTH,
136 tls1_cert_verify_mac,
137 TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
138 TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
139 tls1_alert_code,
140 tls1_export_keying_material,
141 };

143 long tls1_default_timeout(void)
144 {
145 /* 2 hours, the 24 hours mentioned in the TLSv1 spec
146 * is way too long for http, the cache would over fill */
147 return(60*60*2);
148 }

150 int tls1_new(SSL *s)
151 {
152 if (!ssl3_new(s)) return(0);
153 s->method->ssl_clear(s);
154 return(1);
155 }

157 void tls1_free(SSL *s)
158 {
159 #ifndef OPENSSL_NO_TLSEXT
160 if (s->tlsext_session_ticket)
161 {
162 OPENSSL_free(s->tlsext_session_ticket);
163 }
164 #endif /* OPENSSL_NO_TLSEXT */
165 ssl3_free(s);
166 }

168 void tls1_clear(SSL *s)
169 {
170 ssl3_clear(s);
171 s->version = s->method->version;
172 }

174 #ifndef OPENSSL_NO_EC

176 static int nid_list[] =
177 {
178 NID_sect163k1, /* sect163k1 (1) */
179 NID_sect163r1, /* sect163r1 (2) */
180 NID_sect163r2, /* sect163r2 (3) */
181 NID_sect193r1, /* sect193r1 (4) */
182 NID_sect193r2, /* sect193r2 (5) */
183 NID_sect233k1, /* sect233k1 (6) */
184 NID_sect233r1, /* sect233r1 (7) */
185 NID_sect239k1, /* sect239k1 (8) */
186 NID_sect283k1, /* sect283k1 (9) */
187 NID_sect283r1, /* sect283r1 (10) */
188 NID_sect409k1, /* sect409k1 (11) */
189 NID_sect409r1, /* sect409r1 (12) */
190 NID_sect571k1, /* sect571k1 (13) */
191 NID_sect571r1, /* sect571r1 (14) */
192 NID_secp160k1, /* secp160k1 (15) */
193 NID_secp160r1, /* secp160r1 (16) */

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 4

194 NID_secp160r2, /* secp160r2 (17) */
195 NID_secp192k1, /* secp192k1 (18) */
196 NID_X9_62_prime192v1, /* secp192r1 (19) */
197 NID_secp224k1, /* secp224k1 (20) */
198 NID_secp224r1, /* secp224r1 (21) */
199 NID_secp256k1, /* secp256k1 (22) */
200 NID_X9_62_prime256v1, /* secp256r1 (23) */
201 NID_secp384r1, /* secp384r1 (24) */
202 NID_secp521r1 /* secp521r1 (25) */
203 };

205 static int pref_list[] =
206 {
207 NID_sect571r1, /* sect571r1 (14) */
208 NID_sect571k1, /* sect571k1 (13) */
209 NID_secp521r1, /* secp521r1 (25) */
210 NID_sect409k1, /* sect409k1 (11) */
211 NID_sect409r1, /* sect409r1 (12) */
212 NID_secp384r1, /* secp384r1 (24) */
213 NID_sect283k1, /* sect283k1 (9) */
214 NID_sect283r1, /* sect283r1 (10) */
215 NID_secp256k1, /* secp256k1 (22) */
216 NID_X9_62_prime256v1, /* secp256r1 (23) */
217 NID_sect239k1, /* sect239k1 (8) */
218 NID_sect233k1, /* sect233k1 (6) */
219 NID_sect233r1, /* sect233r1 (7) */
220 NID_secp224k1, /* secp224k1 (20) */
221 NID_secp224r1, /* secp224r1 (21) */
222 NID_sect193r1, /* sect193r1 (4) */
223 NID_sect193r2, /* sect193r2 (5) */
224 NID_secp192k1, /* secp192k1 (18) */
225 NID_X9_62_prime192v1, /* secp192r1 (19) */
226 NID_sect163k1, /* sect163k1 (1) */
227 NID_sect163r1, /* sect163r1 (2) */
228 NID_sect163r2, /* sect163r2 (3) */
229 NID_secp160k1, /* secp160k1 (15) */
230 NID_secp160r1, /* secp160r1 (16) */
231 NID_secp160r2, /* secp160r2 (17) */
232 };

234 int tls1_ec_curve_id2nid(int curve_id)
235 {
236 /* ECC curves from draft-ietf-tls-ecc-12.txt (Oct. 17, 2005) */
237 if ((curve_id < 1) || ((unsigned int)curve_id >
238 sizeof(nid_list)/sizeof(nid_list[0])))
239 return 0;
240 return nid_list[curve_id-1];
241 }

243 int tls1_ec_nid2curve_id(int nid)
244 {
245 /* ECC curves from draft-ietf-tls-ecc-12.txt (Oct. 17, 2005) */
246 switch (nid)
247 {
248 case NID_sect163k1: /* sect163k1 (1) */
249 return 1;
250 case NID_sect163r1: /* sect163r1 (2) */
251 return 2;
252 case NID_sect163r2: /* sect163r2 (3) */
253 return 3;
254 case NID_sect193r1: /* sect193r1 (4) */
255 return 4;
256 case NID_sect193r2: /* sect193r2 (5) */
257 return 5;
258 case NID_sect233k1: /* sect233k1 (6) */
259 return 6;

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 5

260 case NID_sect233r1: /* sect233r1 (7) */
261 return 7;
262 case NID_sect239k1: /* sect239k1 (8) */
263 return 8;
264 case NID_sect283k1: /* sect283k1 (9) */
265 return 9;
266 case NID_sect283r1: /* sect283r1 (10) */
267 return 10;
268 case NID_sect409k1: /* sect409k1 (11) */
269 return 11;
270 case NID_sect409r1: /* sect409r1 (12) */
271 return 12;
272 case NID_sect571k1: /* sect571k1 (13) */
273 return 13;
274 case NID_sect571r1: /* sect571r1 (14) */
275 return 14;
276 case NID_secp160k1: /* secp160k1 (15) */
277 return 15;
278 case NID_secp160r1: /* secp160r1 (16) */
279 return 16;
280 case NID_secp160r2: /* secp160r2 (17) */
281 return 17;
282 case NID_secp192k1: /* secp192k1 (18) */
283 return 18;
284 case NID_X9_62_prime192v1: /* secp192r1 (19) */
285 return 19;
286 case NID_secp224k1: /* secp224k1 (20) */
287 return 20;
288 case NID_secp224r1: /* secp224r1 (21) */
289 return 21;
290 case NID_secp256k1: /* secp256k1 (22) */
291 return 22;
292 case NID_X9_62_prime256v1: /* secp256r1 (23) */
293 return 23;
294 case NID_secp384r1: /* secp384r1 (24) */
295 return 24;
296 case NID_secp521r1: /* secp521r1 (25) */
297 return 25;
298 default:
299 return 0;
300 }
301 }
302 #endif /* OPENSSL_NO_EC */

304 #ifndef OPENSSL_NO_TLSEXT

306 /* List of supported signature algorithms and hashes. Should make this
307 * customisable at some point, for now include everything we support.
308 */

310 #ifdef OPENSSL_NO_RSA
311 #define tlsext_sigalg_rsa(md) /* */
312 #else
313 #define tlsext_sigalg_rsa(md) md, TLSEXT_signature_rsa,
314 #endif

316 #ifdef OPENSSL_NO_DSA
317 #define tlsext_sigalg_dsa(md) /* */
318 #else
319 #define tlsext_sigalg_dsa(md) md, TLSEXT_signature_dsa,
320 #endif

322 #ifdef OPENSSL_NO_ECDSA
323 #define tlsext_sigalg_ecdsa(md) /* */
324 #else
325 #define tlsext_sigalg_ecdsa(md) md, TLSEXT_signature_ecdsa,

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 6

326 #endif

328 #define tlsext_sigalg(md) \
329 tlsext_sigalg_rsa(md) \
330 tlsext_sigalg_dsa(md) \
331 tlsext_sigalg_ecdsa(md)

333 static unsigned char tls12_sigalgs[] = {
334 #ifndef OPENSSL_NO_SHA512
335 tlsext_sigalg(TLSEXT_hash_sha512)
336 tlsext_sigalg(TLSEXT_hash_sha384)
337 #endif
338 #ifndef OPENSSL_NO_SHA256
339 tlsext_sigalg(TLSEXT_hash_sha256)
340 tlsext_sigalg(TLSEXT_hash_sha224)
341 #endif
342 #ifndef OPENSSL_NO_SHA
343 tlsext_sigalg(TLSEXT_hash_sha1)
344 #endif
345 };

347 int tls12_get_req_sig_algs(SSL *s, unsigned char *p)
348 {
349 size_t slen = sizeof(tls12_sigalgs);
350 if (p)
351 memcpy(p, tls12_sigalgs, slen);
352 return (int)slen;
353 }

355 unsigned char *ssl_add_clienthello_tlsext(SSL *s, unsigned char *p, unsigned cha
356 {
357 int extdatalen=0;
358 unsigned char *ret = p;

360 /* don’t add extensions for SSLv3 unless doing secure renegotiation */
361 if (s->client_version == SSL3_VERSION
362 && !s->s3->send_connection_binding)
363 return p;

365 ret+=2;

367 if (ret>=limit) return NULL; /* this really never occurs, but ... */

369 if (s->tlsext_hostname != NULL)
370 {
371 /* Add TLS extension servername to the Client Hello message */
372 unsigned long size_str;
373 long lenmax;

375 /* check for enough space.
376 4 for the servername type and entension length
377 2 for servernamelist length
378 1 for the hostname type
379 2 for hostname length
380 + hostname length
381 */
382
383 if ((lenmax = limit - ret - 9) < 0
384 || (size_str = strlen(s->tlsext_hostname)) > (unsigned long)
385 return NULL;
386
387 /* extension type and length */
388 s2n(TLSEXT_TYPE_server_name,ret);
389 s2n(size_str+5,ret);
390
391 /* length of servername list */

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 7

392 s2n(size_str+3,ret);
393
394 /* hostname type, length and hostname */
395 *(ret++) = (unsigned char) TLSEXT_NAMETYPE_host_name;
396 s2n(size_str,ret);
397 memcpy(ret, s->tlsext_hostname, size_str);
398 ret+=size_str;
399 }

401 /* Add RI if renegotiating */
402 if (s->renegotiate)
403 {
404 int el;
405
406 if(!ssl_add_clienthello_renegotiate_ext(s, 0, &el, 0))
407 {
408 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
409 return NULL;
410 }

412 if((limit - p - 4 - el) < 0) return NULL;
413
414 s2n(TLSEXT_TYPE_renegotiate,ret);
415 s2n(el,ret);

417 if(!ssl_add_clienthello_renegotiate_ext(s, ret, &el, el))
418 {
419 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
420 return NULL;
421 }

423 ret += el;
424 }

426 #ifndef OPENSSL_NO_SRP
427 /* Add SRP username if there is one */
428 if (s->srp_ctx.login != NULL)
429 { /* Add TLS extension SRP username to the Client Hello message

431 int login_len = strlen(s->srp_ctx.login);
432 if (login_len > 255 || login_len == 0)
433 {
434 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_
435 return NULL;
436 }

438 /* check for enough space.
439 4 for the srp type type and entension length
440 1 for the srp user identity
441 + srp user identity length
442 */
443 if ((limit - ret - 5 - login_len) < 0) return NULL;

445 /* fill in the extension */
446 s2n(TLSEXT_TYPE_srp,ret);
447 s2n(login_len+1,ret);
448 (*ret++) = (unsigned char) login_len;
449 memcpy(ret, s->srp_ctx.login, login_len);
450 ret+=login_len;
451 }
452 #endif

454 #ifndef OPENSSL_NO_EC
455 if (s->tlsext_ecpointformatlist != NULL &&
456 s->version != DTLS1_VERSION)
457 {

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 8

458 /* Add TLS extension ECPointFormats to the ClientHello message *
459 long lenmax;

461 if ((lenmax = limit - ret - 5) < 0) return NULL;
462 if (s->tlsext_ecpointformatlist_length > (unsigned long)lenmax)
463 if (s->tlsext_ecpointformatlist_length > 255)
464 {
465 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_
466 return NULL;
467 }
468
469 s2n(TLSEXT_TYPE_ec_point_formats,ret);
470 s2n(s->tlsext_ecpointformatlist_length + 1,ret);
471 *(ret++) = (unsigned char) s->tlsext_ecpointformatlist_length;
472 memcpy(ret, s->tlsext_ecpointformatlist, s->tlsext_ecpointformat
473 ret+=s->tlsext_ecpointformatlist_length;
474 }
475 if (s->tlsext_ellipticcurvelist != NULL &&
476 s->version != DTLS1_VERSION)
477 {
478 /* Add TLS extension EllipticCurves to the ClientHello message *
479 long lenmax;

481 if ((lenmax = limit - ret - 6) < 0) return NULL;
482 if (s->tlsext_ellipticcurvelist_length > (unsigned long)lenmax)
483 if (s->tlsext_ellipticcurvelist_length > 65532)
484 {
485 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_
486 return NULL;
487 }
488
489 s2n(TLSEXT_TYPE_elliptic_curves,ret);
490 s2n(s->tlsext_ellipticcurvelist_length + 2, ret);

492 /* NB: draft-ietf-tls-ecc-12.txt uses a one-byte prefix for
493 * elliptic_curve_list, but the examples use two bytes.
494 * http://www1.ietf.org/mail-archive/web/tls/current/msg00538.ht
495 * resolves this to two bytes.
496 */
497 s2n(s->tlsext_ellipticcurvelist_length, ret);
498 memcpy(ret, s->tlsext_ellipticcurvelist, s->tlsext_ellipticcurve
499 ret+=s->tlsext_ellipticcurvelist_length;
500 }
501 #endif /* OPENSSL_NO_EC */

503 if (!(SSL_get_options(s) & SSL_OP_NO_TICKET))
504 {
505 int ticklen;
506 if (!s->new_session && s->session && s->session->tlsext_tick)
507 ticklen = s->session->tlsext_ticklen;
508 else if (s->session && s->tlsext_session_ticket &&
509 s->tlsext_session_ticket->data)
510 {
511 ticklen = s->tlsext_session_ticket->length;
512 s->session->tlsext_tick = OPENSSL_malloc(ticklen);
513 if (!s->session->tlsext_tick)
514 return NULL;
515 memcpy(s->session->tlsext_tick,
516 s->tlsext_session_ticket->data,
517 ticklen);
518 s->session->tlsext_ticklen = ticklen;
519 }
520 else
521 ticklen = 0;
522 if (ticklen == 0 && s->tlsext_session_ticket &&
523 s->tlsext_session_ticket->data == NULL)

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 9

524 goto skip_ext;
525 /* Check for enough room 2 for extension type, 2 for len
526 * rest for ticket
527 */
528 if ((long)(limit - ret - 4 - ticklen) < 0) return NULL;
529 s2n(TLSEXT_TYPE_session_ticket,ret);
530 s2n(ticklen,ret);
531 if (ticklen)
532 {
533 memcpy(ret, s->session->tlsext_tick, ticklen);
534 ret += ticklen;
535 }
536 }
537 skip_ext:

539 if (TLS1_get_client_version(s) >= TLS1_2_VERSION)
540 {
541 if ((size_t)(limit - ret) < sizeof(tls12_sigalgs) + 6)
542 return NULL;
543 s2n(TLSEXT_TYPE_signature_algorithms,ret);
544 s2n(sizeof(tls12_sigalgs) + 2, ret);
545 s2n(sizeof(tls12_sigalgs), ret);
546 memcpy(ret, tls12_sigalgs, sizeof(tls12_sigalgs));
547 ret += sizeof(tls12_sigalgs);
548 }

550 #ifdef TLSEXT_TYPE_opaque_prf_input
551 if (s->s3->client_opaque_prf_input != NULL &&
552 s->version != DTLS1_VERSION)
553 {
554 size_t col = s->s3->client_opaque_prf_input_len;
555
556 if ((long)(limit - ret - 6 - col < 0))
557 return NULL;
558 if (col > 0xFFFD) /* can’t happen */
559 return NULL;

561 s2n(TLSEXT_TYPE_opaque_prf_input, ret);
562 s2n(col + 2, ret);
563 s2n(col, ret);
564 memcpy(ret, s->s3->client_opaque_prf_input, col);
565 ret += col;
566 }
567 #endif

569 if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp &&
570 s->version != DTLS1_VERSION)
571 {
572 int i;
573 long extlen, idlen, itmp;
574 OCSP_RESPID *id;

576 idlen = 0;
577 for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++)
578 {
579 id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i);
580 itmp = i2d_OCSP_RESPID(id, NULL);
581 if (itmp <= 0)
582 return NULL;
583 idlen += itmp + 2;
584 }

586 if (s->tlsext_ocsp_exts)
587 {
588 extlen = i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, NULL);
589 if (extlen < 0)

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 10

590 return NULL;
591 }
592 else
593 extlen = 0;
594
595 if ((long)(limit - ret - 7 - extlen - idlen) < 0) return NULL;
596 s2n(TLSEXT_TYPE_status_request, ret);
597 if (extlen + idlen > 0xFFF0)
598 return NULL;
599 s2n(extlen + idlen + 5, ret);
600 *(ret++) = TLSEXT_STATUSTYPE_ocsp;
601 s2n(idlen, ret);
602 for (i = 0; i < sk_OCSP_RESPID_num(s->tlsext_ocsp_ids); i++)
603 {
604 /* save position of id len */
605 unsigned char *q = ret;
606 id = sk_OCSP_RESPID_value(s->tlsext_ocsp_ids, i);
607 /* skip over id len */
608 ret += 2;
609 itmp = i2d_OCSP_RESPID(id, &ret);
610 /* write id len */
611 s2n(itmp, q);
612 }
613 s2n(extlen, ret);
614 if (extlen > 0)
615 i2d_X509_EXTENSIONS(s->tlsext_ocsp_exts, &ret);
616 }

618 #ifndef OPENSSL_NO_HEARTBEATS
619 /* Add Heartbeat extension */
620 s2n(TLSEXT_TYPE_heartbeat,ret);
621 s2n(1,ret);
622 /* Set mode:
623 * 1: peer may send requests
624 * 2: peer not allowed to send requests
625 */
626 if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS)
627 *(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
628 else
629 *(ret++) = SSL_TLSEXT_HB_ENABLED;
630 #endif

632 #ifndef OPENSSL_NO_NEXTPROTONEG
633 if (s->ctx->next_proto_select_cb && !s->s3->tmp.finish_md_len)
634 {
635 /* The client advertises an emtpy extension to indicate its
636 * support for Next Protocol Negotiation */
637 if (limit - ret - 4 < 0)
638 return NULL;
639 s2n(TLSEXT_TYPE_next_proto_neg,ret);
640 s2n(0,ret);
641 }
642 #endif

644 #ifndef OPENSSL_NO_SRTP
645 if(SSL_get_srtp_profiles(s))
646 {
647 int el;

649 ssl_add_clienthello_use_srtp_ext(s, 0, &el, 0);
650
651 if((limit - p - 4 - el) < 0) return NULL;

653 s2n(TLSEXT_TYPE_use_srtp,ret);
654 s2n(el,ret);

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 11

656 if(ssl_add_clienthello_use_srtp_ext(s, ret, &el, el))
657 {
658 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_TLSEXT, ERR_R_INTERNAL_
659 return NULL;
660 }
661 ret += el;
662 }
663 #endif

665 #ifdef TLSEXT_TYPE_padding
666 /* Add padding to workaround bugs in F5 terminators.
667 * See https://tools.ietf.org/html/draft-agl-tls-padding-03
668 *
669 * NB: because this code works out the length of all existing
670 * extensions it MUST always appear last.
671 */
672 {
673 int hlen = ret - (unsigned char *)s->init_buf->data;
674 /* The code in s23_clnt.c to build ClientHello messages includes the
675 * 5-byte record header in the buffer, while the code in s3_clnt.c does
676 * not. */
677 if (s->state == SSL23_ST_CW_CLNT_HELLO_A)
678 hlen -= 5;
679 if (hlen > 0xff && hlen < 0x200)
680 {
681 hlen = 0x200 - hlen;
682 if (hlen >= 4)
683 hlen -= 4;
684 else
685 hlen = 0;

687 s2n(TLSEXT_TYPE_padding, ret);
688 s2n(hlen, ret);
689 memset(ret, 0, hlen);
690 ret += hlen;
691 }
692 }
693 #endif

695 if ((extdatalen = ret-p-2)== 0)
696 return p;

698 s2n(extdatalen,p);
699 return ret;
700 }

702 unsigned char *ssl_add_serverhello_tlsext(SSL *s, unsigned char *p, unsigned cha
703 {
704 int extdatalen=0;
705 unsigned char *ret = p;
706 #ifndef OPENSSL_NO_NEXTPROTONEG
707 int next_proto_neg_seen;
708 #endif

710 /* don’t add extensions for SSLv3, unless doing secure renegotiation */
711 if (s->version == SSL3_VERSION && !s->s3->send_connection_binding)
712 return p;
713
714 ret+=2;
715 if (ret>=limit) return NULL; /* this really never occurs, but ... */

717 if (!s->hit && s->servername_done == 1 && s->session->tlsext_hostname !=
718 {
719 if ((long)(limit - ret - 4) < 0) return NULL;

721 s2n(TLSEXT_TYPE_server_name,ret);

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 12

722 s2n(0,ret);
723 }

725 if(s->s3->send_connection_binding)
726 {
727 int el;
728
729 if(!ssl_add_serverhello_renegotiate_ext(s, 0, &el, 0))
730 {
731 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
732 return NULL;
733 }

735 if((limit - p - 4 - el) < 0) return NULL;
736
737 s2n(TLSEXT_TYPE_renegotiate,ret);
738 s2n(el,ret);

740 if(!ssl_add_serverhello_renegotiate_ext(s, ret, &el, el))
741 {
742 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_ERROR);
743 return NULL;
744 }

746 ret += el;
747 }

749 #ifndef OPENSSL_NO_EC
750 if (s->tlsext_ecpointformatlist != NULL &&
751 s->version != DTLS1_VERSION)
752 {
753 /* Add TLS extension ECPointFormats to the ServerHello message *
754 long lenmax;

756 if ((lenmax = limit - ret - 5) < 0) return NULL;
757 if (s->tlsext_ecpointformatlist_length > (unsigned long)lenmax)
758 if (s->tlsext_ecpointformatlist_length > 255)
759 {
760 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_
761 return NULL;
762 }
763
764 s2n(TLSEXT_TYPE_ec_point_formats,ret);
765 s2n(s->tlsext_ecpointformatlist_length + 1,ret);
766 *(ret++) = (unsigned char) s->tlsext_ecpointformatlist_length;
767 memcpy(ret, s->tlsext_ecpointformatlist, s->tlsext_ecpointformat
768 ret+=s->tlsext_ecpointformatlist_length;

770 }
771 /* Currently the server should not respond with a SupportedCurves extens
772 #endif /* OPENSSL_NO_EC */

774 if (s->tlsext_ticket_expected
775 && !(SSL_get_options(s) & SSL_OP_NO_TICKET))
776 {
777 if ((long)(limit - ret - 4) < 0) return NULL;
778 s2n(TLSEXT_TYPE_session_ticket,ret);
779 s2n(0,ret);
780 }

782 if (s->tlsext_status_expected)
783 {
784 if ((long)(limit - ret - 4) < 0) return NULL;
785 s2n(TLSEXT_TYPE_status_request,ret);
786 s2n(0,ret);
787 }

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 13

789 #ifdef TLSEXT_TYPE_opaque_prf_input
790 if (s->s3->server_opaque_prf_input != NULL &&
791 s->version != DTLS1_VERSION)
792 {
793 size_t sol = s->s3->server_opaque_prf_input_len;
794
795 if ((long)(limit - ret - 6 - sol) < 0)
796 return NULL;
797 if (sol > 0xFFFD) /* can’t happen */
798 return NULL;

800 s2n(TLSEXT_TYPE_opaque_prf_input, ret);
801 s2n(sol + 2, ret);
802 s2n(sol, ret);
803 memcpy(ret, s->s3->server_opaque_prf_input, sol);
804 ret += sol;
805 }
806 #endif

808 #ifndef OPENSSL_NO_SRTP
809 if(s->srtp_profile)
810 {
811 int el;

813 ssl_add_serverhello_use_srtp_ext(s, 0, &el, 0);
814
815 if((limit - p - 4 - el) < 0) return NULL;

817 s2n(TLSEXT_TYPE_use_srtp,ret);
818 s2n(el,ret);

820 if(ssl_add_serverhello_use_srtp_ext(s, ret, &el, el))
821 {
822 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_TLSEXT, ERR_R_INTERNAL_
823 return NULL;
824 }
825 ret+=el;
826 }
827 #endif

829 if (((s->s3->tmp.new_cipher->id & 0xFFFF)==0x80 || (s->s3->tmp.new_ciphe
830 && (SSL_get_options(s) & SSL_OP_CRYPTOPRO_TLSEXT_BUG))
831 { const unsigned char cryptopro_ext[36] = {
832 0xfd, 0xe8, /*65000*/
833 0x00, 0x20, /*32 bytes length*/
834 0x30, 0x1e, 0x30, 0x08, 0x06, 0x06, 0x2a, 0x85,
835 0x03, 0x02, 0x02, 0x09, 0x30, 0x08, 0x06, 0x06,
836 0x2a, 0x85, 0x03, 0x02, 0x02, 0x16, 0x30, 0x08,
837 0x06, 0x06, 0x2a, 0x85, 0x03, 0x02, 0x02, 0x17};
838 if (limit-ret<36) return NULL;
839 memcpy(ret,cryptopro_ext,36);
840 ret+=36;

842 }

844 #ifndef OPENSSL_NO_HEARTBEATS
845 /* Add Heartbeat extension if we’ve received one */
846 if (s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED)
847 {
848 s2n(TLSEXT_TYPE_heartbeat,ret);
849 s2n(1,ret);
850 /* Set mode:
851 * 1: peer may send requests
852 * 2: peer not allowed to send requests
853 */

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 14

854 if (s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_RECV_REQUESTS)
855 *(ret++) = SSL_TLSEXT_HB_DONT_SEND_REQUESTS;
856 else
857 *(ret++) = SSL_TLSEXT_HB_ENABLED;

859 }
860 #endif

862 #ifndef OPENSSL_NO_NEXTPROTONEG
863 next_proto_neg_seen = s->s3->next_proto_neg_seen;
864 s->s3->next_proto_neg_seen = 0;
865 if (next_proto_neg_seen && s->ctx->next_protos_advertised_cb)
866 {
867 const unsigned char *npa;
868 unsigned int npalen;
869 int r;

871 r = s->ctx->next_protos_advertised_cb(s, &npa, &npalen, s->ctx->
872 if (r == SSL_TLSEXT_ERR_OK)
873 {
874 if ((long)(limit - ret - 4 - npalen) < 0) return NULL;
875 s2n(TLSEXT_TYPE_next_proto_neg,ret);
876 s2n(npalen,ret);
877 memcpy(ret, npa, npalen);
878 ret += npalen;
879 s->s3->next_proto_neg_seen = 1;
880 }
881 }
882 #endif

884 if ((extdatalen = ret-p-2)== 0)
885 return p;

887 s2n(extdatalen,p);
888 return ret;
889 }

891 #ifndef OPENSSL_NO_EC
892 /* ssl_check_for_safari attempts to fingerprint Safari using OS X
893 * SecureTransport using the TLS extension block in |d|, of length |n|.
894 * Safari, since 10.6, sends exactly these extensions, in this order:
895 * SNI,
896 * elliptic_curves
897 * ec_point_formats
898 *
899 * We wish to fingerprint Safari because they broke ECDHE-ECDSA support in 10.8,
900 * but they advertise support. So enabling ECDHE-ECDSA ciphers breaks them.
901 * Sadly we cannot differentiate 10.6, 10.7 and 10.8.4 (which work), from
902 * 10.8..10.8.3 (which don’t work).
903 */
904 static void ssl_check_for_safari(SSL *s, const unsigned char *data, const unsign
905 unsigned short type, size;
906 static const unsigned char kSafariExtensionsBlock[] = {
907 0x00, 0x0a, /* elliptic_curves extension */
908 0x00, 0x08, /* 8 bytes */
909 0x00, 0x06, /* 6 bytes of curve ids */
910 0x00, 0x17, /* P-256 */
911 0x00, 0x18, /* P-384 */
912 0x00, 0x19, /* P-521 */

914 0x00, 0x0b, /* ec_point_formats */
915 0x00, 0x02, /* 2 bytes */
916 0x01, /* 1 point format */
917 0x00, /* uncompressed */
918 };

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 15

920 /* The following is only present in TLS 1.2 */
921 static const unsigned char kSafariTLS12ExtensionsBlock[] = {
922 0x00, 0x0d, /* signature_algorithms */
923 0x00, 0x0c, /* 12 bytes */
924 0x00, 0x0a, /* 10 bytes */
925 0x05, 0x01, /* SHA-384/RSA */
926 0x04, 0x01, /* SHA-256/RSA */
927 0x02, 0x01, /* SHA-1/RSA */
928 0x04, 0x03, /* SHA-256/ECDSA */
929 0x02, 0x03, /* SHA-1/ECDSA */
930 };

932 if (data >= (d+n-2))
933 return;
934 data += 2;

936 if (data > (d+n-4))
937 return;
938 n2s(data,type);
939 n2s(data,size);

941 if (type != TLSEXT_TYPE_server_name)
942 return;

944 if (data+size > d+n)
945 return;
946 data += size;

948 if (TLS1_get_client_version(s) >= TLS1_2_VERSION)
949 {
950 const size_t len1 = sizeof(kSafariExtensionsBlock);
951 const size_t len2 = sizeof(kSafariTLS12ExtensionsBlock);

953 if (data + len1 + len2 != d+n)
954 return;
955 if (memcmp(data, kSafariExtensionsBlock, len1) != 0)
956 return;
957 if (memcmp(data + len1, kSafariTLS12ExtensionsBlock, len2) != 0)
958 return;
959 }
960 else
961 {
962 const size_t len = sizeof(kSafariExtensionsBlock);

964 if (data + len != d+n)
965 return;
966 if (memcmp(data, kSafariExtensionsBlock, len) != 0)
967 return;
968 }

970 s->s3->is_probably_safari = 1;
971 }
972 #endif /* !OPENSSL_NO_EC */

974 int ssl_parse_clienthello_tlsext(SSL *s, unsigned char **p, unsigned char *d, in
975 {
976 unsigned short type;
977 unsigned short size;
978 unsigned short len;
979 unsigned char *data = *p;
980 int renegotiate_seen = 0;
981 int sigalg_seen = 0;

983 s->servername_done = 0;
984 s->tlsext_status_type = -1;
985 #ifndef OPENSSL_NO_NEXTPROTONEG

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 16

986 s->s3->next_proto_neg_seen = 0;
987 #endif

989 #ifndef OPENSSL_NO_HEARTBEATS
990 s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED |
991 SSL_TLSEXT_HB_DONT_SEND_REQUESTS);
992 #endif

994 #ifndef OPENSSL_NO_EC
995 if (s->options & SSL_OP_SAFARI_ECDHE_ECDSA_BUG)
996 ssl_check_for_safari(s, data, d, n);
997 #endif /* !OPENSSL_NO_EC */

999 if (data >= (d+n-2))
1000 goto ri_check;
1001 n2s(data,len);

1003 if (data > (d+n-len))
1004 goto ri_check;

1006 while (data <= (d+n-4))
1007 {
1008 n2s(data,type);
1009 n2s(data,size);

1011 if (data+size > (d+n))
1012 goto ri_check;
1013 #if 0
1014 fprintf(stderr,"Received extension type %d size %d\n",type,size)
1015 #endif
1016 if (s->tlsext_debug_cb)
1017 s->tlsext_debug_cb(s, 0, type, data, size,
1018 s->tlsext_debug_arg);
1019 /* The servername extension is treated as follows:

1021 - Only the hostname type is supported with a maximum length of 255.
1022 - The servername is rejected if too long or if it contains zeros,
1023 in which case an fatal alert is generated.
1024 - The servername field is maintained together with the session cache.
1025 - When a session is resumed, the servername call back invoked in order
1026 to allow the application to position itself to the right context.
1027 - The servername is acknowledged if it is new for a session or when
1028 it is identical to a previously used for the same session.
1029 Applications can control the behaviour. They can at any time
1030 set a ’desirable’ servername for a new SSL object. This can be the
1031 case for example with HTTPS when a Host: header field is received and
1032 a renegotiation is requested. In this case, a possible servername
1033 presented in the new client hello is only acknowledged if it matches
1034 the value of the Host: field.
1035 - Applications must use SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
1036 if they provide for changing an explicit servername context for the session
1037 i.e. when the session has been established with a servername extension.
1038 - On session reconnect, the servername extension may be absent.

1040 */

1042 if (type == TLSEXT_TYPE_server_name)
1043 {
1044 unsigned char *sdata;
1045 int servname_type;
1046 int dsize;
1047
1048 if (size < 2)
1049 {
1050 *al = SSL_AD_DECODE_ERROR;
1051 return 0;

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 17

1052 }
1053 n2s(data,dsize);
1054 size -= 2;
1055 if (dsize > size)
1056 {
1057 *al = SSL_AD_DECODE_ERROR;
1058 return 0;
1059 }

1061 sdata = data;
1062 while (dsize > 3)
1063 {
1064 servname_type = *(sdata++);
1065 n2s(sdata,len);
1066 dsize -= 3;

1068 if (len > dsize)
1069 {
1070 *al = SSL_AD_DECODE_ERROR;
1071 return 0;
1072 }
1073 if (s->servername_done == 0)
1074 switch (servname_type)
1075 {
1076 case TLSEXT_NAMETYPE_host_name:
1077 if (!s->hit)
1078 {
1079 if(s->session->tlsext_hostname)
1080 {
1081 *al = SSL_AD_DECODE_ERRO
1082 return 0;
1083 }
1084 if (len > TLSEXT_MAXLEN_host_nam
1085 {
1086 *al = TLS1_AD_UNRECOGNIZ
1087 return 0;
1088 }
1089 if ((s->session->tlsext_hostname
1090 {
1091 *al = TLS1_AD_INTERNAL_E
1092 return 0;
1093 }
1094 memcpy(s->session->tlsext_hostna
1095 s->session->tlsext_hostname[len]
1096 if (strlen(s->session->tlsext_ho
1097 OPENSSL_free(s->session-
1098 s->session->tlsext_hostn
1099 *al = TLS1_AD_UNRECOGNIZ
1100 return 0;
1101 }
1102 s->servername_done = 1;

1104 }
1105 else
1106 s->servername_done = s->session-
1107 && strlen(s->session->tl
1108 && strncmp(s->session->t
1109
1110 break;

1112 default:
1113 break;
1114 }
1115
1116 dsize -= len;
1117 }

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 18

1118 if (dsize != 0)
1119 {
1120 *al = SSL_AD_DECODE_ERROR;
1121 return 0;
1122 }

1124 }
1125 #ifndef OPENSSL_NO_SRP
1126 else if (type == TLSEXT_TYPE_srp)
1127 {
1128 if (size <= 0 || ((len = data[0])) != (size -1))
1129 {
1130 *al = SSL_AD_DECODE_ERROR;
1131 return 0;
1132 }
1133 if (s->srp_ctx.login != NULL)
1134 {
1135 *al = SSL_AD_DECODE_ERROR;
1136 return 0;
1137 }
1138 if ((s->srp_ctx.login = OPENSSL_malloc(len+1)) == NULL)
1139 return -1;
1140 memcpy(s->srp_ctx.login, &data[1], len);
1141 s->srp_ctx.login[len]=’\0’;
1142
1143 if (strlen(s->srp_ctx.login) != len)
1144 {
1145 *al = SSL_AD_DECODE_ERROR;
1146 return 0;
1147 }
1148 }
1149 #endif

1151 #ifndef OPENSSL_NO_EC
1152 else if (type == TLSEXT_TYPE_ec_point_formats &&
1153 s->version != DTLS1_VERSION)
1154 {
1155 unsigned char *sdata = data;
1156 int ecpointformatlist_length = *(sdata++);

1158 if (ecpointformatlist_length != size - 1)
1159 {
1160 *al = TLS1_AD_DECODE_ERROR;
1161 return 0;
1162 }
1163 if (!s->hit)
1164 {
1165 if(s->session->tlsext_ecpointformatlist)
1166 {
1167 OPENSSL_free(s->session->tlsext_ecpointf
1168 s->session->tlsext_ecpointformatlist = N
1169 }
1170 s->session->tlsext_ecpointformatlist_length = 0;
1171 if ((s->session->tlsext_ecpointformatlist = OPEN
1172 {
1173 *al = TLS1_AD_INTERNAL_ERROR;
1174 return 0;
1175 }
1176 s->session->tlsext_ecpointformatlist_length = ec
1177 memcpy(s->session->tlsext_ecpointformatlist, sda
1178 }
1179 #if 0
1180 fprintf(stderr,"ssl_parse_clienthello_tlsext s->session-
1181 sdata = s->session->tlsext_ecpointformatlist;
1182 for (i = 0; i < s->session->tlsext_ecpointformatlist_len
1183 fprintf(stderr,"%i ",*(sdata++));

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 19

1184 fprintf(stderr,"\n");
1185 #endif
1186 }
1187 else if (type == TLSEXT_TYPE_elliptic_curves &&
1188 s->version != DTLS1_VERSION)
1189 {
1190 unsigned char *sdata = data;
1191 int ellipticcurvelist_length = (*(sdata++) << 8);
1192 ellipticcurvelist_length += (*(sdata++));

1194 if (ellipticcurvelist_length != size - 2 ||
1195 ellipticcurvelist_length < 1)
1196 {
1197 *al = TLS1_AD_DECODE_ERROR;
1198 return 0;
1199 }
1200 if (!s->hit)
1201 {
1202 if(s->session->tlsext_ellipticcurvelist)
1203 {
1204 *al = TLS1_AD_DECODE_ERROR;
1205 return 0;
1206 }
1207 s->session->tlsext_ellipticcurvelist_length = 0;
1208 if ((s->session->tlsext_ellipticcurvelist = OPEN
1209 {
1210 *al = TLS1_AD_INTERNAL_ERROR;
1211 return 0;
1212 }
1213 s->session->tlsext_ellipticcurvelist_length = el
1214 memcpy(s->session->tlsext_ellipticcurvelist, sda
1215 }
1216 #if 0
1217 fprintf(stderr,"ssl_parse_clienthello_tlsext s->session-
1218 sdata = s->session->tlsext_ellipticcurvelist;
1219 for (i = 0; i < s->session->tlsext_ellipticcurvelist_len
1220 fprintf(stderr,"%i ",*(sdata++));
1221 fprintf(stderr,"\n");
1222 #endif
1223 }
1224 #endif /* OPENSSL_NO_EC */
1225 #ifdef TLSEXT_TYPE_opaque_prf_input
1226 else if (type == TLSEXT_TYPE_opaque_prf_input &&
1227 s->version != DTLS1_VERSION)
1228 {
1229 unsigned char *sdata = data;

1231 if (size < 2)
1232 {
1233 *al = SSL_AD_DECODE_ERROR;
1234 return 0;
1235 }
1236 n2s(sdata, s->s3->client_opaque_prf_input_len);
1237 if (s->s3->client_opaque_prf_input_len != size - 2)
1238 {
1239 *al = SSL_AD_DECODE_ERROR;
1240 return 0;
1241 }

1243 if (s->s3->client_opaque_prf_input != NULL) /* shouldn’t
1244 OPENSSL_free(s->s3->client_opaque_prf_input);
1245 if (s->s3->client_opaque_prf_input_len == 0)
1246 s->s3->client_opaque_prf_input = OPENSSL_malloc(
1247 else
1248 s->s3->client_opaque_prf_input = BUF_memdup(sdat
1249 if (s->s3->client_opaque_prf_input == NULL)

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 20

1250 {
1251 *al = TLS1_AD_INTERNAL_ERROR;
1252 return 0;
1253 }
1254 }
1255 #endif
1256 else if (type == TLSEXT_TYPE_session_ticket)
1257 {
1258 if (s->tls_session_ticket_ext_cb &&
1259 !s->tls_session_ticket_ext_cb(s, data, size, s->tls_
1260 {
1261 *al = TLS1_AD_INTERNAL_ERROR;
1262 return 0;
1263 }
1264 }
1265 else if (type == TLSEXT_TYPE_renegotiate)
1266 {
1267 if(!ssl_parse_clienthello_renegotiate_ext(s, data, size,
1268 return 0;
1269 renegotiate_seen = 1;
1270 }
1271 else if (type == TLSEXT_TYPE_signature_algorithms)
1272 {
1273 int dsize;
1274 if (sigalg_seen || size < 2)
1275 {
1276 *al = SSL_AD_DECODE_ERROR;
1277 return 0;
1278 }
1279 sigalg_seen = 1;
1280 n2s(data,dsize);
1281 size -= 2;
1282 if (dsize != size || dsize & 1)
1283 {
1284 *al = SSL_AD_DECODE_ERROR;
1285 return 0;
1286 }
1287 if (!tls1_process_sigalgs(s, data, dsize))
1288 {
1289 *al = SSL_AD_DECODE_ERROR;
1290 return 0;
1291 }
1292 }
1293 else if (type == TLSEXT_TYPE_status_request &&
1294 s->version != DTLS1_VERSION)
1295 {
1296
1297 if (size < 5)
1298 {
1299 *al = SSL_AD_DECODE_ERROR;
1300 return 0;
1301 }

1303 s->tlsext_status_type = *data++;
1304 size--;
1305 if (s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp)
1306 {
1307 const unsigned char *sdata;
1308 int dsize;
1309 /* Read in responder_id_list */
1310 n2s(data,dsize);
1311 size -= 2;
1312 if (dsize > size)
1313 {
1314 *al = SSL_AD_DECODE_ERROR;
1315 return 0;

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 21

1316 }
1317 while (dsize > 0)
1318 {
1319 OCSP_RESPID *id;
1320 int idsize;
1321 if (dsize < 4)
1322 {
1323 *al = SSL_AD_DECODE_ERROR;
1324 return 0;
1325 }
1326 n2s(data, idsize);
1327 dsize -= 2 + idsize;
1328 size -= 2 + idsize;
1329 if (dsize < 0)
1330 {
1331 *al = SSL_AD_DECODE_ERROR;
1332 return 0;
1333 }
1334 sdata = data;
1335 data += idsize;
1336 id = d2i_OCSP_RESPID(NULL,
1337 &sdata, idsize);
1338 if (!id)
1339 {
1340 *al = SSL_AD_DECODE_ERROR;
1341 return 0;
1342 }
1343 if (data != sdata)
1344 {
1345 OCSP_RESPID_free(id);
1346 *al = SSL_AD_DECODE_ERROR;
1347 return 0;
1348 }
1349 if (!s->tlsext_ocsp_ids
1350 && !(s->tlsext_ocsp_ids =
1351 sk_OCSP_RESPID_new_null()))
1352 {
1353 OCSP_RESPID_free(id);
1354 *al = SSL_AD_INTERNAL_ERROR;
1355 return 0;
1356 }
1357 if (!sk_OCSP_RESPID_push(
1358 s->tlsext_ocsp_ids, id))
1359 {
1360 OCSP_RESPID_free(id);
1361 *al = SSL_AD_INTERNAL_ERROR;
1362 return 0;
1363 }
1364 }

1366 /* Read in request_extensions */
1367 if (size < 2)
1368 {
1369 *al = SSL_AD_DECODE_ERROR;
1370 return 0;
1371 }
1372 n2s(data,dsize);
1373 size -= 2;
1374 if (dsize != size)
1375 {
1376 *al = SSL_AD_DECODE_ERROR;
1377 return 0;
1378 }
1379 sdata = data;
1380 if (dsize > 0)
1381 {

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 22

1382 if (s->tlsext_ocsp_exts)
1383 {
1384 sk_X509_EXTENSION_pop_free(s->tl
1385 X509_
1386 }

1388 s->tlsext_ocsp_exts =
1389 d2i_X509_EXTENSIONS(NULL,
1390 &sdata, dsize);
1391 if (!s->tlsext_ocsp_exts
1392 || (data + dsize != sdata))
1393 {
1394 *al = SSL_AD_DECODE_ERROR;
1395 return 0;
1396 }
1397 }
1398 }
1399 /* We don’t know what to do with any other type
1400 * so ignore it.
1401 */
1402 else
1403 s->tlsext_status_type = -1;
1404 }
1405 #ifndef OPENSSL_NO_HEARTBEATS
1406 else if (type == TLSEXT_TYPE_heartbeat)
1407 {
1408 switch(data[0])
1409 {
1410 case 0x01: /* Client allows us to send HB r
1411 s->tlsext_heartbeat |= S
1412 break;
1413 case 0x02: /* Client doesn’t accept HB requ
1414 s->tlsext_heartbeat |= S
1415 s->tlsext_heartbeat |= S
1416 break;
1417 default: *al = SSL_AD_ILLEGAL_PARAMETER;
1418 return 0;
1419 }
1420 }
1421 #endif
1422 #ifndef OPENSSL_NO_NEXTPROTONEG
1423 else if (type == TLSEXT_TYPE_next_proto_neg &&
1424 s->s3->tmp.finish_md_len == 0)
1425 {
1426 /* We shouldn’t accept this extension on a
1427 * renegotiation.
1428 *
1429 * s->new_session will be set on renegotiation, but we
1430 * probably shouldn’t rely that it couldn’t be set on
1431 * the initial renegotation too in certain cases (when
1432 * there’s some other reason to disallow resuming an
1433 * earlier session -- the current code won’t be doing
1434 * anything like that, but this might change).

1436 * A valid sign that there’s been a previous handshake
1437 * in this connection is if s->s3->tmp.finish_md_len >
1438 * 0. (We are talking about a check that will happen
1439 * in the Hello protocol round, well before a new
1440 * Finished message could have been computed.) */
1441 s->s3->next_proto_neg_seen = 1;
1442 }
1443 #endif

1445 /* session ticket processed earlier */
1446 #ifndef OPENSSL_NO_SRTP
1447 else if (type == TLSEXT_TYPE_use_srtp)

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 23

1448 {
1449 if(ssl_parse_clienthello_use_srtp_ext(s, data, size,
1450 al))
1451 return 0;
1452 }
1453 #endif

1455 data+=size;
1456 }
1457
1458 *p = data;

1460 ri_check:

1462 /* Need RI if renegotiating */

1464 if (!renegotiate_seen && s->renegotiate &&
1465 !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION))
1466 {
1467 *al = SSL_AD_HANDSHAKE_FAILURE;
1468 SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_TLSEXT,
1469 SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
1470 return 0;
1471 }

1473 return 1;
1474 }

1476 #ifndef OPENSSL_NO_NEXTPROTONEG
1477 /* ssl_next_proto_validate validates a Next Protocol Negotiation block. No
1478 * elements of zero length are allowed and the set of elements must exactly fill
1479 * the length of the block. */
1480 static char ssl_next_proto_validate(unsigned char *d, unsigned len)
1481 {
1482 unsigned int off = 0;

1484 while (off < len)
1485 {
1486 if (d[off] == 0)
1487 return 0;
1488 off += d[off];
1489 off++;
1490 }

1492 return off == len;
1493 }
1494 #endif

1496 int ssl_parse_serverhello_tlsext(SSL *s, unsigned char **p, unsigned char *d, in
1497 {
1498 unsigned short length;
1499 unsigned short type;
1500 unsigned short size;
1501 unsigned char *data = *p;
1502 int tlsext_servername = 0;
1503 int renegotiate_seen = 0;

1505 #ifndef OPENSSL_NO_NEXTPROTONEG
1506 s->s3->next_proto_neg_seen = 0;
1507 #endif

1509 #ifndef OPENSSL_NO_HEARTBEATS
1510 s->tlsext_heartbeat &= ~(SSL_TLSEXT_HB_ENABLED |
1511 SSL_TLSEXT_HB_DONT_SEND_REQUESTS);
1512 #endif

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 24

1514 if (data >= (d+n-2))
1515 goto ri_check;

1517 n2s(data,length);
1518 if (data+length != d+n)
1519 {
1520 *al = SSL_AD_DECODE_ERROR;
1521 return 0;
1522 }

1524 while(data <= (d+n-4))
1525 {
1526 n2s(data,type);
1527 n2s(data,size);

1529 if (data+size > (d+n))
1530 goto ri_check;

1532 if (s->tlsext_debug_cb)
1533 s->tlsext_debug_cb(s, 1, type, data, size,
1534 s->tlsext_debug_arg);

1536 if (type == TLSEXT_TYPE_server_name)
1537 {
1538 if (s->tlsext_hostname == NULL || size > 0)
1539 {
1540 *al = TLS1_AD_UNRECOGNIZED_NAME;
1541 return 0;
1542 }
1543 tlsext_servername = 1;
1544 }

1546 #ifndef OPENSSL_NO_EC
1547 else if (type == TLSEXT_TYPE_ec_point_formats &&
1548 s->version != DTLS1_VERSION)
1549 {
1550 unsigned char *sdata = data;
1551 int ecpointformatlist_length = *(sdata++);

1553 if (ecpointformatlist_length != size - 1 ||
1554 ecpointformatlist_length < 1)
1555 {
1556 *al = TLS1_AD_DECODE_ERROR;
1557 return 0;
1558 }
1559 s->session->tlsext_ecpointformatlist_length = 0;
1560 if (s->session->tlsext_ecpointformatlist != NULL) OPENSS
1561 if ((s->session->tlsext_ecpointformatlist = OPENSSL_mall
1562 {
1563 *al = TLS1_AD_INTERNAL_ERROR;
1564 return 0;
1565 }
1566 s->session->tlsext_ecpointformatlist_length = ecpointfor
1567 memcpy(s->session->tlsext_ecpointformatlist, sdata, ecpo
1568 #if 0
1569 fprintf(stderr,"ssl_parse_serverhello_tlsext s->session-
1570 sdata = s->session->tlsext_ecpointformatlist;
1571 for (i = 0; i < s->session->tlsext_ecpointformatlist_len
1572 fprintf(stderr,"%i ",*(sdata++));
1573 fprintf(stderr,"\n");
1574 #endif
1575 }
1576 #endif /* OPENSSL_NO_EC */

1578 else if (type == TLSEXT_TYPE_session_ticket)
1579 {

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 25

1580 if (s->tls_session_ticket_ext_cb &&
1581 !s->tls_session_ticket_ext_cb(s, data, size, s->tls_
1582 {
1583 *al = TLS1_AD_INTERNAL_ERROR;
1584 return 0;
1585 }
1586 if ((SSL_get_options(s) & SSL_OP_NO_TICKET)
1587 || (size > 0))
1588 {
1589 *al = TLS1_AD_UNSUPPORTED_EXTENSION;
1590 return 0;
1591 }
1592 s->tlsext_ticket_expected = 1;
1593 }
1594 #ifdef TLSEXT_TYPE_opaque_prf_input
1595 else if (type == TLSEXT_TYPE_opaque_prf_input &&
1596 s->version != DTLS1_VERSION)
1597 {
1598 unsigned char *sdata = data;

1600 if (size < 2)
1601 {
1602 *al = SSL_AD_DECODE_ERROR;
1603 return 0;
1604 }
1605 n2s(sdata, s->s3->server_opaque_prf_input_len);
1606 if (s->s3->server_opaque_prf_input_len != size - 2)
1607 {
1608 *al = SSL_AD_DECODE_ERROR;
1609 return 0;
1610 }
1611
1612 if (s->s3->server_opaque_prf_input != NULL) /* shouldn’t
1613 OPENSSL_free(s->s3->server_opaque_prf_input);
1614 if (s->s3->server_opaque_prf_input_len == 0)
1615 s->s3->server_opaque_prf_input = OPENSSL_malloc(
1616 else
1617 s->s3->server_opaque_prf_input = BUF_memdup(sdat

1619 if (s->s3->server_opaque_prf_input == NULL)
1620 {
1621 *al = TLS1_AD_INTERNAL_ERROR;
1622 return 0;
1623 }
1624 }
1625 #endif
1626 else if (type == TLSEXT_TYPE_status_request &&
1627 s->version != DTLS1_VERSION)
1628 {
1629 /* MUST be empty and only sent if we’ve requested
1630 * a status request message.
1631 */
1632 if ((s->tlsext_status_type == -1) || (size > 0))
1633 {
1634 *al = TLS1_AD_UNSUPPORTED_EXTENSION;
1635 return 0;
1636 }
1637 /* Set flag to expect CertificateStatus message */
1638 s->tlsext_status_expected = 1;
1639 }
1640 #ifndef OPENSSL_NO_NEXTPROTONEG
1641 else if (type == TLSEXT_TYPE_next_proto_neg &&
1642 s->s3->tmp.finish_md_len == 0)
1643 {
1644 unsigned char *selected;
1645 unsigned char selected_len;

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 26

1647 /* We must have requested it. */
1648 if (s->ctx->next_proto_select_cb == NULL)
1649 {
1650 *al = TLS1_AD_UNSUPPORTED_EXTENSION;
1651 return 0;
1652 }
1653 /* The data must be valid */
1654 if (!ssl_next_proto_validate(data, size))
1655 {
1656 *al = TLS1_AD_DECODE_ERROR;
1657 return 0;
1658 }
1659 if (s->ctx->next_proto_select_cb(s, &selected, &selected
1660 {
1661 *al = TLS1_AD_INTERNAL_ERROR;
1662 return 0;
1663 }
1664 s->next_proto_negotiated = OPENSSL_malloc(selected_len);
1665 if (!s->next_proto_negotiated)
1666 {
1667 *al = TLS1_AD_INTERNAL_ERROR;
1668 return 0;
1669 }
1670 memcpy(s->next_proto_negotiated, selected, selected_len)
1671 s->next_proto_negotiated_len = selected_len;
1672 s->s3->next_proto_neg_seen = 1;
1673 }
1674 #endif
1675 else if (type == TLSEXT_TYPE_renegotiate)
1676 {
1677 if(!ssl_parse_serverhello_renegotiate_ext(s, data, size,
1678 return 0;
1679 renegotiate_seen = 1;
1680 }
1681 #ifndef OPENSSL_NO_HEARTBEATS
1682 else if (type == TLSEXT_TYPE_heartbeat)
1683 {
1684 switch(data[0])
1685 {
1686 case 0x01: /* Server allows us to send HB r
1687 s->tlsext_heartbeat |= S
1688 break;
1689 case 0x02: /* Server doesn’t accept HB requ
1690 s->tlsext_heartbeat |= S
1691 s->tlsext_heartbeat |= S
1692 break;
1693 default: *al = SSL_AD_ILLEGAL_PARAMETER;
1694 return 0;
1695 }
1696 }
1697 #endif
1698 #ifndef OPENSSL_NO_SRTP
1699 else if (type == TLSEXT_TYPE_use_srtp)
1700 {
1701 if(ssl_parse_serverhello_use_srtp_ext(s, data, size,
1702 al))
1703 return 0;
1704 }
1705 #endif

1707 data+=size;
1708 }

1710 if (data != d+n)
1711 {

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 27

1712 *al = SSL_AD_DECODE_ERROR;
1713 return 0;
1714 }

1716 if (!s->hit && tlsext_servername == 1)
1717 {
1718 if (s->tlsext_hostname)
1719 {
1720 if (s->session->tlsext_hostname == NULL)
1721 {
1722 s->session->tlsext_hostname = BUF_strdup(s->tlse
1723 if (!s->session->tlsext_hostname)
1724 {
1725 *al = SSL_AD_UNRECOGNIZED_NAME;
1726 return 0;
1727 }
1728 }
1729 else
1730 {
1731 *al = SSL_AD_DECODE_ERROR;
1732 return 0;
1733 }
1734 }
1735 }

1737 *p = data;

1739 ri_check:

1741 /* Determine if we need to see RI. Strictly speaking if we want to
1742 * avoid an attack we should *always* see RI even on initial server
1743 * hello because the client doesn’t see any renegotiation during an
1744 * attack. However this would mean we could not connect to any server
1745 * which doesn’t support RI so for the immediate future tolerate RI
1746 * absence on initial connect only.
1747 */
1748 if (!renegotiate_seen
1749 && !(s->options & SSL_OP_LEGACY_SERVER_CONNECT)
1750 && !(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION))
1751 {
1752 *al = SSL_AD_HANDSHAKE_FAILURE;
1753 SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_TLSEXT,
1754 SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
1755 return 0;
1756 }

1758 return 1;
1759 }

1762 int ssl_prepare_clienthello_tlsext(SSL *s)
1763 {
1764 #ifndef OPENSSL_NO_EC
1765 /* If we are client and using an elliptic curve cryptography cipher suit
1766 * and elliptic curves we support.
1767 */
1768 int using_ecc = 0;
1769 int i;
1770 unsigned char *j;
1771 unsigned long alg_k, alg_a;
1772 STACK_OF(SSL_CIPHER) *cipher_stack = SSL_get_ciphers(s);

1774 for (i = 0; i < sk_SSL_CIPHER_num(cipher_stack); i++)
1775 {
1776 SSL_CIPHER *c = sk_SSL_CIPHER_value(cipher_stack, i);

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 28

1778 alg_k = c->algorithm_mkey;
1779 alg_a = c->algorithm_auth;
1780 if ((alg_k & (SSL_kEECDH|SSL_kECDHr|SSL_kECDHe) || (alg_a & SSL_
1781 {
1782 using_ecc = 1;
1783 break;
1784 }
1785 }
1786 using_ecc = using_ecc && (s->version >= TLS1_VERSION);
1787 if (using_ecc)
1788 {
1789 if (s->tlsext_ecpointformatlist != NULL) OPENSSL_free(s->tlsext_
1790 if ((s->tlsext_ecpointformatlist = OPENSSL_malloc(3)) == NULL)
1791 {
1792 SSLerr(SSL_F_SSL_PREPARE_CLIENTHELLO_TLSEXT,ERR_R_MALLOC
1793 return -1;
1794 }
1795 s->tlsext_ecpointformatlist_length = 3;
1796 s->tlsext_ecpointformatlist[0] = TLSEXT_ECPOINTFORMAT_uncompress
1797 s->tlsext_ecpointformatlist[1] = TLSEXT_ECPOINTFORMAT_ansiX962_c
1798 s->tlsext_ecpointformatlist[2] = TLSEXT_ECPOINTFORMAT_ansiX962_c

1800 /* we support all named elliptic curves in draft-ietf-tls-ecc-12
1801 if (s->tlsext_ellipticcurvelist != NULL) OPENSSL_free(s->tlsext_
1802 s->tlsext_ellipticcurvelist_length = sizeof(pref_list)/sizeof(pr
1803 if ((s->tlsext_ellipticcurvelist = OPENSSL_malloc(s->tlsext_elli
1804 {
1805 s->tlsext_ellipticcurvelist_length = 0;
1806 SSLerr(SSL_F_SSL_PREPARE_CLIENTHELLO_TLSEXT,ERR_R_MALLOC
1807 return -1;
1808 }
1809 for (i = 0, j = s->tlsext_ellipticcurvelist; (unsigned int)i <
1810 sizeof(pref_list)/sizeof(pref_list[0]); i++)
1811 {
1812 int id = tls1_ec_nid2curve_id(pref_list[i]);
1813 s2n(id,j);
1814 }
1815 }
1816 #endif /* OPENSSL_NO_EC */

1818 #ifdef TLSEXT_TYPE_opaque_prf_input
1819 {
1820 int r = 1;
1821
1822 if (s->ctx->tlsext_opaque_prf_input_callback != 0)
1823 {
1824 r = s->ctx->tlsext_opaque_prf_input_callback(s, NULL, 0,
1825 if (!r)
1826 return -1;
1827 }

1829 if (s->tlsext_opaque_prf_input != NULL)
1830 {
1831 if (s->s3->client_opaque_prf_input != NULL) /* shouldn’t
1832 OPENSSL_free(s->s3->client_opaque_prf_input);

1834 if (s->tlsext_opaque_prf_input_len == 0)
1835 s->s3->client_opaque_prf_input = OPENSSL_malloc(
1836 else
1837 s->s3->client_opaque_prf_input = BUF_memdup(s->t
1838 if (s->s3->client_opaque_prf_input == NULL)
1839 {
1840 SSLerr(SSL_F_SSL_PREPARE_CLIENTHELLO_TLSEXT,ERR_
1841 return -1;
1842 }
1843 s->s3->client_opaque_prf_input_len = s->tlsext_opaque_pr

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 29

1844 }

1846 if (r == 2)
1847 /* at callback’s request, insist on receiving an appropr
1848 s->s3->server_opaque_prf_input_len = s->tlsext_opaque_pr
1849 }
1850 #endif

1852 return 1;
1853 }

1855 int ssl_prepare_serverhello_tlsext(SSL *s)
1856 {
1857 #ifndef OPENSSL_NO_EC
1858 /* If we are server and using an ECC cipher suite, send the point format
1859 * if the client sent us an ECPointsFormat extension. Note that the ser
1860 * supposed to send an EllipticCurves extension.
1861 */

1863 unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
1864 unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth;
1865 int using_ecc = (alg_k & (SSL_kEECDH|SSL_kECDHr|SSL_kECDHe)) || (alg_a &
1866 using_ecc = using_ecc && (s->session->tlsext_ecpointformatlist != NULL);
1867
1868 if (using_ecc)
1869 {
1870 if (s->tlsext_ecpointformatlist != NULL) OPENSSL_free(s->tlsext_
1871 if ((s->tlsext_ecpointformatlist = OPENSSL_malloc(3)) == NULL)
1872 {
1873 SSLerr(SSL_F_SSL_PREPARE_SERVERHELLO_TLSEXT,ERR_R_MALLOC
1874 return -1;
1875 }
1876 s->tlsext_ecpointformatlist_length = 3;
1877 s->tlsext_ecpointformatlist[0] = TLSEXT_ECPOINTFORMAT_uncompress
1878 s->tlsext_ecpointformatlist[1] = TLSEXT_ECPOINTFORMAT_ansiX962_c
1879 s->tlsext_ecpointformatlist[2] = TLSEXT_ECPOINTFORMAT_ansiX962_c
1880 }
1881 #endif /* OPENSSL_NO_EC */

1883 return 1;
1884 }

1886 int ssl_check_clienthello_tlsext_early(SSL *s)
1887 {
1888 int ret=SSL_TLSEXT_ERR_NOACK;
1889 int al = SSL_AD_UNRECOGNIZED_NAME;

1891 #ifndef OPENSSL_NO_EC
1892 /* The handling of the ECPointFormats extension is done elsewhere, namel
1893 * ssl3_choose_cipher in s3_lib.c.
1894 */
1895 /* The handling of the EllipticCurves extension is done elsewhere, namel
1896 * ssl3_choose_cipher in s3_lib.c.
1897 */
1898 #endif

1900 if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0)
1901 ret = s->ctx->tlsext_servername_callback(s, &al, s->ctx->tlsext_
1902 else if (s->initial_ctx != NULL && s->initial_ctx->tlsext_servername_cal
1903 ret = s->initial_ctx->tlsext_servername_callback(s, &al, s->init

1905 #ifdef TLSEXT_TYPE_opaque_prf_input
1906 {
1907 /* This sort of belongs into ssl_prepare_serverhello_tlsext(),
1908 * but we might be sending an alert in response to the client he
1909 * so this has to happen here in

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 30

1910 * ssl_check_clienthello_tlsext_early(). */

1912 int r = 1;
1913
1914 if (s->ctx->tlsext_opaque_prf_input_callback != 0)
1915 {
1916 r = s->ctx->tlsext_opaque_prf_input_callback(s, NULL, 0,
1917 if (!r)
1918 {
1919 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
1920 al = SSL_AD_INTERNAL_ERROR;
1921 goto err;
1922 }
1923 }

1925 if (s->s3->server_opaque_prf_input != NULL) /* shouldn’t really
1926 OPENSSL_free(s->s3->server_opaque_prf_input);
1927 s->s3->server_opaque_prf_input = NULL;

1929 if (s->tlsext_opaque_prf_input != NULL)
1930 {
1931 if (s->s3->client_opaque_prf_input != NULL &&
1932 s->s3->client_opaque_prf_input_len == s->tlsext_
1933 {
1934 /* can only use this extension if we have a serv
1935 * of the same length as the client opaque PRF i

1937 if (s->tlsext_opaque_prf_input_len == 0)
1938 s->s3->server_opaque_prf_input = OPENSSL
1939 else
1940 s->s3->server_opaque_prf_input = BUF_mem
1941 if (s->s3->server_opaque_prf_input == NULL)
1942 {
1943 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
1944 al = SSL_AD_INTERNAL_ERROR;
1945 goto err;
1946 }
1947 s->s3->server_opaque_prf_input_len = s->tlsext_o
1948 }
1949 }

1951 if (r == 2 && s->s3->server_opaque_prf_input == NULL)
1952 {
1953 /* The callback wants to enforce use of the extension,
1954 * but we can’t do that with the client opaque PRF input
1955 * abort the handshake.
1956 */
1957 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
1958 al = SSL_AD_HANDSHAKE_FAILURE;
1959 }
1960 }

1962 err:
1963 #endif
1964 switch (ret)
1965 {
1966 case SSL_TLSEXT_ERR_ALERT_FATAL:
1967 ssl3_send_alert(s,SSL3_AL_FATAL,al);
1968 return -1;

1970 case SSL_TLSEXT_ERR_ALERT_WARNING:
1971 ssl3_send_alert(s,SSL3_AL_WARNING,al);
1972 return 1;
1973
1974 case SSL_TLSEXT_ERR_NOACK:
1975 s->servername_done=0;

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 31

1976 default:
1977 return 1;
1978 }
1979 }

1981 int ssl_check_clienthello_tlsext_late(SSL *s)
1982 {
1983 int ret = SSL_TLSEXT_ERR_OK;
1984 int al;

1986 /* If status request then ask callback what to do.
1987 * Note: this must be called after servername callbacks in case
1988 * the certificate has changed, and must be called after the cipher
1989 * has been chosen because this may influence which certificate is sent
1990 */
1991 if ((s->tlsext_status_type != -1) && s->ctx && s->ctx->tlsext_status_cb)
1992 {
1993 int r;
1994 CERT_PKEY *certpkey;
1995 certpkey = ssl_get_server_send_pkey(s);
1996 /* If no certificate can’t return certificate status */
1997 if (certpkey == NULL)
1998 {
1999 s->tlsext_status_expected = 0;
2000 return 1;
2001 }
2002 /* Set current certificate to one we will use so
2003 * SSL_get_certificate et al can pick it up.
2004 */
2005 s->cert->key = certpkey;
2006 r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg);
2007 switch (r)
2008 {
2009 /* We don’t want to send a status request response */
2010 case SSL_TLSEXT_ERR_NOACK:
2011 s->tlsext_status_expected = 0;
2012 break;
2013 /* status request response should be sent */
2014 case SSL_TLSEXT_ERR_OK:
2015 if (s->tlsext_ocsp_resp)
2016 s->tlsext_status_expected = 1;
2017 else
2018 s->tlsext_status_expected = 0;
2019 break;
2020 /* something bad happened */
2021 case SSL_TLSEXT_ERR_ALERT_FATAL:
2022 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
2023 al = SSL_AD_INTERNAL_ERROR;
2024 goto err;
2025 }
2026 }
2027 else
2028 s->tlsext_status_expected = 0;

2030 err:
2031 switch (ret)
2032 {
2033 case SSL_TLSEXT_ERR_ALERT_FATAL:
2034 ssl3_send_alert(s,SSL3_AL_FATAL,al);
2035 return -1;

2037 case SSL_TLSEXT_ERR_ALERT_WARNING:
2038 ssl3_send_alert(s,SSL3_AL_WARNING,al);
2039 return 1;

2041 default:

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 32

2042 return 1;
2043 }
2044 }

2046 int ssl_check_serverhello_tlsext(SSL *s)
2047 {
2048 int ret=SSL_TLSEXT_ERR_NOACK;
2049 int al = SSL_AD_UNRECOGNIZED_NAME;

2051 #ifndef OPENSSL_NO_EC
2052 /* If we are client and using an elliptic curve cryptography cipher
2053 * suite, then if server returns an EC point formats lists extension
2054 * it must contain uncompressed.
2055 */
2056 unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
2057 unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth;
2058 if ((s->tlsext_ecpointformatlist != NULL) && (s->tlsext_ecpointformatlis
2059 (s->session->tlsext_ecpointformatlist != NULL) && (s->session->tlsex
2060 ((alg_k & (SSL_kEECDH|SSL_kECDHr|SSL_kECDHe)) || (alg_a & SSL_aECDSA
2061 {
2062 /* we are using an ECC cipher */
2063 size_t i;
2064 unsigned char *list;
2065 int found_uncompressed = 0;
2066 list = s->session->tlsext_ecpointformatlist;
2067 for (i = 0; i < s->session->tlsext_ecpointformatlist_length; i++
2068 {
2069 if (*(list++) == TLSEXT_ECPOINTFORMAT_uncompressed)
2070 {
2071 found_uncompressed = 1;
2072 break;
2073 }
2074 }
2075 if (!found_uncompressed)
2076 {
2077 SSLerr(SSL_F_SSL_CHECK_SERVERHELLO_TLSEXT,SSL_R_TLS_INVA
2078 return -1;
2079 }
2080 }
2081 ret = SSL_TLSEXT_ERR_OK;
2082 #endif /* OPENSSL_NO_EC */

2084 if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0)
2085 ret = s->ctx->tlsext_servername_callback(s, &al, s->ctx->tlsext_
2086 else if (s->initial_ctx != NULL && s->initial_ctx->tlsext_servername_cal
2087 ret = s->initial_ctx->tlsext_servername_callback(s, &al, s->init

2089 #ifdef TLSEXT_TYPE_opaque_prf_input
2090 if (s->s3->server_opaque_prf_input_len > 0)
2091 {
2092 /* This case may indicate that we, as a client, want to insist o
2093 * So first verify that we really have a value from the server t

2095 if (s->s3->server_opaque_prf_input == NULL)
2096 {
2097 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
2098 al = SSL_AD_HANDSHAKE_FAILURE;
2099 }
2100
2101 /* Anytime the server *has* sent an opaque PRF input, we need to
2102 * that we have a client opaque PRF input of the same size. */
2103 if (s->s3->client_opaque_prf_input == NULL ||
2104 s->s3->client_opaque_prf_input_len != s->s3->server_opaque_p
2105 {
2106 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
2107 al = SSL_AD_ILLEGAL_PARAMETER;

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 33

2108 }
2109 }
2110 #endif

2112 /* If we’ve requested certificate status and we wont get one
2113 * tell the callback
2114 */
2115 if ((s->tlsext_status_type != -1) && !(s->tlsext_status_expected)
2116 && s->ctx && s->ctx->tlsext_status_cb)
2117 {
2118 int r;
2119 /* Set resp to NULL, resplen to -1 so callback knows
2120 * there is no response.
2121 */
2122 if (s->tlsext_ocsp_resp)
2123 {
2124 OPENSSL_free(s->tlsext_ocsp_resp);
2125 s->tlsext_ocsp_resp = NULL;
2126 }
2127 s->tlsext_ocsp_resplen = -1;
2128 r = s->ctx->tlsext_status_cb(s, s->ctx->tlsext_status_arg);
2129 if (r == 0)
2130 {
2131 al = SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE;
2132 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
2133 }
2134 if (r < 0)
2135 {
2136 al = SSL_AD_INTERNAL_ERROR;
2137 ret = SSL_TLSEXT_ERR_ALERT_FATAL;
2138 }
2139 }

2141 switch (ret)
2142 {
2143 case SSL_TLSEXT_ERR_ALERT_FATAL:
2144 ssl3_send_alert(s,SSL3_AL_FATAL,al);
2145 return -1;

2147 case SSL_TLSEXT_ERR_ALERT_WARNING:
2148 ssl3_send_alert(s,SSL3_AL_WARNING,al);
2149 return 1;
2150
2151 case SSL_TLSEXT_ERR_NOACK:
2152 s->servername_done=0;
2153 default:
2154 return 1;
2155 }
2156 }

2158 /* Since the server cache lookup is done early on in the processing of the
2159 * ClientHello, and other operations depend on the result, we need to handle
2160 * any TLS session ticket extension at the same time.
2161 *
2162 * session_id: points at the session ID in the ClientHello. This code will
2163 * read past the end of this in order to parse out the session ticket
2164 * extension, if any.
2165 * len: the length of the session ID.
2166 * limit: a pointer to the first byte after the ClientHello.
2167 * ret: (output) on return, if a ticket was decrypted, then this is set to
2168 * point to the resulting session.
2169 *
2170 * If s->tls_session_secret_cb is set then we are expecting a pre-shared key
2171 * ciphersuite, in which case we have no use for session tickets and one will
2172 * never be decrypted, nor will s->tlsext_ticket_expected be set to 1.
2173 *

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 34

2174 * Returns:
2175 * -1: fatal error, either from parsing or decrypting the ticket.
2176 * 0: no ticket was found (or was ignored, based on settings).
2177 * 1: a zero length extension was found, indicating that the client supports
2178 * session tickets but doesn’t currently have one to offer.
2179 * 2: either s->tls_session_secret_cb was set, or a ticket was offered but
2180 * couldn’t be decrypted because of a non-fatal error.
2181 * 3: a ticket was successfully decrypted and *ret was set.
2182 *
2183 * Side effects:
2184 * Sets s->tlsext_ticket_expected to 1 if the server will have to issue
2185 * a new session ticket to the client because the client indicated support
2186 * (and s->tls_session_secret_cb is NULL) but the client either doesn’t have
2187 * a session ticket or we couldn’t use the one it gave us, or if
2188 * s->ctx->tlsext_ticket_key_cb asked to renew the client’s ticket.
2189 * Otherwise, s->tlsext_ticket_expected is set to 0.
2190 */
2191 int tls1_process_ticket(SSL *s, unsigned char *session_id, int len,
2192 const unsigned char *limit, SSL_SESSION **ret)
2193 {
2194 /* Point after session ID in client hello */
2195 const unsigned char *p = session_id + len;
2196 unsigned short i;

2198 *ret = NULL;
2199 s->tlsext_ticket_expected = 0;

2201 /* If tickets disabled behave as if no ticket present
2202 * to permit stateful resumption.
2203 */
2204 if (SSL_get_options(s) & SSL_OP_NO_TICKET)
2205 return 0;
2206 if ((s->version <= SSL3_VERSION) || !limit)
2207 return 0;
2208 if (p >= limit)
2209 return -1;
2210 /* Skip past DTLS cookie */
2211 if (s->version == DTLS1_VERSION || s->version == DTLS1_BAD_VER)
2212 {
2213 i = *(p++);
2214 p+= i;
2215 if (p >= limit)
2216 return -1;
2217 }
2218 /* Skip past cipher list */
2219 n2s(p, i);
2220 p+= i;
2221 if (p >= limit)
2222 return -1;
2223 /* Skip past compression algorithm list */
2224 i = *(p++);
2225 p += i;
2226 if (p > limit)
2227 return -1;
2228 /* Now at start of extensions */
2229 if ((p + 2) >= limit)
2230 return 0;
2231 n2s(p, i);
2232 while ((p + 4) <= limit)
2233 {
2234 unsigned short type, size;
2235 n2s(p, type);
2236 n2s(p, size);
2237 if (p + size > limit)
2238 return 0;
2239 if (type == TLSEXT_TYPE_session_ticket)

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 35

2240 {
2241 int r;
2242 if (size == 0)
2243 {
2244 /* The client will accept a ticket but doesn’t
2245 * currently have one. */
2246 s->tlsext_ticket_expected = 1;
2247 return 1;
2248 }
2249 if (s->tls_session_secret_cb)
2250 {
2251 /* Indicate that the ticket couldn’t be
2252 * decrypted rather than generating the session
2253 * from ticket now, trigger abbreviated
2254 * handshake based on external mechanism to
2255 * calculate the master secret later. */
2256 return 2;
2257 }
2258 r = tls_decrypt_ticket(s, p, size, session_id, len, ret)
2259 switch (r)
2260 {
2261 case 2: /* ticket couldn’t be decrypted */
2262 s->tlsext_ticket_expected = 1;
2263 return 2;
2264 case 3: /* ticket was decrypted */
2265 return r;
2266 case 4: /* ticket decrypted but need to renew */
2267 s->tlsext_ticket_expected = 1;
2268 return 3;
2269 default: /* fatal error */
2270 return -1;
2271 }
2272 }
2273 p += size;
2274 }
2275 return 0;
2276 }

2278 /* tls_decrypt_ticket attempts to decrypt a session ticket.
2279 *
2280 * etick: points to the body of the session ticket extension.
2281 * eticklen: the length of the session tickets extenion.
2282 * sess_id: points at the session ID.
2283 * sesslen: the length of the session ID.
2284 * psess: (output) on return, if a ticket was decrypted, then this is set to
2285 * point to the resulting session.
2286 *
2287 * Returns:
2288 * -1: fatal error, either from parsing or decrypting the ticket.
2289 * 2: the ticket couldn’t be decrypted.
2290 * 3: a ticket was successfully decrypted and *psess was set.
2291 * 4: same as 3, but the ticket needs to be renewed.
2292 */
2293 static int tls_decrypt_ticket(SSL *s, const unsigned char *etick, int eticklen,
2294 const unsigned char *sess_id, int sesslen,
2295 SSL_SESSION **psess)
2296 {
2297 SSL_SESSION *sess;
2298 unsigned char *sdec;
2299 const unsigned char *p;
2300 int slen, mlen, renew_ticket = 0;
2301 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
2302 HMAC_CTX hctx;
2303 EVP_CIPHER_CTX ctx;
2304 SSL_CTX *tctx = s->initial_ctx;
2305 /* Need at least keyname + iv + some encrypted data */

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 36

2306 if (eticklen < 48)
2307 return 2;
2308 /* Initialize session ticket encryption and HMAC contexts */
2309 HMAC_CTX_init(&hctx);
2310 EVP_CIPHER_CTX_init(&ctx);
2311 if (tctx->tlsext_ticket_key_cb)
2312 {
2313 unsigned char *nctick = (unsigned char *)etick;
2314 int rv = tctx->tlsext_ticket_key_cb(s, nctick, nctick + 16,
2315 &ctx, &hctx, 0);
2316 if (rv < 0)
2317 return -1;
2318 if (rv == 0)
2319 return 2;
2320 if (rv == 2)
2321 renew_ticket = 1;
2322 }
2323 else
2324 {
2325 /* Check key name matches */
2326 if (memcmp(etick, tctx->tlsext_tick_key_name, 16))
2327 return 2;
2328 HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16,
2329 tlsext_tick_md(), NULL);
2330 EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL,
2331 tctx->tlsext_tick_aes_key, etick + 16);
2332 }
2333 /* Attempt to process session ticket, first conduct sanity and
2334 * integrity checks on ticket.
2335 */
2336 mlen = HMAC_size(&hctx);
2337 if (mlen < 0)
2338 {
2339 EVP_CIPHER_CTX_cleanup(&ctx);
2340 return -1;
2341 }
2342 eticklen -= mlen;
2343 /* Check HMAC of encrypted ticket */
2344 HMAC_Update(&hctx, etick, eticklen);
2345 HMAC_Final(&hctx, tick_hmac, NULL);
2346 HMAC_CTX_cleanup(&hctx);
2347 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen))
2348 return 2;
2349 /* Attempt to decrypt session data */
2350 /* Move p after IV to start of encrypted ticket, update length */
2351 p = etick + 16 + EVP_CIPHER_CTX_iv_length(&ctx);
2352 eticklen -= 16 + EVP_CIPHER_CTX_iv_length(&ctx);
2353 sdec = OPENSSL_malloc(eticklen);
2354 if (!sdec)
2355 {
2356 EVP_CIPHER_CTX_cleanup(&ctx);
2357 return -1;
2358 }
2359 EVP_DecryptUpdate(&ctx, sdec, &slen, p, eticklen);
2360 if (EVP_DecryptFinal(&ctx, sdec + slen, &mlen) <= 0)
2361 return 2;
2362 slen += mlen;
2363 EVP_CIPHER_CTX_cleanup(&ctx);
2364 p = sdec;

2366 sess = d2i_SSL_SESSION(NULL, &p, slen);
2367 OPENSSL_free(sdec);
2368 if (sess)
2369 {
2370 /* The session ID, if non-empty, is used by some clients to
2371 * detect that the ticket has been accepted. So we copy it to

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 37

2372 * the session structure. If it is empty set length to zero
2373 * as required by standard.
2374 */
2375 if (sesslen)
2376 memcpy(sess->session_id, sess_id, sesslen);
2377 sess->session_id_length = sesslen;
2378 *psess = sess;
2379 if (renew_ticket)
2380 return 4;
2381 else
2382 return 3;
2383 }
2384 ERR_clear_error();
2385 /* For session parse failure, indicate that we need to send a new
2386 * ticket. */
2387 return 2;
2388 }

2390 /* Tables to translate from NIDs to TLS v1.2 ids */

2392 typedef struct
2393 {
2394 int nid;
2395 int id;
2396 } tls12_lookup;

2398 static tls12_lookup tls12_md[] = {
2399 #ifndef OPENSSL_NO_MD5
2400 {NID_md5, TLSEXT_hash_md5},
2401 #endif
2402 #ifndef OPENSSL_NO_SHA
2403 {NID_sha1, TLSEXT_hash_sha1},
2404 #endif
2405 #ifndef OPENSSL_NO_SHA256
2406 {NID_sha224, TLSEXT_hash_sha224},
2407 {NID_sha256, TLSEXT_hash_sha256},
2408 #endif
2409 #ifndef OPENSSL_NO_SHA512
2410 {NID_sha384, TLSEXT_hash_sha384},
2411 {NID_sha512, TLSEXT_hash_sha512}
2412 #endif
2413 };

2415 static tls12_lookup tls12_sig[] = {
2416 #ifndef OPENSSL_NO_RSA
2417 {EVP_PKEY_RSA, TLSEXT_signature_rsa},
2418 #endif
2419 #ifndef OPENSSL_NO_DSA
2420 {EVP_PKEY_DSA, TLSEXT_signature_dsa},
2421 #endif
2422 #ifndef OPENSSL_NO_ECDSA
2423 {EVP_PKEY_EC, TLSEXT_signature_ecdsa}
2424 #endif
2425 };

2427 static int tls12_find_id(int nid, tls12_lookup *table, size_t tlen)
2428 {
2429 size_t i;
2430 for (i = 0; i < tlen; i++)
2431 {
2432 if (table[i].nid == nid)
2433 return table[i].id;
2434 }
2435 return -1;
2436 }
2437 #if 0

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 38

2438 static int tls12_find_nid(int id, tls12_lookup *table, size_t tlen)
2439 {
2440 size_t i;
2441 for (i = 0; i < tlen; i++)
2442 {
2443 if (table[i].id == id)
2444 return table[i].nid;
2445 }
2446 return -1;
2447 }
2448 #endif

2450 int tls12_get_sigandhash(unsigned char *p, const EVP_PKEY *pk, const EVP_MD *md)
2451 {
2452 int sig_id, md_id;
2453 if (!md)
2454 return 0;
2455 md_id = tls12_find_id(EVP_MD_type(md), tls12_md,
2456 sizeof(tls12_md)/sizeof(tls12_lookup));
2457 if (md_id == -1)
2458 return 0;
2459 sig_id = tls12_get_sigid(pk);
2460 if (sig_id == -1)
2461 return 0;
2462 p[0] = (unsigned char)md_id;
2463 p[1] = (unsigned char)sig_id;
2464 return 1;
2465 }

2467 int tls12_get_sigid(const EVP_PKEY *pk)
2468 {
2469 return tls12_find_id(pk->type, tls12_sig,
2470 sizeof(tls12_sig)/sizeof(tls12_lookup));
2471 }

2473 const EVP_MD *tls12_get_hash(unsigned char hash_alg)
2474 {
2475 switch(hash_alg)
2476 {
2477 #ifndef OPENSSL_NO_SHA
2478 case TLSEXT_hash_sha1:
2479 return EVP_sha1();
2480 #endif
2481 #ifndef OPENSSL_NO_SHA256
2482 case TLSEXT_hash_sha224:
2483 return EVP_sha224();

2485 case TLSEXT_hash_sha256:
2486 return EVP_sha256();
2487 #endif
2488 #ifndef OPENSSL_NO_SHA512
2489 case TLSEXT_hash_sha384:
2490 return EVP_sha384();

2492 case TLSEXT_hash_sha512:
2493 return EVP_sha512();
2494 #endif
2495 default:
2496 return NULL;

2498 }
2499 }

2501 /* Set preferred digest for each key type */

2503 int tls1_process_sigalgs(SSL *s, const unsigned char *data, int dsize)

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 39

2504 {
2505 int i, idx;
2506 const EVP_MD *md;
2507 CERT *c = s->cert;
2508 /* Extension ignored for TLS versions below 1.2 */
2509 if (TLS1_get_version(s) < TLS1_2_VERSION)
2510 return 1;
2511 /* Should never happen */
2512 if (!c)
2513 return 0;

2515 c->pkeys[SSL_PKEY_DSA_SIGN].digest = NULL;
2516 c->pkeys[SSL_PKEY_RSA_SIGN].digest = NULL;
2517 c->pkeys[SSL_PKEY_RSA_ENC].digest = NULL;
2518 c->pkeys[SSL_PKEY_ECC].digest = NULL;

2520 for (i = 0; i < dsize; i += 2)
2521 {
2522 unsigned char hash_alg = data[i], sig_alg = data[i+1];

2524 switch(sig_alg)
2525 {
2526 #ifndef OPENSSL_NO_RSA
2527 case TLSEXT_signature_rsa:
2528 idx = SSL_PKEY_RSA_SIGN;
2529 break;
2530 #endif
2531 #ifndef OPENSSL_NO_DSA
2532 case TLSEXT_signature_dsa:
2533 idx = SSL_PKEY_DSA_SIGN;
2534 break;
2535 #endif
2536 #ifndef OPENSSL_NO_ECDSA
2537 case TLSEXT_signature_ecdsa:
2538 idx = SSL_PKEY_ECC;
2539 break;
2540 #endif
2541 default:
2542 continue;
2543 }

2545 if (c->pkeys[idx].digest == NULL)
2546 {
2547 md = tls12_get_hash(hash_alg);
2548 if (md)
2549 {
2550 c->pkeys[idx].digest = md;
2551 if (idx == SSL_PKEY_RSA_SIGN)
2552 c->pkeys[SSL_PKEY_RSA_ENC].digest = md;
2553 }
2554 }

2556 }

2559 /* Set any remaining keys to default values. NOTE: if alg is not
2560 * supported it stays as NULL.
2561 */
2562 #ifndef OPENSSL_NO_DSA
2563 if (!c->pkeys[SSL_PKEY_DSA_SIGN].digest)
2564 c->pkeys[SSL_PKEY_DSA_SIGN].digest = EVP_sha1();
2565 #endif
2566 #ifndef OPENSSL_NO_RSA
2567 if (!c->pkeys[SSL_PKEY_RSA_SIGN].digest)
2568 {
2569 c->pkeys[SSL_PKEY_RSA_SIGN].digest = EVP_sha1();

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 40

2570 c->pkeys[SSL_PKEY_RSA_ENC].digest = EVP_sha1();
2571 }
2572 #endif
2573 #ifndef OPENSSL_NO_ECDSA
2574 if (!c->pkeys[SSL_PKEY_ECC].digest)
2575 c->pkeys[SSL_PKEY_ECC].digest = EVP_sha1();
2576 #endif
2577 return 1;
2578 }

2580 #endif

2582 #ifndef OPENSSL_NO_HEARTBEATS
2583 int
2584 tls1_process_heartbeat(SSL *s)
2585 {
2586 unsigned char *p = &s->s3->rrec.data[0], *pl;
2587 unsigned short hbtype;
2588 unsigned int payload;
2589 unsigned int padding = 16; /* Use minimum padding */

2591 if (s->msg_callback)
2592 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
2593 &s->s3->rrec.data[0], s->s3->rrec.length,
2594 s, s->msg_callback_arg);

2596 /* Read type and payload length first */
2597 if (1 + 2 + 16 > s->s3->rrec.length)
2598 return 0; /* silently discard */
2599 hbtype = *p++;
2600 n2s(p, payload);
2601 if (1 + 2 + payload + 16 > s->s3->rrec.length)
2602 return 0; /* silently discard per RFC 6520 sec. 4 */
2603 pl = p;

2605 if (hbtype == TLS1_HB_REQUEST)
2606 {
2607 unsigned char *buffer, *bp;
2608 int r;

2610 /* Allocate memory for the response, size is 1 bytes
2611 * message type, plus 2 bytes payload length, plus
2612 * payload, plus padding
2613 */
2614 buffer = OPENSSL_malloc(1 + 2 + payload + padding);
2615 bp = buffer;
2616
2617 /* Enter response type, length and copy payload */
2618 *bp++ = TLS1_HB_RESPONSE;
2619 s2n(payload, bp);
2620 memcpy(bp, pl, payload);
2621 bp += payload;
2622 /* Random padding */
2623 RAND_pseudo_bytes(bp, padding);

2625 r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3 + payload +

2627 if (r >= 0 && s->msg_callback)
2628 s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT,
2629 buffer, 3 + payload + padding,
2630 s, s->msg_callback_arg);

2632 OPENSSL_free(buffer);

2634 if (r < 0)
2635 return r;

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 41

2636 }
2637 else if (hbtype == TLS1_HB_RESPONSE)
2638 {
2639 unsigned int seq;
2640
2641 /* We only send sequence numbers (2 bytes unsigned int),
2642 * and 16 random bytes, so we just try to read the
2643 * sequence number */
2644 n2s(pl, seq);
2645
2646 if (payload == 18 && seq == s->tlsext_hb_seq)
2647 {
2648 s->tlsext_hb_seq++;
2649 s->tlsext_hb_pending = 0;
2650 }
2651 }

2653 return 0;
2654 }

2656 int
2657 tls1_heartbeat(SSL *s)
2658 {
2659 unsigned char *buf, *p;
2660 int ret;
2661 unsigned int payload = 18; /* Sequence number + random bytes */
2662 unsigned int padding = 16; /* Use minimum padding */

2664 /* Only send if peer supports and accepts HB requests... */
2665 if (!(s->tlsext_heartbeat & SSL_TLSEXT_HB_ENABLED) ||
2666 s->tlsext_heartbeat & SSL_TLSEXT_HB_DONT_SEND_REQUESTS)
2667 {
2668 SSLerr(SSL_F_TLS1_HEARTBEAT,SSL_R_TLS_HEARTBEAT_PEER_DOESNT_ACCE
2669 return -1;
2670 }

2672 /* ...and there is none in flight yet... */
2673 if (s->tlsext_hb_pending)
2674 {
2675 SSLerr(SSL_F_TLS1_HEARTBEAT,SSL_R_TLS_HEARTBEAT_PENDING);
2676 return -1;
2677 }
2678
2679 /* ...and no handshake in progress. */
2680 if (SSL_in_init(s) || s->in_handshake)
2681 {
2682 SSLerr(SSL_F_TLS1_HEARTBEAT,SSL_R_UNEXPECTED_MESSAGE);
2683 return -1;
2684 }
2685
2686 /* Check if padding is too long, payload and padding
2687 * must not exceed 2^14 - 3 = 16381 bytes in total.
2688 */
2689 OPENSSL_assert(payload + padding <= 16381);

2691 /* Create HeartBeat message, we just use a sequence number
2692 * as payload to distuingish different messages and add
2693 * some random stuff.
2694 * - Message Type, 1 byte
2695 * - Payload Length, 2 bytes (unsigned int)
2696 * - Payload, the sequence number (2 bytes uint)
2697 * - Payload, random bytes (16 bytes uint)
2698 * - Padding
2699 */
2700 buf = OPENSSL_malloc(1 + 2 + payload + padding);
2701 p = buf;

new/usr/src/lib/openssl/libsunw_ssl/t1_lib.c 42

2702 /* Message Type */
2703 *p++ = TLS1_HB_REQUEST;
2704 /* Payload length (18 bytes here) */
2705 s2n(payload, p);
2706 /* Sequence number */
2707 s2n(s->tlsext_hb_seq, p);
2708 /* 16 random bytes */
2709 RAND_pseudo_bytes(p, 16);
2710 p += 16;
2711 /* Random padding */
2712 RAND_pseudo_bytes(p, padding);

2714 ret = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding)
2715 if (ret >= 0)
2716 {
2717 if (s->msg_callback)
2718 s->msg_callback(1, s->version, TLS1_RT_HEARTBEAT,
2719 buf, 3 + payload + padding,
2720 s, s->msg_callback_arg);

2722 s->tlsext_hb_pending = 1;
2723 }
2724
2725 OPENSSL_free(buf);

2727 return ret;
2728 }
2729 #endif

new/usr/src/lib/openssl/libsunw_ssl/t1_meth.c 1

**
 3819 Fri May 30 18:32:23 2014
new/usr/src/lib/openssl/libsunw_ssl/t1_meth.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/t1_meth.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include <openssl/objects.h>
61 #include "ssl_locl.h"

new/usr/src/lib/openssl/libsunw_ssl/t1_meth.c 2

63 static const SSL_METHOD *tls1_get_method(int ver)
64 {
65 if (ver == TLS1_2_VERSION)
66 return TLSv1_2_method();
67 if (ver == TLS1_1_VERSION)
68 return TLSv1_1_method();
69 if (ver == TLS1_VERSION)
70 return TLSv1_method();
71 return NULL;
72 }

74 IMPLEMENT_tls_meth_func(TLS1_2_VERSION, TLSv1_2_method,
75 ssl3_accept,
76 ssl3_connect,
77 tls1_get_method)

79 IMPLEMENT_tls_meth_func(TLS1_1_VERSION, TLSv1_1_method,
80 ssl3_accept,
81 ssl3_connect,
82 tls1_get_method)

84 IMPLEMENT_tls_meth_func(TLS1_VERSION, TLSv1_method,
85 ssl3_accept,
86 ssl3_connect,
87 tls1_get_method)

new/usr/src/lib/openssl/libsunw_ssl/t1_reneg.c 1

**
 11086 Fri May 30 18:32:23 2014
new/usr/src/lib/openssl/libsunw_ssl/t1_reneg.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/t1_reneg.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ==
59 * Copyright (c) 1998-2009 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without

new/usr/src/lib/openssl/libsunw_ssl/t1_reneg.c 2

62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ==
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111 #include <stdio.h>
112 #include <openssl/objects.h>
113 #include "ssl_locl.h"

115 /* Add the client’s renegotiation binding */
116 int ssl_add_clienthello_renegotiate_ext(SSL *s, unsigned char *p, int *len,
117 int maxlen)
118 {
119 if(p)
120 {
121 if((s->s3->previous_client_finished_len+1) > maxlen)
122 {
123 SSLerr(SSL_F_SSL_ADD_CLIENTHELLO_RENEGOTIATE_EXT,SSL_R_RENEGOTIATE_E
124 return 0;
125 }
126
127 /* Length byte */

new/usr/src/lib/openssl/libsunw_ssl/t1_reneg.c 3

128 *p = s->s3->previous_client_finished_len;
129 p++;

131 memcpy(p, s->s3->previous_client_finished,
132 s->s3->previous_client_finished_len);
133 #ifdef OPENSSL_RI_DEBUG
134 fprintf(stderr, "%s RI extension sent by client\n",
135 s->s3->previous_client_finished_len ? "Non-empty" : "Empty");
136 #endif
137 }
138
139 *len=s->s3->previous_client_finished_len + 1;

141
142 return 1;
143 }

145 /* Parse the client’s renegotiation binding and abort if it’s not
146 right */
147 int ssl_parse_clienthello_renegotiate_ext(SSL *s, unsigned char *d, int len,
148 int *al)
149 {
150 int ilen;

152 /* Parse the length byte */
153 if(len < 1)
154 {
155 SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_RENEGOTIATE_EXT,SSL_R_RENEGOTIATION_E
156 *al=SSL_AD_ILLEGAL_PARAMETER;
157 return 0;
158 }
159 ilen = *d;
160 d++;

162 /* Consistency check */
163 if((ilen+1) != len)
164 {
165 SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_RENEGOTIATE_EXT,SSL_R_RENEGOTIATION_E
166 *al=SSL_AD_ILLEGAL_PARAMETER;
167 return 0;
168 }

170 /* Check that the extension matches */
171 if(ilen != s->s3->previous_client_finished_len)
172 {
173 SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_RENEGOTIATE_EXT,SSL_R_RENEGOTIATION_M
174 *al=SSL_AD_HANDSHAKE_FAILURE;
175 return 0;
176 }
177
178 if(memcmp(d, s->s3->previous_client_finished,
179 s->s3->previous_client_finished_len))
180 {
181 SSLerr(SSL_F_SSL_PARSE_CLIENTHELLO_RENEGOTIATE_EXT,SSL_R_RENEGOTIATION_M
182 *al=SSL_AD_HANDSHAKE_FAILURE;
183 return 0;
184 }
185 #ifdef OPENSSL_RI_DEBUG
186 fprintf(stderr, "%s RI extension received by server\n",
187 ilen ? "Non-empty" : "Empty");
188 #endif

190 s->s3->send_connection_binding=1;

192 return 1;
193 }

new/usr/src/lib/openssl/libsunw_ssl/t1_reneg.c 4

195 /* Add the server’s renegotiation binding */
196 int ssl_add_serverhello_renegotiate_ext(SSL *s, unsigned char *p, int *len,
197 int maxlen)
198 {
199 if(p)
200 {
201 if((s->s3->previous_client_finished_len +
202 s->s3->previous_server_finished_len + 1) > maxlen)
203 {
204 SSLerr(SSL_F_SSL_ADD_SERVERHELLO_RENEGOTIATE_EXT,SSL_R_RENEGOTIATE_E
205 return 0;
206 }
207
208 /* Length byte */
209 *p = s->s3->previous_client_finished_len + s->s3->previous_server_finish
210 p++;

212 memcpy(p, s->s3->previous_client_finished,
213 s->s3->previous_client_finished_len);
214 p += s->s3->previous_client_finished_len;

216 memcpy(p, s->s3->previous_server_finished,
217 s->s3->previous_server_finished_len);
218 #ifdef OPENSSL_RI_DEBUG
219 fprintf(stderr, "%s RI extension sent by server\n",
220 s->s3->previous_client_finished_len ? "Non-empty" : "Empty");
221 #endif
222 }
223
224 *len=s->s3->previous_client_finished_len
225 + s->s3->previous_server_finished_len + 1;
226
227 return 1;
228 }

230 /* Parse the server’s renegotiation binding and abort if it’s not
231 right */
232 int ssl_parse_serverhello_renegotiate_ext(SSL *s, unsigned char *d, int len,
233 int *al)
234 {
235 int expected_len=s->s3->previous_client_finished_len
236 + s->s3->previous_server_finished_len;
237 int ilen;

239 /* Check for logic errors */
240 OPENSSL_assert(!expected_len || s->s3->previous_client_finished_len);
241 OPENSSL_assert(!expected_len || s->s3->previous_server_finished_len);
242
243 /* Parse the length byte */
244 if(len < 1)
245 {
246 SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_RENEGOTIATE_EXT,SSL_R_RENEGOTIATION_E
247 *al=SSL_AD_ILLEGAL_PARAMETER;
248 return 0;
249 }
250 ilen = *d;
251 d++;

253 /* Consistency check */
254 if(ilen+1 != len)
255 {
256 SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_RENEGOTIATE_EXT,SSL_R_RENEGOTIATION_E
257 *al=SSL_AD_ILLEGAL_PARAMETER;
258 return 0;
259 }

new/usr/src/lib/openssl/libsunw_ssl/t1_reneg.c 5

260
261 /* Check that the extension matches */
262 if(ilen != expected_len)
263 {
264 SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_RENEGOTIATE_EXT,SSL_R_RENEGOTIATION_M
265 *al=SSL_AD_HANDSHAKE_FAILURE;
266 return 0;
267 }

269 if(memcmp(d, s->s3->previous_client_finished,
270 s->s3->previous_client_finished_len))
271 {
272 SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_RENEGOTIATE_EXT,SSL_R_RENEGOTIATION_M
273 *al=SSL_AD_HANDSHAKE_FAILURE;
274 return 0;
275 }
276 d += s->s3->previous_client_finished_len;

278 if(memcmp(d, s->s3->previous_server_finished,
279 s->s3->previous_server_finished_len))
280 {
281 SSLerr(SSL_F_SSL_PARSE_SERVERHELLO_RENEGOTIATE_EXT,SSL_R_RENEGOTIATION_M
282 *al=SSL_AD_ILLEGAL_PARAMETER;
283 return 0;
284 }
285 #ifdef OPENSSL_RI_DEBUG
286 fprintf(stderr, "%s RI extension received by client\n",
287 ilen ? "Non-empty" : "Empty");
288 #endif
289 s->s3->send_connection_binding=1;

291 return 1;
292 }

new/usr/src/lib/openssl/libsunw_ssl/t1_srvr.c 1

**
 4082 Fri May 30 18:32:23 2014
new/usr/src/lib/openssl/libsunw_ssl/t1_srvr.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/t1_srvr.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young’s, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word ’cryptographic’ can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */

59 #include <stdio.h>
60 #include "ssl_locl.h"
61 #include <openssl/buffer.h>

new/usr/src/lib/openssl/libsunw_ssl/t1_srvr.c 2

62 #include <openssl/rand.h>
63 #include <openssl/objects.h>
64 #include <openssl/evp.h>
65 #include <openssl/x509.h>

67 static const SSL_METHOD *tls1_get_server_method(int ver);
68 static const SSL_METHOD *tls1_get_server_method(int ver)
69 {
70 if (ver == TLS1_2_VERSION)
71 return TLSv1_2_server_method();
72 if (ver == TLS1_1_VERSION)
73 return TLSv1_1_server_method();
74 if (ver == TLS1_VERSION)
75 return TLSv1_server_method();
76 return NULL;
77 }

79 IMPLEMENT_tls_meth_func(TLS1_2_VERSION, TLSv1_2_server_method,
80 ssl3_accept,
81 ssl_undefined_function,
82 tls1_get_server_method)

84 IMPLEMENT_tls_meth_func(TLS1_1_VERSION, TLSv1_1_server_method,
85 ssl3_accept,
86 ssl_undefined_function,
87 tls1_get_server_method)

89 IMPLEMENT_tls_meth_func(TLS1_VERSION, TLSv1_server_method,
90 ssl3_accept,
91 ssl_undefined_function,
92 tls1_get_server_method)

new/usr/src/lib/openssl/libsunw_ssl/tls_srp.c 1

**
 14148 Fri May 30 18:32:23 2014
new/usr/src/lib/openssl/libsunw_ssl/tls_srp.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /* ssl/tls_srp.c */
2 /* Written by Christophe Renou (christophe.renou@edelweb.fr) with
3 * the precious help of Peter Sylvester (peter.sylvester@edelweb.fr)
4 * for the EdelKey project and contributed to the OpenSSL project 2004.
5 */
6 /* ==
7 * Copyright (c) 2004-2011 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * licensing@OpenSSL.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ==
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */
59 #include "ssl_locl.h"
60 #ifndef OPENSSL_NO_SRP

new/usr/src/lib/openssl/libsunw_ssl/tls_srp.c 2

62 #include <openssl/rand.h>
63 #include <openssl/srp.h>
64 #include <openssl/err.h>

66 int SSL_CTX_SRP_CTX_free(struct ssl_ctx_st *ctx)
67 {
68 if (ctx == NULL)
69 return 0;
70 OPENSSL_free(ctx->srp_ctx.login);
71 BN_free(ctx->srp_ctx.N);
72 BN_free(ctx->srp_ctx.g);
73 BN_free(ctx->srp_ctx.s);
74 BN_free(ctx->srp_ctx.B);
75 BN_free(ctx->srp_ctx.A);
76 BN_free(ctx->srp_ctx.a);
77 BN_free(ctx->srp_ctx.b);
78 BN_free(ctx->srp_ctx.v);
79 ctx->srp_ctx.TLS_ext_srp_username_callback = NULL;
80 ctx->srp_ctx.SRP_cb_arg = NULL;
81 ctx->srp_ctx.SRP_verify_param_callback = NULL;
82 ctx->srp_ctx.SRP_give_srp_client_pwd_callback = NULL;
83 ctx->srp_ctx.N = NULL;
84 ctx->srp_ctx.g = NULL;
85 ctx->srp_ctx.s = NULL;
86 ctx->srp_ctx.B = NULL;
87 ctx->srp_ctx.A = NULL;
88 ctx->srp_ctx.a = NULL;
89 ctx->srp_ctx.b = NULL;
90 ctx->srp_ctx.v = NULL;
91 ctx->srp_ctx.login = NULL;
92 ctx->srp_ctx.info = NULL;
93 ctx->srp_ctx.strength = SRP_MINIMAL_N;
94 ctx->srp_ctx.srp_Mask = 0;
95 return (1);
96 }

98 int SSL_SRP_CTX_free(struct ssl_st *s)
99 {
100 if (s == NULL)
101 return 0;
102 OPENSSL_free(s->srp_ctx.login);
103 BN_free(s->srp_ctx.N);
104 BN_free(s->srp_ctx.g);
105 BN_free(s->srp_ctx.s);
106 BN_free(s->srp_ctx.B);
107 BN_free(s->srp_ctx.A);
108 BN_free(s->srp_ctx.a);
109 BN_free(s->srp_ctx.b);
110 BN_free(s->srp_ctx.v);
111 s->srp_ctx.TLS_ext_srp_username_callback = NULL;
112 s->srp_ctx.SRP_cb_arg = NULL;
113 s->srp_ctx.SRP_verify_param_callback = NULL;
114 s->srp_ctx.SRP_give_srp_client_pwd_callback = NULL;
115 s->srp_ctx.N = NULL;
116 s->srp_ctx.g = NULL;
117 s->srp_ctx.s = NULL;
118 s->srp_ctx.B = NULL;
119 s->srp_ctx.A = NULL;
120 s->srp_ctx.a = NULL;
121 s->srp_ctx.b = NULL;
122 s->srp_ctx.v = NULL;
123 s->srp_ctx.login = NULL;
124 s->srp_ctx.info = NULL;
125 s->srp_ctx.strength = SRP_MINIMAL_N;
126 s->srp_ctx.srp_Mask = 0;
127 return (1);

new/usr/src/lib/openssl/libsunw_ssl/tls_srp.c 3

128 }

130 int SSL_SRP_CTX_init(struct ssl_st *s)
131 {
132 SSL_CTX *ctx;

134 if ((s == NULL) || ((ctx = s->ctx) == NULL))
135 return 0;
136 s->srp_ctx.SRP_cb_arg = ctx->srp_ctx.SRP_cb_arg;
137 /* set client Hello login callback */
138 s->srp_ctx.TLS_ext_srp_username_callback = ctx->srp_ctx.TLS_ext_srp_user
139 /* set SRP N/g param callback for verification */
140 s->srp_ctx.SRP_verify_param_callback = ctx->srp_ctx.SRP_verify_param_cal
141 /* set SRP client passwd callback */
142 s->srp_ctx.SRP_give_srp_client_pwd_callback = ctx->srp_ctx.SRP_give_srp_

144 s->srp_ctx.N = NULL;
145 s->srp_ctx.g = NULL;
146 s->srp_ctx.s = NULL;
147 s->srp_ctx.B = NULL;
148 s->srp_ctx.A = NULL;
149 s->srp_ctx.a = NULL;
150 s->srp_ctx.b = NULL;
151 s->srp_ctx.v = NULL;
152 s->srp_ctx.login = NULL;
153 s->srp_ctx.info = ctx->srp_ctx.info;
154 s->srp_ctx.strength = ctx->srp_ctx.strength;

156 if (((ctx->srp_ctx.N != NULL) &&
157 ((s->srp_ctx.N = BN_dup(ctx->srp_ctx.N)) == NULL)) ||
158 ((ctx->srp_ctx.g != NULL) &&
159 ((s->srp_ctx.g = BN_dup(ctx->srp_ctx.g)) == NULL)) ||
160 ((ctx->srp_ctx.s != NULL) &&
161 ((s->srp_ctx.s = BN_dup(ctx->srp_ctx.s)) == NULL)) ||
162 ((ctx->srp_ctx.B != NULL) &&
163 ((s->srp_ctx.B = BN_dup(ctx->srp_ctx.B)) == NULL)) ||
164 ((ctx->srp_ctx.A != NULL) &&
165 ((s->srp_ctx.A = BN_dup(ctx->srp_ctx.A)) == NULL)) ||
166 ((ctx->srp_ctx.a != NULL) &&
167 ((s->srp_ctx.a = BN_dup(ctx->srp_ctx.a)) == NULL)) ||
168 ((ctx->srp_ctx.v != NULL) &&
169 ((s->srp_ctx.v = BN_dup(ctx->srp_ctx.v)) == NULL)) ||
170 ((ctx->srp_ctx.b != NULL) &&
171 ((s->srp_ctx.b = BN_dup(ctx->srp_ctx.b)) == NULL)))
172 {
173 SSLerr(SSL_F_SSL_SRP_CTX_INIT,ERR_R_BN_LIB);
174 goto err;
175 }
176 if ((ctx->srp_ctx.login != NULL) &&
177 ((s->srp_ctx.login = BUF_strdup(ctx->srp_ctx.login)) == NULL))
178 {
179 SSLerr(SSL_F_SSL_SRP_CTX_INIT,ERR_R_INTERNAL_ERROR);
180 goto err;
181 }
182 s->srp_ctx.srp_Mask = ctx->srp_ctx.srp_Mask;

184 return (1);
185 err:
186 OPENSSL_free(s->srp_ctx.login);
187 BN_free(s->srp_ctx.N);
188 BN_free(s->srp_ctx.g);
189 BN_free(s->srp_ctx.s);
190 BN_free(s->srp_ctx.B);
191 BN_free(s->srp_ctx.A);
192 BN_free(s->srp_ctx.a);
193 BN_free(s->srp_ctx.b);

new/usr/src/lib/openssl/libsunw_ssl/tls_srp.c 4

194 BN_free(s->srp_ctx.v);
195 return (0);
196 }

198 int SSL_CTX_SRP_CTX_init(struct ssl_ctx_st *ctx)
199 {
200 if (ctx == NULL)
201 return 0;

203 ctx->srp_ctx.SRP_cb_arg = NULL;
204 /* set client Hello login callback */
205 ctx->srp_ctx.TLS_ext_srp_username_callback = NULL;
206 /* set SRP N/g param callback for verification */
207 ctx->srp_ctx.SRP_verify_param_callback = NULL;
208 /* set SRP client passwd callback */
209 ctx->srp_ctx.SRP_give_srp_client_pwd_callback = NULL;

211 ctx->srp_ctx.N = NULL;
212 ctx->srp_ctx.g = NULL;
213 ctx->srp_ctx.s = NULL;
214 ctx->srp_ctx.B = NULL;
215 ctx->srp_ctx.A = NULL;
216 ctx->srp_ctx.a = NULL;
217 ctx->srp_ctx.b = NULL;
218 ctx->srp_ctx.v = NULL;
219 ctx->srp_ctx.login = NULL;
220 ctx->srp_ctx.srp_Mask = 0;
221 ctx->srp_ctx.info = NULL;
222 ctx->srp_ctx.strength = SRP_MINIMAL_N;

224 return (1);
225 }

227 /* server side */
228 int SSL_srp_server_param_with_username(SSL *s, int *ad)
229 {
230 unsigned char b[SSL_MAX_MASTER_KEY_LENGTH];
231 int al;

233 *ad = SSL_AD_UNKNOWN_PSK_IDENTITY;
234 if ((s->srp_ctx.TLS_ext_srp_username_callback !=NULL) &&
235 ((al = s->srp_ctx.TLS_ext_srp_username_callback(s, ad, s->srp_ct
236 return al;

238 *ad = SSL_AD_INTERNAL_ERROR;
239 if ((s->srp_ctx.N == NULL) ||
240 (s->srp_ctx.g == NULL) ||
241 (s->srp_ctx.s == NULL) ||
242 (s->srp_ctx.v == NULL))
243 return SSL3_AL_FATAL;

245 if (RAND_bytes(b, sizeof(b)) <= 0)
246 return SSL3_AL_FATAL;
247 s->srp_ctx.b = BN_bin2bn(b,sizeof(b),NULL);
248 OPENSSL_cleanse(b,sizeof(b));

250 /* Calculate: B = (kv + g^b) % N */

252 return ((s->srp_ctx.B = SRP_Calc_B(s->srp_ctx.b, s->srp_ctx.N, s->srp_ct
253 SSL_ERROR_NONE:SSL3_AL_FATAL;
254 }

256 /* If the server just has the raw password, make up a verifier entry on the fly
257 int SSL_set_srp_server_param_pw(SSL *s, const char *user, const char *pass, cons
258 {
259 SRP_gN *GN = SRP_get_default_gN(grp);

new/usr/src/lib/openssl/libsunw_ssl/tls_srp.c 5

260 if(GN == NULL) return -1;
261 s->srp_ctx.N = BN_dup(GN->N);
262 s->srp_ctx.g = BN_dup(GN->g);
263 if(s->srp_ctx.v != NULL)
264 {
265 BN_clear_free(s->srp_ctx.v);
266 s->srp_ctx.v = NULL;
267 }
268 if(s->srp_ctx.s != NULL)
269 {
270 BN_clear_free(s->srp_ctx.s);
271 s->srp_ctx.s = NULL;
272 }
273 if(!SRP_create_verifier_BN(user, pass, &s->srp_ctx.s, &s->srp_ctx.v, GN-

275 return 1;
276 }

278 int SSL_set_srp_server_param(SSL *s, const BIGNUM *N, const BIGNUM *g,
279 BIGNUM *sa, BIGNUM *v, char *info)
280 {
281 if (N!= NULL)
282 {
283 if (s->srp_ctx.N != NULL)
284 {
285 if (!BN_copy(s->srp_ctx.N,N))
286 {
287 BN_free(s->srp_ctx.N);
288 s->srp_ctx.N = NULL;
289 }
290 }
291 else
292 s->srp_ctx.N = BN_dup(N);
293 }
294 if (g!= NULL)
295 {
296 if (s->srp_ctx.g != NULL)
297 {
298 if (!BN_copy(s->srp_ctx.g,g))
299 {
300 BN_free(s->srp_ctx.g);
301 s->srp_ctx.g = NULL;
302 }
303 }
304 else
305 s->srp_ctx.g = BN_dup(g);
306 }
307 if (sa!= NULL)
308 {
309 if (s->srp_ctx.s != NULL)
310 {
311 if (!BN_copy(s->srp_ctx.s,sa))
312 {
313 BN_free(s->srp_ctx.s);
314 s->srp_ctx.s = NULL;
315 }
316 }
317 else
318 s->srp_ctx.s = BN_dup(sa);
319 }
320 if (v!= NULL)
321 {
322 if (s->srp_ctx.v != NULL)
323 {
324 if (!BN_copy(s->srp_ctx.v,v))
325 {

new/usr/src/lib/openssl/libsunw_ssl/tls_srp.c 6

326 BN_free(s->srp_ctx.v);
327 s->srp_ctx.v = NULL;
328 }
329 }
330 else
331 s->srp_ctx.v = BN_dup(v);
332 }
333 s->srp_ctx.info = info;

335 if (!(s->srp_ctx.N) ||
336 !(s->srp_ctx.g) ||
337 !(s->srp_ctx.s) ||
338 !(s->srp_ctx.v))
339 return -1;

341 return 1;
342 }

344 int SRP_generate_server_master_secret(SSL *s,unsigned char *master_key)
345 {
346 BIGNUM *K = NULL, *u = NULL;
347 int ret = -1, tmp_len;
348 unsigned char *tmp = NULL;

350 if (!SRP_Verify_A_mod_N(s->srp_ctx.A,s->srp_ctx.N))
351 goto err;
352 if (!(u = SRP_Calc_u(s->srp_ctx.A,s->srp_ctx.B,s->srp_ctx.N)))
353 goto err;
354 if (!(K = SRP_Calc_server_key(s->srp_ctx.A, s->srp_ctx.v, u, s->srp_ctx.
355 goto err;

357 tmp_len = BN_num_bytes(K);
358 if ((tmp = OPENSSL_malloc(tmp_len)) == NULL)
359 goto err;
360 BN_bn2bin(K, tmp);
361 ret = s->method->ssl3_enc->generate_master_secret(s,master_key,tmp,tmp_l
362 err:
363 if (tmp)
364 {
365 OPENSSL_cleanse(tmp,tmp_len) ;
366 OPENSSL_free(tmp);
367 }
368 BN_clear_free(K);
369 BN_clear_free(u);
370 return ret;
371 }

373 /* client side */
374 int SRP_generate_client_master_secret(SSL *s,unsigned char *master_key)
375 {
376 BIGNUM *x = NULL, *u = NULL, *K = NULL;
377 int ret = -1, tmp_len;
378 char *passwd = NULL;
379 unsigned char *tmp = NULL;

381 /* Checks if b % n == 0
382 */
383 if (SRP_Verify_B_mod_N(s->srp_ctx.B,s->srp_ctx.N)==0) goto err;
384 if (!(u = SRP_Calc_u(s->srp_ctx.A,s->srp_ctx.B,s->srp_ctx.N))) goto err;
385 if (s->srp_ctx.SRP_give_srp_client_pwd_callback == NULL) goto err;
386 if (!(passwd = s->srp_ctx.SRP_give_srp_client_pwd_callback(s, s->srp_ctx
387 if (!(x = SRP_Calc_x(s->srp_ctx.s,s->srp_ctx.login,passwd))) goto err;
388 if (!(K = SRP_Calc_client_key(s->srp_ctx.N, s->srp_ctx.B, s->srp_ctx.g,

390 tmp_len = BN_num_bytes(K);
391 if ((tmp = OPENSSL_malloc(tmp_len)) == NULL) goto err;

new/usr/src/lib/openssl/libsunw_ssl/tls_srp.c 7

392 BN_bn2bin(K, tmp);
393 ret = s->method->ssl3_enc->generate_master_secret(s,master_key,tmp,tmp_l
394 err:
395 if (tmp)
396 {
397 OPENSSL_cleanse(tmp,tmp_len) ;
398 OPENSSL_free(tmp);
399 }
400 BN_clear_free(K);
401 BN_clear_free(x);
402 if (passwd)
403 {
404 OPENSSL_cleanse(passwd,strlen(passwd)) ;
405 OPENSSL_free(passwd);
406 }
407 BN_clear_free(u);
408 return ret;
409 }

411 int SRP_Calc_A_param(SSL *s)
412 {
413 unsigned char rnd[SSL_MAX_MASTER_KEY_LENGTH];

415 if (BN_num_bits(s->srp_ctx.N) < s->srp_ctx.strength)
416 return -1;

418 if (s->srp_ctx.SRP_verify_param_callback ==NULL &&
419 !SRP_check_known_gN_param(s->srp_ctx.g,s->srp_ctx.N))
420 return -1 ;

422 RAND_bytes(rnd, sizeof(rnd));
423 s->srp_ctx.a = BN_bin2bn(rnd, sizeof(rnd), s->srp_ctx.a);
424 OPENSSL_cleanse(rnd, sizeof(rnd));

426 if (!(s->srp_ctx.A = SRP_Calc_A(s->srp_ctx.a,s->srp_ctx.N,s->srp_ctx.g))
427 return -1;

429 /* We can have a callback to verify SRP param!! */
430 if (s->srp_ctx.SRP_verify_param_callback !=NULL)
431 return s->srp_ctx.SRP_verify_param_callback(s,s->srp_ctx.SRP_cb_

433 return 1;
434 }

436 BIGNUM *SSL_get_srp_g(SSL *s)
437 {
438 if (s->srp_ctx.g != NULL)
439 return s->srp_ctx.g;
440 return s->ctx->srp_ctx.g;
441 }

443 BIGNUM *SSL_get_srp_N(SSL *s)
444 {
445 if (s->srp_ctx.N != NULL)
446 return s->srp_ctx.N;
447 return s->ctx->srp_ctx.N;
448 }

450 char *SSL_get_srp_username(SSL *s)
451 {
452 if (s->srp_ctx.login != NULL)
453 return s->srp_ctx.login;
454 return s->ctx->srp_ctx.login;
455 }

457 char *SSL_get_srp_userinfo(SSL *s)

new/usr/src/lib/openssl/libsunw_ssl/tls_srp.c 8

458 {
459 if (s->srp_ctx.info != NULL)
460 return s->srp_ctx.info;
461 return s->ctx->srp_ctx.info;
462 }

464 #define tls1_ctx_ctrl ssl3_ctx_ctrl
465 #define tls1_ctx_callback_ctrl ssl3_ctx_callback_ctrl

467 int SSL_CTX_set_srp_username(SSL_CTX *ctx,char *name)
468 {
469 return tls1_ctx_ctrl(ctx,SSL_CTRL_SET_TLS_EXT_SRP_USERNAME,0,name);
470 }

472 int SSL_CTX_set_srp_password(SSL_CTX *ctx,char *password)
473 {
474 return tls1_ctx_ctrl(ctx,SSL_CTRL_SET_TLS_EXT_SRP_PASSWORD,0,password);
475 }

477 int SSL_CTX_set_srp_strength(SSL_CTX *ctx, int strength)
478 {
479 return tls1_ctx_ctrl(ctx, SSL_CTRL_SET_TLS_EXT_SRP_STRENGTH, strength,
480 NULL);
481 }

483 int SSL_CTX_set_srp_verify_param_callback(SSL_CTX *ctx, int (*cb)(SSL *,void *))
484 {
485 return tls1_ctx_callback_ctrl(ctx,SSL_CTRL_SET_SRP_VERIFY_PARAM_CB,
486 (void (*)(void))cb);
487 }

489 int SSL_CTX_set_srp_cb_arg(SSL_CTX *ctx, void *arg)
490 {
491 return tls1_ctx_ctrl(ctx,SSL_CTRL_SET_SRP_ARG,0,arg);
492 }

494 int SSL_CTX_set_srp_username_callback(SSL_CTX *ctx,
495 int (*cb)(SSL *,int *,void *))
496 {
497 return tls1_ctx_callback_ctrl(ctx,SSL_CTRL_SET_TLS_EXT_SRP_USERNAME_CB,
498 (void (*)(void))cb);
499 }

501 int SSL_CTX_set_srp_client_pwd_callback(SSL_CTX *ctx, char *(*cb)(SSL *,void *))
502 {
503 return tls1_ctx_callback_ctrl(ctx,SSL_CTRL_SET_SRP_GIVE_CLIENT_PWD_CB,
504 (void (*)(void))cb);
505 }

507 #endif

new/usr/src/lib/pkcs11/pkcs11_tpm/Makefile.com 1

**
 2442 Fri May 30 18:32:23 2014
new/usr/src/lib/pkcs11/pkcs11_tpm/Makefile.com
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 LIBRARY = pkcs11_tpm.a
25 VERS = .1

27 OBJECTS= api_interface.o \
28 apiutil.o \
29 asn1.o \
30 cert.o \
31 data_obj.o \
32 decr_mgr.o \
33 dig_mgr.o \
34 encr_mgr.o \
35 globals.o \
36 hwf_obj.o \
37 key.o \
38 key_mgr.o \
39 loadsave.o \
40 log.o \
41 mech_md5.o \
42 mech_rsa.o \
43 mech_sha.o \
44 new_host.o \
45 obj_mgr.o \
46 object.o \
47 sess_mgr.o \
48 sign_mgr.o \
49 template.o \
50 tpm_specific.o \
51 utility.o \
52 verify_mgr.o

55 include $(SRC)/lib/Makefile.lib

57 SRCDIR= ../common

59 SRCS= $(OBJECTS:%.o=$(SRCDIR)/%.c)

61 # set signing mode

new/usr/src/lib/pkcs11/pkcs11_tpm/Makefile.com 2

62 POST_PROCESS_SO += ; $(ELFSIGN_CRYPTO)

64 ROOTLIBDIR=$(ROOT)/usr/lib/security
65 ROOTLIBDIR64=$(ROOT)/usr/lib/security/$(MACH64)

67 LIBS=$(DYNLIB) $(DYNLIB64)

69 TSSROOT=$(ADJUNCT_PROTO)
70 TSPILIBDIR=$(TSSROOT)/usr/lib
71 TSPIINCDIR=$(TSSROOT)/usr/include
72 TSSLIB=-L$(TSPILIBDIR)
73 TSSLIB64=-L$(TSPILIBDIR)/$(MACH64)
74 TSSINC=-I$(TSPIINCDIR)

76 LDLIBS += $(TSSLIB) -L$(ADJUNCT_PROTO)/lib -lc -luuid -lmd -ltspi

78 # libcrypto has no lint library, so we can only use it when
79 # building
80 $(LIBS) := LDLIBS += -lsunw_crypto
81 CPPFLAGS += -xCC -D_POSIX_PTHREAD_SEMANTICS $(TSSINC)
82 CPPFLAGS64 += $(CPPFLAGS)
83 C99MODE= $(C99_ENABLE)

85 CERRWARN += -_gcc=-Wno-parentheses
86 CERRWARN += -_gcc=-Wno-unused-label
87 CERRWARN += -_gcc=-Wno-uninitialized

89 LINTSRC= $(OBJECTS:%.o=$(SRCDIR)/%.c)

91 $(LINTLIB):= SRCS = $(SRCDIR)/$(LINTSRC)
92 LINTSRC= $(SRCS)

94 CLOBBERFILES += C.ln

96 .KEEP_STATE:

98 all: $(LIBS)
99
100 lint: $$(LINTSRC)
101 $(LINT.c) $(LINTCHECKFLAGS) $(LINTSRC) $(LDLIBS)

103 pics/%.o: $(SRCDIR)/%.c
104 $(COMPILE.c) -o $@ $<
105 $(POST_PROCESS_O)

107 include $(SRC)/lib/Makefile.targ

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 1

**
 71718 Fri May 30 18:32:24 2014
new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 /*
2 * The Initial Developer of the Original Code is International
3 * Business Machines Corporation. Portions created by IBM
4 * Corporation are Copyright (C) 2005 International Business
5 * Machines Corporation. All Rights Reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the Common Public License as published by
9 * IBM Corporation; either version 1 of the License, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * Common Public License for more details.
16 *
17 * You should have received a copy of the Common Public License
18 * along with this program; if not, a copy can be viewed at
19 * http://www.opensource.org/licenses/cpl1.0.php.
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright 2012 Milan Jurik. All rights reserved.
25 */

27 #include <pthread.h>
28 #include <string.h>

30 #include <sys/types.h>
31 #include <sys/stat.h>
32 #include <uuid/uuid.h>
33 #include <fcntl.h>
34 #include <errno.h>
35 #include <pwd.h>
36 #include <syslog.h>

38 #include <openssl/opensslconf.h>
39 #include <openssl/rsa.h>

41 #include <tss/platform.h>
42 #include <tss/tss_defines.h>
43 #include <tss/tss_typedef.h>
44 #include <tss/tss_structs.h>
45 #include <tss/tss_error.h>
46 #include <tss/tcs_error.h>
47 #include <tss/tspi.h>
48 #include <trousers/trousers.h>

50 #include "tpmtok_int.h"
51 #include "tpmtok_defs.h"

53 #define MAX_RSA_KEYLENGTH 512

55 extern void stlogit(char *fmt, ...);

57 CK_RV token_rng(TSS_HCONTEXT, CK_BYTE *, CK_ULONG);
58 int tok_slot2local(CK_SLOT_ID);
59 CK_RV token_specific_session(CK_SLOT_ID);
60 CK_RV token_specific_final(TSS_HCONTEXT);

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 2

62 CK_RV
63 token_specific_rsa_decrypt(
64 TSS_HCONTEXT,
65 CK_BYTE *,
66 CK_ULONG,
67 CK_BYTE *,
68 CK_ULONG *,
69 OBJECT *);

71 CK_RV
72 token_specific_rsa_encrypt(
73 TSS_HCONTEXT,
74 CK_BYTE *,
75 CK_ULONG,
76 CK_BYTE *,
77 CK_ULONG *,
78 OBJECT *);

80 CK_RV
81 token_specific_rsa_sign(
82 TSS_HCONTEXT,
83 CK_BYTE *,
84 CK_ULONG,
85 CK_BYTE *,
86 CK_ULONG *,
87 OBJECT *);

89 CK_RV
90 token_specific_rsa_verify(TSS_HCONTEXT, CK_BYTE *,
91 CK_ULONG, CK_BYTE *, CK_ULONG, OBJECT *);

93 CK_RV
94 token_specific_rsa_generate_keypair(TSS_HCONTEXT,
95 TEMPLATE *,
96 TEMPLATE *);

98 CK_RV
99 token_specific_sha_init(DIGEST_CONTEXT *);

101 CK_RV
102 token_specific_sha_update(DIGEST_CONTEXT *,
103 CK_BYTE *,
104 CK_ULONG);

106 CK_RV
107 token_specific_sha_final(DIGEST_CONTEXT *,
108 CK_BYTE *,
109 CK_ULONG *);

111 CK_RV token_specific_login(TSS_HCONTEXT, CK_USER_TYPE, CK_CHAR_PTR, CK_ULONG);
112 CK_RV token_specific_logout(TSS_HCONTEXT);
113 CK_RV token_specific_init_pin(TSS_HCONTEXT, CK_CHAR_PTR, CK_ULONG);
114 CK_RV token_specific_set_pin(ST_SESSION_HANDLE, CK_CHAR_PTR,
115 CK_ULONG, CK_CHAR_PTR, CK_ULONG);
116 CK_RV token_specific_verify_so_pin(TSS_HCONTEXT, CK_CHAR_PTR, CK_ULONG);

118 static CK_RV
119 token_specific_init(char *, CK_SLOT_ID, TSS_HCONTEXT *);

121 struct token_specific_struct token_specific = {
122 "TPM_Debug",
123 &token_specific_init,
124 NULL,
125 &token_rng,
126 &token_specific_session,
127 &token_specific_final,

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 3

128 &token_specific_rsa_decrypt,
129 &token_specific_rsa_encrypt,
130 &token_specific_rsa_sign,
131 &token_specific_rsa_verify,
132 &token_specific_rsa_generate_keypair,
133 NULL,
134 NULL,
135 NULL,
136 &token_specific_login,
137 &token_specific_logout,
138 &token_specific_init_pin,
139 &token_specific_set_pin,
140 &token_specific_verify_so_pin
141 };

143 /* The context we’ll use globally to connect to the TSP */

145 /* TSP key handles */
146 TSS_HKEY hPublicRootKey = NULL_HKEY;
147 TSS_HKEY hPublicLeafKey = NULL_HKEY;
148 TSS_HKEY hPrivateRootKey = NULL_HKEY;
149 TSS_HKEY hPrivateLeafKey = NULL_HKEY;

151 TSS_UUID publicRootKeyUUID;
152 TSS_UUID publicLeafKeyUUID;
153 TSS_UUID privateRootKeyUUID;
154 TSS_UUID privateLeafKeyUUID;

156 /* TSP policy handles */
157 TSS_HPOLICY hDefaultPolicy = NULL_HPOLICY;

159 /* PKCS#11 key handles */
160 int not_initialized = 0;

162 CK_BYTE current_user_pin_sha[SHA1_DIGEST_LENGTH];
163 CK_BYTE current_so_pin_sha[SHA1_DIGEST_LENGTH];

165 static TPM_CAP_VERSION_INFO tpmvinfo;

167 static CK_RV
168 verify_user_pin(TSS_HCONTEXT, CK_BYTE *);

170 static TSS_RESULT
171 tss_assign_secret_key_policy(TSS_HCONTEXT, TSS_FLAG, TSS_HKEY, CK_CHAR *);

173 static TSS_RESULT
174 set_legacy_key_params(TSS_HKEY);

176 static void
177 local_uuid_clear(TSS_UUID *uuid)
178 {
179 if (uuid == NULL)
180 return;
181 (void) memset(uuid, 0, sizeof (TSS_UUID));
182 }

185 /* convert from TSS_UUID to uuid_t */
186 static void
187 tss_uuid_convert_from(TSS_UUID *uu, uuid_t ptr)
188 {
189 uint_t tmp;
190 uchar_t *out = ptr;

192 tmp = ntohl(uu->ulTimeLow);
193 out[3] = (uchar_t)tmp;

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 4

194 tmp >>= 8;
195 out[2] = (uchar_t)tmp;
196 tmp >>= 8;
197 out[1] = (uchar_t)tmp;
198 tmp >>= 8;
199 out[0] = (uchar_t)tmp;

201 tmp = ntohs(uu->usTimeMid);
202 out[5] = (uchar_t)tmp;
203 tmp >>= 8;
204 out[4] = (uchar_t)tmp;

206 tmp = ntohs(uu->usTimeHigh);
207 out[7] = (uchar_t)tmp;
208 tmp >>= 8;
209 out[6] = (uchar_t)tmp;

211 tmp = uu->bClockSeqHigh;
212 out[8] = (uchar_t)tmp;
213 tmp = uu->bClockSeqLow;
214 out[9] = (uchar_t)tmp;

216 (void) memcpy(out+10, uu->rgbNode, 6);
217 }

219 /* convert from uuid_t to TSS_UUID */
220 static void
221 tss_uuid_convert_to(TSS_UUID *uuid, uuid_t in)
222 {
223 uchar_t *ptr;
224 uint32_t ltmp;
225 uint16_t stmp;

227 ptr = in;

229 ltmp = *ptr++;
230 ltmp = (ltmp << 8) | *ptr++;
231 ltmp = (ltmp << 8) | *ptr++;
232 ltmp = (ltmp << 8) | *ptr++;
233 uuid->ulTimeLow = ntohl(ltmp);

235 stmp = *ptr++;
236 stmp = (stmp << 8) | *ptr++;
237 uuid->usTimeMid = ntohs(stmp);

239 stmp = *ptr++;
240 stmp = (stmp << 8) | *ptr++;
241 uuid->usTimeHigh = ntohs(stmp);

243 uuid->bClockSeqHigh = *ptr++;

245 uuid->bClockSeqLow = *ptr++;

247 (void) memcpy(uuid->rgbNode, ptr, 6);
248 }

250 static void
251 local_uuid_copy(TSS_UUID *dst, TSS_UUID *src)
252 {
253 uuid_t udst, usrc;

255 tss_uuid_convert_from(dst, udst);
256 tss_uuid_convert_from(src, usrc);

258 uuid_copy(udst, usrc);

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 5

260 tss_uuid_convert_to(dst, udst);
261 }

263 static void
264 local_uuid_generate(TSS_UUID *uu)
265 {
266 uuid_t newuuid;

268 uuid_generate(newuuid);

270 tss_uuid_convert_to(uu, newuuid);
271 }

273 static int
274 local_copy_file(char *dst, char *src)
275 {
276 FILE *fdest, *fsrc;
277 char line[BUFSIZ];

279 fdest = fopen(dst, "w");
280 if (fdest == NULL)
281 return (-1);

283 fsrc = fopen(src, "r");
284 if (fsrc == NULL) {
285 (void) fclose(fdest);
286 return (-1);
287 }

289 while (fread(line, sizeof (line), 1, fsrc))
290 (void) fprintf(fdest, "%s\n", line);
291 (void) fclose(fsrc);
292 (void) fclose(fdest);
293 return (0);
294 }

296 static int
297 remove_uuid(char *keyname)
298 {
299 int ret = 0;
300 FILE *fp, *newfp;
301 char fname[MAXPATHLEN];
302 char line[BUFSIZ], key[BUFSIZ], idstr[BUFSIZ];
303 char *tmpfname;
304 char *p = get_tpm_keystore_path();

306 if (p == NULL)
307 return (-1);

309 (void) snprintf(fname, sizeof (fname),
310 "%s/%s", p, TPMTOK_UUID_INDEX_FILENAME);

312 fp = fopen(fname, "r");
313 if (fp == NULL) {
314 return (-1);
315 }

317 tmpfname = tempnam("/tmp", "tpmtok");
318 newfp = fopen(tmpfname, "w+");
319 if (newfp == NULL) {
320 free(tmpfname);
321 (void) fclose(fp);
322 return (-1);
323 }

325 while (!feof(fp)) {

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 6

326 (void) fgets(line, sizeof (line), fp);
327 if (sscanf(line, "%1024s %1024s", key, idstr) == 2) {
328 if (strcmp(key, keyname))
329 (void) fprintf(newfp, "%s\n", line);
330 }
331 }

333 (void) fclose(fp);
334 (void) fclose(newfp);
335 if (local_copy_file(fname, tmpfname) == 0)
336 (void) unlink(tmpfname);

338 free(tmpfname);

340 return (ret);
341 }

343 static int
344 find_uuid(char *keyname, TSS_UUID *uu)
345 {
346 int ret = 0, found = 0;
347 FILE *fp = NULL;
348 char fname[MAXPATHLEN];
349 char line[BUFSIZ], key[BUFSIZ], idstr[BUFSIZ];
350 uuid_t uuid;
351 char *p = get_tpm_keystore_path();

353 if (p == NULL)
354 return (-1);

356 tss_uuid_convert_from(uu, uuid);

358 (void) snprintf(fname, sizeof (fname),
359 "%s/%s", p, TPMTOK_UUID_INDEX_FILENAME);

361 /* Open UUID Index file */
362 fp = fopen(fname, "r");
363 if (fp == NULL) {
364 if (errno == ENOENT) {
365 /* initialize the file */
366 fp = fopen(fname, "w");
367 if (fp != NULL)
368 (void) fclose(fp);
369 }
370 return (-1);
371 }

373 while (!feof(fp)) {
374 (void) fgets(line, sizeof (line), fp);
375 if (sscanf(line, "%1024s %1024s", key, idstr) == 2) {
376 if (strcmp(key, keyname) == 0) {
377 ret = uuid_parse(idstr, uuid);
378 if (ret == 0) {
379 found = 1;
380 tss_uuid_convert_to(uu,
381 uuid);
382 }
383 break;
384 }
385 }
386 }
387 (void) fclose(fp);

389 if (!found)
390 ret = -1;
391 return (ret);

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 7

392 }

394 static int
395 local_uuid_is_null(TSS_UUID *uu)
396 {
397 uuid_t uuid;
398 int nulluuid;

400 tss_uuid_convert_from(uu, uuid);

402 nulluuid = uuid_is_null(uuid);
403 return (nulluuid);
404 }

406 static int
407 add_uuid(char *keyname, TSS_UUID *uu)
408 {
409 FILE *fp = NULL;
410 char fname[MAXPATHLEN];
411 char idstr[BUFSIZ];
412 uuid_t uuid;
413 char *p = get_tpm_keystore_path();

415 if (p == NULL)
416 return (-1);

418 tss_uuid_convert_from(uu, uuid);

420 if (uuid_is_null(uuid))
421 return (-1);

423 uuid_unparse(uuid, idstr);

425 (void) snprintf(fname, sizeof (fname),
426 "%s/%s", p, TPMTOK_UUID_INDEX_FILENAME);

428 fp = fopen(fname, "a");
429 if (fp == NULL)
430 return (-1);

432 (void) fprintf(fp, "%s %s\n", keyname, idstr);
433 (void) fclose(fp);

435 return (0);
436 }

439 static UINT32
440 util_get_keysize_flag(CK_ULONG size)
441 {
442 switch (size) {
443 case 512:
444 return (TSS_KEY_SIZE_512);
445 case 1024:
446 return (TSS_KEY_SIZE_1024);
447 case 2048:
448 return (TSS_KEY_SIZE_2048);
449 default:
450 break;
451 }

453 return (0);
454 }

456 /* make sure the public exponent attribute is 65537 */
457 static CK_ULONG

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 8

458 util_check_public_exponent(TEMPLATE *tmpl)
459 {
460 CK_BBOOL flag;
461 CK_ATTRIBUTE *publ_exp_attr;
462 CK_BYTE pubexp_bytes[] = { 1, 0, 1 };
463 CK_ULONG publ_exp, rc = 1;

465 flag = template_attribute_find(tmpl, CKA_PUBLIC_EXPONENT,
466 &publ_exp_attr);
467 if (!flag) {
468 LogError1("Couldn’t find public exponent attribute");
469 return (CKR_TEMPLATE_INCOMPLETE);
470 }

472 switch (publ_exp_attr->ulValueLen) {
473 case 3:
474 rc = memcmp(pubexp_bytes, publ_exp_attr->pValue, 3);
475 break;
476 case sizeof (CK_ULONG):
477 publ_exp = *((CK_ULONG *)publ_exp_attr->pValue);
478 if (publ_exp == 65537)
479 rc = 0;
480 break;
481 default:
482 break;
483 }

485 return (rc);
486 }

488 TSS_RESULT
489 set_public_modulus(TSS_HCONTEXT hContext, TSS_HKEY hKey,
490 unsigned long size_n, unsigned char *n)
491 {
492 UINT64 offset;
493 UINT32 blob_size;
494 BYTE *blob, pub_blob[1024];
495 TCPA_PUBKEY pub_key;
496 TSS_RESULT result;

498 /* Get the TCPA_PUBKEY blob from the key object. */
499 result = Tspi_GetAttribData(hKey, TSS_TSPATTRIB_KEY_BLOB,
500 TSS_TSPATTRIB_KEYBLOB_PUBLIC_KEY, &blob_size, &blob);
501 if (result != TSS_SUCCESS) {
502 stlogit("Tspi_GetAttribData failed: rc=0x%0x - %s\n",
503 result, Trspi_Error_String(result));
504 return (result);
505 }

507 offset = 0;
508 result = Trspi_UnloadBlob_PUBKEY(&offset, blob, &pub_key);
509 if (result != TSS_SUCCESS) {
510 stlogit("Trspi_UnloadBlob_PUBKEY failed: rc=0x%0x - %s\n",
511 result, Trspi_Error_String(result));
512 return (result);
513 }

515 Tspi_Context_FreeMemory(hContext, blob);
516 /* Free the first dangling reference, putting ’n’ in its place */
517 free(pub_key.pubKey.key);
518 pub_key.pubKey.keyLength = size_n;
519 pub_key.pubKey.key = n;

521 offset = 0;
522 Trspi_LoadBlob_PUBKEY(&offset, pub_blob, &pub_key);

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 9

524 /* Free the second dangling reference */
525 free(pub_key.algorithmParms.parms);

527 /* set the public key data in the TSS object */
528 result = Tspi_SetAttribData(hKey, TSS_TSPATTRIB_KEY_BLOB,
529 TSS_TSPATTRIB_KEYBLOB_PUBLIC_KEY, (UINT32)offset, pub_blob);
530 if (result != TSS_SUCCESS) {
531 stlogit("Tspi_SetAttribData failed: rc=0x%0x - %s\n",
532 result, Trspi_Error_String(result));
533 return (result);
534 }

536 return (result);
537 }

539 /*
540 * Get details about the TPM to put into the token_info structure.
541 */
542 CK_RV
543 token_get_tpm_info(TSS_HCONTEXT hContext, TOKEN_DATA *td)
544 {
545 TSS_RESULT result;
546 TPM_CAPABILITY_AREA capArea = TSS_TPMCAP_VERSION_VAL;
547 UINT32 datalen;
548 BYTE *data;
549 TSS_HTPM hTPM;

551 if ((result = Tspi_Context_GetTpmObject(hContext, &hTPM))) {
552 stlogit("Tspi_Context_GetTpmObject: 0x%0x - %s",
553 result, Trspi_Error_String(result));
554 return (CKR_FUNCTION_FAILED);
555 }
556 if ((result = Tspi_TPM_GetCapability(hTPM,
557 capArea, 0, NULL, &datalen, &data)) != 0 || datalen == 0 ||
558 data == NULL) {
559 stlogit("Tspi_Context_GetCapability: 0x%0x - %s",
560 result, Trspi_Error_String(result));
561 return (CKR_FUNCTION_FAILED);
562 }
563 if (datalen > sizeof (tpmvinfo)) {
564 Tspi_Context_FreeMemory(hContext, data);
565 return (CKR_FUNCTION_FAILED);
566 }

568 (void) memcpy(&tpmvinfo, (void *)data, datalen);

570 bzero(td->token_info.manufacturerID,
571 sizeof (td->token_info.manufacturerID));

573 (void) memset(td->token_info.manufacturerID, ’ ’,
574 sizeof (td->token_info.manufacturerID) - 1);

576 (void) memcpy(td->token_info.manufacturerID,
577 tpmvinfo.tpmVendorID, sizeof (tpmvinfo.tpmVendorID));

579 (void) memset(td->token_info.label, ’ ’,
580 sizeof (td->token_info.label) - 1);

582 (void) memcpy(td->token_info.label, "TPM", 3);

584 td->token_info.hardwareVersion.major = tpmvinfo.version.major;
585 td->token_info.hardwareVersion.minor = tpmvinfo.version.minor;
586 td->token_info.firmwareVersion.major = tpmvinfo.version.revMajor;
587 td->token_info.firmwareVersion.minor = tpmvinfo.version.revMinor;

589 Tspi_Context_FreeMemory(hContext, data);

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 10

590 return (CKR_OK);
591 }

593 /*ARGSUSED*/
594 CK_RV
595 token_specific_session(CK_SLOT_ID slotid)
596 {
597 return (CKR_OK);
598 }

600 CK_RV
601 token_rng(TSS_HCONTEXT hContext, CK_BYTE *output, CK_ULONG bytes)
602 {
603 TSS_RESULT rc;
604 TSS_HTPM hTPM;
605 BYTE *random_bytes = NULL;

607 if ((rc = Tspi_Context_GetTpmObject(hContext, &hTPM))) {
608 stlogit("Tspi_Context_GetTpmObject: 0x%0x - %s",
609 rc, Trspi_Error_String(rc));
610 return (CKR_FUNCTION_FAILED);
611 }

613 if ((rc = Tspi_TPM_GetRandom(hTPM, bytes, &random_bytes))) {
614 stlogit("Tspi_TPM_GetRandom: 0x%0x - %s",
615 rc, Trspi_Error_String(rc));
616 return (CKR_FUNCTION_FAILED);
617 }

619 (void) memcpy(output, random_bytes, bytes);
620 Tspi_Context_FreeMemory(hContext, random_bytes);

622 return (CKR_OK);
623 }

625 TSS_RESULT
626 open_tss_context(TSS_HCONTEXT *pContext)
627 {
628 TSS_RESULT result;

630 if ((result = Tspi_Context_Create(pContext))) {
631 stlogit("Tspi_Context_Create: 0x%0x - %s",
632 result, Trspi_Error_String(result));
633 return (CKR_FUNCTION_FAILED);
634 }

636 if ((result = Tspi_Context_Connect(*pContext, NULL))) {
637 stlogit("Tspi_Context_Connect: 0x%0x - %s",
638 result, Trspi_Error_String(result));
639 Tspi_Context_Close(*pContext);
640 *pContext = 0;
641 return (CKR_FUNCTION_FAILED);
642 }
643 return (result);
644 }

646 /*ARGSUSED*/
647 static CK_RV
648 token_specific_init(char *Correlator, CK_SLOT_ID SlotNumber,
649 TSS_HCONTEXT *hContext)
650 {
651 TSS_RESULT result;

653 result = open_tss_context(hContext);
654 if (result)
655 return (CKR_FUNCTION_FAILED);

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 11

657 if ((result = Tspi_Context_GetDefaultPolicy(*hContext,
658 &hDefaultPolicy))) {
659 stlogit("Tspi_Context_GetDefaultPolicy: 0x%0x - %s",
660 result, Trspi_Error_String(result));
661 return (CKR_FUNCTION_FAILED);
662 }

664 local_uuid_clear(&publicRootKeyUUID);
665 local_uuid_clear(&privateRootKeyUUID);
666 local_uuid_clear(&publicLeafKeyUUID);
667 local_uuid_clear(&privateLeafKeyUUID);

669 result = token_get_tpm_info(*hContext, nv_token_data);
670 return (result);
671 }

673 /*
674 * Given a modulus and prime from an RSA key, create a TSS_HKEY object by
675 * wrapping the RSA key with a key from the TPM (SRK or other previously stored
676 * key).
677 */
678 static CK_RV
679 token_wrap_sw_key(
680 TSS_HCONTEXT hContext,
681 int size_n,
682 unsigned char *n,
683 int size_p,
684 unsigned char *p,
685 TSS_HKEY hParentKey,
686 TSS_FLAG initFlags,
687 TSS_HKEY *phKey)
688 {
689 TSS_RESULT result;
690 UINT32 key_size;

692 key_size = util_get_keysize_flag(size_n * 8);
693 if (initFlags == 0) {
694 return (CKR_FUNCTION_FAILED);
695 }

697 /* create the TSS key object */
698 result = Tspi_Context_CreateObject(hContext, TSS_OBJECT_TYPE_RSAKEY,
699 TSS_KEY_MIGRATABLE | initFlags | key_size, phKey);
700 if (result != TSS_SUCCESS) {
701 stlogit("Tspi_Context_CreateObject: 0x%0x - %s",
702 result, Trspi_Error_String(result));
703 return (CKR_FUNCTION_FAILED);
704 }

706 result = set_public_modulus(hContext, *phKey, size_n, n);
707 if (result != TSS_SUCCESS) {
708 Tspi_Context_CloseObject(hContext, *phKey);
709 *phKey = NULL_HKEY;
710 return (CKR_FUNCTION_FAILED);
711 }

713 /* set the private key data in the TSS object */
714 result = Tspi_SetAttribData(*phKey, TSS_TSPATTRIB_KEY_BLOB,
715 TSS_TSPATTRIB_KEYBLOB_PRIVATE_KEY, size_p, p);
716 if (result != TSS_SUCCESS) {
717 stlogit("Tspi_SetAttribData: 0x%x - %s",
718 result, Trspi_Error_String(result));
719 Tspi_Context_CloseObject(hContext, *phKey);
720 *phKey = NULL_HKEY;
721 return (CKR_FUNCTION_FAILED);

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 12

722 }

724 result = tss_assign_secret_key_policy(hContext, TSS_POLICY_MIGRATION,
725 *phKey, NULL);

727 if (TPMTOK_TSS_KEY_TYPE(initFlags) == TSS_KEY_TYPE_LEGACY) {
728 if ((result = Tspi_SetAttribUint32(*phKey,
729 TSS_TSPATTRIB_KEY_INFO, TSS_TSPATTRIB_KEYINFO_ENCSCHEME,
730 TSS_ES_RSAESPKCSV15))) {
731 stlogit("Tspi_SetAttribUint32: 0x%0x - %s\n",
732 result, Trspi_Error_String(result));
733 Tspi_Context_CloseObject(hContext, *phKey);
734 return (CKR_FUNCTION_FAILED);
735 }

737 if ((result = Tspi_SetAttribUint32(*phKey,
738 TSS_TSPATTRIB_KEY_INFO, TSS_TSPATTRIB_KEYINFO_SIGSCHEME,
739 TSS_SS_RSASSAPKCS1V15_DER))) {
740 stlogit("Tspi_SetAttribUint32: 0x%0x - %s\n",
741 result, Trspi_Error_String(result));
742 Tspi_Context_CloseObject(hContext, *phKey);
743 return (CKR_FUNCTION_FAILED);
744 }
745 }

747 result = Tspi_Key_WrapKey(*phKey, hParentKey, NULL_HPCRS);
748 if (result != TSS_SUCCESS) {
749 stlogit("Tspi_Key_WrapKey: 0x%0x - %s",
750 result, Trspi_Error_String(result));
751 Tspi_Context_CloseObject(hContext, *phKey);
752 *phKey = NULL_HKEY;
753 return (CKR_FUNCTION_FAILED);
754 }

756 return (CKR_OK);
757 }

759 /*
760 * Create a TPM key blob for an imported key. This function is only called when
761 * a key is in active use, so any failure should trickle through.
762 */
763 static CK_RV
764 token_wrap_key_object(TSS_HCONTEXT hContext,
765 CK_OBJECT_HANDLE ckObject,
766 TSS_HKEY hParentKey, TSS_HKEY *phKey)
767 {
768 CK_RV rc = CKR_OK;
769 CK_ATTRIBUTE *attr = NULL, *new_attr, *prime_attr;
770 CK_ULONG class, key_type;
771 OBJECT *obj;

773 TSS_RESULT result;
774 TSS_FLAG initFlags = 0;
775 BYTE *rgbBlob;
776 UINT32 ulBlobLen;

778 if ((rc = object_mgr_find_in_map1(hContext, ckObject, &obj))) {
779 return (rc);
780 }

782 /* if the object isn’t a key, fail */
783 if (template_attribute_find(obj->template, CKA_KEY_TYPE,
784 &attr) == FALSE) {
785 return (CKR_TEMPLATE_INCOMPLETE);
786 }

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 13

788 key_type = *((CK_ULONG *)attr->pValue);

790 if (key_type != CKK_RSA) {
791 return (CKR_TEMPLATE_INCONSISTENT);
792 }

794 if (template_attribute_find(obj->template, CKA_CLASS,
795 &attr) == FALSE) {
796 return (CKR_TEMPLATE_INCOMPLETE);
797 }

799 class = *((CK_ULONG *)attr->pValue);

801 if (class == CKO_PRIVATE_KEY) {
802 /*
803 * In order to create a full TSS key blob using a PKCS#11
804 * private key object, we need one of the two primes, the
805 * modulus and the private exponent and we need the public
806 * exponent to be correct.
807 */

809 /*
810 * Check the least likely attribute to exist first, the
811 * primes.
812 */
813 if (template_attribute_find(obj->template, CKA_PRIME_1,
814 &prime_attr) == FALSE) {
815 if (template_attribute_find(obj->template,
816 CKA_PRIME_2, &prime_attr) == FALSE) {
817 return (CKR_TEMPLATE_INCOMPLETE);
818 }
819 }

821 /* Make sure the public exponent is usable */
822 if ((rc = util_check_public_exponent(obj->template))) {
823 return (CKR_TEMPLATE_INCONSISTENT);
824 }

826 /* get the modulus */
827 if (template_attribute_find(obj->template, CKA_MODULUS,
828 &attr) == FALSE) {
829 return (CKR_TEMPLATE_INCOMPLETE);
830 }

832 /* make sure the key size is usable */
833 initFlags = util_get_keysize_flag(attr->ulValueLen * 8);
834 if (initFlags == 0) {
835 return (CKR_TEMPLATE_INCONSISTENT);
836 }

838 /* generate the software based key */
839 if ((rc = token_wrap_sw_key(hContext,
840 (int)attr->ulValueLen, attr->pValue,
841 (int)prime_attr->ulValueLen, prime_attr->pValue,
842 hParentKey, TSS_KEY_TYPE_LEGACY | TSS_KEY_NO_AUTHORIZATION,
843 phKey))) {
844 return (rc);
845 }
846 } else if (class == CKO_PUBLIC_KEY) {
847 /* Make sure the public exponent is usable */
848 if ((util_check_public_exponent(obj->template))) {
849 return (CKR_TEMPLATE_INCONSISTENT);
850 }

852 /* grab the modulus to put into the TSS key object */
853 if (template_attribute_find(obj->template,

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 14

854 CKA_MODULUS, &attr) == FALSE) {
855 return (CKR_TEMPLATE_INCONSISTENT);
856 }

858 /* make sure the key size is usable */
859 initFlags = util_get_keysize_flag(attr->ulValueLen * 8);
860 if (initFlags == 0) {
861 return (CKR_TEMPLATE_INCONSISTENT);
862 }

864 initFlags |= TSS_KEY_MIGRATABLE | TSS_KEY_NO_AUTHORIZATION |
865 TSS_KEY_TYPE_LEGACY;

867 if ((result = Tspi_Context_CreateObject(hContext,
868 TSS_OBJECT_TYPE_RSAKEY, initFlags, phKey))) {
869 stlogit("Tspi_Context_CreateObject: 0x%0x - %s",
870 result, Trspi_Error_String(result));
871 return (result);
872 }

874 if ((result = set_public_modulus(hContext, *phKey,
875 attr->ulValueLen, attr->pValue))) {
876 Tspi_Context_CloseObject(hContext, *phKey);
877 *phKey = NULL_HKEY;
878 return (CKR_FUNCTION_FAILED);
879 }
880 result = tss_assign_secret_key_policy(hContext,
881 TSS_POLICY_MIGRATION, *phKey, NULL);
882 if (result) {
883 Tspi_Context_CloseObject(hContext, *phKey);
884 *phKey = NULL_HKEY;
885 return (CKR_FUNCTION_FAILED);
886 }

888 result = set_legacy_key_params(*phKey);
889 if (result) {
890 Tspi_Context_CloseObject(hContext, *phKey);
891 *phKey = NULL_HKEY;
892 return (CKR_FUNCTION_FAILED);
893 }
894 } else {
895 return (CKR_FUNCTION_FAILED);
896 }

898 /* grab the entire key blob to put into the PKCS#11 object */
899 if ((result = Tspi_GetAttribData(*phKey, TSS_TSPATTRIB_KEY_BLOB,
900 TSS_TSPATTRIB_KEYBLOB_BLOB, &ulBlobLen, &rgbBlob))) {
901 stlogit("Tspi_GetAttribData: 0x%0x - %s",
902 result, Trspi_Error_String(result));
903 return (CKR_FUNCTION_FAILED);
904 }

906 /* insert the key blob into the object */
907 if ((rc = build_attribute(CKA_IBM_OPAQUE, rgbBlob, ulBlobLen,
908 &new_attr))) {
909 Tspi_Context_FreeMemory(hContext, rgbBlob);
910 return (rc);
911 }
912 (void) template_update_attribute(obj->template, new_attr);
913 Tspi_Context_FreeMemory(hContext, rgbBlob);

915 /*
916 * If this is a token object, save it with the new attribute
917 * so that we don’t have to go down this path again.
918 */
919 if (!object_is_session_object(obj)) {

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 15

920 rc = save_token_object(hContext, obj);
921 }

923 return (rc);
924 }

926 static TSS_RESULT
927 tss_assign_secret_key_policy(TSS_HCONTEXT hContext, TSS_FLAG policyType,
928 TSS_HKEY hKey, CK_CHAR *passHash)
929 {
930 TSS_RESULT result;
931 TSS_HPOLICY hPolicy;

933 if ((result = Tspi_Context_CreateObject(hContext,
934 TSS_OBJECT_TYPE_POLICY, policyType, &hPolicy))) {
935 stlogit("Tspi_Context_CreateObject: 0x%0x - %s",
936 result, Trspi_Error_String(result));
937 return (result);
938 }
939 if ((result = Tspi_Policy_AssignToObject(hPolicy, hKey))) {
940 stlogit("Tspi_Policy_AssignToObject: 0x%0x - %s",
941 result, Trspi_Error_String(result));
942 goto done;
943 }
944 if (passHash == NULL) {
945 result = Tspi_Policy_SetSecret(hPolicy, TSS_SECRET_MODE_NONE,
946 0, NULL);
947 } else {
948 result = Tspi_Policy_SetSecret(hPolicy, TSS_SECRET_MODE_SHA1,
949 SHA1_DIGEST_LENGTH, passHash);
950 }
951 if (result != TSS_SUCCESS) {
952 stlogit("Tspi_Policy_SetSecret: 0x%0x - %s",
953 result, Trspi_Error_String(result));
954 goto done;
955 }
956 done:
957 if (result != TSS_SUCCESS)
958 Tspi_Context_CloseObject(hContext, hPolicy);
959 return (result);
960 }

962 /*
963 * Take a key from the TSS store (on-disk) and load it into the TPM, wrapped
964 * by an already TPM-resident key and protected with a PIN (optional).
965 */
966 static CK_RV
967 token_load_key(
968 TSS_HCONTEXT hContext,
969 CK_OBJECT_HANDLE ckKey,
970 TSS_HKEY hParentKey,
971 CK_CHAR_PTR passHash,
972 TSS_HKEY *phKey)
973 {
974 TSS_RESULT result;
975 CK_RV rc;

977 /*
978 * The key blob wasn’t found, load the parts of the key
979 * from the object DB and create a new key object that
980 * gets loaded into the TPM, wrapped with the parent key.
981 */
982 if ((rc = token_wrap_key_object(hContext, ckKey,
983 hParentKey, phKey))) {
984 return (rc);
985 }

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 16

987 /*
988 * Assign the PIN hash (optional) to the newly loaded key object,
989 * if this PIN is incorrect, the TPM will not be able to decrypt
990 * the private key and use it.
991 */
992 result = tss_assign_secret_key_policy(hContext, TSS_POLICY_USAGE,
993 *phKey, passHash);

995 return (result);
996 }

998 /*
999 * Load the SRK into the TPM by referencing its well-known UUID and using the

1000 * default SRK PIN (20 bytes of 0x00).
1001 *
1002 * NOTE - if the SRK PIN is changed by an administrative tool, this code will
1003 * fail because it assumes that the well-known PIN is still being used.
1004 */
1005 static TSS_RESULT
1006 token_load_srk(TSS_HCONTEXT hContext, TSS_HKEY *hSRK)
1007 {
1008 TSS_HPOLICY hPolicy;
1009 TSS_RESULT result;
1010 TSS_UUID SRK_UUID = TSS_UUID_SRK;
1011 BYTE wellKnown[] = TSS_WELL_KNOWN_SECRET;
1012 TSS_HTPM hTPM;

1014 if ((result = Tspi_Context_GetTpmObject(hContext, &hTPM))) {
1015 stlogit("Tspi_Context_GetTpmObject: 0x%0x - %s",
1016 result, Trspi_Error_String(result));
1017 return (CKR_FUNCTION_FAILED);
1018 }

1020 /* load the SRK */
1021 if ((result = Tspi_Context_LoadKeyByUUID(hContext,
1022 TSS_PS_TYPE_SYSTEM, SRK_UUID, hSRK))) {
1023 stlogit("Tspi_Context_LoadKeyByUUID: 0x%0x - %s",
1024 result, Trspi_Error_String(result));
1025 goto done;
1026 }
1027 if ((result = Tspi_GetPolicyObject(*hSRK, TSS_POLICY_USAGE,
1028 &hPolicy))) {
1029 stlogit("Tspi_GetPolicyObject: 0x%0x - %s",
1030 result, Trspi_Error_String(result));
1031 goto done;
1032 }
1033 if ((result = Tspi_Policy_SetSecret(hPolicy, TSS_SECRET_MODE_SHA1,
1034 sizeof (wellKnown), wellKnown))) {
1035 stlogit("Tspi_Policy_SetSecret: 0x%0x - %s",
1036 result, Trspi_Error_String(result));
1037 goto done;
1038 }

1040 done:
1041 return (result);
1042 }

1044 static TSS_RESULT
1045 tss_find_and_load_key(TSS_HCONTEXT hContext,
1046 char *keyid, TSS_UUID *uuid, TSS_HKEY hParent,
1047 BYTE *hash, TSS_HKEY *hKey)
1048 {
1049 TSS_RESULT result;

1051 if (local_uuid_is_null(uuid) &&

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 17

1052 find_uuid(keyid, uuid)) {
1053 /* The UUID was not created or saved yet */
1054 return (1);
1055 }
1056 result = Tspi_Context_GetKeyByUUID(hContext,
1057 TSS_PS_TYPE_USER, *uuid, hKey);
1058 if (result) {
1059 stlogit("Tspi_Context_GetKeyByUUID: 0x%0x - %s",
1060 result, Trspi_Error_String(result));
1061 return (result);
1062 }

1064 if (hash != NULL) {
1065 result = tss_assign_secret_key_policy(hContext,
1066 TSS_POLICY_USAGE, *hKey, (CK_BYTE *)hash);
1067 if (result)
1068 return (result);
1069 }

1071 result = Tspi_Key_LoadKey(*hKey, hParent);
1072 if (result)
1073 stlogit("Tspi_Key_LoadKey: 0x%0x - %s",
1074 result, Trspi_Error_String(result));

1076 return (result);
1077 }

1079 static TSS_RESULT
1080 token_load_public_root_key(TSS_HCONTEXT hContext)
1081 {
1082 TSS_RESULT result;
1083 TSS_HKEY hSRK;

1085 if (hPublicRootKey != NULL_HKEY)
1086 return (TSS_SUCCESS);

1088 if ((result = token_load_srk(hContext, &hSRK))) {
1089 return (result);
1090 }

1092 result = tss_find_and_load_key(hContext,
1093 TPMTOK_PUBLIC_ROOT_KEY_ID,
1094 &publicRootKeyUUID, hSRK, NULL, &hPublicRootKey);
1095 if (result)
1096 return (result);

1098 return (result);
1099 }

1101 static TSS_RESULT
1102 set_legacy_key_params(TSS_HKEY hKey)
1103 {
1104 TSS_RESULT result;

1106 if ((result = Tspi_SetAttribUint32(hKey,
1107 TSS_TSPATTRIB_KEY_INFO,
1108 TSS_TSPATTRIB_KEYINFO_ENCSCHEME,
1109 TSS_ES_RSAESPKCSV15))) {
1110 stlogit("Tspi_SetAttribUint32: 0x%0x - %s",
1111 result, Trspi_Error_String(result));
1112 return (result);
1113 }

1115 if ((result = Tspi_SetAttribUint32(hKey,
1116 TSS_TSPATTRIB_KEY_INFO,
1117 TSS_TSPATTRIB_KEYINFO_SIGSCHEME,

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 18

1118 TSS_SS_RSASSAPKCS1V15_DER))) {
1119 stlogit("Tspi_SetAttribUint32: 0x%0x - %s",
1120 result, Trspi_Error_String(result));
1121 return (result);
1122 }

1124 return (result);
1125 }

1127 static TSS_RESULT
1128 tss_generate_key(TSS_HCONTEXT hContext, TSS_FLAG initFlags, BYTE *passHash,
1129 TSS_HKEY hParentKey, TSS_HKEY *phKey)
1130 {
1131 TSS_RESULT result;
1132 TSS_HPOLICY hMigPolicy;

1134 if ((result = Tspi_Context_CreateObject(hContext,
1135 TSS_OBJECT_TYPE_RSAKEY, initFlags, phKey))) {
1136 stlogit("Tspi_Context_CreateObject: 0x%0x - %s",
1137 result, Trspi_Error_String(result));
1138 return (result);
1139 }
1140 result = tss_assign_secret_key_policy(hContext, TSS_POLICY_USAGE,
1141 *phKey, passHash);

1143 if (result) {
1144 Tspi_Context_CloseObject(hContext, *phKey);
1145 return (result);
1146 }

1148 if (TPMTOK_TSS_KEY_MIG_TYPE(initFlags) == TSS_KEY_MIGRATABLE) {
1149 if ((result = Tspi_Context_CreateObject(hContext,
1150 TSS_OBJECT_TYPE_POLICY, TSS_POLICY_MIGRATION,
1151 &hMigPolicy))) {
1152 stlogit("Tspi_Context_CreateObject: 0x%0x - %s",
1153 result, Trspi_Error_String(result));
1154 Tspi_Context_CloseObject(hContext, *phKey);
1155 return (result);
1156 }

1158 if (passHash == NULL) {
1159 result = Tspi_Policy_SetSecret(hMigPolicy,
1160 TSS_SECRET_MODE_NONE, 0, NULL);
1161 } else {
1162 result = Tspi_Policy_SetSecret(hMigPolicy,
1163 TSS_SECRET_MODE_SHA1, 20, passHash);
1164 }

1166 if (result != TSS_SUCCESS) {
1167 stlogit("Tspi_Policy_SetSecret: 0x%0x - %s",
1168 result, Trspi_Error_String(result));
1169 Tspi_Context_CloseObject(hContext, *phKey);
1170 Tspi_Context_CloseObject(hContext, hMigPolicy);
1171 return (result);
1172 }

1174 if ((result = Tspi_Policy_AssignToObject(hMigPolicy, *phKey))) {
1175 stlogit("Tspi_Policy_AssignToObject: 0x%0x - %s",
1176 result, Trspi_Error_String(result));
1177 Tspi_Context_CloseObject(hContext, *phKey);
1178 Tspi_Context_CloseObject(hContext, hMigPolicy);
1179 return (result);
1180 }
1181 }

1183 if (TPMTOK_TSS_KEY_TYPE(initFlags) == TSS_KEY_TYPE_LEGACY) {

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 19

1184 result = set_legacy_key_params(*phKey);
1185 if (result) {
1186 Tspi_Context_CloseObject(hContext, *phKey);
1187 Tspi_Context_CloseObject(hContext, hMigPolicy);
1188 return (result);
1189 }
1190 }

1192 if ((result = Tspi_Key_CreateKey(*phKey, hParentKey, 0))) {
1193 stlogit("Tspi_Key_CreateKey: 0x%0x - %s",
1194 result, Trspi_Error_String(result));
1195 Tspi_Context_CloseObject(hContext, *phKey);
1196 Tspi_Context_CloseObject(hContext, hMigPolicy);
1197 }

1199 return (result);
1200 }

1202 static TSS_RESULT
1203 tss_change_auth(
1204 TSS_HCONTEXT hContext,
1205 TSS_HKEY hObjectToChange, TSS_HKEY hParentObject,
1206 TSS_UUID objUUID, TSS_UUID parentUUID,
1207 CK_CHAR *passHash)
1208 {
1209 TSS_RESULT result;
1210 TSS_HPOLICY hPolicy;
1211 TSS_HKEY oldkey;

1213 if ((result = Tspi_Context_CreateObject(hContext,
1214 TSS_OBJECT_TYPE_POLICY, TSS_POLICY_USAGE, &hPolicy))) {
1215 stlogit("Tspi_Context_CreateObject: 0x%0x - %s",
1216 result, Trspi_Error_String(result));
1217 return (result);
1218 }

1220 if ((result = Tspi_Policy_SetSecret(hPolicy, TSS_SECRET_MODE_SHA1,
1221 SHA1_DIGEST_LENGTH, passHash))) {
1222 stlogit("Tspi_Policy_SetSecret: 0x%0x - %s",
1223 result, Trspi_Error_String(result));
1224 return (result);
1225 }

1227 if ((result = Tspi_ChangeAuth(hObjectToChange, hParentObject,
1228 hPolicy))) {
1229 stlogit("Tspi_ChangeAuth: 0x%0x - %s",
1230 result, Trspi_Error_String(result));
1231 }
1232 /*
1233 * Update the PS key by unregistering the key UUID and then
1234 * re-registering with the same UUID. This forces the updated
1235 * auth data associated with the key to be stored in PS so
1236 * the new PIN can be used next time.
1237 */
1238 if ((result = Tspi_Context_UnregisterKey(hContext,
1239 TSS_PS_TYPE_USER, objUUID, &oldkey)))
1240 stlogit("Tspi_Context_UnregisterKey: 0x%0x - %s",
1241 result, Trspi_Error_String(result));

1243 if ((result = Tspi_Context_RegisterKey(hContext, hObjectToChange,
1244 TSS_PS_TYPE_USER, objUUID, TSS_PS_TYPE_USER, parentUUID)))
1245 stlogit("Tspi_Context_RegisterKey: 0x%0x - %s",
1246 result, Trspi_Error_String(result));

1248 return (result);
1249 }

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 20

1251 static CK_RV
1252 token_generate_leaf_key(TSS_HCONTEXT hContext,
1253 int key_type, CK_CHAR_PTR passHash, TSS_HKEY *phKey)
1254 {
1255 CK_RV rc = CKR_FUNCTION_FAILED;
1256 TSS_RESULT result;
1257 TSS_HKEY hParentKey;
1258 TSS_UUID newuuid, parentUUID;
1259 char *keyid;
1260 TSS_FLAG initFlags = TSS_KEY_MIGRATABLE |
1261 TSS_KEY_TYPE_BIND | TSS_KEY_SIZE_2048 | TSS_KEY_AUTHORIZATION;

1263 switch (key_type) {
1264 case TPMTOK_PUBLIC_LEAF_KEY:
1265 hParentKey = hPublicRootKey;
1266 keyid = TPMTOK_PUBLIC_LEAF_KEY_ID;
1267 local_uuid_copy(&parentUUID, &publicRootKeyUUID);
1268 break;
1269 case TPMTOK_PRIVATE_LEAF_KEY:
1270 hParentKey = hPrivateRootKey;
1271 keyid = TPMTOK_PRIVATE_LEAF_KEY_ID;
1272 local_uuid_copy(&parentUUID, &privateRootKeyUUID);
1273 break;
1274 default:
1275 stlogit("Unknown key type 0x%0x", key_type);
1276 goto done;
1277 }

1279 if (result = tss_generate_key(hContext, initFlags, passHash,
1280 hParentKey, phKey)) {
1281 return (rc);
1282 }

1284 /*
1285 * - generate newUUID
1286 * - Tspi_Context_RegisterKey(hContext, hPrivateRootKey,
1287 * USER, newUUID, USER, parentUUID);
1288 * - store newUUID
1289 */
1290 (void) local_uuid_generate(&newuuid);

1292 result = Tspi_Context_RegisterKey(hContext, *phKey,
1293 TSS_PS_TYPE_USER, newuuid,
1294 TSS_PS_TYPE_USER, parentUUID);
1295 if (result == TSS_SUCCESS) {
1296 int ret;
1297 /*
1298 * Add the UUID to the token UUID index.
1299 */
1300 ret = add_uuid(keyid, &newuuid);

1302 if (ret)
1303 result = Tspi_Context_UnregisterKey(hContext,
1304 TSS_PS_TYPE_USER, newuuid, phKey);
1305 else
1306 rc = CKR_OK;
1307 }

1309 done:
1310 return (rc);
1311 }

1313 /*
1314 * PINs are verified by attempting to bind/unbind random data using a
1315 * TPM resident key that has the PIN being tested assigned as its "secret".

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 21

1316 * If the PIN is incorrect, the unbind operation will fail.
1317 */
1318 static CK_RV
1319 token_verify_pin(TSS_HCONTEXT hContext, TSS_HKEY hKey)
1320 {
1321 TSS_HENCDATA hEncData;
1322 UINT32 ulUnboundDataLen;
1323 BYTE *rgbUnboundData = NULL;
1324 BYTE rgbData[16];
1325 TSS_RESULT result;
1326 CK_RV rc = CKR_FUNCTION_FAILED;

1328 if ((result = Tspi_Context_CreateObject(hContext,
1329 TSS_OBJECT_TYPE_ENCDATA, TSS_ENCDATA_BIND, &hEncData))) {
1330 stlogit("Tspi_Context_CreateObject: 0x%0x - %s",
1331 result, Trspi_Error_String(result));
1332 goto done;
1333 }

1335 /* Use some random data */
1336 rc = token_rng(hContext, rgbData, sizeof (rgbData));
1337 if (rc)
1338 goto done;

1340 if ((result = Tspi_Data_Bind(hEncData, hKey,
1341 sizeof (rgbData), rgbData))) {
1342 stlogit("Tspi_Data_Bind: 0x%0x - %s",
1343 result, Trspi_Error_String(result));
1344 goto done;
1345 }

1347 /* unbind the junk data to test the key’s auth data */
1348 result = Tspi_Data_Unbind(hEncData, hKey, &ulUnboundDataLen,
1349 &rgbUnboundData);
1350 if (result == TPM_E_AUTHFAIL) {
1351 rc = CKR_PIN_INCORRECT;
1352 stlogit("Tspi_Data_Unbind: 0x%0x - %s",
1353 result, Trspi_Error_String(result));
1354 goto done;
1355 } else if (result != TSS_SUCCESS) {
1356 stlogit("Tspi_Data_Unbind: 0x%0x - %s",
1357 result, Trspi_Error_String(result));
1358 rc = CKR_FUNCTION_FAILED;
1359 goto done;
1360 }

1362 if (memcmp(rgbUnboundData, rgbData, ulUnboundDataLen))
1363 rc = CKR_PIN_INCORRECT;
1364 else
1365 rc = CKR_OK;

1367 done:
1368 if (rgbUnboundData != NULL)
1369 Tspi_Context_FreeMemory(hContext, rgbUnboundData);
1370 Tspi_Context_CloseObject(hContext, hEncData);
1371 return (rc);
1372 }

1374 static CK_RV
1375 token_create_private_tree(TSS_HCONTEXT hContext, CK_BYTE *pinHash)
1376 {
1377 CK_RV rc;
1378 TSS_RESULT result;
1379 int ret;
1380 TSS_FLAG initFlags = TSS_KEY_SIZE_2048 |
1381 TSS_KEY_NO_AUTHORIZATION | TSS_KEY_TYPE_STORAGE;

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 22

1382 TSS_UUID SRK_UUID = TSS_UUID_SRK;
1383 TSS_HKEY hSRK;

1385 if (token_load_srk(hContext, &hSRK))
1386 return (CKR_FUNCTION_FAILED);

1388 /*
1389 * - create UUID privateRootKeyUUID
1390 * - Tspi_Context_RegisterKey(hContext, hPrivateRootKey,
1391 * USER, privateRootKeyUUID, system, UUID_SRK);
1392 * - store privateRootKeyUUID in users private token space.
1393 */
1394 if ((result = tss_generate_key(hContext, initFlags, NULL, hSRK,
1395 &hPrivateRootKey))) {
1396 return (result);
1397 }
1398 if (local_uuid_is_null(&privateRootKeyUUID))
1399 local_uuid_generate(&privateRootKeyUUID);

1401 result = Tspi_Context_RegisterKey(hContext, hPrivateRootKey,
1402 TSS_PS_TYPE_USER, privateRootKeyUUID,
1403 TSS_PS_TYPE_SYSTEM, SRK_UUID);

1405 if (result) {
1406 local_uuid_clear(&privateRootKeyUUID);
1407 return (result);
1408 }

1410 ret = add_uuid(TPMTOK_PRIVATE_ROOT_KEY_ID, &privateRootKeyUUID);
1411 if (ret) {
1412 result = Tspi_Context_UnregisterKey(hContext,
1413 TSS_PS_TYPE_USER, privateRootKeyUUID,
1414 &hPrivateRootKey);
1415 return (CKR_FUNCTION_FAILED);
1416 }

1418 if ((result = Tspi_Key_LoadKey(hPrivateRootKey, hSRK))) {
1419 stlogit("Tspi_Key_LoadKey: 0x%0x - %s",
1420 result, Trspi_Error_String(result));
1421 Tspi_Context_CloseObject(hContext, hPrivateRootKey);

1423 (void) remove_uuid(TPMTOK_PRIVATE_ROOT_KEY_ID);
1424 local_uuid_clear(&privateRootKeyUUID);

1426 hPrivateRootKey = NULL_HKEY;
1427 return (CKR_FUNCTION_FAILED);
1428 }

1431 /* generate the private leaf key */
1432 if ((rc = token_generate_leaf_key(hContext,
1433 TPMTOK_PRIVATE_LEAF_KEY,
1434 pinHash, &hPrivateLeafKey))) {
1435 return (rc);
1436 }

1438 if ((result = Tspi_Key_LoadKey(hPrivateLeafKey, hPrivateRootKey))) {
1439 stlogit("Tspi_Key_LoadKey: 0x%0x - %s",
1440 result, Trspi_Error_String(result));

1442 (void) Tspi_Context_UnregisterKey(hContext,
1443 TSS_PS_TYPE_USER, privateLeafKeyUUID,
1444 &hPrivateLeafKey);
1445 (void) remove_uuid(TPMTOK_PRIVATE_LEAF_KEY_ID);
1446 local_uuid_clear(&privateLeafKeyUUID);

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 23

1448 (void) Tspi_Context_UnregisterKey(hContext,
1449 TSS_PS_TYPE_USER, privateRootKeyUUID,
1450 &hPrivateRootKey);
1451 (void) remove_uuid(TPMTOK_PRIVATE_ROOT_KEY_ID);
1452 local_uuid_clear(&privateRootKeyUUID);

1454 Tspi_Context_CloseObject(hContext, hPrivateRootKey);
1455 hPrivateRootKey = NULL_HKEY;

1457 Tspi_Context_CloseObject(hContext, hPrivateLeafKey);
1458 hPrivateRootKey = NULL_HKEY;

1460 return (CKR_FUNCTION_FAILED);
1461 }
1462 return (rc);
1463 }

1465 static CK_RV
1466 token_create_public_tree(TSS_HCONTEXT hContext, CK_BYTE *pinHash)
1467 {
1468 CK_RV rc;
1469 TSS_RESULT result;
1470 int ret;
1471 TSS_FLAG initFlags = TSS_KEY_SIZE_2048 |
1472 TSS_KEY_NO_AUTHORIZATION | TSS_KEY_TYPE_STORAGE;
1473 TSS_UUID srk_uuid = TSS_UUID_SRK;
1474 TSS_HKEY hSRK;

1476 if (token_load_srk(hContext, &hSRK))
1477 return (CKR_FUNCTION_FAILED);

1479 /*
1480 * - create publicRootKeyUUID
1481 * - Tspi_Context_RegisterKey(hContext, hPublicRootKey,
1482 * USER, publicRootKeyUUID, system, UUID_SRK);
1483 * - store publicRootKeyUUID in users private token space.
1484 */
1485 if ((result = tss_generate_key(hContext, initFlags, NULL, hSRK,
1486 &hPublicRootKey))) {
1487 return (CKR_FUNCTION_FAILED);
1488 }
1489 if (local_uuid_is_null(&publicRootKeyUUID))
1490 local_uuid_generate(&publicRootKeyUUID);

1492 result = Tspi_Context_RegisterKey(hContext, hPublicRootKey,
1493 TSS_PS_TYPE_USER, publicRootKeyUUID,
1494 TSS_PS_TYPE_SYSTEM, srk_uuid);

1496 if (result) {
1497 local_uuid_clear(&publicRootKeyUUID);
1498 return (CKR_FUNCTION_FAILED);
1499 }

1501 ret = add_uuid(TPMTOK_PUBLIC_ROOT_KEY_ID, &publicRootKeyUUID);
1502 if (ret) {
1503 result = Tspi_Context_UnregisterKey(hContext,
1504 TSS_PS_TYPE_USER, publicRootKeyUUID,
1505 &hPublicRootKey);
1506 /* does result matter here? */
1507 return (CKR_FUNCTION_FAILED);
1508 }

1510 /* Load the newly created publicRootKey into the TPM using the SRK */
1511 if ((result = Tspi_Key_LoadKey(hPublicRootKey, hSRK))) {
1512 stlogit("Tspi_Key_LoadKey: 0x%x - %s", result,
1513 Trspi_Error_String(result));

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 24

1514 Tspi_Context_CloseObject(hContext, hPublicRootKey);
1515 hPublicRootKey = NULL_HKEY;
1516 return (CKR_FUNCTION_FAILED);
1517 }

1519 /* create the SO’s leaf key */
1520 if ((rc = token_generate_leaf_key(hContext, TPMTOK_PUBLIC_LEAF_KEY,
1521 pinHash, &hPublicLeafKey))) {
1522 return (rc);
1523 }

1525 if ((result = Tspi_Key_LoadKey(hPublicLeafKey, hPublicRootKey))) {
1526 stlogit("Tspi_Key_LoadKey: 0x%0x - %s",
1527 result, Trspi_Error_String(result));

1529 /* Unregister keys and clear UUIDs */
1530 (void) Tspi_Context_UnregisterKey(hContext,
1531 TSS_PS_TYPE_USER, publicLeafKeyUUID,
1532 &hPublicLeafKey);
1533 (void) remove_uuid(TPMTOK_PUBLIC_LEAF_KEY_ID);

1535 (void) Tspi_Context_UnregisterKey(hContext,
1536 TSS_PS_TYPE_USER, publicRootKeyUUID,
1537 &hPublicRootKey);
1538 (void) remove_uuid(TPMTOK_PUBLIC_ROOT_KEY_ID);

1540 Tspi_Context_CloseObject(hContext, hPublicRootKey);
1541 hPublicRootKey = NULL_HKEY;

1543 Tspi_Context_CloseObject(hContext, hPublicLeafKey);
1544 hPublicLeafKey = NULL_HKEY;

1546 return (CKR_FUNCTION_FAILED);
1547 }

1549 return (rc);
1550 }

1552 CK_RV
1553 token_specific_login(
1554 TSS_HCONTEXT hContext,
1555 CK_USER_TYPE userType,
1556 CK_CHAR_PTR pPin,
1557 CK_ULONG ulPinLen)
1558 {
1559 CK_RV rc;
1560 CK_BYTE hash_sha[SHA1_DIGEST_LENGTH];
1561 TSS_RESULT result;
1562 TSS_HKEY hSRK;

1564 /* Make sure the SRK is loaded into the TPM */
1565 if ((result = token_load_srk(hContext, &hSRK))) {
1566 return (CKR_FUNCTION_FAILED);
1567 }

1569 if ((rc = compute_sha(pPin, ulPinLen, hash_sha))) {
1570 return (CKR_FUNCTION_FAILED);
1571 }

1573 if (userType == CKU_USER) {
1574 /*
1575 * If the public root key doesn’t exist yet,
1576 * the SO hasn’t init’d the token.
1577 */
1578 if ((result = token_load_public_root_key(hContext))) {
1579 if (result == TPM_E_DECRYPT_ERROR) {

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 25

1580 return (CKR_USER_PIN_NOT_INITIALIZED);
1581 }
1582 }

1584 /*
1585 * - find privateRootKeyUUID
1586 * - load by UUID (SRK parent)
1587 */
1588 if (local_uuid_is_null(&privateRootKeyUUID) &&
1589 find_uuid(TPMTOK_PRIVATE_ROOT_KEY_ID,
1590 &privateRootKeyUUID)) {
1591 if (memcmp(hash_sha,
1592 default_user_pin_sha,
1593 SHA1_DIGEST_LENGTH))
1594 return (CKR_PIN_INCORRECT);

1596 not_initialized = 1;
1597 return (CKR_OK);
1598 }

1600 if ((rc = verify_user_pin(hContext, hash_sha))) {
1601 return (rc);
1602 }

1604 (void) memcpy(current_user_pin_sha, hash_sha,
1605 SHA1_DIGEST_LENGTH);

1607 rc = load_private_token_objects(hContext);
1608 if (rc == CKR_OK) {
1609 (void) XProcLock(xproclock);
1610 global_shm->priv_loaded = TRUE;
1611 (void) XProcUnLock(xproclock);
1612 }
1613 } else {
1614 /*
1615 * SO login logic:
1616 *
1617 * - find publicRootKey UUID
1618 * - load by UUID wrap with hSRK from above
1619 */
1620 if (local_uuid_is_null(&publicRootKeyUUID) &&
1621 find_uuid(TPMTOK_PUBLIC_ROOT_KEY_ID,
1622 &publicRootKeyUUID)) {
1623 if (memcmp(hash_sha,
1624 default_so_pin_sha,
1625 SHA1_DIGEST_LENGTH))
1626 return (CKR_PIN_INCORRECT);

1628 not_initialized = 1;
1629 return (CKR_OK);

1631 }
1632 if (hPublicRootKey == NULL_HKEY) {
1633 result = tss_find_and_load_key(
1634 hContext,
1635 TPMTOK_PUBLIC_ROOT_KEY_ID,
1636 &publicRootKeyUUID, hSRK, NULL,
1637 &hPublicRootKey);

1639 if (result)
1640 return (CKR_FUNCTION_FAILED);
1641 }

1643 /* find, load the public leaf key */
1644 if (hPublicLeafKey == NULL_HKEY) {
1645 result = tss_find_and_load_key(

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 26

1646 hContext,
1647 TPMTOK_PUBLIC_LEAF_KEY_ID,
1648 &publicLeafKeyUUID, hPublicRootKey, hash_sha,
1649 &hPublicLeafKey);
1650 if (result)
1651 return (CKR_FUNCTION_FAILED);
1652 }

1654 if ((rc = token_verify_pin(hContext, hPublicLeafKey))) {
1655 return (rc);
1656 }

1658 (void) memcpy(current_so_pin_sha, hash_sha, SHA1_DIGEST_LENGTH);
1659 }

1661 return (rc);
1662 }

1664 CK_RV
1665 token_specific_logout(TSS_HCONTEXT hContext)
1666 {
1667 if (hPrivateLeafKey != NULL_HKEY) {
1668 Tspi_Key_UnloadKey(hPrivateLeafKey);
1669 hPrivateLeafKey = NULL_HKEY;
1670 } else if (hPublicLeafKey != NULL_HKEY) {
1671 Tspi_Key_UnloadKey(hPublicLeafKey);
1672 hPublicLeafKey = NULL_HKEY;
1673 }

1675 local_uuid_clear(&publicRootKeyUUID);
1676 local_uuid_clear(&publicLeafKeyUUID);
1677 local_uuid_clear(&privateRootKeyUUID);
1678 local_uuid_clear(&privateLeafKeyUUID);

1680 (void) memset(current_so_pin_sha, 0, SHA1_DIGEST_LENGTH);
1681 (void) memset(current_user_pin_sha, 0, SHA1_DIGEST_LENGTH);

1683 (void) object_mgr_purge_private_token_objects(hContext);

1685 return (CKR_OK);
1686 }

1688 /*ARGSUSED*/
1689 CK_RV
1690 token_specific_init_pin(TSS_HCONTEXT hContext,
1691 CK_CHAR_PTR pPin, CK_ULONG ulPinLen)
1692 {
1693 /*
1694 * Since the SO must log in before calling C_InitPIN, we will
1695 * be able to return (CKR_OK) automatically here.
1696 * This is because the USER key structure is created at the
1697 * time of her first login, not at C_InitPIN time.
1698 */
1699 return (CKR_OK);
1700 }

1702 static CK_RV
1703 check_pin_properties(CK_USER_TYPE userType, CK_BYTE *pinHash,
1704 CK_ULONG ulPinLen)
1705 {
1706 /* make sure the new PIN is different */
1707 if (userType == CKU_USER) {
1708 if (!memcmp(pinHash, default_user_pin_sha,
1709 SHA1_DIGEST_LENGTH)) {
1710 LogError1("new PIN must not be the default");
1711 return (CKR_PIN_INVALID);

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 27

1712 }
1713 } else {
1714 if (!memcmp(pinHash, default_so_pin_sha,
1715 SHA1_DIGEST_LENGTH)) {
1716 LogError1("new PIN must not be the default");
1717 return (CKR_PIN_INVALID);
1718 }
1719 }

1721 if (ulPinLen > MAX_PIN_LEN || ulPinLen < MIN_PIN_LEN) {
1722 LogError1("New PIN is out of size range");
1723 return (CKR_PIN_LEN_RANGE);
1724 }

1726 return (CKR_OK);
1727 }

1729 /*
1730 * This function is called from set_pin only, where a non-logged-in public
1731 * session can provide the user pin which must be verified. This function
1732 * assumes that the pin has already been set once, so there’s no migration
1733 * path option or checking of the default user pin.
1734 */
1735 static CK_RV
1736 verify_user_pin(TSS_HCONTEXT hContext, CK_BYTE *hash_sha)
1737 {
1738 CK_RV rc;
1739 TSS_RESULT result;
1740 TSS_HKEY hSRK;

1742 if (token_load_srk(hContext, &hSRK))
1743 return (CKR_FUNCTION_FAILED);

1745 /*
1746 * Verify the user by loading the privateLeafKey
1747 * into the TPM (if it’s not already) and then
1748 * call the verify_pin operation.
1749 *
1750 * The hashed PIN is assigned to the private leaf key.
1751 * If it is incorrect (not the same as the one originally
1752 * used when the key was created), the verify operation
1753 * will fail.
1754 */
1755 if (hPrivateRootKey == NULL_HKEY) {
1756 result = tss_find_and_load_key(
1757 hContext,
1758 TPMTOK_PRIVATE_ROOT_KEY_ID,
1759 &privateRootKeyUUID, hSRK, NULL, &hPrivateRootKey);
1760 if (result)
1761 return (CKR_FUNCTION_FAILED);
1762 }

1764 if (hPrivateLeafKey == NULL_HKEY) {
1765 result = tss_find_and_load_key(
1766 hContext,
1767 TPMTOK_PRIVATE_LEAF_KEY_ID,
1768 &privateLeafKeyUUID, hPrivateRootKey, hash_sha,
1769 &hPrivateLeafKey);

1771 if (result)
1772 return (CKR_FUNCTION_FAILED);
1773 }

1775 /*
1776 * Verify that the PIN is correct by attempting to wrap/unwrap some
1777 * random data.

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 28

1778 */
1779 if ((rc = token_verify_pin(hContext, hPrivateLeafKey))) {
1780 return (rc);
1781 }

1783 return (CKR_OK);
1784 }

1786 CK_RV
1787 token_specific_set_pin(ST_SESSION_HANDLE session,
1788 CK_CHAR_PTR pOldPin, CK_ULONG ulOldPinLen,
1789 CK_CHAR_PTR pNewPin, CK_ULONG ulNewPinLen)
1790 {
1791 SESSION *sess = session_mgr_find(session.sessionh);
1792 CK_BYTE oldpin_hash[SHA1_DIGEST_LENGTH];
1793 CK_BYTE newpin_hash[SHA1_DIGEST_LENGTH];
1794 CK_RV rc;
1795 TSS_HKEY hSRK;

1797 if (!sess) {
1798 return (CKR_SESSION_HANDLE_INVALID);
1799 }

1801 if ((rc = compute_sha(pOldPin, ulOldPinLen, oldpin_hash))) {
1802 return (CKR_FUNCTION_FAILED);
1803 }
1804 if ((rc = compute_sha(pNewPin, ulNewPinLen, newpin_hash))) {
1805 return (CKR_FUNCTION_FAILED);
1806 }

1808 if (token_load_srk(sess->hContext, &hSRK)) {
1809 return (CKR_FUNCTION_FAILED);
1810 }

1812 /*
1813 * From the PKCS#11 2.20 spec: "C_SetPIN modifies the PIN of
1814 * the user that is currently logged in, or the CKU_USER PIN
1815 * if the session is not logged in."
1816 * A non R/W session fails with CKR_SESSION_READ_ONLY.
1817 */
1818 if (sess->session_info.state == CKS_RW_USER_FUNCTIONS ||
1819 sess->session_info.state == CKS_RW_PUBLIC_SESSION) {
1820 if (not_initialized) {
1821 if (memcmp(oldpin_hash, default_user_pin_sha,
1822 SHA1_DIGEST_LENGTH)) {
1823 return (CKR_PIN_INCORRECT);
1824 }

1826 if ((rc = check_pin_properties(CKU_USER, newpin_hash,
1827 ulNewPinLen))) {
1828 return (rc);
1829 }

1831 if ((rc = token_create_private_tree(sess->hContext,
1832 newpin_hash))) {
1833 return (CKR_FUNCTION_FAILED);
1834 }

1836 nv_token_data->token_info.flags &=
1837 ~(CKF_USER_PIN_TO_BE_CHANGED);
1838 nv_token_data->token_info.flags |=
1839 CKF_USER_PIN_INITIALIZED;

1841 nv_token_data->token_info.flags &=
1842 ~(CKF_USER_PIN_TO_BE_CHANGED);
1843 nv_token_data->token_info.flags |=

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 29

1844 CKF_USER_PIN_INITIALIZED;

1846 return (save_token_data(nv_token_data));
1847 }

1849 if (sess->session_info.state == CKS_RW_USER_FUNCTIONS) {
1850 /* if we’re already logged in, just verify the hash */
1851 if (memcmp(current_user_pin_sha, oldpin_hash,
1852 SHA1_DIGEST_LENGTH)) {
1853 return (CKR_PIN_INCORRECT);
1854 }
1855 } else {
1856 if ((rc = verify_user_pin(sess->hContext,
1857 oldpin_hash))) {
1858 return (rc);
1859 }
1860 }

1862 if ((rc = check_pin_properties(CKU_USER, newpin_hash,
1863 ulNewPinLen)))
1864 return (rc);

1866 /* change the auth on the TSS object */
1867 if (tss_change_auth(sess->hContext,
1868 hPrivateLeafKey, hPrivateRootKey,
1869 privateLeafKeyUUID, privateRootKeyUUID,
1870 newpin_hash))
1871 return (CKR_FUNCTION_FAILED);

1873 } else if (sess->session_info.state == CKS_RW_SO_FUNCTIONS) {
1874 if (not_initialized) {
1875 if (memcmp(default_so_pin_sha, oldpin_hash,
1876 SHA1_DIGEST_LENGTH))
1877 return (CKR_PIN_INCORRECT);

1879 if ((rc = check_pin_properties(CKU_SO,
1880 newpin_hash, ulNewPinLen)))
1881 return (rc);

1883 if ((rc = token_create_public_tree(sess->hContext,
1884 newpin_hash)))
1885 return (CKR_FUNCTION_FAILED);

1887 nv_token_data->token_info.flags &=
1888 ~(CKF_SO_PIN_TO_BE_CHANGED);

1890 return (save_token_data(nv_token_data));
1891 }

1893 if (memcmp(current_so_pin_sha, oldpin_hash,
1894 SHA1_DIGEST_LENGTH))
1895 return (CKR_PIN_INCORRECT);

1897 if ((rc = check_pin_properties(CKU_SO, newpin_hash,
1898 ulNewPinLen)))
1899 return (rc);

1901 /* change auth on the SO’s leaf key */
1902 if (tss_change_auth(sess->hContext,
1903 hPublicLeafKey, hPublicRootKey,
1904 publicLeafKeyUUID, publicRootKeyUUID,
1905 newpin_hash))
1906 return (CKR_FUNCTION_FAILED);

1908 } else {
1909 rc = CKR_SESSION_READ_ONLY;

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 30

1910 }

1912 return (rc);
1913 }

1915 /* only called at token init time */
1916 CK_RV
1917 token_specific_verify_so_pin(TSS_HCONTEXT hContext, CK_CHAR_PTR pPin,
1918 CK_ULONG ulPinLen)
1919 {
1920 CK_BYTE hash_sha[SHA1_DIGEST_LENGTH];
1921 CK_RV rc;
1922 TSS_RESULT result;
1923 TSS_HKEY hSRK;

1925 if ((rc = compute_sha(pPin, ulPinLen, hash_sha))) {
1926 return (CKR_FUNCTION_FAILED);
1927 }
1928 if ((rc = token_load_srk(hContext, &hSRK))) {
1929 return (CKR_FUNCTION_FAILED);
1930 }

1932 /*
1933 * TRYME INSTEAD:
1934 * - find publicRootKeyUUID
1935 * - Load publicRootKey by UUID (SRK parent)
1936 * - find publicLeafKeyUUID
1937 * - Load publicLeafKey by UUID (publicRootKey parent)
1938 * - set password policy on publicLeafKey
1939 */
1940 if (local_uuid_is_null(&publicRootKeyUUID) &&
1941 find_uuid(TPMTOK_PUBLIC_ROOT_KEY_ID, &publicRootKeyUUID)) {
1942 /*
1943 * The SO hasn’t set her PIN yet, compare the
1944 * login pin with the hard-coded value.
1945 */
1946 if (memcmp(default_so_pin_sha, hash_sha,
1947 SHA1_DIGEST_LENGTH)) {
1948 return (CKR_PIN_INCORRECT);
1949 }
1950 return (CKR_OK);
1951 }

1953 result = Tspi_Context_GetKeyByUUID(hContext,
1954 TSS_PS_TYPE_USER, publicRootKeyUUID, &hPublicRootKey);

1956 if (result)
1957 return (CKR_FUNCTION_FAILED);

1959 result = Tspi_Key_LoadKey(hPublicRootKey, hSRK);
1960 if (result)
1961 return (CKR_FUNCTION_FAILED);

1963 if (local_uuid_is_null(&publicLeafKeyUUID) &&
1964 find_uuid(TPMTOK_PUBLIC_LEAF_KEY_ID, &publicLeafKeyUUID))
1965 return (CKR_FUNCTION_FAILED);

1967 result = Tspi_Context_GetKeyByUUID(hContext,
1968 TSS_PS_TYPE_USER, publicLeafKeyUUID, &hPublicLeafKey);
1969 if (result)
1970 return (CKR_FUNCTION_FAILED);

1972 result = tss_assign_secret_key_policy(hContext, TSS_POLICY_USAGE,
1973 hPublicLeafKey, hash_sha);
1974 if (result)
1975 return (CKR_FUNCTION_FAILED);

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 31

1977 result = Tspi_Key_LoadKey(hPublicLeafKey, hPublicRootKey);
1978 if (result)
1979 return (CKR_FUNCTION_FAILED);

1981 /* If the hash given is wrong, the verify will fail */
1982 if ((rc = token_verify_pin(hContext, hPublicLeafKey))) {
1983 return (rc);
1984 }

1986 return (CKR_OK);
1987 }

1989 CK_RV
1990 token_specific_final(TSS_HCONTEXT hContext)
1991 {
1992 if (hPublicRootKey != NULL_HKEY) {
1993 Tspi_Context_CloseObject(hContext, hPublicRootKey);
1994 hPublicRootKey = NULL_HKEY;
1995 }
1996 if (hPublicLeafKey != NULL_HKEY) {
1997 Tspi_Context_CloseObject(hContext, hPublicLeafKey);
1998 hPublicLeafKey = NULL_HKEY;
1999 }
2000 if (hPrivateRootKey != NULL_HKEY) {
2001 Tspi_Context_CloseObject(hContext, hPrivateRootKey);
2002 hPrivateRootKey = NULL_HKEY;
2003 }
2004 if (hPrivateLeafKey != NULL_HKEY) {
2005 Tspi_Context_CloseObject(hContext, hPrivateLeafKey);
2006 hPrivateLeafKey = NULL_HKEY;
2007 }
2008 return (CKR_OK);
2009 }

2011 /*
2012 * Wrap the 20 bytes of auth data and store in an attribute of the two
2013 * keys.
2014 */
2015 static CK_RV
2016 token_wrap_auth_data(TSS_HCONTEXT hContext,
2017 CK_BYTE *authData, TEMPLATE *publ_tmpl,
2018 TEMPLATE *priv_tmpl)
2019 {
2020 CK_RV rc;
2021 CK_ATTRIBUTE *new_attr;

2023 TSS_RESULT ret;
2024 TSS_HKEY hParentKey;
2025 TSS_HENCDATA hEncData;
2026 BYTE *blob;
2027 UINT32 blob_size;

2029 if ((hPrivateLeafKey == NULL_HKEY) && (hPublicLeafKey == NULL_HKEY)) {
2030 return (CKR_FUNCTION_FAILED);
2031 } else if (hPublicLeafKey != NULL_HKEY) {
2032 hParentKey = hPublicLeafKey;
2033 } else {
2034 hParentKey = hPrivateLeafKey;
2035 }

2037 /* create the encrypted data object */
2038 if ((ret = Tspi_Context_CreateObject(hContext,
2039 TSS_OBJECT_TYPE_ENCDATA, TSS_ENCDATA_BIND, &hEncData))) {
2040 stlogit("Tspi_Context_CreateObject: 0x%0x - %s",
2041 ret, Trspi_Error_String(ret));

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 32

2042 return (CKR_FUNCTION_FAILED);
2043 }

2045 if ((ret = Tspi_Data_Bind(hEncData, hParentKey, SHA1_DIGEST_LENGTH,
2046 authData))) {
2047 stlogit("Tspi_Data_Bind: 0x%0x - %s",
2048 ret, Trspi_Error_String(ret));
2049 return (CKR_FUNCTION_FAILED);
2050 }

2052 /* pull the encrypted data out of the encrypted data object */
2053 if ((ret = Tspi_GetAttribData(hEncData, TSS_TSPATTRIB_ENCDATA_BLOB,
2054 TSS_TSPATTRIB_ENCDATABLOB_BLOB, &blob_size, &blob))) {
2055 stlogit("Tspi_SetAttribData: 0x%0x - %s",
2056 ret, Trspi_Error_String(ret));
2057 return (CKR_FUNCTION_FAILED);
2058 }

2060 if ((rc = build_attribute(CKA_ENC_AUTHDATA, blob, blob_size,
2061 &new_attr))) {
2062 return (rc);
2063 }
2064 (void) template_update_attribute(publ_tmpl, new_attr);

2066 if ((rc = build_attribute(CKA_ENC_AUTHDATA, blob,
2067 blob_size, &new_attr))) {
2068 return (rc);
2069 }
2070 (void) template_update_attribute(priv_tmpl, new_attr);

2072 return (rc);
2073 }

2075 static CK_RV
2076 token_unwrap_auth_data(TSS_HCONTEXT hContext, CK_BYTE *encAuthData,
2077 CK_ULONG encAuthDataLen, TSS_HKEY hKey,
2078 BYTE **authData)
2079 {
2080 TSS_RESULT result;
2081 TSS_HENCDATA hEncData;
2082 BYTE *buf;
2083 UINT32 buf_size;

2085 if ((result = Tspi_Context_CreateObject(hContext,
2086 TSS_OBJECT_TYPE_ENCDATA, TSS_ENCDATA_BIND, &hEncData))) {
2087 stlogit("Tspi_Context_CreateObject: 0x%0x - %s",
2088 result, Trspi_Error_String(result));
2089 return (CKR_FUNCTION_FAILED);
2090 }

2092 if ((result = Tspi_SetAttribData(hEncData,
2093 TSS_TSPATTRIB_ENCDATA_BLOB, TSS_TSPATTRIB_ENCDATABLOB_BLOB,
2094 encAuthDataLen, encAuthData))) {
2095 stlogit("Tspi_SetAttribData: 0x%0x - %s",
2096 result, Trspi_Error_String(result));
2097 return (CKR_FUNCTION_FAILED);
2098 }

2100 /* unbind the data, receiving the plaintext back */
2101 if ((result = Tspi_Data_Unbind(hEncData, hKey, &buf_size, &buf))) {
2102 stlogit("Tspi_Data_Unbind: 0x%0x - %s",
2103 result, Trspi_Error_String(result));
2104 return (CKR_FUNCTION_FAILED);
2105 }

2107 if (buf_size != SHA1_DIGEST_LENGTH) {

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 33

2108 return (CKR_FUNCTION_FAILED);
2109 }

2111 *authData = buf;

2113 return (CKR_OK);
2114 }

2116 CK_RV
2117 token_specific_rsa_generate_keypair(
2118 TSS_HCONTEXT hContext,
2119 TEMPLATE *publ_tmpl,
2120 TEMPLATE *priv_tmpl)
2121 {
2122 CK_ATTRIBUTE *attr = NULL;
2123 CK_ULONG mod_bits = 0;
2124 CK_BBOOL flag;
2125 CK_RV rc;

2127 TSS_FLAG initFlags = 0;
2128 BYTE authHash[SHA1_DIGEST_LENGTH];
2129 BYTE *authData = NULL;
2130 TSS_HKEY hKey = NULL_HKEY;
2131 TSS_HKEY hParentKey = NULL_HKEY;
2132 TSS_RESULT result;
2133 UINT32 ulBlobLen;
2134 BYTE *rgbBlob;

2136 /* Make sure the public exponent is usable */
2137 if ((util_check_public_exponent(publ_tmpl))) {
2138 return (CKR_TEMPLATE_INCONSISTENT);
2139 }

2141 flag = template_attribute_find(publ_tmpl, CKA_MODULUS_BITS, &attr);
2142 if (!flag) {
2143 return (CKR_TEMPLATE_INCOMPLETE);
2144 }
2145 mod_bits = *(CK_ULONG *)attr->pValue;

2147 if ((initFlags = util_get_keysize_flag(mod_bits)) == 0) {
2148 return (CKR_KEY_SIZE_RANGE);
2149 }

2151 /*
2152 * If we’re not logged in, hPrivateLeafKey and hPublicLeafKey
2153 * should be NULL.
2154 */
2155 if ((hPrivateLeafKey == NULL_HKEY) &&
2156 (hPublicLeafKey == NULL_HKEY)) {
2157 /* public session, wrap key with the PRK */
2158 initFlags |= TSS_KEY_TYPE_LEGACY |
2159 TSS_KEY_NO_AUTHORIZATION | TSS_KEY_MIGRATABLE;

2161 if ((result = token_load_public_root_key(hContext))) {
2162 return (CKR_FUNCTION_FAILED);
2163 }

2165 hParentKey = hPublicRootKey;
2166 } else if (hPrivateLeafKey != NULL_HKEY) {
2167 /* logged in USER session */
2168 initFlags |= TSS_KEY_TYPE_LEGACY |
2169 TSS_KEY_AUTHORIZATION | TSS_KEY_MIGRATABLE;

2171 /* get a random SHA1 hash for the auth data */
2172 if ((rc = token_rng(hContext, authHash, SHA1_DIGEST_LENGTH))) {
2173 return (CKR_FUNCTION_FAILED);

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 34

2174 }

2176 authData = authHash;
2177 hParentKey = hPrivateRootKey;
2178 } else {
2179 /* logged in SO session */
2180 initFlags |= TSS_KEY_TYPE_LEGACY |
2181 TSS_KEY_AUTHORIZATION | TSS_KEY_MIGRATABLE;

2183 /* get a random SHA1 hash for the auth data */
2184 if ((rc = token_rng(hContext, authHash, SHA1_DIGEST_LENGTH))) {
2185 return (CKR_FUNCTION_FAILED);
2186 }

2188 authData = authHash;
2189 hParentKey = hPublicRootKey;
2190 }

2192 if ((result = tss_generate_key(hContext, initFlags, authData,
2193 hParentKey, &hKey))) {
2194 return (result);
2195 }

2197 if ((result = Tspi_GetAttribData(hKey, TSS_TSPATTRIB_KEY_BLOB,
2198 TSS_TSPATTRIB_KEYBLOB_BLOB, &ulBlobLen, &rgbBlob))) {
2199 stlogit("Tspi_GetAttribData: 0x%0x - %s",
2200 result, Trspi_Error_String(result));
2201 return (CKR_FUNCTION_FAILED);
2202 }

2204 if ((rc = build_attribute(CKA_IBM_OPAQUE, rgbBlob,
2205 ulBlobLen, &attr))) {
2206 Tspi_Context_FreeMemory(hContext, rgbBlob);
2207 return (rc);
2208 }
2209 (void) template_update_attribute(priv_tmpl, attr);
2210 if ((rc = build_attribute(CKA_IBM_OPAQUE, rgbBlob,
2211 ulBlobLen, &attr))) {
2212 Tspi_Context_FreeMemory(hContext, rgbBlob);
2213 return (rc);
2214 }
2215 (void) template_update_attribute(publ_tmpl, attr);

2217 Tspi_Context_FreeMemory(hContext, rgbBlob);

2219 /* grab the public key to put into the public key object */
2220 if ((result = Tspi_GetAttribData(hKey, TSS_TSPATTRIB_RSAKEY_INFO,
2221 TSS_TSPATTRIB_KEYINFO_RSA_MODULUS, &ulBlobLen, &rgbBlob))) {
2222 stlogit("Tspi_GetAttribData: 0x%0x - %s",
2223 result, Trspi_Error_String(result));
2224 return (result);
2225 }

2227 /* add the public key blob to the object template */
2228 if ((rc = build_attribute(CKA_MODULUS, rgbBlob, ulBlobLen, &attr))) {
2229 Tspi_Context_FreeMemory(hContext, rgbBlob);
2230 return (rc);
2231 }
2232 (void) template_update_attribute(publ_tmpl, attr);

2234 /* add the public key blob to the object template */
2235 if ((rc = build_attribute(CKA_MODULUS, rgbBlob, ulBlobLen, &attr))) {
2236 Tspi_Context_FreeMemory(hContext, rgbBlob);
2237 return (rc);
2238 }
2239 (void) template_update_attribute(priv_tmpl, attr);

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 35

2240 Tspi_Context_FreeMemory(hContext, rgbBlob);

2242 /* wrap the authdata and put it into an object */
2243 if (authData != NULL) {
2244 rc = token_wrap_auth_data(hContext, authData, publ_tmpl,
2245 priv_tmpl);
2246 }

2248 return (rc);
2249 }

2251 static CK_RV
2252 token_rsa_load_key(
2253 TSS_HCONTEXT hContext,
2254 OBJECT *key_obj,
2255 TSS_HKEY *phKey)
2256 {
2257 TSS_RESULT result;
2258 TSS_HPOLICY hPolicy = NULL_HPOLICY;
2259 TSS_HKEY hParentKey;
2260 BYTE *authData = NULL;
2261 CK_ATTRIBUTE *attr;
2262 CK_RV rc;
2263 CK_OBJECT_HANDLE handle;
2264 CK_ULONG class;

2266 if (hPrivateLeafKey != NULL_HKEY) {
2267 hParentKey = hPrivateRootKey;
2268 } else {
2269 if ((result = token_load_public_root_key(hContext)))
2270 return (CKR_FUNCTION_FAILED);

2272 hParentKey = hPublicRootKey;
2273 }

2275 *phKey = NULL;
2276 if (template_attribute_find(key_obj->template, CKA_CLASS,
2277 &attr) == FALSE) {
2278 return (CKR_TEMPLATE_INCOMPLETE);
2279 }
2280 class = *((CK_ULONG *)attr->pValue);

2282 rc = template_attribute_find(key_obj->template,
2283 CKA_IBM_OPAQUE, &attr);
2284 /*
2285 * A public key cannot use the OPAQUE data attribute so they
2286 * must be created in software. A private key may not yet
2287 * have its "opaque" data defined and needs to be created
2288 * and loaded so it can be used inside the TPM.
2289 */
2290 if (class == CKO_PUBLIC_KEY || rc == FALSE) {
2291 rc = object_mgr_find_in_map2(hContext, key_obj, &handle);
2292 if (rc != CKR_OK)
2293 return (CKR_FUNCTION_FAILED);

2295 if ((rc = token_load_key(hContext,
2296 handle, hParentKey, NULL, phKey))) {
2297 return (rc);
2298 }
2299 }
2300 /*
2301 * If this is a private key, get the blob and load it in the TPM.
2302 * If it is public, the key is already loaded in software.
2303 */
2304 if (class == CKO_PRIVATE_KEY) {
2305 /* If we already have a handle, just load it */

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 36

2306 if (*phKey != NULL) {
2307 result = Tspi_Key_LoadKey(*phKey, hParentKey);
2308 if (result) {
2309 stlogit("Tspi_Context_LoadKeyByBlob: "
2310 "0x%0x - %s",
2311 result, Trspi_Error_String(result));
2312 return (CKR_FUNCTION_FAILED);
2313 }
2314 } else {
2315 /* try again to get the CKA_IBM_OPAQUE attr */
2316 if ((rc = template_attribute_find(key_obj->template,
2317 CKA_IBM_OPAQUE, &attr)) == FALSE) {
2318 return (rc);
2319 }
2320 if ((result = Tspi_Context_LoadKeyByBlob(hContext,
2321 hParentKey, attr->ulValueLen, attr->pValue,
2322 phKey))) {
2323 stlogit("Tspi_Context_LoadKeyByBlob: "
2324 "0x%0x - %s",
2325 result, Trspi_Error_String(result));
2326 return (CKR_FUNCTION_FAILED);
2327 }
2328 }
2329 }

2331 /* auth data may be required */
2332 if (template_attribute_find(key_obj->template, CKA_ENC_AUTHDATA,
2333 &attr) == TRUE && attr) {
2334 if ((hPrivateLeafKey == NULL_HKEY) &&
2335 (hPublicLeafKey == NULL_HKEY)) {
2336 return (CKR_FUNCTION_FAILED);
2337 } else if (hPublicLeafKey != NULL_HKEY) {
2338 hParentKey = hPublicLeafKey;
2339 } else {
2340 hParentKey = hPrivateLeafKey;
2341 }

2343 if ((result = token_unwrap_auth_data(hContext,
2344 attr->pValue, attr->ulValueLen,
2345 hParentKey, &authData))) {
2346 return (CKR_FUNCTION_FAILED);
2347 }

2349 if ((result = Tspi_GetPolicyObject(*phKey,
2350 TSS_POLICY_USAGE, &hPolicy))) {
2351 stlogit("Tspi_GetPolicyObject: 0x%0x - %s",
2352 result, Trspi_Error_String(result));
2353 return (CKR_FUNCTION_FAILED);
2354 }

2356 /*
2357 * If the policy handle returned is the same as the
2358 * context’s default policy, then a new policy must
2359 * be created and assigned to the key. Otherwise, just set the
2360 * secret in the policy.
2361 */
2362 if (hPolicy == hDefaultPolicy) {
2363 if ((result = Tspi_Context_CreateObject(hContext,
2364 TSS_OBJECT_TYPE_POLICY, TSS_POLICY_USAGE,
2365 &hPolicy))) {
2366 stlogit("Tspi_Context_CreateObject: "
2367 "0x%0x - %s",
2368 result, Trspi_Error_String(result));
2369 return (CKR_FUNCTION_FAILED);
2370 }

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 37

2372 if ((result = Tspi_Policy_SetSecret(hPolicy,
2373 TSS_SECRET_MODE_SHA1,
2374 SHA1_DIGEST_LENGTH, authData))) {
2375 stlogit("Tspi_Policy_SetSecret: "
2376 "0x%0x - %s",
2377 result, Trspi_Error_String(result));
2378 return (CKR_FUNCTION_FAILED);
2379 }

2381 if ((result = Tspi_Policy_AssignToObject(hPolicy,
2382 *phKey))) {
2383 stlogit("Tspi_Policy_AssignToObject: "
2384 "0x%0x - %s",
2385 result, Trspi_Error_String(result));
2386 return (CKR_FUNCTION_FAILED);
2387 }
2388 } else if ((result = Tspi_Policy_SetSecret(hPolicy,
2389 TSS_SECRET_MODE_SHA1, SHA1_DIGEST_LENGTH, authData))) {
2390 stlogit("Tspi_Policy_SetSecret: 0x%0x - %s",
2391 result, Trspi_Error_String(result));
2392 return (CKR_FUNCTION_FAILED);
2393 }

2395 Tspi_Context_FreeMemory(hContext, authData);
2396 }

2398 return (CKR_OK);
2399 }

2401 CK_RV
2402 tpm_decrypt_data(
2403 TSS_HCONTEXT hContext,
2404 TSS_HKEY hKey,
2405 CK_BYTE * in_data,
2406 CK_ULONG in_data_len,
2407 CK_BYTE * out_data,
2408 CK_ULONG * out_data_len)
2409 {
2410 TSS_RESULT result;
2411 TSS_HENCDATA hEncData = NULL_HENCDATA;
2412 UINT32 buf_size = 0, modLen;
2413 BYTE *buf = NULL, *modulus = NULL;
2414 CK_ULONG chunklen, remain, outlen;

2416 /* push the data into the encrypted data object */
2417 if ((result = Tspi_Context_CreateObject(hContext,
2418 TSS_OBJECT_TYPE_ENCDATA, TSS_ENCDATA_BIND, &hEncData))) {
2419 stlogit("Tspi_Context_CreateObject: 0x%0x - %s",
2420 result, Trspi_Error_String(result));
2421 return (CKR_FUNCTION_FAILED);
2422 }

2424 /*
2425 * Figure out the modulus size so we can break the data
2426 * into smaller chunks if necessary.
2427 */
2428 if ((result = Tspi_GetAttribData(hKey, TSS_TSPATTRIB_RSAKEY_INFO,
2429 TSS_TSPATTRIB_KEYINFO_RSA_MODULUS, &modLen, &modulus))) {
2430 stlogit("Tspi_GetAttribData: 0x%0x - %s",
2431 result, Trspi_Error_String(result));
2432 return (result);
2433 }
2434 /* we don’t need the actual modulus */
2435 Tspi_Context_FreeMemory(hContext, modulus);

2437 chunklen = (in_data_len > modLen ? modLen : in_data_len);

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 38

2438 remain = in_data_len;
2439 outlen = 0;

2441 while (remain > 0) {
2442 if ((result = Tspi_SetAttribData(hEncData,
2443 TSS_TSPATTRIB_ENCDATA_BLOB,
2444 TSS_TSPATTRIB_ENCDATABLOB_BLOB,
2445 chunklen, in_data))) {
2446 stlogit("Tspi_SetAttribData: 0x%0x - %s",
2447 result, Trspi_Error_String(result));
2448 return (CKR_FUNCTION_FAILED);
2449 }

2451 /* unbind the data, receiving the plaintext back */
2452 if ((result = Tspi_Data_Unbind(hEncData, hKey,
2453 &buf_size, &buf))) {
2454 stlogit("Tspi_Data_Unbind: 0x%0x - %s",
2455 result, Trspi_Error_String(result));
2456 return (CKR_FUNCTION_FAILED);
2457 }

2459 if (*out_data_len < buf_size + outlen) {
2460 Tspi_Context_FreeMemory(hContext, buf);
2461 return (CKR_BUFFER_TOO_SMALL);
2462 }

2464 (void) memcpy(out_data + outlen, buf, buf_size);

2466 outlen += buf_size;
2467 in_data += chunklen;
2468 remain -= chunklen;

2470 Tspi_Context_FreeMemory(hContext, buf);
2471 if (chunklen > remain)
2472 chunklen = remain;
2473 }
2474 *out_data_len = outlen;
2475 return (CKR_OK);
2476 }

2478 CK_RV
2479 token_specific_rsa_decrypt(
2480 TSS_HCONTEXT hContext,
2481 CK_BYTE * in_data,
2482 CK_ULONG in_data_len,
2483 CK_BYTE * out_data,
2484 CK_ULONG * out_data_len,
2485 OBJECT * key_obj)
2486 {
2487 CK_RV rc;
2488 TSS_HKEY hKey;

2490 if ((rc = token_rsa_load_key(hContext, key_obj, &hKey))) {
2491 return (rc);
2492 }

2494 rc = tpm_decrypt_data(hContext, hKey, in_data, in_data_len,
2495 out_data, out_data_len);

2497 return (rc);
2498 }

2500 CK_RV
2501 token_specific_rsa_verify(
2502 TSS_HCONTEXT hContext,
2503 CK_BYTE * in_data,

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 39

2504 CK_ULONG in_data_len,
2505 CK_BYTE * sig,
2506 CK_ULONG sig_len,
2507 OBJECT * key_obj)
2508 {
2509 TSS_RESULT result;
2510 TSS_HHASH hHash;
2511 TSS_HKEY hKey;
2512 CK_RV rc;

2514 if ((rc = token_rsa_load_key(hContext, key_obj, &hKey))) {
2515 return (rc);
2516 }

2518 /* Create the hash object we’ll use to sign */
2519 if ((result = Tspi_Context_CreateObject(hContext,
2520 TSS_OBJECT_TYPE_HASH, TSS_HASH_OTHER, &hHash))) {
2521 stlogit("Tspi_Context_CreateObject: 0x%0x - %s",
2522 result, Trspi_Error_String(result));
2523 return (CKR_FUNCTION_FAILED);
2524 }

2526 /* Insert the data into the hash object */
2527 if ((result = Tspi_Hash_SetHashValue(hHash, in_data_len,
2528 in_data))) {
2529 stlogit("Tspi_Hash_SetHashValue: 0x%0x - %s",
2530 result, Trspi_Error_String(result));
2531 return (CKR_FUNCTION_FAILED);
2532 }

2534 /* Verify */
2535 result = Tspi_Hash_VerifySignature(hHash, hKey, sig_len, sig);
2536 if (result != TSS_SUCCESS &&
2537 TPMTOK_TSS_ERROR_CODE(result) != TSS_E_FAIL) {
2538 stlogit("Tspi_Hash_VerifySignature: 0x%0x - %s",
2539 result, Trspi_Error_String(result));
2540 }

2542 if (TPMTOK_TSS_ERROR_CODE(result) == TSS_E_FAIL) {
2543 rc = CKR_SIGNATURE_INVALID;
2544 } else {
2545 rc = CKR_OK;
2546 }

2548 return (rc);
2549 }

2551 CK_RV
2552 token_specific_rsa_sign(
2553 TSS_HCONTEXT hContext,
2554 CK_BYTE * in_data,
2555 CK_ULONG in_data_len,
2556 CK_BYTE * out_data,
2557 CK_ULONG * out_data_len,
2558 OBJECT * key_obj)
2559 {
2560 TSS_RESULT result;
2561 TSS_HHASH hHash;
2562 BYTE *sig;
2563 UINT32 sig_len;
2564 TSS_HKEY hKey;
2565 CK_RV rc;

2567 if ((rc = token_rsa_load_key(hContext, key_obj, &hKey))) {
2568 return (rc);
2569 }

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 40

2571 /* Create the hash object we’ll use to sign */
2572 if ((result = Tspi_Context_CreateObject(hContext,
2573 TSS_OBJECT_TYPE_HASH, TSS_HASH_OTHER, &hHash))) {
2574 stlogit("Tspi_Context_CreateObject: 0x%0x - %s",
2575 result, Trspi_Error_String(result));
2576 return (CKR_FUNCTION_FAILED);
2577 }

2579 /* Insert the data into the hash object */
2580 if ((result = Tspi_Hash_SetHashValue(hHash, in_data_len,
2581 in_data))) {
2582 stlogit("Tspi_Hash_SetHashValue: 0x%0x - %s",
2583 result, Trspi_Error_String(result));
2584 return (CKR_FUNCTION_FAILED);
2585 }

2587 /* Sign */
2588 if ((result = Tspi_Hash_Sign(hHash, hKey, &sig_len, &sig))) {
2589 stlogit("Tspi_Hash_Sign: 0x%0x - %s",
2590 result, Trspi_Error_String(result));
2591 return (CKR_DATA_LEN_RANGE);
2592 }

2594 if (sig_len > *out_data_len) {
2595 Tspi_Context_FreeMemory(hContext, sig);
2596 return (CKR_BUFFER_TOO_SMALL);
2597 }

2599 (void) memcpy(out_data, sig, sig_len);
2600 *out_data_len = sig_len;
2601 Tspi_Context_FreeMemory(hContext, sig);

2603 return (CKR_OK);
2604 }

2606 CK_RV
2607 tpm_encrypt_data(
2608 TSS_HCONTEXT hContext,
2609 TSS_HKEY hKey,
2610 CK_BYTE *in_data,
2611 CK_ULONG in_data_len,
2612 CK_BYTE *out_data,
2613 CK_ULONG *out_data_len)
2614 {
2615 TSS_RESULT result;
2616 TSS_HENCDATA hEncData;
2617 BYTE *dataBlob, *modulus;
2618 UINT32 dataBlobSize, modLen;
2619 CK_ULONG chunklen, remain;
2620 CK_ULONG outlen;
2621 UINT32 keyusage, scheme, maxsize;

2623 if ((result = Tspi_Context_CreateObject(hContext,
2624 TSS_OBJECT_TYPE_ENCDATA, TSS_ENCDATA_BIND, &hEncData))) {
2625 stlogit("Tspi_Context_CreateObject: 0x%0x - %s",
2626 result, Trspi_Error_String(result));
2627 return (CKR_FUNCTION_FAILED);
2628 }
2629 /*
2630 * Figure out the modulus size so we can break the data
2631 * into smaller chunks if necessary.
2632 */
2633 if ((result = Tspi_GetAttribData(hKey, TSS_TSPATTRIB_RSAKEY_INFO,
2634 TSS_TSPATTRIB_KEYINFO_RSA_MODULUS, &modLen, &modulus))) {
2635 stlogit("Tspi_GetAttribData: 0x%0x - %s",

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 41

2636 result, Trspi_Error_String(result));
2637 return (result);
2638 }
2639 /* we don’t need the actual modulus */
2640 Tspi_Context_FreeMemory(hContext, modulus);

2642 /*
2643 * According to TSS spec for Tspi_Data_Bind (4.3.4.21.5),
2644 * Max input data size varies depending on the key type and
2645 * encryption scheme.
2646 */
2647 if ((result = Tspi_GetAttribUint32(hKey, TSS_TSPATTRIB_KEY_INFO,
2648 TSS_TSPATTRIB_KEYINFO_USAGE, &keyusage))) {
2649 stlogit("Cannot find USAGE: %s\n",
2650 Trspi_Error_String(result));
2651 return (result);
2652 }
2653 if ((result = Tspi_GetAttribUint32(hKey, TSS_TSPATTRIB_KEY_INFO,
2654 TSS_TSPATTRIB_KEYINFO_ENCSCHEME, &scheme))) {
2655 stlogit("Cannot find ENCSCHEME: %s\n",
2656 Trspi_Error_String(result));
2657 return (result);
2658 }
2659 switch (scheme) {
2660 case TSS_ES_RSAESPKCSV15:
2661 if (keyusage == TSS_KEYUSAGE_BIND)
2662 maxsize = 16;
2663 else /* legacy */
2664 maxsize = 11;
2665 break;
2666 case TSS_ES_RSAESOAEP_SHA1_MGF1:
2667 maxsize = 47;
2668 break;
2669 default:
2670 maxsize = 0;
2671 }

2673 modLen -= maxsize;

2675 chunklen = (in_data_len > modLen ? modLen : in_data_len);
2676 remain = in_data_len;
2677 outlen = 0;
2678 while (remain > 0) {
2679 if ((result = Tspi_Data_Bind(hEncData, hKey,
2680 chunklen, in_data))) {
2681 stlogit("Tspi_Data_Bind: 0x%0x - %s",
2682 result, Trspi_Error_String(result));
2683 return (CKR_FUNCTION_FAILED);
2684 }

2686 if ((result = Tspi_GetAttribData(hEncData,
2687 TSS_TSPATTRIB_ENCDATA_BLOB,
2688 TSS_TSPATTRIB_ENCDATABLOB_BLOB,
2689 &dataBlobSize, &dataBlob))) {
2690 stlogit("Tspi_GetAttribData: 0x%0x - %s",
2691 result, Trspi_Error_String(result));
2692 return (CKR_FUNCTION_FAILED);
2693 }

2695 if (outlen + dataBlobSize > *out_data_len) {
2696 Tspi_Context_FreeMemory(hContext, dataBlob);
2697 return (CKR_DATA_LEN_RANGE);
2698 }

2700 (void) memcpy(out_data + outlen,
2701 dataBlob, dataBlobSize);

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 42

2703 outlen += dataBlobSize;
2704 in_data += chunklen;
2705 remain -= chunklen;

2707 if (chunklen > remain)
2708 chunklen = remain;

2710 Tspi_Context_FreeMemory(hContext, dataBlob);
2711 }
2712 *out_data_len = outlen;

2714 return (CKR_OK);
2715 }

2717 CK_RV
2718 token_specific_rsa_encrypt(
2719 TSS_HCONTEXT hContext,
2720 CK_BYTE * in_data,
2721 CK_ULONG in_data_len,
2722 CK_BYTE * out_data,
2723 CK_ULONG * out_data_len,
2724 OBJECT * key_obj)
2725 {
2726 TSS_HKEY hKey;
2727 CK_RV rc;

2729 if ((rc = token_rsa_load_key(hContext, key_obj, &hKey))) {
2730 return (rc);
2731 }

2733 rc = tpm_encrypt_data(hContext, hKey, in_data, in_data_len,
2734 out_data, out_data_len);

2736 return (rc);
2737 }

2739 /*
2740 * RSA Verify Recover
2741 *
2742 * Public key crypto is done in software, not by the TPM.
2743 * We bypass the TSPI library here in favor of calls directly
2744 * to OpenSSL because we don’t want to add any padding, the in_data (signature)
2745 * already contains the data stream to be decrypted and is already
2746 * padded and formatted correctly.
2747 */
2748 CK_RV
2749 token_specific_rsa_verify_recover(
2750 TSS_HCONTEXT hContext,
2751 CK_BYTE *in_data, /* signature */
2752 CK_ULONG in_data_len,
2753 CK_BYTE *out_data, /* decrypted */
2754 CK_ULONG *out_data_len,
2755 OBJECT *key_obj)
2756 {
2757 TSS_HKEY hKey;
2758 TSS_RESULT result;
2759 CK_RV rc;
2760 BYTE *modulus;
2761 UINT32 modLen;
2762 RSA *rsa = NULL;
2763 uchar_t exp[] = { 0x01, 0x00, 0x01 };
2764 int sslrv, num;
2765 BYTE temp[MAX_RSA_KEYLENGTH];
2766 BYTE outdata[MAX_RSA_KEYLENGTH];
2767 int i;

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 43

2769 if ((rc = token_rsa_load_key(hContext, key_obj, &hKey))) {
2770 return (rc);
2771 }

2773 if ((result = Tspi_GetAttribData(hKey, TSS_TSPATTRIB_RSAKEY_INFO,
2774 TSS_TSPATTRIB_KEYINFO_RSA_MODULUS, &modLen, &modulus))) {
2775 stlogit("Tspi_GetAttribData: 0x%0x - %s",
2776 result, Trspi_Error_String(result));
2777 return (CKR_FUNCTION_FAILED);
2778 }

2780 if (in_data_len != modLen) {
2781 rc = CKR_SIGNATURE_LEN_RANGE;
2782 goto end;
2783 }

2785 rsa = RSA_new();
2786 if (rsa == NULL) {
2787 rc = CKR_HOST_MEMORY;
2788 goto end;
2789 }

2791 rsa->n = BN_bin2bn(modulus, modLen, rsa->n);
2792 rsa->e = BN_bin2bn(exp, sizeof (exp), rsa->e);
2793 if (rsa->n == NULL || rsa->e == NULL) {
2794 rc = CKR_HOST_MEMORY;
2795 goto end;
2796 }

2798 rsa->flags |= RSA_FLAG_SIGN_VER;

2800 /* use RSA_NO_PADDING because the data is already padded (PKCS1) */
2801 sslrv = RSA_public_encrypt(in_data_len, in_data, outdata,
2802 rsa, RSA_NO_PADDING);
2803 if (sslrv == -1) {
2804 rc = CKR_FUNCTION_FAILED;
2805 goto end;
2806 }

2808 /* Strip leading 0’s before stripping the padding */
2809 for (i = 0; i < sslrv; i++)
2810 if (outdata[i] != 0)
2811 break;

2813 num = BN_num_bytes(rsa->n);

2815 /* Use OpenSSL function for stripping PKCS#1 padding */
2816 sslrv = RSA_padding_check_PKCS1_type_1(temp, sizeof (temp),
2817 &outdata[i], sslrv - i, num);

2819 if (sslrv < 0) {
2820 rc = CKR_FUNCTION_FAILED;
2821 goto end;
2822 }

2824 if (*out_data_len < sslrv) {
2825 rc = CKR_BUFFER_TOO_SMALL;
2826 *out_data_len = 0;
2827 goto end;
2828 }

2830 /* The return code indicates the number of bytes remaining */
2831 (void) memcpy(out_data, temp, sslrv);
2832 *out_data_len = sslrv;
2833 end:

new/usr/src/lib/pkcs11/pkcs11_tpm/common/tpm_specific.c 44

2834 Tspi_Context_FreeMemory(hContext, modulus);
2835 if (rsa)
2836 RSA_free(rsa);

2838 return (rc);
2839 }

new/usr/src/pkg/manifests/system-library.mf 1

**
 60465 Fri May 30 18:32:24 2014
new/usr/src/pkg/manifests/system-library.mf
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
25 # Copyright 2012 OmniTI Computer Consulting, Inc. All rights reserved.
26 # Copyright (c) 2013 Gary Mills
27 #

29 <include system-library.man3.inc>
30 <include system-library.man3bsm.inc>
31 <include system-library.man3c.inc>
32 <include system-library.man3c_db.inc>
33 <include system-library.man3cfgadm.inc>
34 <include system-library.man3commputil.inc>
35 <include system-library.man3contract.inc>
36 <include system-library.man3curses.inc>
37 <include system-library.man3devid.inc>
38 <include system-library.man3devinfo.inc>
39 <include system-library.man3dlpi.inc>
40 <include system-library.man3elf.inc>
41 <include system-library.man3exacct.inc>
42 <include system-library.man3ext.inc>
43 <include system-library.man3fstyp.inc>
44 <include system-library.man3gen.inc>
45 <include system-library.man3kstat.inc>
46 <include system-library.man3kvm.inc>
47 <include system-library.man3ldap.inc>
48 <include system-library.man3lgrp.inc>
49 <include system-library.man3lib.inc>
50 <include system-library.man3mail.inc>
51 <include system-library.man3malloc.inc>
52 <include system-library.man3mp.inc>
53 <include system-library.man3nsl.inc>
54 <include system-library.man3nvpair.inc>
55 <include system-library.man3pam.inc>
56 <include system-library.man3scf.inc>
57 <include system-library.man3sec.inc>
58 <include system-library.man3secdb.inc>
59 <include system-library.man3sip.inc>
60 <include system-library.man3socket.inc>
61 <include system-library.man3tsol.inc>

new/usr/src/pkg/manifests/system-library.mf 2

62 <include system-library.man3uuid.inc>
63 <include system-library.man3volmgt.inc>
64 <include system-library.man3xcurses.inc>
65 <include system-library.man3xnet.inc>
66 <include system-library.man4.inc>
67 <include system-library.man5.inc>
68 <include system-library.man7p.inc>
69 set name=pkg.fmri value=pkg:/system/library@$(PKGVERS)
70 set name=pkg.description \
71 value="core shared libraries for a specific instruction-set architecture"
72 set name=pkg.summary value="Core Solaris, (Shared Libs)"
73 set name=info.classification value=org.opensolaris.category.2008:System/Core
74 set name=variant.arch value=$(ARCH)
75 $(i386_ONLY)dir path=etc group=sys
76 $(i386_ONLY)dir path=etc/flash group=sys
77 $(i386_ONLY)dir path=etc/flash/postcreation group=sys mode=0700
78 $(i386_ONLY)dir path=etc/flash/precreation group=sys mode=0700
79 $(i386_ONLY)dir path=etc/flash/preexit group=sys mode=0700
80 dir path=lib
81 dir path=lib/$(ARCH64)
82 dir path=lib/crypto
83 dir path=lib/crypto/$(ARCH64)
84 dir path=lib/mpxio
85 dir path=lib/secure
86 dir path=lib/secure/$(ARCH64)
87 dir path=usr group=sys
88 dir path=usr/bin
89 dir path=usr/ccs
90 dir path=usr/ccs/lib
91 dir path=usr/ccs/lib/$(ARCH64)
92 dir path=usr/lib
93 dir path=usr/lib/$(ARCH64)
94 dir path=usr/lib/cfgadm
95 dir path=usr/lib/cfgadm/$(ARCH64)
96 dir path=usr/lib/iconv/$(ARCH64)
97 $(i386_ONLY)dir path=usr/lib/libc
98 dir path=usr/lib/lwp
99 dir path=usr/lib/lwp/$(ARCH64)
100 dir path=usr/lib/python2.6
101 dir path=usr/lib/python2.6/vendor-packages
102 dir path=usr/lib/python2.6/vendor-packages/solaris
103 dir path=usr/lib/raidcfg
104 dir path=usr/lib/raidcfg/$(ARCH64)
105 dir path=usr/lib/scsi
106 dir path=usr/lib/scsi/$(ARCH64)
107 dir path=usr/lib/scsi/plugins
108 dir path=usr/lib/scsi/plugins/scsi
109 dir path=usr/lib/scsi/plugins/scsi/engines
110 dir path=usr/lib/scsi/plugins/scsi/engines/$(ARCH64)
111 dir path=usr/lib/scsi/plugins/ses
112 dir path=usr/lib/scsi/plugins/ses/framework
113 dir path=usr/lib/scsi/plugins/ses/framework/$(ARCH64)
114 dir path=usr/lib/scsi/plugins/ses/vendor
115 $(sparc_ONLY)dir path=usr/lib/scsi/plugins/ses/vendor/$(ARCH64)
116 dir path=usr/lib/scsi/plugins/smp
117 dir path=usr/lib/scsi/plugins/smp/engine
118 dir path=usr/lib/scsi/plugins/smp/engine/$(ARCH64)
119 dir path=usr/lib/scsi/plugins/smp/framework
120 dir path=usr/lib/scsi/plugins/smp/framework/$(ARCH64)
121 dir path=usr/lib/security
122 dir path=usr/lib/security/$(ARCH64)
123 dir path=usr/share/man
124 dir path=usr/share/man/man3
125 dir path=usr/share/man/man3bsm
126 dir path=usr/share/man/man3c
127 dir path=usr/share/man/man3c_db

new/usr/src/pkg/manifests/system-library.mf 3

128 dir path=usr/share/man/man3cfgadm
129 dir path=usr/share/man/man3commputil
130 dir path=usr/share/man/man3contract
131 dir path=usr/share/man/man3curses
132 dir path=usr/share/man/man3devid
133 dir path=usr/share/man/man3devinfo
134 dir path=usr/share/man/man3dlpi
135 dir path=usr/share/man/man3elf
136 dir path=usr/share/man/man3exacct
137 dir path=usr/share/man/man3ext
138 dir path=usr/share/man/man3fstyp
139 dir path=usr/share/man/man3gen
140 dir path=usr/share/man/man3kstat
141 dir path=usr/share/man/man3kvm
142 dir path=usr/share/man/man3ldap
143 dir path=usr/share/man/man3lgrp
144 dir path=usr/share/man/man3lib
145 dir path=usr/share/man/man3mail
146 dir path=usr/share/man/man3malloc
147 dir path=usr/share/man/man3mp
148 dir path=usr/share/man/man3nsl
149 dir path=usr/share/man/man3nvpair
150 dir path=usr/share/man/man3pam
151 dir path=usr/share/man/man3pool
152 dir path=usr/share/man/man3scf
153 dir path=usr/share/man/man3sec
154 dir path=usr/share/man/man3secdb
155 dir path=usr/share/man/man3sip
156 dir path=usr/share/man/man3socket
157 dir path=usr/share/man/man3tsol
158 dir path=usr/share/man/man3uuid
159 dir path=usr/share/man/man3volmgt
160 dir path=usr/share/man/man3xcurses
161 dir path=usr/share/man/man3xnet
162 dir path=usr/share/man/man5
163 dir path=usr/share/man/man7p
164 dir path=usr/xpg4
165 dir path=usr/xpg4/lib
166 dir path=usr/xpg4/lib/$(ARCH64)
167 $(i386_ONLY)file path=etc/flash/precreation/caplib group=sys mode=0500
168 file path=lib/$(ARCH64)/c_synonyms.so.1
169 file path=lib/$(ARCH64)/ld.so.1
170 file path=lib/$(ARCH64)/libadm.so.1
171 file path=lib/$(ARCH64)/libaio.so.1
172 file path=lib/$(ARCH64)/libavl.so.1
173 file path=lib/$(ARCH64)/libbsm.so.1
174 file path=lib/$(ARCH64)/libc.so.1
175 file path=lib/$(ARCH64)/libc_db.so.1
176 file path=lib/$(ARCH64)/libcmdutils.so.1
177 file path=lib/$(ARCH64)/libcontract.so.1
178 file path=lib/$(ARCH64)/libcryptoutil.so.1
179 file path=lib/$(ARCH64)/libctf.so.1
180 file path=lib/$(ARCH64)/libcurses.so.1
181 file path=lib/$(ARCH64)/libdevice.so.1
182 file path=lib/$(ARCH64)/libdevid.so.1
183 file path=lib/$(ARCH64)/libdevinfo.so.1
184 file path=lib/$(ARCH64)/libdhcputil.so.1
185 file path=lib/$(ARCH64)/libdl.so.1
186 file path=lib/$(ARCH64)/libdladm.so.1
187 file path=lib/$(ARCH64)/libdlpi.so.1
188 file path=lib/$(ARCH64)/libdoor.so.1
189 file path=lib/$(ARCH64)/libefi.so.1
190 file path=lib/$(ARCH64)/libelf.so.1
191 $(i386_ONLY)file path=lib/$(ARCH64)/libfdisk.so.1
192 file path=lib/$(ARCH64)/libgen.so.1
193 file path=lib/$(ARCH64)/libinetutil.so.1

new/usr/src/pkg/manifests/system-library.mf 4

194 file path=lib/$(ARCH64)/libintl.so.1
195 file path=lib/$(ARCH64)/libkmf.so.1
196 file path=lib/$(ARCH64)/libkmfberder.so.1
197 file path=lib/$(ARCH64)/libkstat.so.1
198 file path=lib/$(ARCH64)/libld.so.4
199 file path=lib/$(ARCH64)/liblddbg.so.4
200 file path=lib/$(ARCH64)/libmd.so.1
201 file path=lib/$(ARCH64)/libmd5.so.1
202 file path=lib/$(ARCH64)/libmp.so.2
203 file path=lib/$(ARCH64)/libnsl.so.1
204 file path=lib/$(ARCH64)/libnvpair.so.1
205 file path=lib/$(ARCH64)/libpam.so.1
206 file path=lib/$(ARCH64)/libproc.so.1
207 file path=lib/$(ARCH64)/libpthread.so.1
208 file path=lib/$(ARCH64)/librcm.so.1
209 file path=lib/$(ARCH64)/libresolv.so.2
210 file path=lib/$(ARCH64)/librestart.so.1
211 file path=lib/$(ARCH64)/librpcsvc.so.1
212 file path=lib/$(ARCH64)/librt.so.1
213 file path=lib/$(ARCH64)/librtld.so.1
214 file path=lib/$(ARCH64)/librtld_db.so.1
215 file path=lib/$(ARCH64)/libscf.so.1
216 file path=lib/$(ARCH64)/libsec.so.1
217 file path=lib/$(ARCH64)/libsecdb.so.1
218 file path=lib/$(ARCH64)/libsendfile.so.1
219 file path=lib/$(ARCH64)/libsocket.so.1
220 file path=lib/$(ARCH64)/libsysevent.so.1
221 file path=lib/$(ARCH64)/libtermcap.so.1
222 file path=lib/$(ARCH64)/libthread.so.1
223 file path=lib/$(ARCH64)/libtsnet.so.1
224 file path=lib/$(ARCH64)/libtsol.so.2
225 file path=lib/$(ARCH64)/libumem.so.1
226 file path=lib/$(ARCH64)/libuuid.so.1
227 file path=lib/$(ARCH64)/libuutil.so.1
228 file path=lib/$(ARCH64)/libw.so.1
229 file path=lib/$(ARCH64)/libxnet.so.1
230 file path=lib/$(ARCH64)/nss_compat.so.1
231 file path=lib/$(ARCH64)/nss_dns.so.1
232 file path=lib/$(ARCH64)/nss_files.so.1
233 file path=lib/$(ARCH64)/nss_nis.so.1
234 file path=lib/$(ARCH64)/nss_user.so.1
235 file path=lib/c_synonyms.so.1
236 file path=lib/crypto/$(ARCH64)/kmf_mapper_cn.so.1
237 file path=lib/crypto/$(ARCH64)/kmf_nss.so.1
238 file path=lib/crypto/$(ARCH64)/kmf_openssl.so.1
239 file path=lib/crypto/$(ARCH64)/kmf_pkcs11.so.1
240 file path=lib/crypto/kmf_mapper_cn.so.1
241 file path=lib/crypto/kmf_nss.so.1
242 file path=lib/crypto/kmf_openssl.so.1
243 file path=lib/crypto/kmf_pkcs11.so.1
244 file path=lib/ld.so.1
245 file path=lib/libadm.so.1
246 file path=lib/libaio.so.1
247 file path=lib/libavl.so.1
248 file path=lib/libbsm.so.1
249 file path=lib/libc.so.1 reboot-needed=true
250 file path=lib/libc_db.so.1
251 file path=lib/libcmdutils.so.1
252 file path=lib/libcontract.so.1
253 file path=lib/libcryptoutil.so.1
254 file path=lib/libctf.so.1
255 file path=lib/libcurses.so.1
256 file path=lib/libdevice.so.1
257 file path=lib/libdevid.so.1
258 file path=lib/libdevinfo.so.1
259 file path=lib/libdhcpagent.so.1

new/usr/src/pkg/manifests/system-library.mf 5

260 file path=lib/libdhcputil.so.1
261 file path=lib/libdl.so.1
262 file path=lib/libdladm.so.1
263 file path=lib/libdlpi.so.1
264 file path=lib/libdoor.so.1
265 file path=lib/libefi.so.1
266 file path=lib/libelf.so.1
267 file path=lib/libelfsign.so.1
268 $(i386_ONLY)file path=lib/libfdisk.so.1
269 file path=lib/libgen.so.1
270 file path=lib/libinetutil.so.1
271 file path=lib/libintl.so.1
272 file path=lib/libipadm.so.1
273 file path=lib/libipmp.so.1
274 file path=lib/libkcfd.so.1
275 file path=lib/libkmf.so.1
276 file path=lib/libkmfberder.so.1
277 file path=lib/libkstat.so.1
278 file path=lib/libld.so.4
279 file path=lib/liblddbg.so.4
280 file path=lib/libmd.so.1
281 file path=lib/libmd5.so.1
282 file path=lib/libmp.so.1
283 file path=lib/libmp.so.2
284 file path=lib/libnsl.so.1
285 file path=lib/libnvpair.so.1
286 file path=lib/libnwam.so.1
287 file path=lib/libpam.so.1
288 file path=lib/libproc.so.1
289 file path=lib/libpthread.so.1
290 file path=lib/librcm.so.1
291 file path=lib/libresolv.so.1
292 file path=lib/libresolv.so.2
293 file path=lib/librestart.so.1
294 file path=lib/librpcsvc.so.1
295 file path=lib/librt.so.1
296 file path=lib/librtld.so.1
297 file path=lib/librtld_db.so.1
298 file path=lib/libscf.so.1
299 file path=lib/libsec.so.1
300 file path=lib/libsecdb.so.1
301 file path=lib/libsendfile.so.1
302 file path=lib/libsocket.so.1
303 file path=lib/libsysevent.so.1
304 file path=lib/libtermcap.so.1
305 file path=lib/libthread.so.1
306 file path=lib/libtsnet.so.1
307 file path=lib/libtsol.so.2
308 file path=lib/libumem.so.1
309 file path=lib/libuuid.so.1
310 file path=lib/libuutil.so.1
311 file path=lib/libw.so.1
312 file path=lib/libxnet.so.1
313 file path=lib/mpxio/stmsboot_util mode=0555
314 file path=lib/nss_compat.so.1
315 file path=lib/nss_dns.so.1
316 file path=lib/nss_files.so.1
317 file path=lib/nss_nis.so.1
318 file path=lib/nss_user.so.1
319 file path=usr/lib/$(ARCH64)/0@0.so.1
320 file path=usr/lib/$(ARCH64)/getloginx.so.1
321 file path=usr/lib/$(ARCH64)/libadutils.so.1
322 file path=usr/lib/$(ARCH64)/libast.so.1
323 file path=usr/lib/$(ARCH64)/libbsdmalloc.so.1
324 file path=usr/lib/$(ARCH64)/libcfgadm.so.1
325 file path=usr/lib/$(ARCH64)/libcmd.so.1

new/usr/src/pkg/manifests/system-library.mf 6

326 file path=usr/lib/$(ARCH64)/libcommputil.so.1
327 file path=usr/lib/$(ARCH64)/libcrle.so.1
328 file path=usr/lib/$(ARCH64)/libcrypt.so.1
329 file path=usr/lib/$(ARCH64)/libdisasm.so.1
330 file path=usr/lib/$(ARCH64)/libdll.so.1
331 file path=usr/lib/$(ARCH64)/libexacct.so.1
332 file path=usr/lib/$(ARCH64)/libform.so.1
333 file path=usr/lib/$(ARCH64)/libfstyp.so.1
334 file path=usr/lib/$(ARCH64)/libhotplug.so.1
335 file path=usr/lib/$(ARCH64)/libidmap.so.1
336 file path=usr/lib/$(ARCH64)/libike.so.1
337 file path=usr/lib/$(ARCH64)/libipmi.so.1
338 file path=usr/lib/$(ARCH64)/libipp.so.1
339 file path=usr/lib/$(ARCH64)/libipsecutil.so.1
340 file path=usr/lib/$(ARCH64)/libkvm.so.1
341 file path=usr/lib/$(ARCH64)/libl.so.1
342 file path=usr/lib/$(ARCH64)/libldap.so.5
343 file path=usr/lib/$(ARCH64)/liblgrp.so.1
344 file path=usr/lib/$(ARCH64)/liblm.so.1
345 file path=usr/lib/$(ARCH64)/libmail.so.1
346 file path=usr/lib/$(ARCH64)/libmalloc.so.1
347 file path=usr/lib/$(ARCH64)/libmapmalloc.so.1
348 file path=usr/lib/$(ARCH64)/libmenu.so.1
349 file path=usr/lib/$(ARCH64)/libmtmalloc.so.1
350 file path=usr/lib/$(ARCH64)/libnls.so.1
351 file path=usr/lib/$(ARCH64)/libpanel.so.1
352 file path=usr/lib/$(ARCH64)/libpcidb.so.1
353 file path=usr/lib/$(ARCH64)/libpkcs11.so.1
354 file path=usr/lib/$(ARCH64)/libproject.so.1
355 file path=usr/lib/$(ARCH64)/libraidcfg.so.1
356 file path=usr/lib/$(ARCH64)/libreparse.so.1
357 $(i386_ONLY)file path=usr/lib/$(ARCH64)/libsaveargs.so.1
358 file path=usr/lib/$(ARCH64)/libsched.so.1
359 file path=usr/lib/$(ARCH64)/libsctp.so.1
360 file path=usr/lib/$(ARCH64)/libshell.so.1
361 file path=usr/lib/$(ARCH64)/libsip.so.1
362 file path=usr/lib/$(ARCH64)/libsldap.so.1
363 file path=usr/lib/$(ARCH64)/libsmbios.so.1
364 file path=usr/lib/$(ARCH64)/libsoftcrypto.so.1
365 file path=usr/lib/$(ARCH64)/libsum.so.1
366 file path=usr/lib/$(ARCH64)/libsunw_crypto.so.1
367 file path=usr/lib/$(ARCH64)/libsunw_ssl.so.1
368 $(sparc_ONLY)file path=usr/lib/$(ARCH64)/libv12n.so.1
369 file path=usr/lib/$(ARCH64)/libvolmgt.so.1
370 file path=usr/lib/$(ARCH64)/libwrap.so.1.0
371 file path=usr/lib/$(ARCH64)/liby.so.1
372 file path=usr/lib/$(ARCH64)/libzoneinfo.so.1
373 file path=usr/lib/$(ARCH64)/nss_ad.so.1
374 file path=usr/lib/$(ARCH64)/nss_ldap.so.1
375 file path=usr/lib/$(ARCH64)/passwdutil.so.1
376 file path=usr/lib/$(ARCH64)/straddr.so.2
377 file path=usr/lib/$(ARCH64)/watchmalloc.so.1
378 file path=usr/lib/0@0.so.1
379 file path=usr/lib/cfgadm/$(ARCH64)/ib.so.1
380 file path=usr/lib/cfgadm/$(ARCH64)/pci.so.1
381 $(i386_ONLY)file path=usr/lib/cfgadm/$(ARCH64)/sata.so.1
382 file path=usr/lib/cfgadm/$(ARCH64)/scsi.so.1
383 file path=usr/lib/cfgadm/$(ARCH64)/shp.so.1
384 file path=usr/lib/cfgadm/$(ARCH64)/usb.so.1
385 file path=usr/lib/cfgadm/ib.so.1
386 file path=usr/lib/cfgadm/pci.so.1
387 $(i386_ONLY)file path=usr/lib/cfgadm/sata.so.1
388 file path=usr/lib/cfgadm/scsi.so.1
389 file path=usr/lib/cfgadm/shp.so.1
390 file path=usr/lib/cfgadm/usb.so.1
391 file path=usr/lib/extendedFILE.so.1

new/usr/src/pkg/manifests/system-library.mf 7

392 file path=usr/lib/getloginx.so.1
393 file path=usr/lib/lib.b mode=0444
394 file path=usr/lib/libadutils.so.1
395 file path=usr/lib/libast.so.1
396 file path=usr/lib/libbsdmalloc.so.1
397 $(i386_ONLY)file path=usr/lib/libc/libc_hwcap1.so.1 reboot-needed=true
398 $(i386_ONLY)file path=usr/lib/libc/libc_hwcap2.so.1 reboot-needed=true
399 $(i386_ONLY)file path=usr/lib/libc/libc_hwcap3.so.1 reboot-needed=true
400 file path=usr/lib/libcfgadm.so.1
401 file path=usr/lib/libcmd.so.1
402 file path=usr/lib/libcommputil.so.1
403 file path=usr/lib/libcrle.so.1
404 file path=usr/lib/libcrypt.so.1
405 file path=usr/lib/libdisasm.so.1
406 file path=usr/lib/libdll.so.1
407 file path=usr/lib/libexacct.so.1
408 file path=usr/lib/libform.so.1
409 file path=usr/lib/libfstyp.so.1
410 file path=usr/lib/libhotplug.so.1
411 file path=usr/lib/libidmap.so.1
412 file path=usr/lib/libike.so.1
413 file path=usr/lib/libinetsvc.so.1
414 file path=usr/lib/libipmi.so.1
415 file path=usr/lib/libipp.so.1
416 file path=usr/lib/libipsecutil.so.1
417 file path=usr/lib/libkvm.so.1
418 file path=usr/lib/libl.so.1
419 file path=usr/lib/libldap.so.5
420 file path=usr/lib/liblgrp.so.1
421 file path=usr/lib/liblm.so.1
422 file path=usr/lib/libmail.so.1
423 file path=usr/lib/libmalloc.so.1
424 file path=usr/lib/libmapmalloc.so.1
425 file path=usr/lib/libmenu.so.1
426 file path=usr/lib/libmtmalloc.so.1
427 file path=usr/lib/libnls.so.1
428 file path=usr/lib/libpanel.so.1
429 file path=usr/lib/libpcidb.so.1
430 file path=usr/lib/libpkcs11.so.1
431 file path=usr/lib/libproject.so.1
432 file path=usr/lib/libraidcfg.so.1
433 file path=usr/lib/libreparse.so.1
434 file path=usr/lib/libsched.so.1
435 file path=usr/lib/libsctp.so.1
436 file path=usr/lib/libshell.so.1
437 file path=usr/lib/libsip.so.1
438 file path=usr/lib/libsldap.so.1
439 file path=usr/lib/libsmbios.so.1
440 file path=usr/lib/libsoftcrypto.so.1
441 file path=usr/lib/libsum.so.1
442 file path=usr/lib/libsunw_crypto.so.1
443 file path=usr/lib/libsunw_ssl.so.1
444 file path=usr/lib/libsys.so.1
445 $(sparc_ONLY)file path=usr/lib/libv12n.so.1
446 file path=usr/lib/libvolmgt.so.1
447 file path=usr/lib/libwrap.so.1.0
448 file path=usr/lib/liby.so.1
449 file path=usr/lib/libzoneinfo.so.1
450 file path=usr/lib/nss_ad.so.1
451 file path=usr/lib/nss_ldap.so.1
452 file path=usr/lib/passwdutil.so.1
453 file path=usr/lib/python2.6/vendor-packages/solaris/__init__.py
454 file path=usr/lib/python2.6/vendor-packages/solaris/__init__.pyc
455 file path=usr/lib/python2.6/vendor-packages/solaris/misc.so
456 file path=usr/lib/raidcfg/$(ARCH64)/mpt.so.1
457 file path=usr/lib/raidcfg/mpt.so.1

new/usr/src/pkg/manifests/system-library.mf 8

458 file path=usr/lib/scsi/$(ARCH64)/libscsi.so.1
459 file path=usr/lib/scsi/$(ARCH64)/libses.so.1
460 file path=usr/lib/scsi/$(ARCH64)/libsmp.so.1
461 file path=usr/lib/scsi/libscsi.so.1
462 file path=usr/lib/scsi/libses.so.1
463 file path=usr/lib/scsi/libsmp.so.1
464 file path=usr/lib/scsi/plugins/scsi/engines/$(ARCH64)/uscsi.so
465 file path=usr/lib/scsi/plugins/scsi/engines/uscsi.so
466 file path=usr/lib/scsi/plugins/ses/framework/$(ARCH64)/libses.so
467 file path=usr/lib/scsi/plugins/ses/framework/$(ARCH64)/ses2.so
468 file path=usr/lib/scsi/plugins/ses/framework/libses.so
469 file path=usr/lib/scsi/plugins/ses/framework/ses2.so
470 file path=usr/lib/scsi/plugins/smp/engine/$(ARCH64)/usmp.so
471 file path=usr/lib/scsi/plugins/smp/engine/usmp.so
472 file path=usr/lib/scsi/plugins/smp/framework/$(ARCH64)/sas2.so
473 file path=usr/lib/scsi/plugins/smp/framework/sas2.so
474 file path=usr/lib/security/$(ARCH64)/crypt_bsdbf.so.1
475 file path=usr/lib/security/$(ARCH64)/crypt_bsdmd5.so.1
476 file path=usr/lib/security/$(ARCH64)/crypt_sha256.so.1
477 file path=usr/lib/security/$(ARCH64)/crypt_sha512.so.1
478 file path=usr/lib/security/$(ARCH64)/crypt_sunmd5.so.1
479 file path=usr/lib/security/$(ARCH64)/pam_allow.so.1
480 file path=usr/lib/security/$(ARCH64)/pam_authtok_check.so.1
481 file path=usr/lib/security/$(ARCH64)/pam_authtok_get.so.1
482 file path=usr/lib/security/$(ARCH64)/pam_authtok_store.so.1
483 file path=usr/lib/security/$(ARCH64)/pam_deny.so.1
484 file path=usr/lib/security/$(ARCH64)/pam_dhkeys.so.1
485 file path=usr/lib/security/$(ARCH64)/pam_dial_auth.so.1
486 file path=usr/lib/security/$(ARCH64)/pam_ldap.so.1
487 file path=usr/lib/security/$(ARCH64)/pam_list.so.1
488 file path=usr/lib/security/$(ARCH64)/pam_passwd_auth.so.1
489 file path=usr/lib/security/$(ARCH64)/pam_rhosts_auth.so.1
490 file path=usr/lib/security/$(ARCH64)/pam_roles.so.1
491 file path=usr/lib/security/$(ARCH64)/pam_sample.so.1
492 file path=usr/lib/security/$(ARCH64)/pam_tsol_account.so.1
493 file path=usr/lib/security/$(ARCH64)/pam_unix_account.so.1
494 file path=usr/lib/security/$(ARCH64)/pam_unix_auth.so.1
495 file path=usr/lib/security/$(ARCH64)/pam_unix_cred.so.1
496 file path=usr/lib/security/$(ARCH64)/pam_unix_session.so.1
497 file path=usr/lib/security/$(ARCH64)/pkcs11_kernel.so.1
498 file path=usr/lib/security/$(ARCH64)/pkcs11_softtoken.so.1
499 file path=usr/lib/security/$(ARCH64)/pkcs11_tpm.so.1
500 file path=usr/lib/security/audit_binfile.so.1
501 file path=usr/lib/security/audit_remote.so.1
502 file path=usr/lib/security/audit_syslog.so.1
503 file path=usr/lib/security/crypt_bsdbf.so.1
504 file path=usr/lib/security/crypt_bsdmd5.so.1
505 file path=usr/lib/security/crypt_sha256.so.1
506 file path=usr/lib/security/crypt_sha512.so.1
507 file path=usr/lib/security/crypt_sunmd5.so.1
508 file path=usr/lib/security/pam_allow.so.1
509 file path=usr/lib/security/pam_authtok_check.so.1
510 file path=usr/lib/security/pam_authtok_get.so.1
511 file path=usr/lib/security/pam_authtok_store.so.1
512 file path=usr/lib/security/pam_deny.so.1
513 file path=usr/lib/security/pam_dhkeys.so.1
514 file path=usr/lib/security/pam_dial_auth.so.1
515 file path=usr/lib/security/pam_ldap.so.1
516 file path=usr/lib/security/pam_list.so.1
517 file path=usr/lib/security/pam_passwd_auth.so.1
518 file path=usr/lib/security/pam_rhosts_auth.so.1
519 file path=usr/lib/security/pam_roles.so.1
520 file path=usr/lib/security/pam_sample.so.1
521 file path=usr/lib/security/pam_tsol_account.so.1
522 file path=usr/lib/security/pam_unix_account.so.1
523 file path=usr/lib/security/pam_unix_auth.so.1

new/usr/src/pkg/manifests/system-library.mf 9

524 file path=usr/lib/security/pam_unix_cred.so.1
525 file path=usr/lib/security/pam_unix_session.so.1
526 file path=usr/lib/security/pkcs11_kernel.so.1
527 file path=usr/lib/security/pkcs11_softtoken.so.1
528 file path=usr/lib/security/pkcs11_tpm.so.1
529 file path=usr/lib/straddr.so.2
530 file path=usr/lib/watchmalloc.so.1
531 # XXX: Obsoleted by open i18n?
532 file path=usr/xpg4/lib/$(ARCH64)/libcurses.so.1
533 file path=usr/xpg4/lib/$(ARCH64)/libcurses.so.2
534 file path=usr/xpg4/lib/libcurses.so.1
535 file path=usr/xpg4/lib/libcurses.so.2
536 legacy pkg=SUNWcsl \
537 desc="core shared libraries for a specific instruction-set architecture" \
538 name="Core Solaris, (Shared Libs)"
539 legacy pkg=SUNWcslr \
540 desc="core software for a specific instruction-set architecture" \
541 name="Core Solaris Libraries (Root)"
542 license cr_Sun license=cr_Sun
543 license lic_CDDL license=lic_CDDL
544 license lic_OSBL license=lic_OSBL
545 license lic_OSBL_preamble license=lic_OSBL_preamble
546 # libwrap is part of tcp wrappers along with tcpd
547 license usr/src/cmd/tcpd/THIRDPARTYLICENSE \
548 license=usr/src/cmd/tcpd/THIRDPARTYLICENSE
549 license usr/src/common/crypto/THIRDPARTYLICENSE.cryptogams \
550 license=usr/src/common/crypto/THIRDPARTYLICENSE.cryptogams
551 license usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.gladman \
552 license=usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.gladman
553 license usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.openssl \
554 license=usr/src/common/crypto/aes/amd64/THIRDPARTYLICENSE.openssl
555 license usr/src/common/crypto/ecc/THIRDPARTYLICENSE \
556 license=usr/src/common/crypto/ecc/THIRDPARTYLICENSE
557 license usr/src/common/crypto/md5/amd64/THIRDPARTYLICENSE \
558 license=usr/src/common/crypto/md5/amd64/THIRDPARTYLICENSE
559 license usr/src/common/mpi/THIRDPARTYLICENSE \
560 license=usr/src/common/mpi/THIRDPARTYLICENSE
561 license usr/src/lib/libast/THIRDPARTYLICENSE \
562 license=usr/src/lib/libast/THIRDPARTYLICENSE
563 license usr/src/lib/libbsdmalloc/THIRDPARTYLICENSE \
564 license=usr/src/lib/libbsdmalloc/THIRDPARTYLICENSE
565 license usr/src/lib/libc/THIRDPARTYLICENSE \
566 license=usr/src/lib/libc/THIRDPARTYLICENSE
567 license usr/src/lib/libcmd/THIRDPARTYLICENSE \
568 license=usr/src/lib/libcmd/THIRDPARTYLICENSE
569 license usr/src/lib/libdll/THIRDPARTYLICENSE \
570 license=usr/src/lib/libdll/THIRDPARTYLICENSE
571 license usr/src/lib/libinetutil/common/THIRDPARTYLICENSE \
572 license=usr/src/lib/libinetutil/common/THIRDPARTYLICENSE
573 license usr/src/lib/libkmf/THIRDPARTYLICENSE \
574 license=usr/src/lib/libkmf/THIRDPARTYLICENSE
575 license usr/src/lib/libldap5/THIRDPARTYLICENSE \
576 license=usr/src/lib/libldap5/THIRDPARTYLICENSE
577 license usr/src/lib/libmp/common/THIRDPARTYLICENSE \
578 license=usr/src/lib/libmp/common/THIRDPARTYLICENSE
579 license usr/src/lib/libresolv/THIRDPARTYLICENSE \
580 license=usr/src/lib/libresolv/THIRDPARTYLICENSE
581 license usr/src/lib/libresolv2/THIRDPARTYLICENSE \
582 license=usr/src/lib/libresolv2/THIRDPARTYLICENSE
583 license usr/src/lib/libshell/THIRDPARTYLICENSE \
584 license=usr/src/lib/libshell/THIRDPARTYLICENSE
585 license usr/src/lib/libsum/THIRDPARTYLICENSE \
586 license=usr/src/lib/libsum/THIRDPARTYLICENSE
587 license usr/src/lib/pam_modules/authtok_check/THIRDPARTYLICENSE \
588 license=usr/src/lib/pam_modules/authtok_check/THIRDPARTYLICENSE
589 license usr/src/lib/passwdutil/THIRDPARTYLICENSE \

new/usr/src/pkg/manifests/system-library.mf 10

590 license=usr/src/lib/passwdutil/THIRDPARTYLICENSE
591 license usr/src/lib/pkcs11/pkcs11_tpm/THIRDPARTYLICENSE \
592 license=usr/src/lib/pkcs11/pkcs11_tpm/THIRDPARTYLICENSE
593 license usr/src/uts/common/sys/THIRDPARTYLICENSE.unicode \
594 license=usr/src/uts/common/sys/THIRDPARTYLICENSE.unicode
595 link path=lib/$(ARCH64)/libadm.so target=libadm.so.1
596 link path=lib/$(ARCH64)/libaio.so target=libaio.so.1
597 link path=lib/$(ARCH64)/libbsm.so target=libbsm.so.1
598 link path=lib/$(ARCH64)/libc.so reboot-needed=true target=libc.so.1
599 link path=lib/$(ARCH64)/libc_db.so target=libc_db.so.1
600 link path=lib/$(ARCH64)/libcontract.so target=libcontract.so.1
601 link path=lib/$(ARCH64)/libcryptoutil.so target=libcryptoutil.so.1
602 link path=lib/$(ARCH64)/libctf.so target=libctf.so.1
603 link path=lib/$(ARCH64)/libcurses.so target=libcurses.so.1
604 link path=lib/$(ARCH64)/libdevice.so target=libdevice.so.1
605 link path=lib/$(ARCH64)/libdevid.so target=libdevid.so.1
606 link path=lib/$(ARCH64)/libdevinfo.so target=libdevinfo.so.1
607 link path=lib/$(ARCH64)/libdl.so target=libdl.so.1
608 link path=lib/$(ARCH64)/libdladm.so target=libdladm.so.1
609 link path=lib/$(ARCH64)/libdlpi.so target=libdlpi.so.1
610 link path=lib/$(ARCH64)/libdoor.so target=libdoor.so.1
611 link path=lib/$(ARCH64)/libefi.so target=libefi.so.1
612 link path=lib/$(ARCH64)/libelf.so target=libelf.so.1
613 $(i386_ONLY)link path=lib/$(ARCH64)/libfdisk.so target=libfdisk.so.1
614 link path=lib/$(ARCH64)/libgen.so target=libgen.so.1
615 link path=lib/$(ARCH64)/libintl.so target=libintl.so.1
616 link path=lib/$(ARCH64)/libkmf.so target=libkmf.so.1
617 link path=lib/$(ARCH64)/libkmfberder.so target=libkmfberder.so.1
618 link path=lib/$(ARCH64)/libkstat.so target=libkstat.so.1
619 link path=lib/$(ARCH64)/libmd.so target=libmd.so.1
620 link path=lib/$(ARCH64)/libmd5.so target=libmd5.so.1
621 link path=lib/$(ARCH64)/libmp.so target=libmp.so.2
622 link path=lib/$(ARCH64)/libnsl.so target=libnsl.so.1
623 link path=lib/$(ARCH64)/libnvpair.so target=libnvpair.so.1
624 link path=lib/$(ARCH64)/libpam.so target=libpam.so.1
625 link path=lib/$(ARCH64)/libposix4.so target=libposix4.so.1
626 link path=lib/$(ARCH64)/libposix4.so.1 target=librt.so.1
627 link path=lib/$(ARCH64)/libproc.so target=libproc.so.1
628 link path=lib/$(ARCH64)/libpthread.so target=libpthread.so.1
629 link path=lib/$(ARCH64)/librcm.so target=librcm.so.1
630 link path=lib/$(ARCH64)/libresolv.so target=libresolv.so.2
631 link path=lib/$(ARCH64)/librestart.so target=librestart.so.1
632 link path=lib/$(ARCH64)/librpcsvc.so target=librpcsvc.so.1
633 link path=lib/$(ARCH64)/librt.so target=librt.so.1
634 link path=lib/$(ARCH64)/librtld_db.so target=librtld_db.so.1
635 link path=lib/$(ARCH64)/libscf.so target=libscf.so.1
636 link path=lib/$(ARCH64)/libsec.so target=libsec.so.1
637 link path=lib/$(ARCH64)/libsecdb.so target=libsecdb.so.1
638 link path=lib/$(ARCH64)/libsendfile.so target=libsendfile.so.1
639 link path=lib/$(ARCH64)/libsocket.so target=libsocket.so.1
640 link path=lib/$(ARCH64)/libsysevent.so target=libsysevent.so.1
641 link path=lib/$(ARCH64)/libtermcap.so target=libtermcap.so.1
642 link path=lib/$(ARCH64)/libtermlib.so target=libtermlib.so.1
643 link path=lib/$(ARCH64)/libtermlib.so.1 target=libcurses.so.1
644 link path=lib/$(ARCH64)/libthread.so target=libthread.so.1
645 link path=lib/$(ARCH64)/libthread_db.so target=libc_db.so.1
646 link path=lib/$(ARCH64)/libthread_db.so.1 target=libc_db.so.1
647 link path=lib/$(ARCH64)/libtsnet.so target=libtsnet.so.1
648 link path=lib/$(ARCH64)/libtsol.so target=libtsol.so.2
649 link path=lib/$(ARCH64)/libumem.so target=libumem.so.1
650 link path=lib/$(ARCH64)/libuuid.so target=libuuid.so.1
651 link path=lib/$(ARCH64)/libuutil.so target=libuutil.so.1
652 link path=lib/$(ARCH64)/libw.so target=libw.so.1
653 link path=lib/$(ARCH64)/libxnet.so target=libxnet.so.1
654 link path=lib/32 target=.
655 link path=lib/64 target=$(ARCH64)

new/usr/src/pkg/manifests/system-library.mf 11

656 link path=lib/crypto/32 target=.
657 link path=lib/crypto/64 target=$(ARCH64)
658 link path=lib/libadm.so target=libadm.so.1
659 link path=lib/libaio.so target=libaio.so.1
660 link path=lib/libbsm.so target=libbsm.so.1
661 link path=lib/libc.so target=libc.so.1
662 link path=lib/libc_db.so target=libc_db.so.1
663 link path=lib/libcontract.so target=libcontract.so.1
664 link path=lib/libcryptoutil.so target=./libcryptoutil.so.1
665 link path=lib/libctf.so target=libctf.so.1
666 link path=lib/libcurses.so target=libcurses.so.1
667 link path=lib/libdevice.so target=libdevice.so.1
668 link path=lib/libdevid.so target=libdevid.so.1
669 link path=lib/libdevinfo.so target=libdevinfo.so.1
670 link path=lib/libdl.so target=libdl.so.1
671 link path=lib/libdladm.so target=libdladm.so.1
672 link path=lib/libdlpi.so target=libdlpi.so.1
673 link path=lib/libdoor.so target=libdoor.so.1
674 link path=lib/libefi.so target=libefi.so.1
675 link path=lib/libelf.so target=libelf.so.1
676 link path=lib/libelfsign.so target=libelfsign.so.1
677 $(i386_ONLY)link path=lib/libfdisk.so target=libfdisk.so.1
678 link path=lib/libgen.so target=libgen.so.1
679 link path=lib/libintl.so target=libintl.so.1
680 link path=lib/libipmp.so target=./libipmp.so.1
681 link path=lib/libkmf.so target=libkmf.so.1
682 link path=lib/libkmfberder.so target=libkmfberder.so.1
683 link path=lib/libkstat.so target=libkstat.so.1
684 link path=lib/libmd.so target=libmd.so.1
685 link path=lib/libmd5.so target=libmd5.so.1
686 link path=lib/libmp.so target=libmp.so.2
687 link path=lib/libnsl.so target=libnsl.so.1
688 link path=lib/libnvpair.so target=libnvpair.so.1
689 link path=lib/libnwam.so target=libnwam.so.1
690 link path=lib/libpam.so target=libpam.so.1
691 link path=lib/libposix4.so target=libposix4.so.1
692 link path=lib/libposix4.so.1 target=librt.so.1
693 link path=lib/libproc.so target=libproc.so.1
694 link path=lib/libpthread.so target=libpthread.so.1
695 link path=lib/librcm.so target=./librcm.so.1
696 link path=lib/libresolv.so target=libresolv.so.2
697 link path=lib/librpcsvc.so target=librpcsvc.so.1
698 link path=lib/librt.so target=librt.so.1
699 link path=lib/librtld_db.so target=librtld_db.so.1
700 link path=lib/libscf.so target=libscf.so.1
701 link path=lib/libsec.so target=libsec.so.1
702 link path=lib/libsecdb.so target=libsecdb.so.1
703 link path=lib/libsendfile.so target=libsendfile.so.1
704 link path=lib/libsocket.so target=libsocket.so.1
705 link path=lib/libsysevent.so target=./libsysevent.so.1
706 link path=lib/libtermcap.so target=libtermcap.so.1
707 link path=lib/libtermlib.so target=libtermlib.so.1
708 link path=lib/libtermlib.so.1 target=libcurses.so.1
709 link path=lib/libthread.so target=libthread.so.1
710 link path=lib/libthread_db.so target=libc_db.so.1
711 link path=lib/libthread_db.so.1 target=libc_db.so.1
712 link path=lib/libtsol.so target=libtsol.so.2
713 link path=lib/libumem.so target=libumem.so.1
714 link path=lib/libuuid.so target=libuuid.so.1
715 link path=lib/libw.so target=libw.so.1
716 link path=lib/libxnet.so target=libxnet.so.1
717 link path=lib/secure/32 target=.
718 link path=lib/secure/64 target=$(ARCH64)
719 link path=usr/ccs/lib/$(ARCH64)/libcurses.so \
720 target=../../../../lib/$(ARCH64)/libcurses.so.1
721 link path=usr/ccs/lib/$(ARCH64)/libform.so \

new/usr/src/pkg/manifests/system-library.mf 12

722 target=../../../lib/$(ARCH64)/libform.so.1
723 link path=usr/ccs/lib/$(ARCH64)/libgen.so \
724 target=../../../../lib/$(ARCH64)/libgen.so.1
725 link path=usr/ccs/lib/$(ARCH64)/libl.so \
726 target=../../../lib/$(ARCH64)/libl.so.1
727 link path=usr/ccs/lib/$(ARCH64)/libmalloc.so \
728 target=../../../lib/$(ARCH64)/libmalloc.so.1
729 link path=usr/ccs/lib/$(ARCH64)/libmenu.so \
730 target=../../../lib/$(ARCH64)/libmenu.so.1
731 link path=usr/ccs/lib/$(ARCH64)/libpanel.so \
732 target=../../../lib/$(ARCH64)/libpanel.so.1
733 link path=usr/ccs/lib/$(ARCH64)/libtermcap.so \
734 target=../../../../lib/$(ARCH64)/libtermcap.so.1
735 link path=usr/ccs/lib/$(ARCH64)/libtermlib.so \
736 target=../../../../lib/$(ARCH64)/libcurses.so.1
737 link path=usr/ccs/lib/$(ARCH64)/liby.so \
738 target=../../../lib/$(ARCH64)/liby.so.1
739 link path=usr/ccs/lib/libcurses.so target=../../../lib/libcurses.so.1
740 link path=usr/ccs/lib/libform.so target=../../lib/libform.so.1
741 link path=usr/ccs/lib/libgen.so target=../../../lib/libgen.so.1
742 link path=usr/ccs/lib/libl.so target=../../lib/libl.so.1
743 link path=usr/ccs/lib/libmalloc.so target=../../lib/libmalloc.so.1
744 link path=usr/ccs/lib/libmenu.so target=../../lib/libmenu.so.1
745 link path=usr/ccs/lib/libpanel.so target=../../lib/libpanel.so.1
746 link path=usr/ccs/lib/libtermcap.so target=../../../lib/libtermcap.so.1
747 link path=usr/ccs/lib/libtermlib.so target=../../../lib/libcurses.so.1
748 link path=usr/ccs/lib/liby.so target=../../lib/liby.so.1
749 link path=usr/lib/$(ARCH64)/libadm.so \
750 target=../../../lib/$(ARCH64)/libadm.so.1
751 link path=usr/lib/$(ARCH64)/libadm.so.1 \
752 target=../../../lib/$(ARCH64)/libadm.so.1
753 link path=usr/lib/$(ARCH64)/libadutils.so target=./libadutils.so.1
754 link path=usr/lib/$(ARCH64)/libaio.so \
755 target=../../../lib/$(ARCH64)/libaio.so.1
756 link path=usr/lib/$(ARCH64)/libaio.so.1 \
757 target=../../../lib/$(ARCH64)/libaio.so.1
758 link path=usr/lib/$(ARCH64)/libavl.so.1 \
759 target=../../../lib/$(ARCH64)/libavl.so.1
760 link path=usr/lib/$(ARCH64)/libbsdmalloc.so target=libbsdmalloc.so.1
761 link path=usr/lib/$(ARCH64)/libbsm.so \
762 target=../../../lib/$(ARCH64)/libbsm.so.1
763 link path=usr/lib/$(ARCH64)/libbsm.so.1 \
764 target=../../../lib/$(ARCH64)/libbsm.so.1
765 link path=usr/lib/$(ARCH64)/libc.so target=../../../lib/$(ARCH64)/libc.so.1
766 link path=usr/lib/$(ARCH64)/libc.so.1 target=../../../lib/$(ARCH64)/libc.so.1
767 link path=usr/lib/$(ARCH64)/libc_db.so \
768 target=../../../lib/$(ARCH64)/libc_db.so.1
769 link path=usr/lib/$(ARCH64)/libc_db.so.1 \
770 target=../../../lib/$(ARCH64)/libc_db.so.1
771 link path=usr/lib/$(ARCH64)/libcfgadm.so target=libcfgadm.so.1
772 link path=usr/lib/$(ARCH64)/libcmd.so target=libcmd.so.1
773 link path=usr/lib/$(ARCH64)/libcmdutils.so.1 \
774 target=../../../lib/$(ARCH64)/libcmdutils.so.1
775 link path=usr/lib/$(ARCH64)/libcommputil.so target=libcommputil.so.1
776 link path=usr/lib/$(ARCH64)/libcontract.so \
777 target=../../../lib/$(ARCH64)/libcontract.so.1
778 link path=usr/lib/$(ARCH64)/libcontract.so.1 \
779 target=../../../lib/$(ARCH64)/libcontract.so.1
780 link path=usr/lib/$(ARCH64)/libcrypt.so target=./libcrypt.so.1
781 link path=usr/lib/$(ARCH64)/libcrypt_d.so target=./libcrypt.so
782 link path=usr/lib/$(ARCH64)/libcrypt_d.so.1 target=./libcrypt.so.1
783 link path=usr/lib/$(ARCH64)/libcrypt_i.so target=./libcrypt.so
784 link path=usr/lib/$(ARCH64)/libcrypt_i.so.1 target=./libcrypt.so.1
785 link path=usr/lib/$(ARCH64)/libctf.so \
786 target=../../../lib/$(ARCH64)/libctf.so.1
787 link path=usr/lib/$(ARCH64)/libctf.so.1 \

new/usr/src/pkg/manifests/system-library.mf 13

788 target=../../../lib/$(ARCH64)/libctf.so.1
789 link path=usr/lib/$(ARCH64)/libcurses.so \
790 target=../../../lib/$(ARCH64)/libcurses.so.1
791 link path=usr/lib/$(ARCH64)/libcurses.so.1 \
792 target=../../../lib/$(ARCH64)/libcurses.so.1
793 link path=usr/lib/$(ARCH64)/libdevice.so \
794 target=../../../lib/$(ARCH64)/libdevice.so.1
795 link path=usr/lib/$(ARCH64)/libdevice.so.1 \
796 target=../../../lib/$(ARCH64)/libdevice.so.1
797 link path=usr/lib/$(ARCH64)/libdevid.so \
798 target=../../../lib/$(ARCH64)/libdevid.so.1
799 link path=usr/lib/$(ARCH64)/libdevid.so.1 \
800 target=../../../lib/$(ARCH64)/libdevid.so.1
801 link path=usr/lib/$(ARCH64)/libdevinfo.so \
802 target=../../../lib/$(ARCH64)/libdevinfo.so.1
803 link path=usr/lib/$(ARCH64)/libdevinfo.so.1 \
804 target=../../../lib/$(ARCH64)/libdevinfo.so.1
805 link path=usr/lib/$(ARCH64)/libdhcputil.so.1 \
806 target=../../../lib/$(ARCH64)/libdhcputil.so.1
807 link path=usr/lib/$(ARCH64)/libdisasm.so target=libdisasm.so.1
808 link path=usr/lib/$(ARCH64)/libdl.so target=../../../lib/$(ARCH64)/libdl.so.1
809 link path=usr/lib/$(ARCH64)/libdl.so.1 \
810 target=../../../lib/$(ARCH64)/libdl.so.1
811 link path=usr/lib/$(ARCH64)/libdlpi.so \
812 target=../../../lib/$(ARCH64)/libdlpi.so.1
813 link path=usr/lib/$(ARCH64)/libdlpi.so.1 \
814 target=../../../lib/$(ARCH64)/libdlpi.so.1
815 link path=usr/lib/$(ARCH64)/libdoor.so \
816 target=../../../lib/$(ARCH64)/libdoor.so.1
817 link path=usr/lib/$(ARCH64)/libdoor.so.1 \
818 target=../../../lib/$(ARCH64)/libdoor.so.1
819 link path=usr/lib/$(ARCH64)/libefi.so \
820 target=../../../lib/$(ARCH64)/libefi.so.1
821 link path=usr/lib/$(ARCH64)/libefi.so.1 \
822 target=../../../lib/$(ARCH64)/libefi.so.1
823 link path=usr/lib/$(ARCH64)/libelf.so \
824 target=../../../lib/$(ARCH64)/libelf.so.1
825 link path=usr/lib/$(ARCH64)/libelf.so.1 \
826 target=../../../lib/$(ARCH64)/libelf.so.1
827 link path=usr/lib/$(ARCH64)/libexacct.so target=libexacct.so.1
828 $(i386_ONLY)link path=usr/lib/$(ARCH64)/libfdisk.so \
829 target=../../../lib/$(ARCH64)/libfdisk.so.1
830 $(i386_ONLY)link path=usr/lib/$(ARCH64)/libfdisk.so.1 \
831 target=../../../lib/$(ARCH64)/libfdisk.so.1
832 link path=usr/lib/$(ARCH64)/libform.so target=libform.so.1
833 link path=usr/lib/$(ARCH64)/libfstyp.so target=./libfstyp.so.1
834 link path=usr/lib/$(ARCH64)/libgen.so \
835 target=../../../lib/$(ARCH64)/libgen.so.1
836 link path=usr/lib/$(ARCH64)/libgen.so.1 \
837 target=../../../lib/$(ARCH64)/libgen.so.1
838 link path=usr/lib/$(ARCH64)/libhotplug.so target=libhotplug.so.1
839 link path=usr/lib/$(ARCH64)/libidmap.so target=./libidmap.so.1
840 link path=usr/lib/$(ARCH64)/libinetutil.so.1 \
841 target=../../../lib/$(ARCH64)/libinetutil.so.1
842 link path=usr/lib/$(ARCH64)/libintl.so \
843 target=../../../lib/$(ARCH64)/libintl.so.1
844 link path=usr/lib/$(ARCH64)/libintl.so.1 \
845 target=../../../lib/$(ARCH64)/libintl.so.1
846 link path=usr/lib/$(ARCH64)/libipmi.so target=./libipmi.so.1
847 link path=usr/lib/$(ARCH64)/libipp.so target=libipp.so.1
848 link path=usr/lib/$(ARCH64)/libkstat.so \
849 target=../../../lib/$(ARCH64)/libkstat.so.1
850 link path=usr/lib/$(ARCH64)/libkstat.so.1 \
851 target=../../../lib/$(ARCH64)/libkstat.so.1
852 link path=usr/lib/$(ARCH64)/libkvm.so target=libkvm.so.1
853 link path=usr/lib/$(ARCH64)/libl.so target=libl.so.1

new/usr/src/pkg/manifests/system-library.mf 14

854 link path=usr/lib/$(ARCH64)/libldap.so target=libldap.so.5
855 link path=usr/lib/$(ARCH64)/liblddbg.so.4 \
856 target=../../../lib/$(ARCH64)/liblddbg.so.4
857 link path=usr/lib/$(ARCH64)/liblgrp.so target=liblgrp.so.1
858 link path=usr/lib/$(ARCH64)/liblm.so target=liblm.so.1
859 link path=usr/lib/$(ARCH64)/libmail.so target=libmail.so.1
860 link path=usr/lib/$(ARCH64)/libmalloc.so target=libmalloc.so.1
861 link path=usr/lib/$(ARCH64)/libmapmalloc.so target=libmapmalloc.so.1
862 link path=usr/lib/$(ARCH64)/libmd.so target=../../../lib/$(ARCH64)/libmd.so.1
863 link path=usr/lib/$(ARCH64)/libmd.so.1 \
864 target=../../../lib/$(ARCH64)/libmd.so.1
865 link path=usr/lib/$(ARCH64)/libmd5.so \
866 target=../../../lib/$(ARCH64)/libmd5.so.1
867 link path=usr/lib/$(ARCH64)/libmd5.so.1 \
868 target=../../../lib/$(ARCH64)/libmd5.so.1
869 link path=usr/lib/$(ARCH64)/libmenu.so target=libmenu.so.1
870 link path=usr/lib/$(ARCH64)/libmp.so target=../../../lib/$(ARCH64)/libmp.so.2
871 link path=usr/lib/$(ARCH64)/libmp.so.2 \
872 target=../../../lib/$(ARCH64)/libmp.so.2
873 link path=usr/lib/$(ARCH64)/libmtmalloc.so target=libmtmalloc.so.1
874 link path=usr/lib/$(ARCH64)/libnls.so target=libnls.so.1
875 link path=usr/lib/$(ARCH64)/libnsl.so \
876 target=../../../lib/$(ARCH64)/libnsl.so.1
877 link path=usr/lib/$(ARCH64)/libnsl.so.1 \
878 target=../../../lib/$(ARCH64)/libnsl.so.1
879 link path=usr/lib/$(ARCH64)/libnvpair.so \
880 target=../../../lib/$(ARCH64)/libnvpair.so.1
881 link path=usr/lib/$(ARCH64)/libnvpair.so.1 \
882 target=../../../lib/$(ARCH64)/libnvpair.so.1
883 link path=usr/lib/$(ARCH64)/libpam.so \
884 target=../../../lib/$(ARCH64)/libpam.so.1
885 link path=usr/lib/$(ARCH64)/libpam.so.1 \
886 target=../../../lib/$(ARCH64)/libpam.so.1
887 link path=usr/lib/$(ARCH64)/libpanel.so target=libpanel.so.1
888 link path=usr/lib/$(ARCH64)/libpkcs11.so target=libpkcs11.so.1
889 link path=usr/lib/$(ARCH64)/libposix4.so \
890 target=../../../lib/$(ARCH64)/librt.so.1
891 link path=usr/lib/$(ARCH64)/libposix4.so.1 \
892 target=../../../lib/$(ARCH64)/librt.so.1
893 link path=usr/lib/$(ARCH64)/libproc.so \
894 target=../../../lib/$(ARCH64)/libproc.so.1
895 link path=usr/lib/$(ARCH64)/libproc.so.1 \
896 target=../../../lib/$(ARCH64)/libproc.so.1
897 link path=usr/lib/$(ARCH64)/libproject.so target=libproject.so.1
898 link path=usr/lib/$(ARCH64)/libpthread.so \
899 target=../../../lib/$(ARCH64)/libpthread.so.1
900 link path=usr/lib/$(ARCH64)/libpthread.so.1 \
901 target=../../../lib/$(ARCH64)/libpthread.so.1
902 link path=usr/lib/$(ARCH64)/librcm.so \
903 target=../../../lib/$(ARCH64)/librcm.so.1
904 link path=usr/lib/$(ARCH64)/librcm.so.1 \
905 target=../../../lib/$(ARCH64)/librcm.so.1
906 link path=usr/lib/$(ARCH64)/libreparse.so target=libreparse.so.1
907 link path=usr/lib/$(ARCH64)/libresolv.so \
908 target=../../../lib/$(ARCH64)/libresolv.so.2
909 link path=usr/lib/$(ARCH64)/libresolv.so.2 \
910 target=../../../lib/$(ARCH64)/libresolv.so.2
911 $(i386_ONLY)link path=usr/lib/$(ARCH64)/librestart.so \
912 target=../../../lib/$(ARCH64)/librestart.so.1
913 link path=usr/lib/$(ARCH64)/librestart.so.1 \
914 target=../../../lib/$(ARCH64)/librestart.so.1
915 link path=usr/lib/$(ARCH64)/librpcsvc.so \
916 target=../../../lib/$(ARCH64)/librpcsvc.so.1
917 link path=usr/lib/$(ARCH64)/librpcsvc.so.1 \
918 target=../../../lib/$(ARCH64)/librpcsvc.so.1
919 link path=usr/lib/$(ARCH64)/librt.so target=../../../lib/$(ARCH64)/librt.so.1

new/usr/src/pkg/manifests/system-library.mf 15

920 link path=usr/lib/$(ARCH64)/librt.so.1 \
921 target=../../../lib/$(ARCH64)/librt.so.1
922 link path=usr/lib/$(ARCH64)/librtld.so.1 \
923 target=../../../lib/$(ARCH64)/librtld.so.1
924 link path=usr/lib/$(ARCH64)/librtld_db.so \
925 target=../../../lib/$(ARCH64)/librtld_db.so.1
926 link path=usr/lib/$(ARCH64)/librtld_db.so.1 \
927 target=../../../lib/$(ARCH64)/librtld_db.so.1
928 link path=usr/lib/$(ARCH64)/libscf.so \
929 target=../../../lib/$(ARCH64)/libscf.so.1
930 link path=usr/lib/$(ARCH64)/libscf.so.1 \
931 target=../../../lib/$(ARCH64)/libscf.so.1
932 link path=usr/lib/$(ARCH64)/libsched.so target=libsched.so.1
933 link path=usr/lib/$(ARCH64)/libsctp.so target=./libsctp.so.1
934 link path=usr/lib/$(ARCH64)/libsec.so \
935 target=../../../lib/$(ARCH64)/libsec.so.1
936 link path=usr/lib/$(ARCH64)/libsec.so.1 \
937 target=../../../lib/$(ARCH64)/libsec.so.1
938 link path=usr/lib/$(ARCH64)/libsecdb.so \
939 target=../../../lib/$(ARCH64)/libsecdb.so.1
940 link path=usr/lib/$(ARCH64)/libsecdb.so.1 \
941 target=../../../lib/$(ARCH64)/libsecdb.so.1
942 link path=usr/lib/$(ARCH64)/libsendfile.so \
943 target=../../../lib/$(ARCH64)/libsendfile.so.1
944 link path=usr/lib/$(ARCH64)/libsendfile.so.1 \
945 target=../../../lib/$(ARCH64)/libsendfile.so.1
946 link path=usr/lib/$(ARCH64)/libsip.so target=./libsip.so.1
947 link path=usr/lib/$(ARCH64)/libsldap.so target=libsldap.so.1
948 link path=usr/lib/$(ARCH64)/libsmbios.so target=libsmbios.so.1
949 link path=usr/lib/$(ARCH64)/libsocket.so \
950 target=../../../lib/$(ARCH64)/libsocket.so.1
951 link path=usr/lib/$(ARCH64)/libsocket.so.1 \
952 target=../../../lib/$(ARCH64)/libsocket.so.1
953 link path=usr/lib/$(ARCH64)/libsoftcrypto.so target=./libsoftcrypto.so.1
954 link path=usr/lib/$(ARCH64)/libsysevent.so \
955 target=../../../lib/$(ARCH64)/libsysevent.so.1
956 link path=usr/lib/$(ARCH64)/libsysevent.so.1 \
957 target=../../../lib/$(ARCH64)/libsysevent.so.1
958 link path=usr/lib/$(ARCH64)/libtermcap.so \
959 target=../../../lib/$(ARCH64)/libtermcap.so.1
960 link path=usr/lib/$(ARCH64)/libtermcap.so.1 \
961 target=../../../lib/$(ARCH64)/libtermcap.so.1
962 link path=usr/lib/$(ARCH64)/libtermlib.so \
963 target=../../../lib/$(ARCH64)/libcurses.so.1
964 link path=usr/lib/$(ARCH64)/libtermlib.so.1 \
965 target=../../../lib/$(ARCH64)/libcurses.so.1
966 link path=usr/lib/$(ARCH64)/libthread.so \
967 target=../../../lib/$(ARCH64)/libthread.so.1
968 link path=usr/lib/$(ARCH64)/libthread.so.1 \
969 target=../../../lib/$(ARCH64)/libthread.so.1
970 link path=usr/lib/$(ARCH64)/libthread_db.so \
971 target=../../../lib/$(ARCH64)/libc_db.so.1
972 link path=usr/lib/$(ARCH64)/libthread_db.so.1 \
973 target=../../../lib/$(ARCH64)/libc_db.so.1
974 link path=usr/lib/$(ARCH64)/libtsnet.so \
975 target=../../../lib/$(ARCH64)/libtsnet.so.1
976 link path=usr/lib/$(ARCH64)/libtsnet.so.1 \
977 target=../../../lib/$(ARCH64)/libtsnet.so.1
978 link path=usr/lib/$(ARCH64)/libtsol.so \
979 target=../../../lib/$(ARCH64)/libtsol.so.2
980 link path=usr/lib/$(ARCH64)/libtsol.so.2 \
981 target=../../../lib/$(ARCH64)/libtsol.so.2
982 link path=usr/lib/$(ARCH64)/libumem.so \
983 target=../../../lib/$(ARCH64)/libumem.so.1
984 link path=usr/lib/$(ARCH64)/libumem.so.1 \
985 target=../../../lib/$(ARCH64)/libumem.so.1

new/usr/src/pkg/manifests/system-library.mf 16

986 link path=usr/lib/$(ARCH64)/libuuid.so \
987 target=../../../lib/$(ARCH64)/libuuid.so.1
988 link path=usr/lib/$(ARCH64)/libuuid.so.1 \
989 target=../../../lib/$(ARCH64)/libuuid.so.1
990 $(i386_ONLY)link path=usr/lib/$(ARCH64)/libuutil.so \
991 target=../../../lib/$(ARCH64)/libuutil.so.1
992 link path=usr/lib/$(ARCH64)/libuutil.so.1 \
993 target=../../../lib/$(ARCH64)/libuutil.so.1
994 $(sparc_ONLY)link path=usr/lib/$(ARCH64)/libv12n.so target=./libv12n.so.1
995 link path=usr/lib/$(ARCH64)/libvolmgt.so target=libvolmgt.so.1
996 link path=usr/lib/$(ARCH64)/libw.so target=../../../lib/$(ARCH64)/libw.so.1
997 link path=usr/lib/$(ARCH64)/libw.so.1 target=../../../lib/$(ARCH64)/libw.so.1
998 link path=usr/lib/$(ARCH64)/libwrap.so target=libwrap.so.1.0
999 link path=usr/lib/$(ARCH64)/libwrap.so.1 target=libwrap.so.1.0

1000 link path=usr/lib/$(ARCH64)/libxnet.so \
1001 target=../../../lib/$(ARCH64)/libxnet.so.1
1002 link path=usr/lib/$(ARCH64)/libxnet.so.1 \
1003 target=../../../lib/$(ARCH64)/libxnet.so.1
1004 link path=usr/lib/$(ARCH64)/liby.so target=liby.so.1
1005 link path=usr/lib/$(ARCH64)/libzoneinfo.so target=./libzoneinfo.so.1
1006 link path=usr/lib/$(ARCH64)/nss_compat.so.1 \
1007 target=../../../lib/$(ARCH64)/nss_compat.so.1
1008 link path=usr/lib/$(ARCH64)/nss_dns.so.1 \
1009 target=../../../lib/$(ARCH64)/nss_dns.so.1
1010 link path=usr/lib/$(ARCH64)/nss_files.so.1 \
1011 target=../../../lib/$(ARCH64)/nss_files.so.1
1012 link path=usr/lib/$(ARCH64)/nss_nis.so.1 \
1013 target=../../../lib/$(ARCH64)/nss_nis.so.1
1014 link path=usr/lib/$(ARCH64)/nss_user.so.1 \
1015 target=../../../lib/$(ARCH64)/nss_user.so.1
1016 link path=usr/lib/$(ARCH64)/straddr.so target=straddr.so.2
1017 link path=usr/lib/32 target=.
1018 link path=usr/lib/64 target=$(ARCH64)
1019 link path=usr/lib/cfgadm/$(ARCH64)/ib.so target=./ib.so.1
1020 link path=usr/lib/cfgadm/$(ARCH64)/pci.so target=./pci.so.1
1021 $(i386_ONLY)link path=usr/lib/cfgadm/$(ARCH64)/sata.so target=./sata.so.1
1022 link path=usr/lib/cfgadm/$(ARCH64)/scsi.so target=./scsi.so.1
1023 link path=usr/lib/cfgadm/$(ARCH64)/shp.so target=./shp.so.1
1024 link path=usr/lib/cfgadm/$(ARCH64)/usb.so target=./usb.so.1
1025 link path=usr/lib/cfgadm/ib.so target=./ib.so.1
1026 link path=usr/lib/cfgadm/pci.so target=./pci.so.1
1027 $(i386_ONLY)link path=usr/lib/cfgadm/sata.so target=./sata.so.1
1028 link path=usr/lib/cfgadm/scsi.so target=./scsi.so.1
1029 link path=usr/lib/cfgadm/shp.so target=./shp.so.1
1030 link path=usr/lib/cfgadm/usb.so target=./usb.so.1
1031 link path=usr/lib/libadm.so target=../../lib/libadm.so.1
1032 link path=usr/lib/libadm.so.1 target=../../lib/libadm.so.1
1033 link path=usr/lib/libadutils.so target=./libadutils.so.1
1034 link path=usr/lib/libaio.so target=../../lib/libaio.so.1
1035 link path=usr/lib/libaio.so.1 target=../../lib/libaio.so.1
1036 link path=usr/lib/libavl.so.1 target=../../lib/libavl.so.1
1037 link path=usr/lib/libbsdmalloc.so target=./libbsdmalloc.so.1
1038 link path=usr/lib/libbsm.so target=../../lib/libbsm.so.1
1039 link path=usr/lib/libbsm.so.1 target=../../lib/libbsm.so.1
1040 link path=usr/lib/libc.so target=../../lib/libc.so.1
1041 link path=usr/lib/libc.so.1 target=../../lib/libc.so.1
1042 link path=usr/lib/libc_db.so target=../../lib/libc_db.so.1
1043 link path=usr/lib/libc_db.so.1 target=../../lib/libc_db.so.1
1044 link path=usr/lib/libcfgadm.so target=./libcfgadm.so.1
1045 link path=usr/lib/libcmd.so target=libcmd.so.1
1046 link path=usr/lib/libcmdutils.so.1 target=../../lib/libcmdutils.so.1
1047 link path=usr/lib/libcommputil.so target=./libcommputil.so.1
1048 link path=usr/lib/libcontract.so target=../../lib/libcontract.so.1
1049 link path=usr/lib/libcontract.so.1 target=../../lib/libcontract.so.1
1050 link path=usr/lib/libcrypt.so target=./libcrypt.so.1
1051 link path=usr/lib/libcrypt_d.so target=./libcrypt.so

new/usr/src/pkg/manifests/system-library.mf 17

1052 link path=usr/lib/libcrypt_d.so.1 target=./libcrypt.so.1
1053 link path=usr/lib/libcrypt_i.so target=./libcrypt.so
1054 link path=usr/lib/libcrypt_i.so.1 target=./libcrypt.so.1
1055 link path=usr/lib/libctf.so target=../../lib/libctf.so.1
1056 link path=usr/lib/libctf.so.1 target=../../lib/libctf.so.1
1057 link path=usr/lib/libcurses.so target=../../lib/libcurses.so.1
1058 link path=usr/lib/libcurses.so.1 target=../../lib/libcurses.so.1
1059 link path=usr/lib/libdevice.so target=../../lib/libdevice.so.1
1060 link path=usr/lib/libdevice.so.1 target=../../lib/libdevice.so.1
1061 link path=usr/lib/libdevid.so target=../../lib/libdevid.so.1
1062 link path=usr/lib/libdevid.so.1 target=../../lib/libdevid.so.1
1063 link path=usr/lib/libdevinfo.so target=../../lib/libdevinfo.so.1
1064 link path=usr/lib/libdevinfo.so.1 target=../../lib/libdevinfo.so.1
1065 link path=usr/lib/libdhcpagent.so.1 target=../../lib/libdhcpagent.so.1
1066 link path=usr/lib/libdhcputil.so.1 target=../../lib/libdhcputil.so.1
1067 link path=usr/lib/libdisasm.so target=./libdisasm.so.1
1068 link path=usr/lib/libdl.so target=../../lib/libdl.so.1
1069 link path=usr/lib/libdl.so.1 target=../../lib/libdl.so.1
1070 link path=usr/lib/libdlpi.so target=../../lib/libdlpi.so.1
1071 link path=usr/lib/libdlpi.so.1 target=../../lib/libdlpi.so.1
1072 link path=usr/lib/libdoor.so target=../../lib/libdoor.so.1
1073 link path=usr/lib/libdoor.so.1 target=../../lib/libdoor.so.1
1074 link path=usr/lib/libefi.so target=../../lib/libefi.so.1
1075 link path=usr/lib/libefi.so.1 target=../../lib/libefi.so.1
1076 link path=usr/lib/libelf.so target=../../lib/libelf.so.1
1077 link path=usr/lib/libelf.so.1 target=../../lib/libelf.so.1
1078 link path=usr/lib/libexacct.so target=./libexacct.so.1
1079 $(i386_ONLY)link path=usr/lib/libfdisk.so target=../../lib/libfdisk.so.1
1080 $(i386_ONLY)link path=usr/lib/libfdisk.so.1 target=../../lib/libfdisk.so.1
1081 link path=usr/lib/libform.so target=./libform.so.1
1082 link path=usr/lib/libfstyp.so target=./libfstyp.so.1
1083 link path=usr/lib/libgen.so target=../../lib/libgen.so.1
1084 link path=usr/lib/libgen.so.1 target=../../lib/libgen.so.1
1085 link path=usr/lib/libhotplug.so target=./libhotplug.so.1
1086 link path=usr/lib/libidmap.so target=./libidmap.so.1
1087 link path=usr/lib/libinetutil.so.1 target=../../lib/libinetutil.so.1
1088 link path=usr/lib/libintl.so target=../../lib/libintl.so.1
1089 link path=usr/lib/libintl.so.1 target=../../lib/libintl.so.1
1090 link path=usr/lib/libipmi.so target=./libipmi.so.1
1091 link path=usr/lib/libipp.so target=./libipp.so.1
1092 link path=usr/lib/libkstat.so target=../../lib/libkstat.so.1
1093 link path=usr/lib/libkstat.so.1 target=../../lib/libkstat.so.1
1094 link path=usr/lib/libkvm.so target=./libkvm.so.1
1095 link path=usr/lib/libl.so target=./libl.so.1
1096 link path=usr/lib/libldap.so target=libldap.so.5
1097 link path=usr/lib/liblddbg.so.4 target=../../lib/liblddbg.so.4
1098 link path=usr/lib/liblgrp.so target=./liblgrp.so.1
1099 link path=usr/lib/liblm.so target=./liblm.so.1
1100 link path=usr/lib/libmail.so target=./libmail.so.1
1101 link path=usr/lib/libmalloc.so target=./libmalloc.so.1
1102 link path=usr/lib/libmapmalloc.so target=./libmapmalloc.so.1
1103 link path=usr/lib/libmd.so target=../../lib/libmd.so.1
1104 link path=usr/lib/libmd.so.1 target=../../lib/libmd.so.1
1105 link path=usr/lib/libmd5.so target=../../lib/libmd5.so.1
1106 link path=usr/lib/libmd5.so.1 target=../../lib/libmd5.so.1
1107 link path=usr/lib/libmenu.so target=./libmenu.so.1
1108 link path=usr/lib/libmp.so target=../../lib/libmp.so.2
1109 link path=usr/lib/libmp.so.1 target=../../lib/libmp.so.1
1110 link path=usr/lib/libmp.so.2 target=../../lib/libmp.so.2
1111 link path=usr/lib/libmtmalloc.so target=./libmtmalloc.so.1
1112 link path=usr/lib/libnls.so target=./libnls.so.1
1113 link path=usr/lib/libnsl.so target=../../lib/libnsl.so.1
1114 link path=usr/lib/libnsl.so.1 target=../../lib/libnsl.so.1
1115 link path=usr/lib/libnvpair.so target=../../lib/libnvpair.so.1
1116 link path=usr/lib/libnvpair.so.1 target=../../lib/libnvpair.so.1
1117 link path=usr/lib/libpam.so target=../../lib/libpam.so.1

new/usr/src/pkg/manifests/system-library.mf 18

1118 link path=usr/lib/libpam.so.1 target=../../lib/libpam.so.1
1119 link path=usr/lib/libpanel.so target=./libpanel.so.1
1120 link path=usr/lib/libpkcs11.so target=./libpkcs11.so.1
1121 link path=usr/lib/libposix4.so target=../../lib/librt.so.1
1122 link path=usr/lib/libposix4.so.1 target=../../lib/librt.so.1
1123 link path=usr/lib/libproc.so target=../../lib/libproc.so.1
1124 link path=usr/lib/libproc.so.1 target=../../lib/libproc.so.1
1125 link path=usr/lib/libproject.so target=./libproject.so.1
1126 link path=usr/lib/libpthread.so target=../../lib/libpthread.so.1
1127 link path=usr/lib/libpthread.so.1 target=../../lib/libpthread.so.1
1128 link path=usr/lib/librcm.so target=../../lib/librcm.so.1
1129 link path=usr/lib/librcm.so.1 target=../../lib/librcm.so.1
1130 link path=usr/lib/libreparse.so target=./libreparse.so.1
1131 link path=usr/lib/libresolv.so target=../../lib/libresolv.so.2
1132 link path=usr/lib/libresolv.so.1 target=../../lib/libresolv.so.1
1133 link path=usr/lib/libresolv.so.2 target=../../lib/libresolv.so.2
1134 link path=usr/lib/librestart.so.1 target=../../lib/librestart.so.1
1135 link path=usr/lib/librpcsvc.so target=../../lib/librpcsvc.so.1
1136 link path=usr/lib/librpcsvc.so.1 target=../../lib/librpcsvc.so.1
1137 link path=usr/lib/librt.so target=../../lib/librt.so.1
1138 link path=usr/lib/librt.so.1 target=../../lib/librt.so.1
1139 link path=usr/lib/librtld.so.1 target=../../lib/librtld.so.1
1140 link path=usr/lib/librtld_db.so target=../../lib/librtld_db.so.1
1141 link path=usr/lib/librtld_db.so.1 target=../../lib/librtld_db.so.1
1142 link path=usr/lib/libscf.so target=../../lib/libscf.so.1
1143 link path=usr/lib/libscf.so.1 target=../../lib/libscf.so.1
1144 link path=usr/lib/libsched.so target=./libsched.so.1
1145 link path=usr/lib/libsctp.so target=./libsctp.so.1
1146 link path=usr/lib/libsec.so target=../../lib/libsec.so.1
1147 link path=usr/lib/libsec.so.1 target=../../lib/libsec.so.1
1148 link path=usr/lib/libsecdb.so target=../../lib/libsecdb.so.1
1149 link path=usr/lib/libsecdb.so.1 target=../../lib/libsecdb.so.1
1150 link path=usr/lib/libsendfile.so target=../../lib/libsendfile.so.1
1151 link path=usr/lib/libsendfile.so.1 target=../../lib/libsendfile.so.1
1152 link path=usr/lib/libsip.so target=./libsip.so.1
1153 link path=usr/lib/libsldap.so target=libsldap.so.1
1154 link path=usr/lib/libsmbios.so target=libsmbios.so.1
1155 link path=usr/lib/libsocket.so target=../../lib/libsocket.so.1
1156 link path=usr/lib/libsocket.so.1 target=../../lib/libsocket.so.1
1157 link path=usr/lib/libsoftcrypto.so target=./libsoftcrypto.so.1
1158 link path=usr/lib/libsys.so target=./libsys.so.1
1159 link path=usr/lib/libsysevent.so target=../../lib/libsysevent.so.1
1160 link path=usr/lib/libsysevent.so.1 target=../../lib/libsysevent.so.1
1161 link path=usr/lib/libtermcap.so target=../../lib/libtermcap.so.1
1162 link path=usr/lib/libtermcap.so.1 target=../../lib/libtermcap.so.1
1163 link path=usr/lib/libtermlib.so target=../../lib/libcurses.so.1
1164 link path=usr/lib/libtermlib.so.1 target=../../lib/libcurses.so.1
1165 link path=usr/lib/libthread.so target=../../lib/libthread.so.1
1166 link path=usr/lib/libthread.so.1 target=../../lib/libthread.so.1
1167 link path=usr/lib/libthread_db.so target=../../lib/libc_db.so.1
1168 link path=usr/lib/libthread_db.so.1 target=../../lib/libc_db.so.1
1169 link path=usr/lib/libtsnet.so target=../../lib/libtsnet.so.1
1170 link path=usr/lib/libtsnet.so.1 target=../../lib/libtsnet.so.1
1171 link path=usr/lib/libtsol.so target=../../lib/libtsol.so.2
1172 link path=usr/lib/libtsol.so.2 target=../../lib/libtsol.so.2
1173 link path=usr/lib/libumem.so target=../../lib/libumem.so.1
1174 link path=usr/lib/libumem.so.1 target=../../lib/libumem.so.1
1175 link path=usr/lib/libuuid.so target=../../lib/libuuid.so.1
1176 link path=usr/lib/libuuid.so.1 target=../../lib/libuuid.so.1
1177 link path=usr/lib/libuutil.so.1 target=../../lib/libuutil.so.1
1178 $(sparc_ONLY)link path=usr/lib/libv12n.so target=./libv12n.so.1
1179 link path=usr/lib/libvolmgt.so target=./libvolmgt.so.1
1180 link path=usr/lib/libw.so target=../../lib/libw.so.1
1181 link path=usr/lib/libw.so.1 target=../../lib/libw.so.1
1182 link path=usr/lib/libwrap.so target=libwrap.so.1.0
1183 link path=usr/lib/libwrap.so.1 target=libwrap.so.1.0

new/usr/src/pkg/manifests/system-library.mf 19

1184 link path=usr/lib/libxnet.so target=../../lib/libxnet.so.1
1185 link path=usr/lib/libxnet.so.1 target=../../lib/libxnet.so.1
1186 link path=usr/lib/liby.so target=./liby.so.1
1187 link path=usr/lib/libzoneinfo.so target=./libzoneinfo.so.1
1188 link path=usr/lib/lwp/$(ARCH64)/libthread.so.1 \
1189 target=../../$(ARCH64)/libthread.so.1
1190 link path=usr/lib/lwp/$(ARCH64)/libthread_db.so.1 \
1191 target=../../$(ARCH64)/libthread_db.so.1
1192 link path=usr/lib/lwp/32 target=.
1193 link path=usr/lib/lwp/64 target=$(ARCH64)
1194 link path=usr/lib/lwp/libthread.so.1 target=../libthread.so.1
1195 link path=usr/lib/lwp/libthread_db.so.1 target=../libthread_db.so.1
1196 link path=usr/lib/nss_compat.so.1 target=../../lib/nss_compat.so.1
1197 link path=usr/lib/nss_dns.so.1 target=../../lib/nss_dns.so.1
1198 link path=usr/lib/nss_files.so.1 target=../../lib/nss_files.so.1
1199 link path=usr/lib/nss_nis.so.1 target=../../lib/nss_nis.so.1
1200 link path=usr/lib/nss_user.so.1 target=../../lib/nss_user.so.1
1201 link path=usr/lib/scsi/$(ARCH64)/libscsi.so target=./libscsi.so.1
1202 link path=usr/lib/scsi/$(ARCH64)/libses.so target=./libses.so.1
1203 link path=usr/lib/scsi/$(ARCH64)/libsmp.so target=./libsmp.so.1
1204 link path=usr/lib/scsi/libscsi.so target=./libscsi.so.1
1205 link path=usr/lib/scsi/libses.so target=./libses.so.1
1206 link path=usr/lib/scsi/libsmp.so target=./libsmp.so.1
1207 link path=usr/lib/security/$(ARCH64)/crypt_bsdbf.so target=./crypt_bsdbf.so.1
1208 link path=usr/lib/security/$(ARCH64)/crypt_bsdmd5.so \
1209 target=./crypt_bsdmd5.so.1
1210 link path=usr/lib/security/$(ARCH64)/crypt_sha256.so \
1211 target=./crypt_sha256.so.1
1212 link path=usr/lib/security/$(ARCH64)/crypt_sha512.so \
1213 target=./crypt_sha512.so.1
1214 link path=usr/lib/security/$(ARCH64)/crypt_sunmd5.so \
1215 target=./crypt_sunmd5.so.1
1216 link path=usr/lib/security/$(ARCH64)/pam_allow.so target=./pam_allow.so.1
1217 link path=usr/lib/security/$(ARCH64)/pam_authtok_check.so \
1218 target=./pam_authtok_check.so.1
1219 link path=usr/lib/security/$(ARCH64)/pam_authtok_get.so \
1220 target=./pam_authtok_get.so.1
1221 link path=usr/lib/security/$(ARCH64)/pam_authtok_store.so \
1222 target=./pam_authtok_store.so.1
1223 link path=usr/lib/security/$(ARCH64)/pam_deny.so target=./pam_deny.so.1
1224 link path=usr/lib/security/$(ARCH64)/pam_dhkeys.so target=./pam_dhkeys.so.1
1225 link path=usr/lib/security/$(ARCH64)/pam_dial_auth.so \
1226 target=./pam_dial_auth.so.1
1227 link path=usr/lib/security/$(ARCH64)/pam_ldap.so target=./pam_ldap.so.1
1228 link path=usr/lib/security/$(ARCH64)/pam_list.so target=./pam_list.so.1
1229 link path=usr/lib/security/$(ARCH64)/pam_passwd_auth.so \
1230 target=./pam_passwd_auth.so.1
1231 link path=usr/lib/security/$(ARCH64)/pam_rhosts_auth.so \
1232 target=./pam_rhosts_auth.so.1
1233 link path=usr/lib/security/$(ARCH64)/pam_roles.so target=./pam_roles.so.1
1234 link path=usr/lib/security/$(ARCH64)/pam_sample.so target=./pam_sample.so.1
1235 link path=usr/lib/security/$(ARCH64)/pam_tsol_account.so \
1236 target=./pam_tsol_account.so.1
1237 link path=usr/lib/security/$(ARCH64)/pam_unix_account.so \
1238 target=./pam_unix_account.so.1
1239 link path=usr/lib/security/$(ARCH64)/pam_unix_auth.so \
1240 target=./pam_unix_auth.so.1
1241 link path=usr/lib/security/$(ARCH64)/pam_unix_cred.so \
1242 target=./pam_unix_cred.so.1
1243 link path=usr/lib/security/$(ARCH64)/pam_unix_session.so \
1244 target=./pam_unix_session.so.1
1245 link path=usr/lib/security/$(ARCH64)/pkcs11_kernel.so \
1246 target=./pkcs11_kernel.so.1
1247 link path=usr/lib/security/$(ARCH64)/pkcs11_softtoken.so \
1248 target=./pkcs11_softtoken.so.1
1249 link path=usr/lib/security/$(ARCH64)/pkcs11_tpm.so target=./pkcs11_tpm.so.1

new/usr/src/pkg/manifests/system-library.mf 20

1250 link path=usr/lib/security/64 target=$(ARCH64)
1251 link path=usr/lib/security/audit_binfile.so target=./audit_binfile.so.1
1252 link path=usr/lib/security/audit_remote.so target=./audit_remote.so.1
1253 link path=usr/lib/security/audit_syslog.so target=./audit_syslog.so.1
1254 link path=usr/lib/security/crypt_bsdbf.so target=./crypt_bsdbf.so.1
1255 link path=usr/lib/security/crypt_bsdmd5.so target=./crypt_bsdmd5.so.1
1256 link path=usr/lib/security/crypt_sha256.so target=./crypt_sha256.so.1
1257 link path=usr/lib/security/crypt_sha512.so target=./crypt_sha512.so.1
1258 link path=usr/lib/security/crypt_sunmd5.so target=./crypt_sunmd5.so.1
1259 link path=usr/lib/security/pam_allow.so target=./pam_allow.so.1
1260 link path=usr/lib/security/pam_authtok_check.so \
1261 target=./pam_authtok_check.so.1
1262 link path=usr/lib/security/pam_authtok_get.so target=./pam_authtok_get.so.1
1263 link path=usr/lib/security/pam_authtok_store.so \
1264 target=./pam_authtok_store.so.1
1265 link path=usr/lib/security/pam_deny.so target=./pam_deny.so.1
1266 link path=usr/lib/security/pam_dhkeys.so target=./pam_dhkeys.so.1
1267 link path=usr/lib/security/pam_dial_auth.so target=./pam_dial_auth.so.1
1268 link path=usr/lib/security/pam_ldap.so target=./pam_ldap.so.1
1269 link path=usr/lib/security/pam_list.so target=./pam_list.so.1
1270 link path=usr/lib/security/pam_passwd_auth.so target=./pam_passwd_auth.so.1
1271 link path=usr/lib/security/pam_rhosts_auth.so target=./pam_rhosts_auth.so.1
1272 link path=usr/lib/security/pam_roles.so target=./pam_roles.so.1
1273 link path=usr/lib/security/pam_sample.so target=./pam_sample.so.1
1274 link path=usr/lib/security/pam_tsol_account.so target=./pam_tsol_account.so.1
1275 link path=usr/lib/security/pam_unix_account.so target=./pam_unix_account.so.1
1276 link path=usr/lib/security/pam_unix_auth.so target=./pam_unix_auth.so.1
1277 link path=usr/lib/security/pam_unix_cred.so target=./pam_unix_cred.so.1
1278 link path=usr/lib/security/pam_unix_session.so target=./pam_unix_session.so.1
1279 link path=usr/lib/security/pkcs11_kernel.so target=./pkcs11_kernel.so.1
1280 link path=usr/lib/security/pkcs11_softtoken.so target=./pkcs11_softtoken.so.1
1281 link path=usr/lib/security/pkcs11_tpm.so target=./pkcs11_tpm.so.1
1282 link path=usr/lib/straddr.so target=./straddr.so.2
1283 link path=usr/xpg4/lib/$(ARCH64)/libcurses.so target=libcurses.so.2
1284 link path=usr/xpg4/lib/64 target=$(ARCH64)
1285 link path=usr/xpg4/lib/libcurses.so target=./libcurses.so.2
1286 #
1287 # libses.so needs to dlopen(3C) plugins from usr/lib/scsi/plugins/ses/vendor/,
1288 # a dependency which cannot be automatically derived
1289 #
1290 depend fmri=system/library/storage/scsi-plugins type=require

new/usr/src/stand/lib/wanboot/Makefile 1

**
 1720 Fri May 30 18:32:24 2014
new/usr/src/stand/lib/wanboot/Makefile
4853 illumos-gate is not lint-clean when built with openssl 1.0
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #

25 LIBRARY = libwanboot.a
26 LOCOBJS = http_aux.o bootinfo_aux.o
27 CMNOBJS = boot_http.o parseURL.o bootlog.o auxutil.o p12access.o \
28 p12auxpars.o p12err.o p12misc.o http_errorstr.o bootconf.o bootinfo.o
29 OBJECTS = $(LOCOBJS) $(CMNOBJS)

31 include ../Makefile.com

33 CMNDIR = $(CMNNETDIR)/wanboot
34 SRCS = $(LOCOBJS:%.o=$(SRCDIR)/%.c) $(CMNOBJS:%.o=$(CMNDIR)/%.c)
35 LDLIBS += -lsunw_crypto -lsock -linet -lsunw_ssl -lnvpair

37 CPPFLAGS += -I$(CMNNETDIR)/dhcp -I$(TOPDIR)/common/net/wanboot/crypt \
38 -I../inet $(DHCPCPPFLAGS) $(SOCKCPPFLAGS)

40 #
41 # several objects need access to openssl headers, now in ../openssl
42 #
43 CPPFLAGS += -I..

45 CERRWARN += -_gcc=-Wno-char-subscripts
46 CERRWARN += -_gcc=-Wno-switch
47 CERRWARN += -_gcc=-Wno-parentheses
48 CERRWARN += -_gcc=-Wno-uninitialized
49 CERRWARN += -_gcc=-Wno-unused-value

51 include ../Makefile.targ

